repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
trevor/calendarserver
|
txdav/who/delegates.py
|
removeDelegate
|
python
|
def removeDelegate(txn, delegator, delegate, readWrite):
if delegate.recordType == BaseRecordType.group:
(
groupID, _ignore_name, _ignore_membershipHash, _ignore_modified,
_ignore_extant
) = yield txn.groupByUID(
delegate.uid
)
yield txn.removeDelegateGroup(delegator.uid, groupID, readWrite)
else:
yield txn.removeDelegate(delegator.uid, delegate.uid, readWrite)
|
Removes "delegate" as a delegate of "delegator". The type of access is
specified by the "readWrite" parameter.
@param delegator: the delegator's directory record
@type delegator: L{IDirectoryRecord}
@param delegate: the delegate's directory record
@type delegate: L{IDirectoryRecord}
@param readWrite: if True, read and write access is revoked; read-only
access otherwise
|
https://github.com/trevor/calendarserver/blob/c9970b06a70445ca75b62e3d170c26bc897a035e/txdav/who/delegates.py#L252-L274
|
from twisted.python.constants import Names, NamedConstant
from twisted.internet.defer import inlineCallbacks, returnValue, succeed
from twext.python.log import Logger
from twext.who.idirectory import (
RecordType as BaseRecordType, FieldName, NotAllowedError
)
from twext.who.directory import (
DirectoryService as BaseDirectoryService,
DirectoryRecord as BaseDirectoryRecord
)
from twext.who.expression import MatchExpression, MatchType
log = Logger()
class RecordType(Names):
readDelegateGroup = NamedConstant()
readDelegateGroup.description = u"read-delegate-group"
writeDelegateGroup = NamedConstant()
writeDelegateGroup.description = u"write-delegate-group"
readDelegatorGroup = NamedConstant()
readDelegatorGroup.description = u"read-delegator-group"
writeDelegatorGroup = NamedConstant()
writeDelegatorGroup.description = u"write-delegator-group"
class DirectoryRecord(BaseDirectoryRecord):
@inlineCallbacks
def members(self, expanded=False):
parentUID, _ignore_proxyType = self.uid.split(u"#")
@inlineCallbacks
def _members(txn):
if self.recordType in (
RecordType.readDelegateGroup, RecordType.writeDelegateGroup
):
readWrite = (self.recordType is RecordType.writeDelegateGroup)
delegateUIDs = (
yield txn.delegates(parentUID, readWrite, expanded=expanded)
)
else:
readWrite = (self.recordType is RecordType.writeDelegatorGroup)
delegateUIDs = (
yield txn.delegators(parentUID, readWrite)
)
returnValue(delegateUIDs)
delegateUIDs = yield self.service._store.inTransaction(
"DirectoryRecord.members", _members
)
records = []
for uid in delegateUIDs:
if uid != parentUID:
record = yield self.service._masterDirectory.recordWithUID(uid)
if record is not None:
records.append(record)
returnValue(records)
@inlineCallbacks
def setMembers(self, memberRecords):
if self.recordType not in (
RecordType.readDelegateGroup, RecordType.writeDelegateGroup
):
raise NotAllowedError("Setting members not supported")
parentUID, _ignore_proxyType = self.uid.split(u"#")
readWrite = (self.recordType is RecordType.writeDelegateGroup)
log.debug(
"Setting delegate assignments for {u} ({rw}) to {m}",
u=parentUID, rw=("write" if readWrite else "read"),
m=[r.uid for r in memberRecords]
)
@inlineCallbacks
def _setMembers(txn):
yield txn.removeDelegates(parentUID, readWrite)
yield txn.removeDelegateGroups(parentUID, readWrite)
delegator = (
yield self.service._masterDirectory.recordWithUID(parentUID)
)
for delegate in memberRecords:
yield addDelegate(txn, delegator, delegate, readWrite)
yield self.service._store.inTransaction(
"DirectoryRecord.setMembers", _setMembers
)
def recordTypeToProxyType(recordType):
return {
RecordType.readDelegateGroup: "calendar-proxy-read",
RecordType.writeDelegateGroup: "calendar-proxy-write",
RecordType.readDelegatorGroup: "calendar-proxy-read-for",
RecordType.writeDelegatorGroup: "calendar-proxy-write-for",
}.get(recordType, None)
def proxyTypeToRecordType(proxyType):
return {
"calendar-proxy-read": RecordType.readDelegateGroup,
"calendar-proxy-write": RecordType.writeDelegateGroup,
"calendar-proxy-read-for": RecordType.readDelegatorGroup,
"calendar-proxy-write-for": RecordType.writeDelegatorGroup,
}.get(proxyType, None)
class DirectoryService(BaseDirectoryService):
recordType = RecordType
def __init__(self, realmName, store):
BaseDirectoryService.__init__(self, realmName)
self._store = store
self._masterDirectory = None
def setMasterDirectory(self, masterDirectory):
self._masterDirectory = masterDirectory
def recordWithShortName(self, recordType, shortName):
uid = shortName + "#" + recordTypeToProxyType(recordType)
record = DirectoryRecord(self, {
FieldName.uid: uid,
FieldName.recordType: recordType,
FieldName.shortNames: (uid,),
})
return succeed(record)
def recordWithUID(self, uid):
if "#" not in uid:
return succeed(None)
uid, proxyType = uid.split("#")
recordType = proxyTypeToRecordType(proxyType)
if recordType is None:
return succeed(None)
return self.recordWithShortName(recordType, uid)
@inlineCallbacks
def recordsFromExpression(self, expression, recordTypes=None, records=None):
if isinstance(expression, MatchExpression):
if(
(expression.fieldName is FieldName.uid) and
(expression.matchType is MatchType.equals) and
("#" in expression.fieldValue)
):
record = yield self.recordWithUID(expression.fieldValue)
if record is not None:
returnValue((record,))
returnValue(())
@inlineCallbacks
def addDelegate(txn, delegator, delegate, readWrite):
if delegate.recordType == BaseRecordType.group:
(
groupID, _ignore_name, _ignore_membershipHash, _ignore_modified,
_ignore_extant
) = yield txn.groupByUID(
delegate.uid
)
yield txn.addDelegateGroup(delegator.uid, groupID, readWrite)
else:
yield txn.addDelegate(delegator.uid, delegate.uid, readWrite)
@inlineCallbacks
|
Apache License 2.0
|
facebookresearch/nevergrad
|
nevergrad/parametrization/_datalayers.py
|
BoundLayer.get_normalized_value
|
python
|
def get_normalized_value(self) -> np.ndarray:
value = self._layers[self._layer_index]._layered_get_value()
return self._normalizer().forward(value)
|
Gets a value normalized between 0 and 1
|
https://github.com/facebookresearch/nevergrad/blob/1981997603e361b1fd5b5e2aeb8173c4eae6aef0/nevergrad/parametrization/_datalayers.py#L133-L136
|
import warnings
import functools
import numpy as np
import nevergrad.common.typing as tp
from nevergrad.common import errors
from . import _layering
from ._layering import Int as Int
from . import data as _data
from .data import Data
from .core import Parameter
from . import discretization
from . import transforms as trans
from . import utils
D = tp.TypeVar("D", bound=Data)
Op = tp.TypeVar("Op", bound="Operation")
BL = tp.TypeVar("BL", bound="BoundLayer")
class Operation(_layering.Layered, _layering.Filterable):
_LAYER_LEVEL = _layering.Level.OPERATION
_LEGACY = False
def __init__(self, *args: tp.Any, **kwargs: tp.Any) -> None:
super().__init__()
if any(isinstance(x, Parameter) for x in args + tuple(kwargs.values())):
raise errors.NevergradTypeError("Operation with Parameter instances are not supported")
class BoundLayer(Operation):
_LAYER_LEVEL = _layering.Level.OPERATION
def __init__(
self,
lower: tp.BoundValue = None,
upper: tp.BoundValue = None,
uniform_sampling: tp.Optional[bool] = None,
) -> None:
super().__init__(lower, upper, uniform_sampling)
self.bounds: tp.Tuple[tp.Optional[np.ndarray], tp.Optional[np.ndarray]] = tuple(
None if a is None else trans.bound_to_array(a) for a in (lower, upper)
)
both_bounds = all(b is not None for b in self.bounds)
self.uniform_sampling: bool = uniform_sampling
if uniform_sampling is None:
self.uniform_sampling = both_bounds
if self.uniform_sampling and not both_bounds:
raise errors.NevergradValueError("Cannot use full range sampling if both bounds are not set")
if not (lower is None or upper is None):
if (self.bounds[0] >= self.bounds[1]).any():
raise errors.NevergradValueError(
f"Lower bounds {lower} should be strictly smaller than upper bounds {upper}"
)
def _normalizer(self) -> trans.Transform:
if any(b is None for b in self.bounds):
raise RuntimeError("Cannot use normalized value for not-fully bounded Parameter")
return trans.Affine(self.bounds[1] - self.bounds[0], self.bounds[0]).reverted()
def __call__(self, data: D, inplace: bool = False) -> D:
new = data if inplace else data.copy()
value = new.value
new.add_layer(self.copy())
try:
new.value = value
except ValueError as e:
raise errors.NevergradValueError(
"Current value is not within bounds, please update it first"
) from e
if all(x is not None for x in self.bounds):
tests = [data.copy() for _ in range(2)]
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
for test, bound in zip(tests, self.bounds):
val = bound * np.ones(value.shape) if isinstance(value, np.ndarray) else bound[0]
test.value = val
state = tests[0].get_standardized_data(reference=tests[1])
min_dist = np.min(np.abs(state))
if min_dist < 3.0:
warnings.warn(
f"Bounds are {min_dist} sigma away from each other at the closest, "
"you should aim for at least 3 for better quality.",
errors.NevergradRuntimeWarning,
)
return new
def _layered_sample(self) -> Data:
if not self.uniform_sampling:
return super()._layered_sample()
root = self._layers[0]
if not isinstance(root, Data):
raise errors.NevergradTypeError(f"BoundLayer {self} on a non-Data root {root}")
shape = super()._layered_get_value().shape
child = root.spawn_child()
new_val = self.random_state.uniform(size=shape)
del child.value
child._layers[self._layer_index].set_normalized_value(new_val)
return child
def set_normalized_value(self, value: np.ndarray) -> None:
new_val = self._normalizer().backward(value)
self._layers[self._layer_index]._layered_set_value(new_val)
|
MIT License
|
lateral/hyperplane-hasher
|
key_value_store.py
|
KeyValueStore.get_set
|
python
|
def get_set(self, set_id):
pass
|
Returns a copy of the set at id 'set_id'. Raises KeyError if
'set_id' is unknown.
|
https://github.com/lateral/hyperplane-hasher/blob/41c0969087f30cb0c5876f860d234028e44692d9/key_value_store.py#L81-L84
|
import numpy as np
class KeyValueStore(object):
def get_vector_ids(self):
pass
def get_int_ids(self):
pass
def get_set_ids(self):
pass
def store_vector(self, vec_id, vector):
pass
def bulk_store_vector(self, vec_ids, vectors):
if len(vec_ids) != len(vectors):
raise ValueError
for vec_id, vector in zip(vec_ids, vectors):
self.store_vector(vec_id, vector)
def get_vector(self, vec_id):
pass
def bulk_get_vector(self, vec_ids):
pass
def remove_vector(self, vec_id):
pass
def add_to_set(self, set_id, element_id):
pass
def bulk_add_to_set(self, set_ids, element_ids):
if len(set_ids) != len(element_ids):
raise ValueError
for set_id, element_id in zip(set_ids, element_ids):
self.add_to_set(set_id, element_id)
def remove_from_set(self, set_id, element_id):
pass
def remove_set(self, set_id):
pass
|
MIT License
|
opennetworkingfoundation/tapi
|
RI/flask_server/tapi_server/models/tapi_topology_node.py
|
TapiTopologyNode.latency_characteristic
|
python
|
def latency_characteristic(self, latency_characteristic):
self._latency_characteristic = latency_characteristic
|
Sets the latency_characteristic of this TapiTopologyNode.
The effect on the latency of a queuing process. This only has significant effect for packet based systems and has a complex characteristic. # noqa: E501
:param latency_characteristic: The latency_characteristic of this TapiTopologyNode.
:type latency_characteristic: List[TapiTopologyLatencyCharacteristic]
|
https://github.com/opennetworkingfoundation/tapi/blob/1f3fd9483d5674552c5a31206c97399c8c151897/RI/flask_server/tapi_server/models/tapi_topology_node.py#L482-L491
|
from __future__ import absolute_import
from datetime import date, datetime
from typing import List, Dict
from tapi_server.models.base_model_ import Model
from tapi_server.models.tapi_common_admin_state_pac import TapiCommonAdminStatePac
from tapi_server.models.tapi_common_administrative_state import TapiCommonAdministrativeState
from tapi_server.models.tapi_common_capacity import TapiCommonCapacity
from tapi_server.models.tapi_common_capacity_pac import TapiCommonCapacityPac
from tapi_server.models.tapi_common_global_class import TapiCommonGlobalClass
from tapi_server.models.tapi_common_layer_protocol_name import TapiCommonLayerProtocolName
from tapi_server.models.tapi_common_lifecycle_state import TapiCommonLifecycleState
from tapi_server.models.tapi_common_name_and_value import TapiCommonNameAndValue
from tapi_server.models.tapi_common_operational_state import TapiCommonOperationalState
from tapi_server.models.tapi_topology_cost_characteristic import TapiTopologyCostCharacteristic
from tapi_server.models.tapi_topology_latency_characteristic import TapiTopologyLatencyCharacteristic
from tapi_server.models.tapi_topology_node_edge_point import TapiTopologyNodeEdgePoint
from tapi_server.models.tapi_topology_node_edge_point_ref import TapiTopologyNodeEdgePointRef
from tapi_server.models.tapi_topology_node_rule_group import TapiTopologyNodeRuleGroup
from tapi_server.models.tapi_topology_topology_ref import TapiTopologyTopologyRef
from tapi_server.models.tapi_topology_transfer_cost_pac import TapiTopologyTransferCostPac
from tapi_server.models.tapi_topology_transfer_integrity_pac import TapiTopologyTransferIntegrityPac
from tapi_server.models.tapi_topology_transfer_timing_pac import TapiTopologyTransferTimingPac
from tapi_server import util
class TapiTopologyNode(Model):
def __init__(self, operational_state=None, lifecycle_state=None, administrative_state=None, available_capacity=None, total_potential_capacity=None, name=None, uuid=None, cost_characteristic=None, error_characteristic=None, unavailable_time_characteristic=None, server_integrity_process_characteristic=None, delivery_order_characteristic=None, repeat_delivery_characteristic=None, loss_characteristic=None, latency_characteristic=None, layer_protocol_name=None, encap_topology=None, owned_node_edge_point=None, node_rule_group=None, aggregated_node_edge_point=None):
self.openapi_types = {
'operational_state': TapiCommonOperationalState,
'lifecycle_state': TapiCommonLifecycleState,
'administrative_state': TapiCommonAdministrativeState,
'available_capacity': TapiCommonCapacity,
'total_potential_capacity': TapiCommonCapacity,
'name': List[TapiCommonNameAndValue],
'uuid': str,
'cost_characteristic': List[TapiTopologyCostCharacteristic],
'error_characteristic': str,
'unavailable_time_characteristic': str,
'server_integrity_process_characteristic': str,
'delivery_order_characteristic': str,
'repeat_delivery_characteristic': str,
'loss_characteristic': str,
'latency_characteristic': List[TapiTopologyLatencyCharacteristic],
'layer_protocol_name': List[TapiCommonLayerProtocolName],
'encap_topology': TapiTopologyTopologyRef,
'owned_node_edge_point': List[TapiTopologyNodeEdgePoint],
'node_rule_group': List[TapiTopologyNodeRuleGroup],
'aggregated_node_edge_point': List[TapiTopologyNodeEdgePointRef]
}
self.attribute_map = {
'operational_state': 'operational-state',
'lifecycle_state': 'lifecycle-state',
'administrative_state': 'administrative-state',
'available_capacity': 'available-capacity',
'total_potential_capacity': 'total-potential-capacity',
'name': 'name',
'uuid': 'uuid',
'cost_characteristic': 'cost-characteristic',
'error_characteristic': 'error-characteristic',
'unavailable_time_characteristic': 'unavailable-time-characteristic',
'server_integrity_process_characteristic': 'server-integrity-process-characteristic',
'delivery_order_characteristic': 'delivery-order-characteristic',
'repeat_delivery_characteristic': 'repeat-delivery-characteristic',
'loss_characteristic': 'loss-characteristic',
'latency_characteristic': 'latency-characteristic',
'layer_protocol_name': 'layer-protocol-name',
'encap_topology': 'encap-topology',
'owned_node_edge_point': 'owned-node-edge-point',
'node_rule_group': 'node-rule-group',
'aggregated_node_edge_point': 'aggregated-node-edge-point'
}
self._operational_state = operational_state
self._lifecycle_state = lifecycle_state
self._administrative_state = administrative_state
self._available_capacity = available_capacity
self._total_potential_capacity = total_potential_capacity
self._name = name
self._uuid = uuid
self._cost_characteristic = cost_characteristic
self._error_characteristic = error_characteristic
self._unavailable_time_characteristic = unavailable_time_characteristic
self._server_integrity_process_characteristic = server_integrity_process_characteristic
self._delivery_order_characteristic = delivery_order_characteristic
self._repeat_delivery_characteristic = repeat_delivery_characteristic
self._loss_characteristic = loss_characteristic
self._latency_characteristic = latency_characteristic
self._layer_protocol_name = layer_protocol_name
self._encap_topology = encap_topology
self._owned_node_edge_point = owned_node_edge_point
self._node_rule_group = node_rule_group
self._aggregated_node_edge_point = aggregated_node_edge_point
@classmethod
def from_dict(cls, dikt) -> 'TapiTopologyNode':
return util.deserialize_model(dikt, cls)
@property
def operational_state(self):
return self._operational_state
@operational_state.setter
def operational_state(self, operational_state):
self._operational_state = operational_state
@property
def lifecycle_state(self):
return self._lifecycle_state
@lifecycle_state.setter
def lifecycle_state(self, lifecycle_state):
self._lifecycle_state = lifecycle_state
@property
def administrative_state(self):
return self._administrative_state
@administrative_state.setter
def administrative_state(self, administrative_state):
self._administrative_state = administrative_state
@property
def available_capacity(self):
return self._available_capacity
@available_capacity.setter
def available_capacity(self, available_capacity):
self._available_capacity = available_capacity
@property
def total_potential_capacity(self):
return self._total_potential_capacity
@total_potential_capacity.setter
def total_potential_capacity(self, total_potential_capacity):
self._total_potential_capacity = total_potential_capacity
@property
def name(self):
return self._name
@name.setter
def name(self, name):
self._name = name
@property
def uuid(self):
return self._uuid
@uuid.setter
def uuid(self, uuid):
self._uuid = uuid
@property
def cost_characteristic(self):
return self._cost_characteristic
@cost_characteristic.setter
def cost_characteristic(self, cost_characteristic):
self._cost_characteristic = cost_characteristic
@property
def error_characteristic(self):
return self._error_characteristic
@error_characteristic.setter
def error_characteristic(self, error_characteristic):
self._error_characteristic = error_characteristic
@property
def unavailable_time_characteristic(self):
return self._unavailable_time_characteristic
@unavailable_time_characteristic.setter
def unavailable_time_characteristic(self, unavailable_time_characteristic):
self._unavailable_time_characteristic = unavailable_time_characteristic
@property
def server_integrity_process_characteristic(self):
return self._server_integrity_process_characteristic
@server_integrity_process_characteristic.setter
def server_integrity_process_characteristic(self, server_integrity_process_characteristic):
self._server_integrity_process_characteristic = server_integrity_process_characteristic
@property
def delivery_order_characteristic(self):
return self._delivery_order_characteristic
@delivery_order_characteristic.setter
def delivery_order_characteristic(self, delivery_order_characteristic):
self._delivery_order_characteristic = delivery_order_characteristic
@property
def repeat_delivery_characteristic(self):
return self._repeat_delivery_characteristic
@repeat_delivery_characteristic.setter
def repeat_delivery_characteristic(self, repeat_delivery_characteristic):
self._repeat_delivery_characteristic = repeat_delivery_characteristic
@property
def loss_characteristic(self):
return self._loss_characteristic
@loss_characteristic.setter
def loss_characteristic(self, loss_characteristic):
self._loss_characteristic = loss_characteristic
@property
def latency_characteristic(self):
return self._latency_characteristic
@latency_characteristic.setter
|
Apache License 2.0
|
state-of-the-art/blendnet
|
BlendNet/TaskBase.py
|
TaskBase.executionMessagesGet
|
python
|
def executionMessagesGet(self):
with self._execution_messages_lock:
return self._execution_messages.copy()
|
Variety of details about the execution
|
https://github.com/state-of-the-art/blendnet/blob/a313333f109c8d7cae8615f747767a42576e3d21/BlendNet/TaskBase.py#L358-L361
|
import bpy
import os, sys
import json
import time
import threading
import subprocess
from enum import Enum
from random import randrange
from abc import ABC, abstractmethod
from .Config import Config
from . import utils
class TaskConfig(Config):
_defs = {
'project': {
'description': '''Set the project file will be used to render''',
'type': str,
},
'project_path': {
'description': '''Absolute path to the project dir, required to resolve `//../dir/file`''',
'type': str,
'validation': lambda cfg, val: utils.isPathAbsolute(val) and utils.isPathStraight(val),
},
'cwd_path': {
'description': '''Absolute path to the current working dir, required to resolve `dir/file`''',
'type': str,
'validation': lambda cfg, val: utils.isPathAbsolute(val) and utils.isPathStraight(val),
},
'samples': {
'description': '''How much samples to process for the task''',
'type': int,
'min': 1,
'default': 100,
},
'seed': {
'description': '''Seed to use during render (or random will be used)''',
'type': int,
'min': 0,
'max': 2147483647,
'value': lambda cfg: randrange(0, 2147483647),
},
'frame': {
'description': '''Set the frame to render (or current one will be used)''',
'type': int,
'min': 0,
},
}
class TaskState(Enum):
CREATED = 0
STOPPED = 1
PENDING = 2
RUNNING = 3
COMPLETED = 4
ERROR = 5
class TaskBase(ABC):
def __init__(self, parent, name, config, data = dict()):
print('DEBUG: Creating new task %s' % name)
if not isinstance(config, TaskConfig):
raise Exception('Unable to set task with configuration %s' % type(config))
self._parent = parent
self._cfg = config
self._name = name
self._create_time = data.get('create_time', int(time.time()))
self._start_time = data.get('start_time')
self._end_time = data.get('end_time')
self._status_lock = threading.Lock()
self._status = data.get('status', {
'samples_done': 0,
'remaining': None,
'result': {
'preview': None,
'render': None,
},
})
self._state_lock = threading.Lock()
state_name = data.get('state', TaskState.CREATED.name)
self._state = TaskState[state_name] if state_name != TaskState.RUNNING.name else TaskState.STOPPED
self._state_error_info = data.get('state_error_info', [])
self._execution_lock = threading.Lock()
self._execution_watcher = None
self._execution_details_lock = threading.Lock()
self._execution_details = data.get('execution_details', {})
self._execution_messages_lock = threading.Lock()
self._execution_messages = data.get('execution_messages', {})
self._files_lock = threading.Lock()
self._files = data.get('files', {})
if 'config' in data:
self._cfg.configsSet(data['config'])
def __del__(self):
print('DEBUG: Deleting task %s' % self.name())
self.stop()
def name(self):
return self._name
def snapshot(self):
out = {
'config': self._cfg.configsGet(),
'status': self._status.copy(),
'name': self._name,
'create_time': self._create_time,
'start_time': self._start_time,
'end_time': self._end_time,
'state': self._state.name,
'state_error_info': self._state_error_info,
'execution_details': self._execution_details.copy(),
'execution_messages': self._execution_messages.copy(),
'files': self._files.copy(),
}
return out
def info(self):
out = {
'name': self.name(),
'create_time': self._create_time,
'start_time': self._start_time,
'end_time': self._end_time,
'state': self._state.name,
'frame': self._cfg.frame,
'done': self._status['samples_done'] / self._cfg.samples,
}
if self._state_error_info:
out['state_error_info'] = self._state_error_info
return out
def status(self):
with self._status_lock:
out = self.info()
out.update({
'project': self._cfg.project,
'samples': self._cfg.samples,
'seed': self._cfg.seed,
})
out.update(self._status)
return out
def statusRemainingSet(self, remaining):
with self._status_lock:
self._status['remaining'] = remaining
def statusSamplesDoneSet(self, samples):
with self._status_lock:
self._status['samples_done'] = samples
def statusPreviewSet(self, blob_id):
with self._status_lock:
self._status['result']['preview'] = blob_id
def statusRenderSet(self, blob_id):
with self._status_lock:
self._status['result']['render'] = blob_id
def canBeChanged(self):
with self._state_lock:
return self._state == TaskState.CREATED
def isPending(self):
with self._state_lock:
return self._state == TaskState.PENDING
def isRunning(self):
with self._state_lock:
return self._state == TaskState.RUNNING
def isCompleted(self):
with self._state_lock:
return self._state == TaskState.COMPLETED
def isError(self):
with self._state_lock:
return self._state == TaskState.ERROR
def isStopped(self):
with self._state_lock:
return self._state == TaskState.STOPPED
def isEnded(self):
with self._state_lock:
return self._state in (TaskState.COMPLETED, TaskState.STOPPED, TaskState.ERROR)
def stateCreated(self):
with self._state_lock:
if self._state == TaskState.PENDING:
self.stateSet(TaskState.CREATED)
def statePending(self):
with self._state_lock:
if self._state in (TaskState.CREATED, TaskState.STOPPED):
self.stateSet(TaskState.PENDING)
def stateStop(self):
with self._state_lock:
if self._state == TaskState.RUNNING:
self._end_time = int(time.time())
self.stateSet(TaskState.STOPPED)
def stateComplete(self):
with self._state_lock:
if self._state == TaskState.RUNNING:
self._end_time = int(time.time())
self.stateSet(TaskState.COMPLETED)
def stateError(self, info):
with self._state_lock:
self._state_error_info.append(info)
self._end_time = int(time.time())
self.stateSet(TaskState.ERROR)
def stateSet(self, state):
self._state = state
def fileAdd(self, path, file_id):
if '../' in path:
return print('WARN: Unable to use path with absolute path or contains parent dir symlink')
if not self.canBeChanged():
return print('WARN: Unable to change the task once started')
with self._files_lock:
self._files.update({path: file_id})
return True
def fileGet(self, path):
with self._files_lock:
return self._files.get(path)
def filesGet(self):
with self._files_lock:
return self._files.copy()
def filesPathsFix(self, path = None):
result = True
tocheck = [path] if path else list(self._files.keys())
for p in tocheck:
if not utils.isPathStraight(p):
print('ERROR: Path is not straight:', p)
return False
if not self._cfg.project_path or not self._cfg.cwd_path:
result = None
continue
if not utils.isPathAbsolute(p):
new_p = p
if p.startswith('//'):
new_p = self._cfg.project_path + p[2:].lstrip('/')
else:
new_p = self._cfg.cwd_path + p.lstrip('/')
with self._files_lock:
self._files[new_p] = self._files.pop(p)
print('DEBUG: Fixed path:', p, new_p)
return result
def run(self):
with self._state_lock:
if self._state not in (TaskState.CREATED, TaskState.STOPPED):
print('WARN: Unable to run already started task')
return True
print('DEBUG: Running task', self.name())
if not self.check():
print('ERROR: Task check fail:', self.name())
return False
return self._parent.taskAddToPending(self)
def start(self):
with self._execution_lock:
with self._state_lock:
self._state = TaskState.RUNNING
if not self._execution_watcher:
self._start_time = int(time.time())
self._execution_watcher = threading.Thread(target=self._executionWatcher)
self._execution_watcher.start()
print('INFO: Task %s started execution' % self.name())
@abstractmethod
def _executionWatcher(self):
def stop(self):
if self.isPending():
self._parent.taskRemoveFromPending(self)
if self.isRunning():
self._stop()
@abstractmethod
def _stop(self):
def executionDetailsGet(self):
with self._execution_details_lock:
return self._execution_details.copy()
def executionDetailsAdd(self, details, task = None):
if not isinstance(details, list):
details = [details]
if not isinstance(task, str):
task = self.name()
self.executionDetailsSet(self._execution_details.get(task, []) + details, task)
def executionDetailsSet(self, details, task = None):
with self._execution_details_lock:
if task:
self._execution_details[task] = details
else:
self._execution_details = details
|
Apache License 2.0
|
google-research/albert
|
squad_utils.py
|
convert_examples_to_features
|
python
|
def convert_examples_to_features(examples, tokenizer, max_seq_length,
doc_stride, max_query_length, is_training,
output_fn, do_lower_case):
cnt_pos, cnt_neg = 0, 0
unique_id = 1000000000
max_n, max_m = 1024, 1024
f = np.zeros((max_n, max_m), dtype=np.float32)
for (example_index, example) in enumerate(examples):
if example_index % 100 == 0:
tf.logging.info("Converting {}/{} pos {} neg {}".format(
example_index, len(examples), cnt_pos, cnt_neg))
query_tokens = tokenization.encode_ids(
tokenizer.sp_model,
tokenization.preprocess_text(
example.question_text, lower=do_lower_case))
if len(query_tokens) > max_query_length:
query_tokens = query_tokens[0:max_query_length]
paragraph_text = example.paragraph_text
para_tokens = tokenization.encode_pieces(
tokenizer.sp_model,
tokenization.preprocess_text(
example.paragraph_text, lower=do_lower_case),
return_unicode=False)
chartok_to_tok_index = []
tok_start_to_chartok_index = []
tok_end_to_chartok_index = []
char_cnt = 0
para_tokens = [six.ensure_text(token, "utf-8") for token in para_tokens]
for i, token in enumerate(para_tokens):
new_token = six.ensure_text(token).replace(
tokenization.SPIECE_UNDERLINE.decode("utf-8"), " ")
chartok_to_tok_index.extend([i] * len(new_token))
tok_start_to_chartok_index.append(char_cnt)
char_cnt += len(new_token)
tok_end_to_chartok_index.append(char_cnt - 1)
tok_cat_text = "".join(para_tokens).replace(
tokenization.SPIECE_UNDERLINE.decode("utf-8"), " ")
n, m = len(paragraph_text), len(tok_cat_text)
if n > max_n or m > max_m:
max_n = max(n, max_n)
max_m = max(m, max_m)
f = np.zeros((max_n, max_m), dtype=np.float32)
g = {}
def _lcs_match(max_dist, n=n, m=m):
f.fill(0)
g.clear()
for i in range(n):
for j in range(i - max_dist, i + max_dist):
if j >= m or j < 0: continue
if i > 0:
g[(i, j)] = 0
f[i, j] = f[i - 1, j]
if j > 0 and f[i, j - 1] > f[i, j]:
g[(i, j)] = 1
f[i, j] = f[i, j - 1]
f_prev = f[i - 1, j - 1] if i > 0 and j > 0 else 0
if (tokenization.preprocess_text(
paragraph_text[i], lower=do_lower_case,
remove_space=False) == tok_cat_text[j]
and f_prev + 1 > f[i, j]):
g[(i, j)] = 2
f[i, j] = f_prev + 1
max_dist = abs(n - m) + 5
for _ in range(2):
_lcs_match(max_dist)
if f[n - 1, m - 1] > 0.8 * n: break
max_dist *= 2
orig_to_chartok_index = [None] * n
chartok_to_orig_index = [None] * m
i, j = n - 1, m - 1
while i >= 0 and j >= 0:
if (i, j) not in g: break
if g[(i, j)] == 2:
orig_to_chartok_index[i] = j
chartok_to_orig_index[j] = i
i, j = i - 1, j - 1
elif g[(i, j)] == 1:
j = j - 1
else:
i = i - 1
if (all(v is None for v in orig_to_chartok_index) or
f[n - 1, m - 1] < 0.8 * n):
tf.logging.info("MISMATCH DETECTED!")
continue
tok_start_to_orig_index = []
tok_end_to_orig_index = []
for i in range(len(para_tokens)):
start_chartok_pos = tok_start_to_chartok_index[i]
end_chartok_pos = tok_end_to_chartok_index[i]
start_orig_pos = _convert_index(chartok_to_orig_index, start_chartok_pos,
n, is_start=True)
end_orig_pos = _convert_index(chartok_to_orig_index, end_chartok_pos,
n, is_start=False)
tok_start_to_orig_index.append(start_orig_pos)
tok_end_to_orig_index.append(end_orig_pos)
if not is_training:
tok_start_position = tok_end_position = None
if is_training and example.is_impossible:
tok_start_position = 0
tok_end_position = 0
if is_training and not example.is_impossible:
start_position = example.start_position
end_position = start_position + len(example.orig_answer_text) - 1
start_chartok_pos = _convert_index(orig_to_chartok_index, start_position,
is_start=True)
tok_start_position = chartok_to_tok_index[start_chartok_pos]
end_chartok_pos = _convert_index(orig_to_chartok_index, end_position,
is_start=False)
tok_end_position = chartok_to_tok_index[end_chartok_pos]
assert tok_start_position <= tok_end_position
def _piece_to_id(x):
if six.PY2 and isinstance(x, six.text_type):
x = six.ensure_binary(x, "utf-8")
return tokenizer.sp_model.PieceToId(x)
all_doc_tokens = list(map(_piece_to_id, para_tokens))
max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
_DocSpan = collections.namedtuple(
"DocSpan", ["start", "length"])
doc_spans = []
start_offset = 0
while start_offset < len(all_doc_tokens):
length = len(all_doc_tokens) - start_offset
if length > max_tokens_for_doc:
length = max_tokens_for_doc
doc_spans.append(_DocSpan(start=start_offset, length=length))
if start_offset + length == len(all_doc_tokens):
break
start_offset += min(length, doc_stride)
for (doc_span_index, doc_span) in enumerate(doc_spans):
tokens = []
token_is_max_context = {}
segment_ids = []
p_mask = []
cur_tok_start_to_orig_index = []
cur_tok_end_to_orig_index = []
tokens.append(tokenizer.sp_model.PieceToId("[CLS]"))
segment_ids.append(0)
p_mask.append(0)
for token in query_tokens:
tokens.append(token)
segment_ids.append(0)
p_mask.append(1)
tokens.append(tokenizer.sp_model.PieceToId("[SEP]"))
segment_ids.append(0)
p_mask.append(1)
for i in range(doc_span.length):
split_token_index = doc_span.start + i
cur_tok_start_to_orig_index.append(
tok_start_to_orig_index[split_token_index])
cur_tok_end_to_orig_index.append(
tok_end_to_orig_index[split_token_index])
is_max_context = _check_is_max_context(doc_spans, doc_span_index,
split_token_index)
token_is_max_context[len(tokens)] = is_max_context
tokens.append(all_doc_tokens[split_token_index])
segment_ids.append(1)
p_mask.append(0)
tokens.append(tokenizer.sp_model.PieceToId("[SEP]"))
segment_ids.append(1)
p_mask.append(1)
paragraph_len = len(tokens)
input_ids = tokens
input_mask = [1] * len(input_ids)
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
p_mask.append(1)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
span_is_impossible = example.is_impossible
start_position = None
end_position = None
if is_training and not span_is_impossible:
doc_start = doc_span.start
doc_end = doc_span.start + doc_span.length - 1
out_of_span = False
if not (tok_start_position >= doc_start and
tok_end_position <= doc_end):
out_of_span = True
if out_of_span:
start_position = 0
end_position = 0
span_is_impossible = True
else:
doc_offset = len(query_tokens) + 2
start_position = tok_start_position - doc_start + doc_offset
end_position = tok_end_position - doc_start + doc_offset
if is_training and span_is_impossible:
start_position = 0
end_position = 0
if example_index < 20:
tf.logging.info("*** Example ***")
tf.logging.info("unique_id: %s" % (unique_id))
tf.logging.info("example_index: %s" % (example_index))
tf.logging.info("doc_span_index: %s" % (doc_span_index))
tf.logging.info("tok_start_to_orig_index: %s" % " ".join(
[str(x) for x in cur_tok_start_to_orig_index]))
tf.logging.info("tok_end_to_orig_index: %s" % " ".join(
[str(x) for x in cur_tok_end_to_orig_index]))
tf.logging.info("token_is_max_context: %s" % " ".join([
"%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context)
]))
tf.logging.info("input_pieces: %s" % " ".join(
[tokenizer.sp_model.IdToPiece(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info(
"input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
if is_training and span_is_impossible:
tf.logging.info("impossible example span")
if is_training and not span_is_impossible:
pieces = [tokenizer.sp_model.IdToPiece(token) for token in
tokens[start_position: (end_position + 1)]]
answer_text = tokenizer.sp_model.DecodePieces(pieces)
tf.logging.info("start_position: %d" % (start_position))
tf.logging.info("end_position: %d" % (end_position))
tf.logging.info(
"answer: %s" % (tokenization.printable_text(answer_text)))
if is_training:
feat_example_index = None
else:
feat_example_index = example_index
feature = InputFeatures(
unique_id=unique_id,
example_index=feat_example_index,
doc_span_index=doc_span_index,
tok_start_to_orig_index=cur_tok_start_to_orig_index,
tok_end_to_orig_index=cur_tok_end_to_orig_index,
token_is_max_context=token_is_max_context,
tokens=[tokenizer.sp_model.IdToPiece(x) for x in tokens],
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
paragraph_len=paragraph_len,
start_position=start_position,
end_position=end_position,
is_impossible=span_is_impossible,
p_mask=p_mask)
output_fn(feature)
unique_id += 1
if span_is_impossible:
cnt_neg += 1
else:
cnt_pos += 1
tf.logging.info("Total number of instances: {} = pos {} neg {}".format(
cnt_pos + cnt_neg, cnt_pos, cnt_neg))
|
Loads a data file into a list of `InputBatch`s.
|
https://github.com/google-research/albert/blob/9196d09715b96e8f27a4f1ba2b0d42f3a514e945/squad_utils.py#L216-L537
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import json
import math
import re
import string
import sys
from albert import fine_tuning_utils
from albert import modeling
from albert import optimization
from albert import tokenization
import numpy as np
import six
from six.moves import map
from six.moves import range
import tensorflow.compat.v1 as tf
from tensorflow.contrib import data as contrib_data
from tensorflow.contrib import layers as contrib_layers
from tensorflow.contrib import tpu as contrib_tpu
_PrelimPrediction = collections.namedtuple(
"PrelimPrediction",
["feature_index", "start_index", "end_index",
"start_log_prob", "end_log_prob"])
_NbestPrediction = collections.namedtuple(
"NbestPrediction", ["text", "start_log_prob", "end_log_prob"])
RawResult = collections.namedtuple("RawResult",
["unique_id",
"start_log_prob",
"end_log_prob"])
RawResultV2 = collections.namedtuple(
"RawResultV2",
["unique_id", "start_top_log_probs", "start_top_index",
"end_top_log_probs", "end_top_index", "cls_logits"])
class SquadExample(object):
def __init__(self,
qas_id,
question_text,
paragraph_text,
orig_answer_text=None,
start_position=None,
end_position=None,
is_impossible=False):
self.qas_id = qas_id
self.question_text = question_text
self.paragraph_text = paragraph_text
self.orig_answer_text = orig_answer_text
self.start_position = start_position
self.end_position = end_position
self.is_impossible = is_impossible
def __str__(self):
return self.__repr__()
def __repr__(self):
s = ""
s += "qas_id: %s" % (tokenization.printable_text(self.qas_id))
s += ", question_text: %s" % (
tokenization.printable_text(self.question_text))
s += ", paragraph_text: [%s]" % (" ".join(self.paragraph_text))
if self.start_position:
s += ", start_position: %d" % (self.start_position)
if self.start_position:
s += ", end_position: %d" % (self.end_position)
if self.start_position:
s += ", is_impossible: %r" % (self.is_impossible)
return s
class InputFeatures(object):
def __init__(self,
unique_id,
example_index,
doc_span_index,
tok_start_to_orig_index,
tok_end_to_orig_index,
token_is_max_context,
tokens,
input_ids,
input_mask,
segment_ids,
paragraph_len,
p_mask=None,
start_position=None,
end_position=None,
is_impossible=None):
self.unique_id = unique_id
self.example_index = example_index
self.doc_span_index = doc_span_index
self.tok_start_to_orig_index = tok_start_to_orig_index
self.tok_end_to_orig_index = tok_end_to_orig_index
self.token_is_max_context = token_is_max_context
self.tokens = tokens
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.paragraph_len = paragraph_len
self.start_position = start_position
self.end_position = end_position
self.is_impossible = is_impossible
self.p_mask = p_mask
def read_squad_examples(input_file, is_training):
with tf.gfile.Open(input_file, "r") as reader:
input_data = json.load(reader)["data"]
examples = []
for entry in input_data:
for paragraph in entry["paragraphs"]:
paragraph_text = paragraph["context"]
for qa in paragraph["qas"]:
qas_id = qa["id"]
question_text = qa["question"]
start_position = None
orig_answer_text = None
is_impossible = False
if is_training:
is_impossible = qa.get("is_impossible", False)
if (len(qa["answers"]) != 1) and (not is_impossible):
raise ValueError(
"For training, each question should have exactly 1 answer.")
if not is_impossible:
answer = qa["answers"][0]
orig_answer_text = answer["text"]
start_position = answer["answer_start"]
else:
start_position = -1
orig_answer_text = ""
example = SquadExample(
qas_id=qas_id,
question_text=question_text,
paragraph_text=paragraph_text,
orig_answer_text=orig_answer_text,
start_position=start_position,
is_impossible=is_impossible)
examples.append(example)
return examples
def _convert_index(index, pos, m=None, is_start=True):
if index[pos] is not None:
return index[pos]
n = len(index)
rear = pos
while rear < n - 1 and index[rear] is None:
rear += 1
front = pos
while front > 0 and index[front] is None:
front -= 1
assert index[front] is not None or index[rear] is not None
if index[front] is None:
if index[rear] >= 1:
if is_start:
return 0
else:
return index[rear] - 1
return index[rear]
if index[rear] is None:
if m is not None and index[front] < m - 1:
if is_start:
return index[front] + 1
else:
return m - 1
return index[front]
if is_start:
if index[rear] > index[front] + 1:
return index[front] + 1
else:
return index[rear]
else:
if index[rear] > index[front] + 1:
return index[rear] - 1
else:
return index[front]
|
Apache License 2.0
|
climdyn/qgs
|
qgs/params/params.py
|
ScaleParams.phi0
|
python
|
def phi0(self):
return Parameter(self.phi0_npi * np.pi, units='[rad]',
description="The reference latitude of the center of the domain",
return_dimensional=True)
|
Parameter: The reference latitude :math:`\\phi_0` at the center of the domain, expressed in radians [:math:`rad`].
|
https://github.com/climdyn/qgs/blob/33d79b1fa360de22b7ae595c142dbe9b6a8fb53a/qgs/params/params.py#L281-L285
|
import numpy as np
import pickle
import warnings
from abc import ABC
from qgs.params.parameter import Parameter
from qgs.basis.fourier import contiguous_channel_basis, contiguous_basin_basis
from qgs.basis.fourier import ChannelFourierBasis, BasinFourierBasis
class Params(ABC):
_name = ""
def __init__(self, dic=None):
self.set_params(dic)
def set_params(self, dic):
if dic is not None:
for key, val in zip(dic.keys(), dic.values()):
if key in self.__dict__.keys():
if isinstance(self.__dict__[key], Parameter):
if isinstance(val, Parameter):
self.__dict__[key] = val
else:
d = self.__dict__[key].__dict__
self.__dict__[key] = Parameter(val, input_dimensional=d['_input_dimensional'],
units=d['_units'],
description=d['_description'],
scale_object=d['_scale_object'],
return_dimensional=d['_return_dimensional'])
else:
self.__dict__[key] = val
def __str__(self):
s = ""
for key, val in zip(self.__dict__.keys(), self.__dict__.values()):
if 'params' not in key and key[0] != '_':
if val is None:
pass
elif isinstance(val, Parameter):
if val.input_dimensional:
units = val.units
efval = val.dimensional_value
else:
efval = val.nondimensional_value
if val.nondimensional_value == val.dimensional_value:
units = ""
else:
units = "[nondim]"
s += "'" + key + "': " + str(efval) + " " + units + " (" + val.description + "),\n"
elif isinstance(val, (np.ndarray, list, tuple)) and isinstance(val[0], Parameter):
for i, v in enumerate(val):
if v.input_dimensional:
units = v.units
efval = v.dimensional_value
else:
efval = v.nondimensional_value
if v.nondimensional_value == v.dimensional_value:
units = ""
else:
units = "[nondim]"
s += "'" + key + "["+str(i+1)+"]': " + str(efval) + " " + units + " (" + v.description + "),\n"
else:
s += "'"+key+"': "+str(val)+",\n"
return s
def _list_params(self):
return self._name+" Parameters:\n"+self.__str__()
def print_params(self):
print(self._list_params())
@staticmethod
def create_params_array(values, input_dimensional=None, units=None, scale_object=None, description=None,
return_dimensional=None):
if hasattr(values, "__iter__"):
ls = len(values)
if not isinstance(input_dimensional, list):
if input_dimensional is None:
input_dimensional = True
idx = ls * [input_dimensional]
else:
idx = input_dimensional
if not isinstance(units, list):
if units is None:
units = ""
u = ls * [units]
else:
u = units
if not isinstance(description, list):
if description is None:
description = ""
d = ls * [description]
else:
d = description
if not isinstance(scale_object, list):
s = ls * [scale_object]
else:
s = scale_object
if not isinstance(return_dimensional, list):
if return_dimensional is None:
return_dimensional = False
rd = ls * [return_dimensional]
else:
rd = return_dimensional
arr = list()
for i, val in enumerate(values):
arr.append(Parameter(val, input_dimensional=idx[i], units=u[i], scale_object=s[i], description=d[i],
return_dimensional=rd[i]))
else:
arr = values * [Parameter(0.e0, input_dimensional=input_dimensional, units=units, scale_object=scale_object,
description=description, return_dimensional=return_dimensional)]
return np.array(arr, dtype=object)
def __repr__(self):
s = super(Params, self).__repr__()+"\n"+self._list_params()
return s
def load_from_file(self, filename, **kwargs):
f = open(filename, 'rb')
tmp_dict = pickle.load(f, **kwargs)
f.close()
self.__dict__.clear()
self.__dict__.update(tmp_dict)
def save_to_file(self, filename, **kwargs):
f = open(filename, 'wb')
pickle.dump(self.__dict__, f, **kwargs)
f.close()
class ScaleParams(Params):
_name = "Scale"
def __init__(self, dic=None):
Params.__init__(self, dic)
self.scale = Parameter(5.e6, units='[m]', description="characteristic space scale (L*pi)",
return_dimensional=True)
self.f0 = Parameter(1.032e-4, units='[s^-1]', description="Coriolis parameter at the middle of the domain",
return_dimensional=True)
self.n = Parameter(1.3e0, input_dimensional=False, description="aspect ratio (n = 2 L_y / L_x)")
self.rra = Parameter(6370.e3, units='[m]', description="earth radius", return_dimensional=True)
self.phi0_npi = Parameter(0.25e0, input_dimensional=False, description="latitude expressed in fraction of pi")
self.deltap = Parameter(5.e4, units='[Pa]', description='pressure difference between the two atmospheric layers',
return_dimensional=True)
self.set_params(dic)
@property
def L(self):
return Parameter(self.scale / np.pi, units=self.scale.units, description='Typical length scale L',
return_dimensional=True)
@property
def L_y(self):
return Parameter(self.scale, units=self.scale.units, description='The meridional extent of the model domain',
return_dimensional=True)
@property
def L_x(self):
return Parameter(2 * self.scale / self.n, units=self.scale.units,
description='The zonal extent of the model domain',
return_dimensional=True)
@property
|
MIT License
|
saketkc/pysradb
|
pysradb/geoweb.py
|
GEOweb.__init__
|
python
|
def __init__(self):
|
Initialize GEOweb without any database.
|
https://github.com/saketkc/pysradb/blob/bce1726813a104ff83eb1221679bf93074252af6/pysradb/geoweb.py#L22-L23
|
import gzip
import os
import re
import requests
import sys
from lxml import html
from .download import download_file
from .geodb import GEOdb
from .utils import _get_url
from .utils import copyfileobj
from .utils import get_gzip_uncompressed_size
PY3 = True
if sys.version_info[0] < 3:
PY3 = False
class GEOweb(GEOdb):
|
BSD 3-Clause New or Revised License
|
zhaocq-nlp/njunmt-tf
|
njunmt/encoders/encoder.py
|
Encoder.__init__
|
python
|
def __init__(self, params, mode, name=None, verbose=True):
super(Encoder, self).__init__(
params=params, mode=mode, verbose=verbose,
name=name or self.__class__.__name__)
self._encoder_output_tuple_type = namedtuple(
"EncoderOutput",
"outputs final_states attention_values attention_length")
|
Initializes the parameters of the encoder.
Args:
params: A dictionary of parameters to construct the
encoder architecture.
mode: A mode.
name: The name of this encoder.
verbose: Print encoder parameters if set True.
|
https://github.com/zhaocq-nlp/njunmt-tf/blob/f1440726b3c007bcf19126fc4dee43a91dccc718/njunmt/encoders/encoder.py#L27-L46
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from abc import abstractmethod
from collections import namedtuple
from njunmt.utils.configurable import Configurable
class Encoder(Configurable):
|
Apache License 2.0
|
osmr/imgclsmob
|
gluon/gluoncv2/models/resnext_cifar.py
|
resnext20_1x64d_svhn
|
python
|
def resnext20_1x64d_svhn(classes=10, **kwargs):
return get_resnext_cifar(classes=classes, blocks=20, cardinality=1, bottleneck_width=64,
model_name="resnext20_1x64d_svhn", **kwargs)
|
ResNeXt-20 (1x64d) model for SVHN from 'Aggregated Residual Transformations for Deep Neural Networks,'
http://arxiv.org/abs/1611.05431.
Parameters:
----------
classes : int, default 10
Number of classification classes.
pretrained : bool, default False
Whether to load the pretrained weights for model.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
|
https://github.com/osmr/imgclsmob/blob/ea5f784eea865ce830f3f97c5c1d1f6491d9cbb2/gluon/gluoncv2/models/resnext_cifar.py#L214-L231
|
__all__ = ['CIFARResNeXt', 'resnext20_1x64d_cifar10', 'resnext20_1x64d_cifar100', 'resnext20_1x64d_svhn',
'resnext20_2x32d_cifar10', 'resnext20_2x32d_cifar100', 'resnext20_2x32d_svhn',
'resnext20_2x64d_cifar10', 'resnext20_2x64d_cifar100', 'resnext20_2x64d_svhn',
'resnext20_4x16d_cifar10', 'resnext20_4x16d_cifar100', 'resnext20_4x16d_svhn',
'resnext20_4x32d_cifar10', 'resnext20_4x32d_cifar100', 'resnext20_4x32d_svhn',
'resnext20_8x8d_cifar10', 'resnext20_8x8d_cifar100', 'resnext20_8x8d_svhn',
'resnext20_8x16d_cifar10', 'resnext20_8x16d_cifar100', 'resnext20_8x16d_svhn',
'resnext20_16x4d_cifar10', 'resnext20_16x4d_cifar100', 'resnext20_16x4d_svhn',
'resnext20_16x8d_cifar10', 'resnext20_16x8d_cifar100', 'resnext20_16x8d_svhn',
'resnext20_32x2d_cifar10', 'resnext20_32x2d_cifar100', 'resnext20_32x2d_svhn',
'resnext20_32x4d_cifar10', 'resnext20_32x4d_cifar100', 'resnext20_32x4d_svhn',
'resnext20_64x1d_cifar10', 'resnext20_64x1d_cifar100', 'resnext20_64x1d_svhn',
'resnext20_64x2d_cifar10', 'resnext20_64x2d_cifar100', 'resnext20_64x2d_svhn',
'resnext29_32x4d_cifar10', 'resnext29_32x4d_cifar100', 'resnext29_32x4d_svhn',
'resnext29_16x64d_cifar10', 'resnext29_16x64d_cifar100', 'resnext29_16x64d_svhn',
'resnext56_1x64d_cifar10', 'resnext56_1x64d_cifar100', 'resnext56_1x64d_svhn',
'resnext56_2x32d_cifar10', 'resnext56_2x32d_cifar100', 'resnext56_2x32d_svhn',
'resnext56_4x16d_cifar10', 'resnext56_4x16d_cifar100', 'resnext56_4x16d_svhn',
'resnext56_8x8d_cifar10', 'resnext56_8x8d_cifar100', 'resnext56_8x8d_svhn',
'resnext56_16x4d_cifar10', 'resnext56_16x4d_cifar100', 'resnext56_16x4d_svhn',
'resnext56_32x2d_cifar10', 'resnext56_32x2d_cifar100', 'resnext56_32x2d_svhn',
'resnext56_64x1d_cifar10', 'resnext56_64x1d_cifar100', 'resnext56_64x1d_svhn',
'resnext272_1x64d_cifar10', 'resnext272_1x64d_cifar100', 'resnext272_1x64d_svhn',
'resnext272_2x32d_cifar10', 'resnext272_2x32d_cifar100', 'resnext272_2x32d_svhn']
import os
from mxnet import cpu
from mxnet.gluon import nn, HybridBlock
from .common import conv3x3_block
from .resnext import ResNeXtUnit
class CIFARResNeXt(HybridBlock):
def __init__(self,
channels,
init_block_channels,
cardinality,
bottleneck_width,
bn_use_global_stats=False,
in_channels=3,
in_size=(32, 32),
classes=10,
**kwargs):
super(CIFARResNeXt, self).__init__(**kwargs)
self.in_size = in_size
self.classes = classes
with self.name_scope():
self.features = nn.HybridSequential(prefix="")
self.features.add(conv3x3_block(
in_channels=in_channels,
out_channels=init_block_channels,
bn_use_global_stats=bn_use_global_stats))
in_channels = init_block_channels
for i, channels_per_stage in enumerate(channels):
stage = nn.HybridSequential(prefix="stage{}_".format(i + 1))
with stage.name_scope():
for j, out_channels in enumerate(channels_per_stage):
strides = 2 if (j == 0) and (i != 0) else 1
stage.add(ResNeXtUnit(
in_channels=in_channels,
out_channels=out_channels,
strides=strides,
cardinality=cardinality,
bottleneck_width=bottleneck_width,
bn_use_global_stats=bn_use_global_stats))
in_channels = out_channels
self.features.add(stage)
self.features.add(nn.AvgPool2D(
pool_size=8,
strides=1))
self.output = nn.HybridSequential(prefix="")
self.output.add(nn.Flatten())
self.output.add(nn.Dense(
units=classes,
in_units=in_channels))
def hybrid_forward(self, F, x):
x = self.features(x)
x = self.output(x)
return x
def get_resnext_cifar(classes,
blocks,
cardinality,
bottleneck_width,
model_name=None,
pretrained=False,
ctx=cpu(),
root=os.path.join("~", ".mxnet", "models"),
**kwargs):
assert (blocks - 2) % 9 == 0
layers = [(blocks - 2) // 9] * 3
channels_per_layers = [256, 512, 1024]
init_block_channels = 64
channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)]
net = CIFARResNeXt(
channels=channels,
init_block_channels=init_block_channels,
cardinality=cardinality,
bottleneck_width=bottleneck_width,
classes=classes,
**kwargs)
if pretrained:
if (model_name is None) or (not model_name):
raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.")
from .model_store import get_model_file
net.load_parameters(
filename=get_model_file(
model_name=model_name,
local_model_store_dir_path=root),
ctx=ctx)
return net
def resnext20_1x64d_cifar10(classes=10, **kwargs):
return get_resnext_cifar(classes=classes, blocks=20, cardinality=1, bottleneck_width=64,
model_name="resnext20_1x64d_cifar10", **kwargs)
def resnext20_1x64d_cifar100(classes=100, **kwargs):
return get_resnext_cifar(classes=classes, blocks=20, cardinality=1, bottleneck_width=64,
model_name="resnext20_1x64d_cifar100", **kwargs)
|
MIT License
|
dmontagu/fastapi-utils
|
fastapi_utils/timing.py
|
_TimingStats.emit
|
python
|
def emit(self, note: Optional[str] = None) -> None:
if not self.silent:
self.take_split()
cpu_ms = 1000 * self.cpu_time
wall_ms = 1000 * self.time
message = f"TIMING: Wall: {wall_ms:6.1f}ms | CPU: {cpu_ms:6.1f}ms | {self.name}"
if note is not None:
message += f" ({note})"
self.record(message)
|
Emit timing information, optionally including a specified note
|
https://github.com/dmontagu/fastapi-utils/blob/af95ff4a8195caaa9edaa3dbd5b6eeb09691d9c7/fastapi_utils/timing.py#L121-L132
|
import resource
import time
from typing import Any, Callable, Optional
from fastapi import FastAPI
from starlette.middleware.base import RequestResponseEndpoint
from starlette.requests import Request
from starlette.responses import Response
from starlette.routing import Match, Mount
from starlette.types import Scope
TIMER_ATTRIBUTE = "__fastapi_utils_timer__"
def add_timing_middleware(
app: FastAPI, record: Optional[Callable[[str], None]] = None, prefix: str = "", exclude: Optional[str] = None
) -> None:
metric_namer = _MetricNamer(prefix=prefix, app=app)
@app.middleware("http")
async def timing_middleware(request: Request, call_next: RequestResponseEndpoint) -> Response:
metric_name = metric_namer(request.scope)
with _TimingStats(metric_name, record=record, exclude=exclude) as timer:
setattr(request.state, TIMER_ATTRIBUTE, timer)
response = await call_next(request)
return response
def record_timing(request: Request, note: Optional[str] = None) -> None:
timer = getattr(request.state, TIMER_ATTRIBUTE, None)
if timer is not None:
assert isinstance(timer, _TimingStats)
timer.emit(note)
else:
raise ValueError("No timer present on request")
class _TimingStats:
def __init__(
self, name: Optional[str] = None, record: Callable[[str], None] = None, exclude: Optional[str] = None
) -> None:
self.name = name
self.record = record or print
self.start_time: float = 0
self.start_cpu_time: float = 0
self.end_cpu_time: float = 0
self.end_time: float = 0
self.silent: bool = False
if self.name is not None and exclude is not None and (exclude in self.name):
self.silent = True
def start(self) -> None:
self.start_time = time.time()
self.start_cpu_time = _get_cpu_time()
def take_split(self) -> None:
self.end_time = time.time()
self.end_cpu_time = _get_cpu_time()
@property
def time(self) -> float:
return self.end_time - self.start_time
@property
def cpu_time(self) -> float:
return self.end_cpu_time - self.start_cpu_time
def __enter__(self) -> "_TimingStats":
self.start()
return self
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
self.emit()
|
MIT License
|
rucio/rucio
|
lib/rucio/core/rse.py
|
delete_rse_transfer_limits
|
python
|
def delete_rse_transfer_limits(rse_id, activity=None, session=None):
try:
query = session.query(models.RSETransferLimit).filter_by(rse_id=rse_id)
if activity:
query = query.filter_by(activity=activity)
rowcount = query.delete()
return rowcount
except IntegrityError as error:
raise exception.RucioException(error.args)
|
Delete RSE transfer limits.
:param rse_id: The RSE id.
:param activity: The activity.
|
https://github.com/rucio/rucio/blob/6a6092798bb8220dec07328d0e3f7f42d1b931cd/lib/rucio/core/rse.py#L845-L859
|
import json
from io import StringIO
from re import match
from typing import TYPE_CHECKING
import sqlalchemy
import sqlalchemy.orm
from dogpile.cache import make_region
from dogpile.cache.api import NO_VALUE
from six import string_types
from sqlalchemy.exc import DatabaseError, IntegrityError, OperationalError
from sqlalchemy.orm import aliased
from sqlalchemy.orm.exc import FlushError
from sqlalchemy.sql.expression import or_, false
import rucio.core.account_counter
from rucio.common import exception, utils
from rucio.common.config import get_lfn2pfn_algorithm_default, config_get
from rucio.common.utils import CHECKSUM_KEY, is_checksum_valid, GLOBALLY_SUPPORTED_CHECKSUMS
from rucio.core.rse_counter import add_counter, get_counter
from rucio.db.sqla import models
from rucio.db.sqla.constants import RSEType
from rucio.db.sqla.session import read_session, transactional_session, stream_session
if TYPE_CHECKING:
from typing import Dict, Optional
from sqlalchemy.orm import Session
REGION = make_region().configure('dogpile.cache.memcached',
expiration_time=3600,
arguments={'url': config_get('cache', 'url', False, '127.0.0.1:11211',
check_config_table=False),
'distributed_lock': True})
@transactional_session
def add_rse(rse, vo='def', deterministic=True, volatile=False, city=None, region_code=None, country_name=None, continent=None, time_zone=None,
ISP=None, staging_area=False, rse_type=RSEType.DISK, longitude=None, latitude=None, ASN=None, availability=7, session=None):
if isinstance(rse_type, string_types):
rse_type = RSEType(rse_type)
new_rse = models.RSE(rse=rse, vo=vo, deterministic=deterministic, volatile=volatile, city=city,
region_code=region_code, country_name=country_name,
continent=continent, time_zone=time_zone, staging_area=staging_area, ISP=ISP, availability=availability,
rse_type=rse_type, longitude=longitude, latitude=latitude, ASN=ASN)
try:
new_rse.save(session=session)
except IntegrityError:
raise exception.Duplicate('RSE \'%(rse)s\' already exists!' % locals())
except DatabaseError as error:
raise exception.RucioException(error.args)
add_rse_attribute(rse_id=new_rse.id, key=rse, value=True, session=session)
add_counter(rse_id=new_rse.id, session=session)
rucio.core.account_counter.create_counters_for_new_rse(rse_id=new_rse.id, session=session)
return new_rse.id
@read_session
def rse_exists(rse, vo='def', include_deleted=False, session=None):
return True if session.query(models.RSE).filter_by(rse=rse, vo=vo, deleted=include_deleted).first() else False
@read_session
def sort_rses(rses, session=None):
if not rses:
raise exception.InputValidationError('The list rses should not be empty!')
if len(rses) == 1:
return rses
false_value = False
query = session.query(models.RSE.rse, models.RSE.staging_area, models.RSEUsage.rse_id). filter(models.RSEUsage.source == 'storage'). filter(models.RSEUsage.rse_id == models.RSE.id). filter(models.RSE.deleted == false_value)
condition = []
for rse in rses:
condition.append(models.RSE.id == rse['id'])
query = query.filter(or_(*condition)).order_by(models.RSEUsage.free.asc())
return [{'rse': rse, 'staging_area': staging_area, 'id': rse_id} for rse, staging_area, rse_id in query]
@transactional_session
def del_rse(rse_id, session=None):
old_rse = None
try:
old_rse = session.query(models.RSE).filter_by(id=rse_id, deleted=False).one()
if not rse_is_empty(rse_id=rse_id, session=session):
raise exception.RSEOperationNotSupported('RSE \'%s\' is not empty' % get_rse_name(rse_id=rse_id, session=session))
except sqlalchemy.orm.exc.NoResultFound:
raise exception.RSENotFound('RSE with id \'%s\' cannot be found' % rse_id)
rse = old_rse.rse
old_rse.delete(session=session)
try:
del_rse_attribute(rse_id=rse_id, key=rse, session=session)
except exception.RSEAttributeNotFound:
pass
@transactional_session
def restore_rse(rse_id, session=None):
old_rse = None
try:
old_rse = session.query(models.RSE).filter_by(id=rse_id, deleted=True).one()
except sqlalchemy.orm.exc.NoResultFound:
raise exception.RSENotFound('RSE with id \'%s\' cannot be found' % rse_id)
old_rse.deleted = False
old_rse.deleted_at = None
old_rse.save(session=session)
rse = old_rse.rse
add_rse_attribute(rse_id=rse_id, key=rse, value=True, session=session)
@read_session
def rse_is_empty(rse_id, session=None):
is_empty = False
try:
is_empty = get_counter(rse_id, session=session)['bytes'] == 0
except exception.CounterNotFound:
is_empty = True
return is_empty
@read_session
def get_rse(rse_id, session=None):
false_value = False
try:
tmp = session.query(models.RSE). filter(sqlalchemy.and_(models.RSE.deleted == false_value,
models.RSE.id == rse_id)) .one()
tmp['type'] = tmp.rse_type
return tmp
except sqlalchemy.orm.exc.NoResultFound:
raise exception.RSENotFound('RSE with id \'%s\' cannot be found' % rse_id)
@read_session
def get_rse_id(rse, vo='def', session=None, include_deleted=True):
if include_deleted:
if vo != 'def':
cache_key = 'rse-id_{}@{}'.format(rse, vo).replace(' ', '.')
else:
cache_key = 'rse-id_{}'.format(rse).replace(' ', '.')
result = REGION.get(cache_key)
if result != NO_VALUE:
return result
try:
query = session.query(models.RSE.id).filter_by(rse=rse, vo=vo)
if not include_deleted:
query = query.filter_by(deleted=False)
result = query.one()[0]
except sqlalchemy.orm.exc.NoResultFound:
raise exception.RSENotFound("RSE '%s' cannot be found in vo '%s'" % (rse, vo))
if include_deleted:
REGION.set(cache_key, result)
return result
@read_session
def get_rse_name(rse_id, session=None, include_deleted=True):
if include_deleted:
cache_key = 'rse-name_{}'.format(rse_id)
result = REGION.get(cache_key)
if result != NO_VALUE:
return result
try:
query = session.query(models.RSE.rse).filter_by(id=rse_id)
if not include_deleted:
query = query.filter_by(deleted=False)
result = query.one()[0]
except sqlalchemy.orm.exc.NoResultFound:
raise exception.RSENotFound('RSE with ID \'%s\' cannot be found' % rse_id)
if include_deleted:
REGION.set(cache_key, result)
return result
@read_session
def get_rse_vo(rse_id, session=None, include_deleted=True):
if include_deleted:
cache_key = 'rse-vo_{}'.format(rse_id)
result = REGION.get(cache_key)
if result != NO_VALUE:
return result
try:
query = session.query(models.RSE.vo).filter_by(id=rse_id)
if not include_deleted:
query = query.filter_by(deleted=False)
result = query.one()[0]
except sqlalchemy.orm.exc.NoResultFound:
raise exception.RSENotFound('RSE with ID \'%s\' cannot be found' % rse_id)
if include_deleted:
REGION.set(cache_key, result)
return result
@read_session
def list_rses(filters={}, session=None):
rse_list = []
availability_mask1 = 0
availability_mask2 = 7
availability_mapping = {'availability_read': 4, 'availability_write': 2, 'availability_delete': 1}
false_value = False
if filters and filters.get('vo'):
filters = filters.copy()
vo = filters.pop('vo')
else:
vo = None
if filters:
if 'availability' in filters and ('availability_read' in filters or 'availability_write' in filters or 'availability_delete' in filters):
raise exception.InvalidObject('Cannot use availability and read, write, delete filter at the same time.')
query = session.query(models.RSE). join(models.RSEAttrAssociation, models.RSE.id == models.RSEAttrAssociation.rse_id). filter(models.RSE.deleted == false_value).group_by(models.RSE)
for (k, v) in filters.items():
if hasattr(models.RSE, k):
if k == 'rse_type':
query = query.filter(getattr(models.RSE, k) == RSEType[v])
else:
query = query.filter(getattr(models.RSE, k) == v)
elif k in ['availability_read', 'availability_write', 'availability_delete']:
if v:
availability_mask1 = availability_mask1 | availability_mapping[k]
else:
availability_mask2 = availability_mask2 & ~availability_mapping[k]
else:
t = aliased(models.RSEAttrAssociation)
query = query.join(t, t.rse_id == models.RSEAttrAssociation.rse_id)
query = query.filter(t.key == k,
t.value == v)
condition1, condition2 = [], []
for i in range(0, 8):
if i | availability_mask1 == i:
condition1.append(models.RSE.availability == i)
if i & availability_mask2 == i:
condition2.append(models.RSE.availability == i)
if 'availability' not in filters:
query = query.filter(sqlalchemy.and_(sqlalchemy.or_(*condition1), sqlalchemy.or_(*condition2)))
else:
query = session.query(models.RSE).filter_by(deleted=False).order_by(models.RSE.rse)
if vo:
query = query.filter(getattr(models.RSE, 'vo') == vo)
for row in query:
dic = {}
for column in row.__table__.columns:
dic[column.name] = getattr(row, column.name)
rse_list.append(dic)
return rse_list
@transactional_session
def add_rse_attribute(rse_id, key, value, session=None):
try:
new_rse_attr = models.RSEAttrAssociation(rse_id=rse_id, key=key, value=value)
new_rse_attr = session.merge(new_rse_attr)
new_rse_attr.save(session=session)
except IntegrityError:
rse = get_rse_name(rse_id=rse_id, session=session)
raise exception.Duplicate("RSE attribute '%(key)s-%(value)s\' for RSE '%(rse)s' already exists!" % locals())
return True
@transactional_session
def del_rse_attribute(rse_id, key, session=None):
rse_attr = None
try:
query = session.query(models.RSEAttrAssociation).filter_by(rse_id=rse_id).filter(models.RSEAttrAssociation.key == key)
rse_attr = query.one()
except sqlalchemy.orm.exc.NoResultFound:
raise exception.RSEAttributeNotFound('RSE attribute \'%s\' cannot be found' % key)
rse_attr.delete(session=session)
return True
@read_session
def list_rse_attributes(rse_id, session=None):
rse_attrs = {}
query = session.query(models.RSEAttrAssociation).filter_by(rse_id=rse_id)
for attr in query:
rse_attrs[attr.key] = attr.value
return rse_attrs
@read_session
def has_rse_attribute(rse_id, key, session=None):
if session.query(models.RSEAttrAssociation.value).filter_by(rse_id=rse_id, key=key).first():
return True
return False
@read_session
def get_rses_with_attribute(key, session=None):
rse_list = []
query = session.query(models.RSE). join(models.RSEAttrAssociation, models.RSE.id == models.RSEAttrAssociation.rse_id). filter(models.RSE.deleted == False, models.RSEAttrAssociation.key == key).group_by(models.RSE)
for row in query:
d = {}
for column in row.__table__.columns:
d[column.name] = getattr(row, column.name)
rse_list.append(d)
return rse_list
@read_session
def get_rses_with_attribute_value(key, value, lookup_key, vo='def', session=None):
if vo != 'def':
cache_key = 'av-%s-%s-%s@%s' % (key, value, lookup_key, vo)
else:
cache_key = 'av-%s-%s-%s' % (key, value, lookup_key)
result = REGION.get(cache_key)
if result is NO_VALUE:
rse_list = []
subquery = session.query(models.RSEAttrAssociation.rse_id) .filter(models.RSEAttrAssociation.key == key,
models.RSEAttrAssociation.value == value) .subquery()
query = session.query(models.RSEAttrAssociation.rse_id,
models.RSEAttrAssociation.key,
models.RSEAttrAssociation.value) .join(models.RSE, models.RSE.id == models.RSEAttrAssociation.rse_id) .join(subquery, models.RSEAttrAssociation.rse_id == subquery.c.rse_id) .filter(models.RSE.deleted == false(),
models.RSEAttrAssociation.key == lookup_key,
models.RSE.vo == vo)
for row in query:
rse_list.append({'rse_id': row[0],
'key': row[1],
'value': row[2]})
REGION.set(cache_key, rse_list)
return rse_list
return result
@read_session
def get_rse_attribute(key, rse_id=None, value=None, use_cache=True, session=None):
result = NO_VALUE
if use_cache:
result = REGION.get('%s-%s-%s' % (key, rse_id, value))
if result is NO_VALUE:
rse_attrs = []
if rse_id:
query = session.query(models.RSEAttrAssociation.value).filter_by(rse_id=rse_id, key=key).distinct()
if value:
query = session.query(models.RSEAttrAssociation.value).filter_by(rse_id=rse_id, key=key, value=value).distinct()
else:
query = session.query(models.RSEAttrAssociation.value).filter_by(key=key).distinct()
if value:
query = session.query(models.RSEAttrAssociation.value).filter_by(key=key, value=value).distinct()
for attr_value in query:
rse_attrs.append(attr_value[0])
REGION.set('%s-%s-%s' % (key, rse_id, value), rse_attrs)
return rse_attrs
return result
@read_session
def get_rse_supported_checksums(rse_id, session=None):
return parse_checksum_support_attribute(get_rse_attribute(key=CHECKSUM_KEY, rse_id=rse_id, session=session))
def get_rse_supported_checksums_from_attributes(rse_attributes):
return parse_checksum_support_attribute(rse_attributes.get(CHECKSUM_KEY))
def parse_checksum_support_attribute(checksum_attribute):
if not checksum_attribute:
return GLOBALLY_SUPPORTED_CHECKSUMS
else:
supported_checksum_list = checksum_attribute[0].split(',')
if 'none' in supported_checksum_list:
return []
return supported_checksum_list
@read_session
def get_rse_is_checksum_supported(checksum_name, rse_id=None, session=None):
if is_checksum_valid(checksum_name):
return checksum_name in get_rse_supported_checksums(rse_id=rse_id, session=session)
else:
return False
@transactional_session
def set_rse_usage(rse_id, source, used, free, files=None, session=None):
rse_usage = models.RSEUsage(rse_id=rse_id, source=source, used=used, free=free, files=files)
rse_usage = session.merge(rse_usage)
rse_usage.save(session=session)
return True
@read_session
def get_rse_usage(rse_id, source=None, session=None, per_account=False):
query_rse_usage = session.query(models.RSEUsage).filter_by(rse_id=rse_id)
usage = list()
if source:
query_rse_usage = query_rse_usage.filter_by(source=source)
rse = get_rse_name(rse_id=rse_id, session=session)
for row in query_rse_usage:
total = (row.free or 0) + (row.used or 0)
rse_usage = {'rse_id': rse_id,
'rse': rse,
'source': row.source,
'used': row.used, 'free': row.free,
'total': total,
'files': row.files,
'updated_at': row.updated_at}
if per_account and row.source == 'rucio':
query_account_usage = session.query(models.AccountUsage).filter_by(rse_id=rse_id)
account_usages = []
for row in query_account_usage:
if row.bytes != 0:
percentage = round(float(row.bytes) / float(total) * 100, 2) if total else 0
account_usages.append({'used': row.bytes, 'account': row.account, 'percentage': percentage})
account_usages.sort(key=lambda x: x['used'], reverse=True)
rse_usage['account_usages'] = account_usages
usage.append(rse_usage)
return usage
@transactional_session
def set_rse_limits(rse_id: str, name: str, value: int,
session: 'Session' = None) -> bool:
rse_limit = models.RSELimit(rse_id=rse_id, name=name, value=value)
rse_limit = session.merge(rse_limit)
rse_limit.save(session=session)
return True
@read_session
def get_rse_limits(rse_id: str, name: 'Optional[str]' = None,
session: 'Session' = None) -> 'Dict[str, int]':
query = session.query(models.RSELimit).filter_by(rse_id=rse_id)
if name:
query = query.filter_by(name=name)
return {limit.name: limit.value for limit in query}
@transactional_session
def delete_rse_limits(rse_id: str, name: 'Optional[str]' = None,
session: 'Session' = None) -> None:
try:
session.query(models.RSELimit).filter_by(rse_id=rse_id, name=name).delete()
except IntegrityError as error:
raise exception.RucioException(error.args)
@transactional_session
def set_rse_transfer_limits(rse_id, activity, rse_expression=None, max_transfers=0, transfers=0, waitings=0, volume=0, deadline=1, strategy='fifo', session=None):
try:
rse_tr_limit = models.RSETransferLimit(rse_id=rse_id, activity=activity, rse_expression=rse_expression,
max_transfers=max_transfers, transfers=transfers,
waitings=waitings, volume=volume, strategy=strategy, deadline=deadline)
rse_tr_limit = session.merge(rse_tr_limit)
rowcount = rse_tr_limit.save(session=session)
return rowcount
except IntegrityError as error:
raise exception.RucioException(error.args)
@read_session
def get_rse_transfer_limits(rse_id=None, activity=None, session=None):
try:
query = session.query(models.RSETransferLimit)
if rse_id:
query = query.filter_by(rse_id=rse_id)
if activity:
query = query.filter_by(activity=activity)
limits = {}
for limit in query:
if limit.activity not in limits:
limits[limit.activity] = {}
limits[limit.activity][limit.rse_id] = {'max_transfers': limit.max_transfers,
'transfers': limit.transfers,
'waitings': limit.waitings,
'volume': limit.volume,
'strategy': limit.strategy,
'deadline': limit.deadline}
return limits
except IntegrityError as error:
raise exception.RucioException(error.args)
@transactional_session
|
Apache License 2.0
|
anassinator/markov-sentence-correction
|
deserializer.py
|
get_all_ngrams
|
python
|
def get_all_ngrams():
ngrams = list(get_ngram(i) for i in range(len(_ngram_paths)))
return ngrams
|
Returns a list of all available n-grams.
|
https://github.com/anassinator/markov-sentence-correction/blob/ebdc07c37e48a110e7cd86d806e20879ef4c12a0/deserializer.py#L198-L201
|
import os
import pickle
class Vocabulary(object):
def __init__(self, fname):
with open(fname) as f:
lines = f.readlines()
self._set = set()
self._list = ['' for i in range(len(lines))]
for l in lines:
if l:
try:
index, word = l.split(' ')
index = int(index)
word = word.strip()
except ValueError:
continue
self._list[index - 1] = word
self._set.add(word)
def __iter__(self):
return iter(self._list)
def __contains__(self, word):
return word in self._set
def get(self, i):
return self._list[i - 1]
class MarkovChain(object):
def __init__(self, order, vocabulary):
self._chain = {}
self._order = order
self._vocab = vocabulary
def __contains__(self, present_state):
return present_state in self._chain
@property
def order(self):
return self._order
def _set(self, present_state, future_state, prob):
present_words = tuple(map(self._vocab.get, present_state))
if present_words not in self._chain:
self._chain[present_words] = {}
future_word = self._vocab.get(future_state)
self._chain[present_words][future_word] = prob
def yield_future_states(self, present_state):
if present_state not in self._chain:
return
possible_outcomes = self._chain[present_state]
for future_state in possible_outcomes:
yield (future_state, possible_outcomes[future_state])
@classmethod
def from_file(cls, fname, order, vocabulary):
with open(fname) as f:
lines = f.readlines()
chain = MarkovChain(order, vocabulary)
for l in lines:
if l:
try:
*present_state, future_state, prob = l.split(' ')
present_state = tuple(map(int, present_state))
future_state = int(future_state)
prob = 10 ** float(prob)
except ValueError:
continue
chain._set(present_state, future_state, prob)
return chain
_vocabulary_path = ("data/vocab.p", "data/vocab.txt")
_ngram_paths = [
("data/unigrams.p", "data/unigram_counts.txt"),
("data/bigrams.p", "data/bigram_counts.txt"),
("data/trigrams.p", "data/trigram_counts.txt")
]
def get_vocabulary():
serialized_file, raw_file = _vocabulary_path
if not os.path.isfile(serialized_file):
vocabulary = Vocabulary(raw_file)
pickle.dump(vocabulary, open(serialized_file, "wb"))
else:
vocabulary = pickle.load(open(serialized_file, "rb"))
return vocabulary
def get_ngram(order):
serialized_file, raw_file = _ngram_paths[order]
if not os.path.isfile(serialized_file):
vocabulary = get_vocabulary()
chain = MarkovChain.from_file(raw_file, order, vocabulary)
pickle.dump(chain, open(serialized_file, "wb"))
else:
chain = pickle.load(open(serialized_file, "rb"))
return chain
|
MIT License
|
flyteorg/flytekit
|
flytekit/engines/flyte/engine.py
|
FlyteEngineFactory.get_workflow_execution
|
python
|
def get_workflow_execution(self, wf_exec):
return FlyteWorkflowExecution(wf_exec)
|
:param flytekit.common.workflow_execution.SdkWorkflowExecution wf_exec:
:rtype: FlyteWorkflowExecution
|
https://github.com/flyteorg/flytekit/blob/6c032035563ae645b0b93558b3fe3362080057ea/flytekit/engines/flyte/engine.py#L95-L100
|
import logging as _logging
import os as _os
import traceback as _traceback
from datetime import datetime as _datetime
import six as _six
from deprecated import deprecated as _deprecated
from flyteidl.core import literals_pb2 as _literals_pb2
import flytekit
from flytekit.clients.friendly import SynchronousFlyteClient as _SynchronousFlyteClient
from flytekit.clients.helpers import iterate_node_executions as _iterate_node_executions
from flytekit.clients.helpers import iterate_task_executions as _iterate_task_executions
from flytekit.common import constants as _constants
from flytekit.common import utils as _common_utils
from flytekit.common.exceptions import scopes as _exception_scopes
from flytekit.common.exceptions import user as _user_exceptions
from flytekit.configuration import auth as _auth_config
from flytekit.configuration import internal as _internal_config
from flytekit.configuration import platform as _platform_config
from flytekit.configuration import sdk as _sdk_config
from flytekit.engines import common as _common_engine
from flytekit.interfaces.data import data_proxy as _data_proxy
from flytekit.interfaces.stats.taggable import get_stats as _get_stats
from flytekit.models import common as _common_models
from flytekit.models import execution as _execution_models
from flytekit.models import literals as _literals
from flytekit.models import task as _task_models
from flytekit.models.admin import common as _common
from flytekit.models.admin import workflow as _workflow_model
from flytekit.models.core import errors as _error_models
from flytekit.models.core import identifier as _identifier
class _FlyteClientManager(object):
_CLIENT = None
def __init__(self, *args, **kwargs):
if type(self)._CLIENT is None:
c = _SynchronousFlyteClient(*args, **kwargs)
type(self)._CLIENT = c
@property
def client(self):
return type(self)._CLIENT
def get_client() -> _SynchronousFlyteClient:
return _FlyteClientManager(_platform_config.URL.get(), insecure=_platform_config.INSECURE.get()).client
class FlyteEngineFactory(_common_engine.BaseExecutionEngineFactory):
def get_workflow(self, sdk_workflow):
return FlyteWorkflow(sdk_workflow)
def get_task(self, sdk_task):
return FlyteTask(sdk_task)
def get_launch_plan(self, sdk_launch_plan):
return FlyteLaunchPlan(sdk_launch_plan)
def get_task_execution(self, task_exec):
return FlyteTaskExecution(task_exec)
def get_node_execution(self, node_exec):
return FlyteNodeExecution(node_exec)
|
Apache License 2.0
|
robotools/fontparts
|
Lib/fontParts/base/kerning.py
|
BaseKerning.values
|
python
|
def values(self):
return super(BaseKerning, self).values()
|
Returns a ``list`` of each pair's values, the values will be
:ref:`type-int-float`\s.
The list will be unordered.
>>> font.kerning.items()
[-20, -15, 5, 3.5]
|
https://github.com/robotools/fontparts/blob/f15d379c46eb9eaf60ce36fb220e2680c51e81c7/Lib/fontParts/base/kerning.py#L430-L440
|
from fontParts.base.base import (
BaseDict,
dynamicProperty,
interpolate,
reference
)
from fontParts.base import normalizers
from fontParts.base.deprecated import DeprecatedKerning, RemovedKerning
class BaseKerning(BaseDict, DeprecatedKerning, RemovedKerning):
keyNormalizer = normalizers.normalizeKerningKey
valueNormalizer = normalizers.normalizeKerningValue
def _reprContents(self):
contents = []
if self.font is not None:
contents.append("for font")
contents += self.font._reprContents()
return contents
_font = None
font = dynamicProperty("font", "The Kerning's parent :class:`BaseFont`.")
def _get_font(self):
if self._font is None:
return None
return self._font()
def _set_font(self, font):
if self._font is not None and self._font() != font:
raise AssertionError("font for kerning already set and is not same as font")
if font is not None:
font = reference(font)
self._font = font
def scaleBy(self, factor):
factor = normalizers.normalizeTransformationScale(factor)
self._scale(factor)
def _scale(self, factor):
factor = factor[0]
for k, v in self.items():
v *= factor
self[k] = v
def round(self, multiple=1):
if not isinstance(multiple, int):
raise TypeError("The round multiple must be an int not %s."
% multiple.__class__.__name__)
self._round(multiple)
def _round(self, multiple=1):
for pair, value in self.items():
value = int(normalizers.normalizeVisualRounding(
value / float(multiple))) * multiple
self[pair] = value
def interpolate(self, factor, minKerning, maxKerning, round=True, suppressError=True):
factor = normalizers.normalizeInterpolationFactor(factor)
if not isinstance(minKerning, BaseKerning):
raise TypeError(("Interpolation to an instance of %r can not be "
"performed from an instance of %r.") % (
self.__class__.__name__, minKerning.__class__.__name__))
if not isinstance(maxKerning, BaseKerning):
raise TypeError(("Interpolation to an instance of %r can not be "
"performed from an instance of %r.") % (
self.__class__.__name__, maxKerning.__class__.__name__))
round = normalizers.normalizeBoolean(round)
suppressError = normalizers.normalizeBoolean(suppressError)
self._interpolate(factor, minKerning, maxKerning,
round=round, suppressError=suppressError)
def _interpolate(self, factor, minKerning, maxKerning,
round=True, suppressError=True):
import fontMath
from fontMath.mathFunctions import setRoundIntegerFunction
setRoundIntegerFunction(normalizers.normalizeVisualRounding)
kerningGroupCompatibility = self._testKerningGroupCompatibility(
minKerning,
maxKerning,
suppressError=suppressError
)
if not kerningGroupCompatibility:
self.clear()
else:
minKerning = fontMath.MathKerning(
kerning=minKerning, groups=minKerning.font.groups)
maxKerning = fontMath.MathKerning(
kerning=maxKerning, groups=maxKerning.font.groups)
result = interpolate(minKerning, maxKerning, factor)
if round:
result.round()
self.clear()
result.extractKerning(self.font)
@staticmethod
def _testKerningGroupCompatibility(minKerning, maxKerning, suppressError=False):
minGroups = minKerning.font.groups
maxGroups = maxKerning.font.groups
match = True
while match:
for _, sideAttr in (
("side 1", "side1KerningGroups"),
("side 2", "side2KerningGroups")
):
minSideGroups = getattr(minGroups, sideAttr)
maxSideGroups = getattr(maxGroups, sideAttr)
if minSideGroups.keys() != maxSideGroups.keys():
match = False
else:
for name in minSideGroups.keys():
minGroup = minSideGroups[name]
maxGroup = maxSideGroups[name]
if set(minGroup) != set(maxGroup):
match = False
break
if not match and not suppressError:
raise ValueError("The kerning groups must be exactly the same.")
return match
def remove(self, pair):
del self[pair]
def asDict(self, returnIntegers=True):
d = {}
for k, v in self.items():
d[k] = v if not returnIntegers else normalizers.normalizeVisualRounding(v)
return d
def __contains__(self, pair):
return super(BaseKerning, self).__contains__(pair)
def __delitem__(self, pair):
super(BaseKerning, self).__delitem__(pair)
def __getitem__(self, pair):
return super(BaseKerning, self).__getitem__(pair)
def __iter__(self):
return super(BaseKerning, self).__iter__()
def __len__(self):
return super(BaseKerning, self).__len__()
def __setitem__(self, pair, value):
super(BaseKerning, self).__setitem__(pair, value)
def clear(self):
super(BaseKerning, self).clear()
def get(self, pair, default=None):
return super(BaseKerning, self).get(pair, default)
def find(self, pair, default=None):
pair = normalizers.normalizeKerningKey(pair)
value = self._find(pair, default)
if value != default:
value = normalizers.normalizeKerningValue(value)
return value
def _find(self, pair, default=None):
from fontTools.ufoLib.kerning import lookupKerningValue
font = self.font
groups = font.groups
return lookupKerningValue(pair, self, groups, fallback=default)
def items(self):
return super(BaseKerning, self).items()
def keys(self):
return super(BaseKerning, self).keys()
def pop(self, pair, default=None):
return super(BaseKerning, self).pop(pair, default)
def update(self, otherKerning):
super(BaseKerning, self).update(otherKerning)
|
MIT License
|
drkane/find-that-charity
|
ftc/models/related_organisation.py
|
RelatedOrganisation.schema_dot_org
|
python
|
def schema_dot_org(self, request=None):
obj = {
"@context": "https://schema.org",
"@type": "Organization",
"name": self.name,
"identifier": self.org_id,
}
if self.first("url"):
obj["url"] = self.first("url").get("value")
if self.first("description"):
obj["description"] = self.first("description").get("value")
if self.alternateName:
obj["alternateName"] = self.alternateName
if self.dateRegistered:
obj["foundingDate"] = self.dateRegistered.isoformat()
if not self.active and self.first("dateRemoved"):
obj["dissolutionDate"] = self.first("dateRemoved").get("value").isoformat()
if len(self.orgIDs) > 1:
if request:
obj["sameAs"] = [request.build_absolute_uri(id) for id in self.sameAs]
else:
obj["sameAs"] = self.sameAs
return obj
|
Return a schema.org Organisation object representing this organisation
|
https://github.com/drkane/find-that-charity/blob/8c2fae8298939a139a8719eb8d8bfbbafa91392a/ftc/models/related_organisation.py#L116-L141
|
from django.urls import reverse
from .organisation import EXTERNAL_LINKS, Organisation
from .organisation_type import OrganisationType
class RelatedOrganisation:
def __init__(self, orgs):
self.records = self.prioritise_orgs(orgs)
@classmethod
def from_orgid(cls, org_id):
orgs = Organisation.objects.filter(linked_orgs__contains=[org_id])
return cls(orgs)
@property
def orgIDs(self):
return list(set(self.get_all("orgIDs")))
@property
def names(self):
names = {}
for r in self.records:
for n in r.all_names:
if n not in names or not n.isupper() or not n.islower():
names[n.lower().strip()] = n
return names
@property
def alternateName(self):
names = self.get_all("all_names")
return list(
set(
[
self.names.get(n.lower().strip(), n)
for n in names
if n.lower().strip() != self.name.lower().strip()
]
)
)
@property
def name(self):
return self.names.get(self.records[0].name.lower(), self.records[0].name)
@property
def sources(self):
sources = list(self.get_all("source"))
sources.extend([o.source for o in self.org_links])
return list(set(sources))
@property
def org_links(self):
org_links = []
for o in self.records:
org_links.extend(o.org_links)
return list(set(org_links))
def __getattr__(self, key, *args):
return getattr(self.records[0], key, *args)
def first(self, field, justvalue=False):
for r in self.records:
if getattr(r, field, None):
if justvalue:
return getattr(r, field)
return {
"value": getattr(r, field),
"orgid": r.org_id,
"source": r.source,
}
if justvalue:
return None
return {}
def get_all(self, field):
seen = set()
for r in self.records:
values = getattr(r, field, None)
if not isinstance(values, list):
values = [values]
for v in values:
if v not in seen:
yield v
seen.add(v)
def prioritise_orgs(self, orgs):
return sorted(orgs, key=lambda o: o.get_priority())
def get_links(self):
links_seen = set()
for r in self.records:
for link in r.get_links():
if link[1] not in links_seen:
yield link
links_seen.add(link[1])
@property
def sameAs(self):
return [
reverse("orgid_html", kwargs=dict(org_id=o))
for o in self.orgIDs
if o != self.org_id
]
@property
def activeRecords(self):
return [r for r in self.records if r.active]
@property
def inactiveRecords(self):
return [r for r in self.records if not r.active]
|
MIT License
|
angr/cle
|
cle/loader.py
|
Loader.describe_addr
|
python
|
def describe_addr(self, addr):
o = self.find_object_containing(addr)
if o is None:
return 'not part of a loaded object'
options = []
rva = AT.from_va(addr, o).to_rva()
idx = o.symbols.bisect_key_right(rva) - 1
while idx >= 0:
sym = o.symbols[idx]
if not sym.name or sym.is_import:
idx -= 1
continue
options.append((sym.relative_addr, '%s+' % sym.name))
break
if isinstance(o, ELF):
try:
plt_addr, plt_name = max((a, n) for n, a in o._plt.items() if a <= rva)
except ValueError:
pass
else:
options.append((plt_addr, 'PLT.%s+' % plt_name))
options.append((0, 'offset '))
if o.provides:
objname = o.provides
elif o.binary:
objname = os.path.basename(o.binary)
elif self.main_object is o:
objname = 'main binary'
else:
objname = 'object loaded from stream'
best_offset, best_prefix = max(options, key=lambda v: v[0])
return '%s%#x in %s (%#x)' % (best_prefix, rva - best_offset, objname, AT.from_va(addr, o).to_lva())
|
Returns a textual description of what's in memory at the provided address
|
https://github.com/angr/cle/blob/7996cb1789eccc461cb31ab3c6234a74015489fd/cle/loader.py#L268-L310
|
import os
import sys
import platform
import logging
from collections import OrderedDict
from typing import Optional, List
import archinfo
from archinfo.arch_soot import ArchSoot
from .address_translator import AT
from .utils import ALIGN_UP, key_bisect_floor_key, key_bisect_insort_right
__all__ = ('Loader',)
l = logging.getLogger(name=__name__)
class Loader:
memory: Optional['Clemory']
main_object: Optional['Backend']
tls: Optional['ThreadManager']
def __init__(self, main_binary, auto_load_libs=True, concrete_target = None,
force_load_libs=(), skip_libs=(),
main_opts=None, lib_opts=None, ld_path=(), use_system_libs=True,
ignore_import_version_numbers=True, case_insensitive=False, rebase_granularity=0x100000,
except_missing_libs=False, aslr=False, perform_relocations=True, load_debug_info=False,
page_size=0x1, preload_libs=(), arch=None):
if hasattr(main_binary, 'seek') and hasattr(main_binary, 'read'):
self._main_binary_path = None
self._main_binary_stream = main_binary
else:
self._main_binary_path = os.path.realpath(str(main_binary))
self._main_binary_stream = None
self._juggling = False
if concrete_target:
auto_load_libs = False
self._auto_load_libs = auto_load_libs
self._load_debug_info = load_debug_info
self._satisfied_deps = dict((x, False) for x in skip_libs)
self._main_opts = {} if main_opts is None else main_opts
self._lib_opts = {} if lib_opts is None else lib_opts
self._custom_ld_path = [ld_path] if type(ld_path) is str else ld_path
force_load_libs = [force_load_libs] if type(force_load_libs) is str else force_load_libs
preload_libs = [preload_libs] if type(preload_libs) is str else preload_libs
self._use_system_libs = use_system_libs
self._ignore_import_version_numbers = ignore_import_version_numbers
self._case_insensitive = case_insensitive
self._rebase_granularity = rebase_granularity
self._except_missing_libs = except_missing_libs
self._relocated_objects = set()
self._perform_relocations = perform_relocations
if sys.platform == 'win32':
if self._main_binary_path: self._main_binary_path = self._main_binary_path.lower()
force_load_libs = [x.lower() if type(x) is str else x for x in force_load_libs]
for x in list(self._satisfied_deps): self._satisfied_deps[x.lower()] = self._satisfied_deps[x]
for x in list(self._lib_opts): self._lib_opts[x.lower()] = self._lib_opts[x]
self._custom_ld_path = [x.lower() for x in self._custom_ld_path]
self.aslr = aslr
self.page_size = page_size
self.memory = None
self.main_object = None
self.tls = None
self._kernel_object = None
self._extern_object = None
self.shared_objects = OrderedDict()
self.all_objects = []
self.requested_names = set()
if arch is not None:
self._main_opts.update({'arch': arch})
self.preload_libs = []
self.initial_load_objects = self._internal_load(main_binary, *preload_libs, *force_load_libs, preloading=(main_binary, *preload_libs))
self._last_object = None
if self._extern_object and self._extern_object._warned_data_import:
l.warning('For more information about "Symbol was allocated without a known size", see https://docs.angr.io/extending-angr/environment#simdata')
def close(self):
l.warning("You don't need to close the loader anymore :)")
def __repr__(self):
if self._main_binary_stream is None:
return '<Loaded %s, maps [%#x:%#x]>' % (os.path.basename(self._main_binary_path), self.min_addr, self.max_addr)
else:
return '<Loaded from stream, maps [%#x:%#x]>' % (self.min_addr, self.max_addr)
@property
def max_addr(self):
return self.all_objects[-1].max_addr
@property
def min_addr(self):
return self.all_objects[0].min_addr
@property
def initializers(self):
return sum((x.initializers for x in self.all_objects), [])
@property
def finalizers(self):
return sum((x.finalizers for x in self.all_objects), [])
@property
def linux_loader_object(self):
for obj in self.all_objects:
if obj.provides is None:
continue
if self._is_linux_loader_name(obj.provides) is True:
return obj
return None
@property
def elfcore_object(self):
for obj in self.all_objects:
if isinstance(obj, ELFCore):
return obj
return None
@property
def extern_object(self):
if self._extern_object is None:
if self.main_object.arch.bits < 32:
extern_size = 0x200
elif self.main_object.arch.bits == 32:
extern_size = 0x8000
else:
extern_size = 0x80000
self._extern_object = ExternObject(self, map_size=extern_size)
self._internal_load(self._extern_object)
return self._extern_object
@property
def kernel_object(self) -> 'KernelObject':
if self._kernel_object is None:
self._kernel_object = KernelObject(self)
self._map_object(self._kernel_object)
return self._kernel_object
@property
def all_elf_objects(self):
return [o for o in self.all_objects if isinstance(o, MetaELF)]
@property
def all_pe_objects(self):
return [o for o in self.all_objects if isinstance(o, PE)]
@property
def missing_dependencies(self):
return self.requested_names - set(k for k,v in self._satisfied_deps.items() if v is not False)
@property
def auto_load_libs(self):
return self._auto_load_libs
|
BSD 2-Clause Simplified License
|
wjohnson/pyapacheatlas
|
pyapacheatlas/core/client.py
|
AtlasClient.get_relationship
|
python
|
def get_relationship(self, guid):
results = None
atlas_endpoint = self.endpoint_url + f"/relationship/guid/{guid}"
getResponse = requests.get(
atlas_endpoint,
headers=self.authentication.get_authentication_headers()
)
results = self._handle_response(getResponse)
return results
|
Retrieve the relationship attribute for the given guid.
:param str guid: The unique guid for the relationship.
:return: A dict representing AtlasRelationshipWithExtInfo with the
relationship (what you probably care about) and referredEntities
attributes.
:rtype: dict(str, dict)
|
https://github.com/wjohnson/pyapacheatlas/blob/31925f305ee10ebc39ca41bbfa54a0d17bd3a0ec/pyapacheatlas/core/client.py#L458-L478
|
from .util import AtlasException, AtlasBaseClient, batch_dependent_entities, PurviewLimitation, PurviewOnly
from .glossary import _CrossPlatformTerm, GlossaryClient, PurviewGlossaryClient
from .typedef import BaseTypeDef
from .msgraph import MsGraphClient
from .entity import AtlasClassification, AtlasEntity
from ..auth.base import AtlasAuthBase
import json
from json.decoder import JSONDecodeError
import logging
import re
import requests
import warnings
import sys
_AZ_IDENTITY_INSTALLED = False
try:
import azure.identity
_AZ_IDENTITY_INSTALLED = True
from ..auth.azcredential import AzCredentialWrapper
except ImportError:
pass
class AtlasClient(AtlasBaseClient):
def __init__(self, endpoint_url, authentication=None):
super().__init__()
self.authentication = authentication
self.endpoint_url = endpoint_url
self.glossary = GlossaryClient(endpoint_url, authentication)
self.is_purview = False
self._purview_url_pattern = r"https:\/\/[a-z0-9-]*?\.(catalog\.purview.azure.com)"
if re.match(self._purview_url_pattern, self.endpoint_url):
self.is_purview = True
def _handle_response(self, resp):
try:
results = json.loads(resp.text)
resp.raise_for_status()
except JSONDecodeError:
raise ValueError("Error in parsing: {}".format(resp.text))
except requests.RequestException as e:
if "errorCode" in results:
raise AtlasException(resp.text)
else:
raise requests.RequestException(resp.text)
return results
def delete_entity(self, guid):
results = None
if isinstance(guid, list):
guid_str = '&guid='.join(guid)
else:
guid_str = guid
atlas_endpoint = self.endpoint_url + "/entity/bulk?guid={}".format(guid_str)
deleteEntity = requests.delete(
atlas_endpoint,
headers=self.authentication.get_authentication_headers())
results = self._handle_response(deleteEntity)
return results
def delete_relationship(self, guid):
results = None
atlas_endpoint = self.endpoint_url + f"/relationship/guid/{guid}"
deleteType = requests.delete(
atlas_endpoint,
headers=self.authentication.get_authentication_headers())
try:
deleteType.raise_for_status()
except requests.RequestException:
raise Exception(deleteType.text)
results = {
"message": f"Successfully deleted relationship with guid {guid}"}
return results
def delete_type(self, name):
results = None
atlas_endpoint = self.endpoint_url + f"/types/typedef/name/{name}"
deleteType = requests.delete(
atlas_endpoint,
headers=self.authentication.get_authentication_headers())
try:
deleteType.raise_for_status()
except requests.RequestException:
raise Exception(deleteType.text)
results = {"message": f"successfully delete {name}"}
return results
def delete_typedefs(self, **kwargs):
results = None
payload = {}
allowed_defs = [
"businessMetadataDefs", "classificationDefs", "entityDefs",
"enumDefs", "relationshipDefs", "structDefs"]
if len(set(kwargs.keys()).intersection(allowed_defs)) == 0:
raise TypeError(
f"You must include one of these keyword arguments: {allowed_defs}")
for defType in allowed_defs:
if defType in kwargs:
json_list = [t.to_json() if isinstance(
t, BaseTypeDef) else t for t in kwargs[defType]]
payload[defType] = json_list
atlas_endpoint = self.endpoint_url + "/types/typedefs"
deleteType = requests.delete(
atlas_endpoint,
json=payload,
headers=self.authentication.get_authentication_headers())
try:
deleteType.raise_for_status()
except requests.RequestException:
raise Exception(deleteType.text)
results = {"message": f"Successfully deleted type(s)"}
return results
def get_entity(self, guid=None, qualifiedName=None, typeName=None, ignoreRelationships=False, minExtInfo=False):
results = None
parameters = {}
if isinstance(guid, list):
guid_str = '&guid='.join(guid)
else:
guid_str = guid
qualifiedName_params = dict()
if isinstance(qualifiedName, list):
qualifiedName_params = {
f"attr_{idx}:qualifiedName": qname
for idx, qname in enumerate(qualifiedName)
}
else:
qualifiedName_params = {"attr_0:qualifiedName": qualifiedName}
if qualifiedName and typeName:
atlas_endpoint = self.endpoint_url + f"/entity/bulk/uniqueAttribute/type/{typeName}"
parameters.update(qualifiedName_params)
else:
atlas_endpoint = self.endpoint_url + "/entity/bulk?guid={}".format(guid_str)
parameters.update(
{"ignoreRelationships": ignoreRelationships, "minExtInfo": minExtInfo})
getEntity = requests.get(
atlas_endpoint,
params=parameters,
headers=self.authentication.get_authentication_headers()
)
results = self._handle_response(getEntity)
return results
def get_single_entity(self, guid=None, ignoreRelationships=False, minExtInfo=False):
results = None
parameters = {}
atlas_endpoint = self.endpoint_url + "/entity/guid/{}".format(guid)
parameters.update(
{"ignoreRelationships": ignoreRelationships, "minExtInfo": minExtInfo})
getEntity = requests.get(
atlas_endpoint,
params=parameters,
headers=self.authentication.get_authentication_headers()
)
results = self._handle_response(getEntity)
return results
def partial_update_entity(self, guid=None, typeName=None, qualifiedName=None, attributes={}):
if guid and len(attributes) == 1:
atlas_endpoint = self.endpoint_url + f"/entity/guid/{guid}"
attribute_name = list(attributes.keys())[0]
attribute_value = attributes[attribute_name]
putEntity = requests.put(
atlas_endpoint,
json=attribute_value,
params={"name": attribute_name},
headers=self.authentication.get_authentication_headers()
)
elif guid:
raise ValueError(
"When using guid, attributes can only contain one key and value.")
elif typeName and qualifiedName:
atlas_endpoint = self.endpoint_url + f"/entity/uniqueAttribute/type/{typeName}"
get_response = self.get_entity(
qualifiedName=qualifiedName, typeName=typeName)
try:
entity = get_response["entities"][0]
except KeyError:
raise ValueError(
f"The entity with qualifiedName {qualifiedName} and type {typeName} does not exist and cannot be updated.")
entity["attributes"].update(attributes)
entityInfo = {"entity": entity,
"referredEntities": get_response["referredEntities"]}
putEntity = requests.put(
atlas_endpoint,
json=entityInfo,
params={"attr:qualifiedName": qualifiedName},
headers=self.authentication.get_authentication_headers()
)
else:
raise ValueError(
"The provided combination of arguments is not supported. Either provide a guid or type name and qualified name")
results = self._handle_response(putEntity)
return results
def get_entity_classification(self, guid, classificationName):
atlas_endpoint = self.endpoint_url + f"/entity/guid/{guid}/classification/{classificationName}"
getClassification = requests.get(
atlas_endpoint,
headers=self.authentication.get_authentication_headers()
)
results = self._handle_response(getClassification)
return results
def get_entity_classifications(self, guid):
atlas_endpoint = self.endpoint_url + f"/entity/guid/{guid}/classifications"
getClassification = requests.get(
atlas_endpoint,
headers=self.authentication.get_authentication_headers()
)
results = self._handle_response(getClassification)
return results
def get_entity_header(self, guid=None):
results = None
parameters = {}
atlas_endpoint = self.endpoint_url + "/entity/guid/{}/header".format(guid)
getEntity = requests.get(
atlas_endpoint,
params=parameters,
headers=self.authentication.get_authentication_headers()
)
results = self._handle_response(getEntity)
return results
|
MIT License
|
aws/aws-xray-sdk-python
|
aws_xray_sdk/ext/httplib/patch.py
|
unpatch
|
python
|
def unpatch():
_PATCHED_MODULES.discard('httplib')
setattr(httplib, PATCH_FLAG, False)
unwrap(httplib.HTTPConnection, '_send_request')
unwrap(httplib.HTTPConnection, 'getresponse')
unwrap(httplib.HTTPResponse, 'read')
|
Unpatch any previously patched modules.
This operation is idempotent.
|
https://github.com/aws/aws-xray-sdk-python/blob/0e1f935bd2040ee7dbf0625db7f7ad780c66fb37/aws_xray_sdk/ext/httplib/patch.py#L218-L228
|
from collections import namedtuple
import sys
import wrapt
import fnmatch
import urllib3.connection
from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core.models import http
from aws_xray_sdk.core.exceptions.exceptions import SegmentNotFoundException
from aws_xray_sdk.core.patcher import _PATCHED_MODULES
from aws_xray_sdk.ext.util import inject_trace_header, strip_url, unwrap, get_hostname
if sys.version_info >= (3, 0, 0):
PY2 = False
httplib_client_module = 'http.client'
import http.client as httplib
else:
PY2 = True
httplib_client_module = 'httplib'
import httplib
_XRAY_PROP = '_xray_prop'
_XRay_Data = namedtuple('xray_data', ['method', 'host', 'url'])
_XRay_Ignore = namedtuple('xray_ignore', ['subclass', 'hostname', 'urls'])
PATCH_FLAG = '__xray_patched'
_XRAY_IGNORE = set()
def add_ignored(subclass=None, hostname=None, urls=None):
global _XRAY_IGNORE
if subclass is not None or hostname is not None or urls is not None:
urls = urls if urls is None else tuple(urls)
_XRAY_IGNORE.add(_XRay_Ignore(subclass=subclass, hostname=hostname, urls=urls))
def reset_ignored():
global _XRAY_IGNORE
_XRAY_IGNORE.clear()
_ignored_add_default()
def _ignored_add_default():
add_ignored(subclass='botocore.awsrequest.AWSHTTPConnection', urls=['/GetSamplingRules', '/SamplingTargets'])
_ignored_add_default()
def http_response_processor(wrapped, instance, args, kwargs, return_value,
exception, subsegment, stack):
xray_data = getattr(instance, _XRAY_PROP, None)
if not xray_data:
return
subsegment.put_http_meta(http.METHOD, xray_data.method)
subsegment.put_http_meta(http.URL, strip_url(xray_data.url))
if return_value:
subsegment.put_http_meta(http.STATUS, return_value.status)
xray_data = _XRay_Data('READ', xray_data.host, xray_data.url)
setattr(return_value, _XRAY_PROP, xray_data)
if exception:
subsegment.add_exception(exception, stack)
def _xray_traced_http_getresponse(wrapped, instance, args, kwargs):
if not PY2 and kwargs.get('buffering', False):
return wrapped(*args, **kwargs)
xray_data = getattr(instance, _XRAY_PROP, None)
if not xray_data:
return wrapped(*args, **kwargs)
return xray_recorder.record_subsegment(
wrapped, instance, args, kwargs,
name=get_hostname(xray_data.url),
namespace='remote',
meta_processor=http_response_processor,
)
def http_send_request_processor(wrapped, instance, args, kwargs, return_value,
exception, subsegment, stack):
xray_data = getattr(instance, _XRAY_PROP, None)
if not xray_data:
return
subsegment.put_http_meta(http.METHOD, xray_data.method)
subsegment.put_http_meta(http.URL, strip_url(xray_data.url))
if exception:
subsegment.add_exception(exception, stack)
def _ignore_request(instance, hostname, url):
global _XRAY_IGNORE
module = instance.__class__.__module__
if module is None or module == str.__class__.__module__:
subclass = instance.__class__.__name__
else:
subclass = module + '.' + instance.__class__.__name__
for rule in _XRAY_IGNORE:
subclass_match = subclass == rule.subclass if rule.subclass is not None else True
host_match = fnmatch.fnmatch(hostname, rule.hostname) if rule.hostname is not None else True
url_match = url in rule.urls if rule.urls is not None else True
if url_match and host_match and subclass_match:
return True
return False
def _send_request(wrapped, instance, args, kwargs):
def decompose_args(method, url, body, headers, encode_chunked=False):
if _ignore_request(instance, instance.host, url):
return wrapped(*args, **kwargs)
subsegment = None
try:
subsegment = xray_recorder.current_subsegment()
except SegmentNotFoundException:
pass
if subsegment:
inject_trace_header(headers, subsegment)
if issubclass(instance.__class__, urllib3.connection.HTTPSConnection):
ssl_cxt = getattr(instance, 'ssl_context', None)
elif issubclass(instance.__class__, httplib.HTTPSConnection):
ssl_cxt = getattr(instance, '_context', None)
else:
ssl_cxt = getattr(instance, 'ssl_context', None)
scheme = 'https' if ssl_cxt and type(ssl_cxt).__name__ == 'SSLContext' else 'http'
xray_url = '{}://{}{}'.format(scheme, instance.host, url)
xray_data = _XRay_Data(method, instance.host, xray_url)
setattr(instance, _XRAY_PROP, xray_data)
return xray_recorder.record_subsegment(
wrapped, instance, args, kwargs,
name=get_hostname(xray_data.url),
namespace='remote',
meta_processor=http_send_request_processor
)
return decompose_args(*args, **kwargs)
def http_read_processor(wrapped, instance, args, kwargs, return_value,
exception, subsegment, stack):
xray_data = getattr(instance, _XRAY_PROP, None)
if not xray_data:
return
subsegment.put_http_meta(http.METHOD, xray_data.method)
subsegment.put_http_meta(http.URL, strip_url(xray_data.url))
subsegment.put_http_meta(http.STATUS, instance.status)
if exception:
subsegment.add_exception(exception, stack)
def _xray_traced_http_client_read(wrapped, instance, args, kwargs):
xray_data = getattr(instance, _XRAY_PROP, None)
if not xray_data:
return wrapped(*args, **kwargs)
return xray_recorder.record_subsegment(
wrapped, instance, args, kwargs,
name=get_hostname(xray_data.url),
namespace='remote',
meta_processor=http_read_processor
)
def patch():
if getattr(httplib, PATCH_FLAG, False):
return
setattr(httplib, PATCH_FLAG, True)
wrapt.wrap_function_wrapper(
httplib_client_module,
'HTTPConnection._send_request',
_send_request
)
wrapt.wrap_function_wrapper(
httplib_client_module,
'HTTPConnection.getresponse',
_xray_traced_http_getresponse
)
wrapt.wrap_function_wrapper(
httplib_client_module,
'HTTPResponse.read',
_xray_traced_http_client_read
)
|
Apache License 2.0
|
pygae/clifford
|
clifford/_multivector.py
|
MultiVector.lc
|
python
|
def lc(self, other) -> 'MultiVector':
other, mv = self._checkOther(other, coerce=True)
newValue = self.layout.lcmt_func(self.value, other.value)
return self._newMV(newValue)
|
r"""The left-contraction of two multivectors, :math:`M\rfloor N`
|
https://github.com/pygae/clifford/blob/e63f8564d64d6a5dad5fbb415772eb8aecbc2d8f/clifford/_multivector.py#L635-L642
|
import numbers
import math
from typing import List, Set, Tuple, Union
import warnings
import numpy as np
import clifford as cf
import clifford.taylor_expansions as taylor_expansions
from . import _settings
from ._layout_helpers import layout_short_name
class MultiVector(object):
__array_priority__ = 100
def __init__(self, layout, value=None, string=None, *, dtype: np.dtype = np.float64) -> None:
self.layout = layout
if value is None:
if string is None:
self.value = np.zeros((self.layout.gaDims,), dtype=dtype)
else:
self.value = layout.parse_multivector(string).value
else:
self.value = np.array(value)
if self.value.shape != (self.layout.gaDims,):
raise ValueError(
"value must be a sequence of length %s" %
self.layout.gaDims)
def __array__(self) -> 'cf.MVArray':
return cf.array(self)
def _checkOther(self, other, coerce=True) -> Tuple['MultiVector', bool]:
if isinstance(other, MultiVector):
if other.layout != self.layout:
raise ValueError(
"cannot operate on MultiVectors with different Layouts")
else:
return other, True
elif isinstance(other, numbers.Number):
if coerce:
newOther = self._newMV(dtype=np.result_type(other))
newOther[()] = other
return newOther, True
else:
return other, False
else:
return other, False
def _newMV(self, newValue=None, *, dtype: np.dtype = None) -> 'MultiVector':
if newValue is None and dtype is None:
raise TypeError("Must specify either a type or value")
return self.__class__(self.layout, newValue, dtype=dtype)
def exp(self) -> 'MultiVector':
return taylor_expansions.exp(self)
def cos(self) -> 'MultiVector':
return taylor_expansions.cos(self)
def sin(self) -> 'MultiVector':
return taylor_expansions.sin(self)
def tan(self) -> 'MultiVector':
return taylor_expansions.tan(self)
def sinh(self) -> 'MultiVector':
return taylor_expansions.sinh(self)
def cosh(self) -> 'MultiVector':
return taylor_expansions.cosh(self)
def tanh(self) -> 'MultiVector':
return taylor_expansions.tanh(self)
def vee(self, other) -> 'MultiVector':
return self.layout.MultiVector(value=self.layout.vee_func(self.value, other.value))
def __and__(self, other) -> 'MultiVector':
return self.vee(other)
def __mul__(self, other) -> 'MultiVector':
other, mv = self._checkOther(other, coerce=False)
if mv:
newValue = self.layout.gmt_func(self.value, other.value)
else:
if isinstance(other, np.ndarray):
obj = self.__array__()
return obj*other
newValue = other * self.value
return self._newMV(newValue)
def __rmul__(self, other) -> 'MultiVector':
other, mv = self._checkOther(other, coerce=False)
if mv:
newValue = self.layout.gmt_func(other.value, self.value)
else:
if isinstance(other, np.ndarray):
obj = self.__array__()
return other*obj
newValue = other*self.value
return self._newMV(newValue)
def __xor__(self, other) -> 'MultiVector':
other, mv = self._checkOther(other, coerce=False)
if mv:
newValue = self.layout.omt_func(self.value, other.value)
else:
if isinstance(other, np.ndarray):
obj = self.__array__()
return obj^other
newValue = other*self.value
return self._newMV(newValue)
def __rxor__(self, other) -> 'MultiVector':
other, mv = self._checkOther(other, coerce=False)
if mv:
newValue = self.layout.omt_func(other.value, self.value)
else:
if isinstance(other, np.ndarray):
obj = self.__array__()
return other^obj
newValue = other * self.value
return self._newMV(newValue)
def __or__(self, other) -> 'MultiVector':
other, mv = self._checkOther(other)
if mv:
newValue = self.layout.imt_func(self.value, other.value)
else:
if isinstance(other, np.ndarray):
obj = self.__array__()
return obj|other
return self._newMV(dtype=np.result_type(self.value.dtype, other))
return self._newMV(newValue)
__ror__ = __or__
def __add__(self, other) -> 'MultiVector':
other, mv = self._checkOther(other)
if not mv:
if isinstance(other, np.ndarray):
obj = self.__array__()
return obj + other
newValue = self.value + other.value
return self._newMV(newValue)
__radd__ = __add__
def __sub__(self, other) -> 'MultiVector':
other, mv = self._checkOther(other)
if not mv:
if isinstance(other, np.ndarray):
obj = self.__array__()
return obj - other
newValue = self.value - other.value
return self._newMV(newValue)
def __rsub__(self, other) -> 'MultiVector':
other, mv = self._checkOther(other)
if not mv:
if isinstance(other, np.ndarray):
obj = self.__array__()
return other - obj
newValue = other.value - self.value
return self._newMV(newValue)
def right_complement(self) -> 'MultiVector':
return self.layout.MultiVector(value=self.layout.right_complement_func(self.value))
def left_complement(self) -> 'MultiVector':
return self.layout.MultiVector(value=self.layout.left_complement_func(self.value))
def __truediv__(self, other) -> 'MultiVector':
other, mv = self._checkOther(other, coerce=False)
if mv:
return self * other.inv()
else:
if isinstance(other, np.ndarray):
obj = self.__array__()
return obj/other
newValue = self.value / other
return self._newMV(newValue)
def __rtruediv__(self, other) -> 'MultiVector':
other, mv = self._checkOther(other)
if isinstance(other, np.ndarray):
obj = self.__array__()
return other / obj
return other * self.inv()
def __pow__(self, other) -> 'MultiVector':
if not isinstance(other, (int, float)):
raise ValueError("exponent must be a Python int or float")
if abs(round(other) - other) > _settings._eps:
raise ValueError("exponent must have no fractional part")
other = int(round(other))
if other == 0:
return self._newMV(dtype=self.value.dtype) + 1
newMV = self._newMV(np.array(self.value))
for i in range(1, other):
newMV = newMV * self
return newMV
def __rpow__(self, other) -> 'MultiVector':
newMV = taylor_expansions.exp(math.log(other) * self)
return newMV
def __lshift__(self, other) -> 'MultiVector':
return self.lc(other)
def __neg__(self) -> 'MultiVector':
newValue = -self.value
return self._newMV(newValue)
def as_array(self) -> np.ndarray:
return self.value
def __pos__(self) -> 'MultiVector':
newValue = self.value + 0
return self._newMV(newValue)
def mag2(self) -> numbers.Number:
mv_val = self.layout.gmt_func(self.layout.adjoint_func(self.value), self.value)
return mv_val[0]
def __abs__(self) -> numbers.Number:
return np.sqrt(abs(self.mag2()))
def adjoint(self) -> 'MultiVector':
return self._newMV(self.layout.adjoint_func(self.value))
__invert__ = adjoint
def __int__(self) -> int:
return int(self.__float__())
def __float__(self) -> float:
if self.isScalar():
return float(self[()])
else:
raise ValueError("non-scalar coefficients are non-zero")
def __len__(self) -> int:
warnings.warn(
"Treating MultiVector objects like a sequence is deprecated. "
"To access the coefficients as a sequence, use the `.value` attribute.",
DeprecationWarning, stacklevel=2)
return self.layout.gaDims
def __getitem__(self, key: Union['MultiVector', tuple, int]) -> numbers.Number:
if isinstance(key, MultiVector):
inds, = np.nonzero(key.value)
if len(inds) > 1:
raise ValueError("Must be a single basis element")
return self.value[inds[0]]
elif isinstance(key, tuple):
sign, idx = self.layout._sign_and_index_from_tuple(key)
return sign*self.value[idx]
else:
warnings.warn(
"Treating MultiVector objects like a sequence is deprecated. "
"To access the coefficients as a sequence, use the `.value` attribute.",
DeprecationWarning, stacklevel=2)
return self.value[key]
def __setitem__(self, key: Union[tuple, int], value: numbers.Number) -> None:
if isinstance(key, tuple):
sign, idx = self.layout._sign_and_index_from_tuple(key)
self.value[idx] = sign*value
else:
warnings.warn(
"Treating MultiVector objects like a sequence is deprecated. "
"To access the coefficients as a sequence, use the `.value` attribute.",
DeprecationWarning, stacklevel=2)
self.value[key] = value
def __call__(self, other, *others) -> 'MultiVector':
if isinstance(other, MultiVector):
return other.project(self)
else:
grade = other
if len(others) != 0:
return sum([self.__call__(k) for k in (other,)+others])
if not np.issubdtype(type(grade), np.integer):
raise ValueError("grade must be an integer")
mask = self.layout.grade_mask(grade)
newValue = np.multiply(mask, self.value)
return self._newMV(newValue)
def __str__(self) -> str:
s = ''
p = _settings._print_precision
for grade, name, coeff in zip(self.layout._basis_blade_order.grades, self.layout.names, self.value):
if s:
seps = (' + ', ' - ')
else:
seps = ('', '-')
if abs(coeff) < _settings._eps:
continue
else:
if coeff < 0:
sep = seps[1]
sign = -1
else:
sep = seps[0]
sign = 1
if np.issubdtype(self.value.dtype, np.inexact):
abs_coeff = sign*np.round(coeff, p)
else:
abs_coeff = sign*coeff
if grade == 0:
s = '%s%s%s' % (s, sep, abs_coeff)
else:
s = '%s%s(%s^%s)' % (s, sep, abs_coeff, name)
if s:
return s
else:
return '0'
def __repr__(self) -> str:
if _settings._pretty:
return self.__str__()
if self.value.dtype != np.float64:
dtype_str = ", dtype={}".format(self.value.dtype)
else:
dtype_str = None
l_name = layout_short_name(self.layout)
args = dict(v=list(self.value), d=dtype_str)
if l_name is not None:
return "{l}.MultiVector({v!r}{d})".format(l=l_name, **args)
else:
return "{l!r}.MultiVector({v!r}{d})".format(l=self.layout, **args)
def _repr_pretty_(self, p, cycle):
if cycle:
raise RuntimeError("Should not be cyclic")
if _settings._pretty:
p.text(str(self))
return
l_name = layout_short_name(self.layout)
if l_name is not None:
prefix = "{}.MultiVector(".format(l_name)
include_layout = False
else:
include_layout = True
prefix = "MultiVector("
with p.group(len(prefix), prefix, ")"):
if include_layout:
p.pretty(self.layout)
p.text(",")
p.breakable()
p.text(repr(list(self.value)))
if self.value.dtype != np.float64:
p.text(",")
p.breakable()
p.text("dtype={}".format(self.value.dtype))
def __bool__(self) -> bool:
zeroes = np.absolute(self.value) < _settings._eps
return not zeroes.all()
def __eq__(self, other) -> bool:
other, mv = self._checkOther(other)
if not mv:
return NotImplemented
if (np.absolute(self.value - other.value) < _settings._eps).all():
return True
else:
return False
def clean(self, eps=None) -> 'MultiVector':
if eps is None:
eps = _settings._eps
mask = np.absolute(self.value) > eps
self.value = mask * self.value
return self
def round(self, eps=None) -> 'MultiVector':
if eps is None:
eps = _settings._eps
self.value = np.around(self.value, eps)
return self
|
BSD 3-Clause New or Revised License
|
wavefronthq/python-client
|
wavefront_api_client/models/access_control_list_read_dto.py
|
AccessControlListReadDTO.to_dict
|
python
|
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
if issubclass(AccessControlListReadDTO, dict):
for key, value in self.items():
result[key] = value
return result
|
Returns the model properties as a dict
|
https://github.com/wavefronthq/python-client/blob/e410ce0dd8a2334e995456f4f3d44e0f04664a3a/wavefront_api_client/models/access_control_list_read_dto.py#L134-L159
|
import pprint
import re
import six
from wavefront_api_client.configuration import Configuration
class AccessControlListReadDTO(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'entity_id': 'str',
'modify_acl': 'list[AccessControlElement]',
'view_acl': 'list[AccessControlElement]'
}
attribute_map = {
'entity_id': 'entityId',
'modify_acl': 'modifyAcl',
'view_acl': 'viewAcl'
}
def __init__(self, entity_id=None, modify_acl=None, view_acl=None, _configuration=None):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._entity_id = None
self._modify_acl = None
self._view_acl = None
self.discriminator = None
if entity_id is not None:
self.entity_id = entity_id
if modify_acl is not None:
self.modify_acl = modify_acl
if view_acl is not None:
self.view_acl = view_acl
@property
def entity_id(self):
return self._entity_id
@entity_id.setter
def entity_id(self, entity_id):
self._entity_id = entity_id
@property
def modify_acl(self):
return self._modify_acl
@modify_acl.setter
def modify_acl(self, modify_acl):
self._modify_acl = modify_acl
@property
def view_acl(self):
return self._view_acl
@view_acl.setter
def view_acl(self, view_acl):
self._view_acl = view_acl
|
Apache License 2.0
|
phuks-co/throat
|
app/views/auth.py
|
register
|
python
|
def register():
if current_user.is_authenticated:
return redirect(url_for("home.index"))
form = RegistrationForm()
if email_validation_is_required():
del form.email_optional
else:
del form.email_required
captcha = misc.create_captcha()
if not config.site.enable_registration:
return engine.get_template("user/registration_disabled.html").render({})
if not form.validate():
return engine.get_template("user/register.html").render(
{"error": misc.get_errors(form, True), "regform": form, "captcha": captcha}
)
if not misc.validate_captcha(form.ctok.data, form.captcha.data):
return engine.get_template("user/register.html").render(
{"error": _("Invalid captcha."), "regform": form, "captcha": captcha}
)
if not misc.allowedNames.match(form.username.data):
return engine.get_template("user/register.html").render(
{
"error": _("Username has invalid characters."),
"regform": form,
"captcha": captcha,
}
)
existing_user = None
try:
existing_user = User.get(fn.Lower(User.name) == form.username.data.lower())
if (
existing_user.status != UserStatus.PROBATION
or (datetime.utcnow() - existing_user.joindate).days < 2
):
return engine.get_template("user/register.html").render(
{
"error": _("Username is not available."),
"regform": form,
"captcha": captcha,
}
)
except User.DoesNotExist:
pass
if email_validation_is_required():
email = form.email_required.data
else:
email = form.email_optional.data
if email:
email = normalize_email(email)
if email:
if is_domain_banned(email, domain_type="email"):
return engine.get_template("user/register.html").render(
{
"error": _("We do not accept emails from your email provider."),
"regform": form,
"captcha": captcha,
}
)
user_by_email = auth_provider.get_user_by_email(email)
if user_by_email is not None and user_by_email != existing_user:
return engine.get_template("user/register.html").render(
{
"error": _("E-mail address is already in use."),
"regform": form,
"captcha": captcha,
}
)
if config.site.enable_security_question:
if form.securityanswer.data.lower() != session["sa"].lower():
return engine.get_template("user/register.html").render(
{
"error": _("Incorrect answer for security question."),
"regform": form,
"captcha": captcha,
}
)
if config.site.require_invite_code:
if not form.invitecode.data:
return engine.get_template("user/register.html").render(
{
"error": _("Invalid invite code."),
"regform": form,
"captcha": captcha,
}
)
try:
InviteCode.get_valid(form.invitecode.data)
except InviteCode.DoesNotExist:
return engine.get_template("user/register.html").render(
{
"error": _("Invalid invite code."),
"regform": form,
"captcha": captcha,
}
)
InviteCode.update(uses=InviteCode.uses + 1).where(
InviteCode.code == form.invitecode.data
).execute()
user = create_user(
form.username.data,
form.password.data,
email,
form.invitecode.data,
existing_user,
)
if email_validation_is_required():
send_login_link_email(user)
session["reg"] = {
"uid": user.uid,
"email": user.email,
"now": datetime.utcnow(),
}
return redirect(url_for("auth.confirm_registration"))
else:
theuser = misc.load_user(user.uid)
login_user(theuser)
session["remember_me"] = False
return redirect(url_for("wiki.welcome"))
|
Endpoint for the registration form
|
https://github.com/phuks-co/throat/blob/27c7c18faa371def668bdbe6f7e95c6bf32a1829/app/views/auth.py#L98-L232
|
from urllib.parse import urlparse
from datetime import datetime, timedelta
import uuid
import re
import requests
from peewee import fn
from flask import (
Blueprint,
request,
redirect,
abort,
url_for,
session,
current_app,
flash,
jsonify,
)
from flask_login import current_user, login_user, login_required
from flask_babel import _
from itsdangerous import URLSafeTimedSerializer
from itsdangerous.exc import SignatureExpired, BadSignature
from .. import misc
from ..config import config
from ..auth import auth_provider, email_validation_is_required
from ..auth import normalize_email, create_user
from ..forms import LoginForm, RegistrationForm, ResendConfirmationForm
from ..misc import engine, send_email, is_domain_banned, gevent_required
from ..misc import ratelimit, AUTH_LIMIT, SIGNUP_LIMIT
from ..models import User, UserStatus, InviteCode, rconn
bp = Blueprint("auth", __name__)
def sanitize_serv(serv):
serv = serv.replace("%253A", "%3A")
return serv.replace("%252F", "%2F")
def generate_cas_token(uid):
token = str(uuid.uuid4())
rconn.setex(name="cas-" + token, value=uid, time=30)
return token
def handle_cas_ok(uid):
return redirect(
sanitize_serv(request.args.get("service"))
+ "&ticket="
+ generate_cas_token(uid)
)
@bp.route("/proxyValidate", methods=["GET"])
@ratelimit(AUTH_LIMIT)
def sso_proxy_validate():
if not request.args.get("ticket") or not request.args.get("service"):
abort(400)
pipe = rconn.pipeline()
pipe.get("cas-" + request.args.get("ticket"))
pipe.delete("cas-" + request.args.get("ticket"))
red_c = pipe.execute()
if red_c:
try:
user = User.get((User.uid == red_c[0].decode()) & (User.status << (0, 100)))
except User.DoesNotExist:
return (
"<cas:serviceResponse xmlns:cas='http://www.yale.edu/tp/cas'>"
'<cas:authenticationFailure code="INVALID_TICKET">'
+ _("User not found or invalid ticket")
+ "</cas:authenticationFailure></cas:serviceResponse>",
401,
)
return (
"<cas:serviceResponse xmlns:cas='http://www.yale.edu/tp/cas'>"
f"<cas:authenticationSuccess><cas:user>{user.name.lower()}</cas:user>"
"</cas:authenticationSuccess></cas:serviceResponse>",
200,
)
else:
return (
"<cas:serviceResponse xmlns:cas='http://www.yale.edu/tp/cas'>"
'<cas:authenticationFailure code="INVALID_TICKET">'
+ _("User not found or invalid ticket")
+ "</cas:authenticationFailure></cas:serviceResponse>",
401,
)
@bp.route("/register", methods=["GET", "POST"])
@gevent_required
@ratelimit(SIGNUP_LIMIT, methods=["POST"])
|
MIT License
|
magenta/ddsp
|
ddsp/training/nn.py
|
straight_through_softmax
|
python
|
def straight_through_softmax(logits):
probs = tf.nn.softmax(logits)
one_hot = tfp.distributions.OneHotCategorical(probs=probs)
sample = tf.cast(one_hot.sample(), tf.float32)
p_sample = probs * sample
sample = tf.stop_gradient(sample - p_sample) + p_sample
return sample, probs
|
Straight-through estimator of a one-hot categorical distribution.
|
https://github.com/magenta/ddsp/blob/56266e9c255019df050a3c20255caa2beaa912ac/ddsp/training/nn.py#L331-L338
|
import inspect
from ddsp import core
from ddsp import losses
from ddsp import spectral_ops
import gin
import tensorflow as tf
import tensorflow_addons as tfa
import tensorflow_probability as tfp
tfk = tf.keras
tfkl = tfk.layers
class DictLayer(tfkl.Layer):
def __init__(self, input_keys=None, output_keys=None, **kwargs):
super().__init__(**kwargs)
if not input_keys:
input_keys = self.get_argument_names('call')
self.default_input_keys = list(self.get_default_argument_names('call'))
self.default_input_values = list(self.get_default_argument_values('call'))
else:
self.default_input_keys = []
self.default_input_values = []
output_keys = output_keys or self.get_return_annotations('call')
self.input_keys = list(input_keys)
self.output_keys = list(output_keys)
@property
def all_input_keys(self):
return self.input_keys + self.default_input_keys
@property
def n_inputs(self):
return len(self.all_input_keys)
def __call__(self, *inputs, **kwargs):
input_dict = {}
for v in inputs:
if isinstance(v, dict):
input_dict.update(v)
inputs = [v for v in inputs if not isinstance(v, dict)]
for key in self.all_input_keys:
if key in kwargs:
input_dict[key] = kwargs[key]
kwargs = {k: v for k, v in kwargs.items() if k not in self.all_input_keys}
for key in self.input_keys:
try:
inputs.append(core.nested_lookup(key, input_dict))
except KeyError:
pass
for key, value in zip(self.default_input_keys, self.default_input_values):
try:
inputs.append(core.nested_lookup(key, input_dict))
except KeyError:
if len(inputs) < self.n_inputs:
inputs.append(value)
if len(inputs) != self.n_inputs:
raise TypeError(f'{len(inputs)} input tensors extracted from inputs'
'(including default args) but the layer expects '
f'{self.n_inputs} tensors.\n'
f'Input keys: {self.input_keys}\n'
f'Default keys: {self.default_input_keys}\n'
f'Default values: {self.default_input_values}\n'
f'Input dictionaries: {input_dict}\n'
f'Input Tensors (Args, Dicts, and Defaults): {inputs}\n')
outputs = super().__call__(*inputs, **kwargs)
if isinstance(outputs, dict):
return outputs
else:
outputs = core.make_iterable(outputs)
if len(self.output_keys) != len(outputs):
raise ValueError(f'Output keys ({self.output_keys}) must have the same'
f'length as outputs ({outputs})')
return dict(zip(self.output_keys, outputs))
def get_argument_names(self, method):
spec = inspect.getfullargspec(getattr(self, method))
if spec.defaults:
n_defaults = len(spec.defaults)
return spec.args[1:-n_defaults]
else:
return spec.args[1:]
def get_default_argument_names(self, method):
spec = inspect.getfullargspec(getattr(self, method))
if spec.defaults:
n_defaults = len(spec.defaults)
return spec.args[-n_defaults:]
else:
return []
def get_default_argument_values(self, method):
spec = inspect.getfullargspec(getattr(self, method))
if spec.defaults:
return spec.defaults
else:
return []
def get_return_annotations(self, method):
spec = inspect.getfullargspec(getattr(self, method))
return core.make_iterable(spec.annotations['return'])
class OutputSplitsLayer(DictLayer):
def __init__(self,
input_keys=None,
output_splits=(('amps', 1), ('harmonic_distribution', 40)),
**kwargs):
self.output_splits = output_splits
self.n_out = sum([v[1] for v in output_splits])
self.dense_out = tfkl.Dense(self.n_out)
input_keys = input_keys or self.get_argument_names('compute_output')
output_keys = [v[0] for v in output_splits]
super().__init__(input_keys=input_keys, output_keys=output_keys, **kwargs)
def call(self, *inputs, **unused_kwargs):
output = self.compute_output(*inputs)
return split_to_dict(self.dense_out(output), self.output_splits)
def compute_output(self, *inputs):
raise NotImplementedError
def ensure_4d(x):
if len(x.shape) == 2:
return x[:, tf.newaxis, tf.newaxis, :]
elif len(x.shape) == 3:
return x[:, :, tf.newaxis, :]
else:
return x
def inv_ensure_4d(x, n_dims):
if n_dims == 2:
return x[:, 0, 0, :]
if n_dims == 3:
return x[:, :, 0, :]
else:
return x
@gin.register
def split_to_dict(tensor, tensor_splits):
labels = [v[0] for v in tensor_splits]
sizes = [v[1] for v in tensor_splits]
tensors = tf.split(tensor, sizes, axis=-1)
return dict(zip(labels, tensors))
def get_nonlinearity(nonlinearity):
try:
return tf.keras.activations.get(nonlinearity)
except ValueError:
pass
return getattr(tf.nn, nonlinearity)
|
Apache License 2.0
|
google-research/pyreach
|
pyreach/impl/actions_impl.py
|
ActionsImpl.action_names
|
python
|
def action_names(self) -> Tuple[str, ...]:
return tuple([action.get_name() for action in self._actions])
|
Return the list of available action template names.
|
https://github.com/google-research/pyreach/blob/83cac8e235ba1392dcdc6b8d19202c3eff3ad9a6/pyreach/impl/actions_impl.py#L903-L905
|
import enum
import json
import logging
import threading
from typing import Any, Dict, List, Optional, Set, Tuple, Union, Type
from pyreach import actionsets
from pyreach.common.python import types_gen
from pyreach.impl import device_base
class PreconditionType(enum.Enum):
DIGITAL_IO = 0
class Precondition:
_precondition_type: PreconditionType
_digital_io_value: bool
_digital_io_number: int
_max_digital_io_number: int
def __init__(self, precondition_type: PreconditionType,
digital_io_value: bool, digital_io_number: int,
max_digital_io_number: int) -> None:
self._precondition_type = precondition_type
self._digital_io_value = digital_io_value
self._digital_io_number = digital_io_number
self._max_digital_io_number = max_digital_io_number
def get_precondition_type(self) -> PreconditionType:
return self._precondition_type
def get_digital_io_value(self) -> bool:
return self._digital_io_value
def get_digital_io_number(self) -> int:
return self._digital_io_number
def get_max_digital_io_number(self) -> int:
return self._max_digital_io_number
@classmethod
def from_json(cls, json_data: Dict[str, Any]) -> Optional["Precondition"]:
if (not isinstance(json_data.get("_preconditionType", ""), int) or
json_data["_preconditionType"] < 0 or
json_data["_preconditionType"] >= len(list(PreconditionType))):
logging.warning("Invalid _preconditionType in %s", json_data)
return None
if not isinstance(json_data.get("_digitalIONumber"), int):
logging.warning("Invalid _digitalIONumber in %s", json_data)
return None
if not isinstance(json_data.get("_digitalIOValue"), bool):
logging.warning("Invalid _digitalIOValue in %s", json_data)
return None
if not isinstance(json_data.get("_maxDigitalIONumber"), int):
logging.warning("Invalid _maxDigitalIONumber in %s", json_data)
return None
return Precondition(
list(PreconditionType)[json_data["_preconditionType"]],
json_data["_digitalIOValue"], json_data["_digitalIONumber"],
json_data["_maxDigitalIONumber"])
TOOL_INTERACTION_POINT_OBJECT_TYPES = ("Torus", "Capsule", "Cube", "Cylinder",
"Sphere", "Blister", "BlisterBatchInput",
"Deodorant", "DeodorantKitPose", "Empty")
class ToolInteractionPoint:
_name: str
_tip_object_type: str
_pick_data: types_gen.ExperimentalCommandData
_dimensions: types_gen.Vec3d
_padding: Tuple[float, float, float, float, float, float]
_tip_pos: types_gen.Vec3d
_tip_rot: types_gen.Quaternion3d
_local_go_pos: types_gen.Vec3d
_local_go_rot: types_gen.Quaternion3d
def __init__(self, name: str, tip_object_type: str,
pick_data: types_gen.ExperimentalCommandData,
dimensions: types_gen.Vec3d, padding: Tuple[float, float, float,
float, float, float],
tip_pos: types_gen.Vec3d, tip_rot: types_gen.Quaternion3d,
local_go_pos: types_gen.Vec3d,
local_go_rot: types_gen.Quaternion3d) -> None:
self._name = name
self._tip_object_type = tip_object_type
self._pick_data = pick_data
self._dimensions = dimensions
self._padding = padding
self._tip_pos = tip_pos
self._tip_rot = tip_rot
self._local_go_pos = local_go_pos
self._local_go_rot = local_go_rot
def get_name(self) -> str:
return self._name
def get_tip_object_type(self) -> str:
return self._tip_object_type
def get_pick_data(self) -> types_gen.ExperimentalCommandData:
return self._pick_data
def get_dimensions(self) -> types_gen.Vec3d:
return self._dimensions
def get_padding(self) -> Tuple[float, float, float, float, float, float]:
return self._padding
def get_tip_pos(self) -> types_gen.Vec3d:
return self._tip_pos
def get_tip_rot(self) -> types_gen.Quaternion3d:
return self._tip_rot
def get_local_go_pos(self) -> types_gen.Vec3d:
return self._local_go_pos
def get_local_go_rot(self) -> types_gen.Quaternion3d:
return self._local_go_rot
@classmethod
def from_json(cls, json_data: Dict[str,
Any]) -> Optional["ToolInteractionPoint"]:
if not isinstance(json_data.get("Name"), str):
logging.warning("Action ToolInteractionPoint Name invalid: %s", json_data)
return None
if (json_data.get("TIPObjectType")
not in TOOL_INTERACTION_POINT_OBJECT_TYPES):
logging.warning("Action ToolInteractionPoint TIPObjectType invalid: %s",
json_data)
return None
if not isinstance(json_data.get("PickData"), dict):
logging.warning("Action ToolInteractionPoint PickData invalid: %s",
json_data)
return None
try:
pick_data = types_gen.ExperimentalCommandData.from_json(
json_data["PickData"])
except ValueError as ex:
logging.warning("Action ToolInteractionPoint PickData invalid: %s %s",
json_data, ex)
return None
dimensions = _from_json_vector3(json_data.get("Dimensions"))
if dimensions is None:
logging.warning("Action ToolInteractionPoint Dimensions invalid: %s",
json_data)
return None
if not isinstance(json_data.get("Padding"), list):
logging.warning("Action ToolInteractionPoint Padding invalid: %s",
json_data)
return None
for padding_element in json_data["Padding"]:
if not (isinstance(padding_element, float) or
isinstance(padding_element, int)):
logging.warning("Action ToolInteractionPoint Padding invalid: %s",
json_data)
return None
if len(json_data["Padding"]) != 6:
logging.warning("Action ToolInteractionPoint Padding invalid: %s",
json_data)
return None
padding = (float(json_data["Padding"][0]), float(json_data["Padding"][1]),
float(json_data["Padding"][2]), float(json_data["Padding"][3]),
float(json_data["Padding"][4]), float(json_data["Padding"][5]))
tip_pos = _from_json_vector3(json_data.get("TIPPos"))
if tip_pos is None:
logging.warning("Action ToolInteractionPoint TIPPos invalid: %s",
json_data)
return None
tip_rot = _from_json_quaternion(json_data.get("TIPRot"))
if tip_rot is None:
logging.warning("Action ToolInteractionPoint TIPRot invalid: %s",
json_data)
return None
local_go_pos = _from_json_vector3(json_data.get("LocalGOPos"))
if local_go_pos is None:
logging.warning("Action ToolInteractionPoint LocalGOPos invalid: %s",
json_data)
return None
local_go_rot = _from_json_quaternion(json_data.get("LocalGORot"))
if local_go_rot is None:
logging.warning("Action ToolInteractionPoint LocalGORot invalid: %s",
json_data)
return None
return ToolInteractionPoint(json_data["Name"], json_data["TIPObjectType"],
pick_data, dimensions, padding, tip_pos,
tip_rot, local_go_pos, local_go_rot)
class ActionStepParentType(enum.Enum):
ABSOLUTE = 0
TIP_INPUT = 1
OTHER_STEP = 2
class ActionStep:
_tip_input_idx: int
_parent_type: ActionStepParentType
_pos: types_gen.Vec3d
_rot: types_gen.Quaternion3d
_delay: float
_radius: float
_velocity: float
_acceleration: float
_wait: float
_parent_step_idx: int
_use_process_mode: bool
_individual_velocity_acceleration: float
_use_force_mode: bool
_use_servo_j_mode: bool
_use_skip_move: bool
_set_digital_io: bool
_set_tool_digital_io: bool
_set_digital_io_number: int
_set_digital_io_value: bool
_set_tool_digital_io_number: int
_set_tool_digital_io_value: bool
_set_capability: bool
_set_capability_name: str
_set_capability_type: str
_set_capability_value: bool
_set_capability_io_type: str
_randomized_offset: bool
_randomized_offset_radius_cm: float
_acquire_image_tag: str
_acquire_image_mode: int
def __init__(self, tip_input_idx: int, parent_type: ActionStepParentType,
pos: types_gen.Vec3d, rot: types_gen.Quaternion3d, delay: float,
radius: float, velocity: float, acceleration: float, wait: float,
parent_step_idx: int, use_process_mode: bool,
individual_velocity_acceleration: float, use_force_mode: bool,
use_servo_j_mode: bool, use_skip_move: bool,
set_digital_io: bool, set_tool_digital_io: bool,
set_digital_io_number: int, set_digital_io_value: bool,
set_tool_digital_io_number: int, set_tool_digital_io_value: bool,
set_capability: bool, set_capability_name: str,
set_capability_type: str, set_capability_value: bool,
set_capability_io_type: str, randomized_offset: bool,
randomized_offset_radius_cm: float,
acquire_image_tag: str, acquire_image_mode: int) -> None:
self._tip_input_idx = tip_input_idx
self._parent_type = parent_type
self._pos = pos
self._rot = rot
self._delay = delay
self._radius = radius
self._velocity = velocity
self._acceleration = acceleration
self._wait = wait
self._parent_step_idx = parent_step_idx
self._use_process_mode = use_process_mode
self._individual_velocity_acceleration = individual_velocity_acceleration
self._use_force_mode = use_force_mode
self._use_servo_j_mode = use_servo_j_mode
self._use_skip_move = use_skip_move
self._set_digital_io = set_digital_io
self._set_tool_digital_io = set_tool_digital_io
self._set_digital_io_number = set_digital_io_number
self._set_digital_io_value = set_digital_io_value
self._set_tool_digital_io_number = set_tool_digital_io_number
self._set_tool_digital_io_value = set_tool_digital_io_value
self._set_capability = set_capability
self._set_capability_name = set_capability_name
self._set_capability_type = set_capability_type
self._set_capability_value = set_capability_value
self._set_capability_io_type = set_capability_io_type
self._randomized_offset = randomized_offset
self._randomized_offset_radius_cm = randomized_offset_radius_cm
self._acquire_image_tag = acquire_image_tag
self._acquire_image_mode = acquire_image_mode
def get_tip_input_idx(self) -> int:
return self._tip_input_idx
def get_parent_type(self) -> ActionStepParentType:
return self._parent_type
def get_pos(self) -> types_gen.Vec3d:
return self._pos
def get_rot(self) -> types_gen.Quaternion3d:
return self._rot
def get_delay(self) -> float:
return self._delay
def get_radius(self) -> float:
return self._radius
def get_velocity(self) -> float:
return self._velocity
def get_acceleration(self) -> float:
return self._acceleration
def get_wait(self) -> float:
return self._wait
def get_parent_step_idx(self) -> int:
return self._parent_step_idx
def get_use_process_mode(self) -> bool:
return self._use_process_mode
def get_individual_velocity_acceleration(self) -> float:
return self._individual_velocity_acceleration
def get_use_force_mode(self) -> bool:
return self._use_force_mode
def get_use_servo_j_mode(self) -> bool:
return self._use_servo_j_mode
def get_use_skip_move(self) -> bool:
return self._use_skip_move
def get_set_digital_io(self) -> bool:
return self._set_digital_io
def get_set_tool_digital_io(self) -> bool:
return self._set_tool_digital_io
def get_set_digital_io_number(self) -> int:
return self._set_digital_io_number
def get_set_digital_io_value(self) -> bool:
return self._set_digital_io_value
def get_set_tool_digital_io_number(self) -> int:
return self._set_tool_digital_io_number
def get_set_tool_digital_io_value(self) -> bool:
return self._set_tool_digital_io_value
def get_set_capability(self) -> bool:
return self._set_capability
def get_set_capability_name(self) -> str:
return self._set_capability_name
def get_set_capability_type(self) -> str:
return self._set_capability_type
def get_set_capability_value(self) -> bool:
return self._set_capability_value
def get_set_capability_io_type(self) -> str:
return self._set_capability_io_type
def get_randomized_offset(self) -> bool:
return self._randomized_offset
def get_randomized_offset_radius_cm(self) -> float:
return self._randomized_offset_radius_cm
def get_acquire_image_tag(self) -> str:
return self._acquire_image_tag
def get_acquire_image_mode(self) -> int:
return self._acquire_image_mode
@classmethod
def from_json(cls, json_data: Dict[str, Any]) -> Optional["ActionStep"]:
remap = {
"TIPInputIdx": "_tipInputIdx",
"ParentType": "_parentType",
"Delay": "_delay",
"Radius": "_radius",
"Velocity": "_velocity",
"Acceleration": "_acceleration",
"wait": "_wait",
"Wait": "_wait",
"ParentStepIdx": "_parentStepIdx",
"UseProcessMode": "_useProcessMode",
"setDigitalIO": "_setDigitalIO",
"setDigitalIOValue": "_setDigitalIOValue",
}
for from_key, to_key in remap.items():
if from_key in json_data:
json_data[to_key] = json_data[from_key]
del json_data[from_key]
if not isinstance(json_data.get("_tipInputIdx"), int):
logging.warning("Action Step _tipInputIdx invalid: %s", json_data)
return None
if (not isinstance(json_data.get("_parentType"), int) or
not 0 <= json_data["_parentType"] < len(list(ActionStepParentType))):
logging.warning("Action Step _parentType invalid: %s", json_data)
return None
pos = _from_json_vector3(json_data.get("pos"))
if pos is None:
logging.warning("Action Step pos invalid: %s", json_data)
return None
rot = _from_json_quaternion(json_data.get("rot"))
if rot is None:
logging.warning("Action Step rot invalid: %s", json_data)
return None
if not (isinstance(json_data.get("_delay"), float) or
isinstance(json_data.get("_delay"), int)):
logging.warning("Action Step _delay invalid: %s", json_data)
return None
if not (isinstance(json_data.get("_radius"), float) or
isinstance(json_data.get("_radius"), int)):
logging.warning("Action Step _radius invalid: %s", json_data)
return None
if not (isinstance(json_data.get("_velocity"), float) or
isinstance(json_data.get("_velocity"), int)):
logging.warning("Action Step _velocity invalid: %s", json_data)
return None
if not (isinstance(json_data.get("_acceleration"), float) or
isinstance(json_data.get("_acceleration"), int)):
logging.warning("Action Step _acceleration invalid: %s", json_data)
return None
if not (isinstance(json_data.get("_wait"), float) or
isinstance(json_data.get("_wait"), int)):
logging.warning("Action Step _wait invalid: %s", json_data)
return None
if not (isinstance(json_data.get("_parentStepIdx"), float) or
isinstance(json_data.get("_parentStepIdx"), int)):
logging.warning("Action Step _parentStepIdx invalid: %s", json_data)
return None
if not isinstance(json_data.get("_useProcessMode"), bool):
logging.warning("Action Step _useProcessMode invalid: %s", json_data)
return None
if not isinstance(json_data.get("_individualVelocityAcceleration"), bool):
logging.warning("Action Step _individualVelocityAcceleration invalid: %s",
json_data)
return None
if not isinstance(json_data.get("_useForceMode"), bool):
logging.warning("Action Step _useForceMode invalid: %s", json_data)
return None
if not isinstance(json_data.get("_useServoJMode"), bool):
logging.warning("Action Step _useServoJMode invalid: %s", json_data)
return None
if not isinstance(json_data.get("_useSkipMove"), bool):
logging.warning("Action Step _useSkipMove invalid: %s", json_data)
return None
if not isinstance(json_data.get("_setDigitalIO"), bool):
logging.warning("Action Step _setDigitalIO invalid: %s", json_data)
return None
if not isinstance(json_data.get("_setToolDigitalIO"), bool):
logging.warning("Action Step _setToolDigitalIO invalid: %s", json_data)
return None
if not isinstance(json_data.get("_setDigitalIONumber"), int):
logging.warning("Action Step _setDigitalIONumber invalid: %s", json_data)
return None
if json_data.get("_setToolDigitalIO", False) and not isinstance(
json_data.get("_setToolDigitalIONumber"), int):
logging.warning("Action Step _setToolDigitalIONumber invalid: %s",
json_data)
return None
if json_data.get("_setToolDigitalIO", False) and not isinstance(
json_data.get("_setToolDigitalIOValue"), bool):
logging.warning("Action Step _setToolDigitalIOValue invalid: %s",
json_data)
return None
if not isinstance(json_data.get("_setCapability"), bool):
logging.warning("Action Step _setCapability invalid: %s", json_data)
return None
if not isinstance(json_data.get("_setCapabilityName"), str):
logging.warning("Action Step _setCapabilityName invalid: %s", json_data)
return None
if not isinstance(json_data.get("_setCapabilityType"), str):
logging.warning("Action Step _setCapabilityType invalid: %s", json_data)
return None
if not isinstance(json_data.get("_setCapabilityValue"), bool):
logging.warning("Action Step _setCapabilityValue invalid: %s", json_data)
return None
if not isinstance(json_data.get("_setCapabilityIOType"), str):
logging.warning("Action Step _setCapabilityIOType invalid: %s", json_data)
return None
if not isinstance(json_data.get("_randomizedOffset"), bool):
logging.warning("Action Step _randomizedOffset invalid: %s", json_data)
return None
if not (isinstance(json_data.get("_randomizedOffsetRadiusCM"), float) or
isinstance(json_data.get("_randomizedOffsetRadiusCM"), int)):
logging.warning("Action Step _randomizedOffsetRadiusCM invalid: %s",
json_data)
return None
if not isinstance(json_data.get("_acquireImageTag", ""), str):
logging.warning("Action Step _acquireImageTag invalid: %s", json_data)
return None
if not isinstance(json_data.get("_acquireImageMode", 0), int):
logging.warning("Action Step _acquireImageMode invalid: %s",
json_data)
return None
return ActionStep(
json_data["_tipInputIdx"],
list(ActionStepParentType)[json_data["_parentType"]], pos, rot,
float(json_data["_delay"]), float(json_data["_radius"]),
float(json_data["_velocity"]), float(json_data["_acceleration"]),
float(json_data["_wait"]), json_data["_parentStepIdx"],
json_data["_useProcessMode"],
float(json_data["_individualVelocityAcceleration"]),
json_data["_useForceMode"], json_data["_useServoJMode"],
json_data["_useSkipMove"], json_data["_setDigitalIO"],
json_data["_setToolDigitalIO"], json_data["_setDigitalIONumber"],
json_data["_setDigitalIOValue"],
json_data.get("_setToolDigitalIONumber", 0),
json_data.get("_setToolDigitalIOValue", False),
json_data["_setCapability"], json_data["_setCapabilityName"],
json_data["_setCapabilityType"], json_data["_setCapabilityValue"],
json_data["_setCapabilityIOType"], json_data["_randomizedOffset"],
float(json_data["_randomizedOffsetRadiusCM"]),
json_data.get("_acquireImageTag", ""),
json_data.get("_acquireImageMode", 0))
class Action:
_steps: List[ActionStep]
_preconditions: List[Precondition]
_tip_inputs: List[ToolInteractionPoint]
_name: str
_softstart: bool
_softstart_accel: float
_softstart_velocity: float
_max_accel: float
_max_velocity: float
_cyclic: bool
_task_intent: str
_intent: str
_success_type: str
_capture_depth_behavior: str
_loop: bool
def __init__(self, _steps: List[ActionStep],
_preconditions: List[Precondition],
_tip_inputs: List[ToolInteractionPoint], _name: str,
_softstart: bool, _softstart_accel: float,
_softstart_velocity: float, _max_accel: float,
_max_velocity: float, _cyclic: bool, _task_intent: str,
_intent: str, _success_type: str, _capture_depth_behavior: str,
_loop: bool) -> None:
self._steps = _steps
self._preconditions = _preconditions
self._tip_inputs = _tip_inputs
self._name = _name
self._softstart = _softstart
self._softstart_accel = _softstart_accel
self._softstart_velocity = _softstart_velocity
self._max_accel = _max_accel
self._max_velocity = _max_velocity
self._cyclic = _cyclic
self._task_intent = _task_intent
self._intent = _intent
self._success_type = _success_type
self._capture_depth_behavior = _capture_depth_behavior
self._loop = _loop
def get_steps(self) -> List[ActionStep]:
return self._steps
def get_preconditions(self) -> List[Precondition]:
return self._preconditions
def get_tip_inputs(self) -> List[ToolInteractionPoint]:
return self._tip_inputs
def get_name(self) -> str:
return self._name
def get_softstart(self) -> bool:
return self._softstart
def get_softstart_accel(self) -> float:
return self._softstart_accel
def get_softstart_velocity(self) -> float:
return self._softstart_velocity
def get_max_accel(self) -> float:
return self._max_accel
def get_max_velocity(self) -> float:
return self._max_velocity
def get_cyclic(self) -> bool:
return self._cyclic
def get_task_intent(self) -> str:
return self._task_intent
def get_intent(self) -> str:
return self._intent
def get_success_type(self) -> str:
return self._success_type
def get_capture_depth_behavior(self) -> str:
return self._capture_depth_behavior
def get_loop(self) -> bool:
return self._loop
@classmethod
def from_json(cls, json_data: Dict[str, Any]) -> Optional["Action"]:
remap = {
"Preconditions": "_preconditions",
"TIPInputs": "_tipInputs",
"Softstart": "_softstart",
"SoftstartAccel": "_softstartAccel",
"SoftstartVelocity": "_softstartVelocity",
"Name": "_name",
"Steps": "_steps",
"MaxAccel": "_maxAccel",
"MaxVelocity": "_maxVelocity",
"Cyclic": "_cylic",
"Loop": "_loop",
}
for from_key, to_key in remap.items():
if from_key in json_data:
json_data[to_key] = json_data[from_key]
del json_data[from_key]
expect: Dict[str, Union[Type[Any], Tuple[Type[Any], ...]]] = {
"_steps": list,
"_preconditions": list,
"_tipInputs": list,
"_name": str,
"_softstart": bool,
"_softstartAccel": float,
"_softstartVelocity": float,
"_maxAccel": float,
"_maxVelocity": float,
"_cyclic": bool,
"_taskIntent": (str, type(None)),
"_intent": str,
"_successType": str,
"_captureDepthBehavior": str,
"_loop": bool
}
for name, t in expect.items():
if not isinstance(json_data.get(name, None), t):
logging.warning("Invalid type for %s in %s.", name, json_data)
return None
for name in json_data:
if name not in expect:
logging.warning("extra field %s in %s", name, json_data)
steps = []
for step in json_data["_steps"]:
step_object = ActionStep.from_json(step)
if step_object is None:
return None
steps.append(step_object)
preconditions = []
for precondition in json_data["_preconditions"]:
precondition_object = Precondition.from_json(precondition)
if precondition_object is None:
return None
preconditions.append(precondition_object)
tips = []
for tip in json_data["_tipInputs"]:
tip_object = ToolInteractionPoint.from_json(tip)
if tip_object is None:
return None
tips.append(tip_object)
return Action(steps, preconditions, tips, json_data["_name"],
json_data["_softstart"], float(json_data["_softstartAccel"]),
float(json_data["_softstartVelocity"]),
float(json_data["_maxAccel"]),
float(json_data["_maxVelocity"]), json_data["_cyclic"],
json_data.get("_taskIntent", ""), json_data["_intent"],
json_data["_successType"], json_data["_captureDepthBehavior"],
json_data["_loop"])
def _from_json_vector3(json_data: Any) -> Optional[types_gen.Vec3d]:
if not (isinstance(json_data.get("x"), float) or
isinstance(json_data.get("x"), int)):
return None
if not (isinstance(json_data.get("y"), float) or
isinstance(json_data.get("y"), int)):
return None
if not (isinstance(json_data.get("z"), float) or
isinstance(json_data.get("z"), int)):
return None
if len(json_data) != 3:
return None
return types_gen.Vec3d(
float(json_data["x"]), float(json_data["y"]), float(json_data["z"]))
def _from_json_quaternion(json_data: Any) -> Optional[types_gen.Quaternion3d]:
if not isinstance(json_data, dict):
return None
if not (isinstance(json_data.get("x"), float) or
isinstance(json_data.get("x"), int)):
return None
if not (isinstance(json_data.get("y"), float) or
isinstance(json_data.get("y"), int)):
return None
if not (isinstance(json_data.get("z"), float) or
isinstance(json_data.get("z"), int)):
return None
if not (isinstance(json_data.get("w"), float) or
isinstance(json_data.get("w"), int)):
return None
if len(json_data) != 4:
return None
return types_gen.Quaternion3d(
float(json_data["w"]), float(json_data["x"]), float(json_data["y"]),
float(json_data["z"]))
class ActionsImpl(actionsets.Actions):
_actions: List[Action]
def __init__(self, actions: List[Action]) -> None:
self._actions = actions
|
Apache License 2.0
|
quixey/python-aliyun
|
aliyun/ecs/connection.py
|
EcsConnection.report_expiring_instance
|
python
|
def report_expiring_instance(self, days=7):
expiring_instances = []
all_instances = self.get_all_instance_ids()
for ins in all_instances:
res = self.get_instance(ins)
if res.instance_charge_type == 'PrePaid':
tz = res.expired_time.tzinfo
now = datetime.datetime.now(tz)
if (res.expired_time - now).days <= days:
expiring_instances.append(ins)
return expiring_instances
|
Report PrePaid instances that are about to expire in <days>.
Args:
days (int): Check instances that will expire in <days>.
|
https://github.com/quixey/python-aliyun/blob/c07286da8bb6a1c80e8a5f77b19a7c9a132ab5ed/aliyun/ecs/connection.py#L295-L315
|
import json
import time
import datetime
import logging
import dateutil.parser
from aliyun.connection import Connection
from aliyun.ecs.model import (
AutoSnapshotPolicy,
AutoSnapshotExecutionStatus,
AutoSnapshotPolicyStatus,
Disk,
DiskMapping,
Image,
Instance,
InstanceStatus,
InstanceType,
Region,
SecurityGroup,
SecurityGroupInfo,
SecurityGroupPermission,
Snapshot,
Zone
)
BLOCK_TILL_RUNNING_SECS = 600
logger = logging.getLogger(__name__)
class Error(Exception):
class EcsConnection(Connection):
def __init__(self, region_id, access_key_id=None, secret_access_key=None):
super(EcsConnection, self).__init__(
region_id, 'ecs', access_key_id=access_key_id,
secret_access_key=secret_access_key)
def get_all_regions(self):
resp = self.get({'Action': 'DescribeRegions'})
regions = []
for region in resp['Regions']['Region']:
regions.append(Region(region['RegionId'], region['LocalName']))
return regions
def get_all_region_ids(self):
return [x.region_id for x in self.get_all_regions()]
def get_all_zones(self):
resp = self.get({'Action': 'DescribeZones'})
zones = []
for zone in resp['Zones']['Zone']:
zid = zone['ZoneId']
zname = zone['LocalName']
resources = zone['AvailableResourceCreation']['ResourceTypes']
disks = zone['AvailableDiskCategories']['DiskCategories']
zones.append(Zone(zid, zname, resources, disks))
return zones
def get_all_zone_ids(self):
return [z.zone_id for z in self.get_all_zones()]
def get_all_clusters(self):
params = {'Action': 'DescribeClusters'}
clusters = []
for cluster in self.get(params)['Clusters']['Cluster']:
clusters.append(cluster['ClusterId'])
return clusters
def get_all_instance_status(self, zone_id=None):
instance_status = []
params = {
'Action': 'DescribeInstanceStatus'
}
if zone_id is not None:
params.update({'ZoneId': zone_id})
for resp in self.get(params, paginated=True):
for item in resp['InstanceStatuses']['InstanceStatus']:
instance_status.append(
InstanceStatus(item['InstanceId'], item['Status']))
return instance_status
def get_all_instance_ids(self, zone_id=None):
return [x.instance_id for x in self.get_all_instance_status(zone_id)]
def get_instance(self, instance_id):
resp = self.get({
'Action': 'DescribeInstanceAttribute',
'InstanceId': instance_id})
return Instance(
resp['InstanceId'],
resp['InstanceName'],
resp['ImageId'],
resp['RegionId'],
resp['InstanceType'],
resp['HostName'],
resp['Status'],
[x for x in resp['SecurityGroupIds']['SecurityGroupId']],
[x for x in resp['PublicIpAddress']['IpAddress']],
[x for x in resp['InnerIpAddress']['IpAddress']],
resp['InternetChargeType'],
int(resp['InternetMaxBandwidthIn']),
int(resp['InternetMaxBandwidthOut']),
dateutil.parser.parse(resp['CreationTime']),
dateutil.parser.parse(resp['ExpiredTime']),
resp['InstanceChargeType'],
resp['Description'],
resp['ClusterId'],
[x for x in resp['OperationLocks']['LockReason']],
resp['ZoneId'])
def start_instance(self, instance_id):
self.get({'Action': 'StartInstance',
'InstanceId': instance_id})
def stop_instance(self, instance_id, force=False):
self.get({'Action': 'StopInstance',
'InstanceId': instance_id,
'ForceStop': 'true' if force else 'false'})
def reboot_instance(self, instance_id, force=False):
self.get({'Action': 'RebootInstance',
'InstanceId': instance_id,
'ForceStop': 'true' if force else 'false'})
def delete_instance(self, instance_id):
self.get({'Action': 'DeleteInstance',
'InstanceId': instance_id})
def modify_instance(self, instance_id, new_instance_name=None,
new_password=None, new_hostname=None,
new_security_group_id=None, new_description=None):
params = {'Action': 'ModifyInstanceAttribute',
'InstanceId': instance_id}
if new_instance_name:
params['InstanceName'] = new_instance_name
if new_password:
params['Password'] = new_password
if new_hostname:
params['HostName'] = new_hostname
if new_security_group_id:
params['SecurityGroupId'] = new_security_group_id
if new_description:
params['Description'] = new_description
self.get(params)
def modify_instance_spec(self, instance_id, instance_type=None,
internet_max_bandwidth_out=None,
internet_max_bandwidth_in=None):
params = {'Action': 'ModifyInstanceSpec',
'InstanceId': instance_id}
if instance_type:
params['InstanceType'] = instance_type
if internet_max_bandwidth_out:
params['InternetMaxBandwidthOut'] = internet_max_bandwidth_out
if internet_max_bandwidth_in:
params['InternetMaxBandwidthIn'] = internet_max_bandwidth_in
self.get(params)
|
Apache License 2.0
|
ocha-dap/hdx-python-api
|
src/hdx/data/resource.py
|
Resource.update_from_yaml
|
python
|
def update_from_yaml(
self, path: str = join("config", "hdx_resource_static.yml")
) -> None:
super().update_from_yaml(path)
|
Update resource metadata with static metadata from YAML file
Args:
path (Optional[str]): Path to YAML dataset metadata. Defaults to config/hdx_resource_static.yml.
Returns:
None
|
https://github.com/ocha-dap/hdx-python-api/blob/3b0b454a5bb2e477b5999cc3a96289919a3a2576/src/hdx/data/resource.py#L65-L76
|
import datetime
import logging
from os import remove
from os.path import join
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
from hdx.utilities import is_valid_uuid
from hdx.utilities.downloader import Download
from hdx.utilities.loader import load_json, load_yaml
from hdx.utilities.path import script_dir_plus_file
import hdx.data.dataset
import hdx.data.filestore_helper
from hdx.data.date_helper import DateHelper
from hdx.data.hdxobject import HDXError, HDXObject
from hdx.data.resource_view import ResourceView
from hdx.hdx_configuration import Configuration
logger = logging.getLogger(__name__)
class Resource(HDXObject):
_formats_dict = None
def __init__(
self,
initial_data: Optional[Dict] = None,
configuration: Optional[Configuration] = None,
) -> None:
if not initial_data:
initial_data = dict()
super().__init__(initial_data, configuration=configuration)
self.file_to_upload = None
@staticmethod
def actions() -> Dict[str, str]:
return {
"show": "resource_show",
"update": "resource_update",
"create": "resource_create",
"patch": "resource_patch",
"delete": "resource_delete",
"search": "resource_search",
"datastore_delete": "datastore_delete",
"datastore_create": "datastore_create",
"datastore_insert": "datastore_insert",
"datastore_upsert": "datastore_upsert",
"datastore_search": "datastore_search",
}
|
MIT License
|
fcurella/django-recommends
|
recommends/algorithms/naive.py
|
NaiveAlgorithm.calculate_recommendations
|
python
|
def calculate_recommendations(self, vote_list, itemMatch, itemIgnored):
recommendations = []
users = set(map(lambda x: x[0], vote_list))
for user in users:
rankings = self.get_recommended_items(vote_list, itemMatch, itemIgnored, user)
recommendations.append((user, rankings))
return recommendations
|
``itemMatch`` is supposed to be the result of ``calculate_similarities()``
Returns a list of recommendations:
::
[
(<user1>, [
("<object_identifier1>", <score>),
("<object_identifier2>", <score>),
]),
(<user2>, [
("<object_identifier1>", <score>),
("<object_identifier2>", <score>),
]),
]
|
https://github.com/fcurella/django-recommends/blob/e69820f70c9f7935850c63e01b141ac06cf58e0d/recommends/algorithms/naive.py#L58-L83
|
from collections import defaultdict
import math
from recommends.similarities import sim_distance
from recommends.converters import convert_vote_list_to_userprefs, convert_vote_list_to_itemprefs
from .base import BaseAlgorithm
class NaiveAlgorithm(BaseAlgorithm):
similarity = sim_distance
def top_matches(self, prefs, p1):
return [(p2, self.similarity(prefs[p1], prefs[p2])) for p2 in prefs if p2 != p1]
def calculate_similarities(self, vote_list, verbose=0):
itemPrefs = convert_vote_list_to_itemprefs(vote_list)
itemMatch = {}
for item in itemPrefs:
itemMatch[item] = self.top_matches(itemPrefs, item)
iteritems = itemMatch.items()
return iteritems
def get_recommended_items(self, vote_list, itemMatch, itemIgnored, user):
prefs = convert_vote_list_to_userprefs(vote_list)
itemMatch = dict(itemMatch)
if user in prefs:
userRatings = prefs[user]
scores = defaultdict(int)
totalSim = defaultdict(int)
for (item, rating) in userRatings.items():
for (item2, similarity) in itemMatch[item]:
if user.pk in itemIgnored and item2 in itemIgnored[user.pk]:
continue
if not math.isnan(similarity) and item2 not in userRatings:
scores[item2] += similarity * rating
totalSim[item2] += similarity
rankings = ((item, (score / totalSim[item])) for item, score in scores.items() if totalSim[item] != 0)
return rankings
return []
|
MIT License
|
pythainlp/pythainlp
|
pythainlp/word_vector/core.py
|
WordVector.load_wordvector
|
python
|
def load_wordvector(self, model_name: str):
self.model_name = model_name
self.model = KeyedVectors.load_word2vec_format(
get_corpus_path(self.model_name),
binary=True,
unicode_errors="ignore"
)
self.WV_DIM = self.model.vector_size
if self.model_name == "thai2fit_wv":
self.tokenize = THAI2FIT_TOKENIZER.word_tokenize
else:
self.tokenize = word_tokenize
|
Load word vector model.
:param str model_name: model name
|
https://github.com/pythainlp/pythainlp/blob/2ae3f7ad77d96136690823f33bb61f0b8610900b/pythainlp/word_vector/core.py#L321-L338
|
from typing import List, Tuple
import warnings
from gensim.models import KeyedVectors
from gensim.models.keyedvectors import Word2VecKeyedVectors
from numpy import ndarray, zeros
from pythainlp.corpus import get_corpus_path
from pythainlp.tokenize import THAI2FIT_TOKENIZER, word_tokenize
WV_DIM = 300
_MODEL_NAME = "thai2fit_wv"
_TK_SP = "xxspace"
_TK_EOL = "xxeol"
def get_model() -> Word2VecKeyedVectors:
warnings.warn(
"get_model is deprecated, use WordVector class instead",
DeprecationWarning,
)
path = get_corpus_path(_MODEL_NAME)
return KeyedVectors.load_word2vec_format(path, binary=True)
_MODEL = get_model()
def doesnt_match(words: List[str]) -> str:
warnings.warn(
"doesnt_match is deprecated, use WordVector class instead",
DeprecationWarning,
)
return _MODEL.doesnt_match(words)
def most_similar_cosmul(
positive: List[str], negative: List[str]
) -> List[Tuple[str, float]]:
warnings.warn(
"most_similar_cosmul is deprecated, use WordVector class instead",
DeprecationWarning,
)
return _MODEL.most_similar_cosmul(positive=positive, negative=negative)
def similarity(word1: str, word2: str) -> float:
warnings.warn(
"similarity is deprecated, use WordVector class instead",
DeprecationWarning,
)
return _MODEL.similarity(word1, word2)
def sentence_vectorizer(text: str, use_mean: bool = True) -> ndarray:
warnings.warn(
"sentence_vectorizer is deprecated, use WordVector class instead",
DeprecationWarning,
)
vec = zeros((1, WV_DIM))
words = THAI2FIT_TOKENIZER.word_tokenize(text)
len_words = len(words)
if not len_words:
return vec
for word in words:
if word == " ":
word = _TK_SP
elif word == "\n":
word = _TK_EOL
if word in _MODEL.index_to_key:
vec += _MODEL.get_vector(word)
if use_mean:
vec /= len_words
return vec
class WordVector:
def __init__(self, model_name: str = "thai2fit_wv") -> None:
self.load_wordvector(model_name)
|
Apache License 2.0
|
domwillcode/yale-smart-alarm-client
|
yalesmartalarmclient/client.py
|
YaleSmartAlarmClient.get_armed_status
|
python
|
def get_armed_status(self) -> str:
try:
alarm_state = self.auth.get_authenticated(self._ENDPOINT_GET_MODE)
except AuthenticationError as e:
raise e
except RequestException as e:
raise e
return cast(str, alarm_state.get("data")[0].get("mode"))
|
Get armed status.
|
https://github.com/domwillcode/yale-smart-alarm-client/blob/bbabc71d212adb7df4a7f5637f61f12ef8043a4d/yalesmartalarmclient/client.py#L223-L231
|
import logging
from typing import Any, Dict, cast
from requests import RequestException
from .auth import YaleAuth
from .exceptions import AuthenticationError
from .lock import YaleDoorManAPI
_LOGGER = logging.getLogger(__name__)
YALE_STATE_ARM_FULL = "arm"
YALE_STATE_ARM_PARTIAL = "home"
YALE_STATE_DISARM = "disarm"
YALE_LOCK_STATE_LOCKED = "locked"
YALE_LOCK_STATE_UNLOCKED = "unlocked"
YALE_LOCK_STATE_DOOR_OPEN = "dooropen"
YALE_LOCK_STATE_UNKNOWN = "unknown"
YALE_DOOR_CONTACT_STATE_CLOSED = "closed"
YALE_DOOR_CONTACT_STATE_OPEN = "open"
YALE_DOOR_CONTACT_STATE_UNKNOWN = "unknown"
class YaleSmartAlarmClient:
YALE_CODE_RESULT_SUCCESS = "000"
_ENDPOINT_GET_MODE = "/api/panel/mode/"
_ENDPOINT_SET_MODE = "/api/panel/mode/"
_ENDPOINT_DEVICES_STATUS = "/api/panel/device_status/"
_ENDPOINT_PANIC_BUTTON = "/api/panel/panic"
_ENDPOINT_STATUS = "/yapi/api/panel/status/"
_ENDPOINT_CYCLE = "/yapi/api/panel/cycle/"
_ENDPOINT_ONLINE = "/yapi/api/panel/online/"
_ENDPOINT_HISTORY = "/yapi/api/event/report/?page_num=1&set_utc=1"
_ENDPOINT_CHECK = "/yapi/api/auth/check/"
_ENDPOINT_PANEL_INFO = "/yapi/api/panel/info/"
_REQUEST_PARAM_AREA = "area"
_REQUEST_PARAM_MODE = "mode"
_DEFAULT_REQUEST_TIMEOUT = 5
def __init__(self, username: str, password: str, area_id: int = 1) -> None:
self.auth: YaleAuth = YaleAuth(username=username, password=password)
self.area_id = area_id
self.lock_api: YaleDoorManAPI = YaleDoorManAPI(auth=self.auth)
def get_all(self) -> str:
try:
devices = self.auth.get_authenticated(self._ENDPOINT_DEVICES_STATUS)
mode = self.auth.get_authenticated(self._ENDPOINT_GET_MODE)
status = self.auth.get_authenticated(self._ENDPOINT_STATUS)
cycle = self.auth.get_authenticated(self._ENDPOINT_CYCLE)
online = self.auth.get_authenticated(self._ENDPOINT_ONLINE)
history = self.auth.get_authenticated(self._ENDPOINT_HISTORY)
panel_info = self.auth.get_authenticated(self._ENDPOINT_PANEL_INFO)
auth_check = self.auth.get_authenticated(self._ENDPOINT_CHECK)
except AuthenticationError as e:
raise e
except RequestException as e:
raise e
return (
" DEVICES \n"
+ str(devices["data"])
+ "\n MODE \n"
+ str(mode["data"])
+ "\n STATUS \n"
+ str(status["data"])
+ "\n CYCLE \n"
+ str(cycle["data"])
+ "\n ONLINE \n"
+ str(online["data"])
+ "\n HISTORY \n"
+ str(history["data"])
+ "\n PANEL INFO \n"
+ str(panel_info["data"])
+ "\n AUTH CHECK \n"
+ str(auth_check["data"])
)
def get_all_devices(self) -> Dict[str, Any]:
try:
devices = self.auth.get_authenticated(self._ENDPOINT_DEVICES_STATUS)
except AuthenticationError as e:
raise e
except RequestException as e:
raise e
return cast(Dict[str, Any], devices["data"])
def get_cycle(self) -> Dict[str, Any]:
try:
cycle = self.auth.get_authenticated(self._ENDPOINT_CYCLE)
except AuthenticationError as e:
raise e
except RequestException as e:
raise e
return cast(Dict[str, Any], cycle["data"])
def get_status(self) -> str:
try:
status = self.auth.get_authenticated(self._ENDPOINT_STATUS)
except AuthenticationError as e:
raise e
except RequestException as e:
raise e
acfail = status["data"]["acfail"]
battery = status["data"]["battery"]
tamper = status["data"]["tamper"]
jam = status["data"]["jam"]
if acfail == battery == tamper == jam == "main.normal":
return "ok"
return "error"
def get_online(self) -> Dict[str, Any]:
try:
online = self.auth.get_authenticated(self._ENDPOINT_ONLINE)
except AuthenticationError as e:
raise e
except RequestException as e:
raise e
return cast(Dict[str, Any], online["data"])
def get_panel_info(self) -> Dict[str, Any]:
try:
panel_info = self.auth.get_authenticated(self._ENDPOINT_PANEL_INFO)
except AuthenticationError as e:
raise e
except RequestException as e:
raise e
return cast(Dict[str, Any], panel_info["data"])
def get_history(self) -> Dict[str, Any]:
try:
history = self.auth.get_authenticated(self._ENDPOINT_HISTORY)
except AuthenticationError as e:
raise e
except RequestException as e:
raise e
return cast(Dict[str, Any], history["data"])
def get_auth_check(self) -> Dict[str, Any]:
try:
check = self.auth.get_authenticated(self._ENDPOINT_CHECK)
except AuthenticationError as e:
raise e
except RequestException as e:
raise e
return cast(Dict[str, Any], check["data"])
def get_locks_status(self) -> Dict[str, str]:
try:
devices = self.auth.get_authenticated(self._ENDPOINT_DEVICES_STATUS)
except AuthenticationError as e:
raise e
except RequestException as e:
raise e
locks: Dict[str, str] = {}
for device in devices["data"]:
if device["type"] == "device_type.door_lock":
state = device["status1"]
name = device["name"]
lock_status_str = device["minigw_lock_status"]
if lock_status_str != "":
lock_status = int(lock_status_str, 16)
closed = (lock_status & 16) == 16
locked = (lock_status & 1) == 1
if closed is True and locked is True:
state = YALE_LOCK_STATE_LOCKED
elif closed is True and locked is False:
state = YALE_LOCK_STATE_UNLOCKED
elif not closed:
state = YALE_LOCK_STATE_DOOR_OPEN
elif "device_status.lock" in state:
state = YALE_LOCK_STATE_LOCKED
elif "device_status.unlock" in state:
state = YALE_LOCK_STATE_UNLOCKED
else:
state = YALE_LOCK_STATE_UNKNOWN
locks[name] = state
return locks
def get_doors_status(self) -> Dict[str, str]:
try:
devices = self.auth.get_authenticated(self._ENDPOINT_DEVICES_STATUS)
except AuthenticationError as e:
raise e
except RequestException as e:
raise e
doors: Dict[str, str] = {}
for device in devices["data"]:
if device["type"] == "device_type.door_contact":
state = device["status1"]
name = device["name"]
if "device_status.dc_close" in state:
state = YALE_DOOR_CONTACT_STATE_CLOSED
elif "device_status.dc_open" in state:
state = YALE_DOOR_CONTACT_STATE_OPEN
else:
state = YALE_DOOR_CONTACT_STATE_UNKNOWN
doors[name] = state
return doors
|
Apache License 2.0
|
pielco11/dot
|
async/2getpy.py
|
nostdout
|
python
|
def nostdout():
savestdout = sys.stdout
sys.stdout = RecycleObject()
yield
sys.stdout = savestdout
|
Method to clean the stdout
|
https://github.com/pielco11/dot/blob/b1c4b2cba37135a70b64027a68c6b548fd14c737/async/2getpy.py#L24-L30
|
import re
import asyncio
from datetime import datetime
import urllib.parse
import time
import sqlite3
import sys
import contextlib
import hashlib
from bs4 import BeautifulSoup
import aiohttp
from aiohttp_socks import SocksConnector, SocksVer
from elasticsearch import Elasticsearch, helpers
from cashaddress import convert
import validate_email
class RecycleObject(object):
def write(self, junk): pass
def flush(self): pass
@contextlib.contextmanager
|
MIT License
|
fali-kunxiaojiayuan/spatial-statistics
|
code/common.py
|
belongs
|
python
|
def belongs(boundary, point):
if not point:
return False
d = boundary[DIMENSION]
cx, cy = boundary[CENTER]
px, py = point
return (py <= cy + d and py >= cy - d) and (px <= cx + d and px >= cx - d)
|
Check if the point belongs to the boundary
|
https://github.com/fali-kunxiaojiayuan/spatial-statistics/blob/4b496df86e24aff5547a92156461805924a53f3d/code/common.py#L21-L30
|
import bisect
from collections import namedtuple
from scipy.spatial.distance import euclidean
NO_QUADRANT = -1
NORTH_WEST = 1
NORTH_EAST = 2
SOUTH_EAST = 3
SOUTH_WEST = 4
delta=pow(10,-7)
CENTER = 0
DIMENSION = 1
X = 0
Y = 1
Point = namedtuple('Point', ['x', 'y','key'])
Boundary = namedtuple('Boundary', ['center', 'dimension'])
|
MIT License
|
pinterest/slackminion
|
slackminion/plugins/test.py
|
TestPlugin.shortsleep2
|
python
|
def shortsleep2(self, msg, args):
self.start_timer(5, self._sleep_func2, msg.channel, ' '.join(args))
|
Sleep for a bit, then echo the message back
|
https://github.com/pinterest/slackminion/blob/5845e7a3e09c72305c06e8f0aa58db1882858aaa/slackminion/plugins/test.py#L39-L41
|
from ..plugin import cmd, webhook
from slackminion.plugins.core import version
try:
from slackminion.plugins.core import commit
except ImportError:
commit = 'HEAD'
from slackminion.plugin.base import BasePlugin
class TestPlugin(BasePlugin):
@cmd()
def echo(self, msg, args):
self.log.debug("Received args: %s", args)
return ' '.join(args)
@cmd()
def xyzzy(self, msg, args):
return "Nothing happens for %s" % msg.user
@cmd()
def alert(self, msg, args):
self.send_message(self.config['channel'], '<!here>: something important is going to happen!')
return None
@webhook('/echo', form_params='foo')
def web_echo(self, foo):
self.send_message(self.config['channel'], foo)
@cmd()
def shortsleep(self, msg, args):
self.start_timer(5, self._sleep_func)
@cmd()
|
MIT License
|
autonomousvision/data_aggregation
|
carla/sensor.py
|
Image.save_to_disk
|
python
|
def save_to_disk(self, filename, format='.png'):
filename = _append_extension(filename, format)
try:
from PIL import Image as PImage
except ImportError:
raise RuntimeError(
'cannot import PIL, make sure pillow package is installed')
image = PImage.frombytes(
mode='RGBA',
size=(self.width, self.height),
data=self.raw_data,
decoder_name='raw')
color = image.split()
image = PImage.merge("RGB", color[2::-1])
folder = os.path.dirname(filename)
if not os.path.isdir(folder):
os.makedirs(folder)
image.save(filename, quality=100)
|
Save this image to disk (requires PIL installed).
|
https://github.com/autonomousvision/data_aggregation/blob/76777156a465cbb77d6d5ab88da8f1812e7ff043/carla/sensor.py#L174-L195
|
import os
from collections import namedtuple
try:
import numpy
except ImportError:
raise RuntimeError('cannot import numpy, make sure numpy package is installed.')
from .transform import Transform, Translation, Rotation, Scale
Color = namedtuple('Color', 'r g b')
Color.__new__.__defaults__ = (0, 0, 0)
Point = namedtuple('Point', 'x y z color')
Point.__new__.__defaults__ = (0.0, 0.0, 0.0, None)
def _append_extension(filename, ext):
return filename if filename.lower().endswith(ext.lower()) else filename + ext
class Sensor(object):
def __init__(self, name, sensor_type):
self.SensorName = name
self.SensorType = sensor_type
self.PositionX = 0.2
self.PositionY = 0.0
self.PositionZ = 1.3
self.RotationPitch = 0.0
self.RotationRoll = 0.0
self.RotationYaw = 0.0
def set(self, **kwargs):
for key, value in kwargs.items():
if not hasattr(self, key):
raise ValueError('sensor.Sensor: no key named %r' % key)
setattr(self, key, value)
def set_position(self, x, y, z):
self.PositionX = x
self.PositionY = y
self.PositionZ = z
def set_rotation(self, pitch, yaw, roll):
self.RotationPitch = pitch
self.RotationYaw = yaw
self.RotationRoll = roll
def get_transform(self):
return Transform(
Translation(self.PositionX, self.PositionY, self.PositionZ),
Rotation(self.RotationPitch, self.RotationYaw, self.RotationRoll))
def get_unreal_transform(self):
to_unreal_transform = Transform(Rotation(roll=-90, yaw=90), Scale(x=-1))
return self.get_transform() * to_unreal_transform
class Camera(Sensor):
def __init__(self, name, **kwargs):
super(Camera, self).__init__(name, sensor_type="CAMERA")
self.PostProcessing = 'SceneFinal'
self.ImageSizeX = 720
self.ImageSizeY = 512
self.FOV = 90.0
self.set(**kwargs)
def set_image_size(self, pixels_x, pixels_y):
self.ImageSizeX = pixels_x
self.ImageSizeY = pixels_y
class Lidar(Sensor):
def __init__(self, name, **kwargs):
super(Lidar, self).__init__(name, sensor_type="LIDAR_RAY_CAST")
self.Channels = 32
self.Range = 50.0
self.PointsPerSecond = 56000
self.RotationFrequency = 10.0
self.UpperFovLimit = 10.0
self.LowerFovLimit = -30.0
self.ShowDebugPoints = False
self.set(**kwargs)
class SensorData(object):
def __init__(self, frame_number):
self.frame_number = frame_number
class Image(SensorData):
def __init__(self, frame_number, width, height, image_type, fov, raw_data):
super(Image, self).__init__(frame_number=frame_number)
assert len(raw_data) == 4 * width * height
self.width = width
self.height = height
self.type = image_type
self.fov = fov
self.raw_data = raw_data
self._converted_data = None
@property
def data(self):
if self._converted_data is None:
from . import image_converter
if self.type == 'Depth':
self._converted_data = image_converter.depth_to_array(self)
elif self.type == 'SemanticSegmentation':
self._converted_data = image_converter.labels_to_array(self)
else:
self._converted_data = image_converter.to_rgb_array(self)
return self._converted_data
|
MIT License
|
guildai/guildai
|
guild/view.py
|
ViewData.config
|
python
|
def config(self):
raise NotImplementedError()
|
Returns dict of config for request params.
Config dict must contain:
cwd string Cwd used for runs
titleLabel string Label suitable for browser title
version string Guild version
|
https://github.com/guildai/guildai/blob/79d39402201168b7e94007d8e66ecf504e7aa71c/guild/view.py#L71-L81
|
from __future__ import absolute_import
from __future__ import division
import json
import logging
import math
import os
import socket
import subprocess
import sys
import threading
import time
from werkzeug.exceptions import NotFound
from werkzeug.utils import redirect
from guild import serving_util
from guild import util
from guild import var
log = logging.getLogger("guild")
MODULE_DIR = os.path.dirname(__file__)
TB_RUNS_MONITOR_INTERVAL = 5
TB_REFRESH_INTERVAL = 5
TB_DISABLED_PLUGINS = ["WhatIfToolPluginLoader"]
class ViewData(object):
def runs(self):
raise NotImplementedError()
def runs_data(self):
raise NotImplementedError()
def one_run(self, run_id_prefix):
def one_run_data(self, run_id_prefix):
raise NotImplementedError()
|
Apache License 2.0
|
idlesign/django-siteprefs
|
siteprefs/toolbox.py
|
autodiscover_siteprefs
|
python
|
def autodiscover_siteprefs(admin_site: AdminSite = None):
import_prefs()
try:
Preference.read_prefs(get_prefs())
except DatabaseError:
LOGGER.warning('Unable to read preferences from database. Skip.')
else:
if admin_site is None:
admin_site = admin.site
register_admin_models(admin_site)
|
Automatically discovers and registers all preferences available in all apps.
:param admin_site: Custom AdminSite object.
|
https://github.com/idlesign/django-siteprefs/blob/dbc040b96800a73e35a3d436a5207dd658ce0c58/siteprefs/toolbox.py#L162-L181
|
import logging
import sys
from collections import OrderedDict
from types import ModuleType
from typing import Dict, Union, List, Tuple, Any, Optional
from django.contrib import admin
from django.contrib.admin import AdminSite
from django.db import DatabaseError
from django.db.models import Model, Field
from .exceptions import SitePrefsException
from .models import Preference
from .signals import prefs_save
from .utils import import_prefs, get_frame_locals, traverse_local_prefs, get_pref_model_admin_class, get_pref_model_class, PrefProxy, PatchedLocal, Frame
__PATCHED_LOCALS_SENTINEL = '__siteprefs_locals_patched'
__PREFS_REGISTRY = None
__PREFS_DEFAULT_REGISTRY = OrderedDict()
__MODELS_REGISTRY = {}
LOGGER = logging.getLogger(__name__)
def on_pref_update(*args, **kwargs):
Preference.update_prefs(*args, **kwargs)
Preference.read_prefs(get_prefs())
prefs_save.connect(on_pref_update)
def get_prefs() -> dict:
global __PREFS_REGISTRY
if __PREFS_REGISTRY is None:
__PREFS_REGISTRY = __PREFS_DEFAULT_REGISTRY
return __PREFS_REGISTRY
def get_app_prefs(app: str = None) -> dict:
if app is None:
with Frame(stepback=1) as frame:
app = frame.f_globals['__name__'].split('.')[0]
prefs = get_prefs()
if app not in prefs:
return {}
return prefs[app]
def get_prefs_models() -> Dict[str, Model]:
return __MODELS_REGISTRY
def bind_proxy(
values: Union[List, Tuple],
category: str = None,
field: Field = None,
verbose_name: str = None,
help_text: str = '',
static: bool = True,
readonly: bool = False
) -> List[PrefProxy]:
addrs = OrderedDict()
depth = 3
for local_name, locals_dict in traverse_local_prefs(depth):
addrs[id(locals_dict[local_name])] = local_name
proxies = []
locals_dict = get_frame_locals(depth)
for value in values:
id_val = id(value)
if id_val in addrs:
local_name = addrs[id_val]
local_val = locals_dict[local_name]
if isinstance(local_val, PatchedLocal) and not isinstance(local_val, PrefProxy):
proxy = PrefProxy(
local_name, value.val,
category=category,
field=field,
verbose_name=verbose_name,
help_text=help_text,
static=static,
readonly=readonly,
)
app_name = locals_dict['__name__'].split('.')[-2]
prefs = get_prefs()
if app_name not in prefs:
prefs[app_name] = OrderedDict()
prefs[app_name][local_name.lower()] = proxy
locals_dict[local_name] = proxy
proxies.append(proxy)
return proxies
def register_admin_models(admin_site: AdminSite):
global __MODELS_REGISTRY
prefs = get_prefs()
for app_label, prefs_items in prefs.items():
model_class = get_pref_model_class(app_label, prefs_items, get_app_prefs)
if model_class is not None:
__MODELS_REGISTRY[app_label] = model_class
admin_site.register(model_class, get_pref_model_admin_class(prefs_items))
|
BSD 3-Clause New or Revised License
|
theromanxpl0it/ghidra-emu-fun
|
src/emulator.py
|
Emulator.start
|
python
|
def start(self, byte_substitution=None):
assert(self.emulator_state == EmulatorState.READY)
if byte_substitution is not None:
self.byte_substitution = byte_substitution
self.logger.info('Started with byte_sub: %r' % self.byte_substitution)
for parameter in [self.symbolMap.getParam(i) for i in range(self.symbolMap.getNumParams())]:
bytesValue = self.parameterMap[parameter.name]
bytesValue = self.applyByteSubstitution(bytesValue)
storage = parameter.getStorage()
offset = 0
for varnode in storage.getVarnodes():
chunk = bytesValue[offset:offset+varnode.getSize()]
if varnode.getAddress().isStackAddress():
self.emulatorHelper.writeMemory(self.getStackAddress(varnode.getAddress().getOffset()), chunk)
else:
self.emulatorHelper.writeMemory(varnode.getAddress(), chunk)
offset += varnode.getSize()
self.emulatorHelper.setBreakpoint(self.function.getEntryPoint())
self.emulatorHelper.run(self.function.getEntryPoint(), self.entrypoint, self.monitor)
self.emulator_state = EmulatorState.EXECUTING
|
Write the fn inputs in memory (eventually applying the byte substitution) and
start the emulation, breaking at fn entry point
|
https://github.com/theromanxpl0it/ghidra-emu-fun/blob/21e85a5d378013fc1db941c00ed4062ae867a459/src/emulator.py#L214-L239
|
from ghidra.program.model.address import AddressSpace
from ghidra.app.emulator import EmulatorHelper
from ghidra.app.decompiler import DecompInterface
from ghidra.program.flatapi import FlatProgramAPI
from ghidra.pcode.emulate import EmulateExecutionState, BreakCallBack
import logging
import sys
import string
import time
import random
from functools import wraps
import lib
import struct
from utils import *
class EmulatorState:
WAITING_FOR_PARAM, READY, EXECUTING, DONE = range(4)
def history(func):
@wraps(func)
def wrapper(*args):
args[0].logger.debug(args[1])
args[0].history.append(' '.join(args[1]))
func(*args)
return wrapper
class DucktapeBreakCallback(BreakCallBack):
def __init__(self, addressCallback, pcodeCallback):
self.address_callback = addressCallback
self.pcode_callback = pcodeCallback
def addressCallback(self, address):
self.address_callback(address)
return True
class Emulator(object):
def __init__(self, plugin, state=None, logger_fname="ghidra_emulator.txt"):
self.plugin = plugin
self.monitor = self.plugin.getMonitor()
if state is None:
state = self.plugin.getGhidraState()
program = state.getCurrentProgram()
address = state.getCurrentAddress()
self.byte_substitution = {}
self.initLogger(logger_fname)
self.initEmulator(program, address)
self.initCmdHandlers()
self.emulator_state = EmulatorState.WAITING_FOR_PARAM
self.flatapi = FlatProgramAPI(program)
def initLogger(self, fname):
self.logger_fname = fname
self.logger = logging.getLogger(str(random.random()).replace(".","_"))
self.logger.setLevel(logging.INFO)
h_stdout = logging.StreamHandler(sys.stdout)
h_stdout.setLevel(logging.INFO)
self.logger.addHandler(h_stdout)
if self.logger_fname:
h_file = logging.FileHandler(self.logger_fname)
h_file.setLevel(logging.INFO)
self.logger.addHandler(h_file)
def initEmulator(self, program, address, clear_param_map=True):
self.program = program
self.function = self.program.getFunctionManager().getFunctionContaining(address)
if self.function is None:
function_name = self.plugin.askString("You are not in a function, please enter an address or a function name", "address or symbol name")
for f in self.plugin.state.currentProgram.getFunctionManager().getFunctions(True):
if function == f.getName():
self.plugin.state.setCurrentAddress(function.getEntryPoint())
self.doStart()
return
for f in self.plugin.state.currentProgram.getFunctionManager().getFunctions(True):
if int(function, 16) == f.getEntryPoint().getOffset():
self.plugin.state.setCurrentAddress(function.getEntryPoint())
self.doStart()
return
self.entrypoint = self.program.getListing().getInstructionAt(self.function.getEntryPoint())
self.logger.info("Program: %s" % self.program)
self.logger.info("Function: %s" % self.function)
self.decompinterface = DecompInterface()
self.decompinterface.openProgram(program)
result = self.decompinterface.decompileFunction(self.function, 0, self.monitor)
self.highFunction = result.getHighFunction()
self.decompiled = str(result.getCCodeMarkup())
self.symbolMap = self.highFunction.getLocalSymbolMap()
if clear_param_map:
self.parameterMap = {}
self.emulatorHelper = EmulatorHelper(self.program)
self.stackPointer = (((1 << (self.emulatorHelper.getStackPointerRegister().getBitLength() - 1)) - 1) ^ ((1 << (self.emulatorHelper.getStackPointerRegister().getBitLength()//2))-1))
self.returnAddressSize = program.getLanguage().getProgramCounter().getBitLength()
NULL_PTR_RET = 0
self.emulatorHelper.writeRegister(self.emulatorHelper.getStackPointerRegister(), self.stackPointer)
self.emulatorHelper.setBreakpoint(self.getStackAddress(NULL_PTR_RET))
self.emulatorHelper.enableMemoryWriteTracking(True)
self.emulator_state = EmulatorState.WAITING_FOR_PARAM
if not clear_param_map:
self.emulator_state = EmulatorState.READY
self.history = []
self.lastAddresses = []
self.hookExternalFunctions()
def hookExternalFunctions(self):
for externalFunction in list(self.program.getFunctionManager().getExternalFunctions()):
self.logger.debug('Found external function `%s`' % (externalFunction.getName()))
for library in lib.exports:
self.logger.debug('Found library `%s`' % (library.name))
for function in library.exports:
self.logger.debug('Found function `%s`' % (function.__name__))
if externalFunction.getName() == function.__name__:
for address in externalFunction.getFunctionThunkAddresses():
self.logger.info('Hooked function `%s`@%s with implementation lib/%s/%s' % (externalFunction.getName(), str(address), library.name, function.__name__))
callback = DucktapeBreakCallback(function(self.program, self, self.program.getFunctionManager().getFunctionAt(address), self.monitor), lambda x: True)
self.emulatorHelper.emulator.getBreakTable().registerAddressCallback(address, callback)
for thunkFunction in list(filter(lambda x: x.isThunk(), self.program.getFunctionManager().getFunctions(True))):
for library in lib.exports:
self.logger.debug('Found library `%s`' % (library.name))
for function in library.exports:
self.logger.debug('Found function `%s`' % (function.__name__))
if thunkFunction.getName() == function.__name__:
address = thunkFunction.getEntryPoint()
self.logger.info('Hooked function `%s` at %s with implementation lib/%s/%s' % (thunkFunction.getName(), str(address), library.name, function.__name__))
callback = DucktapeBreakCallback(function(self.program, self, self.program.getFunctionManager().getFunctionAt(address), self.monitor), lambda x: True)
self.emulatorHelper.emulator.getBreakTable().registerAddressCallback(address, callback)
def initFunctionParameters(self, bytesValueBuffer=""):
self.input_wildcards = []
self.fnParametersAllBytesValue = ""
for parameter in [self.symbolMap.getParam(i) for i in range(self.symbolMap.getNumParams())]:
psize = self.parameterStorageSize(parameter)
if len(bytesValueBuffer) < psize*2:
bytesValueBuffer = self.plugin.askString('Setting Parameters for `{}` (size: {})'.format(parameter.name, psize), 'byte values')
bytesValue = bytesValueBuffer[:psize*2]
bytesValue = (bytesValue + "00"*psize)[:psize*2]
assert(len(bytesValue) == psize*2)
for i in range(0,len(bytesValue), 2):
if bytesValue[i] in string.hexdigits and bytesValue[i+1] in string.hexdigits: continue
self.input_wildcards.append(bytesValue[i:i+2])
self.parameterMap[parameter.name] = bytesValue
self.fnParametersAllBytesValue += bytesValue
bytesValueBuffer = bytesValueBuffer[psize*2:]
if self.input_wildcards:
self.logger.info("Found %d wildcards: %s" % (len(self.input_wildcards), self.input_wildcards))
self.logger.info("The next batch of cmds will be executed in fuzzing mode")
for w in self.input_wildcards:
self.byte_substitution[w] = "00"
self.emulator_state = EmulatorState.READY
def parameterStorageSize(self, parameter):
return sum(map(lambda x: x.getSize(), parameter.getStorage().getVarnodes()))
def getAddress(self, offset):
return self.program.getAddressFactory().getDefaultAddressSpace().getAddress(offset)
def getStackAddress(self, offset):
address = self.getAddress(self.emulatorHelper.readRegister(self.emulatorHelper.getStackPointerRegister()) + offset)
orAddress = self.getAddress(self.stackPointer + offset)
self.logger.debug('Stack address at {} or {}'.format(address, orAddress))
return orAddress
def writeStackValue(self, offset, size, value):
bytesValue = long_to_bytes(value, size)
if not self.emulatorHelper.getLanguage().isBigEndian():
bytesValue = bytesValue[::-1]
self.emulatorHelper.writeMemory(self.getStackAddress(offset), bytesValue)
def applyByteSubstitution(self, bytesValue):
for k,v in self.byte_substitution.items():
bytesValue = bytesValue.replace(k, v)
return bytesValue.decode('hex')
|
Apache License 2.0
|
openstack/glance
|
glance/cmd/replicator.py
|
replication_livecopy
|
python
|
def replication_livecopy(options, args):
if len(args) < 2:
raise TypeError(_("Too few arguments."))
imageservice = get_image_service()
target_server, target_port = utils.parse_valid_host_port(args.pop())
target_conn = http.HTTPConnection(target_server, target_port)
target_client = imageservice(target_conn, options.targettoken)
source_server, source_port = utils.parse_valid_host_port(args.pop())
source_conn = http.HTTPConnection(source_server, source_port)
source_client = imageservice(source_conn, options.sourcetoken)
updated = []
for image in source_client.get_images():
LOG.debug('Considering %(id)s', {'id': image['id']})
for key in options.dontreplicate.split(' '):
if key in image:
LOG.debug('Stripping %(header)s from source metadata',
{'header': key})
del image[key]
if _image_present(target_client, image['id']):
headers = target_client.get_image_meta(image['id'])
if headers['status'] == 'active':
for key in options.dontreplicate.split(' '):
if key in image:
LOG.debug('Stripping %(header)s from source '
'metadata', {'header': key})
del image[key]
if key in headers:
LOG.debug('Stripping %(header)s from target '
'metadata', {'header': key})
del headers[key]
if _dict_diff(image, headers):
LOG.info(_LI('Image %(image_id)s (%(image_name)s) '
'metadata has changed'),
{'image_id': image['id'],
'image_name': image.get('name', '--unnamed--')})
headers, body = target_client.add_image_meta(image)
_check_upload_response_headers(headers, body)
updated.append(image['id'])
elif image['status'] == 'active':
LOG.info(_LI('Image %(image_id)s (%(image_name)s) '
'(%(image_size)d bytes) '
'is being synced'),
{'image_id': image['id'],
'image_name': image.get('name', '--unnamed--'),
'image_size': image['size']})
if not options.metaonly:
image_response = source_client.get_image(image['id'])
try:
headers, body = target_client.add_image(image,
image_response)
_check_upload_response_headers(headers, body)
updated.append(image['id'])
except exc.HTTPConflict:
LOG.error(_LE(IMAGE_ALREADY_PRESENT_MESSAGE) % image['id'])
return updated
|
%(prog)s livecopy <fromserver:port> <toserver:port>
Load the contents of one glance instance into another.
fromserver:port: the location of the source glance instance.
toserver:port: the location of the target glance instance.
|
https://github.com/openstack/glance/blob/ff8e3d4a0a00caff4949620e1ddf3e541a522923/glance/cmd/replicator.py#L521-L596
|
import os
import sys
from oslo_config import cfg
from oslo_log import log as logging
from oslo_serialization import jsonutils
from oslo_utils import encodeutils
from oslo_utils import uuidutils
import six
from six.moves import http_client as http
import six.moves.urllib.parse as urlparse
from webob import exc
from glance.common import config
from glance.common import exception
from glance.common import utils
from glance.i18n import _, _LE, _LI, _LW
LOG = logging.getLogger(__name__)
cli_opts = [
cfg.IntOpt('chunksize',
short='c',
default=65536,
help="Amount of data to transfer per HTTP write."),
cfg.StrOpt('dontreplicate',
short='D',
default=('created_at date deleted_at location updated_at'),
help="List of fields to not replicate."),
cfg.BoolOpt('metaonly',
short='m',
default=False,
help="Only replicate metadata, not images."),
cfg.StrOpt('token',
short='t',
default='',
help=("Pass in your authentication token if you have "
"one. If you use this option the same token is "
"used for both the source and the target.")),
cfg.StrOpt('command',
positional=True,
required=False,
help="Command to be given to replicator"),
cfg.MultiStrOpt('args',
positional=True,
required=False,
help="Arguments for the command"),
]
CONF = cfg.CONF
CONF.register_cli_opts(cli_opts)
CONF.register_opt(
cfg.StrOpt('sourcetoken',
default='',
help=("Pass in your authentication token if you have "
"one. This is the token used for the source.")))
CONF.register_opt(
cfg.StrOpt('targettoken',
default='',
help=("Pass in your authentication token if you have "
"one. This is the token used for the target.")))
logging.register_options(CONF)
CONF.set_default(name='use_stderr', default=True)
possible_topdir = os.path.normpath(os.path.join(os.path.abspath(sys.argv[0]),
os.pardir,
os.pardir))
if os.path.exists(os.path.join(possible_topdir, 'glance', '__init__.py')):
sys.path.insert(0, possible_topdir)
COMMANDS = """Commands:
help <command> Output help for one of the commands below
compare What is missing from the target glance?
dump Dump the contents of a glance instance to local disk.
livecopy Load the contents of one glance instance into another.
load Load the contents of a local directory into glance.
size Determine the size of a glance instance if dumped to disk.
"""
IMAGE_ALREADY_PRESENT_MESSAGE = _('The image %s is already present on '
'the target, but our check for it did '
'not find it. This indicates that we '
'do not have permissions to see all '
'the images on the target server.')
class ImageService(object):
def __init__(self, conn, auth_token):
self.auth_token = auth_token
self.conn = conn
def _http_request(self, method, url, headers, body,
ignore_result_body=False):
if self.auth_token:
headers.setdefault('x-auth-token', self.auth_token)
LOG.debug('Request: %(method)s http://%(server)s:%(port)s'
'%(url)s with headers %(headers)s',
{'method': method,
'server': self.conn.host,
'port': self.conn.port,
'url': url,
'headers': repr(headers)})
self.conn.request(method, url, body, headers)
response = self.conn.getresponse()
headers = self._header_list_to_dict(response.getheaders())
code = response.status
code_description = http.responses[code]
LOG.debug('Response: %(code)s %(status)s %(headers)s',
{'code': code,
'status': code_description,
'headers': repr(headers)})
if code == http.BAD_REQUEST:
raise exc.HTTPBadRequest(
explanation=response.read())
if code == http.INTERNAL_SERVER_ERROR:
raise exc.HTTPInternalServerError(
explanation=response.read())
if code == http.UNAUTHORIZED:
raise exc.HTTPUnauthorized(
explanation=response.read())
if code == http.FORBIDDEN:
raise exc.HTTPForbidden(
explanation=response.read())
if code == http.CONFLICT:
raise exc.HTTPConflict(
explanation=response.read())
if ignore_result_body:
response.read()
return response
def get_images(self):
params = {'is_public': None}
while True:
url = '/v1/images/detail'
query = urlparse.urlencode(params)
if query:
url += '?%s' % query
response = self._http_request('GET', url, {}, '')
result = jsonutils.loads(response.read())
if not result or 'images' not in result or not result['images']:
return
for image in result.get('images', []):
params['marker'] = image['id']
yield image
def get_image(self, image_uuid):
url = '/v1/images/%s' % image_uuid
return self._http_request('GET', url, {}, '')
@staticmethod
def _header_list_to_dict(headers):
d = {}
for (header, value) in headers:
if header.startswith('x-image-meta-property-'):
prop = header.replace('x-image-meta-property-', '')
d.setdefault('properties', {})
d['properties'][prop] = value
else:
d[header.replace('x-image-meta-', '')] = value
return d
def get_image_meta(self, image_uuid):
url = '/v1/images/%s' % image_uuid
response = self._http_request('HEAD', url, {}, '',
ignore_result_body=True)
return self._header_list_to_dict(response.getheaders())
@staticmethod
def _dict_to_headers(d):
h = {}
for key in d:
if key == 'properties':
for subkey in d[key]:
if d[key][subkey] is None:
h['x-image-meta-property-%s' % subkey] = ''
else:
h['x-image-meta-property-%s' % subkey] = d[key][subkey]
else:
h['x-image-meta-%s' % key] = d[key]
return h
def add_image(self, image_meta, image_data):
url = '/v1/images'
headers = self._dict_to_headers(image_meta)
headers['Content-Type'] = 'application/octet-stream'
headers['Content-Length'] = int(image_meta['size'])
response = self._http_request('POST', url, headers, image_data)
headers = self._header_list_to_dict(response.getheaders())
LOG.debug('Image post done')
body = response.read()
return headers, body
def add_image_meta(self, image_meta):
url = '/v1/images/%s' % image_meta['id']
headers = self._dict_to_headers(image_meta)
headers['Content-Type'] = 'application/octet-stream'
response = self._http_request('PUT', url, headers, '')
headers = self._header_list_to_dict(response.getheaders())
LOG.debug('Image post done')
body = response.read()
return headers, body
def get_image_service():
return ImageService
def _human_readable_size(num, suffix='B'):
for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']:
if abs(num) < 1024.0:
return "%3.1f %s%s" % (num, unit, suffix)
num /= 1024.0
return "%.1f %s%s" % (num, 'Yi', suffix)
def replication_size(options, args):
if args is None or len(args) < 1:
raise TypeError(_("Too few arguments."))
server, port = utils.parse_valid_host_port(args.pop())
total_size = 0
count = 0
imageservice = get_image_service()
client = imageservice(http.HTTPConnection(server, port),
options.targettoken)
for image in client.get_images():
LOG.debug('Considering image: %(image)s', {'image': image})
if image['status'] == 'active':
total_size += int(image['size'])
count += 1
print(_('Total size is %(size)d bytes (%(human_size)s) across '
'%(img_count)d images') %
{'size': total_size,
'human_size': _human_readable_size(total_size),
'img_count': count})
def replication_dump(options, args):
if len(args) < 2:
raise TypeError(_("Too few arguments."))
path = args.pop()
server, port = utils.parse_valid_host_port(args.pop())
imageservice = get_image_service()
client = imageservice(http.HTTPConnection(server, port),
options.sourcetoken)
for image in client.get_images():
LOG.debug('Considering: %(image_id)s (%(image_name)s) '
'(%(image_size)d bytes)',
{'image_id': image['id'],
'image_name': image.get('name', '--unnamed--'),
'image_size': image['size']})
data_path = os.path.join(path, image['id'])
data_filename = data_path + '.img'
if not os.path.exists(data_path):
LOG.info(_LI('Storing: %(image_id)s (%(image_name)s)'
' (%(image_size)d bytes) in %(data_filename)s'),
{'image_id': image['id'],
'image_name': image.get('name', '--unnamed--'),
'image_size': image['size'],
'data_filename': data_filename})
if six.PY3:
f = open(data_path, 'w', encoding='utf-8')
else:
f = open(data_path, 'w')
with f:
f.write(jsonutils.dumps(image))
if image['status'] == 'active' and not options.metaonly:
LOG.debug('Image %s is active', image['id'])
image_response = client.get_image(image['id'])
with open(data_filename, 'wb') as f:
while True:
chunk = image_response.read(options.chunksize)
if not chunk:
break
f.write(chunk)
def _dict_diff(a, b):
if set(a.keys()) - set(b.keys()):
LOG.debug('metadata diff -- source has extra keys: %(keys)s',
{'keys': ' '.join(set(a.keys()) - set(b.keys()))})
return True
for key in a:
if str(a[key]) != str(b[key]):
LOG.debug('metadata diff -- value differs for key '
'%(key)s: source "%(source_value)s" vs '
'target "%(target_value)s"',
{'key': key,
'source_value': a[key],
'target_value': b[key]})
return True
return False
def replication_load(options, args):
if len(args) < 2:
raise TypeError(_("Too few arguments."))
path = args.pop()
server, port = utils.parse_valid_host_port(args.pop())
imageservice = get_image_service()
client = imageservice(http.HTTPConnection(server, port),
options.targettoken)
updated = []
for ent in os.listdir(path):
if uuidutils.is_uuid_like(ent):
image_uuid = ent
LOG.info(_LI('Considering: %s'), image_uuid)
meta_file_name = os.path.join(path, image_uuid)
with open(meta_file_name) as meta_file:
meta = jsonutils.loads(meta_file.read())
for key in options.dontreplicate.split(' '):
if key in meta:
LOG.debug('Stripping %(header)s from saved '
'metadata', {'header': key})
del meta[key]
if _image_present(client, image_uuid):
LOG.debug('Image %s already present', image_uuid)
headers = client.get_image_meta(image_uuid)
for key in options.dontreplicate.split(' '):
if key in headers:
LOG.debug('Stripping %(header)s from target '
'metadata', {'header': key})
del headers[key]
if _dict_diff(meta, headers):
LOG.info(_LI('Image %s metadata has changed'), image_uuid)
headers, body = client.add_image_meta(meta)
_check_upload_response_headers(headers, body)
updated.append(meta['id'])
else:
if not os.path.exists(os.path.join(path, image_uuid + '.img')):
LOG.debug('%s dump is missing image data, skipping',
image_uuid)
continue
with open(os.path.join(path, image_uuid + '.img')) as img_file:
try:
headers, body = client.add_image(meta, img_file)
_check_upload_response_headers(headers, body)
updated.append(meta['id'])
except exc.HTTPConflict:
LOG.error(_LE(IMAGE_ALREADY_PRESENT_MESSAGE)
% image_uuid)
return updated
|
Apache License 2.0
|
burnysc2/python-sc2
|
sc2/units.py
|
Units.returning
|
python
|
def returning(self) -> Units:
return self.filter(lambda unit: unit.is_returning)
|
Returns all workers that are carrying minerals or vespene and are returning to a townhall.
|
https://github.com/burnysc2/python-sc2/blob/a0b90b4447f23fc352a9bd931ae95ee5f4911032/sc2/units.py#L675-L677
|
from __future__ import annotations
import random
import warnings
from itertools import chain
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Set, Tuple, Union
import numpy as np
from sc2.ids.unit_typeid import UnitTypeId
from sc2.position import Point2, Point3
from sc2.unit import Unit
warnings.simplefilter("once")
if TYPE_CHECKING:
from sc2.bot_ai import BotAI
class Units(list):
@classmethod
def from_proto(cls, units, bot_object: BotAI):
return cls((Unit(u, bot_object=bot_object) for u in units))
def __init__(self, units, bot_object: BotAI):
super().__init__(units)
self._bot_object = bot_object
def __call__(self, *args, **kwargs):
return UnitSelection(self, *args, **kwargs)
def __iter__(self) -> Generator[Unit, None, None]:
return (item for item in super().__iter__())
def select(self, *args, **kwargs):
return UnitSelection(self, *args, **kwargs)
def copy(self):
return self.subgroup(self)
def __or__(self, other: Units) -> Units:
return Units(
chain(
iter(self),
(other_unit for other_unit in other if other_unit.tag not in (self_unit.tag for self_unit in self)),
),
self._bot_object,
)
def __add__(self, other: Units) -> Units:
return Units(
chain(
iter(self),
(other_unit for other_unit in other if other_unit.tag not in (self_unit.tag for self_unit in self)),
),
self._bot_object,
)
def __and__(self, other: Units) -> Units:
return Units(
(other_unit for other_unit in other if other_unit.tag in (self_unit.tag for self_unit in self)),
self._bot_object,
)
def __sub__(self, other: Units) -> Units:
return Units(
(self_unit for self_unit in self if self_unit.tag not in (other_unit.tag for other_unit in other)),
self._bot_object,
)
def __hash__(self):
return hash(unit.tag for unit in self)
@property
def amount(self) -> int:
return len(self)
@property
def empty(self) -> bool:
return not bool(self)
@property
def exists(self) -> bool:
return bool(self)
def find_by_tag(self, tag) -> Optional[Unit]:
for unit in self:
if unit.tag == tag:
return unit
return None
def by_tag(self, tag):
unit = self.find_by_tag(tag)
if unit is None:
raise KeyError("Unit not found")
return unit
@property
def first(self) -> Unit:
assert self, "Units object is empty"
return self[0]
def take(self, n: int) -> Units:
if n >= self.amount:
return self
else:
return self.subgroup(self[:n])
@property
def random(self) -> Unit:
assert self, "Units object is empty"
return random.choice(self)
def random_or(self, other: any) -> Unit:
return random.choice(self) if self else other
def random_group_of(self, n: int) -> Units:
if n < 1:
return Units([], self._bot_object)
elif n >= self.amount:
return self
else:
return self.subgroup(random.sample(self, n))
def in_attack_range_of(self, unit: Unit, bonus_distance: Union[int, float] = 0) -> Units:
return self.filter(lambda x: unit.target_in_range(x, bonus_distance=bonus_distance))
def closest_distance_to(self, position: Union[Unit, Point2, Point3]) -> float:
assert self, "Units object is empty"
if isinstance(position, Unit):
return min(self._bot_object._distance_squared_unit_to_unit(unit, position) for unit in self)**0.5
return min(self._bot_object._distance_units_to_pos(self, position))
def furthest_distance_to(self, position: Union[Unit, Point2, Point3]) -> float:
assert self, "Units object is empty"
if isinstance(position, Unit):
return max(self._bot_object._distance_squared_unit_to_unit(unit, position) for unit in self)**0.5
return max(self._bot_object._distance_units_to_pos(self, position))
def closest_to(self, position: Union[Unit, Point2, Point3]) -> Unit:
assert self, "Units object is empty"
if isinstance(position, Unit):
return min(
(unit1 for unit1 in self),
key=lambda unit2: self._bot_object._distance_squared_unit_to_unit(unit2, position),
)
distances = self._bot_object._distance_units_to_pos(self, position)
return min(((unit, dist) for unit, dist in zip(self, distances)), key=lambda my_tuple: my_tuple[1])[0]
def furthest_to(self, position: Union[Unit, Point2, Point3]) -> Unit:
assert self, "Units object is empty"
if isinstance(position, Unit):
return max(
(unit1 for unit1 in self),
key=lambda unit2: self._bot_object._distance_squared_unit_to_unit(unit2, position),
)
distances = self._bot_object._distance_units_to_pos(self, position)
return max(((unit, dist) for unit, dist in zip(self, distances)), key=lambda my_tuple: my_tuple[1])[0]
def closer_than(self, distance: Union[int, float], position: Union[Unit, Point2, Point3]) -> Units:
if not self:
return self
if isinstance(position, Unit):
distance_squared = distance**2
return self.subgroup(
unit for unit in self
if self._bot_object._distance_squared_unit_to_unit(unit, position) < distance_squared
)
distances = self._bot_object._distance_units_to_pos(self, position)
return self.subgroup(unit for unit, dist in zip(self, distances) if dist < distance)
def further_than(self, distance: Union[int, float], position: Union[Unit, Point2, Point3]) -> Units:
if not self:
return self
if isinstance(position, Unit):
distance_squared = distance**2
return self.subgroup(
unit for unit in self
if distance_squared < self._bot_object._distance_squared_unit_to_unit(unit, position)
)
distances = self._bot_object._distance_units_to_pos(self, position)
return self.subgroup(unit for unit, dist in zip(self, distances) if distance < dist)
def in_distance_between(
self, position: Union[Unit, Point2, Tuple[float, float]], distance1: float, distance2: float
) -> Units:
if not self:
return self
if isinstance(position, Unit):
distance1_squared = distance1**2
distance2_squared = distance2**2
return self.subgroup(
unit for unit in self if
distance1_squared < self._bot_object._distance_squared_unit_to_unit(unit, position) < distance2_squared
)
distances = self._bot_object._distance_units_to_pos(self, position)
return self.subgroup(unit for unit, dist in zip(self, distances) if distance1 < dist < distance2)
def closest_n_units(self, position: Union[Unit, Point2], n: int) -> Units:
if not self:
return self
return self.subgroup(self._list_sorted_by_distance_to(position)[:n])
def furthest_n_units(self, position: Union[Unit, Point2, np.ndarray], n: int) -> Units:
if not self:
return self
return self.subgroup(self._list_sorted_by_distance_to(position)[-n:])
def in_distance_of_group(self, other_units: Units, distance: float) -> Units:
assert other_units, "Other units object is empty"
if not self:
return self
distance_squared = distance**2
if len(self) == 1:
if any(
self._bot_object._distance_squared_unit_to_unit(self[0], target) < distance_squared
for target in other_units
):
return self
else:
return self.subgroup([])
return self.subgroup(
self_unit for self_unit in self if any(
self._bot_object._distance_squared_unit_to_unit(self_unit, other_unit) < distance_squared
for other_unit in other_units
)
)
def in_closest_distance_to_group(self, other_units: Units) -> Unit:
assert self, "Units object is empty"
assert other_units, "Given units object is empty"
return min(
self,
key=lambda self_unit:
min(self._bot_object._distance_squared_unit_to_unit(self_unit, other_unit) for other_unit in other_units),
)
def _list_sorted_closest_to_distance(self, position: Union[Unit, Point2], distance: float) -> List[Unit]:
if isinstance(position, Unit):
return sorted(
self,
key=lambda unit: abs(self._bot_object._distance_squared_unit_to_unit(unit, position) - distance),
reverse=True,
)
distances = self._bot_object._distance_units_to_pos(self, position)
unit_dist_dict = {unit.tag: dist for unit, dist in zip(self, distances)}
return sorted(self, key=lambda unit2: abs(unit_dist_dict[unit2.tag] - distance), reverse=True)
def n_closest_to_distance(self, position: Union[Point2, np.ndarray], distance: Union[int, float], n: int) -> Units:
return self.subgroup(self._list_sorted_closest_to_distance(position=position, distance=distance)[:n])
def n_furthest_to_distance(self, position: Union[Point2, np.ndarray], distance: Union[int, float], n: int) -> Units:
return self.subgroup(self._list_sorted_closest_to_distance(position=position, distance=distance)[-n:])
def subgroup(self, units):
return Units(units, self._bot_object)
def filter(self, pred: callable) -> Units:
assert callable(pred), "Function is not callable"
return self.subgroup(filter(pred, self))
def sorted(self, key: callable, reverse: bool = False) -> Units:
return self.subgroup(sorted(self, key=key, reverse=reverse))
def _list_sorted_by_distance_to(self, position: Union[Unit, Point2], reverse: bool = False) -> List[Unit]:
if isinstance(position, Unit):
return sorted(
self, key=lambda unit: self._bot_object._distance_squared_unit_to_unit(unit, position), reverse=reverse
)
distances = self._bot_object._distance_units_to_pos(self, position)
unit_dist_dict = {unit.tag: dist for unit, dist in zip(self, distances)}
return sorted(self, key=lambda unit2: unit_dist_dict[unit2.tag], reverse=reverse)
def sorted_by_distance_to(self, position: Union[Unit, Point2], reverse: bool = False) -> Units:
return self.subgroup(self._list_sorted_by_distance_to(position, reverse=reverse))
def tags_in(self, other: Union[Set[int], List[int], Dict[int, Any]]) -> Units:
return self.filter(lambda unit: unit.tag in other)
def tags_not_in(self, other: Union[Set[int], List[int], Dict[int, Any]]) -> Units:
return self.filter(lambda unit: unit.tag not in other)
def of_type(self, other: Union[UnitTypeId, Set[UnitTypeId], List[UnitTypeId], Dict[UnitTypeId, Any]]) -> Units:
if isinstance(other, UnitTypeId):
other = {other}
elif isinstance(other, list):
other = set(other)
return self.filter(lambda unit: unit.type_id in other)
def exclude_type(self, other: Union[UnitTypeId, Set[UnitTypeId], List[UnitTypeId], Dict[UnitTypeId, Any]]) -> Units:
if isinstance(other, UnitTypeId):
other = {other}
elif isinstance(other, list):
other = set(other)
return self.filter(lambda unit: unit.type_id not in other)
def same_tech(self, other: Set[UnitTypeId]) -> Units:
assert isinstance(other, set), (
f"Please use a set as this filter function is already fairly slow. For example" +
" 'self.units.same_tech({UnitTypeId.LAIR})'"
)
tech_alias_types: Set[int] = {u.value for u in other}
unit_data = self._bot_object._game_data.units
for unitType in other:
for same in unit_data[unitType.value]._proto.tech_alias:
tech_alias_types.add(same)
return self.filter(
lambda unit: unit._proto.unit_type in tech_alias_types or
any(same in tech_alias_types for same in unit._type_data._proto.tech_alias)
)
def same_unit(self, other: Union[UnitTypeId, Set[UnitTypeId], List[UnitTypeId], Dict[UnitTypeId, Any]]) -> Units:
if isinstance(other, UnitTypeId):
other = {other}
unit_alias_types: Set[int] = {u.value for u in other}
unit_data = self._bot_object._game_data.units
for unitType in other:
unit_alias_types.add(unit_data[unitType.value]._proto.unit_alias)
unit_alias_types.discard(0)
return self.filter(
lambda unit: unit._proto.unit_type in unit_alias_types or unit._type_data._proto.unit_alias in
unit_alias_types
)
@property
def center(self) -> Point2:
assert self, f"Units object is empty"
amount = self.amount
return Point2(
(
sum(unit._proto.pos.x for unit in self) / amount,
sum(unit._proto.pos.y for unit in self) / amount,
)
)
@property
def selected(self) -> Units:
return self.filter(lambda unit: unit.is_selected)
@property
def tags(self) -> Set[int]:
return {unit.tag for unit in self}
@property
def ready(self) -> Units:
return self.filter(lambda unit: unit.is_ready)
@property
def not_ready(self) -> Units:
return self.filter(lambda unit: not unit.is_ready)
@property
def idle(self) -> Units:
return self.filter(lambda unit: unit.is_idle)
@property
def owned(self) -> Units:
return self.filter(lambda unit: unit.is_mine)
@property
def enemy(self) -> Units:
return self.filter(lambda unit: unit.is_enemy)
@property
def flying(self) -> Units:
return self.filter(lambda unit: unit.is_flying)
@property
def not_flying(self) -> Units:
return self.filter(lambda unit: not unit.is_flying)
@property
def structure(self) -> Units:
return self.filter(lambda unit: unit.is_structure)
@property
def not_structure(self) -> Units:
return self.filter(lambda unit: not unit.is_structure)
@property
def gathering(self) -> Units:
return self.filter(lambda unit: unit.is_gathering)
@property
|
MIT License
|
blurstudio/cross3d
|
cross3d/abstract/abstractsceneobject.py
|
AbstractSceneObject._nativeWireColor
|
python
|
def _nativeWireColor(self):
return False
|
\remarks return the color for the wireframe of this object in the scene
\sa setWireColor
\return <QColor>
|
https://github.com/blurstudio/cross3d/blob/277968d1227de740fc87ef61005c75034420eadf/cross3d/abstract/abstractsceneobject.py#L135-L141
|
import cross3d
from PyQt4.QtGui import QColor
from cross3d import SceneWrapper, abstractmethod
from cross3d.constants import ObjectType, RotationOrder
class AbstractSceneObject(SceneWrapper):
_objectType = ObjectType.Generic
_subClasses = {}
def __init__(self, scene, nativeObject):
SceneWrapper.__init__(self, scene, nativeObject)
if self._objectType & ObjectType.Generic:
self._objectType = self._typeOfNativeObject(nativeObject)
self._parameters = {}
def __new__(cls, scene, nativeObject, *args, **kwargs):
if not cls._subClasses:
for c in cls._subclasses(cls):
if not c._objectType == ObjectType.Generic:
cls._subClasses[ c._objectType ] = c
sceneObjectType = cls._typeOfNativeObject(nativeObject)
if sceneObjectType in cls._subClasses:
c = cls._subClasses[sceneObjectType]
return SceneWrapper.__new__(c)
return SceneWrapper.__new__(cls)
@abstractmethod
def _nativeType(self):
return str
def _findNativeChild(self, name, recursive=False, parent=None):
return None
@abstractmethod
def _nativeCaches(self, cacheType=0):
return []
@abstractmethod
def _nativeChildren(self, recursive=False, wildcard='', type='', parent='', childrenCollector=[]):
return []
@abstractmethod
def _nativeLayer(self):
return None
@abstractmethod
def _nativeMaterial(self):
return None
@abstractmethod
def _nativeModel(self):
return None
@abstractmethod
def _nativeParent(self):
return None
@abstractmethod
|
MIT License
|
docusign/docusign-python-client
|
docusign_esign/models/initial_here.py
|
InitialHere.custom_tab_id_metadata
|
python
|
def custom_tab_id_metadata(self, custom_tab_id_metadata):
self._custom_tab_id_metadata = custom_tab_id_metadata
|
Sets the custom_tab_id_metadata of this InitialHere.
:param custom_tab_id_metadata: The custom_tab_id_metadata of this InitialHere. # noqa: E501
:type: PropertyMetadata
|
https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/initial_here.py#L924-L932
|
import pprint
import re
import six
from docusign_esign.client.configuration import Configuration
class InitialHere(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'anchor_allow_white_space_in_characters': 'str',
'anchor_allow_white_space_in_characters_metadata': 'PropertyMetadata',
'anchor_case_sensitive': 'str',
'anchor_case_sensitive_metadata': 'PropertyMetadata',
'anchor_horizontal_alignment': 'str',
'anchor_horizontal_alignment_metadata': 'PropertyMetadata',
'anchor_ignore_if_not_present': 'str',
'anchor_ignore_if_not_present_metadata': 'PropertyMetadata',
'anchor_match_whole_word': 'str',
'anchor_match_whole_word_metadata': 'PropertyMetadata',
'anchor_string': 'str',
'anchor_string_metadata': 'PropertyMetadata',
'anchor_tab_processor_version': 'str',
'anchor_tab_processor_version_metadata': 'PropertyMetadata',
'anchor_units': 'str',
'anchor_units_metadata': 'PropertyMetadata',
'anchor_x_offset': 'str',
'anchor_x_offset_metadata': 'PropertyMetadata',
'anchor_y_offset': 'str',
'anchor_y_offset_metadata': 'PropertyMetadata',
'conditional_parent_label': 'str',
'conditional_parent_label_metadata': 'PropertyMetadata',
'conditional_parent_value': 'str',
'conditional_parent_value_metadata': 'PropertyMetadata',
'custom_tab_id': 'str',
'custom_tab_id_metadata': 'PropertyMetadata',
'document_id': 'str',
'document_id_metadata': 'PropertyMetadata',
'error_details': 'ErrorDetails',
'form_order': 'str',
'form_order_metadata': 'PropertyMetadata',
'form_page_label': 'str',
'form_page_label_metadata': 'PropertyMetadata',
'form_page_number': 'str',
'form_page_number_metadata': 'PropertyMetadata',
'hand_draw_required': 'str',
'height': 'str',
'height_metadata': 'PropertyMetadata',
'merge_field': 'MergeField',
'merge_field_xml': 'str',
'name': 'str',
'name_metadata': 'PropertyMetadata',
'optional': 'str',
'optional_metadata': 'PropertyMetadata',
'page_number': 'str',
'page_number_metadata': 'PropertyMetadata',
'recipient_id': 'str',
'recipient_id_guid': 'str',
'recipient_id_guid_metadata': 'PropertyMetadata',
'recipient_id_metadata': 'PropertyMetadata',
'scale_value': 'str',
'scale_value_metadata': 'PropertyMetadata',
'smart_contract_information': 'SmartContractInformation',
'source': 'str',
'status': 'str',
'status_metadata': 'PropertyMetadata',
'tab_group_labels': 'list[str]',
'tab_group_labels_metadata': 'PropertyMetadata',
'tab_id': 'str',
'tab_id_metadata': 'PropertyMetadata',
'tab_label': 'str',
'tab_label_metadata': 'PropertyMetadata',
'tab_order': 'str',
'tab_order_metadata': 'PropertyMetadata',
'tab_type': 'str',
'tab_type_metadata': 'PropertyMetadata',
'template_locked': 'str',
'template_locked_metadata': 'PropertyMetadata',
'template_required': 'str',
'template_required_metadata': 'PropertyMetadata',
'tooltip': 'str',
'tool_tip_metadata': 'PropertyMetadata',
'width': 'str',
'width_metadata': 'PropertyMetadata',
'x_position': 'str',
'x_position_metadata': 'PropertyMetadata',
'y_position': 'str',
'y_position_metadata': 'PropertyMetadata'
}
attribute_map = {
'anchor_allow_white_space_in_characters': 'anchorAllowWhiteSpaceInCharacters',
'anchor_allow_white_space_in_characters_metadata': 'anchorAllowWhiteSpaceInCharactersMetadata',
'anchor_case_sensitive': 'anchorCaseSensitive',
'anchor_case_sensitive_metadata': 'anchorCaseSensitiveMetadata',
'anchor_horizontal_alignment': 'anchorHorizontalAlignment',
'anchor_horizontal_alignment_metadata': 'anchorHorizontalAlignmentMetadata',
'anchor_ignore_if_not_present': 'anchorIgnoreIfNotPresent',
'anchor_ignore_if_not_present_metadata': 'anchorIgnoreIfNotPresentMetadata',
'anchor_match_whole_word': 'anchorMatchWholeWord',
'anchor_match_whole_word_metadata': 'anchorMatchWholeWordMetadata',
'anchor_string': 'anchorString',
'anchor_string_metadata': 'anchorStringMetadata',
'anchor_tab_processor_version': 'anchorTabProcessorVersion',
'anchor_tab_processor_version_metadata': 'anchorTabProcessorVersionMetadata',
'anchor_units': 'anchorUnits',
'anchor_units_metadata': 'anchorUnitsMetadata',
'anchor_x_offset': 'anchorXOffset',
'anchor_x_offset_metadata': 'anchorXOffsetMetadata',
'anchor_y_offset': 'anchorYOffset',
'anchor_y_offset_metadata': 'anchorYOffsetMetadata',
'conditional_parent_label': 'conditionalParentLabel',
'conditional_parent_label_metadata': 'conditionalParentLabelMetadata',
'conditional_parent_value': 'conditionalParentValue',
'conditional_parent_value_metadata': 'conditionalParentValueMetadata',
'custom_tab_id': 'customTabId',
'custom_tab_id_metadata': 'customTabIdMetadata',
'document_id': 'documentId',
'document_id_metadata': 'documentIdMetadata',
'error_details': 'errorDetails',
'form_order': 'formOrder',
'form_order_metadata': 'formOrderMetadata',
'form_page_label': 'formPageLabel',
'form_page_label_metadata': 'formPageLabelMetadata',
'form_page_number': 'formPageNumber',
'form_page_number_metadata': 'formPageNumberMetadata',
'hand_draw_required': 'handDrawRequired',
'height': 'height',
'height_metadata': 'heightMetadata',
'merge_field': 'mergeField',
'merge_field_xml': 'mergeFieldXml',
'name': 'name',
'name_metadata': 'nameMetadata',
'optional': 'optional',
'optional_metadata': 'optionalMetadata',
'page_number': 'pageNumber',
'page_number_metadata': 'pageNumberMetadata',
'recipient_id': 'recipientId',
'recipient_id_guid': 'recipientIdGuid',
'recipient_id_guid_metadata': 'recipientIdGuidMetadata',
'recipient_id_metadata': 'recipientIdMetadata',
'scale_value': 'scaleValue',
'scale_value_metadata': 'scaleValueMetadata',
'smart_contract_information': 'smartContractInformation',
'source': 'source',
'status': 'status',
'status_metadata': 'statusMetadata',
'tab_group_labels': 'tabGroupLabels',
'tab_group_labels_metadata': 'tabGroupLabelsMetadata',
'tab_id': 'tabId',
'tab_id_metadata': 'tabIdMetadata',
'tab_label': 'tabLabel',
'tab_label_metadata': 'tabLabelMetadata',
'tab_order': 'tabOrder',
'tab_order_metadata': 'tabOrderMetadata',
'tab_type': 'tabType',
'tab_type_metadata': 'tabTypeMetadata',
'template_locked': 'templateLocked',
'template_locked_metadata': 'templateLockedMetadata',
'template_required': 'templateRequired',
'template_required_metadata': 'templateRequiredMetadata',
'tooltip': 'tooltip',
'tool_tip_metadata': 'toolTipMetadata',
'width': 'width',
'width_metadata': 'widthMetadata',
'x_position': 'xPosition',
'x_position_metadata': 'xPositionMetadata',
'y_position': 'yPosition',
'y_position_metadata': 'yPositionMetadata'
}
def __init__(self, _configuration=None, **kwargs):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._anchor_allow_white_space_in_characters = None
self._anchor_allow_white_space_in_characters_metadata = None
self._anchor_case_sensitive = None
self._anchor_case_sensitive_metadata = None
self._anchor_horizontal_alignment = None
self._anchor_horizontal_alignment_metadata = None
self._anchor_ignore_if_not_present = None
self._anchor_ignore_if_not_present_metadata = None
self._anchor_match_whole_word = None
self._anchor_match_whole_word_metadata = None
self._anchor_string = None
self._anchor_string_metadata = None
self._anchor_tab_processor_version = None
self._anchor_tab_processor_version_metadata = None
self._anchor_units = None
self._anchor_units_metadata = None
self._anchor_x_offset = None
self._anchor_x_offset_metadata = None
self._anchor_y_offset = None
self._anchor_y_offset_metadata = None
self._conditional_parent_label = None
self._conditional_parent_label_metadata = None
self._conditional_parent_value = None
self._conditional_parent_value_metadata = None
self._custom_tab_id = None
self._custom_tab_id_metadata = None
self._document_id = None
self._document_id_metadata = None
self._error_details = None
self._form_order = None
self._form_order_metadata = None
self._form_page_label = None
self._form_page_label_metadata = None
self._form_page_number = None
self._form_page_number_metadata = None
self._hand_draw_required = None
self._height = None
self._height_metadata = None
self._merge_field = None
self._merge_field_xml = None
self._name = None
self._name_metadata = None
self._optional = None
self._optional_metadata = None
self._page_number = None
self._page_number_metadata = None
self._recipient_id = None
self._recipient_id_guid = None
self._recipient_id_guid_metadata = None
self._recipient_id_metadata = None
self._scale_value = None
self._scale_value_metadata = None
self._smart_contract_information = None
self._source = None
self._status = None
self._status_metadata = None
self._tab_group_labels = None
self._tab_group_labels_metadata = None
self._tab_id = None
self._tab_id_metadata = None
self._tab_label = None
self._tab_label_metadata = None
self._tab_order = None
self._tab_order_metadata = None
self._tab_type = None
self._tab_type_metadata = None
self._template_locked = None
self._template_locked_metadata = None
self._template_required = None
self._template_required_metadata = None
self._tooltip = None
self._tool_tip_metadata = None
self._width = None
self._width_metadata = None
self._x_position = None
self._x_position_metadata = None
self._y_position = None
self._y_position_metadata = None
self.discriminator = None
setattr(self, "_{}".format('anchor_allow_white_space_in_characters'), kwargs.get('anchor_allow_white_space_in_characters', None))
setattr(self, "_{}".format('anchor_allow_white_space_in_characters_metadata'), kwargs.get('anchor_allow_white_space_in_characters_metadata', None))
setattr(self, "_{}".format('anchor_case_sensitive'), kwargs.get('anchor_case_sensitive', None))
setattr(self, "_{}".format('anchor_case_sensitive_metadata'), kwargs.get('anchor_case_sensitive_metadata', None))
setattr(self, "_{}".format('anchor_horizontal_alignment'), kwargs.get('anchor_horizontal_alignment', None))
setattr(self, "_{}".format('anchor_horizontal_alignment_metadata'), kwargs.get('anchor_horizontal_alignment_metadata', None))
setattr(self, "_{}".format('anchor_ignore_if_not_present'), kwargs.get('anchor_ignore_if_not_present', None))
setattr(self, "_{}".format('anchor_ignore_if_not_present_metadata'), kwargs.get('anchor_ignore_if_not_present_metadata', None))
setattr(self, "_{}".format('anchor_match_whole_word'), kwargs.get('anchor_match_whole_word', None))
setattr(self, "_{}".format('anchor_match_whole_word_metadata'), kwargs.get('anchor_match_whole_word_metadata', None))
setattr(self, "_{}".format('anchor_string'), kwargs.get('anchor_string', None))
setattr(self, "_{}".format('anchor_string_metadata'), kwargs.get('anchor_string_metadata', None))
setattr(self, "_{}".format('anchor_tab_processor_version'), kwargs.get('anchor_tab_processor_version', None))
setattr(self, "_{}".format('anchor_tab_processor_version_metadata'), kwargs.get('anchor_tab_processor_version_metadata', None))
setattr(self, "_{}".format('anchor_units'), kwargs.get('anchor_units', None))
setattr(self, "_{}".format('anchor_units_metadata'), kwargs.get('anchor_units_metadata', None))
setattr(self, "_{}".format('anchor_x_offset'), kwargs.get('anchor_x_offset', None))
setattr(self, "_{}".format('anchor_x_offset_metadata'), kwargs.get('anchor_x_offset_metadata', None))
setattr(self, "_{}".format('anchor_y_offset'), kwargs.get('anchor_y_offset', None))
setattr(self, "_{}".format('anchor_y_offset_metadata'), kwargs.get('anchor_y_offset_metadata', None))
setattr(self, "_{}".format('conditional_parent_label'), kwargs.get('conditional_parent_label', None))
setattr(self, "_{}".format('conditional_parent_label_metadata'), kwargs.get('conditional_parent_label_metadata', None))
setattr(self, "_{}".format('conditional_parent_value'), kwargs.get('conditional_parent_value', None))
setattr(self, "_{}".format('conditional_parent_value_metadata'), kwargs.get('conditional_parent_value_metadata', None))
setattr(self, "_{}".format('custom_tab_id'), kwargs.get('custom_tab_id', None))
setattr(self, "_{}".format('custom_tab_id_metadata'), kwargs.get('custom_tab_id_metadata', None))
setattr(self, "_{}".format('document_id'), kwargs.get('document_id', None))
setattr(self, "_{}".format('document_id_metadata'), kwargs.get('document_id_metadata', None))
setattr(self, "_{}".format('error_details'), kwargs.get('error_details', None))
setattr(self, "_{}".format('form_order'), kwargs.get('form_order', None))
setattr(self, "_{}".format('form_order_metadata'), kwargs.get('form_order_metadata', None))
setattr(self, "_{}".format('form_page_label'), kwargs.get('form_page_label', None))
setattr(self, "_{}".format('form_page_label_metadata'), kwargs.get('form_page_label_metadata', None))
setattr(self, "_{}".format('form_page_number'), kwargs.get('form_page_number', None))
setattr(self, "_{}".format('form_page_number_metadata'), kwargs.get('form_page_number_metadata', None))
setattr(self, "_{}".format('hand_draw_required'), kwargs.get('hand_draw_required', None))
setattr(self, "_{}".format('height'), kwargs.get('height', None))
setattr(self, "_{}".format('height_metadata'), kwargs.get('height_metadata', None))
setattr(self, "_{}".format('merge_field'), kwargs.get('merge_field', None))
setattr(self, "_{}".format('merge_field_xml'), kwargs.get('merge_field_xml', None))
setattr(self, "_{}".format('name'), kwargs.get('name', None))
setattr(self, "_{}".format('name_metadata'), kwargs.get('name_metadata', None))
setattr(self, "_{}".format('optional'), kwargs.get('optional', None))
setattr(self, "_{}".format('optional_metadata'), kwargs.get('optional_metadata', None))
setattr(self, "_{}".format('page_number'), kwargs.get('page_number', None))
setattr(self, "_{}".format('page_number_metadata'), kwargs.get('page_number_metadata', None))
setattr(self, "_{}".format('recipient_id'), kwargs.get('recipient_id', None))
setattr(self, "_{}".format('recipient_id_guid'), kwargs.get('recipient_id_guid', None))
setattr(self, "_{}".format('recipient_id_guid_metadata'), kwargs.get('recipient_id_guid_metadata', None))
setattr(self, "_{}".format('recipient_id_metadata'), kwargs.get('recipient_id_metadata', None))
setattr(self, "_{}".format('scale_value'), kwargs.get('scale_value', None))
setattr(self, "_{}".format('scale_value_metadata'), kwargs.get('scale_value_metadata', None))
setattr(self, "_{}".format('smart_contract_information'), kwargs.get('smart_contract_information', None))
setattr(self, "_{}".format('source'), kwargs.get('source', None))
setattr(self, "_{}".format('status'), kwargs.get('status', None))
setattr(self, "_{}".format('status_metadata'), kwargs.get('status_metadata', None))
setattr(self, "_{}".format('tab_group_labels'), kwargs.get('tab_group_labels', None))
setattr(self, "_{}".format('tab_group_labels_metadata'), kwargs.get('tab_group_labels_metadata', None))
setattr(self, "_{}".format('tab_id'), kwargs.get('tab_id', None))
setattr(self, "_{}".format('tab_id_metadata'), kwargs.get('tab_id_metadata', None))
setattr(self, "_{}".format('tab_label'), kwargs.get('tab_label', None))
setattr(self, "_{}".format('tab_label_metadata'), kwargs.get('tab_label_metadata', None))
setattr(self, "_{}".format('tab_order'), kwargs.get('tab_order', None))
setattr(self, "_{}".format('tab_order_metadata'), kwargs.get('tab_order_metadata', None))
setattr(self, "_{}".format('tab_type'), kwargs.get('tab_type', None))
setattr(self, "_{}".format('tab_type_metadata'), kwargs.get('tab_type_metadata', None))
setattr(self, "_{}".format('template_locked'), kwargs.get('template_locked', None))
setattr(self, "_{}".format('template_locked_metadata'), kwargs.get('template_locked_metadata', None))
setattr(self, "_{}".format('template_required'), kwargs.get('template_required', None))
setattr(self, "_{}".format('template_required_metadata'), kwargs.get('template_required_metadata', None))
setattr(self, "_{}".format('tooltip'), kwargs.get('tooltip', None))
setattr(self, "_{}".format('tool_tip_metadata'), kwargs.get('tool_tip_metadata', None))
setattr(self, "_{}".format('width'), kwargs.get('width', None))
setattr(self, "_{}".format('width_metadata'), kwargs.get('width_metadata', None))
setattr(self, "_{}".format('x_position'), kwargs.get('x_position', None))
setattr(self, "_{}".format('x_position_metadata'), kwargs.get('x_position_metadata', None))
setattr(self, "_{}".format('y_position'), kwargs.get('y_position', None))
setattr(self, "_{}".format('y_position_metadata'), kwargs.get('y_position_metadata', None))
@property
def anchor_allow_white_space_in_characters(self):
return self._anchor_allow_white_space_in_characters
@anchor_allow_white_space_in_characters.setter
def anchor_allow_white_space_in_characters(self, anchor_allow_white_space_in_characters):
self._anchor_allow_white_space_in_characters = anchor_allow_white_space_in_characters
@property
def anchor_allow_white_space_in_characters_metadata(self):
return self._anchor_allow_white_space_in_characters_metadata
@anchor_allow_white_space_in_characters_metadata.setter
def anchor_allow_white_space_in_characters_metadata(self, anchor_allow_white_space_in_characters_metadata):
self._anchor_allow_white_space_in_characters_metadata = anchor_allow_white_space_in_characters_metadata
@property
def anchor_case_sensitive(self):
return self._anchor_case_sensitive
@anchor_case_sensitive.setter
def anchor_case_sensitive(self, anchor_case_sensitive):
self._anchor_case_sensitive = anchor_case_sensitive
@property
def anchor_case_sensitive_metadata(self):
return self._anchor_case_sensitive_metadata
@anchor_case_sensitive_metadata.setter
def anchor_case_sensitive_metadata(self, anchor_case_sensitive_metadata):
self._anchor_case_sensitive_metadata = anchor_case_sensitive_metadata
@property
def anchor_horizontal_alignment(self):
return self._anchor_horizontal_alignment
@anchor_horizontal_alignment.setter
def anchor_horizontal_alignment(self, anchor_horizontal_alignment):
self._anchor_horizontal_alignment = anchor_horizontal_alignment
@property
def anchor_horizontal_alignment_metadata(self):
return self._anchor_horizontal_alignment_metadata
@anchor_horizontal_alignment_metadata.setter
def anchor_horizontal_alignment_metadata(self, anchor_horizontal_alignment_metadata):
self._anchor_horizontal_alignment_metadata = anchor_horizontal_alignment_metadata
@property
def anchor_ignore_if_not_present(self):
return self._anchor_ignore_if_not_present
@anchor_ignore_if_not_present.setter
def anchor_ignore_if_not_present(self, anchor_ignore_if_not_present):
self._anchor_ignore_if_not_present = anchor_ignore_if_not_present
@property
def anchor_ignore_if_not_present_metadata(self):
return self._anchor_ignore_if_not_present_metadata
@anchor_ignore_if_not_present_metadata.setter
def anchor_ignore_if_not_present_metadata(self, anchor_ignore_if_not_present_metadata):
self._anchor_ignore_if_not_present_metadata = anchor_ignore_if_not_present_metadata
@property
def anchor_match_whole_word(self):
return self._anchor_match_whole_word
@anchor_match_whole_word.setter
def anchor_match_whole_word(self, anchor_match_whole_word):
self._anchor_match_whole_word = anchor_match_whole_word
@property
def anchor_match_whole_word_metadata(self):
return self._anchor_match_whole_word_metadata
@anchor_match_whole_word_metadata.setter
def anchor_match_whole_word_metadata(self, anchor_match_whole_word_metadata):
self._anchor_match_whole_word_metadata = anchor_match_whole_word_metadata
@property
def anchor_string(self):
return self._anchor_string
@anchor_string.setter
def anchor_string(self, anchor_string):
self._anchor_string = anchor_string
@property
def anchor_string_metadata(self):
return self._anchor_string_metadata
@anchor_string_metadata.setter
def anchor_string_metadata(self, anchor_string_metadata):
self._anchor_string_metadata = anchor_string_metadata
@property
def anchor_tab_processor_version(self):
return self._anchor_tab_processor_version
@anchor_tab_processor_version.setter
def anchor_tab_processor_version(self, anchor_tab_processor_version):
self._anchor_tab_processor_version = anchor_tab_processor_version
@property
def anchor_tab_processor_version_metadata(self):
return self._anchor_tab_processor_version_metadata
@anchor_tab_processor_version_metadata.setter
def anchor_tab_processor_version_metadata(self, anchor_tab_processor_version_metadata):
self._anchor_tab_processor_version_metadata = anchor_tab_processor_version_metadata
@property
def anchor_units(self):
return self._anchor_units
@anchor_units.setter
def anchor_units(self, anchor_units):
self._anchor_units = anchor_units
@property
def anchor_units_metadata(self):
return self._anchor_units_metadata
@anchor_units_metadata.setter
def anchor_units_metadata(self, anchor_units_metadata):
self._anchor_units_metadata = anchor_units_metadata
@property
def anchor_x_offset(self):
return self._anchor_x_offset
@anchor_x_offset.setter
def anchor_x_offset(self, anchor_x_offset):
self._anchor_x_offset = anchor_x_offset
@property
def anchor_x_offset_metadata(self):
return self._anchor_x_offset_metadata
@anchor_x_offset_metadata.setter
def anchor_x_offset_metadata(self, anchor_x_offset_metadata):
self._anchor_x_offset_metadata = anchor_x_offset_metadata
@property
def anchor_y_offset(self):
return self._anchor_y_offset
@anchor_y_offset.setter
def anchor_y_offset(self, anchor_y_offset):
self._anchor_y_offset = anchor_y_offset
@property
def anchor_y_offset_metadata(self):
return self._anchor_y_offset_metadata
@anchor_y_offset_metadata.setter
def anchor_y_offset_metadata(self, anchor_y_offset_metadata):
self._anchor_y_offset_metadata = anchor_y_offset_metadata
@property
def conditional_parent_label(self):
return self._conditional_parent_label
@conditional_parent_label.setter
def conditional_parent_label(self, conditional_parent_label):
self._conditional_parent_label = conditional_parent_label
@property
def conditional_parent_label_metadata(self):
return self._conditional_parent_label_metadata
@conditional_parent_label_metadata.setter
def conditional_parent_label_metadata(self, conditional_parent_label_metadata):
self._conditional_parent_label_metadata = conditional_parent_label_metadata
@property
def conditional_parent_value(self):
return self._conditional_parent_value
@conditional_parent_value.setter
def conditional_parent_value(self, conditional_parent_value):
self._conditional_parent_value = conditional_parent_value
@property
def conditional_parent_value_metadata(self):
return self._conditional_parent_value_metadata
@conditional_parent_value_metadata.setter
def conditional_parent_value_metadata(self, conditional_parent_value_metadata):
self._conditional_parent_value_metadata = conditional_parent_value_metadata
@property
def custom_tab_id(self):
return self._custom_tab_id
@custom_tab_id.setter
def custom_tab_id(self, custom_tab_id):
self._custom_tab_id = custom_tab_id
@property
def custom_tab_id_metadata(self):
return self._custom_tab_id_metadata
@custom_tab_id_metadata.setter
|
MIT License
|
theroyakash/akdsframework
|
AKDSFramework/structure/stack.py
|
Stack.isEmpty
|
python
|
def isEmpty(self):
return self.stack.count() == 0
|
Says whether the stack is empty or not
Returns:
- Bool: True if no elements in the stack else False.
|
https://github.com/theroyakash/akdsframework/blob/3c98792007389658c9ea9966c2263d6a07601f3a/AKDSFramework/structure/stack.py#L53-L59
|
from AKDSFramework.structure.linkedlist import SinglyLinkedList
from AKDSFramework.error import EmptyStackError
from typing import Any
class Stack:
stack: SinglyLinkedList
def __init__(self):
self.stack = SinglyLinkedList()
def push(self, value: Any) -> None:
self.stack.add(value)
def pop(self) -> Any:
if self.stack.count() != 0:
return self.stack.removeAt(self.stack.count() - 1)
else:
raise LookupError('Stack Underflow')
def __reversed__(self) -> SinglyLinkedList:
return reversed(self.stack)
def __iter__(self):
raise NotImplementedError(
'Iteration over the stack is not implemented yet')
def peak_top(self):
return self.stack.get_head()
def __len__(self):
return len(self.stack)
|
MIT License
|
seomoz/simhash-db-py
|
bench.py
|
query
|
python
|
def query():
seeds = make_seeds()
client = Client(args.backend, args.name, args.num_blocks, args.num_bits,
**kwargs)
for i in range(1000):
if i % 25 == 0:
print 'Querying batch %i' % i
hashes = [(start + i * interval) for start, interval in seeds]
try:
results = client.find_all(hashes)
except GeneralException as exc:
print '---> Client exception: %s' % repr(exc)
|
Run the timing numbers for each of the provided seeds for query all
|
https://github.com/seomoz/simhash-db-py/blob/f9feca5b09cf094c65548c53ad596ab07cf41639/bench.py#L76-L89
|
import os
import time
import psutil
import random
import argparse
from simhash_db import Client, GeneralException
parser = argparse.ArgumentParser(description='Run benchmarks on simhash_db')
parser.add_argument('--count', type=int, default=1000,
help='How many thousands of keys should be inserted per process')
parser.add_argument('--name', type=str, default='testing',
help='The name of the set of simhashes to use')
parser.add_argument('--processes', type=int, default=(2 * psutil.NUM_CPUS),
help='How many processes should be forked (defaults to 2 x NUM_CPUS)')
parser.add_argument('--num-blocks', dest='num_blocks', type=int, default=6,
help='How many blocks to configure the client to use')
parser.add_argument('--num-bits', dest='num_bits', type=int, default=3,
help='How many bits to configure the client to use')
parser.add_argument('--backend', type=str, required=True,
help='Which backend to use')
parser.add_argument('--config', type=str, required=False,
help='Path to a yaml file with the host configuration')
args = parser.parse_args()
if args.config:
from yaml import load
with open(args.config) as fin:
kwargs = load(fin.read())
else:
kwargs = {}
def make_seeds():
return [(
random.randint(0, 2 ** 64),
random.randint(1, 1000)
) for i in range(args.count)]
def insert():
seeds = make_seeds()
client = Client(args.backend, args.name, args.num_blocks, args.num_bits,
**kwargs)
for i in range(1000):
if i % 25 == 0:
print 'Inserting batch %i' % i
hashes = [(start + i * interval) for start, interval in seeds]
try:
results = client.insert(hashes)
except GeneralException as exc:
print '---> Client exception: %s' % repr(exc)
exit(0)
|
MIT License
|
cupy/cupy
|
cupy/_manipulation/join.py
|
stack
|
python
|
def stack(tup, axis=0, out=None):
return concatenate([cupy.expand_dims(x, axis) for x in tup], axis, out)
|
Stacks arrays along a new axis.
Args:
tup (sequence of arrays): Arrays to be stacked.
axis (int): Axis along which the arrays are stacked.
out (cupy.ndarray): Output array.
Returns:
cupy.ndarray: Stacked array.
.. seealso:: :func:`numpy.stack`
|
https://github.com/cupy/cupy/blob/a466b03ef0afd7c1ce1615e3f48da64ae38c1320/cupy/_manipulation/join.py#L122-L135
|
import cupy
from cupy import _core
def column_stack(tup):
if any(not isinstance(a, cupy.ndarray) for a in tup):
raise TypeError('Only cupy arrays can be column stacked')
lst = list(tup)
for i, a in enumerate(lst):
if a.ndim == 1:
a = a[:, cupy.newaxis]
lst[i] = a
elif a.ndim != 2:
raise ValueError(
'Only 1 or 2 dimensional arrays can be column stacked')
return concatenate(lst, axis=1)
def concatenate(tup, axis=0, out=None, *, dtype=None, casting='same_kind'):
if axis is None:
tup = [m.ravel() for m in tup]
axis = 0
return _core.concatenate_method(tup, axis, out, dtype, casting)
def dstack(tup):
return concatenate([cupy.atleast_3d(m) for m in tup], 2)
def hstack(tup):
arrs = [cupy.atleast_1d(a) for a in tup]
axis = 1
if arrs[0].ndim == 1:
axis = 0
return concatenate(arrs, axis)
def vstack(tup):
return concatenate([cupy.atleast_2d(m) for m in tup], 0)
|
MIT License
|
obaraemmanuel/formation
|
hoverset/ui/widgets.py
|
Widget.absolute_bounds
|
python
|
def absolute_bounds(self):
self.update_idletasks()
return (self.winfo_rootx(), self.winfo_rooty(),
self.winfo_rootx() + self.width, self.winfo_rooty() + self.height)
|
Get the position of the widget on the screen
:return: a tuple containing the bounding box of the widget (x1, y2, x2, y2)
|
https://github.com/obaraemmanuel/formation/blob/31244cbceb1bb405007f5f051ae2102ab021e779/hoverset/ui/widgets.py#L826-L834
|
import abc
import functools
import logging
import os
import re
import webbrowser
import tkinter as tk
import tkinter.ttk as ttk
from collections import namedtuple
from tkinter import font
from hoverset.data.images import load_image_to_widget
from hoverset.data.utils import get_resource_path, get_theme_path
from hoverset.platform import platform_is, WINDOWS, LINUX, MAC
from hoverset.ui.animation import Animate, Easing
from hoverset.ui.icons import get_icon_image
from hoverset.ui.styles import StyleDelegator
from hoverset.ui.windows import DragWindow
from hoverset.ui.menu import MenuUtils
import hoverset.ui
__all__ = (
"Application",
"Button",
"Canvas",
"CenterWindowMixin",
"Checkbutton",
"ComboBox",
"CompoundList",
"ContextMenuMixin",
"DragWindow",
"DrawOver",
"EditableMixin",
"Entry",
"EventMask",
"EventWrap",
"FontStyle",
"Frame",
"Scale",
"ImageCacheMixin",
"Label",
"LabelFrame",
"MenuButton",
"Message",
"PanedWindow",
"Popup",
"PositionMixin",
"ProgressBar",
"RadioButton",
"RadioButtonGroup",
"Screen",
"ScrollableInterface",
"ScrolledFrame",
"SpinBox",
"Spinner",
"TabView",
"ToggleButton",
"ToolWindow",
"Tree",
"TreeView",
"Text",
"Widget",
"WidgetError",
"Window",
"WindowMixin",
"chain",
"clean_styles",
"set_ttk_style",
"system_fonts",
"suppress_change",
)
class FontStyle(font.Font):
@staticmethod
def families(root=None, displayof=None):
return font.families(root, displayof)
@staticmethod
def nametofont(name):
try:
return font.nametofont(name)
except tk.TclError:
return None
@staticmethod
def names(root=None):
return font.names(root)
class EventMask:
SHIFT = 0x0001
CAPS_LOCK = 0x0002
CONTROL = 0x0004
L_ALT = 0x0008
NUM_LOCK = 0x0010
R_ALT = 0x0080
MOUSE_BUTTON_1 = 0x0100
MOUSE_BUTTON_2 = 0x0200
MOUSE_BUTTON_3 = 0x0400
EventWrap = namedtuple('EventWrap', ['x_root', 'y_root', 'x', 'y'])
EventWrap.__doc__ = """
Imitate a tkinter event object for use when handling synthetic events"""
class WidgetError(tk.TclError):
pass
def chain(func):
@functools.wraps(func)
def wrap(self, *args, **kwargs):
func(self, *args, **kwargs)
return self
return wrap
def set_ttk_style(widget, cnf=None, **styles) -> None:
if cnf is None:
cnf = {}
styles.update(cnf)
ttk_style = ttk.Style()
orient = "." + str(widget['orient']).title() if 'orient' in widget.keys() else ''
class_name = 'hover{}.{}'.format(orient, widget.winfo_class())
ttk_style.configure(class_name, **styles)
widget.configure(style=class_name)
def config_ttk(widget, cnf=None, **styles) -> None:
if cnf is None:
cnf = {}
styles.update(cnf)
direct = {i: styles[i] for i in styles.keys() & set(widget.keys())}
widget.configure(**direct)
set_ttk_style(
widget,
None,
**{i: styles[i] for i in styles.keys() - direct.keys()})
def clean_styles(widget, styles) -> dict:
allowed_styles = widget.config() or {}
cleaned_styles = {}
for style in styles:
if style in allowed_styles:
cleaned_styles[style] = styles[style]
return cleaned_styles
def system_fonts():
fonts = sorted(list(font.families()))
fonts = list(filter(lambda x: not x.startswith("@"), fonts))
return fonts
def suppress_change(func):
@functools.wraps(func)
def inner(self, *args, **kwargs):
temp = self._on_change
self._on_change = None
func(self, *args, **kwargs)
self._on_change = temp
return inner
class EditableMixin:
def set_validator(self, validator, *args, **kwargs) -> None:
self.configure(
validate='all',
validatecommand=(
self.register(lambda val: validator(val, *args, **kwargs)),
"%P"
)
)
def on_change(self, callback, *args, **kwargs):
self._var.trace("w", lambda *_: callback(*args, **kwargs))
def on_entry(self, callback, *args, **kwargs):
self.bind("<KeyRelease>", lambda *_: callback(*args, **kwargs))
def disabled(self, flag):
if flag:
self.config(state='disabled')
else:
self.config(state='normal')
def get(self):
return self._var.get()
class ContextMenuMixin:
_on_context_menu = None
@functools.wraps(MenuUtils.make_dynamic, assigned=('__doc__',))
def make_menu(self, templates, parent=None, dynamic=True, **cnf):
return MenuUtils.make_dynamic(templates, parent or self, self.style, dynamic, **cnf)
def set_up_context(self, templates, **cnf):
self.context_menu = self.make_menu(templates, **cnf)
MenuUtils.bind_all_context(
self,
lambda event: ContextMenuMixin.popup(event, self.context_menu),
add='+'
)
@staticmethod
def popup(event, menu):
MenuUtils.popup(event, menu)
@staticmethod
def add_context_menu(menu, widget):
MenuUtils.bind_context(
widget, lambda event: ContextMenuMixin.popup(event, menu), add='+'
)
class ScrollableInterface:
def on_mousewheel(self, event):
raise NotImplementedError("on_mousewheel method is required")
def handle_wheel(self, widget, event):
delta = 0
if platform_is(LINUX):
delta = 1 if event.num == 5 else -1
elif platform_is(MAC):
delta = -1 * event.delta
elif platform_is(WINDOWS):
delta = -1 * (event.delta // 120)
if event.state & EventMask.CONTROL:
widget.xview_scroll(delta, "units")
else:
widget.yview_scroll(delta, "units")
def scroll_position(self):
raise NotImplementedError("Scroll position required for scroll transfer")
def scroll_transfer(self) -> bool:
return False
class CenterWindowMixin:
GEOMETRY_RGX = re.compile(
r"(\d+)x(\d+)\+(-?\d+)\+(-?\d+)"
)
def enable_centering(self):
self.centered = False
self._vis_bind = self.bind('<Visibility>', self.center, '+')
if platform_is(WINDOWS):
self._conf_bind = self.bind('<Configure>', self.center, '+')
self.event_generate('<Configure>')
def center(self, *_):
if not self.centered:
self.update_idletasks()
ref_geometry = self.position_ref.get_geometry()
geometry = self.get_geometry()
if ref_geometry is None or geometry is None:
logging.error("Failed to fetch geometry")
return
r_width, r_height, r_x, r_y = ref_geometry
width, height, *_ = geometry
x = int((r_width - width) / 2) + r_x
y = int((r_height - height) / 2) + r_y
self.geometry("+{}+{}".format(x, y))
self.centered = True if self.winfo_width() != 1 else False
else:
if hasattr(self, '_conf_bind'):
self.unbind(self._conf_bind)
if hasattr(self, '_vis_bind'):
self.unbind(self._vis_bind)
def get_geometry(self):
search = self.GEOMETRY_RGX.search(self.geometry())
if search is None:
return None
return tuple(map(int, search.groups()))
class PositionMixin:
def get_pos(self, widget, **kwargs):
side = kwargs.get("side", "auto")
padding = kwargs.get("padding", 2)
if "width" in kwargs and "height" in kwargs:
w_width = kwargs.get("width")
w_height = kwargs.get("height")
else:
self.re_calibrate()
self.update_idletasks()
w_width = self.width
w_height = self.height
widget.update_idletasks()
x, y, width, height = widget.winfo_rootx(), widget.winfo_rooty(), widget.width, widget.height
right = x
left = x - w_width + width
top = y - w_height - padding
bottom = y + height + padding
if side == "nw":
return left, top
elif side == "ne":
return right, top
elif side == "sw":
return left, bottom
elif side == "se":
return right, bottom
else:
win_bounds = 0, 0, widget.winfo_screenwidth(), widget.winfo_screenheight()
offset_b = win_bounds[3] - bottom
offset_t = y - win_bounds[1]
offset_l = x - win_bounds[0]
offset_r = win_bounds[2] - right
x_pos = left if offset_l >= offset_r or offset_l > w_width else right
y_pos = bottom if offset_b >= offset_t or offset_b > w_height else top
return x_pos, y_pos
def post(self, widget, **kwargs):
self.set_geometry(self.get_pos(widget, **kwargs))
class _Tooltip(tk.Toplevel):
Y_CLEARANCE = 10
def __init__(self, style: StyleDelegator, xy: tuple, render, master=None):
super().__init__(master)
self.geometry(f"+{self.winfo_screenwidth() + 1000}+{self.winfo_screenheight() + 1000}")
self.style = style
self.overrideredirect(True)
self.lift(master)
render(self)
self.config(**style.bright_highlight)
self._position(xy)
def _position(self, xy):
self.update_idletasks()
w, h = self.winfo_width(), self.winfo_height()
x, y = xy
x -= w // 2
y = y - self.Y_CLEARANCE - h if y - self.Y_CLEARANCE - h > 0 else y + self.Y_CLEARANCE
x -= max(0, (x + w) - self.winfo_screenwidth())
x = max(0, x)
self.geometry('+{}+{}'.format(x, y))
self.lift()
class Widget:
s_style = None
s_window = None
__readonly_options = {"class", "container"}
def setup(self, _=None):
self._allow_drag = False
self._drag_setup = False
self._tooltip_text = None
self._tooltip_ev = None
self._tooltip_win = None
self._tooltip_bound = False
self._tooltip_delay = 1500
@property
def allow_drag(self):
return self._allow_drag
@allow_drag.setter
def allow_drag(self, flag: bool):
self._allow_drag = flag
if self._allow_drag and not self._drag_setup:
self.bind_all('<Motion>', self._drag_handler)
self.bind_all('<ButtonRelease-1>', self._drag_handler)
self._drag_setup = True
def _drag_handler(self, event):
if not self.allow_drag:
return
if event.type.value == "6":
if event.state & EventMask.MOUSE_BUTTON_1 and self.window.drag_window is None:
self.window.drag_context = self
self.window.drag_window = DragWindow(self.window)
self.render_drag(self.window.drag_window)
self.window.drag_window.set_position(event.x_root, event.y_root)
self.on_drag_start(event)
elif self.window.drag_window is not None:
self.window.drag_window.set_position(event.x_root, event.y_root)
elif event.type.value == "5":
if self.window.drag_window:
self.window.drag_window.destroy()
self.window.drag_window = None
event_position = self.event_first(event, self, Widget)
if isinstance(event_position, Widget):
event_position.accept_context(self.window.drag_context)
self.window.drag_context = None
def accept_context(self, context):
logging.info(f"Accepted context {context}")
def render_drag(self, window):
tk.Label(window, text="Item", bg="#f7f7f7").pack()
def on_drag_start(self, *args):
pass
def config_all(self, cnf=None, **kwargs):
self.config(cnf, **kwargs)
def bind_all(self, sequence=None, func=None, add=None):
return self.bind(sequence, func, add)
@property
def width(self) -> int:
return self.winfo_width()
@property
def height(self) -> int:
return self.winfo_height()
def disabled(self, flag: bool) -> None:
if flag:
self.config(**clean_styles(self, {"state": tk.DISABLED}))
else:
self.config(**clean_styles(self, {"state": tk.NORMAL}))
@staticmethod
def containing(x, y, widget):
try:
return widget.winfo_containing(x, y)
except KeyError:
return None
@staticmethod
def event_in(event, widget):
x, y = event.x_root, event.y_root
x1, y1, x2, y2 = (
widget.winfo_rootx(),
widget.winfo_rooty(),
widget.winfo_rootx() + widget.winfo_width(),
widget.winfo_rooty() + widget.winfo_height(),
)
return x1 < x < x2 and y1 < y < y2
@classmethod
def event_first(cls, event, widget, class_: type, ignore=None):
check = cls.containing(event.x_root, event.y_root, widget)
while not isinstance(check, Application) and check is not None:
if isinstance(check, class_) and check != ignore:
return check
check = check.nametowidget(check.winfo_parent())
return None
@classmethod
def ancestor_first(cls, start_from, class_: type, ignore=None):
check = start_from.nametowidget(start_from.winfo_parent())
while not isinstance(check, Application) and check is not None:
if isinstance(check, class_) and check != ignore:
return check
check = check.nametowidget(check.winfo_parent())
|
MIT License
|
yujiabao/r2a
|
r2a/src/train_utils.py
|
evaluate_batch
|
python
|
def evaluate_batch(model, optimizer, task, batch, src_batches, tar_batches, args, writer=None):
for key in model.keys():
model[key].eval()
if key in optimizer:
optimizer[key].zero_grad()
if args.l_wd != 0 and (args.mode == 'train_r2a' or args.mode == 'test_r2a'):
model['critic'].train()
i = 0
while True:
tar_text, _, _, _, _, tar_text_len, _, _, _ = next(tar_batches)
tar_text, tar_text_len = _to_tensor([tar_text, tar_text_len], args.cuda)
src_text, _, _, _, _, src_text_len, _, _, _ = next(src_batches)
src_text, src_text_len = _to_tensor([src_text, src_text_len], args.cuda)
tar_hidden, _ = model['encoder'](tar_text, tar_text_len, False)
src_hidden, _ = model['encoder'](src_text, src_text_len, False)
invar_tar_hidden = model['transform'](tar_hidden)
invar_src_hidden = model['transform'](src_hidden)
optimizer['critic'].zero_grad()
loss_wd, grad_penalty = model['critic'](
invar_src_hidden.detach(), src_text_len,
invar_tar_hidden.detach(), tar_text_len, False)
loss = -loss_wd + args.l_grad_penalty * grad_penalty
loss.backward()
optimizer['critic'].step()
i += 1
if i >= args.critic_steps and _to_number(loss_wd) > 0:
break
model['critic'].eval()
text, rat_freq, rationale, gold_att, pred_att, text_len, label, raw, _ = batch
text, text_len, rat_freq, rationale, gold_att, pred_att, label = _to_tensor(
[text, text_len, rat_freq, rationale, gold_att, pred_att, label], args.cuda)
text_mask = _get_mask(text_len, args.cuda)
hidden, loss_src_lm = model['encoder'](text, text_len, True)
invar_hidden = model['transform'](hidden)
loss_src_lm = np.ones(len(raw)) * _to_number(loss_src_lm)
loss_tar_lm = 0
if args.l_wd != 0 and (args.mode == 'test_r2a' or args.mode == 'train_r2a'):
tar_text, _, _, _, _, tar_text_len, _, _, _ = next(tar_batches)
tar_text_len = tar_text_len[:len(raw)]
tar_text = tar_text[:len(raw),:max(tar_text_len)]
tar_text, tar_text_len = _to_tensor([tar_text, tar_text_len], args.cuda)
tar_hidden, loss_tar_lm = model['encoder'](tar_text, tar_text_len, True)
invar_tar_hidden = model['transform'](tar_hidden)
loss_wd, _ = model['critic'](invar_hidden, text_len, invar_tar_hidden, tar_text_len, True)
loss_wd = np.ones(len(raw)) * _to_number(loss_wd)
else:
loss_wd = np.zeros(len(raw))
loss_tar_lm = np.ones(len(raw)) * _to_number(loss_tar_lm)
out, att, log_att = model[task](hidden, text_mask)
if args.num_classes[task] == 1:
loss_lbl = _to_numpy(F.mse_loss(torch.sigmoid(out.squeeze(1)), label, reduce=False))
pred_lbl = _to_numpy(torch.sigmoid(out.squeeze(1)))
else:
loss_lbl = _to_numpy(F.cross_entropy(out, label, reduce=False))
pred_lbl = np.argmax(_to_numpy(out), axis=1)
true_lbl = _to_numpy(label)
if _to_number(torch.min(torch.sum(rationale, dim=1))) < 0.5:
rationale = rationale + 1e-6
normalized_rationale = rationale * text_mask
normalized_rationale = normalized_rationale / torch.sum(normalized_rationale, dim=1,
keepdim=True)
if args.mode == 'train_clf' or args.mode == 'test_clf':
if args.att_target == 'gold_att':
target = gold_att
elif args.att_target == 'rationale':
target = normalized_rationale
elif args.att_target == 'pred_att':
target = pred_att
else:
raise ValueError('Invalid supervision type.')
log_pred_att = torch.log(pred_att)
elif args.mode == 'train_r2a':
pred_att, log_pred_att = model['r2a'](
invar_hidden, rationale, rat_freq, text_len, text_mask)
else:
raise ValueError('Invalid mode')
loss_a2r = 1 - F.cosine_similarity(att, normalized_rationale)
loss_a2r = _to_numpy(loss_a2r)
loss_r2a = 1 - F.cosine_similarity(att, pred_att)
loss_r2a = _to_numpy(loss_r2a)
if writer:
gold_att, rationale, pred_att, rat_freq = _to_numpy([att, rationale, pred_att, rat_freq])
data_utils.write(writer, task, raw, true_lbl, gold_att, rationale, pred_att, rat_freq)
return {
'true_lbl': true_lbl,
'pred_lbl': pred_lbl,
'loss_r2a': loss_r2a,
'loss_lbl': loss_lbl,
'loss_wd' : loss_wd,
'loss_a2r': loss_a2r,
'loss_src_lm': loss_src_lm,
'loss_tar_lm': loss_tar_lm,
}
|
Evaluate the network on a batch of examples
model: a dictionary of networks
optimizer: the optimizer that updates the network weights
task: the name of the task
batch: a batch of examples for the specified task
src_batches: an iterator that generates a batch of source examples (used for estimating the
wasserstein distance)
tar_batches: an iterator that generates a batch of source examples (used for estimating the
wasserstein distance)
args: the overall argument
writer: a file object. If not none, will write the prediction result and the generated
attention to the file
|
https://github.com/yujiabao/r2a/blob/7cef16ff7a4ce9c2adcfd18f2e99a2cae3ce87cb/r2a/src/train_utils.py#L509-L679
|
import os
import sys
import torch
import torch.autograd as autograd
from itertools import chain
import torch.nn.functional as F
import torch.nn as nn
import torch.utils.data as data
import torch.optim as optim
import data_utils as data_utils
import model_utils as model_utils
import datetime
import sklearn.metrics as metrics
import time
import numpy as np
from termcolor import colored
import math
from tqdm import tqdm
def _to_tensor(x_list, cuda=True):
if type(x_list) is not list:
x_list = [x_list]
res_list = []
for x in x_list:
x = torch.from_numpy(x)
if cuda:
x = x.cuda()
res_list.append(x)
if len(res_list) == 1:
return res_list[0]
else:
return tuple(res_list)
def _to_numpy(x_list):
if type(x_list) is not list:
x_list = [x_list]
res_list = []
for x in x_list:
res_list.append(x.data.cpu().numpy())
if len(res_list) == 1:
return res_list[0]
else:
return tuple(res_list)
def _to_number(x):
if isinstance(x, torch.Tensor):
return x.item()
else:
return x
def _compute_score(y_pred, y_true, num_classes=2):
if num_classes == 2:
average = "binary"
else:
average = "macro"
acc = metrics.accuracy_score( y_pred=y_pred, y_true=y_true)
f1 = metrics.f1_score( y_pred=y_pred, y_true=y_true, average=average)
recall = metrics.recall_score( y_pred=y_pred, y_true=y_true, average=average)
precision = metrics.precision_score(y_pred=y_pred, y_true=y_true, average=average)
return acc, f1, recall, precision
def _init_optimizer(model, args):
optimizer = {}
optimizer['critic'] = torch.optim.Adam(
filter(lambda p: p.requires_grad, model['critic'].parameters()) , lr=args.lr)
optimizer['encoder'] = torch.optim.Adam(
filter(lambda p: p.requires_grad, model['encoder'].parameters()) , lr=args.lr)
optimizer['r2a'] = torch.optim.Adam(
filter(lambda p: p.requires_grad,
chain(model['r2a'].parameters(), model['transform'].parameters())), lr=args.lr)
for task in args.src_dataset:
if task != '':
optimizer[task] = torch.optim.Adam(
filter(lambda p: p.requires_grad, model[task].parameters()) , lr=args.lr)
scheduler = {}
scheduler['encoder'] = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer['encoder'], 'min', patience=args.patience, factor=0.1, verbose=True)
scheduler['r2a'] = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer['r2a'], 'min', patience=args.patience, factor=0.1, verbose=True)
for task in args.src_dataset:
if task != '':
scheduler[task] = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer[task], 'min', patience=args.patience, factor=0.1, verbose=True)
return optimizer, scheduler
def _print_train_res(train_res, args):
print('=== TRAIN ===')
for task in args.src_dataset:
print("{:15s} {:s} {:.2f} {:s} {:.4f}, {:s} {:.4f} * {:.1e} {:s} {:.4f} * {:.1e}, {:s} {:.4f} * {:.1e}," " {:s} {:.4f} * {:.1e}, {:s} {:.4f} * {:.1e}".format(
task,
colored("ep:", "cyan"),
train_res[-1][task]['epoch'],
colored("l_lbl", "red"),
sum([res[task]['loss_lbl'] for res in train_res])/len(train_res),
colored("l_wd ", "red"),
sum([res[task]['loss_wd'] for res in train_res])/len(train_res),
args.l_wd,
colored("l_src_lm ", "red"),
sum([res[task]['loss_src_lm'] for res in train_res])/len(train_res),
args.l_lm,
colored("l_tar_lm ", "red"),
sum([res[task]['loss_tar_lm'] for res in train_res])/len(train_res),
args.l_lm,
colored("l_r2a", "red"),
sum([res[task]['loss_r2a'] for res in train_res])/len(train_res),
args.l_r2a,
colored("l_a2r", "red"),
sum([res[task]['loss_a2r'] for res in train_res])/len(train_res),
args.l_a2r,
))
def print_dev_res(dev_res, args):
loss_tot = sum([res['loss_total'] for res in dev_res])/len(dev_res)
loss_lbl = sum([res['loss_lbl'] for res in dev_res])/len(dev_res)
loss_wd = sum([res['loss_wd'] for res in dev_res])/len(dev_res)
loss_r2a = sum([res['loss_r2a'] for res in dev_res])/len(dev_res)
loss_lbl_r2a = sum([res['loss_lbl_r2a'] for res in dev_res])/len(dev_res)
loss_a2r = sum([res['loss_a2r'] for res in dev_res])/len(dev_res)
loss_encoder = sum([res['loss_encoder'] for res in dev_res])/len(dev_res)
loss_src_lm = sum([res['loss_src_lm'] for res in dev_res])/len(dev_res)
loss_tar_lm = sum([res['loss_tar_lm'] for res in dev_res])/len(dev_res)
acc = sum([res['acc'] for res in dev_res])/len(dev_res)
recall = sum([res['recall'] for res in dev_res])/len(dev_res)
f1 = sum([res['f1'] for res in dev_res])/len(dev_res)
precision = sum([res['precision'] for res in dev_res])/len(dev_res)
print("{:15s} {:s} {:.4f}, {:s} {:.4f} * {:.1e}, {:s} {:.4f} * {:.1e}, {:s} {:.4f} * {:.1e}, {:s} {:.4f} * {:.1e}, " "{:s} {:.4f} * {:.1e}".format(
'overall',
colored("l_lbl", "red"),
loss_lbl,
colored("l_wd ", "red"),
loss_wd,
args.l_wd,
colored("l_src_lm ", "red"),
loss_src_lm,
args.l_lm,
colored("l_tar_lm ", "red"),
loss_tar_lm,
args.l_lm,
colored("l_r2a", "red"),
loss_r2a,
args.l_r2a,
colored("l_a2r", "red"),
loss_a2r,
args.l_a2r,
))
return {
'loss_total': loss_tot,
'loss_lbl': loss_lbl,
'loss_lbl_r2a': loss_lbl_r2a,
'loss_wd': loss_wd,
'loss_r2a': loss_r2a,
'loss_a2r': loss_a2r,
'loss_src_lm': loss_src_lm,
'loss_tar_lm': loss_tar_lm,
'loss_encoder':loss_encoder,
'acc': acc,
'recall': recall,
'f1': f1,
'precision': precision,
}
def train(train_data, dev_data, model, args):
timestamp = str(int(time.time() * 1e7))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "tmp-runs", timestamp))
print("Saving the model to {}\n".format(out_dir))
if not os.path.exists(out_dir):
os.makedirs(out_dir)
best = 100
best_path = ""
sub_cycle = 0
optimizer, scheduler = _init_optimizer(model, args)
tar_train_batches = None if (args.mode == 'train_clf' or args.mode == 'test_clf') else data_utils.data_loader(train_data[args.tar_dataset], args.batch_size, oneEpoch=False)
src_unlbl_train_batches = None if (args.mode == 'train_clf' or args.mode == 'test_clf') else data_utils.data_loader(train_data[args.src_dataset[0]], args.batch_size, oneEpoch=False)
src_train_batches = data_utils.data_dict_loader(train_data, args.src_dataset, args.batch_size)
tar_dev_data = None if args.tar_dataset == '' else dev_data[args.tar_dataset]
ep = 1
while True:
start = time.time()
train_res = []
if args.dispatcher:
for i in range(args.epoch_size):
cur_res = train_batch(
model, next(src_train_batches), src_unlbl_train_batches, tar_train_batches, optimizer, args)
train_res.append(cur_res)
else:
for batch in tqdm(range(args.epoch_size), dynamic_ncols=True):
cur_res = train_batch(
model, next(src_train_batches), src_unlbl_train_batches, tar_train_batches, optimizer, args)
train_res.append(cur_res)
end = time.time()
print("\n{}, Updates {:5d}, Time Cost: {} seconds".format(
datetime.datetime.now().strftime('%02y/%02m/%02d %H:%M:%S'),
ep*args.epoch_size, end-start))
_print_train_res(train_res, args)
print('=== DEV ===')
dev_res = []
for task in args.src_dataset:
writer = open(os.path.join(out_dir, str(ep)) + '.' + task + '.out', 'w')
cur_res = evaluate_task(
dev_data[task], task, tar_dev_data, model, optimizer, args, writer=writer)
writer.close()
dev_res.append(cur_res)
scheduler[task].step(cur_res['loss_lbl'])
dev_res = print_dev_res(dev_res, args)
scheduler['encoder'].step(dev_res['loss_encoder'])
scheduler['r2a'].step(dev_res['loss_r2a'])
if (args.mode != 'train_clf' and dev_res['loss_lbl_r2a'] < best) or (args.mode == 'train_clf' and dev_res['loss_lbl'] < best):
best = dev_res['loss_lbl_r2a'] if args.mode != 'train_clf' else dev_res['loss_lbl']
best_path = os.path.join(out_dir, str(ep))
model_utils.save_model(model, best_path)
sub_cycle = 0
else:
sub_cycle += 1
if sub_cycle == args.patience*2:
break
ep += 1
print("End of training. Restore the best weights")
model = model_utils.load_saved_model(best_path, args)
print('=== BEST DEV ===')
dev_res = []
for task in args.src_dataset:
cur_res = evaluate_task(
dev_data[task], task, tar_dev_data, model, None, args)
dev_res.append(cur_res)
dev_res = print_dev_res(dev_res, args)
print("Deleting model snapshot")
os.system("rm -rf {}/*".format(out_dir))
if args.save:
print("Save the best model to director saved-runs")
best_dir = os.path.abspath(os.path.join(os.path.curdir, "saved-runs", args.mode, "-".join(args.src_dataset) + '_' + args.tar_dataset + '_' + timestamp))
if not os.path.exists(best_dir):
os.makedirs(best_dir)
best_dir = os.path.join(best_dir, 'best')
model_utils.save_model(model, best_dir)
with open(best_dir+'_args.txt', 'w') as f:
for attr, value in sorted(args.__dict__.items()):
f.write("{}={}\n".format(attr.upper(), value))
return dev_res, best_dir, model
return dev_res, out_dir, model
def _get_mask(text_len, cuda):
idxes = torch.arange(0, int(torch.max(text_len)),
out=torch.LongTensor(torch.max(text_len).item())).unsqueeze(0)
if cuda:
idxes = idxes.cuda()
text_mask = (idxes < text_len.unsqueeze(1)).float().detach()
return text_mask
def train_batch(model, src_batch, src_unlbl_batches, tar_batches, optimizer, args):
for key in model.keys():
model[key].eval()
if key in optimizer:
optimizer[key].zero_grad()
if args.l_wd != 0 and args.mode == 'train_r2a':
model['critic'].train()
i = 0
while True:
tar_text, _, _, _, _, tar_text_len, _, _, _ = next(tar_batches)
tar_text, tar_text_len = _to_tensor([tar_text, tar_text_len], args.cuda)
src_text, _, _, _, _, src_text_len, _, _, _ = next(src_unlbl_batches)
src_text, src_text_len = _to_tensor([src_text, src_text_len], args.cuda)
tar_hidden, _ = model['encoder'](tar_text, tar_text_len, False)
src_hidden, _ = model['encoder'](src_text, src_text_len, False)
invar_tar_hidden = model['transform'](tar_hidden)
invar_src_hidden = model['transform'](src_hidden)
optimizer['critic'].zero_grad()
loss_wd, grad_penalty = model['critic'](
invar_src_hidden.detach(), src_text_len,
invar_tar_hidden.detach(), tar_text_len, False)
loss = -loss_wd + args.l_grad_penalty * grad_penalty
loss.backward()
optimizer['critic'].step()
i += 1
if i >= args.critic_steps and _to_number(loss_wd) > 0:
break
for key in model.keys():
model[key].train()
if key in optimizer:
optimizer[key].zero_grad()
model['critic'].eval()
result = {}
for task, batch in src_batch.items():
text, rat_freq, rationale, gold_att, pred_att, text_len, label, _, epoch = batch
text, text_len, rat_freq, rationale, gold_att, pred_att, label = _to_tensor(
[text, text_len, rat_freq, rationale, gold_att, pred_att, label], args.cuda)
text_mask = _get_mask(text_len, args.cuda)
hidden, loss_src_lm = model['encoder'](text, text_len, True)
invar_hidden = model['transform'](hidden)
loss_tar_lm = 0
if args.l_wd != 0 and args.mode == 'train_r2a':
tar_text, _, _, _, _, tar_text_len, _, _, _ = next(tar_batches)
tar_text, tar_text_len = _to_tensor([tar_text, tar_text_len], args.cuda)
tar_hidden, loss_tar_lm = model['encoder'](tar_text, tar_text_len, True)
invar_tar_hidden = model['transform'](tar_hidden)
loss_wd, _ = model['critic'](invar_hidden, text_len, invar_tar_hidden, tar_text_len, True)
else:
loss_wd = 0
if args.mode == 'train_clf' and not args.fine_tune_encoder:
hidden = hidden.detach()
out, att, log_att = model[task](hidden, text_mask)
if args.num_classes[task] == 1:
loss_lbl = F.mse_loss(torch.sigmoid(out.squeeze(1)), label)
else:
loss_lbl = F.cross_entropy(out, label)
if _to_number(torch.min(torch.sum(rationale, dim=1))) < 0.5:
rationale = rationale + 1e-6
normalized_rationale = rationale * text_mask
normalized_rationale = normalized_rationale / torch.sum(normalized_rationale, dim=1,
keepdim=True)
if args.mode == 'train_clf':
if args.att_target == 'gold_att':
pred_att = gold_att
elif args.att_target == 'rationale':
pred_att = normalized_rationale
elif args.att_target == 'pred_att':
pred_att = pred_att
else:
raise ValueError('Invalid supervision type.')
log_pred_att = torch.log(pred_att)
elif args.mode == 'train_r2a':
pred_att, log_pred_att = model['r2a'](
invar_hidden, rationale, rat_freq, text_len, text_mask)
else:
raise ValueError('Invalid mode')
loss_a2r = 0
loss_r2a = 1 - torch.mean(F.cosine_similarity(att, pred_att))
if args.mode == 'train_r2a':
loss_a2r = 1 - torch.mean(F.cosine_similarity(pred_att, normalized_rationale))
if _to_number(loss_r2a) < 0.1:
loss_r2a = 0
else:
loss_r2a = loss_r2a - 0.1
if _to_number(loss_a2r) < 0.1:
loss_a2r = 0
else:
loss_a2r = loss_a2r - 0.1
loss = loss_lbl + args.l_r2a * loss_r2a + args.l_wd * loss_wd + args.l_lm * (loss_src_lm + loss_tar_lm) + args.l_a2r * loss_a2r
loss.backward()
optimizer[task].step()
result[task] = {
'loss_lbl': _to_number(loss_lbl),
'loss_r2a': _to_number(loss_r2a),
'loss_wd': _to_number(loss_wd),
'loss_src_lm': _to_number(loss_src_lm),
'loss_tar_lm': _to_number(loss_tar_lm),
'loss_a2r' : _to_number(loss_a2r),
'epoch': epoch,
}
optimizer['encoder'].step()
optimizer['r2a'].step()
return result
|
MIT License
|
bihealth/sodar_core
|
projectroles/forms.py
|
get_user_widget
|
python
|
def get_user_widget(
scope='all',
project=None,
exclude=None,
forward=None,
url=None,
widget_class=None,
):
url = url or 'projectroles:ajax_autocomplete_user'
wg = {'url': url, 'forward': [dal_forward.Const(scope, 'scope')]}
if project:
p_uuid = (
str(project.sodar_uuid)
if isinstance(project, Project)
else str(project)
)
wg['forward'].append(dal_forward.Const(p_uuid, 'project'))
if forward and isinstance(forward, list):
wg['forward'] += forward
if exclude:
wg['forward'].append(
dal_forward.Const(
[
str(u.sodar_uuid) if isinstance(u, User) else u
for u in exclude
],
'exclude',
)
)
if widget_class:
return widget_class(**wg)
return SODARUserAutocompleteWidget(**wg)
|
Get an user autocomplete widget for your form.
:param scope: Scope of users to include: "all"/"project"/"project_exclude"
:param project: Project object or project UUID string (optional)
:param exclude: List of User objects or User UUIDs to exclude
:param forward: Parameters to forward to autocomplete view (optional)
:param url: Autocomplete ajax class override (optional)
:param widget_class: Widget class override (optional)
:return: SODARUserAutocompleteWidget or an overridden widget class
|
https://github.com/bihealth/sodar_core/blob/4176f762b77fae4dfdf24d51328938b94d3a64ce/projectroles/forms.py#L130-L177
|
import json
import logging
from django import forms
from django.conf import settings
from django.contrib import auth
from django.core.exceptions import ValidationError
from django.urls import reverse
from django.utils import timezone
from pagedown.widgets import PagedownWidget
from dal import autocomplete, forward as dal_forward
from projectroles.models import (
Project,
Role,
RoleAssignment,
ProjectInvite,
RemoteSite,
SODAR_CONSTANTS,
APP_SETTING_VAL_MAXLENGTH,
)
from projectroles.plugins import get_active_plugins
from projectroles.utils import (
get_display_name,
get_user_display_name,
build_secret,
)
from projectroles.app_settings import AppSettingAPI, APP_SETTING_LOCAL_DEFAULT
PROJECT_ROLE_OWNER = SODAR_CONSTANTS['PROJECT_ROLE_OWNER']
PROJECT_ROLE_CONTRIBUTOR = SODAR_CONSTANTS['PROJECT_ROLE_CONTRIBUTOR']
PROJECT_ROLE_DELEGATE = SODAR_CONSTANTS['PROJECT_ROLE_DELEGATE']
PROJECT_ROLE_GUEST = SODAR_CONSTANTS['PROJECT_ROLE_GUEST']
PROJECT_TYPE_CATEGORY = SODAR_CONSTANTS['PROJECT_TYPE_CATEGORY']
PROJECT_TYPE_PROJECT = SODAR_CONSTANTS['PROJECT_TYPE_PROJECT']
PROJECT_TYPE_CHOICES = [
(
PROJECT_TYPE_CATEGORY,
get_display_name(PROJECT_TYPE_CATEGORY, title=True),
),
(PROJECT_TYPE_PROJECT, get_display_name(PROJECT_TYPE_PROJECT, title=True)),
]
SUBMIT_STATUS_OK = SODAR_CONSTANTS['SUBMIT_STATUS_OK']
SUBMIT_STATUS_PENDING = SODAR_CONSTANTS['SUBMIT_STATUS_PENDING']
SUBMIT_STATUS_PENDING_TASKFLOW = SODAR_CONSTANTS['SUBMIT_STATUS_PENDING']
SITE_MODE_SOURCE = SODAR_CONSTANTS['SITE_MODE_SOURCE']
SITE_MODE_TARGET = SODAR_CONSTANTS['SITE_MODE_TARGET']
APP_SETTING_SCOPE_PROJECT = SODAR_CONSTANTS['APP_SETTING_SCOPE_PROJECT']
APP_NAME = 'projectroles'
INVITE_EXPIRY_DAYS = settings.PROJECTROLES_INVITE_EXPIRY_DAYS
User = auth.get_user_model()
class SODARFormMixin:
def __init__(self, *args, **kwargs):
self.logger = logging.getLogger(__name__)
super().__init__(*args, **kwargs)
def add_error(self, field, error):
if isinstance(error, ValidationError):
log_err = ';'.join(error.messages)
else:
log_err = error
log_msg = 'Field "{}": {}'.format(field, log_err)
if hasattr(self, 'current_user') and self.current_user:
log_msg += ' (user={})'.format(self.current_user.username)
self.logger.error(log_msg)
super().add_error(field, error)
class SODARForm(SODARFormMixin, forms.Form):
class SODARModelForm(SODARFormMixin, forms.ModelForm):
class SODARPagedownWidget(PagedownWidget):
class Media:
css = {'all': ['projectroles/css/pagedown.css']}
class SODARUserAutocompleteWidget(autocomplete.ModelSelect2):
def filter_choices_to_render(self, selected_choices):
self.choices.queryset = self.choices.queryset.filter(
sodar_uuid__in=[c for c in selected_choices if c]
)
class SODARUserRedirectWidget(SODARUserAutocompleteWidget):
autocomplete_function = 'autocomplete_redirect'
|
MIT License
|
labd/commercetools-python-sdk
|
src/commercetools/services/customer_groups.py
|
CustomerGroupService.update_by_key
|
python
|
def update_by_key(
self,
key: str,
version: int,
actions: typing.List[CustomerGroupUpdateAction],
*,
expand: OptionalListStr = None,
force_update: bool = False,
) -> CustomerGroup:
params = self._serialize_params({"expand": expand}, _CustomerGroupUpdateSchema)
update_action = CustomerGroupUpdate(version=version, actions=actions)
return self._client._post(
endpoint=f"customer-groups/key={key}",
params=params,
data_object=update_action,
response_class=CustomerGroup,
force_update=force_update,
)
|
Updates a customer group by Key.
|
https://github.com/labd/commercetools-python-sdk/blob/d8ec285f08d56ede2e4cad45c74833f5b609ab5c/src/commercetools/services/customer_groups.py#L115-L133
|
import typing
from commercetools.helpers import RemoveEmptyValuesMixin
from commercetools.platform.models.customer_group import (
CustomerGroup,
CustomerGroupDraft,
CustomerGroupPagedQueryResponse,
CustomerGroupUpdate,
CustomerGroupUpdateAction,
)
from commercetools.typing import OptionalListStr
from . import abstract, traits
class _CustomerGroupQuerySchema(
traits.ExpandableSchema,
traits.SortableSchema,
traits.PagingSchema,
traits.QuerySchema,
):
pass
class _CustomerGroupUpdateSchema(traits.ExpandableSchema, traits.VersionedSchema):
pass
class _CustomerGroupDeleteSchema(traits.VersionedSchema, traits.ExpandableSchema):
pass
class CustomerGroupService(abstract.AbstractService):
def get_by_id(self, id: str, *, expand: OptionalListStr = None) -> CustomerGroup:
params = self._serialize_params({"expand": expand}, traits.ExpandableSchema)
return self._client._get(
endpoint=f"customer-groups/{id}",
params=params,
response_class=CustomerGroup,
)
def get_by_key(self, key: str, *, expand: OptionalListStr = None) -> CustomerGroup:
params = self._serialize_params({"expand": expand}, traits.ExpandableSchema)
return self._client._get(
endpoint=f"customer-groups/key={key}",
params=params,
response_class=CustomerGroup,
)
def query(
self,
*,
expand: OptionalListStr = None,
sort: OptionalListStr = None,
limit: int = None,
offset: int = None,
with_total: bool = None,
where: OptionalListStr = None,
predicate_var: typing.Dict[str, str] = None,
) -> CustomerGroupPagedQueryResponse:
params = self._serialize_params(
{
"expand": expand,
"sort": sort,
"limit": limit,
"offset": offset,
"with_total": with_total,
"where": where,
"predicate_var": predicate_var,
},
_CustomerGroupQuerySchema,
)
return self._client._get(
endpoint="customer-groups",
params=params,
response_class=CustomerGroupPagedQueryResponse,
)
def create(
self, draft: CustomerGroupDraft, *, expand: OptionalListStr = None
) -> CustomerGroup:
params = self._serialize_params({"expand": expand}, traits.ExpandableSchema)
return self._client._post(
endpoint="customer-groups",
params=params,
data_object=draft,
response_class=CustomerGroup,
)
def update_by_id(
self,
id: str,
version: int,
actions: typing.List[CustomerGroupUpdateAction],
*,
expand: OptionalListStr = None,
force_update: bool = False,
) -> CustomerGroup:
params = self._serialize_params({"expand": expand}, _CustomerGroupUpdateSchema)
update_action = CustomerGroupUpdate(version=version, actions=actions)
return self._client._post(
endpoint=f"customer-groups/{id}",
params=params,
data_object=update_action,
response_class=CustomerGroup,
force_update=force_update,
)
|
MIT License
|
dmlc/gluon-cv
|
gluoncv/torch/data/transforms/videotransforms/video_transforms.py
|
CenterCrop.__call__
|
python
|
def __call__(self, clip):
h, w = self.size
if isinstance(clip[0], np.ndarray):
im_h, im_w, im_c = clip[0].shape
elif isinstance(clip[0], PIL.Image.Image):
im_w, im_h = clip[0].size
else:
raise TypeError('Expected numpy.ndarray or PIL.Image' +
'but got list of {0}'.format(type(clip[0])))
if w > im_w or h > im_h:
error_msg = (
'Initial image size should be larger then '
'cropped size but got cropped sizes : ({w}, {h}) while '
'initial image is ({im_w}, {im_h})'.format(
im_w=im_w, im_h=im_h, w=w, h=h))
raise ValueError(error_msg)
x1 = int(round((im_w - w) / 2.))
y1 = int(round((im_h - h) / 2.))
cropped = F.crop_clip(clip, y1, x1, h, w)
return cropped
|
Args:
img (PIL.Image or numpy.ndarray): List of images to be cropped
in format (h, w, c) in numpy.ndarray
Returns:
PIL.Image or numpy.ndarray: Cropped list of images
|
https://github.com/dmlc/gluon-cv/blob/f22650a5d31c31956d9392530a0e619689cdb3c5/gluoncv/torch/data/transforms/videotransforms/video_transforms.py#L265-L294
|
import numbers
import random
import numpy as np
import PIL
import torch
import torchvision
from . import functional as F
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, clip):
for t in self.transforms:
clip = t(clip)
return clip
class RandomHorizontalFlip(object):
def __call__(self, clip):
if random.random() < 0.5:
if isinstance(clip[0], np.ndarray):
return [np.fliplr(img) for img in clip]
elif isinstance(clip[0], PIL.Image.Image):
return [
img.transpose(PIL.Image.FLIP_LEFT_RIGHT) for img in clip
]
else:
raise TypeError('Expected numpy.ndarray or PIL.Image' +
' but got list of {0}'.format(type(clip[0])))
return clip
class RandomResize(object):
def __init__(self, ratio=(3. / 4., 4. / 3.), interpolation='nearest'):
self.ratio = ratio
self.interpolation = interpolation
def __call__(self, clip):
scaling_factor = random.uniform(self.ratio[0], self.ratio[1])
if isinstance(clip[0], np.ndarray):
im_h, im_w, im_c = clip[0].shape
elif isinstance(clip[0], PIL.Image.Image):
im_w, im_h = clip[0].size
new_w = int(im_w * scaling_factor)
new_h = int(im_h * scaling_factor)
new_size = (new_w, new_h)
resized = F.resize_clip(
clip, new_size, interpolation=self.interpolation)
return resized
class Resize(object):
def __init__(self, size, interpolation='nearest'):
self.size = size
self.interpolation = interpolation
def __call__(self, clip):
resized = F.resize_clip(
clip, self.size, interpolation=self.interpolation)
return resized
class RandomCrop(object):
def __init__(self, size):
if isinstance(size, numbers.Number):
size = (size, size)
self.size = size
def __call__(self, clip):
h, w = self.size
if isinstance(clip[0], np.ndarray):
im_h, im_w, im_c = clip[0].shape
elif isinstance(clip[0], PIL.Image.Image):
im_w, im_h = clip[0].size
else:
raise TypeError('Expected numpy.ndarray or PIL.Image' +
'but got list of {0}'.format(type(clip[0])))
if w > im_w or h > im_h:
error_msg = (
'Initial image size should be larger then '
'cropped size but got cropped sizes : ({w}, {h}) while '
'initial image is ({im_w}, {im_h})'.format(
im_w=im_w, im_h=im_h, w=w, h=h))
raise ValueError(error_msg)
x1 = random.randint(0, im_w - w)
y1 = random.randint(0, im_h - h)
cropped = F.crop_clip(clip, y1, x1, h, w)
return cropped
class ThreeCrop(object):
def __init__(self, size):
if isinstance(size, numbers.Number):
size = (size, size)
self.size = size
def __call__(self, clip):
h, w = self.size
if isinstance(clip[0], np.ndarray):
im_h, im_w, im_c = clip[0].shape
elif isinstance(clip[0], PIL.Image.Image):
im_w, im_h = clip[0].size
else:
raise TypeError('Expected numpy.ndarray or PIL.Image' +
'but got list of {0}'.format(type(clip[0])))
if w != im_w and h != im_h:
clip = F.resize_clip(clip, self.size, interpolation="bilinear")
im_h, im_w, im_c = clip[0].shape
step = np.max((np.max((im_w, im_h)) - self.size[0]) // 2, 0)
cropped = []
for i in range(3):
if (im_h > self.size[0]):
x1 = 0
y1 = i * step
cropped.extend(F.crop_clip(clip, y1, x1, h, w))
else:
x1 = i * step
y1 = 0
cropped.extend(F.crop_clip(clip, y1, x1, h, w))
return cropped
class RandomRotation(object):
def __init__(self, degrees):
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError('If degrees is a single number,'
'must be positive')
degrees = (-degrees, degrees)
else:
if len(degrees) != 2:
raise ValueError('If degrees is a sequence,'
'it must be of len 2.')
self.degrees = degrees
def __call__(self, clip):
import skimage
angle = random.uniform(self.degrees[0], self.degrees[1])
if isinstance(clip[0], np.ndarray):
rotated = [skimage.transform.rotate(img, angle) for img in clip]
elif isinstance(clip[0], PIL.Image.Image):
rotated = [img.rotate(angle) for img in clip]
else:
raise TypeError('Expected numpy.ndarray or PIL.Image' +
'but got list of {0}'.format(type(clip[0])))
return rotated
class CenterCrop(object):
def __init__(self, size):
if isinstance(size, numbers.Number):
size = (size, size)
self.size = size
|
Apache License 2.0
|
tum-pbs/phiflow
|
phi/field/_scene.py
|
Scene.put_properties
|
python
|
def put_properties(self, update: dict = None, **kw_updates):
self._init_properties()
if update:
self._properties.update(update)
self._properties.update(kw_updates)
self._write_properties()
|
Updates the properties dictionary and stores it in `description.json` of all scene folders.
Args:
update: new values, must be JSON serializable.
kw_updates: additional update as keyword arguments. This overrides `update`.
|
https://github.com/tum-pbs/phiflow/blob/4a85f8a5029aa4e30a791daa659f2c8e1536e37e/phi/field/_scene.py#L312-L324
|
import inspect
import json
import os
import re
import shutil
import sys
import warnings
from os.path import join, isfile, isdir, abspath, expanduser, basename, split
from phi import struct, math, __version__ as phi_version
from ._field import Field, SampledField
from ._field_io import read, write
from ..math import Shape, batch
def read_sim_frame(directory: math.Tensor,
names: str or tuple or list or dict or struct.Struct,
frame: int,
convert_to_backend=True):
def single_read(name):
name = _slugify_filename(name)
files = math.map(lambda dir_: _filename(dir_, name, frame), directory)
return read(files, convert_to_backend=convert_to_backend)
return struct.map(single_read, names)
def write_sim_frame(directory: math.Tensor,
fields: Field or tuple or list or dict or struct.Struct,
frame: int,
names: str or tuple or list or struct.Struct or None = None):
if names is None:
names = struct.names(fields)
if frame > 1000000:
warnings.warn(f"frame too large: {frame}. Data will be saved but filename might cause trouble in the future.")
def single_write(f, name):
name = _slugify_filename(name)
files = math.map(lambda dir_: _filename(dir_, name, frame), directory)
if isinstance(f, SampledField):
write(f, files)
elif isinstance(f, math.Tensor):
raise NotImplementedError()
elif isinstance(f, Field):
raise ValueError("write_sim_frame: only SampledField instances are saved. Resample other Fields before saving them.")
else:
raise ValueError(f"write_sim_frame: only SampledField instances can be saved but got {f}")
struct.foreach(single_write, fields, names)
def _filename(simpath, name, frame):
return join(simpath, f"{slugify(name)}_{frame:06d}.npz")
def _str(bytes_or_str):
if isinstance(bytes_or_str, str):
return bytes_or_str
else:
return str(bytes_or_str, 'utf-8')
def get_fieldnames(simpath) -> tuple:
fieldnames_set = {_str(f)[:-11] for f in os.listdir(simpath) if _str(f).endswith(".npz")}
return tuple(sorted(fieldnames_set))
def get_frames(path: str, field_name: str = None, mode=set.intersection) -> tuple:
if field_name is not None:
all_frames = {int(f[-10:-4]) for f in os.listdir(path) if _str(f).startswith(field_name) and _str(f).endswith(".npz")}
return tuple(sorted(all_frames))
else:
fields = get_fieldnames(path)
if not fields:
return ()
frames_sets = [set(get_frames(path, field)) for field in fields]
frames = mode(*frames_sets)
return tuple(sorted(frames))
class Scene(object):
def __init__(self, paths: str or math.Tensor):
self._paths = math.wrap(paths)
self._properties: dict or None = None
@property
def shape(self):
return self._paths.shape
@property
def is_batch(self):
return self._paths.rank > 0
@property
def path(self) -> str:
assert not self.is_batch, "Scene.path is not defined for scene batches."
return self._paths.native()
@property
def paths(self) -> math.Tensor:
return self._paths
@staticmethod
def stack(*scenes: 'Scene', dim: Shape = batch('batch')) -> 'Scene':
return Scene(math.stack([s._paths for s in scenes], dim))
@staticmethod
def create(parent_directory: str,
shape: math.Shape = math.EMPTY_SHAPE,
copy_calling_script=True,
**dimensions) -> 'Scene':
shape = shape & math.batch(**dimensions)
parent_directory = expanduser(parent_directory)
abs_dir = abspath(parent_directory)
if not isdir(abs_dir):
os.makedirs(abs_dir)
next_id = 0
else:
indices = [int(name[4:]) for name in os.listdir(abs_dir) if name.startswith("sim_")]
next_id = max([-1] + indices) + 1
ids = math.wrap(tuple(range(next_id, next_id + shape.volume))).vector.split(shape)
paths = math.map(lambda id_: join(parent_directory, f"sim_{id_:06d}"), ids)
scene = Scene(paths)
scene.mkdir()
if copy_calling_script:
try:
scene.copy_calling_script()
except IOError as err:
warnings.warn(f"Failed to copy calling script to scene during Scene.create(): {err}")
return scene
@staticmethod
def list(parent_directory: str,
include_other: bool = False,
dim: Shape or None = None) -> 'Scene' or tuple:
parent_directory = expanduser(parent_directory)
abs_dir = abspath(parent_directory)
if not isdir(abs_dir):
return ()
names = [sim for sim in os.listdir(abs_dir) if sim.startswith("sim_") or (include_other and isdir(join(abs_dir, sim)))]
if dim is None:
return tuple(Scene(join(parent_directory, name)) for name in names)
else:
paths = math.wrap([join(parent_directory, name) for name in names], dim)
return Scene(paths)
@staticmethod
def at(directory: str or tuple or list or math.Tensor or 'Scene', id: int or math.Tensor or None = None) -> 'Scene':
if isinstance(directory, Scene):
assert id is None, f"Got id={id} but directory is already a Scene."
return directory
if isinstance(directory, (tuple, list)):
directory = math.wrap(directory, batch('scenes'))
directory = math.map(lambda d: expanduser(d), math.wrap(directory))
if id is None:
paths = directory
else:
id = math.wrap(id)
paths = math.map(lambda d, i: join(d, f"sim_{i:06d}"), directory, id)
for path in math.flatten(paths):
if not isdir(path):
raise IOError(f"There is no scene at '{path}'")
return Scene(paths)
def subpath(self, name: str, create: bool = False) -> str or tuple:
def single_subpath(path):
path = join(path, name)
if create and not isdir(path):
os.mkdir(path)
return path
result = math.map(single_subpath, self._paths)
if result.rank == 0:
return result.native()
else:
return result
def _init_properties(self):
if self._properties is not None:
return
json_file = join(next(iter(math.flatten(self._paths))), "description.json")
if isfile(json_file):
with open(json_file) as stream:
self._properties = json.load(stream)
else:
self._properties = {}
def exist_properties(self):
if self._properties is not None:
return True
else:
json_file = join(next(iter(math.flatten(self._paths))), "description.json")
return isfile(json_file)
def exists_config(self):
if isinstance(self.path, str):
return isfile(join(self.path, "description.json"))
else:
return any(isfile(join(p, "description.json")) for p in self.path)
@property
def properties(self):
self._init_properties()
return self._properties
@properties.setter
def properties(self, dict):
self._properties = dict
with open(join(self.path, "description.json"), "w") as out:
json.dump(self._properties, out, indent=2)
def put_property(self, key, value):
self._init_properties()
self._properties[key] = value
self._write_properties()
|
MIT License
|
terraref/computing-pipeline
|
scripts/rebuild_scripts/buildClowderInstance.py
|
getDanforthSnapshotFromPath
|
python
|
def getDanforthSnapshotFromPath(filepath):
parts = filepath.split("/")
if parts[-2].find("snapshot") > -1:
img_metadata = getImageMdFromCSV(parts[-2].replace('snapshot',''), os.path.basename(filepath).replace('.png', ''))
return {
"snapshot": parts[-2],
"md": img_metadata
}
else:
{
"snapshot": None,
"md": None
}
|
Get snapshot info from path.
|
https://github.com/terraref/computing-pipeline/blob/5d0d089501154c6c0de68229579c131d79e39b5e/scripts/rebuild_scripts/buildClowderInstance.py#L378-L392
|
import sys, os, json
import requests
import psycopg2
from urllib3.filepost import encode_multipart_formdata
def main():
with open(inputfile, 'r') as inp:
curr_group = {
"sensor": None,
"date": None,
"timestamp": None,
"metadata": None,
"snapshot": None
}
curr_group_files = []
curr_group_file_metadata = {}
lastLineFound = True if lastLine == "" else False
for line in inp:
full_path = line.rstrip()
file_metadata = None
if not lastLineFound:
if lastLine == full_path:
print("Found last line; resuming uploads.")
lastLineFound = True
else:
full_path = full_path.replace("/gpfs/largeblockFS/projects/arpae/terraref/", "/home/clowder/")
if full_path == "": continue
curr_info = {"sensor": None, "date": None, "timestamp": None, "metadata": None, "snapshot": None}
if full_path.find("raw_data") > -1:
if full_path.endswith("metadata.json"):
if full_path.find("/danforth/") > -1:
curr_info = getDanforthInfoFromJson(full_path)
if curr_group['sensor'] == None:
curr_group = curr_info
else:
curr_info = getGantryInfoFromPath(full_path)
curr_info['metadata'] = getGantryMetadata(full_path)
if curr_group['sensor'] == None:
curr_group = curr_info
else:
if full_path.find("/danforth/") > -1:
snap_info = getDanforthSnapshotFromPath(full_path)
if snap_info['snapshot'] is None:
continue
else:
curr_info['snapshot'] = snap_info["snapshot"]
file_metadata = snap_info["md"]
else:
curr_info = getGantryInfoFromPath(full_path)
if full_path.find("Level_1") > -1:
if full_path.find("ddpscIndoorSuite") > -1:
timeinfo = full_path.split("/")[-2].replace("ddpscIndoorSuite - ", "")
date = timeinfo.split("__")[0]
curr_info = {
"sensor": "ddpscIndoorSuite",
"date": date,
"timestamp": timeinfo,
"snapshot": timeinfo,
"metadata": {
"@context": ["https://clowder.ncsa.illinois.edu/contexts/metadata.jsonld"],
"content": {"status": "COMPLETED"},
"agent": {
"@type": "cat:extractor",
"extractor_id": clowderURL + "/api/extractors/terra.plantcv"
}
}
}
elif full_path.find("demosaic") > -1:
timeinfo = full_path.split("/")[-2]
date = timeinfo.split("__")[0]
curr_info = {
"sensor": "stereoTop",
"date": date,
"timestamp": timeinfo,
"metadata": {
"@context": ["https://clowder.ncsa.illinois.edu/contexts/metadata.jsonld"],
"content": {"status": "COMPLETED"},
"agent": {
"@type": "cat:extractor",
"extractor_id": clowderURL + "/api/extractors/terra.demosaic"
}
},
"snapshot": None
}
elif full_path.find("EnvironmentLogger") > -1:
date = full_path.split("/")[-2]
curr_info = {
"sensor": "EnvironmentLogger",
"date": date,
"timestamp": None,
"metadata": None,
"snapshot": None
}
elif full_path.find("scanner3DTop") > -1:
timeinfo = full_path.split("/")[-2]
date = timeinfo.split("__")[0]
curr_info = {
"sensor": "scanner3DTop",
"date": date,
"timestamp": timeinfo,
"metadata": None,
"snapshot": None
}
submit = False
if full_path.find("/danforth/") > -1:
if curr_info['snapshot'] != curr_group['snapshot']:
submit = True
elif curr_info['metadata'] is not None:
curr_group['metadata'] = curr_info['metadata']
else:
if (curr_info["sensor"] != curr_group["sensor"] or
curr_info["date"] != curr_group["date"] or
curr_info["timestamp"] != curr_group["timestamp"]):
submit = True
elif curr_info['metadata'] is not None:
curr_group['metadata'] = curr_info['metadata']
if submit:
if curr_group['sensor'] is not None:
curr_group['files'] = curr_group_files
curr_group['file_md'] = curr_group_file_metadata
submitGroupToClowder(curr_group)
curr_group = curr_info
curr_group_files = []
if not full_path.endswith("metadata.json"):
curr_group_files.append(full_path)
if file_metadata:
curr_group_file_metadata[full_path] = file_metadata
curr_group['files'] = curr_group_files
curr_group['file_md'] = curr_group_file_metadata
submitGroupToClowder(curr_group)
def connectToPostgres():
try:
conn = psycopg2.connect(dbname='globusmonitor')
except:
conn = psycopg2.connect(dbname='postgres')
conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT)
curs = conn.cursor()
curs.execute('CREATE DATABASE globusmonitor;')
curs.close()
conn.commit()
conn.close()
conn = psycopg2.connect(dbname='globusmonitor')
initializeDatabase(conn)
print("Connected to Postgres")
return conn
def loadJsonFile(jsonfile):
try:
f = open(jsonfile)
jsonobj = json.load(f)
f.close()
return jsonobj
except IOError:
print("- unable to open %s" % jsonfile)
return {}
def barcode_parser(barcode):
parsed_barcode = {}
parsed_barcode['species'] = barcode[0:2]
parsed_barcode['genotype'] = barcode[0:5]
parsed_barcode['treatment'] = barcode[5:7]
parsed_barcode['unique_id'] = barcode[7:]
return parsed_barcode
def metadata_to_json(filename, metadata, data, fields):
img_meta = filename.split('_')
if img_meta[0] == 'VIS':
camera_type = 'visible/RGB'
elif img_meta[0] == 'NIR':
camera_type = 'near-infrared'
if img_meta[1] == 'SV':
perspective = 'side-view'
elif img_meta[1] == 'TV':
perspective = 'top-view'
if len(img_meta) == 8:
rotation_angle = img_meta[2]
zoom = (0.0008335 * int(img_meta[3].replace('z', ''))) + 0.9991665
stage_position = img_meta[4].replace('h', '')
camera_gain = img_meta[5].replace('g', '')
camera_exposure = img_meta[6].replace('e', '')
img_id = img_meta[7]
elif len(img_meta) == 7:
rotation_angle = 0
zoom = (0.0008335 * int(img_meta[2].replace('z', ''))) + 0.9991665
stage_position = img_meta[3].replace('h', '')
camera_gain = img_meta[4].replace('g', '')
camera_exposure = img_meta[5].replace('e', '')
img_id = img_meta[6]
parsed_barcode = barcode_parser(data[fields['plantbarcode']])
if parsed_barcode['species'] in metadata['sample']['barcode']['species']:
species = metadata['sample']['barcode']['species'][parsed_barcode['species']]
if parsed_barcode['genotype'] in metadata['sample']['barcode']['genotypes']:
genotype = metadata['sample']['barcode']['genotypes'][parsed_barcode['genotype']]
if parsed_barcode['treatment'] in metadata['sample']['barcode']['treatments']:
treatment = metadata['sample']['barcode']['treatments'][parsed_barcode['treatment']]
file_metadata = {'snapshot_id' : data[fields['id']], 'plant_barcode' : data[fields['plantbarcode']],
'camera_type' : camera_type, 'perspective' : perspective, 'rotation_angle' : rotation_angle,
'zoom' : zoom, 'imager_stage_vertical_position' : stage_position, 'camera_gain' : camera_gain,
'camera_exposure' : camera_exposure, 'image_id' : img_id, 'imagedate' : data[fields['timestamp']],
'species' : species, 'genotype' : genotype, 'treatment' : treatment,
'sample_id' : parsed_barcode['unique_id']}
return file_metadata
def getImageMdFromCSV(snapshotID, imagename):
csvfile = open(danforthCSV, 'rU')
header = csvfile.readline().rstrip('\n').replace(" ", "")
exp_metadata = {
"experiment" : {
"planting_date": "2014-05-27",
"title": "Sorghum Pilot Experiment - Danforth Center Phenotyping Facility - 2014-05-27",
"author": "Noah Fahlgren",
"project": "TERRA-REF",
"location": "Donald Danforth Plant Science Center",
"instrument": "Bellwether Phenotyping Facility",
"growth_medium": "MetroMix360 potting mix with 14-14-14 Osmocote"
},
"sample" : {
"barcode" : {
"format": {
"species": "0-1",
"genotype": "0-4",
"treatment": "5-6",
"unique_id": "7-12"
},
"species": {
"Fp": "Sorghum bicolor",
"Fa": "Sorghum bicolor",
"Fr": "Sorghum bicolor"
},
"genotypes": {
"Fr001": "BTx623",
"Fp001": "BTx642",
"Fp002": "Tx7000",
"Fa001": "Tx430"
},
"treatments": {
"AA": "100%: 217 ml water (47.6% VWC)",
"AB": "80%: 173.6 ml water (37.5% VWC)",
"AC": "60%: 130.2 ml water (27.3% VWC)",
"AD": "40%: 86.8 ml water (17.2% VWC)"
}
}
}
}
cols = header.split(',')
colnames = {}
for i, col in enumerate(cols):
colnames[col] = i
for row in csvfile:
data = row.rstrip('\n').split(',')
if data[colnames['id']] != snapshotID:
continue
else:
img_list = data[colnames['tiles']][:-1]
imgs = img_list.split(';')
for img in imgs:
if img == imagename:
img_md = metadata_to_json(img, exp_metadata, data, colnames)
return img_md
def getDanforthInfoFromJson(jsonpath):
jsonobj = loadJsonFile(jsonpath)
if 'experiment' in jsonobj:
if 'planting_date' in jsonobj['experiment']:
j_date = jsonobj['experiment']['planting_date']
elif "title" in jsonobj:
j_date = jsonobj['experiment']['title'].split(" - ")[2]
else:
j_date = None
else:
if 'planting_date' in jsonobj:
j_date = jsonobj['planting_date']
elif "title" in jsonobj:
j_date = jsonobj['title'].split(" - ")[2]
else:
j_date = None
return {"sensor": "ddpscIndoorSuite",
"date": j_date,
"timestamp": None,
"snapshot": getDanforthSnapshotFromPath(jsonpath)["snapshot"],
"metadata": jsonobj
}
|
BSD 3-Clause New or Revised License
|
jweyn/mos-x
|
mosx/MesoPy.py
|
Meso._get_response
|
python
|
def _get_response(self, endpoint, request_dict):
http_error = 'Could not connect to the API. This could be because you have no internet connection, a parameter' ' was input incorrectly, or the API is currently down. Please try again.'
json_error = 'Could not retrieve JSON values. Try again with a shorter date range.'
try:
qsp = urllib.parse.urlencode(request_dict, doseq=True)
resp = urllib.request.urlopen(self.base_url + endpoint + '?' + qsp).read()
except AttributeError or NameError:
try:
qsp = urllib.urlencode(request_dict, doseq=True)
resp = urllib2.urlopen(self.base_url + endpoint + '?' + qsp).read()
except urllib2.URLError:
raise MesoPyError(http_error)
except urllib.error.URLError:
raise MesoPyError(http_error)
try:
json_data = json.loads(resp.decode('utf-8'))
except ValueError:
raise MesoPyError(json_error)
return self._checkresponse(json_data)
|
Returns a dictionary of data requested by each function.
Arguments:
----------
endpoint: string, mandatory
Set in all other methods, this is the API endpoint specific to each function.
request_dict: string, mandatory
A dictionary of parameters that are formatted into the API call.
Returns:
--------
response: A dictionary that has been dumped from JSON.
Raises:
-------
MesoPyError: Overrides the exceptions given in the requests library to give more custom error messages.
Connection_error occurs if no internet connection exists. Timeout_error occurs if the request takes too
long and redirect_error is shown if the url is formatted incorrectly.
|
https://github.com/jweyn/mos-x/blob/83b3dd5ac2e610b6a2934408d07f573789a3f233/mosx/MesoPy.py#L125-L171
|
try:
import urllib.parse
import urllib.request
import urllib.error
except ImportError:
import urllib2
import urllib
import json
class MesoPyError(Exception):
def __init__(self, error_message):
self.error_message = error_message
def __str__(self):
return repr(self.error_message)
class Meso(object):
def __init__(self, token):
self.base_url = 'http://api.mesowest.net/v2/'
self.token = token
self.geo_criteria = ['stid', 'state', 'country', 'county', 'radius', 'bbox', 'cwa', 'nwsfirezone', 'gacc',
'subgacc']
@staticmethod
def _checkresponse(response):
results_error = 'No results were found matching your query'
auth_error = 'The token or API key is not valid, please contact Josh Clark at joshua.m.clark@utah.edu to ' 'resolve this'
rule_error = 'This request violates a rule of the API. Please check the guidelines for formatting a data ' 'request and try again'
catch_error = 'Something went wrong. Check all your calls and try again'
if response['SUMMARY']['RESPONSE_CODE'] == 1:
return response
elif response['SUMMARY']['RESPONSE_CODE'] == 2:
raise MesoPyError(results_error)
elif response['SUMMARY']['RESPONSE_CODE'] == 200:
raise MesoPyError(auth_error)
elif response['SUMMARY']['RESPONSE_CODE'] == 400:
raise MesoPyError(rule_error)
elif response['SUMMARY']['RESPONSE_CODE'] == -1:
format_error = response['SUMMARY']['RESPONSE_MESSAGE']
raise MesoPyError(format_error)
else:
raise MesoPyError(catch_error)
|
MIT License
|
frmdstryr/enamlx
|
enamlx/widgets/graphics_view.py
|
GraphicsItem.show
|
python
|
def show(self):
self.visible = True
if self.proxy_is_active:
self.proxy.ensure_visible()
|
Ensure the widget is shown.
Calling this method will also set the widget visibility to True.
|
https://github.com/frmdstryr/enamlx/blob/798eefe146aac15e559315fe5ff42dd813656cea/enamlx/widgets/graphics_view.py#L515-L521
|
import sys
from enum import IntFlag
from atom.api import (
Atom,
Float,
Int,
Typed,
Bool,
Coerced,
ForwardTyped,
Enum,
List,
Instance,
Str,
Value,
Event,
Property,
observe,
set_default,
)
from enaml.colors import ColorMember
from enaml.core.declarative import d_, d_func
from enaml.fonts import FontMember
from enaml.image import Image
from enaml.layout.constrainable import ConstrainableMixin, PolicyEnum
from enaml.widgets.widget import Feature
from enaml.widgets.control import Control, ProxyControl
from enaml.widgets.toolkit_object import ToolkitObject, ProxyToolkitObject
NUMERIC = (int, float, long) if sys.version_info.major < 3 else (int, float)
class GraphicFeature(IntFlag):
MouseEvent = 0x08
WheelEvent = 0x16
DrawEvent = 0x32
BackgroundDrawEvent = 0x64
class Point(Atom):
x = d_(Float(0, strict=False))
y = d_(Float(0, strict=False))
z = d_(Float(0, strict=False))
def __init__(self, x=0, y=0, z=0):
super(Point, self).__init__(x=x, y=y, z=z)
def __iter__(self):
yield self.x
yield self.y
yield self.z
def __len__(self):
return 3
def __eq__(self, other):
pos = (self.x, self.y, self.z)
if isinstance(other, Point):
return pos == (other.x, other.y, other.z)
return pos == other
def __add__(self, other):
return Point(
self.x + other[0],
self.y + other[1],
self.z + other[2] if len(other) > 2 else self.z,
)
__radd__ = __add__
def __sub__(self, other):
return Point(
self.x - other[0],
self.y - other[1],
self.z - other[2] if len(other) > 2 else self.z,
)
def __rsub__(self, other):
return Point(
other[0] - self.x,
other[1] - self.y,
other[2] - self.z if len(other) > 2 else self.z,
)
def __mul__(self, other):
if isinstance(other, NUMERIC):
return Point(self.x * other, self.y * other, self.z * other)
return Point(
other[0] * self.x,
other[1] * self.y,
other[2] * self.z if len(other) > 2 else self.z,
)
__rmul__ = __mul__
def __div__(self, other):
if isinstance(other, NUMERIC):
return Point(self.x / other, self.y / other, self.z / other)
return Point(
self.x / other[0],
self.y / other[1],
self.z / other[2] if len(other) > 2 else self.z,
)
def __rdiv__(self, other):
if isinstance(other, NUMERIC):
return Point(other / self.x, other / self.y, other / self.z)
return Point(
other[0] / self.x,
other[1] / self.y,
other[2] / self.z if len(other) > 2 else self.z,
)
def __neg__(self):
return Point(-self.x, -self.y, -self.z)
def __hash__(self):
return id(self)
def __getitem__(self, key):
return (self.x, self.y, self.z)[key]
def __repr__(self):
return "Point(%d, %d, %d)" % (self.x, self.y, self.z)
class Rect(Atom):
x = d_(Float(0, strict=False))
y = d_(Float(0, strict=False))
width = d_(Float(0, strict=False))
height = d_(Float(0, strict=False))
def coerce_point(p):
return p if isinstance(p, Point) else Point(*p)
class PointMember(Coerced):
def __init__(self, args=None, kwargs=None, factory=None, coercer=coerce_point):
super(PointMember, self).__init__(
Point, args, kwargs, factory=factory, coercer=coercer
)
class Pen(Atom):
color = ColorMember()
width = Float(1.0, strict=False)
line_style = Enum(
"solid", "dash", "dot", "dash_dot", "dash_dot_dot", "custom", "none"
)
cap_style = Enum("square", "flat", "round")
join_style = Enum("bevel", "miter", "round")
dash_pattern = List(Float(strict=False))
_tkdata = Value()
class Brush(Atom):
color = ColorMember()
image = Instance(Image)
style = Enum(
"solid",
"dense1",
"dense2",
"dense3",
"dense4",
"dense5",
"dense6",
"dense7",
"horizontal",
"vertical",
"cross",
"diag",
"bdiag",
"fdiag",
"linear",
"radial",
"conical",
"texture",
"none",
)
_tkdata = Value()
class ProxyGraphicsView(ProxyControl):
declaration = ForwardTyped(lambda: GraphicsView)
def set_auto_range(self, enabled):
raise NotImplementedError
def set_antialiasing(self, enabled):
raise NotImplementedError
def set_drag_mode(self, mode):
raise NotImplementedError
def set_renderer(self, renderer):
raise NotImplementedError
def get_item_at(self, point):
raise NotImplementedError
def set_lock_aspect_ratio(self, locked):
raise NotImplementedError
def set_selected_items(self, items):
raise NotImplementedError
def fit_in_view(self, item):
raise NotImplementedError
def center_on(self, item):
raise NotImplementedError
def reset_view(self):
raise NotImplementedError
def translate_view(self, x, y):
raise NotImplementedError
def scale_view(self, x, y):
raise NotImplementedError
def rotate_view(self, angle):
raise NotImplementedError
def map_from_scene(self, point):
raise NotImplementedError
def map_to_scene(self, point):
raise NotImplementedError
def pixel_density(self):
raise NotImplementedError
class ProxyGraphicsItem(ProxyToolkitObject):
declaration = ForwardTyped(lambda: GraphicsItem)
def set_x(self, x):
raise NotImplementedError
def set_y(self, y):
raise NotImplementedError
def set_z(self, z):
raise NotImplementedError
def set_position(self, position):
raise NotImplementedError
def set_rotation(self, rotation):
raise NotImplementedError
def set_scale(self, scale):
raise NotImplementedError
def set_opacity(self, opacity):
raise NotImplementedError
def set_selected(self, selected):
raise NotImplementedError
def set_enabled(self, enabled):
raise NotImplementedError
def set_selectable(self, enabled):
raise NotImplementedError
def set_movable(self, enabled):
raise NotImplementedError
def set_visible(self, visible):
raise NotImplementedError
def set_tool_tip(self, tool_tip):
raise NotImplementedError
def set_status_tip(self, status_tip):
raise NotImplementedError
def request_update(self):
raise NotImplementedError
def ensure_visible(self):
raise NotImplementedError
def ensure_hidden(self):
raise NotImplementedError
def set_focus(self):
raise NotImplementedError
def clear_focus(self):
raise NotImplementedError
def has_focus(self):
raise NotImplementedError
class ProxyGraphicsItemGroup(ProxyGraphicsItem):
declaration = ForwardTyped(lambda: GraphicsItemGroup)
class ProxyGraphicsWidget(ProxyGraphicsItem):
declaration = ForwardTyped(lambda: GraphicsWidget)
class ProxyAbstractGraphicsShapeItem(ProxyGraphicsItem):
declaration = ForwardTyped(lambda: AbstractGraphicsShapeItem)
def set_pen(self, pen):
raise NotImplementedError
def set_brush(self, brush):
raise NotImplementedError
class ProxyGraphicsRectItem(ProxyAbstractGraphicsShapeItem):
declaration = ForwardTyped(lambda: GraphicsRectItem)
def set_width(self, width):
raise NotImplementedError
def set_height(self, height):
raise NotImplementedError
class ProxyGraphicsEllipseItem(ProxyAbstractGraphicsShapeItem):
declaration = ForwardTyped(lambda: GraphicsEllipseItem)
def set_width(self, width):
raise NotImplementedError
def set_height(self, height):
raise NotImplementedError
def set_span_angle(self, angle):
raise NotImplementedError
def set_start_angle(self, angle):
raise NotImplementedError
class ProxyGraphicsLineItem(ProxyAbstractGraphicsShapeItem):
declaration = ForwardTyped(lambda: GraphicsLineItem)
def set_point(self, point):
raise NotImplementedError
class ProxyGraphicsTextItem(ProxyAbstractGraphicsShapeItem):
declaration = ForwardTyped(lambda: GraphicsTextItem)
def set_text(self, text):
raise NotImplementedError
def set_font(self, font):
raise NotImplementedError
class ProxyGraphicsPolygonItem(ProxyAbstractGraphicsShapeItem):
declaration = ForwardTyped(lambda: GraphicsPolygonItem)
def set_points(self, points):
raise NotImplementedError
class ProxyGraphicsPathItem(ProxyAbstractGraphicsShapeItem):
declaration = ForwardTyped(lambda: GraphicsPathItem)
def set_path(self, path):
raise NotImplementedError
class ProxyGraphicsImageItem(ProxyGraphicsItem):
declaration = ForwardTyped(lambda: GraphicsImageItem)
def set_image(self, image):
raise NotImplementedError
class GraphicsItem(ToolkitObject, ConstrainableMixin):
proxy = Typed(ProxyGraphicsItem)
position = d_(PointMember())
rotation = d_(Float(strict=False))
scale = d_(Float(1.0, strict=False))
opacity = d_(Float(1.0, strict=False))
selected = d_(Bool())
enabled = d_(Bool(True))
visible = d_(Bool(True))
tool_tip = d_(Str())
status_tip = d_(Str())
features = d_(Coerced(Feature, (0,)))
extra_features = d_(Coerced(GraphicFeature, (0,)))
request_update = d_(Event())
selectable = d_(Bool())
movable = d_(Bool())
@observe(
"position",
"position.x",
"position.y",
"position.z",
"scale",
"rotation",
"opacity",
"selected",
"enabled",
"visible",
"tool_tip",
"status_tip",
"request_update",
"selectable",
"movable",
)
def _update_proxy(self, change):
super(GraphicsItem, self)._update_proxy(change)
|
MIT License
|
botfront/rasa-for-botfront
|
rasa/core/policies/policy.py
|
Policy.format_tracker_states
|
python
|
def format_tracker_states(states: List[Dict]) -> Text:
formatted_states = [""]
if states:
for index, state in enumerate(states):
state_messages = []
if state:
if USER in state:
if TEXT in state[USER]:
state_messages.append(
f"user text: {str(state[USER][TEXT])}"
)
if INTENT in state[USER]:
state_messages.append(
f"user intent: {str(state[USER][INTENT])}"
)
if ENTITIES in state[USER]:
state_messages.append(
f"user entities: {str(state[USER][ENTITIES])}"
)
if PREVIOUS_ACTION in state:
if ACTION_NAME in state[PREVIOUS_ACTION]:
state_messages.append(
f"previous action name: {str(state[PREVIOUS_ACTION][ACTION_NAME])}"
)
if ACTION_TEXT in state[PREVIOUS_ACTION]:
state_messages.append(
f"previous action text: {str(state[PREVIOUS_ACTION][ACTION_TEXT])}"
)
if ACTIVE_LOOP in state:
state_messages.append(f"active loop: {str(state[ACTIVE_LOOP])}")
if SLOTS in state:
state_messages.append(f"slots: {str(state[SLOTS])}")
state_message_formatted = " | ".join(state_messages)
state_formatted = f"[state {str(index)}] {state_message_formatted}"
formatted_states.append(state_formatted)
return "\n".join(formatted_states)
|
Format tracker states to human readable format on debug log.
Args:
states: list of tracker states dicts
Returns:
the string of the states with user intents and actions
|
https://github.com/botfront/rasa-for-botfront/blob/6e0e48d0059e197b5f686df1e27935769c3641b7/rasa/core/policies/policy.py#L351-L396
|
import copy
import json
import logging
from enum import Enum
from pathlib import Path
from typing import (
Any,
List,
Optional,
Text,
Dict,
Callable,
Type,
Union,
Tuple,
TYPE_CHECKING,
)
import numpy as np
from rasa.core.exceptions import UnsupportedDialogueModelError
from rasa.shared.core.events import Event
import rasa.shared.utils.common
import rasa.utils.common
import rasa.shared.utils.io
from rasa.shared.core.domain import Domain
from rasa.core.featurizers.single_state_featurizer import SingleStateFeaturizer
from rasa.core.featurizers.tracker_featurizers import (
TrackerFeaturizer,
MaxHistoryTrackerFeaturizer,
FEATURIZER_FILE,
)
from rasa.shared.nlu.interpreter import NaturalLanguageInterpreter
from rasa.shared.core.trackers import DialogueStateTracker
from rasa.shared.core.generator import TrackerWithCachedStates
from rasa.core.constants import DEFAULT_POLICY_PRIORITY
from rasa.shared.core.constants import USER, SLOTS, PREVIOUS_ACTION, ACTIVE_LOOP
from rasa.shared.nlu.constants import ENTITIES, INTENT, TEXT, ACTION_TEXT, ACTION_NAME
from rasa.utils.tensorflow.constants import EPOCHS
if TYPE_CHECKING:
from rasa.shared.nlu.training_data.features import Features
logger = logging.getLogger(__name__)
class SupportedData(Enum):
ML_DATA = 1
RULE_DATA = 2
ML_AND_RULE_DATA = 3
@staticmethod
def trackers_for_policy(
policy: Union["Policy", Type["Policy"]],
trackers: Union[List[DialogueStateTracker], List[TrackerWithCachedStates]],
) -> Union[List[DialogueStateTracker], List[TrackerWithCachedStates]]:
supported_data = policy.supported_data()
if supported_data == SupportedData.RULE_DATA:
return [tracker for tracker in trackers if tracker.is_rule_tracker]
if supported_data == SupportedData.ML_DATA:
return [tracker for tracker in trackers if not tracker.is_rule_tracker]
return trackers
class Policy:
@staticmethod
def supported_data() -> SupportedData:
return SupportedData.ML_DATA
@staticmethod
def _standard_featurizer() -> MaxHistoryTrackerFeaturizer:
return MaxHistoryTrackerFeaturizer(SingleStateFeaturizer())
@classmethod
def _create_featurizer(
cls, featurizer: Optional[TrackerFeaturizer] = None
) -> TrackerFeaturizer:
if featurizer:
return copy.deepcopy(featurizer)
else:
return cls._standard_featurizer()
def __init__(
self,
featurizer: Optional[TrackerFeaturizer] = None,
priority: int = DEFAULT_POLICY_PRIORITY,
should_finetune: bool = False,
**kwargs: Any,
) -> None:
self.__featurizer = self._create_featurizer(featurizer)
self.priority = priority
self.finetune_mode = should_finetune
@property
def featurizer(self):
return self.__featurizer
@staticmethod
def _get_valid_params(func: Callable, **kwargs: Any) -> Dict:
valid_keys = rasa.shared.utils.common.arguments_of(func)
params = {key: kwargs.get(key) for key in valid_keys if kwargs.get(key)}
ignored_params = {
key: kwargs.get(key) for key in kwargs.keys() if not params.get(key)
}
logger.debug(f"Parameters ignored by `model.fit(...)`: {ignored_params}")
return params
def featurize_for_training(
self,
training_trackers: List[DialogueStateTracker],
domain: Domain,
interpreter: NaturalLanguageInterpreter,
bilou_tagging: bool = False,
**kwargs: Any,
) -> Tuple[
List[List[Dict[Text, List["Features"]]]],
np.ndarray,
List[List[Dict[Text, List["Features"]]]],
]:
state_features, label_ids, entity_tags = self.featurizer.featurize_trackers(
training_trackers, domain, interpreter, bilou_tagging
)
max_training_samples = kwargs.get("max_training_samples")
if max_training_samples is not None:
logger.debug(
"Limit training data to {} training samples."
"".format(max_training_samples)
)
state_features = state_features[:max_training_samples]
label_ids = label_ids[:max_training_samples]
entity_tags = entity_tags[:max_training_samples]
return state_features, label_ids, entity_tags
def train(
self,
training_trackers: List[TrackerWithCachedStates],
domain: Domain,
interpreter: NaturalLanguageInterpreter,
**kwargs: Any,
) -> None:
raise NotImplementedError("Policy must have the capacity to train.")
def predict_action_probabilities(
self,
tracker: DialogueStateTracker,
domain: Domain,
interpreter: NaturalLanguageInterpreter,
**kwargs: Any,
) -> "PolicyPrediction":
raise NotImplementedError("Policy must have the capacity to predict.")
def _prediction(
self,
probabilities: List[float],
events: Optional[List[Event]] = None,
optional_events: Optional[List[Event]] = None,
is_end_to_end_prediction: bool = False,
is_no_user_prediction: bool = False,
diagnostic_data: Optional[Dict[Text, Any]] = None,
) -> "PolicyPrediction":
return PolicyPrediction(
probabilities,
self.__class__.__name__,
self.priority,
events,
optional_events,
is_end_to_end_prediction,
is_no_user_prediction,
diagnostic_data,
)
def _metadata(self) -> Optional[Dict[Text, Any]]:
pass
@classmethod
def _metadata_filename(cls) -> Optional[Text]:
pass
def persist(self, path: Union[Text, Path]) -> None:
if self.featurizer is not None:
self.featurizer.persist(path)
file = Path(path) / self._metadata_filename()
rasa.shared.utils.io.create_directory_for_file(file)
rasa.shared.utils.io.dump_obj_as_json_to_file(file, self._metadata())
@classmethod
def load(cls, path: Union[Text, Path], **kwargs: Any) -> "Policy":
metadata_file = Path(path) / cls._metadata_filename()
if metadata_file.is_file():
data = json.loads(rasa.shared.utils.io.read_file(metadata_file))
if (Path(path) / FEATURIZER_FILE).is_file():
featurizer = TrackerFeaturizer.load(path)
data["featurizer"] = featurizer
data.update(kwargs)
constructor_args = rasa.shared.utils.common.arguments_of(cls)
if "kwargs" not in constructor_args:
if set(data.keys()).issubset(set(constructor_args)):
rasa.shared.utils.io.raise_deprecation_warning(
f"`{cls.__name__}.__init__` does not accept `**kwargs` "
f"This is required for contextual information e.g. the flag "
f"`should_finetune`.",
warn_until_version="3.0.0",
)
else:
raise UnsupportedDialogueModelError(
f"`{cls.__name__}.__init__` does not accept `**kwargs`. "
f"Attempting to pass {data} to the policy. "
f"This argument should be added to all policies by "
f"Rasa Open Source 3.0.0."
)
return cls(**data)
logger.info(
f"Couldn't load metadata for policy '{cls.__name__}'. "
f"File '{metadata_file}' doesn't exist."
)
return cls()
@staticmethod
def _default_predictions(domain: Domain) -> List[float]:
return [0.0] * domain.num_actions
@staticmethod
|
Apache License 2.0
|
interlin-q/interlin-q
|
interlinq/objects/operation.py
|
Operation.__init__
|
python
|
def __init__(
self,
name: str,
qids: List[str] = None,
cids: List[str] = None,
gate: str = None,
gate_param: Optional[List[Complex]] = None,
computing_host_ids: Optional[List[str]] = None,
pre_allocated_qubits: bool = False,
hamiltonian: List[Tuple[float, List[Tuple[str, int]]]] = None,
):
if name not in Constants.OPERATION_NAMES:
raise (InputError("Operation is invalid"))
self._name = name
self._qids = qids
self._cids = cids
self._gate = gate
self._gate_param = gate_param
self._computing_host_ids = (
computing_host_ids if computing_host_ids is not None else []
)
self._pre_allocated_qubits = pre_allocated_qubits
if self._name is Constants.REC_HAMILTON:
if hamiltonian is None or len(hamiltonian) == 0:
raise Exception(
"Must send non-empty Hamiltonian terms with this operation!"
)
self._hamiltonian = hamiltonian
else:
if hamiltonian and len(hamiltonian) > 0:
warnings.warn(
"You sent a list of Hamiltonians with an operation other than REC_HAMILTON"
)
|
Returns the important things for a quantum operation
Args:
name (str): Name of the operation
qids (list): List of qubits IDs associated to the operation. The first ID in this
list will be the ID of the computing host where the operation is being performed
cids (list): List of classical bit IDs associated to the operation
gate (str): Name of the single or the two-qubit gate
gate_param (list): parameter for rotational gates
computing_host_ids (list): List of associated ID/IDS of the computing host where
the operation/gate is being performed. The first computing host in the list
would be the one where the operation is being performed.
pre_allocated_qubits (bool): Flag to indicate if this operation is being performed on
a specific pre-allocated qubit (In case of EPR pair generation)
|
https://github.com/interlin-q/interlin-q/blob/3441a023fedd113b8b3e68e6c6c07f6642c0344a/interlinq/objects/operation.py#L32-L83
|
from numbers import Complex
from ..utils import Constants
import warnings
from typing import List, Optional, Tuple
class Operation(object):
I = "I"
X = "X"
Y = "Y"
Z = "Z"
CNOT = "cnot"
CPHASE = "cphase"
T = "T"
H = "H"
K = "K"
RX = "rx"
RY = "ry"
RZ = "rz"
CUSTOM = "custom_gate"
CUSTOM_TWO_QUBIT = "custom_two_qubit_gate"
CUSTOM_CONTROLLED = "custom_controlled_gate"
MEASURE = "measure"
|
MIT License
|
docusign/docusign-python-client
|
docusign_esign/models/company.py
|
Company.bold_metadata
|
python
|
def bold_metadata(self, bold_metadata):
self._bold_metadata = bold_metadata
|
Sets the bold_metadata of this Company.
:param bold_metadata: The bold_metadata of this Company. # noqa: E501
:type: PropertyMetadata
|
https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/company.py#L924-L932
|
import pprint
import re
import six
from docusign_esign.client.configuration import Configuration
class Company(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'anchor_allow_white_space_in_characters': 'str',
'anchor_allow_white_space_in_characters_metadata': 'PropertyMetadata',
'anchor_case_sensitive': 'str',
'anchor_case_sensitive_metadata': 'PropertyMetadata',
'anchor_horizontal_alignment': 'str',
'anchor_horizontal_alignment_metadata': 'PropertyMetadata',
'anchor_ignore_if_not_present': 'str',
'anchor_ignore_if_not_present_metadata': 'PropertyMetadata',
'anchor_match_whole_word': 'str',
'anchor_match_whole_word_metadata': 'PropertyMetadata',
'anchor_string': 'str',
'anchor_string_metadata': 'PropertyMetadata',
'anchor_tab_processor_version': 'str',
'anchor_tab_processor_version_metadata': 'PropertyMetadata',
'anchor_units': 'str',
'anchor_units_metadata': 'PropertyMetadata',
'anchor_x_offset': 'str',
'anchor_x_offset_metadata': 'PropertyMetadata',
'anchor_y_offset': 'str',
'anchor_y_offset_metadata': 'PropertyMetadata',
'bold': 'str',
'bold_metadata': 'PropertyMetadata',
'conceal_value_on_document': 'str',
'conceal_value_on_document_metadata': 'PropertyMetadata',
'conditional_parent_label': 'str',
'conditional_parent_label_metadata': 'PropertyMetadata',
'conditional_parent_value': 'str',
'conditional_parent_value_metadata': 'PropertyMetadata',
'custom_tab_id': 'str',
'custom_tab_id_metadata': 'PropertyMetadata',
'disable_auto_size': 'str',
'disable_auto_size_metadata': 'PropertyMetadata',
'document_id': 'str',
'document_id_metadata': 'PropertyMetadata',
'error_details': 'ErrorDetails',
'font': 'str',
'font_color': 'str',
'font_color_metadata': 'PropertyMetadata',
'font_metadata': 'PropertyMetadata',
'font_size': 'str',
'font_size_metadata': 'PropertyMetadata',
'form_order': 'str',
'form_order_metadata': 'PropertyMetadata',
'form_page_label': 'str',
'form_page_label_metadata': 'PropertyMetadata',
'form_page_number': 'str',
'form_page_number_metadata': 'PropertyMetadata',
'height': 'str',
'height_metadata': 'PropertyMetadata',
'italic': 'str',
'italic_metadata': 'PropertyMetadata',
'locale_policy': 'LocalePolicyTab',
'locked': 'str',
'locked_metadata': 'PropertyMetadata',
'max_length': 'str',
'max_length_metadata': 'PropertyMetadata',
'merge_field': 'MergeField',
'merge_field_xml': 'str',
'name': 'str',
'name_metadata': 'PropertyMetadata',
'original_value': 'str',
'original_value_metadata': 'PropertyMetadata',
'page_number': 'str',
'page_number_metadata': 'PropertyMetadata',
'recipient_id': 'str',
'recipient_id_guid': 'str',
'recipient_id_guid_metadata': 'PropertyMetadata',
'recipient_id_metadata': 'PropertyMetadata',
'required': 'str',
'required_metadata': 'PropertyMetadata',
'smart_contract_information': 'SmartContractInformation',
'source': 'str',
'status': 'str',
'status_metadata': 'PropertyMetadata',
'tab_group_labels': 'list[str]',
'tab_group_labels_metadata': 'PropertyMetadata',
'tab_id': 'str',
'tab_id_metadata': 'PropertyMetadata',
'tab_label': 'str',
'tab_label_metadata': 'PropertyMetadata',
'tab_order': 'str',
'tab_order_metadata': 'PropertyMetadata',
'tab_type': 'str',
'tab_type_metadata': 'PropertyMetadata',
'template_locked': 'str',
'template_locked_metadata': 'PropertyMetadata',
'template_required': 'str',
'template_required_metadata': 'PropertyMetadata',
'tooltip': 'str',
'tool_tip_metadata': 'PropertyMetadata',
'underline': 'str',
'underline_metadata': 'PropertyMetadata',
'value': 'str',
'value_metadata': 'PropertyMetadata',
'width': 'str',
'width_metadata': 'PropertyMetadata',
'x_position': 'str',
'x_position_metadata': 'PropertyMetadata',
'y_position': 'str',
'y_position_metadata': 'PropertyMetadata'
}
attribute_map = {
'anchor_allow_white_space_in_characters': 'anchorAllowWhiteSpaceInCharacters',
'anchor_allow_white_space_in_characters_metadata': 'anchorAllowWhiteSpaceInCharactersMetadata',
'anchor_case_sensitive': 'anchorCaseSensitive',
'anchor_case_sensitive_metadata': 'anchorCaseSensitiveMetadata',
'anchor_horizontal_alignment': 'anchorHorizontalAlignment',
'anchor_horizontal_alignment_metadata': 'anchorHorizontalAlignmentMetadata',
'anchor_ignore_if_not_present': 'anchorIgnoreIfNotPresent',
'anchor_ignore_if_not_present_metadata': 'anchorIgnoreIfNotPresentMetadata',
'anchor_match_whole_word': 'anchorMatchWholeWord',
'anchor_match_whole_word_metadata': 'anchorMatchWholeWordMetadata',
'anchor_string': 'anchorString',
'anchor_string_metadata': 'anchorStringMetadata',
'anchor_tab_processor_version': 'anchorTabProcessorVersion',
'anchor_tab_processor_version_metadata': 'anchorTabProcessorVersionMetadata',
'anchor_units': 'anchorUnits',
'anchor_units_metadata': 'anchorUnitsMetadata',
'anchor_x_offset': 'anchorXOffset',
'anchor_x_offset_metadata': 'anchorXOffsetMetadata',
'anchor_y_offset': 'anchorYOffset',
'anchor_y_offset_metadata': 'anchorYOffsetMetadata',
'bold': 'bold',
'bold_metadata': 'boldMetadata',
'conceal_value_on_document': 'concealValueOnDocument',
'conceal_value_on_document_metadata': 'concealValueOnDocumentMetadata',
'conditional_parent_label': 'conditionalParentLabel',
'conditional_parent_label_metadata': 'conditionalParentLabelMetadata',
'conditional_parent_value': 'conditionalParentValue',
'conditional_parent_value_metadata': 'conditionalParentValueMetadata',
'custom_tab_id': 'customTabId',
'custom_tab_id_metadata': 'customTabIdMetadata',
'disable_auto_size': 'disableAutoSize',
'disable_auto_size_metadata': 'disableAutoSizeMetadata',
'document_id': 'documentId',
'document_id_metadata': 'documentIdMetadata',
'error_details': 'errorDetails',
'font': 'font',
'font_color': 'fontColor',
'font_color_metadata': 'fontColorMetadata',
'font_metadata': 'fontMetadata',
'font_size': 'fontSize',
'font_size_metadata': 'fontSizeMetadata',
'form_order': 'formOrder',
'form_order_metadata': 'formOrderMetadata',
'form_page_label': 'formPageLabel',
'form_page_label_metadata': 'formPageLabelMetadata',
'form_page_number': 'formPageNumber',
'form_page_number_metadata': 'formPageNumberMetadata',
'height': 'height',
'height_metadata': 'heightMetadata',
'italic': 'italic',
'italic_metadata': 'italicMetadata',
'locale_policy': 'localePolicy',
'locked': 'locked',
'locked_metadata': 'lockedMetadata',
'max_length': 'maxLength',
'max_length_metadata': 'maxLengthMetadata',
'merge_field': 'mergeField',
'merge_field_xml': 'mergeFieldXml',
'name': 'name',
'name_metadata': 'nameMetadata',
'original_value': 'originalValue',
'original_value_metadata': 'originalValueMetadata',
'page_number': 'pageNumber',
'page_number_metadata': 'pageNumberMetadata',
'recipient_id': 'recipientId',
'recipient_id_guid': 'recipientIdGuid',
'recipient_id_guid_metadata': 'recipientIdGuidMetadata',
'recipient_id_metadata': 'recipientIdMetadata',
'required': 'required',
'required_metadata': 'requiredMetadata',
'smart_contract_information': 'smartContractInformation',
'source': 'source',
'status': 'status',
'status_metadata': 'statusMetadata',
'tab_group_labels': 'tabGroupLabels',
'tab_group_labels_metadata': 'tabGroupLabelsMetadata',
'tab_id': 'tabId',
'tab_id_metadata': 'tabIdMetadata',
'tab_label': 'tabLabel',
'tab_label_metadata': 'tabLabelMetadata',
'tab_order': 'tabOrder',
'tab_order_metadata': 'tabOrderMetadata',
'tab_type': 'tabType',
'tab_type_metadata': 'tabTypeMetadata',
'template_locked': 'templateLocked',
'template_locked_metadata': 'templateLockedMetadata',
'template_required': 'templateRequired',
'template_required_metadata': 'templateRequiredMetadata',
'tooltip': 'tooltip',
'tool_tip_metadata': 'toolTipMetadata',
'underline': 'underline',
'underline_metadata': 'underlineMetadata',
'value': 'value',
'value_metadata': 'valueMetadata',
'width': 'width',
'width_metadata': 'widthMetadata',
'x_position': 'xPosition',
'x_position_metadata': 'xPositionMetadata',
'y_position': 'yPosition',
'y_position_metadata': 'yPositionMetadata'
}
def __init__(self, _configuration=None, **kwargs):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._anchor_allow_white_space_in_characters = None
self._anchor_allow_white_space_in_characters_metadata = None
self._anchor_case_sensitive = None
self._anchor_case_sensitive_metadata = None
self._anchor_horizontal_alignment = None
self._anchor_horizontal_alignment_metadata = None
self._anchor_ignore_if_not_present = None
self._anchor_ignore_if_not_present_metadata = None
self._anchor_match_whole_word = None
self._anchor_match_whole_word_metadata = None
self._anchor_string = None
self._anchor_string_metadata = None
self._anchor_tab_processor_version = None
self._anchor_tab_processor_version_metadata = None
self._anchor_units = None
self._anchor_units_metadata = None
self._anchor_x_offset = None
self._anchor_x_offset_metadata = None
self._anchor_y_offset = None
self._anchor_y_offset_metadata = None
self._bold = None
self._bold_metadata = None
self._conceal_value_on_document = None
self._conceal_value_on_document_metadata = None
self._conditional_parent_label = None
self._conditional_parent_label_metadata = None
self._conditional_parent_value = None
self._conditional_parent_value_metadata = None
self._custom_tab_id = None
self._custom_tab_id_metadata = None
self._disable_auto_size = None
self._disable_auto_size_metadata = None
self._document_id = None
self._document_id_metadata = None
self._error_details = None
self._font = None
self._font_color = None
self._font_color_metadata = None
self._font_metadata = None
self._font_size = None
self._font_size_metadata = None
self._form_order = None
self._form_order_metadata = None
self._form_page_label = None
self._form_page_label_metadata = None
self._form_page_number = None
self._form_page_number_metadata = None
self._height = None
self._height_metadata = None
self._italic = None
self._italic_metadata = None
self._locale_policy = None
self._locked = None
self._locked_metadata = None
self._max_length = None
self._max_length_metadata = None
self._merge_field = None
self._merge_field_xml = None
self._name = None
self._name_metadata = None
self._original_value = None
self._original_value_metadata = None
self._page_number = None
self._page_number_metadata = None
self._recipient_id = None
self._recipient_id_guid = None
self._recipient_id_guid_metadata = None
self._recipient_id_metadata = None
self._required = None
self._required_metadata = None
self._smart_contract_information = None
self._source = None
self._status = None
self._status_metadata = None
self._tab_group_labels = None
self._tab_group_labels_metadata = None
self._tab_id = None
self._tab_id_metadata = None
self._tab_label = None
self._tab_label_metadata = None
self._tab_order = None
self._tab_order_metadata = None
self._tab_type = None
self._tab_type_metadata = None
self._template_locked = None
self._template_locked_metadata = None
self._template_required = None
self._template_required_metadata = None
self._tooltip = None
self._tool_tip_metadata = None
self._underline = None
self._underline_metadata = None
self._value = None
self._value_metadata = None
self._width = None
self._width_metadata = None
self._x_position = None
self._x_position_metadata = None
self._y_position = None
self._y_position_metadata = None
self.discriminator = None
setattr(self, "_{}".format('anchor_allow_white_space_in_characters'), kwargs.get('anchor_allow_white_space_in_characters', None))
setattr(self, "_{}".format('anchor_allow_white_space_in_characters_metadata'), kwargs.get('anchor_allow_white_space_in_characters_metadata', None))
setattr(self, "_{}".format('anchor_case_sensitive'), kwargs.get('anchor_case_sensitive', None))
setattr(self, "_{}".format('anchor_case_sensitive_metadata'), kwargs.get('anchor_case_sensitive_metadata', None))
setattr(self, "_{}".format('anchor_horizontal_alignment'), kwargs.get('anchor_horizontal_alignment', None))
setattr(self, "_{}".format('anchor_horizontal_alignment_metadata'), kwargs.get('anchor_horizontal_alignment_metadata', None))
setattr(self, "_{}".format('anchor_ignore_if_not_present'), kwargs.get('anchor_ignore_if_not_present', None))
setattr(self, "_{}".format('anchor_ignore_if_not_present_metadata'), kwargs.get('anchor_ignore_if_not_present_metadata', None))
setattr(self, "_{}".format('anchor_match_whole_word'), kwargs.get('anchor_match_whole_word', None))
setattr(self, "_{}".format('anchor_match_whole_word_metadata'), kwargs.get('anchor_match_whole_word_metadata', None))
setattr(self, "_{}".format('anchor_string'), kwargs.get('anchor_string', None))
setattr(self, "_{}".format('anchor_string_metadata'), kwargs.get('anchor_string_metadata', None))
setattr(self, "_{}".format('anchor_tab_processor_version'), kwargs.get('anchor_tab_processor_version', None))
setattr(self, "_{}".format('anchor_tab_processor_version_metadata'), kwargs.get('anchor_tab_processor_version_metadata', None))
setattr(self, "_{}".format('anchor_units'), kwargs.get('anchor_units', None))
setattr(self, "_{}".format('anchor_units_metadata'), kwargs.get('anchor_units_metadata', None))
setattr(self, "_{}".format('anchor_x_offset'), kwargs.get('anchor_x_offset', None))
setattr(self, "_{}".format('anchor_x_offset_metadata'), kwargs.get('anchor_x_offset_metadata', None))
setattr(self, "_{}".format('anchor_y_offset'), kwargs.get('anchor_y_offset', None))
setattr(self, "_{}".format('anchor_y_offset_metadata'), kwargs.get('anchor_y_offset_metadata', None))
setattr(self, "_{}".format('bold'), kwargs.get('bold', None))
setattr(self, "_{}".format('bold_metadata'), kwargs.get('bold_metadata', None))
setattr(self, "_{}".format('conceal_value_on_document'), kwargs.get('conceal_value_on_document', None))
setattr(self, "_{}".format('conceal_value_on_document_metadata'), kwargs.get('conceal_value_on_document_metadata', None))
setattr(self, "_{}".format('conditional_parent_label'), kwargs.get('conditional_parent_label', None))
setattr(self, "_{}".format('conditional_parent_label_metadata'), kwargs.get('conditional_parent_label_metadata', None))
setattr(self, "_{}".format('conditional_parent_value'), kwargs.get('conditional_parent_value', None))
setattr(self, "_{}".format('conditional_parent_value_metadata'), kwargs.get('conditional_parent_value_metadata', None))
setattr(self, "_{}".format('custom_tab_id'), kwargs.get('custom_tab_id', None))
setattr(self, "_{}".format('custom_tab_id_metadata'), kwargs.get('custom_tab_id_metadata', None))
setattr(self, "_{}".format('disable_auto_size'), kwargs.get('disable_auto_size', None))
setattr(self, "_{}".format('disable_auto_size_metadata'), kwargs.get('disable_auto_size_metadata', None))
setattr(self, "_{}".format('document_id'), kwargs.get('document_id', None))
setattr(self, "_{}".format('document_id_metadata'), kwargs.get('document_id_metadata', None))
setattr(self, "_{}".format('error_details'), kwargs.get('error_details', None))
setattr(self, "_{}".format('font'), kwargs.get('font', None))
setattr(self, "_{}".format('font_color'), kwargs.get('font_color', None))
setattr(self, "_{}".format('font_color_metadata'), kwargs.get('font_color_metadata', None))
setattr(self, "_{}".format('font_metadata'), kwargs.get('font_metadata', None))
setattr(self, "_{}".format('font_size'), kwargs.get('font_size', None))
setattr(self, "_{}".format('font_size_metadata'), kwargs.get('font_size_metadata', None))
setattr(self, "_{}".format('form_order'), kwargs.get('form_order', None))
setattr(self, "_{}".format('form_order_metadata'), kwargs.get('form_order_metadata', None))
setattr(self, "_{}".format('form_page_label'), kwargs.get('form_page_label', None))
setattr(self, "_{}".format('form_page_label_metadata'), kwargs.get('form_page_label_metadata', None))
setattr(self, "_{}".format('form_page_number'), kwargs.get('form_page_number', None))
setattr(self, "_{}".format('form_page_number_metadata'), kwargs.get('form_page_number_metadata', None))
setattr(self, "_{}".format('height'), kwargs.get('height', None))
setattr(self, "_{}".format('height_metadata'), kwargs.get('height_metadata', None))
setattr(self, "_{}".format('italic'), kwargs.get('italic', None))
setattr(self, "_{}".format('italic_metadata'), kwargs.get('italic_metadata', None))
setattr(self, "_{}".format('locale_policy'), kwargs.get('locale_policy', None))
setattr(self, "_{}".format('locked'), kwargs.get('locked', None))
setattr(self, "_{}".format('locked_metadata'), kwargs.get('locked_metadata', None))
setattr(self, "_{}".format('max_length'), kwargs.get('max_length', None))
setattr(self, "_{}".format('max_length_metadata'), kwargs.get('max_length_metadata', None))
setattr(self, "_{}".format('merge_field'), kwargs.get('merge_field', None))
setattr(self, "_{}".format('merge_field_xml'), kwargs.get('merge_field_xml', None))
setattr(self, "_{}".format('name'), kwargs.get('name', None))
setattr(self, "_{}".format('name_metadata'), kwargs.get('name_metadata', None))
setattr(self, "_{}".format('original_value'), kwargs.get('original_value', None))
setattr(self, "_{}".format('original_value_metadata'), kwargs.get('original_value_metadata', None))
setattr(self, "_{}".format('page_number'), kwargs.get('page_number', None))
setattr(self, "_{}".format('page_number_metadata'), kwargs.get('page_number_metadata', None))
setattr(self, "_{}".format('recipient_id'), kwargs.get('recipient_id', None))
setattr(self, "_{}".format('recipient_id_guid'), kwargs.get('recipient_id_guid', None))
setattr(self, "_{}".format('recipient_id_guid_metadata'), kwargs.get('recipient_id_guid_metadata', None))
setattr(self, "_{}".format('recipient_id_metadata'), kwargs.get('recipient_id_metadata', None))
setattr(self, "_{}".format('required'), kwargs.get('required', None))
setattr(self, "_{}".format('required_metadata'), kwargs.get('required_metadata', None))
setattr(self, "_{}".format('smart_contract_information'), kwargs.get('smart_contract_information', None))
setattr(self, "_{}".format('source'), kwargs.get('source', None))
setattr(self, "_{}".format('status'), kwargs.get('status', None))
setattr(self, "_{}".format('status_metadata'), kwargs.get('status_metadata', None))
setattr(self, "_{}".format('tab_group_labels'), kwargs.get('tab_group_labels', None))
setattr(self, "_{}".format('tab_group_labels_metadata'), kwargs.get('tab_group_labels_metadata', None))
setattr(self, "_{}".format('tab_id'), kwargs.get('tab_id', None))
setattr(self, "_{}".format('tab_id_metadata'), kwargs.get('tab_id_metadata', None))
setattr(self, "_{}".format('tab_label'), kwargs.get('tab_label', None))
setattr(self, "_{}".format('tab_label_metadata'), kwargs.get('tab_label_metadata', None))
setattr(self, "_{}".format('tab_order'), kwargs.get('tab_order', None))
setattr(self, "_{}".format('tab_order_metadata'), kwargs.get('tab_order_metadata', None))
setattr(self, "_{}".format('tab_type'), kwargs.get('tab_type', None))
setattr(self, "_{}".format('tab_type_metadata'), kwargs.get('tab_type_metadata', None))
setattr(self, "_{}".format('template_locked'), kwargs.get('template_locked', None))
setattr(self, "_{}".format('template_locked_metadata'), kwargs.get('template_locked_metadata', None))
setattr(self, "_{}".format('template_required'), kwargs.get('template_required', None))
setattr(self, "_{}".format('template_required_metadata'), kwargs.get('template_required_metadata', None))
setattr(self, "_{}".format('tooltip'), kwargs.get('tooltip', None))
setattr(self, "_{}".format('tool_tip_metadata'), kwargs.get('tool_tip_metadata', None))
setattr(self, "_{}".format('underline'), kwargs.get('underline', None))
setattr(self, "_{}".format('underline_metadata'), kwargs.get('underline_metadata', None))
setattr(self, "_{}".format('value'), kwargs.get('value', None))
setattr(self, "_{}".format('value_metadata'), kwargs.get('value_metadata', None))
setattr(self, "_{}".format('width'), kwargs.get('width', None))
setattr(self, "_{}".format('width_metadata'), kwargs.get('width_metadata', None))
setattr(self, "_{}".format('x_position'), kwargs.get('x_position', None))
setattr(self, "_{}".format('x_position_metadata'), kwargs.get('x_position_metadata', None))
setattr(self, "_{}".format('y_position'), kwargs.get('y_position', None))
setattr(self, "_{}".format('y_position_metadata'), kwargs.get('y_position_metadata', None))
@property
def anchor_allow_white_space_in_characters(self):
return self._anchor_allow_white_space_in_characters
@anchor_allow_white_space_in_characters.setter
def anchor_allow_white_space_in_characters(self, anchor_allow_white_space_in_characters):
self._anchor_allow_white_space_in_characters = anchor_allow_white_space_in_characters
@property
def anchor_allow_white_space_in_characters_metadata(self):
return self._anchor_allow_white_space_in_characters_metadata
@anchor_allow_white_space_in_characters_metadata.setter
def anchor_allow_white_space_in_characters_metadata(self, anchor_allow_white_space_in_characters_metadata):
self._anchor_allow_white_space_in_characters_metadata = anchor_allow_white_space_in_characters_metadata
@property
def anchor_case_sensitive(self):
return self._anchor_case_sensitive
@anchor_case_sensitive.setter
def anchor_case_sensitive(self, anchor_case_sensitive):
self._anchor_case_sensitive = anchor_case_sensitive
@property
def anchor_case_sensitive_metadata(self):
return self._anchor_case_sensitive_metadata
@anchor_case_sensitive_metadata.setter
def anchor_case_sensitive_metadata(self, anchor_case_sensitive_metadata):
self._anchor_case_sensitive_metadata = anchor_case_sensitive_metadata
@property
def anchor_horizontal_alignment(self):
return self._anchor_horizontal_alignment
@anchor_horizontal_alignment.setter
def anchor_horizontal_alignment(self, anchor_horizontal_alignment):
self._anchor_horizontal_alignment = anchor_horizontal_alignment
@property
def anchor_horizontal_alignment_metadata(self):
return self._anchor_horizontal_alignment_metadata
@anchor_horizontal_alignment_metadata.setter
def anchor_horizontal_alignment_metadata(self, anchor_horizontal_alignment_metadata):
self._anchor_horizontal_alignment_metadata = anchor_horizontal_alignment_metadata
@property
def anchor_ignore_if_not_present(self):
return self._anchor_ignore_if_not_present
@anchor_ignore_if_not_present.setter
def anchor_ignore_if_not_present(self, anchor_ignore_if_not_present):
self._anchor_ignore_if_not_present = anchor_ignore_if_not_present
@property
def anchor_ignore_if_not_present_metadata(self):
return self._anchor_ignore_if_not_present_metadata
@anchor_ignore_if_not_present_metadata.setter
def anchor_ignore_if_not_present_metadata(self, anchor_ignore_if_not_present_metadata):
self._anchor_ignore_if_not_present_metadata = anchor_ignore_if_not_present_metadata
@property
def anchor_match_whole_word(self):
return self._anchor_match_whole_word
@anchor_match_whole_word.setter
def anchor_match_whole_word(self, anchor_match_whole_word):
self._anchor_match_whole_word = anchor_match_whole_word
@property
def anchor_match_whole_word_metadata(self):
return self._anchor_match_whole_word_metadata
@anchor_match_whole_word_metadata.setter
def anchor_match_whole_word_metadata(self, anchor_match_whole_word_metadata):
self._anchor_match_whole_word_metadata = anchor_match_whole_word_metadata
@property
def anchor_string(self):
return self._anchor_string
@anchor_string.setter
def anchor_string(self, anchor_string):
self._anchor_string = anchor_string
@property
def anchor_string_metadata(self):
return self._anchor_string_metadata
@anchor_string_metadata.setter
def anchor_string_metadata(self, anchor_string_metadata):
self._anchor_string_metadata = anchor_string_metadata
@property
def anchor_tab_processor_version(self):
return self._anchor_tab_processor_version
@anchor_tab_processor_version.setter
def anchor_tab_processor_version(self, anchor_tab_processor_version):
self._anchor_tab_processor_version = anchor_tab_processor_version
@property
def anchor_tab_processor_version_metadata(self):
return self._anchor_tab_processor_version_metadata
@anchor_tab_processor_version_metadata.setter
def anchor_tab_processor_version_metadata(self, anchor_tab_processor_version_metadata):
self._anchor_tab_processor_version_metadata = anchor_tab_processor_version_metadata
@property
def anchor_units(self):
return self._anchor_units
@anchor_units.setter
def anchor_units(self, anchor_units):
self._anchor_units = anchor_units
@property
def anchor_units_metadata(self):
return self._anchor_units_metadata
@anchor_units_metadata.setter
def anchor_units_metadata(self, anchor_units_metadata):
self._anchor_units_metadata = anchor_units_metadata
@property
def anchor_x_offset(self):
return self._anchor_x_offset
@anchor_x_offset.setter
def anchor_x_offset(self, anchor_x_offset):
self._anchor_x_offset = anchor_x_offset
@property
def anchor_x_offset_metadata(self):
return self._anchor_x_offset_metadata
@anchor_x_offset_metadata.setter
def anchor_x_offset_metadata(self, anchor_x_offset_metadata):
self._anchor_x_offset_metadata = anchor_x_offset_metadata
@property
def anchor_y_offset(self):
return self._anchor_y_offset
@anchor_y_offset.setter
def anchor_y_offset(self, anchor_y_offset):
self._anchor_y_offset = anchor_y_offset
@property
def anchor_y_offset_metadata(self):
return self._anchor_y_offset_metadata
@anchor_y_offset_metadata.setter
def anchor_y_offset_metadata(self, anchor_y_offset_metadata):
self._anchor_y_offset_metadata = anchor_y_offset_metadata
@property
def bold(self):
return self._bold
@bold.setter
def bold(self, bold):
self._bold = bold
@property
def bold_metadata(self):
return self._bold_metadata
@bold_metadata.setter
|
MIT License
|
identitypython/pyjwkest
|
src/jwkest/extra.py
|
pkcs5trim
|
python
|
def pkcs5trim(x):
n = unpack('B', x[-1:])[0]
if n > 16:
raise Exception("Mal-formed PKCS#5 padding")
return x[:-n]
|
Trim PKCS#5 padding from an octet string
:type x: bytes
:rtype: bytes
|
https://github.com/identitypython/pyjwkest/blob/880fe789ff74a6b927151ddba6e9796fe88a7ce1/src/jwkest/extra.py#L46-L58
|
from __future__ import division
from jwkest.jws import JWSException
try:
from builtins import bytes
except ImportError:
pass
from math import ceil
from struct import pack, unpack
from Cryptodome.Cipher import AES
from Cryptodome.Hash import SHA256
from Cryptodome.Hash import SHA384
from Cryptodome.Hash import SHA512
from Cryptodome.Hash import HMAC
LENMET = {
32: (16, SHA256),
48: (24, SHA384),
64: (32, SHA512)
}
class VerificationFailure(JWSException):
pass
def pkcs5pad(x):
n = 16 - len(x) % 16
if n == 0:
n = 16
ns = pack('B', n)
return x + (ns * n)
|
Apache License 2.0
|
gussand/anubis
|
api/anubis/utils/github/parse.py
|
parse_github_org_name
|
python
|
def parse_github_org_name(org_url: str) -> Optional[str]:
r = parse("https://github.com/{}", org_url)
if r is None:
return ''
return r[1].strip().rstrip('/')
|
Get org name from a github url
"https://github.com/os3224" -> "os3224"
|
https://github.com/gussand/anubis/blob/5ff4e293b84049af92b53b3bcc264c7782ffb9e6/api/anubis/utils/github/parse.py#L6-L18
|
from typing import Optional
from parse import parse
|
MIT License
|
botfront/rasa-for-botfront
|
rasa/core/channels/socketio.py
|
SocketIOOutput.send_image_url
|
python
|
async def send_image_url(
self, recipient_id: Text, image: Text, **kwargs: Any
) -> None:
message = {"attachment": {"type": "image", "payload": {"src": image}}}
await self._send_message(recipient_id, message)
|
Sends an image to the output
|
https://github.com/botfront/rasa-for-botfront/blob/6e0e48d0059e197b5f686df1e27935769c3641b7/rasa/core/channels/socketio.py#L48-L54
|
import logging
import uuid
from typing import Any, Awaitable, Callable, Dict, Iterable, List, Optional, Text
from rasa.core.channels.channel import InputChannel, OutputChannel, UserMessage
import rasa.shared.utils.io
from sanic import Blueprint, response
from sanic.request import Request
from sanic.response import HTTPResponse
from socketio import AsyncServer
logger = logging.getLogger(__name__)
class SocketBlueprint(Blueprint):
def __init__(self, sio: AsyncServer, socketio_path, *args, **kwargs):
self.sio = sio
self.socketio_path = socketio_path
super().__init__(*args, **kwargs)
def register(self, app, options) -> None:
self.sio.attach(app, self.socketio_path)
super().register(app, options)
class SocketIOOutput(OutputChannel):
@classmethod
def name(cls) -> Text:
return "socketio"
def __init__(self, sio: AsyncServer, bot_message_evt: Text) -> None:
self.sio = sio
self.bot_message_evt = bot_message_evt
async def _send_message(self, socket_id: Text, response: Any) -> None:
await self.sio.emit(self.bot_message_evt, response, room=socket_id)
async def send_text_message(
self, recipient_id: Text, text: Text, **kwargs: Any
) -> None:
for message_part in text.strip().split("\n\n"):
await self._send_message(recipient_id, {"text": message_part})
|
Apache License 2.0
|
sfanous/pyecobee
|
pyecobee/objects/thermostat.py
|
Thermostat.house_details
|
python
|
def house_details(self, house_details):
self._house_details = house_details
|
Sets the house_details attribute of this Thermostat instance.
:param house_details: The house_details value to set for the
house_details attribute of this Thermostat instance.
:type: HouseDetails
|
https://github.com/sfanous/pyecobee/blob/3d6b4aec3c6bc9b796aa3d3fd6626909ffdbac13/pyecobee/objects/thermostat.py#L627-L636
|
from pyecobee.ecobee_object import EcobeeObject
class Thermostat(EcobeeObject):
__slots__ = [
'_identifier',
'_name',
'_thermostat_rev',
'_is_registered',
'_model_number',
'_brand',
'_features',
'_last_modified',
'_thermostat_time',
'_utc_time',
'_audio',
'_alerts',
'_reminders',
'_settings',
'_runtime',
'_extended_runtime',
'_electricity',
'_devices',
'_location',
'_energy',
'_technician',
'_utility',
'_management',
'_weather',
'_events',
'_program',
'_house_details',
'_oem_cfg',
'_equipment_status',
'_notification_settings',
'_privacy',
'_version',
'_security_settings',
'_filter_subscription',
'_remote_sensors',
]
attribute_name_map = {
'identifier': 'identifier',
'name': 'name',
'thermostat_rev': 'thermostatRev',
'thermostatRev': 'thermostat_rev',
'is_registered': 'isRegistered',
'isRegistered': 'is_registered',
'model_number': 'modelNumber',
'modelNumber': 'model_number',
'brand': 'brand',
'features': 'features',
'last_modified': 'lastModified',
'lastModified': 'last_modified',
'thermostat_time': 'thermostatTime',
'thermostatTime': 'thermostat_time',
'utc_time': 'utcTime',
'utcTime': 'utc_time',
'audio': 'audio',
'alerts': 'alerts',
'reminders': 'reminders',
'settings': 'settings',
'runtime': 'runtime',
'extended_runtime': 'extendedRuntime',
'extendedRuntime': 'extended_runtime',
'electricity': 'electricity',
'devices': 'devices',
'location': 'location',
'energy': 'energy',
'technician': 'technician',
'utility': 'utility',
'management': 'management',
'weather': 'weather',
'events': 'events',
'program': 'program',
'house_details': 'houseDetails',
'houseDetails': 'house_details',
'oem_cfg': 'oemCfg',
'oemCfg': 'oem_cfg',
'equipment_status': 'equipmentStatus',
'equipmentStatus': 'equipment_status',
'notification_settings': 'notificationSettings',
'notificationSettings': 'notification_settings',
'privacy': 'privacy',
'version': 'version',
'security_settings': 'securitySettings',
'securitySettings': 'security_settings',
'filter_subscription': 'filterSubscription',
'filterSubscription': 'filter_subscription',
'remote_sensors': 'remoteSensors',
'remoteSensors': 'remote_sensors',
}
attribute_type_map = {
'identifier': 'six.text_type',
'name': 'six.text_type',
'thermostat_rev': 'six.text_type',
'is_registered': 'bool',
'model_number': 'six.text_type',
'brand': 'six.text_type',
'features': 'six.text_type',
'last_modified': 'six.text_type',
'thermostat_time': 'six.text_type',
'utc_time': 'six.text_type',
'audio': 'Audio',
'alerts': 'List[Alert]',
'reminders': 'List[ThermostatReminder2]',
'settings': 'Settings',
'runtime': 'Runtime',
'extended_runtime': 'ExtendedRuntime',
'electricity': 'Electricity',
'devices': 'List[Device]',
'location': 'Location',
'energy': 'Energy',
'technician': 'Technician',
'utility': 'Utility',
'management': 'Management',
'weather': 'Weather',
'events': 'List[Event]',
'program': 'Program',
'house_details': 'HouseDetails',
'oem_cfg': 'ThermostatOemCfg',
'equipment_status': 'six.text_type',
'notification_settings': 'NotificationSettings',
'privacy': 'ThermostatPrivacy',
'version': 'Version',
'security_settings': 'SecuritySettings',
'filter_subscription': 'ApiFilterSubscription',
'remote_sensors': 'List[RemoteSensor]',
}
def __init__(
self,
identifier,
name=None,
thermostat_rev=None,
is_registered=None,
model_number=None,
brand=None,
features=None,
last_modified=None,
thermostat_time=None,
utc_time=None,
audio=None,
alerts=None,
reminders=None,
settings=None,
runtime=None,
extended_runtime=None,
electricity=None,
devices=None,
location=None,
energy=None,
technician=None,
utility=None,
management=None,
weather=None,
events=None,
program=None,
house_details=None,
oem_cfg=None,
equipment_status=None,
notification_settings=None,
privacy=None,
version=None,
security_settings=None,
filter_subscription=None,
remote_sensors=None,
):
self._identifier = identifier
self._name = name
self._thermostat_rev = thermostat_rev
self._is_registered = is_registered
self._model_number = model_number
self._brand = brand
self._features = features
self._last_modified = last_modified
self._thermostat_time = thermostat_time
self._utc_time = utc_time
self._audio = audio
self._alerts = alerts
self._reminders = reminders
self._settings = settings
self._runtime = runtime
self._extended_runtime = extended_runtime
self._electricity = electricity
self._devices = devices
self._location = location
self._energy = energy
self._technician = technician
self._utility = utility
self._management = management
self._weather = weather
self._events = events
self._program = program
self._house_details = house_details
self._oem_cfg = oem_cfg
self._equipment_status = equipment_status
self._notification_settings = notification_settings
self._privacy = privacy
self._version = version
self._security_settings = security_settings
self._filter_subscription = filter_subscription
self._remote_sensors = remote_sensors
@property
def identifier(self):
return self._identifier
@property
def name(self):
return self._name
@name.setter
def name(self, name):
self._name = name
@property
def thermostat_rev(self):
return self._thermostat_rev
@property
def is_registered(self):
return self._is_registered
@property
def model_number(self):
return self._model_number
@property
def brand(self):
return self._brand
@property
def features(self):
return self._features
@property
def last_modified(self):
return self._last_modified
@property
def thermostat_time(self):
return self._thermostat_time
@property
def utc_time(self):
return self._utc_time
@property
def audio(self):
return self._audio
@audio.setter
def audio(self, audio):
self._audio = audio
@property
def alerts(self):
return self._alerts
@property
def reminders(self):
return self._reminders
@property
def settings(self):
return self._settings
@settings.setter
def settings(self, settings):
self._settings = settings
@property
def runtime(self):
return self._runtime
@property
def extended_runtime(self):
return self._extended_runtime
@property
def electricity(self):
return self._electricity
@property
def devices(self):
return self._devices
@property
def location(self):
return self._location
@location.setter
def location(self, location):
self._location = location
@property
def energy(self):
return self._energy
@energy.setter
def energy(self, energy):
self._energy = energy
@property
def technician(self):
return self._technician
@property
def utility(self):
return self._utility
@property
def management(self):
return self._management
@property
def weather(self):
return self._weather
@property
def events(self):
return self._events
@property
def program(self):
return self._program
@program.setter
def program(self, program):
self._program = program
@property
def house_details(self):
return self._house_details
@house_details.setter
|
MIT License
|
sbg/mitty
|
mitty/lib/vcfio.py
|
prepare_variant_file
|
python
|
def prepare_variant_file(fname_in, sample, bed_fname, fname_out, write_mode='w'):
logger.debug('Starting filtering ...')
t0 = time.time()
mode = 'rb' if fname_in.endswith('bcf') else 'r'
vcf_in = pysam.VariantFile(fname_in, mode)
vcf_in.subset_samples([sample])
vcf_out = pysam.VariantFile(fname_out, mode=write_mode, header=vcf_in.header)
processed_cnt, exclude_cnt, include_cnt = 0, 0, 0
contig_dict = set()
for region in read_bed(bed_fname):
logger.debug('Filtering {}'.format(region))
n, this_include_cnt = -1, 0
empty_gt = None
if region[0] not in contig_dict:
empty_gt = fetch_first_variant_in_contig_as_empty(vcf_in, region[0])
contig_dict.add(region[0])
v_check = UnusableVariantFilter(sniff_ploidy(vcf_in, contig=region[0]))
for n, v in enumerate(vcf_in.fetch(contig=region[0], start=region[1], stop=region[2])):
if not any(v.samples.values()[0]['GT']): continue
if v_check.unusable(v):
exclude_cnt += 1
continue
vcf_out.write(v)
this_include_cnt += 1
if this_include_cnt == 0 and empty_gt is not None:
vcf_out.write(empty_gt)
include_cnt += this_include_cnt
processed_cnt += (n + 1)
logger.debug('Processed {} variants'.format(processed_cnt))
logger.debug('Sample had {} variants'.format(exclude_cnt + include_cnt))
logger.debug('Discarded {} variants'.format(exclude_cnt))
t1 = time.time()
logger.debug('Took {} s'.format(t1 - t0))
|
Prepare a variant file with only the given sample, complex and illegal variant calls
filtered out, and restricted to the given bed file
:param fname_in:
:param sample:
:param bed_fname:
:param fname_out:
:return: - output is to file
|
https://github.com/sbg/mitty/blob/e299649f71b78da036b25a96cec3440764095c87/mitty/lib/vcfio.py#L207-L255
|
import logging
import time
import pysam
from mitty.lib.bedfile import read_bed
logger = logging.getLogger(__name__)
class Variant(object):
__slots__ = ('pos', 'ref', 'alt', 'cigarop', 'oplen')
def __init__(self, pos, ref, alt, cigarop, oplen):
self.pos = pos
self.ref = ref
self.alt = alt
self.cigarop = cigarop
self.oplen = oplen
def tuple(self):
return self.pos, self.ref, self.alt, self.cigarop, self.oplen
def __repr__(self):
return self.tuple().__repr__()
def load_variant_file(fname, sample, bed_fname):
mode = 'rb' if fname.endswith('bcf') else 'r'
vcf_fp = pysam.VariantFile(fname, mode)
vcf_fp.subset_samples([sample])
return [
split_copies(region,
[v for v in vcf_fp.fetch(contig=region[0], start=region[1], stop=region[2])],
sniff_ploidy(vcf_fp, region[0]))
for region in read_bed(bed_fname)
]
def sniff_ploidy(vcf_fp, contig):
v = next(vcf_fp.fetch(contig=contig), None)
ploidy = 2
if v is not None:
ploidy = len(v.samples[0]['GT'])
logger.debug(
'Contig: {}, ploidy: {} {}'.format(contig, ploidy,
'(Assumed. Contig was empty)' if v is None else ''))
return ploidy
def fetch_first_variant_in_contig_as_empty(vcf_fp, contig):
v = next(vcf_fp.fetch(contig=contig), None)
if v is not None:
v.samples[0]['GT'] = (0,) * len(v.samples[0]['GT'])
return v
def split_copies(region, vl, ploidy):
return {
'region': region,
'v': [
parse_vl(vl, cpy=cpy, ploidy=ploidy)
for cpy in range(ploidy)
]
}
def parse_vl(vl, cpy, ploidy):
v_check = UnusableVariantFilter(ploidy)
return list(filter(None, (parse(v, cpy=cpy, v_check=v_check) for v in vl)))
def parse(v, cpy, v_check):
if v.samples[0]['GT'][cpy] == 0:
return None
if v_check.unusable(v):
logger.error("Unusable variants present in VCF. Please filter or refactor these.")
raise ValueError("Unusable variants present in VCF. Please filter or refactor these.")
alt = v.samples[0].alleles[cpy]
l_r, l_a = len(v.ref), len(alt)
if l_r == 1:
if l_a == 1:
op, op_len = 'X', 0
else:
op, op_len = 'I', l_a - l_r
elif l_a == 1:
op, op_len = 'D', l_r - l_a
else:
raise ValueError("Complex variants present in VCF. Please filter or refactor these.")
return Variant(v.pos, v.ref, v.samples[0].alleles[cpy], op, op_len)
class UnusableVariantFilter:
def __init__(self, ploidy):
self.p_overlap = [0] * ploidy
self.last_variant = [(0, '', '') for _ in range(ploidy)]
def unusable(self, v):
var = v.samples.values()[0]
is_unusable = self._complex_variant(v) or self._angle_bracketed_id(v, var) or self._breakend_replacement(v) or self._illegal_overlap(v, var, self.p_overlap) or self._duplicate_variant(v, var, self.last_variant)
if not is_unusable:
for n, (g, alt) in enumerate(zip(var['GT'], var.alleles)):
if g:
self.p_overlap[n] = v.stop - 1
self.last_variant[n] = (v.pos, v.ref, alt)
return is_unusable
@staticmethod
def _complex_variant(_v):
for alt in _v.alts:
if _v.rlen > 1 and len(alt) > 1:
logger.debug('Complex variant {}:{} {} -> {}'.format(_v.contig, _v.pos, _v.ref, _v.alts))
return True
return False
@staticmethod
def _angle_bracketed_id(_v, var):
for alt in var.alleles:
if alt[0] == '<':
logger.debug('Angle bracketed variant entry {}:{} {} -> {}'.format(_v.contig, _v.pos, _v.ref, var.alleles))
return True
return False
@staticmethod
def _breakend_replacement(_v):
if _v.info.get('SVTYPE', None) == 'BND':
logger.debug('Breakend entry {}:{} {} -> {}'.format(_v.contig, _v.pos, _v.ref, _v.alts))
return True
return False
@staticmethod
def _illegal_overlap(_v, var, _p_overlap):
is_illegal = False
for n, (g, alt, po) in enumerate(zip(var['GT'], var.alleles, _p_overlap)):
if g:
if len(alt) == len(_v.ref) == 1:
start = _v.start
else:
start = _v.start + 1
if start <= po:
is_illegal = True
logger.debug('Illegal overlap {}:{} {} -> {} (previous variant ends at {})'.format(_v.contig, _v.pos, _v.ref, _v.alts, po + 1))
break
return is_illegal
@staticmethod
def _duplicate_variant(_v, var, _last_variant):
is_duplicate = False
for n, (g, alt, lv) in enumerate(zip(var['GT'], var.alleles, _last_variant)):
if g:
if (lv[0] == _v.pos) & (lv[1] == _v.ref) & (lv[2] == alt):
is_duplicate = True
logger.debug(
'Duplicate line {}:{} {} -> {}'.format(_v.contig, _v.pos, _v.ref, _v.alts))
break
return is_duplicate
|
Apache License 2.0
|
ratschlab/dpsom
|
som_vae/somvae_model.py
|
SOMVAE.loss
|
python
|
def loss(self):
loss = (self.loss_reconstruction + self.alpha*self.loss_commit + self.beta*self.loss_som
+ self.gamma*self.loss_probabilities + self.tau*self.loss_z_prob)
tf.summary.scalar("loss", loss)
return loss
|
Aggregates the loss terms into the total loss.
|
https://github.com/ratschlab/dpsom/blob/eb41e7d0aae3f213b9ad19f727ea4483543af99a/som_vae/somvae_model.py#L399-L404
|
import functools
import ipdb
import numpy as np
try:
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
except:
import tensorflow as tf
def weight_variable(shape, name):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial,name=name)
def bias_variable(shape, name):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name=name)
def conv2d(x, shape, name, strides=[1,1,1,1]):
weight = weight_variable(shape, "{}_W".format(name))
bias = bias_variable([shape[-1]], "{}_b".format(name))
return tf.nn.conv2d(x, weight, strides=strides, padding='SAME', name=name) + bias
def conv2d_transposed(x, shape, outshape, name, strides=[1,1,1,1]):
weight = weight_variable(shape, "{}_W".format(name))
bias = bias_variable([shape[-2]], "{}_b".format(name))
return tf.nn.conv2d_transpose(x, weight, output_shape=outshape, strides=strides, padding='SAME', name=name) + bias
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def conv1d(x, shape, name, stride=1):
weight = weight_variable(shape, "{}_W".format(name))
bias = bias_variable([shape[-1]], "{}_b".format(name))
return tf.nn.conv1d(x, weight, stride=stride, padding='SAME', name=name) + bias
def max_pool_2x1(x):
return tf.layers.max_pooling1d(x, pool_size=2, strides=2, padding='SAME')
def lazy_scope(function):
attribute = "_cache_" + function.__name__
@property
@functools.wraps(function)
def decorator(self):
if not hasattr(self, attribute):
with tf.variable_scope(function.__name__):
setattr(self, attribute, function(self))
return getattr(self, attribute)
return decorator
class SOMVAE:
def __init__(self, latent_dim=64, som_dim=[8,8], learning_rate=1e-4, decay_factor=0.95, decay_steps=1000,
input_length=28, input_channels=28, alpha=1., beta=1., gamma=1., tau=1., mnist=True):
self.latent_dim = latent_dim
self.som_dim = som_dim
self.learning_rate = learning_rate
self.decay_factor = decay_factor
self.decay_steps = decay_steps
self.input_length = input_length
self.input_channels = input_channels
self.alpha = alpha
self.beta = beta
self.gamma = gamma
self.tau = tau
self.mnist = mnist
self.inputs
self.is_training
self.prediction_input
self.batch_size
self.embeddings
self.transition_probabilities
self.global_step
self.z_e
self.z_e_old
self.z_dist_flat
self.k
self.z_q
self.z_q_neighbors
self.reconstruction_q
self.reconstruction_e
self.loss_reconstruction
self.loss_commit
self.loss_som
self.loss_probabilities
self.loss_z_prob
self.loss
self.optimize
@lazy_scope
def inputs(self):
x = tf.placeholder(tf.float32, shape=[None, None, 98], name="x")
return x
@lazy_scope
def is_training(self):
is_train = tf.placeholder(tf.bool,shape=[],name="is_train")
return is_train
@lazy_scope
def prediction_input(self):
pred_input = tf.placeholder(tf.int64, shape=[None], name="pred_input")
return pred_input
@lazy_scope
def x(self):
x = tf.reshape(self.inputs, [-1, 98])
return x
@lazy_scope
def embeddings(self):
embeddings = tf.get_variable("embeddings", self.som_dim+[self.latent_dim],
initializer=tf.truncated_normal_initializer(stddev=0.05))
tf.summary.tensor_summary("embeddings", embeddings)
return embeddings
@lazy_scope
def transition_probabilities(self):
with tf.variable_scope("probabilities"):
probabilities_raw = tf.Variable(tf.zeros(self.som_dim+self.som_dim), name="probabilities_raw")
probabilities_positive = tf.exp(probabilities_raw)
probabilities_summed = tf.reduce_sum(probabilities_positive, axis=[-1,-2], keepdims=True)
probabilities_normalized = probabilities_positive / probabilities_summed
return probabilities_normalized
@lazy_scope
def global_step(self):
global_step = tf.Variable(0, trainable=False, name="global_step")
return global_step
@lazy_scope
def batch_size(self):
batch_size = tf.shape(self.x)[0]
return batch_size
@lazy_scope
def z_e(self):
if not self.mnist:
with tf.variable_scope("encoder"):
h_1 = tf.keras.layers.Dense(256, activation="relu")(self.x)
h_2 = tf.keras.layers.Dense(128, activation="relu")(h_1)
z_e = tf.keras.layers.Dense(self.latent_dim, activation="relu")(h_2)
return z_e
@lazy_scope
def z_e_old(self):
z_e_old = tf.concat([self.z_e[0:1], self.z_e[:-1]], axis=0)
return z_e_old
@lazy_scope
def z_dist_flat(self):
z_dist = tf.squared_difference(tf.expand_dims(tf.expand_dims(self.z_e, 1), 1), tf.expand_dims(self.embeddings, 0))
z_dist_red = tf.reduce_sum(z_dist, axis=-1)
z_dist_flat = tf.reshape(z_dist_red, [self.batch_size, -1])
return z_dist_flat
@lazy_scope
def k(self):
k_train = tf.argmin(self.z_dist_flat, axis=-1)
k_test = self.prediction_input
k=tf.cond(self.is_training, lambda: k_train, lambda: k_test)
tf.summary.histogram("clusters", k)
return k
@lazy_scope
def z_q(self):
k_1 = self.k // self.som_dim[1]
k_2 = self.k % self.som_dim[1]
k_stacked = tf.stack([k_1, k_2], axis=1)
z_q = tf.gather_nd(self.embeddings, k_stacked)
return z_q
@lazy_scope
def z_q_neighbors(self):
k_1 = self.k // self.som_dim[1]
k_2 = self.k % self.som_dim[1]
k_stacked = tf.stack([k_1, k_2], axis=1)
k1_not_top = tf.less(k_1, tf.constant(self.som_dim[0]-1, dtype=tf.int64))
k1_not_bottom = tf.greater(k_1, tf.constant(0, dtype=tf.int64))
k2_not_right = tf.less(k_2, tf.constant(self.som_dim[1]-1, dtype=tf.int64))
k2_not_left = tf.greater(k_2, tf.constant(0, dtype=tf.int64))
k1_up = tf.where(k1_not_top, tf.add(k_1, 1), k_1)
k1_down = tf.where(k1_not_bottom, tf.subtract(k_1, 1), k_1)
k2_right = tf.where(k2_not_right, tf.add(k_2, 1), k_2)
k2_left = tf.where(k2_not_left, tf.subtract(k_2, 1), k_2)
z_q_up = tf.where(k1_not_top, tf.gather_nd(self.embeddings, tf.stack([k1_up, k_2], axis=1)),
tf.zeros([self.batch_size, self.latent_dim]))
z_q_down = tf.where(k1_not_bottom, tf.gather_nd(self.embeddings, tf.stack([k1_down, k_2], axis=1)),
tf.zeros([self.batch_size, self.latent_dim]))
z_q_right = tf.where(k2_not_right, tf.gather_nd(self.embeddings, tf.stack([k_1, k2_right], axis=1)),
tf.zeros([self.batch_size, self.latent_dim]))
z_q_left = tf.where(k2_not_left, tf.gather_nd(self.embeddings, tf.stack([k_1, k2_left], axis=1)),
tf.zeros([self.batch_size, self.latent_dim]))
z_q_neighbors = tf.stack([self.z_q, z_q_up, z_q_down, z_q_right, z_q_left], axis=1)
return z_q_neighbors
@lazy_scope
def reconstruction_q(self):
if not self.mnist:
with tf.variable_scope("decoder", reuse=tf.AUTO_REUSE):
h_3 = tf.keras.layers.Dense(128, activation="relu")(self.z_q)
h_4 = tf.keras.layers.Dense(256, activation="relu")(h_3)
x_hat = tf.keras.layers.Dense(self.input_channels, activation="sigmoid")(h_4)
else:
with tf.variable_scope("decoder", reuse=tf.AUTO_REUSE):
flat_size = 7*7*256
h_flat_dec = tf.keras.layers.Dense(flat_size)(self.z_q)
h_reshaped = tf.reshape(h_flat_dec, [-1, 7, 7, 256])
h_unpool1 = tf.keras.layers.UpSampling2D((2,2))(h_reshaped)
h_deconv1 = tf.nn.relu(conv2d(h_unpool1, [4,4,256,256], "deconv1"))
h_unpool2 = tf.keras.layers.UpSampling2D((2,2))(h_deconv1)
h_deconv2 = tf.nn.sigmoid(conv2d(h_unpool2, [4,4,256,1], "deconv2"))
x_hat = h_deconv2
return x_hat
@lazy_scope
def reconstruction_e(self):
if not self.mnist:
with tf.variable_scope("decoder", reuse=tf.AUTO_REUSE):
h_3 = tf.keras.layers.Dense(128, activation="relu")(self.z_e)
h_4 = tf.keras.layers.Dense(256, activation="relu")(h_3)
x_hat = tf.keras.layers.Dense(self.input_channels, activation="sigmoid")(h_4)
else:
with tf.variable_scope("decoder", reuse=tf.AUTO_REUSE):
flat_size = 7*7*256
h_flat_dec = tf.keras.layers.Dense(flat_size)(self.z_e)
h_reshaped = tf.reshape(h_flat_dec, [-1, 7, 7, 256])
h_unpool1 = tf.keras.layers.UpSampling2D((2,2))(h_reshaped)
h_deconv1 = tf.nn.relu(conv2d(h_unpool1, [4,4,256,256], "deconv1"))
h_unpool2 = tf.keras.layers.UpSampling2D((2,2))(h_deconv1)
h_deconv2 = tf.nn.sigmoid(conv2d(h_unpool2, [4,4,256,1], "deconv2"))
x_hat = h_deconv2
return x_hat
@lazy_scope
def loss_reconstruction(self):
loss_rec_mse_zq = tf.losses.mean_squared_error(self.x, self.reconstruction_q)
loss_rec_mse_ze = tf.losses.mean_squared_error(self.x, self.reconstruction_e)
loss_rec_mse = loss_rec_mse_zq + loss_rec_mse_ze
tf.summary.scalar("loss_reconstruction", loss_rec_mse)
return loss_rec_mse
@lazy_scope
def loss_commit(self):
loss_commit = tf.reduce_mean(tf.squared_difference(self.z_e, self.z_q))
tf.summary.scalar("loss_commit", loss_commit)
return loss_commit
@lazy_scope
def loss_som(self):
loss_som = tf.reduce_mean(tf.squared_difference(tf.expand_dims(tf.stop_gradient(self.z_e), axis=1), self.z_q_neighbors))
tf.summary.scalar("loss_som", loss_som)
return loss_som
@lazy_scope
def loss_probabilities(self):
k_1 = self.k // self.som_dim[1]
k_2 = self.k % self.som_dim[1]
k_1_old = tf.concat([k_1[0:1], k_1[:-1]], axis=0)
k_2_old = tf.concat([k_2[0:1], k_2[:-1]], axis=0)
k_stacked = tf.stack([k_1_old, k_2_old, k_1, k_2], axis=1)
transitions_all = tf.gather_nd(self.transition_probabilities, k_stacked)
loss_probabilities = -self.gamma * tf.reduce_mean(tf.log(transitions_all))
return loss_probabilities
@lazy_scope
def loss_z_prob(self):
k_1 = self.k // self.som_dim[1]
k_2 = self.k % self.som_dim[1]
k_1_old = tf.concat([k_1[0:1], k_1[:-1]], axis=0)
k_2_old = tf.concat([k_2[0:1], k_2[:-1]], axis=0)
k_stacked_old = tf.stack([k_1_old, k_2_old], axis=1)
out_probabilities_old = tf.gather_nd(self.transition_probabilities, k_stacked_old)
out_probabilities_flat = tf.reshape(out_probabilities_old, [self.batch_size, -1])
weighted_z_dist_prob = tf.multiply(self.z_dist_flat, out_probabilities_flat)
loss_z_prob = tf.reduce_mean(weighted_z_dist_prob)
return loss_z_prob
@lazy_scope
|
MIT License
|
wikimedia/pywikibot
|
scripts/archive/casechecker.py
|
CaseChecker.PickTarget
|
python
|
def PickTarget(self, title, original, candidates):
if not candidates:
return None
if len(candidates) == 1:
return candidates[0]
pagesDontExist = []
pagesRedir = {}
pagesExist = []
for newTitle in candidates:
dst = self.Page(newTitle)
if not dst.exists():
pagesDontExist.append(newTitle)
elif dst.isRedirectPage():
pagesRedir[newTitle] = dst.getRedirectTarget().title()
else:
pagesExist.append(newTitle)
if len(pagesExist) == 1:
return pagesExist[0]
if not pagesExist and pagesRedir:
if len(pagesRedir) == 1:
return list(pagesRedir.keys())[0]
t = None
for v in pagesRedir.values():
if not t:
t = v
elif t != v:
break
else:
return list(pagesRedir.keys())[0]
if not self.autonomous:
pywikibot.output('Could not auto-decide for page {}. Which link '
'should be chosen?'
.format(self.MakeLink(title, False)))
pywikibot.output('Original title: ', newline=False)
self.ColorCodeWord(original + '\n', True)
for count, t in enumerate(candidates, 1):
if t in pagesDontExist:
msg = 'missing'
elif t in pagesRedir:
msg = 'Redirect to ' + pagesRedir[t]
else:
msg = 'page exists'
self.ColorCodeWord(' {}: {} ({})\n'.format(count, t, msg),
True)
answers = [('skip', 's')] + [(str(i), i) for i in range(1, count)]
choice = pywikibot.input_choice('Which link to choose?', answers)
if choice != 's':
return candidates[int(choice) - 1]
|
Pick target from candidates.
|
https://github.com/wikimedia/pywikibot/blob/5097f5b9a7ef9d39f35f17edd11faf3086a01d1d/scripts/archive/casechecker.py#L575-L632
|
import codecs
import os
import re
import sys
from itertools import chain, combinations
from string import ascii_letters
import pywikibot
from pywikibot import i18n
from pywikibot.data import api
from pywikibot.exceptions import LockedPageError, PageSaveRelatedError
from pywikibot.tools import first_lower, first_upper, formatter
from scripts.category import CategoryMoveRobot as CategoryMoveBot
class CaseChecker:
alwaysInLocal = ['СССР', 'Как', 'как']
alwaysInLatin = ['II', 'III']
localUpperLtr = 'ЁІЇЎАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯҐ'
localLowerLtr = 'ёіїўабвгдежзийклмнопрстуфхцчшщъыьэюяґ'
localLtr = localUpperLtr + localLowerLtr
localSuspects = 'АВЕКМНОРСТХІЁЇаеорсухіёї'
latinSuspects = 'ABEKMHOPCTXIËÏaeopcyxiëï'
localKeyboard = 'йцукенгшщзфывапролдячсмить'
latinKeyboard = 'qwertyuiopasdfghjklzxcvbnm'
romanNumChars = 'IVXLCDM'
romannumSuffixes = localLowerLtr
romanNumSfxPtrn = re.compile(
'[{}]+[{}]+$'.format(romanNumChars, localLowerLtr))
whitelists = {
'ru': 'ВП:КЛ/Проверенные',
}
lclClrFnt = '<font color=green>'
latClrFnt = '<font color=brown>'
suffixClr = '</font>'
colorFormatLocalColor = '{green}'
colorFormatLatinColor = '{red}'
colorFormatSuffix = '{default}'
wordBreaker = re.compile(r'[ _\-/\|#[\]():]')
stripChars = ' \t,'
titles = True
links = False
aplimit = None
apfrom = ''
title = None
replace = False
stopAfter = -1
wikilog = None
wikilogfile = 'wikilog.txt'
failedTitles = 'failedTitles.txt'
nosuggestions = 'nosuggestions.txt'
doFailed = False
titleList = None
autonomous = False
namespaces = []
filterredir = 'nonredirects'
def handle_args(self):
for arg in pywikibot.handle_args():
arg, _, value = arg.partition(':')
if arg == '-from':
self.apfrom = value or pywikibot.input(
'Which page to start from: ')
elif arg == '-reqsize':
self.aplimit = int(value)
elif arg == '-links':
self.links = True
elif arg == '-linksonly':
self.links = True
self.titles = False
elif arg == '-replace':
self.replace = True
elif arg == '-redir':
self.filterredir = 'all'
elif arg == '-redironly':
self.filterredir = 'redirects'
elif arg == '-limit':
self.stopAfter = int(value)
elif arg in ('-autonomous', '-a'):
self.autonomous = True
elif arg == '-ns':
self.namespaces.append(int(value))
elif arg == '-wikilog':
self.wikilogfile = value
elif arg == '-failedlog':
self.failedTitles = value
elif arg == '-failed':
self.doFailed = True
else:
pywikibot.output('Unknown argument {}.'.format(arg))
pywikibot.show_help()
sys.exit()
def __init__(self):
self.handle_args()
if not self.namespaces and not self.doFailed:
if not self.apfrom:
self.namespaces = [14, 10, 12, 0]
else:
self.namespaces = [0]
if not self.aplimit:
self.aplimit = 200 if self.links else 'max'
if not self.doFailed:
self.queryParams = {'action': 'query',
'generator': 'allpages',
'gaplimit': self.aplimit,
'gapfilterredir': self.filterredir}
else:
self.queryParams = {'action': 'query'}
if self.apfrom:
pywikibot.output('Argument "-from" is ignored with "-failed"')
propParam = 'info'
if self.links:
propParam += '|links|categories'
self.queryParams['pllimit'] = 'max'
self.queryParams['cllimit'] = 'max'
self.queryParams['prop'] = propParam
self.site = pywikibot.Site()
if len(self.localSuspects) != len(self.latinSuspects):
raise ValueError('Suspects must be the same size')
if len(self.localKeyboard) != len(self.latinKeyboard):
raise ValueError('Keyboard info must be the same size')
if not os.path.isabs(self.wikilogfile):
self.wikilogfile = pywikibot.config.datafilepath(self.wikilogfile)
self.wikilog = self.OpenLogFile(self.wikilogfile)
if not os.path.isabs(self.failedTitles):
self.failedTitles = pywikibot.config.datafilepath(
self.failedTitles)
if self.doFailed:
with codecs.open(self.failedTitles, 'r', 'utf-8') as f:
self.titleList = [self.Page(t) for t in f]
self.failedTitles += '.failed'
iterzip = zip(self.localSuspects, self.latinSuspects)
self.lclToLatDict = {ord(local): latin for local, latin in iterzip}
self.latToLclDict = {ord(latin): local for local, latin in iterzip}
if self.localKeyboard is not None:
iterzip = zip(self.localKeyboard, self.latinKeyboard)
self.lclToLatKeybDict = {ord(local): latin
for local, latin in iterzip}
self.latToLclKeybDict = {ord(latin): local
for local, latin in iterzip}
else:
self.lclToLatKeybDict = {}
self.latToLclKeybDict = {}
badPtrnStr = '([{ascii}][{local}]|[{local}][{ascii}])'.format(
ascii=ascii_letters, local=self.localLtr)
self.badWordPtrn = re.compile('[{ascii}{local}]*{bad}[{ascii}{local}]*'
.format(ascii=ascii_letters,
local=self.localLtr,
bad=badPtrnStr))
self.get_whitelist()
def get_whitelist(self):
self.knownWords = set()
self.seenUnresolvedLinks = set()
if self.site.code in self.whitelists:
wlpage = self.whitelists[self.site.code]
pywikibot.output('Loading whitelist from {}'.format(wlpage))
wlparams = {
'action': 'query',
'prop': 'links',
'titles': wlpage,
'redirects': '',
'indexpageids': '',
'pllimit': 'max',
}
req = api.Request(site=self.site, parameters=wlparams)
data = req.submit()
if len(data['query']['pageids']) == 1:
pageid = data['query']['pageids'][0]
links = data['query']['pages'][pageid]['links']
self.knownWords = {nn for n in links
for nn in self.FindBadWords(n['title'])}
else:
raise ValueError('The number of pageids is not 1')
pywikibot.output('Loaded whitelist with {} items'
.format(len(self.knownWords)))
if self.knownWords:
pywikibot.log('Whitelist: '
+ ', '.join(self.MakeLink(i, False)
for i in self.knownWords))
else:
pywikibot.output(
'Whitelist is not known for language ' + self.site.code)
def RunQuery(self, params):
while True:
req = api.Request(**params)
data = req.submit()
yield data
if 'clcontinue' in params:
del params['clcontinue']
if 'plcontinue' in params:
del params['plcontinue']
if 'query-continue' not in data:
if 'gapcontinue' in params:
del params['gapcontinue']
break
qc = data['query-continue']
if 'categories' in qc or 'links' in qc:
if 'categories' in qc:
params.update(qc['categories'])
if 'links' in qc:
params.update(qc['links'])
elif 'allpages' in qc:
params.update(qc['allpages'])
else:
raise ValueError('Unexpected query-continue values: {}'
.format(qc))
def Run(self):
try:
self.lastLetter = ''
if not self.doFailed:
for namespace in self.namespaces:
self.currentTitle = None
self.queryParams['gapnamespace'] = namespace
self.queryParams['gapfrom'] = self.apfrom
for data in self.RunQuery(self.queryParams):
self.ProcessDataBlock(data)
else:
self.currentTitle = None
batchSize = 10
for batchStart in range(0, len(self.titleList), batchSize):
self.queryParams['titles'] = self.titleList[
batchStart:batchStart + batchSize]
for data in self.RunQuery(self.queryParams):
self.ProcessDataBlock(data)
except Exception:
pywikibot.output('Exception at Title = {}, Next = {}'
.format(self.currentTitle, self.apfrom))
pywikibot.exception()
raise
def ProcessDataBlock(self, data):
if 'query' not in data or 'pages' not in data['query']:
return
firstItem = True
for page in data['query']['pages'].values():
printed = False
title = page['title']
self.currentTitle = title
if 'missing' in page:
continue
if firstItem:
if self.lastLetter != title[0]:
pywikibot.output('Processing {}\n'.format(title))
self.lastLetter = title[0]
firstItem = False
if self.titles:
err = self.ProcessTitle(title)
if err:
changed = False
if self.replace:
if len(err[1]) == 1:
newTitle = err[1][0]
editSummary = i18n.twtranslate(
self.site, 'casechecker-rename')
dst = self.Page(newTitle)
if 'redirect' in page:
src = self.Page(title)
redir = src.getRedirectTarget()
redirTitle = redir.title(as_link=True,
textlink=True)
if not dst.exists():
src.move(newTitle, editSummary,
movesubpages=True)
changed = True
replErrors = False
for p in src.getReferences(
follow_redirects=False):
if p.namespace() == 2:
continue
oldText = p.text
newText = self.ReplaceLink(oldText, title,
newTitle)
if not self.PutNewPage(
p, newText,
[self.MakeMoveSummary(title,
newTitle)]):
replErrors = True
if not replErrors:
editSummary = i18n.twtranslate(
self.site,
'casechecker-delete-summary')
newText = i18n.twtranslate(
self.site,
'casechecker-delete-reason',
redirTitle)
if newText:
src.text = '{{delete}}\n\n' + newText
src.save(editSummary, minor=False)
changed = True
elif not dst.exists():
src = self.Page(title)
if page['ns'] == 14:
dst = self.Page(newTitle)
bot = CategoryMoveBot(
src.title(with_ns=False),
dst.title(with_ns=False),
self.autonomous,
editSummary + ' '
+ self.MakeMoveSummary(title,
newTitle),
True)
bot.run()
else:
src.move(newTitle, editSummary,
movesubpages=True)
changed = True
if not changed:
if err[1]:
self.AppendLineToLog(self.failedTitles, title)
else:
self.AddNoSuggestionTitle(title)
self.WikiLog('* ' + err[0])
printed = True
if self.links:
allLinks = []
if 'links' in page:
allLinks += page['links']
if 'categories' in page:
allLinks += page['categories']
if allLinks:
pageObj = None
pageTxt = None
msg = []
foundSuggestions = False
for link in allLinks:
ltxt = link['title']
err = self.ProcessTitle(ltxt)
if err:
if err[1]:
foundSuggestions = True
elif self.AddNoSuggestionTitle(ltxt):
continue
newTitle = None
if self.replace:
newTitle = self.PickTarget(title, ltxt, err[1])
if newTitle:
if pageObj is None:
pageObj = self.Page(title)
pageTxt = pageObj.get()
msg.append(self.MakeMoveSummary(ltxt,
newTitle))
pageTxt = self.ReplaceLink(pageTxt, ltxt,
newTitle)
if not newTitle:
if not printed:
self.WikiLog('* {}: link to {}'
.format(self.MakeLink(title,
False),
err[0]))
printed = True
else:
self.WikiLog('** link to {}'
.format(err[0]))
if pageObj is not None:
if self.PutNewPage(pageObj, pageTxt, msg):
foundSuggestions = False
if foundSuggestions:
self.AppendLineToLog(self.failedTitles, title)
if self.stopAfter:
self.stopAfter -= 1
if self.stopAfter == 0:
raise ValueError('Stopping because we are done')
def WikiLog(self, text):
pywikibot.output(text)
self.wikilog.write(text + '\n')
self.wikilog.flush()
def FindBadWords(self, title):
for m in self.badWordPtrn.finditer(title):
yield title[m.span()[0]:m.span()[1]]
def ProcessTitle(self, title):
badWords = list(self.FindBadWords(title))
if badWords:
badWords = {i for i in badWords
if i not in self.knownWords
and self.romanNumSfxPtrn.match(i) is not None}
if not badWords or self.Page(title).is_filepage():
return None
count = 0
ambigBadWords = set()
ambigBadWordsCount = 0
mapLcl = {}
mapLat = {}
for badWord in badWords:
mightBeLat = mightBeLcl = True
for letter in badWord:
if letter in self.localLtr:
if mightBeLat and letter not in self.localSuspects:
mightBeLat = False
else:
if mightBeLcl and letter not in self.latinSuspects:
mightBeLcl = False
if letter not in ascii_letters:
raise ValueError('Assert failed')
if mightBeLcl and mightBeLat:
if badWord in self.alwaysInLocal:
mightBeLat = False
elif badWord in self.alwaysInLatin:
mightBeLcl = False
if mightBeLcl:
mapLcl[badWord] = badWord.translate(self.latToLclDict)
if mightBeLat:
mapLat[badWord] = badWord.translate(self.lclToLatDict)
if mightBeLcl and mightBeLat:
ambigBadWords.add(badWord)
ambigBadWordsCount += 1
if not mightBeLcl and not mightBeLat:
bwLen = len(badWord)
kw = [w for w in self.knownWords if len(w) == bwLen]
for p in range(bwLen):
if not kw:
break
c = badWord[p]
co = ord(c)
if co in self.latToLclDict:
c2 = self.latToLclDict[co]
elif co in self.lclToLatDict:
c2 = self.lclToLatDict[co]
else:
c2 = None
kw = [w for w in kw if p < len(w)
and (w[p] == c or (c2 is not None and w[p] == c2))]
if len(kw) > 1:
pywikibot.output("Word '{}' could be treated as more than "
'one known words'.format(badWord))
elif len(kw) == 1:
mapLcl[badWord] = kw[0]
count += 1
infoText = self.MakeLink(title)
possibleAlternatives = []
if len(mapLcl) + len(mapLat) - ambigBadWordsCount < count:
suggestions = list(mapLcl.values()) + list(mapLat.values())
if suggestions:
infoText += ', word suggestions: ' + ', '.join(
self.ColorCodeWord(t) for t in suggestions)
else:
infoText += ', no suggestions'
else:
for k, v in dict(chain(mapLat.items(), mapLcl.items())).items():
if k not in ambigBadWords:
title = title.replace(k, v)
if not ambigBadWords:
possibleAlternatives.append(title)
infoText += ', convert to ' + self.MakeLink(title)
else:
for itemCntToPick in range(len(ambigBadWords) + 1):
title2 = title
for uc in combinations(list(ambigBadWords), itemCntToPick):
wordsToLat = ambigBadWords.copy()
for bw in uc:
title2 = title2.replace(bw, mapLcl[bw])
wordsToLat.remove(bw)
for bw in wordsToLat:
title2 = title2.replace(bw, mapLat[bw])
possibleAlternatives.append(title2)
if possibleAlternatives:
infoText += ', can be converted to ' + ', '.join(
self.MakeLink(t) for t in possibleAlternatives)
else:
infoText += ', no suggestions'
return (infoText, possibleAlternatives)
|
MIT License
|
microsoft/sara
|
interactions/input.py
|
parse_input_event
|
python
|
def parse_input_event(msg_type, target, logs, nested_events, log_begin_idx):
log_info = [util.extract_info(log) for log in logs]
plid, package = log_info[0]['plid'], log_info[0]['package']
perform_editor_action = None
string_info = list()
text_view_id = None
text_address = infer_input(log_info)
print('Inferred Text Address: ', text_address)
last_editable_input_connection_log = 0
for idx, lf in enumerate(log_info):
if lf['tag'] == util.SPANNER_STRING_BUILDER_TAG and 'address' in lf['content'] and lf['content']['address'] == text_address:
string_info.append((idx, lf, last_editable_input_connection_log))
elif lf['tag'] == util.EDITABLE_INPUT_CONNECTION_TAG:
last_editable_input_connection_log = idx
if lf['content']['event'] == 'performEditorAction':
perform_editor_action = (idx, lf,)
if text_view_id is None:
text_view_id = lf['content']['TextViewId']
assert text_view_id == lf['content']['TextViewId']
text_view_info = {
'classname': log_info[0]['content']['TextViewClassname'],
'x': log_info[0]['content']['TextViewX'],
'y': log_info[0]['content']['TextViewY'],
'id': log_info[0]['content']['TextViewId'],
'width': log_info[0]['content']['TextViewWidth'],
'height': log_info[0]['content']['TextViewHeight'],
'position_in_screen': log_info[0]['content']['TextViewPositionInScreen'],
'TextView': log_info[0]['content']['TextView']
}
if perform_editor_action is not None:
editor_action_idx = perform_editor_action[0]
text_view_info['position_in_screen'] = log_info[editor_action_idx]['content']['TextViewPositionInScreen']
editor_action_event = event.InputEvent(
plid=plid,
package=package,
log_begin_idx=editor_action_idx + log_begin_idx,
msg_type=msg_type,
target=target,
begin_ts=log_info[editor_action_idx]['ts'],
end_ts=log_info[editor_action_idx]['ts'],
text_view_info=text_view_info,
text=None,
action=perform_editor_action[1]['content']['actionCode']
)
idx = 0
for ne in nested_events:
if editor_action_event.log_begin_idx < ne.log_begin_idx:
nested_events.insert(idx, editor_action_event)
break
idx += 1
else:
nested_events.append(editor_action_event)
if len(string_info) == 0:
return nested_events
pprint(string_info)
begin_ts = log_info[0]['ts']
event_list = list()
previous_idx = 0
for ne_idx, ne in enumerate(nested_events):
if ne.msg_type == event.Event.KEY_EVENT:
if not ne.is_back():
continue
anchor = ne.log_begin_idx
last_idx = len(string_info)
for idx, si in enumerate(string_info):
if si[0] + log_begin_idx > anchor:
last_idx = idx
break
sub_list = string_info[previous_idx:last_idx]
previous_idx = last_idx
if len(sub_list) > 0:
string_input = ''
string_log_begin_idx = sub_list[-1][0] + log_begin_idx
for si in reversed(sub_list):
text = si[1]['content']['text']
if len(text) != 0:
string_input = text
text_view_info['position_in_screen'] = log_info[si[2]]['content']['TextViewPositionInScreen']
end_ts = si[1]['ts']
string_log_begin_idx = si[0] + log_begin_idx
break
else:
end_ts = string_info[last_idx - 1][1]['ts']
event_list.append(
event.InputEvent(
plid=plid,
package=package,
log_begin_idx=string_log_begin_idx,
msg_type=msg_type,
target=target,
begin_ts=begin_ts,
end_ts=end_ts,
text_view_info=text_view_info,
text=string_input,
action=None
)
)
begin_ts = ne.end_ts
event_list.append(ne)
if ne.msg_type == event.Event.TYPE_EVENT and ne.action_type == event.InputEvent.ENTER_ACTION:
for _ne in nested_events[ne_idx+1:]:
if _ne.msg_type == event.Event.KEY_EVENT:
if not _ne.is_back():
continue
event_list.append(_ne)
break
print(event_list)
if len(nested_events) == 0:
last_text = string_info[previous_idx:][-1]
begin_ts = end_ts = last_text[1]['ts']
event_list.append(
event.InputEvent(
plid=plid,
package=package,
log_begin_idx=last_text[0] + log_begin_idx,
msg_type=msg_type,
target=target,
begin_ts=begin_ts,
end_ts=end_ts,
text_view_info=text_view_info,
text=last_text[1]['content']['text'],
action=None
)
)
return event_list
|
Parse input event logs
:params msg_type
:params target
:params logs [Pair of (Down, Up)]
:return: list of event.Event
|
https://github.com/microsoft/sara/blob/4d4636a93fb0356686ca143722ec29a87205cd97/interactions/input.py#L80-L248
|
from . import util
from . import event
from pprint import pprint
def infer_input(log_info):
editable_address = dict()
input_connection_count = 0
m_begin_batch_edit_0 = list()
for idx, lf in enumerate(log_info):
if lf['tag'] == util.SPANNER_STRING_BUILDER_TAG:
if 'address' in lf['content'] and lf['content']['address'] is not None:
address = lf['content']['address']
if address not in editable_address:
editable_address[address] = {
'length': 0,
'count': 0,
'index': [],
'match': 0
}
editable_address[address]['count'] += 1
editable_address[address]['length'] = max(editable_address[address]['length'], len(lf['content']['text']))
editable_address[address]['index'].append(idx)
elif lf['tag'] == util.EDITABLE_INPUT_CONNECTION_TAG:
input_connection_count += 1
if lf['content']['mBatchEditNesting'] == 0:
m_begin_batch_edit_0.append(idx)
print(editable_address)
pre_batch_edit_idx = 0
for curr_batch_edit_idx in m_begin_batch_edit_0:
for address, value in editable_address.items():
for aidx in value['index']:
if pre_batch_edit_idx < aidx < curr_batch_edit_idx:
value['match'] += 1
break
pre_batch_edit_idx = curr_batch_edit_idx
max_value = 0
max_address_list = list()
for address, value in editable_address.items():
if value['match'] > max_value:
max_value = value['match']
max_address_list = [address]
elif value['match'] == max_value:
max_address_list.append(address)
if len(max_address_list) == 0:
return ''
if len(max_address_list) == 1:
return max_address_list[0]
threshold = input_connection_count
for address in max_address_list:
editable_address[address]['count'] = abs(threshold - value['count'])
min_count = len(log_info)
text_address = None
text_length = 0
for address in max_address_list:
if editable_address[address]['count'] < min_count:
min_count = editable_address[address]['count']
text_address = address
text_length = editable_address[address]['length']
elif editable_address[address]['count'] == min_count:
if editable_address[address]['length'] > text_length:
text_address = address
text_length = editable_address[address]['length']
return text_address
|
MIT License
|
tdryer/hangups
|
hangups/ui/__main__.py
|
ConversationEventListWalker.prev_position
|
python
|
def prev_position(self, position):
return self._get_position(position, prev=True)
|
Return the position above position or raise IndexError.
|
https://github.com/tdryer/hangups/blob/c789b474672ceb301fa0dd2005a04aa4e838ec7a/hangups/ui/__main__.py#L846-L848
|
import appdirs
import asyncio
import configargparse
import contextlib
import logging
import os
import sys
import urwid
import readlike
from bisect import bisect
import hangups
from hangups.ui.emoticon import replace_emoticons
from hangups.ui import notifier
from hangups.ui.utils import get_conv_name, add_color_to_scheme
if urwid.__version__ == '1.2.2-dev':
sys.exit('error: hangups-urwid package is installed\n\n'
'Please uninstall hangups-urwid and urwid, and reinstall '
'hangups.')
LOG_FORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
COL_SCHEMES = {
'default': {
('active_tab', '', ''),
('inactive_tab', 'standout', ''),
('msg_date', '', ''),
('msg_sender', '', ''),
('msg_self', '', ''),
('msg_text', '', ''),
('msg_text_self', '', ''),
('msg_watermark', '', ''),
('msg_selected', 'standout', ''),
('status_line', 'standout', ''),
('tab_background', 'standout', ''),
},
'solarized-dark': {
('active_tab', 'light gray', 'light blue'),
('inactive_tab', 'underline', 'light green'),
('msg_date', 'dark cyan', ''),
('msg_sender', 'dark blue', ''),
('msg_text_self', '', ''),
('msg_self', 'dark green', ''),
('msg_text', '', ''),
('msg_watermark', 'light gray', ''),
('msg_selected', 'standout', ''),
('status_line', 'standout', ''),
('tab_background', 'black,standout,underline', 'light green'),
},
}
COL_SCHEME_NAMES = (
'active_tab', 'inactive_tab', 'msg_date', 'msg_sender', 'msg_self',
'msg_text', 'msg_text_self', 'status_line', 'tab_background'
)
DISCREET_NOTIFICATION = notifier.Notification(
'hangups', 'Conversation', 'New message'
)
class HangupsDisconnected(Exception):
class ChatUI:
def __init__(self, refresh_token_path, keybindings, palette,
palette_colors, datetimefmt, notifier_,
discreet_notifications, manual_login, keep_emoticons):
self._keys = keybindings
self._datetimefmt = datetimefmt
self._notifier = notifier_
self._discreet_notifications = discreet_notifications
self._keep_emoticons = keep_emoticons
set_terminal_title('hangups')
self._conv_widgets = {}
self._tabbed_window = None
self._conv_list = None
self._user_list = None
self._coroutine_queue = CoroutineQueue()
self._exception = None
try:
cookies = hangups.auth.get_auth_stdin(
refresh_token_path, manual_login
)
except hangups.GoogleAuthError as e:
sys.exit('Login failed ({})'.format(e))
self._client = hangups.Client(cookies)
self._client.on_connect.add_observer(self._on_connect)
loop = asyncio.get_event_loop()
loop.set_exception_handler(self._exception_handler)
try:
self._urwid_loop = urwid.MainLoop(
LoadingWidget(), palette, handle_mouse=False,
input_filter=self._input_filter,
event_loop=urwid.AsyncioEventLoop(loop=loop)
)
except urwid.AttrSpecError as e:
sys.exit(e)
self._urwid_loop.screen.set_terminal_properties(colors=palette_colors)
self._urwid_loop.start()
coros = [self._connect(), self._coroutine_queue.consume()]
with bracketed_paste_mode():
try:
loop.run_until_complete(asyncio.gather(*coros))
except HangupsDisconnected:
pass
finally:
self._urwid_loop.stop()
task = asyncio.gather(*coros, return_exceptions=True)
task.cancel()
try:
loop.run_until_complete(task)
except asyncio.CancelledError:
pass
loop.close()
if self._exception:
raise self._exception
async def _connect(self):
await self._client.connect()
raise HangupsDisconnected()
def _exception_handler(self, _loop, context):
self._coroutine_queue.put(self._client.disconnect())
default_exception = Exception(context.get('message'))
self._exception = context.get('exception', default_exception)
def _input_filter(self, keys, _):
if keys == [self._keys['menu']]:
if self._urwid_loop.widget == self._tabbed_window:
self._show_menu()
else:
self._hide_menu()
elif keys == [self._keys['quit']]:
self._coroutine_queue.put(self._client.disconnect())
else:
return keys
def _show_menu(self):
current_widget = self._tabbed_window.get_current_widget()
if hasattr(current_widget, 'get_menu_widget'):
menu_widget = current_widget.get_menu_widget(self._hide_menu)
overlay = urwid.Overlay(menu_widget, self._tabbed_window,
align='center', width=('relative', 80),
valign='middle', height=('relative', 80))
self._urwid_loop.widget = overlay
def _hide_menu(self):
self._urwid_loop.widget = self._tabbed_window
def get_conv_widget(self, conv_id):
if conv_id not in self._conv_widgets:
set_title_cb = (lambda widget, title:
self._tabbed_window.set_tab(widget, title=title))
widget = ConversationWidget(
self._client, self._coroutine_queue,
self._conv_list.get(conv_id), set_title_cb, self._keys,
self._datetimefmt, self._keep_emoticons
)
self._conv_widgets[conv_id] = widget
return self._conv_widgets[conv_id]
def add_conversation_tab(self, conv_id, switch=False):
conv_widget = self.get_conv_widget(conv_id)
self._tabbed_window.set_tab(conv_widget, switch=switch,
title=conv_widget.title)
def on_select_conversation(self, conv_id):
self.add_conversation_tab(conv_id, switch=True)
async def _on_connect(self):
self._user_list, self._conv_list = (
await hangups.build_user_conversation_list(self._client)
)
self._conv_list.on_event.add_observer(self._on_event)
conv_picker = ConversationPickerWidget(self._conv_list,
self.on_select_conversation,
self._keys)
self._tabbed_window = TabbedWindowWidget(self._keys)
self._tabbed_window.set_tab(conv_picker, switch=True,
title='Conversations')
self._urwid_loop.widget = self._tabbed_window
def _on_event(self, conv_event):
conv = self._conv_list.get(conv_event.conversation_id)
user = conv.get_user(conv_event.user_id)
show_notification = all((
isinstance(conv_event, hangups.ChatMessageEvent),
not user.is_self,
not conv.is_quiet,
))
if show_notification:
self.add_conversation_tab(conv_event.conversation_id)
if self._discreet_notifications:
notification = DISCREET_NOTIFICATION
else:
notification = notifier.Notification(
user.full_name, get_conv_name(conv), conv_event.text
)
self._notifier.send(notification)
class CoroutineQueue:
def __init__(self):
self._queue = asyncio.Queue()
def put(self, coro):
assert asyncio.iscoroutine(coro)
self._queue.put_nowait(coro)
async def consume(self):
while True:
coro = await self._queue.get()
assert asyncio.iscoroutine(coro)
await coro
class WidgetBase(urwid.WidgetWrap):
def keypress(self, size, key):
return super().keypress(size, key)
class LoadingWidget(WidgetBase):
def __init__(self):
super().__init__(urwid.Filler(
urwid.Text('Connecting...', align='center')
))
class RenameConversationDialog(WidgetBase):
def __init__(self, coroutine_queue, conversation, on_cancel, on_save,
keybindings):
self._coroutine_queue = coroutine_queue
self._conversation = conversation
edit = urwid.Edit(edit_text=get_conv_name(conversation))
items = [
urwid.Text('Rename conversation:'),
edit,
urwid.Button(
'Save',
on_press=lambda _: self._rename(edit.edit_text, on_save)
),
urwid.Button('Cancel', on_press=lambda _: on_cancel()),
]
list_walker = urwid.SimpleFocusListWalker(items)
list_box = ListBox(keybindings, list_walker)
super().__init__(list_box)
def _rename(self, name, callback):
self._coroutine_queue.put(self._conversation.rename(name))
callback()
class ConversationMenu(WidgetBase):
def __init__(self, coroutine_queue, conversation, close_callback,
keybindings):
rename_dialog = RenameConversationDialog(
coroutine_queue, conversation,
lambda: frame.contents.__setitem__('body', (list_box, None)),
close_callback, keybindings
)
items = [
urwid.Text(
'Conversation name: {}'.format(get_conv_name(conversation))
),
urwid.Button(
'Change Conversation Name',
on_press=lambda _: frame.contents.__setitem__(
'body', (rename_dialog, None)
)
),
urwid.Divider('-'),
urwid.Button('Back', on_press=lambda _: close_callback()),
]
list_walker = urwid.SimpleFocusListWalker(items)
list_box = ListBox(keybindings, list_walker)
frame = urwid.Frame(list_box)
padding = urwid.Padding(frame, left=1, right=1)
line_box = urwid.LineBox(padding, title='Conversation Menu')
super().__init__(line_box)
class ConversationButton(WidgetBase):
def __init__(self, conversation, on_press):
conversation.on_event.add_observer(self._on_event)
conversation.on_watermark_notification.add_observer(self._on_event)
self._conversation = conversation
self._button = urwid.Button(self._get_label(), on_press=on_press,
user_data=conversation.id_)
super().__init__(self._button)
def _get_label(self):
return get_conv_name(self._conversation, show_unread=True)
def _on_event(self, _):
self._button.set_label(self._get_label())
@property
def last_modified(self):
return self._conversation.last_modified
class ConversationListWalker(urwid.SimpleFocusListWalker):
def __init__(self, conversation_list, on_select):
self._conversation_list = conversation_list
self._conversation_list.on_event.add_observer(self._on_event)
self._on_press = lambda button, conv_id: on_select(conv_id)
convs = sorted(conversation_list.get_all(), reverse=True,
key=lambda c: c.last_modified)
buttons = [ConversationButton(conv, on_press=self._on_press)
for conv in convs]
super().__init__(buttons)
def _on_event(self, _):
self.sort(key=lambda conv_button: conv_button.last_modified,
reverse=True)
class ListBox(WidgetBase):
def __init__(self, keybindings, list_walker):
self._keybindings = keybindings
super().__init__(urwid.ListBox(list_walker))
def keypress(self, size, key):
key = super().keypress(size, key)
if key == self._keybindings['down']:
super().keypress(size, 'down')
elif key == self._keybindings['up']:
super().keypress(size, 'up')
elif key == self._keybindings['page_up']:
super().keypress(size, 'page up')
elif key == self._keybindings['page_down']:
super().keypress(size, 'page down')
else:
return key
class ConversationPickerWidget(WidgetBase):
def __init__(self, conversation_list, on_select, keybindings):
list_walker = ConversationListWalker(conversation_list, on_select)
list_box = ListBox(keybindings, list_walker)
widget = urwid.Padding(list_box, left=2, right=2)
super().__init__(widget)
class ReturnableEdit(urwid.Edit):
def __init__(self, on_return, keybindings, caption=None):
super().__init__(caption=caption, multiline=True)
self._on_return = on_return
self._keys = keybindings
self._paste_mode = False
def keypress(self, size, key):
if key == 'begin paste':
self._paste_mode = True
elif key == 'end paste':
self._paste_mode = False
elif key == 'enter' and not self._paste_mode:
self._on_return(self.get_edit_text())
self.set_edit_text('')
elif key not in self._keys.values() and key in readlike.keys():
text, pos = readlike.edit(self.edit_text, self.edit_pos, key)
self.set_edit_text(text)
self.set_edit_pos(pos)
else:
return super().keypress(size, key)
class StatusLineWidget(WidgetBase):
_MESSAGE_DELAY_SECS = 10
def __init__(self, client, conversation):
self._typing_statuses = {}
self._conversation = conversation
self._conversation.on_event.add_observer(self._on_event)
self._conversation.on_typing.add_observer(self._on_typing)
self._widget = urwid.Text('', align='center')
self._is_connected = True
self._message = None
self._message_handle = None
client.on_disconnect.add_observer(self._on_disconnect)
client.on_reconnect.add_observer(self._on_reconnect)
super().__init__(urwid.AttrMap(self._widget, 'status_line'))
def show_message(self, message_str):
if self._message_handle is not None:
self._message_handle.cancel()
self._message_handle = asyncio.get_event_loop().call_later(
self._MESSAGE_DELAY_SECS, self._clear_message
)
self._message = message_str
self._update()
def _clear_message(self):
self._message = None
self._message_handle = None
self._update()
def _on_disconnect(self):
self._is_connected = False
self._update()
def _on_reconnect(self):
self._is_connected = True
self._update()
def _on_event(self, conv_event):
if isinstance(conv_event, hangups.ChatMessageEvent):
self._typing_statuses[conv_event.user_id] = (
hangups.TYPING_TYPE_STOPPED
)
self._update()
def _on_typing(self, typing_message):
self._typing_statuses[typing_message.user_id] = typing_message.status
self._update()
def _update(self):
typing_users = [self._conversation.get_user(user_id)
for user_id, status in self._typing_statuses.items()
if status == hangups.TYPING_TYPE_STARTED]
displayed_names = [user.first_name for user in typing_users
if not user.is_self]
if displayed_names:
typing_message = '{} {} typing...'.format(
', '.join(sorted(displayed_names)),
'is' if len(displayed_names) == 1 else 'are'
)
else:
typing_message = ''
if not self._is_connected:
self._widget.set_text("RECONNECTING...")
elif self._message is not None:
self._widget.set_text(self._message)
else:
self._widget.set_text(typing_message)
class MessageWidget(WidgetBase):
def __init__(self, timestamp, text, datetimefmt, user=None,
show_date=False, watermark_users=None):
self.timestamp = timestamp
text = [
('msg_date', self._get_date_str(timestamp, datetimefmt,
show_date=show_date) + ' '),
('msg_text_self' if user is not None and user.is_self
else 'msg_text', text)
]
if user is not None:
text.insert(1, ('msg_self' if user.is_self else 'msg_sender',
user.first_name + ': '))
if watermark_users is not None and bool(watermark_users):
sorted_users = sorted([x.first_name for x in watermark_users])
watermark = "\n[ Seen by {}. ]".format(', '.join(sorted_users))
text.append(('msg_watermark', watermark))
self._widget = urwid.SelectableIcon(text, cursor_position=0)
super().__init__(urwid.AttrMap(
self._widget, '', {
None: 'msg_selected',
'msg_date': 'msg_selected',
'msg_text_self': 'msg_selected',
'msg_text': 'msg_selected',
'msg_self': 'msg_selected',
'msg_sender': 'msg_selected',
'msg_watermark': 'msg_selected',
}
))
@staticmethod
def _get_date_str(timestamp, datetimefmt, show_date=False):
fmt = ''
if show_date:
fmt += '\n'+datetimefmt.get('date', '')+'\n'
fmt += datetimefmt.get('time', '')
return timestamp.astimezone(tz=None).strftime(fmt)
def __lt__(self, other):
return self.timestamp < other.timestamp
@staticmethod
def from_conversation_event(conversation, conv_event, prev_conv_event,
datetimefmt, watermark_users=None):
user = conversation.get_user(conv_event.user_id)
if prev_conv_event is not None:
is_new_day = (conv_event.timestamp.astimezone(tz=None).date() !=
prev_conv_event.timestamp.astimezone(tz=None).date())
else:
is_new_day = False
if isinstance(conv_event, hangups.ChatMessageEvent):
return MessageWidget(conv_event.timestamp, conv_event.text,
datetimefmt, user, show_date=is_new_day,
watermark_users=watermark_users)
elif isinstance(conv_event, hangups.RenameEvent):
if conv_event.new_name == '':
text = ('{} cleared the conversation name'
.format(user.first_name))
else:
text = ('{} renamed the conversation to {}'
.format(user.first_name, conv_event.new_name))
return MessageWidget(conv_event.timestamp, text, datetimefmt,
show_date=is_new_day,
watermark_users=watermark_users)
elif isinstance(conv_event, hangups.MembershipChangeEvent):
event_users = [conversation.get_user(user_id) for user_id
in conv_event.participant_ids]
names = ', '.join([user.full_name for user in event_users])
if conv_event.type_ == hangups.MEMBERSHIP_CHANGE_TYPE_JOIN:
text = ('{} added {} to the conversation'
.format(user.first_name, names))
else:
text = ('{} left the conversation'.format(names))
return MessageWidget(conv_event.timestamp, text, datetimefmt,
show_date=is_new_day,
watermark_users=watermark_users)
elif isinstance(conv_event, hangups.HangoutEvent):
text = {
hangups.HANGOUT_EVENT_TYPE_START: (
'A Hangout call is starting.'
),
hangups.HANGOUT_EVENT_TYPE_END: (
'A Hangout call ended.'
),
hangups.HANGOUT_EVENT_TYPE_ONGOING: (
'A Hangout call is ongoing.'
),
}.get(conv_event.event_type, 'Unknown Hangout call event.')
return MessageWidget(conv_event.timestamp, text, datetimefmt,
show_date=is_new_day,
watermark_users=watermark_users)
elif isinstance(conv_event, hangups.GroupLinkSharingModificationEvent):
status_on = hangups.GROUP_LINK_SHARING_STATUS_ON
status_text = ('on' if conv_event.new_status == status_on
else 'off')
text = '{} turned {} joining by link.'.format(user.first_name,
status_text)
return MessageWidget(conv_event.timestamp, text, datetimefmt,
show_date=is_new_day,
watermark_users=watermark_users)
else:
text = 'Unknown conversation event'
return MessageWidget(conv_event.timestamp, text, datetimefmt,
show_date=is_new_day,
watermark_users=watermark_users)
class ConversationEventListWalker(urwid.ListWalker):
POSITION_LOADING = 'loading'
WATERMARK_FAST_SEARCH_ITEMS = 10
def __init__(self, coroutine_queue, conversation, datetimefmt):
self._coroutine_queue = coroutine_queue
self._conversation = conversation
self._is_scrolling = False
self._is_loading = False
self._first_loaded = False
self._datetimefmt = datetimefmt
self._watermarked_events = {}
self._focus_position = (conversation.events[-1].id_
if conversation.events
else self.POSITION_LOADING)
self._conversation.on_event.add_observer(self._handle_event)
self._conversation.on_watermark_notification.add_observer(
self._on_watermark_notification
)
super().__init__()
def _handle_event(self, conv_event):
if not self._is_scrolling:
self.set_focus(conv_event.id_)
else:
self._modified()
async def _load(self):
try:
conv_events = await self._conversation.get_events(
self._conversation.events[0].id_
)
except (IndexError, hangups.NetworkError):
conv_events = []
if not conv_events:
self._first_loaded = True
if self._focus_position == self.POSITION_LOADING and conv_events:
self.set_focus(conv_events[-1].id_)
else:
self._modified()
self._refresh_watermarked_events()
self._is_loading = False
def __getitem__(self, position):
if position == self.POSITION_LOADING:
if self._first_loaded:
return urwid.Text('No more messages', align='center')
else:
if not self._is_loading and not self._first_loaded:
self._is_loading = True
self._coroutine_queue.put(self._load())
return urwid.Text('Loading...', align='center')
try:
prev_position = self._get_position(position, prev=True)
if prev_position == self.POSITION_LOADING:
prev_event = None
else:
prev_event = self._conversation.get_event(prev_position)
return MessageWidget.from_conversation_event(
self._conversation, self._conversation.get_event(position),
prev_event, self._datetimefmt,
watermark_users=self._watermarked_events.get(position, None)
)
except KeyError:
raise IndexError('Invalid position: {}'.format(position))
@staticmethod
def _find_watermark_event(timestamps, timestamp):
back_idx = ConversationEventListWalker.WATERMARK_FAST_SEARCH_ITEMS
for i, t in list(enumerate(reversed(timestamps[-back_idx:]))):
if t <= timestamp:
return len(timestamps) - i - 1
return bisect(timestamps[:-back_idx], timestamp) - 1
def _refresh_watermarked_events(self):
self._watermarked_events.clear()
timestamps = [x.timestamp for x in self._conversation.events]
for user_id in self._conversation.watermarks:
user = self._conversation.get_user(user_id)
if user.is_self:
continue
timestamp = self._conversation.watermarks[user_id]
if timestamp < timestamps[0]:
continue
event_idx = ConversationEventListWalker._find_watermark_event(
timestamps, timestamp
)
if event_idx >= 0:
event_pos = self._conversation.events[event_idx].id_
if event_pos not in self._watermarked_events:
self._watermarked_events[event_pos] = set()
self._watermarked_events[event_pos].add(user)
def _on_watermark_notification(self, _):
self._refresh_watermarked_events()
self._modified()
def _get_position(self, position, prev=False):
if position == self.POSITION_LOADING:
if prev:
raise IndexError('Reached last position')
else:
return self._conversation.events[0].id_
else:
ev = self._conversation.next_event(position, prev=prev)
if ev is None:
if prev:
return self.POSITION_LOADING
else:
raise IndexError('Reached first position')
else:
return ev.id_
def next_position(self, position):
return self._get_position(position)
|
MIT License
|
ambron60/l-system-drawing
|
venv/Lib/site-packages/pip-9.0.1-py3.5.egg/pip/download.py
|
url_to_path
|
python
|
def url_to_path(url):
assert url.startswith('file:'), (
"You can only turn file: urls into filenames (not %r)" % url)
_, netloc, path, _, _ = urllib_parse.urlsplit(url)
if netloc:
netloc = '\\\\' + netloc
path = urllib_request.url2pathname(netloc + path)
return path
|
Convert a file: URL to a path.
|
https://github.com/ambron60/l-system-drawing/blob/3a4ecface1d862b87acd58ff2d5303cd4475370b/venv/Lib/site-packages/pip-9.0.1-py3.5.egg/pip/download.py#L442-L456
|
from __future__ import absolute_import
import cgi
import email.utils
import getpass
import json
import logging
import mimetypes
import os
import platform
import re
import shutil
import sys
import tempfile
try:
import ssl
HAS_TLS = True
except ImportError:
HAS_TLS = False
from pip._vendor.six.moves.urllib import parse as urllib_parse
from pip._vendor.six.moves.urllib import request as urllib_request
import pip
from pip.exceptions import InstallationError, HashMismatch
from pip.models import PyPI
from pip.utils import (splitext, rmtree, format_size, display_path,
backup_dir, ask_path_exists, unpack_file,
ARCHIVE_EXTENSIONS, consume, call_subprocess)
from pip.utils.encoding import auto_decode
from pip.utils.filesystem import check_path_owner
from pip.utils.logging import indent_log
from pip.utils.setuptools_build import SETUPTOOLS_SHIM
from pip.utils.glibc import libc_ver
from pip.utils.ui import DownloadProgressBar, DownloadProgressSpinner
from pip.locations import write_delete_marker_file
from pip.vcs import vcs
from pip._vendor import requests, six
from pip._vendor.requests.adapters import BaseAdapter, HTTPAdapter
from pip._vendor.requests.auth import AuthBase, HTTPBasicAuth
from pip._vendor.requests.models import CONTENT_CHUNK_SIZE, Response
from pip._vendor.requests.utils import get_netrc_auth
from pip._vendor.requests.structures import CaseInsensitiveDict
from pip._vendor.requests.packages import urllib3
from pip._vendor.cachecontrol import CacheControlAdapter
from pip._vendor.cachecontrol.caches import FileCache
from pip._vendor.lockfile import LockError
from pip._vendor.six.moves import xmlrpc_client
__all__ = ['get_file_content',
'is_url', 'url_to_path', 'path_to_url',
'is_archive_file', 'unpack_vcs_link',
'unpack_file_url', 'is_vcs_url', 'is_file_url',
'unpack_http_url', 'unpack_url']
logger = logging.getLogger(__name__)
def user_agent():
data = {
"installer": {"name": "pip", "version": pip.__version__},
"python": platform.python_version(),
"implementation": {
"name": platform.python_implementation(),
},
}
if data["implementation"]["name"] == 'CPython':
data["implementation"]["version"] = platform.python_version()
elif data["implementation"]["name"] == 'PyPy':
if sys.pypy_version_info.releaselevel == 'final':
pypy_version_info = sys.pypy_version_info[:3]
else:
pypy_version_info = sys.pypy_version_info
data["implementation"]["version"] = ".".join(
[str(x) for x in pypy_version_info]
)
elif data["implementation"]["name"] == 'Jython':
data["implementation"]["version"] = platform.python_version()
elif data["implementation"]["name"] == 'IronPython':
data["implementation"]["version"] = platform.python_version()
if sys.platform.startswith("linux"):
from pip._vendor import distro
distro_infos = dict(filter(
lambda x: x[1],
zip(["name", "version", "id"], distro.linux_distribution()),
))
libc = dict(filter(
lambda x: x[1],
zip(["lib", "version"], libc_ver()),
))
if libc:
distro_infos["libc"] = libc
if distro_infos:
data["distro"] = distro_infos
if sys.platform.startswith("darwin") and platform.mac_ver()[0]:
data["distro"] = {"name": "macOS", "version": platform.mac_ver()[0]}
if platform.system():
data.setdefault("system", {})["name"] = platform.system()
if platform.release():
data.setdefault("system", {})["release"] = platform.release()
if platform.machine():
data["cpu"] = platform.machine()
if HAS_TLS and sys.version_info[:2] > (2, 6):
data["openssl_version"] = ssl.OPENSSL_VERSION
return "{data[installer][name]}/{data[installer][version]} {json}".format(
data=data,
json=json.dumps(data, separators=(",", ":"), sort_keys=True),
)
class MultiDomainBasicAuth(AuthBase):
def __init__(self, prompting=True):
self.prompting = prompting
self.passwords = {}
def __call__(self, req):
parsed = urllib_parse.urlparse(req.url)
netloc = parsed.netloc.rsplit("@", 1)[-1]
req.url = urllib_parse.urlunparse(parsed[:1] + (netloc,) + parsed[2:])
username, password = self.passwords.get(netloc, (None, None))
if username is None:
username, password = self.parse_credentials(parsed.netloc)
if username is None and password is None:
netrc_auth = get_netrc_auth(req.url)
username, password = netrc_auth if netrc_auth else (None, None)
if username or password:
self.passwords[netloc] = (username, password)
req = HTTPBasicAuth(username or "", password or "")(req)
req.register_hook("response", self.handle_401)
return req
def handle_401(self, resp, **kwargs):
if resp.status_code != 401:
return resp
if not self.prompting:
return resp
parsed = urllib_parse.urlparse(resp.url)
username = six.moves.input("User for %s: " % parsed.netloc)
password = getpass.getpass("Password: ")
if username or password:
self.passwords[parsed.netloc] = (username, password)
resp.content
resp.raw.release_conn()
req = HTTPBasicAuth(username or "", password or "")(resp.request)
new_resp = resp.connection.send(req, **kwargs)
new_resp.history.append(resp)
return new_resp
def parse_credentials(self, netloc):
if "@" in netloc:
userinfo = netloc.rsplit("@", 1)[0]
if ":" in userinfo:
return userinfo.split(":", 1)
return userinfo, None
return None, None
class LocalFSAdapter(BaseAdapter):
def send(self, request, stream=None, timeout=None, verify=None, cert=None,
proxies=None):
pathname = url_to_path(request.url)
resp = Response()
resp.status_code = 200
resp.url = request.url
try:
stats = os.stat(pathname)
except OSError as exc:
resp.status_code = 404
resp.raw = exc
else:
modified = email.utils.formatdate(stats.st_mtime, usegmt=True)
content_type = mimetypes.guess_type(pathname)[0] or "text/plain"
resp.headers = CaseInsensitiveDict({
"Content-Type": content_type,
"Content-Length": stats.st_size,
"Last-Modified": modified,
})
resp.raw = open(pathname, "rb")
resp.close = resp.raw.close
return resp
def close(self):
pass
class SafeFileCache(FileCache):
def __init__(self, *args, **kwargs):
super(SafeFileCache, self).__init__(*args, **kwargs)
if not check_path_owner(self.directory):
logger.warning(
"The directory '%s' or its parent directory is not owned by "
"the current user and the cache has been disabled. Please "
"check the permissions and owner of that directory. If "
"executing pip with sudo, you may want sudo's -H flag.",
self.directory,
)
self.directory = None
def get(self, *args, **kwargs):
if self.directory is None:
return
try:
return super(SafeFileCache, self).get(*args, **kwargs)
except (LockError, OSError, IOError):
pass
def set(self, *args, **kwargs):
if self.directory is None:
return
try:
return super(SafeFileCache, self).set(*args, **kwargs)
except (LockError, OSError, IOError):
pass
def delete(self, *args, **kwargs):
if self.directory is None:
return
try:
return super(SafeFileCache, self).delete(*args, **kwargs)
except (LockError, OSError, IOError):
pass
class InsecureHTTPAdapter(HTTPAdapter):
def cert_verify(self, conn, url, verify, cert):
conn.cert_reqs = 'CERT_NONE'
conn.ca_certs = None
class PipSession(requests.Session):
timeout = None
def __init__(self, *args, **kwargs):
retries = kwargs.pop("retries", 0)
cache = kwargs.pop("cache", None)
insecure_hosts = kwargs.pop("insecure_hosts", [])
super(PipSession, self).__init__(*args, **kwargs)
self.headers["User-Agent"] = user_agent()
self.auth = MultiDomainBasicAuth()
retries = urllib3.Retry(
total=retries,
status_forcelist=[503],
backoff_factor=0.25,
)
if cache:
secure_adapter = CacheControlAdapter(
cache=SafeFileCache(cache, use_dir_lock=True),
max_retries=retries,
)
else:
secure_adapter = HTTPAdapter(max_retries=retries)
insecure_adapter = InsecureHTTPAdapter(max_retries=retries)
self.mount("https://", secure_adapter)
self.mount("http://", insecure_adapter)
self.mount("file://", LocalFSAdapter())
for host in insecure_hosts:
self.mount("https://{0}/".format(host), insecure_adapter)
def request(self, method, url, *args, **kwargs):
kwargs.setdefault("timeout", self.timeout)
return super(PipSession, self).request(method, url, *args, **kwargs)
def get_file_content(url, comes_from=None, session=None):
if session is None:
raise TypeError(
"get_file_content() missing 1 required keyword argument: 'session'"
)
match = _scheme_re.search(url)
if match:
scheme = match.group(1).lower()
if (scheme == 'file' and comes_from and
comes_from.startswith('http')):
raise InstallationError(
'Requirements file %s references URL %s, which is local'
% (comes_from, url))
if scheme == 'file':
path = url.split(':', 1)[1]
path = path.replace('\\', '/')
match = _url_slash_drive_re.match(path)
if match:
path = match.group(1) + ':' + path.split('|', 1)[1]
path = urllib_parse.unquote(path)
if path.startswith('/'):
path = '/' + path.lstrip('/')
url = path
else:
resp = session.get(url)
resp.raise_for_status()
return resp.url, resp.text
try:
with open(url, 'rb') as f:
content = auto_decode(f.read())
except IOError as exc:
raise InstallationError(
'Could not open requirements file: %s' % str(exc)
)
return url, content
_scheme_re = re.compile(r'^(http|https|file):', re.I)
_url_slash_drive_re = re.compile(r'/*([a-z])\|', re.I)
def is_url(name):
if ':' not in name:
return False
scheme = name.split(':', 1)[0].lower()
return scheme in ['http', 'https', 'file', 'ftp'] + vcs.all_schemes
|
MIT License
|
semiunsupervisedlearning/dgms_for_semi-unsupervised_learning
|
src/models/template.py
|
m2.build_model
|
python
|
def build_model(self):
self.create_placeholders()
self.initialize_networks()
""" TODO: Define model components and variables """
self.predictions = self.predict(self.x)
|
TODO: Define model components and variables
|
https://github.com/semiunsupervisedlearning/dgms_for_semi-unsupervised_learning/blob/a89c7be92403c3582f3bce534f982382f9733055/src/models/template.py#L28-L33
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from models.model import model
import sys, os, pdb
import numpy as np
import utils.dgm as dgm
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector
class m2(model):
def __init__(self, n_x, n_y, n_z=2, n_hid=[4], alpha=0.1, x_dist='Gaussian', nonlinearity=tf.nn.relu, batchnorm=False, l2_reg=0.3, mc_samples=1,ckpt=None):
super(m2, self).__init__(n_x, n_y, n_z, n_hid, x_dist, nonlinearity, batchnorm, mc_samples, alpha, l2_reg, ckpt)
|
MIT License
|
ericgibert/supersid
|
supersid/noaa_flares.py
|
NOAA_flares.http_ngdc
|
python
|
def http_ngdc(self):
file_name = "goes-xrs-report_{}.txt".format(self.day[:4]) if self.day[:4] != "2015" else "goes-xrs-report_2015_modifiedreplacedmissingrows.txt"
file_path = path.join("..", "Private", file_name)
if not path.isfile(file_path):
try:
url = path.join(self.ngdc_URL, file_name)
txt = urllib.request.urlopen(url).read().decode()
except (urllib.error.HTTPError, urllib.error.URLError) as err:
print("Cannot retrieve the file", file_name)
print("from URL:", url)
print(err, "\n")
else:
with open(file_path, "wt") as fout:
fout.write(txt)
return file_path
|
Get the file for a past year from HTTP ngdc if not already saved
Return the full path of the data file
|
https://github.com/ericgibert/supersid/blob/0f44a2c8286d2d5c60b8abc2b7f103357de02f78/supersid/noaa_flares.py#L66-L85
|
import urllib.request, urllib.error
from os import path
from datetime import datetime, date
class NOAA_flares(object):
ngdc_URL = "https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/xrs/"
def __init__(self, day):
if isinstance(day, str):
self.day = day[:8]
elif isinstance(day, datetime) or isinstance(day, date):
self.day = day.strftime('%Y%m%d')
else:
raise TypeError("Unknown date format - expecting str 'YYYYMMDD' or datetime/date")
self.Tstamp = lambda HHMM: datetime.strptime(self.day + HHMM, "%Y%m%d%H%M")
today = date.today()
self.XRAlist = []
if today.year==int(self.day[:4]):
self.ftp_NOAA()
else:
file_path = self.http_ngdc()
with open(file_path, "rt") as fin:
for line in fin:
fields = line.split()
if fields and fields[0][5:11]==self.day[2:]:
if len(fields)==11:
self.XRAlist.append((
fields[4],
self.Tstamp(fields[1]),
self.Tstamp(fields[2]),
self.Tstamp(fields[3]),
fields[5]+fields[6][0]+'.'+fields[6][1]))
elif len(fields)==8:
self.XRAlist.append((
"None",
self.Tstamp(fields[1]),
self.Tstamp(fields[2]),
self.Tstamp(fields[3]),
fields[4]+fields[5][0]+'.'+fields[5][1]))
else:
print("Please check this line format:")
print(line)
|
MIT License
|
bread-and-pepper/django-userena
|
userena/views.py
|
activate
|
python
|
def activate(request, activation_key,
template_name='userena/activate_fail.html',
retry_template_name='userena/activate_retry.html',
success_url=None, extra_context=None):
try:
if (not UserenaSignup.objects.check_expired_activation(activation_key)
or not userena_settings.USERENA_ACTIVATION_RETRY):
user = UserenaSignup.objects.activate_user(activation_key)
if user:
auth_user = authenticate(identification=user.email,
check_password=False)
login(request, auth_user)
if userena_settings.USERENA_USE_MESSAGES:
messages.success(request, _('Your account has been activated and you have been signed in.'),
fail_silently=True)
if success_url: redirect_to = success_url % {'username': user.username }
else: redirect_to = reverse('userena_profile_detail',
kwargs={'username': user.username})
return redirect(redirect_to)
else:
if not extra_context: extra_context = dict()
return ExtraContextTemplateView.as_view(template_name=template_name,
extra_context=extra_context)(
request)
else:
if not extra_context: extra_context = dict()
extra_context['activation_key'] = activation_key
return ExtraContextTemplateView.as_view(template_name=retry_template_name,
extra_context=extra_context)(request)
except UserenaSignup.DoesNotExist:
if not extra_context: extra_context = dict()
return ExtraContextTemplateView.as_view(template_name=template_name,
extra_context=extra_context)(request)
|
Activate a user with an activation key.
The key is a SHA1 string. When the SHA1 is found with an
:class:`UserenaSignup`, the :class:`User` of that account will be
activated. After a successful activation the view will redirect to
``success_url``. If the SHA1 is not found, the user will be shown the
``template_name`` template displaying a fail message.
If the SHA1 is found but expired, ``retry_template_name`` is used instead,
so the user can proceed to :func:`activate_retry` to get a new activation key.
:param activation_key:
String of a SHA1 string of 40 characters long. A SHA1 is always 160bit
long, with 4 bits per character this makes it --160/4-- 40 characters
long.
:param template_name:
String containing the template name that is used when the
``activation_key`` is invalid and the activation fails. Defaults to
``userena/activate_fail.html``.
:param retry_template_name:
String containing the template name that is used when the
``activation_key`` is expired. Defaults to
``userena/activate_retry.html``.
:param success_url:
String containing the URL where the user should be redirected to after
a successful activation. Will replace ``%(username)s`` with string
formatting if supplied. If ``success_url`` is left empty, will direct
to ``userena_profile_detail`` view.
:param extra_context:
Dictionary containing variables which could be added to the template
context. Default to an empty dictionary.
|
https://github.com/bread-and-pepper/django-userena/blob/7dfb3d5d148127e32f217a62096d507266a3a83c/userena/views.py#L149-L221
|
from django.core.urlresolvers import reverse
from django.shortcuts import redirect, get_object_or_404
from django.contrib.auth import authenticate, login, logout, REDIRECT_FIELD_NAME
from django.contrib.auth import get_user_model
from django.contrib.auth.forms import PasswordChangeForm
from django.contrib.auth.views import logout as Signout
from django.views.generic import TemplateView
from django.views.generic.list import ListView
from django.contrib import messages
from django.core.exceptions import PermissionDenied
from django.utils.translation import ugettext as _
from django.http import Http404, HttpResponseRedirect
from userena.forms import (SignupForm, SignupFormOnlyEmail, AuthenticationForm,
ChangeEmailForm, EditProfileForm)
from userena.models import UserenaSignup
from userena.decorators import secure_required
from userena.utils import signin_redirect, get_profile_model, get_user_profile
from userena import signals as userena_signals
from userena import settings as userena_settings
from guardian.decorators import permission_required_or_403
import warnings
class ExtraContextTemplateView(TemplateView):
extra_context = None
def get_context_data(self, *args, **kwargs):
context = super(ExtraContextTemplateView, self).get_context_data(*args, **kwargs)
if self.extra_context:
context.update(self.extra_context)
return context
post = TemplateView.get
class ProfileListView(ListView):
context_object_name='profile_list'
page=1
paginate_by=50
template_name=userena_settings.USERENA_PROFILE_LIST_TEMPLATE
extra_context=None
def get_context_data(self, **kwargs):
context = super(ProfileListView, self).get_context_data(**kwargs)
try:
page = int(self.request.GET.get('page', None))
except (TypeError, ValueError):
page = self.page
if userena_settings.USERENA_DISABLE_PROFILE_LIST and not self.request.user.is_staff:
raise Http404
if not self.extra_context: self.extra_context = dict()
context['page'] = page
context['paginate_by'] = self.paginate_by
context['extra_context'] = self.extra_context
return context
def get_queryset(self):
profile_model = get_profile_model()
queryset = profile_model.objects.get_visible_profiles(self.request.user).select_related()
return queryset
@secure_required
def signup(request, signup_form=SignupForm,
template_name='userena/signup_form.html', success_url=None,
extra_context=None):
if userena_settings.USERENA_DISABLE_SIGNUP:
raise PermissionDenied
if userena_settings.USERENA_WITHOUT_USERNAMES and (signup_form == SignupForm):
signup_form = SignupFormOnlyEmail
form = signup_form()
if request.method == 'POST':
form = signup_form(request.POST, request.FILES)
if form.is_valid():
user = form.save()
userena_signals.signup_complete.send(sender=None,
user=user)
if success_url: redirect_to = success_url
else: redirect_to = reverse('userena_signup_complete',
kwargs={'username': user.username})
if request.user.is_authenticated():
logout(request)
if (userena_settings.USERENA_SIGNIN_AFTER_SIGNUP and
not userena_settings.USERENA_ACTIVATION_REQUIRED):
user = authenticate(identification=user.email, check_password=False)
login(request, user)
return redirect(redirect_to)
if not extra_context: extra_context = dict()
extra_context['form'] = form
return ExtraContextTemplateView.as_view(template_name=template_name,
extra_context=extra_context)(request)
@secure_required
|
BSD 3-Clause New or Revised License
|
swissdatasciencecenter/renku-python
|
renku/cli/dataset.py
|
update
|
python
|
def update(names, creators, include, exclude, ref, delete, external):
from renku.core.commands.dataset import update_datasets
communicator = ClickCallback()
update_datasets().with_communicator(communicator).build().execute(
names=list(names),
creators=creators,
include=include,
exclude=exclude,
ref=ref,
delete=delete,
external=external,
)
click.secho("OK", fg="green")
|
Updates files in dataset from a remote Git repo.
|
https://github.com/swissdatasciencecenter/renku-python/blob/5e43e2eff67cdf20fc2805799fe2822e23bc503d/renku/cli/dataset.py#L832-L846
|
import json
from pathlib import Path
import click
import requests
from rich.console import Console
from rich.markdown import Markdown
from renku.cli.utils.callback import ClickCallback
from renku.core import errors
from renku.core.commands.format.dataset_files import DATASET_FILES_COLUMNS, DATASET_FILES_FORMATS
from renku.core.commands.format.dataset_tags import DATASET_TAGS_FORMATS
from renku.core.commands.format.datasets import DATASETS_COLUMNS, DATASETS_FORMATS
@click.group()
def dataset():
@dataset.command("ls")
@click.option("--format", type=click.Choice(DATASETS_FORMATS), default="tabular", help="Choose an output format.")
@click.option(
"-c",
"--columns",
type=click.STRING,
default="id,name,title,version",
metavar="<columns>",
help="Comma-separated list of column to display: {}.".format(", ".join(DATASETS_COLUMNS.keys())),
show_default=True,
)
def list_dataset(format, columns):
from renku.core.commands.dataset import list_datasets
result = list_datasets().lock_dataset().build().execute(format=format, columns=columns)
click.echo(result.output)
@dataset.command()
@click.argument("name")
@click.option("-t", "--title", default=None, type=click.STRING, help="Title of the dataset.")
@click.option("-d", "--description", default=None, type=click.STRING, help="Dataset's description.")
@click.option(
"-c",
"--creator",
"creators",
default=None,
multiple=True,
help="Creator's name, email, and affiliation. Accepted format is 'Forename Surname <email> [affiliation]'.",
)
@click.option(
"-m",
"--metadata",
default=None,
type=click.Path(exists=True, dir_okay=False),
help="Custom metadata to be associated with the dataset.",
)
@click.option("-k", "--keyword", default=None, multiple=True, type=click.STRING, help="List of keywords or tags.")
def create(name, title, description, creators, metadata, keyword):
from renku.core.commands.dataset import create_dataset
communicator = ClickCallback()
creators = creators or ()
custom_metadata = None
if metadata:
custom_metadata = json.loads(Path(metadata).read_text())
result = (
create_dataset()
.with_communicator(communicator)
.build()
.execute(
name=name,
title=title,
description=description,
creators=creators,
keywords=keyword,
custom_metadata=custom_metadata,
)
)
new_dataset = result.output
click.echo(f'Use the name "{new_dataset.name}" to refer to this dataset.')
click.secho("OK", fg="green")
@dataset.command()
@click.argument("name")
@click.option("-t", "--title", default=None, type=click.STRING, help="Title of the dataset.")
@click.option("-d", "--description", default=None, type=click.STRING, help="Dataset's description.")
@click.option(
"-c",
"--creator",
"creators",
default=None,
multiple=True,
help="Creator's name, email, and affiliation. " "Accepted format is 'Forename Surname <email> [affiliation]'.",
)
@click.option(
"-m",
"--metadata",
default=None,
type=click.Path(exists=True, dir_okay=False),
help="Custom metadata to be associated with the dataset.",
)
@click.option("-k", "--keyword", default=None, multiple=True, type=click.STRING, help="List of keywords or tags.")
def edit(name, title, description, creators, metadata, keyword):
from renku.core.commands.dataset import edit_dataset
creators = creators or ()
keywords = keyword or ()
custom_metadata = None
if metadata:
custom_metadata = json.loads(Path(metadata).read_text())
result = (
edit_dataset()
.build()
.execute(
name=name,
title=title,
description=description,
creators=creators,
keywords=keywords,
skip_image_update=True,
custom_metadata=custom_metadata,
)
)
updated, no_email_warnings = result.output
if not updated:
click.echo(
(
"Nothing to update. "
"Check available fields with `renku dataset edit --help`\n\n"
'Hint: `renku dataset edit --title "new title"`'
)
)
else:
click.echo("Successfully updated: {}.".format(", ".join(updated.keys())))
if no_email_warnings:
click.echo(ClickCallback.WARNING + "No email or wrong format for: " + ", ".join(no_email_warnings))
@dataset.command("show")
@click.argument("name")
def show(name):
from renku.core.commands.dataset import show_dataset
result = show_dataset().build().execute(name=name)
ds = result.output
click.echo(click.style("Name: ", bold=True, fg="magenta") + click.style(ds["name"], bold=True))
click.echo(click.style("Created: ", bold=True, fg="magenta") + (ds.get("created_at", "") or ""))
creators = []
for creator in ds.get("creators", []):
if creator["affiliation"]:
creators.append(f"{creator['name']} <{creator['email']}> [{creator['affiliation']}]")
else:
creators.append(f"{creator['name']} <{creator['email']}>")
click.echo(click.style("Creator(s): ", bold=True, fg="magenta") + ", ".join(creators))
if ds["keywords"]:
click.echo(click.style("Keywords: ", bold=True, fg="magenta") + ", ".join(ds.get("keywords", "")))
if ds["version"]:
click.echo(click.style("Version: ", bold=True, fg="magenta") + ds.get("version", ""))
if ds["annotations"]:
click.echo(click.style("Annotations: ", bold=True, fg="magenta"))
click.echo(json.dumps(ds.get("annotations", ""), indent=2))
click.echo(click.style("Title: ", bold=True, fg="magenta") + click.style(ds.get("title", ""), bold=True))
click.echo(click.style("Description: ", bold=True, fg="magenta"))
Console().print(Markdown(ds.get("description", "") or ""))
@dataset.command()
@click.argument("name")
@click.argument("urls", nargs=-1)
@click.option("-e", "--external", is_flag=True, help="Creates a link to external data.")
@click.option("--force", is_flag=True, help="Allow adding otherwise ignored files.")
@click.option("-o", "--overwrite", is_flag=True, help="Overwrite existing files.")
@click.option("-c", "--create", is_flag=True, help="Create dataset if it does not exist.")
@click.option(
"-s", "--src", "--source", "sources", default=None, multiple=True, help="Path(s) within remote git repo to be added"
)
@click.option(
"-d", "--dst", "--destination", "destination", default="", help="Destination directory within the dataset path"
)
@click.option("--ref", default=None, help="Add files from a specific commit/tag/branch.")
def add(name, urls, external, force, overwrite, create, sources, destination, ref):
from renku.core.commands.dataset import add_to_dataset
communicator = ClickCallback()
add_to_dataset().with_communicator(communicator).build().execute(
urls=urls,
name=name,
external=external,
force=force,
overwrite=overwrite,
create=create,
sources=sources,
destination=destination,
ref=ref,
)
click.secho("OK", fg="green")
@dataset.command("ls-files")
@click.argument("names", nargs=-1)
@click.option(
"--creators",
help="Filter files which where authored by specific creators. Multiple creators are specified by comma.",
)
@click.option("-I", "--include", default=None, multiple=True, help="Include files matching given pattern.")
@click.option("-X", "--exclude", default=None, multiple=True, help="Exclude files matching given pattern.")
@click.option("--format", type=click.Choice(DATASET_FILES_FORMATS), default="tabular", help="Choose an output format.")
@click.option(
"-c",
"--columns",
type=click.STRING,
default="dataset_name,added,size,path,lfs",
metavar="<columns>",
help="Comma-separated list of column to display: {}.".format(", ".join(DATASET_FILES_COLUMNS.keys())),
show_default=True,
)
def ls_files(names, creators, include, exclude, format, columns):
from renku.core.commands.dataset import list_files
result = (
list_files()
.lock_dataset()
.build()
.execute(datasets=names, creators=creators, include=include, exclude=exclude, format=format, columns=columns)
)
click.echo(result.output)
@dataset.command()
@click.argument("name")
@click.option("-I", "--include", multiple=True, help="Include files matching given pattern.")
@click.option("-X", "--exclude", multiple=True, help="Exclude files matching given pattern.")
@click.option("-y", "--yes", is_flag=True, help="Confirm unlinking of all files.")
def unlink(name, include, exclude, yes):
from renku.core.commands.dataset import file_unlink
communicator = ClickCallback()
file_unlink().with_communicator(communicator).build().execute(name=name, include=include, exclude=exclude, yes=yes)
click.secho("OK", fg="green")
@dataset.command("rm")
@click.argument("name")
def remove(name):
from renku.core.commands.dataset import remove_dataset
remove_dataset().build().execute(name)
click.secho("OK", fg="green")
@dataset.command("tag")
@click.argument("name")
@click.argument("tag")
@click.option("-d", "--description", default="", help="A description for this tag")
@click.option("--force", is_flag=True, help="Allow overwriting existing tags.")
def tag(name, tag, description, force):
from renku.core.commands.dataset import add_dataset_tag_command
add_dataset_tag_command().build().execute(name=name, tag=tag, description=description, force=force)
click.secho("OK", fg="green")
@dataset.command("rm-tags")
@click.argument("name")
@click.argument("tags", nargs=-1)
def remove_tags(name, tags):
from renku.core.commands.dataset import remove_dataset_tags_command
remove_dataset_tags_command().build().execute(name=name, tags=tags)
click.secho("OK", fg="green")
@dataset.command("ls-tags")
@click.argument("name")
@click.option("--format", type=click.Choice(DATASET_TAGS_FORMATS), default="tabular", help="Choose an output format.")
def ls_tags(name, format):
from renku.core.commands.dataset import list_tags_command
result = list_tags_command().lock_dataset().build().execute(name=name, format=format)
click.echo(result.output)
def export_provider_argument(*param_decls, **attrs):
def wrapper(f):
from click import argument
from renku.core.commands.providers import ProviderFactory
providers = [k.lower() for k, p in ProviderFactory.providers().items() if p.supports_export]
f = argument("provider", type=click.Choice(providers))(f)
return f
return wrapper
def export_provider_options(*param_decls, **attrs):
def wrapper(f):
from click_option_group import optgroup
from renku.core.commands.providers import ProviderFactory
providers = [
(k, v) for k, v in ProviderFactory.providers().items() if v.supports_export and v.export_parameters()
]
for i, (name, provider) in enumerate(providers):
params = provider.export_parameters()
for j, (param_name, (param_description, param_type)) in enumerate(params.items()):
if j == 0:
param_description = f"\b\n{param_description}\n "
f = optgroup.option(f"--{param_name}", type=param_type, help=param_description)(f)
name = f"{name} configuration"
if i == len(providers) - 1:
name = "\n " + name
f = optgroup.group(name=name)(f)
return f
return wrapper
@dataset.command("export")
@click.argument("name")
@export_provider_argument()
@click.option("-p", "--publish", is_flag=True, help="Automatically publish exported dataset.")
@click.option("-t", "--tag", help="Dataset tag to export")
@export_provider_options()
def export_(name, provider, publish, tag, **kwargs):
from renku.core.commands.dataset import export_dataset
try:
communicator = ClickCallback()
export_dataset().lock_dataset().with_communicator(communicator).build().execute(
name=name, provider_name=provider, publish=publish, tag=tag, **kwargs
)
except (ValueError, errors.InvalidAccessToken, errors.DatasetNotFound, requests.HTTPError) as e:
raise click.BadParameter(e)
click.secho("OK", fg="green")
@dataset.command("import")
@click.argument("uri")
@click.option("--short-name", "--name", "name", default=None, help="A convenient name for dataset.")
@click.option("-x", "--extract", is_flag=True, help="Extract files before importing to dataset.")
@click.option("-y", "--yes", is_flag=True, help="Bypass download confirmation.")
def import_(uri, name, extract, yes):
from renku.core.commands.dataset import import_dataset
communicator = ClickCallback()
import_dataset().with_communicator(communicator).build().execute(uri=uri, name=name, extract=extract, yes=yes)
click.secho(" " * 79 + "\r", nl=False)
click.secho("OK", fg="green")
@dataset.command("update")
@click.argument("names", nargs=-1)
@click.option(
"--creators",
help="Filter files which where authored by specific creators. Multiple creators are specified by comma.",
)
@click.option("-I", "--include", default=None, multiple=True, help="Include files matching given pattern.")
@click.option("-X", "--exclude", default=None, multiple=True, help="Exclude files matching given pattern.")
@click.option("--ref", default=None, help="Update to a specific commit/tag/branch.")
@click.option("--delete", is_flag=True, help="Delete local files that are deleted from remote.")
@click.option("-e", "--external", is_flag=True, help="Update external data.")
|
Apache License 2.0
|
pinterest/slackminion
|
slackminion/plugins/core/user.py
|
UserManager.load_user_info
|
python
|
def load_user_info(self, user):
pass
|
Loads additional user information and stores in user object
|
https://github.com/pinterest/slackminion/blob/5845e7a3e09c72305c06e8f0aa58db1882858aaa/slackminion/plugins/core/user.py#L58-L62
|
from slackminion.plugin.base import BasePlugin
from . import version
try:
from . import commit
except ImportError:
commit = 'HEAD'
class UserManager(BasePlugin):
def on_load(self):
self._dont_save = True
self.users = {}
self.admins = {}
if 'bot_admins' in self._bot.config:
self.admins = self._bot.config['bot_admins']
setattr(self._bot, 'user_manager', self)
return super(UserManager, self).on_load()
def get(self, userid):
if userid in self.users:
return self.users[userid]
return None
def get_by_username(self, username):
res = [x for x in list(self.users.values()) if x.username == username]
if len(res) > 0:
return res[0]
return None
def set(self, user):
self.log.debug("Loading user information for %s/%s", user.id, user.username)
self.load_user_info(user)
self.log.debug("Loading user rights for %s/%s", user.id, user.username)
self.load_user_rights(user)
self._add_user_to_cache(user)
return user
def _add_user_to_cache(self, user):
if user.id not in list(self.users.keys()):
self.users[user.id] = user
self.log.debug("Added user: %s/%s", user.id, user.username)
|
MIT License
|
lightly-ai/lightly
|
lightly/models/modules/nn_memory_bank.py
|
NNMemoryBankModule.forward
|
python
|
def forward(self,
output: torch.Tensor,
update: bool = False):
output, bank = super(NNMemoryBankModule, self).forward(output, update=update)
bank = bank.to(output.device).t()
output_normed = torch.nn.functional.normalize(output, dim=1)
bank_normed = torch.nn.functional.normalize(bank, dim=1)
similarity_matrix = torch.einsum("nd,md->nm", output_normed, bank_normed)
index_nearest_neighbours = torch.argmax(similarity_matrix, dim=1)
nearest_neighbours = torch.index_select(bank, dim=0, index=index_nearest_neighbours)
return nearest_neighbours
|
Returns nearest neighbour of output tensor from memory bank
Args:
output: The torch tensor for which you want the nearest neighbour
update: If `True` updated the memory bank by adding output to it
|
https://github.com/lightly-ai/lightly/blob/00820e5a60522effb3685a8d792f15e99770ea50/lightly/models/modules/nn_memory_bank.py#L41-L65
|
import torch
from lightly.loss.memory_bank import MemoryBankModule
class NNMemoryBankModule(MemoryBankModule):
def __init__(self, size: int = 2 ** 16):
super(NNMemoryBankModule, self).__init__(size)
|
MIT License
|
dagbldr/dagbldr
|
dagbldr/nodes/nodes.py
|
fixed_projection
|
python
|
def fixed_projection(list_of_inputs, list_of_input_dims, transform,
name=None, pre=None, post=None, strict=True):
assert len(list_of_input_dims) == len(list_of_inputs)
conc_input_dim = sum(list_of_input_dims)
conc_input = concatenate(list_of_inputs,
axis=list_of_inputs[0].ndim - 1)
np_W = transform.astype(_type)
W = as_shared(np_W)
if pre is None:
np_pre = np.zeros((conc_input_dim,)).astype(_type)
else:
np_pre = pre
t_pre = as_shared(np_pre)
if post is None:
np_post = np.zeros_like(np_W[0]).astype(_type)
else:
np_post = post
t_post = as_shared(np_post)
logger.info((conc_input_dim, np_W[0].shape))
return tensor.dot(conc_input + t_pre, W) + t_post
|
W_name = name + '_W'
pre_name = name + '_pre'
post_name = name + '_post'
W_name = get_name()
pre_name = get_name()
post_name = get_name()
|
https://github.com/dagbldr/dagbldr/blob/3bfad37f4e425cfcc1fded91dbce733cf44c6cfd/dagbldr/nodes/nodes.py#L550-L582
|
import numpy as np
from scipy import linalg
from scipy.misc import factorial
import theano
from theano import tensor
from theano.tensor.signal.downsample import max_pool_2d
from theano.sandbox.rng_mrg import MRG_RandomStreams
from ..utils import concatenate, as_shared
from ..core import get_name, set_shared, get_shared
from ..core import get_logger, get_type
logger = get_logger()
_type = get_type()
def np_zeros(shape):
return np.zeros(shape).astype(_type)
def np_ones(shape):
return np.ones(shape).astype(_type)
def np_unit_uniform(shape, random_state):
return np_uniform(shape, random_state, scale=1.)
def np_uniform(shape, random_state, scale=0.08):
if type(shape[0]) is tuple:
shp = (shape[1][0], shape[0][0]) + shape[1][1:]
else:
shp = shape
return random_state.uniform(low=-scale, high=scale, size=shp).astype(_type)
def np_normal(shape, random_state, scale=0.01):
if type(shape[0]) is tuple:
shp = (shape[1][0], shape[0][0]) + shape[1][1:]
else:
shp = shape
return (scale * random_state.randn(*shp)).astype(_type)
def np_tanh_fan_uniform(shape, random_state, scale=1.):
if type(shape[0]) is tuple:
kern_sum = np.prod(shape[0]) + np.prod(shape[1])
shp = (shape[1][0], shape[0][0]) + shape[1][1:]
else:
kern_sum = np.sum(shape)
shp = shape
bound = scale * np.sqrt(6. / kern_sum)
return random_state.uniform(low=-bound, high=bound, size=shp).astype(_type)
def np_tanh_fan_normal(shape, random_state, scale=1.):
if type(shape[0]) is tuple:
kern_sum = np.prod(shape[0]) + np.prod(shape[1])
shp = (shape[1][0], shape[0][0]) + shape[1][1:]
else:
kern_sum = np.sum(shape)
shp = shape
var = scale * np.sqrt(2. / kern_sum)
return var * random_state.randn(*shp).astype(_type)
def np_sigmoid_fan_uniform(shape, random_state, scale=4.):
return scale * np_tanh_fan_uniform(shape, random_state)
def np_sigmoid_fan_normal(shape, random_state, scale=4.):
return scale * np_tanh_fan_normal(shape, random_state)
def np_variance_scaled_uniform(shape, random_state, scale=1.):
if type(shape[0]) is tuple:
shp = (shape[1][0], shape[0][0]) + shape[1][1:]
kern_sum = np.prod(shape[0])
else:
shp = shape
kern_sum = shape[0]
bound = scale * np.sqrt(3. / kern_sum)
return random_state.uniform(low=-bound, high=bound, size=shp).astype(_type)
def np_variance_scaled_randn(shape, random_state, scale=1.):
if type(shape[0]) is tuple:
shp = (shape[1][0], shape[0][0]) + shape[1][1:]
kern_sum = np.prod(shape[0])
else:
shp = shape
kern_sum = shape[0]
std = scale * np.sqrt(1. / kern_sum)
return std * random_state.randn(*shp).astype(_type)
def np_deep_scaled_uniform(shape, random_state, scale=1.):
if type(shape[0]) is tuple:
shp = (shape[1][0], shape[0][0]) + shape[1][1:]
kern_sum = np.prod(shape[0])
else:
shp = shape
kern_sum = shape[0]
bound = scale * np.sqrt(6. / kern_sum)
return random_state.uniform(low=-bound, high=bound, size=shp).astype(_type)
def np_deep_scaled_normal(shape, random_state, scale=1.):
if type(shape[0]) is tuple:
shp = (shape[1][0], shape[0][0]) + shape[1][1:]
kern_sum = np.prod(shape[0])
else:
shp = shape
kern_sum = shape[0]
std = scale * np.sqrt(2. / kern_sum)
return std * random_state.randn(*shp).astype(_type)
def np_ortho(shape, random_state, scale=1.):
if type(shape[0]) is tuple:
shp = (shape[1][0], shape[0][0]) + shape[1][1:]
flat_shp = (shp[0], np.prd(shp[1:]))
else:
shp = shape
flat_shp = shape
g = random_state.randn(*flat_shp)
U, S, VT = linalg.svd(g, full_matrices=False)
res = U if U.shape == flat_shp else VT
res = res.reshape(shp)
return (scale * res).astype(_type)
def np_identity(shape, random_state, scale=0.98):
assert shape[0] == shape[1]
res = np.eye(shape[0])
return (scale * res).astype(_type)
def softplus_activation(X, eps=1E-4):
return tensor.nnet.softplus(X) + eps
def relu_activation(X):
return X * (X > 0)
def linear_activation(X):
return X
def softmax_activation(X):
e_X = tensor.exp(X - X.max(axis=-1, keepdims=True))
out = e_X / e_X.sum(axis=-1, keepdims=True)
return out
def _dropout(X, random_state, on_off_switch, p=0.):
if p > 0:
theano_seed = random_state.randint(-2147462579, 2147462579)
if theano_seed == 0:
print("WARNING: prior layer got 0 seed. Reseeding...")
theano_seed = random_state.randint(-2**32, 2**32)
theano_rng = MRG_RandomStreams(seed=theano_seed)
retain_prob = 1 - p
if X.ndim == 2:
X *= theano_rng.binomial(
X.shape, p=retain_prob,
dtype=_type) ** on_off_switch
X /= retain_prob
elif X.ndim == 3:
X *= theano_rng.binomial((
X.shape[1], X.shape[2]), p=retain_prob,
dtype=_type) ** on_off_switch
X /= retain_prob
else:
raise ValueError("Unsupported tensor with ndim %s" % str(X.ndim))
return X
def dropout(list_of_inputs, graph, name, on_off_switch, dropout_prob=0.5,
random_state=None):
theano_seed = random_state.randint(-2147462579, 2147462579)
if theano_seed == 0:
print("WARNING: prior layer got 0 seed. Reseeding...")
theano_seed = random_state.randint(-2**32, 2**32)
conc_input = concatenate(list_of_inputs,
axis=list_of_inputs[0].ndim - 1)
dropped = _dropout(conc_input, random_state, on_off_switch, p=dropout_prob)
return dropped
|
BSD 3-Clause New or Revised License
|
allegro/ralph
|
contrib/dhcp_agent/dhcp_agent.py
|
DHCPConfigManager._set_new_configuration
|
python
|
def _set_new_configuration(self, config, path_to_config=None):
try:
with open_file_or_stdout_to_writing(path_to_config) as f:
f.write(str(config))
self.logger.info(
'Configuration written to {}'.format(
path_to_config or 'stdout'
)
)
return True
except IOError as e:
self.logger.error(
'Could not write new DHCP configuration. Error message: %s',
e
)
return False
|
Writes (or prints) config file.
Args:
config (string): Raw (i.e., in plain text) configuration for
DHCP server,
path_to_config (string): The path to config file.
Returns:
bool: True if config is saved successfully, otherwise False
|
https://github.com/allegro/ralph/blob/04abcc9e78136ac1fb1ac119e2c660ee3baa396d/contrib/dhcp_agent/dhcp_agent.py#L406-L431
|
import atexit
import contextlib
import errno
import fcntl
import hashlib
import logging
import os
import subprocess
import sys
import tempfile
from optparse import OptionParser
from logging import handlers as logging_handlers
IS_PY3 = sys.version_info[0] == 3
if IS_PY3:
from dbm import gnu as cache_db
from urllib.request import urlopen, Request
from urllib.parse import urlencode
from urllib.error import HTTPError
string_types = (str,)
else:
import dbm as cache_db
from urllib import urlencode
from urllib2 import urlopen, Request, HTTPError
string_types = (basestring,)
APP_DIR = os.path.expanduser('~/.ralph-dhcp-agent')
PROTOS = ('http', 'https')
PROTO_HTTP, PROTO_HTTPS = PROTOS
CACHE_LAST_MODIFIED_PREFIX = 'http-last-modified'
DEFAULT_DHCP_SERVICE_NAME = 'isc-dhcp-server'
@contextlib.contextmanager
def open_file_or_stdout_to_writing(filename=None):
if filename in ['-', None]:
handler = sys.stdout
else:
handler = open(filename, 'w')
try:
yield handler
finally:
if handler is not sys.stdout:
handler.close()
class Cache(object):
def __init__(self, cache_path):
if not os.path.exists(cache_path):
os.makedirs(cache_path)
self._cache = cache_db.open(os.path.join(cache_path, 'cache'), 'c')
def get(self, key, prefix=''):
url_hash = get_url_hash(key)
try:
last = self._cache[prefix + url_hash]
except KeyError:
last = None
return last
def set(self, key, value, prefix=''):
url_hash = get_url_hash(key)
self._cache[prefix + url_hash] = value
def close(self):
self._cache.close()
def __enter__(self):
return self
def __exit__(self, *args, **kwargs):
self.close()
def get_url_hash(url):
hash_url = hashlib.md5()
hash_url.update(url.encode())
return hash_url.hexdigest()
def convert_to_request_params(params):
request_params = []
for key, value in params.items():
if isinstance(value, (list, tuple)):
request_params.extend([(key, param) for param in value])
if isinstance(value, string_types):
request_params.extend([(key, value)])
return request_params
def _get_cmd_parser():
parser = OptionParser(
description='Update configuration in DHCP server.',
)
parser.add_option('-H', '--host', help='Ralph instance host.')
parser.add_option('-k', '--key', help='Ralph API key.')
parser.add_option(
'-m',
'--sections',
type='choice',
choices=DHCPConfigManager.DHCP_SECTIONS,
action='append',
help='Choose what part of config you want to upgrade. '
'[Default: all; Options: {}]'.format(', '.join(DHCPConfigManager.DHCP_SECTIONS)),
)
parser.add_option(
'-l',
'--log-path',
help='Path to log file. [Default: STDOUT]',
default='STDOUT',
)
parser.add_option(
'-c',
'--dhcp-config-entries',
help='Path to the DHCP entries configuration file.',
)
parser.add_option(
'-n',
'--dhcp-config-networks',
help='Path to the DHCP networks configuration file.',
)
parser.add_option(
'-p',
'--proto',
type='choice',
choices=PROTOS,
default=PROTO_HTTPS
)
parser.add_option(
'-e',
'--net-env',
help='Only get config for the specified network environment.',
)
parser.add_option(
'-d',
'--dc',
help='Only get config for the specified data center.',
)
parser.add_option(
'-r',
'--restart',
help='Restart service after fetching config?',
action='store_true',
)
parser.add_option(
'-v',
'--verbose',
help='Increase verbosity.',
action='store_true',
default=False,
)
parser.add_option(
'-s',
'--dhcp-service-name',
help='Name of the service to restart.',
default=DEFAULT_DHCP_SERVICE_NAME
)
return parser
def _setup_logging(filename, verbose=False):
log_size = os.getenv('DHCP_AGENT_LOG_SIZE', 20)
logger = logging.getLogger(__file__)
if verbose:
logger.setLevel(logging.INFO)
else:
logger.setLevel(logging.WARNING)
if not filename or filename in ('-', 'STDOUT'):
handler = logging.StreamHandler()
else:
handler = logging_handlers.RotatingFileHandler(
filename, maxBytes=(log_size * (1 << 20)), backupCount=5
)
fmt = logging.Formatter("[%(asctime)-12s.%(msecs)03d] "
"%(levelname)-8s %(filename)s:%(lineno)d "
"%(message)s", "%Y-%m-%d %H:%M:%S")
handler.setFormatter(fmt)
logger.addHandler(handler)
return logger
def _remove_application_lock(lockfile, logger):
logger.info('Removing lock')
os.unlink(lockfile)
def _set_script_lock(logger):
lockfile = '{}.lock'.format(
os.path.join(tempfile.gettempdir(), os.path.split(sys.argv[0])[1])
)
f = os.open(lockfile, os.O_TRUNC | os.O_CREAT | os.O_RDWR)
try:
fcntl.lockf(f, fcntl.LOCK_EX | fcntl.LOCK_NB)
os.write(f, '{}'.format(os.getpid()).encode())
atexit.register(_remove_application_lock, lockfile, logger)
except IOError as e:
if e.errno == errno.EAGAIN:
logger.critical('Script already running.')
sys.exit(2)
raise
def _get_cmd_params_from_parser(parser):
return vars(parser.parse_args()[0])
def _check_params(params, error_callback):
required_params = {'host', 'key'}
diff = required_params - {k for k, v in params.items() if v}
if diff:
error_callback('ERROR: {} are required.'.format(
', '.join(['--{}'.format(d) for d in diff]))
)
return False
dc = params.get('dc')
net_env = params.get('net_env')
if (dc and net_env) or (not dc and not net_env):
error_callback(
'ERROR: Only DC or ENV mode available.',
)
return False
sections = params.get('sections')
if not sections:
error_callback(
'ERROR: option `sections` are required.',
)
return False
return True
class DHCPConfigManager(object):
DHCP_SECTIONS = ('networks', 'entries')
def __init__(
self, logger, cache, host, key, sections, dc=None, net_env=None,
verbose=False, restart=False, proto=PROTO_HTTPS,
dhcp_config_entries=None, dhcp_config_networks=None,
dhcp_service_name=DEFAULT_DHCP_SERVICE_NAME,
**kwargs
):
self.cache = cache
self.logger = logger
self.host = host
self.key = key
self.proto = proto
self.can_restart_dhcp_server = restart
self.dhcp_service_name = dhcp_service_name
self.envs = net_env.split(',') if net_env else []
self.dcs = dc.split(',') if dc else []
self.sections = sections
self.section_config_path_mapper = {
'entries': dhcp_config_entries,
'networks': dhcp_config_networks,
}
def download_and_apply_configuration(self):
should_restart_dhcp_server = False
successful_list = []
for section in self.sections:
is_saved = False
dhcp_config = self._get_configuration(section)
if dhcp_config:
is_saved = self._set_new_configuration(
dhcp_config, self.section_config_path_mapper[section]
)
successful_list.append(is_saved)
should_restart_dhcp_server = any(successful_list)
if self.can_restart_dhcp_server and should_restart_dhcp_server:
self._restart_dhcp_server()
self._send_sync_confirmation()
def make_authorized_request(self, url):
headers = {}
last = self.cache.get(prefix=CACHE_LAST_MODIFIED_PREFIX, key=url)
if last:
self.logger.info(
'Using If-Modified-Since with value {} for url {}'.format(
last, url
)
)
headers['If-Modified-Since'] = last
else:
self.logger.info(
'Last modified not found in cache for url {}'.format(url)
)
headers.update({'Authorization': 'Token {}'.format(self.key)})
return urlopen(Request(url, headers=headers))
def _get_configuration(self, mode):
params = convert_to_request_params({'dc': self.dcs, 'env': self.envs})
url = '{}://{}/dhcp/{}/'.format(
self.proto,
self.host,
mode,
)
if params:
params = urlencode(params)
url += '?' + params
configuration = None
self.logger.info('Sending request to {}'.format(url))
try:
response = self.make_authorized_request(url)
except HTTPError as e:
if e.code != 304:
self.logger.error(
'Server returned %s status code with message "%s"',
e.code, e.fp.read().decode()
)
else:
self.logger.info(
'Server return status 304 NOT MODIFIED. Nothing to do.'
)
return False
else:
configuration = response.read()
last_modified = response.headers.get('Last-Modified')
self.logger.info(
'Storing Last-Modified for url {} with value {}'.format(
url, last_modified
)
)
self.cache.set(
prefix=CACHE_LAST_MODIFIED_PREFIX,
key=url,
value=last_modified
)
return configuration
def _send_sync_confirmation(self):
url = '{}://{}/dhcp/sync/'.format(
self.proto,
self.host,
)
try:
self.make_authorized_request(url)
except HTTPError as e:
self.logger.error(
'Could not send confirmation to Ralph. '
'Server returned %s status code with message: %s',
e.code, e.fp.read().decode()
)
return False
self.logger.info('Confirmation sent to {}.'.format(self.host))
return True
|
Apache License 2.0
|
google/nerfies
|
nerfies/utils.py
|
ValueMeter.reduce
|
python
|
def reduce(self, reduction='mean'):
if reduction == 'mean':
return np.mean(self._values)
elif reduction == 'std':
return np.std(self._values)
elif reduction == 'last':
return self._values[-1]
else:
raise ValueError(f'Unknown reduction {reduction}')
|
Reduces the tracked values.
|
https://github.com/google/nerfies/blob/04623e4474bde3459e2f7f2b5c9174d9e0faa7b1/nerfies/utils.py#L406-L415
|
import collections
from concurrent import futures
import contextlib
import functools
import time
from typing import List, Union
import jax
from jax import tree_util
import jax.numpy as jnp
import numpy as np
from scipy import interpolate
from scipy.spatial import transform as scipy_transform
import tqdm
@functools.partial(jax.custom_jvp, nondiff_argnums=(1, 2, 3))
def safe_norm(x, axis=-1, keepdims=False, tol=1e-9):
return jnp.linalg.norm(x, axis=axis, keepdims=keepdims)
@safe_norm.defjvp
def _safe_norm_jvp(axis, keepdims, tol, primals, tangents):
x, = primals
x_dot, = tangents
safe_tol = max(tol, 1e-30)
y = safe_norm(x, tol=safe_tol, axis=axis, keepdims=True)
y_safe = jnp.maximum(y, tol)
y_dot = jnp.where(y > safe_tol, x_dot * x / y_safe, jnp.zeros_like(x))
y_dot = jnp.sum(y_dot, axis=axis, keepdims=True)
if not keepdims:
y = jnp.squeeze(y, axis=axis)
y_dot = jnp.squeeze(y_dot, axis=axis)
return y, y_dot
def jacobian_to_curl(jacobian):
dfx_dy = jacobian[..., 0, 1]
dfx_dz = jacobian[..., 0, 2]
dfy_dx = jacobian[..., 1, 0]
dfy_dz = jacobian[..., 1, 2]
dfz_dx = jacobian[..., 2, 0]
dfz_dy = jacobian[..., 2, 1]
return jnp.stack([
dfz_dy - dfy_dz,
dfx_dz - dfz_dx,
dfy_dx - dfx_dy,
], axis=-1)
def jacobian_to_div(jacobian):
return jnp.trace(jacobian, axis1=-2, axis2=-1) - 3.0
def compute_psnr(mse):
return -10. * jnp.log(mse) / jnp.log(10.)
@jax.jit
def robust_whiten(x):
median = jnp.nanmedian(x)
mad = jnp.nanmean(jnp.abs(x - median))
return (x - median) / mad
def interpolate_codes(
codes: Union[np.ndarray, List[np.ndarray]],
num_samples: int,
method='spline'):
if isinstance(codes, list):
codes = np.array(codes)
t = np.arange(len(codes))
xs = np.linspace(0, len(codes) - 1, num_samples)
if method == 'spline':
cs = interpolate.CubicSpline(t, codes, bc_type='natural')
return cs(xs).astype(np.float32)
elif method == 'linear':
interp = interpolate.interp1d(t, codes, axis=0)
return interp(xs).astype(np.float32)
raise ValueError(f'Unknown method {method!r}')
def interpolate_cameras(cameras, num_samples: int):
rotations = []
positions = []
for camera in cameras:
rotations.append(camera.orientation)
positions.append(camera.position)
in_times = np.linspace(0, 1, len(rotations))
slerp = scipy_transform.Slerp(
in_times, scipy_transform.Rotation.from_dcm(rotations))
spline = interpolate.CubicSpline(in_times, positions)
out_times = np.linspace(0, 1, num_samples)
out_rots = slerp(out_times).as_dcm()
out_positions = spline(out_times)
ref_camera = cameras[0]
out_cameras = []
for out_rot, out_pos in zip(out_rots, out_positions):
out_camera = ref_camera.copy()
out_camera.orientation = out_rot
out_camera.position = out_pos
out_cameras.append(out_camera)
return out_cameras
def logit(y):
return -jnp.log(1. / y - 1.)
def affine_sigmoid(real, lo=0, hi=1):
if not lo < hi:
raise ValueError('`lo` (%g) must be < `hi` (%g)' % (lo, hi))
alpha = jax.nn.sigmoid(real) * (hi - lo) + lo
return alpha
def inv_affine_sigmoid(alpha, lo=0, hi=1):
if not lo < hi:
raise ValueError('`lo` (%g) must be < `hi` (%g)' % (lo, hi))
real = logit((alpha - lo) / (hi - lo))
return real
def inv_softplus(y):
return jnp.where(y > 87.5, y, jnp.log(jnp.expm1(y)))
def affine_softplus(real, lo=0, ref=1):
if not lo < ref:
raise ValueError('`lo` (%g) must be < `ref` (%g)' % (lo, ref))
shift = inv_softplus(1.0)
scale = (ref - lo) * jax.nn.softplus(real + shift) + lo
return scale
def inv_affine_softplus(scale, lo=0, ref=1):
if not lo < ref:
raise ValueError('`lo` (%g) must be < `ref` (%g)' % (lo, ref))
shift = inv_softplus(1.0)
real = inv_softplus((scale - lo) / (ref - lo)) - shift
return real
def learning_rate_decay(step, init_lr=5e-4, decay_steps=100000, decay_rate=0.1):
power = step / decay_steps
return init_lr * (decay_rate**power)
def log1p_safe(x):
return jnp.log1p(jnp.minimum(x, 3e37))
def exp_safe(x):
return jnp.exp(jnp.minimum(x, 87.5))
def expm1_safe(x):
return jnp.expm1(jnp.minimum(x, 87.5))
def safe_sqrt(x, eps=1e-7):
safe_x = jnp.where(x == 0, jnp.ones_like(x) * eps, x)
return jnp.sqrt(safe_x)
@jax.jit
def general_loss_with_squared_residual(squared_x, alpha, scale):
eps = jnp.finfo(jnp.float32).eps
squared_scaled_x = squared_x / (scale ** 2)
loss_two = 0.5 * squared_scaled_x
loss_zero = log1p_safe(0.5 * squared_scaled_x)
loss_neginf = -jnp.expm1(-0.5 * squared_scaled_x)
loss_posinf = expm1_safe(0.5 * squared_scaled_x)
beta_safe = jnp.maximum(eps, jnp.abs(alpha - 2.))
alpha_safe = jnp.where(
jnp.greater_equal(alpha, 0.), jnp.ones_like(alpha),
-jnp.ones_like(alpha)) * jnp.maximum(eps, jnp.abs(alpha))
loss_otherwise = (beta_safe / alpha_safe) * (
jnp.power(squared_scaled_x / beta_safe + 1., 0.5 * alpha) - 1.)
loss = jnp.where(
alpha == -jnp.inf, loss_neginf,
jnp.where(
alpha == 0, loss_zero,
jnp.where(
alpha == 2, loss_two,
jnp.where(alpha == jnp.inf, loss_posinf, loss_otherwise))))
return scale * loss
def shard(xs, device_count=None):
if device_count is None:
jax.local_device_count()
return jax.tree_map(lambda x: x.reshape((device_count, -1) + x.shape[1:]), xs)
def to_device(xs):
return jax.tree_map(jnp.array, xs)
def unshard(x, padding=0):
if padding > 0:
return x.reshape([x.shape[0] * x.shape[1]] + list(x.shape[2:]))[:-padding]
else:
return x.reshape([x.shape[0] * x.shape[1]] + list(x.shape[2:]))
def normalize(x):
return x / np.linalg.norm(x)
def parallel_map(f, iterable, max_threads=None, show_pbar=False, **kwargs):
with futures.ThreadPoolExecutor(max_threads) as executor:
if show_pbar:
results = tqdm.tqdm(
executor.map(f, iterable, **kwargs), total=len(iterable))
else:
results = executor.map(f, iterable, **kwargs)
return list(results)
def strided_subset(sequence, count):
if count:
stride = max(1, len(sequence) // count)
return sequence[::stride]
return sequence
def tree_collate(list_of_pytrees):
return tree_util.tree_multimap(lambda *x: np.stack(x), *list_of_pytrees)
@contextlib.contextmanager
def print_time(name):
start = time.time()
yield
elapsed = time.time() - start
print(f'[{name}] time elapsed: {elapsed:.04f}')
class ValueMeter:
def __init__(self):
self._values = []
def reset(self):
self._values.clear()
def update(self, value):
self._values.append(value)
|
Apache License 2.0
|
pettarin/yael
|
yael/opfmanifest.py
|
OPFManifest.mathml_items
|
python
|
def mathml_items(self):
return list(e for e in self.items if e.has_property(OPFItem.V_MATHML))
|
The list of items with MathML elements.
:rtype: list of :class:`yael.opfitem.OPFItem` objects
|
https://github.com/pettarin/yael/blob/e5611238eceeea3acda1a5ba757172650f8fe136/yael/opfmanifest.py#L233-L239
|
from yael.element import Element
from yael.jsonable import JSONAble
from yael.mediatype import MediaType
from yael.namespace import Namespace
from yael.opfitem import OPFItem
import yael.util
__author__ = "Alberto Pettarin"
__copyright__ = "Copyright 2015, Alberto Pettarin (www.albertopettarin.it)"
__license__ = "MIT"
__version__ = "0.0.9"
__email__ = "alberto@albertopettarin.it"
__status__ = "Development"
class OPFManifest(Element):
A_ID = "id"
E_ITEM = "item"
def __init__(self, internal_path=None, obj=None, string=None):
self.v_id = None
self.items = []
Element.__init__(
self,
internal_path=internal_path,
obj=obj,
string=string)
def parse_object(self, obj):
self.v_id = obj.get(OPFManifest.A_ID)
item_arr = yael.util.query_xpath(
obj=obj,
query="{0}:{1}",
args=["o", OPFManifest.E_ITEM],
nsp={"o": Namespace.OPF, "x": Namespace.XML},
required=None)
for item in item_arr:
try:
item_parsed = OPFItem(obj=item)
if (
(self.internal_path != None) and
(item_parsed.v_href != None)):
item_parsed.internal_path = yael.util.norm_join_parent(
self.internal_path, item_parsed.v_href)
self.add_item(item_parsed)
except:
pass
def json_object(self, recursive=True):
obj = {
"id": self.v_id,
"items": len(self.items),
}
if recursive:
obj["items"] = JSONAble.safe(self.items)
return obj
def __len__(self):
return len(self.items)
def add_item(self, item):
self.items.append(item)
def item_by_id(self, v_id):
lis = list(e for e in self.items if e.v_id == v_id)
return yael.util.safe_first(lis)
def items_by_media_type(self, v_media_type):
return list(e for e in self.items if e.v_media_type == v_media_type)
def item_by_internal_path(self, internal_path):
lis = list(e for e in self.items if e.internal_path == internal_path)
return yael.util.safe_first(lis)
@property
def v_id(self):
return self.__v_id
@v_id.setter
def v_id(self, v_id):
self.__v_id = v_id
@property
def items(self):
return self.__items
@items.setter
def items(self, items):
self.__items = items
@property
def cover_image_item(self):
for item in self.items:
if (
(item.v_properties != None) and
(OPFItem.V_COVER_IMAGE in item.v_properties.split(" "))):
return item
return None
@property
def nav_document_item(self):
for item in self.items:
if (
(item.v_properties != None) and
(OPFItem.V_NAV in item.v_properties.split(" "))):
return item
return None
@property
def audio_items(self):
return list(e for e in self.items if MediaType.is_audio(e.v_media_type))
@property
def content_document_items(self):
return list(e for e in self.items if MediaType.is_content_document(
e.v_media_type))
@property
def font_items(self):
return list(e for e in self.items if MediaType.is_font(e.media_type))
@property
def image_items(self):
return list(e for e in self.items if MediaType.is_image(e.v_media_type))
@property
def video_items(self):
return list(e for e in self.items if MediaType.is_video(e.v_media_type))
@property
def scripted_items(self):
return list(e for e in self.items if e.has_property(OPFItem.V_SCRIPTED))
@property
|
MIT License
|
milvlg/mmnas
|
train_itm.py
|
parse_args
|
python
|
def parse_args():
parser = argparse.ArgumentParser(description='MmNas Args')
parser.add_argument('--RUN', dest='RUN_MODE', default='train',
choices=['train', 'val', 'test'],
help='{train, val, test}',
type=str)
parser.add_argument('--DATASET', dest='DATASET', default='flickr',
choices=['coco', 'flickr'],
help='{coco, flickr}',
type=str)
parser.add_argument('--SPLIT', dest='TRAIN_SPLIT', default='train',
choices=['train'],
help="set training split",
type=str)
parser.add_argument('--BS', dest='BATCH_SIZE', default=64,
help='batch size during training',
type=int)
parser.add_argument('--NW', dest='NUM_WORKERS', default=4,
help='fix random seed',
type=int)
parser.add_argument('--ARCH_PATH', dest='ARCH_PATH', default='./arch/train_itm.json',
help='version control',
type=str)
parser.add_argument('--GENO_EPOCH', dest='GENO_EPOCH', default=0,
help='version control',
type=int)
parser.add_argument('--GPU', dest='GPU', default='0, 1, 2, 3',
help="gpu select, eg.'0, 1, 2'",
type=str)
parser.add_argument('--SEED', dest='SEED', default=None,
help='fix random seed',
type=int)
parser.add_argument('--VERSION', dest='VERSION', default='train_itm',
help='version control',
type=str)
parser.add_argument('--RESUME', dest='RESUME', default=False,
help='resume training',
action='store_true')
parser.add_argument('--CKPT_PATH', dest='CKPT_FILE_PATH',
help='load checkpoint path',
type=str)
args = parser.parse_args()
return args
|
Parse input arguments
|
https://github.com/milvlg/mmnas/blob/552e29e666625819799ca22de324df2be50626cc/train_itm.py#L22-L80
|
import math, os, json, torch, datetime, random, copy, shutil, torchvision, tqdm
import argparse, yaml
import torch.nn as nn
import torch.optim as Optim
import torch.nn.functional as F
import torch.utils.data as Data
import numpy as np
from collections import namedtuple
from tkinter import _flatten
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from mmnas.loader.load_data_itm import DataSet, DataSet_Neg
from mmnas.loader.filepath_itm import Path
from mmnas.model.full_itm import Net_Full
from mmnas.utils.optimizer import WarmupOptimizer
from mmnas.utils.sampler import SubsetDistributedSampler
from mmnas.utils.itm_loss import BCE_Loss, Margin_Loss
|
Apache License 2.0
|
penetrate2hack/itwsv
|
My_script/Grabber/spider.py
|
htmlencode
|
python
|
def htmlencode(s):
s = s.replace("&", "&")
s = s.replace("<", "<")
s = s.replace(">", ">")
s = s.replace("\"",""")
s = s.replace("'", "'")
return s
|
Escaping the HTML special characters
|
https://github.com/penetrate2hack/itwsv/blob/a8c3944aa0b44b6c4b520afef15f4a1a2ebe98ce/My_script/Grabber/spider.py#L80-L89
|
import urllib
import time
import re,sys,os,string
from BeautifulSoup import BeautifulSoup,SoupStrainer
from urllib2 import URLError, HTTPError
COOKIEFILE = 'cookies.lwp'
import os.path
cj = None
ClientCookie = None
cookielib = None
import cookielib
import urllib2
urlopen = urllib2.urlopen
cj = cookielib.LWPCookieJar()
Request = urllib2.Request
txdata = None
refererUrl = "http://google.com/?q=you!"
txheaders = {'User-agent' : 'Grabber/0.1 (X11; U; Linux i686; en-US; rv:1.7)', 'Referer' : refererUrl}
allowed=['php','html','htm','xml','xhtml','xht','xhtm',
'asp','aspx','msp','mspx','php3','php4','php5','txt','shtm',
'shtml','phtm','phtml','jhtml','pl','jsp','cfm','cfml','do','py',
'js', 'css']
database = {}
database_url = []
database_css = []
database_js = []
database_ext = []
local_url = []
dumb_params = []
root = "http://localhost"
outSpiderFile = None
_urlEncode = {}
for i in range(256):
_urlEncode[chr(i)] = '%%%02x' % i
for c in string.letters + string.digits + '_,.-/':
_urlEncode[c] = c
_urlEncode[' '] = '+'
def urlEncode(s):
return string.join(map(lambda c: _urlEncode[c], list(s)), '')
def urlDecode(s):
mychr = chr
atoi = string.atoi
parts = string.split(string.replace(s, '+', ' '), '%')
for i in range(1, len(parts)):
part = parts[i]
parts[i] = mychr(atoi(part[:2], 16)) + part[2:]
return string.join(parts, '')
|
MIT License
|
clusterhq/flocker
|
benchmark/cluster.py
|
BenchmarkCluster.control_node_address
|
python
|
def control_node_address(self):
return self._control_node_address
|
Return the control node IP address.
|
https://github.com/clusterhq/flocker/blob/eaa586248986d7cd681c99c948546c2b507e44de/benchmark/cluster.py#L183-L187
|
from functools import partial
from ipaddr import IPAddress
import json
from jsonschema import FormatChecker, Draft4Validator
import yaml
from twisted.python.filepath import FilePath
from flocker.apiclient import FlockerClient
def validate_host_mapping(host_mapping):
schema = {
"$schema": "http://json-schema.org/draft-04/schema#",
"type": "object",
"additionalProperties": "true",
}
v = Draft4Validator(schema, format_checker=FormatChecker())
v.validate(host_mapping)
def validate_cluster_configuration(cluster_config):
schema = {
"$schema": "http://json-schema.org/draft-04/schema#",
"type": "object",
"required": ["control_node", "agent_nodes"],
"properties": {
"control_node": {
"type": "string",
},
"agent_nodes": {
"type": "array",
"items": {
"type": "object",
"required": ["public", "private"],
"properties": {
"public": {
"type": "string"
},
"private": {
"type": "string"
},
},
},
},
},
"additionalProperties": "true",
}
v = Draft4Validator(schema, format_checker=FormatChecker())
v.validate(cluster_config)
class BenchmarkCluster(object):
def __init__(
self, control_node_address, control_service_factory, public_addresses,
default_volume_size,
):
self._control_node_address = control_node_address
self._control_service_factory = control_service_factory
self._public_addresses = public_addresses
self._default_volume_size = default_volume_size
self._control_service = None
@classmethod
def from_acceptance_test_env(cls, env):
control_node_address = env['FLOCKER_ACCEPTANCE_CONTROL_NODE']
certs = FilePath(env['FLOCKER_ACCEPTANCE_API_CERTIFICATES_PATH'])
try:
host_to_public = json.loads(
env['FLOCKER_ACCEPTANCE_HOSTNAME_TO_PUBLIC_ADDRESS']
)
validate_host_mapping(host_to_public)
public_addresses = {
IPAddress(k): IPAddress(v) for k, v in host_to_public.items()
}
except ValueError as e:
raise type(e)(
': '.join(
('FLOCKER_ACCEPTANCE_HOSTNAME_TO_PUBLIC_ADDRESS',) + e.args
)
)
control_service = partial(
FlockerClient,
host=control_node_address,
port=4523,
ca_cluster_path=certs.child('cluster.crt'),
cert_path=certs.child('user.crt'),
key_path=certs.child('user.key')
)
try:
control_node_ip = IPAddress(control_node_address)
except ValueError as e:
raise type(e)(
': '.join(('FLOCKER_ACCEPTANCE_CONTROL_NODE',) + e.args)
)
try:
default_volume_size = int(
env['FLOCKER_ACCEPTANCE_DEFAULT_VOLUME_SIZE']
)
except ValueError as e:
raise type(e)(
': '.join(('FLOCKER_ACCEPTANCE_DEFAULT_VOLUME_SIZE',) + e.args)
)
return cls(
control_node_ip, control_service, public_addresses,
default_volume_size,
)
@classmethod
def from_cluster_yaml(cls, path):
with path.child('cluster.yml').open() as f:
cluster = yaml.safe_load(f)
validate_cluster_configuration(cluster)
control_node_address = cluster['control_node']
public_addresses = {
IPAddress(node['private']): IPAddress(node['public'])
for node in cluster['agent_nodes']
}
control_service = partial(
FlockerClient,
host=control_node_address,
port=4523,
ca_cluster_path=path.child('cluster.crt'),
cert_path=path.child('user.crt'),
key_path=path.child('user.key')
)
return cls(
IPAddress(control_node_address), control_service, public_addresses,
None,
)
|
Apache License 2.0
|
uber/bayesmark
|
bayesmark/experiment_aggregate.py
|
concat_experiments
|
python
|
def concat_experiments(all_experiments, ravel=False):
all_perf = {}
all_time = {}
all_suggest = {}
all_sigs = {}
trial_counter = Counter()
for (test_case, optimizer, uuid), (perf_ds, time_ds, suggest_ds, sig) in all_experiments:
if ravel:
raise NotImplementedError("ravel is deprecated. Just reshape in analysis steps instead.")
case_key = (test_case, optimizer, trial_counter[(test_case, optimizer)])
trial_counter[(test_case, optimizer)] += 1
assert all(perf_ds[kk].dims == (ITER, SUGGEST) for kk in perf_ds)
all_perf[case_key] = perf_ds
all_time[case_key] = summarize_time(time_ds)
all_suggest_curr = all_suggest.setdefault(test_case, {})
all_suggest_curr[case_key] = suggest_ds
all_sigs.setdefault(test_case, []).append(sig)
assert min(trial_counter.values()) == max(trial_counter.values()), "Uneven number of trials per test case"
all_perf = xru.ds_concat(all_perf, dims=(TEST_CASE, METHOD, TRIAL))
assert all(all_perf[kk].dims == (ITER, SUGGEST, TEST_CASE, METHOD, TRIAL) for kk in all_perf)
assert not any(
np.any(np.isnan(all_perf[kk].values)) for kk in all_perf
), "Missing combinations of method and test case"
all_time = xru.ds_concat(all_time, dims=(TEST_CASE, METHOD, TRIAL))
assert all(all_time[kk].dims == (ITER, TEST_CASE, METHOD, TRIAL) for kk in all_time)
assert not any(np.any(np.isnan(all_time[kk].values)) for kk in all_time)
assert xru.coord_compat((all_perf, all_time), (ITER, TEST_CASE, METHOD, TRIAL))
for test_case in all_suggest:
all_suggest[test_case] = xru.ds_concat(all_suggest[test_case], dims=(TEST_CASE, METHOD, TRIAL))
assert all(
all_suggest[test_case][kk].dims == (ITER, SUGGEST, TEST_CASE, METHOD, TRIAL)
for kk in all_suggest[test_case]
)
assert not any(np.any(np.isnan(all_suggest[test_case][kk].values)) for kk in all_suggest[test_case])
assert xru.coord_compat((all_perf, all_suggest[test_case]), (ITER, METHOD, TRIAL))
assert all_suggest[test_case].coords[TEST_CASE].shape == (1,), "test case should be singleton"
return all_perf, all_time, all_suggest, all_sigs
|
Aggregate the Datasets from a series of experiments into combined Dataset.
Parameters
----------
all_experiments : typing.Iterable
Iterable (possible from a generator) with the Datasets from each experiment. Each item in `all_experiments` is
a pair containing ``(meta_data, data)``. See `load_experiments` for details on these variables,
ravel : bool
If true, ravel all studies to store batch suggestions as if they were serial.
Returns
-------
all_perf : :class:`xarray:xarray.Dataset`
DataArray containing all of the `perf_da` from the experiments. The meta-data from the experiments are included
as extra dimensions. `all_perf` has dimensions ``(ITER, SUGGEST, TEST_CASE, METHOD, TRIAL)``. To convert the
`uuid` to a trial, there must be an equal number of repetition in the experiments for each `TEST_CASE`,
`METHOD` combination. Likewise, all of the experiments need an equal number of `ITER` and `SUGGEST`. If `ravel`
is true, then the `SUGGEST` is singleton.
all_time : :class:`xarray:xarray.Dataset`
Dataset containing all of the `time_ds` from the experiments. The new dimensions are
``(ITER, TEST_CASE, METHOD, TRIAL)``. It has the same variables as `time_ds`.
all_suggest : :class:`xarray:xarray.Dataset`
DataArray containing all of the `suggest_ds` from the experiments. It has dimensions
``(ITER, SUGGEST, TEST_CASE, METHOD, TRIAL)``.
all_sigs : dict(str, list(list(float)))
Aggregate of all experiment signatures.
|
https://github.com/uber/bayesmark/blob/8c420e935718f0d6867153b781e58943ecaf2338/bayesmark/experiment_aggregate.py#L89-L166
|
import json
import logging
from collections import Counter
import numpy as np
import xarray as xr
import bayesmark.constants as cc
import bayesmark.xr_util as xru
from bayesmark.cmd_parse import CmdArgs, agg_parser, parse_args, serializable_dict, unserializable_dict
from bayesmark.constants import ARG_DELIM, EVAL_RESULTS, ITER, METHOD, SUGGEST, TEST_CASE, TIME_RESULTS, TRIAL
from bayesmark.serialize import XRSerializer
from bayesmark.signatures import analyze_signatures
from bayesmark.sklearn_funcs import SklearnModel
from bayesmark.util import str_join_safe
logger = logging.getLogger(__name__)
def validate_time(all_time):
assert isinstance(all_time, xr.Dataset)
assert all_time[cc.SUGGEST_PHASE].dims == (ITER,)
assert all_time[cc.EVAL_PHASE].dims == (ITER, SUGGEST)
assert all_time[cc.OBS_PHASE].dims == (ITER,)
assert xru.is_simple_coords(all_time.coords, min_side=1)
def validate_perf(perf_da):
assert isinstance(perf_da, xr.Dataset)
assert perf_da.dims == (ITER, SUGGEST)
assert xru.is_simple_coords(perf_da.coords)
assert not np.any(np.isnan(perf_da.values))
def validate_agg_perf(perf_da, min_trial=1):
assert isinstance(perf_da, xr.DataArray)
assert perf_da.dims == (ITER, SUGGEST, TEST_CASE, METHOD, TRIAL)
assert xru.is_simple_coords(perf_da.coords, dims=(ITER, SUGGEST, TRIAL))
assert not np.any(np.isnan(perf_da.values))
assert perf_da.sizes[TRIAL] >= min_trial
def summarize_time(all_time):
validate_time(all_time)
time_summary = xr.Dataset(coords=all_time.coords)
time_summary[cc.SUGGEST_PHASE] = all_time[cc.SUGGEST_PHASE]
time_summary[cc.OBS_PHASE] = all_time[cc.OBS_PHASE]
time_summary[cc.EVAL_PHASE_MAX] = all_time[cc.EVAL_PHASE].max(dim=SUGGEST)
time_summary[cc.EVAL_PHASE_SUM] = all_time[cc.EVAL_PHASE].sum(dim=SUGGEST)
return time_summary
|
Apache License 2.0
|
pydota2/pydota2_archive
|
pydota2/lib/actions.py
|
Arguments.types
|
python
|
def types(cls, **kwargs):
named = {name: type_._replace(id=Arguments._fields.index(name), name=name)
for name, type_ in six.iteritems(kwargs)}
return cls(**named)
|
Create an Arguments of the possible Types.
|
https://github.com/pydota2/pydota2_archive/blob/f33233ee5393a248e9845bb25ff234bf7ac9ff82/pydota2/lib/actions.py#L101-L105
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import numbers
import six
from pydota2.lib import location
class ArgumentType(collections.namedtuple(
"ArgumentType", ["id", "name", "sizes", "fn"])):
__slots__ = ()
def __str__(self):
return "%s/%s %s" % (self.id, self.name, list(self.sizes))
@classmethod
def enum(cls, options):
return cls(-1, "<none>", (len(options),), lambda a: options[a[0]])
@classmethod
def string(cls, string):
return cls(-1, "<none>", (string,), lambda a: a[0])
@classmethod
def scalar(cls, value):
return cls(-1, "<none>", (value,), lambda a: a[0])
@classmethod
def handle(cls, valid_handles):
return cls(-1, "<none>", (len(valid_handles),), lambda a: a[0])
@classmethod
def location(cls):
return cls(-1, "<none>", (0, 0, 0), lambda a: location.Location(*a).floor())
@classmethod
def tree_id(cls, valid_tree_ids):
return cls(-1, "<none>", (len(valid_tree_ids),), lambda a: a[0])
@classmethod
def spec(cls, id_, name, sizes):
return cls(id_, name, sizes, None)
class Arguments(collections.namedtuple("Arguments", [
"player_id", "location", "handle", "tree_id", "ability_str",
"queued", "bool"])):
___slots__ = ()
@classmethod
|
Apache License 2.0
|
alliefitter/boto3_type_annotations
|
boto3_type_annotations_with_docs/boto3_type_annotations/sqs/client.py
|
Client.add_permission
|
python
|
def add_permission(self, QueueUrl: str, Label: str, AWSAccountIds: List, Actions: List):
pass
|
Adds a permission to a queue for a specific `principal <http://docs.aws.amazon.com/general/latest/gr/glos-chap.html#P>`__ . This allows sharing access to the queue.
When you create a queue, you have full control access rights for the queue. Only you, the owner of the queue, can grant or deny permissions to the queue. For more information about these permissions, see `Allow Developers to Write Messages to a Shared Queue <http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-writing-an-sqs-policy.html#write-messages-to-shared-queue>`__ in the *Amazon Simple Queue Service Developer Guide* .
.. note::
``AddPermission`` writes an Amazon-SQS-generated policy. If you want to write your own policy, use `` SetQueueAttributes `` to upload your policy. For more information about writing your own policy, see `Using Custom Policies with the Amazon SQS Access Policy Language <http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-creating-custom-policies.html>`__ in the *Amazon Simple Queue Service Developer Guide* .
An Amazon SQS policy can have a maximum of 7 actions.
Some actions take lists of parameters. These lists are specified using the ``param.n`` notation. Values of ``n`` are integers starting from 1. For example, a parameter list with two elements looks like this:
``&Attribute.1=first``
``&Attribute.2=second``
.. note::
Cross-account permissions don't apply to this action. For more information, see see `Grant Cross-Account Permissions to a Role and a User Name <http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-customer-managed-policy-examples.html#grant-cross-account-permissions-to-role-and-user-name>`__ in the *Amazon Simple Queue Service Developer Guide* .
See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/sqs-2012-11-05/AddPermission>`_
**Request Syntax**
::
response = client.add_permission(
QueueUrl='string',
Label='string',
AWSAccountIds=[
'string',
],
Actions=[
'string',
]
)
:type QueueUrl: string
:param QueueUrl: **[REQUIRED]**
The URL of the Amazon SQS queue to which permissions are added.
Queue URLs and names are case-sensitive.
:type Label: string
:param Label: **[REQUIRED]**
The unique identification of the permission you\'re setting (for example, ``AliceSendMessage`` ). Maximum 80 characters. Allowed characters include alphanumeric characters, hyphens (``-`` ), and underscores (``_`` ).
:type AWSAccountIds: list
:param AWSAccountIds: **[REQUIRED]**
The AWS account number of the `principal <http://docs.aws.amazon.com/general/latest/gr/glos-chap.html#P>`__ who is given permission. The principal must have an AWS account, but does not need to be signed up for Amazon SQS. For information about locating the AWS account identification, see `Your AWS Identifiers <http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-making-api-requests.html#sqs-api-request-authentication>`__ in the *Amazon Simple Queue Service Developer Guide* .
- *(string) --*
:type Actions: list
:param Actions: **[REQUIRED]**
The action the client wants to allow for the specified principal. Valid values: the name of any action or ``*`` .
For more information about these actions, see `Overview of Managing Access Permissions to Your Amazon Simple Queue Service Resource <http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-overview-of-managing-access.html>`__ in the *Amazon Simple Queue Service Developer Guide* .
Specifying ``SendMessage`` , ``DeleteMessage`` , or ``ChangeMessageVisibility`` for ``ActionName.n`` also grants permissions for the corresponding batch versions of those actions: ``SendMessageBatch`` , ``DeleteMessageBatch`` , and ``ChangeMessageVisibilityBatch`` .
- *(string) --*
:returns: None
|
https://github.com/alliefitter/boto3_type_annotations/blob/2a88aa562b1aee6e8a6cc30402980884b3707fbb/boto3_type_annotations_with_docs/boto3_type_annotations/sqs/client.py#L11-L56
|
from typing import Optional
from botocore.client import BaseClient
from typing import Dict
from botocore.paginate import Paginator
from botocore.waiter import Waiter
from typing import Union
from typing import List
class Client(BaseClient):
|
MIT License
|
taksau/gps-net
|
lib/dataloaders/visual_genome.py
|
load_graphs
|
python
|
def load_graphs(graphs_file, mode='train', num_im=-1, num_val_im=0, filter_empty_rels=True,
filter_non_overlap=False):
if mode not in ('train', 'val', 'test'):
raise ValueError('{} invalid'.format(mode))
roi_h5 = h5py.File(graphs_file, 'r')
data_split = roi_h5['split'][:]
split = 2 if mode == 'test' else 0
split_mask = data_split == split
split_mask &= roi_h5['img_to_first_box'][:] >= 0
if filter_empty_rels:
split_mask &= roi_h5['img_to_first_rel'][:] >= 0
image_index = np.where(split_mask)[0]
if num_im > -1:
image_index = image_index[:num_im]
if num_val_im > 0:
if mode == 'val':
image_index = image_index[:num_val_im]
elif mode == 'train':
image_index = image_index[num_val_im:]
split_mask = np.zeros_like(data_split).astype(bool)
split_mask[image_index] = True
all_labels = roi_h5['labels'][:, 0]
all_boxes = roi_h5['boxes_{}'.format(BOX_SCALE)][:]
assert np.all(all_boxes[:, :2] >= 0)
assert np.all(all_boxes[:, 2:] > 0)
all_boxes[:, :2] = all_boxes[:, :2] - all_boxes[:, 2:] / 2
all_boxes[:, 2:] = all_boxes[:, :2] + all_boxes[:, 2:]
im_to_first_box = roi_h5['img_to_first_box'][split_mask]
im_to_last_box = roi_h5['img_to_last_box'][split_mask]
im_to_first_rel = roi_h5['img_to_first_rel'][split_mask]
im_to_last_rel = roi_h5['img_to_last_rel'][split_mask]
_relations = roi_h5['relationships'][:]
_relation_predicates = roi_h5['predicates'][:, 0]
assert (im_to_first_rel.shape[0] == im_to_last_rel.shape[0])
assert (_relations.shape[0] == _relation_predicates.shape[0])
boxes = []
gt_classes = []
relationships = []
for i in range(len(image_index)):
boxes_i = all_boxes[im_to_first_box[i]:im_to_last_box[i] + 1, :]
gt_classes_i = all_labels[im_to_first_box[i]:im_to_last_box[i] + 1]
if im_to_first_rel[i] >= 0:
predicates = _relation_predicates[im_to_first_rel[i]:im_to_last_rel[i] + 1]
obj_idx = _relations[im_to_first_rel[i]:im_to_last_rel[i] + 1] - im_to_first_box[i]
assert np.all(obj_idx >= 0)
assert np.all(obj_idx < boxes_i.shape[0])
rels = np.column_stack((obj_idx, predicates))
else:
assert not filter_empty_rels
rels = np.zeros((0, 3), dtype=np.int32)
if filter_non_overlap:
assert mode == 'train'
inters = bbox_overlaps(boxes_i, boxes_i)
rel_overs = inters[rels[:, 0], rels[:, 1]]
inc = np.where(rel_overs > 0.0)[0]
if inc.size > 0:
rels = rels[inc]
else:
split_mask[image_index[i]] = 0
continue
boxes.append(boxes_i)
gt_classes.append(gt_classes_i)
relationships.append(rels)
return split_mask, boxes, gt_classes, relationships
|
Load the file containing the GT boxes and relations, as well as the dataset split
:param graphs_file: HDF5
:param mode: (train, val, or test)
:param num_im: Number of images we want
:param num_val_im: Number of validation images
:param filter_empty_rels: (will be filtered otherwise.)
:param filter_non_overlap: If training, filter images that dont overlap.
:return: image_index: numpy array corresponding to the index of images we're using
boxes: List where each element is a [num_gt, 4] array of ground
truth boxes (x1, y1, x2, y2)
gt_classes: List where each element is a [num_gt] array of classes
relationships: List where each element is a [num_r, 3] array of
(box_ind_1, box_ind_2, predicate) relationships
|
https://github.com/taksau/gps-net/blob/dfbe63a793026b231b3cd60073aaa91a2ad4d06a/lib/dataloaders/visual_genome.py#L264-L362
|
import json
import os
import h5py
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset
from torchvision.transforms import Resize, Compose, ToTensor, Normalize
from dataloaders.blob import Blob
from lib.fpn.box_intersections_cpu.bbox import bbox_overlaps
from config import VG_IMAGES, IM_DATA_FN, VG_SGG_FN, VG_SGG_DICT_FN, BOX_SCALE, IM_SCALE, PROPOSAL_FN
from dataloaders.image_transforms import SquarePad, Grayscale, Brightness, Sharpness, Contrast, RandomOrder, Hue, random_crop
from collections import defaultdict
from pycocotools.coco import COCO
class VG(Dataset):
def __init__(self, mode, roidb_file=VG_SGG_FN, dict_file=VG_SGG_DICT_FN,
image_file=IM_DATA_FN, filter_empty_rels=True, num_im=-1, num_val_im=5000,
filter_duplicate_rels=True, filter_non_overlap=True,
use_proposals=False):
if mode not in ('test', 'train', 'val'):
raise ValueError("Mode must be in test, train, or val. Supplied {}".format(mode))
self.mode = mode
self.roidb_file = roidb_file
self.dict_file = dict_file
self.image_file = image_file
self.filter_non_overlap = filter_non_overlap
self.filter_duplicate_rels = filter_duplicate_rels and self.mode == 'train'
self.split_mask, self.gt_boxes, self.gt_classes, self.relationships = load_graphs(
self.roidb_file, self.mode, num_im, num_val_im=num_val_im,
filter_empty_rels=filter_empty_rels,
filter_non_overlap=self.filter_non_overlap and self.is_train,
)
self.filenames = load_image_filenames(image_file)
self.filenames = [self.filenames[i] for i in np.where(self.split_mask)[0]]
self.ind_to_classes, self.ind_to_predicates = load_info(dict_file)
if use_proposals:
print("Loading proposals", flush=True)
p_h5 = h5py.File(PROPOSAL_FN, 'r')
rpn_rois = p_h5['rpn_rois']
rpn_scores = p_h5['rpn_scores']
rpn_im_to_roi_idx = np.array(p_h5['im_to_roi_idx'][self.split_mask])
rpn_num_rois = np.array(p_h5['num_rois'][self.split_mask])
self.rpn_rois = []
for i in range(len(self.filenames)):
rpn_i = np.column_stack((
rpn_scores[rpn_im_to_roi_idx[i]:rpn_im_to_roi_idx[i] + rpn_num_rois[i]],
rpn_rois[rpn_im_to_roi_idx[i]:rpn_im_to_roi_idx[i] + rpn_num_rois[i]],
))
self.rpn_rois.append(rpn_i)
else:
self.rpn_rois = None
tform = [
SquarePad(),
Resize(IM_SCALE),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
self.transform_pipeline = Compose(tform)
@property
def coco(self):
anns = []
for i, (cls_array, box_array) in enumerate(zip(self.gt_classes, self.gt_boxes)):
for cls, box in zip(cls_array.tolist(), box_array.tolist()):
anns.append({
'area': (box[3] - box[1] + 1) * (box[2] - box[0] + 1),
'bbox': [box[0], box[1], box[2] - box[0] + 1, box[3] - box[1] + 1],
'category_id': cls,
'id': len(anns),
'image_id': i,
'iscrowd': 0,
})
fauxcoco = COCO()
fauxcoco.dataset = {
'info': {'description': 'ayy lmao'},
'images': [{'id': i} for i in range(self.__len__())],
'categories': [{'supercategory': 'person',
'id': i, 'name': name} for i, name in enumerate(self.ind_to_classes) if name != '__background__'],
'annotations': anns,
}
fauxcoco.createIndex()
return fauxcoco
@property
def is_train(self):
return self.mode.startswith('train')
@classmethod
def splits(cls, *args, **kwargs):
train = cls('train', *args, **kwargs)
val = cls('val', *args, **kwargs)
test = cls('test', *args, **kwargs)
return train, val, test
def __getitem__(self, index):
image_unpadded = Image.open(self.filenames[index]).convert('RGB')
flipped = self.is_train and np.random.random() > 0.5
gt_boxes = self.gt_boxes[index].copy()
if self.is_train:
gt_boxes[:, [1, 3]] = gt_boxes[:, [1, 3]].clip(
None, BOX_SCALE / max(image_unpadded.size) * image_unpadded.size[1])
gt_boxes[:, [0, 2]] = gt_boxes[:, [0, 2]].clip(
None, BOX_SCALE / max(image_unpadded.size) * image_unpadded.size[0])
w, h = image_unpadded.size
box_scale_factor = BOX_SCALE / max(w, h)
if flipped:
scaled_w = int(box_scale_factor * float(w))
image_unpadded = image_unpadded.transpose(Image.FLIP_LEFT_RIGHT)
gt_boxes[:, [0, 2]] = scaled_w - gt_boxes[:, [2, 0]]
img_scale_factor = IM_SCALE / max(w, h)
if h > w:
im_size = (IM_SCALE, int(w * img_scale_factor), img_scale_factor)
elif h < w:
im_size = (int(h * img_scale_factor), IM_SCALE, img_scale_factor)
else:
im_size = (IM_SCALE, IM_SCALE, img_scale_factor)
gt_rels = self.relationships[index].copy()
if self.filter_duplicate_rels:
assert self.mode == 'train'
old_size = gt_rels.shape[0]
all_rel_sets = defaultdict(list)
for (o0, o1, r) in gt_rels:
all_rel_sets[(o0, o1)].append(r)
gt_rels = [(k[0], k[1], np.random.choice(v)) for k,v in all_rel_sets.items()]
gt_rels = np.array(gt_rels)
entry = {
'img': self.transform_pipeline(image_unpadded),
'img_size': im_size,
'gt_boxes': gt_boxes,
'gt_classes': self.gt_classes[index].copy(),
'gt_relations': gt_rels,
'scale': IM_SCALE / BOX_SCALE,
'index': index,
'flipped': flipped,
'fn': self.filenames[index],
}
if self.rpn_rois is not None:
entry['proposals'] = self.rpn_rois[index]
assertion_checks(entry)
return entry
def __len__(self):
return len(self.filenames)
@property
def num_predicates(self):
return len(self.ind_to_predicates)
@property
def num_classes(self):
return len(self.ind_to_classes)
def assertion_checks(entry):
im_size = tuple(entry['img'].size())
if len(im_size) != 3:
raise ValueError("Img must be dim-3")
c, h, w = entry['img'].size()
if c != 3:
raise ValueError("Must have 3 color channels")
num_gt = entry['gt_boxes'].shape[0]
if entry['gt_classes'].shape[0] != num_gt:
raise ValueError("GT classes and GT boxes must have same number of examples")
assert (entry['gt_boxes'][:, 2] >= entry['gt_boxes'][:, 0]).all()
assert (entry['gt_boxes'] >= -1).all()
def load_image_filenames(image_file, image_dir=VG_IMAGES):
with open(image_file, 'r') as f:
im_data = json.load(f)
corrupted_ims = ['1592.jpg', '1722.jpg', '4616.jpg', '4617.jpg']
fns = []
for i, img in enumerate(im_data):
basename = '{}.jpg'.format(img['image_id'])
if basename in corrupted_ims:
continue
filename = os.path.join(image_dir, basename)
if os.path.exists(filename):
fns.append(filename)
assert len(fns) == 108073
return fns
|
MIT License
|
geemaple/leetcode
|
leetcode/67.add-binary.py
|
Solution.addBinary
|
python
|
def addBinary(self, a, b):
size = max(len(a), len(b))
addOn = 0
res = ''
for i in range(size):
digitA = int(a[~i]) if (i + 1 <= len(a)) else 0
digitB = int(b[~i]) if (i + 1 <= len(b)) else 0
number = digitA + digitB + addOn
addOn = number // 2
res = str(number % 2) + res
if addOn > 0:
res = str(addOn) + res
return res
|
:type a: str
:type b: str
:rtype: str
|
https://github.com/geemaple/leetcode/blob/68bc5032e1ee52c22ef2f2e608053484c487af54/leetcode/67.add-binary.py#L2-L25
|
class Solution(object):
|
MIT License
|
rhayes777/pyautofit
|
autofit/graphical/utils.py
|
psilog
|
python
|
def psilog(x: np.ndarray) -> np.ndarray:
return special.digamma(x) - np.log(x)
|
psi(x) - log(x)
needed when calculating E[ln[x]] when x is a Gamma variable
|
https://github.com/rhayes777/pyautofit/blob/1eb6819cc60df8f6fb7d03bd95eaf074409d9e49/autofit/graphical/utils.py#L206-L211
|
from functools import reduce
from operator import mul
from typing import (
Iterable, Tuple, TypeVar, Dict, NamedTuple, Optional, Union
)
import numpy as np
from scipy import special
from scipy.linalg import block_diag
from scipy.optimize import OptimizeResult
from autofit.mapper.variable import Variable
class Status(NamedTuple):
success: bool = True
messages: Tuple[str, ...] = ()
class FlattenArrays(dict):
def __init__(self, dict_: Dict[Variable, Tuple[int, ...]]):
super().__init__()
self.update(dict_)
self.splits = np.cumsum([
np.prod(s) for s in self.values()], dtype=int)
self.inds = [
slice(i0, i1) for i0, i1 in
zip(np.r_[0, self.splits[:-1]], self.splits)]
self.sizes = {
k: np.prod(s, dtype=int) for k, s in self.items()}
@classmethod
def from_arrays(cls, **arrays: Dict[str, np.ndarray]) -> "FlattenArrays":
return cls(**{k: np.shape(arr) for k, arr in arrays.items()})
def flatten(self, arrays_dict: Dict[Variable, np.ndarray]) -> np.ndarray:
assert all(np.shape(arrays_dict[k]) == shape
for k, shape in self.items())
return np.concatenate([
np.ravel(arrays_dict[k]) for k in self.keys()])
def unflatten(self, arr: np.ndarray, ndim=None) -> Dict[str, np.ndarray]:
arr = np.asanyarray(arr)
if ndim is None:
ndim = arr.ndim
arrays = [
arr[(ind,) * ndim] for ind in self.inds]
arr_shapes = [arr.shape[ndim:] for arr in arrays]
return {
k: arr.reshape(shape * ndim + arr_shape)
if shape or arr_shape else arr.item()
for (k, shape), arr_shape, arr in
zip(self.items(), arr_shapes, arrays)}
def flatten2d(self, values: Dict[Variable, np.ndarray]) -> np.ndarray:
assert all(np.shape(values[k]) == shape * 2
for k, shape in self.items())
return block_diag(*(
np.reshape(values[k], (n, n))
for k, n in self.sizes.items()
))
unflatten2d = unflatten
def __repr__(self):
shapes = ", ".join(map("{0[0]}={0[1]}".format, self.items()))
return f"{type(self).__name__}({shapes})"
@property
def size(self):
return self.splits[-1]
class OptResult(NamedTuple):
mode: Dict[Variable, np.ndarray]
hess_inv: Dict[Variable, np.ndarray]
log_norm: float
full_hess_inv: np.ndarray
result: OptimizeResult
status: Status = Status()
def add_arrays(*arrays: np.ndarray) -> np.ndarray:
b = np.broadcast(*arrays)
return sum(a * np.size(a) / b.size for a in arrays)
Axis = Optional[Union[bool, int, Tuple[int, ...]]]
def aggregate(array: np.ndarray, axis: Axis = False, **kwargs) -> np.ndarray:
if axis is False:
return array
else:
return np.sum(array, axis=axis, **kwargs)
def diag(array: np.ndarray, *ds: Tuple[int, ...]) -> np.ndarray:
array = np.asanyarray(array)
d1 = array.shape
if ds:
ds = (d1,) + ds
else:
ds = (d1, d1)
out = np.zeros(sum(ds, ()))
diag_inds = tuple(map(np.ravel, (i for d in ds for i in np.indices(d))))
out[diag_inds] = array.ravel()
return out
_M = TypeVar('_M')
def prod(iterable: Iterable[_M], *arg: Tuple[_M]) -> _M:
return reduce(mul, iterable, *arg)
def r2_score(y_true, y_pred, axis=None):
y_true = np.asanyarray(y_true)
y_pred = np.asanyarray(y_pred)
mse = np.square(y_true - y_pred).mean(axis=axis)
var = y_true.var(axis=axis)
return 1 - mse / var
def propagate_uncertainty(
cov: np.ndarray, jac: np.ndarray) -> np.ndarray:
cov = np.asanyarray(cov)
var_ndim = cov.ndim // 2
det_ndim = jac.ndim - var_ndim
det_shape, var_shape = jac.shape[:det_ndim], jac.shape[det_ndim:]
assert var_shape == cov.shape[:var_ndim] == cov.shape[var_ndim:]
var_size = np.prod(var_shape, dtype=int)
det_size = np.prod(det_shape, dtype=int)
cov2d = cov.reshape((var_size, var_size))
jac2d = jac.reshape((det_size, var_size))
det_cov2d = np.linalg.multi_dot((
jac2d, cov2d, jac2d.T))
det_cov = det_cov2d.reshape(det_shape + det_shape)
return det_cov
|
MIT License
|
phoenixdl/rising
|
rising/transforms/kernel.py
|
KernelTransform.create_kernel
|
python
|
def create_kernel(self) -> torch.Tensor:
raise NotImplementedError
|
Create kernel for convolution
|
https://github.com/phoenixdl/rising/blob/1d15e161198da469a06a5995746e8f531772f7f3/rising/transforms/kernel.py#L90-L94
|
import math
from typing import Callable, Sequence, Union
import torch
from rising.utils import check_scalar
from .abstract import AbstractTransform
__all__ = ["KernelTransform", "GaussianSmoothing"]
class KernelTransform(AbstractTransform):
def __init__(
self,
in_channels: int,
kernel_size: Union[int, Sequence],
dim: int = 2,
stride: Union[int, Sequence] = 1,
padding: Union[int, Sequence] = 0,
padding_mode: str = "zero",
keys: Sequence = ("data",),
grad: bool = False,
**kwargs
):
super().__init__(grad=grad, **kwargs)
self.in_channels = in_channels
if check_scalar(kernel_size):
kernel_size = [kernel_size] * dim
self.kernel_size = kernel_size
if check_scalar(stride):
stride = [stride] * dim
self.stride = stride
if check_scalar(padding):
padding = [padding] * dim * 2
self.padding = padding
self.padding_mode = padding_mode
self.keys = keys
kernel = self.create_kernel()
self.register_buffer("weight", kernel)
self.groups = in_channels
self.conv = self.get_conv(dim)
@staticmethod
def get_conv(dim) -> Callable:
if dim == 1:
return torch.nn.functional.conv1d
elif dim == 2:
return torch.nn.functional.conv2d
elif dim == 3:
return torch.nn.functional.conv3d
else:
raise TypeError("Only 1, 2 and 3 dimensions are supported. Received {}.".format(dim))
|
MIT License
|
kuri65536/python-for-android
|
python-modules/twisted/twisted/application/service.py
|
IServiceCollection.addService
|
python
|
def addService(service):
|
Add a child service.
@type service: L{IService}
@raise RuntimeError: Raised if the service has a child with
the given name.
|
https://github.com/kuri65536/python-for-android/blob/26402a08fc46b09ef94e8d7a6bbc3a54ff9d0891/python-modules/twisted/twisted/application/service.py#L226-L233
|
from zope.interface import implements, Interface, Attribute
from twisted.python.reflect import namedAny
from twisted.python import components
from twisted.internet import defer
from twisted.persisted import sob
from twisted.plugin import IPlugin
class IServiceMaker(Interface):
tapname = Attribute(
"A short string naming this Twisted plugin, for example 'web' or "
"'pencil'. This name will be used as the subcommand of 'twistd'.")
description = Attribute(
"A brief summary of the features provided by this "
"Twisted application plugin.")
options = Attribute(
"A C{twisted.python.usage.Options} subclass defining the"
"configuration options for this application.")
def makeService(options):
class ServiceMaker(object):
implements(IPlugin, IServiceMaker)
def __init__(self, name, module, description, tapname):
self.name = name
self.module = module
self.description = description
self.tapname = tapname
def options():
def get(self):
return namedAny(self.module).Options
return get,
options = property(*options())
def makeService():
def get(self):
return namedAny(self.module).makeService
return get,
makeService = property(*makeService())
class IService(Interface):
def setName(name):
def setServiceParent(parent):
def disownServiceParent():
def startService():
def stopService():
def privilegedStartService():
class Service:
implements(IService)
running = 0
name = None
parent = None
def __getstate__(self):
dict = self.__dict__.copy()
if dict.has_key("running"):
del dict['running']
return dict
def setName(self, name):
if self.parent is not None:
raise RuntimeError("cannot change name when parent exists")
self.name = name
def setServiceParent(self, parent):
if self.parent is not None:
self.disownServiceParent()
parent = IServiceCollection(parent, parent)
self.parent = parent
self.parent.addService(self)
def disownServiceParent(self):
d = self.parent.removeService(self)
self.parent = None
return d
def privilegedStartService(self):
pass
def startService(self):
self.running = 1
def stopService(self):
self.running = 0
class IServiceCollection(Interface):
def getServiceNamed(name):
def __iter__():
|
Apache License 2.0
|
keenlabs/keenclient-python
|
keen/Padding.py
|
removeRandomLenPadding
|
python
|
def removeRandomLenPadding(str, blocksize=AES_blocksize):
pad_len = ord(str[-1])
assert pad_len < blocksize, 'padding error'
assert pad_len < len(str), 'padding error'
return str[:-pad_len]
|
ISO 10126 Padding (withdrawn, 2007): Remove Padding with random bytes + last byte equal to the number of padding bytes
|
https://github.com/keenlabs/keenclient-python/blob/0cd942152977ee37a0c828249c95cf3a27c8c80f/keen/Padding.py#L217-L223
|
__doc__ = '''
Padding methods for password based encryption
I. Functions:
appendPadding(str, blocksize=AES_blocksize, mode='CMS'):
Pad (append padding to) string for use with symmetric encryption algorithm
Input: (string) str - String to be padded
(int) blocksize - block size of the encryption algorithm. Usually 8 or 16 bytes
(string) mode - padding scheme one in (CMS, Bit, ZeroLen, Null, Space, Random)
Return:(string) Padded string according to chosen padding mode
removePadding(str, blocksize=AES_blocksize, mode='CMS'):
Remove padding from string
Input: (str) str - String to be padded
(int) blocksize - block size of the algorithm. Usually 8 or 16 bytes
(string) mode - padding scheme one in (CMS, Bit, ZeroLen, Null, Space, Random)
Return:(string) Decrypted string without padding
II. Blocksizes:
DES (Triple DES), CAST5 and Blowfish have block size of 64 bits = 8 bytes
DES_blocksize = 8
CAST5_blocksize = 8
Blowfish_blocksize = 8
AES has fixed block size of 128 bits = 16 bytes and this is the default blocksize
AES_blocksize = 16
III. Mode:
MODES ={
(0,'CMS') : 'Pad with bytes all of the same value as the number of padding bytes. Default mode used in Cryptographic Message Syntax (CMS as defined in RFC 5652, PKCS#5, PKCS#7 and RFC 1423 PEM)',
(1,'Bit') : 'BitPadding: Pad with 0x80 (10000000) followed by zero (null) bytes. Described in ANSI X.923 and ISO/IEC 9797-1',
(2,'ZeroLen') : 'Pad with zeroes except make the last byte equal to the number (length) of padding bytes',
(3,'Null') : 'Pad with null bytes. Only for encrypting of text data.',
(4,'Space') : 'Pad with spaces. Only for encrypting of text data.',
(5,'Random') : 'ISO 10126 Padding (withdrawn in 2007): Pad with random bytes + last byte equal to the number of padding bytes'
}
CMS mode is the default one
IV. Examples:
Example 1: Add/Remove padding for message to be encrypted/decrypted with AES
> from Padding import appendPadding, removePadding
> msg = 'a'*20
>
> padded_msg = appendPadding(msg) # 'Default blocksize is 16 bytes (128 bits) which is AES blocksize'
> padded_msg, len(padded_msg)
> msg = removePadding(padded_msg)
> msg, len(msg)
Example 2: Add/Remove padding for message to be encrypted/decrypted with DES (Triple DES), CAST5 or Blowfish
> import Padding
> msg = 'b'*20
> blocksize = Padding.DES_blocksize
> "DES has fixed block size of %d bits = %d bytes" % (blocksize*8, blocksize)
> padded_msg = Padding.appendPadding(msg, blocksize)
> padded_msg, len(padded_msg)
> msg = Padding.removePadding(padded_msg)
> msg, len(msg)
'''
DES_blocksize = 8
CAST5_blocksize = 8
Blowfish_blocksize = 8
AES_blocksize = 16
def paddingLength(str_len, blocksize=AES_blocksize):
assert 0 < blocksize < 255, 'blocksize must be between 0 and 255'
assert str_len > 0 , 'string length should be non-negative'
'If the last block is already full, append an extra block of padding'
pad_len = blocksize - (str_len % blocksize)
return pad_len
def appendCMSPadding(str, blocksize=AES_blocksize):
pad_len = paddingLength(len(str), blocksize)
padding = (chr(pad_len) * pad_len)
return str + padding
def removeCMSPadding(str, blocksize=AES_blocksize):
try:
pad_len = ord(str[-1])
except TypeError:
pad_len = str[-1]
assert pad_len <= blocksize, 'padding error'
assert pad_len <= len(str), 'padding error'
return str[:-pad_len]
def appendBitPadding(str, blocksize=AES_blocksize):
pad_len = paddingLength(len(str), blocksize) - 1
padding = chr(0x80)+'\0'*pad_len
return str + padding
def removeBitPadding(str, blocksize=AES_blocksize):
pad_len = 0
for char in str[::-1]:
if char == '\0':
pad_len += 1
else:
break
pad_len += 1
str = str[:-pad_len]
return str
def appendZeroLenPadding(str, blocksize=AES_blocksize):
pad_len = paddingLength(len(str), blocksize) - 1
padding = '\0'*pad_len+chr(pad_len)
return str + padding
def removeZeroLenPadding(str, blocksize=AES_blocksize):
try:
pad_len = ord(str[-1])
except TypeError:
pad_len = str[-1]
assert pad_len < blocksize, 'padding error'
assert pad_len < len(str), 'padding error'
return str[:-pad_len]
def appendNullPadding(str, blocksize=AES_blocksize):
pad_len = paddingLength(len(str), blocksize)
padding = '\0'*pad_len
return str + padding
def removeNullPadding(str, blocksize=AES_blocksize):
pad_len = 0
for char in str[::-1]:
if char == '\0':
pad_len += 1
else:
break
str = str[:-pad_len]
return str
def appendSpacePadding(str, blocksize=AES_blocksize):
pad_len = paddingLength(len(str), blocksize)
padding = '\0'*pad_len
return str + padding
def removeSpacePadding(str, blocksize=AES_blocksize):
pad_len = 0
for char in str[::-1]:
if char == ' ':
pad_len += 1
else:
break
str = str[:-pad_len]
return str
def appendRandomLenPadding(str, blocksize=AES_blocksize):
pad_len = paddingLength(len(str), blocksize) - 1
from os import urandom
padding = urandom(pad_len)+chr(pad_len)
return str + padding
|
MIT License
|
windelbouwman/ppci
|
ppci/cli/wasmcompile.py
|
wasmcompile
|
python
|
def wasmcompile(args=None):
args = parser.parse_args(args)
with LogSetup(args) as log_setup:
march = get_arch_from_args(args)
wasm_module = read_wasm(args.wasm_file)
args.wasm_file.close()
ir_module = wasm_to_ir(
wasm_module,
march.info.get_type_info("ptr"),
reporter=log_setup.reporter,
)
do_compile([ir_module], march, log_setup.reporter, log_setup.args)
|
Compile wasm to native code
|
https://github.com/windelbouwman/ppci/blob/915c069e0667042c085ec42c78e9e3c9a5295324/ppci/cli/wasmcompile.py#L25-L38
|
import argparse
from .base import base_parser, march_parser
from .base import LogSetup, get_arch_from_args
from .compile_base import compile_parser, do_compile
from ..wasm import read_wasm, wasm_to_ir
parser = argparse.ArgumentParser(
description=__doc__, parents=[base_parser, march_parser, compile_parser]
)
parser.add_argument(
"wasm_file",
metavar="wasm file",
type=argparse.FileType("rb"),
help="wasm file to compile",
)
|
BSD 2-Clause Simplified License
|
facelessuser/sublime-markdown-popups
|
st3/mdpopups/coloraide/color/interpolate.py
|
Interpolator.__call__
|
python
|
def __call__(self, p):
|
Call the interpolator.
|
https://github.com/facelessuser/sublime-markdown-popups/blob/aeb7586da26fe46b7764cf1e2832336bc306195d/st3/mdpopups/coloraide/color/interpolate.py#L57-L58
|
import math
from abc import ABCMeta, abstractmethod
from collections.abc import Sequence, Mapping, Callable
from collections import namedtuple
from .. import util
from ..spaces import Cylindrical, Angle
class Lerp:
def __init__(self, progress):
self.progress = progress
def __call__(self, a, b, t):
return a + (b - a) * (t if not isinstance(self.progress, Callable) else self.progress(t))
class Piecewise(namedtuple('Piecewise', ['color', 'stop', 'progress', 'hue', 'premultiplied'])):
__slots__ = ()
def __new__(cls, color, stop=None, progress=None, hue=util.DEF_HUE_ADJ, premultiplied=False):
return super().__new__(cls, color, stop, progress, hue, premultiplied)
class Interpolator(metaclass=ABCMeta):
@abstractmethod
def __init__(self):
@abstractmethod
|
MIT License
|
aparo/django-elasticsearch
|
django_elasticsearch/manager.py
|
QuerySet.__call__
|
python
|
def __call__(self, q_obj=None, **query):
if q_obj:
self._where_clause = q_obj.as_js(self._document)
query = QuerySet._transform_query(_doc_cls=self._document, **query)
self._query.update(query)
return self
|
Filter the selected documents by calling the
:class:`~mongoengine.queryset.QuerySet` with a query.
:param q_obj: a :class:`~mongoengine.queryset.Q` object to be used in
the query; the :class:`~mongoengine.queryset.QuerySet` is filtered
multiple times with different :class:`~mongoengine.queryset.Q`
objects, only the last one will be used
:param query: Django-style query keyword arguments
|
https://github.com/aparo/django-elasticsearch/blob/8fd25bd86b58cfc0d6490cfac08e4846ab4ddf97/django_elasticsearch/manager.py#L173-L187
|
from django.db import connections
from django.db.models.manager import Manager as DJManager
import re
import copy
from .utils import dict_keys_to_str
try:
from django.core.exceptions import MultipleObjectsReturned, ObjectDoesNotExist
except ImportError:
class ObjectDoesNotExist(Exception):
pass
class MultipleObjectsReturned(Exception):
pass
DoesNotExist = ObjectDoesNotExist
__all__ = ['queryset_manager', 'Q', 'InvalidQueryError',
'InvalidCollectionError']
REPR_OUTPUT_SIZE = 20
class InvalidQueryError(Exception):
pass
class OperationError(Exception):
pass
class InvalidCollectionError(Exception):
pass
DoesNotExist = ObjectDoesNotExist
RE_TYPE = type(re.compile(''))
class Q(object):
OR = '||'
AND = '&&'
OPERATORS = {
'eq': 'this.%(field)s == %(value)s',
'ne': 'this.%(field)s != %(value)s',
'gt': 'this.%(field)s > %(value)s',
'gte': 'this.%(field)s >= %(value)s',
'lt': 'this.%(field)s < %(value)s',
'lte': 'this.%(field)s <= %(value)s',
'lte': 'this.%(field)s <= %(value)s',
'in': '%(value)s.indexOf(this.%(field)s) != -1',
'nin': '%(value)s.indexOf(this.%(field)s) == -1',
'mod': '%(field)s %% %(value)s',
'all': ('%(value)s.every(function(a){'
'return this.%(field)s.indexOf(a) != -1 })'),
'size': 'this.%(field)s.length == %(value)s',
'exists': 'this.%(field)s != null',
'regex_eq': '%(value)s.test(this.%(field)s)',
'regex_ne': '!%(value)s.test(this.%(field)s)',
}
def __init__(self, **query):
self.query = [query]
def _combine(self, other, op):
obj = Q()
obj.query = ['('] + copy.deepcopy(self.query) + [op]
obj.query += copy.deepcopy(other.query) + [')']
return obj
def __or__(self, other):
return self._combine(other, self.OR)
def __and__(self, other):
return self._combine(other, self.AND)
def as_js(self, document):
js = []
js_scope = {}
for i, item in enumerate(self.query):
if isinstance(item, dict):
item_query = QuerySet._transform_query(document, **item)
js.append(self._item_query_as_js(item_query, js_scope, i))
else:
js.append(item)
return pymongo.code.Code(' '.join(js), js_scope)
def _item_query_as_js(self, item_query, js_scope, item_num):
js = []
for i, (key, value) in enumerate(item_query.items()):
op = 'eq'
value_name = 'i%sf%s' % (item_num, i)
if isinstance(value, dict):
for j, (op, value) in enumerate(value.items()):
op_value_name = '%so%s' % (value_name, j)
value, operation_js = self._build_op_js(op, key, value,
op_value_name)
js_scope[op_value_name] = value
js.append(operation_js)
else:
value, field_js = self._build_op_js(op, key, value, value_name)
js_scope[value_name] = value
js.append(field_js)
return ' && '.join(js)
def _build_op_js(self, op, key, value, value_name):
if isinstance(value, RE_TYPE):
if op.strip('$') == 'ne':
op_js = Q.OPERATORS['regex_ne']
else:
op_js = Q.OPERATORS['regex_eq']
else:
op_js = Q.OPERATORS[op.strip('$')]
operation_js = op_js % {
'field': key,
'value': value_name
}
return value, operation_js
class InternalMetadata:
def __init__(self, meta):
self.object_name = meta["object_name"]
class InternalModel:
def __init__(self, document):
self.document = document
self._meta = InternalMetadata(document._meta)
self.DoesNotExist = ObjectDoesNotExist
class QuerySet(object):
def __init__(self, document, collection):
self._document = document
self._collection_obj = collection
self._accessed_collection = False
self._query = {}
self._where_clause = None
self._loaded_fields = []
self._ordering = []
self.transform = TransformDjango()
self._cursor_obj = None
self._limit = None
self._skip = None
|
BSD 3-Clause New or Revised License
|
knipknap/gelatin
|
Gelatin/util.py
|
generate_string_to_file
|
python
|
def generate_string_to_file(converter,
input,
output_file,
format='xml',
out_encoding='utf8'):
with codecs.open(output_file, 'w', encoding=out_encoding) as thefile:
result = generate_string(converter, input, format=format)
thefile.write(result)
|
Like generate(), but reads the input from a string instead of
from a file, and writes the output to the given output file.
:type converter: compiler.Context
:param converter: The compiled converter.
:type input: str
:param input: The string to convert.
:type output_file: str
:param output_file: The output filename.
:type format: str
:param format: The output format.
:type out_encoding: str
:param out_encoding: Character encoding of the output file.
:rtype: str
:return: The resulting output.
|
https://github.com/knipknap/gelatin/blob/d2afa85a48034d6ee34580e49e16542f31ad208e/Gelatin/util.py#L130-L154
|
import codecs
from . import generator
from .generator import Builder
from .parser import Parser
from .compiler import SyntaxCompiler
def compile_string(syntax):
return Parser().parse_string(syntax, SyntaxCompiler())
def compile(syntax_file, encoding='utf8'):
return Parser().parse(syntax_file,
SyntaxCompiler(),
encoding=encoding)
def generate(converter, input_file, format='xml', encoding='utf8'):
with codecs.open(input_file, encoding=encoding) as thefile:
return generate_string(converter, thefile.read(), format=format)
def generate_to_file(converter,
input_file,
output_file,
format='xml',
in_encoding='utf8',
out_encoding='utf8'):
with codecs.open(output_file, 'w', encoding=out_encoding) as thefile:
result = generate(converter, input_file, format=format, encoding=in_encoding)
thefile.write(result)
def generate_string(converter, input, format='xml'):
serializer = generator.new(format)
if serializer is None:
raise TypeError('invalid output format ' + repr(format))
builder = Builder()
converter.parse_string(input, builder)
return builder.serialize(serializer)
|
MIT License
|
armmbed/greentea
|
src/htrun/host_tests_plugins/module_copy_stlink.py
|
HostTestPluginCopyMethod_Stlink.execute
|
python
|
def execute(self, capability, *args, **kwargs):
result = False
if self.check_parameters(capability, *args, **kwargs) is True:
image_path = os.path.normpath(kwargs["image_path"])
if capability == "stlink":
cmd = [self.ST_LINK_CLI, "-p", image_path, "0x08000000", "-V"]
result = self.run_command(cmd)
return result
|
Copy a firmware image to a deice using the ST-LINK-CLI.
If the "capability" name is not 'stlink' this method will just fail.
Args:
capability: Capability name.
args: Additional arguments.
kwargs: Additional arguments.
Returns:
True if the copy succeeded, otherwise False.
|
https://github.com/armmbed/greentea/blob/1c67ffc4651af602d99a27be8d0fab3dbc32a34e/src/htrun/host_tests_plugins/module_copy_stlink.py#L43-L65
|
import os
from .host_test_plugins import HostTestPluginBase
class HostTestPluginCopyMethod_Stlink(HostTestPluginBase):
name = "HostTestPluginCopyMethod_Stlink"
type = "CopyMethod"
capabilities = ["stlink"]
required_parameters = ["image_path"]
def __init__(self):
HostTestPluginBase.__init__(self)
def is_os_supported(self, os_name=None):
if not os_name:
os_name = self.host_os_support()
if os_name and os_name.startswith("Windows"):
return True
return False
def setup(self, *args, **kwargs):
self.ST_LINK_CLI = "ST-LINK_CLI.exe"
return True
|
Apache License 2.0
|
bodenmillergroup/imctools
|
imctools/io/utils.py
|
sort_acquisition_channels
|
python
|
def sort_acquisition_channels(session: Session):
for a in session.acquisitions.values():
ordered_dict = dict()
ac_channels = list(a.channels.values())
ac_channels.sort(key=lambda x: x.order_number)
for c in ac_channels:
ordered_dict[c.id] = c
a.channels = ordered_dict
|
Sort entries of acquisition channels dictionary by channel order number
|
https://github.com/bodenmillergroup/imctools/blob/5019836df5dc2b682722e39d5f9c62799b658929/imctools/io/utils.py#L112-L120
|
from __future__ import annotations
import xml.etree.ElementTree as ET
from typing import TYPE_CHECKING, Optional, Sequence
import numpy as np
import xtiff
if TYPE_CHECKING:
from imctools.data import Session
SESSION_JSON_SUFFIX = "_session.json"
SCHEMA_XML_SUFFIX = "_schema.xml"
OME_TIFF_SUFFIX = "_ac.ome.tiff"
META_CSV_SUFFIX = "_meta.csv"
MCD_FILENDING = ".mcd"
ZIP_FILENDING = ".zip"
CSV_FILENDING = ".csv"
SCHEMA_FILENDING = ".schema"
def reshape_long_2_cyx(
data: np.memmap,
is_sorted: bool = True,
shape: Optional[np.ndarray] = None,
channel_indices: Optional[Sequence[int]] = None,
):
if shape is None:
shape = data[:, :2].max(axis=0) + 1
if np.prod(shape) > data.shape[0]:
shape[1] -= 1
shape = shape.astype(int)
if channel_indices is None:
channel_indices = range(data.shape[1])
n_channels = len(channel_indices)
if is_sorted:
tmp_data = data[:, channel_indices]
img = np.reshape(tmp_data[: (np.prod(shape)), :], [shape[1], shape[0], n_channels], order="C")
img = img.swapaxes(0, 2)
img = img.swapaxes(1, 2)
return img
else:
return NotImplemented
def get_ome_xml(
img: np.ndarray,
image_name: Optional[str],
channel_names: Optional[Sequence[str]],
big_endian: bool,
pixel_size: Optional[float],
pixel_depth: Optional[float],
creator: Optional[str] = None,
acquisition_date: Optional[str] = None,
channel_fluors: Optional[Sequence[str]] = None,
xml_metadata: Optional[str] = None,
**ome_xml_kwargs,
) -> ET.ElementTree:
size_t, size_z, size_c, size_y, size_x, size_s = img.shape
element_tree = xtiff.get_ome_xml(
img, image_name, channel_names, big_endian, pixel_size, pixel_depth, **ome_xml_kwargs
)
if creator is not None:
ome_element = element_tree.getroot()
ome_element.set("Creator", creator)
if acquisition_date is not None:
image_element = element_tree.find("./Image")
acquisition_date_element = ET.Element("AcquisitionDate")
acquisition_date_element.text = acquisition_date
image_element.insert(0, acquisition_date_element)
if channel_fluors is not None:
assert len(channel_fluors) == size_c
channel_elements = element_tree.findall("./Image/Pixels/Channel")
assert channel_elements is not None and len(channel_elements) == size_c
for channel_element, channel_fluor in zip(channel_elements, channel_fluors):
channel_element.set("Fluor", channel_fluor)
if xml_metadata is not None:
ome_element = element_tree.getroot()
structured_annotations_element = ET.SubElement(ome_element, "StructuredAnnotations")
xml_annotation_element = ET.SubElement(structured_annotations_element, "XMLAnnotation")
xml_annotation_element.set("ID", "Annotation:0")
xml_annotation_value_element = ET.SubElement(xml_annotation_element, "Value")
original_metadata_element = ET.SubElement(xml_annotation_value_element, "OriginalMetadata")
ET.SubElement(original_metadata_element, "Key").text = "MCD-XML"
ET.SubElement(original_metadata_element, "Value").text = xml_metadata.replace("\r\n", "")
return element_tree
|
MIT License
|
rucio/rucio
|
lib/rucio/web/rest/flaskapi/v1/auth.py
|
SAML.get
|
python
|
def get(self):
headers = self.get_headers()
headers.set('Content-Type', 'application/octet-stream')
headers.set('Cache-Control', 'no-cache, no-store, max-age=0, must-revalidate')
headers.add('Cache-Control', 'post-check=0, pre-check=0')
headers.set('Pragma', 'no-cache')
if not EXTRA_MODULES['onelogin']:
return "SAML not configured on the server side.", 400, headers
saml_nameid = request.cookies.get('saml-nameid', default=None)
vo = extract_vo(request.headers)
account = request.headers.get('X-Rucio-Account', default=None)
appid = request.headers.get('X-Rucio-AppID', default='unknown')
ip = request.headers.get('X-Forwarded-For', default=request.remote_addr)
if saml_nameid:
try:
result = get_auth_token_saml(account, saml_nameid, appid, ip, vo=vo)
except AccessDenied:
return generate_http_error_flask(
status_code=401,
exc=CannotAuthenticate.__name__,
exc_msg=f'Cannot authenticate to account {account} with given credentials',
headers=headers
)
if not result:
return generate_http_error_flask(
status_code=401,
exc=CannotAuthenticate.__name__,
exc_msg=f'Cannot authenticate to account {account} with given credentials',
headers=headers
)
headers.set('X-Rucio-Auth-Token', result['token'])
headers.set('X-Rucio-Auth-Token-Expires', date_to_str(result['expires_at']))
return '', 200, headers
SAML_PATH = config_get('saml', 'config_path')
req = prepare_saml_request(request.environ, dict(request.args.items(multi=False)))
auth = OneLogin_Saml2_Auth(req, custom_base_path=SAML_PATH)
headers.set('X-Rucio-SAML-Auth-URL', auth.login())
return '', 200, headers
|
.. :quickref: SAML;
:status 200: OK
:status 401: Unauthorized
:reqheader Rucio-VO: VO name as a string (Multi-VO only)
:reqheader Rucio-Account: Account identifier as a string.
:reqheader Rucio-Username: Username as a string.
:reqheader Rucio-Password: Password as a string.
:reqheader Rucio-AppID: Application identifier as a string.
:resheader X-Rucio-SAML-Auth-URL: as a variable-length string header.
|
https://github.com/rucio/rucio/blob/6a6092798bb8220dec07328d0e3f7f42d1b931cd/lib/rucio/web/rest/flaskapi/v1/auth.py#L859-L918
|
from __future__ import print_function
import base64
import logging
import time
from re import search
from typing import TYPE_CHECKING
from flask import Flask, Blueprint, request, Response, redirect, render_template
from six.moves.urllib.parse import urlparse
from werkzeug.datastructures import Headers
from rucio.api.authentication import get_auth_token_user_pass, get_auth_token_gss, get_auth_token_x509, get_auth_token_ssh, get_ssh_challenge_token, validate_auth_token, get_auth_oidc, redirect_auth_oidc, get_token_oidc, refresh_cli_auth_token, get_auth_token_saml
from rucio.common.config import config_get
from rucio.common.exception import AccessDenied, IdentityError, CannotAuthenticate, CannotAuthorize
from rucio.common.extra import import_extras
from rucio.common.utils import date_to_str
from rucio.web.rest.flaskapi.v1.common import check_accept_header_wrapper_flask, error_headers, extract_vo, generate_http_error_flask, ErrorHandlingMethodView
if TYPE_CHECKING:
from typing import Optional
from rucio.web.rest.flaskapi.v1.common import HeadersType
EXTRA_MODULES = import_extras(['onelogin'])
if EXTRA_MODULES['onelogin']:
from onelogin.saml2.auth import OneLogin_Saml2_Auth
from rucio.web.ui.flask.common.utils import prepare_saml_request
class UserPass(ErrorHandlingMethodView):
def get_headers(self) -> "Optional[HeadersType]":
headers = Headers()
headers['Access-Control-Allow-Origin'] = request.environ.get('HTTP_ORIGIN')
headers['Access-Control-Allow-Headers'] = request.environ.get('HTTP_ACCESS_CONTROL_REQUEST_HEADERS')
headers['Access-Control-Allow-Methods'] = '*'
headers['Access-Control-Allow-Credentials'] = 'true'
headers['Access-Control-Expose-Headers'] = 'X-Rucio-Auth-Token'
return headers
def options(self):
return '', 200, self.get_headers()
@check_accept_header_wrapper_flask(['application/octet-stream'])
def get(self):
headers = self.get_headers()
headers['Content-Type'] = 'application/octet-stream'
headers['Cache-Control'] = 'no-cache, no-store, max-age=0, must-revalidate'
headers.add('Cache-Control', 'post-check=0, pre-check=0')
headers['Pragma'] = 'no-cache'
vo = extract_vo(request.headers)
account = request.headers.get('X-Rucio-Account', default=None)
username = request.headers.get('X-Rucio-Username', default=None)
password = request.headers.get('X-Rucio-Password', default=None)
appid = request.headers.get('X-Rucio-AppID', default='unknown')
ip = request.headers.get('X-Forwarded-For', default=request.remote_addr)
if not account or not username or not password:
return generate_http_error_flask(401, CannotAuthenticate.__name__, 'Cannot authenticate without passing all required arguments', headers=headers)
try:
result = get_auth_token_user_pass(account, username, password, appid, ip, vo=vo)
except AccessDenied:
return generate_http_error_flask(401, CannotAuthenticate.__name__, f'Cannot authenticate to account {account} with given credentials', headers=headers)
if not result:
return generate_http_error_flask(401, CannotAuthenticate.__name__, f'Cannot authenticate to account {account} with given credentials', headers=headers)
headers['X-Rucio-Auth-Token'] = result['token']
headers['X-Rucio-Auth-Token-Expires'] = date_to_str(result['expires_at'])
return '', 200, headers
class OIDC(ErrorHandlingMethodView):
def get_headers(self) -> "Optional[HeadersType]":
headers = Headers()
headers['Access-Control-Allow-Origin'] = request.environ.get('HTTP_ORIGIN')
headers['Access-Control-Allow-Headers'] = request.environ.get('HTTP_ACCESS_CONTROL_REQUEST_HEADERS')
headers['Access-Control-Allow-Methods'] = '*'
headers['Access-Control-Allow-Credentials'] = 'true'
return headers
def options(self):
return '', 200, self.get_headers()
@check_accept_header_wrapper_flask(['application/octet-stream'])
def get(self):
headers = self.get_headers()
headers.set('Content-Type', 'application/octet-stream')
headers.set('Cache-Control', 'no-cache, no-store, max-age=0, must-revalidate')
headers.add('Cache-Control', 'post-check=0, pre-check=0')
headers.set('Pragma', 'no-cache')
vo = extract_vo(request.headers)
account = request.environ.get('HTTP_X_RUCIO_ACCOUNT', 'webui')
auth_scope = request.environ.get('HTTP_X_RUCIO_CLIENT_AUTHORIZE_SCOPE', "")
audience = request.environ.get('HTTP_X_RUCIO_CLIENT_AUTHORIZE_AUDIENCE', "")
auto = request.environ.get('HTTP_X_RUCIO_CLIENT_AUTHORIZE_AUTO', False)
issuer = request.environ.get('HTTP_X_RUCIO_CLIENT_AUTHORIZE_ISSUER', None)
polling = request.environ.get('HTTP_X_RUCIO_CLIENT_AUTHORIZE_POLLING', False)
refresh_lifetime = request.environ.get('HTTP_X_RUCIO_CLIENT_AUTHORIZE_REFRESH_LIFETIME', None)
auto = (auto == 'True' or auto == 'true')
polling = (polling == 'True' or polling == 'true')
if refresh_lifetime == 'None':
refresh_lifetime = None
ip = request.headers.get('X-Forwarded-For', default=request.remote_addr)
try:
kwargs = {'auth_scope': auth_scope,
'audience': audience,
'issuer': issuer,
'auto': auto,
'polling': polling,
'refresh_lifetime': refresh_lifetime,
'ip': ip}
result = get_auth_oidc(account, vo=vo, **kwargs)
except AccessDenied:
return generate_http_error_flask(
status_code=401,
exc=CannotAuthenticate.__name__,
exc_msg=f'Cannot get authentication URL from Rucio Authentication Server for account {account}',
headers=headers
)
if not result:
return generate_http_error_flask(
status_code=401,
exc=CannotAuthenticate.__name__,
exc_msg=f'Cannot get authentication URL from Rucio Authentication Server for account {account}',
headers=headers
)
headers.set('X-Rucio-OIDC-Auth-URL', result)
return '', 200, headers
class RedirectOIDC(ErrorHandlingMethodView):
def get_headers(self) -> "Optional[HeadersType]":
headers = Headers()
headers.set('Access-Control-Allow-Origin', request.environ.get('HTTP_ORIGIN'))
headers.set('Access-Control-Allow-Headers', request.environ.get('HTTP_ACCESS_CONTROL_REQUEST_HEADERS'))
headers.set('Access-Control-Allow-Methods', '*')
headers.set('Access-Control-Allow-Credentials', 'true')
return headers
def options(self):
return '', 200, self.get_headers()
@check_accept_header_wrapper_flask(['application/octet-stream', 'text/html'])
def get(self):
headers = self.get_headers()
headers.set('Content-Type', 'text/html')
headers.set('Cache-Control', 'no-cache, no-store, max-age=0, must-revalidate')
headers.add('Cache-Control', 'post-check=0, pre-check=0')
headers.set('Pragma', 'no-cache')
try:
fetchtoken = (request.headers.get('X-Rucio-Client-Fetch-Token', default=None) == 'True')
query_string = request.query_string.decode(encoding='utf-8')
result = redirect_auth_oidc(query_string, fetchtoken)
except AccessDenied:
headers.extend(error_headers(CannotAuthenticate.__name__, 'Cannot authorize your access, please check your access credentials'))
return render_template('auth_crash.html', crashtype='contact'), 401, headers
except Exception as error:
logging.exception("Internal Error")
headers.extend(error_headers(error.__class__.__name__, str(error.args[0])))
return render_template('auth_crash.html', crashtype='internal_error'), 500, headers
if not result:
headers.extend(error_headers(CannotAuthenticate.__name__, 'Cannot finalize your token request, no authorization content returned from the auth server'))
return render_template('auth_crash.html', crashtype='no_result'), 401, headers
if fetchtoken:
headers.set('Content-Type', 'application/octet-stream')
headers.set('X-Rucio-Auth-Token', result)
return '', 200, headers
else:
response = redirect(result, code=303)
response.headers.extend(headers)
return response
class CodeOIDC(ErrorHandlingMethodView):
def get_headers(self) -> "Optional[HeadersType]":
headers = Headers()
headers.set('Access-Control-Allow-Origin', request.environ.get('HTTP_ORIGIN'))
headers.set('Access-Control-Allow-Headers', request.environ.get('HTTP_ACCESS_CONTROL_REQUEST_HEADERS'))
headers.set('Access-Control-Allow-Methods', '*')
headers.set('Access-Control-Allow-Credentials', 'true')
return headers
def options(self):
return '', 200, self.get_headers()
@check_accept_header_wrapper_flask(['application/octet-stream', 'text/html'])
def get(self):
headers = self.get_headers()
headers.set('Content-Type', 'text/html')
headers.set('Cache-Control', 'no-cache, no-store, max-age=0, must-revalidate')
headers.add('Cache-Control', 'post-check=0, pre-check=0')
headers.set('Pragma', 'no-cache')
query_string = request.query_string.decode(encoding='utf-8')
ip = request.headers.get('X-Forwarded-For', default=request.remote_addr)
try:
result = get_token_oidc(query_string, ip)
except AccessDenied:
headers.extend(error_headers(CannotAuthenticate.__name__, 'Cannot authorize your access, please check your access credentials'))
return render_template('auth_crash.html', crashtype='contact'), 401, headers
except Exception as error:
logging.exception("Internal Error")
headers.extend(error_headers(error.__class__.__name__, str(error.args[0])))
return render_template('auth_crash.html', crashtype='internal_error'), 500, headers
if not result:
headers.extend(error_headers(CannotAuthenticate.__name__, 'Cannot finalize your token request, no authorization content returned from the auth server'))
return render_template('auth_crash.html', crashtype='no_result'), 401, headers
if 'fetchcode' in result:
return render_template('auth_granted.html', authcode=result['fetchcode']), 200, headers
elif 'polling' in result and result['polling'] is True:
return render_template('auth_granted.html', authcode='allok'), 200, headers
else:
headers.extend(error_headers('InvalidRequest', 'Cannot recognize and process your request'))
return render_template('auth_crash.html', crashtype='bad_request'), 400, headers
class TokenOIDC(ErrorHandlingMethodView):
def get_headers(self) -> "Optional[HeadersType]":
headers = Headers()
headers.set('Access-Control-Allow-Origin', request.environ.get('HTTP_ORIGIN'))
headers.set('Access-Control-Allow-Headers', request.environ.get('HTTP_ACCESS_CONTROL_REQUEST_HEADERS'))
headers.set('Access-Control-Allow-Methods', '*')
headers.set('Access-Control-Allow-Credentials', 'true')
return headers
def options(self):
return '', 200, self.get_headers()
@check_accept_header_wrapper_flask(['application/octet-stream'])
def get(self):
headers = self.get_headers()
headers.set('Content-Type', 'application/octet-stream')
headers.set('Cache-Control', 'no-cache, no-store, max-age=0, must-revalidate')
headers.add('Cache-Control', 'post-check=0, pre-check=0')
headers.set('Pragma', 'no-cache')
query_string = request.query_string.decode(encoding='utf-8')
ip = request.headers.get('X-Forwarded-For', default=request.remote_addr)
try:
result = get_token_oidc(query_string, ip)
except AccessDenied:
return generate_http_error_flask(401, CannotAuthorize.__name__, 'Cannot authorize token request.', headers=headers)
if not result:
return generate_http_error_flask(401, CannotAuthorize.__name__, 'Cannot authorize token request.', headers=headers)
if 'token' in result and 'webhome' not in result:
headers.set('X-Rucio-Auth-Token', result['token']['token'])
headers.set('X-Rucio-Auth-Token-Expires', date_to_str(result['token']['expires_at']))
return '', 200, headers
elif 'webhome' in result:
webhome = result['webhome']
if webhome is None:
headers.extend(error_headers(CannotAuthenticate.__name__, 'Cannot find your OIDC identity linked to any Rucio account'))
headers.set('Content-Type', 'text/html')
return render_template('auth_crash.html', crashtype='unknown_identity'), 401, headers
domain = '.'.join(urlparse(webhome).netloc.split('.')[1:])
response = redirect(webhome, code=303)
response.headers.extend(headers)
response.set_cookie('x-rucio-auth-token', value=result['token']['token'], domain=domain, path='/')
response.set_cookie('rucio-auth-token-created-at', value=str(time.time()), domain=domain, path='/')
return response
else:
return '', 400, headers
class RefreshOIDC(ErrorHandlingMethodView):
def get_headers(self) -> "Optional[HeadersType]":
headers = Headers()
headers.set('Access-Control-Allow-Origin', request.environ.get('HTTP_ORIGIN'))
headers.set('Access-Control-Allow-Headers', request.environ.get('HTTP_ACCESS_CONTROL_REQUEST_HEADERS'))
headers.set('Access-Control-Allow-Methods', '*')
headers.set('Access-Control-Allow-Credentials', 'true')
headers.set('Access-Control-Expose-Headers', 'X-Rucio-Auth-Token')
return headers
def options(self):
return '', 200, self.get_headers()
@check_accept_header_wrapper_flask(['application/octet-stream'])
def get(self):
headers = self.get_headers()
headers.set('Content-Type', 'application/octet-stream')
headers.set('Cache-Control', 'no-cache, no-store, max-age=0, must-revalidate')
headers.add('Cache-Control', 'post-check=0, pre-check=0')
headers.set('Pragma', 'no-cache')
vo = extract_vo(request.headers)
account = request.headers.get('X-Rucio-Account', default=None)
token = request.headers.get('X-Rucio-Auth-Token', default=None)
if token is None or account is None:
return generate_http_error_flask(401, CannotAuthorize.__name__, 'Cannot authorize token request.', headers=headers)
try:
result = refresh_cli_auth_token(token, account, vo=vo)
except AccessDenied:
return generate_http_error_flask(401, CannotAuthorize.__name__, 'Cannot authorize token request.', headers=headers)
if result is not None and len(result) > 1:
headers.set('X-Rucio-Auth-Token', str(result[0]))
headers.set('X-Rucio-Auth-Token-Expires', str(result[1]))
else:
headers.set('X-Rucio-Auth-Token', '')
headers.set('X-Rucio-Auth-Token-Expires', '')
return '', 200, headers
class GSS(ErrorHandlingMethodView):
def get_headers(self) -> "Optional[HeadersType]":
headers = Headers()
headers['Access-Control-Allow-Origin'] = request.environ.get('HTTP_ORIGIN')
headers['Access-Control-Allow-Headers'] = request.environ.get('HTTP_ACCESS_CONTROL_REQUEST_HEADERS')
headers['Access-Control-Allow-Methods'] = '*'
headers['Access-Control-Allow-Credentials'] = 'true'
headers['Access-Control-Expose-Headers'] = 'X-Rucio-Auth-Token'
return headers
def options(self):
return '', 200, self.get_headers()
@check_accept_header_wrapper_flask(['application/octet-stream'])
def get(self):
headers = self.get_headers()
headers['Content-Type'] = 'application/octet-stream'
headers['Cache-Control'] = 'no-cache, no-store, max-age=0, must-revalidate'
headers.add('Cache-Control', 'post-check=0, pre-check=0')
headers['Pragma'] = 'no-cache'
vo = extract_vo(request.headers)
account = request.headers.get('X-Rucio-Account', default=None)
gsscred = request.environ.get('REMOTE_USER')
appid = request.headers.get('X-Rucio-AppID', default='unknown')
ip = request.headers.get('X-Forwarded-For', default=request.remote_addr)
try:
result = get_auth_token_gss(account, gsscred, appid, ip, vo=vo)
except AccessDenied:
return generate_http_error_flask(
status_code=401,
exc=CannotAuthenticate.__name__,
exc_msg=f'Cannot authenticate to account {account} with given credentials',
headers=headers
)
if result is None:
return generate_http_error_flask(
status_code=401,
exc=CannotAuthenticate.__name__,
exc_msg=f'Cannot authenticate to account {account} with given credentials',
headers=headers
)
headers['X-Rucio-Auth-Token'] = result['token']
headers['X-Rucio-Auth-Token-Expires'] = date_to_str(result['expires_at'])
return '', 200, headers
class x509(ErrorHandlingMethodView):
def get_headers(self) -> "Optional[HeadersType]":
headers = Headers()
headers['Access-Control-Allow-Origin'] = request.environ.get('HTTP_ORIGIN')
headers['Access-Control-Allow-Headers'] = request.environ.get('HTTP_ACCESS_CONTROL_REQUEST_HEADERS')
headers['Access-Control-Allow-Methods'] = '*'
headers['Access-Control-Allow-Credentials'] = 'true'
headers['Access-Control-Expose-Headers'] = 'X-Rucio-Auth-Token'
return headers
def options(self):
return '', 200, self.get_headers()
@check_accept_header_wrapper_flask(['application/octet-stream'])
def get(self):
headers = self.get_headers()
headers['Content-Type'] = 'application/octet-stream'
headers['Cache-Control'] = 'no-cache, no-store, max-age=0, must-revalidate'
headers.add('Cache-Control', 'post-check=0, pre-check=0')
headers['Pragma'] = 'no-cache'
vo = extract_vo(request.headers)
account = request.headers.get('X-Rucio-Account', default=None)
dn = request.environ.get('SSL_CLIENT_S_DN')
if not dn:
return generate_http_error_flask(401, CannotAuthenticate.__name__, 'Cannot get DN', headers=headers)
if not dn.startswith('/'):
dn = '/' + '/'.join(dn.split(',')[::-1])
appid = request.headers.get('X-Rucio-AppID', default='unknown')
ip = request.headers.get('X-Forwarded-For', default=request.remote_addr)
while True:
if dn.endswith('/CN=limited proxy'):
dn = dn[:-17]
elif dn.endswith('/CN=proxy'):
dn = dn[:-9]
elif search('/CN=[0-9]*$', dn):
dn = dn.rpartition('/')[0]
else:
break
try:
result = get_auth_token_x509(account, dn, appid, ip, vo=vo)
except AccessDenied:
return generate_http_error_flask(
status_code=401,
exc=CannotAuthenticate.__name__,
exc_msg=f'Cannot authenticate to account {account} with given credentials',
headers=headers
)
except IdentityError:
return generate_http_error_flask(
status_code=401,
exc=CannotAuthenticate.__name__,
exc_msg=f'No default account set for {dn}',
headers=headers
)
if not result:
return generate_http_error_flask(
status_code=401,
exc=CannotAuthenticate.__name__,
exc_msg=f'Cannot authenticate to account {account} with given credentials',
headers=headers
)
headers['X-Rucio-Auth-Token'] = result['token']
headers['X-Rucio-Auth-Token-Expires'] = date_to_str(result['expires_at'])
return '', 200, headers
class SSH(ErrorHandlingMethodView):
def get_headers(self) -> "Optional[HeadersType]":
headers = Headers()
headers['Access-Control-Allow-Origin'] = request.environ.get('HTTP_ORIGIN')
headers['Access-Control-Allow-Headers'] = request.environ.get('HTTP_ACCESS_CONTROL_REQUEST_HEADERS')
headers['Access-Control-Allow-Methods'] = '*'
headers['Access-Control-Allow-Credentials'] = 'true'
headers['Access-Control-Expose-Headers'] = 'X-Rucio-Auth-Token'
return headers
def options(self):
return '', 200, self.get_headers()
@check_accept_header_wrapper_flask(['application/octet-stream'])
def get(self):
headers = self.get_headers()
headers['Content-Type'] = 'application/octet-stream'
headers['Cache-Control'] = 'no-cache, no-store, max-age=0, must-revalidate'
headers.add('Cache-Control', 'post-check=0, pre-check=0')
headers['Pragma'] = 'no-cache'
vo = extract_vo(request.headers)
account = request.headers.get('X-Rucio-Account', default=None)
signature = request.headers.get('X-Rucio-SSH-Signature', default=None)
appid = request.headers.get('X-Rucio-AppID', default='unknown')
ip = request.headers.get('X-Forwarded-For', default=request.remote_addr)
try:
signature += '=' * ((4 - len(signature) % 4) % 4)
signature = base64.b64decode(signature)
except TypeError:
return generate_http_error_flask(
status_code=401,
exc=CannotAuthenticate.__name__,
exc_msg=f'Cannot authenticate to account {account} with malformed signature',
headers=headers
)
try:
result = get_auth_token_ssh(account, signature, appid, ip, vo=vo)
except AccessDenied:
return generate_http_error_flask(
status_code=401,
exc=CannotAuthenticate.__name__,
exc_msg=f'Cannot authenticate to account {account} with given credentials',
headers=headers
)
if not result:
return generate_http_error_flask(
status_code=401,
exc=CannotAuthenticate.__name__,
exc_msg=f'Cannot authenticate to account {account} with given credentials',
headers=headers
)
headers['X-Rucio-Auth-Token'] = result['token']
headers['X-Rucio-Auth-Token-Expires'] = date_to_str(result['expires_at'])
return '', 200, headers
class SSHChallengeToken(ErrorHandlingMethodView):
def get_headers(self) -> "Optional[HeadersType]":
headers = Headers()
headers['Access-Control-Allow-Origin'] = request.environ.get('HTTP_ORIGIN')
headers['Access-Control-Allow-Headers'] = request.environ.get('HTTP_ACCESS_CONTROL_REQUEST_HEADERS')
headers['Access-Control-Allow-Methods'] = '*'
headers['Access-Control-Allow-Credentials'] = 'true'
headers['Access-Control-Expose-Headers'] = 'X-Rucio-Auth-Token'
return headers
def options(self):
return '', 200, self.get_headers()
@check_accept_header_wrapper_flask(['application/octet-stream'])
def get(self):
headers = self.get_headers()
headers['Content-Type'] = 'application/octet-stream'
headers['Cache-Control'] = 'no-cache, no-store, max-age=0, must-revalidate'
headers.add('Cache-Control', 'post-check=0, pre-check=0')
headers['Pragma'] = 'no-cache'
vo = extract_vo(request.headers)
account = request.headers.get('X-Rucio-Account', default=None)
appid = request.headers.get('X-Rucio-AppID', default='unknown')
ip = request.headers.get('X-Forwarded-For', default=request.remote_addr)
result = get_ssh_challenge_token(account, appid, ip, vo=vo)
if not result:
return generate_http_error_flask(
status_code=401,
exc=CannotAuthenticate.__name__,
exc_msg=f'Cannot generate challenge for account {account}',
headers=headers
)
headers['X-Rucio-SSH-Challenge-Token'] = result['token']
headers['X-Rucio-SSH-Challenge-Token-Expires'] = date_to_str(result['expires_at'])
return '', 200, headers
class SAML(ErrorHandlingMethodView):
def get_headers(self) -> "Optional[HeadersType]":
headers = Headers()
headers.set('Access-Control-Allow-Origin', request.environ.get('HTTP_ORIGIN'))
headers.set('Access-Control-Allow-Headers', request.environ.get('HTTP_ACCESS_CONTROL_REQUEST_HEADERS'))
headers.set('Access-Control-Allow-Methods', '*')
headers.set('Access-Control-Allow-Credentials', 'true')
headers.set('Access-Control-Expose-Headers', 'X-Rucio-Auth-Token')
return headers
def options(self):
return '', 200, self.get_headers()
@check_accept_header_wrapper_flask(['application/octet-stream'])
|
Apache License 2.0
|
xknx/xknx
|
xknx/telegram/apci.py
|
DeviceDescriptorResponse.__init__
|
python
|
def __init__(self, descriptor: int = 0, value: int = 0) -> None:
self.descriptor = descriptor
self.value = value
|
Initialize a new instance of DeviceDescriptorResponse.
|
https://github.com/xknx/xknx/blob/87666cc9bd9da64a84305baeff84486097346111/xknx/telegram/apci.py#L679-L682
|
from __future__ import annotations
from abc import ABC, abstractmethod
from enum import Enum
import struct
from typing import ClassVar, cast
from xknx.dpt import DPTArray, DPTBinary
from xknx.exceptions import ConversionError
from xknx.telegram.address import IndividualAddress
def encode_cmd_and_payload(
cmd: APCIService | APCIUserService | APCIExtendedService,
encoded_payload: int = 0,
appended_payload: bytes | None = None,
) -> bytes:
if appended_payload is None:
appended_payload = bytes()
data = bytearray(
[
(cmd.value >> 8) & 0xFF,
(cmd.value & 0xFF) | (encoded_payload & DPTBinary.APCI_BITMASK),
]
)
data.extend(appended_payload)
return data
class APCIService(Enum):
GROUP_READ = 0x0000
GROUP_RESPONSE = 0x0040
GROUP_WRITE = 0x0080
INDIVIDUAL_ADDRESS_WRITE = 0x00C0
INDIVIDUAL_ADDRESS_READ = 0x0100
INDIVIDUAL_ADDRESS_RESPONSE = 0x140
ADC_READ = 0x0180
ADC_RESPONSE = 0x1C0
MEMORY_READ = 0x0200
MEMORY_RESPONSE = 0x0240
MEMORY_WRITE = 0x0280
USER_MESSAGE = 0x02C0
DEVICE_DESCRIPTOR_READ = 0x0300
DEVICE_DESCRIPTOR_RESPONSE = 0x0340
RESTART = 0x0380
ESCAPE = 0x03C0
class APCIUserService(Enum):
USER_MEMORY_READ = 0x02C0
USER_MEMORY_RESPONSE = 0x02C1
USER_MEMORY_WRITE = 0x02C2
USER_MANUFACTURER_INFO_READ = 0x02C5
USER_MANUFACTURER_INFO_RESPONSE = 0x02C6
FUNCTION_PROPERTY_COMMAND = 0x02C7
FUNCTION_PROPERTY_STATE_READ = 0x02C8
FUNCTION_PROPERTY_STATE_RESPONSE = 0x02C9
class APCIExtendedService(Enum):
AUTHORIZE_REQUEST = 0x03D1
AUTHORIZE_RESPONSE = 0x03D2
PROPERTY_VALUE_READ = 0x03D5
PROPERTY_VALUE_RESPONSE = 0x03D6
PROPERTY_VALUE_WRITE = 0x03D7
PROPERTY_DESCRIPTION_READ = 0x03D8
PROPERTY_DESCRIPTION_RESPONSE = 0x03D9
INDIVIDUAL_ADDRESS_SERIAL_READ = 0x03DC
INDIVIDUAL_ADDRESS_SERIAL_RESPONSE = 0x03DD
INDIVIDUAL_ADDRESS_SERIAL_WRITE = 0x03DE
class APCI(ABC):
CODE: ClassVar[APCIService | APCIUserService | APCIExtendedService] = cast(
APCIService, None
)
@abstractmethod
def calculated_length(self) -> int:
@abstractmethod
def from_knx(self, raw: bytes) -> None:
@abstractmethod
def to_knx(self) -> bytes:
def __eq__(self, other: object) -> bool:
return self.__dict__ == other.__dict__
@staticmethod
def resolve_apci(apci: int) -> APCI:
service = apci & 0x03C0
if service == APCIService.GROUP_READ.value:
return GroupValueRead()
if service == APCIService.GROUP_WRITE.value:
return GroupValueWrite()
if service == APCIService.GROUP_RESPONSE.value:
return GroupValueResponse()
if service == APCIService.INDIVIDUAL_ADDRESS_WRITE.value:
return IndividualAddressWrite()
if service == APCIService.INDIVIDUAL_ADDRESS_READ.value:
return IndividualAddressRead()
if service == APCIService.INDIVIDUAL_ADDRESS_RESPONSE.value:
return IndividualAddressResponse()
if service == APCIService.ADC_READ.value:
return ADCRead()
if service == APCIService.ADC_RESPONSE.value:
return ADCResponse()
if service == APCIService.MEMORY_READ.value:
return MemoryRead()
if service == APCIService.MEMORY_WRITE.value:
return MemoryWrite()
if service == APCIService.MEMORY_RESPONSE.value:
return MemoryResponse()
if service == APCIService.USER_MESSAGE.value:
if apci == APCIUserService.USER_MEMORY_READ.value:
return UserMemoryRead()
if apci == APCIUserService.USER_MEMORY_RESPONSE.value:
return UserMemoryResponse()
if apci == APCIUserService.USER_MEMORY_WRITE.value:
return UserMemoryWrite()
if apci == APCIUserService.USER_MANUFACTURER_INFO_READ.value:
return UserManufacturerInfoRead()
if apci == APCIUserService.USER_MANUFACTURER_INFO_RESPONSE.value:
return UserManufacturerInfoResponse()
if apci == APCIUserService.FUNCTION_PROPERTY_COMMAND.value:
return FunctionPropertyCommand()
if apci == APCIUserService.FUNCTION_PROPERTY_STATE_READ.value:
return FunctionPropertyStateRead()
if apci == APCIUserService.FUNCTION_PROPERTY_STATE_RESPONSE.value:
return FunctionPropertyStateResponse()
if service == APCIService.DEVICE_DESCRIPTOR_READ.value:
return DeviceDescriptorRead()
if service == APCIService.DEVICE_DESCRIPTOR_RESPONSE.value:
return DeviceDescriptorResponse()
if service == APCIService.RESTART.value:
return Restart()
if service == APCIService.ESCAPE.value:
if apci == APCIExtendedService.AUTHORIZE_REQUEST.value:
return AuthorizeRequest()
if apci == APCIExtendedService.AUTHORIZE_RESPONSE.value:
return AuthorizeResponse()
if apci == APCIExtendedService.PROPERTY_VALUE_READ.value:
return PropertyValueRead()
if apci == APCIExtendedService.PROPERTY_VALUE_WRITE.value:
return PropertyValueWrite()
if apci == APCIExtendedService.PROPERTY_VALUE_RESPONSE.value:
return PropertyValueResponse()
if apci == APCIExtendedService.PROPERTY_DESCRIPTION_READ.value:
return PropertyDescriptionRead()
if apci == APCIExtendedService.PROPERTY_DESCRIPTION_RESPONSE.value:
return PropertyDescriptionResponse()
if apci == APCIExtendedService.INDIVIDUAL_ADDRESS_SERIAL_READ.value:
return IndividualAddressSerialRead()
if apci == APCIExtendedService.INDIVIDUAL_ADDRESS_SERIAL_RESPONSE.value:
return IndividualAddressSerialResponse()
if apci == APCIExtendedService.INDIVIDUAL_ADDRESS_SERIAL_WRITE.value:
return IndividualAddressSerialWrite()
raise ConversionError(f"Class not implemented for APCI {apci:#012b}.")
class GroupValueRead(APCI):
CODE = APCIService.GROUP_READ
def calculated_length(self) -> int:
return 1
def from_knx(self, raw: bytes) -> None:
return
def to_knx(self) -> bytes:
return encode_cmd_and_payload(self.CODE)
def __str__(self) -> str:
return "<GroupValueRead />"
class GroupValueWrite(APCI):
CODE = APCIService.GROUP_WRITE
def __init__(self, value: DPTBinary | DPTArray | None = None) -> None:
self.value = value
def calculated_length(self) -> int:
if isinstance(self.value, DPTBinary):
return 1
if isinstance(self.value, DPTArray):
return 1 + len(self.value.value)
raise TypeError()
def from_knx(self, raw: bytes) -> None:
if len(raw) == 2:
self.value = DPTBinary(raw[1] & DPTBinary.APCI_BITMASK)
else:
self.value = DPTArray(raw[2:])
def to_knx(self) -> bytes:
if isinstance(self.value, DPTBinary):
return encode_cmd_and_payload(self.CODE, encoded_payload=self.value.value)
if isinstance(self.value, DPTArray):
return encode_cmd_and_payload(
self.CODE, appended_payload=bytes(self.value.value)
)
raise TypeError()
def __str__(self) -> str:
return f'<GroupValueWrite value="{self.value}" />'
class GroupValueResponse(APCI):
CODE = APCIService.GROUP_RESPONSE
def __init__(self, value: DPTBinary | DPTArray | None = None) -> None:
self.value = value
def calculated_length(self) -> int:
if isinstance(self.value, DPTBinary):
return 1
if isinstance(self.value, DPTArray):
return 1 + len(self.value.value)
raise TypeError()
def from_knx(self, raw: bytes) -> None:
if len(raw) == 2:
self.value = DPTBinary(raw[1] & DPTBinary.APCI_BITMASK)
else:
self.value = DPTArray(raw[2:])
def to_knx(self) -> bytes:
if isinstance(self.value, DPTBinary):
return encode_cmd_and_payload(self.CODE, encoded_payload=self.value.value)
if isinstance(self.value, DPTArray):
return encode_cmd_and_payload(
self.CODE, appended_payload=bytes(self.value.value)
)
raise TypeError()
def __str__(self) -> str:
return f'<GroupValueResponse value="{self.value}" />'
class IndividualAddressWrite(APCI):
CODE = APCIService.INDIVIDUAL_ADDRESS_WRITE
def __init__(
self,
address: IndividualAddress | None = None,
) -> None:
if address is None:
address = IndividualAddress("0.0.0")
self.address = address
def calculated_length(self) -> int:
return 3
def from_knx(self, raw: bytes) -> None:
address_high, address_low = struct.unpack("!BB", raw[2:])
self.address = IndividualAddress((address_high, address_low))
def to_knx(self) -> bytes:
return encode_cmd_and_payload(
self.CODE, appended_payload=bytes(self.address.to_knx())
)
def __str__(self) -> str:
return f'<IndividualAddressWrite address="{self.address}" />'
class IndividualAddressRead(APCI):
CODE = APCIService.INDIVIDUAL_ADDRESS_READ
def calculated_length(self) -> int:
return 1
def from_knx(self, raw: bytes) -> None:
return
def to_knx(self) -> bytes:
return encode_cmd_and_payload(self.CODE)
def __str__(self) -> str:
return "<IndividualAddressRead />"
class IndividualAddressResponse(APCI):
CODE = APCIService.INDIVIDUAL_ADDRESS_RESPONSE
def calculated_length(self) -> int:
return 1
def from_knx(self, raw: bytes) -> None:
return
def to_knx(self) -> bytes:
return encode_cmd_and_payload(self.CODE)
def __str__(self) -> str:
return "<IndividualAddressResponse />"
class ADCRead(APCI):
CODE = APCIService.ADC_READ
def __init__(self, channel: int = 0, count: int = 0) -> None:
self.channel = channel
self.count = count
def calculated_length(self) -> int:
return 2
def from_knx(self, raw: bytes) -> None:
channel, self.count = struct.unpack("!BB", raw[1:])
self.channel = channel & DPTBinary.APCI_BITMASK
def to_knx(self) -> bytes:
payload = struct.pack("!BB", self.channel, self.count)
return encode_cmd_and_payload(
self.CODE, encoded_payload=payload[0], appended_payload=payload[1:]
)
def __str__(self) -> str:
return f'<ADCRead channel="{self.channel}" count="{self.count}" />'
class ADCResponse(APCI):
CODE = APCIService.ADC_RESPONSE
def __init__(self, channel: int = 0, count: int = 0, value: int = 0) -> None:
self.channel = channel
self.count = count
self.value = value
def calculated_length(self) -> int:
return 4
def from_knx(self, raw: bytes) -> None:
channel, self.count, self.value = struct.unpack("!BBH", raw[1:])
self.channel = channel & DPTBinary.APCI_BITMASK
def to_knx(self) -> bytes:
payload = struct.pack("!BBH", self.channel, self.count, self.value)
return encode_cmd_and_payload(
self.CODE, encoded_payload=payload[0], appended_payload=payload[1:]
)
def __str__(self) -> str:
return f'<ADCResponse channel="{self.channel}" count="{self.count}" value="{self.value}" />'
class MemoryRead(APCI):
CODE = APCIService.MEMORY_READ
def __init__(self, address: int = 0, count: int = 0) -> None:
self.address = address
self.count = count
def calculated_length(self) -> int:
return 3
def from_knx(self, raw: bytes) -> None:
count, self.address = struct.unpack("!BH", raw[1:])
self.count = count & DPTBinary.APCI_BITMASK
def to_knx(self) -> bytes:
if self.address < 0 or self.address >= 2 ** 16:
raise ConversionError("Address out of range.")
if self.count < 0 or self.count >= 2 ** 6:
raise ConversionError("Count out of range.")
payload = struct.pack("!BH", self.count, self.address)
return encode_cmd_and_payload(
self.CODE, encoded_payload=payload[0], appended_payload=payload[1:]
)
def __str__(self) -> str:
return f'<MemoryRead address="{hex(self.address)}" count="{self.count}" />'
class MemoryWrite(APCI):
CODE = APCIService.MEMORY_WRITE
def __init__(
self, address: int = 0, count: int = 0, data: bytes | None = None
) -> None:
if data is None:
data = bytearray()
self.address = address
self.count = count
self.data = data
def calculated_length(self) -> int:
return 3 + len(self.data)
def from_knx(self, raw: bytes) -> None:
size = len(raw) - 4
count, self.address, self.data = struct.unpack(f"!BH{size}s", raw[1:])
self.count = count & DPTBinary.APCI_BITMASK
def to_knx(self) -> bytes:
if self.address < 0 or self.address >= 2 ** 16:
raise ConversionError("Address out of range.")
if self.count < 0 or self.count >= 2 ** 6:
raise ConversionError("Count out of range.")
size = len(self.data)
payload = struct.pack(f"!BH{size}s", self.count, self.address, self.data)
return encode_cmd_and_payload(
self.CODE, encoded_payload=payload[0], appended_payload=payload[1:]
)
def __str__(self) -> str:
return f'<MemoryWrite address="{hex(self.address)}" count="{self.count}" data="{self.data.hex()}" />'
class MemoryResponse(APCI):
CODE = APCIService.MEMORY_RESPONSE
def __init__(
self, address: int = 0, count: int = 0, data: bytes | None = None
) -> None:
if data is None:
data = bytearray()
self.address = address
self.count = count
self.data = data
def calculated_length(self) -> int:
return 3 + len(self.data)
def from_knx(self, raw: bytes) -> None:
size = len(raw) - 4
count, self.address, self.data = struct.unpack(f"!BH{size}s", raw[1:])
self.count = count & DPTBinary.APCI_BITMASK
def to_knx(self) -> bytes:
if self.address < 0 or self.address >= 2 ** 16:
raise ConversionError("Address out of range.")
if self.count < 0 or self.count >= 2 ** 6:
raise ConversionError("Count out of range.")
size = len(self.data)
payload = struct.pack(f"!BH{size}s", self.count, self.address, self.data)
return encode_cmd_and_payload(
self.CODE, encoded_payload=payload[0], appended_payload=payload[1:]
)
def __str__(self) -> str:
return f'<MemoryResponse address="{hex(self.address)}" count="{self.count}" data="{self.data.hex()}" />'
class DeviceDescriptorRead(APCI):
CODE = APCIService.DEVICE_DESCRIPTOR_READ
def __init__(self, descriptor: int = 0) -> None:
self.descriptor = descriptor
def calculated_length(self) -> int:
return 1
def from_knx(self, raw: bytes) -> None:
self.descriptor = raw[1] & 0x3F
def to_knx(self) -> bytes:
if self.descriptor < 0 or self.descriptor >= 2 ** 6:
raise ConversionError("Descriptor out of range.")
return encode_cmd_and_payload(self.CODE, encoded_payload=self.descriptor)
def __str__(self) -> str:
return f'<DeviceDescriptorRead descriptor="{self.descriptor}" />'
class DeviceDescriptorResponse(APCI):
CODE = APCIService.DEVICE_DESCRIPTOR_RESPONSE
|
MIT License
|
chrisgilmerproj/brewday
|
brew/utilities/yeast.py
|
KaiserYeastModel.get_growth_rate
|
python
|
def get_growth_rate(self, initial_cells):
if initial_cells < 1.4:
return 1.4 + self.adjustment
elif 1.4 <= initial_cells < 3.5:
return 2.33 - 0.67 * initial_cells + self.adjustment
else:
return 0.0 + self.adjustment
|
initial_cells - Billion / gram extract (B/g)
|
https://github.com/chrisgilmerproj/brewday/blob/fd8251e5bf34c20342034187fb30d9fffc723aa8/brew/utilities/yeast.py#L226-L235
|
import math
from ..constants import GAL_PER_LITER
from ..constants import IMPERIAL_TYPES
from ..constants import IMPERIAL_UNITS
from ..constants import LITER_PER_GAL
from ..constants import OZ_PER_G
from ..constants import SI_TYPES
from ..constants import SI_UNITS
from ..exceptions import YeastException
from ..validators import validate_units
from .sugar import plato_to_sg
from .sugar import sg_to_gu
from .sugar import sg_to_plato
__all__ = [
u"PITCH_RATE_MAP",
u"pitch_rate_conversion",
u"YeastModel",
u"KaiserYeastModel",
u"WhiteYeastModel",
]
PITCH_RATE_MAP = {
u"MFG Recommended (Ale, fresh yeast only)": 0.35,
u"MFG Recommended+ (Ale, fresh yeast only)": 0.55,
u"Pro Brewer (Ale, LG)": 0.75,
u"Pro Brewer (Ale)": 1.0,
u"Pro Brewer (Ale, HG)": 1.25,
u"Pro Brewer (Lager, LG)": 1.5,
u"Pro Brewer (Lager)": 1.75,
u"Pro Brewer (Lager, HG)": 2.0,
}
def pitch_rate_conversion(pitch_rate, units=IMPERIAL_UNITS):
plato_per_gu = sg_to_gu(plato_to_sg(1))
if units == IMPERIAL_UNITS:
return pitch_rate * GAL_PER_LITER * plato_per_gu
elif units == SI_UNITS:
return pitch_rate * LITER_PER_GAL / plato_per_gu
class YeastModel(object):
METHOD_TO_GROWTH_ADJ = {u"no agitation": 0.0, u"shaking": 0.0, u"stir plate": 0.0}
def __init__(self, method, units=IMPERIAL_UNITS):
if method not in self.METHOD_TO_GROWTH_ADJ.keys():
raise YeastException(
u"Method '{}' not allowed for yeast model".format(method)
)
self.method = method
self.adjustment = self.METHOD_TO_GROWTH_ADJ[method]
self.set_units(units)
def set_units(self, units):
self.units = validate_units(units)
if self.units == IMPERIAL_UNITS:
self.types = IMPERIAL_TYPES
elif self.units == SI_UNITS:
self.types = SI_TYPES
def get_inoculation_rate(self, growth_rate):
raise NotImplementedError
def get_growth_rate(self, inoculation_rate):
raise NotImplementedError
def get_viability(self, days_since_manufacture):
viability = 1.0 - days_since_manufacture * (0.21 / 30.0)
if viability < 0:
return 0.0
return viability
def get_yeast_pitch_rate(
self,
original_gravity=1.050,
final_volume=5.0,
target_pitch_rate=1.42,
yeast_type=u"liquid",
cells_per_pack=100,
num_packs=1,
days_since_manufacture=30,
):
viability = self.get_viability(days_since_manufacture)
cells = cells_per_pack * num_packs * viability
if self.units == IMPERIAL_UNITS:
modifier = sg_to_gu(original_gravity)
elif self.units == SI_UNITS:
modifier = sg_to_plato(original_gravity)
pitch_rate_as_is = cells / final_volume / modifier
pitch_rate_cells = target_pitch_rate * final_volume * modifier
if cells <= 0.0:
required_growth_rate = 0.0
else:
required_growth_rate = pitch_rate_cells / cells
return {
u"original_gravity": original_gravity,
u"final_volume": final_volume,
u"target_pitch_rate": target_pitch_rate,
u"viability": round(viability, 2),
u"cells": round(cells, 2),
u"pitch_rate_as_is": round(pitch_rate_as_is, 2),
u"pitch_rate_cells": round(pitch_rate_cells, 2),
u"cells_needed": round(pitch_rate_cells - cells, 2),
u"required_growth_rate": round(required_growth_rate, 2),
u"units": self.units,
}
def get_starter_volume(
self,
available_cells,
starter_volume=2.0 * GAL_PER_LITER,
original_gravity=1.036,
):
GPL = (
2.845833
)
dme = GPL * sg_to_gu(original_gravity) * starter_volume
if self.units == IMPERIAL_UNITS:
inoculation_rate = available_cells / (
starter_volume * LITER_PER_GAL
)
dme = dme * OZ_PER_G * LITER_PER_GAL
elif self.units == SI_UNITS:
inoculation_rate = available_cells / starter_volume
growth_rate = self.get_growth_rate(inoculation_rate)
end_cell_count = available_cells * (growth_rate + 1)
return {
u"available_cells": round(available_cells, 2),
u"starter_volume": round(starter_volume, 2),
u"original_gravity": original_gravity,
u"dme": round(dme, 2),
u"inoculation_rate": round(inoculation_rate, 2),
u"growth_rate": round(growth_rate, 2),
u"end_cell_count": round(end_cell_count, 2),
u"units": self.units,
}
def get_resulting_pitch_rate(
self, starter_cell_count, original_gravity=1.036, final_volume=5.0
):
if self.units == IMPERIAL_UNITS:
modifier = sg_to_gu(original_gravity)
elif self.units == SI_UNITS:
modifier = sg_to_plato(original_gravity)
pitch_rate = starter_cell_count / final_volume / modifier
return pitch_rate
class KaiserYeastModel(YeastModel):
METHOD_TO_GROWTH_ADJ = {u"stir plate": 0.0}
def __init__(self, method=u"stir plate", units=IMPERIAL_UNITS):
return super(KaiserYeastModel, self).__init__(method, units=units)
def get_inoculation_rate(self, growth_rate):
if 0 < growth_rate < 1.4:
return (2.33 - growth_rate) / 0.67
elif 1.4 <= growth_rate:
return 1.4
|
MIT License
|
mozilla/app-validator
|
appvalidator/testcases/javascript/acorn.py
|
JSReflectException.line_num
|
python
|
def line_num(self, line_num):
self.line = int(line_num)
return self
|
Set the line number and return self for chaining
|
https://github.com/mozilla/app-validator/blob/2f8f85c4e83d1a76bb39c9f4b6844a7de7259711/appvalidator/testcases/javascript/acorn.py#L62-L65
|
import re
import subprocess
import json
from appvalidator.contextgenerator import ContextGenerator
import appvalidator.unicodehelper as unicodehelper
JS_ESCAPE = re.compile("\\\\+[ux]", re.I)
def get_tree(code, err=None, filename=None, shell_noop=None):
if not code:
return None
try:
return _get_tree(code)
except JSReflectException as exc:
str_exc = str(exc).strip("'\"")
if "SyntaxError" in str_exc or "ReferenceError" in str_exc:
err.warning(
err_id=("testcases_scripting", "test_js_file", "syntax_error"),
warning="JavaScript Compile-Time Error",
description=["A compile-time error in the JavaScript halted "
"validation of that file.",
"Message: %s" % str_exc.split(":", 1)[-1].strip()],
filename=filename,
line=exc.line,
context=ContextGenerator(code))
elif "InternalError: too much recursion" in str_exc:
err.notice(
err_id=("testcases_scripting", "test_js_file",
"recursion_error"),
notice="JS too deeply nested for validation",
description="A JS file was encountered that could not be "
"valiated due to limitations with Spidermonkey. "
"It should be manually inspected.",
filename=filename)
else:
err.error(
err_id=("testcases_scripting", "test_js_file",
"retrieving_tree"),
error="JS reflection error prevented validation",
description=["An error in the JavaScript file prevented it "
"from being properly read by the Spidermonkey JS "
"engine.", str(exc)],
filename=filename)
class JSReflectException(Exception):
def __init__(self, value):
self.value = value
self.line = None
def __str__(self):
return repr(self.value)
|
BSD 3-Clause New or Revised License
|
tanghaibao/jcvi
|
jcvi/assembly/soap.py
|
prepare
|
python
|
def prepare(args):
from jcvi.formats.base import write_file
p = OptionParser(prepare.__doc__ + FastqNamings)
p.add_option("-K", default=45, type="int", help="K-mer size")
p.add_option(
"--assemble_1st_rank_only",
default=False,
action="store_true",
help="Assemble the first rank only, other libs asm_flags=2",
)
p.add_option("--scaffold", help="Only perform scaffolding")
p.add_option("--gapclose", help="Only perform gap closure")
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
fnames = args
K = opts.K
for x in fnames:
assert op.exists(x), "File `{0}` not found.".format(x)
a1st = opts.assemble_1st_rank_only
cfgfile = "soap.config"
gc_cfgfile = "soap.gc.config"
fw = open(cfgfile, "w")
fw_gc = open(gc_cfgfile, "w")
libs = get_libs(fnames)
rank = 0
max_rd_len = max(readlen([f]) for f in fnames)
block = "max_rd_len={0}\n".format(max_rd_len)
for stream in (sys.stderr, fw, fw_gc):
print(block, file=stream)
singletons = []
for lib, fs in libs:
if lib.size == 0:
singletons += fs
continue
for lib, fs in libs:
size = lib.size
if size == 0:
continue
rank += 1
block = "[LIB]\n"
block += "avg_ins={0}\n".format(size)
block += "reverse_seq={0}\n".format(lib.reverse_seq)
asm_flags = 2 if (rank > 1 and a1st) else lib.asm_flags
block += "asm_flags={0}\n".format(asm_flags)
block += "rank={0}\n".format(rank)
if lib.reverse_seq:
pair_num_cutoff = 3
block += "pair_num_cutoff={0}\n".format(pair_num_cutoff)
block += "map_len=35\n"
for f in fs:
if ".1." in f:
tag = "q1"
elif ".2." in f:
tag = "q2"
block += "{0}={1}\n".format(tag, f)
if rank == 1:
for s in singletons:
tag = "q" if is_fastq(s) else "f"
block += tag + "={0}\n".format(s)
print(block, file=sys.stderr)
print(block, file=fw)
if asm_flags > 2:
print(block, file=fw_gc)
runfile = "run.sh"
scaffold = opts.scaffold
bb = 63 if K <= 63 else 127
binary = "SOAPdenovo-{0}mer".format(bb)
header = SOAPHEADER.format(opts.cpus, K, binary)
if opts.gapclose:
gapclose = opts.gapclose
outfile = gapclose.rsplit(".", 1)[0] + ".closed.fasta"
template = header + GCRUNG.format(gapclose, outfile)
else:
template = header + (SCFRUN % scaffold if scaffold else SOAPRUN)
write_file(runfile, template)
fw.close()
fw_gc.close()
|
%prog prepare *.fastq
Scan input fastq files (see below) and write SOAP config files based
on inputfiles. Use "--scaffold contigs.fasta" to perform scaffolding.
|
https://github.com/tanghaibao/jcvi/blob/3b161796234670ce1c4894974eaeb590d35cf2a2/jcvi/assembly/soap.py#L226-L327
|
import os.path as op
import sys
from jcvi.formats.fastq import guessoffset, readlen, is_fastq
from jcvi.assembly.base import FastqNamings, Library, get_libs
from jcvi.apps.base import OptionParser, ActionDispatcher, need_update, sh
class FillLine(object):
def __init__(self, row):
args = row.split()
self.start = int(args[0])
self.end = int(args[1])
self.leftextend = int(args[2])
self.rightextend = int(args[3])
self.closed = int(args[4]) == 1
self.extendlength = int(args[5])
self.before = int(args[6])
self.after = int(args[7])
if self.after > 0 and (self.after & 0x80000000):
self.after += -0x100000000
@property
def delta(self):
return self.after - self.before
def main():
actions = (
("clean", "clean and dedup paired FASTQ files"),
("correct", "correct reads using ErrorCorrection"),
("prepare", "prepare SOAP config files and run script"),
("fillstats", "build stats on .fill file from GapCloser"),
)
p = ActionDispatcher(actions)
p.dispatch(globals())
SOAPHEADER = """
P={0}
K={1}
S=soap.config
G=soap.gc.config
C={2}
A=asm$K
"""
GCRUN = (
"GapCloser_v1.12 -a ${A}.scafSeq -b $G -l 155 -o ${A}.closed.scafSeq -p 31 -t $P"
)
GCRUNG = "GapCloser_v1.12 -a {0} -b $G -l 155 -o {1} -p 31 -t $P"
SOAPRUN = (
"""
$C pregraph -s $S -d 1 -K $K -o $A -R -p $P
$C contig -s $S -g $A -M 1 -R -p $P
$C map -s $S -g $A -p $P
$C scaff -g $A -F -p $P
"""
+ GCRUN
)
SCFRUN = (
"""
prepare -K $K -c %s -g $A
$C map -s $S -g $A -p $P
$C scaff -z -g $A -F -p $P
"""
+ GCRUN
)
def get_size(filename):
library_name = lambda x: "-".join(op.basename(x).split(".")[0].split("-")[:2])
lib = Library(library_name(filename))
return lib.size
def correct(args):
p = OptionParser(correct.__doc__)
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
lstfile = "reads2cor.lst"
fw = open(lstfile, "w")
print("\n".join(x for x in args if x[:2] == "PE"), file=fw)
fw.close()
p1 = args[0]
offset = guessoffset([p1])
cpus = opts.cpus
freq = "output.freq.cz"
freqlen = freq + ".len"
if need_update(args, (freq, freqlen)):
cmd = "KmerFreq_AR_v2.0 -k 17 -c -1 -q {0}".format(offset)
cmd += " -m 1 -t {0}".format(cpus)
cmd += " -p output {0}".format(lstfile)
sh(cmd)
fw = open(lstfile, "w")
print("\n".join(args), file=fw)
fw.close()
cmd = "Corrector_AR_v2.0 -k 17 -l 3 -m 5 -c 5 -a 0 -e 1 -w 0 -r 45"
cmd += " -Q {0} -q 30 -x 8 -t {1} -o 1 ".format(offset, cpus)
cmd += " {0} {1} {2}".format(freq, freqlen, lstfile)
sh(cmd)
def clean(args):
p = OptionParser(clean.__doc__)
p.add_option("-a", default=0, type="int", help="Trim length at 5' end")
p.add_option("-b", default=50, type="int", help="Trim length at 3' end")
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) == 2:
p1, p2 = args
size = get_size(p1)
elif len(args) == 3:
p1, p2, size = args
size = int(size)
else:
sys.exit(not p.print_help())
pf = p1.split(".")[0]
cpus = opts.cpus
offset = guessoffset([p1])
a, b = opts.a, opts.b
p1_clean = p1 + ".clean"
p1_cleangz = p1_clean + ".gz"
p2_clean = p2 + ".clean"
p2_cleangz = p2_clean + ".gz"
if need_update([p1, p2], [p1_cleangz, p2_cleangz]):
cmd = "SOAPfilter_v2.0 -t {0} -m 2000000 -p -y -z -g".format(cpus)
cmd += " -q {0} -w 10 -B 50 -f 0".format(offset)
cmd += " -l {0} -a {1} -b {2} -c {1} -d {2}".format(size, a, b, a, b)
cmd += " {0} {1} {2}.clean.stat {3} {4}".format(p1, p2, pf, p1_clean, p2_clean)
sh(cmd)
def fillstats(args):
from jcvi.utils.cbook import SummaryStats, percentage, thousands
p = OptionParser(fillstats.__doc__)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
(fillfile,) = args
fp = open(fillfile)
scaffolds = 0
gaps = []
for row in fp:
if row[0] == ">":
scaffolds += 1
continue
fl = FillLine(row)
gaps.append(fl)
print("{0} scaffolds in total".format(scaffolds), file=sys.stderr)
closed = [x for x in gaps if x.closed]
closedbp = sum(x.before for x in closed)
notClosed = [x for x in gaps if not x.closed]
notClosedbp = sum(x.before for x in notClosed)
totalgaps = len(closed) + len(notClosed)
print(
"Closed gaps: {0} size: {1} bp".format(
percentage(len(closed), totalgaps), thousands(closedbp)
),
file=sys.stderr,
)
ss = SummaryStats([x.after for x in closed])
print(ss, file=sys.stderr)
ss = SummaryStats([x.delta for x in closed])
print("Delta:", ss, file=sys.stderr)
print(
"Remaining gaps: {0} size: {1} bp".format(
percentage(len(notClosed), totalgaps), thousands(notClosedbp)
),
file=sys.stderr,
)
ss = SummaryStats([x.after for x in notClosed])
print(ss, file=sys.stderr)
|
BSD 2-Clause Simplified License
|
ousret/kiss-headers
|
kiss_headers/utils.py
|
header_name_to_class
|
python
|
def header_name_to_class(name: str, root_type: Type) -> Type:
normalized_name = normalize_str(name).replace("_", "")
for subclass in root_type.__subclasses__():
class_name = extract_class_name(subclass)
if class_name is None:
continue
if (
not (
hasattr(subclass, "__override__") and subclass.__override__ is not None
)
and normalize_str(class_name.split(".")[-1]) == normalized_name
):
return subclass
if subclass.__subclasses__():
try:
return header_name_to_class(name, subclass)
except TypeError:
continue
raise TypeError(
"Cannot find a class matching header named '{name}'.".format(name=name)
)
|
The opposite of class_to_header_name function. Will raise TypeError if no corresponding entry is found.
Do it recursively from the root type.
>>> from kiss_headers.builder import CustomHeader, ContentType, XContentTypeOptions, LastModified, Date
>>> header_name_to_class("Content-Type", CustomHeader)
<class 'kiss_headers.builder.ContentType'>
>>> header_name_to_class("Last-Modified", CustomHeader)
<class 'kiss_headers.builder.LastModified'>
|
https://github.com/ousret/kiss-headers/blob/2a2eaf9b87670a8994af57312a4003fdb6f16c22/kiss_headers/utils.py#L188-L223
|
from email.header import decode_header
from re import findall, search, sub
from typing import Any, Iterable, List, Optional, Set, Tuple, Type
RESERVED_KEYWORD: Set[str] = {
"and_",
"assert_",
"in_",
"not_",
"pass_",
"finally_",
"while_",
"yield_",
"is_",
"as_",
"break_",
"return_",
"elif_",
"except_",
"def_",
"from_",
"for_",
}
def normalize_str(string: str) -> str:
return string.lower().replace("-", "_")
def normalize_list(strings: List[str]) -> List[str]:
return list(map(normalize_str, strings))
def unpack_protected_keyword(name: str) -> str:
if len(name) < 2:
return name
if name[0] == "_" and name[1].isdigit():
name = name[1:]
if name in RESERVED_KEYWORD:
name = name[:-1]
return name
def extract_class_name(type_: Type) -> Optional[str]:
r = findall(r"<class '([a-zA-Z0-9._]+)'>", str(type_))
return r[0] if r else None
def header_content_split(string: str, delimiter: str) -> List[str]:
if len(delimiter) != 1 or delimiter not in {";", ",", " "}:
raise ValueError("Delimiter should be either semi-colon, a coma or a space.")
in_double_quote: bool = False
in_parenthesis: bool = False
in_value: bool = False
is_on_a_day: bool = False
result: List[str] = [""]
for letter, index in zip(string, range(0, len(string))):
if letter == '"':
in_double_quote = not in_double_quote
if in_value and not in_double_quote:
in_value = False
elif letter == "(" and not in_parenthesis:
in_parenthesis = True
elif letter == ")" and in_parenthesis:
in_parenthesis = False
else:
is_on_a_day = index >= 3 and string[index - 3 : index] in {
"Mon",
"Tue",
"Wed",
"Thu",
"Fri",
"Sat",
"Sun",
}
if not in_double_quote:
if not in_value and letter == "=":
in_value = True
elif letter == ";" and in_value:
in_value = False
if in_value and letter == delimiter and not is_on_a_day:
in_value = False
if letter == delimiter and (
(in_value or in_double_quote or in_parenthesis or is_on_a_day) is False
):
result[-1] = result[-1].lstrip().rstrip()
result.append("")
continue
result[-1] += letter
if result:
result[-1] = result[-1].lstrip().rstrip()
return result
def class_to_header_name(type_: Type) -> str:
if hasattr(type_, "__override__") and type_.__override__ is not None:
return type_.__override__
class_raw_name: str = str(type_).split("'")[-2].split(".")[-1]
if class_raw_name.endswith("_"):
class_raw_name = class_raw_name[:-1]
if class_raw_name.startswith("_"):
class_raw_name = class_raw_name[1:]
header_name: str = str()
for letter in class_raw_name:
if letter.isupper() and header_name != "":
header_name += "-" + letter
continue
header_name += letter
return header_name
|
MIT License
|
jaantollander/crowddynamics
|
crowddynamics/cli.py
|
run
|
python
|
def run(context, loglevel, num):
setup_logging(loglevel)
context.obj = dict(num=num)
|
Run simulation from the command-line.
|
https://github.com/jaantollander/crowddynamics/blob/a5858c02c06ed72f49b7bd6aaabd7cf16b3054c3/crowddynamics/cli.py#L67-L70
|
import logging
import os
from collections import OrderedDict
from pprint import pformat
import click
from crowddynamics import __version__
from crowddynamics.logging import setup_logging, LOGLEVELS
from crowddynamics.simulation.multiagent import MultiAgentSimulation
from crowddynamics.traits import class_own_traits, trait_to_option
from crowddynamics.utils import import_subclasses
class Colors:
NEUTRAL = 'blue'
POSITIVE = 'green'
NEGATIVE = 'red'
def import_simulations(dir_path='.'):
d = OrderedDict()
for path in os.listdir(dir_path):
base, ext = os.path.splitext(path)
if ext == '.py':
d.update(import_subclasses(path, MultiAgentSimulation))
return d
@click.group(help="CrowdDynamics {version}. A tool for building and running "
"crowd simulations.".format(version=__version__))
@click.version_option(__version__)
def main():
pass
@main.command('list')
def list_of_simulations():
d = import_simulations()
click.secho('List of available simulations:', fg=Colors.NEUTRAL)
click.secho(pformat(d), fg=Colors.POSITIVE)
@main.command()
@click.option('--directory', '-d', default='.')
@click.option('--basename', '-n')
def concat_npy(directory, basename):
import numpy as np
from crowddynamics.io import load_npy_concatenated
path = os.path.abspath(directory)
arr = load_npy_concatenated(path, basename)
np.save(os.path.join(path, basename + '.npy'), arr)
@main.group(chain=True)
@click.option('--loglevel', type=click.Choice(LOGLEVELS),
default=logging.INFO,
help='Choices for setting logging level.')
@click.option('--num', type=int, default=1,
help='Number of simulations to run.')
@click.pass_context
|
MIT License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.