input
stringlengths
33
5k
output
stringlengths
32
5k
""" This file contains deprecated code that can only be used with the old `model.fit`-style Sentence Transformers v2.X training. It exists for backwards compatibility with the `model.old_fit` method, but will be removed in a future version. Nowadays, with Sentence Transformers v3+, it is recommended to use the `SentenceTransformerTrainer` class to train models. See https://www.sbert.net/docs/sentence_transformer/training_overview.html for more information. Instead, you should create a `datasets` `Dataset` for training: https://huggingface.co/docs/datasets/create_dataset """ from __future__ import annotations class InputExample: """Structure for one input example with texts, the label and a unique id""" def __init__(self, guid: str = "", texts: list[str] | None = None, label: int | float = 0): """ Creates one InputExample with the given texts, guid and label Args: guid: id for the example texts: the texts for the example. label: the label for the example """ self.guid = guid self.texts = texts self.label = label def __str__(self): return "<InputExample> label: {}, texts: {}".format(str(self.label), "; ".join(self.texts))
""" This file contains deprecated code that can only be used with the old `model.fit`-style Sentence Transformers v2.X training. It exists for backwards compatibility with the `model.old_fit` method, but will be removed in a future version. Nowadays, with Sentence Transformers v3+, it is recommended to use the `SentenceTransformerTrainer` class to train models. See https://www.sbert.net/docs/sentence_transformer/training_overview.html for more information. Instead, you should create a `datasets` `Dataset` for training: https://huggingface.co/docs/datasets/create_dataset """ from __future__ import annotations class InputExample: """Structure for one input example with texts, the label and a unique id""" def __init__(self, guid: str = "", texts: list[str] = None, label: int | float = 0): """ Creates one InputExample with the given texts, guid and label Args: guid: id for the example texts: the texts for the example. label: the label for the example """ self.guid = guid self.texts = texts self.label = label def __str__(self): return "<InputExample> label: {}, texts: {}".format(str(self.label), "; ".join(self.texts))
from typing import Dict, List import requests HEALTH_CHECK_OP = '%2Fgrpc.health.v1.Health%2FCheck' def parse_string_jaeger_tags(jaeger_tags: List) -> Dict[str, str]: """Parse jaeger tags into a dictionary""" return {i['key']: i['value'] for i in jaeger_tags if i['type'] == 'string'} def get_last_health_check_data(jaeger_port: int, service_name: str) -> dict: """Get most recent health check data from Jaeger API for a given service Args: jaeger_port: Port to forward to Jaeger API service_name: Service to get health check data for Returns: Health check trace JSON (dict) """ return requests.get( f'http://localhost:{jaeger_port}/api/traces?service={service_name}&limit=1&operation={HEALTH_CHECK_OP}' ).json()['data'][0]
import requests from typing import List, Dict HEALTH_CHECK_OP = '%2Fgrpc.health.v1.Health%2FCheck' def parse_string_jaeger_tags(jaeger_tags: List) -> Dict[str, str]: """Parse jaeger tags into a dictionary""" return {i['key']: i['value'] for i in jaeger_tags if i['type'] == 'string'} def get_last_health_check_data(jaeger_port: int, service_name: str) -> dict: """Get most recent health check data from Jaeger API for a given service Args: jaeger_port: Port to forward to Jaeger API service_name: Service to get health check data for Returns: Health check trace JSON (dict) """ return requests.get(f'http://localhost:{jaeger_port}/api/traces?service={service_name}&limit=1&operation={HEALTH_CHECK_OP}').json()['data'][0]
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.initializers import deserialize from keras.src.initializers import get from keras.src.initializers import serialize from keras.src.initializers.constant_initializers import STFT from keras.src.initializers.constant_initializers import STFT as STFTInitializer from keras.src.initializers.constant_initializers import STFT as stft from keras.src.initializers.constant_initializers import Constant from keras.src.initializers.constant_initializers import Constant as constant from keras.src.initializers.constant_initializers import Identity from keras.src.initializers.constant_initializers import ( Identity as IdentityInitializer, ) from keras.src.initializers.constant_initializers import Identity as identity from keras.src.initializers.constant_initializers import Ones from keras.src.initializers.constant_initializers import Ones as ones from keras.src.initializers.constant_initializers import Zeros from keras.src.initializers.constant_initializers import Zeros as zeros from keras.src.initializers.initializer import Initializer from keras.src.initializers.random_initializers import GlorotNormal from keras.src.initializers.random_initializers import ( GlorotNormal as glorot_normal, ) from keras.src.initializers.random_initializers import GlorotUniform from keras.src.initializers.random_initializers import ( GlorotUniform as glorot_uniform, ) from keras.src.initializers.random_initializers import HeNormal from keras.src.initializers.random_initializers import HeNormal as he_normal from keras.src.initializers.random_initializers import HeUniform from keras.src.initializers.random_initializers import HeUniform as he_uniform from keras.src.initializers.random_initializers import LecunNormal from keras.src.initializers.random_initializers import ( LecunNormal as lecun_normal, ) from keras.src.initializers.random_initializers import LecunUniform from keras.src.initializers.random_initializers import ( LecunUniform as lecun_uniform, ) from keras.src.initializers.random_initializers import Orthogonal from keras.src.initializers.random_initializers import ( Orthogonal as OrthogonalInitializer, ) from keras.src.initializers.random_initializers import Orthogonal as orthogonal from keras.src.initializers.random_initializers import RandomNormal from keras.src.initializers.random_initializers import ( RandomNormal as random_normal, ) from keras.src.initializers.random_initializers import RandomUniform from keras.src.initializers.random_initializers import ( RandomUniform as random_uniform, ) from keras.src.initializers.random_initializers import TruncatedNormal from keras.src.initializers.random_initializers import ( TruncatedNormal as truncated_normal, ) from keras.src.initializers.random_initializers import VarianceScaling from keras.src.initializers.random_initializers import ( VarianceScaling as variance_scaling, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.initializers import deserialize from keras.src.initializers import get from keras.src.initializers import serialize from keras.src.initializers.constant_initializers import Constant from keras.src.initializers.constant_initializers import Constant as constant from keras.src.initializers.constant_initializers import Identity from keras.src.initializers.constant_initializers import ( Identity as IdentityInitializer, ) from keras.src.initializers.constant_initializers import Identity as identity from keras.src.initializers.constant_initializers import Ones from keras.src.initializers.constant_initializers import Ones as ones from keras.src.initializers.constant_initializers import STFTInitializer from keras.src.initializers.constant_initializers import Zeros from keras.src.initializers.constant_initializers import Zeros as zeros from keras.src.initializers.initializer import Initializer from keras.src.initializers.random_initializers import GlorotNormal from keras.src.initializers.random_initializers import ( GlorotNormal as glorot_normal, ) from keras.src.initializers.random_initializers import GlorotUniform from keras.src.initializers.random_initializers import ( GlorotUniform as glorot_uniform, ) from keras.src.initializers.random_initializers import HeNormal from keras.src.initializers.random_initializers import HeNormal as he_normal from keras.src.initializers.random_initializers import HeUniform from keras.src.initializers.random_initializers import HeUniform as he_uniform from keras.src.initializers.random_initializers import LecunNormal from keras.src.initializers.random_initializers import ( LecunNormal as lecun_normal, ) from keras.src.initializers.random_initializers import LecunUniform from keras.src.initializers.random_initializers import ( LecunUniform as lecun_uniform, ) from keras.src.initializers.random_initializers import OrthogonalInitializer from keras.src.initializers.random_initializers import ( OrthogonalInitializer as Orthogonal, ) from keras.src.initializers.random_initializers import ( OrthogonalInitializer as orthogonal, ) from keras.src.initializers.random_initializers import RandomNormal from keras.src.initializers.random_initializers import ( RandomNormal as random_normal, ) from keras.src.initializers.random_initializers import RandomUniform from keras.src.initializers.random_initializers import ( RandomUniform as random_uniform, ) from keras.src.initializers.random_initializers import TruncatedNormal from keras.src.initializers.random_initializers import ( TruncatedNormal as truncated_normal, ) from keras.src.initializers.random_initializers import VarianceScaling from keras.src.initializers.random_initializers import ( VarianceScaling as variance_scaling, )
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.core.evaluation.panoptic_utils import INSTANCE_OFFSET from mmdet.models.builder import HEADS from .base_panoptic_fusion_head import BasePanopticFusionHead @HEADS.register_module() class HeuristicFusionHead(BasePanopticFusionHead): """Fusion Head with Heuristic method.""" def __init__(self, num_things_classes=80, num_stuff_classes=53, test_cfg=None, init_cfg=None, **kwargs): super(HeuristicFusionHead, self).__init__(num_things_classes, num_stuff_classes, test_cfg, None, init_cfg, **kwargs) def forward_train(self, gt_masks=None, gt_semantic_seg=None, **kwargs): """HeuristicFusionHead has no training loss.""" return dict() def _lay_masks(self, bboxes, labels, masks, overlap_thr=0.5): """Lay instance masks to a result map. Args: bboxes: The bboxes results, (K, 4). labels: The labels of bboxes, (K, ). masks: The instance masks, (K, H, W). overlap_thr: Threshold to determine whether two masks overlap. default: 0.5. Returns: Tensor: The result map, (H, W). """ num_insts = bboxes.shape[0] id_map = torch.zeros( masks.shape[-2:], device=bboxes.device, dtype=torch.long) if num_insts == 0: return id_map, labels scores, bboxes = bboxes[:, -1], bboxes[:, :4] # Sort by score to use heuristic fusion order = torch.argsort(-scores) bboxes = bboxes[order] labels = labels[order] segm_masks = masks[order] instance_id = 1 left_labels = [] for idx in range(bboxes.shape[0]): _cls = labels[idx] _mask = segm_masks[idx] instance_id_map = torch.ones_like( _mask, dtype=torch.long) * instance_id area = _mask.sum() if area == 0: continue pasted = id_map > 0 intersect = (_mask * pasted).sum() if (intersect / (area + 1e-5)) > overlap_thr: continue _part = _mask * (~pasted) id_map = torch.where(_part, instance_id_map, id_map) left_labels.append(_cls) instance_id += 1 if len(left_labels) > 0: instance_labels = torch.stack(left_labels) else: instance_labels = bboxes.new_zeros((0, ), dtype=torch.long) assert instance_id == (len(instance_labels) + 1) return id_map, instance_labels def simple_test(self, det_bboxes, det_labels, mask_preds, seg_preds, **kwargs): """Fuse the results of instance and semantic segmentations. Args: det_bboxes: The bboxes results, (K, 4). det_labels: The labels of bboxes, (K,). mask_preds: The masks results, (K, H, W). seg_preds: The semantic segmentation results, (K, num_stuff + 1, H, W). Returns: Tensor : The panoptic segmentation result, (H, W). """ mask_preds = mask_preds >= self.test_cfg.mask_thr_binary id_map, labels = self._lay_masks(det_bboxes, det_labels, mask_preds, self.test_cfg.mask_overlap) seg_results = seg_preds.argmax(dim=0) seg_results = seg_results + self.num_things_classes pan_results = seg_results instance_id = 1 for idx in range(det_labels.shape[0]): _mask = id_map == (idx + 1) if _mask.sum() == 0: continue _cls = labels[idx] # simply trust detection segment_id = _cls + instance_id * INSTANCE_OFFSET pan_results[_mask] = segment_id instance_id += 1 ids, counts = torch.unique( pan_results % INSTANCE_OFFSET, return_counts=True) stuff_ids = ids[ids >= self.num_things_classes] stuff_counts = counts[ids >= self.num_things_classes] ignore_stuff_ids = stuff_ids[ stuff_counts < self.test_cfg.stuff_area_limit] assert pan_results.ndim == 2 pan_results[(pan_results.unsqueeze(2) == ignore_stuff_ids.reshape( 1, 1, -1)).any(dim=2)] = self.num_classes return pan_results
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.datasets.coco_panoptic import INSTANCE_OFFSET from mmdet.models.builder import HEADS from .base_panoptic_fusion_head import BasePanopticFusionHead @HEADS.register_module() class HeuristicFusionHead(BasePanopticFusionHead): """Fusion Head with Heuristic method.""" def __init__(self, num_things_classes=80, num_stuff_classes=53, test_cfg=None, init_cfg=None, **kwargs): super(HeuristicFusionHead, self).__init__(num_things_classes, num_stuff_classes, test_cfg, None, init_cfg, **kwargs) def forward_train(self, gt_masks=None, gt_semantic_seg=None, **kwargs): """HeuristicFusionHead has no training loss.""" return dict() def _lay_masks(self, bboxes, labels, masks, overlap_thr=0.5): """Lay instance masks to a result map. Args: bboxes: The bboxes results, (K, 4). labels: The labels of bboxes, (K, ). masks: The instance masks, (K, H, W). overlap_thr: Threshold to determine whether two masks overlap. default: 0.5. Returns: Tensor: The result map, (H, W). """ num_insts = bboxes.shape[0] id_map = torch.zeros( masks.shape[-2:], device=bboxes.device, dtype=torch.long) if num_insts == 0: return id_map, labels scores, bboxes = bboxes[:, -1], bboxes[:, :4] # Sort by score to use heuristic fusion order = torch.argsort(-scores) bboxes = bboxes[order] labels = labels[order] segm_masks = masks[order] instance_id = 1 left_labels = [] for idx in range(bboxes.shape[0]): _cls = labels[idx] _mask = segm_masks[idx] instance_id_map = torch.ones_like( _mask, dtype=torch.long) * instance_id area = _mask.sum() if area == 0: continue pasted = id_map > 0 intersect = (_mask * pasted).sum() if (intersect / (area + 1e-5)) > overlap_thr: continue _part = _mask * (~pasted) id_map = torch.where(_part, instance_id_map, id_map) left_labels.append(_cls) instance_id += 1 if len(left_labels) > 0: instance_labels = torch.stack(left_labels) else: instance_labels = bboxes.new_zeros((0, ), dtype=torch.long) assert instance_id == (len(instance_labels) + 1) return id_map, instance_labels def simple_test(self, det_bboxes, det_labels, mask_preds, seg_preds, **kwargs): """Fuse the results of instance and semantic segmentations. Args: det_bboxes: The bboxes results, (K, 4). det_labels: The labels of bboxes, (K,). mask_preds: The masks results, (K, H, W). seg_preds: The semantic segmentation results, (K, num_stuff + 1, H, W). Returns: Tensor : The panoptic segmentation result, (H, W). """ mask_preds = mask_preds >= self.test_cfg.mask_thr_binary id_map, labels = self._lay_masks(det_bboxes, det_labels, mask_preds, self.test_cfg.mask_overlap) seg_results = seg_preds.argmax(dim=0) seg_results = seg_results + self.num_things_classes pan_results = seg_results instance_id = 1 for idx in range(det_labels.shape[0]): _mask = id_map == (idx + 1) if _mask.sum() == 0: continue _cls = labels[idx] # simply trust detection segment_id = _cls + instance_id * INSTANCE_OFFSET pan_results[_mask] = segment_id instance_id += 1 ids, counts = torch.unique( pan_results % INSTANCE_OFFSET, return_counts=True) stuff_ids = ids[ids >= self.num_things_classes] stuff_counts = counts[ids >= self.num_things_classes] ignore_stuff_ids = stuff_ids[ stuff_counts < self.test_cfg.stuff_area_limit] assert pan_results.ndim == 2 pan_results[(pan_results.unsqueeze(2) == ignore_stuff_ids.reshape( 1, 1, -1)).any(dim=2)] = self.num_classes return pan_results
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centripetal_head import CentripetalHead from .corner_head import CornerHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .ld_head import LDHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .sabl_retina_head import SABLRetinaHead from .ssd_head import SSDHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet, YOLACTSegmHead from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTSegmHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'CascadeRPNHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'CenterNetHead', 'YOLOXHead' ]
from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centripetal_head import CentripetalHead from .corner_head import CornerHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .ld_head import LDHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .sabl_retina_head import SABLRetinaHead from .ssd_head import SSDHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet, YOLACTSegmHead from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTSegmHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'CascadeRPNHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'CenterNetHead', 'YOLOXHead' ]
from __future__ import annotations from enum import Enum from typing import Any, Iterable import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer class TripletDistanceMetric(Enum): """The metric for the triplet loss""" COSINE = lambda x, y: 1 - F.cosine_similarity(x, y) EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) class TripletLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ) -> None: """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SentenceTransformerModel distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], }) loss = losses.TripletLoss(model=model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.model = model self.distance_metric = distance_metric self.triplet_margin = triplet_margin def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] rep_anchor, rep_pos, rep_neg = reps distance_pos = self.distance_metric(rep_anchor, rep_pos) distance_neg = self.distance_metric(rep_anchor, rep_neg) losses = F.relu(distance_pos - distance_neg + self.triplet_margin) return losses.mean() def get_config_dict(self) -> dict[str, Any]: distance_metric_name = self.distance_metric.__name__ for name, value in vars(TripletDistanceMetric).items(): if value == self.distance_metric: distance_metric_name = f"TripletDistanceMetric.{name}" break return {"distance_metric": distance_metric_name, "triplet_margin": self.triplet_margin} @property def citation(self) -> str: return """ @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } """
from __future__ import annotations from enum import Enum from typing import Any, Iterable import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer class TripletDistanceMetric(Enum): """The metric for the triplet loss""" COSINE = lambda x, y: 1 - F.cosine_similarity(x, y) EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) class TripletLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ) -> None: """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SentenceTransformerModel distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], }) loss = losses.TripletLoss(model=model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(TripletLoss, self).__init__() self.model = model self.distance_metric = distance_metric self.triplet_margin = triplet_margin def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] rep_anchor, rep_pos, rep_neg = reps distance_pos = self.distance_metric(rep_anchor, rep_pos) distance_neg = self.distance_metric(rep_anchor, rep_neg) losses = F.relu(distance_pos - distance_neg + self.triplet_margin) return losses.mean() def get_config_dict(self) -> dict[str, Any]: distance_metric_name = self.distance_metric.__name__ for name, value in vars(TripletDistanceMetric).items(): if value == self.distance_metric: distance_metric_name = "TripletDistanceMetric.{}".format(name) break return {"distance_metric": distance_metric_name, "triplet_margin": self.triplet_margin} @property def citation(self) -> str: return """ @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } """
import pytest from jina import Client from jina.enums import ProtocolType @pytest.mark.parametrize( 'protocol, gateway_type', [ ('http', ProtocolType.HTTP), ('grpc', ProtocolType.GRPC), ('ws', ProtocolType.WEBSOCKET), (None, None), ], ) @pytest.mark.parametrize('tls', [True, False]) @pytest.mark.parametrize('hostname', ['localhost', 'executor.jina.ai']) def test_host_unpacking(protocol, gateway_type, tls, hostname): port = 1234 protocol = f'{protocol}s' if tls and protocol else protocol scheme = f'{protocol}://' if protocol else '' host = f'{scheme}{hostname}:{port}' c = Client(host=host) if scheme else Client(host=host, tls=tls) if gateway_type: assert c.args.protocol == gateway_type assert c.args.host == hostname assert c.args.port == port assert c.args.tls == tls @pytest.mark.parametrize('protocol', ['https', 'grpcs', 'wss']) @pytest.mark.parametrize('port', [1234, None]) def test_host_unpacking_port_tls(protocol, port): port_scheme = f':{port}' if port else '' host = f'{protocol}://localhost{port_scheme}' c = Client(host=host) assert c.args.port == port if port else 443 @pytest.mark.parametrize('protocol', ['http', 'grpc', 'ws']) @pytest.mark.parametrize('port', [1234, None]) def test_host_unpacking_port(protocol, port): port_scheme = f':{port}' if port else '' host = f'{protocol}://localhost{port_scheme}' c = Client(host=host) assert c.args.port == port if port else 80 def test_delete_slash_host(): host = f'http://localhost/' c = Client(host=host) assert c.args.host == 'localhost' def test_host_unpacking_basic(): protocol = 'http' hostname = 'localhost' host = f'{protocol}://{hostname}' c = Client(host=host) assert c.args.protocol == ProtocolType.HTTP assert c.args.host == hostname def test_host_unpacking_duplicate(): with pytest.raises(ValueError): Client(host=f'http://localhost:1234', port=1234) def test_log_config_arg(): cli_args = ['--log-config', 'logging.custom.yml'] from jina.parsers import set_client_cli_parser args = set_client_cli_parser().parse_args(cli_args) assert args.log_config == 'logging.custom.yml'
import pytest from jina import Client from jina.enums import GatewayProtocolType @pytest.mark.parametrize( 'protocol, gateway_type', [ ('http', GatewayProtocolType.HTTP), ('grpc', GatewayProtocolType.GRPC), ('ws', GatewayProtocolType.WEBSOCKET), (None, None), ], ) @pytest.mark.parametrize('tls', [True, False]) @pytest.mark.parametrize('hostname', ['localhost', 'executor.jina.ai']) def test_host_unpacking(protocol, gateway_type, tls, hostname): port = 1234 protocol = f'{protocol}s' if tls and protocol else protocol scheme = f'{protocol}://' if protocol else '' host = f'{scheme}{hostname}:{port}' c = Client(host=host) if scheme else Client(host=host, tls=tls) if gateway_type: assert c.args.protocol == gateway_type assert c.args.host == hostname assert c.args.port == port assert c.args.tls == tls @pytest.mark.parametrize('protocol', ['https', 'grpcs', 'wss']) @pytest.mark.parametrize('port', [1234, None]) def test_host_unpacking_port_tls(protocol, port): port_scheme = f':{port}' if port else '' host = f'{protocol}://localhost{port_scheme}' c = Client(host=host) assert c.args.port == port if port else 443 @pytest.mark.parametrize('protocol', ['http', 'grpc', 'ws']) @pytest.mark.parametrize('port', [1234, None]) def test_host_unpacking_port(protocol, port): port_scheme = f':{port}' if port else '' host = f'{protocol}://localhost{port_scheme}' c = Client(host=host) assert c.args.port == port if port else 80 def test_delete_slash_host(): host = f'http://localhost/' c = Client(host=host) assert c.args.host == 'localhost' def test_host_unpacking_basic(): protocol = 'http' hostname = 'localhost' host = f'{protocol}://{hostname}' c = Client(host=host) assert c.args.protocol == GatewayProtocolType.HTTP assert c.args.host == hostname def test_host_unpacking_duplicate(): with pytest.raises(ValueError): Client(host=f'http://localhost:1234', port=1234) def test_log_config_arg(): cli_args = ['--log-config', 'logging.custom.yml'] from jina.parsers import set_client_cli_parser args = set_client_cli_parser().parse_args(cli_args) assert args.log_config == 'logging.custom.yml'
"""Standard LangChain interface tests""" from typing import Type from langchain_core.language_models import BaseChatModel from langchain_tests.integration_tests import ( # type: ignore[import-not-found] ChatModelIntegrationTests, # type: ignore[import-not-found] ) from langchain_mistralai import ChatMistralAI class TestMistralStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return ChatMistralAI @property def chat_model_params(self) -> dict: return {"model": "mistral-large-latest", "temperature": 0} @property def supports_json_mode(self) -> bool: return True
"""Standard LangChain interface tests""" from typing import Optional, Type from langchain_core.language_models import BaseChatModel from langchain_tests.integration_tests import ( # type: ignore[import-not-found] ChatModelIntegrationTests, # type: ignore[import-not-found] ) from langchain_mistralai import ChatMistralAI class TestMistralStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return ChatMistralAI @property def chat_model_params(self) -> dict: return {"model": "mistral-large-latest", "temperature": 0} @property def supports_json_mode(self) -> bool: return True @property def tool_choice_value(self) -> Optional[str]: """Value to use for tool choice when used in tests.""" return "any"
import numpy as np import pytest import torch from docarray import BaseDocument from docarray.typing import AnyTensor, NdArray, TorchTensor try: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp # type: ignore from docarray.typing import TensorFlowTensor except (ImportError, TypeError): TensorFlowTensor = None def test_set_tensor(): class MyDocument(BaseDocument): tensor: AnyTensor d = MyDocument(tensor=np.zeros((3, 224, 224))) assert isinstance(d.tensor, NdArray) assert isinstance(d.tensor, np.ndarray) assert (d.tensor == np.zeros((3, 224, 224))).all() d = MyDocument(tensor=torch.zeros((3, 224, 224))) assert isinstance(d.tensor, TorchTensor) assert isinstance(d.tensor, torch.Tensor) assert (d.tensor == torch.zeros((3, 224, 224))).all() @pytest.mark.tensorflow def test_set_tensor(): class MyDocument(BaseDocument): tensor: AnyTensor d = MyDocument(tensor=tf.zeros((3, 224, 224))) assert isinstance(d.tensor, TensorFlowTensor) assert isinstance(d.tensor.tensor, tf.Tensor) assert tnp.allclose(d.tensor.tensor, tf.zeros((3, 224, 224)))
import numpy as np import torch from docarray import BaseDocument from docarray.typing import AnyTensor, NdArray, TorchTensor def test_set_tensor(): class MyDocument(BaseDocument): tensor: AnyTensor d = MyDocument(tensor=np.zeros((3, 224, 224))) assert isinstance(d.tensor, NdArray) assert isinstance(d.tensor, np.ndarray) assert (d.tensor == np.zeros((3, 224, 224))).all() d = MyDocument(tensor=torch.zeros((3, 224, 224))) assert isinstance(d.tensor, TorchTensor) assert isinstance(d.tensor, torch.Tensor) assert (d.tensor == torch.zeros((3, 224, 224))).all()
from __future__ import annotations import csv import logging import os import numpy as np from sklearn.metrics import ndcg_score logger = logging.getLogger(__name__) class CERerankingEvaluator: """ This class evaluates a CrossEncoder model for the task of re-ranking. Given a query and a list of documents, it computes the score [query, doc_i] for all possible documents and sorts them in decreasing order. Then, MRR@10 and NDCG@10 are computed to measure the quality of the ranking. Args: samples (List[Dict, str, Union[str, List[str]]): Must be a list and each element is of the form: {'query': '', 'positive': [], 'negative': []}. Query is the search query, positive is a list of positive (relevant) documents, negative is a list of negative (irrelevant) documents. """ def __init__(self, samples, at_k: int = 10, name: str = "", write_csv: bool = True, mrr_at_k: int | None = None): self.samples = samples self.name = name if mrr_at_k is not None: logger.warning(f"The `mrr_at_k` parameter has been deprecated; please use `at_k={mrr_at_k}` instead.") self.at_k = mrr_at_k else: self.at_k = at_k if isinstance(self.samples, dict): self.samples = list(self.samples.values()) self.csv_file = "CERerankingEvaluator" + ("_" + name if name else "") + f"_results_@{self.at_k}.csv" self.csv_headers = [ "epoch", "steps", "MRR@{}".format(self.at_k), "NDCG@{}".format(self.at_k), ] self.write_csv = write_csv def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CERerankingEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) all_mrr_scores = [] all_ndcg_scores = [] num_queries = 0 num_positives = [] num_negatives = [] for instance in self.samples: query = instance["query"] positive = list(instance["positive"]) negative = list(instance["negative"]) docs = positive + negative is_relevant = [1] * len(positive) + [0] * len(negative) if len(positive) == 0 or len(negative) == 0: continue num_queries += 1 num_positives.append(len(positive)) num_negatives.append(len(negative)) model_input = [[query, doc] for doc in docs] pred_scores = model.predict(model_input, convert_to_numpy=True, show_progress_bar=False) pred_scores_argsort = np.argsort(-pred_scores) # Sort in decreasing order mrr_score = 0 for rank, index in enumerate(pred_scores_argsort[0 : self.at_k]): if is_relevant[index]: mrr_score = 1 / (rank + 1) break all_mrr_scores.append(mrr_score) all_ndcg_scores.append(ndcg_score([is_relevant], [pred_scores], k=self.at_k)) mean_mrr = np.mean(all_mrr_scores) mean_ndcg = np.mean(all_ndcg_scores) logger.info( "Queries: {} \t Positives: Min {:.1f}, Mean {:.1f}, Max {:.1f} \t Negatives: Min {:.1f}, Mean {:.1f}, Max {:.1f}".format( num_queries, np.min(num_positives), np.mean(num_positives), np.max(num_positives), np.min(num_negatives), np.mean(num_negatives), np.max(num_negatives), ) ) logger.info("MRR@{}: {:.2f}".format(self.at_k, mean_mrr * 100)) logger.info("NDCG@{}: {:.2f}".format(self.at_k, mean_ndcg * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, mean_mrr, mean_ndcg]) return mean_mrr
import csv import logging import os from typing import Optional import numpy as np from sklearn.metrics import ndcg_score logger = logging.getLogger(__name__) class CERerankingEvaluator: """ This class evaluates a CrossEncoder model for the task of re-ranking. Given a query and a list of documents, it computes the score [query, doc_i] for all possible documents and sorts them in decreasing order. Then, MRR@10 and NDCG@10 are computed to measure the quality of the ranking. Args: samples (List[Dict, str, Union[str, List[str]]): Must be a list and each element is of the form: {'query': '', 'positive': [], 'negative': []}. Query is the search query, positive is a list of positive (relevant) documents, negative is a list of negative (irrelevant) documents. """ def __init__( self, samples, at_k: int = 10, name: str = "", write_csv: bool = True, mrr_at_k: Optional[int] = None ): self.samples = samples self.name = name if mrr_at_k is not None: logger.warning(f"The `mrr_at_k` parameter has been deprecated; please use `at_k={mrr_at_k}` instead.") self.at_k = mrr_at_k else: self.at_k = at_k if isinstance(self.samples, dict): self.samples = list(self.samples.values()) self.csv_file = "CERerankingEvaluator" + ("_" + name if name else "") + f"_results_@{self.at_k}.csv" self.csv_headers = [ "epoch", "steps", "MRR@{}".format(self.at_k), "NDCG@{}".format(self.at_k), ] self.write_csv = write_csv def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CERerankingEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) all_mrr_scores = [] all_ndcg_scores = [] num_queries = 0 num_positives = [] num_negatives = [] for instance in self.samples: query = instance["query"] positive = list(instance["positive"]) negative = list(instance["negative"]) docs = positive + negative is_relevant = [1] * len(positive) + [0] * len(negative) if len(positive) == 0 or len(negative) == 0: continue num_queries += 1 num_positives.append(len(positive)) num_negatives.append(len(negative)) model_input = [[query, doc] for doc in docs] pred_scores = model.predict(model_input, convert_to_numpy=True, show_progress_bar=False) pred_scores_argsort = np.argsort(-pred_scores) # Sort in decreasing order mrr_score = 0 for rank, index in enumerate(pred_scores_argsort[0 : self.at_k]): if is_relevant[index]: mrr_score = 1 / (rank + 1) break all_mrr_scores.append(mrr_score) all_ndcg_scores.append(ndcg_score([is_relevant], [pred_scores], k=self.at_k)) mean_mrr = np.mean(all_mrr_scores) mean_ndcg = np.mean(all_ndcg_scores) logger.info( "Queries: {} \t Positives: Min {:.1f}, Mean {:.1f}, Max {:.1f} \t Negatives: Min {:.1f}, Mean {:.1f}, Max {:.1f}".format( num_queries, np.min(num_positives), np.mean(num_positives), np.max(num_positives), np.min(num_negatives), np.mean(num_negatives), np.max(num_negatives), ) ) logger.info("MRR@{}: {:.2f}".format(self.at_k, mean_mrr * 100)) logger.info("NDCG@{}: {:.2f}".format(self.at_k, mean_ndcg * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, mean_mrr, mean_ndcg]) return mean_mrr
import subprocess import pytest from dpr_text import DPRTextEncoder from jina import Document, DocumentArray, Flow _EMBEDDING_DIM = 768 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=DPRTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, )
import subprocess import pytest from jina import Document, DocumentArray, Flow from ...dpr_text import DPRTextEncoder _EMBEDDING_DIM = 768 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=DPRTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, )
#!/usr/bin/env python # Sorts what's new entries with per-module headings. # Pass what's new entries on stdin. import re import sys from collections import defaultdict LABEL_ORDER = ["MajorFeature", "Feature", "Efficiency", "Enhancement", "Fix", "API"] def entry_sort_key(s): if s.startswith("- |"): return LABEL_ORDER.index(s.split("|")[1]) else: return -1 # discard headings and other non-entry lines text = "".join(l for l in sys.stdin if l.startswith("- ") or l.startswith(" ")) bucketed = defaultdict(list) for entry in re.split("\n(?=- )", text.strip()): modules = re.findall( r":(?:func|meth|mod|class):`(?:[^<`]*<|~)?(?:sklearn.)?([a-z]\w+)", entry ) modules = set(modules) if len(modules) > 1: key = "Multiple modules" elif modules: key = ":mod:`sklearn.%s`" % next(iter(modules)) else: key = "Miscellaneous" bucketed[key].append(entry) entry = entry.strip() + "\n" everything = [] for key, bucket in sorted(bucketed.items()): everything.append(key + "\n" + "." * len(key)) bucket.sort(key=entry_sort_key) everything.extend(bucket) print("\n\n".join(everything))
#!/usr/bin/env python # Sorts what's new entries with per-module headings. # Pass what's new entries on stdin. import re import sys from collections import defaultdict LABEL_ORDER = ["MajorFeature", "Feature", "Efficiency", "Enhancement", "Fix", "API"] def entry_sort_key(s): if s.startswith("- |"): return LABEL_ORDER.index(s.split("|")[1]) else: return -1 # discard headings and other non-entry lines text = "".join(l for l in sys.stdin if l.startswith("- ") or l.startswith(" ")) bucketed = defaultdict(list) for entry in re.split("\n(?=- )", text.strip()): modules = re.findall( r":(?:func|meth|mod|class):" r"`(?:[^<`]*<|~)?(?:sklearn.)?([a-z]\w+)", entry ) modules = set(modules) if len(modules) > 1: key = "Multiple modules" elif modules: key = ":mod:`sklearn.%s`" % next(iter(modules)) else: key = "Miscellaneous" bucketed[key].append(entry) entry = entry.strip() + "\n" everything = [] for key, bucket in sorted(bucketed.items()): everything.append(key + "\n" + "." * len(key)) bucket.sort(key=entry_sort_key) everything.extend(bucket) print("\n\n".join(everything))
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.legacy.saving.serialization import ( deserialize_keras_object as deserialize_keras_object, ) from keras.src.legacy.saving.serialization import ( serialize_keras_object as serialize_keras_object, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.legacy.saving.serialization import deserialize_keras_object from keras.src.legacy.saving.serialization import serialize_keras_object
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.documents import AudioDoc from docarray.typing import AnyEmbedding, AnyTensor, VideoBytes from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='VideoDoc') class VideoDoc(BaseDoc): """ Document for handling video. The Video Document can contain: - a [`VideoUrl`][docarray.typing.url.VideoUrl] (`VideoDoc.url`) - an [`AudioDoc`][docarray.documents.AudioDoc] (`VideoDoc.audio`) - a [`VideoTensor`](../../../api_references/typing/tensor/video) (`VideoDoc.tensor`) - an [`AnyTensor`](../../../api_references/typing/tensor/tensor) representing the indices of the video's key frames (`VideoDoc.key_frame_indices`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`VideoDoc.embedding`) - a [`VideoBytes`][docarray.typing.bytes.VideoBytes] object (`VideoDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import VideoDoc # use it directly vid = VideoDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ) vid.tensor, vid.audio.tensor, vid.key_frame_indices = vid.url.load() # model = MyEmbeddingModel() # vid.embedding = model(vid.tensor) ``` You can extend this Document: ```python from typing import Optional from docarray.documents import TextDoc, VideoDoc # extend it class MyVideo(VideoDoc): name: Optional[TextDoc] video = MyVideo( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ) video.name = TextDoc(text='my first video') video.tensor = video.url.load().video # model = MyEmbeddingModel() # video.embedding = model(video.tensor) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import TextDoc, VideoDoc # compose it class MultiModalDoc(BaseDoc): video: VideoDoc text: TextDoc mmdoc = MultiModalDoc( video=VideoDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.video.tensor = mmdoc.video.url.load().video # or mmdoc.video.bytes_ = mmdoc.video.url.load_bytes() mmdoc.video.tensor = mmdoc.video.bytes_.load().video ``` """ url: Optional[VideoUrl] = None audio: Optional[AudioDoc] = AudioDoc() tensor: Optional[VideoTensor] = None key_frame_indices: Optional[AnyTensor] = None embedding: Optional[AnyEmbedding] = None bytes_: Optional[VideoBytes] = None @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch is not None and isinstance(value, torch.Tensor) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.documents import AudioDoc from docarray.typing import AnyEmbedding, AnyTensor, VideoBytes from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='VideoDoc') class VideoDoc(BaseDoc): """ Document for handling video. The Video Document can contain: - a [`VideoUrl`][docarray.typing.url.VideoUrl] (`VideoDoc.url`) - an [`AudioDoc`][docarray.documents.AudioDoc] (`VideoDoc.audio`) - a [`VideoTensor`](../../../api_references/typing/tensor/video) (`VideoDoc.tensor`) - an [`AnyTensor`](../../../api_references/typing/tensor/tensor) representing the indices of the video's key frames (`VideoDoc.key_frame_indices`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`VideoDoc.embedding`) - a [`VideoBytes`][docarray.typing.bytes.VideoBytes] object (`VideoDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import VideoDoc # use it directly vid = VideoDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ) vid.tensor, vid.audio.tensor, vid.key_frame_indices = vid.url.load() # model = MyEmbeddingModel() # vid.embedding = model(vid.tensor) ``` You can extend this Document: ```python from typing import Optional from docarray.documents import TextDoc, VideoDoc # extend it class MyVideo(VideoDoc): name: Optional[TextDoc] video = MyVideo( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ) video.name = TextDoc(text='my first video') video.tensor = video.url.load().video # model = MyEmbeddingModel() # video.embedding = model(video.tensor) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import TextDoc, VideoDoc # compose it class MultiModalDoc(BaseDoc): video: VideoDoc text: TextDoc mmdoc = MultiModalDoc( video=VideoDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.video.tensor = mmdoc.video.url.load().video # or mmdoc.video.bytes_ = mmdoc.video.url.load_bytes() mmdoc.video.tensor = mmdoc.video.bytes_.load().video ``` """ url: Optional[VideoUrl] audio: Optional[AudioDoc] = AudioDoc() tensor: Optional[VideoTensor] key_frame_indices: Optional[AnyTensor] embedding: Optional[AnyEmbedding] bytes_: Optional[VideoBytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch is not None and isinstance(value, torch.Tensor) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
import argparse from abc import ABC from typing import TYPE_CHECKING, Optional, Union from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime if TYPE_CHECKING: import asyncio import multiprocessing import threading class GatewayRuntime(AsyncNewLoopRuntime, ABC): """ The Runtime from which the GatewayRuntimes need to inherit """ def __init__( self, args: argparse.Namespace, cancel_event: Optional[ Union['asyncio.Event', 'multiprocessing.Event', 'threading.Event'] ] = None, **kwargs, ): # this order is intentional: The timeout is needed in _create_topology_graph(), called by super self.timeout_send = args.timeout_send if self.timeout_send: self.timeout_send /= 1e3 # convert ms to seconds super().__init__(args, cancel_event, **kwargs)
import argparse from abc import ABC from typing import TYPE_CHECKING, Optional, Union from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime if TYPE_CHECKING: import asyncio import multiprocessing import threading class GatewayRuntime(AsyncNewLoopRuntime, ABC): """ The Runtime from which the GatewayRuntimes need to inherit """ def __init__( self, args: argparse.Namespace, cancel_event: Optional[ Union['asyncio.Event', 'multiprocessing.Event', 'threading.Event'] ] = None, **kwargs, ): # this order is intentional: The timeout is needed in _create_topology_graph(), called by super self.timeout_send = args.timeout_send if self.timeout_send: self.timeout_send /= 1e3 # convert ms to seconds super().__init__(args, cancel_event, **kwargs)
from .autoencoder_asym_kl import AsymmetricAutoencoderKL from .autoencoder_kl import AutoencoderKL from .autoencoder_kl_allegro import AutoencoderKLAllegro from .autoencoder_kl_cogvideox import AutoencoderKLCogVideoX from .autoencoder_kl_temporal_decoder import AutoencoderKLTemporalDecoder from .autoencoder_oobleck import AutoencoderOobleck from .autoencoder_tiny import AutoencoderTiny from .consistency_decoder_vae import ConsistencyDecoderVAE from .vq_model import VQModel
from .autoencoder_asym_kl import AsymmetricAutoencoderKL from .autoencoder_kl import AutoencoderKL from .autoencoder_kl_cogvideox import AutoencoderKLCogVideoX from .autoencoder_kl_temporal_decoder import AutoencoderKLTemporalDecoder from .autoencoder_oobleck import AutoencoderOobleck from .autoencoder_tiny import AutoencoderTiny from .consistency_decoder_vae import ConsistencyDecoderVAE from .vq_model import VQModel
__version__ = '0.14.2' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
__version__ = '0.14.1' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.vectorstores import ( AlibabaCloudOpenSearch, AlibabaCloudOpenSearchSettings, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "AlibabaCloudOpenSearchSettings": "langchain_community.vectorstores", "AlibabaCloudOpenSearch": "langchain_community.vectorstores", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AlibabaCloudOpenSearch", "AlibabaCloudOpenSearchSettings", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.vectorstores import ( AlibabaCloudOpenSearch, AlibabaCloudOpenSearchSettings, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "AlibabaCloudOpenSearchSettings": "langchain_community.vectorstores", "AlibabaCloudOpenSearch": "langchain_community.vectorstores", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AlibabaCloudOpenSearchSettings", "AlibabaCloudOpenSearch", ]
"""Init params.""" from llama_index.finetuning.embeddings.adapter import EmbeddingAdapterFinetuneEngine from llama_index.finetuning.embeddings.sentence_transformer import ( SentenceTransformersFinetuneEngine, ) __all__ = ["EmbeddingAdapterFinetuneEngine", "SentenceTransformersFinetuneEngine"]
"""Init params.""" from llama_index.finetuning.embeddings.adapter import EmbeddingAdapterFinetuneEngine from llama_index.finetuning.embeddings.sentence_transformer import ( SentenceTransformersFinetuneEngine, ) __all__ = ["EmbeddingAdapterFinetuneEngine", "SentenceTransformersFinetuneEngine"]
import functools from collections import defaultdict import torch from torch._export.passes._node_metadata_hook import ( _node_metadata_hook, _set_node_metadata_hook, ) from torch._library.fake_profile import OpProfile, TensorMetadata def insert_custom_op_guards(gm: torch.fx.GraphModule, ops_to_guard: set[str]) -> None: """ This is used by draft_export to insert guards in front of calls to custom operators which have a generated fake kernel. """ for node in gm.graph.nodes: if node.op == "call_function" and str(node.target) in ops_to_guard: with ( _set_node_metadata_hook( gm, functools.partial( _node_metadata_hook, stack_trace=node.meta.get("stack_trace") ), ), gm.graph.inserting_before(node), ): for arg in (*node.args, *node.kwargs.values()): if isinstance(arg, torch.fx.Node) and isinstance( arg.meta.get("val"), torch.Tensor ): val = arg.meta["val"] gm.graph.call_function( torch.ops.aten._assert_tensor_metadata.default, args=(arg,), kwargs={ "dtype": val.dtype, "device": val.device, "layout": val.layout, }, ) gm.recompile() def get_op_profiles( gm: torch.fx.GraphModule, ops_to_guard: set[str] ) -> dict[str, set[OpProfile]]: """ This is used by draft_export to get a list of custom operator profiles so that we can generate fake kernels. """ def _get_op_profile(node: torch.fx.Node) -> OpProfile: args_profile = tuple( [ TensorMetadata.maybe_from_tensor(arg.meta.get("val")) if isinstance(arg, torch.fx.Node) else None for arg in (*node.args, *node.kwargs.values()) ] ) out_profile = None meta = node.meta.get("val") assert meta is not None if isinstance(meta, torch.Tensor): out_profile = TensorMetadata.maybe_from_tensor(meta) elif isinstance(meta, (list, tuple)): out_profile = tuple([TensorMetadata.maybe_from_tensor(m) for m in meta]) # type: ignore[assignment] assert out_profile is not None return OpProfile(args_profile, out_profile) # type: ignore[arg-type] op_profiles: dict[str, set[OpProfile]] = defaultdict(set) for node in gm.graph.nodes: if node.op == "call_function" and str(node.target) in ops_to_guard: op_profiles[str(node.target)].add(_get_op_profile(node)) return op_profiles
import functools from collections import defaultdict import torch from torch._export.passes._node_metadata_hook import ( _node_metadata_hook, _set_node_metadata_hook, ) from torch._library.fake_profile import OpProfile, TensorMetadata def insert_custom_op_guards(gm: torch.fx.GraphModule, ops_to_guard: set[str]) -> None: """ This is used by draft_export to insert guards in front of calls to custom operators which have a generated fake kernel. """ for node in gm.graph.nodes: if node.op == "call_function" and str(node.target) in ops_to_guard: with _set_node_metadata_hook( gm, functools.partial( _node_metadata_hook, stack_trace=node.meta.get("stack_trace") ), ), gm.graph.inserting_before(node): for arg in (*node.args, *node.kwargs.values()): if isinstance(arg, torch.fx.Node) and isinstance( arg.meta.get("val"), torch.Tensor ): val = arg.meta["val"] gm.graph.call_function( torch.ops.aten._assert_tensor_metadata.default, args=(arg,), kwargs={ "dtype": val.dtype, "device": val.device, "layout": val.layout, }, ) gm.recompile() def get_op_profiles( gm: torch.fx.GraphModule, ops_to_guard: set[str] ) -> dict[str, set[OpProfile]]: """ This is used by draft_export to get a list of custom operator profiles so that we can generate fake kernels. """ def _get_op_profile(node: torch.fx.Node) -> OpProfile: args_profile = tuple( [ TensorMetadata.maybe_from_tensor(arg.meta.get("val")) if isinstance(arg, torch.fx.Node) else None for arg in (*node.args, *node.kwargs.values()) ] ) out_profile = None meta = node.meta.get("val") assert meta is not None if isinstance(meta, torch.Tensor): out_profile = TensorMetadata.maybe_from_tensor(meta) elif isinstance(meta, (list, tuple)): out_profile = tuple([TensorMetadata.maybe_from_tensor(m) for m in meta]) # type: ignore[assignment] assert out_profile is not None return OpProfile(args_profile, out_profile) # type: ignore[arg-type] op_profiles: dict[str, set[OpProfile]] = defaultdict(set) for node in gm.graph.nodes: if node.op == "call_function" and str(node.target) in ops_to_guard: op_profiles[str(node.target)].add(_get_op_profile(node)) return op_profiles
# coding=utf-8 # Copyright 2025 Advanced Micro Devices, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any from ..file_utils import is_torch_available from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel if is_torch_available(): import torch from ..utils import is_accelerate_available, is_quark_available, logging if is_accelerate_available(): from accelerate.utils import set_module_tensor_to_device logger = logging.get_logger(__name__) CHECKPOINT_KEYS = { "weight_scale": "weight_quantizer.scale", "bias_scale": "bias_quantizer.scale", "input_scale": "input_quantizer.scale", "output_scale": "output_quantizer.scale", "weight_zero_point": "weight_quantizer.zero_point", "bias_zero_point": "bias_quantizer.zero_point", "input_zero_point": "input_quantizer.zero_point", "output_zero_point": "output_quantizer.zero_point", } class QuarkHfQuantizer(HfQuantizer): """ Quark quantizer (https://quark.docs.amd.com/latest/). """ requires_calibration = True # On-the-fly quantization with quark is not supported for now. required_packages = ["quark"] # Checkpoints are expected to be already quantized when loading a quark model. However, as some keys from # the checkpoint might mismatch the model parameters keys, we use the `create_quantized_param` method # to load the checkpoints, remapping the keys. requires_parameters_quantization = True def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.json_export_config = quantization_config.json_export_config def validate_environment(self, *args, **kwargs): if not is_quark_available(): raise ImportError( "Loading a Quark quantized model requires the `quark` library but it was not found in the environment. Please refer to https://quark.docs.amd.com/latest/install.html." ) def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): from quark.torch.export.api import _map_to_quark _map_to_quark( model, self.quantization_config.quant_config, pack_method=self.json_export_config.pack_method, custom_mode=self.quantization_config.custom_mode, ) return model def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: dict[str, Any], **kwargs, ) -> bool: return True def create_quantized_param( self, model, param, param_name, param_device, state_dict, unexpected_keys ) -> "torch.nn.Parameter": postfix = param_name.split(".")[-1] if postfix in CHECKPOINT_KEYS: param_name = param_name.replace(postfix, CHECKPOINT_KEYS[postfix]) set_module_tensor_to_device(model, param_name, param_device, value=param) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def is_serializable(self, safe_serialization=None): return False @property def is_trainable(self): return False
# coding=utf-8 # Copyright 2025 Advanced Micro Devices, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, Dict from ..file_utils import is_torch_available from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel if is_torch_available(): import torch from ..utils import is_accelerate_available, is_quark_available, logging if is_accelerate_available(): from accelerate.utils import set_module_tensor_to_device logger = logging.get_logger(__name__) CHECKPOINT_KEYS = { "weight_scale": "weight_quantizer.scale", "bias_scale": "bias_quantizer.scale", "input_scale": "input_quantizer.scale", "output_scale": "output_quantizer.scale", "weight_zero_point": "weight_quantizer.zero_point", "bias_zero_point": "bias_quantizer.zero_point", "input_zero_point": "input_quantizer.zero_point", "output_zero_point": "output_quantizer.zero_point", } class QuarkHfQuantizer(HfQuantizer): """ Quark quantizer (https://quark.docs.amd.com/latest/). """ requires_calibration = True # On-the-fly quantization with quark is not supported for now. required_packages = ["quark"] # Checkpoints are expected to be already quantized when loading a quark model. However, as some keys from # the checkpoint might mismatch the model parameters keys, we use the `create_quantized_param` method # to load the checkpoints, remapping the keys. requires_parameters_quantization = True def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.json_export_config = quantization_config.json_export_config def validate_environment(self, *args, **kwargs): if not is_quark_available(): raise ImportError( "Loading a Quark quantized model requires the `quark` library but it was not found in the environment. Please refer to https://quark.docs.amd.com/latest/install.html." ) def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): from quark.torch.export.api import _map_to_quark _map_to_quark( model, self.quantization_config.quant_config, pack_method=self.json_export_config.pack_method, custom_mode=self.quantization_config.custom_mode, ) return model def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: return True def create_quantized_param( self, model, param, param_name, param_device, state_dict, unexpected_keys ) -> "torch.nn.Parameter": postfix = param_name.split(".")[-1] if postfix in CHECKPOINT_KEYS: param_name = param_name.replace(postfix, CHECKPOINT_KEYS[postfix]) set_module_tensor_to_device(model, param_name, param_device, value=param) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def is_serializable(self, safe_serialization=None): return False @property def is_trainable(self): return False
"""Snowflake Reader.""" import logging from typing import Any, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document from sqlalchemy import create_engine, text from sqlalchemy.engine import Engine from sqlalchemy.orm import sessionmaker logger = logging.getLogger(__name__) class SnowflakeReader(BaseReader): """ Initializes a new instance of the SnowflakeReader. This class establishes a connection to Snowflake using SQLAlchemy, executes query and concatenates each row into Document used by LlamaIndex. Attributes: engine (Optional[Engine]): SQLAlchemy Engine object of the database connection. OR account (Optional[str]): Snowflake account identifier. user (Optional[str]): Snowflake account username. password (Optional[str]): Password for the Snowflake account. database (Optional[str]): Snowflake database name. schema (Optional[str]): Snowflake schema name. warehouse (Optional[str]): Snowflake warehouse name. proxy (Optional[str]): Proxy setting for the connection. """ def __init__( self, account: Optional[str] = None, user: Optional[str] = None, password: Optional[str] = None, database: Optional[str] = None, schema: Optional[str] = None, warehouse: Optional[str] = None, role: Optional[str] = None, proxy: Optional[str] = None, engine: Optional[Engine] = None, ) -> None: """ Initializes the SnowflakeReader with optional connection details, proxy configuration, or an engine directly. Args: account (Optional[str]): Snowflake account identifier. user (Optional[str]): Snowflake account username. password (Optional[str]): Password for the Snowflake account. database (Optional[str]): Snowflake database name. schema (Optional[str]): Snowflake schema name. warehouse (Optional[str]): Snowflake warehouse name. role (Optional[str]): Snowflake role name. proxy (Optional[str]): Proxy setting for the connection. engine (Optional[Engine]): Existing SQLAlchemy engine. """ from snowflake.sqlalchemy import URL if engine is None: connect_args = {} if proxy: connect_args["proxy"] = proxy # Create an SQLAlchemy engine for Snowflake self.engine = create_engine( URL( account=account or "", user=user or "", password=password or "", database=database or "", schema=schema or "", warehouse=warehouse or "", role=role or "", ), connect_args=connect_args, ) else: self.engine = engine # Create a sessionmaker bound to the engine self.Session = sessionmaker(bind=self.engine) def execute_query(self, query_string: str) -> List[Any]: """ Executes a SQL query and returns the fetched results. Args: query_string (str): The SQL query to be executed. Returns: List[Any]: The fetched results from the query. """ # Create a session and execute the query session = self.Session() try: result = session.execute(text(query_string)) return result.fetchall() finally: # Ensure the session is closed after query execution session.close() def load_data(self, query: str) -> List[Document]: """ Query and load data from the Database, returning a list of Documents. Args: query (str): Query parameter to filter tables and rows. Returns: List[Document]: A list of Document objects. """ documents = [] if query is None: raise ValueError("A query parameter is necessary to filter the data") try: result = self.execute_query(query) for item in result: # fetch each item doc_str = ", ".join([str(entry) for entry in item]) documents.append(Document(text=doc_str)) return documents except Exception as e: logger.error( f"An error occurred while loading the data: {e}", exc_info=True )
"""Snowflake Reader.""" import logging from typing import Any, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document from sqlalchemy import create_engine, text from sqlalchemy.engine import Engine from sqlalchemy.orm import sessionmaker logger = logging.getLogger(__name__) class SnowflakeReader(BaseReader): """ Initializes a new instance of the SnowflakeReader. This class establishes a connection to Snowflake using SQLAlchemy, executes query and concatenates each row into Document used by LlamaIndex. Attributes: engine (Optional[Engine]): SQLAlchemy Engine object of the database connection. OR account (Optional[str]): Snowflake account identifier. user (Optional[str]): Snowflake account username. password (Optional[str]): Password for the Snowflake account. database (Optional[str]): Snowflake database name. schema (Optional[str]): Snowflake schema name. warehouse (Optional[str]): Snowflake warehouse name. proxy (Optional[str]): Proxy setting for the connection. """ def __init__( self, account: Optional[str] = None, user: Optional[str] = None, password: Optional[str] = None, database: Optional[str] = None, schema: Optional[str] = None, warehouse: Optional[str] = None, role: Optional[str] = None, proxy: Optional[str] = None, engine: Optional[Engine] = None, ) -> None: """ Initializes the SnowflakeReader with optional connection details, proxy configuration, or an engine directly. Args: account (Optional[str]): Snowflake account identifier. user (Optional[str]): Snowflake account username. password (Optional[str]): Password for the Snowflake account. database (Optional[str]): Snowflake database name. schema (Optional[str]): Snowflake schema name. warehouse (Optional[str]): Snowflake warehouse name. role (Optional[str]): Snowflake role name. proxy (Optional[str]): Proxy setting for the connection. engine (Optional[Engine]): Existing SQLAlchemy engine. """ from snowflake.sqlalchemy import URL if engine is None: connect_args = {} if proxy: connect_args["proxy"] = proxy # Create an SQLAlchemy engine for Snowflake self.engine = create_engine( URL( account=account or "", user=user or "", password=password or "", database=database or "", schema=schema or "", warehouse=warehouse or "", role=role or "", ), connect_args=connect_args, ) else: self.engine = engine # Create a sessionmaker bound to the engine self.Session = sessionmaker(bind=self.engine) def execute_query(self, query_string: str) -> List[Any]: """ Executes a SQL query and returns the fetched results. Args: query_string (str): The SQL query to be executed. Returns: List[Any]: The fetched results from the query. """ # Create a session and execute the query session = self.Session() try: result = session.execute(text(query_string)) return result.fetchall() finally: # Ensure the session is closed after query execution session.close() def load_data(self, query: str) -> List[Document]: """Query and load data from the Database, returning a list of Documents. Args: query (str): Query parameter to filter tables and rows. Returns: List[Document]: A list of Document objects. """ documents = [] if query is None: raise ValueError("A query parameter is necessary to filter the data") try: result = self.execute_query(query) for item in result: # fetch each item doc_str = ", ".join([str(entry) for entry in item]) documents.append(Document(text=doc_str)) return documents except Exception as e: logger.error( f"An error occurred while loading the data: {e}", exc_info=True )
import warnings from keras.src import activations from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.LeakyReLU") class LeakyReLU(Layer): """Leaky version of a Rectified Linear Unit activation layer. This layer allows a small gradient when the unit is not active. Formula: ``` python f(x) = alpha * x if x < 0 f(x) = x if x >= 0 ``` Example: ``` python leaky_relu_layer = LeakyReLU(negative_slope=0.5) input = np.array([-10, -5, 0.0, 5, 10]) result = leaky_relu_layer(input) # result = [-5. , -2.5, 0. , 5. , 10.] ``` Args: negative_slope: Float >= 0.0. Negative slope coefficient. Defaults to `0.3`. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. """ def __init__(self, negative_slope=0.3, **kwargs): if "alpha" in kwargs: negative_slope = kwargs.pop("alpha") warnings.warn( "Argument `alpha` is deprecated. " "Use `negative_slope` instead." ) super().__init__(**kwargs) if negative_slope is None or negative_slope < 0: raise ValueError( "The negative_slope value of a Leaky ReLU layer " "cannot be None or negative value. Expected a float." f" Received: negative_slope={negative_slope}" ) self.negative_slope = negative_slope self.supports_masking = True self.built = True def call(self, inputs): return activations.leaky_relu( inputs, negative_slope=self.negative_slope ) def get_config(self): config = super().get_config() config.update({"negative_slope": self.negative_slope}) return config def compute_output_shape(self, input_shape): return input_shape
import warnings from keras.src import activations from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.LeakyReLU") class LeakyReLU(Layer): """Leaky version of a Rectified Linear Unit activation layer. This layer allows a small gradient when the unit is not active. Formula: ``` python f(x) = alpha * x if x < 0 f(x) = x if x >= 0 ``` Example: ``` python leaky_relu_layer = LeakyReLU(negative_slope=0.5) input = np.array([-10, -5, 0.0, 5, 10]) result = leaky_relu_layer(input) # result = [-5. , -2.5, 0. , 5. , 10.] ``` Args: negative_slope: Float >= 0.0. Negative slope coefficient. Defaults to `0.3`. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. """ def __init__(self, negative_slope=0.3, **kwargs): if "alpha" in kwargs: negative_slope = kwargs.pop("alpha") warnings.warn( "Argument `alpha` is deprecated. " "Use `negative_slope` instead." ) super().__init__(**kwargs) if negative_slope is None or negative_slope < 0: raise ValueError( "The negative_slope value of a Leaky ReLU layer " "cannot be None or negative value. Expected a float." f" Received: negative_slope={negative_slope}" ) self.supports_masking = True self.negative_slope = negative_slope def call(self, inputs): return activations.leaky_relu( inputs, negative_slope=self.negative_slope ) def get_config(self): config = super().get_config() config.update({"negative_slope": self.negative_slope}) return config def compute_output_shape(self, input_shape): return input_shape
_base_ = './cascade-mask-rcnn_r50-caffe_fpn_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet101_caffe')))
_base_ = './cascade_mask_rcnn_r50_caffe_fpn_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet101_caffe')))
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.ndarray import NdArray @_register_proto(proto_type_name='audio_ndarray') class AudioNdArray(AbstractAudioTensor, NdArray): """ Subclass of NdArray, to represent an audio tensor. Adds audio-specific features to the tensor. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import AudioNdArray, AudioUrl import numpy as np class MyAudioDoc(BaseDoc): title: str audio_tensor: Optional[AudioNdArray] url: Optional[AudioUrl] bytes_: Optional[bytes] # from tensor doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=np.random.rand(1000, 2), ) doc_1.audio_tensor.save(file_path='/tmp/file_1.wav') doc_1.bytes_ = doc_1.audio_tensor.to_bytes() # from url doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor, _ = doc_2.url.load() doc_2.audio_tensor.save(file_path='/tmp/file_2.wav') doc_2.bytes_ = doc_1.audio_tensor.to_bytes() ``` --- """ ...
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.ndarray import NdArray @_register_proto(proto_type_name='audio_ndarray') class AudioNdArray(AbstractAudioTensor, NdArray): """ Subclass of NdArray, to represent an audio tensor. Adds audio-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional from docarray import BaseDoc from docarray.typing import AudioNdArray, AudioUrl import numpy as np class MyAudioDoc(BaseDoc): title: str audio_tensor: Optional[AudioNdArray] url: Optional[AudioUrl] bytes_: Optional[bytes] # from tensor doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=np.random.rand(1000, 2), ) doc_1.audio_tensor.save(file_path='path/to/file_1.wav') doc_1.bytes_ = doc_1.audio_tensor.to_bytes() # from url doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor = doc_2.url.load() doc_2.audio_tensor.save(file_path='path/to/file_2.wav') doc_2.bytes_ = doc_1.audio_tensor.to_bytes() """ ...
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Optional from jina import Document, DocumentArray from jina.logging.logger import JinaLogger from pymongo import MongoClient from pymongo.errors import BulkWriteError class MongoHandler: def __init__( self, host: str = 'localhost', port: int = 27017, username: Optional[str] = None, password: Optional[str] = None, database: str = 'jina_index_db', collection: str = 'jina_index_collection', ): self._logger = JinaLogger('mongo_handler') self._database_name = database self._collection_name = collection self._collection = None if username and password: self._connection = MongoClient( f'mongodb://{username}:{password}@{host}:{port}' ) else: self._connection = MongoClient(f'mongodb://{host}:{port}') self._logger.info(f'Connected to mongodb instance at {host}:{port}') @property def collection(self): """Get the collection, if the collection is new, create index based on ID field.""" if not self._collection: self._collection = self._connection[self._database_name][ self._collection_name ] self._collection.create_index( 'id', unique=True ) # create index on doc.id field if index not exist. return self._collection return self._collection def add(self, docs: DocumentArray, **kwargs): """Insert document from docs into mongodb instance.""" dict_docs = [] for doc in docs: item = doc.dict() if doc.embedding is not None: item['embedding'] = list(doc.embedding.flatten()) dict_docs.append(item) try: self.collection.insert_many( documents=dict_docs, ordered=True, # all document inserts will be attempted. ) except BulkWriteError: raise def update(self, docs: DocumentArray, **kwargs): """Update item from docs based on doc id.""" for doc in docs: item = doc.dict() item['embedding'] = [] if doc.embedding is not None: item['embedding'] = list(doc.embedding.flatten()) self.collection.replace_one( filter={'id': {'$eq': doc.id}}, replacement=item, upsert=True, ) def delete(self, docs: DocumentArray, **kwargs): """Delete item from docs based on doc id.""" doc_ids = [doc.id for doc in docs] self.collection.delete_many(filter={'id': {'$in': doc_ids}}) def search(self, docs: DocumentArray, **kwargs): for doc in docs: result = self.collection.find_one( filter={'id': doc.id}, projection={'_id': False} ) if result: if 'embedding' in result: result.pop('embedding') retrieved_doc = Document(result) doc.update(retrieved_doc) def get_size(self) -> int: """Get the size of collection""" return self.collection.count() def close(self): """Close connection.""" if self._connection: self._connection.close()
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Optional from pymongo import MongoClient from pymongo.errors import BulkWriteError from jina.logging.logger import JinaLogger from jina import Document, DocumentArray class MongoHandler: def __init__( self, host: str = 'localhost', port: int = 27017, username: Optional[str] = None, password: Optional[str] = None, database: str = 'jina_index_db', collection: str = 'jina_index_collection', ): self._logger = JinaLogger('mongo_handler') self._database_name = database self._collection_name = collection self._collection = None if username and password: self._connection = MongoClient( f'mongodb://{username}:{password}@{host}:{port}' ) else: self._connection = MongoClient(f'mongodb://{host}:{port}') self._logger.info(f'Connected to mongodb instance at {host}:{port}') @property def collection(self): """Get the collection, if the collection is new, create index based on ID field.""" if not self._collection: self._collection = self._connection[self._database_name][ self._collection_name ] self._collection.create_index( 'id', unique=True ) # create index on doc.id field if index not exist. return self._collection return self._collection def add(self, docs: DocumentArray, **kwargs): """Insert document from docs into mongodb instance.""" dict_docs = [] for doc in docs: item = doc.dict() if doc.embedding is not None: item['embedding'] = list(doc.embedding.flatten()) dict_docs.append(item) try: self.collection.insert_many( documents=dict_docs, ordered=True, # all document inserts will be attempted. ) except BulkWriteError: raise def update(self, docs: DocumentArray, **kwargs): """Update item from docs based on doc id.""" for doc in docs: item = doc.dict() item['embedding'] = [] if doc.embedding is not None: item['embedding'] = list(doc.embedding.flatten()) self.collection.replace_one( filter={'id': {'$eq': doc.id}}, replacement=item, upsert=True, ) def delete(self, docs: DocumentArray, **kwargs): """Delete item from docs based on doc id.""" doc_ids = [doc.id for doc in docs] self.collection.delete_many(filter={'id': {'$in': doc_ids}}) def search(self, docs: DocumentArray, **kwargs): for doc in docs: result = self.collection.find_one( filter={'id': doc.id}, projection={'_id': False} ) if result: result.pop('embedding') retrieved_doc = Document(result) doc.update(retrieved_doc) def get_size(self) -> int: """Get the size of collection""" return self.collection.count() def close(self): """Close connection.""" if self._connection: self._connection.close()
# dataset settings dataset_type = 'DeepFashionDataset' data_root = 'data/DeepFashion/In-shop/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', scale=(750, 1101), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(750, 1101), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=2, dataset=dict( type=dataset_type, data_root=data_root, ann_file='Anno/segmentation/DeepFashion_segmentation_train.json', data_prefix=dict(img='Img/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='Anno/segmentation/DeepFashion_segmentation_query.json', data_prefix=dict(img='Img/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='Anno/segmentation/DeepFashion_segmentation_gallery.json', data_prefix=dict(img='Img/'), test_mode=True, pipeline=test_pipeline)) val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'Anno/segmentation/DeepFashion_segmentation_query.json', metric=['bbox', 'segm'], format_only=False) test_evaluator = dict( type='CocoMetric', ann_file=data_root + 'Anno/segmentation/DeepFashion_segmentation_gallery.json', metric=['bbox', 'segm'], format_only=False)
# dataset settings dataset_type = 'DeepFashionDataset' data_root = 'data/DeepFashion/In-shop/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=(750, 1101), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(750, 1101), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( imgs_per_gpu=2, workers_per_gpu=1, train=dict( type=dataset_type, ann_file=data_root + 'annotations/DeepFashion_segmentation_query.json', img_prefix=data_root + 'Img/', pipeline=train_pipeline, data_root=data_root), val=dict( type=dataset_type, ann_file=data_root + 'annotations/DeepFashion_segmentation_query.json', img_prefix=data_root + 'Img/', pipeline=test_pipeline, data_root=data_root), test=dict( type=dataset_type, ann_file=data_root + 'annotations/DeepFashion_segmentation_gallery.json', img_prefix=data_root + 'Img/', pipeline=test_pipeline, data_root=data_root)) evaluation = dict(interval=5, metric=['bbox', 'segm'])
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseEmbeddingSimilarityEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") model.similarity_fn_name = "cosine" # even though the model is trained with dot, we need to set it to cosine for evaluation as the score in the dataset is cosine similarity # Load the STSB dataset (https://huggingface.co/datasets/sentence-transformers/stsb) eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") # Initialize the evaluator dev_evaluator = SparseEmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], name="sts_dev", ) results = dev_evaluator(model) """ EmbeddingSimilarityEvaluator: Evaluating the model on the sts_dev dataset: Cosine-Similarity: Pearson: 0.8429 Spearman: 0.8366 Model Sparsity: Active Dimensions: 78.3, Sparsity Ratio: 0.9974 """ # Print the results print(f"Primary metric: {dev_evaluator.primary_metric}") # => Primary metric: sts_dev_spearman_cosine print(f"Primary metric value: {results[dev_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8366
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseEmbeddingSimilarityEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") model.similarity_fn_name = "cosine" # even though the model is trained with dot, we need to set it to cosine for evaluation as the score in the dataset is cosine similarity # Load the STSB dataset (https://huggingface.co/datasets/sentence-transformers/stsb) eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") # Initialize the evaluator dev_evaluator = SparseEmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], name="sts_dev", ) results = dev_evaluator(model) """ EmbeddingSimilarityEvaluator: Evaluating the model on the sts_dev dataset: Cosine-Similarity: Pearson: 0.8430 Spearman: 0.8368 Model Sparsity: Active Dimensions: 81.1, Sparsity Ratio: 0.9973 """ # Print the results print(f"Primary metric: {dev_evaluator.primary_metric}") # => Primary metric: sts_dev_spearman_cosine print(f"Primary metric value: {results[dev_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8368
import ast from typing import List, Optional from llama_index.core.tools.tool_spec.base import BaseToolSpec class PythonFileToolSpec(BaseToolSpec): spec_functions = ["function_definitions", "get_function", "get_functions"] def __init__(self, file_name: str) -> None: f = open(file_name).read() self.tree = ast.parse(f) def function_definitions(self, external: Optional[bool] = True) -> str: """ Use this function to get the name and arguments of all function definitions in the python file. Args: external (Optional[bool]): Defaults to true. If false, this function will also return functions that start with _ """ functions = "" for node in ast.walk(self.tree): if isinstance(node, ast.FunctionDef): if external and node.name.startswith("_"): continue functions += f""" name: {node.name} arguments: {ast.dump(node.args)} """ return functions def get_function(self, name: str) -> str: """ Use this function to get the name and arguments of a single function definition in the python file. Args: name (str): The name of the function to retrieve """ for node in ast.walk(self.tree): if isinstance(node, ast.FunctionDef): if node.name == name: return f""" name: {node.name} arguments: {ast.dump(node.args)} docstring: {ast.get_docstring(node)} """ return None def get_functions(self, names: List[str]) -> str: """ Use this function to get the name and arguments of a list of function definition in the python file. Args: name (List[str]): The names of the functions to retrieve """ functions = "" for name in names: functions += self.get_function(name) + "\n" return functions
import ast from typing import List, Optional from llama_index.core.tools.tool_spec.base import BaseToolSpec class PythonFileToolSpec(BaseToolSpec): spec_functions = ["function_definitions", "get_function", "get_functions"] def __init__(self, file_name: str) -> None: f = open(file_name).read() self.tree = ast.parse(f) def function_definitions(self, external: Optional[bool] = True) -> str: """ Use this function to get the name and arguments of all function definitions in the python file. Args: external (Optional[bool]): Defaults to true. If false, this function will also return functions that start with _ """ functions = "" for node in ast.walk(self.tree): if isinstance(node, ast.FunctionDef): if external and node.name.startswith("_"): continue functions += f""" name: {node.name} arguments: {ast.dump(node.args)} """ return functions def get_function(self, name: str) -> str: """ Use this function to get the name and arguments of a single function definition in the python file. Args: name (str): The name of the function to retrieve """ for node in ast.walk(self.tree): if isinstance(node, ast.FunctionDef): if node.name == name: return f""" name: {node.name} arguments: {ast.dump(node.args)} docstring: {ast.get_docstring(node)} """ return None def get_functions(self, names: List[str]) -> str: """ Use this function to get the name and arguments of a list of function definition in the python file. Args: name (List[str]): The names of the functions to retrieve """ functions = "" for name in names: functions += self.get_function(name) + "\n" return functions
"""Simple reader that reads wikipedia.""" from typing import Any, List from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document class WikipediaReader(BasePydanticReader): """ Wikipedia reader. Reads a page. """ is_remote: bool = True def __init__(self) -> None: """Initialize with parameters.""" try: import wikipedia # noqa except ImportError: raise ImportError( "`wikipedia` package not found, please run `pip install wikipedia`" ) @classmethod def class_name(cls) -> str: return "WikipediaReader" def load_data( self, pages: List[str], lang_prefix: str = "en", **load_kwargs: Any ) -> List[Document]: """ Load data from the input directory. Args: pages (List[str]): List of pages to read. lang_prefix (str): Language prefix for Wikipedia. Defaults to English. Valid Wikipedia language codes can be found at https://en.wikipedia.org/wiki/List_of_Wikipedias. """ import wikipedia if lang_prefix.lower() != "en": if lang_prefix.lower() in wikipedia.languages(): wikipedia.set_lang(lang_prefix.lower()) else: raise ValueError( f"Language prefix '{lang_prefix}' for Wikipedia is not supported. Check supported languages at https://en.wikipedia.org/wiki/List_of_Wikipedias." ) results = [] for page in pages: wiki_page = wikipedia.page(page, **load_kwargs) page_content = wiki_page.content page_id = wiki_page.pageid results.append(Document(id_=page_id, text=page_content)) return results
"""Simple reader that reads wikipedia.""" from typing import Any, List from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document class WikipediaReader(BasePydanticReader): """Wikipedia reader. Reads a page. """ is_remote: bool = True def __init__(self) -> None: """Initialize with parameters.""" try: import wikipedia # noqa except ImportError: raise ImportError( "`wikipedia` package not found, please run `pip install wikipedia`" ) @classmethod def class_name(cls) -> str: return "WikipediaReader" def load_data( self, pages: List[str], lang_prefix: str = "en", **load_kwargs: Any ) -> List[Document]: """Load data from the input directory. Args: pages (List[str]): List of pages to read. lang_prefix (str): Language prefix for Wikipedia. Defaults to English. Valid Wikipedia language codes can be found at https://en.wikipedia.org/wiki/List_of_Wikipedias. """ import wikipedia if lang_prefix.lower() != "en": if lang_prefix.lower() in wikipedia.languages(): wikipedia.set_lang(lang_prefix.lower()) else: raise ValueError( f"Language prefix '{lang_prefix}' for Wikipedia is not supported. Check supported languages at https://en.wikipedia.org/wiki/List_of_Wikipedias." ) results = [] for page in pages: wiki_page = wikipedia.page(page, **load_kwargs) page_content = wiki_page.content page_id = wiki_page.pageid results.append(Document(id_=page_id, text=page_content)) return results
from io import BytesIO from typing import TYPE_CHECKING, Any, List, NamedTuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto from docarray.typing.tensor import AudioNdArray, NdArray, VideoNdArray from docarray.utils._internal.misc import import_library if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='VideoBytes') class VideoLoadResult(NamedTuple): video: VideoNdArray audio: AudioNdArray key_frame_indices: NdArray @_register_proto(proto_type_name='video_bytes') class VideoBytes(bytes, AbstractType): """ Bytes that store a video and that can be load into a video tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load(self, **kwargs) -> VideoLoadResult: """ Load the video from the bytes into a VideoLoadResult object consisting of: - a [`VideoNdArray`][docarray.typing.VideoNdArray] (`VideoLoadResult.video`) - an [`AudioNdArray`][docarray.typing.AudioNdArray] (`VideoLoadResult.audio`) - an [`NdArray`][docarray.typing.NdArray] containing the key frame indices (`VideoLoadResult.key_frame_indices`). --- ```python from docarray import BaseDoc from docarray.typing import AudioNdArray, NdArray, VideoNdArray, VideoUrl class MyDoc(BaseDoc): video_url: VideoUrl doc = MyDoc( video_url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ) video, audio, key_frame_indices = doc.video_url.load() assert isinstance(video, VideoNdArray) assert isinstance(audio, AudioNdArray) assert isinstance(key_frame_indices, NdArray) ``` --- :param kwargs: supports all keyword arguments that are being supported by av.open() as described [here](https://pyav.org/docs/stable/api/_globals.html?highlight=open#av.open) :return: a `VideoLoadResult` instance with video, audio and keyframe indices """ if TYPE_CHECKING: import av else: av = import_library('av') with av.open(BytesIO(self), **kwargs) as container: audio_frames: List[np.ndarray] = [] video_frames: List[np.ndarray] = [] keyframe_indices: List[int] = [] for frame in container.decode(): if type(frame) == av.audio.frame.AudioFrame: audio_frames.append(frame.to_ndarray()) elif type(frame) == av.video.frame.VideoFrame: if frame.key_frame == 1: curr_index = len(video_frames) keyframe_indices.append(curr_index) video_frames.append(frame.to_ndarray(format='rgb24')) if len(audio_frames) == 0: audio = parse_obj_as(AudioNdArray, np.array(audio_frames)) else: audio = parse_obj_as(AudioNdArray, np.stack(audio_frames)) video = parse_obj_as(VideoNdArray, np.stack(video_frames)) indices = parse_obj_as(NdArray, keyframe_indices) return VideoLoadResult(video=video, audio=audio, key_frame_indices=indices)
from io import BytesIO from typing import TYPE_CHECKING, Any, List, NamedTuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto from docarray.typing.tensor import AudioNdArray, NdArray, VideoNdArray from docarray.utils._internal.misc import import_library if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='VideoBytes') class VideoLoadResult(NamedTuple): video: VideoNdArray audio: AudioNdArray key_frame_indices: NdArray @_register_proto(proto_type_name='video_bytes') class VideoBytes(bytes, AbstractType): """ Bytes that store a video and that can be load into a video tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load(self, **kwargs) -> VideoLoadResult: """ Load the video from the bytes into a VideoLoadResult object consisting of: - a [`VideoNdArray`][docarray.typing.VideoNdArray] (`VideoLoadResult.video`) - an [`AudioNdArray`][docarray.typing.AudioNdArray] (`VideoLoadResult.audio`) - an [`NdArray`][docarray.typing.NdArray] containing the key frame indices (`VideoLoadResult.key_frame_indices`). --- ```python from docarray import BaseDoc from docarray.typing import AudioNdArray, NdArray, VideoNdArray, VideoUrl class MyDoc(BaseDoc): video_url: VideoUrl doc = MyDoc( video_url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video, audio, key_frame_indices = doc.video_url.load() assert isinstance(video, VideoNdArray) assert isinstance(audio, AudioNdArray) assert isinstance(key_frame_indices, NdArray) ``` --- :param kwargs: supports all keyword arguments that are being supported by av.open() as described [here](https://pyav.org/docs/stable/api/_globals.html?highlight=open#av.open) :return: a `VideoLoadResult` instance with video, audio and keyframe indices """ if TYPE_CHECKING: import av else: av = import_library('av') with av.open(BytesIO(self), **kwargs) as container: audio_frames: List[np.ndarray] = [] video_frames: List[np.ndarray] = [] keyframe_indices: List[int] = [] for frame in container.decode(): if type(frame) == av.audio.frame.AudioFrame: audio_frames.append(frame.to_ndarray()) elif type(frame) == av.video.frame.VideoFrame: if frame.key_frame == 1: curr_index = len(video_frames) keyframe_indices.append(curr_index) video_frames.append(frame.to_ndarray(format='rgb24')) if len(audio_frames) == 0: audio = parse_obj_as(AudioNdArray, np.array(audio_frames)) else: audio = parse_obj_as(AudioNdArray, np.stack(audio_frames)) video = parse_obj_as(VideoNdArray, np.stack(video_frames)) indices = parse_obj_as(NdArray, keyframe_indices) return VideoLoadResult(video=video, audio=audio, key_frame_indices=indices)
_base_ = 'tridentnet_r50-caffe_1x_coco.py' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = 'tridentnet_r50_caffe_1x_coco.py' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
"""LangChain **Runnable** and the **LangChain Expression Language (LCEL)**. The LangChain Expression Language (LCEL) offers a declarative method to build production-grade programs that harness the power of LLMs. Programs created using LCEL and LangChain Runnables inherently support synchronous, asynchronous, batch, and streaming operations. Support for **async** allows servers hosting LCEL based programs to scale better for higher concurrent loads. **Batch** operations allow for processing multiple inputs in parallel. **Streaming** of intermediate outputs, as they're being generated, allows for creating more responsive UX. This module contains schema and implementation of LangChain Runnables primitives. """ from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.runnables.base import ( Runnable, RunnableBinding, RunnableGenerator, RunnableLambda, RunnableMap, RunnableParallel, RunnableSequence, RunnableSerializable, chain, ) from langchain_core.runnables.branch import RunnableBranch from langchain_core.runnables.config import ( RunnableConfig, ensure_config, get_config_list, patch_config, run_in_executor, ) from langchain_core.runnables.fallbacks import RunnableWithFallbacks from langchain_core.runnables.history import RunnableWithMessageHistory from langchain_core.runnables.passthrough import ( RunnableAssign, RunnablePassthrough, RunnablePick, ) from langchain_core.runnables.router import RouterInput, RouterRunnable from langchain_core.runnables.utils import ( AddableDict, ConfigurableField, ConfigurableFieldMultiOption, ConfigurableFieldSingleOption, ConfigurableFieldSpec, aadd, add, ) __all__ = [ "chain", "AddableDict", "ConfigurableField", "ConfigurableFieldSingleOption", "ConfigurableFieldMultiOption", "ConfigurableFieldSpec", "ensure_config", "run_in_executor", "patch_config", "RouterInput", "RouterRunnable", "Runnable", "RunnableSerializable", "RunnableBinding", "RunnableBranch", "RunnableConfig", "RunnableGenerator", "RunnableLambda", "RunnableMap", "RunnableParallel", "RunnablePassthrough", "RunnableAssign", "RunnablePick", "RunnableSequence", "RunnableWithFallbacks", "RunnableWithMessageHistory", "get_config_list", "aadd", "add", ] _dynamic_imports = { "chain": "base", "Runnable": "base", "RunnableBinding": "base", "RunnableGenerator": "base", "RunnableLambda": "base", "RunnableMap": "base", "RunnableParallel": "base", "RunnableSequence": "base", "RunnableSerializable": "base", "RunnableBranch": "branch", "RunnableConfig": "config", "ensure_config": "config", "get_config_list": "config", "patch_config": "config", "run_in_executor": "config", "RunnableWithFallbacks": "fallbacks", "RunnableWithMessageHistory": "history", "RunnableAssign": "passthrough", "RunnablePassthrough": "passthrough", "RunnablePick": "passthrough", "RouterInput": "router", "RouterRunnable": "router", "AddableDict": "utils", "ConfigurableField": "utils", "ConfigurableFieldMultiOption": "utils", "ConfigurableFieldSingleOption": "utils", "ConfigurableFieldSpec": "utils", "aadd": "utils", "add": "utils", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""LangChain **Runnable** and the **LangChain Expression Language (LCEL)**. The LangChain Expression Language (LCEL) offers a declarative method to build production-grade programs that harness the power of LLMs. Programs created using LCEL and LangChain Runnables inherently support synchronous, asynchronous, batch, and streaming operations. Support for **async** allows servers hosting LCEL based programs to scale better for higher concurrent loads. **Batch** operations allow for processing multiple inputs in parallel. **Streaming** of intermediate outputs, as they're being generated, allows for creating more responsive UX. This module contains schema and implementation of LangChain Runnables primitives. """ from langchain_core.runnables.base import ( Runnable, RunnableBinding, RunnableGenerator, RunnableLambda, RunnableMap, RunnableParallel, RunnableSequence, RunnableSerializable, chain, ) from langchain_core.runnables.branch import RunnableBranch from langchain_core.runnables.config import ( RunnableConfig, ensure_config, get_config_list, patch_config, run_in_executor, ) from langchain_core.runnables.fallbacks import RunnableWithFallbacks from langchain_core.runnables.history import RunnableWithMessageHistory from langchain_core.runnables.passthrough import ( RunnableAssign, RunnablePassthrough, RunnablePick, ) from langchain_core.runnables.router import RouterInput, RouterRunnable from langchain_core.runnables.utils import ( AddableDict, ConfigurableField, ConfigurableFieldMultiOption, ConfigurableFieldSingleOption, ConfigurableFieldSpec, aadd, add, ) __all__ = [ "chain", "AddableDict", "ConfigurableField", "ConfigurableFieldSingleOption", "ConfigurableFieldMultiOption", "ConfigurableFieldSpec", "ensure_config", "run_in_executor", "patch_config", "RouterInput", "RouterRunnable", "Runnable", "RunnableSerializable", "RunnableBinding", "RunnableBranch", "RunnableConfig", "RunnableGenerator", "RunnableLambda", "RunnableMap", "RunnableParallel", "RunnablePassthrough", "RunnableAssign", "RunnablePick", "RunnableSequence", "RunnableWithFallbacks", "RunnableWithMessageHistory", "get_config_list", "aadd", "add", ]
import torch def get_modules(use_v2): # We need a protected import to avoid the V2 warning in case just V1 is used if use_v2: import torchvision.datapoints import torchvision.transforms.v2 import v2_extras return torchvision.transforms.v2, torchvision.datapoints, v2_extras else: import transforms return transforms, None, None class SegmentationPresetTrain: def __init__( self, *, base_size, crop_size, hflip_prob=0.5, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), backend="pil", use_v2=False, ): T, datapoints, v2_extras = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "datapoint": transforms.append(T.ToImageTensor()) elif backend == "tensor": transforms.append(T.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") transforms += [T.RandomResize(min_size=int(0.5 * base_size), max_size=int(2.0 * base_size))] if hflip_prob > 0: transforms += [T.RandomHorizontalFlip(hflip_prob)] if use_v2: # We need a custom pad transform here, since the padding we want to perform here is fundamentally # different from the padding in `RandomCrop` if `pad_if_needed=True`. transforms += [v2_extras.PadIfSmaller(crop_size, fill={datapoints.Mask: 255, "others": 0})] transforms += [T.RandomCrop(crop_size)] if backend == "pil": transforms += [T.PILToTensor()] if use_v2: img_type = datapoints.Image if backend == "datapoint" else torch.Tensor transforms += [ T.ToDtype(dtype={img_type: torch.float32, datapoints.Mask: torch.int64, "others": None}, scale=True) ] else: # No need to explicitly convert masks as they're magically int64 already transforms += [T.ConvertImageDtype(torch.float)] transforms += [T.Normalize(mean=mean, std=std)] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target) class SegmentationPresetEval: def __init__( self, *, base_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), backend="pil", use_v2=False ): T, _, _ = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "tensor": transforms += [T.PILToTensor()] elif backend == "datapoint": transforms += [T.ToImageTensor()] elif backend != "pil": raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") if use_v2: transforms += [T.Resize(size=(base_size, base_size))] else: transforms += [T.RandomResize(min_size=base_size, max_size=base_size)] if backend == "pil": # Note: we could just convert to pure tensors even in v2? transforms += [T.ToImageTensor() if use_v2 else T.PILToTensor()] transforms += [ T.ConvertImageDtype(torch.float), T.Normalize(mean=mean, std=std), ] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target)
from collections import defaultdict import torch def get_modules(use_v2): # We need a protected import to avoid the V2 warning in case just V1 is used if use_v2: import torchvision.datapoints import torchvision.transforms.v2 import v2_extras return torchvision.transforms.v2, torchvision.datapoints, v2_extras else: import transforms return transforms, None, None class SegmentationPresetTrain: def __init__( self, *, base_size, crop_size, hflip_prob=0.5, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), backend="pil", use_v2=False, ): T, datapoints, v2_extras = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "datapoint": transforms.append(T.ToImageTensor()) elif backend == "tensor": transforms.append(T.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") transforms += [T.RandomResize(min_size=int(0.5 * base_size), max_size=int(2.0 * base_size))] if hflip_prob > 0: transforms += [T.RandomHorizontalFlip(hflip_prob)] if use_v2: # We need a custom pad transform here, since the padding we want to perform here is fundamentally # different from the padding in `RandomCrop` if `pad_if_needed=True`. transforms += [v2_extras.PadIfSmaller(crop_size, fill=defaultdict(lambda: 0, {datapoints.Mask: 255}))] transforms += [T.RandomCrop(crop_size)] if backend == "pil": transforms += [T.PILToTensor()] if use_v2: img_type = datapoints.Image if backend == "datapoint" else torch.Tensor transforms += [ T.ToDtype(dtype={img_type: torch.float32, datapoints.Mask: torch.int64, "others": None}, scale=True) ] else: # No need to explicitly convert masks as they're magically int64 already transforms += [T.ConvertImageDtype(torch.float)] transforms += [T.Normalize(mean=mean, std=std)] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target) class SegmentationPresetEval: def __init__( self, *, base_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), backend="pil", use_v2=False ): T, _, _ = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "tensor": transforms += [T.PILToTensor()] elif backend == "datapoint": transforms += [T.ToImageTensor()] elif backend != "pil": raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") if use_v2: transforms += [T.Resize(size=(base_size, base_size))] else: transforms += [T.RandomResize(min_size=base_size, max_size=base_size)] if backend == "pil": # Note: we could just convert to pure tensors even in v2? transforms += [T.ToImageTensor() if use_v2 else T.PILToTensor()] transforms += [ T.ConvertImageDtype(torch.float), T.Normalize(mean=mean, std=std), ] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target)
"""Module for helper functions for clients.""" from typing import Optional, Tuple from jina._docarray import Document, DocumentArray, docarray_v2 from jina.enums import DataInputType from jina.types.request.data import DataRequest def _new_data_request_from_batch( batch, data_type: DataInputType, endpoint: str, target: Optional[str], parameters: Optional[dict], ) -> DataRequest: req = _new_data_request(endpoint, target, parameters) # add docs fields _add_docs(req, batch, data_type) return req def _new_data_request( endpoint: str, target: Optional[str], parameters: Optional[dict] ) -> DataRequest: req = DataRequest() # set up header req.header.exec_endpoint = endpoint if target: req.header.target_executor = target # add parameters field if parameters: req.parameters = parameters return req def _new_doc_from_data( data, data_type: DataInputType ) -> Tuple['Document', 'DataInputType']: def _build_doc_from_content(): return Document(content=data), DataInputType.CONTENT if data_type == DataInputType.DICT: return ( (Document(**data), DataInputType.DICT) if docarray_v2 else (Document.from_dict(data), DataInputType.DICT) ) if data_type == DataInputType.AUTO or data_type == DataInputType.DOCUMENT: if isinstance(data, Document): # if incoming is already primitive type Document, then all good, best practice! return data, DataInputType.DOCUMENT elif isinstance(data, dict): return ( (Document(**data), DataInputType.DICT) if docarray_v2 else (Document.from_dict(data), DataInputType.DICT) ) else: try: d = Document(data) return d, DataInputType.DOCUMENT # NOT HIT except ValueError: # AUTO has a fallback, now reconsider it as content if data_type == DataInputType.AUTO: return _build_doc_from_content() else: raise elif data_type == DataInputType.CONTENT: return _build_doc_from_content() def _add_docs(req: DataRequest, batch, data_type: DataInputType) -> None: da = DocumentArray([]) for content in batch: d, data_type = _new_doc_from_data(content, data_type) da.append(d) req.data.docs = da
"""Module for helper functions for clients.""" from typing import Tuple, Optional from docarray import Document, DocumentArray from jina.enums import DataInputType from jina.types.request.data import DataRequest def _new_data_request_from_batch( batch, data_type: DataInputType, endpoint: str, target: Optional[str], parameters: Optional[dict] ) -> DataRequest: req = _new_data_request(endpoint, target, parameters) # add docs fields _add_docs(req, batch, data_type) return req def _new_data_request(endpoint: str, target: Optional[str], parameters: Optional[dict]) -> DataRequest: req = DataRequest() # set up header req.header.exec_endpoint = endpoint if target: req.header.target_executor = target # add parameters field if parameters: req.parameters = parameters return req def _new_doc_from_data( data, data_type: DataInputType ) -> Tuple['Document', 'DataInputType']: def _build_doc_from_content(): return Document(content=data), DataInputType.CONTENT if data_type == DataInputType.DICT: return Document.from_dict(data), DataInputType.DICT if data_type == DataInputType.AUTO or data_type == DataInputType.DOCUMENT: if isinstance(data, Document): # if incoming is already primitive type Document, then all good, best practice! return data, DataInputType.DOCUMENT elif isinstance(data, dict): return Document.from_dict(data), DataInputType.DICT try: d = Document(data) return d, DataInputType.DOCUMENT # NOT HIT except ValueError: # AUTO has a fallback, now reconsider it as content if data_type == DataInputType.AUTO: return _build_doc_from_content() else: raise elif data_type == DataInputType.CONTENT: return _build_doc_from_content() def _add_docs(req: DataRequest, batch, data_type: DataInputType) -> None: da = DocumentArray() for content in batch: d, data_type = _new_doc_from_data(content, data_type) da.append(d) req.data.docs = da
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from mmdet.models.dense_heads import GFLHead, LDHead def test_ld_head_loss(): """Tests vfnet head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = mmcv.Config( dict( assigner=dict(type='ATSSAssigner', topk=9, ignore_iof_thr=0.1), allowed_border=-1, pos_weight=-1, debug=False)) self = LDHead( num_classes=4, in_channels=1, train_cfg=train_cfg, loss_ld=dict(type='KnowledgeDistillationKLDivLoss', loss_weight=1.0), loss_cls=dict( type='QualityFocalLoss', use_sigmoid=True, beta=2.0, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128])) teacher_model = GFLHead( num_classes=4, in_channels=1, train_cfg=train_cfg, loss_cls=dict( type='QualityFocalLoss', use_sigmoid=True, beta=2.0, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128])) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [4, 8, 16, 32, 64] ] cls_scores, bbox_preds = self.forward(feat) rand_soft_target = teacher_model.forward(feat)[1] # Test that empty ground truth encourages the network to predict # background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, rand_soft_target, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero, ld loss should # be non-negative but there should be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) empty_ld_loss = sum(empty_gt_losses['loss_ld']) assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' assert empty_box_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') assert empty_ld_loss.item() >= 0, 'ld loss should be non-negative' # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, rand_soft_target, img_metas, gt_bboxes_ignore) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' assert onegt_box_loss.item() > 0, 'box loss should be non-zero' gt_bboxes_ignore = gt_bboxes # When truth is non-empty but ignored then the cls loss should be nonzero, # but there should be no box loss. ignore_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, rand_soft_target, img_metas, gt_bboxes_ignore) ignore_cls_loss = sum(ignore_gt_losses['loss_cls']) ignore_box_loss = sum(ignore_gt_losses['loss_bbox']) assert ignore_cls_loss.item() > 0, 'cls loss should be non-zero' assert ignore_box_loss.item() == 0, 'gt bbox ignored loss should be zero' # When truth is non-empty and not ignored then both cls and box loss should # be nonzero for random inputs gt_bboxes_ignore = [torch.randn(1, 4)] not_ignore_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, rand_soft_target, img_metas, gt_bboxes_ignore) not_ignore_cls_loss = sum(not_ignore_gt_losses['loss_cls']) not_ignore_box_loss = sum(not_ignore_gt_losses['loss_bbox']) assert not_ignore_cls_loss.item() > 0, 'cls loss should be non-zero' assert not_ignore_box_loss.item( ) > 0, 'gt bbox not ignored loss should be non-zero'
import mmcv import torch from mmdet.models.dense_heads import GFLHead, LDHead def test_ld_head_loss(): """Tests vfnet head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = mmcv.Config( dict( assigner=dict(type='ATSSAssigner', topk=9, ignore_iof_thr=0.1), allowed_border=-1, pos_weight=-1, debug=False)) self = LDHead( num_classes=4, in_channels=1, train_cfg=train_cfg, loss_ld=dict(type='KnowledgeDistillationKLDivLoss', loss_weight=1.0), loss_cls=dict( type='QualityFocalLoss', use_sigmoid=True, beta=2.0, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128])) teacher_model = GFLHead( num_classes=4, in_channels=1, train_cfg=train_cfg, loss_cls=dict( type='QualityFocalLoss', use_sigmoid=True, beta=2.0, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128])) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [4, 8, 16, 32, 64] ] cls_scores, bbox_preds = self.forward(feat) rand_soft_target = teacher_model.forward(feat)[1] # Test that empty ground truth encourages the network to predict # background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, rand_soft_target, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero, ld loss should # be non-negative but there should be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) empty_ld_loss = sum(empty_gt_losses['loss_ld']) assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' assert empty_box_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') assert empty_ld_loss.item() >= 0, 'ld loss should be non-negative' # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, rand_soft_target, img_metas, gt_bboxes_ignore) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' assert onegt_box_loss.item() > 0, 'box loss should be non-zero' gt_bboxes_ignore = gt_bboxes # When truth is non-empty but ignored then the cls loss should be nonzero, # but there should be no box loss. ignore_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, rand_soft_target, img_metas, gt_bboxes_ignore) ignore_cls_loss = sum(ignore_gt_losses['loss_cls']) ignore_box_loss = sum(ignore_gt_losses['loss_bbox']) assert ignore_cls_loss.item() > 0, 'cls loss should be non-zero' assert ignore_box_loss.item() == 0, 'gt bbox ignored loss should be zero' # When truth is non-empty and not ignored then both cls and box loss should # be nonzero for random inputs gt_bboxes_ignore = [torch.randn(1, 4)] not_ignore_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, rand_soft_target, img_metas, gt_bboxes_ignore) not_ignore_cls_loss = sum(not_ignore_gt_losses['loss_cls']) not_ignore_box_loss = sum(not_ignore_gt_losses['loss_bbox']) assert not_ignore_cls_loss.item() > 0, 'cls loss should be non-zero' assert not_ignore_box_loss.item( ) > 0, 'gt bbox not ignored loss should be non-zero'
import warnings from typing import Any from langchain_core.memory import BaseMemory from pydantic import field_validator from langchain.memory.chat_memory import BaseChatMemory class CombinedMemory(BaseMemory): """Combining multiple memories' data together.""" memories: list[BaseMemory] """For tracking all the memories that should be accessed.""" @field_validator("memories") @classmethod def check_repeated_memory_variable( cls, value: list[BaseMemory] ) -> list[BaseMemory]: all_variables: set[str] = set() for val in value: overlap = all_variables.intersection(val.memory_variables) if overlap: msg = ( f"The same variables {overlap} are found in multiple" "memory object, which is not allowed by CombinedMemory." ) raise ValueError(msg) all_variables |= set(val.memory_variables) return value @field_validator("memories") @classmethod def check_input_key(cls, value: list[BaseMemory]) -> list[BaseMemory]: """Check that if memories are of type BaseChatMemory that input keys exist.""" for val in value: if isinstance(val, BaseChatMemory) and val.input_key is None: warnings.warn( "When using CombinedMemory, " "input keys should be so the input is known. " f" Was not set on {val}" ) return value @property def memory_variables(self) -> list[str]: """All the memory variables that this instance provides.""" """Collected from the all the linked memories.""" memory_variables = [] for memory in self.memories: memory_variables.extend(memory.memory_variables) return memory_variables def load_memory_variables(self, inputs: dict[str, Any]) -> dict[str, str]: """Load all vars from sub-memories.""" memory_data: dict[str, Any] = {} # Collect vars from all sub-memories for memory in self.memories: data = memory.load_memory_variables(inputs) for key, value in data.items(): if key in memory_data: msg = f"The variable {key} is repeated in the CombinedMemory." raise ValueError(msg) memory_data[key] = value return memory_data def save_context(self, inputs: dict[str, Any], outputs: dict[str, str]) -> None: """Save context from this session for every memory.""" # Save context for all sub-memories for memory in self.memories: memory.save_context(inputs, outputs) def clear(self) -> None: """Clear context from this session for every memory.""" for memory in self.memories: memory.clear()
import warnings from typing import Any from langchain_core.memory import BaseMemory from pydantic import field_validator from langchain.memory.chat_memory import BaseChatMemory class CombinedMemory(BaseMemory): """Combining multiple memories' data together.""" memories: list[BaseMemory] """For tracking all the memories that should be accessed.""" @field_validator("memories") @classmethod def check_repeated_memory_variable( cls, value: list[BaseMemory] ) -> list[BaseMemory]: all_variables: set[str] = set() for val in value: overlap = all_variables.intersection(val.memory_variables) if overlap: msg = ( f"The same variables {overlap} are found in multiple" "memory object, which is not allowed by CombinedMemory." ) raise ValueError(msg) all_variables |= set(val.memory_variables) return value @field_validator("memories") @classmethod def check_input_key(cls, value: list[BaseMemory]) -> list[BaseMemory]: """Check that if memories are of type BaseChatMemory that input keys exist.""" for val in value: if isinstance(val, BaseChatMemory): if val.input_key is None: warnings.warn( "When using CombinedMemory, " "input keys should be so the input is known. " f" Was not set on {val}" ) return value @property def memory_variables(self) -> list[str]: """All the memory variables that this instance provides.""" """Collected from the all the linked memories.""" memory_variables = [] for memory in self.memories: memory_variables.extend(memory.memory_variables) return memory_variables def load_memory_variables(self, inputs: dict[str, Any]) -> dict[str, str]: """Load all vars from sub-memories.""" memory_data: dict[str, Any] = {} # Collect vars from all sub-memories for memory in self.memories: data = memory.load_memory_variables(inputs) for key, value in data.items(): if key in memory_data: msg = f"The variable {key} is repeated in the CombinedMemory." raise ValueError(msg) memory_data[key] = value return memory_data def save_context(self, inputs: dict[str, Any], outputs: dict[str, str]) -> None: """Save context from this session for every memory.""" # Save context for all sub-memories for memory in self.memories: memory.save_context(inputs, outputs) def clear(self) -> None: """Clear context from this session for every memory.""" for memory in self.memories: memory.clear()
from pathlib import Path import numpy as np import pytest from custom_image_torch_encoder import CustomImageTorchEncoder from jina import Document, DocumentArray, Executor @pytest.fixture def encoder(): model_dir = Path(__file__).parents[1] / 'model' return CustomImageTorchEncoder( model_definition_file=str(model_dir / 'external_model.py'), model_state_dict_path=str(model_dir / 'model_state_dict.pth'), layer_name='conv1', model_class_name='ExternalModel', ) def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.layer_name == 'conv1' def test_encoder(encoder): output_dim = 10 input_dim = 224 test_img = np.random.rand(3, input_dim, input_dim) docs = DocumentArray([Document(blob=test_img), Document(blob=test_img)]) encoder.encode(docs, {}) assert len(docs) == 2 for doc in docs: assert doc.embedding.shape == (output_dim,) def test_encoder_traversal_paths(encoder): output_dim = 10 input_dim = 224 test_img = np.random.rand(3, input_dim, input_dim) docs = DocumentArray( [ Document(chunks=[Document(blob=test_img), Document(blob=test_img)]), Document(chunks=[Document(blob=test_img), Document(blob=test_img)]), ] ) encoder.encode(docs, {'traversal_paths': ['c']}) assert len(docs) == 2 assert len(docs.traverse_flat(['c'])) == 4 for chunk in docs.traverse_flat(['c']): assert chunk.embedding.shape == (output_dim,) @pytest.mark.gpu def test_encoder_gpu(): model_dir = Path(__file__).parents[1] / 'model' encoder = CustomImageTorchEncoder( model_definition_file=str(model_dir / 'external_model.py'), model_state_dict_path=str(model_dir / 'model_state_dict.pth'), layer_name='conv1', model_class_name='ExternalModel', device='cuda', ) output_dim = 10 input_dim = 224 test_img = np.random.rand(3, input_dim, input_dim) docs = DocumentArray([Document(blob=test_img), Document(blob=test_img)]) encoder.encode(docs, {}) assert len(docs) == 2 for doc in docs: assert doc.embedding.shape == (output_dim,)
from pathlib import Path import numpy as np import pytest from jina import Document, DocumentArray, Executor from ...custom_image_torch_encoder import CustomImageTorchEncoder @pytest.fixture def encoder(): model_dir = Path(__file__).parents[1] / 'model' return CustomImageTorchEncoder( model_definition_file=str(model_dir / 'external_model.py'), model_state_dict_path=str(model_dir / 'model_state_dict.pth'), layer_name='conv1', model_class_name='ExternalModel', ) def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.layer_name == 'conv1' def test_encoder(encoder): output_dim = 10 input_dim = 224 test_img = np.random.rand(3, input_dim, input_dim) docs = DocumentArray([Document(blob=test_img), Document(blob=test_img)]) encoder.encode(docs, {}) assert len(docs) == 2 for doc in docs: assert doc.embedding.shape == (output_dim,) def test_encoder_traversal_paths(encoder): output_dim = 10 input_dim = 224 test_img = np.random.rand(3, input_dim, input_dim) docs = DocumentArray( [ Document(chunks=[Document(blob=test_img), Document(blob=test_img)]), Document(chunks=[Document(blob=test_img), Document(blob=test_img)]), ] ) encoder.encode(docs, {'traversal_paths': ['c']}) assert len(docs) == 2 assert len(docs.traverse_flat(['c'])) == 4 for chunk in docs.traverse_flat(['c']): assert chunk.embedding.shape == (output_dim,) @pytest.mark.gpu def test_encoder_gpu(): model_dir = Path(__file__).parents[1] / 'model' encoder = CustomImageTorchEncoder( model_definition_file=str(model_dir / 'external_model.py'), model_state_dict_path=str(model_dir / 'model_state_dict.pth'), layer_name='conv1', model_class_name='ExternalModel', device='cuda', ) output_dim = 10 input_dim = 224 test_img = np.random.rand(3, input_dim, input_dim) docs = DocumentArray([Document(blob=test_img), Document(blob=test_img)]) encoder.encode(docs, {}) assert len(docs) == 2 for doc in docs: assert doc.embedding.shape == (output_dim,)
"""Test LASER embeddings.""" import pytest from langchain_community.embeddings.laser import LaserEmbeddings @pytest.mark.filterwarnings("ignore::UserWarning:") @pytest.mark.parametrize("lang", [None, "lus_Latn", "english"]) def test_laser_embedding_documents(lang: str) -> None: """Test laser embeddings for documents. User warning is returned by LASER library implementation so will ignore in testing.""" documents = ["hello", "world"] embedding = LaserEmbeddings(lang=lang) output = embedding.embed_documents(documents) assert len(output) == 2 assert len(output[0]) == 1024 @pytest.mark.filterwarnings("ignore::UserWarning:") @pytest.mark.parametrize("lang", [None, "lus_Latn", "english"]) def test_laser_embedding_query(lang: str) -> None: """Test laser embeddings for query. User warning is returned by LASER library implementation so will ignore in testing.""" query = "hello world" embedding = LaserEmbeddings(lang=lang) output = embedding.embed_query(query) assert len(output) == 1024
"""Test LASER embeddings.""" import pytest from langchain_community.embeddings.laser import LaserEmbeddings @pytest.mark.filterwarnings("ignore::UserWarning:") @pytest.mark.parametrize("lang", [None, "lus_Latn", "english"]) def test_laser_embedding_documents(lang: str) -> None: """Test laser embeddings for documents. User warning is returned by LASER library implementation so will ignore in testing.""" documents = ["hello", "world"] embedding = LaserEmbeddings(lang=lang) # type: ignore[call-arg] output = embedding.embed_documents(documents) assert len(output) == 2 # type: ignore[arg-type] assert len(output[0]) == 1024 # type: ignore[index] @pytest.mark.filterwarnings("ignore::UserWarning:") @pytest.mark.parametrize("lang", [None, "lus_Latn", "english"]) def test_laser_embedding_query(lang: str) -> None: """Test laser embeddings for query. User warning is returned by LASER library implementation so will ignore in testing.""" query = "hello world" embedding = LaserEmbeddings(lang=lang) # type: ignore[call-arg] output = embedding.embed_query(query) assert len(output) == 1024
"""Vector stores.""" from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from langchain_core.vectorstores.base import VST, VectorStore, VectorStoreRetriever from langchain_core.vectorstores.in_memory import InMemoryVectorStore __all__ = ( "VST", "InMemoryVectorStore", "VectorStore", "VectorStoreRetriever", ) _dynamic_imports = { "VectorStore": "base", "VST": "base", "VectorStoreRetriever": "base", "InMemoryVectorStore": "in_memory", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""Vector stores.""" from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from langchain_core.vectorstores.base import VST, VectorStore, VectorStoreRetriever from langchain_core.vectorstores.in_memory import InMemoryVectorStore __all__ = ( "VectorStore", "VST", "VectorStoreRetriever", "InMemoryVectorStore", ) _dynamic_imports = { "VectorStore": "base", "VST": "base", "VectorStoreRetriever": "base", "InMemoryVectorStore": "in_memory", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import pytest from sklearn import metrics from sklearn.ensemble import ( BaggingClassifier, BaggingRegressor, IsolationForest, StackingClassifier, StackingRegressor, ) from sklearn.utils._testing import assert_docstring_consistency, skip_if_no_numpydoc CLASS_DOCSTRING_CONSISTENCY_CASES = [ { "objects": [BaggingClassifier, BaggingRegressor, IsolationForest], "include_params": ["max_samples"], "exclude_params": None, "include_attrs": False, "exclude_attrs": None, "include_returns": False, "exclude_returns": None, "descr_regex_pattern": r"The number of samples to draw from X to train each.*", "ignore_types": ("max_samples"), }, { "objects": [StackingClassifier, StackingRegressor], "include_params": ["cv", "n_jobs", "passthrough", "verbose"], "exclude_params": None, "include_attrs": True, "exclude_attrs": ["final_estimator_"], "include_returns": False, "exclude_returns": None, "descr_regex_pattern": None, }, ] FUNCTION_DOCSTRING_CONSISTENCY_CASES = [ { "objects": [ metrics.precision_recall_fscore_support, metrics.f1_score, metrics.fbeta_score, metrics.precision_score, metrics.recall_score, ], "include_params": True, "exclude_params": ["average", "zero_division"], "include_attrs": False, "exclude_attrs": None, "include_returns": False, "exclude_returns": None, "descr_regex_pattern": None, }, { "objects": [ metrics.precision_recall_fscore_support, metrics.f1_score, metrics.fbeta_score, metrics.precision_score, metrics.recall_score, ], "include_params": ["average"], "exclude_params": None, "include_attrs": False, "exclude_attrs": None, "include_returns": False, "exclude_returns": None, "descr_regex_pattern": " ".join( ( r"""This parameter is required for multiclass/multilabel targets\. If ``None``, the metrics for each class are returned\. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``\. This is applicable only if targets \(``y_\{true,pred\}``\) are binary\. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives\. ``'macro'``: Calculate metrics for each label, and find their unweighted mean\. This does not take label imbalance into account\. ``'weighted'``: Calculate metrics for each label, and find their average weighted by support \(the number of true instances for each label\)\. This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall\.""" r"[\s\w]*\.*" # optionally match additional sentence r""" ``'samples'``: Calculate metrics for each instance, and find their average \(only meaningful for multilabel classification where this differs from :func:`accuracy_score`\)\.""" ).split() ), }, ] @pytest.mark.parametrize("case", CLASS_DOCSTRING_CONSISTENCY_CASES) @skip_if_no_numpydoc def test_class_docstring_consistency(case): """Check docstrings parameters consistency between related classes.""" assert_docstring_consistency(**case) @pytest.mark.parametrize("case", FUNCTION_DOCSTRING_CONSISTENCY_CASES) @skip_if_no_numpydoc def test_function_docstring_consistency(case): """Check docstrings parameters consistency between related functions.""" assert_docstring_consistency(**case)
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import pytest from sklearn import metrics from sklearn.ensemble import StackingClassifier, StackingRegressor from sklearn.utils._testing import assert_docstring_consistency, skip_if_no_numpydoc CLASS_DOCSTRING_CONSISTENCY_CASES = [ { "objects": [StackingClassifier, StackingRegressor], "include_params": ["cv", "n_jobs", "passthrough", "verbose"], "exclude_params": None, "include_attrs": True, "exclude_attrs": ["final_estimator_"], "include_returns": False, "exclude_returns": None, "descr_regex_pattern": None, }, ] FUNCTION_DOCSTRING_CONSISTENCY_CASES = [ { "objects": [ metrics.precision_recall_fscore_support, metrics.f1_score, metrics.fbeta_score, metrics.precision_score, metrics.recall_score, ], "include_params": True, "exclude_params": ["average", "zero_division"], "include_attrs": False, "exclude_attrs": None, "include_returns": False, "exclude_returns": None, "descr_regex_pattern": None, }, { "objects": [ metrics.precision_recall_fscore_support, metrics.f1_score, metrics.fbeta_score, metrics.precision_score, metrics.recall_score, ], "include_params": ["average"], "exclude_params": None, "include_attrs": False, "exclude_attrs": None, "include_returns": False, "exclude_returns": None, "descr_regex_pattern": " ".join( ( r"""This parameter is required for multiclass/multilabel targets\. If ``None``, the metrics for each class are returned\. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``\. This is applicable only if targets \(``y_\{true,pred\}``\) are binary\. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives\. ``'macro'``: Calculate metrics for each label, and find their unweighted mean\. This does not take label imbalance into account\. ``'weighted'``: Calculate metrics for each label, and find their average weighted by support \(the number of true instances for each label\)\. This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall\.""" r"[\s\w]*\.*" # optionally match additional sentence r""" ``'samples'``: Calculate metrics for each instance, and find their average \(only meaningful for multilabel classification where this differs from :func:`accuracy_score`\)\.""" ).split() ), }, ] @pytest.mark.parametrize("case", CLASS_DOCSTRING_CONSISTENCY_CASES) @skip_if_no_numpydoc def test_class_docstring_consistency(case): """Check docstrings parameters consistency between related classes.""" assert_docstring_consistency(**case) @pytest.mark.parametrize("case", FUNCTION_DOCSTRING_CONSISTENCY_CASES) @skip_if_no_numpydoc def test_function_docstring_consistency(case): """Check docstrings parameters consistency between related functions.""" assert_docstring_consistency(**case)
import os from torchaudio.datasets import snips from torchaudio_unittest.common_utils import get_whitenoise, save_wav, TempDirMixin, TorchaudioTestCase _SAMPLE_RATE = 16000 _SPEAKERS = [ "Aditi", "Amy", "Brian", "Emma", "Geraint", "Ivy", "Joanna", "Joey", "Justin", "Kendra", "Kimberly", "Matthew", "Nicole", "Raveena", "Russell", "Salli", ] def _save_wav(filepath: str, seed: int): wav = get_whitenoise( sample_rate=_SAMPLE_RATE, duration=0.01, n_channels=1, seed=seed, ) save_wav(filepath, wav, _SAMPLE_RATE) return wav def _save_label(label_path: str, wav_stem: str, label: str): with open(label_path, "a") as f: f.write(f"{wav_stem} {label}\n") def _get_mocked_samples(dataset_dir: str, subset: str, seed: int): samples = [] subset_dir = os.path.join(dataset_dir, subset) label_path = os.path.join(dataset_dir, "all.iob.snips.txt") os.makedirs(subset_dir, exist_ok=True) num_utterance_per_split = 10 for spk in _SPEAKERS: for i in range(num_utterance_per_split): wav_stem = f"{spk}-snips-{subset}-{i}" wav_path = os.path.join(subset_dir, f"{wav_stem}.wav") waveform = _save_wav(wav_path, seed) transcript, iob, intent = f"{spk}XXX", f"{spk}YYY", f"{spk}ZZZ" label = "BOS " + transcript + " EOS\tO " + iob + " " + intent _save_label(label_path, wav_stem, label) samples.append((waveform, _SAMPLE_RATE, wav_stem, transcript, iob, intent)) return samples def get_mock_datasets(dataset_dir): """ dataset_dir: directory to the mocked dataset """ os.makedirs(dataset_dir, exist_ok=True) train_seed = 0 valid_seed = 1 test_seed = 2 mocked_train_samples = _get_mocked_samples(dataset_dir, "train", train_seed) mocked_valid_samples = _get_mocked_samples(dataset_dir, "valid", valid_seed) mocked_test_samples = _get_mocked_samples(dataset_dir, "test", test_seed) return ( mocked_train_samples, mocked_valid_samples, mocked_test_samples, ) class TestSnips(TempDirMixin, TorchaudioTestCase): root_dir = None backend = "default" train_samples = {} valid_samples = {} test_samples = {} @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() dataset_dir = os.path.join(cls.root_dir, "SNIPS") ( cls.train_samples, cls.valid_samples, cls.test_samples, ) = get_mock_datasets(dataset_dir) def _testSnips(self, dataset, data_samples): num_samples = 0 for i, (data, sample_rate, file_name, transcript, iob, intent) in enumerate(dataset): self.assertEqual(data, data_samples[i][0]) assert sample_rate == data_samples[i][1] assert file_name == data_samples[i][2] assert transcript == data_samples[i][3] assert iob == data_samples[i][4] assert intent == data_samples[i][5] num_samples += 1 assert num_samples == len(data_samples) def testSnipsTrain(self): dataset = snips.Snips(self.root_dir, subset="train", audio_format="wav") self._testSnips(dataset, self.train_samples) def testSnipsValid(self): dataset = snips.Snips(self.root_dir, subset="valid", audio_format="wav") self._testSnips(dataset, self.valid_samples) def testSnipsTest(self): dataset = snips.Snips(self.root_dir, subset="test", audio_format="wav") self._testSnips(dataset, self.test_samples)
import os from torchaudio.datasets import snips from torchaudio_unittest.common_utils import get_whitenoise, save_wav, TempDirMixin, TorchaudioTestCase _SAMPLE_RATE = 16000 _SPEAKERS = [ "Aditi", "Amy", "Brian", "Emma", "Geraint", "Ivy", "Joanna", "Joey", "Justin", "Kendra", "Kimberly", "Matthew", "Nicole", "Raveena", "Russell", "Salli", ] def _save_wav(filepath: str, seed: int): wav = get_whitenoise( sample_rate=_SAMPLE_RATE, duration=0.01, n_channels=1, seed=seed, ) save_wav(filepath, wav, _SAMPLE_RATE) return wav def _save_label(label_path: str, wav_stem: str, label: str): with open(label_path, "a") as f: f.write(f"{wav_stem} {label}\n") def _get_mocked_samples(dataset_dir: str, subset: str, seed: int): samples = [] subset_dir = os.path.join(dataset_dir, subset) label_path = os.path.join(dataset_dir, "all.iob.snips.txt") os.makedirs(subset_dir, exist_ok=True) num_utterance_per_split = 10 for spk in _SPEAKERS: for i in range(num_utterance_per_split): wav_stem = f"{spk}-snips-{subset}-{i}" wav_path = os.path.join(subset_dir, f"{wav_stem}.wav") waveform = _save_wav(wav_path, seed) transcript, iob, intent = f"{spk}XXX", f"{spk}YYY", f"{spk}ZZZ" label = "BOS " + transcript + " EOS\tO " + iob + " " + intent _save_label(label_path, wav_stem, label) samples.append((waveform, _SAMPLE_RATE, transcript, iob, intent)) return samples def get_mock_datasets(dataset_dir): """ dataset_dir: directory to the mocked dataset """ os.makedirs(dataset_dir, exist_ok=True) train_seed = 0 valid_seed = 1 test_seed = 2 mocked_train_samples = _get_mocked_samples(dataset_dir, "train", train_seed) mocked_valid_samples = _get_mocked_samples(dataset_dir, "valid", valid_seed) mocked_test_samples = _get_mocked_samples(dataset_dir, "test", test_seed) return ( mocked_train_samples, mocked_valid_samples, mocked_test_samples, ) class TestSnips(TempDirMixin, TorchaudioTestCase): root_dir = None backend = "default" train_samples = {} valid_samples = {} test_samples = {} @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() dataset_dir = os.path.join(cls.root_dir, "SNIPS") ( cls.train_samples, cls.valid_samples, cls.test_samples, ) = get_mock_datasets(dataset_dir) def _testSnips(self, dataset, data_samples): num_samples = 0 for i, (data, sample_rate, transcript, iob, intent) in enumerate(dataset): self.assertEqual(data, data_samples[i][0]) assert sample_rate == data_samples[i][1] assert transcript == data_samples[i][2] assert iob == data_samples[i][3] assert intent == data_samples[i][4] num_samples += 1 assert num_samples == len(data_samples) def testSnipsTrain(self): dataset = snips.Snips(self.root_dir, subset="train", audio_format="wav") self._testSnips(dataset, self.train_samples) def testSnipsValid(self): dataset = snips.Snips(self.root_dir, subset="valid", audio_format="wav") self._testSnips(dataset, self.valid_samples) def testSnipsTest(self): dataset = snips.Snips(self.root_dir, subset="test", audio_format="wav") self._testSnips(dataset, self.test_samples)
import warnings from typing import TYPE_CHECKING, Any, Optional, Tuple, Type, TypeVar, Union from docarray.typing import AudioNdArray from docarray.typing.bytes.audio_bytes import AudioBytes from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.filetypes import AUDIO_FILE_FORMATS from docarray.utils._internal.misc import is_notebook if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AudioUrl') @_register_proto(proto_type_name='audio_url') class AudioUrl(AnyUrl): """ URL to a audio file. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, str, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: import os from urllib.parse import urlparse url = super().validate(value, field, config) # basic url validation path = urlparse(url).path ext = os.path.splitext(path)[1][1:].lower() # pass test if extension is valid or no extension has_audio_extension = ext in AUDIO_FILE_FORMATS or ext == '' if not has_audio_extension: raise ValueError('Audio URL must have a valid extension') return cls(str(url), scheme=None) def load(self: T) -> Tuple[AudioNdArray, int]: """ Load the data from the url into an AudioNdArray and the frame rate. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import AudioNdArray, AudioUrl class MyDoc(BaseDoc): audio_url: AudioUrl audio_tensor: Optional[AudioNdArray] doc = MyDoc(audio_url='https://www.kozco.com/tech/piano2.wav') doc.audio_tensor, _ = doc.audio_url.load() assert isinstance(doc.audio_tensor, AudioNdArray) ``` --- :return: tuple of an AudioNdArray representing the Audio file content, and an integer representing the frame rate. """ bytes_ = self.load_bytes() return bytes_.load() def load_bytes(self, timeout: Optional[float] = None) -> AudioBytes: """ Convert url to AudioBytes. This will either load or download the file and save it into an AudioBytes object. :param timeout: timeout for urlopen. Only relevant if url is not local :return: AudioBytes object """ bytes_ = super().load_bytes(timeout=timeout) return AudioBytes(bytes_) def display(self): """ Play the audio sound from url in notebook. """ if is_notebook(): from IPython.display import Audio, display remote_url = True if self.startswith('http') else False if remote_url: display(Audio(data=self)) else: display(Audio(filename=self)) else: warnings.warn('Display of image is only possible in a notebook.')
import warnings from typing import TYPE_CHECKING, Any, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.bytes.audio_bytes import AudioBytes from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.filetypes import AUDIO_FILE_FORMATS from docarray.utils._internal.misc import is_notebook if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AudioUrl') @_register_proto(proto_type_name='audio_url') class AudioUrl(AnyUrl): """ URL to a audio file. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, str, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: import os from urllib.parse import urlparse url = super().validate(value, field, config) # basic url validation path = urlparse(url).path ext = os.path.splitext(path)[1][1:].lower() # pass test if extension is valid or no extension has_audio_extension = ext in AUDIO_FILE_FORMATS or ext == '' if not has_audio_extension: raise ValueError('Audio URL must have a valid extension') return cls(str(url), scheme=None) def load(self: T) -> Tuple[np.ndarray, int]: """ Load the data from the url into an AudioNdArray. --- ```python from typing import Optional from docarray import BaseDoc import numpy as np from docarray.typing import AudioUrl, AudioNdArray class MyDoc(BaseDoc): audio_url: AudioUrl audio_tensor: Optional[AudioNdArray] doc = MyDoc(audio_url='https://www.kozco.com/tech/piano2.wav') doc.audio_tensor, _ = doc.audio_url.load() assert isinstance(doc.audio_tensor, np.ndarray) ``` --- :return: AudioNdArray representing the audio file content. """ bytes_ = AudioBytes(self.load_bytes()) return bytes_.load() def display(self): """ Play the audio sound from url in notebook. """ if is_notebook(): from IPython.display import Audio, display remote_url = True if self.startswith('http') else False if remote_url: display(Audio(data=self)) else: display(Audio(filename=self)) else: warnings.warn('Display of image is only possible in a notebook.')
import multiprocessing import random import time from functools import partial import pytest from jina import Client, Document, DocumentArray, Executor, Flow, requests from jina.types.request.data import Response NUM_REQUESTS = 5 class MyExecutor(Executor): @requests(on='/ping') def ping(self, **kwargs): time.sleep(0.1 * random.random()) @pytest.mark.parametrize('protocol', ['http', 'grpc']) @pytest.mark.parametrize('shards', [10]) @pytest.mark.parametrize('polling', ['ANY', 'ALL']) @pytest.mark.parametrize('prefetch', [1, 10]) @pytest.mark.parametrize('concurrent', [15]) def test_concurrent_clients(concurrent, protocol, shards, polling, prefetch, reraise): def pong(peer_hash, queue, resp: Response): for d in resp.docs: queue.put((peer_hash, d.text)) def peer_client(port, protocol, peer_hash, queue): c = Client(protocol=protocol, port=port, return_responses=True) for _ in range(NUM_REQUESTS): c.post( '/ping', Document(text=peer_hash), on_done=lambda r: pong(peer_hash, queue, r), ) f = Flow(protocol=protocol, prefetch=prefetch).add( uses=MyExecutor, shards=shards, polling=polling ) with f: pqueue = multiprocessing.Queue() port = f.port process_pool = [] for peer_id in range(concurrent): p = multiprocessing.Process( target=partial(peer_client, port, protocol, str(peer_id), pqueue), daemon=True, ) p.start() process_pool.append(p) for p in process_pool: p.join() queue_len = 0 while not pqueue.empty(): peer_hash, text = pqueue.get() assert peer_hash == text queue_len += 1 assert queue_len == concurrent * NUM_REQUESTS
import pytest from jina import Flow, Executor, Client, requests, DocumentArray, Document import multiprocessing import random import time from functools import partial from jina.types.request.data import Response NUM_REQUESTS = 5 class MyExecutor(Executor): @requests(on='/ping') def ping(self, **kwargs): time.sleep(0.1 * random.random()) @pytest.mark.parametrize('protocol', ['http', 'grpc']) @pytest.mark.parametrize('shards', [10]) @pytest.mark.parametrize('polling', ['ANY', 'ALL']) @pytest.mark.parametrize('prefetch', [1, 10]) @pytest.mark.parametrize('concurrent', [15]) def test_concurrent_clients(concurrent, protocol, shards, polling, prefetch, reraise): def pong(peer_hash, queue, resp: Response): for d in resp.docs: queue.put((peer_hash, d.text)) def peer_client(port, protocol, peer_hash, queue): c = Client(protocol=protocol, port=port, return_responses=True) for _ in range(NUM_REQUESTS): c.post( '/ping', Document(text=peer_hash), on_done=lambda r: pong(peer_hash, queue, r), ) f = Flow(protocol=protocol, prefetch=prefetch).add( uses=MyExecutor, shards=shards, polling=polling ) set_of_clients_served = set() with f: pqueue = multiprocessing.Queue() port = f.port process_pool = [] for peer_id in range(concurrent): p = multiprocessing.Process( target=partial(peer_client, port, protocol, str(peer_id), pqueue), daemon=True, ) p.start() process_pool.append(p) for p in process_pool: p.join() queue_len = 0 while not pqueue.empty(): peer_hash, text = pqueue.get() assert peer_hash == text queue_len += 1 assert queue_len == concurrent * NUM_REQUESTS
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule from mmdet.models.dense_heads import YOLOXHead def test_yolox_head_loss(): """Tests yolox head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = mmcv.Config( dict( assigner=dict( type='SimOTAAssigner', center_radius=2.5, candidate_topk=10, iou_weight=3.0, cls_weight=1.0))) self = YOLOXHead( num_classes=4, in_channels=1, use_depthwise=False, train_cfg=train_cfg) assert not self.use_l1 assert isinstance(self.multi_level_cls_convs[0][0], ConvModule) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [4, 8, 16] ] cls_scores, bbox_preds, objectnesses = self.forward(feat) # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] empty_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'].sum() empty_box_loss = empty_gt_losses['loss_bbox'].sum() empty_obj_loss = empty_gt_losses['loss_obj'].sum() assert empty_cls_loss.item() == 0, ( 'there should be no cls loss when there are no true boxes') assert empty_box_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') assert empty_obj_loss.item() > 0, 'objectness loss should be non-zero' # When truth is non-empty then both cls and box loss should be nonzero for # random inputs self = YOLOXHead( num_classes=4, in_channels=1, use_depthwise=True, train_cfg=train_cfg) assert isinstance(self.multi_level_cls_convs[0][0], DepthwiseSeparableConvModule) self.use_l1 = True gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas) onegt_cls_loss = one_gt_losses['loss_cls'].sum() onegt_box_loss = one_gt_losses['loss_bbox'].sum() onegt_obj_loss = one_gt_losses['loss_obj'].sum() onegt_l1_loss = one_gt_losses['loss_l1'].sum() assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' assert onegt_box_loss.item() > 0, 'box loss should be non-zero' assert onegt_obj_loss.item() > 0, 'obj loss should be non-zero' assert onegt_l1_loss.item() > 0, 'l1 loss should be non-zero' # Test groud truth out of bound gt_bboxes = [torch.Tensor([[s * 4, s * 4, s * 4 + 10, s * 4 + 10]])] gt_labels = [torch.LongTensor([2])] empty_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas) # When gt_bboxes out of bound, the assign results should be empty, # so the cls and bbox loss should be zero. empty_cls_loss = empty_gt_losses['loss_cls'].sum() empty_box_loss = empty_gt_losses['loss_bbox'].sum() empty_obj_loss = empty_gt_losses['loss_obj'].sum() assert empty_cls_loss.item() == 0, ( 'there should be no cls loss when gt_bboxes out of bound') assert empty_box_loss.item() == 0, ( 'there should be no box loss when gt_bboxes out of bound') assert empty_obj_loss.item() > 0, 'objectness loss should be non-zero'
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule from mmdet.models.dense_heads import YOLOXHead def test_yolox_head_loss(): """Tests yolox head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = mmcv.Config( dict( assigner=dict( type='SimOTAAssigner', center_radius=2.5, candidate_topk=10, iou_weight=3.0, cls_weight=1.0))) self = YOLOXHead( num_classes=4, in_channels=1, use_depthwise=False, train_cfg=train_cfg) assert not self.use_l1 assert isinstance(self.multi_level_cls_convs[0][0], ConvModule) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [4, 8, 16] ] cls_scores, bbox_preds, objectnesses = self.forward(feat) # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] empty_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'].sum() empty_box_loss = empty_gt_losses['loss_bbox'].sum() empty_obj_loss = empty_gt_losses['loss_obj'].sum() assert empty_cls_loss.item() == 0, ( 'there should be no cls loss when there are no true boxes') assert empty_box_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') assert empty_obj_loss.item() > 0, 'objectness loss should be non-zero' # When truth is non-empty then both cls and box loss should be nonzero for # random inputs self = YOLOXHead( num_classes=4, in_channels=1, use_depthwise=True, train_cfg=train_cfg) assert isinstance(self.multi_level_cls_convs[0][0], DepthwiseSeparableConvModule) self.use_l1 = True gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas) onegt_cls_loss = one_gt_losses['loss_cls'].sum() onegt_box_loss = one_gt_losses['loss_bbox'].sum() onegt_obj_loss = one_gt_losses['loss_obj'].sum() onegt_l1_loss = one_gt_losses['loss_l1'].sum() assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' assert onegt_box_loss.item() > 0, 'box loss should be non-zero' assert onegt_obj_loss.item() > 0, 'obj loss should be non-zero' assert onegt_l1_loss.item() > 0, 'l1 loss should be non-zero'
""" This is a simple application for sparse encoder: Computing embeddings. we have multiple sentences and we want to compute their embeddings. The embeddings are sparse, meaning that most of the values are zero. The embeddings are stored in a sparse matrix format, which is more efficient for storage and computation. we can also visualize the top tokens for each text.""" from sentence_transformers import SparseEncoder # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Embed a list of sentences sentences = [ "This framework generates embeddings for each input sentence", "Sentences are passed as a list of string.", "The quick brown fox jumps over the lazy dog.", ] # Generate embeddings embeddings = model.encode(sentences) # Print embedding sim and sparsity print(f"Embedding dim: {model.get_sentence_embedding_dimension()}") stats = model.get_sparsity_stats(embeddings) print(f"Embedding sparsity: {stats}") print(f"Average non-zero dimensions: {stats['row_non_zero_mean']:.2f}") print(f"Sparsity percentage: {stats['row_sparsity_mean']:.2%}") """ Embedding dim: 30522 Embedding sparsity: {'num_rows': 3, 'num_cols': 30522, 'row_non_zero_mean': 56.66666793823242, 'row_sparsity_mean': 0.9981433749198914} Average non-zero dimensions: 56.67 Sparsity percentage: 99.81% """ # Visualize top tokens for each text top_k = 10 token_weights = model.decode(embeddings, top_k=top_k) print(f"\nTop tokens {top_k} for each text:") # The result is a list of sentence embeddings as numpy arrays for i, sentence in enumerate(sentences): token_scores = ", ".join([f'("{token.strip()}", {value:.2f})' for token, value in token_weights[i]]) print(f"{i}: {sentence} -> Top tokens: {token_scores}") """ Top tokens 10 for each text: 0: This framework generates embeddings for each input sentence -> Top tokens: ("framework", 2.19), ("##bed", 2.12), ("input", 1.99), ("each", 1.60), ("em", 1.58), ("sentence", 1.49), ("generate", 1.42), ("##ding", 1.33), ("sentences", 1.10), ("create", 0.93) 1: Sentences are passed as a list of string. -> Top tokens: ("string", 2.72), ("pass", 2.24), ("sentences", 2.15), ("passed", 2.07), ("sentence", 1.90), ("strings", 1.86), ("list", 1.84), ("lists", 1.49), ("as", 1.18), ("passing", 0.73) 2: The quick brown fox jumps over the lazy dog. -> Top tokens: ("lazy", 2.18), ("fox", 1.67), ("brown", 1.56), ("over", 1.52), ("dog", 1.50), ("quick", 1.49), ("jump", 1.39), ("dogs", 1.25), ("foxes", 0.99), ("jumping", 0.84) """ # Example of using max_active_dims during encoding print("\n--- Using max_active_dims during encoding ---") # Generate embeddings with limited active dimensions embeddings_limited = model.encode(sentences, max_active_dims=32) stats_limited = model.get_sparsity_stats(embeddings_limited) print(f"Limited embedding sparsity: {stats_limited}") print(f"Average non-zero dimensions: {stats_limited['row_non_zero_mean']:.2f}") print(f"Sparsity percentage: {stats_limited['row_sparsity_mean']:.2%}") """ --- Using max_active_dims during encoding --- Limited embedding sparsity: {'num_rows': 3, 'num_cols': 30522, 'row_non_zero_mean': 32.0, 'row_sparsity_mean': 0.9989516139030457} Average non-zero dimensions: 32.00 Sparsity percentage: 99.90% """ # Comparing memory usage print("\n--- Comparing memory usage ---") def get_memory_size(tensor): if tensor.is_sparse: # For sparse tensors, only count non-zero elements return ( tensor._values().element_size() * tensor._values().nelement() + tensor._indices().element_size() * tensor._indices().nelement() ) else: return tensor.element_size() * tensor.nelement() print(f"Original embeddings memory: {get_memory_size(embeddings) / 1024:.2f} KB") print(f"Embeddings with max_active_dims=32 memory: {get_memory_size(embeddings_limited) / 1024:.2f} KB") """ --- Comparing memory usage --- Original embeddings memory: 3.32 KB Embeddings with max_active_dims=32 memory: 1.88 KB """
""" This is a simple application for sparse encoder: Computing embeddings. we have multiple sentences and we want to compute their embeddings. The embeddings are sparse, meaning that most of the values are zero. The embeddings are stored in a sparse matrix format, which is more efficient for storage and computation. we can also visualize the top tokens for each text.""" from sentence_transformers import SparseEncoder # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Embed a list of sentences sentences = [ "This framework generates embeddings for each input sentence", "Sentences are passed as a list of string.", "The quick brown fox jumps over the lazy dog.", ] # Generate embeddings embeddings = model.encode(sentences) # Print embedding sim and sparsity print(f"Embedding dim: {model.get_sentence_embedding_dimension()}") print(f"Embedding sparsity: {model.get_sparsity_stats(embeddings)}") """ Embedding dim: 30522 Embedding sparsity: {'num_rows': 3, 'num_cols': 30522, 'row_non_zero_mean': 56.66666793823242, 'row_sparsity_mean': 0.9981433749198914} """ # Visualize top tokens for each text top_k = 10 token_weights = model.decode(embeddings, top_k=top_k) print(f"\nTop tokens {top_k} for each text:") # The result is a list of sentence embeddings as numpy arrays for i, sentence in enumerate(sentences): token_scores = ", ".join([f'("{token.strip()}", {value:.2f})' for token, value in token_weights[i]]) print(f"{i}: {sentence} -> Top tokens: {token_scores}") """ Top tokens 10 for each text: 0: This framework generates embeddings for each input sentence -> Top tokens: ("framework", 2.19), ("##bed", 2.12), ("input", 1.99), ("each", 1.60), ("em", 1.58), ("sentence", 1.49), ("generate", 1.42), ("##ding", 1.33), ("sentences", 1.10), ("create", 0.93) 1: Sentences are passed as a list of string. -> Top tokens: ("string", 2.72), ("pass", 2.24), ("sentences", 2.15), ("passed", 2.07), ("sentence", 1.90), ("strings", 1.86), ("list", 1.84), ("lists", 1.49), ("as", 1.18), ("passing", 0.73) 2: The quick brown fox jumps over the lazy dog. -> Top tokens: ("lazy", 2.18), ("fox", 1.67), ("brown", 1.56), ("over", 1.52), ("dog", 1.50), ("quick", 1.49), ("jump", 1.39), ("dogs", 1.25), ("foxes", 0.99), ("jumping", 0.84) """
from typing import Any, Callable, Optional, Tuple import torch from .. import transforms from .vision import VisionDataset class FakeData(VisionDataset): """A fake dataset that returns randomly generated images and returns them as PIL images Args: size (int, optional): Size of the dataset. Default: 1000 images image_size(tuple, optional): Size if the returned images. Default: (3, 224, 224) num_classes(int, optional): Number of classes in the dataset. Default: 10 transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. random_offset (int): Offsets the index-based random seed used to generate each image. Default: 0 """ def __init__( self, size: int = 1000, image_size: Tuple[int, int, int] = (3, 224, 224), num_classes: int = 10, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, random_offset: int = 0, ) -> None: super().__init__(transform=transform, target_transform=target_transform) self.size = size self.num_classes = num_classes self.image_size = image_size self.random_offset = random_offset def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is class_index of the target class. """ # create random image that is consistent with the index id if index >= len(self): raise IndexError(f"{self.__class__.__name__} index out of range") rng_state = torch.get_rng_state() torch.manual_seed(index + self.random_offset) img = torch.randn(*self.image_size) target = torch.randint(0, self.num_classes, size=(1,), dtype=torch.long)[0] torch.set_rng_state(rng_state) # convert to PIL Image img = transforms.ToPILImage()(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target.item() def __len__(self) -> int: return self.size
from typing import Any, Callable, Optional, Tuple import torch from .. import transforms from .vision import VisionDataset class FakeData(VisionDataset): """A fake dataset that returns randomly generated images and returns them as PIL images Args: size (int, optional): Size of the dataset. Default: 1000 images image_size(tuple, optional): Size if the returned images. Default: (3, 224, 224) num_classes(int, optional): Number of classes in the dataset. Default: 10 transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. random_offset (int): Offsets the index-based random seed used to generate each image. Default: 0 """ def __init__( self, size: int = 1000, image_size: Tuple[int, int, int] = (3, 224, 224), num_classes: int = 10, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, random_offset: int = 0, ) -> None: super().__init__(transform=transform, target_transform=target_transform) self.size = size self.num_classes = num_classes self.image_size = image_size self.random_offset = random_offset def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is class_index of the target class. """ # create random image that is consistent with the index id if index >= len(self): raise IndexError(f"{self.__class__.__name__} index out of range") rng_state = torch.get_rng_state() torch.manual_seed(index + self.random_offset) img = torch.randn(*self.image_size) target = torch.randint(0, self.num_classes, size=(1,), dtype=torch.long)[0] torch.set_rng_state(rng_state) # convert to PIL Image img = transforms.ToPILImage()(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target.item() def __len__(self) -> int: return self.size
"""langchain-core version information and utilities.""" VERSION = "0.3.63"
"""langchain-core version information and utilities.""" VERSION = "0.3.62"
"""Utils for LLM Compiler.""" import ast import re from typing import Any, Dict, List, Sequence, Tuple, Union from llama_index.core.tools.function_tool import FunctionTool from llama_index.core.tools.types import BaseTool, adapt_to_async_tool from .schema import ( LLMCompilerParseResult, LLMCompilerTask, ) # $1 or ${1} -> 1 ID_PATTERN = r"\$\{?(\d+)\}?" def default_dependency_rule(idx: int, args: str) -> bool: """Default dependency rule.""" matches = re.findall(ID_PATTERN, args) numbers = [int(match) for match in matches] return idx in numbers def parse_llm_compiler_action_args(args: str) -> Union[List, Tuple]: """Parse arguments from a string.""" # This will convert the string into a python object # e.g. '"Ronaldo number of kids"' -> ("Ronaldo number of kids", ) # '"I can answer the question now.", [3]' -> ("I can answer the question now.", [3]) if args == "": return () try: eval_args: Union[List, Tuple, str] = ast.literal_eval(args) except Exception: eval_args = args if not isinstance(eval_args, list) and not isinstance(eval_args, tuple): new_args: Union[List, Tuple] = (eval_args,) else: new_args = eval_args return new_args def _find_tool(tool_name: str, tools: Sequence[BaseTool]) -> BaseTool: """ Find a tool by name. Args: tool_name: Name of the tool to find. Returns: Tool or StructuredTool. """ for tool in tools: if tool.metadata.name == tool_name: return tool raise ValueError(f"Tool {tool_name} not found.") def _get_dependencies_from_graph(idx: int, tool_name: str, args: str) -> List[int]: """Get dependencies from a graph.""" if tool_name == "join": # depends on the previous step dependencies = list(range(1, idx)) else: # define dependencies based on the dependency rule in tool_definitions.py dependencies = [i for i in range(1, idx) if default_dependency_rule(i, args)] return dependencies def instantiate_new_step( tools: Sequence[BaseTool], idx: int, tool_name: str, args: str, thought: str, ) -> LLMCompilerTask: """Instantiate a new step.""" dependencies = _get_dependencies_from_graph(idx, tool_name, args) args_list = parse_llm_compiler_action_args(args) if tool_name == "join": # tool: Optional[BaseTool] = None # assume that the only tool that returns None is join tool: BaseTool = FunctionTool.from_defaults(fn=lambda x: None) else: tool = _find_tool(tool_name, tools) return LLMCompilerTask( idx=idx, name=tool_name, tool=adapt_to_async_tool(tool), args=args_list, dependencies=dependencies, # TODO: look into adding a stringify rule # stringify_rule=stringify_rule, thought=thought, is_join=tool_name == "join", ) def get_graph_dict( parse_results: List[LLMCompilerParseResult], tools: Sequence[BaseTool], ) -> Dict[int, Any]: """Get graph dict.""" graph_dict = {} for parse_result in parse_results: # idx = 1, function = "search", args = "Ronaldo number of kids" # thought will be the preceding thought, if any, otherwise an empty string # thought, idx, tool_name, args, _ = match idx = int(parse_result.idx) task = instantiate_new_step( tools=tools, idx=idx, tool_name=parse_result.tool_name, args=parse_result.args, thought=parse_result.thought, ) graph_dict[idx] = task if task.is_join: break return graph_dict def generate_context_for_replanner( tasks: Dict[int, LLMCompilerTask], joiner_thought: str ) -> str: """ Generate context for replanning. Formatted like this. ``` 1. action 1 Observation: xxx 2. action 2 Observation: yyy ... Thought: joinner_thought ``` """ previous_plan_and_observations = "\n".join( [ task.get_thought_action_observation( include_action=True, include_action_idx=True ) for task in tasks.values() if not task.is_join ] ) joiner_thought = f"Thought: {joiner_thought}" # use f-string instead return f"{previous_plan_and_observations}\n\n{joiner_thought}" def format_contexts(contexts: Sequence[str]) -> str: """ Format contexts. Taken from https://github.com/SqueezeAILab/LLMCompiler/blob/main/src/llm_compiler/llm_compiler.py Contexts is a list of context. Each context is formatted as the description of generate_context_for_replanner """ formatted_contexts = "" for context in contexts: formatted_contexts += f"Previous Plan:\n\n{context}\n\n" formatted_contexts += "Current Plan:\n\n" return formatted_contexts
"""Utils for LLM Compiler.""" import ast import re from typing import Any, Dict, List, Sequence, Tuple, Union from llama_index.core.tools.function_tool import FunctionTool from llama_index.core.tools.types import BaseTool, adapt_to_async_tool from .schema import ( LLMCompilerParseResult, LLMCompilerTask, ) # $1 or ${1} -> 1 ID_PATTERN = r"\$\{?(\d+)\}?" def default_dependency_rule(idx: int, args: str) -> bool: """Default dependency rule.""" matches = re.findall(ID_PATTERN, args) numbers = [int(match) for match in matches] return idx in numbers def parse_llm_compiler_action_args(args: str) -> Union[List, Tuple]: """Parse arguments from a string.""" # This will convert the string into a python object # e.g. '"Ronaldo number of kids"' -> ("Ronaldo number of kids", ) # '"I can answer the question now.", [3]' -> ("I can answer the question now.", [3]) if args == "": return () try: eval_args: Union[List, Tuple, str] = ast.literal_eval(args) except Exception: eval_args = args if not isinstance(eval_args, list) and not isinstance(eval_args, tuple): new_args: Union[List, Tuple] = (eval_args,) else: new_args = eval_args return new_args def _find_tool(tool_name: str, tools: Sequence[BaseTool]) -> BaseTool: """ Find a tool by name. Args: tool_name: Name of the tool to find. Returns: Tool or StructuredTool. """ for tool in tools: if tool.metadata.name == tool_name: return tool raise ValueError(f"Tool {tool_name} not found.") def _get_dependencies_from_graph(idx: int, tool_name: str, args: str) -> List[int]: """Get dependencies from a graph.""" if tool_name == "join": # depends on the previous step dependencies = list(range(1, idx)) else: # define dependencies based on the dependency rule in tool_definitions.py dependencies = [i for i in range(1, idx) if default_dependency_rule(i, args)] return dependencies def instantiate_new_step( tools: Sequence[BaseTool], idx: int, tool_name: str, args: str, thought: str, ) -> LLMCompilerTask: """Instantiate a new step.""" dependencies = _get_dependencies_from_graph(idx, tool_name, args) args_list = parse_llm_compiler_action_args(args) if tool_name == "join": # tool: Optional[BaseTool] = None # assume that the only tool that returns None is join tool: BaseTool = FunctionTool.from_defaults(fn=lambda x: None) else: tool = _find_tool(tool_name, tools) return LLMCompilerTask( idx=idx, name=tool_name, tool=adapt_to_async_tool(tool), args=args_list, dependencies=dependencies, # TODO: look into adding a stringify rule # stringify_rule=stringify_rule, thought=thought, is_join=tool_name == "join", ) def get_graph_dict( parse_results: List[LLMCompilerParseResult], tools: Sequence[BaseTool], ) -> Dict[int, Any]: """Get graph dict.""" graph_dict = {} for parse_result in parse_results: # idx = 1, function = "search", args = "Ronaldo number of kids" # thought will be the preceding thought, if any, otherwise an empty string # thought, idx, tool_name, args, _ = match idx = int(parse_result.idx) task = instantiate_new_step( tools=tools, idx=idx, tool_name=parse_result.tool_name, args=parse_result.args, thought=parse_result.thought, ) graph_dict[idx] = task if task.is_join: break return graph_dict def generate_context_for_replanner( tasks: Dict[int, LLMCompilerTask], joiner_thought: str ) -> str: """ Generate context for replanning. Formatted like this. ``` 1. action 1 Observation: xxx 2. action 2 Observation: yyy ... Thought: joinner_thought ``` """ previous_plan_and_observations = "\n".join( [ task.get_thought_action_observation( include_action=True, include_action_idx=True ) for task in tasks.values() if not task.is_join ] ) joiner_thought = f"Thought: {joiner_thought}" # use f-string instead return f"{previous_plan_and_observations}\n\n{joiner_thought}" def format_contexts(contexts: Sequence[str]) -> str: """ Format contexts. Taken from https://github.com/SqueezeAILab/LLMCompiler/blob/main/src/llm_compiler/llm_compiler.py Contexts is a list of context. Each context is formatted as the description of generate_context_for_replanner """ formatted_contexts = "" for context in contexts: formatted_contexts += f"Previous Plan:\n\n{context}\n\n" formatted_contexts += "Current Plan:\n\n" return formatted_contexts
from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDoc from docarray.base_doc.io.json import orjson_dumps from docarray.typing import ( AudioNdArray, NdArray, VideoBytes, VideoNdArray, VideoTorchTensor, VideoUrl, ) from docarray.utils._internal.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.typing.tensor.video import VideoTensorFlowTensor LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load(file_url): url = parse_obj_as(VideoUrl, file_url) video, audio, indices = url.load() assert isinstance(audio, np.ndarray) assert isinstance(audio, AudioNdArray) assert isinstance(video, np.ndarray) assert isinstance(video, VideoNdArray) assert isinstance(indices, np.ndarray) assert isinstance(indices, NdArray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) @pytest.mark.parametrize( 'field, attr_cls', [ ('video', VideoNdArray), ('audio', AudioNdArray), ('key_frame_indices', NdArray), ], ) def test_load_one_of_named_tuple_results(file_url, field, attr_cls): url = parse_obj_as(VideoUrl, file_url) result = getattr(url.load(), field) assert isinstance(result, np.ndarray) assert isinstance(result, attr_cls) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_video_url_to_video_torch_tensor_field(file_url): class MyVideoDoc(BaseDoc): video_url: VideoUrl tensor: Optional[VideoTorchTensor] doc = MyVideoDoc(video_url=file_url) doc.tensor = doc.video_url.load().video assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, VideoTorchTensor) @pytest.mark.tensorflow @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_video_url_to_video_tensorflow_tensor_field(file_url): class MyVideoDoc(BaseDoc): video_url: VideoUrl tensor: Optional[VideoTensorFlowTensor] doc = MyVideoDoc(video_url=file_url) doc.tensor = doc.video_url.load().video assert isinstance(doc.tensor, VideoTensorFlowTensor) assert isinstance(doc.tensor.tensor, tf.Tensor) def test_json_schema(): schema_json_of(VideoUrl) def test_dump_json(): url = parse_obj_as(VideoUrl, REMOTE_VIDEO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_validation(path_to_file): url = parse_obj_as(VideoUrl, path_to_file) assert isinstance(url, VideoUrl) assert isinstance(url, str) @pytest.mark.proto @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_proto_video_url(file_url): uri = parse_obj_as(VideoUrl, file_url) proto = uri._to_node_protobuf() assert 'video_url' in str(proto) def test_load_bytes(): file_url = LOCAL_VIDEO_FILE uri = parse_obj_as(VideoUrl, file_url) video_bytes = uri.load_bytes() assert isinstance(video_bytes, bytes) assert isinstance(video_bytes, VideoBytes) assert len(video_bytes) > 0
from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDoc from docarray.base_doc.io.json import orjson_dumps from docarray.typing import ( AudioNdArray, NdArray, VideoBytes, VideoNdArray, VideoTorchTensor, VideoUrl, ) from docarray.utils._internal.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.typing.tensor.video import VideoTensorFlowTensor LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load(file_url): url = parse_obj_as(VideoUrl, file_url) video, audio, indices = url.load() assert isinstance(audio, np.ndarray) assert isinstance(audio, AudioNdArray) assert isinstance(video, np.ndarray) assert isinstance(video, VideoNdArray) assert isinstance(indices, np.ndarray) assert isinstance(indices, NdArray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) @pytest.mark.parametrize( 'field, attr_cls', [ ('video', VideoNdArray), ('audio', AudioNdArray), ('key_frame_indices', NdArray), ], ) def test_load_one_of_named_tuple_results(file_url, field, attr_cls): url = parse_obj_as(VideoUrl, file_url) result = getattr(url.load(), field) assert isinstance(result, np.ndarray) assert isinstance(result, attr_cls) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_video_url_to_video_torch_tensor_field(file_url): class MyVideoDoc(BaseDoc): video_url: VideoUrl tensor: Optional[VideoTorchTensor] doc = MyVideoDoc(video_url=file_url) doc.tensor = doc.video_url.load().video assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, VideoTorchTensor) @pytest.mark.tensorflow @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_video_url_to_video_tensorflow_tensor_field(file_url): class MyVideoDoc(BaseDoc): video_url: VideoUrl tensor: Optional[VideoTensorFlowTensor] doc = MyVideoDoc(video_url=file_url) doc.tensor = doc.video_url.load().video assert isinstance(doc.tensor, VideoTensorFlowTensor) assert isinstance(doc.tensor.tensor, tf.Tensor) def test_json_schema(): schema_json_of(VideoUrl) def test_dump_json(): url = parse_obj_as(VideoUrl, REMOTE_VIDEO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_validation(path_to_file): url = parse_obj_as(VideoUrl, path_to_file) assert isinstance(url, VideoUrl) assert isinstance(url, str) @pytest.mark.parametrize( 'path_to_file', [ 'illegal', 'https://www.google.com', 'my/local/text/file.txt', 'my/local/text/file.png', 'my/local/file.mp3', ], ) def test_illegal_validation(path_to_file): with pytest.raises(ValueError, match='VideoUrl'): parse_obj_as(VideoUrl, path_to_file) @pytest.mark.proto @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_proto_video_url(file_url): uri = parse_obj_as(VideoUrl, file_url) proto = uri._to_node_protobuf() assert 'video_url' in str(proto) def test_load_bytes(): file_url = LOCAL_VIDEO_FILE uri = parse_obj_as(VideoUrl, file_url) video_bytes = uri.load_bytes() assert isinstance(video_bytes, bytes) assert isinstance(video_bytes, VideoBytes) assert len(video_bytes) > 0
import os from pathlib import Path from typing import Any, Callable, Optional, Union import torch.utils.data as data from ..utils import _log_api_usage_once class VisionDataset(data.Dataset): """ Base Class For making datasets which are compatible with torchvision. It is necessary to override the ``__getitem__`` and ``__len__`` method. Args: root (string, optional): Root directory of dataset. Only used for `__repr__`. transforms (callable, optional): A function/transforms that takes in an image and a label and returns the transformed versions of both. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. .. note:: :attr:`transforms` and the combination of :attr:`transform` and :attr:`target_transform` are mutually exclusive. """ _repr_indent = 4 def __init__( self, root: Union[str, Path] = None, # type: ignore[assignment] transforms: Optional[Callable] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: _log_api_usage_once(self) if isinstance(root, str): root = os.path.expanduser(root) self.root = root has_transforms = transforms is not None has_separate_transform = transform is not None or target_transform is not None if has_transforms and has_separate_transform: raise ValueError("Only transforms or transform/target_transform can be passed as argument") # for backwards-compatibility self.transform = transform self.target_transform = target_transform if has_separate_transform: transforms = StandardTransform(transform, target_transform) self.transforms = transforms def __getitem__(self, index: int) -> Any: """ Args: index (int): Index Returns: (Any): Sample and meta data, optionally transformed by the respective transforms. """ raise NotImplementedError def __len__(self) -> int: raise NotImplementedError def __repr__(self) -> str: head = "Dataset " + self.__class__.__name__ body = [f"Number of datapoints: {self.__len__()}"] if self.root is not None: body.append(f"Root location: {self.root}") body += self.extra_repr().splitlines() if hasattr(self, "transforms") and self.transforms is not None: body += [repr(self.transforms)] lines = [head] + [" " * self._repr_indent + line for line in body] return "\n".join(lines) def _format_transform_repr(self, transform: Callable, head: str) -> list[str]: lines = transform.__repr__().splitlines() return [f"{head}{lines[0]}"] + ["{}{}".format(" " * len(head), line) for line in lines[1:]] def extra_repr(self) -> str: return "" class StandardTransform: def __init__(self, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None) -> None: self.transform = transform self.target_transform = target_transform def __call__(self, input: Any, target: Any) -> tuple[Any, Any]: if self.transform is not None: input = self.transform(input) if self.target_transform is not None: target = self.target_transform(target) return input, target def _format_transform_repr(self, transform: Callable, head: str) -> list[str]: lines = transform.__repr__().splitlines() return [f"{head}{lines[0]}"] + ["{}{}".format(" " * len(head), line) for line in lines[1:]] def __repr__(self) -> str: body = [self.__class__.__name__] if self.transform is not None: body += self._format_transform_repr(self.transform, "Transform: ") if self.target_transform is not None: body += self._format_transform_repr(self.target_transform, "Target transform: ") return "\n".join(body)
import os from pathlib import Path from typing import Any, Callable, List, Optional, Tuple, Union import torch.utils.data as data from ..utils import _log_api_usage_once class VisionDataset(data.Dataset): """ Base Class For making datasets which are compatible with torchvision. It is necessary to override the ``__getitem__`` and ``__len__`` method. Args: root (string, optional): Root directory of dataset. Only used for `__repr__`. transforms (callable, optional): A function/transforms that takes in an image and a label and returns the transformed versions of both. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. .. note:: :attr:`transforms` and the combination of :attr:`transform` and :attr:`target_transform` are mutually exclusive. """ _repr_indent = 4 def __init__( self, root: Union[str, Path] = None, # type: ignore[assignment] transforms: Optional[Callable] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: _log_api_usage_once(self) if isinstance(root, str): root = os.path.expanduser(root) self.root = root has_transforms = transforms is not None has_separate_transform = transform is not None or target_transform is not None if has_transforms and has_separate_transform: raise ValueError("Only transforms or transform/target_transform can be passed as argument") # for backwards-compatibility self.transform = transform self.target_transform = target_transform if has_separate_transform: transforms = StandardTransform(transform, target_transform) self.transforms = transforms def __getitem__(self, index: int) -> Any: """ Args: index (int): Index Returns: (Any): Sample and meta data, optionally transformed by the respective transforms. """ raise NotImplementedError def __len__(self) -> int: raise NotImplementedError def __repr__(self) -> str: head = "Dataset " + self.__class__.__name__ body = [f"Number of datapoints: {self.__len__()}"] if self.root is not None: body.append(f"Root location: {self.root}") body += self.extra_repr().splitlines() if hasattr(self, "transforms") and self.transforms is not None: body += [repr(self.transforms)] lines = [head] + [" " * self._repr_indent + line for line in body] return "\n".join(lines) def _format_transform_repr(self, transform: Callable, head: str) -> List[str]: lines = transform.__repr__().splitlines() return [f"{head}{lines[0]}"] + ["{}{}".format(" " * len(head), line) for line in lines[1:]] def extra_repr(self) -> str: return "" class StandardTransform: def __init__(self, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None) -> None: self.transform = transform self.target_transform = target_transform def __call__(self, input: Any, target: Any) -> Tuple[Any, Any]: if self.transform is not None: input = self.transform(input) if self.target_transform is not None: target = self.target_transform(target) return input, target def _format_transform_repr(self, transform: Callable, head: str) -> List[str]: lines = transform.__repr__().splitlines() return [f"{head}{lines[0]}"] + ["{}{}".format(" " * len(head), line) for line in lines[1:]] def __repr__(self) -> str: body = [self.__class__.__name__] if self.transform is not None: body += self._format_transform_repr(self.transform, "Transform: ") if self.target_transform is not None: body += self._format_transform_repr(self.target_transform, "Target transform: ") return "\n".join(body)
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from mmengine.model import BaseModule from mmdet.registry import MODELS @MODELS.register_module() class TripletLoss(BaseModule): """Triplet loss with hard positive/negative mining. Reference: Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737. Imported from `<https://github.com/KaiyangZhou/deep-person-reid/blob/ master/torchreid/losses/hard_mine_triplet_loss.py>`_. Args: margin (float, optional): Margin for triplet loss. Defaults to 0.3. loss_weight (float, optional): Weight of the loss. Defaults to 1.0. hard_mining (bool, optional): Whether to perform hard mining. Defaults to True. """ def __init__(self, margin: float = 0.3, loss_weight: float = 1.0, hard_mining=True): super(TripletLoss, self).__init__() self.margin = margin self.ranking_loss = nn.MarginRankingLoss(margin=margin) self.loss_weight = loss_weight self.hard_mining = hard_mining def hard_mining_triplet_loss_forward( self, inputs: torch.Tensor, targets: torch.LongTensor) -> torch.Tensor: """ Args: inputs (torch.Tensor): feature matrix with shape (batch_size, feat_dim). targets (torch.LongTensor): ground truth labels with shape (batch_size). Returns: torch.Tensor: triplet loss with hard mining. """ batch_size = inputs.size(0) # Compute Euclidean distance dist = torch.pow(inputs, 2).sum( dim=1, keepdim=True).expand(batch_size, batch_size) dist = dist + dist.t() dist.addmm_(inputs, inputs.t(), beta=1, alpha=-2) dist = dist.clamp(min=1e-12).sqrt() # for numerical stability # For each anchor, find the furthest positive sample # and nearest negative sample in the embedding space mask = targets.expand(batch_size, batch_size).eq( targets.expand(batch_size, batch_size).t()) dist_ap, dist_an = [], [] for i in range(batch_size): dist_ap.append(dist[i][mask[i]].max().unsqueeze(0)) dist_an.append(dist[i][mask[i] == 0].min().unsqueeze(0)) dist_ap = torch.cat(dist_ap) dist_an = torch.cat(dist_an) # Compute ranking hinge loss y = torch.ones_like(dist_an) return self.loss_weight * self.ranking_loss(dist_an, dist_ap, y) def forward(self, inputs: torch.Tensor, targets: torch.LongTensor) -> torch.Tensor: """ Args: inputs (torch.Tensor): feature matrix with shape (batch_size, feat_dim). targets (torch.LongTensor): ground truth labels with shape (num_classes). Returns: torch.Tensor: triplet loss. """ if self.hard_mining: return self.hard_mining_triplet_loss_forward(inputs, targets) else: raise NotImplementedError()
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from mmengine.model import BaseModule from mmdet.registry import MODELS @MODELS.register_module() class TripletLoss(BaseModule): """Triplet loss with hard positive/negative mining. Reference: Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737. Imported from `<https://github.com/KaiyangZhou/deep-person-reid/blob/ master/torchreid/losses/hard_mine_triplet_loss.py>`_. Args: margin (float, optional): Margin for triplet loss. Defaults to 0.3. loss_weight (float, optional): Weight of the loss. Defaults to 1.0. hard_mining (bool, optional): Whether to perform hard mining. Defaults to True. """ def __init__(self, margin: float = 0.3, loss_weight: float = 1.0, hard_mining=True): super(TripletLoss, self).__init__() self.margin = margin self.ranking_loss = nn.MarginRankingLoss(margin=margin) self.loss_weight = loss_weight self.hard_mining = hard_mining def hard_mining_triplet_loss_forward( self, inputs: torch.Tensor, targets: torch.LongTensor) -> torch.Tensor: """ Args: inputs (torch.Tensor): feature matrix with shape (batch_size, feat_dim). targets (torch.LongTensor): ground truth labels with shape (num_classes). Returns: torch.Tensor: triplet loss with hard mining. """ batch_size = inputs.size(0) # Compute Euclidean distance dist = torch.pow(inputs, 2).sum( dim=1, keepdim=True).expand(batch_size, batch_size) dist = dist + dist.t() dist.addmm_(inputs, inputs.t(), beta=1, alpha=-2) dist = dist.clamp(min=1e-12).sqrt() # for numerical stability # For each anchor, find the furthest positive sample # and nearest negative sample in the embedding space mask = targets.expand(batch_size, batch_size).eq( targets.expand(batch_size, batch_size).t()) dist_ap, dist_an = [], [] for i in range(batch_size): dist_ap.append(dist[i][mask[i]].max().unsqueeze(0)) dist_an.append(dist[i][mask[i] == 0].min().unsqueeze(0)) dist_ap = torch.cat(dist_ap) dist_an = torch.cat(dist_an) # Compute ranking hinge loss y = torch.ones_like(dist_an) return self.loss_weight * self.ranking_loss(dist_an, dist_ap, y) def forward(self, inputs: torch.Tensor, targets: torch.LongTensor) -> torch.Tensor: """ Args: inputs (torch.Tensor): feature matrix with shape (batch_size, feat_dim). targets (torch.LongTensor): ground truth labels with shape (num_classes). Returns: torch.Tensor: triplet loss. """ if self.hard_mining: return self.hard_mining_triplet_loss_forward(inputs, targets) else: raise NotImplementedError()
import numpy as np import pytest from keras.src import backend from keras.src import initializers from keras.src import layers from keras.src import ops from keras.src import testing from keras.src.models import Sequential class TimeDistributedTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_basics(self): self.run_layer_test( layers.TimeDistributed, init_kwargs={"layer": layers.Dense(1, use_bias=False)}, input_shape=(3, 2, 4), expected_output_shape=(3, 2, 1), expected_num_trainable_weights=1, expected_num_non_trainable_weights=0, supports_masking=True, ) def test_build(self): if backend.config.image_data_format() == "channels_last": input_shape = (10, 128, 128, 3) output_shape = (32, 10, 126, 126, 64) else: input_shape = (10, 3, 128, 128) output_shape = (32, 10, 64, 126, 126) inputs = layers.Input(shape=input_shape, batch_size=32) conv_2d_layer = layers.Conv2D(64, (3, 3)) outputs = layers.TimeDistributed(conv_2d_layer)(inputs) self.assertEqual(outputs.shape, output_shape) def test_correctness(self): sequence = np.arange(24).reshape((3, 2, 4)).astype("float32") layer = layers.Dense( 1, kernel_initializer=initializers.Constant(0.01), use_bias=False, ) layer = layers.TimeDistributed(layer=layer) output = layer(sequence) self.assertAllClose( np.array( [[[0.06], [0.22]], [[0.38], [0.53999996]], [[0.7], [0.86]]] ), output, ) def test_masking(self): class MaskedDense(layers.Wrapper): def __init__(self, units, **kwargs): layer = layers.Dense( units, kernel_initializer=initializers.Constant(0.01), use_bias=False, ) super().__init__(layer, **kwargs) self.supports_masking = True def call(self, inputs, training=False, mask=None): unmasked = self.layer.call(inputs) if mask is None: return unmasked else: return ops.transpose( ops.transpose(unmasked) * ops.cast(mask, inputs.dtype) ) sequence = np.arange(24).reshape((3, 2, 4)).astype("float32") layer = layers.TimeDistributed(layer=MaskedDense(1)) mask = np.array([[False, True], [True, False], [True, True]]) output = layer(sequence, mask=mask) self.assertAllClose( np.array([[[0], [0.22]], [[0.38], [0]], [[0.7], [0.86]]]), output, ) @pytest.mark.requires_trainable_backend def test_with_mask_zero(self): model = Sequential( [ layers.Input(shape=(20,)), layers.Embedding(input_dim=10, output_dim=5, mask_zero=True), layers.TimeDistributed( layers.Dense(units=5, activation="softmax") ), ] ) model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) X_train = np.random.uniform(1, 10, size=(22, 20)) Y_train = np.random.randint(1, 2, size=(22, 20)) model.fit(X_train, Y_train, epochs=1, batch_size=16)
import numpy as np import pytest from keras.src import backend from keras.src import initializers from keras.src import layers from keras.src import ops from keras.src import testing class TimeDistributedTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_basics(self): self.run_layer_test( layers.TimeDistributed, init_kwargs={"layer": layers.Dense(1, use_bias=False)}, input_shape=(3, 2, 4), expected_output_shape=(3, 2, 1), expected_num_trainable_weights=1, expected_num_non_trainable_weights=0, supports_masking=True, ) def test_build(self): if backend.config.image_data_format() == "channels_last": input_shape = (10, 128, 128, 3) output_shape = (32, 10, 126, 126, 64) else: input_shape = (10, 3, 128, 128) output_shape = (32, 10, 64, 126, 126) inputs = layers.Input(shape=input_shape, batch_size=32) conv_2d_layer = layers.Conv2D(64, (3, 3)) outputs = layers.TimeDistributed(conv_2d_layer)(inputs) self.assertEqual(outputs.shape, output_shape) def test_correctness(self): sequence = np.arange(24).reshape((3, 2, 4)).astype("float32") layer = layers.Dense( 1, kernel_initializer=initializers.Constant(0.01), use_bias=False, ) layer = layers.TimeDistributed(layer=layer) output = layer(sequence) self.assertAllClose( np.array( [[[0.06], [0.22]], [[0.38], [0.53999996]], [[0.7], [0.86]]] ), output, ) def test_masking(self): class MaskedDense(layers.Wrapper): def __init__(self, units, **kwargs): layer = layers.Dense( units, kernel_initializer=initializers.Constant(0.01), use_bias=False, ) super().__init__(layer, **kwargs) self.supports_masking = True def call(self, inputs, training=False, mask=None): unmasked = self.layer.call(inputs) if mask is None: return unmasked else: return ops.transpose( ops.transpose(unmasked) * ops.cast(mask, inputs.dtype) ) sequence = np.arange(24).reshape((3, 2, 4)).astype("float32") layer = layers.TimeDistributed(layer=MaskedDense(1)) mask = np.array([[False, True], [True, False], [True, True]]) output = layer(sequence, mask=mask) self.assertAllClose( np.array([[[0], [0.22]], [[0.38], [0]], [[0.7], [0.86]]]), output, )
from typing import Optional import numpy as np from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc from docarray.typing import AnyTensor, ImageUrl from jina import Deployment, Executor, Flow, requests def test_different_document_schema(): class Image(BaseDocument): tensor: Optional[AnyTensor] url: ImageUrl class MyExec(Executor): @requests(on='/foo') def foo(self, docs: DocumentArray[Image], **kwargs) -> DocumentArray[Image]: for doc in docs: doc.tensor = doc.url.load() return docs with Flow().add(uses=MyExec) as f: docs = f.post( on='/foo', inputs=DocumentArray[Image]( [Image(url='https://via.placeholder.com/150.png')] ), return_type=DocumentArray[Image], ) docs = docs.stack() assert docs.tensor.ndim == 4 def test_send_custom_doc(): class MyDoc(BaseDocument): text: str class MyExec(Executor): @requests(on='/foo') def foo(self, docs: DocumentArray[MyDoc], **kwargs): docs[0].text = 'hello world' with Flow().add(uses=MyExec) as f: doc = f.post( on='/foo', inputs=MyDoc(text='hello'), return_type=DocumentArray[MyDoc] ) assert doc[0].text == 'hello world' def test_input_response_schema(): class MyDoc(BaseDocument): text: str class MyExec(Executor): @requests( on='/foo', request_schema=DocumentArray[MyDoc], response_schema=DocumentArray[MyDoc], ) def foo(self, docs, **kwargs): assert docs.__class__.document_type == MyDoc docs[0].text = 'hello world' return docs with Flow().add(uses=MyExec) as f: docs = f.post( on='/foo', inputs=MyDoc(text='hello'), return_type=DocumentArray[MyDoc] ) assert docs[0].text == 'hello world' assert docs.__class__.document_type == MyDoc def test_input_response_schema_annotation(): class MyDoc(BaseDocument): text: str class MyExec(Executor): @requests(on='/bar') def bar(self, docs: DocumentArray[MyDoc], **kwargs) -> DocumentArray[MyDoc]: assert docs.__class__.document_type == MyDoc docs[0].text = 'hello world' return docs with Flow().add(uses=MyExec) as f: docs = f.post( on='/bar', inputs=MyDoc(text='hello'), return_type=DocumentArray[MyDoc] ) assert docs[0].text == 'hello world' assert docs.__class__.document_type == MyDoc def test_different_output_input(): class InputDoc(BaseDocument): img: ImageDoc class OutputDoc(BaseDocument): embedding: AnyTensor class MyExec(Executor): @requests(on='/bar') def bar( self, docs: DocumentArray[InputDoc], **kwargs ) -> DocumentArray[OutputDoc]: docs_return = DocumentArray[OutputDoc]( [OutputDoc(embedding=np.zeros((100, 1))) for _ in range(len(docs))] ) return docs_return with Flow().add(uses=MyExec) as f: docs = f.post( on='/bar', inputs=InputDoc(img=ImageDoc(tensor=np.zeros((3, 224, 224)))), return_type=DocumentArray[OutputDoc], ) assert docs[0].embedding.shape == (100, 1) assert docs.__class__.document_type == OutputDoc def test_deployments(): class InputDoc(BaseDocument): img: ImageDoc class OutputDoc(BaseDocument): embedding: AnyTensor class MyExec(Executor): @requests(on='/bar') def bar( self, docs: DocumentArray[InputDoc], **kwargs ) -> DocumentArray[OutputDoc]: docs_return = DocumentArray[OutputDoc]( [OutputDoc(embedding=np.zeros((100, 1))) for _ in range(len(docs))] ) return docs_return with Deployment(uses=MyExec) as dep: docs = dep.post( on='/bar', inputs=InputDoc(img=ImageDoc(tensor=np.zeros((3, 224, 224)))), return_type=DocumentArray[OutputDoc], ) assert docs[0].embedding.shape == (100, 1) assert docs.__class__.document_type == OutputDoc
from typing import Optional import numpy as np from docarray import BaseDocument, DocumentArray from docarray.documents import Image from docarray.typing import AnyTensor, ImageUrl from jina import Deployment, Executor, Flow, requests def test_different_document_schema(): class Image(BaseDocument): tensor: Optional[AnyTensor] url: ImageUrl class MyExec(Executor): @requests(on='/foo') def foo(self, docs: DocumentArray[Image], **kwargs) -> DocumentArray[Image]: for doc in docs: doc.tensor = doc.url.load() return docs with Flow().add(uses=MyExec) as f: docs = f.post( on='/foo', inputs=DocumentArray[Image]( [Image(url='https://via.placeholder.com/150.png')] ), return_type=DocumentArray[Image], ) docs = docs.stack() assert docs.tensor.ndim == 4 def test_send_custom_doc(): class MyDoc(BaseDocument): text: str class MyExec(Executor): @requests(on='/foo') def foo(self, docs: DocumentArray[MyDoc], **kwargs): docs[0].text = 'hello world' with Flow().add(uses=MyExec) as f: doc = f.post( on='/foo', inputs=MyDoc(text='hello'), return_type=DocumentArray[MyDoc] ) assert doc[0].text == 'hello world' def test_input_response_schema(): class MyDoc(BaseDocument): text: str class MyExec(Executor): @requests( on='/foo', request_schema=DocumentArray[MyDoc], response_schema=DocumentArray[MyDoc], ) def foo(self, docs, **kwargs): assert docs.__class__.document_type == MyDoc docs[0].text = 'hello world' return docs with Flow().add(uses=MyExec) as f: docs = f.post( on='/foo', inputs=MyDoc(text='hello'), return_type=DocumentArray[MyDoc] ) assert docs[0].text == 'hello world' assert docs.__class__.document_type == MyDoc def test_input_response_schema_annotation(): class MyDoc(BaseDocument): text: str class MyExec(Executor): @requests(on='/bar') def bar(self, docs: DocumentArray[MyDoc], **kwargs) -> DocumentArray[MyDoc]: assert docs.__class__.document_type == MyDoc docs[0].text = 'hello world' return docs with Flow().add(uses=MyExec) as f: docs = f.post( on='/bar', inputs=MyDoc(text='hello'), return_type=DocumentArray[MyDoc] ) assert docs[0].text == 'hello world' assert docs.__class__.document_type == MyDoc def test_different_output_input(): class InputDoc(BaseDocument): img: Image class OutputDoc(BaseDocument): embedding: AnyTensor class MyExec(Executor): @requests(on='/bar') def bar( self, docs: DocumentArray[InputDoc], **kwargs ) -> DocumentArray[OutputDoc]: docs_return = DocumentArray[OutputDoc]( [OutputDoc(embedding=np.zeros((100, 1))) for _ in range(len(docs))] ) return docs_return with Flow().add(uses=MyExec) as f: docs = f.post( on='/bar', inputs=InputDoc(img=Image(tensor=np.zeros((3, 224, 224)))), return_type=DocumentArray[OutputDoc], ) assert docs[0].embedding.shape == (100, 1) assert docs.__class__.document_type == OutputDoc def test_deployments(): class InputDoc(BaseDocument): img: Image class OutputDoc(BaseDocument): embedding: AnyTensor class MyExec(Executor): @requests(on='/bar') def bar( self, docs: DocumentArray[InputDoc], **kwargs ) -> DocumentArray[OutputDoc]: docs_return = DocumentArray[OutputDoc]( [OutputDoc(embedding=np.zeros((100, 1))) for _ in range(len(docs))] ) return docs_return with Deployment(uses=MyExec) as dep: docs = dep.post( on='/bar', inputs=InputDoc(img=Image(tensor=np.zeros((3, 224, 224)))), return_type=DocumentArray[OutputDoc], ) assert docs[0].embedding.shape == (100, 1) assert docs.__class__.document_type == OutputDoc
"""Tests for the InMemoryStore class.""" import pytest from langchain_core.stores import InMemoryStore from langchain_tests.integration_tests.base_store import ( BaseStoreAsyncTests, BaseStoreSyncTests, ) class TestInMemoryStore(BaseStoreSyncTests): @pytest.fixture def three_values(self) -> tuple[str, str, str]: return "foo", "bar", "buzz" @pytest.fixture def kv_store(self) -> InMemoryStore: return InMemoryStore() class TestInMemoryStoreAsync(BaseStoreAsyncTests): @pytest.fixture def three_values(self) -> tuple[str, str, str]: # type: ignore return "foo", "bar", "buzz" @pytest.fixture async def kv_store(self) -> InMemoryStore: return InMemoryStore()
"""Tests for the InMemoryStore class.""" from typing import Tuple import pytest from langchain_core.stores import InMemoryStore from langchain_tests.integration_tests.base_store import ( BaseStoreAsyncTests, BaseStoreSyncTests, ) class TestInMemoryStore(BaseStoreSyncTests): @pytest.fixture def three_values(self) -> Tuple[str, str, str]: return "foo", "bar", "buzz" @pytest.fixture def kv_store(self) -> InMemoryStore: return InMemoryStore() class TestInMemoryStoreAsync(BaseStoreAsyncTests): @pytest.fixture def three_values(self) -> Tuple[str, str, str]: # type: ignore return "foo", "bar", "buzz" @pytest.fixture async def kv_store(self) -> InMemoryStore: return InMemoryStore()
import warnings from typing import Optional, Tuple, TypeVar from docarray.typing import AudioNdArray from docarray.typing.bytes.audio_bytes import AudioBytes from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.utils._internal.misc import is_notebook T = TypeVar('T', bound='AudioUrl') @_register_proto(proto_type_name='audio_url') class AudioUrl(AnyUrl): """ URL to an audio file. Can be remote (web) URL, or a local file path. """ def load(self: T) -> Tuple[AudioNdArray, int]: """ Load the data from the url into an [`AudioNdArray`][docarray.typing.AudioNdArray] and the frame rate. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import AudioNdArray, AudioUrl class MyDoc(BaseDoc): audio_url: AudioUrl audio_tensor: Optional[AudioNdArray] doc = MyDoc(audio_url='https://www.kozco.com/tech/piano2.wav') doc.audio_tensor, _ = doc.audio_url.load() assert isinstance(doc.audio_tensor, AudioNdArray) ``` --- :return: tuple of an [`AudioNdArray`][docarray.typing.AudioNdArray] representing the audio file content, and an integer representing the frame rate. """ bytes_ = self.load_bytes() return bytes_.load() def load_bytes(self, timeout: Optional[float] = None) -> AudioBytes: """ Convert url to [`AudioBytes`][docarray.typing.AudioBytes]. This will either load or download the file and save it into an [`AudioBytes`][docarray.typing.AudioBytes] object. :param timeout: timeout for urlopen. Only relevant if url is not local :return: [`AudioBytes`][docarray.typing.AudioBytes] object """ bytes_ = super().load_bytes(timeout=timeout) return AudioBytes(bytes_) def display(self): """ Play the audio sound from url in notebook. """ if is_notebook(): from IPython.display import Audio, display remote_url = True if self.startswith('http') else False if remote_url: display(Audio(data=self)) else: display(Audio(filename=self)) else: warnings.warn('Display of audio is only possible in a notebook.')
import warnings from typing import Optional, Tuple, TypeVar from docarray.typing import AudioNdArray from docarray.typing.bytes.audio_bytes import AudioBytes from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.utils._internal.misc import is_notebook T = TypeVar('T', bound='AudioUrl') @_register_proto(proto_type_name='audio_url') class AudioUrl(AnyUrl): """ URL to an audio file. Can be remote (web) URL, or a local file path. """ def load(self: T) -> Tuple[AudioNdArray, int]: """ Load the data from the url into an [`AudioNdArray`][docarray.typing.AudioNdArray] and the frame rate. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import AudioNdArray, AudioUrl class MyDoc(BaseDoc): audio_url: AudioUrl audio_tensor: Optional[AudioNdArray] doc = MyDoc(audio_url='https://www.kozco.com/tech/piano2.wav') doc.audio_tensor, _ = doc.audio_url.load() assert isinstance(doc.audio_tensor, AudioNdArray) ``` --- :return: tuple of an [`AudioNdArray`][docarray.typing.AudioNdArray] representing the audio file content, and an integer representing the frame rate. """ bytes_ = self.load_bytes() return bytes_.load() def load_bytes(self, timeout: Optional[float] = None) -> AudioBytes: """ Convert url to [`AudioBytes`][docarray.typing.AudioBytes]. This will either load or download the file and save it into an [`AudioBytes`][docarray.typing.AudioBytes] object. :param timeout: timeout for urlopen. Only relevant if url is not local :return: [`AudioBytes`][docarray.typing.AudioBytes] object """ bytes_ = super().load_bytes(timeout=timeout) return AudioBytes(bytes_) def display(self): """ Play the audio sound from url in notebook. """ if is_notebook(): from IPython.display import Audio, display remote_url = True if self.startswith('http') else False if remote_url: display(Audio(data=self)) else: display(Audio(filename=self)) else: warnings.warn('Display of image is only possible in a notebook.')
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chat_message_histories import StreamlitChatMessageHistory # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "StreamlitChatMessageHistory": "langchain_community.chat_message_histories", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "StreamlitChatMessageHistory", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chat_message_histories import StreamlitChatMessageHistory # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "StreamlitChatMessageHistory": "langchain_community.chat_message_histories" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "StreamlitChatMessageHistory", ]
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .faster_rcnn import FasterRCNN @DETECTORS.register_module() class TridentFasterRCNN(FasterRCNN): """Implementation of `TridentNet <https://arxiv.org/abs/1901.01892>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(TridentFasterRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg) assert self.backbone.num_branch == self.roi_head.num_branch assert self.backbone.test_branch_idx == self.roi_head.test_branch_idx self.num_branch = self.backbone.num_branch self.test_branch_idx = self.backbone.test_branch_idx def simple_test(self, img, img_metas, proposals=None, rescale=False): """Test without augmentation.""" assert self.with_bbox, 'Bbox head must be implemented.' x = self.extract_feat(img) if proposals is None: num_branch = (self.num_branch if self.test_branch_idx == -1 else 1) trident_img_metas = img_metas * num_branch proposal_list = self.rpn_head.simple_test_rpn(x, trident_img_metas) else: proposal_list = proposals return self.roi_head.simple_test( x, proposal_list, trident_img_metas, rescale=rescale) def aug_test(self, imgs, img_metas, rescale=False): """Test with augmentations. If rescale is False, then returned bboxes and masks will fit the scale of imgs[0]. """ x = self.extract_feats(imgs) num_branch = (self.num_branch if self.test_branch_idx == -1 else 1) trident_img_metas = [img_metas * num_branch for img_metas in img_metas] proposal_list = self.rpn_head.aug_test_rpn(x, trident_img_metas) return self.roi_head.aug_test( x, proposal_list, img_metas, rescale=rescale) def forward_train(self, img, img_metas, gt_bboxes, gt_labels, **kwargs): """make copies of img and gts to fit multi-branch.""" trident_gt_bboxes = tuple(gt_bboxes * self.num_branch) trident_gt_labels = tuple(gt_labels * self.num_branch) trident_img_metas = tuple(img_metas * self.num_branch) return super(TridentFasterRCNN, self).forward_train(img, trident_img_metas, trident_gt_bboxes, trident_gt_labels)
from ..builder import DETECTORS from .faster_rcnn import FasterRCNN @DETECTORS.register_module() class TridentFasterRCNN(FasterRCNN): """Implementation of `TridentNet <https://arxiv.org/abs/1901.01892>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(TridentFasterRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg) assert self.backbone.num_branch == self.roi_head.num_branch assert self.backbone.test_branch_idx == self.roi_head.test_branch_idx self.num_branch = self.backbone.num_branch self.test_branch_idx = self.backbone.test_branch_idx def simple_test(self, img, img_metas, proposals=None, rescale=False): """Test without augmentation.""" assert self.with_bbox, 'Bbox head must be implemented.' x = self.extract_feat(img) if proposals is None: num_branch = (self.num_branch if self.test_branch_idx == -1 else 1) trident_img_metas = img_metas * num_branch proposal_list = self.rpn_head.simple_test_rpn(x, trident_img_metas) else: proposal_list = proposals return self.roi_head.simple_test( x, proposal_list, trident_img_metas, rescale=rescale) def aug_test(self, imgs, img_metas, rescale=False): """Test with augmentations. If rescale is False, then returned bboxes and masks will fit the scale of imgs[0]. """ x = self.extract_feats(imgs) num_branch = (self.num_branch if self.test_branch_idx == -1 else 1) trident_img_metas = [img_metas * num_branch for img_metas in img_metas] proposal_list = self.rpn_head.aug_test_rpn(x, trident_img_metas) return self.roi_head.aug_test( x, proposal_list, img_metas, rescale=rescale) def forward_train(self, img, img_metas, gt_bboxes, gt_labels, **kwargs): """make copies of img and gts to fit multi-branch.""" trident_gt_bboxes = tuple(gt_bboxes * self.num_branch) trident_gt_labels = tuple(gt_labels * self.num_branch) trident_img_metas = tuple(img_metas * self.num_branch) return super(TridentFasterRCNN, self).forward_train(img, trident_img_metas, trident_gt_bboxes, trident_gt_labels)
_base_ = './mask-rcnn_r50_fpn_1x_coco.py' model = dict( # use caffe img_norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False), backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './mask_rcnn_r50_fpn_1x_coco.py' model = dict( # use caffe img_norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False), backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class FOVEA(SingleStageDetector): """Implementation of `FoveaBox <https://arxiv.org/abs/1904.03797>`_ Args: backbone (:obj:`ConfigDict` or dict): The backbone config. neck (:obj:`ConfigDict` or dict): The neck config. bbox_head (:obj:`ConfigDict` or dict): The bbox head config. train_cfg (:obj:`ConfigDict` or dict, optional): The training config of FOVEA. Defaults to None. test_cfg (:obj:`ConfigDict` or dict, optional): The testing config of FOVEA. Defaults to None. data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of :class:`DetDataPreprocessor` to process the input data. Defaults to None. init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or list[dict], optional): Initialization config dict. Defaults to None. """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class FOVEA(SingleStageDetector): """Implementation of `FoveaBox <https://arxiv.org/abs/1904.03797>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(FOVEA, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
from .functional import add_noise, convolve, fftconvolve __all__ = ["add_noise", "convolve", "fftconvolve"]
from .functional import convolve, fftconvolve __all__ = ["convolve", "fftconvolve"]
_base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py' model = dict( backbone=dict( embed_dims=64, num_layers=[3, 6, 40, 3], mlp_ratios=(4, 4, 4, 4), init_cfg=dict(checkpoint='https://github.com/whai362/PVT/' 'releases/download/v2/pvt_v2_b5.pth')), neck=dict(in_channels=[64, 128, 320, 512])) # optimizer optimizer = dict( _delete_=True, type='AdamW', lr=0.0001 / 1.4, weight_decay=0.0001) # dataset settings data = dict(samples_per_gpu=1, workers_per_gpu=1) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (1 samples per GPU) auto_scale_lr = dict(base_batch_size=8)
_base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py' model = dict( backbone=dict( embed_dims=64, num_layers=[3, 6, 40, 3], mlp_ratios=(4, 4, 4, 4), init_cfg=dict(checkpoint='https://github.com/whai362/PVT/' 'releases/download/v2/pvt_v2_b5.pth')), neck=dict(in_channels=[64, 128, 320, 512])) # optimizer optimizer = dict( _delete_=True, type='AdamW', lr=0.0001 / 1.4, weight_decay=0.0001) # dataset settings data = dict(samples_per_gpu=1, workers_per_gpu=1)
_base_ = [ 'mmdet::_base_/models/mask-rcnn_r50_fpn.py', 'mmdet::_base_/datasets/coco_instance.py', 'mmdet::_base_/schedules/schedule_1x.py', 'mmdet::_base_/default_runtime.py' ] # please install the mmpretrain # import mmpretrain.models to trigger register_module in mmpretrain custom_imports = dict( imports=['mmpretrain.models'], allow_failed_imports=False) checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext-v2/convnext-v2-base_3rdparty-fcmae_in1k_20230104-8a798eaf.pth' # noqa image_size = (1024, 1024) model = dict( backbone=dict( _delete_=True, type='mmpretrain.ConvNeXt', arch='base', out_indices=[0, 1, 2, 3], # TODO: verify stochastic depth rate {0.1, 0.2, 0.3, 0.4} drop_path_rate=0.4, layer_scale_init_value=0., # disable layer scale when using GRN gap_before_final_norm=False, use_grn=True, # V2 uses GRN init_cfg=dict( type='Pretrained', checkpoint=checkpoint_file, prefix='backbone.')), neck=dict(in_channels=[128, 256, 512, 1024]), test_cfg=dict( rpn=dict(nms=dict(type='nms')), # TODO: does RPN use soft_nms? rcnn=dict(nms=dict(type='soft_nms')))) train_pipeline = [ dict(type='LoadImageFromFile', backend_args=_base_.backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict( batch_size=4, # total_batch_size 32 = 8 GPUS x 4 images num_workers=8, dataset=dict(pipeline=train_pipeline)) max_epochs = 36 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[27, 33], gamma=0.1) ] # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', constructor='LearningRateDecayOptimizerConstructor', paramwise_cfg={ 'decay_rate': 0.95, 'decay_type': 'layer_wise', # TODO: sweep layer-wise lr decay? 'num_layers': 12 }, optimizer=dict( _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, )) default_hooks = dict(checkpoint=dict(max_keep_ckpts=1))
_base_ = [ 'mmdet::_base_/models/mask-rcnn_r50_fpn.py', 'mmdet::_base_/datasets/coco_instance.py', 'mmdet::_base_/schedules/schedule_1x.py', 'mmdet::_base_/default_runtime.py' ] # please install the mmclassification dev-1.x branch # import mmcls.models to trigger register_module in mmcls custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False) checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext-v2/convnext-v2-base_3rdparty-fcmae_in1k_20230104-8a798eaf.pth' # noqa image_size = (1024, 1024) model = dict( backbone=dict( _delete_=True, type='mmcls.ConvNeXt', arch='base', out_indices=[0, 1, 2, 3], # TODO: verify stochastic depth rate {0.1, 0.2, 0.3, 0.4} drop_path_rate=0.4, layer_scale_init_value=0., # disable layer scale when using GRN gap_before_final_norm=False, use_grn=True, # V2 uses GRN init_cfg=dict( type='Pretrained', checkpoint=checkpoint_file, prefix='backbone.')), neck=dict(in_channels=[128, 256, 512, 1024]), test_cfg=dict( rpn=dict(nms=dict(type='nms')), # TODO: does RPN use soft_nms? rcnn=dict(nms=dict(type='soft_nms')))) train_pipeline = [ dict(type='LoadImageFromFile', backend_args=_base_.backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict( batch_size=4, # total_batch_size 32 = 8 GPUS x 4 images num_workers=8, dataset=dict(pipeline=train_pipeline)) max_epochs = 36 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[27, 33], gamma=0.1) ] # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', constructor='LearningRateDecayOptimizerConstructor', paramwise_cfg={ 'decay_rate': 0.95, 'decay_type': 'layer_wise', # TODO: sweep layer-wise lr decay? 'num_layers': 12 }, optimizer=dict( _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, )) default_hooks = dict(checkpoint=dict(max_keep_ckpts=1))
from __future__ import annotations from dataclasses import dataclass from sentence_transformers.training_args import SentenceTransformerTrainingArguments @dataclass class SparseEncoderTrainingArguments(SentenceTransformerTrainingArguments): """ SparseEncoderTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. """
from __future__ import annotations from dataclasses import dataclass, field from sentence_transformers.training_args import SentenceTransformerTrainingArguments @dataclass class SparseEncoderTrainingArguments(SentenceTransformerTrainingArguments): """ SparseEncoderTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. """ # Sparsity parameters sparsity_threshold: float = field(default=0.0, metadata={"help": "Threshold for sparsifying embeddings"}) topk: int | None = field( default=None, metadata={"help": "Number of top values to keep in sparse embeddings"}, )
import asyncio import time import pytest from jina import Document from jina.clients.request import request_generator from jina.serve.stream.helper import AsyncRequestsIterator, _RequestsCounter def slow_blocking_generator(): for i in range(2): yield Document(id=str(i)) time.sleep(2) @pytest.mark.asyncio async def test_iter_requests(): iter = request_generator(exec_endpoint='/', data=slow_blocking_generator()) count = 0 num_reqs = 0 async def another_task(): nonlocal count for _ in range(20): await asyncio.sleep(0.2) count += 1 task = asyncio.create_task(another_task()) async for _ in AsyncRequestsIterator(iter): """Using following code will block the event loop and count will be <5 for _ in iter: ... """ num_reqs += 1 task.cancel() # ideally count will be 20, but to avoid flaky CI assert count > 15 @pytest.mark.asyncio async def test_iter_requests_with_prefetch(): max_amount_requests = _RequestsCounter() counter = _RequestsCounter() async def consume_requests(): while True: await asyncio.sleep(0.01) if counter.count > 0: counter.count -= 1 async def req_iterator(max_amount_requests): for i in range(1000): await asyncio.sleep(0.001) counter.count += 1 if counter.count > max_amount_requests.count: max_amount_requests.count = counter.count yield i consume_task = asyncio.create_task(consume_requests()) async for _ in AsyncRequestsIterator( req_iterator(max_amount_requests), counter, 10 ): pass consume_task.cancel() assert max_amount_requests.count == 10
import asyncio import time import pytest from jina import Document from jina.clients.request import request_generator from jina.serve.stream.helper import AsyncRequestsIterator, RequestsCounter def slow_blocking_generator(): for i in range(2): yield Document(id=str(i)) time.sleep(2) @pytest.mark.asyncio async def test_iter_requests(): iter = request_generator(exec_endpoint='/', data=slow_blocking_generator()) count = 0 num_reqs = 0 async def another_task(): nonlocal count for _ in range(20): await asyncio.sleep(0.2) count += 1 task = asyncio.create_task(another_task()) async for _ in AsyncRequestsIterator(iter): """Using following code will block the event loop and count will be <5 for _ in iter: ... """ num_reqs += 1 task.cancel() # ideally count will be 20, but to avoid flaky CI assert count > 15 @pytest.mark.asyncio async def test_iter_requests_with_prefetch(): max_amount_requests = RequestsCounter() counter = RequestsCounter() async def consume_requests(): while True: await asyncio.sleep(0.01) if counter.count > 0: counter.count -= 1 async def req_iterator(max_amount_requests): for i in range(1000): await asyncio.sleep(0.001) counter.count += 1 if counter.count > max_amount_requests.count: max_amount_requests.count = counter.count yield i consume_task = asyncio.create_task(consume_requests()) async for _ in AsyncRequestsIterator( req_iterator(max_amount_requests), counter, 10 ): pass consume_task.cancel() assert max_amount_requests.count == 10
""" In this example we train a semantic search model to search through Wikipedia articles about programming articles & technologies. We use the text paragraphs from the following Wikipedia articles: Assembly language, C , C Sharp , C++, Go , Java , JavaScript, Keras, Laravel, MATLAB, Matplotlib, MongoDB, MySQL, Natural Language Toolkit, NumPy, pandas (software), Perl, PHP, PostgreSQL, Python , PyTorch, R , React, Rust , Scala , scikit-learn, SciPy, Swift , TensorFlow, Vue.js In: 1_programming_query_generation.py - We generate queries for all paragraphs from these articles 2_programming_train_bi-encoder.py - We train a SentenceTransformer bi-encoder with these generated queries. This results in a model we can then use for semantic search (for the given Wikipedia articles). 3_programming_semantic_search.py - Shows how the trained model can be used for semantic search """ import gzip import json import os import torch import tqdm from transformers import T5ForConditionalGeneration, T5Tokenizer from sentence_transformers import util paragraphs = set() # We use the Wikipedia articles of certain programming languages corpus_filepath = "wiki-programmming-20210101.jsonl.gz" if not os.path.exists(corpus_filepath): util.http_get("https://sbert.net/datasets/wiki-programmming-20210101.jsonl.gz", corpus_filepath) with gzip.open(corpus_filepath, "rt") as fIn: for line in fIn: data = json.loads(line.strip()) for p in data["paragraphs"]: if len(p) > 100: # Only take paragraphs with at least 100 chars paragraphs.add(p) paragraphs = list(paragraphs) print("Paragraphs:", len(paragraphs)) # Now we load the model that is able to generate queries given a paragraph. # This model was trained on the MS MARCO dataset, a dataset with 500k # queries from Bing and the respective relevant passage tokenizer = T5Tokenizer.from_pretrained("BeIR/query-gen-msmarco-t5-large-v1") model = T5ForConditionalGeneration.from_pretrained("BeIR/query-gen-msmarco-t5-large-v1") model.eval() # Select the device device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # Parameters for generation batch_size = 8 # Batch size num_queries = 5 # Number of queries to generate for every paragraph max_length_paragraph = 300 # Max length for paragraph max_length_query = 64 # Max length for output query # Now for every paragraph in our corpus, we generate the queries with open("generated_queries.tsv", "w") as fOut: for start_idx in tqdm.trange(0, len(paragraphs), batch_size): sub_paragraphs = paragraphs[start_idx : start_idx + batch_size] inputs = tokenizer.prepare_seq2seq_batch( sub_paragraphs, max_length=max_length_paragraph, truncation=True, return_tensors="pt" ).to(device) outputs = model.generate( **inputs, max_length=max_length_query, do_sample=True, top_p=0.95, num_return_sequences=num_queries ) for idx, out in enumerate(outputs): query = tokenizer.decode(out, skip_special_tokens=True) para = sub_paragraphs[int(idx / num_queries)] fOut.write("{}\t{}\n".format(query.replace("\t", " ").strip(), para.replace("\t", " ").strip()))
""" In this example we train a semantic search model to search through Wikipedia articles about programming articles & technologies. We use the text paragraphs from the following Wikipedia articles: Assembly language, C , C Sharp , C++, Go , Java , JavaScript, Keras, Laravel, MATLAB, Matplotlib, MongoDB, MySQL, Natural Language Toolkit, NumPy, pandas (software), Perl, PHP, PostgreSQL, Python , PyTorch, R , React, Rust , Scala , scikit-learn, SciPy, Swift , TensorFlow, Vue.js In: 1_programming_query_generation.py - We generate queries for all paragraphs from these articles 2_programming_train_bi-encoder.py - We train a SentenceTransformer bi-encoder with these generated queries. This results in a model we can then use for semantic search (for the given Wikipedia articles). 3_programming_semantic_search.py - Shows how the trained model can be used for semantic search """ import json import gzip from transformers import T5Tokenizer, T5ForConditionalGeneration import torch import tqdm import os from sentence_transformers import util paragraphs = set() # We use the Wikipedia articles of certain programming languages corpus_filepath = "wiki-programmming-20210101.jsonl.gz" if not os.path.exists(corpus_filepath): util.http_get("https://sbert.net/datasets/wiki-programmming-20210101.jsonl.gz", corpus_filepath) with gzip.open(corpus_filepath, "rt") as fIn: for line in fIn: data = json.loads(line.strip()) for p in data["paragraphs"]: if len(p) > 100: # Only take paragraphs with at least 100 chars paragraphs.add(p) paragraphs = list(paragraphs) print("Paragraphs:", len(paragraphs)) # Now we load the model that is able to generate queries given a paragraph. # This model was trained on the MS MARCO dataset, a dataset with 500k # queries from Bing and the respective relevant passage tokenizer = T5Tokenizer.from_pretrained("BeIR/query-gen-msmarco-t5-large-v1") model = T5ForConditionalGeneration.from_pretrained("BeIR/query-gen-msmarco-t5-large-v1") model.eval() # Select the device device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # Parameters for generation batch_size = 8 # Batch size num_queries = 5 # Number of queries to generate for every paragraph max_length_paragraph = 300 # Max length for paragraph max_length_query = 64 # Max length for output query # Now for every paragraph in our corpus, we generate the queries with open("generated_queries.tsv", "w") as fOut: for start_idx in tqdm.trange(0, len(paragraphs), batch_size): sub_paragraphs = paragraphs[start_idx : start_idx + batch_size] inputs = tokenizer.prepare_seq2seq_batch( sub_paragraphs, max_length=max_length_paragraph, truncation=True, return_tensors="pt" ).to(device) outputs = model.generate( **inputs, max_length=max_length_query, do_sample=True, top_p=0.95, num_return_sequences=num_queries ) for idx, out in enumerate(outputs): query = tokenizer.decode(out, skip_special_tokens=True) para = sub_paragraphs[int(idx / num_queries)] fOut.write("{}\t{}\n".format(query.replace("\t", " ").strip(), para.replace("\t", " ").strip()))
from __future__ import annotations from typing_extensions import deprecated from sentence_transformers import InputExample from sentence_transformers.cross_encoder.evaluation.CEClassificationEvaluator import CEClassificationEvaluator @deprecated( "This evaluator has been deprecated in favor of the more general CEClassificationEvaluator. " "Please use CEClassificationEvaluator instead, which supports both binary and multi-class " "evaluation. It accepts approximately the same inputs as this evaluator." ) class CEBinaryClassificationEvaluator(CEClassificationEvaluator): """ This evaluator has been deprecated in favor of the more general CEClassificationEvaluator. """ @classmethod def from_input_examples(cls, examples: list[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs)
from __future__ import annotations import csv import logging import os import numpy as np from sklearn.metrics import average_precision_score from sentence_transformers import InputExample from sentence_transformers.evaluation import BinaryClassificationEvaluator logger = logging.getLogger(__name__) class CEBinaryClassificationEvaluator: """ This evaluator can be used with the CrossEncoder class. Given sentence pairs and binary labels (0 and 1), it compute the average precision and the best possible f1 score """ def __init__( self, sentence_pairs: list[list[str]], labels: list[int], name: str = "", show_progress_bar: bool = False, write_csv: bool = True, ): assert len(sentence_pairs) == len(labels) for label in labels: assert label == 0 or label == 1 self.sentence_pairs = sentence_pairs self.labels = np.asarray(labels) self.name = name if show_progress_bar is None: show_progress_bar = ( logger.getEffectiveLevel() == logging.INFO or logger.getEffectiveLevel() == logging.DEBUG ) self.show_progress_bar = show_progress_bar self.csv_file = "CEBinaryClassificationEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = [ "epoch", "steps", "Accuracy", "Accuracy_Threshold", "F1", "F1_Threshold", "Precision", "Recall", "Average_Precision", ] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: list[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = f" after epoch {epoch}:" else: out_txt = f" in epoch {epoch} after {steps} steps:" else: out_txt = ":" logger.info("CEBinaryClassificationEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict( self.sentence_pairs, convert_to_numpy=True, show_progress_bar=self.show_progress_bar ) acc, acc_threshold = BinaryClassificationEvaluator.find_best_acc_and_threshold(pred_scores, self.labels, True) f1, precision, recall, f1_threshold = BinaryClassificationEvaluator.find_best_f1_and_threshold( pred_scores, self.labels, True ) ap = average_precision_score(self.labels, pred_scores) logger.info(f"Accuracy: {acc * 100:.2f}\t(Threshold: {acc_threshold:.4f})") logger.info(f"F1: {f1 * 100:.2f}\t(Threshold: {f1_threshold:.4f})") logger.info(f"Precision: {precision * 100:.2f}") logger.info(f"Recall: {recall * 100:.2f}") logger.info(f"Average Precision: {ap * 100:.2f}\n") if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc, acc_threshold, f1, f1_threshold, precision, recall, ap]) return ap
from __future__ import annotations import json from typing import Any, Optional from langchain_core._api import deprecated from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate from langchain_text_splitters import RecursiveCharacterTextSplitter, TextSplitter from pydantic import Field from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.qa_generation.prompt import PROMPT_SELECTOR @deprecated( since="0.2.7", alternative=( "example in API reference with more detail: " "https://api.python.langchain.com/en/latest/chains/langchain.chains.qa_generation.base.QAGenerationChain.html" ), removal="1.0", ) class QAGenerationChain(Chain): """Base class for question-answer generation chains. This class is deprecated. See below for an alternative implementation. Advantages of this implementation include: - Supports async and streaming; - Surfaces prompt and text splitter for easier customization; - Use of JsonOutputParser supports JSONPatch operations in streaming mode, as well as robustness to markdown. .. code-block:: python from langchain.chains.qa_generation.prompt import CHAT_PROMPT as prompt # Note: import PROMPT if using a legacy non-chat model. from langchain_core.output_parsers import JsonOutputParser from langchain_core.runnables import ( RunnableLambda, RunnableParallel, RunnablePassthrough, ) from langchain_core.runnables.base import RunnableEach from langchain_openai import ChatOpenAI from langchain_text_splitters import RecursiveCharacterTextSplitter llm = ChatOpenAI() text_splitter = RecursiveCharacterTextSplitter(chunk_overlap=500) split_text = RunnableLambda( lambda x: text_splitter.create_documents([x]) ) chain = RunnableParallel( text=RunnablePassthrough(), questions=( split_text | RunnableEach(bound=prompt | llm | JsonOutputParser()) ) ) """ llm_chain: LLMChain """LLM Chain that generates responses from user input and context.""" text_splitter: TextSplitter = Field( default=RecursiveCharacterTextSplitter(chunk_overlap=500) ) """Text splitter that splits the input into chunks.""" input_key: str = "text" """Key of the input to the chain.""" output_key: str = "questions" """Key of the output of the chain.""" k: Optional[int] = None """Number of questions to generate.""" @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> QAGenerationChain: """ Create a QAGenerationChain from a language model. Args: llm: a language model prompt: a prompt template **kwargs: additional arguments Returns: a QAGenerationChain class """ _prompt = prompt or PROMPT_SELECTOR.get_prompt(llm) chain = LLMChain(llm=llm, prompt=_prompt) return cls(llm_chain=chain, **kwargs) @property def _chain_type(self) -> str: raise NotImplementedError @property def input_keys(self) -> list[str]: return [self.input_key] @property def output_keys(self) -> list[str]: return [self.output_key] def _call( self, inputs: dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, list]: docs = self.text_splitter.create_documents([inputs[self.input_key]]) results = self.llm_chain.generate( [{"text": d.page_content} for d in docs], run_manager=run_manager ) qa = [json.loads(res[0].text) for res in results.generations] return {self.output_key: qa}
from __future__ import annotations import json from typing import Any, Optional from langchain_core._api import deprecated from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate from langchain_text_splitters import RecursiveCharacterTextSplitter, TextSplitter from pydantic import Field from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.qa_generation.prompt import PROMPT_SELECTOR @deprecated( since="0.2.7", alternative=( "example in API reference with more detail: " "https://api.python.langchain.com/en/latest/chains/langchain.chains.qa_generation.base.QAGenerationChain.html" # noqa: E501 ), removal="1.0", ) class QAGenerationChain(Chain): """Base class for question-answer generation chains. This class is deprecated. See below for an alternative implementation. Advantages of this implementation include: - Supports async and streaming; - Surfaces prompt and text splitter for easier customization; - Use of JsonOutputParser supports JSONPatch operations in streaming mode, as well as robustness to markdown. .. code-block:: python from langchain.chains.qa_generation.prompt import CHAT_PROMPT as prompt # Note: import PROMPT if using a legacy non-chat model. from langchain_core.output_parsers import JsonOutputParser from langchain_core.runnables import ( RunnableLambda, RunnableParallel, RunnablePassthrough, ) from langchain_core.runnables.base import RunnableEach from langchain_openai import ChatOpenAI from langchain_text_splitters import RecursiveCharacterTextSplitter llm = ChatOpenAI() text_splitter = RecursiveCharacterTextSplitter(chunk_overlap=500) split_text = RunnableLambda( lambda x: text_splitter.create_documents([x]) ) chain = RunnableParallel( text=RunnablePassthrough(), questions=( split_text | RunnableEach(bound=prompt | llm | JsonOutputParser()) ) ) """ llm_chain: LLMChain """LLM Chain that generates responses from user input and context.""" text_splitter: TextSplitter = Field( default=RecursiveCharacterTextSplitter(chunk_overlap=500) ) """Text splitter that splits the input into chunks.""" input_key: str = "text" """Key of the input to the chain.""" output_key: str = "questions" """Key of the output of the chain.""" k: Optional[int] = None """Number of questions to generate.""" @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> QAGenerationChain: """ Create a QAGenerationChain from a language model. Args: llm: a language model prompt: a prompt template **kwargs: additional arguments Returns: a QAGenerationChain class """ _prompt = prompt or PROMPT_SELECTOR.get_prompt(llm) chain = LLMChain(llm=llm, prompt=_prompt) return cls(llm_chain=chain, **kwargs) @property def _chain_type(self) -> str: raise NotImplementedError @property def input_keys(self) -> list[str]: return [self.input_key] @property def output_keys(self) -> list[str]: return [self.output_key] def _call( self, inputs: dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, list]: docs = self.text_splitter.create_documents([inputs[self.input_key]]) results = self.llm_chain.generate( [{"text": d.page_content} for d in docs], run_manager=run_manager ) qa = [json.loads(res[0].text) for res in results.generations] return {self.output_key: qa}
""" This examples trains a CrossEncoder for the Quora Duplicate Questions Detection task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continuous labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_quora_duplicate_questions.py """ import csv import logging import math import os from datetime import datetime from zipfile import ZipFile from torch.utils.data import DataLoader from sentence_transformers import LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CEBinaryClassificationEvaluator from sentence_transformers.readers import InputExample #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it dataset_path = "quora-dataset/" if not os.path.exists(dataset_path): logger.info("Dataset not found. Download") zip_save_path = "quora-IR-dataset.zip" util.http_get(url="https://sbert.net/datasets/quora-IR-dataset.zip", path=zip_save_path) with ZipFile(zip_save_path, "r") as zip: zip.extractall(dataset_path) # Read the quora dataset split for classification logger.info("Read train dataset") train_samples = [] with open(os.path.join(dataset_path, "classification", "train_pairs.tsv"), "r", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: train_samples.append(InputExample(texts=[row["question1"], row["question2"]], label=int(row["is_duplicate"]))) train_samples.append(InputExample(texts=[row["question2"], row["question1"]], label=int(row["is_duplicate"]))) logger.info("Read dev dataset") dev_samples = [] with open(os.path.join(dataset_path, "classification", "dev_pairs.tsv"), "r", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: dev_samples.append(InputExample(texts=[row["question1"], row["question2"]], label=int(row["is_duplicate"]))) # Configuration train_batch_size = 16 num_epochs = 4 model_save_path = "output/training_quora-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # We use distilroberta-base with a single label, i.e., it will output a value between 0 and 1 indicating the similarity of the two questions model = CrossEncoder("distilroberta-base", num_labels=1) # We wrap train_samples (which is a List[InputExample]) into a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # We add an evaluator, which evaluates the performance during training evaluator = CEBinaryClassificationEvaluator.from_input_examples(dev_samples, name="Quora-dev") # Configure the training warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logger.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, evaluation_steps=5000, warmup_steps=warmup_steps, output_path=model_save_path, )
""" This examples trains a CrossEncoder for the Quora Duplicate Questions Detection task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continuous labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_quora_duplicate_questions.py """ from torch.utils.data import DataLoader import math from sentence_transformers import LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CEBinaryClassificationEvaluator from sentence_transformers.readers import InputExample import logging from datetime import datetime import os import csv from zipfile import ZipFile #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it dataset_path = "quora-dataset/" if not os.path.exists(dataset_path): logger.info("Dataset not found. Download") zip_save_path = "quora-IR-dataset.zip" util.http_get(url="https://sbert.net/datasets/quora-IR-dataset.zip", path=zip_save_path) with ZipFile(zip_save_path, "r") as zip: zip.extractall(dataset_path) # Read the quora dataset split for classification logger.info("Read train dataset") train_samples = [] with open(os.path.join(dataset_path, "classification", "train_pairs.tsv"), "r", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: train_samples.append(InputExample(texts=[row["question1"], row["question2"]], label=int(row["is_duplicate"]))) train_samples.append(InputExample(texts=[row["question2"], row["question1"]], label=int(row["is_duplicate"]))) logger.info("Read dev dataset") dev_samples = [] with open(os.path.join(dataset_path, "classification", "dev_pairs.tsv"), "r", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: dev_samples.append(InputExample(texts=[row["question1"], row["question2"]], label=int(row["is_duplicate"]))) # Configuration train_batch_size = 16 num_epochs = 4 model_save_path = "output/training_quora-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # We use distilroberta-base with a single label, i.e., it will output a value between 0 and 1 indicating the similarity of the two questions model = CrossEncoder("distilroberta-base", num_labels=1) # We wrap train_samples (which is a List[InputExample]) into a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # We add an evaluator, which evaluates the performance during training evaluator = CEBinaryClassificationEvaluator.from_input_examples(dev_samples, name="Quora-dev") # Configure the training warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logger.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, evaluation_steps=5000, warmup_steps=warmup_steps, output_path=model_save_path, )
"""base multi modal retriever.""" from abc import abstractmethod from typing import List from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.image_retriever import BaseImageRetriever from llama_index.core.indices.query.schema import QueryType from llama_index.core.schema import NodeWithScore class MultiModalRetriever(BaseRetriever, BaseImageRetriever): """Multi Modal base retriever.""" @abstractmethod def text_retrieve(self, str_or_query_bundle: QueryType) -> List[NodeWithScore]: """ Retrieve text nodes given text query. Implemented by the user. """ @abstractmethod def text_to_image_retrieve( self, str_or_query_bundle: QueryType ) -> List[NodeWithScore]: """ Retrieve image nodes given text query. Implemented by the user. """ @abstractmethod def image_to_image_retrieve( self, str_or_query_bundle: QueryType ) -> List[NodeWithScore]: """ Retrieve image nodes given image query. Implemented by the user. """ @abstractmethod async def atext_retrieve( self, str_or_query_bundle: QueryType ) -> List[NodeWithScore]: """ Async Retrieve text nodes given text query. Implemented by the user. """ @abstractmethod async def atext_to_image_retrieve( self, str_or_query_bundle: QueryType ) -> List[NodeWithScore]: """ Async Retrieve image nodes given text query. Implemented by the user. """ @abstractmethod async def aimage_to_image_retrieve( self, str_or_query_bundle: QueryType ) -> List[NodeWithScore]: """ Async Retrieve image nodes given image query. Implemented by the user. """
"""base multi modal retriever.""" from abc import abstractmethod from typing import List from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.image_retriever import BaseImageRetriever from llama_index.core.indices.query.schema import QueryType from llama_index.core.schema import NodeWithScore class MultiModalRetriever(BaseRetriever, BaseImageRetriever): """Multi Modal base retriever.""" @abstractmethod def text_retrieve(self, str_or_query_bundle: QueryType) -> List[NodeWithScore]: """Retrieve text nodes given text query. Implemented by the user. """ @abstractmethod def text_to_image_retrieve( self, str_or_query_bundle: QueryType ) -> List[NodeWithScore]: """Retrieve image nodes given text query. Implemented by the user. """ @abstractmethod def image_to_image_retrieve( self, str_or_query_bundle: QueryType ) -> List[NodeWithScore]: """Retrieve image nodes given image query. Implemented by the user. """ @abstractmethod async def atext_retrieve( self, str_or_query_bundle: QueryType ) -> List[NodeWithScore]: """Async Retrieve text nodes given text query. Implemented by the user. """ @abstractmethod async def atext_to_image_retrieve( self, str_or_query_bundle: QueryType ) -> List[NodeWithScore]: """Async Retrieve image nodes given text query. Implemented by the user. """ @abstractmethod async def aimage_to_image_retrieve( self, str_or_query_bundle: QueryType ) -> List[NodeWithScore]: """Async Retrieve image nodes given image query. Implemented by the user. """
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/openimages_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict(roi_head=dict(bbox_head=dict(num_classes=601))) # Using 32 GPUS while training optimizer = dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) lr_config = dict( policy='step', warmup='linear', warmup_iters=26000, warmup_ratio=1.0 / 64, step=[8, 11]) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/openimages_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict(roi_head=dict(bbox_head=dict(num_classes=601))) # Using 32 GPUS while training optimizer = dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) lr_config = dict( policy='step', warmup='linear', warmup_iters=26000, warmup_ratio=1.0 / 64, step=[8, 11])
from docarray.typing.tensor.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.image import ImageNdArray, ImageTensor from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor __all__ = [ 'NdArray', 'AnyTensor', 'AnyEmbedding', 'NdArrayEmbedding', 'ImageNdArray', 'ImageTensor', 'TensorFlowTensor', ] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor.embedding import TorchEmbedding # noqa: F401 from docarray.typing.tensor.image import ImageTorchTensor # noqa: F401 from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 __all__.extend(['TorchEmbedding', 'TorchTensor', 'ImageTorchTensor']) try: import tensorflow as tf # type: ignore # noqa: F401 except (ImportError, TypeError): pass else: from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 __all__.extend(['TensorFlowTensor'])
from docarray.typing.tensor.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.image import ImageNdArray, ImageTensor from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor __all__ = [ 'NdArray', 'AnyTensor', 'AnyEmbedding', 'NdArrayEmbedding', 'ImageNdArray', 'ImageTensor', ] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor.embedding import TorchEmbedding # noqa: F401 from docarray.typing.tensor.image import ImageTorchTensor # noqa: F401 from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 __all__.extend(['TorchEmbedding', 'TorchTensor', 'ImageTorchTensor'])
# Copyright (c) OpenMMLab. All rights reserved. from ._fast_stop_training_hook import FastStopTrainingHook # noqa: F401,F403 from ._utils import (demo_mm_inputs, demo_mm_proposals, demo_mm_sampling_results, demo_track_inputs, get_detector_cfg, get_roi_head_cfg, random_boxes, replace_to_ceph) __all__ = [ 'demo_mm_inputs', 'get_detector_cfg', 'get_roi_head_cfg', 'demo_mm_proposals', 'demo_mm_sampling_results', 'replace_to_ceph', 'demo_track_inputs', 'VideoDataSampleFeeder', 'random_boxes' ]
# Copyright (c) OpenMMLab. All rights reserved. from ._fast_stop_training_hook import FastStopTrainingHook # noqa: F401,F403 from ._utils import (demo_mm_inputs, demo_mm_proposals, demo_mm_sampling_results, get_detector_cfg, get_roi_head_cfg, replace_to_ceph) __all__ = [ 'demo_mm_inputs', 'get_detector_cfg', 'get_roi_head_cfg', 'demo_mm_proposals', 'demo_mm_sampling_results', 'replace_to_ceph' ]
import os from typing import Type import orjson from pydantic import BaseModel, Field, parse_obj_as from rich.console import Console from docarray.base_document.abstract_document import AbstractDocument from docarray.base_document.base_node import BaseNode from docarray.base_document.io.json import orjson_dumps, orjson_dumps_and_decode from docarray.base_document.mixins import PlotMixin, ProtoMixin from docarray.typing import ID _console: Console = Console() class BaseDocument(BaseModel, PlotMixin, ProtoMixin, AbstractDocument, BaseNode): """ The base class for Document """ id: ID = Field(default_factory=lambda: parse_obj_as(ID, os.urandom(16).hex())) class Config: json_loads = orjson.loads json_dumps = orjson_dumps_and_decode json_encoders = {dict: orjson_dumps} validate_assignment = True @classmethod def _get_field_type(cls, field: str) -> Type['BaseDocument']: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return cls.__fields__[field].outer_type_ def __str__(self): with _console.capture() as capture: _console.print(self) return capture.get().strip() def _get_string_for_regex_filter(self): return str(self)
import os from typing import Type import orjson from pydantic import BaseModel, Field, parse_obj_as from rich.console import Console from docarray.base_document.abstract_document import AbstractDocument from docarray.base_document.base_node import BaseNode from docarray.base_document.io.json import orjson_dumps, orjson_dumps_and_decode from docarray.base_document.mixins import PlotMixin, ProtoMixin from docarray.typing import ID _console: Console = Console() class BaseDocument(BaseModel, PlotMixin, ProtoMixin, AbstractDocument, BaseNode): """ The base class for Document """ id: ID = Field(default_factory=lambda: parse_obj_as(ID, os.urandom(16).hex())) class Config: json_loads = orjson.loads json_dumps = orjson_dumps_and_decode json_encoders = {dict: orjson_dumps} validate_assignment = True @classmethod def _get_field_type(cls, field: str) -> Type['BaseDocument']: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return cls.__fields__[field].outer_type_ def __str__(self): with _console.capture() as capture: _console.print(self) return capture.get().strip()
"""Test LLM program.""" from unittest.mock import MagicMock import pytest from llama_index.core.base.llms.types import ( ChatMessage, LLMMetadata, ) from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.bridge.pydantic import BaseModel from typing import List, Optional, Union, Any from llama_index.core.tools.types import BaseTool from llama_index.core.chat_engine.types import AgentChatResponse from llama_index.core.tools import ToolOutput from llama_index.core.program import FunctionCallingProgram class MockSong(BaseModel): """Mock Song class.""" title: str class MockAlbum(BaseModel): title: str artist: str songs: List[MockSong] MOCK_ALBUM = MockAlbum( title="hello", artist="world", songs=[MockSong(title="song1"), MockSong(title="song2")], ) MOCK_ALBUM_2 = MockAlbum( title="hello2", artist="world2", songs=[MockSong(title="song3"), MockSong(title="song4")], ) def _get_mock_album_response( allow_parallel_tool_calls: bool = False, ) -> AgentChatResponse: """Get mock album.""" if allow_parallel_tool_calls: albums = [MOCK_ALBUM, MOCK_ALBUM_2] else: albums = [MOCK_ALBUM] tool_outputs = [ ToolOutput( content=str(a), tool_name="tool_output", raw_input={}, raw_output=a, ) for a in albums ] # return tool outputs return AgentChatResponse( response="output", sources=tool_outputs, ) class MockLLM(MagicMock): def predict_and_call( self, tools: List["BaseTool"], user_msg: Optional[Union[str, ChatMessage]] = None, chat_history: Optional[List[ChatMessage]] = None, verbose: bool = False, allow_parallel_tool_calls: bool = False, **kwargs: Any, ) -> "AgentChatResponse": """Predict and call the tool.""" return _get_mock_album_response( allow_parallel_tool_calls=allow_parallel_tool_calls ) async def apredict_and_call( self, tools: List["BaseTool"], user_msg: Optional[Union[str, ChatMessage]] = None, chat_history: Optional[List[ChatMessage]] = None, verbose: bool = False, allow_parallel_tool_calls: bool = False, **kwargs: Any, ) -> "AgentChatResponse": """Predict and call the tool.""" return _get_mock_album_response( allow_parallel_tool_calls=allow_parallel_tool_calls ) @property def metadata(self) -> LLMMetadata: return LLMMetadata(is_function_calling_model=True) def test_function_program() -> None: """Test Function program.""" prompt_template_str = """This is a test album with {topic}""" llm_program = FunctionCallingProgram.from_defaults( output_cls=MockAlbum, prompt_template_str=prompt_template_str, llm=MockLLM(), ) obj_output = llm_program(topic="songs") assert isinstance(obj_output, MockAlbum) assert obj_output.title == "hello" assert obj_output.artist == "world" assert obj_output.songs[0].title == "song1" assert obj_output.songs[1].title == "song2" def test_function_program_multiple() -> None: """Test Function program multiple.""" prompt_template_str = """This is a test album with {topic}""" llm_program = FunctionCallingProgram.from_defaults( output_cls=MockAlbum, prompt_template_str=prompt_template_str, llm=MockLLM(), allow_parallel_tool_calls=True, ) obj_outputs = llm_program(topic="songs") assert isinstance(obj_outputs, list) assert len(obj_outputs) == 2 assert isinstance(obj_outputs[0], MockAlbum) assert isinstance(obj_outputs[1], MockAlbum) # test second output assert obj_outputs[1].title == "hello2" assert obj_outputs[1].artist == "world2" assert obj_outputs[1].songs[0].title == "song3" assert obj_outputs[1].songs[1].title == "song4" @pytest.mark.asyncio async def test_async_function_program() -> None: """Test async function program.""" # same as above but async prompt_template_str = """This is a test album with {topic}""" llm_program = FunctionCallingProgram.from_defaults( output_cls=MockAlbum, prompt_template_str=prompt_template_str, llm=MockLLM(), ) obj_output = await llm_program.acall(topic="songs") assert isinstance(obj_output, MockAlbum) assert obj_output.title == "hello" assert obj_output.artist == "world" assert obj_output.songs[0].title == "song1" assert obj_output.songs[1].title == "song2"
"""Test LLM program.""" from unittest.mock import MagicMock import pytest from llama_index.core.base.llms.types import ( ChatMessage, LLMMetadata, ) from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.bridge.pydantic import BaseModel from typing import List, Optional, Union, Any from llama_index.core.tools.types import BaseTool from llama_index.core.chat_engine.types import AgentChatResponse from llama_index.core.tools import ToolOutput from llama_index.core.program import FunctionCallingProgram class MockSong(BaseModel): """Mock Song class.""" title: str class MockAlbum(BaseModel): title: str artist: str songs: List[MockSong] MOCK_ALBUM = MockAlbum( title="hello", artist="world", songs=[MockSong(title="song1"), MockSong(title="song2")], ) MOCK_ALBUM_2 = MockAlbum( title="hello2", artist="world2", songs=[MockSong(title="song3"), MockSong(title="song4")], ) def _get_mock_album_response( allow_parallel_tool_calls: bool = False, ) -> AgentChatResponse: """Get mock album.""" if allow_parallel_tool_calls: albums = [MOCK_ALBUM, MOCK_ALBUM_2] else: albums = [MOCK_ALBUM] tool_outputs = [ ToolOutput( content=str(a), tool_name="tool_output", raw_input={}, raw_output=a, ) for a in albums ] # return tool outputs return AgentChatResponse( response="output", sources=tool_outputs, ) class MockLLM(MagicMock): def predict_and_call( self, tools: List["BaseTool"], user_msg: Optional[Union[str, ChatMessage]] = None, chat_history: Optional[List[ChatMessage]] = None, verbose: bool = False, allow_parallel_tool_calls: bool = False, **kwargs: Any, ) -> "AgentChatResponse": """Predict and call the tool.""" return _get_mock_album_response( allow_parallel_tool_calls=allow_parallel_tool_calls ) async def apredict_and_call( self, tools: List["BaseTool"], user_msg: Optional[Union[str, ChatMessage]] = None, chat_history: Optional[List[ChatMessage]] = None, verbose: bool = False, allow_parallel_tool_calls: bool = False, **kwargs: Any, ) -> "AgentChatResponse": """Predict and call the tool.""" return _get_mock_album_response( allow_parallel_tool_calls=allow_parallel_tool_calls ) @property def metadata(self) -> LLMMetadata: return LLMMetadata(is_function_calling_model=True) def test_function_program() -> None: """Test Function program.""" prompt_template_str = """This is a test album with {topic}""" llm_program = FunctionCallingProgram.from_defaults( output_cls=MockAlbum, prompt_template_str=prompt_template_str, llm=MockLLM(), ) obj_output = llm_program(topic="songs") assert isinstance(obj_output, MockAlbum) assert obj_output.title == "hello" assert obj_output.artist == "world" assert obj_output.songs[0].title == "song1" assert obj_output.songs[1].title == "song2" def test_function_program_multiple() -> None: """Test Function program multiple.""" prompt_template_str = """This is a test album with {topic}""" llm_program = FunctionCallingProgram.from_defaults( output_cls=MockAlbum, prompt_template_str=prompt_template_str, llm=MockLLM(), allow_parallel_tool_calls=True, ) obj_outputs = llm_program(topic="songs") assert isinstance(obj_outputs, list) assert len(obj_outputs) == 2 assert isinstance(obj_outputs[0], MockAlbum) assert isinstance(obj_outputs[1], MockAlbum) # test second output assert obj_outputs[1].title == "hello2" assert obj_outputs[1].artist == "world2" assert obj_outputs[1].songs[0].title == "song3" assert obj_outputs[1].songs[1].title == "song4" @pytest.mark.asyncio() async def test_async_function_program() -> None: """Test async function program.""" # same as above but async prompt_template_str = """This is a test album with {topic}""" llm_program = FunctionCallingProgram.from_defaults( output_cls=MockAlbum, prompt_template_str=prompt_template_str, llm=MockLLM(), ) obj_output = await llm_program.acall(topic="songs") assert isinstance(obj_output, MockAlbum) assert obj_output.title == "hello" assert obj_output.artist == "world" assert obj_output.songs[0].title == "song1" assert obj_output.songs[1].title == "song2"
import logging from datasets import load_dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseTranslationEvaluator, SpladePooling, ) logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) # Print the results print(f"Primary metric: {translation_evaluator.primary_metric}") print(f"Primary metric value: {results[translation_evaluator.primary_metric]:.4f}")
from datasets import load_dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseTranslationEvaluator, SpladePooling, ) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) print(results) print(translation_evaluator.primary_metric) print(results[translation_evaluator.primary_metric])
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class FCOS(SingleStageDetector): """Implementation of `FCOS <https://arxiv.org/abs/1904.01355>`_""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, preprocess_cfg: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, preprocess_cfg=preprocess_cfg, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class FCOS(SingleStageDetector): """Implementation of `FCOS <https://arxiv.org/abs/1904.01355>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, preprocess_cfg=None, pretrained=None, init_cfg=None): super(FCOS, self).__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, preprocess_cfg=preprocess_cfg, pretrained=pretrained, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from .augment_wrappers import AutoAugment, RandAugment from .colorspace import (AutoContrast, Brightness, Color, ColorTransform, Contrast, Equalize, Invert, Posterize, Sharpness, Solarize, SolarizeAdd) from .formatting import (ImageToTensor, PackDetInputs, PackTrackInputs, ToTensor, Transpose) from .frame_sampling import BaseFrameSample, UniformRefFrameSample from .geometric import (GeomTransform, Rotate, ShearX, ShearY, TranslateX, TranslateY) from .instaboost import InstaBoost from .loading import (FilterAnnotations, InferencerLoader, LoadAnnotations, LoadEmptyAnnotations, LoadImageFromNDArray, LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, LoadProposals, LoadTrackAnnotations) from .transforms import (Albu, CachedMixUp, CachedMosaic, CopyPaste, CutOut, Expand, FixShapeResize, MinIoURandomCrop, MixUp, Mosaic, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomErasing, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) from .wrappers import MultiBranch, ProposalBroadcaster, RandomOrder __all__ = [ 'PackDetInputs', 'ToTensor', 'ImageToTensor', 'Transpose', 'LoadImageFromNDArray', 'LoadAnnotations', 'LoadPanopticAnnotations', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'Resize', 'RandomFlip', 'RandomCrop', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'ShearX', 'ShearY', 'Rotate', 'Color', 'Equalize', 'Brightness', 'Contrast', 'TranslateX', 'TranslateY', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste', 'FilterAnnotations', 'Pad', 'GeomTransform', 'ColorTransform', 'RandAugment', 'Sharpness', 'Solarize', 'SolarizeAdd', 'Posterize', 'AutoContrast', 'Invert', 'MultiBranch', 'RandomErasing', 'LoadEmptyAnnotations', 'RandomOrder', 'CachedMosaic', 'CachedMixUp', 'FixShapeResize', 'ProposalBroadcaster', 'InferencerLoader', 'LoadTrackAnnotations', 'BaseFrameSample', 'UniformRefFrameSample', 'PackTrackInputs' ]
# Copyright (c) OpenMMLab. All rights reserved. from .augment_wrappers import AutoAugment, RandAugment from .colorspace import (AutoContrast, Brightness, Color, ColorTransform, Contrast, Equalize, Invert, Posterize, Sharpness, Solarize, SolarizeAdd) from .formatting import (ImageToTensor, PackDetInputs, PackTrackInputs, ToTensor, Transpose) from .frame_sampling import UniformSample from .geometric import (GeomTransform, Rotate, ShearX, ShearY, TranslateX, TranslateY) from .instaboost import InstaBoost from .loading import (FilterAnnotations, InferencerLoader, LoadAnnotations, LoadEmptyAnnotations, LoadImageFromNDArray, LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, LoadProposals, LoadTrackAnnotations) from .transforms import (Albu, CachedMixUp, CachedMosaic, CopyPaste, CutOut, Expand, FixShapeResize, MinIoURandomCrop, MixUp, Mosaic, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomErasing, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) from .wrappers import MultiBranch, ProposalBroadcaster, RandomOrder __all__ = [ 'PackDetInputs', 'ToTensor', 'ImageToTensor', 'Transpose', 'LoadImageFromNDArray', 'LoadAnnotations', 'LoadPanopticAnnotations', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'Resize', 'RandomFlip', 'RandomCrop', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'ShearX', 'ShearY', 'Rotate', 'Color', 'Equalize', 'Brightness', 'Contrast', 'TranslateX', 'TranslateY', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste', 'FilterAnnotations', 'Pad', 'GeomTransform', 'ColorTransform', 'RandAugment', 'Sharpness', 'Solarize', 'SolarizeAdd', 'Posterize', 'AutoContrast', 'Invert', 'MultiBranch', 'RandomErasing', 'LoadEmptyAnnotations', 'RandomOrder', 'CachedMosaic', 'CachedMixUp', 'FixShapeResize', 'ProposalBroadcaster', 'InferencerLoader', 'LoadTrackAnnotations', 'UniformSample', 'PackTrackInputs' ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders import UnstructuredMarkdownLoader # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "UnstructuredMarkdownLoader": "langchain_community.document_loaders", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "UnstructuredMarkdownLoader", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders import UnstructuredMarkdownLoader # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "UnstructuredMarkdownLoader": "langchain_community.document_loaders" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "UnstructuredMarkdownLoader", ]
import pytest from keras.src import backend from keras.src import testing class DeviceTest(testing.TestCase): @pytest.mark.skipif(backend.backend() != "tensorflow", reason="tf only") def test_tf_device_scope(self): import tensorflow as tf if not tf.config.list_physical_devices("GPU"): self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) # Also verify the explicit gpu device with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_jax_device_scope(self): import jax def get_device(t): # After updating to Jax 0.4.33, Directly access via t.device attr. return list(t.devices())[0] platform = jax.default_backend() if platform != "gpu": self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("cpu")[0]) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("cpu")[0]) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("gpu")[0]) # Also verify the explicit gpu device with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("gpu")[0]) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_invalid_jax_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device(123).__enter__() @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_torch_device_scope(self): import torch with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) # Need at least one GPU for the following testing. if not torch.cuda.is_available(): return # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) # Also verify the explicit gpu -> cuda conversion with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_invalid_torch_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device(123).__enter__() @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_torch_meta_device(self): import torch with torch.device("meta"): x = torch.ones(5) t = backend.convert_to_tensor(x) if not torch.cuda.is_available(): self.assertEqual(t.device, torch.device("cpu")) else: self.assertEqual(t.device, torch.device("cuda", 0))
import pytest from keras.src import backend from keras.src import testing class DeviceTest(testing.TestCase): @pytest.mark.skipif(backend.backend() != "tensorflow", reason="tf only") def test_tf_device_scope(self): import tensorflow as tf if not tf.config.list_physical_devices("GPU"): self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) # Also verify the explicit gpu device with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_jax_device_scope(self): import jax def get_device(t): # After updating to Jax 0.4.33, Directly access via t.device attr. return list(t.devices())[0] platform = jax.default_backend() if platform != "gpu": self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("cpu")[0]) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("cpu")[0]) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("gpu")[0]) # Also verify the explicit gpu device with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("gpu")[0]) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_invalid_jax_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device(123).__enter__() @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_torch_device_scope(self): import torch if not torch.cuda.device_count(): self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) # Also verify the explicit gpu -> cuda conversion with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_invalid_torch_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device(123).__enter__() @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_torch_meta_device(self): import torch with torch.device("meta"): x = torch.ones(5) t = backend.convert_to_tensor(x) self.assertEqual(t.device, torch.device("cpu"))
"""Standard LangChain interface tests""" import os from typing import Type from langchain_core.language_models import BaseChatModel from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_openai import AzureChatOpenAI OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "") OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "") class TestAzureOpenAIStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": os.environ["AZURE_OPENAI_CHAT_DEPLOYMENT_NAME"], "model": "gpt-4o-mini", "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, "stream_usage": True, } @property def supports_image_inputs(self) -> bool: return True @property def supports_json_mode(self) -> bool: return True class TestAzureOpenAIStandardLegacy(ChatModelIntegrationTests): """Test a legacy model.""" @property def chat_model_class(self) -> Type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": os.environ["AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME"], "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, "stream_usage": True, } @property def structured_output_kwargs(self) -> dict: return {"method": "function_calling"}
"""Standard LangChain interface tests""" import os from typing import Type import pytest from langchain_core.language_models import BaseChatModel from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_openai import AzureChatOpenAI OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "") OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "") class TestAzureOpenAIStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": os.environ["AZURE_OPENAI_CHAT_DEPLOYMENT_NAME"], "model": "gpt-4o-mini", "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, } @property def supports_image_inputs(self) -> bool: return True @property def supports_json_mode(self) -> bool: return True @pytest.mark.xfail(reason="Not yet supported.") def test_usage_metadata_streaming(self, model: BaseChatModel) -> None: super().test_usage_metadata_streaming(model) class TestAzureOpenAIStandardLegacy(ChatModelIntegrationTests): """Test a legacy model.""" @property def chat_model_class(self) -> Type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": os.environ["AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME"], "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, } @property def structured_output_kwargs(self) -> dict: return {"method": "function_calling"} @pytest.mark.xfail(reason="Not yet supported.") def test_usage_metadata_streaming(self, model: BaseChatModel) -> None: super().test_usage_metadata_streaming(model)
import os from pathlib import Path from typing import Any, Callable, Optional, Union from .folder import default_loader from .utils import check_integrity, download_and_extract_archive, download_url from .vision import VisionDataset class SBU(VisionDataset): """`SBU Captioned Photo <http://www.cs.virginia.edu/~vicente/sbucaptions/>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where tarball ``SBUCaptionedPhotoDataset.tar.gz`` exists. transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """ url = "https://www.cs.rice.edu/~vo9/sbucaptions/SBUCaptionedPhotoDataset.tar.gz" filename = "SBUCaptionedPhotoDataset.tar.gz" md5_checksum = "9aec147b3488753cf758b4d493422285" def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = True, loader: Callable[[str], Any] = default_loader, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.loader = loader if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") # Read the caption for each photo self.photos = [] self.captions = [] file1 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt") file2 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_captions.txt") for line1, line2 in zip(open(file1), open(file2)): url = line1.rstrip() photo = os.path.basename(url) filename = os.path.join(self.root, "dataset", photo) if os.path.exists(filename): caption = line2.rstrip() self.photos.append(photo) self.captions.append(caption) def __getitem__(self, index: int) -> tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is a caption for the photo. """ filename = os.path.join(self.root, "dataset", self.photos[index]) img = self.loader(filename) if self.transform is not None: img = self.transform(img) target = self.captions[index] if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: """The number of photos in the dataset.""" return len(self.photos) def _check_integrity(self) -> bool: """Check the md5 checksum of the downloaded tarball.""" root = self.root fpath = os.path.join(root, self.filename) if not check_integrity(fpath, self.md5_checksum): return False return True def download(self) -> None: """Download and extract the tarball, and download each individual photo.""" if self._check_integrity(): return download_and_extract_archive(self.url, self.root, self.root, self.filename, self.md5_checksum) # Download individual photos with open(os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt")) as fh: for line in fh: url = line.rstrip() try: download_url(url, os.path.join(self.root, "dataset")) except OSError: # The images point to public images on Flickr. # Note: Images might be removed by users at anytime. pass
import os from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union from .folder import default_loader from .utils import check_integrity, download_and_extract_archive, download_url from .vision import VisionDataset class SBU(VisionDataset): """`SBU Captioned Photo <http://www.cs.virginia.edu/~vicente/sbucaptions/>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where tarball ``SBUCaptionedPhotoDataset.tar.gz`` exists. transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """ url = "https://www.cs.rice.edu/~vo9/sbucaptions/SBUCaptionedPhotoDataset.tar.gz" filename = "SBUCaptionedPhotoDataset.tar.gz" md5_checksum = "9aec147b3488753cf758b4d493422285" def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = True, loader: Callable[[str], Any] = default_loader, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.loader = loader if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") # Read the caption for each photo self.photos = [] self.captions = [] file1 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt") file2 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_captions.txt") for line1, line2 in zip(open(file1), open(file2)): url = line1.rstrip() photo = os.path.basename(url) filename = os.path.join(self.root, "dataset", photo) if os.path.exists(filename): caption = line2.rstrip() self.photos.append(photo) self.captions.append(caption) def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is a caption for the photo. """ filename = os.path.join(self.root, "dataset", self.photos[index]) img = self.loader(filename) if self.transform is not None: img = self.transform(img) target = self.captions[index] if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: """The number of photos in the dataset.""" return len(self.photos) def _check_integrity(self) -> bool: """Check the md5 checksum of the downloaded tarball.""" root = self.root fpath = os.path.join(root, self.filename) if not check_integrity(fpath, self.md5_checksum): return False return True def download(self) -> None: """Download and extract the tarball, and download each individual photo.""" if self._check_integrity(): return download_and_extract_archive(self.url, self.root, self.root, self.filename, self.md5_checksum) # Download individual photos with open(os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt")) as fh: for line in fh: url = line.rstrip() try: download_url(url, os.path.join(self.root, "dataset")) except OSError: # The images point to public images on Flickr. # Note: Images might be removed by users at anytime. pass
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.wrappers.sklearn_wrapper import ( SKLearnClassifier as SKLearnClassifier, ) from keras.src.wrappers.sklearn_wrapper import ( SKLearnRegressor as SKLearnRegressor, ) from keras.src.wrappers.sklearn_wrapper import ( SKLearnTransformer as SKLearnTransformer, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.wrappers.sklearn_wrapper import SKLearnClassifier from keras.src.wrappers.sklearn_wrapper import SKLearnRegressor from keras.src.wrappers.sklearn_wrapper import SKLearnTransformer
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch from mmcv import ConfigDict from mmdet.models.dense_heads import CenterNetHead def test_center_head_loss(): """Tests center head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] test_cfg = dict(topK=100, max_per_img=100) self = CenterNetHead( num_classes=4, in_channel=1, feat_channel=4, test_cfg=test_cfg) feat = [torch.rand(1, 1, s, s)] center_out, wh_out, offset_out = self.forward(feat) # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(center_out, wh_out, offset_out, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) loss_center = empty_gt_losses['loss_center_heatmap'] loss_wh = empty_gt_losses['loss_wh'] loss_offset = empty_gt_losses['loss_offset'] assert loss_center.item() > 0, 'loss_center should be non-zero' assert loss_wh.item() == 0, ( 'there should be no loss_wh when there are no true boxes') assert loss_offset.item() == 0, ( 'there should be no loss_offset when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero for # random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(center_out, wh_out, offset_out, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) loss_center = one_gt_losses['loss_center_heatmap'] loss_wh = one_gt_losses['loss_wh'] loss_offset = one_gt_losses['loss_offset'] assert loss_center.item() > 0, 'loss_center should be non-zero' assert loss_wh.item() > 0, 'loss_wh should be non-zero' assert loss_offset.item() > 0, 'loss_offset should be non-zero' def test_centernet_head_get_bboxes(): """Tests center head generating and decoding the heatmap.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': np.array([1., 1., 1., 1.]), 'pad_shape': (s, s, 3), 'batch_input_shape': (s, s), 'border': (0, 0, 0, 0), 'flip': False }] test_cfg = ConfigDict( dict(topk=100, local_maximum_kernel=3, max_per_img=100)) gt_bboxes = [ torch.Tensor([[10, 20, 200, 240], [40, 50, 100, 200], [10, 20, 100, 240]]) ] gt_labels = [torch.LongTensor([1, 1, 2])] self = CenterNetHead( num_classes=4, in_channel=1, feat_channel=4, test_cfg=test_cfg) self.feat_shape = (1, 1, s // 4, s // 4) targets, _ = self.get_targets(gt_bboxes, gt_labels, self.feat_shape, img_metas[0]['pad_shape']) center_target = targets['center_heatmap_target'] wh_target = targets['wh_target'] offset_target = targets['offset_target'] # make sure assign target right for i in range(len(gt_bboxes[0])): bbox, label = gt_bboxes[0][i] / 4, gt_labels[0][i] ctx, cty = sum(bbox[0::2]) / 2, sum(bbox[1::2]) / 2 int_ctx, int_cty = int(sum(bbox[0::2]) / 2), int(sum(bbox[1::2]) / 2) w, h = bbox[2] - bbox[0], bbox[3] - bbox[1] x_off = ctx - int(ctx) y_off = cty - int(cty) assert center_target[0, label, int_cty, int_ctx] == 1 assert wh_target[0, 0, int_cty, int_ctx] == w assert wh_target[0, 1, int_cty, int_ctx] == h assert offset_target[0, 0, int_cty, int_ctx] == x_off assert offset_target[0, 1, int_cty, int_ctx] == y_off # make sure get_bboxes is right detections = self.get_bboxes([center_target], [wh_target], [offset_target], img_metas, rescale=True, with_nms=False) out_bboxes = detections[0][0][:3] out_clses = detections[0][1][:3] for bbox, cls in zip(out_bboxes, out_clses): flag = False for gt_bbox, gt_cls in zip(gt_bboxes[0], gt_labels[0]): if (bbox[:4] == gt_bbox[:4]).all(): flag = True assert flag, 'get_bboxes is wrong'
import numpy as np import torch from mmcv import ConfigDict from mmdet.models.dense_heads import CenterNetHead def test_center_head_loss(): """Tests center head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] test_cfg = dict(topK=100, max_per_img=100) self = CenterNetHead( num_classes=4, in_channel=1, feat_channel=4, test_cfg=test_cfg) feat = [torch.rand(1, 1, s, s)] center_out, wh_out, offset_out = self.forward(feat) # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(center_out, wh_out, offset_out, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) loss_center = empty_gt_losses['loss_center_heatmap'] loss_wh = empty_gt_losses['loss_wh'] loss_offset = empty_gt_losses['loss_offset'] assert loss_center.item() > 0, 'loss_center should be non-zero' assert loss_wh.item() == 0, ( 'there should be no loss_wh when there are no true boxes') assert loss_offset.item() == 0, ( 'there should be no loss_offset when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero for # random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(center_out, wh_out, offset_out, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) loss_center = one_gt_losses['loss_center_heatmap'] loss_wh = one_gt_losses['loss_wh'] loss_offset = one_gt_losses['loss_offset'] assert loss_center.item() > 0, 'loss_center should be non-zero' assert loss_wh.item() > 0, 'loss_wh should be non-zero' assert loss_offset.item() > 0, 'loss_offset should be non-zero' def test_centernet_head_get_bboxes(): """Tests center head generating and decoding the heatmap.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': np.array([1., 1., 1., 1.]), 'pad_shape': (s, s, 3), 'batch_input_shape': (s, s), 'border': (0, 0, 0, 0), 'flip': False }] test_cfg = ConfigDict( dict(topk=100, local_maximum_kernel=3, max_per_img=100)) gt_bboxes = [ torch.Tensor([[10, 20, 200, 240], [40, 50, 100, 200], [10, 20, 100, 240]]) ] gt_labels = [torch.LongTensor([1, 1, 2])] self = CenterNetHead( num_classes=4, in_channel=1, feat_channel=4, test_cfg=test_cfg) self.feat_shape = (1, 1, s // 4, s // 4) targets, _ = self.get_targets(gt_bboxes, gt_labels, self.feat_shape, img_metas[0]['pad_shape']) center_target = targets['center_heatmap_target'] wh_target = targets['wh_target'] offset_target = targets['offset_target'] # make sure assign target right for i in range(len(gt_bboxes[0])): bbox, label = gt_bboxes[0][i] / 4, gt_labels[0][i] ctx, cty = sum(bbox[0::2]) / 2, sum(bbox[1::2]) / 2 int_ctx, int_cty = int(sum(bbox[0::2]) / 2), int(sum(bbox[1::2]) / 2) w, h = bbox[2] - bbox[0], bbox[3] - bbox[1] x_off = ctx - int(ctx) y_off = cty - int(cty) assert center_target[0, label, int_cty, int_ctx] == 1 assert wh_target[0, 0, int_cty, int_ctx] == w assert wh_target[0, 1, int_cty, int_ctx] == h assert offset_target[0, 0, int_cty, int_ctx] == x_off assert offset_target[0, 1, int_cty, int_ctx] == y_off # make sure get_bboxes is right detections = self.get_bboxes([center_target], [wh_target], [offset_target], img_metas, rescale=True, with_nms=False) out_bboxes = detections[0][0][:3] out_clses = detections[0][1][:3] for bbox, cls in zip(out_bboxes, out_clses): flag = False for gt_bbox, gt_cls in zip(gt_bboxes[0], gt_labels[0]): if (bbox[:4] == gt_bbox[:4]).all(): flag = True assert flag, 'get_bboxes is wrong'
import PIL.Image import torch from torchvision import datapoints from torchvision.transforms.functional import pil_to_tensor, to_pil_image from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_kernel_internal def erase( inpt: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False, ) -> torch.Tensor: """[BETA] See :class:`~torchvision.transforms.v2.RandomErase` for details.""" if torch.jit.is_scripting(): return erase_image(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) _log_api_usage_once(erase) kernel = _get_kernel(erase, type(inpt)) return kernel(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) @_register_kernel_internal(erase, torch.Tensor) @_register_kernel_internal(erase, datapoints.Image) def erase_image( image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: if not inplace: image = image.clone() image[..., i : i + h, j : j + w] = v return image @_register_kernel_internal(erase, PIL.Image.Image) def _erase_image_pil( image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = erase_image(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace) return to_pil_image(output, mode=image.mode) @_register_kernel_internal(erase, datapoints.Video) def erase_video( video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: return erase_image(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
import PIL.Image import torch from torchvision import datapoints from torchvision.transforms.functional import pil_to_tensor, to_pil_image from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_kernel_internal def erase( inpt: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False, ) -> torch.Tensor: if torch.jit.is_scripting(): return erase_image(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) _log_api_usage_once(erase) kernel = _get_kernel(erase, type(inpt)) return kernel(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) @_register_kernel_internal(erase, torch.Tensor) @_register_kernel_internal(erase, datapoints.Image) def erase_image( image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: if not inplace: image = image.clone() image[..., i : i + h, j : j + w] = v return image @_register_kernel_internal(erase, PIL.Image.Image) def _erase_image_pil( image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = erase_image(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace) return to_pil_image(output, mode=image.mode) @_register_kernel_internal(erase, datapoints.Video) def erase_video( video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: return erase_image(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
# CREDITS: https://github.com/openai/CLIP import gzip import html from functools import lru_cache from pathlib import Path import ftfy import regex as re @lru_cache() def default_bpe(): return str(Path(__file__).parents[2] / '.cache/bpe_simple_vocab_16e6.txt.gz') @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} try: merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') except FileNotFoundError: raise FileNotFoundError( 'Please download AudioCLIP tokenizer and set the `tokenizer_path` argument.' ) merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text
# CREDITS: https://github.com/openai/CLIP import gzip import html from functools import lru_cache from pathlib import Path import ftfy import regex as re @lru_cache() def default_bpe(): return str(Path(__file__).parents[2] / '.cache/bpe_simple_vocab_16e6.txt.gz') @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text
from typing import Dict, Optional, Sequence import torch from jina import DocumentArray, Executor, requests from jina_commons.batching import get_docs_batch_generator from transformers import CLIPModel, CLIPTokenizer class CLIPTextEncoder(Executor): """Encode text into embeddings using a CLIP model. :param pretrained_model_name_or_path: Can be either: - A string, the model id of a pretrained CLIP model hosted inside a model repo on huggingface.co, e.g., 'openai/clip-vit-base-patch32' - A path to a directory containing model weights saved, e.g., ./my_model_directory/ :param base_tokenizer_model: Base tokenizer model. Defaults to ``pretrained_model_name_or_path`` if None :param max_length: Max length argument for the tokenizer. All CLIP models use 77 as the max length :param device: Device to be used. Use 'cuda' for GPU. :param default_traversal_paths: Default traversal paths for encoding, used if the traversal path is not passed as a parameter with the request. :param default_batch_size: Default batch size for encoding, used if the batch size is not passed as a parameter with the request. :param args: Arguments :param kwargs: Keyword Arguments """ def __init__( self, pretrained_model_name_or_path: str = 'openai/clip-vit-base-patch32', base_tokenizer_model: Optional[str] = None, max_length: Optional[int] = 77, device: str = 'cpu', default_traversal_paths: Sequence[str] = ['r'], default_batch_size: int = 32, *args, **kwargs, ): super().__init__(*args, **kwargs) self.default_traversal_paths = default_traversal_paths self.default_batch_size = default_batch_size self.pretrained_model_name_or_path = pretrained_model_name_or_path self.base_tokenizer_model = ( base_tokenizer_model or pretrained_model_name_or_path ) self.max_length = max_length self.device = device self.tokenizer = CLIPTokenizer.from_pretrained(self.base_tokenizer_model) self.model = CLIPModel.from_pretrained(self.pretrained_model_name_or_path) self.model.eval().to(device) @requests def encode(self, docs: Optional[DocumentArray], parameters: Dict, **kwargs): """ Encode text data into a ndarray of `D` as dimension, and fill the embedding attribute of the docs. :param docs: DocumentArray containing text :param parameters: dictionary to define the `traversal_paths` and the `batch_size`. For example, `parameters={'traversal_paths': ['r'], 'batch_size': 10}`. :param kwargs: Additional key value arguments. """ for docs_batch in get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_paths ), batch_size=parameters.get('batch_size', self.default_batch_size), needs_attr='text', ): text_batch = docs_batch.get_attributes('text') with torch.no_grad(): input_tokens = self._generate_input_tokens(text_batch) embeddings = self.model.get_text_features(**input_tokens).cpu().numpy() for doc, embedding in zip(docs_batch, embeddings): doc.embedding = embedding def _generate_input_tokens(self, texts: Sequence[str]): input_tokens = self.tokenizer( texts, max_length=self.max_length, padding='longest', truncation=True, return_tensors='pt', ) input_tokens = {k: v.to(self.device) for k, v in input_tokens.items()} return input_tokens
import os from typing import Dict, List, Optional import torch from jina import DocumentArray, Executor, requests from jina.logging.logger import JinaLogger from jina_commons.batching import get_docs_batch_generator from transformers import CLIPTokenizer, CLIPModel class CLIPTextEncoder(Executor): """Encode text into embeddings using a CLIP model. :param pretrained_model_name_or_path: Can be either: - A string, the model id of a pretrained CLIP model hosted inside a model repo on huggingface.co, e.g., 'openai/clip-vit-base-patch32' - A path to a directory containing model weights saved, e.g., ./my_model_directory/ :param base_tokenizer_model: Base tokenizer model. Defaults to ``pretrained_model_name_or_path`` if None :param max_length: Max length argument for the tokenizer. All CLIP models use 77 as the max length :param device: Device to be used. Use 'cuda' for GPU. :param default_traversal_paths: Default traversal paths for encoding, used if the traversal path is not passed as a parameter with the request. :param default_batch_size: Default batch size for encoding, used if the batch size is not passed as a parameter with the request. :param args: Arguments :param kwargs: Keyword Arguments """ def __init__( self, pretrained_model_name_or_path: str = 'openai/clip-vit-base-patch32', base_tokenizer_model: Optional[str] = None, max_length: Optional[int] = 77, device: str = 'cpu', default_traversal_paths: List[str] = ['r'], default_batch_size: int = 32, *args, **kwargs, ): super().__init__(*args, **kwargs) self.default_traversal_paths = default_traversal_paths self.default_batch_size = default_batch_size self.pretrained_model_name_or_path = pretrained_model_name_or_path self.base_tokenizer_model = ( base_tokenizer_model or pretrained_model_name_or_path ) self.max_length = max_length self.logger = JinaLogger(self.__class__.__name__) if device.startswith('cuda') and not torch.cuda.is_available(): self.logger.warning( 'You tried to use GPU but torch did not detect your' 'GPU correctly. Defaulting to CPU. Check your CUDA installation!' ) device = 'cpu' self.device = device self.tokenizer = CLIPTokenizer.from_pretrained(self.base_tokenizer_model) self.model = CLIPModel.from_pretrained(self.pretrained_model_name_or_path) self.model.eval().to(torch.device(device)) @requests def encode(self, docs: Optional[DocumentArray], parameters: Dict, **kwargs): """ Encode text data into a ndarray of `D` as dimension, and fill the embedding attribute of the docs. :param docs: DocumentArray containing text :param parameters: dictionary to define the `traversal_paths` and the `batch_size`. For example, `parameters={'traversal_paths': ['r'], 'batch_size': 10}`. :param kwargs: Additional key value arguments. """ for document_batch in get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_paths ), batch_size=parameters.get('batch_size', self.default_batch_size), needs_attr='text', ): text_batch = document_batch.get_attributes('text') with torch.no_grad(): input_tokens = self._generate_input_tokens(text_batch) embedding_batch = self.model.get_text_features(**input_tokens) numpy_embedding_batch = embedding_batch.cpu().numpy() for document, numpy_embedding in zip( document_batch, numpy_embedding_batch ): document.embedding = numpy_embedding def _generate_input_tokens(self, texts): input_tokens = self.tokenizer( texts, max_length=self.max_length, padding='longest', truncation=True, return_tensors='pt', ) input_tokens = { k: v.to(torch.device(self.device)) for k, v in input_tokens.items() } return input_tokens
# Copyright (c) OpenMMLab. All rights reserved. from .default_scope import DefaultScope from .registry import Registry, build_from_cfg from .root import (DATA_SAMPLERS, DATASETS, HOOKS, LOOPS, METRICS, MODEL_WRAPPERS, MODELS, OPTIMIZER_CONSTRUCTORS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, VISUALIZERS, WEIGHT_INITIALIZERS, WRITERS) __all__ = [ 'Registry', 'build_from_cfg', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIMIZER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS', 'METRICS', 'MODEL_WRAPPERS', 'LOOPS', 'WRITERS', 'VISUALIZERS', 'DefaultScope' ]
# Copyright (c) OpenMMLab. All rights reserved. from .default_scope import DefaultScope from .registry import Registry, build_from_cfg from .root import (DATA_SAMPLERS, DATASETS, EVALUATORS, HOOKS, LOOPS, MODEL_WRAPPERS, MODELS, OPTIMIZER_CONSTRUCTORS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, VISUALIZERS, WEIGHT_INITIALIZERS, WRITERS) __all__ = [ 'Registry', 'build_from_cfg', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIMIZER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS', 'EVALUATORS', 'MODEL_WRAPPERS', 'LOOPS', 'WRITERS', 'VISUALIZERS', 'DefaultScope' ]
from typing import Any, List, Optional, Type from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.graph_stores.types import PropertyGraphStore from llama_index.core.indices.property_graph.sub_retrievers.base import BasePGRetriever from llama_index.core.llms import LLM from llama_index.core.prompts import PromptTemplate from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode from llama_index.core.settings import Settings class CypherTemplateRetriever(BasePGRetriever): """ A Cypher retriever that fills in params for a cypher query using an LLM. Args: graph_store (PropertyGraphStore): The graph store to retrieve data from. output_cls (Type[BaseModel]): The output class to use for the LLM. Should contain the params needed for the cypher query. cypher_query (str): The cypher query to use, with templated params. llm (Optional[LLM], optional): The language model to use. Defaults to Settings.llm. """ def __init__( self, graph_store: PropertyGraphStore, output_cls: Type[BaseModel], cypher_query: str, llm: Optional[LLM] = None, **kwargs: Any, ) -> None: if not graph_store.supports_structured_queries: raise ValueError( "The provided graph store does not support cypher queries." ) self.llm = llm or Settings.llm # Explicit type hint to suppress: # `Expected type '_SpecialForm[BaseModel]', got 'Type[BaseModel]' instead` self.output_cls: Type[BaseModel] = output_cls self.cypher_query = cypher_query super().__init__( graph_store=graph_store, include_text=False, include_properties=False ) def retrieve_from_graph(self, query_bundle: QueryBundle) -> List[NodeWithScore]: question = query_bundle.query_str response = self.llm.structured_predict( self.output_cls, PromptTemplate(question) ) cypher_response = self._graph_store.structured_query( self.cypher_query, param_map=response.model_dump(), ) return [ NodeWithScore( node=TextNode( text=str(cypher_response), ), score=1.0, ) ] async def aretrieve_from_graph( self, query_bundle: QueryBundle ) -> List[NodeWithScore]: question = query_bundle.query_str response = await self.llm.astructured_predict( self.output_cls, PromptTemplate(question) ) cypher_response = await self._graph_store.astructured_query( self.cypher_query, param_map=response.model_dump(), ) return [ NodeWithScore( node=TextNode( text=str(cypher_response), ), score=1.0, ) ]
from typing import Any, List, Optional, Type from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.graph_stores.types import PropertyGraphStore from llama_index.core.indices.property_graph.sub_retrievers.base import BasePGRetriever from llama_index.core.llms import LLM from llama_index.core.prompts import PromptTemplate from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode from llama_index.core.settings import Settings class CypherTemplateRetriever(BasePGRetriever): """A Cypher retriever that fills in params for a cypher query using an LLM. Args: graph_store (PropertyGraphStore): The graph store to retrieve data from. output_cls (Type[BaseModel]): The output class to use for the LLM. Should contain the params needed for the cypher query. cypher_query (str): The cypher query to use, with templated params. llm (Optional[LLM], optional): The language model to use. Defaults to Settings.llm. """ def __init__( self, graph_store: PropertyGraphStore, output_cls: Type[BaseModel], cypher_query: str, llm: Optional[LLM] = None, **kwargs: Any, ) -> None: if not graph_store.supports_structured_queries: raise ValueError( "The provided graph store does not support cypher queries." ) self.llm = llm or Settings.llm # Explicit type hint to suppress: # `Expected type '_SpecialForm[BaseModel]', got 'Type[BaseModel]' instead` self.output_cls: Type[BaseModel] = output_cls self.cypher_query = cypher_query super().__init__( graph_store=graph_store, include_text=False, include_properties=False ) def retrieve_from_graph(self, query_bundle: QueryBundle) -> List[NodeWithScore]: question = query_bundle.query_str response = self.llm.structured_predict( self.output_cls, PromptTemplate(question) ) cypher_response = self._graph_store.structured_query( self.cypher_query, param_map=response.model_dump(), ) return [ NodeWithScore( node=TextNode( text=str(cypher_response), ), score=1.0, ) ] async def aretrieve_from_graph( self, query_bundle: QueryBundle ) -> List[NodeWithScore]: question = query_bundle.query_str response = await self.llm.astructured_predict( self.output_cls, PromptTemplate(question) ) cypher_response = await self._graph_store.astructured_query( self.cypher_query, param_map=response.model_dump(), ) return [ NodeWithScore( node=TextNode( text=str(cypher_response), ), score=1.0, ) ]
from langchain_core.agents import AgentAction def format_log_to_str( intermediate_steps: list[tuple[AgentAction, str]], observation_prefix: str = "Observation: ", llm_prefix: str = "Thought: ", ) -> str: """Construct the scratchpad that lets the agent continue its thought process. Args: intermediate_steps: List of tuples of AgentAction and observation strings. observation_prefix: Prefix to append the observation with. Defaults to "Observation: ". llm_prefix: Prefix to append the llm call with. Defaults to "Thought: ". Returns: str: The scratchpad. """ thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += f"\n{observation_prefix}{observation}\n{llm_prefix}" return thoughts
from typing import List, Tuple from langchain_core.agents import AgentAction def format_log_to_str( intermediate_steps: List[Tuple[AgentAction, str]], observation_prefix: str = "Observation: ", llm_prefix: str = "Thought: ", ) -> str: """Construct the scratchpad that lets the agent continue its thought process. Args: intermediate_steps: List of tuples of AgentAction and observation strings. observation_prefix: Prefix to append the observation with. Defaults to "Observation: ". llm_prefix: Prefix to append the llm call with. Defaults to "Thought: ". Returns: str: The scratchpad. """ thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += f"\n{observation_prefix}{observation}\n{llm_prefix}" return thoughts
import os import subprocess directory = os.path.dirname(os.path.realpath(__file__)) def run(*command: str) -> None: print(f">>>>> Running poetry run {' '.join(command)}") subprocess.run(["poetry", "run"] + list(command), cwd=directory, check=True) def lint(): try: run("ruff", "check", ".", "--exit-zero") run("isort", "--diff", "--check", "--profile", "black", ".") run("black", "--diff", "--check", ".") run("pyright") except subprocess.CalledProcessError as e: print("Lint failed, try running `poetry run format` to fix the issues: ", e) raise e def populate_database(): import glob import json import pathlib import requests import market.model templates = pathlib.Path(__file__).parent.parent / "graph_templates" all_files = glob.glob(str(templates / "*.json")) for file in all_files: with open(file, "r") as f: data = f.read() req = market.model.AddAgentRequest( graph=json.loads(data), author="Populate DB", categories=["Pre-Populated"], keywords=["test"], ) response = requests.post( "http://localhost:8015/api/v1/market/admin/agent", json=req.model_dump() ) print(response.text) def format(): run("ruff", "check", "--fix", ".") run("isort", "--profile", "black", ".") run("black", ".") run("pyright", ".") def app(): port = os.getenv("PORT", "8015") run("uvicorn", "market.app:app", "--reload", "--port", port, "--host", "0.0.0.0") def setup(): run("prisma", "generate") run("prisma", "migrate", "deploy")
import os import subprocess directory = os.path.dirname(os.path.realpath(__file__)) def run(*command: str) -> None: print(f">>>>> Running poetry run {' '.join(command)}") subprocess.run(["poetry", "run"] + list(command), cwd=directory, check=True) def lint(): try: run("ruff", "check", ".", "--exit-zero") run("isort", "--diff", "--check", "--profile", "black", ".") run("black", "--diff", "--check", ".") run("pyright") except subprocess.CalledProcessError as e: print("Lint failed, try running `poetry run format` to fix the issues: ", e) raise e def populate_database(): import glob import json import pathlib import requests import market.model templates = pathlib.Path(__file__).parent.parent / "backend" / "graph_templates" all_files = glob.glob(str(templates / "*.json")) for file in all_files: with open(file, "r") as f: data = f.read() req = market.model.AddAgentRequest( graph=json.loads(data), author="Populate DB", categories=["Pre-Populated"], keywords=["test"], ) response = requests.post( "http://localhost:8015/api/v1/market/admin/agent", json=req.model_dump() ) print(response.text) def format(): run("ruff", "check", "--fix", ".") run("isort", "--profile", "black", ".") run("black", ".") run("pyright", ".") def app(): port = os.getenv("PORT", "8015") run("uvicorn", "market.app:app", "--reload", "--port", port, "--host", "0.0.0.0") def setup(): run("prisma", "generate") run("prisma", "migrate", "deploy")
from ...utils import is_flax_available, is_torch_available if is_torch_available(): from .controlnet import ControlNetModel, ControlNetOutput from .controlnet_flux import FluxControlNetModel, FluxControlNetOutput, FluxMultiControlNetModel from .controlnet_hunyuan import ( HunyuanControlNetOutput, HunyuanDiT2DControlNetModel, HunyuanDiT2DMultiControlNetModel, ) from .controlnet_sd3 import SD3ControlNetModel, SD3ControlNetOutput, SD3MultiControlNetModel from .controlnet_sparsectrl import ( SparseControlNetConditioningEmbedding, SparseControlNetModel, SparseControlNetOutput, ) from .controlnet_union import ControlNetUnionModel from .controlnet_xs import ControlNetXSAdapter, ControlNetXSOutput, UNetControlNetXSModel from .multicontrolnet import MultiControlNetModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel
from ...utils import is_flax_available, is_torch_available if is_torch_available(): from .controlnet import ControlNetModel, ControlNetOutput from .controlnet_flux import FluxControlNetModel, FluxControlNetOutput, FluxMultiControlNetModel from .controlnet_hunyuan import ( HunyuanControlNetOutput, HunyuanDiT2DControlNetModel, HunyuanDiT2DMultiControlNetModel, ) from .controlnet_sd3 import SD3ControlNetModel, SD3ControlNetOutput, SD3MultiControlNetModel from .controlnet_sparsectrl import ( SparseControlNetConditioningEmbedding, SparseControlNetModel, SparseControlNetOutput, ) from .controlnet_union import ControlNetUnionInput, ControlNetUnionInputProMax, ControlNetUnionModel from .controlnet_xs import ControlNetXSAdapter, ControlNetXSOutput, UNetControlNetXSModel from .multicontrolnet import MultiControlNetModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel
from keras.src.api_export import keras_export # Unique source of truth for the version number. __version__ = "3.10.0" @keras_export("keras.version") def version(): return __version__
from keras.src.api_export import keras_export # Unique source of truth for the version number. __version__ = "3.9.0" @keras_export("keras.version") def version(): return __version__
# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Tuple import torch from diffusers.utils.testing_utils import ( floats_tensor, require_torch, require_torch_accelerator_with_training, torch_all_close, torch_device, ) from diffusers.utils.torch_utils import randn_tensor @require_torch class UNetBlockTesterMixin: @property def dummy_input(self): return self.get_dummy_input() @property def output_shape(self): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.") def get_dummy_input( self, include_temb=True, include_res_hidden_states_tuple=False, include_encoder_hidden_states=False, include_skip_sample=False, ): batch_size = 4 num_channels = 32 sizes = (32, 32) generator = torch.manual_seed(0) device = torch.device(torch_device) shape = (batch_size, num_channels) + sizes hidden_states = randn_tensor(shape, generator=generator, device=device) dummy_input = {"hidden_states": hidden_states} if include_temb: temb_channels = 128 dummy_input["temb"] = randn_tensor((batch_size, temb_channels), generator=generator, device=device) if include_res_hidden_states_tuple: generator_1 = torch.manual_seed(1) dummy_input["res_hidden_states_tuple"] = (randn_tensor(shape, generator=generator_1, device=device),) if include_encoder_hidden_states: dummy_input["encoder_hidden_states"] = floats_tensor((batch_size, 32, 32)).to(torch_device) if include_skip_sample: dummy_input["skip_sample"] = randn_tensor(((batch_size, 3) + sizes), generator=generator, device=device) return dummy_input def prepare_init_args_and_inputs_for_common(self): init_dict = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": init_dict["prev_output_channel"] = 32 if self.block_type == "mid": init_dict.pop("out_channels") inputs_dict = self.dummy_input return init_dict, inputs_dict def test_output(self, expected_slice): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() unet_block = self.block_class(**init_dict) unet_block.to(torch_device) unet_block.eval() with torch.no_grad(): output = unet_block(**inputs_dict) if isinstance(output, Tuple): output = output[0] self.assertEqual(output.shape, self.output_shape) output_slice = output[0, -1, -3:, -3:] expected_slice = torch.tensor(expected_slice).to(torch_device) assert torch_all_close(output_slice.flatten(), expected_slice, atol=5e-3) @require_torch_accelerator_with_training def test_training(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.block_class(**init_dict) model.to(torch_device) model.train() output = model(**inputs_dict) if isinstance(output, Tuple): output = output[0] device = torch.device(torch_device) noise = randn_tensor(output.shape, device=device) loss = torch.nn.functional.mse_loss(output, noise) loss.backward()
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Tuple import torch from diffusers.utils.testing_utils import ( floats_tensor, require_torch, require_torch_accelerator_with_training, torch_all_close, torch_device, ) from diffusers.utils.torch_utils import randn_tensor @require_torch class UNetBlockTesterMixin: @property def dummy_input(self): return self.get_dummy_input() @property def output_shape(self): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.") def get_dummy_input( self, include_temb=True, include_res_hidden_states_tuple=False, include_encoder_hidden_states=False, include_skip_sample=False, ): batch_size = 4 num_channels = 32 sizes = (32, 32) generator = torch.manual_seed(0) device = torch.device(torch_device) shape = (batch_size, num_channels) + sizes hidden_states = randn_tensor(shape, generator=generator, device=device) dummy_input = {"hidden_states": hidden_states} if include_temb: temb_channels = 128 dummy_input["temb"] = randn_tensor((batch_size, temb_channels), generator=generator, device=device) if include_res_hidden_states_tuple: generator_1 = torch.manual_seed(1) dummy_input["res_hidden_states_tuple"] = (randn_tensor(shape, generator=generator_1, device=device),) if include_encoder_hidden_states: dummy_input["encoder_hidden_states"] = floats_tensor((batch_size, 32, 32)).to(torch_device) if include_skip_sample: dummy_input["skip_sample"] = randn_tensor(((batch_size, 3) + sizes), generator=generator, device=device) return dummy_input def prepare_init_args_and_inputs_for_common(self): init_dict = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": init_dict["prev_output_channel"] = 32 if self.block_type == "mid": init_dict.pop("out_channels") inputs_dict = self.dummy_input return init_dict, inputs_dict def test_output(self, expected_slice): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() unet_block = self.block_class(**init_dict) unet_block.to(torch_device) unet_block.eval() with torch.no_grad(): output = unet_block(**inputs_dict) if isinstance(output, Tuple): output = output[0] self.assertEqual(output.shape, self.output_shape) output_slice = output[0, -1, -3:, -3:] expected_slice = torch.tensor(expected_slice).to(torch_device) assert torch_all_close(output_slice.flatten(), expected_slice, atol=5e-3) @require_torch_accelerator_with_training def test_training(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.block_class(**init_dict) model.to(torch_device) model.train() output = model(**inputs_dict) if isinstance(output, Tuple): output = output[0] device = torch.device(torch_device) noise = randn_tensor(output.shape, device=device) loss = torch.nn.functional.mse_loss(output, noise) loss.backward()
import json import logging from typing import List from langchain_core._api import deprecated from langchain_core.chat_history import BaseChatMessageHistory from langchain_core.messages import ( BaseMessage, message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) DEFAULT_CONNECTION_STRING = "postgresql://postgres:mypassword@localhost/chat_history" @deprecated( since="0.0.31", message=( "This class is deprecated and will be removed in a future version. " "You can swap to using the `PostgresChatMessageHistory`" " implementation in `langchain_postgres`. " "Please do not submit further PRs to this class." "See <https://github.com/langchain-ai/langchain-postgres>" ), alternative="from langchain_postgres import PostgresChatMessageHistory;", pending=True, ) class PostgresChatMessageHistory(BaseChatMessageHistory): """Chat message history stored in a Postgres database. **DEPRECATED**: This class is deprecated and will be removed in a future version. Use the `PostgresChatMessageHistory` implementation in `langchain_postgres`. """ def __init__( self, session_id: str, connection_string: str = DEFAULT_CONNECTION_STRING, table_name: str = "message_store", ): import psycopg from psycopg.rows import dict_row try: self.connection = psycopg.connect(connection_string) self.cursor = self.connection.cursor(row_factory=dict_row) except psycopg.OperationalError as error: logger.error(error) self.session_id = session_id self.table_name = table_name self._create_table_if_not_exists() def _create_table_if_not_exists(self) -> None: create_table_query = f"""CREATE TABLE IF NOT EXISTS {self.table_name} ( id SERIAL PRIMARY KEY, session_id TEXT NOT NULL, message JSONB NOT NULL );""" self.cursor.execute(create_table_query) self.connection.commit() @property def messages(self) -> List[BaseMessage]: # type: ignore[override] """Retrieve the messages from PostgreSQL""" query = ( f"SELECT message FROM {self.table_name} WHERE session_id = %s ORDER BY id;" ) self.cursor.execute(query, (self.session_id,)) items = [record["message"] for record in self.cursor.fetchall()] messages = messages_from_dict(items) return messages def add_message(self, message: BaseMessage) -> None: """Append the message to the record in PostgreSQL""" from psycopg import sql query = sql.SQL("INSERT INTO {} (session_id, message) VALUES (%s, %s);").format( sql.Identifier(self.table_name) ) self.cursor.execute( query, (self.session_id, json.dumps(message_to_dict(message))) ) self.connection.commit() def clear(self) -> None: """Clear session memory from PostgreSQL""" query = f"DELETE FROM {self.table_name} WHERE session_id = %s;" self.cursor.execute(query, (self.session_id,)) self.connection.commit() def __del__(self) -> None: if self.cursor: self.cursor.close() if self.connection: self.connection.close()
import json import logging from typing import List from langchain_core._api import deprecated from langchain_core.chat_history import BaseChatMessageHistory from langchain_core.messages import ( BaseMessage, message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) DEFAULT_CONNECTION_STRING = "postgresql://postgres:mypassword@localhost/chat_history" @deprecated( since="0.0.31", message=( "This class is deprecated and will be removed in a future version. " "You can swap to using the `PostgresChatMessageHistory`" " implementation in `langchain_postgres`. " "Please do not submit further PRs to this class." "See <https://github.com/langchain-ai/langchain-postgres>" ), alternative="from langchain_postgres import PostgresChatMessageHistory;", pending=True, ) class PostgresChatMessageHistory(BaseChatMessageHistory): """Chat message history stored in a Postgres database. **DEPRECATED**: This class is deprecated and will be removed in a future version. Use the `PostgresChatMessageHistory` implementation in `langchain_postgres`. """ def __init__( self, session_id: str, connection_string: str = DEFAULT_CONNECTION_STRING, table_name: str = "message_store", ): import psycopg from psycopg.rows import dict_row try: self.connection = psycopg.connect(connection_string) self.cursor = self.connection.cursor(row_factory=dict_row) except psycopg.OperationalError as error: logger.error(error) self.session_id = session_id self.table_name = table_name self._create_table_if_not_exists() def _create_table_if_not_exists(self) -> None: create_table_query = f"""CREATE TABLE IF NOT EXISTS {self.table_name} ( id SERIAL PRIMARY KEY, session_id TEXT NOT NULL, message JSONB NOT NULL );""" self.cursor.execute(create_table_query) self.connection.commit() @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from PostgreSQL""" query = ( f"SELECT message FROM {self.table_name} WHERE session_id = %s ORDER BY id;" ) self.cursor.execute(query, (self.session_id,)) items = [record["message"] for record in self.cursor.fetchall()] messages = messages_from_dict(items) return messages def add_message(self, message: BaseMessage) -> None: """Append the message to the record in PostgreSQL""" from psycopg import sql query = sql.SQL("INSERT INTO {} (session_id, message) VALUES (%s, %s);").format( sql.Identifier(self.table_name) ) self.cursor.execute( query, (self.session_id, json.dumps(message_to_dict(message))) ) self.connection.commit() def clear(self) -> None: """Clear session memory from PostgreSQL""" query = f"DELETE FROM {self.table_name} WHERE session_id = %s;" self.cursor.execute(query, (self.session_id,)) self.connection.commit() def __del__(self) -> None: if self.cursor: self.cursor.close() if self.connection: self.connection.close()
from collections.abc import Sequence from typing import Callable from langchain_core.agents import AgentAction from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import BaseMessage from langchain_core.prompts.chat import ChatPromptTemplate from langchain_core.runnables import Runnable, RunnablePassthrough from langchain_core.tools import BaseTool from langchain.agents.format_scratchpad.tools import ( format_to_tool_messages, ) from langchain.agents.output_parsers.tools import ToolsAgentOutputParser MessageFormatter = Callable[[Sequence[tuple[AgentAction, str]]], list[BaseMessage]] def create_tool_calling_agent( llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: ChatPromptTemplate, *, message_formatter: MessageFormatter = format_to_tool_messages, ) -> Runnable: """Create an agent that uses tools. Args: llm: LLM to use as the agent. tools: Tools this agent has access to. prompt: The prompt to use. See Prompt section below for more on the expected input variables. message_formatter: Formatter function to convert (AgentAction, tool output) tuples into FunctionMessages. Returns: A Runnable sequence representing an agent. It takes as input all the same input variables as the prompt passed in does. It returns as output either an AgentAction or AgentFinish. Example: .. code-block:: python from langchain.agents import AgentExecutor, create_tool_calling_agent, tool from langchain_anthropic import ChatAnthropic from langchain_core.prompts import ChatPromptTemplate prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful assistant"), ("placeholder", "{chat_history}"), ("human", "{input}"), ("placeholder", "{agent_scratchpad}"), ] ) model = ChatAnthropic(model="claude-3-opus-20240229") @tool def magic_function(input: int) -> int: \"\"\"Applies a magic function to an input.\"\"\" return input + 2 tools = [magic_function] agent = create_tool_calling_agent(model, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) agent_executor.invoke({"input": "what is the value of magic_function(3)?"}) # Using with chat history from langchain_core.messages import AIMessage, HumanMessage agent_executor.invoke( { "input": "what's my name?", "chat_history": [ HumanMessage(content="hi! my name is bob"), AIMessage(content="Hello Bob! How can I assist you today?"), ], } ) Prompt: The agent prompt must have an `agent_scratchpad` key that is a ``MessagesPlaceholder``. Intermediate agent actions and tool output messages will be passed in here. """ missing_vars = {"agent_scratchpad"}.difference( prompt.input_variables + list(prompt.partial_variables) ) if missing_vars: msg = f"Prompt missing required variables: {missing_vars}" raise ValueError(msg) if not hasattr(llm, "bind_tools"): msg = "This function requires a bind_tools() method be implemented on the LLM." raise ValueError( msg, ) llm_with_tools = llm.bind_tools(tools) agent = ( RunnablePassthrough.assign( agent_scratchpad=lambda x: message_formatter(x["intermediate_steps"]) ) | prompt | llm_with_tools | ToolsAgentOutputParser() ) return agent
from collections.abc import Sequence from typing import Callable from langchain_core.agents import AgentAction from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import BaseMessage from langchain_core.prompts.chat import ChatPromptTemplate from langchain_core.runnables import Runnable, RunnablePassthrough from langchain_core.tools import BaseTool from langchain.agents.format_scratchpad.tools import ( format_to_tool_messages, ) from langchain.agents.output_parsers.tools import ToolsAgentOutputParser MessageFormatter = Callable[[Sequence[tuple[AgentAction, str]]], list[BaseMessage]] def create_tool_calling_agent( llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: ChatPromptTemplate, *, message_formatter: MessageFormatter = format_to_tool_messages, ) -> Runnable: """Create an agent that uses tools. Args: llm: LLM to use as the agent. tools: Tools this agent has access to. prompt: The prompt to use. See Prompt section below for more on the expected input variables. message_formatter: Formatter function to convert (AgentAction, tool output) tuples into FunctionMessages. Returns: A Runnable sequence representing an agent. It takes as input all the same input variables as the prompt passed in does. It returns as output either an AgentAction or AgentFinish. Example: .. code-block:: python from langchain.agents import AgentExecutor, create_tool_calling_agent, tool from langchain_anthropic import ChatAnthropic from langchain_core.prompts import ChatPromptTemplate prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful assistant"), ("placeholder", "{chat_history}"), ("human", "{input}"), ("placeholder", "{agent_scratchpad}"), ] ) model = ChatAnthropic(model="claude-3-opus-20240229") @tool def magic_function(input: int) -> int: \"\"\"Applies a magic function to an input.\"\"\" return input + 2 tools = [magic_function] agent = create_tool_calling_agent(model, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) agent_executor.invoke({"input": "what is the value of magic_function(3)?"}) # Using with chat history from langchain_core.messages import AIMessage, HumanMessage agent_executor.invoke( { "input": "what's my name?", "chat_history": [ HumanMessage(content="hi! my name is bob"), AIMessage(content="Hello Bob! How can I assist you today?"), ], } ) Prompt: The agent prompt must have an `agent_scratchpad` key that is a ``MessagesPlaceholder``. Intermediate agent actions and tool output messages will be passed in here. """ missing_vars = {"agent_scratchpad"}.difference( prompt.input_variables + list(prompt.partial_variables) ) if missing_vars: raise ValueError(f"Prompt missing required variables: {missing_vars}") if not hasattr(llm, "bind_tools"): raise ValueError( "This function requires a .bind_tools method be implemented on the LLM.", ) llm_with_tools = llm.bind_tools(tools) agent = ( RunnablePassthrough.assign( agent_scratchpad=lambda x: message_formatter(x["intermediate_steps"]) ) | prompt | llm_with_tools | ToolsAgentOutputParser() ) return agent
from llama_index.core.node_parser.text.sentence_window import ( SentenceWindowNodeParser, ) from llama_index.core.schema import Document def test_split_and_window() -> None: document = Document(text="This is a test 1. This is a test 2. This is a test 3.") node_parser = SentenceWindowNodeParser.from_defaults() nodes = node_parser.get_nodes_from_documents([document]) assert len(nodes) == 3 assert nodes[0].get_content() == "This is a test 1. " assert nodes[1].get_content() == "This is a test 2. " assert nodes[2].get_content() == "This is a test 3." assert ( "".join(nodes[0].metadata["window"]) == "This is a test 1. This is a test 2. This is a test 3." ) assert nodes[0].metadata["original_text"] == "This is a test 1. "
from llama_index.core.node_parser.text.sentence_window import ( SentenceWindowNodeParser, ) from llama_index.core.schema import Document def test_split_and_window() -> None: document = Document(text="This is a test 1. This is a test 2. This is a test 3.") node_parser = SentenceWindowNodeParser.from_defaults() nodes = node_parser.get_nodes_from_documents([document]) assert len(nodes) == 3 assert nodes[0].get_content() == "This is a test 1." assert nodes[1].get_content() == "This is a test 2." assert nodes[2].get_content() == "This is a test 3." assert ( " ".join(nodes[0].metadata["window"]) == "This is a test 1. This is a test 2. Thius is a test 3." ) assert nodes[0].metadata["original_text"] == "This is a test 1."
import numpy as np import pytest from pydantic import Field from docarray import BaseDoc from docarray.index import HnswDocumentIndex from docarray.typing import NdArray pytestmark = [pytest.mark.slow, pytest.mark.index] class SimpleDoc(BaseDoc): tens: NdArray[10] = Field(dim=1000) class NestedDoc(BaseDoc): d: SimpleDoc tens: NdArray[50] def test_persist_and_restore(tmp_path): query = SimpleDoc(tens=np.random.random((10,))) # create index _ = HnswDocumentIndex[SimpleDoc](work_dir=str(tmp_path)) # load existing index file index = HnswDocumentIndex[SimpleDoc](work_dir=str(tmp_path)) assert index.num_docs() == 0 index.index([SimpleDoc(tens=np.random.random((10,))) for _ in range(10)]) assert index.num_docs() == 10 find_results_before = index.find(query, search_field='tens', limit=5) # delete and restore del index index = HnswDocumentIndex[SimpleDoc](work_dir=str(tmp_path)) assert index.num_docs() == 10 find_results_after = index.find(query, search_field='tens', limit=5) for doc_before, doc_after in zip(find_results_before[0], find_results_after[0]): assert doc_before.id == doc_after.id assert np.allclose(doc_before.tens, doc_after.tens) # add new data index.index([SimpleDoc(tens=np.random.random((10,))) for _ in range(5)]) assert index.num_docs() == 15 def test_persist_and_restore_nested(tmp_path): query = NestedDoc( tens=np.random.random((50,)), d=SimpleDoc(tens=np.random.random((10,))) ) # create index index = HnswDocumentIndex[NestedDoc](work_dir=str(tmp_path)) index.index( [ NestedDoc( tens=np.random.random((50,)), d=SimpleDoc(tens=np.random.random((10,))) ) for _ in range(10) ] ) assert index.num_docs() == 10 find_results_before = index.find(query, search_field='d__tens', limit=5) # delete and restore del index index = HnswDocumentIndex[NestedDoc](work_dir=str(tmp_path)) assert index.num_docs() == 10 find_results_after = index.find(query, search_field='d__tens', limit=5) for doc_before, doc_after in zip(find_results_before[0], find_results_after[0]): assert doc_before.id == doc_after.id assert np.allclose(doc_before.tens, doc_after.tens) # delete and restore index.index( [ NestedDoc( tens=np.random.random((50,)), d=SimpleDoc(tens=np.random.random((10,))) ) for _ in range(5) ] ) assert index.num_docs() == 15
import numpy as np import pytest from pydantic import Field from docarray import BaseDoc from docarray.index import HnswDocumentIndex from docarray.typing import NdArray pytestmark = [pytest.mark.slow, pytest.mark.index] class SimpleDoc(BaseDoc): tens: NdArray[10] = Field(dim=1000) class NestedDoc(BaseDoc): d: SimpleDoc tens: NdArray[50] def test_persist_and_restore(tmp_path): query = SimpleDoc(tens=np.random.random((10,))) # create index index = HnswDocumentIndex[SimpleDoc](work_dir=str(tmp_path)) # load existing index file index = HnswDocumentIndex[SimpleDoc](work_dir=str(tmp_path)) assert index.num_docs() == 0 index.index([SimpleDoc(tens=np.random.random((10,))) for _ in range(10)]) assert index.num_docs() == 10 find_results_before = index.find(query, search_field='tens', limit=5) # delete and restore del index index = HnswDocumentIndex[SimpleDoc](work_dir=str(tmp_path)) assert index.num_docs() == 10 find_results_after = index.find(query, search_field='tens', limit=5) for doc_before, doc_after in zip(find_results_before[0], find_results_after[0]): assert doc_before.id == doc_after.id assert (doc_before.tens == doc_after.tens).all() # add new data index.index([SimpleDoc(tens=np.random.random((10,))) for _ in range(5)]) assert index.num_docs() == 15 def test_persist_and_restore_nested(tmp_path): query = NestedDoc( tens=np.random.random((50,)), d=SimpleDoc(tens=np.random.random((10,))) ) # create index index = HnswDocumentIndex[NestedDoc](work_dir=str(tmp_path)) index.index( [ NestedDoc( tens=np.random.random((50,)), d=SimpleDoc(tens=np.random.random((10,))) ) for _ in range(10) ] ) assert index.num_docs() == 10 find_results_before = index.find(query, search_field='d__tens', limit=5) # delete and restore del index index = HnswDocumentIndex[NestedDoc](work_dir=str(tmp_path)) assert index.num_docs() == 10 find_results_after = index.find(query, search_field='d__tens', limit=5) for doc_before, doc_after in zip(find_results_before[0], find_results_after[0]): assert doc_before.id == doc_after.id assert (doc_before.tens == doc_after.tens).all() # delete and restore index.index( [ NestedDoc( tens=np.random.random((50,)), d=SimpleDoc(tens=np.random.random((10,))) ) for _ in range(5) ] ) assert index.num_docs() == 15
import pytest import torchaudio from torchaudio.pipelines import EMFORMER_RNNT_BASE_LIBRISPEECH from torchaudio.prototype.pipelines import EMFORMER_RNNT_BASE_MUSTC, EMFORMER_RNNT_BASE_TEDLIUM3 @pytest.mark.parametrize( "bundle,lang,expected", [ (EMFORMER_RNNT_BASE_LIBRISPEECH, "en", "i have that curiosity beside me at this moment"), (EMFORMER_RNNT_BASE_MUSTC, "en", "I had that curiosity beside me at this moment."), (EMFORMER_RNNT_BASE_TEDLIUM3, "en", "i had that curiosity beside me at this moment"), ], ) def test_rnnt(bundle, sample_speech, expected): feature_extractor = bundle.get_feature_extractor() decoder = bundle.get_decoder().eval() token_processor = bundle.get_token_processor() waveform, _ = torchaudio.load(sample_speech) features, length = feature_extractor(waveform.squeeze()) hypotheses = decoder(features, length, 10) text = token_processor(hypotheses[0][0]) assert text == expected
import pytest import torchaudio from torchaudio.pipelines import EMFORMER_RNNT_BASE_LIBRISPEECH @pytest.mark.parametrize( "bundle,lang,expected", [(EMFORMER_RNNT_BASE_LIBRISPEECH, "en", "i have that curiosity beside me at this moment")], ) def test_rnnt(bundle, sample_speech, expected): feature_extractor = bundle.get_feature_extractor() decoder = bundle.get_decoder().eval() token_processor = bundle.get_token_processor() waveform, _ = torchaudio.load(sample_speech) features, length = feature_extractor(waveform.squeeze()) hypotheses = decoder(features, length, 10) text = token_processor(hypotheses[0][0]) assert text == expected