repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
bitmovin/bitmovin-api-sdk-python
|
bitmovin_api_sdk/encoding/encodings/muxings/text/text_api.py
|
TextApi.list
|
python
|
def list(self, encoding_id, query_params=None, **kwargs):
return self.api_client.get(
'/encoding/encodings/{encoding_id}/muxings/text',
path_params={'encoding_id': encoding_id},
query_params=query_params,
pagination_response=True,
type=TextMuxing,
**kwargs
)
|
List Text muxings
:param encoding_id: Id of the encoding.
:type encoding_id: string_types, required
:param query_params: Query parameters
:type query_params: TextMuxingListQueryParams
:return: List of Text muxings
:rtype: TextMuxing
|
https://github.com/bitmovin/bitmovin-api-sdk-python/blob/79dd938804197151af7cbe5501c7ec1d97872c15/bitmovin_api_sdk/encoding/encodings/muxings/text/text_api.py#L92-L111
|
from __future__ import absolute_import
from bitmovin_api_sdk.common import BaseApi, BitmovinApiLoggerBase
from bitmovin_api_sdk.common.poscheck import poscheck_except
from bitmovin_api_sdk.models.bitmovin_response import BitmovinResponse
from bitmovin_api_sdk.models.response_envelope import ResponseEnvelope
from bitmovin_api_sdk.models.response_error import ResponseError
from bitmovin_api_sdk.models.text_muxing import TextMuxing
from bitmovin_api_sdk.encoding.encodings.muxings.text.customdata.customdata_api import CustomdataApi
from bitmovin_api_sdk.encoding.encodings.muxings.text.text_muxing_list_query_params import TextMuxingListQueryParams
class TextApi(BaseApi):
@poscheck_except(2)
def __init__(self, api_key, tenant_org_id=None, base_url=None, logger=None):
super(TextApi, self).__init__(
api_key=api_key,
tenant_org_id=tenant_org_id,
base_url=base_url,
logger=logger
)
self.customdata = CustomdataApi(
api_key=api_key,
tenant_org_id=tenant_org_id,
base_url=base_url,
logger=logger
)
def create(self, encoding_id, text_muxing, **kwargs):
return self.api_client.post(
'/encoding/encodings/{encoding_id}/muxings/text',
text_muxing,
path_params={'encoding_id': encoding_id},
type=TextMuxing,
**kwargs
)
def delete(self, encoding_id, muxing_id, **kwargs):
return self.api_client.delete(
'/encoding/encodings/{encoding_id}/muxings/text/{muxing_id}',
path_params={'encoding_id': encoding_id, 'muxing_id': muxing_id},
type=BitmovinResponse,
**kwargs
)
def get(self, encoding_id, muxing_id, **kwargs):
return self.api_client.get(
'/encoding/encodings/{encoding_id}/muxings/text/{muxing_id}',
path_params={'encoding_id': encoding_id, 'muxing_id': muxing_id},
type=TextMuxing,
**kwargs
)
|
MIT License
|
cybertronai/ncluster
|
ncluster/ncluster_globals.py
|
get_logdir
|
python
|
def get_logdir(run_name: str):
if not run_name:
return '/tmp'
return run_logdir_dict.get(run_name, '')
|
Returns logdir for this run. It is the job of logdir creator to set logdir for this run
|
https://github.com/cybertronai/ncluster/blob/9c2a7fb9677dba9afe48c94f35bde7c41e4cc75f/ncluster/ncluster_globals.py#L126-L131
|
import os
import sys
from typing import Dict, Any, List
from . import aws_backend as backend
from . import util
task_launched = False
task_counter = 0
job_counter = 0
run_counter = 0
run_dict: Dict[str, Any] = {}
task_run_dict: Dict["backend.Task", str] = {}
run_task_dict: Dict[str, List["backend.Task"]] = {}
run_logdir_dict: Dict[str, str] = {}
tasks_seen: List["backend.Task"] = []
enforce_placement_group_val = False
def enforce_placement_group():
global enforce_placement_group_val
enforce_placement_group_val = True
def unenforce_placement_group():
global enforce_placement_group_val
enforce_placement_group_val = False
def is_enforced_placement_group():
return enforce_placement_group_val
def auto_assign_task_name_if_needed(name, instance_type='', image_name='',
tasks=1):
global task_counter
if name:
return name
main_script = os.path.abspath(sys.argv[0])
script_id = util.alphanumeric_hash(
f"{main_script}-{instance_type}-{image_name}-{tasks}")
name = f"unnamedtask-{task_counter}-{script_id}"
task_counter += 1
return name
def auto_assign_job_name_if_needed(name):
global job_counter
if name:
return name
script_id = util.alphanumeric_hash(sys.argv[0])
name = f"unnamedjob-{job_counter}-{script_id}"
job_counter += 1
return name
def auto_assign_run_name_if_needed(name):
global run_counter
if name:
return name
script_id = util.alphanumeric_hash(sys.argv[0])
name = f"unnamedrun-{run_counter}-{script_id}"
run_counter += 1
return name
def register_task(task: Any, run_name: str):
global task_run_dict, run_task_dict, tasks_seen
assert task.name not in tasks_seen
tasks_seen.append(task.name)
task_run_dict[task] = run_name
run_task_list = run_task_dict.get(run_name, [])
run_task_list.append(task)
def register_run(run: "backend.Run", run_name: str) -> None:
print(f"Registering run {run_name}")
assert run_name not in run_dict
assert run_name
run_dict[run_name] = run
def is_chief(task: "backend.Task", run_name: str):
global run_task_dict
if run_name not in run_task_dict:
return True
task_list = run_task_dict[run_name]
assert task in task_list, f"Task {task.name} doesn't belong to run {run_name}"
return task_list[0] == task
def get_chief(run_name: str):
assert run_name in run_task_dict, f"Run {run_name} doesn't exist"
tasks = run_task_dict[run_name]
assert tasks, f"Run {run_name} had tasks {tasks}, expected non-empty list"
return tasks[0]
|
MIT License
|
hhstore/annotated-py-asyncio
|
asyncio-3.4.3/asyncio/tasks.py
|
async
|
python
|
def async(coro_or_future, *, loop=None):
if isinstance(coro_or_future, futures.Future):
if loop is not None and loop is not coro_or_future._loop:
raise ValueError('loop argument must agree with Future')
return coro_or_future
elif coroutines.iscoroutine(coro_or_future):
if loop is None:
loop = events.get_event_loop()
task = loop.create_task(coro_or_future)
if task._source_traceback:
del task._source_traceback[-1]
return task
else:
raise TypeError('A Future or coroutine is required')
|
Wrap a coroutine in a future.
If the argument is a Future, it is returned directly.
|
https://github.com/hhstore/annotated-py-asyncio/blob/ab4a5574396cc9579318bf68e51f3da9696feaa4/asyncio-3.4.3/asyncio/tasks.py#L589-L607
|
__all__ = ['Task',
'FIRST_COMPLETED', 'FIRST_EXCEPTION', 'ALL_COMPLETED',
'wait', 'wait_for', 'as_completed', 'sleep', 'async',
'gather', 'shield',
]
import concurrent.futures
import functools
import inspect
import linecache
import sys
import traceback
import weakref
from . import coroutines
from . import events
from . import futures
from .coroutines import coroutine
_PY34 = (sys.version_info >= (3, 4))
class Task(futures.Future):
_all_tasks = weakref.WeakSet()
_current_tasks = {}
_log_destroy_pending = True
@classmethod
def current_task(cls, loop=None):
if loop is None:
loop = events.get_event_loop()
return cls._current_tasks.get(loop)
@classmethod
def all_tasks(cls, loop=None):
if loop is None:
loop = events.get_event_loop()
return {t for t in cls._all_tasks if t._loop is loop}
def __init__(self, coro, *, loop=None):
assert coroutines.iscoroutine(coro), repr(coro)
super().__init__(loop=loop)
if self._source_traceback:
del self._source_traceback[-1]
self._coro = iter(coro)
self._fut_waiter = None
self._must_cancel = False
self._loop.call_soon(self._step)
self.__class__._all_tasks.add(self)
if _PY34:
def __del__(self):
if self._state == futures._PENDING and self._log_destroy_pending:
context = {
'task': self,
'message': 'Task was destroyed but it is pending!',
}
if self._source_traceback:
context['source_traceback'] = self._source_traceback
self._loop.call_exception_handler(context)
futures.Future.__del__(self)
def _repr_info(self):
info = super()._repr_info()
if self._must_cancel:
info[0] = 'cancelling'
coro = coroutines._format_coroutine(self._coro)
info.insert(1, 'coro=<%s>' % coro)
if self._fut_waiter is not None:
info.insert(2, 'wait_for=%r' % self._fut_waiter)
return info
def get_stack(self, *, limit=None):
frames = []
f = self._coro.gi_frame
if f is not None:
while f is not None:
if limit is not None:
if limit <= 0:
break
limit -= 1
frames.append(f)
f = f.f_back
frames.reverse()
elif self._exception is not None:
tb = self._exception.__traceback__
while tb is not None:
if limit is not None:
if limit <= 0:
break
limit -= 1
frames.append(tb.tb_frame)
tb = tb.tb_next
return frames
def print_stack(self, *, limit=None, file=None):
extracted_list = []
checked = set()
for f in self.get_stack(limit=limit):
lineno = f.f_lineno
co = f.f_code
filename = co.co_filename
name = co.co_name
if filename not in checked:
checked.add(filename)
linecache.checkcache(filename)
line = linecache.getline(filename, lineno, f.f_globals)
extracted_list.append((filename, lineno, name, line))
exc = self._exception
if not extracted_list:
print('No stack for %r' % self, file=file)
elif exc is not None:
print('Traceback for %r (most recent call last):' % self,
file=file)
else:
print('Stack for %r (most recent call last):' % self,
file=file)
traceback.print_list(extracted_list, file=file)
if exc is not None:
for line in traceback.format_exception_only(exc.__class__, exc):
print(line, file=file, end='')
def cancel(self):
if self.done():
return False
if self._fut_waiter is not None:
if self._fut_waiter.cancel():
return True
self._must_cancel = True
return True
def _step(self, value=None, exc=None):
assert not self.done(), '_step(): already done: {!r}, {!r}, {!r}'.format(self, value, exc)
if self._must_cancel:
if not isinstance(exc, futures.CancelledError):
exc = futures.CancelledError()
self._must_cancel = False
coro = self._coro
self._fut_waiter = None
self.__class__._current_tasks[self._loop] = self
try:
if exc is not None:
result = coro.throw(exc)
elif value is not None:
result = coro.send(value)
else:
result = next(coro)
except StopIteration as exc:
self.set_result(exc.value)
except futures.CancelledError as exc:
super().cancel()
except Exception as exc:
self.set_exception(exc)
except BaseException as exc:
self.set_exception(exc)
raise
else:
if isinstance(result, futures.Future):
if result._blocking:
result._blocking = False
result.add_done_callback(self._wakeup)
self._fut_waiter = result
if self._must_cancel:
if self._fut_waiter.cancel():
self._must_cancel = False
else:
self._loop.call_soon(
self._step, None,
RuntimeError(
'yield was used instead of yield from '
'in task {!r} with {!r}'.format(self, result)))
elif result is None:
self._loop.call_soon(self._step)
elif inspect.isgenerator(result):
self._loop.call_soon(
self._step, None,
RuntimeError(
'yield was used instead of yield from for '
'generator in task {!r} with {}'.format(
self, result)))
else:
self._loop.call_soon(
self._step, None,
RuntimeError(
'Task got bad yield: {!r}'.format(result)))
finally:
self.__class__._current_tasks.pop(self._loop)
self = None
def _wakeup(self, future):
try:
value = future.result()
except Exception as exc:
self._step(None, exc)
else:
self._step(value, None)
self = None
FIRST_COMPLETED = concurrent.futures.FIRST_COMPLETED
FIRST_EXCEPTION = concurrent.futures.FIRST_EXCEPTION
ALL_COMPLETED = concurrent.futures.ALL_COMPLETED
@coroutine
def wait(fs, *, loop=None, timeout=None, return_when=ALL_COMPLETED):
if isinstance(fs, futures.Future) or coroutines.iscoroutine(fs):
raise TypeError("expect a list of futures, not %s" % type(fs).__name__)
if not fs:
raise ValueError('Set of coroutines/Futures is empty.')
if return_when not in (FIRST_COMPLETED, FIRST_EXCEPTION, ALL_COMPLETED):
raise ValueError('Invalid return_when value: {}'.format(return_when))
if loop is None:
loop = events.get_event_loop()
fs = {async(f, loop=loop) for f in set(fs)}
return (yield from _wait(fs, timeout, return_when, loop))
def _release_waiter(waiter, *args):
if not waiter.done():
waiter.set_result(None)
@coroutine
def wait_for(fut, timeout, *, loop=None):
if loop is None:
loop = events.get_event_loop()
if timeout is None:
return (yield from fut)
waiter = futures.Future(loop=loop)
timeout_handle = loop.call_later(timeout, _release_waiter, waiter)
cb = functools.partial(_release_waiter, waiter)
fut = async(fut, loop=loop)
fut.add_done_callback(cb)
try:
try:
yield from waiter
except futures.CancelledError:
fut.remove_done_callback(cb)
fut.cancel()
raise
if fut.done():
return fut.result()
else:
fut.remove_done_callback(cb)
fut.cancel()
raise futures.TimeoutError()
finally:
timeout_handle.cancel()
@coroutine
def _wait(fs, timeout, return_when, loop):
assert fs, 'Set of Futures is empty.'
waiter = futures.Future(loop=loop)
timeout_handle = None
if timeout is not None:
timeout_handle = loop.call_later(timeout, _release_waiter, waiter)
counter = len(fs)
def _on_completion(f):
nonlocal counter
counter -= 1
if (counter <= 0 or
return_when == FIRST_COMPLETED or
return_when == FIRST_EXCEPTION and (not f.cancelled() and
f.exception() is not None)):
if timeout_handle is not None:
timeout_handle.cancel()
if not waiter.done():
waiter.set_result(None)
for f in fs:
f.add_done_callback(_on_completion)
try:
yield from waiter
finally:
if timeout_handle is not None:
timeout_handle.cancel()
done, pending = set(), set()
for f in fs:
f.remove_done_callback(_on_completion)
if f.done():
done.add(f)
else:
pending.add(f)
return done, pending
def as_completed(fs, *, loop=None, timeout=None):
if isinstance(fs, futures.Future) or coroutines.iscoroutine(fs):
raise TypeError("expect a list of futures, not %s" % type(fs).__name__)
loop = loop if loop is not None else events.get_event_loop()
todo = {async(f, loop=loop) for f in set(fs)}
from .queues import Queue
done = Queue(loop=loop)
timeout_handle = None
def _on_timeout():
for f in todo:
f.remove_done_callback(_on_completion)
done.put_nowait(None)
todo.clear()
def _on_completion(f):
if not todo:
return
todo.remove(f)
done.put_nowait(f)
if not todo and timeout_handle is not None:
timeout_handle.cancel()
@coroutine
def _wait_for_one():
f = yield from done.get()
if f is None:
raise futures.TimeoutError
return f.result()
for f in todo:
f.add_done_callback(_on_completion)
if todo and timeout is not None:
timeout_handle = loop.call_later(timeout, _on_timeout)
for _ in range(len(todo)):
yield _wait_for_one()
@coroutine
def sleep(delay, result=None, *, loop=None):
future = futures.Future(loop=loop)
h = future._loop.call_later(delay,
future._set_result_unless_cancelled, result)
try:
return (yield from future)
finally:
h.cancel()
|
MIT License
|
davidfischer/pycoreutils
|
pycoreutils/utils.py
|
getuserhome
|
python
|
def getuserhome():
if 'HOME' in os.environ:
return os.environ['HOME']
if 'HOMEPATH' in os.environ:
return os.environ['HOMEPATH']
|
Returns the home-directory of the current user
|
https://github.com/davidfischer/pycoreutils/blob/a5f72d4765b2340eb2ac96099e8de87214a908fa/pycoreutils/utils.py#L24-L31
|
import os
import signal
import stat
def getsignals():
signallist = [
'ABRT', 'CONT', 'IO', 'PROF', 'SEGV', 'TSTP', 'USR2', '_DFL', 'ALRM',
'FPE', 'IOT', 'PWR', 'STOP', 'TTIN', 'VTALRM', '_IGN', 'BUS', 'HUP',
'KILL', 'QUIT', 'SYS', 'TTOU', 'WINCH', 'CHLD', 'ILL', 'PIPE', 'RTMAX',
'TERM', 'URG', 'XCPU', 'CLD', 'INT', 'POLL', 'RTMIN', 'TRAP', 'USR1',
'XFSZ',
]
signals = {}
for signame in signallist:
if hasattr(signal, 'SIG' + signame):
signals[signame] = getattr(signal, 'SIG' + signame)
return signals
|
MIT License
|
explosion/spacy-transformers
|
spacy_transformers/architectures.py
|
transformer_tok2vec_v2
|
python
|
def transformer_tok2vec_v2(
name: str,
get_spans,
tokenizer_config: dict,
pooling: Model[Ragged, Floats2d],
grad_factor: float = 1.0,
transformer_config: dict = {},
) -> Model[List[Doc], List[Floats2d]]:
return chain(
TransformerModel(name, get_spans, tokenizer_config, transformer_config),
split_trf_batch(),
trfs2arrays(pooling, grad_factor),
)
|
Use a transformer as a "Tok2Vec" layer directly. This does not allow
multiple components to share the transformer weights, and does not allow
the transformer to set annotations into the `Doc` object, but it's a
simpler solution if you only need the transformer within one component.
get_spans (Callable[[List[Doc]], List[List[Span]]]): A function to extract
spans from the batch of Doc objects. See the "TransformerModel" layer
for details.
tokenizer_config (dict): Settings to pass to the transformers tokenizer.
pooling (Model[Ragged, Floats2d]): A reduction layer used to calculate
the token vectors based on zero or more wordpiece vectors. If in doubt,
mean pooling (see `thinc.layers.reduce_mean`) is usually a good choice.
grad_factor (float): Reweight gradients from the component before passing
them to the transformer. You can set this to 0 to "freeze" the transformer
weights with respect to the component, or to make it learn more slowly.
Leaving it at 1.0 is usually fine.
transformers_config (dict): Settings to pass to the transformers forward pass
of the transformer.
|
https://github.com/explosion/spacy-transformers/blob/66a3c1c65b59503c73bbebf39cc994d268990476/spacy_transformers/architectures.py#L79-L110
|
from typing import List, Callable
from thinc.api import Model, chain
from thinc.types import Ragged, Floats2d
from spacy.tokens import Doc
from .layers import TransformerModel, TransformerListener
from .layers import trfs2arrays, split_trf_batch
from .util import registry
@registry.architectures.register("spacy-transformers.TransformerListener.v1")
def transformer_listener_tok2vec_v1(
pooling: Model[Ragged, Floats2d], grad_factor: float = 1.0, upstream: str = "*"
) -> Model[List[Doc], List[Floats2d]]:
listener = TransformerListener(upstream_name=upstream)
model = chain(listener, trfs2arrays(pooling, grad_factor))
model.set_ref("listener", listener)
return model
@registry.architectures.register("spacy-transformers.Tok2VecTransformer.v1")
def transformer_tok2vec_v1(
name: str,
get_spans,
tokenizer_config: dict,
pooling: Model[Ragged, Floats2d],
grad_factor: float = 1.0,
) -> Model[List[Doc], List[Floats2d]]:
return chain(
TransformerModel(name, get_spans, tokenizer_config),
split_trf_batch(),
trfs2arrays(pooling, grad_factor),
)
@registry.architectures.register("spacy-transformers.Tok2VecTransformer.v2")
|
MIT License
|
thingsboard/python_tb_rest_client
|
tb_rest_client/models/models_pe/customer.py
|
Customer.parent_customer_id
|
python
|
def parent_customer_id(self):
return self._parent_customer_id
|
Gets the parent_customer_id of this Customer. # noqa: E501
:return: The parent_customer_id of this Customer. # noqa: E501
:rtype: CustomerId
|
https://github.com/thingsboard/python_tb_rest_client/blob/87c6a3703974fc8a86e4c72c444168ee2b758ecb/tb_rest_client/models/models_pe/customer.py#L357-L364
|
import pprint
import re
import six
class Customer(object):
swagger_types = {
'additional_info': 'str',
'address': 'str',
'address2': 'str',
'city': 'str',
'country': 'str',
'created_time': 'int',
'customer_id': 'CustomerId',
'email': 'str',
'id': 'CustomerId',
'name': 'str',
'owner_id': 'EntityId',
'parent_customer_id': 'CustomerId',
'phone': 'str',
'state': 'str',
'tenant_id': 'TenantId',
'title': 'str',
'zip': 'str'
}
attribute_map = {
'additional_info': 'additionalInfo',
'address': 'address',
'address2': 'address2',
'city': 'city',
'country': 'country',
'created_time': 'createdTime',
'customer_id': 'customerId',
'email': 'email',
'id': 'id',
'name': 'name',
'owner_id': 'ownerId',
'parent_customer_id': 'parentCustomerId',
'phone': 'phone',
'state': 'state',
'tenant_id': 'tenantId',
'title': 'title',
'zip': 'zip'
}
def __init__(self, additional_info=None, address=None, address2=None, city=None, country=None, created_time=None, customer_id=None, email=None, id=None, name=None, owner_id=None, parent_customer_id=None, phone=None, state=None, tenant_id=None, title=None, zip=None):
self._additional_info = None
self._address = None
self._address2 = None
self._city = None
self._country = None
self._created_time = None
self._customer_id = None
self._email = None
self._id = None
self._name = None
self._owner_id = None
self._parent_customer_id = None
self._phone = None
self._state = None
self._tenant_id = None
self._title = None
self._zip = None
self.discriminator = None
if additional_info is not None:
self.additional_info = additional_info
if address is not None:
self.address = address
if address2 is not None:
self.address2 = address2
if city is not None:
self.city = city
if country is not None:
self.country = country
if created_time is not None:
self.created_time = created_time
if customer_id is not None:
self.customer_id = customer_id
if email is not None:
self.email = email
if id is not None:
self.id = id
if name is not None:
self.name = name
if owner_id is not None:
self.owner_id = owner_id
if parent_customer_id is not None:
self.parent_customer_id = parent_customer_id
if phone is not None:
self.phone = phone
if state is not None:
self.state = state
if tenant_id is not None:
self.tenant_id = tenant_id
if title is not None:
self.title = title
if zip is not None:
self.zip = zip
@property
def additional_info(self):
return self._additional_info
@additional_info.setter
def additional_info(self, additional_info):
self._additional_info = additional_info
@property
def address(self):
return self._address
@address.setter
def address(self, address):
self._address = address
@property
def address2(self):
return self._address2
@address2.setter
def address2(self, address2):
self._address2 = address2
@property
def city(self):
return self._city
@city.setter
def city(self, city):
self._city = city
@property
def country(self):
return self._country
@country.setter
def country(self, country):
self._country = country
@property
def created_time(self):
return self._created_time
@created_time.setter
def created_time(self, created_time):
self._created_time = created_time
@property
def customer_id(self):
return self._customer_id
@customer_id.setter
def customer_id(self, customer_id):
self._customer_id = customer_id
@property
def email(self):
return self._email
@email.setter
def email(self, email):
self._email = email
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def name(self):
return self._name
@name.setter
def name(self, name):
self._name = name
@property
def owner_id(self):
return self._owner_id
@owner_id.setter
def owner_id(self, owner_id):
self._owner_id = owner_id
@property
|
Apache License 2.0
|
gammapy/gamma-cat
|
gammacat/input.py
|
InputData.dataset_file_list
|
python
|
def dataset_file_list(self):
path = gammacat_info.base_dir / 'input/data'
paths = path.glob('*/*/tev*.yaml')
return sorted(paths)
|
List of all dataset files in the input folder.
|
https://github.com/gammapy/gamma-cat/blob/e4d09c06e74683e41257837c0d036f7d9b32f752/gammacat/input.py#L387-L391
|
import logging
from collections import OrderedDict
from pathlib import Path
import urllib.parse
from astropy.table import Table
from .info import gammacat_info
from .utils import load_yaml, NA, validate_schema
from .sed import SED
from .lightcurve import LightCurve
__all__ = [
'BasicSourceInfo',
'BasicSourceList',
'DatasetSourceInfo',
'InputData',
'InputDataset',
'InputDatasetCollection',
]
log = logging.getLogger(__name__)
class BasicSourceInfo:
schema = load_yaml(gammacat_info.base_dir / 'input/schemas/basic_source_info.schema.yaml')
def __init__(self, data, path):
self.data = data
self.path = path
@classmethod
def read(cls, path):
path = Path(path)
data = load_yaml(path)
return cls(data=data, path=path)
def __repr__(self):
return 'BasicSourceInfo(source_id={})'.format(repr(self.data['source_id']))
def to_dict(self, filled=False):
data = OrderedDict()
if filled:
for name, spec in self.schema['properties'].items():
try:
datatype = spec['type']
except KeyError:
datatype = 'string'
if name == 'pos':
continue
try:
data[name] = NA.fill_value[datatype]
except TypeError:
data[name] = NA.fill_value[datatype[0]]
data.update(self.data)
if data['reference_ids'] is None or data['reference_ids'][0] is None:
data['reference_ids'] = ''
else:
data['reference_ids'] = data['reference_ids']
data.pop('pos', None)
return data
def validate(self):
validate_schema(path=self.path, data=self.data, schema=self.schema)
class DatasetSourceInfo:
schema = load_yaml(gammacat_info.base_dir / 'input/schemas/dataset_source_info.schema.yaml')
def __init__(self, data, path):
self.data = data
self.path = path
@classmethod
def read(cls, path):
path = Path(path)
data = load_yaml(path)
return cls(data=data, path=path)
def __repr__(self):
return 'DatasetSourceInfo(source_id={}, reference_id={})'.format(
repr(self.data['source_id']),
repr(self.data['reference_id']),
)
def validate(self):
validate_schema(path=self.path, data=self.data, schema=self.schema)
class InputDataset:
def __init__(self, reference_id, path, sources):
log.debug(f'Creating InputDataset for path={path}')
self.reference_id = reference_id
self.path = path
self.sources = sources
_source_ids = [source.data['source_id'] for source in sources]
self._sources_by_id = dict(zip(_source_ids, sources))
@classmethod
def read(cls, path):
path = Path(path)
reference_id = urllib.parse.unquote(path.parts[-1])
sources = []
for source_path in sorted(path.glob('tev-*.yaml')):
source_info = DatasetSourceInfo.read(source_path)
sources.append(source_info)
path = '/'.join(path.parts[-2:])
return cls(reference_id=reference_id, path=path, sources=sources)
def to_dict(self):
sources = []
for source in self.sources:
data = OrderedDict()
data['source_id'] = source.data['source_id']
data['reference_id'] = source.data['reference_id']
sources.append(data)
url = self.path.replace('%26', '%2526')
data = OrderedDict()
data['reference_id'] = self.reference_id
data['path'] = self.path
data['url'] = url
data['sources'] = sources
return data
def __repr__(self):
return 'InputDataset(reference_id={})'.format(repr(self.reference_id))
def validate(self):
[_.validate() for _ in self.sources]
def get_source_by_id(self, source_id):
try:
return self._sources_by_id[source_id]
except KeyError:
data = dict(source_id=source_id, reference_id='')
return DatasetSourceInfo(data=data, path=None)
class BasicSourceList:
column_spec = load_yaml(gammacat_info.base_dir / 'input/schemas/basic_source_list.schema.yaml')
def __init__(self, data):
self.data = data
@property
def source_ids(self):
return [source.data['source_id'] for source in self.data]
def get_source_by_id(self, source_id):
idx = self.source_ids.index(source_id)
return self.data[idx]
@classmethod
def read(cls):
path = gammacat_info.base_dir / 'input/sources'
paths = path.glob('*.yaml')
data = []
for path in paths:
info = BasicSourceInfo.read(path)
data.append(info)
return cls(data=data)
def to_dict(self):
return OrderedDict(data=self.data_per_row(filled=True))
def data_per_row(self, filled=False):
return [
source.to_dict(filled=filled)
for source in self.data
]
def validate(self):
log.info('Validating YAML files in `input/sources`')
[_.validate() for _ in self.data]
class InputInfo:
schema = load_yaml(gammacat_info.base_dir / 'input/schemas/dataset_info.schema.yaml')
def __init__(self, data, path):
self.data = data
self.path = path
@classmethod
def read(cls, path):
path = Path(path)
data = load_yaml(path)
return cls(data=data, path=path)
def validate(self):
validate_schema(path=self.path, data=self.data, schema=self.schema)
class InputInfoCollection:
def __init__(self, data):
self.data = data
@classmethod
def read(cls):
path = gammacat_info.base_dir / 'input/data'
paths = path.glob('*/*/info.yaml')
data = []
for path in paths:
info = InputInfo.read(path)
data.append(info)
return cls(data=data)
def validate(self):
log.info('Validating info.yaml files in `input/data`')
[_.validate() for _ in self.data]
class InputDatasetCollection:
def __init__(self, data):
self.data = data
@classmethod
def read(cls):
path = gammacat_info.base_dir / 'input/data'
paths = list(path.glob('*/*'))
data = [InputDataset.read(path) for path in paths]
return cls(data=data)
@property
def reference_ids(self):
return [dataset.reference_id for dataset in self.data]
def to_table(self):
meta = OrderedDict()
meta['name'] = 'todo'
meta['version'] = 'todo'
meta['url'] = 'todo'
rows = [OrderedDict(spam=99)]
return Table(rows=rows, meta=meta, masked=True)
def to_dict(self):
data = []
for dataset in self.data:
data.append(dataset.to_dict())
return OrderedDict(data=data)
def validate(self):
log.info('Validating YAML files in `input/data`')
for dataset in self.data:
dataset.validate()
def get_dataset_by_reference_id(self, reference_id):
if reference_id is None:
return InputDataset(reference_id=None, path=None, sources=[])
idx = self.reference_ids.index(reference_id)
return self.data[idx]
class Schemas:
def __init__(self, data):
self.data = data
@classmethod
def read(cls):
path = gammacat_info.base_dir / 'input/schemas'
paths = path.glob('*.yaml')
data = []
for path in paths:
info = load_yaml(path)
data.append(info)
return cls(data=data)
def validate(self):
log.info('Validating YAML files in `input/schemas')
class InputData:
def __init__(self, schemas=None, sources=None, datasets=None,
ref_infos=None, gammacat_dataset_config=None):
self.path = gammacat_info.base_dir / 'input'
self.schemas = schemas
self.sources = sources
self.datasets = datasets
self.ref_infos = ref_infos
self.gammacat_dataset_config = gammacat_dataset_config
@property
def src_info_list(self):
path = gammacat_info.base_dir / 'input/sources'
return sorted(path.glob('tev*.yaml'))
@property
def lightcurve_file_list(self):
path = gammacat_info.base_dir / 'input/data'
return sorted(path.glob('*/*/tev*lc*.ecsv'))
@property
def sed_file_list(self):
path = gammacat_info.base_dir / 'input/data'
paths = path.glob('*/*/tev*sed*.ecsv')
return sorted(paths)
@property
def info_yaml_list(self):
path = gammacat_info.base_dir / 'input/data'
paths = path.glob('*/*/info.yaml')
return sorted(paths)
@property
|
BSD 3-Clause New or Revised License
|
onelogin/python3-saml
|
src/onelogin/saml2/authn_request.py
|
OneLogin_Saml2_Authn_Request.get_xml
|
python
|
def get_xml(self):
return self._authn_request
|
Returns the XML that will be sent as part of the request
:return: XML request body
:rtype: string
|
https://github.com/onelogin/python3-saml/blob/ab62b0d6f3e5ac2ae8e95ce3ed2f85389252a32d/src/onelogin/saml2/authn_request.py#L160-L166
|
from onelogin.saml2.constants import OneLogin_Saml2_Constants
from onelogin.saml2.utils import OneLogin_Saml2_Utils
from onelogin.saml2.xml_templates import OneLogin_Saml2_Templates
class OneLogin_Saml2_Authn_Request(object):
def __init__(self, settings, force_authn=False, is_passive=False, set_nameid_policy=True, name_id_value_req=None):
self._settings = settings
sp_data = self._settings.get_sp_data()
idp_data = self._settings.get_idp_data()
security = self._settings.get_security_data()
self._id = self._generate_request_id()
issue_instant = OneLogin_Saml2_Utils.parse_time_to_SAML(OneLogin_Saml2_Utils.now())
destination = idp_data['singleSignOnService']['url']
provider_name_str = ''
organization_data = settings.get_organization()
if isinstance(organization_data, dict) and organization_data:
langs = organization_data
if 'en-US' in langs:
lang = 'en-US'
else:
lang = sorted(langs)[0]
display_name = 'displayname' in organization_data[lang] and organization_data[lang]['displayname']
if display_name:
provider_name_str = "\n" + ' ProviderName="%s"' % organization_data[lang]['displayname']
force_authn_str = ''
if force_authn is True:
force_authn_str = "\n" + ' ForceAuthn="true"'
is_passive_str = ''
if is_passive is True:
is_passive_str = "\n" + ' IsPassive="true"'
subject_str = ''
if name_id_value_req:
subject_str = """
<saml:Subject>
<saml:NameID Format="%s">%s</saml:NameID>
<saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer"></saml:SubjectConfirmation>
</saml:Subject>""" % (sp_data['NameIDFormat'], name_id_value_req)
nameid_policy_str = ''
if set_nameid_policy:
name_id_policy_format = sp_data['NameIDFormat']
if security['wantNameIdEncrypted']:
name_id_policy_format = OneLogin_Saml2_Constants.NAMEID_ENCRYPTED
nameid_policy_str = """
<samlp:NameIDPolicy
Format="%s"
AllowCreate="true" />""" % name_id_policy_format
requested_authn_context_str = ''
if security['requestedAuthnContext'] is not False:
authn_comparison = security['requestedAuthnContextComparison']
if security['requestedAuthnContext'] is True:
requested_authn_context_str = """ <samlp:RequestedAuthnContext Comparison="%s">
<saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport</saml:AuthnContextClassRef>
</samlp:RequestedAuthnContext>""" % authn_comparison
else:
requested_authn_context_str = ' <samlp:RequestedAuthnContext Comparison="%s">' % authn_comparison
for authn_context in security['requestedAuthnContext']:
requested_authn_context_str += '<saml:AuthnContextClassRef>%s</saml:AuthnContextClassRef>' % authn_context
requested_authn_context_str += ' </samlp:RequestedAuthnContext>'
attr_consuming_service_str = ''
if 'attributeConsumingService' in sp_data and sp_data['attributeConsumingService']:
attr_consuming_service_str = "\n AttributeConsumingServiceIndex=\"%s\"" % sp_data['attributeConsumingService'].get('index', '1')
request = OneLogin_Saml2_Templates.AUTHN_REQUEST % {
'id': self._id,
'provider_name': provider_name_str,
'force_authn_str': force_authn_str,
'is_passive_str': is_passive_str,
'issue_instant': issue_instant,
'destination': destination,
'assertion_url': sp_data['assertionConsumerService']['url'],
'entity_id': sp_data['entityId'],
'subject_str': subject_str,
'nameid_policy_str': nameid_policy_str,
'requested_authn_context_str': requested_authn_context_str,
'attr_consuming_service_str': attr_consuming_service_str,
'acs_binding': sp_data['assertionConsumerService'].get('binding', 'urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST')
}
self._authn_request = request
def _generate_request_id(self):
return OneLogin_Saml2_Utils.generate_unique_id()
def get_request(self, deflate=True):
if deflate:
request = OneLogin_Saml2_Utils.deflate_and_base64_encode(self._authn_request)
else:
request = OneLogin_Saml2_Utils.b64encode(self._authn_request)
return request
def get_id(self):
return self._id
|
MIT License
|
google/meta_tagger
|
layers.py
|
linear_with_dropout
|
python
|
def linear_with_dropout(is_training,
inputs,
output_size,
initializer=None,
keep_prob=1,
add_bias=True):
input_size = inputs.get_shape().as_list()[-1]
if is_training and keep_prob < 1:
inputs = tf.nn.dropout(inputs, keep_prob)
shape = tf.shape(inputs)
output_shape = []
for i in xrange(len(inputs.get_shape().as_list()) - 1):
output_shape.append(shape[i])
output_shape.append(output_size)
inputs = tf.reshape(inputs, [-1, input_size])
if not initializer:
initializer = tf.orthogonal_initializer()
with tf.variable_scope('Linear'):
matrix = tf.get_variable(
'Weights', [input_size, output_size], initializer=initializer)
if add_bias:
bias = tf.get_variable(
'Biases', [output_size], initializer=tf.zeros_initializer())
else:
bias = 0
linear = tf.nn.xw_plus_b(inputs, matrix, bias)
return tf.reshape(linear, output_shape)
|
Linear mapping with dropout.
|
https://github.com/google/meta_tagger/blob/4db1137308835fcd1e30d81ae48a578c2fe674ff/layers.py#L22-L56
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
|
Apache License 2.0
|
tuxsoul/bitcoin-tools
|
transaction.py
|
dump_transaction
|
python
|
def dump_transaction(datadir, db_env, tx_id):
db = DB(db_env)
try:
r = db.open("blkindex.dat", "main", DB_BTREE, DB_THREAD|DB_RDONLY)
except DBError:
r = True
if r is not None:
logging.error("Couldn't open blkindex.dat/main. Try quitting any running Bitcoin apps.")
sys.exit(1)
kds = BCDataStream()
vds = BCDataStream()
n_tx = 0
n_blockindex = 0
key_prefix = "\x02tx"+(tx_id[-4:].decode('hex_codec')[::-1])
cursor = db.cursor()
(key, value) = cursor.set_range(key_prefix)
while key.startswith(key_prefix):
kds.clear(); kds.write(key)
vds.clear(); vds.write(value)
type = kds.read_string()
hash256 = (kds.read_bytes(32))
hash_hex = long_hex(hash256[::-1])
version = vds.read_uint32()
tx_pos = _read_CDiskTxPos(vds)
if (hash_hex.startswith(tx_id) or short_hex(hash256[::-1]).startswith(tx_id)):
_dump_tx(datadir, hash256, tx_pos)
(key, value) = cursor.next()
db.close()
|
Dump a transaction, given hexadecimal tx_id-- either the full ID
OR a short_hex version of the id.
|
https://github.com/tuxsoul/bitcoin-tools/blob/95d025c2914292558c6323fd88a19756f25558b1/transaction.py#L31-L69
|
from bsddb.db import *
import logging
import os.path
import sys
import time
from BCDataStream import *
from base58 import public_key_to_bc_address
from util import short_hex
from deserialize import *
def _read_CDiskTxPos(stream):
n_file = stream.read_uint32()
n_block_pos = stream.read_uint32()
n_tx_pos = stream.read_uint32()
return (n_file, n_block_pos, n_tx_pos)
def _dump_tx(datadir, tx_hash, tx_pos):
blockfile = open(os.path.join(datadir, "blk%04d.dat"%(tx_pos[0],)), "rb")
ds = BCDataStream()
ds.map_file(blockfile, tx_pos[2])
d = parse_Transaction(ds)
print deserialize_Transaction(d)
ds.close_file()
blockfile.close()
|
MIT License
|
openstack/zaqar
|
zaqar/storage/mongodb/topic_messages.py
|
FIFOMessageController._ensure_indexes
|
python
|
def _ensure_indexes(self, collection):
collection.ensure_index(TTL_INDEX_FIELDS,
name='ttl',
expireAfterSeconds=0,
background=True)
collection.ensure_index(ACTIVE_INDEX_FIELDS,
name='active',
background=True)
collection.ensure_index(COUNTING_INDEX_FIELDS,
name='counting',
background=True)
collection.ensure_index(MARKER_INDEX_FIELDS,
name='queue_marker',
unique=True,
background=True)
collection.ensure_index(TRANSACTION_INDEX_FIELDS,
name='transaction',
background=True)
|
Ensures that all indexes are created.
|
https://github.com/openstack/zaqar/blob/5ec4277546e94e4dd2d1e3c5cde805debb5be1c8/zaqar/storage/mongodb/topic_messages.py#L682-L712
|
import datetime
import time
from bson import objectid
from oslo_log import log as logging
from oslo_utils import timeutils
import pymongo.errors
import pymongo.read_preferences
from zaqar.i18n import _
from zaqar import storage
from zaqar.storage import errors
from zaqar.storage.mongodb import utils
from zaqar.storage import utils as s_utils
LOG = logging.getLogger(__name__)
MAX_RETRY_POST_DURATION = 45
COUNTER_STALL_WINDOW = 5
ID_INDEX_FIELDS = [('_id', 1)]
TTL_INDEX_FIELDS = [
('e', 1),
]
PROJ_TOPIC = utils.PROJ_TOPIC_KEY
ACTIVE_INDEX_FIELDS = [
(PROJ_TOPIC, 1),
('k', 1),
]
COUNTING_INDEX_FIELDS = [
(PROJ_TOPIC, 1),
]
MARKER_INDEX_FIELDS = [
('k', 1),
(PROJ_TOPIC, 1),
]
TRANSACTION_INDEX_FIELDS = [
('tx', 1),
]
class MessageController(storage.Message):
def __init__(self, *args, **kwargs):
super(MessageController, self).__init__(*args, **kwargs)
self._num_partitions = self.driver.mongodb_conf.partitions
self._topic_ctrl = self.driver.topic_controller
self._retry_range = range(self.driver.mongodb_conf.max_attempts)
self._collections = [db.messages
for db in self.driver.message_databases]
for collection in self._collections:
self._ensure_indexes(collection)
def _ensure_indexes(self, collection):
collection.ensure_index(TTL_INDEX_FIELDS,
name='ttl',
expireAfterSeconds=0,
background=True)
collection.ensure_index(ACTIVE_INDEX_FIELDS,
name='active',
background=True)
collection.ensure_index(COUNTING_INDEX_FIELDS,
name='counting',
background=True)
collection.ensure_index(MARKER_INDEX_FIELDS,
name='queue_marker',
background=True)
collection.ensure_index(TRANSACTION_INDEX_FIELDS,
name='transaction',
background=True)
def _collection(self, topic_name, project=None):
return self._collections[utils.get_partition(self._num_partitions,
topic_name, project)]
def _backoff_sleep(self, attempt):
conf = self.driver.mongodb_conf
seconds = utils.calculate_backoff(attempt, conf.max_attempts,
conf.max_retry_sleep,
conf.max_retry_jitter)
time.sleep(seconds)
def _purge_topic(self, topic_name, project=None):
scope = utils.scope_queue_name(topic_name, project)
collection = self._collection(topic_name, project)
collection.delete_many({PROJ_TOPIC: scope})
def _list(self, topic_name, project=None, marker=None,
echo=False, client_uuid=None, projection=None,
include_claimed=False, include_delayed=False,
sort=1, limit=None):
if sort not in (1, -1):
raise ValueError(u'sort must be either 1 (ascending) '
u'or -1 (descending)')
now = timeutils.utcnow_ts()
query = {
PROJ_TOPIC: utils.scope_queue_name(topic_name, project),
'tx': None,
}
if not echo:
query['u'] = {'$ne': client_uuid}
if marker is not None:
query['k'] = {'$gt': marker}
collection = self._collection(topic_name, project)
if not include_delayed:
query['$or'] = [{'d': {'$lte': now}},
{'d': {'$exists': False}}]
cursor = collection.find(query,
projection=projection,
sort=[('k', sort)])
if limit is not None:
cursor.limit(limit)
return cursor.hint(ACTIVE_INDEX_FIELDS)
def _count(self, topic_name, project=None, include_claimed=False):
query = {
PROJ_TOPIC: utils.scope_queue_name(topic_name, project),
'tx': None,
}
collection = self._collection(topic_name, project)
return collection.count(filter=query, hint=COUNTING_INDEX_FIELDS)
def _active(self, topic_name, marker=None, echo=False,
client_uuid=None, projection=None, project=None,
limit=None, include_delayed=False):
return self._list(topic_name, project=project, marker=marker,
echo=echo, client_uuid=client_uuid,
projection=projection, include_claimed=False,
include_delayed=include_delayed, limit=limit)
def _inc_counter(self, topic_name, project=None, amount=1, window=None):
if hasattr(self._topic_ctrl, '_inc_counter'):
return self._topic_ctrl._inc_counter(topic_name, project,
amount, window)
now = timeutils.utcnow_ts()
update = {'$inc': {'c.v': amount}, '$set': {'c.t': now}}
query = _get_scoped_query(topic_name, project)
if window is not None:
threshold = now - window
query['c.t'] = {'$lt': threshold}
while True:
try:
collection = self._collection(topic_name, project).stats
doc = collection.find_one_and_update(
query, update,
return_document=pymongo.ReturnDocument.AFTER,
projection={'c.v': 1, '_id': 0})
break
except pymongo.errors.AutoReconnect:
LOG.exception('Auto reconnect error.')
if doc is None:
if window is None:
message = (u'Failed to increment the message '
u'counter for topic %(name)s and '
u'project %(project)s')
message %= dict(name=topic_name, project=project)
LOG.warning(message)
raise errors.TopicDoesNotExist(topic_name, project)
return None
return doc['c']['v']
def _get_counter(self, topic_name, project=None):
if hasattr(self._topic_ctrl, '_get_counter'):
return self._topic_ctrl._get_counter(topic_name, project)
update = {'$inc': {'c.v': 0, 'c.t': 0}}
query = _get_scoped_query(topic_name, project)
try:
collection = self._collection(topic_name, project).stats
doc = collection.find_one_and_update(
query, update, upsert=True,
return_document=pymongo.ReturnDocument.AFTER,
projection={'c.v': 1, '_id': 0})
return doc['c']['v']
except pymongo.errors.AutoReconnect:
LOG.exception('Auto reconnect error.')
def list(self, topic_name, project=None, marker=None,
limit=storage.DEFAULT_MESSAGES_PER_PAGE,
echo=False, client_uuid=None, include_claimed=False,
include_delayed=False):
if marker is not None:
try:
marker = int(marker)
except ValueError:
yield iter([])
messages = self._list(topic_name, project=project, marker=marker,
client_uuid=client_uuid, echo=echo,
include_claimed=include_claimed,
include_delayed=include_delayed, limit=limit)
marker_id = {}
now = timeutils.utcnow_ts()
def denormalizer(msg):
marker_id['next'] = msg['k']
return _basic_message(msg, now)
yield utils.HookedCursor(messages, denormalizer)
yield str(marker_id['next'])
@utils.raises_conn_error
@utils.retries_on_autoreconnect
def first(self, topic_name, project=None, sort=1):
cursor = self._list(topic_name, project=project,
include_claimed=True, sort=sort,
limit=1)
try:
message = next(cursor)
except StopIteration:
raise errors.TopicIsEmpty(topic_name, project)
now = timeutils.utcnow_ts()
return _basic_message(message, now)
@utils.raises_conn_error
@utils.retries_on_autoreconnect
def get(self, topic_name, message_id, project=None):
mid = utils.to_oid(message_id)
if mid is None:
raise errors.MessageDoesNotExist(message_id, topic_name,
project)
now = timeutils.utcnow_ts()
query = {
'_id': mid,
PROJ_TOPIC: utils.scope_queue_name(topic_name, project),
}
collection = self._collection(topic_name, project)
message = list(collection.find(query).limit(1).hint(ID_INDEX_FIELDS))
if not message:
raise errors.MessageDoesNotExist(message_id, topic_name,
project)
return _basic_message(message[0], now)
@utils.raises_conn_error
@utils.retries_on_autoreconnect
def bulk_get(self, topic_name, message_ids, project=None):
message_ids = [mid for mid in map(utils.to_oid, message_ids) if mid]
if not message_ids:
return iter([])
now = timeutils.utcnow_ts()
query = {
'_id': {'$in': message_ids},
PROJ_TOPIC: utils.scope_queue_name(topic_name, project),
}
collection = self._collection(topic_name, project)
messages = collection.find(query).hint(ID_INDEX_FIELDS)
def denormalizer(msg):
return _basic_message(msg, now)
return utils.HookedCursor(messages, denormalizer)
@utils.raises_conn_error
@utils.retries_on_autoreconnect
def post(self, topic_name, messages, client_uuid, project=None):
if not self._topic_ctrl.exists(topic_name, project):
raise errors.TopicDoesNotExist(topic_name, project)
self._get_counter(topic_name, project)
now = timeutils.utcnow_ts()
now_dt = datetime.datetime.utcfromtimestamp(now)
collection = self._collection(topic_name, project)
messages = list(messages)
msgs_n = len(messages)
next_marker = self._inc_counter(topic_name,
project,
amount=msgs_n) - msgs_n
prepared_messages = []
for index, message in enumerate(messages):
msg = {
PROJ_TOPIC: utils.scope_queue_name(topic_name, project),
't': message['ttl'],
'e': now_dt + datetime.timedelta(seconds=message['ttl']),
'u': client_uuid,
'd': now + message.get('delay', 0),
'b': message['body'] if 'body' in message else {},
'k': next_marker + index,
'tx': None
}
if self.driver.conf.enable_checksum:
msg['cs'] = s_utils.get_checksum(message.get('body', None))
prepared_messages.append(msg)
res = collection.insert_many(prepared_messages,
bypass_document_validation=True)
return [str(id_) for id_ in res.inserted_ids]
@utils.raises_conn_error
@utils.retries_on_autoreconnect
def delete(self, topic_name, message_id, project=None, claim=None):
mid = utils.to_oid(message_id)
if mid is None:
return
collection = self._collection(topic_name, project)
query = {
'_id': mid,
PROJ_TOPIC: utils.scope_queue_name(topic_name, project),
}
cid = utils.to_oid(claim)
if cid is None:
raise errors.ClaimDoesNotExist(claim, topic_name, project)
now = timeutils.utcnow_ts()
cursor = collection.find(query).hint(ID_INDEX_FIELDS)
try:
message = next(cursor)
except StopIteration:
return
if claim is None:
if _is_claimed(message, now):
raise errors.MessageIsClaimed(message_id)
else:
if message['c']['id'] != cid:
kwargs = {}
message = collection.find_one(query, **kwargs)
if message['c']['id'] != cid:
if _is_claimed(message, now):
raise errors.MessageNotClaimedBy(message_id, claim)
raise errors.MessageNotClaimed(message_id)
collection.delete_one(query)
@utils.raises_conn_error
@utils.retries_on_autoreconnect
def bulk_delete(self, topic_name, message_ids, project=None,
claim_ids=None):
message_ids = [mid for mid in map(utils.to_oid, message_ids) if mid]
if claim_ids:
claim_ids = [cid for cid in map(utils.to_oid, claim_ids) if cid]
query = {
'_id': {'$in': message_ids},
PROJ_TOPIC: utils.scope_queue_name(topic_name, project),
}
collection = self._collection(topic_name, project)
if claim_ids:
message_claim_ids = []
messages = collection.find(query).hint(ID_INDEX_FIELDS)
for message in messages:
message_claim_ids.append(message['c']['id'])
for cid in claim_ids:
if cid not in message_claim_ids:
raise errors.ClaimDoesNotExist(cid, topic_name, project)
collection.delete_many(query)
@utils.raises_conn_error
@utils.retries_on_autoreconnect
def pop(self, topic_name, limit, project=None):
query = {
PROJ_TOPIC: utils.scope_queue_name(topic_name, project),
}
now = timeutils.utcnow_ts()
query['c.e'] = {'$lte': now}
collection = self._collection(topic_name, project)
projection = {'_id': 1, 't': 1, 'b': 1, 'c.id': 1}
messages = (collection.find_one_and_delete(query,
projection=projection)
for _ in range(limit))
final_messages = [_basic_message(message, now)
for message in messages
if message]
return final_messages
class FIFOMessageController(MessageController):
|
Apache License 2.0
|
drorlab/atom3d
|
atom3d/util/file.py
|
find_files
|
python
|
def find_files(path, suffix, relative=None):
if not relative:
find_cmd = r"find {:} -regex '.*\.{:}' | sort".format(path, suffix)
else:
find_cmd = r"cd {:}; find . -regex '.*\.{:}' | cut -d '/' -f 2- | sort" .format(path, suffix)
out = subprocess.Popen(
find_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE,
cwd=os.getcwd(), shell=True)
(stdout, stderr) = out.communicate()
name_list = stdout.decode().split()
name_list.sort()
return [Path(x) for x in name_list]
|
Find all files in path with given suffix. =
:param path: Directory in which to find files.
:type path: Union[str, Path]
:param suffix: Suffix determining file type to search for.
:type suffix: str
:param relative: Flag to indicate whether to return absolute or relative path.
:return: list of paths to all files with suffix sorted by their names.
:rtype: list[Path]
|
https://github.com/drorlab/atom3d/blob/7eacb676f56b4130fd805f4b2901a600170b88f9/atom3d/util/file.py#L7-L31
|
import os
from pathlib import Path
import subprocess
|
MIT License
|
make-all/tuya-local
|
custom_components/tuya_local/lock.py
|
async_setup_platform
|
python
|
async def async_setup_platform(hass, config, async_add_entities, discovery_info=None):
_LOGGER.debug(f"Domain data: {hass.data[DOMAIN]}")
data = hass.data[DOMAIN][discovery_info[CONF_DEVICE_ID]]
device = data["device"]
locks = []
cfg = get_config(discovery_info[CONF_TYPE])
if cfg is None:
raise ValueError(f"No device config found for {discovery_info}")
ecfg = cfg.primary_entity
if ecfg.entity == "lock" and discovery_info.get(ecfg.config_id, False):
data[ecfg.config_id] = TuyaLocalLock(device, ecfg)
locks.append(data[ecfg.config_id])
if ecfg.deprecated:
_LOGGER.warning(ecfg.deprecation_message)
_LOGGER.debug(f"Adding lock for {ecfg.name}")
for ecfg in cfg.secondary_entities():
if ecfg.entity == "lock" and discovery_info.get(ecfg.config_id, False):
data[ecfg.config_id] = TuyaLocalLock(device, ecfg)
locks.append(data[ecfg.config_id])
if ecfg.deprecated:
_LOGGER.warning(ecfg.deprecation_message)
_LOGGER.debug(f"Adding lock for {ecfg.name}")
if not locks:
raise ValueError(f"{device.name} does not support use as a lock device.")
async_add_entities(locks)
|
Set up the lock device according to its type.
|
https://github.com/make-all/tuya-local/blob/636d0cd4cb2432676d862d290d2f6deea7328437/custom_components/tuya_local/lock.py#L17-L45
|
import logging
from . import DOMAIN
from .const import (
CONF_DEVICE_ID,
CONF_TYPE,
)
from .generic.lock import TuyaLocalLock
from .helpers.device_config import get_config
_LOGGER = logging.getLogger(__name__)
|
MIT License
|
unofficial-memsource/memsource-cli-client
|
memsource_cli/models/lqa_severity_dto.py
|
LqaSeverityDto.__eq__
|
python
|
def __eq__(self, other):
if not isinstance(other, LqaSeverityDto):
return False
return self.__dict__ == other.__dict__
|
Returns true if both objects are equal
|
https://github.com/unofficial-memsource/memsource-cli-client/blob/a6639506b74e95476da87f4375953448b76ea90c/memsource_cli/models/lqa_severity_dto.py#L132-L137
|
import pprint
import re
import six
class LqaSeverityDto(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'severity_id': 'int',
'name': 'str'
}
attribute_map = {
'severity_id': 'severityId',
'name': 'name'
}
def __init__(self, severity_id=None, name=None):
self._severity_id = None
self._name = None
self.discriminator = None
if severity_id is not None:
self.severity_id = severity_id
if name is not None:
self.name = name
@property
def severity_id(self):
return self._severity_id
@severity_id.setter
def severity_id(self, severity_id):
self._severity_id = severity_id
@property
def name(self):
return self._name
@name.setter
def name(self, name):
self._name = name
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
if issubclass(LqaSeverityDto, dict):
for key, value in self.items():
result[key] = value
return result
def to_str(self):
return pprint.pformat(self.to_dict())
def __repr__(self):
return self.to_str()
|
Apache License 2.0
|
google-research/s4l
|
preprocess.py
|
get_hsvnoise_preprocess
|
python
|
def get_hsvnoise_preprocess(sv_pow=(-2.0, 2.0), sv_mul=(-0.5, 0.5),
sv_add=(-0.1, 0.1), h_add=(-0.1, 0.1)):
rnd = lambda *a: tf.random.uniform((), *a)
rnd2 = lambda *a: tf.random.uniform((2,), *a)
def _hsvnoise(rgb):
hsv = tf.image.rgb_to_hsv(rgb / 255.0)
h, sv = hsv[..., :1], hsv[..., 1:]
h = tf.floormod(1. + h + rnd(*h_add), 1.)
pow_, mul, add = 2.0**rnd2(*sv_pow), 2.0**rnd2(*sv_mul), rnd2(*sv_add)
sv = sv**pow_ * mul + add
hsv = tf.clip_by_value(tf.concat([h, sv], axis=-1), 0, 1)
return tf.image.hsv_to_rgb(hsv) * 255.0
def _hsvnoise_pp(data):
data["image"] = utils.tf_apply_to_image_or_images(_hsvnoise, data["image"])
return data
return _hsvnoise_pp
|
Returns a function that randomises HSV similarly to the Exemplar paper.
Requires the input to still be in [0-255] range.
Transforms the input to HSV, applies rnd(mul)*S**(2**rnd(pow)) + rnd(add) to
the S and V channels independently, and H + rnd(add) to the H channel, then
converts back to RGB in float [0-255].
Args:
sv_pow: The min/max powers of two to which to take S/V.
sv_mul: The min/max powers of two with which to scale S/V.
sv_add: The min/max shift of S/V.
h_add: The min/max shift of hue.
Returns:
A function applying random HSV augmentation to its input.
|
https://github.com/google-research/s4l/blob/8f1cf0555dad64d987309e3bee682cf8390bf48a/preprocess.py#L252-L286
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import numpy as np
import tensorflow.compat.v1 as tf
import inception_preprocessing as inception_pp
import utils
COLOR_PALETTE_PATH = ("/cns/vz-d/home/dune/representation/"
"color_palette.npy")
def crop(image, is_training, crop_size):
h, w, c = crop_size[0], crop_size[1], image.shape[-1]
if is_training:
return tf.random_crop(image, [h, w, c])
else:
dy = (tf.shape(image)[0] - h)//2
dx = (tf.shape(image)[1] - w)//2
return tf.image.crop_to_bounding_box(image, dy, dx, h, w)
def get_inception_preprocess(is_training, im_size):
def _inception_preprocess(data):
data["image"] = inception_pp.preprocess_image(
data["image"], im_size[0], im_size[1], is_training,
add_image_summaries=False)
return data
return _inception_preprocess
def get_resize_small(smaller_size):
def _resize_small_pp(data):
image = data["image"]
h, w = tf.shape(image)[-3], tf.shape(image)[-2]
ratio = tf.to_float(smaller_size) / tf.to_float(tf.minimum(h, w))
h = tf.to_int32(tf.round(tf.to_float(h) * ratio))
w = tf.to_int32(tf.round(tf.to_float(w) * ratio))
static_rank = len(image.get_shape().as_list())
if static_rank == 3:
data["image"] = tf.image.resize_area(image[None], [h, w])[0]
elif static_rank == 4:
data["image"] = tf.image.resize_area(image, [h, w])
return data
return _resize_small_pp
def get_multi_crop(crop_size):
def _crop(image, offset, size):
return tf.image.crop_to_bounding_box(image, offset[0], offset[1], size[0],
size[1])
def _multi_crop_pp(data):
image = data["image"]
h, w, c = crop_size[0], crop_size[1], image.shape[-1]
tl = (0, 0)
tr = (0, tf.shape(image)[1] - w)
bl = (tf.shape(image)[0] - h, 0)
br = (tf.shape(image)[0] - h, tf.shape(image)[1] - w)
c = ((tf.shape(image)[0] - h) // 2, (tf.shape(image)[1] - w) // 2)
data["image"] = tf.stack([
_crop(image, c, crop_size),
_crop(image, tl, crop_size),
_crop(image, tr, crop_size),
_crop(image, bl, crop_size),
_crop(image, br, crop_size)
])
return data
return _multi_crop_pp
def get_crop(is_training, crop_size):
def _crop_pp(data):
crop_fn = functools.partial(
crop, is_training=is_training, crop_size=crop_size)
data["image"] = utils.tf_apply_to_image_or_images(crop_fn, data["image"])
return data
return _crop_pp
def inception_crop(image, **kw):
begin, size, _ = tf.image.sample_distorted_bounding_box(
tf.shape(image), tf.zeros([0, 0, 4], tf.float32),
use_image_if_no_bounding_boxes=True, **kw)
crop = tf.slice(image, begin, size)
crop.set_shape([None, None, image.shape[-1]])
return crop
def get_inception_crop(is_training, **kw):
def _inception_crop_pp(data):
if is_training:
data["image"] = inception_crop(data["image"], **kw)
else:
tf.logging.warn("inception_crop pre-processing keeps the full image in "
"eval mode for now. Contact lbeyer@ with your use-case "
"and propose a reasonable default behaviour.")
return data
return _inception_crop_pp
def get_random_flip_lr(is_training):
def _random_flip_lr_pp(data):
if is_training:
data["image"] = utils.tf_apply_to_image_or_images(
tf.image.random_flip_left_right, data["image"])
return data
return _random_flip_lr_pp
def get_resize_preprocess(fn_args, is_training):
try:
fn_args.remove("randomize_method")
randomize_resize_method = is_training
except ValueError:
randomize_resize_method = False
im_size = utils.str2intlist(fn_args, 2)
def _resize(image, method, align_corners):
def _process():
resized = tf.cast(
tf.image.resize_images(
image, im_size, method, align_corners=align_corners),
dtype=tf.float32)
return resized
return _process
def _resize_pp(data):
im = data["image"]
if randomize_resize_method:
r = tf.random_uniform([], 0, 3, dtype=tf.int32)
im = tf.case({
tf.equal(r, tf.cast(0, r.dtype)):
_resize(im, tf.image.ResizeMethod.BILINEAR, True),
tf.equal(r, tf.cast(1, r.dtype)):
_resize(im, tf.image.ResizeMethod.NEAREST_NEIGHBOR, True),
tf.equal(r, tf.cast(2, r.dtype)):
_resize(im, tf.image.ResizeMethod.BICUBIC, True),
tf.equal(r, tf.cast(3, r.dtype)):
_resize(im, tf.image.ResizeMethod.AREA, False),
})
else:
im = tf.image.resize_images(im, im_size)
data["image"] = im
return data
return _resize_pp
def get_rotate_preprocess(create_labels=True):
def _four_rots(img):
return tf.stack([
img,
tf.transpose(tf.reverse_v2(img, [1]), [1, 0, 2]),
tf.reverse_v2(img, [0, 1]),
tf.reverse_v2(tf.transpose(img, [1, 0, 2]), [1]),
])
def _rotate_pp(data):
if create_labels:
data["label"] = utils.tf_apply_to_image_or_images(
lambda _: tf.constant([0, 1, 2, 3]), data["image"], dtype=tf.int32)
data["image"] = utils.tf_apply_to_image_or_images(_four_rots, data["image"])
return data
return _rotate_pp
def get_copy_label_preprocess(new_name):
def _copy_label_pp(data):
data[new_name] = data["label"]
return data
return _copy_label_pp
def get_value_range_preprocess(vmin=-1, vmax=1, dtype=tf.float32):
def _value_range_pp(data):
img = tf.cast(data["image"], dtype)
img = vmin + (img / tf.constant(255.0, dtype)) * (vmax - vmin)
data["image"] = img
return data
return _value_range_pp
|
Apache License 2.0
|
threatconnect-inc/tcex
|
tcex/batch/indicator.py
|
Indicator.last_modified
|
python
|
def last_modified(self, last_modified: str):
self._indicator_data['lastModified'] = self._utils.datetime.format_datetime(
last_modified, date_format='%Y-%m-%dT%H:%M:%SZ'
)
|
Set Indicator lastModified.
|
https://github.com/threatconnect-inc/tcex/blob/dae37b73d8b33cf26360f6d25c6b305a68f2f0e2/tcex/batch/indicator.py#L280-L284
|
import json
import uuid
from typing import Callable, Optional
from ..utils import Utils
from .attribute import Attribute
from .security_label import SecurityLabel
from .tag import Tag
module = __import__(__name__)
def custom_indicator_class_factory(indicator_type, base_class, class_dict, value_fields):
value_count = len(value_fields)
def init_1(self, tcex, value1, xid, **kwargs):
summary = self.build_summary(value1)
base_class.__init__(self, tcex, indicator_type, summary, xid, **kwargs)
for k, v in class_dict.items():
setattr(self, k, v)
def init_2(
self, tcex, value1, value2, xid, **kwargs
):
summary = self.build_summary(value1, value2)
base_class.__init__(self, tcex, indicator_type, summary, xid, **kwargs)
for k, v in class_dict.items():
setattr(self, k, v)
def init_3(
self, tcex, value1, value2, value3, xid, **kwargs
):
summary = self.build_summary(value1, value2, value3)
base_class.__init__(self, tcex, indicator_type, summary, xid, **kwargs)
for k, v in class_dict.items():
setattr(self, k, v)
class_name = indicator_type.replace(' ', '')
init_method = locals()[f'init_{value_count}']
newclass = type(str(class_name), (base_class,), {'__init__': init_method})
return newclass
class Indicator:
__slots__ = [
'_attributes',
'_file_actions',
'_indicator_data',
'_labels',
'_occurrences',
'_summary',
'_tags',
'_type',
'_utils',
]
def __init__(self, indicator_type: str, summary: str, **kwargs):
self._utils = Utils()
self._summary = summary
self._type = indicator_type
self._indicator_data = {'summary': summary, 'type': indicator_type}
for arg, value in kwargs.items():
self.add_key_value(arg, value)
if kwargs.get('xid') is None:
self._indicator_data['xid'] = str(uuid.uuid4())
self._attributes = []
self._file_actions = []
self._labels = []
self._occurrences = []
self._tags = []
@property
def _metadata_map(self) -> dict:
return {
'date_added': 'dateAdded',
'dnsActive': 'flag1',
'dns_active': 'flag1',
'last_modified': 'lastModified',
'private_flag': 'privateFlag',
'size': 'intValue1',
'whoisActive': 'flag2',
'whois_active': 'flag2',
}
def add_key_value(self, key: str, value: str) -> None:
key = self._metadata_map.get(key, key)
if key in ['dateAdded', 'lastModified']:
self._indicator_data[key] = self._utils.datetime.format_datetime(
value, date_format='%Y-%m-%dT%H:%M:%SZ'
)
elif key == 'confidence':
self._indicator_data[key] = int(value)
elif key == 'rating':
self._indicator_data[key] = float(value)
else:
self._indicator_data[key] = value
@property
def active(self) -> bool:
return self._indicator_data.get('active')
@active.setter
def active(self, active: bool):
self._indicator_data['active'] = self._utils.to_bool(active)
def association(self, group_xid: str) -> None:
association = {'groupXid': group_xid}
self._indicator_data.setdefault('associatedGroups', []).append(association)
def attribute(
self,
attr_type: str,
attr_value: str,
displayed: Optional[bool] = False,
source: Optional[str] = None,
unique: Optional[bool] = True,
formatter: Optional[Callable[[str], str]] = None,
) -> Attribute:
attr = Attribute(attr_type, attr_value, displayed, source, formatter)
if unique == 'Type':
for attribute_data in self._attributes:
if attribute_data.type == attr_type:
attr = attribute_data
break
else:
self._attributes.append(attr)
elif unique is True:
for attribute_data in self._attributes:
if attribute_data.type == attr_type and attribute_data.value == attr.value:
attr = attribute_data
break
else:
self._attributes.append(attr)
elif unique is False:
self._attributes.append(attr)
return attr
@staticmethod
def build_summary(
val1: Optional[str] = None, val2: Optional[str] = None, val3: Optional[str] = None
) -> str:
summary = []
if val1 is not None:
summary.append(val1)
if val2 is not None:
summary.append(val2)
if val3 is not None:
summary.append(val3)
if not summary:
pass
return ' : '.join(summary)
@property
def confidence(self) -> int:
return self._indicator_data.get('confidence')
@confidence.setter
def confidence(self, confidence: int):
self._indicator_data['confidence'] = int(confidence)
@property
def data(self) -> dict:
if self._attributes:
self._indicator_data['attribute'] = []
for attr in self._attributes:
if attr.valid:
self._indicator_data['attribute'].append(attr.data)
if self._file_actions:
self._indicator_data.setdefault('fileAction', {})
self._indicator_data['fileAction'].setdefault('children', [])
for action in self._file_actions:
self._indicator_data['fileAction']['children'].append(action.data)
if self._occurrences:
self._indicator_data.setdefault('fileOccurrence', [])
for occurrence in self._occurrences:
self._indicator_data['fileOccurrence'].append(occurrence.data)
if self._labels:
self._indicator_data['securityLabel'] = []
for label in self._labels:
self._indicator_data['securityLabel'].append(label.data)
if self._tags:
self._indicator_data['tag'] = []
for tag in self._tags:
if tag.valid:
self._indicator_data['tag'].append(tag.data)
return self._indicator_data
@property
def date_added(self) -> str:
return self._indicator_data.get('dateAdded')
@date_added.setter
def date_added(self, date_added: str):
self._indicator_data['dateAdded'] = self._utils.datetime.format_datetime(
date_added, date_format='%Y-%m-%dT%H:%M:%SZ'
)
@property
def last_modified(self) -> str:
return self._indicator_data.get('lastModified')
@last_modified.setter
|
Apache License 2.0
|
ucsbarchlab/pyrtl
|
pyrtl/corecircuits.py
|
bitfield_update
|
python
|
def bitfield_update(w, range_start, range_end, newvalue, truncating=False):
from .corecircuits import concat_list
w = as_wires(w)
idxs = list(range(len(w)))
idxs_middle = idxs[range_start:range_end]
if len(idxs_middle) == 0:
raise PyrtlError('Cannot update bitfield of size 0 (i.e. there are no bits to update)')
idxs_lower = idxs[:idxs_middle[0]]
idxs_upper = idxs[idxs_middle[-1] + 1:]
newvalue = as_wires(newvalue, bitwidth=len(idxs_middle), truncating=truncating)
if len(idxs_middle) != len(newvalue):
raise PyrtlError('Cannot update bitfield of length %d with value of length %d '
'unless truncating=True is specified' % (len(idxs_middle), len(newvalue)))
result_list = []
if idxs_lower:
result_list.append(w[idxs_lower[0]:idxs_lower[-1] + 1])
result_list.append(newvalue)
if idxs_upper:
result_list.append(w[idxs_upper[0]:idxs_upper[-1] + 1])
result = concat_list(result_list)
if len(result) != len(w):
raise PyrtlInternalError('len(result)=%d, len(original)=%d' % (len(result), len(w)))
return result
|
Return WireVector w but with some of the bits overwritten by newvalue.
:param w: a WireVector to use as the starting point for the update
:param range_start: the start of the range of bits to be updated
:param range_end: the end of the range of bits to be updated
:param newvalue: the value to be written in to the start:end range
:param truncating: if true, silently clip newvalue to the proper bitwidth rather than
throw an error if the value provided is too large
Given a WireVector w, this function returns a new WireVector that
is identical to w except in the range of bits specified. In that
specified range, the value newvalue is swapped in. For example:
`bitfield_update(w, 20, 23, 0x7)` will return return a WireVector
of the same length as w, and with the same values as w, but with
bits 20, 21, and 22 all set to 1.
Note that range_start and range_end will be inputs to a slice and
so standard Python slicing rules apply (e.g. negative values for
end-relative indexing and support for None). ::
w = bitfield_update(w, 20, 23, 0x7) # sets bits 20, 21, 22 to 1
w = bitfield_update(w, 20, 23, 0x6) # sets bit 20 to 0, bits 21 and 22 to 1
w = bitfield_update(w, 20, None, 0x7) # assuming w is 32 bits, sets bits 31..20 = 0x7
w = bitfield_update(w, -1, None, 0x1) # set the MSB (bit) to 1
w = bitfield_update(w, None, -1, 0x9) # set the bits before the MSB (bit) to 9
w = bitfield_update(w, None, 1, 0x1) # set the LSB (bit) to 1
w = bitfield_update(w, 1, None, 0x9) # set the bits after the LSB (bit) to 9
|
https://github.com/ucsbarchlab/pyrtl/blob/8b42f566a3c2c23de21f1b534900232219a3b313/pyrtl/corecircuits.py#L415-L469
|
from __future__ import division
import six
import math
from .pyrtlexceptions import PyrtlError, PyrtlInternalError
from .core import LogicNet, working_block
from .wire import Const, WireVector
from pyrtl.rtllib import barrel
from pyrtl.rtllib import muxes
from .conditional import otherwise
def mux(index, *mux_ins, **kwargs):
if kwargs:
if len(kwargs) != 1 or 'default' not in kwargs:
try:
result = select(index, **kwargs)
import warnings
warnings.warn("Predicates are being deprecated in Mux. "
"Use the select operator instead.", stacklevel=2)
return result
except Exception:
bad_args = [k for k in kwargs.keys() if k != 'default']
raise PyrtlError('unknown keywords %s applied to mux' % str(bad_args))
default = kwargs['default']
else:
default = None
index = as_wires(index)
short_by = 2**len(index) - len(mux_ins)
if short_by > 0:
if default is not None:
mux_ins = list(mux_ins)
extention = [default] * short_by
mux_ins.extend(extention)
if 2 ** len(index) != len(mux_ins):
raise PyrtlError(
'Mux select line is %d bits, but selecting from %d inputs. '
% (len(index), len(mux_ins)))
if len(index) == 1:
return select(index, falsecase=mux_ins[0], truecase=mux_ins[1])
half = len(mux_ins) // 2
return select(index[-1],
falsecase=mux(index[0:-1], *mux_ins[:half]),
truecase=mux(index[0:-1], *mux_ins[half:]))
def select(sel, truecase, falsecase):
sel, f, t = (as_wires(w) for w in (sel, falsecase, truecase))
f, t = match_bitwidth(f, t)
outwire = WireVector(bitwidth=len(f))
net = LogicNet(op='x', op_param=None, args=(sel, f, t), dests=(outwire,))
working_block().add_net(net)
return outwire
def concat(*args):
if len(args) <= 0:
raise PyrtlError('error, concat requires at least 1 argument')
if len(args) == 1:
return as_wires(args[0])
arg_wirevectors = tuple(as_wires(arg) for arg in args)
final_width = sum(len(arg) for arg in arg_wirevectors)
outwire = WireVector(bitwidth=final_width)
net = LogicNet(
op='c',
op_param=None,
args=arg_wirevectors,
dests=(outwire,))
working_block().add_net(net)
return outwire
def concat_list(wire_list):
return concat(*reversed(wire_list))
def signed_add(a, b):
if isinstance(a, int):
a = Const(a, signed=True)
if isinstance(b, int):
b = Const(b, signed=True)
a, b = match_bitwidth(as_wires(a), as_wires(b), signed=True)
result_len = len(a) + 1
ext_a = a.sign_extended(result_len)
ext_b = b.sign_extended(result_len)
return (ext_a + ext_b)[0:result_len]
def mult_signed(a, b):
return signed_mult(a, b)
def signed_mult(a, b):
if isinstance(a, int):
a = Const(a, signed=True)
if isinstance(b, int):
b = Const(b, signed=True)
a, b = as_wires(a), as_wires(b)
final_len = len(a) + len(b)
a, b = a.sign_extended(final_len), b.sign_extended(final_len)
return (a * b)[0:final_len]
def signed_lt(a, b):
a, b = match_bitwidth(as_wires(a), as_wires(b), signed=True)
r = a - b
return r[-1] ^ (~a[-1]) ^ (~b[-1])
def signed_le(a, b):
a, b = match_bitwidth(as_wires(a), as_wires(b), signed=True)
r = a - b
return (r[-1] ^ (~a[-1]) ^ (~b[-1])) | (a == b)
def signed_gt(a, b):
a, b = match_bitwidth(as_wires(a), as_wires(b), signed=True)
r = b - a
return r[-1] ^ (~a[-1]) ^ (~b[-1])
def signed_ge(a, b):
a, b = match_bitwidth(as_wires(a), as_wires(b), signed=True)
r = b - a
return (r[-1] ^ (~a[-1]) ^ (~b[-1])) | (a == b)
def _check_shift_inputs(a, shamt):
if isinstance(shamt, int):
raise PyrtlError('shift_amount is an integer, use slice instead')
a, shamt = as_wires(a), as_wires(shamt)
log_length = int(math.log(len(a), 2))
return a, shamt
def shift_left_arithmetic(bits_to_shift, shift_amount):
return shift_left_logical(bits_to_shift, shift_amount)
def shift_right_arithmetic(bits_to_shift, shift_amount):
if isinstance(shift_amount, int):
return bits_to_shift[shift_amount:].sign_extended(len(bits_to_shift))
bit_in = bits_to_shift[-1]
dir = Const(0)
return barrel.barrel_shifter(bits_to_shift, bit_in, dir, shift_amount)
def shift_left_logical(bits_to_shift, shift_amount):
if isinstance(shift_amount, int):
return concat(bits_to_shift[:-shift_amount], Const(0, shift_amount))
bit_in = Const(0)
dir = Const(1)
return barrel.barrel_shifter(bits_to_shift, bit_in, dir, shift_amount)
def shift_right_logical(bits_to_shift, shift_amount):
if isinstance(shift_amount, int):
return bits_to_shift[shift_amount:].zero_extended(len(bits_to_shift))
bit_in = Const(0)
dir = Const(0)
return barrel.barrel_shifter(bits_to_shift, bit_in, dir, shift_amount)
def match_bitwidth(*args, **opt):
if len(opt) == 0:
signed = False
else:
if len(opt) > 1 or 'signed' not in opt:
raise PyrtlError('error, only supported kwarg to match_bitwidth is "signed"')
signed = bool(opt['signed'])
max_len = max(len(wv) for wv in args)
if signed:
return (wv.sign_extended(max_len) for wv in args)
else:
return (wv.zero_extended(max_len) for wv in args)
def as_wires(val, bitwidth=None, truncating=True, block=None):
from .memory import _MemIndexed
block = working_block(block)
if isinstance(val, (int, six.string_types)):
return Const(val, bitwidth=bitwidth, block=block)
elif isinstance(val, _MemIndexed):
if val.wire is None:
val.wire = as_wires(val.mem._readaccess(val.index), bitwidth, truncating, block)
return val.wire
elif not isinstance(val, WireVector):
raise PyrtlError('error, expecting a wirevector, int, or verilog-style '
'const string got %s instead' % repr(val))
elif bitwidth == '0':
raise PyrtlError('error, bitwidth must be >= 1')
elif val.bitwidth is None:
raise PyrtlError('error, attempting to use wirevector with no defined bitwidth')
elif bitwidth and bitwidth > val.bitwidth:
return val.zero_extended(bitwidth)
elif bitwidth and truncating and bitwidth < val.bitwidth:
return val[:bitwidth]
else:
return val
|
BSD 3-Clause New or Revised License
|
dropreg/r-drop
|
huggingface_transformer_src/src/transformers/models/bart/modeling_tf_bart.py
|
TFBartLearnedPositionalEmbedding.call
|
python
|
def call(self, input_shape: tf.TensorShape, past_key_values_length: int = 0):
bsz, seq_len = input_shape[:2]
positions = tf.range(past_key_values_length, seq_len + past_key_values_length, delta=1, name="range")
return super().call(positions + self.offset)
|
Input is expected to be of size [bsz x seqlen].
|
https://github.com/dropreg/r-drop/blob/497eae6c5428a0cb3c2c581b66e1fd6a85226527/huggingface_transformer_src/src/transformers/models/bart/modeling_tf_bart.py#L123-L128
|
import random
from typing import Dict, Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...file_utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPast,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
)
from ...modeling_tf_utils import (
DUMMY_INPUTS,
TFCausalLanguageModelingLoss,
TFPreTrainedModel,
TFSharedEmbeddings,
TFWrappedEmbeddings,
input_processing,
keras_serializable,
shape_list,
)
from ...utils import logging
from .configuration_bart import BartConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/bart-large"
_CONFIG_FOR_DOC = "BartConfig"
_TOKENIZER_FOR_DOC = "BartTokenizer"
LARGE_NEGATIVE = -1e8
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
shifted_input_ids = tf.roll(input_ids, 1, axis=-1)
start_tokens = tf.fill((shape_list(shifted_input_ids)[0], 1), decoder_start_token_id)
shifted_input_ids = tf.concat([start_tokens, shifted_input_ids[:, 1:]], -1)
shifted_input_ids = tf.where(
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
)
if tf.executing_eagerly():
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0))
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
bsz, tgt_len = input_ids_shape
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
mask_cond = tf.range(shape_list(mask)[-1])
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
if past_key_values_length > 0:
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None, past_key_values_length: int = 0):
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
class TFBartLearnedPositionalEmbedding(TFSharedEmbeddings):
def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs)
|
MIT License
|
ictu/quality-time
|
components/collector/src/source_collectors/sonarqube/violations.py
|
SonarQubeViolations._entity
|
python
|
async def _entity(self, issue) -> Entity:
return Entity(
key=issue["key"],
url=await self.__issue_landing_url(issue["key"]),
message=issue["message"],
severity=issue.get("severity", "no severity").lower(),
type=issue["type"].lower(),
component=issue["component"],
creation_date=issue["creationDate"],
update_date=issue["updateDate"],
)
|
Create an entity from an issue.
|
https://github.com/ictu/quality-time/blob/4bd5df14f584dcc174276da0d2ddb6fcfaf1d427/components/collector/src/source_collectors/sonarqube/violations.py#L62-L73
|
from collector_utilities.type import URL
from model import Entities, Entity, SourceMeasurement, SourceResponses
from .base import SonarQubeCollector
class SonarQubeViolations(SonarQubeCollector):
rules_configuration = ""
types_parameter = "types"
async def _landing_url(self, responses: SourceResponses) -> URL:
url = await super()._landing_url(responses)
component = self._parameter("component")
branch = self._parameter("branch")
landing_url = f"{url}/project/issues?id={component}&resolved=false&branch={branch}"
return URL(landing_url + self.__rules_url_parameter())
async def _api_url(self) -> URL:
url = await super()._api_url()
component = self._parameter("component")
branch = self._parameter("branch")
api = (
f"{url}/api/issues/search?componentKeys={component}&resolved=false&ps=500&"
f"severities={self._violation_severities()}&types={self._violation_types()}&branch={branch}"
)
return URL(api + self.__rules_url_parameter())
def __rules_url_parameter(self) -> str:
rules = (
self._data_model["sources"][self.source_type]["configuration"][self.rules_configuration]["value"]
if self.rules_configuration
else []
)
return f"&rules={','.join(rules)}" if rules else ""
async def _parse_source_responses(self, responses: SourceResponses) -> SourceMeasurement:
value = 0
entities = Entities()
for response in responses:
json = await response.json()
value += int(json.get("total", 0))
entities.extend([await self._entity(issue) for issue in json.get("issues", [])])
return SourceMeasurement(value=str(value), entities=entities)
async def __issue_landing_url(self, issue_key: str) -> URL:
url = await super()._landing_url(SourceResponses())
component = self._parameter("component")
branch = self._parameter("branch")
return URL(f"{url}/project/issues?id={component}&issues={issue_key}&open={issue_key}&branch={branch}")
|
Apache License 2.0
|
giswqs/geemap
|
geemap/chart.py
|
feature_histogram
|
python
|
def feature_histogram(
features, property, maxBuckets=None, minBucketWidth=None, **kwargs
):
import math
def nextPowerOf2(n):
return pow(2, math.ceil(math.log2(n)))
def grow_bin(bin_size, ref):
while bin_size < ref:
bin_size *= 2
return bin_size
try:
raw_data = pd.to_numeric(
pd.Series(features.aggregate_array(property).getInfo())
)
y_data = raw_data.tolist()
if "ylim" in kwargs:
min_value = kwargs["ylim"][0]
max_value = kwargs["ylim"][1]
else:
min_value = raw_data.min()
max_value = raw_data.max()
data_range = max_value - min_value
if not maxBuckets:
initial_bin_size = nextPowerOf2(data_range / pow(2, 8))
if minBucketWidth:
if minBucketWidth < initial_bin_size:
bin_size = grow_bin(minBucketWidth, initial_bin_size)
else:
bin_size = minBucketWidth
else:
bin_size = initial_bin_size
else:
initial_bin_size = math.ceil(data_range / nextPowerOf2(maxBuckets))
if minBucketWidth:
if minBucketWidth < initial_bin_size:
bin_size = grow_bin(minBucketWidth, initial_bin_size)
else:
bin_size = minBucketWidth
else:
bin_size = initial_bin_size
start_bins = (math.floor(min_value / bin_size) * bin_size) - (bin_size / 2)
end_bins = (math.ceil(max_value / bin_size) * bin_size) + (bin_size / 2)
if start_bins < min_value:
y_data.append(start_bins)
else:
y_data[y_data.index(min_value)] = start_bins
if end_bins > max_value:
y_data.append(end_bins)
else:
y_data[y_data.index(max_value)] = end_bins
num_bins = math.floor((end_bins - start_bins) / bin_size)
if "title" not in kwargs:
title = ""
else:
title = kwargs["title"]
fig = plt.figure(title=title)
if "width" in kwargs:
fig.layout.width = kwargs["width"]
if "height" in kwargs:
fig.layout.height = kwargs["height"]
if "xlabel" not in kwargs:
xlabel = ""
else:
xlabel = kwargs["xlabel"]
if "ylabel" not in kwargs:
ylabel = ""
else:
ylabel = kwargs["ylabel"]
histogram = plt.hist(
sample=y_data,
bins=num_bins,
axes_options={"count": {"label": ylabel}, "sample": {"label": xlabel}},
)
if "colors" in kwargs:
histogram.colors = kwargs["colors"]
if "stroke" in kwargs:
histogram.stroke = kwargs["stroke"]
else:
histogram.stroke = "#ffffff00"
if "stroke_width" in kwargs:
histogram.stroke_width = kwargs["stroke_width"]
else:
histogram.stroke_width = 0
if ("xlabel" in kwargs) and ("ylabel" in kwargs):
histogram.tooltip = Tooltip(
fields=["midpoint", "count"],
labels=[kwargs["xlabel"], kwargs["ylabel"]],
)
else:
histogram.tooltip = Tooltip(fields=["midpoint", "count"])
plt.show()
except Exception as e:
raise Exception(e)
|
Generates a Chart from a set of features.
Computes and plots a histogram of the given property.
- X-axis = Histogram buckets (of property value).
- Y-axis = Frequency
Reference:
https://developers.google.com/earth-engine/guides/charts_feature#uichartfeaturehistogram
Args:
features (ee.FeatureCollection): The features to include in the chart.
property (str): The name of the property to generate the histogram for.
maxBuckets (int, optional): The maximum number of buckets (bins) to use when building a histogram;
will be rounded up to a power of 2.
minBucketWidth (float, optional): The minimum histogram bucket width, or null to allow any power of 2.
Raises:
Exception: If the provided xProperties is not a list or dict.
Exception: If the chart fails to create.
|
https://github.com/giswqs/geemap/blob/ee39ca827a724691ebd76f57f1dc6fa73c1bb240/geemap/chart.py#L277-L408
|
import pandas as pd
from bqplot import Tooltip
from bqplot import pyplot as plt
from .common import ee_to_pandas
def feature_byFeature(features, xProperty, yProperties, **kwargs):
try:
df = ee_to_pandas(features)
if "ylim" in kwargs:
min_value = kwargs["ylim"][0]
max_value = kwargs["ylim"][1]
else:
min_value = df[yProperties].to_numpy().min()
max_value = df[yProperties].to_numpy().max()
max_value = max_value + 0.2 * (max_value - min_value)
if "title" not in kwargs:
title = ""
else:
title = kwargs["title"]
if "legend_location" not in kwargs:
legend_location = "top-left"
else:
legend_location = kwargs["legend_location"]
x_data = list(df[xProperty])
y_data = df[yProperties].values.T.tolist()
plt.bar(x_data, y_data)
fig = plt.figure(
title=title,
legend_location=legend_location,
)
if "width" in kwargs:
fig.layout.width = kwargs["width"]
if "height" in kwargs:
fig.layout.height = kwargs["height"]
if "labels" in kwargs:
labels = kwargs["labels"]
else:
labels = yProperties
if "display_legend" not in kwargs:
display_legend = True
else:
display_legend = kwargs["display_legend"]
bar_chart = plt.bar(
x_data, y_data, labels=labels, display_legend=display_legend
)
bar_chart.type = "grouped"
if "colors" in kwargs:
bar_chart.colors = kwargs["colors"]
if "xlabel" in kwargs:
plt.xlabel(kwargs["xlabel"])
if "ylabel" in kwargs:
plt.ylabel(kwargs["ylabel"])
plt.ylim(min_value, max_value)
if "xlabel" in kwargs and ("ylabel" in kwargs):
bar_chart.tooltip = Tooltip(
fields=["x", "y"], labels=[kwargs["xlabel"], kwargs["ylabel"]]
)
else:
bar_chart.tooltip = Tooltip(fields=["x", "y"])
plt.show()
except Exception as e:
raise Exception(e)
def feature_byProperty(features, xProperties, seriesProperty, **kwargs):
try:
df = ee_to_pandas(features)
if isinstance(xProperties, list):
x_data = xProperties
y_data = df[xProperties].values
elif isinstance(xProperties, dict):
x_data = list(xProperties.values())
y_data = df[list(xProperties.keys())].values
else:
raise Exception("xProperties must be a list or dictionary.")
labels = list(df[seriesProperty])
if "ylim" in kwargs:
min_value = kwargs["ylim"][0]
max_value = kwargs["ylim"][1]
else:
min_value = y_data.min()
max_value = y_data.max()
max_value = max_value + 0.2 * (max_value - min_value)
if "title" not in kwargs:
title = ""
else:
title = kwargs["title"]
if "legend_location" not in kwargs:
legend_location = "top-left"
else:
legend_location = kwargs["legend_location"]
if "display_legend" not in kwargs:
display_legend = True
else:
display_legend = kwargs["display_legend"]
fig = plt.figure(
title=title,
legend_location=legend_location,
)
if "width" in kwargs:
fig.layout.width = kwargs["width"]
if "height" in kwargs:
fig.layout.height = kwargs["height"]
bar_chart = plt.bar(
x=x_data, y=y_data, labels=labels, display_legend=display_legend
)
bar_chart.type = "grouped"
if "colors" in kwargs:
bar_chart.colors = kwargs["colors"]
if "xlabel" in kwargs:
plt.xlabel(kwargs["xlabel"])
if "ylabel" in kwargs:
plt.ylabel(kwargs["ylabel"])
plt.ylim(min_value, max_value)
if "xlabel" in kwargs and ("ylabel" in kwargs):
bar_chart.tooltip = Tooltip(
fields=["x", "y"], labels=[kwargs["xlabel"], kwargs["ylabel"]]
)
else:
bar_chart.tooltip = Tooltip(fields=["x", "y"])
plt.show()
except Exception as e:
raise Exception(e)
def feature_groups(features, xProperty, yProperty, seriesProperty, **kwargs):
try:
df = ee_to_pandas(features)
df[yProperty] = pd.to_numeric(df[yProperty])
unique_series_values = df[seriesProperty].unique().tolist()
new_column_names = []
for value in unique_series_values:
sample_filter = (df[seriesProperty] == value).map({True: 1, False: 0})
column_name = str(yProperty) + "_" + str(value)
df[column_name] = df[yProperty] * sample_filter
new_column_names.append(column_name)
if "labels" in kwargs:
labels = kwargs["labels"]
else:
labels = [str(x) for x in unique_series_values]
if "ylim" in kwargs:
min_value = kwargs["ylim"][0]
max_value = kwargs["ylim"][1]
else:
min_value = df[yProperty].to_numpy().min()
max_value = df[yProperty].to_numpy().max()
max_value = max_value + 0.2 * (max_value - min_value)
if "title" not in kwargs:
title = ""
else:
title = kwargs["title"]
if "legend_location" not in kwargs:
legend_location = "top-left"
else:
legend_location = kwargs["legend_location"]
x_data = list(df[xProperty])
y_data = [df[x] for x in new_column_names]
plt.bar(x_data, y_data)
fig = plt.figure(
title=title,
legend_location=legend_location,
)
if "width" in kwargs:
fig.layout.width = kwargs["width"]
if "height" in kwargs:
fig.layout.height = kwargs["height"]
if "display_legend" not in kwargs:
display_legend = True
else:
display_legend = kwargs["display_legend"]
bar_chart = plt.bar(
x_data, y_data, labels=labels, display_legend=display_legend
)
if "colors" in kwargs:
bar_chart.colors = kwargs["colors"]
if "xlabel" in kwargs:
plt.xlabel(kwargs["xlabel"])
if "ylabel" in kwargs:
plt.ylabel(kwargs["ylabel"])
plt.ylim(min_value, max_value)
if "xlabel" in kwargs and ("ylabel" in kwargs):
bar_chart.tooltip = Tooltip(
fields=["x", "y"], labels=[kwargs["xlabel"], kwargs["ylabel"]]
)
else:
bar_chart.tooltip = Tooltip(fields=["x", "y"])
plt.show()
except Exception as e:
raise Exception(e)
|
MIT License
|
tomplus/kubernetes_asyncio
|
kubernetes_asyncio/client/models/v1_flex_volume_source.py
|
V1FlexVolumeSource.secret_ref
|
python
|
def secret_ref(self):
return self._secret_ref
|
Gets the secret_ref of this V1FlexVolumeSource. # noqa: E501
:return: The secret_ref of this V1FlexVolumeSource. # noqa: E501
:rtype: V1LocalObjectReference
|
https://github.com/tomplus/kubernetes_asyncio/blob/22bf0f4ec775b920abc9cee86bb38abcfc57506d/kubernetes_asyncio/client/models/v1_flex_volume_source.py#L169-L176
|
import pprint
import re
import six
from kubernetes_asyncio.client.configuration import Configuration
class V1FlexVolumeSource(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'driver': 'str',
'fs_type': 'str',
'options': 'dict(str, str)',
'read_only': 'bool',
'secret_ref': 'V1LocalObjectReference'
}
attribute_map = {
'driver': 'driver',
'fs_type': 'fsType',
'options': 'options',
'read_only': 'readOnly',
'secret_ref': 'secretRef'
}
def __init__(self, driver=None, fs_type=None, options=None, read_only=None, secret_ref=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._driver = None
self._fs_type = None
self._options = None
self._read_only = None
self._secret_ref = None
self.discriminator = None
self.driver = driver
if fs_type is not None:
self.fs_type = fs_type
if options is not None:
self.options = options
if read_only is not None:
self.read_only = read_only
if secret_ref is not None:
self.secret_ref = secret_ref
@property
def driver(self):
return self._driver
@driver.setter
def driver(self, driver):
if self.local_vars_configuration.client_side_validation and driver is None:
raise ValueError("Invalid value for `driver`, must not be `None`")
self._driver = driver
@property
def fs_type(self):
return self._fs_type
@fs_type.setter
def fs_type(self, fs_type):
self._fs_type = fs_type
@property
def options(self):
return self._options
@options.setter
def options(self, options):
self._options = options
@property
def read_only(self):
return self._read_only
@read_only.setter
def read_only(self, read_only):
self._read_only = read_only
@property
|
Apache License 2.0
|
wangronin/bayesian-optimization
|
bayes_optim/surrogate/random_forest.py
|
RandomForest.__init__
|
python
|
def __init__(
self,
n_estimators: int = 100,
max_features: float = 5 / 6,
min_samples_leaf: int = 2,
levels: dict = None,
**kwargs,
):
super().__init__(
n_estimators=n_estimators,
max_features=max_features,
min_samples_leaf=min_samples_leaf,
**kwargs,
)
assert isinstance(levels, dict)
self.levels = levels
self.is_fitted = False
if self.levels:
self._levels = OrderedDict(sorted(levels.items()))
self._cat_idx = list(self._levels.keys())
self._categories = list(self._levels.values())
self._enc = OneHotEncoder(categories=self._categories, sparse=False)
|
parameter
---------
levels : dict, for categorical inputs
keys: indices of categorical variables
values: list of levels of categorical variables
|
https://github.com/wangronin/bayesian-optimization/blob/ffbcf4c8813dfa603b9065355e20eda0ccb99e30/bayes_optim/surrogate/random_forest.py#L71-L103
|
from __future__ import annotations
from collections import OrderedDict
from typing import List, Union
import numpy as np
from joblib import Parallel, delayed
from numpy import array
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble._base import _partition_estimators
from sklearn.preprocessing import OneHotEncoder
from sklearn.utils.validation import check_is_fitted
from ..solution import Solution
__authors__ = ["Hao Wang"]
class SurrogateAggregation(object):
def __init__(self, surrogates, aggregation="WS", **kwargs):
self.surrogates = surrogates
self.N = len(self.surrogates)
self.aggregation = aggregation
self.weights = np.asarray(kwargs["weights"], dtype="float").ravel()
assert self.aggregation in ["WS", "Tchebycheff"]
def fit(self, X, y):
pass
def predict(self, X, eval_MSE=False):
if eval_MSE:
y_hat_, MSE_ = list(zip(*[s.predict(X, eval_MSE=True) for s in self.surrogates]))
y_hat_ = np.atleast_2d([_.ravel() for _ in y_hat_])
MSE_ = np.atleast_2d([_.ravel() for _ in MSE_])
else:
y_hat_ = np.atleast_2d([_.predict(X, eval_MSE=False).ravel() for _ in self.surrogates])
if self.aggregation == "WS":
y_hat = self.weights.dot(y_hat_)
if eval_MSE:
MSE = (self.weights ** 2.0).dot(MSE_)
elif self.aggregation == "Tchebycheff":
pass
return (y_hat, MSE) if eval_MSE else y_hat
def gradient(self, X):
pass
def _save_prediction(predict, X, index, out):
out[..., index] = predict(X, check_input=False)
class RandomForest(RandomForestRegressor):
|
BSD 3-Clause New or Revised License
|
chanzuckerberg/corpora-data-portal
|
backend/corpora/common/entities/entity.py
|
Entity.get
|
python
|
def get(cls, session, key: typing.Union[str, typing.Tuple[str, str]]) -> typing.Union["Entity", None]:
result = session.query(cls.table).get(key)
if result:
return cls(result)
else:
logger.info(f"Unable to find a row with primary key {key}, in {cls.__name__} table.")
return None
|
Retrieves an entity from the database given its primary key if found.
:param key: Simple or composite primary key
:return: Entity or None
|
https://github.com/chanzuckerberg/corpora-data-portal/blob/546870b58caa422bd381a47e3fbc75908182114c/backend/corpora/common/entities/entity.py#L32-L43
|
import logging
import typing
from sqlalchemy import inspect
logger = logging.getLogger(__name__)
from ..corpora_orm import Base
class Entity:
table: Base = None
list_attributes: typing.Tuple = None
def __init__(self, db_object: Base):
self.db_object = db_object
self.session = inspect(db_object).session
@classmethod
|
MIT License
|
ethereum/trinity
|
trinity/components/builtin/ethstats/ethstats_service.py
|
EthstatsService.get_node_info
|
python
|
def get_node_info(self) -> EthstatsData:
return {
'name': self.node_id,
'contact': self.node_contact,
'node': construct_trinity_client_identifier(),
'net': self.boot_info.trinity_config.network_id,
'port': self.boot_info.trinity_config.port,
'os': platform.system(),
'os_v': platform.release(),
'client': '0.1.1',
'canUpdateHistory': False,
}
|
Getter for data that should be sent once, on start-up.
|
https://github.com/ethereum/trinity/blob/6383280c5044feb06695ac2f7bc1100b7bcf4fe0/trinity/components/builtin/ethstats/ethstats_service.py#L100-L112
|
import asyncio
import logging
import platform
from typing import ContextManager
import websockets
from async_service import ManagerAPI, Service
from lahja import EndpointAPI
from eth.abc import ChainAPI
from trinity.constants import (
TO_NETWORKING_BROADCAST_CONFIG,
)
from trinity._utils.connect import get_eth1_chain_with_remote_db
from trinity._utils.version import (
construct_trinity_client_identifier,
)
from trinity.boot_info import BootInfo
from trinity.components.builtin.ethstats.ethstats_client import (
EthstatsClient,
EthstatsMessage,
EthstatsData,
timestamp_ms,
)
from trinity.protocol.common.events import (
PeerCountRequest,
)
class EthstatsService(Service):
logger = logging.getLogger('trinity.components.ethstats.Service')
def __init__(
self,
boot_info: BootInfo,
event_bus: EndpointAPI,
server_url: str,
server_secret: str,
node_id: str,
node_contact: str,
stats_interval: int,
) -> None:
self.boot_info = boot_info
self.event_bus = event_bus
self.server_url = server_url
self.server_secret = server_secret
self.node_id = node_id
self.node_contact = node_contact
self.stats_interval = stats_interval
async def run(self) -> None:
with self.get_chain() as chain:
self.chain = chain
while self.manager.is_running:
self.logger.info('Connecting to %s...', self.server_url)
async with websockets.connect(self.server_url) as websocket:
client: EthstatsClient = EthstatsClient(
websocket,
self.node_id,
)
client_manager = self.manager.run_child_service(client)
self.manager.run_task(self.server_handler, client, client_manager)
self.manager.run_task(self.statistics_handler, client, client_manager)
await client_manager.wait_finished()
self.logger.info('Connection to %s closed', self.server_url)
self.logger.info('Reconnecting in 5s...')
await asyncio.sleep(5)
async def server_handler(self, client: EthstatsClient, manager: ManagerAPI) -> None:
while manager.is_running:
message: EthstatsMessage = await client.recv()
if message.command == 'node-pong':
await client.send_latency((timestamp_ms() - message.data['clientTime']) // 2)
else:
self.logger.debug('Unhandled message received: %s: %r', message.command, message)
async def statistics_handler(self, client: EthstatsClient, manager: ManagerAPI) -> None:
await client.send_hello(self.server_secret, self.get_node_info())
while manager.is_running:
await client.send_node_ping()
await client.send_stats(await self.get_node_stats())
await client.send_block(self.get_node_block())
await asyncio.sleep(self.stats_interval)
|
MIT License
|
simakvokka/robotframework-imagelibrary
|
src/ImageLibrary/keywords.py
|
Keywords.start_gui_process
|
python
|
def start_gui_process(self, command, *args, **kwargs):
return self.gui_process.start_gui_process(command, *args, **kwargs)
|
Starts the given process using the standart Robot library Process, but also takes the programm window as
the active window. Zones and screenshots will be taken related to the program coords.
|
https://github.com/simakvokka/robotframework-imagelibrary/blob/487099843de02b40a44aa0376cbb6747bf8794d3/src/ImageLibrary/keywords.py#L185-L188
|
import yaml, re, os
import tkinter as tk
from robot.api import logger as LOGGER
from ImageLibrary.libcore.librarycomponent import LibraryComponent
from ImageLibrary.libcore.robotlibcore import keyword
from ImageLibrary.buttons.button_constructor import ButtonConstructor
from ImageLibrary.error_handler import ErrorHandler
from ImageLibrary.window import Window
from ImageLibrary.buttons.global_button import GlobalButtonRegistry
from ImageLibrary.image_processor import ImageProcessor
from ImageLibrary.main_window import MainWindow
from ImageLibrary.open_cv import OpenCV
from ImageLibrary import errors, utils
from ImageLibrary.window_function import window_function
from ImageLibrary.animations import Animations
from ImageLibrary.GUIProcess import GUIProcess
def _get_images_from(node):
images = set()
if isinstance(node, (str, bytes)):
if re.search('.*\.png$', node) is not None:
images.add(node)
elif isinstance(node, dict):
for key, value in sorted(node.items()):
images.update(_get_images_from(value))
elif isinstance(node, list):
for value in node:
images.update(_get_images_from(value))
return images
def _check_config(config, reference_folders):
images = _get_images_from(config)
not_found_folders = set()
not_found = images.copy()
for folder in reference_folders:
if not os.path.isdir(folder):
not_found_folders.add(folder)
continue
for image in images:
if image in not_found and os.path.isfile(os.path.join(folder, image)):
not_found.remove(image)
out = ""
if bool(not_found_folders):
out += "Not found reference folders: " + ", ".join(not_found_folders)
if bool(not_found):
out += " and " if bool(not_found_folders) else "Not found "
out += "images: " + ", ".join(not_found)
out += " at folders:" + ", ".join(set(reference_folders).difference(not_found_folders))
if bool(out):
raise errors.InitError(out)
return True
class Keywords(LibraryComponent, Animations, GUIProcess):
def __init__(self, screenshot_folder, state, debug=False):
super().__init__(state)
if screenshot_folder is None:
self.screenshot_folder = os.path.join(os.getcwd())
else:
self.screenshot_folder = screenshot_folder
self.mw = None
self.debug = debug
self.gui_process = GUIProcess()
@keyword
def init(self, settings, references, area=None):
self.settings = {}
self.button_registry = GlobalButtonRegistry('hack')
assert settings is not None, "YAML config file must not be empty and must contain 'main' window section with at least one of buttons|templates|zones etc"
if hasattr(settings, '__iter__'):
for setting in settings:
with open(setting, 'r') as f:
config = yaml.safe_load(f)
if "global_buttons_defs" in config:
self.button_registry.update_info(config["global_buttons_defs"])
del config["global_buttons_defs"]
self.settings.update(config)
else:
with open(settings) as f:
config = yaml.safe_load(f)
if "global_buttons_defs" in config:
self.button_registry.update_info(config["global_buttons_defs"])
del config["global_buttons_defs"]
self.settings.update(config)
self.reference_folders = references
_check_config(self.settings, self.reference_folders)
if area is None:
screen_width = tk.Tk().winfo_screenwidth()
screen_height = tk.Tk().winfo_screenheight()
self.area = (0, 0, screen_width, screen_height)
else:
self.area = area
if "main" not in self.settings:
raise errors.ConfigError('config must contain "main" section')
self.error_handler = ErrorHandler(self.screenshot_folder, self.area)
try:
self.image_processor = ImageProcessor(self.area, OpenCV(), references, self.error_handler)
except TypeError:
LOGGER.info(
"Something went wrong while the ImageLibrary library init process: it doesn't get the required params.\n"
"Program may not be loaded.")
self.button_registry.report_merge_errors()
self.button_constructor = ButtonConstructor()
self.windows = {}
for name, config in sorted(self.settings.items()):
if name == 'main':
self.mw = MainWindow(config, "main", self.button_constructor, self.debug)
elif isinstance(config, dict):
self.windows[name] = Window(config, name, self.button_constructor, self.debug)
elif isinstance(config, list):
self.windows[name] = []
for index, screen in enumerate(config):
if not isinstance(screen, dict):
raise errors.ConfigError(
"screen {} of window {} not properly configured: dict expected".format(index + 1, name))
self.windows[name].append(Window(screen, name, self.button_constructor, self.debug))
def _get_window(self, window, index=-1):
if window is not None:
return utils.get_element_by_name_and_index(self.windows, window, index)
else:
return self.mw
@keyword
|
Apache License 2.0
|
comparativegenomicstoolkit/comparative-annotation-toolkit
|
cat/__init__.py
|
ToilTask.prepare_toil_options
|
python
|
def prepare_toil_options(self, work_dir):
toil_args = self.get_toil_defaults()
toil_args.__dict__.update(vars(self))
toil_args.stats = True
toil_args.defaultPreemptable = True
if self.zone is not None:
job_dir = os.path.join(work_dir, 'jobStore')
if os.path.exists(job_dir):
for i in os.listdir(job_dir):
if os.path.isfile(os.path.join(job_dir, i)) and self.provisioner in i:
job_store = i
toil_args.restart = True
break
if toil_args.restart is not True:
job_store = self.provisioner + ':' + self.zone + ':' + ''.join(
random.choice(string.ascii_lowercase) for _ in range(7))
try:
os.makedirs(job_dir)
except OSError:
pass
tools.fileOps.touch(os.path.join(job_dir, job_store))
else:
job_store = os.path.join(work_dir, 'jobStore')
tools.fileOps.ensure_file_dir(job_store)
if os.path.exists(job_store):
try:
root_job = next(open(os.path.join(job_store, 'rootJobStoreID'))).rstrip()
if not os.path.exists(os.path.join(job_store, 'tmp', root_job)):
shutil.rmtree(job_store)
else:
toil_args.restart = True
except OSError:
toil_args.restart = True
if tools.misc.running_in_container():
toil_args.disableCaching = True
if toil_args.batchSystem == 'parasol' and toil_args.disableCaching is False:
raise RuntimeError('Running parasol without disabled caching is a very bad idea.')
if toil_args.batchSystem == 'parasol' and toil_args.workDir is None:
raise RuntimeError('Running parasol without setting a shared work directory will not work. Please specify '
'--workDir.')
if toil_args.workDir is not None:
tools.fileOps.ensure_dir(toil_args.workDir)
toil_args.jobStore = job_store
self.job_store = job_store
return toil_args
|
Prepares a Namespace object for Toil which has all defaults, overridden as specified
Will see if the jobStore path exists, and if it does, assume that we need to add --restart
:param work_dir: Parent directory where toil work will be done. jobStore will be placed inside. Will be used
to fill in the workDir class variable.
:return: Namespace
|
https://github.com/comparativegenomicstoolkit/comparative-annotation-toolkit/blob/fc1623da5df1309d2e2f0b9bb0363aaab84708f4/cat/__init__.py#L488-L545
|
import string
import random
import datetime
import collections
import logging
import os
import shutil
import json
import subprocess
from collections import OrderedDict
from frozendict import frozendict
from configobj import ConfigObj
import luigi
import luigi.contrib.sqla
from luigi.util import requires
from toil.job import Job
import pandas as pd
from bx.intervals.cluster import ClusterTree
from toil.lib.memoize import memoize
import tools.bio
import tools.fileOps
import tools.intervals
import tools.hal
import tools.misc
import tools.nameConversions
import tools.procOps
import tools.mathOps
import tools.psl
import tools.sqlInterface
import tools.sqlite
import tools.hintsDatabaseInterface
import tools.transcripts
import tools.gff3
from tools.luigiAddons import multiple_requires, IndexTarget
from .align_transcripts import align_transcripts
from .augustus import augustus
from .augustus_cgp import augustus_cgp
from .augustus_pb import augustus_pb
from .chaining import chaining
from .classify import classify
from .consensus import generate_consensus, load_alt_names, load_hgm_vectors
from .filter_transmap import filter_transmap
from .hgm import hgm, parse_hgm_gtf
from .transmap_classify import transmap_classify
from .plots import generate_plots
from .hints_db import hints_db
from .parent_gene_assignment import assign_parents
from .exceptions import *
logger = logging.getLogger('cat')
logger.setLevel('INFO')
class PipelineTask(luigi.Task):
hal = luigi.Parameter()
ref_genome = luigi.Parameter()
config = luigi.Parameter()
out_dir = luigi.Parameter(default='./cat_output')
work_dir = luigi.Parameter(default='./cat_work')
target_genomes = luigi.TupleParameter(default=None)
annotate_ancestors = luigi.BoolParameter(default=False)
binary_mode = luigi.ChoiceParameter(choices=["docker", "local", "singularity"], default='docker',
significant=False)
augustus = luigi.BoolParameter(default=False)
augustus_species = luigi.Parameter(default='human', significant=False)
tm_cfg = luigi.Parameter(default='augustus_cfgs/extrinsic.ETM1.cfg', significant=False)
tmr_cfg = luigi.Parameter(default='augustus_cfgs/extrinsic.ETM2.cfg', significant=False)
augustus_utr_off = luigi.BoolParameter(default=False, significant=False)
augustus_cgp = luigi.BoolParameter(default=False)
cgp_param = luigi.Parameter(default=None, significant=False)
augustus_cgp_cfg_template = luigi.Parameter(default='augustus_cfgs/cgp_extrinsic_template.cfg', significant=False)
maf_chunksize = luigi.IntParameter(default=2500000, significant=False)
maf_overlap = luigi.IntParameter(default=500000, significant=False)
cgp_train_num_exons = luigi.IntParameter(default=5000, significant=False)
augustus_pb = luigi.BoolParameter(default=False)
pb_genome_chunksize = luigi.IntParameter(default=5000000, significant=False)
pb_genome_overlap = luigi.IntParameter(default=500000, significant=False)
pb_cfg = luigi.Parameter(default='augustus_cfgs/extrinsic.M.RM.PB.E.W.cfg', significant=False)
hgm_cpu = luigi.IntParameter(default=4, significant=False)
assembly_hub = luigi.BoolParameter(default=False)
hub_email = luigi.Parameter(default='NoEmail', significant=False)
global_near_best = luigi.FloatParameter(default=0.15, significant=False)
filter_overlapping_genes = luigi.BoolParameter(default=False, significant=True)
overlapping_ignore_bases = luigi.IntParameter(default=0, significant=True)
intron_rnaseq_support = luigi.IntParameter(default=0, significant=False)
exon_rnaseq_support = luigi.IntParameter(default=0, significant=False)
intron_annot_support = luigi.IntParameter(default=0, significant=False)
exon_annot_support = luigi.IntParameter(default=0, significant=False)
original_intron_support = luigi.IntParameter(default=0, significant=False)
denovo_num_introns = luigi.IntParameter(default=0, significant=False)
denovo_splice_support = luigi.IntParameter(default=0, significant=False)
denovo_exon_support = luigi.IntParameter(default=0, significant=False)
denovo_ignore_novel_genes = luigi.BoolParameter(default=False, significant=False)
denovo_only_novel_genes = luigi.BoolParameter(default=False, significant=False)
denovo_novel_end_distance = luigi.IntParameter(default=0, significant=False)
denovo_allow_novel_ends = luigi.BoolParameter(default=False, significant=False)
denovo_allow_unsupported = luigi.BoolParameter(default=False, significant=False)
denovo_allow_bad_annot_or_tm = luigi.BoolParameter(default=False, significant=False)
require_pacbio_support = luigi.BoolParameter(default=False, significant=False)
in_species_rna_support_only = luigi.BoolParameter(default=False, significant=True)
rebuild_consensus = luigi.BoolParameter(default=False, significant=True)
batchSystem = luigi.Parameter(default='single_machine', significant=False)
maxCores = luigi.IntParameter(default=8, significant=False)
parasolCommand = luigi.Parameter(default=None, significant=False)
defaultMemory = luigi.Parameter(default='8G', significant=False)
disableCaching = luigi.BoolParameter(default=False, significant=False)
workDir = luigi.Parameter(default=None, significant=False)
defaultDisk = luigi.Parameter(default='8G', significant=False)
cleanWorkDir = luigi.Parameter(default='onSuccess', significant=False)
provisioner = luigi.Parameter(default=None, significant=False)
nodeTypes = luigi.Parameter(default=None, significant=False)
maxNodes = luigi.Parameter(default=None, significant=False)
minNode = luigi.Parameter(default=None, significant=False)
metrics = luigi.Parameter(default=None, significant=False)
zone = luigi.Parameter(default=None, significant=False)
logLevel = luigi.ChoiceParameter(default="INFO", choices=["INFO", "DEBUG", "ERROR", "WARNING"], significant=False)
def __repr__(self):
if hasattr(self, 'genome'):
return 'Task: {} for {}'.format(self.__class__.__name__, self.genome)
elif hasattr(self, 'mode'):
return 'Task: {} for {}'.format(self.__class__.__name__, self.mode)
else:
return 'Task: {}'.format(self.__class__.__name__)
def get_pipeline_args(self):
args = tools.misc.PipelineNamespace()
args.set('binary_mode', self.binary_mode, False)
args.set('hal', os.path.abspath(self.hal), True)
args.set('ref_genome', self.ref_genome, True)
args.set('out_dir', os.path.abspath(self.out_dir), True)
args.set('work_dir', os.path.abspath(self.work_dir), True)
args.set('augustus', self.augustus, True)
args.set('augustus_cgp', self.augustus_cgp, True)
args.set('augustus_pb', self.augustus_pb, True)
args.set('augustus_species', self.augustus_species, True)
args.set('tm_cfg', os.path.abspath(self.tm_cfg), True)
args.set('tmr_cfg', os.path.abspath(self.tmr_cfg), True)
args.set('augustus_cgp', self.augustus_cgp, True)
args.set('maf_chunksize', self.maf_chunksize, True)
args.set('maf_overlap', self.maf_overlap, True)
args.set('pb_genome_chunksize', self.pb_genome_chunksize, True)
args.set('pb_genome_overlap', self.pb_genome_overlap, True)
args.set('pb_cfg', os.path.abspath(self.pb_cfg), True)
args.set('augustus_cgp_cfg_template', os.path.abspath(self.augustus_cgp_cfg_template), True)
args.set('augustus_utr_off', self.augustus_utr_off, True)
if self.cgp_param is not None:
args.set('cgp_param', os.path.abspath(self.cgp_param), True)
else:
args.set('cgp_param', None, True)
args.set('cgp_train_num_exons', self.cgp_train_num_exons, True)
args.set('hgm_cpu', self.hgm_cpu, False)
args.set('global_near_best', self.global_near_best, True)
args.set('filter_overlapping_genes', self.filter_overlapping_genes, True)
args.set('overlapping_ignore_bases', self.overlapping_ignore_bases, True)
args.set('intron_rnaseq_support', self.intron_rnaseq_support, False)
args.set('exon_rnaseq_support', self.exon_rnaseq_support, False)
args.set('intron_annot_support', self.intron_annot_support, False)
args.set('exon_annot_support', self.exon_annot_support, False)
args.set('original_intron_support', self.original_intron_support, False)
args.set('denovo_num_introns', self.denovo_num_introns, False)
args.set('denovo_splice_support', self.denovo_splice_support, False)
args.set('denovo_exon_support', self.denovo_exon_support, False)
args.set('denovo_ignore_novel_genes', self.denovo_ignore_novel_genes, False)
args.set('denovo_only_novel_genes', self.denovo_only_novel_genes, False)
args.set('denovo_allow_novel_ends', self.denovo_allow_novel_ends, False)
args.set('denovo_novel_end_distance', self.denovo_novel_end_distance, False)
args.set('denovo_allow_unsupported', self.denovo_allow_unsupported, False)
args.set('denovo_allow_bad_annot_or_tm', self.denovo_allow_bad_annot_or_tm, False)
args.set('require_pacbio_support', self.require_pacbio_support, False)
args.set('in_species_rna_support_only', self.in_species_rna_support_only, False)
args.set('rebuild_consensus', self.rebuild_consensus, False)
args.set('stats_db', os.path.join(args.out_dir, 'databases', 'timing_stats.db'), False)
args.set('assembly_hub', self.assembly_hub, False)
args.set('hub_email', self.hub_email, False)
args.set('annotate_ancestors', self.annotate_ancestors, True)
if not tools.misc.is_exec('halStats'):
raise ToolMissingException('halStats from the HAL tools package not in global path')
args.set('hal_genomes', tools.hal.extract_genomes(args.hal, self.annotate_ancestors), True)
target_genomes = tools.hal.extract_genomes(args.hal, self.annotate_ancestors, self.target_genomes)
target_genomes = tuple(x for x in target_genomes if x != self.ref_genome)
args.set('target_genomes', target_genomes, True)
args.set('cfg', self.parse_cfg(), True)
args.set('dbs', PipelineTask.get_databases(args), True)
args.set('annotation', args.cfg['ANNOTATION'][args.ref_genome], True)
args.set('hints_db', os.path.join(args.work_dir, 'hints_database', 'hints.db'), True)
args.set('rnaseq_genomes', frozenset(set(args.cfg['INTRONBAM'].keys()) | set(args.cfg['BAM'].keys())), True)
args.set('intron_only_genomes', frozenset(set(args.cfg['INTRONBAM'].keys()) - set(args.cfg['BAM'].keys())), True)
args.set('isoseq_genomes', frozenset(list(args.cfg['ISO_SEQ_BAM'].keys())), True)
args.set('annotation_genomes', frozenset(list(args.cfg['ANNOTATION'].keys())), True)
args.set('external_ref_genomes', args.annotation_genomes - {args.ref_genome}, True)
args.set('modes', self.get_modes(args), True)
args.set('augustus_tmr', True if 'augTMR' in args.modes else False, True)
if self.__class__.__name__ in ['RunCat', 'Augustus', 'AugustusCgp', 'AugustusPb']:
self.validate_cfg(args)
return args
def parse_cfg(self):
if not os.path.exists(self.config):
raise MissingFileException('Config file {} not found.'.format(self.config))
configspec = ['[ANNOTATION]', '__many__ = string',
'[INTRONBAM]', '__many__ = list',
'[BAM]', '__many__ = list',
'[ISO_SEQ_BAM]', '__many__ = list',
'[PROTEIN_FASTA]', '__many__ = list']
parser = ConfigObj(self.config, configspec=configspec)
for key in parser:
if key not in ['ANNOTATION', 'INTRONBAM', 'BAM', 'ISO_SEQ_BAM', 'PROTEIN_FASTA']:
raise InvalidInputException('Invalid field {} in config file'.format(key))
cfg = collections.defaultdict(dict)
for dtype in ['ANNOTATION', 'PROTEIN_FASTA']:
if dtype not in parser:
cfg[dtype] = {}
else:
for genome, annot in parser[dtype].items():
annot = os.path.abspath(annot)
if not os.path.exists(annot):
raise MissingFileException('Missing {} file {}.'.format(dtype.lower(), annot))
cfg[dtype][genome] = annot
for dtype in ['BAM', 'INTRONBAM', 'ISO_SEQ_BAM']:
if dtype not in parser:
cfg[dtype] = {}
continue
for genome in parser[dtype]:
path = parser[dtype][genome]
if isinstance(path, str):
if not tools.misc.is_bam(path):
cfg[dtype][genome] = [os.path.abspath(x.rstrip()) for x in open(path)]
else:
cfg[dtype][genome] = [os.path.abspath(path)]
else:
cfg[dtype][genome] = []
for p in path:
if tools.misc.is_bam(p):
cfg[dtype][genome].append(os.path.abspath(p))
else:
cfg[dtype][genome].extend([os.path.abspath(x.rstrip()) for x in open(p)])
return frozendict((key, frozendict((ikey, tuple(ival) if isinstance(ival, list) else ival)
for ikey, ival in val.items())) for key, val in cfg.items())
def validate_cfg(self, args):
if len(args.cfg['BAM']) + len(args.cfg['INTRONBAM']) + len(args.cfg['ISO_SEQ_BAM']) + len(args.cfg['ANNOTATION']) == 0:
logger.warning('No extrinsic data or annotations found in config. Will load genomes only.')
elif len(args.cfg['BAM']) + len(args.cfg['INTRONBAM']) + len(args.cfg['ISO_SEQ_BAM']) == 0:
logger.warning('No extrinsic data found in config. Will load genomes and annotation only.')
for dtype in ['BAM', 'INTRONBAM', 'ISO_SEQ_BAM']:
for genome in args.cfg[dtype]:
for bam in args.cfg[dtype][genome]:
if not os.path.exists(bam):
raise MissingFileException('Missing BAM {}.'.format(bam))
if not tools.misc.is_bam(bam):
raise InvalidInputException('BAM {} is not a valid BAM.'.format(bam))
if not os.path.exists(bam + '.bai'):
raise MissingFileException('Missing BAM index {}.'.format(bam + '.bai'))
for dtype in ['ANNOTATION', 'PROTEIN_FASTA']:
for genome, annot in args.cfg[dtype].items():
if not os.path.exists(annot):
raise MissingFileException('Missing {} file {}.'.format(dtype.lower(), annot))
if all(g in args.hal_genomes for g in args.target_genomes) is False:
bad_genomes = set(args.hal_genomes) - set(args.target_genomes)
err_msg = 'Genomes {} present in configuration and not present in HAL.'.format(','.join(bad_genomes))
raise UserException(err_msg)
if args.ref_genome not in args.cfg['ANNOTATION']:
raise UserException('Reference genome {} did not have a provided annotation.'.format(self.ref_genome))
if args.augustus_cgp and len(args.rnaseq_genomes) == 0:
raise InvalidInputException('AugustusCGP is being ran without any RNA-seq hints!')
if args.augustus_pb and len(args.isoseq_genomes) == 0:
raise InvalidInputException('AugustusPB is being ran without any IsoSeq hints!')
def get_modes(self, args):
modes = ['transMap']
if args.augustus_cgp is True:
modes.append('augCGP')
if args.augustus is True:
modes.append('augTM')
if len(set(args.rnaseq_genomes) & set(args.target_genomes)) > 0:
modes.append('augTMR')
if args.augustus_pb is True:
modes.append('augPB')
if len(args.annotation_genomes) > 1:
modes.append('exRef')
return tuple(modes)
def get_module_args(self, module, **args):
pipeline_args = self.get_pipeline_args()
return module.get_args(pipeline_args, **args)
@memoize
def load_docker(self):
os.environ['CAT_BINARY_MODE'] = self.binary_mode
if self.binary_mode == 'docker':
if not tools.misc.is_exec('docker'):
raise ToolMissingException('docker binary not found. '
'Either install it or use a different option for --binary-mode.')
subprocess.check_call(['docker', 'pull', 'quay.io/ucsc_cgl/cat:latest'])
elif self.binary_mode == 'singularity':
if not tools.misc.is_exec('singularity'):
raise ToolMissingException('singularity binary not found. '
'Either install it or use a different option for --binary-mode.')
os.environ['SINGULARITY_PULLFOLDER'] = os.path.abspath(self.work_dir)
os.environ['SINGULARITY_CACHEDIR'] = os.path.abspath(self.work_dir)
if os.environ.get('SINGULARITY_IMAGE'):
return
tools.fileOps.ensure_dir(self.work_dir)
if not os.path.isfile(os.path.join(self.work_dir, 'cat.img')):
subprocess.check_call(['singularity', 'pull', '--name', 'cat.img',
'docker://quay.io/ucsc_cgl/cat:latest'])
assert os.path.exists(os.path.join(self.work_dir, 'cat.img'))
@staticmethod
def get_databases(pipeline_args):
dbs = {genome: PipelineTask.get_database(pipeline_args, genome) for genome in pipeline_args.hal_genomes}
return frozendict(dbs)
@staticmethod
def get_database(pipeline_args, genome):
base_out_dir = os.path.join(pipeline_args.out_dir, 'databases')
return os.path.join(base_out_dir, '{}.db'.format(genome))
@staticmethod
def get_plot_dir(pipeline_args, genome):
base_out_dir = os.path.join(pipeline_args.out_dir, 'plots')
return os.path.join(base_out_dir, genome)
@staticmethod
def get_metrics_dir(pipeline_args, genome):
base_out_dir = os.path.join(pipeline_args.work_dir, 'plot_data')
return os.path.join(base_out_dir, genome)
@staticmethod
def write_metrics(metrics_dict, out_target):
tools.fileOps.ensure_file_dir(out_target.path)
with out_target.open('w') as outf:
json.dump(metrics_dict, outf, indent=4)
@PipelineTask.event_handler(luigi.Event.PROCESSING_TIME)
def processing_time(task, processing_time):
pipeline_args = task.get_pipeline_args()
stats_db = pipeline_args.stats_db
finish_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
with tools.sqlite.ExclusiveSqlConnection(stats_db) as engine:
c = engine.cursor()
c.execute('create table if not exists stats '
'(TaskId string unique, FinishTime string, ProcessingTime real)')
c.execute('insert or replace into stats values (?, ?, ?)', [task.task_id, finish_time, processing_time])
engine.commit()
class PipelineWrapperTask(PipelineTask, luigi.WrapperTask):
pass
class AbstractAtomicFileTask(PipelineTask):
def run_cmd(self, cmd):
with self.output().open('w') as outf:
tools.procOps.run_proc(cmd, stdout=outf)
class ToilTask(PipelineTask):
resources = {'toil': 1}
def __repr__(self):
base_repr = super(ToilTask, self).__repr__()
return 'Toil' + base_repr + ' using batchSystem {}'.format(self.batchSystem)
|
Apache License 2.0
|
ostwalprasad/lgnpy
|
lgnpy/Graph.py
|
Graph.get_evidences
|
python
|
def get_evidences(self):
return self.evidences
|
Get evidences if they are set
Returns
-------
dict: Evidences with keys as nodes.
|
https://github.com/ostwalprasad/lgnpy/blob/da9c0f660ed7ace8598c9a802cca7f9871538675/lgnpy/Graph.py#L293-L300
|
import pandas as pd
import numpy as np
import networkx as nx
import numbers
import math
from unittest.mock import patch
from .logging_config import Logger
log = Logger()
class Graph:
def __init__(self):
self.g = nx.DiGraph()
def set_data(self, dataframe):
if not isinstance(dataframe, pd.DataFrame):
raise TypeError("Argument invalid. Please provide Pandas DataFrame")
if len(dataframe.columns) <= 1:
raise ValueError(f"Dataframe contains only {dataframe.columns}")
if not set(list((self.g.nodes))).issubset(list(dataframe.columns)):
raise ValueError(
f"DataFrame does not contain {np.setdiff1d(list(self.g.nodes), list(dataframe.columns))}"
)
dataframe = dataframe[list(self.g.nodes)]
self.data = dataframe.reindex(sorted(dataframe.columns), axis=1)
self.nodes = list((self.data.columns))
self.mean = np.array(self.get_mean())
self.cov = np.array(self.get_covariance())
self.precision_matrix = np.linalg.inv(self.cov)
self.hvector = self.precision_matrix.dot(self.mean)
self.evidences = dict.fromkeys(self.nodes)
def set_parameters(self, mean, cov):
raise ValueError("Not implemented yet.")
def get_covariance(self):
return self.data.cov()
def get_precision_matrix(self):
return self.precision_matrix
def get_mean(self):
return self.data.mean()
def set_edge(self, u, v):
if u == v:
raise ValueError("Self Loops not allowed.")
self.g.add_edge(u, v)
def set_edges_from(self, edges):
for edge in edges:
if edge[0] == edge[1]:
raise ValueError("Self loops not allowed")
self.g.add_edge(edge[0], edge[1])
def get_parents(self, node):
return list(self.g.pred[node])
def get_children(self, node):
return list(self.g.succ[node])
def get_siblings(self, node):
successors = list(self.g.succ[node])
siblings = []
for s in successors:
siblings.extend(list(self.g.pred[s]))
return list(set(siblings))
def get_neighbors(self,node):
return list(nx.all_neighbors(self.g,node))
def get_nodes(self):
return list(self.g.nodes)
def get_edges(self):
return list(self.g.edges)
def has_parents(self,node):
parents = self.get_parents(node)
return True if len(parents)!=0 else False
def has_children(self,node):
parents = self.get_children(node)
return True if len(parents)!=0 else False
def remove_nodes(self, nodes):
self.g.remove_nodes_from(nodes)
def set_evidences(self, evidence_dict):
if not isinstance(evidence_dict, dict):
raise ValueError("Please provide dictionary")
for key, val in evidence_dict.items():
if key not in self.nodes:
raise ValueError(f"'{key}'' node is not available in network")
if not isinstance(val, numbers.Number):
raise ValueError(
f"Node '{key}'s given evidence is not a number. It's ({val})'"
)
self.evidences[key] = val
|
MIT License
|
trevor/calendarserver
|
txweb2/stream.py
|
FileStream.__init__
|
python
|
def __init__(self, f, start=0, length=None, useMMap=bool(mmap)):
self.f = f
self.start = start
if length is None:
self.length = os.fstat(f.fileno()).st_size
else:
self.length = length
self.useMMap = useMMap
|
Create the stream from file f. If you specify start and length,
use only that portion of the file.
|
https://github.com/trevor/calendarserver/blob/c9970b06a70445ca75b62e3d170c26bc897a035e/txweb2/stream.py#L204-L215
|
from __future__ import generators
import copy, os, types, sys
from zope.interface import Interface, Attribute, implements
from twisted.internet.defer import Deferred
from twisted.internet import interfaces as ti_interfaces, defer, reactor, protocol, error as ti_error
from twisted.python import components
from twisted.python.failure import Failure
from hashlib import md5
from twext.python.log import Logger
log = Logger()
if sys.version_info[0:3] != (2,4,2):
try:
import mmap
except ImportError:
mmap = None
else:
mmap = None
class IStream(Interface):
def read():
def close():
class IByteStream(IStream):
length = Attribute("""How much data is in this stream. Can be None if unknown.""")
def read():
def split(point):
def close():
class ISendfileableStream(Interface):
def read(sendfile=False):
class SimpleStream(object):
implements(IByteStream)
length = None
start = None
def read(self):
return None
def close(self):
self.length = 0
def split(self, point):
if self.length is not None:
if point > self.length:
raise ValueError("split point (%d) > length (%d)" % (point, self.length))
b = copy.copy(self)
self.length = point
if b.length is not None:
b.length -= point
b.start += point
return (self, b)
MMAP_LIMIT = 4*1024*1024
MMAP_THRESHOLD = 8*1024
SENDFILE_LIMIT = 16777216
SENDFILE_THRESHOLD = 256
def mmapwrapper(*args, **kwargs):
offset = kwargs.get('offset', None)
if offset in [None, 0]:
if 'offset' in kwargs:
del kwargs['offset']
else:
raise mmap.error("mmap: Python sucks and does not support offset.")
return mmap.mmap(*args, **kwargs)
class FileStream(SimpleStream):
implements(ISendfileableStream)
CHUNK_SIZE = 2 ** 2 ** 2 ** 2 - 32
f = None
|
Apache License 2.0
|
telstra/messagingapi-sdk-python
|
Telstra_Messaging/models/outbound_poll_response.py
|
OutboundPollResponse.received_timestamp
|
python
|
def received_timestamp(self):
return self._received_timestamp
|
Gets the received_timestamp of this OutboundPollResponse. # noqa: E501
The date and time when the message was recieved by recipient. # noqa: E501
:return: The received_timestamp of this OutboundPollResponse. # noqa: E501
:rtype: str
|
https://github.com/telstra/messagingapi-sdk-python/blob/1f9413a7f43321c84056ce54bc1ac3d626b6bbe2/Telstra_Messaging/models/outbound_poll_response.py#L117-L125
|
import pprint
import re
import six
from Telstra_Messaging.configuration import Configuration
class OutboundPollResponse(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'to': 'str',
'sent_timestamp': 'str',
'received_timestamp': 'str',
'delivery_status': 'Status'
}
attribute_map = {
'to': 'to',
'sent_timestamp': 'sentTimestamp',
'received_timestamp': 'receivedTimestamp',
'delivery_status': 'deliveryStatus'
}
def __init__(self, to=None, sent_timestamp=None, received_timestamp=None, delivery_status=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._to = None
self._sent_timestamp = None
self._received_timestamp = None
self._delivery_status = None
self.discriminator = None
if to is not None:
self.to = to
if sent_timestamp is not None:
self.sent_timestamp = sent_timestamp
if received_timestamp is not None:
self.received_timestamp = received_timestamp
if delivery_status is not None:
self.delivery_status = delivery_status
@property
def to(self):
return self._to
@to.setter
def to(self, to):
self._to = to
@property
def sent_timestamp(self):
return self._sent_timestamp
@sent_timestamp.setter
def sent_timestamp(self, sent_timestamp):
self._sent_timestamp = sent_timestamp
@property
|
Apache License 2.0
|
sighingnow/parsec.py
|
src/parsec/__init__.py
|
mark
|
python
|
def mark(p):
return p.mark()
|
Mark the line and column information of the result of the parser `p`.
|
https://github.com/sighingnow/parsec.py/blob/a58b6e89fa4f557edef97e6dfffd8f1256312754/src/parsec/__init__.py#L349-L351
|
__author__ = 'He Tao, sighingnow@gmail.com'
import re
from functools import wraps
from collections import namedtuple
class ParseError(RuntimeError):
def __init__(self, expected, text, index):
super(ParseError, self).__init__()
self.expected = expected
self.text = text
self.index = index
@staticmethod
def loc_info(text, index):
if index > len(text):
raise ValueError('Invalid index.')
line, last_ln = text.count('\n', 0, index), text.rfind('\n', 0, index)
col = index - (last_ln + 1)
return (line, col)
def loc(self):
try:
return '{}:{}'.format(*ParseError.loc_info(self.text, self.index))
except ValueError:
return '<out of bounds index {!r}>'.format(self.index)
def __str__(self):
return 'expected {} at {}'.format(self.expected, self.loc())
class Value(namedtuple('Value', 'status index value expected')):
@staticmethod
def success(index, actual):
return Value(True, index, actual, None)
@staticmethod
def failure(index, expected):
return Value(False, index, None, expected)
def aggregate(self, other=None):
if not self.status:
return self
if not other:
return self
if not other.status:
return other
return Value(True, other.index, self.value + other.value, None)
@staticmethod
def combinate(values):
prev_v = None
for v in values:
if prev_v:
if not v:
return prev_v
if not v.status:
return v
out_values = tuple([v.value for v in values])
return Value(True, values[-1].index, out_values, None)
def __str__(self):
return 'Value: state: {}, @index: {}, values: {}, expected: {}'.format(
self.status, self.index, self.value, self.expected)
class Parser(object):
def __init__(self, fn):
self.fn = fn
def __call__(self, text, index):
return self.fn(text, index)
def parse(self, text):
return self.parse_partial(text)[0]
def parse_partial(self, text):
if not isinstance(text, str):
raise TypeError(
'Can only parsing string but got {!r}'.format(text))
res = self(text, 0)
if res.status:
return (res.value, text[res.index:])
else:
raise ParseError(res.expected, text, res.index)
def parse_strict(self, text):
return (self < eof()).parse_partial(text)[0]
def bind(self, fn):
@Parser
def bind_parser(text, index):
res = self(text, index)
return res if not res.status else fn(res.value)(text, res.index)
return bind_parser
def compose(self, other):
@Parser
def compose_parser(text, index):
res = self(text, index)
return res if not res.status else other(text, res.index)
return compose_parser
def joint(self, *parsers):
return joint(self, *parsers)
def choice(self, other):
@Parser
def choice_parser(text, index):
res = self(text, index)
return res if res.status or res.index != index else other(text, index)
return choice_parser
def try_choice(self, other):
@Parser
def try_choice_parser(text, index):
res = self(text, index)
return res if res.status else other(text, index)
return try_choice_parser
def skip(self, other):
@Parser
def ends_with_parser(text, index):
res = self(text, index)
if not res.status:
return res
end = other(text, res.index)
if end.status:
return Value.success(end.index, res.value)
else:
return Value.failure(end.index, 'ends with {}'.format(end.expected))
return ends_with_parser
def ends_with(self, other):
@Parser
def ends_with_parser(text, index):
res = self(text, index)
if not res.status:
return res
end = other(text, res.index)
if end.status:
return res
else:
return Value.failure(end.index, 'ends with {}'.format(end.expected))
return ends_with_parser
def parsecmap(self, fn):
return self.bind(lambda res: Parser(lambda _, index: Value.success(index, fn(res))))
def parsecapp(self, other):
return self.bind(lambda res: other.parsecmap(lambda x: res(x)))
def result(self, res):
return self >> Parser(lambda _, index: Value.success(index, res))
def mark(self):
def pos(text, index):
return ParseError.loc_info(text, index)
@Parser
def mark_parser(text, index):
res = self(text, index)
if res.status:
return Value.success(res.index, (pos(text, index), res.value, pos(text, res.index)))
else:
return res
return mark_parser
def desc(self, description):
return self | Parser(lambda _, index: Value.failure(index, description))
def __or__(self, other):
return self.choice(other)
def __xor__(self, other):
return self.try_choice(other)
def __add__(self, other):
return self.joint(other)
def __rshift__(self, other):
return self.compose(other)
def __irshift__(self, other):
return self.bind(other)
def __lshift__(self, other):
return self.skip(other)
def __lt__(self, other):
return self.ends_with(other)
def parse(p, text, index=0):
return p.parse(text[index:])
def bind(p, fn):
return p.bind(fn)
def compose(pa, pb):
return pa.compose(pb)
def joint(*parsers):
@Parser
def joint_parser(text, index):
values = []
prev_v = None
for p in parsers:
if prev_v:
index = prev_v.index
prev_v = v = p(text, index)
if not v.status:
return v
values.append(v)
return Value.combinate(values)
return joint_parser
def choice(pa, pb):
return pa.choice(pb)
def try_choice(pa, pb):
return pa.try_choice(pb)
def skip(pa, pb):
return pa.skip(pb)
def ends_with(pa, pb):
return pa.ends_with(pb)
def parsecmap(p, fn):
return p.parsecmap(fn)
def parsecapp(p, other):
return p.parsecapp(other)
def result(p, res):
return p.result(res)
|
MIT License
|
piccolo-orm/piccolo
|
piccolo/apps/schema/commands/generate.py
|
get_fk_triggers
|
python
|
async def get_fk_triggers(
table_class: t.Type[Table], tablename: str, schema_name: str = "public"
) -> TableTriggers:
triggers = await table_class.raw(
(
"SELECT tc.constraint_name, "
" tc.constraint_type, "
" tc.table_name, "
" kcu.column_name, "
" rc.update_rule AS on_update, "
" rc.delete_rule AS on_delete, "
" ccu.table_name AS references_table, "
" ccu.column_name AS references_column "
"FROM information_schema.table_constraints tc "
"LEFT JOIN information_schema.key_column_usage kcu "
" ON tc.constraint_catalog = kcu.constraint_catalog "
" AND tc.constraint_schema = kcu.constraint_schema "
" AND tc.constraint_name = kcu.constraint_name "
"LEFT JOIN information_schema.referential_constraints rc "
" ON tc.constraint_catalog = rc.constraint_catalog "
" AND tc.constraint_schema = rc.constraint_schema "
" AND tc.constraint_name = rc.constraint_name "
"LEFT JOIN information_schema.constraint_column_usage ccu "
" ON rc.unique_constraint_catalog = ccu.constraint_catalog "
" AND rc.unique_constraint_schema = ccu.constraint_schema "
" AND rc.unique_constraint_name = ccu.constraint_name "
"WHERE lower(tc.constraint_type) in ('foreign key')"
"AND tc.table_schema = {} "
"AND tc.table_name = {}; "
),
schema_name,
tablename,
)
return TableTriggers(
tablename=tablename,
triggers=[Trigger(**i) for i in triggers],
)
|
Get all of the constraints for a table.
:param table_class:
Any Table subclass - just used to execute raw queries on the database.
|
https://github.com/piccolo-orm/piccolo/blob/27539219431874bae99b7206df48133fbe1a27eb/piccolo/apps/schema/commands/generate.py#L451-L494
|
from __future__ import annotations
import asyncio
import dataclasses
import json
import re
import typing as t
import uuid
from datetime import date, datetime
import black
from typing_extensions import Literal
from piccolo.apps.migrations.auto.serialisation import serialise_params
from piccolo.columns import defaults
from piccolo.columns.base import Column, OnDelete, OnUpdate
from piccolo.columns.column_types import (
JSON,
JSONB,
UUID,
BigInt,
Boolean,
Bytea,
Date,
DoublePrecision,
ForeignKey,
Integer,
Interval,
Numeric,
Real,
Serial,
SmallInt,
Text,
Timestamp,
Timestamptz,
Varchar,
)
from piccolo.columns.defaults.interval import IntervalCustom
from piccolo.columns.indexes import IndexMethod
from piccolo.engine.finder import engine_finder
from piccolo.engine.postgres import PostgresEngine
from piccolo.table import Table, create_table_class, sort_table_classes
from piccolo.utils.naming import _snake_to_camel
if t.TYPE_CHECKING:
from piccolo.engine.base import Engine
class ForeignKeyPlaceholder(Table):
pass
@dataclasses.dataclass
class ConstraintTable:
name: str = ""
schema: str = ""
@dataclasses.dataclass
class RowMeta:
column_default: str
column_name: str
is_nullable: Literal["YES", "NO"]
table_name: str
character_maximum_length: t.Optional[int]
data_type: str
numeric_precision: t.Optional[t.Union[int, str]]
numeric_scale: t.Optional[t.Union[int, str]]
numeric_precision_radix: t.Optional[Literal[2, 10]]
@classmethod
def get_column_name_str(cls) -> str:
return ", ".join(i.name for i in dataclasses.fields(cls))
@dataclasses.dataclass
class Constraint:
constraint_type: Literal["PRIMARY KEY", "UNIQUE", "FOREIGN KEY", "CHECK"]
constraint_name: str
constraint_schema: t.Optional[str] = None
column_name: t.Optional[str] = None
@dataclasses.dataclass
class TableConstraints:
tablename: str
constraints: t.List[Constraint]
def __post_init__(self):
foreign_key_constraints: t.List[Constraint] = []
unique_constraints: t.List[Constraint] = []
primary_key_constraints: t.List[Constraint] = []
for constraint in self.constraints:
if constraint.constraint_type == "FOREIGN KEY":
foreign_key_constraints.append(constraint)
elif constraint.constraint_type == "PRIMARY KEY":
primary_key_constraints.append(constraint)
elif constraint.constraint_type == "UNIQUE":
unique_constraints.append(constraint)
self.foreign_key_constraints = foreign_key_constraints
self.unique_constraints = unique_constraints
self.primary_key_constraints = primary_key_constraints
def is_primary_key(self, column_name: str) -> bool:
return any(
i.column_name == column_name for i in self.primary_key_constraints
)
def is_unique(self, column_name: str) -> bool:
return any(
i.column_name == column_name for i in self.unique_constraints
)
def is_foreign_key(self, column_name: str) -> bool:
return any(
i.column_name == column_name for i in self.foreign_key_constraints
)
def get_foreign_key_constraint_name(self, column_name) -> ConstraintTable:
for i in self.foreign_key_constraints:
if i.column_name == column_name:
return ConstraintTable(
name=i.constraint_name, schema=i.constraint_schema
)
raise ValueError("No matching constraint found")
@dataclasses.dataclass
class Trigger:
constraint_name: str
constraint_type: str
table_name: str
column_name: str
on_update: str
on_delete: Literal[
"NO ACTION", "RESTRICT", "CASCADE", "SET NULL", "SET_DEFAULT"
]
references_table: str
references_column: str
@dataclasses.dataclass
class TableTriggers:
tablename: str
triggers: t.List[Trigger]
def get_column_triggers(self, column_name: str) -> t.List[Trigger]:
return [i for i in self.triggers if i.column_name == column_name]
def get_column_ref_trigger(
self, column_name: str, references_table: str
) -> Trigger:
for trigger in self.triggers:
if (
trigger.column_name == column_name
and trigger.references_table == references_table
):
return trigger
raise ValueError("No matching trigger found")
@dataclasses.dataclass
class Index:
indexname: str
indexdef: str
def __post_init__(self):
pat = re.compile(
r"""^CREATE[ ](?:(?P<unique>UNIQUE)[ ])?INDEX[ ]\w+?[ ]
ON[ ].+?[ ]USING[ ](?P<method>\w+?)[ ]
\(\"?(?P<column_name>\w+?\"?)\)""",
re.VERBOSE,
)
groups = re.match(pat, self.indexdef).groupdict()
self.column_name = groups["column_name"].lstrip('"').rstrip('"')
self.unique = True if "unique" in groups else False
self.method = INDEX_METHOD_MAP[groups["method"]]
@dataclasses.dataclass
class TableIndexes:
tablename: str
indexes: t.List[Index]
def get_column_index(self, column_name: str) -> t.Optional[Index]:
for i in self.indexes:
if i.column_name == column_name:
return i
return None
@dataclasses.dataclass
class OutputSchema:
imports: t.List[str] = dataclasses.field(default_factory=list)
warnings: t.List[str] = dataclasses.field(default_factory=list)
tables: t.List[t.Type[Table]] = dataclasses.field(default_factory=list)
def get_table_with_name(self, tablename: str) -> t.Optional[t.Type[Table]]:
tablename = _snake_to_camel(tablename)
try:
return next(
table for table in self.tables if table.__name__ == tablename
)
except StopIteration:
return None
def __radd__(self, value: OutputSchema) -> OutputSchema:
if isinstance(value, int):
return self
value.imports.extend(self.imports)
value.warnings.extend(self.warnings)
value.tables.extend(self.tables)
return value
def __add__(self, value: OutputSchema) -> OutputSchema:
self.imports.extend(value.imports)
self.warnings.extend(value.warnings)
self.tables.extend(value.tables)
return self
COLUMN_TYPE_MAP: t.Dict[str, t.Type[Column]] = {
"bigint": BigInt,
"boolean": Boolean,
"bytea": Bytea,
"character varying": Varchar,
"date": Date,
"integer": Integer,
"interval": Interval,
"json": JSON,
"jsonb": JSONB,
"numeric": Numeric,
"real": Real,
"double precision": DoublePrecision,
"smallint": SmallInt,
"text": Text,
"timestamp with time zone": Timestamptz,
"timestamp without time zone": Timestamp,
"uuid": UUID,
}
COLUMN_DEFAULT_PARSER = {
BigInt: re.compile(r"^'?(?P<value>-?[0-9]\d*)'?(?:::bigint)?$"),
Boolean: re.compile(r"^(?P<value>true|false)$"),
Bytea: re.compile(r"'(?P<value>.*)'::bytea$"),
DoublePrecision: re.compile(r"(?P<value>[+-]?(?:[0-9]*[.])?[0-9]+)"),
Varchar: re.compile(r"^'(?P<value>.*)'::character varying$"),
Date: re.compile(r"^(?P<value>(?:\d{4}-\d{2}-\d{2})|CURRENT_DATE)$"),
Integer: re.compile(r"^(?P<value>-?\d+)$"),
Interval: re.compile(
r"""^
(?:')?
(?:
(?:(?P<years>\d+)[ ]y(?:ear(?:s)?)?\b) |
(?:(?P<months>\d+)[ ]m(?:onth(?:s)?)?\b) |
(?:(?P<weeks>\d+)[ ]w(?:eek(?:s)?)?\b) |
(?:(?P<days>\d+)[ ]d(?:ay(?:s)?)?\b) |
(?:
(?:
(?:(?P<hours>\d+)[ ]h(?:our(?:s)?)?\b) |
(?:(?P<minutes>\d+)[ ]m(?:inute(?:s)?)?\b) |
(?:(?P<seconds>\d+)[ ]s(?:econd(?:s)?)?\b)
) |
(?:
(?P<digits>-?\d{2}:\d{2}:\d{2}))?\b)
)
+(?P<direction>ago)?
(?:'::interval)?
$""",
re.X,
),
JSON: re.compile(r"^'(?P<value>.*)'::json$"),
JSONB: re.compile(r"^'(?P<value>.*)'::jsonb$"),
Numeric: re.compile(r"(?P<value>\d+)"),
Real: re.compile(r"^(?P<value>-?[0-9]\d*(?:\.\d+)?)$"),
SmallInt: re.compile(r"^'?(?P<value>-?[0-9]\d*)'?(?:::integer)?$"),
Text: re.compile(r"^'(?P<value>.*)'::text$"),
Timestamp: re.compile(
r"""^
(?P<value>
(?:\d{4}-\d{2}-\d{2}[ ]\d{2}:\d{2}:\d{2}) |
CURRENT_TIMESTAMP
)
$""",
re.VERBOSE,
),
Timestamptz: re.compile(
r"""^
(?P<value>
(?:\d{4}-\d{2}-\d{2}[ ]\d{2}:\d{2}:\d{2}(?:\.\d+)?-\d{2}) |
CURRENT_TIMESTAMP
)
$""",
re.VERBOSE,
),
UUID: None,
Serial: None,
ForeignKey: None,
}
def get_column_default(
column_type: t.Type[Column], column_default: str
) -> t.Any:
pat = COLUMN_DEFAULT_PARSER[column_type]
if pat is not None:
match = re.match(pat, column_default)
if match is not None:
value = match.groupdict()
if column_type is Boolean:
return value["value"] == "true"
elif column_type is Interval:
kwargs = {}
for period in [
"years",
"months",
"weeks",
"days",
"hours",
"minutes",
"seconds",
]:
period_match = value.get(period, 0)
if period_match:
kwargs[period] = int(period_match)
digits = value["digits"]
if digits:
kwargs.update(
dict(
zip(
["hours", "minutes", "seconds"],
[int(v) for v in digits.split(":")],
)
)
)
return IntervalCustom(**kwargs)
elif column_type is JSON or column_type is JSONB:
return json.loads(value["value"])
elif column_type is UUID:
return uuid.uuid4
elif column_type is Date:
return (
date.today
if value["value"] == "CURRENT_DATE"
else defaults.date.DateCustom(
*[int(v) for v in value["value"].split("-")]
)
)
elif column_type is Bytea:
return value["value"].encode("utf8")
elif column_type is Timestamp:
return (
datetime.now
if value["value"] == "CURRENT_TIMESTAMP"
else datetime.fromtimestamp(float(value["value"]))
)
elif column_type is Timestamptz:
return (
datetime.now
if value["value"] == "CURRENT_TIMESTAMP"
else datetime.fromtimestamp(float(value["value"]))
)
else:
return column_type.value_type(value["value"])
INDEX_METHOD_MAP: t.Dict[str, IndexMethod] = {
"btree": IndexMethod.btree,
"hash": IndexMethod.hash,
"gist": IndexMethod.gist,
"gin": IndexMethod.gin,
}
async def get_indexes(
table_class: t.Type[Table], tablename: str, schema_name: str = "public"
) -> TableIndexes:
indexes = await table_class.raw(
(
"SELECT indexname, indexdef "
"FROM pg_indexes "
"WHERE schemaname = {} "
"AND tablename = {}; "
),
schema_name,
tablename,
)
return TableIndexes(
tablename=tablename,
indexes=[Index(**i) for i in indexes],
)
|
MIT License
|
unofficial-memsource/memsource-cli-client
|
memsource_cli/models/page_dto_net_rate_scheme_reference.py
|
PageDtoNetRateSchemeReference.number_of_elements
|
python
|
def number_of_elements(self, number_of_elements):
self._number_of_elements = number_of_elements
|
Sets the number_of_elements of this PageDtoNetRateSchemeReference.
:param number_of_elements: The number_of_elements of this PageDtoNetRateSchemeReference. # noqa: E501
:type: int
|
https://github.com/unofficial-memsource/memsource-cli-client/blob/a6639506b74e95476da87f4375953448b76ea90c/memsource_cli/models/page_dto_net_rate_scheme_reference.py#L172-L180
|
import pprint
import re
import six
from memsource_cli.models.net_rate_scheme_reference import NetRateSchemeReference
class PageDtoNetRateSchemeReference(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'total_elements': 'int',
'total_pages': 'int',
'page_size': 'int',
'page_number': 'int',
'number_of_elements': 'int',
'content': 'list[NetRateSchemeReference]'
}
attribute_map = {
'total_elements': 'totalElements',
'total_pages': 'totalPages',
'page_size': 'pageSize',
'page_number': 'pageNumber',
'number_of_elements': 'numberOfElements',
'content': 'content'
}
def __init__(self, total_elements=None, total_pages=None, page_size=None, page_number=None, number_of_elements=None, content=None):
self._total_elements = None
self._total_pages = None
self._page_size = None
self._page_number = None
self._number_of_elements = None
self._content = None
self.discriminator = None
if total_elements is not None:
self.total_elements = total_elements
if total_pages is not None:
self.total_pages = total_pages
if page_size is not None:
self.page_size = page_size
if page_number is not None:
self.page_number = page_number
if number_of_elements is not None:
self.number_of_elements = number_of_elements
if content is not None:
self.content = content
@property
def total_elements(self):
return self._total_elements
@total_elements.setter
def total_elements(self, total_elements):
self._total_elements = total_elements
@property
def total_pages(self):
return self._total_pages
@total_pages.setter
def total_pages(self, total_pages):
self._total_pages = total_pages
@property
def page_size(self):
return self._page_size
@page_size.setter
def page_size(self, page_size):
self._page_size = page_size
@property
def page_number(self):
return self._page_number
@page_number.setter
def page_number(self, page_number):
self._page_number = page_number
@property
def number_of_elements(self):
return self._number_of_elements
@number_of_elements.setter
|
Apache License 2.0
|
jason0x43/jc-toggl
|
toggl.py
|
Workspace.retrieve
|
python
|
def retrieve(cls, id):
resp = api_get('/workspaces/{0}'.format(id))
return Workspace(resp.json()['data'])
|
Retrieve a specific workspace
|
https://github.com/jason0x43/jc-toggl/blob/ef273ef45833092c89c91d21694dcec63e6880c7/toggl.py#L208-L211
|
from dateutil.parser import parse
from tzlocal import get_localzone
import requests
import logging
import json
TOGGL_API = 'https://www.toggl.com/api/v8'
REPORTS_API = 'https://www.toggl.com/reports/api/v2'
LOCALTZ = get_localzone()
LOG = logging.getLogger(__name__)
api_key = None
workspace_id = 425197
def api_get(path, params=None):
url = TOGGL_API + path
return requests.get(url, auth=(api_key, 'api_token'), params=params,
headers={'content-type': 'application/json'})
def report_get(path, params=None):
url = REPORTS_API + path
if not params:
params = {}
params['user_agent'] = 'jc-toggl'
params['workspace_id'] = workspace_id
return requests.get(url, auth=(api_key, 'api_token'), params=params,
headers={'content-type': 'application/json'})
def api_post(path, data=None):
url = TOGGL_API + path
return requests.post(url, auth=(api_key, 'api_token'), data=data,
headers={'content-type': 'application/json'})
def api_put(path, data=None):
url = TOGGL_API + path
return requests.put(url, auth=(api_key, 'api_token'), data=data,
headers={'content-type': 'application/json'})
def api_delete(path):
url = TOGGL_API + path
return requests.put(url, auth=(api_key, 'api_token'),
headers={'content-type': 'application/json'})
class JsonObject(object):
def __init__(self, data):
self._data = data
self._cache = {}
@property
def data(self):
return self._data
def _get_value(self, field_name):
return self._data.get(field_name)
def _get_timestamp(self, field_name):
val = self._data.get(field_name)
if val:
return parse(val).astimezone(LOCALTZ)
else:
return val
class TimeEntry(JsonObject):
@classmethod
def all(cls):
resp = api_get('/time_entries')
LOG.debug('response: %s', resp)
return [TimeEntry(e) for e in resp.json()]
@classmethod
def retrieve(cls, id):
resp = api_get('/time_entries/{0}'.format(id))
return TimeEntry(resp.json()['data'])
@classmethod
def start(cls, description, project_id=None):
data = {'time_entry': {'description': description}}
if project_id:
data['time_entry']['pid'] = project_id
data = json.dumps(data)
LOG.debug('starting entry with {0}'.format(data))
resp = api_post('/time_entries/start', data=data)
if resp.status_code != 200:
raise Exception('Unable to start timer: {0}'.format(resp))
return TimeEntry(resp.json()['data'])
@classmethod
def stop(cls, id=None):
if not id:
entries = cls.all()
for entry in entries:
if entry.is_running:
id = entry.id
LOG.debug('running entry is {0}'.format(entry))
break
if not id:
return None
resp = api_put('/time_entries/{0}/stop'.format(id))
return resp.json()['data']
@property
def id(self):
return self._get_value('id')
@property
def workspace(self):
return self._workspace
@property
def account(self):
return self._workspace.account
@property
def description(self):
return self._get_value('description')
@property
def start_time(self):
return self._get_timestamp('start')
@property
def stop_time(self):
st = self._get_timestamp('stop')
if st:
return st
import datetime
delta = datetime.timedelta(seconds=self.duration)
return self.start_time + delta
@property
def duration(self):
return self._get_value('duration')
@property
def tags(self):
return self._get_value('tags')
@property
def pid(self):
return self._get_value('pid')
@property
def is_running(self):
return self.duration < 0
def restart(self):
return TimeEntry.start(self.description, pid=self.pid)
def __str__(self):
return ('{{TimeEntry: description={0}, running={1}, start={2}, '
'stop={3}}}'.format(self.description, self.is_running,
self.start_time, self.stop_time))
def __repr__(self):
return self.__str__()
class Project(JsonObject):
@classmethod
def retrieve(cls, id):
resp = api_get('/projects/{0}'.format(id))
return Project(resp.json()['data'])
@property
def name(self):
return self._get_value('name')
@property
def id(self):
return self._get_value('id')
@property
def wid(self):
return self._get_value('wid')
def __str__(self):
return '{{Project: name={0}}}'.format(self.name)
def __repr__(self):
return self.__str__()
class Workspace(JsonObject):
@classmethod
def all(cls):
resp = api_get('/workspaces')
return [Workspace(w) for w in resp.json()]
@classmethod
|
MIT License
|
facebookresearch/pytorchvideo
|
tutorials/video_detection_example/visualization.py
|
ImgVisualizer._align_y_top
|
python
|
def _align_y_top(
self, box_coordinate: torch.Tensor, num_text: int, textbox_width: float
) -> int:
dist_to_top = box_coordinate[1]
num_text_top = dist_to_top // textbox_width
if isinstance(num_text_top, torch.Tensor):
num_text_top = int(num_text_top.item())
return min(num_text, num_text_top)
|
Calculate the number of text labels to plot on top of the box
without going out of frames.
Args:
box_coordinate (array-like): shape (4,). The (x_left, y_top, x_right, y_bottom)
coordinates of the box.
num_text (int): the number of text labels to plot.
textbox_width (float): the width of the box wrapped around text label.
|
https://github.com/facebookresearch/pytorchvideo/blob/832a6bc683257f07e74c95a1f9441ebaa64d95d8/tutorials/video_detection_example/visualization.py#L321-L339
|
from __future__ import annotations
import itertools
import logging
from types import SimpleNamespace
from typing import Dict, List, Optional, Tuple, Union
import matplotlib.pyplot as plt
import numpy as np
import torch
from detectron2.utils.visualizer import Visualizer
logger = logging.getLogger(__name__)
def _create_text_labels(
classes: List[int],
scores: List[float],
class_names: List[str],
ground_truth: bool = False,
) -> List[str]:
try:
labels = [class_names.get(c, "n/a") for c in classes]
except IndexError:
logger.error("Class indices get out of range: {}".format(classes))
return None
if ground_truth:
labels = ["[{}] {}".format("GT", label) for label in labels]
elif scores is not None:
assert len(classes) == len(scores)
labels = ["[{:.2f}] {}".format(s, label) for s, label in zip(scores, labels)]
return labels
class ImgVisualizer(Visualizer):
def __init__(
self, img_rgb: torch.Tensor, meta: Optional[SimpleNamespace] = None, **kwargs
) -> None:
super(ImgVisualizer, self).__init__(img_rgb, meta, **kwargs)
def draw_text(
self,
text: str,
position: List[int],
*,
font_size: Optional[int] = None,
color: str = "w",
horizontal_alignment: str = "center",
vertical_alignment: str = "bottom",
box_facecolor: str = "black",
alpha: float = 0.5,
) -> None:
if not font_size:
font_size = self._default_font_size
x, y = position
self.output.ax.text(
x,
y,
text,
size=font_size * self.output.scale,
family="monospace",
bbox={
"facecolor": box_facecolor,
"alpha": alpha,
"pad": 0.7,
"edgecolor": "none",
},
verticalalignment=vertical_alignment,
horizontalalignment=horizontal_alignment,
color=color,
zorder=10,
)
def draw_multiple_text(
self,
text_ls: List[str],
box_coordinate: torch.Tensor,
*,
top_corner: bool = True,
font_size: Optional[int] = None,
color: str = "w",
box_facecolors: str = "black",
alpha: float = 0.5,
) -> None:
if not isinstance(box_facecolors, list):
box_facecolors = [box_facecolors] * len(text_ls)
assert len(box_facecolors) == len(
text_ls
), "Number of colors provided is not equal to the number of text labels."
if not font_size:
font_size = self._default_font_size
text_box_width = font_size + font_size // 2
if top_corner:
num_text_split = self._align_y_top(
box_coordinate, len(text_ls), text_box_width
)
y_corner = 1
else:
num_text_split = len(text_ls) - self._align_y_bottom(
box_coordinate, len(text_ls), text_box_width
)
y_corner = 3
text_color_sorted = sorted(
zip(text_ls, box_facecolors), key=lambda x: x[0], reverse=True
)
if len(text_color_sorted) != 0:
text_ls, box_facecolors = zip(*text_color_sorted)
else:
text_ls, box_facecolors = [], []
text_ls, box_facecolors = list(text_ls), list(box_facecolors)
self.draw_multiple_text_upward(
text_ls[:num_text_split][::-1],
box_coordinate,
y_corner=y_corner,
font_size=font_size,
color=color,
box_facecolors=box_facecolors[:num_text_split][::-1],
alpha=alpha,
)
self.draw_multiple_text_downward(
text_ls[num_text_split:],
box_coordinate,
y_corner=y_corner,
font_size=font_size,
color=color,
box_facecolors=box_facecolors[num_text_split:],
alpha=alpha,
)
def draw_multiple_text_upward(
self,
text_ls: List[str],
box_coordinate: torch.Tensor,
*,
y_corner: int = 1,
font_size: Optional[int] = None,
color: str = "w",
box_facecolors: str = "black",
alpha: float = 0.5,
) -> None:
if not isinstance(box_facecolors, list):
box_facecolors = [box_facecolors] * len(text_ls)
assert len(box_facecolors) == len(
text_ls
), "Number of colors provided is not equal to the number of text labels."
assert y_corner in [1, 3], "Y_corner must be either 1 or 3"
if not font_size:
font_size = self._default_font_size
x, horizontal_alignment = self._align_x_coordinate(box_coordinate)
y = box_coordinate[y_corner].item()
for i, text in enumerate(text_ls):
self.draw_text(
text,
(x, y),
font_size=font_size,
color=color,
horizontal_alignment=horizontal_alignment,
vertical_alignment="bottom",
box_facecolor=box_facecolors[i],
alpha=alpha,
)
y -= font_size + font_size // 2
def draw_multiple_text_downward(
self,
text_ls: List[str],
box_coordinate: torch.Tensor,
*,
y_corner: int = 1,
font_size: Optional[int] = None,
color: str = "w",
box_facecolors: str = "black",
alpha: float = 0.5,
) -> None:
if not isinstance(box_facecolors, list):
box_facecolors = [box_facecolors] * len(text_ls)
assert len(box_facecolors) == len(
text_ls
), "Number of colors provided is not equal to the number of text labels."
assert y_corner in [1, 3], "Y_corner must be either 1 or 3"
if not font_size:
font_size = self._default_font_size
x, horizontal_alignment = self._align_x_coordinate(box_coordinate)
y = box_coordinate[y_corner].item()
for i, text in enumerate(text_ls):
self.draw_text(
text,
(x, y),
font_size=font_size,
color=color,
horizontal_alignment=horizontal_alignment,
vertical_alignment="top",
box_facecolor=box_facecolors[i],
alpha=alpha,
)
y += font_size + font_size // 2
def _align_x_coordinate(self, box_coordinate: torch.Tensor) -> Tuple[float, str]:
if box_coordinate[0] > (self.output.width * 5) // 6:
return box_coordinate[2], "right"
return box_coordinate[0], "left"
|
Apache License 2.0
|
camelot-dev/camelot
|
camelot/utils.py
|
bbox_intersection_area
|
python
|
def bbox_intersection_area(ba, bb) -> float:
x_left = max(ba.x0, bb.x0)
y_top = min(ba.y1, bb.y1)
x_right = min(ba.x1, bb.x1)
y_bottom = max(ba.y0, bb.y0)
if x_right < x_left or y_bottom > y_top:
return 0.0
intersection_area = (x_right - x_left) * (y_top - y_bottom)
return intersection_area
|
Returns area of the intersection of the bounding boxes of two PDFMiner objects.
Parameters
----------
ba : PDFMiner text object
bb : PDFMiner text object
Returns
-------
intersection_area : float
Area of the intersection of the bounding boxes of both objects
|
https://github.com/camelot-dev/camelot/blob/644bbe7c6d57b95aefa2f049a9aacdbc061cc04f/camelot/utils.py#L384-L407
|
import os
import re
import random
import shutil
import string
import tempfile
import warnings
from itertools import groupby
from operator import itemgetter
import numpy as np
from pdfminer.pdfparser import PDFParser
from pdfminer.pdfdocument import PDFDocument
from pdfminer.pdfpage import PDFPage
from pdfminer.pdfpage import PDFTextExtractionNotAllowed
from pdfminer.pdfinterp import PDFResourceManager
from pdfminer.pdfinterp import PDFPageInterpreter
from pdfminer.converter import PDFPageAggregator
from pdfminer.layout import (
LAParams,
LTAnno,
LTChar,
LTTextLineHorizontal,
LTTextLineVertical,
LTImage,
)
from urllib.request import Request, urlopen
from urllib.parse import urlparse as parse_url
from urllib.parse import uses_relative, uses_netloc, uses_params
_VALID_URLS = set(uses_relative + uses_netloc + uses_params)
_VALID_URLS.discard("")
def is_url(url):
try:
return parse_url(url).scheme in _VALID_URLS
except Exception:
return False
def random_string(length):
ret = ""
while length:
ret += random.choice(
string.digits + string.ascii_lowercase + string.ascii_uppercase
)
length -= 1
return ret
def download_url(url):
filename = f"{random_string(6)}.pdf"
with tempfile.NamedTemporaryFile("wb", delete=False) as f:
headers = {"User-Agent": "Mozilla/5.0"}
request = Request(url, None, headers)
obj = urlopen(request)
content_type = obj.info().get_content_type()
if content_type != "application/pdf":
raise NotImplementedError("File format not supported")
f.write(obj.read())
filepath = os.path.join(os.path.dirname(f.name), filename)
shutil.move(f.name, filepath)
return filepath
stream_kwargs = ["columns", "edge_tol", "row_tol", "column_tol"]
lattice_kwargs = [
"process_background",
"line_scale",
"copy_text",
"shift_text",
"line_tol",
"joint_tol",
"threshold_blocksize",
"threshold_constant",
"iterations",
"resolution",
]
def validate_input(kwargs, flavor="lattice"):
def check_intersection(parser_kwargs, input_kwargs):
isec = set(parser_kwargs).intersection(set(input_kwargs.keys()))
if isec:
raise ValueError(
f"{','.join(sorted(isec))} cannot be used with flavor='{flavor}'"
)
if flavor == "lattice":
check_intersection(stream_kwargs, kwargs)
else:
check_intersection(lattice_kwargs, kwargs)
def remove_extra(kwargs, flavor="lattice"):
if flavor == "lattice":
for key in kwargs.keys():
if key in stream_kwargs:
kwargs.pop(key)
else:
for key in kwargs.keys():
if key in lattice_kwargs:
kwargs.pop(key)
return kwargs
class TemporaryDirectory(object):
def __enter__(self):
self.name = tempfile.mkdtemp()
return self.name
def __exit__(self, exc_type, exc_value, traceback):
shutil.rmtree(self.name)
def translate(x1, x2):
x2 += x1
return x2
def scale(x, s):
x *= s
return x
def scale_pdf(k, factors):
x1, y1, x2, y2 = k
scaling_factor_x, scaling_factor_y, pdf_y = factors
x1 = scale(x1, scaling_factor_x)
y1 = scale(abs(translate(-pdf_y, y1)), scaling_factor_y)
x2 = scale(x2, scaling_factor_x)
y2 = scale(abs(translate(-pdf_y, y2)), scaling_factor_y)
knew = (int(x1), int(y1), int(x2), int(y2))
return knew
def scale_image(tables, v_segments, h_segments, factors):
scaling_factor_x, scaling_factor_y, img_y = factors
tables_new = {}
for k in tables.keys():
x1, y1, x2, y2 = k
x1 = scale(x1, scaling_factor_x)
y1 = scale(abs(translate(-img_y, y1)), scaling_factor_y)
x2 = scale(x2, scaling_factor_x)
y2 = scale(abs(translate(-img_y, y2)), scaling_factor_y)
j_x, j_y = zip(*tables[k])
j_x = [scale(j, scaling_factor_x) for j in j_x]
j_y = [scale(abs(translate(-img_y, j)), scaling_factor_y) for j in j_y]
joints = zip(j_x, j_y)
tables_new[(x1, y1, x2, y2)] = joints
v_segments_new = []
for v in v_segments:
x1, x2 = scale(v[0], scaling_factor_x), scale(v[2], scaling_factor_x)
y1, y2 = (
scale(abs(translate(-img_y, v[1])), scaling_factor_y),
scale(abs(translate(-img_y, v[3])), scaling_factor_y),
)
v_segments_new.append((x1, y1, x2, y2))
h_segments_new = []
for h in h_segments:
x1, x2 = scale(h[0], scaling_factor_x), scale(h[2], scaling_factor_x)
y1, y2 = (
scale(abs(translate(-img_y, h[1])), scaling_factor_y),
scale(abs(translate(-img_y, h[3])), scaling_factor_y),
)
h_segments_new.append((x1, y1, x2, y2))
return tables_new, v_segments_new, h_segments_new
def get_rotation(chars, horizontal_text, vertical_text):
rotation = ""
hlen = len([t for t in horizontal_text if t.get_text().strip()])
vlen = len([t for t in vertical_text if t.get_text().strip()])
if hlen < vlen:
clockwise = sum(t.matrix[1] < 0 and t.matrix[2] > 0 for t in chars)
anticlockwise = sum(t.matrix[1] > 0 and t.matrix[2] < 0 for t in chars)
rotation = "anticlockwise" if clockwise < anticlockwise else "clockwise"
return rotation
def segments_in_bbox(bbox, v_segments, h_segments):
lb = (bbox[0], bbox[1])
rt = (bbox[2], bbox[3])
v_s = [
v
for v in v_segments
if v[1] > lb[1] - 2 and v[3] < rt[1] + 2 and lb[0] - 2 <= v[0] <= rt[0] + 2
]
h_s = [
h
for h in h_segments
if h[0] > lb[0] - 2 and h[2] < rt[0] + 2 and lb[1] - 2 <= h[1] <= rt[1] + 2
]
return v_s, h_s
def text_in_bbox(bbox, text):
lb = (bbox[0], bbox[1])
rt = (bbox[2], bbox[3])
t_bbox = [
t
for t in text
if lb[0] - 2 <= (t.x0 + t.x1) / 2.0 <= rt[0] + 2
and lb[1] - 2 <= (t.y0 + t.y1) / 2.0 <= rt[1] + 2
]
rest = {t for t in t_bbox}
for ba in t_bbox:
for bb in rest.copy():
if ba == bb:
continue
if bbox_intersect(ba, bb):
if (bbox_intersection_area(ba, bb) / bbox_area(ba)) > 0.8:
if bbox_longer(bb, ba):
rest.discard(ba)
unique_boxes = list(rest)
return unique_boxes
|
MIT License
|
erigones/esdc-ce
|
api/validators.py
|
ip_validator
|
python
|
def ip_validator(value):
try:
ip = ipaddress.ip_address(six.text_type(value))
if ip.is_reserved:
raise ValueError
except ValueError:
raise ValidationError(_('Enter a valid IPv4 address.'))
|
Validate IPv4 address
|
https://github.com/erigones/esdc-ce/blob/f83a62d0d430e3c8f9aac23d958583b0efce4312/api/validators.py#L119-L126
|
import re
import struct
import base64
import ipaddress
from django.core import validators
from django.core.exceptions import ValidationError
from django.utils import six
from django.utils.translation import ugettext_lazy as _
from gui.models import UserSSHKey
SSH_KEY_TYPES = (
'ssh-rsa',
'ssh-dss',
'ecdsa-sha2-nistp256',
'ecdsa-sha2-nistp384',
'ecdsa-sha2-nistp521',
'ssh-ed25519'
)
RE_PEM_KEY_BEGIN = re.compile(r'^-----BEGIN( | \w+ )PRIVATE KEY-----', re.MULTILINE)
RE_PEM_KEY_END = re.compile(r'^-----END( | \w+ )PRIVATE KEY-----', re.MULTILINE)
RE_PEM_CRT_BEGIN = re.compile(r'^-----BEGIN CERTIFICATE-----', re.MULTILINE)
RE_PEM_CRT_END = re.compile(r'^-----END CERTIFICATE-----', re.MULTILINE)
RE_PLACEHOLDER = re.compile(r'{(.*?)}+', re.MULTILINE)
def validate_owner(obj, new_owner, model_name):
if obj and new_owner and obj.pk and obj.owner != new_owner:
if obj.tasks:
raise ValidationError(_('%(model)s has pending tasks.') % {'model': model_name})
def validate_alias(obj, value, field_comparison='alias__iexact'):
qs = obj.__class__.objects
if obj.pk:
if obj.alias == value:
return value
else:
qs = qs.exclude(pk=obj.pk)
if qs.filter(**{field_comparison: value}).exists():
raise ValidationError(_('This alias is already in use. Please supply a different alias.'))
return value
def validate_mdata(reserved_keys):
def mdata_validator(value):
if value:
invalid_keys = reserved_keys.intersection(value.keys())
if invalid_keys:
raise ValidationError(_('Invalid key name(s) (%(invalid_keys)s).') % {'invalid_keys': invalid_keys})
return mdata_validator
def validate_ssh_key(value):
key = value.split(' ')
if not (1 < len(key) and key[0] in SSH_KEY_TYPES):
raise ValidationError(_('Unknown SSH public key type.'))
if '\n' in value:
raise ValidationError(_('Invalid SSH public key format (newlines detected).'))
try:
data = base64.decodestring(key[1])
int_len = 4
str_len = struct.unpack('>I', data[:int_len])[0]
if data[int_len:int_len + str_len] != key[0]:
raise ValueError
fingerprint = UserSSHKey.get_fingerprint(value)
except Exception:
raise ValidationError(_('Invalid SSH public key format.'))
return fingerprint
def mod2_validator(num):
if num % 2:
raise ValidationError(_('Must be power of 2.'))
def mac_address_validator(value):
mac = six.text_type(value).lower()
for prefix in ('33:33', '00:00', '00:01', '00:02', '00:52:00', '00:52:01', '00:52:13'):
if mac.startswith(prefix):
raise ValidationError(_('Enter a valid MAC address.'))
if mac == 'ff:ff:ff:ff:ff:ff':
raise ValidationError(_('Enter a valid MAC address.'))
def cron_validator(value):
if value.strip() != value:
raise ValidationError(_('Leading nor trailing spaces are allowed.'))
columns = value.split()
if columns != value.split(' '):
raise ValidationError(_('Use only a single space as a column separator.'))
if len(columns) != 5:
raise ValidationError(_('Entry has to consist of exactly 5 columns.'))
cron_re = re.compile(r'^(\*|\d+(-\d+)?(,\d+(-\d+)?)*)(/\d+)?$')
for i, c in enumerate(columns):
if not cron_re.match(c):
i += 1
raise ValidationError(_('Incorrect value in %d. column.') % i)
|
Apache License 2.0
|
genericmappingtools/pygmt
|
pygmt/tests/test_sphdistance.py
|
fixture_table
|
python
|
def fixture_table():
coords_list = [[85.5, 22.3], [82.3, 22.6], [85.8, 22.4], [86.5, 23.3]]
return np.array(coords_list)
|
Load the table data.
|
https://github.com/genericmappingtools/pygmt/blob/0d07cccef60da5d4874bb2c55c9824ffd7faf646/pygmt/tests/test_sphdistance.py#L15-L20
|
import os
import numpy as np
import numpy.testing as npt
import pytest
from pygmt import sphdistance
from pygmt.exceptions import GMTInvalidInput
from pygmt.helpers import GMTTempFile
@pytest.fixture(scope="module", name="array")
|
BSD 3-Clause New or Revised License
|
mlindauer/autofolio
|
autofolio/pre_solving/aspeed_schedule.py
|
Aspeed.fit
|
python
|
def fit(self, scenario: ASlibScenario, config: Configuration):
if config["presolving"]:
self.logger.info("Compute Presolving Schedule with Aspeed")
X = scenario.performance_data.values
if X.shape[0] > self.data_threshold:
random_indx = np.random.choice(
range(X.shape[0]),
size=min(X.shape[0], max(int(X.shape[0] * self.data_fraction), self.data_threshold)),
replace=True)
X = X[random_indx, :]
self.logger.debug("#Instances for pre-solving schedule: %d" %(X.shape[0]))
times = ["time(i%d, %d, %d)." % (i, j, max(1,math.ceil(X[i, j])))
for i in range(X.shape[0]) for j in range(X.shape[1])]
kappa = "kappa(%d)." % (config["pre:cutoff"])
data_in = " ".join(times) + " " + kappa
self._call_clingo(data_in=data_in, algorithms=scenario.performance_data.columns)
|
fit pca object to ASlib scenario data
Arguments
---------
scenario: data.aslib_scenario.ASlibScenario
ASlib Scenario with all data in pandas
config: ConfigSpace.Configuration
configuration
classifier_class: selector.classifier.*
class for classification
|
https://github.com/mlindauer/autofolio/blob/f296f528b1b684d36837075b0e8160e3fa4124f7/autofolio/pre_solving/aspeed_schedule.py#L85-L121
|
import os
import sys
import logging
import math
import numpy as np
import pandas as pd
import subprocess
from ConfigSpace.hyperparameters import CategoricalHyperparameter, UniformFloatHyperparameter, UniformIntegerHyperparameter
from ConfigSpace.conditions import EqualsCondition, InCondition
from ConfigSpace.configuration_space import ConfigurationSpace
from ConfigSpace import Configuration
from aslib_scenario.aslib_scenario import ASlibScenario
__author__ = "Marius Lindauer"
__license__ = "BSD"
class Aspeed(object):
@staticmethod
def add_params(cs: ConfigurationSpace, cutoff: int):
pre_solving = CategoricalHyperparameter(
"presolving", choices=[True, False], default_value=False)
cs.add_hyperparameter(pre_solving)
pre_cutoff = UniformIntegerHyperparameter(
"pre:cutoff", lower=1, upper=cutoff, default_value=math.ceil(cutoff * 0.1), log=True)
cs.add_hyperparameter(pre_cutoff)
cond = InCondition(child=pre_cutoff, parent=pre_solving, values=[True])
cs.add_condition(cond)
def __init__(self, clingo: str=None, runsolver: str=None, enc_fn: str=None):
self.logger = logging.getLogger("Aspeed")
if not runsolver:
self.runsolver = os.path.join(
os.path.dirname(sys.argv[0]), "..", "aspeed", "runsolver")
else:
self.runsolver = runsolver
if not clingo:
self.clingo = os.path.join(
os.path.dirname(sys.argv[0]), "..", "aspeed", "clingo")
else:
self.clingo = clingo
if not enc_fn:
self.enc_fn = os.path.join(
os.path.dirname(sys.argv[0]), "..", "aspeed", "enc1.lp")
else:
self.enc_fn = enc_fn
self.mem_limit = 2000
self.cutoff = 60
self.data_threshold = 300
self.data_fraction = 0.3
self.schedule = []
|
BSD 2-Clause Simplified License
|
blurstudio/cross3d
|
cross3d/studiomax/mixer/track.py
|
StudiomaxTrack.isSoloed
|
python
|
def isSoloed(self):
return self.track.solo
|
Whether this track is Soloed
|
https://github.com/blurstudio/cross3d/blob/277968d1227de740fc87ef61005c75034420eadf/cross3d/studiomax/mixer/track.py#L61-L63
|
import Py3dsMax
from Py3dsMax import mxs
from cross3d import Clip, ClipPortion, TrackPortion
from cross3d.abstract.mixer.track import AbstractTrack
class StudiomaxTrack(AbstractTrack):
@property
def numClips(self):
if self.isLayerTrack:
return int(self.track.numClips)
elif self.isTransitionTrack:
return int(self.track.numTransClips)
@property
def isLayerTrack(self):
return self.track.trackType == mxs.pyhelper.namify('layertrack')
@property
def isTransitionTrack(self):
return self.track.trackType == mxs.pyhelper.namify('transtrack')
@property
def isMuted(self):
return self.track.mute
@property
|
MIT License
|
sns-sdks/python-twitter
|
pytwitter/api.py
|
Api.get_oauth2_authorize_url
|
python
|
def get_oauth2_authorize_url(
self, redirect_uri: str = None, scope: Optional[List[str]] = None, **kwargs
) -> Tuple[str, str, str]:
session = self._get_oauth2_session(
redirect_uri=redirect_uri,
scope=scope,
**kwargs,
)
code_verifier = base64.urlsafe_b64encode(os.urandom(40)).decode("utf-8")
code_verifier = re.sub("[^a-zA-Z0-9]+", "", code_verifier)
authorization_url, state = session.create_authorization_url(
url=self.BASE_OAUTH2_AUTHORIZE_URL, code_verifier=code_verifier
)
return authorization_url, code_verifier, state
|
:param redirect_uri: The URL that twitter redirect back to after the user logged in.
:param scope: A list of permission string to request from the user to using your app.
:param kwargs: Additional parameters for oauth.
:return: Authorization url, code_verifier, state
|
https://github.com/sns-sdks/python-twitter/blob/aeae4b7e5e3251033b2030f7c9c2d69c3e923860/pytwitter/api.py#L291-L311
|
import base64
import logging
import os
import re
import time
from typing import List, Optional, Tuple, Union
import requests
from requests.models import Response
from authlib.integrations.requests_client import (
OAuth2Session,
OAuth2Auth,
OAuth1Auth,
OAuth1Session,
)
import pytwitter.models as md
from pytwitter.error import PyTwitterError
from pytwitter.rate_limit import RateLimit
from pytwitter.utils.validators import enf_comma_separated
logger = logging.getLogger(__name__)
class Api:
BASE_URL_V2 = "https://api.twitter.com/2"
BASE_REQUEST_TOKEN_URL = "https://api.twitter.com/oauth/request_token"
BASE_AUTHORIZE_URL = "https://api.twitter.com/oauth/authorize"
BASE_ACCESS_TOKEN_URL = "https://api.twitter.com/oauth/access_token"
DEFAULT_CALLBACK_URI = "https://localhost/"
BASE_OAUTH2_AUTHORIZE_URL = "https://twitter.com/i/oauth2/authorize"
BASE_OAUTH2_ACCESS_TOKEN_URL = "https://api.twitter.com/2/oauth2/token"
DEFAULT_SCOPES = ["users.read", "tweet.read"]
def __init__(
self,
bearer_token=None,
consumer_key=None,
consumer_secret=None,
access_token=None,
access_secret=None,
client_id=None,
application_only_auth=False,
oauth_flow=False,
sleep_on_rate_limit=False,
timeout=None,
proxies=None,
):
self.session = requests.Session()
self._auth = None
self._oauth_session = None
self.consumer_key = consumer_key
self.consumer_secret = consumer_secret
self.client_id = client_id
self.timeout = timeout
self.proxies = proxies
self.rate_limit = RateLimit()
self.sleep_on_rate_limit = sleep_on_rate_limit
self.auth_user_id = None
if bearer_token:
self._auth = OAuth2Auth(
token={"access_token": bearer_token, "token_type": "Bearer"}
)
elif consumer_key and consumer_secret and application_only_auth:
resp = self.generate_bearer_token(
consumer_key=consumer_key, consumer_secret=consumer_secret
)
self._auth = OAuth2Auth(
token={"access_token": resp["access_token"], "token_type": "Bearer"}
)
elif all([consumer_key, consumer_secret, access_token, access_secret]):
self._auth = OAuth1Auth(
client_id=consumer_key,
client_secret=consumer_secret,
token=access_token,
token_secret=access_secret,
)
self.rate_limit = RateLimit("user")
self.auth_user_id = self.get_uid_from_access_token_key(
access_token=access_token
)
elif consumer_key and consumer_secret and oauth_flow:
pass
elif client_id and oauth_flow:
pass
else:
raise PyTwitterError("Need oauth")
@staticmethod
def get_uid_from_access_token_key(access_token: str):
uid, _ = access_token.split("-")
return uid
def _request(
self, url, verb="GET", params=None, data=None, json=None, enforce_auth=True
):
auth = None
if enforce_auth:
if not self._auth:
raise PyTwitterError("The twitter.Api instance must be authenticated.")
auth = self._auth
if url and self.sleep_on_rate_limit:
limit = self.rate_limit.get_limit(url=url, method=verb)
if limit.remaining == 0:
s_time = max((limit.reset - time.time()), 0) + 10.0
logger.debug(
f"Rate limited requesting [{url}], sleeping for [{s_time}]"
)
time.sleep(s_time)
resp = self.session.request(
url=url,
method=verb,
params=params,
data=data,
auth=auth,
json=json,
timeout=self.timeout,
proxies=self.proxies,
)
if url and self.rate_limit:
self.rate_limit.set_limit(url=url, headers=resp.headers, method=verb)
return resp
def get_authorize_url(self, callback_uri=None, **kwargs):
if callback_uri is None:
callback_uri = self.DEFAULT_CALLBACK_URI
self._oauth_session = OAuth1Session(
client_id=self.consumer_key,
client_secret=self.consumer_secret,
callback_uri=callback_uri,
)
self._oauth_session.fetch_request_token(
self.BASE_REQUEST_TOKEN_URL, proxies=self.proxies
)
return self._oauth_session.create_authorization_url(
self.BASE_AUTHORIZE_URL, **kwargs
)
def generate_access_token(self, response: str):
if not self._oauth_session:
raise PyTwitterError("Need get_authorize_url first")
self._oauth_session.parse_authorization_response(response)
data = self._oauth_session.fetch_access_token(
self.BASE_ACCESS_TOKEN_URL, proxies=self.proxies
)
self._auth = OAuth1Auth(
client_id=self.consumer_key,
client_secret=self.consumer_secret,
token=data["oauth_token"],
token_secret=data["oauth_token_secret"],
)
if "user_id" in data:
self.auth_user_id = data["user_id"]
else:
self.auth_user_id = self.get_uid_from_access_token_key(
access_token=data["oauth_token"]
)
return data
def invalidate_access_token(self) -> dict:
if not self._auth:
raise PyTwitterError("Must have authorized credentials")
if not isinstance(self._auth, OAuth1Auth):
raise PyTwitterError("Can only revoke oauth1 token")
resp = requests.post(
url="https://api.twitter.com/1.1/oauth/invalidate_token",
)
data = self._parse_response(resp=resp)
return data
def generate_bearer_token(self, consumer_key: str, consumer_secret: str) -> dict:
bearer_token = base64.b64encode(f"{consumer_key}:{consumer_secret}".encode())
headers = {
"Authorization": f"Basic {bearer_token.decode()}",
"Content-Type": "application/x-www-form-urlencoded;charset=UTF-8",
}
resp = requests.post(
url="https://api.twitter.com/oauth2/token",
data={"grant_type": "client_credentials"},
headers=headers,
)
data = self._parse_response(resp=resp)
return data
def invalidate_bearer_token(
self, consumer_key: str, consumer_secret: str, access_token: str
) -> dict:
bearer_token = base64.b64encode(f"{consumer_key}:{consumer_secret}".encode())
headers = {
"Authorization": f"Basic {bearer_token.decode()}",
"Content-Type": "application/x-www-form-urlencoded",
}
resp = requests.post(
url="https://api.twitter.com/oauth2/invalidate_token",
data={"access_token": access_token},
headers=headers,
)
data = self._parse_response(resp=resp)
return data
def _get_oauth2_session(
self,
redirect_uri: Optional[str] = None,
scope: Optional[List[str]] = None,
**kwargs,
) -> OAuth2Session:
if not self.client_id:
raise PyTwitterError({"message": "OAuth need your app credentials"})
if redirect_uri is None:
redirect_uri = self.DEFAULT_CALLBACK_URI
if scope is None:
scope = self.DEFAULT_SCOPES
session = OAuth2Session(
client_id=self.client_id,
scope=scope,
redirect_uri=redirect_uri,
code_challenge_method="S256",
**kwargs,
)
return session
|
MIT License
|
square/connect-python-sdk
|
squareconnect/models/employee_wage.py
|
EmployeeWage.hourly_rate
|
python
|
def hourly_rate(self):
return self._hourly_rate
|
Gets the hourly_rate of this EmployeeWage.
Can be a custom-set hourly wage or the calculated effective hourly wage based on annual wage and hours worked per week.
:return: The hourly_rate of this EmployeeWage.
:rtype: Money
|
https://github.com/square/connect-python-sdk/blob/e00e2889b2dd2c55048219cbe64db79962a68633/squareconnect/models/employee_wage.py#L133-L141
|
from pprint import pformat
from six import iteritems
import re
class EmployeeWage(object):
def __init__(self, id=None, employee_id=None, title=None, hourly_rate=None):
self.swagger_types = {
'id': 'str',
'employee_id': 'str',
'title': 'str',
'hourly_rate': 'Money'
}
self.attribute_map = {
'id': 'id',
'employee_id': 'employee_id',
'title': 'title',
'hourly_rate': 'hourly_rate'
}
self._id = id
self._employee_id = employee_id
self._title = title
self._hourly_rate = hourly_rate
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def employee_id(self):
return self._employee_id
@employee_id.setter
def employee_id(self, employee_id):
if employee_id is None:
raise ValueError("Invalid value for `employee_id`, must not be `None`")
if len(employee_id) < 1:
raise ValueError("Invalid value for `employee_id`, length must be greater than or equal to `1`")
self._employee_id = employee_id
@property
def title(self):
return self._title
@title.setter
def title(self, title):
self._title = title
@property
|
Apache License 2.0
|
gordonjo/versa
|
src/omniglot.py
|
OmniglotData._yield_random_task_batch
|
python
|
def _yield_random_task_batch(self, tasks_per_batch, images, character_indices, shot, way, eval_samples):
train_images_to_return, test_images_to_return = [], []
train_labels_to_return, test_labels_to_return = [], []
for task in range(tasks_per_batch):
im_train, im_test, lbl_train, lbl_test = self._generate_random_task(images, character_indices, shot, way,
eval_samples)
train_images_to_return.append(im_train)
test_images_to_return.append(im_test)
train_labels_to_return.append(lbl_train)
test_labels_to_return.append(lbl_test)
return np.array(train_images_to_return), np.array(test_images_to_return), np.array(train_labels_to_return), np.array(test_labels_to_return)
|
Generate a batch of tasks from image set.
:param tasks_per_batch: Number of tasks per batch.
:param images: Images set to generate batch from.
:param character_indices: Index of each character.
:param shot: Number of training images per class.
:param way: Number of classes per task.
:param eval_samples: number of evaluation samples to use.
:return: A batch of tasks.
|
https://github.com/gordonjo/versa/blob/e398654176e7d942afc3c0b6159d2a6f0d68c1dd/src/omniglot.py#L104-L125
|
import numpy as np
def shuffle_batch(images, labels):
permutation = np.random.permutation(images.shape[0])
return images[permutation], labels[permutation]
def extract_data(data, augment_data):
images, char_nums = [], []
if augment_data:
for character in data:
data = augment_character_set(data, character)
for character_index, character in enumerate(data):
for m, instance in enumerate(character):
images.append(instance[0])
char_nums.append(character_index)
images = np.expand_dims(np.array(images), 4)
char_number = np.array(char_nums)
return images, char_number
def augment_character_set(data, character_set):
rotation_90, rotation_180, rotation_270 = [], [], []
for instance in character_set:
image, char_num, char_language_num = instance
rotation_90.append((np.rot90(image, k=1), char_num, char_language_num))
rotation_180.append((np.rot90(image, k=2), char_num, char_language_num))
rotation_270.append((np.rot90(image, k=3), char_num, char_language_num))
return np.vstack((data, np.array([rotation_90, rotation_180, rotation_270])))
class OmniglotData(object):
def __init__(self, path, train_size, validation_size, augment_data, seed):
np.random.seed(seed)
data = np.load(path)
np.random.shuffle(data)
self.instances_per_char = 20
self.image_height = 28
self.image_width = 28
self.image_channels = 1
self.total_chars = data.shape[0]
self.train_images, self.train_char_nums = extract_data(data[:train_size], augment_data=augment_data)
if validation_size is not 0:
self.validation_images, self.validation_char_nums = extract_data(data[train_size:train_size + validation_size], augment_data=augment_data)
self.test_images, self.test_char_nums = extract_data(data[train_size + validation_size:], augment_data=augment_data)
def get_image_height(self):
return self.image_height
def get_image_width(self):
return self.image_width
def get_image_channels(self):
return self.image_channels
def get_batch(self, source, tasks_per_batch, shot, way, eval_samples):
if source == 'train':
return self._yield_random_task_batch(tasks_per_batch, self.train_images, self.train_char_nums, shot, way, eval_samples)
elif source == 'validation':
return self._yield_random_task_batch(tasks_per_batch, self.validation_images, self.validation_char_nums,
shot, way, eval_samples)
elif source == 'test':
return self._yield_random_task_batch(tasks_per_batch, self.test_images, self.test_char_nums, shot, way, eval_samples)
|
MIT License
|
sawcordwell/pymdptoolbox
|
src/mdptoolbox/mdp.py
|
MDP.run
|
python
|
def run(self):
raise NotImplementedError("You should create a run() method.")
|
Raises error because child classes should implement this function.
|
https://github.com/sawcordwell/pymdptoolbox/blob/7c96789cc80e280437005c12065cf70266c11636/src/mdptoolbox/mdp.py#L345-L348
|
import math as _math
import time as _time
import numpy as _np
import scipy.sparse as _sp
import mdptoolbox.util as _util
_MSG_STOP_MAX_ITER = "Iterating stopped due to maximum number of iterations " "condition."
_MSG_STOP_EPSILON_OPTIMAL_POLICY = "Iterating stopped, epsilon-optimal " "policy found."
_MSG_STOP_EPSILON_OPTIMAL_VALUE = "Iterating stopped, epsilon-optimal value " "function found."
_MSG_STOP_UNCHANGING_POLICY = "Iterating stopped, unchanging policy found."
def _computeDimensions(transition):
A = len(transition)
try:
if transition.ndim == 3:
S = transition.shape[1]
else:
S = transition[0].shape[0]
except AttributeError:
S = transition[0].shape[0]
return S, A
def _printVerbosity(iteration, variation):
if isinstance(variation, float):
print("{:>10}{:>12f}".format(iteration, variation))
elif isinstance(variation, int):
print("{:>10}{:>12d}".format(iteration, variation))
else:
print("{:>10}{:>12}".format(iteration, variation))
class MDP(object):
def __init__(self, transitions, reward, discount, epsilon, max_iter,
skip_check=False):
if discount is not None:
self.discount = float(discount)
assert 0.0 < self.discount <= 1.0, (
"Discount rate must be in ]0; 1]"
)
if self.discount == 1:
print("WARNING: check conditions of convergence. With no "
"discount, convergence can not be assumed.")
if max_iter is not None:
self.max_iter = int(max_iter)
assert self.max_iter > 0, (
"The maximum number of iterations must be greater than 0."
)
if epsilon is not None:
self.epsilon = float(epsilon)
assert self.epsilon > 0, "Epsilon must be greater than 0."
if not skip_check:
_util.check(transitions, reward)
self.S, self.A = _computeDimensions(transitions)
self.P = self._computeTransition(transitions)
self.R = self._computeReward(reward, transitions)
self.verbose = False
self.time = None
self.iter = 0
self.V = None
self.policy = None
def __repr__(self):
P_repr = "P: \n"
R_repr = "R: \n"
for aa in range(self.A):
P_repr += repr(self.P[aa]) + "\n"
R_repr += repr(self.R[aa]) + "\n"
return(P_repr + "\n" + R_repr)
def _bellmanOperator(self, V=None):
if V is None:
V = self.V
else:
try:
assert V.shape in ((self.S,), (1, self.S)), "V is not the " "right shape (Bellman operator)."
except AttributeError:
raise TypeError("V must be a numpy array or matrix.")
Q = _np.empty((self.A, self.S))
for aa in range(self.A):
Q[aa] = self.R[aa] + self.discount * self.P[aa].dot(V)
return (Q.argmax(axis=0), Q.max(axis=0))
def _computeTransition(self, transition):
return tuple(transition[a] for a in range(self.A))
def _computeReward(self, reward, transition):
try:
if reward.ndim == 1:
return self._computeVectorReward(reward)
elif reward.ndim == 2:
return self._computeArrayReward(reward)
else:
r = tuple(map(self._computeMatrixReward, reward, transition))
return r
except (AttributeError, ValueError):
if len(reward) == self.A:
r = tuple(map(self._computeMatrixReward, reward, transition))
return r
else:
return self._computeVectorReward(reward)
def _computeVectorReward(self, reward):
if _sp.issparse(reward):
raise NotImplementedError
else:
r = _np.array(reward).reshape(self.S)
return tuple(r for a in range(self.A))
def _computeArrayReward(self, reward):
if _sp.issparse(reward):
raise NotImplementedError
else:
def func(x):
return _np.array(x).reshape(self.S)
return tuple(func(reward[:, a]) for a in range(self.A))
def _computeMatrixReward(self, reward, transition):
if _sp.issparse(reward):
return reward.multiply(transition).sum(1).A.reshape(self.S)
elif _sp.issparse(transition):
return transition.multiply(reward).sum(1).A.reshape(self.S)
else:
return _np.multiply(transition, reward).sum(1).reshape(self.S)
def _startRun(self):
if self.verbose:
_printVerbosity('Iteration', 'Variation')
self.time = _time.time()
def _endRun(self):
self.V = tuple(self.V.tolist())
try:
self.policy = tuple(self.policy.tolist())
except AttributeError:
self.policy = tuple(self.policy)
self.time = _time.time() - self.time
|
BSD 3-Clause New or Revised License
|
paddlepaddle/paddle
|
python/paddle/fluid/default_scope_funcs.py
|
scoped_function
|
python
|
def scoped_function(func):
enter_local_scope()
try:
func()
except:
raise
finally:
leave_local_scope()
|
invoke `func` in new scope.
:param func: a callable function that will be run in new scope.
:type func: callable
|
https://github.com/paddlepaddle/paddle/blob/056b87414880e0520bb4560fc40d5b62db9c5175/python/paddle/fluid/default_scope_funcs.py#L90-L103
|
from __future__ import print_function
import paddle.fluid.core
import threading
__tl_scope__ = threading.local()
__all__ = [
'get_cur_scope',
'enter_local_scope',
'leave_local_scope',
'var',
'find_var',
'scoped_function',
]
def get_cur_scope():
cur_scope_stack = getattr(__tl_scope__, 'cur_scope', None)
if cur_scope_stack is None:
__tl_scope__.cur_scope = list()
if len(__tl_scope__.cur_scope) == 0:
__tl_scope__.cur_scope.append(paddle.fluid.core.Scope())
return __tl_scope__.cur_scope[-1]
def enter_local_scope():
cur_scope = get_cur_scope()
new_scope = cur_scope.new_scope()
__tl_scope__.cur_scope.append(new_scope)
def leave_local_scope():
__tl_scope__.cur_scope.pop()
get_cur_scope().drop_kids()
def var(name):
return get_cur_scope().var(name)
def find_var(name):
return get_cur_scope().find_var(name)
|
Apache License 2.0
|
mattvonrocketstein/smash
|
smashlib/ipy3x/parallel/tests/clienttest.py
|
segfault
|
python
|
def segfault():
import ctypes
ctypes.memset(-1, 0, 1)
|
this will segfault
|
https://github.com/mattvonrocketstein/smash/blob/98acdc27ab72ca80d9a7f63a54c0d52f126a8009/smashlib/ipy3x/parallel/tests/clienttest.py#L35-L38
|
from __future__ import print_function
import sys
import tempfile
import time
from nose import SkipTest
import zmq
from zmq.tests import BaseZMQTestCase
from IPython.external.decorator import decorator
from IPython.parallel import error
from IPython.parallel import Client
from IPython.parallel.tests import launchers, add_engines
|
MIT License
|
jsmaika/intficpy
|
intficpy/actor.py
|
SaleItem.buyUnit
|
python
|
def buyUnit(self, game):
for i in range(0, self.price):
if self.currency.ix in game.me.contains:
game.me.removeThing(game.me.contains[self.currency.ix][0])
elif self.currency.ix in game.me.sub_contains:
game.me.removeThing(game.me.sub_contains[self.currency.ix][0])
if self.price > 1:
game.addTextToEvent(
"turn", "(Lost: " + str(self.price) + " " + self.currency.plural + ")",
)
else:
game.addTextToEvent(
"turn",
"(Lost: " + str(self.price) + " " + self.currency.verbose_name + ")",
)
if self.number is True:
obj = self.thing.copyThing()
elif self.number > 1:
obj = self.thing.copyThing()
else:
obj = self.thing
if obj.location:
obj.location.removeThing(obj)
game.me.addThing(obj)
if not self.number is True:
self.number = self.number - 1
game.addTextToEvent("turn", "(Received: " + obj.verbose_name + ") ")
|
Buy one unit of the item for sale.
Removes the needed amount of currency from the player's inventory, adds the
purchased item, and prints the interaction messages to the turn.
:param game: the current game
:type game: IFPGame
|
https://github.com/jsmaika/intficpy/blob/4bf2c270abb822cc2ff2ee65d4478f20f1c5accb/intficpy/actor.py#L738-L773
|
from .ifp_object import IFPObject
from .thing_base import Thing
from . import vocab
from .tokenizer import cleanInput, tokenize, removeArticles
class Actor(Thing):
POSITION_STATE_DESC_KEY = "position_state_desc"
def __init__(self, game, name):
super().__init__(game, name)
self.can_be_led = False
self.for_sale = {}
self.will_buy = {}
self.ask_topics = {}
self.tell_topics = {}
self.give_topics = {}
self.show_topics = {}
self.special_topics = {}
self.special_topics_alternate_keys = {}
self.sticky_topic = None
self.hi_topic = None
self.return_hi_topic = None
self.said_hi = False
self.hermit_topic = None
self.manual_suggest = False
self.default_topic = "No response."
self.knows_about = [self.ix]
self.position = "standing"
self.commodity = False
self.wearing = {}
self.invItem = False
self.cannotTakeMsg = "You cannot take a person. "
@property
def verb_to_be(self):
if self.is_current_player:
return "are"
return "is"
@property
def verbose_name(self):
if self.is_current_player:
return "you"
return super().verbose_name
@property
def is_current_player(self):
if not self.game:
return False
return self.game.me.ix == self.ix
@property
def contains_desc(self):
return ""
@property
def position_state_desc(self):
if self.position == "standing":
return ""
return f"{self.capNameArticle()} is {self.position}. "
def makeProper(self, proper_name):
token_name = proper_name
token_name = cleanInput(token_name, False)
token_name = tokenize(token_name)
token_name = removeArticles(token_name)
self.name = token_name[-1]
self.setAdjectives(self.adjectives + token_name)
for tok in token_name:
self.addSynonym(tok)
self.full_name = proper_name
self.has_proper_name = True
def makeStanding(self):
self.position = "standing"
def makeSitting(self):
self.position = "sitting"
def makeLying(self):
self.position = "lying"
def setHiTopics(self, hi_topic, return_hi_topic):
self.said_hi = False
if hi_topic:
hi_topic.owner = self
if return_hi_topic:
return_hi_topic.owner = self
self.hi_topic = hi_topic
self.return_hi_topic = return_hi_topic
def setHermitTopic(self, hermit_topic):
self.hermit_topic = hermit_topic
if hermit_topic:
hermit_topic.owner = self
def removeHermitTopic(self):
self.hermit_topic = None
def addTopic(self, ask_tell_give_show, topic, thing):
topic.owner = self
if "ask" in ask_tell_give_show or ask_tell_give_show == "all":
self.ask_topics[thing.ix] = topic
if "tell" in ask_tell_give_show or ask_tell_give_show == "all":
self.tell_topics[thing.ix] = topic
if "give" in ask_tell_give_show or ask_tell_give_show == "all":
self.give_topics[thing.ix] = topic
if "show" in ask_tell_give_show or ask_tell_give_show == "all":
self.show_topics[thing.ix] = topic
def addSpecialTopic(self, topic):
topic.owner = self
self.special_topics[topic.suggestion] = topic
for x in topic.alternate_phrasings:
self.special_topics_alternate_keys[x] = topic
def removeSpecialTopic(self, topic):
if topic.suggestion in self.special_topics:
del self.special_topics[topic.suggestion]
for x in topic.alternate_phrasings:
if x in self.special_topics_alternate_keys:
del self.special_topics_alternate_keys[x]
def removeAllSpecialTopics(self):
topics = []
for suggestion in self.special_topics:
topics.append(self.special_topics[suggestion])
for topic in topics:
self.removeSpecialTopic(topic)
def removeAllTopics(self):
self.ask_topics = {}
self.tell_topics = {}
self.give_topics = {}
self.show_topics = {}
def printSuggestions(self, game):
if self.special_topics != {}:
for suggestion in self.special_topics:
game.addTextToEvent("turn", "(You could " + suggestion + ")")
game.parser.command.specialTopics[suggestion] = self.special_topics[
suggestion
]
for phrasing in self.special_topics_alternate_keys:
game.parser.command.specialTopics[
phrasing
] = self.special_topics_alternate_keys[phrasing]
def defaultTopic(self, game):
game.addTextToEvent("turn", self.default_topic)
self.printSuggestions(game)
def addSelling(self, item, currency, price, stock):
if item.ix not in self.for_sale:
self.for_sale[item.ix] = SaleItem(self.game, item, currency, price, stock)
def addWillBuy(self, item, currency, price, max_wanted):
if item.ix not in self.will_buy:
self.will_buy[item.ix] = SaleItem(
self.game, item, currency, price, max_wanted
)
def playerTalksTo(self, event="turn", **kwargs):
if self.hermit_topic:
self.hermit_topic.func(self.game, False)
elif self.sticky_topic:
self.sticky_topic.func(self.game)
elif self.hi_topic and not self.said_hi:
self.hi_topic.func(self.game)
self.said_hi = True
elif self.return_hi_topic:
self.return_hi_topic.func(self.game)
else:
self.defaultTopic(self.game)
return True
def playerAboutToAskAbout(self, item, event="turn", **kwargs):
if self.hermit_topic:
self.hermit_topic.func(self.game, False)
return False
return True
def playerAsksAbout(self, item, event="turn", **kwargs):
if self.hi_topic and not self.said_hi:
self.hi_topic.func(self.game)
self.said_hi = True
elif self.return_hi_topic:
self.return_hi_topic.func(self.game)
if item.ix in self.ask_topics:
self.ask_topics[item.ix].func(self.game)
ret = True
else:
self.defaultTopic(self.game)
ret = False
if self.sticky_topic:
self.sticky_topic.func(self.game)
return ret
def playerAboutToTellAbout(self, item, event="turn", **kwargs):
if self.hermit_topic:
self.hermit_topic.func(self.game, False)
return False
return True
def playerTellsAbout(self, item, event="turn", **kwargs):
if self.hi_topic and not self.said_hi:
self.hi_topic.func(self.game)
self.said_hi = True
elif self.return_hi_topic:
self.return_hi_topic.func(self.game)
if item.ix in self.tell_topics:
self.tell_topics[item.ix].func(self.game)
ret = True
else:
self.defaultTopic(self.game)
ret = False
if self.sticky_topic:
self.sticky_topic.func(self.game)
return ret
def playerAboutToShow(self, item, event="turn", **kwargs):
if self.hermit_topic:
self.hermit_topic.func(self.game, False)
return False
return True
def playerShows(self, item, event="turn", **kwargs):
if self.hi_topic and not self.said_hi:
self.hi_topic.func(self.game)
self.said_hi = True
elif self.return_hi_topic:
self.return_hi_topic.func(self.game)
if item.ix in self.show_topics:
self.show_topics[item.ix].func(self.game)
ret = True
else:
self.defaultTopic(self.game)
ret = False
if self.sticky_topic:
self.sticky_topic.func(self.game)
return ret
def playerAboutToGiveItem(self, item, event="turn", **kwargs):
if self.hermit_topic:
self.hermit_topic.func(self.game, False)
return False
return True
def playerAboutToGiveAway(self, event="turn", **kwargs):
if self.is_current_player:
self.game.addTextToEvent(event, "You cannot give yourself away. ")
return False
return True
def playerGivesItem(self, item, event="turn", **kwargs):
if not item.playerAboutToGiveAway(event="turn"):
return False
if self.hi_topic and not self.said_hi:
self.hi_topic.func(self.game)
self.said_hi = True
elif self.return_hi_topic:
self.return_hi_topic.func(self.game)
if item.ix in self.give_topics:
self.give_topics[item.ix].func(self.game)
if item.give:
item.moveTo(self)
ret = True
else:
self.defaultTopic(self.game)
ret = False
if self.sticky_topic:
self.sticky_topic.func(self.game)
return ret
class Player(Actor):
def __init__(self, game):
super().__init__(game, "me")
def setPlayer(self):
self.addSynonym("me")
self.addSynonym("myself")
self.addSynonym("yourself")
self.addSynonym("you")
@property
def default_desc(self):
return ""
@property
def default_xdesc(self):
return "You notice nothing remarkable about yourself. "
class Topic(IFPObject):
def __init__(self, game, topic_text):
super().__init__(game)
self.text = topic_text
self.owner = None
self.new_suggestions = []
self.expire_suggestions = []
def func(self, game, suggest=True):
self.update_suggestions()
game.addTextToEvent("turn", self.text)
self.on_trigger(game)
if self.owner and suggest:
if not self.owner.manual_suggest:
self.owner.printSuggestions(game)
def update_suggestions(self):
if not self.owner:
return
for item in self.new_suggestions:
if item.suggestion not in self.owner.special_topics:
self.owner.addSpecialTopic(item)
for item in self.expire_suggestions:
if item.suggestion in self.owner.special_topics:
self.owner.removeSpecialTopic(item)
def on_trigger(self, game):
pass
class SpecialTopic(Topic):
def __init__(self, game, suggestion, topic_text):
super().__init__(game, topic_text)
self.suggestion = suggestion
self.alternate_phrasings = []
def addAlternatePhrasing(self, phrasing):
self.alternate_phrasings.append(phrasing)
class SaleItem(IFPObject):
def __init__(self, game, item, currency, price, number):
super().__init__(game)
self.thing = item
self.currency = currency
self.price = price
self.number = number
self.wants = number
self.out_stock_msg = "That item is out of stock. "
self.wants_no_more_msg = None
self.purchase_msg = "You purchase " + item.lowNameArticle(False) + ". "
self.sell_msg = "You sell " + item.lowNameArticle(True) + ". "
|
MIT License
|
openwfm/wrfxpy
|
src/utils.py
|
cache_file
|
python
|
def cache_file(path, cache_dir):
if not osp.isdir(cache_dir):
logging.error('%s is not directory' % str(cache_dir))
raise Exception('%s is not directory' % str(cache_dir))
if not osp.isfile(path):
logging.error('%s is not file' % str(path))
raise Exception('%s is not directory' % str(cache_dir))
dst = osp.join(cache_dir,osp.basename(path))
if osp.islink(path):
if osp.dirname(osp.realpath(path)) is osp.realpath(cache_dir):
logging.debug('%s is link to %s already' % (path, cache_dir))
if osp.basename(osp.realpath(path)) is not osp.basename(path):
logging.error('link %s -> %s does not match' % (path,osp.realpath(path)))
raise Exception('link %s -> %s does not match' % (path,osp.realpath(path)))
else:
src = osp.realpath(path)
logging.info('Copying %s to %s' % (src, dst))
shutil.copyfile(src,dst)
else:
logging.info('Moving %s to %s' % (path, dst))
shutil.move(path,dst)
symlink_unless_exists(dst, path)
|
Move file at the path to cache directory and replace by symlink
except when it is symlink to the cache direcory already
except if the file is symlink to elsewhere, copy the file to cache directory and replace by symlink
:path: file name
:param cache_dir: source directory, must be absolute path
|
https://github.com/openwfm/wrfxpy/blob/7f7feba97baa6cd85134185520559028d2b5464e/src/utils.py#L266-L295
|
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals
from datetime import datetime, timedelta
import pytz
import os
import os.path as osp
import glob
import numpy as np
import math
import pprint
import logging
import dill
import json
import pickle
import inspect
import shutil
import psutil
import requests
import socket
import collections
import six
from six.moves import map
from six.moves import zip
class Dict(dict):
def __init__(self, d):
self.update(d)
def __getattr__(self, item):
return self[item]
def __setattr__(self, item, value):
self[item] = value
def __getitem__(self, item):
if item in self:
return super().__getitem__(item)
else:
for key in self:
if isinstance(key,(range,tuple)) and item in key:
return super().__getitem__(key)
raise KeyError(item)
def keys(self):
if any([isinstance(key,(range,tuple)) for key in self]):
keys = []
for key in self:
if isinstance(key,(range,tuple)):
for k in key:
keys.append(k)
else:
keys.append(key)
return keys
else:
return super().keys()
def save(obj, file):
with open(file,'wb') as output:
dill.dump(obj, output )
def load(file):
with open(file,'rb') as input:
returnitem = dill.load(input)
return returnitem
def traceargs():
frame = inspect.currentframe()
args, _, _, values = inspect.getargvalues(frame)
for i in args:
print((" %s:\n%s" % (i, pprint.pformat(values[i]))))
def dump(obj,title):
frame = inspect.currentframe()
outframe = inspect.getouterframes(frame, 2)
logging.info(outframe[1][1] + ':' + outframe[1][3] + ":" + title + ':\n' + pprint.pformat(obj,width=-1))
def check_obj(obj, title):
if pprint.isreadable(obj):
logging.info(title + " is readable")
else:
logging.info(title + " is NOT readable")
try:
json.dumps(obj)
logging.info(title + " is JSON serializable")
except TypeError as err:
logging.error(title + " is not JSON serializable")
logging.error(err)
try:
s=pickle.dumps(obj,pickle.HIGHEST_PROTOCOL)
pickle.loads(s)
logging.info(title + " can be pickled")
except:
logging.error(title + " could not be picked and unpickled")
def kill_process(pid):
if pid is not None:
logging.info('Killing process %s and children' % pid)
try:
parent = psutil.Process(pid)
try:
for child in parent.children(recursive=True):
child.kill()
parent.kill()
except:
logging.error('Could not get them all, check for runaways')
except:
logging.error('Process %s does not exist' % pid)
def process_create_time(pid):
if pid is None:
return -1
else:
try:
return psutil.Process(pid).create_time()
except:
return None
def file_exists(path):
return (os.path.exists(path) and os.access(path,os.R_OK))
def ensure_dir(path):
path_dir = osp.dirname(path)
if not osp.exists(path_dir):
os.makedirs(path_dir)
return path
def delete(dir):
if osp.exists(dir):
try:
shutil.rmtree(dir)
except Exception as e:
logging.warning(str(e))
def make_clean_dir(dir):
logging.info('Deleting existing directory %s to make a clean one' % dir)
delete(dir)
if not osp.exists(dir):
os.makedirs(dir)
def make_dir(dir):
if not osp.exists(dir):
os.makedirs(dir)
return dir
def symlink_unless_exists(link_tgt, link_loc):
logging.info('Linking %s -> %s' % (link_loc, link_tgt))
if osp.isfile(link_tgt) or osp.isdir(link_tgt):
if not osp.lexists(link_loc):
os.symlink(link_tgt, link_loc)
else:
logging.warning('Link %s already exists' % link_loc)
else:
logging.error('Link target %s does not exist' % link_tgt)
def remove(tgt):
if osp.isfile(tgt):
logging.info('remove: file %s exists, removing' % tgt)
os.remove(tgt)
def force_copy(src,tgt):
remove(tgt)
shutil.copy(src,ensure_dir(tgt))
def append2file(addl,base):
logging.info("appending file %s to %s" % (addl,base))
with open(base,'a') as base_file:
with open(addl,'r') as addl_file:
base_file.write(addl_file.read())
def link2copy(src):
try:
link_target = os.readlink(src)
except OSError as e:
return
logging.info("replacing soft link %s -> %s by a copy" % (src,link_target))
os.remove(src)
shutil.copy(link_target,src)
def move(src,tgt):
logging.info('moving %s to %s' % (src, tgt))
remove(tgt)
shutil.move(src,tgt)
|
MIT License
|
cgatoxford/cgatpipelines
|
obsolete/PipelineChipseq.py
|
intersectBedFiles
|
python
|
def intersectBedFiles(infiles, outfile):
if len(infiles) == 1:
shutil.copyfile(infiles[0], outfile)
elif len(infiles) == 2:
if IOTools.isEmpty(infiles[0]) or IOTools.isEmpty(infiles[1]):
P.touch(outfile)
else:
statement = '''
intersectBed -u -a %s -b %s
| cut -f 1,2,3,4,5
| awk 'BEGIN { OFS="\\t"; } {$4=++a; print;}'
| bgzip > %%(outfile)s
''' % (infiles[0], infiles[1])
P.run()
else:
tmpfile = P.getTempFilename(".")
fn = infiles[0]
if IOTools.isEmpty(infiles[0]):
P.touch(outfile)
return
statement = '''mergeBed -i %(fn)s > %(tmpfile)s'''
P.run()
for fn in infiles[1:]:
if IOTools.isEmpty(infiles[0]):
P.touch(outfile)
os.unlink(tmpfile)
return
statement = '''mergeBed -i %(fn)s | intersectBed -u -a %(tmpfile)s -b stdin > %(tmpfile)s.tmp; mv %(tmpfile)s.tmp %(tmpfile)s'''
P.run()
statement = '''cat %(tmpfile)s
| cut -f 1,2,3,4,5
| awk 'BEGIN { OFS="\\t"; } {$4=++a; print;}'
| bgzip
> %(outfile)s '''
P.run()
os.unlink(tmpfile)
|
merge :term:`bed` formatted *infiles* by intersection
and write to *outfile*.
Only intervals that overlap in all files are retained.
Interval coordinates are given by the first file in *infiles*.
Bed files are normalized (overlapping intervals within
a file are merged) before intersection.
Intervals are renumbered starting from 1.
|
https://github.com/cgatoxford/cgatpipelines/blob/a34d460b5fc64984f6da0acb18aee43c5e02d5fc/obsolete/PipelineChipseq.py#L630-L689
|
import shutil
import random
import re
import glob
import os
import collections
import sqlite3
import pysam
import numpy
import CGAT.Experiment as E
import CGATPipelines.Pipeline as P
import CGAT.IndexedGenome as IndexedGenome
import CGAT.IOTools as IOTools
import CGAT.Bed as Bed
import CGAT.BamTools as BamTools
import CGAT.WrapperMACS as WrapperMACS
import CGAT.WrapperZinba as WrapperZinba
def getPeakShiftFromMacs(infile):
shift = None
with IOTools.openFile(infile, "r") as ins:
rx = re.compile("#2 predicted fragment length is (\d+) bps")
r2 = re.compile("#2 Use (\d+) as shiftsize, \d+ as fragment length")
for line in ins:
x = rx.search(line)
if x:
shift = int(x.groups()[0])
break
x = r2.search(line)
if x:
shift = int(x.groups()[0])
E.warn("shift size was set automatically - see MACS logfiles")
break
return shift
def getPeakShiftFromZinba(infile):
shift = None
with IOTools.openFile(infile, "r") as ins:
lines = ins.readlines()
for i, line in enumerate(lines):
if line.startswith("$offset"):
shift = int(lines[i + 1].split()[1])
break
return shift
def getPeakShift(track):
if os.path.exists("%s.macs" % track):
return getPeakShiftFromMacs("%s.macs" % track)
elif os.path.exists("%s.zinba" % track):
return getPeakShiftFromZinba("%s.zinba" % track)
def getMappedReads(infile):
for lines in IOTools.openFile(infile, "r"):
data = lines[:-1].split("\t")
if data[1].startswith("without duplicates"):
return int(data[0])
return
def getMinimumMappedReads(infiles):
v = []
for infile in infiles:
x = getMappedReads(infile)
if x:
v.append(x)
if len(v) == 0:
raise ValueError(
"could not find mapped reads in files %s" % (str(infiles)))
return min(v)
def getExonLocations(filename):
fh = IOTools.openFile(filename, "r")
ensembl_ids = []
for line in fh:
ensembl_ids.append(line.strip())
fh.close()
dbhandle = sqlite3.connect(PARAMS["annotations_database"])
cc = dbhandle.cursor()
gene_ids = []
n_ids = 0
for ID in ensembl_ids:
gene_ids.append('gene_id="%s"' % ID)
n_ids += 1
statement = "select contig,start,end from geneset_cds_gtf where " + " OR ".join(gene_ids)
cc.execute(statement)
region_list = []
n_regions = 0
for result in cc:
b = Bed.Bed()
b.contig, b.start, b.end = result
region_list.append(b)
n_regions += 1
cc.close()
E.info("Retrieved exon locations for %i genes. Got %i regions" %
(n_ids, n_regions))
return(region_list)
def getBedLocations(filename):
fh = open(filename, "r")
region_list = []
n_regions = 0
for line in fh:
if line.strip() != "" and line[0] != "#":
fields = line.split("\t")
contig, start, end = fields[0], int(fields[1]), int(fields[2])
region_list.append((contig, start, end))
n_regions += 1
fh.close()
return (region_list)
def buildQuicksectMask(bed_file):
mask = IndexedGenome.Quicksect()
n_regions = 0
for bed in Bed.iterator(IOTools.openFile(bed_file)):
mask.add(bed.contig, (bed.start - 1), (bed.end + 1), 1)
n_regions += 1
E.info("Built Quicksect mask for %i regions" % n_regions)
return(mask)
def buildBAMforPeakCalling(infiles, outfile, dedup, mask):
samfiles = []
num_reads = 0
nfiles = 0
statement = []
tmpfile = P.getTempFilename(".")
if len(infiles) > 1 and isinstance(infiles, str) == 0:
statement.append('''samtools merge @OUT@ %s''' % (infiles.join(" ")))
statement.append('''samtools sort @IN@ @OUT@''')
if dedup:
statement.append('''MarkDuplicates
INPUT=@IN@
ASSUME_SORTED=true
REMOVE_DUPLICATES=true
QUIET=true
OUTPUT=@OUT@
METRICS_FILE=%(outfile)s.picardmetrics
VALIDATION_STRINGENCY=SILENT
> %(outfile)s.picardlog ''')
if mask:
statement.append(
'''intersectBed -abam @IN@ -b %(mask)s -wa -v > @OUT@''')
statement.append('''mv @IN@ %(outfile)s''')
statement.append('''samtools index %(outfile)s''')
statement = P.joinStatements(statement, infiles)
P.run()
def buildSimpleNormalizedBAM(infiles, outfile, nreads):
infile, countfile = infiles
pysam_in = pysam.Samfile(infile, "rb")
fh = IOTools.openFile(countfile, "r")
readcount = int(fh.read())
fh.close()
threshold = float(nreads) / float(readcount)
pysam_out = pysam.Samfile(outfile, "wb", template=pysam_in)
ninput, noutput = 0, 0
for read in pysam_in.fetch():
ninput += 1
if random.random() <= threshold:
pysam_out.write(read)
noutput += 1
pysam_in.close()
pysam_out.close()
pysam.index(outfile)
E.info("buildNormalizedBam: %i input, %i output (%5.2f%%), should be %i" %
(ninput, noutput, 100.0 * noutput / ninput, nreads))
def buildNormalizedBAM(infiles, outfile, normalize=True):
min_reads = getMinimumMappedReads(glob.glob("*.readstats"))
samfiles = []
num_reads = 0
for infile, statsfile in infiles:
samfiles.append(pysam.Samfile(infile, "rb"))
num_reads += getMappedReads(statsfile)
threshold = float(min_reads) / num_reads
E.info("%s: min reads: %i, total reads=%i, threshold=%f" %
(infiles, min_reads, num_reads, threshold))
pysam_out = pysam.Samfile(outfile, "wb", template=samfiles[0])
ninput, noutput, nduplicates = 0, 0, 0
last_contig, last_pos = None, None
for pysam_in in samfiles:
for read in pysam_in.fetch():
ninput += 1
if read.rname == last_contig and read.pos == last_pos:
nduplicates += 1
continue
if normalize and random.random() <= threshold:
pysam_out.write(read)
noutput += 1
last_contig, last_pos = read.rname, read.pos
pysam_in.close()
pysam_out.close()
logs = IOTools.openFile(outfile + ".log", "w")
logs.write("# min_reads=%i, threshold= %5.2f\n" %
(min_reads, threshold))
logs.write("set\tcounts\tpercent\n")
logs.write("ninput\t%i\t%5.2f%%\n" % (ninput, 100.0))
nwithout_dups = ninput - nduplicates
logs.write("duplicates\t%i\t%5.2f%%\n" %
(nduplicates, 100.0 * nduplicates / ninput))
logs.write("without duplicates\t%i\t%5.2f%%\n" %
(nwithout_dups, 100.0 * nwithout_dups / ninput))
logs.write("target\t%i\t%5.2f%%\n" %
(min_reads, 100.0 * min_reads / nwithout_dups))
logs.write("noutput\t%i\t%5.2f%%\n" %
(noutput, 100.0 * noutput / nwithout_dups))
logs.close()
if len(samfiles) > 1:
tmpfilename = P.getTempFilename(".")
pysam.sort(outfile, tmpfilename)
shutil.move(tmpfilename + ".bam", outfile)
os.unlink(tmpfilename)
pysam.index(outfile)
E.info("buildNormalizedBam: %i input, %i output (%5.2f%%), should be %i" %
(ninput, noutput, 100.0 * noutput / ninput, min_reads))
def buildBAMStats(infile, outfile):
outs = IOTools.openFile(outfile, "w")
outs.write("reads\tcategory\n")
for line in pysam.flagstat(infile):
data = line[:-1].split(" ")
outs.write("%s\t%s\n" % (data[0], " ".join(data[1:])))
pysam_in = pysam.Samfile(infile, "rb")
outs_dupl = IOTools.openFile(outfile + ".duplicates", "w")
outs_dupl.write("contig\tpos\tcounts\n")
outs_hist = IOTools.openFile(outfile + ".histogram", "w")
outs_hist.write("duplicates\tcounts\tcumul\tfreq\tcumul_freq\n")
last_contig, last_pos = None, None
ninput, nduplicates = 0, 0
duplicates = collections.defaultdict(int)
counts = collections.defaultdict(int)
count = 0
nh, nm = [], []
for read in pysam_in.fetch():
ninput += 1
if read.rname == last_contig and read.pos == last_pos:
count += 1
nduplicates += 1
continue
if count > 1:
outs_dupl.write("%s\t%i\t%i\n" % (last_contig, last_pos, count))
counts[count] += 1
count = 1
last_contig, last_pos = read.rname, read.pos
outs.write("%i\tduplicates (%5.2f%%)\n" %
(nduplicates, 100.0 * nduplicates / ninput))
outs.write("%i\twithout duplicates (%5.2f%%)\n" % (ninput - nduplicates,
100.0 * (ninput - nduplicates) / ninput))
pysam_in.close()
outs.close()
outs_dupl.close()
keys = list(counts.keys())
c = 0
total = sum(counts.values())
for k in sorted(keys):
c += counts[k]
outs_hist.write("%i\t%i\t%i\t%f\t%f\n" % (k, counts[k], c,
100.0 * counts[k] / total,
100.0 * c / total))
outs_hist.close()
def exportIntervalsAsBed(infile, outfile):
dbhandle = sqlite3.connect(PARAMS["database_name"])
if outfile.endswith(".gz"):
compress = True
track = P.snip(outfile, ".bed.gz")
else:
compress = False
track = P.snip(outfile, ".bed")
tablename = "%s_intervals" % P.tablequote(track)
cc = dbhandle.cursor()
statement = "SELECT contig, start, end, interval_id, peakval FROM %s ORDER by contig, start" % tablename
cc.execute(statement)
outs = IOTools.openFile("%s.bed" % track, "w")
for result in cc:
contig, start, end, interval_id, peakval = result
peakval = int(min(peakval, 1000))
outs.write("%s\t%i\t%i\t%s\t%i\n" %
(contig, start, end, str(interval_id), peakval))
cc.close()
outs.close()
if compress:
E.info("compressing and indexing %s" % outfile)
use_cluster = True
statement = 'bgzip -f %(track)s.bed; tabix -f -p bed %(outfile)s'
P.run()
def exportMacsIntervalsAsBed(infile, outfile, foldchange):
dbhandle = sqlite3.connect(PARAMS["database_name"])
track = P.toTable(os.path.basename(infile))
assert track.endswith("_macs")
track = track[:-len("_macs")]
cc = dbhandle.cursor()
statement = "SELECT contig, start, end, interval_id, fold FROM %(track)s_macs_intervals where fold >= %(foldchange)s ORDER by contig, start" % locals(
)
cc.execute(statement)
outs = open(outfile, "w")
for result in cc:
contig, start, end, interval_id, fold = result
outs.write("%s\t%i\t%i\t%s\t%d\n" %
(contig, start, end, str(interval_id), fold))
cc.close()
outs.close()
def exportPeaksAsBed(infile, outfile):
dbhandle = sqlite3.connect(PARAMS["database_name"])
if infile.endswith("_macs.load"):
track = infile[:-len("_macs.load")]
else:
track = infile[:-len("_intervals.load")]
if track.startswith("control"):
return
peakwidth = PARAMS["peakwidth"]
cc = dbhandle.cursor()
statement = '''SELECT contig, peakcenter - %(peakwidth)i, peakcenter + %(peakwidth)i,
interval_id, peakval FROM %(track)s_intervals ORDER by contig, start''' % locals()
cc.execute(statement)
outs = IOTools.openFile(outfile, "w")
for result in cc:
contig, start, end, interval_id, peakval = result
peakval = int(min(peakval, 1000))
outs.write("%s\t%i\t%i\t%s\t%i\n" %
(contig, start, end, str(interval_id), peakval))
cc.close()
outs.close()
def mergeBedFiles(infiles, outfile):
if len(infiles) < 2:
raise ValueError(
"expected at least two files to merge into %s" % outfile)
infile = " ".join(infiles)
statement = '''
zcat %(infile)s
| mergeBed -i stdin
| cut -f 1-3
| awk '{printf("%%s\\t%%i\\n",$0, ++a); }'
| bgzip
> %(outfile)s
'''
P.run()
def mergeIntervalsWithScores(infile, outfile, dist, method):
intervals = open(infile, "r")
merged = open(outfile, "w")
topline = intervals.readline()
last_contig, last_start, last_end, last_id, last_score = topline[
:-1].split("\t")[:5]
last_start = int(last_start)
last_end = int(last_end)
last_score = int(last_score)
for line in intervals:
data = line[:-1].split("\t")
contig, start, end, interval_id, score = data[:5]
start = int(start)
end = int(end)
score = int(score)
if (contig == last_contig) and ((last_end + dist) >= start):
if method == "mean":
newscore = (score + last_score) / 2
elif method == "length_weighted_mean":
length1 = end - start
length2 = last_end - last_start
newscore = (
(score * length1) + (last_score * length2)) / (length1 + length2)
elif method == "max":
newscore = max(last_score, score)
last_end = end
last_score = newscore
else:
merged.write(
"%(last_contig)s\t%(last_start)i\t%(last_end)i\t%(last_id)s\t%(last_score)s\n" % locals())
data = line[:-1].split("\t")
last_contig, last_start, last_end, last_id, last_score = data[:5]
last_start = int(last_start)
last_end = int(last_end)
last_score = int(last_score)
intervals.close()
merged.close()
|
MIT License
|
deepgram/kur
|
kur/engine/jinja_engine.py
|
JinjaEngine._evaluate
|
python
|
def _evaluate(self, expression):
result = self.env.from_string(expression).render(**self._scope)
try:
result = ast.literal_eval(result)
except (ValueError, SyntaxError):
pass
return result
|
Evaluates an expression in the current scope.
# Arguments
expression: str. The string to evaluate.
# Return value
The evaluated expression (some Python object/class).
|
https://github.com/deepgram/kur/blob/fd0c120e50815c1e5be64e5dde964dcd47234556/kur/engine/jinja_engine.py#L178-L203
|
import os
import ast
import json
import logging
import yaml
import jinja2
from .engine import Engine
from ..utils import CudaContext, CudaError
logger = logging.getLogger(__name__)
def combine(value, new=None):
new = new or {}
value = dict(value)
value.update(new)
return value
def as_dict(value, key):
return {key : value}
def ternary(value, result_true, result_false):
return result_true if value else result_false
def gpu_count():
if gpu_count._value is None:
try:
with CudaContext() as context:
gpu_count._value = len(context)
except CudaError:
gpu_count._value = 0
return gpu_count._value
gpu_count._value = None
def resolve_path(engine, filename):
filename = os.path.expanduser(os.path.expandvars(filename))
kurfile = engine._scope.get('filename')
if kurfile:
filename = os.path.join(
os.path.dirname(kurfile),
filename
)
return os.path.abspath(filename)
def create_load_json(engine):
def load_json(filename, use_cache=True):
path = resolve_path(engine, filename)
logger.debug('Loading JSON file: %s (%s)', filename, path)
if use_cache and path in load_json.cache:
logger.trace('Using cached data.')
else:
with open(path) as fh:
load_json.cache[path] = json.loads(fh.read())
return load_json.cache[path]
load_json.cache = {}
return load_json
def create_load_yaml(engine):
def load_yaml(filename, use_cache=True):
path = resolve_path(engine, filename)
logger.debug('Loading YAML file: %s (%s)', filename, path)
if use_cache and path in load_yaml.cache:
logger.trace('Using cached data.')
else:
with open(path) as fh:
load_yaml.cache[path] = yaml.load(fh.read())
return load_yaml.cache[path]
load_yaml.cache = {}
return load_yaml
class JinjaEngine(Engine):
def register_custom_filters(self, env):
env.filters['basename'] = os.path.basename
env.filters['dirname'] = os.path.dirname
env.filters['splitext'] = os.path.splitext
env.filters['combine'] = combine
env.filters['as_dict'] = as_dict
env.filters['ternary'] = ternary
env.globals['gpu_count'] = gpu_count
env.globals['load_json'] = create_load_json(self)
env.globals['load_yaml'] = create_load_yaml(self)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.env = jinja2.Environment()
self.register_custom_filters(self.env)
|
Apache License 2.0
|
ericssonresearch/calvin-base
|
calvin/actor/actor.py
|
Actor.check_authorization_decision
|
python
|
def check_authorization_decision(self):
if self.authorization_checks:
if any(isinstance(elem, list) for elem in self.authorization_checks):
for plugin_list in self.authorization_checks:
if not check_authorization_plugin_list(plugin_list):
return False
return True
else:
return check_authorization_plugin_list(self.authorization_checks)
return True
|
Check if authorization decision is still valid
|
https://github.com/ericssonresearch/calvin-base/blob/bc4645c2061c30ca305a660e48dc86e3317f5b6f/calvin/actor/actor.py#L797-L808
|
import wrapt
import functools
import time
import copy
from calvin.utilities import calvinuuid
from calvin.actor import actorport
from calvin.utilities.calvinlogger import get_logger
from calvin.utilities.utils import enum
from calvin.runtime.north.calvin_token import Token, ExceptionToken
from calvin.runtime.north.replicationmanager import ReplicationId
import calvin.requests.calvinresponse as response
from calvin.runtime.south.async import async
from calvin.runtime.north.plugins.authorization_checks import check_authorization_plugin_list
from calvin.utilities.calvin_callback import CalvinCB
from calvin.csparser.port_property_syntax import get_port_property_capabilities, get_port_property_runtime
from calvin.runtime.north.calvinsys import get_calvinsys
from calvin.runtime.north.calvinlib import get_calvinlib
_log = get_logger(__name__)
def manage(include=None, exclude=None):
if include and type(include) is not list or exclude and type(exclude) is not list:
raise Exception("@manage decorator: Must use list as argument")
include_set = set(include) if include else set()
exclude_set = set(exclude) if exclude else set()
@wrapt.decorator
def wrapper(wrapped, instance, args, kwargs):
exclude_set.update(instance.__dict__)
x = wrapped(*args, **kwargs)
if include is None:
include_set.update(instance.__dict__)
include_set.remove('_managed')
include_set.difference_update(exclude_set)
instance._managed.update(include_set)
return x
return wrapper
def condition(action_input=[], action_output=[]):
tokens_produced = len(action_output)
tokens_consumed = len(action_input)
def wrap(action_method):
@functools.wraps(action_method)
def condition_wrapper(self):
input_ok = all(self.inports[portname].tokens_available(1) for portname in action_input)
output_ok = all(self.outports[portname].tokens_available(1) for portname in action_output)
if not input_ok or not output_ok:
return (False, output_ok, ())
exhausted_ports = set()
exception = False
args = []
for portname in action_input:
port = self.inports[portname]
token, exhaust = port.read()
is_exception_token = isinstance(token, ExceptionToken)
exception = exception or is_exception_token
args.append(token if is_exception_token else token.value )
if exhaust:
exhausted_ports.add(port)
if exception:
production = self.exception_handler(action_method, args) or ()
else:
production = action_method(self, *args) or ()
valid_production = (tokens_produced == len(production))
if not valid_production:
action = "%s.%s" % (self._type, action_method.__name__)
raise Exception("%s invalid production %s, expected %s" % (action, str(production), str(tuple(action_output))))
for portname, retval in zip(action_output, production):
port = self.outports[portname]
port.write_token(retval if isinstance(retval, Token) else Token(retval))
return (True, True, exhausted_ports)
return condition_wrapper
return wrap
def stateguard(action_guard):
def wrap(action_method):
@functools.wraps(action_method)
def guard_wrapper(self, *args):
if not action_guard(self):
return (False, True, ())
return action_method(self, *args)
return guard_wrapper
return wrap
def verify_status(valid_status_list, raise_=False):
@wrapt.decorator
def wrapper(wrapped, instance, args, kwargs):
if not instance.fsm.disable_state_checks and instance.fsm.state() not in valid_status_list:
msg = "Invalid status %s for operation %s" % (instance.fsm, wrapped.__name__)
if raise_:
raise Exception(msg)
else:
_log.info(msg)
x = wrapped(*args, **kwargs)
return x
return wrapper
def _implements_state(obj):
return hasattr(obj, 'state') and callable(getattr(obj, 'state')) and hasattr(obj, 'set_state') and callable(getattr(obj, 'set_state'))
class calvinsys(object):
@staticmethod
def open(actor, name, **kwargs):
return get_calvinsys().open(name, actor, **kwargs)
@staticmethod
def can_write(ref):
return get_calvinsys().can_write(ref)
@staticmethod
def write(ref, data):
return get_calvinsys().write(ref, data)
@staticmethod
def can_read(ref):
return get_calvinsys().can_read(ref)
@staticmethod
def read(ref):
return get_calvinsys().read(ref)
@staticmethod
def close(ref):
return get_calvinsys().close(ref)
class calvinlib(object):
@staticmethod
def use(name, **kwargs):
return get_calvinlib().use(name, **kwargs)
class Actor(object):
action_priority = tuple()
_security_state_keys = ('_subject_attributes')
_private_state_keys = ('_id', '_name', '_has_started', '_deployment_requirements',
'_signature', '_migration_info', "_port_property_capabilities", "_replication_id")
class FSM(object):
def __init__(self, states, initial, transitions, hooks=None, allow_invalid_transitions=True,
disable_transition_checks=False, disable_state_checks=False):
self.states = states
self._state = initial
self.transitions = transitions
self.hooks = hooks or {}
self.allow_invalid_transitions = allow_invalid_transitions
self.disable_transition_checks = disable_transition_checks
self.disable_state_checks = disable_state_checks
def state(self):
return self._state
def transition_to(self, new_state):
if new_state in self.transitions[self._state] or self.disable_transition_checks:
hook = self.hooks.get((self._state, new_state), None)
if hook:
hook()
self._state = new_state
else:
msg = "Invalid transition %s -> %s" % (self, self.printable(new_state))
if self.allow_invalid_transitions:
_log.warning("ALLOWING " + msg)
self._state = new_state
else:
raise Exception(msg)
def printable(self, state):
return self.states.reverse_mapping[state]
def __str__(self):
return self.printable(self._state)
STATUS = enum('LOADED', 'READY', 'PENDING', 'ENABLED', 'DENIED', 'MIGRATABLE')
VALID_TRANSITIONS = {
STATUS.LOADED : [STATUS.READY],
STATUS.READY : [STATUS.PENDING, STATUS.ENABLED, STATUS.DENIED],
STATUS.PENDING : [STATUS.READY, STATUS.PENDING, STATUS.ENABLED],
STATUS.ENABLED : [STATUS.READY, STATUS.PENDING, STATUS.DENIED],
STATUS.DENIED : [STATUS.ENABLED, STATUS.MIGRATABLE, STATUS.PENDING],
STATUS.MIGRATABLE: [STATUS.READY, STATUS.DENIED]
}
test_args = ()
test_kwargs = {}
@property
def id(self):
return self._id
@property
def name(self):
return self._name
@name.setter
def name(self, value):
self._name = value
@property
def migration_info(self):
return self._migration_info
def __init__(self, actor_type, name='', allow_invalid_transitions=True, disable_transition_checks=False,
disable_state_checks=False, actor_id=None, security=None):
super(Actor, self).__init__()
self._type = actor_type
self._name = name
self._id = actor_id or calvinuuid.uuid("ACTOR")
_log.debug("New actor id: %s, supplied actor id %s" % (self._id, actor_id))
self._deployment_requirements = []
self._port_property_capabilities = None
self._signature = None
self._component_members = set([self._id])
self._managed = set()
self._has_started = False
self._migration_info = None
self._migrating_to = None
self._migration_connected = True
self._last_time_warning = 0.0
self.sec = security
self._subject_attributes = self.sec.get_subject_attributes() if self.sec is not None else None
self.authorization_checks = None
self._replication_id = ReplicationId()
self._exhaust_cb = None
self._pressure_event = 0
self.inports = {p: actorport.InPort(p, self, pp) for p, pp in self.inport_properties.items()}
self.outports = {p: actorport.OutPort(p, self, pp) for p, pp in self.outport_properties.items()}
hooks = {
(Actor.STATUS.PENDING, Actor.STATUS.ENABLED): self._will_start,
(Actor.STATUS.ENABLED, Actor.STATUS.PENDING): self.will_stop,
}
self.fsm = Actor.FSM(Actor.STATUS, Actor.STATUS.LOADED, Actor.VALID_TRANSITIONS, hooks,
allow_invalid_transitions=allow_invalid_transitions,
disable_transition_checks=disable_transition_checks,
disable_state_checks=disable_state_checks)
def set_authorization_checks(self, authorization_checks):
self.authorization_checks = authorization_checks
@verify_status([STATUS.LOADED])
def setup_complete(self):
self.fsm.transition_to(Actor.STATUS.READY)
def init(self):
raise Exception("Implementing 'init()' is mandatory.")
def _will_start(self):
if not self._has_started:
self.will_start()
self._has_started = True
def will_start(self):
pass
def will_stop(self):
pass
def will_migrate(self):
pass
def did_migrate(self):
pass
def _will_end(self):
if hasattr(self, "will_end") and callable(self.will_end):
self.will_end()
get_calvinsys().close_all(self)
def did_replicate(self, index):
pass
def __str__(self):
ip = ""
for p in self.inports.values():
ip = ip + str(p)
op = ""
for p in self.outports.values():
op = op + str(p)
s = "Actor: '%s' class '%s'\nstatus: %s\ninports: %s\noutports:%s" % (
self._name, self._type, self.fsm, ip, op)
return s
@verify_status([STATUS.READY, STATUS.PENDING, STATUS.ENABLED])
def did_connect(self, port):
if self.fsm.state() == Actor.STATUS.ENABLED:
return
_log.debug("actor.did_connect BEGIN %s %s " % (self._name, self._id))
if self.fsm.state() == Actor.STATUS.READY:
self.fsm.transition_to(Actor.STATUS.PENDING)
if self.inports:
for p in self.inports.values():
if not p.is_connected():
return
if self.outports:
for p in self.outports.values():
if not p.is_connected():
return
self.fsm.transition_to(Actor.STATUS.ENABLED)
_log.debug("actor.did_connect ENABLED %s %s " % (self._name, self._id))
@verify_status([STATUS.ENABLED, STATUS.PENDING, STATUS.DENIED, STATUS.MIGRATABLE])
def did_disconnect(self, port):
_log.debug("Actor %s did_disconnect %s" % (self._id, Actor.STATUS.reverse_mapping[self.fsm.state()]))
if self.fsm.state() == Actor.STATUS.MIGRATABLE:
return
if self.fsm.state() != Actor.STATUS.PENDING:
self.fsm.transition_to(Actor.STATUS.PENDING)
if self.inports:
for p in self.inports.values():
if p.is_connected():
return
if self.outports:
for p in self.outports.values():
if p.is_connected():
return
self.fsm.transition_to(Actor.STATUS.READY)
def exhaust(self, callback):
self._exhaust_cb = callback
def get_pressure(self):
_log.debug("get_pressure %s" % self._replication_id.measure_pressure())
if not self._replication_id.measure_pressure():
return None
t = time.time()
pressure = {}
for port in self.inports.values():
for e in port.endpoints:
PRESSURE_LENGTH = len(e.pressure)
pressure[port.id + "," + e.peer_id] = {'last': e.pressure_last, 'count': e.pressure_count,
'pressure': [e.pressure[i % PRESSURE_LENGTH] for i in range(
max(0, e.pressure_count - PRESSURE_LENGTH), e.pressure_count)]}
pressure_event = False
for p in pressure.values():
if len(p['pressure']) < 2:
continue
if ((p['pressure'][-1][1] - p['pressure'][-2][1]) < 10 and
p['pressure'][-1][1] > self._pressure_event):
self._pressure_event = max(p['pressure'][-1][1], self._pressure_event)
pressure_event = True
break
if (p['pressure'][-1][1] < (t - 30) and
p['last'] > p['pressure'][-1][0] + 3 and
p['pressure'][-1][1] > self._pressure_event):
self._pressure_event = max(p['pressure'][-1][1], self._pressure_event)
pressure_event = True
break
pressure['time'] = t
_log.debug("get_pressure pressure_event:%s, pressure: %s" % (pressure_event, pressure))
return pressure if pressure_event else None
def _authorized(self):
authorized = self.check_authorization_decision()
if not authorized:
_log.info("Access denied for actor %s(%s)" % ( self._type, self._id))
self.fsm.transition_to(Actor.STATUS.DENIED)
self.sec.authorization_runtime_search(self._id, self._signature, callback=CalvinCB(self.set_migration_info))
return authorized
def _warn_slow_actor(self, time_spent, start_time):
time_since_warning = start_time - self._last_time_warning
if time_since_warning < 120.0:
return
self._last_time_warning = start_time
_log.warning("%s (%s) actor blocked for %f sec" % (self._name, self._type, time_spent))
def _handle_exhaustion(self, exhausted_ports, output_ok):
_log.debug("actor_fire %s test exhaust %s, %s, %s" % (self._id, self._exhaust_cb is not None, exhausted_ports, output_ok))
for port in exhausted_ports:
try:
port.finished_exhaustion()
except:
_log.exception("FINSIHED EXHAUSTION FAILED")
if (output_ok and self._exhaust_cb is not None and
not any([p.any_outstanding_exhaustion_tokens() for p in self.inports.values()])):
_log.debug("actor %s exhausted" % self._id)
async.DelayedCall(0, self._exhaust_cb, status=response.CalvinResponse(True))
self._exhaust_cb = None
@verify_status([STATUS.ENABLED])
def fire(self):
for action_method in self.__class__.action_priority:
did_fire, output_ok, exhausted = action_method(self)
if did_fire:
break
return did_fire, output_ok, exhausted
def enabled(self):
r = self.fsm.state() == Actor.STATUS.ENABLED or self._exhaust_cb is not None
if not r:
_log.debug("Actor %s %s not enabled" % (self._name, self._id))
return r
def denied(self):
return self.fsm.state() == Actor.STATUS.DENIED
def migratable(self):
return self.fsm.state() == Actor.STATUS.MIGRATABLE
@verify_status([STATUS.DENIED])
def enable_or_migrate(self):
if self.check_authorization_decision():
self.fsm.transition_to(Actor.STATUS.ENABLED)
else:
self.sec.authorization_runtime_search(self._id, self._signature, callback=CalvinCB(self.set_migration_info))
@verify_status([STATUS.ENABLED])
def enable(self):
self.fsm.transition_to(Actor.STATUS.ENABLED)
@verify_status([STATUS.READY, STATUS.PENDING, STATUS.LOADED])
def disable(self):
self.fsm.transition_to(Actor.STATUS.PENDING)
@verify_status([STATUS.ENABLED, STATUS.READY, STATUS.PENDING, STATUS.MIGRATABLE])
def connections(self, node_id):
c = {'actor_id': self._id, 'actor_name': self._name}
inports = {}
for port in self.inports.values():
peers = [
(node_id, p[1]) if p[0] == 'local' else p for p in port.get_peers()]
inports[port.id] = peers
c['inports'] = inports
outports = {}
for port in self.outports.values():
peers = [
(node_id, p[1]) if p[0] == 'local' else p for p in port.get_peers()]
outports[port.id] = peers
c['outports'] = outports
return c
def state(self):
return {}
def set_state(self, state):
pass
def _private_state(self):
state = {}
state['inports'] = {
port: self.inports[port]._state() for port in self.inports}
state['outports'] = {
port: self.outports[port]._state() for port in self.outports}
state['_component_members'] = list(self._component_members)
state['_requires'] = self.requires if hasattr(self, 'requires') else []
for key in self._private_state_keys:
obj = self.__dict__[key]
if _implements_state(obj):
state[key] = obj.state()
else:
state[key] = obj
state["_calvinsys"] = get_calvinsys().serialize(actor=self)
return state
def _set_private_state(self, state):
if "_calvinsys" in state:
get_calvinsys().deserialize(actor=self, csobjects=state["_calvinsys"])
for port in state['inports']:
self.inports.setdefault(port, actorport.InPort(port, self))._set_state(state['inports'][port])
for port in state['outports']:
self.outports.setdefault(port, actorport.OutPort(port, self))._set_state(state['outports'][port])
self._component_members= set(state['_component_members'])
for key in self._private_state_keys:
if key not in self.__dict__:
self.__dict__[key] = state.get(key, None)
else:
obj = self.__dict__[key]
if _implements_state(obj):
obj.set_state(state.get(key))
else:
self.__dict__[key] = state.get(key, None)
def _replication_state(self):
return None
def _set_replication_state(self, state):
pass
def _security_state(self):
return {'_subject_attributes':self._subject_attributes}
def _set_security_state(self, state):
pass
def _managed_state(self):
state = {key: self.__dict__[key] for key in self._managed}
return state
def _set_managed_state(self, state):
self._managed.update(set(state.keys()))
for key, val in state.iteritems():
self.__dict__[key] = val
def serialize(self):
state = {}
state['private'] = self._private_state()
rstate = self._replication_state()
if rstate is not None:
state['replication'] = rstate
state['managed'] = self._managed_state()
state['security']= self._security_state()
state['custom'] = self.state()
return state
def deserialize(self, state):
self._set_private_state(state['private'])
self._set_replication_state(state.get('replication', None))
self._set_security_state(state['security'])
self._set_managed_state(state['managed'])
self.set_state(state['custom'])
def exception_handler(self, action, args):
_log.error("ExceptionToken encountered\n name: %s\n type: %s\n action: %s\n args: %s\n" %
(self._name, self._type, action.__name__, args))
raise Exception("ExceptionToken NOT HANDLED")
def events(self):
return []
def component_add(self, actor_ids):
if not isinstance(actor_ids, (set, list, tuple)):
actor_ids = [actor_ids]
self._component_members.update(actor_ids)
def component_remove(self, actor_ids):
if not isinstance(actor_ids, (set, list, tuple)):
actor_ids = [actor_ids]
self._component_members -= set(actor_ids)
def part_of_component(self):
return len(self._component_members - set([self._id]))>0
def component_members(self):
return self._component_members
def requirements_add(self, deploy_reqs, extend=False):
if extend:
self._deployment_requirements.extend(deploy_reqs)
else:
self._deployment_requirements = deploy_reqs
def requirements_get(self):
if self._port_property_capabilities is None:
self._port_property_capabilities = self._derive_port_property_capabilities()
capability_port = [{
'op': 'port_property_match',
'kwargs': {'port_property': self._port_property_capabilities},
'type': '+'
}]
if hasattr(self, 'requires') and self.requires:
capability_require = [{
'op': 'actor_reqs_match',
'kwargs': {'requires': self.requires},
'type': '+'
}]
else:
capability_require = []
return (self._deployment_requirements + capability_require +
capability_port + self._replication_id._placement_req)
def _derive_port_property_capabilities(self):
port_property_capabilities = set([])
for port in self.inports.values():
port_property_capabilities.update(get_port_property_capabilities(port.properties))
for port in self.outports.values():
port_property_capabilities.update(get_port_property_capabilities(port.properties))
_log.debug("derive_port_property_capabilities:" + str(port_property_capabilities))
return get_port_property_runtime(port_property_capabilities)
def signature_set(self, signature):
if self._signature is None:
self._signature = signature
|
Apache License 2.0
|
gardener/cc-utils
|
github/util.py
|
outdated_draft_releases
|
python
|
def outdated_draft_releases(
draft_releases: [github3.repos.release.Release],
greatest_release_version: str,
):
greatest_release_version_info = version.parse_to_semver(greatest_release_version)
def _has_semver_draft_prerelease_label(release_name):
version_info = version.parse_to_semver(release_name)
if version_info.prerelease != 'draft':
return False
return True
autogenerated_draft_releases = [
release for release in draft_releases
if release.name
and version.is_semver_parseable(release.name)
and _has_semver_draft_prerelease_label(release.name)
]
draft_release_version_infos = [
version.parse_to_semver(release.name)
for release in autogenerated_draft_releases
]
def _yield_outdated_version_infos_from_partition(partition):
if len(partition) == 1:
version_info = partition.pop()
if version_info < greatest_release_version_info and version_info.patch == 0:
yield version_info
else:
yield from [
version_info
for version_info in partition[1:]
]
outdated_version_infos = list()
for partition in version.partition_by_major_and_minor(draft_release_version_infos):
outdated_version_infos.extend(_yield_outdated_version_infos_from_partition(partition))
outdated_draft_releases = [
release
for release in autogenerated_draft_releases
if version.parse_to_semver(release.name) in outdated_version_infos
]
return outdated_draft_releases
|
Find outdated draft releases from a list of draft releases and return them. This is achieved
by partitioning the release versions according to their joined major and minor version.
Partitions are then checked:
- if there is only a single release in a partition it is either a hotfix release
(keep corresponding release) or it is not (delete if it is not the greatest release
according to semver)
- if there are multiple releases versions in a partition, keep only the release
corresponding to greatest (according to semver)
|
https://github.com/gardener/cc-utils/blob/70b9c15b002218b5d06633f70f0c4f1489c74dbc/github/util.py#L868-L923
|
import datetime
import deprecated
import enum
import io
import re
import sys
import typing
from typing import Iterable, Tuple
from pydash import _
import requests
import github3
from github3.github import GitHub
from github3.repos.release import Release
from github3.exceptions import NotFoundError, ForbiddenError
from github3.orgs import Team
import gci.componentmodel
import gci.componentmodel as cm
import ccc.github
import ci.util
import product.v2
import version
from model.github import GithubConfig
class RepoPermission(enum.Enum):
PULL = "pull"
PUSH = "push"
ADMIN = "admin"
class GitHubRepoBranch:
def __init__(
self,
github_config: GithubConfig,
repo_owner: str,
repo_name: str,
branch: str,
):
self._github_config = ci.util.not_none(github_config)
self._repo_owner = ci.util.not_empty(repo_owner)
self._repo_name = ci.util.not_empty(repo_name)
self._branch = ci.util.not_empty(branch)
def github_repo_path(self):
return f'{self._repo_owner}/{self._repo_name}'
def github_config(self):
return self._github_config
def repo_owner(self):
return self._repo_owner
def repo_name(self):
return self._repo_name
def branch(self):
return self._branch
class RepositoryHelperBase:
GITHUB_TIMESTAMP_UTC_FORMAT = '%Y-%m-%dT%H:%M:%SZ'
def __init__(
self,
owner: str,
name: str,
default_branch: str='master',
github_cfg: GithubConfig=None,
github_api: GitHub=None,
):
if not (bool(github_cfg) ^ bool(github_api)):
raise ValueError('exactly one of github_api and github_cfg must be given')
if github_cfg:
self.github = ccc.github.github_api(github_cfg)
else:
self.github = github_api
self.repository = self._create_repository(
owner=owner,
name=name
)
self.owner = owner
self.repository_name = name
self.default_branch = default_branch
def _create_repository(self, owner: str, name: str):
try:
repository = self.github.repository(
owner=owner,
repository=name
)
return repository
except NotFoundError as nfe:
raise RuntimeError(
'failed to retrieve repository {o}/{r}'.format(
o=owner,
r=name,
),
nfe
)
class UpgradePullRequest:
def __init__(self,
pull_request,
from_ref: typing.Union[cm.Resource, cm.ComponentReference],
to_ref: typing.Union[cm.Resource, cm.ComponentReference],
):
self.pull_request = ci.util.not_none(pull_request)
if from_ref.name != to_ref.name:
raise ValueError(f'reference name mismatch {from_ref.name=} {to_ref.name=}')
if (isinstance(from_ref, cm.Resource) and isinstance(to_ref, cm.Resource) and
from_ref.type != to_ref.type
) or type(from_ref) != type(to_ref):
raise ValueError(f'reference types do not match: {from_ref=} {to_ref=}')
self.ref_name = from_ref.name
self.from_ref = from_ref
self.to_ref = to_ref
if isinstance(from_ref, cm.Resource):
self.reference_type_name = from_ref.type.value
elif isinstance(from_ref, cm.ComponentReference):
self.reference_type_name = product.v2.COMPONENT_TYPE_NAME
else:
raise NotImplementedError(from_ref.type)
def is_obsolete(
self,
reference_component: gci.componentmodel.Component,
):
if not isinstance(reference_component, gci.componentmodel.Component):
raise TypeError(reference_component)
if self.reference_type_name == product.v2.COMPONENT_TYPE_NAME:
reference_refs = sorted(
[
rc for rc in reference_component.componentReferences
if rc.componentName == self.ref_name
],
key=lambda r: version.parse_to_semver(r.version)
)
if not reference_refs:
return False
greatest_reference_version = version.parse_to_semver(reference_refs[-1].version)
else:
raise NotImplementedError
return greatest_reference_version >= version.parse_to_semver(self.to_ref.version)
def target_matches(
self,
reference: typing.Tuple[cm.ComponentReference, cm.Resource],
reference_version: str = None,
):
if not isinstance(reference, cm.ComponentReference) and not isinstance(reference, cm.Resource):
raise TypeError(reference)
if isinstance(reference, cm.ComponentReference):
if product.v2.COMPONENT_TYPE_NAME != self.reference_type_name:
return False
if reference.componentName != self.ref_name:
return False
else:
if reference.name != self.ref_name:
return False
if reference.type.value != self.reference_type_name:
return False
reference_version = reference_version or reference.version
if reference_version != self.to_ref.version:
return False
return True
def purge(self):
self.pull_request.close()
head_ref = 'heads/' + self.pull_request.head.ref
self.pull_request.repository.ref(head_ref).delete()
class PullRequestUtil(RepositoryHelperBase):
PR_TITLE_PATTERN = re.compile(r'^\[ci:(\S*):(\S*):(\S*)->(\S*)\]$')
@staticmethod
def calculate_pr_title(
reference: gci.componentmodel.ComponentReference,
from_version: str,
to_version: str,
) -> str:
if not isinstance(reference, gci.componentmodel.ComponentReference):
raise TypeError(reference)
type_name = product.v2.COMPONENT_TYPE_NAME
reference_name = reference.componentName
return f'[ci:{type_name}:{reference_name}:{from_version}->{to_version}]'
def _has_upgrade_pr_title(self, pull_request) -> bool:
return bool(self.PR_TITLE_PATTERN.fullmatch(pull_request.title))
def _pr_to_upgrade_pull_request(self, pull_request):
ci.util.not_none(pull_request)
match = self.PR_TITLE_PATTERN.fullmatch(pull_request.title)
if match is None:
raise ValueError("PR-title '{t}' did not match title-schema".format(
t=pull_request.title)
)
reference_type_name = match.group(1)
if not reference_type_name:
reference_type_name = 'component'
if not reference_type_name == 'component':
raise NotImplementedError(reference_type_name)
ref_name = match.group(2)
from_version = match.group(3)
to_version = match.group(4)
from_ref = cm.ComponentReference(
name=ref_name,
componentName=ref_name,
version=from_version,
)
to_ref = cm.ComponentReference(
name=ref_name,
componentName=ref_name,
version=to_version,
)
return UpgradePullRequest(
pull_request=pull_request,
from_ref=from_ref,
to_ref=to_ref,
)
def enumerate_upgrade_pull_requests(self, state_filter: str='open'):
def pr_to_upgrade_pr(pull_request):
return self._pr_to_upgrade_pull_request(pull_request=pull_request)
def strip_title(pull_request):
pull_request.title = pull_request.title.strip()
return pull_request
parsed_prs = ci.util.FluentIterable(self.repository.pull_requests(state=state_filter)) .map(strip_title) .filter(self._has_upgrade_pr_title) .map(pr_to_upgrade_pr) .filter(lambda e: e) .as_list()
return parsed_prs
def retrieve_pr_template_text(self):
pattern = re.compile(r"(pull_request_template)(\..{1,3})?$")
directories = ['.github', '.', 'docs']
for directory in directories:
try:
for filename, content in self.repository.directory_contents(directory):
if pattern.match(filename):
content.refresh()
return content.decoded.decode('utf-8')
except github3.exceptions.NotFoundError:
pass
return None
class GitHubRepositoryHelper(RepositoryHelperBase):
def create_or_update_file(
self,
file_path: str,
file_contents: str,
commit_message: str,
branch: str=None,
) -> str:
if branch is None:
branch = self.default_branch
try:
contents = self.retrieve_file_contents(file_path=file_path, branch=branch)
except NotFoundError:
contents = None
if contents:
decoded_contents = contents.decoded.decode('utf-8')
if decoded_contents == file_contents:
return ci.util.info(
'Repository file contents are identical to passed file contents.'
)
else:
response = contents.update(
message=commit_message,
content=file_contents.encode('utf-8'),
branch=branch,
)
else:
response = self.repository.create_file(
path=file_path,
message=commit_message,
content=file_contents.encode('utf-8'),
branch=branch,
)
return response['commit'].sha
@staticmethod
def from_githubrepobranch(
githubrepobranch: GitHubRepoBranch,
):
return GitHubRepositoryHelper(
github_cfg=githubrepobranch.github_config(),
owner=githubrepobranch.repo_owner(),
name=githubrepobranch.repo_name(),
default_branch=githubrepobranch.branch(),
)
def retrieve_file_contents(self, file_path: str, branch: str=None):
if branch is None:
branch = self.default_branch
return self.repository.file_contents(
path=file_path,
ref=branch,
)
def retrieve_text_file_contents(
self,
file_path: str,
branch: str=None,
encoding: str='utf-8',
):
if branch is None:
branch = self.default_branch
contents = self.retrieve_file_contents(file_path, branch)
return contents.decoded.decode(encoding)
def create_tag(
self,
tag_name: str,
tag_message: str,
repository_reference: str,
author_name: str,
author_email: str,
repository_reference_type: str='commit'
):
author = {
'name': author_name,
'email': author_email,
'date': datetime.datetime.now(datetime.timezone.utc)
.strftime(self.GITHUB_TIMESTAMP_UTC_FORMAT)
}
self.repository.create_tag(
tag=tag_name,
message=tag_message,
sha=repository_reference,
obj_type=repository_reference_type,
tagger=author
)
MAXIMUM_GITHUB_RELEASE_BODY_LENGTH = 25000
def _replacement_release_notes(
self,
asset_url: str,
component_name: str,
component_version: str,
):
return (
f'The release-notes for component **{component_name}** in version '
f'**{component_version}** exceeded the maximum length of '
f'{self.MAXIMUM_GITHUB_RELEASE_BODY_LENGTH} characters allowed by GitHub for '
'release-bodies.\n'
f'They have been uploaded as release-asset and can be found at {asset_url}.'
)
RELEASE_NOTES_ASSET_NAME = 'release_notes.md'
def create_release(
self,
tag_name: str,
body: str,
draft: bool=False,
prerelease: bool=False,
name: str=None,
component_name: str=None,
component_version: str=None,
):
if len(body) < self.MAXIMUM_GITHUB_RELEASE_BODY_LENGTH:
return self.repository.create_release(
tag_name=tag_name,
body=body,
draft=draft,
prerelease=prerelease,
name=name
)
else:
release = self.repository.create_release(
tag_name=tag_name,
body='',
draft=draft,
prerelease=prerelease,
name=name
)
release_notes_asset = release.upload_asset(
content_type='text/markdown',
name=self.RELEASE_NOTES_ASSET_NAME,
asset=body.encode('utf-8'),
label='Release Notes',
)
release.edit(
body=self._replacement_release_notes(
asset_url=release_notes_asset.browser_download_url,
component_name=component_name,
component_version=component_version or tag_name,
)
)
return release
def delete_releases(
self,
release_names: [str],
):
for release in self.repository.releases():
if release.name in release_names:
release.delete()
def create_draft_release(
self,
name: str,
body: str,
component_name: str=None,
component_version: str=None,
):
return self.create_release(
tag_name='',
name=name,
body=body,
draft=True,
component_name=component_name,
component_version=component_version,
)
def promote_draft_release(
self,
draft_release,
release_tag,
release_version,
component_name: str=None,
):
draft_release.edit(
tag_name=release_tag,
body=None,
draft=False,
prerelease=False,
name=release_version,
)
release_notes_asset = next(
(a for a in draft_release.assets() if a.name == self.RELEASE_NOTES_ASSET_NAME),
None,
)
if release_notes_asset:
draft_release.edit(
body=self._replacement_release_notes(
asset_url=release_notes_asset.browser_download_url,
component_name=component_name,
component_version=release_version,
)
)
def update_release_notes(
self,
tag_name: str,
component_name: str,
body: str,
) -> bool:
ci.util.not_empty(tag_name)
release = self.repository.release_from_tag(tag_name)
if not release:
raise RuntimeError(
f"No release with tag '{tag_name}' found "
f"in repository {self.repository}"
)
if len(body) < self.MAXIMUM_GITHUB_RELEASE_BODY_LENGTH:
release.edit(body=body)
else:
release_notes_asset = next(
(a for a in release.assets() if a.name == self.RELEASE_NOTES_ASSET_NAME),
None,
)
if release_notes_asset:
release_notes_asset.delete()
release_notes_asset = release.upload_asset(
content_type='text/markdown',
name=self.RELEASE_NOTES_ASSET_NAME,
asset=body.encode('utf-8'),
label='Release Notes',
)
release.edit(
body=self._replacement_release_notes(
asset_url=release_notes_asset.browser_download_url,
component_version=tag_name,
component_name=component_name)
)
return release
def draft_release_with_name(
self,
name: str
) -> Release:
releases = list(self.repository.releases())
release = _.find(releases, lambda rls: rls.draft and rls.name == name)
return release
def tag_exists(
self,
tag_name: str,
):
ci.util.not_empty(tag_name)
try:
self.repository.ref('tags/' + tag_name)
return True
except NotFoundError:
return False
def retrieve_asset_contents(self, release_tag: str, asset_label: str):
ci.util.not_none(release_tag)
ci.util.not_none(asset_label)
release = self.repository.release_from_tag(release_tag)
for asset in release.assets():
if asset.label == asset_label or asset.name == asset_label:
break
else:
response = requests.Response()
response.status_code = 404
response.json = lambda: {'message':'no asset with label {} found'.format(asset_label)}
raise NotFoundError(resp=response)
buffer = io.BytesIO()
asset.download(buffer)
return buffer.getvalue().decode()
def release_versions(self):
for tag_name in self.release_tags():
try:
version.parse_to_semver(tag_name)
yield tag_name
except ValueError:
pass
def release_tags(self):
return _ .chain(self.repository.releases()) .filter(lambda release: not release.draft and not release.prerelease) .map('tag_name') .filter(lambda tag: tag is not None) .value()
def search_issues_in_repo(self, query: str):
query = "repo:{org}/{repo} {query}".format(
org=self.owner,
repo=self.repository_name,
query=query
)
search_result = self.github.search_issues(query)
return search_result
def is_pr_created_by_org_member(self, pull_request_number):
pull_request = self.repository.pull_request(pull_request_number)
user_login = pull_request.user.login
return self.is_org_member(self.owner, user_login)
def add_labels_to_pull_request(self, pull_request_number, *labels):
pull_request = self.repository.pull_request(pull_request_number)
pull_request.issue().add_labels(*labels)
def add_comment_to_pr(self, pull_request_number, comment):
pull_request = self.repository.pull_request(pull_request_number)
pull_request.create_comment(comment)
def is_org_member(self, organization_name, user_login):
organization = self.github.organization(organization_name)
return organization.is_member(user_login)
def delete_outdated_draft_releases(self) -> Iterable[Tuple[github3.repos.release.Release, bool]]:
releases = [release for release in self.repository.releases()]
non_draft_releases = [release for release in releases if not release.draft]
draft_releases = [release for release in releases if release.draft]
greatest_release_version = find_greatest_github_release_version(non_draft_releases)
if greatest_release_version is not None:
draft_releases_to_delete = outdated_draft_releases(
draft_releases=draft_releases,
greatest_release_version=greatest_release_version,
)
else:
draft_releases_to_delete = []
for release in draft_releases_to_delete:
yield release, release.delete()
@deprecated.deprecated
def github_cfg_for_hostname(cfg_factory, host_name, require_labels=('ci',)):
return ccc.github.github_cfg_for_hostname(
host_name=host_name,
cfg_factory=cfg_factory,
require_labels=require_labels,
)
@deprecated.deprecated
def _create_github_api_object(github_cfg):
return ccc.github.github_api(github_cfg=github_cfg)
def branches(
github_cfg,
repo_owner: str,
repo_name: str,
):
github_api = ccc.github.github_api(github_cfg=github_cfg)
repo = github_api.repository(repo_owner, repo_name)
return list(map(lambda r: r.name, repo.branches()))
def retrieve_email_addresses(
github_cfg: GithubConfig,
github_users: [str],
out_file: str=None
):
github = ccc.github.github_api(github_cfg=github_cfg)
def retrieve_email(username: str):
user = github.user(username)
return user.email
fh = open(out_file, 'w') if out_file else sys.stdout
email_addresses_count = 0
for email_address in filter(None, map(retrieve_email, github_users)):
fh.write(email_address + '\n')
email_addresses_count += 1
ci.util.verbose('retrieved {sc} email address(es) from {uc} user(s)'.format(
sc=email_addresses_count,
uc=len(github_users)
)
)
def _create_team(
github: GitHub,
organization_name: str,
team_name: str
):
organization = github.organization(organization_name)
team = _retrieve_team_by_name_or_none(organization, team_name)
if team:
ci.util.verbose("Team {name} already exists".format(name=team_name))
return
try:
organization.create_team(name=team_name)
ci.util.info("Team {name} created".format(name=team_name))
except ForbiddenError as err:
ci.util.fail("{err} Cannot create team {name} in org {org} due to missing privileges".format(
err=err,
name=team_name,
org=organization_name
))
def _add_user_to_team(
github: GitHub,
organization_name: str,
team_name: str,
user_name: str
):
organization = github.organization(organization_name)
team = _retrieve_team_by_name_or_none(organization, team_name)
if not team:
ci.util.fail(f"Team '{team_name}' does not exist")
if team.is_member(user_name):
ci.util.verbose(f"'{user_name}' is already assigned to team '{team_name}'")
return
if team.add_member(username=user_name):
ci.util.info(f"Added '{user_name}' to team '{team_name}'")
else:
ci.util.fail(
f"Could not add '{user_name}' to team '{team_name}'. Check for missing privileges"
)
def _add_all_repos_to_team(
github: GitHub,
organization_name: str,
team_name: str,
permission: RepoPermission=RepoPermission.ADMIN
):
organization = github.organization(organization_name)
team = _retrieve_team_by_name_or_none(organization, team_name)
if not team:
ci.util.fail("Team {name} does not exist".format(name=team_name))
for repo in organization.repositories():
if team.has_repository(repo.full_name):
ci.util.verbose("Team {teamnname} already assigned to repo {reponame}".format(
teamnname=team_name,
reponame=repo.full_name
))
continue
team.add_repository(repository=repo.full_name, permission=permission.value)
ci.util.info("Added team {teamname} to repository {reponame}".format(
teamname=team_name,
reponame=repo.full_name
))
def _retrieve_team_by_name_or_none(
organization: github3.orgs.Organization,
team_name: str
) -> Team:
team_list = list(filter(lambda t: t.name == team_name, organization.teams()))
return team_list[0] if team_list else None
def find_greatest_github_release_version(
releases: typing.List[github3.repos.release.Release],
warn_for_unparseable_releases: bool = True,
ignore_prerelease_versions: bool = False,
):
release_versions = [
release.name if release.name else release.tag_name
for release in releases
]
def filter_non_semver_parseable_releases(release_name):
try:
version.parse_to_semver(release_name)
return True
except ValueError:
if warn_for_unparseable_releases:
ci.util.warning(f'ignoring release {release_name=} (not semver)')
return False
release_versions = [
name for name in filter(filter_non_semver_parseable_releases, release_versions)
]
release_version_infos = [
version.parse_to_semver(release_version)
for release_version in release_versions
]
latest_version = version.find_latest_version(
versions=release_version_infos,
ignore_prerelease_versions=ignore_prerelease_versions,
)
if latest_version:
return str(latest_version)
else:
return None
|
Apache License 2.0
|
bsc-wdc/dislib
|
examples/linear_regression_plot.py
|
main
|
python
|
def main():
x = np.array([1000, 4000, 5000, 4500, 3000, 4000, 9000, 11000, 15000,
12000, 7000, 3000])
y = np.array([9914, 40487, 54324, 50044, 34719, 42551, 94871, 118914,
158484, 131348, 78504, 36284])
x_ds = ds.array(x[:, np.newaxis], (4, 1))
y_ds = ds.array(y[:, np.newaxis], (4, 1))
reg = LinearRegression()
reg.fit(x_ds, y_ds)
coef = reg.coef_.collect()
intercept = reg.intercept_.collect()
print(coef, intercept)
scatter(x, y, marker='x')
x_mesh = np.linspace(min(x), max(x), 1000)
plot(x_mesh, [coef*x + intercept for x in x_mesh])
show()
|
Linear regression example with plot
|
https://github.com/bsc-wdc/dislib/blob/56209f1e1f978ad70ec1b5099b75e17ac7276c6f/examples/linear_regression_plot.py#L8-L30
|
import numpy as np
from pylab import scatter, plot, show
import dislib as ds
from dislib.regression import LinearRegression
|
Apache License 2.0
|
ramonhagenaars/jsons
|
jsons/_datetime_impl.py
|
_new_datetime
|
python
|
def _new_datetime(date_inst: date, time_inst: time, tzinfo: timezone) -> datetime:
return datetime.combine(date_inst, time_inst).replace(tzinfo=tzinfo)
|
Return a datetime instance from a date, time and timezone.
This function was required due to the missing argument for tzinfo under the
Linux Python distribution.
:param date_inst: the date.
:param time_inst: the time.
:param tzinfo: the Timezone.
:return: a combined datetime instance.
|
https://github.com/ramonhagenaars/jsons/blob/12594ebb13247a26a8511644e5ca324817075385/jsons/_datetime_impl.py#L128-L140
|
from datetime import datetime, timezone, timedelta, time, date
from typing import Union
RFC3339_DATE_PATTERN = '%Y-%m-%d'
RFC3339_TIME_PATTERN = '%H:%M:%S'
RFC3339_DATETIME_PATTERN = '{}T{}'.format(
RFC3339_DATE_PATTERN, RFC3339_TIME_PATTERN)
def to_str(
dt: Union[datetime, date],
strip_microseconds: bool,
fork_inst: type,
pattern: str = RFC3339_DATETIME_PATTERN) -> str:
offset = get_offset_str(dt, fork_inst)
if not strip_microseconds and getattr(dt, 'microsecond', None):
pattern += '.%f'
return dt.strftime("{}{}".format(pattern, offset))
def get_offset_str(
obj: Union[datetime, date, timedelta],
fork_inst: type) -> str:
result = ''
if isinstance(obj, datetime):
result = _datetime_offset_str(obj, fork_inst)
elif isinstance(obj, timedelta):
result = _timedelta_offset_str(obj)
return result
def get_datetime_inst(obj: str, pattern: str) -> datetime:
if obj[-1] == 'Z':
result = _datetime_utc_inst(obj, pattern)
elif 'T' in pattern:
result = _datetime_offset_inst(obj, pattern)
else:
result = datetime.strptime(obj, pattern)
return result
def _datetime_offset_str(obj: datetime, fork_inst: type) -> str:
tzone = obj.tzinfo
if not tzone:
fork_inst._warn('The use of datetimes without timezone is dangerous '
'and can lead to undesired results.',
'datetime-without-tz')
tzone = datetime.now(timezone.utc).astimezone().tzinfo
if tzone is timezone.utc or tzone.utc is timezone.utc:
return '+00:00'
offset = 'Z'
if tzone.tzname(None) not in ('UTC', 'UTC+00:00'):
tdelta = tzone.utcoffset(None) or getattr(tzone, 'adjusted_offset', tzone.utcoffset(obj))
offset = _timedelta_offset_str(tdelta)
return offset
def _timedelta_offset_str(tdelta: timedelta) -> str:
offset_s = tdelta.total_seconds()
offset_h = int(offset_s / 3600)
offset_m = int((offset_s / 60) % 60)
offset_t = time(abs(offset_h), abs(offset_m))
operator = '+' if offset_s > 0 else '-'
offset = offset_t.strftime('{}%H:%M'.format(operator))
return offset
def _datetime_utc_inst(obj: str, pattern: str) -> datetime:
dattim_str = obj[0:-1]
dattim_obj = datetime.strptime(dattim_str, pattern)
return _new_datetime(dattim_obj.date(), dattim_obj.time(), timezone.utc)
def _datetime_offset_inst(obj: str, pattern: str) -> datetime:
dat_str, tim_str = obj.split('T')
splitter, factor = ('+', 1) if '+' in tim_str else ('-', -1)
naive_tim_str, offset = tim_str.split(splitter)
naive_dattim_str = '{}T{}'.format(dat_str, naive_tim_str)
dattim_obj = datetime.strptime(naive_dattim_str, pattern)
hrs_str, mins_str = offset.split(':')
hrs = int(hrs_str) * factor
mins = int(mins_str) * factor
tz = timezone(offset=timedelta(hours=hrs, minutes=mins))
return _new_datetime(dattim_obj.date(), dattim_obj.time(), tz)
|
MIT License
|
membase/membase-cli
|
restclient.py
|
RestClient.sendCmd
|
python
|
def sendCmd(self, method, uri,
user='', password='', opts = {}):
data = ''
headers = {}
encoded_params = ''
if user and password:
self.user = user
self.password = password
auth = ('Basic ' +
string.strip(base64.encodestring(user + ':' + password)))
headers['Authorization'] = auth
self.bootStrap(headers)
if method == 'POST':
encoded_params = urllib.urlencode(self.params)
headers['Content-type'] = 'application/x-www-form-urlencoded'
elif method == 'DELETE':
encoded_params = urllib.urlencode(self.params)
headers['Content-type'] = 'application/x-www-form-urlencoded'
else:
if self.params:
uri = uri, '?', urllib.urlencode(self.params)
if self.debug:
print "METHOD: %s" % method
print "PARAMS: ", self.params
print "ENCODED_PARAMS: %s" % encoded_params
print "REST CMD: %s %s" % (method,uri)
self.makeRequest(method, uri, encoded_params, headers)
response = self.conn.getresponse()
if self.debug:
print "response.status: %s" % response.status
return response
|
sendCmd()
This method handles accessing the REST API and returning
either data, if a GET, or a success or error message if a POST
|
https://github.com/membase/membase-cli/blob/13195507facba8cb8f85dafb07df1eeff3ea7dcd/restclient.py#L87-L130
|
import sys
import socket
import httplib
import urllib
import base64
import simplejson as json
import string
class RestClient:
def __init__(self, server, port, opts= {}):
self.server = server
self.port = port
self.debug = opts.get('debug', False)
self.uri = '/pools'
self.method = 'GET'
self.params = {}
self.user = ''
self.password = ''
self.clientConnect(server, int(port))
def clientConnect(self, server, port):
error_connect = "Unable to connect to %s" % self.server
try:
self.conn = httplib.HTTPConnection(server, port)
except httplib.NotConnected:
print error_connect
sys.exit(2)
except httplib.HTTPException:
print error_connect
sys.exit(2)
except socket.error:
print error_connect
sys.exit(2)
except socket.gaierror:
print error_connect
sys.exit(2)
def setParam(self, param, value):
self.params[param] = value
def handleResponse(self,
method,
response,
opts={ 'success_msg':'',
'error_msg':'' }):
if response.status in [200, 201, 202, 204, 302]:
if method == 'GET':
return response.read()
return "SUCCESS: %s" % opts['success_msg']
if response.status == 401:
print 'ERROR: unable to access the REST API - please check your username (-u) and password (-p)'
sys.exit(2)
print 'ERROR: %s (%d) %s' % (opts['error_msg'],
response.status, response.reason)
output_json = json.loads(response.read())
print output_json
if "errors" in output_json:
for error_code,error_message in output_json["errors"].iteritems():
print "ERROR: %s" % error_message
sys.exit(2)
def bootStrap(self, headers):
self.conn.request('GET', '/pools', '', headers)
response = self.conn.getresponse()
opts = {'error_msg':'bootstrap failed'}
return self.handleResponse('GET', response, opts)
|
Apache License 2.0
|
packtpublishing/functional-python-programming-second-edition
|
Chapter04/ch04_ex4.py
|
mean
|
python
|
def mean(samples: Sequence) -> float:
return s1(samples)/s0(samples)
|
Arithmetic mean.
>>> d = [4, 36, 45, 50, 75]
>>> mean(d)
42.0
|
https://github.com/packtpublishing/functional-python-programming-second-edition/blob/0ec14a74e3bf92fcbcea471ee43e8d22a61b7b35/Chapter04/ch04_ex4.py#L31-L39
|
from math import sqrt
from collections import Sequence
def s0(samples: Sequence) -> float:
return sum(1 for x in samples)
def s1(samples: Sequence) -> float:
return sum(samples)
def s2(samples: Sequence) -> float:
return sum(x**2 for x in samples)
|
MIT License
|
masterscrat/chatistics
|
parsers/utils.py
|
detect_language
|
python
|
def detect_language(df, min_token_count=5):
for name, group in df.groupby(df.conversationWithName):
text = ' '.join(group['text'].dropna().values[:100])
if len(text.split()) >= min_token_count:
try:
lang = langdetect.detect(text)
except LangDetectException:
lang = 'unknown'
else:
lang = 'unknown'
df.loc[group.index, 'language'] = lang
return df
|
Detects language of input text
|
https://github.com/masterscrat/chatistics/blob/c091db38099f9edf9b39c2ed5fe99ace6a864d87/parsers/utils.py#L22-L34
|
import os
import datetime
import logging
import langdetect
from langdetect.lang_detect_exception import LangDetectException
log = logging.getLogger(__name__)
def export_dataframe(df, filename):
filepath = os.path.join('data', filename)
log.info(f'Saving to pickle file {filepath}...')
df.to_pickle(filepath)
def timestamp_to_ordinal(value):
return datetime.datetime.fromtimestamp(float(value)).toordinal()
|
MIT License
|
okfn/bibserver
|
bibserver/web.py
|
set_current_user
|
python
|
def set_current_user():
return dict(current_user=current_user)
|
Set some template context globals.
|
https://github.com/okfn/bibserver/blob/96ab295e9f11a2d29ffabd60b0058ca7a1ec0f7c/bibserver/web.py#L34-L36
|
import os
import urllib2
import unicodedata
import httplib
import json
import subprocess
from copy import deepcopy
from datetime import datetime
from flask import Flask, jsonify, json, request, redirect, abort, make_response
from flask import render_template, flash
from flask.views import View, MethodView
from flask_login import login_user, current_user
import bibserver.dao
import bibserver.util as util
import bibserver.importer
import bibserver.ingest
from bibserver.config import config
from bibserver.core import app, login_manager
from bibserver.view.account import blueprint as account
from bibserver import auth
app.register_blueprint(account, url_prefix='/account')
@login_manager.user_loader
def load_account_for_login_manager(userid):
out = bibserver.dao.Account.get(userid)
return out
@app.context_processor
|
MIT License
|
roclark/sportsipy
|
sportsipy/nfl/teams.py
|
Team.losses
|
python
|
def losses(self):
return self._losses
|
Returns an ``int`` of the number of games the team lost during the
season.
|
https://github.com/roclark/sportsipy/blob/c19f545d3376d62ded6304b137dc69238ac620a9/sportsipy/nfl/teams.py#L275-L280
|
import pandas as pd
import re
from .constants import (CONF_CHAMPIONSHIP,
DIVISION,
LOST_CONF_CHAMPS,
LOST_DIVISIONAL,
LOST_SUPER_BOWL,
LOST_WILD_CARD,
PARSING_SCHEME,
SUPER_BOWL,
WILD_CARD,
WON_SUPER_BOWL)
from ..constants import LOSS, WIN
from ..decorators import float_property_decorator, int_property_decorator
from .. import utils
from .nfl_utils import _retrieve_all_teams
from .roster import Roster
from .schedule import Schedule
class Team:
def __init__(self, team_name=None, team_data=None, rank=None, year=None,
season_page=None):
self._year = year
self._rank = rank
self._abbreviation = None
self._name = None
self._wins = None
self._losses = None
self._win_percentage = None
self._games_played = None
self._points_for = None
self._points_against = None
self._points_difference = None
self._margin_of_victory = None
self._strength_of_schedule = None
self._simple_rating_system = None
self._offensive_simple_rating_system = None
self._defensive_simple_rating_system = None
self._yards = None
self._plays = None
self._yards_per_play = None
self._turnovers = None
self._fumbles = None
self._first_downs = None
self._pass_completions = None
self._pass_attempts = None
self._pass_yards = None
self._pass_touchdowns = None
self._interceptions = None
self._pass_net_yards_per_attempt = None
self._pass_first_downs = None
self._rush_attempts = None
self._rush_yards = None
self._rush_touchdowns = None
self._rush_yards_per_attempt = None
self._rush_first_downs = None
self._penalties = None
self._yards_from_penalties = None
self._first_downs_from_penalties = None
self._percent_drives_with_points = None
self._percent_drives_with_turnovers = None
self._points_contributed_by_offense = None
if team_name:
team_data = self._retrieve_team_data(year, team_name, season_page)
self._parse_team_data(team_data)
def __str__(self):
return f'{self.name} ({self.abbreviation}) - {self._year}'
def __repr__(self):
return self.__str__()
def _retrieve_team_data(self, year, team_name, season_page):
team_data_dict, year = _retrieve_all_teams(year, season_page)
self._year = year
team_data = team_data_dict[team_name]['data']
self._rank = team_data_dict[team_name]['rank']
return team_data
def _parse_team_data(self, team_data):
for field in self.__dict__:
if field == '_rank' or field == '_year':
continue
value = utils._parse_field(PARSING_SCHEME,
team_data,
str(field)[1:])
setattr(self, field, value)
@property
def dataframe(self):
fields_to_include = {
'abbreviation': self.abbreviation,
'defensive_simple_rating_system':
self.defensive_simple_rating_system,
'first_downs': self.first_downs,
'first_downs_from_penalties': self.first_downs_from_penalties,
'fumbles': self.fumbles,
'games_played': self.games_played,
'interceptions': self.interceptions,
'losses': self.losses,
'margin_of_victory': self.margin_of_victory,
'name': self.name,
'offensive_simple_rating_system':
self.offensive_simple_rating_system,
'pass_attempts': self.pass_attempts,
'pass_completions': self.pass_completions,
'pass_first_downs': self.pass_first_downs,
'pass_net_yards_per_attempt': self.pass_net_yards_per_attempt,
'pass_touchdowns': self.pass_touchdowns,
'pass_yards': self.pass_yards,
'penalties': self.penalties,
'percent_drives_with_points': self.percent_drives_with_points,
'percent_drives_with_turnovers':
self.percent_drives_with_turnovers,
'plays': self.plays,
'points_against': self.points_against,
'points_contributed_by_offense':
self.points_contributed_by_offense,
'points_difference': self.points_difference,
'points_for': self.points_for,
'post_season_result': self.post_season_result,
'rank': self.rank,
'rush_attempts': self.rush_attempts,
'rush_first_downs': self.rush_first_downs,
'rush_touchdowns': self.rush_touchdowns,
'rush_yards': self.rush_yards,
'rush_yards_per_attempt': self.rush_yards_per_attempt,
'simple_rating_system': self.simple_rating_system,
'strength_of_schedule': self.strength_of_schedule,
'turnovers': self.turnovers,
'win_percentage': self.win_percentage,
'wins': self.wins,
'yards': self.yards,
'yards_from_penalties': self.yards_from_penalties,
'yards_per_play': self.yards_per_play
}
return pd.DataFrame([fields_to_include], index=[self._abbreviation])
@int_property_decorator
def rank(self):
return self._rank
@property
def abbreviation(self):
return self._abbreviation
@property
def schedule(self):
return Schedule(self._abbreviation, self._year)
@property
def roster(self):
return Roster(self._abbreviation, self._year)
@property
def name(self):
return self._name
@int_property_decorator
def wins(self):
return self._wins
@int_property_decorator
|
MIT License
|
gabrielstanovsky/props
|
props/bottle.py
|
Request.COOKIES
|
python
|
def COOKIES(self):
raw_dict = SimpleCookie(self.headers.get('Cookie',''))
cookies = {}
for cookie in raw_dict.itervalues():
cookies[cookie.key] = cookie.value
return cookies
|
Cookies parsed into a dictionary. Secure cookies are NOT decoded
automatically. See :meth:`get_cookie` for details.
|
https://github.com/gabrielstanovsky/props/blob/c6392016214ee582de4eaf364e518078f9bd182b/props/bottle.py#L882-L890
|
from __future__ import with_statement
__author__ = 'Marcel Hellkamp'
__version__ = '0.9.dev'
__license__ = 'MIT'
import base64
import cgi
import email.utils
import functools
import hmac
import httplib
import itertools
import mimetypes
import os
import re
import subprocess
import sys
import tempfile
import thread
import threading
import time
import warnings
from Cookie import SimpleCookie
from tempfile import TemporaryFile
from traceback import format_exc
from urllib import quote as urlquote
from urlparse import urlunsplit, urljoin
try: from collections import MutableMapping as DictMixin
except ImportError:
from UserDict import DictMixin
try: from urlparse import parse_qs
except ImportError:
from cgi import parse_qs
try: import cPickle as pickle
except ImportError:
import pickle
try: from json import dumps as json_dumps
except ImportError:
try: from simplejson import dumps as json_dumps
except ImportError:
try: from django.utils.simplejson import dumps as json_dumps
except ImportError:
json_dumps = None
if sys.version_info >= (3,0,0):
from io import BytesIO
from io import TextIOWrapper
class NCTextIOWrapper(TextIOWrapper):
def close(self): pass
def touni(x, enc='utf8'):
return str(x, encoding=enc) if isinstance(x, bytes) else str(x)
else:
from StringIO import StringIO as BytesIO
bytes = str
NCTextIOWrapper = None
def touni(x, enc='utf8'):
return x if isinstance(x, unicode) else unicode(str(x), encoding=enc)
def tob(data, enc='utf8'):
return data.encode(enc) if isinstance(data, unicode) else bytes(data)
if sys.version_info >= (3,0,0):
tonat = touni
else:
tonat = tob
tonat.__doc__ = """ Convert anything to native strings """
def depr(message, critical=False):
if critical: raise DeprecationWarning(message)
warnings.warn(message, DeprecationWarning, stacklevel=3)
def makelist(data):
if isinstance(data, (tuple, list, set, dict)): return list(data)
elif data: return [data]
else: return []
class DictProperty(object):
def __init__(self, attr, key=None, read_only=False):
self.attr, self.key, self.read_only = attr, key, read_only
def __call__(self, func):
functools.update_wrapper(self, func, updated=[])
self.getter, self.key = func, self.key or func.__name__
return self
def __get__(self, obj, cls):
if not obj: return self
key, storage = self.key, getattr(obj, self.attr)
if key not in storage: storage[key] = self.getter(obj)
return storage[key]
def __set__(self, obj, value):
if self.read_only: raise ApplicationError("Read-Only property.")
getattr(obj, self.attr)[self.key] = value
def __delete__(self, obj):
if self.read_only: raise ApplicationError("Read-Only property.")
del getattr(obj, self.attr)[self.key]
def cached_property(func):
return DictProperty('__dict__')(func)
class lazy_attribute(object):
def __init__(self, func):
functools.update_wrapper(self, func, updated=[])
self.getter = func
def __get__(self, obj, cls):
value = self.getter(cls)
setattr(cls, self.__name__, value)
return value
class BottleException(Exception):
pass
class HTTPResponse(BottleException):
def __init__(self, output='', status=200, header=None):
super(BottleException, self).__init__("HTTP Response %d" % status)
self.status = int(status)
self.output = output
self.headers = HeaderDict(header) if header else None
def apply(self, response):
if self.headers:
for key, value in self.headers.iterallitems():
response.headers[key] = value
response.status = self.status
class HTTPError(HTTPResponse):
def __init__(self, code=500, output='Unknown Error', exception=None, traceback=None, header=None):
super(HTTPError, self).__init__(output, code, header)
self.exception = exception
self.traceback = traceback
def __repr__(self):
return template(ERROR_PAGE_TEMPLATE, e=self)
class RouteError(BottleException):
class RouteSyntaxError(RouteError):
class RouteBuildError(RouteError):
class Router(object):
default = '[^/]+'
@lazy_attribute
def syntax(cls):
return re.compile(r'(?<!\\):([a-zA-Z_][a-zA-Z_0-9]*)?(?:#(.*?)#)?')
def __init__(self):
self.routes = {}
self.rules = []
self.named = {}
self.static = {}
self.dynamic = []
def add(self, rule, method, target, name=None):
if rule in self.routes:
self.routes[rule][method.upper()] = target
else:
self.routes[rule] = {method.upper(): target}
self.rules.append(rule)
if self.static or self.dynamic:
self.static, self.dynamic = {}, {}
if name:
self.named[name] = (rule, None)
def delete(self, rule, method=None):
if rule not in self.routes and rule in self.named:
rule = self.named[rule][0]
if rule in self.routes:
if method: del self.routes[rule][method]
else: self.routes[rule].clear()
if not self.routes[rule]:
del self.routes[rule]
self.rules.remove(rule)
def build(self, _name, *anon, **args):
if _name not in self.named:
raise RouteBuildError("No route with that name.", _name)
rule, pairs = self.named[_name]
if not pairs:
token = self.syntax.split(rule)
parts = [p.replace('\\:',':') for p in token[::3]]
names = token[1::3]
if len(parts) > len(names): names.append(None)
pairs = zip(parts, names)
self.named[_name] = (rule, pairs)
try:
anon = list(anon)
url = [s if k is None
else s+str(args.pop(k)) if k else s+str(anon.pop())
for s, k in pairs]
except IndexError:
msg = "Not enough arguments to fill out anonymous wildcards."
raise RouteBuildError(msg)
except KeyError, e:
raise RouteBuildError(*e.args)
if args: url += ['?', urlencode(args.iteritems())]
return ''.join(url)
def match(self, environ):
targets, urlargs = self._match_path(environ)
if not targets:
raise HTTPError(404, "Not found: " + environ['PATH_INFO'])
environ['router.url_args'] = urlargs
method = environ['REQUEST_METHOD'].upper()
if method in targets:
return targets[method], urlargs
if method == 'HEAD' and 'GET' in targets:
return targets['GET'], urlargs
if 'ANY' in targets:
return targets['ANY'], urlargs
allowed = [verb for verb in targets if verb != 'ANY']
if 'GET' in allowed and 'HEAD' not in allowed:
allowed.append('HEAD')
raise HTTPError(405, "Method not allowed.",
header=[('Allow',",".join(allowed))])
def _match_path(self, environ):
path = environ['PATH_INFO'] or '/'
match = self.static.get(path)
if match: return match, {}
for combined, rules in self.dynamic:
match = combined.match(path)
if not match: continue
gpat, match = rules[match.lastindex - 1]
return match, gpat.match(path).groupdict() if gpat else {}
if self.static or self.dynamic or not self.routes: return None, {}
if not environ.get('wsgi.run_once'):
self._compile()
return self._match_path(environ)
epath = path.replace(':','\\:')
match = self.routes.get(epath)
if match: return match, {}
for rule in self.rules:
if rule.count(':') < rule.count('\\:'): continue
match = self._compile_pattern(rule).match(path)
if match: return self.routes[rule], match.groupdict()
return None, {}
def _compile(self):
self.static = {}
self.dynamic = []
def fpat_sub(m):
return m.group(0) if len(m.group(1)) % 2 else m.group(1) + '(?:'
for rule in self.rules:
target = self.routes[rule]
if not self.syntax.search(rule):
self.static[rule.replace('\\:',':')] = target
continue
gpat = self._compile_pattern(rule)
fpat = re.sub(r'(\\*)(\(\?P<[^>]*>|\((?!\?))', fpat_sub, gpat.pattern)
gpat = gpat if gpat.groupindex else None
try:
combined = '%s|(%s)' % (self.dynamic[-1][0].pattern, fpat)
self.dynamic[-1] = (re.compile(combined), self.dynamic[-1][1])
self.dynamic[-1][1].append((gpat, target))
except (AssertionError, IndexError), e:
self.dynamic.append((re.compile('(^%s$)'%fpat),
[(gpat, target)]))
except re.error, e:
raise RouteSyntaxError("Could not add Route: %s (%s)" % (rule, e))
def _compile_pattern(self, rule):
out = ''
for i, part in enumerate(self.syntax.split(rule)):
if i%3 == 0: out += re.escape(part.replace('\\:',':'))
elif i%3 == 1: out += '(?P<%s>' % part if part else '(?:'
else: out += '%s)' % (part or '[^/]+')
return re.compile('^%s$'%out)
class Bottle(object):
def __init__(self, catchall=True, autojson=True, config=None):
self.routes = []
self.callbacks = {}
self.router = Router()
self.mounts = {}
self.error_handler = {}
self.catchall = catchall
self.config = config or {}
self.serve = True
self.castfilter = []
if autojson and json_dumps:
self.add_filter(dict, dict2json)
self.hooks = {'before_request': [], 'after_request': []}
def optimize(self, *a, **ka):
depr("Bottle.optimize() is obsolete.")
def mount(self, app, script_path):
if not isinstance(app, Bottle):
raise TypeError('Only Bottle instances are supported for now.')
script_path = '/'.join(filter(None, script_path.split('/')))
path_depth = script_path.count('/') + 1
if not script_path:
raise TypeError('Empty script_path. Perhaps you want a merge()?')
for other in self.mounts:
if other.startswith(script_path):
raise TypeError('Conflict with existing mount: %s' % other)
@self.route('/%s/:#.*#' % script_path, method="ANY")
def mountpoint():
request.path_shift(path_depth)
return app.handle(request.environ)
self.mounts[script_path] = app
def add_filter(self, ftype, func):
if not isinstance(ftype, type):
raise TypeError("Expected type object, got %s" % type(ftype))
self.castfilter = [(t, f) for (t, f) in self.castfilter if t != ftype]
self.castfilter.append((ftype, func))
self.castfilter.sort()
def match_url(self, path, method='GET'):
return self.match({'PATH_INFO': path, 'REQUEST_METHOD': method})
def match(self, environ):
target, args = self.router.match(environ)
try:
return self.callbacks[target], args
except KeyError:
callback, decorators = self.routes[target]
wrapped = callback
for wrapper in decorators[::-1]:
wrapped = wrapper(wrapped)
functools.update_wrapper(wrapped, callback)
self.callbacks[target] = wrapped
return wrapped, args
def get_url(self, routename, **kargs):
scriptname = request.environ.get('SCRIPT_NAME', '').strip('/') + '/'
location = self.router.build(routename, **kargs).lstrip('/')
return urljoin(urljoin('/', scriptname), location)
def route(self, path=None, method='GET', no_hooks=False, decorate=None,
template=None, template_opts={}, callback=None, name=None,
static=False):
if callable(path): path, callback = None, path
decorators = makelist(decorate)
if template: decorators.insert(0, view(template, **template_opts))
if not no_hooks: decorators.append(self._add_hook_wrapper)
def wrapper(func):
for rule in makelist(path) or yieldroutes(func):
for verb in makelist(method):
if static:
rule = rule.replace(':','\\:')
depr("Use backslash to escape ':' in routes.")
self.router.add(rule, verb, len(self.routes), name=name)
self.routes.append((func, decorators))
return func
return wrapper(callback) if callback else wrapper
def _add_hook_wrapper(self, func):
@functools.wraps(func)
def wrapper(*a, **ka):
for hook in self.hooks['before_request']: hook()
response.output = func(*a, **ka)
for hook in self.hooks['after_request']: hook()
return response.output
return wrapper
def get(self, path=None, method='GET', **kargs):
return self.route(path, method, **kargs)
def post(self, path=None, method='POST', **kargs):
return self.route(path, method, **kargs)
def put(self, path=None, method='PUT', **kargs):
return self.route(path, method, **kargs)
def delete(self, path=None, method='DELETE', **kargs):
return self.route(path, method, **kargs)
def error(self, code=500):
def wrapper(handler):
self.error_handler[int(code)] = handler
return handler
return wrapper
def hook(self, name):
def wrapper(func):
self.add_hook(name, func)
return func
return wrapper
def add_hook(self, name, func):
if name not in self.hooks:
raise ValueError("Unknown hook name %s" % name)
if name in ('after_request'):
self.hooks[name].insert(0, func)
else:
self.hooks[name].append(func)
def remove_hook(self, name, func):
if name not in self.hooks:
raise ValueError("Unknown hook name %s" % name)
self.hooks[name].remove(func)
def handle(self, environ):
if not self.serve:
return HTTPError(503, "Server stopped")
try:
handler, args = self.match(environ)
return handler(**args)
except HTTPResponse, e:
return e
except Exception, e:
if isinstance(e, (KeyboardInterrupt, SystemExit, MemoryError)) or not self.catchall:
raise
return HTTPError(500, 'Unhandled exception', e, format_exc(10))
def _cast(self, out, request, response, peek=None):
for testtype, filterfunc in self.castfilter:
if isinstance(out, testtype):
return self._cast(filterfunc(out), request, response)
if not out:
response.headers['Content-Length'] = 0
return []
if isinstance(out, (tuple, list)) and isinstance(out[0], (bytes, unicode)):
out = out[0][0:0].join(out)
if isinstance(out, unicode):
out = out.encode(response.charset)
if isinstance(out, bytes):
response.headers['Content-Length'] = str(len(out))
return [out]
if isinstance(out, HTTPError):
out.apply(response)
return self._cast(self.error_handler.get(out.status, repr)(out), request, response)
if isinstance(out, HTTPResponse):
out.apply(response)
return self._cast(out.output, request, response)
if hasattr(out, 'read'):
if 'wsgi.file_wrapper' in request.environ:
return request.environ['wsgi.file_wrapper'](out)
elif hasattr(out, 'close') or not hasattr(out, '__iter__'):
return WSGIFileWrapper(out)
try:
out = iter(out)
first = out.next()
while not first:
first = out.next()
except StopIteration:
return self._cast('', request, response)
except HTTPResponse, e:
first = e
except Exception, e:
first = HTTPError(500, 'Unhandled exception', e, format_exc(10))
if isinstance(e, (KeyboardInterrupt, SystemExit, MemoryError)) or not self.catchall:
raise
if isinstance(first, HTTPResponse):
return self._cast(first, request, response)
if isinstance(first, bytes):
return itertools.chain([first], out)
if isinstance(first, unicode):
return itertools.imap(lambda x: x.encode(response.charset),
itertools.chain([first], out))
return self._cast(HTTPError(500, 'Unsupported response type: %s' % type(first)), request, response)
def wsgi(self, environ, start_response):
try:
environ['bottle.app'] = self
request.bind(environ)
response.bind()
out = self.handle(environ)
out = self._cast(out, request, response)
if response.status in (100, 101, 204, 304) or request.method == 'HEAD':
if hasattr(out, 'close'): out.close()
out = []
status = '%d %s' % (response.status, HTTP_CODES[response.status])
start_response(status, response.headerlist)
return out
except (KeyboardInterrupt, SystemExit, MemoryError):
raise
except Exception, e:
if not self.catchall: raise
err = '<h1>Critical error while processing request: %s</h1>' % environ.get('PATH_INFO', '/')
if DEBUG:
err += '<h2>Error:</h2>\n<pre>%s</pre>\n' % repr(e)
err += '<h2>Traceback:</h2>\n<pre>%s</pre>\n' % format_exc(10)
environ['wsgi.errors'].write(err)
start_response('500 INTERNAL SERVER ERROR', [('Content-Type', 'text/html')])
return [tob(err)]
def __call__(self, environ, start_response):
return self.wsgi(environ, start_response)
class Request(threading.local, DictMixin):
def __init__(self, environ=None):
self.bind(environ or {},)
def bind(self, environ):
self.environ = environ
self.path = '/' + environ.get('PATH_INFO', '/').lstrip('/')
self.method = environ.get('REQUEST_METHOD', 'GET').upper()
@property
def _environ(self):
depr("Request._environ renamed to Request.environ")
return self.environ
def copy(self):
return Request(self.environ.copy())
def path_shift(self, shift=1):
script_name = self.environ.get('SCRIPT_NAME','/')
self['SCRIPT_NAME'], self.path = path_shift(script_name, self.path, shift)
self['PATH_INFO'] = self.path
def __getitem__(self, key): return self.environ[key]
def __delitem__(self, key): self[key] = ""; del(self.environ[key])
def __iter__(self): return iter(self.environ)
def __len__(self): return len(self.environ)
def keys(self): return self.environ.keys()
def __setitem__(self, key, value):
self.environ[key] = value
todelete = []
if key in ('PATH_INFO','REQUEST_METHOD'):
self.bind(self.environ)
elif key == 'wsgi.input': todelete = ('body','forms','files','params')
elif key == 'QUERY_STRING': todelete = ('get','params')
elif key.startswith('HTTP_'): todelete = ('headers', 'cookies')
for key in todelete:
if 'bottle.' + key in self.environ:
del self.environ['bottle.' + key]
@property
def query_string(self):
return self.environ.get('QUERY_STRING', '')
@property
def fullpath(self):
return self.environ.get('SCRIPT_NAME', '').rstrip('/') + self.path
@property
def url(self):
scheme = self.environ.get('wsgi.url_scheme', 'http')
host = self.environ.get('HTTP_X_FORWARDED_HOST')
host = host or self.environ.get('HTTP_HOST', None)
if not host:
host = self.environ.get('SERVER_NAME')
port = self.environ.get('SERVER_PORT', '80')
if (scheme, port) not in (('https','443'), ('http','80')):
host += ':' + port
parts = (scheme, host, urlquote(self.fullpath), self.query_string, '')
return urlunsplit(parts)
@property
def content_length(self):
return int(self.environ.get('CONTENT_LENGTH', '') or -1)
@property
def header(self):
depr("The Request.header property was renamed to Request.headers")
return self.headers
@DictProperty('environ', 'bottle.headers', read_only=True)
def headers(self):
return WSGIHeaderDict(self.environ)
@DictProperty('environ', 'bottle.get', read_only=True)
def GET(self):
data = parse_qs(self.query_string, keep_blank_values=True)
get = self.environ['bottle.get'] = MultiDict()
for key, values in data.iteritems():
for value in values:
get[key] = value
return get
@DictProperty('environ', 'bottle.post', read_only=True)
def POST(self):
post = MultiDict()
safe_env = {'QUERY_STRING':''}
for key in ('REQUEST_METHOD', 'CONTENT_TYPE', 'CONTENT_LENGTH'):
if key in self.environ: safe_env[key] = self.environ[key]
if NCTextIOWrapper:
fb = NCTextIOWrapper(self.body, encoding='ISO-8859-1', newline='\n')
else:
fb = self.body
data = cgi.FieldStorage(fp=fb, environ=safe_env, keep_blank_values=True)
for item in data.list or []:
post[item.name] = item if item.filename else item.value
return post
@DictProperty('environ', 'bottle.forms', read_only=True)
def forms(self):
forms = MultiDict()
for name, item in self.POST.iterallitems():
if not hasattr(item, 'filename'):
forms[name] = item
return forms
@DictProperty('environ', 'bottle.files', read_only=True)
def files(self):
files = MultiDict()
for name, item in self.POST.iterallitems():
if hasattr(item, 'filename'):
files[name] = item
return files
@DictProperty('environ', 'bottle.params', read_only=True)
def params(self):
params = MultiDict(self.GET)
for key, value in self.forms.iterallitems():
params[key] = value
return params
@DictProperty('environ', 'bottle.body', read_only=True)
def _body(self):
maxread = max(0, self.content_length)
stream = self.environ['wsgi.input']
body = BytesIO() if maxread < MEMFILE_MAX else TemporaryFile(mode='w+b')
while maxread > 0:
part = stream.read(min(maxread, MEMFILE_MAX))
if not part: break
body.write(part)
maxread -= len(part)
self.environ['wsgi.input'] = body
body.seek(0)
return body
@property
def body(self):
self._body.seek(0)
return self._body
@property
def auth(self):
return parse_auth(self.headers.get('Authorization',''))
@DictProperty('environ', 'bottle.cookies', read_only=True)
|
MIT License
|
pennlabs/penn-courses
|
backend/review/management/commands/mergeinstructors.py
|
resolve_duplicates
|
python
|
def resolve_duplicates(
duplicate_instructor_groups: List[List[Instructor]], dry_run: bool, stat, force=False
):
for instructor_set in tqdm(duplicate_instructor_groups):
potential_primary = [inst for inst in instructor_set if inst.user is not None]
if len(potential_primary) == 0:
stat(INSTRUCTORS_KEPT, 1)
primary_instructor = instructor_set[0]
elif len(potential_primary) == 1:
stat(INSTRUCTORS_KEPT, 1)
primary_instructor = potential_primary[0]
else:
if len(set([inst.user.pk for inst in potential_primary])) == 1 or force:
stat(INSTRUCTORS_KEPT, 1)
primary_instructor = potential_primary[0]
else:
stat(INSTRUCTORS_KEPT, len(instructor_set))
stat(INSTRUCTORS_UNMERGED, element=[i.pk for i in instructor_set])
continue
duplicate_instructors = [
inst for inst in instructor_set if inst.pk != primary_instructor.pk
]
for duplicate_instructor in duplicate_instructors:
sections = Section.objects.filter(instructors=duplicate_instructor)
for section in sections:
stat(SECTIONS_MODIFIED, 1)
if not dry_run:
section.instructors.remove(duplicate_instructor)
section.instructors.add(primary_instructor)
reviews = Review.objects.filter(instructor=duplicate_instructor)
for review in reviews:
stat(REVIEWS_MODIFIED, 1)
if not dry_run:
review.instructor = primary_instructor
review.save()
stat(INSTRUCTORS_REMOVED, 1)
if not dry_run:
duplicate_instructor.delete()
|
Given a list of list of duplicate instructor groups, resolve the foreign key and many-to-many
relationships among duplicates to all point to the same instance.
:param duplicate_instructor_groups: List of lists of duplicate instructors
e.g. [[a, a, a], [b, b]]
:param dry_run: If true, just calculate stats without actually modifying the database.
:param stat: Function to collect statistics.
:param force: Manually override conflicting user information.
|
https://github.com/pennlabs/penn-courses/blob/6fd16c151e34a9660e883a41458a72cef6c1f8cd/backend/review/management/commands/mergeinstructors.py#L38-L102
|
import logging
from typing import Callable, Dict, List, Optional
from django.core.management import BaseCommand
from django.db.models.functions import Lower
from tqdm import tqdm
from courses.models import Instructor, Section
from review.models import Review
INSTRUCTORS_KEPT = "instructors kept"
INSTRUCTORS_REMOVED = "instructors removed"
SECTIONS_MODIFIED = "sections modified"
REVIEWS_MODIFIED = "reviews modified"
INSTRUCTORS_UNMERGED = "instructors unmerged"
def batch_duplicates(qs, get_prop) -> List[List[Instructor]]:
rows_by_prop = dict()
for row in tqdm(qs):
prop = get_prop(row)
if prop is None:
continue
rows_by_prop.setdefault(prop, []).append(row)
return [rows for name, rows in rows_by_prop.items() if len(rows) > 1]
|
MIT License
|
bread-and-pepper/django-brookie
|
brookie/views.py
|
generate_pdf
|
python
|
def generate_pdf(filename, context_dict, template, save=False):
template = get_template(template)
context = Context(context_dict)
html = template.render(context)
html = html.replace('-pageskip-', '<pdf:nextpage />')
result = StringIO.StringIO()
pdf = pisa.pisaDocument(StringIO.StringIO(
html.encode("UTF-8")), result, link_callback=fetch_resources)
if not pdf.err:
if not save:
response = HttpResponse(result.getvalue(), mimetype='application/pdf')
response['Content-Disposition'] = 'attachment; filename=%s.pdf' % filename
return response
else:
f = open(br_settings.BROOKIE_SAVE_PATH + '%s.pdf' % filename, 'w')
f.write(result.getvalue())
f.close()
return True
return http.HttpResponse('There was an error creating your PDF: %s' % cgi.escape(html))
|
Generates a invoice PDF in desired language
|
https://github.com/bread-and-pepper/django-brookie/blob/3ef1094b46af2d419227031700952a97222a5f78/brookie/views.py#L33-L54
|
from django.http import HttpResponse, HttpResponseRedirect, Http404
from django.contrib.auth.decorators import user_passes_test
from django.template.loader import get_template
from django.template import Context
from django.shortcuts import get_object_or_404
from django.conf import settings
from django.core.urlresolvers import reverse
import ho.pisa as pisa
import cStringIO as StringIO
import cgi, os, datetime
from brookie.models import Invoice, Quote, Item
from brookie import brookie_settings as br_settings
def user_is_staff(user):
return user.is_authenticated() and user.is_staff
def fetch_resources(uri, rel):
if 'django.contrib.staticfiles' in settings.INSTALLED_APPS:
path = os.path.join(settings.STATIC_ROOT, uri.replace(settings.STATIC_URL, ""))
else:
path = os.path.join(settings.MEDIA_ROOT, uri.replace(settings.MEDIA_URL, ""))
return path
|
BSD 3-Clause New or Revised License
|
josephbestjames/airtable.py
|
airtable/__init__.py
|
Airtable.iterate
|
python
|
def iterate(
self, table_name, batch_size=0, filter_by_formula=None,
view=None, max_records=0, fields=None):
offset = None
while True:
response = self.get(
table_name, limit=batch_size, offset=offset, max_records=max_records,
fields=fields, filter_by_formula=filter_by_formula, view=view)
for record in response.pop('records'):
yield record
if 'offset' in response:
offset = response['offset']
else:
break
|
Iterate over all records of a table.
Args:
table_name: the name of the table to list.
batch_size: the number of records to fetch per request. The default
(0) is using the default of the API which is (as of 2016-09)
100. Note that the API does not allow more than that (but
allow for less).
filter_by_formula: a formula used to filter records. The formula
will be evaluated for each record, and if the result is not 0,
false, "", NaN, [], or #Error! the record will be included in
the response. If combined with view, only records in that view
which satisfy the formula will be returned.
view: the name or ID of a view in the table. If set, only the
records in that view will be returned. The records will be
sorted according to the order of the view.
Yields:
A dict for each record containing at least three fields: "id",
"createdTime" and "fields".
|
https://github.com/josephbestjames/airtable.py/blob/ad41a838a8a37e4711ee1997cbf07b994f8be252/airtable/__init__.py#L138-L171
|
from collections import OrderedDict
import json
import posixpath
from typing import Any, Generic, Mapping, TypeVar
import warnings
import requests
import six
API_URL = 'https://api.airtable.com/v%s/'
API_VERSION = '0'
class IsNotInteger(Exception):
pass
class IsNotString(Exception):
pass
def check_integer(integer):
if not integer:
return False
if not isinstance(integer, six.integer_types):
raise IsNotInteger('Expected an integer', integer)
return True
def check_string(string):
if not string:
return False
if not isinstance(string, six.string_types):
raise IsNotString('Expected a string', string)
return True
def create_payload(data):
return {'fields': data}
_T = TypeVar('_T', bound=Mapping[str, Any])
class Record(Generic[_T]):
def __init__(self):
raise NotImplementedError(
'This class is only used as a type of records returned by this module, however '
'it should only be used as a type (see typing stubs) and not as an actual class.'
)
def __getitem__(self, key):
pass
def get(self, key, default=None):
pass
class AirtableError(Exception):
def __init__(self, error_type, message):
super(AirtableError, self).__init__()
self.type = error_type
self.message = message
def __repr__(self):
return '%s(%r, %r)' % (self.__class__.__name__, self.type, self.message)
def __str__(self):
return self.message or self.__class__.__name__
class Airtable(object):
def __init__(self, base_id, api_key, dict_class=OrderedDict):
self.airtable_url = API_URL % API_VERSION
self.base_url = posixpath.join(self.airtable_url, base_id)
self.headers = {'Authorization': 'Bearer %s' % api_key}
self._dict_class = dict_class
def __request(self, method, url, params=None, payload=None):
if method in ['POST', 'PUT', 'PATCH']:
self.headers.update({'Content-type': 'application/json'})
response = requests.request(
method,
posixpath.join(self.base_url, url),
params=params,
data=payload,
headers=self.headers)
if response.status_code == requests.codes.ok:
return response.json(object_pairs_hook=self._dict_class)
error_json = response.json().get('error', {})
raise AirtableError(
error_type=error_json.get('type', str(response.status_code)),
message=error_json.get('message', json.dumps(response.json())))
def get(
self, table_name, record_id=None, limit=0, offset=None,
filter_by_formula=None, view=None, max_records=0, fields=None):
params = {}
if check_string(record_id):
url = posixpath.join(table_name, record_id)
else:
url = table_name
if limit and check_integer(limit):
params.update({'pageSize': limit})
if offset and check_string(offset):
params.update({'offset': offset})
if filter_by_formula is not None:
params.update({'filterByFormula': filter_by_formula})
if view is not None:
params.update({'view': view})
if max_records and check_integer(max_records):
params.update({'maxRecords': max_records})
if fields and isinstance(fields, (list, tuple)):
for field in fields:
check_string(field)
if len(fields) == 1:
fields = fields + fields
params.update({'fields': fields})
return self.__request('GET', url, params)
|
MIT License
|
karlgong/easyium-python
|
easyium/web_driver.py
|
WebDriver.get_web_driver
|
python
|
def get_web_driver(self):
return self
|
Get self.
:return: self
|
https://github.com/karlgong/easyium-python/blob/3683c9895e0e1164848df082d456b6801f29e68a/easyium/web_driver.py#L46-L52
|
from appium.webdriver.clipboard_content_type import ClipboardContentType
from appium.webdriver.common.multi_action import MultiAction
from appium.webdriver.common.touch_action import TouchAction
from appium.webdriver.webdriver import WebDriver as _Appium
from selenium.common.exceptions import WebDriverException
from selenium.webdriver import ActionChains, Ie as _Ie, Firefox as _Firefox, Chrome as _Chrome, Opera as _Opera, Safari as _Safari, Edge as _Edge, PhantomJS as _PhantomJS, Remote as _Remote
from selenium.webdriver.common.desired_capabilities import DesiredCapabilities
from .alert import Alert
from .context import Context
from .decorator import SupportedBy
from .enumeration import WebDriverPlatform, WebDriverContext
from .utils import StringTypes
from .waiter import WebDriverWaitFor
class WebDriverInfo:
def __init__(self, platform, context):
self.platform = platform
self.context = context
class WebDriver(Context):
def __init__(self, selenium_web_driver, web_driver_info):
Context.__init__(self)
self.__selenium_web_driver = selenium_web_driver
self.__web_driver_info = web_driver_info
self.set_wait_interval(1000)
self.set_wait_timeout(30000)
def _selenium_context(self):
return self.__selenium_web_driver
def _selenium_web_driver(self):
return self.__selenium_web_driver
|
Apache License 2.0
|
rajammanabrolu/worldgeneration
|
evennia-engine/evennia/evennia/comms/channelhandler.py
|
ChannelCommand.get_extra_info
|
python
|
def get_extra_info(self, caller, **kwargs):
return _(" (channel)")
|
Let users know that this command is for communicating on a channel.
Args:
caller (TypedObject): A Character or Account who has entered an ambiguous command.
Returns:
A string with identifying information to disambiguate the object, conventionally with a preceding space.
|
https://github.com/rajammanabrolu/worldgeneration/blob/5e97df013399e1a401d0a7ec184c4b9eb3100edd/evennia-engine/evennia/evennia/comms/channelhandler.py#L147-L157
|
from django.conf import settings
from evennia.commands import cmdset, command
from evennia.utils.logger import tail_log_file
from evennia.utils.utils import class_from_module
from django.utils.translation import ugettext as _
_CHANNEL_COMMAND_CLASS = None
_CHANNELDB = None
class ChannelCommand(command.Command):
is_channel = True
key = "general"
help_category = "Channel Names"
obj = None
arg_regex = r"\s.*?|/history.*?"
def parse(self):
channelname, msg = self.args.split(":", 1)
self.history_start = None
if msg.startswith("/history"):
arg = msg[8:]
try:
self.history_start = int(arg) if arg else 0
except ValueError:
pass
self.args = (channelname.strip(), msg.strip())
def func(self):
global _CHANNELDB
if not _CHANNELDB:
from evennia.comms.models import ChannelDB as _CHANNELDB
channelkey, msg = self.args
caller = self.caller
if not msg:
self.msg(_("Say what?"))
return
channel = _CHANNELDB.objects.get_channel(channelkey)
if not channel:
self.msg(_("Channel '%s' not found.") % channelkey)
return
if not channel.has_connection(caller):
string = _("You are not connected to channel '%s'.")
self.msg(string % channelkey)
return
if not channel.access(caller, "send"):
string = _("You are not permitted to send to channel '%s'.")
self.msg(string % channelkey)
return
if msg == "on":
caller = caller if not hasattr(caller, "account") else caller.account
unmuted = channel.unmute(caller)
if unmuted:
self.msg("You start listening to %s." % channel)
return
self.msg("You were already listening to %s." % channel)
return
if msg == "off":
caller = caller if not hasattr(caller, "account") else caller.account
muted = channel.mute(caller)
if muted:
self.msg("You stop listening to %s." % channel)
return
self.msg("You were already not listening to %s." % channel)
return
if self.history_start is not None:
log_file = channel.attributes.get("log_file", default="channel_%s.log" % channel.key)
def send_msg(lines):
return self.msg(
"".join(line.split("[-]", 1)[1] if "[-]" in line else line for line in lines)
)
tail_log_file(log_file, self.history_start, 20, callback=send_msg)
else:
caller = caller if not hasattr(caller, "account") else caller.account
if caller in channel.mutelist:
self.msg("You currently have %s muted." % channel)
return
channel.msg(msg, senders=self.caller, online=True)
|
MIT License
|
osmr/imgclsmob
|
pytorch/pytorchcv/models/seresnet.py
|
seresnet16
|
python
|
def seresnet16(**kwargs):
return get_seresnet(blocks=16, model_name="seresnet16", **kwargs)
|
SE-ResNet-16 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507.
It's an experimental model.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.torch/models'
Location for keeping the model parameters.
|
https://github.com/osmr/imgclsmob/blob/ea5f784eea865ce830f3f97c5c1d1f6491d9cbb2/pytorch/pytorchcv/models/seresnet.py#L286-L298
|
__all__ = ['SEResNet', 'seresnet10', 'seresnet12', 'seresnet14', 'seresnet16', 'seresnet18', 'seresnet26',
'seresnetbc26b', 'seresnet34', 'seresnetbc38b', 'seresnet50', 'seresnet50b', 'seresnet101', 'seresnet101b',
'seresnet152', 'seresnet152b', 'seresnet200', 'seresnet200b', 'SEResUnit', 'get_seresnet']
import os
import torch.nn as nn
import torch.nn.init as init
from .common import conv1x1_block, SEBlock
from .resnet import ResBlock, ResBottleneck, ResInitBlock
class SEResUnit(nn.Module):
def __init__(self,
in_channels,
out_channels,
stride,
bottleneck,
conv1_stride):
super(SEResUnit, self).__init__()
self.resize_identity = (in_channels != out_channels) or (stride != 1)
if bottleneck:
self.body = ResBottleneck(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
conv1_stride=conv1_stride)
else:
self.body = ResBlock(
in_channels=in_channels,
out_channels=out_channels,
stride=stride)
self.se = SEBlock(channels=out_channels)
if self.resize_identity:
self.identity_conv = conv1x1_block(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
activation=None)
self.activ = nn.ReLU(inplace=True)
def forward(self, x):
if self.resize_identity:
identity = self.identity_conv(x)
else:
identity = x
x = self.body(x)
x = self.se(x)
x = x + identity
x = self.activ(x)
return x
class SEResNet(nn.Module):
def __init__(self,
channels,
init_block_channels,
bottleneck,
conv1_stride,
in_channels=3,
in_size=(224, 224),
num_classes=1000):
super(SEResNet, self).__init__()
self.in_size = in_size
self.num_classes = num_classes
self.features = nn.Sequential()
self.features.add_module("init_block", ResInitBlock(
in_channels=in_channels,
out_channels=init_block_channels))
in_channels = init_block_channels
for i, channels_per_stage in enumerate(channels):
stage = nn.Sequential()
for j, out_channels in enumerate(channels_per_stage):
stride = 2 if (j == 0) and (i != 0) else 1
stage.add_module("unit{}".format(j + 1), SEResUnit(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
bottleneck=bottleneck,
conv1_stride=conv1_stride))
in_channels = out_channels
self.features.add_module("stage{}".format(i + 1), stage)
self.features.add_module("final_pool", nn.AvgPool2d(
kernel_size=7,
stride=1))
self.output = nn.Linear(
in_features=in_channels,
out_features=num_classes)
self._init_params()
def _init_params(self):
for name, module in self.named_modules():
if isinstance(module, nn.Conv2d):
init.kaiming_uniform_(module.weight)
if module.bias is not None:
init.constant_(module.bias, 0)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.output(x)
return x
def get_seresnet(blocks,
bottleneck=None,
conv1_stride=True,
model_name=None,
pretrained=False,
root=os.path.join("~", ".torch", "models"),
**kwargs):
if bottleneck is None:
bottleneck = (blocks >= 50)
if blocks == 10:
layers = [1, 1, 1, 1]
elif blocks == 12:
layers = [2, 1, 1, 1]
elif blocks == 14 and not bottleneck:
layers = [2, 2, 1, 1]
elif (blocks == 14) and bottleneck:
layers = [1, 1, 1, 1]
elif blocks == 16:
layers = [2, 2, 2, 1]
elif blocks == 18:
layers = [2, 2, 2, 2]
elif (blocks == 26) and not bottleneck:
layers = [3, 3, 3, 3]
elif (blocks == 26) and bottleneck:
layers = [2, 2, 2, 2]
elif blocks == 34:
layers = [3, 4, 6, 3]
elif (blocks == 38) and bottleneck:
layers = [3, 3, 3, 3]
elif blocks == 50:
layers = [3, 4, 6, 3]
elif blocks == 101:
layers = [3, 4, 23, 3]
elif blocks == 152:
layers = [3, 8, 36, 3]
elif blocks == 200:
layers = [3, 24, 36, 3]
else:
raise ValueError("Unsupported SE-ResNet with number of blocks: {}".format(blocks))
if bottleneck:
assert (sum(layers) * 3 + 2 == blocks)
else:
assert (sum(layers) * 2 + 2 == blocks)
init_block_channels = 64
channels_per_layers = [64, 128, 256, 512]
if bottleneck:
bottleneck_factor = 4
channels_per_layers = [ci * bottleneck_factor for ci in channels_per_layers]
channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)]
net = SEResNet(
channels=channels,
init_block_channels=init_block_channels,
bottleneck=bottleneck,
conv1_stride=conv1_stride,
**kwargs)
if pretrained:
if (model_name is None) or (not model_name):
raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.")
from .model_store import download_model
download_model(
net=net,
model_name=model_name,
local_model_store_dir_path=root)
return net
def seresnet10(**kwargs):
return get_seresnet(blocks=10, model_name="seresnet10", **kwargs)
def seresnet12(**kwargs):
return get_seresnet(blocks=12, model_name="seresnet12", **kwargs)
def seresnet14(**kwargs):
return get_seresnet(blocks=14, model_name="seresnet14", **kwargs)
|
MIT License
|
speedml/speedml
|
speedml/feature.py
|
Feature.round
|
python
|
def round(self, new, a, precision):
Base.train[new] = round(Base.train[a], precision)
Base.test[new] = round(Base.test[a], precision)
|
Create ``new`` numeric feature by rounding ``a`` feature value to ``precision`` decimal places.
|
https://github.com/speedml/speedml/blob/c78effcdf745b723a7b558e1ee4639f7ba173d22/speedml/feature.py#L157-L162
|
from __future__ import (absolute_import, division,
print_function, unicode_literals)
from builtins import *
from .base import Base
from .util import DataFrameImputer
import numpy as np
from sklearn.preprocessing import LabelEncoder
import re
class Feature(Base):
def drop(self, features):
start = Base.train.shape[1]
Base.train = Base.train.drop(features, axis=1)
Base.test = Base.test.drop(features, axis=1)
end = Base.train.shape[1]
message = 'Dropped {} features with {} features available.'
return message.format(start - end, end)
def impute(self):
start = Base.train.isnull().sum().sum()
Base.test[Base.target] = -1
combine = Base.train.append(Base.test)
combine = DataFrameImputer().fit_transform(combine)
Base.train = combine[0:Base.train.shape[0]]
Base.test = combine[Base.train.shape[0]::]
Base.test = Base.test.drop([Base.target], axis=1)
end = Base.train.isnull().sum().sum()
message = 'Imputed {} empty values to {}.'
return message.format(start, end)
def mapping(self, a, data):
Base.train[a] = Base.train[a].apply(lambda x: data[x])
Base.test[a] = Base.test[a].apply(lambda x: data[x])
def fillna(self, a, new):
start = Base.train[a].isnull().sum() + Base.test[a].isnull().sum()
Base.train[a] = Base.train[a].fillna(new)
Base.test[a] = Base.test[a].fillna(new)
message = 'Filled {} null values across test and train datasets.'
return message.format(start)
def replace(self, a, match, new):
if type(match) is str:
start = Base.train[Base.train[a] == match][a].shape[0] + Base.test[Base.test[a] == match][a].shape[0]
message = 'Replaced {} matching values across train and test datasets.'
message = message.format(start)
else:
message = 'Replaced matching list of strings across train and test datasets.'
Base.train[a] = Base.train[a].replace(match, new)
Base.test[a] = Base.test[a].replace(match, new)
return message
def outliers(self, a, lower = None, upper = None):
if upper:
upper_value = np.percentile(Base.train[a].values, upper)
change = Base.train.loc[Base.train[a] > upper_value, a].shape[0]
Base.train.loc[Base.train[a] > upper_value, a] = upper_value
message = 'Fixed {} or {:.2f}% upper outliers. '.format(change, change/Base.train.shape[0]*100)
if lower:
lower_value = np.percentile(Base.train[a].values, lower)
change = Base.train.loc[Base.train[a] < lower_value, a].shape[0]
Base.train.loc[Base.train[a] < lower_value, a] = lower_value
message = message + 'Fixed {} or {:.2f}% lower outliers.'.format(change, change/Base.train.shape[0]*100)
return message
def _density_by_feature(self, a):
vals = Base.train[a].value_counts()
dvals = vals.to_dict()
Base.train[a + '_density'] = Base.train[a].apply(lambda x: dvals.get(x, vals.min()))
Base.test[a + '_density'] = Base.test[a].apply(lambda x: dvals.get(x, vals.min()))
def density(self, a):
if isinstance(a, str):
self._density_by_feature(a)
if isinstance(a, list):
for feature in a:
self._density_by_feature(feature)
def add(self, a, num):
Base.train[a] = Base.train[a] + num
Base.test[a] = Base.test[a] + num
def sum(self, new, a, b):
Base.train[new] = Base.train[a] + Base.train[b]
Base.test[new] = Base.test[a] + Base.test[b]
def diff(self, new, a, b):
Base.train[new] = Base.train[a] - Base.train[b]
Base.test[new] = Base.test[a] - Base.test[b]
def product(self, new, a, b):
Base.train[new] = Base.train[a] * Base.train[b]
Base.test[new] = Base.test[a] * Base.test[b]
def divide(self, new, a, b):
Base.train[new] = Base.train[a] / Base.train[b]
Base.test[new] = Base.test[a] / Base.test[b]
Base.train[new] = Base.train[new].replace([np.inf, -np.inf], 0)
Base.test[new] = Base.test[new].replace([np.inf, -np.inf], 0)
|
MIT License
|
digitalglobe/geoio
|
geoio/base.py
|
GeoImage.iter_components
|
python
|
def iter_components(self, **kwargs):
for c in xrange(len(self.files.dfile_tiles)):
yield self.get_data(component=c, **kwargs)
|
This is a convenience method that iterataes (via yield) through
the components in the image object. Any kwargs valid for get_data
can be passed through.
kwargs can be any valid arugment for get_data
Parameters
----------
None
Yields
------
ndarray
Three dimensional numpy array of pixel values from the
requested region of the image.
|
https://github.com/digitalglobe/geoio/blob/94a9d4b45a9482bc5341aaac3c050f70ddff5550/geoio/base.py#L532-L551
|
from __future__ import division
from osgeo import gdal, gdalconst, osr, ogr
import numpy as np
import os
import warnings
import collections
import textwrap
import tempfile
import logging
import math
import platform
from collections import Sequence
import tinytools as tt
import constants as const
gdal.UseExceptions()
ogr.UseExceptions()
logger = logging.getLogger(__name__)
class OverlapError(ValueError):
pass
class GeoImage(object):
def __init__(self, file_in, derived_dir=None):
if not os.path.isfile(file_in):
raise ValueError("The file that was passed in does not exist.")
ifile = os.path.abspath(file_in)
fname = os.path.basename(ifile)
fdir = os.path.dirname(ifile)
flist = os.listdir(fdir)
self.files = tt.bunch.OrderedBunch({})
if derived_dir:
if not os.path.isdir(derived_dir):
raise ValueError("The requested derived data directory does "
"not exist.")
if not os.access(os.path.join(derived_dir, ''), os.W_OK):
raise ValueError("Write access is required for the requested "
"location passed into derived_dir.")
self.files.derived_dir = os.path.join(derived_dir, '')
else:
if os.access(fdir, os.W_OK):
self.files.derived_dir = fdir
else:
self.files.derived_dir = fdir
warnings.warn("The input file location is not writable. "
"Derived file creation (i.e. spectral files) "
"will not be available. Either write permissions "
"need to be provided or the object can be "
"reinstantiated with a writable location passed "
"to the input variable dervied_store_dir.")
(tmpfile,tmptiles)=self._get_file_and_tiles(ifile)
self.files.dfile = tmpfile
self.files.dfile_tiles = tmptiles
self._fobj = self._get_gdal_obj(self.files.dfile,
self.files.dfile_tiles)
self._set_metadata()
def _get_file_and_tiles(self, ifile):
if tt.files.filter(ifile, '*.TIL', case_sensitive=False):
file_loc = ifile
tiles_loc = tt.pvl.read_from_pvl(ifile,'filename')
dname = os.path.dirname(ifile)
tiles_loc = [os.path.join(dname,x) for x in tiles_loc]
elif tt.files.filter(ifile, '*.VRT', case_sensitive=False):
file_loc = ifile
tmp = gdal.Open(file_loc)
tmp_files = tmp.GetFileList()
tiles_loc = [x for x in tmp_files if not
tt.files.filter(x, '*.VRT', case_sensitive=False)]
tmp = None
elif os.path.isfile(os.path.splitext(ifile)[0]):
tmp = os.path.splitext(ifile)[0]
file_loc = tmp
tiles_loc = [tmp]
else:
file_loc = ifile
tiles_loc = [ifile]
return (file_loc,tiles_loc)
def _get_gdal_obj(self, dfile, dfile_tiles):
if tt.files.filter(dfile, '*.TIL', case_sensitive=False):
file_temp = tempfile.NamedTemporaryFile(suffix=".VRT")
if len(dfile_tiles) == 1:
cmd = []
cmd.append("gdal_translate")
cmd.append("-of")
cmd.append("VRT")
cmd.append(dfile_tiles[0])
cmd.append(file_temp.name)
else:
cmd = []
cmd.append("gdalbuildvrt")
cmd.append(file_temp.name)
for i in dfile_tiles: cmd.append(i)
dump = tt.cmd_line.exec_cmd(cmd,ret_output=True)
logger.debug(dump)
del dump
if not os.path.isfile(file_temp.name):
raise StandardError("Creation of file " + file_temp.name + " "
"failed. This could possibly be a "
"write access problem?")
vvv = gdal.Open(file_temp.name)
drv = gdal.GetDriverByName('VRT')
obj = drv.CreateCopy('',vvv)
file_temp.close()
if os.path.isfile(file_temp.name):
raise StandardError("Removal of file " + file_temp.name + " "
"failed. There is something wrong with "
"the .TIL handling.")
else:
obj = gdal.Open(self.files.dfile, gdalconst.GA_ReadOnly)
return obj
def _set_metadata(self):
meta_geoimg_dict = read_geo_file_info(self._fobj)
if not os.path.isfile(meta_geoimg_dict['file_name']):
meta_geoimg_dict['file_name'] = self.files.dfile
meta_geoimg_dict['class_name'] = self.__class__.__name__
self.meta = tt.bunch.OrderedBunch(meta_geoimg_dict)
self.shape = self.meta.shape
self.resolution = self.meta.resolution
def __repr__(self):
sss = ''
su = self.meta
prefixes = collections.OrderedDict()
prefixes['Class Name'] = (['class_name'],'')
prefixes['Driver Name'] = (['driver_name'],'')
if 'product_level' in su:
prefixes['Product Level'] = (['product_level'],'')
prefixes['Data Type'] = (['gdal_dtype_name'],'')
prefixes['File Name'] = (['file_name'],'')
prefixes['File List'] = (['file_list'], '')
prefixes['Dimensions'] = (['shape'],
' (nlayers, nrows, ncols)')
prefixes['Resolution'] = (['resolution'],' (x,y)')
prefixes['Extent'] = (['extent'],' (ul_x, ul_y, lr_x, lr_y)')
prefixes['Projection String'] = (['pprint_proj_string'],'')
prefixes['Geo Transform'] = (['geo_transform'],'')
if 'authority' in su:
prefixes['Authority'] = (['authority'], '')
if 'band_centers' in su:
prefixes['Band Centers (nm)'] = (['band_centers'],'')
prelen = max([len(x) for x in prefixes])
for x in prefixes:
prefix = x+' '*(prelen-len(x))+' : '
width_set = 80
wrapper = textwrap.TextWrapper(initial_indent=prefix,
width=width_set,
replace_whitespace=False,
subsequent_indent=' '*len(prefix))
message = ', '.join([str(su[y]) for y in prefixes[x][0]])
message = message+prefixes[x][1]
if message.find('\n') != -1:
sss = sss + prefix + message.replace('\n','\n'+' '*prelen)+'\n'
elif message:
sss = sss + wrapper.fill(message) + '\n'
else:
sss = sss + prefix + '\n'
return sss
def print_img_summary(self):
print(self.__repr__())
def __iter__(self):
for x in self.iter_window():
yield x
def iter_base(self, xoff, yoff, win_xsize, win_ysize, **kwargs):
logger.debug('*** begin iter_base ***')
windows = np.broadcast(xoff,yoff,win_xsize,win_ysize)
for w in windows:
logger.debug('window parameters: xoff %s, yoff %s, '
'win_xsize %s, win_ysize %s',
w[0], w[1], w[2], w[3])
yield self.get_data(window=w,**kwargs)
def iter_window(self, win_size=None, stride=None, **kwargs):
logger.debug('*** begin iter_window ***')
if win_size:
if any(x <= 0 for x in win_size):
raise ValueError('No value in win_size can be equal '
'to or less than zero.')
if stride:
if any(x <= 0 for x in stride):
raise ValueError('No value in stride can be equal '
'to or less than zero.')
if not win_size and not stride:
b = self._fobj.GetRasterBand(1)
win_size = b.GetBlockSize()
logger.debug('win_size is: %s, stride is: %s', win_size, stride)
if win_size and not stride:
xs = self.meta.shape[1]
ys = self.meta.shape[2]
xsize, ysize = win_size
x_extra_pixels = xs % win_size[0]
xoff = int(x_extra_pixels / 2.0)
y_extra_pixels = ys % win_size[1]
yoff = int(y_extra_pixels / 2.0)
xoff_start = xoff
xsize, ysize = win_size
while True:
logger.debug(' xoff is %s,\tyoff is %s', xoff, yoff)
yield self.get_data(window=[xoff, yoff, xsize, ysize],**kwargs)
xoff += xsize
if xoff > self.meta.shape[1]:
xoff = xoff_start
yoff += ysize
if yoff > self.meta.shape[2]:
break
elif not win_size and stride:
raise ValueError('Setting stride and not setting win_size is not '
'allowed because there is no resonable value to '
'set win_size to. In this case stride can be '
'even or odd which could result in alternative '
'size return blocks around the center pixel '
'(or fractional pixel).')
elif win_size and stride:
xs = self.meta.shape[1]
ys = self.meta.shape[2]
xsize, ysize = win_size
xstride, ystride = stride
x_extra_pixels = (xs - xsize) % xstride
xoff = int(x_extra_pixels/2.0)
y_extra_pixels = (ys - ysize) % ystride
yoff = int(y_extra_pixels/2.0)
xoff_start = xoff
while True:
logger.debug(' xoff is %s,\tyoff is %s', xoff, yoff)
yield self.get_data(window=[xoff, yoff, xsize, ysize], **kwargs)
xoff += xstride
if xoff > self.meta.shape[1]:
xoff = xoff_start
yoff += ystride
if yoff > self.meta.shape[2]:
break
def iter_window_random(self, win_size=None, no_chips=1000, **kwargs):
if win_size:
if any(x <= 0 for x in win_size):
raise ValueError('No value in win_size can be equal '
'to or less than zero.')
counter = no_chips
xs = self.meta.shape[1]
ys = self.meta.shape[2]
xsize, ysize = win_size
while True:
xoff = np.random.randint(xs-xsize+1)
yoff = np.random.randint(ys-ysize+1)
yield self.get_data(window=[xoff, yoff, xsize, ysize], **kwargs)
counter -= 1
if counter == 0: break
|
MIT License
|
dit/dit
|
dit/multivariate/deweese.py
|
BaseDeWeeseOptimizer.__init__
|
python
|
def __init__(self, dist, rvs=None, crvs=None, deterministic=False, rv_mode=None):
super().__init__(dist, rvs=rvs, crvs=crvs, rv_mode=rv_mode)
self._construct_auxvars([({rv}, size) for rv, size in zip(self._rvs, self._shape)])
if deterministic:
self.constraints = [{'type': 'eq',
'fun': self._constraint_deterministic(),
},
]
self._default_hops *= 2
|
Initialize the optimizer.
Parameters
----------
dist : Distribution
The distribution to optimize.
rvs : iter of iters
The random variables of interest.
crvs : iter
The random variables to condition on.
deterministic : bool
Whether the functions to optimize over should be
deterministic or not. Defaults to False.
rv_mode : str, None
Specifies how to interpret `rvs` and `crvs`. Valid options are:
{{'indices', 'names'}}. If equal to 'indices', then the elements of
`crvs` and `rvs` are interpreted as random variable indices. If
equal to 'names', the the elements are interpreted as random
variable names. If `None`, then the value of `dist._rv_mode` is
consulted, which defaults to 'indices'.
|
https://github.com/dit/dit/blob/2853cb13110c5a5b2fa7ad792e238e2177013da2/dit/multivariate/deweese.py#L119-L150
|
from itertools import product
from ..algorithms import BaseAuxVarOptimizer
from ..distconst import RVFunctions, insert_rvf
from ..helpers import normalize_rvs
from ..utils import extended_partition, partitions, unitful
__all__ = (
'deweese_coinformation',
'deweese_total_correlation',
'deweese_dual_total_correlation',
'deweese_caekl_mutual_information',
)
def deweese_constructor(mmi):
@unitful
def deweese(dist, rvs=None, crvs=None, return_opt=False, rv_mode=None):
rvs, crvs, rv_mode = normalize_rvs(dist, rvs, crvs, rv_mode)
dist = dist.coalesce(rvs + [crvs])
new_rvs = [[i + len(rvs) + 1] for i, _ in enumerate(rvs)]
new_crvs = [dist.outcome_length() - 1]
rvf = RVFunctions(dist)
def all_funcs():
partss = [partitions({(o[i],) for o in dist.outcomes}) for i, _ in enumerate(rvs)]
for parts in product(*partss):
d = dist.copy()
for i, part in enumerate(parts):
new_part = extended_partition(d.outcomes, [i], part, d._outcome_ctor)
d = insert_rvf(d, rvf.from_partition(new_part))
yield d
possibilities = ((mmi(d, rvs=new_rvs, crvs=new_crvs), d) for d in all_funcs())
opt_val, opt_d = max(possibilities, key=lambda t: t[0])
if return_opt:
return opt_val, opt_d
else:
return opt_val
deweese.__doc__ = deweese.__doc__.format(name=mmi.__name__)
return deweese
class BaseDeWeeseOptimizer(BaseAuxVarOptimizer):
construct_initial = BaseAuxVarOptimizer.construct_copy_initial
_sign = -1
_shotgun = 5
|
BSD 3-Clause New or Revised License
|
iwangjian/bytecup2018
|
make_datafiles.py
|
write_to_tar
|
python
|
def write_to_tar(url_file, out_file, makevocab=False):
print("Making bin file for URLs listed in {}...".format(url_file))
story_fnames = read_text_file(url_file)
num_stories = len(story_fnames)
if makevocab:
vocab_counter = collections.Counter()
with tarfile.open(out_file, 'w') as writer:
for idx, s in enumerate(story_fnames):
if idx % 1000 == 0:
print("Writing story {} of {}; {:.2f} percent done".format(
idx, num_stories, float(idx)*100.0/float(num_stories)))
if os.path.isfile(os.path.join(train_tokenized_stories_dir, s)):
story_file = os.path.join(train_tokenized_stories_dir, s)
elif os.path.isfile(os.path.join(valid_tokenized_stories_dir, s)):
story_file = os.path.join(valid_tokenized_stories_dir, s)
elif os.path.isfile(os.path.join(test_tokenized_stories_dir, s)):
story_file = os.path.join(test_tokenized_stories_dir, s)
else:
print("Error: Couldn't find tokenized story file %s in either tokenized story directories %s and %s. \
Was there an error during tokenization?" % (
s, train_tokenized_stories_dir, valid_tokenized_stories_dir))
print("Checking that the tokenized stories directories %s and %s contain correct number of files..."
% (train_tokenized_stories_dir, valid_tokenized_stories_dir))
raise Exception("Tokenized stories directories %s and %s contain correct number of files but story file \
%s found in neither." % (
train_tokenized_stories_dir, valid_tokenized_stories_dir, s))
article_sents, abstract_sents = get_art_abs(story_file)
js_example = {}
js_example['id'] = s.replace('.story', '')
js_example['article'] = article_sents
js_example['abstract'] = abstract_sents
js_serialized = json.dumps(js_example, indent=4).encode()
save_file = io.BytesIO(js_serialized)
tar_info = tarfile.TarInfo('{}/{}.json'.format(
os.path.basename(out_file).replace('.tar', ''), idx))
tar_info.size = len(js_serialized)
writer.addfile(tar_info, save_file)
if makevocab:
art_tokens = ' '.join(article_sents).split()
abs_tokens = ' '.join(abstract_sents).split()
tokens = art_tokens + abs_tokens
tokens = [t.strip() for t in tokens]
tokens = [t for t in tokens if t != ""]
vocab_counter.update(tokens)
print("Finished writing file {}\n".format(out_file))
if makevocab:
print("Writing vocab file...")
with open(os.path.join(finished_files_dir, "vocab_cnt.pkl"), 'wb') as vocab_file:
pkl.dump(vocab_counter, vocab_file)
print("Finished writing vocab file")
|
Reads the tokenized .story files corresponding to the urls listed in the
url_file and writes them to a out_file.
|
https://github.com/iwangjian/bytecup2018/blob/c59c6a495f81c493eaaf7fda710c8acd7ef148b9/make_datafiles.py#L143-L209
|
import os
import hashlib
import subprocess
import collections
import json
import tarfile
import io
import pickle as pkl
import nltk.data
tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
dm_single_close_quote = '\u2019'
dm_double_close_quote = '\u201d'
END_TOKENS = ['.', '!', '?', '...', "'", "`", '"',
dm_single_close_quote, dm_double_close_quote, ")"]
all_train_urls = "./bytecup/data/lists/all_train.txt"
all_val_urls = "./bytecup/data/lists/all_valid.txt"
all_test_urls = "./bytecup/data/lists/all_test.txt"
train_stories_dir = './bytecup/data/train'
valid_stories_dir = './bytecup/data/valid'
test_stories_dir = './bytecup/data/test'
train_tokenized_stories_dir = "./bytecup/tokenized/train_tokenized"
valid_tokenized_stories_dir = "./bytecup/tokenized/valid_tokenized"
test_tokenized_stories_dir = "./bytecup/tokenized/test_tokenized"
finished_files_dir = "./bytecup/finished_files"
VOCAB_SIZE = 200000
def tokenize_stories(stories_dir, tokenized_stories_dir):
print("Preparing to tokenize {} to {}...".format(stories_dir,
tokenized_stories_dir))
stories = os.listdir(stories_dir)
print("Making list of files to tokenize...")
with open("mapping.txt", "w") as f:
for s in stories:
f.write(
"{} \t {}\n".format(
os.path.join(stories_dir, s),
os.path.join(tokenized_stories_dir, s)
)
)
command = ['java', 'edu.stanford.nlp.process.PTBTokenizer',
'-ioFileList', '-preserveLines', 'mapping.txt']
print("Tokenizing {} files in {} and saving in {}...".format(
len(stories), stories_dir, tokenized_stories_dir))
subprocess.call(command)
print("Stanford CoreNLP Tokenizer has finished.")
os.remove("mapping.txt")
num_orig = len(os.listdir(stories_dir))
num_tokenized = len(os.listdir(tokenized_stories_dir))
if num_orig != num_tokenized:
raise Exception(
"The tokenized stories directory {} contains {} files, but it "
"should contain the same number as {} (which has {} files). Was"
" there an error during tokenization?".format(
tokenized_stories_dir, num_tokenized, stories_dir, num_orig)
)
print("Successfully finished tokenizing {} to {}.\n".format(
stories_dir, tokenized_stories_dir))
def read_story_file(text_file):
with open(text_file, "r") as f:
lines = f.read().split('\n\n')
return lines
def read_text_file(text_file):
lines = []
with open(text_file, "r") as f:
for line in f:
lines.append(line.strip())
return lines
def hashhex(s):
h = hashlib.sha1()
h.update(s.encode())
return h.hexdigest()
def get_url_hashes(url_list):
return [hashhex(url) for url in url_list]
def fix_missing_period(line):
if "@highlight" in line:
return line
if line == "":
return line
if line[-1] in END_TOKENS:
return line
return line + " ."
def get_art_abs(story_file):
lines = read_story_file(story_file)
lines = [' '.join(line.lower().strip().split()) for line in lines]
lines = [fix_missing_period(line) for line in lines]
article_lines = []
highlights = []
next_is_highlight = False
for idx, line in enumerate(lines):
if line == "":
continue
elif line.startswith("@highlight"):
next_is_highlight = True
elif next_is_highlight:
highlights.append(line)
else:
article_lines.append(line)
return article_lines, highlights
|
MIT License
|
neesarg123/pocketbiz
|
main.py
|
show_after_discount
|
python
|
def show_after_discount(tot_wout_tax, discount, root_win):
discount_added.append(discount)
receipt_file = open('receipt.txt', 'w+')
discount_amount = Decimal(Decimal(tot_wout_tax) * Decimal(discount) * Decimal(0.01)).quantize(Decimal('.01'))
return_val = Decimal(Decimal(tot_wout_tax) - discount_amount + Decimal(get_tax_amount())).quantize(Decimal('.01'))
return_label = tk.Label(root_win, text="DUE:\n" + str(abs(return_val)), bg=TK_INPUT_BG, fg=FG_LABELS_COLOR,
font=FONT)
return_label.place(relx=0.3, rely=0.5, relheight=0.15, relwidth=0.4)
receipt_line = "\nDISCOUNT " + str(discount) + "%" + "\t-$" + str(discount_amount)
receipt_line += "\nBALANCE:\t$" + str(return_val)
receipt_file.write(receipt_line)
receipt_file.close()
|
amount owed after discount.
|
https://github.com/neesarg123/pocketbiz/blob/40e7468e12ea9224d36c66bc49bea445d5002335/main.py#L585-L602
|
import tkinter as tk
import item_database
import transactions_database
import all_transactions_database
from tkintertable import TableCanvas, TableModel
import datetime
import pandas as pd
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure
from decimal import *
import win32print
import win32api
import win32con
import os.path
import itertools
import pygsheets
BACKGROUND_FRAME_COLOR = '#42423f'
BUTTON_AND_LABEL_COLOR = '#adada6'
BACK_BUTTON_COLOR = '#d93027'
ENTRY_COLOR = '#d9d1d0'
TK_INPUT_WIN_H = 250
TK_INPUT_WIN_W = 250
TK_INPUT_BG = '#575353'
FG_LABELS_COLOR = '#ffffff'
ONLINE_IND_COLOR = '#5dc77a'
OFFLINE_IND_COLOR = '#ed4c40'
YES_BTN = '#82ba6e'
NO_BTN = '#b52438'
FONT = ('Courier', 15, 'bold')
global PRINTER_NAME, G_INV_SH_NAME, G_TRAN_SH_NAME, GC, SH, WKS, SH_T, WKS_T, COLUMNS_GOOGLE_INVENTORY, ALL_TRANSACTIONS
global INVENTORY_DF, ON_OFF_CYC
input_file = open('inputs.txt', 'r')
for idx, line in enumerate(input_file.readlines()):
value = line.split("=")[1]
if idx == 0:
PRINTER_NAME = value[2:-2]
elif idx == 1:
G_INV_SH_NAME = value[2:-2]
elif idx == 2:
G_TRAN_SH_NAME = value[2:-1]
else:
COLUMNS_GOOGLE_INVENTORY = value.split('[')[1].split(']')[0].split(', ')
if os.path.isfile('creds.json'):
try:
GC = pygsheets.authorize(service_file='creds.json')
except Exception as e:
print("Something went Wrong while getting authorizing credentials file:", str(e))
if len(G_INV_SH_NAME) > 0:
try:
print("Trying to open the google inventory file...")
SH = GC.open(G_INV_SH_NAME)
WKS = SH[0]
print("Successfully opened the google inventory file!")
except Exception as e:
print("Something went wrong while opening the google inventory file:", str(e))
if len(G_TRAN_SH_NAME) > 0:
try:
print("Trying to open the google transactions file...")
SH_T = GC.open(G_TRAN_SH_NAME)
WKS_T = SH_T[0]
print("Successfully opened the google transactions file!")
except Exception as e:
print("Something went wrong while opening the google transactions file:", str(e))
else:
print("You don't yet have a google sheets API set up. Follow this link to set one up:\n"
"https://developers.google.com/sheets/api/quickstart/python")
if not os.path.isfile('Transactions.xlsx'):
header_df = pd.DataFrame({'Name': [], 'S.Price': [], 'Date': [], 'P.Type': [],
'Total': []})
header_df.to_excel('Transactions.xlsx', index=False)
ALL_TRANSACTIONS = pd.read_excel('Transactions.xlsx', ignore_index=True)
all_transactions_database.deleteData()
for idx, name in enumerate(list(ALL_TRANSACTIONS['Name'])):
all_transactions_database.addData(name, str(ALL_TRANSACTIONS['S.Price'][idx]), str(ALL_TRANSACTIONS['Date'][idx]),
str(ALL_TRANSACTIONS['P.Type'][idx]), str(ALL_TRANSACTIONS['Total'][idx]))
if not os.path.isfile('Inventory.xlsx'):
header_df = pd.DataFrame({'Name': [], 'Barcode': [], 'S.Price': [], 'P.Price': [], 'Quantity': [],
'Online_Price': [], 'Tax': []})
header_df.to_excel('Inventory.xlsx', index=False)
INVENTORY_DF = pd.read_excel('Inventory.xlsx', ignore_index=True)
item_database.deleteData()
for idx, name in enumerate(list(INVENTORY_DF['Name'])):
item_database.addData(name, str(INVENTORY_DF['Barcode'][idx]), str(INVENTORY_DF['P.Price'][idx]),
str(INVENTORY_DF['S.Price'][idx]), str(INVENTORY_DF['Quantity'][idx]),
str(INVENTORY_DF['Online_Price'][idx]), str(INVENTORY_DF['Tax'][idx]))
ON_OFF_CYC = itertools.cycle('of')
open('receipt.txt', 'w').write('')
discount_added = []
def update_all_transaction_df():
all_transactions_data = {"Name": [names[0] for names in all_transactions_database.getNames()],
"S.Price": [s_prices[0] for s_prices in all_transactions_database.getSPrices()],
"Date": [dates[0] for dates in all_transactions_database.getDates()],
"P.Type": [p_types[0] for p_types in all_transactions_database.getPTypes()],
"Total": [tots[0] for tots in all_transactions_database.getTotals()]}
new_all_transactions_df = pd.DataFrame(data=all_transactions_data)
new_all_transactions_df['Total'] = pd.to_numeric(new_all_transactions_df['Total'], errors='coerce')
taxes = []
for i in range(len(new_all_transactions_df)):
if str(item_database.getTaxableFromNameAndSP(new_all_transactions_df['Name'][i],
new_all_transactions_df['S.Price'][i])) == 'T':
t = Decimal(Decimal(new_all_transactions_df['S.Price'][i]) * Decimal(0.0825)).quantize(Decimal('.01'))
taxes.append(t)
elif str(new_all_transactions_df['Name'][i]) == 'Misc.':
real_p = Decimal(Decimal(new_all_transactions_df['S.Price'][i]) / Decimal(1.0825)).quantize(Decimal('.01'))
t = Decimal(Decimal(new_all_transactions_df['S.Price'][i]) - real_p).quantize(Decimal('.01'))
taxes.append(t)
else:
taxes.append(Decimal(0.0))
new_all_transactions_df['Tax'] = taxes
new_all_transactions_df['Tax'] = pd.to_numeric(new_all_transactions_df['Tax'])
return new_all_transactions_df
def update_inventory_df():
inventory_data = {'Name': [names[0] for names in item_database.getNames()],
'Barcode': [barcodes[0] for barcodes in item_database.getBarcodes()],
'S.Price': [s_prices[0] for s_prices in item_database.getSPrices()],
'P.Price': [p_prices[0] for p_prices in item_database.getPPrices()],
'Quantity': [quantities[0] for quantities in item_database.getQtns()],
'Online_Price': [ops[0] for ops in item_database.getOPs()],
'Tax': [taxes[0] for taxes in item_database.getTaxes()]}
new_inventory_df = pd.DataFrame(data=inventory_data)
return new_inventory_df
def update_excel_files():
update_inventory_df().to_excel('Inventory.xlsx', index=False)
update_all_transaction_df().to_excel('Transactions.xlsx', index=False)
def erase_previous_entry(entries):
for entry in entries:
entry.delete(0, 'end')
def click_on_barcode_entry():
win32api.SetCursorPos((320, 140))
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, 320, 140, 0, 0)
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, 320, 140, 0, 0)
def set_focus_on_entry(entry):
entry.focus()
return "break"
def display_item_database_table(item_list_frame):
items = item_database.getData()
TableModel()
data = {}
for i in range(len(items)):
data['row' + str(i + 1)] = {'Name': items[i][0], 'Barcode': items[i][1],
'P.Price': items[i][2], 'S.Price': items[i][3],
'Quantity': items[i][4], 'Online $': items[i][5],
'Tax': items[i][6]}
table = TableCanvas(item_list_frame, data=data)
table.show()
def display_all_transactions_database_table(item_list_frame):
items = all_transactions_database.getData()
TableModel()
data = {}
for i in range(len(items)):
data['row' + str(i + 1)] = {'Name': items[i][0], 'S.Price': items[i][1],
'Date': items[i][2], 'Payment Type': items[i][3],
'Total': items[i][4]}
table = TableCanvas(item_list_frame, data=data)
table.show()
def get_tax_amount():
transaction_items = transactions_database.getData()
total_sale = Decimal(0.0)
for i in range(len(transaction_items)):
if str(item_database.getTaxableFromNameAndSP(str(transaction_items[i][0]), transaction_items[i][1])) == 'T':
total_sale += Decimal(transaction_items[i][1]).quantize(Decimal('.01'))
elif str(item_database.getTaxableFromNameAndOP(str(transaction_items[i][0]), transaction_items[i][1])) == 'T':
total_sale += Decimal(transaction_items[i][1]).quantize(Decimal('.01'))
return Decimal(Decimal(0.0825) * total_sale).quantize(Decimal('.01'))
def get_transactions_total_wout_tax():
transaction_items = transactions_database.getData()
total_sale = Decimal(0.0)
if len(transaction_items) > 0:
for i in range(len(transaction_items)):
total_sale += Decimal(transaction_items[i][1]).quantize(Decimal('.01'))
return total_sale
def get_transactions_total():
return Decimal(get_transactions_total_wout_tax() + get_tax_amount()).quantize(Decimal('.01'))
def show_transaction_table(frame, frame1):
model = TableModel()
transaction_items = transactions_database.getData()
data = {}
data1 = {}
total_sale = get_transactions_total()
for i in range(len(transaction_items)):
data['row' + str(i + 1)] = {'Name': transaction_items[i][0], 'S.Price': transaction_items[i][1],
'Date': transaction_items[i][2]}
data1['row1'] = {'Total ($)': str(total_sale)}
table1 = TableCanvas(frame1, data=data1, model=model)
table = TableCanvas(frame, data=data, model=model)
click_on_barcode_entry()
table.show()
table1.show()
def delete_pressed(frame, frame1):
transactions_database.deleteData()
show_transaction_table(frame, frame1)
def print_receipt():
filename = "receipt.txt"
if len(PRINTER_NAME) > 0:
try:
win32print.SetDefaultPrinter(PRINTER_NAME)
win32api.ShellExecute(
0,
"printto",
filename,
'"%s"' % win32print.GetDefaultPrinter(),
".",
0
)
except Exception as e:
print("Something went wrong when trying to print:", str(e))
else:
print("You don't have a usb-printer set up yet. If you have one, make sure to add its name in the input.txt "
"file. Or check whether you have the driver downloaded in your computer.")
def print_option(barcodes):
root_tk_in = tk.Tk()
root_tk_in.configure(bg=TK_INPUT_BG)
root_tk_in.title("Print Option")
canvas_in = tk.Canvas(root_tk_in, height=TK_INPUT_WIN_H, width=500, bg=TK_INPUT_BG)
canvas_in.pack()
option_label = tk.Label(root_tk_in, text='Do you want to print a receipt?', bg=TK_INPUT_BG, fg=FG_LABELS_COLOR,
font=FONT)
option_label.place(relx=0.1, rely=0.4, relheight=0.1, relwidth=0.8)
yes_btn = tk.Button(root_tk_in, text='Yes', bg=YES_BTN, fg=FG_LABELS_COLOR, font=FONT,
command=lambda: [print_receipt(), root_tk_in.destroy(), done_btn_pressed(barcodes),
update_inventory_df(),
update_all_transaction_df(), update_excel_files()])
yes_btn.place(relx=0.2, rely=0.55, relheight=0.1, relwidth=0.2)
no_btn = tk.Button(root_tk_in, text='No', bg=NO_BTN, fg=FG_LABELS_COLOR, font=FONT,
command=lambda: [root_tk_in.destroy(), done_btn_pressed(barcodes),
update_inventory_df(),
update_all_transaction_df(), update_excel_files()])
no_btn.place(relx=0.6, rely=0.55, relheight=0.1, relwidth=0.2)
no_btn.focus_force()
root_tk_in.mainloop()
def done_btn_pressed(barcodes):
filename = "receipt.txt"
transaction_items = transactions_database.getData()
for idx, t in enumerate(list(transaction_items)):
if idx != len(list(transaction_items)) - 1:
all_transactions_database.addData(t[0], t[1], t[2], t[3], '')
else:
if len(discount_added) == 0:
all_transactions_database.addData(t[0], t[1], t[2], t[3], str(get_transactions_total()))
else:
discounted_total = Decimal(get_transactions_total() - (
Decimal(discount_added[0]) * Decimal(0.01) * get_transactions_total())).quantize(
Decimal('.01'))
all_transactions_database.addData(t[0], t[1], t[2], t[3], str(discounted_total))
decrease_qtn(barcodes)
barcodes.clear()
transactions_database.deleteData()
if len(G_INV_SH_NAME) > 0 and len(G_TRAN_SH_NAME) > 0:
inv_df = pd.read_excel('Inventory.xlsx')
new_invn = pd.DataFrame()
for col in COLUMNS_GOOGLE_INVENTORY:
new_invn[str(col)] = inv_df[str(col)]
WKS.set_dataframe(new_invn, (1, 1))
trans_df = pd.read_excel("Transactions.xlsx")
WKS_T.set_dataframe(trans_df, (1, 1))
open(filename, 'w').write('')
def update_receipt_text():
receipt_file = open("receipt.txt", "r+")
present_lines = receipt_file.readlines()
receipt_file.close()
transaction_items = transactions_database.getData()
dup_list_of_item_names = [t[0] for t in transaction_items]
list_of_sp = [t[1] for t in transaction_items]
list_of_qtns = []
list_of_item_names = list(set(dup_list_of_item_names))
for i in list_of_item_names:
list_of_qtns.append(dup_list_of_item_names.count(i))
header = " LIQUOR PALACE\n\t6965 Harwin Dr\n\t 346 980 8859\n\n"
subtotal = Decimal(0.0)
for idx, item in enumerate(list_of_item_names):
header += str(item) + " " + str(list_of_qtns[idx]) + " $" + str(list_of_sp[idx]) + "\n"
subtotal += Decimal(Decimal(list_of_sp[idx]) * Decimal(list_of_qtns[idx])).quantize(Decimal('.01'))
tax = Decimal(Decimal(0.0825) * subtotal).quantize(Decimal('.01'))
total = Decimal(subtotal + tax).quantize(Decimal('.01'))
header += "\nSUBTOTAL" + "\t$" + str(subtotal) + "\n" + "TAX" + "\t\t$" + str(tax) + "\n" + "TOTAL" + "\t\t$" + str(total) + "\n"
for line in present_lines:
header += line
open('receipt.txt', 'w').write(header)
def show_monthly_analysis(frame):
fig = Figure(figsize=(5, 5), dpi=80)
subplot = fig.add_subplot(111)
updated_at_df = pd.read_excel('Transactions.xlsx')
updated_at_df['Revenue'] = updated_at_df['S.Price']
updated_at_df['Month'] = updated_at_df['Date'].str[5:7]
updated_at_df['Month'] = updated_at_df['Month'].astype('int32')
monthly_revs = updated_at_df.groupby('Month').sum()
months = [x for x in updated_at_df['Month']]
non_rep_months = []
for month in months:
if month not in non_rep_months:
non_rep_months.append(month)
subplot.set_xticks(non_rep_months)
subplot.set_xlabel('Month Number')
subplot.set_ylabel('Sale ($)')
subplot.set_title('Total Sale Per Month for the Year')
subplot.bar(non_rep_months, monthly_revs['Revenue'], color="#eb6e34")
canvas = FigureCanvasTkAgg(fig, frame)
canvas.draw()
canvas.get_tk_widget().place(relx=0.05, rely=0.3, relheight=0.5, relwidth=0.4)
def show_sale_frequency_analysis(frame):
updated_at_df = pd.read_excel('Transactions.xlsx')
fig1 = Figure(figsize=(5, 5), dpi=80)
subplot1 = fig1.add_subplot(111)
item_names = updated_at_df['Name']
item_names_and_freq = []
for name in item_names:
count = updated_at_df['Name'] .where(updated_at_df['Name'] == name).count()
if [name, count] not in item_names_and_freq:
item_names_and_freq.append([name, count])
item_names_and_freq.sort(key=lambda x: x[1], reverse=True)
x_var = [n[0] for n in item_names_and_freq]
y_var = [f[1] for f in item_names_and_freq]
if len(x_var) > 10:
x_var = x_var[:10]
y_var = y_var[:10]
subplot1.bar(x_var, y_var, color="#eb6e34")
subplot1.set_title("Top Selling Items (up to 10)")
subplot1.set_xlabel("Item Name")
subplot1.set_xticklabels([n[0:7] for n in item_names])
subplot1.set_ylabel("Sale Frequency")
canvas1 = FigureCanvasTkAgg(fig1, frame)
canvas1.draw()
canvas1.get_tk_widget().place(relx=0.55, rely=0.3, relheight=0.5, relwidth=0.4)
def add_item_to_item_database(name, barcode, pp, sp, qtn, op, tax, text):
if (barcode,) in item_database.getBarcodes():
text.set("Item is already in your inventory :)")
else:
if tax == '0':
tax = 'T'
else:
tax = 'N'
item_database.addData(name, barcode, pp, sp, qtn, op, tax)
text.set("Item was added :)")
def add_item_to_transactions_databases(name, sp, date, op, payment_type='CREDIT'):
if name is not None:
next(ON_OFF_CYC)
if next(ON_OFF_CYC) == 'o':
transactions_database.addData(name, op, date, payment_type)
else:
transactions_database.addData(name, sp, date, payment_type)
def update_name(new_name, barcode, text):
if (barcode,) in item_database.getBarcodes():
item_database.updateName(new_name, barcode)
text.set("Item was updated :)")
else:
text.set("Item is not in your inventory :(")
def update_pp(new_pp, barcode, text):
if (barcode,) in item_database.getBarcodes():
item_database.updatePurchasePrice(new_pp, barcode)
text.set("Item was updated :)")
else:
text.set("Item is not in your inventory :(")
def update_sp(new_sp, barcode, text):
if (barcode,) in item_database.getBarcodes():
item_database.updateSalePrice(new_sp, barcode)
text.set("Item was updated :)")
else:
text.set("Item is not in your inventory :(")
def update_qtn(new_qtn, barcode, text):
if (barcode,) in item_database.getBarcodes():
item_database.updateQuantity(new_qtn, barcode)
text.set("Item was updated :)")
else:
text.set("Item is not in your inventory :(")
def update_op(new_op, barcode, text):
if (barcode,) in item_database.getBarcodes():
item_database.updateOP(new_op, barcode)
text.set("Item was updated :)")
else:
text.set("Item is not in your inventory :(")
def decrease_qtn(barcodes):
for b in barcodes:
item_database.decreaseQuantityByOne(b)
def get_return_value(total, cash_given):
return Decimal(Decimal(total) - Decimal(cash_given)).quantize(Decimal('.01'))
def get_return_value_with_discount(tot_wout_tax, discount):
discount_amount = Decimal(Decimal(tot_wout_tax) * Decimal(discount) * Decimal(0.01)).quantize(Decimal('.01'))
return_val = Decimal(Decimal(tot_wout_tax) - discount_amount + Decimal(get_tax_amount())).quantize(Decimal('.01'))
return return_val
|
MIT License
|
statueofmike/rtsp
|
rtsp/ffmpegstream.py
|
Client.__exit__
|
python
|
def __exit__(self, type=None, value=None, traceback=None):
self.close()
|
Together with __enter__, allows support for `with-` clauses.
|
https://github.com/statueofmike/rtsp/blob/e2916ea22d404de2bd786e004ba9dc592f95da89/rtsp/ffmpegstream.py#L34-L36
|
import cv2
from io import BytesIO
from PIL import Image
from threading import Thread
class Client:
_stream = None
def __init__(self, rtsp_server_uri, verbose = False):
self.rtsp_server_uri = rtsp_server_uri
self._verbose = verbose
if isinstance(rtsp_server_uri,str) and 'picam' in rtsp_server_uri:
self.__class__ = PicamVideoFeed
_pc = PicamVideoFeed()
self.__dict__.update(_pc.__dict__)
self._bg_run = False
self.open()
def __enter__(self,*args,**kwargs):
return self
|
MIT License
|
vincent-lg/tsunami
|
src/secondaires/peche/__init__.py
|
Module.ajouter_banc
|
python
|
def ajouter_banc(self, banc):
self.bancs[banc.cle] = banc
|
Ajoute le banc de poisson dans le dictionnaire.
|
https://github.com/vincent-lg/tsunami/blob/36b3b974f6eefbf15cd5d5f099fc14630e66570b/src/secondaires/peche/__init__.py#L111-L113
|
import random
from abstraits.module import *
from corps.aleatoire import *
from corps.fonctions import valider_cle
from .banc import Banc
from . import commandes
from .editeurs.schooledit import EdtSchooledit
from . import types
TERRAINS_PECHE = ("rive", )
class Module(BaseModule):
def __init__(self, importeur):
BaseModule.__init__(self, importeur, "peche", "secondaire")
self.commandes = []
self.bancs = {}
def config(self):
pecher = self.importeur.perso.ajouter_etat("pecher")
pecher.msg_refus = "Vous êtes en train de pêcher"
pecher.msg_visible = "pêche ici"
pecher.act_autorisees = ["regarder", "parler", "geste", "asseoir", "lever"]
BaseModule.config(self)
def init(self):
importeur.perso.ajouter_talent("peche_terre", "pêche à quai",
"survie", 0.45)
importeur.perso.ajouter_talent("peche_mer", "pêche embarquée",
"survie", 0.42)
bancs = self.importeur.supenr.charger_groupe(Banc)
for banc in bancs:
self.bancs[banc.cle] = banc
importeur.diffact.ajouter_action("bancs", 60,
self.tick_bancs)
BaseModule.init(self)
def ajouter_commandes(self):
self.commandes = [
commandes.appater.CmdAppater(),
commandes.banc.CmdBanc(),
commandes.pecher.CmdPecher(),
]
for cmd in self.commandes:
self.importeur.interpreteur.ajouter_commande(cmd)
self.importeur.interpreteur.ajouter_editeur(EdtSchooledit)
def creer_banc(self, cle):
valider_cle(cle)
if cle in self.bancs:
raise KeyError("le banc de poisson '{}' existe déjà".format(cle))
banc = Banc(cle)
self.ajouter_banc(banc)
return banc
|
BSD 3-Clause New or Revised License
|
dmitriy-serdyuk/twinnet-asr
|
libs/Theano/theano/tensor/type.py
|
TensorType.values_eq_approx
|
python
|
def values_eq_approx(a, b, allow_remove_inf=False, allow_remove_nan=False,
rtol=None, atol=None):
if isinstance(a, numpy.ndarray) and isinstance(b, numpy.ndarray):
if a.shape != b.shape:
return False
if a.dtype != b.dtype:
return False
if 'int' in str(a.dtype):
return numpy.all(a == b)
else:
if a.ndim == 0 and numpy.isinf(a):
a = a.reshape(1)
b = b.reshape(1)
cmp = theano.tensor.basic._allclose(a, b, rtol=rtol, atol=atol)
if cmp:
return True
a_missing = numpy.isnan(a)
a_inf = numpy.isinf(a)
if not (a_missing.any() or (allow_remove_inf and a_inf.any())):
_logger.info(
'numpy allclose failed for abs_err %f and rel_err %f',
numpy.max(abs(a - b)),
numpy.max(abs(a - b) / (abs(a) + abs(b))))
return False
rtol = 1.0000000000000001e-05
atol = 1e-8
cmp_elemwise = (numpy.absolute(a - b) <=
(atol + rtol * numpy.absolute(b)))
both_missing = a_missing * numpy.isnan(b)
both_inf = a_inf * numpy.isinf(b)
cmp_elemwise = numpy.where(
both_inf & cmp_elemwise,
a == b,
cmp_elemwise)
both_inf = numpy.where(both_inf, (a == b), both_inf)
if allow_remove_inf:
both_inf += a_inf
if allow_remove_nan:
both_missing += a_missing
return (cmp_elemwise + both_missing + both_inf).all()
return False
|
Parameters
----------
allow_remove_inf
If True, when there is an inf in a, we allow any value in b in
that position. Event -inf
allow_remove_nan
If True, when there is a nan in a, we allow any value in b in
that position. Event +-inf
rtol
Relative tolerance, passed to _allclose.
atol
Absolute tolerance, passed to _allclose.
|
https://github.com/dmitriy-serdyuk/twinnet-asr/blob/799220d682306467a2b401e42e788f8c33382b00/libs/Theano/theano/tensor/type.py#L320-L404
|
import logging
import warnings
import numpy
import theano
from theano import config
from theano.gof import hashtype, Type, Variable
from theano import scalar as scal
_logger = logging.getLogger("theano.tensor.type")
class TensorType(Type):
filter_checks_isfinite = False
def __init__(self, dtype, broadcastable, name=None, sparse_grad=False):
self.dtype = str(dtype)
if self.dtype == 'floatX':
self.dtype = config.floatX
self.broadcastable = tuple(bool(b) for b in broadcastable)
self.dtype_specs()
self.name = name
self.numpy_dtype = numpy.dtype(self.dtype)
self.sparse_grad = sparse_grad
if sparse_grad:
warnings.warn(
"DEPRECATION WARNING: You use an old interface to"
" AdvancedSubtensor1 sparse_grad. Now use"
" theano.sparse_grad(a_tensor[an_int_vector]).")
def clone(self, dtype=None, broadcastable=None):
if dtype is None:
dtype = self.dtype
if broadcastable is None:
broadcastable = self.broadcastable
return self.__class__(dtype, broadcastable, name=self.name,
sparse_grad=self.sparse_grad)
def filter(self, data, strict=False, allow_downcast=None):
if isinstance(data, Variable):
raise TypeError(
'Expected an array-like object, but found a Variable: '
'maybe you are trying to call a function on a (possibly '
'shared) variable instead of a numeric array?')
if ((type(data) is numpy.ndarray) and
(data.dtype == self.numpy_dtype)):
if data.dtype.num != self.numpy_dtype.num:
data = theano._asarray(data, dtype=self.dtype)
elif ((type(data) is numpy.memmap) and
(data.dtype == self.numpy_dtype)):
pass
elif strict:
if not (type(data) is numpy.ndarray):
raise TypeError("%s expected a ndarray object." % self,
data, type(data))
if data.dtype != self.numpy_dtype:
raise TypeError(("%s expected a ndarray object with "
"dtype = %s (got %s).") %
(self, self.numpy_dtype, data.dtype))
assert False, "This point should never be reached."
else:
if allow_downcast:
data = theano._asarray(data, dtype=self.dtype)
else:
if isinstance(data, numpy.ndarray):
up_dtype = scal.upcast(self.dtype, data.dtype)
if up_dtype == self.dtype:
data = theano._asarray(data, dtype=self.dtype)
if up_dtype != self.dtype:
err_msg = (
'%s cannot store a value of dtype %s without '
'risking loss of precision. If you do not mind '
'this loss, you can: '
'1) explicitly cast your data to %s, or '
'2) set "allow_input_downcast=True" when calling '
'"function".'
% (self, data.dtype, self.dtype))
raise TypeError(err_msg, data)
elif (allow_downcast is None and
type(data) is float and
self.dtype == theano.config.floatX):
data = theano._asarray(data, self.dtype)
else:
converted_data = theano._asarray(data, self.dtype)
if TensorType.values_eq(numpy.asarray(data),
converted_data,
force_same_dtype=False):
data = converted_data
else:
str_data = str(data)
if len(str_data) > 80:
str_data = str_data[:75] + '(...)'
err_msg = (
'%s cannot store accurately value %s, '
'it would be represented as %s. '
'If you do not mind this precision loss, you can: '
'1) explicitly convert your data to a numpy array '
'of dtype %s, or '
'2) set "allow_input_downcast=True" when calling '
'"function".'
% (self, data, converted_data, self.dtype))
raise TypeError(err_msg, data)
if self.ndim != data.ndim:
raise TypeError("Wrong number of dimensions: expected %s,"
" got %s with shape %s." % (self.ndim, data.ndim,
data.shape))
if not data.flags.aligned:
try:
msg = "object buffer" + str(data.data)
except AttributeError:
msg = ""
raise TypeError("The numpy.ndarray object is not aligned."
" Theano C code does not support that.",
msg,
"object shape", data.shape,
"object strides", data.strides,
"object dtype", data.dtype)
i = 0
for b in self.broadcastable:
if b and data.shape[i] != 1:
raise TypeError("Non-unit value on shape on a broadcastable"
" dimension.", data.shape, self.broadcastable)
i += 1
if (self.filter_checks_isfinite and
not numpy.all(numpy.isfinite(data))):
raise ValueError("non-finite elements not allowed")
return data
def filter_variable(self, other, allow_convert=True):
if hasattr(other, '_as_TensorVariable'):
other = other._as_TensorVariable()
if not isinstance(other, Variable):
other = self.Constant(type=self, data=other)
if other.type == self:
return other
if allow_convert:
other2 = self.convert_variable(other)
if other2 is not None and other2.type == self:
return other2
raise TypeError(
'Cannot convert Type %(othertype)s '
'(of Variable %(other)s) into Type %(self)s. '
'You can try to manually convert %(other)s into a %(self)s.' %
dict(othertype=other.type,
other=other,
self=self))
def value_validity_msg(self, a):
try:
self.filter(a, strict=True)
except Exception as e:
return str(e)
return "value is valid"
def dtype_specs(self):
try:
return {
'float16': (float, 'npy_float16', 'NPY_FLOAT16'),
'float32': (float, 'npy_float32', 'NPY_FLOAT32'),
'float64': (float, 'npy_float64', 'NPY_FLOAT64'),
'uint8': (int, 'npy_uint8', 'NPY_UINT8'),
'int8': (int, 'npy_int8', 'NPY_INT8'),
'uint16': (int, 'npy_uint16', 'NPY_UINT16'),
'int16': (int, 'npy_int16', 'NPY_INT16'),
'uint32': (int, 'npy_uint32', 'NPY_UINT32'),
'int32': (int, 'npy_int32', 'NPY_INT32'),
'uint64': (int, 'npy_uint64', 'NPY_UINT64'),
'int64': (int, 'npy_int64', 'NPY_INT64'),
'complex128': (complex, 'theano_complex128', 'NPY_COMPLEX128'),
'complex64': (complex, 'theano_complex64', 'NPY_COMPLEX64')
}[self.dtype]
except KeyError:
raise TypeError("Unsupported dtype for %s: %s"
% (self.__class__.__name__, self.dtype))
def to_scalar_type(self):
return scal.get_scalar_type(dtype=self.dtype)
def __eq__(self, other):
return type(self) == type(other) and other.dtype == self.dtype and other.broadcastable == self.broadcastable
def convert_variable(self, var):
if (type(self) == type(var.type) and
self.dtype == var.type.dtype and
self.ndim == var.type.ndim and
all(sb == ob or ob for sb, ob in zip(self.broadcastable,
var.type.broadcastable))):
return theano.tensor.patternbroadcast(var, self.broadcastable)
@staticmethod
def may_share_memory(a, b):
if isinstance(a, numpy.ndarray) and isinstance(b, numpy.ndarray):
return numpy.may_share_memory(a, b)
else:
return False
@staticmethod
def values_eq(a, b, force_same_dtype=True):
if a.shape != b.shape:
return False
if force_same_dtype and a.dtype != b.dtype:
return False
a_eq_b = (a == b)
r = numpy.all(a_eq_b)
if r:
return True
a_missing = numpy.isnan(a)
if a_missing.any():
b_missing = numpy.isnan(b)
return numpy.all(a_eq_b + (a_missing == b_missing))
else:
return False
@staticmethod
|
MIT License
|
mardix/assembly
|
assembly/assembly.py
|
_get_action_endpoint
|
python
|
def _get_action_endpoint(action):
_endpoint = None
if inspect.ismethod(action) and hasattr(action, "_rule_cache"):
rc = action._rule_cache
if rc:
k = list(rc.keys())[0]
rules = rc[k]
len_rules = len(rules)
if len_rules == 1:
rc_kw = rules[0][1]
_endpoint = rc_kw.get("endpoint", None)
if not _endpoint:
_endpoint = _make_routename_from_endpoint(action)
elif len_rules > 1:
_prefix = _make_routename_from_endpoint(action)
for r in Assembly._app.url_map.iter_rules():
if ('GET' in r.methods or 'POST' in r.methods) and _prefix in r.endpoint:
_endpoint = r.endpoint
break
return _endpoint
|
Return the endpoint base on the view's action
:param action:
:return:
|
https://github.com/mardix/assembly/blob/4c993d19bc9d33c1641323e03231e9ecad711b38/assembly/assembly.py#L745-L769
|
import re
import os
import sys
import six
import jinja2
import inspect
import logging
import werkzeug
import functools
import arrow as date
import pkg_resources
import logging.config
from . import utils, _db, about
from flask_assets import Environment
import werkzeug.exceptions as HTTPError
from werkzeug.wrappers import BaseResponse
from werkzeug.exceptions import HTTPException
from werkzeug.middleware.proxy_fix import ProxyFix
from werkzeug.routing import (BaseConverter, parse_rule)
from flask import (Flask,
g,
render_template,
flash,
session,
make_response,
Response,
request,
abort,
url_for as f_url_for,
redirect as f_redirect)
__all__ = [
"Assembly",
"db",
"env",
"ext",
"date",
"views",
"config",
"models",
"url_for",
"decorate",
"redirect",
"HTTPError",
"get_cookie",
"set_cookie",
"app_context",
"delete_cookie",
]
env = os.environ
config = utils.DotDict()
views = type('', (), {})
models = type('', (), {})
ext = type('', (), {})
db = _db.ActiveAlchemyProxy()
def app_context(kls):
if not hasattr(kls, "__call__"):
raise AssemblyError("app_context: '%s' is not callable" % kls)
Assembly._init_apps.add(kls)
return kls
def url_for(endpoint, **kw):
_endpoint = None
if isinstance(endpoint, six.string_types):
return f_url_for(endpoint, **kw)
else:
if isinstance(endpoint, Assembly):
fn = sys._getframe().f_back.f_code.co_name
endpoint = getattr(endpoint, fn)
if inspect.ismethod(endpoint) or inspect.isfunction(endpoint):
_endpoint = _get_action_endpoint(endpoint)
if not _endpoint:
_endpoint = _make_routename_from_endpoint(endpoint)
if _endpoint:
return f_url_for(_endpoint, **kw)
else:
raise AssemblyError('Assembly `url_for` received an invalid endpoint')
def redirect(endpoint, **kw):
if isinstance(endpoint, six.string_types):
if "/" in endpoint:
return f_redirect(endpoint)
else:
for r in Assembly._app.url_map.iter_rules():
if 'GET' in r.methods and endpoint in r.endpoint:
endpoint = r.endpoint
return f_redirect(url_for(endpoint, **kw))
def decorate(fn):
def decorator(kls):
if inspect.isclass(kls):
apply_function_to_members(kls, fn)
return kls
return decorator
__ASM_SET_COOKIES__ = "__ASM_SET_COOKIES__"
def set_cookie(*a, **kw):
cookies = []
if __ASM_SET_COOKIES__ in g:
cookies = getattr(g, __ASM_SET_COOKIES__)
cookies.append((a, kw))
setattr(g, __ASM_SET_COOKIES__, cookies)
def delete_cookie(key, path="/", domain=None):
set_cookie(key, expires=0, max_age=0, path=path, domain=domain)
def get_cookie(key):
return request.cookies.get(key)
class Assembly(object):
decorators = []
base_route = None
route_prefix = None
trailing_slash = True
assets = None
_ext = set()
__special_methods = ["get", "put", "patch", "post", "delete", "index"]
_app = None
_init_apps = set()
_template_fsl = {}
_static_paths = set()
@classmethod
def init(cls,
import_name,
views_list,
app_name="default",
app_env="Development"
):
app = import_name if isinstance(import_name, Flask) else Flask(import_name)
if env.get("ASSEMBLY_APP"):
app_name = env.get("ASSEMBLY_APP")
if env.get("ASSEMBLY_ENV"):
app_env = env.get("ASSEMBLY_ENV")
app_env = app_env.lower().capitalize()
app.config.from_object("lib.config.%s" % app_env)
if not config:
config.update(app.config.items())
if app.config.get("USE_PROXY_FIX", True):
app.wsgi_app = ProxyFix(app.wsgi_app)
app.url_map.converters['regex'] = _RegexConverter
cls._app = app
cls.assets = Environment(app)
cls._setup_db__(app)
werkzeug.import_string("lib.models", True)
try:
if app_name not in views_list:
raise AssemblyError("Missing project: %s" % app_name)
for view in views_list[app_name]:
cls._load_view_from_string__(view)
except ImportError as ie1:
logging.critical(ie1)
cls._register_models__()
if cls._template_fsl:
loader = [app.jinja_loader, _JinjaPrefixLoader(cls._template_fsl)]
app.jinja_loader = jinja2.ChoiceLoader(loader)
cls.assets.load_path = [app.static_folder] + list(cls._static_paths)
for p in cls.assets.load_path:
f = "%s/assets.yml" % p
if os.path.isfile(f):
cls.assets.from_yaml(f)
[init_app(app) for init_app in cls._init_apps]
for subcls in cls.__subclasses__():
base_route = subcls.base_route
if not base_route:
base_route = utils.dasherize(utils.underscore(subcls.__name__))
if subcls.__name__.lower() == "index":
base_route = "/"
subcls._register__(app, base_route=base_route)
return app
@classmethod
def _load_view_from_string__(cls, view):
werkzeug.import_string(view)
_register_application_template(view, view)
@classmethod
def render(cls, data={}, __template__=None, **kwargs):
vars = dict(
__NAME__=about.__title__,
__VERSION__=about.__version__,
__YEAR__=date.utcnow().year
)
for k, v in vars.items():
setattr(g, k, v)
if not __template__:
stack = inspect.stack()[1]
action_name = stack[3]
__template__ = _make_template_path(cls, action_name)
data = data or {}
data.update(kwargs)
return render_template(__template__, **data)
@classmethod
def _setup_db__(cls, app):
uri = config.get("DB_URL")
if uri:
db.connect__(uri, app)
@classmethod
def _register_models__(cls):
if db._IS_OK_:
_register_models(**{m.__name__: m
for m in db.Model.__subclasses__()
if not hasattr(models, m.__name__)})
@classmethod
def _register__(cls,
app,
base_route=None,
subdomain=None,
route_prefix=None,
trailing_slash=True):
if cls is Assembly:
raise TypeError("cls must be a subclass of Assembly, not Assembly itself")
_register_view(cls)
if base_route:
cls.orig_base_route = cls.base_route
cls.base_route = base_route
if route_prefix:
cls.orig_route_prefix = cls.route_prefix
cls.route_prefix = route_prefix
if not subdomain:
if hasattr(app, "subdomain") and app.subdomain is not None:
subdomain = app.subdomain
elif hasattr(cls, "subdomain"):
subdomain = cls.subdomain
if trailing_slash is not None:
cls.orig_trailing_slash = cls.trailing_slash
cls.trailing_slash = trailing_slash
for name, value in _get_interesting_members(Assembly, cls):
proxy = cls._make_proxy_method__(name)
route_name = _make_routename_from_cls(cls, name)
try:
if hasattr(value, "_rule_cache") and name in value._rule_cache:
for idx, cached_rule in enumerate(value._rule_cache[name]):
rule, options = cached_rule
rule = cls._build_rule__(rule)
sub, ep, options = cls._parse_options__(options)
if not subdomain and sub:
subdomain = sub
if ep:
endpoint = ep
elif len(value._rule_cache[name]) == 1:
endpoint = route_name
else:
endpoint = "%s_%d" % (route_name, idx,)
app.add_url_rule(rule, endpoint, proxy,
subdomain=subdomain,
**options)
elif name in cls.__special_methods:
if name in ["get", "index"]:
methods = ["GET"]
if name == "index":
if hasattr(value, "_methods_cache"):
methods = value._methods_cache
else:
methods = [name.upper()]
rule = cls._build_rule__("/", value)
if not cls.trailing_slash:
rule = rule.rstrip("/")
app.add_url_rule(rule, route_name, proxy,
methods=methods,
subdomain=subdomain)
else:
methods = value._methods_cache if hasattr(value, "_methods_cache") else ["GET"]
name = utils.dasherize(name)
route_str = '/%s/' % name
if not cls.trailing_slash:
route_str = route_str.rstrip('/')
rule = cls._build_rule__(route_str, value)
app.add_url_rule(rule, route_name, proxy,
subdomain=subdomain,
methods=methods)
except DecoratorCompatibilityError:
raise DecoratorCompatibilityError(
"Incompatible decorator detected on %s in class %s" % (name, cls.__name__))
for name, fn in _get_interesting_members_http_error(Assembly, cls):
match = _match_http_error(name)
if match:
try:
mname = match.groups()[0]
exc = int(mname) if mname.isdigit() else HTTPException
app.register_error_handler(exc, lambda e: cls._error_handler__(fn, e))
except KeyError as kE:
raise AssemblyError(str(kE) + " - module: '%s'" % _get_full_method_name(fn))
if hasattr(cls, "orig_base_route"):
cls.base_route = cls.orig_base_route
del cls.orig_base_route
if hasattr(cls, "orig_route_prefix"):
cls.route_prefix = cls.orig_route_prefix
del cls.orig_route_prefix
if hasattr(cls, "orig_trailing_slash"):
cls.trailing_slash = cls.orig_trailing_slash
del cls.orig_trailing_slash
@classmethod
def _parse_options__(cls, options):
options = options.copy()
subdomain = options.pop('subdomain', None)
endpoint = options.pop('endpoint', None)
return subdomain, endpoint, options,
@classmethod
def _make_proxy_method__(cls, name):
i = cls()
view = getattr(i, name)
for decorator in cls.decorators:
view = decorator(view)
@functools.wraps(view)
def proxy(**forgettable_view_args):
del forgettable_view_args
if hasattr(i, "_before_request"):
response = i._before_request(name, **request.view_args)
if response is not None:
return response
before_view_name = "_before_" + name
if hasattr(i, before_view_name):
before_view = getattr(i, before_view_name)
response = before_view(**request.view_args)
if response is not None:
return response
response = view(**request.view_args)
if isinstance(response, dict) or response is None:
response = response or {}
if hasattr(i, "_renderer"):
response = i._renderer(response)
else:
template = _make_template_path(cls, view.__name__)
response.setdefault("__template__", template)
response = i.render(**response)
if not isinstance(response, Response):
response = make_response(response)
for ext in cls._ext:
response = ext(response)
after_view_name = "_after_" + name
if hasattr(i, after_view_name):
after_view = getattr(i, after_view_name)
response = after_view(response)
if hasattr(i, "_after_request"):
response = i._after_request(name, response)
if __ASM_SET_COOKIES__ in g:
cookies = g.pop(__ASM_SET_COOKIES__)
for cookie in cookies:
response.set_cookie(*cookie[0], **cookie[1])
return response
return proxy
@classmethod
def _build_rule__(cls, rule, method=None):
rule_parts = []
if cls.route_prefix:
rule_parts.append(cls.route_prefix)
base_route = cls._get_base_route__()
if base_route:
rule_parts.append(base_route)
rule_parts.append(rule)
ignored_rule_args = ['self']
if hasattr(cls, 'base_args'):
ignored_rule_args += cls.base_args
if method:
args = _get_true_argspec(method)[0]
for arg in args:
if arg not in ignored_rule_args:
rule_parts.append("<%s>" % arg)
result = "/%s" % "/".join(rule_parts)
return re.sub(r'(/)\1+', r'\1', result)
@classmethod
def _get_base_route__(cls):
base_route = cls.__name__.lower()
if cls.base_route is not None:
base_route = cls.base_route
base_rule = parse_rule(base_route)
cls.base_args = [r[2] for r in base_rule]
return base_route.strip("/")
@classmethod
def _error_handler__(cls, fn, e):
resp = fn(cls, e)
if isinstance(resp, Response) or isinstance(resp, BaseResponse):
return resp
if isinstance(resp, dict) or isinstance(resp, tuple) or resp is None:
data, status, headers = utils.prepare_view_response(resp)
if "__template__" not in data:
data["__template__"] = _make_template_path(cls, fn.__name__.lstrip("_"))
return cls.render(**resp), e.code, headers
return resp
def apply_function_to_members(cls, fn):
for name, method in _get_interesting_members(Assembly, cls):
setattr(cls, name, fn(method))
def _sanitize_module_name(module_name):
return module_name.replace(".views", "")
def _get_full_method_name(mtd):
return "%s.%s" % (mtd.__module__, mtd.__name__)
def _register_models(**kwargs):
[setattr(models, k, v) for k, v in kwargs.items()]
def _register_view(cls):
mod = views
module_name = _sanitize_module_name(cls.__module__)
if "." in module_name:
for k in module_name.split("."):
if not hasattr(mod, k):
setattr(mod, k, type('', (), {}))
mod = getattr(mod, k)
setattr(mod, cls.__name__, cls)
|
MIT License
|
qinenergy/adanet
|
convlarge/cifar10.py
|
load_cifar10
|
python
|
def load_cifar10():
dest_directory = FLAGS.data_dir
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = DATA_URL.split('/')[-1]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' %
(filename, float(count * block_size) /
float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
print()
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
print("Loading training data...")
train_images = np.zeros((NUM_EXAMPLES_TRAIN, 3 * 32 * 32), dtype=np.float32)
train_labels = []
for i, data_fn in enumerate(
sorted(glob.glob(FLAGS.data_dir + '/cifar-10-batches-py/data_batch*'))):
batch = unpickle(data_fn)
train_images[i * 10000:(i + 1) * 10000] = batch['data']
train_labels.extend(batch['labels'])
train_images = (train_images - 127.5) / 255.
train_labels = np.asarray(train_labels, dtype=np.int64)
rand_ix = np.random.permutation(NUM_EXAMPLES_TRAIN)
train_images = train_images[rand_ix]
train_labels = train_labels[rand_ix]
print("Loading test data...")
test = unpickle(FLAGS.data_dir + '/cifar-10-batches-py/test_batch')
test_images = test['data'].astype(np.float32)
test_images = (test_images - 127.5) / 255.
test_labels = np.asarray(test['labels'], dtype=np.int64)
"""
print("Apply ZCA whitening")
components, mean, train_images = ZCA(train_images)
np.save('{}/components'.format(FLAGS.data_dir), components)
np.save('{}/mean'.format(FLAGS.data_dir), mean)
test_images = np.dot(test_images - mean, components.T)
"""
train_images = train_images.reshape(
(NUM_EXAMPLES_TRAIN, 3, 32, 32)).transpose((0, 2, 3, 1)).reshape((NUM_EXAMPLES_TRAIN, -1))
test_images = test_images.reshape(
(NUM_EXAMPLES_TEST, 3, 32, 32)).transpose((0, 2, 3, 1)).reshape((NUM_EXAMPLES_TEST, -1))
return (train_images, train_labels), (test_images, test_labels)
|
Download and extract the tarball from Alex's website.
|
https://github.com/qinenergy/adanet/blob/569037ac1784513b4980d0e95cc291ca2899646d/convlarge/cifar10.py#L55-L109
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import tarfile
import numpy as np
from scipy import linalg
import glob
import pickle
from six.moves import xrange
from six.moves import urllib
import tensorflow as tf
from dataset_utils_cifar import *
DATA_URL = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('data_dir', './dataset/cifar10',
'where to store the dataset')
tf.app.flags.DEFINE_integer('num_labeled_examples', 4000, "The number of labeled examples")
tf.app.flags.DEFINE_integer('num_valid_examples', 1000, "The number of validation examples")
tf.app.flags.DEFINE_integer('dataset_seed', 1, "dataset seed")
IMAGE_SIZE = 32
NUM_CLASSES = 10
NUM_EXAMPLES_TRAIN = 50000
NUM_EXAMPLES_TEST = 10000
|
MIT License
|
rangilyu/nanodet
|
nanodet/trainer/task.py
|
TrainingTask.scalar_summary
|
python
|
def scalar_summary(self, tag, phase, value, step):
if self.local_rank < 1:
self.logger.experiment.add_scalars(tag, {phase: value}, step)
|
Write Tensorboard scalar summary log.
Args:
tag: Name for the tag
phase: 'Train' or 'Val'
value: Value to record
step: Step value to record
|
https://github.com/rangilyu/nanodet/blob/d7caaca17b08731b9ed42441e09916902f735c69/nanodet/trainer/task.py#L332-L343
|
import copy
import json
import logging
import os
import warnings
from typing import Any, List
import torch
import torch.distributed as dist
from pytorch_lightning import LightningModule
from nanodet.data.batch_process import stack_batch_img
from nanodet.util import gather_results, mkdir
from ..model.arch import build_model
class TrainingTask(LightningModule):
def __init__(self, cfg, evaluator=None):
super(TrainingTask, self).__init__()
self.cfg = cfg
self.model = build_model(cfg.model)
self.evaluator = evaluator
self.save_flag = -10
self.log_style = "NanoDet"
def _preprocess_batch_input(self, batch):
batch_imgs = batch["img"]
if isinstance(batch_imgs, list):
batch_imgs = [img.to(self.device) for img in batch_imgs]
batch_img_tensor = stack_batch_img(batch_imgs, divisible=32)
batch["img"] = batch_img_tensor
return batch
def forward(self, x):
x = self.model(x)
return x
@torch.no_grad()
def predict(self, batch, batch_idx=None, dataloader_idx=None):
batch = self._preprocess_batch_input(batch)
preds = self.forward(batch["img"])
results = self.model.head.post_process(preds, batch)
return results
def on_train_start(self) -> None:
if self.current_epoch > 0:
self.lr_scheduler.last_epoch = self.current_epoch - 1
def training_step(self, batch, batch_idx):
batch = self._preprocess_batch_input(batch)
preds, loss, loss_states = self.model.forward_train(batch)
if self.log_style == "Lightning":
self.log(
"lr",
self.optimizers().param_groups[0]["lr"],
on_step=True,
on_epoch=False,
prog_bar=True,
)
for k, v in loss_states.items():
self.log(
"Train/" + k,
v,
on_step=True,
on_epoch=True,
prog_bar=True,
sync_dist=True,
)
elif (
self.log_style == "NanoDet"
and self.global_step % self.cfg.log.interval == 0
):
lr = self.optimizers().param_groups[0]["lr"]
log_msg = "Train|Epoch{}/{}|Iter{}({})| lr:{:.2e}| ".format(
self.current_epoch + 1,
self.cfg.schedule.total_epochs,
self.global_step,
batch_idx,
lr,
)
self.scalar_summary("Train_loss/lr", "Train", lr, self.global_step)
for loss_name in loss_states:
log_msg += "{}:{:.4f}| ".format(
loss_name, loss_states[loss_name].mean().item()
)
self.scalar_summary(
"Train_loss/" + loss_name,
"Train",
loss_states[loss_name].mean().item(),
self.global_step,
)
self.info(log_msg)
return loss
def training_epoch_end(self, outputs: List[Any]) -> None:
self.trainer.save_checkpoint(os.path.join(self.cfg.save_dir, "model_last.ckpt"))
self.lr_scheduler.step()
def validation_step(self, batch, batch_idx):
batch = self._preprocess_batch_input(batch)
preds, loss, loss_states = self.model.forward_train(batch)
if self.log_style == "Lightning":
self.log(
"Val/loss",
loss,
on_step=True,
on_epoch=False,
prog_bar=True,
logger=False,
)
for k, v in loss_states.items():
self.log(
"Val/" + k,
v,
on_step=False,
on_epoch=True,
prog_bar=False,
sync_dist=True,
)
elif self.log_style == "NanoDet" and batch_idx % self.cfg.log.interval == 0:
lr = self.optimizers().param_groups[0]["lr"]
log_msg = "Val|Epoch{}/{}|Iter{}({})| lr:{:.2e}| ".format(
self.current_epoch + 1,
self.cfg.schedule.total_epochs,
self.global_step,
batch_idx,
lr,
)
for loss_name in loss_states:
log_msg += "{}:{:.4f}| ".format(
loss_name, loss_states[loss_name].mean().item()
)
self.info(log_msg)
dets = self.model.head.post_process(preds, batch)
return dets
def validation_epoch_end(self, validation_step_outputs):
results = {}
for res in validation_step_outputs:
results.update(res)
all_results = (
gather_results(results)
if dist.is_available() and dist.is_initialized()
else results
)
if all_results:
eval_results = self.evaluator.evaluate(
all_results, self.cfg.save_dir, rank=self.local_rank
)
metric = eval_results[self.cfg.evaluator.save_key]
if metric > self.save_flag:
self.save_flag = metric
best_save_path = os.path.join(self.cfg.save_dir, "model_best")
mkdir(self.local_rank, best_save_path)
self.trainer.save_checkpoint(
os.path.join(best_save_path, "model_best.ckpt")
)
txt_path = os.path.join(best_save_path, "eval_results.txt")
if self.local_rank < 1:
with open(txt_path, "a") as f:
f.write("Epoch:{}\n".format(self.current_epoch + 1))
for k, v in eval_results.items():
f.write("{}: {}\n".format(k, v))
else:
warnings.warn(
"Warning! Save_key is not in eval results! Only save model last!"
)
if self.log_style == "Lightning":
for k, v in eval_results.items():
self.log(
"Val_metrics/" + k,
v,
on_step=False,
on_epoch=True,
prog_bar=False,
sync_dist=True,
)
elif self.log_style == "NanoDet":
for k, v in eval_results.items():
self.scalar_summary(
"Val_metrics/" + k, "Val", v, self.current_epoch + 1
)
else:
self.info("Skip val on rank {}".format(self.local_rank))
def test_step(self, batch, batch_idx):
dets = self.predict(batch, batch_idx)
return dets
def test_epoch_end(self, test_step_outputs):
results = {}
for res in test_step_outputs:
results.update(res)
all_results = (
gather_results(results)
if dist.is_available() and dist.is_initialized()
else results
)
if all_results:
res_json = self.evaluator.results2json(all_results)
json_path = os.path.join(self.cfg.save_dir, "results.json")
json.dump(res_json, open(json_path, "w"))
if self.cfg.test_mode == "val":
eval_results = self.evaluator.evaluate(
all_results, self.cfg.save_dir, rank=self.local_rank
)
txt_path = os.path.join(self.cfg.save_dir, "eval_results.txt")
with open(txt_path, "a") as f:
for k, v in eval_results.items():
f.write("{}: {}\n".format(k, v))
else:
self.info("Skip test on rank {}".format(self.local_rank))
def configure_optimizers(self):
optimizer_cfg = copy.deepcopy(self.cfg.schedule.optimizer)
name = optimizer_cfg.pop("name")
build_optimizer = getattr(torch.optim, name)
optimizer = build_optimizer(params=self.parameters(), **optimizer_cfg)
schedule_cfg = copy.deepcopy(self.cfg.schedule.lr_schedule)
name = schedule_cfg.pop("name")
build_scheduler = getattr(torch.optim.lr_scheduler, name)
self.lr_scheduler = build_scheduler(optimizer=optimizer, **schedule_cfg)
return optimizer
def optimizer_step(
self,
epoch=None,
batch_idx=None,
optimizer=None,
optimizer_idx=None,
optimizer_closure=None,
on_tpu=None,
using_native_amp=None,
using_lbfgs=None,
):
if self.trainer.global_step <= self.cfg.schedule.warmup.steps:
if self.cfg.schedule.warmup.name == "constant":
warmup_lr = (
self.cfg.schedule.optimizer.lr * self.cfg.schedule.warmup.ratio
)
elif self.cfg.schedule.warmup.name == "linear":
k = (1 - self.trainer.global_step / self.cfg.schedule.warmup.steps) * (
1 - self.cfg.schedule.warmup.ratio
)
warmup_lr = self.cfg.schedule.optimizer.lr * (1 - k)
elif self.cfg.schedule.warmup.name == "exp":
k = self.cfg.schedule.warmup.ratio ** (
1 - self.trainer.global_step / self.cfg.schedule.warmup.steps
)
warmup_lr = self.cfg.schedule.optimizer.lr * k
else:
raise Exception("Unsupported warm up type!")
for pg in optimizer.param_groups:
pg["lr"] = warmup_lr
optimizer.step(closure=optimizer_closure)
optimizer.zero_grad()
def get_progress_bar_dict(self):
items = super().get_progress_bar_dict()
items.pop("v_num", None)
items.pop("loss", None)
return items
|
Apache License 2.0
|
gregorch/ipet
|
ipet/validation/Validation.py
|
Validation.getPbValue
|
python
|
def getPbValue(self, pb : float, objsense : int) -> float:
if pd.isnull(pb):
pb = infty() if objsense == ObjectiveSenseCode.MINIMIZE else -infty()
return pb
|
returns a floating point value computed from a given primal bound
|
https://github.com/gregorch/ipet/blob/e4135ff936d3aa447a960d854f9c51554e5ba7dc/ipet/validation/Validation.py#L179-L184
|
import pandas as pd
from ipet.Key import ProblemStatusCodes, SolverStatusCodes, ObjectiveSenseCode
from ipet import Key
from ipet.misc import getInfinity as infty
from ipet.misc import isInfinite as isInf
import numpy as np
import logging
import sqlite3
logger = logging.getLogger(__name__)
DEFAULT_RELTOL = 1e-4
DEFAULT_FEASTOL = 1e-6
class SolufileMarkers:
OPT = "=opt="
INF = "=inf="
BEST = "=best="
UNKN = "=unkn="
BESTDUAL = "=bestdual="
FEAS = "=feas="
class DataBaseMarkers:
OPT = "opt"
INF = "inf"
BEST = "best"
class Validation:
__primalidx__ = 0
__dualidx__ = 1
__feas__ = 1e99
__infeas__ = 1e100
def __init__(self, solufilename : str = None, tol : float = DEFAULT_RELTOL, feastol : float = DEFAULT_FEASTOL):
if solufilename:
if solufilename.endswith(".solu"):
self.referencedict = self.readSoluFile(solufilename)
self.objsensedict = {}
else:
self.referencedict, self.objsensedict = self.connectToDataBase(solufilename)
logger.debug("Data base connection finished, {} items".format(len(self.referencedict.items())))
else:
self.referencedict, self.objsensedict = {}, {}
self.tol = tol
self.inconsistentset = set()
self.feastol = feastol
def set_tol(self, tol : float):
self.tol = tol
def set_feastol(self, feastol : float):
self.feastol = feastol
def connectToDataBase(self, databasefilename):
soludict = {}
objsensedict = {}
with sqlite3.connect(databasefilename) as conn:
c = conn.cursor()
c.execute('SELECT DISTINCT name, objsense,primbound,dualbound,status FROM instances')
for name, objsense, primbound, dualbound, status in c:
if name in soludict:
logger.warning("Warning: Duplicate name {} with different data in data base".format(name))
infotuple = [None, None]
if status == DataBaseMarkers.OPT:
infotuple[self.__primalidx__] = infotuple[self.__dualidx__] = primbound
elif status == DataBaseMarkers.BEST:
if primbound is not None:
infotuple[self.__primalidx__] = primbound
if dualbound is not None:
infotuple[self.__dualidx__] = dualbound
elif status == DataBaseMarkers.INF:
infotuple[self.__primalidx__] = self.__infeas__
objsensedict[name] = ObjectiveSenseCode.MAXIMIZE if objsense == "max" else ObjectiveSenseCode.MINIMIZE
soludict[name] = tuple(infotuple)
return soludict, objsensedict
def readSoluFile(self, solufilename : str) -> dict:
soludict = dict()
with open(solufilename, "r") as solufile:
for line in solufile:
if line.strip() == "":
continue
spline = line.split()
marker = spline[0]
problemname = spline[1]
infotuple = list(soludict.get(problemname, (None, None)))
if marker == SolufileMarkers.OPT:
infotuple[self.__primalidx__] = infotuple[self.__dualidx__] = float(spline[2])
elif marker == SolufileMarkers.BEST:
infotuple[self.__primalidx__] = float(spline[2])
elif marker == SolufileMarkers.BESTDUAL:
infotuple[self.__dualidx__] = float(spline[2])
elif marker == SolufileMarkers.FEAS:
infotuple[self.__primalidx__] = self.__feas__
elif marker == SolufileMarkers.INF:
infotuple[self.__primalidx__] = self.__infeas__
soludict[problemname] = tuple(infotuple)
return soludict
|
MIT License
|
pajbot/pajbot
|
pajbot/apiwrappers/authentication/access_token.py
|
AccessToken.should_refresh
|
python
|
def should_refresh(self):
if not self.can_refresh():
return False
if self.expires_at is not None:
expires_after = self.expires_at - self.created_at
else:
expires_after = datetime.timedelta(hours=1)
token_age = pajbot.utils.now() - self.created_at
max_token_age = expires_after * self.SHOULD_REFRESH_THRESHOLD
return token_age >= max_token_age
|
Returns True if less than 10% of the token's lifetime remains, False otherwise
|
https://github.com/pajbot/pajbot/blob/42e19a692eb663556bc78d0d86eef1a667728f46/pajbot/apiwrappers/authentication/access_token.py#L39-L60
|
import datetime
from abc import ABC, abstractmethod
import pajbot
class AccessToken(ABC):
SHOULD_REFRESH_THRESHOLD = 0.9
def __init__(self, access_token, created_at, expires_in, token_type, refresh_token, scope):
self.access_token = access_token
self.created_at = created_at
self.expires_in = expires_in
if self.expires_in is not None:
self.expires_at = self.created_at + self.expires_in
else:
self.expires_at = None
self.token_type = token_type
self.refresh_token = refresh_token
self.scope = scope
@abstractmethod
def can_refresh(self):
pass
|
MIT License
|
cn-uofbasel/picn
|
PiCN/Demos/DetectionMap/YOLO/ObjectDetection.py
|
detect_objects
|
python
|
def detect_objects(image, id: int=0):
model_path = os.path.join(ROOT_DIR, "Demos/DetectionMap/YOLO/Model")
if not os.path.exists(model_path):
print("Model for object detection not found. \nDownloading from GitHub...")
path = os.path.join(ROOT_DIR, "Demos/DetectionMap/YOLO")
url = "https://github.com/cn-uofbasel/PiCN/releases/download/0.0.1/YOLO.zip"
response = requests.get(url)
print("Download done!")
with zipfile.ZipFile(io.BytesIO(response.content)) as zf:
for info in zf.infolist():
zf.extract(info, path)
labels_file = open(os.path.join(model_path, "labels"))
labels = labels_file.read().strip().split("\n")
labels_file.close()
labels_include_file = open(os.path.join(model_path, "labels_included"))
labels_include = labels_include_file.read().strip().split("\n")
labels_include_file.close()
np.random.seed(42)
colors = np.random.randint(0, 255, size=(len(labels), 3),
dtype="uint8")
config_path = os.path.join(model_path, "yolov3.cfg")
weights_path = os.path.join(model_path, "yolov3.weights")
net = cv2.dnn.readNetFromDarknet(config_path, weights_path)
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
original_height, original_width = image.shape[:2]
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
layer_outputs = net.forward(ln)
detections = []
boxes = []
confidences = []
class_ids = []
for output in layer_outputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
name = labels[int(class_id)]
if confidence > 0.5 and name in labels_include:
box = detection[0:4] * np.array([original_width, original_height,
original_width, original_height])
(x, y, width, height) = box.astype("int")
detections.append({"id": int(class_id), "coords": (x,y)})
x = int(x - (width / 2))
y = int(y - (height / 2))
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
class_ids.append(class_id)
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.3)
if len(idxs) > 0:
for i in idxs.flatten():
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
color = [int(c) for c in colors[class_ids[i]]]
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
if not os.path.exists(os.path.join(ROOT_DIR, "Demos/DetectionMap/Assets/Classified")):
os.makedirs(os.path.join(ROOT_DIR, "Demos/DetectionMap/Assets/Classified"))
plt.imsave(os.path.join(ROOT_DIR, f"Demos/DetectionMap/Assets/Classified/classified{id}.jpg"), image)
return [detections[i] for i in idxs.flatten()], colors
|
Detect objects and classify them.
The model being used is YOLOv3, while only labels in "/Demos/DetectionMap/Model/labels_inculded" are considered.
:param image: The input image
:return: List of dicts containing the name and the x, y-coordinates of the classified objects
|
https://github.com/cn-uofbasel/picn/blob/64ed40242657238e9f1d522d5873173f0b93a30e/PiCN/Demos/DetectionMap/YOLO/ObjectDetection.py#L12-L99
|
import io
import os
import zipfile
import matplotlib.pyplot as plt
import requests
from PiCN.definitions import ROOT_DIR
from PiCN.Demos.DetectionMap.DetectionMapObject import *
from PiCN.Demos.DetectionMap.Monodepth.MonodepthModel import *
|
BSD 3-Clause New or Revised License
|
bbn-q/qgl
|
QGL/BasicSequences/RB.py
|
SingleQubitIRB_AC
|
python
|
def SingleQubitIRB_AC(qubit, seqFile, showPlot=False):
deprication(unmaintained_str)
pulseLib = [AC(qubit, cliffNum) for cliffNum in range(24)]
pulseLib.append(pulseLib[0])
measBlock = MEAS(qubit)
with open(seqFile, 'r') as FID:
fileReader = reader(FID)
seqs = []
for pulseSeqStr in fileReader:
seq = []
for pulseStr in pulseSeqStr:
seq.append(pulseLib[int(pulseStr)])
seq.append(measBlock)
seqs.append(seq)
numRandomizations = 36
for ct in range(numRandomizations):
chunk = seqs[ct::numRandomizations]
chunk1 = chunk[::2]
chunk2 = chunk[1::2]
chunk1 += [[Id(qubit), measBlock], [X(qubit), measBlock]]
metafile = compile_to_hardware(chunk1,
'RB/RB',
suffix='_{0}'.format(2 * ct + 1))
chunk2 += [[Id(qubit), measBlock], [X(qubit), measBlock]]
metafile = compile_to_hardware(chunk2,
'RB/RB',
suffix='_{0}'.format(2 * ct + 2))
if showPlot:
plot_pulse_files(metafile)
return metafile
|
Single qubit interleaved randomized benchmarking using atomic Clifford
pulses.
Parameters
----------
qubit : Channels.LogicalChannel
Logical channel to implement sequence
seqsFiles : string
String defining the path to the file with sequence strings
showPlot : boolean, optional
Whether to plot
Returns
-------
metafile : string
Path to a json metafile with details about the sequences and paths
to compiled machine files
Examples
--------
>>> seqs = create_RB_seqs(1, [2,4,8], repeats=2, interleaveGate=1);
>>> mf = SingleQubitIRB_AC(q1, '/path/to/seq/strings/file');
Compiled 10 sequences.
>>> mf
'/path/to/exp/exp-meta.json'
|
https://github.com/bbn-q/qgl/blob/8df9ce5d68dca61c8c057d34a1c08b98eb910a43/QGL/BasicSequences/RB.py#L662-L729
|
from ..PulsePrimitives import *
from ..Cliffords import *
from ..Compiler import compile_to_hardware
from ..PulseSequencePlotter import plot_pulse_files
from ..tools.clifford_tools import clifford_mat, inverse_clifford
from .helpers import create_cal_seqs, cal_descriptor
from ..config import logger
import os
from csv import reader
import numpy as np
from functools import reduce
import warnings
from typing import List, Mapping, Iterable
def create_RB_seqs(numQubits: int,
lengths: Iterable[int],
repeats: int = 32,
interleaveGate: int = None,
recovery: bool = True) -> List[List[int]]:
if numQubits == 1:
cliffGroupSize = 24
elif numQubits == 2:
cliffGroupSize = 11520
else:
raise Exception("Can only handle one or two qubits.")
seqs = []
for length in lengths:
seqs += np.random.randint(0, cliffGroupSize,
size=(repeats, length - 1)).tolist()
if interleaveGate:
newSeqs = []
for seq in seqs:
newSeqs.append(np.vstack((np.array(
seq, dtype=np.int), interleaveGate * np.ones(
len(seq), dtype=np.int))).flatten(order='F').tolist())
seqs = newSeqs
if recovery:
for seq in seqs:
if len(seq) == 1:
mat = clifford_mat(seq[0], numQubits)
else:
mat = reduce(lambda x, y: np.dot(y, x),
[clifford_mat(c, numQubits) for c in seq])
seq.append(inverse_clifford(mat))
return seqs
def SingleQubitRB(qubit: Channels.LogicalChannel,
seqs: List[List[int]],
cliff_type: str = 'std',
purity: bool = False,
showPlot: bool = False,
add_cals: bool = True) -> str:
if cliff_type.upper() not in clifford_map.keys():
raise ValueError(f"Unknown clifford type: must be one of {clifford.map.keys()}.")
clifford = clifford_map[cliff_type.upper()]
seqsBis = []
op = [Id(qubit, length=0), Y90m(qubit), X90(qubit)]
for ct in range(3 if purity else 1):
for seq in seqs:
seqsBis.append([clifford(qubit,c) for c in seq])
seqsBis[-1].append(op[ct])
seqsBis[-1].append(MEAS(qubit))
axis_descriptor = [{
'name': 'length',
'unit': None,
'points': list(map(len, seqs)),
'partition': 1
}]
if add_cals:
seqsBis += create_cal_seqs((qubit, ), 2)
axis_descriptor.append(cal_descriptor((qubit,), 2))
metafile = compile_to_hardware(seqsBis,
'RB/RB',
axis_descriptor = axis_descriptor,
extra_meta = {'sequences':seqs})
if showPlot:
plot_pulse_files(metafile)
return metafile
def SingleQubitLeakageRB(qubit: Channels.LogicalChannel,
seqs: List[List[int]],
pi2args: Mapping[int, str],
cliff_type: str = 'std',
showPlot: bool = False) -> str:
if cliff_type.upper() not in clifford_map.keys():
raise ValueError(f"Unknown clifford type: must be one of {clifford.map.keys()}.")
clifford = clifford_map[cliff_type.upper()]
seqsBis = []
for seq in seqs:
combined_seq = [clifford(qubit, c) for c in seq]
seqsBis.append(combined_seq + [Id(qubit), Id(qubit), MEAS(qubit)])
seqsBis.append(combined_seq + [X90(qubit), X90(qubit), MEAS(qubit)])
seqsBis.append([Id(qubit), Id(qubit), Id(qubit), Id(qubit), MEAS(qubit)])
seqsBis.append([X90(qubit), X90(qubit), Id(qubit), Id(qubit), MEAS(qubit)])
seqsBis.append([X90(qubit), X90(qubit),
X90(qubit, **pi2args),
X90(qubit, **pi2args),
MEAS(qubit)])
axis_descriptor = [
{
'name': 'length',
'unit': None,
'points': [len(s) for s in seqs for i in range(2)],
'partition': 1
},
{
'name': 'calibration',
'unit': 'state',
'partition': 2,
'points': ['0', '1', '2']
}]
metafile = compile_to_hardware(seqsBis,
'RB/LRB',
axis_descriptor = axis_descriptor,
extra_meta = {'sequences':seqs})
if showPlot:
plot_pulse_files(metafile)
return metafile
def TwoQubitRB(q1: Channels.LogicalChannel,
q2: Channels.LogicalChannel,
seqs: List[List[int]],
meas_qubits: Iterable[Channels.LogicalChannel] = None,
cliff_type: str = 'std',
showPlot: bool = False,
suffix: str = "",
add_cals: bool = True) -> str:
seqsBis = []
for seq in seqs:
seqsBis.append(reduce(operator.add,
[TwoQubitClifford(q2, q1, c, kind=cliff_type)
for c in seq]))
for seq in seqsBis:
if not meas_qubits:
meas_qubits = (q1,q2)
seq.append(reduce(operator.mul, [MEAS(q) for q in meas_qubits]))
axis_descriptor = [{
'name': 'length',
'unit': None,
'points': list(map(len, seqs)),
'partition': 1
}]
if add_cals:
seqsBis += create_cal_seqs((q1, q2), 2, measChans = meas_qubits)
axis_descriptor.append(cal_descriptor((q1, q2), 2))
metafile = compile_to_hardware(seqsBis, 'RB/RB',
axis_descriptor = axis_descriptor,
suffix = suffix,
extra_meta = {'sequences':seqs})
if showPlot:
plot_pulse_files(metafile)
return metafile
def TwoQubitLeakageRB(q1: Channels.LogicalChannel,
q2: Channels.LogicalChannel,
meas_qubit: Iterable[Channels.LogicalChannel],
seqs: List[List[int]],
pi2args: Mapping[int, str],
cliff_type: str = 'std',
showPlot: bool = False) -> str:
seqsBis = []
for seq in seqs:
combined_seq = reduce(operator.add,
[TwoQubitClifford(q2, q1, c, kind=cliff_type)
for c in seq])
seqsBis.append(combined_seq + [Id(meas_qubit), Id(meas_qubit), MEAS(meas_qubit)])
seqsBis.append(combined_seq + [X90(meas_qubit), X90(meas_qubit), MEAS(meas_qubit)])
seqsBis.append([Id(meas_qubit), Id(meas_qubit), Id(meas_qubit),
Id(meas_qubit), MEAS(meas_qubit)])
seqsBis.append([X90(meas_qubit), X90(meas_qubit), Id(meas_qubit),
Id(meas_qubit), MEAS(meas_qubit)])
seqsBis.append([X90(meas_qubit), X90(meas_qubit), X90(meas_qubit, **pi2args),
X90(meas_qubit, **pi2args), MEAS(meas_qubit)])
axis_descriptor = [
{
'name': 'length',
'unit': None,
'points': [len(s) for s in seqs for i in range(2)],
'partition': 1
},
{
'name': 'calibration',
'unit': 'state',
'partition': 2,
'points': ['0', '1', '2']
}]
metafile = compile_to_hardware(seqsBis,
'RB/LRB',
axis_descriptor = axis_descriptor,
extra_meta = {'sequences':seqs})
if showPlot:
plot_pulse_files(metafile)
return metafile
def SimultaneousRB(qubits: Iterable[Channels.LogicalChannel],
seqs: List[List[int]],
showPlot: bool = False,
cliff_type: str = 'std',
add_cals: bool = True) -> str:
if cliff_type.upper() not in clifford_map.keys():
raise ValueError(f"Unknown clifford type: must be one of {clifford.map.keys()}.")
clifford = clifford_map[cliff_type.upper()]
seqsBis = []
for seq in zip(*seqs):
seqsBis.append([reduce(operator.__mul__,
[clifford(q, c) for q, c in zip(qubits, pulseNums)])
for pulseNums in zip(*seq)])
for seq in seqsBis:
seq.append(reduce(operator.mul, [MEAS(q) for q in qubits]))
axis_descriptor = [{
'name': 'length',
'unit': None,
'points': list(map(len, seqs)),
'partition': 1
}]
if add_cals:
seqsBis += create_cal_seqs((qubits), 2)
axis_descriptor.append(cal_descriptor((qubits), 2))
metafile = compile_to_hardware(seqsBis, 'RB/RB', axis_descriptor = axis_descriptor, extra_meta = {'sequences':seqs})
if showPlot:
plot_pulse_files(metafile)
return metafile
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKCYAN = '\033[96m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
unmaintained_str = f"{bcolors.WARNING}This function is unmaintained \
and likely not to work! Please read \
the source and make sure you are \
doing what you want to do.{bcolors.ENDC}"
depricated_str = f"{bcolors.WARNING}This function is depricated and will be \
removed in future releases! Please Use \
`SingleQubitRB` with the `cliff_type` \
keyword argument instead.{bcolors.ENDC}"
def deprecation(message):
warnings.warn(message, DeprecationWarning, stacklevel=1)
def SingleQubitRB_AC(qubit, seqs, purity=False, showPlot=False, add_cals=True):
deprication(depricated_str)
logger.warning("This function is deprecated and may be removed in a future release of QGL! " +
"Use `SingleQubitRB` with the `cliff_type` keyword argument instead.")
seqsBis = []
op = [Id(qubit, length=0), Y90m(qubit), X90(qubit)]
for ct in range(3 if purity else 1):
for seq in seqs:
seqsBis.append([AC(qubit, c) for c in seq])
seqsBis[-1].append(op[ct])
seqsBis[-1].append(MEAS(qubit))
axis_descriptor = [{
'name': 'length',
'unit': None,
'points': list(map(len, seqs)),
'partition': 1
}]
if add_cals:
seqsBis += create_cal_seqs((qubit, ), 2)
axis_descriptor.append(cal_descriptor((qubit,), 2))
metafile = compile_to_hardware(seqsBis, 'RB/RB', axis_descriptor = axis_descriptor, extra_meta = {'sequences':seqs})
if showPlot:
plot_pulse_files(metafile)
return metafile
def SingleQubitRB_DiAC(qubit,
seqs,
compiled=True,
purity=False,
showPlot=False,
add_cals=True):
deprication(depricated_str)
logger.warning("This function is deprecated and may be removed in a future release of QGL! " +
"Use `SingleQubitRB` with the `cliff_type` keyword argument instead.")
seqsBis = []
op = [Id(qubit, length=0), Y90m(qubit), X90(qubit)]
for ct in range(3 if purity else 1):
for seq in seqs:
seqsBis.append([DiAC(qubit, c, compiled) for c in seq])
seqsBis[-1].append(op[ct])
seqsBis[-1].append(MEAS(qubit))
axis_descriptor = [{
'name': 'length',
'unit': None,
'points': list(map(len, seqs)),
'partition': 1
}]
if add_cals:
seqsBis += [[Id(qubit), MEAS(qubit)], [Id(qubit), MEAS(qubit)], [X90(qubit), X90(qubit), MEAS(qubit)], [X90(qubit), X90(qubit), MEAS(qubit)]]
axis_descriptor.append(cal_descriptor((qubit,), 2))
metafile = compile_to_hardware(seqsBis, 'RB_DiAC/RB_DiAC', axis_descriptor = axis_descriptor, extra_meta = {'sequences':seqs})
if showPlot:
plot_pulse_files(metafile)
return metafile
|
Apache License 2.0
|
purestorage-openconnect/py-pure-client
|
pypureclient/flashblade/FB_2_1/models/admin_cache.py
|
AdminCache.__init__
|
python
|
def __init__(
self,
name=None,
id=None,
role=None,
time=None,
):
if name is not None:
self.name = name
if id is not None:
self.id = id
if role is not None:
self.role = role
if time is not None:
self.time = time
|
Keyword args:
name (str): Name of the object (e.g., a file system or snapshot).
id (str): A non-modifiable, globally unique ID chosen by the system.
role (FixedReference): A reference to the `role` of this user.
time (int): Time the role was cached in milliseconds since UNIX epoch.
|
https://github.com/purestorage-openconnect/py-pure-client/blob/2d9fdef0b73321cea9613e7d1eb881b42845099b/pypureclient/flashblade/FB_2_1/models/admin_cache.py#L49-L70
|
import pprint
import re
import six
import typing
from ....properties import Property
if typing.TYPE_CHECKING:
from pypureclient.flashblade.FB_2_1 import models
class AdminCache(object):
swagger_types = {
'name': 'str',
'id': 'str',
'role': 'FixedReference',
'time': 'int'
}
attribute_map = {
'name': 'name',
'id': 'id',
'role': 'role',
'time': 'time'
}
required_args = {
}
|
BSD 2-Clause Simplified License
|
earthobservations/wetterdienst
|
wetterdienst/core/scalar/values.py
|
ScalarValuesCore._coerce_integers
|
python
|
def _coerce_integers(series: pd.Series) -> pd.Series:
return (
pd.to_numeric(series, errors="coerce")
.astype(pd.Float64Dtype())
.astype(pd.Int64Dtype())
)
|
Method to parse integers for type coercion. Uses pandas.Int64Dtype() to
allow missing values.
:param series:
:return:
|
https://github.com/earthobservations/wetterdienst/blob/8e66d14c1338fb86d8f96827c72bfd261a667ff0/wetterdienst/core/scalar/values.py#L614-L626
|
import logging
import operator
from abc import abstractmethod
from enum import Enum
from typing import Dict, Generator, List, Tuple, Union
import numpy as np
import pandas as pd
from pint import Quantity
from pytz import timezone
from tqdm import tqdm
from wetterdienst.core.scalar.result import StationsResult, ValuesResult
from wetterdienst.metadata.columns import Columns
from wetterdienst.metadata.resolution import Resolution
from wetterdienst.metadata.timezone import Timezone
from wetterdienst.metadata.unit import REGISTRY, OriginUnit, SIUnit
from wetterdienst.util.enumeration import parse_enumeration_from_template
from wetterdienst.util.logging import TqdmToLogger
log = logging.getLogger(__name__)
class ScalarValuesCore:
@property
def _meta_fields(self) -> List[str]:
if not self.stations.stations.tidy:
fields = [
Columns.STATION_ID.value,
Columns.DATE.value,
]
else:
fields = [
Columns.STATION_ID.value,
Columns.DATASET.value,
Columns.PARAMETER.value,
Columns.DATE.value,
Columns.VALUE.value,
Columns.QUALITY.value,
]
return fields
_date_fields = [Columns.DATE.value, Columns.FROM_DATE.value, Columns.TO_DATE.value]
@property
def data_tz(self) -> timezone:
return timezone(self._data_tz.value)
@property
@abstractmethod
def _data_tz(self) -> Timezone:
pass
@property
@abstractmethod
def _irregular_parameters(self) -> Tuple[str]:
pass
@property
@abstractmethod
def _integer_parameters(self) -> Tuple[str]:
pass
@property
@abstractmethod
def _string_parameters(self) -> Tuple[str]:
pass
@property
def _complete_dates(self) -> pd.DatetimeIndex:
start_date, end_date = self.stations.start_date, self.stations.end_date
if self.stations.stations.resolution == Resolution.MONTHLY:
end_date += pd.Timedelta(days=31)
elif self.stations.stations.resolution == Resolution.ANNUAL:
end_date += pd.Timedelta(year=366)
date_range = pd.date_range(
start_date,
end_date,
freq=self.stations.frequency.value,
tz=self.data_tz,
)
return date_range
@property
def _base_df(self) -> pd.DataFrame:
return pd.DataFrame({Columns.DATE.value: self._complete_dates})
def convert_values_to_si(self, df: pd.DataFrame, dataset) -> pd.DataFrame:
def _convert_values_to_si(series):
op, factor = conversion_factors.get(series.name, (None, None))
if not op or not factor:
return series
return op(series, factor)
conversion_factors = self._create_conversion_factors(dataset)
df = df.apply(_convert_values_to_si, axis=0)
return df
def _create_conversion_factors(
self, dataset
) -> Dict[str, Tuple[Union[operator.add, operator.mul], float]]:
dataset = dataset.name
dataset_accessor = self.stations.stations._dataset_accessor
if self.stations.stations._unique_dataset:
units = self.stations.stations._unit_tree[dataset_accessor]
else:
units = self.stations.stations._unit_tree[dataset_accessor][dataset]
conversion_factors = {}
for parameter in units:
origin_unit, si_unit = parameter.value
parameter = parameter.name
if self.stations.stations._unique_dataset:
parameter_value = self.stations.stations._dataset_tree[
dataset_accessor
][parameter].value
else:
parameter_value = self.stations.stations._dataset_tree[
dataset_accessor
][dataset][parameter].value
if si_unit == SIUnit.KILOGRAM_PER_SQUARE_METER.value:
if origin_unit == OriginUnit.MILLIMETER.value:
conversion_factors[parameter_value] = (operator.mul, 1)
else:
raise ValueError(
"manually set conversion factor for precipitation unit"
)
elif si_unit == SIUnit.DEGREE_KELVIN.value:
degree_offset = Quantity(0, origin_unit).to(si_unit).magnitude
conversion_factors[parameter_value] = (operator.add, degree_offset)
elif si_unit == SIUnit.PERCENT.value:
factor = REGISTRY(str(origin_unit)).to(str(si_unit)).magnitude
conversion_factors[parameter_value] = (operator.mul, factor)
else:
conversion_factors[parameter_value] = (
operator.mul,
Quantity(1, origin_unit).to(si_unit).magnitude,
)
return conversion_factors
def __init__(self, stations: StationsResult) -> None:
self.stations = stations
@classmethod
def from_stations(cls, stations: StationsResult):
return cls(stations)
def __eq__(self, other):
return (
self.stations.station_id == other.stations.station_id
and self.stations.parameter == other.stations.parameter
and self.stations.start_date == other.stations.start_date
and self.stations.end_date == other.stations.end_date
)
pass
def __str__(self):
station_ids_joined = "& ".join(
[str(station_id) for station_id in self.stations.station_id]
)
parameters_joined = "& ".join(
[
parameter.value
for parameter, parameter_set in self.stations.stations.parameter
]
)
return ", ".join(
[
f"station_ids {station_ids_joined}",
f"parameters {parameters_joined}",
str(self.stations.start_date),
str(self.stations.end_date),
]
)
pass
def _create_empty_station_parameter_df(
self, station_id: str, parameter: Enum, dataset: Enum
) -> pd.DataFrame:
dataset_tree = self.stations.stations._dataset_tree
resolution = self.stations.stations.resolution
if parameter == dataset:
if self.stations.stations._unique_dataset:
parameter = [*dataset_tree[resolution.name]]
else:
parameter = [*dataset_tree[resolution.name][dataset.name]]
if self.stations.stations.tidy:
if not self.stations.stations.start_date:
return pd.DataFrame(None, columns=self._meta_fields)
data = []
for par in pd.Series(parameter):
if par.name.startswith("QUALITY"):
continue
par_df = self._base_df
par_df[Columns.PARAMETER.value] = par.value
data.append(par_df)
df = pd.concat(data)
df[Columns.STATION_ID.value] = station_id
df[Columns.DATASET.value] = dataset.name
df[Columns.VALUE.value] = pd.NA
df[Columns.QUALITY.value] = pd.NA
return df
else:
parameter = pd.Series(parameter).map(lambda x: x.value).tolist()
columns = [*self._meta_fields, *parameter]
if self.stations.stations.start_date:
return pd.DataFrame(None, columns=columns)
df = self._base_df
df = df.reindex(columns=columns)
df[Columns.STATION_ID.value] = station_id
return df
def _build_complete_df(
self, df: pd.DataFrame, station_id: str, parameter: Enum, dataset: Enum
) -> pd.DataFrame:
if not self.stations.start_date:
return df
if parameter != dataset or not self.stations.stations.tidy:
df = pd.merge(
left=self._base_df,
right=df,
left_on=Columns.DATE.value,
right_on=Columns.DATE.value,
how="left",
)
df[Columns.STATION_ID.value] = station_id
if self.stations.tidy:
df[Columns.PARAMETER.value] = parameter.value
df[Columns.PARAMETER.value] = pd.Categorical(
df[Columns.PARAMETER.value]
)
if dataset:
df[Columns.DATASET.value] = dataset.name.lower()
df[Columns.DATASET.value] = pd.Categorical(
df[Columns.DATASET.value]
)
return df
else:
data = []
for parameter, group in df.groupby(Columns.PARAMETER.value, sort=False):
if self.stations.stations._unique_dataset:
parameter_ = parse_enumeration_from_template(
parameter,
self.stations.stations._parameter_base[
self.stations.resolution.name
],
)
else:
parameter_ = parse_enumeration_from_template(
parameter,
self.stations.stations._dataset_tree[
self.stations.resolution.name
][dataset.name],
)
df = pd.merge(
left=self._base_df,
right=group,
left_on=Columns.DATE.value,
right_on=Columns.DATE.value,
how="left",
)
df[Columns.STATION_ID.value] = station_id
df[Columns.PARAMETER.value] = parameter_.value
df[Columns.DATASET.value] = dataset.name.lower()
df[Columns.DATASET.value] = pd.Categorical(df[Columns.DATASET.value])
data.append(df)
return pd.concat(data)
def _organize_df_columns(self, df: pd.DataFrame) -> pd.DataFrame:
columns = self._meta_fields
columns.extend(df.columns.difference(columns, sort=False))
df = df.reindex(columns=columns)
return df
def query(self) -> Generator[ValuesResult, None, None]:
for station_id in self.stations.station_id:
station_data = []
for parameter, dataset in self.stations.parameter:
parameter_df = self._collect_station_parameter(
station_id, parameter, dataset
)
if parameter_df.empty:
continue
self._coerce_date_fields(parameter_df)
parameter_df = self._coerce_parameter_types(parameter_df)
if self.stations.stations.si_units:
parameter_df = self.convert_values_to_si(parameter_df, dataset)
if self.stations.stations.tidy:
parameter_df = self.tidy_up_df(parameter_df, dataset)
if parameter != dataset:
parameter_df = parameter_df[
parameter_df[Columns.PARAMETER.value]
== parameter.value.lower()
]
parameter_df = self._build_complete_df(
parameter_df, station_id, parameter, dataset
)
parameter_df = self._organize_df_columns(parameter_df)
station_data.append(parameter_df)
try:
station_df = pd.concat(station_data, ignore_index=True)
except ValueError:
station_df = self._create_empty_station_parameter_df(
station_id, parameter
)
station_df = self._coerce_meta_fields(station_df)
if not station_df.empty and self.stations.start_date:
station_df = station_df[
(station_df[Columns.DATE.value] >= self.stations.start_date)
& (station_df[Columns.DATE.value] <= self.stations.end_date)
]
station_df = self._coerce_parameter_types(station_df)
if self.stations.humanize:
station_df = self._humanize(station_df)
if station_df.empty:
continue
yield ValuesResult(stations=self.stations, df=station_df)
@abstractmethod
def _collect_station_parameter(
self, station_id: str, parameter: Enum, dataset: Enum
) -> pd.DataFrame:
pass
def tidy_up_df(self, df: pd.DataFrame, dataset: Enum) -> pd.DataFrame:
df = self._tidy_up_df(df, dataset)
df[Columns.DATASET.value] = pd.Series(
dataset.name.lower(), index=df.index, dtype=str
)
df[Columns.VALUE.value] = pd.to_numeric(df[Columns.VALUE.value]).astype(float)
if Columns.QUALITY.value not in df:
df[Columns.QUALITY.value] = np.nan
df[Columns.QUALITY.value] = pd.to_numeric(df[Columns.QUALITY.value]).astype(
float
)
df.loc[df[Columns.VALUE.value].isna(), Columns.QUALITY.value] = np.NaN
return df
@abstractmethod
def _tidy_up_df(self, df: pd.DataFrame, dataset) -> pd.DataFrame:
pass
def _coerce_date_fields(self, df: pd.DataFrame) -> pd.DataFrame:
for column in (
Columns.DATE.value,
Columns.FROM_DATE.value,
Columns.TO_DATE.value,
):
try:
df[column] = self._coerce_dates(df[column])
except KeyError:
pass
return df
def _coerce_meta_fields(self, df: pd.DataFrame) -> pd.DataFrame:
df[Columns.STATION_ID.value] = self._parse_station_id(
df[Columns.STATION_ID.value]
).astype("category")
if self.stations.stations.tidy:
for column in (Columns.DATASET.value, Columns.PARAMETER.value):
df[column] = self._coerce_strings(df[column]).astype("category")
df[Columns.VALUE.value] = pd.to_numeric(df[Columns.VALUE.value]).astype(
float
)
df[Columns.QUALITY.value] = pd.to_numeric(df[Columns.QUALITY.value]).astype(
float
)
return df
def _parse_station_id(self, series: pd.Series) -> pd.Series:
return self.stations.stations._parse_station_id(series)
def _coerce_dates(self, series: pd.Series) -> pd.Series:
return pd.to_datetime(series, infer_datetime_format=True).dt.tz_localize(
self.data_tz
)
@staticmethod
|
MIT License
|
ing-bank/doing-cli
|
src/doing/init/commands.py
|
init
|
python
|
def init(reference_issue):
cmd_init(reference_issue)
|
Create a .doing-cli-config file.
REFERENCE_ISSUE (optional): Find a representative work item and pass its url to automatically fill the config.
|
https://github.com/ing-bank/doing-cli/blob/712304f7a217b571206d2834c391c51916fe55b0/src/doing/init/commands.py#L8-L14
|
import click
from doing.init._init import cmd_init
@click.command()
@click.argument("reference_issue", required=False, default="")
|
MIT License
|
menpo/menpo
|
menpo/shape/mesh/textured.py
|
TexturedTriMesh.from_vector
|
python
|
def from_vector(self, flattened):
return TexturedTriMesh(
flattened.reshape([-1, self.n_dims]),
self.tcoords.points,
self.texture,
trilist=self.trilist,
)
|
r"""
Builds a new :class:`TexturedTriMesh` given the `flattened` 1D vector.
Note that the trilist, texture, and tcoords will be drawn from self.
Parameters
----------
flattened : ``(N,)`` `ndarray`
Vector representing a set of points.
Returns
--------
trimesh : :map:`TriMesh`
A new trimesh created from the vector with ``self`` trilist.
|
https://github.com/menpo/menpo/blob/b8bd3cefd8dbb3ca8572892126c8726e2b14969f/menpo/shape/mesh/textured.py#L178-L198
|
import numpy as np
from menpo.shape import PointCloud
from menpo.transform import tcoords_to_image_coords
from ..adjacency import mask_adjacency_array, reindex_adjacency_array
from .base import TriMesh, grid_tcoords
class TexturedTriMesh(TriMesh):
def __init__(self, points, tcoords, texture, trilist=None, copy=True):
super(TexturedTriMesh, self).__init__(points, trilist=trilist, copy=copy)
self.tcoords = PointCloud(tcoords, copy=copy)
if not copy:
self.texture = texture
else:
self.texture = texture.copy()
@property
def n_channels(self):
return self.texture.n_channels
@classmethod
def init_2d_grid(cls, shape, spacing=None, tcoords=None, texture=None):
pc = TriMesh.init_2d_grid(shape, spacing=spacing)
points = pc.points
trilist = pc.trilist
if tcoords is not None:
tcoords = tcoords.copy()
else:
tcoords = grid_tcoords(shape)
if texture is not None:
texture = texture.copy()
else:
from menpo.image import Image
texture = Image.init_blank(shape)
return TexturedTriMesh(points, tcoords, texture, trilist=trilist, copy=False)
@classmethod
def init_from_depth_image(cls, depth_image, tcoords=None, texture=None):
from menpo.image import MaskedImage
new_tmesh = cls.init_2d_grid(
depth_image.shape, tcoords=tcoords, texture=texture
)
if isinstance(depth_image, MaskedImage):
new_tmesh = new_tmesh.from_mask(depth_image.mask.as_vector())
return cls(
np.hstack([new_tmesh.points, depth_image.as_vector(keep_channels=True).T]),
new_tmesh.tcoords.points,
new_tmesh.texture,
trilist=new_tmesh.trilist,
copy=False,
)
def tcoords_pixel_scaled(self):
return tcoords_to_image_coords(self.texture.shape).apply(self.tcoords)
|
BSD 3-Clause New or Revised License
|
pachyderm/python-pachyderm
|
src/python_pachyderm/experimental/mixin/identity.py
|
IdentityMixin.create_oidc_client
|
python
|
def create_oidc_client(
self, client: identity_proto.OIDCClient
) -> identity_proto.OIDCClient:
return self._req(Service.IDENTITY, "CreateOIDCClient", client=client).client
|
Create an OIDC client in the identity server.
Parameters
----------
client : identity_proto.OIDCClient
A protobuf object representing an OIDC client.
Returns
-------
identity_proto.OIDCClient
A protobuf object that returns a client with info on the client ID,
name, secret, and lists of redirect URIs and trusted peers.
|
https://github.com/pachyderm/python-pachyderm/blob/9dbffba91ac753e7c63c58d71768f53f83789cb9/src/python_pachyderm/experimental/mixin/identity.py#L93-L109
|
from typing import List
from python_pachyderm.service import Service, identity_proto
class IdentityMixin:
def set_identity_server_config(
self, config: identity_proto.IdentityServerConfig
) -> None:
self._req(Service.IDENTITY, "SetIdentityServerConfig", config=config)
def get_identity_server_config(self) -> identity_proto.IdentityServerConfig:
return self._req(Service.IDENTITY, "GetIdentityServerConfig").config
def create_idp_connector(self, connector: identity_proto.IDPConnector) -> None:
self._req(Service.IDENTITY, "CreateIDPConnector", connector=connector)
def list_idp_connectors(self) -> List[identity_proto.IDPConnector]:
return self._req(Service.IDENTITY, "ListIDPConnectors").connectors
def update_idp_connector(self, connector: identity_proto.IDPConnector) -> None:
self._req(Service.IDENTITY, "UpdateIDPConnector", connector=connector)
def get_idp_connector(self, id: str) -> identity_proto.IDPConnector:
return self._req(Service.IDENTITY, "GetIDPConnector", id=id).connector
def delete_idp_connector(self, id: str) -> None:
self._req(Service.IDENTITY, "DeleteIDPConnector", id=id)
|
Apache License 2.0
|
netflix/consoleme
|
consoleme/lib/google.py
|
get_group_memberships
|
python
|
async def get_group_memberships(user_email, dry_run=None, service=None):
function = f"{__name__}.{sys._getframe().f_code.co_name}"
stats.count(function)
log_data = {
"function": function,
"user": user_email,
"message": "Getting list of groups for user",
}
log.debug(log_data)
if not service:
service = await get_service("admin", "directory_v1", user_email)
groups = []
if not dry_run:
try:
page_token = None
while True:
results = await list_user_groups_call(service, user_email, page_token)
for g in results.get("groups"):
groups.append(g.get("email"))
page_token = results.get("nextPageToken")
if not page_token:
break
except HttpError as he:
errors = json.loads(he.content.decode())
log.debug(errors)
raise he
return groups
return []
|
Get group memberships for a user
|
https://github.com/netflix/consoleme/blob/76313ea75fd721453a6381d7882bc9494c860500/consoleme/lib/google.py#L315-L344
|
import asyncio
import html
import sys
from typing import Any, Dict, List, Optional, Union
import googleapiclient.discovery
import ujson as json
from asgiref.sync import sync_to_async
from google.oauth2 import service_account
from googleapiclient.discovery import Resource
from googleapiclient.errors import HttpError
from retrying import retry
from validate_email import validate_email
from consoleme.config import config
from consoleme.exceptions.exceptions import (
BackgroundCheckNotPassedException,
BulkAddPrevented,
DifferentUserGroupDomainException,
MissingConfigurationValue,
NoCredentialSubjectException,
NoGroupsException,
NotAMemberException,
UnableToModifyRestrictedGroupMembers,
UnauthorizedToAccess,
UserAlreadyAMemberOfGroupException,
)
from consoleme.lib.auth import can_modify_members
from consoleme.lib.dynamo import UserDynamoHandler
from consoleme.lib.groups import does_group_require_bg_check
from consoleme.lib.plugins import get_plugin_by_name
stats = get_plugin_by_name(config.get("plugins.metrics", "default_metrics"))()
log = config.get_logger()
auth = get_plugin_by_name(config.get("plugins.auth", "default_auth"))()
async def add_user_to_group_task(
member: str,
group: str,
requesting_user: str,
requesting_users_groups: List[str],
semaphore=None,
service: None = None,
) -> Dict[str, Union[str, bool]]:
if not semaphore:
semaphore = asyncio.BoundedSemaphore(10)
async with semaphore:
stats.count(
"add_user_to_group_task.attempt",
tags={"member": member, "group": group, "requesting_user": requesting_user},
)
member = member.strip()
result = {
"Action": "Add user",
"Member": member,
"Group": group,
"Error": False,
}
log_data = {
"function": f"{__name__, sys._getframe().f_code.co_name}",
"action": "Add user",
"member": member,
"group": group,
}
try:
group_info = await auth.get_group_info(group, members=False)
can_add_remove_members = can_modify_members(
requesting_user, requesting_users_groups, group_info
)
if not can_add_remove_members:
result[
"Result"
] = "You are unable to add members to this group. Maybe it is restricted."
result["Error"] = True
error = f"There was at least one problem. {result['Result']}"
log_data["error"] = error
log.warning(log_data, exc_info=True)
return result
if not validate_email(member):
result["Result"] = "Invalid e-mail address entered"
result["Error"] = True
log_data["message"] = "Error"
log_data["error"] = result["Result"]
log.warning(log_data, exc_info=True)
return result
if (
not group_info.allow_third_party_users
and not await auth.does_user_exist(member)
):
result[
"Result"
] = "User does not exist in our environment and this group doesn't allow third party users."
result["Error"] = True
log_data["message"] = "Error"
log_data["error"] = result["Result"]
log.warning(log_data, exc_info=True)
return result
await add_user_to_group(member, group, requesting_user, service=service)
result["Result"] = "Successfully added user to group"
return result
except Exception as e:
result["Result"] = html.escape(str(e))
result["Error"] = True
error = f"There was at least one problem. {e}"
log_data["message"] = "Error"
log_data["error"] = error
log.error(log_data, exc_info=True)
return result
async def remove_user_from_group_task(
member: str,
group: str,
requesting_user: str,
requesting_users_groups: List[str],
semaphore=None,
service: None = None,
) -> Dict[str, Union[str, bool]]:
if not semaphore:
semaphore = asyncio.BoundedSemaphore(10)
async with semaphore:
stats.count(
"remove_user_from_group_task.attempt",
tags={"member": member, "group": group, "requesting_user": requesting_user},
)
member = member.strip()
result = {
"Action": "Remove user",
"Member": member,
"Requesting User": requesting_user,
"Group": group,
"Error": False,
}
log_data = {
"function": f"{__name__, sys._getframe().f_code.co_name}",
"action": "Remove user",
"member": member,
"group": group,
}
try:
group_info = await auth.get_group_info(group, members=False)
can_add_remove_members = can_modify_members(
requesting_user, requesting_users_groups, group_info
)
if not can_add_remove_members:
result[
"Result"
] = "You are unable to remove members from this group. Maybe it is restricted."
result["Error"] = True
error = f"There was at least one problem. {result['Result']}"
log_data["error"] = error
log.warning(log_data, exc_info=True)
return result
if not validate_email(member):
result[
"Result"
] = "Invalid e-mail address entered, or user doesn't exist"
result["Error"] = True
log_data["message"] = "Error"
log_data["error"] = result["Result"]
log.warning(log_data, exc_info=True)
return result
await remove_user_from_group(
member, group, requesting_user, service=service
)
result["Result"] = "Successfully removed user from group"
return result
except Exception as e:
result["Result"] = str(e)
result["Error"] = True
error = f"There was at least one problem. {e}"
log_data["message"] = "Error"
log_data["error"] = error
log.error(log_data, exc_info=True)
return result
async def get_service(service_name: str, service_path: str, group: str) -> Resource:
function = f"{__name__}.{sys._getframe().f_code.co_name}"
stats.count(function)
log_data = {
"function": function,
"service_name": service_name,
"service_path": service_path,
"group": group,
"message": f"Building service connection for {service_name} / {service_path}",
}
log.debug(log_data)
if config.get("google.service_key_file"):
admin_credentials = service_account.Credentials.from_service_account_file(
config.get("google.service_key_file"),
scopes=config.get(
"google.admin_scopes",
["https://www.googleapis.com/auth/admin.directory.group"],
),
)
elif config.get("google.service_key_dict"):
admin_credentials = service_account.Credentials.from_service_account_info(
config.get("google.service_key_dict"),
scopes=config.get(
"google.admin_scopes",
["https://www.googleapis.com/auth/admin.directory.group"],
),
)
else:
raise MissingConfigurationValue(
"Missing configuration for Google. You must configure either `google.service_key_file` "
"or `google.service_key_dict`."
)
credential_subjects = config.get("google.credential_subject")
credential_subject = None
for k, v in credential_subjects.items():
if k == group.split("@")[1]:
credential_subject = v
break
if not credential_subject:
raise NoCredentialSubjectException(
"Error: Unable to find Google credential subject for domain {}. "
"{}".format(group.split("@")[1], config.get("ses.support_reference", ""))
)
admin_delegated_credentials = admin_credentials.with_subject(credential_subject)
service = await sync_to_async(googleapiclient.discovery.build)(
service_name, service_path, credentials=admin_delegated_credentials
)
return service
@sync_to_async
def list_group_members_call(service, email):
return service.members().list(groupKey=email).execute()
@retry(wait_exponential_multiplier=1000, wait_exponential_max=10000)
async def list_group_members(
email: str, dry_run: None = None, service: Optional[Resource] = None
) -> List[str]:
function = f"{__name__}.{sys._getframe().f_code.co_name}"
stats.count(function)
log_data = {
"function": function,
"user": email,
"message": "Getting list of members for group",
}
log.debug(log_data)
if not service:
service = await get_service("admin", "directory_v1", email)
if not dry_run:
try:
results = await list_group_members_call(service, email)
except HttpError as he:
errors = json.loads(he.content.decode())
log.debug(errors)
raise he
return list(map(lambda x: x.get("email", ""), results.get("members", [])))
return []
@sync_to_async
def list_user_groups_call(service, user_email, page_token=None):
if page_token:
results = (
service.groups().list(userKey=user_email, pageToken=page_token).execute()
)
else:
results = service.groups().list(userKey=user_email).execute()
return results
|
Apache License 2.0
|
googlecloudplatform/perfkitbenchmarker
|
perfkitbenchmarker/linux_benchmarks/lmbench_benchmark.py
|
_ConfigureRun
|
python
|
def _ConfigureRun(vm):
logging.info('Set Lmbench run parameters')
vm.RemoteCommand('cd {0} && mkdir bin && cd bin && '
'mkdir x86_64-linux-gnu'.format(lmbench.LMBENCH_DIR))
vm.RobustRemoteCommand(
'cd {0} && cd scripts && echo "1" >>input.txt && '
'echo "1" >>input.txt && ./config-run <input.txt'.format(
lmbench.LMBENCH_DIR))
sed_cmd = (
'sed -i -e "s/OUTPUT=\\/dev\\/tty/OUTPUT=\\/dev\\/null/" '
'{0}/bin/x86_64-linux-gnu/CONFIG.*'.format(lmbench.LMBENCH_DIR))
vm.RemoteCommand(sed_cmd)
if FLAGS.lmbench_mem_size:
sed_cmd = (
'sed -i -e "s/MB=/MB={0}/" {1}/bin/x86_64-linux-gnu/CONFIG.*'.format(
FLAGS.lmbench_mem_size, lmbench.LMBENCH_DIR))
vm.RemoteCommand(sed_cmd)
if FLAGS.lmbench_hardware == _LMBENCH_HARDWARE_DEFAULT:
sed_cmd = (
'sed -i -e "s/BENCHMARK_HARDWARE=YES/BENCHMARK_HARDWARE={0}/" '
'{1}/bin/x86_64-linux-gnu/CONFIG.*'.format(
FLAGS.lmbench_hardware, lmbench.LMBENCH_DIR))
vm.RemoteCommand(sed_cmd)
|
Configure Lmbench tests.
|
https://github.com/googlecloudplatform/perfkitbenchmarker/blob/c14a122016d414351d41167029c79c9a19709384/perfkitbenchmarker/linux_benchmarks/lmbench_benchmark.py#L64-L89
|
import itertools
import logging
from absl import flags
from perfkitbenchmarker import configs
from perfkitbenchmarker import regex_util
from perfkitbenchmarker import sample
from perfkitbenchmarker.linux_packages import lmbench
FLAGS = flags.FLAGS
BENCHMARK_NAME = 'lmbench'
BENCHMARK_CONFIG = """
lmbench:
description: Runs Lmbench Microbenchmark.
vm_groups:
default:
vm_spec: *default_dual_core
vm_count: null
"""
_LMBENCH_HARDWARE_DEFAULT = 'NO'
flags.DEFINE_integer(
'lmbench_mem_size', None,
'The range of memory on which several benchmarks operate. If not provided, '
'the memory size should be 8MB as default'
)
flags.DEFINE_enum(
'lmbench_hardware', _LMBENCH_HARDWARE_DEFAULT, ['YES', 'NO'],
'The decision to run BENCHMARK_HARDWARE tests: YES or NO. The default is NO'
)
def GetConfig(user_config):
return configs.LoadConfig(BENCHMARK_CONFIG, user_config, BENCHMARK_NAME)
def _PrepareLmbench(vm):
logging.info('Installing Lmbench on %s', vm)
vm.Install('lmbench')
|
Apache License 2.0
|
ebay/wextracto
|
wex/etree.py
|
css
|
python
|
def css(expression):
return parse | map_if_list(CSSSelector(expression))
|
Returns a :func:`composable <wex.composed.composable>` callable that
will select elements defined by a
`CSS selector <http://en.wikipedia.org/wiki/Cascading_Style_Sheets#Selector>`_
expression.
:param expression: The CSS selector expression.
The callable returned accepts a :class:`wex.response.Response`, a
list of elements or an individual element as an argument.
|
https://github.com/ebay/wextracto/blob/9c789b1c98d95a1e87dbedfd1541a8688d128f5c/wex/etree.py#L174-L185
|
from __future__ import absolute_import, unicode_literals, print_function
import wex.py2compat ; assert wex.py2compat
import logging
from itertools import islice, chain
from copy import deepcopy
from operator import methodcaller, itemgetter
from six import string_types, PY2
from six.moves import map, reduce
from six.moves.urllib_parse import urljoin, quote, unquote
from lxml.etree import (XPath,
_ElementTree,
_Element,
Element,
FunctionNamespace)
from lxml.cssselect import CSSSelector
from lxml.html import XHTML_NAMESPACE, HTMLParser
from .composed import composable, Composable
from .cache import cached
from .iterable import _do_not_iter_append, filter_if_iter
from .htmlstream import HTMLStream
from .ncr import replace_invalid_ncr
from .url import URL, public_suffix
if PY2:
def quote_base_url(base_url):
if isinstance(base_url, unicode):
return quote(base_url.encode('utf-8'))
return quote(base_url)
def unquote_base_url(quoted):
assert isinstance(quoted, unicode)
quoted = quoted.encode('ascii')
unquoted = unquote(quoted)
return unquoted.decode('utf-8')
else:
quote_base_url = quote
unquote_base_url = unquote
NEWLINE = u'\n'
EMPTY = u''
SPACE = u' '
_do_not_iter_append(_Element)
UNPARSEABLE = Element('unparseable')
base_href = XPath('//base[@href]/@href | //x:base[@href]/@href',
namespaces={'x': XHTML_NAMESPACE})
default_namespaces = {'re': 'http://exslt.org/regular-expressions'}
function_namespace = FunctionNamespace(None)
_html_text_nodes = XPath(
'descendant-or-self::node()' +
'[not(local-name()) or not(text())]' +
'[not(ancestor::script or ancestor::style or ancestor::noscript)]'
)
def _wex_html_text(context, arg=None):
if arg is None:
arg = [context.context_node]
html_text = []
for node in chain.from_iterable(map(_html_text_nodes, arg)):
tag = getattr(node, 'tag', None)
if tag is None:
html_text.append(node)
elif tag == 'br':
html_text.append(NEWLINE)
else:
html_text.append(EMPTY)
return EMPTY.join(html_text)
function_namespace['wex-html-text'] = _wex_html_text
@composable
@cached
def parse(src):
if not hasattr(src, 'read'):
return src
etree = _ElementTree()
try:
stream = HTMLStream(src)
quoted_base_url = quote_base_url(src.url) if src.url else src.url
while True:
try:
fp = replace_invalid_ncr(stream)
parser = HTMLParser(encoding='utf-8')
etree.parse(fp, parser=parser, base_url=quoted_base_url)
break
except UnicodeDecodeError as exc:
stream.next_encoding()
except IOError as exc:
logger = logging.getLogger(__name__)
logger.warning("IOError parsing %s (%s)", src.url, exc)
root = etree.getroot()
if root is None:
etree._setroot(UNPARSEABLE)
return etree
@cached
def get_base_url_from_root(root):
if root.base_url:
base_url = unquote_base_url(root.base_url)
else:
base_url = root.base_url
return reduce(urljoin, base_href(root)[:1], base_url)
def get_base_url(elem_or_tree):
if hasattr(elem_or_tree, 'getroottree'):
tree = elem_or_tree.getroottree()
else:
tree = elem_or_tree
return get_base_url_from_root(tree.getroot())
class map_if_list(Composable):
def __init__(self, func):
self.func = func
def __repr__(self):
return '%s(%r)' % (self.__class__, self.func)
def __compose__(self):
return (self,)
def __call__(self, *args, **kwargs):
if args and isinstance(args[0], list):
return [res for res in map(self.func, *args, **kwargs)]
return self.func(*args, **kwargs)
|
BSD 3-Clause New or Revised License
|
fatiando/fatiando
|
fatiando/vis/myv.py
|
figure
|
python
|
def figure(size=None, zdown=True, color=(1, 1, 1)):
_lazy_import_mlab()
if size is None:
fig = mlab.figure(bgcolor=color)
else:
fig = mlab.figure(bgcolor=color, size=size)
if zdown:
fig.scene.camera.view_up = numpy.array([0., 0., -1.])
fig.scene.camera.elevation(60.)
fig.scene.camera.azimuth(180.)
return fig
|
Create a default figure in Mayavi with white background
Parameters:
* size : tuple = (dx, dy)
The size of the figure. If ``None`` will use the default size.
* zdown : True or False
If True, will turn the figure upside-down to make the z-axis point down
* color : tuple = (r, g, b)
RGB of the color of the background
Return:
* fig : Mayavi figure object
The figure
|
https://github.com/fatiando/fatiando/blob/ac2afbcb2d99b18f145cc1ed40075beb5f92dd5a/fatiando/vis/myv.py#L600-L628
|
from __future__ import absolute_import, division
from future.builtins import range
import warnings
import numpy
from fatiando import utils
from fatiando.constants import MEAN_EARTH_RADIUS
warnings.warn("This module will be removed in v0.7.")
mlab = None
tvtk = None
BuiltinSurface = None
def _lazy_import_BuiltinSurface():
global BuiltinSurface
if BuiltinSurface is None:
from mayavi.sources.builtin_surface import BuiltinSurface
def _lazy_import_mlab():
global mlab
if mlab is None:
try:
from mayavi import mlab
except ImportError:
from enthought.mayavi import mlab
def _lazy_import_tvtk():
global tvtk
if tvtk is None:
try:
from tvtk.api import tvtk
except ImportError:
from enthought.tvtk.api import tvtk
def title(text, color=(0, 0, 0), size=0.3, height=1):
_lazy_import_mlab()
mlab.title(text, color=color, size=size, height=height)
def savefig(fname, magnification=None):
_lazy_import_mlab()
if magnification is None:
mlab.savefig(fname)
else:
mlab.savefig(fname, magnification=magnification)
def show():
_lazy_import_mlab()
mlab.show()
def points(points, color=(0, 0, 0), size=200., opacity=1, spherical=False):
_lazy_import_mlab()
if spherical:
lon, lat, height = numpy.transpose(points)
x, y, z = utils.sph2cart(lon, lat, height)
else:
x, y, z = numpy.transpose(points)
glyph = mlab.points3d(x, y, z, color=color, opacity=opacity)
glyph.glyph.glyph.scaling = False
glyph.glyph.glyph_source.glyph_source.radius = size
return glyph
def polyprisms(prisms, prop=None, style='surface', opacity=1, edges=True,
vmin=None, vmax=None, cmap='blue-red', color=None,
linewidth=1, edgecolor=(0, 0, 0), scale=(1, 1, 1)):
if style not in ['surface', 'wireframe']:
raise ValueError("Invalid style '%s'" % (style))
if opacity > 1. or opacity < 0:
raise ValueError("Invalid opacity %g. Must be in range [1,0]"
% (opacity))
_lazy_import_mlab()
_lazy_import_tvtk()
if prop is None:
label = 'scalar'
else:
label = prop
points = []
polygons = []
scalars = []
offset = 0
for prism in prisms:
if prism is None or (prop is not None and prop not in prism.props):
continue
x, y = prism.x, prism.y
nverts = prism.nverts
if prop is None:
scalar = 0.
else:
p = prism.props[prop]
if isinstance(p, int) or isinstance(p, float):
scalar = p
else:
scalar = numpy.linalg.norm(p)
points.extend(
reversed(numpy.transpose([x, y, prism.z1 * numpy.ones_like(x)])))
polygons.append(list(range(offset, offset + nverts)))
scalars.extend(scalar * numpy.ones(nverts))
offset += nverts
points.extend(
reversed(numpy.transpose([x, y, prism.z2 * numpy.ones_like(x)])))
polygons.append(list(range(offset, offset + nverts)))
scalars.extend(scalar * numpy.ones(nverts))
offset += nverts
for i in range(nverts):
x1, y1 = x[i], y[i]
x2, y2 = x[(i + 1) % nverts], y[(i + 1) % nverts]
points.extend([[x1, y1, prism.z1], [x2, y2, prism.z1],
[x2, y2, prism.z2], [x1, y1, prism.z2]])
polygons.append(list(range(offset, offset + 4)))
scalars.extend(scalar * numpy.ones(4))
offset += 4
mesh = tvtk.PolyData(points=points, polys=polygons)
mesh.point_data.scalars = numpy.array(scalars)
mesh.point_data.scalars.name = label
if vmin is None:
vmin = min(scalars)
if vmax is None:
vmax = max(scalars)
if style == 'wireframe':
surf = mlab.pipeline.surface(mlab.pipeline.add_dataset(mesh),
vmax=vmax, vmin=vmin, colormap=cmap)
surf.actor.property.representation = 'wireframe'
surf.actor.property.line_width = linewidth
if style == 'surface':
dataset = mlab.pipeline.triangle_filter(
mlab.pipeline.add_dataset(mesh))
surf = mlab.pipeline.surface(dataset, vmax=vmax, vmin=vmin,
colormap=cmap)
surf.actor.property.representation = 'surface'
surf.actor.property.edge_visibility = 0
if edges:
edge = mlab.pipeline.surface(mlab.pipeline.add_dataset(mesh))
edge.actor.property.representation = 'wireframe'
edge.actor.mapper.scalar_visibility = 0
edge.actor.property.line_width = linewidth
edge.actor.property.opacity = opacity
edge.actor.property.color = edgecolor
edge.actor.actor.scale = scale
surf.actor.property.opacity = opacity
if color is not None:
surf.actor.mapper.scalar_visibility = 0
surf.actor.property.color = color
surf.actor.actor.scale = scale
return surf
def tesseroids(tesseroids, prop=None, style='surface', opacity=1, edges=True,
vmin=None, vmax=None, cmap='blue-red', color=None,
linewidth=1, edgecolor=(0, 0, 0), scale=(1, 1, 1)):
if style not in ['surface', 'wireframe']:
raise ValueError("Invalid style '%s'" % (style))
if opacity > 1. or opacity < 0:
raise ValueError("Invalid opacity %g. Must be in range [1,0]"
% (opacity))
_lazy_import_mlab()
_lazy_import_tvtk()
if prop is None:
label = 'scalar'
else:
label = prop
points = []
cells = []
offsets = []
offset = 0
mesh_size = 0
celldata = []
start = 0
for tess in tesseroids:
if tess is None or (prop is not None and prop not in tess.props):
continue
w, e, s, n, top, bottom = tess.get_bounds()
w *= scale[0]
e *= scale[0]
s *= scale[1]
n *= scale[1]
top *= scale[2]
bottom *= scale[2]
if prop is None:
scalar = 0.
else:
p = tess.props[prop]
if isinstance(p, int) or isinstance(p, float):
scalar = p
else:
scalar = numpy.linalg.norm(p)
points.extend([
utils.sph2cart(w, s, bottom),
utils.sph2cart(e, s, bottom),
utils.sph2cart(e, n, bottom),
utils.sph2cart(w, n, bottom),
utils.sph2cart(w, s, top),
utils.sph2cart(e, s, top),
utils.sph2cart(e, n, top),
utils.sph2cart(w, n, top),
utils.sph2cart(0.5 * (w + e), s, bottom),
utils.sph2cart(e, 0.5 * (s + n), bottom),
utils.sph2cart(0.5 * (w + e), n, bottom),
utils.sph2cart(w, 0.5 * (s + n), bottom),
utils.sph2cart(0.5 * (w + e), s, top),
utils.sph2cart(e, 0.5 * (s + n), top),
utils.sph2cart(0.5 * (w + e), n, top),
utils.sph2cart(w, 0.5 * (s + n), top),
utils.sph2cart(w, s, 0.5 * (top + bottom)),
utils.sph2cart(e, s, 0.5 * (top + bottom)),
utils.sph2cart(e, n, 0.5 * (top + bottom)),
utils.sph2cart(w, n, 0.5 * (top + bottom))])
cells.append(20)
cells.extend(list(range(start, start + 20)))
start += 20
offsets.append(offset)
offset += 21
celldata.append(scalar)
mesh_size += 1
cell_array = tvtk.CellArray()
cell_array.set_cells(mesh_size, numpy.array(cells))
cell_types = numpy.array([25] * mesh_size, 'i')
vtkmesh = tvtk.UnstructuredGrid(points=numpy.array(points, 'f'))
vtkmesh.set_cells(cell_types, numpy.array(offsets, 'i'), cell_array)
vtkmesh.cell_data.scalars = numpy.array(celldata)
vtkmesh.cell_data.scalars.name = label
dataset = mlab.pipeline.threshold(mlab.pipeline.add_dataset(vtkmesh))
if vmin is None:
vmin = min(vtkmesh.cell_data.scalars)
if vmax is None:
vmax = max(vtkmesh.cell_data.scalars)
if style == 'wireframe':
surf = mlab.pipeline.surface(mlab.pipeline.extract_edges(dataset),
vmax=vmax, vmin=vmin, colormap=cmap)
surf.actor.property.representation = 'wireframe'
surf.actor.property.line_width = linewidth
if style == 'surface':
surf = mlab.pipeline.surface(dataset, vmax=vmax, vmin=vmin,
colormap=cmap)
surf.actor.property.representation = 'surface'
if edges:
edge = mlab.pipeline.surface(mlab.pipeline.extract_edges(dataset),
vmax=vmax, vmin=vmin)
edge.actor.property.representation = 'wireframe'
edge.actor.mapper.scalar_visibility = 0
edge.actor.property.line_width = linewidth
edge.actor.property.opacity = opacity
edge.actor.property.color = edgecolor
surf.actor.property.opacity = opacity
surf.actor.property.backface_culling = False
if color is not None:
surf.actor.mapper.scalar_visibility = 0
surf.actor.property.color = color
return surf
def prisms(prisms, prop=None, style='surface', opacity=1, edges=True,
vmin=None, vmax=None, cmap='blue-red', color=None, linewidth=1,
edgecolor=(0, 0, 0), scale=(1, 1, 1)):
if style not in ['surface', 'wireframe']:
raise ValueError("Invalid style '%s'" % (style))
if opacity > 1. or opacity < 0:
raise ValueError("Invalid opacity %g. Must be in range [1,0]"
% (opacity))
_lazy_import_mlab()
_lazy_import_tvtk()
if prop is None:
label = 'scalar'
else:
label = prop
points = []
cells = []
offsets = []
offset = 0
mesh_size = 0
celldata = []
start = 0
for prism in prisms:
if prism is None or (prop is not None and prop not in prism.props):
continue
x1, x2, y1, y2, z1, z2 = prism.get_bounds()
if prop is None:
scalar = 0.
else:
p = prism.props[prop]
if isinstance(p, int) or isinstance(p, float):
scalar = p
else:
scalar = numpy.linalg.norm(p)
points.extend([[x1, y1, z1], [x2, y1, z1], [x2, y2, z1], [x1, y2, z1],
[x1, y1, z2], [x2, y1, z2], [x2, y2, z2], [x1, y2, z2]])
cells.append(8)
cells.extend([i for i in range(start, start + 8)])
start += 8
offsets.append(offset)
offset += 9
celldata.append(scalar)
mesh_size += 1
cell_array = tvtk.CellArray()
cell_array.set_cells(mesh_size, numpy.array(cells))
cell_types = numpy.array([12] * mesh_size, 'i')
vtkmesh = tvtk.UnstructuredGrid(points=numpy.array(points, 'f'))
vtkmesh.set_cells(cell_types, numpy.array(offsets, 'i'), cell_array)
vtkmesh.cell_data.scalars = numpy.array(celldata)
vtkmesh.cell_data.scalars.name = label
dataset = mlab.pipeline.threshold(mlab.pipeline.add_dataset(vtkmesh))
if vmin is None:
vmin = min(vtkmesh.cell_data.scalars)
if vmax is None:
vmax = max(vtkmesh.cell_data.scalars)
surf = mlab.pipeline.surface(dataset, vmax=vmax, vmin=vmin, colormap=cmap)
if style == 'wireframe':
surf.actor.property.representation = 'wireframe'
surf.actor.property.line_width = linewidth
if style == 'surface':
surf.actor.property.representation = 'surface'
if edges:
surf.actor.property.edge_visibility = 1
surf.actor.property.line_width = linewidth
surf.actor.property.edge_color = edgecolor
surf.actor.property.opacity = opacity
if color is not None:
surf.actor.mapper.scalar_visibility = 0
surf.actor.property.color = color
surf.actor.actor.scale = scale
return surf
|
BSD 3-Clause New or Revised License
|
nuagenetworks/vspk-python
|
vspk/v5_0/nuenterprise.py
|
NUEnterprise.bgp_enabled
|
python
|
def bgp_enabled(self):
return self._bgp_enabled
|
Get bgp_enabled value.
Notes:
Read-only flag to display if BGP is enabled for this enterprise
This attribute is named `BGPEnabled` in VSD API.
|
https://github.com/nuagenetworks/vspk-python/blob/375cce10ae144ad6017104e57fcd3630898cc2a6/vspk/v5_0/nuenterprise.py#L680-L690
|
from .fetchers import NUL2DomainsFetcher
from .fetchers import NUL2DomainTemplatesFetcher
from .fetchers import NUL4ServicesFetcher
from .fetchers import NUL4ServiceGroupsFetcher
from .fetchers import NUL7applicationsignaturesFetcher
from .fetchers import NUSaaSApplicationGroupsFetcher
from .fetchers import NUSaaSApplicationTypesFetcher
from .fetchers import NUCaptivePortalProfilesFetcher
from .fetchers import NURateLimitersFetcher
from .fetchers import NUGatewaysFetcher
from .fetchers import NUGatewaysLocationsFetcher
from .fetchers import NUGatewayTemplatesFetcher
from .fetchers import NUPATNATPoolsFetcher
from .fetchers import NULDAPConfigurationsFetcher
from .fetchers import NUWebCategoriesFetcher
from .fetchers import NUWebDomainNamesFetcher
from .fetchers import NURedundancyGroupsFetcher
from .fetchers import NUDeploymentFailuresFetcher
from .fetchers import NUPerformanceMonitorsFetcher
from .fetchers import NUMetadatasFetcher
from .fetchers import NUNetconfProfilesFetcher
from .fetchers import NUNetworkMacroGroupsFetcher
from .fetchers import NUNetworkPerformanceMeasurementsFetcher
from .fetchers import NUKeyServerMonitorsFetcher
from .fetchers import NUZFBRequestsFetcher
from .fetchers import NUBGPProfilesFetcher
from .fetchers import NUEgressQOSPoliciesFetcher
from .fetchers import NUSharedNetworkResourcesFetcher
from .fetchers import NUFirewallAclsFetcher
from .fetchers import NUFirewallRulesFetcher
from .fetchers import NUIKECertificatesFetcher
from .fetchers import NUIKEEncryptionprofilesFetcher
from .fetchers import NUIKEGatewaysFetcher
from .fetchers import NUIKEGatewayProfilesFetcher
from .fetchers import NUIKEPSKsFetcher
from .fetchers import NUAlarmsFetcher
from .fetchers import NUAllAlarmsFetcher
from .fetchers import NUGlobalMetadatasFetcher
from .fetchers import NUVMsFetcher
from .fetchers import NUVNFsFetcher
from .fetchers import NUVNFMetadatasFetcher
from .fetchers import NUVNFThresholdPoliciesFetcher
from .fetchers import NUIngressQOSPoliciesFetcher
from .fetchers import NUEnterpriseNetworksFetcher
from .fetchers import NUEnterpriseSecuritiesFetcher
from .fetchers import NUJobsFetcher
from .fetchers import NUPolicyGroupCategoriesFetcher
from .fetchers import NUPolicyObjectGroupsFetcher
from .fetchers import NUDomainsFetcher
from .fetchers import NUDomainTemplatesFetcher
from .fetchers import NUContainersFetcher
from .fetchers import NUCOSRemarkingPolicyTablesFetcher
from .fetchers import NURoutingPoliciesFetcher
from .fetchers import NUApplicationsFetcher
from .fetchers import NUApplicationperformancemanagementsFetcher
from .fetchers import NUGroupsFetcher
from .fetchers import NUGroupKeyEncryptionProfilesFetcher
from .fetchers import NUTrunksFetcher
from .fetchers import NUDSCPForwardingClassTablesFetcher
from .fetchers import NUDSCPRemarkingPolicyTablesFetcher
from .fetchers import NUUsersFetcher
from .fetchers import NUNSGatewaysFetcher
from .fetchers import NUNSGatewaysCountsFetcher
from .fetchers import NUNSGatewaySummariesFetcher
from .fetchers import NUNSGatewayTemplatesFetcher
from .fetchers import NUNSGGroupsFetcher
from .fetchers import NUNSRedundantGatewayGroupsFetcher
from .fetchers import NUPublicNetworkMacrosFetcher
from .fetchers import NUMultiCastListsFetcher
from .fetchers import NUAvatarsFetcher
from .fetchers import NUEventLogsFetcher
from .fetchers import NUOverlayManagementProfilesFetcher
from .fetchers import NUSyslogDestinationsFetcher
from bambou import NURESTObject
class NUEnterprise(NURESTObject):
__rest_name__ = "enterprise"
__resource_name__ = "enterprises"
CONST_ENCRYPTION_MANAGEMENT_MODE_MANAGED = "MANAGED"
CONST_FLOW_COLLECTION_ENABLED_ENABLED = "ENABLED"
CONST_AVATAR_TYPE_COMPUTEDURL = "COMPUTEDURL"
CONST_ALLOWED_FORWARDING_MODE_LOCAL_AND_REMOTE = "LOCAL_AND_REMOTE"
CONST_ALLOWED_FORWARDING_MODE_DISABLED = "DISABLED"
CONST_ALLOWED_FORWARDING_CLASSES_NONE = "NONE"
CONST_AVATAR_TYPE_BASE64 = "BASE64"
CONST_ENCRYPTION_MANAGEMENT_MODE_DISABLED = "DISABLED"
CONST_FLOW_COLLECTION_ENABLED_DISABLED = "DISABLED"
CONST_ENTITY_SCOPE_ENTERPRISE = "ENTERPRISE"
CONST_ALLOWED_FORWARDING_CLASSES_D = "D"
CONST_ALLOWED_FORWARDING_CLASSES_E = "E"
CONST_ALLOWED_FORWARDING_CLASSES_F = "F"
CONST_ALLOWED_FORWARDING_CLASSES_G = "G"
CONST_AVATAR_TYPE_URL = "URL"
CONST_ALLOWED_FORWARDING_CLASSES_A = "A"
CONST_ALLOWED_FORWARDING_CLASSES_B = "B"
CONST_ALLOWED_FORWARDING_CLASSES_C = "C"
CONST_ENTITY_SCOPE_GLOBAL = "GLOBAL"
CONST_ALLOWED_FORWARDING_CLASSES_H = "H"
CONST_ALLOWED_FORWARDING_MODE_LOCAL_ONLY = "LOCAL_ONLY"
def __init__(self, **kwargs):
super(NUEnterprise, self).__init__()
self._ldap_authorization_enabled = None
self._ldap_enabled = None
self._bgp_enabled = None
self._dhcp_lease_interval = None
self._vnf_management_enabled = None
self._name = None
self._last_updated_by = None
self._web_filter_enabled = None
self._receive_multi_cast_list_id = None
self._send_multi_cast_list_id = None
self._description = None
self._shared_enterprise = None
self._dictionary_version = None
self._virtual_firewall_rules_enabled = None
self._allow_advanced_qos_configuration = None
self._allow_gateway_management = None
self._allow_trusted_forwarding_class = None
self._allowed_forwarding_classes = None
self._allowed_forwarding_mode = None
self._floating_ips_quota = None
self._floating_ips_used = None
self._flow_collection_enabled = None
self._enable_application_performance_management = None
self._encryption_management_mode = None
self._enterprise_profile_id = None
self._entity_scope = None
self._local_as = None
self._use_global_mac = None
self._associated_enterprise_security_id = None
self._associated_group_key_encryption_profile_id = None
self._associated_key_server_monitor_id = None
self._customer_id = None
self._avatar_data = None
self._avatar_type = None
self._external_id = None
self.expose_attribute(local_name="ldap_authorization_enabled", remote_name="LDAPAuthorizationEnabled", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="ldap_enabled", remote_name="LDAPEnabled", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="bgp_enabled", remote_name="BGPEnabled", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="dhcp_lease_interval", remote_name="DHCPLeaseInterval", attribute_type=int, is_required=False, is_unique=False)
self.expose_attribute(local_name="vnf_management_enabled", remote_name="VNFManagementEnabled", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="name", remote_name="name", attribute_type=str, is_required=True, is_unique=False)
self.expose_attribute(local_name="last_updated_by", remote_name="lastUpdatedBy", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="web_filter_enabled", remote_name="webFilterEnabled", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="receive_multi_cast_list_id", remote_name="receiveMultiCastListID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="send_multi_cast_list_id", remote_name="sendMultiCastListID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="description", remote_name="description", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="shared_enterprise", remote_name="sharedEnterprise", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="dictionary_version", remote_name="dictionaryVersion", attribute_type=int, is_required=False, is_unique=False)
self.expose_attribute(local_name="virtual_firewall_rules_enabled", remote_name="virtualFirewallRulesEnabled", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="allow_advanced_qos_configuration", remote_name="allowAdvancedQOSConfiguration", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="allow_gateway_management", remote_name="allowGatewayManagement", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="allow_trusted_forwarding_class", remote_name="allowTrustedForwardingClass", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="allowed_forwarding_classes", remote_name="allowedForwardingClasses", attribute_type=list, is_required=False, is_unique=False, choices=[u'A', u'B', u'C', u'D', u'E', u'F', u'G', u'H', u'NONE'])
self.expose_attribute(local_name="allowed_forwarding_mode", remote_name="allowedForwardingMode", attribute_type=str, is_required=False, is_unique=False, choices=[u'DISABLED', u'LOCAL_AND_REMOTE', u'LOCAL_ONLY'])
self.expose_attribute(local_name="floating_ips_quota", remote_name="floatingIPsQuota", attribute_type=int, is_required=False, is_unique=False)
self.expose_attribute(local_name="floating_ips_used", remote_name="floatingIPsUsed", attribute_type=int, is_required=False, is_unique=False)
self.expose_attribute(local_name="flow_collection_enabled", remote_name="flowCollectionEnabled", attribute_type=str, is_required=False, is_unique=False, choices=[u'DISABLED', u'ENABLED'])
self.expose_attribute(local_name="enable_application_performance_management", remote_name="enableApplicationPerformanceManagement", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="encryption_management_mode", remote_name="encryptionManagementMode", attribute_type=str, is_required=False, is_unique=False, choices=[u'DISABLED', u'MANAGED'])
self.expose_attribute(local_name="enterprise_profile_id", remote_name="enterpriseProfileID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="entity_scope", remote_name="entityScope", attribute_type=str, is_required=False, is_unique=False, choices=[u'ENTERPRISE', u'GLOBAL'])
self.expose_attribute(local_name="local_as", remote_name="localAS", attribute_type=int, is_required=False, is_unique=False)
self.expose_attribute(local_name="use_global_mac", remote_name="useGlobalMAC", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="associated_enterprise_security_id", remote_name="associatedEnterpriseSecurityID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="associated_group_key_encryption_profile_id", remote_name="associatedGroupKeyEncryptionProfileID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="associated_key_server_monitor_id", remote_name="associatedKeyServerMonitorID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="customer_id", remote_name="customerID", attribute_type=int, is_required=False, is_unique=False)
self.expose_attribute(local_name="avatar_data", remote_name="avatarData", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="avatar_type", remote_name="avatarType", attribute_type=str, is_required=False, is_unique=False, choices=[u'BASE64', u'COMPUTEDURL', u'URL'])
self.expose_attribute(local_name="external_id", remote_name="externalID", attribute_type=str, is_required=False, is_unique=True)
self.l2_domains = NUL2DomainsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.l2_domain_templates = NUL2DomainTemplatesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.l4_services = NUL4ServicesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.l4_service_groups = NUL4ServiceGroupsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.l7applicationsignatures = NUL7applicationsignaturesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.saa_s_application_groups = NUSaaSApplicationGroupsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.saa_s_application_types = NUSaaSApplicationTypesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.captive_portal_profiles = NUCaptivePortalProfilesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.rate_limiters = NURateLimitersFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.gateways = NUGatewaysFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.gateways_locations = NUGatewaysLocationsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.gateway_templates = NUGatewayTemplatesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.patnat_pools = NUPATNATPoolsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.ldap_configurations = NULDAPConfigurationsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.web_categories = NUWebCategoriesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.web_domain_names = NUWebDomainNamesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.redundancy_groups = NURedundancyGroupsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.deployment_failures = NUDeploymentFailuresFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.performance_monitors = NUPerformanceMonitorsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.metadatas = NUMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.netconf_profiles = NUNetconfProfilesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.network_macro_groups = NUNetworkMacroGroupsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.network_performance_measurements = NUNetworkPerformanceMeasurementsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.key_server_monitors = NUKeyServerMonitorsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.zfb_requests = NUZFBRequestsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.bgp_profiles = NUBGPProfilesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.egress_qos_policies = NUEgressQOSPoliciesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.shared_network_resources = NUSharedNetworkResourcesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.firewall_acls = NUFirewallAclsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.firewall_rules = NUFirewallRulesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.ike_certificates = NUIKECertificatesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.ike_encryptionprofiles = NUIKEEncryptionprofilesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.ike_gateways = NUIKEGatewaysFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.ike_gateway_profiles = NUIKEGatewayProfilesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.ikepsks = NUIKEPSKsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.alarms = NUAlarmsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.all_alarms = NUAllAlarmsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.global_metadatas = NUGlobalMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.vms = NUVMsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.vnfs = NUVNFsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.vnf_metadatas = NUVNFMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.vnf_threshold_policies = NUVNFThresholdPoliciesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.ingress_qos_policies = NUIngressQOSPoliciesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.enterprise_networks = NUEnterpriseNetworksFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.enterprise_securities = NUEnterpriseSecuritiesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.jobs = NUJobsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.policy_group_categories = NUPolicyGroupCategoriesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.policy_object_groups = NUPolicyObjectGroupsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.domains = NUDomainsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.domain_templates = NUDomainTemplatesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.containers = NUContainersFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.cos_remarking_policy_tables = NUCOSRemarkingPolicyTablesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.routing_policies = NURoutingPoliciesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.applications = NUApplicationsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.applicationperformancemanagements = NUApplicationperformancemanagementsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.groups = NUGroupsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.group_key_encryption_profiles = NUGroupKeyEncryptionProfilesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.trunks = NUTrunksFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.dscp_forwarding_class_tables = NUDSCPForwardingClassTablesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.dscp_remarking_policy_tables = NUDSCPRemarkingPolicyTablesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.users = NUUsersFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.ns_gateways = NUNSGatewaysFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.ns_gateways_counts = NUNSGatewaysCountsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.ns_gateway_summaries = NUNSGatewaySummariesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.ns_gateway_templates = NUNSGatewayTemplatesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.nsg_groups = NUNSGGroupsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.ns_redundant_gateway_groups = NUNSRedundantGatewayGroupsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.public_network_macros = NUPublicNetworkMacrosFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.multi_cast_lists = NUMultiCastListsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.avatars = NUAvatarsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.event_logs = NUEventLogsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.overlay_management_profiles = NUOverlayManagementProfilesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.syslog_destinations = NUSyslogDestinationsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self._compute_args(**kwargs)
@property
def ldap_authorization_enabled(self):
return self._ldap_authorization_enabled
@ldap_authorization_enabled.setter
def ldap_authorization_enabled(self, value):
self._ldap_authorization_enabled = value
@property
def ldap_enabled(self):
return self._ldap_enabled
@ldap_enabled.setter
def ldap_enabled(self, value):
self._ldap_enabled = value
@property
|
BSD 3-Clause New or Revised License
|
bitmovin/bitmovin-api-sdk-python
|
bitmovin_api_sdk/encoding/configurations/video/vp9/vp9_api.py
|
Vp9Api.create
|
python
|
def create(self, vp9_video_configuration, **kwargs):
return self.api_client.post(
'/encoding/configurations/video/vp9',
vp9_video_configuration,
type=Vp9VideoConfiguration,
**kwargs
)
|
Create VP9 Codec Configuration
:param vp9_video_configuration: The VP9 Codec Configuration to be created
:type vp9_video_configuration: Vp9VideoConfiguration, required
:return: VP9 video configuration
:rtype: Vp9VideoConfiguration
|
https://github.com/bitmovin/bitmovin-api-sdk-python/blob/79dd938804197151af7cbe5501c7ec1d97872c15/bitmovin_api_sdk/encoding/configurations/video/vp9/vp9_api.py#L34-L49
|
from __future__ import absolute_import
from bitmovin_api_sdk.common import BaseApi, BitmovinApiLoggerBase
from bitmovin_api_sdk.common.poscheck import poscheck_except
from bitmovin_api_sdk.models.bitmovin_response import BitmovinResponse
from bitmovin_api_sdk.models.response_envelope import ResponseEnvelope
from bitmovin_api_sdk.models.response_error import ResponseError
from bitmovin_api_sdk.models.vp9_video_configuration import Vp9VideoConfiguration
from bitmovin_api_sdk.encoding.configurations.video.vp9.customdata.customdata_api import CustomdataApi
from bitmovin_api_sdk.encoding.configurations.video.vp9.vp9_video_configuration_list_query_params import Vp9VideoConfigurationListQueryParams
class Vp9Api(BaseApi):
@poscheck_except(2)
def __init__(self, api_key, tenant_org_id=None, base_url=None, logger=None):
super(Vp9Api, self).__init__(
api_key=api_key,
tenant_org_id=tenant_org_id,
base_url=base_url,
logger=logger
)
self.customdata = CustomdataApi(
api_key=api_key,
tenant_org_id=tenant_org_id,
base_url=base_url,
logger=logger
)
|
MIT License
|
kste/cryptosmt
|
ciphers/chaskeymachalf.py
|
ChasKeyMacHalf.createSTP
|
python
|
def createSTP(self, stp_filename, parameters):
wordsize = parameters["wordsize"]
rounds = parameters["rounds"]
weight = parameters["sweight"]
self.num_messages = parameters["nummessages"]
with open(stp_filename, 'w') as stp_file:
stp_file.write("% Input File for STP\n% ChasKeyMac w={} rounds={}"
"\n\n\n".format(wordsize, rounds))
v0 = ["v0{}".format(i) for i in range((rounds + 1) * self.num_messages)]
v1 = ["v1{}".format(i) for i in range((rounds + 1) * self.num_messages)]
v2 = ["v2{}".format(i) for i in range((rounds + 1) * self.num_messages)]
v3 = ["v3{}".format(i) for i in range((rounds + 1) * self.num_messages)]
w0 = ["w0{}".format(i) for i in range(rounds * self.num_messages)]
w1 = ["w1{}".format(i) for i in range(rounds * self.num_messages)]
stpcommands.setupVariables(stp_file, v0, wordsize)
stpcommands.setupVariables(stp_file, v1, wordsize)
stpcommands.setupVariables(stp_file, v2, wordsize)
stpcommands.setupVariables(stp_file, v3, wordsize)
stpcommands.setupVariables(stp_file, w0, wordsize)
stpcommands.setupVariables(stp_file, w1, wordsize)
stpcommands.setupWeightComputation(stp_file, weight, w0 + w1, wordsize, 1)
for i in range(rounds):
self.setupChasKeyRound(stp_file, i, v0[i], v1[i], v2[i], v3[i],
v0[i + 1], v1[i + 1], v2[i + 1], v3[i + 1],
w0[i], w1[i], wordsize)
stpcommands.assertNonZero(stp_file, v0 + v1 + v2 + v3, wordsize)
for key, value in parameters["fixedVariables"].items():
stpcommands.assertVariableValue(stp_file, key, value)
for char in parameters["blockedCharacteristics"]:
stpcommands.blockCharacteristic(stp_file, char, wordsize)
stpcommands.setupQuery(stp_file)
return
|
Creates an STP file to find a characteristic for ChasKey
with the given parameters.
|
https://github.com/kste/cryptosmt/blob/90c1b401c62422b5ebe4fac17a57b8777172de3d/ciphers/chaskeymachalf.py#L32-L92
|
from parser import stpcommands
from ciphers.cipher import AbstractCipher
from parser.stpcommands import getStringLeftRotate as rotl
from parser.stpcommands import getStringRightRotate as rotr
class ChasKeyMacHalf(AbstractCipher):
name = "chaskeyhalf"
num_messages = 1
def getFormatString(self):
return ['v0', 'v1', 'v2', 'v3', 'w0', 'w1', 'weight']
|
MIT License
|
purestorage-openconnect/py-pure-client
|
pypureclient/flasharray/FA_2_0/models/volume_get_response.py
|
VolumeGetResponse.__init__
|
python
|
def __init__(
self,
more_items_remaining=None,
total_item_count=None,
items=None,
total=None,
):
if more_items_remaining is not None:
self.more_items_remaining = more_items_remaining
if total_item_count is not None:
self.total_item_count = total_item_count
if items is not None:
self.items = items
if total is not None:
self.total = total
|
Keyword args:
more_items_remaining (bool): Returns a value of `true` if subsequent items can be retrieved.
total_item_count (int): The total number of records after applying all filter query parameters. The `total_item_count` will be calculated if and only if the corresponding query parameter `total_item_count` is set to `true`. If this query parameter is not set or set to `false`, a value of `null` will be returned.
items (list[Volume]): Returns a list of all items after filtering. The values are displayed for each name where meaningful. If `total_only=true`, the `items` list will be empty.
total (list[Volume]): The aggregate value of all items after filtering. Where it makes more sense, the average value is displayed instead. The values are displayed for each field where meaningful.
|
https://github.com/purestorage-openconnect/py-pure-client/blob/2d9fdef0b73321cea9613e7d1eb881b42845099b/pypureclient/flasharray/FA_2_0/models/volume_get_response.py#L49-L70
|
import pprint
import re
import six
import typing
from ....properties import Property
if typing.TYPE_CHECKING:
from pypureclient.flasharray.FA_2_0 import models
class VolumeGetResponse(object):
swagger_types = {
'more_items_remaining': 'bool',
'total_item_count': 'int',
'items': 'list[Volume]',
'total': 'list[Volume]'
}
attribute_map = {
'more_items_remaining': 'more_items_remaining',
'total_item_count': 'total_item_count',
'items': 'items',
'total': 'total'
}
required_args = {
}
|
BSD 2-Clause Simplified License
|
spaam/svtplay-dl
|
versioneer.py
|
get_root
|
python
|
def get_root():
root = os.path.realpath(os.path.abspath(os.getcwd()))
setup_py = os.path.join(root, "setup.py")
versioneer_py = os.path.join(root, "versioneer.py")
if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)):
root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0])))
setup_py = os.path.join(root, "setup.py")
versioneer_py = os.path.join(root, "versioneer.py")
if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)):
err = (
"Versioneer was unable to run the project root directory. "
"Versioneer requires setup.py to be executed from "
"its immediate directory (like 'python setup.py COMMAND'), "
"or in a way that lets it use sys.argv[0] to find the root "
"(like 'python path/to/setup.py COMMAND')."
)
raise VersioneerBadRootError(err)
try:
me = os.path.realpath(os.path.abspath(__file__))
me_dir = os.path.normcase(os.path.splitext(me)[0])
vsr_dir = os.path.normcase(os.path.splitext(versioneer_py)[0])
if me_dir != vsr_dir:
print(f"Warning: build in {os.path.dirname(me)} is using versioneer.py from {versioneer_py}")
except NameError:
pass
return root
|
Get the project root directory.
We require that all commands are run from the project root, i.e. the
directory that contains setup.py, setup.cfg, and versioneer.py .
|
https://github.com/spaam/svtplay-dl/blob/adcaa73210dda94f40e24d83f2020360c4b83919/versioneer.py#L293-L330
|
try:
import configparser
except ImportError:
import ConfigParser as configparser
import errno
import json
import os
import re
import subprocess
import sys
class VersioneerConfig:
|
MIT License
|
jplusplus/statscraper
|
statscraper/scrapers/work_injury_scraper.py
|
WorkInjuries.initiate_browser
|
python
|
def initiate_browser(self):
tempdir = os.getenv(TEMPDIR_ENVVAR, DEFAULT_TEMPDIR)
tempsubdir = uuid4().hex
self.tempdir = os.path.join(tempdir, tempsubdir)
try:
os.makedirs(self.tempdir)
except OSError:
if not os.path.isdir(self.tempdir):
raise
profile = webdriver.FirefoxProfile()
profile.set_preference('browser.download.folderList', 2)
profile.set_preference('browser.download.manager.showWhenStarting', False)
profile.set_preference('browser.download.manager.closeWhenDone', True)
profile.set_preference('browser.download.dir', self.tempdir)
profile.set_preference("browser.helperApps.neverAsk.saveToDisk", "application/octet-stream;application/vnd.ms-excel")
profile.set_preference("browser.helperApps.alwaysAsk.force", False)
profile.set_preference("browser.download.manager.useWindow", False)
self.browser = webdriver.Firefox(profile)
self.browser.get('http://webbstat.av.se')
detailed_cls = "Document_TX_GOTOTAB_Avancerad"
WebDriverWait(self.browser, PAGELOAD_TIMEOUT) .until(EC.presence_of_element_located((By.CLASS_NAME,
detailed_cls)))
self.browser.implicitly_wait(3)
self.browser .find_element_by_class_name(detailed_cls) .find_element_by_tag_name("td") .click()
WebDriverWait(self.browser, PAGELOAD_TIMEOUT) .until(EC.presence_of_element_located((By.CLASS_NAME,
detailed_cls)))
self.browser.implicitly_wait(3)
|
The button for expanded detailed options. This
also happens to be a good indicator as to wheter
all content is loaded.
|
https://github.com/jplusplus/statscraper/blob/acb85da07c4349c06a947e07ee316fb618e92bfa/statscraper/scrapers/work_injury_scraper.py#L35-L85
|
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.support.wait import WebDriverWait
from statscraper import BaseScraper, Collection, Dataset, Result, Dimension
import os
from glob import iglob
from time import sleep
from uuid import uuid4
from xlrd import open_workbook
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.by import By
DEFAULT_TEMPDIR = "./tmp"
TEMPDIR_ENVVAR = "STATSCRAPER_TEMPDIR"
PAGELOAD_TIMEOUT = 90
class WorkInjuries(BaseScraper):
tempdir = "./tmp"
@BaseScraper.on("init")
|
MIT License
|
google/uncertainty-baselines
|
baselines/cifar/hyperbatchensemble.py
|
log_uniform_sample
|
python
|
def log_uniform_sample(sample_size,
lambda_parameters):
log_lower, log_upper = lambda_parameters
ens_size = log_lower.shape[0]
lambdas_dim = log_lower.shape[1]
log_lower_ = tf.expand_dims(log_lower, 1)
log_upper_ = tf.expand_dims(log_upper, 1)
u = tf.random.uniform(shape=(ens_size, sample_size, lambdas_dim))
return tf.exp((log_upper_-log_lower_) * u + log_lower_)
|
Sample batch of lambdas distributed according log-unif(lower, upper).
|
https://github.com/google/uncertainty-baselines/blob/d37c17c4b08a88d6546bbf299b59127a03398404/baselines/cifar/hyperbatchensemble.py#L88-L99
|
import os
import pickle
import time
from absl import app
from absl import flags
from absl import logging
import robustness_metrics as rm
import tensorflow.compat.v2 as tf
import tensorflow_datasets as tfds
import tensorflow_probability as tfp
import uncertainty_baselines as ub
import utils
from uncertainty_baselines.models import hyperbatchensemble_e_factory as e_factory
from uncertainty_baselines.models import HyperBatchEnsembleLambdaConfig as LambdaConfig
from uncertainty_baselines.models import wide_resnet_hyperbatchensemble
from tensorboard.plugins.hparams import api as hp
flags.DEFINE_boolean('restore_checkpoint', False,
'Start training from latest checkpoint.')
flags.DEFINE_bool('e_model_use_bias', False, 'Whether to use bias in e models.')
flags.DEFINE_float('min_l2_range', 1e-1, 'Min value of l2 range.')
flags.DEFINE_float('max_l2_range', 1e2, 'Max value of l2 range.')
flags.DEFINE_float(
'e_body_hidden_units', 0, 'Number of hidden units used in e_models. '
'If zero a linear model is used.')
flags.DEFINE_float(
'l2_batchnorm', 15,
'L2 reg. parameter for batchnorm layers (not tuned, constant).')
flags.DEFINE_float('ens_init_delta_bounds', 0.2,
'If ensemble is initialized with lambdas, this values'
'determines the spread of the log-uniform distribution'
'around it (used by ens_init: random, default).')
flags.DEFINE_float('init_emodels_stddev', 1e-4, 'Init e_models weights.')
flags.DEFINE_integer('ensemble_size', 4, 'Size of the ensemble.')
flags.DEFINE_float('lr_tuning', 1e-3, 'Learning rate for hparam tuning.')
flags.DEFINE_float('tau', 1e-3,
'Regularization of the entropy of the lambda distribution.')
flags.DEFINE_bool('use_gibbs_ce', True, 'Use Gibbs cross entropy for training.')
flags.DEFINE_bool(
'sample_and_tune', True,
'Whether to do tuning step with sampling from lambda distribution or not.')
flags.DEFINE_float('random_sign_init', -0.75,
'Use random sign init for fast weights.')
flags.DEFINE_float('fast_weight_lr_multiplier', 0.5,
'fast weights lr multiplier to scale (alpha, gamma).')
flags.DEFINE_integer('tuning_warmup_epochs', 0,
'Number of epochs before starting tuning of lambdas')
flags.DEFINE_integer('tuning_every_x_step', 3,
'Do tunning step after x training steps.')
flags.DEFINE_bool('regularize_fast_weights', False,
'Whether to egularize fast weights in BatchEnsemble layers.')
flags.DEFINE_bool('fast_weights_eq_contraint', True, 'If true, set u,v:=r,s')
flags.DEFINE_integer(
'num_eval_samples', 0, 'Number of samples taken for each batch-ens. member.'
'If >=0, we take num_eval_samples + the mean of lambdas.'
'(by default, notice that when = 0, predictions are with the mean only)'
'If < 0, we take -num_eval_samples, without including the mean of lambdas.')
flags.FLAGS.set_default('lr_decay_epochs', ['100', '200', '225'])
flags.FLAGS.set_default('train_epochs', 250)
flags.FLAGS.set_default('train_proportion', 0.95)
FLAGS = flags.FLAGS
@tf.function
|
Apache License 2.0
|
ratsgo/embedding
|
models/bilm/model.py
|
_pretrained_initializer
|
python
|
def _pretrained_initializer(varname, weight_file, embedding_weight_file=None):
weight_name_map = {}
for i in range(2):
for j in range(8):
root = 'RNN_{}/RNN/MultiRNNCell/Cell{}'.format(i, j)
weight_name_map[root + '/rnn/lstm_cell/kernel'] = root + '/LSTMCell/W_0'
weight_name_map[root + '/rnn/lstm_cell/bias'] = root + '/LSTMCell/B'
weight_name_map[root + '/rnn/lstm_cell/projection/kernel'] = root + '/LSTMCell/W_P_0'
varname_in_file = varname[5:]
if varname_in_file.startswith('RNN'):
varname_in_file = weight_name_map[varname_in_file]
if varname_in_file == 'embedding':
with h5py.File(embedding_weight_file, 'r') as fin:
embed_weights = fin[varname_in_file][...]
weights = np.zeros(
(embed_weights.shape[0] + 1, embed_weights.shape[1]),
dtype=DTYPE
)
weights[1:, :] = embed_weights
else:
with h5py.File(weight_file, 'r') as fin:
if varname_in_file == 'char_embed':
char_embed_weights = fin[varname_in_file][...]
weights = np.zeros(
(char_embed_weights.shape[0] + 1,
char_embed_weights.shape[1]),
dtype=DTYPE
)
weights[1:, :] = char_embed_weights
else:
weights = fin[varname_in_file][...]
def ret(shape, **kwargs):
if list(shape) != list(weights.shape):
raise ValueError(
"Invalid shape initializing {0}, got {1}, expected {2}".format(
varname_in_file, shape, weights.shape)
)
return weights
return ret
|
We'll stub out all the initializers in the pretrained LM with
a function that loads the weights from the file
|
https://github.com/ratsgo/embedding/blob/2e0b22f97b0f1f7ad23036afd4b168e718e41c8b/models/bilm/model.py#L185-L241
|
import numpy as np
import tensorflow as tf
import h5py
import json
from .data import UnicodeCharsVocabulary, Batcher, InvalidNumberOfCharacters
DTYPE = 'float32'
DTYPE_INT = 'int64'
class BidirectionalLanguageModel(object):
def __init__(
self,
options_file: str,
weight_file: str,
use_character_inputs=True,
embedding_weight_file=None,
max_batch_size=128,
):
with open(options_file, 'r') as fin:
options = json.load(fin)
if not use_character_inputs:
if embedding_weight_file is None:
raise ValueError(
"embedding_weight_file is required input with "
"not use_character_inputs"
)
self._options = options
self._weight_file = weight_file
self._embedding_weight_file = embedding_weight_file
self._use_character_inputs = use_character_inputs
self._max_batch_size = max_batch_size
self._ops = {}
self._graphs = {}
def __call__(self, ids_placeholder):
if ids_placeholder in self._ops:
ret = self._ops[ids_placeholder]
else:
if len(self._ops) == 0:
lm_graph = BidirectionalLanguageModelGraph(
self._options,
self._weight_file,
ids_placeholder,
embedding_weight_file=self._embedding_weight_file,
use_character_inputs=self._use_character_inputs,
max_batch_size=self._max_batch_size)
else:
with tf.variable_scope('', reuse=True):
lm_graph = BidirectionalLanguageModelGraph(
self._options,
self._weight_file,
ids_placeholder,
embedding_weight_file=self._embedding_weight_file,
use_character_inputs=self._use_character_inputs,
max_batch_size=self._max_batch_size)
ops = self._build_ops(lm_graph)
self._ops[ids_placeholder] = ops
self._graphs[ids_placeholder] = lm_graph
ret = ops
return ret
def _build_ops(self, lm_graph):
with tf.control_dependencies([lm_graph.update_state_op]):
token_embeddings = lm_graph.embedding
layers = [
tf.concat([token_embeddings, token_embeddings], axis=2)
]
n_lm_layers = len(lm_graph.lstm_outputs['forward'])
for i in range(n_lm_layers):
layers.append(
tf.concat(
[lm_graph.lstm_outputs['forward'][i],
lm_graph.lstm_outputs['backward'][i]],
axis=-1
)
)
sequence_length_wo_bos_eos = lm_graph.sequence_lengths - 2
layers_without_bos_eos = []
for layer in layers:
layer_wo_bos_eos = layer[:, 1:, :]
layer_wo_bos_eos = tf.reverse_sequence(
layer_wo_bos_eos,
lm_graph.sequence_lengths - 1,
seq_axis=1,
batch_axis=0,
)
layer_wo_bos_eos = layer_wo_bos_eos[:, 1:, :]
layer_wo_bos_eos = tf.reverse_sequence(
layer_wo_bos_eos,
sequence_length_wo_bos_eos,
seq_axis=1,
batch_axis=0,
)
layers_without_bos_eos.append(layer_wo_bos_eos)
lm_embeddings = tf.concat(
[tf.expand_dims(t, axis=1) for t in layers_without_bos_eos],
axis=1
)
mask_wo_bos_eos = tf.cast(lm_graph.mask[:, 1:], 'int32')
mask_wo_bos_eos = tf.reverse_sequence(
mask_wo_bos_eos,
lm_graph.sequence_lengths - 1,
seq_axis=1,
batch_axis=0,
)
mask_wo_bos_eos = mask_wo_bos_eos[:, 1:]
mask_wo_bos_eos = tf.reverse_sequence(
mask_wo_bos_eos,
sequence_length_wo_bos_eos,
seq_axis=1,
batch_axis=0,
)
mask_wo_bos_eos = tf.cast(mask_wo_bos_eos, 'bool')
return {
'lm_embeddings': lm_embeddings,
'lengths': sequence_length_wo_bos_eos,
'token_embeddings': lm_graph.embedding,
'mask': mask_wo_bos_eos,
}
|
MIT License
|
berkeleyphotonicsgenerator/bpg
|
BPG/compiler/dataprep_gdspy.py
|
Dataprep.gdspy_manh
|
python
|
def gdspy_manh(self,
polygon_gdspy: Union[gdspy.Polygon, gdspy.PolygonSet, None],
manh_grid_size: float,
do_manh: bool,
) -> Union[gdspy.Polygon, gdspy.PolygonSet]:
start = time.time()
if do_manh:
manh_type = 'inc'
else:
manh_type = 'non'
if polygon_gdspy is None:
polygon_out = None
elif isinstance(polygon_gdspy, gdspy.Polygon):
coord_list = self.manh_skill(polygon_gdspy.points, manh_grid_size, manh_type)
polygon_out = self.dataprep_cleanup_gdspy(gdspy.Polygon(coord_list),
do_cleanup=self.do_cleanup)
elif isinstance(polygon_gdspy, gdspy.PolygonSet):
polygon_list = []
for poly in polygon_gdspy.polygons:
coord_list = self.manh_skill(poly, manh_grid_size, manh_type)
polygon_list.append(coord_list)
polygon_out = self.dataprep_cleanup_gdspy(gdspy.PolygonSet(polygon_list),
do_cleanup=self.do_cleanup)
else:
raise ValueError('polygon_gdspy should be either a Polygon or PolygonSet')
end = time.time()
dataprep_logger.debug(f'gdspy_man took {end-start}s')
return polygon_out
|
Performs Manhattanization on a gdspy representation of a polygon, and returns a gdspy representation of the
Manhattanized polygon
Parameters
----------
polygon_gdspy : Union[gdspy.Polygon, gdspy.PolygonSet, None]
The gdspy representation of the polygons to be Manhattanized
manh_grid_size : float
grid size for Manhattanization, edge length after Manhattanization should be larger than it
do_manh : bool
True to perform Manhattanization
Returns
-------
polygon_out : Union[gdspy.Polygon, gdspy.PolygonSet]
The Manhattanized polygon, in gdspy representation
|
https://github.com/berkeleyphotonicsgenerator/bpg/blob/27221c9bbfd5e25547ad048fcbfacf940db9ac8c/BPG/compiler/dataprep_gdspy.py#L748-L797
|
import warnings
import gdspy
import time
import numpy as np
import sys
import logging
import re
from BPG.objects import PhotonicRect, PhotonicPolygon, PhotonicRound
from BPG.compiler.point_operations import coords_cleanup
from BPG.content_list import ContentList
from math import ceil
from typing import TYPE_CHECKING, Tuple, List, Union, Dict, Optional, Pattern, Iterable
if TYPE_CHECKING:
from BPG.photonic_core import PhotonicTechInfo
from bag.layout.routing import RoutingGrid
from BPG.bpg_custom_types import lpp_type
MAX_SIZE = sys.maxsize
dataprep_logger = logging.getLogger('dataprep')
warnings.filterwarnings(
action='ignore',
message='.*polygon with more than 199 points was created.*',
)
IMPLEMENTED_DATAPREP_OPERATIONS = ['rad', 'add', 'manh', 'ouo', 'sub', 'ext', 'and', 'xor']
class Dataprep:
def __init__(self,
photonic_tech_info: "PhotonicTechInfo",
grid: "RoutingGrid",
content_list_flat: "ContentList",
is_lsf: bool = False,
impl_cell=None,
) -> None:
self.photonic_tech_info: PhotonicTechInfo = photonic_tech_info
self.grid = grid
self.content_list_flat: "ContentList" = content_list_flat
self.is_lsf = is_lsf
start = time.time()
self.content_list_flat_sorted_by_layer = content_list_flat.sort_content_list_by_layers()
end = time.time()
logging.info(f'Sorting flat content list by layer took {end - start:.4g}s')
self.global_grid_size = self.photonic_tech_info.global_grid_size
self.global_rough_grid_size = self.photonic_tech_info.global_rough_grid_size
self.global_operation_precision = self.global_grid_size / 10
self.global_clean_up_grid_size = self.global_grid_size / 10
self.offset_tolerance = 4.35250
self.do_cleanup = True
self.GLOBAL_DO_MANH_AT_BEGINNING = False
self.GLOBAL_DO_MANH_DURING_OP = True
self.GLOBAL_DO_FINAL_MANH = False
self.flat_gdspy_polygonsets_by_layer: Dict[Tuple[str, str], Union[gdspy.PolygonSet, gdspy.Polygon]] = {}
self.post_dataprep_polygon_pointlist_by_layer: Dict[Tuple[str, str], List] = {}
self.content_list_flat_post_dataprep: "ContentList" = None
self.dataprep_ignore_list: List[Tuple[str, str]] = []
self.dataprep_bypass_list: List[Tuple[str, str]] = []
dataprep_ignore_list_temp = self.photonic_tech_info.dataprep_routine_data.get(
'dataprep_ignore_list', [])
dataprep_bypass_list_temp = self.photonic_tech_info.dataprep_routine_data.get(
'dataprep_bypass_list', [])
if dataprep_ignore_list_temp is None:
self.dataprep_ignore_list = []
else:
for lpp_entry in dataprep_ignore_list_temp:
self.dataprep_ignore_list.extend(
self.regex_search_lpps(
regex=self._check_input_lpp_entry_and_convert_to_regex(lpp_entry),
keys=self.content_list_flat_sorted_by_layer.keys()
)
)
if dataprep_bypass_list_temp is None:
self.dataprep_bypass_list = []
else:
for lpp_entry in dataprep_bypass_list_temp:
self.dataprep_bypass_list.extend(
self.regex_search_lpps(
regex=self._check_input_lpp_entry_and_convert_to_regex(lpp_entry),
keys=self.content_list_flat_sorted_by_layer.keys()
)
)
self.ouuo_regex_list: List[Tuple[Pattern, Pattern]] = []
self.dataprep_groups: List[Dict] = []
if self.is_lsf:
dataprep_groups_temp = self.photonic_tech_info.lsf_export_parameters.get('dataprep_groups', [])
ouuo_list_temp = self.photonic_tech_info.lsf_export_parameters.get('over_under_under_over', [])
else:
dataprep_groups_temp = self.photonic_tech_info.dataprep_routine_data.get('dataprep_groups', [])
ouuo_list_temp = self.photonic_tech_info.dataprep_routine_data.get('over_under_under_over', [])
if dataprep_groups_temp is None:
self.dataprep_groups = []
else:
for dataprep_group in dataprep_groups_temp:
self.dataprep_groups.append(self._check_dataprep_ops(dataprep_group))
if ouuo_list_temp is None:
self.ouuo_regex_list = []
else:
for lpp_entry in ouuo_list_temp:
self.ouuo_regex_list.append(self._check_input_lpp_entry_and_convert_to_regex(lpp_entry))
self.polygon_cache: Dict[Tuple, Union[gdspy.Polygon, gdspy.PolygonSet]] = {}
if not isinstance(impl_cell, str):
raise ValueError(f'impl_cell must be a string')
self.impl_cell = impl_cell
@staticmethod
def _check_input_lpp_entry_and_convert_to_regex(lpp_entry,
) -> Tuple[Pattern, Pattern]:
if not isinstance(lpp_entry, dict):
raise ValueError(f'lpp list entries must be dictionaries.\n'
f'Entry {lpp_entry} violates this.')
lpp_layer = lpp_entry.get('lpp', None)
if lpp_layer is None:
raise ValueError(f'List entries must be dictionaries with an lpp key:'
f' - {{lpp: [layer, purpose]}}\n'
f'Entry {lpp_entry} violates this.')
if len(lpp_layer) != 2:
raise ValueError(f'lpp entry must specify a layer and a purpose, in that order.\n'
f'Specified lpp {lpp_layer} does not meet this criteria.')
if not (isinstance(lpp_layer[0], str) and isinstance(lpp_layer[1], str)):
raise ValueError(f'Lpp layers and purposes must be specified as a list of two strings.\n'
f'Entry {lpp_layer} does not meet this criteria.')
layer_regex = re.compile(lpp_layer[0])
purpose_regex = re.compile(lpp_layer[1])
return layer_regex, purpose_regex
def _check_dataprep_ops(self,
dataprep_group,
) -> Dict[str, List]:
if 'lpp_in' not in dataprep_group:
raise ValueError(f'Dataprep group entry must be a dictionary containing a key named \'lpp_in\'.\n'
f'Dataprep group {dataprep_group} does not meet this criteria.')
if 'lpp_ops' not in dataprep_group:
raise ValueError(f'Dataprep group entry must be a dictionary containing a key named \'lpp_ops\'.\n'
f'Dataprep group {dataprep_group} does not meet this criteria.')
if not (isinstance(dataprep_group['lpp_in'], list)):
raise ValueError(f'lpp_in must be a list of dictionaries.\n'
f'Dataprep group {dataprep_group} does not meet this criteria.')
if not (isinstance(dataprep_group['lpp_ops'], list)):
raise ValueError(f'lpp_ops must be a list of dictionaries.\n'
f'Dataprep group {dataprep_group} does not meet this criteria.')
lpp_in_clean = []
for lpp_in_entry in dataprep_group['lpp_in']:
lpp_in_clean.append(self._check_input_lpp_entry_and_convert_to_regex(lpp_in_entry))
lpp_op_clean = []
for lpp_op_entry in dataprep_group['lpp_ops']:
if not isinstance(lpp_op_entry, dict):
raise ValueError(f'lpp_ops entries must be dictionaries.\n'
f'Dataprep group {dataprep_group} does not meet this criteria.')
if 'operation' not in lpp_op_entry:
raise ValueError(f'lpp_ops entry must specify a value for the key \'operation\'\n'
f'Dataprep group {dataprep_group} does not meet this criteria.')
if lpp_op_entry['operation'] not in IMPLEMENTED_DATAPREP_OPERATIONS:
raise ValueError(f'The following dataprep operations are implemented at this '
f'time: {IMPLEMENTED_DATAPREP_OPERATIONS}\n'
f'Dataprep group {dataprep_group} uses an unsupported dataprep '
f'operation {lpp_op_entry["operation"]}.')
operation = lpp_op_entry['operation']
amount = lpp_op_entry.get('amount', None)
if (amount is None) and (operation != 'manh'):
raise ValueError(f'Amount must be specified for operation \'{operation}\' '
f'in dataprep group {dataprep_group}')
if (amount is not None) and not (isinstance(amount, int) or isinstance(amount, float)):
raise ValueError(f'amount must be a float or int.\n'
f'Operation \'{operation}\' in dataprep group {dataprep_group} '
f'does not meet this criteria.')
out_layer = lpp_op_entry.get('lpp', None)
if (out_layer is None) and (operation != 'manh'):
raise ValueError(f'output lpp must be specified for operation \'{operation}\' '
f'in dataprep group {dataprep_group}')
if out_layer is not None:
if len(out_layer) != 2:
raise ValueError(f'lpp entry must specify a layer and a purpose, in that order.\n'
f'Specified entry {out_layer} does not meet this criteria.')
if not (isinstance(out_layer[0], str) and isinstance(out_layer[1], str)):
raise ValueError(f'Lpp layers and purposes must be specified as a list of two strings.\n'
f'{out_layer} in dataprep group {dataprep_group} does not meet this criteria.')
out_layer = (out_layer[0], out_layer[1])
lpp_op_clean.append(
dict(
operation=operation,
amount=amount,
lpp=out_layer,
)
)
return dict(
lpp_in=lpp_in_clean,
lpp_ops=lpp_op_clean,
)
def dataprep_cleanup_gdspy(self,
polygon: Union[gdspy.Polygon, gdspy.PolygonSet, None],
do_cleanup: bool = True,
) -> Union[gdspy.Polygon, gdspy.PolygonSet, None]:
if do_cleanup:
if polygon is None:
clean_polygon = None
elif isinstance(polygon, (gdspy.Polygon, gdspy.PolygonSet)):
clean_polygon = gdspy.offset(
polygons=polygon,
distance=0,
tolerance=self.offset_tolerance,
max_points=MAX_SIZE,
join_first=True,
precision=self.global_clean_up_grid_size,
)
clean_coords = []
if isinstance(clean_polygon, gdspy.Polygon):
clean_coords = self.global_grid_size * np.round(clean_polygon.points / self.global_grid_size, 0)
clean_polygon = gdspy.Polygon(points=clean_coords)
elif isinstance(clean_polygon, gdspy.PolygonSet):
for poly in clean_polygon.polygons:
clean_coords.append(self.global_grid_size * np.round(poly / self.global_grid_size, 0))
clean_polygon = gdspy.PolygonSet(polygons=clean_coords)
else:
raise ValueError('input polygon must be a gdspy.Polygon, gdspy.PolygonSet or NonType')
else:
clean_polygon = polygon
return clean_polygon
def dataprep_coord_to_gdspy(
self,
pos_neg_list_list: Tuple[List[List[Tuple[float, float]]], List[List[Tuple[float, float]]]],
manh_grid_size: float,
do_manh: bool,
) -> Union[gdspy.Polygon, gdspy.PolygonSet]:
pos_coord_list_list = pos_neg_list_list[0]
neg_coord_list_list = pos_neg_list_list[1]
polygon_out = self.dataprep_cleanup_gdspy(gdspy.PolygonSet(pos_coord_list_list),
do_cleanup=self.do_cleanup)
if len(neg_coord_list_list):
polygon_neg = self.dataprep_cleanup_gdspy(gdspy.PolygonSet(neg_coord_list_list),
do_cleanup=self.do_cleanup)
polygon_out = self.dataprep_cleanup_gdspy(
gdspy.fast_boolean(polygon_out, polygon_neg, 'not',
precision=self.global_operation_precision,
max_points=MAX_SIZE),
do_cleanup=self.do_cleanup
)
polygon_out = self.gdspy_manh(polygon_out, manh_grid_size=manh_grid_size, do_manh=do_manh)
polygon_out = self.dataprep_cleanup_gdspy(
polygon_out,
do_cleanup=self.do_cleanup
)
return polygon_out
def polyop_gdspy_to_point_list(self,
polygon_gdspy_in: Union[gdspy.Polygon, gdspy.PolygonSet],
fracture: bool = True,
do_manh: bool = True,
manh_grid_size: Optional[float] = None,
) -> List[List[Tuple[float, float]]]:
if manh_grid_size is None:
manh_grid_size = self.global_grid_size
if do_manh:
start = time.time()
polygon_gdspy_in = self.gdspy_manh(polygon_gdspy_in, manh_grid_size=manh_grid_size, do_manh=do_manh)
end = time.time()
dataprep_logger.debug(f'polyop_gdspy_to_point_list: gdspy_manh took: {end-start}s')
if fracture:
start = time.time()
polygon_gdspy = polygon_gdspy_in.fracture(max_points=4094, precision=self.global_grid_size)
end = time.time()
dataprep_logger.debug(f'polyop_gdspy_to_point_list: fracturing took: {end-start}s')
else:
polygon_gdspy = polygon_gdspy_in
output_list_of_coord_lists = []
if isinstance(polygon_gdspy, gdspy.Polygon):
output_list_of_coord_lists = [np.round(polygon_gdspy.points, 3)]
non_manh_edge = self.not_manh(polygon_gdspy.points)
if non_manh_edge:
logging.debug(f'Warning: a non-Manhattanized polygon is created in polyop_gdspy_to_point_list, '
f'number of non-manh edges is {non_manh_edge}')
elif isinstance(polygon_gdspy, gdspy.PolygonSet):
for poly in polygon_gdspy.polygons:
output_list_of_coord_lists.append(np.round(poly, 3))
non_manh_edge = self.not_manh(poly)
if non_manh_edge:
logging.debug(f'Warning: a non-Manhattanized polygon is created in polyop_gdspy_to_point_list, '
f'number of non-manh edges is {non_manh_edge}')
else:
raise ValueError('polygon_gdspy must be a gdspy.Polygon or gdspy.PolygonSet')
return output_list_of_coord_lists
@staticmethod
def merge_adjacent_duplicate(coord_set: np.ndarray,
eps_grid: float = 1e-6,
) -> np.ndarray:
coord_set_shift = np.roll(coord_set, 1, axis=0)
coord_cmp_eq = np.abs(coord_set_shift - coord_set) < eps_grid
select = np.sum(coord_cmp_eq, axis=1) <= 1
coord_set_merged = coord_set[select]
return coord_set_merged
@staticmethod
def not_manh(coord_list: np.ndarray,
eps_grid: float = 1e-6,
) -> int:
coord_set_shift = np.roll(coord_list, 1, axis=0)
coord_cmp = np.abs(coord_set_shift - coord_list) > eps_grid
edge_not_manh = np.sum(coord_cmp, axis=1) > 1
non_manh_edge = int(np.sum(edge_not_manh, axis=0))
return non_manh_edge
@staticmethod
def manh_edge_tran(p1: np.ndarray,
dx: float,
dy: float,
nstep: int,
inc_x_first: bool,
manh_grid_size: float,
eps_grid: float = 1e-4,
) -> np.ndarray:
if (abs(dx) < eps_grid) or (abs(dy) < eps_grid):
edge_coord_set = np.array([p1.tolist()])
else:
x_set = np.empty((2 * nstep,), dtype=p1.dtype)
y_set = np.empty((2 * nstep,), dtype=p1.dtype)
if inc_x_first:
x_set_pre = np.round(
np.linspace(p1[0], p1[0] + nstep * dx, nstep + 1) / manh_grid_size) * manh_grid_size
y_set_pre = np.round(
np.linspace(p1[1], p1[1] + (nstep - 1) * dy, nstep) / manh_grid_size) * manh_grid_size
x_set[0::2] = x_set_pre[:-1]
x_set[1::2] = x_set_pre[1:]
y_set[0::2] = y_set_pre
y_set[1::2] = y_set_pre
else:
x_set_pre = np.round(
np.linspace(p1[0], p1[0] + (nstep - 1) * dx, nstep) / manh_grid_size) * manh_grid_size
y_set_pre = np.round(
np.linspace(p1[1], p1[1] + nstep * dy, nstep + 1) / manh_grid_size) * manh_grid_size
x_set[0::2] = x_set_pre
x_set[1::2] = x_set_pre
y_set[0::2] = y_set_pre[:-1]
y_set[1::2] = y_set_pre[1:]
edge_coord_set = np.stack((x_set, y_set), axis=-1)
return edge_coord_set
def manh_skill(self,
poly_coords: Union[List[Tuple[float, float]], np.ndarray],
manh_grid_size: float,
manh_type: str,
) -> np.ndarray:
def apprx_equal(float1: float,
float2: float,
eps_grid: float = 1e-9,
) -> bool:
return abs(float1 - float2) < eps_grid
def apprx_equal_coord(coord1: Tuple[float, float],
coord2: Tuple[float, float],
eps_grid: float = 1e-9,
) -> bool:
return apprx_equal(coord1[0], coord2[0], eps_grid) and (apprx_equal(coord1[1], coord2[0], eps_grid))
if isinstance(poly_coords, np.ndarray):
poly_coords_ori = poly_coords
else:
poly_coords_ori = np.array(poly_coords)
dataprep_logger.debug(f'in manh_skill, manh_grid_size: {manh_grid_size}')
dataprep_logger.debug(f'in manh_skill, poly_coords before mapping to manh grid: {poly_coords_ori}')
if poly_coords_ori.size == 0:
return poly_coords_ori
poly_coords_manhgrid = manh_grid_size * np.round(poly_coords_ori / manh_grid_size)
dataprep_logger.debug(f'in manh_skill, poly_coords after mapping to manh grid: {poly_coords_manhgrid}')
poly_coords_manhgrid = self.merge_adjacent_duplicate(poly_coords_manhgrid)
if not apprx_equal_coord(poly_coords_manhgrid[0], poly_coords_manhgrid[-1]):
poly_coords_manhgrid = np.append(poly_coords_manhgrid, [poly_coords_manhgrid[0]], axis=0)
if manh_type == 'non':
return poly_coords
elif (manh_type == 'inc') or (manh_type == 'dec'):
n_coords = poly_coords_manhgrid.size / poly_coords_manhgrid[0].size
coord_in = np.sum(poly_coords_manhgrid, axis=0) / n_coords
poly_coords_manhgrid_leftshift = np.roll(poly_coords_manhgrid, -1, axis=0)
edge_vec_set = poly_coords_manhgrid_leftshift - poly_coords_manhgrid
p2c_vec_set = coord_in - poly_coords_manhgrid
deltax_set = edge_vec_set[:, 0]
deltay_set = edge_vec_set[:, 1]
nstep_set = np.round(np.minimum(np.abs(deltax_set), np.abs(deltay_set)) / manh_grid_size).astype(int)
nstep_fordivide_set = nstep_set + (nstep_set == 0)
dx_set = deltax_set / nstep_fordivide_set
dy_set = deltay_set / nstep_fordivide_set
p2c_x_set = p2c_vec_set[:, 0]
p2c_y_set = p2c_vec_set[:, 1]
product1_set = deltax_set * p2c_y_set - deltay_set * p2c_x_set
product2_set = deltax_set * 0.0 - deltax_set * deltay_set
inc_x_first_set = (product1_set * product2_set < 0) == (manh_type == 'inc')
poly_coords_orth = []
for i in range(0, len(poly_coords_manhgrid)):
coord_curr = poly_coords_manhgrid[i]
edge_coords_set = self.manh_edge_tran(coord_curr, dx_set[i], dy_set[i], nstep_set[i],
inc_x_first_set[i],
manh_grid_size)
poly_coords_orth.append(edge_coords_set)
poly_coords_orth = np.concatenate(poly_coords_orth, axis=0)
poly_coords_orth_manhgrid = poly_coords_orth
nonmanh_edge_pre = self.not_manh(poly_coords_orth_manhgrid)
if nonmanh_edge_pre:
for i in range(0, len(poly_coords_orth_manhgrid) - 1):
p1 = poly_coords_orth_manhgrid[i]
p2 = poly_coords_orth_manhgrid[i + 1]
if p1[0] != p2[0] and p1[1] != p2[1]:
print('non_manh_edge:', p1, p2)
raise ValueError(f'Manhattanization failed before the clean-up, '
f'number of non-manh edges is {nonmanh_edge_pre}')
poly_coords_cleanup = coords_cleanup(poly_coords_orth_manhgrid)
if poly_coords_cleanup.size != 0:
poly_coords_cleanup = np.append(poly_coords_cleanup, [poly_coords_cleanup[0]], axis=0)
nonmanh_edge_post = self.not_manh(poly_coords_cleanup)
if nonmanh_edge_post:
for i in range(0, len(poly_coords_cleanup)):
p1 = poly_coords_cleanup[i]
if i == len(poly_coords_cleanup) - 1:
p2 = poly_coords_cleanup[0]
else:
p2 = poly_coords_orth_manhgrid[i + 1]
if p1[0] != p2[0] and p1[1] != p2[1]:
print('non_manh_edge:', p1, p2)
raise ValueError(f'Manhattanization failed after the clean-up, '
f'number of non-manh edges is {nonmanh_edge_post}')
return poly_coords_cleanup
else:
raise ValueError(f'manh_type = {manh_type} should be either "non", "inc" or "dec"')
|
BSD 3-Clause New or Revised License
|
pyansys/pymapdl
|
ansys/mapdl/core/parameters.py
|
Parameters._parm
|
python
|
def _parm(self):
return interp_star_status(self._mapdl.starstatus())
|
Current MAPDL parameters
|
https://github.com/pyansys/pymapdl/blob/e5cc21471c3a8fcef1f7b88359e38aa89cd63f73/ansys/mapdl/core/parameters.py#L246-L248
|
import os
import tempfile
import weakref
import numpy as np
from ansys.mapdl.core.mapdl import _MapdlCore
from ansys.mapdl.core.misc import supress_logging
from ansys.mapdl.reader._reader import write_array
ROUTINE_MAP = {
0: "Begin level",
17: "PREP7",
21: "SOLUTION",
31: "POST1",
36: "POST26",
52: "AUX2",
53: "AUX3",
62: "AUX12",
65: "AUX15",
}
UNITS_MAP = {
-1: "NONE",
0: "USER",
1: "SI",
2: "CGS",
3: "BFT",
4: "BIN",
5: "MKS",
6: "MPA",
7: "uMKS",
}
class Parameters:
def __init__(self, mapdl):
if not isinstance(mapdl, _MapdlCore):
raise TypeError("Must be implemented from MAPDL class")
self._mapdl_weakref = weakref.ref(mapdl)
@property
def _mapdl(self):
return self._mapdl_weakref()
def _set_log_level(self, level):
self._mapdl.set_log_level(level)
@property
def _log(self):
return self._mapdl._log
@property
def routine(self) -> str:
value = self._mapdl.get_value("ACTIVE", item1="ROUT")
return ROUTINE_MAP[int(value)]
@property
def units(self) -> str:
value = self._mapdl.get_value("ACTIVE", item1="UNITS")
return UNITS_MAP[int(value)]
@property
def revision(self) -> float:
return float(self._mapdl.get_value("ACTIVE", item1="REV"))
@property
def platform(self) -> str:
return self._mapdl.get_value("ACTIVE", item1="PLATFORM")
@property
def csys(self) -> int:
return int(self._mapdl.get_value("ACTIVE", item1="CSYS"))
@property
def dsys(self) -> int:
return int(self._mapdl.get_value("ACTIVE", item1="DSYS"))
@property
def rsys(self) -> int:
return int(self._mapdl.get_value("ACTIVE", item1="RSYS"))
@property
def esys(self) -> int:
return int(self._mapdl.get_value("ACTIVE", item1="ESYS"))
@property
def section(self) -> int:
return int(self._mapdl.get_value("ACTIVE", item1="SECT"))
@property
def material(self) -> int:
return int(self._mapdl.get_value("ACTIVE", item1="MAT"))
@property
def real(self) -> int:
return int(self._mapdl.get_value("ACTIVE", item1="REAL"))
@property
def type(self) -> int:
return int(self._mapdl.get_value("ACTIVE", item1="type"))
@property
@supress_logging
|
MIT License
|
dfoderick/fullcycle
|
fullcyclepy/helpers/queuehelper.py
|
BroadcastSender.broadcast
|
python
|
def broadcast(self, msg):
if self.channel != None:
self.channel.basic_publish(exchange=self._exchangename, routing_key='', body=msg)
|
broadcast a message to anyone that is listening
|
https://github.com/dfoderick/fullcycle/blob/b53a35b1b051db27d947f2768c96712ad01f2328/fullcyclepy/helpers/queuehelper.py#L204-L207
|
from enum import Enum
import pika
class QueueName(Enum):
Q_DUMMY = 'dummy'
Q_COMPONENT = 'component'
Q_LOG = 'log'
Q_PROVISION = 'provision'
Q_SWITCH = 'switch'
Q_RESTART = 'restart'
Q_ALERT = 'alert'
Q_DISCOVER = 'discover'
Q_DISCOVERED = 'discovered'
Q_MONITOR = 'monitor'
Q_MONITORMINER = 'monitorminer'
Q_SHUTDOWN = 'shutdown'
Q_OFFLINE = 'offline'
Q_ONLINE = 'online'
Q_STATISTICSUPDATED = 'statisticsupdated'
Q_POOLCONFIGURATIONCHANGED = 'poolconfigurationchanged'
Q_CLOUDPULL = 'cloudpull'
Q_EMAIL = 'email'
Q_SENSOR = 'sensor'
Q_UPDATEWEB = 'updateweb'
Q_SAVE = 'save'
@classmethod
def value(cls, queue_name):
return queue_name._name_.lower()[2:]
@classmethod
def has_value(cls, queue_name):
return any(queue_name == item.value for item in cls)
def __str__(self):
return "%s" % (self._name_.lower())
class QueueType:
broadcast = 'broadcast'
publish = 'publish'
class QueueEntry(object):
def __init__(self, queuename, message, eventtype=QueueType.publish):
self.queuename = queuename
self.eventtype = eventtype
self.message = message
class QueueEntries(object):
def __init__(self):
self.entries = []
def add(self, queuename, message):
self.entries.append(QueueEntry(queuename, message, QueueType.publish))
def addbroadcast(self, queuename, message):
self.entries.append(QueueEntry(queuename, message, QueueType.broadcast))
def addalert(self, message):
self.addbroadcast(QueueName.Q_ALERT, message)
def hasentries(self):
if self.entries is None:
return 0
return len(self.entries)
class Queue:
queue_name = None
_connection = None
channel = None
state = None
_userlogin = None
def __init__(self, queueName, servicelogin):
self.queue_name = queueName
self._servicelogin = servicelogin
self._userlogin = self._servicelogin.user
if self._userlogin is None:
self._userlogin = 'fullcycle'
self.initialize(queueName)
def connection(self):
return self._connection
def getparameters(self):
credentials = pika.PlainCredentials(self._userlogin, self._servicelogin.password)
parameters = pika.ConnectionParameters(self._servicelogin.host, self._servicelogin.port, '/', credentials)
return parameters
def initialize(self, name):
self.setupchannel()
self.declare(name)
def setupchannel(self):
self._connection = pika.BlockingConnection(self.getparameters())
self.channel = self._connection.channel()
def declare(self, name):
self.state = self.channel.queue_declare(queue=name)
def publish(self, msg, exchange=''):
if self.channel != None:
self.channel.basic_publish(exchange=exchange, routing_key=self.queue_name, body=msg)
def publish_channel(self, queue_name, msg, exchange=''):
localchannel = self._connection.channel()
localchannel.basic_publish(exchange=exchange, routing_key=queue_name, body=msg)
localchannel.close()
def broadcast_channel(self, exchange_name, msg):
localchannel = self._connection.channel()
localchannel.basic_publish(exchange=exchange_name, routing_key='', body=msg)
localchannel.close()
def subscribe(self, callback, no_acknowledge=True, prefetch_count=1):
self.channel.basic_qos(prefetch_count=prefetch_count)
self.channel.basic_consume(callback, queue=self.queue_name, no_ack=no_acknowledge)
def listen(self):
self.channel.start_consuming()
def sleep(self, duration):
self._connection.sleep(duration)
def getmessage(self, no_acknowledge=True):
queue_empty = self.state.method.message_count == 0
if not queue_empty:
return self.channel.basic_get(self.queue_name, no_ack=no_acknowledge)
return (None, None, None)
def acknowledge(self, delivery_tag):
self.channel.basic_ack(delivery_tag)
def reject(self, delivery_tag):
self.channel.basic_nack(delivery_tag)
def close(self):
if self.channel:
self.channel.close()
self.channel = None
self._connection = None
self.state = None
class BroadcastBase(Queue):
_exchangename = None
_exchangetype = None
def initialize(self, name):
self.setupchannel()
self.setupbroadcast(name)
self.declare(name)
def setupexchange(self, name, exchange_type):
self._exchangename = name
self._exchangetype = exchange_type
self.channel.exchange_declare(exchange=name, exchange_type=exchange_type)
return self
def setupbroadcast(self, name):
return self.setupexchange(name, 'fanout')
class BroadcastSender(BroadcastBase):
def initialize(self, name):
self.setupchannel()
self.setupbroadcast(name)
|
MIT License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.