id
int64
599M
3.26B
number
int64
1
7.7k
title
stringlengths
1
290
body
stringlengths
0
228k
βŒ€
state
stringclasses
2 values
html_url
stringlengths
46
51
created_at
timestamp[s]date
2020-04-14 10:18:02
2025-07-23 08:04:53
updated_at
timestamp[s]date
2020-04-27 16:04:17
2025-07-23 18:53:44
closed_at
timestamp[s]date
2020-04-14 12:01:40
2025-07-23 16:44:42
βŒ€
user
dict
labels
listlengths
0
4
is_pull_request
bool
2 classes
comments
listlengths
0
0
2,845,184,764
7,391
AttributeError: module 'pyarrow.lib' has no attribute 'ListViewType'
pyarrow 尝试了θ‹₯εΉ²δΈͺη‰ˆζœ¬ιƒ½δΈε―δ»₯
open
https://github.com/huggingface/datasets/issues/7391
2025-02-11T12:02:26
2025-02-11T12:02:26
null
{ "login": "LinXin04", "id": 25193686, "type": "User" }
[]
false
[]
2,843,813,365
7,390
Re-add py.typed
### Feature request The motivation for removing py.typed no longer seems to apply. Would a solution like [this one](https://github.com/huggingface/huggingface_hub/pull/2752) work here? ### Motivation MyPy support is broken. As more type checkers come out, such as RedKnot, these may also be broken. It would be good to be PEP 561 compliant as long as it's not too onerous. ### Your contribution I can re-add py.typed, but I don't know how to make sur all of the `__all__` files are provided (although you may not need to with modern PyRight).
open
https://github.com/huggingface/datasets/issues/7390
2025-02-10T22:12:52
2025-02-10T22:12:52
null
{ "login": "NeilGirdhar", "id": 730137, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,843,592,606
7,389
Getting statistics about filtered examples
@lhoestq wondering if the team has thought about this and if there are any recommendations? Currently when processing datasets some examples are bound to get filtered out, whether it's due to bad format, or length is too long, or any other custom filters that might be getting applied. Let's just focus on the filter by length for now, since that would be something that gets applied dynamically for each training run. Say we want to show a graph in W&B with the running total of the number of filtered examples so far. What would be a good way to go about hooking this up? Because the map/filter operations happen before the DataLoader batches are created, at training time if we're just grabbing batches from the DataLoader then we won't know how many things have been filtered already. But there's not really a good way to include a 'num_filtered' key into the dataset itself either because dataset map/filter process examples independently and don't have a way to track a running sum. The only approach I can kind of think of is having a 'is_filtered' key in the dataset, and then creating a custom batcher/collator that reads that and tracks the metric?
closed
https://github.com/huggingface/datasets/issues/7389
2025-02-10T20:48:29
2025-02-11T20:44:15
2025-02-11T20:44:13
{ "login": "jonathanasdf", "id": 511073, "type": "User" }
[]
false
[]
2,843,188,499
7,388
OSError: [Errno 22] Invalid argument forbidden character
### Describe the bug I'm on Windows and i'm trying to load a datasets but i'm having title error because files in the repository are named with charactere like < >which can't be in a name file. Could it be possible to load this datasets but removing those charactere ? ### Steps to reproduce the bug load_dataset("CATMuS/medieval") on Windows ### Expected behavior Making the function to erase the forbidden character to allow loading the datasets who have those characters. ### Environment info - `datasets` version: 3.2.0 - Platform: Windows-10-10.0.19045-SP0 - Python version: 3.12.2 - `huggingface_hub` version: 0.28.1 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
closed
https://github.com/huggingface/datasets/issues/7388
2025-02-10T17:46:31
2025-02-11T13:42:32
2025-02-11T13:42:30
{ "login": "langflogit", "id": 124634542, "type": "User" }
[]
false
[]
2,841,228,048
7,387
Dynamic adjusting dataloader sampling weight
Hi, Thanks for your wonderful work! I'm wondering is there a way to dynamically adjust the sampling weight of each data in the dataset during training? Looking forward to your reply, thanks again.
open
https://github.com/huggingface/datasets/issues/7387
2025-02-10T03:18:47
2025-03-07T14:06:54
null
{ "login": "whc688", "id": 72799643, "type": "User" }
[]
false
[]
2,840,032,524
7,386
Add bookfolder Dataset Builder for Digital Book Formats
### Feature request This feature proposes adding a new dataset builder called bookfolder to the datasets library. This builder would allow users to easily load datasets consisting of various digital book formats, including: AZW, AZW3, CB7, CBR, CBT, CBZ, EPUB, MOBI, and PDF. ### Motivation Currently, loading datasets of these digital book files requires manual effort. This would also lower the barrier to entry for working with these formats, enabling more diverse and interesting datasets to be used within the Hugging Face ecosystem. ### Your contribution This feature is rather simple as it will be based on the folder-based builder, similar to imagefolder. I'm willing to contribute to this feature by submitting a PR
closed
https://github.com/huggingface/datasets/issues/7386
2025-02-08T14:27:55
2025-02-08T14:30:10
2025-02-08T14:30:09
{ "login": "shikanime", "id": 22115108, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,830,664,522
7,385
Make IterableDataset (optionally) resumable
### What does this PR do? This PR introduces a new `stateful` option to the `dataset.shuffle` method, which defaults to `False`. When enabled, this option allows for resumable shuffling of `IterableDataset` instances, albeit with some additional memory overhead. Key points: * All tests have passed * Docstrings have been updated to reflect the new functionality I'm very looking forward to receiving feedback on this implementation! @lhoestq
open
https://github.com/huggingface/datasets/pull/7385
2025-02-04T15:55:33
2025-03-03T17:31:40
null
{ "login": "yzhangcs", "id": 18402347, "type": "User" }
[]
true
[]
2,828,208,828
7,384
Support async functions in map()
e.g. to download images or call an inference API like HF or vLLM ```python import asyncio import random from datasets import Dataset async def f(x): await asyncio.sleep(random.random()) ds = Dataset.from_dict({"data": range(100)}) ds.map(f) # Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 100/100 [00:01<00:00, 99.81 examples/s] ``` TODO - [x] clean code (right now it's a big copy paste) - [x] batched - [x] Dataset.map() - [x] IterableDataset.map() - [x] Dataset.filter() - [x] IterableDataset.filter() - [x] test - [x] docs
closed
https://github.com/huggingface/datasets/pull/7384
2025-02-03T18:18:40
2025-02-13T14:01:13
2025-02-13T14:00:06
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,823,480,924
7,382
Add Pandas, PyArrow and Polars docs
(also added the missing numpy docs and fixed a small bug in pyarrow formatting)
closed
https://github.com/huggingface/datasets/pull/7382
2025-01-31T13:22:59
2025-01-31T16:30:59
2025-01-31T16:30:57
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,815,649,092
7,381
Iterating over values of a column in the IterableDataset
### Feature request I would like to be able to iterate (and re-iterate if needed) over a column of an `IterableDataset` instance. The following example shows the supposed API: ```python def gen(): yield {"text": "Good", "label": 0} yield {"text": "Bad", "label": 1} ds = IterableDataset.from_generator(gen) texts = ds["text"] for v in texts: print(v) # Prints "Good" and "Bad" for v in texts: print(v) # Prints "Good" and "Bad" again ``` ### Motivation In the real world problems, huge NNs like Transformer are not always the best option, so there is a need to conduct experiments with different methods. While πŸ€—Datasets is perfectly adapted to πŸ€—Transformers, it may be inconvenient when being used with other libraries. The ability to retrieve a particular column is the case (e.g., gensim's FastText [requires](https://radimrehurek.com/gensim/models/fasttext.html#gensim.models.fasttext.FastText.train) only lists of strings, not dictionaries). While there are ways to achieve the desired functionality, they are not good ([forum](https://discuss.huggingface.co/t/how-to-iterate-over-values-of-a-column-in-the-iterabledataset/135649)). It would be great if there was a built-in solution. ### Your contribution Theoretically, I can submit a PR, but I have very little knowledge of the internal structure of πŸ€—Datasets, so some help may be needed. Moreover, I can only work on weekends, since I have a full-time job. However, the feature does not seem to be popular, so there is no need to implement it as fast as possible.
closed
https://github.com/huggingface/datasets/issues/7381
2025-01-28T13:17:36
2025-05-22T18:00:04
2025-05-22T18:00:04
{ "login": "TopCoder2K", "id": 47208659, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,811,566,116
7,380
fix: dill default for version bigger 0.3.8
Fixes def log for dill version >= 0.3.9 https://pypi.org/project/dill/ This project uses dill with the release of version 0.3.9 the datasets lib.
closed
https://github.com/huggingface/datasets/pull/7380
2025-01-26T13:37:16
2025-03-13T20:40:19
2025-03-13T20:40:19
{ "login": "sam-hey", "id": 40773225, "type": "User" }
[]
true
[]
2,802,957,388
7,378
Allow pushing config version to hub
### Feature request Currently, when datasets are created, they can be versioned by passing the `version` argument to `load_dataset(...)`. For example creating `outcomes.csv` on the command line ``` echo "id,value\n1,0\n2,0\n3,1\n4,1\n" > outcomes.csv ``` and creating it ``` import datasets dataset = datasets.load_dataset( "csv", data_files ="outcomes.csv", keep_in_memory = True, version = '1.0.0') ``` The version info is stored in the `info` and can be accessed e.g. by `next(iter(dataset.values())).info.version` This dataset can be uploaded to the hub with `dataset.push_to_hub(repo_id = "maomlab/example_dataset")`. This will create a dataset on the hub with the following in the `README.md`, but it doesn't upload the version information: ``` --- dataset_info: features: - name: id dtype: int64 - name: value dtype: int64 splits: - name: train num_bytes: 64 num_examples: 4 download_size: 1332 dataset_size: 64 configs: - config_name: default data_files: - split: train path: data/train-* --- ``` However, when I download from the hub, the version information is missing: ``` dataset_from_hub_no_version = datasets.load_dataset("maomlab/example_dataset") next(iter(dataset.values())).info.version ``` I can add the version information manually to the hub, by appending it to the end of config section: ``` ... configs: - config_name: default data_files: - split: train path: data/train-* version: 1.0.0 --- ``` And then when I download it, the version information is correct. ### Motivation ### Why adding version information for each config makes sense 1. The version information is already recorded in the dataset config info data structure and is able to parse it correctly, so it makes sense to sync it with `push_to_hub`. 2. Keeping the version info in at the config level is different from version info at the branch level. As the former relates to the version of the specific dataset the config refers to rather than the version of the dataset curation itself. ## A explanation for the current behavior: In [datasets/src/datasets/info.py:159](https://github.com/huggingface/datasets/blob/fb91fd3c9ea91a818681a777faf8d0c46f14c680/src/datasets/info.py#L159C1-L160C1 ), the `_INCLUDED_INFO_IN_YAML` variable doesn't include `"version"`. If my reading of the code is right, adding `"version"` to `_INCLUDED_INFO_IN_YAML`, would allow the version information to be uploaded to the hub. ### Your contribution Request: add `"version"` to `_INCLUDE_INFO_IN_YAML` in [datasets/src/datasets/info.py:159](https://github.com/huggingface/datasets/blob/fb91fd3c9ea91a818681a777faf8d0c46f14c680/src/datasets/info.py#L159C1-L160C1 )
open
https://github.com/huggingface/datasets/issues/7378
2025-01-21T22:35:07
2025-01-30T13:56:56
null
{ "login": "momeara", "id": 129072, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,802,723,285
7,377
Support for sparse arrays with the Arrow Sparse Tensor format?
### Feature request AI in biology is becoming a big thing. One thing that would be a huge benefit to the field that Huggingface Datasets doesn't currently have is native support for **sparse arrays**. Arrow has support for sparse tensors. https://arrow.apache.org/docs/format/Other.html#sparse-tensor It would be a big deal if Hugging Face Datasets supported sparse tensors as a feature type, natively. ### Motivation This is important for example in the field of transcriptomics (modeling and understanding gene expression), because a large fraction of the genes are not expressed (zero). More generally, in science, sparse arrays are very common, so adding support for them would be very benefitial, it would make just using Hugging Face Dataset objects a lot more straightforward and clean. ### Your contribution We can discuss this further once the team comments of what they think about the feature, and if there were previous attempts at making it work, and understanding their evaluation of how hard it would be. My intuition is that it should be fairly straightforward, as the Arrow backend already supports it.
open
https://github.com/huggingface/datasets/issues/7377
2025-01-21T20:14:35
2025-01-30T14:06:45
null
{ "login": "JulesGM", "id": 3231217, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,802,621,104
7,376
[docs] uv install
Proposes adding uv to installation docs (see Slack thread [here](https://huggingface.slack.com/archives/C01N44FJDHT/p1737377177709279) for more context) if you're interested!
closed
https://github.com/huggingface/datasets/pull/7376
2025-01-21T19:15:48
2025-03-14T20:16:35
2025-03-14T20:16:35
{ "login": "stevhliu", "id": 59462357, "type": "User" }
[]
true
[]
2,800,609,218
7,375
vllmζ‰Ήι‡ζŽ¨η†ζŠ₯ι”™
### Describe the bug ![Image](https://github.com/user-attachments/assets/3d958e43-28dc-4467-9333-5990c7af3b3f) ### Steps to reproduce the bug ![Image](https://github.com/user-attachments/assets/3067eeca-a54d-4956-b0fd-3fc5ea93dabb) ### Expected behavior ![Image](https://github.com/user-attachments/assets/77d32936-488f-4572-9365-bfb4170e555b) ### Environment info ![Image](https://github.com/user-attachments/assets/230335c4-825f-4db1-b07d-4776ef63ead8)
open
https://github.com/huggingface/datasets/issues/7375
2025-01-21T03:22:23
2025-01-30T14:02:40
null
{ "login": "YuShengzuishuai", "id": 51228154, "type": "User" }
[]
false
[]
2,793,442,320
7,374
Remove .h5 from imagefolder extensions
the format is not relevant for imagefolder, and makes the viewer fail to process datasets on HF (so many that the viewer takes more time to process new datasets)
closed
https://github.com/huggingface/datasets/pull/7374
2025-01-16T18:17:24
2025-01-16T18:26:40
2025-01-16T18:26:38
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,793,237,139
7,373
Excessive RAM Usage After Dataset Concatenation concatenate_datasets
### Describe the bug When loading a dataset from disk, concatenating it, and starting the training process, the RAM usage progressively increases until the kernel terminates the process due to excessive memory consumption. https://github.com/huggingface/datasets/issues/2276 ### Steps to reproduce the bug ```python from datasets import DatasetDict, concatenate_datasets dataset = DatasetDict.load_from_disk("data") ... ... combined_dataset = concatenate_datasets( [dataset[split] for split in dataset] ) #start SentenceTransformer training ``` ### Expected behavior I would not expect RAM utilization to increase after concatenation. Removing the concatenation step resolves the issue ### Environment info sentence-transformers==3.1.1 datasets==3.2.0 python3.10
open
https://github.com/huggingface/datasets/issues/7373
2025-01-16T16:33:10
2025-03-27T17:40:59
null
{ "login": "sam-hey", "id": 40773225, "type": "User" }
[]
false
[]
2,791,760,968
7,372
Inconsistent Behavior Between `load_dataset` and `load_from_disk` When Loading Sharded Datasets
### Description I encountered an inconsistency in behavior between `load_dataset` and `load_from_disk` when loading sharded datasets. Here is a minimal example to reproduce the issue: #### Code 1: Using `load_dataset` ```python from datasets import Dataset, load_dataset # First save with max_shard_size=10 Dataset.from_dict({"id": range(1000)}).train_test_split(test_size=0.1).save_to_disk("my_sharded_datasetdict", max_shard_size=10) # Second save with max_shard_size=10 Dataset.from_dict({"id": range(500)}).train_test_split(test_size=0.1).save_to_disk("my_sharded_datasetdict", max_shard_size=10) # Load the DatasetDict loaded_datasetdict = load_dataset("my_sharded_datasetdict") print(loaded_datasetdict) ``` **Output**: - `train` has 1350 samples. - `test` has 150 samples. #### Code 2: Using `load_from_disk` ```python from datasets import Dataset, load_from_disk # First save with max_shard_size=10 Dataset.from_dict({"id": range(1000)}).train_test_split(test_size=0.1).save_to_disk("my_sharded_datasetdict", max_shard_size=10) # Second save with max_shard_size=10 Dataset.from_dict({"id": range(500)}).train_test_split(test_size=0.1).save_to_disk("my_sharded_datasetdict", max_shard_size=10) # Load the DatasetDict loaded_datasetdict = load_from_disk("my_sharded_datasetdict") print(loaded_datasetdict) ``` **Output**: - `train` has 450 samples. - `test` has 50 samples. ### Expected Behavior I expected both `load_dataset` and `load_from_disk` to load the same dataset, as they are pointing to the same directory. However, the results differ significantly: - `load_dataset` seems to merge all shards, resulting in a combined dataset. - `load_from_disk` only loads the last saved dataset, ignoring previous shards. ### Questions 1. Is this behavior intentional? If so, could you clarify the difference between `load_dataset` and `load_from_disk` in the documentation? 2. If this is not intentional, could this be considered a bug? 3. What is the recommended way to handle cases where multiple datasets are saved to the same directory? Thank you for your time and effort in maintaining this great library! I look forward to your feedback.
open
https://github.com/huggingface/datasets/issues/7372
2025-01-16T05:47:20
2025-01-16T05:47:20
null
{ "login": "gaohongkui", "id": 38203359, "type": "User" }
[]
false
[]
2,790,549,889
7,371
500 Server error with pushing a dataset
### Describe the bug Suddenly, I started getting this error message saying it was an internal error. `Error creating/pushing dataset: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/ll4ma-lab/grasp-dataset/commit/main (Request ID: Root=1-6787f0b7-66d5bd45413e481c4c2fb22d;670d04ff-65f5-4741-a353-2eacc47a3928) Internal Error - We're working hard to fix this as soon as possible! Traceback (most recent call last): File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/utils/_http.py", line 406, in hf_raise_for_status response.raise_for_status() File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/requests/models.py", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/ll4ma-lab/grasp-dataset/commit/main The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/uufs/chpc.utah.edu/common/home/u1295595/grasp_dataset_converter/src/grasp_dataset_converter/main.py", line 142, in main subset_train.push_to_hub(dataset_name, split='train') File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 5624, in push_to_hub commit_info = api.create_commit( File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 1518, in _inner return fn(self, *args, **kwargs) File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 4087, in create_commit hf_raise_for_status(commit_resp, endpoint_name="commit") File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/utils/_http.py", line 477, in hf_raise_for_status raise _format(HfHubHTTPError, str(e), response) from e huggingface_hub.errors.HfHubHTTPError: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/ll4ma-lab/grasp-dataset/commit/main (Request ID: Root=1-6787f0b7-66d5bd45413e481c4c2fb22d;670d04ff-65f5-4741-a353-2eacc47a3928) Internal Error - We're working hard to fix this as soon as possible!` ### Steps to reproduce the bug I am pushing a Dataset in a loop via push_to_hub API ### Expected behavior It worked fine until it stopped working suddenly. Expected behavior: It should start working again ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-4.18.0-477.15.1.el8_8.x86_64-x86_64-with-glibc2.28 - Python version: 3.10.0 - `huggingface_hub` version: 0.27.1 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
open
https://github.com/huggingface/datasets/issues/7371
2025-01-15T18:23:02
2025-01-15T20:06:05
null
{ "login": "martinmatak", "id": 7677814, "type": "User" }
[]
false
[]
2,787,972,786
7,370
Support faster processing using pandas or polars functions in `IterableDataset.map()`
Following the polars integration :) Allow super fast processing using pandas or polars functions in `IterableDataset.map()` by adding support to pandas and polars formatting in `IterableDataset` ```python import polars as pl from datasets import Dataset ds = Dataset.from_dict({"i": range(10)}).to_iterable_dataset() ds = ds.with_format("polars") ds = ds.map(lambda df: df.with_columns(pl.col("i").add(1).alias("i+1")), batched=True) ds = ds.with_format(None) print(next(iter(ds))) # {'i': 0, 'i+1': 1} ``` It leverages arrow's zero-copy features from/to pandas and polars. related to https://github.com/huggingface/datasets/issues/3444 #6762
closed
https://github.com/huggingface/datasets/pull/7370
2025-01-14T18:14:13
2025-01-31T11:08:15
2025-01-30T13:30:57
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,787,193,238
7,369
Importing dataset gives unhelpful error message when filenames in metadata.csv are not found in the directory
### Describe the bug While importing an audiofolder dataset, where the names of the audiofiles don't correspond to the filenames in the metadata.csv, we get an unclear error message that is not helpful for the debugging, i.e. ``` ValueError: Instruction "train" corresponds to no data! ``` ### Steps to reproduce the bug Assume an audiofolder with audiofiles, filename1.mp3, filename2.mp3 etc and a file metadata.csv which contains the columns file_name and sentence. The file_names are formatted like filename1.mp3, filename2.mp3 etc. Load the audio ``` from datasets import load_dataset load_dataset("audiofolder", data_dir='/path/to/audiofolder') ``` When the file_names in the csv are not in sync with the filenames in the audiofolder, then we get an Error message: ``` File /opt/conda/lib/python3.12/site-packages/datasets/arrow_reader.py:251, in BaseReader.read(self, name, instructions, split_infos, in_memory) 249 if not files: 250 msg = f'Instruction "{instructions}" corresponds to no data!' --> 251 raise ValueError(msg) 252 return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) ValueError: Instruction "train" corresponds to no data! ``` load_dataset has a default value for the argument split = 'train'. ### Expected behavior It would be better to get an error report something like: ``` The metadata.csv file has different filenames than the files in the datadirectory. ``` It would have saved me 4 hours of debugging. ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.14.0-427.40.1.el9_4.x86_64-x86_64-with-glibc2.39 - Python version: 3.12.8 - `huggingface_hub` version: 0.27.0 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
open
https://github.com/huggingface/datasets/issues/7369
2025-01-14T13:53:21
2025-01-14T15:05:51
null
{ "login": "svencornetsdegroot", "id": 38278139, "type": "User" }
[]
false
[]
2,784,272,477
7,368
Add with_split to DatasetDict.map
#7356
closed
https://github.com/huggingface/datasets/pull/7368
2025-01-13T15:09:56
2025-03-08T05:45:02
2025-03-07T14:09:52
{ "login": "jp1924", "id": 93233241, "type": "User" }
[]
true
[]
2,781,522,894
7,366
Dataset.from_dict() can't handle large dict
### Describe the bug I have 26,000,000 3-tuples. When I use Dataset.from_dict() to load, neither. py nor Jupiter notebook can run successfully. This is my code: ``` # len(example_data) is 26,000,000, 'diff' is a text diff1_list = [example_data[i].texts[0] for i in range(len(example_data))] diff2_list = [example_data[i].texts[1] for i in range(len(example_data))] label_list = [example_data[i].label for i in range(len(example_data))] embedding_dataset = Dataset.from_dict({ "diff1": diff1_list, "diff2": diff2_list, "label": label_list }) ``` ### Steps to reproduce the bug 1. Initialize a large 3-tuple, e.g. 26,000,000 2. Use Dataset.from_dict() to load ### Expected behavior Dataset.from_dict() run successfully ### Environment info sentence-transformers 3.3.1
open
https://github.com/huggingface/datasets/issues/7366
2025-01-11T02:05:21
2025-01-11T02:05:21
null
{ "login": "CSU-OSS", "id": 164967134, "type": "User" }
[]
false
[]
2,780,216,199
7,365
A parameter is specified but not used in datasets.arrow_dataset.Dataset.from_pandas()
### Describe the bug I am interested in creating train, test and eval splits from a pandas Dataframe, therefore I was looking at the possibilities I can follow. I noticed the split parameter and was hopeful to use it in order to generate the 3 at once, however, while trying to understand the code, i noticed that it has no added value (correct me if I am wrong or misunderstood the code). from_pandas function code : ```python if info is not None and features is not None and info.features != features: raise ValueError( f"Features specified in `features` and `info.features` can't be different:\n{features}\n{info.features}" ) features = features if features is not None else info.features if info is not None else None if info is None: info = DatasetInfo() info.features = features table = InMemoryTable.from_pandas( df=df, preserve_index=preserve_index, ) if features is not None: # more expensive cast than InMemoryTable.from_pandas(..., schema=features.arrow_schema) # needed to support the str to Audio conversion for instance table = table.cast(features.arrow_schema) return cls(table, info=info, split=split) ``` ### Steps to reproduce the bug ```python from datasets import Dataset # Filling the split parameter with whatever causes no harm at all data = Dataset.from_pandas(self.raw_data, split='egiojegoierjgoiejgrefiergiuorenvuirgurthgi') ``` ### Expected behavior Would be great if there is no split parameter (if it isn't working), or to add a concrete example of how it can be used. ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.15.0-127-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.27.1 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
open
https://github.com/huggingface/datasets/issues/7365
2025-01-10T13:39:33
2025-01-10T13:39:33
null
{ "login": "NourOM02", "id": 69003192, "type": "User" }
[]
false
[]
2,776,929,268
7,364
API endpoints for gated dataset access requests
### Feature request I would like a programatic way of requesting access to gated datasets. The current solution to gain access forces me to visit a website and physically click an "agreement" button (as per the [documentation](https://huggingface.co/docs/hub/en/datasets-gated#access-gated-datasets-as-a-user)). An ideal approach would be HF API download methods that negotiate access on my behalf based on information from my CLI login and/or token. I realise that may be naive given the various types of access semantics available to dataset authors (automatic versus manual approval, for example) and complexities it might add to existing methods, but something along those lines would be nice. Perhaps using the `*_access_request` methods available to dataset authors can be a precedent; see [`reject_access_request`](https://huggingface.co/docs/huggingface_hub/main/en/package_reference/hf_api#huggingface_hub.HfApi.reject_access_request) for example. ### Motivation When trying to download files from a gated dataset, I'm met with a `GatedRepoError` and instructed to visit the repository's website to gain access: ``` Cannot access gated repo for url https://huggingface.co/datasets/open-llm-leaderboard/meta-llama__Meta-Llama-3.1-70B-Instruct-details/resolve/main/meta-llama__Meta-Llama-3.1-70B-Instruct/samples_leaderboard_math_precalculus_hard_2024-07-19T18-47-29.522341.jsonl. Access to dataset open-llm-leaderboard/meta-llama__Meta-Llama-3.1-70B-Instruct-details is restricted and you are not in the authorized list. Visit https://huggingface.co/datasets/open-llm-leaderboard/meta-llama__Meta-Llama-3.1-70B-Instruct-details to ask for access. ``` This makes task automation extremely difficult. For example, I'm interested in studying sample-level responses of models on the LLM leaderboard -- how they answered particular questions on a given evaluation framework. As I come across more and more participants that gate their data, it's becoming unwieldy to continue my work (there over 2,000 participants, so in the worst case that's the number of website visits I'd need to manually undertake). One approach is use Selenium to react to the `GatedRepoError`, but that seems like overkill; and a potential violation HF terms of service (?). As mentioned in the previous section, there seems to be an [API for gated dataset owners](https://huggingface.co/docs/hub/en/datasets-gated#via-the-api) to managed access requests, and thus some appetite for allowing automated management of gating. This feature request is to extend that to dataset users. ### Your contribution Whether I can help depends on a few things; one being the complexity of the underlying gated access design. If this feature request is accepted I am open to being involved in discussions and testing, and even development under the right time-outcome tradeoff.
closed
https://github.com/huggingface/datasets/issues/7364
2025-01-09T06:21:20
2025-01-09T11:17:40
2025-01-09T11:17:20
{ "login": "jerome-white", "id": 6140840, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,774,090,012
7,363
ImportError: To support decoding images, please install 'Pillow'.
### Describe the bug Following this tutorial locally using a macboko and VSCode: https://huggingface.co/docs/diffusers/en/tutorials/basic_training This line of code: for i, image in enumerate(dataset[:4]["image"]): throws: ImportError: To support decoding images, please install 'Pillow'. Pillow is installed. ### Steps to reproduce the bug Run the tutorial ### Expected behavior Images should be rendered ### Environment info MacBook, VSCode
open
https://github.com/huggingface/datasets/issues/7363
2025-01-08T02:22:57
2025-05-28T14:56:53
null
{ "login": "jamessdixon", "id": 1394644, "type": "User" }
[]
false
[]
2,773,731,829
7,362
HuggingFace CLI dataset download raises error
### Describe the bug Trying to download Hugging Face datasets using Hugging Face CLI raises error. This error only started after December 27th, 2024. For example: ``` huggingface-cli download --repo-type dataset gboleda/wikicorpus Traceback (most recent call last): File "/home/ubuntu/test_venv/bin/huggingface-cli", line 8, in <module> sys.exit(main()) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/commands/huggingface_cli.py", line 51, in main service.run() File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/commands/download.py", line 146, in run print(self._download()) # Print path to downloaded files File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/commands/download.py", line 180, in _download return snapshot_download( File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/_snapshot_download.py", line 164, in snapshot_download repo_info = api.repo_info(repo_id=repo_id, repo_type=repo_type, revision=revision, token=token) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2491, in repo_info return method( File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2366, in dataset_info return DatasetInfo(**data) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 799, in __init__ self.tags = kwargs.pop("tags") KeyError: 'tags' ``` ### Steps to reproduce the bug ``` 1. huggingface-cli download --repo-type dataset gboleda/wikicorpus ``` ### Expected behavior There should be no error. ### Environment info - `datasets` version: 2.19.1 - Platform: Linux-6.8.0-1015-aws-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.23.5 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.3.1
closed
https://github.com/huggingface/datasets/issues/7362
2025-01-07T21:03:30
2025-01-08T15:00:37
2025-01-08T14:35:52
{ "login": "ajayvohra2005", "id": 3870355, "type": "User" }
[]
false
[]
2,771,859,244
7,361
Fix lock permission
All files except lock file have proper permission obeying `ACL` property if it is set. If the cache directory has `ACL` property, it should be respected instead of just using `umask` for permission. To fix it, just create a lock file and pass the created `mode`. By creating a lock file with `touch()` before `FileLock` create it with `mode`, - if `ACL` is not set, same as before - if `ACL` is set, `ACL` is respected If it is acceptable, it should be also applied to [`huggingface_hub`](https://github.com/huggingface/huggingface_hub/blob/2702ec2a2bd0124cc1fddfd72ccb1297b2478148/src/huggingface_hub/utils/_fixes.py#L95) I guess.
open
https://github.com/huggingface/datasets/pull/7361
2025-01-07T04:15:53
2025-01-07T04:49:46
null
{ "login": "cih9088", "id": 11530592, "type": "User" }
[]
true
[]
2,771,751,406
7,360
error when loading dataset in Hugging Face: NoneType error is not callable
### Describe the bug I met an error when running a notebook provide by Hugging Face, and met the error. ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[2], line 5 3 # Load the enhancers dataset from the InstaDeep Hugging Face ressources 4 dataset_name = "enhancers_types" ----> 5 train_dataset_enhancers = load_dataset( 6 "InstaDeepAI/nucleotide_transformer_downstream_tasks_revised", 7 dataset_name, 8 split="train", 9 streaming= False, 10 ) 11 test_dataset_enhancers = load_dataset( 12 "InstaDeepAI/nucleotide_transformer_downstream_tasks_revised", 13 dataset_name, 14 split="test", 15 streaming= False, 16 ) File /public/home/hhl/miniconda3/envs/transformer/lib/python3.9/site-packages/datasets/load.py:2129, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) 2124 verification_mode = VerificationMode( 2125 (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS 2126 ) 2128 # Create a dataset builder -> 2129 builder_instance = load_dataset_builder( 2130 path=path, 2131 name=name, 2132 data_dir=data_dir, 2133 data_files=data_files, 2134 cache_dir=cache_dir, 2135 features=features, 2136 download_config=download_config, 2137 download_mode=download_mode, 2138 revision=revision, 2139 token=token, 2140 storage_options=storage_options, 2141 trust_remote_code=trust_remote_code, 2142 _require_default_config_name=name is None, 2143 **config_kwargs, 2144 ) 2146 # Return iterable dataset in case of streaming 2147 if streaming: File /public/home/hhl/miniconda3/envs/transformer/lib/python3.9/site-packages/datasets/load.py:1886, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs) 1884 builder_cls = get_dataset_builder_class(dataset_module, dataset_name=dataset_name) 1885 # Instantiate the dataset builder -> 1886 builder_instance: DatasetBuilder = builder_cls( 1887 cache_dir=cache_dir, 1888 dataset_name=dataset_name, 1889 config_name=config_name, 1890 data_dir=data_dir, 1891 data_files=data_files, 1892 hash=dataset_module.hash, 1893 info=info, 1894 features=features, 1895 token=token, 1896 storage_options=storage_options, 1897 **builder_kwargs, 1898 **config_kwargs, 1899 ) 1900 builder_instance._use_legacy_cache_dir_if_possible(dataset_module) 1902 return builder_instance TypeError: 'NoneType' object is not callable ``` I have checked my internet, it worked well. And the dataset name was just copied from the Hugging Face. Totally no idea what is wrong! ### Steps to reproduce the bug To reproduce the bug you may run ``` from datasets import load_dataset, Dataset # Load the enhancers dataset from the InstaDeep Hugging Face ressources dataset_name = "enhancers_types" train_dataset_enhancers = load_dataset( "InstaDeepAI/nucleotide_transformer_downstream_tasks_revised", dataset_name, split="train", streaming= False, ) test_dataset_enhancers = load_dataset( "InstaDeepAI/nucleotide_transformer_downstream_tasks_revised", dataset_name, split="test", streaming= False, ) ``` ### Expected behavior 1. what may be the reasons of the error 2. how can I fine which reason lead to the error 3. how can I save the problem ### Environment info ``` - `datasets` version: 3.2.0 - Platform: Linux-5.15.0-117-generic-x86_64-with-glibc2.31 - Python version: 3.9.21 - `huggingface_hub` version: 0.27.0 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0 ```
open
https://github.com/huggingface/datasets/issues/7360
2025-01-07T02:11:36
2025-02-24T13:32:52
null
{ "login": "nanu23333", "id": 189343338, "type": "User" }
[]
false
[]
2,771,137,842
7,359
There are multiple 'mteb/arguana' configurations in the cache: default, corpus, queries with HF_HUB_OFFLINE=1
### Describe the bug Hey folks, I am trying to run this code - ```python from datasets import load_dataset, get_dataset_config_names ds = load_dataset("mteb/arguana") ``` with HF_HUB_OFFLINE=1 But I get the following error - ```python Using the latest cached version of the dataset since mteb/arguana couldn't be found on the Hugging Face Hub (offline mode is enabled). --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[2], line 1 ----> 1 ds = load_dataset("mteb/arguana") File ~/env/lib/python3.10/site-packages/datasets/load.py:2129, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) 2124 verification_mode = VerificationMode( 2125 (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS 2126 ) 2128 # Create a dataset builder -> 2129 builder_instance = load_dataset_builder( 2130 path=path, 2131 name=name, 2132 data_dir=data_dir, 2133 data_files=data_files, 2134 cache_dir=cache_dir, 2135 features=features, 2136 download_config=download_config, 2137 download_mode=download_mode, 2138 revision=revision, 2139 token=token, 2140 storage_options=storage_options, 2141 trust_remote_code=trust_remote_code, 2142 _require_default_config_name=name is None, 2143 **config_kwargs, 2144 ) 2146 # Return iterable dataset in case of streaming 2147 if streaming: File ~/env/lib/python3.10/site-packages/datasets/load.py:1886, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs) 1884 builder_cls = get_dataset_builder_class(dataset_module, dataset_name=dataset_name) 1885 # Instantiate the dataset builder -> 1886 builder_instance: DatasetBuilder = builder_cls( 1887 cache_dir=cache_dir, 1888 dataset_name=dataset_name, 1889 config_name=config_name, 1890 data_dir=data_dir, 1891 data_files=data_files, 1892 hash=dataset_module.hash, 1893 info=info, 1894 features=features, 1895 token=token, 1896 storage_options=storage_options, 1897 **builder_kwargs, 1898 **config_kwargs, 1899 ) 1900 builder_instance._use_legacy_cache_dir_if_possible(dataset_module) 1902 return builder_instance File ~/env/lib/python3.10/site-packages/datasets/packaged_modules/cache/cache.py:124, in Cache.__init__(self, cache_dir, dataset_name, config_name, version, hash, base_path, info, features, token, repo_id, data_files, data_dir, storage_options, writer_batch_size, **config_kwargs) 122 config_kwargs["data_dir"] = data_dir 123 if hash == "auto" and version == "auto": --> 124 config_name, version, hash = _find_hash_in_cache( 125 dataset_name=repo_id or dataset_name, 126 config_name=config_name, 127 cache_dir=cache_dir, 128 config_kwargs=config_kwargs, 129 custom_features=features, 130 ) 131 elif hash == "auto" or version == "auto": 132 raise NotImplementedError("Pass both hash='auto' and version='auto' instead") File ~/env/lib/python3.10/site-packages/datasets/packaged_modules/cache/cache.py:84, in _find_hash_in_cache(dataset_name, config_name, cache_dir, config_kwargs, custom_features) 72 other_configs = [ 73 Path(_cached_directory_path).parts[-3] 74 for _cached_directory_path in glob.glob(os.path.join(cached_datasets_directory_path_root, "*", version, hash)) (...) 81 ) 82 ] 83 if not config_id and len(other_configs) > 1: ---> 84 raise ValueError( 85 f"There are multiple '{dataset_name}' configurations in the cache: {', '.join(other_configs)}" 86 f"\nPlease specify which configuration to reload from the cache, e.g." 87 f"\n\tload_dataset('{dataset_name}', '{other_configs[0]}')" 88 ) 89 config_name = cached_directory_path.parts[-3] 90 warning_msg = ( 91 f"Found the latest cached dataset configuration '{config_name}' at {cached_directory_path} " 92 f"(last modified on {time.ctime(_get_modification_time(cached_directory_path))})." 93 ) ValueError: There are multiple 'mteb/arguana' configurations in the cache: queries, corpus, default Please specify which configuration to reload from the cache, e.g. load_dataset('mteb/arguana', 'queries') ``` It works when I run the same code with HF_HUB_OFFLINE=0, but after the data is downloaded, I turn off the HF hub cache with HF_HUB_OFFLINE=1, and then this error appears. Are there some files I am missing with hub disabled? ### Steps to reproduce the bug from datasets import load_dataset, get_dataset_config_names ds = load_dataset("mteb/arguana") with HF_HUB_OFFLINE=1 (after already running it with HF_HUB_OFFLINE=0 and populating the datasets cache) ### Expected behavior Dataset loaded successfully as it does with HF_HUB_OFFLINE=1 ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.15.148.2-2.cm2-x86_64-with-glibc2.35 - Python version: 3.10.14 - `huggingface_hub` version: 0.27.0 - PyArrow version: 17.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.6.1
open
https://github.com/huggingface/datasets/issues/7359
2025-01-06T17:42:49
2025-01-06T17:43:31
null
{ "login": "Bhavya6187", "id": 723146, "type": "User" }
[]
false
[]
2,770,927,769
7,358
Fix remove_columns in the formatted case
`remove_columns` had no effect when running a function in `.map()` on dataset that is formatted This aligns the logic of `map()` with the non formatted case and also with with https://github.com/huggingface/datasets/pull/7353
open
https://github.com/huggingface/datasets/pull/7358
2025-01-06T15:44:23
2025-01-06T15:46:46
null
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,770,456,127
7,357
Python process aborded with GIL issue when using image dataset
### Describe the bug The issue is visible only with the latest `datasets==3.2.0`. When using image dataset the Python process gets aborted right before the exit with the following error: ``` Fatal Python error: PyGILState_Release: thread state 0x7fa1f409ade0 must be current when releasing Python runtime state: finalizing (tstate=0x0000000000ad2958) Thread 0x00007fa33d157740 (most recent call first): <no Python frame> Extension modules: numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._boun ded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, pyarrow.lib, pandas._libs.tslibs.ccalendar, pandas._libs.ts libs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.t slibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._l ibs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pyarrow._compute, pan das._libs.ops, pandas._libs.hashing, pandas._libs.arrays, pandas._libs.tslib, pandas._libs.sparse, pandas._libs.internals, pandas._libs.indexing, pandas._libs.index, pandas._libs.writers, pandas._libs.join, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.json, pandas._libs.parsers, pandas._libs.testing, charset_normalizer.md, requests.pa ckages.charset_normalizer.md, requests.packages.chardet.md, yaml._yaml, markupsafe._speedups, PIL._imaging, torch._C, torch._C._dynamo.autograd_compiler, torch._C._dynamo.eval_frame, torch._C._dynamo.guards , torch._C._dynamo.utils, torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._nn, torch._C._sparse, torch._C._special, sentencepiece._sentencepiece, sklearn.__check_build._check_build, psutil._psut il_linux, psutil._psutil_posix, scipy._lib._ccallback_c, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg.cython_lapack, scipy.l inalg._cythonized_array_utils, scipy.linalg._solve_toeplitz, scipy.linalg._decomp_lu_cython, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg.cython_blas, scipy.linalg._matfuncs_expm, scipy.linalg._decomp_up date, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.linalg._propack._spropack, scipy.sparse.linalg._propack._dpropack, scipy.sparse.linalg._propack._cpropack, scipy.sparse.linalg._propack._zpropack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flo w, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, scipy.special._ufuncs_cxx, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, scipy.spatial ._ckdtree, scipy._lib.messagestream, scipy.spatial._qhull, scipy.spatial._voronoi, scipy.spatial._distance_wrap, scipy.spatial._hausdorff, scipy.spatial.transform._rotation, scipy.optimize._group_columns, s cipy.optimize._trlib._trlib, scipy.optimize._lbfgsb, _moduleTNC, scipy.optimize._moduleTNC, scipy.optimize._cobyla, scipy.optimize._slsqp, scipy.optimize._minpack, scipy.optimize._lsq.givens_elimination, sc ipy.optimize._zeros, scipy.optimize._highs.cython.src._highs_wrapper, scipy.optimize._highs._highs_wrapper, scipy.optimize._highs.cython.src._highs_constants, scipy.optimize._highs._highs_constants, scipy.l inalg._interpolative, scipy.optimize._bglu_dense, scipy.optimize._lsap, scipy.optimize._direct, scipy.integrate._odepack, scipy.integrate._quadpack, scipy.integrate._vode, scipy.integrate._dop, scipy.integr ate._lsoda, scipy.interpolate._fitpack, scipy.interpolate._dfitpack, scipy.interpolate._bspl, scipy.interpolate._ppoly, scipy.interpolate.interpnd, scipy.interpolate._rbfinterp_pythran, scipy.interpolate._r gi_cython, scipy.special.cython_special, scipy.stats._stats, scipy.stats._biasedurn, scipy.stats._levy_stable.levyst, scipy.stats._stats_pythran, scipy._lib._uarray._uarray, scipy.stats._ansari_swilk_statis tics, scipy.stats._sobol, scipy.stats._qmc_cy, scipy.stats._mvn, scipy.stats._rcont.rcont, scipy.stats._unuran.unuran_wrapper, scipy.ndimage._nd_image, _ni_label, scipy.ndimage._ni_label, sklearn.utils._isf inite, sklearn.utils.sparsefuncs_fast, sklearn.utils.murmurhash, sklearn.utils._openmp_helpers, sklearn.metrics.cluster._expected_mutual_info_fast, sklearn.preprocessing._csr_polynomial_expansion, sklearn.p reprocessing._target_encoder_fast, sklearn.metrics._dist_metrics, sklearn.metrics._pairwise_distances_reduction._datasets_pair, sklearn.utils._cython_blas, sklearn.metrics._pairwise_distances_reduction._bas e, sklearn.metrics._pairwise_distances_reduction._middle_term_computer, sklearn.utils._heap, sklearn.utils._sorting, sklearn.metrics._pairwise_distances_reduction._argkmin, sklearn.metrics._pairwise_distanc es_reduction._argkmin_classmode, sklearn.utils._vector_sentinel, sklearn.metrics._pairwise_distances_reduction._radius_neighbors, sklearn.metrics._pairwise_distances_reduction._radius_neighbors_classmode, s klearn.metrics._pairwise_fast, PIL._imagingft, google._upb._message, h5py._errors, h5py.defs, h5py._objects, h5py.h5, h5py.utils, h5py.h5t, h5py.h5s, h5py.h5ac, h5py.h5p, h5py.h5r, h5py._proxy, h5py._conv, h5py.h5z, h5py.h5a, h5py.h5d, h5py.h5ds, h5py.h5g, h5py.h5i, h5py.h5o, h5py.h5f, h5py.h5fd, h5py.h5pl, h5py.h5l, h5py._selector, _cffi_backend, pyarrow._parquet, pyarrow._fs, pyarrow._azurefs, pyarrow._hdfs , pyarrow._gcsfs, pyarrow._s3fs, multidict._multidict, propcache._helpers_c, yarl._quoting_c, aiohttp._helpers, aiohttp._http_writer, aiohttp._http_parser, aiohttp._websocket, frozenlist._frozenlist, xxhash ._xxhash, pyarrow._json, pyarrow._acero, pyarrow._csv, pyarrow._dataset, pyarrow._dataset_orc, pyarrow._parquet_encryption, pyarrow._dataset_parquet_encryption, pyarrow._dataset_parquet, regex._regex, scipy .io.matlab._mio_utils, scipy.io.matlab._streams, scipy.io.matlab._mio5_utils, PIL._imagingmath, PIL._webp (total: 236) Aborted (core dumped) ```an ### Steps to reproduce the bug Install `datasets==3.2.0` Run the following script: ```python import datasets DATASET_NAME = "phiyodr/InpaintCOCO" NUM_SAMPLES = 10 def preprocess_fn(example): return { "prompts": example["inpaint_caption"], "images": example["coco_image"], "masks": example["mask"], } default_dataset = datasets.load_dataset( DATASET_NAME, split="test", streaming=True ).filter(lambda example: example["inpaint_caption"] != "").take(NUM_SAMPLES) test_data = default_dataset.map( lambda x: preprocess_fn(x), remove_columns=default_dataset.column_names ) for data in test_data: print(data["prompts"]) `` ### Expected behavior The script should not hang or crash. ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.15.0-50-generic-x86_64-with-glibc2.31 - Python version: 3.11.0 - `huggingface_hub` version: 0.25.1 - PyArrow version: 17.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.2.0
open
https://github.com/huggingface/datasets/issues/7357
2025-01-06T11:29:30
2025-03-08T15:59:36
null
{ "login": "AlexKoff88", "id": 25342812, "type": "User" }
[]
false
[]
2,770,095,103
7,356
How about adding a feature to pass the key when performing map on DatasetDict?
### Feature request Add a feature to pass the key of the DatasetDict when performing map ### Motivation I often preprocess using map on DatasetDict. Sometimes, I need to preprocess train and valid data differently depending on the task. So, I thought it would be nice to pass the key (like train, valid) when performing map on DatasetDict. What do you think? ### Your contribution I can submit a pull request to add the feature to pass the key of the DatasetDict when performing map.
closed
https://github.com/huggingface/datasets/issues/7356
2025-01-06T08:13:52
2025-03-24T10:57:47
2025-03-24T10:57:47
{ "login": "jp1924", "id": 93233241, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,768,958,211
7,355
Not available datasets[audio] on python 3.13
### Describe the bug This is the error I got, it seems numba package does not support python 3.13 PS C:\Users\sergi\Documents> pip install datasets[audio] Defaulting to user installation because normal site-packages is not writeable Collecting datasets[audio] Using cached datasets-3.2.0-py3-none-any.whl.metadata (20 kB) ... (OTHER PACKAGES) Collecting numba>=0.51.0 (from librosa->datasets[audio]) Downloading numba-0.60.0.tar.gz (2.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.7/2.7 MB 44.1 MB/s eta 0:00:00 Installing build dependencies ... done Getting requirements to build wheel ... error error: subprocess-exited-with-error Γ— Getting requirements to build wheel did not run successfully. β”‚ exit code: 1 ╰─> [24 lines of output] Traceback (most recent call last): File "C:\Program Files\WindowsApps\PythonSoftwareFoundation.Python.3.13_3.13.496.0_x64__qbz5n2kfra8p0\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 353, in <module> main() ~~~~^^ File "C:\Program Files\WindowsApps\PythonSoftwareFoundation.Python.3.13_3.13.496.0_x64__qbz5n2kfra8p0\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 335, in main json_out['return_val'] = hook(**hook_input['kwargs']) ~~~~^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Program Files\WindowsApps\PythonSoftwareFoundation.Python.3.13_3.13.496.0_x64__qbz5n2kfra8p0\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 118, in get_requires_for_build_wheel return hook(config_settings) File "C:\Users\sergi\AppData\Local\Temp\pip-build-env-yauns_qh\overlay\Lib\site-packages\setuptools\build_meta.py", line 334, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) ~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\sergi\AppData\Local\Temp\pip-build-env-yauns_qh\overlay\Lib\site-packages\setuptools\build_meta.py", line 304, in _get_build_requires self.run_setup() ~~~~~~~~~~~~~~^^ RuntimeError: Cannot install on Python version 3.13.1; only versions >=3.9,<3.13 are supported. [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: subprocess-exited-with-error Γ— Getting requirements to build wheel did not run successfully. β”‚ exit code: 1 ╰─> See above for output. ### Steps to reproduce the bug 1. install python >=3.13 2. !pip install datasets[audio] ### Expected behavior I needed datasets[audio] in the python 3.13 ### Environment info python 3.13.1
open
https://github.com/huggingface/datasets/issues/7355
2025-01-04T18:37:08
2025-06-28T00:26:19
null
{ "login": "sergiosinlimites", "id": 70306948, "type": "User" }
[]
false
[]
2,768,955,917
7,354
A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.
### Describe the bug Following this tutorial: https://huggingface.co/docs/diffusers/en/tutorials/basic_training and running it locally using VSCode on my MacBook. The first line in the tutorial fails: from datasets import load_dataset dataset = load_dataset('huggan/smithsonian_butterflies_subset', split="train"). with this error: A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. and ImportError: numpy.core.multiarray failed to import. Does from datasets import load_dataset really use NumPy 1.x? ### Steps to reproduce the bug Open VSCode. create a new venv. Create a new ipynb file. Import pip install diffusers[training] try to run this line of code: from datasets import load_dataset ### Expected behavior data is loaded ### Environment info ran this: datasets-cli env and got A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2.
closed
https://github.com/huggingface/datasets/issues/7354
2025-01-04T18:30:17
2025-01-08T02:20:58
2025-01-08T02:20:58
{ "login": "jamessdixon", "id": 1394644, "type": "User" }
[]
false
[]
2,768,484,726
7,353
changes to MappedExamplesIterable to resolve #7345
modified `MappedExamplesIterable` and `test_iterable_dataset.py::test_mapped_examples_iterable_with_indices` fix #7345 @lhoestq
closed
https://github.com/huggingface/datasets/pull/7353
2025-01-04T06:01:15
2025-01-07T11:56:41
2025-01-07T11:56:41
{ "login": "vttrifonov", "id": 12157034, "type": "User" }
[]
true
[]
2,767,763,850
7,352
fsspec 2024.12.0
null
closed
https://github.com/huggingface/datasets/pull/7352
2025-01-03T15:32:25
2025-01-03T15:34:54
2025-01-03T15:34:11
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,767,731,707
7,350
Bump hfh to 0.24 to fix ci
null
closed
https://github.com/huggingface/datasets/pull/7350
2025-01-03T15:09:40
2025-01-03T15:12:17
2025-01-03T15:10:27
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,767,670,454
7,349
Webdataset special columns in last position
Place columns "__key__" and "__url__" in last position in the Dataset Viewer since they are not the main content before: <img width="1012" alt="image" src="https://github.com/user-attachments/assets/b556c1fe-2674-4ba0-9643-c074aa9716fd" />
closed
https://github.com/huggingface/datasets/pull/7349
2025-01-03T14:32:15
2025-01-03T14:34:39
2025-01-03T14:32:30
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,766,128,230
7,348
Catch OSError for arrow
fixes https://github.com/huggingface/datasets/issues/7346 (also updated `ruff` and appleid style changes)
closed
https://github.com/huggingface/datasets/pull/7348
2025-01-02T14:30:00
2025-01-09T14:25:06
2025-01-09T14:25:04
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,760,282,339
7,347
Converting Arrow to WebDataset TAR Format for Offline Use
### Feature request Hi, I've downloaded an Arrow-formatted dataset offline using the hugggingface's datasets library by: ``` import json from datasets import load_dataset dataset = load_dataset("pixparse/cc3m-wds") dataset.save_to_disk("./cc3m_1") ``` now I need to convert it to WebDataset's TAR format for offline data ingestion. Is there a straightforward method to achieve this conversion without an internet connection? Can I simply convert it by ``` tar -cvf ``` btw, when I tried: ``` import webdataset as wds from huggingface_hub import get_token from torch.utils.data import DataLoader hf_token = get_token() url = "https://huggingface.co/datasets/timm/imagenet-12k-wds/resolve/main/imagenet12k-train-{{0000..1023}}.tar" url = f"pipe:curl -s -L {url} -H 'Authorization:Bearer {hf_token}'" dataset = wds.WebDataset(url).decode() dataset.save_to_disk("./cc3m_webdataset") ``` error occured: ``` AttributeError: 'WebDataset' object has no attribute 'save_to_disk' ``` Thanks a lot! ### Motivation Converting Arrow to WebDataset TAR Format ### Your contribution No clue yet
closed
https://github.com/huggingface/datasets/issues/7347
2024-12-27T01:40:44
2024-12-31T17:38:00
2024-12-28T15:38:03
{ "login": "katie312", "id": 91370128, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,758,752,118
7,346
OSError: Invalid flatbuffers message.
### Describe the bug When loading a large 2D data (1000 Γ— 1152) with a large number of (2,000 data in this case) in `load_dataset`, the error message `OSError: Invalid flatbuffers message` is reported. When only 300 pieces of data of this size (1000 Γ— 1152) are stored, they can be loaded correctly. When 2,000 2D arrays are stored in each file, about 100 files are generated, each with a file size of about 5-6GB. But when 300 2D arrays are stored in each file, **about 600 files are generated, which is too many files**. ### Steps to reproduce the bug error: ```python --------------------------------------------------------------------------- OSError Traceback (most recent call last) Cell In[2], line 4 1 from datasets import Dataset 2 from datasets import load_dataset ----> 4 real_dataset = load_dataset("arrow", data_files='tensorData/real_ResidueTensor/*', split="train")#.with_format("torch") # , split="train" 5 # sim_dataset = load_dataset("arrow", data_files='tensorData/sim_ResidueTensor/*', split="train").with_format("torch") 6 real_dataset File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/load.py:2151](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/load.py#line=2150), in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) 2148 return builder_instance.as_streaming_dataset(split=split) 2150 # Download and prepare data -> 2151 builder_instance.download_and_prepare( 2152 download_config=download_config, 2153 download_mode=download_mode, 2154 verification_mode=verification_mode, 2155 num_proc=num_proc, 2156 storage_options=storage_options, 2157 ) 2159 # Build dataset for splits 2160 keep_in_memory = ( 2161 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size) 2162 ) File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/builder.py:924](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/builder.py#line=923), in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, dl_manager, base_path, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) 922 if num_proc is not None: 923 prepare_split_kwargs["num_proc"] = num_proc --> 924 self._download_and_prepare( 925 dl_manager=dl_manager, 926 verification_mode=verification_mode, 927 **prepare_split_kwargs, 928 **download_and_prepare_kwargs, 929 ) 930 # Sync info 931 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values()) File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/builder.py:978](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/builder.py#line=977), in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs) 976 split_dict = SplitDict(dataset_name=self.dataset_name) 977 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) --> 978 split_generators = self._split_generators(dl_manager, **split_generators_kwargs) 980 # Checksums verification 981 if verification_mode == VerificationMode.ALL_CHECKS and dl_manager.record_checksums: File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/packaged_modules/arrow/arrow.py:47](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/packaged_modules/arrow/arrow.py#line=46), in Arrow._split_generators(self, dl_manager) 45 with open(file, "rb") as f: 46 try: ---> 47 reader = pa.ipc.open_stream(f) 48 except pa.lib.ArrowInvalid: 49 reader = pa.ipc.open_file(f) File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.py:190](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.py#line=189), in open_stream(source, options, memory_pool) 171 def open_stream(source, *, options=None, memory_pool=None): 172 """ 173 Create reader for Arrow streaming format. 174 (...) 188 A reader for the given source 189 """ --> 190 return RecordBatchStreamReader(source, options=options, 191 memory_pool=memory_pool) File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.py:52](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.py#line=51), in RecordBatchStreamReader.__init__(self, source, options, memory_pool) 50 def __init__(self, source, *, options=None, memory_pool=None): 51 options = _ensure_default_ipc_read_options(options) ---> 52 self._open(source, options=options, memory_pool=memory_pool) File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.pxi:1006](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.pxi#line=1005), in pyarrow.lib._RecordBatchStreamReader._open() File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/error.pxi:155](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/error.pxi#line=154), in pyarrow.lib.pyarrow_internal_check_status() File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/error.pxi:92](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/error.pxi#line=91), in pyarrow.lib.check_status() OSError: Invalid flatbuffers message. ``` reproduce:Here is just an example result, the real 2D matrix is the output of the ESM large model, and the matrix size is approximate ```python import numpy as np import pyarrow as pa random_arrays_list = [np.random.rand(1000, 1152) for _ in range(2000)] table = pa.Table.from_pydict({ 'tensor': [tensor.tolist() for tensor in random_arrays_list] }) import pyarrow.feather as feather feather.write_feather(table, 'test.arrow') from datasets import load_dataset dataset = load_dataset("arrow", data_files='test.arrow', split="train") ``` ### Expected behavior `load_dataset` load the dataset as normal as `feather.read_feather` ```python import pyarrow.feather as feather feather.read_feather('tensorData/real_ResidueTensor/real_tensor_1.arrow') ``` Plus `load_dataset("parquet", data_files='test.arrow', split="train")` works fine ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-6.8.0-49-generic-x86_64-with-glibc2.39 - Python version: 3.12.3 - `huggingface_hub` version: 0.26.5 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
closed
https://github.com/huggingface/datasets/issues/7346
2024-12-25T11:38:52
2025-01-09T14:25:29
2025-01-09T14:25:05
{ "login": "antecede", "id": 46232487, "type": "User" }
[]
false
[]
2,758,585,709
7,345
Different behaviour of IterableDataset.map vs Dataset.map with remove_columns
### Describe the bug The following code ```python import datasets as hf ds1 = hf.Dataset.from_list([{'i': i} for i in [0,1]]) #ds1 = ds1.to_iterable_dataset() ds2 = ds1.map( lambda i: {'i': i+1}, input_columns = ['i'], remove_columns = ['i'] ) list(ds2) ``` produces ```python [{'i': 1}, {'i': 2}] ``` as expected. If the line that converts `ds1` to iterable is uncommented so that the `ds2` is a map of an `IterableDataset`, the result is ```python [{},{}] ``` I expected the output to be the same as before. It seems that in the second case the removed column is not added back into the output. The issue seems to be [here](https://github.com/huggingface/datasets/blob/6c6a82a573f946c4a81069f56446caed15cee9c2/src/datasets/iterable_dataset.py#L1093): the columns are removed after the mapping which is not what we want (or what the [documentation says](https://github.com/huggingface/datasets/blob/6c6a82a573f946c4a81069f56446caed15cee9c2/src/datasets/iterable_dataset.py#L2370)) because we want the columns removed from the transformed example but then added if the map produced them. This is `datasets==3.2.0` and `python==3.10` ### Steps to reproduce the bug see above ### Expected behavior see above ### Environment info see above
closed
https://github.com/huggingface/datasets/issues/7345
2024-12-25T07:36:48
2025-01-07T11:56:42
2025-01-07T11:56:42
{ "login": "vttrifonov", "id": 12157034, "type": "User" }
[]
false
[]
2,754,735,951
7,344
HfHubHTTPError: 429 Client Error: Too Many Requests for URL when trying to access SlimPajama-627B or c4 on TPUs
### Describe the bug I am trying to run some trainings on Google's TPUs using Huggingface's DataLoader on [SlimPajama-627B](https://huggingface.co/datasets/cerebras/SlimPajama-627B) and [c4](https://huggingface.co/datasets/allenai/c4), but I end up running into `429 Client Error: Too Many Requests for URL` error when I call `load_dataset`. The even odder part is that I am able to sucessfully run trainings with the [wikitext dataset](https://huggingface.co/datasets/Salesforce/wikitext). Is there something I need to setup to specifically train with SlimPajama or C4 with TPUs because I am not clear why I am getting these errors. ### Steps to reproduce the bug These are the commands you could run to produce the error below but you will require a ClearML account (you can create one [here](https://app.clear.ml/login?redirect=%2Fdashboard)) with a queue setup to run on Google TPUs ```bash git clone https://github.com/clankur/muGPT.git cd muGPT python -m train --config-name=slim_v4-32_84m.yaml +training.queue={NAME_OF_CLEARML_QUEUE} ``` The error I see: ``` Traceback (most recent call last): File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/clearml/binding/hydra_bind.py", line 230, in _patched_task_function return task_function(a_config, *a_args, **a_kwargs) File "/home/clankur/.clearml/venvs-builds/3.10/task_repository/muGPT.git/train.py", line 1037, in main main_contained(config, logger) File "/home/clankur/.clearml/venvs-builds/3.10/task_repository/muGPT.git/train.py", line 840, in main_contained loader = get_loader("train", config.training_data, config.training.tokens) File "/home/clankur/.clearml/venvs-builds/3.10/task_repository/muGPT.git/input_loader.py", line 549, in get_loader return HuggingFaceDataLoader(split, config, token_batch_params) File "/home/clankur/.clearml/venvs-builds/3.10/task_repository/muGPT.git/input_loader.py", line 395, in __init__ self.dataset = load_dataset( File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/datasets/load.py", line 2112, in load_dataset builder_instance = load_dataset_builder( File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/datasets/load.py", line 1798, in load_dataset_builder dataset_module = dataset_module_factory( File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/datasets/load.py", line 1495, in dataset_module_factory raise e1 from None File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/datasets/load.py", line 1479, in dataset_module_factory ).get_module() File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/datasets/load.py", line 1034, in get_module else get_data_patterns(base_path, download_config=self.download_config) File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/datasets/data_files.py", line 457, in get_data_patterns return _get_data_files_patterns(resolver) File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/datasets/data_files.py", line 248, in _get_data_files_patterns data_files = pattern_resolver(pattern) File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/datasets/data_files.py", line 340, in resolve_pattern for filepath, info in fs.glob(pattern, detail=True).items() File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 409, in glob return super().glob(path, **kwargs) File "/home/clankur/.clearml/venvs-builds/3.10/lib/python3.10/site-packages/fsspec/spec.py", line 602, in glob allpaths = self.find(root, maxdepth=depth, withdirs=True, detail=True, **kwargs) File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 429, in find out = self._ls_tree(path, recursive=True, refresh=refresh, revision=resolved_path.revision, **kwargs) File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 358, in _ls_tree self._ls_tree( File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 375, in _ls_tree for path_info in tree: File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 3080, in list_repo_tree for path_info in paginate(path=tree_url, headers=headers, params={"recursive": recursive, "expand": expand}): File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/huggingface_hub/utils/_pagination.py", line 46, in paginate hf_raise_for_status(r) File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/huggingface_hub/utils/_http.py", line 477, in hf_raise_for_status raise _format(HfHubHTTPError, str(e), response) from e huggingface_hub.errors.HfHubHTTPError: 429 Client Error: Too Many Requests for url: https://huggingface.co/api/datasets/cerebras/SlimPajama-627B/tree/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543?recursive=True&expand=True&cursor=ZXlKbWFXeGxYMjVoYldVaU9pSjBaWE4wTDJOb2RXNXJNUzlsZUdGdGNHeGxYMmh2YkdSdmRYUmZPVFEzTG1wemIyNXNMbnB6ZENKOTo2MjUw (Request ID: Root=1-67673de9-1413900606ede7712b08ef2c;1304c09c-3e69-4222-be14-f10ee709d49c) maximum queue size reached Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace. ``` ### Expected behavior I'd expect the DataLoader to load from the SlimPajama-627B and c4 dataset without issue. ### Environment info - `datasets` version: 2.14.4 - Platform: Linux-5.8.0-1035-gcp-x86_64-with-glibc2.31 - Python version: 3.10.16 - Huggingface_hub version: 0.26.5 - PyArrow version: 18.1.0 - Pandas version: 2.2.3
closed
https://github.com/huggingface/datasets/issues/7344
2024-12-22T16:30:07
2025-01-15T05:32:00
2025-01-15T05:31:58
{ "login": "clankur", "id": 9397233, "type": "User" }
[]
false
[]
2,750,525,823
7,343
[Bug] Inconsistent behavior of data_files and data_dir in load_dataset method.
### Describe the bug Inconsistent operation of data_files and data_dir in load_dataset method. ### Steps to reproduce the bug # First I have three files, named 'train.json', 'val.json', 'test.json'. Each one has a simple dict `{text:'aaa'}`. Their path are `/data/train.json`, `/data/val.json`, `/data/test.json` I load dataset with `data_files` argument: ```py files = [os.path.join('./data',file) for file in os.listdir('./data')] ds = load_dataset( path='json', data_files=files,) ``` And I get: ```py DatasetDict({ train: Dataset({ features: ['text'], num_rows: 3 }) }) ``` However, If I load dataset with `data_dir` argument: ```py ds = load_dataset( path='json', data_dir='./data',) ``` And I get: ```py DatasetDict({ train: Dataset({ features: ['text'], num_rows: 1 }) validation: Dataset({ features: ['text'], num_rows: 1 }) test: Dataset({ features: ['text'], num_rows: 1 }) }) ``` Two results are not the same. Their behaviors are not equal, even if the statement [here](https://github.com/huggingface/datasets/blob/d0c152a979d91cc34b605c0298aebc650ab7dd27/src/datasets/load.py#L1790) said that their behaviors are equal. # Second If some filename include 'test' while others do not, `load_dataset` only return `test` dataset and others files are **abandoned**. Given two files named `test.json` and `1.json` Each one has a simple dict `{text:'aaa'}`. I load the dataset using: ```py ds = load_dataset( path='json', data_dir='./data',) ``` Only `test` is returned, `1.json` is missing: ```py DatasetDict({ test: Dataset({ features: ['text'], num_rows: 1 }) }) ``` Things do not change even I manually set `split='train'` ### Expected behavior 1. Fix the above bugs. 2. Although the document says that load_dataset method will `Find which file goes into which split (e.g. train/test) based on file and directory names or on the YAML configuration`, I hope I can manually decide whether to do so. Sometimes users may accidentally put a `test` string in the filename but they just want a single `train` dataset. If the number of files in `data_dir` is huge, it's not easy to find out what cause the second situation metioned above. ### Environment info datasets==3.2.0 Ubuntu18.84
closed
https://github.com/huggingface/datasets/issues/7343
2024-12-19T14:31:27
2025-01-03T15:54:09
2025-01-03T15:54:09
{ "login": "JasonCZH4", "id": 74161960, "type": "User" }
[]
false
[]
2,749,572,310
7,342
Update LICENSE
null
closed
https://github.com/huggingface/datasets/pull/7342
2024-12-19T08:17:50
2024-12-19T08:44:08
2024-12-19T08:44:08
{ "login": "eliebak", "id": 97572401, "type": "User" }
[]
true
[]
2,745,658,561
7,341
minor video docs on how to install
null
closed
https://github.com/huggingface/datasets/pull/7341
2024-12-17T18:06:17
2024-12-17T18:11:17
2024-12-17T18:11:15
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,745,473,274
7,340
don't import soundfile in tests
null
closed
https://github.com/huggingface/datasets/pull/7340
2024-12-17T16:49:55
2024-12-17T16:54:04
2024-12-17T16:50:24
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,745,460,060
7,339
Update CONTRIBUTING.md
null
closed
https://github.com/huggingface/datasets/pull/7339
2024-12-17T16:45:25
2024-12-17T16:51:36
2024-12-17T16:46:30
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,744,877,569
7,337
One or several metadata.jsonl were found, but not in the same directory or in a parent directory of
### Describe the bug ImageFolder with metadata.jsonl error. I downloaded liuhaotian/LLaVA-CC3M-Pretrain-595K locally from Hugging Face. According to the tutorial in https://huggingface.co/docs/datasets/image_dataset#image-captioning, only put images.zip and metadata.jsonl containing information in the same folder. However, after loading, an error was reported: One or several metadata.jsonl were found, but not in the same directory or in a parent directory of. The data in my jsonl file is as follows: > {"id": "GCC_train_002448550", "file_name": "GCC_train_002448550.jpg", "conversations": [{"from": "human", "value": "<image>\nProvide a brief description of the given image."}, {"from": "gpt", "value": "a view of a city , where the flyover was proposed to reduce the increasing traffic on thursday ."}]} ### Steps to reproduce the bug from datasets import load_dataset image = load_dataset("imagefolder",data_dir='data/opensource_data') ### Expected behavior success ### Environment info datasets==3.2.0
open
https://github.com/huggingface/datasets/issues/7337
2024-12-17T12:58:43
2025-01-03T15:28:13
null
{ "login": "mst272", "id": 67250532, "type": "User" }
[]
false
[]
2,744,746,456
7,336
Clarify documentation or Create DatasetCard
### Feature request I noticed that you can use a Model Card instead of a Dataset Card when pushing a dataset to the Hub, but this isn’t clearly mentioned in [the docs.](https://huggingface.co/docs/datasets/dataset_card) - Update the docs to clarify that a Model Card can work for datasets too. - It might be worth creating a dedicated DatasetCard module, similar to the ModelCard module, for consistency and better support. Not sure if this belongs here or on the [Hub repo](https://github.com/huggingface/huggingface_hub), but thought I’d bring it up! ### Motivation I just spent an hour like on [this issue](https://github.com/huggingface/trl/pull/2491) trying to create a `DatasetCard` for a script. ### Your contribution might later
open
https://github.com/huggingface/datasets/issues/7336
2024-12-17T12:01:00
2024-12-17T12:01:00
null
{ "login": "August-murr", "id": 145011209, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,743,437,260
7,335
Too many open files: '/root/.cache/huggingface/token'
### Describe the bug I ran this code: ``` from datasets import load_dataset dataset = load_dataset("common-canvas/commoncatalog-cc-by", cache_dir="/datadrive/datasets/cc", num_proc=1000) ``` And got this error. Before it was some other file though (lie something...incomplete) runnting ``` ulimit -n 8192 ``` did not help at all. ### Steps to reproduce the bug Run the code i sent ### Expected behavior Should be no errors ### Environment info linux, jupyter lab.
open
https://github.com/huggingface/datasets/issues/7335
2024-12-16T21:30:24
2024-12-16T21:30:24
null
{ "login": "kopyl", "id": 17604849, "type": "User" }
[]
false
[]
2,740,266,503
7,334
TypeError: Value.__init__() missing 1 required positional argument: 'dtype'
### Describe the bug ds = load_dataset( "./xxx.py", name="default", split="train", ) The datasets does not support debugging locally anymore... ### Steps to reproduce the bug ``` from datasets import load_dataset ds = load_dataset( "./repo.py", name="default", split="train", ) for item in ds: print(item) ``` It works fine for "username/repo", but it does not work for "./repo.py" when debugging locally... Running above code template will report TypeError: Value.__init__() missing 1 required positional argument: 'dtype' ### Expected behavior fix this bug ### Environment info python 3.10 datasets==2.21
open
https://github.com/huggingface/datasets/issues/7334
2024-12-15T04:08:46
2025-07-10T03:32:36
null
{ "login": "ghost", "id": 10137, "type": "User" }
[]
false
[]
2,738,626,593
7,328
Fix typo in arrow_dataset
null
closed
https://github.com/huggingface/datasets/pull/7328
2024-12-13T15:17:09
2024-12-19T17:10:27
2024-12-19T17:10:25
{ "login": "AndreaFrancis", "id": 5564745, "type": "User" }
[]
true
[]
2,738,514,909
7,327
.map() is not caching and ram goes OOM
### Describe the bug Im trying to run a fairly simple map that is converting a dataset into numpy arrays. however, it just piles up on memory and doesnt write to disk. Ive tried multiple cache techniques such as specifying the cache dir, setting max mem, +++ but none seem to work. What am I missing here? ### Steps to reproduce the bug ``` from pydub import AudioSegment import io import base64 import numpy as np import os CACHE_PATH = "/mnt/extdisk/cache" # "/root/.cache/huggingface/"# os.environ["HF_HOME"] = CACHE_PATH import datasets import logging logger = logging.getLogger() logger.setLevel(logging.INFO) # Create a handler for Jupyter notebook handler = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) #datasets.config.IN_MEMORY_MAX_SIZE= 1000#*(2**30) #50 gb print(datasets.config.HF_CACHE_HOME) print(datasets.config.HF_DATASETS_CACHE) # Decode the base64 string into bytes def convert_mp3_to_audio_segment(example): """ example = ds['train'][0] """ try: audio_data_bytes = base64.b64decode(example['audio']) # Use pydub to load the MP3 audio from the decoded bytes audio_segment = AudioSegment.from_file(io.BytesIO(audio_data_bytes), format="mp3") # Resample to 24_000 audio_segment = audio_segment.set_frame_rate(24_000) audio = {'sampling_rate' : audio_segment.frame_rate, 'array' : np.array(audio_segment.get_array_of_samples(), dtype="float")} del audio_segment duration = len(audio['array']) / audio['sampling_rate'] except Exception as e: logger.warning(f"Failed to convert audio for {example['id']}. Error: {e}") audio = {'sampling_rate' : 0, 'array' : np.array([]), duration : 0} return {'audio' : audio, 'duration' : duration} ds = datasets.load_dataset("NbAiLab/nb_distil_speech_noconcat_stortinget", cache_dir=CACHE_PATH, keep_in_memory=False) #%% num_proc=32 ds_processed = ( ds #.select(range(10)) .map(convert_mp3_to_audio_segment, num_proc=num_proc, desc="Converting mp3 to audio segment") #, cache_file_name=f"{CACHE_PATH}/stortinget_audio" # , cache_file_name="test" ) ``` ### Expected behavior the map should write to disk ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-6.8.0-45-generic-x86_64-with-glibc2.39 - Python version: 3.12.7 - `huggingface_hub` version: 0.26.3 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
open
https://github.com/huggingface/datasets/issues/7327
2024-12-13T14:22:56
2025-02-10T10:42:38
null
{ "login": "simeneide", "id": 7136076, "type": "User" }
[]
false
[]
2,738,188,902
7,326
Remove upper bound for fsspec
### Describe the bug As also raised by @cyyever in https://github.com/huggingface/datasets/pull/7296 and @NeilGirdhar in https://github.com/huggingface/datasets/commit/d5468836fe94e8be1ae093397dd43d4a2503b926#commitcomment-140952162 , `datasets` has a problematic version constraint on `fsspec`. In our case this causes (unnecessary?) troubles due to a race condition bug in that version of the corresponding `gcsfs` plugin, that causes deadlocks: https://github.com/fsspec/gcsfs/pull/643 We just use a version override to ignore the constraint from `datasets`, but imho the version constraint could just be removed in the first place? The last few PRs bumping the upper bound were basically uneventful: * https://github.com/huggingface/datasets/pull/7219 * https://github.com/huggingface/datasets/pull/6921 * https://github.com/huggingface/datasets/pull/6747 ### Steps to reproduce the bug - ### Expected behavior Installing `fsspec>=2024.10.0` along `datasets` should be possible without overwriting constraints. ### Environment info All recent datasets versions
open
https://github.com/huggingface/datasets/issues/7326
2024-12-13T11:35:12
2025-01-03T15:34:37
null
{ "login": "fellhorn", "id": 26092524, "type": "User" }
[]
false
[]
2,736,618,054
7,325
Introduce pdf support (#7318)
First implementation of the Pdf feature to support pdfs (#7318) . Using [pdfplumber](https://github.com/jsvine/pdfplumber?tab=readme-ov-file#python-library) as the default library to work with pdfs. @lhoestq and @AndreaFrancis
closed
https://github.com/huggingface/datasets/pull/7325
2024-12-12T18:31:18
2025-03-18T14:00:36
2025-03-18T14:00:36
{ "login": "yabramuvdi", "id": 4812761, "type": "User" }
[]
true
[]
2,736,008,698
7,323
Unexpected cache behaviour using load_dataset
### Describe the bug Following the (Cache management)[https://huggingface.co/docs/datasets/en/cache] docu and previous behaviour from datasets version 2.18.0, one is able to change the cache directory. Previously, all downloaded/extracted/etc files were found in this folder. As i have recently update to the latest version this is not the case anymore. Downloaded files are stored in `~/.cache/huggingface/hub`. Providing the `cache_dir` argument in `load_dataset` the cache directory is created and there are some files but the bulk is still in `~/.cache/huggingface/hub`. I believe this could be solved by adding the cache_dir argument [here](https://github.com/huggingface/datasets/blob/fdda5585ab18ea1292547f36c969d12c408ab842/src/datasets/utils/file_utils.py#L188) ### Steps to reproduce the bug For example using https://huggingface.co/datasets/ashraq/esc50: ```python from datasets import load_dataset ds = load_dataset("ashraq/esc50", "default", cache_dir="~/custom/cache/path/esc50") ``` ### Expected behavior I would expect the bulk of files related to the dataset to be stored somewhere in `~/custom/cache/path/esc50`, but it seems they are in `~/.cache/huggingface/hub/datasets--ashraq--esc50`. ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.14.0-503.15.1.el9_5.x86_64-x86_64-with-glibc2.34 - Python version: 3.10.14 - `huggingface_hub` version: 0.26.5 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.6.1
closed
https://github.com/huggingface/datasets/issues/7323
2024-12-12T14:03:00
2025-01-31T11:34:24
2025-01-31T11:34:24
{ "login": "Moritz-Wirth", "id": 74349080, "type": "User" }
[]
false
[]
2,732,254,868
7,322
ArrowInvalid: JSON parse error: Column() changed from object to array in row 0
### Describe the bug Encountering an error while loading the ```liuhaotian/LLaVA-Instruct-150K dataset```. ### Steps to reproduce the bug ``` from datasets import load_dataset fw =load_dataset("liuhaotian/LLaVA-Instruct-150K") ``` Error: ``` ArrowInvalid Traceback (most recent call last) [/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/json/json.py](https://localhost:8080/#) in _generate_tables(self, files) 136 try: --> 137 pa_table = paj.read_json( 138 io.BytesIO(batch), read_options=paj.ReadOptions(block_size=block_size) 20 frames ArrowInvalid: JSON parse error: Column() changed from object to array in row 0 During handling of the above exception, another exception occurred: ArrowTypeError Traceback (most recent call last) ArrowTypeError: ("Expected bytes, got a 'int' object", 'Conversion failed for column id with type object') The above exception was the direct cause of the following exception: DatasetGenerationError Traceback (most recent call last) [/usr/local/lib/python3.10/dist-packages/datasets/builder.py](https://localhost:8080/#) in _prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id) 1895 if isinstance(e, DatasetGenerationError): 1896 raise -> 1897 raise DatasetGenerationError("An error occurred while generating the dataset") from e 1898 1899 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths) DatasetGenerationError: An error occurred while generating the dataset ``` ### Expected behavior I have tried loading the dataset both on my own server and on Colab, and encountered errors in both instances. ### Environment info ``` - `datasets` version: 3.2.0 - Platform: Linux-6.1.85+-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.26.3 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.9.0 ```
open
https://github.com/huggingface/datasets/issues/7322
2024-12-11T08:41:39
2025-07-15T13:06:55
null
{ "login": "Polarisamoon", "id": 41767521, "type": "User" }
[]
false
[]
2,731,626,760
7,321
ImportError: cannot import name 'set_caching_enabled' from 'datasets'
### Describe the bug Traceback (most recent call last): File "/usr/local/lib/python3.10/runpy.py", line 187, in _run_module_as_main mod_name, mod_spec, code = _get_module_details(mod_name, _Error) File "/usr/local/lib/python3.10/runpy.py", line 110, in _get_module_details __import__(pkg_name) File "/home/Medusa/axolotl/src/axolotl/cli/__init__.py", line 23, in <module> from axolotl.train import TrainDatasetMeta File "/home/Medusa/axolotl/src/axolotl/train.py", line 23, in <module> from axolotl.utils.trainer import setup_trainer File "/home/Medusa/axolotl/src/axolotl/utils/trainer.py", line 13, in <module> from datasets import set_caching_enabled ImportError: cannot import name 'set_caching_enabled' from 'datasets' (/usr/local/lib/python3.10/site-packages/datasets/__init__.py) ### Steps to reproduce the bug 1、axolotl 2、accelerate launch -m axolotl.cli.train examples/medusa/qwen_lora_stage1.yml ### Expected behavior enable datasets ### Environment info python3.10
open
https://github.com/huggingface/datasets/issues/7321
2024-12-11T01:58:46
2024-12-11T13:32:15
null
{ "login": "sankexin", "id": 33318353, "type": "User" }
[]
false
[]
2,731,112,100
7,320
ValueError: You should supply an encoding or a list of encodings to this method that includes input_ids, but you provided ['label']
### Describe the bug I am trying to create a PEFT model from DISTILBERT model, and run a training loop. However, the trainer.train() is giving me this error: ValueError: You should supply an encoding or a list of encodings to this method that includes input_ids, but you provided ['label'] Here is my code: ### Steps to reproduce the bug #Creating a PEFT Config from peft import LoraConfig from transformers import AutoTokenizer, AutoModelForSequenceClassification from peft import get_peft_model lora_config = LoraConfig( task_type="SEQ_CLASS", r=8, lora_alpha=32, target_modules=["q_lin", "k_lin", "v_lin"], lora_dropout=0.01, ) #Converting a Transformers Model into a PEFT Model model = AutoModelForSequenceClassification.from_pretrained( "distilbert-base-uncased", num_labels=2, #Binary classification, 1 = positive, 0 = negative ) lora_model = get_peft_model(model, lora_config) print(lora_model) Tokenize data set from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") # Load the train and test splits dataset dataset = load_dataset("fancyzhx/amazon_polarity") #create a smaller subset for train and test subset_size = 5000 small_train_dataset = dataset["train"].shuffle(seed=42).select(range(subset_size)) small_test_dataset = dataset["test"].shuffle(seed=42).select(range(subset_size)) #Tokenize data def tokenize_function(example): return tokenizer(example["content"], padding="max_length", truncation=True) tokenized_train_dataset = small_train_dataset.map(tokenize_function, batched=True) tokenized_test_dataset = small_test_dataset.map(tokenize_function, batched=True) train_lora = tokenized_train_dataset.rename_column('label', 'labels') test_lora = tokenized_test_dataset.rename_column('label', 'labels') print(tokenized_train_dataset.column_names) print(tokenized_test_dataset.column_names) #Train the PEFT model import numpy as np from transformers import Trainer, TrainingArguments, default_data_collator, DataCollatorWithPadding from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForSequenceClassification def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return {"accuracy": (predictions == labels).mean()} trainer = Trainer( model=lora_model, args=TrainingArguments( output_dir=".", learning_rate=2e-3, # Reduce the batch size if you don't have enough memory per_device_train_batch_size=1, per_device_eval_batch_size=1, num_train_epochs=3, weight_decay=0.01, evaluation_strategy="epoch", save_strategy="epoch", load_best_model_at_end=True, ), train_dataset=tokenized_train_dataset, eval_dataset=tokenized_test_dataset, tokenizer=tokenizer, data_collator=DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="pt"), compute_metrics=compute_metrics, ) trainer.train() ### Expected behavior Example of output: [558/558 01:04, Epoch XX] Epoch | Training Loss | Validation Loss | Accuracy -- | -- | -- | -- 1 | No log | 0.046478 | 0.988341 2 | 0.052800 | 0.048840 | 0.988341 ### Environment info Using python and jupyter notbook
closed
https://github.com/huggingface/datasets/issues/7320
2024-12-10T20:23:11
2024-12-10T23:22:23
2024-12-10T23:22:23
{ "login": "atrompeterog", "id": 38381084, "type": "User" }
[]
false
[]
2,730,679,980
7,319
set dev version
null
closed
https://github.com/huggingface/datasets/pull/7319
2024-12-10T17:01:34
2024-12-10T17:04:04
2024-12-10T17:01:45
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,730,676,278
7,318
Introduce support for PDFs
### Feature request The idea (discussed in the Discord server with @lhoestq ) is to have a Pdf type like Image/Audio/Video. For example [Video](https://github.com/huggingface/datasets/blob/main/src/datasets/features/video.py) was recently added and contains how to decode a video file encoded in a dictionary like {"path": ..., "bytes": ...} as a VideoReader using decord. We want to do the same with pdf and get a [pypdfium2.PdfDocument](https://pypdfium2.readthedocs.io/en/stable/_modules/pypdfium2/_helpers/document.html#PdfDocument). ### Motivation In many cases PDFs contain very valuable information beyond text (e.g. images, figures). Support for PDFs would help create datasets where all the information is preserved. ### Your contribution I can start the implementation of the Pdf type :)
open
https://github.com/huggingface/datasets/issues/7318
2024-12-10T16:59:48
2024-12-12T18:38:13
null
{ "login": "yabramuvdi", "id": 4812761, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,730,661,237
7,317
Release: 3.2.0
null
closed
https://github.com/huggingface/datasets/pull/7317
2024-12-10T16:53:20
2024-12-10T16:56:58
2024-12-10T16:56:56
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,730,196,085
7,316
More docs to from_dict to mention that the result lives in RAM
following discussions at https://discuss.huggingface.co/t/how-to-load-this-simple-audio-data-set-and-use-dataset-map-without-memory-issues/17722/14
closed
https://github.com/huggingface/datasets/pull/7316
2024-12-10T13:56:01
2024-12-10T13:58:32
2024-12-10T13:57:02
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,727,502,630
7,314
Resolved for empty datafiles
Resolved for Issue#6152
open
https://github.com/huggingface/datasets/pull/7314
2024-12-09T15:47:22
2024-12-27T18:20:21
null
{ "login": "sahillihas", "id": 20582290, "type": "User" }
[]
true
[]
2,726,240,634
7,313
Cannot create a dataset with relative audio path
### Describe the bug Hello! I want to create a dataset of parquet files, with audios stored as separate .mp3 files. However, it says "No such file or directory" (see the reproducing code). ### Steps to reproduce the bug Creating a dataset ``` from pathlib import Path from datasets import Dataset, load_dataset, Audio Path('my_dataset/audio').mkdir(parents=True, exist_ok=True) Path('my_dataset/audio/file.mp3').touch(exist_ok=True) Dataset.from_list( [{'audio': {'path': 'audio/file.mp3'}}] ).to_parquet('my_dataset/data.parquet') ``` Result: ``` # my_dataset # β”œβ”€β”€ audio # β”‚ └── file.mp3 # └── data.parquet ``` Trying to load the dataset ``` dataset = ( load_dataset('my_dataset', split='train') .cast_column('audio', Audio(sampling_rate=16_000)) ) dataset[0] >>> FileNotFoundError: [Errno 2] No such file or directory: 'audio/file.mp3' ``` ### Expected behavior I expect the dataset to load correctly. I've found 2 workarounds, but they are not very good: 1. I can specify an absolute path to the audio, however, when I move the folder or upload to HF it will stop working. 2. I can set `'path': 'file.mp3'`, and load with `load_dataset('my_dataset', data_dir='audio')` - it seems to work, but does this mean that anyone from Hugging Face who wants to use this dataset should also pass the `data_dir` argument, otherwise it won't work? ### Environment info datasets 3.1.0, Ubuntu 24.04.1
open
https://github.com/huggingface/datasets/issues/7313
2024-12-09T07:34:20
2025-04-19T07:13:08
null
{ "login": "sedol1339", "id": 5188731, "type": "User" }
[]
false
[]
2,725,103,094
7,312
[Audio Features - DO NOT MERGE] PoC for adding an offset+sliced reading to audio file.
This is a proof of concept for #7310 . The idea is to enable the access to others column of the dataset row when loading an audio file into a table. This is to allow sliced reading. As stated in the issue, many people have very long audio files and use start and stop slicing in this audio file. Right now, this code work as a PoC on my dataset. However, this is **just to illustrate** the idea. Many things are messed up, the first being that the shards have wildly varying sizes. Could be of interest to @lhoestq and @sanchit-gandhi ? Happy to test better ideas locally.
open
https://github.com/huggingface/datasets/pull/7312
2024-12-08T10:27:31
2024-12-08T10:27:31
null
{ "login": "TParcollet", "id": 11910731, "type": "User" }
[]
true
[]
2,725,002,630
7,311
How to get the original dataset name with username?
### Feature request The issue is related to ray data https://github.com/ray-project/ray/issues/49008 which it requires to check if the dataset is the original one just after `load_dataset` and parquet files are already available on hf hub. The solution used now is to get the dataset name, config and split, then `load_dataset` again and check the fingerprint. But it's unable to get the correct dataset name if it contains username. So how to get the dataset name with username prefix, or is there another way to query if a dataset is the original one with parquet available? @lhoestq ### Motivation https://github.com/ray-project/ray/issues/49008 ### Your contribution Would like to fix that.
open
https://github.com/huggingface/datasets/issues/7311
2024-12-08T07:18:14
2025-01-09T10:48:02
null
{ "login": "npuichigo", "id": 11533479, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,724,830,603
7,310
Enable the Audio Feature to decode / read with an offset + duration
### Feature request For most large speech dataset, we do not wish to generate hundreds of millions of small audio samples. Instead, it is quite common to provide larger audio files with frame offset (soundfile start and stop arguments). We should be able to pass these arguments to Audio() (column ID corresponding in the dataset row). ### Motivation I am currently generating a fairly big dataset to .parquet(). Unfortunately, it does not work because all existing functions load the whole .wav file corresponding to the row. All my attempts at bypassing this failed. We should be able to put in the Table only the bytes corresponding to what soundfile reads with an offset (and subset of the audio file). ### Your contribution I can totally test whatever code on my large dataset creation script.
open
https://github.com/huggingface/datasets/issues/7310
2024-12-07T22:01:44
2024-12-09T21:09:46
null
{ "login": "TParcollet", "id": 11910731, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,729,738,963
7,315
Allow manual configuration of Dataset Viewer for datasets not created with the `datasets` library
#### **Problem Description** Currently, the Hugging Face Dataset Viewer automatically interprets dataset fields for datasets created with the `datasets` library. However, for datasets pushed directly via `git`, the Viewer: - Defaults to generic columns like `label` with `null` values if no explicit mapping is provided. - Does not allow dataset creators to configure field mappings or suppress default fields unless the dataset is recreated and pushed using the `datasets` library. This creates a limitation for creators who: - Use custom workflows to prepare datasets (e.g., manifest files with audio-transcription mappings). - Push large datasets directly via `git` and cannot easily restructure them to conform to the `datasets` library format. #### **Proposed Solution** Introduce a feature that allows dataset creators to manually configure the Dataset Viewer behavior for datasets not created with the `datasets` library. This could be achieved by: 1. **Using the YAML Metadata in `README.md`:** - Add support for defining the dataset's field mappings directly in the `README.md` YAML section. - Example: ```yaml viewer: fields: - name: "audio" type: "audio_path" / "text" source: "manifest['audio']" - name: "bambara_transcription" type: "text" source: "manifest['bambara']" - name: "french_translation" type: "text" source: "manifest['french']" ``` With manifest being a csv or json like format file in the repository so that the viewer understands that it should look for the values of each field in that file. #### **Benefits** - Improves flexibility for dataset creators who push datasets via `git`. - Enhances dataset discoverability and usability on the Hugging Face Hub by allowing creators to present meaningful field mappings without restructuring their data. - Reduces overhead for creators of large or complex datasets. #### **Examples of Use Case** - An audio dataset with transcriptions in multiple languages stored in a `manifest.json` file, where the user wants the Viewer to: - Display the `audio` column and Explicitly map features that he defined such as `bambara_transcription` and `french_translation` from the manifest.
open
https://github.com/huggingface/datasets/issues/7315
2024-12-07T16:37:12
2024-12-11T11:05:22
null
{ "login": "diarray-hub", "id": 114512099, "type": "User" }
[]
false
[]
2,723,636,931
7,309
Faster parquet streaming + filters with predicate pushdown
ParquetFragment.to_batches uses a buffered stream to read parquet data, which makes streaming faster (x2 on my laptop). I also added the `filters` config parameter to support filtering with predicate pushdown, e.g. ```python from datasets import load_dataset filters = [('problem_source', '==', 'math')] ds = load_dataset("nvidia/OpenMathInstruct-2", streaming=True, filters=filters) first_example = next(iter(ds["train"])) print(first_example["problem_source"]) # 'math' ``` cc @allisonwang-db this is a nice plus for usage in spark
closed
https://github.com/huggingface/datasets/pull/7309
2024-12-06T18:01:54
2024-12-07T23:32:30
2024-12-07T23:32:28
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,720,244,889
7,307
refactor: remove unnecessary else
null
open
https://github.com/huggingface/datasets/pull/7307
2024-12-05T12:11:09
2024-12-06T15:11:33
null
{ "login": "HarikrishnanBalagopal", "id": 20921177, "type": "User" }
[]
true
[]
2,719,807,464
7,306
Creating new dataset from list loses information. (Audio Information Lost - either Datatype or Values).
### Describe the bug When creating a dataset from a list of datapoints, information is lost of the individual items. Specifically, when creating a dataset from a list of datapoints (from another dataset). Either the datatype is lost or the values are lost. See examples below. -> What is the best way to create a dataset from a list of datapoints? --- e.g.: **When running this code:** ```python from datasets import load_dataset, Dataset commonvoice_data = load_dataset("mozilla-foundation/common_voice_17_0", "it", split="test", streaming=True) datapoint = next(iter(commonvoice_data)) out = [datapoint] new_data = Dataset.from_list(out) #this loses datatype information new_data2= Dataset.from_list(out,features=commonvoice_data.features) #this loses value information ``` **We get the following**: --- 1. `datapoint`: (the original datapoint) ``` 'audio': {'path': 'it_test_0/common_voice_it_23606167.mp3', 'array': array([0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 2.21619011e-05, 2.72628222e-05, 0.00000000e+00]), 'sampling_rate': 48000} ``` Original Dataset Features: ``` >>> commonvoice_data.features 'audio': Audio(sampling_rate=48000, mono=True, decode=True, id=None) ``` - Here we see column "audio", has the proper values (both `path` & and `array`) and has the correct datatype (Audio). ---- 2. new_data[0]: ``` # Cannot be printed (as it prints the entire array). ``` New Dataset 1 Features: ``` >>> new_data.features 'audio': {'array': Sequence(feature=Value(dtype='float64', id=None), length=-1, id=None), 'path': Value(dtype='string', id=None), 'sampling_rate': Value(dtype='int64', id=None)} ``` - Here we see that the column "audio", has the correct values, but is not the Audio datatype anymore. --- 3. new_data2[0]: ``` 'audio': {'path': None, 'array': array([0., 0., 0., ..., 0., 0., 0.]), 'sampling_rate': 48000}, ``` New Dataset 2 Features: ``` >>> new_data2.features 'audio': Audio(sampling_rate=48000, mono=True, decode=True, id=None), ``` - Here we see that the column "audio", has the correct datatype, but all the array & path values were lost! ### Steps to reproduce the bug ## Run: ```python from datasets import load_dataset, Dataset commonvoice_data = load_dataset("mozilla-foundation/common_voice_17_0", "it", split="test", streaming=True) datapoint = next(iter(commonvoice_data)) out = [datapoint] new_data = Dataset.from_list(out) #this loses datatype information new_data2= Dataset.from_list(out,features=commonvoice_data.features) #this loses value information ``` ### Expected behavior ## Expected: ```datapoint == new_data[0]``` AND ```datapoint == new_data2[0]``` ### Environment info - `datasets` version: 3.1.0 - Platform: Linux-6.2.0-37-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.26.2 - PyArrow version: 15.0.2 - Pandas version: 2.2.2 - `fsspec` version: 2024.3.1
open
https://github.com/huggingface/datasets/issues/7306
2024-12-05T09:07:53
2024-12-05T09:09:38
null
{ "login": "ai-nikolai", "id": 9797804, "type": "User" }
[]
false
[]
2,715,907,267
7,305
Build Documentation Test Fails Due to "Bad Credentials" Error
### Describe the bug The `Build documentation / build / build_main_documentation (push)` job is consistently failing during the "Syncing repository" step. The error occurs when attempting to determine the default branch name, resulting in "Bad credentials" errors. ### Steps to reproduce the bug 1. Trigger the `build_main_documentation` job. 2. Observe the logs during the "Syncing repository" step. ### Expected behavior The workflow should be able to retrieve the default branch name without encountering credential issues. ### Environment info ```plaintext Syncing repository: huggingface/notebooks Getting Git version info Temporarily overriding HOME='/home/runner/work/_temp/00e62748-9940-4a4f-bbbc-eb2cda6d7ed6' before making global git config changes Adding repository directory to the temporary git global config as a safe directory /usr/bin/git config --global --add safe.directory /home/runner/work/datasets/datasets/notebooks Initializing the repository Disabling automatic garbage collection Setting up auth Determining the default branch Retrieving the default branch name Bad credentials - https://docs.github.com/rest Waiting 20 seconds before trying again Retrieving the default branch name Bad credentials - https://docs.github.com/rest Waiting 19 seconds before trying again Retrieving the default branch name Error: Bad credentials - https://docs.github.com/rest ```
open
https://github.com/huggingface/datasets/issues/7305
2024-12-03T20:22:54
2025-01-08T22:38:14
null
{ "login": "ruidazeng", "id": 31152346, "type": "User" }
[]
false
[]
2,715,179,811
7,304
Update iterable_dataset.py
close https://github.com/huggingface/datasets/issues/7297
closed
https://github.com/huggingface/datasets/pull/7304
2024-12-03T14:25:42
2024-12-03T14:28:10
2024-12-03T14:27:02
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,705,729,696
7,303
DataFilesNotFoundError for datasets LM1B
### Describe the bug Cannot load the dataset https://huggingface.co/datasets/billion-word-benchmark/lm1b ### Steps to reproduce the bug `dataset = datasets.load_dataset('lm1b', split=split)` ### Expected behavior `Traceback (most recent call last): File "/home/hml/projects/DeepLearning/Generative_model/Diffusion-BERT/word_freq.py", line 13, in <module> train_data = DiffusionLoader(tokenizer=tokenizer).my_load(task_name='lm1b', splits=['train'])[0] File "/home/hml/projects/DeepLearning/Generative_model/Diffusion-BERT/dataloader.py", line 20, in my_load return [self._load(task_name, name) for name in splits] File "/home/hml/projects/DeepLearning/Generative_model/Diffusion-BERT/dataloader.py", line 20, in <listcomp> return [self._load(task_name, name) for name in splits] File "/home/hml/projects/DeepLearning/Generative_model/Diffusion-BERT/dataloader.py", line 13, in _load dataset = datasets.load_dataset('lm1b', split=split) File "/home/hml/.conda/envs/DB/lib/python3.10/site-packages/datasets/load.py", line 2594, in load_dataset builder_instance = load_dataset_builder( File "/home/hml/.conda/envs/DB/lib/python3.10/site-packages/datasets/load.py", line 2266, in load_dataset_builder dataset_module = dataset_module_factory( File "/home/hml/.conda/envs/DB/lib/python3.10/site-packages/datasets/load.py", line 1827, in dataset_module_factory ).get_module() File "/home/hml/.conda/envs/DB/lib/python3.10/site-packages/datasets/load.py", line 1040, in get_module module_name, default_builder_kwargs = infer_module_for_data_files( File "/home/hml/.conda/envs/DB/lib/python3.10/site-packages/datasets/load.py", line 598, in infer_module_for_data_files raise DataFilesNotFoundError("No (supported) data files found" + (f" in {path}" if path else "")) datasets.exceptions.DataFilesNotFoundError: No (supported) data files found in lm1b` ### Environment info datasets: 2.20.0
closed
https://github.com/huggingface/datasets/issues/7303
2024-11-29T17:27:45
2024-12-11T13:22:47
2024-12-11T13:22:47
{ "login": "hml1996-fight", "id": 72264324, "type": "User" }
[]
false
[]
2,702,626,386
7,302
Let server decide default repo visibility
Until now, all repos were public by default when created without passing the `private` argument. This meant that passing `private=False` or `private=None` was strictly the same. This is not the case anymore. Enterprise Hub offers organizations to set a default visibility setting for new repos. This is useful for organizations forbidding public repos for security matters. This PR mostly updates docstrings + default values so that `private=None` is always passed when users don't set it manually. This PR doesn't create any breaking change. The real update has been done server-side when introducing the new Enterprise Hub feature. Related to https://github.com/huggingface/huggingface_hub/pull/2679.
closed
https://github.com/huggingface/datasets/pull/7302
2024-11-28T16:01:13
2024-11-29T17:00:40
2024-11-29T17:00:38
{ "login": "Wauplin", "id": 11801849, "type": "User" }
[]
true
[]
2,701,813,922
7,301
update load_dataset doctring
- remove canonical dataset name - remove dataset script logic - add streaming info - clearer download and prepare steps
closed
https://github.com/huggingface/datasets/pull/7301
2024-11-28T11:19:20
2024-11-29T10:31:43
2024-11-29T10:31:40
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
2,701,424,320
7,300
fix: update elasticsearch version
This should fix the `test_py311 (windows latest, deps-latest` errors. ``` =========================== short test summary info =========================== ERROR tests/test_search.py - AttributeError: `np.float_` was removed in the NumPy 2.0 release. Use `np.float64` instead. ERROR tests/test_search.py - AttributeError: `np.float_` was removed in the NumPy 2.0 release. Use `np.float64` instead. ===== 2822 passed, 54 skipped, 10 warnings, 2 errors in 373.36s (0:06:13) ===== Error: Process completed with exit code 1. ``` The elasticsearch version used is `elasticsearch==7.9.1`, which is 4 years old and uses the removed `numpy.float_`. elasticsearch fixed this in [https://github.com/elastic/elasticsearch-py/pull/2551](https://github.com/elastic/elasticsearch-py/pull/2551) and released in 8.15.0 (August 2024) and 7.17.12 (September 2024).
closed
https://github.com/huggingface/datasets/pull/7300
2024-11-28T09:14:21
2024-12-03T14:36:56
2024-12-03T14:24:42
{ "login": "ruidazeng", "id": 31152346, "type": "User" }
[]
true
[]
2,695,378,251
7,299
Efficient Image Augmentation in Hugging Face Datasets
### Describe the bug I'm using the Hugging Face datasets library to load images in batch and would like to apply a torchvision transform to solve the inconsistent image sizes in the dataset and apply some on the fly image augmentation. I can just think about using the collate_fn, but seems quite inefficient. I'm new to the Hugging Face datasets library, I didn't find nothing in the documentation or the issues here on github. Is there an existing way to add image transformations directly to the dataset loading pipeline? ### Steps to reproduce the bug from datasets import load_dataset from torch.utils.data import DataLoader ```python def collate_fn(batch): images = [item['image'] for item in batch] texts = [item['text'] for item in batch] return { 'images': images, 'texts': texts } dataset = load_dataset("Yuki20/pokemon_caption", split="train") dataloader = DataLoader(dataset, batch_size=4, collate_fn=collate_fn) # Output shows varying image sizes: # [(1280, 1280), (431, 431), (789, 789), (769, 769)] ``` ### Expected behavior I'm looking for a way to resize images on-the-fly when loading the dataset, similar to PyTorch's Dataset.__getitem__ functionality. This would be more efficient than handling resizing in the collate_fn. ### Environment info - `datasets` version: 3.1.0 - Platform: Linux-6.5.0-41-generic-x86_64-with-glibc2.35 - Python version: 3.11.10 - `huggingface_hub` version: 0.26.2 - PyArrow version: 18.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
open
https://github.com/huggingface/datasets/issues/7299
2024-11-26T16:50:32
2024-11-26T16:53:53
null
{ "login": "fabiozappo", "id": 46443190, "type": "User" }
[]
false
[]
2,694,196,968
7,298
loading dataset issue with load_dataset() when training controlnet
### Describe the bug i'm unable to load my dataset for [controlnet training](https://github.com/huggingface/diffusers/blob/074e12358bc17e7dbe111ea4f62f05dbae8a49d5/examples/controlnet/train_controlnet.py#L606) using load_dataset(). however, load_from_disk() seems to work? would appreciate if someone can explain why that's the case here 1. for reference here's the structure of the original training files _before_ dataset creation - ``` - dir train - dir A (illustrations) - dir B (SignWriting) - prompt.json containing: {"source": "B/file.png", "target": "A/file.png", "prompt": "..."} ``` 2. here are features _after_ dataset creation - ``` "features": { "control_image": { "_type": "Image" }, "image": { "_type": "Image" }, "caption": { "dtype": "string", "_type": "Value" } ``` 3. I've also attempted to upload the dataset to huggingface with the same error output ### Steps to reproduce the bug 1. [dataset creation script](https://github.com/sign-language-processing/signwriting-illustration/blob/main/signwriting_illustration/controlnet_huggingface/dataset.py) 2. controlnet [training script](examples/controlnet/train_controlnet.py) used 3. training parameters - ! accelerate launch diffusers/examples/controlnet/train_controlnet.py \ --pretrained_model_name_or_path="stable-diffusion-v1-5/stable-diffusion-v1-5" \ --output_dir="$OUTPUT_DIR" \ --train_data_dir="$HF_DATASET_DIR" \ --conditioning_image_column=control_image \ --image_column=image \ --caption_column=caption \ --resolution=512\ --learning_rate=1e-5 \ --validation_image "./validation/0a4b3c71265bb3a726457837428dda78.png" "./validation/0a5922fe2c638e6776bd62f623145004.png" "./validation/1c9f1a53106f64c682cf5d009ee7156f.png" \ --validation_prompt "An illustration of a man with short hair" "An illustration of a woman with short hair" "An illustration of Barack Obama" \ --train_batch_size=4 \ --num_train_epochs=500 \ --tracker_project_name="sd-controlnet-signwriting-test" \ --hub_model_id="sarahahtee/signwriting-illustration-test" \ --checkpointing_steps=5000 \ --validation_steps=1000 \ --report_to wandb \ --push_to_hub 4. command - ` sbatch --export=HUGGINGFACE_TOKEN=hf_token,WANDB_API_KEY=api_key script.sh` ### Expected behavior ``` 11/25/2024 17:12:18 - INFO - __main__ - Initializing controlnet weights from unet Generating train split: 1 examples [00:00, 334.85 examples/s] Traceback (most recent call last): File "/data/user/user/signwriting_illustration/controlnet_huggingface/diffusers/examples/controlnet/train_controlnet.py", line 1189, in <module> main(args) File "/data/user/user/signwriting_illustration/controlnet_huggingface/diffusers/examples/controlnet/train_controlnet.py", line 923, in main train_dataset = make_train_dataset(args, tokenizer, accelerator) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/user/user/signwriting_illustration/controlnet_huggingface/diffusers/examples/controlnet/train_controlnet.py", line 639, in make_train_dataset raise ValueError( ValueError: `--image_column` value 'image' not found in dataset columns. Dataset columns are: _data_files, _fingerprint, _format_columns, _format_kwargs, _format_type, _output_all_columns, _split ``` ### Environment info accelerate 1.1.1 huggingface-hub 0.26.2 python 3.11 torch 2.5.1 transformers 4.46.2
open
https://github.com/huggingface/datasets/issues/7298
2024-11-26T10:50:18
2024-11-26T10:50:18
null
{ "login": "sarahahtee", "id": 81594044, "type": "User" }
[]
false
[]
2,683,977,430
7,297
wrong return type for `IterableDataset.shard()`
### Describe the bug `IterableDataset.shard()` has the wrong typing for its return as `"Dataset"`. It should be `"IterableDataset"`. Makes my IDE unhappy. ### Steps to reproduce the bug look at [the source code](https://github.com/huggingface/datasets/blob/main/src/datasets/iterable_dataset.py#L2668)? ### Expected behavior Correct return type as `"IterableDataset"` ### Environment info datasets==3.1.0
closed
https://github.com/huggingface/datasets/issues/7297
2024-11-22T17:25:46
2024-12-03T14:27:27
2024-12-03T14:27:03
{ "login": "ysngshn", "id": 47225236, "type": "User" }
[]
false
[]
2,675,573,974
7,296
Remove upper version limit of fsspec[http]
null
closed
https://github.com/huggingface/datasets/pull/7296
2024-11-20T11:29:16
2025-03-06T04:47:04
2025-03-06T04:47:01
{ "login": "cyyever", "id": 17618148, "type": "User" }
[]
true
[]
2,672,003,384
7,295
[BUG]: Streaming from S3 triggers `unexpected keyword argument 'requote_redirect_url'`
### Describe the bug Note that this bug is only triggered when `streaming=True`. #5459 introduced always calling fsspec with `client_kwargs={"requote_redirect_url": False}`, which seems to have incompatibility issues even in the newest versions. Analysis of what's happening: 1. `datasets` passes the `client_kwargs` through `fsspec` 2. `fsspec` passes the `client_kwargs` through `s3fs` 3. `s3fs` passes the `client_kwargs` to `aiobotocore` which uses `aiohttp` ``` s3creator = self.session.create_client( "s3", config=conf, **init_kwargs, **client_kwargs ) ``` 4. The `session` tries to create an `aiohttp` session but the `**kwargs` are not just kept as unfolded `**kwargs` but passed in as individual variables (`requote_redirect_url` and `trust_env`). Error: ``` Traceback (most recent call last): File "/Users/cxrh/Documents/GitHub/nlp_foundation/nlp_train/test.py", line 14, in <module> batch = next(iter(ds)) File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1353, in __iter__ for key, example in ex_iterable: File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 255, in __iter__ for key, pa_table in self.generate_tables_fn(**self.kwargs): File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/datasets/packaged_modules/json/json.py", line 78, in _generate_tables for file_idx, file in enumerate(itertools.chain.from_iterable(files)): File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py", line 840, in __iter__ yield from self.generator(*self.args, **self.kwargs) File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py", line 921, in _iter_from_urlpaths elif xisdir(urlpath, download_config=download_config): File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py", line 305, in xisdir return fs.isdir(inner_path) File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/fsspec/spec.py", line 721, in isdir return self.info(path)["type"] == "directory" File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/fsspec/archive.py", line 38, in info self._get_dirs() File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/datasets/filesystems/compression.py", line 64, in _get_dirs f = {**self.file.fs.info(self.file.path), "name": self.uncompressed_name} File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/fsspec/asyn.py", line 118, in wrapper return sync(self.loop, func, *args, **kwargs) File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/fsspec/asyn.py", line 103, in sync raise return_result File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/fsspec/asyn.py", line 56, in _runner result[0] = await coro File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/s3fs/core.py", line 1302, in _info out = await self._call_s3( File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/s3fs/core.py", line 341, in _call_s3 await self.set_session() File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/s3fs/core.py", line 524, in set_session s3creator = self.session.create_client( File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/aiobotocore/session.py", line 114, in create_client return ClientCreatorContext(self._create_client(*args, **kwargs)) TypeError: AioSession._create_client() got an unexpected keyword argument 'requote_redirect_url' ``` ### Steps to reproduce the bug 1. Install the necessary libraries, datasets having a requirement for being at least 2.19.0: ``` pip install s3fs fsspec aiohttp aiobotocore botocore 'datasets>=2.19.0' ``` 2. Run this code: ``` from datasets import load_dataset ds = load_dataset( "json", data_files="s3://your_path/*.jsonl.gz", streaming=True, split="train", ) batch = next(iter(ds)) print(batch) ``` 3. You get the `unexpected keyword argument 'requote_redirect_url'` error. ### Expected behavior The datasets is able to load a batch from the dataset stored on S3, without triggering this `requote_redirect_url` error. Fix: I could fix this by directly removing the `requote_redirect_url` and `trust_env` - then it loads properly. <img width="1127" alt="image" src="https://github.com/user-attachments/assets/4c40efa9-8787-4919-b613-e4908c3d1ab2"> ### Environment info - `datasets` version: 3.1.0 - Platform: macOS-15.1-arm64-arm-64bit - Python version: 3.10.15 - `huggingface_hub` version: 0.26.2 - PyArrow version: 18.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
open
https://github.com/huggingface/datasets/issues/7295
2024-11-19T12:23:36
2024-11-19T13:01:53
null
{ "login": "casper-hansen", "id": 27340033, "type": "User" }
[]
false
[]
2,668,663,130
7,294
Remove `aiohttp` from direct dependencies
The dependency is only used for catching an exception from other code. That can be done with an import guard.
closed
https://github.com/huggingface/datasets/pull/7294
2024-11-18T14:00:59
2025-05-07T14:27:18
2025-05-07T14:27:17
{ "login": "akx", "id": 58669, "type": "User" }
[]
true
[]
2,664,592,054
7,293
Updated inconsistent output in documentation examples for `ClassLabel`
fix #7129 @stevhliu
closed
https://github.com/huggingface/datasets/pull/7293
2024-11-16T16:20:57
2024-12-06T11:33:33
2024-12-06T11:32:01
{ "login": "sergiopaniego", "id": 17179696, "type": "User" }
[]
true
[]
2,664,250,855
7,292
DataFilesNotFoundError for datasets `OpenMol/PubChemSFT`
### Describe the bug Cannot load the dataset https://huggingface.co/datasets/OpenMol/PubChemSFT ### Steps to reproduce the bug ``` from datasets import load_dataset dataset = load_dataset('OpenMol/PubChemSFT') ``` ### Expected behavior ``` --------------------------------------------------------------------------- DataFilesNotFoundError Traceback (most recent call last) Cell In[7], [line 2](vscode-notebook-cell:?execution_count=7&line=2) [1](vscode-notebook-cell:?execution_count=7&line=1) from datasets import load_dataset ----> [2](vscode-notebook-cell:?execution_count=7&line=2) dataset = load_dataset('OpenMol/PubChemSFT') File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2587, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) [2582](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2582) verification_mode = VerificationMode( [2583](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2583) (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS [2584](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2584) ) [2586](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2586) # Create a dataset builder -> [2587](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2587) builder_instance = load_dataset_builder( [2588](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2588) path=path, [2589](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2589) name=name, [2590](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2590) data_dir=data_dir, [2591](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2591) data_files=data_files, [2592](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2592) cache_dir=cache_dir, [2593](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2593) features=features, [2594](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2594) download_config=download_config, [2595](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2595) download_mode=download_mode, [2596](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2596) revision=revision, [2597](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2597) token=token, [2598](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2598) storage_options=storage_options, [2599](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2599) trust_remote_code=trust_remote_code, [2600](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2600) _require_default_config_name=name is None, [2601](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2601) **config_kwargs, [2602](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2602) ) [2604](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2604) # Return iterable dataset in case of streaming [2605](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2605) if streaming: File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2259, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs) [2257](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2257) download_config = download_config.copy() if download_config else DownloadConfig() [2258](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2258) download_config.storage_options.update(storage_options) -> [2259](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2259) dataset_module = dataset_module_factory( [2260](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2260) path, [2261](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2261) revision=revision, [2262](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2262) download_config=download_config, [2263](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2263) download_mode=download_mode, [2264](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2264) data_dir=data_dir, [2265](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2265) data_files=data_files, [2266](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2266) cache_dir=cache_dir, [2267](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2267) trust_remote_code=trust_remote_code, [2268](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2268) _require_default_config_name=_require_default_config_name, [2269](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2269) _require_custom_configs=bool(config_kwargs), [2270](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2270) ) [2271](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2271) # Get dataset builder class from the processing script [2272](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2272) builder_kwargs = dataset_module.builder_kwargs File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1904, in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, cache_dir, trust_remote_code, _require_default_config_name, _require_custom_configs, **download_kwargs) [1902](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1902) raise ConnectionError(f"Couldn't reach the Hugging Face Hub for dataset '{path}': {e1}") from None [1903](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1903) if isinstance(e1, (DataFilesNotFoundError, DatasetNotFoundError, EmptyDatasetError)): -> [1904](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1904) raise e1 from None [1905](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1905) if isinstance(e1, FileNotFoundError): [1906](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1906) raise FileNotFoundError( [1907](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1907) f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. " [1908](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1908) f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}" [1909](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1909) ) from None File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1885, in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, cache_dir, trust_remote_code, _require_default_config_name, _require_custom_configs, **download_kwargs) [1876](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1876) return HubDatasetModuleFactoryWithScript( [1877](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1877) path, [1878](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1878) revision=revision, (...) [1882](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1882) trust_remote_code=trust_remote_code, [1883](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1883) ).get_module() [1884](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1884) else: -> [1885](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1885) return HubDatasetModuleFactoryWithoutScript( [1886](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1886) path, [1887](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1887) revision=revision, [1888](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1888) data_dir=data_dir, [1889](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1889) data_files=data_files, [1890](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1890) download_config=download_config, [1891](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1891) download_mode=download_mode, [1892](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1892) ).get_module() [1893](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1893) except Exception as e1: [1894](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1894) # All the attempts failed, before raising the error we should check if the module is already cached [1895](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1895) try: File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1270, in HubDatasetModuleFactoryWithoutScript.get_module(self) [1263](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1263) patterns = get_data_patterns(base_path, download_config=self.download_config) [1264](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1264) data_files = DataFilesDict.from_patterns( [1265](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1265) patterns, [1266](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1266) base_path=base_path, [1267](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1267) allowed_extensions=ALL_ALLOWED_EXTENSIONS, [1268](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1268) download_config=self.download_config, [1269](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1269) ) -> [1270](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1270) module_name, default_builder_kwargs = infer_module_for_data_files( [1271](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1271) data_files=data_files, [1272](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1272) path=self.name, [1273](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1273) download_config=self.download_config, [1274](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1274) ) [1275](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1275) data_files = data_files.filter_extensions(_MODULE_TO_EXTENSIONS[module_name]) [1276](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1276) # Collect metadata files if the module supports them File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:597, in infer_module_for_data_files(data_files, path, download_config) [595](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:595) raise ValueError(f"Couldn't infer the same data file format for all splits. Got {split_modules}") [596](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:596) if not module_name: --> [597](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:597) raise DataFilesNotFoundError("No (supported) data files found" + (f" in {path}" if path else "")) [598](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:598) return module_name, default_builder_kwargs DataFilesNotFoundError: No (supported) data files found in OpenMol/PubChemSFT ``` ### Environment info ``` - `datasets` version: 3.1.0 - Platform: Linux-5.15.0-125-generic-x86_64-with-glibc2.31 - Python version: 3.9.18 - `huggingface_hub` version: 0.25.2 - PyArrow version: 18.0.0 - Pandas version: 2.0.3 - `fsspec` version: 2023.9.2 ```
closed
https://github.com/huggingface/datasets/issues/7292
2024-11-16T11:54:31
2024-11-19T00:53:00
2024-11-19T00:52:59
{ "login": "xnuohz", "id": 17878022, "type": "User" }
[]
false
[]
2,662,244,643
7,291
Why return_tensors='pt' doesn't work?
### Describe the bug I tried to add input_ids to dataset with map(), and I used the return_tensors='pt', but why I got the callback with the type of List? ![image](https://github.com/user-attachments/assets/ab046e20-2174-4e91-9cd6-4a296a43e83c) ### Steps to reproduce the bug ![image](https://github.com/user-attachments/assets/5d504d4c-22c7-4742-99a1-9cab78739b17) ### Expected behavior Sorry for this silly question, I'm noob on using this tool. But I think it should return a tensor value as I have used the protocol? When I tokenize only one sentence using tokenized_input=tokenizer(input, return_tensors='pt' ),it does return in tensor type. Why doesn't it work in map()? ### Environment info transformers>=4.41.2,<=4.45.0 datasets>=2.16.0,<=2.21.0 accelerate>=0.30.1,<=0.34.2 peft>=0.11.1,<=0.12.0 trl>=0.8.6,<=0.9.6 gradio>=4.0.0 pandas>=2.0.0 scipy einops sentencepiece tiktoken protobuf uvicorn pydantic fastapi sse-starlette matplotlib>=3.7.0 fire packaging pyyaml numpy<2.0.0
open
https://github.com/huggingface/datasets/issues/7291
2024-11-15T15:01:23
2024-11-18T13:47:08
null
{ "login": "bw-wang19", "id": 86752851, "type": "User" }
[]
false
[]
2,657,620,816
7,290
`Dataset.save_to_disk` hangs when using num_proc > 1
### Describe the bug Hi, I'm encountered a small issue when saving datasets that led to the saving taking up to multiple hours. Specifically, [`Dataset.save_to_disk`](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.save_to_disk) is a lot slower when using `num_proc>1` than when using `num_proc=1` The documentation mentions that "Multiprocessing is disabled by default.", but there is no explanation on how to enable it. ### Steps to reproduce the bug ``` import numpy as np from datasets import Dataset n_samples = int(4e6) n_tokens_sample = 100 data_dict = { 'tokens' : np.random.randint(0, 100, (n_samples, n_tokens_sample)), } dataset = Dataset.from_dict(data_dict) dataset.save_to_disk('test_dataset', num_proc=1) dataset.save_to_disk('test_dataset', num_proc=4) dataset.save_to_disk('test_dataset', num_proc=8) ``` This results in: ``` >>> dataset.save_to_disk('test_dataset', num_proc=1) Saving the dataset (7/7 shards): 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4000000/4000000 [00:17<00:00, 228075.15 examples/s] >>> dataset.save_to_disk('test_dataset', num_proc=4) Saving the dataset (7/7 shards): 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4000000/4000000 [01:49<00:00, 36583.75 examples/s] >>> dataset.save_to_disk('test_dataset', num_proc=8) Saving the dataset (8/8 shards): 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4000000/4000000 [02:11<00:00, 30518.43 examples/s] ``` With larger datasets it can take hours, but I didn't benchmark that for this bug report. ### Expected behavior I would expect using `num_proc>1` to be faster instead of slower than `num_proc=1`. ### Environment info - `datasets` version: 3.1.0 - Platform: Linux-5.15.153.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.26.2 - PyArrow version: 18.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.6.1
open
https://github.com/huggingface/datasets/issues/7290
2024-11-14T05:25:13
2025-06-27T00:56:47
null
{ "login": "JohannesAck", "id": 22243463, "type": "User" }
[]
false
[]
2,648,019,507
7,289
Dataset viewer displays wrong statists
### Describe the bug In [my dataset](https://huggingface.co/datasets/speedcell4/opus-unigram2), there is a column called `lang2`, and there are 94 different classes in total, but the viewer says there are 83 values only. This issue only arises in the `train` split. The total number of values is also 94 in the `test` and `dev` columns, viewer tells the correct number of them. <img width="177" alt="image" src="https://github.com/user-attachments/assets/78d76ef2-fe0e-4fa3-85e0-fb2552813d1c"> ### Steps to reproduce the bug ```python3 from datasets import load_dataset ds = load_dataset('speedcell4/opus-unigram2').unique('lang2') for key, lang2 in ds.items(): print(key, len(lang2)) ``` This script returns the following and tells that the `train` split has 94 values in the `lang2` column. ``` train 94 dev 94 test 94 zero 5 ``` ### Expected behavior 94 in the reviewer. ### Environment info Collecting environment information... PyTorch version: 2.4.1+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: CentOS Linux release 8.2.2004 (Core) (x86_64) GCC version: (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5) Clang version: Could not collect CMake version: version 3.11.4 Libc version: glibc-2.28 Python version: 3.9.20 (main, Oct 3 2024, 07:27:41) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-4.18.0-193.28.1.el8_2.x86_64-x86_64-with-glibc2.28 Is CUDA available: True CUDA runtime version: 12.2.140 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-40GB GPU 1: NVIDIA A100-SXM4-40GB GPU 2: NVIDIA A100-SXM4-40GB GPU 3: NVIDIA A100-SXM4-40GB GPU 4: NVIDIA A100-SXM4-40GB GPU 5: NVIDIA A100-SXM4-40GB GPU 6: NVIDIA A100-SXM4-40GB GPU 7: NVIDIA A100-SXM4-40GB Nvidia driver version: 525.85.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Thread(s) per core: 1 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 4 Vendor ID: AuthenticAMD CPU family: 23 Model: 49 Model name: AMD EPYC 7542 32-Core Processor Stepping: 0 CPU MHz: 3389.114 BogoMIPS: 5789.40 Virtualization: AMD-V L1d cache: 32K L1i cache: 32K L2 cache: 512K L3 cache: 16384K NUMA node0 CPU(s): 0-15 NUMA node1 CPU(s): 16-31 NUMA node2 CPU(s): 32-47 NUMA node3 CPU(s): 48-63 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip rdpid overflow_recov succor smca Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] torch==2.4.1+cu121 [pip3] torchaudio==2.4.1+cu121 [pip3] torchdevice==0.1.1 [pip3] torchglyph==0.3.2 [pip3] torchmetrics==1.5.0 [pip3] torchrua==0.5.1 [pip3] torchvision==0.19.1+cu121 [pip3] triton==3.0.0 [pip3] datasets==3.0.1 [conda] numpy 1.26.4 pypi_0 pypi [conda] torch 2.4.1+cu121 pypi_0 pypi [conda] torchaudio 2.4.1+cu121 pypi_0 pypi [conda] torchdevice 0.1.1 pypi_0 pypi [conda] torchglyph 0.3.2 pypi_0 pypi [conda] torchmetrics 1.5.0 pypi_0 pypi [conda] torchrua 0.5.1 pypi_0 pypi [conda] torchvision 0.19.1+cu121 pypi_0 pypi [conda] triton 3.0.0 pypi_0 pypi
closed
https://github.com/huggingface/datasets/issues/7289
2024-11-11T03:29:27
2024-11-13T13:02:25
2024-11-13T13:02:25
{ "login": "speedcell4", "id": 3585459, "type": "User" }
[]
false
[]
2,647,052,280
7,288
Release v3.1.1
null
closed
https://github.com/huggingface/datasets/pull/7288
2024-11-10T09:38:15
2024-11-10T09:38:48
2024-11-10T09:38:48
{ "login": "alex-hh", "id": 5719745, "type": "User" }
[]
true
[]
2,646,958,393
7,287
Support for identifier-based automated split construction
### Feature request As far as I understand, automated construction of splits for hub datasets is currently based on either file names or directory structure ([as described here](https://huggingface.co/docs/datasets/en/repository_structure)) It would seem to be pretty useful to also allow splits to be based on identifiers of individual examples This could be configured like {"split_name": {"column_name": [column values in split]}} (This in turn requires unique 'index' columns, which could be explicitly supported or just assumed to be defined appropriately by the user). I guess a potential downside would be that shards would end up spanning different splits - is this something that can be handled somehow? Would this only affect streaming from hub? ### Motivation The main motivation would be that all data files could be stored in a single directory, and multiple sets of splits could be generated from the same data. This is often useful for large datasets with multiple distinct sets of splits. This could all be configured via the README.md yaml configs ### Your contribution May be able to contribute if it seems like a good idea
open
https://github.com/huggingface/datasets/issues/7287
2024-11-10T07:45:19
2024-11-19T14:37:02
null
{ "login": "alex-hh", "id": 5719745, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,645,350,151
7,286
Concurrent loading in `load_from_disk` - `num_proc` as a param
### Feature request https://github.com/huggingface/datasets/pull/6464 mentions a `num_proc` param while loading dataset from disk, but can't find that in the documentation and code anywhere ### Motivation Make loading large datasets from disk faster ### Your contribution Happy to contribute if given pointers
closed
https://github.com/huggingface/datasets/issues/7286
2024-11-08T23:21:40
2024-11-09T16:14:37
2024-11-09T16:14:37
{ "login": "unography", "id": 5240449, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
2,644,488,598
7,285
Release v3.1.0
null
closed
https://github.com/huggingface/datasets/pull/7285
2024-11-08T16:17:58
2024-11-08T16:18:05
2024-11-08T16:18:05
{ "login": "alex-hh", "id": 5719745, "type": "User" }
[]
true
[]
2,644,302,386
7,284
support for custom feature encoding/decoding
Fix for https://github.com/huggingface/datasets/issues/7220 as suggested in discussion, in preference to #7221 (only concern would be on effect on type checking with custom feature types that aren't covered by FeatureType?)
closed
https://github.com/huggingface/datasets/pull/7284
2024-11-08T15:04:08
2024-11-21T16:09:47
2024-11-21T16:09:47
{ "login": "alex-hh", "id": 5719745, "type": "User" }
[]
true
[]
2,642,537,708
7,283
Allow for variation in metadata file names as per issue #7123
Allow metadata files to have an identifying preface. Specifically, it will recognize files with `-metadata.csv` or `_metadata.csv` as metadata files for the purposes of the dataset viewer functionality. Resolves #7123.
open
https://github.com/huggingface/datasets/pull/7283
2024-11-08T00:44:47
2024-11-08T00:44:47
null
{ "login": "egrace479", "id": 38985481, "type": "User" }
[]
true
[]
2,642,075,491
7,282
Faulty datasets.exceptions.ExpectedMoreSplitsError
### Describe the bug Trying to download only the 'validation' split of my dataset; instead hit the error `datasets.exceptions.ExpectedMoreSplitsError`. Appears to be the same undesired behavior as reported in [#6939](https://github.com/huggingface/datasets/issues/6939), but with `data_files`, not `data_dir`. Here is the Traceback: ``` Traceback (most recent call last): File "/home/user/app/app.py", line 12, in <module> ds = load_dataset('datacomp/imagenet-1k-random0.0', token=GATED_IMAGENET, data_files={'validation': 'data/val*'}, split='validation', trust_remote_code=True) File "/usr/local/lib/python3.10/site-packages/datasets/load.py", line 2154, in load_dataset builder_instance.download_and_prepare( File "/usr/local/lib/python3.10/site-packages/datasets/builder.py", line 924, in download_and_prepare self._download_and_prepare( File "/usr/local/lib/python3.10/site-packages/datasets/builder.py", line 1018, in _download_and_prepare verify_splits(self.info.splits, split_dict) File "/usr/local/lib/python3.10/site-packages/datasets/utils/info_utils.py", line 68, in verify_splits raise ExpectedMoreSplitsError(str(set(expected_splits) - set(recorded_splits))) datasets.exceptions.ExpectedMoreSplitsError: {'train', 'test'} ``` Note: I am using the `data_files` argument only because I am trying to specify that I only want the 'validation' split, and the whole dataset will be downloaded even when the `split='validation'` argument is specified, unless you also specify `data_files`, as described here: https://discuss.huggingface.co/t/how-can-i-download-a-specific-split-of-a-dataset/79027 ### Steps to reproduce the bug 1. Create a Space with the default blank 'gradio' SDK https://huggingface.co/new-space 2. Create a file 'app.py' that loads a dataset to only extract a 'validation' split: `ds = load_dataset('datacomp/imagenet-1k-random0.0', token=GATED_IMAGENET, data_files={'validation': 'data/val*'}, split='validation', trust_remote_code=True)` ### Expected behavior Downloading validation split. ### Environment info Default environment for creating a new Space. Relevant to this bug, that is: ``` FROM docker.io/library/python:3.10@sha256:fd0fa50d997eb56ce560c6e5ca6a1f5cf8fdff87572a16ac07fb1f5ca01eb608 --> RUN pip install --no-cache-dir pip==22.3.1 && pip install --no-cache-dir datasets "huggingface-hub>=0.19" "hf-transfer>=0.1.4" "protobuf<4" "click<8.1" ```
open
https://github.com/huggingface/datasets/issues/7282
2024-11-07T20:15:01
2024-11-07T20:15:42
null
{ "login": "meg-huggingface", "id": 90473723, "type": "User" }
[]
false
[]
2,640,346,339
7,281
File not found error
### Describe the bug I get a FileNotFoundError: <img width="944" alt="image" src="https://github.com/user-attachments/assets/1336bc08-06f6-4682-a3c0-071ff65efa87"> ### Steps to reproduce the bug See screenshot. ### Expected behavior I want to load one audiofile from the dataset. ### Environment info MacOs Intel 14.6.1 (23G93) Python 3.10.9 Numpy 1.23 Datasets latest version
open
https://github.com/huggingface/datasets/issues/7281
2024-11-07T09:04:49
2024-11-07T09:22:43
null
{ "login": "MichielBontenbal", "id": 37507786, "type": "User" }
[]
false
[]
2,639,977,077
7,280
Add filename in error message when ReadError or similar occur
Please update error messages to include relevant information for debugging when loading datasets with `load_dataset()` that may have a few corrupted files. Whenever downloading a full dataset, some files might be corrupted (either at the source or from downloading corruption). However the errors often only let me know it was a tar file if `tarfile.ReadError` appears on the traceback, and I imagine similarly for other file types. This makes it really hard to debug which file is corrupted, and when dealing with very large datasets, it shouldn't be necessary to force download everything again.
open
https://github.com/huggingface/datasets/issues/7280
2024-11-07T06:00:53
2024-11-20T13:23:12
null
{ "login": "elisa-aleman", "id": 37046039, "type": "User" }
[]
false
[]