repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
sametmax/django--an-app-at-a-time
|
ignore_this_directory/django/contrib/postgres/utils.py
|
prefix_validation_error
|
python
|
def prefix_validation_error(error, prefix, code, params):
if error.error_list == [error]:
error_params = error.params or {}
return ValidationError(
message=format_lazy(
'{} {}',
SimpleLazyObject(lambda: prefix % params),
SimpleLazyObject(lambda: error.message % error_params),
),
code=code,
params={**error_params, **params},
)
return ValidationError([
prefix_validation_error(e, prefix, code, params) for e in error.error_list
])
|
Prefix a validation error message while maintaining the existing
validation data structure.
|
https://github.com/sametmax/django--an-app-at-a-time/blob/99eddf12ead76e6dfbeb09ce0bae61e282e22f8a/ignore_this_directory/django/contrib/postgres/utils.py#L6-L29
|
from django.core.exceptions import ValidationError
from django.utils.functional import SimpleLazyObject
from django.utils.text import format_lazy
|
MIT License
|
frostming/atoml
|
atoml/api.py
|
document
|
python
|
def document() -> TOMLDocument:
return TOMLDocument()
|
Returns a new TOMLDocument instance.
|
https://github.com/frostming/atoml/blob/6d976f7f9c62f36b1f5934b800daf0702d786173/atoml/api.py#L71-L75
|
import datetime as _datetime
from collections.abc import Mapping
from typing import IO, Tuple
from ._utils import parse_rfc3339
from .container import Container
from .items import (
AoT,
Array,
Bool,
Comment,
Date,
DateTime,
Float,
InlineTable,
Integer,
)
from .items import Item as _Item
from .items import Key, String, Table, Time, Trivia, Whitespace, item
from .parser import Parser
from .toml_document import TOMLDocument
def loads(string: str) -> TOMLDocument:
return parse(string)
def dumps(data: Mapping, sort_keys: bool = False) -> str:
if not isinstance(data, Container) and isinstance(data, Mapping):
data = item(dict(data), _sort_keys=sort_keys)
try:
return data.as_string()
except AttributeError as ex:
msg = f"Expecting Mapping or TOML Container, {type(data)} given"
raise TypeError(msg) from ex
def load(fp: IO) -> TOMLDocument:
return parse(fp.read())
def dump(data: Mapping, fp: IO[str], *, sort_keys: bool = False) -> None:
fp.write(dumps(data, sort_keys=sort_keys))
def parse(string: str) -> TOMLDocument:
return Parser(string).parse()
|
MIT License
|
xiaobai1217/mbmd
|
lib/object_detection/evaluator.py
|
_extract_prediction_tensors
|
python
|
def _extract_prediction_tensors(model,
create_input_dict_fn,
ignore_groundtruth=False):
input_dict = create_input_dict_fn()
prefetch_queue = prefetcher.prefetch(input_dict, capacity=500)
input_dict = prefetch_queue.dequeue()
original_image = tf.expand_dims(input_dict[fields.InputDataFields.image], 0)
preprocessed_image = model.preprocess(tf.to_float(original_image))
prediction_dict = model.predict(preprocessed_image)
detections = model.postprocess(prediction_dict)
original_image_shape = tf.shape(original_image)
absolute_detection_boxlist = box_list_ops.to_absolute_coordinates(
box_list.BoxList(tf.squeeze(detections['detection_boxes'], axis=0)),
original_image_shape[1], original_image_shape[2])
label_id_offset = 1
tensor_dict = {
'original_image': original_image,
'image_id': input_dict[fields.InputDataFields.source_id],
'detection_boxes': absolute_detection_boxlist.get(),
'detection_scores': tf.squeeze(detections['detection_scores'], axis=0),
'detection_classes': (
tf.squeeze(detections['detection_classes'], axis=0) +
label_id_offset),
}
if 'detection_masks' in detections:
detection_masks = tf.squeeze(detections['detection_masks'],
axis=0)
detection_boxes = tf.squeeze(detections['detection_boxes'],
axis=0)
detection_masks_reframed = ops.reframe_box_masks_to_image_masks(
detection_masks,
detection_boxes,
original_image_shape[1], original_image_shape[2])
detection_masks_reframed = tf.to_float(tf.greater(detection_masks_reframed,
0.5))
tensor_dict['detection_masks'] = detection_masks_reframed
if not ignore_groundtruth:
normalized_gt_boxlist = box_list.BoxList(
input_dict[fields.InputDataFields.groundtruth_boxes])
gt_boxlist = box_list_ops.scale(normalized_gt_boxlist,
tf.shape(original_image)[1],
tf.shape(original_image)[2])
groundtruth_boxes = gt_boxlist.get()
groundtruth_classes = input_dict[fields.InputDataFields.groundtruth_classes]
tensor_dict['groundtruth_boxes'] = groundtruth_boxes
tensor_dict['groundtruth_classes'] = groundtruth_classes
tensor_dict['area'] = input_dict[fields.InputDataFields.groundtruth_area]
tensor_dict['is_crowd'] = input_dict[
fields.InputDataFields.groundtruth_is_crowd]
tensor_dict['difficult'] = input_dict[
fields.InputDataFields.groundtruth_difficult]
if 'detection_masks' in tensor_dict:
tensor_dict['groundtruth_instance_masks'] = input_dict[
fields.InputDataFields.groundtruth_instance_masks]
return tensor_dict
|
Restores the model in a tensorflow session.
Args:
model: model to perform predictions with.
create_input_dict_fn: function to create input tensor dictionaries.
ignore_groundtruth: whether groundtruth should be ignored.
Returns:
tensor_dict: A tensor dictionary with evaluations.
|
https://github.com/xiaobai1217/mbmd/blob/246f3434bccb9c8357e0f698995b659578bf1afb/lib/object_detection/evaluator.py#L38-L106
|
import logging
import tensorflow as tf
from object_detection import eval_util
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.core import prefetcher
from object_detection.core import standard_fields as fields
from object_detection.utils import ops
slim = tf.contrib.slim
EVAL_METRICS_FN_DICT = {
'pascal_voc_metrics': eval_util.evaluate_detection_results_pascal_voc
}
|
MIT License
|
ucfopen/canvasapi
|
canvasapi/account.py
|
Account.add_authentication_providers
|
python
|
def add_authentication_providers(self, **kwargs):
from canvasapi.authentication_provider import AuthenticationProvider
response = self._requester.request(
"POST",
"accounts/{}/authentication_providers".format(self.id),
_kwargs=combine_kwargs(**kwargs),
)
authentication_providers_json = response.json()
authentication_providers_json.update({"account_id": self.id})
return AuthenticationProvider(self._requester, authentication_providers_json)
|
Add external authentication providers for the account
:calls: `POST /api/v1/accounts/:account_id/authentication_providers \
<https://canvas.instructure.com/doc/api/authentication_providers.html#method.account_authorization_configs.create>`_
:rtype: :class:`canvasapi.authentication_provider.AuthenticationProvider`
|
https://github.com/ucfopen/canvasapi/blob/2ac9979d17979932a3f43eb8737b7648566c1c68/canvasapi/account.py#L56-L75
|
from canvasapi.canvas_object import CanvasObject
from canvasapi.exceptions import CanvasException, RequiredFieldMissing
from canvasapi.feature import Feature, FeatureFlag
from canvasapi.grading_period import GradingPeriod
from canvasapi.grading_standard import GradingStandard
from canvasapi.outcome_import import OutcomeImport
from canvasapi.paginated_list import PaginatedList
from canvasapi.rubric import Rubric
from canvasapi.sis_import import SisImport
from canvasapi.util import combine_kwargs, file_or_path, obj_or_id, obj_or_str
class Account(CanvasObject):
def __str__(self):
return "{} ({})".format(self.name, self.id)
def abort_sis_imports_pending(self, **kwargs):
response = self._requester.request(
"PUT",
"accounts/{}/sis_imports/abort_all_pending".format(self.id),
_kwargs=combine_kwargs(**kwargs),
)
return response.json().get("aborted", False)
def activate_role(self, role, **kwargs):
role_id = obj_or_id(role, "role", (Role,))
response = self._requester.request(
"POST",
"accounts/{}/roles/{}/activate".format(self.id, role_id),
_kwargs=combine_kwargs(**kwargs),
)
return Role(self._requester, response.json())
|
MIT License
|
openai/mujoco-worldgen
|
mujoco_worldgen/parser/parser.py
|
preprocess
|
python
|
def preprocess(xml_dict, root_xml_path, enforce_validation=True):
normalize(xml_dict)
set_absolute_paths(xml_dict, root_xml_path)
extract_includes(xml_dict, root_xml_path, enforce_validation=enforce_validation)
if enforce_validation:
validate(xml_dict)
|
All the steps to turn XML into Worldgen readable form:
- normalize: changes strings to floats / vectors / bools, and
turns consistently nodes to OrderedDict and List
- name_meshes: some meshes are missing names. Here we give default names.
- rename_defaults: some defaults are global, we give them names so
they won't be anymore.
- extract_includes: recursively, we extract includes and merge them.
- validate: we apply few final checks on the structure.
|
https://github.com/openai/mujoco-worldgen/blob/39f52b1b47aed499925a6a214b58bdbdb4e2f75e/mujoco_worldgen/parser/parser.py#L62-L77
|
from collections import OrderedDict
from decimal import getcontext
from os.path import abspath, dirname, join, exists
from mujoco_worldgen.transforms import closure_transform
import numpy as np
import xmltodict
import os
from mujoco_worldgen.util.types import accepts, returns
from mujoco_worldgen.util.path import worldgen_path
from mujoco_worldgen.parser.normalize import normalize, stringify
getcontext().prec = 4
@accepts(str, bool)
@returns(OrderedDict)
def parse_file(xml_path, enforce_validation=True):
with open(xml_path) as f:
xml_string = f.read()
xml_doc_dict = xmltodict.parse(xml_string.strip())
assert 'mujoco' in xml_doc_dict, "XML must contain <mujoco> node"
xml_dict = xml_doc_dict['mujoco']
assert isinstance(xml_dict, OrderedDict), "Invalid node type {}".format(type(xml_dict))
preprocess(xml_dict, xml_path, enforce_validation=enforce_validation)
return xml_dict
@accepts(OrderedDict)
@returns(str)
def unparse_dict(xml_dict):
stringify(xml_dict)
xml_doc_dict = OrderedDict(mujoco=xml_dict)
return xmltodict.unparse(xml_doc_dict, pretty=True)
@accepts(OrderedDict, str, bool)
|
MIT License
|
openstate-sdn/ryu
|
ryu/lib/bfdlib.py
|
BFDSession.__init__
|
python
|
def __init__(self, app, my_discr, dpid, ofport,
src_mac, src_ip, src_port,
dst_mac="FF:FF:FF:FF:FF:FF", dst_ip="255.255.255.255",
detect_mult=3,
desired_min_tx_interval=1000000,
required_min_rx_interval=1000000,
auth_type=0, auth_keys={}):
assert not (auth_type and len(auth_keys) == 0)
self.app = app
self._session_state = bfd.BFD_STATE_DOWN
self._remote_session_state = bfd.BFD_STATE_DOWN
self._local_discr = my_discr
self._remote_discr = 0
self._local_diag = 0
self._desired_min_tx_interval = 1000000
self._required_min_rx_interval = required_min_rx_interval
self._remote_min_rx_interval = -1
self._demand_mode = 0
self._remote_demand_mode = 0
self._detect_mult = detect_mult
self._auth_type = auth_type
self._auth_keys = auth_keys
if self._auth_type in [bfd.BFD_AUTH_KEYED_MD5,
bfd.BFD_AUTH_METICULOUS_KEYED_MD5,
bfd.BFD_AUTH_KEYED_SHA1,
bfd.BFD_AUTH_METICULOUS_KEYED_SHA1]:
self._rcv_auth_seq = 0
self._xmit_auth_seq = random.randint(0, UINT32_MAX)
self._auth_seq_known = 0
self._cfg_desired_min_tx_interval = desired_min_tx_interval
self._cfg_required_min_echo_rx_interval = 0
self._active_role = True
self._detect_time = 0
self._xmit_period = None
self._update_xmit_period()
self._is_polling = True
self._pending_final = False
self._enable_send = True
self._lock = None
self.src_mac = src_mac
self.dst_mac = dst_mac
self.src_ip = src_ip
self.dst_ip = dst_ip
self.ipv4_id = random.randint(0, UINT16_MAX)
self.src_port = src_port
self.dst_port = BFD_CONTROL_UDP_PORT
if dst_mac == "FF:FF:FF:FF:FF:FF" or dst_ip == "255.255.255.255":
self._remote_addr_config = False
else:
self._remote_addr_config = True
self.dpid = dpid
self.datapath = None
self.ofport = ofport
hub.spawn(self._send_loop)
LOG.info("[BFD][%s][INIT] BFD Session initialized.",
hex(self._local_discr))
|
Initialize a BFD session.
__init__ takes the corresponding args in this order.
.. tabularcolumns:: |l|L|
========================= ============================================
Argument Description
========================= ============================================
app The instance of BFDLib.
my_discr My Discriminator.
dpid Datapath ID of the BFD interface.
ofport Openflow port number of the BFD interface.
src_mac Source MAC address of the BFD interface.
src_ip Source IPv4 address of the BFD interface.
dst_mac (Optional) Destination MAC address of the
BFD interface.
dst_ip (Optional) Destination IPv4 address of the
BFD interface.
detect_mult (Optional) Detection time multiplier.
desired_min_tx_interval (Optional) Desired Min TX Interval.
(in microseconds)
required_min_rx_interval (Optional) Required Min RX Interval.
(in microseconds)
auth_type (Optional) Authentication type.
auth_keys (Optional) A dictionary of authentication
key chain which key is an integer of
*Auth Key ID* and value is a string of
*Password* or *Auth Key*.
========================= ============================================
Example::
sess = BFDSession(app=self.bfdlib,
my_discr=1,
dpid=1,
ofport=1,
src_mac="01:23:45:67:89:AB",
src_ip="192.168.1.1",
dst_mac="12:34:56:78:9A:BC",
dst_ip="192.168.1.2",
detect_mult=3,
desired_min_tx_interval=1000000,
required_min_rx_interval=1000000,
auth_type=bfd.BFD_AUTH_KEYED_SHA1,
auth_keys={1: "secret key 1",
2: "secret key 2"})
|
https://github.com/openstate-sdn/ryu/blob/b4a7f6c3615a934eaf42894bcb1cc809fce96e93/ryu/lib/bfdlib.py#L75-L198
|
import logging
import six
import time
import random
from ryu.base import app_manager
from ryu.controller import event
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.exception import RyuException
from ryu.ofproto.ether import ETH_TYPE_IP, ETH_TYPE_ARP
from ryu.ofproto import ofproto_v1_3
from ryu.ofproto import inet
from ryu.lib import ofctl_v1_3
from ryu.lib import hub
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ipv4
from ryu.lib.packet import udp
from ryu.lib.packet import bfd
from ryu.lib.packet import arp
from ryu.lib.packet.arp import ARP_REQUEST, ARP_REPLY
LOG = logging.getLogger(__name__)
UINT16_MAX = (1 << 16) - 1
UINT32_MAX = (1 << 32) - 1
BFD_CONTROL_UDP_PORT = 3784
BFD_ECHO_UDP_PORT = 3785
class BFDSession(object):
|
Apache License 2.0
|
autonomousvision/neat
|
neat/utils.py
|
flow_uv_to_colors
|
python
|
def flow_uv_to_colors(u, v, convert_to_bgr=False):
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
colorwheel = make_colorwheel()
ncols = colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, -u)/np.pi
fk = (a+1) / 2*(ncols-1)
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:,i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1-f)*col0 + f*col1
idx = (rad <= 1)
col[idx] = 1 - rad[idx] * (1-col[idx])
col[~idx] = col[~idx] * 0.75
ch_idx = 2-i if convert_to_bgr else i
flow_image[:,:,ch_idx] = np.floor(255 * col)
return flow_image
|
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (np.ndarray): Input horizontal flow of shape [H,W]
v (np.ndarray): Input vertical flow of shape [H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
|
https://github.com/autonomousvision/neat/blob/686f4a0b5b5bf20c99f323e9542f5b68808df2de/neat/utils.py#L54-L87
|
import math
import numpy as np
import torch
def make_colorwheel():
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
col = col+RY
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
colorwheel[col:col+YG, 1] = 255
col = col+YG
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
col = col+GC
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
colorwheel[col:col+CB, 2] = 255
col = col+CB
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
col = col+BM
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
colorwheel[col:col+MR, 0] = 255
return colorwheel
|
MIT License
|
jfilak/sapcli
|
sap/adt/annotations.py
|
xml_attribute
|
python
|
def xml_attribute(name, deserialize=True, version=None):
def decorator(meth):
return XmlAttributeProperty(name, meth, deserialize=deserialize, version=version)
return decorator
|
Mark the given property as a XML element attribute of the given name
|
https://github.com/jfilak/sapcli/blob/072ab1b8d58ea58e4f4bd67fc4f349a6b0b52fac/sap/adt/annotations.py#L255-L263
|
from enum import Enum
import collections
def _make_attr_name_for_version(element_name, version):
def format_name(version, suffix):
return f'{version}_{suffix}'
name = f'_{element_name}'.replace(':', '_')
if version is None:
return name
if isinstance(version, str):
return format_name(name, version)
if isinstance(version, (list, set)):
return format_name(name, '_'.join(version))
raise TypeError(f'Version cannot be of the type {type(version).__name__}')
class OrderedClassMembers(type):
@classmethod
def __prepare__(mcs, name, bases):
return collections.OrderedDict()
def __new__(mcs, name, bases, classdict):
members = []
if bases:
parent = bases[-1]
if hasattr(parent, '__ordered__'):
members.extend(parent.__ordered__)
members.extend([key for key in classdict.keys()
if key not in ('__module__', '__qualname__')])
classdict['__ordered__'] = members
return type.__new__(mcs, name, bases, classdict)
class XmlElementKind(Enum):
OBJECT = 1
TEXT = 2
class XmlAttributeProperty(property):
def __init__(self, name, fget, fset=None, deserialize=True, version=None):
super().__init__(fget, fset)
self.name = name
self.deserialize = deserialize
self.version = version
def setter(self, fset):
return type(self)(self.name, self.fget, fset, deserialize=self.deserialize)
class XmlElementProperty(property):
NAME_FROM_OBJECT = None
def __init__(self, name, fget, fset=None, deserialize=True, factory=None, kind=XmlElementKind.OBJECT,
version=None):
super().__init__(fget, fset)
self.name = name
self.deserialize = deserialize
self.factory = factory
self.kind = kind
self.version = version
def setter(self, fset):
return type(self)(self.name, self.fget, fset, deserialize=self.deserialize, factory=self.factory,
kind=self.kind)
class XmlPropertyImpl:
def __init__(self, name, default_value=None, version=None):
self.attr = _make_attr_name_for_version(name, version)
self.default_value = default_value
def get(self, obj):
try:
return getattr(obj, self.attr)
except AttributeError:
return self.default_value
def set(self, obj, value):
obj.__dict__[self.attr] = value
class XmlNodeProperty(XmlElementProperty, XmlPropertyImpl):
def __init__(self, name, value=None, deserialize=True, factory=None, kind=XmlElementKind.OBJECT, version=None):
super().__init__(name, self.get, fset=self.set, deserialize=deserialize, factory=factory,
kind=kind, version=version)
XmlPropertyImpl.__init__(self, name, default_value=value, version=version)
def setter(self, fset):
raise NotImplementedError()
class XmlNodeAttributeProperty(XmlAttributeProperty, XmlPropertyImpl):
def __init__(self, name, value=None, deserialize=True, version=None):
super().__init__(name, self.get, fset=self.set, deserialize=deserialize,
version=version)
XmlPropertyImpl.__init__(self, name, default_value=value, version=version)
def setter(self, fset):
raise NotImplementedError()
class XmlListNodeProperty(XmlElementProperty):
def __init__(self, name, value=None, deserialize=True, factory=None, kind=XmlElementKind.OBJECT, version=None):
super().__init__(name, self.get, fset=self.append, deserialize=deserialize,
factory=factory, kind=kind, version=version)
if value is not None and not isinstance(value, list):
raise RuntimeError()
self.attr = _make_attr_name_for_version(name, version)
self.default_value = value
def _get_list(self, obj):
items = obj.__dict__.get(self.attr, None)
if items is None:
if self.default_value is not None:
items = list(self.default_value)
obj.__dict__[self.attr] = items
return items
def get(self, obj):
try:
return getattr(obj, self.attr)
except AttributeError:
return self._get_list(obj)
def append(self, obj, value):
items = self._get_list(obj)
if items is None:
items = []
obj.__dict__[self.attr] = items
items.append(value)
class XmlContainerMeta(OrderedClassMembers):
def define(cls, item_element_name, item_factory, version=None):
items_property = XmlListNodeProperty(item_element_name, deserialize=True, factory=item_factory,
value=[], kind=XmlElementKind.OBJECT, version=version)
return type(f'XMLContainer_{item_factory.__name__}', (cls,), dict(items=items_property))
class XmlContainer(metaclass=XmlContainerMeta):
def append(self, value):
self.items.append(value)
def __iter__(self):
return self.items.__iter__()
def __getitem__(self, index):
return self.items.__getitem__(index)
def __len__(self):
return self.items.__len__()
def xml_text_node_property(name, value=None, deserialize=True, version=None):
return XmlNodeProperty(name, value=value, deserialize=deserialize, factory=None, kind=XmlElementKind.TEXT,
version=version)
|
Apache License 2.0
|
dmlc/gluon-cv
|
gluoncv/torch/data/detection/detection_dataset.py
|
build_detection_train_loader
|
python
|
def build_detection_train_loader(cfg, mapper=None):
dataset_dicts = get_detection_dataset_dicts(
cfg.CONFIG.DATA.DATASET.TRAIN,
filter_empty=cfg.CONFIG.DATA.DETECTION.FILTER_EMPTY_ANNOTATIONS,
min_keypoints=cfg.CONFIG.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
if cfg.CONFIG.DATA.KEYPOINT_ON
else 0,
proposal_files=cfg.CONFIG.DATA.DATASET.PROPOSAL_FILES_TRAIN if cfg.CONFIG.DATA.LOAD_PROPOSALS else None,
)
dataset = DatasetFromList(dataset_dicts, copy=False)
if mapper is None:
mapper = DatasetMapper.from_config(cfg, True)
dataset = MapDataset(dataset, mapper)
sampler_name = cfg.CONFIG.DATA.DETECTION.SAMPLER_TRAIN
logger = logging.getLogger(__name__)
logger.info("Using training sampler {}".format(sampler_name))
if sampler_name == "TrainingSampler":
sampler = TrainingSampler(len(dataset))
elif sampler_name == "RepeatFactorTrainingSampler":
repeat_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency(
dataset_dicts, cfg.CONFIG.DATA.DETECTION.REPEAT_THRESHOLD
)
sampler = RepeatFactorTrainingSampler(repeat_factors)
else:
raise ValueError("Unknown training sampler: {}".format(sampler_name))
return build_batch_data_loader(
dataset,
sampler,
cfg.CONFIG.TRAIN.BATCH_SIZE,
aspect_ratio_grouping=cfg.CONFIG.DATA.DETECTION.ASPECT_RATIO_GROUPING,
num_workers=cfg.CONFIG.DATA.NUM_WORKERS,
)
|
A data loader is created by the following steps:
1. Use the dataset names in config to query :class:`DatasetCatalog`, and obtain a list of dicts.
2. Coordinate a random shuffle order shared among all processes (all GPUs)
3. Each process spawn another few workers to process the dicts. Each worker will:
* Map each metadata dict into another format to be consumed by the model.
* Batch them by simply putting dicts into a list.
The batched ``list[mapped_dict]`` is what this dataloader will yield.
Args:
cfg (CfgNode): the config
mapper (callable): a callable which takes a sample (dict) from dataset and
returns the format to be consumed by the model.
By default it will be `DatasetMapper.from_config(cfg, True)`.
Returns:
an infinite iterator of training data
|
https://github.com/dmlc/gluon-cv/blob/f22650a5d31c31956d9392530a0e619689cdb3c5/gluoncv/torch/data/detection/detection_dataset.py#L291-L345
|
import itertools
import random
import logging
import operator
import dill
import pickle
from pprint import pformat
from typing import List, Optional, Union
import numpy as np
import torch
import torch.utils.data as data
from ..structures import BoxMode
from ...utils.comm import get_world_size
from ...utils.random import seed_all_rng
from ..transforms import instance_transforms as T
from ..registry.catalog import DatasetCatalog, MetadataCatalog
from .detection_utils import check_metadata_consistency
from . import detection_utils as utils
from .samplers import InferenceSampler, RepeatFactorTrainingSampler, TrainingSampler
__all__ = [
"build_batch_data_loader",
"build_detection_train_loader",
"build_detection_test_loader",
"get_detection_dataset_dicts",
"load_proposals_into_dataset",
"print_instances_class_histogram",
"trivial_batch_collator",
]
def filter_images_with_only_crowd_annotations(dataset_dicts):
num_before = len(dataset_dicts)
def valid(anns):
for ann in anns:
if ann.get("iscrowd", 0) == 0:
return True
return False
dataset_dicts = [x for x in dataset_dicts if valid(x["annotations"])]
num_after = len(dataset_dicts)
logger = logging.getLogger(__name__)
logger.info(
"Removed {} images with no usable annotations. {} images left.".format(
num_before - num_after, num_after
)
)
return dataset_dicts
def filter_images_with_few_keypoints(dataset_dicts, min_keypoints_per_image):
num_before = len(dataset_dicts)
def visible_keypoints_in_image(dic):
annotations = dic["annotations"]
return sum(
(np.array(ann["keypoints"][2::3]) > 0).sum()
for ann in annotations
if "keypoints" in ann
)
dataset_dicts = [
x for x in dataset_dicts if visible_keypoints_in_image(x) >= min_keypoints_per_image
]
num_after = len(dataset_dicts)
logger = logging.getLogger(__name__)
logger.info(
"Removed {} images with fewer than {} keypoints.".format(
num_before - num_after, min_keypoints_per_image
)
)
return dataset_dicts
def load_proposals_into_dataset(dataset_dicts, proposal_file):
logger = logging.getLogger(__name__)
logger.info("Loading proposals from: {}".format(proposal_file))
with open(proposal_file, "rb") as f:
proposals = pickle.load(f, encoding="latin1")
rename_keys = {"indexes": "ids", "scores": "objectness_logits"}
for key in rename_keys:
if key in proposals:
proposals[rename_keys[key]] = proposals.pop(key)
img_ids = set({str(record["image_id"]) for record in dataset_dicts})
id_to_index = {str(id): i for i, id in enumerate(proposals["ids"]) if str(id) in img_ids}
bbox_mode = BoxMode(proposals["bbox_mode"]) if "bbox_mode" in proposals else BoxMode.XYXY_ABS
for record in dataset_dicts:
i = id_to_index[str(record["image_id"])]
boxes = proposals["boxes"][i]
objectness_logits = proposals["objectness_logits"][i]
inds = objectness_logits.argsort()[::-1]
record["proposal_boxes"] = boxes[inds]
record["proposal_objectness_logits"] = objectness_logits[inds]
record["proposal_bbox_mode"] = bbox_mode
return dataset_dicts
def print_instances_class_histogram(dataset_dicts, class_names):
num_classes = len(class_names)
hist_bins = np.arange(num_classes + 1)
histogram = np.zeros((num_classes,), dtype=np.int)
for entry in dataset_dicts:
annos = entry["annotations"]
classes = [x["category_id"] for x in annos if not x.get("iscrowd", 0)]
histogram += np.histogram(classes, bins=hist_bins)[0]
N_COLS = min(6, len(class_names) * 2)
def short_name(x):
if len(x) > 13:
return x[:11] + ".."
return x
data = list(
itertools.chain(*[[short_name(class_names[i]), int(v)] for i, v in enumerate(histogram)])
)
total_num_instances = sum(data[1::2])
data.extend([None] * (N_COLS - (len(data) % N_COLS)))
if num_classes > 1:
data.extend(["total", total_num_instances])
data = itertools.zip_longest(*[data[i::N_COLS] for i in range(N_COLS)])
logging.info("Distribution of instances among all {} categories:\n".format(num_classes))
logging.info(pformat(data))
def get_detection_dataset_dicts(
dataset_names, filter_empty=True, min_keypoints=0, proposal_files=None
):
assert len(dataset_names)
dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names]
for dataset_name, dicts in zip(dataset_names, dataset_dicts):
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
if proposal_files is not None:
assert len(dataset_names) == len(proposal_files)
dataset_dicts = [
load_proposals_into_dataset(dataset_i_dicts, proposal_file)
for dataset_i_dicts, proposal_file in zip(dataset_dicts, proposal_files)
]
dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts))
has_instances = "annotations" in dataset_dicts[0]
if filter_empty and has_instances:
dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts)
if min_keypoints > 0 and has_instances:
dataset_dicts = filter_images_with_few_keypoints(dataset_dicts, min_keypoints)
if has_instances:
try:
class_names = MetadataCatalog.get(dataset_names[0]).thing_classes
check_metadata_consistency("thing_classes", dataset_names)
print_instances_class_histogram(dataset_dicts, class_names)
except AttributeError:
pass
return dataset_dicts
def build_batch_data_loader(
dataset, sampler, total_batch_size, *, aspect_ratio_grouping=False, num_workers=0
):
world_size = get_world_size()
assert (
total_batch_size > 0 and total_batch_size % world_size == 0
), "Total batch size ({}) must be divisible by the number of gpus ({}).".format(
total_batch_size, world_size
)
batch_size = total_batch_size // world_size
if aspect_ratio_grouping:
data_loader = torch.utils.data.DataLoader(
dataset,
sampler=sampler,
num_workers=num_workers,
batch_sampler=None,
collate_fn=operator.itemgetter(0),
worker_init_fn=worker_init_reset_seed,
)
return AspectRatioGroupedDataset(data_loader, batch_size)
else:
batch_sampler = torch.utils.data.sampler.BatchSampler(
sampler, batch_size, drop_last=True
)
return torch.utils.data.DataLoader(
dataset,
num_workers=num_workers,
batch_sampler=batch_sampler,
collate_fn=trivial_batch_collator,
worker_init_fn=worker_init_reset_seed,
)
|
Apache License 2.0
|
hosford42/xcs
|
xcs/scenarios.py
|
Scenario.more
|
python
|
def more(self):
raise NotImplementedError()
|
Return a Boolean indicating whether additional actions may be
executed, per the reward program.
Usage:
while scenario.more():
situation = scenario.sense()
selected_action = choice(possible_actions)
reward = scenario.execute(selected_action)
Arguments: None
Return:
A bool indicating whether additional situations remain in the
current run.
|
https://github.com/hosford42/xcs/blob/183bdd0dd339e19ded3be202f86e1b38bdb9f1e5/xcs/scenarios.py#L183-L198
|
__author__ = 'Aaron Hosford'
__all__ = [
'HaystackProblem',
'MUXProblem',
'Scenario',
'ScenarioObserver',
'PreClassifiedData',
'UnclassifiedData',
]
import logging
import random
from abc import ABCMeta, abstractmethod
from . import numpy
from . import bitstrings
class Scenario(metaclass=ABCMeta):
@property
@abstractmethod
def is_dynamic(self):
raise NotImplementedError()
@abstractmethod
def get_possible_actions(self):
raise NotImplementedError()
@abstractmethod
def reset(self):
raise NotImplementedError()
@abstractmethod
def sense(self):
raise NotImplementedError()
@abstractmethod
def execute(self, action):
raise NotImplementedError()
@abstractmethod
|
BSD 3-Clause New or Revised License
|
geier/pycarddav
|
pycarddav/__init__.py
|
Section._parse_write_support
|
python
|
def _parse_write_support(self, value):
value = value.strip()
if value == 'YesPleaseIDoHaveABackupOfMyData':
return True
else:
return False
|
returns True if value is YesPlease..., this is a rather dirty
solution, but it works fine (TM)
|
https://github.com/geier/pycarddav/blob/edc9150f4b21cf027f42e77c42a6030d091e0624/pycarddav/__init__.py#L151-L158
|
import argparse
import ConfigParser
import getpass
import re
import logging
import os
import signal
import subprocess
import sys
import xdg.BaseDirectory
import version
from netrc import netrc
from urlparse import urlsplit
__productname__ = 'pyCardDAV'
__version__ = version.__version__
__author__ = 'Christian Geier'
__copyright__ = 'Copyright 2011-2013 Christian Geier & contributors'
__author_email__ = 'pycarddav@lostpackets.de'
__description__ = 'A CardDAV based address book tool'
__license__ = 'Expat/MIT, see COPYING'
__homepage__ = 'http://lostpackets.de/pycarddav/'
def capture_user_interruption():
signal.signal(signal.SIGINT, lambda x, y: sys.exit(0))
class Namespace(dict):
def __init__(self, obj=None):
dict.__init__(self, obj if obj else {})
def __dir__(self):
return list(self)
def __repr__(self):
return "%s(%s)" % (type(self).__name__, dict.__repr__(self))
def __getattribute__(self, name):
try:
return self[name]
except KeyError:
msg = "'%s' object has no attribute '%s'"
raise AttributeError(msg % (type(self).__name__, name))
def __setattr__(self, name, value):
self[name] = value
def __delattr__(self, name):
del self[name]
class Section(object):
READERS = {bool: ConfigParser.SafeConfigParser.getboolean,
float: ConfigParser.SafeConfigParser.getfloat,
int: ConfigParser.SafeConfigParser.getint,
str: ConfigParser.SafeConfigParser.get}
def __init__(self, parser, group):
self._parser = parser
self._group = group
self._schema = None
self._parsed = {}
def matches(self, name):
return self._group == name.lower()
def is_collection(self):
return False
def parse(self, section):
if self._schema is None:
return None
for option, default, filter_ in self._schema:
try:
if filter_ is None:
reader = ConfigParser.SafeConfigParser.get
filter_ = lambda x: x
else:
reader = Section.READERS[type(default)]
self._parsed[option] = filter_(reader(self._parser, section, option))
self._parser.remove_option(section, option)
except ConfigParser.Error:
if filter_ is None:
self._parsed[option] = default
else:
self._parsed[option] = filter_(default)
return Namespace(self._parsed)
@property
def group(self):
return self._group
def _parse_verify(self, value):
boolvalue = value.strip().lower()
if boolvalue == 'true':
return True
elif boolvalue == 'false':
return False
else:
return os.path.expanduser(value)
|
MIT License
|
styxit/htpc-manager
|
libs/cherrypy/test/modwsgi.py
|
ModWSGISupervisor.stop
|
python
|
def stop(self):
read_process(APACHE_PATH, "-k stop")
|
Gracefully shutdown a server that is serving forever.
|
https://github.com/styxit/htpc-manager/blob/490697460b4fa1797106aece27d873bc256b2ff1/libs/cherrypy/test/modwsgi.py#L125-L127
|
import os
curdir = os.path.abspath(os.path.dirname(__file__))
import re
import sys
import time
import cherrypy
from cherrypy.test import helper, webtest
def read_process(cmd, args=""):
pipein, pipeout = os.popen4("%s %s" % (cmd, args))
try:
firstline = pipeout.readline()
if (re.search(r"(not recognized|No such file|not found)", firstline,
re.IGNORECASE)):
raise IOError('%s must be on your system path.' % cmd)
output = firstline + pipeout.read()
finally:
pipeout.close()
return output
if sys.platform == 'win32':
APACHE_PATH = "httpd"
else:
APACHE_PATH = "apache"
CONF_PATH = "test_mw.conf"
conf_modwsgi = r"""
# Apache2 server conf file for testing CherryPy with modpython_gateway.
ServerName 127.0.0.1
DocumentRoot "/"
Listen %(port)s
AllowEncodedSlashes On
LoadModule rewrite_module modules/mod_rewrite.so
RewriteEngine on
RewriteMap escaping int:escape
LoadModule log_config_module modules/mod_log_config.so
LogFormat "%%h %%l %%u %%t \"%%r\" %%>s %%b \"%%{Referer}i\" \"%%{User-agent}i\"" combined
CustomLog "%(curdir)s/apache.access.log" combined
ErrorLog "%(curdir)s/apache.error.log"
LogLevel debug
LoadModule wsgi_module modules/mod_wsgi.so
LoadModule env_module modules/mod_env.so
WSGIScriptAlias / "%(curdir)s/modwsgi.py"
SetEnv testmod %(testmod)s
"""
class ModWSGISupervisor(helper.Supervisor):
using_apache = True
using_wsgi = True
template=conf_modwsgi
def __str__(self):
return "ModWSGI Server on %s:%s" % (self.host, self.port)
def start(self, modulename):
mpconf = CONF_PATH
if not os.path.isabs(mpconf):
mpconf = os.path.join(curdir, mpconf)
f = open(mpconf, 'wb')
try:
output = (self.template %
{'port': self.port, 'testmod': modulename,
'curdir': curdir})
f.write(output)
finally:
f.close()
result = read_process(APACHE_PATH, "-k start -f %s" % mpconf)
if result:
print(result)
cherrypy._cpserver.wait_for_occupied_port("127.0.0.1", self.port)
webtest.openURL('/ihopetheresnodefault', port=self.port)
time.sleep(1)
|
MIT License
|
ucasir/nprf
|
preprocess/matrix.py
|
kernal_mus
|
python
|
def kernal_mus(n_kernels, use_exact):
if use_exact:
l_mu = [1]
else:
l_mu = [2]
if n_kernels == 1:
return l_mu
bin_size = 2.0 / (n_kernels - 1)
l_mu.append(1 - bin_size / 2)
for i in xrange(1, n_kernels - 1):
l_mu.append(l_mu[i] - bin_size)
return l_mu
|
get the mu for each guassian kernel. Mu is the middle of each bin
:param n_kernels: number of kernels (including exact match). first one is exact match
:return: l_mu, a list of mu.
|
https://github.com/ucasir/nprf/blob/d385929b3249a003e017cba03b8669dc6a05037e/preprocess/matrix.py#L97-L114
|
import numpy as np
from bs4 import BeautifulSoup
from gensim.models.keyedvectors import KeyedVectors
from gensim.matutils import unitvec, cossim
def get_word_vec(word, embeddings, OOV_dict=None):
vector_size = embeddings.vector_size
try:
vec = embeddings.word_vec(word)
except KeyError:
vec = OOV_dict.get(word)
if vec is None:
vec = np.random.uniform(low=-1., high=1., size=vector_size)
OOV_dict.update({word: vec})
return vec
def similarity_matrix(query, doc, embeddings, OOV_dict):
vector_size = embeddings.vector_size
q_mat = np.zeros((len(query), vector_size))
d_mat = np.zeros((vector_size, len(doc)))
for i, word in enumerate(query):
q_mat[i, :] = unitvec(get_word_vec(word, embeddings, OOV_dict))
for j, word in enumerate(doc):
d_mat[:, j] = unitvec(get_word_vec(word, embeddings, OOV_dict))
similarity_matrix = np.dot(q_mat, d_mat)
return similarity_matrix
def hist_from_matrix(text_maxlen, hist_size, sim_mat):
hist = np.zeros((text_maxlen, hist_size), dtype=np.float32)
for (i, j), v in np.ndenumerate(sim_mat):
if i >= text_maxlen:
break
vid = int((v + 1.) / 2. * (hist_size - 1.))
hist[i][vid] += 1
hist += 1
hist = np.log10(hist)
return hist
def kernel_from_matrix(sim_mat, mu_list, sigma_list, d2d=False):
assert len(mu_list) == len(sigma_list)
text1_len = sim_mat.shape[0]
if d2d:
kernel_feature = np.zeros((text1_len, len(mu_list)), dtype=np.float32)
else:
kernel_feature = np.zeros((len(mu_list),), dtype=np.float32)
for i in range(len(mu_list)):
mu = mu_list[i]
sigma = sigma_list[i]
tmp = np.exp(-np.square(sim_mat - mu) / (2 * np.square(sigma)))
kde = np.sum(tmp, axis=1)
kde = np.log(np.maximum(kde, 1e-10)) * 0.01
if d2d:
kernel_feature[:, i] = kde
else:
kernel_feature[i] = (np.sum(kde))
return kernel_feature
|
Apache License 2.0
|
borda/pyimsegm
|
imsegm/utilities/data_samples.py
|
sample_segment_vertical_3d
|
python
|
def sample_segment_vertical_3d(seg_size=SAMPLE_SEG_SIZE_3D_SMALL, nb_labels=SAMPLE_SEG_NB_CLASSES, levels=2):
seg = []
for lb in range(int(levels)):
seg_2d = sample_segment_vertical_2d(seg_size[:2], nb_labels)
for _ in range(int(seg_size[2] / levels)):
seg.append(seg_2d.copy() + lb * nb_labels)
seg = np.array(seg, dtype=np.int)
return seg
|
create sample regular 3D segmentation
:param tuple(int,int)|tuple(int,int,int) seg_size:
:param int nb_labels:
:param int levels:
:return ndarray:
>>> im = sample_segment_vertical_3d((10, 5, 6), 3)
>>> im[:, :, 3]
array([[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[4, 4, 4, 4, 4],
[4, 4, 4, 4, 4],
[4, 4, 4, 4, 4]])
|
https://github.com/borda/pyimsegm/blob/7463cfc7aad8781564dc84c8780f291cc3c17fe3/imsegm/utilities/data_samples.py#L96-L119
|
import logging
import os
import numpy as np
from imsegm.utilities.data_io import io_imread, update_path
SAMPLE_SEG_SIZE_2D_SMALL = (20, 10)
SAMPLE_SEG_SIZE_2D_NORM = (150, 100)
SAMPLE_SEG_NB_CLASSES = 3
SAMPLE_SEG_SIZE_3D_SMALL = (10, 5, 6)
PATH_IMAGES = update_path('data-images')
IMAGE_LENNA = os.path.join('others', 'lena.png')
IMAGE_OBJECTS = os.path.join('synthetic', 'reference.jpg')
IMAGE_3CLS = os.path.join('synthetic', 'texture_rgb_3cls.jpg')
IMAGE_STAR = os.path.join('others', 'sea_starfish-2.jpg')
IMAGE_HISTOL_CIMA = os.path.join('histology_CIMA', '29-041-Izd2-w35-CD31-3-les1.jpg')
IMAGE_HISTOL_FLAGSHIP = os.path.join('histology_Flagship', 'Case001_Cytokeratin.jpg')
IMAGE_DROSOPHILA_DISC = os.path.join('drosophila_disc', 'image', 'img_6.jpg')
ANNOT_DROSOPHILA_DISC = os.path.join('drosophila_disc', 'annot', 'img_6.png')
IMAGE_DROSOPHILA_OVARY_2D = os.path.join('drosophila_ovary_slice', 'image', 'insitu7545.jpg')
ANNOT_DROSOPHILA_OVARY_2D = os.path.join('drosophila_ovary_slice', 'annot_struct', 'insitu7545.png')
IMAGE_DROSOPHILA_OVARY_3D = os.path.join('drosophila_ovary_3D', 'AU10-13_f0011.tif')
IMAGE_LANGER_ISLET = os.path.join('langerhans_islets', 'image', 'gtExoIsl_21.jpg')
LIST_ALL_IMAGES = [
IMAGE_LENNA,
IMAGE_3CLS,
IMAGE_OBJECTS,
IMAGE_STAR,
IMAGE_HISTOL_CIMA,
IMAGE_HISTOL_FLAGSHIP,
IMAGE_LANGER_ISLET,
IMAGE_DROSOPHILA_DISC,
ANNOT_DROSOPHILA_DISC,
IMAGE_DROSOPHILA_OVARY_2D,
ANNOT_DROSOPHILA_OVARY_2D,
IMAGE_DROSOPHILA_OVARY_3D,
]
def sample_segment_vertical_2d(seg_size=SAMPLE_SEG_SIZE_2D_SMALL, nb_labels=SAMPLE_SEG_NB_CLASSES):
cls_vals = []
cls_size = (seg_size[1], int(seg_size[0] / nb_labels))
for lb in range(nb_labels):
cls_vals.append(lb * np.ones(cls_size))
seg = np.hstack(tuple(cls_vals))
seg = np.array(seg, dtype=np.int)
return seg
|
BSD 3-Clause New or Revised License
|
kippt/django-api-boilerplate
|
api_boilerplate/middleware.py
|
ApiHttpBasicAuthMiddleware.process_view
|
python
|
def process_view(self, request, view_func, view_args, view_kwargs):
if request.META.get('HTTP_AUTHORIZATION', None):
try:
(auth_type, data) = request.META['HTTP_AUTHORIZATION'].split()
if auth_type != 'Basic':
return JSONResponseUnauthorized(request, 'Error with HTTP Basic Auth')
user_pass = base64.b64decode(data)
except:
return JSONResponseUnauthorized(request, 'Error with HTTP Basic Auth')
bits = user_pass.split(':', 1)
if len(bits) != 2:
return JSONResponseUnauthorized(request, 'Invalid Authorization header. Value should be "Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==" where base64 encoded part is encrypted from "username:password"')
username = bits[0]
user = _get_user(username)
if user == None:
return JSONResponseUnauthorized(request, 'User and password don\'t match')
if user.check_password(bits[1]):
request.user = user
else:
return JSONResponseUnauthorized(request, 'Username and password don\'t match')
request.user = user
return
|
Middleware for API authentication.
Partly forked from django-tastypie
|
https://github.com/kippt/django-api-boilerplate/blob/ae73629f6b45f44cd0adff07382dd4c638f2c1ba/api_boilerplate/middleware.py#L66-L100
|
import base64
import json
from django.contrib.auth.models import User
from django.conf import settings
from django.db.models.loading import get_model
from django.middleware.csrf import get_token
from api_boilerplate.http import JSONResponseUnauthorized, JSONResponseBadRequest
AUTH_CASE_INSENSITIVE = getattr(settings, 'API_AUTH_CASE_INSENSITIVE', False)
AUTH_EMAIL_AS_USERNAME = getattr(settings, 'API_AUTH_EMAIL_AS_USERNAME', False)
API_KEY_MODEL = getattr(settings, 'API_KEY_MODEL',
'api_boilerplate.models.ApiKey')
ApiKey = get_model(*API_KEY_MODEL.split('.',1))
REQUEST_JSON = getattr(settings, 'API_REQUEST_JSON', True)
def _get_user(username):
try:
if AUTH_CASE_INSENSITIVE:
user = User.objects.get(username__iexact=username)
else:
user = User.objects.get(username=username)
except User.DoesNotExist:
user = None
if AUTH_EMAIL_AS_USERNAME:
if not user:
try:
if AUTH_CASE_INSENSITIVE:
user = User.objects.get(email__iexact=username)
else:
user = User.objects.get(email=username)
except User.DoesNotExist:
user = None
return user
class ApiDjangoAuthMiddleware:
def process_view(self, request, view_func, view_args, view_kwargs):
if request.user.is_authenticated():
get_token(request)
return None
class ApiHttpBasicAuthMiddleware:
|
MIT License
|
jonathanfeng/new_horizons
|
venv/lib/python3.7/site-packages/jinja2/runtime.py
|
Context.get_all
|
python
|
def get_all(self):
if not self.vars:
return self.parent
if not self.parent:
return self.vars
return dict(self.parent, **self.vars)
|
Return the complete context as dict including the exported
variables. For optimizations reasons this might not return an
actual copy so be careful with using it.
|
https://github.com/jonathanfeng/new_horizons/blob/0ec21c8f8423932611e1e0bf24548dcef912bc54/venv/lib/python3.7/site-packages/jinja2/runtime.py#L249-L258
|
import sys
from itertools import chain
from types import MethodType
from markupsafe import escape
from markupsafe import Markup
from markupsafe import soft_unicode
from ._compat import abc
from ._compat import imap
from ._compat import implements_iterator
from ._compat import implements_to_string
from ._compat import iteritems
from ._compat import PY2
from ._compat import string_types
from ._compat import text_type
from ._compat import with_metaclass
from .exceptions import TemplateNotFound
from .exceptions import TemplateRuntimeError
from .exceptions import UndefinedError
from .nodes import EvalContext
from .utils import concat
from .utils import evalcontextfunction
from .utils import internalcode
from .utils import missing
from .utils import Namespace
from .utils import object_type_repr
exported = [
"LoopContext",
"TemplateReference",
"Macro",
"Markup",
"TemplateRuntimeError",
"missing",
"concat",
"escape",
"markup_join",
"unicode_join",
"to_string",
"identity",
"TemplateNotFound",
"Namespace",
"Undefined",
]
to_string = text_type
def identity(x):
return x
def markup_join(seq):
buf = []
iterator = imap(soft_unicode, seq)
for arg in iterator:
buf.append(arg)
if hasattr(arg, "__html__"):
return Markup(u"").join(chain(buf, iterator))
return concat(buf)
def unicode_join(seq):
return concat(imap(text_type, seq))
def new_context(
environment,
template_name,
blocks,
vars=None,
shared=None,
globals=None,
locals=None,
):
if vars is None:
vars = {}
if shared:
parent = vars
else:
parent = dict(globals or (), **vars)
if locals:
if shared:
parent = dict(parent)
for key, value in iteritems(locals):
if value is not missing:
parent[key] = value
return environment.context_class(environment, parent, template_name, blocks)
class TemplateReference(object):
def __init__(self, context):
self.__context = context
def __getitem__(self, name):
blocks = self.__context.blocks[name]
return BlockReference(name, self.__context, blocks, 0)
def __repr__(self):
return "<%s %r>" % (self.__class__.__name__, self.__context.name)
def _get_func(x):
return getattr(x, "__func__", x)
class ContextMeta(type):
def __new__(mcs, name, bases, d):
rv = type.__new__(mcs, name, bases, d)
if bases == ():
return rv
resolve = _get_func(rv.resolve)
default_resolve = _get_func(Context.resolve)
resolve_or_missing = _get_func(rv.resolve_or_missing)
default_resolve_or_missing = _get_func(Context.resolve_or_missing)
if (
resolve is not default_resolve
and resolve_or_missing is default_resolve_or_missing
):
rv._legacy_resolve_mode = True
elif (
resolve is default_resolve
and resolve_or_missing is default_resolve_or_missing
):
rv._fast_resolve_mode = True
return rv
def resolve_or_missing(context, key, missing=missing):
if key in context.vars:
return context.vars[key]
if key in context.parent:
return context.parent[key]
return missing
class Context(with_metaclass(ContextMeta)):
_legacy_resolve_mode = False
_fast_resolve_mode = False
def __init__(self, environment, parent, name, blocks):
self.parent = parent
self.vars = {}
self.environment = environment
self.eval_ctx = EvalContext(self.environment, name)
self.exported_vars = set()
self.name = name
self.blocks = dict((k, [v]) for k, v in iteritems(blocks))
if self._fast_resolve_mode:
self.resolve_or_missing = MethodType(resolve_or_missing, self)
def super(self, name, current):
try:
blocks = self.blocks[name]
index = blocks.index(current) + 1
blocks[index]
except LookupError:
return self.environment.undefined(
"there is no parent block called %r." % name, name="super"
)
return BlockReference(name, self, blocks, index)
def get(self, key, default=None):
try:
return self[key]
except KeyError:
return default
def resolve(self, key):
if self._legacy_resolve_mode:
rv = resolve_or_missing(self, key)
else:
rv = self.resolve_or_missing(key)
if rv is missing:
return self.environment.undefined(name=key)
return rv
def resolve_or_missing(self, key):
if self._legacy_resolve_mode:
rv = self.resolve(key)
if isinstance(rv, Undefined):
rv = missing
return rv
return resolve_or_missing(self, key)
def get_exported(self):
return dict((k, self.vars[k]) for k in self.exported_vars)
|
MIT License
|
lcharlick/python-metallum
|
metallum.py
|
Album.date
|
python
|
def date(self) -> Optional[datetime.datetime]:
s = self._dd_text_for_label('Release date:')
if len(s) > 4 and ',' not in s:
date = datetime.datetime.strptime(s, '%B %Y')
else:
date = date_parser.parse(s)
return date
|
>>> album.date
datetime.datetime(1986, 3, 3, 0, 0)
|
https://github.com/lcharlick/python-metallum/blob/e50bf2ae83ac0bc3928b379714ebf53771ae6ac4/metallum.py#L693-L705
|
import datetime
import json
import re
import time
import os.path
import tempfile
from typing import List, Optional
from urllib.parse import urlencode
import requests_cache
from dateutil import parser as date_parser
from pyquery import PyQuery
from requests_cache.core import remove_expired_responses
CACHE_FILE = os.path.join(tempfile.gettempdir(), 'metallum_cache')
requests_cache.install_cache(cache_name=CACHE_FILE, expire_after=300)
remove_expired_responses()
BASE_URL = 'https://www.metal-archives.com'
USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2227.1 Safari/537.36'
BR = '<br/>'
CR = ' '
REQUEST_TIMEOUT = 1.0
UTC_OFFSET = 4
def map_params(params, m):
res = {}
for k, v in params.items():
if v is not None:
res[m.get(k, k)] = v
return res
def band_for_id(id: str) -> 'Band':
return Band('bands/_/{0}'.format(id))
def band_search(name, strict=True, genre=None, countries=[], year_created_from=None,
year_created_to=None, status=[], themes=None, location=None, label=None,
page_start=0) -> 'Search':
params = locals()
params['strict'] = str(int(params['strict']))
params = map_params(params, {
'name': 'bandName',
'strict': 'exactBandMatch',
'countries': 'country[]',
'year_created_from': 'yearCreationFrom',
'year_created_to': 'yearCreationTo',
'status': 'status[]',
'label': 'bandLabelName',
'page_start': 'iDisplayStart'
})
url = 'search/ajax-advanced/searching/bands/?' + urlencode(params, True)
return Search(url, BandResult)
def album_for_id(id: str) -> 'AlbumWrapper':
return AlbumWrapper(url='albums/_/_/{0}'.format(id))
def album_search(title, strict=True, band=None, band_strict=True, year_from=None,
year_to=None, month_from=None, month_to=None, countries=[], location=None, label=None,
indie_label=False, genre=None, types=[], page_start=0) -> 'Search':
params = locals()
params['strict'] = str(int(params['strict']))
params['band_strict'] = str(int(params['band_strict']))
params['indie_label'] = str(int(params['indie_label']))
if year_from and not month_from:
params['month_from'] = '1'
if year_to and not month_to:
params['month_to'] = '12'
params = map_params(params, {
'title': 'releaseTitle',
'strict': 'exactReleaseMatch',
'band': 'bandName',
'band_strict': 'exactBandMatch',
'year_from': 'releaseYearFrom',
'year_to': 'releaseYearTo',
'month_from': 'releaseMonthFrom',
'month_to': 'releaseMonthTo',
'countries': 'country[]',
'label': 'releaseLabelName',
'indie_label': 'indieLabel',
'types': 'releaseType[]',
'page_start': 'iDisplayStart'
})
url = 'search/ajax-advanced/searching/albums/?' + urlencode(params, True)
return Search(url, AlbumResult)
def lyrics_for_id(id: int) -> 'Lyrics':
return Lyrics(id)
def split_genres(s: str) -> List[str]:
return re.split(r'(?:,|;)\s*(?![^()]*\))', s)
class AlbumTypes(object):
FULL_LENGTH = 'Full-length'
EP = 'EP'
SINGLE = 'Single'
DEMO = 'Demo'
VIDEO = 'Video/VHS'
COMPILATION = 'Compilation'
DVD = 'DVD'
LIVE = 'Live album'
SPLIT = 'Split'
def make_absolute(endpoint: str) -> str:
return '{0}/{1}'.format(BASE_URL, endpoint)
def offset_time(t: datetime.datetime) -> datetime.datetime:
td = datetime.timedelta(hours=UTC_OFFSET)
return t + td
def parse_duration(s: str) -> int:
parts = s.split(':')
seconds = int(parts[-1])
if len(parts) > 1:
seconds += int(parts[-2]) * 60
if len(parts) == 3:
seconds += int(parts[0]) * 3600
return seconds
class Metallum(object):
def __init__(self, url):
self._session = requests_cache.CachedSession(cache_name=CACHE_FILE)
self._session.hooks = {'response': self._make_throttle_hook()}
self._session.headers = {
'User-Agent': USER_AGENT,
'Accept-Encoding': 'gzip'
}
self._content = self._fetch_page_content(url)
self._page = PyQuery(self._content)
def _make_throttle_hook(self):
def hook(response, *args, **kwargs):
is_cached = getattr(response, 'from_cache', False)
if not is_cached:
time.sleep(REQUEST_TIMEOUT)
return response
return hook
def _fetch_page_content(self, url) -> str:
res = self._session.get(make_absolute(url))
return res.text
class MetallumEntity(Metallum):
def _dd_element_for_label(self, label: str) -> Optional[PyQuery]:
labels = list(self._page('dt').contents())
try:
index = labels.index(label)
except ValueError:
return None
return self._page('dd').eq(index)
def _dd_text_for_label(self, label: str) -> str:
element = self._dd_element_for_label(label)
return element.text() if element else ""
class MetallumCollection(Metallum, list):
def __init__(self, url):
super().__init__(url)
def search(self, **kwargs) -> 'MetallumCollection':
collection = self[:]
for arg in kwargs:
for item in collection[:]:
if kwargs[arg].lower() != getattr(item, arg).lower():
try:
collection.remove(item)
except ValueError:
continue
return collection
class Search(Metallum, list):
def __init__(self, url, result_handler):
super().__init__(url)
data = json.loads(self._content)
results = data['aaData']
for result in results:
self.append(result_handler(result))
self.result_count = int(data['iTotalRecords'])
class SearchResult(list):
_resultType = None
def __init__(self, details):
super().__init__()
for detail in details:
if re.match('^<a href.*', detail):
d = PyQuery(detail)
self.append(d('a').text())
else:
self.append(detail)
def __repr__(self):
s = ' | '.join(self)
return '<SearchResult: {0}>'.format(s)
def get(self) -> 'Metallum':
return self._resultType(self.url)
class BandResult(SearchResult):
def __init__(self, details):
super().__init__(details)
self._details = details
self._resultType = Band
@property
def id(self) -> str:
url = PyQuery(self._details[0])('a').attr('href')
return re.search(r'\d+$', url).group(0)
@property
def url(self) -> str:
return 'bands/_/{0}'.format(self.id)
@property
def name(self) -> str:
return self[0]
@property
def genres(self) -> List[str]:
return split_genres(self[1])
@property
def country(self) -> str:
return self[2]
class AlbumResult(SearchResult):
def __init__(self, details):
super().__init__(details)
self._details = details
self._resultType = AlbumWrapper
@property
def id(self) -> str:
url = PyQuery(self._details[1])('a').attr('href')
return re.search(r'\d+$', url).group(0)
@property
def url(self) -> str:
return 'albums/_/_/{0}'.format(self.id)
@property
def title(self) -> str:
return self[1]
@property
def type(self) -> str:
return self[2]
@property
def bands(self) -> List['Band']:
bands = []
el = PyQuery(self._details[0]).wrap('<div></div>')
for a in el.find('a'):
url = PyQuery(a).attr('href')
id = re.search(r'\d+$', url).group(0)
bands.append(Band('bands/_/{0}'.format(id)))
return bands
@property
def band_name(self) -> str:
return self[0]
class Band(MetallumEntity):
def __init__(self, url):
super().__init__(url)
def __repr__(self):
return '<Band: {0}>'.format(self.name)
@property
def id(self) -> str:
url = self._page('.band_name a').attr('href')
return re.search(r'\d+$', url).group(0)
@property
def url(self) -> str:
return 'bands/_/{0}'.format(self.id)
@property
def added(self) -> Optional[datetime.datetime]:
s = self._page('#auditTrail').find('tr').eq(1).find('td').eq(0).text()[10:]
try:
return offset_time(datetime.datetime.strptime(s, '%Y-%m-%d %H:%M:%S'))
except ValueError:
return None
@property
def modified(self) -> Optional[datetime.datetime]:
s = self._page('#auditTrail').find('tr').eq(1).find('td').eq(1).text()[18:]
try:
return offset_time(datetime.datetime.strptime(s, '%Y-%m-%d %H:%M:%S'))
except ValueError:
return None
@property
def name(self) -> str:
return self._page('h1.band_name').text().strip()
@property
def country(self) -> str:
return self._dd_text_for_label('Country of origin:')
@property
def location(self) -> str:
return self._dd_text_for_label('Location:')
@property
def status(self) -> str:
return self._dd_text_for_label('Status:')
@property
def formed_in(self) -> str:
return self._dd_text_for_label('Formed in:')
@property
def genres(self) -> List[str]:
return split_genres(self._dd_text_for_label('Genre:'))
@property
def themes(self) -> List[str]:
return self._dd_text_for_label('Lyrical themes:').split(', ')
@property
def label(self) -> str:
return self._dd_text_for_label('Current label:')
@property
def logo(self) -> Optional[str]:
url = self._page('#logo').attr('href')
if not url:
return None
return url.split("?")[0]
@property
def photo(self) -> Optional[str]:
url = self._page('#photo').attr('href')
if not url:
return None
return url.split("?")[0]
@property
def albums(self) -> List['AlbumCollection']:
url = 'band/discography/id/{0}/tab/all'.format(self.id)
return AlbumCollection(url)
class AlbumCollection(MetallumCollection):
def __init__(self, url):
super().__init__(url)
rows = self._page('tr:gt(0)')
for index in range(len(rows)):
self.append(AlbumWrapper(elem=rows.eq(index)))
class AlbumWrapper(Metallum):
def __init__(self, url=None, elem=None):
if url:
super().__init__(url)
self._album = Album(url)
elif elem:
self._album = LazyAlbum(elem)
def __repr__(self):
return '<Album: {0} ({1})>'.format(self.title, self.type)
def __getattr__(self, name):
if not hasattr(self._album, name) and hasattr(Album, name):
self._album = Album(self._album.url)
return getattr(self._album, name)
@property
def tracks(self):
return TrackCollection(self._album.url, self)
@property
def disc_count(self):
discs = 0
for track in self.tracks:
if track.disc_number > discs:
discs = track.disc_number
return discs
class Album(MetallumEntity):
def __init__(self, url):
super().__init__(url)
@property
def id(self) -> str:
url = self._page('.album_name a').attr('href')
return re.search(r'\d+$', url).group(0)
@property
def url(self) -> str:
return 'albums/_/_/{0}'.format(self.id)
@property
def bands(self) -> List[Band]:
bands = []
for a in self._page('.band_name').find('a'):
url = PyQuery(a).attr('href')
id = re.search(r'\d+$', url).group(0)
bands.append(Band('bands/_/{0}'.format(id)))
return bands
@property
def added(self) -> Optional[datetime.datetime]:
s = self._page('#auditTrail').find('tr').eq(1).find('td').eq(0).text()[10:]
try:
return offset_time(datetime.datetime.strptime(s, '%Y-%m-%d %H:%M:%S'))
except ValueError:
return None
@property
def modified(self) -> Optional[datetime.datetime]:
s = self._page('#auditTrail').find('tr').eq(1).find('td').eq(1).text()[18:]
try:
return offset_time(datetime.datetime.strptime(s, '%Y-%m-%d %H:%M:%S'))
except ValueError:
return None
@property
def title(self) -> str:
return self._page('h1.album_name a').text()
@property
def type(self) -> str:
element = self._dd_element_for_label('Type:')
return element.text() if element else ""
@property
def duration(self) -> int:
s = self._page('table.table_lyrics td strong').text()
if s:
return parse_duration(s)
else:
return 0
@property
|
MIT License
|
pyviz-dev/nbsite
|
examples/sites/holoviews/holoviews/ipython/preprocessors.py
|
filter_magic
|
python
|
def filter_magic(source, magic, strip=True):
filtered, magic_lines=[],[]
for line in source.splitlines():
if line.strip().startswith(magic):
magic_lines.append(line)
else:
filtered.append(line)
if strip:
magic_lines = [el.replace(magic,'') for el in magic_lines]
return '\n'.join(filtered), magic_lines
|
Given the source of a cell, filter out the given magic and collect
the lines using the magic into a list.
If strip is True, the IPython syntax part of the magic (e.g %magic
or %%magic) is stripped from the returned lines.
|
https://github.com/pyviz-dev/nbsite/blob/7a4752e6ed6a3b0c3698473a6dd3a71ff9ba2acb/examples/sites/holoviews/holoviews/ipython/preprocessors.py#L58-L74
|
import ast
from nbconvert.preprocessors import Preprocessor
def comment_out_magics(source):
filtered = []
for line in source.splitlines():
if line.strip().startswith('%'):
filtered.append('# ' + line)
else:
filtered.append(line)
return '\n'.join(filtered)
def wrap_cell_expression(source, template='{expr}'):
cell_output_types = (ast.IfExp, ast.BoolOp, ast.BinOp, ast.Call,
ast.Name, ast.Attribute)
try:
node = ast.parse(comment_out_magics(source))
except SyntaxError:
return source
filtered = source.splitlines()
if node.body != []:
last_expr = node.body[-1]
if not isinstance(last_expr, ast.Expr):
pass
elif isinstance(last_expr.value, cell_output_types):
expr_end_slice = filtered[last_expr.lineno-1][:last_expr.col_offset]
expr_start_slice = filtered[last_expr.lineno-1][last_expr.col_offset:]
start = '\n'.join(filtered[:last_expr.lineno-1]
+ ([expr_end_slice] if expr_end_slice else []))
ending = '\n'.join(([expr_start_slice] if expr_start_slice else [])
+ filtered[last_expr.lineno:])
if ending.strip().endswith(';'):
return source
return start + '\n' + template.format(expr=ending)
return source
|
BSD 3-Clause New or Revised License
|
gdanezis/rscoin
|
rscoin/__init__.py
|
Key.id
|
python
|
def id(self):
return sha256(self.pub.export()).digest()
|
The fingerprint of the public key
|
https://github.com/gdanezis/rscoin/blob/6c0983cf6f9dba3bbd77d245be5a4e02adf9560e/rscoin/__init__.py#L53-L56
|
from collections import namedtuple
from struct import pack, unpack
from hashlib import sha256
from petlib.ec import EcGroup, EcPt
from petlib.bn import Bn
from petlib.ecdsa import do_ecdsa_sign, do_ecdsa_verify, do_ecdsa_setup
from os import urandom
_globalECG = EcGroup(713)
class Key:
def __init__(self, key_bytes, public=True):
self.G = _globalECG
if public:
self.sec = None
self.pub = EcPt.from_binary(key_bytes, self.G)
self.optim = None
else:
self.sec = Bn.from_binary(sha256(key_bytes).digest())
self.pub = self.sec * self.G.generator()
self.optim = do_ecdsa_setup(self.G, self.sec)
def sign(self, message):
assert len(message) == 32
assert self.sec is not None
r, s = do_ecdsa_sign(self.G, self.sec, message, self.optim)
r0, s0 = r.binary(), s.binary()
assert len(r0) <= 32 and len(s0) <= 32
sig = pack("H32sH32s", len(r0), r0, len(s0), s0)
return sig
def verify(self, message, sig):
assert len(message) == 32
lr, r, ls, s = unpack("H32sH32s", sig)
sig = Bn.from_binary(r[:lr]), Bn.from_binary(s[:ls])
return do_ecdsa_verify(self.G, self.pub, sig, message)
|
BSD 2-Clause Simplified License
|
zhongdao/unitrack
|
tracker/sot/lib/models/modules.py
|
FeatureBase.get_feature
|
python
|
def get_feature(self, im: torch.Tensor):
is_color = im.shape[1] == 3
if is_color and not self.use_for_color or not is_color and not self.use_for_gray:
return torch.Tensor([])
feat = self.extract(im)
if self.output_size is not None:
feat = F.adaptive_avg_pool2d(feat, self.output_size)
elif self.pool_stride != 1:
feat = F.avg_pool2d(feat, self.pool_stride, self.pool_stride)
if self.normalize_power is not None:
feat /= (torch.sum(feat.abs().view(feat.shape[0],1,1,-1)**self.normalize_power, dim=3, keepdim=True) /
(feat.shape[1]*feat.shape[2]*feat.shape[3]) + 1e-10)**(1/self.normalize_power)
return feat
|
Get the feature. Generally, call this function.
args:
im: image patch as a torch.Tensor.
|
https://github.com/zhongdao/unitrack/blob/e18aece2a9046225ec3b3dd595a35490d594c699/tracker/sot/lib/models/modules.py#L375-L400
|
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from functools import partial
import collections
import re
eps = 1e-5
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def conv3x3NP(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, bias=False)
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
def down(in_planes, out_planes):
return nn.Sequential(nn.Conv2d(in_planes, out_planes, kernel_size=1),
nn.BatchNorm2d(out_planes))
def down_spatial(in_planes, out_planes):
return nn.Sequential(nn.Conv2d(in_planes, out_planes, kernel_size=5, stride=4),
nn.BatchNorm2d(out_planes))
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
padding = 2 - stride
if downsample is not None and dilation > 1:
dilation = dilation // 2
padding = dilation
assert stride == 1 or dilation == 1, "stride and dilation must have one equals to zero at least"
if dilation > 1:
padding = dilation
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=padding, bias=False, dilation=dilation)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck_BIG_CI(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, last_relu, stride=1, downsample=None, dilation=1):
super(Bottleneck_BIG_CI, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
padding = 1
if abs(dilation - 2) < eps: padding = 2
if abs(dilation - 3) < eps: padding = 3
self.conv2 = nn.Conv2d(planes, planes*2, kernel_size=3, stride=stride, padding=padding, bias=False, dilation=dilation)
self.bn2 = nn.BatchNorm2d(planes*2)
self.conv3 = nn.Conv2d(planes*2, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
self.last_relu = last_relu
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
if self.last_relu:
out = self.relu(out)
out = self.center_crop(out)
return out
def center_crop(self, x):
return x[:, :, 1:-1, 1:-1].contiguous()
class ResNet_plus2(nn.Module):
def __init__(self, block, layers, used_layers, online=False):
self.inplanes = 64
super(ResNet_plus2, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=0,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.feature_size = 128 * block.expansion
self.used_layers = used_layers
self.layer3_use = True if 3 in used_layers else False
self.layer4_use = True if 4 in used_layers else False
if self.layer3_use:
if online:
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2, update=True)
self.layeronline = self._make_layer(block, 256, layers[2], stride=2)
else:
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
self.feature_size = (256 + 128) * block.expansion
else:
self.layer3 = lambda x: x
if self.layer4_use:
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)
self.feature_size = 512 * block.expansion
else:
self.layer4 = lambda x: x
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, update=False):
downsample = None
dd = dilation
if stride != 1 or self.inplanes != planes * block.expansion:
if stride == 1 and dilation == 1:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
else:
if dilation > 1:
dd = dilation // 2
padding = dd
else:
dd = 1
padding = 0
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=3, stride=stride, bias=False,
padding=padding, dilation=dd),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride=stride,
downsample=downsample, dilation=dilation))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation=dilation))
if update: self.inplanes = int(self.inplanes / 2)
return nn.Sequential(*layers)
def forward(self, x, online=False):
x = self.conv1(x)
x = self.bn1(x)
x_ = self.relu(x)
x = self.maxpool(x_)
p1 = self.layer1(x)
p2 = self.layer2(p1)
if online: return self.layeronline(p2)
p3 = self.layer3(p2)
return [x_, p1, p2], p3
class ResNet(nn.Module):
def __init__(self, block, layers, last_relus, s2p_flags, firstchannels=64, channels=[64, 128], dilation=1):
self.inplanes = firstchannels
self.stage_len = len(layers)
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, firstchannels, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(firstchannels)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
if s2p_flags[0]:
self.layer1 = self._make_layer(block, channels[0], layers[0], stride2pool=True, last_relu=last_relus[0])
else:
self.layer1 = self._make_layer(block, channels[0], layers[0], last_relu=last_relus[0])
if s2p_flags[1]:
self.layer2 = self._make_layer(block, channels[1], layers[1], stride2pool=True, last_relu=last_relus[1], dilation=dilation)
else:
self.layer2 = self._make_layer(block, channels[1], layers[1], last_relu=last_relus[1], dilation=dilation)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal(m.weight, mode='fan_out')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, last_relu, stride=1, stride2pool=False, dilation=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, last_relu=True, stride=stride, downsample=downsample, dilation=dilation))
if stride2pool:
layers.append(self.maxpool)
self.inplanes = planes * block.expansion
for i in range(1, blocks):
if i == blocks - 1:
layers.append(block(self.inplanes, planes, last_relu=last_relu, dilation=dilation))
else:
layers.append(block(self.inplanes, planes, last_relu=True, dilation=dilation))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.center_crop7(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
return x
def center_crop7(self, x):
return x[:, :, 2:-2, 2:-2].contiguous()
class FeatureBase:
def __init__(self, fparams = None, pool_stride = None, output_size = None, normalize_power = None, use_for_color = True, use_for_gray = True):
self.fparams = fparams
self.pool_stride = 1 if pool_stride is None else pool_stride
self.output_size = output_size
self.normalize_power = normalize_power
self.use_for_color = use_for_color
self.use_for_gray = use_for_gray
def initialize(self):
pass
def free_memory(self):
pass
def dim(self):
raise NotImplementedError
def stride(self):
raise NotImplementedError
def size(self, im_sz):
if self.output_size is None:
return im_sz // self.stride()
if isinstance(im_sz, torch.Tensor):
return torch.Tensor([self.output_size[0], self.output_size[1]])
return self.output_size
def extract(self, im):
raise NotImplementedError
|
MIT License
|
scikit-multiflow/scikit-multiflow
|
src/skmultiflow/meta/dynamic_weighted_majority.py
|
DynamicWeightedMajorityClassifier.fit_single_sample
|
python
|
def fit_single_sample(self, X, y, classes=None, sample_weight=None):
self.epochs += 1
self.num_classes = max(
len(classes) if classes is not None else 0,
(int(np.max(y)) + 1), self.num_classes)
predictions = np.zeros((self.num_classes,))
max_weight = 0
weakest_expert_weight = 1
weakest_expert_index = None
for i, exp in enumerate(self.experts):
y_hat = exp.estimator.predict(X)
if np.any(y_hat != y) and (self.epochs % self.period == 0):
exp.weight *= self.beta
predictions[y_hat] += exp.weight
max_weight = max(max_weight, exp.weight)
if exp.weight < weakest_expert_weight:
weakest_expert_index = i
weakest_expert_weight = exp.weight
y_hat = np.array([np.argmax(predictions)])
if self.epochs % self.period == 0:
self._scale_weights(max_weight)
self._remove_experts()
if np.any(y_hat != y):
if len(self.experts) == self.n_estimators:
self.experts.pop(weakest_expert_index)
self.experts.append(self._construct_new_expert())
for exp in self.experts:
exp.estimator.partial_fit(X, y, classes, sample_weight)
|
Fits a single sample of shape `X.shape=(1, n_attributes)` and `y.shape=(1)`
Aggregates all experts' predictions, diminishes weight of experts whose
predictions were wrong, and may create or remove experts every _period_
samples.
Finally, trains each individual expert on the provided data.
Train loop as described by Kolter and Maloof in the original paper.
Parameters
----------
X: numpy.ndarray of shape (n_samples, n_features)
Features matrix used for partially updating the model.
y: Array-like
An array-like of all the class labels for the samples in X.
classes: list
List of all existing classes. This is an optional parameter.
sample_weight: numpy.ndarray of shape (n_samples), optional (default=None)
Samples weight. If not provided, uniform weights are assumed. Applicability
depends on the base estimator.
|
https://github.com/scikit-multiflow/scikit-multiflow/blob/d073a706b5006cba2584761286b7fa17e74e87be/src/skmultiflow/meta/dynamic_weighted_majority.py#L181-L242
|
import copy as cp
import numpy as np
from skmultiflow.core import BaseSKMObject, ClassifierMixin, MetaEstimatorMixin
from skmultiflow.bayes import NaiveBayes
import warnings
def DynamicWeightedMajority(n_estimators=5, base_estimator=NaiveBayes(), period=50, beta=0.5,
theta=0.01):
warnings.warn("'DynamicWeightedMajority' has been renamed to "
"'DynamicWeightedMajorityClassifier' in v0.5.0.\n"
"The old name will be removed in v0.7.0",
category=FutureWarning)
return DynamicWeightedMajorityClassifier(n_estimators=n_estimators,
base_estimator=base_estimator,
period=period,
beta=beta,
theta=theta)
class DynamicWeightedMajorityClassifier(BaseSKMObject, ClassifierMixin, MetaEstimatorMixin):
class WeightedExpert:
def __init__(self, estimator, weight):
self.estimator = estimator
self.weight = weight
def __init__(self, n_estimators=5, base_estimator=NaiveBayes(),
period=50, beta=0.5, theta=0.01):
super().__init__()
self.n_estimators = n_estimators
self.base_estimator = base_estimator
self.beta = beta
self.theta = theta
self.period = period
self.epochs = None
self.num_classes = None
self.experts = None
self.reset()
def partial_fit(self, X, y, classes=None, sample_weight=None):
for i in range(len(X)):
self.fit_single_sample(
X[i:i + 1, :], y[i:i + 1], classes, sample_weight
)
return self
def predict(self, X):
preds = np.array([np.array(exp.estimator.predict(X)) * exp.weight
for exp in self.experts])
sum_weights = sum(exp.weight for exp in self.experts)
aggregate = np.sum(preds / sum_weights, axis=0)
return (aggregate + 0.5).astype(int)
def predict_proba(self, X):
raise NotImplementedError
|
BSD 3-Clause New or Revised License
|
pykale/pykale
|
kale/pipeline/multi_domain_adapter.py
|
_DINTrainer.__init__
|
python
|
def __init__(
self,
dataset,
feature_extractor,
task_classifier,
n_classes: int,
target_domain: str,
kernel: str = "linear",
kernel_mul: float = 2.0,
kernel_num: int = 5,
**base_params,
):
super().__init__(dataset, feature_extractor, task_classifier, n_classes, target_domain, **base_params)
self.kernel = kernel
self.n_domains = len(self.domain_to_idx.values())
self.classifier = task_classifier(self.feature_dim, n_classes)
self._kernel_mul = kernel_mul
self._kernel_num = kernel_num
|
Domain independent network (DIN). It is under development and will be updated with references later.
|
https://github.com/pykale/pykale/blob/7450305c52041ce8700f1fc4dbb93a6069d060d6/kale/pipeline/multi_domain_adapter.py#L188-L208
|
import torch
import torch.nn as nn
from torch.nn.functional import one_hot
import kale.predict.losses as losses
from kale.embed.image_cnn import _Bottleneck
from kale.pipeline.domain_adapter import BaseAdaptTrainer, get_aggregated_metrics
def create_ms_adapt_trainer(method: str, dataset, feature_extractor, task_classifier, **train_params):
method_dict = {"M3SDA": M3SDATrainer, "DIN": _DINTrainer, "MFSAN": MFSANTrainer}
method = method.upper()
if method not in method_dict.keys():
raise ValueError("Unsupported multi-source domain adaptation methods %s" % method)
else:
return method_dict[method](dataset, feature_extractor, task_classifier, **train_params)
def _average_cls_output(x, classifiers: nn.ModuleDict):
cls_output = [classifiers[key](x) for key in classifiers]
return torch.stack(cls_output).mean(0)
class BaseMultiSourceTrainer(BaseAdaptTrainer):
def __init__(
self, dataset, feature_extractor, task_classifier, n_classes: int, target_domain: str, **base_params,
):
super().__init__(dataset, feature_extractor, task_classifier, **base_params)
self.n_classes = n_classes
self.feature_dim = feature_extractor.state_dict()[list(feature_extractor.state_dict().keys())[-2]].shape[0]
self.domain_to_idx = dataset.domain_to_idx
if target_domain not in self.domain_to_idx.keys():
raise ValueError(
"The given target domain %s not in the dataset! The available domain names are %s"
% (target_domain, self.domain_to_idx.keys())
)
self.target_domain = target_domain
self.target_label = self.domain_to_idx[target_domain]
self.base_params = base_params
def forward(self, x):
if self.feat is not None:
x = self.feat(x)
return x
def compute_loss(self, batch, split_name="V"):
raise NotImplementedError("Loss needs to be defined.")
def validation_epoch_end(self, outputs):
metrics_to_log = (
"val_loss",
"V_source_acc",
"V_target_acc",
"V_domain_acc",
)
return self._validation_epoch_end(outputs, metrics_to_log)
def test_epoch_end(self, outputs):
metrics_at_test = (
"test_loss",
"Te_source_acc",
"Te_target_acc",
"Te_domain_acc",
)
log_dict = get_aggregated_metrics(metrics_at_test, outputs)
for key in log_dict:
self.log(key, log_dict[key], prog_bar=True)
class M3SDATrainer(BaseMultiSourceTrainer):
def __init__(
self,
dataset,
feature_extractor,
task_classifier,
n_classes: int,
target_domain: str,
k_moment: int = 3,
**base_params,
):
super().__init__(dataset, feature_extractor, task_classifier, n_classes, target_domain, **base_params)
self.classifiers = dict()
for domain_ in self.domain_to_idx.keys():
if domain_ != target_domain:
self.classifiers[domain_] = task_classifier(self.feature_dim, n_classes)
self.classifiers = nn.ModuleDict(self.classifiers)
self.k_moment = k_moment
def compute_loss(self, batch, split_name="V"):
x, y, domain_labels = batch
phi_x = self.forward(x)
moment_loss = self._compute_domain_dist(phi_x, domain_labels)
src_idx = torch.where(domain_labels != self.target_label)[0]
tgt_idx = torch.where(domain_labels == self.target_label)[0]
cls_loss, ok_src = self._compute_cls_loss(phi_x[src_idx], y[src_idx], domain_labels[src_idx])
if len(tgt_idx) > 0:
y_tgt_hat = _average_cls_output(phi_x[tgt_idx], self.classifiers)
_, ok_tgt = losses.cross_entropy_logits(y_tgt_hat, y[tgt_idx])
else:
ok_tgt = 0.0
task_loss = cls_loss
log_metrics = {
f"{split_name}_source_acc": ok_src,
f"{split_name}_target_acc": ok_tgt,
f"{split_name}_domain_acc": moment_loss,
}
return task_loss, moment_loss, log_metrics
def _compute_cls_loss(self, x, y, domain_labels: torch.Tensor):
if len(y) == 0:
return 0.0, 0.0
else:
cls_loss = 0.0
ok_src = []
n_src = 0
for domain_ in self.domain_to_idx.keys():
if domain_ == self.target_domain:
continue
domain_idx = torch.where(domain_labels == self.domain_to_idx[domain_])[0]
cls_output = self.classifiers[domain_](x[domain_idx])
loss_cls_, ok_src_ = losses.cross_entropy_logits(cls_output, y[domain_idx])
cls_loss += loss_cls_
ok_src.append(ok_src_)
n_src += 1
cls_loss = cls_loss / n_src
ok_src = torch.cat(ok_src)
return cls_loss, ok_src
def _compute_domain_dist(self, x, domain_labels):
moment_loss = 0
for i in range(self.k_moment):
moment_loss += losses._moment_k(x, domain_labels, i + 1)
return moment_loss
class _DINTrainer(BaseMultiSourceTrainer):
|
MIT License
|
migalkin/nodepiece
|
nc/models/gnn_layer.py
|
StarEConvLayer.message
|
python
|
def message(self, x_j, x_i, edge_type, rel_embed, edge_norm, mode, ent_embed=None, qualifier_ent=None,
qualifier_rel=None, qual_index=None, source_index=None):
weight = getattr(self, 'w_{}'.format(mode))
if self.p['STATEMENT_LEN'] != 3:
if mode != 'loop':
rel_emb = self.update_rel_emb_with_qualifier(ent_embed, rel_embed, qualifier_ent,
qualifier_rel, edge_type, qual_index)
else:
rel_emb = torch.index_select(rel_embed, 0, edge_type)
else:
rel_emb = torch.index_select(rel_embed, 0, edge_type)
xj_rel = self.rel_transform(x_j, rel_emb)
out = torch.einsum('ij,jk->ik', xj_rel, weight)
if self.p['STAREARGS']['ATTENTION'] and mode != 'loop':
out = out.view(-1, self.heads, self.attn_dim)
x_i = x_i.view(-1, self.heads, self.attn_dim)
alpha = torch.einsum('bij,kij -> bi', [torch.cat([x_i, out], dim=-1), self.att])
alpha = F.leaky_relu(alpha, self.negative_slope)
alpha = softmax(alpha, source_index, ent_embed.size(0))
alpha = F.dropout(alpha, p=self.attn_drop)
return (out * alpha.view(-1, self.heads, 1)).view(-1, self.heads * self.attn_dim)
else:
return out if edge_norm is None else out * edge_norm.view(-1, 1)
|
The message method performs following functions
Step1 : get updated relation representation (rel_embed) [edge_type] by aggregating qualifier information (self.update_rel_emb_with_qualifier).
Step2 : Obtain edge message by transforming the node embedding with updated relation embedding (self.rel_transform).
Step3 : Multiply edge embeddings (transform) by weight
Step4 : Return the messages. They will be sent to subjects (1st line in the edge index COO)
Over here the node embedding [the first list in COO matrix] is representing the message which will be sent on each edge
More information about updating relation representation please refer to self.update_rel_emb_with_qualifier
:param x_j: objects of the statements (2nd line in the COO)
:param x_i: subjects of the statements (1st line in the COO)
:param edge_type: relation types
:param rel_embed: embedding matrix of all relations
:param edge_norm:
:param mode: in (direct) / out (inverse) / loop
:param ent_embed: embedding matrix of all entities
:param qualifier_ent:
:param qualifier_rel:
:param qual_index:
:param source_index:
:return:
|
https://github.com/migalkin/nodepiece/blob/d731c9990cdd7835f01f129f6134c3bff576821f/nc/models/gnn_layer.py#L367-L421
|
import torch
import numpy as np
import torch.nn.functional as F
from utils.utils_gcn import get_param, ccorr, rotate, softmax
from torch_scatter import scatter_add, scatter_mean
from torch_geometric.nn import MessagePassing
from torch.nn import Parameter
class StarEConvLayer(MessagePassing):
def __init__(self, in_channels, out_channels, num_rels, act=lambda x: x,
config=None):
super(self.__class__, self).__init__(flow='target_to_source',
aggr='add')
self.p = config
self.in_channels = in_channels
self.out_channels = out_channels
self.num_rels = num_rels
self.act = act
self.device = None
self.w_loop = get_param((in_channels, out_channels))
self.w_in = get_param((in_channels, out_channels))
self.w_out = get_param((in_channels, out_channels))
self.w_rel = get_param((in_channels, out_channels))
if self.p['STATEMENT_LEN'] != 3:
if self.p['STAREARGS']['QUAL_AGGREGATE'] == 'sum' or self.p['STAREARGS']['QUAL_AGGREGATE'] == 'mul' or self.p['STAREARGS']['QUAL_AGGREGATE'] == 'attn':
self.w_q = get_param((in_channels, in_channels))
elif self.p['STAREARGS']['QUAL_AGGREGATE'] == 'concat':
self.w_q = get_param((2 * in_channels, in_channels))
self.loop_rel = get_param((1, in_channels))
self.loop_ent = get_param((1, in_channels))
self.drop = torch.nn.Dropout(self.p['STAREARGS']['GCN_DROP'])
self.bn = torch.nn.BatchNorm1d(out_channels)
if self.p['STAREARGS']['ATTENTION']:
assert self.p['STAREARGS']['GCN_DIM'] == self.p['EMBEDDING_DIM'], "Current attn implementation requires those tto be identical"
assert self.p['EMBEDDING_DIM'] % self.p['STAREARGS']['ATTENTION_HEADS'] == 0, "should be divisible"
self.heads = self.p['STAREARGS']['ATTENTION_HEADS']
self.attn_dim = self.out_channels // self.heads
self.negative_slope = self.p['STAREARGS']['ATTENTION_SLOPE']
self.attn_drop = self.p['STAREARGS']['ATTENTION_DROP']
self.att = get_param((1, self.heads, 2 * self.attn_dim))
if self.p['STAREARGS']['QUAL_AGGREGATE'] == 'attn':
assert self.p['STAREARGS']['GCN_DIM'] == self.p[
'EMBEDDING_DIM'], "Current attn implementation requires those tto be identical"
assert self.p['EMBEDDING_DIM'] % self.p['STAREARGS']['ATTENTION_HEADS'] == 0, "should be divisible"
if not self.p['STAREARGS']['ATTENTION']:
self.heads = self.p['STAREARGS']['ATTENTION_HEADS']
self.attn_dim = self.out_channels // self.heads
self.negative_slope = self.p['STAREARGS']['ATTENTION_SLOPE']
self.attn_drop = self.p['STAREARGS']['ATTENTION_DROP']
self.att_qual = get_param((1, self.heads, 2 * self.attn_dim))
if self.p['STAREARGS']['BIAS']: self.register_parameter('bias', Parameter(
torch.zeros(out_channels)))
def reset_parameters(self):
torch.nn.init.xavier_normal_(self.w_loop.data)
torch.nn.init.xavier_normal_(self.w_in.data)
torch.nn.init.xavier_normal_(self.w_out.data)
torch.nn.init.xavier_normal_(self.w_rel.data)
if self.p['STATEMENT_LEN'] != 3:
torch.nn.init.xavier_normal_(self.w_q.data)
torch.nn.init.xavier_normal_(self.loop_rel.data)
torch.nn.init.xavier_normal_(self.loop_ent.data)
self.bn.reset_parameters()
if self.p['STAREARGS']['ATTENTION']:
torch.nn.init.xavier_normal_(self.att.data)
if self.p['STAREARGS']['QUAL_AGGREGATE'] == 'attn':
torch.nn.init.xavier_normal_(self.att_qual.data)
def forward(self, x, edge_index, edge_type, rel_embed,
qualifier_ent=None, qualifier_rel=None, quals=None):
if self.device is None:
self.device = edge_index.device
rel_embed = torch.cat([rel_embed, self.loop_rel], dim=0)
num_edges = edge_index.size(1) // 2
num_ent = x.size(0)
self.in_index, self.out_index = edge_index[:, :num_edges], edge_index[:, num_edges:]
self.in_type, self.out_type = edge_type[:num_edges], edge_type[num_edges:]
if self.p['STATEMENT_LEN'] != 3:
num_quals = quals.size(1) // 2
self.in_index_qual_ent, self.out_index_qual_ent = quals[1, :num_quals], quals[1, num_quals:]
self.in_index_qual_rel, self.out_index_qual_rel = quals[0, :num_quals], quals[0, num_quals:]
self.quals_index_in, self.quals_index_out = quals[2, :num_quals], quals[2, num_quals:]
'''
Adding self loop by creating a COO matrix. Thus \
loop index [1,2,3,4,5]
[1,2,3,4,5]
loop type [10,10,10,10,10] --> assuming there are 9 relations
'''
self.loop_index = torch.stack([torch.arange(num_ent), torch.arange(num_ent)]).to(self.device)
self.loop_type = torch.full((num_ent,), rel_embed.size(0) - 1,
dtype=torch.long).to(self.device)
self.in_norm = self.compute_norm(self.in_index, num_ent)
self.out_norm = self.compute_norm(self.out_index, num_ent)
if self.p['STATEMENT_LEN'] != 3:
in_res = self.propagate(self.in_index, x=x, edge_type=self.in_type,
rel_embed=rel_embed, edge_norm=self.in_norm, mode='in',
ent_embed=x, qualifier_ent=self.in_index_qual_ent,
qualifier_rel=self.in_index_qual_rel,
qual_index=self.quals_index_in,
source_index=self.in_index[0])
loop_res = self.propagate(self.loop_index, x=x, edge_type=self.loop_type,
rel_embed=rel_embed, edge_norm=None, mode='loop',
ent_embed=None, qualifier_ent=None, qualifier_rel=None,
qual_index=None, source_index=None)
out_res = self.propagate(self.out_index, x=x, edge_type=self.out_type,
rel_embed=rel_embed, edge_norm=self.out_norm, mode='out',
ent_embed=x, qualifier_ent=self.out_index_qual_ent,
qualifier_rel=self.out_index_qual_rel,
qual_index=self.quals_index_out,
source_index=self.out_index[0])
else:
in_res = self.propagate(self.in_index, x=x, edge_type=self.in_type,
rel_embed=rel_embed, edge_norm=self.in_norm, mode='in',
ent_embed=x, qualifier_ent=None, qualifier_rel=None,
qual_index=None, source_index=self.in_index[0])
loop_res = self.propagate(self.loop_index, x=x, edge_type=self.loop_type,
rel_embed=rel_embed, edge_norm=None, mode='loop',
ent_embed=x, qualifier_ent=None, qualifier_rel=None,
qual_index=None, source_index=None)
out_res = self.propagate(self.out_index, x=x, edge_type=self.out_type,
rel_embed=rel_embed, edge_norm=self.out_norm, mode='out',
ent_embed=x, qualifier_ent=None, qualifier_rel=None,
qual_index=None, source_index=self.out_index[0])
out = self.drop(in_res) * (1 / 3) + self.drop(out_res) * (1 / 3) + loop_res * (1 / 3)
if self.p['STAREARGS']['BIAS']:
out = out + self.bias
out = self.bn(out)
return self.act(out), torch.matmul(rel_embed, self.w_rel)[:-1]
def rel_transform(self, ent_embed, rel_embed):
if self.p['STAREARGS']['OPN'] == 'corr':
trans_embed = ccorr(ent_embed, rel_embed)
elif self.p['STAREARGS']['OPN'] == 'sub':
trans_embed = ent_embed - rel_embed
elif self.p['STAREARGS']['OPN'] == 'mult':
trans_embed = ent_embed * rel_embed
elif self.p['STAREARGS']['OPN'] == 'rotate':
trans_embed = rotate(ent_embed, rel_embed)
else:
raise NotImplementedError
return trans_embed
def qual_transform(self, qualifier_ent, qualifier_rel):
if self.p['STAREARGS']['QUAL_OPN'] == 'corr':
trans_embed = ccorr(qualifier_ent, qualifier_rel)
elif self.p['STAREARGS']['QUAL_OPN'] == 'sub':
trans_embed = qualifier_ent - qualifier_rel
elif self.p['STAREARGS']['QUAL_OPN'] == 'mult':
trans_embed = qualifier_ent * qualifier_rel
elif self.p['STAREARGS']['QUAL_OPN'] == 'rotate':
trans_embed = rotate(qualifier_ent, qualifier_rel)
else:
raise NotImplementedError
return trans_embed
def qualifier_aggregate(self, qualifier_emb, rel_part_emb, alpha=0.5, qual_index=None):
if self.p['STAREARGS']['QUAL_AGGREGATE'] == 'sum':
qualifier_emb = torch.einsum('ij,jk -> ik',
self.coalesce_quals(qualifier_emb, qual_index, rel_part_emb.shape[0]),
self.w_q)
return alpha * rel_part_emb + (1 - alpha) * qualifier_emb
elif self.p['STAREARGS']['QUAL_AGGREGATE'] == 'concat':
qualifier_emb = self.coalesce_quals(qualifier_emb, qual_index, rel_part_emb.shape[0])
agg_rel = torch.cat((rel_part_emb, qualifier_emb), dim=1)
return torch.mm(agg_rel, self.w_q)
elif self.p['STAREARGS']['QUAL_AGGREGATE'] == 'mul':
qualifier_emb = torch.mm(self.coalesce_quals(qualifier_emb, qual_index, rel_part_emb.shape[0], fill=1), self.w_q)
return rel_part_emb * qualifier_emb
elif self.p['STAREARGS']['QUAL_AGGREGATE'] == 'attn':
expanded_rels = torch.index_select(rel_part_emb, 0, qual_index)
expanded_rels = expanded_rels.view(-1, self.heads, self.attn_dim)
qualifier_emb = torch.mm(qualifier_emb, self.w_q).view(-1, self.heads,
self.attn_dim)
alpha_r = torch.einsum('bij,kij -> bi', [torch.cat([expanded_rels, qualifier_emb], dim=-1), self.att_qual])
alpha_r = F.leaky_relu(alpha_r, self.negative_slope)
alpha_r = softmax(alpha_r, qual_index, rel_part_emb.size(0))
alpha_r = F.dropout(alpha_r, p=self.attn_drop)
expanded_rels = (expanded_rels * alpha_r.view(-1, self.heads, 1)).view(-1,
self.heads * self.attn_dim)
single_rels = scatter_add(expanded_rels, qual_index, dim=0, dim_size=rel_part_emb.size(0))
copy_mask = single_rels.sum(dim=1) != 0.0
rel_part_emb[copy_mask] = single_rels[copy_mask]
return rel_part_emb
else:
raise NotImplementedError
def update_rel_emb_with_qualifier(self, ent_embed, rel_embed,
qualifier_ent, qualifier_rel, edge_type, qual_index=None):
qualifier_emb_rel = rel_embed[qualifier_rel]
qualifier_emb_ent = ent_embed[qualifier_ent]
rel_part_emb = rel_embed[edge_type]
qualifier_emb = self.qual_transform(qualifier_ent=qualifier_emb_ent,
qualifier_rel=qualifier_emb_rel)
return self.qualifier_aggregate(qualifier_emb, rel_part_emb, alpha=self.p['STAREARGS']['TRIPLE_QUAL_WEIGHT'],
qual_index=qual_index)
|
MIT License
|
johnbrodie/pyjector
|
pyjector/pyjector.py
|
Pyjector._command_handler
|
python
|
def _command_handler(self, command, action):
if action not in self.get_actions_for_command(command):
raise InvalidCommandError(
'{0} is not a valid action for comand {1}'.format(
action, command)
)
command_string = self._create_command_string(command, action)
logging.info("send: " + repr(command_string))
self._do_handshake()
self._send(command_string)
sleep(self.config.get('wait_time', 1))
response = self.get_response()
logging.info("recv: " + repr(response))
self._check_response(response)
return response
|
Send the `command` and `action` to the device.
:param command: The command to send, for example, "power".
:param action: The action to send, for example, "on".
:returns: str -- The response from the device.
:raises: InvalidCommandError if `action` is not valid for `command`.
|
https://github.com/johnbrodie/pyjector/blob/ac982acba45e185fa32580519d7e93a3e6ab0367/pyjector/pyjector.py#L234-L258
|
from time import sleep
import json
import os
import logging
import serial
PATH = os.path.abspath(os.path.dirname(__file__)) + '/projector_configs/'
class CommandFailedError(Exception):
class CommandExceptionError(Exception):
class InvalidConfigError(Exception):
class DeviceConfigMissingError(Exception):
class InvalidCommandError(Exception):
class Pyjector(object):
possible_pyserial_settings = [
'port', 'baudrate', 'bytesize', 'parity', 'stopbits', 'timeout',
'xonxoff', 'rtscts', 'dsrdtr', 'writeTimeout', 'InterCharTimeout',
]
pyserial_config_converter = {
'bytesize': {
5: serial.FIVEBITS,
6: serial.SIXBITS,
7: serial.SEVENBITS,
8: serial.EIGHTBITS,
},
'parity': {
'none': serial.PARITY_NONE,
'even': serial.PARITY_EVEN,
'odd': serial.PARITY_ODD,
'mark': serial.PARITY_MARK,
'space': serial.PARITY_SPACE,
},
'stopbits': {
1: serial.STOPBITS_ONE,
1.5: serial.STOPBITS_ONE_POINT_FIVE,
2: serial.STOPBITS_TWO,
},
}
def __init__(
self,
port=None,
device_id='benq',
**kwargs
):
self.port = port
self.device_id = device_id
self.get_config(device_id, kwargs)
self.serial = self._initialize_pyserial(port)
self._create_commands()
def get_config(self, device_id, overrides):
self.available_configs = self._populate_configs()
self.config = self.get_device_config_from_id(device_id)
self._apply_overrides(overrides)
self._validate_config()
self.pyserial_config = self.get_pyserial_config()
def _validate_config(self):
if 'serial' not in self.config:
raise InvalidConfigError(
'Configuration file for {0} does not contain needed serial'
'config values. Add a `serial` section to the config.'.format(
self.device_id)
)
if ('command_list' not in self.config or
len(self.config['command_list']) == 0):
raise InvalidConfigError(
'Configuration file for {0} does not define any commands. '
'Add a `serial` section to the config.'.format(
self.device_id)
)
def _populate_configs(self):
configs = {}
for f in os.listdir(PATH):
if f.endswith('.json'):
data = open(PATH + f)
json_data = json.loads(data.read())
name = os.path.splitext(f)[0]
configs[name] = json_data
return configs
def _apply_overrides(self, overrides):
self.config.update(overrides)
def get_device_config_from_id(self, device_id):
try:
config = self.available_configs[device_id]
except KeyError:
raise DeviceConfigMissingError(
'Could not find device config with name {0}. '
'Check that the file exists in '
' `pyjector/projector_configs/`'.format(device_id)
)
return config
def get_pyserial_config(self):
serial_config = self.config['serial']
for key, value in serial_config.items():
if key not in self.possible_pyserial_settings:
raise InvalidConfigError(
'Configuration file for {0} specifies a serial '
'setting "{1}" not recognized by pyserial. Check '
'http://pyserial.sourceforge.net/pyserial_api.html'
'for valid settings'.format(
self.device_id, key)
)
if key in self.pyserial_config_converter:
try:
serial_config[key] = (
self.pyserial_config_converter[key][value])
except KeyError:
raise InvalidConfigError(
'Configuration file for {0} specifies a serial '
'setting for "{1}" for key "{2}" not recognized '
'by pyserial. Check '
'http://pyserial.sourceforge.net/pyserial_api.html'
'for valid settings'.format(
self.device_id, value, key)
)
return serial_config
def _initialize_pyserial(self, port):
return serial.Serial(port=port, **self.pyserial_config)
def _send(self, data):
logging.debug("_send: " + repr(data))
self.serial.write(data.encode())
def _recv(self, size=1):
data = self.serial.read(size).decode()
if data:
logging.debug("_recv: " + repr(data))
return data
def _do_handshake(self):
h = self.config.get('handshake')
if h == None:
return
self._send(h['send'])
sleep(h['wait'])
expected = h['expect']
resp = self._recv(len(expected))
if resp != expected:
logging.error("unexpected response to handshake " + repr(resp))
|
MIT License
|
tjefferies/pymetalog
|
pymetalog/support.py
|
MLprobs
|
python
|
def MLprobs(x_old, step_len):
l = len(x_old)
x = pd.DataFrame()
x['x'] = x_old.copy()
x.sort_values(by='x')
x['probs'] = 0
for i in range(0,l):
if i == 0:
x.loc[i,'probs'] = .5/l
else:
x.loc[i, 'probs'] = x.loc[i-1, 'probs'] + 1/l
if len(x.index) > 100:
y2 = np.linspace(step_len, 1 - step_len, int((1 - step_len) / step_len))
tailstep = step_len / 10
y1 = np.linspace(tailstep, (min(y2) - tailstep), int((min(y2) - tailstep) / tailstep))
y3 = np.linspace((max(y2) + tailstep), (max(y2) + tailstep * 9), int((tailstep * 9) / tailstep))
y = np.hstack((y1, y2, y3))
x_new = np.quantile(x_old, y)
df_x = {}
df_x['x'] = x_new
df_x['probs'] = y
x = df_x
return x
|
Returns the quantile values x['x'] and corresponding bins x['y'].
Called during metalog.__init__ method call.
Args:
x_old (:obj: `numpy.ndarray` of type numeric): Input data to fit the metalog distribution to.
- must be an array of allowable types: int, float, numpy.int64, numpy.float64
step_len (:obj:`float`): Used to specify the bin width used to estimate the metalog.
Returns:
x: (:obj:`dict` with keys ['x','probs'] of type float):
- x['x']: (:obj:`numpy.ndarray` of type float):
* x['x'] is the quantile values found using the bin widths array x['y] - which is specified using the `step_len` parameter
- x['probs']: (:obj:`numpy.ndarray` of type float):
* x['probs'] is the array of bin widths specified for x['x']
|
https://github.com/tjefferies/pymetalog/blob/0cd332b132eb3c9117a827088f7082e346cb77d8/pymetalog/support.py#L5-L57
|
import pandas as pd
import numpy as np
|
MIT License
|
terrainbento/terrainbento
|
terrainbento/base_class/stochastic_erosion_model.py
|
StochasticErosionModel._pre_water_erosion_steps
|
python
|
def _pre_water_erosion_steps(self):
pass
|
Convenience function for pre-water erosion steps.
If a model needs to do anything before each erosion step is run,
e.g. recalculate a threshold value, that model should overwrite
this function.
|
https://github.com/terrainbento/terrainbento/blob/3758d3526a3a134e2cee5263ccff5d51d3ea13d1/terrainbento/base_class/stochastic_erosion_model.py#L304-L311
|
import os
import textwrap
import numpy as np
import scipy.stats as stats
from landlab.components import PrecipitationDistribution
from terrainbento.base_class import ErosionModel
_STRING_LENGTH = 80
class StochasticErosionModel(ErosionModel):
_required_fields = ["topographic__elevation"]
def __init__(
self,
clock,
grid,
random_seed=0,
record_rain=False,
opt_stochastic_duration=False,
mean_storm_duration=1,
mean_interstorm_duration=1,
mean_storm_depth=1,
rainfall__shape_factor=1,
number_of_sub_time_steps=1,
rainfall_intermittency_factor=1,
rainfall__mean_rate=1,
storm_sequence_filename="storm_sequence.txt",
frequency_filename="exceedance_summary.txt",
**kwargs
):
super().__init__(clock, grid, **kwargs)
self._ensure_precip_runoff_are_vanilla()
self.opt_stochastic_duration = opt_stochastic_duration
if self.opt_stochastic_duration and (
"PrecipChanger" in self.boundary_handlers
):
msg = (
"terrainbento StochasticErosionModel: setting "
"opt_stochastic_duration=True and using the PrecipChanger "
"boundary condition handler are not compatible."
)
raise ValueError(msg)
self.seed = int(random_seed)
self.random_seed = random_seed
self.frequency_filename = frequency_filename
self.storm_sequence_filename = storm_sequence_filename
self.mean_storm_duration = mean_storm_duration
self.mean_interstorm_duration = mean_interstorm_duration
self.mean_storm_depth = mean_storm_depth
self.shape_factor = rainfall__shape_factor
self.number_of_sub_time_steps = number_of_sub_time_steps
self.rainfall_intermittency_factor = rainfall_intermittency_factor
self.rainfall__mean_rate = rainfall__mean_rate
if record_rain:
self.record_rain = True
self.rain_record = {
"event_start_time": [],
"event_duration": [],
"rainfall_rate": [],
"runoff_rate": [],
}
else:
self.record_rain = False
self.rain_record = None
def calc_runoff_and_discharge(self):
if self.rain_rate > 0.0 and self.infilt > 0.0:
runoff = self.rain_rate - (
self.infilt * (1.0 - np.exp(-self.rain_rate / self.infilt))
)
if runoff <= 0:
runoff = 0
else:
runoff = self.rain_rate
self.grid.at_node["surface_water__discharge"][:] = (
runoff * self.grid.at_node["drainage_area"]
)
return runoff
def run_for_stochastic(self, step, runtime):
self.rain_generator._delta_t = step
self.rain_generator._run_time = runtime
for (
tr,
p,
) in self.rain_generator.yield_storm_interstorm_duration_intensity():
self.rain_rate = p
self.run_one_step(tr)
def instantiate_rain_generator(self):
if self.opt_stochastic_duration:
self.rain_generator = PrecipitationDistribution(
mean_storm_duration=self.mean_storm_duration,
mean_interstorm_duration=self.mean_interstorm_duration,
mean_storm_depth=self.mean_storm_depth,
total_t=self.clock.stop,
delta_t=self.clock.step,
random_seed=self.seed,
)
self.run_for = self.run_for_stochastic
else:
from scipy.special import gamma
self.rain_generator = PrecipitationDistribution(
mean_storm_duration=1.0,
mean_interstorm_duration=1.0,
mean_storm_depth=1.0,
random_seed=self.seed,
)
self.scale_factor = self.rainfall__mean_rate / gamma(
1.0 + (1.0 / self.shape_factor)
)
if (
isinstance(self.number_of_sub_time_steps, (int, np.integer))
is False
):
raise ValueError(
("number_of_sub_time_steps must be of type integer.")
)
self.n_sub_steps = self.number_of_sub_time_steps
def reset_random_seed(self):
self.rain_generator.seed_generator(seedval=self.seed)
|
MIT License
|
bitwrap/bitwrap-io
|
bitwrap_io/storage/__init__.py
|
Database.schema_exists
|
python
|
def schema_exists(self):
with self.cursor() as cur:
cur.execute(sql.SQL("""
SELECT exists(select tablename from pg_tables where schemaname = %s and tablename = 'states');
"""), [self.schema])
res = cur.fetchone()[0]
return res
|
test that an event-machine schema exists
|
https://github.com/bitwrap/bitwrap-io/blob/cc84be5af4d37e5b711e59b12cf95b9b346c7e4f/bitwrap_io/storage/__init__.py#L76-L87
|
from string import Template
from contextlib import contextmanager
import psycopg2
from psycopg2 import sql
from bitwrap_io.storage.postgres import connect
class Storage(object):
_pool = {}
def __init__(self, schema, **kwargs):
if schema in Storage._pool:
self.db = Storage._pool[schema]
else:
self.db = Database(schema, kwargs)
Storage._pool[schema] = self.db
def commit(self, req):
if 'payload' not in req or not req['payload']:
req['payload'] = '{}'
_sql = sql.SQL("""
INSERT INTO {schema}.events(oid, action, payload)
VALUES(%s, %s, %s)
RETURNING
to_json((hash, oid, seq )::{schema}.event) as event;
""").format(schema=sql.Identifier(self.db.schema))
with self.db.cursor() as cur:
try:
cur.execute(_sql, [req['oid'], req['action'], req['payload']])
res = cur.fetchone()
return res[0]
except psycopg2.IntegrityError:
msg = 'INVALID_OUTPUT'
except psycopg2.InternalError:
msg = 'INVALID_INPUT'
except psycopg2.ProgrammingError as ex:
msg = str(ex).splitlines()[0]
return {'oid': req['oid'], 'action': req['action'], '__err__': msg}
class Database(object):
def __init__(self, schema, rds_config):
self.pool = connect(**rds_config)
self.schema = schema
self.states = States(self)
self.events = Events(self)
@contextmanager
def cursor(self):
conn = self.pool.getconn()
cursor = conn.cursor()
try:
yield cursor
conn.commit()
finally:
self.pool.putconn(conn)
|
MIT License
|
michaelnowotny/cocos
|
cocos/multi_processing/multi_core_batch_processing.py
|
map_combine_multicore
|
python
|
def map_combine_multicore(
f: tp.Callable[..., ResultType],
combination: tp.Callable[[tp.Iterable[ResultType]], ResultType],
args_list: tp.Optional[tp.Sequence[tp.Sequence]] = None,
kwargs_list: tp.Optional[tp.Sequence[tp.Dict[str, tp.Any]]] = None,
number_of_batches: tp.Optional[int] = None,
multiprocessing_pool_type: MultiprocessingPoolType = MultiprocessingPoolType.default()) -> ResultType:
args_list, kwargs_list, number_of_batches = _extract_arguments_and_number_of_batches(
args_list=args_list,
kwargs_list=kwargs_list,
number_of_batches=number_of_batches)
def wrapped_f(index, *args, **kwargs) -> ResultType:
return index, f(*args, **kwargs)
results = []
if multiprocessing_pool_type == MultiprocessingPoolType.LOKY:
from concurrent.futures import as_completed
from loky import get_reusable_executor
executor = get_reusable_executor(timeout=None,
context='loky')
futures = [executor.submit(wrapped_f, i, *args, **kwargs)
for i, (args, kwargs)
in enumerate(zip(args_list, kwargs_list))]
for future in as_completed(futures):
results.append(future.result())
elif multiprocessing_pool_type == MultiprocessingPoolType.PATHOS:
from pathos.pools import ProcessPool
pool = ProcessPool()
futures = [pool.apipe(wrapped_f, i, *args, **kwargs)
for i, (args, kwargs)
in enumerate(zip(args_list, kwargs_list))]
for future in futures:
results.append(future.get())
else:
raise ValueError(f'Multiprocessing pool type {multiprocessing_pool_type} not supported')
results = sorted(results, key=lambda x: x[0])
results = [result[1] for result in results]
return combination(results)
|
This function evaluates the function `f` on elements of `args_list` and
`kwargs_list` in parallel on multiple cpu cores and aggregates results
in a single step by calling the function `combination` with a list of all
results. Results provided to `combination` are in the same order as
they appear in `args_list` and `kwargs_list`.
If the arguments for each run of 'f' are identical and they have already
been applied to the function that is passed then 'args_list' and
'kwargs_list' may both be None but the argument 'number_of_batches' must
be specified so the method knows how many times to run the function 'f'.
Args:
f: The map function to be evaluated over elements of 'args_list' and
'kwargs_list'.
combination: A function that aggregates a list of all results in a single step
args_list: A sequence of sequences of positional arguments.
kwargs_list: A sequence of dictionaries of keyword arguments.
number_of_batches:
The number of function evaluations is required if 'args_list'
and 'kwargs_list' are both empty.
multiprocessing_pool_type:
the type of multi-processing pool (see class MultiprocessingPoolType)
|
https://github.com/michaelnowotny/cocos/blob/3c34940d7d9eb8592a97788a5df84b8d472f2928/cocos/multi_processing/multi_core_batch_processing.py#L97-L175
|
import typing as tp
from cocos.multi_processing.utilities import (
ResultType,
MultiprocessingPoolType,
_extract_arguments_and_number_of_batches
)
def map_reduce_multicore(
f: tp.Callable[..., ResultType],
reduction: tp.Callable[[ResultType, ResultType], ResultType],
initial_value: ResultType,
args_list: tp.Optional[tp.Sequence[tp.Sequence]] = None,
kwargs_list: tp.Optional[tp.Sequence[tp.Dict[str, tp.Any]]] = None,
number_of_batches: tp.Optional[int] = None,
multiprocessing_pool_type: MultiprocessingPoolType = MultiprocessingPoolType.default()) -> ResultType:
args_list, kwargs_list, number_of_batches = _extract_arguments_and_number_of_batches(
args_list=args_list,
kwargs_list=kwargs_list,
number_of_batches=number_of_batches)
def wrapped_f(index, *args, **kwargs) -> ResultType:
return index, f(*args, **kwargs)
if multiprocessing_pool_type == MultiprocessingPoolType.LOKY:
from concurrent.futures import as_completed
from loky import get_reusable_executor
executor = get_reusable_executor(timeout=None,
context='loky')
futures = [executor.submit(wrapped_f, i, *args, **kwargs)
for i, (args, kwargs)
in enumerate(zip(args_list, kwargs_list))]
result_from_future = lambda x: x.result()
elif multiprocessing_pool_type == MultiprocessingPoolType.PATHOS:
from pathos.pools import ProcessPool
pool = ProcessPool()
futures = [pool.apipe(wrapped_f, i, *args, **kwargs)
for i, (args, kwargs)
in enumerate(zip(args_list, kwargs_list))]
result_from_future = lambda x: x.get()
else:
raise ValueError(f'Multiprocessing pool type {multiprocessing_pool_type} not supported')
results = [result_from_future(future) for future in futures]
results = sorted(results, key=lambda x: x[0])
results = [result[1] for result in results]
result = initial_value
for new_result in results:
result = reduction(result, new_result)
return result
|
MIT License
|
wikimedia/pywikibot
|
pywikibot/site/_tokenwallet.py
|
TokenWallet.__contains__
|
python
|
def __contains__(self, key):
return key in self._tokens.setdefault(self.site.user(), {})
|
Return True if the given token name is cached.
|
https://github.com/wikimedia/pywikibot/blob/5097f5b9a7ef9d39f35f17edd11faf3086a01d1d/pywikibot/site/_tokenwallet.py#L86-L88
|
from pywikibot import log
from pywikibot.exceptions import Error
class TokenWallet:
def __init__(self, site):
self.site = site
self._tokens = {}
self.failed_cache = set()
def load_tokens(self, types, all=False):
if self.site.user() is None:
self.site.login()
self._tokens.setdefault(self.site.user(), {}).update(
self.site.get_tokens(types, all=all))
if all is not False:
for key in types:
if key not in self._tokens[self.site.user()]:
self.failed_cache.add((self.site.user(), key))
def __getitem__(self, key):
if self.site.user() is None:
self.site.login()
user_tokens = self._tokens.setdefault(self.site.user(), {})
failed_cache_key = (self.site.user(), key)
if self.site.mw_version >= '1.24wmf19' and key in {'edit', 'delete', 'protect', 'move', 'block', 'unblock',
'email', 'import', 'options'}:
log('Token {!r} was replaced by {!r}'.format(key, 'csrf'))
key = 'csrf'
try:
key = self.site.validate_tokens([key])[0]
except IndexError:
raise Error(
"Requested token '{}' is invalid on {} wiki."
.format(key, self.site))
if (key not in user_tokens
and failed_cache_key not in self.failed_cache):
self.load_tokens([key], all=False if user_tokens else None)
if key in user_tokens:
return user_tokens[key]
self.failed_cache.add(failed_cache_key)
raise Error(
"Action '{}' is not allowed for user {} on {} wiki."
.format(key, self.site.user(), self.site))
|
MIT License
|
sloria/textblob
|
textblob/en/np_extractors.py
|
_normalize_tags
|
python
|
def _normalize_tags(chunk):
ret = []
for word, tag in chunk:
if tag == 'NP-TL' or tag == 'NP':
ret.append((word, 'NNP'))
continue
if tag.endswith('-TL'):
ret.append((word, tag[:-3]))
continue
if tag.endswith('S'):
ret.append((word, tag[:-1]))
continue
ret.append((word, tag))
return ret
|
Normalize the corpus tags.
("NN", "NN-PL", "NNS") -> "NN"
|
https://github.com/sloria/textblob/blob/81791b149c358c3db2e445734e3d4ffbf3658597/textblob/en/np_extractors.py#L165-L181
|
from __future__ import unicode_literals, absolute_import
import nltk
from textblob.taggers import PatternTagger
from textblob.decorators import requires_nltk_corpus
from textblob.utils import tree2str, filter_insignificant
from textblob.base import BaseNPExtractor
class ChunkParser(nltk.ChunkParserI):
def __init__(self):
self._trained = False
@requires_nltk_corpus
def train(self):
train_data = [[(t, c) for _, t, c in nltk.chunk.tree2conlltags(sent)]
for sent in
nltk.corpus.conll2000.chunked_sents('train.txt',
chunk_types=['NP'])]
unigram_tagger = nltk.UnigramTagger(train_data)
self.tagger = nltk.BigramTagger(train_data, backoff=unigram_tagger)
self._trained = True
def parse(self, sentence):
if not self._trained:
self.train()
pos_tags = [pos for (word, pos) in sentence]
tagged_pos_tags = self.tagger.tag(pos_tags)
chunktags = [chunktag for (pos, chunktag) in tagged_pos_tags]
conlltags = [(word, pos, chunktag) for ((word, pos), chunktag) in
zip(sentence, chunktags)]
return nltk.chunk.util.conlltags2tree(conlltags)
class ConllExtractor(BaseNPExtractor):
POS_TAGGER = PatternTagger()
CFG = {
('NNP', 'NNP'): 'NNP',
('NN', 'NN'): 'NNI',
('NNI', 'NN'): 'NNI',
('JJ', 'JJ'): 'JJ',
('JJ', 'NN'): 'NNI',
}
INSIGNIFICANT_SUFFIXES = ['DT', 'CC', 'PRP$', 'PRP']
def __init__(self, parser=None):
self.parser = ChunkParser() if not parser else parser
def extract(self, text):
sentences = nltk.tokenize.sent_tokenize(text)
noun_phrases = []
for sentence in sentences:
parsed = self._parse_sentence(sentence)
phrases = [_normalize_tags(filter_insignificant(each,
self.INSIGNIFICANT_SUFFIXES)) for each in parsed
if isinstance(each, nltk.tree.Tree) and each.label()
== 'NP' and len(filter_insignificant(each)) >= 1
and _is_match(each, cfg=self.CFG)]
nps = [tree2str(phrase) for phrase in phrases]
noun_phrases.extend(nps)
return noun_phrases
def _parse_sentence(self, sentence):
tagged = self.POS_TAGGER.tag(sentence)
return self.parser.parse(tagged)
class FastNPExtractor(BaseNPExtractor):
CFG = {
('NNP', 'NNP'): 'NNP',
('NN', 'NN'): 'NNI',
('NNI', 'NN'): 'NNI',
('JJ', 'JJ'): 'JJ',
('JJ', 'NN'): 'NNI',
}
def __init__(self):
self._trained = False
@requires_nltk_corpus
def train(self):
train_data = nltk.corpus.brown.tagged_sents(categories='news')
regexp_tagger = nltk.RegexpTagger([
(r'^-?[0-9]+(.[0-9]+)?$', 'CD'),
(r'(-|:|;)$', ':'),
(r'\'*$', 'MD'),
(r'(The|the|A|a|An|an)$', 'AT'),
(r'.*able$', 'JJ'),
(r'^[A-Z].*$', 'NNP'),
(r'.*ness$', 'NN'),
(r'.*ly$', 'RB'),
(r'.*s$', 'NNS'),
(r'.*ing$', 'VBG'),
(r'.*ed$', 'VBD'),
(r'.*', 'NN'),
])
unigram_tagger = nltk.UnigramTagger(train_data, backoff=regexp_tagger)
self.tagger = nltk.BigramTagger(train_data, backoff=unigram_tagger)
self._trained = True
return None
def _tokenize_sentence(self, sentence):
tokens = nltk.word_tokenize(sentence)
return tokens
def extract(self, sentence):
if not self._trained:
self.train()
tokens = self._tokenize_sentence(sentence)
tagged = self.tagger.tag(tokens)
tags = _normalize_tags(tagged)
merge = True
while merge:
merge = False
for x in range(0, len(tags) - 1):
t1 = tags[x]
t2 = tags[x + 1]
key = t1[1], t2[1]
value = self.CFG.get(key, '')
if value:
merge = True
tags.pop(x)
tags.pop(x)
match = '%s %s' % (t1[0], t2[0])
pos = value
tags.insert(x, (match, pos))
break
matches = [t[0] for t in tags if t[1] in ['NNP', 'NNI']]
return matches
|
MIT License
|
campaignmonitor/createsend-python
|
lib/createsend/client.py
|
Client.get_primary_contact
|
python
|
def get_primary_contact(self):
response = self._get(self.uri_for('primarycontact'))
return json_to_py(response)
|
retrieves the primary contact for this client
|
https://github.com/campaignmonitor/createsend-python/blob/7399f44a90507f2c555b83d176904bb261983959/lib/createsend/client.py#L155-L158
|
from __future__ import absolute_import
import json
from createsend.createsend import CreateSendBase
from createsend.utils import json_to_py
class Client(CreateSendBase):
def __init__(self, auth=None, client_id=None):
self.client_id = client_id
super(Client, self).__init__(auth)
def create(self, company, timezone, country):
body = {
"CompanyName": company,
"TimeZone": timezone,
"Country": country}
response = self._post("/clients.json", json.dumps(body))
self.client_id = json_to_py(response)
return self.client_id
def details(self):
response = self._get("/clients/%s.json" % self.client_id)
return json_to_py(response)
def campaigns(self):
response = self._get(self.uri_for("campaigns"))
return json_to_py(response)
def scheduled(self):
response = self._get(self.uri_for("scheduled"))
return json_to_py(response)
def drafts(self):
response = self._get(self.uri_for("drafts"))
return json_to_py(response)
def lists(self):
response = self._get(self.uri_for("lists"))
return json_to_py(response)
def lists_for_email(self, email_address):
params = {"email": email_address}
response = self._get(self.uri_for("listsforemail"), params=params)
return json_to_py(response)
def segments(self):
response = self._get(self.uri_for("segments"))
return json_to_py(response)
def suppressionlist(self, page=1, page_size=1000, order_field="email", order_direction="asc"):
params = {
"page": page,
"pagesize": page_size,
"orderfield": order_field,
"orderdirection": order_direction}
response = self._get(self.uri_for("suppressionlist"), params=params)
return json_to_py(response)
def suppress(self, email):
body = {
"EmailAddresses": [email] if isinstance(email, str) else email}
response = self._post(self.uri_for("suppress"), json.dumps(body))
def unsuppress(self, email):
params = {"email": email}
response = self._put(self.uri_for("unsuppress"),
body=" ", params=params)
def templates(self):
response = self._get(self.uri_for("templates"))
return json_to_py(response)
def set_basics(self, company, timezone, country):
body = {
"CompanyName": company,
"TimeZone": timezone,
"Country": country}
response = self._put(self.uri_for('setbasics'), json.dumps(body))
def set_payg_billing(self, currency, can_purchase_credits, client_pays, markup_percentage,
markup_on_delivery=0, markup_per_recipient=0, markup_on_design_spam_test=0):
body = {
"Currency": currency,
"CanPurchaseCredits": can_purchase_credits,
"ClientPays": client_pays,
"MarkupPercentage": markup_percentage,
"MarkupOnDelivery": markup_on_delivery,
"MarkupPerRecipient": markup_per_recipient,
"MarkupOnDesignSpamTest": markup_on_design_spam_test}
response = self._put(self.uri_for('setpaygbilling'), json.dumps(body))
def set_monthly_billing(self, currency, client_pays, markup_percentage, monthly_scheme=None):
body = {
"Currency": currency,
"ClientPays": client_pays,
"MarkupPercentage": markup_percentage}
if monthly_scheme is not None:
body["MonthlyScheme"] = monthly_scheme
response = self._put(self.uri_for(
'setmonthlybilling'), json.dumps(body))
def transfer_credits(self, credits, can_use_my_credits_when_they_run_out):
body = {
"Credits": credits,
"CanUseMyCreditsWhenTheyRunOut": can_use_my_credits_when_they_run_out}
response = self._post(self.uri_for('credits'), json.dumps(body))
return json_to_py(response)
def people(self):
response = self._get(self.uri_for('people'))
return json_to_py(response)
|
MIT License
|
tensorflow/graphics
|
tensorflow_graphics/math/sampling.py
|
logspace_1d
|
python
|
def logspace_1d(near: TensorLike,
far: TensorLike,
num_samples: int,
base: float = 10.0,
name="logspace_1d") -> tf.Tensor:
with tf.name_scope(name):
near = tf.convert_to_tensor(near)
far = tf.convert_to_tensor(far)
shape.compare_batch_dimensions(
tensors=(tf.expand_dims(near, axis=-1), tf.expand_dims(far, axis=-1)),
tensor_names=("near", "far"),
last_axes=-1,
broadcast_compatible=True)
linspace = tf.linspace(near, far, num_samples, axis=-1)
return tf.math.pow(base, linspace)
|
Sample evenly spaced numbers from an interval on a log scale.
Args:
near: A tensor of shape `[A1, ... An]` containing the starting points of
the sampling interval.
far: A tensor of shape `[A1, ... An]` containing the ending points of
the sampling interval.
num_samples: The number M of points to be sampled.
base: The logarithmic base.
name: A name for this op that defaults to "logspace_1d".
Returns:
A tensor of shape `[A1, ..., An, M]` indicating the M points on the ray
|
https://github.com/tensorflow/graphics/blob/d0817aec7dee35635814e925a59d83955459d93c/tensorflow_graphics/math/sampling.py#L159-L188
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow_graphics.util import export_api
from tensorflow_graphics.util import safe_ops
from tensorflow_graphics.util import shape
from tensorflow_graphics.util.type_alias import TensorLike
def regular_1d(near: TensorLike,
far: TensorLike,
num_samples: int,
name="regular_1d") -> tf.Tensor:
with tf.name_scope(name):
near = tf.convert_to_tensor(near)
far = tf.convert_to_tensor(far)
shape.compare_batch_dimensions(
tensors=(tf.expand_dims(near, axis=-1), tf.expand_dims(far, axis=-1)),
tensor_names=("near", "far"),
last_axes=-1,
broadcast_compatible=True)
return tf.linspace(near, far, num_samples, axis=-1)
def regular_inverse_1d(near: TensorLike,
far: TensorLike,
num_samples: int,
name="regular_inverse_1d") -> tf.Tensor:
with tf.name_scope(name):
near = tf.convert_to_tensor(near)
far = tf.convert_to_tensor(far)
shape.compare_batch_dimensions(
tensors=(tf.expand_dims(near, axis=-1), tf.expand_dims(far, axis=-1)),
tensor_names=("near", "far"),
last_axes=-1,
broadcast_compatible=True)
return 1. / tf.linspace(1. / near, 1. / far, num_samples, axis=-1)
def uniform_1d(near: TensorLike,
far: TensorLike,
num_samples: int,
name="uniform_1d") -> tf.Tensor:
with tf.name_scope(name):
near = tf.convert_to_tensor(near)
far = tf.convert_to_tensor(far)
shape.compare_batch_dimensions(
tensors=(tf.expand_dims(near, axis=-1), tf.expand_dims(far, axis=-1)),
tensor_names=("near", "far"),
last_axes=-1,
broadcast_compatible=True)
target_shape = tf.concat([tf.shape(near), [num_samples]], axis=-1)
random_samples = tf.random.uniform(target_shape,
minval=tf.expand_dims(near, -1),
maxval=tf.expand_dims(far, -1))
return tf.sort(random_samples, axis=-1)
def stratified_1d(near: TensorLike,
far: TensorLike,
num_samples: int,
name="stratified_1d") -> tf.Tensor:
with tf.name_scope(name):
near = tf.convert_to_tensor(near)
far = tf.convert_to_tensor(far)
shape.compare_batch_dimensions(
tensors=(tf.expand_dims(near, axis=-1), tf.expand_dims(far, axis=-1)),
tensor_names=("near", "far"),
last_axes=-1,
broadcast_compatible=True)
bin_borders = tf.linspace(0.0, 1.0, num_samples + 1, axis=-1)
bin_below = bin_borders[..., :-1]
bin_above = bin_borders[..., 1:]
target_shape = tf.concat([tf.shape(near), [num_samples]], axis=-1)
random_point_in_bin = tf.random.uniform(target_shape)
z_values = bin_below + (bin_above - bin_below) * random_point_in_bin
z_values = (tf.expand_dims(near, -1) * (1. - z_values)
+ tf.expand_dims(far, -1) * z_values)
return z_values
|
Apache License 2.0
|
compas-dev/compas
|
src/compas/datastructures/mesh/transformations.py
|
mesh_transform
|
python
|
def mesh_transform(mesh, transformation):
vertices = list(mesh.vertices())
xyz = [mesh.vertex_coordinates(vertex) for vertex in vertices]
xyz[:] = transform_points(xyz, transformation)
for index, vertex in enumerate(vertices):
mesh.vertex_attributes(vertex, 'xyz', xyz[index])
|
Transform a mesh.
Parameters
----------
mesh : compas.datastructures.Mesh
The mesh.
transformation : compas.geometry.Transformation
The transformation.
Notes
-----
The mesh is modified in-place.
Examples
--------
>>> from compas.datastructures import Mesh
>>> from compas.geometry import matrix_from_axis_and_angle
>>> mesh = Mesh.from_polyhedron(6)
>>> T = matrix_from_axis_and_angle([0, 0, 1], math.pi / 4)
>>> tmesh = mesh.copy()
>>> mesh_transform(tmesh, T)
|
https://github.com/compas-dev/compas/blob/d795a8bfe9f21ffa124d09e37e9c0ed2e3520057/src/compas/datastructures/mesh/transformations.py#L14-L42
|
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
from compas.geometry import transform_points
__all__ = [
'mesh_transform',
'mesh_transformed',
]
|
MIT License
|
zeaphoo/postmodel
|
postmodel/ext/callflow.py
|
register_postmodel
|
python
|
def register_postmodel(
app: CallFlow,
default_db_url,
extra_db_urls = {},
modules: Optional[Dict[str, List[str]]] = None,
generate_schemas: bool = False,
) -> None:
@app.before_start
async def init_postmodel():
await Postmodel.init(default_db_url, modules=modules, extra_db_urls=extra_db_urls)
await logger.info("Postmodel started.")
if generate_schemas:
await logger.info("Postmodel generating schema")
await Postmodel.generate_schemas()
@app.after_stop
async def close_postmodel():
await Postmodel.close()
await logger.info("Postmodel shutdown.")
|
Registers ``before_server_start`` and ``after_server_stop`` hooks to set-up and tear-down
Postmodel inside a CallFlow webserver.
You can configure using ``(db_url, modules)``.
Parameters
----------
app:
CallFlow app..
db_url:
Use a DB_URL string. See :ref:`db_url`
modules:
Dictionary of ``key``: [``list_of_modules``] that defined "apps" and modules that
should be discovered for models.
generate_schemas:
True to generate schema immediately. Only useful for dev environments
|
https://github.com/zeaphoo/postmodel/blob/727a0a4f12d313fc83488ebecf6368847c6c97a6/postmodel/ext/callflow.py#L10-L47
|
import logging
from typing import Dict, List, Optional
from callflow import CallFlow
from postmodel import Postmodel
from basepy.asynclog import logger
|
MIT License
|
migalkin/stare
|
data_loaders/load.py
|
load_wd50k_33_statements
|
python
|
def load_wd50k_33_statements(maxlen: int) -> Dict:
wd50k_DIR = PARSED_DATA_DIR / 'wd50k_33'
with open(wd50k_DIR / 'train_statements.pkl', 'rb') as f:
train_statements = pickle.load(f)
with open(wd50k_DIR / 'valid_statements.pkl', 'rb') as f:
valid_statements = pickle.load(f)
with open(wd50k_DIR / 'test_statements.pkl', 'rb') as f:
test_statements = pickle.load(f)
statement_entities, statement_predicates = _get_uniques_(train_data=train_statements,
valid_data=valid_statements,
test_data=test_statements)
st_entities = ['__na__'] + statement_entities
st_predicates = ['__na__'] + statement_predicates
entoid = {pred: i for i, pred in enumerate(st_entities)}
prtoid = {pred: i for i, pred in enumerate(st_predicates)}
train, valid, test = [], [], []
for st in train_statements:
id_st = []
for i, uri in enumerate(st):
id_st.append(entoid[uri] if i % 2 is 0 else prtoid[uri])
train.append(id_st)
for st in valid_statements:
id_st = []
for i, uri in enumerate(st):
id_st.append(entoid[uri] if i % 2 is 0 else prtoid[uri])
valid.append(id_st)
for st in test_statements:
id_st = []
for i, uri in enumerate(st):
id_st.append(entoid[uri] if i % 2 is 0 else prtoid[uri])
test.append(id_st)
train, valid, test = _pad_statements_(train, maxlen), _pad_statements_(valid,
maxlen), _pad_statements_(
test,
maxlen)
return {"train": train, "valid": valid, "test": test, "n_entities": len(st_entities),
"n_relations": len(st_predicates), 'e2id': entoid, 'r2id': prtoid}
|
Pull up data from parsed data (thanks magic mike!) and preprocess it to death.
:return: dict
|
https://github.com/migalkin/stare/blob/f40a5ee082d61851477e9870c21e991c7d91deb3/data_loaders/load.py#L421-L469
|
import json
from tqdm import tqdm
from functools import partial
from typing import List, Union, Dict, Callable
import numpy as np
import pickle
from utils.utils import PARSED_DATA_DIR, KNOWN_DATASETS
from pathlib import Path
from utils.utils_mytorch import FancyDict
import random
def _conv_to_our_format_(data, filter_literals=True):
conv_data = []
dropped_statements = 0
dropped_quals = 0
for datum in tqdm(data):
try:
conv_datum = []
head, tail, rel_h, rel_t = None, None, None, None
for rel, val in datum.items():
if rel[-2:] == '_h' and type(val) is str:
head = val
rel_h = rel[:-2]
if rel[-2:] == '_t' and type(val) is str:
tail = val
rel_t = rel[:-2]
if filter_literals and "http://" in tail:
dropped_statements += 1
raise Exception
assert head and tail and rel_h and rel_t, f"Weird data point. Some essentials not found. Quitting\nD:{datum}"
assert rel_h == rel_t, f"Weird data point. Head and Tail rels are different. Quitting\nD: {datum}"
datum.pop(rel_h + '_h')
datum.pop(rel_t + '_t')
datum.pop('N')
conv_datum += [head, rel_h, tail]
for k, v in datum.items():
for _v in v:
if filter_literals and "http://" in _v:
dropped_quals += 1
continue
conv_datum += [k, _v]
conv_data.append(tuple(conv_datum))
except Exception:
continue
print(f"\n Dropped {dropped_statements} statements and {dropped_quals} quals with literals \n ")
return conv_data
def _conv_to_our_quint_format_(data, filter_literals=True):
conv_data = []
dropped_statements = 0
dropped_quals = 0
for datum in tqdm(data):
try:
conv_datum = []
head, tail, rel_h, rel_t = None, None, None, None
for rel, val in datum.items():
if rel[-2:] == '_h' and type(val) is str:
head = val
rel_h = rel[:-2]
if rel[-2:] == '_t' and type(val) is str:
tail = val
rel_t = rel[:-2]
if filter_literals and "http://" in tail:
dropped_statements += 1
raise Exception
assert head and tail and rel_h and rel_t, f"Weird data point. Some essentials not found. Quitting\nD:{datum}"
assert rel_h == rel_t, f"Weird data point. Head and Tail rels are different. Quitting\nD: {datum}"
datum.pop(rel_h + '_h')
datum.pop(rel_t + '_t')
datum.pop('N')
conv_datum += [head, rel_h, tail, None, None]
if len(datum.items()) == 0:
conv_data.append(tuple(conv_datum))
else:
for k, v in datum.items():
conv_datum[3] = k
for _v in v:
if filter_literals and "http://" in _v:
dropped_quals += 1
continue
conv_datum[4] = _v
conv_data.append(tuple(conv_datum))
except Exception:
continue
print(f"\n Dropped {dropped_statements} statements and {dropped_quals} quals with literals \n ")
return conv_data
def _conv_jf17k_to_quints(data):
result = []
for statement in data:
ents = statement[0::2]
rels = statement[1::2]
if len(rels) == 1:
result.append(statement)
else:
s, p, o = statement[0], statement[1], statement[2]
qual_rel = rels[1:]
qual_ent = ents[2:]
for i in range(len(qual_rel)):
result.append([s, p, o, qual_rel[i], qual_ent[i]])
return result
def _get_uniques_(train_data: List[tuple], valid_data: List[tuple], test_data: List[tuple]) -> (
list, list):
statement_entities, statement_predicates = [], []
for statement in train_data + valid_data + test_data:
statement_entities += statement[::2]
statement_predicates += statement[1::2]
statement_entities = sorted(list(set(statement_entities)))
statement_predicates = sorted(list(set(statement_predicates)))
return statement_entities, statement_predicates
def _pad_statements_(data: List[list], maxlen: int) -> List[list]:
result = [
statement + [0] * (maxlen - len(statement)) if len(statement) < maxlen else statement[
:maxlen] for
statement in data]
return result
def clean_literals(data: List[list]) -> List[list]:
result = []
for triple in data:
if "http://" not in triple[2]:
result.append(triple)
return result
def remove_dups(data: List[list]) -> List[list]:
new_l = []
for datum in tqdm(data):
if datum not in new_l:
new_l.append(datum)
return new_l
def load_wd50k_quints() -> Dict:
wd50k_DIR = PARSED_DATA_DIR / 'wd50k'
with open(wd50k_DIR / 'train_quints.pkl', 'rb') as f:
train_quints = pickle.load(f)
with open(wd50k_DIR / 'valid_quints.pkl', 'rb') as f:
valid_quints = pickle.load(f)
with open(wd50k_DIR / 'test_quints.pkl', 'rb') as f:
test_quints = pickle.load(f)
quints_entities, quints_predicates = [], []
for quint in train_quints + valid_quints + test_quints:
quints_entities += [quint[0], quint[2]]
if quint[4]:
quints_entities.append(quint[4])
quints_predicates.append(quint[1])
if quint[3]:
quints_predicates.append(quint[3])
quints_entities = sorted(list(set(quints_entities)))
quints_predicates = sorted(list(set(quints_predicates)))
q_entities = ['__na__'] + quints_entities
q_predicates = ['__na__'] + quints_predicates
entoid = {pred: i for i, pred in enumerate(q_entities)}
prtoid = {pred: i for i, pred in enumerate(q_predicates)}
train = [[entoid[q[0]],
prtoid[q[1]],
entoid[q[2]],
prtoid[q[3]] if q[3] is not None else prtoid['__na__'],
entoid[q[4]] if q[4] is not None else entoid['__na__']] for q in train_quints]
valid = [[entoid[q[0]],
prtoid[q[1]],
entoid[q[2]],
prtoid[q[3]] if q[3] is not None else prtoid['__na__'],
entoid[q[4]] if q[4] is not None else entoid['__na__']] for q in valid_quints]
test = [[entoid[q[0]],
prtoid[q[1]],
entoid[q[2]],
prtoid[q[3]] if q[3] is not None else prtoid['__na__'],
entoid[q[4]] if q[4] is not None else entoid['__na__']] for q in test_quints]
return {"train": train, "valid": valid, "test": test, "n_entities": len(q_entities),
"n_relations": len(q_predicates), 'e2id': entoid, 'r2id': prtoid}
def load_wd50k_triples() -> Dict:
wd50k_DIR = PARSED_DATA_DIR / 'wd50k'
with open(wd50k_DIR / 'train_triples.pkl', 'rb') as f:
train_triples = pickle.load(f)
with open(wd50k_DIR / 'valid_triples.pkl', 'rb') as f:
valid_triples = pickle.load(f)
with open(wd50k_DIR / 'test_triples.pkl', 'rb') as f:
test_triples = pickle.load(f)
triples_entities, triples_predicates = [], []
for triple in train_triples + valid_triples + test_triples:
triples_entities += [triple[0], triple[2]]
triples_predicates.append(triple[1])
triples_entities = ['__na__'] + sorted(list(set(triples_entities)))
triples_predicates = ['__na__'] + sorted(list(set(triples_predicates)))
entoid = {pred: i for i, pred in enumerate(triples_entities)}
prtoid = {pred: i for i, pred in enumerate(triples_predicates)}
train = [[entoid[q[0]], prtoid[q[1]], entoid[q[2]]] for q in train_triples]
valid = [[entoid[q[0]], prtoid[q[1]], entoid[q[2]]] for q in valid_triples]
test = [[entoid[q[0]], prtoid[q[1]], entoid[q[2]]] for q in test_triples]
return {"train": train, "valid": valid, "test": test, "n_entities": len(triples_entities),
"n_relations": len(triples_predicates), 'e2id': entoid, 'r2id': prtoid}
def load_wd50k_statements(maxlen: int) -> Dict:
wd50k_DIR = PARSED_DATA_DIR / 'wd50k'
with open(wd50k_DIR / 'train_statements.pkl', 'rb') as f:
train_statements = pickle.load(f)
with open(wd50k_DIR / 'valid_statements.pkl', 'rb') as f:
valid_statements = pickle.load(f)
with open(wd50k_DIR / 'test_statements.pkl', 'rb') as f:
test_statements = pickle.load(f)
statement_entities, statement_predicates = _get_uniques_(train_data=train_statements,
valid_data=valid_statements,
test_data=test_statements)
st_entities = ['__na__'] + statement_entities
st_predicates = ['__na__'] + statement_predicates
entoid = {pred: i for i, pred in enumerate(st_entities)}
prtoid = {pred: i for i, pred in enumerate(st_predicates)}
train, valid, test = [], [], []
for st in train_statements:
id_st = []
for i, uri in enumerate(st):
id_st.append(entoid[uri] if i % 2 is 0 else prtoid[uri])
train.append(id_st)
for st in valid_statements:
id_st = []
for i, uri in enumerate(st):
id_st.append(entoid[uri] if i % 2 is 0 else prtoid[uri])
valid.append(id_st)
for st in test_statements:
id_st = []
for i, uri in enumerate(st):
id_st.append(entoid[uri] if i % 2 is 0 else prtoid[uri])
test.append(id_st)
train, valid, test = _pad_statements_(train, maxlen), _pad_statements_(valid,
maxlen), _pad_statements_(
test,
maxlen)
return {"train": train, "valid": valid, "test": test, "n_entities": len(st_entities),
"n_relations": len(st_predicates), 'e2id': entoid, 'r2id': prtoid}
def load_wd50k_33_quints() -> Dict:
wd50k_DIR = PARSED_DATA_DIR / 'wd50k_33'
with open(wd50k_DIR / 'train_quints.pkl', 'rb') as f:
train_quints = pickle.load(f)
with open(wd50k_DIR / 'valid_quints.pkl', 'rb') as f:
valid_quints = pickle.load(f)
with open(wd50k_DIR / 'test_quints.pkl', 'rb') as f:
test_quints = pickle.load(f)
quints_entities, quints_predicates = [], []
for quint in train_quints + valid_quints + test_quints:
quints_entities += [quint[0], quint[2]]
if quint[4]:
quints_entities.append(quint[4])
quints_predicates.append(quint[1])
if quint[3]:
quints_predicates.append(quint[3])
quints_entities = sorted(list(set(quints_entities)))
quints_predicates = sorted(list(set(quints_predicates)))
q_entities = ['__na__'] + quints_entities
q_predicates = ['__na__'] + quints_predicates
entoid = {pred: i for i, pred in enumerate(q_entities)}
prtoid = {pred: i for i, pred in enumerate(q_predicates)}
train = [[entoid[q[0]],
prtoid[q[1]],
entoid[q[2]],
prtoid[q[3]] if q[3] is not None else prtoid['__na__'],
entoid[q[4]] if q[4] is not None else entoid['__na__']] for q in train_quints]
valid = [[entoid[q[0]],
prtoid[q[1]],
entoid[q[2]],
prtoid[q[3]] if q[3] is not None else prtoid['__na__'],
entoid[q[4]] if q[4] is not None else entoid['__na__']] for q in valid_quints]
test = [[entoid[q[0]],
prtoid[q[1]],
entoid[q[2]],
prtoid[q[3]] if q[3] is not None else prtoid['__na__'],
entoid[q[4]] if q[4] is not None else entoid['__na__']] for q in test_quints]
return {"train": train, "valid": valid, "test": test, "n_entities": len(q_entities),
"n_relations": len(q_predicates), 'e2id': entoid, 'r2id': prtoid}
def load_wd50k_33_triples() -> Dict:
wd50k_DIR = PARSED_DATA_DIR / 'wd50k_33'
with open(wd50k_DIR / 'train_triples.pkl', 'rb') as f:
train_triples = pickle.load(f)
with open(wd50k_DIR / 'valid_triples.pkl', 'rb') as f:
valid_triples = pickle.load(f)
with open(wd50k_DIR / 'test_triples.pkl', 'rb') as f:
test_triples = pickle.load(f)
triples_entities, triples_predicates = [], []
for triple in train_triples + valid_triples + test_triples:
triples_entities += [triple[0], triple[2]]
triples_predicates.append(triple[1])
triples_entities = ['__na__'] + sorted(list(set(triples_entities)))
triples_predicates = ['__na__'] + sorted(list(set(triples_predicates)))
entoid = {pred: i for i, pred in enumerate(triples_entities)}
prtoid = {pred: i for i, pred in enumerate(triples_predicates)}
train = [[entoid[q[0]], prtoid[q[1]], entoid[q[2]]] for q in train_triples]
valid = [[entoid[q[0]], prtoid[q[1]], entoid[q[2]]] for q in valid_triples]
test = [[entoid[q[0]], prtoid[q[1]], entoid[q[2]]] for q in test_triples]
return {"train": train, "valid": valid, "test": test, "n_entities": len(triples_entities),
"n_relations": len(triples_predicates), 'e2id': entoid, 'r2id': prtoid}
|
MIT License
|
tomplus/kubernetes_asyncio
|
kubernetes_asyncio/client/models/v1_object_meta.py
|
V1ObjectMeta.finalizers
|
python
|
def finalizers(self, finalizers):
self._finalizers = finalizers
|
Sets the finalizers of this V1ObjectMeta.
Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list. # noqa: E501
:param finalizers: The finalizers of this V1ObjectMeta. # noqa: E501
:type: list[str]
|
https://github.com/tomplus/kubernetes_asyncio/blob/22bf0f4ec775b920abc9cee86bb38abcfc57506d/kubernetes_asyncio/client/models/v1_object_meta.py#L257-L266
|
import pprint
import re
import six
from kubernetes_asyncio.client.configuration import Configuration
class V1ObjectMeta(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'annotations': 'dict(str, str)',
'cluster_name': 'str',
'creation_timestamp': 'datetime',
'deletion_grace_period_seconds': 'int',
'deletion_timestamp': 'datetime',
'finalizers': 'list[str]',
'generate_name': 'str',
'generation': 'int',
'labels': 'dict(str, str)',
'managed_fields': 'list[V1ManagedFieldsEntry]',
'name': 'str',
'namespace': 'str',
'owner_references': 'list[V1OwnerReference]',
'resource_version': 'str',
'self_link': 'str',
'uid': 'str'
}
attribute_map = {
'annotations': 'annotations',
'cluster_name': 'clusterName',
'creation_timestamp': 'creationTimestamp',
'deletion_grace_period_seconds': 'deletionGracePeriodSeconds',
'deletion_timestamp': 'deletionTimestamp',
'finalizers': 'finalizers',
'generate_name': 'generateName',
'generation': 'generation',
'labels': 'labels',
'managed_fields': 'managedFields',
'name': 'name',
'namespace': 'namespace',
'owner_references': 'ownerReferences',
'resource_version': 'resourceVersion',
'self_link': 'selfLink',
'uid': 'uid'
}
def __init__(self, annotations=None, cluster_name=None, creation_timestamp=None, deletion_grace_period_seconds=None, deletion_timestamp=None, finalizers=None, generate_name=None, generation=None, labels=None, managed_fields=None, name=None, namespace=None, owner_references=None, resource_version=None, self_link=None, uid=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._annotations = None
self._cluster_name = None
self._creation_timestamp = None
self._deletion_grace_period_seconds = None
self._deletion_timestamp = None
self._finalizers = None
self._generate_name = None
self._generation = None
self._labels = None
self._managed_fields = None
self._name = None
self._namespace = None
self._owner_references = None
self._resource_version = None
self._self_link = None
self._uid = None
self.discriminator = None
if annotations is not None:
self.annotations = annotations
if cluster_name is not None:
self.cluster_name = cluster_name
if creation_timestamp is not None:
self.creation_timestamp = creation_timestamp
if deletion_grace_period_seconds is not None:
self.deletion_grace_period_seconds = deletion_grace_period_seconds
if deletion_timestamp is not None:
self.deletion_timestamp = deletion_timestamp
if finalizers is not None:
self.finalizers = finalizers
if generate_name is not None:
self.generate_name = generate_name
if generation is not None:
self.generation = generation
if labels is not None:
self.labels = labels
if managed_fields is not None:
self.managed_fields = managed_fields
if name is not None:
self.name = name
if namespace is not None:
self.namespace = namespace
if owner_references is not None:
self.owner_references = owner_references
if resource_version is not None:
self.resource_version = resource_version
if self_link is not None:
self.self_link = self_link
if uid is not None:
self.uid = uid
@property
def annotations(self):
return self._annotations
@annotations.setter
def annotations(self, annotations):
self._annotations = annotations
@property
def cluster_name(self):
return self._cluster_name
@cluster_name.setter
def cluster_name(self, cluster_name):
self._cluster_name = cluster_name
@property
def creation_timestamp(self):
return self._creation_timestamp
@creation_timestamp.setter
def creation_timestamp(self, creation_timestamp):
self._creation_timestamp = creation_timestamp
@property
def deletion_grace_period_seconds(self):
return self._deletion_grace_period_seconds
@deletion_grace_period_seconds.setter
def deletion_grace_period_seconds(self, deletion_grace_period_seconds):
self._deletion_grace_period_seconds = deletion_grace_period_seconds
@property
def deletion_timestamp(self):
return self._deletion_timestamp
@deletion_timestamp.setter
def deletion_timestamp(self, deletion_timestamp):
self._deletion_timestamp = deletion_timestamp
@property
def finalizers(self):
return self._finalizers
@finalizers.setter
|
Apache License 2.0
|
target/grease
|
tgt_grease/enterprise/Model/KafkaSource.py
|
KafkaSource.get_configs
|
python
|
def get_configs(self):
self.ioc.getLogger().info("Kafka configs loaded")
return self.conf.get_source('kafka')
|
Gets all Configs with the source 'kafka'
Returns:
list[dict]: A list of all kafka config dicts
|
https://github.com/target/grease/blob/7ebf3df71d5c80a8ed9df44d9b64b735a9d0f899/tgt_grease/enterprise/Model/KafkaSource.py#L362-L370
|
import json
from time import time
import threading
from multiprocessing import Pipe
import kafka
from kafka import KafkaConsumer
from tgt_grease.core import GreaseContainer
from tgt_grease.enterprise.Model.CentralScheduling import Scheduling
from .Configuration import PrototypeConfig
MIN_BACKLOG = 50
MAX_BACKLOG = 200
SLEEP_TIME = 5
MAX_CONSUMERS = 32
class KafkaSource(object):
def __init__(self, ioc=None):
if ioc and isinstance(ioc, GreaseContainer):
self.ioc = ioc
else:
self.ioc = GreaseContainer()
self.conf = PrototypeConfig(self.ioc)
self.configs = []
def run(self, config=None):
if config:
self.configs = [config]
else:
self.configs = self.get_configs()
if not self.validate_configs(self.configs):
self.ioc.getLogger().error("One or more Kafka Configs are invalid, stopping.")
return False
threads = []
for conf in self.configs:
threads.append(self.create_consumer_manager_thread(conf))
while threads:
threads = list(filter(lambda x: x.is_alive(), threads))
self.ioc.getLogger().critical("All Kafka consumer managers have died, stopping.")
return False
def create_consumer_manager_thread(self, config):
KafkaSource.sleep(SLEEP_TIME)
thread = threading.Thread(target=KafkaSource.consumer_manager, args=(self.ioc, config,))
thread.daemon = False
thread.start()
self.ioc.getLogger().info("Kafka consumer manager thread started for config: {0}".format(config.get("name")))
return thread
@staticmethod
def consumer_manager(ioc, config):
monitor_consumer = KafkaSource.create_consumer(ioc, config)
threads = [KafkaSource.create_consumer_thread(ioc, config)]
while threads:
KafkaSource.reallocate_consumers(ioc, config, monitor_consumer, threads)
threads = list(filter(lambda x: x[0].is_alive(), threads))
return False
@staticmethod
def create_consumer_thread(ioc, config):
parent_conn, child_conn = Pipe()
thread = threading.Thread(target=KafkaSource.consume, args=(ioc, config, child_conn,))
thread.daemon = True
thread.start()
ioc.getLogger().info("Kafka consumer thread started for config: {0}".format(config.get("name")))
return thread, parent_conn
@staticmethod
def consume(ioc, config, pipe):
consumer = KafkaSource.create_consumer(ioc, config)
for msg in consumer:
if pipe.poll():
ioc.getLogger().trace("Kill signal received, stopping", trace=True)
return False
message_dict = KafkaSource.parse_message(ioc, config, msg)
if message_dict:
KafkaSource.send_to_scheduling(ioc, config, message_dict)
return False
@staticmethod
def sleep(sleep_sec):
wake_time = time() + sleep_sec
while time() < wake_time:
continue
@staticmethod
def create_consumer(ioc, config):
consumer = None
while not consumer:
try:
consumer = KafkaConsumer(
group_id=config.get('name'),
*config.get('topics'),
**{'bootstrap_servers': ",".join(config.get('servers'))}
)
except kafka.errors.NoBrokersAvailable:
ioc.getLogger().error("No Kafka brokers available for config: {0}, retrying.".format(config.get('name')))
KafkaSource.sleep(SLEEP_TIME)
ioc.getLogger().info("Kafka consumer created under group_id: {0}".format(config.get('name')))
KafkaSource.sleep(SLEEP_TIME)
return consumer
@staticmethod
def parse_message(ioc, config, message):
try:
message = json.loads(message.value, strict=False)
ioc.getLogger().trace("Message successfully loaded", trace=True)
except ValueError:
ioc.getLogger().trace("Failed to unload message", trace=True)
return {}
final = {}
for key, alias in config.get("key_aliases", {}).items():
pointer = message
for sub_key in key.split(config.get("key_sep", ".")):
if not isinstance(pointer, dict) or sub_key not in pointer:
ioc.getLogger().trace("Subkey: {0} missing from message".format(sub_key), trace=True)
return {}
pointer = pointer[sub_key]
final[alias] = str(pointer)
ioc.getLogger().trace("Message succesfully parsed", trace=True)
return final
@staticmethod
def reallocate_consumers(ioc, config, monitor_consumer, threads):
min_backlog = config.get("min_backlog", MIN_BACKLOG)
max_backlog = config.get("max_backlog", MAX_BACKLOG)
max_consumers = config.get("max_consumers", MAX_CONSUMERS)
backlog1 = KafkaSource.get_backlog(ioc, monitor_consumer)
KafkaSource.sleep(SLEEP_TIME)
backlog2 = KafkaSource.get_backlog(ioc, monitor_consumer)
if backlog1 > max_backlog and backlog2 > max_backlog and len(threads) < max_consumers:
threads.append(KafkaSource.create_consumer_thread(ioc, config))
ioc.getLogger().info("Backlog max reached, spawning a new consumer for {0}".format(config.get('name')), verbose=True)
return 1
elif backlog1 <= min_backlog and backlog2 <= min_backlog and len(threads) > 1:
KafkaSource.kill_consumer_thread(ioc, threads[0])
ioc.getLogger().info("Backlog min reached, killing a consumer for {0}".format(config.get('name')), verbose=True)
return -1
ioc.getLogger().info("No reallocation needed for {0}".format(config.get('name')))
return 0
@staticmethod
def kill_consumer_thread(ioc, thread_tup):
thread_tup[1].send("STOP")
ioc.getLogger().trace("Kill signal sent to consumer thread", trace=True)
KafkaSource.sleep(SLEEP_TIME)
@staticmethod
def get_backlog(ioc, consumer):
if not consumer.assignment():
ioc.getLogger().trace("Assigning consumer to topic", trace=True)
consumer.poll()
partitions = consumer.assignment()
if not partitions:
ioc.getLogger().error("No partitions found for kafka consumer")
return -1.
try:
current_offsets = [consumer.position(part) for part in partitions]
end_offsets = list(consumer.end_offsets(partitions).values())
except kafka.errors.KafkaTimeoutError:
ioc.getLogger().error("KafkaTimeout during backlog check")
return -1.
except kafka.errors.UnsupportedVersionError:
ioc.getLogger().error("This version of kafka does not support backlog lookups")
return -1.
if not current_offsets or not end_offsets or len(current_offsets) != len(end_offsets):
ioc.getLogger().error("Backlog check failed for kafka consumer - invalid offsets")
return -1.
return float(sum(end_offsets) - sum(current_offsets)) / len(partitions)
@staticmethod
def send_to_scheduling(ioc, config, message):
scheduler = Scheduling(ioc)
if not message:
return False
if scheduler.scheduleDetection(config.get('source'), config.get('name'), message):
ioc.getLogger().trace(
"Data scheduled for detection from source [{0}]".format(config.get('source')),
trace=True
)
return True
else:
ioc.getLogger().error("Scheduling failed for kafka source document!", notify=False)
return False
|
MIT License
|
magenta/ddsp
|
ddsp/spectral_ops.py
|
compute_mfcc
|
python
|
def compute_mfcc(audio,
lo_hz=20.0,
hi_hz=8000.0,
fft_size=1024,
mel_bins=128,
mfcc_bins=13,
overlap=0.75,
pad_end=True,
sample_rate=16000):
logmel = compute_logmel(
audio,
lo_hz=lo_hz,
hi_hz=hi_hz,
bins=mel_bins,
fft_size=fft_size,
overlap=overlap,
pad_end=pad_end,
sample_rate=sample_rate)
mfccs = tf.signal.mfccs_from_log_mel_spectrograms(logmel)
return mfccs[..., :mfcc_bins]
|
Calculate Mel-frequency Cepstral Coefficients.
|
https://github.com/magenta/ddsp/blob/56266e9c255019df050a3c20255caa2beaa912ac/ddsp/spectral_ops.py#L121-L141
|
import crepe
from ddsp.core import safe_log
from ddsp.core import tf_float32
import gin
import librosa
import numpy as np
import tensorflow.compat.v2 as tf
CREPE_SAMPLE_RATE = 16000
_CREPE_FRAME_SIZE = 1024
F0_RANGE = 127.0
LD_RANGE = 120.0
def stft(audio, frame_size=2048, overlap=0.75, pad_end=True):
assert frame_size * overlap % 2.0 == 0.0
audio = tf_float32(audio)
if len(audio.shape) == 3:
audio = tf.squeeze(audio, axis=-1)
s = tf.signal.stft(
signals=audio,
frame_length=int(frame_size),
frame_step=int(frame_size * (1.0 - overlap)),
fft_length=int(frame_size),
pad_end=pad_end)
return s
def stft_np(audio, frame_size=2048, overlap=0.75, pad_end=True):
assert frame_size * overlap % 2.0 == 0.0
hop_size = int(frame_size * (1.0 - overlap))
is_2d = (len(audio.shape) == 2)
if pad_end:
n_samples_initial = int(audio.shape[-1])
n_frames = int(np.ceil(n_samples_initial / hop_size))
n_samples_final = (n_frames - 1) * hop_size + frame_size
pad = n_samples_final - n_samples_initial
padding = ((0, 0), (0, pad)) if is_2d else ((0, pad),)
audio = np.pad(audio, padding, 'constant')
def stft_fn(y):
return librosa.stft(y=y,
n_fft=int(frame_size),
hop_length=hop_size,
center=False).T
s = np.stack([stft_fn(a) for a in audio]) if is_2d else stft_fn(audio)
return s
@gin.register
def compute_mag(audio, size=2048, overlap=0.75, pad_end=True):
mag = tf.abs(stft(audio, frame_size=size, overlap=overlap, pad_end=pad_end))
return tf_float32(mag)
@gin.register
def compute_mel(audio,
lo_hz=0.0,
hi_hz=8000.0,
bins=64,
fft_size=2048,
overlap=0.75,
pad_end=True,
sample_rate=16000):
mag = compute_mag(audio, fft_size, overlap, pad_end)
num_spectrogram_bins = int(mag.shape[-1])
linear_to_mel_matrix = tf.signal.linear_to_mel_weight_matrix(
bins, num_spectrogram_bins, sample_rate, lo_hz, hi_hz)
mel = tf.tensordot(mag, linear_to_mel_matrix, 1)
mel.set_shape(mag.shape[:-1].concatenate(linear_to_mel_matrix.shape[-1:]))
return mel
@gin.register
def compute_logmag(audio, size=2048, overlap=0.75, pad_end=True):
return safe_log(compute_mag(audio, size, overlap, pad_end))
@gin.register
def compute_logmel(audio,
lo_hz=80.0,
hi_hz=7600.0,
bins=64,
fft_size=2048,
overlap=0.75,
pad_end=True,
sample_rate=16000):
mel = compute_mel(audio, lo_hz, hi_hz, bins,
fft_size, overlap, pad_end, sample_rate)
return safe_log(mel)
@gin.register
|
Apache License 2.0
|
mrgambal/vulyk
|
vulyk/bootstrap/__init__.py
|
init_app
|
python
|
def init_app(name):
key = 'app'
if not hasattr(init_app, key):
app = flask.Flask(name)
app.config.from_object('vulyk.settings')
try:
app.config.from_object('local_settings')
except ImportError:
pass
app.template_folder = app.config.get('TEMPLATES_FOLDER', 'templates')
app.static_folder = app.config.get('STATIC_FOLDER', 'static')
_logging.init_logger(app=app)
app.logger.info('STARTING.')
db = MongoEngine(app)
app.logger.debug('Database is available at %s:%s',
app.config['MONGODB_SETTINGS'].get('HOST',
'localhost'),
app.config['MONGODB_SETTINGS'].get('PORT', 27017))
_assets.init(app)
_social_login.init_social_login(app, db)
if app.config.get('ENABLE_ADMIN', False):
from . import _admin
app.admin = _admin.init_admin(app)
_blueprints.init_blueprints(app)
setattr(init_app, key, app)
app.logger.info('Vulyk bootstrapping complete.')
return getattr(init_app, key)
|
:param name: application alias
:type name: str
:return: Bootstrapped cached application instance
:rtype: flask.Flask
|
https://github.com/mrgambal/vulyk/blob/4ea617bb9a1c4778ce6dfa084c53e2667d037f67/vulyk/bootstrap/__init__.py#L20-L66
|
import flask
from flask_mongoengine import MongoEngine
from . import _assets, _logging, _social_login, _blueprints
from ._tasks import init_plugins
__all__ = [
'init_app',
'init_plugins'
]
|
BSD 3-Clause New or Revised License
|
dials/dials
|
algorithms/refinement/parameterisation/scan_varying_prediction_parameters.py
|
ScanVaryingPredictionParameterisation._get_goniometer_parameterisation
|
python
|
def _get_goniometer_parameterisation(self, experiment_id):
param_set = self._exp_to_param[experiment_id]
gp = None
if param_set.gonio_param is not None:
gp = self._goniometer_parameterisations[param_set.gonio_param]
return gp
|
Return the goniometer parameterisation for the requested experiment number
(or None if the goniometer in that experiment is not parameterised)
|
https://github.com/dials/dials/blob/a2cb71bf410e179b92554bcce2e21388e1dc25d1/algorithms/refinement/parameterisation/scan_varying_prediction_parameters.py#L227-L236
|
import math
from collections import namedtuple
from scitbx import matrix
from dials.algorithms.refinement.parameterisation.prediction_parameters import (
SparseGradientVectorMixin,
XYPhiPredictionParameterisation,
)
from dials.array_family import flex
class StateDerivativeCache:
def __init__(self, parameterisations=None):
if parameterisations is None:
parameterisations = []
self._cache = dict.fromkeys(parameterisations)
self._Pair = namedtuple("Pair", ["derivative", "iselection"])
self.clear()
self._nref = 0
def build_gradients(self, parameterisation, isel=None, imatch=None):
entry = self._cache[parameterisation]
shape = None
for e in entry:
if e:
shape = e[0].derivative.n
break
if shape is None:
raise TypeError("No model state derivatives found")
if shape == (3, 1):
arr_type = flex.vec3_double
null = (0, 0, 0)
elif shape == (3, 3):
arr_type = flex.mat3_double
null = (0, 0, 0, 0, 0, 0, 0, 0, 0)
else:
raise TypeError("Unrecognised model state derivative type")
for p_data in entry:
ds_dp = arr_type(self._nref, null)
for pair in p_data:
ds_dp.set_selected(pair.iselection, pair.derivative)
if imatch is not None:
ds_dp = ds_dp.select(imatch)
if isel is not None:
ds_dp = ds_dp.select(isel)
yield ds_dp
def clear(self):
for p in self._cache:
self._cache[p] = [[] for i in range(p.num_free())]
def append(self, parameterisation, iparam, derivative, iselection):
l1 = self._cache[parameterisation]
l2 = l1[iparam]
l2.append(self._Pair(derivative, iselection))
@property
def nref(self):
return self._nref
@nref.setter
def nref(self, value):
self._nref = value
class ScanVaryingPredictionParameterisation(XYPhiPredictionParameterisation):
def __init__(
self,
experiments,
detector_parameterisations=None,
beam_parameterisations=None,
xl_orientation_parameterisations=None,
xl_unit_cell_parameterisations=None,
goniometer_parameterisations=None,
):
if detector_parameterisations is None:
detector_parameterisations = []
if beam_parameterisations is None:
beam_parameterisations = []
if xl_orientation_parameterisations is None:
xl_orientation_parameterisations = []
if xl_unit_cell_parameterisations is None:
xl_unit_cell_parameterisations = []
if goniometer_parameterisations is None:
goniometer_parameterisations = []
self._varying_detectors = any(
hasattr(p, "num_sets") for p in detector_parameterisations
)
self._varying_beams = any(
hasattr(p, "num_sets") for p in beam_parameterisations
)
self._varying_xl_orientations = any(
hasattr(p, "num_sets") for p in xl_orientation_parameterisations
)
self._varying_xl_unit_cells = any(
hasattr(p, "num_sets") for p in xl_unit_cell_parameterisations
)
self._varying_goniometers = any(
hasattr(p, "num_sets") for p in goniometer_parameterisations
)
to_cache = []
if self._varying_detectors:
to_cache.extend(detector_parameterisations)
if self._varying_beams:
to_cache.extend(beam_parameterisations)
if self._varying_xl_orientations:
to_cache.extend(xl_orientation_parameterisations)
if self._varying_xl_unit_cells:
to_cache.extend(xl_unit_cell_parameterisations)
if self._varying_goniometers:
to_cache.extend(goniometer_parameterisations)
self._derivative_cache = StateDerivativeCache(to_cache)
super().__init__(
experiments,
detector_parameterisations=detector_parameterisations,
beam_parameterisations=beam_parameterisations,
xl_orientation_parameterisations=xl_orientation_parameterisations,
xl_unit_cell_parameterisations=xl_unit_cell_parameterisations,
goniometer_parameterisations=goniometer_parameterisations,
)
self.set_scan_varying_errors = False
def _get_xl_orientation_parameterisation(self, experiment_id):
param_set = self._exp_to_param[experiment_id]
xl_op = None
if param_set.xl_ori_param is not None:
xl_op = self._xl_orientation_parameterisations[param_set.xl_ori_param]
return xl_op
def _get_xl_unit_cell_parameterisation(self, experiment_id):
param_set = self._exp_to_param[experiment_id]
xl_ucp = None
if param_set.xl_uc_param is not None:
xl_ucp = self._xl_unit_cell_parameterisations[param_set.xl_uc_param]
return xl_ucp
def _get_beam_parameterisation(self, experiment_id):
param_set = self._exp_to_param[experiment_id]
bp = None
if param_set.beam_param is not None:
bp = self._beam_parameterisations[param_set.beam_param]
return bp
def _get_detector_parameterisation(self, experiment_id):
param_set = self._exp_to_param[experiment_id]
dp = None
if param_set.det_param is not None:
dp = self._detector_parameterisations[param_set.det_param]
return dp
|
BSD 3-Clause New or Revised License
|
unidata/siphon
|
siphon/catalog.py
|
IndexableMapping.__getitem__
|
python
|
def __getitem__(self, item):
try:
item + ''
return super(IndexableMapping, self).__getitem__(item)
except TypeError:
return list(self.values())[item]
|
Return an item either by index or name.
|
https://github.com/unidata/siphon/blob/feb7f60260d157c1c282469f755c3998ef6a6e0f/siphon/catalog.py#L32-L38
|
from collections import OrderedDict
from datetime import datetime
import logging
import re
import warnings
import xml.etree.ElementTree as ET
try:
from urlparse import urljoin, urlparse
except ImportError:
from urllib.parse import urljoin, urlparse
from .http_util import session_manager
from .metadata import TDSCatalogMetadata
logging.basicConfig(level=logging.ERROR)
log = logging.getLogger(__name__)
class IndexableMapping(OrderedDict):
|
BSD 3-Clause New or Revised License
|
henniggroup/gasp-python
|
gasp/development.py
|
RedundancyGuard.set_all_to_defaults
|
python
|
def set_all_to_defaults(self):
self.lattice_length_tol = self.default_lattice_length_tol
self.lattice_angle_tol = self.default_lattice_angle_tol
self.site_tol = self.default_site_tol
self.use_primitive_cell = self.default_use_primitive_cell
self.attempt_supercell = self.default_attempt_supercell
self.rmsd_tol = self.default_rmsd_tol
self.epa_diff = self.default_epa_diff
|
Sets all the redundancy parameters to default values.
|
https://github.com/henniggroup/gasp-python/blob/0c8d993c82e0e1c69a05b3c34bbb2fcbbdbb7f07/gasp/development.py#L882-L893
|
from __future__ import division, unicode_literals, print_function
from pymatgen.core.composition import Composition
from pymatgen.core.periodic_table import Element, DummySpecie
from pymatgen.core.structure import Molecule
from pymatgen.analysis.phase_diagram import CompoundPhaseDiagram
from pymatgen.analysis.phase_diagram import PDEntry
from pymatgen.analysis.structure_matcher import StructureMatcher
from pymatgen.analysis.molecule_matcher import IsomorphismMolAtomMapper, MoleculeMatcher
from pymatgen.analysis.structure_matcher import ElementComparator
try:
import openbabel as ob
except ImportError:
ob = None
import warnings
import math
class Constraints(object):
def __init__(self, constraints_parameters, composition_space):
if composition_space.objective_function == 'epa':
self.default_min_num_atoms = max(
2, int(composition_space.endpoints[0].num_atoms))
else:
self.default_min_num_atoms = 2
self.default_max_num_atoms = 30
self.default_min_lattice_length = 0.5
self.default_max_lattice_length = 20
self.default_min_lattice_angle = 40
self.default_max_lattice_angle = 140
self.default_allow_endpoints = True
self.default_mid_factor = 0.6
if constraints_parameters in (None, 'default'):
self.set_all_to_defaults(composition_space)
else:
if 'min_num_atoms' not in constraints_parameters:
self.min_num_atoms = self.default_min_num_atoms
elif constraints_parameters['min_num_atoms'] in (None, 'default'):
self.min_num_atoms = self.default_min_num_atoms
else:
self.min_num_atoms = constraints_parameters['min_num_atoms']
if 'max_num_atoms' not in constraints_parameters:
self.max_num_atoms = self.default_max_num_atoms
elif constraints_parameters['max_num_atoms'] in (None, 'default'):
self.max_num_atoms = self.default_max_num_atoms
else:
self.max_num_atoms = constraints_parameters['max_num_atoms']
if 'min_lattice_length' not in constraints_parameters:
self.min_lattice_length = self.default_min_lattice_length
elif constraints_parameters['min_lattice_length'] in (None,
'default'):
self.min_lattice_length = self.default_min_lattice_length
else:
self.min_lattice_length = constraints_parameters[
'min_lattice_length']
if 'max_lattice_length' not in constraints_parameters:
self.max_lattice_length = self.default_max_lattice_length
elif constraints_parameters['max_lattice_length'] in (None,
'default'):
self.max_lattice_length = self.default_max_lattice_length
else:
self.max_lattice_length = constraints_parameters['max_lattice_length']
if 'min_lattice_angle' not in constraints_parameters:
self.min_lattice_angle = self.default_min_lattice_angle
elif constraints_parameters['min_lattice_angle'] in (None,
'default'):
self.min_lattice_angle = self.default_min_lattice_angle
else:
self.min_lattice_angle = constraints_parameters['min_lattice_angle']
if 'max_lattice_angle' not in constraints_parameters:
self.max_lattice_angle = self.default_max_lattice_angle
elif constraints_parameters['max_lattice_angle'] in (None,
'default'):
self.max_lattice_angle = self.default_max_lattice_angle
else:
self.max_lattice_angle = constraints_parameters[
'max_lattice_angle']
if 'allow_endpoints' not in constraints_parameters:
self.allow_endpoints = self.default_allow_endpoints
elif constraints_parameters['allow_endpoints'] in (None,
'default'):
self.allow_endpoints = self.default_allow_endpoints
else:
self.allow_endpoints = constraints_parameters[
'allow_endpoints']
if 'per_species_mids' not in constraints_parameters:
self.set_all_mids_to_defaults(composition_space)
elif constraints_parameters['per_species_mids'] in (None,
'default'):
self.set_all_mids_to_defaults(composition_space)
else:
self.per_species_mids = constraints_parameters[
'per_species_mids']
for key in self.per_species_mids:
if self.per_species_mids[key] in (None, 'default'):
elements = key.split()
radius1 = Element(elements[0]).atomic_radius
radius2 = Element(elements[1]).atomic_radius
self.per_species_mids[key] = self.default_mid_factor*(
radius1 + radius2)
self.set_some_mids_to_defaults(composition_space)
self.check_num_atoms_range(composition_space)
def set_all_to_defaults(self, composition_space):
self.min_num_atoms = self.default_min_num_atoms
self.max_num_atoms = self.default_max_num_atoms
self.min_lattice_length = self.default_min_lattice_length
self.max_lattice_length = self.default_max_lattice_length
self.min_lattice_angle = self.default_min_lattice_angle
self.max_lattice_angle = self.default_max_lattice_angle
self.allow_endpoints = self.default_allow_endpoints
self.set_all_mids_to_defaults(composition_space)
def set_all_mids_to_defaults(self, composition_space):
elements = composition_space.get_all_elements()
self.per_species_mids = {}
for i in range(0, len(elements)):
for j in range(i, len(elements)):
self.per_species_mids[
str(elements[i].symbol + " " + elements[j].symbol)
] = self.default_mid_factor*(elements[i].atomic_radius +
elements[j].atomic_radius)
def set_some_mids_to_defaults(self, composition_space):
elements = composition_space.get_all_elements()
missing_pairs = []
for i in range(0, len(elements)):
for j in range(i, len(elements)):
test_key1 = elements[i].symbol + " " + elements[j].symbol
test_key2 = elements[j].symbol + " " + elements[i].symbol
if test_key1 not in self.per_species_mids and test_key2 not in self.per_species_mids:
missing_pairs.append(test_key1)
for pair in missing_pairs:
p = pair.split()
self.per_species_mids[str(pair)] = self.default_mid_factor*(
Element(p[0]).atomic_radius + Element(p[1]).atomic_radius)
def get_max_mid(self):
max_mid = 0
for key in self.per_species_mids:
if self.per_species_mids[key] > max_mid:
max_mid = self.per_species_mids[key]
return max_mid
def check_num_atoms_range(self, composition_space):
if len(composition_space.endpoints) == 1:
atoms_per_comp = composition_space.endpoints[0].reduced_composition.num_atoms
bottom = int(math.ceil(self.min_num_atoms/atoms_per_comp))
top = int(math.floor(self.max_num_atoms/atoms_per_comp))
if top < bottom:
print('The range defined by the minimum and maximum number of '
'atoms constraints does not contain an integer multiple '
'of the number of atoms in the specified composition.')
print('Please use the "min_num_atoms" and "max_num_atoms" '
'keywords in the Constraints block to set a valid range '
'for the allowed number of atoms.')
print('Quitting...')
quit()
class Developer(object):
def __init__(self, developer_parameters, geometry):
self.default_niggli = True
if geometry.shape == 'bulk':
self.default_scale_density = True
else:
self.default_scale_density = False
if developer_parameters in (None, 'default'):
self.niggli = self.default_niggli
self.scale_density = self.default_scale_density
else:
if 'niggli' not in developer_parameters:
self.niggli = self.default_niggli
elif developer_parameters['niggli'] in (None, 'default'):
self.niggli = self.default_niggli
else:
self.niggli = developer_parameters['niggli']
if 'scale_density' not in developer_parameters:
self.scale_density = self.default_scale_density
elif developer_parameters['scale_density'] in (None, 'default'):
self.scale_density = self.default_scale_density
else:
self.scale_density = developer_parameters['scale_density']
def develop(self, organism, composition_space, constraints, geometry,
pool):
if not self.satisfies_num_atoms_constraints(organism, constraints):
return False
if not self.is_in_composition_space(organism, composition_space,
constraints, pool):
return False
if self.niggli:
if not self.niggli_reduction(organism, geometry, constraints):
return False
if self.scale_density and len(
pool.promotion_set) > 0 and organism.epa is None:
if not self.scale_volume(organism, composition_space, pool):
return False
if not self.satisfies_lattice_constraints(organism, constraints):
return False
if not self.satisfies_mids_constraints(organism, constraints):
return False
if not self.satisfies_geometry_constraints(organism, geometry):
return False
return True
def satisfies_num_atoms_constraints(self, organism, constraints):
if len(organism.cell.sites) > constraints.max_num_atoms:
print("Organism {} failed max number of atoms constraint ".format(
organism.id))
return False
if len(organism.cell.sites) < constraints.min_num_atoms:
print("Organism {} failed min number of atoms constraint ".format(
organism.id))
return False
return True
def is_in_composition_space(self, organism, composition_space,
constraints, pool):
if composition_space.objective_function == 'epa':
return self.is_in_composition_space_epa(organism,
composition_space)
elif composition_space.objective_function == 'pd':
return self.is_in_composition_space_pd(organism, composition_space,
constraints, pool)
def is_in_composition_space_epa(self, organism, composition_space):
reduced_composition = composition_space.endpoints[
0].reduced_composition
org_reduced_composition = organism.composition.reduced_composition
if not reduced_composition.almost_equals(org_reduced_composition):
print("Organism {} has incorrect composition ".format(organism.id))
return False
return True
def is_in_composition_space_pd(self, organism, composition_space,
constraints, pool):
pdentries = []
for endpoint in composition_space.endpoints:
pdentries.append(PDEntry(endpoint, -10))
pdentries.append(PDEntry(organism.composition, -10))
composition_checker = CompoundPhaseDiagram(
pdentries, composition_space.endpoints)
if len(composition_checker.transform_entries(
pdentries, composition_space.endpoints)[0]) == len(
composition_space.endpoints):
print('Organism {} lies outside the composition space '.format(
organism.id))
return False
if not constraints.allow_endpoints and len(pool.to_list()) > 0:
for endpoint in composition_space.endpoints:
if endpoint.almost_equals(
organism.composition.reduced_composition):
print('Organism {} is at a composition space '
'endpoint '.format(organism.id))
return False
return True
def niggli_reduction(self, organism, geometry, constraints):
if geometry.shape == 'bulk':
if not organism.cell.reduce_cell():
print('Niggli cell reduction failed on organism {} during '
'development '.format(organism.id))
return False
elif geometry.shape == 'sheet':
if not organism.cell.reduce_sheet_cell(geometry, constraints):
print('2D Niggli cell reduction failed on organism {} '
'during development '.format(organism.id))
return False
return True
def scale_volume(self, organism, composition_space, pool):
if composition_space.objective_function == 'epa':
return self.scale_volume_epa(organism, pool)
elif composition_space.objective_function == 'pd':
return self.scale_volume_pd(organism, composition_space, pool)
def scale_volume_epa(self, organism, pool):
vpa_sum = 0
for org in pool.promotion_set:
vpa_sum += org.cell.volume/len(org.cell.sites)
vpa_mean = vpa_sum/len(pool.promotion_set)
num_atoms = len(organism.cell.sites)
new_vol = vpa_mean*num_atoms
with warnings.catch_warnings():
warnings.simplefilter('ignore')
organism.cell.scale_lattice(new_vol)
if str(organism.cell.lattice.a) == 'nan' or organism.cell.lattice.a > 100:
print('Volume scaling failed on organism {} during '
'development '.format(organism.id))
return False
return True
def scale_volume_pd(self, organism, composition_space, pool):
pdentries = []
for org in pool.promotion_set:
pdentries.append(PDEntry(org.composition, org.total_energy))
compound_pd = CompoundPhaseDiagram(pdentries,
composition_space.endpoints)
transformed_entry = compound_pd.transform_entries(
[PDEntry(organism.composition, 10)], composition_space.endpoints)
transformed_list = str(transformed_entry[0][0]).split()
del transformed_list[0]
popped = ''
while popped != 'with':
popped = transformed_list.pop()
symbols = []
amounts = []
for entry in transformed_list:
split_entry = entry.split('0+')
symbols.append(split_entry[0])
amounts.append(float(split_entry[1]))
dummy_species_amounts = {}
for i in range(len(symbols)):
dummy_species_amounts[DummySpecie(symbol=symbols[i])] = amounts[i]
dummy_comp = Composition(dummy_species_amounts)
decomp = compound_pd.get_decomposition(dummy_comp)
fractions = []
comps = []
for item in decomp:
fractions.append(decomp[item])
first_split = str(item).split(',')
second_split = first_split[0].split()
while second_split[0] != 'composition':
del second_split[0]
del second_split[0]
comp_string = ''
for symbol in second_split:
comp_string += str(symbol)
comps.append(Composition(comp_string))
vpa_mean = 0
for i in range(len(comps)):
for org in pool.promotion_set:
if (comps[i].reduced_composition).almost_equals(
org.composition.reduced_composition):
vpa_mean += (org.cell.volume/len(
org.cell.sites))*fractions[i]
num_atoms = len(organism.cell.sites)
new_vol = vpa_mean*num_atoms
with warnings.catch_warnings():
warnings.simplefilter('ignore')
organism.cell.scale_lattice(new_vol)
if str(organism.cell.lattice.a) == 'nan' or organism.cell.lattice.a > 100:
print('Volume scaling failed on organism {} during '
'development '.format(organism.id))
return False
return True
def satisfies_lattice_constraints(self, organism, constraints):
lengths = organism.cell.lattice.abc
for length in lengths:
if length > constraints.max_lattice_length:
print('Organism {} failed max lattice length '
'constraint '.format(organism.id))
return False
elif length < constraints.min_lattice_length:
print('Organism {} failed min lattice length '
'constraint '.format(organism.id))
return False
angles = organism.cell.lattice.angles
for angle in angles:
if angle > constraints.max_lattice_angle:
print('Organism {} failed max lattice angle '
'constraint '.format(organism.id))
return False
elif angle < constraints.min_lattice_angle:
print('Organism {} failed min lattice angle '
'constraint '.format(organism.id))
return False
return True
def satisfies_mids_constraints(self, organism, constraints):
organism.cell.merge_sites(mode='delete')
species_symbols = organism.cell.symbol_set
for site in organism.cell.sites:
for species_symbol in species_symbols:
test_key1 = species_symbol + " " + site.specie.symbol
test_key2 = site.specie.symbol + " " + species_symbol
if test_key1 in constraints.per_species_mids:
mid = constraints.per_species_mids[test_key1]
elif test_key2 in constraints.per_species_mids:
mid = constraints.per_species_mids[test_key2]
neighbors = organism.cell.get_neighbors(site, mid)
for neighbor in neighbors:
if neighbor[0].specie.symbol == species_symbol:
print('Organism {} failed per-species minimum '
'interatomic distance constraint '.format(
organism.id))
return False
return True
def satisfies_geometry_constraints(self, organism, geometry):
if geometry.get_size(organism.cell) > geometry.max_size:
print("Organism {} failed max size constraint ".format(
organism.id))
return False
if geometry.get_size(organism.cell) < geometry.min_size:
print("Organism {} failed min size constraint ".format(
organism.id))
return False
return True
class RedundancyGuard(object):
def __init__(self, redundancy_parameters, geometry):
self.default_lattice_length_tol = 0.05
self.default_lattice_angle_tol = 2
self.default_site_tol = 0.1
self.default_use_primitive_cell = True
self.default_attempt_supercell = True
self.default_rmsd_tol = 0.1
self.default_epa_diff = 0.0
if redundancy_parameters in (None, 'default'):
self.set_all_to_defaults()
else:
if 'lattice_length_tol' not in redundancy_parameters:
self.lattice_length_tol = self.default_lattice_length_tol
elif redundancy_parameters['lattice_length_tol'] in (None,
'default'):
self.lattice_length_tol = self.default_lattice_length_tol
else:
self.lattice_length_tol = redundancy_parameters[
'lattice_length_tol']
if 'lattice_angle_tol' not in redundancy_parameters:
self.lattice_angle_tol = self.default_lattice_angle_tol
elif redundancy_parameters['lattice_angle_tol'] in (None,
'default'):
self.lattice_angle_tol = self.default_lattice_angle_tol
else:
self.lattice_angle_tol = redundancy_parameters[
'lattice_angle_tol']
if 'site_tol' not in redundancy_parameters:
self.site_tol = self.default_site_tol
elif redundancy_parameters['site_tol'] in (None, 'default'):
self.site_tol = self.default_site_tol
else:
self.site_tol = redundancy_parameters['site_tol']
if 'use_primitive_cell' not in redundancy_parameters:
self.use_primitive_cell = self.default_use_primitive_cell
elif redundancy_parameters['use_primitive_cell'] in (None,
'default'):
self.use_primitive_cell = self.default_use_primitive_cell
else:
self.use_primitive_cell = redundancy_parameters[
'use_primitive_cell']
if 'attempt_supercell' not in redundancy_parameters:
self.attempt_supercell = self.default_attempt_supercell
elif redundancy_parameters['attempt_supercell'] in (None,
'default'):
self.attempt_supercell = self.default_attempt_supercell
else:
self.attempt_supercell = redundancy_parameters[
'attempt_supercell']
if 'rmsd_tol' not in redundancy_parameters:
self.rmsd_tol = self.default_rmsd_tol
elif redundancy_parameters['rmsd_tol'] in (None, 'default'):
self.rmsd_tol = self.default_rmsd_tol
else:
self.rmsd_tol = redundancy_parameters['rmsd_tol']
if 'epa_diff' not in redundancy_parameters:
self.epa_diff = self.default_epa_diff
elif redundancy_parameters['epa_diff'] in (None, 'default'):
self.epa_diff = self.default_epa_diff
else:
self.epa_diff = redundancy_parameters['epa_diff']
self.structure_matcher = StructureMatcher(
self.lattice_length_tol, self.site_tol, self.lattice_angle_tol,
self.use_primitive_cell, False, self.attempt_supercell, False,
ElementComparator())
if geometry.shape == 'cluster' or geometry.shape == 'wire':
iso_mol_atom_mapper = IsomorphismMolAtomMapper()
self.molecule_matcher = MoleculeMatcher(self.rmsd_tol,
iso_mol_atom_mapper)
ob.obErrorLog.SetOutputLevel(0)
|
MIT License
|
sgherbst/msdsl
|
msdsl/expr/expr.py
|
concatenate
|
python
|
def concatenate(operands):
operands = wrap_constants(operands)
format_cls = get_highest_format_cls(operands)
assert issubclass(format_cls, UIntFormat)
if len(operands) == 0:
raise ValueError('Concatenation requires at least one operand.')
elif len(operands) == 1:
return operands[0]
else:
return Concatenate(operands)
|
Concatenate a list of operands given in *operands*.
:param operands: Operands that shall be concatenated
:return: All operands concatenated
|
https://github.com/sgherbst/msdsl/blob/e38d5ecdb88b3574bda62f22a4f91ce3e4173d12/msdsl/expr/expr.py#L562-L583
|
from functools import reduce
from typing import List, Tuple
from numbers import Number, Integral, Real
from math import floor, ceil
from copy import deepcopy
from msdsl.expr.format import RealFormat, SIntFormat, UIntFormat, Format, IntFormat
def wrap_constant(operand):
if isinstance(operand, Integral):
if operand < 0:
return SIntConstant(operand)
else:
return UIntConstant(operand)
elif isinstance(operand, Real):
return RealConstant(operand)
else:
return operand
def wrap_constants(operands):
return [wrap_constant(operand) for operand in operands]
def get_highest_format_cls(operands):
if any(isinstance(operand.format_, RealFormat) for operand in operands):
return RealFormat
elif any(isinstance(operand.format_, SIntFormat) for operand in operands):
return SIntFormat
elif any(isinstance(operand.format_, UIntFormat) for operand in operands):
return UIntFormat
else:
raise Exception('Cannot determine highest format class.')
def promote_operand(operand, promoted_cls):
if issubclass(promoted_cls, UIntFormat):
return to_uint(operand)
elif issubclass(promoted_cls, SIntFormat):
return to_sint(operand)
elif issubclass(promoted_cls, RealFormat):
return to_real(operand)
else:
raise Exception('Unknown format type: ' + promoted_cls.__name__)
def promote_operands(operands, promoted_cls):
return [promote_operand(operand=operand, promoted_cls=promoted_cls) for operand in operands]
class ModelExpr:
def __init__(self, format_):
self.format_ = format_
def __add__(self, other):
return sum_op([self, other])
def __mul__(self, other):
return prod_op([self, other])
def __sub__(self, other):
return self.__add__(-other)
def __truediv__(self, other):
if isinstance(other, Number):
return (1.0/other)*self
else:
raise NotImplementedError
def __radd__(self, other):
return self.__add__(other)
def __rmul__(self, other):
return self.__mul__(other)
def __rsub__(self, other):
return (-self).__add__(other)
def __neg__(self):
return -1*self
def __pos__(self):
return self
def __invert__(self):
return BitwiseInv(self)
def __and__(self, other):
return BitwiseAnd([self, other])
def __or__(self, other):
return BitwiseOr([self, other])
def __xor__(self, other):
return BitwiseXor([self, other])
def __rshift__(self, other):
return ArithmeticRightShift(self, other)
def __lshift__(self, other):
return ArithmeticLeftShift(self, other)
def __getitem__(self, item):
return BitwiseAccess(self, item)
def __le__(self, other):
return LessThanOrEquals(self, other)
def __lt__(self, other):
return LessThan(self, other)
def __ge__(self, other):
return GreaterThanOrEquals(self, other)
def __gt__(self, other):
return GreaterThan(self, other)
def __eq__(self, other):
return EqualTo(self, other)
def __ne__(self, other):
return NotEqualTo(self, other)
class ModelOperator(ModelExpr):
def __init__(self, operands: List, format_):
super().__init__(format_=format_)
self.operands = wrap_constants(operands)
class UnaryOperator(ModelOperator):
def __init__(self, operand, format_):
super().__init__(operands=[operand], format_=format_)
@property
def operand(self):
return self.operands[0]
class BinaryOperator(ModelOperator):
def __init__(self, lhs, rhs, format_):
super().__init__(operands=[lhs, rhs], format_=format_)
@property
def lhs(self):
return self.operands[0]
@property
def rhs(self):
return self.operands[1]
class ComparisonOperator(BinaryOperator):
comp_op = None
def __init__(self, lhs, rhs):
lhs = wrap_constant(lhs)
rhs = wrap_constant(rhs)
format_cls = get_highest_format_cls([lhs, rhs])
lhs, rhs = promote_operands([lhs, rhs], format_cls)
super().__init__(lhs=lhs, rhs=rhs, format_=UIntFormat(width=1))
def __str__(self):
return f'{self.lhs} {self.comp_op} {self.rhs}'
class ArithmeticOperator(ModelOperator):
initial = None
def __init__(self, operands):
format_ = reduce(self.function, [operand.format_ for operand in operands])
super().__init__(operands=operands, format_=format_)
@classmethod
def function(cls, a, b):
raise NotImplementedError
@classmethod
def merge_with_same_operator(cls, operands):
new_operands = []
for operand in operands:
if isinstance(operand, cls):
new_operands.extend(operand.operands)
else:
new_operands.append(operand)
return new_operands
@classmethod
def merge_constants(cls, operands, format_cls):
new_operands = []
const_term = cls.initial
for operand in operands:
if isinstance(operand, Constant):
const_term = cls.function(const_term, operand.value)
else:
new_operands.append(operand)
if const_term != cls.initial:
new_operands.append(Constant(value=const_term, format_=format_cls.from_value(const_term)))
return new_operands
@classmethod
def flatten(cls, operands):
if len(operands) == 0:
return wrap_constant(cls.initial)
elif len(operands) == 1:
return operands[0]
else:
return cls(operands)
class BitwiseOperator(ModelOperator):
def __init__(self, operands):
operands = wrap_constants(operands)
assert all(isinstance(operand.format_, UIntFormat) for operand in operands), 'Bitwise operations only currently support unsigned operands.'
width = max(operand.format_.width for operand in operands)
super().__init__(operands=operands, format_=UIntFormat(width=width))
def sum_op(operands):
operands = list(operands)
if len(operands) == 0:
operands = [0]
operands = wrap_constants(operands)
format_cls = get_highest_format_cls(operands)
operands = promote_operands(operands, format_cls)
operands = Sum.merge_with_same_operator(operands)
operands = Sum.merge_constants(operands, format_cls)
return Sum.flatten(operands)
class Sum(ArithmeticOperator):
initial = 0
@classmethod
def function(cls, a, b):
return a + b
def __str__(self):
return '(' + '+'.join(str(operand) for operand in self.operands) + ')'
def prod_op(operands):
operands = wrap_constants(operands)
format_cls = get_highest_format_cls(operands)
operands = promote_operands(operands, format_cls)
operands = Product.merge_with_same_operator(operands)
operands = Product.merge_constants(operands, format_cls)
operands = Product.check_for_zero(operands)
return Product.flatten(operands)
class Product(ArithmeticOperator):
initial = 1
@classmethod
def function(cls, a, b):
return a * b
@classmethod
def check_for_zero(cls, operands):
if any(((isinstance(operand, Constant) and operand.value == 0) or
(isinstance(operand, Array) and operand.all_zeros)) for operand in operands):
return [wrap_constant(0)]
else:
return operands
def __str__(self):
return '(' + '*'.join(str(operand) for operand in self.operands) + ')'
def min_op(operands):
operands = wrap_constants(operands)
format_cls = get_highest_format_cls(operands)
operands = promote_operands(operands, format_cls)
operands = Min.merge_with_same_operator(operands)
operands = Min.merge_constants(operands, format_cls)
return Min.flatten(operands)
class Min(ArithmeticOperator):
initial = +float('inf')
@classmethod
def function(cls, a, b):
if isinstance(a, Format) and isinstance(b, Format):
return a.min_with(b)
elif isinstance(a, Number) and isinstance(b, Number):
return min(a, b)
else:
raise Exception('Min can only be applied to numbers and Format operands at this time.')
def __str__(self):
return 'min(' + ', '.join(str(operand) for operand in self.operands) + ')'
def max_op(operands):
operands = wrap_constants(operands)
format_cls = get_highest_format_cls(operands)
operands = promote_operands(operands, format_cls)
operands = Max.merge_with_same_operator(operands)
operands = Max.merge_constants(operands, format_cls)
return Max.flatten(operands)
class Max(ArithmeticOperator):
initial = -float('inf')
@classmethod
def function(cls, a, b):
if isinstance(a, Format) and isinstance(b, Format):
return a.max_with(b)
elif isinstance(a, Number) and isinstance(b, Number):
return max(a, b)
else:
raise Exception('Max can only be applied to numbers and Format operands at this time.')
def __str__(self):
return 'max(' + ', '.join(str(operand) for operand in self.operands) + ')'
class BitwiseAnd(BitwiseOperator):
def __str__(self):
return '(' + '&'.join(str(operand) for operand in self.operands) + ')'
class BitwiseOr(BitwiseOperator):
def __str__(self):
return '(' + '|'.join(str(operand) for operand in self.operands) + ')'
class BitwiseXor(BitwiseOperator):
def __str__(self):
return '(' + '^'.join(str(operand) for operand in self.operands) + ')'
class BitwiseInv(UnaryOperator):
def __init__(self, operand):
operand = wrap_constant(operand)
assert isinstance(operand.format_, UIntFormat), 'Bitwise inversion only currently support unsigned operands.'
super().__init__(operand=operand, format_=operand.format_)
def __str__(self):
return f'(~{self.operand})'
class ArithmeticShift(UnaryOperator):
shift_op = None
@classmethod
def function(cls, operand, shift: Integral):
raise NotImplementedError
@classmethod
def compute_output_width(cls, in_format: IntFormat, shift: Integral):
raise NotImplementedError
def __init__(self, operand, shift: Integral):
operand = wrap_constant(operand)
assert isinstance(operand.format_, (UIntFormat, SIntFormat)), f'{self.__class__.__name__} only supports integer operands.'
width = self.compute_output_width(in_format=operand.format_, shift=shift)
min_val = self.function(operand=operand.format_.min_val, shift=shift)
max_val = self.function(operand=operand.format_.max_val, shift=shift)
if isinstance(operand.format_, UIntFormat):
format_ = UIntFormat(width=width, min_val=min_val, max_val=max_val)
elif isinstance(operand.format_, SIntFormat):
format_ = SIntFormat(width=width, min_val=min_val, max_val=max_val)
else:
raise Exception('Unknown format type.')
self.shift = shift
super().__init__(operand=operand, format_=format_)
def __str__(self):
return f'({self.operand}{self.shift_op}{self.shift})'
class ArithmeticLeftShift(ArithmeticShift):
shift_op = '<<<'
@classmethod
def function(cls, operand, shift: Integral):
return (operand << shift)
@classmethod
def compute_output_width(cls, in_format: IntFormat, shift: Integral):
return (in_format.width + shift)
class ArithmeticRightShift(ArithmeticShift):
shift_op = '>>>'
@classmethod
def function(cls, operand, shift: Integral):
return (operand >> shift)
@classmethod
def compute_output_width(cls, in_format: IntFormat, shift: Integral):
return max(in_format.width - shift, 1)
class BitwiseAccess(UnaryOperator):
def __init__(self, operand, key):
operand = wrap_constant(operand)
assert isinstance(operand.format_, (UIntFormat, SIntFormat)), f'{self.__class__.__name__} only supports integer operands.'
if isinstance(key, Integral):
msb = key
lsb = key
elif isinstance(key, slice):
msb = key.start
lsb = key.stop
else:
raise Exception(f'Unknown indexing type: {key.__class__.__name__}')
assert isinstance(msb, Integral), 'MSB must be an integer.'
assert 0 <= msb < operand.format_.width, f'MSB value out of range: {msb} (input width is {operand.format_.width})'
assert isinstance(lsb, Integral), 'LSB must be an integer.'
assert 0 <= lsb < operand.format_.width, f'LSB value out of range: {lsb} (input width is {operand.format_.width})'
assert lsb <= msb, 'LSB must be less than or equal to MSB.'
width = msb - lsb + 1
if isinstance(operand.format_, UIntFormat):
format_ = UIntFormat(width=width)
elif isinstance(operand.format_, SIntFormat):
format_ = SIntFormat(width=width)
else:
raise Exception('Unknown format type.')
self.msb = msb
self.lsb = lsb
super().__init__(operand=operand, format_=format_)
def __str__(self):
return f'({self.operand}[{self.msb}:{self.lsb}])'
class LessThan(ComparisonOperator):
comp_op = '<'
class LessThanOrEquals(ComparisonOperator):
comp_op = '<='
class GreaterThan(ComparisonOperator):
comp_op = '>'
class GreaterThanOrEquals(ComparisonOperator):
comp_op = '>='
class EqualTo(ComparisonOperator):
comp_op = '=='
class NotEqualTo(ComparisonOperator):
comp_op = '!='
|
MIT License
|
pabigot/pyxb
|
pyxb/namespace/resolution.py
|
_NamespaceResolution_mixin._replaceComponent_csc
|
python
|
def _replaceComponent_csc (self, existing_def, replacement_def):
try:
index = self.__unresolvedComponents.index(existing_def)
if (replacement_def is None) or (replacement_def in self.__unresolvedComponents):
del self.__unresolvedComponents[index]
else:
assert isinstance(replacement_def, _Resolvable_mixin)
self.__unresolvedComponents[index] = replacement_def
if existing_def in self.__unresolvedDependents:
del self.__unresolvedDependents[existing_def]
except ValueError:
pass
return getattr(super(_NamespaceResolution_mixin, self), '_replaceComponent_csc', lambda *args, **kw: replacement_def)(existing_def, replacement_def)
|
Replace a component definition if present in the list of unresolved components.
|
https://github.com/pabigot/pyxb/blob/14737c23a125fd12c954823ad64fc4497816fae3/pyxb/namespace/resolution.py#L176-L193
|
import logging
import pyxb
import pyxb.utils.utility
from pyxb.namespace import archive, utility
from pyxb.utils import six
_log = logging.getLogger(__name__)
class _Resolvable_mixin (pyxb.cscRoot):
_TraceResolution = False
def isResolved (self):
raise NotImplementedError("_Resolvable_mixin.isResolved in %s"% (type(self).__name__,))
def _resolve (self):
raise NotImplementedError("_Resolvable_mixin._resolve in %s"% (type(self).__name__,))
def _queueForResolution (self, why=None, depends_on=None):
if (why is not None) and self._TraceResolution:
_log.info('Resolution delayed for %s: %s\n\tDepends on: %s', self, why, depends_on)
self._namespaceContext().queueForResolution(self, depends_on)
class _NamespaceResolution_mixin (pyxb.cscRoot):
__importedNamespaces = None
__referencedNamespaces = None
__unresolvedComponents = None
__unresolvedDependents = None
def _reset (self):
getattr(super(_NamespaceResolution_mixin, self), '_reset', lambda *args, **kw: None)()
self.__unresolvedComponents = []
self.__unresolvedDependents = {}
self.__importedNamespaces = set()
self.__referencedNamespaces = set()
def _getState_csc (self, kw):
kw.update({
'importedNamespaces': self.__importedNamespaces,
'referencedNamespaces': self.__referencedNamespaces,
})
return getattr(super(_NamespaceResolution_mixin, self), '_getState_csc', lambda _kw: _kw)(kw)
def _setState_csc (self, kw):
self.__importedNamespaces = kw['importedNamespaces']
self.__referencedNamespaces = kw['referencedNamespaces']
return getattr(super(_NamespaceResolution_mixin, self), '_setState_csc', lambda _kw: self)(kw)
def importNamespace (self, namespace):
self.__importedNamespaces.add(namespace)
return self
def _referenceNamespace (self, namespace):
self._activate()
self.__referencedNamespaces.add(namespace)
return self
def importedNamespaces (self):
return frozenset(self.__importedNamespaces)
def _transferReferencedNamespaces (self, module_record):
assert isinstance(module_record, archive.ModuleRecord)
module_record._setReferencedNamespaces(self.__referencedNamespaces)
self.__referencedNamespaces.clear()
def referencedNamespaces (self):
return frozenset(self.__referencedNamespaces)
def queueForResolution (self, resolvable, depends_on=None):
assert isinstance(resolvable, _Resolvable_mixin)
if not resolvable.isResolved():
assert depends_on is None or isinstance(depends_on, _Resolvable_mixin)
self.__unresolvedComponents.append(resolvable)
if depends_on is not None and not depends_on.isResolved():
from pyxb.xmlschema import structures
assert isinstance(depends_on, _Resolvable_mixin)
assert isinstance(depends_on, structures._NamedComponent_mixin)
self.__unresolvedDependents.setdefault(resolvable, set()).add(depends_on)
return resolvable
def needsResolution (self):
return self.__unresolvedComponents is not None
|
Apache License 2.0
|
awslabs/aws-data-wrangler
|
awswrangler/athena/_read.py
|
read_sql_table
|
python
|
def read_sql_table(
table: str,
database: str,
ctas_approach: bool = True,
categories: Optional[List[str]] = None,
chunksize: Optional[Union[int, bool]] = None,
s3_output: Optional[str] = None,
workgroup: Optional[str] = None,
encryption: Optional[str] = None,
kms_key: Optional[str] = None,
keep_files: bool = True,
ctas_database_name: Optional[str] = None,
ctas_temp_table_name: Optional[str] = None,
ctas_bucketing_info: Optional[Tuple[List[str], int]] = None,
use_threads: Union[bool, int] = True,
boto3_session: Optional[boto3.Session] = None,
max_cache_seconds: int = 0,
max_cache_query_inspections: int = 50,
max_remote_cache_entries: int = 50,
max_local_cache_entries: int = 100,
data_source: Optional[str] = None,
s3_additional_kwargs: Optional[Dict[str, Any]] = None,
pyarrow_additional_kwargs: Optional[Dict[str, Any]] = None,
) -> Union[pd.DataFrame, Iterator[pd.DataFrame]]:
table = catalog.sanitize_table_name(table=table)
return read_sql_query(
sql=f'SELECT * FROM "{table}"',
database=database,
data_source=data_source,
ctas_approach=ctas_approach,
categories=categories,
chunksize=chunksize,
s3_output=s3_output,
workgroup=workgroup,
encryption=encryption,
kms_key=kms_key,
keep_files=keep_files,
ctas_database_name=ctas_database_name,
ctas_temp_table_name=ctas_temp_table_name,
ctas_bucketing_info=ctas_bucketing_info,
use_threads=use_threads,
boto3_session=boto3_session,
max_cache_seconds=max_cache_seconds,
max_cache_query_inspections=max_cache_query_inspections,
max_remote_cache_entries=max_remote_cache_entries,
max_local_cache_entries=max_local_cache_entries,
s3_additional_kwargs=s3_additional_kwargs,
pyarrow_additional_kwargs=pyarrow_additional_kwargs,
)
|
Extract the full table AWS Athena and return the results as a Pandas DataFrame.
**Related tutorial:**
- `Amazon Athena <https://aws-data-wrangler.readthedocs.io/en/2.12.1/
tutorials/006%20-%20Amazon%20Athena.html>`_
- `Athena Cache <https://aws-data-wrangler.readthedocs.io/en/2.12.1/
tutorials/019%20-%20Athena%20Cache.html>`_
- `Global Configurations <https://aws-data-wrangler.readthedocs.io/en/2.12.1/
tutorials/021%20-%20Global%20Configurations.html>`_
**There are two approaches to be defined through ctas_approach parameter:**
**1** - ctas_approach=True (Default):
Wrap the query with a CTAS and then reads the table data as parquet directly from s3.
PROS:
- Faster for mid and big result sizes.
- Can handle some level of nested types.
CONS:
- Requires create/delete table permissions on Glue.
- Does not support timestamp with time zone
- Does not support columns with repeated names.
- Does not support columns with undefined data types.
- A temporary table will be created and then deleted immediately.
**2** - ctas_approach=False:
Does a regular query on Athena and parse the regular CSV result on s3.
PROS:
- Faster for small result sizes (less latency).
- Does not require create/delete table permissions on Glue
- Supports timestamp with time zone.
CONS:
- Slower for big results (But stills faster than other libraries that uses the regular Athena's API)
- Does not handle nested types at all.
Note
----
The resulting DataFrame (or every DataFrame in the returned Iterator for chunked queries) have a
`query_metadata` attribute, which brings the query result metadata returned by
`Boto3/Athena <https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services
/athena.html#Athena.Client.get_query_execution>`_ .
For a practical example check out the
`related tutorial <https://aws-data-wrangler.readthedocs.io/en/2.12.1/
tutorials/024%20-%20Athena%20Query%20Metadata.html>`_!
Note
----
Valid encryption modes: [None, 'SSE_S3', 'SSE_KMS'].
`P.S. 'CSE_KMS' is not supported.`
Note
----
Create the default Athena bucket if it doesn't exist and s3_output is None.
(E.g. s3://aws-athena-query-results-ACCOUNT-REGION/)
Note
----
`chunksize` argument (Memory Friendly) (i.e batching):
Return an Iterable of DataFrames instead of a regular DataFrame.
There are two batching strategies:
- If **chunksize=True**, a new DataFrame will be returned for each file in the query result.
- If **chunksize=INTEGER**, Wrangler will iterate on the data by number of rows igual the received INTEGER.
`P.S.` `chunksize=True` is faster and uses less memory while `chunksize=INTEGER` is more precise
in number of rows for each Dataframe.
`P.P.S.` If `ctas_approach=False` and `chunksize=True`, you will always receive an interador with a
single DataFrame because regular Athena queries only produces a single output file.
Note
----
In case of `use_threads=True` the number of threads
that will be spawned will be gotten from os.cpu_count().
Parameters
----------
table : str
Table name.
database : str
AWS Glue/Athena database name.
ctas_approach: bool
Wraps the query using a CTAS, and read the resulted parquet data on S3.
If false, read the regular CSV on S3.
categories: List[str], optional
List of columns names that should be returned as pandas.Categorical.
Recommended for memory restricted environments.
chunksize : Union[int, bool], optional
If passed will split the data in a Iterable of DataFrames (Memory friendly).
If `True` wrangler will iterate on the data by files in the most efficient way without guarantee of chunksize.
If an `INTEGER` is passed Wrangler will iterate on the data by number of rows igual the received INTEGER.
s3_output : str, optional
AWS S3 path.
workgroup : str, optional
Athena workgroup.
encryption : str, optional
Valid values: [None, 'SSE_S3', 'SSE_KMS']. Notice: 'CSE_KMS' is not supported.
kms_key : str, optional
For SSE-KMS, this is the KMS key ARN or ID.
keep_files : bool
Should Wrangler delete or keep the staging files produced by Athena?
ctas_database_name : str, optional
The name of the alternative database where the CTAS temporary table is stored.
If None, the default `database` is used.
ctas_temp_table_name : str, optional
The name of the temporary table and also the directory name on S3 where the CTAS result is stored.
If None, it will use the follow random pattern: `f"temp_table_{uuid.uuid4().hex}"`.
On S3 this directory will be under under the pattern: `f"{s3_output}/{ctas_temp_table_name}/"`.
ctas_bucketing_info: Tuple[List[str], int], optional
Tuple consisting of the column names used for bucketing as the first element and the number of buckets as the
second element.
Only `str`, `int` and `bool` are supported as column data types for bucketing.
use_threads : bool, int
True to enable concurrent requests, False to disable multiple threads.
If enabled os.cpu_count() will be used as the max number of threads.
If integer is provided, specified number is used.
boto3_session : boto3.Session(), optional
Boto3 Session. The default boto3 session will be used if boto3_session receive None.
max_cache_seconds: int
Wrangler can look up in Athena's history if this table has been read before.
If so, and its completion time is less than `max_cache_seconds` before now, wrangler
skips query execution and just returns the same results as last time.
If cached results are valid, wrangler ignores the `ctas_approach`, `s3_output`, `encryption`, `kms_key`,
`keep_files` and `ctas_temp_table_name` params.
If reading cached data fails for any reason, execution falls back to the usual query run path.
max_cache_query_inspections : int
Max number of queries that will be inspected from the history to try to find some result to reuse.
The bigger the number of inspection, the bigger will be the latency for not cached queries.
Only takes effect if max_cache_seconds > 0.
max_remote_cache_entries : int
Max number of queries that will be retrieved from AWS for cache inspection.
The bigger the number of inspection, the bigger will be the latency for not cached queries.
Only takes effect if max_cache_seconds > 0 and default value is 50.
max_local_cache_entries : int
Max number of queries for which metadata will be cached locally. This will reduce the latency and also
enables keeping more than `max_remote_cache_entries` available for the cache. This value should not be
smaller than max_remote_cache_entries.
Only takes effect if max_cache_seconds > 0 and default value is 100.
data_source : str, optional
Data Source / Catalog name. If None, 'AwsDataCatalog' will be used by default.
s3_additional_kwargs : Optional[Dict[str, Any]]
Forwarded to botocore requests.
e.g. s3_additional_kwargs={'RequestPayer': 'requester'}
pyarrow_additional_kwargs : Optional[Dict[str, Any]]
Forward to the ParquetFile class or converting an Arrow table to Pandas, currently only an
"coerce_int96_timestamp_unit" or "timestamp_as_object" argument will be considered. If
reading parquet fileswhere you cannot convert a timestamp to pandas Timestamp[ns] consider
setting timestamp_as_object=True, to allow for timestamp units > NS. If reading parquet data that
still uses INT96 (like Athena outputs) you can use coerce_int96_timestamp_unit to specify what
timestamp unit to encode INT96 to (by default this is "ns", if you know the output parquet came from
a system that encodes timestamp to a particular unit then set this to that same unit e.g.
coerce_int96_timestamp_unit="ms").
Returns
-------
Union[pd.DataFrame, Iterator[pd.DataFrame]]
Pandas DataFrame or Generator of Pandas DataFrames if chunksize is passed.
Examples
--------
>>> import awswrangler as wr
>>> df = wr.athena.read_sql_table(table="...", database="...")
>>> scanned_bytes = df.query_metadata["Statistics"]["DataScannedInBytes"]
|
https://github.com/awslabs/aws-data-wrangler/blob/f82b7e12d4126ec63f739f6f172139ed2e7d73ac/awswrangler/athena/_read.py#L886-L1116
|
import csv
import datetime
import logging
import re
import sys
import uuid
from typing import Any, Dict, Iterator, List, Match, NamedTuple, Optional, Tuple, Union
import boto3
import botocore.exceptions
import pandas as pd
from awswrangler import _utils, catalog, exceptions, s3
from awswrangler._config import apply_configs
from awswrangler._data_types import cast_pandas_with_athena_types
from awswrangler.athena._utils import (
_apply_query_metadata,
_empty_dataframe_response,
_get_query_metadata,
_get_s3_output,
_get_workgroup_config,
_LocalMetadataCacheManager,
_QueryMetadata,
_start_query_execution,
_WorkGroupConfig,
)
_logger: logging.Logger = logging.getLogger(__name__)
class _CacheInfo(NamedTuple):
has_valid_cache: bool
file_format: Optional[str] = None
query_execution_id: Optional[str] = None
query_execution_payload: Optional[Dict[str, Any]] = None
def _extract_ctas_manifest_paths(path: str, boto3_session: Optional[boto3.Session] = None) -> List[str]:
bucket_name, key_path = _utils.parse_path(path)
client_s3: boto3.client = _utils.client(service_name="s3", session=boto3_session)
body: bytes = client_s3.get_object(Bucket=bucket_name, Key=key_path)["Body"].read()
return [x for x in body.decode("utf-8").split("\n") if x != ""]
def _fix_csv_types_generator(
dfs: Iterator[pd.DataFrame], parse_dates: List[str], binaries: List[str]
) -> Iterator[pd.DataFrame]:
for df in dfs:
yield _fix_csv_types(df=df, parse_dates=parse_dates, binaries=binaries)
def _add_query_metadata_generator(
dfs: Iterator[pd.DataFrame], query_metadata: _QueryMetadata
) -> Iterator[pd.DataFrame]:
for df in dfs:
df = _apply_query_metadata(df=df, query_metadata=query_metadata)
yield df
def _fix_csv_types(df: pd.DataFrame, parse_dates: List[str], binaries: List[str]) -> pd.DataFrame:
if len(df.index) > 0:
for col in parse_dates:
df[col] = df[col].dt.date.replace(to_replace={pd.NaT: None})
for col in binaries:
df[col] = df[col].str.encode(encoding="utf-8")
return df
def _delete_after_iterate(
dfs: Iterator[pd.DataFrame],
paths: List[str],
use_threads: Union[bool, int],
boto3_session: boto3.Session,
s3_additional_kwargs: Optional[Dict[str, str]],
) -> Iterator[pd.DataFrame]:
for df in dfs:
yield df
s3.delete_objects(
path=paths, use_threads=use_threads, boto3_session=boto3_session, s3_additional_kwargs=s3_additional_kwargs
)
def _prepare_query_string_for_comparison(query_string: str) -> str:
query_string = "".join(query_string.split()).strip("()").lower()
query_string = query_string[:-1] if query_string.endswith(";") else query_string
return query_string
def _compare_query_string(sql: str, other: str) -> bool:
comparison_query = _prepare_query_string_for_comparison(query_string=other)
_logger.debug("sql: %s", sql)
_logger.debug("comparison_query: %s", comparison_query)
if sql == comparison_query:
return True
return False
def _get_last_query_infos(
max_remote_cache_entries: int,
boto3_session: Optional[boto3.Session] = None,
workgroup: Optional[str] = None,
) -> List[Dict[str, Any]]:
client_athena: boto3.client = _utils.client(service_name="athena", session=boto3_session)
page_size = 50
args: Dict[str, Union[str, Dict[str, int]]] = {
"PaginationConfig": {"MaxItems": max_remote_cache_entries, "PageSize": page_size}
}
if workgroup is not None:
args["WorkGroup"] = workgroup
paginator = client_athena.get_paginator("list_query_executions")
uncached_ids = []
for page in paginator.paginate(**args):
_logger.debug("paginating Athena's queries history...")
query_execution_id_list: List[str] = page["QueryExecutionIds"]
for query_execution_id in query_execution_id_list:
if query_execution_id not in _cache_manager:
uncached_ids.append(query_execution_id)
if uncached_ids:
new_execution_data = []
for i in range(0, len(uncached_ids), page_size):
new_execution_data.extend(
client_athena.batch_get_query_execution(QueryExecutionIds=uncached_ids[i : i + page_size]).get(
"QueryExecutions"
)
)
_cache_manager.update_cache(new_execution_data)
return _cache_manager.sorted_successful_generator()
def _parse_select_query_from_possible_ctas(possible_ctas: str) -> Optional[str]:
possible_ctas = possible_ctas.lower()
parquet_format_regex: str = r"format\s*=\s*\'parquet\'\s*,"
is_parquet_format: Optional[Match[str]] = re.search(pattern=parquet_format_regex, string=possible_ctas)
if is_parquet_format is not None:
unstripped_select_statement_regex: str = r"\s+as\s+\(*(select|with).*"
unstripped_select_statement_match: Optional[Match[str]] = re.search(
unstripped_select_statement_regex, possible_ctas, re.DOTALL
)
if unstripped_select_statement_match is not None:
stripped_select_statement_match: Optional[Match[str]] = re.search(
r"(select|with).*", unstripped_select_statement_match.group(0), re.DOTALL
)
if stripped_select_statement_match is not None:
return stripped_select_statement_match.group(0)
return None
def _check_for_cached_results(
sql: str,
boto3_session: boto3.Session,
workgroup: Optional[str],
max_cache_seconds: int,
max_cache_query_inspections: int,
max_remote_cache_entries: int,
) -> _CacheInfo:
if max_cache_seconds <= 0:
return _CacheInfo(has_valid_cache=False)
num_executions_inspected: int = 0
comparable_sql: str = _prepare_query_string_for_comparison(sql)
current_timestamp: datetime.datetime = datetime.datetime.now(datetime.timezone.utc)
_logger.debug("current_timestamp: %s", current_timestamp)
for query_info in _get_last_query_infos(
max_remote_cache_entries=max_remote_cache_entries,
boto3_session=boto3_session,
workgroup=workgroup,
):
query_execution_id: str = query_info["QueryExecutionId"]
query_timestamp: datetime.datetime = query_info["Status"]["CompletionDateTime"]
_logger.debug("query_timestamp: %s", query_timestamp)
if (current_timestamp - query_timestamp).total_seconds() > max_cache_seconds:
return _CacheInfo(
has_valid_cache=False, query_execution_id=query_execution_id, query_execution_payload=query_info
)
statement_type: Optional[str] = query_info.get("StatementType")
if statement_type == "DDL" and query_info["Query"].startswith("CREATE TABLE"):
parsed_query: Optional[str] = _parse_select_query_from_possible_ctas(possible_ctas=query_info["Query"])
if parsed_query is not None:
if _compare_query_string(sql=comparable_sql, other=parsed_query):
return _CacheInfo(
has_valid_cache=True,
file_format="parquet",
query_execution_id=query_execution_id,
query_execution_payload=query_info,
)
elif statement_type == "DML" and not query_info["Query"].startswith("INSERT"):
if _compare_query_string(sql=comparable_sql, other=query_info["Query"]):
return _CacheInfo(
has_valid_cache=True,
file_format="csv",
query_execution_id=query_execution_id,
query_execution_payload=query_info,
)
num_executions_inspected += 1
_logger.debug("num_executions_inspected: %s", num_executions_inspected)
if num_executions_inspected >= max_cache_query_inspections:
return _CacheInfo(has_valid_cache=False)
return _CacheInfo(has_valid_cache=False)
def _fetch_parquet_result(
query_metadata: _QueryMetadata,
keep_files: bool,
categories: Optional[List[str]],
chunksize: Optional[int],
use_threads: Union[bool, int],
boto3_session: boto3.Session,
s3_additional_kwargs: Optional[Dict[str, Any]],
temp_table_fqn: Optional[str] = None,
pyarrow_additional_kwargs: Optional[Dict[str, Any]] = None,
) -> Union[pd.DataFrame, Iterator[pd.DataFrame]]:
ret: Union[pd.DataFrame, Iterator[pd.DataFrame]]
chunked: Union[bool, int] = False if chunksize is None else chunksize
_logger.debug("chunked: %s", chunked)
if query_metadata.manifest_location is None:
return _empty_dataframe_response(bool(chunked), query_metadata)
manifest_path: str = query_metadata.manifest_location
metadata_path: str = manifest_path.replace("-manifest.csv", ".metadata")
_logger.debug("manifest_path: %s", manifest_path)
_logger.debug("metadata_path: %s", metadata_path)
paths: List[str] = _extract_ctas_manifest_paths(path=manifest_path, boto3_session=boto3_session)
if not paths:
if not temp_table_fqn:
raise exceptions.EmptyDataFrame("Query would return untyped, empty dataframe.")
database, temp_table_name = map(lambda x: x.replace('"', ""), temp_table_fqn.split("."))
dtype_dict = catalog.get_table_types(database=database, table=temp_table_name, boto3_session=boto3_session)
df = pd.DataFrame(columns=list(dtype_dict.keys()))
df = cast_pandas_with_athena_types(df=df, dtype=dtype_dict)
df = _apply_query_metadata(df=df, query_metadata=query_metadata)
return df
ret = s3.read_parquet(
path=paths,
use_threads=use_threads,
boto3_session=boto3_session,
chunked=chunked,
categories=categories,
ignore_index=True,
pyarrow_additional_kwargs=pyarrow_additional_kwargs,
)
if chunked is False:
ret = _apply_query_metadata(df=ret, query_metadata=query_metadata)
else:
ret = _add_query_metadata_generator(dfs=ret, query_metadata=query_metadata)
paths_delete: List[str] = paths + [manifest_path, metadata_path]
_logger.debug("type(ret): %s", type(ret))
if chunked is False:
if keep_files is False:
s3.delete_objects(
path=paths_delete,
use_threads=use_threads,
boto3_session=boto3_session,
s3_additional_kwargs=s3_additional_kwargs,
)
return ret
if keep_files is False:
return _delete_after_iterate(
dfs=ret,
paths=paths_delete,
use_threads=use_threads,
boto3_session=boto3_session,
s3_additional_kwargs=s3_additional_kwargs,
)
return ret
def _fetch_csv_result(
query_metadata: _QueryMetadata,
keep_files: bool,
chunksize: Optional[int],
use_threads: Union[bool, int],
boto3_session: boto3.Session,
s3_additional_kwargs: Optional[Dict[str, Any]],
) -> Union[pd.DataFrame, Iterator[pd.DataFrame]]:
_chunksize: Optional[int] = chunksize if isinstance(chunksize, int) else None
_logger.debug("_chunksize: %s", _chunksize)
if query_metadata.output_location is None or query_metadata.output_location.endswith(".csv") is False:
chunked = _chunksize is not None
return _empty_dataframe_response(chunked, query_metadata)
path: str = query_metadata.output_location
_logger.debug("Start CSV reading from %s", path)
ret = s3.read_csv(
path=[path],
dtype=query_metadata.dtype,
parse_dates=query_metadata.parse_timestamps,
converters=query_metadata.converters,
quoting=csv.QUOTE_ALL,
keep_default_na=False,
na_values=["", "NaN"],
chunksize=_chunksize,
skip_blank_lines=False,
use_threads=False,
boto3_session=boto3_session,
)
_logger.debug("Start type casting...")
_logger.debug(type(ret))
if _chunksize is None:
df = _fix_csv_types(df=ret, parse_dates=query_metadata.parse_dates, binaries=query_metadata.binaries)
df = _apply_query_metadata(df=df, query_metadata=query_metadata)
if keep_files is False:
s3.delete_objects(
path=[path, f"{path}.metadata"],
use_threads=use_threads,
boto3_session=boto3_session,
s3_additional_kwargs=s3_additional_kwargs,
)
return df
dfs = _fix_csv_types_generator(dfs=ret, parse_dates=query_metadata.parse_dates, binaries=query_metadata.binaries)
dfs = _add_query_metadata_generator(dfs=dfs, query_metadata=query_metadata)
if keep_files is False:
return _delete_after_iterate(
dfs=dfs,
paths=[path, f"{path}.metadata"],
use_threads=use_threads,
boto3_session=boto3_session,
s3_additional_kwargs=s3_additional_kwargs,
)
return dfs
def _resolve_query_with_cache(
cache_info: _CacheInfo,
categories: Optional[List[str]],
chunksize: Optional[Union[int, bool]],
use_threads: Union[bool, int],
session: Optional[boto3.Session],
s3_additional_kwargs: Optional[Dict[str, Any]],
pyarrow_additional_kwargs: Optional[Dict[str, Any]] = None,
) -> Union[pd.DataFrame, Iterator[pd.DataFrame]]:
_logger.debug("cache_info:\n%s", cache_info)
if cache_info.query_execution_id is None:
raise RuntimeError("Trying to resolve with cache but w/o any query execution ID.")
query_metadata: _QueryMetadata = _get_query_metadata(
query_execution_id=cache_info.query_execution_id,
boto3_session=session,
categories=categories,
query_execution_payload=cache_info.query_execution_payload,
metadata_cache_manager=_cache_manager,
)
if cache_info.file_format == "parquet":
return _fetch_parquet_result(
query_metadata=query_metadata,
keep_files=True,
categories=categories,
chunksize=chunksize,
use_threads=use_threads,
boto3_session=session,
s3_additional_kwargs=s3_additional_kwargs,
pyarrow_additional_kwargs=pyarrow_additional_kwargs,
)
if cache_info.file_format == "csv":
return _fetch_csv_result(
query_metadata=query_metadata,
keep_files=True,
chunksize=chunksize,
use_threads=use_threads,
boto3_session=session,
s3_additional_kwargs=s3_additional_kwargs,
)
raise exceptions.InvalidArgumentValue(f"Invalid data type: {cache_info.file_format}.")
def _resolve_query_without_cache_ctas(
sql: str,
database: Optional[str],
data_source: Optional[str],
s3_output: Optional[str],
keep_files: bool,
chunksize: Union[int, bool, None],
categories: Optional[List[str]],
encryption: Optional[str],
workgroup: Optional[str],
kms_key: Optional[str],
wg_config: _WorkGroupConfig,
alt_database: Optional[str],
name: Optional[str],
ctas_bucketing_info: Optional[Tuple[List[str], int]],
use_threads: Union[bool, int],
s3_additional_kwargs: Optional[Dict[str, Any]],
boto3_session: boto3.Session,
pyarrow_additional_kwargs: Optional[Dict[str, Any]] = None,
) -> Union[pd.DataFrame, Iterator[pd.DataFrame]]:
path: str = f"{s3_output}/{name}"
ext_location: str = "\n" if wg_config.enforced is True else f",\n external_location = '{path}'\n"
fully_qualified_name: str = f'"{alt_database}"."{name}"' if alt_database else f'"{database}"."{name}"'
bucketing_str = (
(f",\n" f" bucketed_by = ARRAY{ctas_bucketing_info[0]},\n" f" bucket_count = {ctas_bucketing_info[1]}")
if ctas_bucketing_info
else ""
)
sql = (
f"CREATE TABLE {fully_qualified_name}\n"
f"WITH(\n"
f" format = 'Parquet',\n"
f" parquet_compression = 'SNAPPY'"
f"{bucketing_str}"
f"{ext_location}"
f") AS\n"
f"{sql}"
)
_logger.debug("sql: %s", sql)
try:
query_id: str = _start_query_execution(
sql=sql,
wg_config=wg_config,
database=database,
data_source=data_source,
s3_output=s3_output,
workgroup=workgroup,
encryption=encryption,
kms_key=kms_key,
boto3_session=boto3_session,
)
except botocore.exceptions.ClientError as ex:
error: Dict[str, Any] = ex.response["Error"]
if error["Code"] == "InvalidRequestException" and "Exception parsing query" in error["Message"]:
raise exceptions.InvalidCtasApproachQuery(
"Is not possible to wrap this query into a CTAS statement. Please use ctas_approach=False."
)
if error["Code"] == "InvalidRequestException" and "extraneous input" in error["Message"]:
raise exceptions.InvalidCtasApproachQuery(
"Is not possible to wrap this query into a CTAS statement. Please use ctas_approach=False."
)
raise ex
_logger.debug("query_id: %s", query_id)
try:
query_metadata: _QueryMetadata = _get_query_metadata(
query_execution_id=query_id,
boto3_session=boto3_session,
categories=categories,
metadata_cache_manager=_cache_manager,
)
except exceptions.QueryFailed as ex:
msg: str = str(ex)
if "Column name" in msg and "specified more than once" in msg:
raise exceptions.InvalidCtasApproachQuery(
f"Please, define distinct names for your columns OR pass ctas_approach=False. Root error message: {msg}"
)
if "Column name not specified" in msg:
raise exceptions.InvalidArgumentValue(
"Please, define all columns names in your query. (E.g. 'SELECT MAX(col1) AS max_col1, ...')"
)
if "Column type is unknown" in msg:
raise exceptions.InvalidArgumentValue(
"Please, don't leave undefined columns types in your query. You can cast to ensure it. "
"(E.g. 'SELECT CAST(NULL AS INTEGER) AS MY_COL, ...')"
)
raise ex
return _fetch_parquet_result(
query_metadata=query_metadata,
keep_files=keep_files,
categories=categories,
chunksize=chunksize,
use_threads=use_threads,
s3_additional_kwargs=s3_additional_kwargs,
boto3_session=boto3_session,
temp_table_fqn=fully_qualified_name,
pyarrow_additional_kwargs=pyarrow_additional_kwargs,
)
def _resolve_query_without_cache_regular(
sql: str,
database: Optional[str],
data_source: Optional[str],
s3_output: Optional[str],
keep_files: bool,
chunksize: Union[int, bool, None],
categories: Optional[List[str]],
encryption: Optional[str],
workgroup: Optional[str],
kms_key: Optional[str],
wg_config: _WorkGroupConfig,
use_threads: Union[bool, int],
s3_additional_kwargs: Optional[Dict[str, Any]],
boto3_session: boto3.Session,
) -> Union[pd.DataFrame, Iterator[pd.DataFrame]]:
_logger.debug("sql: %s", sql)
query_id: str = _start_query_execution(
sql=sql,
wg_config=wg_config,
database=database,
data_source=data_source,
s3_output=s3_output,
workgroup=workgroup,
encryption=encryption,
kms_key=kms_key,
boto3_session=boto3_session,
)
_logger.debug("query_id: %s", query_id)
query_metadata: _QueryMetadata = _get_query_metadata(
query_execution_id=query_id,
boto3_session=boto3_session,
categories=categories,
metadata_cache_manager=_cache_manager,
)
return _fetch_csv_result(
query_metadata=query_metadata,
keep_files=keep_files,
chunksize=chunksize,
use_threads=use_threads,
boto3_session=boto3_session,
s3_additional_kwargs=s3_additional_kwargs,
)
def _resolve_query_without_cache(
sql: str,
database: str,
data_source: Optional[str],
ctas_approach: bool,
categories: Optional[List[str]],
chunksize: Union[int, bool, None],
s3_output: Optional[str],
workgroup: Optional[str],
encryption: Optional[str],
kms_key: Optional[str],
keep_files: bool,
ctas_database_name: Optional[str],
ctas_temp_table_name: Optional[str],
ctas_bucketing_info: Optional[Tuple[List[str], int]],
use_threads: Union[bool, int],
s3_additional_kwargs: Optional[Dict[str, Any]],
boto3_session: boto3.Session,
pyarrow_additional_kwargs: Optional[Dict[str, Any]] = None,
) -> Union[pd.DataFrame, Iterator[pd.DataFrame]]:
wg_config: _WorkGroupConfig = _get_workgroup_config(session=boto3_session, workgroup=workgroup)
_s3_output: str = _get_s3_output(s3_output=s3_output, wg_config=wg_config, boto3_session=boto3_session)
_s3_output = _s3_output[:-1] if _s3_output[-1] == "/" else _s3_output
if ctas_approach is True:
if ctas_temp_table_name is not None:
name: str = catalog.sanitize_table_name(ctas_temp_table_name)
else:
name = f"temp_table_{uuid.uuid4().hex}"
try:
return _resolve_query_without_cache_ctas(
sql=sql,
database=database,
data_source=data_source,
s3_output=_s3_output,
keep_files=keep_files,
chunksize=chunksize,
categories=categories,
encryption=encryption,
workgroup=workgroup,
kms_key=kms_key,
wg_config=wg_config,
alt_database=ctas_database_name,
name=name,
ctas_bucketing_info=ctas_bucketing_info,
use_threads=use_threads,
s3_additional_kwargs=s3_additional_kwargs,
boto3_session=boto3_session,
pyarrow_additional_kwargs=pyarrow_additional_kwargs,
)
finally:
catalog.delete_table_if_exists(
database=ctas_database_name or database, table=name, boto3_session=boto3_session
)
return _resolve_query_without_cache_regular(
sql=sql,
database=database,
data_source=data_source,
s3_output=_s3_output,
keep_files=keep_files,
chunksize=chunksize,
categories=categories,
encryption=encryption,
workgroup=workgroup,
kms_key=kms_key,
wg_config=wg_config,
use_threads=use_threads,
s3_additional_kwargs=s3_additional_kwargs,
boto3_session=boto3_session,
)
@apply_configs
def read_sql_query(
sql: str,
database: str,
ctas_approach: bool = True,
categories: Optional[List[str]] = None,
chunksize: Optional[Union[int, bool]] = None,
s3_output: Optional[str] = None,
workgroup: Optional[str] = None,
encryption: Optional[str] = None,
kms_key: Optional[str] = None,
keep_files: bool = True,
ctas_database_name: Optional[str] = None,
ctas_temp_table_name: Optional[str] = None,
ctas_bucketing_info: Optional[Tuple[List[str], int]] = None,
use_threads: Union[bool, int] = True,
boto3_session: Optional[boto3.Session] = None,
max_cache_seconds: int = 0,
max_cache_query_inspections: int = 50,
max_remote_cache_entries: int = 50,
max_local_cache_entries: int = 100,
data_source: Optional[str] = None,
params: Optional[Dict[str, Any]] = None,
s3_additional_kwargs: Optional[Dict[str, Any]] = None,
pyarrow_additional_kwargs: Optional[Dict[str, Any]] = None,
) -> Union[pd.DataFrame, Iterator[pd.DataFrame]]:
if ctas_approach and data_source not in (None, "AwsDataCatalog"):
raise exceptions.InvalidArgumentCombination(
"Queries with ctas_approach=True (default) does not support "
"data_source values different than None and 'AwsDataCatalog'. "
"Please check the related tutorial for more details "
"(https://github.com/awslabs/aws-data-wrangler/blob/main/"
"tutorials/006%20-%20Amazon%20Athena.ipynb)"
)
chunksize = sys.maxsize if ctas_approach is False and chunksize is True else chunksize
session: boto3.Session = _utils.ensure_session(session=boto3_session)
if params is None:
params = {}
for key, value in params.items():
sql = sql.replace(f":{key};", str(value))
max_remote_cache_entries = min(max_remote_cache_entries, max_local_cache_entries)
_cache_manager.max_cache_size = max_local_cache_entries
cache_info: _CacheInfo = _check_for_cached_results(
sql=sql,
boto3_session=session,
workgroup=workgroup,
max_cache_seconds=max_cache_seconds,
max_cache_query_inspections=max_cache_query_inspections,
max_remote_cache_entries=max_remote_cache_entries,
)
_logger.debug("cache_info:\n%s", cache_info)
if cache_info.has_valid_cache is True:
_logger.debug("Valid cache found. Retrieving...")
try:
return _resolve_query_with_cache(
cache_info=cache_info,
categories=categories,
chunksize=chunksize,
use_threads=use_threads,
session=session,
s3_additional_kwargs=s3_additional_kwargs,
pyarrow_additional_kwargs=pyarrow_additional_kwargs,
)
except Exception as e:
_logger.error(e)
_logger.debug("Corrupted cache. Continuing to execute query...")
return _resolve_query_without_cache(
sql=sql,
database=database,
data_source=data_source,
ctas_approach=ctas_approach,
categories=categories,
chunksize=chunksize,
s3_output=s3_output,
workgroup=workgroup,
encryption=encryption,
kms_key=kms_key,
keep_files=keep_files,
ctas_database_name=ctas_database_name,
ctas_temp_table_name=ctas_temp_table_name,
ctas_bucketing_info=ctas_bucketing_info,
use_threads=use_threads,
s3_additional_kwargs=s3_additional_kwargs,
boto3_session=session,
pyarrow_additional_kwargs=pyarrow_additional_kwargs,
)
@apply_configs
|
Apache License 2.0
|
atmtools/typhon
|
typhon/plots/plots.py
|
plot_bitfield
|
python
|
def plot_bitfield(ax, X, Y, bitfield, flag_dict,
cmap,
cax=None,
pcolor_args={},
colorbar_args={},
unflagged="unflagged",
joiner=", "):
unique_values = np.unique(
bitfield.data if isinstance(bitfield, np.ma.MaskedArray) else
bitfield)
if not 0 in unique_values:
unique_values = np.concatenate([[0], unique_values])
labels = {v: joiner.join(flag_dict[x] for x in flag_dict.keys() if v&x)
or unflagged
for v in unique_values}
trans = dict(enumerate(unique_values))
new = bitfield.copy()
for (to, fr) in trans.items():
if isinstance(new, np.ma.MaskedArray):
new.data[new.data==fr] = to
else:
new[new==fr] = to
formatter = FuncFormatter(
lambda val, loc: labels[trans[val]])
img = ax.pcolor(X, Y, new,
cmap=get_cmap(cmap, unique_values.size),
**pcolor_args)
cb = ax.figure.colorbar(img, cax=cax,
ticks=list(trans.keys()),
format=formatter,
**colorbar_args)
img.set_clim(min(trans.keys())-0.5, max(trans.keys())+0.5)
return (img, cb)
|
Plot a bitfield of categories with pcolor
The numeric values in a bitfield are not directly meaningful. Rather,
the relevant information is whether a particular bit is set. This
function plots a 2-D bitfield using pcolor, then displays each unique
combination of flags (or the absence of any flags) as a distinct
category, and shows the corresponding labels in the colourbar.
This assumes that, even when there are many possible flags, only a
small subset of combinations of flags actually occurs within the data.
Should this exceed a dozen or so, then the colorbar/legend will become
particularly crowded.
Note that a colorbar may not be the optimal legend to show alongside
categorical data but as this function already exists it is more
convenient to exploit than others. Currently this function only works
with pcolor, not with pcolormesh, scatter, or other plotting
functions for 3-D data.
See https://gist.github.com/jakevdp/8a992f606899ac24b711 for an
illustration of what the result may look like, although that is for
the case of a scatter rather than pcolor plot.
Parameters:
ax (Axes):
Axes (or subclass thereof, such as GeoAxes) to plot in.
X (ndarray):
X-values for bitfield. Interpretation as for pcolor.
Y (ndarray):
Y-values for bitfield. Interpretation as for pcolor.
bitfield (ndarray):
Bitfield to be plotted.
flag_dict (Mapping[int, str]):
Mapping of flag values to their meanings. Keys should be
powers of 2. For example, {1: "DO_NOT_USE", 2:
"BAD_GEOLOCATION", 4: "BAD_TIME"}.
cmap (str):
Colourmap to use. This needs to be passed here because it
needs to be converted to be discrete corresponding to the
number of unique values. I recommend to choose a qualitative
colourmap such as Set1, Set2, or Set3.
cax (Axes):
Optional. If given, put colorbar here.
pcolor_args (Mapping):
Extra arguments to be passed to pcolor.
colorbar_args (Mapping):
Extra arguments to be passed to colorbar.
unflagged (str):
Label to use for unflagged values. Defaults to "unflagged".
joiner (str):
How to join different flags.
Returns:
(AxesImage, Colorbar) that were generated
|
https://github.com/atmtools/typhon/blob/815dcb1d7cb2718ffe81cd08386739438e7782cc/typhon/plots/plots.py#L898-L1018
|
import collections
from datetime import datetime
import itertools
import math
import warnings
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from matplotlib.ticker import FuncFormatter
from matplotlib.cm import get_cmap
import scipy.stats as stats
from typhon.plots import formatter
from typhon.math import stats as tpstats
__all__ = [
'binned_statistic',
'plot_distribution_as_percentiles',
'heatmap',
'histogram',
'scatter_density_plot_matrix',
'diff_histogram',
'profile_p',
'profile_p_log',
'profile_z',
'channels',
'colored_bars',
'plot_bitfield',
]
def binned_statistic(
x, y, bins=20, ax=None, ptype=None, pargs=None, **kwargs
):
if ax is None:
ax = plt.gca()
if pargs is None:
pargs = {}
if ptype is None or ptype == "scatter":
default = {
"statistic": "median",
"bins": bins,
**kwargs,
}
statistics, bin_edges, bin_ind = stats.binned_statistic(
x, values=y, **default
)
bin_width = (bin_edges[1] - bin_edges[0])
bin_centers = bin_edges[1:] - bin_width / 2
plot = ax.plot(bin_centers, statistics, **pargs)
elif ptype == "boxplot":
bin_lefts = np.linspace(x.min(), x.max(), bins)
bins_indices = np.digitize(x, bin_lefts)
plot = ax.boxplot(
[y[bins_indices == i] for i in range(bins)],
**pargs
)
bin_width = (bin_lefts[1] - bin_lefts[0])
bin_centers = bin_lefts[1:] + bin_width / 2
ax.set_xticklabels([f"{center:.1f}" for center in bin_centers])
else:
raise ValueError(f"Unknown plot type {ptype}!")
return plot
def plot_distribution_as_percentiles(ax, x, y,
nbins=10, bins=None,
ptiles=(5, 25, 50, 75, 95),
linestyles=(":", "--", "-", "--", ":"),
ptile_to_legend=True,
label=None,
**kwargs):
if bins is None:
bins = np.linspace(x.min(), x.max(), nbins)
scores = tpstats.get_distribution_as_percentiles(x, y, bins, ptiles)
d_ls = collections.defaultdict(list)
locallab = None
for (ls, pt) in zip(linestyles, ptiles):
d_ls[ls].append(pt)
for i in range(len(ptiles)):
if label is not None:
if math.isclose(ptiles[i], 50):
locallab = label + " (median)"
else:
if ptile_to_legend and linestyles[i] in d_ls:
locallab = label + " (p-{:s})".format(
"/".join("{:d}".format(x)
for x in d_ls.pop(linestyles[i])))
else:
locallab = None
else:
label = None
ax.plot(bins, scores[:, i], linestyle=linestyles[i], label=locallab,
**kwargs)
def heatmap(x, y, bins=20, bisectrix=True, ax=None, **kwargs):
if ax is None:
ax = plt.gca()
kwargs_defaults = {
'cmap': plt.get_cmap('Greys', 8),
'rasterized': True,
}
kwargs_defaults.update(kwargs)
N, xedges, yedges, img = ax.hist2d(x, y, bins, **kwargs_defaults)
if bisectrix:
ax.plot((x.min(), x.max()), (x.min(), x.max()),
color='red', linestyle='--', linewidth=2)
return img
def histogram(data, kind=None, ax=None, **kwargs):
if ax is None:
ax = plt.gca()
if kind == "points" or kind == "line":
hist_keys = {"bins", "range", "normed", "weights", "density"}
hist_kwargs = {key: value for key, value in kwargs.items() if
key in hist_keys}
y, bin_edges = np.histogram(data, **hist_kwargs)
bin_centers = 0.5 * (bin_edges[1:] + bin_edges[:-1])
plot_kwargs = {key: value for key, value in kwargs.items() if
key not in hist_keys}
if kind == "points":
ax.scatter(bin_centers, y, **plot_kwargs)
elif kind == "line":
ax.plot(bin_centers, y, '-', **plot_kwargs)
elif kind is None or kind == "standard":
ax.hist(data, **kwargs)
else:
raise ValueError(f"Unknown kind of histogram: {kind}!")
def scatter_density_plot_matrix(
M=None,
hist_kw={},
hexbin_kw={"mincnt": 1, "cmap": "viridis"},
plot_dist_kw={"color": "tan", "ptiles": [5, 25, 50, 75, 95],
"linestyles": [":", "--", "-", "--", ":"],
"linewidth": 1.5},
ranges={},
units=None,
**kwargs):
if M is None:
M = np.empty(
dtype=[(k, v.dtype) for (k, v) in kwargs.items()],
shape=kwargs.copy().popitem()[1].shape)
for (k, v) in kwargs.items():
M[k] = v
elif not M.dtype.fields:
MM = np.empty(
dtype=",".join([M.dtype.descr[0][1]]*M.shape[1]),
shape=M.shape[0])
for i in range(M.shape[1]):
MM["f{:d}".format(i)] = M[:, i]
M = MM
if len(M.dtype.fields) > 20:
raise ValueError(
"You've given me {:d} fields to plot. "
"That would result in {:d} subplots. I refuse to take "
"more than 20 fields.".format(len(M.dtype.fields),
len(M.dtype.fields)**2))
if units is None:
units = {}
N = len(M.dtype.names)
(f, ax_all) = plt.subplots(N, N, figsize=(4+3*N, 4+3*N))
for ((x_i, x_f), (y_i, y_f)) in itertools.product(
enumerate(M.dtype.names), repeat=2):
a = ax_all[y_i, x_i]
x = M[x_f]
y = M[y_f]
if x_i == y_i:
rng = ranges.get(x_f, (x.min(), x.max()))
a.hist(x, range=rng, **hist_kw)
else:
rng = (ranges.get(x_f, (x.min(), x.max())),
ranges.get(y_f, (y.min(), y.max())))
inrange = ((x >= rng[0][0]) & (x <= rng[0][1]) &
(y >= rng[1][0]) & (y <= rng[1][1]))
if not inrange.any():
warnings.warn(
"Combination {:s}/{:s} has no valid values".format(
x_f, y_f),
RuntimeWarning)
continue
x = x[inrange]
y = y[inrange]
a.hexbin(x, y,
extent=[rng[0][0], rng[0][1], rng[1][0], rng[1][1]],
**hexbin_kw)
plot_distribution_as_percentiles(
a,
x, y,
**plot_dist_kw)
a.set_xlim(rng[0])
a.set_ylim(rng[1])
if x_i == 0:
a.set_ylabel(
"{:s} [{:s}]".format(y_f, units[y_f]) if y_f in units else
"{:s} [{:~}]".format(y_f, y.u) if hasattr(y, "u") else
y_f)
if y_i == N-1:
a.set_xlabel(
"{:s} [{:s}]".format(x_f, units[x_f]) if x_f in units else
"{:s} [{:~}]".format(x_f, x.u) if hasattr(x, "u") else
x_f)
return f
def profile_p(p, x, ax=None, **kwargs):
if ax is None:
ax = plt.gca()
formatter.set_yaxis_formatter(formatter.HectoPascalFormatter(), ax=ax)
if ax.get_subplotspec().is_first_col():
ax.set_ylabel('Pressure [hPa]')
ret = ax.plot(x, p, **kwargs)
if hasattr(ax.yaxis, 'set_inverted'):
ax.yaxis.set_inverted(True)
elif not ax.yaxis_inverted():
ax.invert_yaxis()
return ret
def profile_p_log(p, x, ax=None, **kwargs):
if ax is None:
ax = plt.gca()
ax.set_yscale('log')
ret = profile_p(p, x, ax=ax, **kwargs)
formatter.set_yaxis_formatter(formatter.HectoPascalLogFormatter(), ax=ax)
return ret
def profile_z(z, x, ax=None, **kwargs):
if ax is None:
ax = plt.gca()
zmin = np.min((np.min(z), *ax.get_ylim()))
zmax = np.max((np.max(z), *ax.get_ylim()))
ax.set_ylim(zmin, zmax)
if ax.is_first_col():
ax.set_ylabel('Height [km]')
ret = ax.plot(x, z, **kwargs)
formatter.set_yaxis_formatter(formatter.ScalingFormatter('kilo', '{x:g}'),
ax=ax)
return ret
def diff_histogram(array1, array2, ax=None,
plot_args=None, **hist_args):
if ax is None:
ax = plt.gca()
bins_are_timestamps = False
if array1.dtype.type == np.datetime64 or array1.dtype.type == datetime:
array1 = array1.astype("M8[ns]").astype("float")
bins_are_timestamps = True
if array2.dtype.type == np.datetime64 or array2.dtype.type == datetime:
array2 = array2.astype("M8[ns]").astype("float")
bins_are_timestamps = True
if "range" in hist_args:
range_array = np.array(hist_args["range"])
if range_array.dtype.type == np.datetime64 or isinstance(range_array.item(0), datetime):
range_array = range_array.astype("M8[ns]").astype("float")
hist_args["range"] = range_array.tolist()
elif "bins" not in hist_args and "range" not in hist_args:
start = min(array1.min(), array2.min())
end = max(array1.max(), array2.max())
hist_args["range"] = [start, end]
y1, bins1 = np.histogram(array1, **hist_args)
y2, bins2 = np.histogram(array2, **hist_args)
if not np.allclose(bins1, bins2):
raise ValueError("Arrays could not be grouped into the same bins!")
if bins_are_timestamps:
bins1 = bins1.astype("M8[ns]")
diff = y1 - y2
if plot_args is None:
plot_args = {}
bar_plot = ax.step(bins1[:-1], diff, **plot_args)
return bar_plot, bins1, diff
def channels(met_mm_backend, ylim=None, ax=None, **kwargs):
if ax is None:
ax = plt.gca()
if ylim is None:
ylim = ax.get_ylim()
ymin, ymax = ylim
def plot_band(center, width, ymin, ymax):
xy = (center - 0.5 * width, ymin)
height = ymax - ymin
return ax.add_patch(Rectangle(xy, width, height, **kwargs))
band_centers = []
band_widths = []
for center, off1, off2, width in met_mm_backend:
if off1 == 0:
band_centers += [center]
band_widths += [width]
else:
band_centers += [center - off1, center + off1]
band_widths += [width, width]
if off2 != 0:
for bc in band_centers[-2:]:
band_centers += [bc - off2, bc + off2]
band_widths += [width, width]
patches = []
for center, width in zip(band_centers, band_widths):
patches.append(plot_band(center, width, ymin, ymax))
return patches
def colored_bars(x, y, c=None, cmap=None, vmin=None, vmax=None, ax=None,
**kwargs):
if ax is None:
ax = plt.gca()
if c is None:
c = y
cmap = plt.get_cmap(cmap)
absmax = np.max(np.abs(c))
vmin = -absmax if vmin is None else vmin
vmax = absmax if vmax is None else vmax
norm = plt.Normalize(vmin=vmin, vmax=vmax)
sm = plt.cm.ScalarMappable(norm=norm, cmap=cmap)
sm.set_array(c.flat)
ret = ax.bar(x, y, color=cmap(norm(c)), **kwargs)
return sm, ret
|
MIT License
|
bitsofbinary/yarabuilder
|
yarabuilder/yararule.py
|
YaraStrings.__init__
|
python
|
def __init__(self):
self.raw_strings = []
self.strings = collections.OrderedDict()
self.number_of_strings = 0
self.number_of_anonymous_strings = 0
self.valid_str_types = ["text", "hex", "regex"]
self.logger = logging.getLogger(__name__)
|
Constructor for YaraStrings
|
https://github.com/bitsofbinary/yarabuilder/blob/76107825ce869a534705b9ab834e108b4b051802/yarabuilder/yararule.py#L475-L484
|
import collections
import logging
class YaraCommentEnabledClass:
def __init__(self):
self.yara_comment = YaraComment()
def add_comment(self, comment, position="inline"):
if position == "above":
self.yara_comment.above.append(comment)
elif position == "inline":
self.yara_comment.inline = comment
elif position == "below":
self.yara_comment.below.append(comment)
def build_comments(self, raw, whitespace=" "):
if self.yara_comment.above:
for above_comment in reversed(self.yara_comment.above):
raw = "// %s\n%s%s%s" % (above_comment, whitespace, whitespace, raw,)
if self.yara_comment.inline:
raw = "%s // %s" % (raw, self.yara_comment.inline)
if self.yara_comment.below:
for below_comment in self.yara_comment.below:
raw = "%s\n%s%s// %s" % (raw, whitespace, whitespace, below_comment,)
return raw
class YaraComment:
def __init__(self):
self.above = []
self.inline = None
self.below = []
def get_yara_comment(self):
yara_comment = {}
if self.above:
yara_comment["above"] = self.above
if self.inline:
yara_comment["inline"] = self.inline
if self.below:
yara_comment["below"] = self.below
return yara_comment
def set_yara_comment(self, yara_comment):
if "above" in yara_comment:
self.above = yara_comment["above"]
if "inline" in yara_comment:
self.inline = yara_comment["inline"]
if "below" in yara_comment:
self.below = yara_comment["below"]
class YaraMetaEntry(YaraCommentEnabledClass):
def __init__(self, name, value, position, meta_type="text"):
self.name = name
self.value = value
self.position = position
self.meta_type = meta_type
self.yara_comment = YaraComment()
self.raw_meta_entry = None
def build_meta_entry(self, whitespace=" "):
if self.meta_type == "text":
self.raw_meta_entry = '%s = "%s"' % (self.name, self.value)
elif self.meta_type == "int":
self.raw_meta_entry = "%s = %d" % (self.name, self.value)
elif self.meta_type == "bool":
if self.value:
self.raw_meta_entry = "%s = true" % self.name
else:
self.raw_meta_entry = "%s = false" % self.name
self.raw_meta_entry = self.build_comments(
self.raw_meta_entry, whitespace=whitespace
)
def get_yara_meta_entry(self):
meta_entry = {
"name": self.name,
"value": self.value,
"position": self.position,
"meta_type": self.meta_type,
}
if (
self.yara_comment.above
or self.yara_comment.inline
or self.yara_comment.below
):
meta_entry["comment"] = self.yara_comment.get_yara_comment()
return meta_entry
def set_yara_meta_entry(self, yara_meta_entry):
if not all(
k in yara_meta_entry for k in ("name", "value", "position", "meta_type")
):
raise KeyError("Meta entry does not have the correct keys")
self.name = yara_meta_entry["name"]
self.value = yara_meta_entry["value"]
self.position = yara_meta_entry["position"]
self.meta_type = yara_meta_entry["meta_type"]
if "comment" in yara_meta_entry:
self.yara_comment.set_yara_comment(yara_meta_entry["comment"])
class YaraMeta:
def __init__(self, logger=None):
self.meta = collections.OrderedDict()
self.raw_meta = []
self.number_of_meta_entries = 0
self.valid_meta_types = ["text", "int", "bool"]
self.logger = logger or logging.getLogger(__name__)
def add_meta(self, name, value, meta_type="text"):
if meta_type not in self.valid_meta_types:
self.logger.warning(
'Invalid meta_type provided ("%s"), defaulting to "text"', meta_type
)
meta_type = "text"
if name not in self.meta:
self.meta[name] = []
self.meta[name].append(
YaraMetaEntry(name, value, self.number_of_meta_entries, meta_type=meta_type)
)
self.number_of_meta_entries += 1
return len(self.meta[name]) - 1
def build_meta(self, whitespace=" "):
self.raw_meta = [None] * self.number_of_meta_entries
for meta_entries in self.meta.values():
for meta_entry in meta_entries:
meta_entry.build_meta_entry(whitespace=whitespace)
self.raw_meta[meta_entry.position] = meta_entry.raw_meta_entry
def get_yara_meta(self):
yara_meta = collections.OrderedDict()
for name, meta_entry_list in self.meta.items():
yara_meta_entries = []
for meta_entry in meta_entry_list:
yara_meta_entries.append(meta_entry.get_yara_meta_entry())
yara_meta[name] = yara_meta_entries
return yara_meta
def set_yara_meta(self, yara_meta):
for meta_entry_name, yara_meta_value in yara_meta.items():
if meta_entry_name not in self.meta:
self.meta[meta_entry_name] = []
for yara_meta_entry in yara_meta_value:
temp_yara_meta_entry = YaraMetaEntry(None, None, None)
temp_yara_meta_entry.set_yara_meta_entry(yara_meta_entry)
self.meta[meta_entry_name].append(temp_yara_meta_entry)
class YaraString(YaraCommentEnabledClass):
def __init__(
self,
name,
value,
str_type="text",
is_anonymous=False,
regex_flags=None,
newline_after=False,
):
self.name = name
self.value = value
self.str_type = str_type
self.modifiers = []
self.is_anonymous = is_anonymous
self.regex_flags = regex_flags
self.newline_after = newline_after
self.raw_string = None
self.yara_comment = YaraComment()
def build_string(self, whitespace=" "):
self.raw_string = "$"
if not self.is_anonymous:
self.raw_string += self.name
self.raw_string += " = "
if self.str_type == "text":
self.raw_string += '"%s"' % self.value
elif self.str_type == "hex":
self.raw_string += "{%s}" % self.value
elif self.str_type == "regex":
if self.regex_flags:
self.raw_string += "/%s/%s" % (self.value, self.regex_flags)
else:
self.raw_string += "/%s/" % self.value
if self.modifiers:
for modifier in self.modifiers:
self.raw_string += " %s" % modifier
self.raw_string = self.build_comments(self.raw_string, whitespace=whitespace)
if self.newline_after:
self.raw_string += "\n"
def get_yara_string(self):
yara_string = {
"name": self.name,
"value": self.value,
"str_type": self.str_type,
"is_anonymous": self.is_anonymous,
}
if self.modifiers:
yara_string["modifiers"] = self.modifiers
if self.regex_flags:
yara_string["regex_flags"] = self.regex_flags
if (
self.yara_comment.above
or self.yara_comment.inline
or self.yara_comment.below
):
yara_string["comment"] = self.yara_comment.get_yara_comment()
return yara_string
def set_yara_string(self, yara_string):
if not all(
k in yara_string for k in ("name", "value", "str_type", "is_anonymous")
):
raise KeyError("String does not have the correct keys")
self.name = yara_string["name"]
self.value = yara_string["value"]
self.str_type = yara_string["str_type"]
self.is_anonymous = yara_string["is_anonymous"]
if "modifiers" in yara_string:
self.modifiers = yara_string["modifiers"]
if "comment" in yara_string:
self.yara_comment.set_yara_comment(yara_string["comment"])
if "regex_flags" in yara_string:
self.regex_flags = yara_string["regex_flags"]
class YaraStrings:
|
MIT License
|
nccgroup/blesuite
|
blesuite/connection_manager.py
|
BLEConnectionManager.get_gatt_server
|
python
|
def get_gatt_server(self):
return self.gatt_server
|
Retrieve the GATT server for the BLEConnectionManager instance.
:return: GATT Server
:rtype: blesuite.pybt.gatt.Server
|
https://github.com/nccgroup/blesuite/blob/0e2e534f7d9beaa8e9d76223959a60b064f61e22/blesuite/connection_manager.py#L897-L904
|
from blesuite.pybt.roles import LECentral, LEPeripheral
from blesuite.pybt.core import Connection
from blesuite.pybt.gatt import UUID, AttributeDatabase, Server
from blesuite.pybt.gap import GAP
from blesuite.gatt_procedures import gatt_procedure_write_handle, gatt_procedure_write_handle_async, gatt_procedure_read_handle, gatt_procedure_read_handle_async, gatt_procedure_read_uuid, gatt_procedure_read_uuid_async, gatt_procedure_discover_primary_services, gatt_procedure_discover_secondary_services, gatt_procedure_discover_characteristics, gatt_procedure_discover_includes, gatt_procedure_discover_descriptors, gatt_procedure_prepare_write_handle, gatt_procedure_prepare_write_handle_async, gatt_procedure_execute_write, gatt_procedure_execute_write_async, gatt_procedure_write_command_handle, gatt_procedure_read_multiple_handles, gatt_procedure_read_multiple_handles_async, gatt_procedure_read_blob_handle, gatt_procedure_read_blob_handle_async
from blesuite.smart_scan import blesuite_smart_scan
from blesuite.entities.gatt_device import BLEDevice
from blesuite.event_handler import BTEventHandler
import logging
import gevent
import os
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
ROLE_CENTRAL = 0x00
ROLE_PERIPHERAL = 0x01
PUBLIC_DEVICE_ADDRESS = 0x00
RANDOM_DEVICE_ADDRESS = 0x01
class BLEConnection(object):
def __init__(self, address, address_type, connection_handle=None):
self.address = address
self.address_type = address_type
self.connection_handle = connection_handle
self.interval_min = None
self.interval_max = None
self.mtu = 23
def __repr__(self):
return '<{} address={}, type={}>'.format(
self.__class__.__name__,
self.address,
{0: "random", 1: "public"}.get(self.address_type, "Unknown")
)
class BLEConnectionManager(object):
def __init__(self, adapter, role, our_address_type="public", random_address=None,
psm=0, mtu=23, gatt_server=None, event_handler=None, att_operation_event_hook=None,
att_security_event_hook=None):
self.role_name = role
self.adapter = adapter
self.requester = None
self.responses = []
self.response_counter = 0
self.psm = psm
self.mtu = mtu
self.gatt_server = gatt_server
self.event_handler = event_handler
self.att_operation_event_hook = att_operation_event_hook
self.att_security_event_hook = att_security_event_hook
self.address = None
self.our_address_type_name = our_address_type
if self.our_address_type_name.lower() == "random":
self.our_address_type = RANDOM_DEVICE_ADDRESS
else:
self.our_address_type = PUBLIC_DEVICE_ADDRESS
if self.our_address_type == RANDOM_DEVICE_ADDRESS and random_address is None:
self.random_address = ':'.join(map(lambda x: x.encode('hex'), os.urandom(6)))
elif self.our_address_type == RANDOM_DEVICE_ADDRESS:
self.random_address = random_address
else:
self.random_address = None
self.central = None
self.stack_connection = None
self.connections = []
if role is 'central':
logger.debug("creating central")
self._create_central()
logger.debug("creating PyBT connection")
self._create_stack_connection(ROLE_CENTRAL)
logger.debug("creating listeners")
self._start_listeners()
elif role is 'peripheral':
logger.debug("creating peripheral role")
self._create_peripheral()
logger.debug("creating PyBT connection")
self._create_stack_connection(ROLE_PERIPHERAL)
logger.debug("creating listeners")
self._start_listeners()
else:
logger.error("Unknown role: %s" % role)
raise RuntimeError("Unknown role: %s" % role)
self.address = self.role.stack.addr
def __enter__(self):
return self
def __del__(self):
if self.stack_connection is not None:
for connection in self.connections:
if self.stack_connection.is_connected(connection.connection_handle):
self.stack_connection.disconnect(connection.connection_handle, 0x16)
self.stack_connection.destroy()
self.stack_connection = None
def __exit__(self, exc_type, exc_val, exc_tb):
logger.debug("Exiting bleConnectionManager. exc_type:%s exc_val:%s exc_tb:%s" % (exc_type, exc_val, exc_tb))
if self.stack_connection is not None:
self.stack_connection.destroy()
self.stack_connection = None
if self.role is not None:
self.role.destroy()
self.role = None
def _create_central(self):
if self.adapter is None:
self.role = LECentral(address_type=self.our_address_type, random=self.random_address,
att_operation_event_hook=self.att_operation_event_hook)
else:
self.role = LECentral(adapter=self.adapter, address_type=self.our_address_type, random=self.random_address,
att_operation_event_hook=self.att_operation_event_hook)
def _create_peripheral(self):
if self.gatt_server is None:
self.attribute_db = AttributeDatabase(event_handler=self.att_security_event_hook)
self.gatt_server = Server(self.attribute_db)
self.gatt_server.set_mtu(self.mtu)
if self.adapter is None:
self.role = LEPeripheral(self.gatt_server, mtu=self.mtu, address_type=self.our_address_type,
random=self.random_address,
att_operation_event_hook=self.att_operation_event_hook)
else:
self.role = LEPeripheral(self.gatt_server, adapter=self.adapter, mtu=self.mtu,
address_type=self.our_address_type, random=self.random_address,
att_operation_event_hook=self.att_operation_event_hook)
def _create_stack_connection(self, role_type):
if self.event_handler is None:
self.event_handler = BTEventHandler(self)
self.stack_connection = Connection(self.role, role_type, self.event_handler)
def _start_listeners(self):
self.stack_connection.start()
def get_address(self):
return self.address
def get_discovered_devices(self):
return self.stack_connection.seen
def set_event_handler(self, event_class):
logger.debug("Trying to set event handler")
self.event_handler = event_class
if self.stack_connection.socket_handler is not None:
logger.debug("Stack connection found, setting event handler")
self.stack_connection.set_event_handler(event_class)
return True
return False
def set_att_operation_hook(self, event_class):
logger.debug("Trying to set ATT operation hook")
self.att_operation_event_hook = event_class
self.role.att.event_handler = self.att_operation_event_hook
return True
def set_att_security_hook(self, event_class):
logger.debug("Trying to set ATT security hook")
self.att_security_event_hook = event_class
if self.gatt_server is None:
logger.debug("No GATT server running, setting security hook failed.")
return False
self.gatt_server.db.att_security_hooks = self.att_security_event_hook
return True
def is_connected(self, connection):
return self.stack_connection.is_connected(connection.connection_handle)
def init_connection(self, address, address_type):
address = address.upper()
if address_type == "public":
address_type = PUBLIC_DEVICE_ADDRESS
elif address_type == "private":
address_type = RANDOM_DEVICE_ADDRESS
ble_connection = BLEConnection(address, address_type)
self.connections.append(ble_connection)
return ble_connection
def get_bleconnection_from_connection_handle(self, connection_handle):
for connection in self.connections:
if connection.connection_handle is not None and connection.connection_handle == connection_handle:
return connection
return None
def connect(self, ble_connection, timeout=15):
import time
start = time.time()
if not self.stack_connection.is_connected(ble_connection.connection_handle):
request = self.stack_connection.connect(ble_connection.connection_handle, ble_connection.address,
kind=ble_connection.address_type)
while not request.has_response():
if timeout is not None and time.time() - start >= timeout:
logger.debug("Connection failed: Connection timeout reached.")
return False
logger.debug("Is not connected")
gevent.sleep(1)
ble_connection.connection_handle = request.response.conn_handle
logger.debug("Connected")
return True
def disconnect(self, connection, reason=0x16):
self.stack_connection.disconnect(connection.connection_handle, reason)
def pair(self, ble_connection, timeout=15):
import time
self.initiate_pairing(ble_connection)
start = time.time()
while not self.role.smp.get_connection_encryption_status(ble_connection.connection_handle):
if self.role.smp.did_pairing_fail(ble_connection.address):
logger.debug("Pairing Failed")
return False
if timeout is not None and time.time() - start >= timeout:
return False
logger.debug("Pairing in progress. Pairing Failed: %s " % self.role.smp.did_pairing_fail(ble_connection.address))
gevent.sleep(1)
logger.debug("Paired")
return True
def initiate_pairing(self, ble_connection):
if not self.is_connected(ble_connection):
self.connect(ble_connection)
self.role.smp.send_pairing_request(ble_connection.address, ble_connection.connection_handle)
def is_pairing_in_progress(self, ble_connection):
return self.role.smp.is_pairing_in_progress(ble_connection.address)
def did_pairing_fail(self, ble_connection):
return self.role.smp.did_pairing_fail(ble_connection.address)
def is_connection_encrypted(self, ble_connection):
return self.role.smp.get_connection_encryption_status(ble_connection.connection_handle)
def resume_connection_encryption(self, ble_connection):
result = self.role.smp.initiate_encryption_with_existing_keys(ble_connection.address,
ble_connection.address_type,
ble_connection.connection_handle, self.address,
self.our_address_type, self.role)
return result
def get_security_manager_long_term_key_database(self):
return self.role.smp.long_term_key_db
def add_key_to_security_manager_long_term_key_database(self, address, address_type, ltk, ediv, rand, irk, csrk, security_mode,
security_level):
self.role.smp.long_term_key_db.add_long_term_key_entry(address, address_type,
ltk, ediv, rand, irk, csrk, security_mode,
security_level)
def export_security_manager_long_term_key_database_for_storage(self):
ltk_db = self.role.smp.long_term_key_db.get_long_term_key_database()
for entry in ltk_db:
temp = entry['address']
if temp is not None:
temp = temp.encode('hex')
entry['address'] = temp
temp = entry['ltk']
if temp is not None:
temp = temp.encode('hex')
entry['ltk'] = temp
temp = entry['rand']
if temp is not None:
temp = temp.encode('hex')
entry['rand'] = temp
temp = entry['irk']
if temp is not None:
temp = temp.encode('hex')
entry['irk'] = temp
temp = entry['csrk']
if temp is not None:
temp = temp.encode('hex')
entry['csrk'] = temp
return ltk_db
def import_long_term_key_database_to_security_manager(self, long_term_key_database):
import blesuite.utils.validators as validator
for entry in long_term_key_database:
keys = entry.keys()
if 'address' in keys:
peer_address = entry['address'].decode('hex')
else:
peer_address = "00" * 6
if 'address_type' in keys:
peer_address_type = entry['address_type']
else:
peer_address_type = 0
if 'ltk' in keys:
ltk = validator.validate_ltk(entry['ltk']).decode('hex')
else:
raise validator.InvalidSMLTK(None)
if 'ediv' in keys:
ediv = entry['ediv']
else:
ediv = 0
if 'rand' in keys:
rand = validator.validate_rand(entry['rand']).decode('hex')
else:
rand = '\x00' * 8
if 'irk' in keys:
irk = validator.validate_irk(entry['irk']).decode('hex')
else:
irk = '\x00' * 16
if 'csrk' in keys:
csrk = validator.validate_csrk(entry['csrk']).decode('hex')
else:
csrk = '\x00' * 16
if 'security_mode' in keys:
mode = entry['security_mode']
else:
mode = 1
if 'security_level' in keys:
level = entry['security_level']
else:
level = 1
mode, level = validator.validate_att_security_mode(mode, level)
self.role.smp.long_term_key_db.add_long_term_key_entry(peer_address, peer_address_type, ltk, ediv, rand,
irk, csrk, mode, level)
def get_security_manager_protocol_default_pairing_parameters(self):
return self.role.smp.get_default_pairing_parameters()
def set_security_manager_protocol_default_pairing_parameters(self, default_io_cap=0x03, default_oob=0x00,
default_mitm=0x00,
default_bond=0x01, default_lesc=0x00,
default_keypress=0x00,
default_ct2=0x01, default_rfu=0x00,
default_max_key_size=16,
default_initiator_key_distribution=0x01,
default_responder_key_distribution=0x01):
self.role.smp.set_default_pairing_parameters(default_io_cap, default_oob, default_mitm, default_bond,
default_lesc, default_keypress, default_ct2, default_rfu,
default_max_key_size, default_initiator_key_distribution,
default_responder_key_distribution)
def get_security_manager_protocol_pairing_parameters_for_connection(self, ble_connection):
return self.role.smp.get_pairing_parameters_for_connection(ble_connection.address)
def set_security_manager_protocol_pairing_parameters_for_connection(self, ble_connection, io_cap=0x03, oob=0x00,
mitm=0x00,
bond=0x01, lesc=0x00, keypress=0x0, ct2=0x01,
rfu=0x00, max_key_size=16,
initiator_key_distribution=0x01,
responder_key_distribution=0x01):
return self.role.smp.set_pairing_parameters_for_connection(ble_connection.address, io_cap, oob, mitm,
bond, lesc, keypress, ct2, rfu, max_key_size,
initiator_key_distribution,
responder_key_distribution)
def decode_gap_data(self, data):
gap = GAP()
try:
gap.decode(data)
except Exception as e:
if "Data too short" in str(e):
logger.debug("Data too short, leaving off malformed data")
else:
raise e
return gap
def generate_gap_data_dict(self, gap):
return gap.gap_dict()
def scan(self, timeout):
import time
self.start_scan()
start = time.time() * 1000
logger.debug("Starting sleep loop")
while ((time.time() * 1000) - start) < timeout:
logger.debug("Scanning...")
gevent.sleep(1)
self.stop_scan()
logger.debug("Done scanning!")
discovered_devices = self.get_discovered_devices()
return discovered_devices
def start_scan(self):
self.stack_connection.scan("on")
def stop_scan(self):
self.stack_connection.scan("off")
def advertise_and_wait_for_connection(self):
self.start_advertising()
while self.is_advertising():
gevent.sleep(1)
if len(self.stack_connection.connection_statuses.keys()) > 0:
connection_handle = self.stack_connection.connection_statuses.keys()[0]
peer_address = self.stack_connection.peer_addresses_by_connection_handle[connection_handle]
peer_address_type = self.stack_connection.connected_addr_type_by_connection_handle[connection_handle]
return True, BLEConnection(peer_address, peer_address_type, connection_handle=connection_handle)
else:
logger.error("Advertising stopped and no connections are present. Something went wrong.")
return False, None
def start_advertising(self):
self.stack_connection.start_advertising()
def stop_advertising(self):
self.stack_connection.stop_advertising()
def is_advertising(self):
return self.stack_connection.is_advertising()
def set_advertising_data(self, data):
self.stack_connection.set_advertising_data(data)
def set_scan_response_data(self, data):
self.stack_connection.set_scan_response_data(data)
def set_advertising_parameters(self, advertisement_type, channel_map, interval_min, interval_max,
destination_addr, destination_addr_type):
self.stack_connection.set_advertising_parameters(advertisement_type, channel_map, interval_min, interval_max,
destination_addr, destination_addr_type)
def set_local_name(self, name, enforce_null_termination=True):
if enforce_null_termination:
if len(name) != 248:
padding = 248 - len(name)
name = name + ('\0' * padding)
self.stack_connection.set_local_name(name)
|
MIT License
|
onshape-public/onshape-clients
|
python/onshape_client/oas/models/bt_parameter_spec_reference_part_studio1256.py
|
BTParameterSpecReferencePartStudio1256.openapi_types
|
python
|
def openapi_types():
return {
"allowed_insertable_types": ([str],),
"bt_type": (str,),
"computed_configuration_inputs": (
[
bt_computed_configuration_input_spec2525.BTComputedConfigurationInputSpec2525
],
),
"max_number_of_picks": (int,),
"additional_localized_strings": (int,),
"column_name": (str,),
"default_value": (btm_parameter1.BTMParameter1,),
"icon_uri": (str,),
"localizable_name": (str,),
"localized_name": (str,),
"parameter_id": (str,),
"parameter_name": (str,),
"strings_to_localize": ([str],),
"ui_hint": (str,),
"ui_hints": ([str],),
"visibility_condition": (
bt_parameter_visibility_condition177.BTParameterVisibilityCondition177,
),
}
|
This must be a class method so a model may have properties that are
of type self, this ensures that we don't create a cyclic import
Returns
openapi_types (dict): The key is attribute name
and the value is attribute type.
|
https://github.com/onshape-public/onshape-clients/blob/20843a00c628e516e7219e17a23ec4ef2bf9f16f/python/onshape_client/oas/models/bt_parameter_spec_reference_part_studio1256.py#L138-L170
|
from __future__ import absolute_import
import re
import sys
import six
import nulltype
from onshape_client.oas.model_utils import (
ModelComposed,
ModelNormal,
ModelSimple,
date,
datetime,
file_type,
int,
none_type,
str,
validate_get_composed_info,
)
try:
from onshape_client.oas.models import bt_computed_configuration_input_spec2525
except ImportError:
bt_computed_configuration_input_spec2525 = sys.modules[
"onshape_client.oas.models.bt_computed_configuration_input_spec2525"
]
try:
from onshape_client.oas.models import bt_parameter_spec_reference2789
except ImportError:
bt_parameter_spec_reference2789 = sys.modules[
"onshape_client.oas.models.bt_parameter_spec_reference2789"
]
try:
from onshape_client.oas.models import (
bt_parameter_spec_reference_part_studio1256_all_of,
)
except ImportError:
bt_parameter_spec_reference_part_studio1256_all_of = sys.modules[
"onshape_client.oas.models.bt_parameter_spec_reference_part_studio1256_all_of"
]
try:
from onshape_client.oas.models import bt_parameter_visibility_condition177
except ImportError:
bt_parameter_visibility_condition177 = sys.modules[
"onshape_client.oas.models.bt_parameter_visibility_condition177"
]
try:
from onshape_client.oas.models import btm_parameter1
except ImportError:
btm_parameter1 = sys.modules["onshape_client.oas.models.btm_parameter1"]
class BTParameterSpecReferencePartStudio1256(ModelComposed):
allowed_values = {
("allowed_insertable_types",): {
"SOLID": "SOLID",
"SURFACE": "SURFACE",
"WIRE": "WIRE",
"MESH": "MESH",
"SKETCH": "SKETCH",
"FLATTENED_SHEET_METAL": "FLATTENED_SHEET_METAL",
"ENTIRE_PART_STUDIO": "ENTIRE_PART_STUDIO",
"CONSTRUCTION_PLANE": "CONSTRUCTION_PLANE",
"COMPOSITE_PART": "COMPOSITE_PART",
"UNKNOWN": "UNKNOWN",
},
("ui_hints",): {
"OPPOSITE_DIRECTION": "OPPOSITE_DIRECTION",
"ALWAYS_HIDDEN": "ALWAYS_HIDDEN",
"SHOW_CREATE_SELECTION": "SHOW_CREATE_SELECTION",
"CONTROL_VISIBILITY": "CONTROL_VISIBILITY",
"NO_PREVIEW_PROVIDED": "NO_PREVIEW_PROVIDED",
"REMEMBER_PREVIOUS_VALUE": "REMEMBER_PREVIOUS_VALUE",
"DISPLAY_SHORT": "DISPLAY_SHORT",
"ALLOW_FEATURE_SELECTION": "ALLOW_FEATURE_SELECTION",
"MATE_CONNECTOR_AXIS_TYPE": "MATE_CONNECTOR_AXIS_TYPE",
"PRIMARY_AXIS": "PRIMARY_AXIS",
"SHOW_EXPRESSION": "SHOW_EXPRESSION",
"OPPOSITE_DIRECTION_CIRCULAR": "OPPOSITE_DIRECTION_CIRCULAR",
"SHOW_LABEL": "SHOW_LABEL",
"HORIZONTAL_ENUM": "HORIZONTAL_ENUM",
"UNCONFIGURABLE": "UNCONFIGURABLE",
"MATCH_LAST_ARRAY_ITEM": "MATCH_LAST_ARRAY_ITEM",
"COLLAPSE_ARRAY_ITEMS": "COLLAPSE_ARRAY_ITEMS",
"INITIAL_FOCUS_ON_EDIT": "INITIAL_FOCUS_ON_EDIT",
"INITIAL_FOCUS": "INITIAL_FOCUS",
"DISPLAY_CURRENT_VALUE_ONLY": "DISPLAY_CURRENT_VALUE_ONLY",
"READ_ONLY": "READ_ONLY",
"PREVENT_CREATING_NEW_MATE_CONNECTORS": "PREVENT_CREATING_NEW_MATE_CONNECTORS",
"FIRST_IN_ROW": "FIRST_IN_ROW",
"ALLOW_QUERY_ORDER": "ALLOW_QUERY_ORDER",
"PREVENT_ARRAY_REORDER": "PREVENT_ARRAY_REORDER",
"UNKNOWN": "UNKNOWN",
},
}
validations = {}
additional_properties_type = None
@staticmethod
|
MIT License
|
openstack/senlin
|
senlin/db/sqlalchemy/api.py
|
node_ids_by_cluster
|
python
|
def node_ids_by_cluster(context, cluster_id, filters=None):
with session_for_read() as session:
query = session.query(models.Node.id).filter_by(cluster_id=cluster_id)
if filters:
query = utils.exact_filter(query, models.Node, filters)
return [n[0] for n in query.all()]
|
an internal API for getting node IDs.
|
https://github.com/openstack/senlin/blob/390779ca1e08f819683e79993696f945f1c0393e/senlin/db/sqlalchemy/api.py#L305-L312
|
import datetime
import sys
import threading
import time
from oslo_config import cfg
from oslo_db import api as oslo_db_api
from oslo_db import exception as db_exc
from oslo_db.sqlalchemy import enginefacade
from oslo_db.sqlalchemy import utils as sa_utils
from oslo_log import log as logging
from oslo_utils import timeutils
import osprofiler.sqlalchemy
import sqlalchemy
from sqlalchemy.orm import joinedload
from sqlalchemy.sql.expression import func
from senlin.common import consts
from senlin.common import exception
from senlin.db.sqlalchemy import migration
from senlin.db.sqlalchemy import models
from senlin.db.sqlalchemy import utils
LOG = logging.getLogger(__name__)
CONF = cfg.CONF
_main_context_manager = None
_CONTEXT = threading.local()
cfg.CONF.import_opt('database_retry_limit', 'senlin.conf')
cfg.CONF.import_opt('database_retry_interval', 'senlin.conf')
cfg.CONF.import_opt('database_max_retry_interval', 'senlin.conf')
def _get_main_context_manager():
global _main_context_manager
if not _main_context_manager:
_main_context_manager = enginefacade.transaction_context()
cfg.CONF.import_group('profiler', 'senlin.conf')
if cfg.CONF.profiler.enabled:
if cfg.CONF.profiler.trace_sqlalchemy:
eng = _main_context_manager.writer.get_engine()
osprofiler.sqlalchemy.add_tracing(sqlalchemy, eng, "db")
return _main_context_manager
def get_engine():
return _get_main_context_manager().writer.get_engine()
def session_for_read():
return _get_main_context_manager().reader.using(_CONTEXT)
def session_for_write():
return _get_main_context_manager().writer.using(_CONTEXT)
def get_backend():
return sys.modules[__name__]
def retry_on_deadlock(f):
return oslo_db_api.wrap_db_retry(
retry_on_deadlock=True,
max_retries=CONF.database_retry_limit,
retry_interval=CONF.database_retry_interval,
inc_retry_interval=True,
max_retry_interval=CONF.database_max_retry_interval)(f)
def query_by_short_id(context, model_query, model, short_id,
project_safe=True):
q = model_query()
q = q.filter(model.id.like('%s%%' % short_id))
q = utils.filter_query_by_project(q, project_safe, context)
if q.count() == 1:
return q.first()
elif q.count() == 0:
return None
else:
raise exception.MultipleChoices(arg=short_id)
def query_by_name(context, model_query, name, project_safe=True):
q = model_query()
q = q.filter_by(name=name)
q = utils.filter_query_by_project(q, project_safe, context)
if q.count() == 1:
return q.first()
elif q.count() == 0:
return None
else:
raise exception.MultipleChoices(arg=name)
def cluster_model_query():
with session_for_read() as session:
query = session.query(models.Cluster).options(
joinedload(models.Cluster.nodes),
joinedload(models.Cluster.profile),
joinedload(models.Cluster.policies)
)
return query
@retry_on_deadlock
def cluster_create(context, values):
with session_for_write() as session:
cluster_ref = models.Cluster()
cluster_ref.update(values)
session.add(cluster_ref)
return cluster_get(context, cluster_ref.id)
def cluster_get(context, cluster_id, project_safe=True):
cluster = cluster_model_query().get(cluster_id)
if cluster is None:
return None
return utils.check_resource_project(context, cluster, project_safe)
def cluster_get_by_name(context, name, project_safe=True):
return query_by_name(context, cluster_model_query, name,
project_safe=project_safe)
def cluster_get_by_short_id(context, short_id, project_safe=True):
return query_by_short_id(context, cluster_model_query, models.Cluster,
short_id, project_safe=project_safe)
def _query_cluster_get_all(context, project_safe=True):
query = cluster_model_query()
query = utils.filter_query_by_project(query, project_safe, context)
return query
def cluster_get_all(context, limit=None, marker=None, sort=None, filters=None,
project_safe=True):
query = _query_cluster_get_all(context, project_safe=project_safe)
if filters:
query = utils.exact_filter(query, models.Cluster, filters)
keys, dirs = utils.get_sort_params(sort, consts.CLUSTER_INIT_AT)
if marker:
marker = cluster_model_query().get(marker)
return sa_utils.paginate_query(query, models.Cluster, limit, keys,
marker=marker, sort_dirs=dirs).all()
@retry_on_deadlock
def cluster_next_index(context, cluster_id):
with session_for_write() as session:
cluster = session.query(models.Cluster).with_for_update().get(
cluster_id)
if cluster is None:
return 0
next_index = cluster.next_index
cluster.next_index = cluster.next_index + 1
cluster.save(session)
return next_index
def cluster_count_all(context, filters=None, project_safe=True):
query = _query_cluster_get_all(context, project_safe=project_safe)
query = utils.exact_filter(query, models.Cluster, filters)
return query.count()
@retry_on_deadlock
def cluster_update(context, cluster_id, values):
with session_for_write() as session:
cluster = session.query(
models.Cluster).with_for_update().get(cluster_id)
if not cluster:
raise exception.ResourceNotFound(type='cluster', id=cluster_id)
cluster.update(values)
cluster.save(session)
@retry_on_deadlock
def cluster_delete(context, cluster_id):
with session_for_write() as session:
cluster = session.query(models.Cluster).get(cluster_id)
if cluster is None:
raise exception.ResourceNotFound(type='cluster', id=cluster_id)
query = session.query(models.Node).filter_by(cluster_id=cluster_id)
nodes = query.all()
if len(nodes) != 0:
for node in nodes:
session.delete(node)
for cp in cluster.policies:
session.delete(cp)
session.delete(cluster)
def node_model_query():
with session_for_read() as session:
query = session.query(models.Node).options(
joinedload(models.Node.profile)
)
return query
@retry_on_deadlock
def node_create(context, values):
with session_for_write() as session:
node = models.Node()
node.update(values)
session.add(node)
return node
def node_get(context, node_id, project_safe=True):
node = node_model_query().get(node_id)
if not node:
return None
return utils.check_resource_project(context, node, project_safe)
def node_get_by_name(context, name, project_safe=True):
return query_by_name(context, node_model_query, name,
project_safe=project_safe)
def node_get_by_short_id(context, short_id, project_safe=True):
return query_by_short_id(context, node_model_query, models.Node, short_id,
project_safe=project_safe)
def _query_node_get_all(context, project_safe=True, cluster_id=None):
query = node_model_query()
if cluster_id is not None:
query = query.filter_by(cluster_id=cluster_id)
query = utils.filter_query_by_project(query, project_safe, context)
return query
def node_get_all(context, cluster_id=None, limit=None, marker=None, sort=None,
filters=None, project_safe=True):
query = _query_node_get_all(context, project_safe=project_safe,
cluster_id=cluster_id)
if filters:
query = utils.exact_filter(query, models.Node, filters)
keys, dirs = utils.get_sort_params(sort, consts.NODE_INIT_AT)
if marker:
marker = node_model_query().get(marker)
return sa_utils.paginate_query(query, models.Node, limit, keys,
marker=marker, sort_dirs=dirs).all()
def node_get_all_by_cluster(context, cluster_id, filters=None,
project_safe=True):
query = _query_node_get_all(context, cluster_id=cluster_id,
project_safe=project_safe)
if filters:
query = utils.exact_filter(query, models.Node, filters)
return query.all()
|
Apache License 2.0
|
mozillazg/bustard
|
tests/httpbin/core.py
|
cache
|
python
|
def cache(request):
is_conditional = (
request.headers.get('If-Modified-Since') or
request.headers.get('If-None-Match')
)
if is_conditional is None:
response = view_get(request)
response.headers['Last-Modified'] = http_date()
response.headers['ETag'] = uuid.uuid4().hex
return response
else:
return status_code(304)
|
Returns a 304 if an If-Modified-Since header or
If-None-Match is present. Returns the same as a GET otherwise.
|
https://github.com/mozillazg/bustard/blob/bd7b47f3ba5440cf6ea026c8b633060fedeb80b7/tests/httpbin/core.py#L505-L520
|
import base64
import json
import os
import random
import time
import uuid
from bustard.app import Bustard
from bustard.http import (
Response, Headers, jsonify as bustard_jsonify, redirect
)
from bustard.utils import json_dumps_default
from werkzeug.datastructures import WWWAuthenticate
from werkzeug.http import http_date
from werkzeug.serving import run_simple
from six.moves import range as xrange
from . import filters
from .helpers import (
get_headers, status_code, get_dict, get_request_range,
check_basic_auth, check_digest_auth, secure_cookie,
H, ROBOT_TXT, ANGRY_ASCII
)
from .utils import weighted_choice
from .structures import CaseInsensitiveDict
ENV_COOKIES = (
'_gauges_unique',
'_gauges_unique_year',
'_gauges_unique_month',
'_gauges_unique_day',
'_gauges_unique_hour',
'__utmz',
'__utma',
'__utmb'
)
def jsonify(*args, **kwargs):
response = bustard_jsonify(*args, **kwargs)
if not response.data.endswith(b'\n'):
response.data += b'\n'
return response
tmpl_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)),
'templates')
app = Bustard(__name__, template_dir=tmpl_dir)
render_template = app.render_template
url_for = app.url_for
@app.after_request
def set_cors_headers(request, response):
response.headers['Access-Control-Allow-Origin'] = (
request.headers.get('Origin', '*')
)
response.headers['Access-Control-Allow-Credentials'] = 'true'
if request.method == 'OPTIONS':
response.headers['Access-Control-Allow-Methods'] = (
'GET, POST, PUT, DELETE, PATCH, OPTIONS'
)
response.headers['Access-Control-Max-Age'] = '3600'
if request.headers.get('Access-Control-Request-Headers') is not None:
response.headers['Access-Control-Allow-Headers'] = (
request.headers['Access-Control-Request-Headers']
)
return response
@app.route('/')
def view_landing_page(request):
tracking_enabled = 'HTTPBIN_TRACKING' in os.environ
return render_template('index.html', request=request,
tracking_enabled=tracking_enabled)
@app.route('/html')
def view_html_page(request):
return render_template('moby.html')
@app.route('/robots.txt')
def view_robots_page(request):
response = Response()
response.content = ROBOT_TXT
response.content_type = 'text/plain'
return response
@app.route('/deny')
def view_deny_page(request):
response = Response()
response.content = ANGRY_ASCII
response.content_type = 'text/plain'
return response
@app.route('/ip')
def view_origin(request):
return jsonify(origin=request.headers.get('X-Forwarded-For',
request.remote_addr))
@app.route('/headers')
def view_headers(request):
return jsonify(get_dict(request, 'headers'))
@app.route('/user-agent')
def view_user_agent(request):
headers = get_headers(request)
return jsonify({'user-agent': headers['user-agent']})
@app.route('/get', methods=('GET', 'OPTIONS'))
def view_get(request):
return jsonify(get_dict(request, 'url', 'args', 'headers', 'origin'))
@app.route('/post', methods=('POST',))
def view_post(request):
return jsonify(get_dict(request, 'url', 'args', 'form', 'data',
'origin', 'headers', 'files', 'json'))
@app.route('/put', methods=('PUT',))
def view_put(request):
return jsonify(get_dict(request, 'url', 'args', 'form', 'data',
'origin', 'headers', 'files', 'json'))
@app.route('/patch', methods=('PATCH',))
def view_patch(request):
return jsonify(get_dict(request, 'url', 'args', 'form', 'data',
'origin', 'headers', 'files', 'json'))
@app.route('/delete', methods=('DELETE',))
def view_delete(request):
return jsonify(get_dict(request, 'url', 'args', 'form', 'data',
'origin', 'headers', 'files', 'json'))
@app.route('/gzip')
@filters.gzip
def view_gzip_encoded_content(request):
return jsonify(get_dict(request, 'origin', 'headers',
method=request.method, gzipped=True))
@app.route('/deflate')
@filters.deflate
def view_deflate_encoded_content(request):
return jsonify(get_dict(request, 'origin', 'headers',
method=request.method, deflated=True))
@app.route('/redirect/<int:n>')
def redirect_n_times(request, n):
n = int(n)
assert n > 0
absolute = request.args.get('absolute', 'false').lower() == 'true'
if n == 1:
return redirect(app.url_for('view_get', _request=request,
_external=absolute))
if absolute:
return _redirect(request, 'absolute', n, True)
else:
return _redirect(request, 'relative', n, False)
def _redirect(request, kind, n, external):
return redirect(url_for('{0}_redirect_n_times'.format(kind),
n=n - 1, _external=external, _request=request))
@app.route('/redirect-to')
def redirect_to(request):
args = CaseInsensitiveDict(request.args.items())
response = Response('')
response.status_code = 302
response.headers['Location'] = args['url'].encode('utf-8')
return response
@app.route('/relative-redirect/<int:n>')
def relative_redirect_n_times(request, n):
n = int(n)
assert n > 0
response = Response('')
response.status_code = 302
if n == 1:
response.headers['Location'] = url_for('view_get')
return response
response.headers['Location'] = app.url_for(
'relative_redirect_n_times', n=n - 1
)
return response
@app.route('/absolute-redirect/<int:n>')
def absolute_redirect_n_times(request, n):
n = int(n)
assert n > 0
if n == 1:
return redirect(app.url_for('view_get', _request=request,
_external=True))
return _redirect(request, 'absolute', n, True)
@app.route('/stream/<int:n>')
def stream_n_messages(request, n):
n = int(n)
response = get_dict(request, 'url', 'args', 'headers', 'origin')
n = min(n, 100)
def generate_stream():
for i in range(n):
response['id'] = i
yield json.dumps(response, default=json_dumps_default) + '\n'
return Response(generate_stream(), headers={
'Content-Type': 'application/json',
})
@app.route('/status/<codes>',
methods=['GET', 'POST', 'PUT', 'DELETE', 'PATCH', 'TRACE'])
def view_status_code(request, codes):
if ',' not in codes:
code = int(codes)
return status_code(code)
choices = []
for choice in codes.split(','):
if ':' not in choice:
code = choice
weight = 1
else:
code, weight = choice.split(':')
choices.append((int(code), float(weight)))
code = weighted_choice(choices)
return status_code(code)
@app.route('/response-headers')
def response_headers(request):
headers = Headers(request.args.to_dict())
response = jsonify(headers)
while True:
content_len_shown = response.headers['Content-Length']
d = {}
for key in response.headers.keys():
value = response.headers.get_all(key)
if len(value) == 1:
value = value[0]
d[key] = value
response = jsonify(d)
for key, value in headers.to_list():
response.headers.add(key, value)
if response.headers['Content-Length'] == content_len_shown:
break
return response
@app.route('/cookies')
def view_cookies(request, hide_env=True):
cookies = dict(request.cookies.items())
if hide_env and ('show_env' not in request.args):
for key in ENV_COOKIES:
try:
del cookies[key]
except KeyError:
pass
return jsonify(cookies=cookies)
@app.route('/forms/post')
def view_forms_post(request):
return render_template('forms-post.html')
@app.route('/cookies/set/<name>/<value>')
def set_cookie(request, name, value):
r = app.make_response(redirect(url_for('view_cookies')))
r.set_cookie(key=name, value=value, secure=secure_cookie(request))
return r
@app.route('/cookies/set')
def set_cookies(request):
cookies = dict(request.args.items())
r = app.make_response(redirect(url_for('view_cookies')))
for key, value in cookies.items():
r.set_cookie(key=key, value=value, secure=secure_cookie(request))
return r
@app.route('/cookies/delete')
def delete_cookies(request):
cookies = dict(request.args.items())
r = app.make_response(redirect(url_for('view_cookies')))
for key, value in cookies.items():
r.delete_cookie(key=key)
return r
@app.route('/basic-auth/<user>/<passwd>')
def basic_auth(request, user='user', passwd='passwd'):
if not check_basic_auth(request, user, passwd):
return status_code(401)
return jsonify(authenticated=True, user=user)
@app.route('/hidden-basic-auth/<user>/<passwd>')
def hidden_basic_auth(request, user='user', passwd='passwd'):
if not check_basic_auth(request, user, passwd):
return status_code(404)
return jsonify(authenticated=True, user=user)
@app.route('/digest-auth/<qop>/<user>/<passwd>')
def digest_auth(request, qop=None, user='user', passwd='passwd'):
if qop not in ('auth', 'auth-int'):
qop = None
if 'Authorization' not in request.headers or not check_digest_auth(user, passwd) or 'Cookie' not in request.headers:
response = app.make_response('')
response.status_code = 401
nonce = H(b''.join([
getattr(request, 'remote_addr', u'').encode('ascii'),
b':',
str(time.time()).encode('ascii'),
b':',
os.urandom(10)
]))
opaque = H(os.urandom(10))
auth = WWWAuthenticate('digest')
auth.set_digest('me@kennethreitz.com', nonce, opaque=opaque,
qop=('auth', 'auth-int') if qop is None else (qop, ))
response.headers['WWW-Authenticate'] = auth.to_header()
response.headers['Set-Cookie'] = 'fake=fake_value'
return response
return jsonify(authenticated=True, user=user)
@app.route('/delay/<delay>')
def delay_response(request, delay):
delay = min(float(delay), 10)
time.sleep(delay)
return jsonify(get_dict(request, 'url', 'args', 'form', 'data',
'origin', 'headers', 'files'))
@app.route('/drip')
def drip(request):
args = CaseInsensitiveDict(request.args.items())
duration = float(args.get('duration', 2))
numbytes = int(args.get('numbytes', 10))
code = int(args.get('code', 200))
pause = duration / numbytes
delay = float(args.get('delay', 0))
if delay > 0:
time.sleep(delay)
def generate_bytes():
for i in xrange(numbytes):
yield u'*'.encode('utf-8')
time.sleep(pause)
response = Response(generate_bytes(), headers={
'Content-Type': 'application/octet-stream',
'Content-Length': str(numbytes),
})
response.status_code = code
return response
@app.route('/base64/<value>')
def decode_base64(request, value):
encoded = value.encode('utf-8')
return base64.urlsafe_b64decode(encoded).decode('utf-8')
@app.route('/cache', methods=('GET',))
|
MIT License
|
rlworkgroup/garage
|
src/garage/torch/_functions.py
|
soft_update_model
|
python
|
def soft_update_model(target_model, source_model, tau):
for target_param, param in zip(target_model.parameters(),
source_model.parameters()):
target_param.data.copy_(target_param.data * (1.0 - tau) +
param.data * tau)
|
Update model parameter of target and source model.
# noqa: D417
Args:
target_model
(garage.torch.Policy/garage.torch.QFunction):
Target model to update.
source_model
(garage.torch.Policy/QFunction):
Source network to update.
tau (float): Interpolation parameter for doing the
soft target update.
|
https://github.com/rlworkgroup/garage/blob/3a578852c392cecde5b7c9786aa182d74f6df1d4/src/garage/torch/_functions.py#L284-L302
|
import copy
import math
import warnings
import torch
from torch import nn
import torch.nn.functional as F
_USE_GPU = False
_DEVICE = None
_GPU_ID = 0
def zero_optim_grads(optim, set_to_none=True):
if not set_to_none:
optim.zero_grad()
return
for group in optim.param_groups:
for param in group['params']:
param.grad = None
def compute_advantages(discount, gae_lambda, max_episode_length, baselines,
rewards):
adv_filter = torch.full((1, 1, 1, max_episode_length - 1),
discount * gae_lambda,
dtype=torch.float)
adv_filter = torch.cumprod(F.pad(adv_filter, (1, 0), value=1), dim=-1)
deltas = (rewards + discount * F.pad(baselines, (0, 1))[:, 1:] - baselines)
deltas = F.pad(deltas,
(0, max_episode_length - 1)).unsqueeze(0).unsqueeze(0)
advantages = F.conv2d(deltas, adv_filter, stride=1).reshape(rewards.shape)
return advantages
def pad_to_last(nums, total_length, axis=-1, val=0):
tensor = torch.Tensor(nums)
axis = (axis + len(tensor.shape)) if axis < 0 else axis
if len(tensor.shape) <= axis:
raise IndexError('axis {} is out of range {}'.format(
axis, tensor.shape))
padding_config = [0, 0] * len(tensor.shape)
padding_idx = abs(axis - len(tensor.shape)) * 2 - 1
padding_config[padding_idx] = max(total_length - tensor.shape[axis], val)
return F.pad(tensor, padding_config)
def filter_valids(tensor, valids):
return [tensor[i][:valid] for i, valid in enumerate(valids)]
def np_to_torch(array):
tensor = torch.from_numpy(array)
if tensor.dtype != torch.float32:
tensor = tensor.float()
return tensor.to(global_device())
def list_to_tensor(data):
return torch.as_tensor(data, dtype=torch.float32, device=global_device())
def as_torch_dict(array_dict):
for key, value in array_dict.items():
array_dict[key] = np_to_torch(value)
return array_dict
def torch_to_np(tensors):
value_out = tuple(v.cpu().numpy() for v in tensors)
return value_out
def flatten_batch(tensor):
return tensor.reshape((-1, ) + tensor.shape[2:])
def flatten_to_single_vector(tensor):
N = tensor.shape[0]
return tensor.view(N, -1)
def update_module_params(module, new_params):
named_modules = dict(module.named_modules())
def update(m, name, param):
del m._parameters[name]
setattr(m, name, param)
m._parameters[name] = param
for name, new_param in new_params.items():
if '.' in name:
module_name, param_name = tuple(name.rsplit('.', 1))
if module_name in named_modules:
update(named_modules[module_name], param_name, new_param)
else:
update(module, name, new_param)
|
MIT License
|
robertjoosten/maya-timeline-marker
|
scripts/timeline_marker/ui.py
|
TimelineMarker.add_from_ui
|
python
|
def add_from_ui(self):
colour = self.picker.property("rgb")
comment = self.comment.text()
for frame in utils.get_timeline_range():
self.add(frame, colour, comment)
self.comment.setText("")
|
Get the frame, color and comments arguments from the UI and add
marker(s).
|
https://github.com/robertjoosten/maya-timeline-marker/blob/5ebed07470d5f61bfb52375b84c86b40a23f1675/scripts/timeline_marker/ui.py#L335-L349
|
import json
from maya import mel
from maya import cmds
from maya.api import OpenMaya
from PySide2 import QtWidgets, QtGui, QtCore
from timeline_marker import utils
TIMELINE_MARKER = "timeline-marker"
TIMELINE_MARKER_OLD = "timelineMarker"
class TimelineMark(object):
slots = ("colour", "comment", )
def __init__(self, colour=(0, 255, 0), comment=""):
self.colour = colour
self.comment = comment
class TimelineMarker(QtWidgets.QWidget):
instance = None
def __init__(self, parent):
super(TimelineMarker, self).__init__(parent)
self.start = None
self.end = None
self.total = None
self.step = None
self.data = {}
self.range = None
self.callbacks = []
scale_factor = self.logicalDpiX() / 96.0
self.menu = utils.get_timeline_menu()
self.menu_actions = []
self.menu_actions.append(self.menu.addSeparator())
self.comment = QtWidgets.QLineEdit(self.menu)
self.comment.setPlaceholderText("marker comment...")
action = QtWidgets.QWidgetAction(self.menu)
action.setDefaultWidget(self.comment)
self.menu.addAction(action)
self.menu_actions.append(action)
self.menu_actions.append(self.menu.addSeparator())
self.picker = self.menu.addAction("Pick Color")
self.picker.setProperty("rgb", [0, 255, 0])
self.picker.triggered.connect(self.display_picker)
pixmap = QtGui.QPixmap(12 * scale_factor, 12 * scale_factor)
pixmap.fill(QtGui.QColor(0, 255, 0))
self.picker.setIcon(QtGui.QIcon(pixmap))
self.menu_actions.append(self.picker)
self.menu_actions.append(self.menu.addSeparator())
add_action = self.menu.addAction("Add Marker")
add_action.triggered.connect(self.add_from_ui)
remove_action = self.menu.addAction("Delete Selected Marker")
remove_action.triggered.connect(self.remove_from_ui)
clear_action = self.menu.addAction("Delete All Markers")
clear_action.triggered.connect(self.clear)
self.menu_actions.extend([add_action, remove_action, clear_action])
self.menu_actions.append(self.menu.addSeparator())
self.move = self.menu.addAction("Move With Time Control")
self.move.setCheckable(True)
self.move.setChecked(False)
self.menu_actions.append(self.move)
self.load_from_scene()
self.register_callbacks()
@classmethod
def get_instance(cls):
if cls.instance is None:
raise RuntimeError("TimelineMarker has no instance, initialize first.")
return cls.instance
def paintEvent(self, event):
self.start = cmds.playbackOptions(query=True, minTime=True)
self.end = cmds.playbackOptions(query=True, maxTime=True)
self.total = self.width()
self.step = (self.total - (self.total * 0.01)) / (self.end - self.start + 1)
if not self.data:
return
painter = QtGui.QPainter(self)
pen = QtGui.QPen()
pen.setWidth(self.step)
for frame, frame_data in self.data.items():
if not self.start <= frame <= self.end:
continue
r, g, b = frame_data.colour
pen.setColor(QtGui.QColor(r, g, b, 50))
pos = (frame - self.start + 0.5) * self.step + (self.total * 0.005)
line = QtCore.QLineF(QtCore.QPointF(pos, 0), QtCore.QPointF(pos, 100))
painter.setPen(pen)
painter.drawLine(line)
return super(TimelineMarker, self).paintEvent(event)
def event(self, event):
if event.type() == QtCore.QEvent.ToolTip:
QtWidgets.QToolTip.hideText()
frame = int(((event.x() - (self.total * 0.005)) / self.step) + self.start)
frame_data = self.data.get(frame)
if frame_data is not None:
QtWidgets.QToolTip.showText(event.globalPos(), frame_data.comment, self)
return super(TimelineMarker, self).event(event)
def update(self):
self.write_to_scene()
super(TimelineMarker, self).update()
def deleteLater(self):
for action in self.menu_actions:
action.deleteLater()
self.remove_callbacks()
super(TimelineMarker, self).deleteLater()
def display_picker(self):
colour = self.picker.property("rgb")
colour = QtGui.QColor(colour[0], colour[1], colour[2])
dialog = QtWidgets.QColorDialog.getColor(colour, self.menu)
if not dialog.isValid():
return
colour = [dialog.red(), dialog.green(), dialog.blue()]
pixmap = QtGui.QPixmap(12, 12)
pixmap.fill(QtGui.QColor(colour[0], colour[1], colour[2]))
self.picker.setProperty("rgb", colour)
self.picker.setIcon(QtGui.QIcon(pixmap))
def press_command_callback(self, *args):
timeline_path = utils.get_timeline_path()
cmds.timeControl(timeline_path, edit=True, beginScrub=True)
range_visible = cmds.timeControl(timeline_path, query=True, rangeVisible=True)
if range_visible and self.move.isChecked():
self.range = utils.get_timeline_range()
else:
self.range = None
def release_command_callback(self, *args):
timeline_path = utils.get_timeline_path()
cmds.timeControl(timeline_path, edit=True, endScrub=True)
if not self.range or not self.move.isChecked():
return
start_range = self.range[:]
end_range = utils.get_timeline_range()
self.range = None
start_length = len(start_range)
end_length = len(end_range)
range_visible = cmds.timeControl(timeline_path, query=True, rangeVisible=True)
if (start_length == 1 and end_length != 1) or not range_visible:
return
matches = {frame: self.data[frame] for frame in start_range if frame in self.data}
for frame, frame_data in matches.items():
if start_length == 1:
frame_remapped = end_range[0]
else:
frame_remapped = int(
utils.remap(
frame,
input_min=start_range[0],
input_max=start_range[-1],
output_min=end_range[0],
output_max=end_range[-1]
)
)
if frame == frame_remapped:
continue
self.data[frame_remapped] = frame_data
self.data.pop(frame, None)
self.update()
@classmethod
def add(cls, frame, colour, comment):
instance = cls.get_instance()
instance.data[frame] = TimelineMark(colour, comment)
instance.update()
@classmethod
def set(cls, frames, colours, comments):
instance = cls.get_instance()
instance.data.clear()
for frame, colour, comment in zip(frames, colours, comments):
instance.data[frame] = TimelineMark(colour, comment)
instance.update()
@classmethod
def remove(cls, *frames):
instance = cls.get_instance()
for frame in frames:
instance.data.pop(frame, None)
instance.update()
@classmethod
def clear(cls):
instance = cls.get_instance()
instance.data.clear()
instance.update()
|
MIT License
|
mi2rl/mi2rlnet
|
medimodule/Chest/module.py
|
EnhanceCTClassifier._preprocessing
|
python
|
def _preprocessing(self, path: str) -> Tuple[np.array, np.array]:
ds = pydicom.dcmread(path)
if ds.file_meta.TransferSyntaxUID == '1.2.840.10008.1.2.4.70':
ds.decompress()
imgo = ds.pixel_array
try:
intercept = ds.RescaleIntercept
tmp_img = imgo.astype('float32')
tmp_img2 = np.copy(tmp_img)
window_width = 450.
window_level = 550.
lower = (window_level-window_width)
upper = (window_level+window_width)
tmp_img -= (lower - intercept)
tmp_img /= (upper + 1024)
tmp_img[tmp_img < 0] = 0.
tmp_img[tmp_img > 1] = 1.
tmp_img = cv2.resize(tmp_img, (256, 256), interpolation=cv2.INTER_AREA)
tmp_img = tmp_img[:,:,None]
tmp_img2[tmp_img2 == -2000] = 0.
tmp_img2 -= -1024. - intercept
tmp_img2 /= 4096
tmp_img2 = cv2.resize(tmp_img2, (256, 256), interpolation=cv2.INTER_AREA)
tmp_img2 = tmp_img2[:,:,None]
img = np.concatenate((tmp_img, tmp_img2), axis=-1)
img = np.expand_dims(img, axis=0)
except:
print('please check your image modality, you have to input CT')
raise
return imgo, img
|
Args:
(string) path : dicom path
Return:
(numpy ndarray) imgo : original image
(numpy ndarray) img : preprocessed image
|
https://github.com/mi2rl/mi2rlnet/blob/158a74985074f95fcd6a345c310903936dd2adbe/medimodule/Chest/module.py#L108-L156
|
import os
import sys
import cv2
import json
import pydicom
import warnings
import numpy as np
import SimpleITK as sitk
from typing import Tuple, Optional, List, Dict
from medimodule.utils import Checker
from medimodule.base import BaseModule
from medimodule.Chest.models import LungSeg
from medimodule.Chest.models import LRDet
from medimodule.Chest.models import ViewCls
from medimodule.Chest.models import EnhanceCls
from medimodule.Chest.models.lr_mark_detection_model.anchors import anchors_for_shape
class ViewpointClassifier(BaseModule):
def __init__(self, weight_path: Optional[str] = None):
self.model = ViewCls()
if weight_path:
self.model.load_weights(weight_path)
self.labels = ['PA', 'Lateral', 'Others']
def _preprocessing(self, path: str) -> Tuple[np.array, np.array]:
imgo = np.squeeze(sitk.GetArrayFromImage(sitk.ReadImage(path)))
img = cv2.resize(imgo, (512, 512), interpolation=cv2.INTER_LINEAR)
img = img.astype(np.float32)
img -= np.min(img)
img /= np.percentile(img, 99)
img[img > 1] = 1
img *= (2**8-1)
img = img.astype(np.uint8)
img = img[None,...,None]
return imgo, img
def predict(
self,
path: str,
save_path: Optional[str] = None
) -> Tuple[np.array, str]:
path = os.path.abspath(path)
imgo, img = self._preprocessing(path)
result = self.model.predict(img)
result = np.argmax(result)
result = self.labels[result]
if save_path:
if ".txt" in save_path:
with open(save_path, "w") as f:
f.write(result)
else:
warnings.warn(
"ONLY txt format is allowed in this module."
"If you want other format, use a custom code.",
UserWarning)
return (imgo, result)
class EnhanceCTClassifier(BaseModule):
def __init__(self, weight_path: Optional[str] = None):
self.model = EnhanceCls()
if weight_path:
self.model.load_weights(weight_path)
self.labels = ['Non-Enhanced', 'Enhanced']
|
Apache License 2.0
|
racker/rackspace-monitoring
|
test/__init__.py
|
MockHttp._example
|
python
|
def _example(self, method, url, body, headers):
return (httplib.OK, 'Hello World!', {'X-Foo': 'libcloud'},
httplib.responses[httplib.OK])
|
Return a simple message and header, regardless of input.
|
https://github.com/racker/rackspace-monitoring/blob/8a9929e5fd51826c0a392e21bc55acb2aefe54f7/test/__init__.py#L183-L188
|
import random
import unittest
from cgi import parse_qs
from libcloud.utils.py3 import httplib
from libcloud.utils.py3 import StringIO
from libcloud.utils.py3 import urlparse
from libcloud.utils.py3 import u
XML_HEADERS = {'content-type': 'application/xml'}
class LibcloudTestCase(unittest.TestCase):
def __init__(self, *args, **kwargs):
self._visited_urls = []
self._executed_mock_methods = []
super(LibcloudTestCase, self).__init__(*args, **kwargs)
def setUp(self):
self._visited_urls = []
self._executed_mock_methods = []
def _add_visited_url(self, url):
self._visited_urls.append(url)
def _add_executed_mock_method(self, method_name):
self._executed_mock_methods.append(method_name)
def assertExecutedMethodCount(self, expected):
actual = len(self._executed_mock_methods)
self.assertEqual(actual, expected,
'expected %d, but %d mock methods were executed'
% (expected, actual))
class multipleresponse(object):
count = 0
func = None
def __init__(self, f):
self.func = f
def __call__(self, *args, **kwargs):
ret = self.func(self.func.__class__, *args, **kwargs)
response = ret[self.count]
self.count = self.count + 1
return response
class MockResponse(object):
headers = {}
body = StringIO()
status = 0
reason = ''
version = 11
def __init__(self, status, body, headers=None, reason=None):
self.status = status
self.body = StringIO(u(body))
self.headers = headers or self.headers
self.reason = reason or self.reason
def read(self, *args, **kwargs):
return self.body.read(*args, **kwargs)
def getheader(self, name, *args, **kwargs):
return self.headers.get(name, *args, **kwargs)
def getheaders(self):
return list(self.headers.items())
def msg(self):
raise NotImplemented
class BaseMockHttpObject(object):
def _get_method_name(self, type, use_param, qs, path):
meth_name = path.replace('/', '_').replace('.', '_').replace('-', '_')
if type:
meth_name = '%s_%s' % (meth_name, self.type)
if use_param:
param = qs[self.use_param][0].replace('.', '_').replace('-', '_')
meth_name = '%s_%s' % (meth_name, param)
return meth_name
class MockHttp(BaseMockHttpObject):
responseCls = MockResponse
host = None
port = None
response = None
type = None
use_param = None
test = None
def __init__(self, host, port, *args, **kwargs):
self.host = host
self.port = port
def request(self, method, url, body=None, headers=None, raw=False):
parsed = urlparse.urlparse(url)
scheme, netloc, path, params, query, fragment = parsed
qs = parse_qs(query)
if path.endswith('/'):
path = path[:-1]
meth_name = self._get_method_name(type=self.type,
use_param=self.use_param,
qs=qs, path=path)
meth = getattr(self, meth_name)
if self.test and isinstance(self.test, LibcloudTestCase):
self.test._add_visited_url(url=url)
self.test._add_executed_mock_method(method_name=meth_name)
status, body, headers, reason = meth(method, url, body, headers)
self.response = self.responseCls(status, body, headers, reason)
def getresponse(self):
return self.response
def connect(self):
pass
def close(self):
pass
|
Apache License 2.0
|
basilfx/kippo-extra
|
kippo_extra/commands/which.py
|
command_which.call
|
python
|
def call(self):
if not len(self.args) or 'PATH' not in self.env:
return
for f in self.args:
for path in self.env['PATH'].split(':'):
resolved = self.fs.resolve_path(f, path)
if self.fs.exists(resolved):
self.writeln("%s/%s" % (path, f))
continue
|
Look up all the arguments on PATH and print each (first) result
|
https://github.com/basilfx/kippo-extra/blob/a03f8b94877efcb7fbf458226b73ed06ce732b4a/kippo_extra/commands/which.py#L12-L26
|
from kippo_extra.utils import ExtendedHoneyPotCommand
commands = {}
class command_which(ExtendedHoneyPotCommand):
resolve_args = False
|
MIT License
|
ota-insight/djangosaml2idp
|
djangosaml2idp/processors.py
|
BaseProcessor.enable_multifactor
|
python
|
def enable_multifactor(self, user) -> bool:
return False
|
Check if this user should use a second authentication system
|
https://github.com/ota-insight/djangosaml2idp/blob/0b4325782a6fd2c034677b5923041b5df10087ec/djangosaml2idp/processors.py#L101-L104
|
import hashlib
import logging
from typing import Dict, Type
from django.conf import settings
from django.contrib.auth import get_user_model
from django.core.exceptions import ImproperlyConfigured, ValidationError
from django.utils.module_loading import import_string
from django.utils.translation import gettext as _
from saml2.saml import (NAMEID_FORMAT_EMAILADDRESS, NAMEID_FORMAT_ENCRYPTED,
NAMEID_FORMAT_ENTITY, NAMEID_FORMAT_KERBEROS,
NAMEID_FORMAT_PERSISTENT, NAMEID_FORMAT_TRANSIENT,
NAMEID_FORMAT_UNSPECIFIED,
NAMEID_FORMAT_WINDOWSDOMAINQUALIFIEDNAME,
NAMEID_FORMAT_X509SUBJECTNAME)
from .models import ServiceProvider, PersistentId
logger = logging.getLogger(__name__)
User = get_user_model()
class NameIdBuilder:
format_mappings = {
NAMEID_FORMAT_UNSPECIFIED: 'get_nameid_unspecified',
NAMEID_FORMAT_TRANSIENT: 'get_nameid_transient',
NAMEID_FORMAT_PERSISTENT: 'get_nameid_persistent',
NAMEID_FORMAT_EMAILADDRESS: 'get_nameid_email',
NAMEID_FORMAT_X509SUBJECTNAME: None,
NAMEID_FORMAT_WINDOWSDOMAINQUALIFIEDNAME: None,
NAMEID_FORMAT_KERBEROS: None,
NAMEID_FORMAT_ENTITY: None,
NAMEID_FORMAT_ENCRYPTED: None
}
@classmethod
def _get_nameid_opaque(cls, user_id: str, salt: bytes = b'', *args, **kwargs) -> str:
salted_value = user_id.encode() + salt
opaque = hashlib.sha256(salted_value)
return opaque.hexdigest()
@classmethod
def get_nameid_persistent(cls, user_id: str, sp: ServiceProvider, user: settings.AUTH_USER_MODEL, *args, **kwargs) -> str:
return str(PersistentId.objects.get_or_create(sp=sp, user=user)[0].persistent_id)
@classmethod
def get_nameid_email(cls, user_id: str, user: settings.AUTH_USER_MODEL = None, **kwargs) -> str:
if '@' not in user_id:
raise Exception(f"user_id {user_id} does not contain the '@' symbol, so is not a valid NameID Email address format.")
return user_id
@classmethod
def get_nameid_transient(cls, user_id: str, **kwargs) -> str:
raise NotImplementedError('Not implemented yet')
@classmethod
def get_nameid_unspecified(cls, user_id: str, **kwargs) -> str:
return user_id
@classmethod
def get_nameid(cls, user_id: str, nameid_format: str, **kwargs) -> str:
method = cls.format_mappings.get(nameid_format)
if not method:
raise NotImplementedError(f'{nameid_format} has not been mapped in NameIdBuilder.format_mappings')
if not hasattr(cls, method):
raise NotImplementedError(f'{nameid_format} has not been implemented NameIdBuilder methods')
name_id = getattr(cls, method)(user_id, **kwargs)
return name_id
class BaseProcessor:
def __init__(self, entity_id: str):
self._entity_id = entity_id
def has_access(self, request) -> bool:
return True
|
Apache License 2.0
|
avyfain/conway
|
conway/game.py
|
Board.constrain
|
python
|
def constrain(self):
self.points = set(cell for cell in self.points if self.contains(cell))
return self
|
Removes any points outside of the cell's bounding box.
|
https://github.com/avyfain/conway/blob/94f40ec2815bfe4c5ffc37efff92558856ce693b/conway/game.py#L85-L90
|
from itertools import chain, product
NEIGHBOR_SET = ((0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, 0), (1, -1), (1, 1))
def neighbors(point):
x, y = point
return set((x + dx, y + dy) for dx, dy in NEIGHBOR_SET)
class Board(object):
def __init__(self, pattern, size=100):
self.size = size -1
self.points = set()
self.pattern = pattern
self.frame_num = 0
self.frames = []
i, j = 0, 0
for char in pattern:
if char == '\n':
i = 0
j += 1
elif char == '1':
i += 1
elif char == '0':
self.points.add((i, j))
i += 1
def __hash__(self):
return hash(frozenset(self.points))
def __eq__(self, other):
return other and hash(self) == hash(other)
def advance(self):
newstate = set()
recalc = self.points | set(chain(*(neighbors(point) for point in self.points)))
for point in recalc:
count = len(self.points & neighbors(point))
if count == 3 or (count == 2 and point in self.points):
newstate.add(point)
self.points = newstate
return self
def center(self):
center_x, center_y = (sum(dim)/len(self.points) - self.size/2 for dim in zip(*self.points))
self.points = {(x-center_x, y-center_y) for x, y in self.points}
return self
|
MIT License
|
nttpc/anymotion-cli
|
anymotion_cli/settings.py
|
Settings._to_int_with_check
|
python
|
def _to_int_with_check(
self, value: Union[str, int], name: str, min_value: int
) -> int:
try:
x = int(value)
except ValueError:
message = f"The {name} value is invalid: {value}"
raise SettingsValueError(message)
if x < min_value:
th = min_value - 1
message = f"The {name} value must be greater than {th}: {x}"
raise SettingsValueError(message)
return x
|
Convert value to int.
Returns:
The converted value.
Raises:
SettingsValueError: If conversion is not possible or value is less
than min_value.
|
https://github.com/nttpc/anymotion-cli/blob/e18656aad3972350f1ed846a5fee6c512b54cfcd/anymotion_cli/settings.py#L139-L160
|
import os
from configparser import ConfigParser, SectionProxy
from distutils.util import strtobool
from pathlib import Path
from typing import Any, Optional, Tuple, Union
from .config import (
API_URL,
IS_DOWNLOAD,
IS_OPEN,
POLLING_INTERVAL,
TIMEOUT,
get_app_dir,
)
from .exceptions import SettingsValueError
class Settings(object):
def __init__(self, profile_name: str, use_env: bool = True):
settings_dir = get_app_dir()
config_file = settings_dir / "config"
credentials_file = settings_dir / "credentials"
self._config = _Profile(config_file, profile_name)
self._credentials = _Profile(credentials_file, profile_name)
self._env = _Environment(use_env)
@property
def is_ok(self) -> bool:
return self.client_id is not None and self.client_secret is not None
@property
def client_id(self) -> Optional[str]:
value_from_env = self._env.anymotion_client_id
value_from_file = self._credentials.anymotion_client_id
return value_from_env or value_from_file
@property
def client_secret(self) -> Optional[str]:
value_from_env = self._env.anymotion_client_secret
value_from_file = self._credentials.anymotion_client_secret
return value_from_env or value_from_file
@property
def api_url(self) -> str:
return self._config.anymotion_api_url or API_URL
@property
def interval(self) -> int:
interval = self._config.polling_interval or POLLING_INTERVAL
return self._to_int_with_check(interval, "polling_interval", 1)
@property
def timeout(self) -> int:
timeout = self._config.timeout or TIMEOUT
return self._to_int_with_check(timeout, "timeout", 1)
@property
def is_download(self) -> Optional[bool]:
is_download = self._config.is_download or IS_DOWNLOAD
return self._to_optional_bool_with_check(is_download, "is_download")
@property
def is_open(self) -> Optional[bool]:
is_open = self._config.is_open or IS_OPEN
return self._to_optional_bool_with_check(is_open, "is_open")
def write_config(self, api_url: str) -> None:
if api_url == self.api_url:
return
if api_url is None or "anymotion" not in api_url:
raise SettingsValueError("api_url is invald.")
self._config.anymotion_api_url = api_url
self._config.save()
def write_credentials(self, client_id: str, client_secret: str) -> None:
if client_id is None or client_secret is None:
raise SettingsValueError("client_id or client_secret is invald.")
self._credentials.anymotion_client_id = client_id
self._credentials.anymotion_client_secret = client_secret
self._credentials.save()
|
MIT License
|
armandmcqueen/tensorpack-mask-rcnn
|
tensorpack/input_source/input_source.py
|
QueueInput.refill_queue
|
python
|
def refill_queue(self):
self.thread.pause()
opt = tf.RunOptions()
opt.timeout_in_ms = 2000
sess = tf.get_default_session()
try:
while True:
sess.run(self._dequeue_op, options=opt)
except tf.errors.DeadlineExceededError:
pass
self.thread.reinitialize_dataflow()
self.thread.resume()
|
Clear the queue, then call dataflow.__iter__() again and fill into the queue.
|
https://github.com/armandmcqueen/tensorpack-mask-rcnn/blob/a98bb06401c5c76f98ad77349218fe3f0fe17076/tensorpack/input_source/input_source.py#L227-L245
|
import threading
from contextlib import contextmanager
from itertools import chain
import tensorflow as tf
from six.moves import range, zip
from ..callbacks.base import Callback, CallbackFactory
from ..callbacks.graph import RunOp
from ..dataflow import DataFlow, MapData, RepeatedData
from ..tfutils.common import get_op_tensor_name
from ..tfutils.dependency import dependency_of_fetches
from ..tfutils.summary import add_moving_summary
from ..tfutils.tower import get_current_tower_context
from ..utils import logger
from ..utils.concurrency import ShareSessionThread
from .input_source_base import InputSource
try:
from tensorflow.python.ops.data_flow_ops import StagingArea
except ImportError:
pass
__all__ = ['PlaceholderInput', 'FeedInput', 'FeedfreeInput',
'QueueInput', 'BatchQueueInput',
'DummyConstantInput', 'TensorInput',
'ZMQInput', 'TFDatasetInput',
'StagingInput']
def _get_reset_callback(df):
return CallbackFactory(setup_graph=lambda _: df.reset_state())
def _make_feeds(placeholders, datapoint):
assert len(datapoint) == len(placeholders), "Size of datapoint and placeholders are different: {} != {}".format(
len(datapoint), len(placeholders))
if isinstance(datapoint, (list, tuple)):
return dict(zip(placeholders, datapoint))
elif isinstance(datapoint, dict):
ret = {p: datapoint[p.op.name] for p in placeholders}
return ret
else:
raise TypeError("Got a datapoint of type {}!".format(type(datapoint)))
class PlaceholderInput(InputSource):
def __init__(self):
pass
def _setup(self, inputs):
self._all_placehdrs = [v.build_placeholder_reuse() for v in inputs]
def _get_input_tensors(self):
return self._all_placehdrs
class FeedInput(InputSource):
class _FeedCallback(Callback):
def __init__(self, ds, placeholders):
self._ds = ds
self._itr = self._ds.__iter__()
self._placeholders = placeholders
def _before_run(self, _):
dp = next(self._itr)
assert len(dp) == len(self._placeholders), "[FeedInput] datapoints and inputs are of different length!"
feed = _make_feeds(self._placeholders, dp)
return tf.train.SessionRunArgs(fetches=[], feed_dict=feed)
def _reset(self):
self._itr = self._ds.__iter__()
def __init__(self, ds, infinite=True):
if not isinstance(ds, DataFlow):
raise ValueError("FeedInput takes a DataFlow! Got {}".format(ds))
self.ds = ds
if infinite:
self._iter_ds = RepeatedData(self.ds, -1)
else:
self._iter_ds = self.ds
def _size(self):
return len(self.ds)
def _setup(self, inputs):
self._all_placehdrs = [v.build_placeholder_reuse() for v in inputs]
self._cb = self._FeedCallback(self._iter_ds, self._all_placehdrs)
def _get_input_tensors(self):
return self._all_placehdrs
def _reset_state(self):
self._cb._reset()
def _get_callbacks(self):
return [self._cb, _get_reset_callback(self._iter_ds)]
class FeedfreeInput(InputSource):
def _reset_state(self):
pass
class EnqueueThread(ShareSessionThread):
def __init__(self, queue, ds, placehdrs):
super(EnqueueThread, self).__init__()
self.name = 'EnqueueThread ' + queue.name
self.daemon = True
self.dataflow = ds
self.queue = queue
self.placehdrs = placehdrs
self.op = self.queue.enqueue(self.placehdrs)
self.close_op = self.queue.close(cancel_pending_enqueues=True)
self._running = threading.Event()
self._running.set()
def run(self):
with self.default_sess():
try:
self.reinitialize_dataflow()
while True:
if not self._running.is_set():
self._running.wait()
dp = next(self._itr)
feed = _make_feeds(self.placehdrs, dp)
self.op.run(feed_dict=feed)
except (tf.errors.CancelledError, tf.errors.OutOfRangeError):
pass
except Exception as e:
if isinstance(e, RuntimeError) and 'closed Session' in str(e):
pass
else:
logger.exception("Exception in {}:".format(self.name))
finally:
try:
self.close_op.run()
except Exception:
pass
logger.info("{} Exited.".format(self.name))
def reinitialize_dataflow(self):
self._itr = self.dataflow.__iter__()
def pause(self):
self._running.clear()
def resume(self):
self._running.set()
class QueueInput(FeedfreeInput):
def __init__(self, ds, queue=None):
if not isinstance(ds, DataFlow):
raise ValueError("QueueInput takes a DataFlow! Got {}".format(ds))
self.queue = queue
self.ds = ds
self._inf_ds = RepeatedData(ds, -1)
self._started = False
def _size(self):
return len(self.ds)
def _setup(self, inputs):
self._input_placehdrs = [v.build_placeholder_reuse() for v in inputs]
assert len(self._input_placehdrs) > 0, "QueueInput has to be used with some inputs!"
with self.cached_name_scope():
if self.queue is None:
self.queue = tf.FIFOQueue(
50, [x.dtype for x in self._input_placehdrs],
name='input_queue')
logger.info("Setting up the queue '{}' for CPU prefetching ...".format(self.queue.name))
self.thread = EnqueueThread(self.queue, self._inf_ds, self._input_placehdrs)
self._dequeue_op = self.queue.dequeue(name='dequeue_for_reset')
|
Apache License 2.0
|
modoboa/modoboa-amavis
|
modoboa_amavis/management/commands/qcleanup.py
|
Command.add_arguments
|
python
|
def add_arguments(self, parser):
parser.add_argument(
"--debug", action="store_true", default=False,
help="Activate debug output")
parser.add_argument(
"--verbose", action="store_true", default=False,
help="Display informational messages")
|
Add extra arguments to command line.
|
https://github.com/modoboa/modoboa-amavis/blob/18e5a210ac2eb007ce28d70675f4188d93e1b822/modoboa_amavis/management/commands/qcleanup.py#L20-L27
|
from __future__ import print_function, unicode_literals
import time
from django.core.management.base import BaseCommand
from django.db.models import Count
from modoboa.parameters import tools as param_tools
from ...models import Maddr, Msgrcpt, Msgs
from ...modo_extension import Amavis
class Command(BaseCommand):
args = ""
help = "Amavis quarantine cleanup"
|
MIT License
|
ooici/pyon
|
pyon/ion/resregistry.py
|
ResourceRegistry.read_attachment
|
python
|
def read_attachment(self, attachment_id='', include_content=False):
attachment = self.read(attachment_id)
if not isinstance(attachment, Attachment):
raise Inconsistent("Object in datastore must be Attachment, not %s" % type(attachment))
if include_content:
attachment.content = self.rr_store.read_attachment(attachment_id,
attachment_name=self.DEFAULT_ATTACHMENT_NAME)
if attachment.attachment_type == AttachmentType.BLOB:
if type(attachment.content) is not str:
raise BadRequest("Attachment content must be str")
return attachment
|
Returns the metadata of an attachment. Unless indicated otherwise the content returned
is only a name to the actual attachment content.
|
https://github.com/ooici/pyon/blob/122c629290d27f32f2f41dafd5c12469295e8acf/pyon/ion/resregistry.py#L395-L411
|
__author__ = 'Michael Meisinger'
from pyon.core import bootstrap
from pyon.core.bootstrap import IonObject, CFG
from pyon.core.exception import BadRequest, NotFound, Inconsistent
from pyon.core.object import IonObjectBase
from pyon.core.registry import getextends
from pyon.datastore.datastore import DataStore
from pyon.datastore.datastore_query import DatastoreQueryBuilder, DQ
from pyon.ion.event import EventPublisher
from pyon.ion.identifier import create_unique_resource_id, create_unique_association_id
from pyon.ion.resource import LCS, LCE, PRED, RT, AS, OT, get_restype_lcsm, is_resource, ExtendedResourceContainer, lcstate, lcsplit, Predicates, create_access_args
from pyon.ion.process import get_ion_actor_id
from pyon.util.containers import get_ion_ts
from pyon.util.log import log
from interface.objects import Attachment, AttachmentType, ResourceModificationType
class ResourceRegistry(object):
DEFAULT_ATTACHMENT_NAME = 'resource.attachment'
def __init__(self, datastore_manager=None, container=None):
self.container = container or bootstrap.container_instance
datastore_manager = datastore_manager or self.container.datastore_manager
self.rr_store = datastore_manager.get_datastore(DataStore.DS_RESOURCES, DataStore.DS_PROFILE.RESOURCES)
self.name = 'container_resource_registry'
self.id = 'container_resource_registry'
self.event_pub = EventPublisher()
self.superuser_actors = None
def start(self):
pass
def stop(self):
self.close()
def close(self):
self.rr_store.close()
def create(self, object=None, actor_id=None, object_id=None, attachments=None):
if object is None:
raise BadRequest("Object not present")
if not isinstance(object, IonObjectBase):
raise BadRequest("Object is not an IonObject")
if not is_resource(object):
raise BadRequest("Object is not a Resource")
if "_id" in object:
raise BadRequest("Object must not contain _id")
if "_rev" in object:
raise BadRequest("Object must not contain _rev")
lcsm = get_restype_lcsm(object.type_)
object.lcstate = lcsm.initial_state if lcsm else LCS.DEPLOYED
object.availability = lcsm.initial_availability if lcsm else AS.AVAILABLE
cur_time = get_ion_ts()
object.ts_created = cur_time
object.ts_updated = cur_time
if object_id is None:
new_res_id = create_unique_resource_id()
else:
new_res_id = object_id
res = self.rr_store.create(object, new_res_id, attachments=attachments)
res_id, rev = res
if actor_id and actor_id != 'anonymous':
log.debug("Associate resource_id=%s with owner=%s", res_id, actor_id)
self.create_association(res_id, PRED.hasOwner, actor_id)
if self.container.has_capability(self.container.CCAP.EVENT_PUBLISHER):
self.event_pub.publish_event(event_type="ResourceModifiedEvent",
origin=res_id, origin_type=object.type_,
sub_type="CREATE",
mod_type=ResourceModificationType.CREATE)
return res
def create_mult(self, res_list, actor_id=None):
cur_time = get_ion_ts()
id_list = []
for resobj in res_list:
lcsm = get_restype_lcsm(resobj.type_)
resobj.lcstate = lcsm.initial_state if lcsm else LCS.DEPLOYED
resobj.availability = lcsm.initial_availability if lcsm else AS.AVAILABLE
resobj.ts_created = cur_time
resobj.ts_updated = cur_time
id_list.append(resobj._id if "_id" in resobj else create_unique_resource_id())
res = self.rr_store.create_mult(res_list, id_list, allow_ids=True)
rid_list = [(rid, rrv) for success, rid, rrv in res]
if actor_id and actor_id != 'anonymous':
assoc_list = []
for resobj, (rid, rrv) in zip(res_list, rid_list):
resobj._id = rid
assoc_list.append((resobj, PRED.hasOwner, actor_id))
self.create_association_mult(assoc_list)
for resobj, (rid, rrv) in zip(res_list, rid_list):
self.event_pub.publish_event(event_type="ResourceModifiedEvent",
origin=rid, origin_type=resobj.type_,
mod_type=ResourceModificationType.CREATE)
return rid_list
def read(self, object_id='', rev_id=''):
if not object_id:
raise BadRequest("The object_id parameter is an empty string")
return self.rr_store.read(object_id, rev_id)
def read_mult(self, object_ids=None, strict=True):
if object_ids is None:
raise BadRequest("The object_ids parameter is empty")
return self.rr_store.read_mult(object_ids, strict=strict)
def update(self, object):
if object is None:
raise BadRequest("Object not present")
if not hasattr(object, "_id") or not hasattr(object, "_rev"):
raise BadRequest("Object does not have required '_id' or '_rev' attribute")
res_obj = self.read(object._id)
object.ts_updated = get_ion_ts()
if res_obj.lcstate != object.lcstate or res_obj.availability != object.availability:
log.warn("Cannot modify %s life cycle state or availability in update current=%s/%s given=%s/%s. " +
"DO NOT REUSE THE SAME OBJECT IN CREATE THEN UPDATE",
type(res_obj).__name__, res_obj.lcstate, res_obj.availability, object.lcstate, object.availability)
object.lcstate = res_obj.lcstate
object.availability = res_obj.availability
self.event_pub.publish_event(event_type="ResourceModifiedEvent",
origin=object._id, origin_type=object.type_,
sub_type="UPDATE",
mod_type=ResourceModificationType.UPDATE)
return self.rr_store.update(object)
def delete(self, object_id='', del_associations=False):
res_obj = self.read(object_id)
if not res_obj:
raise NotFound("Resource %s does not exist" % object_id)
if not del_associations:
self._delete_owners(object_id)
if del_associations:
assoc_ids = self.find_associations(anyside=object_id, id_only=True)
self.rr_store.delete_doc_mult(assoc_ids, object_type="Association")
elif self._is_in_association(object_id):
log.warn("Deleting object %s that still has associations" % object_id)
res = self.rr_store.delete(object_id)
if self.container.has_capability(self.container.CCAP.EVENT_PUBLISHER):
self.event_pub.publish_event(event_type="ResourceModifiedEvent",
origin=res_obj._id, origin_type=res_obj.type_,
sub_type="DELETE",
mod_type=ResourceModificationType.DELETE)
return res
def _delete_owners(self, resource_id):
owners, assocs = self.rr_store.find_objects(resource_id, PRED.hasOwner, RT.ActorIdentity, id_only=True)
for aid in assocs:
self.delete_association(aid)
def retire(self, resource_id):
return self.execute_lifecycle_transition(resource_id, LCE.RETIRE)
def lcs_delete(self, resource_id):
res_obj = self.read(resource_id)
old_state = res_obj.lcstate
if old_state == LCS.DELETED:
raise BadRequest("Resource id=%s already DELETED" % (resource_id))
res_obj.lcstate = LCS.DELETED
res_obj.ts_updated = get_ion_ts()
updres = self.rr_store.update(res_obj)
log.debug("retire(res_id=%s). Change %s_%s to %s_%s", resource_id,
old_state, res_obj.availability, res_obj.lcstate, res_obj.availability)
assocs = self.find_associations(anyside=resource_id, id_only=False)
for assoc in assocs:
assoc.retired = True
if assocs:
self.rr_store.update_mult(assocs)
log.debug("lcs_delete(res_id=%s). Retired %s associations", resource_id, len(assocs))
if self.container.has_capability(self.container.CCAP.EVENT_PUBLISHER):
self.event_pub.publish_event(event_type="ResourceLifecycleEvent",
origin=res_obj._id, origin_type=res_obj.type_,
sub_type="%s.%s" % (res_obj.lcstate, res_obj.availability),
lcstate=res_obj.lcstate, availability=res_obj.availability,
lcstate_before=old_state, availability_before=res_obj.availability)
def execute_lifecycle_transition(self, resource_id='', transition_event=''):
if transition_event == LCE.DELETE:
return self.lcs_delete(resource_id)
res_obj = self.read(resource_id)
old_lcstate = res_obj.lcstate
old_availability = res_obj.availability
if transition_event == LCE.RETIRE:
if res_obj.lcstate == LCS.RETIRED or res_obj.lcstate == LCS.DELETED:
raise BadRequest("Resource id=%s, type=%s, lcstate=%s, availability=%s has no transition for event %s" % (
resource_id, res_obj.type_, old_lcstate, old_availability, transition_event))
res_obj.lcstate = LCS.RETIRED
else:
restype = res_obj.type_
restype_workflow = get_restype_lcsm(restype)
if not restype_workflow:
raise BadRequest("Resource id=%s type=%s has no lifecycle" % (resource_id, restype))
new_lcstate = restype_workflow.get_lcstate_successor(old_lcstate, transition_event)
new_availability = restype_workflow.get_availability_successor(old_availability, transition_event)
if not new_lcstate and not new_availability:
raise BadRequest("Resource id=%s, type=%s, lcstate=%s, availability=%s has no transition for event %s" % (
resource_id, restype, old_lcstate, old_availability, transition_event))
if new_lcstate:
res_obj.lcstate = new_lcstate
if new_availability:
res_obj.availability = new_availability
res_obj.ts_updated = get_ion_ts()
self.rr_store.update(res_obj)
log.debug("execute_lifecycle_transition(res_id=%s, event=%s). Change %s_%s to %s_%s", resource_id, transition_event,
old_lcstate, old_availability, res_obj.lcstate, res_obj.availability)
if self.container.has_capability(self.container.CCAP.EVENT_PUBLISHER):
self.event_pub.publish_event(event_type="ResourceLifecycleEvent",
origin=res_obj._id, origin_type=res_obj.type_,
sub_type="%s.%s" % (res_obj.lcstate, res_obj.availability),
lcstate=res_obj.lcstate, availability=res_obj.availability,
lcstate_before=old_lcstate, availability_before=old_availability,
transition_event=transition_event)
return "%s_%s" % (res_obj.lcstate, res_obj.availability)
def set_lifecycle_state(self, resource_id='', target_lcstate=''):
if not target_lcstate:
raise BadRequest("Bad life-cycle state %s" % target_lcstate)
if target_lcstate.startswith(LCS.DELETED):
self.lcs_delete(resource_id)
if target_lcstate.startswith(LCS.RETIRED):
self.execute_lifecycle_transition(resource_id, LCE.RETIRE)
res_obj = self.read(resource_id)
old_lcstate = res_obj.lcstate
old_availability = res_obj.availability
restype = res_obj.type_
restype_workflow = get_restype_lcsm(restype)
if not restype_workflow:
raise BadRequest("Resource id=%s type=%s has no lifecycle" % (resource_id, restype))
if '_' in target_lcstate:
target_lcs, target_av = lcsplit(target_lcstate)
if target_lcs not in LCS:
raise BadRequest("Unknown life-cycle state %s" % target_lcs)
if target_av and target_av not in AS:
raise BadRequest("Unknown life-cycle availability %s" % target_av)
elif target_lcstate in LCS:
target_lcs, target_av = target_lcstate, res_obj.availability
elif target_lcstate in AS:
target_lcs, target_av = res_obj.lcstate, target_lcstate
else:
raise BadRequest("Unknown life-cycle state %s" % target_lcstate)
lcs_successors = restype_workflow.get_lcstate_successors(old_lcstate)
av_successors = restype_workflow.get_availability_successors(old_availability)
found_lcs, found_av = target_lcs in lcs_successors.values(), target_av in av_successors.values()
if not found_lcs and not found_av:
raise BadRequest("Target state %s not reachable for resource in state %s_%s" % (
target_lcstate, old_lcstate, old_availability))
res_obj.lcstate = target_lcs
res_obj.availability = target_av
res_obj.ts_updated = get_ion_ts()
updres = self.rr_store.update(res_obj)
log.debug("set_lifecycle_state(res_id=%s, target=%s). Change %s_%s to %s_%s", resource_id, target_lcstate,
old_lcstate, old_availability, res_obj.lcstate, res_obj.availability)
if self.container.has_capability(self.container.CCAP.EVENT_PUBLISHER):
self.event_pub.publish_event(event_type="ResourceLifecycleEvent",
origin=res_obj._id, origin_type=res_obj.type_,
sub_type="%s.%s" % (res_obj.lcstate, res_obj.availability),
lcstate=res_obj.lcstate, availability=res_obj.availability,
lcstate_before=old_lcstate, availability_before=old_availability)
def create_attachment(self, resource_id='', attachment=None, actor_id=None):
if attachment is None:
raise BadRequest("Object not present")
if not isinstance(attachment, Attachment):
raise BadRequest("Object is not an Attachment")
attachment.object_id = resource_id if resource_id else ""
attachment.attachment_size = -1
attachment_content = None
if attachment.attachment_type == AttachmentType.BLOB:
if type(attachment.content) is not str:
raise BadRequest("Attachment content must be str")
attachment.attachment_size = len(attachment.content)
attachment_content = attachment.content
elif attachment.attachment_type == AttachmentType.ASCII:
if type(attachment.content) is not str:
raise BadRequest("Attachment content must be str")
attachment.attachment_size = len(attachment.content)
attachment_content = attachment.content
elif attachment.attachment_type == AttachmentType.OBJECT:
raise BadRequest("AttachmentType.OBJECT is not supported currently")
elif attachment.attachment_type == AttachmentType.REFERENCE:
if not isinstance(attachment.content, basestring):
raise BadRequest("Attachment content must be binary string")
attachment.attachment_size = len(attachment.content)
attachment_content = attachment.content
else:
raise BadRequest("Unknown attachment-type: %s" % attachment.attachment_type)
attachment.content = ''
content = dict(data=attachment_content, content_type=attachment.content_type)
att_id, _ = self.create(attachment, attachments={self.DEFAULT_ATTACHMENT_NAME: content}, actor_id=actor_id)
if resource_id:
self.create_association(resource_id, PRED.hasAttachment, att_id)
return att_id
|
BSD 2-Clause Simplified License
|
python-acoustics/python-acoustics
|
acoustics/room.py
|
mean_alpha
|
python
|
def mean_alpha(alphas, surfaces):
return np.average(alphas, axis=0, weights=surfaces)
|
Calculate mean of absorption coefficients.
:param alphas: Absorption coefficients :math:`\\alpha`.
:param surfaces: Surfaces :math:`S`.
|
https://github.com/python-acoustics/python-acoustics/blob/fbc87454422c41e1a39e282d7680126a6d8014dd/acoustics/room.py#L19-L26
|
import numpy as np
from scipy.io import wavfile
from scipy import stats
from acoustics.utils import _is_1d
from acoustics.signal import bandpass
from acoustics.bands import (_check_band_type, octave_low, octave_high, third_low, third_high)
SOUNDSPEED = 343.0
|
BSD 3-Clause New or Revised License
|
largelymfs/topical_word_embeddings
|
TWE-1/gensim/corpora/svmlightcorpus.py
|
SvmLightCorpus.doc2line
|
python
|
def doc2line(doc, label=0):
pairs = ' '.join("%i:%s" % (termid + 1, termval) for termid, termval in doc)
return "%s %s\n" % (label, pairs)
|
Output the document in SVMlight format, as a string. Inverse function to `line2doc`.
|
https://github.com/largelymfs/topical_word_embeddings/blob/1ae3d15d0afcd3fcd39cc81eec4ad9463413a9f6/TWE-1/gensim/corpora/svmlightcorpus.py#L126-L131
|
from __future__ import with_statement
import logging
from gensim import utils
from gensim.corpora import IndexedCorpus
logger = logging.getLogger('gensim.corpora.svmlightcorpus')
class SvmLightCorpus(IndexedCorpus):
def __init__(self, fname, store_labels=True):
IndexedCorpus.__init__(self, fname)
logger.info("loading corpus from %s" % fname)
self.fname = fname
self.length = None
self.store_labels = store_labels
self.labels = []
def __iter__(self):
lineno = -1
self.labels = []
with utils.smart_open(self.fname) as fin:
for lineno, line in enumerate(fin):
doc = self.line2doc(line)
if doc is not None:
if self.store_labels:
self.labels.append(doc[1])
yield doc[0]
self.length = lineno + 1
@staticmethod
def save_corpus(fname, corpus, id2word=None, labels=False, metadata=False):
logger.info("converting corpus to SVMlight format: %s" % fname)
offsets = []
with utils.smart_open(fname, 'wb') as fout:
for docno, doc in enumerate(corpus):
label = labels[docno] if labels else 0
offsets.append(fout.tell())
fout.write(utils.to_utf8(SvmLightCorpus.doc2line(doc, label)))
return offsets
def docbyoffset(self, offset):
with utils.smart_open(self.fname) as f:
f.seek(offset)
return self.line2doc(f.readline())[0]
def line2doc(self, line):
line = utils.to_unicode(line)
line = line[: line.find('#')].strip()
if not line:
return None
parts = line.split()
if not parts:
raise ValueError('invalid line format in %s' % self.fname)
target, fields = parts[0], [part.rsplit(':', 1) for part in parts[1:]]
doc = [(int(p1) - 1, float(p2)) for p1, p2 in fields if p1 != 'qid']
return doc, target
@staticmethod
|
MIT License
|
opentoallctf/ota-challenge-bot
|
util/slack_wrapper.py
|
SlackWrapper.invite_user
|
python
|
def invite_user(self, users, channel, is_private=False):
users = [users] if not type(users) == list else users
api_call = "conversations.invite"
return self.client.api_call(api_call, channel=channel, users=users)
|
Invite the given user(s) to the given channel.
|
https://github.com/opentoallctf/ota-challenge-bot/blob/6deea8c059d28ddb86dce277158a39a5ad9517e4/util/slack_wrapper.py#L35-L42
|
import json
import time
from slackclient import SlackClient
from util.util import load_json
class SlackWrapper:
def __init__(self, api_key):
self.api_key = api_key
self.client = SlackClient(self.api_key)
self.connected = self.client.rtm_connect(auto_reconnect=True)
self.server = None
self.username = None
self.user_id = None
if self.connected:
self.server = self.client.server
self.username = self.server.username
self.user_id = self.server.login_data.get("self").get("id")
def read(self):
return self.client.rtm_read()
|
MIT License
|
pawamoy/pytkdocs
|
src/pytkdocs/serializer.py
|
serialize_annotated_object
|
python
|
def serialize_annotated_object(obj: AnnotatedObject) -> dict:
return {"description": obj.description, "annotation": annotation_to_string(obj.annotation)}
|
Serialize an instance of [`AnnotatedObject`][pytkdocs.parsers.docstrings.base.AnnotatedObject].
Arguments:
obj: The object to serialize.
Returns:
A JSON-serializable dictionary.
|
https://github.com/pawamoy/pytkdocs/blob/a298616c2db23833b4877c67725cbbfde5a43c78/src/pytkdocs/serializer.py#L75-L85
|
import inspect
import re
from typing import Any, Match, Optional, Pattern
from pytkdocs.objects import Object, Source
from pytkdocs.parsers.docstrings.base import AnnotatedObject, Attribute, Parameter, Section
try:
from typing import GenericMeta
except ImportError:
class GenericMeta(type):
RE_OPTIONAL: Pattern = re.compile(r"Union\[(.+), NoneType\]")
RE_FORWARD_REF: Pattern = re.compile(r"_?ForwardRef\('([^']+)'\)")
def rebuild_optional(match: Match) -> str:
group = match.group(1)
brackets_level = 0
for char in group:
if char == "," and brackets_level == 0:
return f"Union[{group}]"
if char == "[":
brackets_level += 1
elif char == "]":
brackets_level -= 1
return f"Optional[{group}]"
def annotation_to_string(annotation: Any) -> str:
if annotation is inspect.Signature.empty:
return ""
if inspect.isclass(annotation) and not isinstance(annotation, GenericMeta):
string = annotation.__name__
else:
string = str(annotation).replace("typing.", "")
string = RE_FORWARD_REF.sub(lambda match: match.group(1), string)
string = RE_OPTIONAL.sub(rebuild_optional, string)
return string
|
ISC License
|
purestorage-openconnect/py-pure-client
|
pypureclient/flasharray/FA_2_10/api/volume_snapshots_api.py
|
VolumeSnapshotsApi.api210_volume_snapshots_tags_get_with_http_info
|
python
|
def api210_volume_snapshots_tags_get_with_http_info(
self,
authorization=None,
x_request_id=None,
continuation_token=None,
filter=None,
limit=None,
namespaces=None,
offset=None,
resource_destroyed=None,
resource_ids=None,
resource_names=None,
sort=None,
total_item_count=None,
async_req=False,
_return_http_data_only=False,
_preload_content=True,
_request_timeout=None,
):
if namespaces is not None:
if not isinstance(namespaces, list):
namespaces = [namespaces]
if resource_ids is not None:
if not isinstance(resource_ids, list):
resource_ids = [resource_ids]
if resource_names is not None:
if not isinstance(resource_names, list):
resource_names = [resource_names]
if sort is not None:
if not isinstance(sort, list):
sort = [sort]
params = {k: v for k, v in six.iteritems(locals()) if v is not None}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
if 'limit' in params and params['limit'] < 1:
raise ValueError("Invalid value for parameter `limit` when calling `api210_volume_snapshots_tags_get`, must be a value greater than or equal to `1`")
if 'offset' in params and params['offset'] < 0:
raise ValueError("Invalid value for parameter `offset` when calling `api210_volume_snapshots_tags_get`, must be a value greater than or equal to `0`")
collection_formats = {}
path_params = {}
query_params = []
if 'continuation_token' in params:
query_params.append(('continuation_token', params['continuation_token']))
if 'filter' in params:
query_params.append(('filter', params['filter']))
if 'limit' in params:
query_params.append(('limit', params['limit']))
if 'namespaces' in params:
query_params.append(('namespaces', params['namespaces']))
collection_formats['namespaces'] = 'csv'
if 'offset' in params:
query_params.append(('offset', params['offset']))
if 'resource_destroyed' in params:
query_params.append(('resource_destroyed', params['resource_destroyed']))
if 'resource_ids' in params:
query_params.append(('resource_ids', params['resource_ids']))
collection_formats['resource_ids'] = 'csv'
if 'resource_names' in params:
query_params.append(('resource_names', params['resource_names']))
collection_formats['resource_names'] = 'csv'
if 'sort' in params:
query_params.append(('sort', params['sort']))
collection_formats['sort'] = 'csv'
if 'total_item_count' in params:
query_params.append(('total_item_count', params['total_item_count']))
header_params = {}
if 'authorization' in params:
header_params['Authorization'] = params['authorization']
if 'x_request_id' in params:
header_params['X-Request-ID'] = params['x_request_id']
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/2.10/volume-snapshots/tags', 'GET',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='TagGetResponse',
auth_settings=auth_settings,
async_req=async_req,
_return_http_data_only=_return_http_data_only,
_preload_content=_preload_content,
_request_timeout=_request_timeout,
collection_formats=collection_formats,
)
|
List tags
Displays the list of tags.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.api210_volume_snapshots_tags_get_with_http_info(async_req=True)
>>> result = thread.get()
:param str authorization: Access token (in JWT format) required to use any API endpoint (except `/oauth2`, `/login`, and `/logout`)
:param str x_request_id: Supplied by client during request or generated by server.
:param str continuation_token: A token used to retrieve the next page of data with some consistency guaranteed. The token is a Base64 encoded value. Set `continuation_token` to the system-generated token taken from the `x-next-token` header field of the response. A query has reached its last page when the response does not include a token. Pagination requires the `limit` and `continuation_token` query parameters.
:param str filter: Narrows down the results to only the response objects that satisfy the filter criteria.
:param int limit: Limits the size of the response to the specified number of objects on each page. To return the total number of resources, set `limit=0`. The total number of resources is returned as a `total_item_count` value. If the page size requested is larger than the system maximum limit, the server returns the maximum limit, disregarding the requested page size.
:param list[str] namespaces: A comma-separated list of namespaces.
:param int offset: The starting position based on the results of the query in relation to the full set of response objects returned.
:param bool resource_destroyed: If set to `true`, returns only objects from destroyed resources. Returns an error if the name of a live resource is specified in the `resource_names` query parameter. If set to `false`, returns only objects from live resources. Returns an error if the name of a destroyed resource is specified in the `resource_names` query parameter.
:param list[str] resource_ids: A comma-separated list of resource IDs. The `resource_ids` and `resource_names` parameters cannot be provided together.
:param list[str] resource_names: A comma-separated list of resource names. The `resource_ids` and `resource_names` parameters cannot be provided together.
:param list[str] sort: Returns the response objects in the order specified. Set `sort` to the name in the response by which to sort. Sorting can be performed on any of the names in the response, and the objects can be sorted in ascending or descending order. By default, the response objects are sorted in ascending order. To sort in descending order, append the minus sign (`-`) to the name. A single request can be sorted on multiple objects. For example, you can sort all volumes from largest to smallest volume size, and then sort volumes of the same size in ascending order by volume name. To sort on multiple names, list the names as comma-separated values.
:param bool total_item_count: If set to `true`, the `total_item_count` matching the specified query parameters is calculated and returned in the response. If set to `false`, the `total_item_count` is `null` in the response. This may speed up queries where the `total_item_count` is large. If not specified, defaults to `false`.
:param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult.
:param bool _return_http_data_only: Returns only data field.
:param bool _preload_content: Response is converted into objects.
:param int _request_timeout: Total request timeout in seconds.
It can also be a tuple of (connection time, read time) timeouts.
:return: TagGetResponse
If the method is called asynchronously,
returns the request thread.
|
https://github.com/purestorage-openconnect/py-pure-client/blob/2d9fdef0b73321cea9613e7d1eb881b42845099b/pypureclient/flasharray/FA_2_10/api/volume_snapshots_api.py#L713-L851
|
from __future__ import absolute_import
import re
import six
from typing import List, Optional
from .. import models
class VolumeSnapshotsApi(object):
def __init__(self, api_client):
self.api_client = api_client
def api210_volume_snapshots_delete_with_http_info(
self,
authorization=None,
x_request_id=None,
ids=None,
names=None,
replication_snapshot=None,
async_req=False,
_return_http_data_only=False,
_preload_content=True,
_request_timeout=None,
):
if ids is not None:
if not isinstance(ids, list):
ids = [ids]
if names is not None:
if not isinstance(names, list):
names = [names]
params = {k: v for k, v in six.iteritems(locals()) if v is not None}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
collection_formats = {}
path_params = {}
query_params = []
if 'ids' in params:
query_params.append(('ids', params['ids']))
collection_formats['ids'] = 'csv'
if 'names' in params:
query_params.append(('names', params['names']))
collection_formats['names'] = 'csv'
if 'replication_snapshot' in params:
query_params.append(('replication_snapshot', params['replication_snapshot']))
header_params = {}
if 'authorization' in params:
header_params['Authorization'] = params['authorization']
if 'x_request_id' in params:
header_params['X-Request-ID'] = params['x_request_id']
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/2.10/volume-snapshots', 'DELETE',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type=None,
auth_settings=auth_settings,
async_req=async_req,
_return_http_data_only=_return_http_data_only,
_preload_content=_preload_content,
_request_timeout=_request_timeout,
collection_formats=collection_formats,
)
def api210_volume_snapshots_get_with_http_info(
self,
authorization=None,
x_request_id=None,
continuation_token=None,
destroyed=None,
filter=None,
ids=None,
limit=None,
names=None,
offset=None,
sort=None,
source_ids=None,
source_names=None,
total_item_count=None,
total_only=None,
async_req=False,
_return_http_data_only=False,
_preload_content=True,
_request_timeout=None,
):
if ids is not None:
if not isinstance(ids, list):
ids = [ids]
if names is not None:
if not isinstance(names, list):
names = [names]
if sort is not None:
if not isinstance(sort, list):
sort = [sort]
if source_ids is not None:
if not isinstance(source_ids, list):
source_ids = [source_ids]
if source_names is not None:
if not isinstance(source_names, list):
source_names = [source_names]
params = {k: v for k, v in six.iteritems(locals()) if v is not None}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
if 'limit' in params and params['limit'] < 1:
raise ValueError("Invalid value for parameter `limit` when calling `api210_volume_snapshots_get`, must be a value greater than or equal to `1`")
if 'offset' in params and params['offset'] < 0:
raise ValueError("Invalid value for parameter `offset` when calling `api210_volume_snapshots_get`, must be a value greater than or equal to `0`")
collection_formats = {}
path_params = {}
query_params = []
if 'continuation_token' in params:
query_params.append(('continuation_token', params['continuation_token']))
if 'destroyed' in params:
query_params.append(('destroyed', params['destroyed']))
if 'filter' in params:
query_params.append(('filter', params['filter']))
if 'ids' in params:
query_params.append(('ids', params['ids']))
collection_formats['ids'] = 'csv'
if 'limit' in params:
query_params.append(('limit', params['limit']))
if 'names' in params:
query_params.append(('names', params['names']))
collection_formats['names'] = 'csv'
if 'offset' in params:
query_params.append(('offset', params['offset']))
if 'sort' in params:
query_params.append(('sort', params['sort']))
collection_formats['sort'] = 'csv'
if 'source_ids' in params:
query_params.append(('source_ids', params['source_ids']))
collection_formats['source_ids'] = 'csv'
if 'source_names' in params:
query_params.append(('source_names', params['source_names']))
collection_formats['source_names'] = 'csv'
if 'total_item_count' in params:
query_params.append(('total_item_count', params['total_item_count']))
if 'total_only' in params:
query_params.append(('total_only', params['total_only']))
header_params = {}
if 'authorization' in params:
header_params['Authorization'] = params['authorization']
if 'x_request_id' in params:
header_params['X-Request-ID'] = params['x_request_id']
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/2.10/volume-snapshots', 'GET',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='VolumeSnapshotGetResponse',
auth_settings=auth_settings,
async_req=async_req,
_return_http_data_only=_return_http_data_only,
_preload_content=_preload_content,
_request_timeout=_request_timeout,
collection_formats=collection_formats,
)
def api210_volume_snapshots_patch_with_http_info(
self,
volume_snapshot=None,
authorization=None,
x_request_id=None,
ids=None,
names=None,
replication_snapshot=None,
async_req=False,
_return_http_data_only=False,
_preload_content=True,
_request_timeout=None,
):
if ids is not None:
if not isinstance(ids, list):
ids = [ids]
if names is not None:
if not isinstance(names, list):
names = [names]
params = {k: v for k, v in six.iteritems(locals()) if v is not None}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
if volume_snapshot is None:
raise TypeError("Missing the required parameter `volume_snapshot` when calling `api210_volume_snapshots_patch`")
collection_formats = {}
path_params = {}
query_params = []
if 'ids' in params:
query_params.append(('ids', params['ids']))
collection_formats['ids'] = 'csv'
if 'names' in params:
query_params.append(('names', params['names']))
collection_formats['names'] = 'csv'
if 'replication_snapshot' in params:
query_params.append(('replication_snapshot', params['replication_snapshot']))
header_params = {}
if 'authorization' in params:
header_params['Authorization'] = params['authorization']
if 'x_request_id' in params:
header_params['X-Request-ID'] = params['x_request_id']
form_params = []
local_var_files = {}
body_params = None
if 'volume_snapshot' in params:
body_params = params['volume_snapshot']
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/2.10/volume-snapshots', 'PATCH',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='VolumeSnapshotResponse',
auth_settings=auth_settings,
async_req=async_req,
_return_http_data_only=_return_http_data_only,
_preload_content=_preload_content,
_request_timeout=_request_timeout,
collection_formats=collection_formats,
)
def api210_volume_snapshots_post_with_http_info(
self,
volume_snapshot=None,
authorization=None,
x_request_id=None,
on=None,
source_ids=None,
source_names=None,
async_req=False,
_return_http_data_only=False,
_preload_content=True,
_request_timeout=None,
):
if source_ids is not None:
if not isinstance(source_ids, list):
source_ids = [source_ids]
if source_names is not None:
if not isinstance(source_names, list):
source_names = [source_names]
params = {k: v for k, v in six.iteritems(locals()) if v is not None}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
if volume_snapshot is None:
raise TypeError("Missing the required parameter `volume_snapshot` when calling `api210_volume_snapshots_post`")
collection_formats = {}
path_params = {}
query_params = []
if 'on' in params:
query_params.append(('on', params['on']))
if 'source_ids' in params:
query_params.append(('source_ids', params['source_ids']))
collection_formats['source_ids'] = 'csv'
if 'source_names' in params:
query_params.append(('source_names', params['source_names']))
collection_formats['source_names'] = 'csv'
header_params = {}
if 'authorization' in params:
header_params['Authorization'] = params['authorization']
if 'x_request_id' in params:
header_params['X-Request-ID'] = params['x_request_id']
form_params = []
local_var_files = {}
body_params = None
if 'volume_snapshot' in params:
body_params = params['volume_snapshot']
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/2.10/volume-snapshots', 'POST',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='VolumeSnapshotResponse',
auth_settings=auth_settings,
async_req=async_req,
_return_http_data_only=_return_http_data_only,
_preload_content=_preload_content,
_request_timeout=_request_timeout,
collection_formats=collection_formats,
)
def api210_volume_snapshots_tags_batch_put_with_http_info(
self,
tag=None,
authorization=None,
x_request_id=None,
resource_ids=None,
resource_names=None,
async_req=False,
_return_http_data_only=False,
_preload_content=True,
_request_timeout=None,
):
if tag is not None:
if not isinstance(tag, list):
tag = [tag]
if resource_ids is not None:
if not isinstance(resource_ids, list):
resource_ids = [resource_ids]
if resource_names is not None:
if not isinstance(resource_names, list):
resource_names = [resource_names]
params = {k: v for k, v in six.iteritems(locals()) if v is not None}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
if tag is None:
raise TypeError("Missing the required parameter `tag` when calling `api210_volume_snapshots_tags_batch_put`")
collection_formats = {}
path_params = {}
query_params = []
if 'resource_ids' in params:
query_params.append(('resource_ids', params['resource_ids']))
collection_formats['resource_ids'] = 'csv'
if 'resource_names' in params:
query_params.append(('resource_names', params['resource_names']))
collection_formats['resource_names'] = 'csv'
header_params = {}
if 'authorization' in params:
header_params['Authorization'] = params['authorization']
if 'x_request_id' in params:
header_params['X-Request-ID'] = params['x_request_id']
form_params = []
local_var_files = {}
body_params = None
if 'tag' in params:
body_params = params['tag']
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/2.10/volume-snapshots/tags/batch', 'PUT',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='TagResponse',
auth_settings=auth_settings,
async_req=async_req,
_return_http_data_only=_return_http_data_only,
_preload_content=_preload_content,
_request_timeout=_request_timeout,
collection_formats=collection_formats,
)
def api210_volume_snapshots_tags_delete_with_http_info(
self,
authorization=None,
x_request_id=None,
keys=None,
namespaces=None,
resource_ids=None,
resource_names=None,
async_req=False,
_return_http_data_only=False,
_preload_content=True,
_request_timeout=None,
):
if keys is not None:
if not isinstance(keys, list):
keys = [keys]
if namespaces is not None:
if not isinstance(namespaces, list):
namespaces = [namespaces]
if resource_ids is not None:
if not isinstance(resource_ids, list):
resource_ids = [resource_ids]
if resource_names is not None:
if not isinstance(resource_names, list):
resource_names = [resource_names]
params = {k: v for k, v in six.iteritems(locals()) if v is not None}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
collection_formats = {}
path_params = {}
query_params = []
if 'keys' in params:
query_params.append(('keys', params['keys']))
collection_formats['keys'] = 'csv'
if 'namespaces' in params:
query_params.append(('namespaces', params['namespaces']))
collection_formats['namespaces'] = 'csv'
if 'resource_ids' in params:
query_params.append(('resource_ids', params['resource_ids']))
collection_formats['resource_ids'] = 'csv'
if 'resource_names' in params:
query_params.append(('resource_names', params['resource_names']))
collection_formats['resource_names'] = 'csv'
header_params = {}
if 'authorization' in params:
header_params['Authorization'] = params['authorization']
if 'x_request_id' in params:
header_params['X-Request-ID'] = params['x_request_id']
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/2.10/volume-snapshots/tags', 'DELETE',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type=None,
auth_settings=auth_settings,
async_req=async_req,
_return_http_data_only=_return_http_data_only,
_preload_content=_preload_content,
_request_timeout=_request_timeout,
collection_formats=collection_formats,
)
|
BSD 2-Clause Simplified License
|
stonybrooknlp/haqae
|
EncDec.py
|
Attention.__init__
|
python
|
def __init__(self, dim, use_cuda=True):
super(Attention, self).__init__()
if isinstance(dim, tuple):
self.query_dim, self.memory_dim, self.output_dim = dim
else:
self.query_dim = self.memory_dim = self.output_dim = dim
self.linear_in = nn.Linear(self.query_dim, self.memory_dim, bias=False)
self.linear_out = nn.Linear(self.query_dim + self.memory_dim, self.output_dim, bias=False)
self.use_cuda = use_cuda
|
Args
dim (int or Tuple) : dimension of the query vector and memory* vectors if int
if tuple it should be a tuple (query dim, memory dim, output_dim)
*Note I do not condone the usage of this term, it just seems to be unfortunately common, so eh, I'll use it.
|
https://github.com/stonybrooknlp/haqae/blob/b90e1d922f8472edc22e47e32326f4fd694ce4f5/EncDec.py#L159-L174
|
import torch
import torch.nn as nn
import numpy as np
import math
from torch.autograd import Variable
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
class EncDecBase(nn.Module):
def __init__(self, emb_size, hidden_size, embeddings=None, cell_type="GRU", layers=1, bidir=True, use_cuda=True):
super(EncDecBase, self).__init__()
self.emb_size = emb_size
self.hidden_size = hidden_size
self.embeddings = embeddings
self.layers = layers
self.bidir = bidir
self.cell_type = cell_type
self.use_cuda = use_cuda
if cell_type == "LSTM":
self.rnn = nn.LSTM(self.emb_size, self.hidden_size, self.layers, bidirectional=self.bidir, batch_first=True)
else:
self.rnn = nn.GRU(self.emb_size, self.hidden_size, self.layers, bidirectional=self.bidir, batch_first=True)
def forward(input, hidden):
raise NotImplementedError
def initHidden(self, batch_size):
dirs = 2 if self.bidir else 1
if self.cell_type == "LSTM":
hidden = (Variable(torch.zeros(batch_size, self.layers*dirs, self.hidden_size)),
Variable(torch.zeros(self.layers*dirs, batch_size, self.hidden_size)))
else:
hidden = Variable(torch.zeros(self.layers*dirs, batch_size, self.hidden_size))
if self.use_cuda:
return hidden.cuda()
else:
return hidden
class Encoder(EncDecBase):
def forward(self, input, hidden, seq_lens, use_packed=True):
out = self.embeddings(input).view(input.shape[0], input.shape[1], -1)
if use_packed:
packed_input = pack_padded_sequence(out, seq_lens.cpu().numpy(), batch_first=True)
self.rnn.flatten_parameters()
packed_out, hidden = self.rnn(packed_input, hidden)
enc_out, _ = pad_packed_sequence(packed_out, batch_first=True)
else:
enc_out, hidden = self.rnn(out, hidden)
return enc_out, hidden
class Decoder(EncDecBase):
def __init__(self, emb_size, hidden_size, embeddings=None, cell_type="GRU", layers=1, attn_dim=-1, use_cuda=True, dropout=0.0):
if attn_dim is None:
attn_mem_dim = 2*hidden_size
attndim = hidden_size
else:
attn_mem_dim, attndim = attn_dim
bidir = False
super(Decoder, self).__init__(emb_size + attndim, hidden_size, embeddings, cell_type, layers, bidir, use_cuda)
self.attn_dim = attndim
self.input_feed = None
self.attention = Attention((hidden_size, attn_mem_dim, self.attn_dim), use_cuda=self.use_cuda)
if dropout > 0:
print("Using a Dropout Value of {} in the decoder".format(dropout))
self.drop = nn.Dropout(dropout)
else:
self.drop = None
def reset_feed_(self):
del self.input_feed
self.input_feed = None
def init_feed_(self, feed):
if self.input_feed is None:
self.input_feed = feed
def forward(self, input, hidden, memory):
if self.drop is None:
out = self.embeddings(input).view(input.shape[0], -1)
else:
out = self.drop(self.embeddings(input).view(input.shape[0], -1))
dec_input = torch.cat([out, self.input_feed], dim=1).unsqueeze(dim=1)
self.rnn.flatten_parameters()
rnn_output, hidden = self.rnn(dec_input, hidden)
rnn_output=torch.squeeze(rnn_output, dim=1)
dec_output, scores = self.attention(rnn_output, memory)
if self.drop is not None:
dec_output = self.drop(dec_output)
self.input_feed = dec_output
return dec_output, hidden
class Attention(nn.Module):
|
Apache License 2.0
|
rlbot/rlbot
|
src/main/python/rlbot/agents/base_agent.py
|
BaseAgent.set_game_state
|
python
|
def set_game_state(self, game_state: GameState):
self.__game_state_func(game_state)
|
CHEAT: Change the rocket league game to the given game_state
|
https://github.com/rlbot/rlbot/blob/b2d06110b0c8541a85605b6c00dcb898e7f35946/src/main/python/rlbot/agents/base_agent.py#L152-L154
|
from typing import Optional
from urllib.parse import ParseResult as URL
from flatbuffers import Builder
from rlbot.agents.rlbot_runnable import RLBotRunnable, LOCATIONS_HEADER, DETAILS_HEADER
from rlbot.botmanager.helper_process_request import HelperProcessRequest
from rlbot.matchcomms.client import MatchcommsClient
from rlbot.messages.flat import MatchSettings, ControllerState, PlayerInput
from rlbot.parsing.custom_config import ConfigObject
from rlbot.utils.game_state_util import GameState
from rlbot.utils.logging_utils import get_logger
from rlbot.utils.rendering.rendering_manager import RenderingManager
from rlbot.utils.structures.ball_prediction_struct import BallPrediction
from rlbot.utils.structures.game_data_struct import GameTickPacket, FieldInfoPacket
from rlbot.utils.structures.legacy_data_v3 import convert_to_legacy_v3
from rlbot.utils.structures.quick_chats import QuickChats
from rlbot.utils.structures.rigid_body_struct import RigidBodyTick
BOT_CONFIG_MODULE_HEADER = LOCATIONS_HEADER
BOT_CONFIG_AGENT_HEADER = 'Bot Parameters'
BOT_CONFIG_DETAILS_HEADER = DETAILS_HEADER
PYTHON_FILE_KEY = 'python_file'
SUPPORTS_STANDALONE = 'supports_standalone'
LOADOUT_GENERATOR_FILE_KEY = 'loadout_generator'
LOGO_FILE_KEY = 'logo_file'
LOOKS_CONFIG_KEY = 'looks_config'
BOT_NAME_KEY = "name"
SUPPORTS_EARLY_START_KEY = "supports_early_start"
MAXIMUM_TICK_RATE_PREFERENCE_KEY = "maximum_tick_rate_preference"
class SimpleControllerState:
def __init__(self,
steer: float = 0.0,
throttle: float = 0.0,
pitch: float = 0.0,
yaw: float = 0.0,
roll: float = 0.0,
jump: bool = False,
boost: bool = False,
handbrake: bool = False,
use_item: bool = False):
self.steer = steer
self.throttle = throttle
self.pitch = pitch
self.yaw = yaw
self.roll = roll
self.jump = jump
self.boost = boost
self.handbrake = handbrake
self.use_item = use_item
def to_flatbuffer(self, player_index: int) -> Builder:
builder = Builder(100)
ControllerState.ControllerStateStart(builder)
ControllerState.ControllerStateAddSteer(builder, self.steer)
ControllerState.ControllerStateAddThrottle(builder, self.throttle)
ControllerState.ControllerStateAddPitch(builder, self.pitch)
ControllerState.ControllerStateAddYaw(builder, self.yaw)
ControllerState.ControllerStateAddRoll(builder, self.roll)
ControllerState.ControllerStateAddJump(builder, self.jump)
ControllerState.ControllerStateAddBoost(builder, self.boost)
ControllerState.ControllerStateAddHandbrake(builder, self.handbrake)
cs_offset = ControllerState.ControllerStateEnd(builder)
PlayerInput.PlayerInputStart(builder)
PlayerInput.PlayerInputAddPlayerIndex(builder, player_index)
PlayerInput.PlayerInputAddControllerState(builder, cs_offset)
pi_offset = PlayerInput.PlayerInputEnd(builder)
builder.Finish(pi_offset)
return builder
class BaseAgent(RLBotRunnable):
team = None
index = None
__quick_chat_func = None
__field_info_func = None
__game_state_func = None
__get_rigid_body_tick_func = None
__match_settings_func = None
renderer: RenderingManager = None
matchcomms_root: URL = None
def __init__(self, name, team, index):
super().__init__(name)
self.team = team
self.index = index
self.logger = get_logger(f'bot{index}')
self.spawn_id = -1
def get_output(self, game_tick_packet: GameTickPacket) -> SimpleControllerState:
return SimpleControllerState()
def send_quick_chat(self, team_only, quick_chat):
if quick_chat == QuickChats.CHAT_NONE or quick_chat is None:
return
self.__quick_chat_func(team_only, quick_chat)
def handle_quick_chat(self, index, team, quick_chat):
pass
def get_field_info(self):
return self.__field_info_func()
def get_rigid_body_tick(self) -> RigidBodyTick:
return self.__get_rigid_body_tick_func()
|
MIT License
|
duguyue100/pyaer
|
pyaer/dvs128.py
|
DVS128.get_bias
|
python
|
def get_bias(self):
bias_obj = {}
bias_obj["cas"] = self.get_config(
libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_CAS)
bias_obj["injGnd"] = self.get_config(
libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_INJGND)
bias_obj["reqPd"] = self.get_config(
libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_REQPD)
bias_obj["puX"] = self.get_config(
libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_PUX)
bias_obj["diffOff"] = self.get_config(
libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_DIFFOFF)
bias_obj["req"] = self.get_config(
libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_REQ)
bias_obj["refr"] = self.get_config(
libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_REFR)
bias_obj["puY"] = self.get_config(
libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_PUY)
bias_obj["diffOn"] = self.get_config(
libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_DIFFON)
bias_obj["diff"] = self.get_config(
libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_DIFF)
bias_obj["foll"] = self.get_config(
libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_FOLL)
bias_obj["Pr"] = self.get_config(
libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_PR)
if self.noise_filter is not None:
bias_obj["noise_filter_configs"] = self.noise_filter.get_bias()
return bias_obj
|
Get bias settings.
# Returns
bias_obj: `dict`<br/>
dictionary that contains DVS128 current bias settings.
|
https://github.com/duguyue100/pyaer/blob/5ca6980072780042072c197734ffbce7a96682ea/pyaer/dvs128.py#L226-L275
|
from __future__ import print_function, absolute_import
from builtins import range
import numpy as np
from pyaer import libcaer
from pyaer.device import USBDevice
from pyaer.filters import DVSNoise
from pyaer import utils
class DVS128(USBDevice):
def __init__(self,
device_id=1,
bus_number_restrict=0,
dev_address_restrict=0,
serial_number="",
noise_filter=False):
super(DVS128, self).__init__()
self.open(device_id, bus_number_restrict,
dev_address_restrict, serial_number)
self.obtain_device_info(self.handle)
self.filter_noise = noise_filter
if noise_filter is True:
self.noise_filter = DVSNoise(self.dvs_size_X, self.dvs_size_Y)
else:
self.noise_filter = None
def set_noise_filter(self, noise_filter):
if noise_filter is not None:
self.noise_filter = noise_filter
def enable_noise_filter(self):
if self.filter_noise is False:
self.filter_noise = True
if self.noise_filter is None:
self.noise_filter = DVSNoise(self.dvs_size_X, self.dvs_size_Y)
def disable_noise_filter(self):
if self.filter_noise is True:
self.filter_noise = False
def obtain_device_info(self, handle):
if handle is not None:
info = libcaer.caerDVS128InfoGet(handle)
self.device_id = info.deviceID
self.device_serial_number = info.deviceSerialNumber
self.device_usb_bus_number = info.deviceUSBBusNumber
self.device_usb_device_address = info.deviceUSBDeviceAddress
self.device_string = info.deviceString
self.firmware_version = info.firmwareVersion
self.device_is_master = info.deviceIsMaster
self.dvs_size_X = info.dvsSizeX
self.dvs_size_Y = info.dvsSizeY
def open(self,
device_id=1,
bus_number_restrict=0,
dev_address_restrict=0,
serial_number=""):
super(DVS128, self).open(
libcaer.CAER_DEVICE_DVS128, device_id,
bus_number_restrict, dev_address_restrict,
serial_number)
def set_bias_from_json(self, file_path, verbose=False):
bias_obj = utils.load_dvs_bias(file_path, verbose)
self.set_bias(bias_obj)
def set_bias(self, bias_obj):
self.set_config(libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_CAS,
bias_obj["cas"])
self.set_config(libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_INJGND,
bias_obj["injGnd"])
self.set_config(libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_REQPD,
bias_obj["reqPd"])
self.set_config(libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_PUX,
bias_obj["puX"])
self.set_config(libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_DIFFOFF,
bias_obj["diffOff"])
self.set_config(libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_REQ,
bias_obj["req"])
self.set_config(libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_REFR,
bias_obj["refr"])
self.set_config(libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_PUY,
bias_obj["puY"])
self.set_config(libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_DIFFON,
bias_obj["diffOn"])
self.set_config(libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_DIFF,
bias_obj["diff"])
self.set_config(libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_FOLL,
bias_obj["foll"])
self.set_config(libcaer.DVS128_CONFIG_BIAS,
libcaer.DVS128_CONFIG_BIAS_PR,
bias_obj["Pr"])
if self.filter_noise is True:
self.noise_filter.set_bias(bias_obj["noise_filter_configs"])
|
MIT License
|
nukesor/ultimate-poll-bot
|
pollbot/sentry.py
|
Sentry.__init__
|
python
|
def __init__(self):
if config["logging"]["sentry_enabled"]:
self.initialized = True
sentry_sdk.init(
config["logging"]["sentry_token"],
)
|
Construct new sentry wrapper.
|
https://github.com/nukesor/ultimate-poll-bot/blob/cf8558921e326a91b91c1af526899a0f8889a7fc/pollbot/sentry.py#L35-L41
|
import traceback
import sentry_sdk
from sentry_sdk import configure_scope
from telegram.error import NetworkError, TimedOut
from pollbot.config import config
def ignore_job_exception(exception):
if type(exception) is TimedOut:
return True
if type(exception) is NetworkError:
return True
return False
class Sentry(object):
initialized = False
|
MIT License
|
tomplus/kubernetes_asyncio
|
kubernetes_asyncio/client/models/v1alpha1_audit_sink_list.py
|
V1alpha1AuditSinkList.metadata
|
python
|
def metadata(self, metadata):
self._metadata = metadata
|
Sets the metadata of this V1alpha1AuditSinkList.
:param metadata: The metadata of this V1alpha1AuditSinkList. # noqa: E501
:type: V1ListMeta
|
https://github.com/tomplus/kubernetes_asyncio/blob/22bf0f4ec775b920abc9cee86bb38abcfc57506d/kubernetes_asyncio/client/models/v1alpha1_audit_sink_list.py#L151-L159
|
import pprint
import re
import six
from kubernetes_asyncio.client.configuration import Configuration
class V1alpha1AuditSinkList(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'api_version': 'str',
'items': 'list[V1alpha1AuditSink]',
'kind': 'str',
'metadata': 'V1ListMeta'
}
attribute_map = {
'api_version': 'apiVersion',
'items': 'items',
'kind': 'kind',
'metadata': 'metadata'
}
def __init__(self, api_version=None, items=None, kind=None, metadata=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._api_version = None
self._items = None
self._kind = None
self._metadata = None
self.discriminator = None
if api_version is not None:
self.api_version = api_version
self.items = items
if kind is not None:
self.kind = kind
if metadata is not None:
self.metadata = metadata
@property
def api_version(self):
return self._api_version
@api_version.setter
def api_version(self, api_version):
self._api_version = api_version
@property
def items(self):
return self._items
@items.setter
def items(self, items):
if self.local_vars_configuration.client_side_validation and items is None:
raise ValueError("Invalid value for `items`, must not be `None`")
self._items = items
@property
def kind(self):
return self._kind
@kind.setter
def kind(self, kind):
self._kind = kind
@property
def metadata(self):
return self._metadata
@metadata.setter
|
Apache License 2.0
|
morriswmz/doatools.py
|
doatools/model/arrays.py
|
GridBasedArrayDesign.element_indices
|
python
|
def element_indices(self):
return self._element_indices.copy()
|
Retrieves the element indices.
You are not supposed to modify the returned array.
|
https://github.com/morriswmz/doatools.py/blob/9469db201e0418aef6b97583ef54b6fec2769502/doatools/model/arrays.py#L528-L533
|
from math import gcd
from ..utils.math import cartesian
import numpy as np
import warnings
import copy
from .array_elements import ISOTROPIC_SCALAR_SENSOR
from .perturbations import LocationErrors, GainErrors, PhaseErrors, MutualCoupling
class ArrayDesign:
def __init__(self, locations, name, perturbations=[],
element=ISOTROPIC_SCALAR_SENSOR):
if not isinstance(locations, np.ndarray):
locations = np.array(locations)
if locations.ndim > 2:
raise ValueError('Expecting a 1D vector or a 2D matrix.')
if locations.ndim == 1:
locations = locations.reshape((-1, 1))
elif locations.shape[1] > 3:
raise ValueError('Array can only be 1D, 2D or 3D.')
self._locations = locations
self._name = name
self._element = element
self._perturbations = {}
self._add_perturbation_from_list(self._parse_input_perturbations(perturbations))
@property
def name(self):
return self._name
@property
def size(self):
return self._locations.shape[0]
@property
def output_size(self):
return self.size
@property
def element_locations(self):
return self._locations.copy()
@property
def actual_element_locations(self):
locations = self._locations
for p in self._perturbations.values():
locations = p.perturb_sensor_locations(locations)
return locations
@property
def element(self):
return self._element
@property
def is_perturbed(self):
return len(self._perturbations) > 0
@property
def ndim(self):
return self._locations.shape[1]
@property
def actual_ndim(self):
return self.actual_element_locations.shape[1]
def has_perturbation(self, ptype):
return ptype in self._perturbations
def is_perturbation_known(self, ptype):
return self._perturbations[ptype].is_known
def get_perturbation_params(self, ptype):
return self._perturbations[ptype].params
@property
def perturbations(self):
return list(self._perturbations.values())
def _add_perturbation_from_list(self, perturbations, raise_on_override=True):
for p in perturbations:
applicable, msg = p.is_applicable_to(self)
if not applicable:
raise RuntimeError(msg)
p_class = p.__class__
if p_class in self._perturbations and raise_on_override:
raise RuntimeError(
'Cannot have more than one perturbations of the same type. '
'Attempting to add another perturbation of the type {0}.'
.format(p_class.__name__)
)
self._perturbations[p_class] = p
def _parse_input_perturbations(self, perturbations):
if isinstance(perturbations, dict):
factories = {
'location_errors': (lambda p, k: LocationErrors(p, k)),
'gain_errors': (lambda p, k: GainErrors(p, k)),
'phase_errors': (lambda p, k: PhaseErrors(p, k)),
'mutual_coupling': (lambda p, k: MutualCoupling(p, k))
}
perturbations = [factories[k](v[0], v[1]) for k, v in perturbations.items()]
return perturbations
def get_perturbed_copy(self, perturbations, new_name=None):
array = self.get_perturbation_free_copy(new_name)
new_perturbations = self._parse_input_perturbations(perturbations)
array._perturbations = self._perturbations.copy()
array._add_perturbation_from_list(new_perturbations, False)
return array
def get_perturbation_free_copy(self, new_name=None):
if new_name is None:
new_name = self._name
array = copy.copy(self)
array._perturbations = {}
array._name = new_name
return array
def steering_matrix(self, sources, wavelength, compute_derivatives=False,
perturbations='all', flatten=True):
if perturbations == 'all':
perturb_list = self._perturbations.values()
elif perturbations == 'known':
perturb_list = [v for v in self._perturbations.values() if v.is_known]
elif perturbations == 'none':
perturb_list = []
else:
raise ValueError('Perturbation can only be "all", "known", or "none".')
if not self._element.is_isotropic or not self._element.is_scalar:
require_spatial_response = True
if compute_derivatives:
raise RuntimeError(
'Derivative computation is not supported when the array '
'elements are non-isotropic or non-scalar.'
)
else:
require_spatial_response = False
actual_locations = self._locations
for p in perturb_list:
actual_locations = p.perturb_sensor_locations(actual_locations)
T = sources.phase_delay_matrix(actual_locations, wavelength, compute_derivatives)
if compute_derivatives:
A = np.exp(1j * T[0])
DA = [A * (1j * X) for X in T[1:]]
else:
A = np.exp(1j * T)
DA = []
if require_spatial_response:
if sources.is_far_field:
r, az, el = sources.calc_spherical_coords(np.zeros((1, 1)))
else:
r, az, el = sources.calc_spherical_coords(actual_locations)
S = self._element.calc_spatial_response(r, az, el)
A = S * A
for p in perturb_list:
A, DA = p.perturb_steering_matrix(A, DA)
if A.ndim > 2 and flatten:
A = A.reshape((-1, sources.size))
if compute_derivatives:
return (A,) + tuple(DA)
else:
return A
class GridBasedArrayDesign(ArrayDesign):
def __init__(self, indices, d0=None, name=None, bases=None, **kwargs):
if bases is None:
if np.isscalar(d0):
d0 = np.full((indices.shape[1],), d0, dtype=np.float_)
else:
d0 = np.array(d0, dtype=np.float_)
if d0.ndim > 1 or indices.shape[1] < d0.size:
raise ValueError(
'd0 must be a scalar or a list-like object of length {0}.'
.format(indices.shape[1])
)
bases = np.eye(d0.size) * d0
else:
if indices.shape[1] != bases.shape[0]:
raise ValueError(
'The number of rows of the bases matrix does not match '
'the number of columns of the indices ({0} != {1}).'
.format(bases.shape[0], indices.shape[1])
)
d0 = np.linalg.norm(bases, ord=2, axis=1)
super().__init__(indices @ bases, name, **kwargs)
self._element_indices = indices
self._bases = bases
self._d0 = d0
@property
def d0(self):
return self._d0
@property
def bases(self):
return self._bases
@property
|
MIT License
|
blackducksoftware/hub-rest-api-python
|
blackduck/CustomFields.py
|
get_custom_fields
|
python
|
def get_custom_fields(self, object_name):
assert object_name in self.supported_cf_object_types(), "You must supply a supported object name that is in {}".format(self.supported_cf_object_types())
url = self._get_cf_object_url(object_name) + "/fields"
response = self.execute_get(url)
return response.json()
|
Get the custom field (definition) for a given object type, e.g. Project, Project Version, Component, etc
|
https://github.com/blackducksoftware/hub-rest-api-python/blob/9a409dc52b4cbe0d6405134f03a91783f8a0363e/blackduck/CustomFields.py#L80-L88
|
import logging
import requests
import json
from operator import itemgetter
import urllib.parse
logger = logging.getLogger(__name__)
def _get_cf_url(self):
return self.get_apibase() + "/custom-fields/objects"
def supported_cf_object_types(self):
if not hasattr(self, "_cf_object_types"):
logger.debug("retrieving object types")
self._cf_object_types = [cfo['name'] for cfo in self.get_cf_objects().get('items', [])]
return self._cf_object_types
def get_cf_objects(self):
url = self._get_cf_url()
if not hasattr(self, "_cf_objects"):
logger.debug("retrieving objects")
response = self.execute_get(url)
self._cf_objects = response.json()
return self._cf_objects
def _get_cf_object_url(self, object_name):
for cf_object in self.get_cf_objects().get('items', []):
if cf_object['name'].lower() == object_name.lower():
return cf_object['_meta']['href']
def get_cf_object(self, object_name):
assert object_name in self.supported_cf_object_types(), "Object name {} not one of the supported types ({})".format(object_name, self.supported_cf_object_types())
object_url = self._get_cf_object_url(object_name)
response = self.execute_get(object_url)
return response.json()
def _get_cf_obj_rel_path(self, object_name):
return object_name.lower().replace(" ", "-")
def create_cf(self, object_name, field_type, description, label, position, active=True, initial_options=[]):
assert isinstance(position, int) and position >= 0, "position must be an integer that is greater than or equal to 0"
assert field_type in ["BOOLEAN", "DATE", "DROPDOWN", "MULTISELECT", "RADIO", "TEXT", "TEXTAREA"]
types_using_initial_options = ["DROPDOWN", "MULTISELECT", "RADIO"]
post_url = self._get_cf_object_url(object_name) + "/fields"
cf_object = self._get_cf_obj_rel_path(object_name)
cf_request = {
"active": active,
"description": description,
"label": label,
"position": position,
"type": field_type,
}
if field_type in types_using_initial_options and initial_options:
cf_request.update({"initialOptions": initial_options})
response = self.execute_post(post_url, data=cf_request)
return response
def delete_cf(self, object_name, field_id):
assert object_name in self.supported_cf_object_types(), "You must supply a supported object name that is in {}".format(self.supported_cf_object_types())
delete_url = self._get_cf_object_url(object_name) + "/fields/{}".format(field_id)
return self.execute_delete(delete_url)
|
Apache License 2.0
|
baderlab/saber
|
saber/embeddings.py
|
Embeddings._prepare_embedding_matrix
|
python
|
def _prepare_embedding_matrix(self, embedding_idx, load_all=False):
type_to_idx = None
if load_all:
type_to_idx = self._generate_type_to_idx(embedding_idx)
self.token_map = type_to_idx['word']
embedding_matrix = np.zeros((len(self.token_map), self.dimension))
for word, i in self.token_map.items():
token_embedding = embedding_idx.get(word)
if token_embedding is not None:
embedding_matrix[i] = token_embedding
return embedding_matrix, type_to_idx
|
Returns an embedding matrix containing all pre-trained embeddings in `embedding_idx`.
Creates an embedding matrix from `embedding_idx`, where the ith row contains the
embedding for the word with value i in `self.token_map`. If no embedding exists for a given
word in `embedding_idx`, the zero vector is used instead.
Args:
embedding_idx (dict): A Dictionary mapping words to their embeddings.
load_all (bool): True if all embeddings should be loaded. False if only words that
appear in `self.token_map` should be loaded. Defaults to False.
Returns:
A matrix whos ith row corresponds to the word embedding for the word with value i in
`self.token_map`.
|
https://github.com/baderlab/saber/blob/876be6bfdb1bc5b18cbcfa848c94b0d20c940f02/saber/embeddings.py#L74-L106
|
import numpy as np
from gensim.models import KeyedVectors
from . import constants
from .preprocessor import Preprocessor
class Embeddings(object):
def __init__(self, filepath, token_map, **kwargs):
self.filepath = filepath
self.token_map = token_map
self.matrix = None
self.num_found = None
self.num_embed = None
self.dimension = None
for key, value in kwargs.items():
setattr(self, key, value)
def load(self, binary=True, load_all=False):
embedding_idx = self._prepare_embedding_index(binary)
self.num_found, self.dimension = len(embedding_idx), len(list(embedding_idx.values())[0])
self.matrix, type_to_idx = self._prepare_embedding_matrix(embedding_idx, load_all)
self.num_embed = self.matrix.shape[0]
return type_to_idx
def _prepare_embedding_index(self, binary=True):
limit = 10000 if self.__dict__.get("debug", False) else None
vectors = KeyedVectors.load_word2vec_format(self.filepath, binary=binary, limit=limit)
embedding_idx = {word: vectors[word] for word in vectors.vocab}
return embedding_idx
|
MIT License
|
airspeed-velocity/asv
|
asv/console.py
|
Log.add_padded
|
python
|
def add_padded(self, msg):
if self._prev_message is None:
self.info(msg)
return
padding_length = util.get_terminal_width() - len(self._prev_message) - 14 - 1 - len(msg)
if WIN:
padding_length -= 1
padding = " "*padding_length
self._prev_message = None
self.add(" {0}{1}".format(padding, msg))
|
Final part of two-part info message.
Should be preceded by a call to info/warn/...(msg, reserve_space=True)
|
https://github.com/airspeed-velocity/asv/blob/9d5af5713357ccea00a518758fae6822cc69f539/asv/console.py#L385-L401
|
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import io
import contextlib
import locale
import logging
import os
import sys
import textwrap
import time
import six
from six.moves import xrange, input
from . import util
WIN = (os.name == "nt")
def isatty(file):
if hasattr(file, 'isatty'):
return file.isatty()
return False
def _color_text(text, color):
color_mapping = {
'black': '0;30',
'red': '0;31',
'green': '0;32',
'brown': '0;33',
'blue': '0;34',
'magenta': '0;35',
'cyan': '0;36',
'lightgrey': '0;37',
'default': '0;39',
'darkgrey': '1;30',
'lightred': '1;31',
'lightgreen': '1;32',
'yellow': '1;33',
'lightblue': '1;34',
'lightmagenta': '1;35',
'lightcyan': '1;36',
'white': '1;37'}
color_code = color_mapping.get(color, '0;39')
return '\033[{0}m{1}\033[0m'.format(color_code, text)
_unicode_translations = {
ord('μ'): 'u',
ord('·'): '-',
ord('±'): '~'
}
def _write_with_fallback(s, fileobj):
if not isinstance(s, six.text_type):
raise ValueError("Input string is not a Unicode string")
if six.PY3:
try:
fileobj.write(s)
return
except UnicodeError:
pass
enc = locale.getpreferredencoding()
try:
b = s.encode(enc)
except UnicodeError:
s = s.translate(_unicode_translations)
b = s.encode(enc, errors='replace')
fileobj.flush()
fileobj.buffer.write(b)
else:
enc = locale.getpreferredencoding()
try:
b = s.encode(enc)
except UnicodeError:
for key, val in _unicode_translations.iteritems():
s = s.replace(unichr(key), val)
b = s.encode(enc, errors='replace')
fileobj.write(b)
def color_print(*args, **kwargs):
file = kwargs.get('file', sys.stdout)
end = kwargs.get('end', '\n')
if isatty(file) and not WIN:
for i in xrange(0, len(args), 2):
msg = args[i]
if i + 1 == len(args):
color = ''
else:
color = args[i + 1]
if color:
msg = _color_text(msg, color)
_write_with_fallback(msg, file)
_write_with_fallback(end, file)
else:
for i in xrange(0, len(args), 2):
msg = args[i]
_write_with_fallback(msg, file)
_write_with_fallback(end, file)
def get_answer_default(prompt, default, use_defaults=False):
color_print("{0} [{1}]: ".format(prompt, default), end='')
if use_defaults:
return default
x = input()
if x.strip() == '':
return default
return x
def truncate_left(s, l):
if len(s) > l:
return '...' + s[-(l - 3):]
else:
return s
class Log(object):
def __init__(self):
self._indent = 1
self._total = 0
self._count = 0
self._logger = logging.getLogger()
self._needs_newline = False
self._last_dot = time.time()
def _stream_formatter(self, record):
if self._needs_newline:
color_print('')
parts = record.msg.split('\n', 1)
first_line = parts[0]
if len(parts) == 1:
rest = None
else:
rest = parts[1]
indent = self._indent + 1
continued = getattr(record, 'continued', False)
if self._total:
progress_msg = '[{0:6.02f}%] '.format(
(float(self._count) / self._total) * 100.0)
if not continued:
color_print(progress_msg, end='')
indent += len(progress_msg)
if not continued:
color_print('·' * self._indent, end='')
color_print(' ', end='')
else:
color_print(' ' * indent, end='')
if hasattr(record, 'color'):
color = record.color
elif record.levelno < logging.DEBUG:
color = 'default'
elif record.levelno < logging.INFO:
color = 'default'
elif record.levelno < logging.WARN:
if self._indent == 1:
color = 'green'
elif self._indent == 2:
color = 'blue'
else:
color = 'default'
elif record.levelno < logging.ERROR:
color = 'brown'
else:
color = 'red'
spaces = ' ' * indent
color_print(first_line, color, end='')
if rest is not None:
color_print('')
detail = textwrap.dedent(rest)
for line in detail.split('\n'):
color_print(spaces, end='')
color_print(line)
self._needs_newline = True
sys.stdout.flush()
@contextlib.contextmanager
def indent(self):
self._indent += 1
yield
self._indent -= 1
def dot(self):
if isatty(sys.stdout):
if time.time() > self._last_dot + 1.0:
color_print('.', 'darkgrey', end='')
sys.stdout.flush()
self._last_dot = time.time()
def set_nitems(self, n):
try:
self._total = util.ceildiv(n * self._total, self._total - self._count)
self._count = self._total - n
except ZeroDivisionError:
self._total = n
self._count = 0
def step(self):
self._count = min(self._total, self._count + 1)
def enable(self, verbose=False):
sh = logging.StreamHandler()
sh.emit = self._stream_formatter
self._logger.addHandler(sh)
if verbose:
self._logger.setLevel(logging.DEBUG)
else:
self._logger.setLevel(logging.INFO)
@contextlib.contextmanager
def set_level(self, level):
orig_level = self._logger.level
if not self.is_debug_enabled():
self._logger.setLevel(level)
try:
yield
finally:
self._logger.setLevel(orig_level)
def is_debug_enabled(self):
return self._logger.getEffectiveLevel() <= logging.DEBUG
def _message(self, routine, message, reserve_space=False, color=None,
continued=False):
kwargs = {}
extra = {}
if color is not None:
extra['color'] = color
if continued:
extra['continued'] = True
if extra:
kwargs['extra'] = extra
if reserve_space:
max_width = max(16, util.get_terminal_width() - 33)
message = truncate_left(message, max_width)
self._prev_message = message
routine(message, **kwargs)
def info(self, *args, **kwargs):
self._message(self._logger.info, *args, **kwargs)
def warning(self, *args, **kwargs):
self._message(self._logger.warning, *args, **kwargs)
def debug(self, *args, **kwargs):
self._message(self._logger.debug, *args, **kwargs)
def error(self, *args, **kwargs):
self._message(self._logger.error, *args, **kwargs)
def add(self, msg):
if self._needs_newline:
_write_with_fallback(msg, sys.stdout)
sys.stdout.flush()
else:
self.info(msg)
|
BSD 3-Clause New or Revised License
|
jupyterhub/binderhub
|
binderhub/_version.py
|
get_config
|
python
|
def get_config():
cfg = VersioneerConfig()
cfg.VCS = "git"
cfg.style = "pep440"
cfg.tag_prefix = ""
cfg.parentdir_prefix = "binderhub-"
cfg.versionfile_source = "binderhub/_version.py"
cfg.verbose = False
return cfg
|
Create, populate and return the VersioneerConfig() object.
|
https://github.com/jupyterhub/binderhub/blob/ce0bb859ed25ddc58c0336643bd02bbf05a83386/binderhub/_version.py#L37-L48
|
import errno
import os
import re
import subprocess
import sys
def get_keywords():
git_refnames = "$Format:%d$"
git_full = "$Format:%H$"
git_date = "$Format:%ci$"
keywords = {"refnames": git_refnames, "full": git_full, "date": git_date}
return keywords
class VersioneerConfig:
|
BSD 3-Clause New or Revised License
|
jefflirion/python-androidtv
|
androidtv/basetv/basetv_async.py
|
BaseTVAsync.key_8
|
python
|
async def key_8(self):
await self._key(constants.KEY_8)
|
Send 8 keypress.
|
https://github.com/jefflirion/python-androidtv/blob/f5396699f308992a59c39b71643134e49ca4f34a/androidtv/basetv/basetv_async.py#L590-L592
|
import logging
from .basetv import BaseTV
from .. import constants
from ..adb_manager.adb_manager_async import ADBPythonAsync, ADBServerAsync
_LOGGER = logging.getLogger(__name__)
class BaseTVAsync(BaseTV):
def __init__(self, host, port=5555, adbkey='', adb_server_ip='', adb_server_port=5037, state_detection_rules=None, signer=None):
if not adb_server_ip:
adb = ADBPythonAsync(host, port, adbkey, signer)
else:
adb = ADBServerAsync(host, port, adb_server_ip, adb_server_port)
BaseTV.__init__(self, adb, host, port, adbkey, adb_server_ip, adb_server_port, state_detection_rules)
async def adb_shell(self, cmd):
return await self._adb.shell(self._remove_adb_shell_prefix(cmd))
async def adb_pull(self, local_path, device_path):
return await self._adb.pull(local_path, device_path)
async def adb_push(self, local_path, device_path):
return await self._adb.push(local_path, device_path)
async def adb_screencap(self):
return await self._adb.screencap()
async def adb_connect(self, always_log_errors=True, auth_timeout_s=constants.DEFAULT_AUTH_TIMEOUT_S):
if isinstance(self._adb, ADBPythonAsync):
return await self._adb.connect(always_log_errors, auth_timeout_s)
return await self._adb.connect(always_log_errors)
async def adb_close(self):
await self._adb.close()
async def get_device_properties(self):
properties = await self._adb.shell(constants.CMD_MANUFACTURER + " && " +
constants.CMD_MODEL + " && " +
constants.CMD_SERIALNO + " && " +
constants.CMD_VERSION + " && " +
constants.CMD_MAC_WLAN0 + " && " +
constants.CMD_MAC_ETH0)
self._parse_device_properties(properties)
return self.device_properties
async def audio_output_device(self):
stream_music = await self._get_stream_music()
return self._audio_output_device(stream_music)
async def audio_state(self):
audio_state_response = await self._adb.shell(constants.CMD_AUDIO_STATE)
return self._audio_state(audio_state_response)
async def awake(self):
return await self._adb.shell(constants.CMD_AWAKE + constants.CMD_SUCCESS1_FAILURE0) == '1'
async def current_app(self):
current_app_response = await self._adb.shell(self._cmd_current_app)
return self._current_app(current_app_response)
async def get_hdmi_input(self):
return self._get_hdmi_input(await self._adb.shell(constants.CMD_HDMI_INPUT))
async def get_installed_apps(self):
installed_apps_response = await self._adb.shell(constants.CMD_INSTALLED_APPS)
self.installed_apps = self._get_installed_apps(installed_apps_response)
return self.installed_apps
async def is_volume_muted(self):
stream_music = await self._get_stream_music()
return self._is_volume_muted(stream_music)
async def media_session_state(self):
media_session_state_response = await self._adb.shell(constants.CMD_MEDIA_SESSION_STATE_FULL)
_, media_session_state = self._current_app_media_session_state(media_session_state_response)
return media_session_state
async def screen_on(self):
return await self._adb.shell(constants.CMD_SCREEN_ON + constants.CMD_SUCCESS1_FAILURE0) == '1'
async def volume(self):
stream_music = await self._get_stream_music()
audio_output_device = self._audio_output_device(stream_music)
return self._volume(stream_music, audio_output_device)
async def volume_level(self):
volume = await self.volume()
return self._volume_level(volume)
async def wake_lock_size(self):
wake_lock_size_response = await self._adb.shell(constants.CMD_WAKE_LOCK_SIZE)
return self._wake_lock_size(wake_lock_size_response)
async def _get_stream_music(self, stream_music_raw=None):
if not stream_music_raw:
stream_music_raw = await self._adb.shell(constants.CMD_STREAM_MUSIC)
return self._parse_stream_music(stream_music_raw)
async def _send_intent(self, pkg, intent, count=1):
cmd = 'monkey -p {} -c {} {}; echo $?'.format(pkg, intent, count)
res = await self._adb.shell(cmd)
if res is None:
return {}
res = res.strip().split("\r\n")
retcode = res[-1]
output = "\n".join(res[:-1])
return {"output": output, "retcode": retcode}
async def launch_app(self, app):
await self._adb.shell(self._cmd_launch_app.format(app))
async def stop_app(self, app):
return await self._adb.shell("am force-stop {0}".format(app))
async def start_intent(self, uri):
await self._adb.shell("am start -a android.intent.action.VIEW -d {}".format(uri))
async def _key(self, key):
await self._adb.shell('input keyevent {0}'.format(key))
async def power(self):
await self._key(constants.KEY_POWER)
async def sleep(self):
await self._key(constants.KEY_SLEEP)
async def home(self):
await self._key(constants.KEY_HOME)
async def up(self):
await self._key(constants.KEY_UP)
async def down(self):
await self._key(constants.KEY_DOWN)
async def left(self):
await self._key(constants.KEY_LEFT)
async def right(self):
await self._key(constants.KEY_RIGHT)
async def enter(self):
await self._key(constants.KEY_ENTER)
async def back(self):
await self._key(constants.KEY_BACK)
async def menu(self):
await self._key(constants.KEY_MENU)
async def mute_volume(self):
await self._key(constants.KEY_MUTE)
async def media_play(self):
await self._key(constants.KEY_PLAY)
async def media_pause(self):
await self._key(constants.KEY_PAUSE)
async def media_play_pause(self):
await self._key(constants.KEY_PLAY_PAUSE)
async def media_stop(self):
await self._key(constants.KEY_STOP)
async def media_next_track(self):
await self._key(constants.KEY_NEXT)
async def media_previous_track(self):
await self._key(constants.KEY_PREVIOUS)
async def space(self):
await self._key(constants.KEY_SPACE)
async def key_0(self):
await self._key(constants.KEY_0)
async def key_1(self):
await self._key(constants.KEY_1)
async def key_2(self):
await self._key(constants.KEY_2)
async def key_3(self):
await self._key(constants.KEY_3)
async def key_4(self):
await self._key(constants.KEY_4)
async def key_5(self):
await self._key(constants.KEY_5)
async def key_6(self):
await self._key(constants.KEY_6)
async def key_7(self):
await self._key(constants.KEY_7)
|
MIT License
|
anand-p-r/fmi-hass-custom
|
sensor.py
|
FMIBestConditionSensor.update
|
python
|
def update(self):
if self._fmi is None:
_LOGGER.debug("FMI: Coordinator is not available")
return
if self._fmi.current is None:
_LOGGER.debug("FMI: Sensor _FMI Current Forecast is unavailable")
return
if self.type == "place":
self._state = self._fmi.current.place
self._icon = "mdi:city-variant"
return
source_data = None
if self._fmi.time_step == 1:
source_data = self._fmi.current.data
else:
if self._fmi.forecast is None:
_LOGGER.debug("FMI: Sensor _FMI Hourly Forecast is unavailable")
return
if len(self._fmi.forecast.forecasts) > 1:
curr_min = datetime.now().minute
if curr_min >= 30:
source_data = self._fmi.forecast.forecasts[1]
else:
source_data = self._fmi.forecast.forecasts[0]
if source_data is None:
_LOGGER.debug("FMI: Sensor Source data is unavailable")
return
wind_direction = "Unavailable"
if source_data.wind_direction is not None:
wind_direction = get_wind_direction_string(source_data.wind_direction.value)
if self.type == "forecast_time":
self._state = source_data.time.astimezone(tz.tzlocal())
self._icon = "mdi:av-timer"
elif self.type == "weather":
self._state = get_weather_symbol(source_data.symbol.value)
elif self.type == "temperature":
self._state = source_data.temperature.value
self._icon = "mdi:thermometer"
elif self.type == "wind_speed":
self._state = source_data.wind_speed.value
self._icon = "mdi:weather-windy"
elif self.type == "wind_direction":
self._state = wind_direction
self._icon = "mdi:weather-windy"
elif self.type == "wind_gust":
self._state = source_data.wind_gust.value
self._icon = "mdi:weather-windy"
elif self.type == "humidity":
self._state = source_data.humidity.value
self._icon = "mdi:water"
elif self.type == "clouds":
self._state = source_data.cloud_cover.value
self._icon = "mdi:weather-cloudy"
elif self.type == "rain":
self._state = source_data.precipitation_amount.value
self._icon = "mdi:weather-pouring"
elif self.type == "time":
self._state = self._fmi.best_state
self._icon = "mdi:av-timer"
else:
self._state = None
|
Get the latest data from FMI and updates the states.
|
https://github.com/anand-p-r/fmi-hass-custom/blob/9b8a6319c6a5970afed4deb5069377d246709732/sensor.py#L184-L259
|
from datetime import datetime
from dateutil import tz
from homeassistant.const import (
ATTR_ATTRIBUTION,
ATTR_LOCATION,
ATTR_TEMPERATURE,
ATTR_TIME,
SPEED_METERS_PER_SECOND,
TEMP_CELSIUS,
PERCENTAGE
)
from homeassistant.const import CONF_NAME
from homeassistant.helpers.update_coordinator import CoordinatorEntity
from .const import (
CONF_LIGHTNING,
_LOGGER,
ATTRIBUTION,
DOMAIN,
ATTR_HUMIDITY,
ATTR_WIND_SPEED,
ATTR_PRECIPITATION,
ATTR_DISTANCE,
ATTR_STRIKES,
ATTR_PEAK_CURRENT,
ATTR_CLOUD_COVER,
ATTR_ELLIPSE_MAJOR,
COORDINATOR
)
from .utils import (
get_weather_symbol
)
SENSOR_TYPES = {
"place": ["Place", None],
"weather": ["Condition", None],
"temperature": ["Temperature", TEMP_CELSIUS],
"wind_speed": ["Wind Speed", SPEED_METERS_PER_SECOND],
"wind_direction": ["Wind Direction", ""],
"wind_gust": ["Wind Gust", SPEED_METERS_PER_SECOND],
"humidity": ["Humidity", PERCENTAGE],
"clouds": ["Cloud Coverage", PERCENTAGE],
"rain": ["Rain", "mm/hr"],
"forecast_time": ["Time", None],
"time": ["Best Time Of Day", None],
}
SENSOR_LIGHTNING_TYPES = {
"lightning": ["Lightning Strikes", None]
}
SENSOR_MAREO_TYPES = {
"sea_level": ["Sea Level", "cm"]
}
PARALLEL_UPDATES = 1
async def async_setup_entry(hass, config_entry, async_add_entities):
name = config_entry.data[CONF_NAME]
lightning_mode = config_entry.options.get(CONF_LIGHTNING, False)
coordinator = hass.data[DOMAIN][config_entry.entry_id][COORDINATOR]
entity_list = []
for sensor_type in SENSOR_TYPES:
entity_list.append(
FMIBestConditionSensor(
name, coordinator, sensor_type
)
)
if lightning_mode:
for sensor_type in SENSOR_LIGHTNING_TYPES:
entity_list.append(
FMILightningStrikesSensor(name, coordinator, sensor_type))
for sensor_type in SENSOR_MAREO_TYPES:
entity_list.append(
FMIMareoSensor(name, coordinator, sensor_type))
async_add_entities(entity_list, False)
def get_wind_direction_string(wind_direction_in_deg):
if wind_direction_in_deg is not None:
if wind_direction_in_deg <=23:
return "N"
elif wind_direction_in_deg > 338:
return "N"
elif (23 < wind_direction_in_deg <= 68):
return "NE"
elif (68 < wind_direction_in_deg <= 113):
return "E"
elif (113 < wind_direction_in_deg <= 158):
return "SE"
elif (158 < wind_direction_in_deg <= 203):
return "S"
elif (203 < wind_direction_in_deg <= 248):
return "SW"
elif (248 < wind_direction_in_deg <= 293):
return "W"
elif (293 < wind_direction_in_deg <= 338):
return "NW"
else:
return "Unavailable"
return "Unavailable"
class FMIBestConditionSensor(CoordinatorEntity):
def __init__(self, name, coordinator, sensor_type):
super().__init__(coordinator)
self.client_name = name
self._name = SENSOR_TYPES[sensor_type][0]
self._fmi = coordinator
self._state = None
self._icon = None
self.type = sensor_type
self._unit_of_measurement = SENSOR_TYPES[sensor_type][1]
self.update()
@property
def name(self):
if self._fmi is not None:
if self._fmi.current is not None:
return f"{self._fmi.current.place} {self._name}"
return self._name
@property
def unique_id(self):
@property
def state(self):
self.update()
return self._state
@property
def icon(self):
return self._icon
@property
def unit_of_measurement(self):
return self._unit_of_measurement
@property
def device_state_attributes(self):
if self.type == "time":
if self._fmi is not None:
if self._fmi.current is not None:
return {
ATTR_LOCATION: self._fmi.current.place,
ATTR_TIME: self._fmi.best_time,
ATTR_TEMPERATURE: self._fmi.best_temperature,
ATTR_HUMIDITY: self._fmi.best_humidity,
ATTR_PRECIPITATION: self._fmi.best_precipitation,
ATTR_WIND_SPEED: self._fmi.best_wind_speed,
ATTR_ATTRIBUTION: ATTRIBUTION,
}
return {ATTR_ATTRIBUTION: ATTRIBUTION}
|
MIT License
|
spunkybot/spunkybot
|
spunky.py
|
LogParser.handle_exit
|
python
|
def handle_exit(self, line):
logger.debug("Exit: %s", line)
self.handle_awards()
self.allow_cmd_teams = True
self.stats_reset(store_score=True)
|
handle Exit of a match, show Awards, store user score in database and reset statistics
|
https://github.com/spunkybot/spunkybot/blob/a546e3ac13294de38f7edabf27ee2d286be28a23/spunky.py#L807-L814
|
__version__ = '1.13.0.dev0'
import os
import time
import sqlite3
import math
import textwrap
import random
import ConfigParser
import logging.handlers
from Queue import Queue
from threading import Thread
from threading import RLock
import lib.pygeoip as pygeoip
import lib.schedule as schedule
from lib.pyquake3 import PyQuake3
logger = logging.getLogger('spunkybot')
logger.setLevel(logging.DEBUG)
logger.propagate = False
BOT_PLAYER_NUM = 1022
RCON_DELAY = 0.3
COMMANDS = {'help': {'desc': 'display all available commands', 'syntax': '^7Usage: ^2!help', 'level': 0, 'short': 'h'},
'forgive': {'desc': 'forgive a player for team killing', 'syntax': '^7Usage: ^2!forgive ^7[<name>]', 'level': 0, 'short': 'f'},
'forgiveall': {'desc': 'forgive all team kills', 'syntax': '^7Usage: ^2!forgiveall', 'level': 0, 'short': 'fa'},
'forgivelist': {'desc': 'list all players who killed you', 'syntax': '^7Usage: ^2!forgivelist', 'level': 0, 'short': 'fl'},
'forgiveprev': {'desc': 'forgive last team kill', 'syntax': '^7Usage: ^2!forgiveprev', 'level': 0, 'short': 'fp'},
'grudge': {'desc': 'grudge a player for team killing, a grudged player will not be forgiven', 'syntax': '^7Usage: ^2!grudge ^7[<name>]', 'level': 0},
'bombstats': {'desc': 'display Bomb stats', 'syntax': '^7Usage: ^2!bombstats', 'level': 0},
'ctfstats': {'desc': 'display Capture the Flag stats', 'syntax': '^7Usage: ^2!ctfstats', 'level': 0},
'freezestats': {'desc': 'display freeze/thawout stats', 'syntax': '^7Usage: ^2!freezestats', 'level': 0},
'hestats': {'desc': 'display HE grenade kill stats', 'syntax': '^7Usage: ^2!hestats', 'level': 0},
'hits': {'desc': 'display hit stats', 'syntax': '^7Usage: ^2!hits', 'level': 0},
'hs': {'desc': 'display headshot counter', 'syntax': '^7Usage: ^2!hs', 'level': 0},
'knife': {'desc': 'display knife kill stats', 'syntax': '^7Usage: ^2!knife', 'level': 0},
'register': {'desc': 'register yourself as a basic user', 'syntax': '^7Usage: ^2!register', 'level': 0},
'spree': {'desc': 'display current kill streak', 'syntax': '^7Usage: ^2!spree', 'level': 0},
'stats': {'desc': 'display current map stats', 'syntax': '^7Usage: ^2!stats', 'level': 0},
'teams': {'desc': 'balance teams', 'syntax': '^7Usage: ^2!teams', 'level': 0},
'time': {'desc': 'display the current server time', 'syntax': '^7Usage: ^2!time', 'level': 0},
'regtest': {'desc': 'display current user status', 'syntax': '^7Usage: ^2!regtest', 'level': 1},
'xlrstats': {'desc': 'display full player statistics', 'syntax': '^7Usage: ^2!xlrstats ^7[<name>]', 'level': 1},
'xlrtopstats': {'desc': 'display the top players', 'syntax': '^7Usage: ^2!xlrtopstats', 'level': 1, 'short': 'topstats'},
'admintest': {'desc': 'display current admin status', 'syntax': '^7Usage: ^2!admintest', 'level': 20},
'country': {'desc': 'get the country of a player', 'syntax': '^7Usage: ^2!country ^7<name>', 'level': 20},
'lastmaps': {'desc': 'list the last played maps', 'syntax': '^7Usage: ^2!lastmaps', 'level': 20},
'lastvote': {'desc': 'display information about the last called vote', 'syntax': '^7Usage: ^2!lastvote', 'level': 20},
'leveltest': {'desc': 'get the admin level for a given player or myself', 'syntax': '^7Usage: ^2!leveltest ^7[<name>]', 'level': 20, 'short': 'lt'},
'list': {'desc': 'list all connected players', 'syntax': '^7Usage: ^2!list', 'level': 20},
'locate': {'desc': 'display geolocation info of a player', 'syntax': '^7Usage: ^2!locate ^7<name>', 'level': 20, 'short': 'lc'},
'mute': {'desc': 'mute or un-mute a player', 'syntax': '^7Usage: ^2!mute ^7<name> [<duration>]', 'level': 20},
'nextmap': {'desc': 'display the next map in rotation', 'syntax': '^7Usage: ^2!nextmap', 'level': 20},
'poke': {'desc': 'notify a player that he needs to move', 'syntax': '^7Usage: ^2!poke ^7<name>', 'level': 20},
'seen': {'desc': 'display when a player was last seen', 'syntax': '^7Usage: ^2!seen ^7<name>', 'level': 20},
'shuffleteams': {'desc': 'shuffle the teams', 'syntax': '^7Usage: ^2!shuffleteams', 'level': 20, 'short': 'shuffle'},
'spec': {'desc': 'move yourself to spectator', 'syntax': '^7Usage: ^2!spec', 'level': 20, 'short': 'sp'},
'warn': {'desc': 'warn player', 'syntax': '^7Usage: ^2!warn ^7<name> [<reason>]', 'level': 20, 'short': 'w'},
'warninfo': {'desc': 'display how many warnings a player has', 'syntax': '^7Usage: ^2!warninfo ^7<name>', 'level': 20, 'short': 'wi'},
'warnremove': {'desc': "remove a player's last warning", 'syntax': '^7Usage: ^2!warnremove ^7<name>', 'level': 20, 'short': 'wr'},
'warns': {'desc': 'list the warnings', 'syntax': '^7Usage: ^2!warns', 'level': 20},
'warntest': {'desc': 'test a warning', 'syntax': '^7Usage: ^2!warntest ^7<warning>', 'level': 20},
'admins': {'desc': 'list all the online admins', 'syntax': '^7Usage: ^2!admins', 'level': 40},
'afk': {'desc': 'force a player to spec, because he is away from keyboard', 'syntax': '^7Usage: ^2!afk ^7<name>', 'level': 40},
'aliases': {'desc': 'list the aliases of a player', 'syntax': '^7Usage: ^2!aliases ^7<name>', 'level': 40, 'short': 'alias'},
'bigtext': {'desc': 'display big message on screen', 'syntax': '^7Usage: ^2!bigtext ^7<text>', 'level': 40},
'exit': {'desc': 'display last disconnected player', 'syntax': '^7Usage: ^2!exit', 'level': 40},
'find': {'desc': 'display the slot number of a player', 'syntax': '^7Usage: ^2!find ^7<name>', 'level': 40},
'force': {'desc': 'force a player to the given team', 'syntax': '^7Usage: ^2!force ^7<name> <blue/red/spec> [<lock>]', 'level': 40},
'kick': {'desc': 'kick a player', 'syntax': '^7Usage: ^2!kick ^7<name> <reason>', 'level': 40, 'short': 'k'},
'nuke': {'desc': 'nuke a player', 'syntax': '^7Usage: ^2!nuke ^7<name>', 'level': 40},
'regulars': {'desc': 'display the regular players online', 'syntax': '^7Usage: ^2!regulars', 'level': 40, 'short': 'regs'},
'say': {'desc': 'say a message to all players', 'syntax': '^7Usage: ^2!say ^7<text>', 'level': 40, 'short': '!!'},
'tell': {'desc': 'tell a message to a specific player', 'syntax': '^7Usage: ^2!tell ^7<name> <text>', 'level': 40},
'tempban': {'desc': 'ban a player temporary for the given period of 1 sec to 3 days', 'syntax': '^7Usage: ^2!tempban ^7<name> <duration> [<reason>]', 'level': 40, 'short': 'tb'},
'warnclear': {'desc': 'clear the player warnings', 'syntax': '^7Usage: ^2!warnclear ^7<name>', 'level': 40, 'short': 'wc'},
'ban': {'desc': 'ban a player for several days', 'syntax': '^7Usage: ^2!ban ^7<name> <reason>', 'level': 60, 'short': 'b'},
'baninfo': {'desc': 'display active bans of a player', 'syntax': '^7Usage: ^2!baninfo ^7<name>', 'level': 60, 'short': 'bi'},
'ci': {'desc': 'kick player with connection interrupt', 'syntax': '^7Usage: ^2!ci ^7<name>', 'level': 60},
'forgiveclear': {'desc': "clear a player's team kills", 'syntax': '^7Usage: ^2!forgiveclear ^7[<name>]', 'level': 60, 'short': 'fc'},
'forgiveinfo': {'desc': "display a player's team kills", 'syntax': '^7Usage: ^2!forgiveinfo ^7<name>', 'level': 60, 'short': 'fi'},
'ping': {'desc': 'display the ping of a player', 'syntax': '^7Usage: ^2!ping ^7<name>', 'level': 60},
'id': {'desc': 'show the IP, guid and authname of a player', 'syntax': '^7Usage: ^2!id ^7<name>', 'level': 60},
'kickbots': {'desc': 'kick all bots', 'syntax': '^7Usage: ^2!kickbots', 'level': 60, 'short': 'kb'},
'rain': {'desc': 'enables or disables rain', 'syntax': '^7Usage: ^2!rain ^7<on/off>', 'level': 60},
'scream': {'desc': 'scream a message in different colors to all players', 'syntax': '^7Usage: ^2!scream ^7<text>', 'level': 60},
'slap': {'desc': 'slap a player (a number of times)', 'syntax': '^7Usage: ^2!slap ^7<name> [<amount>]', 'level': 60},
'status': {'desc': 'report the status of the bot', 'syntax': '^7Usage: ^2!status', 'level': 60},
'swap': {'desc': 'swap teams for player A and B', 'syntax': '^7Usage: ^2!swap ^7<name1> [<name2>]', 'level': 60},
'version': {'desc': 'display the version of the bot', 'syntax': '^7Usage: ^2!version', 'level': 60},
'veto': {'desc': 'stop voting process', 'syntax': '^7Usage: ^2!veto', 'level': 60},
'addbots': {'desc': 'add up to 4 bots to the game', 'syntax': '^7Usage: ^2!addbots', 'level': 80},
'banall': {'desc': 'ban all players matching pattern', 'syntax': '^7Usage: ^2!banall ^7<pattern> [<reason>]', 'level': 80, 'short': 'ball'},
'banlist': {'desc': 'display the last active 10 bans', 'syntax': '^7Usage: ^2!banlist', 'level': 80},
'bots': {'desc': 'enables or disables bot support', 'syntax': '^7Usage: ^2!bots ^7<on/off>', 'level': 80},
'cyclemap': {'desc': 'cycle to the next map', 'syntax': '^7Usage: ^2!cyclemap', 'level': 80},
'exec': {'desc': 'execute given config file', 'syntax': '^7Usage: ^2!exec ^7<filename>', 'level': 80},
'gear': {'desc': 'set allowed weapons', 'syntax': '^7Usage: ^2!gear ^7<default/all/knife/pistol/shotgun/sniper/magnum/mac>', 'level': 80},
'instagib': {'desc': 'set Instagib mode', 'syntax': '^7Usage: ^2!instagib ^7<on/off>', 'level': 80},
'kickall': {'desc': 'kick all players matching pattern', 'syntax': '^7Usage: ^2!kickall ^7<pattern> [<reason>]', 'level': 80, 'short': 'kall'},
'kill': {'desc': 'kill a player', 'syntax': '^7Usage: ^2!kill ^7<name>', 'level': 80},
'clear': {'desc': 'clear all player warnings', 'syntax': '^7Usage: ^2!clear', 'level': 80, 'short': 'kiss'},
'lastadmin': {'desc': 'display the last disconnected admin', 'syntax': '^7Usage: ^2!lastadmin', 'level': 80},
'lastbans': {'desc': 'list the last 4 bans', 'syntax': '^7Usage: ^2!lastbans', 'level': 80, 'short': 'bans'},
'lookup': {'desc': 'search for a player in the database', 'syntax': '^7Usage: ^2!lookup ^7<name>', 'level': 80, 'short': 'l'},
'makereg': {'desc': 'make a player a regular (Level 2) user', 'syntax': '^7Usage: ^2!makereg ^7<name>', 'level': 80, 'short': 'mr'},
'map': {'desc': 'load given map', 'syntax': '^7Usage: ^2!map ^7<ut4_name>', 'level': 80},
'mapcycle': {'desc': 'list the map rotation', 'syntax': '^7Usage: ^2!mapcycle', 'level': 80},
'maps': {'desc': 'display all available maps', 'syntax': '^7Usage: ^2!maps', 'level': 80},
'maprestart': {'desc': 'restart the map', 'syntax': '^7Usage: ^2!maprestart', 'level': 80, 'short': 'restart'},
'moon': {'desc': 'activate low gravity mode (Moon mode)', 'syntax': '^7Usage: ^2!moon ^7<on/off>', 'level': 80, 'short': 'lowgravity'},
'permban': {'desc': 'ban a player permanent', 'syntax': '^7Usage: ^2!permban ^7<name> <reason>', 'level': 80, 'short': 'pb'},
'putgroup': {'desc': 'add a client to a group', 'syntax': '^7Usage: ^2!putgroup ^7<name> <group>', 'level': 80},
'rebuild': {'desc': 'sync up all available maps', 'syntax': '^7Usage: ^2!rebuild', 'level': 80},
'setgravity': {'desc': 'set the gravity (default: 800)', 'syntax': '^7Usage: ^2!setgravity ^7<value>', 'level': 80},
'setnextmap': {'desc': 'set the next map', 'syntax': '^7Usage: ^2!setnextmap ^7<ut4_name>', 'level': 80},
'swapteams': {'desc': 'swap the current teams', 'syntax': '^7Usage: ^2!swapteams', 'level': 80},
'unban': {'desc': 'unban a player from the database', 'syntax': '^7Usage: ^2!unban ^7<@ID>', 'level': 80},
'unreg': {'desc': 'remove a player from the regular group', 'syntax': '^7Usage: ^2!unreg ^7<name>', 'level': 80},
'bomb': {'desc': 'change gametype to Bomb', 'syntax': '^7Usage: ^2!bomb', 'level': 90},
'ctf': {'desc': 'change gametype to Capture the Flag', 'syntax': '^7Usage: ^2!ctf', 'level': 90},
'ffa': {'desc': 'change gametype to Free For All', 'syntax': '^7Usage: ^2!ffa', 'level': 90},
'gungame': {'desc': 'change gametype to Gun Game', 'syntax': '^7Usage: ^2!gungame', 'level': 90},
'jump': {'desc': 'change gametype to Jump', 'syntax': '^7Usage: ^2!jump', 'level': 90},
'lms': {'desc': 'change gametype to Last Man Standing', 'syntax': '^7Usage: ^2!lms', 'level': 90},
'tdm': {'desc': 'change gametype to Team Deathmatch', 'syntax': '^7Usage: ^2!tdm', 'level': 90},
'ts': {'desc': 'change gametype to Team Survivor', 'syntax': '^7Usage: ^2!ts', 'level': 90},
'ungroup': {'desc': 'remove admin level from a player', 'syntax': '^7Usage: ^2!ungroup ^7<name>', 'level': 90},
'password': {'desc': 'set private server password', 'syntax': '^7Usage: ^2!password ^7[<password>]', 'level': 90},
'reload': {'desc': 'reload map', 'syntax': '^7Usage: ^2!reload', 'level': 90}}
REASONS = {'obj': 'go for objective',
'camp': 'stop camping',
'spam': 'do not spam, shut-up!',
'lang': 'bad language',
'racism': 'racism is not tolerated',
'ping': 'fix your ping',
'afk': 'away from keyboard',
'tk': 'stop team killing',
'sk': 'stop spawn killing',
'spec': 'spectator too long on full server',
'score': 'score too low for this server',
'ci': 'connection interrupted',
'999': 'connection interrupted',
'whiner': 'stop complaining all the time',
'skill': 'skill too low for this server',
'name': 'do not use offensive names',
'wh': 'wallhack',
'insult': 'stop insulting',
'autojoin': 'use auto-join',
'abuse': 'stop abusing others',
'teams': 'keep the teams even'}
class LogParser(object):
def __init__(self):
self.hit_points = {0: "HEAD", 1: "HEAD", 2: "HELMET", 3: "TORSO", 4: "VEST", 5: "LEFT_ARM", 6: "RIGHT_ARM",
7: "GROIN", 8: "BUTT", 9: "LEFT_UPPER_LEG", 10: "RIGHT_UPPER_LEG", 11: "LEFT_LOWER_LEG",
12: "RIGHT_LOWER_LEG", 13: "LEFT_FOOT", 14: "RIGHT_FOOT"}
self.hit_item = {1: "UT_MOD_KNIFE", 2: "UT_MOD_BERETTA", 3: "UT_MOD_DEAGLE", 4: "UT_MOD_SPAS", 5: "UT_MOD_MP5K",
6: "UT_MOD_UMP45", 8: "UT_MOD_LR300", 9: "UT_MOD_G36", 10: "UT_MOD_PSG1", 14: "UT_MOD_SR8",
15: "UT_MOD_AK103", 17: "UT_MOD_NEGEV", 19: "UT_MOD_M4", 20: "UT_MOD_GLOCK", 21: "UT_MOD_COLT1911",
22: "UT_MOD_MAC11", 23: "UT_MOD_BLED"}
self.death_cause = {1: "MOD_WATER", 3: "MOD_LAVA", 5: "UT_MOD_TELEFRAG", 6: "MOD_FALLING", 7: "UT_MOD_SUICIDE",
9: "MOD_TRIGGER_HURT", 10: "MOD_CHANGE_TEAM", 12: "UT_MOD_KNIFE", 13: "UT_MOD_KNIFE_THROWN",
14: "UT_MOD_BERETTA", 15: "UT_MOD_DEAGLE", 16: "UT_MOD_SPAS", 17: "UT_MOD_UMP45", 18: "UT_MOD_MP5K",
19: "UT_MOD_LR300", 20: "UT_MOD_G36", 21: "UT_MOD_PSG1", 22: "UT_MOD_HK69", 23: "UT_MOD_BLED",
24: "UT_MOD_KICKED", 25: "UT_MOD_HEGRENADE", 28: "UT_MOD_SR8", 30: "UT_MOD_AK103",
31: "UT_MOD_SPLODED", 32: "UT_MOD_SLAPPED", 33: "UT_MOD_SMITED", 34: "UT_MOD_BOMBED",
35: "UT_MOD_NUKED", 36: "UT_MOD_NEGEV", 37: "UT_MOD_HK69_HIT", 38: "UT_MOD_M4",
39: "UT_MOD_GLOCK", 40: "UT_MOD_COLT1911", 41: "UT_MOD_MAC11"}
self.user_cmds = []
self.mod_cmds = []
self.admin_cmds = []
self.fulladmin_cmds = []
self.senioradmin_cmds = []
self.superadmin_cmds = []
self.shortcut_cmd = {}
for key, value in COMMANDS.iteritems():
if 'short' in value:
self.shortcut_cmd[value['short']] = key
if value['level'] == 20:
self.mod_cmds.append(key)
self.admin_cmds.append(key)
self.fulladmin_cmds.append(key)
self.senioradmin_cmds.append(key)
self.superadmin_cmds.append(key)
elif value['level'] == 40:
self.admin_cmds.append(key)
self.fulladmin_cmds.append(key)
self.senioradmin_cmds.append(key)
self.superadmin_cmds.append(key)
elif value['level'] == 60:
self.fulladmin_cmds.append(key)
self.senioradmin_cmds.append(key)
self.superadmin_cmds.append(key)
elif value['level'] == 80:
self.senioradmin_cmds.append(key)
self.superadmin_cmds.append(key)
elif value['level'] >= 90:
self.superadmin_cmds.append(key)
else:
self.user_cmds.append(key)
self.mod_cmds.append(key)
self.admin_cmds.append(key)
self.fulladmin_cmds.append(key)
self.senioradmin_cmds.append(key)
self.superadmin_cmds.append(key)
self.user_cmds.sort()
self.mod_cmds.sort()
self.admin_cmds.sort()
self.fulladmin_cmds.sort()
self.senioradmin_cmds.sort()
self.superadmin_cmds.sort()
logger.info("Starting logging : OK")
games_log = CONFIG.get('server', 'log_file')
self.ffa_lms_gametype = False
self.ctf_gametype = False
self.ts_gametype = False
self.tdm_gametype = False
self.bomb_gametype = False
self.freeze_gametype = False
self.ts_do_team_balance = False
self.allow_cmd_teams = True
self.urt_modversion = None
self.game = None
self.players_lock = RLock()
self.firstblood = False
self.firstnadekill = False
self.firstknifekill = False
self.firstteamkill = False
self.last_disconnected_player = None
self.last_admin = None
self.allow_nextmap_vote = True
self.failed_vote_timer = 0
self.last_vote = ''
self.default_gear = ''
self.tk_autokick = CONFIG.getboolean('bot', 'teamkill_autokick') if CONFIG.has_option('bot', 'teamkill_autokick') else True
self.allow_tk_bots = CONFIG.getboolean('bot', 'allow_teamkill_bots') if CONFIG.has_option('bot', 'allow_teamkill_bots') else False
self.noob_autokick = CONFIG.getboolean('bot', 'noob_autokick') if CONFIG.has_option('bot', 'noob_autokick') else False
self.spawnkill_autokick = CONFIG.getboolean('bot', 'spawnkill_autokick') if CONFIG.has_option('bot', 'spawnkill_autokick') else False
self.kill_spawnkiller = CONFIG.getboolean('bot', 'instant_kill_spawnkiller') if CONFIG.has_option('bot', 'instant_kill_spawnkiller') else False
self.spawnkill_warn_time = CONFIG.getint('bot', 'spawnkill_warn_time') if CONFIG.has_option('bot', 'spawnkill_warn_time') else 3
self.max_ping = CONFIG.getint('bot', 'max_ping') if CONFIG.has_option('bot', 'max_ping') else 200
self.num_kick_specs = CONFIG.getint('bot', 'kick_spec_full_server') if CONFIG.has_option('bot', 'kick_spec_full_server') else 10
self.task_frequency = CONFIG.getint('bot', 'task_frequency') if CONFIG.has_option('bot', 'task_frequency') else 60
self.warn_expiration = CONFIG.getint('bot', 'warn_expiration') if CONFIG.has_option('bot', 'warn_expiration') else 240
self.bad_words_autokick = CONFIG.getint('bot', 'bad_words_autokick') if CONFIG.has_option('bot', 'bad_words_autokick') else 0
self.show_country_on_connect = CONFIG.getboolean('bot', 'show_country_on_connect') if CONFIG.has_option('bot', 'show_country_on_connect') else True
self.show_first_kill_msg = CONFIG.getboolean('bot', 'show_first_kill') if CONFIG.has_option('bot', 'show_first_kill') else True
self.show_hit_stats_msg = CONFIG.getboolean('bot', 'show_hit_stats_respawn') if CONFIG.has_option('bot', 'show_hit_stats_respawn') else True
self.show_multikill_msg = CONFIG.getboolean('bot', 'show_multi_kill') if CONFIG.has_option('bot', 'show_multi_kill') else True
self.teams_autobalancer = CONFIG.getboolean('bot', 'autobalancer') if CONFIG.has_option('bot', 'autobalancer') else False
self.allow_cmd_teams_round_end = CONFIG.getboolean('bot', 'allow_teams_round_end') if CONFIG.has_option('bot', 'allow_teams_round_end') else False
self.limit_nextmap_votes = CONFIG.getboolean('bot', 'limit_nextmap_votes') if CONFIG.has_option('bot', 'limit_nextmap_votes') else False
self.vote_delay = CONFIG.getint('bot', 'vote_delay') if CONFIG.has_option('bot', 'vote_delay') else 0
self.spam_bomb_planted_msg = CONFIG.getboolean('bot', 'spam_bomb_planted') if CONFIG.has_option('bot', 'spam_bomb_planted') else False
self.kill_survived_opponents = CONFIG.getboolean('bot', 'kill_survived_opponents') if CONFIG.has_option('bot', 'kill_survived_opponents') else False
self.spam_knife_kills_msg = CONFIG.getboolean('bot', 'spam_knife_kills') if CONFIG.has_option('bot', 'spam_knife_kills') else False
self.spam_nade_kills_msg = CONFIG.getboolean('bot', 'spam_nade_kills') if CONFIG.has_option('bot', 'spam_nade_kills') else False
self.spam_headshot_hits_msg = CONFIG.getboolean('bot', 'spam_headshot_hits') if CONFIG.has_option('bot', 'spam_headshot_hits') else False
self.reset_headshot_hits_mapcycle = CONFIG.getboolean('bot', 'reset_headshot_hits_mapcycle') if CONFIG.has_option('bot', 'reset_headshot_hits_mapcycle') else True
self.reset_kill_spree_mapcycle = CONFIG.getboolean('bot', 'reset_kill_spree_mapcycle') if CONFIG.has_option('bot', 'reset_kill_spree_mapcycle') else True
ban_duration = CONFIG.getint('bot', 'ban_duration') if CONFIG.has_option('bot', 'ban_duration') else 7
self.ban_duration = ban_duration if ban_duration > 0 else 1
self.support_lowgravity = CONFIG.getboolean('lowgrav', 'support_lowgravity') if CONFIG.has_option('lowgrav', 'support_lowgravity') else False
self.gravity = CONFIG.getint('lowgrav', 'gravity') if CONFIG.has_option('lowgrav', 'gravity') else 800
self.explode_time = "40"
logger.info("Configuration loaded : OK")
curs.execute("SELECT COUNT(*) FROM `xlrstats` WHERE `admin_role` = 100")
self.iamgod = True if int(curs.fetchone()[0]) < 1 else False
logger.info("Connecting to Database: OK")
logger.debug("Cmd !iamgod available : %s", self.iamgod)
self.uptime = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
if CONFIG.has_option('rules', 'show_rules') and CONFIG.getboolean('rules', 'show_rules'):
self.output_rules = CONFIG.get('rules', 'display') if CONFIG.has_option('rules', 'display') else "chat"
rules_frequency = CONFIG.getint('rules', 'rules_frequency') if CONFIG.has_option('rules', 'rules_frequency') else 90
self.rules_file = os.path.join(HOME, 'conf', 'rules.conf')
self.rules_frequency = rules_frequency if rules_frequency > 0 else 10
if os.path.isfile(self.rules_file):
self.thread_rotate()
logger.info("Load rotating messages: OK")
else:
logger.error("ERROR: Rotating messages will be ignored, file '%s' has not been found", self.rules_file)
try:
self.log_file = open(games_log, 'r')
except IOError:
logger.error("ERROR: The Gamelog file '%s' has not been found", games_log)
logger.error("*** Aborting Spunky Bot ***")
else:
self.log_file.seek(0, 2)
logger.info("Parsing Gamelog file : %s", games_log)
self.read_log()
def thread_rotate(self):
processor = Thread(target=self.rotating_messages)
processor.setDaemon(True)
processor.start()
def rotating_messages(self):
time.sleep(30)
while 1:
with open(self.rules_file, 'r') as filehandle:
rotation_msg = filehandle.readlines()
if not rotation_msg:
break
for line in rotation_msg:
with self.players_lock:
if "@admins" in line:
self.game.rcon_say(self.get_admins_online())
elif "@admincount" in line:
self.game.rcon_say(self.get_admin_count())
elif "@nextmap" in line:
self.game.rcon_say(self.get_nextmap())
elif "@time" in line:
self.game.rcon_say("^7Time: %s" % time.strftime("%H:%M", time.localtime(time.time())))
elif "@bigtext" in line:
self.game.rcon_bigtext("^7%s" % line.split('@bigtext')[-1].strip())
else:
if self.output_rules == 'chat':
self.game.rcon_say("^2%s" % line.strip())
elif self.output_rules == 'bigtext':
self.game.rcon_bigtext("^2%s" % line.strip())
else:
self.game.send_rcon("^2%s" % line.strip())
time.sleep(self.rules_frequency)
def find_game_start(self):
seek_amount = 768
start_pos = self.log_file.tell() - seek_amount
end_pos = start_pos + seek_amount
try:
self.log_file.seek(start_pos)
except IOError:
logger.error("ERROR: The games.log file is empty, ignoring game type and start")
self.log_file.seek(0, 2)
game_start = True
else:
game_start = False
while not game_start:
while self.log_file:
line = self.log_file.readline()
tmp = line.split()
if len(tmp) > 1 and tmp[1] == "InitGame:":
game_start = True
if 'g_modversion\\4.3' in line:
self.hit_item.update({23: "UT_MOD_FRF1", 24: "UT_MOD_BENELLI", 25: "UT_MOD_P90",
26: "UT_MOD_MAGNUM", 29: "UT_MOD_KICKED", 30: "UT_MOD_KNIFE_THROWN"})
self.death_cause.update({42: "UT_MOD_FRF1", 43: "UT_MOD_BENELLI", 44: "UT_MOD_P90", 45: "UT_MOD_MAGNUM",
46: "UT_MOD_TOD50", 47: "UT_MOD_FLAG", 48: "UT_MOD_GOOMBA"})
self.urt_modversion = 43
logger.info("Game modversion : 4.3")
elif 'g_modversion\\4.2' in line:
self.hit_item.update({23: "UT_MOD_BLED", 24: "UT_MOD_KICKED", 25: "UT_MOD_KNIFE_THROWN"})
self.death_cause.update({42: "UT_MOD_FLAG", 43: "UT_MOD_GOOMBA"})
self.urt_modversion = 42
logger.info("Game modversion : 4.2")
elif 'g_modversion\\4.1' in line:
self.hit_points = {0: "HEAD", 1: "HELMET", 2: "TORSO", 3: "KEVLAR", 4: "ARMS", 5: "LEGS", 6: "BODY"}
self.hit_item.update({21: "UT_MOD_KICKED", 22: "UT_MOD_KNIFE_THROWN"})
self.death_cause.update({33: "UT_MOD_BOMBED", 34: "UT_MOD_NUKED", 35: "UT_MOD_NEGEV",
39: "UT_MOD_FLAG", 40: "UT_MOD_GOOMBA"})
self.urt_modversion = 41
logger.info("Game modversion : 4.1")
if 'g_gametype\\0\\' in line or 'g_gametype\\1\\' in line or 'g_gametype\\9\\' in line or 'g_gametype\\11\\' in line:
self.ffa_lms_gametype = True
elif 'g_gametype\\7\\' in line:
self.ctf_gametype = True
elif 'g_gametype\\4\\' in line or 'g_gametype\\5\\' in line:
self.ts_gametype = True
elif 'g_gametype\\3\\' in line:
self.tdm_gametype = True
elif 'g_gametype\\8\\' in line:
self.bomb_gametype = True
elif 'g_gametype\\10\\' in line:
self.freeze_gametype = True
self.default_gear = line.split('g_gear\\')[-1].split('\\')[0] if 'g_gear\\' in line else "%s" % '' if self.urt_modversion > 41 else '0'
if self.log_file.tell() > end_pos:
break
elif not line:
break
if self.log_file.tell() < seek_amount:
self.log_file.seek(0, 0)
else:
cur_pos = start_pos - seek_amount
end_pos = start_pos
start_pos = cur_pos
start_pos = max(start_pos, 0)
self.log_file.seek(start_pos)
def read_log(self):
if self.task_frequency > 0:
if self.task_frequency < 10:
schedule.every(10).seconds.do(self.taskmanager)
else:
schedule.every(self.task_frequency).seconds.do(self.taskmanager)
schedule.every(2).hours.do(self.remove_expired_db_entries)
self.find_game_start()
self.game = Game(self.urt_modversion)
self.log_file.seek(0, 2)
while self.log_file:
schedule.run_pending()
line = self.log_file.readline()
if line:
self.parse_line(line)
else:
if not self.game.live:
self.game.go_live()
time.sleep(.125)
def remove_expired_db_entries(self):
curs.execute("DELETE FROM `ban_points` WHERE `expires` < '{}'".format(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))))
conn.commit()
def taskmanager(self):
try:
with self.players_lock:
counter = self.game.get_number_players()
for player in self.game.players.itervalues():
player_num = player.get_player_num()
if player_num == BOT_PLAYER_NUM:
continue
player_name = player.get_name()
player_admin_role = player.get_admin_role()
if self.warn_expiration > 0 and player.get_warning() > 0 and player.get_last_warn_time() and player.get_last_warn_time() + self.warn_expiration < time.time():
player.clear_warning()
if player.get_warning() > 2 and player_admin_role < 40:
if 'spectator' in player.get_last_warn_msg():
kick_msg = reason = "spectator too long on full server"
elif 'ping' in player.get_last_warn_msg():
kick_msg = "ping too high for this server ^7[^4%s^7]" % player.get_ping_value()
reason = "fix your ping"
elif 'score' in player.get_last_warn_msg():
kick_msg = reason = "score too low for this server"
elif 'team killing' in player.get_last_warn_msg():
kick_msg = reason = "team killing over limit"
player.add_ban_point('auto-kick for team killing', 600)
else:
kick_msg = reason = "too many warnings"
self.game.rcon_say("^2%s ^7was kicked, %s" % (player_name, kick_msg))
self.game.kick_player(player_num, reason=reason)
continue
if self.num_kick_specs > 0 and player_admin_role < 20:
if 'GTV-' in player_name:
continue
elif counter > self.num_kick_specs and player.get_team() == 3 and player.get_time_joined() < (time.time() - 30):
player.add_warning(warning='spectator too long on full server', timer=False)
logger.debug("%s is spectator too long on full server", player_name)
warnmsg = "^1WARNING ^7[^3%d^7]: You are spectator too long on full server" % player.get_warning()
self.game.rcon_tell(player_num, warnmsg, False)
else:
player.clear_specific_warning('spectator too long on full server')
if self.noob_autokick and player_admin_role < 2 and player.get_ip_address() != '0.0.0.0':
kills = player.get_kills()
deaths = player.get_deaths()
ratio = round(float(kills) / float(deaths), 2) if deaths > 0 else 1.0
if kills > 0 and ratio < 0.33:
player.add_warning(warning='score too low for this server', timer=False)
logger.debug("Score of %s is too low, ratio: %s", player_name, ratio)
warnmsg = "^1WARNING ^7[^3%d^7]: Your score is too low for this server" % player.get_warning()
self.game.rcon_tell(player_num, warnmsg, False)
else:
player.clear_specific_warning('score too low for this server')
if player.get_warning() == 3 and player_admin_role < 40:
self.game.rcon_say("^1ALERT: ^2%s ^7auto-kick from warnings if not cleared" % player_name)
self.check_player_ping()
except Exception as err:
logger.error(err, exc_info=True)
def check_player_ping(self):
if self.max_ping > 0:
self.game.quake.rcon_update()
for player in self.game.quake.players:
try:
ping_value = player.ping
gameplayer = self.game.players[player.num]
except KeyError:
continue
else:
if self.max_ping < ping_value < 999 and gameplayer.get_admin_role() < 40:
gameplayer.add_high_ping(ping_value)
self.game.rcon_tell(player.num, "^1WARNING ^7[^3%d^7]: Your ping is too high [^4%d^7]. ^3The maximum allowed ping is %d." % (gameplayer.get_warning(), ping_value, self.max_ping), False)
else:
gameplayer.clear_specific_warning('fix your ping')
def parse_line(self, string):
line = string[7:]
tmp = line.split(":", 1)
line = tmp[1].strip() if len(tmp) > 1 else tmp[0].strip()
option = {'InitGame': self.new_game, 'Warmup': self.handle_warmup, 'InitRound': self.handle_initround,
'Exit': self.handle_exit, 'say': self.handle_say, 'sayteam': self.handle_say, 'saytell': self.handle_saytell,
'ClientUserinfo': self.handle_userinfo, 'ClientUserinfoChanged': self.handle_userinfo_changed,
'ClientBegin': self.handle_begin, 'ClientDisconnect': self.handle_disconnect,
'SurvivorWinner': self.handle_teams_ts_mode, 'Kill': self.handle_kill, 'Hit': self.handle_hit,
'Freeze': self.handle_freeze, 'ThawOutFinished': self.handle_thawout, 'ClientSpawn': self.handle_spawn,
'Flag': self.handle_flag, 'FlagCaptureTime': self.handle_flagcapturetime,
'VotePassed': self.handle_vote_passed, 'VoteFailed': self.handle_vote_failed, 'Callvote': self.handle_callvote}
try:
action = tmp[0].strip()
if action in option:
option[action](line)
elif 'Bomb' in action:
self.handle_bomb(line)
elif 'Pop' in action:
self.handle_bomb_exploded()
except (IndexError, KeyError):
pass
except Exception as err:
logger.error(err, exc_info=True)
def explode_line(self, line):
arr = line.lstrip().lstrip('\\').split('\\')
key = True
key_val = None
values = {}
for item in arr:
if key:
key_val = item
key = False
else:
values[key_val.rstrip()] = item.rstrip()
key_val = None
key = True
return values
def handle_vote_passed(self, line):
if "g_nextmap" in line:
self.game.next_mapname = line.split("g_nextmap")[-1].strip('"').strip()
self.game.rcon_say("^7Vote to set next map to '%s' ^2passed" % self.game.next_mapname)
self.allow_nextmap_vote = False
elif "cyclemap" in line:
self.game.rcon_say("^7Vote to cycle map ^2passed")
elif "clientkickreason" in line:
self.game.rcon_say("^7Vote to kick %s ^2passed" % self.game.players[int(line.split('"clientkickreason "')[-1].strip('"'))].get_name())
def handle_vote_failed(self, line):
if "g_nextmap" in line:
self.game.rcon_say("^7Vote to set next map to '%s' ^1failed" % line.split("g_nextmap")[-1].strip('"').strip())
if self.vote_delay:
self.failed_vote_timer = time.time() + self.vote_delay
elif "cyclemap" in line:
self.game.rcon_say("^7Vote to cycle map ^1failed")
elif "clientkickreason" in line:
self.game.rcon_say("^7Vote to kick %s ^1failed" % self.game.players[int(line.split('"clientkickreason "')[-1].strip('"'))].get_name())
def handle_callvote(self, line):
if "g_nextmap" in line:
self.last_vote = "nextmap"
elif "cyclemap" in line:
self.last_vote = "cyclemap"
elif "clientkickreason" in line:
self.last_vote = "kick"
spam_msg = True
now = time.time()
if "g_nextmap" in line and self.limit_nextmap_votes and not self.allow_nextmap_vote:
self.game.send_rcon('veto')
self.game.rcon_say("^7Voting for Next Map is disabled until the end of this map")
spam_msg = False
if "map" in line and self.failed_vote_timer > now:
remaining_time = int(self.failed_vote_timer - now)
self.game.send_rcon('veto')
self.game.rcon_say("^7Map voting is disabled for ^2%d ^7seconds" % remaining_time)
if spam_msg:
self.game.rcon_bigtext("^7Press ^2F1 ^7or ^1F2 ^7to vote!")
if self.game.get_last_maps() and ('"g_nextmap' in line or '"map' in line):
self.game.rcon_say("^7Last Maps: ^3%s" % ", ".join(self.game.get_last_maps()))
def new_game(self, line):
self.ffa_lms_gametype = True if ('g_gametype\\0\\' in line or 'g_gametype\\1\\' in line or 'g_gametype\\9\\' in line or 'g_gametype\\11\\' in line) else False
self.ctf_gametype = True if 'g_gametype\\7\\' in line else False
self.ts_gametype = True if ('g_gametype\\4\\' in line or 'g_gametype\\5\\' in line) else False
self.tdm_gametype = True if 'g_gametype\\3\\' in line else False
self.bomb_gametype = True if 'g_gametype\\8\\' in line else False
self.freeze_gametype = True if 'g_gametype\\10\\' in line else False
logger.debug("InitGame: Starting game...")
self.game.rcon_clear()
self.stats_reset()
self.game.set_current_map()
self.game.set_all_maps()
if self.support_lowgravity:
self.game.send_rcon("set g_gravity %d" % self.gravity)
if self.bomb_gametype:
detonation_timer = self.game.get_cvar('g_bombexplodetime')
self.explode_time = detonation_timer or "40"
self.last_disconnected_player = None
self.allow_nextmap_vote = True
self.failed_vote_timer = 0
def handle_spawn(self, line):
player_num = int(line)
with self.players_lock:
self.game.players[player_num].set_alive(True)
def handle_flagcapturetime(self, line):
tmp = line.split(": ", 1)
player_num = int(tmp[0])
action = tmp[1]
if action.isdigit():
cap_time = round(float(action) / 1000, 2)
logger.debug("Player %d captured the flag in %s seconds", player_num, cap_time)
with self.players_lock:
self.game.players[player_num].set_flag_capture_time(cap_time)
def handle_warmup(self, line):
logger.debug("Warmup... %s", line)
self.allow_cmd_teams = True
def handle_initround(self, _):
logger.debug("InitRound: Round started...")
if self.ctf_gametype:
with self.players_lock:
for player in self.game.players.itervalues():
player.reset_flag_stats()
elif self.ts_gametype or self.bomb_gametype or self.freeze_gametype:
if self.allow_cmd_teams_round_end:
self.allow_cmd_teams = False
|
MIT License
|
openstack/zun
|
zun/criapi/api_pb2_grpc.py
|
ImageServiceServicer.RemoveImage
|
python
|
def RemoveImage(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
|
RemoveImage removes the image.
This call is idempotent, and must not return an error if the image has
already been removed.
|
https://github.com/openstack/zun/blob/7ed094696b75d2971d1a6d467bb95e2a641ad9ae/zun/criapi/api_pb2_grpc.py#L507-L514
|
import grpc
from zun.criapi import api_pb2 as zun_dot_criapi_dot_api__pb2
class RuntimeServiceStub(object):
def __init__(self, channel):
self.Version = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/Version',
request_serializer=zun_dot_criapi_dot_api__pb2.VersionRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.VersionResponse.FromString,
)
self.RunPodSandbox = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/RunPodSandbox',
request_serializer=zun_dot_criapi_dot_api__pb2.RunPodSandboxRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.RunPodSandboxResponse.FromString,
)
self.StopPodSandbox = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/StopPodSandbox',
request_serializer=zun_dot_criapi_dot_api__pb2.StopPodSandboxRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.StopPodSandboxResponse.FromString,
)
self.RemovePodSandbox = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/RemovePodSandbox',
request_serializer=zun_dot_criapi_dot_api__pb2.RemovePodSandboxRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.RemovePodSandboxResponse.FromString,
)
self.PodSandboxStatus = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/PodSandboxStatus',
request_serializer=zun_dot_criapi_dot_api__pb2.PodSandboxStatusRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.PodSandboxStatusResponse.FromString,
)
self.ListPodSandbox = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/ListPodSandbox',
request_serializer=zun_dot_criapi_dot_api__pb2.ListPodSandboxRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.ListPodSandboxResponse.FromString,
)
self.CreateContainer = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/CreateContainer',
request_serializer=zun_dot_criapi_dot_api__pb2.CreateContainerRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.CreateContainerResponse.FromString,
)
self.StartContainer = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/StartContainer',
request_serializer=zun_dot_criapi_dot_api__pb2.StartContainerRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.StartContainerResponse.FromString,
)
self.StopContainer = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/StopContainer',
request_serializer=zun_dot_criapi_dot_api__pb2.StopContainerRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.StopContainerResponse.FromString,
)
self.RemoveContainer = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/RemoveContainer',
request_serializer=zun_dot_criapi_dot_api__pb2.RemoveContainerRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.RemoveContainerResponse.FromString,
)
self.ListContainers = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/ListContainers',
request_serializer=zun_dot_criapi_dot_api__pb2.ListContainersRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.ListContainersResponse.FromString,
)
self.ContainerStatus = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/ContainerStatus',
request_serializer=zun_dot_criapi_dot_api__pb2.ContainerStatusRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.ContainerStatusResponse.FromString,
)
self.UpdateContainerResources = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/UpdateContainerResources',
request_serializer=zun_dot_criapi_dot_api__pb2.UpdateContainerResourcesRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.UpdateContainerResourcesResponse.FromString,
)
self.ReopenContainerLog = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/ReopenContainerLog',
request_serializer=zun_dot_criapi_dot_api__pb2.ReopenContainerLogRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.ReopenContainerLogResponse.FromString,
)
self.ExecSync = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/ExecSync',
request_serializer=zun_dot_criapi_dot_api__pb2.ExecSyncRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.ExecSyncResponse.FromString,
)
self.Exec = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/Exec',
request_serializer=zun_dot_criapi_dot_api__pb2.ExecRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.ExecResponse.FromString,
)
self.Attach = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/Attach',
request_serializer=zun_dot_criapi_dot_api__pb2.AttachRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.AttachResponse.FromString,
)
self.PortForward = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/PortForward',
request_serializer=zun_dot_criapi_dot_api__pb2.PortForwardRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.PortForwardResponse.FromString,
)
self.ContainerStats = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/ContainerStats',
request_serializer=zun_dot_criapi_dot_api__pb2.ContainerStatsRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.ContainerStatsResponse.FromString,
)
self.ListContainerStats = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/ListContainerStats',
request_serializer=zun_dot_criapi_dot_api__pb2.ListContainerStatsRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.ListContainerStatsResponse.FromString,
)
self.UpdateRuntimeConfig = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/UpdateRuntimeConfig',
request_serializer=zun_dot_criapi_dot_api__pb2.UpdateRuntimeConfigRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.UpdateRuntimeConfigResponse.FromString,
)
self.Status = channel.unary_unary(
'/runtime.v1alpha2.RuntimeService/Status',
request_serializer=zun_dot_criapi_dot_api__pb2.StatusRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.StatusResponse.FromString,
)
class RuntimeServiceServicer(object):
def Version(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def RunPodSandbox(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def StopPodSandbox(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def RemovePodSandbox(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PodSandboxStatus(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def ListPodSandbox(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def CreateContainer(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def StartContainer(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def StopContainer(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def RemoveContainer(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def ListContainers(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def ContainerStatus(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def UpdateContainerResources(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def ReopenContainerLog(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def ExecSync(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Exec(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Attach(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PortForward(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def ContainerStats(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def ListContainerStats(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def UpdateRuntimeConfig(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Status(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_RuntimeServiceServicer_to_server(servicer, server):
rpc_method_handlers = {
'Version': grpc.unary_unary_rpc_method_handler(
servicer.Version,
request_deserializer=zun_dot_criapi_dot_api__pb2.VersionRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.VersionResponse.SerializeToString,
),
'RunPodSandbox': grpc.unary_unary_rpc_method_handler(
servicer.RunPodSandbox,
request_deserializer=zun_dot_criapi_dot_api__pb2.RunPodSandboxRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.RunPodSandboxResponse.SerializeToString,
),
'StopPodSandbox': grpc.unary_unary_rpc_method_handler(
servicer.StopPodSandbox,
request_deserializer=zun_dot_criapi_dot_api__pb2.StopPodSandboxRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.StopPodSandboxResponse.SerializeToString,
),
'RemovePodSandbox': grpc.unary_unary_rpc_method_handler(
servicer.RemovePodSandbox,
request_deserializer=zun_dot_criapi_dot_api__pb2.RemovePodSandboxRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.RemovePodSandboxResponse.SerializeToString,
),
'PodSandboxStatus': grpc.unary_unary_rpc_method_handler(
servicer.PodSandboxStatus,
request_deserializer=zun_dot_criapi_dot_api__pb2.PodSandboxStatusRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.PodSandboxStatusResponse.SerializeToString,
),
'ListPodSandbox': grpc.unary_unary_rpc_method_handler(
servicer.ListPodSandbox,
request_deserializer=zun_dot_criapi_dot_api__pb2.ListPodSandboxRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.ListPodSandboxResponse.SerializeToString,
),
'CreateContainer': grpc.unary_unary_rpc_method_handler(
servicer.CreateContainer,
request_deserializer=zun_dot_criapi_dot_api__pb2.CreateContainerRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.CreateContainerResponse.SerializeToString,
),
'StartContainer': grpc.unary_unary_rpc_method_handler(
servicer.StartContainer,
request_deserializer=zun_dot_criapi_dot_api__pb2.StartContainerRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.StartContainerResponse.SerializeToString,
),
'StopContainer': grpc.unary_unary_rpc_method_handler(
servicer.StopContainer,
request_deserializer=zun_dot_criapi_dot_api__pb2.StopContainerRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.StopContainerResponse.SerializeToString,
),
'RemoveContainer': grpc.unary_unary_rpc_method_handler(
servicer.RemoveContainer,
request_deserializer=zun_dot_criapi_dot_api__pb2.RemoveContainerRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.RemoveContainerResponse.SerializeToString,
),
'ListContainers': grpc.unary_unary_rpc_method_handler(
servicer.ListContainers,
request_deserializer=zun_dot_criapi_dot_api__pb2.ListContainersRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.ListContainersResponse.SerializeToString,
),
'ContainerStatus': grpc.unary_unary_rpc_method_handler(
servicer.ContainerStatus,
request_deserializer=zun_dot_criapi_dot_api__pb2.ContainerStatusRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.ContainerStatusResponse.SerializeToString,
),
'UpdateContainerResources': grpc.unary_unary_rpc_method_handler(
servicer.UpdateContainerResources,
request_deserializer=zun_dot_criapi_dot_api__pb2.UpdateContainerResourcesRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.UpdateContainerResourcesResponse.SerializeToString,
),
'ReopenContainerLog': grpc.unary_unary_rpc_method_handler(
servicer.ReopenContainerLog,
request_deserializer=zun_dot_criapi_dot_api__pb2.ReopenContainerLogRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.ReopenContainerLogResponse.SerializeToString,
),
'ExecSync': grpc.unary_unary_rpc_method_handler(
servicer.ExecSync,
request_deserializer=zun_dot_criapi_dot_api__pb2.ExecSyncRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.ExecSyncResponse.SerializeToString,
),
'Exec': grpc.unary_unary_rpc_method_handler(
servicer.Exec,
request_deserializer=zun_dot_criapi_dot_api__pb2.ExecRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.ExecResponse.SerializeToString,
),
'Attach': grpc.unary_unary_rpc_method_handler(
servicer.Attach,
request_deserializer=zun_dot_criapi_dot_api__pb2.AttachRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.AttachResponse.SerializeToString,
),
'PortForward': grpc.unary_unary_rpc_method_handler(
servicer.PortForward,
request_deserializer=zun_dot_criapi_dot_api__pb2.PortForwardRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.PortForwardResponse.SerializeToString,
),
'ContainerStats': grpc.unary_unary_rpc_method_handler(
servicer.ContainerStats,
request_deserializer=zun_dot_criapi_dot_api__pb2.ContainerStatsRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.ContainerStatsResponse.SerializeToString,
),
'ListContainerStats': grpc.unary_unary_rpc_method_handler(
servicer.ListContainerStats,
request_deserializer=zun_dot_criapi_dot_api__pb2.ListContainerStatsRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.ListContainerStatsResponse.SerializeToString,
),
'UpdateRuntimeConfig': grpc.unary_unary_rpc_method_handler(
servicer.UpdateRuntimeConfig,
request_deserializer=zun_dot_criapi_dot_api__pb2.UpdateRuntimeConfigRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.UpdateRuntimeConfigResponse.SerializeToString,
),
'Status': grpc.unary_unary_rpc_method_handler(
servicer.Status,
request_deserializer=zun_dot_criapi_dot_api__pb2.StatusRequest.FromString,
response_serializer=zun_dot_criapi_dot_api__pb2.StatusResponse.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'runtime.v1alpha2.RuntimeService', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
class ImageServiceStub(object):
def __init__(self, channel):
self.ListImages = channel.unary_unary(
'/runtime.v1alpha2.ImageService/ListImages',
request_serializer=zun_dot_criapi_dot_api__pb2.ListImagesRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.ListImagesResponse.FromString,
)
self.ImageStatus = channel.unary_unary(
'/runtime.v1alpha2.ImageService/ImageStatus',
request_serializer=zun_dot_criapi_dot_api__pb2.ImageStatusRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.ImageStatusResponse.FromString,
)
self.PullImage = channel.unary_unary(
'/runtime.v1alpha2.ImageService/PullImage',
request_serializer=zun_dot_criapi_dot_api__pb2.PullImageRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.PullImageResponse.FromString,
)
self.RemoveImage = channel.unary_unary(
'/runtime.v1alpha2.ImageService/RemoveImage',
request_serializer=zun_dot_criapi_dot_api__pb2.RemoveImageRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.RemoveImageResponse.FromString,
)
self.ImageFsInfo = channel.unary_unary(
'/runtime.v1alpha2.ImageService/ImageFsInfo',
request_serializer=zun_dot_criapi_dot_api__pb2.ImageFsInfoRequest.SerializeToString,
response_deserializer=zun_dot_criapi_dot_api__pb2.ImageFsInfoResponse.FromString,
)
class ImageServiceServicer(object):
def ListImages(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def ImageStatus(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PullImage(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
|
Apache License 2.0
|
googlecloudplatform/gcs-oauth2-boto-plugin
|
gcs_oauth2_boto_plugin/test_oauth2_client.py
|
OAuth2AccountClientTest._RunGetAccessTokenTest
|
python
|
def _RunGetAccessTokenTest(self, expected_rapt=None):
access_token_1 = 'abc123'
self.assertFalse(self.client.fetched_token)
token_1 = self.client.GetAccessToken()
self.assertTrue(self.client.fetched_token)
self.assertEqual(access_token_1, token_1.token)
self.assertEqual(self.start_time + datetime.timedelta(minutes=60),
token_1.expiry)
self.assertEqual(token_1.rapt_token, expected_rapt)
self.client.Reset()
self.mock_datetime.mock_now = (
self.start_time + datetime.timedelta(minutes=55))
token_2 = self.client.GetAccessToken()
self.assertEqual(token_1, token_2)
self.assertEqual(access_token_1, token_2.token)
self.assertFalse(self.client.fetched_token)
self.client.Reset()
self.mock_datetime.mock_now = (
self.start_time + datetime.timedelta(minutes=55, seconds=1))
self.client.datetime_strategy = self.mock_datetime
token_3 = self.client.GetAccessToken()
self.assertTrue(self.client.fetched_token)
self.assertEqual(
self.mock_datetime.mock_now + datetime.timedelta(minutes=60),
token_3.expiry)
self.assertEqual(token_3.rapt_token, expected_rapt)
|
Tests access token gets with self.client.
|
https://github.com/googlecloudplatform/gcs-oauth2-boto-plugin/blob/b749ea3424c26145277dc3c3987220891324023f/gcs_oauth2_boto_plugin/test_oauth2_client.py#L136-L175
|
from __future__ import absolute_import
import datetime
import logging
import os
import stat
import sys
import unittest
from freezegun import freeze_time
from gcs_oauth2_boto_plugin import oauth2_client
import httplib2
try:
from unittest import mock
except ImportError:
import mock
LOG = logging.getLogger('test_oauth2_client')
ACCESS_TOKEN = 'abc123'
RAPT_TOKEN = 'rapt123'
TOKEN_URI = 'https://provider.example.com/oauth/provider?mode=token'
AUTH_URI = 'https://provider.example.com/oauth/provider?mode=authorize'
DEFAULT_CA_CERTS_FILE = os.path.abspath(
os.path.join('gslib', 'data', 'cacerts.txt'))
IS_WINDOWS = 'win32' in str(sys.platform).lower()
class MockDateTime(object):
def __init__(self):
self.mock_now = None
def utcnow(self):
return self.mock_now
class MockOAuth2ServiceAccountClient(oauth2_client.OAuth2ServiceAccountClient):
def __init__(self, client_id, private_key, password, auth_uri, token_uri,
datetime_strategy):
super(MockOAuth2ServiceAccountClient, self).__init__(
client_id, private_key, password, auth_uri=auth_uri,
token_uri=token_uri, datetime_strategy=datetime_strategy,
ca_certs_file=DEFAULT_CA_CERTS_FILE)
self.Reset()
def Reset(self):
self.fetched_token = False
def FetchAccessToken(self, rapt_token=None):
self.fetched_token = True
return oauth2_client.AccessToken(
ACCESS_TOKEN,
GetExpiry(self.datetime_strategy, 3600),
datetime_strategy=self.datetime_strategy,
rapt_token=None)
class MockOAuth2UserAccountClient(oauth2_client.OAuth2UserAccountClient):
def __init__(self, token_uri, client_id, client_secret, refresh_token,
auth_uri, datetime_strategy):
super(MockOAuth2UserAccountClient, self).__init__(
token_uri, client_id, client_secret, refresh_token, auth_uri=auth_uri,
datetime_strategy=datetime_strategy,
ca_certs_file=DEFAULT_CA_CERTS_FILE)
self.Reset()
def Reset(self):
self.fetched_token = False
def FetchAccessToken(self, rapt_token=None):
self.fetched_token = True
return oauth2_client.AccessToken(
ACCESS_TOKEN,
GetExpiry(self.datetime_strategy, 3600),
datetime_strategy=self.datetime_strategy,
rapt_token=RAPT_TOKEN if rapt_token is None else rapt_token)
def GetExpiry(datetime_strategy, length_in_seconds):
token_expiry = (datetime_strategy.utcnow()
+ datetime.timedelta(seconds=length_in_seconds))
return token_expiry
def CreateMockUserAccountClient(mock_datetime):
return MockOAuth2UserAccountClient(
TOKEN_URI, 'clid', 'clsecret', 'ref_token_abc123', AUTH_URI,
mock_datetime)
def CreateMockServiceAccountClient(mock_datetime):
return MockOAuth2ServiceAccountClient(
'clid', 'private_key', 'password', AUTH_URI, TOKEN_URI, mock_datetime)
class OAuth2AccountClientTest(unittest.TestCase):
def setUp(self):
self.tempdirs = []
self.mock_datetime = MockDateTime()
self.start_time = datetime.datetime(2011, 3, 1, 11, 25, 13, 300826)
self.mock_datetime.mock_now = self.start_time
def testGetAccessTokenUserAccount(self):
self.client = CreateMockUserAccountClient(self.mock_datetime)
self._RunGetAccessTokenTest(expected_rapt=RAPT_TOKEN)
def testGetAccessTokenServiceAccount(self):
self.client = CreateMockServiceAccountClient(self.mock_datetime)
self._RunGetAccessTokenTest()
|
Apache License 2.0
|
ibm/clai
|
clai/server/orchestration/patterns/max_orchestrator/max_orchestrator.py
|
MaxOrchestrator.choose_action
|
python
|
def choose_action(self, command: State, agent_names: List[str],
candidate_actions: Optional[List[Union[Action, List[Action]]]],
force_response: bool, pre_post_state: str) -> Optional[Action]:
if not candidate_actions:
return None
confs = [self.__calculate_confidence__(action) for action in candidate_actions]
idx_maxconf = np.argmax(confs)
max_conf = confs[idx_maxconf]
selected_candidate = candidate_actions[idx_maxconf]
if force_response:
return selected_candidate
if max_conf >= self.threshold:
return selected_candidate
return None
|
Choose an action for CLAI to respond with
|
https://github.com/ibm/clai/blob/3215e3676b4a0857a56a1e126a052f089be5ff03/clai/server/orchestration/patterns/max_orchestrator/max_orchestrator.py#L37-L57
|
from typing import Optional, List, Union
from pathlib import Path
import os
import json
import numpy as np
from clai.server.orchestration.orchestrator import Orchestrator
from clai.server.command_message import State, Action
class MaxOrchestrator(Orchestrator):
def __init__(self):
super(MaxOrchestrator, self).__init__()
self._config_path = os.path.join(
Path(__file__).parent.absolute(),
'config.json'
)
self.__read_config__()
def __read_config__(self):
with open(self._config_path, 'r') as fileobj:
config = json.load(fileobj)
self.threshold = config['threshold']
|
MIT License
|
shiyuechengineer/meraki-dashboard
|
meraki/aio/api/switch.py
|
AsyncSwitch.updateDeviceSwitchRoutingInterface
|
python
|
def updateDeviceSwitchRoutingInterface(self, serial: str, interfaceId: str, **kwargs):
kwargs.update(locals())
if 'multicastRouting' in kwargs:
options = ['disabled', 'enabled', 'IGMP snooping querier']
assert kwargs['multicastRouting'] in options, f'''"multicastRouting" cannot be "{kwargs['multicastRouting']}", & must be set to one of: {options}'''
metadata = {
'tags': ['switch', 'configure', 'routing', 'interfaces'],
'operation': 'updateDeviceSwitchRoutingInterface'
}
resource = f'/devices/{serial}/switch/routing/interfaces/{interfaceId}'
body_params = ['name', 'subnet', 'interfaceIp', 'multicastRouting', 'vlanId', 'ospfSettings', ]
payload = {k.strip(): v for k, v in kwargs.items() if k.strip() in body_params}
return self._session.put(metadata, resource, payload)
|
**Update a layer 3 interface for a switch**
https://developer.cisco.com/meraki/api-v1/#!update-device-switch-routing-interface
- serial (string): (required)
- interfaceId (string): (required)
- name (string): A friendly name or description for the interface or VLAN.
- subnet (string): The network that this routed interface is on, in CIDR notation (ex. 10.1.1.0/24).
- interfaceIp (string): The IP address this switch will use for layer 3 routing on this VLAN or subnet. This cannot be the same as the switch's management IP.
- multicastRouting (string): Enable multicast support if, multicast routing between VLANs is required. Options are, 'disabled', 'enabled' or 'IGMP snooping querier'.
- vlanId (integer): The VLAN this routed interface is on. VLAN must be between 1 and 4094.
- ospfSettings (object): The OSPF routing settings of the interface.
|
https://github.com/shiyuechengineer/meraki-dashboard/blob/f00442acf762a94e7e446f80a2485d120e7090d5/meraki/aio/api/switch.py#L228-L258
|
class AsyncSwitch:
def __init__(self, session):
super().__init__()
self._session = session
def getDeviceSwitchPorts(self, serial: str):
metadata = {
'tags': ['switch', 'configure', 'ports'],
'operation': 'getDeviceSwitchPorts'
}
resource = f'/devices/{serial}/switch/ports'
return self._session.get(metadata, resource)
def cycleDeviceSwitchPorts(self, serial: str, ports: list):
kwargs = locals()
metadata = {
'tags': ['switch', 'liveTools', 'ports'],
'operation': 'cycleDeviceSwitchPorts'
}
resource = f'/devices/{serial}/switch/ports/cycle'
body_params = ['ports', ]
payload = {k.strip(): v for k, v in kwargs.items() if k.strip() in body_params}
return self._session.post(metadata, resource, payload)
def getDeviceSwitchPortsStatuses(self, serial: str, **kwargs):
kwargs.update(locals())
metadata = {
'tags': ['switch', 'monitor', 'ports', 'statuses'],
'operation': 'getDeviceSwitchPortsStatuses'
}
resource = f'/devices/{serial}/switch/ports/statuses'
query_params = ['t0', 'timespan', ]
params = {k.strip(): v for k, v in kwargs.items() if k.strip() in query_params}
return self._session.get(metadata, resource, params)
def getDeviceSwitchPortsStatusesPackets(self, serial: str, **kwargs):
kwargs.update(locals())
metadata = {
'tags': ['switch', 'monitor', 'ports', 'statuses', 'packets'],
'operation': 'getDeviceSwitchPortsStatusesPackets'
}
resource = f'/devices/{serial}/switch/ports/statuses/packets'
query_params = ['t0', 'timespan', ]
params = {k.strip(): v for k, v in kwargs.items() if k.strip() in query_params}
return self._session.get(metadata, resource, params)
def getDeviceSwitchPort(self, serial: str, portId: str):
metadata = {
'tags': ['switch', 'configure', 'ports'],
'operation': 'getDeviceSwitchPort'
}
resource = f'/devices/{serial}/switch/ports/{portId}'
return self._session.get(metadata, resource)
def updateDeviceSwitchPort(self, serial: str, portId: str, **kwargs):
kwargs.update(locals())
if 'type' in kwargs:
options = ['trunk', 'access']
assert kwargs['type'] in options, f'''"type" cannot be "{kwargs['type']}", & must be set to one of: {options}'''
if 'stpGuard' in kwargs:
options = ['disabled', 'root guard', 'bpdu guard', 'loop guard']
assert kwargs['stpGuard'] in options, f'''"stpGuard" cannot be "{kwargs['stpGuard']}", & must be set to one of: {options}'''
if 'udld' in kwargs:
options = ['Alert only', 'Enforce']
assert kwargs['udld'] in options, f'''"udld" cannot be "{kwargs['udld']}", & must be set to one of: {options}'''
if 'accessPolicyType' in kwargs:
options = ['Open', 'Custom access policy', 'MAC allow list', 'Sticky MAC allow list']
assert kwargs['accessPolicyType'] in options, f'''"accessPolicyType" cannot be "{kwargs['accessPolicyType']}", & must be set to one of: {options}'''
metadata = {
'tags': ['switch', 'configure', 'ports'],
'operation': 'updateDeviceSwitchPort'
}
resource = f'/devices/{serial}/switch/ports/{portId}'
body_params = ['name', 'tags', 'enabled', 'type', 'vlan', 'voiceVlan', 'allowedVlans', 'poeEnabled', 'isolationEnabled', 'rstpEnabled', 'stpGuard', 'linkNegotiation', 'portScheduleId', 'udld', 'accessPolicyType', 'accessPolicyNumber', 'macAllowList', 'stickyMacAllowList', 'stickyMacAllowListLimit', 'stormControlEnabled', 'flexibleStackingEnabled', ]
payload = {k.strip(): v for k, v in kwargs.items() if k.strip() in body_params}
return self._session.put(metadata, resource, payload)
def getDeviceSwitchRoutingInterfaces(self, serial: str):
metadata = {
'tags': ['switch', 'configure', 'routing', 'interfaces'],
'operation': 'getDeviceSwitchRoutingInterfaces'
}
resource = f'/devices/{serial}/switch/routing/interfaces'
return self._session.get(metadata, resource)
def createDeviceSwitchRoutingInterface(self, serial: str, name: str, interfaceIp: str, vlanId: int, **kwargs):
kwargs.update(locals())
if 'multicastRouting' in kwargs:
options = ['disabled', 'enabled', 'IGMP snooping querier']
assert kwargs['multicastRouting'] in options, f'''"multicastRouting" cannot be "{kwargs['multicastRouting']}", & must be set to one of: {options}'''
metadata = {
'tags': ['switch', 'configure', 'routing', 'interfaces'],
'operation': 'createDeviceSwitchRoutingInterface'
}
resource = f'/devices/{serial}/switch/routing/interfaces'
body_params = ['name', 'subnet', 'interfaceIp', 'multicastRouting', 'vlanId', 'defaultGateway', 'ospfSettings', ]
payload = {k.strip(): v for k, v in kwargs.items() if k.strip() in body_params}
return self._session.post(metadata, resource, payload)
def getDeviceSwitchRoutingInterface(self, serial: str, interfaceId: str):
metadata = {
'tags': ['switch', 'configure', 'routing', 'interfaces'],
'operation': 'getDeviceSwitchRoutingInterface'
}
resource = f'/devices/{serial}/switch/routing/interfaces/{interfaceId}'
return self._session.get(metadata, resource)
|
MIT License
|
thesis/chain-bitcoin-python
|
chain_bitcoin/endpoints.py
|
get_block_by_height
|
python
|
def get_block_by_height(height, config=default_config, **kw):
return _get_block(str(height), config, **kw)
|
https://chain.com/docs/v1/curl/#bitcoin-block
Arguments:
height: integer
A block height.
Return: ``Block``
|
https://github.com/thesis/chain-bitcoin-python/blob/a242a538c6905467d2342183e8d20558c492dcd2/chain_bitcoin/endpoints.py#L304-L315
|
from __future__ import absolute_import
__all__ = []
import functools
import json
from . import urls
from .config import *
from .exceptions import *
from .map_list import *
from .models import *
base_url = 'https://api.chain.com'
make_url = functools.partial(urls.make_url, base_url)
json_header = {'content-type': 'application/json'}
def json_args(x):
return dict(data=json.dumps(x), headers=json_header)
def parse_response_data(response):
x = response.json()
if 'error' in x:
raise ChainError(x['error'])
return x
def endpoint(f):
__all__.append(f.__name__)
return f
@endpoint
def get_address(address, config=default_config, **kw):
config = config.replace(**kw)
require_api_key_id(config)
requests = config_to_requests(config)
url = make_url(['v1', config.block_chain, 'addresses', address])
response_data = parse_response_data(requests.get(url))
return Address.from_dict(response_data)
@endpoint
def get_addresses(addresses, config=default_config, **kw):
config = config.replace(**kw)
require_api_key_id(config)
requests = config_to_requests(config)
url = make_url(
['v1', config.block_chain, 'addresses', ','.join(addresses)]
)
response_data = parse_response_data(requests.get(url))
return map_list(Address.from_dict, response_data)
@endpoint
def get_address_transactions(address, limit=None, config=default_config, **kw):
config = config.replace(**kw)
require_api_key_id(config)
requests = config_to_requests(config)
url = make_url(
['v1', config.block_chain, 'addresses', address, 'transactions'],
[('limit', limit)]
)
response_data = parse_response_data(requests.get(url))
return map_list(Transaction.from_dict, response_data)
@endpoint
def get_addresses_transactions(addresses, limit=None, config=default_config,
**kw):
config = config.replace(**kw)
require_api_key_id(config)
requests = config_to_requests(config)
url = make_url(
['v1', config.block_chain, 'addresses', ','.join(addresses),
'transactions'],
[('limit', limit)]
)
response_data = parse_response_data(requests.get(url))
return map_list(Transaction.from_dict, response_data)
@endpoint
def get_address_unspents(address, limit=None, config=default_config, **kw):
config = config.replace(**kw)
require_api_key_id(config)
requests = config_to_requests(config)
url = make_url(
['v1', config.block_chain, 'addresses', address, 'unspents'],
[('limit', limit)]
)
response_data = parse_response_data(requests.get(url))
return map_list(Output.from_dict, response_data)
@endpoint
def get_addresses_unspents(addresses, limit=None, config=default_config, **kw):
config = config.replace(**kw)
require_api_key_id(config)
requests = config_to_requests(config)
url = make_url(
['v1', config.block_chain, 'addresses', ','.join(addresses),
'unspents'],
[('limit', limit)]
)
response_data = parse_response_data(requests.get(url))
return map_list(Output.from_dict, response_data)
@endpoint
def get_address_op_returns(address, config=default_config, **kw):
config = config.replace(**kw)
require_api_key_id(config)
requests = config_to_requests(config)
url = make_url(
['v1', config.block_chain, 'addresses', address, 'op-returns']
)
response_data = parse_response_data(requests.get(url))
return map_list(OpReturn.from_dict, response_data)
@endpoint
def get_transaction(transaction_hash, config=default_config, **kw):
config = config.replace(**kw)
require_api_key_id(config)
requests = config_to_requests(config)
url = make_url(['v1', config.block_chain, 'transactions', transaction_hash])
response_data = parse_response_data(requests.get(url))
return Transaction.from_dict(response_data)
@endpoint
def get_transaction_op_return(transaction_hash, config=default_config, **kw):
config = config.replace(**kw)
require_api_key_id(config)
requests = config_to_requests(config)
url = make_url(['v1', config.block_chain, 'transactions', transaction_hash,
'op-return'])
response_data = parse_response_data(requests.get(url))
return OpReturn.from_dict(response_data)
@endpoint
def send_transaction(hex, config=default_config, **kw):
config = config.replace(**kw)
require_api_key_secret(config)
requests = config_to_requests(config)
url = make_url(['v1', config.block_chain, 'transactions'])
request_data = {'hex': hex}
response = requests.put(url, **json_args(request_data))
response_data = parse_response_data(response)
return SendTransactionResult.from_dict(response_data)
def _get_block(x, config=default_config, **kw):
config = config.replace(**kw)
require_api_key_id(config)
requests = config_to_requests(config)
url = make_url(['v1', config.block_chain, 'blocks', x])
response_data = parse_response_data(requests.get(url))
return Block.from_dict(response_data)
@endpoint
def get_block_by_hash(block_hash, config=default_config, **kw):
return _get_block(block_hash, config, **kw)
@endpoint
|
MIT License
|
mlinderm/npsv
|
paper/variant_stats.py
|
make_argument_parser
|
python
|
def make_argument_parser():
parser = argparse.ArgumentParser(
__file__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="Compute summary statistics from Truvari HG002 tp-call.vcf",
)
parser.add_argument(
"--sample",
help="Sample name",
type=str,
default="HG002",
)
subparsers = parser.add_subparsers(dest="command", help="Sub-command help")
parser_gq = subparsers.add_parser("gq", help="Concordance by GQ bucket")
parser_vntr = subparsers.add_parser("vntr", help="Error enrichment by VNTR label")
parser_len = subparsers.add_parser("len", help="Concordance by SVLEN")
parser_list = subparsers.add_parser("list", help="List of all variants and metadata")
parser_list = subparsers.add_parser("vntr-conc", help="Concordnace by VNTR label")
parser.add_argument("vcf", metavar="TP-VCF", type=str,
help="Truvari 'tp-call.vcf' file")
return parser
|
Construct argument parser
|
https://github.com/mlinderm/npsv/blob/02a17f7c889e345a3d2af67ec26f0492c308cf73/paper/variant_stats.py#L10-L35
|
import argparse, collections, sys
import numpy as np
import pandas as pd
import vcf
import pybedtools.bedtool as bed
from npsv.variant import variant_descriptor
|
MIT License
|
jwlodek/py_cui
|
py_cui/grid.py
|
Grid.get_cell_dimensions
|
python
|
def get_cell_dimensions(self):
return self._row_height, self._column_width
|
Gets size in characters of single (row, column) cell location
Returns
-------
row_height : int
height of row in characters
column_width : int
width of column in characters
|
https://github.com/jwlodek/py_cui/blob/e5f86515bb12929073ec62d27f061092d8040c23/py_cui/grid.py#L99-L110
|
import py_cui
class Grid:
def __init__(self, num_rows, num_columns, height, width, logger):
self._num_rows = num_rows
self._num_columns = num_columns
self._height = height
self._width = width
self._offset_x = self._width % self._num_columns - 1
self._offset_y = self._height % self._num_rows - 1
self._row_height = int(self._height / self._num_rows)
self._column_width = int(self._width / self._num_columns)
self._logger = logger
def get_dimensions(self):
return self._num_rows, self._num_columns
def get_dimensions_absolute(self):
return self._height, self._width
def get_offsets(self):
return self._offset_x, self._offset_y
|
BSD 3-Clause New or Revised License
|
nitely/python-react-v8
|
react/react.py
|
React.as_json
|
python
|
def as_json(self):
return self.to_json(self.opts)
|
Serialize :py:attr:`.opts` into a json.\
This is used internally and can\
be overridden to provide a faster\
json serializer.
:return: Opts in json format
:rtype: str
|
https://github.com/nitely/python-react-v8/blob/a47ec7156d302b208753e0e8df028406bd04e92a/react/react.py#L80-L90
|
from __future__ import unicode_literals
import json
import six
from . import utils
__all__ = [
'set_up',
'React']
_DEFINE_GLOBALS_SCRIPT = (
'var global = global || this,'
'console = console || {'
' warn: function(){},'
' error: function(){},'
' log: function(){},'
' info: function(){}};')
def set_up():
utils.set_up()
utils.run_script(_DEFINE_GLOBALS_SCRIPT)
class React:
def __init__(self, opts):
self.opts = opts
def build_js_script(self):
return ('global.RenderToString({})'
.format(self.as_json()))
def render(self):
return utils.run_script(self.build_js_script())
|
MIT License
|
shsiders/oclubs
|
oclubs/blueprints/clubblueprint.py
|
adjust_status_all_free_join
|
python
|
def adjust_status_all_free_join(club_type):
if club_type == 'all':
clubs = Club.allclubs(active_only=False)
elif club_type == '11-12':
clubs = Club.allclubs(active_only=False, grade_limit=[11, 12])
elif club_type == '9-10':
clubs = Club.allclubs(active_only=False, grade_limit=[9, 10])
else:
abort(404)
clubs = filter(lambda c: c.reactivate, clubs)
for club in clubs:
club.joinmode = ClubJoinMode.FREE_JOIN
flash('All clubs are free to join now.', 'adjust_status')
return redirect(url_for('.adjust_status', club_type=club_type))
|
Change all clubs' join mode to free join
|
https://github.com/shsiders/oclubs/blob/1003f5079fbea1415db1c70e3aabfc2e1afd4236/oclubs/blueprints/clubblueprint.py#L525-L539
|
from __future__ import absolute_import, unicode_literals, division
from datetime import date
from flask import (
Blueprint, render_template, url_for, request, redirect, flash, abort
)
from flask_login import current_user, login_required, fresh_login_required
from oclubs.objs import Activity, User, Club, Upload, FormattedText
from oclubs.enums import UserType, ClubType, ClubJoinMode, ActivityTime
from oclubs.shared import (
download_xlsx, get_callsign_decorator, special_access_required,
render_email_template, Pagination, require_active_club,
require_student_membership, require_membership, require_not_student,
true_or_fail, form_is_valid, fail
)
from oclubs.exceptions import UploadNotSupported, AlreadyExists, NoRow
from oclubs.access import siteconfig
clubblueprint = Blueprint('clubblueprint', __name__)
@clubblueprint.route('/view/<clubfilter:club_filter>')
def clublist(club_filter):
num = 20
clubs = Club.randomclubs(num, **club_filter.to_kwargs())
info = {}
for club in clubs:
info[club.name] = club.activities()[0] if club.activities() else None
return render_template('club/clublist.html.j2',
is_list=True,
clubs=clubs,
info=info,
club_filter=club_filter)
@clubblueprint.route('/')
def home_redirect():
return redirect(url_for('.clublist', club_filter='all'))
@clubblueprint.route('/<club>/')
@get_callsign_decorator(Club, 'club')
def clubintro(club):
free_join = (current_user.is_authenticated and
(club.joinmode == ClubJoinMode.FREE_JOIN and
current_user.type == UserType.STUDENT and
current_user not in club.members))
see_email = (current_user.is_authenticated and
(current_user.type == UserType.ADMIN or
current_user == club.leader))
is_admin = (current_user.is_authenticated and
(current_user.type == UserType.CLASSROOM_ADMIN or
current_user.type == UserType.DIRECTOR or
current_user.type == UserType.ADMIN))
invite_member = club.joinmode == ClubJoinMode.BY_INVITATION
return render_template('club/clubintro.html.j2',
free_join=free_join,
see_email=see_email,
is_admin=is_admin,
invite_member=invite_member)
@clubblueprint.route('/<club>/introduction/submit', methods=['POST'])
@get_callsign_decorator(Club, 'club')
@login_required
@require_active_club
def clubintro_submit(club):
true_or_fail(current_user.type == UserType.STUDENT,
'You may not join clubs.', 'join')
true_or_fail(club.joinmode == ClubJoinMode.FREE_JOIN,
'You may not join this club.', 'join')
if form_is_valid():
try:
club.add_member(current_user)
except AlreadyExists:
fail('You are already in %s.' % club.name, 'join')
return redirect(url_for('.clubintro', club=club.callsign))
parameters = {'club': club, 'current_user': current_user}
contents = render_email_template('joinclubs', parameters)
club.leader.email_user('New Club Member - ' + club.name, contents)
club.leader.notify_user('%s has joined %s.'
% (current_user.nickname, club.name))
flash('You have successfully joined ' + club.name + '.', 'join')
return redirect(url_for('.clubintro', club=club.callsign))
@clubblueprint.route('/<club>/new_leader')
@get_callsign_decorator(Club, 'club')
@require_active_club
@special_access_required
@fresh_login_required
def newleader(club):
return render_template('club/newleader.html.j2')
@clubblueprint.route('/<club>/new_leader/submit', methods=['POST'])
@get_callsign_decorator(Club, 'club')
@require_active_club
@special_access_required
@fresh_login_required
def newleader_submit(club):
leader_old = club.leader
members_obj = club.members
leader_name = request.form['leader']
for member_obj in members_obj:
if leader_name == member_obj.passportname:
club.leader = member_obj
break
else:
abort(500)
for member in club.teacher_and_members:
parameters = {'user': member, 'club': club, 'leader_old': leader_old}
contents = render_email_template('newleader', parameters)
member.email_user('New Leader - ' + club.name, contents)
member.notify_user(club.leader.nickname +
' becomes the new leader of ' + club.name + '.')
return redirect(url_for('.clubintro', club=club.callsign))
@clubblueprint.route('/<club>/members')
@get_callsign_decorator(Club, 'club')
@require_membership
def memberinfo(club):
has_access = (current_user == club.leader or
current_user == club.teacher or
current_user.type == UserType.ADMIN)
return render_template('club/memberinfo.html.j2',
has_access=has_access)
@clubblueprint.route('/<club>/members/notify_members', methods=['POST'])
@get_callsign_decorator(Club, 'club')
@require_active_club
@special_access_required
def memberinfo_notify_members(club):
notify_contents = request.form['contents']
if not notify_contents:
flash('Contents cannot be blank', 'notify_members')
return redirect(url_for('.memberinfo', club=club.callsign))
for member in club.members:
member.notify_user(notify_contents)
parameters = {'member': member,
'club': club,
'notify_contents': notify_contents}
contents = render_email_template('notifymembers', parameters)
member.email_user('Notification - ' + club.name, contents)
flash('Notification sent.', 'notify_members')
return redirect(url_for('.memberinfo', club=club.callsign))
@clubblueprint.route('/<club>/members/download')
@get_callsign_decorator(Club, 'club')
@require_membership
@special_access_required
def memberinfo_download(club):
info = []
info.append(('Nick Name', 'Class', 'Passport Name', 'Email'))
info.extend([(member.nickname, member.grade_and_class, member.passportname,
member.email) for member in club.members])
return download_xlsx('Member Info.xlsx', info)
@clubblueprint.route('/<club>/edit_info')
@get_callsign_decorator(Club, 'club')
@require_active_club
@special_access_required
def changeclubinfo(club):
return render_template('club/changeclubinfo.html.j2')
@clubblueprint.route('/<club>/edit_info/submit', methods=['GET', 'POST'])
@get_callsign_decorator(Club, 'club')
@require_active_club
@special_access_required
def changeclubinfo_submit(club):
intro = request.form['intro']
if len(intro) > 90:
fail('Your one sentence description is too long.', 'clubinfo')
return redirect(url_for('.changeclubinfo', club=club.callsign))
elif request.form['intro'] != '':
club.intro = request.form['intro']
desc = request.form['description'].strip()
if desc:
club.description = FormattedText.handle(current_user, club,
request.form['description'])
if 'picture' in request.files:
file = request.files['picture']
if file.filename != '':
try:
club.picture = Upload.handle(current_user, club,
file)
except UploadNotSupported:
fail('Please upload the correct file type.', 'clubinfo')
return redirect(url_for('.changeclubinfo', club=club.callsign))
teacher_email = request.form['email']
if teacher_email != club.teacher.studentid:
club.teacher = User.find_teacher(teacher_email)
location = request.form['location']
if location != club.location and location != '':
club.location = location
for member in club.teacher_and_members:
parameters = {'user': member, 'club': club}
contents = render_email_template('changeclubinfo', parameters)
member.email_user('Change Club Info - ' + club.name, contents)
member.notify_user(club.name + '\'s information has been changed.')
return redirect(url_for('.clubintro', club=club.callsign))
@clubblueprint.route('/<club>/adjust_member')
@get_callsign_decorator(Club, 'club')
@require_active_club
@special_access_required
@fresh_login_required
def adjustmember(club):
invite_member = club.joinmode == ClubJoinMode.BY_INVITATION
return render_template('club/adjustmember.html.j2',
invite_member=invite_member)
@clubblueprint.route('/<club>/adjust_member/submit', methods=['POST'])
@get_callsign_decorator(Club, 'club')
@require_active_club
@special_access_required
@fresh_login_required
def adjustmember_submit(club):
member = User(request.form['uid'])
true_or_fail(current_user != member,
'You cannot expel yourself.', 'expelled')
if form_is_valid():
club.remove_member(member)
parameters = {'member': member, 'club': club}
contents = render_email_template('adjustmember', parameters)
member.email_user('Member Adjustment - ' + club.name, contents)
member.notify_user('You have been moved out of ' + club.name + '.')
flash(member.nickname + ' has been expelled.', 'expelled')
return redirect(url_for('.adjustmember', club=club.callsign))
@clubblueprint.route('/<club>/invite_member/submit', methods=['POST'])
@get_callsign_decorator(Club, 'club')
@require_active_club
@special_access_required
@fresh_login_required
def invitemember(club):
true_or_fail(club.joinmode == ClubJoinMode.BY_INVITATION,
'You cannot invite members when the join mode is not '
'by invitation.', 'invite_member')
if form_is_valid():
new_member = User.find_user(request.form['gradeclass'],
request.form['gnumber'])
if new_member is None:
fail('Please input correct user info to invite.', 'invite_member')
else:
parameters = {'club': club, 'member': new_member}
contents = render_email_template('invitemember', parameters)
new_member.email_user('Invitation - ' + club.name, contents)
if new_member in club.members:
fail('%s is already in the club.' % new_member.nickname,
'invite_member')
else:
club.send_invitation(new_member)
flash('The invitation has been sent to %s(%s).'
% (new_member.gnumber_id, new_member.nickname),
'invite_member')
return redirect(url_for('.adjustmember', club=club.callsign))
@clubblueprint.route('/<club>/activities/', defaults={'page': 1})
@clubblueprint.route('/<club>/activities/<int:page>')
@get_callsign_decorator(Club, 'club')
def clubactivities(club, page):
act_num = 20
count, acts = club.activities(limit=((page-1)*act_num, act_num))
pagination = Pagination(page, act_num, count)
return render_template('club/clubact.html.j2',
acts=acts,
pagination=pagination)
@clubblueprint.route('/<club>/photos/')
@get_callsign_decorator(Club, 'club')
def clubphoto(club):
uploads = club.allactphotos()
return render_template('club/clubphoto.html.j2',
uploads=uploads)
@clubblueprint.route('/<club>/new_activity')
@get_callsign_decorator(Club, 'club')
@require_active_club
@special_access_required
def newact(club):
years = (lambda m: map(lambda n: m + n, range(2)))(date.today().year)
return render_template('club/newact.html.j2',
years=years)
@clubblueprint.route('/<club>/new_activity/submit', methods=['POST'])
@get_callsign_decorator(Club, 'club')
@require_active_club
@special_access_required
def newact_submit(club):
try:
a = Activity.new()
a.name = request.form['name']
if not a.name:
fail('Please enter the name of the new activity.', 'newact')
return redirect(url_for('.newact', club=club.callsign))
a.club = club
a.description = FormattedText.handle(current_user, club,
request.form['description'])
a.post = FormattedText(0)
try:
actdate = date(int(request.form['year']),
int(request.form['month']),
int(request.form['day']))
except ValueError:
fail('Invalid date.', 'newact')
return redirect(url_for('.newact', club=club.callsign))
if actdate < date.today():
fail('Please enter a date not eariler than today.', 'newact')
return redirect(url_for('.newact', club=club.callsign))
a.date = actdate
time = ActivityTime[request.form['act_type'].upper()]
is_other_act = time in [ActivityTime.UNKNOWN, ActivityTime.OTHERS]
a.time = time
a.location = request.form['location']
time_type = request.form['time_type']
try:
cas = int(request.form['cas'])
except ValueError:
fail('Invalid CAS hours.', 'newact')
return redirect(url_for('.newact', club=club.callsign))
if cas < 0:
fail('Invalid CAS hours.', 'newact')
return redirect(url_for('.newact', club=club.callsign))
if time_type == 'hours':
a.cas = cas
else:
a.cas = cas / 60
a.selections = []
a.reservation = None
a.create()
flash(a.name + ' has been successfully created.', 'newact')
except ValueError:
fail('Please input all information to create a new activity.',
'newact')
else:
for member in club.teacher_and_members:
parameters = {'member': member, 'club': club, 'act': a,
'is_other_act': is_other_act}
contents = render_email_template('newact', parameters)
member.email_user(a.name + ' - ' + club.name, contents)
member.notify_user(club.name + ' is going to host ' + a.name +
' on ' + actdate.strftime('%b-%d-%y') + '.')
return redirect(url_for('.newact', club=club.callsign))
@clubblueprint.route('/<club>/hongmei_status')
@get_callsign_decorator(Club, 'club')
@special_access_required
def hongmei_status(club):
acts = club.activities([ActivityTime.HONGMEI], (False, True))
return render_template('club/hmstatus.html.j2',
acts=acts)
@clubblueprint.route('/<club>/hongmei_status/download')
@get_callsign_decorator(Club, 'club')
@special_access_required
def hongmei_status_download(club):
result = []
result.append(['Date', 'Members'])
hongmei = club.activities([ActivityTime.HONGMEI], (False, True))
for each in hongmei:
result_each = []
result_each.append(each.date.strftime('%b-%d-%y'))
members = each.signup_list()
members_result = ''
for member in members:
if member['consentform'] == 0:
consentform = 'No'
else:
consentform = 'Yes'
members_result += member['user'].nickname + ': ' + str(member['user'].phone) + ' (Consent From Handed? ' + consentform + ')\n'
result_each.append(members_result)
result.append(result_each)
return download_xlsx('HongMei Status - ' + club.name + '.xlsx', result)
@clubblueprint.route('/<club>/new_hongmei_schedule')
@get_callsign_decorator(Club, 'club')
@require_active_club
@special_access_required
def newhm(club):
acts = club.activities([ActivityTime.HONGMEI], (False, True))
years = (lambda m: map(lambda n: m + n, range(2)))(date.today().year)
return render_template('club/newhm.html.j2',
acts=acts,
years=years)
@clubblueprint.route('/<club>/new_hongmei_schedule/submit', methods=['POST'])
@get_callsign_decorator(Club, 'club')
@require_active_club
@special_access_required
def newhm_submit(club):
contents = request.form['contents']
try:
actdate = date(int(request.form['year']),
int(request.form['month']),
int(request.form['day']))
except ValueError:
fail('Please input valid date to submit.', 'newhm')
if contents == '' or actdate < date.today():
fail('Please input contents or correct date to submit.', 'newhm')
if form_is_valid():
a = Activity.new()
a.name = contents
a.club = club
a.description = FormattedText.emptytext()
a.date = actdate
a.time = ActivityTime.HONGMEI
a.location = 'HongMei Elementary School'
a.cas = 1
a.post = FormattedText.emptytext()
a.selections = []
a.create()
return redirect(url_for('.newhm', club=club.callsign))
@clubblueprint.route('/adjust_status/', defaults={'club_type': 'all'})
@clubblueprint.route('/adjust_status/<club_type>')
@special_access_required
@require_not_student
def adjust_status(club_type):
if club_type == 'all':
clubs = Club.allclubs(active_only=False)
elif club_type == '11-12':
clubs = Club.allclubs(active_only=False, grade_limit=[11, 12])
elif club_type == '9-10':
clubs = Club.allclubs(active_only=False, grade_limit=[9, 10])
else:
abort(404)
clubs = filter(lambda c: c.reactivate, clubs)
return render_template('club/adjuststatus.html.j2',
clubs=clubs,
ClubJoinMode=ClubJoinMode,
club_type=club_type)
@clubblueprint.route('/adjust_status/submit', defaults={'club_type': 'all'},
methods=['POST'])
@clubblueprint.route('/adjust_status/<club_type>/submit', methods=['POST'])
@special_access_required
@require_not_student
def adjust_status_submit(club_type):
ids = request.form.getlist('activeness')
clubs = map(Club, ids)
for club in clubs:
if club.is_active:
club.is_active = False
else:
club.is_active = True
ids = request.form.getlist('joinmode')
clubs = map(Club, ids)
for club in clubs:
if club.joinmode == ClubJoinMode.FREE_JOIN:
club.joinmode = ClubJoinMode.BY_INVITATION
elif club.joinmode == ClubJoinMode.BY_INVITATION:
club.joinmode = ClubJoinMode.FREE_JOIN
flash('The change in clubs\' status has been submitted.', 'adjust_status')
return redirect(url_for('.adjust_status', club_type=club_type))
@clubblueprint.route('/adjust_status/all_free_join',
defaults={'club_type': 'all'},
methods=['POST'])
@clubblueprint.route('/adjust_status/<club_type>/all_free_join',
methods=['POST'])
@special_access_required
@require_not_student
|
MIT License
|
facebookresearch/compilergym
|
examples/actor_critic.py
|
Policy.forward
|
python
|
def forward(self, x):
x = F.relu(self.affine1(x))
x = x.add(F.relu(self.affine2(x)))
x = x.add(F.relu(self.affine3(x)))
x = x.add(F.relu(self.affine4(x)))
action_prob = F.softmax(self.action_head(x), dim=-1)
state_values = self.value_head(x)
return action_prob, state_values
|
Forward of both actor and critic
|
https://github.com/facebookresearch/compilergym/blob/00ae8c0d080da4d429f95398be1df01b5d6e7b71/examples/actor_critic.py#L165-L185
|
import random
import statistics
from collections import namedtuple
from typing import List
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from absl import app, flags
from torch.distributions import Categorical
import compiler_gym.util.flags.episodes
import compiler_gym.util.flags.learning_rate
import compiler_gym.util.flags.seed
from compiler_gym.util.flags.benchmark_from_flags import benchmark_from_flags
from compiler_gym.util.flags.env_from_flags import env_from_flags
from compiler_gym.wrappers import ConstrainedCommandline, TimeLimit
flags.DEFINE_list(
"flags",
[
"-break-crit-edges",
"-early-cse-memssa",
"-gvn-hoist",
"-gvn",
"-instcombine",
"-instsimplify",
"-jump-threading",
"-loop-reduce",
"-loop-rotate",
"-loop-versioning",
"-mem2reg",
"-newgvn",
"-reg2mem",
"-simplifycfg",
"-sroa",
],
"List of optimizatins to explore.",
)
flags.DEFINE_integer("episode_len", 5, "Number of transitions per episode.")
flags.DEFINE_integer("hidden_size", 64, "Latent vector size.")
flags.DEFINE_integer("log_interval", 100, "Episodes per log output.")
flags.DEFINE_integer("iterations", 1, "Times to redo entire training.")
flags.DEFINE_float("exploration", 0.0, "Rate to explore random transitions.")
flags.DEFINE_float("mean_smoothing", 0.95, "Smoothing factor for mean normalization.")
flags.DEFINE_float("std_smoothing", 0.4, "Smoothing factor for std dev normalization.")
eps = np.finfo(np.float32).eps.item()
SavedAction = namedtuple("SavedAction", ["log_prob", "value"])
FLAGS = flags.FLAGS
class MovingExponentialAverage:
def __init__(self, smoothing_factor):
self.smoothing_factor = smoothing_factor
self.value = None
def next(self, entry):
assert entry is not None
if self.value is None:
self.value = entry
else:
self.value = (
entry * (1 - self.smoothing_factor) + self.value * self.smoothing_factor
)
return self.value
class HistoryObservation(gym.ObservationWrapper):
def __init__(self, env):
super().__init__(env=env)
self.observation_space = gym.spaces.Box(
low=np.full(len(FLAGS.flags), 0, dtype=np.float32),
high=np.full(len(FLAGS.flags), float("inf"), dtype=np.float32),
dtype=np.float32,
)
def reset(self, *args, **kwargs):
self._steps_taken = 0
self._state = np.zeros(
(FLAGS.episode_len - 1, self.action_space.n), dtype=np.int32
)
return super().reset(*args, **kwargs)
def step(self, action: int):
assert self._steps_taken < FLAGS.episode_len
if self._steps_taken < FLAGS.episode_len - 1:
self._state[self._steps_taken][action] = 1
self._steps_taken += 1
return super().step(action)
def observation(self, observation):
return self._state
class Policy(nn.Module):
def __init__(self):
super().__init__()
self.affine1 = nn.Linear(
(FLAGS.episode_len - 1) * len(FLAGS.flags), FLAGS.hidden_size
)
self.affine2 = nn.Linear(FLAGS.hidden_size, FLAGS.hidden_size)
self.affine3 = nn.Linear(FLAGS.hidden_size, FLAGS.hidden_size)
self.affine4 = nn.Linear(FLAGS.hidden_size, FLAGS.hidden_size)
self.action_head = nn.Linear(FLAGS.hidden_size, len(FLAGS.flags))
self.value_head = nn.Linear(FLAGS.hidden_size, 1)
self.saved_actions: List[SavedAction] = []
self.rewards: List[float] = []
self.moving_mean = MovingExponentialAverage(FLAGS.mean_smoothing)
self.moving_std = MovingExponentialAverage(FLAGS.std_smoothing)
|
MIT License
|
terrapower/armi
|
armi/cases/suite.py
|
CaseSuite.remove
|
python
|
def remove(self, case):
self._cases.remove(case)
case._caseSuite = None
|
Remove a case from a suite.
|
https://github.com/terrapower/armi/blob/b4fceeb5c3c7f2feeaa8c9ac05aa635e5f1a15a0/armi/cases/suite.py#L74-L77
|
import os
from typing import Optional, Sequence
import traceback
import tabulate
from armi import runLog
from armi import settings
from armi.cases import case as armicase
from armi.utils import directoryChangers
class CaseSuite:
def __init__(self, cs):
self._cases = list()
self.cs = cs
def add(self, case):
existing = next((c for c in self if case == c), None)
if existing is not None:
raise ValueError(
"CaseSuite already contains case with title `{}`\nFirst case: {}\n"
"Second case: {}".format(case.title, existing, case)
)
self._cases.append(case)
case._caseSuite = self
|
Apache License 2.0
|
aiven/myhoard
|
myhoard/controller.py
|
Controller._determine_unapplied_remote_binlogs
|
python
|
def _determine_unapplied_remote_binlogs(self, stream):
missing_checked_key = f"{stream.stream_id}.missing_checked"
if self.state["promote_details"].get(missing_checked_key) or self.state["force_promote"]:
return
already_processed_remote_indexes = set()
for key in ["binlogs_to_fetch", "binlogs_to_apply", "binlogs_applying"]:
for binlog in self.state["promote_details"].get(key, []):
already_processed_remote_indexes.add(binlog["remote_index"])
missing_binlogs = []
missing_gtids = False
with mysql_cursor(**self.mysql_client_params) as cursor:
for binlog in stream.iterate_remote_binlogs(reverse=True):
if binlog["remote_index"] in already_processed_remote_indexes:
break
if not binlog["gtid_ranges"]:
missing_binlogs.insert(0, binlog)
else:
gtid_str = make_gtid_range_string(binlog["gtid_ranges"])
cursor.execute("SELECT GTID_SUBSET(%s, @@GLOBAL.gtid_executed) AS executed", [gtid_str])
executed = cursor.fetchone()["executed"]
if executed:
break
missing_binlogs.insert(0, binlog)
missing_gtids = True
binlogs_to_fetch = self.state["promote_details"].get("binlogs_to_fetch", [])
if missing_gtids:
site = self._get_site_for_stream_id(stream.stream_id)
missing_binlogs = [{**binlog, "site": site} for binlog in missing_binlogs]
binlogs_to_fetch = binlogs_to_fetch + missing_binlogs
self.state_manager.update_state(
promote_details={
**self.state["promote_details"],
missing_checked_key: True,
"binlogs_to_fetch": binlogs_to_fetch,
}
)
|
Finds out if given stream contains any remote binlogs that have GTIDs that have not
yet been applied locally. Possibly found binlogs are stored in state so that they get
downloaded and applied.
|
https://github.com/aiven/myhoard/blob/e47731cef4cf5ec54c17d471f97c0b30b5cc1684/myhoard/controller.py#L700-L745
|
import contextlib
import datetime
import enum
import json
import logging
import math
import os
import re
import threading
import time
import pymysql
from pghoard.rohmu import get_transfer
from pghoard.rohmu.compressor import DecompressSink
from pghoard.rohmu.encryptor import DecryptSink
from .backup_stream import BackupStream
from .binlog_scanner import BinlogScanner
from .errors import BadRequest
from .restore_coordinator import RestoreCoordinator
from .state_manager import StateManager
from .util import (
are_gtids_in_executed_set,
change_master_to,
DEFAULT_MYSQL_TIMEOUT,
ERR_TIMEOUT,
make_gtid_range_string,
mysql_cursor,
parse_fs_metadata,
relay_log_name,
)
ERR_CANNOT_CONNECT = 2003
class Controller(threading.Thread):
@enum.unique
class Mode(str, enum.Enum):
active = "active"
idle = "idle"
observe = "observe"
promote = "promote"
restore = "restore"
BACKUP_REFRESH_INTERVAL_BASE = 120.0
BACKUP_REFRESH_ACTIVE_MULTIPLIER = 10.0
ITERATION_SLEEP = 1.0
def __init__(
self,
*,
backup_settings,
backup_sites,
binlog_purge_settings,
mysql_binlog_prefix,
mysql_client_params,
mysql_config_file_name,
mysql_data_directory,
mysql_relay_log_index_file,
mysql_relay_log_prefix,
restart_mysqld_callback,
restore_max_binlog_bytes,
server_id,
state_dir,
stats,
temp_dir,
):
super().__init__()
self.backup_refresh_interval_base = self.BACKUP_REFRESH_INTERVAL_BASE
self.backup_settings = backup_settings
self.backup_sites = backup_sites
self.backup_streams = []
self.backup_streams_initialized = False
self.binlog_not_caught_log_counter = 0
self.binlog_purge_settings = binlog_purge_settings
scanner_state_file = os.path.join(state_dir, "binlog_scanner_state.json")
self.binlog_scanner = BinlogScanner(
binlog_prefix=mysql_binlog_prefix,
server_id=server_id,
state_file=scanner_state_file,
stats=stats,
)
self.is_running = True
self.iteration_sleep = self.ITERATION_SLEEP
self.lock = threading.RLock()
self.log = logging.getLogger(self.__class__.__name__)
self.max_binlog_bytes = None
self.mysql_client_params = mysql_client_params
self.mysql_config_file_name = mysql_config_file_name
self.mysql_data_directory = mysql_data_directory
self.mysql_relay_log_index_file = mysql_relay_log_index_file
self.mysql_relay_log_prefix = mysql_relay_log_prefix
self.restart_mysqld_callback = restart_mysqld_callback
self.restore_max_binlog_bytes = restore_max_binlog_bytes
self.restore_coordinator = None
self.seen_basebackup_infos = {}
self.server_id = server_id
self.site_transfers = {}
self.state = {
"backup_request": {},
"backups": [],
"backups_fetched_at": 0,
"binlogs_purged_at": 0,
"errors": 0,
"force_promote": False,
"last_binlog_purge": time.time(),
"last_binlog_rotation": time.time(),
"last_could_have_purged": time.time(),
"mode": self.Mode.idle,
"owned_stream_ids": [],
"promote_details": {},
"promote_on_restore_completion": False,
"replication_state": {},
"restore_options": {},
"server_uuid": None,
"uploaded_binlogs": [],
}
self.state_dir = state_dir
state_file = os.path.join(state_dir, "myhoard_controller_state.json")
self.state_manager = StateManager(lock=self.lock, state=self.state, state_file=state_file)
self.stats = stats
self.temp_dir = temp_dir
self.wakeup_event = threading.Event()
self._get_upload_backup_site()
self._update_mode_tag()
def is_log_backed_up(self, *, log_index):
return all(
not backup_stream.is_streaming_binlogs() or backup_stream.is_log_backed_up(log_index=log_index)
for backup_stream in self.backup_streams
)
def is_safe_to_reload(self):
restore_coordinator = self.restore_coordinator
if restore_coordinator and restore_coordinator.phase == RestoreCoordinator.Phase.restoring_basebackup:
return False
with self.lock:
for stream in self.backup_streams:
if stream.active_phase == BackupStream.ActivePhase.basebackup:
return False
return True
def mark_backup_requested(self, *, backup_reason, normalized_backup_time=None):
normalized_backup_time = normalized_backup_time or self._current_normalized_backup_timestamp()
new_request = {"backup_reason": backup_reason, "normalized_backup_time": normalized_backup_time}
with self.lock:
old = self.state["backup_request"]
if old:
if (
old == new_request or normalized_backup_time < old["normalized_backup_time"]
or (
normalized_backup_time == old["normalized_backup_time"]
and old["backup_reason"] == BackupStream.BackupReason.scheduled
)
):
return
self.state_manager.update_state(backup_request=new_request)
@property
def mode(self):
return self.state["mode"]
def restore_backup(self, *, site, stream_id, target_time=None, target_time_approximate_ok=None):
with self.lock:
if self.mode != self.Mode.idle:
raise ValueError(f"Current mode is {self.mode}, restore only allowed while in idle mode")
for backup in list(self.state["backups"]):
if backup["stream_id"] != stream_id or backup["site"] != site:
continue
if not backup["basebackup_info"]:
raise ValueError(f"Backup {backup!r} cannot be restored")
if target_time:
if target_time < backup["basebackup_info"]["end_ts"]:
raise ValueError(f"Requested target time {target_time} predates backup completion: {backup!r}")
if backup["closed_at"] and target_time > backup["closed_at"]:
raise ValueError(f"Requested target time {target_time} is after backup close: {backup!r}")
break
else:
raise ValueError(f"Requested backup {stream_id!r} for site {site!r} not found")
self.log.info(
"Restoring backup stream %r, target time %r%s", stream_id, target_time,
" (approximate time)" if target_time_approximate_ok else ""
)
self.state_manager.update_state(
mode=self.Mode.restore,
restore_options={
"binlog_streams": [{
"site": site,
"stream_id": stream_id,
}],
"pending_binlogs_state_file": self._get_restore_coordinator_pending_state_file_and_remove_old(),
"state_file": self._get_restore_coordinator_state_file_and_remove_old(),
"stream_id": stream_id,
"site": site,
"target_time": target_time,
"target_time_approximate_ok": target_time_approximate_ok,
}
)
self._update_mode_tag()
self.wakeup_event.set()
def rotate_and_back_up_binlog(self):
local_log_index = self._rotate_binlog()
self.wakeup_event.set()
return local_log_index
def run(self):
self.log.info("Controller running")
while self.is_running:
try:
if self.mode == self.Mode.idle:
self._handle_mode_idle()
elif self.mode == self.Mode.restore:
self._handle_mode_restore()
elif self.mode == self.Mode.active:
self._handle_mode_active()
elif self.mode == self.Mode.observe:
self._handle_mode_observe()
elif self.mode == self.Mode.promote:
self._handle_mode_promote()
else:
assert False, f"Invalid mode {self.mode}"
self.wakeup_event.wait(self._get_iteration_sleep())
self.wakeup_event.clear()
except Exception as ex:
self.log.exception("Unexpected exception in mode %s", self.mode)
self.stats.unexpected_exception(ex=ex, where="Controller.run")
self.state_manager.increment_counter(name="errors")
self.stats.increase("myhoard.generic_errors")
time.sleep(self.iteration_sleep)
self.is_running = False
def stop(self):
self.log.info("Stopping controller")
self.is_running = False
self.wakeup_event.set()
with contextlib.suppress(Exception):
self.join()
if self.restore_coordinator:
self.restore_coordinator.stop()
for stream in self.backup_streams:
stream.stop()
self.log.info("Controller stopped")
def switch_to_active_mode(self, *, force=False):
with self.lock:
if self.mode == self.Mode.promote and force and self.state["promote_details"].get("binlogs_applying"):
self.state_manager.update_state(force_promote=True)
return
elif self.mode == self.Mode.restore:
if not force:
self._fail_if_restore_is_not_complete()
else:
if not self.restore_coordinator:
raise ValueError("Cannot switch mode, current restoration state is indeterminate")
self.restore_coordinator.force_completion()
self.state_manager.update_state(force_promote=True, promote_on_restore_completion=True)
return
elif force:
raise BadRequest("Can only force promotion while waiting for binlogs to be applied")
elif self.mode in {self.Mode.active, self.Mode.promote}:
self.log.info("Already in %s mode when switch to active mode was requested", self.mode)
return
elif self.mode == self.Mode.observe:
self._fail_if_observe_to_active_switch_is_not_allowed()
self.state_manager.update_state(
backups_fetched_at=0,
mode=self.Mode.promote,
restore_options={},
)
self._update_mode_tag()
self.wakeup_event.set()
def switch_to_observe_mode(self):
with self.lock:
if self.mode == self.Mode.observe:
self.log.info("Requested switch to observe mode but currently mode is already that")
return
elif self.mode in {self.Mode.active, self.Mode.promote}:
raise ValueError(f"Switch from {self.mode} to observe mode is not allowed")
elif self.mode == self.Mode.restore:
self._fail_if_restore_is_not_complete()
self._fail_if_not_read_only()
self.state_manager.update_state(
backups_fetched_at=0,
mode=self.Mode.observe,
restore_options={},
)
self._update_mode_tag()
@classmethod
def collect_binlogs_to_purge(
cls, *, backup_streams, binlogs, exclude_uuid=None, log, mode, purge_settings, replication_state
):
only_binlogs_without_gtids = None
binlogs_to_purge = []
binlogs_to_maybe_purge = []
for binlog in binlogs:
binlog_age = time.time() - binlog["processed_at"]
min_age = purge_settings["min_binlog_age_before_purge"]
if binlog_age < min_age:
log.info(
"Binlog %s was processed %s seconds ago and min age before purging is %s seconds, not purging",
binlog["local_index"], math.ceil(binlog_age), min_age
)
break
if mode == cls.Mode.active:
can_purge = all(
stream.is_binlog_safe_to_delete(binlog, exclude_uuid=exclude_uuid) for stream in backup_streams
)
if not can_purge:
log.info("Binlog %s reported not safe to delete by some backup streams", binlog["local_index"])
elif purge_settings["purge_when_observe_no_streams"] and not backup_streams:
log.info("No backup streams and purging is allowed, assuming purging %s is safe", binlog["local_index"])
can_purge = True
else:
at_least_one_safe_stream = False
at_least_one_unsafe_stream = False
for stream in backup_streams:
if stream.state["basebackup_info"]:
if stream.is_binlog_safe_to_delete(
binlog, exclude_uuid=exclude_uuid
):
at_least_one_safe_stream = True
else:
at_least_one_unsafe_stream = True
can_purge = at_least_one_safe_stream and not at_least_one_unsafe_stream
if can_purge:
log.info(
"Binlog %s is reported safe to delete by at least one stream and not as unsafe by any",
binlog["local_index"]
)
else:
log.info(
"Binlog %s either reported as unsafe to delete (%s) by some stream or not reported as safe to "
"delete by any (%s)", binlog["local_index"], at_least_one_unsafe_stream, at_least_one_safe_stream
)
if not can_purge:
break
if not replication_state:
log.info("No replication state set, assuming purging binlog %s is safe", binlog["local_index"])
binlogs_to_purge.append(binlog)
elif not binlog["gtid_ranges"]:
if only_binlogs_without_gtids is None:
only_binlogs_without_gtids = True
if mode == cls.Mode.observe:
binlogs_to_purge.append(binlog)
else:
binlogs_to_maybe_purge.append(binlog)
else:
only_binlogs_without_gtids = False
for server_name, gtid_executed in replication_state.items():
if not are_gtids_in_executed_set(gtid_executed, binlog["gtid_ranges"], exclude_uuid=exclude_uuid):
log.info(
"Binlog %s not yet replicated to server %r, not purging", binlog["local_index"], server_name
)
can_purge = False
break
if can_purge:
log.info("Binlog %s has been replicated to all servers, purging", binlog["local_index"])
binlogs_to_purge.extend(binlogs_to_maybe_purge)
binlogs_to_maybe_purge = []
binlogs_to_purge.append(binlog)
else:
break
return binlogs_to_purge, only_binlogs_without_gtids
@staticmethod
def get_backup_list(backup_sites, *, seen_basebackup_infos=None, site_transfers=None):
if seen_basebackup_infos is None:
seen_basebackup_infos = {}
if site_transfers is None:
site_transfers = {}
backups = []
for site_name, site_config in backup_sites.items():
file_storage = site_transfers.get(site_name)
if file_storage is None:
file_storage = get_transfer(site_config["object_storage"])
site_transfers[site_name] = file_storage
streams = list(file_storage.list_prefixes(site_name))
for site_and_stream_id in streams:
basebackup_compressed_size = None
basebackup_info = None
closed_info = None
completed_info = None
for info in file_storage.list_iter(site_and_stream_id):
file_name = info["name"].rsplit("/", 1)[-1]
if file_name == "basebackup.xbstream":
basebackup_compressed_size = info["size"]
elif file_name == "basebackup.json":
basebackup_info = seen_basebackup_infos.get(site_and_stream_id)
if basebackup_info is None:
info_str, _ = file_storage.get_contents_to_string(info["name"])
basebackup_info = json.loads(info_str.decode("utf-8"))
seen_basebackup_infos[site_and_stream_id] = basebackup_info
elif file_name == "closed.json":
closed_info = parse_fs_metadata(info["metadata"])
elif file_name == "completed.json":
completed_info = parse_fs_metadata(info["metadata"])
if basebackup_info and basebackup_compressed_size:
basebackup_info = dict(basebackup_info, compressed_size=basebackup_compressed_size)
resumable = basebackup_info and basebackup_compressed_size
completed = resumable and completed_info
closed = completed and closed_info
backups.append({
"basebackup_info": basebackup_info,
"closed_at": closed_info["closed_at"] if closed else None,
"completed_at": completed_info["completed_at"] if completed else None,
"recovery_site": site_config.get("recovery_only", False),
"stream_id": site_and_stream_id.rsplit("/", 1)[-1],
"resumable": bool(resumable),
"site": site_name,
})
return backups
def _apply_downloaded_remote_binlogs(self):
to_apply = self.state["promote_details"].get("binlogs_to_apply")
if self.state["promote_details"].get("binlogs_applying") or not to_apply:
return
expected_ranges = []
with mysql_cursor(**self.mysql_client_params) as cursor:
cursor.execute("STOP SLAVE")
cursor.execute("SHOW SLAVE STATUS")
slave_status = cursor.fetchone()
first_name = slave_status["Relay_Log_File"]
if not first_name:
first_name = "relay.000001"
if not self.state["promote_details"].get("relay_index_updated"):
first_index = int(first_name.split(".")[-1])
if (
first_index == 1 and not slave_status["Relay_Master_Log_File"]
and not slave_status["Exec_Master_Log_Pos"] and not slave_status["Retrieved_Gtid_Set"]
):
self.log.info(
"Slave status is empty, assuming RESET SLAVE has been executed and writing relay index manually"
)
with open(self.mysql_relay_log_index_file, "wb") as index_file:
names = [self._relay_log_name(index=i + 1, full_path=False) for i in range(len(to_apply))]
index_file.write(("\n".join(names) + "\n").encode("utf-8"))
self.log.info("Wrote names: %s", names)
else:
for _ in to_apply:
cursor.execute("FLUSH RELAY LOGS")
self.state_manager.update_state(
promote_details={
**self.state["promote_details"],
"relay_index_updated": True,
}
)
for idx, binlog in enumerate(to_apply):
if not self.state["promote_details"].get("relay_logs_renamed"):
os.rename(binlog["local_prefetch_name"], self._relay_log_name(index=first_index + idx))
self.log.info(
"Renamed %r to %r", binlog["local_prefetch_name"], self._relay_log_name(index=first_index + idx)
)
expected_ranges.extend(binlog["gtid_ranges"])
if not self.state["promote_details"].get("relay_logs_renamed"):
self.state_manager.update_state(
promote_details={
**self.state["promote_details"],
"relay_logs_renamed": True,
}
)
options = {
"MASTER_AUTO_POSITION": 0,
"MASTER_HOST": "dummy",
"RELAY_LOG_FILE": first_name,
"RELAY_LOG_POS": 4,
}
change_master_to(cursor=cursor, options=options)
cursor.execute("START SLAVE SQL_THREAD")
expected_file = self._relay_log_name(index=first_index + len(to_apply), full_path=False)
expected_ranges = make_gtid_range_string(expected_ranges)
self.log.info(
"Started SQL thread, waiting for file %r and GTID range %r to be reached", expected_file, expected_ranges
)
self.state_manager.update_state(
promote_details={
**self.state["promote_details"],
"binlogs_applying": to_apply,
"binlogs_to_apply": [],
"expected_file": expected_file,
"expected_ranges": expected_ranges,
}
)
def _binlog_uploaded(self, *, local_index, remote_key, stream):
with self.lock:
binlog_info = {
"exclude_stream_id": stream.stream_id,
"local_index": local_index,
"remote_key": remote_key,
}
self.state_manager.update_state(uploaded_binlogs=self.state["uploaded_binlogs"] + [binlog_info])
def _build_backup_stream(self, backup):
stream_id = backup["stream_id"]
backup_site = self.backup_sites[backup["site"]]
return BackupStream(
backup_reason=None,
compression=backup_site.get("compression"),
file_storage_setup_fn=lambda: get_transfer(backup_site["object_storage"]),
file_uploaded_callback=self._binlog_uploaded,
mode=BackupStream.Mode.observe,
mysql_client_params=self.mysql_client_params,
mysql_config_file_name=self.mysql_config_file_name,
mysql_data_directory=self.mysql_data_directory,
normalized_backup_time=None,
rsa_public_key_pem=backup_site["encryption_keys"]["public"],
remote_binlogs_state_file=self._remote_binlogs_state_file_from_stream_id(stream_id),
server_id=self.server_id,
state_file=self._state_file_from_stream_id(stream_id),
site=backup["site"],
stats=self.stats,
stream_id=stream_id,
temp_dir=self.temp_dir,
)
def _delete_backup_stream_state(self, stream_id):
state_file = self._state_file_from_stream_id(stream_id)
if os.path.exists(state_file):
os.remove(state_file)
remote_binlogs_state_file = self._remote_binlogs_state_file_from_stream_id(stream_id)
if os.path.exists(remote_binlogs_state_file):
os.remove(remote_binlogs_state_file)
def _cache_server_uuid_if_missing(self):
if self.state["server_uuid"]:
return
with mysql_cursor(**self.mysql_client_params) as cursor:
cursor.execute("SELECT @@GLOBAL.server_uuid AS server_uuid")
server_uuid = cursor.fetchone()["server_uuid"]
self.state_manager.update_state(server_uuid=server_uuid)
def _check_binlog_apply_status(self):
binlogs = self.state["promote_details"].get("binlogs_applying")
if not binlogs:
return
expected_file = self.state["promote_details"].get("expected_file")
expected_ranges = self.state["promote_details"].get("expected_ranges")
with mysql_cursor(**self.mysql_client_params) as cursor:
cursor.execute("SHOW SLAVE STATUS")
slave_status = cursor.fetchone()
current_file = slave_status["Relay_Log_File"]
reached_target = True
if current_file != expected_file:
reached_target = False
elif expected_ranges:
cursor.execute("SELECT GTID_SUBSET(%s, @@GLOBAL.gtid_executed) AS executed", [expected_ranges])
if not cursor.fetchone()["executed"]:
reached_target = False
if not reached_target:
if self.state["force_promote"]:
self.log.warning("Promotion target state not reached but forced promotion requested")
else:
sql_thread_running = slave_status["Slave_SQL_Running"]
if sql_thread_running != "Yes":
self.log.warning("Expected SQL thread to be running state is %s, starting it", sql_thread_running)
cursor.execute("START SLAVE SQL_THREAD")
return
else:
self.log.info("Expected relay log (%r) and GTIDs reached (%r)", expected_file, expected_ranges)
cursor.execute("STOP SLAVE")
promote_details = {
**self.state["promote_details"],
"binlogs_applying": [],
"expected_file": None,
"expected_ranges": None,
}
if not reached_target and self.state["force_promote"]:
promote_details["binlogs_to_apply"] = []
promote_details["binlogs_to_fetch"] = []
self.state_manager.update_state(promote_details=promote_details)
def _create_new_backup_stream_if_requested_and_max_streams_not_exceeded(self):
if len(self.backup_streams) >= 2:
return
with self.lock:
request = self.state["backup_request"]
if request:
self._start_new_backup(
backup_reason=request["backup_reason"],
normalized_backup_time=request["normalized_backup_time"],
)
def _create_restore_coordinator_if_missing(self):
if self.restore_coordinator:
return
options = self.state["restore_options"]
backup_site = self.backup_sites[options["site"]]
storage_config = backup_site["object_storage"]
self.log.info("Creating new restore coordinator")
self.restore_coordinator = RestoreCoordinator(
binlog_streams=options["binlog_streams"],
file_storage_config=storage_config,
max_binlog_bytes=self.restore_max_binlog_bytes,
mysql_client_params=self.mysql_client_params,
mysql_config_file_name=self.mysql_config_file_name,
mysql_data_directory=self.mysql_data_directory,
mysql_relay_log_index_file=self.mysql_relay_log_index_file,
mysql_relay_log_prefix=self.mysql_relay_log_prefix,
pending_binlogs_state_file=options["pending_binlogs_state_file"],
restart_mysqld_callback=self.restart_mysqld_callback,
rsa_private_key_pem=backup_site["encryption_keys"]["private"],
site=options["site"],
state_file=options["state_file"],
stats=self.stats,
stream_id=options["stream_id"],
target_time=options["target_time"],
target_time_approximate_ok=options["target_time_approximate_ok"],
temp_dir=self.temp_dir,
)
if not self.restore_coordinator.is_complete():
self.log.info("Starting restore coordinator")
self.restore_coordinator.start()
else:
self.log.info("Newly created restore coordinator is already in completed state")
def _current_normalized_backup_timestamp(self):
now = datetime.datetime.now(datetime.timezone.utc)
normalized = now
backup_interval_minutes = self.backup_settings["backup_interval_minutes"]
backup_hour = self.backup_settings["backup_hour"]
backup_minute = self.backup_settings["backup_minute"]
if normalized.hour < backup_hour or (normalized.hour == backup_hour and normalized.minute < backup_minute):
normalized = normalized - datetime.timedelta(days=1)
normalized = normalized.replace(hour=backup_hour, minute=backup_minute, second=0, microsecond=0)
while normalized + datetime.timedelta(minutes=backup_interval_minutes) < now:
normalized = normalized + datetime.timedelta(minutes=backup_interval_minutes)
return normalized.isoformat()
|
Apache License 2.0
|
tensorflow/quantum
|
tensorflow_quantum/python/layers/high_level/pqc.py
|
PQC.__init__
|
python
|
def __init__(
self,
model_circuit,
operators,
*,
repetitions=None,
backend='noiseless',
differentiator=None,
initializer=tf.keras.initializers.RandomUniform(0, 2 * np.pi),
regularizer=None,
constraint=None,
**kwargs,
):
super().__init__(**kwargs)
if not isinstance(model_circuit, cirq.Circuit):
raise TypeError("model_circuit must be a cirq.Circuit object."
" Given: {}".format(model_circuit))
self._symbols_list = list(
sorted(util.get_circuit_symbols(model_circuit)))
self._symbols = tf.constant([str(x) for x in self._symbols_list])
self._model_circuit = util.convert_to_tensor([model_circuit])
if len(self._symbols_list) == 0:
raise ValueError("model_circuit has no sympy.Symbols. Please "
"provide a circuit that contains symbols so "
"that their values can be trained.")
if isinstance(operators, (cirq.PauliString, cirq.PauliSum)):
operators = [operators]
if not isinstance(operators, (list, np.ndarray, tuple)):
raise TypeError("operators must be a cirq.PauliSum or "
"cirq.PauliString, or a list, tuple, "
"or np.array containing them. "
"Got {}.".format(type(operators)))
if not all([
isinstance(op, (cirq.PauliString, cirq.PauliSum))
for op in operators
]):
raise TypeError("Each element in operators to measure "
"must be a cirq.PauliString"
" or cirq.PauliSum")
self._operators = util.convert_to_tensor([operators])
self._analytic = False
if repetitions is None:
self._analytic = True
if not self._analytic and not isinstance(repetitions, numbers.Integral):
raise TypeError("repetitions must be a positive integer value."
" Given: ".format(repetitions))
if not self._analytic and repetitions <= 0:
raise ValueError("Repetitions must be greater than zero.")
if not self._analytic:
self._repetitions = tf.constant(
[[repetitions for _ in range(len(operators))]],
dtype=tf.dtypes.int32)
if backend == 'noisy':
raise ValueError("noisy backend value is not supported in "
"tfq.layers.PQC. Please use tfq.layers.NoisyPQC "
"instead.")
not_default = backend != 'noiseless'
not_default &= backend is not None
if not isinstance(
backend,
cirq.Sampler) and repetitions is not None and not_default:
raise TypeError("provided backend does not inherit cirq.Sampler "
"and repetitions!=None. Please provide a backend "
"that inherits cirq.Sampler or set "
"repetitions=None.")
if not isinstance(backend, cirq.sim.simulator.SimulatesExpectationValues
) and repetitions is None and not_default:
raise TypeError("provided backend does not inherit "
"cirq.sim.simulator.SimulatesExpectationValues and "
"repetitions=None. Please provide a backend that "
"inherits "
"cirq.sim.simulator.SimulatesExpectationValues.")
if self._analytic:
self._executor = expectation.Expectation(
backend=backend, differentiator=differentiator)
else:
self._executor = sampled_expectation.SampledExpectation(
backend=backend, differentiator=differentiator)
self._append_layer = elementary.AddCircuit()
self.initializer = tf.keras.initializers.get(initializer)
self.regularizer = tf.keras.regularizers.get(regularizer)
self.constraint = tf.keras.constraints.get(constraint)
self.parameters = self.add_weight('parameters',
shape=self._symbols.shape,
initializer=self.initializer,
regularizer=self.regularizer,
constraint=self.constraint,
dtype=tf.float32,
trainable=True)
|
Instantiate this layer.
Create a layer that will output expectation values of the given
operators when fed quantum data to it's input layer. This layer will
accept one input tensor representing a quantum data source (these
circuits must not contain any symbols) and append the model_circuit to
them, execute them and then finally output the expectation values.
model_circuit: `cirq.Circuit` containing `sympy.Symbols` that will be
used as the model which will be fed quantum data inputs.
operators: `cirq.PauliSum` or Python `list` of `cirq.PauliSum` objects
used as observables at the end of the model circuit.
repetitions: Optional Python `int` indicating how many samples to use
when estimating expectation values. If `None` analytic expectation
calculation is used.
backend: Optional Backend to use to simulate states. Defaults to
the noiseless TensorFlow simulator, however users may also
specify a preconfigured cirq simulation object to use instead.
If a cirq object is given it must inherit either
`cirq.sim.simulator.SimulatesExpectationValues` if analytic
expectations are desired or `cirq.Sampler` if sampled expectations
are desired.
differentiator: Optional `tfq.differentiator` object to specify how
gradients of `model_circuit` should be calculated.
initializer: Optional `tf.keras.initializer` object to specify how the
symbols in `model_circuit` should be initialized when creating
the managed variables.
regularizer: Optional `tf.keras.regularizer` object applied to the
managed variables parameterizing `model_circuit`.
constraint: Optional `tf.keras.constraint` object applied to the
managed variables parameterizing `model_circuit`.
|
https://github.com/tensorflow/quantum/blob/4c2f4ef966a801d8447593144614fd3e9decc3f0/tensorflow_quantum/python/layers/high_level/pqc.py#L133-L271
|
import numbers
import numpy as np
import tensorflow as tf
import cirq
import sympy
from tensorflow_quantum.python.layers.circuit_executors import expectation, sampled_expectation
from tensorflow_quantum.python.layers.circuit_construction import elementary
from tensorflow_quantum.python import util
class PQC(tf.keras.layers.Layer):
|
Apache License 2.0
|
wavefronthq/python-client
|
wavefront_api_client/models/response_container_facets_response_container.py
|
ResponseContainerFacetsResponseContainer.status
|
python
|
def status(self):
return self._status
|
Gets the status of this ResponseContainerFacetsResponseContainer. # noqa: E501
:return: The status of this ResponseContainerFacetsResponseContainer. # noqa: E501
:rtype: ResponseStatus
|
https://github.com/wavefronthq/python-client/blob/e410ce0dd8a2334e995456f4f3d44e0f04664a3a/wavefront_api_client/models/response_container_facets_response_container.py#L81-L88
|
import pprint
import re
import six
from wavefront_api_client.configuration import Configuration
class ResponseContainerFacetsResponseContainer(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'response': 'FacetsResponseContainer',
'status': 'ResponseStatus'
}
attribute_map = {
'response': 'response',
'status': 'status'
}
def __init__(self, response=None, status=None, _configuration=None):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._response = None
self._status = None
self.discriminator = None
if response is not None:
self.response = response
self.status = status
@property
def response(self):
return self._response
@response.setter
def response(self, response):
self._response = response
@property
|
Apache License 2.0
|
aws/aws-dynamodb-encryption-python
|
examples/src/dynamodb_encryption_sdk_examples/wrapped_symmetric_encrypted_table.py
|
encrypt_item
|
python
|
def encrypt_item(table_name, aes_wrapping_key_bytes, hmac_signing_key_bytes):
index_key = {"partition_attribute": "is this", "sort_attribute": 55}
plaintext_item = {
"example": "data",
"some numbers": 99,
"and some binary": Binary(b"\x00\x01\x02"),
"leave me": "alone",
}
encrypted_attributes = set(plaintext_item.keys())
encrypted_attributes.remove("leave me")
unencrypted_attributes = set(index_key.keys())
unencrypted_attributes.add("leave me")
plaintext_item.update(index_key)
table = boto3.resource("dynamodb").Table(table_name)
wrapping_key = JceNameLocalDelegatedKey(
key=aes_wrapping_key_bytes,
algorithm="AES",
key_type=EncryptionKeyType.SYMMETRIC,
key_encoding=KeyEncodingType.RAW,
)
signing_key = JceNameLocalDelegatedKey(
key=hmac_signing_key_bytes,
algorithm="HmacSHA512",
key_type=EncryptionKeyType.SYMMETRIC,
key_encoding=KeyEncodingType.RAW,
)
wrapped_cmp = WrappedCryptographicMaterialsProvider(
wrapping_key=wrapping_key, unwrapping_key=wrapping_key, signing_key=signing_key
)
actions = AttributeActions(
default_action=CryptoAction.ENCRYPT_AND_SIGN, attribute_actions={"leave me": CryptoAction.DO_NOTHING}
)
encrypted_table = EncryptedTable(table=table, materials_provider=wrapped_cmp, attribute_actions=actions)
encrypted_table.put_item(Item=plaintext_item)
encrypted_item = table.get_item(Key=index_key)["Item"]
decrypted_item = encrypted_table.get_item(Key=index_key)["Item"]
for name in encrypted_attributes:
assert encrypted_item[name] != plaintext_item[name]
assert decrypted_item[name] == plaintext_item[name]
for name in unencrypted_attributes:
assert decrypted_item[name] == encrypted_item[name] == plaintext_item[name]
encrypted_table.delete_item(Key=index_key)
|
Demonstrate use of EncryptedTable to transparently encrypt an item.
|
https://github.com/aws/aws-dynamodb-encryption-python/blob/94244332a77a1929ee4c1cebc366787ca57e206d/examples/src/dynamodb_encryption_sdk_examples/wrapped_symmetric_encrypted_table.py#L24-L86
|
import boto3
from boto3.dynamodb.types import Binary
from dynamodb_encryption_sdk.delegated_keys.jce import JceNameLocalDelegatedKey
from dynamodb_encryption_sdk.encrypted.table import EncryptedTable
from dynamodb_encryption_sdk.identifiers import CryptoAction, EncryptionKeyType, KeyEncodingType
from dynamodb_encryption_sdk.material_providers.wrapped import WrappedCryptographicMaterialsProvider
from dynamodb_encryption_sdk.structures import AttributeActions
|
Apache License 2.0
|
mathandy/svgpathtools
|
svgpathtools/path.py
|
Line.split
|
python
|
def split(self, t):
pt = self.point(t)
return Line(self.start, pt), Line(pt, self.end)
|
returns two segments, whose union is this segment and which join at
self.point(t).
|
https://github.com/mathandy/svgpathtools/blob/09ce497a4f0772f8c414195446bf85f2f88c6588/svgpathtools/path.py#L786-L790
|
from __future__ import division, absolute_import, print_function
import re
try:
from collections.abc import MutableSequence
except ImportError:
from collections import MutableSequence
from warnings import warn
from operator import itemgetter
import numpy as np
from itertools import tee
from functools import reduce
from numpy import sqrt, cos, sin, tan, arccos as acos, arcsin as asin, degrees, radians, log, pi, ceil
from numpy import exp, sqrt as csqrt, angle as phase, isnan
try:
from scipy.integrate import quad
_quad_available = True
except:
_quad_available = False
from .bezier import (bezier_intersections, bezier_bounding_box, split_bezier,
bezier_by_line_intersections, polynomial2bezier,
bezier2polynomial)
from .misctools import BugException
from .polytools import rational_limit, polyroots, polyroots01, imag, real
try:
str = basestring
except NameError:
pass
COMMANDS = set('MmZzLlHhVvCcSsQqTtAa')
UPPERCASE = set('MZLHVCSQTA')
COMMAND_RE = re.compile("([MmZzLlHhVvCcSsQqTtAa])")
FLOAT_RE = re.compile("[-+]?[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?")
LENGTH_MIN_DEPTH = 5
LENGTH_ERROR = 1e-12
USE_SCIPY_QUAD = True
ILENGTH_MIN_DEPTH = 5
ILENGTH_ERROR = 1e-12
ILENGTH_S_TOL = 1e-12
ILENGTH_MAXITS = 10000
CLOSED_WARNING_ON = True
_NotImplemented4ArcException = Exception("This method has not yet been implemented for Arc objects.")
_is_smooth_from_warning = ("The name of this method is somewhat misleading (yet kept for "
"compatibility with scripts created using svg.path 2.0). This method "
"is meant only for d-string creation and should NOT be used to check "
"for kinks. To check a segment for differentiability, use the "
"joins_smoothly_with() method instead or the kinks() function (in "
"smoothing.py).\nTo turn off this warning, set "
"warning_on=False.")
def bezier_segment(*bpoints):
if len(bpoints) == 2:
start, end = bpoints
return Line(start, end)
elif len(bpoints) == 4:
start, control1, control2, end = bpoints
return CubicBezier(start, control1, control2, end)
elif len(bpoints) == 3:
start, control, end = bpoints
return QuadraticBezier(start, control, end)
else:
assert len(bpoints) in (2, 3, 4)
def is_bezier_segment(seg):
return (isinstance(seg, Line) or
isinstance(seg, QuadraticBezier) or
isinstance(seg, CubicBezier))
def is_path_segment(seg):
return is_bezier_segment(seg) or isinstance(seg, Arc)
def is_bezier_path(path):
return isinstance(path, Path) and all(map(is_bezier_segment, path))
def concatpaths(list_of_paths):
return Path(*[seg for path in list_of_paths for seg in path])
def bbox2path(xmin, xmax, ymin, ymax):
b = Line(xmin + 1j*ymin, xmax + 1j*ymin)
t = Line(xmin + 1j*ymax, xmax + 1j*ymax)
r = Line(xmax + 1j*ymin, xmax + 1j*ymax)
l = Line(xmin + 1j*ymin, xmin + 1j*ymax)
return Path(b, r, t.reversed(), l.reversed())
def polyline(*points):
return Path(*[Line(points[i], points[i+1])
for i in range(len(points) - 1)])
def polygon(*points):
return Path(*[Line(points[i], points[(i + 1) % len(points)])
for i in range(len(points))])
def bpoints2bezier(bpoints):
order = len(bpoints) - 1
if order == 3:
return CubicBezier(*bpoints)
elif order == 2:
return QuadraticBezier(*bpoints)
elif order == 1:
return Line(*bpoints)
else:
assert len(bpoints) in {2, 3, 4}
def poly2bez(poly, return_bpoints=False):
bpoints = polynomial2bezier(poly)
if return_bpoints:
return bpoints
else:
return bpoints2bezier(bpoints)
def bez2poly(bez, numpy_ordering=True, return_poly1d=False):
if is_bezier_segment(bez):
bez = bez.bpoints()
return bezier2polynomial(bez,
numpy_ordering=numpy_ordering,
return_poly1d=return_poly1d)
def transform_segments_together(path, transformation):
transformed_segs = [transformation(seg) for seg in path]
joint_was_continuous = [sa.end == sb.start for sa, sb in path.joints()]
for i, (sa, sb) in enumerate(path.joints()):
if sa.end == sb.start:
transformed_segs[i].end = transformed_segs[(i + 1) % len(path)].start
return Path(*transformed_segs)
def rotate(curve, degs, origin=None):
def transform(z):
return exp(1j*radians(degs))*(z - origin) + origin
if origin is None:
if isinstance(curve, Arc):
origin = curve.center
else:
origin = curve.point(0.5)
if isinstance(curve, Path):
transformation = lambda seg: rotate(seg, degs, origin=origin)
return transform_segments_together(curve, transformation)
elif is_bezier_segment(curve):
return bpoints2bezier([transform(bpt) for bpt in curve.bpoints()])
elif isinstance(curve, Arc):
new_start = transform(curve.start)
new_end = transform(curve.end)
new_rotation = curve.rotation + degs
return Arc(new_start, radius=curve.radius, rotation=new_rotation,
large_arc=curve.large_arc, sweep=curve.sweep, end=new_end)
else:
raise TypeError("Input `curve` should be a Path, Line, "
"QuadraticBezier, CubicBezier, or Arc object.")
def translate(curve, z0):
if isinstance(curve, Path):
transformation = lambda seg: translate(seg, z0)
return transform_segments_together(curve, transformation)
elif is_bezier_segment(curve):
return bpoints2bezier([bpt + z0 for bpt in curve.bpoints()])
elif isinstance(curve, Arc):
new_start = curve.start + z0
new_end = curve.end + z0
return Arc(new_start, radius=curve.radius, rotation=curve.rotation,
large_arc=curve.large_arc, sweep=curve.sweep, end=new_end)
else:
raise TypeError("Input `curve` should be a Path, Line, "
"QuadraticBezier, CubicBezier, or Arc object.")
def scale(curve, sx, sy=None, origin=0j):
if sy is None:
isy = 1j*sx
else:
isy = 1j*sy
def _scale(z):
if sy is None:
return sx*z
return sx*z.real + isy*z.imag
def scale_bezier(bez):
p = [_scale(c) for c in bez2poly(bez)]
p[-1] += origin - _scale(origin)
return poly2bez(p)
if isinstance(curve, Path):
transformation = lambda seg: scale(seg, sx, sy, origin)
return transform_segments_together(curve, transformation)
elif is_bezier_segment(curve):
return scale_bezier(curve)
elif isinstance(curve, Arc):
if sy is None or sy == sx:
return Arc(start=sx*(curve.start - origin) + origin,
radius=sx*curve.radius,
rotation=curve.rotation,
large_arc=curve.large_arc,
sweep=curve.sweep,
end=sx*(curve.end - origin) + origin)
else:
raise Exception("\nFor `Arc` objects, only scale transforms "
"with sx==sy are implemented.\n")
else:
raise TypeError("Input `curve` should be a Path, Line, "
"QuadraticBezier, CubicBezier, or Arc object.")
def transform(curve, tf):
def to_point(p):
return np.array([[p.real], [p.imag], [1.0]])
def to_vector(z):
return np.array([[z.real], [z.imag], [0.0]])
def to_complex(v):
return v.item(0) + 1j * v.item(1)
if isinstance(curve, Path):
transformation = lambda seg: transform(seg, tf)
return transform_segments_together(curve, transformation)
elif is_bezier_segment(curve):
return bpoints2bezier([to_complex(tf.dot(to_point(p)))
for p in curve.bpoints()])
elif isinstance(curve, Arc):
new_start = to_complex(tf.dot(to_point(curve.start)))
new_end = to_complex(tf.dot(to_point(curve.end)))
rx2 = curve.radius.real ** 2
ry2 = curve.radius.imag ** 2
Q = np.array([[1/rx2, 0], [0, 1/ry2]])
invT = np.linalg.inv(tf[:2,:2])
D = reduce(np.matmul, [invT.T, Q, invT])
eigvals, eigvecs = np.linalg.eig(D)
rx = 1 / np.sqrt(eigvals[0])
ry = 1 / np.sqrt(eigvals[1])
new_radius = complex(rx, ry)
xeigvec = eigvecs[:, 0]
rot = np.degrees(np.arccos(xeigvec[0]))
if new_radius.real == 0 or new_radius.imag == 0 :
return Line(new_start, new_end)
else :
return Arc(new_start, radius=new_radius, rotation=curve.rotation + rot,
large_arc=curve.large_arc, sweep=curve.sweep, end=new_end,
autoscale_radius=False)
else:
raise TypeError("Input `curve` should be a Path, Line, "
"QuadraticBezier, CubicBezier, or Arc object.")
def bezier_unit_tangent(seg, t):
dseg = seg.derivative(t)
try:
unit_tangent = dseg/abs(dseg)
except (ZeroDivisionError, FloatingPointError):
dseg_poly = seg.poly().deriv()
dseg_abs_squared_poly = (real(dseg_poly) ** 2 +
imag(dseg_poly) ** 2)
try:
unit_tangent = csqrt(rational_limit(dseg_poly**2,
dseg_abs_squared_poly, t))
except ValueError:
bef = seg.poly().deriv()(t - 1e-4)
aft = seg.poly().deriv()(t + 1e-4)
mes = ("Unit tangent appears to not be well-defined at "
"t = {}, \n".format(t) +
"seg.poly().deriv()(t - 1e-4) = {}\n".format(bef) +
"seg.poly().deriv()(t + 1e-4) = {}".format(aft))
raise ValueError(mes)
return unit_tangent
def segment_curvature(self, t, use_inf=False):
dz = self.derivative(t)
ddz = self.derivative(t, n=2)
dx, dy = dz.real, dz.imag
ddx, ddy = ddz.real, ddz.imag
old_np_seterr = np.seterr(invalid='raise')
try:
kappa = abs(dx*ddy - dy*ddx)/sqrt(dx*dx + dy*dy)**3
except (ZeroDivisionError, FloatingPointError):
p = self.poly()
dp = p.deriv()
ddp = dp.deriv()
dx, dy = real(dp), imag(dp)
ddx, ddy = real(ddp), imag(ddp)
f2 = (dx*ddy - dy*ddx)**2
g2 = (dx*dx + dy*dy)**3
lim2 = rational_limit(f2, g2, t)
if lim2 < 0:
return 0
kappa = sqrt(lim2)
finally:
np.seterr(**old_np_seterr)
return kappa
def bezier_radialrange(seg, origin, return_all_global_extrema=False):
def _radius(tau):
return abs(seg.point(tau) - origin)
shifted_seg_poly = seg.poly() - origin
r_squared = real(shifted_seg_poly) ** 2 + imag(shifted_seg_poly) ** 2
extremizers = [0, 1] + polyroots01(r_squared.deriv())
extrema = [(_radius(t), t) for t in extremizers]
if return_all_global_extrema:
raise NotImplementedError
else:
seg_global_min = min(extrema, key=itemgetter(0))
seg_global_max = max(extrema, key=itemgetter(0))
return seg_global_min, seg_global_max
def closest_point_in_path(pt, path):
return path.radialrange(pt)[0]
def farthest_point_in_path(pt, path):
return path.radialrange(pt)[1]
def path_encloses_pt(pt, opt, path):
assert path.isclosed()
intersections = Path(Line(pt, opt)).intersect(path)
if len(intersections) % 2:
return True
else:
return False
def segment_length(curve, start, end, start_point, end_point,
error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH, depth=0):
mid = (start + end)/2
mid_point = curve.point(mid)
length = abs(end_point - start_point)
first_half = abs(mid_point - start_point)
second_half = abs(end_point - mid_point)
length2 = first_half + second_half
if (length2 - length > error) or (depth < min_depth):
depth += 1
return (segment_length(curve, start, mid, start_point, mid_point,
error, min_depth, depth) +
segment_length(curve, mid, end, mid_point, end_point,
error, min_depth, depth))
return length2
def inv_arclength(curve, s, s_tol=ILENGTH_S_TOL, maxits=ILENGTH_MAXITS,
error=ILENGTH_ERROR, min_depth=ILENGTH_MIN_DEPTH):
curve_length = curve.length(error=error, min_depth=min_depth)
assert curve_length > 0
if not 0 <= s <= curve_length:
raise ValueError("s is not in interval [0, curve.length()].")
if s == 0:
return 0
if s == curve_length:
return 1
if isinstance(curve, Path):
seg_lengths = [seg.length(error=error, min_depth=min_depth)
for seg in curve]
lsum = 0
for k, len_k in enumerate(seg_lengths):
if lsum <= s <= lsum + len_k:
t = inv_arclength(curve[k], s - lsum, s_tol=s_tol,
maxits=maxits, error=error,
min_depth=min_depth)
return curve.t2T(k, t)
lsum += len_k
return 1
elif isinstance(curve, Line):
return s / curve.length(error=error, min_depth=min_depth)
elif (isinstance(curve, QuadraticBezier) or
isinstance(curve, CubicBezier) or
isinstance(curve, Arc)):
t_upper = 1
t_lower = 0
iteration = 0
while iteration < maxits:
iteration += 1
t = (t_lower + t_upper)/2
s_t = curve.length(t1=t, error=error, min_depth=min_depth)
if abs(s_t - s) < s_tol:
return t
elif s_t < s:
t_lower = t
else:
t_upper = t
if t_upper == t_lower:
warn("t is as close as a float can be to the correct value, "
"but |s(t) - s| = {} > s_tol".format(abs(s_t-s)))
return t
raise Exception("Maximum iterations reached with s(t) - s = {}."
"".format(s_t - s))
else:
raise TypeError("First argument must be a Line, QuadraticBezier, "
"CubicBezier, Arc, or Path object.")
def crop_bezier(seg, t0, t1):
assert t0 < t1
if t0 == 0:
cropped_seg = seg.split(t1)[0]
elif t1 == 1:
cropped_seg = seg.split(t0)[1]
else:
pt1 = seg.point(t1)
trimmed_seg = crop_bezier(seg, t0, 1)
t1_adj = trimmed_seg.radialrange(pt1)[0][1]
cropped_seg = crop_bezier(trimmed_seg, 0, t1_adj)
return cropped_seg
class Line(object):
def __init__(self, start, end):
self.start = start
self.end = end
def __hash__(self):
return hash((self.start, self.end))
def __repr__(self):
return 'Line(start=%s, end=%s)' % (self.start, self.end)
def __eq__(self, other):
if not isinstance(other, Line):
return NotImplemented
return self.start == other.start and self.end == other.end
def __ne__(self, other):
if not isinstance(other, Line):
return NotImplemented
return not self == other
def __getitem__(self, item):
return self.bpoints()[item]
def __len__(self):
return 2
def joins_smoothly_with(self, previous, wrt_parameterization=False):
if wrt_parameterization:
return self.start == previous.end and np.isclose(
self.derivative(0), previous.derivative(1))
else:
return self.start == previous.end and np.isclose(
self.unit_tangent(0), previous.unit_tangent(1))
def point(self, t):
distance = self.end - self.start
return self.start + distance*t
def points(self, ts):
return self.poly()(ts)
def length(self, t0=0, t1=1, error=None, min_depth=None):
return abs(self.end - self.start)*(t1-t0)
def ilength(self, s, s_tol=ILENGTH_S_TOL, maxits=ILENGTH_MAXITS,
error=ILENGTH_ERROR, min_depth=ILENGTH_MIN_DEPTH):
return inv_arclength(self, s, s_tol=s_tol, maxits=maxits, error=error,
min_depth=min_depth)
def bpoints(self):
return self.start, self.end
def poly(self, return_coeffs=False):
p = self.bpoints()
coeffs = ([p[1] - p[0], p[0]])
if return_coeffs:
return coeffs
else:
return np.poly1d(coeffs)
def derivative(self, t=None, n=1):
assert self.end != self.start
if n == 1:
return self.end - self.start
elif n > 1:
return 0
else:
raise ValueError("n should be a positive integer.")
def unit_tangent(self, t=None):
assert self.end != self.start
dseg = self.end - self.start
return dseg/abs(dseg)
def normal(self, t=None):
return -1j*self.unit_tangent(t)
def curvature(self, t):
return 0
def reversed(self):
return Line(self.end, self.start)
def intersect(self, other_seg, tol=None):
if isinstance(other_seg, Line):
assert other_seg.end != other_seg.start and self.end != self.start
assert self != other_seg
a = (self.start.real, self.end.real)
b = (self.start.imag, self.end.imag)
c = (other_seg.start.real, other_seg.end.real)
d = (other_seg.start.imag, other_seg.end.imag)
denom = ((a[1] - a[0])*(d[0] - d[1]) -
(b[1] - b[0])*(c[0] - c[1]))
if np.isclose(denom, 0):
return []
t1 = (c[0]*(b[0] - d[1]) -
c[1]*(b[0] - d[0]) -
a[0]*(d[0] - d[1]))/denom
t2 = -(a[1]*(b[0] - d[0]) -
a[0]*(b[1] - d[0]) -
c[0]*(b[0] - b[1]))/denom
if 0 <= t1 <= 1 and 0 <= t2 <= 1:
return [(t1, t2)]
return []
elif isinstance(other_seg, QuadraticBezier):
t2t1s = bezier_by_line_intersections(other_seg, self)
return [(t1, t2) for t2, t1 in t2t1s]
elif isinstance(other_seg, CubicBezier):
t2t1s = bezier_by_line_intersections(other_seg, self)
return [(t1, t2) for t2, t1 in t2t1s]
elif isinstance(other_seg, Arc):
t2t1s = other_seg.intersect(self)
return [(t1, t2) for t2, t1 in t2t1s]
elif isinstance(other_seg, Path):
raise TypeError(
"other_seg must be a path segment, not a Path object, use "
"Path.intersect().")
else:
raise TypeError("other_seg must be a path segment.")
def bbox(self):
xmin = min(self.start.real, self.end.real)
xmax = max(self.start.real, self.end.real)
ymin = min(self.start.imag, self.end.imag)
ymax = max(self.start.imag, self.end.imag)
return xmin, xmax, ymin, ymax
def point_to_t(self, point):
if np.isclose(point, self.start, rtol=0, atol=1e-6):
return 0.0
elif np.isclose(point, self.end, rtol=0, atol=1e-6):
return 1.0
p = self.poly()
t = (point - p[0]) / p[1]
if np.isclose(t.imag, 0) and (t.real >= 0.0) and (t.real <= 1.0):
return t.real
return None
def cropped(self, t0, t1):
return Line(self.point(t0), self.point(t1))
|
MIT License
|
districtdatalabs/minke
|
minke/corpus.py
|
BaleenPickledCorpusReader.docs
|
python
|
def docs(self, fileids=None, categories=None):
fileids = self._resolve(fileids, categories)
for path, enc, fileid in self.abspaths(fileids, True, True):
with open(path, 'rb') as f:
yield pickle.load(f)
|
Returns the document loaded from a pickled object for every file in
the corpus. Similar to the BaleenCorpusReader, this uses a generator
to acheive memory safe iteration.
|
https://github.com/districtdatalabs/minke/blob/e41e8583f1386dbad5249aad740343c984832f1e/minke/corpus.py#L297-L309
|
import os
import bs4
import time
import json
import nltk
import codecs
import pickle
import nltk.data
from six import string_types
from nltk.tokenize import WordPunctTokenizer
from nltk.corpus.reader.api import CorpusReader
from nltk.corpus.reader.api import CategorizedCorpusReader
from readability.readability import Document as Paper
from readability.readability import Unparseable
DOC_PATTERN = r'(?!\.)[a-z_\s]+/[a-f0-9]+\.json'
PKL_PATTERN = r'(?!\.)[a-z_\s]+/[a-f0-9]+\.pickle'
CAT_PATTERN = r'([a-z_\s]+)/.*'
class BaleenCorpusReader(CategorizedCorpusReader, CorpusReader):
TAGS = [
'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'h7', 'p', 'li'
]
def __init__(self, root, fileids=DOC_PATTERN, tags=None,
word_tokenizer=WordPunctTokenizer(),
sent_tokenizer=nltk.data.LazyLoader(
'tokenizers/punkt/english.pickle'),
encoding='utf8', **kwargs):
if not any(key.startswith('cat_') for key in kwargs.keys()):
kwargs['cat_pattern'] = CAT_PATTERN
CategorizedCorpusReader.__init__(self, kwargs)
CorpusReader.__init__(self, root, fileids, encoding)
self._word_tokenizer = word_tokenizer
self._sent_tokenizer = sent_tokenizer
self._good_tags = tags or self.TAGS
def feeds(self):
data = self.open('feeds.json')
return json.load(data)
def _resolve(self, fileids, categories):
if fileids is not None and categories is not None:
raise ValueError("Specify fileids or categories, not both")
if categories is not None:
return self.fileids(categories)
return fileids
def docs(self, fileids=None, categories=None):
fileids = self._resolve(fileids, categories)
for path, enc, fileid in self.abspaths(fileids, True, True):
with codecs.open(path, 'r', encoding=enc) as f:
yield json.load(f)
def fields(self, fields, fileids=None, categories=None):
if isinstance(fields, string_types):
fields = [fields,]
if len(fields) == 1:
for doc in self.docs(fileids, categories):
if fields[0] in doc:
yield doc[fields[0]]
else:
for doc in self.docs(fileids, categories):
yield {
key: doc.get(key, None)
for key in fields
}
def html(self, fileids=None, categories=None, readability=True):
html = self.fields('content', fileids, categories)
if readability:
for doc in html:
try:
yield Paper(doc).summary()
except Unparseable as e:
print("Could not parse HTML: {}".format(e))
else:
for doc in html:
yield doc
def paras(self, fileids=None, categories=None):
for html in self.html(fileids, categories):
soup = bs4.BeautifulSoup(html, 'lxml')
for element in soup.find_all(self._good_tags):
yield element.text
def sents(self, fileids=None, categories=None):
for paragraph in self.paras(fileids, categories):
for sentence in self._sent_tokenizer.tokenize(paragraph):
yield sentence
def words(self, fileids=None, categories=None):
for sentence in self.sents(fileids, categories):
for token in self._word_tokenizer.tokenize(sentence):
yield token
def sizes(self, fileids=None, categories=None):
fileids = self._resolve(fileids, categories)
for path, enc, fileid in self.abspaths(fileids, True, True):
yield os.path.getsize(path)
def describe(self, fileids=None, categories=None):
counts = nltk.FreqDist()
tokens = nltk.FreqDist()
started = time.time()
for para in self.paras(fileids, categories):
counts['paras'] += 1
for sent in self._sent_tokenizer.tokenize(para):
counts['sents'] += 1
for word in self._word_tokenizer.tokenize(sent):
counts['words'] += 1
tokens[word] += 1
n_fileids = len(self._resolve(fileids, categories) or self.fileids())
n_topics = len(self.categories(self._resolve(fileids, categories)))
return {
'files': n_fileids,
'topics': n_topics,
'paras': counts['paras'],
'sents': counts['sents'],
'words': counts['words'],
'vocab': len(tokens),
'lexdiv': float(counts['words']) / float(len(tokens)),
'ppdoc': float(counts['paras']) / float(n_fileids),
'sppar': float(counts['sents']) / float(counts['paras']),
'secs': time.time() - started,
}
def describes(self, fileids=None, categories=None):
return (
"Baleen corpus contains {files} files in {topics} categories.\n"
"Structured as:\n"
" {paras} paragraphs ({ppdoc:0.3f} mean paragraphs per file)\n"
" {sents} sentences ({sppar:0.3f} mean sentences per paragraph).\n"
"Word count of {words} with a vocabulary of {vocab} "
"({lexdiv:0.3f} lexical diversity).\n"
"Corpus scan took {secs:0.3f} seconds."
).format(**self.describe(fileids, categories))
class BaleenPickledCorpusReader(BaleenCorpusReader):
def __init__(self, root, fileids=PKL_PATTERN, **kwargs):
if not any(key.startswith('cat_') for key in kwargs.keys()):
kwargs['cat_pattern'] = CAT_PATTERN
CategorizedCorpusReader.__init__(self, kwargs)
CorpusReader.__init__(self, root, fileids)
|
MIT License
|
syssi/xiaomi_raw
|
custom_components/xiaomi_miio_raw/sensor.py
|
async_setup_platform
|
python
|
def async_setup_platform(hass, config, async_add_devices, discovery_info=None):
if DATA_KEY not in hass.data:
hass.data[DATA_KEY] = {}
host = config.get(CONF_HOST)
token = config.get(CONF_TOKEN)
_LOGGER.info("Initializing with host %s (token %s...)", host, token[:5])
try:
miio_device = Device(host, token)
device_info = miio_device.info()
model = device_info.model
_LOGGER.info(
"%s %s %s detected",
model,
device_info.firmware_version,
device_info.hardware_version,
)
device = XiaomiMiioGenericDevice(miio_device, config, device_info)
except DeviceException:
raise PlatformNotReady
hass.data[DATA_KEY][host] = device
async_add_devices([device], update_before_add=True)
@asyncio.coroutine
def async_service_handler(service):
method = SERVICE_TO_METHOD.get(service.service)
params = {
key: value for key, value in service.data.items() if key != ATTR_ENTITY_ID
}
entity_ids = service.data.get(ATTR_ENTITY_ID)
if entity_ids:
devices = [
device
for device in hass.data[DATA_KEY].values()
if device.entity_id in entity_ids
]
else:
devices = hass.data[DATA_KEY].values()
update_tasks = []
for device in devices:
yield from getattr(device, method["method"])(**params)
update_tasks.append(device.async_update_ha_state(True))
if update_tasks:
yield from asyncio.wait(update_tasks, loop=hass.loop)
for service in SERVICE_TO_METHOD:
schema = SERVICE_TO_METHOD[service].get("schema", SERVICE_SCHEMA)
hass.services.async_register(
DOMAIN, service, async_service_handler, schema=schema
)
|
Set up the sensor from config.
|
https://github.com/syssi/xiaomi_raw/blob/3f4db780aa056642cada2ff8d31e09ea35659954/custom_components/xiaomi_miio_raw/sensor.py#L85-L142
|
import asyncio
import logging
from ast import literal_eval
from functools import partial
import homeassistant.helpers.config_validation as cv
import voluptuous as vol
from homeassistant.components.sensor import PLATFORM_SCHEMA
from homeassistant.const import ATTR_ENTITY_ID, CONF_HOST, CONF_NAME, CONF_TOKEN
from homeassistant.exceptions import PlatformNotReady
from homeassistant.helpers.entity import Entity
from miio import Device, DeviceException
_LOGGER = logging.getLogger(__name__)
DEFAULT_NAME = "Xiaomi Miio Device"
DATA_KEY = "sensor.xiaomi_miio_raw"
DOMAIN = "xiaomi_miio_raw"
CONF_SENSOR_PROPERTY = "sensor_property"
CONF_SENSOR_UNIT = "sensor_unit"
CONF_DEFAULT_PROPERTIES = "default_properties"
CONF_DEFAULT_PROPERTIES_GETTER = "default_properties_getter"
CONF_MAX_PROPERTIES = "max_properties"
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
{
vol.Required(CONF_HOST): cv.string,
vol.Required(CONF_TOKEN): vol.All(cv.string, vol.Length(min=32, max=32)),
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string,
vol.Optional(CONF_SENSOR_PROPERTY): cv.string,
vol.Optional(CONF_SENSOR_UNIT): cv.string,
vol.Optional(CONF_DEFAULT_PROPERTIES_GETTER, default="get_prop"): cv.string,
vol.Optional(CONF_DEFAULT_PROPERTIES, default=["power"]): vol.All(
cv.ensure_list, [cv.string]
),
vol.Optional(CONF_MAX_PROPERTIES, default=15): cv.positive_int,
}
)
ATTR_MODEL = "model"
ATTR_FIRMWARE_VERSION = "firmware_version"
ATTR_HARDWARE_VERSION = "hardware_version"
ATTR_PROPERTIES = "properties"
ATTR_SENSOR_PROPERTY = "sensor_property"
ATTR_METHOD = "method"
ATTR_PARAMS = "params"
CMD_GET_PROPERTIES = "get_properties"
SERVICE_SCHEMA = vol.Schema({vol.Optional(ATTR_ENTITY_ID): cv.entity_ids})
SERVICE_SCHEMA_SET_PROPERTIES = SERVICE_SCHEMA.extend(
{
vol.Optional(ATTR_PROPERTIES, default=["power"]): vol.All(
cv.ensure_list, [cv.string]
)
}
)
SERVICE_SCHEMA_COMMAND = SERVICE_SCHEMA.extend(
{
vol.Required(ATTR_METHOD): cv.string,
vol.Optional(ATTR_PARAMS, default=[]): vol.All(cv.ensure_list),
}
)
SERVICE_CUSTOM_TURN_ON = "sensor_turn_on"
SERVICE_CUSTOM_TURN_OFF = "sensor_turn_off"
SERVICE_SET_PROPERTIES = "sensor_set_properties"
SERVICE_COMMAND = "sensor_raw_command"
SERVICE_TO_METHOD = {
SERVICE_CUSTOM_TURN_ON: {"method": "async_turn_on"},
SERVICE_CUSTOM_TURN_OFF: {"method": "async_turn_off"},
SERVICE_SET_PROPERTIES: {
"method": "async_set_properties",
"schema": SERVICE_SCHEMA_SET_PROPERTIES,
},
SERVICE_COMMAND: {"method": "async_command", "schema": SERVICE_SCHEMA_COMMAND},
}
@asyncio.coroutine
|
Apache License 2.0
|
linkedin/luminol
|
src/luminol/correlator.py
|
Correlator.is_correlated
|
python
|
def is_correlated(self, threshold=0):
return self.correlation_result if self.correlation_result.coefficient >= threshold else False
|
Compare with a threshold to determine whether two timeseries correlate to each other.
:return: a CorrelationResult object if two time series correlate otherwise false.
|
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/correlator.py#L113-L118
|
from luminol import exceptions, utils
from luminol.algorithms.correlator_algorithms.all import correlator_algorithms
from luminol.anomaly_detector import AnomalyDetector
from luminol.constants import CORRELATOR_ALGORITHM
from luminol.modules.time_series import TimeSeries
class Correlator(object):
def __init__(self, time_series_a, time_series_b, time_period=None, use_anomaly_score=False, algorithm_name=None, algorithm_params=None):
self.time_series_a = self._load(time_series_a)
self.time_series_b = self._load(time_series_b)
if use_anomaly_score:
self.time_series_a = self._get_anomaly_scores(self.time_series_a)
self.time_series_b = self._get_anomaly_scores(self.time_series_b)
if time_period:
start_p, end_p = time_period
try:
self.time_series_a = self.time_series_a.crop(start_p, end_p)
self.time_series_b = self.time_series_b.crop(start_p, end_p)
except ValueError:
raise exceptions.NotEnoughDataPoints
self._sanity_check()
self.algorithm_params = {'time_series_a': self.time_series_a, 'time_series_b': self.time_series_b}
self._get_algorithm_and_params(algorithm_name, algorithm_params)
self._correlate()
def _get_anomaly_scores(self, time_series):
return AnomalyDetector(time_series, score_only=True).get_all_scores()
def _load(self, time_series):
if isinstance(time_series, TimeSeries):
return time_series
if isinstance(time_series, dict):
return TimeSeries(time_series)
return TimeSeries(utils.read_csv(time_series))
def _get_algorithm_and_params(self, algorithm_name, algorithm_params):
algorithm_name = algorithm_name or CORRELATOR_ALGORITHM
try:
self.algorithm = correlator_algorithms[algorithm_name]
except KeyError:
raise exceptions.AlgorithmNotFound('luminol.Correlator: ' + str(algorithm_name) + ' not found.')
if algorithm_params:
if not isinstance(algorithm_params, dict):
raise exceptions.InvalidDataFormat('luminol.Correlator: algorithm_params passed is not a dictionary.')
else:
self.algorithm_params = self.algorithm_params.copy()
self.algorithm_params.update(algorithm_params)
def _sanity_check(self):
if len(self.time_series_a) < 2 or len(self.time_series_b) < 2:
raise exceptions.NotEnoughDataPoints('luminol.Correlator: Too few data points!')
def _correlate(self):
a = self.algorithm(**self.algorithm_params)
self.correlation_result = a.run()
def get_correlation_result(self):
return self.correlation_result
|
Apache License 2.0
|
kuri65536/python-for-android
|
python-modules/twisted/twisted/words/protocols/irc.py
|
ServerSupportedFeatures.isupport_TOPICLEN
|
python
|
def isupport_TOPICLEN(self, params):
return _intOrDefault(params[0])
|
Maximum length of a topic that may be set.
|
https://github.com/kuri65536/python-for-android/blob/26402a08fc46b09ef94e8d7a6bbc3a54ff9d0891/python-modules/twisted/twisted/words/protocols/irc.py#L962-L966
|
import errno, os, random, re, stat, struct, sys, time, types, traceback
import string, socket
import warnings
import textwrap
from os import path
from twisted.internet import reactor, protocol
from twisted.persisted import styles
from twisted.protocols import basic
from twisted.python import log, reflect, text
NUL = chr(0)
CR = chr(015)
NL = chr(012)
LF = NL
SPC = chr(040)
MAX_COMMAND_LENGTH = 512
CHANNEL_PREFIXES = '&#!+'
class IRCBadMessage(Exception):
pass
class IRCPasswordMismatch(Exception):
pass
class IRCBadModes(ValueError):
def parsemsg(s):
prefix = ''
trailing = []
if not s:
raise IRCBadMessage("Empty line.")
if s[0] == ':':
prefix, s = s[1:].split(' ', 1)
if s.find(' :') != -1:
s, trailing = s.split(' :', 1)
args = s.split()
args.append(trailing)
else:
args = s.split()
command = args.pop(0)
return prefix, command, args
def split(str, length=80):
return [chunk
for line in str.split('\n')
for chunk in textwrap.wrap(line, length)]
def _intOrDefault(value, default=None):
if value:
try:
return int(value)
except (TypeError, ValueError):
pass
return default
class UnhandledCommand(RuntimeError):
class _CommandDispatcherMixin(object):
prefix = None
def dispatch(self, commandName, *args):
def _getMethodName(command):
return '%s_%s' % (self.prefix, command)
def _getMethod(name):
return getattr(self, _getMethodName(name), None)
method = _getMethod(commandName)
if method is not None:
return method(*args)
method = _getMethod('unknown')
if method is None:
raise UnhandledCommand("No handler for %r could be found" % (_getMethodName(commandName),))
return method(commandName, *args)
def parseModes(modes, params, paramModes=('', '')):
if len(modes) == 0:
raise IRCBadModes('Empty mode string')
if modes[0] not in '+-':
raise IRCBadModes('Malformed modes string: %r' % (modes,))
changes = ([], [])
direction = None
count = -1
for ch in modes:
if ch in '+-':
if count == 0:
raise IRCBadModes('Empty mode sequence: %r' % (modes,))
direction = '+-'.index(ch)
count = 0
else:
param = None
if ch in paramModes[direction]:
try:
param = params.pop(0)
except IndexError:
raise IRCBadModes('Not enough parameters: %r' % (ch,))
changes[direction].append((ch, param))
count += 1
if len(params) > 0:
raise IRCBadModes('Too many parameters: %r %r' % (modes, params))
if count == 0:
raise IRCBadModes('Empty mode sequence: %r' % (modes,))
return changes
class IRC(protocol.Protocol):
buffer = ""
hostname = None
encoding = None
def connectionMade(self):
self.channels = []
if self.hostname is None:
self.hostname = socket.getfqdn()
def sendLine(self, line):
if self.encoding is not None:
if isinstance(line, unicode):
line = line.encode(self.encoding)
self.transport.write("%s%s%s" % (line, CR, LF))
def sendMessage(self, command, *parameter_list, **prefix):
if not command:
raise ValueError, "IRC message requires a command."
if ' ' in command or command[0] == ':':
raise ValueError, "Somebody screwed up, 'cuz this doesn't" " look like a command to me: %s" % command
line = string.join([command] + list(parameter_list))
if prefix.has_key('prefix'):
line = ":%s %s" % (prefix['prefix'], line)
self.sendLine(line)
if len(parameter_list) > 15:
log.msg("Message has %d parameters (RFC allows 15):\n%s" %
(len(parameter_list), line))
def dataReceived(self, data):
lines = (self.buffer + data).split(LF)
self.buffer = lines.pop()
for line in lines:
if len(line) <= 2:
continue
if line[-1] == CR:
line = line[:-1]
prefix, command, params = parsemsg(line)
command = command.upper()
self.handleCommand(command, prefix, params)
def handleCommand(self, command, prefix, params):
method = getattr(self, "irc_%s" % command, None)
try:
if method is not None:
method(prefix, params)
else:
self.irc_unknown(prefix, command, params)
except:
log.deferr()
def irc_unknown(self, prefix, command, params):
raise NotImplementedError(command, prefix, params)
def privmsg(self, sender, recip, message):
self.sendLine(":%s PRIVMSG %s :%s" % (sender, recip, lowQuote(message)))
def notice(self, sender, recip, message):
self.sendLine(":%s NOTICE %s :%s" % (sender, recip, message))
def action(self, sender, recip, message):
self.sendLine(":%s ACTION %s :%s" % (sender, recip, message))
def topic(self, user, channel, topic, author=None):
if author is None:
if topic is None:
self.sendLine(':%s %s %s %s :%s' % (
self.hostname, RPL_NOTOPIC, user, channel, 'No topic is set.'))
else:
self.sendLine(":%s %s %s %s :%s" % (
self.hostname, RPL_TOPIC, user, channel, lowQuote(topic)))
else:
self.sendLine(":%s TOPIC %s :%s" % (author, channel, lowQuote(topic)))
def topicAuthor(self, user, channel, author, date):
self.sendLine(':%s %d %s %s %s %d' % (
self.hostname, 333, user, channel, author, date))
def names(self, user, channel, names):
prefixLength = len(channel) + len(user) + 10
namesLength = 512 - prefixLength
L = []
count = 0
for n in names:
if count + len(n) + 1 > namesLength:
self.sendLine(":%s %s %s = %s :%s" % (
self.hostname, RPL_NAMREPLY, user, channel, ' '.join(L)))
L = [n]
count = len(n)
else:
L.append(n)
count += len(n) + 1
if L:
self.sendLine(":%s %s %s = %s :%s" % (
self.hostname, RPL_NAMREPLY, user, channel, ' '.join(L)))
self.sendLine(":%s %s %s %s :End of /NAMES list" % (
self.hostname, RPL_ENDOFNAMES, user, channel))
def who(self, user, channel, memberInfo):
for info in memberInfo:
(username, hostmask, server, nickname, flag, hops, realName) = info
assert flag in ("H", "G")
self.sendLine(":%s %s %s %s %s %s %s %s %s :%d %s" % (
self.hostname, RPL_WHOREPLY, user, channel,
username, hostmask, server, nickname, flag, hops, realName))
self.sendLine(":%s %s %s %s :End of /WHO list." % (
self.hostname, RPL_ENDOFWHO, user, channel))
def whois(self, user, nick, username, hostname, realName, server, serverInfo, oper, idle, signOn, channels):
self.sendLine(":%s %s %s %s %s %s * :%s" % (
self.hostname, RPL_WHOISUSER, user, nick, username, hostname, realName))
self.sendLine(":%s %s %s %s %s :%s" % (
self.hostname, RPL_WHOISSERVER, user, nick, server, serverInfo))
if oper:
self.sendLine(":%s %s %s %s :is an IRC operator" % (
self.hostname, RPL_WHOISOPERATOR, user, nick))
self.sendLine(":%s %s %s %s %d %d :seconds idle, signon time" % (
self.hostname, RPL_WHOISIDLE, user, nick, idle, signOn))
self.sendLine(":%s %s %s %s :%s" % (
self.hostname, RPL_WHOISCHANNELS, user, nick, ' '.join(channels)))
self.sendLine(":%s %s %s %s :End of WHOIS list." % (
self.hostname, RPL_ENDOFWHOIS, user, nick))
def join(self, who, where):
self.sendLine(":%s JOIN %s" % (who, where))
def part(self, who, where, reason=None):
if reason:
self.sendLine(":%s PART %s :%s" % (who, where, reason))
else:
self.sendLine(":%s PART %s" % (who, where))
def channelMode(self, user, channel, mode, *args):
self.sendLine(":%s %s %s %s %s %s" % (
self.hostname, RPL_CHANNELMODEIS, user, channel, mode, ' '.join(args)))
class ServerSupportedFeatures(_CommandDispatcherMixin):
prefix = 'isupport'
def __init__(self):
self._features = {
'CHANNELLEN': 200,
'CHANTYPES': tuple('#&'),
'MODES': 3,
'NICKLEN': 9,
'PREFIX': self._parsePrefixParam('(ovh)@+%'),
'CHANMODES': self._parseChanModesParam(['b', '', 'lk'])}
def _splitParamArgs(cls, params, valueProcessor=None):
if valueProcessor is None:
valueProcessor = lambda x: x
def _parse():
for param in params:
if ':' not in param:
param += ':'
a, b = param.split(':', 1)
yield a, valueProcessor(b)
return list(_parse())
_splitParamArgs = classmethod(_splitParamArgs)
def _unescapeParamValue(cls, value):
def _unescape():
parts = value.split('\\x')
yield parts.pop(0)
for s in parts:
octet, rest = s[:2], s[2:]
try:
octet = int(octet, 16)
except ValueError:
raise ValueError('Invalid hex octet: %r' % (octet,))
yield chr(octet) + rest
if '\\x' not in value:
return value
return ''.join(_unescape())
_unescapeParamValue = classmethod(_unescapeParamValue)
def _splitParam(cls, param):
if '=' not in param:
param += '='
key, value = param.split('=', 1)
return key, map(cls._unescapeParamValue, value.split(','))
_splitParam = classmethod(_splitParam)
def _parsePrefixParam(cls, prefix):
if not prefix:
return None
if prefix[0] != '(' and ')' not in prefix:
raise ValueError('Malformed PREFIX parameter')
modes, symbols = prefix.split(')', 1)
symbols = zip(symbols, xrange(len(symbols)))
modes = modes[1:]
return dict(zip(modes, symbols))
_parsePrefixParam = classmethod(_parsePrefixParam)
def _parseChanModesParam(self, params):
names = ('addressModes', 'param', 'setParam', 'noParam')
if len(params) > len(names):
raise ValueError(
'Expecting a maximum of %d channel mode parameters, got %d' % (
len(names), len(params)))
items = map(lambda key, value: (key, value or ''), names, params)
return dict(items)
_parseChanModesParam = classmethod(_parseChanModesParam)
def getFeature(self, feature, default=None):
return self._features.get(feature, default)
def hasFeature(self, feature):
return self.getFeature(feature) is not None
def parse(self, params):
for param in params:
key, value = self._splitParam(param)
if key.startswith('-'):
self._features.pop(key[1:], None)
else:
self._features[key] = self.dispatch(key, value)
def isupport_unknown(self, command, params):
return tuple(params)
def isupport_CHANLIMIT(self, params):
return self._splitParamArgs(params, _intOrDefault)
def isupport_CHANMODES(self, params):
try:
return self._parseChanModesParam(params)
except ValueError:
return self.getFeature('CHANMODES')
def isupport_CHANNELLEN(self, params):
return _intOrDefault(params[0], self.getFeature('CHANNELLEN'))
def isupport_CHANTYPES(self, params):
return tuple(params[0])
def isupport_EXCEPTS(self, params):
return params[0] or 'e'
def isupport_IDCHAN(self, params):
return self._splitParamArgs(params)
def isupport_INVEX(self, params):
return params[0] or 'I'
def isupport_KICKLEN(self, params):
return _intOrDefault(params[0])
def isupport_MAXLIST(self, params):
return self._splitParamArgs(params, _intOrDefault)
def isupport_MODES(self, params):
return _intOrDefault(params[0])
def isupport_NETWORK(self, params):
return params[0]
def isupport_NICKLEN(self, params):
return _intOrDefault(params[0], self.getFeature('NICKLEN'))
def isupport_PREFIX(self, params):
try:
return self._parsePrefixParam(params[0])
except ValueError:
return self.getFeature('PREFIX')
def isupport_SAFELIST(self, params):
return True
def isupport_STATUSMSG(self, params):
return params[0]
def isupport_TARGMAX(self, params):
return dict(self._splitParamArgs(params, _intOrDefault))
|
Apache License 2.0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.