Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
Screen2AX-Element / README.md
hellcaster's picture
added citation
b792674 verified
metadata
license: apache-2.0
dataset_info:
  features:
    - name: image
      dtype: image
    - name: objects
      struct:
        - name: bbox
          list:
            list: int32
        - name: category
          list: string
  splits:
    - name: train
      num_bytes: 121301432
      num_examples: 678
    - name: test
      num_bytes: 26238185
      num_examples: 158
    - name: valid
      num_bytes: 23829914
      num_examples: 150
  download_size: 119387398
  dataset_size: 171369531
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
      - split: valid
        path: data/valid-*
task_categories:
  - object-detection
pretty_name: Screen2AX-Element
size_categories:
  - n<1K

πŸ“¦ Screen2AX-Element

Screen2AX-Element is part of the Screen2AX dataset suite, a research-driven collection for advancing accessibility in macOS applications using computer vision and deep learning.

This dataset focuses on UI element detection from macOS application screenshots and is designed for training and evaluating object detection models.


🧠 Dataset Summary

Each sample in the dataset consists of:

  • An application screenshot (image)
  • A dictionary of UI elements (objects) with 2 keys:
    • bbox (List[List[int]]): List of bounding box coordinates in [x_min, y_min, x_max, y_max] format
    • category (List[str]): List of labels indicating the UI element type (AXButton, AXDisclosureTriangle, AXLink, AXTextArea, AXImage)

The dataset supports training deep learning models for object detection tasks specifically tuned for graphical user interfaces (GUIs) on macOS.

Splits:

  • train
  • valid
  • test

Task Category:

  • object-detection

πŸ“š Usage

Load with datasets library

from datasets import load_dataset

dataset = load_dataset("MacPaw/Screen2AX-Element")

Example structure

sample = dataset["train"][0]
print(sample.keys())
# dict_keys(['image', 'objects'])

print(sample["objects"])
# {'bbox': [[x_min, y_min, x_max, y_max], ...], 'category': ['AXButton', ...]}

πŸ“œ License

This dataset is licensed under the Apache 2.0 License.


πŸ”— Related Projects


✍️ Citation

If you use this dataset, please cite the Screen2AX paper:

@misc{muryn2025screen2axvisionbasedapproachautomatic,
      title={Screen2AX: Vision-Based Approach for Automatic macOS Accessibility Generation}, 
      author={Viktor Muryn and Marta Sumyk and Mariya Hirna and Sofiya Garkot and Maksym Shamrai},
      year={2025},
      eprint={2507.16704},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2507.16704}, 
}

🌐 MacPaw Research

Learn more at https://research.macpaw.com