input
stringlengths
33
5k
output
stringlengths
32
5k
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_panoptic.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] preprocess_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True, pad_size_divisor=32) model = dict( type='PanopticFPN', preprocess_cfg=preprocess_cfg, semantic_head=dict( type='PanopticFPNHead', num_things_classes=80, num_stuff_classes=53, in_channels=256, inner_channels=128, start_level=0, end_level=4, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), conv_cfg=None, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.5)), panoptic_fusion_head=dict( type='HeuristicFusionHead', num_things_classes=80, num_stuff_classes=53), test_cfg=dict( panoptic=dict( score_thr=0.6, max_per_img=100, mask_thr_binary=0.5, mask_overlap=0.5, nms=dict(type='nms', iou_threshold=0.5, class_agnostic=True), stuff_area_limit=4096))) # Forced to remove NumClassCheckHook custom_hooks = []
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_panoptic.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) model = dict( type='PanopticFPN', img_norm_cfg=img_norm_cfg, semantic_head=dict( type='PanopticFPNHead', num_things_classes=80, num_stuff_classes=53, in_channels=256, inner_channels=128, start_level=0, end_level=4, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), conv_cfg=None, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.5)), panoptic_fusion_head=dict( type='HeuristicFusionHead', num_things_classes=80, num_stuff_classes=53), test_cfg=dict( panoptic=dict( score_thr=0.6, max_per_img=100, mask_thr_binary=0.5, mask_overlap=0.5, nms=dict(type='nms', iou_threshold=0.5, class_agnostic=True), stuff_area_limit=4096))) # Forced to remove NumClassCheckHook custom_hooks = []
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_efficientnet import * from .image_processing_efficientnet import * from .image_processing_efficientnet_fast import * from .modeling_efficientnet import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_efficientnet import * from .image_processing_efficientnet import * from .modeling_efficientnet import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
import pytest from docarray import BaseDoc, DocArray from docarray.documents import ImageDoc from docarray.typing import NdArray class MyDoc(BaseDoc): embedding: NdArray text: str image: ImageDoc @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) def test_from_to_bytes(protocol, compress, show_progress): da = DocArray[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) bytes_da = da.to_bytes( protocol=protocol, compress=compress, show_progress=show_progress ) da2 = DocArray[MyDoc].from_bytes( bytes_da, protocol=protocol, compress=compress, show_progress=show_progress ) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) def test_from_to_base64(protocol, compress, show_progress): da = DocArray[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) bytes_da = da.to_base64( protocol=protocol, compress=compress, show_progress=show_progress ) da2 = DocArray[MyDoc].from_base64( bytes_da, protocol=protocol, compress=compress, show_progress=show_progress ) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None
import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc from docarray.typing import NdArray class MyDoc(BaseDocument): embedding: NdArray text: str image: ImageDoc @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) def test_from_to_bytes(protocol, compress, show_progress): da = DocumentArray[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) bytes_da = da.to_bytes( protocol=protocol, compress=compress, show_progress=show_progress ) da2 = DocumentArray[MyDoc].from_bytes( bytes_da, protocol=protocol, compress=compress, show_progress=show_progress ) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) def test_from_to_base64(protocol, compress, show_progress): da = DocumentArray[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) bytes_da = da.to_base64( protocol=protocol, compress=compress, show_progress=show_progress ) da2 = DocumentArray[MyDoc].from_base64( bytes_da, protocol=protocol, compress=compress, show_progress=show_progress ) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 20 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from mmengine.registry import build_model_from_cfg, build_runner_from_cfg from .registry import Registry # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner', build_func=build_runner_from_cfg) # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of loops like `EpochBasedTrainLoop` LOOPS = Registry('loop') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model', build_model_from_cfg) # mangage all kinds of model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry('model_wrapper') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage optimizer wrapper OPTIM_WRAPPERS = Registry('optim_wrapper') # manage constructors that customize the optimization hyperparameters. OPTIM_WRAPPER_CONSTRUCTORS = Registry('optimizer wrapper constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry('parameter scheduler') # manage all kinds of metrics METRICS = Registry('metric') # manage evaluator EVALUATOR = Registry('evaluator') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage visualizer VISUALIZERS = Registry('visualizer') # manage visualizer backend VISBACKENDS = Registry('vis_backend') # manage logprocessor LOG_PROCESSORS = Registry('log_processor')
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 20 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from .registry import Registry, build_runner_from_cfg # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner', build_func=build_runner_from_cfg) # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of loops like `EpochBasedTrainLoop` LOOPS = Registry('loop') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model') # mangage all kinds of model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry('model_wrapper') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage optimizer wrapper OPTIM_WRAPPERS = Registry('optim_wrapper') # manage constructors that customize the optimization hyperparameters. OPTIM_WRAPPER_CONSTRUCTORS = Registry('optimizer wrapper constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry('parameter scheduler') # manage all kinds of metrics METRICS = Registry('metric') # manage evaluator EVALUATOR = Registry('evaluator') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage visualizer VISUALIZERS = Registry('visualizer') # manage visualizer backend VISBACKENDS = Registry('vis_backend') # manage logprocessor LOG_PROCESSORS = Registry('log_processor')
from typing import Dict, Iterable import torch from torch import Tensor, nn class MSELoss(nn.Module): def __init__(self, model): """ Computes the MSE loss between the computed sentence embedding and a target sentence embedding. This loss is used when extending sentence embeddings to new languages as described in our publication Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation. For an example, see `the distillation documentation <../../examples/training/distillation/README.html>`_ on extending language models to new languages. Args: model: SentenceTransformerModel References: - Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation: https://arxiv.org/abs/2004.09813 - `Training > Model Distillation <../../examples/training/distillation/README.html>`_ - `Training > Multilingual Models <../../examples/training/multilingual/README.html>`_ Requirements: 1. Usually uses a finetuned teacher M in a knowledge distillation setup Relations: - :class:`MarginMSELoss` is equivalent to this loss, but with a margin through a negative pair. Input: +-----------------------------------------+-----------------------------+ | Texts | Labels | +=========================================+=============================+ | sentence | model sentence embeddings | +-----------------------------------------+-----------------------------+ | sentence_1, sentence_2, ..., sentence_N | model sentence embeddings | +-----------------------------------------+-----------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset student_model = SentenceTransformer("microsoft/mpnet-base") teacher_model = SentenceTransformer("all-mpnet-base-v2") train_dataset = Dataset.from_dict({ "english": ["The first sentence", "The second sentence", "The third sentence", "The fourth sentence"], "french": ["La première phrase", "La deuxième phrase", "La troisième phrase", "La quatrième phrase"], }) def compute_labels(batch): return { "label": teacher_model.encode(batch["english"]) } train_dataset = train_dataset.map(compute_labels, batched=True) loss = losses.MSELoss(student_model) trainer = SentenceTransformerTrainer( model=student_model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(MSELoss, self).__init__() self.model = model self.loss_fct = nn.MSELoss() def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): # Concatenate multiple inputs on the batch dimension if len(sentence_features) > 1: embeddings = torch.cat([self.model(inputs)["sentence_embedding"] for inputs in sentence_features], dim=0) # Repeat the labels for each input return self.loss_fct(embeddings, labels.repeat(len(sentence_features), 1)) embeddings = self.model(sentence_features[0])["sentence_embedding"] return self.loss_fct(embeddings, labels) @property def citation(self) -> str: return """ @inproceedings{reimers-2020-multilingual-sentence-bert, title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2020", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2004.09813", } """
import torch from torch import nn, Tensor from typing import Iterable, Dict class MSELoss(nn.Module): def __init__(self, model): """ Computes the MSE loss between the computed sentence embedding and a target sentence embedding. This loss is used when extending sentence embeddings to new languages as described in our publication Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation. For an example, see `the distillation documentation <../../examples/training/distillation/README.html>`_ on extending language models to new languages. Args: model: SentenceTransformerModel References: - Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation: https://arxiv.org/abs/2004.09813 - `Training > Model Distillation <../../examples/training/distillation/README.html>`_ - `Training > Multilingual Models <../../examples/training/multilingual/README.html>`_ Requirements: 1. Usually uses a finetuned teacher M in a knowledge distillation setup Relations: - :class:`MarginMSELoss` is equivalent to this loss, but with a margin through a negative pair. Input: +-----------------------------------------+-----------------------------+ | Texts | Labels | +=========================================+=============================+ | sentence | model sentence embeddings | +-----------------------------------------+-----------------------------+ | sentence_1, sentence_2, ..., sentence_N | model sentence embeddings | +-----------------------------------------+-----------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset student_model = SentenceTransformer("microsoft/mpnet-base") teacher_model = SentenceTransformer("all-mpnet-base-v2") train_dataset = Dataset.from_dict({ "english": ["The first sentence", "The second sentence", "The third sentence", "The fourth sentence"], "french": ["La première phrase", "La deuxième phrase", "La troisième phrase", "La quatrième phrase"], }) def compute_labels(batch): return { "label": teacher_model.encode(batch["english"]) } train_dataset = train_dataset.map(compute_labels, batched=True) loss = losses.MSELoss(student_model) trainer = SentenceTransformerTrainer( model=student_model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(MSELoss, self).__init__() self.model = model self.loss_fct = nn.MSELoss() def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): # Concatenate multiple inputs on the batch dimension if len(sentence_features) > 1: embeddings = torch.cat([self.model(inputs)["sentence_embedding"] for inputs in sentence_features], dim=0) # Repeat the labels for each input return self.loss_fct(embeddings, labels.repeat(len(sentence_features), 1)) embeddings = self.model(sentence_features[0])["sentence_embedding"] return self.loss_fct(embeddings, labels) @property def citation(self) -> str: return """ @inproceedings{reimers-2020-multilingual-sentence-bert, title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2020", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2004.09813", } """
from langchain_core.utils.json_schema import ( _dereference_refs_helper, _infer_skip_keys, _retrieve_ref, dereference_refs, ) __all__ = [ "_dereference_refs_helper", "_infer_skip_keys", "_retrieve_ref", "dereference_refs", ]
from langchain_core.utils.json_schema import ( _dereference_refs_helper, _infer_skip_keys, _retrieve_ref, dereference_refs, ) __all__ = [ "_retrieve_ref", "_dereference_refs_helper", "_infer_skip_keys", "dereference_refs", ]
from __future__ import annotations from .BinaryCrossEntropyLoss import BinaryCrossEntropyLoss from .CachedMultipleNegativesRankingLoss import CachedMultipleNegativesRankingLoss from .CrossEntropyLoss import CrossEntropyLoss from .LambdaLoss import ( LambdaLoss, LambdaRankScheme, NDCGLoss1Scheme, NDCGLoss2PPScheme, NDCGLoss2Scheme, NoWeighingScheme, ) from .ListNetLoss import ListNetLoss from .MarginMSELoss import MarginMSELoss from .MSELoss import MSELoss from .MultipleNegativesRankingLoss import MultipleNegativesRankingLoss __all__ = [ "BinaryCrossEntropyLoss", "CrossEntropyLoss", "MultipleNegativesRankingLoss", "CachedMultipleNegativesRankingLoss", "MarginMSELoss", "MSELoss", "ListNetLoss", "LambdaLoss", "NoWeighingScheme", "NDCGLoss1Scheme", "NDCGLoss2Scheme", "LambdaRankScheme", "NDCGLoss2PPScheme", ]
from __future__ import annotations from .BinaryCrossEntropyLoss import BinaryCrossEntropyLoss from .CachedMultipleNegativesRankingLoss import CachedMultipleNegativesRankingLoss from .CrossEntropyLoss import CrossEntropyLoss from .LambdaLoss import ( LambdaLoss, LambdaRankScheme, NDCGLoss1Scheme, NDCGLoss2PPScheme, NDCGLoss2Scheme, NoWeighingScheme, ) from .MarginMSELoss import MarginMSELoss from .MSELoss import MSELoss from .MultipleNegativesRankingLoss import MultipleNegativesRankingLoss __all__ = [ "BinaryCrossEntropyLoss", "CrossEntropyLoss", "MultipleNegativesRankingLoss", "CachedMultipleNegativesRankingLoss", "MarginMSELoss", "MSELoss", "LambdaLoss", "NoWeighingScheme", "NDCGLoss1Scheme", "NDCGLoss2Scheme", "LambdaRankScheme", "NDCGLoss2PPScheme", ]
_base_ = './faster_rcnn_hrnetv2p_w32_1x_coco.py' # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './faster_rcnn_hrnetv2p_w32_1x_coco.py' # learning policy lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24)
"""Language models. **Language Model** is a type of model that can generate text or complete text prompts. LangChain has two main classes to work with language models: **Chat Models** and "old-fashioned" **LLMs**. **Chat Models** Language models that use a sequence of messages as inputs and return chat messages as outputs (as opposed to using plain text). These are traditionally newer models ( older models are generally LLMs, see below). Chat models support the assignment of distinct roles to conversation messages, helping to distinguish messages from the AI, users, and instructions such as system messages. The key abstraction for chat models is `BaseChatModel`. Implementations should inherit from this class. Please see LangChain how-to guides with more information on how to implement a custom chat model. To implement a custom Chat Model, inherit from `BaseChatModel`. See the following guide for more information on how to implement a custom Chat Model: https://python.langchain.com/docs/how_to/custom_chat_model/ **LLMs** Language models that takes a string as input and returns a string. These are traditionally older models (newer models generally are Chat Models, see below). Although the underlying models are string in, string out, the LangChain wrappers also allow these models to take messages as input. This gives them the same interface as Chat Models. When messages are passed in as input, they will be formatted into a string under the hood before being passed to the underlying model. To implement a custom LLM, inherit from `BaseLLM` or `LLM`. Please see the following guide for more information on how to implement a custom LLM: https://python.langchain.com/docs/how_to/custom_llm/ """ # noqa: E501 from langchain_core.language_models.base import ( BaseLanguageModel, LangSmithParams, LanguageModelInput, LanguageModelLike, LanguageModelOutput, get_tokenizer, ) from langchain_core.language_models.chat_models import BaseChatModel, SimpleChatModel from langchain_core.language_models.fake import FakeListLLM, FakeStreamingListLLM from langchain_core.language_models.fake_chat_models import ( FakeListChatModel, FakeMessagesListChatModel, GenericFakeChatModel, ParrotFakeChatModel, ) from langchain_core.language_models.llms import LLM, BaseLLM __all__ = [ "BaseLanguageModel", "BaseChatModel", "SimpleChatModel", "BaseLLM", "LLM", "LanguageModelInput", "get_tokenizer", "LangSmithParams", "LanguageModelOutput", "LanguageModelLike", "FakeListLLM", "FakeStreamingListLLM", "FakeListChatModel", "FakeMessagesListChatModel", "GenericFakeChatModel", "ParrotFakeChatModel", ]
"""**Language Model** is a type of model that can generate text or complete text prompts. LangChain has two main classes to work with language models: **Chat Models** and "old-fashioned" **LLMs**. **Chat Models** Language models that use a sequence of messages as inputs and return chat messages as outputs (as opposed to using plain text). These are traditionally newer models ( older models are generally LLMs, see below). Chat models support the assignment of distinct roles to conversation messages, helping to distinguish messages from the AI, users, and instructions such as system messages. The key abstraction for chat models is `BaseChatModel`. Implementations should inherit from this class. Please see LangChain how-to guides with more information on how to implement a custom chat model. To implement a custom Chat Model, inherit from `BaseChatModel`. See the following guide for more information on how to implement a custom Chat Model: https://python.langchain.com/docs/how_to/custom_chat_model/ **LLMs** Language models that takes a string as input and returns a string. These are traditionally older models (newer models generally are Chat Models, see below). Although the underlying models are string in, string out, the LangChain wrappers also allow these models to take messages as input. This gives them the same interface as Chat Models. When messages are passed in as input, they will be formatted into a string under the hood before being passed to the underlying model. To implement a custom LLM, inherit from `BaseLLM` or `LLM`. Please see the following guide for more information on how to implement a custom LLM: https://python.langchain.com/docs/how_to/custom_llm/ """ # noqa: E501 from langchain_core.language_models.base import ( BaseLanguageModel, LangSmithParams, LanguageModelInput, LanguageModelLike, LanguageModelOutput, get_tokenizer, ) from langchain_core.language_models.chat_models import BaseChatModel, SimpleChatModel from langchain_core.language_models.fake import FakeListLLM, FakeStreamingListLLM from langchain_core.language_models.fake_chat_models import ( FakeListChatModel, FakeMessagesListChatModel, GenericFakeChatModel, ParrotFakeChatModel, ) from langchain_core.language_models.llms import LLM, BaseLLM __all__ = [ "BaseLanguageModel", "BaseChatModel", "SimpleChatModel", "BaseLLM", "LLM", "LanguageModelInput", "get_tokenizer", "LangSmithParams", "LanguageModelOutput", "LanguageModelLike", "FakeListLLM", "FakeStreamingListLLM", "FakeListChatModel", "FakeMessagesListChatModel", "GenericFakeChatModel", "ParrotFakeChatModel", ]
# Copyright (c) OpenMMLab. All rights reserved. from .evaluator import Evaluator from .metric import BaseMetric, DumpResults from .utils import get_metric_value __all__ = ['BaseMetric', 'Evaluator', 'get_metric_value', 'DumpResults']
# Copyright (c) OpenMMLab. All rights reserved. from .evaluator import Evaluator from .metric import BaseMetric from .utils import get_metric_value __all__ = ['BaseMetric', 'Evaluator', 'get_metric_value']
from docarray.typing.tensor.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor __all__ = [ 'NdArray', 'AnyTensor', 'AnyEmbedding', 'NdArrayEmbedding', ] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor.embedding import TorchEmbedding # noqa: F401 from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 __all__.extend(['TorchEmbedding', 'TorchTensor'])
from docarray.typing.tensor.embedding import Embedding, NdArrayEmbedding from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor __all__ = [ 'NdArray', 'AnyTensor', 'Embedding', 'NdArrayEmbedding', ] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor.embedding import TorchEmbedding # noqa: F401 from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 __all__.extend(['TorchEmbedding', 'TorchTensor'])
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders import ChatGPTLoader from langchain_community.document_loaders.chatgpt import concatenate_rows # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "concatenate_rows": "langchain_community.document_loaders.chatgpt", "ChatGPTLoader": "langchain_community.document_loaders", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ChatGPTLoader", "concatenate_rows", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders import ChatGPTLoader from langchain_community.document_loaders.chatgpt import concatenate_rows # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "concatenate_rows": "langchain_community.document_loaders.chatgpt", "ChatGPTLoader": "langchain_community.document_loaders", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "concatenate_rows", "ChatGPTLoader", ]
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any from sentence_transformers.evaluation import MSEEvaluatorFromDataFrame if TYPE_CHECKING: import numpy as np from sentence_transformers.sparse_encoder import SparseEncoder logger = logging.getLogger(__name__) class SparseMSEEvaluatorDataFrame(MSEEvaluatorFromDataFrame): def __init__( self, dataframe: list[dict[str, str]], teacher_model: SparseEncoder, combinations: list[tuple[str, str]], batch_size: int = 8, name: str = "", write_csv: bool = True, truncate_dim: int | None = None, ): super.__init__(dataframe, teacher_model, combinations, batch_size, name, write_csv, truncate_dim) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super.__call__(model, output_path, epoch, steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> np.ndarray: return model.encode( sentences, batch_size=self.batch_size, convert_to_numpy=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any from sentence_transformers.evaluation import MSEEvaluatorFromDataFrame if TYPE_CHECKING: import numpy as np from sentence_transformers.sparse_encoder import SparseEncoder logger = logging.getLogger(__name__) class SparseMSEEvaluator(MSEEvaluatorFromDataFrame): def __init__( self, dataframe: list[dict[str, str]], teacher_model: SparseEncoder, combinations: list[tuple[str, str]], batch_size: int = 8, name: str = "", write_csv: bool = True, truncate_dim: int | None = None, ): super.__init__(dataframe, teacher_model, combinations, batch_size, name, write_csv, truncate_dim) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super.__call__(model, output_path, epoch, steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> np.ndarray: return model.encode( sentences, batch_size=self.batch_size, convert_to_numpy=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step)
_base_ = [ '../_base_/models/faster-rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( test_cfg=dict( rcnn=dict( score_thr=0.05, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=100)))
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( test_cfg=dict( rcnn=dict( score_thr=0.05, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=100)))
_base_ = './mask_rcnn_r101_fpn_1x_coco.py' preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], to_rgb=False, pad_size_divisor=32) model = dict( # ResNeXt-101-32x8d model trained with Caffe2 at FB, # so the mean and std need to be changed. preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=8, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnext101_32x8d')))
_base_ = './mask_rcnn_r101_fpn_1x_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=8, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnext101_32x8d'))) dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline))
import sys import uuid from typing import Any, Optional from uuid import UUID import pytest from langchain_core.callbacks import AsyncCallbackHandler, BaseCallbackHandler from langchain_core.callbacks.manager import ( adispatch_custom_event, dispatch_custom_event, ) from langchain_core.runnables import RunnableLambda from langchain_core.runnables.config import RunnableConfig class AsyncCustomCallbackHandler(AsyncCallbackHandler): def __init__(self) -> None: self.events: list[Any] = [] async def on_custom_event( self, name: str, data: Any, *, run_id: UUID, tags: Optional[list[str]] = None, metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: assert kwargs == {} self.events.append( ( name, data, run_id, tags, metadata, ) ) def test_custom_event_root_dispatch() -> None: """Test adhoc event in a nested chain.""" # This just tests that nothing breaks on the path. # It shouldn't do anything at the moment, since the tracer isn't configured # to handle adhoc events. # Expected behavior is that the event cannot be dispatched with pytest.raises(RuntimeError): dispatch_custom_event("event1", {"x": 1}) async def test_async_custom_event_root_dispatch() -> None: """Test adhoc event in a nested chain.""" # This just tests that nothing breaks on the path. # It shouldn't do anything at the moment, since the tracer isn't configured # to handle adhoc events. # Expected behavior is that the event cannot be dispatched with pytest.raises(RuntimeError): await adispatch_custom_event("event1", {"x": 1}) IS_GTE_3_11 = sys.version_info >= (3, 11) @pytest.mark.skipif(not IS_GTE_3_11, reason="Requires Python >=3.11") async def test_async_custom_event_implicit_config() -> None: """Test dispatch without passing config explicitly.""" callback = AsyncCustomCallbackHandler() run_id = uuid.UUID(int=7) # Typing not working well with RunnableLambda when used as # a decorator for async functions @RunnableLambda # type: ignore[arg-type] async def foo(x: int, config: RunnableConfig) -> int: assert "callbacks" in config await adispatch_custom_event("event1", {"x": x}) await adispatch_custom_event("event2", {"x": x}) return x await foo.ainvoke( 1, # type: ignore[arg-type] {"callbacks": [callback], "run_id": run_id}, ) assert callback.events == [ ("event1", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}), ("event2", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}), ] async def test_async_callback_manager() -> None: """Test async callback manager.""" callback = AsyncCustomCallbackHandler() run_id = uuid.UUID(int=7) # Typing not working well with RunnableLambda when used as # a decorator for async functions @RunnableLambda # type: ignore[arg-type] async def foo(x: int, config: RunnableConfig) -> int: await adispatch_custom_event("event1", {"x": x}, config=config) await adispatch_custom_event("event2", {"x": x}, config=config) return x await foo.ainvoke( 1, # type: ignore[arg-type] {"callbacks": [callback], "run_id": run_id}, ) assert callback.events == [ ("event1", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}), ("event2", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}), ] def test_sync_callback_manager() -> None: """Test async callback manager.""" class CustomCallbackManager(BaseCallbackHandler): def __init__(self) -> None: self.events: list[Any] = [] def on_custom_event( self, name: str, data: Any, *, run_id: UUID, tags: Optional[list[str]] = None, metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: assert kwargs == {} self.events.append( ( name, data, run_id, tags, metadata, ) ) callback = CustomCallbackManager() run_id = uuid.UUID(int=7) @RunnableLambda def foo(x: int, config: RunnableConfig) -> int: dispatch_custom_event("event1", {"x": x}) dispatch_custom_event("event2", {"x": x}, config=config) return x foo.invoke(1, {"callbacks": [callback], "run_id": run_id}) assert callback.events == [ ("event1", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}), ("event2", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}), ]
import sys import uuid from typing import Any, Optional from uuid import UUID import pytest from langchain_core.callbacks import AsyncCallbackHandler, BaseCallbackHandler from langchain_core.callbacks.manager import ( adispatch_custom_event, dispatch_custom_event, ) from langchain_core.runnables import RunnableLambda from langchain_core.runnables.config import RunnableConfig class AsyncCustomCallbackHandler(AsyncCallbackHandler): def __init__(self) -> None: self.events: list[Any] = [] async def on_custom_event( self, name: str, data: Any, *, run_id: UUID, tags: Optional[list[str]] = None, metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: assert kwargs == {} self.events.append( ( name, data, run_id, tags, metadata, ) ) def test_custom_event_root_dispatch() -> None: """Test adhoc event in a nested chain.""" # This just tests that nothing breaks on the path. # It shouldn't do anything at the moment, since the tracer isn't configured # to handle adhoc events. # Expected behavior is that the event cannot be dispatched with pytest.raises(RuntimeError): dispatch_custom_event("event1", {"x": 1}) async def test_async_custom_event_root_dispatch() -> None: """Test adhoc event in a nested chain.""" # This just tests that nothing breaks on the path. # It shouldn't do anything at the moment, since the tracer isn't configured # to handle adhoc events. # Expected behavior is that the event cannot be dispatched with pytest.raises(RuntimeError): await adispatch_custom_event("event1", {"x": 1}) IS_GTE_3_11 = sys.version_info >= (3, 11) @pytest.mark.skipif(not IS_GTE_3_11, reason="Requires Python >=3.11") async def test_async_custom_event_implicit_config() -> None: """Test dispatch without passing config explicitly.""" callback = AsyncCustomCallbackHandler() run_id = uuid.UUID(int=7) # Typing not working well with RunnableLambda when used as # a decorator for async functions @RunnableLambda # type: ignore[arg-type] async def foo(x: int, config: RunnableConfig) -> int: await adispatch_custom_event("event1", {"x": x}) await adispatch_custom_event("event2", {"x": x}) return x await foo.ainvoke( 1, # type: ignore[arg-type] {"callbacks": [callback], "run_id": run_id}, ) assert callback.events == [ ("event1", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}), ("event2", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}), ] async def test_async_callback_manager() -> None: """Test async callback manager.""" callback = AsyncCustomCallbackHandler() run_id = uuid.UUID(int=7) # Typing not working well with RunnableLambda when used as # a decorator for async functions @RunnableLambda # type: ignore[arg-type] async def foo(x: int, config: RunnableConfig) -> int: await adispatch_custom_event("event1", {"x": x}, config=config) await adispatch_custom_event("event2", {"x": x}, config=config) return x await foo.ainvoke( 1, # type: ignore[arg-type] {"callbacks": [callback], "run_id": run_id}, ) assert callback.events == [ ("event1", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}), ("event2", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}), ] def test_sync_callback_manager() -> None: """Test async callback manager.""" class CustomCallbackManager(BaseCallbackHandler): def __init__(self) -> None: self.events: list[Any] = [] def on_custom_event( self, name: str, data: Any, *, run_id: UUID, tags: Optional[list[str]] = None, metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: assert kwargs == {} self.events.append( ( name, data, run_id, tags, metadata, ) ) callback = CustomCallbackManager() run_id = uuid.UUID(int=7) @RunnableLambda def foo(x: int, config: RunnableConfig) -> int: dispatch_custom_event("event1", {"x": x}) dispatch_custom_event("event2", {"x": x}, config=config) return x foo.invoke(1, {"callbacks": [callback], "run_id": run_id}) assert callback.events == [ ("event1", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}), ("event2", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}), ]
import subprocess import sys import time def wait_for_postgres(max_retries=5, delay=5): for _ in range(max_retries): try: result = subprocess.run( [ "docker", "compose", "-f", "docker-compose.test.yaml", "exec", "postgres-test", "pg_isready", "-U", "postgres", "-d", "postgres", ], check=True, capture_output=True, text=True, ) if "accepting connections" in result.stdout: print("PostgreSQL is ready.") return True except subprocess.CalledProcessError: print(f"PostgreSQL is not ready yet. Retrying in {delay} seconds...") time.sleep(delay) print("Failed to connect to PostgreSQL.") return False def run_command(command, check=True): try: subprocess.run(command, check=check) except subprocess.CalledProcessError as e: print(f"Command failed: {e}") sys.exit(1) def test(): # Start PostgreSQL with Docker Compose run_command( [ "docker", "compose", "-f", "docker-compose.test.yaml", "up", "-d", "postgres-test", ] ) if not wait_for_postgres(): run_command(["docker", "compose", "-f", "docker-compose.test.yaml", "down"]) sys.exit(1) # Run Prisma migrations run_command(["prisma", "migrate", "dev"]) # Run the tests result = subprocess.run(["pytest"] + sys.argv[1:], check=False) run_command(["docker", "compose", "-f", "docker-compose.test.yaml", "down"]) sys.exit(result.returncode)
import subprocess import sys import time def wait_for_postgres(max_retries=5, delay=5): for _ in range(max_retries): try: result = subprocess.run( [ "docker", "compose", "-f", "docker-compose.test.yaml", "exec", "postgres-test", "pg_isready", "-U", "agpt_user", "-d", "agpt_local", ], check=True, capture_output=True, text=True, ) if "accepting connections" in result.stdout: print("PostgreSQL is ready.") return True except subprocess.CalledProcessError: print(f"PostgreSQL is not ready yet. Retrying in {delay} seconds...") time.sleep(delay) print("Failed to connect to PostgreSQL.") return False def run_command(command, check=True): try: subprocess.run(command, check=check) except subprocess.CalledProcessError as e: print(f"Command failed: {e}") sys.exit(1) def test(): # Start PostgreSQL with Docker Compose run_command( [ "docker", "compose", "-f", "docker-compose.test.yaml", "up", "-d", "postgres-test", ] ) if not wait_for_postgres(): run_command(["docker", "compose", "-f", "docker-compose.test.yaml", "down"]) sys.exit(1) # Run Prisma migrations run_command(["prisma", "migrate", "dev"]) # Run the tests result = subprocess.run(["pytest"] + sys.argv[1:], check=False) run_command(["docker", "compose", "-f", "docker-compose.test.yaml", "down"]) sys.exit(result.returncode)
"""Standard LangChain interface tests""" import pytest from langchain_core.language_models import BaseChatModel from langchain_core.tools import BaseTool from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint class TestHuggingFaceEndpoint(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatHuggingFace @property def chat_model_params(self) -> dict: llm = HuggingFaceEndpoint( # type: ignore[call-arg] repo_id="Qwen/Qwen2.5-72B-Instruct", task="conversational", provider="fireworks-ai", temperature=0, ) return {"llm": llm} @pytest.fixture def model(self) -> BaseChatModel: return self.chat_model_class(**self.chat_model_params) # type: ignore[call-arg] @pytest.mark.xfail( reason=("Overrding, testing only typed dict and json schema structured output") ) @pytest.mark.parametrize("schema_type", ["typeddict", "json_schema"]) def test_structured_output(self, model: BaseChatModel, schema_type: str) -> None: super().test_structured_output(model, schema_type) @pytest.mark.xfail( reason=("Overrding, testing only typed dict and json schema structured output") ) @pytest.mark.parametrize("schema_type", ["typeddict", "json_schema"]) async def test_structured_output_async( self, model: BaseChatModel, schema_type: str ) -> None: # type: ignore[override] super().test_structured_output(model, schema_type) @pytest.mark.xfail(reason=("Pydantic structured output is not supported")) def test_structured_output_pydantic_2_v1(self, model: BaseChatModel) -> None: super().test_structured_output_pydantic_2_v1(model) @pytest.mark.xfail(reason=("Pydantic structured output is not supported")) def test_structured_output_optional_param(self, model: BaseChatModel) -> None: super().test_structured_output_optional_param(model) @pytest.mark.xfail(reason=("Not implemented")) def test_tool_message_histories_list_content( self, model: BaseChatModel, my_adder_tool: BaseTool ) -> None: super().test_tool_message_histories_list_content( model, my_adder_tool=my_adder_tool ) @pytest.mark.xfail(reason=("Not implemented")) def test_structured_few_shot_examples( self, model: BaseChatModel, my_adder_tool: BaseTool ) -> None: super().test_structured_few_shot_examples(model, my_adder_tool=my_adder_tool) @property def has_tool_choice(self) -> bool: return False
"""Standard LangChain interface tests""" import pytest from langchain_core.language_models import BaseChatModel from langchain_core.tools import BaseTool from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint class TestHuggingFaceEndpoint(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatHuggingFace @property def chat_model_params(self) -> dict: return {} @pytest.fixture def model(self) -> BaseChatModel: llm = HuggingFaceEndpoint( # type: ignore[call-arg] repo_id="HuggingFaceH4/zephyr-7b-beta", task="text-generation", max_new_tokens=512, do_sample=False, repetition_penalty=1.03, ) return self.chat_model_class(llm=llm) # type: ignore[call-arg] @pytest.mark.xfail(reason=("Not implemented")) def test_stream(self, model: BaseChatModel) -> None: super().test_stream(model) @pytest.mark.xfail(reason=("Not implemented")) async def test_astream(self, model: BaseChatModel) -> None: await super().test_astream(model) @pytest.mark.xfail(reason=("Not implemented")) def test_usage_metadata(self, model: BaseChatModel) -> None: super().test_usage_metadata(model) @pytest.mark.xfail(reason=("Not implemented")) def test_usage_metadata_streaming(self, model: BaseChatModel) -> None: super().test_usage_metadata_streaming(model) @pytest.mark.xfail(reason=("Not implemented")) def test_stop_sequence(self, model: BaseChatModel) -> None: super().test_stop_sequence(model) @pytest.mark.xfail(reason=("Not implemented")) def test_tool_calling(self, model: BaseChatModel) -> None: super().test_tool_calling(model) @pytest.mark.xfail(reason=("Not implemented")) async def test_tool_calling_async(self, model: BaseChatModel) -> None: await super().test_tool_calling_async(model) @pytest.mark.xfail(reason=("Not implemented")) def test_tool_calling_with_no_arguments(self, model: BaseChatModel) -> None: super().test_tool_calling_with_no_arguments(model) @pytest.mark.xfail(reason=("Not implemented")) def test_bind_runnables_as_tools(self, model: BaseChatModel) -> None: super().test_bind_runnables_as_tools(model) @pytest.mark.xfail(reason=("Not implemented")) def test_structured_output(self, model: BaseChatModel, schema_type: str) -> None: super().test_structured_output(model, schema_type) @pytest.mark.xfail(reason=("Not implemented")) async def test_structured_output_async( self, model: BaseChatModel, schema_type: str ) -> None: # type: ignore[override] super().test_structured_output(model, schema_type) @pytest.mark.xfail(reason=("Not implemented")) def test_structured_output_pydantic_2_v1(self, model: BaseChatModel) -> None: super().test_structured_output_pydantic_2_v1(model) @pytest.mark.xfail(reason=("Not implemented")) def test_structured_output_optional_param(self, model: BaseChatModel) -> None: super().test_structured_output_optional_param(model) @pytest.mark.xfail(reason=("Not implemented")) def test_tool_message_histories_list_content( self, model: BaseChatModel, my_adder_tool: BaseTool ) -> None: super().test_tool_message_histories_list_content( model, my_adder_tool=my_adder_tool ) @pytest.mark.xfail(reason=("Not implemented")) def test_structured_few_shot_examples( self, model: BaseChatModel, my_adder_tool: BaseTool ) -> None: super().test_structured_few_shot_examples(model, my_adder_tool=my_adder_tool)
from typing import Iterable, Dict from docarray.array.storage.base.getsetdel import BaseGetSetDelMixin from docarray.array.storage.base.helper import Offset2ID from docarray import Document class GetSetDelMixin(BaseGetSetDelMixin): """Provide concrete implementation for ``__getitem__``, ``__setitem__``, and ``__delitem__`` for ``DocumentArrayWeaviate``""" def _getitem(self, wid: str) -> 'Document': """Helper method for getting item with weaviate as storage :param wid: weaviate id :raises KeyError: raise error when weaviate id does not exist in storage :return: Document """ try: resp = self._client.data_object.get_by_id( wid, with_vector=True, class_name=self._class_name ) return Document.from_base64( resp['properties']['_serialized'], **self._serialize_config ) except Exception as ex: raise KeyError(wid) from ex def _get_doc_by_id(self, _id: str) -> 'Document': """Concrete implementation of base class' ``_get_doc_by_id`` :param _id: the id of the document :return: the retrieved document from weaviate """ return self._getitem(self._map_id(_id)) def _set_doc_by_id(self, _id: str, value: 'Document', flush: bool = True): """Concrete implementation of base class' ``_set_doc_by_id`` :param _id: the id of doc to update :param value: the document to update to """ if _id != value.id: self._del_doc_by_id(_id) payload = self._doc2weaviate_create_payload(value) self._client.batch.add_data_object(**payload) if flush: self._client.batch.flush() def _set_docs_by_ids(self, ids, docs: Iterable['Document'], mismatch_ids: Dict): """Overridden implementation of _set_docs_by_ids in order to add docs in batches and flush at the end :param ids: the ids used for indexing """ for _id, doc in zip(ids, docs): self._set_doc_by_id(_id, doc, flush=False) self._client.batch.flush() def _del_doc_by_id(self, _id: str): """Concrete implementation of base class' ``_del_doc_by_id`` :param _id: the id of the document to delete """ if self._client.data_object.exists( self._map_id(_id), class_name=self._class_name ): self._client.data_object.delete( self._map_id(_id), class_name=self._class_name ) def _clear_storage(self): """Concrete implementation of base class' ``_clear_storage``""" if self._class_name: self._client.schema.delete_class(self._class_name) self._client.schema.delete_class(self._meta_name) self._load_or_create_weaviate_schema() def _load_offset2ids(self): if self._list_like: ids, self._offset2ids_wid = self._get_offset2ids_meta() self._offset2ids = Offset2ID(ids, list_like=self._list_like) else: self._offset2ids = Offset2ID([], list_like=self._list_like) def _save_offset2ids(self): if self._list_like: self._update_offset2ids_meta()
from typing import Iterable, Dict from docarray.array.storage.base.getsetdel import BaseGetSetDelMixin from docarray.array.storage.base.helper import Offset2ID from docarray import Document class GetSetDelMixin(BaseGetSetDelMixin): """Provide concrete implementation for ``__getitem__``, ``__setitem__``, and ``__delitem__`` for ``DocumentArrayWeaviate``""" def _getitem(self, wid: str) -> 'Document': """Helper method for getting item with weaviate as storage :param wid: weaviate id :raises KeyError: raise error when weaviate id does not exist in storage :return: Document """ try: resp = self._client.data_object.get_by_id( wid, with_vector=True, class_name=self._class_name ) return Document.from_base64( resp['properties']['_serialized'], **self._serialize_config ) except Exception as ex: raise KeyError(wid) from ex def _get_doc_by_id(self, _id: str) -> 'Document': """Concrete implementation of base class' ``_get_doc_by_id`` :param _id: the id of the document :return: the retrieved document from weaviate """ return self._getitem(self._map_id(_id)) def _set_doc_by_id(self, _id: str, value: 'Document', flush: bool = True): """Concrete implementation of base class' ``_set_doc_by_id`` :param _id: the id of doc to update :param value: the document to update to """ if _id != value.id: self._del_doc_by_id(_id) payload = self._doc2weaviate_create_payload(value) self._client.batch.add_data_object(**payload) if flush: self._client.batch.flush() def _set_docs_by_ids(self, ids, docs: Iterable['Document'], mismatch_ids: Dict): """Overridden implementation of _set_docs_by_ids in order to add docs in batches and flush at the end :param ids: the ids used for indexing """ for _id, doc in zip(ids, docs): self._set_doc_by_id(_id, doc, flush=False) self._client.batch.flush() def _del_doc_by_id(self, _id: str): """Concrete implementation of base class' ``_del_doc_by_id`` :param _id: the id of the document to delete """ if self._client.data_object.exists( self._map_id(_id), class_name=self._class_name ): self._client.data_object.delete( self._map_id(_id), class_name=self._class_name ) def _clear_storage(self): """Concrete implementation of base class' ``_clear_storage``""" if self._class_name: self._client.schema.delete_class(self._class_name) self._client.schema.delete_class(self._meta_name) self._load_or_create_weaviate_schema() def _load_offset2ids(self): ids, self._offset2ids_wid = self._get_offset2ids_meta() self._offset2ids = Offset2ID(ids) def _save_offset2ids(self): self._update_offset2ids_meta()
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class DownloadConfig: """Configuration for our cached path manager. Attributes: cache_dir (`str` or `Path`, *optional*): Specify a cache directory to save the file to (overwrite the default cache dir). force_download (`bool`, defaults to `False`): If `True`, re-dowload the file even if it's already cached in the cache dir. resume_download (`bool`, defaults to `False`): If `True`, resume the download if incompletly recieved file is found. proxies (`dict`, *optional*): user_agent (`str`, *optional*): Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file (`bool`, defaults to `False`): If `True` and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract (`bool`, defaults to `False`): If `True` when `extract_compressed_file` is `True` and the archive was already extracted, re-extract the archive and override the folder where it was extracted. delete_extracted (`bool`, defaults to `False`): Whether to delete (or keep) the extracted files. use_etag (`bool`, defaults to `True`): Whether to use the ETag HTTP response header to validate the cached files. num_proc (`int`, *optional*): The number of processes to launch to download the files in parallel. max_retries (`int`, default to `1`): The number of times to retry an HTTP request if it fails. use_auth_token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, will get token from `~/.huggingface`. ignore_url_params (`bool`, defaults to `False`): Whether to strip all query parameters and fragments from the download URL before using it for caching the file. download_desc (`str`, *optional*): A description to be displayed alongside with the progress bar while downloading the files. """ cache_dir: Optional[Union[str, Path]] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: Optional[Dict] = None user_agent: Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False delete_extracted: bool = False use_etag: bool = True num_proc: Optional[int] = None max_retries: int = 1 use_auth_token: Optional[Union[str, bool]] = None ignore_url_params: bool = False download_desc: Optional[str] = None def copy(self) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()})
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class DownloadConfig: """Configuration for our cached path manager. Attributes: cache_dir (:obj:`str` or :obj:`Path`, optional): Specify a cache directory to save the file to (overwrite the default cache dir). force_download (:obj:`bool`, default ``False``): If True, re-dowload the file even if it's already cached in the cache dir. resume_download (:obj:`bool`, default ``False``): If True, resume the download if incompletly recieved file is found. proxies (:obj:`dict`, optional): user_agent (:obj:`str`, optional): Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file (:obj:`bool`, default ``False``): If True and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract (:obj:`bool`, default ``False``): If True when extract_compressed_file is True and the archive was already extracted, re-extract the archive and override the folder where it was extracted. delete_extracted (:obj:`bool`, default ``False``): Whether to delete (or keep) the extracted files. use_etag (:obj:`bool`, default ``True``): Whether to use the ETag HTTP response header to validate the cached files. num_proc (:obj:`int`, optional): The number of processes to launch to download the files in parallel. max_retries (:obj:`int`, default ``1``): The number of times to retry an HTTP request if it fails. use_auth_token (:obj:`str` or :obj:`bool`, optional): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If True, will get token from ~/.huggingface. ignore_url_params (:obj:`bool`, default ``False``): Whether to strip all query parameters and #fragments from the download URL before using it for caching the file. download_desc (:obj:`str`, optional): A description to be displayed alongside with the progress bar while downloading the files. """ cache_dir: Optional[Union[str, Path]] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: Optional[Dict] = None user_agent: Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False delete_extracted: bool = False use_etag: bool = True num_proc: Optional[int] = None max_retries: int = 1 use_auth_token: Optional[Union[str, bool]] = None ignore_url_params: bool = False download_desc: Optional[str] = None def copy(self) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()})
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 11 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from .registry import Registry # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner') # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage constructors that customize the optimization hyperparameters. OPTIMIZER_CONSTRUCTORS = Registry('optimizer constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry('parameter scheduler') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util')
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 11 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from .registry import Registry # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner') # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage constructors that customize the optimization hyperparameters. OPTIMIZER_CONSTRUCTORS = Registry('optimizer constructor') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util')
# Copyright (c) OpenMMLab. All rights reserved. import functools import mmcv import torch import torch.nn.functional as F def reduce_loss(loss, reduction): """Reduce loss as specified. Args: loss (Tensor): Elementwise loss tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced loss tensor. """ reduction_enum = F._Reduction.get_enum(reduction) # none: 0, elementwise_mean:1, sum: 2 if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() @mmcv.jit(derivate=True, coderize=True) def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce loss. Args: loss (Tensor): Element-wise loss. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Average factor when computing the mean of losses. Returns: Tensor: Processed loss values. """ # if weight is specified, apply element-wise weight if weight is not None: loss = loss * weight # if avg_factor is not specified, just reduce the loss if avg_factor is None: loss = reduce_loss(loss, reduction) else: # if reduction is mean, then average the loss by avg_factor if reduction == 'mean': # Avoid causing ZeroDivisionError when avg_factor is 0.0, # i.e., all labels of an image belong to ignore index. eps = torch.finfo(torch.float32).eps loss = loss.sum() / (avg_factor + eps) # if reduction is 'none', then do nothing, otherwise raise an error elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def weighted_loss(loss_func): """Create a weighted version of a given loss function. To use this decorator, the loss function must have the signature like `loss_func(pred, target, **kwargs)`. The function only needs to compute element-wise loss without any reduction. This decorator will add weight and reduction arguments to the function. The decorated function will have the signature like `loss_func(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs)`. :Example: >>> import torch >>> @weighted_loss >>> def l1_loss(pred, target): >>> return (pred - target).abs() >>> pred = torch.Tensor([0, 2, 3]) >>> target = torch.Tensor([1, 1, 1]) >>> weight = torch.Tensor([1, 0, 1]) >>> l1_loss(pred, target) tensor(1.3333) >>> l1_loss(pred, target, weight) tensor(1.) >>> l1_loss(pred, target, reduction='none') tensor([1., 1., 2.]) >>> l1_loss(pred, target, weight, avg_factor=2) tensor(1.5000) """ @functools.wraps(loss_func) def wrapper(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs): # get element-wise loss loss = loss_func(pred, target, **kwargs) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss return wrapper
# Copyright (c) OpenMMLab. All rights reserved. import functools import mmcv import torch.nn.functional as F def reduce_loss(loss, reduction): """Reduce loss as specified. Args: loss (Tensor): Elementwise loss tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced loss tensor. """ reduction_enum = F._Reduction.get_enum(reduction) # none: 0, elementwise_mean:1, sum: 2 if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() @mmcv.jit(derivate=True, coderize=True) def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce loss. Args: loss (Tensor): Element-wise loss. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Average factor when computing the mean of losses. Returns: Tensor: Processed loss values. """ # if weight is specified, apply element-wise weight if weight is not None: loss = loss * weight # if avg_factor is not specified, just reduce the loss if avg_factor is None: loss = reduce_loss(loss, reduction) else: # if reduction is mean, then average the loss by avg_factor if reduction == 'mean': loss = loss.sum() / avg_factor # if reduction is 'none', then do nothing, otherwise raise an error elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def weighted_loss(loss_func): """Create a weighted version of a given loss function. To use this decorator, the loss function must have the signature like `loss_func(pred, target, **kwargs)`. The function only needs to compute element-wise loss without any reduction. This decorator will add weight and reduction arguments to the function. The decorated function will have the signature like `loss_func(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs)`. :Example: >>> import torch >>> @weighted_loss >>> def l1_loss(pred, target): >>> return (pred - target).abs() >>> pred = torch.Tensor([0, 2, 3]) >>> target = torch.Tensor([1, 1, 1]) >>> weight = torch.Tensor([1, 0, 1]) >>> l1_loss(pred, target) tensor(1.3333) >>> l1_loss(pred, target, weight) tensor(1.) >>> l1_loss(pred, target, reduction='none') tensor([1., 1., 2.]) >>> l1_loss(pred, target, weight, avg_factor=2) tensor(1.5000) """ @functools.wraps(loss_func) def wrapper(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs): # get element-wise loss loss = loss_func(pred, target, **kwargs) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss return wrapper
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.23.2' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.23.1' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest from docarray.proto import DocProto, NodeProto from docarray.typing import NdArray @pytest.mark.proto def test_ndarray(): original_ndarray = np.zeros((3, 224, 224)) custom_ndarray = NdArray._docarray_from_native(original_ndarray) tensor = NdArray.from_protobuf(custom_ndarray.to_protobuf()) assert (tensor == original_ndarray).all() @pytest.mark.proto def test_document_proto_set(): data = {} nested_item1 = NodeProto(text='hello') ndarray = NdArray._docarray_from_native(np.zeros((3, 224, 224))) nd_proto = ndarray.to_protobuf() nested_item2 = NodeProto(ndarray=nd_proto) data['a'] = nested_item1 data['b'] = nested_item2 DocProto(data=data)
import numpy as np import pytest from docarray.proto import DocProto, NodeProto from docarray.typing import NdArray @pytest.mark.proto def test_ndarray(): original_ndarray = np.zeros((3, 224, 224)) custom_ndarray = NdArray._docarray_from_native(original_ndarray) tensor = NdArray.from_protobuf(custom_ndarray.to_protobuf()) assert (tensor == original_ndarray).all() @pytest.mark.proto def test_document_proto_set(): data = {} nested_item1 = NodeProto(text='hello') ndarray = NdArray._docarray_from_native(np.zeros((3, 224, 224))) nd_proto = ndarray.to_protobuf() nested_item2 = NodeProto(ndarray=nd_proto) data['a'] = nested_item1 data['b'] = nested_item2 DocProto(data=data)
""" Example of training with Dask on GPU ==================================== """ import dask_cudf from dask import array as da from dask import dataframe as dd from dask.distributed import Client from dask_cuda import LocalCUDACluster from xgboost import dask as dxgb from xgboost.dask import DaskDMatrix def using_dask_matrix(client: Client, X: da.Array, y: da.Array) -> da.Array: # DaskDMatrix acts like normal DMatrix, works as a proxy for local DMatrix scatter # around workers. dtrain = DaskDMatrix(client, X, y) # Use train method from xgboost.dask instead of xgboost. This distributed version # of train returns a dictionary containing the resulting booster and evaluation # history obtained from evaluation metrics. output = dxgb.train( client, { "verbosity": 2, "tree_method": "hist", # Golden line for GPU training "device": "cuda", }, dtrain, num_boost_round=4, evals=[(dtrain, "train")], ) bst = output["booster"] history = output["history"] # you can pass output directly into `predict` too. prediction = dxgb.predict(client, bst, dtrain) print("Evaluation history:", history) return prediction def using_quantile_device_dmatrix(client: Client, X: da.Array, y: da.Array) -> da.Array: """`DaskQuantileDMatrix` is a data type specialized for `hist` tree methods for reducing memory usage. .. versionadded:: 1.2.0 """ X = dask_cudf.from_dask_dataframe(dd.from_dask_array(X)) y = dask_cudf.from_dask_dataframe(dd.from_dask_array(y)) # `DaskQuantileDMatrix` is used instead of `DaskDMatrix`, be careful that it can not # be used for anything else other than training unless a reference is specified. See # the `ref` argument of `DaskQuantileDMatrix`. dtrain = dxgb.DaskQuantileDMatrix(client, X, y) output = dxgb.train( client, {"verbosity": 2, "tree_method": "hist", "device": "cuda"}, dtrain, num_boost_round=4, ) prediction = dxgb.predict(client, output, X) return prediction if __name__ == "__main__": # `LocalCUDACluster` is used for assigning GPU to XGBoost processes. Here # `n_workers` represents the number of GPUs since we use one GPU per worker process. with LocalCUDACluster(n_workers=2, threads_per_worker=4) as cluster: with Client(cluster) as client: # generate some random data for demonstration m = 100000 n = 100 X = da.random.random(size=(m, n), chunks=10000) y = da.random.random(size=(m,), chunks=10000) print("Using DaskQuantileDMatrix") from_ddqdm = using_quantile_device_dmatrix(client, X, y) print("Using DMatrix") from_dmatrix = using_dask_matrix(client, X, y)
""" Example of training with Dask on GPU ==================================== """ import dask_cudf from dask import array as da from dask import dataframe as dd from dask.distributed import Client from dask_cuda import LocalCUDACluster import xgboost as xgb from xgboost import dask as dxgb from xgboost.dask import DaskDMatrix def using_dask_matrix(client: Client, X: da.Array, y: da.Array) -> da.Array: # DaskDMatrix acts like normal DMatrix, works as a proxy for local DMatrix scatter # around workers. dtrain = DaskDMatrix(client, X, y) # Use train method from xgboost.dask instead of xgboost. This distributed version # of train returns a dictionary containing the resulting booster and evaluation # history obtained from evaluation metrics. output = xgb.dask.train( client, { "verbosity": 2, "tree_method": "hist", # Golden line for GPU training "device": "cuda", }, dtrain, num_boost_round=4, evals=[(dtrain, "train")], ) bst = output["booster"] history = output["history"] # you can pass output directly into `predict` too. prediction = xgb.dask.predict(client, bst, dtrain) print("Evaluation history:", history) return prediction def using_quantile_device_dmatrix(client: Client, X: da.Array, y: da.Array) -> da.Array: """`DaskQuantileDMatrix` is a data type specialized for `hist` tree methods for reducing memory usage. .. versionadded:: 1.2.0 """ X = dask_cudf.from_dask_dataframe(dd.from_dask_array(X)) y = dask_cudf.from_dask_dataframe(dd.from_dask_array(y)) # `DaskQuantileDMatrix` is used instead of `DaskDMatrix`, be careful that it can not # be used for anything else other than training unless a reference is specified. See # the `ref` argument of `DaskQuantileDMatrix`. dtrain = dxgb.DaskQuantileDMatrix(client, X, y) output = xgb.dask.train( client, {"verbosity": 2, "tree_method": "hist", "device": "cuda"}, dtrain, num_boost_round=4, ) prediction = xgb.dask.predict(client, output, X) return prediction if __name__ == "__main__": # `LocalCUDACluster` is used for assigning GPU to XGBoost processes. Here # `n_workers` represents the number of GPUs since we use one GPU per worker process. with LocalCUDACluster(n_workers=2, threads_per_worker=4) as cluster: with Client(cluster) as client: # generate some random data for demonstration m = 100000 n = 100 X = da.random.random(size=(m, n), chunks=10000) y = da.random.random(size=(m,), chunks=10000) print("Using DaskQuantileDMatrix") from_ddqdm = using_quantile_device_dmatrix(client, X, y) print("Using DMatrix") from_dmatrix = using_dask_matrix(client, X, y)
""" This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It uses MatryoshkaLoss with the powerful CoSENTLoss to train models that perform well at output dimensions [768, 512, 256, 128, 64]. It generates sentence embeddings that can be compared using cosine-similarity to measure the similarity. Usage: python 2d_matryoshka_sts.py OR python 2d_matryoshka_sts.py pretrained_transformer_model_name """ from torch.utils.data import DataLoader import math from sentence_transformers import SentenceTransformer, LoggingHandler, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import InputExample import logging from datetime import datetime import sys import os import gzip import csv #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "distilbert-base-uncased" # Read the dataset train_batch_size = 16 num_epochs = 4 model_save_path = ( "output/2d_matryoshka_sts_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False, ) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) else: train_samples.append(inp_example) train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) train_loss = losses.CoSENTLoss(model=model) train_loss = losses.Matryoshka2dLoss(model, train_loss, [768, 512, 256, 128, 64]) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training. We skip evaluation in this example warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=model_save_path, ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test") test_evaluator(model, output_path=model_save_path) # Optionally, save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.save_to_hub(f"{model_name}-sts-2d-matryoshka") except Exception: logging.error( "Error uploading model to the Hugging Face Hub. To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({model_save_path!r})` " f"and saving it using `model.save_to_hub('{model_name}-sts-2d-matryoshka')`." )
""" This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It uses MatryoshkaLoss with the powerful CoSENTLoss to train models that perform well at output dimensions [768, 512, 256, 128, 64]. It generates sentence embeddings that can be compared using cosine-similarity to measure the similarity. Usage: python 2d_matryoshka_sts.py OR python 2d_matryoshka_sts.py pretrained_transformer_model_name """ from torch.utils.data import DataLoader import math from sentence_transformers import SentenceTransformer, LoggingHandler, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import InputExample import logging from datetime import datetime import sys import os import gzip import csv #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "distilbert-base-uncased" # Read the dataset train_batch_size = 16 num_epochs = 4 model_save_path = ( "output/2d_matryoshka_sts_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False, ) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) else: train_samples.append(inp_example) train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) train_loss = losses.CoSENTLoss(model=model) train_loss = losses.Matryoshka2dLoss(model, train_loss, [768, 512, 256, 128, 64]) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training. We skip evaluation in this example warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=model_save_path, ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test") test_evaluator(model, output_path=model_save_path) # Optionally, save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.save_to_hub(f"{model_name}-sts-matryoshka") except Exception: logging.error( "Error uploading model to the Hugging Face Hub. To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({model_save_path!r})` " f"and saving it using `model.save_to_hub('{model_name}-sts-matryoshka')`." )
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.jaxarray import JaxArray, metaJax T = TypeVar('T', bound='AudioJaxArray') @_register_proto(proto_type_name='audio_jaxarray') class AudioJaxArray(AbstractAudioTensor, JaxArray, metaclass=metaJax): ...
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.jaxarray import JaxArray, metaJax T = TypeVar('T', bound='AudioJaxArray') @_register_proto(proto_type_name='audio_jaxarray') class AudioJaxArray(AbstractAudioTensor, JaxArray, metaclass=metaJax): ...
from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union from .folder import default_loader, find_classes, make_dataset from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class Imagenette(VisionDataset): """`Imagenette <https://github.com/fastai/imagenette#imagenette-1>`_ image classification dataset. Args: root (str or ``pathlib.Path``): Root directory of the Imagenette dataset. split (string, optional): The dataset split. Supports ``"train"`` (default), and ``"val"``. size (string, optional): The image size. Supports ``"full"`` (default), ``"320px"``, and ``"160px"``. download (bool, optional): If ``True``, downloads the dataset components and places them in ``root``. Already downloaded archives are not downloaded again. transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. Attributes: classes (list): List of the class name tuples. class_to_idx (dict): Dict with items (class name, class index). wnids (list): List of the WordNet IDs. wnid_to_idx (dict): Dict with items (WordNet ID, class index). """ _ARCHIVES = { "full": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz", "fe2fc210e6bb7c5664d602c3cd71e612"), "320px": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz", "3df6f0d01a2c9592104656642f5e78a3"), "160px": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz", "e793b78cc4c9e9a4ccc0c1155377a412"), } _WNID_TO_CLASS = { "n01440764": ("tench", "Tinca tinca"), "n02102040": ("English springer", "English springer spaniel"), "n02979186": ("cassette player",), "n03000684": ("chain saw", "chainsaw"), "n03028079": ("church", "church building"), "n03394916": ("French horn", "horn"), "n03417042": ("garbage truck", "dustcart"), "n03425413": ("gas pump", "gasoline pump", "petrol pump", "island dispenser"), "n03445777": ("golf ball",), "n03888257": ("parachute", "chute"), } def __init__( self, root: Union[str, Path], split: str = "train", size: str = "full", download=False, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, loader: Callable[[str], Any] = default_loader, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ["train", "val"]) self._size = verify_str_arg(size, "size", ["full", "320px", "160px"]) self._url, self._md5 = self._ARCHIVES[self._size] self._size_root = Path(self.root) / Path(self._url).stem self._image_root = str(self._size_root / self._split) if download: self._download() elif not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it.") self.wnids, self.wnid_to_idx = find_classes(self._image_root) self.classes = [self._WNID_TO_CLASS[wnid] for wnid in self.wnids] self.class_to_idx = { class_name: idx for wnid, idx in self.wnid_to_idx.items() for class_name in self._WNID_TO_CLASS[wnid] } self._samples = make_dataset(self._image_root, self.wnid_to_idx, extensions=".jpeg") self.loader = loader def _check_exists(self) -> bool: return self._size_root.exists() def _download(self): if self._check_exists(): return download_and_extract_archive(self._url, self.root, md5=self._md5) def __getitem__(self, idx: int) -> Tuple[Any, Any]: path, label = self._samples[idx] image = self.loader(path) if self.transform is not None: image = self.transform(image) if self.target_transform is not None: label = self.target_transform(label) return image, label def __len__(self) -> int: return len(self._samples)
from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union from PIL import Image from .folder import find_classes, make_dataset from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class Imagenette(VisionDataset): """`Imagenette <https://github.com/fastai/imagenette#imagenette-1>`_ image classification dataset. Args: root (str or ``pathlib.Path``): Root directory of the Imagenette dataset. split (string, optional): The dataset split. Supports ``"train"`` (default), and ``"val"``. size (string, optional): The image size. Supports ``"full"`` (default), ``"320px"``, and ``"160px"``. download (bool, optional): If ``True``, downloads the dataset components and places them in ``root``. Already downloaded archives are not downloaded again. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version, e.g. ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. Attributes: classes (list): List of the class name tuples. class_to_idx (dict): Dict with items (class name, class index). wnids (list): List of the WordNet IDs. wnid_to_idx (dict): Dict with items (WordNet ID, class index). """ _ARCHIVES = { "full": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz", "fe2fc210e6bb7c5664d602c3cd71e612"), "320px": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz", "3df6f0d01a2c9592104656642f5e78a3"), "160px": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz", "e793b78cc4c9e9a4ccc0c1155377a412"), } _WNID_TO_CLASS = { "n01440764": ("tench", "Tinca tinca"), "n02102040": ("English springer", "English springer spaniel"), "n02979186": ("cassette player",), "n03000684": ("chain saw", "chainsaw"), "n03028079": ("church", "church building"), "n03394916": ("French horn", "horn"), "n03417042": ("garbage truck", "dustcart"), "n03425413": ("gas pump", "gasoline pump", "petrol pump", "island dispenser"), "n03445777": ("golf ball",), "n03888257": ("parachute", "chute"), } def __init__( self, root: Union[str, Path], split: str = "train", size: str = "full", download=False, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ["train", "val"]) self._size = verify_str_arg(size, "size", ["full", "320px", "160px"]) self._url, self._md5 = self._ARCHIVES[self._size] self._size_root = Path(self.root) / Path(self._url).stem self._image_root = str(self._size_root / self._split) if download: self._download() elif not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it.") self.wnids, self.wnid_to_idx = find_classes(self._image_root) self.classes = [self._WNID_TO_CLASS[wnid] for wnid in self.wnids] self.class_to_idx = { class_name: idx for wnid, idx in self.wnid_to_idx.items() for class_name in self._WNID_TO_CLASS[wnid] } self._samples = make_dataset(self._image_root, self.wnid_to_idx, extensions=".jpeg") def _check_exists(self) -> bool: return self._size_root.exists() def _download(self): if self._check_exists(): return download_and_extract_archive(self._url, self.root, md5=self._md5) def __getitem__(self, idx: int) -> Tuple[Any, Any]: path, label = self._samples[idx] image = Image.open(path).convert("RGB") if self.transform is not None: image = self.transform(image) if self.target_transform is not None: label = self.target_transform(label) return image, label def __len__(self) -> int: return len(self._samples)
"""**sys_info** prints information about the system and langchain packages for debugging purposes.""" # noqa: E501 from collections.abc import Sequence def _get_sub_deps(packages: Sequence[str]) -> list[str]: """Get any specified sub-dependencies.""" from importlib import metadata sub_deps = set() _underscored_packages = {pkg.replace("-", "_") for pkg in packages} for pkg in packages: try: required = metadata.requires(pkg) except metadata.PackageNotFoundError: continue if not required: continue for req in required: cleaned_req = req.split(" ")[0] if cleaned_req.replace("-", "_") not in _underscored_packages: sub_deps.add(cleaned_req) return sorted(sub_deps, key=lambda x: x.lower()) def print_sys_info(*, additional_pkgs: Sequence[str] = ()) -> None: """Print information about the environment for debugging purposes. Args: additional_pkgs: Additional packages to include in the output. """ import pkgutil import platform import sys from importlib import metadata, util # Packages that do not start with "langchain" prefix. other_langchain_packages = [ "langserve", "langsmith", ] langchain_pkgs = [ name for _, name, _ in pkgutil.iter_modules() if name.startswith("langchain") ] langgraph_pkgs = [ name for _, name, _ in pkgutil.iter_modules() if name.startswith("langgraph") ] all_packages = sorted( set( langchain_pkgs + langgraph_pkgs + other_langchain_packages + list(additional_pkgs) ) ) # Always surface these packages to the top order_by = ["langchain_core", "langchain", "langchain_community", "langsmith"] for pkg in reversed(order_by): if pkg in all_packages: all_packages.remove(pkg) all_packages = [pkg, *list(all_packages)] system_info = { "OS": platform.system(), "OS Version": platform.version(), "Python Version": sys.version, } print() # noqa: T201 print("System Information") # noqa: T201 print("------------------") # noqa: T201 print("> OS: ", system_info["OS"]) # noqa: T201 print("> OS Version: ", system_info["OS Version"]) # noqa: T201 print("> Python Version: ", system_info["Python Version"]) # noqa: T201 # Print out only langchain packages print() # noqa: T201 print("Package Information") # noqa: T201 print("-------------------") # noqa: T201 not_installed = [] for pkg in all_packages: try: found_package = util.find_spec(pkg) except Exception: found_package = None if found_package is None: not_installed.append(pkg) continue # Package version try: package_version = metadata.version(pkg) except Exception: package_version = None # Print package with version if package_version is not None: print(f"> {pkg}: {package_version}") # noqa: T201 else: print(f"> {pkg}: Installed. No version info available.") # noqa: T201 if not_installed: print() # noqa: T201 print("Optional packages not installed") # noqa: T201 print("-------------------------------") # noqa: T201 for pkg in not_installed: print(f"> {pkg}") # noqa: T201 sub_dependencies = _get_sub_deps(all_packages) if sub_dependencies: print() # noqa: T201 print("Other Dependencies") # noqa: T201 print("------------------") # noqa: T201 for dep in sub_dependencies: try: dep_version = metadata.version(dep) print(f"> {dep}: {dep_version}") # noqa: T201 except Exception: print(f"> {dep}: Installed. No version info available.") # noqa: T201 if __name__ == "__main__": print_sys_info()
"""**sys_info** prints information about the system and langchain packages for debugging purposes.""" # noqa: E501 from collections.abc import Sequence def _get_sub_deps(packages: Sequence[str]) -> list[str]: """Get any specified sub-dependencies.""" from importlib import metadata sub_deps = set() _underscored_packages = {pkg.replace("-", "_") for pkg in packages} for pkg in packages: try: required = metadata.requires(pkg) except metadata.PackageNotFoundError: continue if not required: continue for req in required: cleaned_req = req.split(" ")[0] if cleaned_req.replace("-", "_") not in _underscored_packages: sub_deps.add(cleaned_req) return sorted(sub_deps, key=lambda x: x.lower()) def print_sys_info(*, additional_pkgs: Sequence[str] = ()) -> None: """Print information about the environment for debugging purposes. Args: additional_pkgs: Additional packages to include in the output. """ import pkgutil import platform import sys from importlib import metadata, util # Packages that do not start with "langchain" prefix. other_langchain_packages = [ "langserve", "langsmith", ] langchain_pkgs = [ name for _, name, _ in pkgutil.iter_modules() if name.startswith("langchain") ] langgraph_pkgs = [ name for _, name, _ in pkgutil.iter_modules() if name.startswith("langgraph") ] all_packages = sorted( set( langchain_pkgs + langgraph_pkgs + other_langchain_packages + list(additional_pkgs) ) ) # Always surface these packages to the top order_by = ["langchain_core", "langchain", "langchain_community", "langsmith"] for pkg in reversed(order_by): if pkg in all_packages: all_packages.remove(pkg) all_packages = [pkg] + list(all_packages) system_info = { "OS": platform.system(), "OS Version": platform.version(), "Python Version": sys.version, } print() # noqa: T201 print("System Information") # noqa: T201 print("------------------") # noqa: T201 print("> OS: ", system_info["OS"]) # noqa: T201 print("> OS Version: ", system_info["OS Version"]) # noqa: T201 print("> Python Version: ", system_info["Python Version"]) # noqa: T201 # Print out only langchain packages print() # noqa: T201 print("Package Information") # noqa: T201 print("-------------------") # noqa: T201 not_installed = [] for pkg in all_packages: try: found_package = util.find_spec(pkg) except Exception: found_package = None if found_package is None: not_installed.append(pkg) continue # Package version try: package_version = metadata.version(pkg) except Exception: package_version = None # Print package with version if package_version is not None: print(f"> {pkg}: {package_version}") # noqa: T201 else: print(f"> {pkg}: Installed. No version info available.") # noqa: T201 if not_installed: print() # noqa: T201 print("Optional packages not installed") # noqa: T201 print("-------------------------------") # noqa: T201 for pkg in not_installed: print(f"> {pkg}") # noqa: T201 sub_dependencies = _get_sub_deps(all_packages) if sub_dependencies: print() # noqa: T201 print("Other Dependencies") # noqa: T201 print("------------------") # noqa: T201 for dep in sub_dependencies: try: dep_version = metadata.version(dep) print(f"> {dep}: {dep_version}") # noqa: T201 except Exception: print(f"> {dep}: Installed. No version info available.") # noqa: T201 if __name__ == "__main__": print_sys_info()
from typing import Any from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain_tests.integration_tests import RetrieversIntegrationTests class ParrotRetriever(BaseRetriever): parrot_name: str k: int = 3 def _get_relevant_documents(self, query: str, **kwargs: Any) -> list[Document]: k = kwargs.get("k", self.k) return [Document(page_content=f"{self.parrot_name} says: {query}")] * k class TestParrotRetrieverIntegration(RetrieversIntegrationTests): @property def retriever_constructor(self) -> type[ParrotRetriever]: return ParrotRetriever @property def retriever_constructor_params(self) -> dict: return {"parrot_name": "Polly"} @property def retriever_query_example(self) -> str: return "parrot"
from typing import Any, Type from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain_tests.integration_tests import RetrieversIntegrationTests class ParrotRetriever(BaseRetriever): parrot_name: str k: int = 3 def _get_relevant_documents(self, query: str, **kwargs: Any) -> list[Document]: k = kwargs.get("k", self.k) return [Document(page_content=f"{self.parrot_name} says: {query}")] * k class TestParrotRetrieverIntegration(RetrieversIntegrationTests): @property def retriever_constructor(self) -> Type[ParrotRetriever]: return ParrotRetriever @property def retriever_constructor_params(self) -> dict: return {"parrot_name": "Polly"} @property def retriever_query_example(self) -> str: return "parrot"
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import subprocess import numpy as np import pytest from jina import Document, DocumentArray, Flow from jina.executors.metas import get_default_metas from jina_commons.indexers.dump import export_dump_streaming from ...faiss_searcher import FaissSearcher def _get_docs_from_vecs(queries): docs = DocumentArray() for q in queries: doc = Document(embedding=q) docs.append(doc) return docs @pytest.fixture(scope='function', autouse=True) def metas(tmpdir): os.environ['TEST_WORKSPACE'] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ['TEST_WORKSPACE'] metas['name'] = 'faiss_idx' yield metas del os.environ['TEST_WORKSPACE'] def test_train_and_index(metas, tmpdir): vec_idx = np.random.randint(0, high=512, size=[512]).astype(str) vec = np.array(np.random.random([512, 10]), dtype=np.float32) query = np.array(np.random.random([10, 10]), dtype=np.float32) query_docs = _get_docs_from_vecs(query) train_data_file = os.path.join(os.environ['TEST_WORKSPACE'], 'train.npy') train_data = np.array(np.random.random([1024, 10]), dtype=np.float32) np.save(train_data_file, train_data) trained_index_file = os.path.join(os.environ['TEST_WORKSPACE'], 'faiss.index') export_dump_streaming( os.path.join(tmpdir, 'dump'), 1, len(vec_idx), zip(vec_idx, vec, [b'' for _ in range(len(vec))]), ) dump_path = os.path.join(tmpdir, 'dump') f = Flow().add( uses=FaissSearcher, timeout_ready=-1, uses_with={ 'index_key': 'IVF10_HNSW32,PQ2', 'trained_index_file': trained_index_file, }, ) with f: # the trained index will be dumped to "faiss.index" f.post(on='/train', parameters={'train_data_file': train_data_file}) f = Flow().add( uses=FaissSearcher, timeout_ready=-1, uses_with={ 'index_key': 'IVF10_HNSW32,PQ2', 'trained_index_file': trained_index_file, 'dump_path': dump_path, }, ) with f: result = f.post( on='/search', data=query_docs, return_results=True, parameters={'top_k': 4} )[0].docs assert len(result[0].matches) == 4 for d in result: assert d.matches[0].scores['l2'].value >= d.matches[1].scores['l2'].value @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import numpy as np import pytest from jina import Document, DocumentArray, Flow from jina.executors.metas import get_default_metas from jina_commons.indexers.dump import export_dump_streaming from ...faiss_searcher import FaissSearcher def _get_docs_from_vecs(queries): docs = DocumentArray() for q in queries: doc = Document(embedding=q) docs.append(doc) return docs @pytest.fixture(scope='function', autouse=True) def metas(tmpdir): os.environ['TEST_WORKSPACE'] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ['TEST_WORKSPACE'] metas['name'] = 'faiss_idx' yield metas del os.environ['TEST_WORKSPACE'] def test_train_and_index(metas, tmpdir): vec_idx = np.random.randint(0, high=512, size=[512]).astype(str) vec = np.array(np.random.random([512, 10]), dtype=np.float32) query = np.array(np.random.random([10, 10]), dtype=np.float32) query_docs = _get_docs_from_vecs(query) train_data_file = os.path.join(os.environ['TEST_WORKSPACE'], 'train.npy') train_data = np.array(np.random.random([1024, 10]), dtype=np.float32) np.save(train_data_file, train_data) trained_index_file = os.path.join(os.environ['TEST_WORKSPACE'], 'faiss.index') export_dump_streaming( os.path.join(tmpdir, 'dump'), 1, len(vec_idx), zip(vec_idx, vec, [b'' for _ in range(len(vec))]), ) dump_path = os.path.join(tmpdir, 'dump') f = Flow().add( uses=FaissSearcher, timeout_ready=-1, uses_with={ 'index_key': 'IVF10_HNSW32,PQ2', 'trained_index_file': trained_index_file, }, ) with f: # the trained index will be dumped to "faiss.index" f.post(on='/train', parameters={'train_data_file': train_data_file}) f = Flow().add( uses=FaissSearcher, timeout_ready=-1, uses_with={ 'index_key': 'IVF10_HNSW32,PQ2', 'trained_index_file': trained_index_file, 'dump_path': dump_path, }, ) with f: result = f.post( on='/search', data=query_docs, return_results=True, parameters={'top_k': 4} )[0].docs assert len(result[0].matches) == 4 for d in result: assert d.matches[0].scores['l2'].value >= d.matches[1].scores['l2'].value
# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import AllegroTransformer3DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class AllegroTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = AllegroTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 2 num_channels = 4 num_frames = 2 height = 8 width = 8 embedding_dim = 16 sequence_length = 16 hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim // 2)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (4, 2, 8, 8) @property def output_shape(self): return (4, 2, 8, 8) def prepare_init_args_and_inputs_for_common(self): init_dict = { # Product of num_attention_heads * attention_head_dim must be divisible by 16 for 3D positional embeddings. "num_attention_heads": 2, "attention_head_dim": 8, "in_channels": 4, "out_channels": 4, "num_layers": 1, "cross_attention_dim": 16, "sample_width": 8, "sample_height": 8, "sample_frames": 8, "caption_channels": 8, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"AllegroTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import AllegroTransformer3DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class AllegroTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = AllegroTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 2 num_channels = 4 num_frames = 2 height = 8 width = 8 embedding_dim = 16 sequence_length = 16 hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim // 2)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (4, 2, 8, 8) @property def output_shape(self): return (4, 2, 8, 8) def prepare_init_args_and_inputs_for_common(self): init_dict = { # Product of num_attention_heads * attention_head_dim must be divisible by 16 for 3D positional embeddings. "num_attention_heads": 2, "attention_head_dim": 8, "in_channels": 4, "out_channels": 4, "num_layers": 1, "cross_attention_dim": 16, "sample_width": 8, "sample_height": 8, "sample_frames": 8, "caption_channels": 8, } inputs_dict = self.dummy_input return init_dict, inputs_dict
import itertools import torch from parameterized import parameterized from torchaudio_unittest.common_utils import ( get_asset_path, skipIfNoCtcDecoder, TempDirMixin, TorchaudioTestCase, ) NUM_TOKENS = 8 @skipIfNoCtcDecoder class CTCDecoderTest(TempDirMixin, TorchaudioTestCase): def _get_decoder(self, tokens=None, use_lm=True, use_lexicon=True, **kwargs): from torchaudio.models.decoder import ctc_decoder if use_lexicon: lexicon_file = get_asset_path("decoder/lexicon.txt") kenlm_file = get_asset_path("decoder/kenlm.arpa") if use_lm else None else: lexicon_file = None kenlm_file = get_asset_path("decoder/kenlm_char.arpa") if use_lm else None if tokens is None: tokens = get_asset_path("decoder/tokens.txt") return ctc_decoder( lexicon=lexicon_file, tokens=tokens, lm=kenlm_file, **kwargs, ) def _get_emissions(self): B, T, N = 4, 15, NUM_TOKENS emissions = torch.rand(B, T, N) return emissions @parameterized.expand( list( itertools.product( [get_asset_path("decoder/tokens.txt"), ["-", "|", "f", "o", "b", "a", "r"]], [True, False], [True, False], ) ), ) def test_construct_decoder(self, tokens, use_lm, use_lexicon): self._get_decoder(tokens=tokens, use_lm=use_lm, use_lexicon=use_lexicon) @parameterized.expand( [(True,), (False,)], ) def test_shape(self, use_lexicon): emissions = self._get_emissions() decoder = self._get_decoder(use_lexicon=use_lexicon) results = decoder(emissions) self.assertEqual(len(results), emissions.shape[0]) @parameterized.expand( [(True,), (False,)], ) def test_timesteps_shape(self, use_lexicon): """Each token should correspond with a timestep""" emissions = self._get_emissions() decoder = self._get_decoder(use_lexicon=use_lexicon) results = decoder(emissions) for i in range(emissions.shape[0]): result = results[i][0] self.assertEqual(result.tokens.shape, result.timesteps.shape) def test_no_lm_decoder(self): """Check that using no LM produces the same result as using an LM with 0 lm_weight""" kenlm_decoder = self._get_decoder(lm_weight=0) zerolm_decoder = self._get_decoder(use_lm=False) emissions = self._get_emissions() kenlm_results = kenlm_decoder(emissions) zerolm_results = zerolm_decoder(emissions) self.assertEqual(kenlm_results, zerolm_results) def test_get_timesteps(self): unprocessed_tokens = torch.tensor([2, 2, 0, 3, 3, 3, 0, 3]) decoder = self._get_decoder() timesteps = decoder._get_timesteps(unprocessed_tokens) expected = [0, 3, 7] self.assertEqual(timesteps, expected) def test_get_tokens_and_idxs(self): unprocessed_tokens = torch.tensor([2, 2, 0, 3, 3, 3, 0, 3]) # ["f", "f", "-", "o", "o", "o", "-", "o"] decoder = self._get_decoder() token_ids = decoder._get_tokens(unprocessed_tokens) tokens = decoder.idxs_to_tokens(token_ids) expected_ids = [2, 3, 3] self.assertEqual(token_ids, expected_ids) expected_tokens = ["f", "o", "o"] self.assertEqual(tokens, expected_tokens) @parameterized.expand([(get_asset_path("decoder/tokens.txt"),), (["-", "|", "f", "o", "b", "a", "r"],)]) def test_index_to_tokens(self, tokens): # decoder tokens: '-' '|' 'f' 'o' 'b' 'a' 'r' decoder = self._get_decoder(tokens) idxs = torch.LongTensor((1, 2, 1, 3, 5)) tokens = decoder.idxs_to_tokens(idxs) expected_tokens = ["|", "f", "|", "o", "a"] self.assertEqual(tokens, expected_tokens)
import itertools import torch from parameterized import parameterized from torchaudio_unittest.common_utils import ( get_asset_path, skipIfNoCtcDecoder, TempDirMixin, TorchaudioTestCase, ) NUM_TOKENS = 8 @skipIfNoCtcDecoder class CTCDecoderTest(TempDirMixin, TorchaudioTestCase): def _get_decoder(self, tokens=None, use_lm=True, use_lexicon=True, **kwargs): from torchaudio.models.decoder import ctc_decoder if use_lexicon: lexicon_file = get_asset_path("decoder/lexicon.txt") kenlm_file = get_asset_path("decoder/kenlm.arpa") if use_lm else None else: lexicon_file = None kenlm_file = get_asset_path("decoder/kenlm_char.arpa") if use_lm else None if tokens is None: tokens = get_asset_path("decoder/tokens.txt") return ctc_decoder( lexicon=lexicon_file, tokens=tokens, lm=kenlm_file, **kwargs, ) def _get_emissions(self): B, T, N = 4, 15, NUM_TOKENS torch.manual_seed(0) emissions = torch.rand(B, T, N) return emissions @parameterized.expand( list( itertools.product( [get_asset_path("decoder/tokens.txt"), ["-", "|", "f", "o", "b", "a", "r"]], [True, False], [True, False], ) ), ) def test_construct_decoder(self, tokens, use_lm, use_lexicon): self._get_decoder(tokens=tokens, use_lm=use_lm, use_lexicon=use_lexicon) @parameterized.expand( [(True,), (False,)], ) def test_shape(self, use_lexicon): emissions = self._get_emissions() decoder = self._get_decoder(use_lexicon=use_lexicon) results = decoder(emissions) self.assertEqual(len(results), emissions.shape[0]) @parameterized.expand( [(True,), (False,)], ) def test_timesteps_shape(self, use_lexicon): """Each token should correspond with a timestep""" emissions = self._get_emissions() decoder = self._get_decoder(use_lexicon=use_lexicon) results = decoder(emissions) for i in range(emissions.shape[0]): result = results[i][0] self.assertEqual(result.tokens.shape, result.timesteps.shape) def test_no_lm_decoder(self): """Check that using no LM produces the same result as using an LM with 0 lm_weight""" kenlm_decoder = self._get_decoder(lm_weight=0) zerolm_decoder = self._get_decoder(use_lm=False) emissions = self._get_emissions() kenlm_results = kenlm_decoder(emissions) zerolm_results = zerolm_decoder(emissions) self.assertEqual(kenlm_results, zerolm_results) def test_get_timesteps(self): unprocessed_tokens = torch.tensor([2, 2, 0, 3, 3, 3, 0, 3]) decoder = self._get_decoder() timesteps = decoder._get_timesteps(unprocessed_tokens) expected = [0, 3, 7] self.assertEqual(timesteps, expected) def test_get_tokens_and_idxs(self): unprocessed_tokens = torch.tensor([2, 2, 0, 3, 3, 3, 0, 3]) # ["f", "f", "-", "o", "o", "o", "-", "o"] decoder = self._get_decoder() token_ids = decoder._get_tokens(unprocessed_tokens) tokens = decoder.idxs_to_tokens(token_ids) expected_ids = [2, 3, 3] self.assertEqual(token_ids, expected_ids) expected_tokens = ["f", "o", "o"] self.assertEqual(tokens, expected_tokens) @parameterized.expand([(get_asset_path("decoder/tokens.txt"),), (["-", "|", "f", "o", "b", "a", "r"],)]) def test_index_to_tokens(self, tokens): # decoder tokens: '-' '|' 'f' 'o' 'b' 'a' 'r' decoder = self._get_decoder(tokens) idxs = torch.LongTensor((1, 2, 1, 3, 5)) tokens = decoder.idxs_to_tokens(idxs) expected_tokens = ["|", "f", "|", "o", "a"] self.assertEqual(tokens, expected_tokens)
"""Module to change the configuration of libsox, which is used by I/O functions like :py:mod:`~torchaudio.backend.sox_io_backend` and :py:mod:`~torchaudio.sox_effects`. .. warning:: Starting with version 2.8, we are refactoring TorchAudio to transition it into a maintenance phase. As a result: - Some APIs are deprecated in 2.8 and will be removed in 2.9. - The decoding and encoding capabilities of PyTorch for both audio and video are being consolidated into TorchCodec. Please see https://github.com/pytorch/audio/issues/3902 for more information. """ from typing import Dict, List import torchaudio sox_ext = torchaudio._extension.lazy_import_sox_ext() from torchaudio._internal.module_utils import dropping_support @dropping_support def set_seed(seed: int): """Set libsox's PRNG Args: seed (int): seed value. valid range is int32. See Also: http://sox.sourceforge.net/sox.html """ sox_ext.set_seed(seed) @dropping_support def set_verbosity(verbosity: int): """Set libsox's verbosity Args: verbosity (int): Set verbosity level of libsox. * ``1`` failure messages * ``2`` warnings * ``3`` details of processing * ``4``-``6`` increasing levels of debug messages See Also: http://sox.sourceforge.net/sox.html """ sox_ext.set_verbosity(verbosity) @dropping_support def set_buffer_size(buffer_size: int): """Set buffer size for sox effect chain Args: buffer_size (int): Set the size in bytes of the buffers used for processing audio. See Also: http://sox.sourceforge.net/sox.html """ sox_ext.set_buffer_size(buffer_size) @dropping_support def set_use_threads(use_threads: bool): """Set multithread option for sox effect chain Args: use_threads (bool): When ``True``, enables ``libsox``'s parallel effects channels processing. To use mutlithread, the underlying ``libsox`` has to be compiled with OpenMP support. See Also: http://sox.sourceforge.net/sox.html """ sox_ext.set_use_threads(use_threads) @dropping_support def list_effects() -> Dict[str, str]: """List the available sox effect names Returns: Dict[str, str]: Mapping from ``effect name`` to ``usage`` """ return dict(sox_ext.list_effects()) @dropping_support def list_read_formats() -> List[str]: """List the supported audio formats for read Returns: List[str]: List of supported audio formats """ return sox_ext.list_read_formats() @dropping_support def list_write_formats() -> List[str]: """List the supported audio formats for write Returns: List[str]: List of supported audio formats """ return sox_ext.list_write_formats() @dropping_support def get_buffer_size() -> int: """Get buffer size for sox effect chain Returns: int: size in bytes of buffers used for processing audio. """ return sox_ext.get_buffer_size()
"""Module to change the configuration of libsox, which is used by I/O functions like :py:mod:`~torchaudio.backend.sox_io_backend` and :py:mod:`~torchaudio.sox_effects`. """ from typing import Dict, List import torchaudio sox_ext = torchaudio._extension.lazy_import_sox_ext() from torchaudio._internal.module_utils import dropping_support @dropping_support def set_seed(seed: int): """Set libsox's PRNG Args: seed (int): seed value. valid range is int32. See Also: http://sox.sourceforge.net/sox.html """ sox_ext.set_seed(seed) @dropping_support def set_verbosity(verbosity: int): """Set libsox's verbosity Args: verbosity (int): Set verbosity level of libsox. * ``1`` failure messages * ``2`` warnings * ``3`` details of processing * ``4``-``6`` increasing levels of debug messages See Also: http://sox.sourceforge.net/sox.html """ sox_ext.set_verbosity(verbosity) @dropping_support def set_buffer_size(buffer_size: int): """Set buffer size for sox effect chain Args: buffer_size (int): Set the size in bytes of the buffers used for processing audio. See Also: http://sox.sourceforge.net/sox.html """ sox_ext.set_buffer_size(buffer_size) @dropping_support def set_use_threads(use_threads: bool): """Set multithread option for sox effect chain Args: use_threads (bool): When ``True``, enables ``libsox``'s parallel effects channels processing. To use mutlithread, the underlying ``libsox`` has to be compiled with OpenMP support. See Also: http://sox.sourceforge.net/sox.html """ sox_ext.set_use_threads(use_threads) @dropping_support def list_effects() -> Dict[str, str]: """List the available sox effect names Returns: Dict[str, str]: Mapping from ``effect name`` to ``usage`` """ return dict(sox_ext.list_effects()) @dropping_support def list_read_formats() -> List[str]: """List the supported audio formats for read Returns: List[str]: List of supported audio formats """ return sox_ext.list_read_formats() @dropping_support def list_write_formats() -> List[str]: """List the supported audio formats for write Returns: List[str]: List of supported audio formats """ return sox_ext.list_write_formats() @dropping_support def get_buffer_size() -> int: """Get buffer size for sox effect chain Returns: int: size in bytes of buffers used for processing audio. """ return sox_ext.get_buffer_size()
from typing import Any, Dict, Type, TypeVar from docarray.document.abstract_document import AbstractDocument from docarray.document.base_node import BaseNode from docarray.proto import DocumentProto, NodeProto from docarray.typing import ( ID, AnyUrl, Embedding, ImageUrl, Tensor, TextUrl, TorchTensor, ) T = TypeVar('T', bound='ProtoMixin') class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls: Type[T], pb_msg: 'DocumentProto') -> T: """create a Document from a protobuf message""" fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type = value.WhichOneof('content') # this if else statement need to be refactored it is too long # the check should be delegated to the type level content_type_dict = dict( tensor=Tensor, torch_tensor=TorchTensor, embedding=Embedding, any_url=AnyUrl, text_url=TextUrl, image_url=ImageUrl, id=ID, ) if content_type in content_type_dict: fields[field] = content_type_dict[content_type].from_protobuf( getattr(value, content_type) ) elif content_type == 'text': fields[field] = value.text elif content_type == 'nested': fields[field] = cls._get_nested_document_class(field).from_protobuf( value.nested ) # we get to the parent class elif content_type == 'chunks': from docarray import DocumentArray fields[field] = DocumentArray.from_protobuf( value.chunks ) # we get to the parent class elif content_type is None: fields[field] = None else: raise ValueError( f'type {content_type} is not supported for deserialization' ) return cls(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> NodeProto: """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(nested=self.to_protobuf())
from typing import Any, Dict, Type, TypeVar from docarray.document.abstract_document import AbstractDocument from docarray.document.base_node import BaseNode from docarray.proto import DocumentProto, NodeProto from docarray.typing import ID, AnyUrl, Embedding, ImageUrl, Tensor, TorchTensor T = TypeVar('T', bound='ProtoMixin') class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls: Type[T], pb_msg: 'DocumentProto') -> T: """create a Document from a protobuf message""" fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type = value.WhichOneof('content') # this if else statement need to be refactored it is too long # the check should be delegated to the type level content_type_dict = dict( tensor=Tensor, torch_tensor=TorchTensor, embedding=Embedding, any_url=AnyUrl, image_url=ImageUrl, id=ID, ) if content_type in content_type_dict: fields[field] = content_type_dict[content_type].from_protobuf( getattr(value, content_type) ) elif content_type == 'text': fields[field] = value.text elif content_type == 'nested': fields[field] = cls._get_nested_document_class(field).from_protobuf( value.nested ) # we get to the parent class elif content_type == 'chunks': from docarray import DocumentArray fields[field] = DocumentArray.from_protobuf( value.chunks ) # we get to the parent class elif content_type is None: fields[field] = None else: raise ValueError( f'type {content_type} is not supported for deserialization' ) return cls(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> NodeProto: """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(nested=self.to_protobuf())
_base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py' model = dict( backbone=dict( embed_dims=64, num_layers=[3, 8, 27, 3], init_cfg=dict(checkpoint='https://github.com/whai362/PVT/' 'releases/download/v2/pvt_v2_b4.pth')), neck=dict(in_channels=[64, 128, 320, 512])) # optimizer optimizer = dict( _delete_=True, type='AdamW', lr=0.0001 / 1.4, weight_decay=0.0001) # dataset settings data = dict(samples_per_gpu=1, workers_per_gpu=1) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (1 samples per GPU) auto_scale_lr = dict(base_batch_size=8)
_base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py' model = dict( backbone=dict( embed_dims=64, num_layers=[3, 8, 27, 3], init_cfg=dict(checkpoint='https://github.com/whai362/PVT/' 'releases/download/v2/pvt_v2_b4.pth')), neck=dict(in_channels=[64, 128, 320, 512])) # optimizer optimizer = dict( _delete_=True, type='AdamW', lr=0.0001 / 1.4, weight_decay=0.0001) # dataset settings data = dict(samples_per_gpu=1, workers_per_gpu=1)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .two_stage import TwoStageDetector @MODELS.register_module() class CascadeRCNN(TwoStageDetector): r"""Implementation of `Cascade R-CNN: Delving into High Quality Object Detection <https://arxiv.org/abs/1906.09756>`_""" def __init__(self, backbone, neck=None, rpn_head=None, roi_head=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None, img_norm_cfg=None): super(CascadeRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg, img_norm_cfg=img_norm_cfg) def show_result(self, data, result, **kwargs): """Show prediction results of the detector. Args: data (str or np.ndarray): Image filename or loaded image. result (Tensor or tuple): The results to draw over `img` bbox_result or (bbox_result, segm_result). Returns: np.ndarray: The image with bboxes drawn on it. """ if self.with_mask: ms_bbox_result, ms_segm_result = result if isinstance(ms_bbox_result, dict): result = (ms_bbox_result['ensemble'], ms_segm_result['ensemble']) else: if isinstance(result, dict): result = result['ensemble'] return super(CascadeRCNN, self).show_result(data, result, **kwargs)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class CascadeRCNN(TwoStageDetector): r"""Implementation of `Cascade R-CNN: Delving into High Quality Object Detection <https://arxiv.org/abs/1906.09756>`_""" def __init__(self, backbone, neck=None, rpn_head=None, roi_head=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None, img_norm_cfg=None): super(CascadeRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg, img_norm_cfg=img_norm_cfg) def show_result(self, data, result, **kwargs): """Show prediction results of the detector. Args: data (str or np.ndarray): Image filename or loaded image. result (Tensor or tuple): The results to draw over `img` bbox_result or (bbox_result, segm_result). Returns: np.ndarray: The image with bboxes drawn on it. """ if self.with_mask: ms_bbox_result, ms_segm_result = result if isinstance(ms_bbox_result, dict): result = (ms_bbox_result['ensemble'], ms_segm_result['ensemble']) else: if isinstance(result, dict): result = result['ensemble'] return super(CascadeRCNN, self).show_result(data, result, **kwargs)
"""Test ZhipuAI Chat Model.""" from langchain_core.callbacks import CallbackManager from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, ToolMessage from langchain_core.outputs import ChatGeneration, LLMResult from langchain_core.tools import tool from langchain_community.chat_models.zhipuai import ChatZhipuAI from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler def test_default_call() -> None: """Test default model call.""" chat = ChatZhipuAI() response = chat.invoke([HumanMessage(content="Hello")]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_model() -> None: """Test model kwarg works.""" chat = ChatZhipuAI(model="glm-4") response = chat.invoke([HumanMessage(content="Hello")]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_multiple_history() -> None: """Tests multiple history works.""" chat = ChatZhipuAI() response = chat.invoke( [ HumanMessage(content="Hello."), AIMessage(content="Hello!"), HumanMessage(content="How are you doing?"), ] ) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_stream() -> None: """Test that stream works.""" chat = ChatZhipuAI(streaming=True) callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) response = chat.invoke( [ HumanMessage(content="Hello."), AIMessage(content="Hello!"), HumanMessage(content="Who are you?"), ], stream=True, config={"callbacks": callback_manager}, ) assert callback_handler.llm_streams > 0 assert isinstance(response.content, str) def test_multiple_messages() -> None: """Tests multiple messages works.""" chat = ChatZhipuAI() message = HumanMessage(content="Hi, how are you.") response = chat.generate([[message], [message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 1 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content @tool def add(a: int, b: int) -> int: """Adds a and b.""" return a + b @tool def multiply(a: int, b: int) -> int: """Multiplies a and b.""" return a * b def test_tool_call() -> None: """Test tool calling by ChatZhipuAI""" chat = ChatZhipuAI(model="glm-4-long") tools = [add, multiply] chat_with_tools = chat.bind_tools(tools) query = "What is 3 * 12?" messages = [HumanMessage(query)] ai_msg = chat_with_tools.invoke(messages) assert isinstance(ai_msg, AIMessage) assert isinstance(ai_msg.tool_calls, list) assert len(ai_msg.tool_calls) == 1 tool_call = ai_msg.tool_calls[0] assert "args" in tool_call messages.append(ai_msg) # type: ignore[arg-type] for tool_call in ai_msg.tool_calls: selected_tool = {"add": add, "multiply": multiply}[tool_call["name"].lower()] tool_output = selected_tool.invoke(tool_call["args"]) messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"])) # type: ignore[arg-type] response = chat_with_tools.invoke(messages) assert isinstance(response, AIMessage)
"""Test ZhipuAI Chat Model.""" from langchain_core.callbacks import CallbackManager from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, ToolMessage from langchain_core.outputs import ChatGeneration, LLMResult from langchain_core.tools import tool from langchain_community.chat_models.zhipuai import ChatZhipuAI from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler def test_default_call() -> None: """Test default model call.""" chat = ChatZhipuAI() response = chat.invoke([HumanMessage(content="Hello")]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_model() -> None: """Test model kwarg works.""" chat = ChatZhipuAI(model="glm-4") response = chat.invoke([HumanMessage(content="Hello")]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_multiple_history() -> None: """Tests multiple history works.""" chat = ChatZhipuAI() response = chat.invoke( [ HumanMessage(content="Hello."), AIMessage(content="Hello!"), HumanMessage(content="How are you doing?"), ] ) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_stream() -> None: """Test that stream works.""" chat = ChatZhipuAI(streaming=True) callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) response = chat.invoke( [ HumanMessage(content="Hello."), AIMessage(content="Hello!"), HumanMessage(content="Who are you?"), ], stream=True, config={"callbacks": callback_manager}, ) assert callback_handler.llm_streams > 0 assert isinstance(response.content, str) def test_multiple_messages() -> None: """Tests multiple messages works.""" chat = ChatZhipuAI() message = HumanMessage(content="Hi, how are you.") response = chat.generate([[message], [message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 1 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content @tool def add(a: int, b: int) -> int: """Adds a and b.""" return a + b @tool def multiply(a: int, b: int) -> int: """Multiplies a and b.""" return a * b def test_tool_call() -> None: """Test tool calling by ChatZhipuAI""" chat = ChatZhipuAI(model="glm-4-long") # type: ignore[call-arg] tools = [add, multiply] chat_with_tools = chat.bind_tools(tools) query = "What is 3 * 12?" messages = [HumanMessage(query)] ai_msg = chat_with_tools.invoke(messages) assert isinstance(ai_msg, AIMessage) assert isinstance(ai_msg.tool_calls, list) assert len(ai_msg.tool_calls) == 1 tool_call = ai_msg.tool_calls[0] assert "args" in tool_call messages.append(ai_msg) # type: ignore[arg-type] for tool_call in ai_msg.tool_calls: selected_tool = {"add": add, "multiply": multiply}[tool_call["name"].lower()] tool_output = selected_tool.invoke(tool_call["args"]) # type: ignore[attr-defined] messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"])) # type: ignore[arg-type] response = chat_with_tools.invoke(messages) assert isinstance(response, AIMessage)
import logging import os from abc import abstractmethod from typing import TYPE_CHECKING, Optional from jina.importer import ImportExtensions from jina.serve.gateway import BaseGateway if TYPE_CHECKING: from fastapi import FastAPI class FastAPIBaseGateway(BaseGateway): """Base FastAPI gateway. Implement this abstract class in-case you want to build a fastapi-based Gateway by implementing the `app` property. This property should return a fastapi app. The base Gateway will handle starting a server and serving the application using that server.""" def __init__( self, ssl_keyfile: Optional[str] = None, ssl_certfile: Optional[str] = None, uvicorn_kwargs: Optional[dict] = None, proxy: bool = False, **kwargs ): """Initialize the FastAPIBaseGateway :param ssl_keyfile: the path to the key file :param ssl_certfile: the path to the certificate file :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server :param proxy: If set, respect the http_proxy and https_proxy environment variables, otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param kwargs: keyword args """ super().__init__(**kwargs) self.uvicorn_kwargs = uvicorn_kwargs or {} if ssl_keyfile and 'ssl_keyfile' not in self.uvicorn_kwargs.keys(): self.uvicorn_kwargs['ssl_keyfile'] = ssl_keyfile if ssl_certfile and 'ssl_certfile' not in self.uvicorn_kwargs.keys(): self.uvicorn_kwargs['ssl_certfile'] = ssl_certfile if not proxy and os.name != 'nt': os.unsetenv('http_proxy') os.unsetenv('https_proxy') @property @abstractmethod def app(self): '''Get a FastAPI app''' ... async def setup_server(self): """ Initialize and return GRPC server """ with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'CICD_JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) # app property will generate a new fastapi app each time called app = self.app _install_health_check(app, self.logger) self.server = UviServer( config=Config( app=app, host=self.host, port=self.port, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **self.uvicorn_kwargs, ) ) await self.server.setup() async def shutdown(self): """ Free resources allocated when setting up HTTP server """ self.server.should_exit = True await self.server.shutdown() async def run_server(self): """Run HTTP server forever""" await self.server.serve() def _install_health_check(app: 'FastAPI', logger): health_check_exists = False for route in app.routes: if getattr(route, 'path', None) == '/' and 'GET' in getattr( route, 'methods', None ): health_check_exists = True logger.warning( 'endpoint GET on "/" is used for health checks, make sure it\'s still accessible' ) if not health_check_exists: @app.get('/') def health_check(): return {}
import logging import os from abc import abstractmethod from typing import Optional from jina.importer import ImportExtensions from jina.serve.gateway import BaseGateway class FastAPIBaseGateway(BaseGateway): """Base FastAPI gateway. Implement this abstract class in-case you want to build a fastapi-based Gateway by implementing the `app` property. This property should return a fastapi app. The base Gateway will handle starting a server and serving the application using that server.""" def __init__( self, ssl_keyfile: Optional[str] = None, ssl_certfile: Optional[str] = None, uvicorn_kwargs: Optional[dict] = None, proxy: bool = False, **kwargs ): """Initialize the FastAPIBaseGateway :param ssl_keyfile: the path to the key file :param ssl_certfile: the path to the certificate file :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server :param proxy: If set, respect the http_proxy and https_proxy environment variables, otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param kwargs: keyword args """ super().__init__(**kwargs) self.uvicorn_kwargs = uvicorn_kwargs or {} if ssl_keyfile and 'ssl_keyfile' not in self.uvicorn_kwargs.keys(): self.uvicorn_kwargs['ssl_keyfile'] = ssl_keyfile if ssl_certfile and 'ssl_certfile' not in self.uvicorn_kwargs.keys(): self.uvicorn_kwargs['ssl_certfile'] = ssl_certfile if not proxy and os.name != 'nt': os.unsetenv('http_proxy') os.unsetenv('https_proxy') @property @abstractmethod def app(self): '''Get a FastAPI app''' ... async def setup_server(self): """ Initialize and return GRPC server """ with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'CICD_JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) self.server = UviServer( config=Config( app=self.app, host=self.host, port=self.port, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **self.uvicorn_kwargs, ) ) await self.server.setup() async def shutdown(self): """ Free resources allocated when setting up HTTP server """ self.server.should_exit = True await self.server.shutdown() async def run_server(self): """Run HTTP server forever""" await self.server.serve()
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import os from logging import getLogger from typing import List from sentencepiece import SentencePieceProcessor logger = getLogger() class Tokenizer: def __init__(self, model_path: str): # reload tokenizer assert os.path.isfile(model_path), model_path self.sp_model = SentencePieceProcessor(model_file=model_path) logger.info(f"Reloaded SentencePiece model from {model_path}") # BOS / EOS token IDs self.n_words: int = self.sp_model.vocab_size() self.bos_id: int = self.sp_model.bos_id() self.eos_id: int = self.sp_model.eos_id() self.pad_id: int = self.sp_model.pad_id() logger.info( f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}" ) assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() def encode(self, s: str, bos: bool, eos: bool) -> List[int]: assert type(s) is str t = self.sp_model.encode(s) if bos: t = [self.bos_id] + t if eos: t = t + [self.eos_id] return t def decode(self, t: List[int]) -> str: return self.sp_model.decode(t)
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the GNU General Public License version 3. from sentencepiece import SentencePieceProcessor from logging import getLogger from typing import List import os logger = getLogger() class Tokenizer: def __init__(self, model_path: str): # reload tokenizer assert os.path.isfile(model_path), model_path self.sp_model = SentencePieceProcessor(model_file=model_path) logger.info(f"Reloaded SentencePiece model from {model_path}") # BOS / EOS token IDs self.n_words: int = self.sp_model.vocab_size() self.bos_id: int = self.sp_model.bos_id() self.eos_id: int = self.sp_model.eos_id() self.pad_id: int = self.sp_model.pad_id() logger.info( f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}" ) assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() def encode(self, s: str, bos: bool, eos: bool) -> List[int]: assert type(s) is str t = self.sp_model.encode(s) if bos: t = [self.bos_id] + t if eos: t = t + [self.eos_id] return t def decode(self, t: List[int]) -> str: return self.sp_model.decode(t)
from pydantic import AnyUrl as BaseAnyUrl from docarray.document.base_node import BaseNode from docarray.proto import NodeProto class AnyUrl(BaseAnyUrl, BaseNode): def _to_nested_item_protobuf(self) -> 'NodeProto': """Convert Document into a nested item protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(text=str(self))
from pydantic import AnyUrl as BaseAnyUrl from docarray.document.base_node import BaseNode from docarray.proto import NodeProto class AnyUrl(BaseAnyUrl, BaseNode): def _to_nested_item_protobuf(self) -> 'NodeProto': """Convert Document into a nested item protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(text=str(self))
""" Example of training with Dask on CPU ==================================== """ from dask import array as da from dask.distributed import Client, LocalCluster from xgboost import dask as dxgb from xgboost.dask import DaskDMatrix def main(client: Client) -> None: # generate some random data for demonstration m = 100000 n = 100 rng = da.random.default_rng(1) X = rng.normal(size=(m, n), chunks=(10000, -1)) y = X.sum(axis=1) # DaskDMatrix acts like normal DMatrix, works as a proxy for local # DMatrix scatter around workers. dtrain = DaskDMatrix(client, X, y) # Use train method from xgboost.dask instead of xgboost. This # distributed version of train returns a dictionary containing the # resulting booster and evaluation history obtained from # evaluation metrics. output = dxgb.train( client, {"verbosity": 1, "tree_method": "hist"}, dtrain, num_boost_round=4, evals=[(dtrain, "train")], ) bst = output["booster"] history = output["history"] # you can pass output directly into `predict` too. prediction = dxgb.predict(client, bst, dtrain) print("Evaluation history:", history) print("Error:", da.sqrt((prediction - y) ** 2).mean().compute()) if __name__ == "__main__": # or use other clusters for scaling with LocalCluster(n_workers=7, threads_per_worker=4) as cluster: with Client(cluster) as client: main(client)
""" Example of training with Dask on CPU ==================================== """ from dask import array as da from dask.distributed import Client, LocalCluster from xgboost import dask as dxgb from xgboost.dask import DaskDMatrix def main(client: Client) -> None: # generate some random data for demonstration m = 100000 n = 100 rng = da.random.default_rng(1) X = rng.normal(size=(m, n)) y = X.sum(axis=1) # DaskDMatrix acts like normal DMatrix, works as a proxy for local # DMatrix scatter around workers. dtrain = DaskDMatrix(client, X, y) # Use train method from xgboost.dask instead of xgboost. This # distributed version of train returns a dictionary containing the # resulting booster and evaluation history obtained from # evaluation metrics. output = dxgb.train( client, {"verbosity": 1, "tree_method": "hist"}, dtrain, num_boost_round=4, evals=[(dtrain, "train")], ) bst = output["booster"] history = output["history"] # you can pass output directly into `predict` too. prediction = dxgb.predict(client, bst, dtrain) print("Evaluation history:", history) print("Error:", da.sqrt((prediction - y) ** 2).mean().compute()) if __name__ == "__main__": # or use other clusters for scaling with LocalCluster(n_workers=7, threads_per_worker=4) as cluster: with Client(cluster) as client: main(client)
import torch from torchvision.transforms.functional import InterpolationMode def get_module(use_v2): # We need a protected import to avoid the V2 warning in case just V1 is used if use_v2: import torchvision.transforms.v2 return torchvision.transforms.v2 else: import torchvision.transforms return torchvision.transforms class ClassificationPresetTrain: # Note: this transform assumes that the input to forward() are always PIL # images, regardless of the backend parameter. We may change that in the # future though, if we change the output type from the dataset. def __init__( self, *, crop_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), interpolation=InterpolationMode.BILINEAR, hflip_prob=0.5, auto_augment_policy=None, ra_magnitude=9, augmix_severity=3, random_erase_prob=0.0, backend="pil", use_v2=False, ): T = get_module(use_v2) transforms = [] backend = backend.lower() if backend == "tensor": transforms.append(T.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}") transforms.append(T.RandomResizedCrop(crop_size, interpolation=interpolation, antialias=True)) if hflip_prob > 0: transforms.append(T.RandomHorizontalFlip(hflip_prob)) if auto_augment_policy is not None: if auto_augment_policy == "ra": transforms.append(T.RandAugment(interpolation=interpolation, magnitude=ra_magnitude)) elif auto_augment_policy == "ta_wide": transforms.append(T.TrivialAugmentWide(interpolation=interpolation)) elif auto_augment_policy == "augmix": transforms.append(T.AugMix(interpolation=interpolation, severity=augmix_severity)) else: aa_policy = T.AutoAugmentPolicy(auto_augment_policy) transforms.append(T.AutoAugment(policy=aa_policy, interpolation=interpolation)) if backend == "pil": transforms.append(T.PILToTensor()) transforms.extend( [ T.ToDtype(torch.float, scale=True) if use_v2 else T.ConvertImageDtype(torch.float), T.Normalize(mean=mean, std=std), ] ) if random_erase_prob > 0: transforms.append(T.RandomErasing(p=random_erase_prob)) if use_v2: transforms.append(T.ToPureTensor()) self.transforms = T.Compose(transforms) def __call__(self, img): return self.transforms(img) class ClassificationPresetEval: def __init__( self, *, crop_size, resize_size=256, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), interpolation=InterpolationMode.BILINEAR, backend="pil", use_v2=False, ): T = get_module(use_v2) transforms = [] backend = backend.lower() if backend == "tensor": transforms.append(T.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}") transforms += [ T.Resize(resize_size, interpolation=interpolation, antialias=True), T.CenterCrop(crop_size), ] if backend == "pil": transforms.append(T.PILToTensor()) transforms += [ T.ToDtype(torch.float, scale=True) if use_v2 else T.ConvertImageDtype(torch.float), T.Normalize(mean=mean, std=std), ] if use_v2: transforms.append(T.ToPureTensor()) self.transforms = T.Compose(transforms) def __call__(self, img): return self.transforms(img)
import torch from torchvision.transforms.functional import InterpolationMode def get_module(use_v2): # We need a protected import to avoid the V2 warning in case just V1 is used if use_v2: import torchvision.transforms.v2 return torchvision.transforms.v2 else: import torchvision.transforms return torchvision.transforms class ClassificationPresetTrain: # Note: this transform assumes that the input to forward() are always PIL # images, regardless of the backend parameter. We may change that in the # future though, if we change the output type from the dataset. def __init__( self, *, crop_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), interpolation=InterpolationMode.BILINEAR, hflip_prob=0.5, auto_augment_policy=None, ra_magnitude=9, augmix_severity=3, random_erase_prob=0.0, backend="pil", use_v2=False, ): T = get_module(use_v2) transforms = [] backend = backend.lower() if backend == "tensor": transforms.append(T.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}") transforms.append(T.RandomResizedCrop(crop_size, interpolation=interpolation, antialias=True)) if hflip_prob > 0: transforms.append(T.RandomHorizontalFlip(hflip_prob)) if auto_augment_policy is not None: if auto_augment_policy == "ra": transforms.append(T.RandAugment(interpolation=interpolation, magnitude=ra_magnitude)) elif auto_augment_policy == "ta_wide": transforms.append(T.TrivialAugmentWide(interpolation=interpolation)) elif auto_augment_policy == "augmix": transforms.append(T.AugMix(interpolation=interpolation, severity=augmix_severity)) else: aa_policy = T.AutoAugmentPolicy(auto_augment_policy) transforms.append(T.AutoAugment(policy=aa_policy, interpolation=interpolation)) if backend == "pil": transforms.append(T.PILToTensor()) transforms.extend( [ T.ConvertImageDtype(torch.float), T.Normalize(mean=mean, std=std), ] ) if random_erase_prob > 0: transforms.append(T.RandomErasing(p=random_erase_prob)) if use_v2: transforms.append(T.ToPureTensor()) self.transforms = T.Compose(transforms) def __call__(self, img): return self.transforms(img) class ClassificationPresetEval: def __init__( self, *, crop_size, resize_size=256, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), interpolation=InterpolationMode.BILINEAR, backend="pil", use_v2=False, ): T = get_module(use_v2) transforms = [] backend = backend.lower() if backend == "tensor": transforms.append(T.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}") transforms += [ T.Resize(resize_size, interpolation=interpolation, antialias=True), T.CenterCrop(crop_size), ] if backend == "pil": transforms.append(T.PILToTensor()) transforms += [ T.ConvertImageDtype(torch.float), T.Normalize(mean=mean, std=std), ] if use_v2: transforms.append(T.ToPureTensor()) self.transforms = T.Compose(transforms) def __call__(self, img): return self.transforms(img)
from typing import Union import numpy as np import PIL.Image import torch from torchvision.prototype import features from torchvision.transforms import functional as _F @torch.jit.unused def to_image_tensor(image: Union[torch.Tensor, PIL.Image.Image, np.ndarray]) -> features.Image: if isinstance(image, np.ndarray): output = torch.from_numpy(image).permute((2, 0, 1)).contiguous() elif isinstance(image, PIL.Image.Image): output = pil_to_tensor(image) else: # isinstance(inpt, torch.Tensor): output = image return features.Image(output) to_image_pil = _F.to_pil_image pil_to_tensor = _F.pil_to_tensor # We changed the names to align them with the new naming scheme. Still, `to_pil_image` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. to_pil_image = to_image_pil
from typing import Any, Dict, Tuple, Union import numpy as np import PIL.Image import torch from torchvision.io.video import read_video from torchvision.prototype import features from torchvision.prototype.utils._internal import ReadOnlyTensorBuffer from torchvision.transforms import functional as _F @torch.jit.unused def decode_image_with_pil(encoded_image: torch.Tensor) -> features.Image: image = torch.as_tensor(np.array(PIL.Image.open(ReadOnlyTensorBuffer(encoded_image)), copy=True)) if image.ndim == 2: image = image.unsqueeze(2) return features.Image(image.permute(2, 0, 1)) @torch.jit.unused def decode_video_with_av(encoded_video: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]: import unittest.mock with unittest.mock.patch("torchvision.io.video.os.path.exists", return_value=True): return read_video(ReadOnlyTensorBuffer(encoded_video)) # type: ignore[arg-type] @torch.jit.unused def to_image_tensor(image: Union[torch.Tensor, PIL.Image.Image, np.ndarray]) -> features.Image: if isinstance(image, np.ndarray): output = torch.from_numpy(image).permute((2, 0, 1)).contiguous() elif isinstance(image, PIL.Image.Image): output = pil_to_tensor(image) else: # isinstance(inpt, torch.Tensor): output = image return features.Image(output) to_image_pil = _F.to_pil_image pil_to_tensor = _F.pil_to_tensor # We changed the names to align them with the new naming scheme. Still, `to_pil_image` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. to_pil_image = to_image_pil
_base_ = 'faster-rcnn_regnetx-3.2GF_fpn_ms-3x_coco.py' model = dict( backbone=dict( type='RegNet', arch='regnetx_400mf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_400mf')), neck=dict( type='FPN', in_channels=[32, 64, 160, 384], out_channels=256, num_outs=5))
_base_ = 'faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py' model = dict( backbone=dict( type='RegNet', arch='regnetx_400mf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_400mf')), neck=dict( type='FPN', in_channels=[32, 64, 160, 384], out_channels=256, num_outs=5))
from jina import DocumentArray, Executor, Flow, requests def test_needs_docs_map(): class TestMergeDictDocMatrixExecutor(Executor): @requests() def foo(self, docs_map, **kwargs): assert {'exec0', 'exec1'} == set(docs_map.keys()) f = ( Flow() .add(name='exec0') .add(name='exec1', replicas=2, shards=2, needs=['gateway']) .add( name='exec2', needs=['exec0', 'exec1'], uses=TestMergeDictDocMatrixExecutor, disable_reduce=True, ) ) with f: f.post(on='/', inputs=DocumentArray.empty(2))
from jina import Flow, Executor, requests, DocumentArray def test_needs_docs_map(): class TestMergeDictDocMatrixExecutor(Executor): @requests() def foo(self, docs_map, **kwargs): assert {'exec0', 'exec1'} == set(docs_map.keys()) f = Flow().add(name='exec0'). \ add(name='exec1', replicas=2, shards=2, needs=['gateway']). \ add(name='exec2', needs=['exec0', 'exec1'], uses=TestMergeDictDocMatrixExecutor, disable_reduce=True) with f: f.post(on='/', inputs=DocumentArray.empty(2))
from __future__ import annotations import time import torch from torch._dynamo import device_interface # noqa: PLC2701 import-private-name class DeviceProperties: def __init__(self) -> None: self.major = 8 # TODO: bypass check for H100 in triton_heuristics.py self.max_threads_per_multi_processor = 1 self.multi_processor_count = 80 class DeviceInterface(device_interface.DeviceInterface): class Event(torch.Event): def __init__( self, enable_timing: bool = False, blocking: bool = False, interprocess: bool = False, ) -> None: self.enable_timing = enable_timing self.recorded_time: int | None = None def record(self, stream) -> None: if not self.enable_timing: return assert self.recorded_time is None self.recorded_time = time.perf_counter_ns() def elapsed_time(self, end_event: DeviceInterface.Event) -> float: assert self.recorded_time assert end_event.recorded_time # convert to ms return (end_event.recorded_time - self.recorded_time) / 1000000 def wait(self, stream) -> None: pass def query(self) -> None: pass def synchronize(self) -> None: pass class device: # noqa: N801 invalid-class-name # pyright: ignore [reportIncompatibleVariableOverride] def __init__(self, device) -> None: self.device = device class Worker(device_interface.DeviceInterface.Worker): @staticmethod def set_device(device: int) -> None: # No device index for our backend pass @staticmethod def current_device() -> int: # No device index for our backend return 0 @staticmethod def get_device_properties( device=None, ) -> DeviceProperties: return DeviceProperties() @staticmethod def current_device() -> int: return 0 @staticmethod def set_device(device) -> None: pass @staticmethod def device_count() -> int: return 1 @staticmethod def maybe_exchange_device(device: int) -> int: assert device == 0, ( f"Only device index 0 is supported, tried to set index to {device}" ) return 0 # previous device is always 0 @staticmethod def exchange_device(device: int) -> int: assert device == 0, ( f"Only device index 0 is supported, tried to set index to {device}" ) return 0 # previous device is always 0 @staticmethod def get_raw_stream(device_index: int): return None @staticmethod def synchronize(device) -> None: pass # Can be mock patched by @patch decorator. @staticmethod def is_available() -> bool: return True @staticmethod def get_compute_capability(device) -> int: return 0
from __future__ import annotations import time import torch from torch._dynamo import device_interface # noqa: PLC2701 import-private-name class DeviceProperties: def __init__(self) -> None: self.major = 8 # TODO: bypass check for H100 in triton_heuristics.py self.max_threads_per_multi_processor = 1 self.multi_processor_count = 80 class DeviceInterface(device_interface.DeviceInterface): class Event(torch.Event): def __init__( self, enable_timing: bool = False, blocking: bool = False, interprocess: bool = False, ) -> None: self.enable_timing = enable_timing self.recorded_time: int | None = None def record(self, stream) -> None: if not self.enable_timing: return assert self.recorded_time is None self.recorded_time = time.perf_counter_ns() def elapsed_time(self, end_event: DeviceInterface.Event) -> float: assert self.recorded_time assert end_event.recorded_time # convert to ms return (end_event.recorded_time - self.recorded_time) / 1000000 def wait(self, stream) -> None: pass def query(self) -> None: pass def synchronize(self) -> None: pass class device: # noqa: N801 invalid-class-name # pyright: ignore [reportIncompatibleVariableOverride] def __init__(self, device) -> None: self.device = device class Worker(device_interface.DeviceInterface.Worker): @staticmethod def set_device(device: int) -> None: # No device index for our backend pass @staticmethod def current_device() -> int: # No device index for our backend return 0 @staticmethod def get_device_properties( device=None, ) -> DeviceProperties: return DeviceProperties() @staticmethod def current_device() -> int: return 0 @staticmethod def set_device(device) -> None: pass @staticmethod def device_count() -> int: return 1 @staticmethod def maybe_exchange_device(device: int) -> int: assert ( device == 0 ), f"Only device index 0 is supported, tried to set index to {device}" return 0 # previous device is always 0 @staticmethod def exchange_device(device: int) -> int: assert ( device == 0 ), f"Only device index 0 is supported, tried to set index to {device}" return 0 # previous device is always 0 @staticmethod def get_raw_stream(device_index: int): return None @staticmethod def synchronize(device) -> None: pass # Can be mock patched by @patch decorator. @staticmethod def is_available() -> bool: return True @staticmethod def get_compute_capability(device) -> int: return 0
"""This file should contain all tests that need access to the internet (apart from the ones in test_datasets_download.py) We want to bundle all internet-related tests in one file, so the file can be cleanly ignored in FB internal test infra. """ import os import pathlib from urllib.error import URLError import pytest import torchvision.datasets.utils as utils class TestDatasetUtils: @pytest.mark.parametrize("use_pathlib", (True, False)) def test_download_url(self, tmpdir, use_pathlib): if use_pathlib: tmpdir = pathlib.Path(tmpdir) url = "http://github.com/pytorch/vision/archive/master.zip" try: utils.download_url(url, tmpdir) assert len(os.listdir(tmpdir)) != 0 except URLError: pytest.skip(f"could not download test file '{url}'") @pytest.mark.parametrize("use_pathlib", (True, False)) def test_download_url_retry_http(self, tmpdir, use_pathlib): if use_pathlib: tmpdir = pathlib.Path(tmpdir) url = "https://github.com/pytorch/vision/archive/master.zip" try: utils.download_url(url, tmpdir) assert len(os.listdir(tmpdir)) != 0 except URLError: pytest.skip(f"could not download test file '{url}'") @pytest.mark.parametrize("use_pathlib", (True, False)) def test_download_url_dont_exist(self, tmpdir, use_pathlib): if use_pathlib: tmpdir = pathlib.Path(tmpdir) url = "http://github.com/pytorch/vision/archive/this_doesnt_exist.zip" with pytest.raises(URLError): utils.download_url(url, tmpdir) @pytest.mark.parametrize("use_pathlib", (True, False)) def test_download_url_dispatch_download_from_google_drive(self, mocker, tmpdir, use_pathlib): if use_pathlib: tmpdir = pathlib.Path(tmpdir) url = "https://drive.google.com/file/d/1GO-BHUYRuvzr1Gtp2_fqXRsr9TIeYbhV/view" id = "1GO-BHUYRuvzr1Gtp2_fqXRsr9TIeYbhV" filename = "filename" md5 = "md5" mocked = mocker.patch("torchvision.datasets.utils.download_file_from_google_drive") utils.download_url(url, tmpdir, filename, md5) mocked.assert_called_once_with(id, os.path.expanduser(tmpdir), filename, md5) if __name__ == "__main__": pytest.main([__file__])
"""This file should contain all tests that need access to the internet (apart from the ones in test_datasets_download.py) We want to bundle all internet-related tests in one file, so the file can be cleanly ignored in FB internal test infra. """ import os from urllib.error import URLError import pytest import torchvision.datasets.utils as utils class TestDatasetUtils: def test_download_url(self, tmpdir): url = "http://github.com/pytorch/vision/archive/master.zip" try: utils.download_url(url, tmpdir) assert len(os.listdir(tmpdir)) != 0 except URLError: pytest.skip(f"could not download test file '{url}'") def test_download_url_retry_http(self, tmpdir): url = "https://github.com/pytorch/vision/archive/master.zip" try: utils.download_url(url, tmpdir) assert len(os.listdir(tmpdir)) != 0 except URLError: pytest.skip(f"could not download test file '{url}'") def test_download_url_dont_exist(self, tmpdir): url = "http://github.com/pytorch/vision/archive/this_doesnt_exist.zip" with pytest.raises(URLError): utils.download_url(url, tmpdir) def test_download_url_dispatch_download_from_google_drive(self, mocker, tmpdir): url = "https://drive.google.com/file/d/1GO-BHUYRuvzr1Gtp2_fqXRsr9TIeYbhV/view" id = "1GO-BHUYRuvzr1Gtp2_fqXRsr9TIeYbhV" filename = "filename" md5 = "md5" mocked = mocker.patch("torchvision.datasets.utils.download_file_from_google_drive") utils.download_url(url, tmpdir, filename, md5) mocked.assert_called_once_with(id, tmpdir, filename, md5) if __name__ == "__main__": pytest.main([__file__])
"""Arg pack components.""" from typing import Any, Callable, Dict, Optional from llama_index.core.base.query_pipeline.query import ( InputKeys, OutputKeys, QueryComponent, ) from llama_index.core.bridge.pydantic import Field class ArgPackComponent(QueryComponent): """ Arg pack component. Packs arbitrary number of args into a list. """ convert_fn: Optional[Callable] = Field( default=None, description="Function to convert output." ) def _validate_component_inputs(self, input: Dict[str, Any]) -> Dict[str, Any]: """Validate component inputs during run_component.""" raise NotImplementedError def validate_component_inputs(self, input: Dict[str, Any]) -> Dict[str, Any]: """Validate component inputs.""" return input def _validate_component_outputs(self, output: Dict[str, Any]) -> Dict[str, Any]: """Validate component outputs.""" # make sure output value is a list if not isinstance(output["output"], list): raise ValueError(f"Output is not a list.") return output def set_callback_manager(self, callback_manager: Any) -> None: """Set callback manager.""" def _run_component(self, **kwargs: Any) -> Any: """Run component.""" # combine all lists into one output = [] for v in kwargs.values(): if self.convert_fn is not None: v = self.convert_fn(v) if isinstance(v, list): output.extend(v) else: output.append(v) return {"output": output} async def _arun_component(self, **kwargs: Any) -> Any: """Run component (async).""" return self._run_component(**kwargs) @property def input_keys(self) -> InputKeys: """Input keys.""" # NOTE: this shouldn't be used return InputKeys.from_keys(set(), optional_keys=set()) @property def output_keys(self) -> OutputKeys: """Output keys.""" return OutputKeys.from_keys({"output"}) class KwargPackComponent(QueryComponent): """ Kwarg pack component. Packs arbitrary number of kwargs into a dict. """ convert_fn: Optional[Callable] = Field( default=None, description="Function to convert output." ) def _validate_component_inputs(self, input: Dict[str, Any]) -> Dict[str, Any]: """Validate component inputs during run_component.""" raise NotImplementedError def validate_component_inputs(self, input: Dict[str, Any]) -> Dict[str, Any]: """Validate component inputs.""" return input def _validate_component_outputs(self, output: Dict[str, Any]) -> Dict[str, Any]: """Validate component outputs.""" # make sure output value is a list if not isinstance(output["output"], dict): raise ValueError(f"Output is not a dict.") return output def set_callback_manager(self, callback_manager: Any) -> None: """Set callback manager.""" def _run_component(self, **kwargs: Any) -> Any: """Run component.""" if self.convert_fn is not None: for k, v in kwargs.items(): kwargs[k] = self.convert_fn(v) return {"output": kwargs} async def _arun_component(self, **kwargs: Any) -> Any: """Run component (async).""" return self._run_component(**kwargs) @property def input_keys(self) -> InputKeys: """Input keys.""" # NOTE: this shouldn't be used return InputKeys.from_keys(set(), optional_keys=set()) @property def output_keys(self) -> OutputKeys: """Output keys.""" return OutputKeys.from_keys({"output"})
"""Arg pack components.""" from typing import Any, Callable, Dict, Optional from llama_index.core.base.query_pipeline.query import ( InputKeys, OutputKeys, QueryComponent, ) from llama_index.core.bridge.pydantic import Field class ArgPackComponent(QueryComponent): """Arg pack component. Packs arbitrary number of args into a list. """ convert_fn: Optional[Callable] = Field( default=None, description="Function to convert output." ) def _validate_component_inputs(self, input: Dict[str, Any]) -> Dict[str, Any]: """Validate component inputs during run_component.""" raise NotImplementedError def validate_component_inputs(self, input: Dict[str, Any]) -> Dict[str, Any]: """Validate component inputs.""" return input def _validate_component_outputs(self, output: Dict[str, Any]) -> Dict[str, Any]: """Validate component outputs.""" # make sure output value is a list if not isinstance(output["output"], list): raise ValueError(f"Output is not a list.") return output def set_callback_manager(self, callback_manager: Any) -> None: """Set callback manager.""" def _run_component(self, **kwargs: Any) -> Any: """Run component.""" # combine all lists into one output = [] for v in kwargs.values(): if self.convert_fn is not None: v = self.convert_fn(v) if isinstance(v, list): output.extend(v) else: output.append(v) return {"output": output} async def _arun_component(self, **kwargs: Any) -> Any: """Run component (async).""" return self._run_component(**kwargs) @property def input_keys(self) -> InputKeys: """Input keys.""" # NOTE: this shouldn't be used return InputKeys.from_keys(set(), optional_keys=set()) @property def output_keys(self) -> OutputKeys: """Output keys.""" return OutputKeys.from_keys({"output"}) class KwargPackComponent(QueryComponent): """Kwarg pack component. Packs arbitrary number of kwargs into a dict. """ convert_fn: Optional[Callable] = Field( default=None, description="Function to convert output." ) def _validate_component_inputs(self, input: Dict[str, Any]) -> Dict[str, Any]: """Validate component inputs during run_component.""" raise NotImplementedError def validate_component_inputs(self, input: Dict[str, Any]) -> Dict[str, Any]: """Validate component inputs.""" return input def _validate_component_outputs(self, output: Dict[str, Any]) -> Dict[str, Any]: """Validate component outputs.""" # make sure output value is a list if not isinstance(output["output"], dict): raise ValueError(f"Output is not a dict.") return output def set_callback_manager(self, callback_manager: Any) -> None: """Set callback manager.""" def _run_component(self, **kwargs: Any) -> Any: """Run component.""" if self.convert_fn is not None: for k, v in kwargs.items(): kwargs[k] = self.convert_fn(v) return {"output": kwargs} async def _arun_component(self, **kwargs: Any) -> Any: """Run component (async).""" return self._run_component(**kwargs) @property def input_keys(self) -> InputKeys: """Input keys.""" # NOTE: this shouldn't be used return InputKeys.from_keys(set(), optional_keys=set()) @property def output_keys(self) -> OutputKeys: """Output keys.""" return OutputKeys.from_keys({"output"})
_base_ = 'faster-rcnn_r50_fpg_crop640-50e_coco.py' norm_cfg = dict(type='BN', requires_grad=True) model = dict( neck=dict(out_channels=128, inter_channels=128), rpn_head=dict(in_channels=128), roi_head=dict( bbox_roi_extractor=dict(out_channels=128), bbox_head=dict(in_channels=128)))
_base_ = 'faster-rcnn_r50_fpn_crop640-50e_coco.py' norm_cfg = dict(type='BN', requires_grad=True) model = dict( neck=dict(out_channels=128, inter_channels=128), rpn_head=dict(in_channels=128), roi_head=dict( bbox_roi_extractor=dict(out_channels=128), bbox_head=dict(in_channels=128)))
# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import tempfile sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class InstructPix2Pix(ExamplesTestsAccelerate): def test_instruct_pix2pix_checkpointing_checkpoints_total_limit(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/instruct_pix2pix/train_instruct_pix2pix.py --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe --dataset_name=hf-internal-testing/instructpix2pix-10-samples --resolution=64 --random_flip --train_batch_size=1 --max_train_steps=6 --checkpointing_steps=2 --checkpoints_total_limit=2 --output_dir {tmpdir} --seed=0 """.split() run_command(self._launch_args + test_args) self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}, ) def test_instruct_pix2pix_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/instruct_pix2pix/train_instruct_pix2pix.py --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe --dataset_name=hf-internal-testing/instructpix2pix-10-samples --resolution=64 --random_flip --train_batch_size=1 --max_train_steps=4 --checkpointing_steps=2 --output_dir {tmpdir} --seed=0 """.split() run_command(self._launch_args + test_args) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}, ) resume_run_args = f""" examples/instruct_pix2pix/train_instruct_pix2pix.py --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe --dataset_name=hf-internal-testing/instructpix2pix-10-samples --resolution=64 --random_flip --train_batch_size=1 --max_train_steps=8 --checkpointing_steps=2 --output_dir {tmpdir} --seed=0 --resume_from_checkpoint=checkpoint-4 --checkpoints_total_limit=2 """.split() run_command(self._launch_args + resume_run_args) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}, )
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import tempfile sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class InstructPix2Pix(ExamplesTestsAccelerate): def test_instruct_pix2pix_checkpointing_checkpoints_total_limit(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/instruct_pix2pix/train_instruct_pix2pix.py --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe --dataset_name=hf-internal-testing/instructpix2pix-10-samples --resolution=64 --random_flip --train_batch_size=1 --max_train_steps=6 --checkpointing_steps=2 --checkpoints_total_limit=2 --output_dir {tmpdir} --seed=0 """.split() run_command(self._launch_args + test_args) self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}, ) def test_instruct_pix2pix_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/instruct_pix2pix/train_instruct_pix2pix.py --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe --dataset_name=hf-internal-testing/instructpix2pix-10-samples --resolution=64 --random_flip --train_batch_size=1 --max_train_steps=4 --checkpointing_steps=2 --output_dir {tmpdir} --seed=0 """.split() run_command(self._launch_args + test_args) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}, ) resume_run_args = f""" examples/instruct_pix2pix/train_instruct_pix2pix.py --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe --dataset_name=hf-internal-testing/instructpix2pix-10-samples --resolution=64 --random_flip --train_batch_size=1 --max_train_steps=8 --checkpointing_steps=2 --output_dir {tmpdir} --seed=0 --resume_from_checkpoint=checkpoint-4 --checkpoints_total_limit=2 """.split() run_command(self._launch_args + resume_run_args) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}, )
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmcv.ops import point_sample from torch import Tensor def get_uncertainty(mask_pred: Tensor, labels: Tensor) -> Tensor: """Estimate uncertainty based on pred logits. We estimate uncertainty as L1 distance between 0.0 and the logits prediction in 'mask_pred' for the foreground class in `classes`. Args: mask_pred (Tensor): mask predication logits, shape (num_rois, num_classes, mask_height, mask_width). labels (Tensor): Either predicted or ground truth label for each predicted mask, of length num_rois. Returns: scores (Tensor): Uncertainty scores with the most uncertain locations having the highest uncertainty score, shape (num_rois, 1, mask_height, mask_width) """ if mask_pred.shape[1] == 1: gt_class_logits = mask_pred.clone() else: inds = torch.arange(mask_pred.shape[0], device=mask_pred.device) gt_class_logits = mask_pred[inds, labels].unsqueeze(1) return -torch.abs(gt_class_logits) def get_uncertain_point_coords_with_randomness( mask_pred: Tensor, labels: Tensor, num_points: int, oversample_ratio: float, importance_sample_ratio: float) -> Tensor: """Get ``num_points`` most uncertain points with random points during train. Sample points in [0, 1] x [0, 1] coordinate space based on their uncertainty. The uncertainties are calculated for each point using 'get_uncertainty()' function that takes point's logit prediction as input. Args: mask_pred (Tensor): A tensor of shape (num_rois, num_classes, mask_height, mask_width) for class-specific or class-agnostic prediction. labels (Tensor): The ground truth class for each instance. num_points (int): The number of points to sample. oversample_ratio (float): Oversampling parameter. importance_sample_ratio (float): Ratio of points that are sampled via importnace sampling. Returns: point_coords (Tensor): A tensor of shape (num_rois, num_points, 2) that contains the coordinates sampled points. """ assert oversample_ratio >= 1 assert 0 <= importance_sample_ratio <= 1 batch_size = mask_pred.shape[0] num_sampled = int(num_points * oversample_ratio) point_coords = torch.rand( batch_size, num_sampled, 2, device=mask_pred.device) point_logits = point_sample(mask_pred, point_coords) # It is crucial to calculate uncertainty based on the sampled # prediction value for the points. Calculating uncertainties of the # coarse predictions first and sampling them for points leads to # incorrect results. To illustrate this: assume uncertainty func( # logits)=-abs(logits), a sampled point between two coarse # predictions with -1 and 1 logits has 0 logits, and therefore 0 # uncertainty value. However, if we calculate uncertainties for the # coarse predictions first, both will have -1 uncertainty, # and sampled point will get -1 uncertainty. point_uncertainties = get_uncertainty(point_logits, labels) num_uncertain_points = int(importance_sample_ratio * num_points) num_random_points = num_points - num_uncertain_points idx = torch.topk( point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1] shift = num_sampled * torch.arange( batch_size, dtype=torch.long, device=mask_pred.device) idx += shift[:, None] point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view( batch_size, num_uncertain_points, 2) if num_random_points > 0: rand_roi_coords = torch.rand( batch_size, num_random_points, 2, device=mask_pred.device) point_coords = torch.cat((point_coords, rand_roi_coords), dim=1) return point_coords
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmcv.ops import point_sample def get_uncertainty(mask_pred, labels): """Estimate uncertainty based on pred logits. We estimate uncertainty as L1 distance between 0.0 and the logits prediction in 'mask_pred' for the foreground class in `classes`. Args: mask_pred (Tensor): mask predication logits, shape (num_rois, num_classes, mask_height, mask_width). labels (list[Tensor]): Either predicted or ground truth label for each predicted mask, of length num_rois. Returns: scores (Tensor): Uncertainty scores with the most uncertain locations having the highest uncertainty score, shape (num_rois, 1, mask_height, mask_width) """ if mask_pred.shape[1] == 1: gt_class_logits = mask_pred.clone() else: inds = torch.arange(mask_pred.shape[0], device=mask_pred.device) gt_class_logits = mask_pred[inds, labels].unsqueeze(1) return -torch.abs(gt_class_logits) def get_uncertain_point_coords_with_randomness(mask_pred, labels, num_points, oversample_ratio, importance_sample_ratio): """Get ``num_points`` most uncertain points with random points during train. Sample points in [0, 1] x [0, 1] coordinate space based on their uncertainty. The uncertainties are calculated for each point using 'get_uncertainty()' function that takes point's logit prediction as input. Args: mask_pred (Tensor): A tensor of shape (num_rois, num_classes, mask_height, mask_width) for class-specific or class-agnostic prediction. labels (list): The ground truth class for each instance. num_points (int): The number of points to sample. oversample_ratio (int): Oversampling parameter. importance_sample_ratio (float): Ratio of points that are sampled via importnace sampling. Returns: point_coords (Tensor): A tensor of shape (num_rois, num_points, 2) that contains the coordinates sampled points. """ assert oversample_ratio >= 1 assert 0 <= importance_sample_ratio <= 1 batch_size = mask_pred.shape[0] num_sampled = int(num_points * oversample_ratio) point_coords = torch.rand( batch_size, num_sampled, 2, device=mask_pred.device) point_logits = point_sample(mask_pred, point_coords) # It is crucial to calculate uncertainty based on the sampled # prediction value for the points. Calculating uncertainties of the # coarse predictions first and sampling them for points leads to # incorrect results. To illustrate this: assume uncertainty func( # logits)=-abs(logits), a sampled point between two coarse # predictions with -1 and 1 logits has 0 logits, and therefore 0 # uncertainty value. However, if we calculate uncertainties for the # coarse predictions first, both will have -1 uncertainty, # and sampled point will get -1 uncertainty. point_uncertainties = get_uncertainty(point_logits, labels) num_uncertain_points = int(importance_sample_ratio * num_points) num_random_points = num_points - num_uncertain_points idx = torch.topk( point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1] shift = num_sampled * torch.arange( batch_size, dtype=torch.long, device=mask_pred.device) idx += shift[:, None] point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view( batch_size, num_uncertain_points, 2) if num_random_points > 0: rand_roi_coords = torch.rand( batch_size, num_random_points, 2, device=mask_pred.device) point_coords = torch.cat((point_coords, rand_roi_coords), dim=1) return point_coords
# Copyright (c) OpenMMLab. All rights reserved. from .hub import load_url from .manager import ManagerMeta, ManagerMixin from .misc import (check_prerequisites, concat_list, deprecated_api_warning, has_batch_norm, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, mmcv_full_available, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .parrots_wrapper import TORCH_VERSION from .path import (check_file_exist, fopen, is_abs, is_filepath, mkdir_or_exist, scandir, symlink) from .setup_env import set_multi_processing from .version_utils import digit_version, get_git_hash # TODO: creates intractable circular import issues # from .time_counter import TimeCounter __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_method_overridden', 'has_method', 'mmcv_full_available', 'digit_version', 'get_git_hash', 'TORCH_VERSION', 'load_url', 'ManagerMeta', 'ManagerMixin', 'set_multi_processing', 'has_batch_norm', 'is_abs' ]
# Copyright (c) OpenMMLab. All rights reserved. from .hub import load_url from .manager import ManagerMeta, ManagerMixin from .misc import (check_prerequisites, concat_list, deprecated_api_warning, find_latest_checkpoint, has_batch_norm, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, mmcv_full_available, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .parrots_wrapper import TORCH_VERSION from .path import (check_file_exist, fopen, is_abs, is_filepath, mkdir_or_exist, scandir, symlink) from .setup_env import set_multi_processing from .version_utils import digit_version, get_git_hash # TODO: creates intractable circular import issues # from .time_counter import TimeCounter __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_method_overridden', 'has_method', 'mmcv_full_available', 'digit_version', 'get_git_hash', 'TORCH_VERSION', 'load_url', 'find_latest_checkpoint', 'ManagerMeta', 'ManagerMixin', 'set_multi_processing', 'has_batch_norm', 'is_abs' ]
from . import assert_when_ready def test_text_search(simple_index_with_docs): # noqa: F811 simple_index, docs = simple_index_with_docs query_string = "Python is a valuable skill" expected_text = docs[0].text def pred(): docs, scores = simple_index.text_search( query=query_string, search_field='text', limit=10 ) assert len(docs) == 1 assert docs[0].text == expected_text assert scores[0] > 0 assert_when_ready(pred) def test_text_search_batched(simple_index_with_docs): # noqa: F811 index, docs = simple_index_with_docs queries = ['processing with Python', 'tips', 'for'] def pred(): docs, scores = index.text_search_batched(queries, search_field='text', limit=5) assert len(docs) == 3 assert len(docs[0]) == 1 assert len(docs[1]) == 1 assert len(docs[2]) == 2 assert len(scores) == 3 assert len(scores[0]) == 1 assert len(scores[1]) == 1 assert len(scores[2]) == 2 assert_when_ready(pred)
from . import assert_when_ready def test_text_search(simple_index_with_docs): # noqa: F811 simple_index, docs = simple_index_with_docs query_string = "Python is a valuable skill" expected_text = docs[0].text def pred(): docs, scores = simple_index.text_search( query=query_string, search_field='text', limit=1 ) assert len(docs) == 1 assert docs[0].text == expected_text assert scores[0] > 0 assert_when_ready(pred) def test_text_search_batched(simple_index_with_docs): # noqa: F811 index, docs = simple_index_with_docs queries = ['processing with Python', 'tips', 'for'] def pred(): docs, scores = index.text_search_batched(queries, search_field='text', limit=5) assert len(docs) == 3 assert len(docs[0]) == 1 assert len(docs[1]) == 1 assert len(docs[2]) == 2 assert len(scores) == 3 assert len(scores[0]) == 1 assert len(scores[1]) == 1 assert len(scores[2]) == 2 assert_when_ready(pred)
import os from typing import Union from .filesystem import FileSystemReader, FileSystemWriter from .storage import StorageReader, StorageWriter def _storage_setup( storage: Union[StorageReader, StorageWriter, None], checkpoint_id: Union[str, os.PathLike, None], reader: bool = False, ) -> Union[None, StorageReader, StorageWriter]: if storage: if checkpoint_id is not None: storage.reset(checkpoint_id) return storage if not checkpoint_id: raise RuntimeError( "`checkpoint_id` must be specificed if " "storage_reader/storage_writer is None." ) targets: list[type[Union[StorageReader, StorageWriter]]] = [] if reader: targets = [ FileSystemReader, ] else: targets = [ FileSystemWriter, ] try: from ._fsspec_filesystem import FsspecReader, FsspecWriter targets.append(FsspecReader if reader else FsspecWriter) except Exception: pass for target in targets: if target.validate_checkpoint_id(checkpoint_id): storage = target(checkpoint_id) # type: ignore[call-arg] storage.reset(checkpoint_id) return storage raise RuntimeError( "Cannot detect which StorageReader or StorageWriter to use. " "Please specify the storage_reader/storage_writer." )
import os from typing import Union from .filesystem import FileSystemReader, FileSystemWriter from .storage import StorageReader, StorageWriter def _storage_setup( storage: Union[StorageReader, StorageWriter, None], checkpoint_id: Union[str, os.PathLike, None], reader: bool = False, ) -> Union[None, StorageReader, StorageWriter]: if storage: if checkpoint_id is not None: storage.reset(checkpoint_id) return storage if not checkpoint_id: raise RuntimeError( "`checkpoint_id` must be specified if " "storage_reader/storage_writer is None." ) targets: list[type[Union[StorageReader, StorageWriter]]] = [] if reader: targets = [ FileSystemReader, ] else: targets = [ FileSystemWriter, ] try: from ._fsspec_filesystem import FsspecReader, FsspecWriter targets.append(FsspecReader if reader else FsspecWriter) except Exception: pass for target in targets: if target.validate_checkpoint_id(checkpoint_id): storage = target(checkpoint_id) # type: ignore[call-arg] storage.reset(checkpoint_id) return storage raise RuntimeError( "Cannot detect which StorageReader or StorageWriter to use. " "Please specify the storage_reader/storage_writer." )
import asyncio import logging import os import threading from functools import wraps from uuid import uuid4 from tenacity import retry, stop_after_attempt, wait_exponential from backend.util.process import get_service_name logger = logging.getLogger(__name__) def _log_prefix(resource_name: str, conn_id: str): """ Returns a prefix string for logging purposes. This needs to be called on the fly to get the current process ID & service name, not the parent process ID & service name. """ return f"[PID-{os.getpid()}|THREAD-{threading.get_native_id()}|{get_service_name()}|{resource_name}-{conn_id}]" def conn_retry( resource_name: str, action_name: str, max_retry: int = 5, multiplier: int = 1, min_wait: float = 1, max_wait: float = 30, ): conn_id = str(uuid4()) def on_retry(retry_state): prefix = _log_prefix(resource_name, conn_id) exception = retry_state.outcome.exception() logger.warning(f"{prefix} {action_name} failed: {exception}. Retrying now...") def decorator(func): is_coroutine = asyncio.iscoroutinefunction(func) retry_decorator = retry( stop=stop_after_attempt(max_retry + 1), wait=wait_exponential(multiplier=multiplier, min=min_wait, max=max_wait), before_sleep=on_retry, reraise=True, ) wrapped_func = retry_decorator(func) @wraps(func) def sync_wrapper(*args, **kwargs): prefix = _log_prefix(resource_name, conn_id) logger.info(f"{prefix} {action_name} started...") try: result = wrapped_func(*args, **kwargs) logger.info(f"{prefix} {action_name} completed successfully.") return result except Exception as e: logger.error(f"{prefix} {action_name} failed after retries: {e}") raise @wraps(func) async def async_wrapper(*args, **kwargs): prefix = _log_prefix(resource_name, conn_id) logger.info(f"{prefix} {action_name} started...") try: result = await wrapped_func(*args, **kwargs) logger.info(f"{prefix} {action_name} completed successfully.") return result except Exception as e: logger.error(f"{prefix} {action_name} failed after retries: {e}") raise return async_wrapper if is_coroutine else sync_wrapper return decorator func_retry = retry( reraise=False, stop=stop_after_attempt(5), wait=wait_exponential(multiplier=1, min=1, max=30), )
import asyncio import logging import os import threading from functools import wraps from uuid import uuid4 from tenacity import retry, stop_after_attempt, wait_exponential from backend.util.process import get_service_name logger = logging.getLogger(__name__) def _log_prefix(resource_name: str, conn_id: str): """ Returns a prefix string for logging purposes. This needs to be called on the fly to get the current process ID & service name, not the parent process ID & service name. """ return f"[PID-{os.getpid()}|THREAD-{threading.get_native_id()}|{get_service_name()}|{resource_name}-{conn_id}]" def conn_retry( resource_name: str, action_name: str, max_retry: int = 5, multiplier: int = 1, min_wait: float = 1, max_wait: float = 30, ): conn_id = str(uuid4()) def on_retry(retry_state): prefix = _log_prefix(resource_name, conn_id) exception = retry_state.outcome.exception() logger.warning(f"{prefix} {action_name} failed: {exception}. Retrying now...") def decorator(func): is_coroutine = asyncio.iscoroutinefunction(func) retry_decorator = retry( stop=stop_after_attempt(max_retry + 1), wait=wait_exponential(multiplier=multiplier, min=min_wait, max=max_wait), before_sleep=on_retry, reraise=True, ) wrapped_func = retry_decorator(func) @wraps(func) def sync_wrapper(*args, **kwargs): prefix = _log_prefix(resource_name, conn_id) logger.info(f"{prefix} {action_name} started...") try: result = wrapped_func(*args, **kwargs) logger.info(f"{prefix} {action_name} completed successfully.") return result except Exception as e: logger.error(f"{prefix} {action_name} failed after retries: {e}") raise @wraps(func) async def async_wrapper(*args, **kwargs): prefix = _log_prefix(resource_name, conn_id) logger.info(f"{prefix} {action_name} started...") try: result = await wrapped_func(*args, **kwargs) logger.info(f"{prefix} {action_name} completed successfully.") return result except Exception as e: logger.error(f"{prefix} {action_name} failed after retries: {e}") raise return async_wrapper if is_coroutine else sync_wrapper return decorator
import unittest import torch import torch.nn.functional as F from diffusers import VQDiffusionScheduler from .test_schedulers import SchedulerCommonTest class VQDiffusionSchedulerTest(SchedulerCommonTest): scheduler_classes = (VQDiffusionScheduler,) def get_scheduler_config(self, **kwargs): config = { "num_vec_classes": 4097, "num_train_timesteps": 100, } config.update(**kwargs) return config def dummy_sample(self, num_vec_classes): batch_size = 4 height = 8 width = 8 sample = torch.randint(0, num_vec_classes, (batch_size, height * width)) return sample @property def dummy_sample_deter(self): assert False def dummy_model(self, num_vec_classes): def model(sample, t, *args): batch_size, num_latent_pixels = sample.shape logits = torch.rand((batch_size, num_vec_classes - 1, num_latent_pixels)) return_value = F.log_softmax(logits.double(), dim=1).float() return return_value return model def test_timesteps(self): for timesteps in [2, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=timesteps) def test_num_vec_classes(self): for num_vec_classes in [5, 100, 1000, 4000]: self.check_over_configs(num_vec_classes=num_vec_classes) def test_time_indices(self): for t in [0, 50, 99]: self.check_over_forward(time_step=t) @unittest.skip("Test not supported.") def test_add_noise_device(self): pass
import torch import torch.nn.functional as F from diffusers import VQDiffusionScheduler from .test_schedulers import SchedulerCommonTest class VQDiffusionSchedulerTest(SchedulerCommonTest): scheduler_classes = (VQDiffusionScheduler,) def get_scheduler_config(self, **kwargs): config = { "num_vec_classes": 4097, "num_train_timesteps": 100, } config.update(**kwargs) return config def dummy_sample(self, num_vec_classes): batch_size = 4 height = 8 width = 8 sample = torch.randint(0, num_vec_classes, (batch_size, height * width)) return sample @property def dummy_sample_deter(self): assert False def dummy_model(self, num_vec_classes): def model(sample, t, *args): batch_size, num_latent_pixels = sample.shape logits = torch.rand((batch_size, num_vec_classes - 1, num_latent_pixels)) return_value = F.log_softmax(logits.double(), dim=1).float() return return_value return model def test_timesteps(self): for timesteps in [2, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=timesteps) def test_num_vec_classes(self): for num_vec_classes in [5, 100, 1000, 4000]: self.check_over_configs(num_vec_classes=num_vec_classes) def test_time_indices(self): for t in [0, 50, 99]: self.check_over_forward(time_step=t) def test_add_noise_device(self): pass
"""Argparser module for WorkerRuntime""" from jina.parsers.helper import KVAppendAction def mixin_base_runtime_parser(arg_group): """Mixing in arguments required by any class that extends :class:`AsynNewLoopRuntime` into the given parser. :param arg_group: the parser instance to which we add arguments """ arg_group.add_argument( '--grpc-server-options', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help="Dictionary of kwargs arguments that will be passed to the grpc server as options when starting the server, example : {'grpc.max_send_message_length': -1}", default=None, )
"""Argparser module for WorkerRuntime""" from jina import __default_host__, helper from jina.parsers.helper import KVAppendAction def mixin_base_runtime_parser(arg_group): """Mixing in arguments required by any class that extends :class:`AsynNewLoopRuntime` into the given parser. :param arg_group: the parser instance to which we add arguments """ arg_group.add_argument( '--port-in', type=int, default=helper.random_port(), dest='port', help='The port for input data to bind to, default a random port between [49152, 65535]', ) arg_group.add_argument( '--host-in', type=str, default=__default_host__, help=f'The host address for binding to, by default it is {__default_host__}', ) arg_group.add_argument( '--grpc-server-options', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help="Dictionary of kwargs arguments that will be passed to the grpc server as options when starting the server, example : {'grpc.max_send_message_length': -1}", default=None, )
import numpy as np import pytest from absl.testing import parameterized from keras.src import layers from keras.src import ops from keras.src import testing class AutoContrastTest(testing.TestCase, parameterized.TestCase): @pytest.mark.requires_trainable_backend def test_layer(self): self.run_layer_test( layers.AutoContrast, init_kwargs={ "value_range": (20, 200), }, input_shape=(8, 3, 4, 3), supports_masking=False, expected_output_shape=(8, 3, 4, 3), ) def test_constant_channels_dont_get_nanned(self): img = np.array([1, 1], dtype="float32") img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 255)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 1.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 1.0)) def test_auto_contrast_expands_value_range(self): img = np.array([0, 128], dtype="float32") img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 255)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 255.0)) def test_auto_contrast_different_values_per_channel(self): img = np.array( [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], dtype="float32", ) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 255)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0, ..., 0]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0, ..., 1]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0, ..., 0]) == 255.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0, ..., 1]) == 255.0)) self.assertAllClose( ys, [ [ [[0.0, 0.0, 0.0], [85.0, 85.0, 85.0]], [[170.0, 170.0, 170.0], [255.0, 255.0, 255.0]], ] ], ) def test_auto_contrast_expands_value_range_uint8(self): img = np.array([0, 128], dtype="uint8") img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 255)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 255.0)) def test_auto_contrast_properly_converts_value_range(self): img = np.array([0, 0.5], dtype="float32") img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 1)) ys = layer(img) self.assertAllClose( ops.convert_to_numpy(ys[0]), np.array([[[0.0]], [[1]]]) )
import numpy as np import pytest from absl.testing import parameterized from keras.src import layers from keras.src import ops from keras.src import testing class AutoContrastTest(testing.TestCase, parameterized.TestCase): @pytest.mark.requires_trainable_backend def test_layer(self): self.run_layer_test( layers.AutoContrast, init_kwargs={ "value_range": (20, 200), }, input_shape=(8, 3, 4, 3), supports_masking=False, expected_output_shape=(8, 3, 4, 3), ) def test_constant_channels_dont_get_nanned(self): img = np.array([1, 1], dtype="float32") img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 255)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 1.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 1.0)) def test_auto_contrast_expands_value_range(self): img = np.array([0, 128], dtype="float32") img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 255)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 255.0)) def test_auto_contrast_different_values_per_channel(self): img = np.array( [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], dtype="float32", ) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 255)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0, ..., 0]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0, ..., 1]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0, ..., 0]) == 255.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0, ..., 1]) == 255.0)) self.assertAllClose( ys, [ [ [[0.0, 0.0, 0.0], [85.0, 85.0, 85.0]], [[170.0, 170.0, 170.0], [255.0, 255.0, 255.0]], ] ], ) def test_auto_contrast_expands_value_range_uint8(self): img = np.array([0, 128], dtype="uint8") img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 255)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 255.0)) def test_auto_contrast_properly_converts_value_range(self): img = np.array([0, 0.5], dtype="float32") img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 1)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 1.0))
from typing import TYPE_CHECKING, Any, Dict, Type, TypeVar from docarray.document.abstract_document import AbstractDocument from docarray.document.base_node import BaseNode if TYPE_CHECKING: from docarray.proto import DocumentProto, NodeProto try: import torch # noqa: F401 except ImportError: torch_imported = False else: from docarray.typing.tensor.torch_tensor import TorchTensor torch_imported = True T = TypeVar('T', bound='ProtoMixin') class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls: Type[T], pb_msg: 'DocumentProto') -> T: """create a Document from a protobuf message""" from docarray.typing import ( # TorchTensor, ID, AnyUrl, Embedding, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, ) fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type = value.WhichOneof('content') # this if else statement need to be refactored it is too long # the check should be delegated to the type level content_type_dict = dict( ndarray=NdArray, embedding=Embedding, any_url=AnyUrl, text_url=TextUrl, image_url=ImageUrl, mesh_url=Mesh3DUrl, point_cloud_url=PointCloud3DUrl, id=ID, ) if torch_imported: content_type_dict['torch_tensor'] = TorchTensor if content_type in content_type_dict: fields[field] = content_type_dict[content_type].from_protobuf( getattr(value, content_type) ) elif content_type == 'text': fields[field] = value.text elif content_type == 'nested': fields[field] = cls._get_nested_document_class(field).from_protobuf( value.nested ) # we get to the parent class elif content_type == 'chunks': from docarray import DocumentArray fields[field] = DocumentArray.from_protobuf( value.chunks ) # we get to the parent class elif content_type is None: fields[field] = None else: raise ValueError( f'type {content_type} is not supported for deserialization' ) return cls.construct(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ from docarray.proto import DocumentProto, NodeProto data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> 'NodeProto': from docarray.proto import NodeProto """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(nested=self.to_protobuf())
from typing import TYPE_CHECKING, Any, Dict, Type, TypeVar from docarray.document.abstract_document import AbstractDocument from docarray.document.base_node import BaseNode if TYPE_CHECKING: from docarray.proto import DocumentProto, NodeProto try: import torch # noqa: F401 except ImportError: torch_imported = False else: from docarray.typing import TorchTensor torch_imported = True T = TypeVar('T', bound='ProtoMixin') class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls: Type[T], pb_msg: 'DocumentProto') -> T: """create a Document from a protobuf message""" from docarray.typing import ( # TorchTensor, ID, AnyUrl, Embedding, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, ) fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type = value.WhichOneof('content') # this if else statement need to be refactored it is too long # the check should be delegated to the type level content_type_dict = dict( ndarray=NdArray, embedding=Embedding, any_url=AnyUrl, text_url=TextUrl, image_url=ImageUrl, mesh_url=Mesh3DUrl, point_cloud_url=PointCloud3DUrl, id=ID, ) if torch_imported: content_type_dict['torch_tensor'] = TorchTensor if content_type in content_type_dict: fields[field] = content_type_dict[content_type].from_protobuf( getattr(value, content_type) ) elif content_type == 'text': fields[field] = value.text elif content_type == 'nested': fields[field] = cls._get_nested_document_class(field).from_protobuf( value.nested ) # we get to the parent class elif content_type == 'chunks': from docarray import DocumentArray fields[field] = DocumentArray.from_protobuf( value.chunks ) # we get to the parent class elif content_type is None: fields[field] = None else: raise ValueError( f'type {content_type} is not supported for deserialization' ) return cls.construct(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ from docarray.proto import DocumentProto, NodeProto data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> 'NodeProto': from docarray.proto import NodeProto """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(nested=self.to_protobuf())
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from mmengine.config import ConfigDict from mmdet.structures import DetDataSample from mmdet.testing import demo_mm_inputs, get_detector_cfg from mmdet.utils import register_all_modules class TestCornerNet(TestCase): def setUp(self) -> None: register_all_modules() model_cfg = get_detector_cfg( 'cornernet/cornernet_hourglass104_8xb6-210e-mstest_coco.py') backbone = dict( type='ResNet', depth=18, num_stages=4, out_indices=(3, ), norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch') neck = dict( type='FPN', in_channels=[512], out_channels=256, start_level=0, add_extra_convs='on_input', num_outs=1) model_cfg.backbone = ConfigDict(**backbone) model_cfg.neck = ConfigDict(**neck) model_cfg.bbox_head.num_feat_levels = 1 self.model_cfg = model_cfg def test_init(self): model = get_detector_cfg( 'cornernet/cornernet_hourglass104_8xb6-210e-mstest_coco.py') model.backbone.init_cfg = None from mmdet.registry import MODELS detector = MODELS.build(model) self.assertTrue(detector.bbox_head is not None) self.assertTrue(detector.backbone is not None) self.assertTrue(not hasattr(detector, 'neck')) @unittest.skipIf(not torch.cuda.is_available(), 'test requires GPU and torch+cuda') def test_cornernet_forward_loss_mode(self): from mmdet.registry import MODELS detector = MODELS.build(self.model_cfg) detector.init_weights() packed_inputs = demo_mm_inputs(2, [[3, 511, 511], [3, 511, 511]]) data = detector.data_preprocessor(packed_inputs, True) losses = detector.forward(**data, mode='loss') assert isinstance(losses, dict) @unittest.skipIf(not torch.cuda.is_available(), 'test requires GPU and torch+cuda') def test_cornernet_forward_predict_mode(self): from mmdet.registry import MODELS detector = MODELS.build(self.model_cfg) detector.init_weights() packed_inputs = demo_mm_inputs(2, [[3, 512, 512], [3, 512, 512]]) data = detector.data_preprocessor(packed_inputs, False) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward(**data, mode='predict') assert len(batch_results) == 2 assert isinstance(batch_results[0], DetDataSample) @unittest.skipIf(not torch.cuda.is_available(), 'test requires GPU and torch+cuda') def test_cornernet_forward_tensor_mode(self): from mmdet.registry import MODELS detector = MODELS.build(self.model_cfg) detector.init_weights() packed_inputs = demo_mm_inputs(2, [[3, 512, 512], [3, 512, 512]]) data = detector.data_preprocessor(packed_inputs, False) batch_results = detector.forward(**data, mode='tensor') assert isinstance(batch_results, tuple)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from mmengine.config import ConfigDict from mmdet.structures import DetDataSample from mmdet.testing import demo_mm_inputs, get_detector_cfg from mmdet.utils import register_all_modules class TestCornerNet(TestCase): def setUp(self) -> None: register_all_modules() model_cfg = get_detector_cfg( 'cornernet/cornernet_hourglass104_8xb6-210e-mstest_coco.py') backbone = dict( type='ResNet', depth=18, num_stages=4, out_indices=(3, ), norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch') neck = dict( type='FPN', in_channels=[512], out_channels=256, start_level=0, add_extra_convs='on_input', num_outs=1) model_cfg.backbone = ConfigDict(**backbone) model_cfg.neck = ConfigDict(**neck) model_cfg.bbox_head.num_feat_levels = 1 self.model_cfg = model_cfg def test_init(self): model = get_detector_cfg( 'cornernet/cornernet_hourglass104_8xb6-210e-mstest_coco.py') model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) self.assertTrue(detector.bbox_head is not None) self.assertTrue(detector.backbone is not None) self.assertTrue(not hasattr(detector, 'neck')) @unittest.skipIf(not torch.cuda.is_available(), 'test requires GPU and torch+cuda') def test_cornernet_forward_loss_mode(self): from mmdet.models import build_detector detector = build_detector(self.model_cfg) detector.init_weights() packed_inputs = demo_mm_inputs(2, [[3, 511, 511], [3, 511, 511]]) data = detector.data_preprocessor(packed_inputs, True) losses = detector.forward(**data, mode='loss') assert isinstance(losses, dict) @unittest.skipIf(not torch.cuda.is_available(), 'test requires GPU and torch+cuda') def test_cornernet_forward_predict_mode(self): from mmdet.models import build_detector detector = build_detector(self.model_cfg) detector.init_weights() packed_inputs = demo_mm_inputs(2, [[3, 512, 512], [3, 512, 512]]) data = detector.data_preprocessor(packed_inputs, False) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward(**data, mode='predict') assert len(batch_results) == 2 assert isinstance(batch_results[0], DetDataSample) @unittest.skipIf(not torch.cuda.is_available(), 'test requires GPU and torch+cuda') def test_cornernet_forward_tensor_mode(self): from mmdet.models import build_detector detector = build_detector(self.model_cfg) detector.init_weights() packed_inputs = demo_mm_inputs(2, [[3, 512, 512], [3, 512, 512]]) data = detector.data_preprocessor(packed_inputs, False) batch_results = detector.forward(**data, mode='tensor') assert isinstance(batch_results, tuple)
import logging import os import torch from torchaudio._internal import download_url_to_file, module_utils as _mod_utils def _get_chars(): return ( "_", "-", "!", "'", "(", ")", ",", ".", ":", ";", "?", " ", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", ) def _get_phones(): return ( "_", "-", "!", "'", "(", ")", ",", ".", ":", ";", "?", " ", "AA", "AA0", "AA1", "AA2", "AE", "AE0", "AE1", "AE2", "AH", "AH0", "AH1", "AH2", "AO", "AO0", "AO1", "AO2", "AW", "AW0", "AW1", "AW2", "AY", "AY0", "AY1", "AY2", "B", "CH", "D", "DH", "EH", "EH0", "EH1", "EH2", "ER", "ER0", "ER1", "ER2", "EY", "EY0", "EY1", "EY2", "F", "G", "HH", "IH", "IH0", "IH1", "IH2", "IY", "IY0", "IY1", "IY2", "JH", "K", "L", "M", "N", "NG", "OW", "OW0", "OW1", "OW2", "OY", "OY0", "OY1", "OY2", "P", "R", "S", "SH", "T", "TH", "UH", "UH0", "UH1", "UH2", "UW", "UW0", "UW1", "UW2", "V", "W", "Y", "Z", "ZH", ) def _to_tensor(indices): lengths = torch.tensor([len(i) for i in indices], dtype=torch.int32) values = [torch.tensor(i) for i in indices] values = torch.nn.utils.rnn.pad_sequence(values, batch_first=True) return values, lengths def _load_phonemizer(file, dl_kwargs): if not _mod_utils.is_module_available("dp"): raise RuntimeError("DeepPhonemizer is not installed. Please install it.") from dp.phonemizer import Phonemizer from dp.preprocessing.text import Preprocessor, LanguageTokenizer, SequenceTokenizer # By default, dp issues DEBUG level log. logger = logging.getLogger("dp") orig_level = logger.level logger.setLevel(logging.INFO) try: url = f"https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/{file}" directory = os.path.join(torch.hub.get_dir(), "checkpoints") os.makedirs(directory, exist_ok=True) path = os.path.join(directory, file) if not os.path.exists(path): dl_kwargs = {} if dl_kwargs is None else dl_kwargs download_url_to_file(url, path, **dl_kwargs) with torch.serialization.safe_globals([Preprocessor, LanguageTokenizer, SequenceTokenizer]): return Phonemizer.from_checkpoint(path) finally: logger.setLevel(orig_level) def _unnormalize_waveform(waveform: torch.Tensor, bits: int) -> torch.Tensor: r"""Transform waveform [-1, 1] to label [0, 2 ** bits - 1]""" waveform = torch.clamp(waveform, -1, 1) waveform = (waveform + 1.0) * (2**bits - 1) / 2 return torch.clamp(waveform, 0, 2**bits - 1).int() def _get_taco_params(n_symbols): return { "mask_padding": False, "n_mels": 80, "n_frames_per_step": 1, "symbol_embedding_dim": 512, "encoder_embedding_dim": 512, "encoder_n_convolution": 3, "encoder_kernel_size": 5, "decoder_rnn_dim": 1024, "decoder_max_step": 2000, "decoder_dropout": 0.1, "decoder_early_stopping": True, "attention_rnn_dim": 1024, "attention_hidden_dim": 128, "attention_location_n_filter": 32, "attention_location_kernel_size": 31, "attention_dropout": 0.1, "prenet_dim": 256, "postnet_n_convolution": 5, "postnet_kernel_size": 5, "postnet_embedding_dim": 512, "gate_threshold": 0.5, "n_symbol": n_symbols, } def _get_wrnn_params(): return { "upsample_scales": [5, 5, 11], "n_classes": 2**8, # n_bits = 8 "hop_length": 275, "n_res_block": 10, "n_rnn": 512, "n_fc": 512, "kernel_size": 5, "n_freq": 80, "n_hidden": 128, "n_output": 128, }
import logging import os import torch from torchaudio._internal import download_url_to_file, module_utils as _mod_utils def _get_chars(): return ( "_", "-", "!", "'", "(", ")", ",", ".", ":", ";", "?", " ", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", ) def _get_phones(): return ( "_", "-", "!", "'", "(", ")", ",", ".", ":", ";", "?", " ", "AA", "AA0", "AA1", "AA2", "AE", "AE0", "AE1", "AE2", "AH", "AH0", "AH1", "AH2", "AO", "AO0", "AO1", "AO2", "AW", "AW0", "AW1", "AW2", "AY", "AY0", "AY1", "AY2", "B", "CH", "D", "DH", "EH", "EH0", "EH1", "EH2", "ER", "ER0", "ER1", "ER2", "EY", "EY0", "EY1", "EY2", "F", "G", "HH", "IH", "IH0", "IH1", "IH2", "IY", "IY0", "IY1", "IY2", "JH", "K", "L", "M", "N", "NG", "OW", "OW0", "OW1", "OW2", "OY", "OY0", "OY1", "OY2", "P", "R", "S", "SH", "T", "TH", "UH", "UH0", "UH1", "UH2", "UW", "UW0", "UW1", "UW2", "V", "W", "Y", "Z", "ZH", ) def _to_tensor(indices): lengths = torch.tensor([len(i) for i in indices], dtype=torch.int32) values = [torch.tensor(i) for i in indices] values = torch.nn.utils.rnn.pad_sequence(values, batch_first=True) return values, lengths def _load_phonemizer(file, dl_kwargs): if not _mod_utils.is_module_available("dp"): raise RuntimeError("DeepPhonemizer is not installed. Please install it.") from dp.phonemizer import Phonemizer # By default, dp issues DEBUG level log. logger = logging.getLogger("dp") orig_level = logger.level logger.setLevel(logging.INFO) try: url = f"https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/{file}" directory = os.path.join(torch.hub.get_dir(), "checkpoints") os.makedirs(directory, exist_ok=True) path = os.path.join(directory, file) if not os.path.exists(path): dl_kwargs = {} if dl_kwargs is None else dl_kwargs download_url_to_file(url, path, **dl_kwargs) return Phonemizer.from_checkpoint(path) finally: logger.setLevel(orig_level) def _unnormalize_waveform(waveform: torch.Tensor, bits: int) -> torch.Tensor: r"""Transform waveform [-1, 1] to label [0, 2 ** bits - 1]""" waveform = torch.clamp(waveform, -1, 1) waveform = (waveform + 1.0) * (2**bits - 1) / 2 return torch.clamp(waveform, 0, 2**bits - 1).int() def _get_taco_params(n_symbols): return { "mask_padding": False, "n_mels": 80, "n_frames_per_step": 1, "symbol_embedding_dim": 512, "encoder_embedding_dim": 512, "encoder_n_convolution": 3, "encoder_kernel_size": 5, "decoder_rnn_dim": 1024, "decoder_max_step": 2000, "decoder_dropout": 0.1, "decoder_early_stopping": True, "attention_rnn_dim": 1024, "attention_hidden_dim": 128, "attention_location_n_filter": 32, "attention_location_kernel_size": 31, "attention_dropout": 0.1, "prenet_dim": 256, "postnet_n_convolution": 5, "postnet_kernel_size": 5, "postnet_embedding_dim": 512, "gate_threshold": 0.5, "n_symbol": n_symbols, } def _get_wrnn_params(): return { "upsample_scales": [5, 5, 11], "n_classes": 2**8, # n_bits = 8 "hop_length": 275, "n_res_block": 10, "n_rnn": 512, "n_fc": 512, "kernel_size": 5, "n_freq": 80, "n_hidden": 128, "n_output": 128, }
import numpy as np import pytest from docarray import BaseDoc, DocList from docarray.base_doc import AnyDoc from docarray.documents import ImageDoc, TextDoc from docarray.typing import NdArray @pytest.mark.proto def test_simple_proto(): class CustomDoc(BaseDoc): text: str tensor: NdArray da = DocList( [CustomDoc(text='hello', tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) new_da = DocList[CustomDoc].from_protobuf(da.to_protobuf()) for doc1, doc2 in zip(da, new_da): assert doc1.text == doc2.text assert (doc1.tensor == doc2.tensor).all() @pytest.mark.proto def test_nested_proto(): class CustomDocument(BaseDoc): text: TextDoc image: ImageDoc da = DocList[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocList[CustomDocument].from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_nested_proto_any_doc(): class CustomDocument(BaseDoc): text: TextDoc image: ImageDoc da = DocList[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocList.from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_any_doc_list_proto(): doc = AnyDoc(hello='world') pt = DocList([doc]).to_protobuf() docs = DocList.from_protobuf(pt) assert docs[0].dict()['hello'] == 'world' @pytest.mark.proto def test_any_nested_doc_list_proto(): from docarray import BaseDoc, DocList class TextDocWithId(BaseDoc): id: str text: str class ResultTestDoc(BaseDoc): matches: DocList[TextDocWithId] index_da = DocList[TextDocWithId]( [TextDocWithId(id=f'{i}', text=f'ID {i}') for i in range(10)] ) out_da = DocList[ResultTestDoc]([ResultTestDoc(matches=index_da[0:2])]) pb = out_da.to_protobuf() docs = DocList.from_protobuf(pb) assert docs[0].matches[0].id == '0' assert len(docs[0].matches) == 2 assert len(docs) == 1 @pytest.mark.proto def test_union_type_error(): from typing import Union class CustomDoc(BaseDoc): ud: Union[TextDoc, ImageDoc] = TextDoc(text='union type') docs = DocList[CustomDoc]([CustomDoc(ud=TextDoc(text='union type'))]) with pytest.raises(ValueError): DocList[CustomDoc].from_protobuf(docs.to_protobuf()) class BasisUnion(BaseDoc): ud: Union[int, str] docs_basic = DocList[BasisUnion]([BasisUnion(ud="hello")]) docs_copy = DocList[BasisUnion].from_protobuf(docs_basic.to_protobuf()) assert docs_copy == docs_basic
import numpy as np import pytest from docarray import BaseDoc, DocList from docarray.base_doc import AnyDoc from docarray.documents import ImageDoc, TextDoc from docarray.typing import NdArray @pytest.mark.proto def test_simple_proto(): class CustomDoc(BaseDoc): text: str tensor: NdArray da = DocList( [CustomDoc(text='hello', tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) new_da = DocList[CustomDoc].from_protobuf(da.to_protobuf()) for doc1, doc2 in zip(da, new_da): assert doc1.text == doc2.text assert (doc1.tensor == doc2.tensor).all() @pytest.mark.proto def test_nested_proto(): class CustomDocument(BaseDoc): text: TextDoc image: ImageDoc da = DocList[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocList[CustomDocument].from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_nested_proto_any_doc(): class CustomDocument(BaseDoc): text: TextDoc image: ImageDoc da = DocList[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocList.from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_any_doc_list_proto(): doc = AnyDoc(hello='world') pt = DocList([doc]).to_protobuf() docs = DocList.from_protobuf(pt) assert docs[0].dict()['hello'] == 'world' @pytest.mark.proto def test_any_nested_doc_list_proto(): from docarray import BaseDoc, DocList class TextDocWithId(BaseDoc): id: str text: str class ResultTestDoc(BaseDoc): matches: DocList[TextDocWithId] index_da = DocList[TextDocWithId]( [TextDocWithId(id=f'{i}', text=f'ID {i}') for i in range(10)] ) out_da = DocList[ResultTestDoc]([ResultTestDoc(matches=index_da[0:2])]) pb = out_da.to_protobuf() docs = DocList.from_protobuf(pb) assert docs[0].matches[0].id == '0' assert len(docs[0].matches) == 2 assert len(docs) == 1
from abc import ABC from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar, Union from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import trimesh T = TypeVar('T', bound='Url3D') @_register_proto(proto_type_name='url3d') class Url3D(AnyUrl, ABC): """ URL to a file containing 3D mesh or point cloud information. Can be remote (web) URL, or a local file path. """ def _load_trimesh_instance( self: T, force: Optional[str] = None, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> Union['trimesh.Trimesh', 'trimesh.Scene']: """ Load the data from the url into a trimesh.Mesh or trimesh.Scene object. :param force: str or None. For 'mesh' try to coerce scenes into a single mesh. For 'scene' try to coerce everything into a scene. :param skip_materials: Skip materials if True, else skip. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: trimesh.Mesh or trimesh.Scene object """ import urllib.parse if TYPE_CHECKING: import trimesh else: trimesh = import_library('trimesh', raise_error=True) if not trimesh_args: trimesh_args = {} scheme = urllib.parse.urlparse(self).scheme loader = trimesh.load_remote if scheme in ['http', 'https'] else trimesh.load mesh = loader(self, force=force, skip_materials=skip_materials, **trimesh_args) return mesh
from abc import ABC from typing import TYPE_CHECKING, Any, Dict, Optional, Type, TypeVar, Union from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import trimesh from pydantic import BaseConfig from pydantic.fields import ModelField MESH_FILE_FORMATS = ('obj', 'glb', 'ply') T = TypeVar('T', bound='Url3D') @_register_proto(proto_type_name='url3d') class Url3D(AnyUrl, ABC): """ URL to a .obj, .glb, or .ply file containing 3D mesh or point cloud information. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, str, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: url = super().validate(value, field, config) has_mesh_extension = any(url.endswith(ext) for ext in MESH_FILE_FORMATS) if not has_mesh_extension: raise ValueError( f'{cls.__name__} must have one of the following extensions:' f'{MESH_FILE_FORMATS}' ) return cls(str(url), scheme=None) def _load_trimesh_instance( self: T, force: Optional[str] = None, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> Union['trimesh.Trimesh', 'trimesh.Scene']: """ Load the data from the url into a trimesh.Mesh or trimesh.Scene object. :param force: str or None. For 'mesh' try to coerce scenes into a single mesh. For 'scene' try to coerce everything into a scene. :param skip_materials: Skip materials if True, else skip. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: trimesh.Mesh or trimesh.Scene object """ import urllib.parse if TYPE_CHECKING: import trimesh else: trimesh = import_library('trimesh', raise_error=True) if not trimesh_args: trimesh_args = {} scheme = urllib.parse.urlparse(self).scheme loader = trimesh.load_remote if scheme in ['http', 'https'] else trimesh.load mesh = loader(self, force=force, skip_materials=skip_materials, **trimesh_args) return mesh
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional, utils # usort: skip from ._transform import Transform # usort: skip from ._augment import CutMix, MixUp, RandomErasing from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, Grayscale, RandomAdjustSharpness, RandomAutocontrast, RandomChannelPermutation, RandomEqualize, RandomGrayscale, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat from ._misc import ( ConvertImageDtype, GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, SanitizeBoundingBoxes, ToDtype, ) from ._temporal import UniformTemporalSubsample from ._type_conversion import PILToTensor, ToImagePIL, ToImageTensor, ToPILImage from ._deprecated import ToTensor # usort: skip from torchvision import _BETA_TRANSFORMS_WARNING, _WARN_ABOUT_BETA_TRANSFORMS if _WARN_ABOUT_BETA_TRANSFORMS: import warnings warnings.warn(_BETA_TRANSFORMS_WARNING)
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional, utils # usort: skip from ._transform import Transform # usort: skip from ._augment import CutMix, MixUp, RandomErasing from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, Grayscale, RandomAdjustSharpness, RandomAutocontrast, RandomEqualize, RandomGrayscale, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat from ._misc import ( ConvertImageDtype, GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, SanitizeBoundingBoxes, ToDtype, ) from ._temporal import UniformTemporalSubsample from ._type_conversion import PILToTensor, ToImagePIL, ToImageTensor, ToPILImage from ._deprecated import ToTensor # usort: skip from torchvision import _BETA_TRANSFORMS_WARNING, _WARN_ABOUT_BETA_TRANSFORMS if _WARN_ABOUT_BETA_TRANSFORMS: import warnings warnings.warn(_BETA_TRANSFORMS_WARNING)
import pytest import subprocess import os from typing import Generator from llama_index.core.data_structs.data_structs import IndexGraph from llama_index.storage.index_store.gel import ( GelIndexStore, ) from llama_index.storage.kvstore.gel import GelKVStore try: import gel # noqa no_packages = False except ImportError: no_packages = True skip_in_cicd = os.environ.get("CI") is not None try: if not skip_in_cicd: subprocess.run(["gel", "project", "init", "--non-interactive"], check=True) except subprocess.CalledProcessError as e: print(e) @pytest.fixture() def gel_kvstore() -> Generator[GelKVStore, None, None]: kvstore = None try: kvstore = GelKVStore() yield kvstore finally: if kvstore: keys = kvstore.get_all().keys() for key in keys: kvstore.delete(key) @pytest.fixture() def gel_indexstore(gel_kvstore: GelKVStore) -> GelIndexStore: return GelIndexStore(gel_kvstore=gel_kvstore) @pytest.mark.skipif(no_packages or skip_in_cicd, reason="gel not installed") def test_gel_index_store(gel_indexstore: GelIndexStore) -> None: index_struct = IndexGraph() index_store = gel_indexstore index_store.add_index_struct(index_struct) assert index_store.get_index_struct(struct_id=index_struct.index_id) == index_struct
import pytest import subprocess from typing import Generator from llama_index.core.data_structs.data_structs import IndexGraph from llama_index.storage.index_store.gel import ( GelIndexStore, ) from llama_index.storage.kvstore.gel import GelKVStore try: import gel # noqa no_packages = False except ImportError: no_packages = True try: subprocess.run(["gel", "project", "init", "--non-interactive"], check=True) except subprocess.CalledProcessError as e: print(e) @pytest.fixture() def gel_kvstore() -> Generator[GelKVStore, None, None]: kvstore = None try: kvstore = GelKVStore() yield kvstore finally: if kvstore: keys = kvstore.get_all().keys() for key in keys: kvstore.delete(key) @pytest.fixture() def gel_indexstore(gel_kvstore: GelKVStore) -> GelIndexStore: return GelIndexStore(gel_kvstore=gel_kvstore) @pytest.mark.skipif(no_packages, reason="gel not installed") def test_gel_index_store(gel_indexstore: GelIndexStore) -> None: index_struct = IndexGraph() index_store = gel_indexstore index_store.add_index_struct(index_struct) assert index_store.get_index_struct(struct_id=index_struct.index_id) == index_struct
import requests from docarray import DocumentArray def test_weaviate_hnsw(start_storage): da = DocumentArray( storage='weaviate', config={ 'n_dim': 100, 'ef': 100, 'ef_construction': 100, 'max_connections': 16, 'dynamic_ef_min': 50, 'dynamic_ef_max': 300, 'dynamic_ef_factor': 4, 'vector_cache_max_objects': 1000000, 'flat_search_cutoff': 20000, 'cleanup_interval_seconds': 1000, 'skip': True, 'distance': 'l2-squared', }, ) result = requests.get('http://localhost:8080/v1/schema').json() classes = result.get('classes', []) main_class = list( filter(lambda class_element: class_element['class'] == da._config.name, classes) ) assert len(main_class) == 1 main_class = main_class[0] assert main_class.get('vectorIndexConfig', {}).get('maxConnections') == 16 assert main_class.get('vectorIndexConfig', {}).get('efConstruction') == 100 assert main_class.get('vectorIndexConfig', {}).get('ef') == 100 assert main_class.get('vectorIndexConfig', {}).get('dynamicEfMin') == 50 assert main_class.get('vectorIndexConfig', {}).get('dynamicEfMax') == 300 assert main_class.get('vectorIndexConfig', {}).get('dynamicEfFactor') == 4 assert ( main_class.get('vectorIndexConfig', {}).get('vectorCacheMaxObjects') == 1000000 ) assert main_class.get('vectorIndexConfig', {}).get('flatSearchCutoff') == 20000 assert main_class.get('vectorIndexConfig', {}).get('cleanupIntervalSeconds') == 1000 assert main_class.get('vectorIndexConfig', {}).get('skip') is True assert main_class.get('vectorIndexConfig', {}).get('distance') == 'l2-squared'
import requests from docarray import DocumentArray def test_weaviate_hnsw(start_storage): da = DocumentArray( storage='weaviate', config={ 'n_dim': 100, 'ef': 100, 'ef_construction': 100, 'max_connections': 16, 'dynamic_ef_min': 50, 'dynamic_ef_max': 300, 'dynamic_ef_factor': 4, 'vector_cache_max_objects': 1000000, 'flat_search_cutoff': 20000, 'cleanup_interval_seconds': 1000, 'skip': True, }, ) result = requests.get('http://localhost:8080/v1/schema').json() classes = result.get('classes', []) main_class = list( filter(lambda class_element: class_element['class'] == da._config.name, classes) ) assert len(main_class) == 1 main_class = main_class[0] assert main_class.get('vectorIndexConfig', {}).get('maxConnections') == 16 assert main_class.get('vectorIndexConfig', {}).get('efConstruction') == 100 assert main_class.get('vectorIndexConfig', {}).get('ef') == 100 assert main_class.get('vectorIndexConfig', {}).get('dynamicEfMin') == 50 assert main_class.get('vectorIndexConfig', {}).get('dynamicEfMax') == 300 assert main_class.get('vectorIndexConfig', {}).get('dynamicEfFactor') == 4 assert ( main_class.get('vectorIndexConfig', {}).get('vectorCacheMaxObjects') == 1000000 ) assert main_class.get('vectorIndexConfig', {}).get('flatSearchCutoff') == 20000 assert main_class.get('vectorIndexConfig', {}).get('cleanupIntervalSeconds') == 1000 assert main_class.get('vectorIndexConfig', {}).get('skip') is True
# Copyright (c) OpenMMLab. All rights reserved. from .base_det_dataset import BaseDetDataset from .base_video_dataset import BaseVideoDataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_panoptic import CocoPanopticDataset from .crowdhuman import CrowdHumanDataset from .dataset_wrappers import MultiImageMixDataset from .deepfashion import DeepFashionDataset from .dsdl import DSDLDetDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .mot_challenge_dataset import MOTChallengeDataset from .objects365 import Objects365V1Dataset, Objects365V2Dataset from .openimages import OpenImagesChallengeDataset, OpenImagesDataset from .samplers import (AspectRatioBatchSampler, ClassAwareSampler, GroupMultiSourceSampler, MultiSourceSampler, TrackImgSampler) from .utils import get_loading_pipeline from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset __all__ = [ 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'WIDERFaceDataset', 'get_loading_pipeline', 'CocoPanopticDataset', 'MultiImageMixDataset', 'OpenImagesDataset', 'OpenImagesChallengeDataset', 'AspectRatioBatchSampler', 'ClassAwareSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'BaseDetDataset', 'CrowdHumanDataset', 'Objects365V1Dataset', 'Objects365V2Dataset', 'DSDLDetDataset', 'BaseVideoDataset', 'MOTChallengeDataset', 'TrackImgSampler' ]
# Copyright (c) OpenMMLab. All rights reserved. from .base_det_dataset import BaseDetDataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_panoptic import CocoPanopticDataset from .crowdhuman import CrowdHumanDataset from .dataset_wrappers import MultiImageMixDataset from .deepfashion import DeepFashionDataset from .dsdl import DSDLDetDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .objects365 import Objects365V1Dataset, Objects365V2Dataset from .openimages import OpenImagesChallengeDataset, OpenImagesDataset from .samplers import (AspectRatioBatchSampler, ClassAwareSampler, GroupMultiSourceSampler, MultiSourceSampler) from .utils import get_loading_pipeline from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset __all__ = [ 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'WIDERFaceDataset', 'get_loading_pipeline', 'CocoPanopticDataset', 'MultiImageMixDataset', 'OpenImagesDataset', 'OpenImagesChallengeDataset', 'AspectRatioBatchSampler', 'ClassAwareSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'BaseDetDataset', 'CrowdHumanDataset', 'Objects365V1Dataset', 'Objects365V2Dataset', 'DSDLDetDataset', ]
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor, metaTensorFlow from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoTensorFlowTensor') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_tensorflow_tensor') class VideoTensorFlowTensor( TensorFlowTensor, VideoTensorMixin, metaclass=metaTensorFlow ): """ Subclass of TensorFlowTensor, to represent a video tensor. Adds video-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional import tensorflow as tf from pydantic import parse_obj_as from docarray import BaseDoc from docarray.typing import VideoTensorFlowTensor, VideoUrl class MyVideoDoc(BaseDoc): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoTensorFlowTensor] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=tf.random.normal((100, 224, 224, 3)), ) doc_1.video_tensor.save(file_path='file_1.wav') doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.video_tensor = parse_obj_as(VideoTensorFlowTensor, doc_2.url.load()) doc_2.video_tensor.save(file_path='file_2.wav') """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor, metaTensorFlow from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoTensorFlowTensor') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_tensorflow_tensor') class VideoTensorFlowTensor( TensorFlowTensor, VideoTensorMixin, metaclass=metaTensorFlow ): """ Subclass of TensorFlowTensor, to represent a video tensor. Adds video-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional import tensorflow as tf from pydantic import parse_obj_as from docarray import BaseDocument from docarray.typing import VideoTensorFlowTensor, VideoUrl class MyVideoDoc(BaseDocument): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoTensorFlowTensor] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=tf.random.normal((100, 224, 224, 3)), ) doc_1.video_tensor.save(file_path='file_1.wav') doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.video_tensor = parse_obj_as(VideoTensorFlowTensor, doc_2.url.load()) doc_2.video_tensor.save(file_path='file_2.wav') """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import CogVideoXTransformer3DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class CogVideoXTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = CogVideoXTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 2 num_channels = 4 num_frames = 1 height = 8 width = 8 embedding_dim = 8 sequence_length = 8 hidden_states = torch.randn((batch_size, num_frames, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (1, 4, 8, 8) @property def output_shape(self): return (1, 4, 8, 8) def prepare_init_args_and_inputs_for_common(self): init_dict = { # Product of num_attention_heads * attention_head_dim must be divisible by 16 for 3D positional embeddings. "num_attention_heads": 2, "attention_head_dim": 8, "in_channels": 4, "out_channels": 4, "time_embed_dim": 2, "text_embed_dim": 8, "num_layers": 1, "sample_width": 8, "sample_height": 8, "sample_frames": 8, "patch_size": 2, "temporal_compression_ratio": 4, "max_text_seq_length": 8, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"CogVideoXTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import CogVideoXTransformer3DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class CogVideoXTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = CogVideoXTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 2 num_channels = 4 num_frames = 1 height = 8 width = 8 embedding_dim = 8 sequence_length = 8 hidden_states = torch.randn((batch_size, num_frames, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (1, 4, 8, 8) @property def output_shape(self): return (1, 4, 8, 8) def prepare_init_args_and_inputs_for_common(self): init_dict = { # Product of num_attention_heads * attention_head_dim must be divisible by 16 for 3D positional embeddings. "num_attention_heads": 2, "attention_head_dim": 8, "in_channels": 4, "out_channels": 4, "time_embed_dim": 2, "text_embed_dim": 8, "num_layers": 1, "sample_width": 8, "sample_height": 8, "sample_frames": 8, "patch_size": 2, "temporal_compression_ratio": 4, "max_text_seq_length": 8, } inputs_dict = self.dummy_input return init_dict, inputs_dict
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.torch_tensor import TorchTensor, metaTorchAndNode T = TypeVar('T', bound='ImageTorchTensor') @_register_proto(proto_type_name='image_torch_tensor') class ImageTorchTensor(AbstractImageTensor, TorchTensor, metaclass=metaTorchAndNode): """ Subclass of [`TorchTensor`][docarray.typing.TorchTensor], to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to [`ImageBytes`][docarray.typing.ImageBytes] which are optimized to send over the wire. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageBytes, ImageTorchTensor, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageTorchTensor] url: Optional[ImageUrl] bytes: Optional[ImageBytes] doc = MyImageDoc( title='my_second_image_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() ``` --- """ ...
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.torch_tensor import TorchTensor, metaTorchAndNode T = TypeVar('T', bound='ImageTorchTensor') @_register_proto(proto_type_name='image_torch_tensor') class ImageTorchTensor(AbstractImageTensor, TorchTensor, metaclass=metaTorchAndNode): """ Subclass of [`TorchTensor`][docarray.typing.TorchTensor], to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageBytes, ImageTorchTensor, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageTorchTensor] url: Optional[ImageUrl] bytes: Optional[ImageBytes] doc = MyImageDoc( title='my_second_image_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() ``` --- """ ...
import datetime from typing import List import prisma.enums import pydantic class Pagination(pydantic.BaseModel): total_items: int = pydantic.Field( description="Total number of items.", examples=[42] ) total_pages: int = pydantic.Field( description="Total number of pages.", examples=[97] ) current_page: int = pydantic.Field( description="Current_page page number.", examples=[1] ) page_size: int = pydantic.Field( description="Number of items per page.", examples=[25] ) class MyAgent(pydantic.BaseModel): agent_id: str agent_version: int agent_name: str last_edited: datetime.datetime class MyAgentsResponse(pydantic.BaseModel): agents: list[MyAgent] pagination: Pagination class StoreAgent(pydantic.BaseModel): slug: str agent_name: str agent_image: str creator: str creator_avatar: str sub_heading: str description: str runs: int rating: float class StoreAgentsResponse(pydantic.BaseModel): agents: list[StoreAgent] pagination: Pagination class StoreAgentDetails(pydantic.BaseModel): store_listing_version_id: str slug: str agent_name: str agent_video: str agent_image: list[str] creator: str creator_avatar: str sub_heading: str description: str categories: list[str] runs: int rating: float versions: list[str] last_updated: datetime.datetime class Creator(pydantic.BaseModel): name: str username: str description: str avatar_url: str num_agents: int agent_rating: float agent_runs: int is_featured: bool class CreatorsResponse(pydantic.BaseModel): creators: List[Creator] pagination: Pagination class CreatorDetails(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str agent_rating: float agent_runs: int top_categories: list[str] class Profile(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str is_featured: bool = False class StoreSubmission(pydantic.BaseModel): agent_id: str agent_version: int name: str sub_heading: str slug: str description: str image_urls: list[str] date_submitted: datetime.datetime status: prisma.enums.SubmissionStatus runs: int rating: float class StoreSubmissionsResponse(pydantic.BaseModel): submissions: list[StoreSubmission] pagination: Pagination class StoreSubmissionRequest(pydantic.BaseModel): agent_id: str agent_version: int slug: str name: str sub_heading: str video_url: str | None = None image_urls: list[str] = [] description: str = "" categories: list[str] = [] class ProfileDetails(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str | None = None class StoreReview(pydantic.BaseModel): score: int comments: str | None = None class StoreReviewCreate(pydantic.BaseModel): store_listing_version_id: str score: int comments: str | None = None
import datetime from typing import List import prisma.enums import pydantic class Pagination(pydantic.BaseModel): total_items: int = pydantic.Field( description="Total number of items.", examples=[42] ) total_pages: int = pydantic.Field( description="Total number of pages.", examples=[97] ) current_page: int = pydantic.Field( description="Current_page page number.", examples=[1] ) page_size: int = pydantic.Field( description="Number of items per page.", examples=[25] ) class MyAgent(pydantic.BaseModel): agent_id: str agent_version: int agent_name: str last_edited: datetime.datetime class MyAgentsResponse(pydantic.BaseModel): agents: list[MyAgent] pagination: Pagination class StoreAgent(pydantic.BaseModel): slug: str agent_name: str agent_image: str creator: str creator_avatar: str sub_heading: str description: str runs: int rating: float class StoreAgentsResponse(pydantic.BaseModel): agents: list[StoreAgent] pagination: Pagination class StoreAgentDetails(pydantic.BaseModel): store_listing_version_id: str slug: str agent_name: str agent_video: str agent_image: list[str] creator: str creator_avatar: str sub_heading: str description: str categories: list[str] runs: int rating: float versions: list[str] last_updated: datetime.datetime class Creator(pydantic.BaseModel): name: str username: str description: str avatar_url: str num_agents: int agent_rating: float agent_runs: int is_featured: bool class CreatorsResponse(pydantic.BaseModel): creators: List[Creator] pagination: Pagination class CreatorDetails(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str agent_rating: float agent_runs: int top_categories: list[str] class Profile(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str is_featured: bool class StoreSubmission(pydantic.BaseModel): agent_id: str agent_version: int name: str sub_heading: str slug: str description: str image_urls: list[str] date_submitted: datetime.datetime status: prisma.enums.SubmissionStatus runs: int rating: float class StoreSubmissionsResponse(pydantic.BaseModel): submissions: list[StoreSubmission] pagination: Pagination class StoreSubmissionRequest(pydantic.BaseModel): agent_id: str agent_version: int slug: str name: str sub_heading: str video_url: str | None = None image_urls: list[str] = [] description: str = "" categories: list[str] = [] class ProfileDetails(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str | None = None class StoreReview(pydantic.BaseModel): score: int comments: str | None = None class StoreReviewCreate(pydantic.BaseModel): store_listing_version_id: str score: int comments: str | None = None
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.retrievers import ( LlamaIndexGraphRetriever, LlamaIndexRetriever, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "LlamaIndexRetriever": "langchain_community.retrievers", "LlamaIndexGraphRetriever": "langchain_community.retrievers", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "LlamaIndexGraphRetriever", "LlamaIndexRetriever", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.retrievers import ( LlamaIndexGraphRetriever, LlamaIndexRetriever, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "LlamaIndexRetriever": "langchain_community.retrievers", "LlamaIndexGraphRetriever": "langchain_community.retrievers", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "LlamaIndexRetriever", "LlamaIndexGraphRetriever", ]
from llama_index.core.storage.chat_store.base import BaseChatStore from llama_index.core.storage.chat_store.simple_chat_store import SimpleChatStore RECOGNIZED_CHAT_STORES = { SimpleChatStore.class_name(): SimpleChatStore, } def load_chat_store(data: dict) -> BaseChatStore: """Load a chat store from a dict.""" chat_store_name = data.get("class_name") if chat_store_name is None: raise ValueError("ChatStore loading requires a class_name") if chat_store_name not in RECOGNIZED_CHAT_STORES: raise ValueError(f"Invalid ChatStore name: {chat_store_name}") return RECOGNIZED_CHAT_STORES[chat_store_name].from_dict(data)
from llama_index.core.storage.chat_store.base import BaseChatStore from llama_index.core.storage.chat_store.simple_chat_store import SimpleChatStore RECOGNIZED_CHAT_STORES = { SimpleChatStore.class_name(): SimpleChatStore, } def load_chat_store(data: dict) -> BaseChatStore: """Load a chat store from a dict.""" chat_store_name = data.get("class_name", None) if chat_store_name is None: raise ValueError("ChatStore loading requires a class_name") if chat_store_name not in RECOGNIZED_CHAT_STORES: raise ValueError(f"Invalid ChatStore name: {chat_store_name}") return RECOGNIZED_CHAT_STORES[chat_store_name].from_dict(data)
# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp from unittest.mock import Mock, patch from mmengine.hooks import CheckpointHook class MockPetrel: _allow_symlink = False def __init__(self): pass @property def name(self): return self.__class__.__name__ @property def allow_symlink(self): return self._allow_symlink prefix_to_backends = {'s3': MockPetrel} class TestCheckpointHook: @patch('mmengine.fileio.file_client.FileClient._prefix_to_backends', prefix_to_backends) def test_before_train(self, tmp_path): runner = Mock() work_dir = str(tmp_path) runner.work_dir = work_dir # the out_dir of the checkpoint hook is None checkpoint_hook = CheckpointHook(interval=1, by_epoch=True) checkpoint_hook.before_train(runner) assert checkpoint_hook.out_dir == runner.work_dir # the out_dir of the checkpoint hook is not None checkpoint_hook = CheckpointHook( interval=1, by_epoch=True, out_dir='test_dir') checkpoint_hook.before_train(runner) assert checkpoint_hook.out_dir == ( f'test_dir/{osp.basename(work_dir)}') def test_after_train_epoch(self, tmp_path): runner = Mock() work_dir = str(tmp_path) runner.work_dir = tmp_path runner.epoch = 9 runner.meta = dict() runner.model = Mock() # by epoch is True checkpoint_hook = CheckpointHook(interval=2, by_epoch=True) checkpoint_hook.before_train(runner) checkpoint_hook.after_train_epoch(runner) assert (runner.epoch + 1) % 2 == 0 assert runner.meta['hook_msgs']['last_ckpt'] == ( f'{work_dir}/epoch_10.pth') # epoch can not be evenly divided by 2 runner.epoch = 10 checkpoint_hook.after_train_epoch(runner) assert runner.meta['hook_msgs']['last_ckpt'] == ( f'{work_dir}/epoch_10.pth') # by epoch is False runner.epoch = 9 runner.meta = dict() checkpoint_hook = CheckpointHook(interval=2, by_epoch=False) checkpoint_hook.before_train(runner) checkpoint_hook.after_train_epoch(runner) assert runner.meta.get('hook_msgs', None) is None # max_keep_ckpts > 0 runner.work_dir = work_dir os.system(f'touch {work_dir}/epoch_8.pth') checkpoint_hook = CheckpointHook( interval=2, by_epoch=True, max_keep_ckpts=1) checkpoint_hook.before_train(runner) checkpoint_hook.after_train_epoch(runner) assert (runner.epoch + 1) % 2 == 0 assert not os.path.exists(f'{work_dir}/epoch_8.pth') def test_after_train_iter(self, tmp_path): work_dir = str(tmp_path) runner = Mock() runner.work_dir = str(work_dir) runner.iter = 9 batch_idx = 9 runner.meta = dict() runner.model = Mock() # by epoch is True checkpoint_hook = CheckpointHook(interval=2, by_epoch=True) checkpoint_hook.before_train(runner) checkpoint_hook.after_train_iter(runner, batch_idx=batch_idx) assert runner.meta.get('hook_msgs', None) is None # by epoch is False checkpoint_hook = CheckpointHook(interval=2, by_epoch=False) checkpoint_hook.before_train(runner) checkpoint_hook.after_train_iter(runner, batch_idx=batch_idx) assert (runner.iter + 1) % 2 == 0 assert runner.meta['hook_msgs']['last_ckpt'] == ( f'{work_dir}/iter_10.pth') # epoch can not be evenly divided by 2 runner.iter = 10 checkpoint_hook.after_train_epoch(runner) assert runner.meta['hook_msgs']['last_ckpt'] == ( f'{work_dir}/iter_10.pth') # max_keep_ckpts > 0 runner.iter = 9 runner.work_dir = work_dir os.system(f'touch {work_dir}/iter_8.pth') checkpoint_hook = CheckpointHook( interval=2, by_epoch=False, max_keep_ckpts=1) checkpoint_hook.before_train(runner) checkpoint_hook.after_train_iter(runner, batch_idx=batch_idx) assert not os.path.exists(f'{work_dir}/iter_8.pth')
# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp from unittest.mock import Mock, patch from mmengine.hooks import CheckpointHook class MockPetrel: _allow_symlink = False def __init__(self): pass @property def name(self): return self.__class__.__name__ @property def allow_symlink(self): return self._allow_symlink prefix_to_backends = {'s3': MockPetrel} class TestCheckpointHook: @patch('mmengine.fileio.file_client.FileClient._prefix_to_backends', prefix_to_backends) def test_before_train(self, tmp_path): runner = Mock() work_dir = str(tmp_path) runner.work_dir = work_dir # the out_dir of the checkpoint hook is None checkpoint_hook = CheckpointHook(interval=1, by_epoch=True) checkpoint_hook.before_train(runner) assert checkpoint_hook.out_dir == runner.work_dir # the out_dir of the checkpoint hook is not None checkpoint_hook = CheckpointHook( interval=1, by_epoch=True, out_dir='test_dir') checkpoint_hook.before_train(runner) assert checkpoint_hook.out_dir == ( f'test_dir/{osp.basename(work_dir)}') # create_symlink in args and create_symlink is True checkpoint_hook = CheckpointHook( interval=1, by_epoch=True, out_dir='test_dir', create_symlink=True) checkpoint_hook.before_train(runner) assert checkpoint_hook.args['create_symlink'] runner.work_dir = 's3://path/of/file' checkpoint_hook = CheckpointHook( interval=1, by_epoch=True, create_symlink=True) checkpoint_hook.before_train(runner) assert not checkpoint_hook.args['create_symlink'] def test_after_train_epoch(self, tmp_path): runner = Mock() work_dir = str(tmp_path) runner.work_dir = tmp_path runner.epoch = 9 runner.meta = dict() runner.model = Mock() # by epoch is True checkpoint_hook = CheckpointHook(interval=2, by_epoch=True) checkpoint_hook.before_train(runner) checkpoint_hook.after_train_epoch(runner) assert (runner.epoch + 1) % 2 == 0 assert runner.meta['hook_msgs']['last_ckpt'] == ( f'{work_dir}/epoch_10.pth') # epoch can not be evenly divided by 2 runner.epoch = 10 checkpoint_hook.after_train_epoch(runner) assert runner.meta['hook_msgs']['last_ckpt'] == ( f'{work_dir}/epoch_10.pth') # by epoch is False runner.epoch = 9 runner.meta = dict() checkpoint_hook = CheckpointHook(interval=2, by_epoch=False) checkpoint_hook.before_train(runner) checkpoint_hook.after_train_epoch(runner) assert runner.meta.get('hook_msgs', None) is None # max_keep_ckpts > 0 runner.work_dir = work_dir os.system(f'touch {work_dir}/epoch_8.pth') checkpoint_hook = CheckpointHook( interval=2, by_epoch=True, max_keep_ckpts=1) checkpoint_hook.before_train(runner) checkpoint_hook.after_train_epoch(runner) assert (runner.epoch + 1) % 2 == 0 assert not os.path.exists(f'{work_dir}/epoch_8.pth') def test_after_train_iter(self, tmp_path): work_dir = str(tmp_path) runner = Mock() runner.work_dir = str(work_dir) runner.iter = 9 batch_idx = 9 runner.meta = dict() runner.model = Mock() # by epoch is True checkpoint_hook = CheckpointHook(interval=2, by_epoch=True) checkpoint_hook.before_train(runner) checkpoint_hook.after_train_iter(runner, batch_idx=batch_idx) assert runner.meta.get('hook_msgs', None) is None # by epoch is False checkpoint_hook = CheckpointHook(interval=2, by_epoch=False) checkpoint_hook.before_train(runner) checkpoint_hook.after_train_iter(runner, batch_idx=batch_idx) assert (runner.iter + 1) % 2 == 0 assert runner.meta['hook_msgs']['last_ckpt'] == ( f'{work_dir}/iter_10.pth') # epoch can not be evenly divided by 2 runner.iter = 10 checkpoint_hook.after_train_epoch(runner) assert runner.meta['hook_msgs']['last_ckpt'] == ( f'{work_dir}/iter_10.pth') # max_keep_ckpts > 0 runner.iter = 9 runner.work_dir = work_dir os.system(f'touch {work_dir}/iter_8.pth') checkpoint_hook = CheckpointHook( interval=2, by_epoch=False, max_keep_ckpts=1) checkpoint_hook.before_train(runner) checkpoint_hook.after_train_iter(runner, batch_idx=batch_idx) assert not os.path.exists(f'{work_dir}/iter_8.pth')
import os import sys import pkg_resources from setuptools import find_packages, setup def read_version(fname="whisper/version.py"): exec(compile(open(fname, encoding="utf-8").read(), fname, "exec")) return locals()["__version__"] requirements = [] if sys.platform.startswith("linux"): triton_requirement = "triton>=2.0.0.dev20221202" try: import re import subprocess version_line = ( subprocess.check_output(["nvcc", "--version"]).strip().split(b"\n")[-1] ) major, minor = re.findall(rb"([\d]+)\.([\d]+)", version_line)[0] if (int(major), int(minor)) < (11, 4): # the last version supporting CUDA < 11.4 triton_requirement = "triton==2.0.0.dev20221011" except (IndexError, OSError, subprocess.SubprocessError): pass requirements.append(triton_requirement) setup( name="openai-whisper", py_modules=["whisper"], version=read_version(), description="Robust Speech Recognition via Large-Scale Weak Supervision", long_description=open("README.md", encoding="utf-8").read(), long_description_content_type="text/markdown", readme="README.md", python_requires=">=3.7", author="OpenAI", url="https://github.com/openai/whisper", license="MIT", packages=find_packages(exclude=["tests*"]), install_requires=requirements + [ str(r) for r in pkg_resources.parse_requirements( open(os.path.join(os.path.dirname(__file__), "requirements.txt")) ) ], entry_points={ "console_scripts": ["whisper=whisper.transcribe:cli"], }, include_package_data=True, extras_require={"dev": ["pytest", "scipy", "black", "flake8", "isort"]}, )
import os import sys import pkg_resources from setuptools import setup, find_packages def read_version(fname="whisper/version.py"): exec(compile(open(fname, encoding="utf-8").read(), fname, "exec")) return locals()["__version__"] requirements = [] if sys.platform.startswith("linux"): triton_requirement = "triton>=2.0.0.dev20221202" try: import re import subprocess version_line = subprocess.check_output(["nvcc", "--version"]).strip().split(b"\n")[-1] major, minor = re.findall(rb"([\d]+)\.([\d]+)", version_line)[0] if (int(major), int(minor)) < (11, 4): # the last version supporting CUDA < 11.4 triton_requirement = "triton==2.0.0.dev20221011" except (IndexError, OSError, subprocess.SubprocessError): pass requirements.append(triton_requirement) setup( name="openai-whisper", py_modules=["whisper"], version=read_version(), description="Robust Speech Recognition via Large-Scale Weak Supervision", long_description=open("README.md", encoding="utf-8").read(), long_description_content_type="text/markdown", readme="README.md", python_requires=">=3.7", author="OpenAI", url="https://github.com/openai/whisper", license="MIT", packages=find_packages(exclude=["tests*"]), install_requires=requirements + [ str(r) for r in pkg_resources.parse_requirements( open(os.path.join(os.path.dirname(__file__), "requirements.txt")) ) ], entry_points={ "console_scripts": ["whisper=whisper.transcribe:cli"], }, include_package_data=True, extras_require={"dev": ["pytest", "scipy"]}, )
from jina import Executor, requests from docarray import DocList from docarray.documents import TextDoc class MyExecutor(Executor): @requests def foo(self, docs: DocList[TextDoc], **kwargs) -> DocList[TextDoc]: docs[0].text = 'hello, world!' docs[1].text = 'goodbye, world!' return docs
from jina import Executor, requests from docarray import DocList from docarray.documents import TextDoc class MyExecutor(Executor): @requests def foo(self, docs: DocList[TextDoc], **kwargs) -> DocList[TextDoc]: docs[0].text = 'hello, world!' docs[1].text = 'goodbye, world!' return docs
from typing import Literal from pydantic import SecretStr from backend.data.model import APIKeyCredentials, CredentialsField, CredentialsMetaInput from backend.integrations.providers import ProviderName ExaCredentials = APIKeyCredentials ExaCredentialsInput = CredentialsMetaInput[ Literal[ProviderName.EXA], Literal["api_key"], ] TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="exa", api_key=SecretStr("mock-exa-api-key"), title="Mock Exa API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.title, } def ExaCredentialsField() -> ExaCredentialsInput: """Creates an Exa credentials input on a block.""" return CredentialsField(description="The Exa integration requires an API Key.")
from typing import Literal from pydantic import SecretStr from backend.data.model import APIKeyCredentials, CredentialsField, CredentialsMetaInput ExaCredentials = APIKeyCredentials ExaCredentialsInput = CredentialsMetaInput[ Literal["exa"], Literal["api_key"], ] TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="exa", api_key=SecretStr("mock-exa-api-key"), title="Mock Exa API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.title, } def ExaCredentialsField() -> ExaCredentialsInput: """Creates an Exa credentials input on a block.""" return CredentialsField( provider="exa", supported_credential_types={"api_key"}, description="The Exa integration requires an API Key.", )
from docarray import BaseDocument from docarray.typing import AnyUrl def test_set_any_url(): class MyDocument(BaseDocument): any_url: AnyUrl d = MyDocument(any_url="https://jina.ai") assert isinstance(d.any_url, AnyUrl) assert d.any_url == "https://jina.ai"
from docarray import Document from docarray.typing import AnyUrl def test_set_any_url(): class MyDocument(Document): any_url: AnyUrl d = MyDocument(any_url="https://jina.ai") assert isinstance(d.any_url, AnyUrl) assert d.any_url == "https://jina.ai"
import csv import os from pathlib import Path from torchaudio.datasets import ljspeech from torchaudio_unittest.common_utils import get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase _TRANSCRIPTS = [ "Test transcript 1", "Test transcript 2", "Test transcript 3", "In 1465 Sweynheim and Pannartz began printing in the monastery of Subiaco near Rome,", ] _NORMALIZED_TRANSCRIPT = [ "Test transcript one", "Test transcript two", "Test transcript three", "In fourteen sixty-five Sweynheim and Pannartz began printing in the monastery of Subiaco near Rome,", ] def get_mock_dataset(root_dir): """ root_dir: path to the mocked dataset """ mocked_data = [] base_dir = os.path.join(root_dir, "LJSpeech-1.1") archive_dir = os.path.join(base_dir, "wavs") os.makedirs(archive_dir, exist_ok=True) metadata_path = os.path.join(base_dir, "metadata.csv") sample_rate = 22050 with open(metadata_path, mode="w", newline="") as metadata_file: metadata_writer = csv.writer(metadata_file, delimiter="|", quoting=csv.QUOTE_NONE) for i, (transcript, normalized_transcript) in enumerate(zip(_TRANSCRIPTS, _NORMALIZED_TRANSCRIPT)): fileid = f"LJ001-{i:04d}" metadata_writer.writerow([fileid, transcript, normalized_transcript]) filename = fileid + ".wav" path = os.path.join(archive_dir, filename) data = get_whitenoise(sample_rate=sample_rate, duration=1, n_channels=1, dtype="int16", seed=i) save_wav(path, data, sample_rate) mocked_data.append(normalize_wav(data)) return mocked_data, _TRANSCRIPTS, _NORMALIZED_TRANSCRIPT class TestLJSpeech(TempDirMixin, TorchaudioTestCase): root_dir = None data, _transcripts, _normalized_transcript = [], [], [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.data, cls._transcripts, cls._normalized_transcript = get_mock_dataset(cls.root_dir) def _test_ljspeech(self, dataset): n_ite = 0 for i, (waveform, sample_rate, transcript, normalized_transcript) in enumerate(dataset): expected_transcript = self._transcripts[i] expected_normalized_transcript = self._normalized_transcript[i] expected_data = self.data[i] self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8) assert sample_rate == sample_rate assert transcript == expected_transcript assert normalized_transcript == expected_normalized_transcript n_ite += 1 assert n_ite == len(self.data) def test_ljspeech_str(self): dataset = ljspeech.LJSPEECH(self.root_dir) self._test_ljspeech(dataset) def test_ljspeech_path(self): dataset = ljspeech.LJSPEECH(Path(self.root_dir)) self._test_ljspeech(dataset)
import csv import os from pathlib import Path from torchaudio.datasets import ljspeech from torchaudio_unittest.common_utils import get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase _TRANSCRIPTS = [ "Test transcript 1", "Test transcript 2", "Test transcript 3", "In 1465 Sweynheim and Pannartz began printing in the monastery of Subiaco near Rome,", ] _NORMALIZED_TRANSCRIPT = [ "Test transcript one", "Test transcript two", "Test transcript three", "In fourteen sixty-five Sweynheim and Pannartz began printing in the monastery of Subiaco near Rome,", ] def get_mock_dataset(root_dir): """ root_dir: path to the mocked dataset """ mocked_data = [] base_dir = os.path.join(root_dir, "LJSpeech-1.1") archive_dir = os.path.join(base_dir, "wavs") os.makedirs(archive_dir, exist_ok=True) metadata_path = os.path.join(base_dir, "metadata.csv") sample_rate = 22050 with open(metadata_path, mode="w", newline="") as metadata_file: metadata_writer = csv.writer(metadata_file, delimiter="|", quoting=csv.QUOTE_NONE) for i, (transcript, normalized_transcript) in enumerate(zip(_TRANSCRIPTS, _NORMALIZED_TRANSCRIPT)): fileid = f"LJ001-{i:04d}" metadata_writer.writerow([fileid, transcript, normalized_transcript]) filename = fileid + ".wav" path = os.path.join(archive_dir, filename) data = get_whitenoise(sample_rate=sample_rate, duration=1, n_channels=1, dtype="int16", seed=i) save_wav(path, data, sample_rate) mocked_data.append(normalize_wav(data)) return mocked_data, _TRANSCRIPTS, _NORMALIZED_TRANSCRIPT class TestLJSpeech(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None data, _transcripts, _normalized_transcript = [], [], [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.data, cls._transcripts, cls._normalized_transcript = get_mock_dataset(cls.root_dir) def _test_ljspeech(self, dataset): n_ite = 0 for i, (waveform, sample_rate, transcript, normalized_transcript) in enumerate(dataset): expected_transcript = self._transcripts[i] expected_normalized_transcript = self._normalized_transcript[i] expected_data = self.data[i] self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8) assert sample_rate == sample_rate assert transcript == expected_transcript assert normalized_transcript == expected_normalized_transcript n_ite += 1 assert n_ite == len(self.data) def test_ljspeech_str(self): dataset = ljspeech.LJSPEECH(self.root_dir) self._test_ljspeech(dataset) def test_ljspeech_path(self): dataset = ljspeech.LJSPEECH(Path(self.root_dir)) self._test_ljspeech(dataset)
from __future__ import annotations import pytest from sentence_transformers import SparseEncoder @pytest.fixture() def splade_bert_tiny_model() -> SparseEncoder: return SparseEncoder("sparse-encoder-testing/splade-bert-tiny-nq") @pytest.fixture(scope="session") def splade_bert_tiny_model_reused() -> SparseEncoder: return SparseEncoder("sparse-encoder-testing/splade-bert-tiny-nq") @pytest.fixture() def inference_free_splade_bert_tiny_model() -> SparseEncoder: return SparseEncoder("sparse-encoder-testing/inference-free-splade-bert-tiny-nq") @pytest.fixture(scope="session") def inference_free_splade_bert_tiny_model_reused() -> SparseEncoder: return SparseEncoder("sparse-encoder-testing/inference-free-splade-bert-tiny-nq") @pytest.fixture() def csr_bert_tiny_model() -> SparseEncoder: return SparseEncoder("sentence-transformers-testing/stsb-bert-tiny-safetensors") @pytest.fixture(scope="session") def csr_bert_tiny_model_reused() -> SparseEncoder: return SparseEncoder("sentence-transformers-testing/stsb-bert-tiny-safetensors")
from __future__ import annotations import pytest from sentence_transformers import SparseEncoder @pytest.fixture() def splade_bert_tiny_model() -> SparseEncoder: return SparseEncoder("sparse-encoder-testing/splade-bert-tiny-nq") @pytest.fixture(scope="session") def splade_bert_tiny_model_reused() -> SparseEncoder: return SparseEncoder("sparse-encoder-testing/splade-bert-tiny-nq") @pytest.fixture() def csr_bert_tiny_model() -> SparseEncoder: return SparseEncoder("sentence-transformers-testing/stsb-bert-tiny-safetensors")
""" this test check the docstring of all of our public API. It does it by checking the `__all__` of each of our namespace. to add a new namespace you need to * import it * add it to the `SUB_MODULE_TO_CHECK` list """ import pytest from mktestdocs import check_docstring, get_codeblock_members import docarray.data import docarray.documents import docarray.index import docarray.store import docarray.typing from docarray.utils import filter, find, map SUB_MODULE_TO_CHECK = [ docarray, docarray.index, docarray.data, docarray.documents, docarray.store, docarray.typing, find, map, filter, ] def get_obj_to_check(lib): obj_to_check = [] all_test = getattr(lib, '__all__') try: all_test = getattr(lib, '__all_test__') except (AttributeError, ImportError): pass for obj in all_test: obj_to_check.append(getattr(lib, obj)) return obj_to_check obj_to_check = [] for lib in SUB_MODULE_TO_CHECK: obj_to_check.extend(get_obj_to_check(lib)) members = [] for obj in obj_to_check: members.extend(get_codeblock_members(obj)) @pytest.mark.parametrize("obj", members, ids=lambda d: d.__qualname__) def test_member(obj): check_docstring(obj)
""" this test check the docstring of all of our public API. It does it by checking the `__all__` of each of our namespace. to add a new namespace you need to * import it * add it to the `SUB_MODULE_TO_CHECK` list """ import pytest from mktestdocs import check_docstring, get_codeblock_members import docarray.data import docarray.documents import docarray.index import docarray.store import docarray.typing from docarray.utils import filter, find, map SUB_MODULE_TO_CHECK = [ docarray, docarray.index, docarray.data, docarray.documents, docarray.store, docarray.typing, find, map, filter, ] def get_obj_to_check(lib): obj_to_check = [] for obj in lib.__all__: obj_to_check.append(getattr(lib, obj)) return obj_to_check obj_to_check = [] for lib in SUB_MODULE_TO_CHECK: obj_to_check.extend(get_obj_to_check(lib)) members = [] for obj in obj_to_check: members.extend(get_codeblock_members(obj)) @pytest.mark.parametrize("obj", members, ids=lambda d: d.__qualname__) def test_member(obj): check_docstring(obj)
import abc from abc import ABC from typing import TYPE_CHECKING, Any, Generic, List, Tuple, Type, TypeVar, Union from docarray.computation import AbstractComputationalBackend from docarray.typing.abstract_type import AbstractType if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AbstractTensor') ShapeT = TypeVar('ShapeT') class AbstractTensor(AbstractType, Generic[ShapeT], ABC): __parametrized_meta__ = type @classmethod @abc.abstractmethod def __docarray_validate_shape__(cls, t: T, shape: Tuple[int]) -> T: """Every tensor has to implement this method in order to enable syntax of the form AnyTensor[shape]. It is called when a tensor is assigned to a field of this type. i.e. when a tensor is passed to a Document field of type AnyTensor[shape]. The intended behaviour is as follows: - If the shape of `t` is equal to `shape`, return `t`. - If the shape of `t` is not equal to `shape`, but can be reshaped to `shape`, return `t` reshaped to `shape`. - If the shape of `t` is not equal to `shape` and cannot be reshaped to `shape`, raise a ValueError. :param t: The tensor to validate. :param shape: The shape to validate against. :return: The validated tensor. """ ... @classmethod def __docarray_validate_getitem__(cls, item: Any) -> Tuple[int]: """This method validates the input to __class_getitem__. It is called at "class creation time", i.e. when a class is created with syntax of the form AnyTensor[shape]. The default implementation tries to cast any `item` to a tuple of ints. A subclass can override this method to implement custom validation logic. The output of this is eventually passed to {ref}`AbstractTensor.__validate_shape__` as its `shape` argument. Raises `ValueError` if the input `item` does not pass validation. :param item: The item to validate, passed to __class_getitem__ (`Tensor[item]`). :return: The validated item == the target shape of this tensor. """ if isinstance(item, int): item = (item,) try: item = tuple(item) except TypeError: raise TypeError(f'{item} is not a valid tensor shape.') return item @classmethod def _docarray_create_parametrized_type(cls: Type[T], shape: Tuple[int]): shape_str = ', '.join([str(s) for s in shape]) class _ParametrizedTensor( cls, # type: ignore metaclass=cls.__parametrized_meta__, # type: ignore ): _docarray_target_shape = shape @classmethod def validate( _cls, value: Any, field: 'ModelField', config: 'BaseConfig', ): t = super().validate(value, field, config) return _cls.__docarray_validate_shape__(t, _cls._docarray_target_shape) _ParametrizedTensor.__name__ = f'{cls.__name__}[{shape_str}]' _ParametrizedTensor.__qualname__ = f'{cls.__qualname__}[{shape_str}]' return _ParametrizedTensor def __class_getitem__(cls, item: Any): target_shape = cls.__docarray_validate_getitem__(item) return cls._docarray_create_parametrized_type(target_shape) @classmethod def __docarray_stack__(cls: Type[T], seq: Union[List[T], Tuple[T]]) -> T: """Stack a sequence of tensors into a single tensor.""" comp_backend = cls.get_comp_backend() # at runtime, 'T' is always the correct input type for .stack() # but mypy doesn't know that, so we ignore it here return cls.__docarray_from_native__(comp_backend.stack(seq)) # type: ignore @classmethod @abc.abstractmethod def __docarray_from_native__(cls: Type[T], value: Any) -> T: """ Create a DocArray tensor from a tensor that is native to the given framework, e.g. from numpy.ndarray or torch.Tensor. """ ... @staticmethod @abc.abstractmethod def get_comp_backend() -> Type[AbstractComputationalBackend]: """The computational backend compatible with this tensor type.""" ...
import abc from abc import ABC from typing import TYPE_CHECKING, Any, Generic, List, Tuple, Type, TypeVar, Union from docarray.computation import AbstractComputationalBackend from docarray.typing.abstract_type import AbstractType if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AbstractTensor') ShapeT = TypeVar('ShapeT') class AbstractTensor(AbstractType, Generic[ShapeT], ABC): __parametrized_meta__ = type @classmethod @abc.abstractmethod def __docarray_validate_shape__(cls, t: T, shape: Tuple[int]) -> T: """Every tensor has to implement this method in order to enable syntax of the form Tensor[shape]. It is called when a tensor is assigned to a field of this type. i.e. when a tensor is passed to a Document field of type Tensor[shape]. The intended behaviour is as follows: - If the shape of `t` is equal to `shape`, return `t`. - If the shape of `t` is not equal to `shape`, but can be reshaped to `shape`, return `t` reshaped to `shape`. - If the shape of `t` is not equal to `shape` and cannot be reshaped to `shape`, raise a ValueError. :param t: The tensor to validate. :param shape: The shape to validate against. :return: The validated tensor. """ ... @classmethod def __docarray_validate_getitem__(cls, item: Any) -> Tuple[int]: """This method validates the input to __class_getitem__. It is called at "class creation time", i.e. when a class is created with syntax of the form Tensor[shape]. The default implementation tries to cast any `item` to a tuple of ints. A subclass can override this method to implement custom validation logic. The output of this is eventually passed to {ref}`AbstractTensor.__validate_shape__` as its `shape` argument. Raises `ValueError` if the input `item` does not pass validation. :param item: The item to validate, passed to __class_getitem__ (`Tensor[item]`). :return: The validated item == the target shape of this tensor. """ if isinstance(item, int): item = (item,) try: item = tuple(item) except TypeError: raise TypeError(f'{item} is not a valid tensor shape.') return item @classmethod def _docarray_create_parametrized_type(cls: Type[T], shape: Tuple[int]): shape_str = ', '.join([str(s) for s in shape]) class _ParametrizedTensor( cls, # type: ignore metaclass=cls.__parametrized_meta__, # type: ignore ): _docarray_target_shape = shape @classmethod def validate( _cls, value: Any, field: 'ModelField', config: 'BaseConfig', ): t = super().validate(value, field, config) return _cls.__docarray_validate_shape__(t, _cls._docarray_target_shape) _ParametrizedTensor.__name__ = f'{cls.__name__}[{shape_str}]' _ParametrizedTensor.__qualname__ = f'{cls.__qualname__}[{shape_str}]' return _ParametrizedTensor def __class_getitem__(cls, item: Any): target_shape = cls.__docarray_validate_getitem__(item) return cls._docarray_create_parametrized_type(target_shape) @classmethod def __docarray_stack__(cls: Type[T], seq: Union[List[T], Tuple[T]]) -> T: """Stack a sequence of tensors into a single tensor.""" comp_backend = cls.get_comp_backend() # at runtime, 'T' is always the correct input type for .stack() # but mypy doesn't know that, so we ignore it here return cls.__docarray_from_native__(comp_backend.stack(seq)) # type: ignore @classmethod @abc.abstractmethod def __docarray_from_native__(cls: Type[T], value: Any) -> T: """ Create a DocArray tensor from a tensor that is native to the given framework, e.g. from numpy.ndarray or torch.Tensor. """ ... @staticmethod @abc.abstractmethod def get_comp_backend() -> Type[AbstractComputationalBackend]: """The computational backend compatible with this tensor type.""" ...
checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable custom_hooks = [dict(type='NumClassCheckHook')] dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] # disable opencv multithreading to avoid system being overloaded opencv_num_threads = 0 # set multi-process start method as `fork` to speed up the training mp_start_method = 'fork' # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable custom_hooks = [dict(type='NumClassCheckHook')] dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] # disable opencv multithreading to avoid system being overloaded opencv_num_threads = 0 # set multi-process start method as `fork` to speed up the training mp_start_method = 'fork'
from __future__ import annotations from .CSRLoss import CSRLoss from .CSRReconstructionLoss import CSRReconstructionLoss from .FlopsLoss import FlopsLoss from .SparseAnglELoss import SparseAnglELoss from .SparseCachedGISTEmbedLoss import SparseCachedGISTEmbedLoss from .SparseCachedMultipleNegativesRankingLoss import SparseCachedMultipleNegativesRankingLoss from .SparseCoSENTLoss import SparseCoSENTLoss from .SparseCosineSimilarityLoss import SparseCosineSimilarityLoss from .SparseDistillKLDivLoss import SparseDistillKLDivLoss from .SparseGISTEmbedLoss import SparseGISTEmbedLoss from .SparseMarginMSELoss import SparseMarginMSELoss from .SparseMSELoss import SparseMSELoss from .SparseMultipleNegativesRankingLoss import SparseMultipleNegativesRankingLoss from .SparseTripletLoss import SparseTripletLoss from .SpladeLoss import SpladeLoss __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", "FlopsLoss", "SpladeLoss", ] # TODO: Test cached losses
from __future__ import annotations from .CSRLoss import CSRLoss from .CSRReconstructionLoss import CSRReconstructionLoss from .FlopsLoss import FlopsLoss from .SparseAnglELoss import SparseAnglELoss from .SparseCachedGISTEmbedLoss import SparseCachedGISTEmbedLoss from .SparseCachedMultipleNegativesRankingLoss import SparseCachedMultipleNegativesRankingLoss from .SparseCoSENTLoss import SparseCoSENTLoss from .SparseCosineSimilarityLoss import SparseCosineSimilarityLoss from .SparseDistillKLDivLoss import SparseDistillKLDivLoss from .SparseGISTEmbedLoss import SparseGISTEmbedLoss from .SparseMarginMSELoss import SparseMarginMSELoss from .SparseMSELoss import SparseMSELoss from .SparseMultipleNegativesRankingLoss import SparseMultipleNegativesRankingLoss from .SparseTripletLoss import SparseTripletLoss from .SpladeLoss import SpladeLoss __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", "FlopsLoss", "SpladeLoss", ]
from textwrap import dedent from types import SimpleNamespace from unittest.mock import patch from urllib.parse import quote import pytest from huggingface_hub import CommitOperationAdd, CommitOperationDelete import datasets from datasets.config import METADATA_CONFIGS_FIELD from datasets.hub import delete_from_hub from datasets.utils.hub import hf_dataset_url @pytest.mark.parametrize("repo_id", ["canonical_dataset_name", "org-name/dataset-name"]) @pytest.mark.parametrize("filename", ["filename.csv", "filename with blanks.csv"]) @pytest.mark.parametrize("revision", [None, "v2"]) def test_dataset_url(repo_id, filename, revision): url = hf_dataset_url(repo_id=repo_id, filename=filename, revision=revision) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(filename)}" def test_delete_from_hub(temporary_repo, hf_api, hf_token, csv_path, ci_hub_config) -> None: with temporary_repo() as repo_id: hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset") hf_api.upload_file( path_or_fileobj=str(csv_path), path_in_repo="cats/train/0000.csv", repo_id=repo_id, repo_type="dataset", token=hf_token, ) hf_api.upload_file( path_or_fileobj=str(csv_path), path_in_repo="dogs/train/0000.csv", repo_id=repo_id, repo_type="dataset", token=hf_token, ) hf_api.upload_file( token=hf_token, path_or_fileobj=dedent( f"""\ --- {METADATA_CONFIGS_FIELD}: - config_name: cats data_files: - split: train path: cats/train/* - config_name: dogs data_files: - split: train path: dogs/train/* --- """ ).encode(), path_in_repo="README.md", repo_id=repo_id, repo_type="dataset", ) commit_info = SimpleNamespace( pr_url="https:///hub-ci.huggingface.co/datasets/__DUMMY_USER__/__DUMMY_DATASET__/refs%2Fpr%2F1" ) with patch.object(datasets.hub.HfApi, "create_commit", return_value=commit_info) as mock_method: _ = delete_from_hub(repo_id, "dogs") assert mock_method.called assert mock_method.call_args.kwargs.get("commit_message") == "Delete 'dogs' config" assert mock_method.call_args.kwargs.get("create_pr") expected_operations = [ CommitOperationDelete(path_in_repo="dogs/train/0000.csv", is_folder=False), CommitOperationAdd( path_in_repo="README.md", path_or_fileobj=dedent( f"""\ --- {METADATA_CONFIGS_FIELD}: - config_name: cats data_files: - split: train path: cats/train/* --- """ ).encode(), ), ] assert mock_method.call_args.kwargs.get("operations") == expected_operations
from textwrap import dedent from types import SimpleNamespace from unittest.mock import patch from urllib.parse import quote import pytest from huggingface_hub import CommitOperationAdd, CommitOperationDelete import datasets from datasets.config import METADATA_CONFIGS_FIELD from datasets.hub import delete_from_hub from datasets.utils.hub import hf_dataset_url @pytest.mark.parametrize("repo_id", ["canonical_dataset_name", "org-name/dataset-name"]) @pytest.mark.parametrize("filename", ["filename.csv", "filename with blanks.csv"]) @pytest.mark.parametrize("revision", [None, "v2"]) def test_dataset_url(repo_id, filename, revision): url = hf_dataset_url(repo_id=repo_id, filename=filename, revision=revision) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(filename)}" def test_delete_from_hub(temporary_repo, hf_api, hf_token, csv_path, ci_hub_config) -> None: with temporary_repo() as repo_id: hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset") hf_api.upload_file( path_or_fileobj=str(csv_path), path_in_repo="cats/train/0000.csv", repo_id=repo_id, repo_type="dataset", token=hf_token, ) hf_api.upload_file( path_or_fileobj=str(csv_path), path_in_repo="dogs/train/0000.csv", repo_id=repo_id, repo_type="dataset", token=hf_token, ) hf_api.upload_file( token=hf_token, path_or_fileobj=dedent(f"""\ --- {METADATA_CONFIGS_FIELD}: - config_name: cats data_files: - split: train path: cats/train/* - config_name: dogs data_files: - split: train path: dogs/train/* --- """).encode(), path_in_repo="README.md", repo_id=repo_id, repo_type="dataset", ) commit_info = SimpleNamespace( pr_url="https:///hub-ci.huggingface.co/datasets/__DUMMY_USER__/__DUMMY_DATASET__/refs%2Fpr%2F1" ) with patch.object(datasets.hub.HfApi, "create_commit", return_value=commit_info) as mock_method: _ = delete_from_hub(repo_id, "dogs") assert mock_method.called assert mock_method.call_args.kwargs.get("commit_message") == "Delete 'dogs' config" assert mock_method.call_args.kwargs.get("create_pr") expected_operations = [ CommitOperationDelete(path_in_repo="dogs/train/0000.csv", is_folder=False), CommitOperationAdd( path_in_repo="README.md", path_or_fileobj=dedent(f"""\ --- {METADATA_CONFIGS_FIELD}: - config_name: cats data_files: - split: train path: cats/train/* --- """).encode(), ), ] assert mock_method.call_args.kwargs.get("operations") == expected_operations
from typing import Any, Optional class ServiceContext: """ Service Context container. NOTE: Deprecated, use llama_index.settings.Settings instead or pass in modules to local functions/methods/interfaces. """ def __init__(self, **kwargs: Any) -> None: raise ValueError( "ServiceContext is deprecated. Use llama_index.settings.Settings instead, " "or pass in modules to local functions/methods/interfaces.\n" "See the docs for updated usage/migration: \n" "https://docs.llamaindex.ai/en/stable/module_guides/supporting_modules/service_context_migration/" ) @classmethod def from_defaults( cls, **kwargs: Any, ) -> "ServiceContext": """ Create a ServiceContext from defaults. NOTE: Deprecated, use llama_index.settings.Settings instead or pass in modules to local functions/methods/interfaces. """ raise ValueError( "ServiceContext is deprecated. Use llama_index.settings.Settings instead, " "or pass in modules to local functions/methods/interfaces.\n" "See the docs for updated usage/migration: \n" "https://docs.llamaindex.ai/en/stable/module_guides/supporting_modules/service_context_migration/" ) def set_global_service_context(service_context: Optional[ServiceContext]) -> None: """Helper function to set the global service context.""" raise ValueError( "ServiceContext is deprecated. Use llama_index.settings.Settings instead, " "or pass in modules to local functions/methods/interfaces.\n" "See the docs for updated usage/migration: \n" "https://docs.llamaindex.ai/en/stable/module_guides/supporting_modules/service_context_migration/" )
from typing import Any, Optional class ServiceContext: """Service Context container. NOTE: Deprecated, use llama_index.settings.Settings instead or pass in modules to local functions/methods/interfaces. """ def __init__(self, **kwargs: Any) -> None: raise ValueError( "ServiceContext is deprecated. Use llama_index.settings.Settings instead, " "or pass in modules to local functions/methods/interfaces.\n" "See the docs for updated usage/migration: \n" "https://docs.llamaindex.ai/en/stable/module_guides/supporting_modules/service_context_migration/" ) @classmethod def from_defaults( cls, **kwargs: Any, ) -> "ServiceContext": """Create a ServiceContext from defaults. NOTE: Deprecated, use llama_index.settings.Settings instead or pass in modules to local functions/methods/interfaces. """ raise ValueError( "ServiceContext is deprecated. Use llama_index.settings.Settings instead, " "or pass in modules to local functions/methods/interfaces.\n" "See the docs for updated usage/migration: \n" "https://docs.llamaindex.ai/en/stable/module_guides/supporting_modules/service_context_migration/" ) def set_global_service_context(service_context: Optional[ServiceContext]) -> None: """Helper function to set the global service context.""" raise ValueError( "ServiceContext is deprecated. Use llama_index.settings.Settings instead, " "or pass in modules to local functions/methods/interfaces.\n" "See the docs for updated usage/migration: \n" "https://docs.llamaindex.ai/en/stable/module_guides/supporting_modules/service_context_migration/" )
# Copyright (c) OpenMMLab. All rights reserved. from typing import Iterator, List, Optional, Sequence, Union from mmengine.data import BaseDataElement from mmengine.registry import EVALUATOR, METRICS from .metric import BaseMetric @EVALUATOR.register_module() class Evaluator: """Wrapper class to compose multiple :class:`BaseMetric` instances. Args: metrics (dict or BaseMetric or Sequence): The config of metrics. """ def __init__(self, metrics: Union[dict, BaseMetric, Sequence]): self._dataset_meta: Optional[dict] = None if not isinstance(metrics, Sequence): metrics = [metrics] self.metrics: List[BaseMetric] = [] for metric in metrics: if isinstance(metric, dict): self.metrics.append(METRICS.build(metric)) else: self.metrics.append(metric) @property def dataset_meta(self) -> Optional[dict]: """Optional[dict]: Meta info of the dataset.""" return self._dataset_meta @dataset_meta.setter def dataset_meta(self, dataset_meta: dict) -> None: """Set the dataset meta info to the evaluator and it's metrics.""" self._dataset_meta = dataset_meta for metric in self.metrics: metric.dataset_meta = dataset_meta def process(self, data_batch: Sequence[dict], predictions: Sequence[BaseDataElement]): """Convert ``BaseDataSample`` to dict and invoke process method of each metric. Args: data_batch (Sequence[dict]): A batch of data from the dataloader. predictions (Sequence[BaseDataElement]): A batch of outputs from the model. """ _data_batch = [] for data in data_batch: if isinstance(data['data_sample'], BaseDataElement): _data_batch.append( dict( inputs=data['inputs'], data_sample=data['data_sample'].to_dict())) else: _data_batch.append(data) _predictions = [] for pred in predictions: if isinstance(pred, BaseDataElement): _predictions.append(pred.to_dict()) else: _predictions.append(pred) for metric in self.metrics: metric.process(_data_batch, _predictions) def evaluate(self, size: int) -> dict: """Invoke ``evaluate`` method of each metric and collect the metrics dictionary. Args: size (int): Length of the entire validation dataset. When batch size > 1, the dataloader may pad some data samples to make sure all ranks have the same length of dataset slice. The ``collect_results`` function will drop the padded data based on this size. Returns: dict: Evaluation results of all metrics. The keys are the names of the metrics, and the values are corresponding results. """ metrics = {} for metric in self.metrics: _results = metric.evaluate(size) # Check metric name conflicts for name in _results.keys(): if name in metrics: raise ValueError( 'There are multiple evaluation results with the same ' f'metric name {name}. Please make sure all metrics ' 'have different prefixes.') metrics.update(_results) return metrics def offline_evaluate(self, data: Sequence, predictions: Sequence, chunk_size: int = 1): """Offline evaluate the dumped predictions on the given data . Args: data (Sequence): All data of the validation set. predictions (Sequence): All predictions of the model on the validation set. chunk_size (int): The number of data samples and predictions to be processed in a batch. """ # support chunking iterable objects def get_chunks(seq: Iterator, chunk_size=1): stop = False while not stop: chunk = [] for _ in range(chunk_size): try: chunk.append(next(seq)) except StopIteration: stop = True break if chunk: yield chunk size = 0 for data_chunk, pred_chunk in zip( get_chunks(iter(data), chunk_size), get_chunks(iter(predictions), chunk_size)): size += len(data_chunk) self.process(data_chunk, pred_chunk) return self.evaluate(size)
# Copyright (c) OpenMMLab. All rights reserved. from typing import Iterator, List, Optional, Sequence, Union from mmengine.data import BaseDataElement from ..registry.root import EVALUATOR, METRICS from .metric import BaseMetric @EVALUATOR.register_module() class Evaluator: """Wrapper class to compose multiple :class:`BaseMetric` instances. Args: metrics (dict or BaseMetric or Sequence): The config of metrics. """ def __init__(self, metrics: Union[dict, BaseMetric, Sequence]): self._dataset_meta: Optional[dict] = None if not isinstance(metrics, Sequence): metrics = [metrics] self.metrics: List[BaseMetric] = [] for metric in metrics: if isinstance(metric, dict): self.metrics.append(METRICS.build(metric)) else: self.metrics.append(metric) @property def dataset_meta(self) -> Optional[dict]: """Optional[dict]: Meta info of the dataset.""" return self._dataset_meta @dataset_meta.setter def dataset_meta(self, dataset_meta: dict) -> None: """Set the dataset meta info to the evaluator and it's metrics.""" self._dataset_meta = dataset_meta for metric in self.metrics: metric.dataset_meta = dataset_meta def process(self, data_batch: Sequence[dict], predictions: Sequence[BaseDataElement]): """Convert ``BaseDataSample`` to dict and invoke process method of each metric. Args: data_batch (Sequence[dict]): A batch of data from the dataloader. predictions (Sequence[BaseDataElement]): A batch of outputs from the model. """ _data_batch = [] for data in data_batch: if isinstance(data['data_sample'], BaseDataElement): _data_batch.append( dict( inputs=data['inputs'], data_sample=data['data_sample'].to_dict())) else: _data_batch.append(data) _predictions = [] for pred in predictions: if isinstance(pred, BaseDataElement): _predictions.append(pred.to_dict()) else: _predictions.append(pred) for metric in self.metrics: metric.process(_data_batch, _predictions) def evaluate(self, size: int) -> dict: """Invoke ``evaluate`` method of each metric and collect the metrics dictionary. Args: size (int): Length of the entire validation dataset. When batch size > 1, the dataloader may pad some data samples to make sure all ranks have the same length of dataset slice. The ``collect_results`` function will drop the padded data based on this size. Returns: dict: Evaluation results of all metrics. The keys are the names of the metrics, and the values are corresponding results. """ metrics = {} for metric in self.metrics: _results = metric.evaluate(size) # Check metric name conflicts for name in _results.keys(): if name in metrics: raise ValueError( 'There are multiple evaluation results with the same ' f'metric name {name}. Please make sure all metrics ' 'have different prefixes.') metrics.update(_results) return metrics def offline_evaluate(self, data: Sequence, predictions: Sequence, chunk_size: int = 1): """Offline evaluate the dumped predictions on the given data . Args: data (Sequence): All data of the validation set. predictions (Sequence): All predictions of the model on the validation set. chunk_size (int): The number of data samples and predictions to be processed in a batch. """ # support chunking iterable objects def get_chunks(seq: Iterator, chunk_size=1): stop = False while not stop: chunk = [] for _ in range(chunk_size): try: chunk.append(next(seq)) except StopIteration: stop = True break if chunk: yield chunk size = 0 for data_chunk, pred_chunk in zip( get_chunks(iter(data), chunk_size), get_chunks(iter(predictions), chunk_size)): size += len(data_chunk) self.process(data_chunk, pred_chunk) return self.evaluate(size)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Optional, List, Union, Dict import numpy as np from annoy import AnnoyIndex from jina import Executor, requests, DocumentArray, Document from jina_commons import get_logger from jina_commons.indexers.dump import import_vectors class AnnoySearcher(Executor): """Annoy powered vector indexer For more information about the Annoy supported parameters, please consult: - https://github.com/spotify/annoy .. note:: Annoy package dependency is only required at the query time. """ def __init__( self, default_top_k: int = 10, metric: str = 'euclidean', num_trees: int = 10, dump_path: Optional[str] = None, default_traversal_paths: List[str] = ['r'], is_distance: bool = False, **kwargs, ): """ Initialize an AnnoyIndexer :param default_top_k: get tok k vectors :param metric: Metric can be "angular", "euclidean", "manhattan", "hamming", or "dot" :param num_trees: builds a forest of n_trees trees. More trees gives higher precision when querying. :param dump_path: the path to load ids and vecs :param traverse_path: traverse path on docs, e.g. ['r'], ['c'] :param is_distance: Boolean flag that describes if distance metric need to be reinterpreted as similarities. :param args: :param kwargs: """ super().__init__(**kwargs) self.default_top_k = default_top_k self.metric = metric self.num_trees = num_trees self.default_traversal_paths = default_traversal_paths self.is_distance = is_distance self.logger = get_logger(self) dump_path = dump_path or kwargs.get('runtime_args', {}).get('dump_path', None) if dump_path is not None: self.logger.info('Start building "AnnoyIndexer" from dump data') ids, vecs = import_vectors(dump_path, str(self.metas.pea_id)) self._ids = np.array(list(ids)) self._vecs = np.array(list(vecs)) num_dim = self._vecs.shape[1] self._indexer = AnnoyIndex(num_dim, self.metric) self._doc_id_to_offset = {} self._load_index(self._ids, self._vecs) else: self.logger.warning( 'No data loaded in "AnnoyIndexer". Use .rolling_update() to re-initialize it...' ) def _load_index(self, ids, vecs): for idx, v in enumerate(vecs): self._indexer.add_item(idx, v.astype(np.float32)) self._doc_id_to_offset[ids[idx]] = idx self._indexer.build(self.num_trees) @requests(on='/search') def search(self, docs: DocumentArray, parameters: Dict, **kwargs): if not hasattr(self, '_indexer'): self.logger.warning('Querying against an empty index') return traversal_paths = parameters.get( 'traversal_paths', self.default_traversal_paths ) for doc in docs.traverse_flat(traversal_paths): indices, dists = self._indexer.get_nns_by_vector( doc.embedding, self.default_top_k, include_distances=True ) for idx, dist in zip(indices, dists): match = Document(id=self._ids[idx], embedding=self._vecs[idx]) if self.is_distance: if self.metric == 'dot': match.scores[self.metric] = 1 - dist else: match.scores[self.metric] = dist else: if self.metric == 'dot': match.scores[self.metric] = dist elif self.metric == 'angular' or self.metric == 'hamming': match.scores[self.metric] = 1 - dist else: match.scores[self.metric] = 1 / (1 + dist) doc.matches.append(match) @requests(on='/fill_embedding') def fill_embedding(self, query_da: DocumentArray, **kwargs): for doc in query_da: doc.embedding = np.array( self._indexer.get_item_vector(int(self._doc_id_to_offset[str(doc.id)])) )
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Optional, List, Union, Dict import numpy as np from annoy import AnnoyIndex from jina import Executor, requests, DocumentArray, Document from jina_commons import get_logger from jina_commons.indexers.dump import import_vectors class AnnoySearcher(Executor): """Annoy powered vector indexer For more information about the Annoy supported parameters, please consult: - https://github.com/spotify/annoy .. note:: Annoy package dependency is only required at the query time. """ def __init__( self, top_k: int = 10, metric: str = 'euclidean', num_trees: int = 10, dump_path: Optional[str] = None, default_traversal_paths: List[str] = ['r'], **kwargs, ): """ Initialize an AnnoyIndexer :param top_k: get tok k vectors :param metric: Metric can be "angular", "euclidean", "manhattan", "hamming", or "dot" :param num_trees: builds a forest of n_trees trees. More trees gives higher precision when querying. :param dump_path: the path to load ids and vecs :param traverse_path: traverse path on docs, e.g. ['r'], ['c'] :param args: :param kwargs: """ super().__init__(**kwargs) self.top_k = top_k self.metric = metric self.num_trees = num_trees self.default_traversal_paths = default_traversal_paths self.logger = get_logger(self) dump_path = dump_path or kwargs.get('runtime_args', {}).get('dump_path', None) if dump_path is not None: self.logger.info('Start building "AnnoyIndexer" from dump data') ids, vecs = import_vectors(dump_path, str(self.metas.pea_id)) self._ids = np.array(list(ids)) self._vecs = np.array(list(vecs)) num_dim = self._vecs.shape[1] self._indexer = AnnoyIndex(num_dim, self.metric) self._doc_id_to_offset = {} self._load_index(self._ids, self._vecs) else: self.logger.warning( 'No data loaded in "AnnoyIndexer". Use .rolling_update() to re-initialize it...' ) def _load_index(self, ids, vecs): for idx, v in enumerate(vecs): self._indexer.add_item(idx, v.astype(np.float32)) self._doc_id_to_offset[ids[idx]] = idx self._indexer.build(self.num_trees) @requests(on='/search') def search(self, docs: DocumentArray, parameters: Dict, **kwargs): if not hasattr(self, '_indexer'): self.logger.warning('Querying against an empty index') return traversal_paths = parameters.get( 'traversal_paths', self.default_traversal_paths ) for doc in docs.traverse_flat(traversal_paths): indices, dists = self._indexer.get_nns_by_vector( doc.embedding, self.top_k, include_distances=True ) for idx, dist in zip(indices, dists): match = Document(id=self._ids[idx], embedding=self._vecs[idx]) match.scores['distance'] = 1 / (1 + dist) doc.matches.append(match) @requests(on='/fill_embedding') def fill_embedding(self, query_da: DocumentArray, **kwargs): for doc in query_da: doc.embedding = np.array( self._indexer.get_item_vector(int(self._doc_id_to_offset[str(doc.id)])) )
from __future__ import annotations from collections.abc import Iterable import torch import torch.nn as nn from sentence_transformers.sparse_encoder.losses.CSRReconstructionLoss import CSRReconstructionLoss from sentence_transformers.sparse_encoder.losses.SparseMultipleNegativesRankingLoss import ( SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class CSRLoss(nn.Module): """ CSR Loss module that combines the CSRReconstruction Loss and Sparse Multiple Negatives Ranking Loss MRL (InfoNCE). Based on the paper: Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation, https://arxiv.org/abs/2503.01776 This module computes the combined loss according to the formula: L_CSR = L_recon + γ * L_MRL where: - L_recon = L(k) + L(4k)/8 + β*L_aux - L_MRL is the Multiple Negatives Ranking Loss """ def __init__(self, model: SparseEncoder, beta: float = 0.1, gamma: float = 1.0, scale: float = 20.0): super().__init__() self.model = model self.beta = beta self.gamma = gamma self.scale = scale # Initialize the component losses self.reconstruction_loss = CSRReconstructionLoss(model, beta) self.ranking_loss = SparseMultipleNegativesRankingLoss(model, scale) def forward( self, sentence_features: Iterable[dict[str, torch.Tensor]], labels: torch.Tensor = None ) -> dict[str, torch.Tensor]: """ Forward pass of the CSR Loss module. This method is used when the loss is computed as part of the model's forward pass. Args: sentence_features: Iterable of dictionaries containing sentence embeddings labels: Optional tensor of labels (not used in this implementation) Returns: Dictionary containing the total loss and individual loss components """ # Compute embeddings using the model outputs = [self.model(sentence_feature) for sentence_feature in sentence_features] sentence_embedding = [output["sentence_embedding"] for output in outputs] recon_loss = self.reconstruction_loss.compute_loss_from_embeddings(outputs) ranking_loss = self.ranking_loss.compute_loss_from_embeddings(sentence_embedding) # Compute total loss: L_CSR = L_recon + γ * L_MRL total_loss = recon_loss + self.gamma * ranking_loss return total_loss def get_config_dict(self): """ Get the configuration dictionary. Returns: Dictionary containing the configuration parameters """ return {"beta": self.beta, "gamma": self.gamma, "scale": self.scale}
from __future__ import annotations from collections.abc import Iterable import torch import torch.nn as nn from sentence_transformers.sparse_encoder.losses.ReconstructionLoss import ReconstructionLoss from sentence_transformers.sparse_encoder.losses.SparseMultipleNegativesRankingLoss import ( SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class CSRLoss(nn.Module): """ CSR Loss module that combines Reconstruction Loss and Sparse Multiple Negatives Ranking Loss. Based on the paper: Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation, https://arxiv.org/abs/2503.01776 This module computes the combined loss according to the formula: L_CSR = L_recon + γ * L_MRL where: - L_recon = L(k) + L(4k)/8 + β*L_aux - L_MRL is the Multiple Negatives Ranking Loss """ def __init__( self, model: SparseEncoder, beta: float = 0.1, gamma: float = 1.0, scale: float = 20.0, ): super().__init__() self.model = model self.beta = beta self.gamma = gamma self.scale = scale # Initialize the component losses self.reconstruction_loss = ReconstructionLoss(model, beta) self.ranking_loss = SparseMultipleNegativesRankingLoss(model, scale) def forward( self, sentence_features: Iterable[dict[str, torch.Tensor]], labels: torch.Tensor = None, ) -> dict[str, torch.Tensor]: """ Forward pass of the CSR Loss module. This method is used when the loss is computed as part of the model's forward pass. Args: sentence_features: Iterable of dictionaries containing sentence embeddings labels: Optional tensor of labels (not used in this implementation) Returns: Dictionary containing the total loss and individual loss components """ # Compute embeddings using the model outputs = [self.model(sentence_feature) for sentence_feature in sentence_features] sentence_embedding = [output["sentence_embedding"] for output in outputs] recon_loss = self.reconstruction_loss.compute_loss_from_embeddings(outputs) ranking_loss = self.ranking_loss.compute_loss_from_embeddings(sentence_embedding) # Compute total loss: L_CSR = L_recon + γ * L_MRL total_loss = recon_loss + self.gamma * ranking_loss return total_loss def get_config_dict(self): """ Get the configuration dictionary. Returns: Dictionary containing the configuration parameters """ return { "beta": self.beta, "gamma": self.gamma, "scale": self.scale, }
_base_ = [ '../common/mstrain-poly_3x_coco_instance.py', '../_base_/models/mask_rcnn_r50_fpn.py' ] model = dict( # ResNeXt-101-32x8d model trained with Caffe2 at FB, # so the mean and std need to be changed. data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], bgr_to_rgb=False), backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=8, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnext101_32x8d')))
_base_ = [ '../common/mstrain-poly_3x_coco_instance.py', '../_base_/models/mask_rcnn_r50_fpn.py' ] preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], to_rgb=False, pad_size_divisor=32) model = dict( preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=8, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnext101_32x8d')))
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers import util from sentence_transformers.losses.CoSENTLoss import CoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseCoSENTLoss(CoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0, similarity_fct=util.cos_sim) -> None: """ This class implements CoSENT (Cosine Sentence). It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(i,j)-s(k,l))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Args: model: SparseEncoder similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Need to be used in SpladeLoss or CSRLoss as a loss function. - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseAnglELoss` is SparseCoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SpladeLoss(model=model, loss=losses.SparseCoSENTLoss(model), lambda_corpus=5e-5, all_docs=True) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ model.similarity_fn_name = "cosine" return super().__init__(model, scale=scale, similarity_fct=similarity_fct) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseCoSENTLoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
from __future__ import annotations from sentence_transformers import util from sentence_transformers.losses.CoSENTLoss import CoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseCoSENTLoss(CoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0, similarity_fct=util.cos_sim) -> None: return super().__init__(model, scale=scale, similarity_fct=similarity_fct)
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import mmengine from mmengine.utils import digit_version from .version import __version__, version_info mmcv_minimum_version = '2.0.0rc0' mmcv_maximum_version = '2.1.0' mmcv_version = digit_version(mmcv.__version__) mmengine_minimum_version = '0.0.0' mmengine_maximum_version = '0.2.0' mmengine_version = digit_version(mmengine.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version < digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <{mmcv_maximum_version}.' assert (mmengine_version >= digit_version(mmengine_minimum_version) and mmengine_version < digit_version(mmengine_maximum_version)), \ f'MMEngine=={mmengine.__version__} is used but incompatible. ' \ f'Please install mmengine>={mmengine_minimum_version}, ' \ f'<{mmengine_maximum_version}.' __all__ = ['__version__', 'version_info', 'digit_version']
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import mmengine from mmengine.utils import digit_version from .version import __version__, version_info mmcv_minimum_version = '2.0.0rc0' mmcv_maximum_version = '2.0.0' mmcv_version = digit_version(mmcv.__version__) mmengine_minimum_version = '0.0.0' mmengine_maximum_version = '0.2.0' mmengine_version = digit_version(mmengine.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version <= digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.' assert (mmengine_version >= digit_version(mmengine_minimum_version) and mmengine_version <= digit_version(mmengine_maximum_version)), \ f'MMEngine=={mmengine.__version__} is used but incompatible. ' \ f'Please install mmengine>={mmengine_minimum_version}, ' \ f'<={mmengine_maximum_version}.' __all__ = ['__version__', 'version_info', 'digit_version']
from enum import Enum # --8<-- [start:ProviderName] class ProviderName(str, Enum): ANTHROPIC = "anthropic" COMPASS = "compass" DISCORD = "discord" D_ID = "d_id" E2B = "e2b" EXA = "exa" FAL = "fal" GITHUB = "github" GOOGLE = "google" GOOGLE_MAPS = "google_maps" GROQ = "groq" HUBSPOT = "hubspot" IDEOGRAM = "ideogram" JINA = "jina" LINEAR = "linear" MEDIUM = "medium" MEM0 = "mem0" NOTION = "notion" NVIDIA = "nvidia" OLLAMA = "ollama" OPENAI = "openai" OPENWEATHERMAP = "openweathermap" OPEN_ROUTER = "open_router" PINECONE = "pinecone" REDDIT = "reddit" REPLICATE = "replicate" REVID = "revid" SLANT3D = "slant3d" SMTP = "smtp" TWITTER = "twitter" UNREAL_SPEECH = "unreal_speech" # --8<-- [end:ProviderName]
from enum import Enum # --8<-- [start:ProviderName] class ProviderName(str, Enum): ANTHROPIC = "anthropic" COMPASS = "compass" DISCORD = "discord" D_ID = "d_id" E2B = "e2b" EXA = "exa" FAL = "fal" GITHUB = "github" GOOGLE = "google" GOOGLE_MAPS = "google_maps" GROQ = "groq" HUBSPOT = "hubspot" IDEOGRAM = "ideogram" JINA = "jina" LINEAR = "linear" MEDIUM = "medium" NOTION = "notion" NVIDIA = "nvidia" OLLAMA = "ollama" OPENAI = "openai" OPENWEATHERMAP = "openweathermap" OPEN_ROUTER = "open_router" PINECONE = "pinecone" REDDIT = "reddit" REPLICATE = "replicate" REVID = "revid" SLANT3D = "slant3d" SMTP = "smtp" TWITTER = "twitter" UNREAL_SPEECH = "unreal_speech" # --8<-- [end:ProviderName]
import os import os.path as osp import tempfile import unittest import numpy as np import torch from PIL import Image from mmdet.evaluation import CityScapesMetric try: import cityscapesscripts except ImportError: cityscapesscripts = None class TestCityScapesMetric(unittest.TestCase): def setUp(self): self.tmp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.tmp_dir.cleanup() @unittest.skipIf(cityscapesscripts is None, 'cityscapesscripts is not installed.') def test_init(self): # test with outfile_prefix = None with self.assertRaises(AssertionError): CityScapesMetric(outfile_prefix=None) @unittest.skipIf(cityscapesscripts is None, 'cityscapesscripts is not installed.') def test_evaluate(self): dummy_mask1 = np.zeros((1, 20, 20), dtype=np.uint8) dummy_mask1[:, :10, :10] = 1 dummy_mask2 = np.zeros((1, 20, 20), dtype=np.uint8) dummy_mask2[:, :10, :10] = 1 self.outfile_prefix = osp.join(self.tmp_dir.name, 'test') self.seg_prefix = osp.join(self.tmp_dir.name, 'cityscapes/gtFine/val') city = 'lindau' sequenceNb = '000000' frameNb = '000019' img_name1 = f'{city}_{sequenceNb}_{frameNb}_gtFine_instanceIds.png' img_path1 = osp.join(self.seg_prefix, city, img_name1) frameNb = '000020' img_name2 = f'{city}_{sequenceNb}_{frameNb}_gtFine_instanceIds.png' img_path2 = osp.join(self.seg_prefix, city, img_name2) os.makedirs(osp.join(self.seg_prefix, city)) masks1 = np.zeros((20, 20), dtype=np.int32) masks1[:10, :10] = 24 * 1000 Image.fromarray(masks1).save(img_path1) masks2 = np.zeros((20, 20), dtype=np.int32) masks2[:10, :10] = 24 * 1000 + 1 Image.fromarray(masks2).save(img_path2) data_samples = [{ 'img_path': img_path1, 'pred_instances': { 'scores': torch.from_numpy(np.array([1.0])), 'labels': torch.from_numpy(np.array([0])), 'masks': torch.from_numpy(dummy_mask1) } }, { 'img_path': img_path2, 'pred_instances': { 'scores': torch.from_numpy(np.array([0.98])), 'labels': torch.from_numpy(np.array([1])), 'masks': torch.from_numpy(dummy_mask2) } }] target = {'cityscapes/mAP': 0.5, 'cityscapes/AP@50': 0.5} metric = CityScapesMetric( seg_prefix=self.seg_prefix, format_only=False, outfile_prefix=self.outfile_prefix) metric.dataset_meta = dict( classes=('person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle')) metric.process({}, data_samples) results = metric.evaluate(size=2) self.assertDictEqual(results, target) del metric self.assertTrue(not osp.exists('{self.outfile_prefix}.results')) # test format_only metric = CityScapesMetric( seg_prefix=self.seg_prefix, format_only=True, outfile_prefix=self.outfile_prefix) metric.dataset_meta = dict( classes=('person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle')) metric.process({}, data_samples) results = metric.evaluate(size=2) self.assertDictEqual(results, dict())
import os import os.path as osp import tempfile import unittest import numpy as np import torch from PIL import Image from mmdet.evaluation import CityScapesMetric try: import cityscapesscripts except ImportError: cityscapesscripts = None class TestCityScapesMetric(unittest.TestCase): def setUp(self): self.tmp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.tmp_dir.cleanup() @unittest.skipIf(cityscapesscripts is None, 'cityscapesscripts is not installed.') def test_init(self): # test with outfile_prefix = None with self.assertRaises(AssertionError): CityScapesMetric(outfile_prefix=None) # test with format_only=True, keep_results=False with self.assertRaises(AssertionError): CityScapesMetric( outfile_prefix=self.tmp_dir.name + 'test', format_only=True, keep_results=False) @unittest.skipIf(cityscapesscripts is None, 'cityscapesscripts is not installed.') def test_evaluate(self): dummy_mask1 = np.zeros((1, 20, 20), dtype=np.uint8) dummy_mask1[:, :10, :10] = 1 dummy_mask2 = np.zeros((1, 20, 20), dtype=np.uint8) dummy_mask2[:, :10, :10] = 1 self.outfile_prefix = osp.join(self.tmp_dir.name, 'test') self.seg_prefix = osp.join(self.tmp_dir.name, 'cityscapes/gtFine/val') city = 'lindau' sequenceNb = '000000' frameNb = '000019' img_name1 = f'{city}_{sequenceNb}_{frameNb}_gtFine_instanceIds.png' img_path1 = osp.join(self.seg_prefix, city, img_name1) frameNb = '000020' img_name2 = f'{city}_{sequenceNb}_{frameNb}_gtFine_instanceIds.png' img_path2 = osp.join(self.seg_prefix, city, img_name2) os.makedirs(osp.join(self.seg_prefix, city)) masks1 = np.zeros((20, 20), dtype=np.int32) masks1[:10, :10] = 24 * 1000 Image.fromarray(masks1).save(img_path1) masks2 = np.zeros((20, 20), dtype=np.int32) masks2[:10, :10] = 24 * 1000 + 1 Image.fromarray(masks2).save(img_path2) data_samples = [{ 'img_path': img_path1, 'pred_instances': { 'scores': torch.from_numpy(np.array([1.0])), 'labels': torch.from_numpy(np.array([0])), 'masks': torch.from_numpy(dummy_mask1) } }, { 'img_path': img_path2, 'pred_instances': { 'scores': torch.from_numpy(np.array([0.98])), 'labels': torch.from_numpy(np.array([1])), 'masks': torch.from_numpy(dummy_mask2) } }] target = {'cityscapes/mAP': 0.5, 'cityscapes/AP@50': 0.5} metric = CityScapesMetric( seg_prefix=self.seg_prefix, format_only=False, keep_results=False, outfile_prefix=self.outfile_prefix) metric.dataset_meta = dict( classes=('person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle')) metric.process({}, data_samples) results = metric.evaluate(size=2) self.assertDictEqual(results, target) del metric self.assertTrue(not osp.exists('{self.outfile_prefix}.results')) # test format_only metric = CityScapesMetric( seg_prefix=self.seg_prefix, format_only=True, keep_results=True, outfile_prefix=self.outfile_prefix) metric.dataset_meta = dict( classes=('person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle')) metric.process({}, data_samples) results = metric.evaluate(size=2) self.assertDictEqual(results, dict())
from __future__ import annotations from typing import Any, Iterable import torch from torch import Tensor, nn from sentence_transformers import util from sentence_transformers.SentenceTransformer import SentenceTransformer class CoSENTLoss(nn.Module): def __init__(self, model: SentenceTransformer, scale: float = 20.0, similarity_fct=util.pairwise_cos_sim) -> None: """ This class implements CoSENT (Cosine Sentence) loss. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Anecdotal experiments show that this loss function produces a more powerful training signal than :class:`CosineSimilarityLoss`, resulting in faster convergence and a final model with superior performance. Consequently, CoSENTLoss may be used as a drop-in replacement for :class:`CosineSimilarityLoss` in any training script. Args: model: SentenceTransformerModel similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Relations: - :class:`AnglELoss` is CoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than CoSENTLoss. In our experiments, CoSENTLoss is recommended. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.CoSENTLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.model = model self.similarity_fct = similarity_fct self.scale = scale def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] scores = self.similarity_fct(embeddings[0], embeddings[1]) scores = scores * self.scale scores = scores[:, None] - scores[None, :] # label matrix indicating which pairs are relevant labels = labels[:, None] < labels[None, :] labels = labels.float() # mask out irrelevant pairs so they are negligible after exp() scores = scores - (1 - labels) * 1e12 # append a zero as e^0 = 1 scores = torch.cat((torch.zeros(1).to(scores.device), scores.view(-1)), dim=0) loss = torch.logsumexp(scores, dim=0) return loss def get_config_dict(self) -> dict[str, Any]: return {"scale": self.scale, "similarity_fct": self.similarity_fct.__name__} @property def citation(self) -> str: return """ @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } """
from __future__ import annotations from typing import Any, Iterable import torch from torch import Tensor, nn from sentence_transformers import util from sentence_transformers.SentenceTransformer import SentenceTransformer class CoSENTLoss(nn.Module): def __init__(self, model: SentenceTransformer, scale: float = 20.0, similarity_fct=util.pairwise_cos_sim) -> None: """ This class implements CoSENT (Cosine Sentence) loss. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Anecdotal experiments show that this loss function produces a more powerful training signal than :class:`CosineSimilarityLoss`, resulting in faster convergence and a final model with superior performance. Consequently, CoSENTLoss may be used as a drop-in replacement for :class:`CosineSimilarityLoss` in any training script. Args: model: SentenceTransformerModel similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Relations: - :class:`AnglELoss` is CoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than CoSENTLoss. In our experiments, CoSENTLoss is recommended. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.CoSENTLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(CoSENTLoss, self).__init__() self.model = model self.similarity_fct = similarity_fct self.scale = scale def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] scores = self.similarity_fct(embeddings[0], embeddings[1]) scores = scores * self.scale scores = scores[:, None] - scores[None, :] # label matrix indicating which pairs are relevant labels = labels[:, None] < labels[None, :] labels = labels.float() # mask out irrelevant pairs so they are negligible after exp() scores = scores - (1 - labels) * 1e12 # append a zero as e^0 = 1 scores = torch.cat((torch.zeros(1).to(scores.device), scores.view(-1)), dim=0) loss = torch.logsumexp(scores, dim=0) return loss def get_config_dict(self) -> dict[str, Any]: return {"scale": self.scale, "similarity_fct": self.similarity_fct.__name__} @property def citation(self) -> str: return """ @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } """
from qdrant_client.http.models.models import Distance DISTANCES = { 'cosine': Distance.COSINE, 'euclidean': Distance.EUCLID, 'dot': Distance.DOT, }
from qdrant_openapi_client.models.models import Distance DISTANCES = { 'cosine': Distance.COSINE, 'euclidean': Distance.EUCLID, 'dot': Distance.DOT, }
"""Cloudflare embeddings file.""" from typing import Any, List, Optional import requests from llama_index.core.base.embeddings.base import ( DEFAULT_EMBED_BATCH_SIZE, BaseEmbedding, ) from llama_index.core.bridge.pydantic import Field, PrivateAttr from llama_index.core.callbacks.base import CallbackManager from llama_index.core.base.llms.generic_utils import get_from_param_or_env MAX_BATCH_SIZE = 100 # As per Cloudflare's maxItems limit for batch processing API_URL_TEMPLATE = "https://api.cloudflare.com/client/v4/accounts/{}/ai/run/{}" class CloudflareEmbedding(BaseEmbedding): """ Cloudflare Workers AI class for generating text embeddings. This class allows for the generation of text embeddings using Cloudflare Workers AI with the BAAI general embedding models. Args: account_id (str): The Cloudflare Account ID. auth_token (str, Optional): The Cloudflare Auth Token. Alternatively, set up environment variable `CLOUDFLARE_AUTH_TOKEN`. model (str): The model ID for the embedding service. Cloudflare provides different models for embeddings, check https://developers.cloudflare.com/workers-ai/models/#text-embeddings. Defaults to "@cf/baai/bge-base-en-v1.5". embed_batch_size (int): The batch size for embedding generation. Cloudflare's current limit is 100 at max. Defaults to llama_index's default. Note: Ensure you have a valid Cloudflare account and have access to the necessary AI services and models. The account ID and authorization token are sensitive details; secure them appropriately. """ account_id: str = Field(default=None, description="The Cloudflare Account ID.") auth_token: str = Field(default=None, description="The Cloudflare Auth Token.") model: str = Field( default="@cf/baai/bge-base-en-v1.5", description="The model to use when calling Cloudflare AI API", ) _session: Any = PrivateAttr() def __init__( self, account_id: str, auth_token: Optional[str] = None, model: str = "@cf/baai/bge-base-en-v1.5", embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE, callback_manager: Optional[CallbackManager] = None, **kwargs: Any, ) -> None: super().__init__( embed_batch_size=embed_batch_size, callback_manager=callback_manager, model=model, **kwargs, ) self.account_id = account_id self.auth_token = get_from_param_or_env( "auth_token", auth_token, "CLOUDFLARE_AUTH_TOKEN", "" ) self.model = model self._session = requests.Session() self._session.headers.update({"Authorization": f"Bearer {self.auth_token}"}) @classmethod def class_name(cls) -> str: return "CloudflareEmbedding" def _get_query_embedding(self, query: str) -> List[float]: """Get query embedding.""" return self._get_text_embedding(query) async def _aget_query_embedding(self, query: str) -> List[float]: """The asynchronous version of _get_query_embedding.""" return await self._aget_text_embedding(query) def _get_text_embedding(self, text: str) -> List[float]: """Get text embedding.""" return self._get_text_embeddings([text])[0] async def _aget_text_embedding(self, text: str) -> List[float]: """Asynchronously get text embedding.""" result = await self._aget_text_embeddings([text]) return result[0] def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]: """Get text embeddings.""" response = self._session.post( API_URL_TEMPLATE.format(self.account_id, self.model), json={"text": texts} ).json() if "result" not in response: print(response) raise RuntimeError("Failed to fetch embeddings") return response["result"]["data"] async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]: """Asynchronously get text embeddings.""" import aiohttp async with aiohttp.ClientSession(trust_env=True) as session: headers = { "Authorization": f"Bearer {self.auth_token}", "Accept-Encoding": "identity", } async with session.post( API_URL_TEMPLATE.format(self.account_id, self.model), json={"text": texts}, headers=headers, ) as response: resp = await response.json() if "result" not in resp: raise RuntimeError("Failed to fetch embeddings asynchronously") return resp["result"]["data"]
"""Cloudflare embeddings file.""" from typing import Any, List, Optional import requests from llama_index.core.base.embeddings.base import ( DEFAULT_EMBED_BATCH_SIZE, BaseEmbedding, ) from llama_index.core.bridge.pydantic import Field, PrivateAttr from llama_index.core.callbacks.base import CallbackManager from llama_index.core.base.llms.generic_utils import get_from_param_or_env MAX_BATCH_SIZE = 100 # As per Cloudflare's maxItems limit for batch processing API_URL_TEMPLATE = "https://api.cloudflare.com/client/v4/accounts/{}/ai/run/{}" class CloudflareEmbedding(BaseEmbedding): """ Cloudflare Workers AI class for generating text embeddings. This class allows for the generation of text embeddings using Cloudflare Workers AI with the BAAI general embedding models. Args: account_id (str): The Cloudflare Account ID. auth_token (str, Optional): The Cloudflare Auth Token. Alternatively, set up environment variable `CLOUDFLARE_AUTH_TOKEN`. model (str): The model ID for the embedding service. Cloudflare provides different models for embeddings, check https://developers.cloudflare.com/workers-ai/models/#text-embeddings. Defaults to "@cf/baai/bge-base-en-v1.5". embed_batch_size (int): The batch size for embedding generation. Cloudflare's current limit is 100 at max. Defaults to llama_index's default. Note: Ensure you have a valid Cloudflare account and have access to the necessary AI services and models. The account ID and authorization token are sensitive details; secure them appropriately. """ account_id: str = Field(default=None, description="The Cloudflare Account ID.") auth_token: str = Field(default=None, description="The Cloudflare Auth Token.") model: str = Field( default="@cf/baai/bge-base-en-v1.5", description="The model to use when calling Cloudflare AI API", ) _session: Any = PrivateAttr() def __init__( self, account_id: str, auth_token: Optional[str] = None, model: str = "@cf/baai/bge-base-en-v1.5", embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE, callback_manager: Optional[CallbackManager] = None, **kwargs: Any, ) -> None: super().__init__( embed_batch_size=embed_batch_size, callback_manager=callback_manager, model=model, **kwargs, ) self.account_id = account_id self.auth_token = get_from_param_or_env( "auth_token", auth_token, "CLOUDFLARE_AUTH_TOKEN", "" ) self.model = model self._session = requests.Session() self._session.headers.update({"Authorization": f"Bearer {self.auth_token}"}) @classmethod def class_name(cls) -> str: return "CloudflareEmbedding" def _get_query_embedding(self, query: str) -> List[float]: """Get query embedding.""" return self._get_text_embedding(query) async def _aget_query_embedding(self, query: str) -> List[float]: """The asynchronous version of _get_query_embedding.""" return await self._aget_text_embedding(query) def _get_text_embedding(self, text: str) -> List[float]: """Get text embedding.""" return self._get_text_embeddings([text])[0] async def _aget_text_embedding(self, text: str) -> List[float]: """Asynchronously get text embedding.""" result = await self._aget_text_embeddings([text]) return result[0] def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]: """Get text embeddings.""" response = self._session.post( API_URL_TEMPLATE.format(self.account_id, self.model), json={"text": texts} ).json() if "result" not in response: print(response) raise RuntimeError("Failed to fetch embeddings") return response["result"]["data"] async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]: """Asynchronously get text embeddings.""" import aiohttp async with aiohttp.ClientSession(trust_env=True) as session: headers = { "Authorization": f"Bearer {self.auth_token}", "Accept-Encoding": "identity", } async with session.post( API_URL_TEMPLATE.format(self.account_id, self.model), json={"text": texts}, headers=headers, ) as response: resp = await response.json() if "result" not in resp: raise RuntimeError("Failed to fetch embeddings asynchronously") return resp["result"]["data"]
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch import torch.nn as nn from torch.optim import SGD from mmengine.model import BaseDataPreprocessor, BaseModel from mmengine.optim import OptimWrapper from mmengine.registry import MODELS from mmengine.testing import assert_allclose @MODELS.register_module() class CustomDataPreprocessor(BaseDataPreprocessor): def forward(self, data, training=False): if training: return 1 else: return 2 class ToyModel(BaseModel): def __init__(self, data_preprocessor=None): super().__init__(data_preprocessor=data_preprocessor, init_cfg=None) self.conv = nn.Conv2d(3, 1, 1) def forward(self, batch_inputs, data_samples=None, mode='tensor'): if mode == 'loss': out = self.conv(batch_inputs) return dict(loss=out) elif mode == 'predict': out = self.conv(batch_inputs) return out elif mode == 'tensor': out = self.conv(batch_inputs) return out class TestBaseModel(TestCase): def test_init(self): # initiate model without `preprocess_cfg` model = ToyModel() self.assertIsInstance(model.data_preprocessor, BaseDataPreprocessor) data_preprocessor = dict(type='CustomDataPreprocessor') model = ToyModel(data_preprocessor=data_preprocessor) self.assertIsInstance(model.data_preprocessor, CustomDataPreprocessor) self.assertEqual(model.data_preprocessor(1, training=True), 1) self.assertEqual(model.data_preprocessor(1, training=False), 2) # initiate model with built `data_preprocessor`. data_preprocessor = CustomDataPreprocessor() model = ToyModel(data_preprocessor=data_preprocessor) self.assertIs(model.data_preprocessor, data_preprocessor) # initiate model with error type `data_preprocessor`. with self.assertRaisesRegex(TypeError, 'data_preprocessor should be'): ToyModel(data_preprocessor=[data_preprocessor]) def test_parse_losses(self): model = ToyModel() loss_cls = torch.tensor(1, dtype=torch.float32) loss_list = [ torch.tensor(2, dtype=torch.float32), torch.tensor(3, dtype=torch.float32) ] losses = dict(loss_cls=loss_cls, loss_list=loss_list) target_parsed_losses = torch.tensor(6, dtype=torch.float32) targe_log_vars = dict( loss=torch.tensor(6, dtype=torch.float32), loss_cls=torch.tensor(1, dtype=torch.float32), loss_list=torch.tensor(5, dtype=torch.float32)) parse_losses, log_vars = model.parse_losses(losses) assert_allclose(parse_losses, target_parsed_losses) for key in log_vars: self.assertIn(key, targe_log_vars) assert_allclose(log_vars[key], targe_log_vars[key]) with self.assertRaises(TypeError): losses['error_key'] = dict() model.parse_losses(losses) def test_train_step(self): model = ToyModel() optimizer = SGD(model.parameters(), lr=0.1) optim_wrapper = OptimWrapper(optimizer) inputs = torch.randn(3, 1, 1) data = dict(inputs=inputs) # initiate grad. # model.conv.weight.grad = torch.randn(1, 3, 1, 1) log_vars = model.train_step([data], optim_wrapper) self.assertIsNotNone(model.conv.weight.grad) self.assertIsInstance(log_vars['loss'], torch.Tensor) def test_val_step(self): inputs = torch.randn(3, 1, 1) data = dict(inputs=inputs) model = ToyModel() out = model.val_step([data]) self.assertIsInstance(out, torch.Tensor) def test_test_step(self): inputs = torch.randn(3, 1, 1) data = dict(inputs=inputs) model = ToyModel() out = model.val_step([data]) self.assertIsInstance(out, torch.Tensor) @unittest.skipIf(not torch.cuda.is_available(), 'cuda should be available') def test_cuda(self): inputs = torch.randn(3, 1, 1).cuda() data = dict(inputs=inputs) model = ToyModel().cuda() model.val_step([data]) @unittest.skipIf(not torch.cuda.is_available(), 'cuda should be available') def test_to(self): inputs = torch.randn(3, 1, 1).cuda() data = dict(inputs=inputs) model = ToyModel().to(torch.cuda.current_device()) model.val_step([data])
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch import torch.nn as nn from torch.optim import SGD from mmengine.model import BaseDataPreprocessor, BaseModel from mmengine.optim import OptimWrapper from mmengine.registry import MODELS from mmengine.testing import assert_allclose @MODELS.register_module() class CustomDataPreprocessor(BaseDataPreprocessor): def forward(self, data, training=False): if training: return 1 else: return 2 class ToyModel(BaseModel): def __init__(self, data_preprocessor=None): super().__init__(None, data_preprocessor=data_preprocessor) self.conv = nn.Conv2d(3, 1, 1) def forward(self, batch_inputs, data_samples=None, mode='tensor'): if mode == 'loss': out = self.conv(batch_inputs) return dict(loss=out) elif mode == 'predict': out = self.conv(batch_inputs) return out elif mode == 'tensor': out = self.conv(batch_inputs) return out class TestBaseModel(TestCase): def test_init(self): # initiate model without `preprocess_cfg` model = ToyModel() self.assertIsInstance(model.data_preprocessor, BaseDataPreprocessor) data_preprocessor = dict(type='CustomDataPreprocessor') model = ToyModel(data_preprocessor=data_preprocessor) self.assertIsInstance(model.data_preprocessor, CustomDataPreprocessor) self.assertEqual(model.data_preprocessor(1, training=True), 1) self.assertEqual(model.data_preprocessor(1, training=False), 2) # initiate model with built `data_preprocessor`. data_preprocessor = CustomDataPreprocessor() model = ToyModel(data_preprocessor=data_preprocessor) self.assertIs(model.data_preprocessor, data_preprocessor) # initiate model with error type `data_preprocessor`. with self.assertRaisesRegex(TypeError, 'data_preprocessor should be'): ToyModel(data_preprocessor=[data_preprocessor]) def test_parse_losses(self): model = ToyModel() loss_cls = torch.tensor(1, dtype=torch.float32) loss_list = [ torch.tensor(2, dtype=torch.float32), torch.tensor(3, dtype=torch.float32) ] losses = dict(loss_cls=loss_cls, loss_list=loss_list) target_parsed_losses = torch.tensor(6, dtype=torch.float32) targe_log_vars = dict( loss=torch.tensor(6, dtype=torch.float32), loss_cls=torch.tensor(1, dtype=torch.float32), loss_list=torch.tensor(5, dtype=torch.float32)) parse_losses, log_vars = model.parse_losses(losses) assert_allclose(parse_losses, target_parsed_losses) for key in log_vars: self.assertIn(key, targe_log_vars) assert_allclose(log_vars[key], targe_log_vars[key]) with self.assertRaises(TypeError): losses['error_key'] = dict() model.parse_losses(losses) def test_train_step(self): model = ToyModel() optimizer = SGD(model.parameters(), lr=0.1) optim_wrapper = OptimWrapper(optimizer) inputs = torch.randn(3, 1, 1) data = dict(inputs=inputs) # initiate grad. # model.conv.weight.grad = torch.randn(1, 3, 1, 1) log_vars = model.train_step([data], optim_wrapper) self.assertIsNotNone(model.conv.weight.grad) self.assertIsInstance(log_vars['loss'], torch.Tensor) def test_val_step(self): inputs = torch.randn(3, 1, 1) data = dict(inputs=inputs) model = ToyModel() out = model.val_step([data]) self.assertIsInstance(out, torch.Tensor) def test_test_step(self): inputs = torch.randn(3, 1, 1) data = dict(inputs=inputs) model = ToyModel() out = model.val_step([data]) self.assertIsInstance(out, torch.Tensor) @unittest.skipIf(not torch.cuda.is_available(), 'cuda should be available') def test_cuda(self): inputs = torch.randn(3, 1, 1).cuda() data = dict(inputs=inputs) model = ToyModel().cuda() model.val_step([data]) @unittest.skipIf(not torch.cuda.is_available(), 'cuda should be available') def test_to(self): inputs = torch.randn(3, 1, 1).cuda() data = dict(inputs=inputs) model = ToyModel().to(torch.cuda.current_device()) model.val_step([data])
import gzip import os from . import InputExample class NLIDataReader(object): """Reads in the Stanford NLI dataset and the MultiGenre NLI dataset""" def __init__(self, dataset_folder): self.dataset_folder = dataset_folder def get_examples(self, filename, max_examples=0): """ data_splits specified which data split to use (train, dev, test). Expects that self.dataset_folder contains the files s1.$data_split.gz, s2.$data_split.gz, labels.$data_split.gz, e.g., for the train split, s1.train.gz, s2.train.gz, labels.train.gz """ s1 = gzip.open(os.path.join(self.dataset_folder, "s1." + filename), mode="rt", encoding="utf-8").readlines() s2 = gzip.open(os.path.join(self.dataset_folder, "s2." + filename), mode="rt", encoding="utf-8").readlines() labels = gzip.open( os.path.join(self.dataset_folder, "labels." + filename), mode="rt", encoding="utf-8" ).readlines() examples = [] id = 0 for sentence_a, sentence_b, label in zip(s1, s2, labels): guid = "%s-%d" % (filename, id) id += 1 examples.append(InputExample(guid=guid, texts=[sentence_a, sentence_b], label=self.map_label(label))) if 0 < max_examples <= len(examples): break return examples @staticmethod def get_labels(): return {"contradiction": 0, "entailment": 1, "neutral": 2} def get_num_labels(self): return len(self.get_labels()) def map_label(self, label): return self.get_labels()[label.strip().lower()]
from . import InputExample import csv import gzip import os class NLIDataReader(object): """ Reads in the Stanford NLI dataset and the MultiGenre NLI dataset """ def __init__(self, dataset_folder): self.dataset_folder = dataset_folder def get_examples(self, filename, max_examples=0): """ data_splits specified which data split to use (train, dev, test). Expects that self.dataset_folder contains the files s1.$data_split.gz, s2.$data_split.gz, labels.$data_split.gz, e.g., for the train split, s1.train.gz, s2.train.gz, labels.train.gz """ s1 = gzip.open(os.path.join(self.dataset_folder, 's1.' + filename), mode="rt", encoding="utf-8").readlines() s2 = gzip.open(os.path.join(self.dataset_folder, 's2.' + filename), mode="rt", encoding="utf-8").readlines() labels = gzip.open(os.path.join(self.dataset_folder, 'labels.' + filename), mode="rt", encoding="utf-8").readlines() examples = [] id = 0 for sentence_a, sentence_b, label in zip(s1, s2, labels): guid = "%s-%d" % (filename, id) id += 1 examples.append(InputExample(guid=guid, texts=[sentence_a, sentence_b], label=self.map_label(label))) if 0 < max_examples <= len(examples): break return examples @staticmethod def get_labels(): return {"contradiction": 0, "entailment": 1, "neutral": 2} def get_num_labels(self): return len(self.get_labels()) def map_label(self, label): return self.get_labels()[label.strip().lower()]