|
--- |
|
license: apache-2.0 |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: objects |
|
struct: |
|
- name: bbox |
|
list: |
|
list: int32 |
|
- name: category |
|
list: string |
|
splits: |
|
- name: train |
|
num_bytes: 121301432 |
|
num_examples: 678 |
|
- name: test |
|
num_bytes: 26238185 |
|
num_examples: 158 |
|
- name: valid |
|
num_bytes: 23829914 |
|
num_examples: 150 |
|
download_size: 119387398 |
|
dataset_size: 171369531 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
- split: valid |
|
path: data/valid-* |
|
task_categories: |
|
- object-detection |
|
pretty_name: Screen2AX-Element |
|
size_categories: |
|
- n<1K |
|
--- |
|
# 📦 Screen2AX-Element |
|
|
|
Screen2AX-Element is part of the **Screen2AX** dataset suite, a research-driven collection for advancing accessibility in macOS applications using computer vision and deep learning. |
|
|
|
This dataset focuses on **UI element detection** from macOS application screenshots and is designed for training and evaluating object detection models. |
|
|
|
--- |
|
|
|
## 🧠 Dataset Summary |
|
|
|
Each sample in the dataset consists of: |
|
- An application **screenshot** (`image`) |
|
- A dictionary of **UI elements** (`objects`) with 2 keys: |
|
- `bbox` (`List[List[int]]`): List of bounding box coordinates in `[x_min, y_min, x_max, y_max]` format |
|
- `category` (`List[str]`): List of labels indicating the UI element type (`AXButton`, `AXDisclosureTriangle`, `AXLink`, `AXTextArea`, `AXImage`) |
|
|
|
The dataset supports training deep learning models for object detection tasks specifically tuned for graphical user interfaces (GUIs) on macOS. |
|
|
|
**Splits:** |
|
- `train` |
|
- `valid` |
|
- `test` |
|
|
|
**Task Category:** |
|
- `object-detection` |
|
|
|
--- |
|
|
|
## 📚 Usage |
|
|
|
### Load with `datasets` library |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("MacPaw/Screen2AX-Element") |
|
``` |
|
|
|
### Example structure |
|
|
|
```python |
|
sample = dataset["train"][0] |
|
print(sample.keys()) |
|
# dict_keys(['image', 'objects']) |
|
|
|
print(sample["objects"]) |
|
# {'bbox': [[x_min, y_min, x_max, y_max], ...], 'category': ['AXButton', ...]} |
|
``` |
|
|
|
--- |
|
|
|
## 📜 License |
|
|
|
This dataset is licensed under the **Apache 2.0 License**. |
|
|
|
--- |
|
|
|
## 🔗 Related Projects |
|
|
|
- [Screen2AX Main Project Page](https://github.com/MacPaw/Screen2AX) |
|
- [Screen2AX HuggingFace Collection](https://huggingface.co/collections/MacPaw/screen2ax-687dfe564d50f163020378b8) |
|
|
|
--- |
|
|
|
## ✍️ Citation |
|
|
|
If you use this dataset, please cite the Screen2AX paper: |
|
|
|
```bibtex |
|
@misc{muryn2025screen2axvisionbasedapproachautomatic, |
|
title={Screen2AX: Vision-Based Approach for Automatic macOS Accessibility Generation}, |
|
author={Viktor Muryn and Marta Sumyk and Mariya Hirna and Sofiya Garkot and Maksym Shamrai}, |
|
year={2025}, |
|
eprint={2507.16704}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG}, |
|
url={https://arxiv.org/abs/2507.16704}, |
|
} |
|
``` |
|
|
|
--- |
|
|
|
## 🌐 MacPaw Research |
|
|
|
Learn more at [https://research.macpaw.com](https://research.macpaw.com) |