|
--- |
|
pretty_name: MWS Vision Bench |
|
dataset_name: mws-vision-bench |
|
language: |
|
- ru |
|
license: mit |
|
tags: |
|
- benchmark |
|
- multimodal |
|
- ocr |
|
- kie |
|
- grounding |
|
- vlm |
|
- business |
|
- russian |
|
- document |
|
- visual-question-answering |
|
- document-question-answering |
|
task_categories: |
|
- visual-question-answering |
|
- document-question-answering |
|
size_categories: |
|
- 1K<n<10K |
|
annotations_creators: |
|
- expert-generated |
|
dataset_creators: |
|
- MTS AI Research |
|
papers: |
|
- title: "MWS Vision Bench: The First Russian Business-OCR Benchmark for Multimodal Models" |
|
authors: ["MTS AI Research Team"] |
|
year: 2025 |
|
status: "in preparation" |
|
note: "Paper coming soon" |
|
homepage: https://huggingface.co/datasets/MTSAIR/MWS-Vision-Bench |
|
repository: https://github.com/mts-ai/MWS-Vision-Bench |
|
organization: MTSAIR |
|
--- |
|
# MWS-Vision-Bench |
|
|
|
> 🇷🇺 *Русскоязычное описание ниже / Russian summary below.* |
|
|
|
**MWS Vision Bench** — the first **Russian-language business-OCR benchmark** designed for multimodal large language models (MLLMs). |
|
This is the validation split - publicly available for open evaluation and comparison. |
|
🧩 **Paper is coming soon.** |
|
|
|
🔗 **Official repository:** [github.com/mts-ai/MWS-Vision-Bench](https://github.com/mts-ai/MWS-Vision-Bench) |
|
🏢 **Organization:** [MTSAIR on Hugging Face](https://huggingface.co/MTSAIR) |
|
📰 **Article on Habr (in Russian):** [“MWS Vision Bench — the first Russian business-OCR benchmark”](https://habr.com/ru/companies/mts_ai/articles/953292/) |
|
|
|
--- |
|
|
|
## 📊 Dataset Statistics |
|
|
|
- **Total samples:** 1,302 |
|
- **Unique images:** 400 |
|
- **Task types:** 5 |
|
|
|
--- |
|
|
|
## 🖼️ Dataset Preview |
|
|
|
 |
|
|
|
*Examples of diverse document types in the benchmark: business documents, handwritten notes, technical drawings, receipts, and more.* |
|
|
|
--- |
|
|
|
## 📁 Repository Structure |
|
|
|
``` |
|
MWS-Vision-Bench/ |
|
├── metadata.jsonl # Dataset annotations |
|
├── images/ # Image files organized by category |
|
│ ├── business/ |
|
│ │ ├── scans/ |
|
│ │ ├── sheets/ |
|
│ │ ├── plans/ |
|
│ │ └── diagramms/ |
|
│ └── personal/ |
|
│ ├── hand_documents/ |
|
│ ├── hand_notebooks/ |
|
│ └── hand_misc/ |
|
└── README.md # This file |
|
``` |
|
|
|
--- |
|
|
|
## 📋 Data Format |
|
|
|
Each line in `metadata.jsonl` contains one JSON object: |
|
|
|
```python |
|
{ |
|
"file_name": "images/image_0.jpg", # Path to the image |
|
"id": "1", # Unique identifier |
|
"type": "text grounding ru", # Task type |
|
"dataset_name": "business", # Subdataset name |
|
"question": "...", # Question in Russian |
|
"answers": ["398", "65", ...] # List of valid answers (as strings) |
|
} |
|
``` |
|
|
|
--- |
|
|
|
## 🎯 Task Types |
|
|
|
| Task | Description | Count | |
|
|------|--------------|-------| |
|
| `document parsing ru` | Parsing structured documents | 243 | |
|
| `full-page OCR ru` | End-to-end OCR on full pages | 144 | |
|
| `key information extraction ru` | Extracting key fields | 119 | |
|
| `reasoning VQA ru` | Visual reasoning in Russian | 400 | |
|
| `text grounding ru` | Text–region alignment | 396 | |
|
|
|
--- |
|
|
|
## Leaderboard |
|
|
|
| Model | Overall | img→text | img→markdown | Grounding | KIE (JSON) | VQA | |
|
|-------|---------|----------|--------------|-----------|------------|-----| |
|
| **Gemini-2.5-pro** | **0.682** | 0.836 | 0.745 | 0.084 | 0.891 | 0.853 | |
|
| **Gemini-2.5-flash** | **0.644** | 0.796 | 0.683 | 0.067 | 0.841 | 0.833 | |
|
| **gpt-4.1-mini** | **0.643** | 0.866 | 0.724 | 0.091 | 0.750 | 0.782 | |
|
| **Claude-4.5-Sonnet** | **0.639** | 0.723 | 0.676 | 0.377 | 0.728 | 0.692 | |
|
| **Cotype VL (32B 8 bit)** | **0.639** | 0.797 | 0.756 | 0.262 | 0.694 | 0.685 | |
|
| gpt-5-mini | 0.632 | 0.797 | 0.678 | 0.126 | 0.784 | 0.776 | |
|
| Qwen2.5-VL-72B | 0.631 | 0.848 | 0.712 | 0.220 | 0.644 | 0.732 | |
|
| gpt-5-mini (responses) | 0.594 | 0.743 | 0.567 | 0.118 | 0.811 | 0.731 | |
|
| Qwen3-VL-30B-A3B | 0.589 | 0.802 | 0.688 | 0.053 | 0.661 | 0.743 | |
|
| gpt-4.1 | 0.587 | 0.709 | 0.693 | 0.086 | 0.662 | 0.784 | |
|
| Qwen3-VL-30B-A3B-FP8 | 0.583 | 0.798 | 0.683 | 0.056 | 0.638 | 0.740 | |
|
| Qwen2.5-VL-32B | 0.577 | 0.767 | 0.649 | 0.232 | 0.493 | 0.743 | |
|
| gpt-5 (responses) | 0.573 | 0.746 | 0.650 | 0.080 | 0.687 | 0.704 | |
|
| Qwen2.5-VL-7B | 0.549 | 0.779 | 0.704 | 0.185 | 0.426 | 0.651 | |
|
| gpt-4.1-nano | 0.503 | 0.676 | 0.672 | 0.028 | 0.567 | 0.573 | |
|
| gpt-5-nano | 0.503 | 0.487 | 0.583 | 0.091 | 0.661 | 0.693 | |
|
| Qwen2.5-VL-3B | 0.402 | 0.613 | 0.654 | 0.045 | 0.203 | 0.494 | |
|
| Pixtral-12B-2409 | 0.342 | 0.327 | 0.555 | 0.026 | 0.325 | 0.475 | |
|
|
|
|
|
## 💻 Usage Example |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load dataset (authorization required if private) |
|
dataset = load_dataset("MTSAIR/MWS-Vision-Bench", token="hf_...") |
|
|
|
# Example iteration |
|
for item in dataset: |
|
print(f"ID: {item['id']}") |
|
print(f"Type: {item['type']}") |
|
print(f"Question: {item['question']}") |
|
print(f"Image: {item['image_path']}") |
|
print(f"Answers: {item['answers']}") |
|
``` |
|
|
|
--- |
|
|
|
## 📄 License |
|
|
|
**MIT License** |
|
© 2024 MTS AI |
|
|
|
See [LICENSE](https://github.com/MTSAIR/multimodalocr/blob/main/LICENSE.txt) for details. |
|
|
|
--- |
|
|
|
## 📚 Citation |
|
|
|
If you use this dataset in your research, please cite: |
|
|
|
```bibtex |
|
@misc{mwsvisionbench2024, |
|
title={MWS-Vision-Bench: Russian Multimodal OCR Benchmark}, |
|
author={MTS AI Research}, |
|
organization={MTSAIR}, |
|
year={2025}, |
|
url={https://huggingface.co/datasets/MTSAIR/MWS-Vision-Bench}, |
|
note={Paper coming soon} |
|
} |
|
``` |
|
|
|
--- |
|
|
|
## 🤝 Contacts |
|
|
|
- **Team:** [MTSAIR Research](https://huggingface.co/MTSAIR) |
|
- **Email:** [g.gaikov@mts.ai](mailto:g.gaikov@mts.ai) |
|
|
|
--- |
|
|
|
## 🇷🇺 Краткое описание |
|
|
|
**MWS Vision Bench** — первый русскоязычный бенчмарк для бизнес-OCR в эпоху мультимодальных моделей. |
|
Он включает 1302 примера и 5 типов задач, отражающих реальные сценарии обработки бизнес-документов и рукописных данных. |
|
Датасет создан для оценки и развития мультимодальных LLM в русскоязычном контексте. |
|
📄 *Научная статья в процессе подготовки (paper coming soon).* |
|
|
|
--- |
|
|
|
**Made with ❤️ by MTS AI Research Team** |
|
|
|
|