input
stringlengths
33
5k
output
stringlengths
32
5k
# dataset settings dataset_type = 'CocoPanopticDataset' data_root = 'data/coco/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadPanopticAnnotations', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadPanopticAnnotations', backend_args=backend_args), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/panoptic_train2017.json', data_prefix=dict( img='train2017/', seg='annotations/panoptic_train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/panoptic_val2017.json', data_prefix=dict(img='val2017/', seg='annotations/panoptic_val2017/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoPanopticMetric', ann_file=data_root + 'annotations/panoptic_val2017.json', seg_prefix=data_root + 'annotations/panoptic_val2017/', backend_args=backend_args) test_evaluator = val_evaluator # inference on test dataset and # format the output results for submission. # test_dataloader = dict( # batch_size=1, # num_workers=1, # persistent_workers=True, # drop_last=False, # sampler=dict(type='DefaultSampler', shuffle=False), # dataset=dict( # type=dataset_type, # data_root=data_root, # ann_file='annotations/panoptic_image_info_test-dev2017.json', # data_prefix=dict(img='test2017/'), # test_mode=True, # pipeline=test_pipeline)) # test_evaluator = dict( # type='CocoPanopticMetric', # format_only=True, # ann_file=data_root + 'annotations/panoptic_image_info_test-dev2017.json', # outfile_prefix='./work_dirs/coco_panoptic/test')
# dataset settings dataset_type = 'CocoPanopticDataset' # data_root = 'data/coco/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadPanopticAnnotations', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadPanopticAnnotations', backend_args=backend_args), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/panoptic_train2017.json', data_prefix=dict( img='train2017/', seg='annotations/panoptic_train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/panoptic_val2017.json', data_prefix=dict(img='val2017/', seg='annotations/panoptic_val2017/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoPanopticMetric', ann_file=data_root + 'annotations/panoptic_val2017.json', seg_prefix=data_root + 'annotations/panoptic_val2017/', backend_args=backend_args) test_evaluator = val_evaluator # inference on test dataset and # format the output results for submission. # test_dataloader = dict( # batch_size=1, # num_workers=1, # persistent_workers=True, # drop_last=False, # sampler=dict(type='DefaultSampler', shuffle=False), # dataset=dict( # type=dataset_type, # data_root=data_root, # ann_file='annotations/panoptic_image_info_test-dev2017.json', # data_prefix=dict(img='test2017/'), # test_mode=True, # pipeline=test_pipeline)) # test_evaluator = dict( # type='CocoPanopticMetric', # format_only=True, # ann_file=data_root + 'annotations/panoptic_image_info_test-dev2017.json', # outfile_prefix='./work_dirs/coco_panoptic/test')
from __future__ import annotations try: from typing import Self except ImportError: from typing_extensions import Self import torch import transformers from PIL import Image from sentence_transformers.models.Router import InputModule class CLIPModel(InputModule): save_in_root: bool = True def __init__(self, model_name: str = "openai/clip-vit-base-patch32", processor_name=None) -> None: super().__init__() if processor_name is None: processor_name = model_name self.model = transformers.CLIPModel.from_pretrained(model_name) self.processor = transformers.CLIPProcessor.from_pretrained(processor_name) def __repr__(self) -> str: return "CLIPModel()" @property def max_seq_length(self) -> int: return self.processor.tokenizer.model_max_length @max_seq_length.setter def max_seq_length(self, value: int) -> None: self.processor.tokenizer.model_max_length = value def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: image_embeds = [] text_embeds = [] if "pixel_values" in features: vision_outputs = self.model.vision_model(pixel_values=features["pixel_values"]) image_embeds = self.model.visual_projection(vision_outputs[1]) if "input_ids" in features: text_outputs = self.model.text_model( input_ids=features.get("input_ids"), attention_mask=features.get("attention_mask", None), position_ids=features.get("position_ids", None), output_attentions=features.get("output_attentions", None), output_hidden_states=features.get("output_hidden_states", None), ) text_embeds = self.model.text_projection(text_outputs[1]) sentence_embedding = [] image_features = iter(image_embeds) text_features = iter(text_embeds) for idx, input_type in enumerate(features["image_text_info"]): if input_type == 0: sentence_embedding.append(next(image_features)) else: sentence_embedding.append(next(text_features)) features["sentence_embedding"] = torch.stack(sentence_embedding).float() return features def tokenize(self, texts, padding: str | bool = True) -> dict[str, torch.Tensor]: images = [] texts_values = [] image_text_info = [] for idx, data in enumerate(texts): if isinstance(data, Image.Image): # An Image images.append(data) image_text_info.append(0) else: # A text texts_values.append(data) image_text_info.append(1) encoding = {} if len(texts_values): encoding = self.processor.tokenizer(texts_values, padding=padding, truncation=True, return_tensors="pt") if len(images): image_features = self.processor.image_processor(images, return_tensors="pt") encoding["pixel_values"] = image_features.pixel_values encoding["image_text_info"] = image_text_info return dict(encoding) @property def tokenizer(self) -> transformers.CLIPProcessor: return self.processor def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None: self.model.save_pretrained(output_path, safe_serialization=safe_serialization) self.processor.save_pretrained(output_path) @classmethod def load( cls, model_name_or_path: str, subfolder: str = "", token: bool | str | None = None, cache_folder: str | None = None, revision: str | None = None, local_files_only: bool = False, **kwargs, ) -> Self: local_path = cls.load_dir_path( model_name_or_path=model_name_or_path, subfolder=subfolder, token=token, cache_folder=cache_folder, revision=revision, local_files_only=local_files_only, ) return cls(local_path)
from __future__ import annotations try: from typing import Self except ImportError: from typing_extensions import Self import torch import transformers from PIL import Image from sentence_transformers.models.Asym import InputModule class CLIPModel(InputModule): save_in_root: bool = True def __init__(self, model_name: str = "openai/clip-vit-base-patch32", processor_name=None) -> None: super().__init__() if processor_name is None: processor_name = model_name self.model = transformers.CLIPModel.from_pretrained(model_name) self.processor = transformers.CLIPProcessor.from_pretrained(processor_name) def __repr__(self) -> str: return "CLIPModel()" @property def max_seq_length(self) -> int: return self.processor.tokenizer.model_max_length @max_seq_length.setter def max_seq_length(self, value: int) -> None: self.processor.tokenizer.model_max_length = value def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: image_embeds = [] text_embeds = [] if "pixel_values" in features: vision_outputs = self.model.vision_model(pixel_values=features["pixel_values"]) image_embeds = self.model.visual_projection(vision_outputs[1]) if "input_ids" in features: text_outputs = self.model.text_model( input_ids=features.get("input_ids"), attention_mask=features.get("attention_mask", None), position_ids=features.get("position_ids", None), output_attentions=features.get("output_attentions", None), output_hidden_states=features.get("output_hidden_states", None), ) text_embeds = self.model.text_projection(text_outputs[1]) sentence_embedding = [] image_features = iter(image_embeds) text_features = iter(text_embeds) for idx, input_type in enumerate(features["image_text_info"]): if input_type == 0: sentence_embedding.append(next(image_features)) else: sentence_embedding.append(next(text_features)) features["sentence_embedding"] = torch.stack(sentence_embedding).float() return features def tokenize(self, texts, padding: str | bool = True) -> dict[str, torch.Tensor]: images = [] texts_values = [] image_text_info = [] for idx, data in enumerate(texts): if isinstance(data, Image.Image): # An Image images.append(data) image_text_info.append(0) else: # A text texts_values.append(data) image_text_info.append(1) encoding = {} if len(texts_values): encoding = self.processor.tokenizer(texts_values, padding=padding, truncation=True, return_tensors="pt") if len(images): image_features = self.processor.image_processor(images, return_tensors="pt") encoding["pixel_values"] = image_features.pixel_values encoding["image_text_info"] = image_text_info return dict(encoding) @property def tokenizer(self) -> transformers.CLIPProcessor: return self.processor def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None: self.model.save_pretrained(output_path, safe_serialization=safe_serialization) self.processor.save_pretrained(output_path) @classmethod def load( cls, model_name_or_path: str, subfolder: str = "", token: bool | str | None = None, cache_folder: str | None = None, revision: str | None = None, local_files_only: bool = False, **kwargs, ) -> Self: local_path = cls.load_dir_path( model_name_or_path=model_name_or_path, subfolder=subfolder, token=token, cache_folder=cache_folder, revision=revision, local_files_only=local_files_only, ) return cls(local_path)
"""Code to help indexing data into a vectorstore. This package contains helper logic to help deal with indexing data into a vectorstore while avoiding duplicated content and over-writing content if it's unchanged. """ from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.indexing.api import IndexingResult, aindex, index from langchain_core.indexing.base import ( DeleteResponse, DocumentIndex, InMemoryRecordManager, RecordManager, UpsertResponse, ) __all__ = [ "aindex", "DeleteResponse", "DocumentIndex", "index", "IndexingResult", "InMemoryRecordManager", "RecordManager", "UpsertResponse", ] _dynamic_imports = { "aindex": "api", "index": "api", "IndexingResult": "api", "DeleteResponse": "base", "DocumentIndex": "base", "InMemoryRecordManager": "base", "RecordManager": "base", "UpsertResponse": "base", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""Code to help indexing data into a vectorstore. This package contains helper logic to help deal with indexing data into a vectorstore while avoiding duplicated content and over-writing content if it's unchanged. """ from langchain_core.indexing.api import IndexingResult, aindex, index from langchain_core.indexing.base import ( DeleteResponse, DocumentIndex, InMemoryRecordManager, RecordManager, UpsertResponse, ) __all__ = [ "aindex", "DeleteResponse", "DocumentIndex", "index", "IndexingResult", "InMemoryRecordManager", "RecordManager", "UpsertResponse", ]
#!/usr/bin/env python3 """This is the preprocessing script for HuBERT model training. The script includes: - File list creation - MFCC/HuBERT feature extraction - KMeans clustering model training - Pseudo-label generation """ import logging from argparse import ArgumentParser, RawTextHelpFormatter from pathlib import Path import torch from utils import ( create_tsv, dump_features, learn_kmeans, get_km_label, ) def _init_logger(debug=False): message_fmt = "%(levelname)5s: %(funcName)10s: %(message)s" if debug else "%(message)s" logging.basicConfig( level=logging.DEBUG if debug else logging.INFO, format=f"%(asctime)s: {message_fmt}", ) def _parse_args(): parser = ArgumentParser( description=__doc__, formatter_class=RawTextHelpFormatter, ) parser.add_argument("--debug", action="store_true", help="Enable debug log") parser.add_argument("--dataset", default="librispeech", type=str, choices=["librispeech", "librilight"]) parser.add_argument( "--root-dir", type=Path, help="The path to the directory where the directory ``LibriSpeech`` or ``LibriLight`` is stored.", ) parser.add_argument("--num-rank", default=5, type=int) parser.add_argument("--feat-type", default="mfcc", choices=["mfcc", "hubert"], type=str) parser.add_argument( "--layer-index", default=6, type=int, help="The layer index in HuBERT model for feature extraction. (``1`` means the first layer output)", ) parser.add_argument( "--checkpoint-path", default=None, type=Path, help="The model checkpoint of hubert_pretrain_base model.", ) parser.add_argument("--use-gpu", default=False, type=bool) parser.add_argument( "--exp-dir", type=Path, help="The directory to store the experiment outputs.", ) parser.add_argument( "--num-cluster", default=100, type=int, help="The number of clusters for KMeans clustering.", ) args = parser.parse_args() return args def main(args): _init_logger(args.debug) if not args.exp_dir.exists(): args.exp_dir.mkdir() if args.feat_type == "mfcc": data_dir = args.exp_dir / "data" / "mfcc" else: data_dir = args.exp_dir / "data" / f"{args.feat_type}_{args.layer_index}" data_dir.mkdir(parents=True, exist_ok=True) tsv_dir = data_dir / "tsv" feat_dir = data_dir / "feat" km_dir = data_dir / "km_model" label_dir = data_dir / "label" if args.use_gpu: device = torch.device("cuda") else: device = torch.device("cpu") # Create file lists for training and validation (optional) create_tsv(args.root_dir, tsv_dir) # Extract features for KMeans clustering if not feat_dir.exists(): feat_dir.mkdir() for split in ["train", "valid"]: for rank in range(1, args.num_rank + 1): dump_features( tsv_dir / f"{args.dataset}_{split}.tsv", feat_dir, split, rank, args.num_rank, device, args.feat_type, args.layer_index, args.checkpoint_path, 16_000, ) # Fit KMeans clustering model learn_kmeans( feat_dir, "train", args.num_rank, km_dir, args.num_cluster, ) # Predict labels for MFCC or HuBERT features for split in ["train", "valid"]: get_km_label( feat_dir, km_dir, label_dir, split, args.num_rank, device, ) if __name__ == "__main__": main(_parse_args())
#!/usr/bin/env python3 """This is the preprocessing script for HuBERT model training. The script includes: - File list creation - MFCC/HuBERT feature extraction - KMeans clustering model training - Pseudo-label generation """ import logging from argparse import ArgumentParser, RawTextHelpFormatter from multiprocessing import Pool from pathlib import Path import torch from utils import ( create_tsv, dump_features, learn_kmeans, get_km_label, ) def _init_logger(debug=False): message_fmt = "%(levelname)5s: %(funcName)10s: %(message)s" if debug else "%(message)s" logging.basicConfig( level=logging.DEBUG if debug else logging.INFO, format=f"%(asctime)s: {message_fmt}", ) def _parse_args(): parser = ArgumentParser( description=__doc__, formatter_class=RawTextHelpFormatter, ) parser.add_argument("--debug", action="store_true", help="Enable debug log") parser.add_argument("--dataset", default="librispeech", type=str, choices=["librispeech", "librilight"]) parser.add_argument( "--root-dir", type=Path, help="The path to the directory where the directory ``LibriSpeech`` or ``LibriLight`` is stored.", ) parser.add_argument("--num-rank", default=5, type=int) parser.add_argument("--feat-type", default="mfcc", choices=["mfcc", "hubert"], type=str) parser.add_argument( "--layer-index", default=6, type=int, help="The layer index in HuBERT model for feature extraction. (``1`` means the first layer output)", ) parser.add_argument( "--checkpoint-path", default=None, type=Path, help="The model checkpoint of hubert_pretrain_base model.", ) parser.add_argument("--use-gpu", default=False, type=bool) parser.add_argument( "--exp-dir", type=Path, help="The directory to store the experiment outputs.", ) parser.add_argument( "--num-cluster", default=100, type=int, help="The number of clusters for KMeans clustering.", ) args = parser.parse_args() return args def main(args): _init_logger(args.debug) if not args.exp_dir.exists(): args.exp_dir.mkdir() if args.feat_type == "mfcc": data_dir = args.exp_dir / "data" / "mfcc" else: data_dir = args.exp_dir / "data" / f"{args.feat_type}_{args.layer_index}" data_dir.mkdir(parents=True, exist_ok=True) tsv_dir = data_dir / "tsv" feat_dir = data_dir / "feat" km_dir = data_dir / "km_model" label_dir = data_dir / "label" if args.use_gpu: device = torch.device("cuda") else: device = torch.device("cpu") # Create file lists for training and validation (optional) create_tsv(args.root_dir, tsv_dir) # Extract features for KMeans clustering if not feat_dir.exists(): feat_dir.mkdir() for split in ["train", "valid"]: p = Pool(args.num_rank) inputs = [ ( tsv_dir / f"{args.dataset}_{split}.tsv", feat_dir, split, rank, args.num_rank, device, args.feat_type, args.layer_index, args.checkpoint_path, 16_000, ) for rank in range(1, args.num_rank + 1) ] _ = p.starmap(dump_features, inputs) p.close() p.join() # Fit KMeans clustering model learn_kmeans( feat_dir, "train", args.num_rank, km_dir, args.num_cluster, ) # Predict labels for MFCC or HuBERT features for split in ["train", "valid"]: get_km_label( feat_dir, km_dir, label_dir, split, args.num_rank, device, ) if __name__ == "__main__": main(_parse_args())
# Owner(s): ["module: inductor"] import ctypes import torch from torch._inductor.async_compile import AsyncCompile from torch._inductor.codecache import CUDACodeCache from torch._inductor.codegen.cuda.cuda_env import nvcc_exist from torch._inductor.exc import CUDACompileError from torch._inductor.test_case import TestCase as InductorTestCase from torch._inductor.utils import fresh_cache _SOURCE_CODE = r""" #include <stdio.h> __global__ void saxpy_device(int n, float a, float *x, float *y) { int i = blockIdx.x*blockDim.x + threadIdx.x; if (i < n) y[i] = a*x[i] + y[i]; } extern "C" { __attribute__((__visibility__("default"))) int saxpy(int n, float a, float *x, float *y) { // Perform SAXPY saxpy_device<<<(n+255)/256, 256>>>(n, a, x, y); return 0; } } """ class TestCUDACodeCache(InductorTestCase): def test_cuda_load(self): with fresh_cache(): # Test both .o and .so compilation. ( object_file_path, object_hash_key, source_code_path0, ) = CUDACodeCache.compile(_SOURCE_CODE, "o") dll_wrapper, so_hash_key, source_code_path1 = CUDACodeCache.load( _SOURCE_CODE, "so" ) self.assertEqual(source_code_path0, source_code_path1) self.assertEqual(object_hash_key, so_hash_key) # Test load and call functions in .so. x = torch.rand(10).float().cuda() y = torch.rand(10).float().cuda() a = 5.0 expected_y = a * x + y dll_wrapper.saxpy( ctypes.c_int(10), ctypes.c_float(a), ctypes.c_void_p(x.data_ptr()), ctypes.c_void_p(y.data_ptr()), ) torch.testing.assert_close(y, expected_y) def test_compilation_error(self): with fresh_cache(): error_source_code = _SOURCE_CODE.replace("saxpy_device", "saxpy_wrong", 1) with self.assertRaises(CUDACompileError): CUDACodeCache.compile(error_source_code, "o") def test_async_compile(self): with fresh_cache(): async_compile = AsyncCompile() compiled_res = async_compile.cuda(_SOURCE_CODE, "so") async_compile.wait(globals()) # Test load and call functions in .so. x = torch.rand(5).float().cuda() y = torch.rand(5).float().cuda() a = 2.0 expected_y = a * x + y compiled_res.result().saxpy( ctypes.c_int(5), ctypes.c_float(a), ctypes.c_void_p(x.data_ptr()), ctypes.c_void_p(y.data_ptr()), ) torch.testing.assert_close(y, expected_y) if __name__ == "__main__": from torch._inductor.test_case import run_tests if nvcc_exist(): run_tests("cuda")
# Owner(s): ["module: inductor"] import ctypes import unittest import torch from torch._inductor import config from torch._inductor.async_compile import AsyncCompile from torch._inductor.codecache import CUDACodeCache from torch._inductor.codegen.cuda.cuda_env import nvcc_exist from torch._inductor.exc import CUDACompileError from torch._inductor.test_case import TestCase as InductorTestCase from torch._inductor.utils import fresh_cache _SOURCE_CODE = r""" #include <stdio.h> __global__ void saxpy_device(int n, float a, float *x, float *y) { int i = blockIdx.x*blockDim.x + threadIdx.x; if (i < n) y[i] = a*x[i] + y[i]; } extern "C" { __attribute__((__visibility__("default"))) int saxpy(int n, float a, float *x, float *y) { // Perform SAXPY saxpy_device<<<(n+255)/256, 256>>>(n, a, x, y); return 0; } } """ @unittest.skipIf(config.is_fbcode(), "fbcode requires different CUDA_HOME setup") class TestCUDACodeCache(InductorTestCase): def test_cuda_load(self): with fresh_cache(): # Test both .o and .so compilation. ( object_file_path, object_hash_key, source_code_path0, ) = CUDACodeCache.compile(_SOURCE_CODE, "o") dll_wrapper, so_hash_key, source_code_path1 = CUDACodeCache.load( _SOURCE_CODE, "so" ) self.assertNotEqual(source_code_path0, source_code_path1) self.assertNotEqual(object_hash_key, so_hash_key) # Test load and call functions in .so. x = torch.rand(10).float().cuda() y = torch.rand(10).float().cuda() a = 5.0 expected_y = a * x + y dll_wrapper.saxpy( ctypes.c_int(10), ctypes.c_float(a), ctypes.c_void_p(x.data_ptr()), ctypes.c_void_p(y.data_ptr()), ) torch.testing.assert_close(y, expected_y) def test_compilation_error(self): with fresh_cache(): error_source_code = _SOURCE_CODE.replace("saxpy_device", "saxpy_wrong", 1) with self.assertRaises(CUDACompileError): CUDACodeCache.compile(error_source_code, "o") def test_async_compile(self): with fresh_cache(): async_compile = AsyncCompile() compiled_res = async_compile.cuda(_SOURCE_CODE, "so") async_compile.wait(globals()) # Test load and call functions in .so. x = torch.rand(5).float().cuda() y = torch.rand(5).float().cuda() a = 2.0 expected_y = a * x + y compiled_res.result().saxpy( ctypes.c_int(5), ctypes.c_float(a), ctypes.c_void_p(x.data_ptr()), ctypes.c_void_p(y.data_ptr()), ) torch.testing.assert_close(y, expected_y) if __name__ == "__main__": from torch._inductor.test_case import run_tests if nvcc_exist(): run_tests("cuda")
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class AutoAssign(SingleStageDetector): """Implementation of `AutoAssign: Differentiable Label Assignment for Dense Object Detection <https://arxiv.org/abs/2007.03496>`_.""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, preprocess_cfg: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, preprocess_cfg=preprocess_cfg, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class AutoAssign(SingleStageDetector): """Implementation of `AutoAssign: Differentiable Label Assignment for Dense Object Detection <https://arxiv.org/abs/2007.03496>`_.""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None): super(AutoAssign, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained)
from __future__ import annotations from typing import Any, Optional, Union import torch from ._datapoint import Datapoint class Video(Datapoint): """[BETA] :class:`torch.Tensor` subclass for videos. Args: data (tensor-like): Any data that can be turned into a tensor with :func:`torch.as_tensor`. dtype (torch.dtype, optional): Desired data type of the bounding box. If omitted, will be inferred from ``data``. device (torch.device, optional): Desired device of the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the device is taken from it. Otherwise, the bounding box is constructed on the CPU. requires_grad (bool, optional): Whether autograd should record operations on the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``. """ def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> Video: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) if data.ndim < 4: raise ValueError return tensor.as_subclass(cls) def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override] return self._make_repr()
from __future__ import annotations from typing import Any, Optional, Union import torch from ._datapoint import Datapoint class Video(Datapoint): """[BETA] :class:`torch.Tensor` subclass for videos. Args: data (tensor-like): Any data that can be turned into a tensor with :func:`torch.as_tensor`. dtype (torch.dtype, optional): Desired data type of the bounding box. If omitted, will be inferred from ``data``. device (torch.device, optional): Desired device of the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the device is taken from it. Otherwise, the bounding box is constructed on the CPU. requires_grad (bool, optional): Whether autograd should record operations on the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``. """ def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> Video: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) if data.ndim < 4: raise ValueError return tensor.as_subclass(cls) def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override] return self._make_repr() _VideoType = Union[torch.Tensor, Video] _VideoTypeJIT = torch.Tensor _TensorVideoType = Union[torch.Tensor, Video] _TensorVideoTypeJIT = torch.Tensor
from __future__ import annotations from collections.abc import Iterable import torch from torch import Tensor, nn from sentence_transformers import SentenceTransformer, util class DistillKLDivLoss(nn.Module): # TODO def __init__(self, model: SentenceTransformer, similarity_fct=util.pairwise_dot_score) -> None: super().__init__() self.model = model self.similarity_fct = similarity_fct self.loss_fct = nn.KLDivLoss(reduction="none") def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(embeddings, labels) def compute_loss_from_embeddings(self, embeddings: list[Tensor], labels: Tensor) -> Tensor: embeddings_query = embeddings[0] embeddings_pos = embeddings[1] embeddings_negs = embeddings[2:] # Compute student scores student_scores_pos = self.similarity_fct(embeddings_query, embeddings_pos) if len(embeddings_negs) == 1: # Single negative case student_scores_neg = self.similarity_fct(embeddings_query, embeddings_negs[0]) else: # Multiple negatives case student_scores_neg = torch.stack( [self.similarity_fct(embeddings_query, neg) for neg in embeddings_negs], dim=1, ) # Teacher scores teacher_pos_scores = labels[:, 0].unsqueeze(1) teacher_neg_scores = labels[:, 1:] # Prepare student scores to match teacher scores shape student_scores_pos = student_scores_pos.unsqueeze(1) # Create log probabilities for student scores if len(embeddings_negs) == 1: student_scores_neg = student_scores_neg.unsqueeze(1) student_scores = torch.cat([student_scores_pos, student_scores_neg], dim=1) else: student_scores = torch.cat([student_scores_pos, student_scores_neg], dim=1) student_log_probs = torch.log_softmax(student_scores, dim=1) # Create probabilities for teacher scores teacher_scores = torch.cat([teacher_pos_scores, teacher_neg_scores], dim=1) teacher_probs = torch.softmax(teacher_scores, dim=1) # KL Divergence loss = self.loss_fct(student_log_probs, teacher_probs).sum(dim=1).mean() return loss @property def citation(self) -> str: return """ @misc{lin2020distillingdenserepresentationsranking, title={Distilling Dense Representations for Ranking using Tightly-Coupled Teachers}, author={Sheng-Chieh Lin and Jheng-Hong Yang and Jimmy Lin}, year={2020}, eprint={2010.11386}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2010.11386}, } """
from __future__ import annotations from collections.abc import Iterable import torch from torch import Tensor, nn from sentence_transformers import SentenceTransformer, util class DistillKLDivLoss(nn.Module): # TODO def __init__(self, model: SentenceTransformer, similarity_fct=util.pairwise_dot_score) -> None: super().__init__() self.model = model self.similarity_fct = similarity_fct self.loss_fct = nn.KLDivLoss(reduction="none") def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(embeddings, labels) def compute_loss_from_embeddings(self, embeddings: list[Tensor], labels: Tensor) -> Tensor: embeddings_query = embeddings[0] embeddings_pos = embeddings[1] embeddings_neg = embeddings[2] # Compute student scores student_scores_pos = self.similarity_fct(embeddings_query, embeddings_pos) student_scores_neg = self.similarity_fct(embeddings_query, embeddings_neg) # Pack into one tensor and apply log_softmax student_scores = torch.stack([student_scores_pos, student_scores_neg], dim=1) student_log_probs = torch.log_softmax(student_scores, dim=1) # Labels contain teacher similarity scores (already computed before training) # We expect labels to contain the teacher_pos_score and teacher_neg_score teacher_pos_scores = labels[:, 0] teacher_neg_scores = labels[:, 1] teacher_scores = torch.stack([teacher_pos_scores, teacher_neg_scores], dim=1) teacher_probs = torch.softmax(teacher_scores, dim=1) # KL Divergence loss = self.loss_fct(student_log_probs, teacher_probs).sum(dim=1).mean() return loss @property def citation(self) -> str: return """ @misc{lin2020distillingdenserepresentationsranking, title={Distilling Dense Representations for Ranking using Tightly-Coupled Teachers}, author={Sheng-Chieh Lin and Jheng-Hong Yang and Jimmy Lin}, year={2020}, eprint={2010.11386}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2010.11386}, } """
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import mmcv import numpy as np from mmcv import Config, DictAction from mmdet.datasets.builder import build_dataset from mmdet.models.utils import mask2ndarray from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='Browse a dataset') parser.add_argument('config', help='train config file path') parser.add_argument( '--output-dir', default=None, type=str, help='If there is no display interface, you can save it') parser.add_argument('--not-show', default=False, action='store_true') parser.add_argument( '--show-interval', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # register all modules in mmdet into the registries register_all_modules() dataset = build_dataset(cfg.train_dataloader.dataset) visualizer = VISUALIZERS.build(cfg.visualizer) visualizer.dataset_meta = dataset.metainfo progress_bar = mmcv.ProgressBar(len(dataset)) for item in dataset: img = item['inputs'].permute(1, 2, 0).numpy() data_sample = item['data_sample'].numpy() gt_instances = data_sample.gt_instances img_path = osp.basename(item['data_sample'].img_path) out_file = osp.join( args.output_dir, osp.basename(img_path)) if args.output_dir is not None else None img = img[..., [2, 1, 0]] # bgr to rgb gt_masks = gt_instances.get('masks', None) if gt_masks is not None: masks = mask2ndarray(gt_masks) gt_instances.masks = masks.astype(np.bool) data_sample.gt_instances = gt_instances visualizer.add_datasample( osp.basename(img_path), img, data_sample, show=not args.not_show, wait_time=args.show_interval, out_file=out_file) progress_bar.update() if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import mmcv import numpy as np from mmcv import Config, DictAction from mmdet.core.utils import mask2ndarray from mmdet.datasets.builder import build_dataset from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='Browse a dataset') parser.add_argument('config', help='train config file path') parser.add_argument( '--output-dir', default=None, type=str, help='If there is no display interface, you can save it') parser.add_argument('--not-show', default=False, action='store_true') parser.add_argument( '--show-interval', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # register all modules in mmdet into the registries register_all_modules() dataset = build_dataset(cfg.train_dataloader.dataset) visualizer = VISUALIZERS.build(cfg.visualizer) visualizer.dataset_meta = dataset.metainfo progress_bar = mmcv.ProgressBar(len(dataset)) for item in dataset: img = item['inputs'].permute(1, 2, 0).numpy() data_sample = item['data_sample'].numpy() gt_instances = data_sample.gt_instances img_path = osp.basename(item['data_sample'].img_path) out_file = osp.join( args.output_dir, osp.basename(img_path)) if args.output_dir is not None else None img = img[..., [2, 1, 0]] # bgr to rgb gt_masks = gt_instances.get('masks', None) if gt_masks is not None: masks = mask2ndarray(gt_masks) gt_instances.masks = masks.astype(np.bool) data_sample.gt_instances = gt_instances visualizer.add_datasample( osp.basename(img_path), img, data_sample, show=not args.not_show, wait_time=args.show_interval, out_file=out_file) progress_bar.update() if __name__ == '__main__': main()
"""Create a key-value store for any langchain serializable object.""" from typing import Callable, Optional from langchain_core.documents import Document from langchain_core.load import Serializable, dumps, loads from langchain_core.stores import BaseStore, ByteStore from langchain.storage.encoder_backed import EncoderBackedStore def _dump_as_bytes(obj: Serializable) -> bytes: """Return a bytes representation of a document.""" return dumps(obj).encode("utf-8") def _dump_document_as_bytes(obj: Document) -> bytes: """Return a bytes representation of a document.""" if not isinstance(obj, Document): msg = "Expected a Document instance" raise TypeError(msg) return dumps(obj).encode("utf-8") def _load_document_from_bytes(serialized: bytes) -> Document: """Return a document from a bytes representation.""" obj = loads(serialized.decode("utf-8")) if not isinstance(obj, Document): msg = f"Expected a Document instance. Got {type(obj)}" raise TypeError(msg) return obj def _load_from_bytes(serialized: bytes) -> Serializable: """Return a document from a bytes representation.""" return loads(serialized.decode("utf-8")) def _identity(x: str) -> str: """Return the same object.""" return x # PUBLIC API def create_lc_store( store: ByteStore, *, key_encoder: Optional[Callable[[str], str]] = None, ) -> BaseStore[str, Serializable]: """Create a store for langchain serializable objects from a bytes store. Args: store: A bytes store to use as the underlying store. key_encoder: A function to encode keys; if None uses identity function. Returns: A key-value store for documents. """ return EncoderBackedStore( store, key_encoder or _identity, _dump_as_bytes, _load_from_bytes, ) def create_kv_docstore( store: ByteStore, *, key_encoder: Optional[Callable[[str], str]] = None, ) -> BaseStore[str, Document]: """Create a store for langchain Document objects from a bytes store. This store does run time type checking to ensure that the values are Document objects. Args: store: A bytes store to use as the underlying store. key_encoder: A function to encode keys; if None uses identity function. Returns: A key-value store for documents. """ return EncoderBackedStore( store, key_encoder or _identity, _dump_document_as_bytes, _load_document_from_bytes, )
"""Create a key-value store for any langchain serializable object.""" from typing import Callable, Optional from langchain_core.documents import Document from langchain_core.load import Serializable, dumps, loads from langchain_core.stores import BaseStore, ByteStore from langchain.storage.encoder_backed import EncoderBackedStore def _dump_as_bytes(obj: Serializable) -> bytes: """Return a bytes representation of a document.""" return dumps(obj).encode("utf-8") def _dump_document_as_bytes(obj: Document) -> bytes: """Return a bytes representation of a document.""" if not isinstance(obj, Document): raise TypeError("Expected a Document instance") return dumps(obj).encode("utf-8") def _load_document_from_bytes(serialized: bytes) -> Document: """Return a document from a bytes representation.""" obj = loads(serialized.decode("utf-8")) if not isinstance(obj, Document): raise TypeError(f"Expected a Document instance. Got {type(obj)}") return obj def _load_from_bytes(serialized: bytes) -> Serializable: """Return a document from a bytes representation.""" return loads(serialized.decode("utf-8")) def _identity(x: str) -> str: """Return the same object.""" return x # PUBLIC API def create_lc_store( store: ByteStore, *, key_encoder: Optional[Callable[[str], str]] = None, ) -> BaseStore[str, Serializable]: """Create a store for langchain serializable objects from a bytes store. Args: store: A bytes store to use as the underlying store. key_encoder: A function to encode keys; if None uses identity function. Returns: A key-value store for documents. """ return EncoderBackedStore( store, key_encoder or _identity, _dump_as_bytes, _load_from_bytes, ) def create_kv_docstore( store: ByteStore, *, key_encoder: Optional[Callable[[str], str]] = None, ) -> BaseStore[str, Document]: """Create a store for langchain Document objects from a bytes store. This store does run time type checking to ensure that the values are Document objects. Args: store: A bytes store to use as the underlying store. key_encoder: A function to encode keys; if None uses identity function. Returns: A key-value store for documents. """ return EncoderBackedStore( store, key_encoder or _identity, _dump_document_as_bytes, _load_document_from_bytes, )
from typing import Any, Dict import torch from torchvision.transforms.v2 import functional as F, Transform class UniformTemporalSubsample(Transform): """Uniformly subsample ``num_samples`` indices from the temporal dimension of the video. Videos are expected to be of shape ``[..., T, C, H, W]`` where ``T`` denotes the temporal dimension. When ``num_samples`` is larger than the size of temporal dimension of the video, it will sample frames based on nearest neighbor interpolation. Args: num_samples (int): The number of equispaced samples to be selected """ _transformed_types = (torch.Tensor,) def __init__(self, num_samples: int): super().__init__() self.num_samples = num_samples def transform(self, inpt: Any, params: Dict[str, Any]) -> Any: return self._call_kernel(F.uniform_temporal_subsample, inpt, self.num_samples)
from typing import Any, Dict import torch from torchvision.transforms.v2 import functional as F, Transform class UniformTemporalSubsample(Transform): """Uniformly subsample ``num_samples`` indices from the temporal dimension of the video. Videos are expected to be of shape ``[..., T, C, H, W]`` where ``T`` denotes the temporal dimension. When ``num_samples`` is larger than the size of temporal dimension of the video, it will sample frames based on nearest neighbor interpolation. Args: num_samples (int): The number of equispaced samples to be selected """ _transformed_types = (torch.Tensor,) def __init__(self, num_samples: int): super().__init__() self.num_samples = num_samples def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: return self._call_kernel(F.uniform_temporal_subsample, inpt, self.num_samples)
# Copyright (c) OpenMMLab. All rights reserved. import unittest import torch from mmengine.config import Config from mmdet.data_elements import DetDataSample from mmdet.models.seg_heads.panoptic_fusion_heads import MaskFormerFusionHead class TestMaskFormerFusionHead(unittest.TestCase): def test_loss(self): head = MaskFormerFusionHead(num_things_classes=2, num_stuff_classes=2) result = head.loss() self.assertTrue(not head.with_loss) self.assertDictEqual(result, dict()) def test_predict(self): mask_cls_results = torch.rand((2, 10, 5)) mask_pred_results = torch.rand((2, 10, 32, 32)) batch_data_samples = [ DetDataSample( metainfo={ 'batch_input_shape': (32, 32), 'img_shape': (32, 30), 'ori_shape': (30, 30) }), DetDataSample( metainfo={ 'batch_input_shape': (32, 32), 'img_shape': (32, 30), 'ori_shape': (29, 30) }) ] # get panoptic and instance segmentation results test_cfg = Config( dict( panoptic_on=True, semantic_on=False, instance_on=True, max_per_image=10, object_mask_thr=0.3, iou_thr=0.3, filter_low_score=False)) head = MaskFormerFusionHead( num_things_classes=2, num_stuff_classes=2, test_cfg=test_cfg) results = head.predict( mask_cls_results, mask_pred_results, batch_data_samples, rescale=False) for i in range(len(results)): self.assertEqual(results[i]['pan_results'].sem_seg.shape[-2:], batch_data_samples[i].img_shape) self.assertEqual(results[i]['ins_results'].masks.shape[-2:], batch_data_samples[i].img_shape) results = head.predict( mask_cls_results, mask_pred_results, batch_data_samples, rescale=True) for i in range(len(results)): self.assertEqual(results[i]['pan_results'].sem_seg.shape[-2:], batch_data_samples[i].ori_shape) self.assertEqual(results[i]['ins_results'].masks.shape[-2:], batch_data_samples[i].ori_shape) # get empty results test_cfg = Config( dict( panoptic_on=False, semantic_on=False, instance_on=False, max_per_image=10, object_mask_thr=0.3, iou_thr=0.3, filter_low_score=False)) head = MaskFormerFusionHead( num_things_classes=2, num_stuff_classes=2, test_cfg=test_cfg) results = head.predict( mask_cls_results, mask_pred_results, batch_data_samples, rescale=True) for i in range(len(results)): self.assertEqual(results[i], dict()) # semantic segmentation is not supported test_cfg = Config( dict( panoptic_on=False, semantic_on=True, instance_on=False, max_per_image=10, object_mask_thr=0.3, iou_thr=0.3, filter_low_score=False)) head = MaskFormerFusionHead( num_things_classes=2, num_stuff_classes=2, test_cfg=test_cfg) with self.assertRaises(AssertionError): results = head.predict( mask_cls_results, mask_pred_results, batch_data_samples, rescale=True)
# Copyright (c) OpenMMLab. All rights reserved. import unittest import torch from mmengine.config import Config from mmdet.core.data_structures import DetDataSample from mmdet.models.seg_heads.panoptic_fusion_heads import MaskFormerFusionHead class TestMaskFormerFusionHead(unittest.TestCase): def test_loss(self): head = MaskFormerFusionHead(num_things_classes=2, num_stuff_classes=2) result = head.loss() self.assertTrue(not head.with_loss) self.assertDictEqual(result, dict()) def test_predict(self): mask_cls_results = torch.rand((2, 10, 5)) mask_pred_results = torch.rand((2, 10, 32, 32)) batch_data_samples = [ DetDataSample( metainfo={ 'batch_input_shape': (32, 32), 'img_shape': (32, 30), 'ori_shape': (30, 30) }), DetDataSample( metainfo={ 'batch_input_shape': (32, 32), 'img_shape': (32, 30), 'ori_shape': (29, 30) }) ] # get panoptic and instance segmentation results test_cfg = Config( dict( panoptic_on=True, semantic_on=False, instance_on=True, max_per_image=10, object_mask_thr=0.3, iou_thr=0.3, filter_low_score=False)) head = MaskFormerFusionHead( num_things_classes=2, num_stuff_classes=2, test_cfg=test_cfg) results = head.predict( mask_cls_results, mask_pred_results, batch_data_samples, rescale=False) for i in range(len(results)): self.assertEqual(results[i]['pan_results'].sem_seg.shape[-2:], batch_data_samples[i].img_shape) self.assertEqual(results[i]['ins_results'].masks.shape[-2:], batch_data_samples[i].img_shape) results = head.predict( mask_cls_results, mask_pred_results, batch_data_samples, rescale=True) for i in range(len(results)): self.assertEqual(results[i]['pan_results'].sem_seg.shape[-2:], batch_data_samples[i].ori_shape) self.assertEqual(results[i]['ins_results'].masks.shape[-2:], batch_data_samples[i].ori_shape) # get empty results test_cfg = Config( dict( panoptic_on=False, semantic_on=False, instance_on=False, max_per_image=10, object_mask_thr=0.3, iou_thr=0.3, filter_low_score=False)) head = MaskFormerFusionHead( num_things_classes=2, num_stuff_classes=2, test_cfg=test_cfg) results = head.predict( mask_cls_results, mask_pred_results, batch_data_samples, rescale=True) for i in range(len(results)): self.assertEqual(results[i], dict()) # semantic segmentation is not supported test_cfg = Config( dict( panoptic_on=False, semantic_on=True, instance_on=False, max_per_image=10, object_mask_thr=0.3, iou_thr=0.3, filter_low_score=False)) head = MaskFormerFusionHead( num_things_classes=2, num_stuff_classes=2, test_cfg=test_cfg) with self.assertRaises(AssertionError): results = head.predict( mask_cls_results, mask_pred_results, batch_data_samples, rescale=True)
import os from typing import Optional import pytest from docarray import BaseDoc, DocList from docarray.documents import ImageDoc from tests import TOYDATA_DIR @pytest.fixture() def nested_doc_cls(): class MyDoc(BaseDoc): count: Optional[int] text: str class MyDocNested(MyDoc): image: ImageDoc image2: ImageDoc return MyDocNested def test_to_from_csv(tmpdir, nested_doc_cls): da = DocList[nested_doc_cls]( [ nested_doc_cls( count=0, text='hello', image=ImageDoc(url='aux.png'), image2=ImageDoc(url='aux.png'), ), nested_doc_cls(text='hello world', image=ImageDoc(), image2=ImageDoc()), ] ) tmp_file = str(tmpdir / 'tmp.csv') da.to_csv(tmp_file) assert os.path.isfile(tmp_file) da_from = DocList[nested_doc_cls].from_csv(tmp_file) for doc1, doc2 in zip(da, da_from): assert doc1 == doc2 def test_from_csv_nested(nested_doc_cls): da = DocList[nested_doc_cls].from_csv( file_path=str(TOYDATA_DIR / 'docs_nested.csv') ) assert len(da) == 3 for i, doc in enumerate(da): assert doc.count.__class__ == int assert doc.count == int(f'{i}{i}{i}') assert doc.text.__class__ == str assert doc.text == f'hello {i}' assert doc.image.__class__ == ImageDoc assert doc.image.tensor is None assert doc.image.embedding is None assert doc.image.bytes_ is None assert doc.image2.__class__ == ImageDoc assert doc.image2.tensor is None assert doc.image2.embedding is None assert doc.image2.bytes_ is None assert da[0].image2.url == 'image_10.png' assert da[1].image2.url is None assert da[2].image2.url is None @pytest.fixture() def nested_doc(): class Inner(BaseDoc): img: Optional[ImageDoc] class Middle(BaseDoc): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDoc): img: Optional[ImageDoc] middle: Optional[Middle] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())) ) return doc def test_from_csv_without_schema_raise_exception(): with pytest.raises(TypeError, match='no document schema defined'): DocList.from_csv(file_path=str(TOYDATA_DIR / 'docs_nested.csv')) def test_from_csv_with_wrong_schema_raise_exception(nested_doc): with pytest.raises(ValueError, match='Column names do not match the schema'): DocList[nested_doc.__class__].from_csv(file_path=str(TOYDATA_DIR / 'docs.csv')) def test_from_remote_csv_file(): remote_url = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/books.csv?raw=true' class Book(BaseDoc): title: str author: str year: int books = DocList[Book].from_csv(file_path=remote_url) assert len(books) == 3
import os from typing import Optional import pytest from docarray import BaseDoc, DocList from docarray.documents import ImageDoc from tests import TOYDATA_DIR @pytest.fixture() def nested_doc_cls(): class MyDoc(BaseDoc): count: Optional[int] text: str class MyDocNested(MyDoc): image: ImageDoc image2: ImageDoc return MyDocNested def test_to_from_csv(tmpdir, nested_doc_cls): da = DocList[nested_doc_cls]( [ nested_doc_cls( count=0, text='hello', image=ImageDoc(url='aux.png'), image2=ImageDoc(url='aux.png'), ), nested_doc_cls(text='hello world', image=ImageDoc(), image2=ImageDoc()), ] ) tmp_file = str(tmpdir / 'tmp.csv') da.to_csv(tmp_file) assert os.path.isfile(tmp_file) da_from = DocList[nested_doc_cls].from_csv(tmp_file) for doc1, doc2 in zip(da, da_from): assert doc1 == doc2 def test_from_csv_nested(nested_doc_cls): da = DocList[nested_doc_cls].from_csv( file_path=str(TOYDATA_DIR / 'docs_nested.csv') ) assert len(da) == 3 for i, doc in enumerate(da): assert doc.count.__class__ == int assert doc.count == int(f'{i}{i}{i}') assert doc.text.__class__ == str assert doc.text == f'hello {i}' assert doc.image.__class__ == ImageDoc assert doc.image.tensor is None assert doc.image.embedding is None assert doc.image.bytes_ is None assert doc.image2.__class__ == ImageDoc assert doc.image2.tensor is None assert doc.image2.embedding is None assert doc.image2.bytes_ is None assert da[0].image2.url == 'image_10.png' assert da[1].image2.url is None assert da[2].image2.url is None @pytest.fixture() def nested_doc(): class Inner(BaseDoc): img: Optional[ImageDoc] class Middle(BaseDoc): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDoc): img: Optional[ImageDoc] middle: Optional[Middle] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())) ) return doc def test_from_csv_without_schema_raise_exception(): with pytest.raises(TypeError, match='no document schema defined'): DocList.from_csv(file_path=str(TOYDATA_DIR / 'docs_nested.csv')) def test_from_csv_with_wrong_schema_raise_exception(nested_doc): with pytest.raises(ValueError, match='Column names do not match the schema'): DocList[nested_doc.__class__].from_csv(file_path=str(TOYDATA_DIR / 'docs.csv')) def test_from_remote_csv_file(): remote_url = 'https://github.com/docarray/docarray/blob/feat-csv-from-remote-file/tests/toydata/books.csv?raw=true' class Book(BaseDoc): title: str author: str year: int books = DocList[Book].from_csv(file_path=remote_url) assert len(books) == 3
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. CT will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_ct_from_file.py path/to/sentences.txt """ import gzip import logging import math import sys from datetime import datetime import tqdm from torch.utils.data import DataLoader from sentence_transformers import LoggingHandler, SentenceTransformer, losses, models #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout ## Training parameters model_name = "distilbert-base-uncased" batch_size = 128 num_epochs = 1 max_seq_length = 75 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print("Run this script with: python {} path/to/sentences.txt".format(sys.argv[0])) exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_ct-improved{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Read the train corpus ################# train_sentences = [] with gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open( filepath, encoding="utf8" ) as fIn: for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_sentences.append(line) logging.info("Train sentences: {}".format(len(train_sentences))) # A regular torch DataLoader and as loss we use losses.ContrastiveTensionLossInBatchNegatives train_dataloader = DataLoader(train_sentences, batch_size=batch_size, shuffle=True, drop_last=True) train_loss = losses.ContrastiveTensionLossInBatchNegatives(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=num_epochs, warmup_steps=warmup_steps, optimizer_params={"lr": 5e-5}, checkpoint_path=model_output_path, show_progress_bar=True, use_amp=False, # Set to True, if your GPU supports FP16 cores )
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. CT will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_ct_from_file.py path/to/sentences.txt """ import math from sentence_transformers import models, losses from sentence_transformers import LoggingHandler, SentenceTransformer import logging from datetime import datetime import gzip import sys import tqdm from torch.utils.data import DataLoader #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout ## Training parameters model_name = 'distilbert-base-uncased' batch_size = 128 num_epochs = 1 max_seq_length = 75 #Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print("Run this script with: python {} path/to/sentences.txt".format(sys.argv[0])) exit() filepath = sys.argv[1] # Save path to store our model output_name = '' if len(sys.argv) >= 3: output_name = "-"+sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = 'output/train_ct-improved{}-{}'.format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Read the train corpus ################# train_sentences = [] with gzip.open(filepath, 'rt', encoding='utf8') if filepath.endswith('.gz') else open(filepath, encoding='utf8') as fIn: for line in tqdm.tqdm(fIn, desc='Read file'): line = line.strip() if len(line) >= 10: train_sentences.append(line) logging.info("Train sentences: {}".format(len(train_sentences))) # A regular torch DataLoader and as loss we use losses.ContrastiveTensionLossInBatchNegatives train_dataloader = DataLoader(train_sentences, batch_size=batch_size, shuffle=True, drop_last=True) train_loss = losses.ContrastiveTensionLossInBatchNegatives(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=num_epochs, warmup_steps=warmup_steps, optimizer_params={'lr': 5e-5}, checkpoint_path=model_output_path, show_progress_bar=True, use_amp=False # Set to True, if your GPU supports FP16 cores )
from typing import Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoNdArray') @_register_proto(proto_type_name='video_ndarray') class VideoNdArray(NdArray, VideoTensorMixin): """ Subclass of [`NdArray`][docarray.typing.NdArray], to represent a video tensor. Adds video-specific features to the tensor. --- ```python from typing import Optional import numpy as np from pydantic import parse_obj_as from docarray import BaseDoc from docarray.typing import VideoNdArray, VideoUrl class MyVideoDoc(BaseDoc): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoNdArray] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=np.random.random((100, 224, 224, 3)), ) doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true', ) doc_2.video_tensor = parse_obj_as(VideoNdArray, doc_2.url.load().video) # doc_2.video_tensor.save(file_path='/tmp/file_2.mp4') ``` --- """ @classmethod def _docarray_validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], ) -> T: tensor = super()._docarray_validate(value=value) return cls.validate_shape(value=tensor)
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoNdArray') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_ndarray') class VideoNdArray(NdArray, VideoTensorMixin): """ Subclass of [`NdArray`][docarray.typing.NdArray], to represent a video tensor. Adds video-specific features to the tensor. --- ```python from typing import Optional import numpy as np from pydantic import parse_obj_as from docarray import BaseDoc from docarray.typing import VideoNdArray, VideoUrl class MyVideoDoc(BaseDoc): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoNdArray] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=np.random.random((100, 224, 224, 3)), ) doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true', ) doc_2.video_tensor = parse_obj_as(VideoNdArray, doc_2.url.load().video) # doc_2.video_tensor.save(file_path='/tmp/file_2.mp4') ``` --- """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_owlvit import * from .feature_extraction_owlvit import * from .image_processing_owlvit import * from .image_processing_owlvit_fast import * from .modeling_owlvit import * from .processing_owlvit import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_owlvit import * from .feature_extraction_owlvit import * from .image_processing_owlvit import * from .modeling_owlvit import * from .processing_owlvit import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
from typing import Optional import pandas as pd import pytest from docarray import BaseDoc, DocList from docarray.documents import ImageDoc @pytest.fixture() def nested_doc_cls(): class MyDoc(BaseDoc): count: Optional[int] text: str class MyDocNested(MyDoc): image: ImageDoc return MyDocNested def test_to_from_pandas_df(nested_doc_cls): da = DocList[nested_doc_cls]( [ nested_doc_cls( count=0, text='hello', image=ImageDoc(url='aux.png'), ), nested_doc_cls(text='hello world', image=ImageDoc()), ] ) df = da.to_dataframe() assert isinstance(df, pd.DataFrame) assert len(df) == 2 assert ( df.columns == [ 'id', 'count', 'text', 'image__id', 'image__url', 'image__tensor', 'image__embedding', 'image__bytes_', ] ).all() da_from_df = DocList[nested_doc_cls].from_dataframe(df) for doc1, doc2 in zip(da, da_from_df): assert doc1 == doc2 @pytest.fixture() def nested_doc(): class Inner(BaseDoc): img: Optional[ImageDoc] class Middle(BaseDoc): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDoc): img: Optional[ImageDoc] middle: Optional[Middle] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())) ) return doc def test_from_pandas_without_schema_raise_exception(): with pytest.raises(TypeError, match='no document schema defined'): df = pd.DataFrame( columns=['title', 'count'], data=[['title 0', 0], ['title 1', 1]] ) DocList.from_dataframe(df=df) def test_from_pandas_with_wrong_schema_raise_exception(nested_doc): with pytest.raises(ValueError, match='Column names do not match the schema'): df = pd.DataFrame( columns=['title', 'count'], data=[['title 0', 0], ['title 1', 1]] ) DocList[nested_doc.__class__].from_dataframe(df=df) def test_doc_list_error(): class Book(BaseDoc): title: str docs = DocList([Book(title='hello'), Book(title='world')]) with pytest.raises(TypeError): docs.to_dataframe()
from typing import Optional import pandas as pd import pytest from docarray import BaseDoc, DocList from docarray.documents import ImageDoc @pytest.fixture() def nested_doc_cls(): class MyDoc(BaseDoc): count: Optional[int] text: str class MyDocNested(MyDoc): image: ImageDoc return MyDocNested def test_to_from_pandas_df(nested_doc_cls): da = DocList[nested_doc_cls]( [ nested_doc_cls( count=0, text='hello', image=ImageDoc(url='aux.png'), ), nested_doc_cls(text='hello world', image=ImageDoc()), ] ) df = da.to_dataframe() assert isinstance(df, pd.DataFrame) assert len(df) == 2 assert ( df.columns == [ 'id', 'count', 'text', 'image__id', 'image__url', 'image__tensor', 'image__embedding', 'image__bytes_', ] ).all() da_from_df = DocList[nested_doc_cls].from_dataframe(df) for doc1, doc2 in zip(da, da_from_df): assert doc1 == doc2 @pytest.fixture() def nested_doc(): class Inner(BaseDoc): img: Optional[ImageDoc] class Middle(BaseDoc): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDoc): img: Optional[ImageDoc] middle: Optional[Middle] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())) ) return doc def test_from_pandas_without_schema_raise_exception(): with pytest.raises(TypeError, match='no document schema defined'): df = pd.DataFrame( columns=['title', 'count'], data=[['title 0', 0], ['title 1', 1]] ) DocList.from_dataframe(df=df) def test_from_pandas_with_wrong_schema_raise_exception(nested_doc): with pytest.raises(ValueError, match='Column names do not match the schema'): df = pd.DataFrame( columns=['title', 'count'], data=[['title 0', 0], ['title 1', 1]] ) DocList[nested_doc.__class__].from_dataframe(df=df)
from typing import List import torch import torchaudio.prototype.transforms as T from torch.autograd import gradcheck, gradgradcheck from torchaudio_unittest.common_utils import get_spectrogram, get_whitenoise, nested_params, TestBaseMixin class Autograd(TestBaseMixin): def assert_grad( self, transform: torch.nn.Module, inputs: List[torch.Tensor], *, nondet_tol: float = 0.0, ): transform = transform.to(dtype=torch.float64, device=self.device) # gradcheck and gradgradcheck only pass if the input tensors are of dtype `torch.double` or # `torch.cdouble`, when the default eps and tolerance values are used. inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(dtype=torch.cdouble if i.is_complex() else torch.double, device=self.device) i.requires_grad = True inputs_.append(i) assert gradcheck(transform, inputs_) assert gradgradcheck(transform, inputs_, nondet_tol=nondet_tol) def test_barkspectrogram(self): # replication_pad1d_backward_cuda is not deteministic and # gives very small (~e-16) difference. sample_rate = 8000 transform = T.BarkSpectrogram(sample_rate=sample_rate) waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2) self.assert_grad(transform, [waveform], nondet_tol=1e-10) def test_barkscale(self): sample_rate = 8000 n_fft = 400 n_barks = n_fft // 2 + 1 transform = T.BarkScale(sample_rate=sample_rate, n_barks=n_barks) spec = get_spectrogram( get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2), n_fft=n_fft, power=1 ) self.assert_grad(transform, [spec])
from typing import List import torch import torchaudio.prototype.transforms as T from torch.autograd import gradcheck, gradgradcheck from torchaudio_unittest.common_utils import get_spectrogram, get_whitenoise, nested_params, TestBaseMixin class Autograd(TestBaseMixin): def assert_grad( self, transform: torch.nn.Module, inputs: List[torch.Tensor], *, nondet_tol: float = 0.0, ): transform = transform.to(dtype=torch.float64, device=self.device) # gradcheck and gradgradcheck only pass if the input tensors are of dtype `torch.double` or # `torch.cdouble`, when the default eps and tolerance values are used. inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(dtype=torch.cdouble if i.is_complex() else torch.double, device=self.device) i.requires_grad = True inputs_.append(i) assert gradcheck(transform, inputs_) assert gradgradcheck(transform, inputs_, nondet_tol=nondet_tol) @nested_params( [T.Convolve, T.FFTConvolve], ["full", "valid", "same"], ) def test_Convolve(self, cls, mode): leading_dims = (4, 3, 2) L_x, L_y = 23, 40 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) convolve = cls(mode=mode).to(dtype=self.dtype, device=self.device) self.assert_grad(convolve, [x, y]) def test_barkspectrogram(self): # replication_pad1d_backward_cuda is not deteministic and # gives very small (~e-16) difference. sample_rate = 8000 transform = T.BarkSpectrogram(sample_rate=sample_rate) waveform = get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2) self.assert_grad(transform, [waveform], nondet_tol=1e-10) def test_barkscale(self): sample_rate = 8000 n_fft = 400 n_barks = n_fft // 2 + 1 transform = T.BarkScale(sample_rate=sample_rate, n_barks=n_barks) spec = get_spectrogram( get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=2), n_fft=n_fft, power=1 ) self.assert_grad(transform, [spec]) def test_Speed(self): leading_dims = (3, 2) time = 200 waveform = torch.rand(*leading_dims, time, dtype=torch.float64, device=self.device, requires_grad=True) lengths = torch.randint(1, time, leading_dims, dtype=torch.float64, device=self.device) speed = T.Speed(1000, 1.1).to(device=self.device, dtype=torch.float64) assert gradcheck(speed, (waveform, lengths)) assert gradgradcheck(speed, (waveform, lengths)) def test_SpeedPerturbation(self): leading_dims = (3, 2) time = 200 waveform = torch.rand(*leading_dims, time, dtype=torch.float64, device=self.device, requires_grad=True) lengths = torch.randint(1, time, leading_dims, dtype=torch.float64, device=self.device) speed = T.SpeedPerturbation(1000, [0.9]).to(device=self.device, dtype=torch.float64) assert gradcheck(speed, (waveform, lengths)) assert gradgradcheck(speed, (waveform, lengths)) @nested_params([True, False]) def test_AddNoise(self, use_lengths): leading_dims = (2, 3) L = 31 waveform = torch.rand(*leading_dims, L, dtype=torch.float64, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=torch.float64, device=self.device, requires_grad=True) if use_lengths: lengths = torch.rand(*leading_dims, dtype=torch.float64, device=self.device, requires_grad=True) else: lengths = None snr = torch.rand(*leading_dims, dtype=torch.float64, device=self.device, requires_grad=True) * 10 add_noise = T.AddNoise().to(self.device, torch.float64) assert gradcheck(add_noise, (waveform, noise, snr, lengths)) assert gradgradcheck(add_noise, (waveform, noise, snr, lengths)) def test_Preemphasis(self): waveform = torch.rand(3, 4, 10, dtype=torch.float64, device=self.device, requires_grad=True) preemphasis = T.Preemphasis(coeff=0.97).to(dtype=torch.float64, device=self.device) assert gradcheck(preemphasis, (waveform,)) assert gradgradcheck(preemphasis, (waveform,)) def test_Deemphasis(self): waveform = torch.rand(3, 4, 10, dtype=torch.float64, device=self.device, requires_grad=True) deemphasis = T.Deemphasis(coeff=0.97).to(dtype=torch.float64, device=self.device) assert gradcheck(deemphasis, (waveform,)) assert gradgradcheck(deemphasis, (waveform,))
# Copyright (c) OpenMMLab. All rights reserved. from .cityscapes_metric import CityScapesMetric from .coco_metric import CocoMetric from .coco_occluded_metric import CocoOccludedSeparatedMetric from .coco_panoptic_metric import CocoPanopticMetric from .crowdhuman_metric import CrowdHumanMetric from .dump_det_results import DumpDetResults from .dump_proposals_metric import DumpProposals from .lvis_metric import LVISMetric from .openimages_metric import OpenImagesMetric from .voc_metric import VOCMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric', 'VOCMetric', 'LVISMetric', 'CrowdHumanMetric', 'DumpProposals', 'CocoOccludedSeparatedMetric', 'DumpDetResults' ]
# Copyright (c) OpenMMLab. All rights reserved. from .cityscapes_metric import CityScapesMetric from .coco_metric import CocoMetric from .coco_panoptic_metric import CocoPanopticMetric from .crowdhuman_metric import CrowdHumanMetric from .dump_proposals_metric import DumpProposals from .lvis_metric import LVISMetric from .openimages_metric import OpenImagesMetric from .voc_metric import VOCMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric', 'VOCMetric', 'LVISMetric', 'CrowdHumanMetric', 'DumpProposals' ]
import re from typing import Any from langchain.evaluation.schema import StringEvaluator class RegexMatchStringEvaluator(StringEvaluator): """Compute a regex match between the prediction and the reference. Examples ---------- >>> evaluator = RegexMatchStringEvaluator(flags=re.IGNORECASE) >>> evaluator.evaluate_strings( prediction="Mindy is the CTO", reference="^mindy.*cto$", ) # This will return {'score': 1.0} due to the IGNORECASE flag >>> evaluator = RegexMatchStringEvaluator() >>> evaluator.evaluate_strings( prediction="Mindy is the CTO", reference="^Mike.*CEO$", ) # This will return {'score': 0.0} >>> evaluator.evaluate_strings( prediction="Mindy is the CTO", reference="^Mike.*CEO$|^Mindy.*CTO$", ) # This will return {'score': 1.0} as the prediction matches the second pattern in the union """ # noqa: E501 def __init__(self, *, flags: int = 0, **kwargs: Any): # Default is no flags super().__init__() self.flags = flags @property def requires_input(self) -> bool: """ This evaluator does not require input. """ return False @property def requires_reference(self) -> bool: """ This evaluator requires a reference. """ return True @property def input_keys(self) -> list[str]: """ Get the input keys. Returns: List[str]: The input keys. """ return ["reference", "prediction"] @property def evaluation_name(self) -> str: """ Get the evaluation name. Returns: str: The evaluation name. """ return "regex_match" def _evaluate_strings( # type: ignore[override] self, *, prediction: str, reference: str, **kwargs: Any, ) -> dict: """ Evaluate the regex match between the prediction and the reference. Args: prediction (str): The prediction string. reference (Optional[str], optional): The reference regex pattern. Returns: dict: The evaluation results containing the score. """ match = re.match(reference, prediction, flags=self.flags) return {"score": int(bool(match))}
import re from typing import Any from langchain.evaluation.schema import StringEvaluator class RegexMatchStringEvaluator(StringEvaluator): """Compute a regex match between the prediction and the reference. Examples ---------- >>> evaluator = RegexMatchStringEvaluator(flags=re.IGNORECASE) >>> evaluator.evaluate_strings( prediction="Mindy is the CTO", reference="^mindy.*cto$", ) # This will return {'score': 1.0} due to the IGNORECASE flag >>> evaluator = RegexMatchStringEvaluator() >>> evaluator.evaluate_strings( prediction="Mindy is the CTO", reference="^Mike.*CEO$", ) # This will return {'score': 0.0} >>> evaluator.evaluate_strings( prediction="Mindy is the CTO", reference="^Mike.*CEO$|^Mindy.*CTO$", ) # This will return {'score': 1.0} as the prediction matches the second pattern in the union """ # noqa: E501 def __init__(self, *, flags: int = 0, **kwargs: Any): # Default is no flags super().__init__() self.flags = flags @property def requires_input(self) -> bool: """ This evaluator does not require input. """ return False @property def requires_reference(self) -> bool: """ This evaluator requires a reference. """ return True @property def input_keys(self) -> list[str]: """ Get the input keys. Returns: List[str]: The input keys. """ return ["reference", "prediction"] @property def evaluation_name(self) -> str: """ Get the evaluation name. Returns: str: The evaluation name. """ return "regex_match" def _evaluate_strings( # type: ignore[arg-type,override] self, *, prediction: str, reference: str, **kwargs: Any, ) -> dict: """ Evaluate the regex match between the prediction and the reference. Args: prediction (str): The prediction string. reference (Optional[str], optional): The reference regex pattern. Returns: dict: The evaluation results containing the score. """ match = re.match(reference, prediction, flags=self.flags) return {"score": int(bool(match))}
import shutil import pytest import os import numpy as np import PIL.Image as Image from jina import DocumentArray, Document from ...big_transfer import BigTransferEncoder directory = os.path.dirname(os.path.realpath(__file__)) def test_initialization_and_model_download(): shutil.rmtree('pretrained', ignore_errors=True) # This call will download the model encoder = BigTransferEncoder() assert encoder.model_path == 'pretrained' assert encoder.model_name == 'R50x1' assert not encoder.on_gpu assert os.path.exists('pretrained') assert os.path.exists(os.path.join('pretrained', 'saved_model.pb')) # This call will use the downloaded model _ = BigTransferEncoder() shutil.rmtree('pretrained', ignore_errors=True) with pytest.raises(AttributeError): _ = BigTransferEncoder(model_name='model_not_exists') def test_encoding(): doc = Document(uri=os.path.join(directory, '../test_data/test_image.png')) doc.convert_image_uri_to_blob() img = Image.fromarray(doc.blob.astype('uint8')) img = img.resize((96, 96)) img = np.array(img).astype('float32') / 255 doc.blob = img assert doc.embedding is None encoder = BigTransferEncoder() encoder.encode(DocumentArray([doc]), {}) assert doc.embedding.shape == (2048,) def test_preprocessing(): doc = Document(uri=os.path.join(directory, '../test_data/test_image.png')) doc.convert_image_uri_to_blob() img = Image.fromarray(doc.blob.astype('uint8')) img = img.resize((96, 96)) img = np.array(img).astype('float32') / 255 doc.blob = img assert doc.embedding is None encoder = BigTransferEncoder(target_dim=(256, 256, 3)) encoder.encode(DocumentArray([doc]), {}) assert doc.embedding.shape == (2048,) def test_encoding_default_chunks(): doc = Document(text="testing") chunk = Document(uri=os.path.join(directory, '../test_data/test_image.png')) for i in range(3): doc.chunks.append(chunk) doc.chunks[i].convert_image_uri_to_blob() img = Image.fromarray(doc.chunks[i].blob.astype('uint8')) img = img.resize((96, 96)) img = np.array(img).astype('float32') / 255 doc.chunks[i].blob = img encoder = BigTransferEncoder(default_traversal_paths=['c']) encoder.encode(DocumentArray([doc]), {}) assert doc.embedding is None for i in range(3): assert doc.chunks[i].embedding.shape == (2048,) def test_encoding_override_chunks(): doc = Document(text="testing") chunk = Document(uri=os.path.join(directory, '../test_data/test_image.png')) for i in range(3): doc.chunks.append(chunk) doc.chunks[i].convert_image_uri_to_blob() img = Image.fromarray(doc.chunks[i].blob.astype('uint8')) img = img.resize((96, 96)) img = np.array(img).astype('float32') / 255 doc.chunks[i].blob = img encoder = BigTransferEncoder() assert encoder.default_traversal_paths == ['r'] encoder.encode(DocumentArray([doc]), parameters={'traversal_paths': ['c']}) assert doc.embedding is None for i in range(3): assert doc.chunks[i].embedding.shape == (2048,)
import shutil import pytest import os import numpy as np import PIL.Image as Image from jina import DocumentArray, Document from jinahub.image.encoder.big_transfer import BigTransferEncoder directory = os.path.dirname(os.path.realpath(__file__)) def test_initialization_and_model_download(): shutil.rmtree('pretrained', ignore_errors=True) # This call will download the model encoder = BigTransferEncoder() assert encoder.model_path == 'pretrained' assert encoder.model_name == 'R50x1' assert not encoder.on_gpu assert os.path.exists('pretrained') assert os.path.exists(os.path.join('pretrained', 'saved_model.pb')) # This call will use the downloaded model _ = BigTransferEncoder() shutil.rmtree('pretrained', ignore_errors=True) with pytest.raises(AttributeError): _ = BigTransferEncoder(model_name='model_not_exists') def test_encoding(): doc = Document(uri=os.path.join(directory, '../test_data/test_image.png')) doc.convert_image_uri_to_blob() img = Image.fromarray(doc.blob.astype('uint8')) img = img.resize((96, 96)) img = np.array(img).astype('float32') / 255 doc.blob = img assert doc.embedding is None encoder = BigTransferEncoder() encoder.encode(DocumentArray([doc]), {}) assert doc.embedding.shape == (2048,) def test_preprocessing(): doc = Document(uri=os.path.join(directory, '../test_data/test_image.png')) doc.convert_image_uri_to_blob() img = Image.fromarray(doc.blob.astype('uint8')) img = img.resize((96, 96)) img = np.array(img).astype('float32') / 255 doc.blob = img assert doc.embedding is None encoder = BigTransferEncoder(target_dim=(256, 256, 3)) encoder.encode(DocumentArray([doc]), {}) assert doc.embedding.shape == (2048,) def test_encoding_default_chunks(): doc = Document(text="testing") chunk = Document(uri=os.path.join(directory, '../test_data/test_image.png')) for i in range(3): doc.chunks.append(chunk) doc.chunks[i].convert_image_uri_to_blob() img = Image.fromarray(doc.chunks[i].blob.astype('uint8')) img = img.resize((96, 96)) img = np.array(img).astype('float32') / 255 doc.chunks[i].blob = img encoder = BigTransferEncoder(default_traversal_paths=['c']) encoder.encode(DocumentArray([doc]), {}) assert doc.embedding is None for i in range(3): assert doc.chunks[i].embedding.shape == (2048,) def test_encoding_override_chunks(): doc = Document(text="testing") chunk = Document(uri=os.path.join(directory, '../test_data/test_image.png')) for i in range(3): doc.chunks.append(chunk) doc.chunks[i].convert_image_uri_to_blob() img = Image.fromarray(doc.chunks[i].blob.astype('uint8')) img = img.resize((96, 96)) img = np.array(img).astype('float32') / 255 doc.chunks[i].blob = img encoder = BigTransferEncoder() assert encoder.default_traversal_paths == ['r'] encoder.encode(DocumentArray([doc]), parameters={'traversal_paths': ['c']}) assert doc.embedding is None for i in range(3): assert doc.chunks[i].embedding.shape == (2048,)
"""scrapegraph tool specification module for web scraping operations.""" from typing import Dict, List, Optional from pydantic import BaseModel from scrapegraph_py import Client from llama_index.core.tools.tool_spec.base import BaseToolSpec class ScrapegraphToolSpec(BaseToolSpec): """scrapegraph tool specification for web scraping operations.""" spec_functions = [ "scrapegraph_smartscraper", "scrapegraph_markdownify", "scrapegraph_search", ] def scrapegraph_smartscraper( self, prompt: str, url: str, api_key: str, schema: Optional[List[BaseModel]] = None, ) -> List[Dict]: """Perform synchronous web scraping using scrapegraph. Args: prompt (str): User prompt describing the scraping task url (str): Target website URL to scrape api_key (str): scrapegraph API key schema (Optional[List[BaseModel]]): Pydantic models defining the output structure Returns: List[Dict]: Scraped data matching the provided schema """ client = Client(api_key=api_key) # Basic usage return client.smartscraper( website_url=url, user_prompt=prompt, output_schema=schema ) def scrapegraph_markdownify(self, url: str, api_key: str) -> str: """Convert webpage content to markdown format using scrapegraph. Args: url (str): Target website URL to convert api_key (str): scrapegraph API key Returns: str: Markdown representation of the webpage content """ client = Client(api_key=api_key) return client.markdownify(website_url=url) def scrapegraph_search(self, query: str, api_key: str) -> str: """Perform a search query using scrapegraph. Args: query (str): Search query to execute api_key (str): scrapegraph API key Returns: str: Search results from scrapegraph """ client = Client(api_key=api_key) return client.search(query=query)
"""scrapegraph tool specification module for web scraping operations.""" from typing import Dict, List, Optional from pydantic import BaseModel from scrapegraph_py import Client from llama_index.core.tools.tool_spec.base import BaseToolSpec class ScrapegraphToolSpec(BaseToolSpec): """scrapegraph tool specification for web scraping operations.""" spec_functions = [ "scrapegraph_smartscraper", "scrapegraph_markdownify", "scrapegraph_local_scrape", ] def scrapegraph_smartscraper( self, prompt: str, url: str, api_key: str, schema: Optional[List[BaseModel]] = None, ) -> List[Dict]: """Perform synchronous web scraping using scrapegraph. Args: prompt (str): User prompt describing the scraping task url (str): Target website URL to scrape api_key (str): scrapegraph API key schema (Optional[List[BaseModel]]): Pydantic models defining the output structure Returns: List[Dict]: Scraped data matching the provided schema """ client = Client(api_key=api_key) # Basic usage return client.smartscraper( website_url=url, user_prompt=prompt, output_schema=schema ) def scrapegraph_markdownify(self, url: str, api_key: str) -> str: """Convert webpage content to markdown format using scrapegraph. Args: url (str): Target website URL to convert api_key (str): scrapegraph API key Returns: str: Markdown representation of the webpage content """ client = Client(api_key=api_key) return client.markdownify(website_url=url) def scrapegraph_local_scrape(self, text: str, api_key: str) -> str: """Extract structured data from raw text using scrapegraph. Args: text (str): Raw text to process and extract data from api_key (str): scrapegraph API key Returns: str: Structured data extracted from the input text """ client = Client(api_key=api_key) return client.local_scrape(text=text)
from docarray.typing.bytes.audio_bytes import AudioBytes from docarray.typing.bytes.image_bytes import ImageBytes from docarray.typing.bytes.video_bytes import VideoBytes __all__ = ['ImageBytes', 'VideoBytes', 'AudioBytes']
from docarray.typing.bytes.image_bytes import ImageBytes __all__ = ['ImageBytes']
from llama_index_instrumentation.events.span import SpanDropEvent # noqa
from llama_index.core.instrumentation.events.base import BaseEvent class SpanDropEvent(BaseEvent): """ SpanDropEvent. Args: err_str (str): Error string. """ err_str: str @classmethod def class_name(cls) -> str: """Class name.""" return "SpanDropEvent"
from .bifpn import BiFPN from .efficientdet import EfficientDet from .efficientdet_head import EfficientDetSepBNHead from .huber_loss import HuberLoss from .tensorflow.anchor_generator import YXYXAnchorGenerator from .tensorflow.coco_90class import Coco90Dataset from .tensorflow.coco_90metric import Coco90Metric from .tensorflow.trans_max_iou_assigner import TransMaxIoUAssigner from .tensorflow.yxyx_bbox_coder import YXYXDeltaXYWHBBoxCoder from .utils import Conv2dSamePadding __all__ = [ 'EfficientDet', 'BiFPN', 'HuberLoss', 'EfficientDetSepBNHead', 'Conv2dSamePadding', 'Coco90Dataset', 'Coco90Metric', 'YXYXAnchorGenerator', 'TransMaxIoUAssigner', 'YXYXDeltaXYWHBBoxCoder' ]
from .anchor_generator import YXYXAnchorGenerator from .bifpn import BiFPN from .coco_90class import Coco90Dataset from .coco_90metric import Coco90Metric from .efficientdet import EfficientDet from .efficientdet_head import EfficientDetSepBNHead from .trans_max_iou_assigner import TransMaxIoUAssigner from .yxyx_bbox_coder import YXYXDeltaXYWHBBoxCoder __all__ = [ 'EfficientDet', 'BiFPN', 'EfficientDetSepBNHead', 'YXYXAnchorGenerator', 'YXYXDeltaXYWHBBoxCoder', 'Coco90Dataset', 'Coco90Metric', 'TransMaxIoUAssigner' ]
""" This script finds the person responsible for labeling a PR by a commit SHA. It is used by the workflow in '.github/workflows/pr-labels.yml'. Note: we only ping the person who pulls the pr, not the reviewers, as the reviewers can sometimes be external to torchaudio with no labeling responsibility, so we don't want to bother them. """ import json import os import sys from typing import Any, Optional, Set, Tuple import requests # For a PR to be properly labeled it should have one primary label and one secondary label # For a PR with primary label "other", it does not require an additional secondary label PRIMARY_LABELS = { "BC-breaking", "deprecation", "bug fix", "new feature", "improvement", "prototype", "other", } SECONDARY_LABELS = { "module: io", "module: ops", "module: models", "module: pipelines", "module: datasets", "module: docs", "module: tests", "tutorial", "recipe", "example", "build", "style", "perf", "other", } GITHUB_TOKEN = os.environ.get("GITHUB_TOKEN") REQUEST_HEADERS = {"Accept": "application/vnd.github.v3+json", "Authorization": f"token {GITHUB_TOKEN}"} TORCHAUDIO_REPO = "https://api.github.com/repos/pytorch/audio" def query_torchaudio(cmd: str) -> Any: response = requests.get(f"{TORCHAUDIO_REPO}/{cmd}", headers=REQUEST_HEADERS) return response.json() def get_pr_merger_and_number(commit_hash: str) -> Optional[str]: data = query_torchaudio(f"commits/{commit_hash}") commit_message = data["commit"]["message"] pulled_by = commit_message.split("Pulled By: ") pulled_by = pulled_by[1].split("\n")[0] if len(pulled_by) > 1 else None pr_number = commit_message.split("Pull Request resolved: https://github.com/pytorch/audio/pull/") pr_number = pr_number[1].split("\n")[0] if len(pr_number) > 1 else None return pulled_by, pr_number def get_labels(pr_number: int) -> Set[str]: data = query_torchaudio(f"pulls/{pr_number}") labels = {label["name"] for label in data["labels"]} return labels def post_github_comment(pr_number: int, merger: str) -> Any: message = { "body": f"Hey @{merger}." + """ You merged this PR, but labels were not properly added. Please add a primary and secondary label \ (See https://github.com/pytorch/audio/blob/main/.github/process_commit.py). Some guidance: Use 'module: ops' for operations under 'torchaudio/{transforms, functional}', \ and ML-related components under 'torchaudio/csrc' (e.g. RNN-T loss). Things in "examples" directory: 'recipe' is applicable to training recipes under the 'examples' folder, 'tutorial' is applicable to tutorials under the “examples/tutorials” folder 'example' is applicable to everything else (e.g. C++ examples) 'module: docs' is applicable to code documentations (not to tutorials). \ Regarding examples in code documentations, please also use 'module: docs'. Please use 'other' tag only when you’re sure the changes are not much relevant to users, \ or when all other tags are not applicable. Try not to use it often, in order to minimize \ efforts required when we prepare release notes. When preparing release notes, please make sure 'documentation' and 'tutorials' occur as the \ last sub-categories under each primary category like 'new feature', 'improvements' or 'prototype'. Things related to build are by default excluded from the release note, except when it impacts users. For example: * Drop support of Python 3.7. * Add support of Python 3.X. * Changing the way a third party library is bound (so that user needs to install it separately). """ } response = requests.post( f"{TORCHAUDIO_REPO}/issues/{pr_number}/comments", json.dumps(message), headers=REQUEST_HEADERS ) return response.json() if __name__ == "__main__": commit_hash = sys.argv[1] merger, pr_number = get_pr_merger_and_number(commit_hash) if pr_number: labels = get_labels(pr_number) is_properly_labeled = bool(PRIMARY_LABELS.intersection(labels) and SECONDARY_LABELS.intersection(labels)) if not is_properly_labeled: post_github_comment(pr_number, merger)
""" This script finds the person responsible for labeling a PR by a commit SHA. It is used by the workflow in '.github/workflows/pr-labels.yml'. Note: we only ping the person who pulls the pr, not the reviewers, as the reviewers can sometimes be external to torchaudio with no labeling responsibility, so we don't want to bother them. """ import json import os import sys from typing import Any, Optional, Set, Tuple import requests # For a PR to be properly labeled it should have one primary label and one secondary label # For a PR with primary label "other", it does not require an additional secondary label PRIMARY_LABELS = { "BC-breaking", "deprecation", "bug fix", "new feature", "improvement", "tutorial", "recipe", "prototype", "other", } SECONDARY_LABELS = { "module: I/O", "module: ops", "module: models", "module: pipelines", "module: datasets", "module: docs", "module: tests", "build", "style", "perf", "other", } GITHUB_TOKEN = os.environ.get("GITHUB_TOKEN") REQUEST_HEADERS = {"Accept": "application/vnd.github.v3+json", "Authorization": f"token {GITHUB_TOKEN}"} TORCHAUDIO_REPO = "https://api.github.com/repos/pytorch/audio" def query_torchaudio(cmd: str) -> Any: response = requests.get(f"{TORCHAUDIO_REPO}/{cmd}", headers=REQUEST_HEADERS) return response.json() def get_pr_merger_and_number(commit_hash: str) -> Optional[str]: data = query_torchaudio(f"commits/{commit_hash}") commit_message = data["commit"]["message"] pulled_by = commit_message.split("Pulled By: ") pulled_by = pulled_by[1].split("\n")[0] if len(pulled_by) > 1 else None pr_number = commit_message.split("Pull Request resolved: https://github.com/pytorch/audio/pull/") pr_number = pr_number[1].split("\n")[0] if len(pr_number) > 1 else None return pulled_by, pr_number def get_labels(pr_number: int) -> Set[str]: data = query_torchaudio(f"pulls/{pr_number}") labels = {label["name"] for label in data["labels"]} return labels def post_github_comment(pr_number: int, merger: str) -> Any: message = { "body": f"Hey @{merger}." + """ You merged this PR, but labels were not properly added. Please add a primary and secondary label \ (See https://github.com/pytorch/audio/blob/main/.github/process_commit.py)""" } response = requests.post( f"{TORCHAUDIO_REPO}/issues/{pr_number}/comments", json.dumps(message), headers=REQUEST_HEADERS ) return response.json() if __name__ == "__main__": commit_hash = sys.argv[1] merger, pr_number = get_pr_merger_and_number(commit_hash) if pr_number: labels = get_labels(pr_number) is_properly_labeled = bool(PRIMARY_LABELS.intersection(labels) and SECONDARY_LABELS.intersection(labels)) if not is_properly_labeled: post_github_comment(pr_number, merger)
"""Test in memory docstore.""" from langchain.output_parsers.regex_dict import RegexDictParser DEF_EXPECTED_RESULT = {"action": "Search", "action_input": "How to use this class?"} DEF_OUTPUT_KEY_TO_FORMAT = {"action": "Action", "action_input": "Action Input"} DEF_README = """We have just received a new result from the LLM, and our next step is to filter and read its format using regular expressions to identify specific fields, such as: - Action: Search - Action Input: How to use this class? - Additional Fields: "N/A" To assist us in this task, we use the regex_dict class. This class allows us to send a dictionary containing an output key and the expected format, which in turn enables us to retrieve the result of the matching formats and extract specific information from it. To exclude irrelevant information from our return dictionary, we can instruct the LLM to use a specific command that notifies us when it doesn't know the answer. We call this variable the "no_update_value", and for our current case, we set it to "N/A". Therefore, we expect the result to only contain the following fields: { {key = action, value = search} {key = action_input, value = "How to use this class?"}. }""" def test_regex_dict_result() -> None: """Test regex dict result.""" regex_dict_parser = RegexDictParser( output_key_to_format=DEF_OUTPUT_KEY_TO_FORMAT, no_update_value="N/A" ) result_dict = regex_dict_parser.parse(DEF_README) print("parse_result:", result_dict) # noqa: T201 assert result_dict == DEF_EXPECTED_RESULT def test_regex_dict_output_type() -> None: """Test regex dict output type.""" regex_dict_parser = RegexDictParser( output_key_to_format=DEF_OUTPUT_KEY_TO_FORMAT, no_update_value="N/A" ) assert regex_dict_parser.OutputType == dict[str, str]
"""Test in memory docstore.""" from langchain.output_parsers.regex_dict import RegexDictParser DEF_EXPECTED_RESULT = {"action": "Search", "action_input": "How to use this class?"} DEF_OUTPUT_KEY_TO_FORMAT = {"action": "Action", "action_input": "Action Input"} DEF_README = """We have just received a new result from the LLM, and our next step is to filter and read its format using regular expressions to identify specific fields, such as: - Action: Search - Action Input: How to use this class? - Additional Fields: "N/A" To assist us in this task, we use the regex_dict class. This class allows us to send a dictionary containing an output key and the expected format, which in turn enables us to retrieve the result of the matching formats and extract specific information from it. To exclude irrelevant information from our return dictionary, we can instruct the LLM to use a specific command that notifies us when it doesn't know the answer. We call this variable the "no_update_value", and for our current case, we set it to "N/A". Therefore, we expect the result to only contain the following fields: { {key = action, value = search} {key = action_input, value = "How to use this class?"}. }""" def test_regex_dict_result() -> None: """Test regex dict result.""" regex_dict_parser = RegexDictParser( output_key_to_format=DEF_OUTPUT_KEY_TO_FORMAT, no_update_value="N/A" ) result_dict = regex_dict_parser.parse(DEF_README) print("parse_result:", result_dict) # noqa: T201 assert DEF_EXPECTED_RESULT == result_dict def test_regex_dict_output_type() -> None: """Test regex dict output type.""" regex_dict_parser = RegexDictParser( output_key_to_format=DEF_OUTPUT_KEY_TO_FORMAT, no_update_value="N/A" ) assert regex_dict_parser.OutputType == dict[str, str]
# Copyright (c) OpenMMLab. All rights reserved. from .assigners import * # noqa: F401,F403 from .builder import (ANCHOR_GENERATORS, BBOX_ASSIGNERS, BBOX_CODERS, BBOX_SAMPLERS, IOU_CALCULATORS, MATCH_COSTS, PRIOR_GENERATORS, build_anchor_generator, build_assigner, build_bbox_coder, build_iou_calculator, build_match_cost, build_prior_generator, build_sampler) from .coders import * # noqa: F401,F403 from .prior_generators import * # noqa: F401,F403 from .samplers import * # noqa: F401,F403 from .tracking import * # noqa: F401,F403 __all__ = [ 'ANCHOR_GENERATORS', 'PRIOR_GENERATORS', 'BBOX_ASSIGNERS', 'BBOX_SAMPLERS', 'MATCH_COSTS', 'BBOX_CODERS', 'IOU_CALCULATORS', 'build_anchor_generator', 'build_prior_generator', 'build_assigner', 'build_sampler', 'build_iou_calculator', 'build_match_cost', 'build_bbox_coder' ]
# Copyright (c) OpenMMLab. All rights reserved. from .assigners import * # noqa: F401,F403 from .builder import (ANCHOR_GENERATORS, BBOX_ASSIGNERS, BBOX_CODERS, BBOX_SAMPLERS, IOU_CALCULATORS, MATCH_COSTS, PRIOR_GENERATORS, build_anchor_generator, build_assigner, build_bbox_coder, build_iou_calculator, build_match_cost, build_prior_generator, build_sampler) from .coders import * # noqa: F401,F403 from .prior_generators import * # noqa: F401,F403 from .samplers import * # noqa: F401,F403 __all__ = [ 'ANCHOR_GENERATORS', 'PRIOR_GENERATORS', 'BBOX_ASSIGNERS', 'BBOX_SAMPLERS', 'MATCH_COSTS', 'BBOX_CODERS', 'IOU_CALCULATORS', 'build_anchor_generator', 'build_prior_generator', 'build_assigner', 'build_sampler', 'build_iou_calculator', 'build_match_cost', 'build_bbox_coder' ]
import os import numpy as np import pytest import keras from keras.src import testing from keras.src.saving.file_editor import KerasFileEditor def get_source_model(): inputs = keras.Input((2,)) x = keras.layers.Dense(3, name="mydense")(inputs) outputs = keras.layers.Dense(3, name="output_layer")(x) model = keras.Model(inputs, outputs) return model def get_target_model(): inputs = keras.Input((2,)) x = keras.layers.Dense(3, name="mydense")(inputs) x = keras.layers.Dense(3, name="myotherdense")(x) outputs = keras.layers.Dense(3, name="output_layer")(x) model = keras.Model(inputs, outputs) return model class SavingTest(testing.TestCase): def test_basics(self): temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") model = get_source_model() model.save(temp_filepath) editor = KerasFileEditor(temp_filepath) editor.summary() target_model = get_target_model() out = editor.compare(model) # Succeeds self.assertEqual(out["status"], "success") out = editor.compare(target_model) # Fails editor.add_object( "layers/dense_3", weights={"0": np.random.random((3, 3))} ) out = editor.compare(target_model) # Fails self.assertEqual(out["status"], "error") self.assertEqual(out["error_count"], 2) editor.rename_object("dense_3", "dense_4") editor.rename_object("layers/dense_4", "dense_2") editor.add_weights("dense_2", weights={"1": np.random.random((3,))}) out = editor.compare(target_model) # Succeeds self.assertEqual(out["status"], "success") editor.add_object( "layers/dense_3", weights={"0": np.random.random((3, 3))} ) out = editor.compare(target_model) # Fails self.assertEqual(out["status"], "error") self.assertEqual(out["error_count"], 1) editor.delete_object("layers/dense_3") out = editor.compare(target_model) # Succeeds self.assertEqual(out["status"], "success") editor.summary() temp_filepath = os.path.join(self.get_temp_dir(), "resaved.weights.h5") editor.save(temp_filepath) target_model.load_weights(temp_filepath) editor = KerasFileEditor(temp_filepath) editor.summary() out = editor.compare(target_model) # Succeeds self.assertEqual(out["status"], "success") editor.delete_weight("dense_2", "1") out = editor.compare(target_model) # Fails self.assertEqual(out["status"], "error") self.assertEqual(out["error_count"], 1) editor.add_weights("dense_2", {"1": np.zeros((7,))}) out = editor.compare(target_model) # Fails self.assertEqual(out["status"], "error") self.assertEqual(out["error_count"], 1) editor.delete_weight("dense_2", "1") editor.add_weights("dense_2", {"1": np.zeros((3,))}) out = editor.compare(target_model) # Succeeds self.assertEqual(out["status"], "success") @pytest.mark.requires_trainable_backend def test_scalar_weight(self): model = keras.Sequential(name="my_sequential") model.add(keras.Input(shape=(1,), name="my_input")) model.add(keras.layers.Dense(1, activation="sigmoid", name="my_dense")) model.compile(optimizer="adam", loss="mse", metrics=["mae"]) model.fit(np.array([[1]]), np.array([[1]]), verbose=0) model_fpath = os.path.join(self.get_temp_dir(), "model.keras") weights_fpath = os.path.join(self.get_temp_dir(), "model.weights.h5") model.save(model_fpath) model.save_weights(weights_fpath) model_editor = KerasFileEditor(model_fpath) self.assertEqual( len(keras.src.tree.flatten(model_editor.weights_dict)), 8 ) model_weights_editor = KerasFileEditor(weights_fpath) self.assertEqual( len(keras.src.tree.flatten(model_weights_editor.weights_dict)), 8 )
import os import numpy as np import pytest import keras from keras.src import testing from keras.src.saving.file_editor import KerasFileEditor def get_source_model(): inputs = keras.Input((2,)) x = keras.layers.Dense(3, name="mydense")(inputs) outputs = keras.layers.Dense(3, name="output_layer")(x) model = keras.Model(inputs, outputs) return model def get_target_model(): inputs = keras.Input((2,)) x = keras.layers.Dense(3, name="mydense")(inputs) x = keras.layers.Dense(3, name="myotherdense")(x) outputs = keras.layers.Dense(3, name="output_layer")(x) model = keras.Model(inputs, outputs) return model class SavingTest(testing.TestCase): def test_basics(self): temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") model = get_source_model() model.save(temp_filepath) editor = KerasFileEditor(temp_filepath) editor.summary() target_model = get_target_model() out = editor.compare(model) # Succeeds self.assertEqual(out["status"], "success") out = editor.compare(target_model) # Fails editor.add_object( "layers/dense_3", weights={"0": np.random.random((3, 3))} ) out = editor.compare(target_model) # Fails self.assertEqual(out["status"], "error") self.assertEqual(out["error_count"], 2) editor.rename_object("dense_3", "dense_4") editor.rename_object("layers/dense_4", "dense_2") editor.add_weights("dense_2", weights={"1": np.random.random((3,))}) out = editor.compare(target_model) # Succeeds self.assertEqual(out["status"], "success") editor.add_object( "layers/dense_3", weights={"0": np.random.random((3, 3))} ) out = editor.compare(target_model) # Fails self.assertEqual(out["status"], "error") self.assertEqual(out["error_count"], 1) editor.delete_object("layers/dense_3") out = editor.compare(target_model) # Succeeds self.assertEqual(out["status"], "success") editor.summary() temp_filepath = os.path.join(self.get_temp_dir(), "resaved.weights.h5") editor.save(temp_filepath) target_model.load_weights(temp_filepath) editor = KerasFileEditor(temp_filepath) editor.summary() out = editor.compare(target_model) # Succeeds self.assertEqual(out["status"], "success") editor.delete_weight("dense_2", "1") out = editor.compare(target_model) # Fails self.assertEqual(out["status"], "error") self.assertEqual(out["error_count"], 1) editor.add_weights("dense_2", {"1": np.zeros((7,))}) out = editor.compare(target_model) # Fails self.assertEqual(out["status"], "error") self.assertEqual(out["error_count"], 1) editor.delete_weight("dense_2", "1") editor.add_weights("dense_2", {"1": np.zeros((3,))}) out = editor.compare(target_model) # Succeeds self.assertEqual(out["status"], "success") @pytest.mark.requires_trainable_backend def test_scalar_weight(self): model = keras.Sequential(name="my_sequential") model.add(keras.Input(shape=(1,), name="my_input")) model.add(keras.layers.Dense(1, activation="sigmoid", name="my_dense")) model.compile(optimizer="adam", loss="mse", metrics=["mae"]) model.fit(np.array([[1]]), np.array([[1]]), verbose=0) model.save("model.keras") model.save_weights("model.weights.h5") model_editor = KerasFileEditor("model.keras") self.assertEqual( len(keras.src.tree.flatten(model_editor.weights_dict)), 8 ) model_weights_editor = KerasFileEditor("model.weights.h5") self.assertEqual( len(keras.src.tree.flatten(model_weights_editor.weights_dict)), 8 )
from llama_index.core.llms import LLM from llama_index.multi_modal_llms.ollama import OllamaMultiModal def test_class(): names_of_base_classes = [b.__name__ for b in OllamaMultiModal.__mro__] assert LLM.__name__ in names_of_base_classes
from llama_index.core.multi_modal_llms.base import MultiModalLLM from llama_index.multi_modal_llms.ollama import OllamaMultiModal def test_class(): names_of_base_classes = [b.__name__ for b in OllamaMultiModal.__mro__] assert MultiModalLLM.__name__ in names_of_base_classes
# Copyright (c) OpenMMLab. All rights reserved. from .optimizer import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS, AmpOptimWrapper, ApexOptimWrapper, BaseOptimWrapper, DeepSpeedOptimWrapper, DefaultOptimWrapperConstructor, OptimWrapper, OptimWrapperDict, ZeroRedundancyOptimizer, build_optim_wrapper) # yapf: disable from .scheduler import (ConstantLR, ConstantMomentum, ConstantParamScheduler, CosineAnnealingLR, CosineAnnealingMomentum, CosineAnnealingParamScheduler, ExponentialLR, ExponentialMomentum, ExponentialParamScheduler, LinearLR, LinearMomentum, LinearParamScheduler, MultiStepLR, MultiStepMomentum, MultiStepParamScheduler, OneCycleLR, OneCycleParamScheduler, PolyLR, PolyMomentum, PolyParamScheduler, ReduceOnPlateauLR, ReduceOnPlateauMomentum, ReduceOnPlateauParamScheduler, StepLR, StepMomentum, StepParamScheduler, _ParamScheduler) # yapf: enable __all__ = [ 'OPTIM_WRAPPER_CONSTRUCTORS', 'OPTIMIZERS', 'build_optim_wrapper', 'DefaultOptimWrapperConstructor', 'ConstantLR', 'CosineAnnealingLR', 'ExponentialLR', 'LinearLR', 'MultiStepLR', 'StepLR', 'ConstantMomentum', 'CosineAnnealingMomentum', 'ExponentialMomentum', 'LinearMomentum', 'MultiStepMomentum', 'StepMomentum', 'ConstantParamScheduler', 'CosineAnnealingParamScheduler', 'ExponentialParamScheduler', 'LinearParamScheduler', 'MultiStepParamScheduler', 'StepParamScheduler', '_ParamScheduler', 'OptimWrapper', 'AmpOptimWrapper', 'ApexOptimWrapper', 'OptimWrapperDict', 'OneCycleParamScheduler', 'OneCycleLR', 'PolyLR', 'PolyMomentum', 'PolyParamScheduler', 'ReduceOnPlateauLR', 'ReduceOnPlateauMomentum', 'ReduceOnPlateauParamScheduler', 'ZeroRedundancyOptimizer', 'BaseOptimWrapper', 'DeepSpeedOptimWrapper' ]
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.utils import is_installed from .optimizer import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS, AmpOptimWrapper, ApexOptimWrapper, BaseOptimWrapper, DefaultOptimWrapperConstructor, OptimWrapper, OptimWrapperDict, ZeroRedundancyOptimizer, build_optim_wrapper) # yapf: disable from .scheduler import (ConstantLR, ConstantMomentum, ConstantParamScheduler, CosineAnnealingLR, CosineAnnealingMomentum, CosineAnnealingParamScheduler, ExponentialLR, ExponentialMomentum, ExponentialParamScheduler, LinearLR, LinearMomentum, LinearParamScheduler, MultiStepLR, MultiStepMomentum, MultiStepParamScheduler, OneCycleLR, OneCycleParamScheduler, PolyLR, PolyMomentum, PolyParamScheduler, ReduceOnPlateauLR, ReduceOnPlateauMomentum, ReduceOnPlateauParamScheduler, StepLR, StepMomentum, StepParamScheduler, _ParamScheduler) # yapf: enable __all__ = [ 'OPTIM_WRAPPER_CONSTRUCTORS', 'OPTIMIZERS', 'build_optim_wrapper', 'DefaultOptimWrapperConstructor', 'ConstantLR', 'CosineAnnealingLR', 'ExponentialLR', 'LinearLR', 'MultiStepLR', 'StepLR', 'ConstantMomentum', 'CosineAnnealingMomentum', 'ExponentialMomentum', 'LinearMomentum', 'MultiStepMomentum', 'StepMomentum', 'ConstantParamScheduler', 'CosineAnnealingParamScheduler', 'ExponentialParamScheduler', 'LinearParamScheduler', 'MultiStepParamScheduler', 'StepParamScheduler', '_ParamScheduler', 'OptimWrapper', 'AmpOptimWrapper', 'ApexOptimWrapper', 'OptimWrapperDict', 'OneCycleParamScheduler', 'OneCycleLR', 'PolyLR', 'PolyMomentum', 'PolyParamScheduler', 'ReduceOnPlateauLR', 'ReduceOnPlateauMomentum', 'ReduceOnPlateauParamScheduler', 'ZeroRedundancyOptimizer', 'BaseOptimWrapper' ] if is_installed('deepspeed'): from .optimizer import DeepSpeedOptimWrapper # noqa:F401 __all__.append('DeepSpeedOptimWrapper')
from typing import Optional import numpy as np import torch from docarray import DocumentArray from docarray.document import BaseDocument from docarray.typing import NdArray, TorchTensor def test_proto_simple(): class CustomDoc(BaseDocument): text: str doc = CustomDoc(text='hello') CustomDoc.from_protobuf(doc.to_protobuf()) def test_proto_ndarray(): class CustomDoc(BaseDocument): tensor: NdArray tensor = np.zeros((3, 224, 224)) doc = CustomDoc(tensor=tensor) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) assert (new_doc.tensor == tensor).all() def test_proto_with_nested_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc(text='hello', inner=CustomInnerDoc(tensor=np.zeros((3, 224, 224)))) CustomDoc.from_protobuf(doc.to_protobuf()) def test_proto_with_chunks_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=np.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() def test_proto_with_nested_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc( text='hello', inner=CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) ) CustomDoc.from_protobuf(doc.to_protobuf()) def test_proto_with_chunks_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() def test_optional_field_in_doc(): class CustomDoc(BaseDocument): text: Optional[str] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) def test_optional_field_nested_in_doc(): class InnerDoc(BaseDocument): title: str class CustomDoc(BaseDocument): text: Optional[InnerDoc] CustomDoc.from_protobuf(CustomDoc().to_protobuf())
from typing import Optional import numpy as np import torch from docarray import DocumentArray from docarray.document import BaseDocument from docarray.typing import Tensor, TorchTensor def test_proto_simple(): class CustomDoc(BaseDocument): text: str doc = CustomDoc(text='hello') CustomDoc.from_protobuf(doc.to_protobuf()) def test_proto_ndarray(): class CustomDoc(BaseDocument): tensor: Tensor tensor = np.zeros((3, 224, 224)) doc = CustomDoc(tensor=tensor) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) assert (new_doc.tensor == tensor).all() def test_proto_with_nested_doc(): class CustomInnerDoc(BaseDocument): tensor: Tensor class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc(text='hello', inner=CustomInnerDoc(tensor=np.zeros((3, 224, 224)))) CustomDoc.from_protobuf(doc.to_protobuf()) def test_proto_with_chunks_doc(): class CustomInnerDoc(BaseDocument): tensor: Tensor class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=np.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() def test_proto_with_nested_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc( text='hello', inner=CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) ) CustomDoc.from_protobuf(doc.to_protobuf()) def test_proto_with_chunks_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() def test_optional_field_in_doc(): class CustomDoc(BaseDocument): text: Optional[str] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) def test_optional_field_nested_in_doc(): class InnerDoc(BaseDocument): title: str class CustomDoc(BaseDocument): text: Optional[InnerDoc] CustomDoc.from_protobuf(CustomDoc().to_protobuf())
""" This example starts multiple processes (1 per GPU), which encode sentences in parallel. This gives a near linear speed-up when encoding large text collections. """ import logging from sentence_transformers import LoggingHandler, SentenceTransformer logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) # Important, you need to shield your code with if __name__. Otherwise, CUDA runs into issues when spawning new processes. if __name__ == "__main__": # Create a large list of 100k sentences sentences = ["This is sentence {}".format(i) for i in range(100000)] # Define the model model = SentenceTransformer("all-MiniLM-L6-v2") # Start the multi-process pool on all available CUDA devices pool = model.start_multi_process_pool() # Compute the embeddings using the multi-process pool emb = model.encode_multi_process(sentences, pool) print("Embeddings computed. Shape:", emb.shape) # Optional: Stop the processes in the pool model.stop_multi_process_pool(pool)
""" This example starts multiple processes (1 per GPU), which encode sentences in parallel. This gives a near linear speed-up when encoding large text collections. """ from sentence_transformers import SentenceTransformer, LoggingHandler import logging logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) # Important, you need to shield your code with if __name__. Otherwise, CUDA runs into issues when spawning new processes. if __name__ == "__main__": # Create a large list of 100k sentences sentences = ["This is sentence {}".format(i) for i in range(100000)] # Define the model model = SentenceTransformer("all-MiniLM-L6-v2") # Start the multi-process pool on all available CUDA devices pool = model.start_multi_process_pool() # Compute the embeddings using the multi-process pool emb = model.encode_multi_process(sentences, pool) print("Embeddings computed. Shape:", emb.shape) # Optional: Stop the processes in the pool model.stop_multi_process_pool(pool)
import enum import pathlib from typing import Any, BinaryIO, Dict, List, Optional, Tuple, Union from torchdata.datapipes.iter import CSVParser, Demultiplexer, Filter, IterDataPipe, IterKeyZipper, LineReader, Mapper from torchvision.prototype.datapoints import Label from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( getitem, hint_sharding, hint_shuffling, INFINITE_BUFFER_SIZE, path_comparator, read_categories_file, ) from .._api import register_dataset, register_info NAME = "dtd" class DTDDemux(enum.IntEnum): SPLIT = 0 JOINT_CATEGORIES = 1 IMAGES = 2 @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=read_categories_file(NAME)) @register_dataset(NAME) class DTD(Dataset): """DTD Dataset. homepage="https://www.robots.ox.ac.uk/~vgg/data/dtd/", """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", fold: int = 1, skip_validation_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "val", "test"}) if not (1 <= fold <= 10): raise ValueError(f"The fold parameter should be an integer in [1, 10]. Got {fold}") self._fold = fold self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_validation_check) def _resources(self) -> List[OnlineResource]: archive = HttpResource( "https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz", sha256="e42855a52a4950a3b59612834602aa253914755c95b0cff9ead6d07395f8e205", preprocess="decompress", ) return [archive] def _classify_archive(self, data: Tuple[str, Any]) -> Optional[int]: path = pathlib.Path(data[0]) if path.parent.name == "labels": if path.name == "labels_joint_anno.txt": return DTDDemux.JOINT_CATEGORIES return DTDDemux.SPLIT elif path.parents[1].name == "images": return DTDDemux.IMAGES else: return None def _image_key_fn(self, data: Tuple[str, Any]) -> str: path = pathlib.Path(data[0]) # The split files contain hardcoded posix paths for the images, e.g. banded/banded_0001.jpg return str(path.relative_to(path.parents[1]).as_posix()) def _prepare_sample(self, data: Tuple[Tuple[str, List[str]], Tuple[str, BinaryIO]]) -> Dict[str, Any]: (_, joint_categories_data), image_data = data _, *joint_categories = joint_categories_data path, buffer = image_data category = pathlib.Path(path).parent.name return dict( joint_categories={category for category in joint_categories if category}, label=Label.from_category(category, categories=self._categories), path=path, image=EncodedImage.from_file(buffer), ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: archive_dp = resource_dps[0] splits_dp, joint_categories_dp, images_dp = Demultiplexer( archive_dp, 3, self._classify_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE ) splits_dp = Filter(splits_dp, path_comparator("name", f"{self._split}{self._fold}.txt")) splits_dp = LineReader(splits_dp, decode=True, return_path=False) splits_dp = hint_shuffling(splits_dp) splits_dp = hint_sharding(splits_dp) joint_categories_dp = CSVParser(joint_categories_dp, delimiter=" ") dp = IterKeyZipper( splits_dp, joint_categories_dp, key_fn=getitem(), ref_key_fn=getitem(0), buffer_size=INFINITE_BUFFER_SIZE, ) dp = IterKeyZipper( dp, images_dp, key_fn=getitem(0), ref_key_fn=self._image_key_fn, buffer_size=INFINITE_BUFFER_SIZE, ) return Mapper(dp, self._prepare_sample) def _filter_images(self, data: Tuple[str, Any]) -> bool: return self._classify_archive(data) == DTDDemux.IMAGES def _generate_categories(self) -> List[str]: resources = self._resources() dp = resources[0].load(self._root) dp = Filter(dp, self._filter_images) return sorted({pathlib.Path(path).parent.name for path, _ in dp}) def __len__(self) -> int: return 1_880 # All splits have the same length
import enum import pathlib from typing import Any, BinaryIO, Dict, List, Optional, Tuple, Union from torchdata.datapipes.iter import CSVParser, Demultiplexer, Filter, IterDataPipe, IterKeyZipper, LineReader, Mapper from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( getitem, hint_sharding, hint_shuffling, INFINITE_BUFFER_SIZE, path_comparator, read_categories_file, ) from torchvision.prototype.features import Label from .._api import register_dataset, register_info NAME = "dtd" class DTDDemux(enum.IntEnum): SPLIT = 0 JOINT_CATEGORIES = 1 IMAGES = 2 @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=read_categories_file(NAME)) @register_dataset(NAME) class DTD(Dataset): """DTD Dataset. homepage="https://www.robots.ox.ac.uk/~vgg/data/dtd/", """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", fold: int = 1, skip_validation_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "val", "test"}) if not (1 <= fold <= 10): raise ValueError(f"The fold parameter should be an integer in [1, 10]. Got {fold}") self._fold = fold self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_validation_check) def _resources(self) -> List[OnlineResource]: archive = HttpResource( "https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz", sha256="e42855a52a4950a3b59612834602aa253914755c95b0cff9ead6d07395f8e205", preprocess="decompress", ) return [archive] def _classify_archive(self, data: Tuple[str, Any]) -> Optional[int]: path = pathlib.Path(data[0]) if path.parent.name == "labels": if path.name == "labels_joint_anno.txt": return DTDDemux.JOINT_CATEGORIES return DTDDemux.SPLIT elif path.parents[1].name == "images": return DTDDemux.IMAGES else: return None def _image_key_fn(self, data: Tuple[str, Any]) -> str: path = pathlib.Path(data[0]) # The split files contain hardcoded posix paths for the images, e.g. banded/banded_0001.jpg return str(path.relative_to(path.parents[1]).as_posix()) def _prepare_sample(self, data: Tuple[Tuple[str, List[str]], Tuple[str, BinaryIO]]) -> Dict[str, Any]: (_, joint_categories_data), image_data = data _, *joint_categories = joint_categories_data path, buffer = image_data category = pathlib.Path(path).parent.name return dict( joint_categories={category for category in joint_categories if category}, label=Label.from_category(category, categories=self._categories), path=path, image=EncodedImage.from_file(buffer), ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: archive_dp = resource_dps[0] splits_dp, joint_categories_dp, images_dp = Demultiplexer( archive_dp, 3, self._classify_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE ) splits_dp = Filter(splits_dp, path_comparator("name", f"{self._split}{self._fold}.txt")) splits_dp = LineReader(splits_dp, decode=True, return_path=False) splits_dp = hint_shuffling(splits_dp) splits_dp = hint_sharding(splits_dp) joint_categories_dp = CSVParser(joint_categories_dp, delimiter=" ") dp = IterKeyZipper( splits_dp, joint_categories_dp, key_fn=getitem(), ref_key_fn=getitem(0), buffer_size=INFINITE_BUFFER_SIZE, ) dp = IterKeyZipper( dp, images_dp, key_fn=getitem(0), ref_key_fn=self._image_key_fn, buffer_size=INFINITE_BUFFER_SIZE, ) return Mapper(dp, self._prepare_sample) def _filter_images(self, data: Tuple[str, Any]) -> bool: return self._classify_archive(data) == DTDDemux.IMAGES def _generate_categories(self) -> List[str]: resources = self._resources() dp = resources[0].load(self._root) dp = Filter(dp, self._filter_images) return sorted({pathlib.Path(path).parent.name for path, _ in dp}) def __len__(self) -> int: return 1_880 # All splits have the same length
""" This script downloads the WikiMatrix corpus (https://github.com/facebookresearch/LASER/tree/master/tasks/WikiMatrix) and create parallel sentences tsv files that can be used to extend existent sentence embedding models to new languages. The WikiMatrix mined parallel sentences from Wikipedia in various languages. Further information can be found in our paper: Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation https://arxiv.org/abs/2004.09813 """ import gzip import os import sentence_transformers.util source_languages = set(["en"]) # Languages our (monolingual) teacher model understands target_languages = set(["de", "es", "it", "fr", "ar", "tr"]) # New languages we want to extend to num_dev_sentences = 1000 # Number of sentences we want to use for development threshold = 1.075 # Only use sentences with a LASER similarity score above the threshold download_url = "https://dl.fbaipublicfiles.com/laser/WikiMatrix/v1/" download_folder = "../datasets/WikiMatrix/" parallel_sentences_folder = "parallel-sentences/" os.makedirs(os.path.dirname(download_folder), exist_ok=True) os.makedirs(parallel_sentences_folder, exist_ok=True) for source_lang in source_languages: for target_lang in target_languages: filename_train = os.path.join( parallel_sentences_folder, "WikiMatrix-{}-{}-train.tsv.gz".format(source_lang, target_lang) ) filename_dev = os.path.join( parallel_sentences_folder, "WikiMatrix-{}-{}-dev.tsv.gz".format(source_lang, target_lang) ) if not os.path.exists(filename_train) and not os.path.exists(filename_dev): langs_ordered = sorted([source_lang, target_lang]) wikimatrix_filename = "WikiMatrix.{}-{}.tsv.gz".format(*langs_ordered) wikimatrix_filepath = os.path.join(download_folder, wikimatrix_filename) if not os.path.exists(wikimatrix_filepath): print("Download", download_url + wikimatrix_filename) try: sentence_transformers.util.http_get(download_url + wikimatrix_filename, wikimatrix_filepath) except Exception: print("Was not able to download", download_url + wikimatrix_filename) continue if not os.path.exists(wikimatrix_filepath): continue train_sentences = [] dev_sentences = [] dev_sentences_set = set() extract_dev_sentences = True with gzip.open(wikimatrix_filepath, "rt", encoding="utf8") as fIn: for line in fIn: score, sent1, sent2 = line.strip().split("\t") sent1 = sent1.strip() sent2 = sent2.strip() score = float(score) if score < threshold: break if sent1 == sent2: continue if langs_ordered.index(source_lang) == 1: # Swap, so that src lang is sent1 sent1, sent2 = sent2, sent1 # Avoid duplicates in development set if sent1 in dev_sentences_set or sent2 in dev_sentences_set: continue if extract_dev_sentences: dev_sentences.append([sent1, sent2]) dev_sentences_set.add(sent1) dev_sentences_set.add(sent2) if len(dev_sentences) >= num_dev_sentences: extract_dev_sentences = False else: train_sentences.append([sent1, sent2]) print("Write", len(dev_sentences), "dev sentences", filename_dev) with gzip.open(filename_dev, "wt", encoding="utf8") as fOut: for sents in dev_sentences: fOut.write("\t".join(sents)) fOut.write("\n") print("Write", len(train_sentences), "train sentences", filename_train) with gzip.open(filename_train, "wt", encoding="utf8") as fOut: for sents in train_sentences: fOut.write("\t".join(sents)) fOut.write("\n") print("---DONE---")
""" This script downloads the WikiMatrix corpus (https://github.com/facebookresearch/LASER/tree/master/tasks/WikiMatrix) and create parallel sentences tsv files that can be used to extend existent sentence embedding models to new languages. The WikiMatrix mined parallel sentences from Wikipedia in various languages. Further information can be found in our paper: Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation https://arxiv.org/abs/2004.09813 """ import os import sentence_transformers.util import gzip source_languages = set(["en"]) # Languages our (monolingual) teacher model understands target_languages = set(["de", "es", "it", "fr", "ar", "tr"]) # New languages we want to extend to num_dev_sentences = 1000 # Number of sentences we want to use for development threshold = 1.075 # Only use sentences with a LASER similarity score above the threshold download_url = "https://dl.fbaipublicfiles.com/laser/WikiMatrix/v1/" download_folder = "../datasets/WikiMatrix/" parallel_sentences_folder = "parallel-sentences/" os.makedirs(os.path.dirname(download_folder), exist_ok=True) os.makedirs(parallel_sentences_folder, exist_ok=True) for source_lang in source_languages: for target_lang in target_languages: filename_train = os.path.join( parallel_sentences_folder, "WikiMatrix-{}-{}-train.tsv.gz".format(source_lang, target_lang) ) filename_dev = os.path.join( parallel_sentences_folder, "WikiMatrix-{}-{}-dev.tsv.gz".format(source_lang, target_lang) ) if not os.path.exists(filename_train) and not os.path.exists(filename_dev): langs_ordered = sorted([source_lang, target_lang]) wikimatrix_filename = "WikiMatrix.{}-{}.tsv.gz".format(*langs_ordered) wikimatrix_filepath = os.path.join(download_folder, wikimatrix_filename) if not os.path.exists(wikimatrix_filepath): print("Download", download_url + wikimatrix_filename) try: sentence_transformers.util.http_get(download_url + wikimatrix_filename, wikimatrix_filepath) except Exception: print("Was not able to download", download_url + wikimatrix_filename) continue if not os.path.exists(wikimatrix_filepath): continue train_sentences = [] dev_sentences = [] dev_sentences_set = set() extract_dev_sentences = True with gzip.open(wikimatrix_filepath, "rt", encoding="utf8") as fIn: for line in fIn: score, sent1, sent2 = line.strip().split("\t") sent1 = sent1.strip() sent2 = sent2.strip() score = float(score) if score < threshold: break if sent1 == sent2: continue if langs_ordered.index(source_lang) == 1: # Swap, so that src lang is sent1 sent1, sent2 = sent2, sent1 # Avoid duplicates in development set if sent1 in dev_sentences_set or sent2 in dev_sentences_set: continue if extract_dev_sentences: dev_sentences.append([sent1, sent2]) dev_sentences_set.add(sent1) dev_sentences_set.add(sent2) if len(dev_sentences) >= num_dev_sentences: extract_dev_sentences = False else: train_sentences.append([sent1, sent2]) print("Write", len(dev_sentences), "dev sentences", filename_dev) with gzip.open(filename_dev, "wt", encoding="utf8") as fOut: for sents in dev_sentences: fOut.write("\t".join(sents)) fOut.write("\n") print("Write", len(train_sentences), "train sentences", filename_train) with gzip.open(filename_train, "wt", encoding="utf8") as fOut: for sents in train_sentences: fOut.write("\t".join(sents)) fOut.write("\n") print("---DONE---")
"""langchain-core version information and utilities.""" VERSION = "0.3.56"
"""langchain-core version information and utilities.""" VERSION = "0.3.56rc1"
_base_ = './yolov3_d53_8xb8-ms-608-273e_coco.py' # dataset settings # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') input_size = (320, 320) train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), # `mean` and `to_rgb` should be the same with the `preprocess_cfg` dict(type='Expand', mean=[0, 0, 0], to_rgb=True, ratio_range=(1, 2)), dict( type='MinIoURandomCrop', min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), min_crop_size=0.3), dict(type='Resize', scale=input_size, keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=input_size, keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
_base_ = './yolov3_d53_mstrain-608_273e_coco.py' # dataset settings # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') input_size = (320, 320) train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), # `mean` and `to_rgb` should be the same with the `preprocess_cfg` dict(type='Expand', mean=[0, 0, 0], to_rgb=True, ratio_range=(1, 2)), dict( type='MinIoURandomCrop', min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), min_crop_size=0.3), dict(type='Resize', scale=input_size, keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=input_size, keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
_base_ = './mask_rcnn_r50_fpn_1x_coco.py' model = dict( # use caffe img_norm data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
_base_ = './mask_rcnn_r50_fpn_1x_coco.py' preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) model = dict( # use caffe img_norm preprocess_cfg=preprocess_cfg, backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
import os import torch def average_checkpoints(last): avg = None for path in last: states = torch.load(path, map_location=lambda storage, loc: storage)["state_dict"] if avg is None: avg = states else: for k in avg.keys(): avg[k] += states[k] # average for k in avg.keys(): if avg[k] is not None: if avg[k].is_floating_point(): avg[k] /= len(last) else: avg[k] //= len(last) return avg def ensemble(args): last = [os.path.join(args.exp_dir, args.exp_name, f"epoch={n}.ckpt") for n in range(args.epochs - 10, args.epochs)] model_path = os.path.join(args.exp_dir, args.exp_name, "model_avg_10.pth") torch.save({"state_dict": average_checkpoints(last)}, model_path)
import os import torch def average_checkpoints(last): avg = None for path in last: states = torch.load(path, map_location=lambda storage, loc: storage)["state_dict"] if avg is None: avg = states else: for k in avg.keys(): avg[k] += states[k] # average for k in avg.keys(): if avg[k] is not None: if avg[k].is_floating_point(): avg[k] /= len(last) else: avg[k] //= len(last) return avg def ensemble(args): last = [ os.path.join(args.exp_dir, args.experiment_name, f"epoch={n}.ckpt") for n in range(args.epochs - 10, args.epochs) ] model_path = os.path.join(args.exp_dir, args.experiment_name, "model_avg_10.pth") torch.save({"state_dict": average_checkpoints(last)}, model_path)
from typing import Iterable, Type from docarray.array.abstract_array import AbstractDocumentArray from docarray.array.mixins import GetAttributeArrayMixin, ProtoArrayMixin from docarray.document import AnyDocument, BaseDocument, BaseNode from docarray.document.abstract_document import AbstractDocument class DocumentArray( list, ProtoArrayMixin, GetAttributeArrayMixin, AbstractDocumentArray, BaseNode, ): """ a _GenericDocumentArray is a list-like container of Document of the same schema :param docs: iterable of Document """ document_type: Type[BaseDocument] = AnyDocument def __init__(self, docs: Iterable[AbstractDocument]): super().__init__(doc_ for doc_ in docs) def __class_getitem__(cls, item: Type[BaseDocument]): if not issubclass(item, BaseDocument): raise ValueError( f'DocumentArray[item] item should be a Document not a {item} ' ) class _DocumenArrayTyped(DocumentArray): document_type = item for field in _DocumenArrayTyped.document_type.__fields__.keys(): def _proprety_generator(val: str): return property(lambda self: self._get_documents_attribute(val)) setattr(_DocumenArrayTyped, field, _proprety_generator(field)) # this generates property on the fly based on the schema of the item _DocumenArrayTyped.__name__ = f'DocumentArray{item.__name__}' return _DocumenArrayTyped
from typing import Iterable, Type from docarray.document import AnyDocument, BaseDocument, BaseNode from docarray.document.abstract_document import AbstractDocument from .abstract_array import AbstractDocumentArray from .mixins import ProtoArrayMixin class DocumentArray( list, ProtoArrayMixin, AbstractDocumentArray, BaseNode, ): """ a _GenericDocumentArray is a list-like container of Document of the same schema :param docs: iterable of Document """ document_type: Type[BaseDocument] = AnyDocument def __init__(self, docs: Iterable[AbstractDocument]): super().__init__(doc_ for doc_ in docs) def __class_getitem__(cls, item: Type[BaseDocument]): if not issubclass(item, BaseDocument): raise ValueError( f'DocumentArray[item] item should be a Document not a {item} ' ) class _DocumenArrayTyped(DocumentArray): document_type = item _DocumenArrayTyped.__name__ = f'DocumentArray{item.__name__}' return _DocumenArrayTyped
import unittest import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import nested_params, TestBaseMixin, torch_script class TorchScriptConsistencyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) @nested_params( ["convolve", "fftconvolve"], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (2, 3, 2) L_x, L_y = 32, 55 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) self._assert_consistency(getattr(F, fn), (x, y, mode)) def test_add_noise(self): leading_dims = (2, 3) L = 31 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self._assert_consistency(F.add_noise, (waveform, noise, lengths, snr)) def test_barkscale_fbanks(self): if self.device != torch.device("cpu"): raise unittest.SkipTest("No need to perform test on device other than CPU") n_stft = 100 f_min = 0.0 f_max = 20.0 n_barks = 10 sample_rate = 16000 self._assert_consistency(F.barkscale_fbanks, (n_stft, f_min, f_max, n_barks, sample_rate, "traunmuller")) def test_oscillator_bank(self): num_frames, num_pitches, sample_rate = 8000, 8, 8000 freq = torch.rand((num_frames, num_pitches), dtype=self.dtype, device=self.device) amps = torch.ones_like(freq) self._assert_consistency(F.oscillator_bank, (freq, amps, sample_rate, "sum")) def test_extend_pitch(self): num_frames = 5 input = torch.ones((num_frames, 1), device=self.device, dtype=self.dtype) num_pitches = 7 pattern = [i + 1.0 for i in range(num_pitches)] self._assert_consistency(F.extend_pitch, (input, num_pitches)) self._assert_consistency(F.extend_pitch, (input, pattern)) self._assert_consistency(F.extend_pitch, (input, torch.tensor(pattern))) def test_sinc_ir(self): cutoff = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, False)) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, True))
import unittest import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import nested_params, TestBaseMixin, torch_script class TorchScriptConsistencyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) @nested_params( ["convolve", "fftconvolve"], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (2, 3, 2) L_x, L_y = 32, 55 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) self._assert_consistency(getattr(F, fn), (x, y, mode)) def test_add_noise(self): leading_dims = (2, 3) L = 31 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self._assert_consistency(F.add_noise, (waveform, noise, lengths, snr)) def test_barkscale_fbanks(self): if self.device != torch.device("cpu"): raise unittest.SkipTest("No need to perform test on device other than CPU") n_stft = 100 f_min = 0.0 f_max = 20.0 n_barks = 10 sample_rate = 16000 self._assert_consistency(F.barkscale_fbanks, (n_stft, f_min, f_max, n_barks, sample_rate, "traunmuller")) def test_oscillator_bank(self): num_frames, num_pitches, sample_rate = 8000, 8, 8000 freq = torch.rand((num_frames, num_pitches), dtype=self.dtype, device=self.device) amps = torch.ones_like(freq) self._assert_consistency(F.oscillator_bank, (freq, amps, sample_rate, "sum")) def test_extend_pitch(self): num_frames = 5 input = torch.ones((num_frames, 1), device=self.device, dtype=self.dtype) num_pitches = 7 pattern = [i + 1.0 for i in range(num_pitches)] self._assert_consistency(F.extend_pitch, (input, num_pitches)) self._assert_consistency(F.extend_pitch, (input, pattern)) self._assert_consistency(F.extend_pitch, (input, torch.tensor(pattern)))
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, Type, TypeVar, Union from docarray.base_doc import BaseDoc from docarray.typing.tensor.tensor import AnyTensor from docarray.utils._internal.misc import import_library T = TypeVar('T', bound='VerticesAndFaces') class VerticesAndFaces(BaseDoc): """ Document for handling the tensor data of a [`Mesh3D`][docarray.documents.mesh.Mesh3D] object. A VerticesAndFaces Document can contain: - an [`AnyTensor`](../../../../api_references/typing/tensor/tensor) containing the vertices information (`VerticesAndFaces.vertices`) - an [`AnyTensor`](../../../../api_references/typing/tensor/tensor) containing the faces information (`VerticesAndFaces.faces`) """ vertices: AnyTensor faces: AnyTensor @classmethod def _docarray_validate( cls: Type[T], value: Union[str, Any], ) -> T: return super().validate(value) def display(self) -> None: """ Plot mesh consisting of vertices and faces. """ if TYPE_CHECKING: import trimesh else: trimesh = import_library('trimesh', raise_error=True) from IPython.display import display if self.vertices is None or self.faces is None: raise ValueError( 'Can\'t display mesh from tensors when the vertices and/or faces ' 'are None.' ) mesh = trimesh.Trimesh(vertices=self.vertices, faces=self.faces) display(mesh.show())
from typing import TYPE_CHECKING, Any, Type, TypeVar, Union from docarray.base_doc import BaseDoc from docarray.typing.tensor.tensor import AnyTensor from docarray.utils._internal.misc import import_library T = TypeVar('T', bound='VerticesAndFaces') class VerticesAndFaces(BaseDoc): """ Document for handling the tensor data of a [`Mesh3D`][docarray.documents.mesh.Mesh3D] object. A VerticesAndFaces Document can contain: - an [`AnyTensor`](../../../../api_references/typing/tensor/tensor) containing the vertices information (`VerticesAndFaces.vertices`) - an [`AnyTensor`](../../../../api_references/typing/tensor/tensor) containing the faces information (`VerticesAndFaces.faces`) """ vertices: AnyTensor faces: AnyTensor @classmethod def _docarray_validate( cls: Type[T], value: Union[str, Any], ) -> T: return super().validate(value) def display(self) -> None: """ Plot mesh consisting of vertices and faces. """ if TYPE_CHECKING: import trimesh else: trimesh = import_library('trimesh', raise_error=True) from IPython.display import display if self.vertices is None or self.faces is None: raise ValueError( 'Can\'t display mesh from tensors when the vertices and/or faces ' 'are None.' ) mesh = trimesh.Trimesh(vertices=self.vertices, faces=self.faces) display(mesh.show())
""" Sphinx Read the Docs theme. From https://github.com/ryan-roemer/sphinx-bootstrap-theme. """ from os import path import sphinx __version__ = "0.5.0" __version_full__ = __version__ def get_html_theme_path(): """Return list of HTML theme paths.""" cur_dir = path.abspath(path.dirname(path.dirname(__file__))) return cur_dir # See http://www.sphinx-doc.org/en/stable/theming.html#distribute-your-theme-as-a-python-package def setup(app): if sphinx.version_info >= (1, 6, 0): # Register the theme that can be referenced without adding a theme path app.add_html_theme("sphinx_rtd_theme", path.abspath(path.dirname(__file__))) if sphinx.version_info >= (1, 8, 0): # Add Sphinx message catalog for newer versions of Sphinx # See http://www.sphinx-doc.org/en/master/extdev/appapi.html#sphinx.application.Sphinx.add_message_catalog rtd_locale_path = path.join(path.abspath(path.dirname(__file__)), "locale") app.add_message_catalog("sphinx", rtd_locale_path) return {"parallel_read_safe": True, "parallel_write_safe": True}
""" Sphinx Read the Docs theme. From https://github.com/ryan-roemer/sphinx-bootstrap-theme. """ from os import path import sphinx __version__ = '0.5.0' __version_full__ = __version__ def get_html_theme_path(): """Return list of HTML theme paths.""" cur_dir = path.abspath(path.dirname(path.dirname(__file__))) return cur_dir # See http://www.sphinx-doc.org/en/stable/theming.html#distribute-your-theme-as-a-python-package def setup(app): if sphinx.version_info >= (1, 6, 0): # Register the theme that can be referenced without adding a theme path app.add_html_theme('sphinx_rtd_theme', path.abspath(path.dirname(__file__))) if sphinx.version_info >= (1, 8, 0): # Add Sphinx message catalog for newer versions of Sphinx # See http://www.sphinx-doc.org/en/master/extdev/appapi.html#sphinx.application.Sphinx.add_message_catalog rtd_locale_path = path.join(path.abspath(path.dirname(__file__)), 'locale') app.add_message_catalog('sphinx', rtd_locale_path) return {'parallel_read_safe': True, 'parallel_write_safe': True}
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from docarray import BaseDoc from docarray.typing import NdArray def test_tensor_ops(): class A(BaseDoc): tensor: NdArray[3, 224, 224] class B(BaseDoc): tensor: NdArray[3, 112, 224] tensor = A(tensor=np.ones((3, 224, 224))).tensor tensord = A(tensor=np.ones((3, 224, 224))).tensor tensorn = np.zeros((3, 224, 224)) tensorhalf = B(tensor=np.ones((3, 112, 224))).tensor tensorfull = np.concatenate([tensorhalf, tensorhalf], axis=1) assert type(tensor) == NdArray assert type(tensor + tensord) == NdArray assert type(tensor + tensorn) == NdArray assert type(tensor + tensorfull) == NdArray
import numpy as np from docarray import BaseDoc from docarray.typing import NdArray def test_tensor_ops(): class A(BaseDoc): tensor: NdArray[3, 224, 224] class B(BaseDoc): tensor: NdArray[3, 112, 224] tensor = A(tensor=np.ones((3, 224, 224))).tensor tensord = A(tensor=np.ones((3, 224, 224))).tensor tensorn = np.zeros((3, 224, 224)) tensorhalf = B(tensor=np.ones((3, 112, 224))).tensor tensorfull = np.concatenate([tensorhalf, tensorhalf], axis=1) assert type(tensor) == NdArray assert type(tensor + tensord) == NdArray assert type(tensor + tensorn) == NdArray assert type(tensor + tensorfull) == NdArray
from typing import Dict, Iterable import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer from .ContrastiveLoss import SiameseDistanceMetric class OnlineContrastiveLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5 ) -> None: """ This Online Contrastive loss is similar to :class:`ConstrativeLoss`, but it selects hard positive (positives that are far apart) and hard negative pairs (negatives that are close) and computes the loss only for these pairs. This loss often yields better performances than ContrastiveLoss. Args: model: SentenceTransformer model distance_metric: Function that returns a distance between two embeddings. The class SiameseDistanceMetric contains pre-defined metrics that can be used margin: Negative samples (label == 0) should have a distance of at least the margin value. References: - `Training Examples > Quora Duplicate Questions <../../examples/training/quora_duplicate_questions/README.html>`_ Requirements: 1. (anchor, positive/negative) pairs 2. Data should include hard positives and hard negatives Relations: - :class:`ContrastiveLoss` is similar, but does not use hard positive and hard negative pairs. :class:`OnlineContrastiveLoss` often yields better results. Inputs: +-----------------------------------------------+------------------------------+ | Texts | Labels | +===============================================+==============================+ | (anchor, positive/negative) pairs | 1 if positive, 0 if negative | +-----------------------------------------------+------------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "label": [1, 0], }) loss = losses.OnlineContrastiveLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(OnlineContrastiveLoss, self).__init__() self.model = model self.margin = margin self.distance_metric = distance_metric def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor, size_average=False) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] distance_matrix = self.distance_metric(embeddings[0], embeddings[1]) negs = distance_matrix[labels == 0] poss = distance_matrix[labels == 1] # select hard positive and hard negative pairs negative_pairs = negs[negs < (poss.max() if len(poss) > 1 else negs.mean())] positive_pairs = poss[poss > (negs.min() if len(negs) > 1 else poss.mean())] positive_loss = positive_pairs.pow(2).sum() negative_loss = F.relu(self.margin - negative_pairs).pow(2).sum() loss = positive_loss + negative_loss return loss
from typing import Dict, Iterable import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer from .ContrastiveLoss import SiameseDistanceMetric class OnlineContrastiveLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5 ): """ This Online Contrastive loss is similar to :class:`ConstrativeLoss`, but it selects hard positive (positives that are far apart) and hard negative pairs (negatives that are close) and computes the loss only for these pairs. This loss often yields better performances than ContrastiveLoss. Args: model: SentenceTransformer model distance_metric: Function that returns a distance between two embeddings. The class SiameseDistanceMetric contains pre-defined metrics that can be used margin: Negative samples (label == 0) should have a distance of at least the margin value. References: - `Training Examples > Quora Duplicate Questions <../../examples/training/quora_duplicate_questions/README.html>`_ Requirements: 1. (anchor, positive/negative) pairs 2. Data should include hard positives and hard negatives Relations: - :class:`ContrastiveLoss` is similar, but does not use hard positive and hard negative pairs. :class:`OnlineContrastiveLoss` often yields better results. Inputs: +-----------------------------------------------+------------------------------+ | Texts | Labels | +===============================================+==============================+ | (anchor, positive/negative) pairs | 1 if positive, 0 if negative | +-----------------------------------------------+------------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "label": [1, 0], }) loss = losses.OnlineContrastiveLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(OnlineContrastiveLoss, self).__init__() self.model = model self.margin = margin self.distance_metric = distance_metric def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor, size_average=False): embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] distance_matrix = self.distance_metric(embeddings[0], embeddings[1]) negs = distance_matrix[labels == 0] poss = distance_matrix[labels == 1] # select hard positive and hard negative pairs negative_pairs = negs[negs < (poss.max() if len(poss) > 1 else negs.mean())] positive_pairs = poss[poss > (negs.min() if len(negs) > 1 else poss.mean())] positive_loss = positive_pairs.pow(2).sum() negative_loss = F.relu(self.margin - negative_pairs).pow(2).sum() loss = positive_loss + negative_loss return loss
from __future__ import annotations import re from typing import Optional from langchain_core.output_parsers import BaseOutputParser class RegexParser(BaseOutputParser[dict[str, str]]): """Parse the output of an LLM call using a regex.""" @classmethod def is_lc_serializable(cls) -> bool: return True regex: str """The regex to use to parse the output.""" output_keys: list[str] """The keys to use for the output.""" default_output_key: Optional[str] = None """The default key to use for the output.""" @property def _type(self) -> str: """Return the type key.""" return "regex_parser" def parse(self, text: str) -> dict[str, str]: """Parse the output of an LLM call.""" match = re.search(self.regex, text) if match: return {key: match.group(i + 1) for i, key in enumerate(self.output_keys)} if self.default_output_key is None: msg = f"Could not parse output: {text}" raise ValueError(msg) return { key: text if key == self.default_output_key else "" for key in self.output_keys }
from __future__ import annotations import re from typing import Optional from langchain_core.output_parsers import BaseOutputParser class RegexParser(BaseOutputParser[dict[str, str]]): """Parse the output of an LLM call using a regex.""" @classmethod def is_lc_serializable(cls) -> bool: return True regex: str """The regex to use to parse the output.""" output_keys: list[str] """The keys to use for the output.""" default_output_key: Optional[str] = None """The default key to use for the output.""" @property def _type(self) -> str: """Return the type key.""" return "regex_parser" def parse(self, text: str) -> dict[str, str]: """Parse the output of an LLM call.""" match = re.search(self.regex, text) if match: return {key: match.group(i + 1) for i, key in enumerate(self.output_keys)} else: if self.default_output_key is None: msg = f"Could not parse output: {text}" raise ValueError(msg) else: return { key: text if key == self.default_output_key else "" for key in self.output_keys }
"""Test in memory indexer.""" from collections.abc import AsyncGenerator, Generator import pytest from langchain_tests.integration_tests.indexer import ( AsyncDocumentIndexTestSuite, DocumentIndexerTestSuite, ) from langchain_core.documents import Document from langchain_core.indexing.base import DocumentIndex from langchain_core.indexing.in_memory import ( InMemoryDocumentIndex, ) class TestDocumentIndexerTestSuite(DocumentIndexerTestSuite): @pytest.fixture def index(self) -> Generator[DocumentIndex, None, None]: yield InMemoryDocumentIndex() # noqa: PT022 class TestAsyncDocumentIndexerTestSuite(AsyncDocumentIndexTestSuite): # Something funky is going on with mypy and async pytest fixture @pytest.fixture async def index(self) -> AsyncGenerator[DocumentIndex, None]: # type: ignore yield InMemoryDocumentIndex() # noqa: PT022 def test_sync_retriever() -> None: index = InMemoryDocumentIndex() documents = [ Document(id="1", page_content="hello world"), Document(id="2", page_content="goodbye cat"), ] index.upsert(documents) assert index.invoke("hello") == [documents[0], documents[1]] assert index.invoke("cat") == [documents[1], documents[0]] async def test_async_retriever() -> None: index = InMemoryDocumentIndex() documents = [ Document(id="1", page_content="hello world"), Document(id="2", page_content="goodbye cat"), ] await index.aupsert(documents) assert (await index.ainvoke("hello")) == [documents[0], documents[1]] assert (await index.ainvoke("cat")) == [documents[1], documents[0]]
"""Test in memory indexer.""" from collections.abc import AsyncGenerator, Generator import pytest from langchain_tests.integration_tests.indexer import ( AsyncDocumentIndexTestSuite, DocumentIndexerTestSuite, ) from langchain_core.documents import Document from langchain_core.indexing.base import DocumentIndex from langchain_core.indexing.in_memory import ( InMemoryDocumentIndex, ) class TestDocumentIndexerTestSuite(DocumentIndexerTestSuite): @pytest.fixture() def index(self) -> Generator[DocumentIndex, None, None]: yield InMemoryDocumentIndex() class TestAsyncDocumentIndexerTestSuite(AsyncDocumentIndexTestSuite): # Something funky is going on with mypy and async pytest fixture @pytest.fixture() async def index(self) -> AsyncGenerator[DocumentIndex, None]: # type: ignore yield InMemoryDocumentIndex() def test_sync_retriever() -> None: index = InMemoryDocumentIndex() documents = [ Document(id="1", page_content="hello world"), Document(id="2", page_content="goodbye cat"), ] index.upsert(documents) assert index.invoke("hello") == [documents[0], documents[1]] assert index.invoke("cat") == [documents[1], documents[0]] async def test_async_retriever() -> None: index = InMemoryDocumentIndex() documents = [ Document(id="1", page_content="hello world"), Document(id="2", page_content="goodbye cat"), ] await index.aupsert(documents) assert (await index.ainvoke("hello")) == [documents[0], documents[1]] assert (await index.ainvoke("cat")) == [documents[1], documents[0]]
import asyncio import time from multiprocessing import Event, Process import aiohttp import pytest from jina import DocumentArray, Executor, Flow, requests from jina.types.request.data import DataRequest from jina.helper import random_port INPUT_DA_LEN = 2 NUM_CLIENTS = 3 @pytest.fixture() def gateway_port(): port = random_port() yield port class DummyExecutor(Executor): @requests(on='/foo') def foo(self, docs: DocumentArray, **kwargs): for d in docs: d.text += f'{d.id} is fooed!' def ws_flow(start_event, stop_event, gateway_port): with Flow(protocol='websocket', port_expose=gateway_port).add( uses=DummyExecutor ) as f: start_event.set() f.block(stop_event=stop_event) def input_da_gen(): for i in range(5): yield DocumentArray.empty(INPUT_DA_LEN) time.sleep(1) def json_requestify(da: DocumentArray, exec_endpoint='/foo'): return { 'execEndpoint': exec_endpoint, 'data': {'docs': da.to_dict()}, } def bytes_requestify(da: DocumentArray, exec_endpoint='/foo'): r = DataRequest() r._pb_body.header.exec_endpoint = exec_endpoint r.data.docs_bytes = da.to_bytes() return r.to_bytes() @pytest.fixture def flow_context(gateway_port): start_event = Event() stop_event = Event() p = Process( target=ws_flow, args=( start_event, stop_event, gateway_port ), ) p.start() start_event.wait() yield stop_event.set() p.join() async def json_sending_client(gateway_port): async with aiohttp.ClientSession() as session: async with session.ws_connect( f'ws://localhost:{gateway_port}/', ) as ws: for da in input_da_gen(): request = json_requestify(da) await ws.send_json(request) response = await ws.receive_json() assert isinstance(response, dict) assert response['header']['exec_endpoint'] == '/foo' assert len(response['data']) == INPUT_DA_LEN for doc in response['data']: assert doc['text'] == f'{doc["id"]} is fooed!' async def bytes_sending_client(gateway_port): async with aiohttp.ClientSession() as session: async with session.ws_connect( f'ws://localhost:{gateway_port}/', protocols=('bytes',), ) as ws: for da in input_da_gen(): request = bytes_requestify(da) await ws.send_bytes(request) response = await ws.receive_bytes() assert isinstance(response, bytes) dict_response = DataRequest(response).to_dict() assert dict_response['header']['exec_endpoint'] == '/foo' assert len(dict_response['data']) == INPUT_DA_LEN for doc in dict_response['data']: assert doc['text'] == f'{doc["id"]} is fooed!' @pytest.mark.asyncio async def test_json_single_client(flow_context, gateway_port): await json_sending_client(gateway_port) @pytest.mark.asyncio async def test_json_multiple_clients(flow_context, gateway_port): await asyncio.wait([json_sending_client(gateway_port) for _ in range(NUM_CLIENTS)]) @pytest.mark.asyncio async def test_bytes_single_client(flow_context, gateway_port): await bytes_sending_client(gateway_port) @pytest.mark.asyncio async def test_bytes_multiple_clients(flow_context, gateway_port): await asyncio.wait([bytes_sending_client(gateway_port) for _ in range(NUM_CLIENTS)])
import asyncio import time from multiprocessing import Event, Process import aiohttp import pytest from jina import DocumentArray, Executor, Flow, requests from jina.types.request.data import DataRequest INPUT_DA_LEN = 2 NUM_CLIENTS = 3 GATEWAY_PORT = 12345 class DummyExecutor(Executor): @requests(on='/foo') def foo(self, docs: DocumentArray, **kwargs): for d in docs: d.text += f'{d.id} is fooed!' def ws_flow(start_event, stop_event): with Flow(protocol='websocket', port_expose=GATEWAY_PORT).add( uses=DummyExecutor ) as f: start_event.set() f.block(stop_event=stop_event) def input_da_gen(): for i in range(5): yield DocumentArray.empty(INPUT_DA_LEN) time.sleep(1) def json_requestify(da: DocumentArray, exec_endpoint='/foo'): return { 'execEndpoint': exec_endpoint, 'data': {'docs': da.to_dict()}, } def bytes_requestify(da: DocumentArray, exec_endpoint='/foo'): r = DataRequest() r._pb_body.header.exec_endpoint = exec_endpoint r.data.docs_bytes = da.to_bytes() return r.to_bytes() @pytest.fixture def flow_context(): start_event = Event() stop_event = Event() p = Process( target=ws_flow, args=( start_event, stop_event, ), ) p.start() start_event.wait() yield stop_event.set() p.join() async def json_sending_client(): async with aiohttp.ClientSession() as session: async with session.ws_connect( f'ws://localhost:{GATEWAY_PORT}/', ) as ws: for da in input_da_gen(): request = json_requestify(da) await ws.send_json(request) response = await ws.receive_json() assert isinstance(response, dict) assert response['header']['exec_endpoint'] == '/foo' assert len(response['data']) == INPUT_DA_LEN for doc in response['data']: assert doc['text'] == f'{doc["id"]} is fooed!' async def bytes_sending_client(): async with aiohttp.ClientSession() as session: async with session.ws_connect( f'ws://localhost:{GATEWAY_PORT}/', protocols=('bytes',), ) as ws: for da in input_da_gen(): request = bytes_requestify(da) await ws.send_bytes(request) response = await ws.receive_bytes() assert isinstance(response, bytes) dict_response = DataRequest(response).to_dict() assert dict_response['header']['exec_endpoint'] == '/foo' assert len(dict_response['data']) == INPUT_DA_LEN for doc in dict_response['data']: assert doc['text'] == f'{doc["id"]} is fooed!' @pytest.mark.asyncio async def test_json_single_client(flow_context): await json_sending_client() @pytest.mark.asyncio async def test_json_multiple_clients(flow_context): await asyncio.wait([json_sending_client() for i in range(NUM_CLIENTS)]) @pytest.mark.asyncio async def test_bytes_single_client(flow_context): await bytes_sending_client() @pytest.mark.asyncio async def test_bytes_multiple_clients(flow_context): await asyncio.wait([bytes_sending_client() for i in range(NUM_CLIENTS)])
# Copyright (c) OpenMMLab. All rights reserved. from .conditional_detr_transformer import ( ConditionalDetrTransformerDecoder, ConditionalDetrTransformerDecoderLayer) from .deformable_detr_transformer import ( DeformableDetrTransformerDecoder, DeformableDetrTransformerDecoderLayer, DeformableDetrTransformerEncoder, DeformableDetrTransformerEncoderLayer) from .detr_transformer import (DetrTransformerDecoder, DetrTransformerDecoderLayer, DetrTransformerEncoder, DetrTransformerEncoderLayer) from .dino_transformer import CdnQueryGenerator, DinoTransformerDecoder from .utils import (MLP, AdaptivePadding, DynamicConv, PatchEmbed, PatchMerging, inverse_sigmoid, nchw_to_nlc, nlc_to_nchw) __all__ = [ 'nlc_to_nchw', 'nchw_to_nlc', 'AdaptivePadding', 'PatchEmbed', 'PatchMerging', 'inverse_sigmoid', 'DynamicConv', 'MLP', 'DetrTransformerEncoder', 'DetrTransformerDecoder', 'DetrTransformerEncoderLayer', 'DetrTransformerDecoderLayer', 'DeformableDetrTransformerEncoder', 'DeformableDetrTransformerDecoder', 'DeformableDetrTransformerEncoderLayer', 'DeformableDetrTransformerDecoderLayer', 'ConditionalDetrTransformerDecoder', 'ConditionalDetrTransformerDecoderLayer', 'DinoTransformerDecoder', 'CdnQueryGenerator' ]
# Copyright (c) OpenMMLab. All rights reserved. from .conditional_detr_transformer import ( ConditionalDetrTransformerDecoder, ConditionalDetrTransformerDecoderLayer) from .deformable_detr_transformer import ( DeformableDetrTransformerDecoder, DeformableDetrTransformerDecoderLayer, DeformableDetrTransformerEncoder, DeformableDetrTransformerEncoderLayer) from .detr_transformer import (DetrTransformerDecoder, DetrTransformerDecoderLayer, DetrTransformerEncoder, DetrTransformerEncoderLayer) from .utils import (MLP, AdaptivePadding, DynamicConv, PatchEmbed, PatchMerging, inverse_sigmoid, nchw_to_nlc, nlc_to_nchw) __all__ = [ 'nlc_to_nchw', 'nchw_to_nlc', 'AdaptivePadding', 'PatchEmbed', 'PatchMerging', 'inverse_sigmoid', 'DynamicConv', 'MLP', 'DetrTransformerEncoder', 'DetrTransformerDecoder', 'DetrTransformerEncoderLayer', 'DetrTransformerDecoderLayer', 'DeformableDetrTransformerEncoder', 'DeformableDetrTransformerDecoder', 'DeformableDetrTransformerEncoderLayer', 'DeformableDetrTransformerDecoderLayer', 'ConditionalDetrTransformerDecoder', 'ConditionalDetrTransformerDecoderLayer' ]
import functools import numbers from collections import defaultdict from typing import Any, Dict, Literal, Sequence, Type, TypeVar, Union from torchvision import datapoints from torchvision.datapoints._datapoint import _FillType, _FillTypeJIT from torchvision.transforms.transforms import _check_sequence_input, _setup_angle, _setup_size # noqa: F401 def _setup_float_or_seq(arg: Union[float, Sequence[float]], name: str, req_size: int = 2) -> Sequence[float]: if not isinstance(arg, (float, Sequence)): raise TypeError(f"{name} should be float or a sequence of floats. Got {type(arg)}") if isinstance(arg, Sequence) and len(arg) != req_size: raise ValueError(f"If {name} is a sequence its length should be one of {req_size}. Got {len(arg)}") if isinstance(arg, Sequence): for element in arg: if not isinstance(element, float): raise ValueError(f"{name} should be a sequence of floats. Got {type(element)}") if isinstance(arg, float): arg = [float(arg), float(arg)] if isinstance(arg, (list, tuple)) and len(arg) == 1: arg = [arg[0], arg[0]] return arg def _check_fill_arg(fill: Union[_FillType, Dict[Type, _FillType]]) -> None: if isinstance(fill, dict): for key, value in fill.items(): # Check key for type _check_fill_arg(value) if isinstance(fill, defaultdict) and callable(fill.default_factory): default_value = fill.default_factory() _check_fill_arg(default_value) else: if fill is not None and not isinstance(fill, (numbers.Number, tuple, list)): raise TypeError("Got inappropriate fill arg, only Numbers, tuples, lists and dicts are allowed.") T = TypeVar("T") def _default_arg(value: T) -> T: return value def _get_defaultdict(default: T) -> Dict[Any, T]: # This weird looking construct only exists, since `lambda`'s cannot be serialized by pickle. # If it were possible, we could replace this with `defaultdict(lambda: default)` return defaultdict(functools.partial(_default_arg, default)) def _convert_fill_arg(fill: datapoints._FillType) -> datapoints._FillTypeJIT: # Fill = 0 is not equivalent to None, https://github.com/pytorch/vision/issues/6517 # So, we can't reassign fill to 0 # if fill is None: # fill = 0 if fill is None: return fill if not isinstance(fill, (int, float)): fill = [float(v) for v in list(fill)] return fill # type: ignore[return-value] def _setup_fill_arg(fill: Union[_FillType, Dict[Type, _FillType]]) -> Dict[Type, _FillTypeJIT]: _check_fill_arg(fill) if isinstance(fill, dict): for k, v in fill.items(): fill[k] = _convert_fill_arg(v) if isinstance(fill, defaultdict) and callable(fill.default_factory): default_value = fill.default_factory() sanitized_default = _convert_fill_arg(default_value) fill.default_factory = functools.partial(_default_arg, sanitized_default) return fill # type: ignore[return-value] return _get_defaultdict(_convert_fill_arg(fill)) def _check_padding_arg(padding: Union[int, Sequence[int]]) -> None: if not isinstance(padding, (numbers.Number, tuple, list)): raise TypeError("Got inappropriate padding arg") if isinstance(padding, (tuple, list)) and len(padding) not in [1, 2, 4]: raise ValueError(f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple") # TODO: let's use torchvision._utils.StrEnum to have the best of both worlds (strings and enums) # https://github.com/pytorch/vision/issues/6250 def _check_padding_mode_arg(padding_mode: Literal["constant", "edge", "reflect", "symmetric"]) -> None: if padding_mode not in ["constant", "edge", "reflect", "symmetric"]: raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
import functools import numbers from collections import defaultdict from typing import Any, Dict, Literal, Sequence, Type, TypeVar, Union from torchvision import datapoints from torchvision.datapoints._datapoint import FillType, FillTypeJIT from torchvision.transforms.transforms import _check_sequence_input, _setup_angle, _setup_size # noqa: F401 def _setup_float_or_seq(arg: Union[float, Sequence[float]], name: str, req_size: int = 2) -> Sequence[float]: if not isinstance(arg, (float, Sequence)): raise TypeError(f"{name} should be float or a sequence of floats. Got {type(arg)}") if isinstance(arg, Sequence) and len(arg) != req_size: raise ValueError(f"If {name} is a sequence its length should be one of {req_size}. Got {len(arg)}") if isinstance(arg, Sequence): for element in arg: if not isinstance(element, float): raise ValueError(f"{name} should be a sequence of floats. Got {type(element)}") if isinstance(arg, float): arg = [float(arg), float(arg)] if isinstance(arg, (list, tuple)) and len(arg) == 1: arg = [arg[0], arg[0]] return arg def _check_fill_arg(fill: Union[FillType, Dict[Type, FillType]]) -> None: if isinstance(fill, dict): for key, value in fill.items(): # Check key for type _check_fill_arg(value) if isinstance(fill, defaultdict) and callable(fill.default_factory): default_value = fill.default_factory() _check_fill_arg(default_value) else: if fill is not None and not isinstance(fill, (numbers.Number, tuple, list)): raise TypeError("Got inappropriate fill arg, only Numbers, tuples, lists and dicts are allowed.") T = TypeVar("T") def _default_arg(value: T) -> T: return value def _get_defaultdict(default: T) -> Dict[Any, T]: # This weird looking construct only exists, since `lambda`'s cannot be serialized by pickle. # If it were possible, we could replace this with `defaultdict(lambda: default)` return defaultdict(functools.partial(_default_arg, default)) def _convert_fill_arg(fill: datapoints.FillType) -> datapoints.FillTypeJIT: # Fill = 0 is not equivalent to None, https://github.com/pytorch/vision/issues/6517 # So, we can't reassign fill to 0 # if fill is None: # fill = 0 if fill is None: return fill if not isinstance(fill, (int, float)): fill = [float(v) for v in list(fill)] return fill # type: ignore[return-value] def _setup_fill_arg(fill: Union[FillType, Dict[Type, FillType]]) -> Dict[Type, FillTypeJIT]: _check_fill_arg(fill) if isinstance(fill, dict): for k, v in fill.items(): fill[k] = _convert_fill_arg(v) if isinstance(fill, defaultdict) and callable(fill.default_factory): default_value = fill.default_factory() sanitized_default = _convert_fill_arg(default_value) fill.default_factory = functools.partial(_default_arg, sanitized_default) return fill # type: ignore[return-value] return _get_defaultdict(_convert_fill_arg(fill)) def _check_padding_arg(padding: Union[int, Sequence[int]]) -> None: if not isinstance(padding, (numbers.Number, tuple, list)): raise TypeError("Got inappropriate padding arg") if isinstance(padding, (tuple, list)) and len(padding) not in [1, 2, 4]: raise ValueError(f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple") # TODO: let's use torchvision._utils.StrEnum to have the best of both worlds (strings and enums) # https://github.com/pytorch/vision/issues/6250 def _check_padding_mode_arg(padding_mode: Literal["constant", "edge", "reflect", "symmetric"]) -> None: if padding_mode not in ["constant", "edge", "reflect", "symmetric"]: raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
import os from torchaudio.datasets import librilight_limited from torchaudio_unittest.common_utils import get_whitenoise, save_wav, TempDirMixin, TorchaudioTestCase # Used to generate a unique transcript for each dummy audio file _NUMBERS = ["ZERO", "ONE", "TWO", "THREE", "FOUR", "FIVE", "SIX", "SEVEN", "EIGHT", "NINE"] def _save_sample(file_path, speaker_id, chapter_id, utterance_id, sample_rate, seed): filename = f"{speaker_id}-{chapter_id}-{utterance_id:04d}.flac" path = os.path.join(file_path, filename) data = get_whitenoise(sample_rate=sample_rate, duration=0.01, n_channels=1, dtype="float32", seed=seed) transcript = " ".join([_NUMBERS[x] for x in [speaker_id, chapter_id, utterance_id]]) save_wav(path, data, sample_rate) sample = (data, sample_rate, transcript, speaker_id, chapter_id, utterance_id) return sample def get_mock_dataset(dataset_dir: str): """Create mocked dataset for a sub directory. Args: dataset_dir (str): the path of the sub directory. The structure is: audio_type/speaker_id/chapter_id/filename.flac """ mocked_data = [] sample_rate = 16000 # 16kHz seed = 0 for audio_type in ["clean", "other"]: for speaker_id in range(5): for chapter_id in range(3): file_path = os.path.join(dataset_dir, audio_type, str(speaker_id), str(chapter_id)) os.makedirs(file_path, exist_ok=True) trans_content = [] for utterance_id in range(3): sample = _save_sample(file_path, speaker_id, chapter_id, utterance_id, sample_rate, seed) trans_content.append(f"{sample[3]}-{sample[4]}-{sample[5]:04d} {sample[2]}") mocked_data.append(sample) seed += 1 trans_filename = f"{speaker_id}-{chapter_id}.trans.txt" trans_path = os.path.join(file_path, trans_filename) with open(trans_path, "w") as f: f.write("\n".join(trans_content)) return mocked_data def get_mock_datasets(root_dir): """ root_dir: directory to the mocked dataset """ mocked_data_10min, mocked_data_1h, mocked_data_10h = [], [], [] dataset_dir = os.path.join(root_dir, "librispeech_finetuning", "1h", "0") os.makedirs(dataset_dir, exist_ok=True) mocked_data_10min = get_mock_dataset(dataset_dir) mocked_data_1h += mocked_data_10min for i in range(1, 6): dataset_dir = os.path.join(root_dir, "librispeech_finetuning", "1h", str(i)) os.makedirs(dataset_dir, exist_ok=True) mocked_data_1h += get_mock_dataset(dataset_dir) mocked_data_10h += mocked_data_1h dataset_dir = os.path.join(root_dir, "librispeech_finetuning", "9h") os.makedirs(dataset_dir, exist_ok=True) mocked_data_10h += get_mock_dataset(dataset_dir) return mocked_data_10min, mocked_data_1h, mocked_data_10h class TestLibriLightLimited(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None samples_10min = [] samples_1h = [] samples_10h = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() (cls.samples_10min, cls.samples_1h, cls.samples_10h) = get_mock_datasets(cls.root_dir) def _test_librilightlimited(self, dataset, samples): num_samples = 0 for i, (data, sample_rate, transcript, speaker_id, chapter_id, utterance_id) in enumerate(dataset): self.assertEqual(data, samples[i][0], atol=5e-5, rtol=1e-8) assert sample_rate == samples[i][1] assert transcript == samples[i][2] assert speaker_id == samples[i][3] assert chapter_id == samples[i][4] assert utterance_id == samples[i][5] num_samples += 1 assert num_samples == len(samples) def test_librilightlimited_10min(self): dataset = librilight_limited.LibriLightLimited(self.root_dir, subset="10min") self._test_librilightlimited(dataset, self.samples_10min) def test_librilightlimited_1h(self): dataset = librilight_limited.LibriLightLimited(self.root_dir, subset="1h") self._test_librilightlimited(dataset, self.samples_1h) def test_librilightlimited_10h(self): dataset = librilight_limited.LibriLightLimited(self.root_dir, subset="10h") self._test_librilightlimited(dataset, self.samples_10h)
import os from torchaudio.datasets import librilight_limited from torchaudio_unittest.common_utils import ( get_whitenoise, save_wav, TempDirMixin, TorchaudioTestCase, ) # Used to generate a unique transcript for each dummy audio file _NUMBERS = ["ZERO", "ONE", "TWO", "THREE", "FOUR", "FIVE", "SIX", "SEVEN", "EIGHT", "NINE"] def _save_sample(file_path, speaker_id, chapter_id, utterance_id, sample_rate, seed): filename = f"{speaker_id}-{chapter_id}-{utterance_id:04d}.flac" path = os.path.join(file_path, filename) data = get_whitenoise(sample_rate=sample_rate, duration=0.01, n_channels=1, dtype="float32", seed=seed) transcript = " ".join([_NUMBERS[x] for x in [speaker_id, chapter_id, utterance_id]]) save_wav(path, data, sample_rate) sample = (data, sample_rate, transcript, speaker_id, chapter_id, utterance_id) return sample def get_mock_dataset(dataset_dir: str): """Create mocked dataset for a sub directory. Args: dataset_dir (str): the path of the sub directory. The structure is: audio_type/speaker_id/chapter_id/filename.flac """ mocked_data = [] sample_rate = 16000 # 16kHz seed = 0 for audio_type in ["clean", "other"]: for speaker_id in range(5): for chapter_id in range(3): file_path = os.path.join(dataset_dir, audio_type, str(speaker_id), str(chapter_id)) os.makedirs(file_path, exist_ok=True) trans_content = [] for utterance_id in range(3): sample = _save_sample(file_path, speaker_id, chapter_id, utterance_id, sample_rate, seed) trans_content.append(f"{sample[3]}-{sample[4]}-{sample[5]:04d} {sample[2]}") mocked_data.append(sample) seed += 1 trans_filename = f"{speaker_id}-{chapter_id}.trans.txt" trans_path = os.path.join(file_path, trans_filename) with open(trans_path, "w") as f: f.write("\n".join(trans_content)) return mocked_data def get_mock_datasets(root_dir): """ root_dir: directory to the mocked dataset """ mocked_data_10min, mocked_data_1h, mocked_data_10h = [], [], [] dataset_dir = os.path.join(root_dir, "librispeech_finetuning", "1h", "0") os.makedirs(dataset_dir, exist_ok=True) mocked_data_10min = get_mock_dataset(dataset_dir) mocked_data_1h += mocked_data_10min for i in range(1, 6): dataset_dir = os.path.join(root_dir, "librispeech_finetuning", "1h", str(i)) os.makedirs(dataset_dir, exist_ok=True) mocked_data_1h += get_mock_dataset(dataset_dir) mocked_data_10h += mocked_data_1h dataset_dir = os.path.join(root_dir, "librispeech_finetuning", "9h") os.makedirs(dataset_dir, exist_ok=True) mocked_data_10h += get_mock_dataset(dataset_dir) return mocked_data_10min, mocked_data_1h, mocked_data_10h class TestLibriLightLimited(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None samples_10min = [] samples_1h = [] samples_10h = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() (cls.samples_10min, cls.samples_1h, cls.samples_10h) = get_mock_datasets(cls.root_dir) def _test_librilightlimited(self, dataset, samples): num_samples = 0 for i, (data, sample_rate, transcript, speaker_id, chapter_id, utterance_id) in enumerate(dataset): self.assertEqual(data, samples[i][0], atol=5e-5, rtol=1e-8) assert sample_rate == samples[i][1] assert transcript == samples[i][2] assert speaker_id == samples[i][3] assert chapter_id == samples[i][4] assert utterance_id == samples[i][5] num_samples += 1 assert num_samples == len(samples) def test_librilightlimited_10min(self): dataset = librilight_limited.LibriLightLimited(self.root_dir, subset="10min") self._test_librilightlimited(dataset, self.samples_10min) def test_librilightlimited_1h(self): dataset = librilight_limited.LibriLightLimited(self.root_dir, subset="1h") self._test_librilightlimited(dataset, self.samples_1h) def test_librilightlimited_10h(self): dataset = librilight_limited.LibriLightLimited(self.root_dir, subset="10h") self._test_librilightlimited(dataset, self.samples_10h)
"""Simple Reader that reads abstract of primary citation for a given PDB id.""" from typing import List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document from llama_index.readers.pdb.utils import get_pdb_abstract class PdbAbstractReader(BaseReader): """Protein Data Bank entries' primary citation abstract reader.""" def __init__(self) -> None: super().__init__() def load_data(self, pdb_ids: List[str]) -> List[Document]: """ Load data from RCSB or EBI REST API. Args: pdb_ids (List[str]): List of PDB ids \ for which primary citation abstract are to be read. """ results = [] for pdb_id in pdb_ids: title, abstracts = get_pdb_abstract(pdb_id) primary_citation = abstracts[title] abstract = primary_citation["abstract"] abstract_text = "\n".join( ["\n".join([str(k), str(v)]) for k, v in abstract.items()] ) results.append( Document( text=abstract_text, extra_info={"pdb_id": pdb_id, "primary_citation": primary_citation}, ) ) return results
"""Simple Reader that reads abstract of primary citation for a given PDB id.""" from typing import List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document from llama_index.readers.pdb.utils import get_pdb_abstract class PdbAbstractReader(BaseReader): """Protein Data Bank entries' primary citation abstract reader.""" def __init__(self) -> None: super().__init__() def load_data(self, pdb_ids: List[str]) -> List[Document]: """ Load data from RCSB or EBI REST API. Args: pdb_ids (List[str]): List of PDB ids \ for which primary citation abstract are to be read. """ results = [] for pdb_id in pdb_ids: title, abstracts = get_pdb_abstract(pdb_id) primary_citation = abstracts[title] abstract = primary_citation["abstract"] abstract_text = "\n".join( ["\n".join([str(k), str(v)]) for k, v in abstract.items()] ) results.append( Document( text=abstract_text, extra_info={"pdb_id": pdb_id, "primary_citation": primary_citation}, ) ) return results
import enum from typing import Any, Callable, Dict, List, Tuple, Type, Union import PIL.Image import torch from torch import nn from torch.utils._pytree import tree_flatten, tree_unflatten from torchvision.prototype import features from torchvision.prototype.transforms._utils import _isinstance from torchvision.utils import _log_api_usage_once class Transform(nn.Module): # Class attribute defining transformed types. Other types are passed-through without any transformation _transformed_types: Tuple[Union[Type, Callable[[Any], bool]], ...] = ( features.is_simple_tensor, features._Feature, PIL.Image.Image, ) def __init__(self) -> None: super().__init__() _log_api_usage_once(self) def _check_inputs(self, flat_inputs: List[Any]) -> None: pass def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: return dict() def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: raise NotImplementedError def forward(self, *inputs: Any) -> Any: flat_inputs, spec = tree_flatten(inputs if len(inputs) > 1 else inputs[0]) self._check_inputs(flat_inputs) params = self._get_params(flat_inputs) flat_outputs = [ self._transform(inpt, params) if _isinstance(inpt, self._transformed_types) else inpt for inpt in flat_inputs ] return tree_unflatten(flat_outputs, spec) def extra_repr(self) -> str: extra = [] for name, value in self.__dict__.items(): if name.startswith("_") or name == "training": continue if not isinstance(value, (bool, int, float, str, tuple, list, enum.Enum)): continue extra.append(f"{name}={value}") return ", ".join(extra) class _RandomApplyTransform(Transform): def __init__(self, p: float = 0.5) -> None: if not (0.0 <= p <= 1.0): raise ValueError("`p` should be a floating point value in the interval [0.0, 1.0].") super().__init__() self.p = p def forward(self, *inputs: Any) -> Any: # We need to almost duplicate `Transform.forward()` here since we always want to check the inputs, but return # early afterwards in case the random check triggers. The same result could be achieved by calling # `super().forward()` after the random check, but that would call `self._check_inputs` twice. inputs = inputs if len(inputs) > 1 else inputs[0] flat_inputs, spec = tree_flatten(inputs) self._check_inputs(flat_inputs) if torch.rand(1) >= self.p: return inputs params = self._get_params(flat_inputs) flat_outputs = [ self._transform(inpt, params) if _isinstance(inpt, self._transformed_types) else inpt for inpt in flat_inputs ] return tree_unflatten(flat_outputs, spec)
import enum from typing import Any, Callable, Dict, Tuple, Type, Union import PIL.Image import torch from torch import nn from torch.utils._pytree import tree_flatten, tree_unflatten from torchvision.prototype import features from torchvision.prototype.transforms._utils import _isinstance from torchvision.utils import _log_api_usage_once class Transform(nn.Module): # Class attribute defining transformed types. Other types are passed-through without any transformation _transformed_types: Tuple[Union[Type, Callable[[Any], bool]], ...] = ( features.is_simple_tensor, features._Feature, PIL.Image.Image, ) def __init__(self) -> None: super().__init__() _log_api_usage_once(self) def _check_inputs(self, sample: Any) -> None: pass def _get_params(self, sample: Any) -> Dict[str, Any]: return dict() def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: raise NotImplementedError def forward(self, *inputs: Any) -> Any: sample = inputs if len(inputs) > 1 else inputs[0] self._check_inputs(sample) params = self._get_params(sample) flat_inputs, spec = tree_flatten(sample) flat_outputs = [ self._transform(inpt, params) if _isinstance(inpt, self._transformed_types) else inpt for inpt in flat_inputs ] return tree_unflatten(flat_outputs, spec) def extra_repr(self) -> str: extra = [] for name, value in self.__dict__.items(): if name.startswith("_") or name == "training": continue if not isinstance(value, (bool, int, float, str, tuple, list, enum.Enum)): continue extra.append(f"{name}={value}") return ", ".join(extra) class _RandomApplyTransform(Transform): def __init__(self, p: float = 0.5) -> None: if not (0.0 <= p <= 1.0): raise ValueError("`p` should be a floating point value in the interval [0.0, 1.0].") super().__init__() self.p = p def forward(self, *inputs: Any) -> Any: # We need to almost duplicate `Transform.forward()` here since we always want to check the inputs, but return # early afterwards in case the random check triggers. The same result could be achieved by calling # `super().forward()` after the random check, but that would call `self._check_inputs` twice. sample = inputs if len(inputs) > 1 else inputs[0] self._check_inputs(sample) if torch.rand(1) >= self.p: return sample params = self._get_params(sample) flat_inputs, spec = tree_flatten(sample) flat_outputs = [ self._transform(inpt, params) if _isinstance(inpt, self._transformed_types) else inpt for inpt in flat_inputs ] return tree_unflatten(flat_outputs, spec)
# dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), # If you don't have a gt annotation, delete the pipeline dict( type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/', seg='stuffthingmaps/train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric=['bbox', 'segm'], format_only=False, backend_args=backend_args) test_evaluator = val_evaluator
# dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), # If you don't have a gt annotation, delete the pipeline dict( type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/', seg='stuffthingmaps/train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric=['bbox', 'segm'], format_only=False) test_evaluator = val_evaluator
from docarray.documents.audio import AudioDoc from docarray.documents.image import ImageDoc from docarray.documents.mesh import Mesh3D, VerticesAndFaces from docarray.documents.point_cloud import PointCloud3D, PointsAndColors from docarray.documents.text import TextDoc from docarray.documents.video import VideoDoc __all__ = [ 'TextDoc', 'ImageDoc', 'AudioDoc', 'Mesh3D', 'VerticesAndFaces', 'PointCloud3D', 'PointsAndColors', 'VideoDoc', ]
from docarray.documents.audio import AudioDoc from docarray.documents.image import ImageDoc from docarray.documents.mesh import Mesh3D from docarray.documents.point_cloud import PointCloud3D from docarray.documents.text import TextDoc from docarray.documents.video import VideoDoc __all__ = ['TextDoc', 'ImageDoc', 'AudioDoc', 'Mesh3D', 'PointCloud3D', 'VideoDoc']
import numpy as np from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.models import MLMTransformer, SpladePooling def main(): # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" # "naver/efficient-splade-V-large-doc" # "prithivida/Splade_PP_en_v1" # "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Sample texts texts = [ "The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium.", ] # Generate embeddings embeddings = model.encode(texts, convert_to_sparse_tensor=True) print(type(embeddings)) # Print embedding sim and sparsity print(f"Embedding dim: {model.get_sentence_embedding_dimension()}") print(f"Embedding sparsity: {model.get_sparsity_stats(embeddings)}") # Compute similarity matrix similarity_matrix = model.similarity(embeddings, embeddings) # Print similarity matrix print("\nSimilarity Matrix:") for i, text in enumerate(texts): print(f"{i}: {text[:50]}...") print("\n" + " " * 10 + " ".join([f"{i:5d}" for i in range(len(texts))])) for i, row in enumerate(similarity_matrix): print(f"{i:5d} " + " ".join([f"{val:.3f}" for val in row])) vocab_size = embeddings.shape[1] print(f"Vocabulary size: {vocab_size}") # Visualize top tokens for each text top_k = 20 print(f"\nTop tokens {top_k} for each text:") for i, text in enumerate(texts): # Get top k indices in sparse tensor # Get top k indices in sparse tensor (sorted from highest to lowest) top_indices = np.argsort(-embeddings[i].to_dense().cpu().numpy())[:top_k] top_values = embeddings[i].to_dense().cpu().numpy()[top_indices] top_tokens = [model.tokenizer.decode([idx]) for idx in top_indices] print(f"{i}: {text}") print(f"Top tokens: {top_tokens}") print(f"Top values: {top_values}") print() # Save the model model.push_to_hub( "sparse-embedding/splade_example", private=True, ) # Load the model loaded_model = SparseEncoder("sparse-embedding/splade_example") print(f"Loaded model: {loaded_model}") # Sample texts texts = [ "The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium.", ] # Generate embeddings embeddings = loaded_model.encode(texts, convert_to_sparse_tensor=True) print(type(embeddings)) # Print embedding shape and sparsity print(f"Embedding shape: {embeddings.shape}") print(f"Embedding sparsity: {loaded_model.get_sparsity_stats(embeddings)}%") # Compute similarity matrix similarity_matrix = loaded_model.similarity(embeddings, embeddings) # Print similarity matrix print("\nSimilarity Matrix:") for i, text in enumerate(texts): print(f"{i}: {text[:50]}...") print("\n" + " " * 10 + " ".join([f"{i:5d}" for i in range(len(texts))])) for i, row in enumerate(similarity_matrix): print(f"{i:5d} " + " ".join([f"{val:.3f}" for val in row])) vocab_size = embeddings.shape[1] print(f"Vocabulary size: {vocab_size}") # Visualize top tokens for each text top_k = 20 print(f"\nTop tokens {top_k} for each text:") for i, text in enumerate(texts): # Get top k indices in sparse tensor # Get top k indices in sparse tensor (sorted from highest to lowest) top_indices = np.argsort(-embeddings[i].to_dense().cpu().numpy())[:top_k] top_values = embeddings[i].to_dense().cpu().numpy()[top_indices] top_tokens = [model.tokenizer.decode([idx]) for idx in top_indices] print(f"{i}: {text}") print(f"Top tokens: {top_tokens}") print(f"Top values: {top_values}") print() if __name__ == "__main__": main()
import numpy as np from sentence_transformers.sparse_encoder import SparseEncoder from sentence_transformers.sparse_encoder.models import MLMTransformer, SpladePooling def main(): # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" # "naver/efficient-splade-V-large-doc" # "prithivida/Splade_PP_en_v1" # "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Sample texts texts = [ "The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium.", ] # Generate embeddings embeddings = model.encode(texts, convert_to_sparse_tensor=True) print(type(embeddings)) # Print embedding sim and sparsity print(f"Embedding dim: {model.get_sentence_embedding_dimension()}") print(f"Embedding sparsity: {model.get_sparsity_stats(embeddings)}") # Compute similarity matrix similarity_matrix = model.similarity(embeddings, embeddings) # Print similarity matrix print("\nSimilarity Matrix:") for i, text in enumerate(texts): print(f"{i}: {text[:50]}...") print("\n" + " " * 10 + " ".join([f"{i:5d}" for i in range(len(texts))])) for i, row in enumerate(similarity_matrix): print(f"{i:5d} " + " ".join([f"{val:.3f}" for val in row])) vocab_size = embeddings.shape[1] print(f"Vocabulary size: {vocab_size}") # Visualize top tokens for each text top_k = 20 print(f"\nTop tokens {top_k} for each text:") for i, text in enumerate(texts): # Get top k indices in sparse tensor # Get top k indices in sparse tensor (sorted from highest to lowest) top_indices = np.argsort(-embeddings[i].to_dense().cpu().numpy())[:top_k] top_values = embeddings[i].to_dense().cpu().numpy()[top_indices] top_tokens = [model.tokenizer.decode([idx]) for idx in top_indices] print(f"{i}: {text}") print(f"Top tokens: {top_tokens}") print(f"Top values: {top_values}") print() # Save the model model.push_to_hub( "sparse-embedding/splade_example", private=True, ) # Load the model loaded_model = SparseEncoder("sparse-embedding/splade_example") print(f"Loaded model: {loaded_model}") # Sample texts texts = [ "The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium.", ] # Generate embeddings embeddings = loaded_model.encode(texts, convert_to_sparse_tensor=True) print(type(embeddings)) # Print embedding shape and sparsity print(f"Embedding shape: {embeddings.shape}") print(f"Embedding sparsity: {loaded_model.get_sparsity_stats(embeddings)}%") # Compute similarity matrix similarity_matrix = loaded_model.similarity(embeddings, embeddings) # Print similarity matrix print("\nSimilarity Matrix:") for i, text in enumerate(texts): print(f"{i}: {text[:50]}...") print("\n" + " " * 10 + " ".join([f"{i:5d}" for i in range(len(texts))])) for i, row in enumerate(similarity_matrix): print(f"{i:5d} " + " ".join([f"{val:.3f}" for val in row])) vocab_size = embeddings.shape[1] print(f"Vocabulary size: {vocab_size}") # Visualize top tokens for each text top_k = 20 print(f"\nTop tokens {top_k} for each text:") for i, text in enumerate(texts): # Get top k indices in sparse tensor # Get top k indices in sparse tensor (sorted from highest to lowest) top_indices = np.argsort(-embeddings[i].to_dense().cpu().numpy())[:top_k] top_values = embeddings[i].to_dense().cpu().numpy()[top_indices] top_tokens = [model.tokenizer.decode([idx]) for idx in top_indices] print(f"{i}: {text}") print(f"Top tokens: {top_tokens}") print(f"Top values: {top_values}") print() if __name__ == "__main__": main()
# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from diffusers import ( WanTransformer3DModel, ) from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, require_big_accelerator, require_torch_accelerator, torch_device, ) enable_full_determinism() @require_torch_accelerator class WanTransformer3DModelText2VideoSingleFileTest(unittest.TestCase): model_class = WanTransformer3DModel ckpt_path = "https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors" repo_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers" def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def test_single_file_components(self): model = self.model_class.from_pretrained(self.repo_id, subfolder="transformer") model_single_file = self.model_class.from_single_file(self.ckpt_path) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between single file loading and pretrained loading" ) @require_big_accelerator @require_torch_accelerator class WanTransformer3DModelImage2VideoSingleFileTest(unittest.TestCase): model_class = WanTransformer3DModel ckpt_path = "https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/diffusion_models/wan2.1_i2v_480p_14B_fp8_e4m3fn.safetensors" repo_id = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" torch_dtype = torch.float8_e4m3fn def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def test_single_file_components(self): model = self.model_class.from_pretrained(self.repo_id, subfolder="transformer", torch_dtype=self.torch_dtype) model_single_file = self.model_class.from_single_file(self.ckpt_path, torch_dtype=self.torch_dtype) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between single file loading and pretrained loading" )
# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from diffusers import ( WanTransformer3DModel, ) from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, require_big_gpu_with_torch_cuda, require_torch_accelerator, torch_device, ) enable_full_determinism() @require_torch_accelerator class WanTransformer3DModelText2VideoSingleFileTest(unittest.TestCase): model_class = WanTransformer3DModel ckpt_path = "https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors" repo_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers" def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def test_single_file_components(self): model = self.model_class.from_pretrained(self.repo_id, subfolder="transformer") model_single_file = self.model_class.from_single_file(self.ckpt_path) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between single file loading and pretrained loading" ) @require_big_gpu_with_torch_cuda @require_torch_accelerator class WanTransformer3DModelImage2VideoSingleFileTest(unittest.TestCase): model_class = WanTransformer3DModel ckpt_path = "https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/diffusion_models/wan2.1_i2v_480p_14B_fp8_e4m3fn.safetensors" repo_id = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" torch_dtype = torch.float8_e4m3fn def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def test_single_file_components(self): model = self.model_class.from_pretrained(self.repo_id, subfolder="transformer", torch_dtype=self.torch_dtype) model_single_file = self.model_class.from_single_file(self.ckpt_path, torch_dtype=self.torch_dtype) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between single file loading and pretrained loading" )
from typing import Optional from fastapi import FastAPI, Security from fastapi.security import HTTPAuthorizationCredentials, HTTPDigest from fastapi.testclient import TestClient app = FastAPI() security = HTTPDigest(auto_error=False) @app.get("/users/me") def read_current_user( credentials: Optional[HTTPAuthorizationCredentials] = Security(security), ): if credentials is None: return {"msg": "Create an account first"} return {"scheme": credentials.scheme, "credentials": credentials.credentials} client = TestClient(app) def test_security_http_digest(): response = client.get("/users/me", headers={"Authorization": "Digest foobar"}) assert response.status_code == 200, response.text assert response.json() == {"scheme": "Digest", "credentials": "foobar"} def test_security_http_digest_no_credentials(): response = client.get("/users/me") assert response.status_code == 200, response.text assert response.json() == {"msg": "Create an account first"} def test_security_http_digest_incorrect_scheme_credentials(): response = client.get( "/users/me", headers={"Authorization": "Other invalidauthorization"} ) assert response.status_code == 200, response.text assert response.json() == {"msg": "Create an account first"} def test_openapi_schema(): response = client.get("/openapi.json") assert response.status_code == 200, response.text assert response.json() == { "openapi": "3.1.0", "info": {"title": "FastAPI", "version": "0.1.0"}, "paths": { "/users/me": { "get": { "responses": { "200": { "description": "Successful Response", "content": {"application/json": {"schema": {}}}, } }, "summary": "Read Current User", "operationId": "read_current_user_users_me_get", "security": [{"HTTPDigest": []}], } } }, "components": { "securitySchemes": {"HTTPDigest": {"type": "http", "scheme": "digest"}} }, }
from typing import Optional from fastapi import FastAPI, Security from fastapi.security import HTTPAuthorizationCredentials, HTTPDigest from fastapi.testclient import TestClient app = FastAPI() security = HTTPDigest(auto_error=False) @app.get("/users/me") def read_current_user( credentials: Optional[HTTPAuthorizationCredentials] = Security(security), ): if credentials is None: return {"msg": "Create an account first"} return {"scheme": credentials.scheme, "credentials": credentials.credentials} client = TestClient(app) def test_security_http_digest(): response = client.get("/users/me", headers={"Authorization": "Digest foobar"}) assert response.status_code == 200, response.text assert response.json() == {"scheme": "Digest", "credentials": "foobar"} def test_security_http_digest_no_credentials(): response = client.get("/users/me") assert response.status_code == 200, response.text assert response.json() == {"msg": "Create an account first"} def test_security_http_digest_incorrect_scheme_credentials(): response = client.get( "/users/me", headers={"Authorization": "Other invalidauthorization"} ) assert response.status_code == 403, response.text assert response.json() == {"detail": "Invalid authentication credentials"} def test_openapi_schema(): response = client.get("/openapi.json") assert response.status_code == 200, response.text assert response.json() == { "openapi": "3.1.0", "info": {"title": "FastAPI", "version": "0.1.0"}, "paths": { "/users/me": { "get": { "responses": { "200": { "description": "Successful Response", "content": {"application/json": {"schema": {}}}, } }, "summary": "Read Current User", "operationId": "read_current_user_users_me_get", "security": [{"HTTPDigest": []}], } } }, "components": { "securitySchemes": {"HTTPDigest": {"type": "http", "scheme": "digest"}} }, }
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy
from typing import Any, Dict, Optional, Union import numpy as np import PIL.Image import torch from torchvision import tv_tensors from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import is_pure_tensor class PILToTensor(Transform): """[BETA] Convert a PIL Image to a tensor of the same type - this does not scale values. .. v2betastatus:: PILToTensor transform This transform does not support torchscript. Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W). """ _transformed_types = (PIL.Image.Image,) def _transform(self, inpt: PIL.Image.Image, params: Dict[str, Any]) -> torch.Tensor: return F.pil_to_tensor(inpt) class ToImage(Transform): """[BETA] Convert a tensor, ndarray, or PIL Image to :class:`~torchvision.tv_tensors.Image` ; this does not scale values. .. v2betastatus:: ToImage transform This transform does not support torchscript. """ _transformed_types = (is_pure_tensor, PIL.Image.Image, np.ndarray) def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> tv_tensors.Image: return F.to_image(inpt) class ToPILImage(Transform): """[BETA] Convert a tensor or an ndarray to PIL Image .. v2betastatus:: ToPILImage transform This transform does not support torchscript. Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape H x W x C to a PIL Image while adjusting the value range depending on the ``mode``. Args: mode (`PIL.Image mode`_): color space and pixel depth of input data (optional). If ``mode`` is ``None`` (default) there are some assumptions made about the input data: - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``. - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``. - If the input has 2 channels, the ``mode`` is assumed to be ``LA``. - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``, ``short``). .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes """ _transformed_types = (is_pure_tensor, tv_tensors.Image, np.ndarray) def __init__(self, mode: Optional[str] = None) -> None: super().__init__() self.mode = mode def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> PIL.Image.Image: return F.to_pil_image(inpt, mode=self.mode) class ToPureTensor(Transform): """[BETA] Convert all TVTensors to pure tensors, removing associated metadata (if any). .. v2betastatus:: ToPureTensor transform This doesn't scale or change the values, only the type. """ _transformed_types = (tv_tensors.TVTensor,) def _transform(self, inpt: Any, params: Dict[str, Any]) -> torch.Tensor: return inpt.as_subclass(torch.Tensor)
from typing import Any, Dict, Optional, Union import numpy as np import PIL.Image import torch from torchvision import tv_tensors from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import is_pure_tensor class PILToTensor(Transform): """[BETA] Convert a PIL Image to a tensor of the same type - this does not scale values. .. v2betastatus:: PILToTensor transform This transform does not support torchscript. Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W). """ _transformed_types = (PIL.Image.Image,) def _transform(self, inpt: PIL.Image.Image, params: Dict[str, Any]) -> torch.Tensor: return F.pil_to_tensor(inpt) class ToImage(Transform): """[BETA] Convert a tensor, ndarray, or PIL Image to :class:`~torchvision.tv_tensors.Image` ; this does not scale values. .. v2betastatus:: ToImage transform This transform does not support torchscript. """ _transformed_types = (is_pure_tensor, PIL.Image.Image, np.ndarray) def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> tv_tensors.Image: return F.to_image(inpt) class ToPILImage(Transform): """[BETA] Convert a tensor or an ndarray to PIL Image .. v2betastatus:: ToPILImage transform This transform does not support torchscript. Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape H x W x C to a PIL Image while adjusting the value range depending on the ``mode``. Args: mode (`PIL.Image mode`_): color space and pixel depth of input data (optional). If ``mode`` is ``None`` (default) there are some assumptions made about the input data: - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``. - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``. - If the input has 2 channels, the ``mode`` is assumed to be ``LA``. - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``, ``short``). .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes """ _transformed_types = (is_pure_tensor, tv_tensors.Image, np.ndarray) def __init__(self, mode: Optional[str] = None) -> None: super().__init__() self.mode = mode def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> PIL.Image.Image: return F.to_pil_image(inpt, mode=self.mode) class ToPureTensor(Transform): """[BETA] Convert all tv_tensors to pure tensors, removing associated metadata (if any). .. v2betastatus:: ToPureTensor transform This doesn't scale or change the values, only the type. """ _transformed_types = (tv_tensors.TVTensor,) def _transform(self, inpt: Any, params: Dict[str, Any]) -> torch.Tensor: return inpt.as_subclass(torch.Tensor)
import pathlib from typing import Any, Dict, List, Tuple, Union from torchdata.datapipes.iter import IterDataPipe, Mapper from torchvision.prototype.datapoints import Label from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import hint_sharding, hint_shuffling from .._api import register_dataset, register_info NAME = "eurosat" @register_info(NAME) def _info() -> Dict[str, Any]: return dict( categories=( "AnnualCrop", "Forest", "HerbaceousVegetation", "Highway", "Industrial", "Pasture", "PermanentCrop", "Residential", "River", "SeaLake", ) ) @register_dataset(NAME) class EuroSAT(Dataset): """EuroSAT Dataset. homepage="https://github.com/phelber/eurosat", """ def __init__(self, root: Union[str, pathlib.Path], *, skip_integrity_check: bool = False) -> None: self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) def _resources(self) -> List[OnlineResource]: return [ HttpResource( "https://madm.dfki.de/files/sentinel/EuroSAT.zip", sha256="8ebea626349354c5328b142b96d0430e647051f26efc2dc974c843f25ecf70bd", ) ] def _prepare_sample(self, data: Tuple[str, Any]) -> Dict[str, Any]: path, buffer = data category = pathlib.Path(path).parent.name return dict( label=Label.from_category(category, categories=self._categories), path=path, image=EncodedImage.from_file(buffer), ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 27_000
import pathlib from typing import Any, Dict, List, Tuple, Union from torchdata.datapipes.iter import IterDataPipe, Mapper from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import hint_sharding, hint_shuffling from torchvision.prototype.features import Label from .._api import register_dataset, register_info NAME = "eurosat" @register_info(NAME) def _info() -> Dict[str, Any]: return dict( categories=( "AnnualCrop", "Forest", "HerbaceousVegetation", "Highway", "Industrial", "Pasture", "PermanentCrop", "Residential", "River", "SeaLake", ) ) @register_dataset(NAME) class EuroSAT(Dataset): """EuroSAT Dataset. homepage="https://github.com/phelber/eurosat", """ def __init__(self, root: Union[str, pathlib.Path], *, skip_integrity_check: bool = False) -> None: self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) def _resources(self) -> List[OnlineResource]: return [ HttpResource( "https://madm.dfki.de/files/sentinel/EuroSAT.zip", sha256="8ebea626349354c5328b142b96d0430e647051f26efc2dc974c843f25ecf70bd", ) ] def _prepare_sample(self, data: Tuple[str, Any]) -> Dict[str, Any]: path, buffer = data category = pathlib.Path(path).parent.name return dict( label=Label.from_category(category, categories=self._categories), path=path, image=EncodedImage.from_file(buffer), ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 27_000
import pytest from hubble.executor.hubio import HubIO from jina.orchestrate.pods.factory import PodFactory from jina.parsers import set_pod_parser @pytest.mark.parametrize( 'uses', ['jinaai+docker://jina-ai/DummyExecutor'] ) def test_container_pod(mocker, monkeypatch, uses): mock = mocker.Mock() def _mock_pull(self): return 'docker://jinahub/dummy_executor' monkeypatch.setattr(HubIO, 'pull', _mock_pull) args = set_pod_parser().parse_args(['--uses', uses]) pod = PodFactory.build_pod(args) assert pod.args.uses == 'docker://jinahub/dummy_executor' assert pod.name == 'ContainerPod'
from hubble.executor.hubio import HubIO from jina.orchestrate.pods.factory import PodFactory from jina.parsers import set_pod_parser def test_container_pod(mocker, monkeypatch): mock = mocker.Mock() def _mock_pull(self): return 'docker://jinahub/dummy_executor' monkeypatch.setattr(HubIO, 'pull', _mock_pull) args = set_pod_parser().parse_args(['--uses', 'jinahub+docker://DummyExecutor']) pod = PodFactory.build_pod(args) assert pod.args.uses == 'docker://jinahub/dummy_executor' assert pod.name == 'ContainerPod'
import os from time import time import numpy as np import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc from docarray.typing import NdArray from docarray.utils.map import map_docs, map_docs_batch from tests.units.typing.test_bytes import IMAGE_PATHS pytestmark = [pytest.mark.benchmark, pytest.mark.slow] class MyMatrix(BaseDocument): matrix: NdArray def cpu_intensive(doc: MyMatrix) -> MyMatrix: # some cpu intensive function for i in range(3000): sqrt_matrix = np.sqrt(doc.matrix) doc.matrix = sqrt_matrix return doc def test_map_docs_multiprocessing(): if os.cpu_count() > 1: def time_multiprocessing(num_workers: int) -> float: n_docs = 5 rng = np.random.RandomState(0) matrices = [rng.random(size=(1000, 1000)) for _ in range(n_docs)] da = DocumentArray[MyMatrix]([MyMatrix(matrix=m) for m in matrices]) start_time = time() list( map_docs( da=da, func=cpu_intensive, backend='process', num_worker=num_workers ) ) return time() - start_time time_1_cpu = time_multiprocessing(num_workers=1) time_2_cpu = time_multiprocessing(num_workers=2) assert time_2_cpu < time_1_cpu def cpu_intensive_batch(da: DocumentArray[MyMatrix]) -> DocumentArray[MyMatrix]: # some cpu intensive function for doc in da: for i in range(3000): sqrt_matrix = np.sqrt(doc.matrix) doc.matrix = sqrt_matrix return da def test_map_docs_batch_multiprocessing(): if os.cpu_count() > 1: def time_multiprocessing(num_workers: int) -> float: n_docs = 16 rng = np.random.RandomState(0) matrices = [rng.random(size=(1000, 1000)) for _ in range(n_docs)] da = DocumentArray[MyMatrix]([MyMatrix(matrix=m) for m in matrices]) start_time = time() list( map_docs_batch( da=da, func=cpu_intensive_batch, batch_size=8, backend='process', num_worker=num_workers, ) ) return time() - start_time time_1_cpu = time_multiprocessing(num_workers=1) time_2_cpu = time_multiprocessing(num_workers=2) assert time_2_cpu < time_1_cpu def io_intensive(img: ImageDoc) -> ImageDoc: # some io intensive function: load and set image url img.tensor = img.url.load() return img def test_map_docs_multithreading(): def time_multithreading(num_workers: int) -> float: n_docs = 100 da = DocumentArray[ImageDoc]( [ImageDoc(url=IMAGE_PATHS['png']) for _ in range(n_docs)] ) start_time = time() list( map_docs(da=da, func=io_intensive, backend='thread', num_worker=num_workers) ) return time() - start_time time_1_thread = time_multithreading(num_workers=1) time_2_thread = time_multithreading(num_workers=2) assert time_2_thread < time_1_thread def io_intensive_batch(da: DocumentArray[ImageDoc]) -> DocumentArray[ImageDoc]: # some io intensive function: load and set image url for doc in da: doc.tensor = doc.url.load() return da def test_map_docs_batch_multithreading(): def time_multithreading_batch(num_workers: int) -> float: n_docs = 100 da = DocumentArray[ImageDoc]( [ImageDoc(url=IMAGE_PATHS['png']) for _ in range(n_docs)] ) start_time = time() list( map_docs_batch( da=da, func=io_intensive_batch, backend='thread', num_worker=num_workers, batch_size=10, ) ) return time() - start_time time_1_thread = time_multithreading_batch(num_workers=1) time_2_thread = time_multithreading_batch(num_workers=2) assert time_2_thread < time_1_thread
import os from time import time import numpy as np import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import Image from docarray.typing import NdArray from docarray.utils.map import map_docs, map_docs_batch from tests.units.typing.test_bytes import IMAGE_PATHS pytestmark = [pytest.mark.benchmark, pytest.mark.slow] class MyMatrix(BaseDocument): matrix: NdArray def cpu_intensive(doc: MyMatrix) -> MyMatrix: # some cpu intensive function for i in range(3000): sqrt_matrix = np.sqrt(doc.matrix) doc.matrix = sqrt_matrix return doc def test_map_docs_multiprocessing(): if os.cpu_count() > 1: def time_multiprocessing(num_workers: int) -> float: n_docs = 5 rng = np.random.RandomState(0) matrices = [rng.random(size=(1000, 1000)) for _ in range(n_docs)] da = DocumentArray[MyMatrix]([MyMatrix(matrix=m) for m in matrices]) start_time = time() list( map_docs( da=da, func=cpu_intensive, backend='process', num_worker=num_workers ) ) return time() - start_time time_1_cpu = time_multiprocessing(num_workers=1) time_2_cpu = time_multiprocessing(num_workers=2) assert time_2_cpu < time_1_cpu def cpu_intensive_batch(da: DocumentArray[MyMatrix]) -> DocumentArray[MyMatrix]: # some cpu intensive function for doc in da: for i in range(3000): sqrt_matrix = np.sqrt(doc.matrix) doc.matrix = sqrt_matrix return da def test_map_docs_batch_multiprocessing(): if os.cpu_count() > 1: def time_multiprocessing(num_workers: int) -> float: n_docs = 16 rng = np.random.RandomState(0) matrices = [rng.random(size=(1000, 1000)) for _ in range(n_docs)] da = DocumentArray[MyMatrix]([MyMatrix(matrix=m) for m in matrices]) start_time = time() list( map_docs_batch( da=da, func=cpu_intensive_batch, batch_size=8, backend='process', num_worker=num_workers, ) ) return time() - start_time time_1_cpu = time_multiprocessing(num_workers=1) time_2_cpu = time_multiprocessing(num_workers=2) assert time_2_cpu < time_1_cpu def io_intensive(img: Image) -> Image: # some io intensive function: load and set image url img.tensor = img.url.load() return img def test_map_docs_multithreading(): def time_multithreading(num_workers: int) -> float: n_docs = 100 da = DocumentArray[Image]( [Image(url=IMAGE_PATHS['png']) for _ in range(n_docs)] ) start_time = time() list( map_docs(da=da, func=io_intensive, backend='thread', num_worker=num_workers) ) return time() - start_time time_1_thread = time_multithreading(num_workers=1) time_2_thread = time_multithreading(num_workers=2) assert time_2_thread < time_1_thread def io_intensive_batch(da: DocumentArray[Image]) -> DocumentArray[Image]: # some io intensive function: load and set image url for doc in da: doc.tensor = doc.url.load() return da def test_map_docs_batch_multithreading(): def time_multithreading_batch(num_workers: int) -> float: n_docs = 100 da = DocumentArray[Image]( [Image(url=IMAGE_PATHS['png']) for _ in range(n_docs)] ) start_time = time() list( map_docs_batch( da=da, func=io_intensive_batch, backend='thread', num_worker=num_workers, batch_size=10, ) ) return time() - start_time time_1_thread = time_multithreading_batch(num_workers=1) time_2_thread = time_multithreading_batch(num_workers=2) assert time_2_thread < time_1_thread
from __future__ import annotations import math from pathlib import Path import pytest from packaging.version import Version, parse from tokenizers import Tokenizer from sentence_transformers import SentenceTransformer from sentence_transformers.models.StaticEmbedding import StaticEmbedding try: import model2vec from model2vec import __version__ as M2V_VERSION except ImportError: model2vec = None skip_if_no_model2vec = pytest.mark.skipif(model2vec is None, reason="The model2vec library is not installed.") def test_initialization_with_embedding_weights(tokenizer: Tokenizer, embedding_weights) -> None: model = StaticEmbedding(tokenizer, embedding_weights=embedding_weights) assert model.embedding.weight.shape == (30522, 768) def test_initialization_with_embedding_dim(tokenizer: Tokenizer) -> None: model = StaticEmbedding(tokenizer, embedding_dim=768) assert model.embedding.weight.shape == (30522, 768) def test_tokenize(static_embedding_model: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding_model.tokenize(texts) assert "input_ids" in tokens assert "offsets" in tokens def test_forward(static_embedding_model: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding_model.tokenize(texts) output = static_embedding_model(tokens) assert "sentence_embedding" in output def test_save_and_load(tmp_path: Path, static_embedding_model: StaticEmbedding) -> None: save_dir = tmp_path / "model" save_dir.mkdir() static_embedding_model.save(str(save_dir)) loaded_model = StaticEmbedding.load(str(save_dir)) assert loaded_model.embedding.weight.shape == static_embedding_model.embedding.weight.shape @skip_if_no_model2vec() def test_from_distillation() -> None: model = StaticEmbedding.from_distillation("sentence-transformers-testing/stsb-bert-tiny-safetensors", pca_dims=32) expected_shape = (29525 if parse(M2V_VERSION) >= Version("0.5.0") else 29528, 32) assert model.embedding.weight.shape == expected_shape @skip_if_no_model2vec() def test_from_model2vec() -> None: model = StaticEmbedding.from_model2vec("minishlab/M2V_base_output") assert model.embedding.weight.shape == (29528, 256) def test_loading_model2vec() -> None: model = SentenceTransformer("minishlab/potion-base-8M") assert model.get_sentence_embedding_dimension() == 256 assert model.max_seq_length == math.inf test_sentences = ["It's so sunny outside!", "The sun is shining outside!"] embeddings = model.encode(test_sentences) assert embeddings.shape == (2, 256) similarity = model.similarity(embeddings[0], embeddings[1]) assert similarity.item() > 0.7
from __future__ import annotations import math from pathlib import Path import numpy as np import pytest from packaging.version import Version, parse from tokenizers import Tokenizer from sentence_transformers import SentenceTransformer from sentence_transformers.models.StaticEmbedding import StaticEmbedding try: import model2vec from model2vec import __version__ as M2V_VERSION except ImportError: model2vec = None skip_if_no_model2vec = pytest.mark.skipif(model2vec is None, reason="The model2vec library is not installed.") @pytest.fixture(scope="session") def tokenizer() -> Tokenizer: return Tokenizer.from_pretrained("bert-base-uncased") @pytest.fixture def embedding_weights(): return np.random.rand(30522, 768) @pytest.fixture def static_embedding(tokenizer: Tokenizer, embedding_weights) -> StaticEmbedding: return StaticEmbedding(tokenizer, embedding_weights=embedding_weights) def test_initialization_with_embedding_weights(tokenizer: Tokenizer, embedding_weights) -> None: model = StaticEmbedding(tokenizer, embedding_weights=embedding_weights) assert model.embedding.weight.shape == (30522, 768) def test_initialization_with_embedding_dim(tokenizer: Tokenizer) -> None: model = StaticEmbedding(tokenizer, embedding_dim=768) assert model.embedding.weight.shape == (30522, 768) def test_tokenize(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) assert "input_ids" in tokens assert "offsets" in tokens def test_forward(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) output = static_embedding(tokens) assert "sentence_embedding" in output def test_save_and_load(tmp_path: Path, static_embedding: StaticEmbedding) -> None: save_dir = tmp_path / "model" save_dir.mkdir() static_embedding.save(str(save_dir)) loaded_model = StaticEmbedding.load(str(save_dir)) assert loaded_model.embedding.weight.shape == static_embedding.embedding.weight.shape @skip_if_no_model2vec() def test_from_distillation() -> None: model = StaticEmbedding.from_distillation("sentence-transformers-testing/stsb-bert-tiny-safetensors", pca_dims=32) expected_shape = (29525 if parse(M2V_VERSION) >= Version("0.5.0") else 29528, 32) assert model.embedding.weight.shape == expected_shape @skip_if_no_model2vec() def test_from_model2vec() -> None: model = StaticEmbedding.from_model2vec("minishlab/M2V_base_output") assert model.embedding.weight.shape == (29528, 256) def test_loading_model2vec() -> None: model = SentenceTransformer("minishlab/potion-base-8M") assert model.get_sentence_embedding_dimension() == 256 assert model.max_seq_length == math.inf test_sentences = ["It's so sunny outside!", "The sun is shining outside!"] embeddings = model.encode(test_sentences) assert embeddings.shape == (2, 256) similarity = model.similarity(embeddings[0], embeddings[1]) assert similarity.item() > 0.7
import multiprocessing import random import time from functools import partial import pytest from jina import Client, Document, DocumentArray, Executor, Flow, requests from jina.types.request.data import Response NUM_REQUESTS = 5 class MyExecutor(Executor): @requests(on='/ping') def ping(self, **kwargs): time.sleep(0.1 * random.random()) @pytest.mark.parametrize('protocol', ['http', 'grpc']) @pytest.mark.parametrize('shards', [10]) @pytest.mark.parametrize('polling', ['ANY', 'ALL']) @pytest.mark.parametrize('prefetch', [1, 10]) @pytest.mark.parametrize('concurrent', [15]) @pytest.mark.parametrize('use_stream', [False, True]) @pytest.mark.parametrize('reuse_session', [True, False]) def test_concurrent_clients( concurrent, protocol, shards, polling, prefetch, reraise, use_stream, reuse_session ): if not use_stream and protocol != 'grpc': return if reuse_session and protocol != 'http': return def pong(peer_hash, queue, resp: Response): for d in resp.docs: queue.put((peer_hash, d.text)) def peer_client(port, protocol, peer_hash, queue): c = Client(protocol=protocol, port=port, reuse_session=reuse_session) for _ in range(NUM_REQUESTS): c.post( '/ping', Document(text=peer_hash), on_done=lambda r: pong(peer_hash, queue, r), return_responses=True, stream=use_stream, ) f = Flow(protocol=protocol, prefetch=prefetch).add( uses=MyExecutor, shards=shards, polling=polling ) with f: pqueue = multiprocessing.Queue() port = f.port process_pool = [] for peer_id in range(concurrent): p = multiprocessing.Process( target=partial(peer_client, port, protocol, str(peer_id), pqueue), daemon=True, ) p.start() process_pool.append(p) for p in process_pool: p.join() queue_len = 0 while not pqueue.empty(): peer_hash, text = pqueue.get() assert peer_hash == text queue_len += 1 assert queue_len == concurrent * NUM_REQUESTS
import multiprocessing import random import time from functools import partial import pytest from jina import Client, Document, DocumentArray, Executor, Flow, requests from jina.types.request.data import Response NUM_REQUESTS = 5 class MyExecutor(Executor): @requests(on='/ping') def ping(self, **kwargs): time.sleep(0.1 * random.random()) @pytest.mark.parametrize('protocol', ['http', 'grpc']) @pytest.mark.parametrize('shards', [10]) @pytest.mark.parametrize('polling', ['ANY', 'ALL']) @pytest.mark.parametrize('prefetch', [1, 10]) @pytest.mark.parametrize('concurrent', [15]) @pytest.mark.parametrize('use_stream', [False, True]) def test_concurrent_clients( concurrent, protocol, shards, polling, prefetch, reraise, use_stream ): if not use_stream and protocol != 'grpc': return def pong(peer_hash, queue, resp: Response): for d in resp.docs: queue.put((peer_hash, d.text)) def peer_client(port, protocol, peer_hash, queue): c = Client(protocol=protocol, port=port) for _ in range(NUM_REQUESTS): c.post( '/ping', Document(text=peer_hash), on_done=lambda r: pong(peer_hash, queue, r), return_responses=True, stream=use_stream, ) f = Flow(protocol=protocol, prefetch=prefetch).add( uses=MyExecutor, shards=shards, polling=polling ) with f: pqueue = multiprocessing.Queue() port = f.port process_pool = [] for peer_id in range(concurrent): p = multiprocessing.Process( target=partial(peer_client, port, protocol, str(peer_id), pqueue), daemon=True, ) p.start() process_pool.append(p) for p in process_pool: p.join() queue_len = 0 while not pqueue.empty(): peer_hash, text = pqueue.get() assert peer_hash == text queue_len += 1 assert queue_len == concurrent * NUM_REQUESTS
from typing import Generator, Optional import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc from docarray.typing import ImageUrl, NdArray from docarray.utils.map import map_docs, map_docs_batch from tests.units.typing.test_bytes import IMAGE_PATHS N_DOCS = 2 def load_from_doc(d: ImageDoc) -> ImageDoc: if d.url is not None: d.tensor = d.url.load() return d @pytest.fixture() def da(): da = DocumentArray[ImageDoc]( [ImageDoc(url=IMAGE_PATHS['png']) for _ in range(N_DOCS)] ) return da @pytest.mark.parametrize('backend', ['thread', 'process']) def test_map(da, backend): for tensor in da.tensor: assert tensor is None docs = list(map_docs(da=da, func=load_from_doc, backend=backend)) assert len(docs) == N_DOCS for doc in docs: assert doc.tensor is not None def test_map_multiprocessing_lambda_func_raise_exception(da): with pytest.raises(ValueError, match='Multiprocessing does not allow'): list(map_docs(da=da, func=lambda x: x, backend='process')) def test_map_multiprocessing_local_func_raise_exception(da): def local_func(x): return x with pytest.raises(ValueError, match='Multiprocessing does not allow'): list(map_docs(da=da, func=local_func, backend='process')) @pytest.mark.parametrize('backend', ['thread', 'process']) def test_check_order(backend): da = DocumentArray[ImageDoc]([ImageDoc(id=i) for i in range(N_DOCS)]) docs = list(map_docs(da=da, func=load_from_doc, backend=backend)) assert len(docs) == N_DOCS for i, doc in enumerate(docs): assert doc.id == str(i) def load_from_da(da: DocumentArray) -> DocumentArray: for doc in da: doc.tensor = doc.url.load() return da class MyImage(BaseDocument): tensor: Optional[NdArray] url: ImageUrl @pytest.mark.slow @pytest.mark.parametrize('n_docs,batch_size', [(10, 5), (10, 8)]) @pytest.mark.parametrize('backend', ['thread', 'process']) def test_map_docs_batch(n_docs, batch_size, backend): da = DocumentArray[MyImage]( [MyImage(url=IMAGE_PATHS['png']) for _ in range(n_docs)] ) it = map_docs_batch( da=da, func=load_from_da, batch_size=batch_size, backend=backend ) assert isinstance(it, Generator) for batch in it: assert isinstance(batch, DocumentArray[MyImage])
from typing import Generator, Optional import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import Image from docarray.typing import ImageUrl, NdArray from docarray.utils.map import map_docs, map_docs_batch from tests.units.typing.test_bytes import IMAGE_PATHS N_DOCS = 2 def load_from_doc(d: Image) -> Image: if d.url is not None: d.tensor = d.url.load() return d @pytest.fixture() def da(): da = DocumentArray[Image]([Image(url=IMAGE_PATHS['png']) for _ in range(N_DOCS)]) return da @pytest.mark.parametrize('backend', ['thread', 'process']) def test_map(da, backend): for tensor in da.tensor: assert tensor is None docs = list(map_docs(da=da, func=load_from_doc, backend=backend)) assert len(docs) == N_DOCS for doc in docs: assert doc.tensor is not None def test_map_multiprocessing_lambda_func_raise_exception(da): with pytest.raises(ValueError, match='Multiprocessing does not allow'): list(map_docs(da=da, func=lambda x: x, backend='process')) def test_map_multiprocessing_local_func_raise_exception(da): def local_func(x): return x with pytest.raises(ValueError, match='Multiprocessing does not allow'): list(map_docs(da=da, func=local_func, backend='process')) @pytest.mark.parametrize('backend', ['thread', 'process']) def test_check_order(backend): da = DocumentArray[Image]([Image(id=i) for i in range(N_DOCS)]) docs = list(map_docs(da=da, func=load_from_doc, backend=backend)) assert len(docs) == N_DOCS for i, doc in enumerate(docs): assert doc.id == str(i) def load_from_da(da: DocumentArray) -> DocumentArray: for doc in da: doc.tensor = doc.url.load() return da class MyImage(BaseDocument): tensor: Optional[NdArray] url: ImageUrl @pytest.mark.slow @pytest.mark.parametrize('n_docs,batch_size', [(10, 5), (10, 8)]) @pytest.mark.parametrize('backend', ['thread', 'process']) def test_map_docs_batch(n_docs, batch_size, backend): da = DocumentArray[MyImage]( [MyImage(url=IMAGE_PATHS['png']) for _ in range(n_docs)] ) it = map_docs_batch( da=da, func=load_from_da, batch_size=batch_size, backend=backend ) assert isinstance(it, Generator) for batch in it: assert isinstance(batch, DocumentArray[MyImage])
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class FSAF(SingleStageDetector): """Implementation of `FSAF <https://arxiv.org/abs/1903.00621>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(FSAF, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class FSAF(SingleStageDetector): """Implementation of `FSAF <https://arxiv.org/abs/1903.00621>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(FSAF, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
import enum import typing import pydantic import backend.data.graph from backend.data.api_key import APIKeyPermission, APIKeyWithoutHash class Methods(enum.Enum): SUBSCRIBE = "subscribe" UNSUBSCRIBE = "unsubscribe" EXECUTION_EVENT = "execution_event" ERROR = "error" class WsMessage(pydantic.BaseModel): method: Methods data: typing.Dict[str, typing.Any] | list[typing.Any] | None = None success: bool | None = None channel: str | None = None error: str | None = None class ExecutionSubscription(pydantic.BaseModel): graph_id: str class SubscriptionDetails(pydantic.BaseModel): event_type: str channel: str graph_id: str class CreateGraph(pydantic.BaseModel): template_id: str | None = None template_version: int | None = None graph: backend.data.graph.Graph | None = None class CreateAPIKeyRequest(pydantic.BaseModel): name: str permissions: typing.List[APIKeyPermission] description: typing.Optional[str] = None class CreateAPIKeyResponse(pydantic.BaseModel): api_key: APIKeyWithoutHash plain_text_key: str class SetGraphActiveVersion(pydantic.BaseModel): active_graph_version: int class UpdatePermissionsRequest(pydantic.BaseModel): permissions: typing.List[APIKeyPermission]
import enum import typing import pydantic import backend.data.graph class Methods(enum.Enum): SUBSCRIBE = "subscribe" UNSUBSCRIBE = "unsubscribe" EXECUTION_EVENT = "execution_event" ERROR = "error" class WsMessage(pydantic.BaseModel): method: Methods data: typing.Dict[str, typing.Any] | list[typing.Any] | None = None success: bool | None = None channel: str | None = None error: str | None = None class ExecutionSubscription(pydantic.BaseModel): graph_id: str class SubscriptionDetails(pydantic.BaseModel): event_type: str channel: str graph_id: str class CreateGraph(pydantic.BaseModel): template_id: str | None = None template_version: int | None = None graph: backend.data.graph.Graph | None = None class SetGraphActiveVersion(pydantic.BaseModel): active_graph_version: int
"""Run smoke tests""" import os from pathlib import Path from sys import platform import torch import torch.nn as nn import torchvision from torchvision.io import read_image from torchvision.models import resnet50, ResNet50_Weights SCRIPT_DIR = Path(__file__).parent def smoke_test_torchvision() -> None: print( "Is torchvision usable?", all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]), ) def smoke_test_torchvision_read_decode() -> None: img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) if img_jpg.ndim != 3 or img_jpg.numel() < 100: raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png")) if img_png.ndim != 3 or img_png.numel() < 100: raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}") def smoke_test_compile() -> None: try: model = resnet50().cuda() model = torch.compile(model) x = torch.randn(1, 3, 224, 224, device="cuda") out = model(x) print(f"torch.compile model output: {out.shape}") except RuntimeError: if platform == "win32": print("Successfully caught torch.compile RuntimeError on win") elif sys.version_info >= (3, 11, 0): print("Successfully caught torch.compile RuntimeError on Python 3.11") else: raise def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None: img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device) # Step 1: Initialize model with the best available weights weights = ResNet50_Weights.DEFAULT model = resnet50(weights=weights).to(device) model.eval() # Step 2: Initialize the inference transforms preprocess = weights.transforms() # Step 3: Apply inference preprocessing transforms batch = preprocess(img).unsqueeze(0) # Step 4: Use the model and print the predicted category prediction = model(batch).squeeze(0).softmax(0) class_id = prediction.argmax().item() score = prediction[class_id].item() category_name = weights.meta["categories"][class_id] expected_category = "German shepherd" print(f"{category_name} ({device}): {100 * score:.1f}%") if category_name != expected_category: raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}") def main() -> None: print(f"torchvision: {torchvision.__version__}") print(f"torch.cuda.is_available: {torch.cuda.is_available()}") smoke_test_torchvision() smoke_test_torchvision_read_decode() smoke_test_torchvision_resnet50_classify() if torch.cuda.is_available(): smoke_test_torchvision_resnet50_classify("cuda") smoke_test_compile() if torch.backends.mps.is_available(): smoke_test_torchvision_resnet50_classify("mps") if __name__ == "__main__": main()
"""Run smoke tests""" import os from pathlib import Path from sys import platform import torch import torch.nn as nn import torchvision from torchvision.io import read_image from torchvision.models import resnet50, ResNet50_Weights SCRIPT_DIR = Path(__file__).parent def smoke_test_torchvision() -> None: print( "Is torchvision usable?", all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]), ) def smoke_test_torchvision_read_decode() -> None: img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) if img_jpg.ndim != 3 or img_jpg.numel() < 100: raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png")) if img_png.ndim != 3 or img_png.numel() < 100: raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}") def smoke_test_compile() -> None: try: model = resnet50().cuda() model = torch.compile(model) x = torch.randn(1, 3, 224, 224, device="cuda") out = model(x) print(f"torch.compile model output: {out.shape}") except RuntimeError: if platform == "win32": print("Successfully caught torch.compile RuntimeError on win") else: raise def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None: img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device) # Step 1: Initialize model with the best available weights weights = ResNet50_Weights.DEFAULT model = resnet50(weights=weights).to(device) model.eval() # Step 2: Initialize the inference transforms preprocess = weights.transforms() # Step 3: Apply inference preprocessing transforms batch = preprocess(img).unsqueeze(0) # Step 4: Use the model and print the predicted category prediction = model(batch).squeeze(0).softmax(0) class_id = prediction.argmax().item() score = prediction[class_id].item() category_name = weights.meta["categories"][class_id] expected_category = "German shepherd" print(f"{category_name} ({device}): {100 * score:.1f}%") if category_name != expected_category: raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}") def main() -> None: print(f"torchvision: {torchvision.__version__}") print(f"torch.cuda.is_available: {torch.cuda.is_available()}") smoke_test_torchvision() smoke_test_torchvision_read_decode() smoke_test_torchvision_resnet50_classify() if torch.cuda.is_available(): smoke_test_torchvision_resnet50_classify("cuda") smoke_test_compile() if torch.backends.mps.is_available(): smoke_test_torchvision_resnet50_classify("mps") if __name__ == "__main__": main()
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../common/lsj-100e_coco-instance.py' ] image_size = (1024, 1024) batch_augments = [ dict(type='BatchFixedSizePad', size=image_size, pad_mask=True) ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed # Requires MMCV-full after https://github.com/open-mmlab/mmcv/pull/1205. head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # use caffe norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, # pad_size_divisor=32 is unnecessary in training but necessary # in testing. pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None, style='caffe'), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # Use RepeatDataset to speed up training train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline)))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../common/lsj_100e_coco_instance.py' ] image_size = (1024, 1024) batch_augments = [ dict(type='BatchFixedSizePad', size=image_size, pad_mask=True) ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed # Requires MMCV-full after https://github.com/open-mmlab/mmcv/pull/1205. head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # use caffe norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, # pad_size_divisor=32 is unnecessary in training but necessary # in testing. pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None, style='caffe'), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # Use RepeatDataset to speed up training train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline)))
from docarray.typing.id import ID from docarray.typing.tensor.audio import AudioNdArray from docarray.typing.tensor.embedding.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor from docarray.typing.tensor.video import VideoNdArray from docarray.typing.url import ( AnyUrl, AudioUrl, ImageUrl, Mesh3DUrl, PointCloud3DUrl, TextUrl, VideoUrl, ) __all__ = [ 'NdArray', 'NdArrayEmbedding', 'AudioNdArray', 'VideoNdArray', 'AnyEmbedding', 'ImageUrl', 'AudioUrl', 'TextUrl', 'Mesh3DUrl', 'PointCloud3DUrl', 'VideoUrl', 'AnyUrl', 'ID', 'AnyTensor', 'NdArrayEmbedding', ] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor import TorchEmbedding, TorchTensor # noqa: F401 from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor # noqa from docarray.typing.tensor.video.video_torch_tensor import VideoTorchTensor # noqa __all__.extend( ['AudioTorchTensor', 'TorchEmbedding', 'TorchTensor', 'VideoTorchTensor'] )
from docarray.typing.id import ID from docarray.typing.tensor.audio import AudioNdArray from docarray.typing.tensor.embedding.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor from docarray.typing.tensor.video import VideoNdArray from docarray.typing.url import ( AnyUrl, AudioUrl, ImageUrl, Mesh3DUrl, PointCloud3DUrl, TextUrl, VideoUrl, ) __all__ = [ 'NdArray', 'AudioNdArray', 'VideoNdArray', 'AnyEmbedding', 'ImageUrl', 'AudioUrl', 'TextUrl', 'Mesh3DUrl', 'PointCloud3DUrl', 'VideoUrl', 'AnyUrl', 'ID', 'AnyTensor', 'NdArrayEmbedding', ] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor import TorchEmbedding, TorchTensor # noqa: F401 from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor # noqa from docarray.typing.tensor.video.video_torch_tensor import VideoTorchTensor # noqa __all__.extend( ['AudioTorchTensor', 'TorchEmbedding', 'TorchTensor', 'VideoTorchTensor'] )
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. SimCSE will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_simcse_from_file.py path/to/sentences.txt """ import gzip import logging import math import sys from datetime import datetime import tqdm from torch.utils.data import DataLoader from sentence_transformers import InputExample, LoggingHandler, SentenceTransformer, losses, models #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Training parameters model_name = "distilroberta-base" train_batch_size = 128 max_seq_length = 32 num_epochs = 1 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print("Run this script with: python {} path/to/sentences.txt".format(sys.argv[0])) exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_simcse{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Read the train corpus ################# train_samples = [] with gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open( filepath, encoding="utf8" ) as fIn: for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_samples.append(InputExample(texts=[line, line])) logging.info("Train sentences: {}".format(len(train_samples))) # We train our model using the MultipleNegativesRankingLoss train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size, drop_last=True) train_loss = losses.MultipleNegativesRankingLoss(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=num_epochs, warmup_steps=warmup_steps, optimizer_params={"lr": 5e-5}, checkpoint_path=model_output_path, show_progress_bar=True, use_amp=False, # Set to True, if your GPU supports FP16 cores )
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. SimCSE will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_simcse_from_file.py path/to/sentences.txt """ from torch.utils.data import DataLoader import math from sentence_transformers import models, losses from sentence_transformers import LoggingHandler, SentenceTransformer, InputExample import logging from datetime import datetime import gzip import sys import tqdm #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout # Training parameters model_name = 'distilroberta-base' train_batch_size = 128 max_seq_length = 32 num_epochs = 1 #Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print("Run this script with: python {} path/to/sentences.txt".format(sys.argv[0])) exit() filepath = sys.argv[1] # Save path to store our model output_name = '' if len(sys.argv) >= 3: output_name = "-"+sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = 'output/train_simcse{}-{}'.format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Read the train corpus ################# train_samples = [] with gzip.open(filepath, 'rt', encoding='utf8') if filepath.endswith('.gz') else open(filepath, encoding='utf8') as fIn: for line in tqdm.tqdm(fIn, desc='Read file'): line = line.strip() if len(line) >= 10: train_samples.append(InputExample(texts=[line, line])) logging.info("Train sentences: {}".format(len(train_samples))) # We train our model using the MultipleNegativesRankingLoss train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size, drop_last=True) train_loss = losses.MultipleNegativesRankingLoss(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=num_epochs, warmup_steps=warmup_steps, optimizer_params={'lr': 5e-5}, checkpoint_path=model_output_path, show_progress_bar=True, use_amp=False # Set to True, if your GPU supports FP16 cores )
from __future__ import annotations import json import os import torch from safetensors.torch import load_model as load_safetensors_model from safetensors.torch import save_model as save_safetensors_model from torch import nn class LSTM(nn.Module): """Bidirectional LSTM running over word embeddings.""" def __init__( self, word_embedding_dimension: int, hidden_dim: int, num_layers: int = 1, dropout: float = 0, bidirectional: bool = True, ): nn.Module.__init__(self) self.config_keys = ["word_embedding_dimension", "hidden_dim", "num_layers", "dropout", "bidirectional"] self.word_embedding_dimension = word_embedding_dimension self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout = dropout self.bidirectional = bidirectional self.embeddings_dimension = hidden_dim if self.bidirectional: self.embeddings_dimension *= 2 self.encoder = nn.LSTM( word_embedding_dimension, hidden_dim, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional, batch_first=True, ) def forward(self, features): token_embeddings = features["token_embeddings"] sentence_lengths = torch.clamp(features["sentence_lengths"], min=1) packed = nn.utils.rnn.pack_padded_sequence( token_embeddings, sentence_lengths.cpu(), batch_first=True, enforce_sorted=False ) packed = self.encoder(packed) unpack = nn.utils.rnn.pad_packed_sequence(packed[0], batch_first=True)[0] features.update({"token_embeddings": unpack}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> list[int]: raise NotImplementedError() def save(self, output_path: str, safe_serialization: bool = True): with open(os.path.join(output_path, "lstm_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) device = next(self.parameters()).device if safe_serialization: save_safetensors_model(self.cpu(), os.path.join(output_path, "model.safetensors")) self.to(device) else: torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "lstm_config.json")) as fIn: config = json.load(fIn) model = LSTM(**config) if os.path.exists(os.path.join(input_path, "model.safetensors")): load_safetensors_model(model, os.path.join(input_path, "model.safetensors")) else: model.load_state_dict( torch.load(os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu")) ) return model
from __future__ import annotations import json import os import torch from safetensors.torch import load_model as load_safetensors_model from safetensors.torch import save_model as save_safetensors_model from torch import nn class LSTM(nn.Module): """Bidirectional LSTM running over word embeddings.""" def __init__( self, word_embedding_dimension: int, hidden_dim: int, num_layers: int = 1, dropout: float = 0, bidirectional: bool = True, ): nn.Module.__init__(self) self.config_keys = ["word_embedding_dimension", "hidden_dim", "num_layers", "dropout", "bidirectional"] self.word_embedding_dimension = word_embedding_dimension self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout = dropout self.bidirectional = bidirectional self.embeddings_dimension = hidden_dim if self.bidirectional: self.embeddings_dimension *= 2 self.encoder = nn.LSTM( word_embedding_dimension, hidden_dim, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional, batch_first=True, ) def forward(self, features): token_embeddings = features["token_embeddings"] sentence_lengths = torch.clamp(features["sentence_lengths"], min=1) packed = nn.utils.rnn.pack_padded_sequence( token_embeddings, sentence_lengths.cpu(), batch_first=True, enforce_sorted=False ) packed = self.encoder(packed) unpack = nn.utils.rnn.pad_packed_sequence(packed[0], batch_first=True)[0] features.update({"token_embeddings": unpack}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> list[int]: raise NotImplementedError() def save(self, output_path: str, safe_serialization: bool = True): with open(os.path.join(output_path, "lstm_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) device = next(self.parameters()).device if safe_serialization: save_safetensors_model(self.cpu(), os.path.join(output_path, "model.safetensors")) self.to(device) else: torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "lstm_config.json"), "r") as fIn: config = json.load(fIn) model = LSTM(**config) if os.path.exists(os.path.join(input_path, "model.safetensors")): load_safetensors_model(model, os.path.join(input_path, "model.safetensors")) else: model.load_state_dict( torch.load(os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu")) ) return model
from __future__ import annotations from typing import Any, Dict, Optional from docarray import BaseDoc, DocArray from docarray.typing import AnyEmbedding, AnyTensor class LegacyDocument(BaseDoc): """ This Document is the LegacyDocument. It follows the same schema as in DocArray v1. It can be useful to start migrating a codebase from v1 to v2. Nevertheless, the API is not totally compatible with DocAray v1 `Document`. Indeed, none of the method associated with `Document` are present. Only the schema of the data is similar. .. code-block:: python from docarray import DocArray from docarray.documents.legacy import LegacyDocument import numpy as np doc = LegacyDocument(text='hello') doc.url = 'http://myimg.png' doc.tensor = np.zeros((3, 224, 224)) doc.embedding = np.zeros((100, 1)) doc.tags['price'] = 10 doc.chunks = DocArray[Document]([Document() for _ in range(10)]) doc.chunks = DocArray[Document]([Document() for _ in range(10)]) """ tensor: Optional[AnyTensor] chunks: Optional[DocArray[LegacyDocument]] matches: Optional[DocArray[LegacyDocument]] blob: Optional[bytes] text: Optional[str] url: Optional[str] embedding: Optional[AnyEmbedding] tags: Dict[str, Any] = dict() scores: Optional[Dict[str, Any]]
from __future__ import annotations from typing import Any, Dict, Optional from docarray import BaseDocument, DocumentArray from docarray.typing import AnyEmbedding, AnyTensor class LegacyDocument(BaseDocument): """ This Document is the LegacyDocument. It follows the same schema as in DocArray v1. It can be useful to start migrating a codebase from v1 to v2. Nevertheless, the API is not totally compatible with DocAray v1 `Document`. Indeed, none of the method associated with `Document` are present. Only the schema of the data is similar. .. code-block:: python from docarray import DocumentArray from docarray.documents.legacy import LegacyDocument import numpy as np doc = LegacyDocument(text='hello') doc.url = 'http://myimg.png' doc.tensor = np.zeros((3, 224, 224)) doc.embedding = np.zeros((100, 1)) doc.tags['price'] = 10 doc.chunks = DocumentArray[Document]([Document() for _ in range(10)]) doc.chunks = DocumentArray[Document]([Document() for _ in range(10)]) """ tensor: Optional[AnyTensor] chunks: Optional[DocumentArray[LegacyDocument]] matches: Optional[DocumentArray[LegacyDocument]] blob: Optional[bytes] text: Optional[str] url: Optional[str] embedding: Optional[AnyEmbedding] tags: Dict[str, Any] = dict() scores: Optional[Dict[str, Any]]
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine import Config from mmengine.data import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import ATSSHead class TestATSSHead(TestCase): def test_atss_head_loss(self): """Tests atss head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1 }] cfg = Config( dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False)) atss_head = ATSSHead( num_classes=4, in_channels=1, stacked_convs=1, feat_channels=1, norm_cfg=None, train_cfg=cfg, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0)) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [8, 16, 32, 64, 128] ] cls_scores, bbox_preds, centernesses = atss_head.forward(feat) # Test that empty ground truth encourages the network to predict # background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = atss_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) empty_centerness_loss = sum(empty_gt_losses['loss_centerness']) self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') self.assertEqual( empty_centerness_loss.item(), 0, 'there should be no centerness loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = atss_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) onegt_centerness_loss = sum(one_gt_losses['loss_centerness']) self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero') self.assertGreater(onegt_centerness_loss.item(), 0, 'centerness loss should be non-zero')
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine import Config from mmengine.data import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import ATSSHead class TestATSSHead(TestCase): def test_atss_head_loss(self): """Tests atss head loss when truth is empty and non-empty.""" s = 256 img_metas = [{'img_shape': (s, s, 3), 'scale_factor': 1}] cfg = Config( dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False)) atss_head = ATSSHead( num_classes=4, in_channels=1, stacked_convs=1, feat_channels=1, norm_cfg=None, train_cfg=cfg, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0)) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [8, 16, 32, 64, 128] ] cls_scores, bbox_preds, centernesses = atss_head.forward(feat) # Test that empty ground truth encourages the network to predict # background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = atss_head.loss(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) empty_centerness_loss = sum(empty_gt_losses['loss_centerness']) self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') self.assertEqual( empty_centerness_loss.item(), 0, 'there should be no centerness loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = atss_head.loss(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) onegt_centerness_loss = sum(one_gt_losses['loss_centerness']) self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero') self.assertGreater(onegt_centerness_loss.item(), 0, 'centerness loss should be non-zero')
""" Tests the correct computation of evaluation scores from BinaryClassificationEvaluator """ from __future__ import annotations import csv import gzip import os from pathlib import Path import pytest from torch.utils.data import DataLoader from sentence_transformers import ( InputExample, SentenceTransformer, evaluation, losses, util, ) @pytest.mark.skip(reason="This test is rather slow, and the LabelAccuracyEvaluator is not commonly used.") def test_LabelAccuracyEvaluator(paraphrase_distilroberta_base_v1_model: SentenceTransformer, tmp_path: Path) -> None: """Tests that the LabelAccuracyEvaluator can be loaded correctly""" model = paraphrase_distilroberta_base_v1_model nli_dataset_path = "datasets/AllNLI.tsv.gz" if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} dev_samples = [] with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: if row["split"] == "train": label_id = label2int[row["label"]] dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) if len(dev_samples) >= 100: break train_loss = losses.SoftmaxLoss( model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=len(label2int), ) dev_dataloader = DataLoader(dev_samples, shuffle=False, batch_size=16) evaluator = evaluation.LabelAccuracyEvaluator(dev_dataloader, softmax_model=train_loss) metrics = evaluator(model, output_path=str(tmp_path)) assert "accuracy" in metrics assert metrics["accuracy"] > 0.2
""" Tests the correct computation of evaluation scores from BinaryClassificationEvaluator """ from __future__ import annotations import csv import gzip import os from pathlib import Path from torch.utils.data import DataLoader from sentence_transformers import ( InputExample, SentenceTransformer, evaluation, losses, util, ) def test_LabelAccuracyEvaluator(paraphrase_distilroberta_base_v1_model: SentenceTransformer, tmp_path: Path) -> None: """Tests that the LabelAccuracyEvaluator can be loaded correctly""" model = paraphrase_distilroberta_base_v1_model nli_dataset_path = "datasets/AllNLI.tsv.gz" if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} dev_samples = [] with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: if row["split"] == "train": label_id = label2int[row["label"]] dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) if len(dev_samples) >= 100: break train_loss = losses.SoftmaxLoss( model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=len(label2int), ) dev_dataloader = DataLoader(dev_samples, shuffle=False, batch_size=16) evaluator = evaluation.LabelAccuracyEvaluator(dev_dataloader, softmax_model=train_loss) metrics = evaluator(model, output_path=str(tmp_path)) assert "accuracy" in metrics assert metrics["accuracy"] > 0.2
# Copyright (c) OpenMMLab. All rights reserved. from .approx_max_iou_assigner import ApproxMaxIoUAssigner from .assign_result import AssignResult from .atss_assigner import ATSSAssigner from .base_assigner import BaseAssigner from .center_region_assigner import CenterRegionAssigner from .grid_assigner import GridAssigner from .hungarian_assigner import HungarianAssigner from .max_iou_assigner import MaxIoUAssigner from .point_assigner import PointAssigner from .region_assigner import RegionAssigner from .sim_ota_assigner import SimOTAAssigner from .task_aligned_assigner import TaskAlignedAssigner from .uniform_assigner import UniformAssigner __all__ = [ 'BaseAssigner', 'MaxIoUAssigner', 'ApproxMaxIoUAssigner', 'AssignResult', 'PointAssigner', 'ATSSAssigner', 'CenterRegionAssigner', 'GridAssigner', 'HungarianAssigner', 'RegionAssigner', 'UniformAssigner', 'SimOTAAssigner', 'TaskAlignedAssigner' ]
# Copyright (c) OpenMMLab. All rights reserved. from .approx_max_iou_assigner import ApproxMaxIoUAssigner from .assign_result import AssignResult from .atss_assigner import ATSSAssigner from .base_assigner import BaseAssigner from .center_region_assigner import CenterRegionAssigner from .grid_assigner import GridAssigner from .hungarian_assigner import HungarianAssigner from .max_iou_assigner import MaxIoUAssigner from .point_assigner import PointAssigner from .region_assigner import RegionAssigner from .sim_ota_assigner import SimOTAAssigner from .uniform_assigner import UniformAssigner __all__ = [ 'BaseAssigner', 'MaxIoUAssigner', 'ApproxMaxIoUAssigner', 'AssignResult', 'PointAssigner', 'ATSSAssigner', 'CenterRegionAssigner', 'GridAssigner', 'HungarianAssigner', 'RegionAssigner', 'UniformAssigner', 'SimOTAAssigner' ]
from collections import ChainMap from typing import ( TYPE_CHECKING, Any, Dict, Iterable, MutableMapping, Type, TypeVar, Union, ) from docarray.array.list_advance_indexing import ListAdvancedIndexing from docarray.typing import NdArray from docarray.typing.tensor.abstract_tensor import AbstractTensor if TYPE_CHECKING: from docarray.array.doc_vec.doc_vec import DocVec IndexIterType = Union[slice, Iterable[int], Iterable[bool], None] T = TypeVar('T', bound='ColumnStorage') class ColumnStorage: """ ColumnStorage is a container to store the columns of the :class:`~docarray.array.doc_vec.DocVec`. :param tensor_columns: a Dict of AbstractTensor :param doc_columns: a Dict of :class:`~docarray.array.doc_vec.DocVec` :param docs_vec_columns: a Dict of List of :class:`~docarray.array.doc_vec.DocVec` :param any_columns: a Dict of List :param tensor_type: Class used to wrap the doc_vec tensors """ def __init__( self, tensor_columns: Dict[str, AbstractTensor], doc_columns: Dict[str, 'DocVec'], docs_vec_columns: Dict[str, ListAdvancedIndexing['DocVec']], any_columns: Dict[str, ListAdvancedIndexing], tensor_type: Type[AbstractTensor] = NdArray, ): self.tensor_columns = tensor_columns self.doc_columns = doc_columns self.docs_vec_columns = docs_vec_columns self.any_columns = any_columns self.tensor_type = tensor_type self.columns = ChainMap( # type: ignore self.tensor_columns, # type: ignore self.doc_columns, # type: ignore self.docs_vec_columns, # type: ignore self.any_columns, # type: ignore ) # type: ignore def __len__(self) -> int: return len(self.any_columns['id']) # TODO what if ID are None ? def __getitem__(self: T, item: IndexIterType) -> T: if isinstance(item, tuple): item = list(item) tensor_columns = {key: col[item] for key, col in self.tensor_columns.items()} doc_columns = {key: col[item] for key, col in self.doc_columns.items()} docs_vec_columns = { key: col[item] for key, col in self.docs_vec_columns.items() } any_columns = {key: col[item] for key, col in self.any_columns.items()} return self.__class__( tensor_columns, doc_columns, docs_vec_columns, any_columns, self.tensor_type, ) class ColumnStorageView(dict, MutableMapping[str, Any]): index: int storage: ColumnStorage def __init__(self, index: int, storage: ColumnStorage): super().__init__() self.index = index self.storage = storage def __getitem__(self, name: str) -> Any: if name in self.storage.tensor_columns.keys(): tensor = self.storage.tensor_columns[name] if tensor.get_comp_backend().n_dim(tensor) == 1: # to ensure consistensy between numpy and pytorch # we wrap the scalr in a tensor of ndim = 1 # otherwise numpy pass by value whereas torch by reference return self.storage.tensor_columns[name][self.index : self.index + 1] return self.storage.columns[name][self.index] def __setitem__(self, name, value) -> None: self.storage.columns[name][self.index] = value def __delitem__(self, key): raise RuntimeError('Cannot delete an item from a StorageView') def __iter__(self): return self.storage.columns.keys() def __len__(self): return len(self.storage.columns)
from collections import ChainMap from typing import ( TYPE_CHECKING, Any, Dict, Iterable, MutableMapping, Type, TypeVar, Union, ) from docarray.array.doc_vec.list_advance_indexing import ListAdvancedIndexing from docarray.typing import NdArray from docarray.typing.tensor.abstract_tensor import AbstractTensor if TYPE_CHECKING: from docarray.array.doc_vec.doc_vec import DocVec IndexIterType = Union[slice, Iterable[int], Iterable[bool], None] T = TypeVar('T', bound='ColumnStorage') class ColumnStorage: """ ColumnStorage is a container to store the columns of the :class:`~docarray.array.doc_vec.DocVec`. :param tensor_columns: a Dict of AbstractTensor :param doc_columns: a Dict of :class:`~docarray.array.doc_vec.DocVec` :param docs_vec_columns: a Dict of List of :class:`~docarray.array.doc_vec.DocVec` :param any_columns: a Dict of List :param tensor_type: Class used to wrap the doc_vec tensors """ def __init__( self, tensor_columns: Dict[str, AbstractTensor], doc_columns: Dict[str, 'DocVec'], docs_vec_columns: Dict[str, ListAdvancedIndexing['DocVec']], any_columns: Dict[str, ListAdvancedIndexing], tensor_type: Type[AbstractTensor] = NdArray, ): self.tensor_columns = tensor_columns self.doc_columns = doc_columns self.docs_vec_columns = docs_vec_columns self.any_columns = any_columns self.tensor_type = tensor_type self.columns = ChainMap( # type: ignore self.tensor_columns, # type: ignore self.doc_columns, # type: ignore self.docs_vec_columns, # type: ignore self.any_columns, # type: ignore ) # type: ignore def __len__(self) -> int: return len(self.any_columns['id']) # TODO what if ID are None ? def __getitem__(self: T, item: IndexIterType) -> T: if isinstance(item, tuple): item = list(item) tensor_columns = {key: col[item] for key, col in self.tensor_columns.items()} doc_columns = {key: col[item] for key, col in self.doc_columns.items()} docs_vec_columns = { key: col[item] for key, col in self.docs_vec_columns.items() } any_columns = {key: col[item] for key, col in self.any_columns.items()} return self.__class__( tensor_columns, doc_columns, docs_vec_columns, any_columns, self.tensor_type, ) class ColumnStorageView(dict, MutableMapping[str, Any]): index: int storage: ColumnStorage def __init__(self, index: int, storage: ColumnStorage): super().__init__() self.index = index self.storage = storage def __getitem__(self, name: str) -> Any: if name in self.storage.tensor_columns.keys(): tensor = self.storage.tensor_columns[name] if tensor.get_comp_backend().n_dim(tensor) == 1: # to ensure consistensy between numpy and pytorch # we wrap the scalr in a tensor of ndim = 1 # otherwise numpy pass by value whereas torch by reference return self.storage.tensor_columns[name][self.index : self.index + 1] return self.storage.columns[name][self.index] def __setitem__(self, name, value) -> None: self.storage.columns[name][self.index] = value def __delitem__(self, key): raise RuntimeError('Cannot delete an item from a StorageView') def __iter__(self): return self.storage.columns.keys() def __len__(self): return len(self.storage.columns)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.10.3' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.10.2' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. import argparse import logging import os import os.path as osp from mmengine.config import Config, DictAction from mmengine.logging import print_log from mmengine.registry import RUNNERS from mmengine.runner import Runner from mmdet.utils import setup_cache_size_limit_of_dynamo def parse_args(): parser = argparse.ArgumentParser(description='Train a detector') parser.add_argument('config', help='train config file path') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument( '--amp', action='store_true', default=False, help='enable automatic-mixed-precision training') parser.add_argument( '--auto-scale-lr', action='store_true', help='enable automatically scaling LR.') parser.add_argument( '--resume', nargs='?', type=str, const='auto', help='If specify checkpoint path, resume from it, while if not ' 'specify, try to auto resume from the latest checkpoint ' 'in the work directory.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') # When using PyTorch version >= 2.0.0, the `torch.distributed.launch` # will pass the `--local-rank` parameter to `tools/train.py` instead # of `--local_rank`. parser.add_argument('--local_rank', '--local-rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() # Reduce the number of repeated compilations and improve # training speed. setup_cache_size_limit_of_dynamo() # load config cfg = Config.fromfile(args.config) cfg.launcher = args.launcher if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) # enable automatic-mixed-precision training if args.amp is True: optim_wrapper = cfg.optim_wrapper.type if optim_wrapper == 'AmpOptimWrapper': print_log( 'AMP training is already enabled in your config.', logger='current', level=logging.WARNING) else: assert optim_wrapper == 'OptimWrapper', ( '`--amp` is only supported when the optimizer wrapper type is ' f'`OptimWrapper` but got {optim_wrapper}.') cfg.optim_wrapper.type = 'AmpOptimWrapper' cfg.optim_wrapper.loss_scale = 'dynamic' # enable automatically scaling LR if args.auto_scale_lr: if 'auto_scale_lr' in cfg and \ 'enable' in cfg.auto_scale_lr and \ 'base_batch_size' in cfg.auto_scale_lr: cfg.auto_scale_lr.enable = True else: raise RuntimeError('Can not find "auto_scale_lr" or ' '"auto_scale_lr.enable" or ' '"auto_scale_lr.base_batch_size" in your' ' configuration file.') # resume is determined in this priority: resume from > auto_resume if args.resume == 'auto': cfg.resume = True cfg.load_from = None elif args.resume is not None: cfg.resume = True cfg.load_from = args.resume # build the runner from config if 'runner_type' not in cfg: # build the default runner runner = Runner.from_cfg(cfg) else: # build customized runner from the registry # if 'runner_type' is set in the cfg runner = RUNNERS.build(cfg) # start training runner.train() if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import logging import os import os.path as osp from mmengine.config import Config, DictAction from mmengine.logging import print_log from mmengine.registry import RUNNERS from mmengine.runner import Runner def parse_args(): parser = argparse.ArgumentParser(description='Train a detector') parser.add_argument('config', help='train config file path') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument( '--amp', action='store_true', default=False, help='enable automatic-mixed-precision training') parser.add_argument( '--auto-scale-lr', action='store_true', help='enable automatically scaling LR.') parser.add_argument( '--resume', nargs='?', type=str, const='auto', help='If specify checkpoint path, resume from it, while if not ' 'specify, try to auto resume from the latest checkpoint ' 'in the work directory.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() # load config cfg = Config.fromfile(args.config) cfg.launcher = args.launcher if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) # enable automatic-mixed-precision training if args.amp is True: optim_wrapper = cfg.optim_wrapper.type if optim_wrapper == 'AmpOptimWrapper': print_log( 'AMP training is already enabled in your config.', logger='current', level=logging.WARNING) else: assert optim_wrapper == 'OptimWrapper', ( '`--amp` is only supported when the optimizer wrapper type is ' f'`OptimWrapper` but got {optim_wrapper}.') cfg.optim_wrapper.type = 'AmpOptimWrapper' cfg.optim_wrapper.loss_scale = 'dynamic' # enable automatically scaling LR if args.auto_scale_lr: if 'auto_scale_lr' in cfg and \ 'enable' in cfg.auto_scale_lr and \ 'base_batch_size' in cfg.auto_scale_lr: cfg.auto_scale_lr.enable = True else: raise RuntimeError('Can not find "auto_scale_lr" or ' '"auto_scale_lr.enable" or ' '"auto_scale_lr.base_batch_size" in your' ' configuration file.') # resume is determined in this priority: resume from > auto_resume if args.resume == 'auto': cfg.resume = True cfg.load_from = None elif args.resume is not None: cfg.resume = True cfg.load_from = args.resume # build the runner from config if 'runner_type' not in cfg: # build the default runner runner = Runner.from_cfg(cfg) else: # build customized runner from the registry # if 'runner_type' is set in the cfg runner = RUNNERS.build(cfg) # start training runner.train() if __name__ == '__main__': main()
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.documents import Audio from docarray.typing import AnyEmbedding, AnyTensor from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl try: import torch torch_available = True except ImportError: torch_available = False T = TypeVar('T', bound='Video') class Video(BaseDocument): """ Document for handling video. The Video Document can contain a VideoUrl (`Video.url`), an Audio Document (`Video.audio`), a VideoTensor (`Video.tensor`), an AnyTensor representing the indices of the video's key frames (`Video.key_frame_indices`) and an AnyEmbedding (`Video.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Video # use it directly vid = Video( url='https://github.com/docarray/docarray/tree/feat-add-video-v2/tests/toydata/mov_bbb.mp4?raw=true' ) vid.audio.tensor, vid.tensor, vid.key_frame_indices = vid.url.load() model = MyEmbeddingModel() vid.embedding = model(vid.tensor) You can extend this Document: .. code-block:: python from typing import Optional from docarray.documents import Text, Video # extend it class MyVideo(Video): name: Optional[Text] video = MyVideo( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video.video_tensor = video.url.load().video model = MyEmbeddingModel() video.embedding = model(video.tensor) video.name = Text(text='my first video') You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Text, Video # compose it class MultiModalDoc(BaseDocument): video: Video text: Text mmdoc = MultiModalDoc( video=Video( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.video.video_tensor = mmdoc.video.url.load().video """ url: Optional[VideoUrl] audio: Optional[Audio] = Audio() tensor: Optional[VideoTensor] key_frame_indices: Optional[AnyTensor] embedding: Optional[AnyEmbedding] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) ): value = cls(tensor=value) return super().validate(value)
from typing import Optional, TypeVar from docarray.base_document import BaseDocument from docarray.documents import Audio from docarray.typing import AnyEmbedding, AnyTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl T = TypeVar('T', bound='Video') class Video(BaseDocument): """ Document for handling video. The Video Document can contain a VideoUrl (`Video.url`), an Audio Document (`Video.audio`), a VideoTensor (`Video.tensor`), an AnyTensor representing the indices of the video's key frames (`Video.key_frame_indices`) and an AnyEmbedding (`Video.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Video # use it directly vid = Video( url='https://github.com/docarray/docarray/tree/feat-add-video-v2/tests/toydata/mov_bbb.mp4?raw=true' ) vid.audio.tensor, vid.tensor, vid.key_frame_indices = vid.url.load() model = MyEmbeddingModel() vid.embedding = model(vid.tensor) You can extend this Document: .. code-block:: python from typing import Optional from docarray.documents import Text, Video # extend it class MyVideo(Video): name: Optional[Text] video = MyVideo( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video.video_tensor = video.url.load().video model = MyEmbeddingModel() video.embedding = model(video.tensor) video.name = Text(text='my first video') You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Text, Video # compose it class MultiModalDoc(BaseDocument): video: Video text: Text mmdoc = MultiModalDoc( video=Video( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.video.video_tensor = mmdoc.video.url.load().video """ url: Optional[VideoUrl] audio: Optional[Audio] = Audio() tensor: Optional[VideoTensor] key_frame_indices: Optional[AnyTensor] embedding: Optional[AnyEmbedding]
import pytest from importlib.util import find_spec from llama_index.core.storage.kvstore.types import BaseKVStore from llama_index.storage.kvstore.postgres import PostgresKVStore no_packages = find_spec("psycopg2") is not None and find_spec("sqlalchemy") is not None and find_spec("asyncpg") is not None def test_class(): names_of_base_classes = [b.__name__ for b in PostgresKVStore.__mro__] assert BaseKVStore.__name__ in names_of_base_classes @pytest.mark.skipif( no_packages, reason="asyncpg, pscopg2-binary and sqlalchemy not installed" ) def test_initialization(): errors = [] try: pgstore1 = PostgresKVStore(table_name="mytable") errors.append(0) except ValueError: errors.append(1) try: pgstore2 = PostgresKVStore(table_name="mytable", connection_string="connection_string") errors.append(0) except ValueError: errors.append(1) try: pgstore3 = PostgresKVStore(table_name="mytable", async_connection_string="async_connection_string") errors.append(0) except ValueError: errors.append(1) try: pgstore4 = PostgresKVStore(table_name="mytable", connection_string="connection_string", async_connection_string="async_connection_string") errors.append(0) except ValueError: errors.append(1) assert sum(errors) == 3 assert pgstore4._engine is None assert pgstore4._async_engine is None
from llama_index.core.storage.kvstore.types import BaseKVStore from llama_index.storage.kvstore.postgres import PostgresKVStore def test_class(): names_of_base_classes = [b.__name__ for b in PostgresKVStore.__mro__] assert BaseKVStore.__name__ in names_of_base_classes
from datetime import datetime, timedelta from backend.blocks.hubspot._auth import ( HubSpotCredentials, HubSpotCredentialsField, HubSpotCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests class HubSpotEngagementBlock(Block): class Input(BlockSchema): credentials: HubSpotCredentialsInput = HubSpotCredentialsField() operation: str = SchemaField( description="Operation to perform (send_email, track_engagement)", default="send_email", ) email_data: dict = SchemaField( description="Email data including recipient, subject, content", default_factory=dict, ) contact_id: str = SchemaField( description="Contact ID for engagement tracking", default="" ) timeframe_days: int = SchemaField( description="Number of days to look back for engagement", default=30, ) class Output(BlockSchema): result: dict = SchemaField(description="Operation result") status: str = SchemaField(description="Operation status") def __init__(self): super().__init__( id="c6524385-7d87-49d6-a470-248bd29ca765", description="Manages HubSpot engagements - sends emails and tracks engagement metrics", categories={BlockCategory.CRM, BlockCategory.COMMUNICATION}, input_schema=HubSpotEngagementBlock.Input, output_schema=HubSpotEngagementBlock.Output, ) def run( self, input_data: Input, *, credentials: HubSpotCredentials, **kwargs ) -> BlockOutput: base_url = "https://api.hubapi.com" headers = { "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", "Content-Type": "application/json", } if input_data.operation == "send_email": # Using the email send API email_url = f"{base_url}/crm/v3/objects/emails" email_data = { "properties": { "hs_timestamp": datetime.now().isoformat(), "hubspot_owner_id": "1", # This should be configurable "hs_email_direction": "OUTBOUND", "hs_email_status": "SEND", "hs_email_subject": input_data.email_data.get("subject"), "hs_email_text": input_data.email_data.get("content"), "hs_email_to_email": input_data.email_data.get("recipient"), } } response = requests.post(email_url, headers=headers, json=email_data) result = response.json() yield "result", result yield "status", "email_sent" elif input_data.operation == "track_engagement": # Get engagement events for the contact from_date = datetime.now() - timedelta(days=input_data.timeframe_days) engagement_url = ( f"{base_url}/crm/v3/objects/contacts/{input_data.contact_id}/engagement" ) params = {"limit": 100, "after": from_date.isoformat()} response = requests.get(engagement_url, headers=headers, params=params) engagements = response.json() # Process engagement metrics metrics = { "email_opens": 0, "email_clicks": 0, "email_replies": 0, "last_engagement": None, "engagement_score": 0, } for engagement in engagements.get("results", []): eng_type = engagement.get("properties", {}).get("hs_engagement_type") if eng_type == "EMAIL": metrics["email_opens"] += 1 elif eng_type == "EMAIL_CLICK": metrics["email_clicks"] += 1 elif eng_type == "EMAIL_REPLY": metrics["email_replies"] += 1 # Update last engagement time eng_time = engagement.get("properties", {}).get("hs_timestamp") if eng_time and ( not metrics["last_engagement"] or eng_time > metrics["last_engagement"] ): metrics["last_engagement"] = eng_time # Calculate simple engagement score metrics["engagement_score"] = ( metrics["email_opens"] + metrics["email_clicks"] * 2 + metrics["email_replies"] * 3 ) yield "result", metrics yield "status", "engagement_tracked"
from datetime import datetime, timedelta from backend.blocks.hubspot._auth import ( HubSpotCredentials, HubSpotCredentialsField, HubSpotCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests class HubSpotEngagementBlock(Block): class Input(BlockSchema): credentials: HubSpotCredentialsInput = HubSpotCredentialsField() operation: str = SchemaField( description="Operation to perform (send_email, track_engagement)", default="send_email", ) email_data: dict = SchemaField( description="Email data including recipient, subject, content", default={}, ) contact_id: str = SchemaField( description="Contact ID for engagement tracking", default="" ) timeframe_days: int = SchemaField( description="Number of days to look back for engagement", default=30, ) class Output(BlockSchema): result: dict = SchemaField(description="Operation result") status: str = SchemaField(description="Operation status") def __init__(self): super().__init__( id="c6524385-7d87-49d6-a470-248bd29ca765", description="Manages HubSpot engagements - sends emails and tracks engagement metrics", categories={BlockCategory.CRM, BlockCategory.COMMUNICATION}, input_schema=HubSpotEngagementBlock.Input, output_schema=HubSpotEngagementBlock.Output, ) def run( self, input_data: Input, *, credentials: HubSpotCredentials, **kwargs ) -> BlockOutput: base_url = "https://api.hubapi.com" headers = { "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", "Content-Type": "application/json", } if input_data.operation == "send_email": # Using the email send API email_url = f"{base_url}/crm/v3/objects/emails" email_data = { "properties": { "hs_timestamp": datetime.now().isoformat(), "hubspot_owner_id": "1", # This should be configurable "hs_email_direction": "OUTBOUND", "hs_email_status": "SEND", "hs_email_subject": input_data.email_data.get("subject"), "hs_email_text": input_data.email_data.get("content"), "hs_email_to_email": input_data.email_data.get("recipient"), } } response = requests.post(email_url, headers=headers, json=email_data) result = response.json() yield "result", result yield "status", "email_sent" elif input_data.operation == "track_engagement": # Get engagement events for the contact from_date = datetime.now() - timedelta(days=input_data.timeframe_days) engagement_url = ( f"{base_url}/crm/v3/objects/contacts/{input_data.contact_id}/engagement" ) params = {"limit": 100, "after": from_date.isoformat()} response = requests.get(engagement_url, headers=headers, params=params) engagements = response.json() # Process engagement metrics metrics = { "email_opens": 0, "email_clicks": 0, "email_replies": 0, "last_engagement": None, "engagement_score": 0, } for engagement in engagements.get("results", []): eng_type = engagement.get("properties", {}).get("hs_engagement_type") if eng_type == "EMAIL": metrics["email_opens"] += 1 elif eng_type == "EMAIL_CLICK": metrics["email_clicks"] += 1 elif eng_type == "EMAIL_REPLY": metrics["email_replies"] += 1 # Update last engagement time eng_time = engagement.get("properties", {}).get("hs_timestamp") if eng_time and ( not metrics["last_engagement"] or eng_time > metrics["last_engagement"] ): metrics["last_engagement"] = eng_time # Calculate simple engagement score metrics["engagement_score"] = ( metrics["email_opens"] + metrics["email_clicks"] * 2 + metrics["email_replies"] * 3 ) yield "result", metrics yield "status", "engagement_tracked"
from fastapi import FastAPI from backend.server.middleware.security import SecurityHeadersMiddleware from .routes.v1 import v1_router external_app = FastAPI( title="AutoGPT External API", description="External API for AutoGPT integrations", docs_url="/docs", version="1.0", ) external_app.add_middleware(SecurityHeadersMiddleware) external_app.include_router(v1_router, prefix="/v1")
from fastapi import FastAPI from .routes.v1 import v1_router external_app = FastAPI( title="AutoGPT External API", description="External API for AutoGPT integrations", docs_url="/docs", version="1.0", ) external_app.include_router(v1_router, prefix="/v1")
from typing import Any, Dict import requests from llama_index.core.base.base_query_engine import BaseQueryEngine from llama_index.core.base.response.schema import Response from llama_index.core.schema import QueryBundle class CogniswitchQueryEngine(BaseQueryEngine): def __init__(self, cs_token: str, OAI_token: str, apiKey: str) -> None: """ The required fields. Args: cs_token (str): Cogniswitch token. OAI_token (str): OpenAI token. apiKey (str): Oauth token. """ self.cs_token = cs_token self.OAI_token = OAI_token self.apiKey = apiKey self.knowledge_request_endpoint = ( "https://api.cogniswitch.ai:8243/cs-api/0.0.1/cs/knowledgeRequest" ) self.headers = { "apiKey": self.apiKey, "platformToken": self.cs_token, "openAIToken": self.OAI_token, } def query_knowledge(self, query: str) -> Response: """ Send a query to the Cogniswitch service and retrieve the response. Args: query (str): Query to be answered. Returns: dict: Response JSON from the Cogniswitch service. """ data = {"query": query} response = requests.post( self.knowledge_request_endpoint, headers=self.headers, data=data, ) if response.status_code == 200: resp = response.json() answer = resp["data"]["answer"] return Response(response=answer) else: error_message = response.json()["message"] return Response(response=error_message) def _query(self, query_bundle: QueryBundle) -> Response: return self.query_knowledge(query_bundle.query_str) async def _aquery(self, query_bundle: QueryBundle) -> Response: return self.query_knowledge(query_bundle.query_str) def _get_prompt_modules(self) -> Dict[str, Any]: """Get prompts.""" return {}
from typing import Any, Dict import requests from llama_index.core.base.base_query_engine import BaseQueryEngine from llama_index.core.base.response.schema import Response from llama_index.core.schema import QueryBundle class CogniswitchQueryEngine(BaseQueryEngine): def __init__(self, cs_token: str, OAI_token: str, apiKey: str) -> None: """The required fields. Args: cs_token (str): Cogniswitch token. OAI_token (str): OpenAI token. apiKey (str): Oauth token. """ self.cs_token = cs_token self.OAI_token = OAI_token self.apiKey = apiKey self.knowledge_request_endpoint = ( "https://api.cogniswitch.ai:8243/cs-api/0.0.1/cs/knowledgeRequest" ) self.headers = { "apiKey": self.apiKey, "platformToken": self.cs_token, "openAIToken": self.OAI_token, } def query_knowledge(self, query: str) -> Response: """ Send a query to the Cogniswitch service and retrieve the response. Args: query (str): Query to be answered. Returns: dict: Response JSON from the Cogniswitch service. """ data = {"query": query} response = requests.post( self.knowledge_request_endpoint, headers=self.headers, data=data, ) if response.status_code == 200: resp = response.json() answer = resp["data"]["answer"] return Response(response=answer) else: error_message = response.json()["message"] return Response(response=error_message) def _query(self, query_bundle: QueryBundle) -> Response: return self.query_knowledge(query_bundle.query_str) async def _aquery(self, query_bundle: QueryBundle) -> Response: return self.query_knowledge(query_bundle.query_str) def _get_prompt_modules(self) -> Dict[str, Any]: """Get prompts.""" return {}
from typing import Any, Dict, Union import torch from torchvision import transforms as _transforms from torchvision.prototype import datapoints from torchvision.prototype.transforms import functional as F, Transform from .utils import is_simple_tensor class ConvertBoundingBoxFormat(Transform): _transformed_types = (datapoints.BoundingBox,) def __init__(self, format: Union[str, datapoints.BoundingBoxFormat]) -> None: super().__init__() if isinstance(format, str): format = datapoints.BoundingBoxFormat[format] self.format = format def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: return F.convert_format_bounding_box(inpt, new_format=self.format) # type: ignore[return-value] class ConvertDtype(Transform): _v1_transform_cls = _transforms.ConvertImageDtype _transformed_types = (is_simple_tensor, datapoints.Image, datapoints.Video) def __init__(self, dtype: torch.dtype = torch.float32) -> None: super().__init__() self.dtype = dtype def _transform( self, inpt: Union[datapoints.TensorImageType, datapoints.TensorVideoType], params: Dict[str, Any] ) -> Union[datapoints.TensorImageType, datapoints.TensorVideoType]: return F.convert_dtype(inpt, self.dtype) # We changed the name to align it with the new naming scheme. Still, `ConvertImageDtype` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ConvertImageDtype = ConvertDtype class ClampBoundingBoxes(Transform): _transformed_types = (datapoints.BoundingBox,) def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: return F.clamp_bounding_box(inpt) # type: ignore[return-value]
from typing import Any, Dict, Union import torch from torchvision import transforms as _transforms from torchvision.prototype import datapoints from torchvision.prototype.transforms import functional as F, Transform from .utils import is_simple_tensor class ConvertBoundingBoxFormat(Transform): _transformed_types = (datapoints.BoundingBox,) def __init__(self, format: Union[str, datapoints.BoundingBoxFormat]) -> None: super().__init__() if isinstance(format, str): format = datapoints.BoundingBoxFormat[format] self.format = format def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: # We need to unwrap here to avoid unnecessary `__torch_function__` calls, # since `convert_format_bounding_box` does not have a dispatcher function that would do that for us output = F.convert_format_bounding_box( inpt.as_subclass(torch.Tensor), old_format=inpt.format, new_format=params["format"] ) return datapoints.BoundingBox.wrap_like(inpt, output, format=params["format"]) class ConvertDtype(Transform): _v1_transform_cls = _transforms.ConvertImageDtype _transformed_types = (is_simple_tensor, datapoints.Image, datapoints.Video) def __init__(self, dtype: torch.dtype = torch.float32) -> None: super().__init__() self.dtype = dtype def _transform( self, inpt: Union[datapoints.TensorImageType, datapoints.TensorVideoType], params: Dict[str, Any] ) -> Union[datapoints.TensorImageType, datapoints.TensorVideoType]: return F.convert_dtype(inpt, self.dtype) # We changed the name to align it with the new naming scheme. Still, `ConvertImageDtype` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ConvertImageDtype = ConvertDtype class ClampBoundingBoxes(Transform): _transformed_types = (datapoints.BoundingBox,) def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: return F.clamp_bounding_box(inpt) # type: ignore[return-value]
import os from typing import List import pytest from llama_index.core.ingestion import IngestionPipeline from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import Document, TextNode from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.vector_stores.mongodb import MongoDBAtlasVectorSearch from pymongo import MongoClient OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") import threading lock = threading.Lock() @pytest.fixture(scope="session") def documents() -> List[Document]: """ List of documents represents data to be embedded in the datastore. Minimum requirements for Documents in the /upsert endpoint's UpsertRequest. """ text = Document.example().text metadata = Document.example().metadata texts = text.split("\n") return [Document(text=text, metadata={"text": text}) for text in texts] @pytest.fixture(scope="session") def nodes(documents) -> List[TextNode]: if OPENAI_API_KEY is None: return None pipeline = IngestionPipeline( transformations=[ SentenceSplitter(chunk_size=1024, chunk_overlap=200), OpenAIEmbedding(), ], ) return pipeline.run(documents=documents) DB_NAME = os.environ.get("MONGODB_DATABASE", "llama_index_test_db") collection_name = os.environ.get("MONGODB_COLLECTION", "llama_index_test_vectorstore") vector_index_name = os.environ.get("MONGODB_INDEX", "vector_index") MONGODB_URI = os.environ.get("MONGODB_URI") @pytest.fixture(scope="session") def atlas_client() -> MongoClient: if MONGODB_URI is None: return None client = MongoClient(MONGODB_URI) assert DB_NAME in client.list_database_names() return client @pytest.fixture() def vector_store(atlas_client: MongoClient) -> MongoDBAtlasVectorSearch: if MONGODB_URI is None: return None return MongoDBAtlasVectorSearch( mongodb_client=atlas_client, db_name=DB_NAME, collection_name=collection_name, vector_index_name=vector_index_name, fulltext_index_name="fulltext_index", )
import os from typing import List import pytest from llama_index.core.ingestion import IngestionPipeline from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import Document, TextNode from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.vector_stores.mongodb import MongoDBAtlasVectorSearch from pymongo import MongoClient OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") import threading lock = threading.Lock() @pytest.fixture(scope="session") def documents() -> List[Document]: """List of documents represents data to be embedded in the datastore. Minimum requirements for Documents in the /upsert endpoint's UpsertRequest. """ text = Document.example().text metadata = Document.example().metadata texts = text.split("\n") return [Document(text=text, metadata={"text": text}) for text in texts] @pytest.fixture(scope="session") def nodes(documents) -> List[TextNode]: if OPENAI_API_KEY is None: return None pipeline = IngestionPipeline( transformations=[ SentenceSplitter(chunk_size=1024, chunk_overlap=200), OpenAIEmbedding(), ], ) return pipeline.run(documents=documents) DB_NAME = os.environ.get("MONGODB_DATABASE", "llama_index_test_db") collection_name = os.environ.get("MONGODB_COLLECTION", "llama_index_test_vectorstore") vector_index_name = os.environ.get("MONGODB_INDEX", "vector_index") MONGODB_URI = os.environ.get("MONGODB_URI") @pytest.fixture(scope="session") def atlas_client() -> MongoClient: if MONGODB_URI is None: return None client = MongoClient(MONGODB_URI) assert DB_NAME in client.list_database_names() return client @pytest.fixture() def vector_store(atlas_client: MongoClient) -> MongoDBAtlasVectorSearch: if MONGODB_URI is None: return None return MongoDBAtlasVectorSearch( mongodb_client=atlas_client, db_name=DB_NAME, collection_name=collection_name, vector_index_name=vector_index_name, fulltext_index_name="fulltext_index", )
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any from sentence_transformers.evaluation import TranslationEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseTranslationEvaluator(TranslationEvaluator): """ This evaluator extends :class:`~sentence_transformers.evaluation.TranslationEvaluator` but is specifically designed for sparse encoder models. Given two sets of sentences in different languages, e.g. (en_1, en_2, en_3...) and (fr_1, fr_2, fr_3, ...), and assuming that fr_i is the translation of en_i. Checks if vec(en_i) has the highest similarity to vec(fr_i). Computes the accuracy in both directions The labels need to indicate the similarity between the sentences. Args: source_sentences (List[str]): List of sentences in the source language. target_sentences (List[str]): List of sentences in the target language. show_progress_bar (bool): Whether to show a progress bar when computing embeddings. Defaults to False. batch_size (int): The batch size to compute sentence embeddings. Defaults to 16. name (str): The name of the evaluator. Defaults to an empty string. print_wrong_matches (bool): Whether to print incorrect matches. Defaults to False. write_csv (bool): Whether to write the evaluation results to a CSV file. Defaults to True. truncate_dim (int, optional): The dimension to truncate sentence embeddings to. If None, the model's current truncation dimension will be used. Defaults to None. Example: :: import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTranslationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model, not mutilingual but hope to see some on the hub soon model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) ''' Evaluating translation matching Accuracy of the model on the news-commentary-en-nl dataset: Accuracy src2trg: 41.40 Accuracy trg2src: 47.70 ''' # Print the results print(f"Primary metric: {translation_evaluator.primary_metric}") # => Primary metric: news-commentary-en-nl_mean_accuracy print(f"Primary metric value: {results[translation_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.4455 """ def __init__( self, source_sentences: list[str], target_sentences: list[str], show_progress_bar: bool = False, batch_size: int = 16, name: str = "", print_wrong_matches: bool = False, write_csv: bool = True, truncate_dim: int | None = None, ): return super().__init__( source_sentences, target_sentences, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, print_wrong_matches=print_wrong_matches, write_csv=write_csv, truncate_dim=truncate_dim, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model, output_path=output_path, epoch=epoch, steps=steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> list[Tensor]: kwargs["truncate_dim"] = self.truncate_dim return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_tensor=False, convert_to_sparse_tensor=True, save_to_cpu=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any from sentence_transformers.evaluation import TranslationEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseTranslationEvaluator(TranslationEvaluator): """ This evaluator extends :class:`TranslationEvaluator` but is specifically designed for sparse encoder models. Given two sets of sentences in different languages, e.g. (en_1, en_2, en_3...) and (fr_1, fr_2, fr_3, ...), and assuming that fr_i is the translation of en_i. Checks if vec(en_i) has the highest similarity to vec(fr_i). Computes the accuracy in both directions The labels need to indicate the similarity between the sentences. Args: source_sentences (List[str]): List of sentences in the source language. target_sentences (List[str]): List of sentences in the target language. show_progress_bar (bool): Whether to show a progress bar when computing embeddings. Defaults to False. batch_size (int): The batch size to compute sentence embeddings. Defaults to 16. name (str): The name of the evaluator. Defaults to an empty string. print_wrong_matches (bool): Whether to print incorrect matches. Defaults to False. write_csv (bool): Whether to write the evaluation results to a CSV file. Defaults to True. truncate_dim (int, optional): The dimension to truncate sentence embeddings to. If None, the model's current truncation dimension will be used. Defaults to None. Example: :: import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTranslationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model, not mutilingual but hope to see some on the hub soon model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) ''' Evaluating translation matching Accuracy of the model on the news-commentary-en-nl dataset: Accuracy src2trg: 41.40 Accuracy trg2src: 47.70 ''' # Print the results print(f"Primary metric: {translation_evaluator.primary_metric}") # => Primary metric: news-commentary-en-nl_mean_accuracy print(f"Primary metric value: {results[translation_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.4455 """ def __init__( self, source_sentences: list[str], target_sentences: list[str], show_progress_bar: bool = False, batch_size: int = 16, name: str = "", print_wrong_matches: bool = False, write_csv: bool = True, truncate_dim: int | None = None, ): return super().__init__( source_sentences, target_sentences, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, print_wrong_matches=print_wrong_matches, write_csv=write_csv, truncate_dim=truncate_dim, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model, output_path=output_path, epoch=epoch, steps=steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> list[Tensor]: kwargs["truncate_dim"] = self.truncate_dim return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_tensor=False, convert_to_sparse_tensor=True, save_to_cpu=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
"""Test yamlOutputParser""" from enum import Enum from typing import Optional import pytest from langchain_core.exceptions import OutputParserException from pydantic import BaseModel, Field from langchain.output_parsers.yaml import YamlOutputParser class Actions(Enum): SEARCH = "Search" CREATE = "Create" UPDATE = "Update" DELETE = "Delete" class TestModel(BaseModel): action: Actions = Field(description="Action to be performed") action_input: str = Field(description="Input to be used in the action") additional_fields: Optional[str] = Field( description="Additional fields", default=None ) for_new_lines: str = Field(description="To be used to test newlines") # Prevent pytest from trying to run tests on TestModel TestModel.__test__ = False # type: ignore[attr-defined] DEF_RESULT = """```yaml --- action: Update action_input: The yamlOutputParser class is powerful additional_fields: null for_new_lines: | not_escape_newline: escape_newline: ```""" DEF_RESULT_NO_BACKTICKS = """ action: Update action_input: The yamlOutputParser class is powerful additional_fields: null for_new_lines: | not_escape_newline: escape_newline: """ # action 'update' with a lowercase 'u' to test schema validation failure. DEF_RESULT_FAIL = """```yaml action: update action_input: The yamlOutputParser class is powerful additional_fields: null ```""" DEF_EXPECTED_RESULT = TestModel( action=Actions.UPDATE, action_input="The yamlOutputParser class is powerful", additional_fields=None, for_new_lines="not_escape_newline:\n escape_newline:\n", ) @pytest.mark.parametrize("result", [DEF_RESULT, DEF_RESULT_NO_BACKTICKS]) def test_yaml_output_parser(result: str) -> None: """Test yamlOutputParser.""" yaml_parser: YamlOutputParser[TestModel] = YamlOutputParser( pydantic_object=TestModel ) model = yaml_parser.parse(result) print("parse_result:", result) # noqa: T201 assert model == DEF_EXPECTED_RESULT def test_yaml_output_parser_fail() -> None: """Test YamlOutputParser where completion result fails schema validation.""" yaml_parser: YamlOutputParser[TestModel] = YamlOutputParser( pydantic_object=TestModel ) try: yaml_parser.parse(DEF_RESULT_FAIL) except OutputParserException as e: print("parse_result:", e) # noqa: T201 assert "Failed to parse TestModel from completion" in str(e) else: assert False, "Expected OutputParserException" def test_yaml_output_parser_output_type() -> None: """Test YamlOutputParser OutputType.""" yaml_parser = YamlOutputParser(pydantic_object=TestModel) assert yaml_parser.OutputType is TestModel
"""Test yamlOutputParser""" from enum import Enum from typing import Optional import pytest from langchain_core.exceptions import OutputParserException from pydantic import BaseModel, Field from langchain.output_parsers.yaml import YamlOutputParser class Actions(Enum): SEARCH = "Search" CREATE = "Create" UPDATE = "Update" DELETE = "Delete" class TestModel(BaseModel): action: Actions = Field(description="Action to be performed") action_input: str = Field(description="Input to be used in the action") additional_fields: Optional[str] = Field( description="Additional fields", default=None ) for_new_lines: str = Field(description="To be used to test newlines") # Prevent pytest from trying to run tests on TestModel TestModel.__test__ = False # type: ignore[attr-defined] DEF_RESULT = """```yaml --- action: Update action_input: The yamlOutputParser class is powerful additional_fields: null for_new_lines: | not_escape_newline: escape_newline: ```""" DEF_RESULT_NO_BACKTICKS = """ action: Update action_input: The yamlOutputParser class is powerful additional_fields: null for_new_lines: | not_escape_newline: escape_newline: """ # action 'update' with a lowercase 'u' to test schema validation failure. DEF_RESULT_FAIL = """```yaml action: update action_input: The yamlOutputParser class is powerful additional_fields: null ```""" DEF_EXPECTED_RESULT = TestModel( action=Actions.UPDATE, action_input="The yamlOutputParser class is powerful", additional_fields=None, for_new_lines="not_escape_newline:\n escape_newline:\n", ) @pytest.mark.parametrize("result", [DEF_RESULT, DEF_RESULT_NO_BACKTICKS]) def test_yaml_output_parser(result: str) -> None: """Test yamlOutputParser.""" yaml_parser: YamlOutputParser[TestModel] = YamlOutputParser( pydantic_object=TestModel ) model = yaml_parser.parse(result) print("parse_result:", result) # noqa: T201 assert DEF_EXPECTED_RESULT == model def test_yaml_output_parser_fail() -> None: """Test YamlOutputParser where completion result fails schema validation.""" yaml_parser: YamlOutputParser[TestModel] = YamlOutputParser( pydantic_object=TestModel ) try: yaml_parser.parse(DEF_RESULT_FAIL) except OutputParserException as e: print("parse_result:", e) # noqa: T201 assert "Failed to parse TestModel from completion" in str(e) else: assert False, "Expected OutputParserException" def test_yaml_output_parser_output_type() -> None: """Test YamlOutputParser OutputType.""" yaml_parser = YamlOutputParser(pydantic_object=TestModel) assert yaml_parser.OutputType is TestModel
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest from mmengine.logging import HistoryBuffer array_method = [np.array, lambda x: x] try: import torch except ImportError: pass else: array_method.append(torch.tensor) @HistoryBuffer.register_statistics def custom_statistics(self): return -1 class TestLoggerBuffer: def test_init(self): log_buffer = HistoryBuffer() assert log_buffer.max_length == 1000000 log_history, counts = log_buffer.data assert len(log_history) == 0 assert len(counts) == 0 # test the length of array exceed `max_length` logs = np.random.randint(1, 10, log_buffer.max_length + 1) counts = np.random.randint(1, 10, log_buffer.max_length + 1) log_buffer = HistoryBuffer(logs, counts) log_history, count_history = log_buffer.data assert len(log_history) == log_buffer.max_length assert len(count_history) == log_buffer.max_length assert logs[1] == log_history[0] assert counts[1] == count_history[0] # The different lengths of `log_history` and `count_history` will # raise error with pytest.raises(AssertionError): HistoryBuffer([1, 2], [1]) @pytest.mark.parametrize('array_method', array_method) def test_update(self, array_method): # test `update` method log_buffer = HistoryBuffer() log_history = array_method([1, 2, 3, 4, 5]) count_history = array_method([5, 5, 5, 5, 5]) for i in range(len(log_history)): log_buffer.update(float(log_history[i]), float(count_history[i])) recorded_history, recorded_count = log_buffer.data for a, b in zip(log_history, recorded_history): assert float(a) == float(b) for a, b in zip(count_history, recorded_count): assert float(a) == float(b) # test the length of `array` exceed `max_length` max_array = array_method([[-1] + [1] * (log_buffer.max_length - 1)]) max_count = array_method([[-1] + [1] * (log_buffer.max_length - 1)]) log_buffer = HistoryBuffer(max_array, max_count) log_buffer.update(1) log_history, count_history = log_buffer.data assert log_history[0] == 1 assert count_history[0] == 1 assert len(log_history) == log_buffer.max_length assert len(count_history) == log_buffer.max_length # Update an iterable object will raise a type error, `log_val` and # `count` should be single value with pytest.raises(TypeError): log_buffer.update(array_method([1, 2])) @pytest.mark.parametrize('statistics_method, log_buffer_type', [(np.min, 'min'), (np.max, 'max')]) def test_max_min(self, statistics_method, log_buffer_type): log_history = np.random.randint(1, 5, 20) count_history = np.ones(20) log_buffer = HistoryBuffer(log_history, count_history) assert statistics_method(log_history[-10:]) == \ getattr(log_buffer, log_buffer_type)(10) assert statistics_method(log_history) == \ getattr(log_buffer, log_buffer_type)() def test_mean(self): log_history = np.random.randint(1, 5, 20) count_history = np.ones(20) log_buffer = HistoryBuffer(log_history, count_history) assert np.sum(log_history[-10:]) / \ np.sum(count_history[-10:]) == \ log_buffer.mean(10) assert np.sum(log_history) / \ np.sum(count_history) == \ log_buffer.mean() def test_current(self): log_history = np.random.randint(1, 5, 20) count_history = np.ones(20) log_buffer = HistoryBuffer(log_history, count_history) assert log_history[-1] == log_buffer.current() # test get empty array log_buffer = HistoryBuffer() with pytest.raises(ValueError): log_buffer.current() def test_statistics(self): log_history = np.array([1, 2, 3, 4, 5]) count_history = np.array([1, 1, 1, 1, 1]) log_buffer = HistoryBuffer(log_history, count_history) assert log_buffer.statistics('mean') == 3 assert log_buffer.statistics('min') == 1 assert log_buffer.statistics('max') == 5 assert log_buffer.statistics('current') == 5 # Access unknown method will raise an error. with pytest.raises(KeyError): log_buffer.statistics('unknown') def test_register_statistics(self): log_buffer = HistoryBuffer() assert log_buffer.statistics('custom_statistics') == -1
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest from mmengine.logging import HistoryBuffer array_method = [np.array, lambda x: x] try: import torch except ImportError: pass else: array_method.append(torch.tensor) class TestLoggerBuffer: def test_init(self): log_buffer = HistoryBuffer() assert log_buffer.max_length == 1000000 log_history, counts = log_buffer.data assert len(log_history) == 0 assert len(counts) == 0 # test the length of array exceed `max_length` logs = np.random.randint(1, 10, log_buffer.max_length + 1) counts = np.random.randint(1, 10, log_buffer.max_length + 1) log_buffer = HistoryBuffer(logs, counts) log_history, count_history = log_buffer.data assert len(log_history) == log_buffer.max_length assert len(count_history) == log_buffer.max_length assert logs[1] == log_history[0] assert counts[1] == count_history[0] # The different lengths of `log_history` and `count_history` will # raise error with pytest.raises(AssertionError): HistoryBuffer([1, 2], [1]) @pytest.mark.parametrize('array_method', array_method) def test_update(self, array_method): # test `update` method log_buffer = HistoryBuffer() log_history = array_method([1, 2, 3, 4, 5]) count_history = array_method([5, 5, 5, 5, 5]) for i in range(len(log_history)): log_buffer.update(float(log_history[i]), float(count_history[i])) recorded_history, recorded_count = log_buffer.data for a, b in zip(log_history, recorded_history): assert float(a) == float(b) for a, b in zip(count_history, recorded_count): assert float(a) == float(b) # test the length of `array` exceed `max_length` max_array = array_method([[-1] + [1] * (log_buffer.max_length - 1)]) max_count = array_method([[-1] + [1] * (log_buffer.max_length - 1)]) log_buffer = HistoryBuffer(max_array, max_count) log_buffer.update(1) log_history, count_history = log_buffer.data assert log_history[0] == 1 assert count_history[0] == 1 assert len(log_history) == log_buffer.max_length assert len(count_history) == log_buffer.max_length # Update an iterable object will raise a type error, `log_val` and # `count` should be single value with pytest.raises(TypeError): log_buffer.update(array_method([1, 2])) @pytest.mark.parametrize('statistics_method, log_buffer_type', [(np.min, 'min'), (np.max, 'max')]) def test_max_min(self, statistics_method, log_buffer_type): log_history = np.random.randint(1, 5, 20) count_history = np.ones(20) log_buffer = HistoryBuffer(log_history, count_history) assert statistics_method(log_history[-10:]) == \ getattr(log_buffer, log_buffer_type)(10) assert statistics_method(log_history) == \ getattr(log_buffer, log_buffer_type)() def test_mean(self): log_history = np.random.randint(1, 5, 20) count_history = np.ones(20) log_buffer = HistoryBuffer(log_history, count_history) assert np.sum(log_history[-10:]) / \ np.sum(count_history[-10:]) == \ log_buffer.mean(10) assert np.sum(log_history) / \ np.sum(count_history) == \ log_buffer.mean() def test_current(self): log_history = np.random.randint(1, 5, 20) count_history = np.ones(20) log_buffer = HistoryBuffer(log_history, count_history) assert log_history[-1] == log_buffer.current() # test get empty array log_buffer = HistoryBuffer() with pytest.raises(ValueError): log_buffer.current() def test_statistics(self): log_history = np.array([1, 2, 3, 4, 5]) count_history = np.array([1, 1, 1, 1, 1]) log_buffer = HistoryBuffer(log_history, count_history) assert log_buffer.statistics('mean') == 3 assert log_buffer.statistics('min') == 1 assert log_buffer.statistics('max') == 5 assert log_buffer.statistics('current') == 5 # Access unknown method will raise an error. with pytest.raises(KeyError): log_buffer.statistics('unknown') def test_register_statistics(self): @HistoryBuffer.register_statistics def custom_statistics(self): return -1 log_buffer = HistoryBuffer() assert log_buffer.statistics('custom_statistics') == -1
_base_ = './cascade_rcnn_r50_fpn_1x_coco.py' model = dict( # use caffe img_norm data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32), backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
_base_ = './cascade_rcnn_r50_fpn_1x_coco.py' preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) model = dict( # use caffe img_norm preprocess_cfg=preprocess_cfg, backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
from __future__ import annotations from typing import Any, Optional from langchain_core.outputs import LLMResult from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler DEFAULT_ANSWER_PREFIX_TOKENS = ["Final", "Answer", ":"] class AsyncFinalIteratorCallbackHandler(AsyncIteratorCallbackHandler): """Callback handler that returns an async iterator. Only the final output of the agent will be iterated. """ def append_to_last_tokens(self, token: str) -> None: self.last_tokens.append(token) self.last_tokens_stripped.append(token.strip()) if len(self.last_tokens) > len(self.answer_prefix_tokens): self.last_tokens.pop(0) self.last_tokens_stripped.pop(0) def check_if_answer_reached(self) -> bool: if self.strip_tokens: return self.last_tokens_stripped == self.answer_prefix_tokens_stripped else: return self.last_tokens == self.answer_prefix_tokens def __init__( self, *, answer_prefix_tokens: Optional[list[str]] = None, strip_tokens: bool = True, stream_prefix: bool = False, ) -> None: """Instantiate AsyncFinalIteratorCallbackHandler. Args: answer_prefix_tokens: Token sequence that prefixes the answer. Default is ["Final", "Answer", ":"] strip_tokens: Ignore white spaces and new lines when comparing answer_prefix_tokens to last tokens? (to determine if answer has been reached) stream_prefix: Should answer prefix itself also be streamed? """ super().__init__() if answer_prefix_tokens is None: self.answer_prefix_tokens = DEFAULT_ANSWER_PREFIX_TOKENS else: self.answer_prefix_tokens = answer_prefix_tokens if strip_tokens: self.answer_prefix_tokens_stripped = [ token.strip() for token in self.answer_prefix_tokens ] else: self.answer_prefix_tokens_stripped = self.answer_prefix_tokens self.last_tokens = [""] * len(self.answer_prefix_tokens) self.last_tokens_stripped = [""] * len(self.answer_prefix_tokens) self.strip_tokens = strip_tokens self.stream_prefix = stream_prefix self.answer_reached = False async def on_llm_start( self, serialized: dict[str, Any], prompts: list[str], **kwargs: Any ) -> None: # If two calls are made in a row, this resets the state self.done.clear() self.answer_reached = False async def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: if self.answer_reached: self.done.set() async def on_llm_new_token(self, token: str, **kwargs: Any) -> None: # Remember the last n tokens, where n = len(answer_prefix_tokens) self.append_to_last_tokens(token) # Check if the last n tokens match the answer_prefix_tokens list ... if self.check_if_answer_reached(): self.answer_reached = True if self.stream_prefix: for t in self.last_tokens: self.queue.put_nowait(t) return # If yes, then put tokens from now on if self.answer_reached: self.queue.put_nowait(token)
from __future__ import annotations from typing import Any, Dict, List, Optional from langchain_core.outputs import LLMResult from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler DEFAULT_ANSWER_PREFIX_TOKENS = ["Final", "Answer", ":"] class AsyncFinalIteratorCallbackHandler(AsyncIteratorCallbackHandler): """Callback handler that returns an async iterator. Only the final output of the agent will be iterated. """ def append_to_last_tokens(self, token: str) -> None: self.last_tokens.append(token) self.last_tokens_stripped.append(token.strip()) if len(self.last_tokens) > len(self.answer_prefix_tokens): self.last_tokens.pop(0) self.last_tokens_stripped.pop(0) def check_if_answer_reached(self) -> bool: if self.strip_tokens: return self.last_tokens_stripped == self.answer_prefix_tokens_stripped else: return self.last_tokens == self.answer_prefix_tokens def __init__( self, *, answer_prefix_tokens: Optional[List[str]] = None, strip_tokens: bool = True, stream_prefix: bool = False, ) -> None: """Instantiate AsyncFinalIteratorCallbackHandler. Args: answer_prefix_tokens: Token sequence that prefixes the answer. Default is ["Final", "Answer", ":"] strip_tokens: Ignore white spaces and new lines when comparing answer_prefix_tokens to last tokens? (to determine if answer has been reached) stream_prefix: Should answer prefix itself also be streamed? """ super().__init__() if answer_prefix_tokens is None: self.answer_prefix_tokens = DEFAULT_ANSWER_PREFIX_TOKENS else: self.answer_prefix_tokens = answer_prefix_tokens if strip_tokens: self.answer_prefix_tokens_stripped = [ token.strip() for token in self.answer_prefix_tokens ] else: self.answer_prefix_tokens_stripped = self.answer_prefix_tokens self.last_tokens = [""] * len(self.answer_prefix_tokens) self.last_tokens_stripped = [""] * len(self.answer_prefix_tokens) self.strip_tokens = strip_tokens self.stream_prefix = stream_prefix self.answer_reached = False async def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: # If two calls are made in a row, this resets the state self.done.clear() self.answer_reached = False async def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: if self.answer_reached: self.done.set() async def on_llm_new_token(self, token: str, **kwargs: Any) -> None: # Remember the last n tokens, where n = len(answer_prefix_tokens) self.append_to_last_tokens(token) # Check if the last n tokens match the answer_prefix_tokens list ... if self.check_if_answer_reached(): self.answer_reached = True if self.stream_prefix: for t in self.last_tokens: self.queue.put_nowait(t) return # If yes, then put tokens from now on if self.answer_reached: self.queue.put_nowait(token)
from typing import Optional from docarray.document import BaseDocument from docarray.typing import AnyTensor, Embedding, ImageUrl class Image(BaseDocument): """ Document for handling images. It can contain an ImageUrl (`Image.url`), an AnyTensor (`Image.tensor`), and an Embedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray import Image # use it directly image = Image(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) You can extend this Document: .. code-block:: python from docarray import Image from docarray.typing import Embedding from typing import Optional # extend it class MyImage(Image): second_embedding: Optional[Embedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) image.second_embedding = model(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import Document, Image, Text # compose it class MultiModalDoc(Document): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() """ url: Optional[ImageUrl] tensor: Optional[AnyTensor] embedding: Optional[Embedding]
from typing import Optional from docarray.document import BaseDocument from docarray.typing import Embedding, ImageUrl, Tensor class Image(BaseDocument): """ Document for handling images. It can contain an ImageUrl (`Image.url`), a Tensor (`Image.tensor`), and an Embedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray import Image # use it directly image = Image(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) You can extend this Document: .. code-block:: python from docarray import Image from docarray.typing import Embedding from typing import Optional # extend it class MyImage(Image): second_embedding: Optional[Embedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) image.second_embedding = model(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import Document, Image, Text # compose it class MultiModalDoc(Document): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() """ url: Optional[ImageUrl] tensor: Optional[Tensor] embedding: Optional[Embedding]
import os from pathlib import Path from torchaudio.datasets.libritts import LIBRITTS from torchaudio_unittest.common_utils import get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase _UTTERANCE_IDS = [ [19, 198, "000000", "000000"], [26, 495, "000004", "000000"], ] _ORIGINAL_TEXT = "this is the original text." _NORMALIZED_TEXT = "this is the normalized text." def get_mock_dataset(root_dir): """ root_dir: directory to the mocked dataset """ mocked_data = [] base_dir = os.path.join(root_dir, "LibriTTS", "train-clean-100") for i, utterance_id in enumerate(_UTTERANCE_IDS): filename = f'{"_".join(str(u) for u in utterance_id)}.wav' file_dir = os.path.join(base_dir, str(utterance_id[0]), str(utterance_id[1])) os.makedirs(file_dir, exist_ok=True) path = os.path.join(file_dir, filename) data = get_whitenoise(sample_rate=24000, duration=2, n_channels=1, dtype="int16", seed=i) save_wav(path, data, 24000) mocked_data.append(normalize_wav(data)) original_text_filename = f'{"_".join(str(u) for u in utterance_id)}.original.txt' path_original = os.path.join(file_dir, original_text_filename) with open(path_original, "w") as file_: file_.write(_ORIGINAL_TEXT) normalized_text_filename = f'{"_".join(str(u) for u in utterance_id)}.normalized.txt' path_normalized = os.path.join(file_dir, normalized_text_filename) with open(path_normalized, "w") as file_: file_.write(_NORMALIZED_TEXT) return mocked_data, _UTTERANCE_IDS, _ORIGINAL_TEXT, _NORMALIZED_TEXT class TestLibriTTS(TempDirMixin, TorchaudioTestCase): root_dir = None data = [] _utterance_ids, _original_text, _normalized_text = [], [], [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.data, cls._utterance_ids, cls._original_text, cls._normalized_text = get_mock_dataset(cls.root_dir) def _test_libritts(self, dataset): n_ites = 0 for i, ( waveform, sample_rate, original_text, normalized_text, speaker_id, chapter_id, utterance_id, ) in enumerate(dataset): expected_ids = self._utterance_ids[i] expected_data = self.data[i] self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8) assert sample_rate == 24000 assert speaker_id == expected_ids[0] assert chapter_id == expected_ids[1] assert original_text == self._original_text assert normalized_text == self._normalized_text assert utterance_id == f'{"_".join(str(u) for u in expected_ids[-4:])}' n_ites += 1 assert n_ites == len(self._utterance_ids) def test_libritts_str(self): dataset = LIBRITTS(self.root_dir) self._test_libritts(dataset) def test_libritts_path(self): dataset = LIBRITTS(Path(self.root_dir)) self._test_libritts(dataset)
import os from pathlib import Path from torchaudio.datasets.libritts import LIBRITTS from torchaudio_unittest.common_utils import get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase _UTTERANCE_IDS = [ [19, 198, "000000", "000000"], [26, 495, "000004", "000000"], ] _ORIGINAL_TEXT = "this is the original text." _NORMALIZED_TEXT = "this is the normalized text." def get_mock_dataset(root_dir): """ root_dir: directory to the mocked dataset """ mocked_data = [] base_dir = os.path.join(root_dir, "LibriTTS", "train-clean-100") for i, utterance_id in enumerate(_UTTERANCE_IDS): filename = f'{"_".join(str(u) for u in utterance_id)}.wav' file_dir = os.path.join(base_dir, str(utterance_id[0]), str(utterance_id[1])) os.makedirs(file_dir, exist_ok=True) path = os.path.join(file_dir, filename) data = get_whitenoise(sample_rate=24000, duration=2, n_channels=1, dtype="int16", seed=i) save_wav(path, data, 24000) mocked_data.append(normalize_wav(data)) original_text_filename = f'{"_".join(str(u) for u in utterance_id)}.original.txt' path_original = os.path.join(file_dir, original_text_filename) with open(path_original, "w") as file_: file_.write(_ORIGINAL_TEXT) normalized_text_filename = f'{"_".join(str(u) for u in utterance_id)}.normalized.txt' path_normalized = os.path.join(file_dir, normalized_text_filename) with open(path_normalized, "w") as file_: file_.write(_NORMALIZED_TEXT) return mocked_data, _UTTERANCE_IDS, _ORIGINAL_TEXT, _NORMALIZED_TEXT class TestLibriTTS(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None data = [] _utterance_ids, _original_text, _normalized_text = [], [], [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.data, cls._utterance_ids, cls._original_text, cls._normalized_text = get_mock_dataset(cls.root_dir) def _test_libritts(self, dataset): n_ites = 0 for i, ( waveform, sample_rate, original_text, normalized_text, speaker_id, chapter_id, utterance_id, ) in enumerate(dataset): expected_ids = self._utterance_ids[i] expected_data = self.data[i] self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8) assert sample_rate == 24000 assert speaker_id == expected_ids[0] assert chapter_id == expected_ids[1] assert original_text == self._original_text assert normalized_text == self._normalized_text assert utterance_id == f'{"_".join(str(u) for u in expected_ids[-4:])}' n_ites += 1 assert n_ites == len(self._utterance_ids) def test_libritts_str(self): dataset = LIBRITTS(self.root_dir) self._test_libritts(dataset) def test_libritts_path(self): dataset = LIBRITTS(Path(self.root_dir)) self._test_libritts(dataset)
import os import numpy as np import pytest from docarray import BaseDoc, DocList from docarray.documents import ImageDoc from docarray.typing import NdArray class MyDoc(BaseDoc): embedding: NdArray text: str image: ImageDoc @pytest.mark.slow @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) def test_array_save_load_binary(protocol, compress, tmp_path, show_progress): tmp_file = os.path.join(tmp_path, 'test') da = DocList[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) da.save_binary( tmp_file, protocol=protocol, compress=compress, show_progress=show_progress ) da2 = DocList[MyDoc].load_binary( tmp_file, protocol=protocol, compress=compress, show_progress=show_progress ) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None @pytest.mark.slow @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) def test_array_save_load_binary_streaming(protocol, compress, tmp_path, show_progress): tmp_file = os.path.join(tmp_path, 'test') da = DocList[MyDoc]() def _extend_da(num_docs=100): for _ in range(num_docs): da.extend( [ MyDoc( embedding=np.random.rand(3, 2), text='hello', image=ImageDoc(url='aux.png'), ), ] ) _extend_da() da.save_binary( tmp_file, protocol=protocol, compress=compress, show_progress=show_progress ) da2 = DocList[MyDoc]() da_generator = DocList[MyDoc].load_binary( tmp_file, protocol=protocol, compress=compress, show_progress=show_progress ) for i, doc in enumerate(da_generator): assert doc.id == da[i].id assert doc.text == da[i].text assert doc.image.url == da[i].image.url da2.append(doc) assert len(da2) == 100
import os import numpy as np import pytest from docarray import BaseDoc, DocArray from docarray.documents import ImageDoc from docarray.typing import NdArray class MyDoc(BaseDoc): embedding: NdArray text: str image: ImageDoc @pytest.mark.slow @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) def test_array_save_load_binary(protocol, compress, tmp_path, show_progress): tmp_file = os.path.join(tmp_path, 'test') da = DocArray[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) da.save_binary( tmp_file, protocol=protocol, compress=compress, show_progress=show_progress ) da2 = DocArray[MyDoc].load_binary( tmp_file, protocol=protocol, compress=compress, show_progress=show_progress ) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None @pytest.mark.slow @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) def test_array_save_load_binary_streaming(protocol, compress, tmp_path, show_progress): tmp_file = os.path.join(tmp_path, 'test') da = DocArray[MyDoc]() def _extend_da(num_docs=100): for _ in range(num_docs): da.extend( [ MyDoc( embedding=np.random.rand(3, 2), text='hello', image=ImageDoc(url='aux.png'), ), ] ) _extend_da() da.save_binary( tmp_file, protocol=protocol, compress=compress, show_progress=show_progress ) da2 = DocArray[MyDoc]() da_generator = DocArray[MyDoc].load_binary( tmp_file, protocol=protocol, compress=compress, show_progress=show_progress ) for i, doc in enumerate(da_generator): assert doc.id == da[i].id assert doc.text == da[i].text assert doc.image.url == da[i].image.url da2.append(doc) assert len(da2) == 100
import base64 import json import pickle from abc import ABC, abstractmethod from typing import Any from pydantic import BaseModel from llama_index.core.schema import BaseComponent from .utils import import_module_from_qualified_name, get_qualified_name class BaseSerializer(ABC): @abstractmethod def serialize(self, value: Any) -> str: ... @abstractmethod def deserialize(self, value: str) -> Any: ... class JsonSerializer(BaseSerializer): def _serialize_value(self, value: Any) -> Any: """Helper to serialize a single value.""" if isinstance(value, BaseComponent): return { "__is_component": True, "value": value.to_dict(), "qualified_name": get_qualified_name(value), } elif isinstance(value, BaseModel): return { "__is_pydantic": True, "value": value.model_dump(), "qualified_name": get_qualified_name(value), } elif isinstance(value, dict): return {k: self._serialize_value(v) for k, v in value.items()} elif isinstance(value, list): return [self._serialize_value(item) for item in value] return value def serialize(self, value: Any) -> str: try: serialized_value = self._serialize_value(value) return json.dumps(serialized_value) except Exception as e: raise ValueError(f"Failed to serialize value: {type(value)}: {value!s}") def _deserialize_value(self, data: Any) -> Any: """Helper to deserialize a single value.""" if isinstance(data, dict): if data.get("__is_pydantic") and data.get("qualified_name"): module_class = import_module_from_qualified_name(data["qualified_name"]) return module_class.model_validate(data["value"]) elif data.get("__is_component") and data.get("qualified_name"): module_class = import_module_from_qualified_name(data["qualified_name"]) return module_class.from_dict(data["value"]) return {k: self._deserialize_value(v) for k, v in data.items()} elif isinstance(data, list): return [self._deserialize_value(item) for item in data] return data def deserialize(self, value: str) -> Any: data = json.loads(value) return self._deserialize_value(data) class JsonPickleSerializer(JsonSerializer): def serialize(self, value: Any) -> str: """Serialize while prioritizing JSON, falling back to Pickle.""" try: return super().serialize(value) except Exception: return base64.b64encode(pickle.dumps(value)).decode("utf-8") def deserialize(self, value: str) -> Any: """Deserialize while prioritizing Pickle, falling back to JSON.""" try: return pickle.loads(base64.b64decode(value)) except Exception: return super().deserialize(value)
import base64 import json import pickle from abc import ABC, abstractmethod from typing import Any from pydantic import BaseModel from llama_index.core.schema import BaseComponent from .utils import import_module_from_qualified_name, get_qualified_name class BaseSerializer(ABC): @abstractmethod def serialize(self, value: Any) -> str: ... @abstractmethod def deserialize(self, value: str) -> Any: ... class JsonSerializer(BaseSerializer): def serialize(self, value: Any) -> str: if isinstance(value, BaseComponent): return json.dumps( { "__is_component": True, "value": value.to_dict(), "qualified_name": get_qualified_name(value), } ) elif isinstance(value, BaseModel): return json.dumps( { "__is_pydantic": True, "value": value.model_dump(), "qualified_name": get_qualified_name(value), } ) return json.dumps(value) def deserialize(self, value: str) -> Any: data = json.loads(value) if ( isinstance(data, dict) and data.get("__is_pydantic") and data.get("qualified_name") ): module_class = import_module_from_qualified_name(data["qualified_name"]) return module_class.model_validate(data["value"]) elif ( isinstance(data, dict) and data.get("__is_component") and data.get("qualified_name") ): module_class = import_module_from_qualified_name(data["qualified_name"]) return module_class.from_dict(data["value"]) return data class JsonPickleSerializer(JsonSerializer): def serialize(self, value: Any) -> str: """Serialize while prioritizing JSON, falling back to Pickle.""" try: return super().serialize(value) except Exception: return base64.b64encode(pickle.dumps(value)).decode("utf-8") def deserialize(self, value: str) -> Any: """Deserialize while prioritizing Pickle, falling back to JSON.""" try: return pickle.loads(base64.b64decode(value)) except Exception: return super().deserialize(value)
__copyright__ = 'Copyright (c) 2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' from typing import Callable import pytest from jina import DocumentArray from ...transform_encoder import TransformerTorchEncoder MODELS_TO_TEST = [ 'sentence-transformers/distilbert-base-nli-stsb-mean-tokens', 'bert-base-uncased', 'distilroberta-base', 'distilbert-base-cased-distilled-squad', ] @pytest.mark.parametrize('model_name', MODELS_TO_TEST) def test_load_torch_models(model_name: str, data_generator: Callable): encoder = TransformerTorchEncoder(pretrained_model_name_or_path=model_name) docs = DocumentArray([doc for doc in data_generator()]) encoder.encode(docs=docs, parameters={}) for doc in docs: assert doc.embedding is not None
__copyright__ = 'Copyright (c) 2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' from typing import Dict, Callable import pytest from jina import DocumentArray from ...transform_encoder import TransformerTorchEncoder MODELS_TO_TEST = [ 'sentence-transformers/distilbert-base-nli-stsb-mean-tokens', 'bert-base-uncased', 'distilroberta-base', 'distilbert-base-cased-distilled-squad', ] @pytest.mark.parametrize( 'model_name', MODELS_TO_TEST ) def test_load_torch_models(model_name: str, data_generator: Callable): encoder = TransformerTorchEncoder(pretrained_model_name_or_path=model_name) docs = DocumentArray([doc for doc in data_generator()]) encoder.encode( docs=docs, parameters={} ) for doc in docs: assert doc.embedding is not None
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers import util from sentence_transformers.losses.MultipleNegativesRankingLoss import MultipleNegativesRankingLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseMultipleNegativesRankingLoss(MultipleNegativesRankingLoss): def __init__(self, model: SparseEncoder, scale: float = 1.0, similarity_fct=util.dot_score) -> None: """ Given a list of (anchor, positive) pairs or (anchor, positive, negative) triplets, this loss optimizes the following: 1. Given an anchor (e.g. a question), assign the highest similarity to the corresponding positive (i.e. answer) out of every single positive and negative (e.g. all answers) in the batch. If you provide the optional negatives, they will all be used as extra options from which the model must pick the correct positive. Within reason, the harder this "picking" is, the stronger the model will become. Because of this, a higher batch size results in more in-batch negatives, which then increases performance (to a point). This loss function works great to train embeddings for retrieval setups where you have positive pairs (e.g. (query, answer)) as it will sample in each batch ``n-1`` negative docs randomly. This loss is also known as InfoNCE loss, SimCSE loss, Cross-Entropy Loss with in-batch negatives, or simply in-batch negatives loss. Args: model: SparseEncoder model scale: Output of similarity function is multiplied by scale value similarity_fct: similarity function between sentence embeddings. By default, dot product. Can also be set to cosine similarity (and then set scale to 20) Requirements: 1. Need to be used in SpladeLoss or CSRLoss as a loss function. 2. (anchor, positive) pairs or (anchor, positive, negative) triplets Inputs: +-------------------------------------------------+--------+ | Texts | Labels | +=================================================+========+ | (anchor, positive) pairs | none | +-------------------------------------------------+--------+ | (anchor, positive, negative) triplets | none | +-------------------------------------------------+--------+ | (anchor, positive, negative_1, ..., negative_n) | none | +-------------------------------------------------+--------+ Recommendations: - Use ``BatchSamplers.NO_DUPLICATES`` (:class:`docs <sentence_transformers.training_args.BatchSamplers>`) to ensure that no in-batch negatives are duplicates of the anchor or positive samples. Relations: - :class:`SparseCachedMultipleNegativesRankingLoss` is equivalent to this loss, but it uses caching that allows for much higher batch sizes (and thus better performance) without extra memory usage. However, it is slightly slower. - :class:`SparseGISTEmbedLoss` is equivalent to this loss, but uses a guide model to guide the in-batch negative sample selection. `SparseGISTEmbedLoss` yields a stronger training signal at the cost of some training overhead. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) loss = losses.SpladeLoss( model=model, loss=losses.SparseMultipleNegativesRankingLoss(model), lambda_corpus=3e-5, lambda_query=5e-5 ) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, scale=scale, similarity_fct=similarity_fct) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError( "SparseMultipleNegativesRankingLoss should not be used alone. Use it with SpladeLoss or CSRLoss." )
from __future__ import annotations from sentence_transformers import util from sentence_transformers.losses.MultipleNegativesRankingLoss import MultipleNegativesRankingLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseMultipleNegativesRankingLoss(MultipleNegativesRankingLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0, similarity_fct=util.dot_score) -> None: return super().__init__(model, scale=scale, similarity_fct=similarity_fct)
"""Module for argparse for Client""" def mixin_client_protocol_parser(parser): """Add the arguments for the protocol to the client parser :param parser: the parser configure """ from jina.enums import ProtocolType parser.add_argument( '--protocol', type=ProtocolType.from_string, choices=list(ProtocolType), default=ProtocolType.GRPC, help='Communication protocol between server and client.', ) def mixin_client_features_parser(parser): """Add the arguments for the client to the parser :param parser: the parser configure """ parser.add_argument( '--asyncio', action='store_true', default=False, help='If set, then the input and output of this Client work in an asynchronous manner. ', ) parser.add_argument( '--tracing', action='store_true', default=False, help='If set, the sdk implementation of the OpenTelemetry tracer will be available and will be enabled for automatic tracing of requests and customer span creation. ' 'Otherwise a no-op implementation will be provided.', ) parser.add_argument( '--traces-exporter-host', type=str, default=None, help='If tracing is enabled, this hostname will be used to configure the trace exporter agent.', ) parser.add_argument( '--traces-exporter-port', type=int, default=None, help='If tracing is enabled, this port will be used to configure the trace exporter agent.', ) parser.add_argument( '--metrics', action='store_true', default=False, help='If set, the sdk implementation of the OpenTelemetry metrics will be available for default monitoring and custom measurements. ' 'Otherwise a no-op implementation will be provided.', ) parser.add_argument( '--metrics-exporter-host', type=str, default=None, help='If tracing is enabled, this hostname will be used to configure the metrics exporter agent.', ) parser.add_argument( '--metrics-exporter-port', type=int, default=None, help='If tracing is enabled, this port will be used to configure the metrics exporter agent.', ) parser.add_argument( '--log-config', type=str, default='default', help='The config name or the absolute path to the YAML config file of the logger used in this object.', ) parser.add_argument( '--reuse-session', action='store_true', default=False, help='True if HTTPClient should reuse ClientSession. If true, user will be responsible to close it', )
"""Module for argparse for Client""" def mixin_client_protocol_parser(parser): """Add the arguments for the protocol to the client parser :param parser: the parser configure """ from jina.enums import ProtocolType parser.add_argument( '--protocol', type=ProtocolType.from_string, choices=list(ProtocolType), default=ProtocolType.GRPC, help='Communication protocol between server and client.', ) def mixin_client_features_parser(parser): """Add the arguments for the client to the parser :param parser: the parser configure """ parser.add_argument( '--asyncio', action='store_true', default=False, help='If set, then the input and output of this Client work in an asynchronous manner. ', ) parser.add_argument( '--tracing', action='store_true', default=False, help='If set, the sdk implementation of the OpenTelemetry tracer will be available and will be enabled for automatic tracing of requests and customer span creation. ' 'Otherwise a no-op implementation will be provided.', ) parser.add_argument( '--traces-exporter-host', type=str, default=None, help='If tracing is enabled, this hostname will be used to configure the trace exporter agent.', ) parser.add_argument( '--traces-exporter-port', type=int, default=None, help='If tracing is enabled, this port will be used to configure the trace exporter agent.', ) parser.add_argument( '--metrics', action='store_true', default=False, help='If set, the sdk implementation of the OpenTelemetry metrics will be available for default monitoring and custom measurements. ' 'Otherwise a no-op implementation will be provided.', ) parser.add_argument( '--metrics-exporter-host', type=str, default=None, help='If tracing is enabled, this hostname will be used to configure the metrics exporter agent.', ) parser.add_argument( '--metrics-exporter-port', type=int, default=None, help='If tracing is enabled, this port will be used to configure the metrics exporter agent.', ) parser.add_argument( '--log-config', type=str, default='default', help='The config name or the absolute path to the YAML config file of the logger used in this object.', )
from jina import DocumentArray, Executor, requests class TestExecutor(Executor): @requests def process(self, docs: DocumentArray, **kwargs): return docs
from jina import Executor, requests, DocumentArray class TestExecutor(Executor): @requests def process(self, docs: DocumentArray, **kwargs): return docs