Datasets:
pretty_name: MWS Vision Bench
dataset_name: mws-vision-bench
language:
- ru
license: mit
tags:
- benchmark
- multimodal
- ocr
- kie
- grounding
- vlm
- business
- russian
- document
- visual-question-answering
- document-question-answering
task_categories:
- visual-question-answering
- document-question-answering
size_categories:
- 1K<n<10K
annotations_creators:
- expert-generated
dataset_creators:
- MTS AI Research
papers:
- title: >-
MWS Vision Bench: The First Russian Business-OCR Benchmark for Multimodal
Models
authors:
- MTS AI Research Team
year: 2025
status: in preparation
note: Paper coming soon
homepage: https://huggingface.co/datasets/MTSAIR/MWS-Vision-Bench
repository: https://github.com/mts-ai/MWS-Vision-Bench
organization: MTSAIR
MWS-Vision-Bench
🇷🇺 Русскоязычное описание ниже / Russian summary below.
MWS Vision Bench — the first Russian-language business-OCR benchmark designed for multimodal large language models (MLLMs).
This is the validation split - publicly available for open evaluation and comparison.
🧩 Paper is coming soon.
🔗 Official repository: github.com/mts-ai/MWS-Vision-Bench
🏢 Organization: MTSAIR on Hugging Face
📰 Article on Habr (in Russian): “MWS Vision Bench — the first Russian business-OCR benchmark”
📊 Dataset Statistics
- Total samples: 1,302
- Unique images: 400
- Task types: 5
🖼️ Dataset Preview
Examples of diverse document types in the benchmark: business documents, handwritten notes, technical drawings, receipts, and more.
📁 Repository Structure
MWS-Vision-Bench/
├── metadata.jsonl # Dataset annotations
├── images/ # Image files organized by category
│ ├── business/
│ │ ├── scans/
│ │ ├── sheets/
│ │ ├── plans/
│ │ └── diagramms/
│ └── personal/
│ ├── hand_documents/
│ ├── hand_notebooks/
│ └── hand_misc/
└── README.md # This file
📋 Data Format
Each line in metadata.jsonl
contains one JSON object:
{
"file_name": "images/image_0.jpg", # Path to the image
"id": "1", # Unique identifier
"type": "text grounding ru", # Task type
"dataset_name": "business", # Subdataset name
"question": "...", # Question in Russian
"answers": ["398", "65", ...] # List of valid answers (as strings)
}
🎯 Task Types
Task | Description | Count |
---|---|---|
document parsing ru |
Parsing structured documents | 243 |
full-page OCR ru |
End-to-end OCR on full pages | 144 |
key information extraction ru |
Extracting key fields | 119 |
reasoning VQA ru |
Visual reasoning in Russian | 400 |
text grounding ru |
Text–region alignment | 396 |
Leaderboard
Model | Overall | img→text | img→markdown | Grounding | KIE (JSON) | VQA |
---|---|---|---|---|---|---|
Gemini-2.5-pro | 0.682 | 0.836 | 0.745 | 0.084 | 0.891 | 0.853 |
Gemini-2.5-flash | 0.644 | 0.796 | 0.683 | 0.067 | 0.841 | 0.833 |
gpt-4.1-mini | 0.643 | 0.866 | 0.724 | 0.091 | 0.750 | 0.782 |
Claude-4.5-Sonnet | 0.639 | 0.723 | 0.676 | 0.377 | 0.728 | 0.692 |
Cotype VL (32B 8 bit) | 0.639 | 0.797 | 0.756 | 0.262 | 0.694 | 0.685 |
gpt-5-mini | 0.632 | 0.797 | 0.678 | 0.126 | 0.784 | 0.776 |
Qwen2.5-VL-72B | 0.631 | 0.848 | 0.712 | 0.220 | 0.644 | 0.732 |
gpt-5-mini (responses) | 0.594 | 0.743 | 0.567 | 0.118 | 0.811 | 0.731 |
Qwen3-VL-30B-A3B | 0.589 | 0.802 | 0.688 | 0.053 | 0.661 | 0.743 |
gpt-4.1 | 0.587 | 0.709 | 0.693 | 0.086 | 0.662 | 0.784 |
Qwen3-VL-30B-A3B-FP8 | 0.583 | 0.798 | 0.683 | 0.056 | 0.638 | 0.740 |
Qwen2.5-VL-32B | 0.577 | 0.767 | 0.649 | 0.232 | 0.493 | 0.743 |
gpt-5 (responses) | 0.573 | 0.746 | 0.650 | 0.080 | 0.687 | 0.704 |
Qwen2.5-VL-7B | 0.549 | 0.779 | 0.704 | 0.185 | 0.426 | 0.651 |
gpt-4.1-nano | 0.503 | 0.676 | 0.672 | 0.028 | 0.567 | 0.573 |
gpt-5-nano | 0.503 | 0.487 | 0.583 | 0.091 | 0.661 | 0.693 |
Qwen2.5-VL-3B | 0.402 | 0.613 | 0.654 | 0.045 | 0.203 | 0.494 |
Pixtral-12B-2409 | 0.342 | 0.327 | 0.555 | 0.026 | 0.325 | 0.475 |
💻 Usage Example
from datasets import load_dataset
# Load dataset (authorization required if private)
dataset = load_dataset("MTSAIR/MWS-Vision-Bench", token="hf_...")
# Example iteration
for item in dataset:
print(f"ID: {item['id']}")
print(f"Type: {item['type']}")
print(f"Question: {item['question']}")
print(f"Image: {item['image_path']}")
print(f"Answers: {item['answers']}")
📄 License
MIT License
© 2024 MTS AI
See LICENSE for details.
📚 Citation
If you use this dataset in your research, please cite:
@misc{mwsvisionbench2024,
title={MWS-Vision-Bench: Russian Multimodal OCR Benchmark},
author={MTS AI Research},
organization={MTSAIR},
year={2025},
url={https://huggingface.co/datasets/MTSAIR/MWS-Vision-Bench},
note={Paper coming soon}
}
🤝 Contacts
- Team: MTSAIR Research
- Email: g.gaikov@mts.ai
🇷🇺 Краткое описание
MWS Vision Bench — первый русскоязычный бенчмарк для бизнес-OCR в эпоху мультимодальных моделей.
Он включает 1302 примера и 5 типов задач, отражающих реальные сценарии обработки бизнес-документов и рукописных данных.
Датасет создан для оценки и развития мультимодальных LLM в русскоязычном контексте.
📄 Научная статья в процессе подготовки (paper coming soon).
Made with ❤️ by MTS AI Research Team