MWS-Vision-Bench / README.md
GeorgyG's picture
Add Pixtral-12B-2409 results to leaderboard
8a7c5c9 verified
metadata
pretty_name: MWS Vision Bench
dataset_name: mws-vision-bench
language:
  - ru
license: mit
tags:
  - benchmark
  - multimodal
  - ocr
  - kie
  - grounding
  - vlm
  - business
  - russian
  - document
  - visual-question-answering
  - document-question-answering
task_categories:
  - visual-question-answering
  - document-question-answering
size_categories:
  - 1K<n<10K
annotations_creators:
  - expert-generated
dataset_creators:
  - MTS AI Research
papers:
  - title: >-
      MWS Vision Bench: The First Russian Business-OCR Benchmark for Multimodal
      Models
    authors:
      - MTS AI Research Team
    year: 2025
    status: in preparation
    note: Paper coming soon
homepage: https://huggingface.co/datasets/MTSAIR/MWS-Vision-Bench
repository: https://github.com/mts-ai/MWS-Vision-Bench
organization: MTSAIR

MWS-Vision-Bench

🇷🇺 Русскоязычное описание ниже / Russian summary below.

MWS Vision Bench — the first Russian-language business-OCR benchmark designed for multimodal large language models (MLLMs).
This is the validation split - publicly available for open evaluation and comparison.
🧩 Paper is coming soon.

🔗 Official repository: github.com/mts-ai/MWS-Vision-Bench
🏢 Organization: MTSAIR on Hugging Face
📰 Article on Habr (in Russian): “MWS Vision Bench — the first Russian business-OCR benchmark”


📊 Dataset Statistics

  • Total samples: 1,302
  • Unique images: 400
  • Task types: 5

🖼️ Dataset Preview

Dataset Examples

Examples of diverse document types in the benchmark: business documents, handwritten notes, technical drawings, receipts, and more.


📁 Repository Structure

MWS-Vision-Bench/
├── metadata.jsonl       # Dataset annotations
├── images/              # Image files organized by category
│   ├── business/
│   │   ├── scans/
│   │   ├── sheets/
│   │   ├── plans/
│   │   └── diagramms/
│   └── personal/
│       ├── hand_documents/
│       ├── hand_notebooks/
│       └── hand_misc/
└── README.md            # This file

📋 Data Format

Each line in metadata.jsonl contains one JSON object:

{
  "file_name": "images/image_0.jpg",   # Path to the image
  "id": "1",                           # Unique identifier
  "type": "text grounding ru",         # Task type
  "dataset_name": "business",          # Subdataset name
  "question": "...",                   # Question in Russian
  "answers": ["398", "65", ...]        # List of valid answers (as strings)
}

🎯 Task Types

Task Description Count
document parsing ru Parsing structured documents 243
full-page OCR ru End-to-end OCR on full pages 144
key information extraction ru Extracting key fields 119
reasoning VQA ru Visual reasoning in Russian 400
text grounding ru Text–region alignment 396

Leaderboard

Model Overall img→text img→markdown Grounding KIE (JSON) VQA
Gemini-2.5-pro 0.682 0.836 0.745 0.084 0.891 0.853
Gemini-2.5-flash 0.644 0.796 0.683 0.067 0.841 0.833
gpt-4.1-mini 0.643 0.866 0.724 0.091 0.750 0.782
Claude-4.5-Sonnet 0.639 0.723 0.676 0.377 0.728 0.692
Cotype VL (32B 8 bit) 0.639 0.797 0.756 0.262 0.694 0.685
gpt-5-mini 0.632 0.797 0.678 0.126 0.784 0.776
Qwen2.5-VL-72B 0.631 0.848 0.712 0.220 0.644 0.732
gpt-5-mini (responses) 0.594 0.743 0.567 0.118 0.811 0.731
Qwen3-VL-30B-A3B 0.589 0.802 0.688 0.053 0.661 0.743
gpt-4.1 0.587 0.709 0.693 0.086 0.662 0.784
Qwen3-VL-30B-A3B-FP8 0.583 0.798 0.683 0.056 0.638 0.740
Qwen2.5-VL-32B 0.577 0.767 0.649 0.232 0.493 0.743
gpt-5 (responses) 0.573 0.746 0.650 0.080 0.687 0.704
Qwen2.5-VL-7B 0.549 0.779 0.704 0.185 0.426 0.651
gpt-4.1-nano 0.503 0.676 0.672 0.028 0.567 0.573
gpt-5-nano 0.503 0.487 0.583 0.091 0.661 0.693
Qwen2.5-VL-3B 0.402 0.613 0.654 0.045 0.203 0.494
Pixtral-12B-2409 0.342 0.327 0.555 0.026 0.325 0.475

💻 Usage Example

from datasets import load_dataset

# Load dataset (authorization required if private)
dataset = load_dataset("MTSAIR/MWS-Vision-Bench", token="hf_...")

# Example iteration
for item in dataset:
    print(f"ID: {item['id']}")
    print(f"Type: {item['type']}")
    print(f"Question: {item['question']}")
    print(f"Image: {item['image_path']}")
    print(f"Answers: {item['answers']}")

📄 License

MIT License
© 2024 MTS AI

See LICENSE for details.


📚 Citation

If you use this dataset in your research, please cite:

@misc{mwsvisionbench2024,
  title={MWS-Vision-Bench: Russian Multimodal OCR Benchmark},
  author={MTS AI Research},
  organization={MTSAIR},
  year={2025},
  url={https://huggingface.co/datasets/MTSAIR/MWS-Vision-Bench},
  note={Paper coming soon}
}

🤝 Contacts


🇷🇺 Краткое описание

MWS Vision Bench — первый русскоязычный бенчмарк для бизнес-OCR в эпоху мультимодальных моделей.
Он включает 1302 примера и 5 типов задач, отражающих реальные сценарии обработки бизнес-документов и рукописных данных.
Датасет создан для оценки и развития мультимодальных LLM в русскоязычном контексте.
📄 Научная статья в процессе подготовки (paper coming soon).


Made with ❤️ by MTS AI Research Team