repository_name
stringlengths
7
107
function_path
stringlengths
4
190
function_identifier
stringlengths
1
236
language
stringclasses
1 value
function
stringlengths
9
647k
docstring
stringlengths
5
488k
function_url
stringlengths
71
285
context
stringlengths
0
2.51M
license
stringclasses
5 values
intel/openfl
openfl/databases/tensor_db.py
TensorDB.cache_tensor
python
def cache_tensor(self, tensor_key_dict): entries_to_add = [] with self.mutex: for tensor_key, nparray in tensor_key_dict.items(): tensor_name, origin, fl_round, report, tags = tensor_key entries_to_add.append( pd.DataFrame([ [tensor_name, origin, fl_round, report, tags, nparray] ], columns=[ 'tensor_name', 'origin', 'round', 'report', 'tags', 'nparray'] ) ) self.tensor_db = pd.concat( [self.tensor_db, *entries_to_add], ignore_index=True )
Insert tensor into TensorDB (dataframe). Args: tensor_key_dict: The Tensor Key Returns: None
https://github.com/intel/openfl/blob/4bda3850b6bce7c904a5ac3ed56115bec00be2e0/openfl/databases/tensor_db.py#L51-L80
from threading import Lock import numpy as np import pandas as pd from openfl.utilities import LocalTensor from openfl.utilities import TensorKey class TensorDB: def __init__(self): self.tensor_db = pd.DataFrame([], columns=[ 'tensor_name', 'origin', 'round', 'report', 'tags', 'nparray' ]) self.mutex = Lock() def __repr__(self): with pd.option_context('display.max_rows', None): content = self.tensor_db[['tensor_name', 'origin', 'round', 'report', 'tags']] return f'TensorDB contents:\n{content}' def __str__(self): return self.__repr__() def clean_up(self, remove_older_than=1): if remove_older_than < 0: return current_round = int(self.tensor_db['round'].max()) self.tensor_db = self.tensor_db[ self.tensor_db['round'] > current_round - remove_older_than ].reset_index(drop=True)
Apache License 2.0
universitas/universitas.no
django/apps/stories/models/links.py
InlineLink.validate_url
python
def validate_url(cls, href): site = settings.SITE_URL href = href.strip('«»“”"\'') if href.startswith('//'): href = 'http:{href}'.format(href=href) if href.startswith('/'): href = 'http://{site}{href}'.format(site=site, href=href) if not href.startswith('http://'): href = 'http://{href}'.format(href=href) try: validate = URLValidator() validate(href) return href except ValidationError: return None
Checks if input string is a valid http href.
https://github.com/universitas/universitas.no/blob/911a2541c77eca522ba5a723f175786f4f9eb481/django/apps/stories/models/links.py#L295-L310
import logging import re from bs4 import BeautifulSoup from django.conf import settings from django.core.exceptions import ObjectDoesNotExist from django.core.validators import URLValidator, ValidationError from django.db import models from django.utils.safestring import mark_safe from django.utils.translation import ugettext_lazy as _ from model_utils.models import TimeStampedModel from requests import request from requests.exceptions import MissingSchema, RequestException, Timeout from .status_codes import HTTP_STATUS_CODES from .story import Story logger = logging.getLogger(__name__) class InlineLinkManager(models.Manager): def markup_to_html(self, text): for link in self.all(): text = link.markup_to_html(text) return text def insert_urls(self, text): for link in self.all(): text = link.insert_url(text) return text class InlineLink(TimeStampedModel): find_pattern = '\[(?P<text>.+?)\]\((?P<ref>\S+?)\)' change_pattern = '[{text}]({ref})' html_pattern = '<a href="{href}" alt="{alt}">{text}</a>' objects = InlineLinkManager() class Meta: verbose_name = _('inline link') verbose_name_plural = _('inline links') parent_story = models.ForeignKey( Story, related_name='inline_links', on_delete=models.CASCADE, ) number = models.PositiveSmallIntegerField( default=1, help_text=_('link label'), ) link_name = models.CharField( blank=True, max_length=256, default='', help_text=_('link label'), ) href = models.CharField( blank=True, max_length=500, help_text=_('link target'), verbose_name=_('link target'), ) linked_story = models.ForeignKey( Story, blank=True, null=True, help_text=_('link to story on this website.'), verbose_name=_('linked story'), related_name='incoming_links', on_delete=models.CASCADE, ) alt_text = models.CharField( max_length=500, blank=True, help_text=_('alternate link text'), verbose_name=_('alt text'), ) text = models.TextField( blank=True, editable=False, help_text=_('link text'), verbose_name=_('link text'), ) status_code = models.CharField( max_length=3, editable=False, default='', choices=HTTP_STATUS_CODES, help_text=_('Status code returned from automatic check.'), verbose_name=_('http status code'), ) def __str__(self): return f'[{self.text}]({self.link})' def get_tag(self, ref=None): pattern = self.change_pattern return pattern.format(text=self.text, ref=ref or self.number) def markup_to_html(self, text): text = re.sub(re.escape(self.get_tag()), self.get_html(), text) return text def insert_url(self, text): text = re.sub( re.escape(self.get_tag()), self.get_tag(ref=self.link), text ) return text def get_html(self): pattern = self.html_pattern html = pattern.format( text=self.text, href=self.link, alt=self.alt_text ) return mark_safe(html) get_html.allow_tags = True @property def name(self): return self.link_name or str(self.number) @property def link(self): if self.linked_story: return self.linked_story.get_absolute_url() elif self.href: return self.href return '' def find_linked_story(self): if not self.href or self.linked_story: return False if not self.linked_story: match = re.search(r'universitas.no/.+?/(?P<id>\d+)/', self.href) try: story = Story.objects.get(pk=int(match.group('id'))) except (AttributeError, ObjectDoesNotExist): return False else: if story == self.parent_story: return False else: self.linked_story = story self.href = '' self.alt_text = self.linked_story.title return self.linked_story def save(self, *args, **kwargs): self.find_linked_story() super().save(*args, **kwargs) def check_link(self, save_if_changed=False, method='head', timeout=1): if self.linked_story: status_code = 'INT' url = self.validate_url(self.link) elif not self.link: status_code = '' url = '' else: url = self.validate_url(self.link) try: status_code = request(method, url, timeout=timeout).status_code if status_code == 410: status_code = request( 'get', url, timeout=timeout ).status_code if status_code > 500: status_code = 500 status_code = str(status_code) except Timeout: status_code = '408' except MissingSchema: status_code = 'URL' except RequestException: status_code = 'DNS' if save_if_changed and status_code != self.status_code: self.status_code = status_code self.save() msg = '{code}: {url}'.format(url=url, code=status_code) logger.debug(msg) return status_code @classmethod def clean_and_create_links(cls, body, parent_story): body = cls.convert_html_links(body) found_links = re.finditer(cls.find_pattern, body) queryset = parent_story.inline_links.all() number = queryset.count() + 1 for match in found_links: ref = match.group('ref') text = match.group('text') original_markup = re.escape(match.group(0)) new_markup = [] if re.match(r'^\d+$', ref): ref = int(ref) links = queryset.filter(number=ref) if not links: link = cls.objects.create( number=ref, parent_story=parent_story, ) else: link = links[0] if link.text != text: link.text = text link.save() for otherlink in links[1:]: otherlink.number = number otherlink.save() number += 1 msg = 'multiple links with same ref: ({0}) {1} {2}' msg = msg.format(ref, link, otherlink) logger.warn(msg) new_markup.append(otherlink.get_tag()) else: link = cls( parent_story=parent_story, href=ref, number=number, alt_text=text, text=text, ) number += 1 link.save() new_markup = [link.get_tag()] + new_markup new_markup = ' '.join(new_markup) body = re.sub(original_markup, new_markup, body) return body @classmethod def convert_html_links(cls, bodytext, return_html=False): soup = BeautifulSoup(bodytext, 'html5lib') for link in soup.find_all('a'): href = link.get('href') or '' text = link.text href = cls.validate_url(href) if href: replacement = cls.change_pattern.format( ref=href.strip(), text=text.strip(), ) else: replacement = '{text}'.format(text=text, ) link.replace_with(replacement) if return_html: bodytext = soup.decode() else: bodytext = soup.text return bodytext @classmethod
Apache License 2.0
opencti-platform/connectors
external-import/alienvault/src/alienvault/utils/__init__.py
create_report
python
def create_report( name: str, published: datetime, objects: List[Union[_DomainObject, _RelationshipObject]], created_by: Optional[Identity] = None, created: Optional[datetime] = None, modified: Optional[datetime] = None, description: Optional[str] = None, report_types: Optional[List[str]] = None, labels: Optional[List[str]] = None, confidence: Optional[int] = None, external_references: Optional[List[ExternalReference]] = None, object_markings: Optional[List[MarkingDefinition]] = None, x_opencti_report_status: Optional[int] = None, ) -> Report: return Report( id=_create_random_identifier("report"), created_by_ref=created_by, created=created, modified=modified, name=name, description=description, report_types=report_types, published=published, object_refs=objects, labels=labels, confidence=confidence, external_references=external_references, object_marking_refs=object_markings, custom_properties={X_OPENCTI_REPORT_STATUS: x_opencti_report_status}, )
Create a report.
https://github.com/opencti-platform/connectors/blob/78d4ec585e8ffcc51e90149e74c7c57c176f5209/external-import/alienvault/src/alienvault/utils/__init__.py#L498-L529
from datetime import datetime from typing import Any, Callable, Dict, List, Mapping, NamedTuple, Optional, Union from pycti import OpenCTIStix2Utils from pycti.utils.constants import LocationTypes from stix2 import ( AttackPattern, ExternalReference, Identity, Indicator, IntrusionSet, Location, Malware, MarkingDefinition, Relationship, Report, Vulnerability, ) from stix2.v21 import _DomainObject, _Observable, _RelationshipObject from alienvault.utils.constants import ( DEFAULT_X_OPENCTI_SCORE, TLP_MARKING_DEFINITION_MAPPING, X_MITRE_ID, X_OPENCTI_LOCATION_TYPE, X_OPENCTI_MAIN_OBSERVABLE_TYPE, X_OPENCTI_REPORT_STATUS, X_OPENCTI_SCORE, ) from alienvault.utils.indicators import ( IndicatorPattern, create_indicator_pattern_cryptocurrency_wallet, create_indicator_pattern_domain_name, create_indicator_pattern_email_address, create_indicator_pattern_file_md5, create_indicator_pattern_file_name, create_indicator_pattern_file_sha1, create_indicator_pattern_file_sha256, create_indicator_pattern_hostname, create_indicator_pattern_ipv4_address, create_indicator_pattern_ipv6_address, create_indicator_pattern_mutex, create_indicator_pattern_url, ) from alienvault.utils.observables import ( ObservableProperties, create_observable_cryptocurrency_wallet, create_observable_domain_name, create_observable_email_address, create_observable_file_md5, create_observable_file_name, create_observable_file_sha1, create_observable_file_sha256, create_observable_hostname, create_observable_ipv4_address, create_observable_ipv6_address, create_observable_mutex, create_observable_url, ) class ObservationFactory(NamedTuple): create_observable: Callable[[ObservableProperties], _Observable] create_indicator_pattern: Callable[[str], IndicatorPattern] OBSERVATION_FACTORY_IPV4_ADDRESS = ObservationFactory( create_observable_ipv4_address, create_indicator_pattern_ipv4_address ) OBSERVATION_FACTORY_IPV6_ADDRESS = ObservationFactory( create_observable_ipv6_address, create_indicator_pattern_ipv6_address ) OBSERVATION_FACTORY_DOMAIN_NAME = ObservationFactory( create_observable_domain_name, create_indicator_pattern_domain_name ) OBSERVATION_FACTORY_HOSTNAME = ObservationFactory( create_observable_hostname, create_indicator_pattern_hostname ) OBSERVATION_FACTORY_EMAIL_ADDRESS = ObservationFactory( create_observable_email_address, create_indicator_pattern_email_address ) OBSERVATION_FACTORY_URL = ObservationFactory( create_observable_url, create_indicator_pattern_url ) OBSERVATION_FACTORY_FILE_MD5 = ObservationFactory( create_observable_file_md5, create_indicator_pattern_file_md5 ) OBSERVATION_FACTORY_FILE_SHA1 = ObservationFactory( create_observable_file_sha1, create_indicator_pattern_file_sha1 ) OBSERVATION_FACTORY_FILE_SHA256 = ObservationFactory( create_observable_file_sha256, create_indicator_pattern_file_sha256 ) OBSERVATION_FACTORY_FILE_NAME = ObservationFactory( create_observable_file_name, create_indicator_pattern_file_name ) OBSERVATION_FACTORY_MUTEX = ObservationFactory( create_observable_mutex, create_indicator_pattern_mutex ) OBSERVATION_FACTORY_CRYPTOCURRENCY_WALLET = ObservationFactory( create_observable_cryptocurrency_wallet, create_indicator_pattern_cryptocurrency_wallet, ) def get_tlp_string_marking_definition(tlp: str) -> MarkingDefinition: marking_definition = TLP_MARKING_DEFINITION_MAPPING.get(tlp.lower()) if marking_definition is None: raise ValueError(f"Invalid TLP value '{tlp}'") return marking_definition def iso_datetime_str_to_datetime(string): try: return datetime.strptime(string, "%Y-%m-%dT%H:%M:%S.%f") except ValueError: return datetime.strptime(string, "%Y-%m-%dT%H:%M:%S") def convert_comma_separated_str_to_list(input_str: str, trim: bool = True) -> List[str]: comma_separated_str = input_str.strip() if trim else input_str if not comma_separated_str: return [] result = [] for part_str in comma_separated_str.split(","): value = part_str if trim: value = value.strip() if not value: continue result.append(value) return result def _create_random_identifier(identifier_type: str) -> str: return OpenCTIStix2Utils.generate_random_stix_id(identifier_type) def create_organization(name: str, created_by: Optional[Identity] = None) -> Identity: return create_identity( name, created_by=created_by, identity_class="organization", ) def create_identity( name: str, identity_id: Optional[str] = None, created_by: Optional[Identity] = None, identity_class: Optional[str] = None, custom_properties: Optional[Mapping[str, str]] = None, ) -> Identity: if identity_id is None: identity_id = _create_random_identifier("identity") if custom_properties is None: custom_properties = {} return Identity( id=identity_id, created_by_ref=created_by, name=name, identity_class=identity_class, custom_properties=custom_properties, ) def create_external_reference( source_name: str, url: str, external_id: Optional[str] = None ) -> ExternalReference: return ExternalReference(source_name=source_name, url=url, external_id=external_id) def create_indicator( pattern: str, pattern_type: str, created_by: Optional[Identity] = None, name: Optional[str] = None, description: Optional[str] = None, valid_from: Optional[datetime] = None, labels: Optional[List[str]] = None, confidence: Optional[int] = None, object_markings: Optional[List[MarkingDefinition]] = None, x_opencti_main_observable_type: Optional[str] = None, ) -> Indicator: custom_properties: Dict[str, Any] = {X_OPENCTI_SCORE: DEFAULT_X_OPENCTI_SCORE} if x_opencti_main_observable_type is not None: custom_properties[ X_OPENCTI_MAIN_OBSERVABLE_TYPE ] = x_opencti_main_observable_type return Indicator( id=_create_random_identifier("indicator"), created_by_ref=created_by, name=name, description=description, pattern=pattern, pattern_type=pattern_type, valid_from=valid_from, labels=labels, confidence=confidence, object_marking_refs=object_markings, custom_properties=custom_properties, ) def create_intrusion_set( name: str, created_by: Identity, confidence: int, object_markings: List[MarkingDefinition], ) -> IntrusionSet: return IntrusionSet( id=_create_random_identifier("intrusion-set"), created_by_ref=created_by, name=name, confidence=confidence, object_marking_refs=object_markings, ) def create_malware( name: str, created_by: Identity, confidence: int, object_markings: List[MarkingDefinition], malware_id: Optional[str] = None, is_family: bool = False, ) -> Malware: if malware_id is None: malware_id = _create_random_identifier("malware") return Malware( id=malware_id, created_by_ref=created_by, name=name, is_family=is_family, confidence=confidence, object_marking_refs=object_markings, ) def create_sector(name: str, created_by: Identity) -> Identity: return create_identity( name, created_by=created_by, identity_class="class", ) def create_country(name: str, created_by: Identity) -> Location: return Location( id=_create_random_identifier("location"), created_by_ref=created_by, name=name, country="ZZ", custom_properties={X_OPENCTI_LOCATION_TYPE: LocationTypes.COUNTRY.value}, ) def create_vulnerability( name: str, created_by: Identity, confidence: int, external_references: List[ExternalReference], object_markings: List[MarkingDefinition], ) -> Vulnerability: return Vulnerability( id=_create_random_identifier("vulnerability"), created_by_ref=created_by, name=name, confidence=confidence, external_references=external_references, object_marking_refs=object_markings, ) def create_vulnerability_external_reference(name: str) -> List[ExternalReference]: external_references = [] if name.startswith("CVE-"): external_reference = create_external_reference( "NIST NVD", f"https://nvd.nist.gov/vuln/detail/{name}", name ) external_references.append(external_reference) return external_references def create_attack_pattern( name: str, created_by: Identity, confidence: int, external_references: List[ExternalReference], object_markings: List[MarkingDefinition], ) -> AttackPattern: return AttackPattern( id=_create_random_identifier("attack-pattern"), created_by_ref=created_by, name=name, confidence=confidence, external_references=external_references, object_marking_refs=object_markings, custom_properties={X_MITRE_ID: name}, ) def create_attack_pattern_external_reference(name: str) -> List[ExternalReference]: external_references = [] if name.startswith("T"): path = name.replace(".", "/") external_reference = create_external_reference( "mitre-attack", f"https://attack.mitre.org/techniques/{path}", name ) external_references.append(external_reference) return external_references def create_relationship( relationship_type: str, created_by: Identity, source: _DomainObject, target: _DomainObject, confidence: int, object_markings: List[MarkingDefinition], start_time: Optional[datetime] = None, stop_time: Optional[datetime] = None, ) -> Relationship: return Relationship( created_by_ref=created_by, relationship_type=relationship_type, source_ref=source, target_ref=target, start_time=start_time, stop_time=stop_time, confidence=confidence, object_marking_refs=object_markings, ) def create_relationships( relationship_type: str, created_by: Identity, sources: List[_DomainObject], targets: List[_DomainObject], confidence: int, object_markings: List[MarkingDefinition], start_time: Optional[datetime] = None, stop_time: Optional[datetime] = None, ) -> List[Relationship]: relationships = [] for source in sources: for target in targets: relationship = create_relationship( relationship_type, created_by, source, target, confidence, object_markings, start_time=start_time, stop_time=stop_time, ) relationships.append(relationship) return relationships def create_uses_relationships( created_by: Identity, sources: List[_DomainObject], targets: List[_DomainObject], confidence: int, object_markings: List[MarkingDefinition], start_time: Optional[datetime] = None, stop_time: Optional[datetime] = None, ) -> List[Relationship]: return create_relationships( "uses", created_by, sources, targets, confidence, object_markings, start_time=start_time, stop_time=stop_time, ) def create_targets_relationships( created_by: Identity, sources: List[_DomainObject], targets: List[_DomainObject], confidence: int, object_markings: List[MarkingDefinition], start_time: Optional[datetime] = None, stop_time: Optional[datetime] = None, ) -> List[Relationship]: return create_relationships( "targets", created_by, sources, targets, confidence, object_markings, start_time=start_time, stop_time=stop_time, ) def create_indicates_relationships( created_by: Identity, sources: List[_DomainObject], targets: List[_DomainObject], confidence: int, object_markings: List[MarkingDefinition], start_time: Optional[datetime] = None, stop_time: Optional[datetime] = None, ) -> List[Relationship]: return create_relationships( "indicates", created_by, sources, targets, confidence, object_markings, start_time=start_time, stop_time=stop_time, ) def create_based_on_relationships( created_by: Identity, sources: List[_DomainObject], targets: List[_DomainObject], confidence: int, object_markings: List[MarkingDefinition], start_time: Optional[datetime] = None, stop_time: Optional[datetime] = None, ) -> List[Relationship]: return create_relationships( "based-on", created_by, sources, targets, confidence, object_markings, start_time=start_time, stop_time=stop_time, ) def create_object_refs( *objects: Union[ _DomainObject, _RelationshipObject, List[_RelationshipObject], List[_DomainObject], ] ) -> List[Union[_DomainObject, _RelationshipObject]]: object_refs = [] for obj in objects: if not isinstance(obj, list): object_refs.append(obj) else: object_refs.extend(obj) return object_refs
Apache License 2.0
davidtellez/contrastive-predictive-coding-images
train_classifier.py
train_classifier
python
def train_classifier(input_dir, encoder_path, epochs, batch_size, output_dir, code_size, lr=1e-3, train_step_multiplier=1.0, val_step_multiplier=1.0): if not exists(output_dir): os.makedirs(output_dir) training_data = NCEGenerator( x_path=join(input_dir, 'training_x.npy'), y_path=join(input_dir, 'training_y.npy'), batch_size=batch_size, n_classes=10, n_negatives=0, augment_image_fn=augment_images_mnist, augment_crop_fn=None ) validation_data = NCEGenerator( x_path=join(input_dir, 'validation_x.npy'), y_path=join(input_dir, 'validation_y.npy'), batch_size=batch_size, n_classes=10, n_negatives=0, augment_image_fn=None, augment_crop_fn=None ) model = network_classifier( encoder_path=encoder_path, crop_shape=(16, 16, 3), n_crops=7, code_size=code_size, lr=lr, n_classes=10 ) callbacks = [ keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=1/3, patience=2, min_lr=1e-5), keras.callbacks.CSVLogger(filename=join(output_dir, 'history.csv'), separator=',', append=True), keras.callbacks.ModelCheckpoint(filepath=join(output_dir, 'checkpoint.h5'), monitor='val_loss', save_best_only=True, mode='min'), keras.callbacks.EarlyStopping(monitor='val_loss', patience=4, mode='min') ] model.fit_generator( generator=training_data, steps_per_epoch=int(len(training_data) * train_step_multiplier), validation_data=validation_data, validation_steps=int(len(validation_data) * val_step_multiplier), epochs=epochs, verbose=1, callbacks=callbacks )
This function initializes and trains a digit classifier using a pretrained CPC model as feature extractor. :param input_dir: path to directory containing numpy training data (see NCEGenerator). :param encoder_path: path to pretrained Keras CPC encoder. :param epochs: number of times that the entire dataset will be used during training. :param batch_size: number of samples in the mini-batch. :param output_dir: directory to store the trained model. :param code_size: length of the embedding vector used in CPC. :param lr: learning rate. :param train_step_multiplier: percentage of training samples used in each epoch. :param val_step_multiplier: percentage of validation samples used in each epoch. :return: nothing.
https://github.com/davidtellez/contrastive-predictive-coding-images/blob/64ace87de6a3d78bb0379cbdc66e374b4ebe679f/train_classifier.py#L14-L83
from os.path import join, basename, dirname, exists import keras import os from classifier_model import network_classifier from data_generator import NCEGenerator from prepare_data import augment_images_mnist
MIT License
crash-override404/linepy-modified
akad/ShopService.py
Iface.getRecommendationForUser
python
def getRecommendationForUser(self, shopId, offset, limit, locale): pass
Parameters: - shopId - offset - limit - locale
https://github.com/crash-override404/linepy-modified/blob/5bc06174457dfeba9bb2a23187be9b0f2e09dee6/akad/ShopService.py#L395-L404
from thrift.Thrift import TType, TMessageType, TFrozenDict, TException, TApplicationException from thrift.protocol.TProtocol import TProtocolException from thrift.TRecursive import fix_spec import sys import logging from .ttypes import * from thrift.Thrift import TProcessor from thrift.transport import TTransport all_structs = [] class Iface(object): def buyCoinProduct(self, paymentReservation): pass def buyFreeProduct(self, receiverMid, productId, messageTemplate, language, country, packageId): pass def buyMustbuyProduct(self, receiverMid, productId, messageTemplate, language, country, packageId, serialNumber): pass def checkCanReceivePresent(self, recipientMid, packageId, language, country): pass def getActivePurchases(self, start, size, language, country): pass def getActivePurchaseVersions(self, start, size, language, country): pass def getCoinProducts(self, appStoreCode, country, language): pass def getCoinProductsByPgCode(self, appStoreCode, pgCode, country, language): pass def getCoinPurchaseHistory(self, request): pass def getCoinUseAndRefundHistory(self, request): pass def getDownloads(self, start, size, language, country): pass def getEventPackages(self, start, size, language, country): pass def getNewlyReleasedPackages(self, start, size, language, country): pass def getPopularPackages(self, start, size, language, country): pass def getPresentsReceived(self, start, size, language, country): pass def getPresentsSent(self, start, size, language, country): pass def getProductList(self, productIdList, language, country): pass def getProductListWithCarrier(self, productIdList, language, country, carrierCode): pass def getProductWithCarrier(self, packageID, language, country, carrierCode): pass def getPurchaseHistory(self, start, size, language, country): pass def getTotalBalance(self, appStoreCode): pass def notifyDownloaded(self, packageId, language): pass def reserveCoinPurchase(self, request): pass def reservePayment(self, paymentReservation): pass def canReceivePresent(self, shopId, productId, locale, recipientMid): pass def getAutoSuggestionShowcase(self, autoSuggestionShowcaseRequest): pass def getOldSticonMapping(self, req): pass def getOwnedProductSummaries(self, shopId, offset, limit, locale): pass def getOwnedProducts(self, shopId, offset, limit, locale): pass def getProductByVersion(self, shopId, productId, productVersion, locale): pass def getProductV2(self, request): pass def getProductValidationScheme(self, shopId, productId, productVersion): pass def getProduct(self, shopId, productId, locale): pass def getProductsByAuthor(self, productListByAuthorRequest): pass def getPurchasedProducts(self, shopId, offset, limit, locale): pass def getReceivedPresents(self, shopId, offset, limit, locale): pass def getRecommendOa(self, req): pass
BSD 3-Clause New or Revised License
rucio/rucio
lib/rucio/db/sqla/migrate_repo/versions/1fc15ab60d43_add_message_history_table.py
downgrade
python
def downgrade(): if context.get_context().dialect.name in ['oracle', 'mysql', 'postgresql']: drop_table('messages_history')
Downgrade the database to the previous revision
https://github.com/rucio/rucio/blob/6a6092798bb8220dec07328d0e3f7f42d1b931cd/lib/rucio/db/sqla/migrate_repo/versions/1fc15ab60d43_add_message_history_table.py#L49-L55
import datetime import sqlalchemy as sa from alembic import context from alembic.op import create_table, drop_table from rucio.db.sqla.types import GUID revision = '1fc15ab60d43' down_revision = '4783c1f49cb4' def upgrade(): if context.get_context().dialect.name in ['oracle', 'mysql', 'postgresql']: create_table('messages_history', sa.Column('id', GUID()), sa.Column('created_at', sa.DateTime, default=datetime.datetime.utcnow), sa.Column('updated_at', sa.DateTime, default=datetime.datetime.utcnow, onupdate=datetime.datetime.utcnow), sa.Column('event_type', sa.String(1024)), sa.Column('payload', sa.String(4000)))
Apache License 2.0
livid/v2ex-gae
twitter/bitly.py
Api.expand
python
def expand(self,shortURL): request = self._getURL("expand",shortURL) result = self._fetchUrl(request) json = simplejson.loads(result) self._CheckForError(json) return json['results'][string.split(shortURL, '/')[-1]]['longUrl']
Given a bit.ly url or hash, return long source url
https://github.com/livid/v2ex-gae/blob/32be3a77d535e7c9df85a333e01ab8834d0e8581/twitter/bitly.py#L78-L84
from django.utils import simplejson import urllib,urllib2 import urlparse import string BITLY_BASE_URL = "http://api.bit.ly/" BITLY_API_VERSION = "2.0.1" VERBS_PARAM = { 'shorten':'longUrl', 'expand':'shortUrl', 'info':'shortUrl', 'stats':'shortUrl', 'errors':'', } class BitlyError(Exception): @property def message(self): return self.args[0] class Api(object): def __init__(self, login, apikey): self.login = login self.apikey = apikey self._urllib = urllib2 def shorten(self,longURL): if not isinstance(longURL, list): longURL = [longURL] for index,url in enumerate(longURL): if not '://' in url: longURL[index] = "http://" + url request = self._getURL("shorten",longURL) result = self._fetchUrl(request) json = simplejson.loads(result) self._CheckForError(json) res = [] for item in json['results'].values(): if item['shortKeywordUrl'] == "": res.append(item['shortUrl']) else: res.append(item['shortKeywordUrl']) if len(res) == 1: return res[0] else: return res
BSD 3-Clause New or Revised License
delimitry/snmp-server
snmp-server.py
_read_byte
python
def _read_byte(stream): read_byte = stream.read(1) if not read_byte: raise Exception('No more bytes!') return ord(read_byte)
Read byte from stream
https://github.com/delimitry/snmp-server/blob/cd4c032af42d3e2eaaa703e84e668e646c3708fb/snmp-server.py#L205-L210
from __future__ import print_function import argparse import fnmatch import functools import logging import socket import string import struct import sys import types from collections import Iterable from contextlib import closing try: from StringIO import StringIO except ImportError: from io import StringIO __version__ = '1.0.5' PY3 = sys.version_info[0] == 3 logging.basicConfig(format='[%(levelname)s] %(message)s') logger = logging.getLogger() logger.setLevel(logging.WARNING) ASN1_BOOLEAN = 0x01 ASN1_INTEGER = 0x02 ASN1_BIT_STRING = 0x03 ASN1_OCTET_STRING = 0x04 ASN1_NULL = 0x05 ASN1_OBJECT_IDENTIFIER = 0x06 ASN1_UTF8_STRING = 0x0c ASN1_PRINTABLE_STRING = 0x13 ASN1_IA5_STRING = 0x16 ASN1_BMP_STRING = 0x1e ASN1_SEQUENCE = 0x30 ASN1_SET = 0x31 ASN1_IPADDRESS = 0x40 ASN1_COUNTER32 = 0x41 ASN1_GAUGE32 = 0x42 ASN1_TIMETICKS = 0x43 ASN1_OPAQUE = 0x44 ASN1_COUNTER64 = 0x46 ASN1_NO_SUCH_OBJECT = 0x80 ASN1_NO_SUCH_INSTANCE = 0x81 ASN1_END_OF_MIB_VIEW = 0x82 ASN1_GET_REQUEST_PDU = 0xA0 ASN1_GET_NEXT_REQUEST_PDU = 0xA1 ASN1_GET_RESPONSE_PDU = 0xA2 ASN1_SET_REQUEST_PDU = 0xA3 ASN1_TRAP_REQUEST_PDU = 0xA4 ASN1_GET_BULK_REQUEST_PDU = 0xA5 ASN1_INFORM_REQUEST_PDU = 0xA6 ASN1_SNMPv2_TRAP_REQUEST_PDU = 0xA7 ASN1_REPORT_REQUEST_PDU = 0xA8 ASN1_ERROR_STATUS_NO_ERROR = 0x00 ASN1_ERROR_STATUS_TOO_BIG = 0x01 ASN1_ERROR_STATUS_NO_SUCH_NAME = 0x02 ASN1_ERROR_STATUS_BAD_VALUE = 0x03 ASN1_ERROR_STATUS_READ_ONLY = 0x04 ASN1_ERROR_STATUS_GEN_ERR = 0x05 ASN1_ERROR_STATUS_WRONG_VALUE = 0x0A ASN1_CONTEXT = 0x80 ASN1_EXTENSION_ID = 0x1F ASN1_OPAQUE_TAG1 = ASN1_CONTEXT | ASN1_EXTENSION_ID ASN1_OPAQUE_TAG2 = 0x30 ASN1_APPLICATION = 0x40 ASN1_APP_FLOAT = ASN1_APPLICATION | 0x08 ASN1_APP_DOUBLE = ASN1_APPLICATION | 0x09 ASN1_APP_INT64 = ASN1_APPLICATION | 0x0A ASN1_APP_UINT64 = ASN1_APPLICATION | 0x0B ASN1_OPAQUE_FLOAT = ASN1_OPAQUE_TAG2 | ASN1_APP_FLOAT ASN1_OPAQUE_DOUBLE = ASN1_OPAQUE_TAG2 | ASN1_APP_DOUBLE ASN1_OPAQUE_INT64 = ASN1_OPAQUE_TAG2 | ASN1_APP_INT64 ASN1_OPAQUE_UINT64 = ASN1_OPAQUE_TAG2 | ASN1_APP_UINT64 ASN1_OPAQUE_FLOAT_BER_LEN = 7 ASN1_OPAQUE_DOUBLE_BER_LEN = 11 ASN1_OPAQUE_INT64_BER_LEN = 4 ASN1_OPAQUE_UINT64_BER_LEN = 4 SNMP_VERSIONS = { 1: 'v1', 2: 'v2c', 3: 'v3', } SNMP_PDUS = ( 'version', 'community', 'PDU-type', 'request-id', 'error-status', 'error-index', 'variable bindings', ) class ProtocolError(Exception): class ConfigError(Exception): class BadValueError(Exception): class WrongValueError(Exception): def encode_to_7bit(value): if value > 0x7f: res = [] res.insert(0, value & 0x7f) while value > 0x7f: value >>= 7 res.insert(0, (value & 0x7f) | 0x80) return res return [value] def oid_to_bytes_list(oid): if oid.startswith('iso'): oid = oid.replace('iso', '1') try: oid_values = [int(x) for x in oid.split('.') if x] first_val = 40 * oid_values[0] + oid_values[1] except (ValueError, IndexError): raise Exception('Could not parse OID value "{}"'.format(oid)) result_values = [first_val] for node_num in oid_values[2:]: result_values += encode_to_7bit(node_num) return result_values def oid_to_bytes(oid): return ''.join([chr(x) for x in oid_to_bytes_list(oid)]) def bytes_to_oid(data): values = [ord(x) for x in data] first_val = values.pop(0) res = [] res += divmod(first_val, 40) while values: val = values.pop(0) if val > 0x7f: huge_vals = [val] while True: next_val = values.pop(0) huge_vals.append(next_val) if next_val < 0x80: break huge = 0 for i, huge_byte in enumerate(huge_vals): huge += (huge_byte & 0x7f) << (7 * (len(huge_vals) - i - 1)) res.append(huge) else: res.append(val) return '.'.join(str(x) for x in res) def timeticks_to_str(ticks): days, rem1 = divmod(ticks, 24 * 60 * 60 * 100) hours, rem2 = divmod(rem1, 60 * 60 * 100) minutes, rem3 = divmod(rem2, 60 * 100) seconds, milliseconds = divmod(rem3, 100) ending = 's' if days > 1 else '' days_fmt = '{} day{}, '.format(days, ending) if days > 0 else '' return '{}{:-02}:{:-02}:{:-02}.{:-02}'.format(days_fmt, hours, minutes, seconds, milliseconds) def int_to_ip(value): return socket.inet_ntoa(struct.pack("!I", value)) def twos_complement(value, bits): mask = 2 ** (bits - 1) return -(value & mask) + (value & ~mask)
MIT License
seomoz/shovel
test/examples/nested/foo/baz/howdy/__init__.py
what
python
def what(): pass
A dummy function
https://github.com/seomoz/shovel/blob/fc29232b2b8be33972f8fb498a91a67e334f057f/test/examples/nested/foo/baz/howdy/__init__.py#L7-L9
from shovel import task @task
MIT License
identitypython/pysaml2
src/saml2/entity.py
Entity._encrypt_assertion
python
def _encrypt_assertion(self, encrypt_cert, sp_entity_id, response, node_xpath=None): _certs = [] if encrypt_cert: _certs.append(encrypt_cert) elif sp_entity_id is not None: _certs = self.metadata.certs(sp_entity_id, "any", "encryption") exception = None for _cert in _certs: wrapped_cert, unwrapped_cert = get_pem_wrapped_unwrapped(_cert) try: tmp = make_temp( wrapped_cert.encode('ascii'), decode=False, delete_tmpfiles=self.config.delete_tmpfiles, ) response = self.sec.encrypt_assertion( response, tmp.name, pre_encryption_part(encrypt_cert=unwrapped_cert), node_xpath=node_xpath, ) return response except Exception as ex: exception = ex pass if exception: raise exception return response
Encryption of assertions. :param encrypt_cert: Certificate to be used for encryption. :param sp_entity_id: Entity ID for the calling service provider. :param response: A samlp.Response :param node_xpath: Unquie path to the element to be encrypted. :return: A new samlp.Resonse with the designated assertion encrypted.
https://github.com/identitypython/pysaml2/blob/f12ade09aa89211c42b7dc6ed94728f8aa69cffb/src/saml2/entity.py#L674-L710
import base64 import copy import logging import requests import six from binascii import hexlify from hashlib import sha1 from saml2.metadata import ENDPOINTS from saml2.profile import paos, ecp, samlec from saml2.soap import parse_soap_enveloped_saml_artifact_resolve from saml2.soap import class_instances_from_soap_enveloped_saml_thingies from saml2.soap import open_soap_envelope from saml2 import samlp from saml2 import SamlBase from saml2 import SAMLError from saml2 import saml from saml2 import response as saml_response from saml2 import BINDING_URI from saml2 import BINDING_HTTP_ARTIFACT from saml2 import BINDING_PAOS from saml2 import request as saml_request from saml2 import soap from saml2 import element_to_extension_element from saml2 import extension_elements_to_elements from saml2.saml import NameID from saml2.saml import EncryptedAssertion from saml2.saml import Issuer from saml2.saml import NAMEID_FORMAT_ENTITY from saml2.response import AuthnResponse from saml2.response import LogoutResponse from saml2.response import UnsolicitedResponse from saml2.time_util import instant from saml2.s_utils import sid from saml2.s_utils import UnravelError from saml2.s_utils import error_status_factory from saml2.s_utils import rndbytes from saml2.s_utils import success_status_factory from saml2.s_utils import decode_base64_and_inflate from saml2.s_utils import UnsupportedBinding from saml2.samlp import AuthnRequest, SessionIndex, response_from_string from saml2.samlp import AuthzDecisionQuery from saml2.samlp import AuthnQuery from saml2.samlp import AssertionIDRequest from saml2.samlp import ManageNameIDRequest from saml2.samlp import NameIDMappingRequest from saml2.samlp import artifact_resolve_from_string from saml2.samlp import ArtifactResolve from saml2.samlp import ArtifactResponse from saml2.samlp import Artifact from saml2.samlp import LogoutRequest from saml2.samlp import AttributeQuery from saml2.mdstore import all_locations from saml2 import BINDING_HTTP_POST from saml2 import BINDING_HTTP_REDIRECT from saml2 import BINDING_SOAP from saml2 import VERSION from saml2 import class_name from saml2.config import config_factory from saml2.httpbase import HTTPBase from saml2.sigver import security_context from saml2.sigver import SigverError from saml2.sigver import SignatureError from saml2.sigver import make_temp from saml2.sigver import get_pem_wrapped_unwrapped from saml2.sigver import pre_encryption_part from saml2.sigver import pre_signature_part from saml2.sigver import pre_encrypt_assertion from saml2.sigver import signed_instance_factory from saml2.virtual_org import VirtualOrg from saml2.pack import http_redirect_message from saml2.pack import http_form_post_message from saml2.xmldsig import DefaultSignature from saml2.xmldsig import SIG_ALLOWED_ALG from saml2.xmldsig import DIGEST_ALLOWED_ALG logger = logging.getLogger(__name__) __author__ = 'rolandh' ARTIFACT_TYPECODE = b'\x00\x04' SERVICE2MESSAGE = { "single_sign_on_service": AuthnRequest, "attribute_service": AttributeQuery, "authz_service": AuthzDecisionQuery, "assertion_id_request_service": AssertionIDRequest, "authn_query_service": AuthnQuery, "manage_name_id_service": ManageNameIDRequest, "name_id_mapping_service": NameIDMappingRequest, "artifact_resolve_service": ArtifactResolve, "single_logout_service": LogoutRequest } class UnknownBinding(SAMLError): pass def create_artifact(entity_id, message_handle, endpoint_index=0): if not isinstance(entity_id, six.binary_type): entity_id = entity_id.encode('utf-8') sourceid = sha1(entity_id) if not isinstance(message_handle, six.binary_type): message_handle = message_handle.encode('utf-8') ter = b"".join((ARTIFACT_TYPECODE, ("%.2x" % endpoint_index).encode('ascii'), sourceid.digest(), message_handle)) return base64.b64encode(ter).decode('ascii') class Entity(HTTPBase): def __init__(self, entity_type, config=None, config_file="", virtual_organization="", msg_cb=None): self.entity_type = entity_type self.users = None if config: self.config = config elif config_file: self.config = config_factory(entity_type, config_file) else: raise SAMLError("Missing configuration") def_sig = DefaultSignature() self.signing_algorithm = ( self.config.getattr('signing_algorithm') or def_sig.get_sign_alg() ) self.digest_algorithm = ( self.config.getattr('digest_algorithm') or def_sig.get_digest_alg() ) sign_config_per_entity_type = { 'sp': self.config.getattr("authn_requests_signed", "sp"), 'idp': self.config.getattr("sign_response", "idp"), } sign_config = sign_config_per_entity_type.get(self.entity_type, False) self.should_sign = sign_config for item in ["cert_file", "key_file", "ca_certs"]: _val = getattr(self.config, item, None) if not _val: continue if _val.startswith("http"): r = requests.request("GET", _val) if r.status_code == 200: tmp = make_temp(r.text, ".pem", False, self.config.delete_tmpfiles) setattr(self.config, item, tmp.name) else: raise Exception( "Could not fetch certificate from %s" % _val) HTTPBase.__init__(self, self.config.verify_ssl_cert, self.config.ca_certs, self.config.key_file, self.config.cert_file) if self.config.vorg: for vo in self.config.vorg.values(): vo.sp = self self.metadata = self.config.metadata self.debug = self.config.debug self.sec = security_context(self.config) if virtual_organization: if isinstance(virtual_organization, six.string_types): self.vorg = self.config.vorg[virtual_organization] elif isinstance(virtual_organization, VirtualOrg): self.vorg = virtual_organization else: self.vorg = None self.artifact = {} if self.metadata: self.sourceid = self.metadata.construct_source_id() else: self.sourceid = {} self.msg_cb = msg_cb def reload_metadata(self, metadata_conf): logger.debug("Loading new metadata") try: new_metadata = self.config.load_metadata(metadata_conf) except Exception as ex: logger.error("Loading metadata failed", exc_info=ex) return False logger.debug("Applying new metadata to main config") ( self.metadata, self.sec.metadata, self.config.metadata ) = [new_metadata]*3 policy = getattr(self.config, "_%s_policy" % self.entity_type, None) if policy and policy.metadata_store: logger.debug("Applying new metadata to %s policy", self.entity_type) policy.metadata_store = self.metadata logger.debug("Applying new metadata source_id") self.sourceid = self.metadata.construct_source_id() return True def _issuer(self, entityid=None): if entityid: if isinstance(entityid, Issuer): return entityid else: return Issuer(text=entityid, format=NAMEID_FORMAT_ENTITY) else: return Issuer(text=self.config.entityid, format=NAMEID_FORMAT_ENTITY) def apply_binding( self, binding, msg_str, destination="", relay_state="", response=False, sign=None, sigalg=None, **kwargs, ): sign = sign if sign is not None else self.should_sign sign_alg = sigalg or self.signing_algorithm if sign_alg not in [long_name for short_name, long_name in SIG_ALLOWED_ALG]: raise Exception( "Signature algo not in allowed list: {algo}".format(algo=sign_alg) ) if response: typ = "SAMLResponse" else: typ = "SAMLRequest" if binding == BINDING_HTTP_POST: logger.info("HTTP POST") info = http_form_post_message(msg_str, destination, relay_state, typ) (msg_str, destination, relay_state, typ) info["url"] = destination info["method"] = "POST" elif binding == BINDING_HTTP_REDIRECT: logger.info("HTTP REDIRECT") info = http_redirect_message( message=msg_str, location=destination, relay_state=relay_state, typ=typ, sign=sign, sigalg=sign_alg, backend=self.sec.sec_backend, ) info["url"] = str(destination) info["method"] = "GET" elif binding == BINDING_SOAP or binding == BINDING_PAOS: info = self.use_soap( msg_str, destination, sign=sign, sigalg=sign_alg, **kwargs ) elif binding == BINDING_URI: info = self.use_http_uri(msg_str, typ, destination) elif binding == BINDING_HTTP_ARTIFACT: if response: info = self.use_http_artifact(msg_str, destination, relay_state) info["method"] = "GET" info["status"] = 302 else: info = self.use_http_artifact(msg_str, destination, relay_state) else: raise SAMLError("Unknown binding type: %s" % binding) return info def pick_binding( self, service, bindings=None, descr_type="", request=None, entity_id="" ): if request and not entity_id: entity_id = request.issuer.text.strip() sfunc = getattr(self.metadata, service) if not bindings: if request and request.protocol_binding: bindings = [request.protocol_binding] else: bindings = self.config.preferred_binding[service] if not descr_type: if self.entity_type == "sp": descr_type = "idpsso" else: descr_type = "spsso" _url = getattr(request, "%s_url" % service, None) _index = getattr(request, "%s_index" % service, None) for binding in bindings: try: srvs = sfunc(entity_id, binding, descr_type) if srvs: if _url: for srv in srvs: if srv["location"] == _url: return binding, _url elif _index: for srv in srvs: if srv["index"] == _index: return binding, srv["location"] else: destination = next(all_locations(srvs), None) return binding, destination except UnsupportedBinding: pass logger.error("Failed to find consumer URL: %s, %s, %s", entity_id, bindings, descr_type) raise SAMLError("Unknown entity or unsupported bindings") def message_args(self, message_id=0): if not message_id: message_id = sid() margs = { "id": message_id, "version": VERSION, "issue_instant": instant(), "issuer": self._issuer(), } return margs def response_args(self, message, bindings=None, descr_type=""): info = {"in_response_to": message.id} if isinstance(message, AuthnRequest): rsrv = "assertion_consumer_service" descr_type = "spsso" info["sp_entity_id"] = message.issuer.text info["name_id_policy"] = message.name_id_policy elif isinstance(message, LogoutRequest): rsrv = "single_logout_service" elif isinstance(message, AttributeQuery): info["sp_entity_id"] = message.issuer.text rsrv = "attribute_consuming_service" descr_type = "spsso" elif isinstance(message, ManageNameIDRequest): rsrv = "manage_name_id_service" elif isinstance(message, AssertionIDRequest): rsrv = "" elif isinstance(message, ArtifactResolve): rsrv = "" elif isinstance(message, AssertionIDRequest): rsrv = "" elif isinstance(message, NameIDMappingRequest): rsrv = "" else: raise SAMLError("No support for this type of query") if bindings == [BINDING_SOAP]: info["binding"] = BINDING_SOAP info["destination"] = "" return info if rsrv: if not descr_type: if self.entity_type == "sp": descr_type = "idpsso" else: descr_type = "spsso" binding, destination = self.pick_binding( rsrv, bindings, descr_type=descr_type, request=message ) info["binding"] = binding info["destination"] = destination return info @staticmethod def unravel(txt, binding, msgtype="response"): if binding not in [BINDING_HTTP_REDIRECT, BINDING_HTTP_POST, BINDING_SOAP, BINDING_URI, BINDING_HTTP_ARTIFACT, None]: raise UnknownBinding("Don't know how to handle '%s'" % binding) else: try: if binding == BINDING_HTTP_REDIRECT: xmlstr = decode_base64_and_inflate(txt) elif binding == BINDING_HTTP_POST: xmlstr = base64.b64decode(txt) elif binding == BINDING_SOAP: func = getattr(soap, "parse_soap_enveloped_saml_%s" % msgtype) xmlstr = func(txt) elif binding == BINDING_HTTP_ARTIFACT: xmlstr = base64.b64decode(txt) else: xmlstr = txt except Exception: raise UnravelError("Unravelling binding '%s' failed" % binding) return xmlstr @staticmethod def parse_soap_message(text): return class_instances_from_soap_enveloped_saml_thingies(text, [paos, ecp, samlp, samlec]) @staticmethod def unpack_soap_message(text): return open_soap_envelope(text) def sign( self, msg, mid=None, to_sign=None, sign_prepare=None, sign_alg=None, digest_alg=None, ): sign_alg = sign_alg or self.signing_algorithm digest_alg = digest_alg or self.digest_algorithm if sign_alg not in [long_name for short_name, long_name in SIG_ALLOWED_ALG]: raise Exception( "Signature algo not in allowed list: {algo}".format(algo=sign_alg) ) if digest_alg not in [long_name for short_name, long_name in DIGEST_ALLOWED_ALG]: raise Exception( "Digest algo not in allowed list: {algo}".format(algo=digest_alg) ) if msg.signature is None: msg.signature = pre_signature_part( msg.id, self.sec.my_cert, 1, sign_alg=sign_alg, digest_alg=digest_alg ) if sign_prepare: return msg if mid is None: mid = msg.id try: to_sign += [(class_name(msg), mid)] except (AttributeError, TypeError): to_sign = [(class_name(msg), mid)] logger.info("REQUEST: %s", msg) return signed_instance_factory(msg, self.sec, to_sign) def _message( self, request_cls, destination=None, message_id=0, consent=None, extensions=None, sign=None, sign_prepare=None, nsprefix=None, sign_alg=None, digest_alg=None, **kwargs, ): if not message_id: message_id = sid() for key, val in self.message_args(message_id).items(): if key not in kwargs: kwargs[key] = val req = request_cls(**kwargs) if destination: req.destination = destination if consent: req.consent = "true" if extensions: req.extensions = extensions if nsprefix: req.register_prefix(nsprefix) if self.msg_cb: req = self.msg_cb(req) reqid = req.id sign = sign if sign is not None else self.should_sign if sign: signed_req = self.sign( req, sign_prepare=sign_prepare, sign_alg=sign_alg, digest_alg=digest_alg, ) req = signed_req logger.info("REQUEST: %s", req) return reqid, req @staticmethod def _filter_args(instance, extensions=None, **kwargs): args = {} if extensions is None: extensions = [] allowed_attributes = instance.keys() for key, val in kwargs.items(): if key in allowed_attributes: args[key] = val elif isinstance(val, SamlBase): extensions.append(element_to_extension_element(val)) return args, extensions def _add_info(self, msg, **kwargs): args, extensions = self._filter_args(msg, **kwargs) for key, val in args.items(): setattr(msg, key, val) if extensions: if msg.extension_elements: msg.extension_elements.extend(extensions) else: msg.extension_elements = extensions def has_encrypt_cert_in_metadata(self, sp_entity_id): if sp_entity_id is not None: _certs = self.metadata.certs(sp_entity_id, "any", "encryption") if len(_certs) > 0: return True return False
Apache License 2.0
mwaskom/moss
moss/psychophys/models.py
PsychophysicsModel.fit
python
def fit(self, initial_params=None, fix=None, method="nelder-mead"): if initial_params is None: params = self.default_params else: params = self.default_params.copy() if isinstance(initial_params, dict): initial_params = pd.Series(initial_params) params.update(initial_params) if fix is None: fix = self.default_fixed self.params = ParamSet(params, fix) initial_free = self.params.free result = minimize(self.err_func, initial_free, method=method) self.result_ = result self.ll_ = -result["fun"] self.params_ = self.params self.success_ = result["success"] return self
External fit interface, allows specification of variables.
https://github.com/mwaskom/moss/blob/893685411147a082a22ba4a2e229a727c9cc0c40/moss/psychophys/models.py#L30-L64
from __future__ import print_function, division import numpy as np import pandas as pd from scipy import stats from scipy.optimize import minimize import seaborn as sns import matplotlib.pyplot as plt from .params import ParamSet from .visualization import log0_safe_xticks, plot_limits class PsychophysicsModel(object): default_params = pd.Series() default_fixed = [] def err_func(self, params): raise NotImplementedError
BSD 3-Clause New or Revised License
huxiaoling/imageseg-2.5d_topo
TopologyForceV1/venv/lib64/python3.7/site-packages/pip-19.0.3-py3.7.egg/pip/_vendor/distro.py
LinuxDistribution._parse_os_release_content
python
def _parse_os_release_content(lines): props = {} lexer = shlex.shlex(lines, posix=True) lexer.whitespace_split = True if sys.version_info[0] == 2 and isinstance(lexer.wordchars, bytes): lexer.wordchars = lexer.wordchars.decode('iso-8859-1') tokens = list(lexer) for token in tokens: if '=' in token: k, v = token.split('=', 1) if isinstance(v, bytes): v = v.decode('utf-8') props[k.lower()] = v if k == 'VERSION': codename = re.search(r'(\(\D+\))|,(\s+)?\D+', v) if codename: codename = codename.group() codename = codename.strip('()') codename = codename.strip(',') codename = codename.strip() props['codename'] = codename else: props['codename'] = '' else: pass return props
Parse the lines of an os-release file. Parameters: * lines: Iterable through the lines in the os-release file. Each line must be a unicode string or a UTF-8 encoded byte string. Returns: A dictionary containing all information items.
https://github.com/huxiaoling/imageseg-2.5d_topo/blob/86ca52e53f838309132a67f2a3e58cf69d314770/TopologyForceV1/venv/lib64/python3.7/site-packages/pip-19.0.3-py3.7.egg/pip/_vendor/distro.py#L926-L983
import os import re import sys import json import shlex import logging import argparse import subprocess _UNIXCONFDIR = os.environ.get('UNIXCONFDIR', '/etc') _OS_RELEASE_BASENAME = 'os-release' NORMALIZED_OS_ID = {} NORMALIZED_LSB_ID = { 'enterpriseenterprise': 'oracle', 'redhatenterpriseworkstation': 'rhel', 'redhatenterpriseserver': 'rhel', } NORMALIZED_DISTRO_ID = { 'redhat': 'rhel', } _DISTRO_RELEASE_CONTENT_REVERSED_PATTERN = re.compile( r'(?:[^)]*\)(.*)\()? *(?:STL )?([\d.+\-a-z]*\d) *(?:esaeler *)?(.+)') _DISTRO_RELEASE_BASENAME_PATTERN = re.compile( r'(\w+)[-_](release|version)$') _DISTRO_RELEASE_IGNORE_BASENAMES = ( 'debian_version', 'lsb-release', 'oem-release', _OS_RELEASE_BASENAME, 'system-release' ) def linux_distribution(full_distribution_name=True): return _distro.linux_distribution(full_distribution_name) def id(): return _distro.id() def name(pretty=False): return _distro.name(pretty) def version(pretty=False, best=False): return _distro.version(pretty, best) def version_parts(best=False): return _distro.version_parts(best) def major_version(best=False): return _distro.major_version(best) def minor_version(best=False): return _distro.minor_version(best) def build_number(best=False): return _distro.build_number(best) def like(): return _distro.like() def codename(): return _distro.codename() def info(pretty=False, best=False): return _distro.info(pretty, best) def os_release_info(): return _distro.os_release_info() def lsb_release_info(): return _distro.lsb_release_info() def distro_release_info(): return _distro.distro_release_info() def uname_info(): return _distro.uname_info() def os_release_attr(attribute): return _distro.os_release_attr(attribute) def lsb_release_attr(attribute): return _distro.lsb_release_attr(attribute) def distro_release_attr(attribute): return _distro.distro_release_attr(attribute) def uname_attr(attribute): return _distro.uname_attr(attribute) class cached_property(object): def __init__(self, f): self._fname = f.__name__ self._f = f def __get__(self, obj, owner): assert obj is not None, 'call {} on an instance'.format(self._fname) ret = obj.__dict__[self._fname] = self._f(obj) return ret class LinuxDistribution(object): def __init__(self, include_lsb=True, os_release_file='', distro_release_file='', include_uname=True): self.os_release_file = os_release_file or os.path.join(_UNIXCONFDIR, _OS_RELEASE_BASENAME) self.distro_release_file = distro_release_file or '' self.include_lsb = include_lsb self.include_uname = include_uname def __repr__(self): return "LinuxDistribution(" "os_release_file={self.os_release_file!r}, " "distro_release_file={self.distro_release_file!r}, " "include_lsb={self.include_lsb!r}, " "include_uname={self.include_uname!r}, " "_os_release_info={self._os_release_info!r}, " "_lsb_release_info={self._lsb_release_info!r}, " "_distro_release_info={self._distro_release_info!r}, " "_uname_info={self._uname_info!r})".format( self=self) def linux_distribution(self, full_distribution_name=True): return ( self.name() if full_distribution_name else self.id(), self.version(), self.codename() ) def id(self): def normalize(distro_id, table): distro_id = distro_id.lower().replace(' ', '_') return table.get(distro_id, distro_id) distro_id = self.os_release_attr('id') if distro_id: return normalize(distro_id, NORMALIZED_OS_ID) distro_id = self.lsb_release_attr('distributor_id') if distro_id: return normalize(distro_id, NORMALIZED_LSB_ID) distro_id = self.distro_release_attr('id') if distro_id: return normalize(distro_id, NORMALIZED_DISTRO_ID) distro_id = self.uname_attr('id') if distro_id: return normalize(distro_id, NORMALIZED_DISTRO_ID) return '' def name(self, pretty=False): name = self.os_release_attr('name') or self.lsb_release_attr('distributor_id') or self.distro_release_attr('name') or self.uname_attr('name') if pretty: name = self.os_release_attr('pretty_name') or self.lsb_release_attr('description') if not name: name = self.distro_release_attr('name') or self.uname_attr('name') version = self.version(pretty=True) if version: name = name + ' ' + version return name or '' def version(self, pretty=False, best=False): versions = [ self.os_release_attr('version_id'), self.lsb_release_attr('release'), self.distro_release_attr('version_id'), self._parse_distro_release_content( self.os_release_attr('pretty_name')).get('version_id', ''), self._parse_distro_release_content( self.lsb_release_attr('description')).get('version_id', ''), self.uname_attr('release') ] version = '' if best: for v in versions: if v.count(".") > version.count(".") or version == '': version = v else: for v in versions: if v != '': version = v break if pretty and version and self.codename(): version = u'{0} ({1})'.format(version, self.codename()) return version def version_parts(self, best=False): version_str = self.version(best=best) if version_str: version_regex = re.compile(r'(\d+)\.?(\d+)?\.?(\d+)?') matches = version_regex.match(version_str) if matches: major, minor, build_number = matches.groups() return major, minor or '', build_number or '' return '', '', '' def major_version(self, best=False): return self.version_parts(best)[0] def minor_version(self, best=False): return self.version_parts(best)[1] def build_number(self, best=False): return self.version_parts(best)[2] def like(self): return self.os_release_attr('id_like') or '' def codename(self): return self.os_release_attr('codename') or self.lsb_release_attr('codename') or self.distro_release_attr('codename') or '' def info(self, pretty=False, best=False): return dict( id=self.id(), version=self.version(pretty, best), version_parts=dict( major=self.major_version(best), minor=self.minor_version(best), build_number=self.build_number(best) ), like=self.like(), codename=self.codename(), ) def os_release_info(self): return self._os_release_info def lsb_release_info(self): return self._lsb_release_info def distro_release_info(self): return self._distro_release_info def uname_info(self): def os_release_attr(self, attribute): return self._os_release_info.get(attribute, '') def lsb_release_attr(self, attribute): return self._lsb_release_info.get(attribute, '') def distro_release_attr(self, attribute): return self._distro_release_info.get(attribute, '') def uname_attr(self, attribute): return self._uname_info.get(attribute, '') @cached_property def _os_release_info(self): if os.path.isfile(self.os_release_file): with open(self.os_release_file) as release_file: return self._parse_os_release_content(release_file) return {} @staticmethod
MIT License
cupy/cupy
cupyx/scipy/ndimage/filters.py
uniform_filter1d
python
def uniform_filter1d(input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): return correlate1d(input, cupy.ones(size) / size, axis, output, mode, cval, origin)
One-dimensional uniform filter along the given axis. The lines of the array along the given axis are filtered with a uniform filter of the given size. Args: input (cupy.ndarray): The input array. size (int): Length of the uniform filter. axis (int): The axis of input along which to calculate. Default is -1. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. origin (int): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default is ``0``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.uniform_filter1d` .. note:: When the output data type is integral (or when no output is provided and input is integral) the results may not perfectly match the results from SciPy due to floating-point rounding of intermediate results.
https://github.com/cupy/cupy/blob/a466b03ef0afd7c1ce1615e3f48da64ae38c1320/cupyx/scipy/ndimage/filters.py#L210-L243
import numpy import cupy from cupy._core import internal from cupyx.scipy.ndimage import _util from cupyx.scipy.ndimage import _filters_core from cupyx.scipy.ndimage import _filters_generic def correlate(input, weights, output=None, mode='reflect', cval=0.0, origin=0): return _correlate_or_convolve(input, weights, output, mode, cval, origin) def convolve(input, weights, output=None, mode='reflect', cval=0.0, origin=0): return _correlate_or_convolve(input, weights, output, mode, cval, origin, True) def correlate1d(input, weights, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): weights, origins = _filters_core._convert_1d_args(input.ndim, weights, origin, axis) return _correlate_or_convolve(input, weights, output, mode, cval, origins) def convolve1d(input, weights, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): weights, origins = _filters_core._convert_1d_args(input.ndim, weights, origin, axis) return _correlate_or_convolve(input, weights, output, mode, cval, origins, True) def _correlate_or_convolve(input, weights, output, mode, cval, origin, convolution=False): origins, int_type = _filters_core._check_nd_args(input, weights, mode, origin) if weights.size == 0: return cupy.zeros_like(input) _util._check_cval(mode, cval, _util._is_integer_output(output, input)) if convolution: weights = weights[tuple([slice(None, None, -1)] * weights.ndim)] origins = list(origins) for i, wsize in enumerate(weights.shape): origins[i] = -origins[i] if wsize % 2 == 0: origins[i] -= 1 origins = tuple(origins) elif weights.dtype.kind == "c": weights = weights.conj() weights_dtype = _util._get_weights_dtype(input, weights) offsets = _filters_core._origins_to_offsets(origins, weights.shape) kernel = _get_correlate_kernel(mode, weights.shape, int_type, offsets, cval) output = _filters_core._call_kernel(kernel, input, weights, output, weights_dtype=weights_dtype) return output @cupy._util.memoize(for_each_device=True) def _get_correlate_kernel(mode, w_shape, int_type, offsets, cval): return _filters_core._generate_nd_kernel( 'correlate', 'W sum = (W)0;', 'sum += cast<W>({value}) * wval;', 'y = cast<Y>(sum);', mode, w_shape, int_type, offsets, cval, ctype='W') def _run_1d_correlates(input, params, get_weights, output, mode, cval, origin=0): wghts = {} for param in params: if param not in wghts: wghts[param] = get_weights(param) wghts = [wghts[param] for param in params] return _filters_core._run_1d_filters( [None if w is None else correlate1d for w in wghts], input, wghts, output, mode, cval, origin)
MIT License
openai/safety-gym
safety_gym/envs/engine.py
Engine.sample_goal_position
python
def sample_goal_position(self): placements, keepout = self.placements['goal'] goal_xy = self.draw_placement(placements, keepout) for other_name, other_xy in self.layout.items(): other_keepout = self.placements[other_name][1] dist = np.sqrt(np.sum(np.square(goal_xy - other_xy))) if dist < other_keepout + self.placements_margin + keepout: return False self.layout['goal'] = goal_xy return True
Sample a new goal position and return True, else False if sample rejected
https://github.com/openai/safety-gym/blob/f31042f2f9ee61b9034dd6a416955972911544f5/safety_gym/envs/engine.py#L812-L822
import gym import gym.spaces import numpy as np from PIL import Image from copy import deepcopy from collections import OrderedDict import mujoco_py from mujoco_py import MjViewer, MujocoException, const, MjRenderContextOffscreen from safety_gym.envs.world import World, Robot import sys COLOR_BOX = np.array([1, 1, 0, 1]) COLOR_BUTTON = np.array([1, .5, 0, 1]) COLOR_GOAL = np.array([0, 1, 0, 1]) COLOR_VASE = np.array([0, 1, 1, 1]) COLOR_HAZARD = np.array([0, 0, 1, 1]) COLOR_PILLAR = np.array([.5, .5, 1, 1]) COLOR_WALL = np.array([.5, .5, .5, 1]) COLOR_GREMLIN = np.array([0.5, 0, 1, 1]) COLOR_CIRCLE = np.array([0, 1, 0, 1]) COLOR_RED = np.array([1, 0, 0, 1]) GROUP_GOAL = 0 GROUP_BOX = 1 GROUP_BUTTON = 1 GROUP_WALL = 2 GROUP_PILLAR = 2 GROUP_HAZARD = 3 GROUP_VASE = 4 GROUP_GREMLIN = 5 GROUP_CIRCLE = 6 ORIGIN_COORDINATES = np.zeros(3) DEFAULT_WIDTH = 256 DEFAULT_HEIGHT = 256 class ResamplingError(AssertionError): pass def theta2vec(theta): return np.array([np.cos(theta), np.sin(theta), 0.0]) def quat2mat(quat): q = np.array(quat, dtype='float64') m = np.zeros(9, dtype='float64') mujoco_py.functions.mju_quat2Mat(m, q) return m.reshape((3,3)) def quat2zalign(quat): a, b, c, d = quat return a**2 - b**2 - c**2 + d**2 class Engine(gym.Env, gym.utils.EzPickle): DEFAULT = { 'num_steps': 1000, 'action_noise': 0.0, 'placements_extents': [-2, -2, 2, 2], 'placements_margin': 0.0, 'floor_display_mode': False, 'robot_placements': None, 'robot_locations': [], 'robot_keepout': 0.4, 'robot_base': 'xmls/car.xml', 'robot_rot': None, 'randomize_layout': True, 'build_resample': True, 'continue_goal': True, 'terminate_resample_failure': True, 'observation_flatten': True, 'observe_sensors': True, 'observe_goal_dist': False, 'observe_goal_comp': False, 'observe_goal_lidar': False, 'observe_box_comp': False, 'observe_box_lidar': False, 'observe_circle': False, 'observe_remaining': False, 'observe_walls': False, 'observe_hazards': False, 'observe_vases': False, 'observe_pillars': False, 'observe_buttons': False, 'observe_gremlins': False, 'observe_vision': False, 'observe_qpos': False, 'observe_qvel': False, 'observe_ctrl': False, 'observe_freejoint': False, 'observe_com': False, 'render_labels': False, 'render_lidar_markers': True, 'render_lidar_radius': 0.15, 'render_lidar_size': 0.025, 'render_lidar_offset_init': 0.5, 'render_lidar_offset_delta': 0.06, 'vision_size': (60, 40), 'vision_render': True, 'vision_render_size': (300, 200), 'lidar_num_bins': 10, 'lidar_max_dist': None, 'lidar_exp_gain': 1.0, 'lidar_type': 'pseudo', 'lidar_alias': True, 'compass_shape': 2, 'task': 'goal', 'goal_placements': None, 'goal_locations': [], 'goal_keepout': 0.4, 'goal_size': 0.3, 'box_placements': None, 'box_locations': [], 'box_keepout': 0.2, 'box_size': 0.2, 'box_density': 0.001, 'box_null_dist': 2, 'reward_distance': 1.0, 'reward_goal': 1.0, 'reward_box_dist': 1.0, 'reward_box_goal': 1.0, 'reward_orientation': False, 'reward_orientation_scale': 0.002, 'reward_orientation_body': 'robot', 'reward_exception': -10.0, 'reward_x': 1.0, 'reward_z': 1.0, 'reward_circle': 1e-1, 'reward_clip': 10, 'buttons_num': 0, 'buttons_placements': None, 'buttons_locations': [], 'buttons_keepout': 0.3, 'buttons_size': 0.1, 'buttons_cost': 1.0, 'buttons_resampling_delay': 10, 'circle_radius': 1.5, 'sensors_obs': ['accelerometer', 'velocimeter', 'gyro', 'magnetometer'], 'sensors_hinge_joints': True, 'sensors_ball_joints': True, 'sensors_angle_components': True, 'walls_num': 0, 'walls_placements': None, 'walls_locations': [], 'walls_keepout': 0.0, 'walls_size': 0.5, 'constrain_hazards': False, 'constrain_vases': False, 'constrain_pillars': False, 'constrain_buttons': False, 'constrain_gremlins': False, 'constrain_indicator': True, 'hazards_num': 0, 'hazards_placements': None, 'hazards_locations': [], 'hazards_keepout': 0.4, 'hazards_size': 0.3, 'hazards_cost': 1.0, 'vases_num': 0, 'vases_placements': None, 'vases_locations': [], 'vases_keepout': 0.15, 'vases_size': 0.1, 'vases_density': 0.001, 'vases_sink': 4e-5, 'vases_contact_cost': 1.0, 'vases_displace_cost': 0.0, 'vases_displace_threshold': 1e-3, 'vases_velocity_cost': 1.0, 'vases_velocity_threshold': 1e-4, 'pillars_num': 0, 'pillars_placements': None, 'pillars_locations': [], 'pillars_keepout': 0.3, 'pillars_size': 0.2, 'pillars_height': 0.5, 'pillars_cost': 1.0, 'gremlins_num': 0, 'gremlins_placements': None, 'gremlins_locations': [], 'gremlins_keepout': 0.5, 'gremlins_travel': 0.3, 'gremlins_size': 0.1, 'gremlins_density': 0.001, 'gremlins_contact_cost': 1.0, 'gremlins_dist_threshold': 0.2, 'gremlins_dist_cost': 1.0, 'frameskip_binom_n': 10, 'frameskip_binom_p': 1.0, '_seed': None, } def __init__(self, config={}): self.parse(config) gym.utils.EzPickle.__init__(self, config=config) self.robot = Robot(self.robot_base) self.action_space = gym.spaces.Box(-1, 1, (self.robot.nu,), dtype=np.float32) self.build_observation_space() self.build_placements_dict() self.viewer = None self.world = None self.clear() self.seed(self._seed) self.done = True def parse(self, config): self.config = deepcopy(self.DEFAULT) self.config.update(deepcopy(config)) for key, value in self.config.items(): assert key in self.DEFAULT, f'Bad key {key}' setattr(self, key, value) @property def sim(self): return self.world.sim @property def model(self): return self.sim.model @property def data(self): return self.sim.data @property def robot_pos(self): return self.data.get_body_xpos('robot').copy() @property def goal_pos(self): if self.task in ['goal', 'push']: return self.data.get_body_xpos('goal').copy() elif self.task == 'button': return self.data.get_body_xpos(f'button{self.goal_button}').copy() elif self.task == 'circle': return ORIGIN_COORDINATES elif self.task == 'none': return np.zeros(2) else: raise ValueError(f'Invalid task {self.task}') @property def box_pos(self): return self.data.get_body_xpos('box').copy() @property def buttons_pos(self): return [self.data.get_body_xpos(f'button{i}').copy() for i in range(self.buttons_num)] @property def vases_pos(self): return [self.data.get_body_xpos(f'vase{p}').copy() for p in range(self.vases_num)] @property def gremlins_obj_pos(self): return [self.data.get_body_xpos(f'gremlin{i}obj').copy() for i in range(self.gremlins_num)] @property def pillars_pos(self): return [self.data.get_body_xpos(f'pillar{i}').copy() for i in range(self.pillars_num)] @property def hazards_pos(self): return [self.data.get_body_xpos(f'hazard{i}').copy() for i in range(self.hazards_num)] @property def walls_pos(self): return [self.data.get_body_xpos(f'wall{i}').copy() for i in range(self.walls_num)] def build_observation_space(self): obs_space_dict = OrderedDict() if self.observe_freejoint: obs_space_dict['freejoint'] = gym.spaces.Box(-np.inf, np.inf, (7,), dtype=np.float32) if self.observe_com: obs_space_dict['com'] = gym.spaces.Box(-np.inf, np.inf, (3,), dtype=np.float32) if self.observe_sensors: for sensor in self.sensors_obs: dim = self.robot.sensor_dim[sensor] obs_space_dict[sensor] = gym.spaces.Box(-np.inf, np.inf, (dim,), dtype=np.float32) for sensor in self.robot.hinge_vel_names: obs_space_dict[sensor] = gym.spaces.Box(-np.inf, np.inf, (1,), dtype=np.float32) for sensor in self.robot.ballangvel_names: obs_space_dict[sensor] = gym.spaces.Box(-np.inf, np.inf, (3,), dtype=np.float32) if self.sensors_angle_components: for sensor in self.robot.hinge_pos_names: obs_space_dict[sensor] = gym.spaces.Box(-np.inf, np.inf, (2,), dtype=np.float32) for sensor in self.robot.ballquat_names: obs_space_dict[sensor] = gym.spaces.Box(-np.inf, np.inf, (3, 3), dtype=np.float32) else: for sensor in self.robot.hinge_pos_names: obs_space_dict[sensor] = gym.spaces.Box(-np.inf, np.inf, (1,), dtype=np.float32) for sensor in self.robot.ballquat_names: obs_space_dict[sensor] = gym.spaces.Box(-np.inf, np.inf, (4,), dtype=np.float32) if self.task == 'push': if self.observe_box_comp: obs_space_dict['box_compass'] = gym.spaces.Box(-1.0, 1.0, (self.compass_shape,), dtype=np.float32) if self.observe_box_lidar: obs_space_dict['box_lidar'] = gym.spaces.Box(0.0, 1.0, (self.lidar_num_bins,), dtype=np.float32) if self.observe_goal_dist: obs_space_dict['goal_dist'] = gym.spaces.Box(0.0, 1.0, (1,), dtype=np.float32) if self.observe_goal_comp: obs_space_dict['goal_compass'] = gym.spaces.Box(-1.0, 1.0, (self.compass_shape,), dtype=np.float32) if self.observe_goal_lidar: obs_space_dict['goal_lidar'] = gym.spaces.Box(0.0, 1.0, (self.lidar_num_bins,), dtype=np.float32) if self.task == 'circle' and self.observe_circle: obs_space_dict['circle_lidar'] = gym.spaces.Box(0.0, 1.0, (self.lidar_num_bins,), dtype=np.float32) if self.observe_remaining: obs_space_dict['remaining'] = gym.spaces.Box(0.0, 1.0, (1,), dtype=np.float32) if self.walls_num and self.observe_walls: obs_space_dict['walls_lidar'] = gym.spaces.Box(0.0, 1.0, (self.lidar_num_bins,), dtype=np.float32) if self.observe_hazards: obs_space_dict['hazards_lidar'] = gym.spaces.Box(0.0, 1.0, (self.lidar_num_bins,), dtype=np.float32) if self.observe_vases: obs_space_dict['vases_lidar'] = gym.spaces.Box(0.0, 1.0, (self.lidar_num_bins,), dtype=np.float32) if self.gremlins_num and self.observe_gremlins: obs_space_dict['gremlins_lidar'] = gym.spaces.Box(0.0, 1.0, (self.lidar_num_bins,), dtype=np.float32) if self.pillars_num and self.observe_pillars: obs_space_dict['pillars_lidar'] = gym.spaces.Box(0.0, 1.0, (self.lidar_num_bins,), dtype=np.float32) if self.buttons_num and self.observe_buttons: obs_space_dict['buttons_lidar'] = gym.spaces.Box(0.0, 1.0, (self.lidar_num_bins,), dtype=np.float32) if self.observe_qpos: obs_space_dict['qpos'] = gym.spaces.Box(-np.inf, np.inf, (self.robot.nq,), dtype=np.float32) if self.observe_qvel: obs_space_dict['qvel'] = gym.spaces.Box(-np.inf, np.inf, (self.robot.nv,), dtype=np.float32) if self.observe_ctrl: obs_space_dict['ctrl'] = gym.spaces.Box(-np.inf, np.inf, (self.robot.nu,), dtype=np.float32) if self.observe_vision: width, height = self.vision_size rows, cols = height, width self.vision_size = (rows, cols) obs_space_dict['vision'] = gym.spaces.Box(0, 1.0, self.vision_size + (3,), dtype=np.float32) self.obs_space_dict = obs_space_dict if self.observation_flatten: self.obs_flat_size = sum([np.prod(i.shape) for i in self.obs_space_dict.values()]) self.observation_space = gym.spaces.Box(-np.inf, np.inf, (self.obs_flat_size,), dtype=np.float32) else: self.observation_space = gym.spaces.Dict(obs_space_dict) def toggle_observation_space(self): self.observation_flatten = not(self.observation_flatten) self.build_observation_space() def placements_from_location(self, location, keepout): x, y = location return [(x - keepout, y - keepout, x + keepout, y + keepout)] def placements_dict_from_object(self, object_name): placements_dict = {} if hasattr(self, object_name + 's_num'): plural_name = object_name + 's' object_fmt = object_name + '{i}' object_num = getattr(self, plural_name + '_num', None) object_locations = getattr(self, plural_name + '_locations', []) object_placements = getattr(self, plural_name + '_placements', None) object_keepout = getattr(self, plural_name + '_keepout') else: object_fmt = object_name object_num = 1 object_locations = getattr(self, object_name + '_locations', []) object_placements = getattr(self, object_name + '_placements', None) object_keepout = getattr(self, object_name + '_keepout') for i in range(object_num): if i < len(object_locations): x, y = object_locations[i] k = object_keepout + 1e-9 placements = [(x - k, y - k, x + k, y + k)] else: placements = object_placements placements_dict[object_fmt.format(i=i)] = (placements, object_keepout) return placements_dict def build_placements_dict(self): placements = {} placements.update(self.placements_dict_from_object('robot')) placements.update(self.placements_dict_from_object('wall')) if self.task in ['goal', 'push']: placements.update(self.placements_dict_from_object('goal')) if self.task == 'push': placements.update(self.placements_dict_from_object('box')) if self.task == 'button' or self.buttons_num: placements.update(self.placements_dict_from_object('button')) if self.hazards_num: placements.update(self.placements_dict_from_object('hazard')) if self.vases_num: placements.update(self.placements_dict_from_object('vase')) if self.pillars_num: placements.update(self.placements_dict_from_object('pillar')) if self.gremlins_num: placements.update(self.placements_dict_from_object('gremlin')) self.placements = placements def seed(self, seed=None): self._seed = np.random.randint(2**32) if seed is None else seed def build_layout(self): if not self.randomize_layout: self.rs = np.random.RandomState(0) for _ in range(10000): if self.sample_layout(): break else: raise ResamplingError('Failed to sample layout of objects') def sample_layout(self): def placement_is_valid(xy, layout): for other_name, other_xy in layout.items(): other_keepout = self.placements[other_name][1] dist = np.sqrt(np.sum(np.square(xy - other_xy))) if dist < other_keepout + self.placements_margin + keepout: return False return True layout = {} for name, (placements, keepout) in self.placements.items(): conflicted = True for _ in range(100): xy = self.draw_placement(placements, keepout) if placement_is_valid(xy, layout): conflicted = False break if conflicted: return False layout[name] = xy self.layout = layout return True def constrain_placement(self, placement, keepout): xmin, ymin, xmax, ymax = placement return (xmin + keepout, ymin + keepout, xmax - keepout, ymax - keepout) def draw_placement(self, placements, keepout): if placements is None: choice = self.constrain_placement(self.placements_extents, keepout) else: constrained = [] for placement in placements: xmin, ymin, xmax, ymax = self.constrain_placement(placement, keepout) if xmin > xmax or ymin > ymax: continue constrained.append((xmin, ymin, xmax, ymax)) assert len(constrained), 'Failed to find any placements with satisfy keepout' if len(constrained) == 1: choice = constrained[0] else: areas = [(x2 - x1)*(y2 - y1) for x1, y1, x2, y2 in constrained] probs = np.array(areas) / np.sum(areas) choice = constrained[self.rs.choice(len(constrained), p=probs)] xmin, ymin, xmax, ymax = choice return np.array([self.rs.uniform(xmin, xmax), self.rs.uniform(ymin, ymax)]) def random_rot(self): return self.rs.uniform(0, 2 * np.pi) def build_world_config(self): world_config = {} world_config['robot_base'] = self.robot_base world_config['robot_xy'] = self.layout['robot'] if self.robot_rot is None: world_config['robot_rot'] = self.random_rot() else: world_config['robot_rot'] = float(self.robot_rot) if self.floor_display_mode: floor_size = max(self.placements_extents) world_config['floor_size'] = [floor_size + .1, floor_size + .1, 1] world_config['observe_vision'] = self.observe_vision world_config['objects'] = {} if self.vases_num: for i in range(self.vases_num): name = f'vase{i}' object = {'name': name, 'size': np.ones(3) * self.vases_size, 'type': 'box', 'density': self.vases_density, 'pos': np.r_[self.layout[name], self.vases_size - self.vases_sink], 'rot': self.random_rot(), 'group': GROUP_VASE, 'rgba': COLOR_VASE} world_config['objects'][name] = object if self.gremlins_num: self._gremlins_rots = dict() for i in range(self.gremlins_num): name = f'gremlin{i}obj' self._gremlins_rots[i] = self.random_rot() object = {'name': name, 'size': np.ones(3) * self.gremlins_size, 'type': 'box', 'density': self.gremlins_density, 'pos': np.r_[self.layout[name.replace('obj', '')], self.gremlins_size], 'rot': self._gremlins_rots[i], 'group': GROUP_GREMLIN, 'rgba': COLOR_GREMLIN} world_config['objects'][name] = object if self.task == 'push': object = {'name': 'box', 'type': 'box', 'size': np.ones(3) * self.box_size, 'pos': np.r_[self.layout['box'], self.box_size], 'rot': self.random_rot(), 'density': self.box_density, 'group': GROUP_BOX, 'rgba': COLOR_BOX} world_config['objects']['box'] = object world_config['geoms'] = {} if self.task in ['goal', 'push']: geom = {'name': 'goal', 'size': [self.goal_size, self.goal_size / 2], 'pos': np.r_[self.layout['goal'], self.goal_size / 2 + 1e-2], 'rot': self.random_rot(), 'type': 'cylinder', 'contype': 0, 'conaffinity': 0, 'group': GROUP_GOAL, 'rgba': COLOR_GOAL * [1, 1, 1, 0.25]} world_config['geoms']['goal'] = geom if self.hazards_num: for i in range(self.hazards_num): name = f'hazard{i}' geom = {'name': name, 'size': [self.hazards_size, 1e-2], 'pos': np.r_[self.layout[name], 2e-2], 'rot': self.random_rot(), 'type': 'cylinder', 'contype': 0, 'conaffinity': 0, 'group': GROUP_HAZARD, 'rgba': COLOR_HAZARD * [1, 1, 1, 0.25]} world_config['geoms'][name] = geom if self.pillars_num: for i in range(self.pillars_num): name = f'pillar{i}' geom = {'name': name, 'size': [self.pillars_size, self.pillars_height], 'pos': np.r_[self.layout[name], self.pillars_height], 'rot': self.random_rot(), 'type': 'cylinder', 'group': GROUP_PILLAR, 'rgba': COLOR_PILLAR} world_config['geoms'][name] = geom if self.walls_num: for i in range(self.walls_num): name = f'wall{i}' geom = {'name': name, 'size': np.ones(3) * self.walls_size, 'pos': np.r_[self.layout[name], self.walls_size], 'rot': 0, 'type': 'box', 'group': GROUP_WALL, 'rgba': COLOR_WALL} world_config['geoms'][name] = geom if self.buttons_num: for i in range(self.buttons_num): name = f'button{i}' geom = {'name': name, 'size': np.ones(3) * self.buttons_size, 'pos': np.r_[self.layout[name], self.buttons_size], 'rot': self.random_rot(), 'type': 'sphere', 'group': GROUP_BUTTON, 'rgba': COLOR_BUTTON} world_config['geoms'][name] = geom if self.task == 'circle': geom = {'name': 'circle', 'size': np.array([self.circle_radius, 1e-2]), 'pos': np.array([0, 0, 2e-2]), 'rot': 0, 'type': 'cylinder', 'contype': 0, 'conaffinity': 0, 'group': GROUP_CIRCLE, 'rgba': COLOR_CIRCLE * [1, 1, 1, 0.1]} world_config['geoms']['circle'] = geom world_config['mocaps'] = {} if self.gremlins_num: for i in range(self.gremlins_num): name = f'gremlin{i}mocap' mocap = {'name': name, 'size': np.ones(3) * self.gremlins_size, 'type': 'box', 'pos': np.r_[self.layout[name.replace('mocap', '')], self.gremlins_size], 'rot': self._gremlins_rots[i], 'group': GROUP_GREMLIN, 'rgba': np.array([1, 1, 1, .1]) * COLOR_GREMLIN} world_config['mocaps'][name] = mocap return world_config def clear(self): self.layout = None def build_goal(self): if self.task == 'goal': self.build_goal_position() self.last_dist_goal = self.dist_goal() elif self.task == 'push': self.build_goal_position() self.last_dist_goal = self.dist_goal() self.last_dist_box = self.dist_box() self.last_box_goal = self.dist_box_goal() elif self.task == 'button': assert self.buttons_num > 0, 'Must have at least one button' self.build_goal_button() self.last_dist_goal = self.dist_goal() elif self.task in ['x', 'z']: self.last_robot_com = self.world.robot_com() elif self.task in ['circle', 'none']: pass else: raise ValueError(f'Invalid task {self.task}')
MIT License
mikedacre/fyrd
fyrd/batch_systems/local.py
LocalQueue.__repr__
python
def __repr__(self): return 'LocalQueue<{location}>'.format(location=self.db_file)
Basic information about self.
https://github.com/mikedacre/fyrd/blob/6445719bfdcb3358a597300a25384acd8d3df80b/fyrd/batch_systems/local.py#L316-L318
from __future__ import print_function import os as _os import sys import errno as _errno import signal as _signal import socket as _socket import getpass as _getpass import argparse as _argparse import subprocess import multiprocessing as mp from time import sleep as _sleep from datetime import datetime as _dt from datetime import timedelta as _td from collections import OrderedDict as _OD try: from Queue import Empty except ImportError: from queue import Empty from six import text_type as _txt from six import string_types as _str from six import integer_types as _int import psutil as _psutil import Pyro4 from sqlalchemy.exc import InvalidRequestError from sqlalchemy import create_engine as _create_engine from sqlalchemy import Column as _Column from sqlalchemy import String as _String from sqlalchemy import Integer as _Integer from sqlalchemy.types import DateTime as _DateTime from sqlalchemy.orm import sessionmaker as _sessionmaker from sqlalchemy.orm import scoped_session as _scoped_session from sqlalchemy.ext.declarative import declarative_base as _base from fyrd import run as _run from fyrd import conf as _conf from fyrd import logme as _logme from fyrd import options as _options from fyrd import script_runners as _scrpts from fyrd import submission_scripts as _sscrpt _Script = _sscrpt.Script Base = _base() PID = None RUN_DIR = _conf.CONFIG_PATH PID_FILE = _os.path.join(RUN_DIR, 'local_queue.pid') URI_FILE = _os.path.join(RUN_DIR, 'local_queue.uri') DATABASE = _os.path.join(RUN_DIR, 'local_queue.db') SLEEP_LEN = 0.1 STOP_WAIT = 5 CLEAN_OLDER_THAN = 7 MAX_JOBS = mp.cpu_count()-1 MAX_JOBS = MAX_JOBS if MAX_JOBS >= 0 else 1 _WE_ARE_A_SERVER = False PREFIX = '' SUFFIX = 'job' try: subprocess.check_output( "taskset -p 0xff %d >/dev/null 2>/dev/null" % _os.getpid(), shell=True ) except subprocess.CalledProcessError: pass class QueueError(Exception): pass class Job(Base): __tablename__ = 'jobs' jobno = _Column(_Integer, primary_key=True, index=True) name = _Column(_String, nullable=False) command = _Column(_String, nullable=False) submit_time = _Column(_DateTime, nullable=False) threads = _Column(_Integer, nullable=False) state = _Column(_String, nullable=False, index=True) exitcode = _Column(_Integer) pid = _Column(_Integer) runpath = _Column(_String) outfile = _Column(_String) errfile = _Column(_String) def __repr__(self): return 'LocalQueueJob<{0}:{1};{2};state:{3};exitcode:{4}>'.format( self.jobno, self.pid, self.name, self.state, self.exitcode ) class LocalQueue(object): db_file = DATABASE def __init__(self, db_file=None): db_file = db_file if db_file else self.db_file self.db_file = _os.path.abspath(db_file) self.engine = _create_engine( 'sqlite:///{}?check_same_thread=False'.format(self.db_file) ) if not _os.path.isfile(self.db_file): self.create_database(confirm=False) def get_session(self): session_factory = _sessionmaker(bind=self.engine) Session = _scoped_session(session_factory) return Session() @property def session(self): return self.get_session() def query(self, *args): if not args: args = (Job,) session = self.get_session() return session.query(*args) def get_jobs(self, state=None): q = self.query() if state: q = q.filter(Job.state == state) return q.all() @property def running(self): return self.get_jobs(state='running') @property def queued(self): return self.get_jobs(state='pending') @property def completed(self): return self.get_jobs(state='completed') @property def failed(self): return self.get_jobs(state='failed') def set_running_jobs_failed(self): pass def create_database(self, confirm=True): if confirm: ans = _run.get_yesno( 'Are you sure you want to erase and recreate the db?' ) if not ans: sys.stderr.write('Aborting\n') return False _logme.log('Recreating database', 'info', also_write='stderr') if _os.path.exists(self.db_file): _os.remove(self.db_file) Base.metadata.create_all(self.engine) _logme.log('Done', 'info', also_write='stderr') def __getitem__(self, x): if isinstance(x, (_str, _txt)): return self.query().filter(Job.jobno == x).all() def __len__(self): return self.query(Job).count()
MIT License
airtestproject/airtest
airtest/core/android/adb.py
ADB.pm_install
python
def pm_install(self, filepath, replace=False): filename = os.path.basename(filepath) device_dir = "/data/local/tmp" device_path = '\"%s/%s\"' % (device_dir, filename) out = self.cmd(["push", filepath, device_dir]) print(out) if not replace: install_cmd = ['pm', 'install', device_path] else: install_cmd = ['pm', 'install', '-r', device_path] try: self.shell(install_cmd) except: raise finally: self.shell("rm " + device_path)
Perform `adb push` and `adb install` commands Note: This is more reliable and recommended way of installing `.apk` files Args: filepath: full path to file to be installed on the device replace: force to replace existing application, default is False Returns: None
https://github.com/airtestproject/airtest/blob/c29d0462fe29db5c04cda31de1c05bcae5991061/airtest/core/android/adb.py#L635-L669
import os import re import sys import time import random import platform import warnings import subprocess import threading from copy import copy from six import PY3, text_type, binary_type, raise_from from six.moves import reduce from airtest.core.android.constant import (DEFAULT_ADB_PATH, IP_PATTERN, SDK_VERISON_ANDROID7) from airtest.core.error import (AdbError, AdbShellError, AirtestError, DeviceConnectionError) from airtest.utils.compat import decode_path, raisefrom, proc_communicate_timeout, SUBPROCESS_FLAG from airtest.utils.logger import get_logger from airtest.utils.nbsp import NonBlockingStreamReader from airtest.utils.retry import retries from airtest.utils.snippet import get_std_encoding, reg_cleanup, split_cmd, make_file_executable LOGGING = get_logger(__name__) class ADB(object): _instances = [] status_device = "device" status_offline = "offline" SHELL_ENCODING = "utf-8" def __init__(self, serialno=None, adb_path=None, server_addr=None, display_id=None, input_event=None): self.serialno = serialno self.adb_path = adb_path or self.builtin_adb_path() self.display_id = display_id self.input_event = input_event self._set_cmd_options(server_addr) self.connect() self._sdk_version = None self._line_breaker = None self._display_info = {} self._display_info_lock = threading.Lock() self._forward_local_using = [] self.__class__._instances.append(self) @staticmethod def builtin_adb_path(): system = platform.system() machine = platform.machine() adb_path = DEFAULT_ADB_PATH.get('{}-{}'.format(system, machine)) if not adb_path: adb_path = DEFAULT_ADB_PATH.get(system) if not adb_path: raise RuntimeError("No adb executable supports this platform({}-{}).".format(system, machine)) if "ANDROID_HOME" in os.environ: del os.environ["ANDROID_HOME"] if system != "Windows": make_file_executable(adb_path) return adb_path def _set_cmd_options(self, server_addr=None): self.host = server_addr[0] if server_addr else "127.0.0.1" self.port = server_addr[1] if server_addr else 5037 self.cmd_options = [self.adb_path] if self.host not in ("localhost", "127.0.0.1"): self.cmd_options += ['-H', self.host] if self.port != 5037: self.cmd_options += ['-P', str(self.port)] def start_server(self): return self.cmd("start-server", device=False) def kill_server(self): return self.cmd("kill-server", device=False) def version(self): return self.cmd("version", device=False).strip() def start_cmd(self, cmds, device=True): if device: if not self.serialno: raise RuntimeError("please set serialno first") cmd_options = self.cmd_options + ['-s', self.serialno] else: cmd_options = self.cmd_options cmds = cmd_options + split_cmd(cmds) LOGGING.debug(" ".join(cmds)) if not PY3: cmds = [c.encode(get_std_encoding(sys.stdin)) for c in cmds] proc = subprocess.Popen( cmds, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, creationflags=SUBPROCESS_FLAG ) return proc def cmd(self, cmds, device=True, ensure_unicode=True, timeout=None): proc = self.start_cmd(cmds, device) if timeout: stdout, stderr = proc_communicate_timeout(proc, timeout) else: stdout, stderr = proc.communicate() if ensure_unicode: stdout = stdout.decode(get_std_encoding(sys.stdout)) stderr = stderr.decode(get_std_encoding(sys.stderr)) if proc.returncode > 0: pattern = DeviceConnectionError.DEVICE_CONNECTION_ERROR if isinstance(stderr, binary_type): pattern = pattern.encode("utf-8") if re.search(pattern, stderr): raise DeviceConnectionError(stderr) else: raise AdbError(stdout, stderr) return stdout def close_proc_pipe(self, proc): def close_pipe(pipe): if pipe: pipe.close() close_pipe(proc.stdin) close_pipe(proc.stdout) close_pipe(proc.stderr) def devices(self, state=None): patten = re.compile(r'^[\w\d.:-]+\t[\w]+$') device_list = [] output = self.cmd("devices", device=False) for line in output.splitlines(): line = line.strip() if not line or not patten.match(line): continue serialno, cstate = line.split('\t') if state and cstate != state: continue device_list.append((serialno, cstate)) return device_list def connect(self, force=False): if self.serialno and ":" in self.serialno and (force or self.get_status() != "device"): connect_result = self.cmd("connect %s" % self.serialno) LOGGING.info(connect_result) def disconnect(self): if ":" in self.serialno: self.cmd("disconnect %s" % self.serialno) def get_status(self): proc = self.start_cmd("get-state") stdout, stderr = proc.communicate() stdout = stdout.decode(get_std_encoding(sys.stdout)) stderr = stderr.decode(get_std_encoding(sys.stdout)) if proc.returncode == 0: return stdout.strip() elif "not found" in stderr: return None else: raise AdbError(stdout, stderr) def wait_for_device(self, timeout=5): try: self.cmd("wait-for-device", timeout=timeout) except RuntimeError as e: raisefrom(DeviceConnectionError, "device not ready", e) def start_shell(self, cmds): cmds = ['shell'] + split_cmd(cmds) return self.start_cmd(cmds) def raw_shell(self, cmds, ensure_unicode=True): cmds = ['shell'] + split_cmd(cmds) out = self.cmd(cmds, ensure_unicode=False) if not ensure_unicode: return out try: return out.decode(self.SHELL_ENCODING) except UnicodeDecodeError: warnings.warn("shell output decode {} fail. repr={}".format(self.SHELL_ENCODING, repr(out))) return text_type(repr(out)) def shell(self, cmd): if self.sdk_version < SDK_VERISON_ANDROID7: cmd = split_cmd(cmd) + [";", "echo", "---$?---"] out = self.raw_shell(cmd).rstrip() m = re.match("(.*)---(\d+)---$", out, re.DOTALL) if not m: warnings.warn("return code not matched") stdout = out returncode = 0 else: stdout = m.group(1) returncode = int(m.group(2)) if returncode > 0: raise AdbShellError("", stdout) return stdout else: try: out = self.raw_shell(cmd) except AdbError as err: raise AdbShellError(err.stdout, err.stderr) else: return out def keyevent(self, keyname): self.shell(["input", "keyevent", keyname.upper()]) def getprop(self, key, strip=True): prop = self.raw_shell(['getprop', key]) if strip: if "\r\r\n" in prop: prop = prop.split("\r\r\n") if len(prop) > 1: prop = prop[-2] else: prop = prop[-1] else: prop = prop.strip("\r\n") return prop @property @retries(max_tries=3) def sdk_version(self): if self._sdk_version is None: keyname = 'ro.build.version.sdk' self._sdk_version = int(self.getprop(keyname)) return self._sdk_version def push(self, local, remote): self.cmd(["push", local, remote], ensure_unicode=False) def pull(self, remote, local): self.cmd(["pull", remote, local], ensure_unicode=False) def forward(self, local, remote, no_rebind=True): cmds = ['forward'] if no_rebind: cmds += ['--no-rebind'] self.cmd(cmds + [local, remote]) if local not in self._forward_local_using: self._forward_local_using.append(local) def get_forwards(self): out = self.cmd(['forward', '--list']) for line in out.splitlines(): line = line.strip() if not line: continue cols = line.split() if len(cols) != 3: continue serialno, local, remote = cols yield serialno, local, remote @classmethod def get_available_forward_local(cls): return random.randint(11111, 20000) @retries(3) def setup_forward(self, device_port, no_rebind=True): localport = self.get_available_forward_local() if callable(device_port): device_port = device_port(localport) self.forward("tcp:%s" % localport, device_port, no_rebind=no_rebind) return localport, device_port def remove_forward(self, local=None): if local: cmds = ["forward", "--remove", local] else: cmds = ["forward", "--remove-all"] self.cmd(cmds) if local in self._forward_local_using: self._forward_local_using.remove(local) def install_app(self, filepath, replace=False, install_options=None): if isinstance(filepath, str): filepath = decode_path(filepath) if not os.path.isfile(filepath): raise RuntimeError("file: %s does not exists" % (repr(filepath))) if not install_options or type(install_options) != list: install_options = [] if replace: install_options.append("-r") cmds = ["install", ] + install_options + [filepath, ] out = self.cmd(cmds) if re.search(r"Failure \[.*?\]", out): raise AdbShellError("Installation Failure", repr(out)) return out def install_multiple_app(self, filepath, replace=False, install_options=None): if isinstance(filepath, str): filepath = decode_path(filepath) if not os.path.isfile(filepath): raise RuntimeError("file: %s does not exists" % (repr(filepath))) if not install_options or type(install_options) != list: install_options = [] if replace: install_options.append("-r") cmds = ["install-multiple", ] + install_options + [filepath, ] try: out = self.cmd(cmds) except AdbError as err: if "Failed to finalize session".lower() in err.stderr.lower(): return "Success" else: return self.install_app(filepath, replace) if re.search(r"Failure \[.*?\]", out): raise AdbShellError("Installation Failure", repr(out)) return out
Apache License 2.0
scidash/sciunit
sciunit/tests.py
Test.check_capabilities
python
def check_capabilities( self, model: Model, skip_incapable: bool = False, require_extra: bool = False ) -> bool: if not isinstance(model, Model): raise Error("Model %s is not a sciunit.Model." % str(model)) capable = all( [ self.check_capability(model, c, skip_incapable, require_extra) for c in self.required_capabilities ] ) return capable
Check that test's required capabilities are implemented by `model`. Args: model (Model): A sciunit model instance skip_incapable (bool, optional): Skip the incapable tests. Defaults to False. require_extra (bool, optional): Check to see whether the model implements certain other methods.. Defaults to False. Raises: Error: Raises an Error if model is not a Model. Raises a CapabilityError if model does not have a capability. Returns: bool: true if the test's required capabilities are implemented.
https://github.com/scidash/sciunit/blob/68401d88b8e47d29807f8b4f9d265a23174143d9/sciunit/tests.py#L191-L216
import inspect import traceback from copy import deepcopy from typing import Any, List, Optional, Tuple, Union import quantities as pq from .base import SciUnit, config from .capabilities import ProducesNumber from .errors import ( CapabilityError, Error, InvalidScoreError, ObservationError, ParametersError, ) from .models import Model from .scores import BooleanScore, ErrorScore, NAScore, NoneScore, Score, TBDScore from .utils import dict_combine from .validators import ObservationValidator, ParametersValidator class Test(SciUnit): def __init__( self, observation: Union[List[int], Tuple[int, int]], name: Optional[str] = None, **params ): self.name = name if name else self.__class__.__name__ assert isinstance(self.name, str), "Test name must be a string" if self.description is None: self.description = self.__class__.__doc__ self.params = dict_combine(self.default_params, params) self.verbose = self.params.pop("verbose", 1) self.validate_params(self.params) self.compute_params() self.observation = observation if self.observation_schema is None: self.observation_schema = deepcopy(self.score_type.observation_schema) if config.get("PREVALIDATE", False): self.validate_observation(self.observation) if self.score_type is None or not issubclass(self.score_type, Score): raise Error( ("The score type '%s' specified for Test '%s' " "is not valid.") % (self.score_type, self.name) ) super(Test, self).__init__() name = None description = None observation = None default_params = {} score_type = BooleanScore converter = None observation_schema = None observation_validator = ObservationValidator params_schema = None params_validator = ParametersValidator units = pq.dimensionless state_hide = ["last_model"] def compute_params(self) -> None: def validate_observation(self, observation: dict) -> dict: observation = self.score_type.observation_preprocess(observation) if not isinstance(observation, dict): raise ObservationError("Observation is not a dictionary.") if self.observation_schema: if isinstance(self.observation_schema, list): schemas = [ x[1] if isinstance(x, tuple) else x for x in self.observation_schema ] schema = {"oneof_schema": schemas, "type": "dict"} else: schema = {"schema": self.observation_schema, "type": "dict"} schema = {"observation": schema} v = self.observation_validator(schema, test=self) if not v.validate({"observation": observation}): raise ObservationError(v.errors) observation = self.score_type.observation_postprocess(observation) return observation @classmethod def observation_schema_names(cls) -> List[str]: names = [] if cls.observation_schema: if isinstance(cls.observation_schema, list): names = [ x[0] if isinstance(x, tuple) else "Schema %d" % (i + 1) for i, x in enumerate(cls.observation_schema) ] return names def validate_params(self, params: dict) -> dict: if params is None: raise ParametersError("Parameters cannot be `None`.") if not isinstance(params, dict): raise ParametersError("Parameters are not a dictionary.") if self.params_schema: if isinstance(self.params_schema, list): schema = {"oneof_schema": self.params_schema, "type": "dict"} else: schema = {"schema": self.params_schema, "type": "dict"} schema = {"params": schema} v = self.params_validator(schema, test=self) if not v.validate({"params": params}): raise ParametersError(v.errors) return params required_capabilities = ()
MIT License
note35/sinon
sinon/lib/spy.py
SinonSpy.returnValues
python
def returnValues(self): return super(SinonSpy, self)._get_wrapper().ret_list
Return: List (returns which are happened)
https://github.com/note35/sinon/blob/35da87ca6f30eec112ffc8d5c0a56d852d770285/sinon/lib/spy.py#L96-L100
from .util import ErrorHandler, Wrapper from .util import CollectionHandler as uch from .base import SinonBase from .matcher import SinonMatcher, Matcher import weakref class SinonSpy(SinonBase): def __init__(self, obj=None, prop=None): super(SinonSpy, self).__init__(obj, prop) self.__get_func = SinonSpy.__get_by_matcher @staticmethod def __get_by_matcher(arg): return SinonMatcher(arg) if not isinstance(arg, Matcher) else arg @staticmethod def __get_directly(arg): return arg def __remove_args_first_item(self): if len(self.args) > 0: new_args_list = [] for item in self.args: if len(item) > 0 and self.obj == item[0].__class__: new_args_list.append(item[1:]) else: new_args_list.append(item[:]) self.__set_args_list(new_args_list) def __set_args_list(self, new_args_list): super(SinonSpy, self)._get_wrapper().__set__("args_list", new_args_list) @property def args(self): return super(SinonSpy, self)._get_wrapper().args_list @property def kwargs(self): return super(SinonSpy, self)._get_wrapper().kwargs_list @property def exceptions(self): return super(SinonSpy, self)._get_wrapper().error_list @property
BSD 2-Clause Simplified License
feryal/automated-curriculum-rl
experiment.py
build_learner
python
def build_learner(agent, agent_state, env_outputs, agent_outputs, teacher_task_ph): learner_outputs, _ = agent.unroll(agent_outputs.action, env_outputs, agent_state) teacher_selected_task = tf.identity(teacher_task_ph) bootstrap_value = learner_outputs.baseline[-1] agent_outputs = nest.map_structure(lambda t: t[1:], agent_outputs) rewards, infos, done, _ = nest.map_structure( lambda t: t[1:], env_outputs) learner_outputs = nest.map_structure(lambda t: t[:-1], learner_outputs) if FLAGS.reward_clipping == 'abs_one': clipped_rewards = tf.clip_by_value(rewards, -1, 1) elif FLAGS.reward_clipping == 'soft_asymmetric': squeezed = tf.tanh(rewards / 5.0) clipped_rewards = tf.where(rewards < 0, .3 * squeezed, squeezed) * 5. discounts = tf.to_float(~done) * FLAGS.discounting with tf.device('/cpu'): vtrace_returns = vtrace.from_logits( behaviour_policy_logits=agent_outputs.policy_logits, target_policy_logits=learner_outputs.policy_logits, actions=agent_outputs.action, discounts=discounts, rewards=clipped_rewards, values=learner_outputs.baseline, bootstrap_value=bootstrap_value) total_loss = compute_policy_gradient_loss( learner_outputs.policy_logits, agent_outputs.action, vtrace_returns.pg_advantages) total_loss += FLAGS.baseline_cost * compute_baseline_loss( vtrace_returns.vs - learner_outputs.baseline) total_loss += FLAGS.entropy_cost * compute_entropy_loss( learner_outputs.policy_logits) num_env_frames = tf.train.get_global_step() learning_rate = tf.train.polynomial_decay(FLAGS.learning_rate, num_env_frames, FLAGS.total_environment_frames, 0) optimizer = tf.train.RMSPropOptimizer(learning_rate, FLAGS.decay, FLAGS.momentum, FLAGS.epsilon) train_op = optimizer.minimize(total_loss) if FLAGS.progress_signal == 'reward': episode_returns_correct_task = tf.boolean_mask( rewards, tf.logical_and(done, tf.equal(infos.task_name, teacher_selected_task))) progress_signal = tf.where( tf.size(episode_returns_correct_task) > 0, x=tf.reduce_mean(episode_returns_correct_task, name='progress_reward'), y=0) elif FLAGS.progress_signal == 'advantage': episode_returns_correct_task = tf.boolean_mask( rewards, tf.logical_and(done, tf.equal(infos.task_name, teacher_selected_task))) progress_signal = tf.where( tf.size(episode_returns_correct_task) > 0, x=tf.reduce_mean(episode_returns_correct_task, name='progress_reward'), y=0) elif FLAGS.progress_signal == 'gradient_norm': params = tf.trainable_variables() gradients = tf.gradients(total_loss, params) gradient_norm = tf.global_norm(gradients) progress_signal = tf.divide( gradient_norm, 500., name='progress_gradient_norm') else: progress_signal = tf.constant(0.) with tf.control_dependencies([train_op]): num_env_frames_and_train = num_env_frames.assign_add( FLAGS.batch_size * FLAGS.unroll_length * FLAGS.num_action_repeats) tf.summary.scalar('learning_rate', learning_rate) tf.summary.scalar('total_loss', total_loss) tf.summary.histogram('action', agent_outputs.action) tf.summary.scalar('progress_signal', progress_signal) return done, infos, num_env_frames_and_train, progress_signal
Builds the learner loop. Args: agent: A snt.RNNCore module outputting `AgentOutput` named tuples, with an `unroll` call for computing the outputs for a whole trajectory. agent_state: The initial agent state for each sequence in the batch. env_outputs: A `StepOutput` namedtuple where each field is of shape [T+1, ...]. agent_outputs: An `AgentOutput` namedtuple where each field is of shape [T+1, ...]. Returns: A tuple of (done, infos, and environment frames) where the environment frames tensor causes an update.
https://github.com/feryal/automated-curriculum-rl/blob/e5510b4c41aeae7487f0c08b35f8b99055d2bbe3/experiment.py#L384-L503
from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import contextlib import functools import os import sys from craft_env import env_factory import environments import numpy as np import py_process import sonnet as snt import tensorflow as tf import vtrace import curses try: import dynamic_batching except tf.errors.NotFoundError: tf.logging.warning('Running without dynamic batching.') from six.moves import range nest = tf.contrib.framework.nest flags = tf.app.flags FLAGS = tf.app.flags.FLAGS flags.DEFINE_string('logdir', '../results', 'TensorFlow log directory.') flags.DEFINE_enum('mode', 'train', ['train', 'test'], 'Training or test mode.') flags.DEFINE_integer('task', -1, 'Task id. Use -1 for local training.') flags.DEFINE_enum('job_name', 'learner', ['learner', 'actor'], 'Job name. Ignored when task is set to -1.') flags.DEFINE_integer('total_environment_frames', int(1e9), 'Total environment frames to train for.') flags.DEFINE_integer('num_actors', 4, 'Number of actors.') flags.DEFINE_integer('batch_size', 2, 'Batch size for training.') flags.DEFINE_integer('unroll_length', 100, 'Unroll length in agent steps.') flags.DEFINE_integer('num_action_repeats', 1, 'Number of action repeats.') flags.DEFINE_integer('seed', 1, 'Random seed.') flags.DEFINE_float('entropy_cost', 0.00025, 'Entropy cost/multiplier.') flags.DEFINE_float('baseline_cost', .5, 'Baseline cost/multiplier.') flags.DEFINE_float('discounting', .99, 'Discounting factor.') flags.DEFINE_enum('reward_clipping', 'abs_one', ['abs_one', 'soft_asymmetric'], 'Reward clipping.') flags.DEFINE_string( 'recipes_path', 'craft_env/resources/recipes.yaml', 'Path to recipes for craft environment') flags.DEFINE_string( 'hints_path', 'craft_env/resources/hints.yaml', 'Path to hints for craft environment') flags.DEFINE_integer( 'max_steps', 100, 'Maximum number of steps before the environment terminates on a failure.') flags.DEFINE_bool( 'reuse_environments', False, 'If set, will use a single environment per task, simplifying tasks' 'dramatically.') flags.DEFINE_float('learning_rate', 0.00048, 'Learning rate.') flags.DEFINE_float('decay', .99, 'RMSProp optimizer decay.') flags.DEFINE_float('momentum', 0., 'RMSProp momentum.') flags.DEFINE_float('epsilon', .1, 'RMSProp epsilon.') flags.DEFINE_float( 'gamma', 0.2, 'Controls the minimum sampling probability for each task') flags.DEFINE_float('eta', 0.3, 'Learning rate of teacher') flags.DEFINE_enum('progress_signal', 'advantage', ['reward', 'gradient_norm', 'advantage', 'random'], 'Type of signal to use when tracking down progress of students. ') flags.DEFINE_integer( 'switch_tasks_every_k_frames', int(1e4), 'We will trigger a refresh of the tasks after K environment frames.' ) flags.DEFINE_integer('save_every_k_teacher_updates', int(50), 'Write the Teacher signals to files at this frequency.') flags.DEFINE_bool('actors_same_task', True, 'If True, all actors are given the same task.' 'If False, leads to weird situation with a Teacher, but ' 'gives baseline IMPALA back with progress_signal=random') flags.DEFINE_integer('test_num_episodes', 30, 'Number of episodes per level.') flags.DEFINE_integer( 'evaluate_every_k_frames', int(1e5), 'Perform a full evaluation on all tasks after K environment frames.' ) ActorOutput = collections.namedtuple( 'ActorOutput', 'task_name agent_state env_outputs agent_outputs') AgentOutput = collections.namedtuple('AgentOutput', 'action policy_logits baseline') def is_single_machine(): return FLAGS.task == -1 class Agent(snt.RNNCore): def __init__(self, num_actions, obs_specs): super(Agent, self).__init__(name='agent') self._num_actions = num_actions self._obs_specs = obs_specs with self._enter_variable_scope(): self._core = tf.contrib.rnn.LSTMBlockCell(256) def initial_state(self, batch_size): return self._core.zero_state(batch_size, tf.float32) def _instruction(self, instruction): splitted = tf.string_split(instruction) dense = tf.sparse_tensor_to_dense(splitted, default_value='') length = tf.reduce_sum(tf.to_int32(tf.not_equal(dense, '')), axis=1) num_hash_buckets = 1000 buckets = tf.string_to_hash_bucket_fast(dense, num_hash_buckets) embedding_size = 20 embedding = snt.Embed(num_hash_buckets, embedding_size)(buckets) padding = tf.to_int32(tf.equal(tf.shape(embedding)[1], 0)) embedding = tf.pad(embedding, [[0, 0], [0, padding], [0, 0]]) core = tf.contrib.rnn.LSTMBlockCell(64, name='task_lstm') output, _ = tf.nn.dynamic_rnn(core, embedding, length, dtype=tf.float32) return tf.reverse_sequence(output, length, seq_axis=1)[:, 0] def _torso(self, input_): last_action, env_output = input_ reward, _, _, observations = env_output observations_dict = { obs_name: observations[obs_i] for obs_i, obs_name in enumerate(self._obs_specs.keys()) } features_out = snt.Linear(256)(observations_dict['features']) features_out = tf.nn.relu(features_out) features_out = snt.BatchFlatten()(features_out) features_out = snt.Linear(256)(features_out) features_out = tf.nn.relu(features_out) instruction_out = self._instruction(observations_dict['task_name']) clipped_reward = tf.expand_dims(tf.clip_by_value(reward, -1, 1), -1) one_hot_last_action = tf.one_hot(last_action, self._num_actions) return tf.concat( [features_out, clipped_reward, one_hot_last_action, instruction_out], axis=1) def _head(self, core_output): policy_logits = snt.Linear(self._num_actions, name='policy_logits')( core_output) baseline = tf.squeeze(snt.Linear(1, name='baseline')(core_output), axis=-1) new_action = tf.multinomial(policy_logits, num_samples=1, output_dtype=tf.int32) new_action = tf.squeeze(new_action, 1, name='new_action') return AgentOutput(new_action, policy_logits, baseline) def _build(self, input_, core_state): action, env_output = input_ actions, env_outputs = nest.map_structure(lambda t: tf.expand_dims(t, 0), (action, env_output)) outputs, core_state = self.unroll(actions, env_outputs, core_state) return nest.map_structure(lambda t: tf.squeeze(t, 0), outputs), core_state @snt.reuse_variables def unroll(self, actions, env_outputs, core_state): _, _, done, _ = env_outputs torso_outputs = snt.BatchApply(self._torso)((actions, env_outputs)) initial_core_state = self._core.zero_state( tf.shape(actions)[1], tf.float32) core_output_list = [] for input_, d in zip(tf.unstack(torso_outputs), tf.unstack(done)): core_state = nest.map_structure(functools.partial(tf.where, d), initial_core_state, core_state) core_output, core_state = self._core(input_, core_state) core_output_list.append(core_output) return snt.BatchApply(self._head)(tf.stack(core_output_list)), core_state class Teacher(object): def __init__(self, tasks, gamma=0.3): self._tasks = tasks self._n_tasks = len(self._tasks) self._gamma = gamma self._log_weights = np.zeros(self._n_tasks) @property def task_probabilities(self): weights = np.exp(self._log_weights - np.sum(self._log_weights)) return (1 - self._gamma)*weights / np.sum(weights) + self._gamma/self._n_tasks def get_task(self): task_i = np.random.choice(self._n_tasks, p=self.task_probabilities) return self._tasks[task_i] def update(self, task, reward): task_i = self._tasks.index(task) reward_corrected = reward/self.task_probabilities[task_i] self._log_weights[task_i] += self._gamma*reward_corrected/self._n_tasks def build_actor(agent, env, task_name_op, action_set): if isinstance(task_name_op, str): task_name_op = tf.constant(task_name_op) initial_env_output, initial_env_state = env.initial(task_name_op) initial_agent_state = agent.initial_state(1) initial_action = tf.zeros([1], dtype=tf.int32) dummy_agent_output, _ = agent( (initial_action, nest.map_structure(lambda t: tf.expand_dims(t, 0), initial_env_output)), initial_agent_state) initial_agent_output = nest.map_structure( lambda t: tf.zeros(t.shape, t.dtype), dummy_agent_output) def create_state(t): with tf.variable_scope(None, default_name='state'): return tf.get_local_variable(t.op.name, initializer=t, use_resource=True) persistent_state = nest.map_structure( create_state, (initial_env_state, initial_env_output, initial_agent_state, initial_agent_output)) def step(input_, unused_i): env_state, env_output, agent_state, agent_output = input_ action = agent_output[0] batched_env_output = nest.map_structure(lambda t: tf.expand_dims(t, 0), env_output) agent_output, agent_state = agent( (action, batched_env_output), agent_state) action = agent_output[0][0] raw_action = tf.gather(action_set, action) env_output, env_state = env.step(raw_action, env_state, task_name_op) return env_state, env_output, agent_state, agent_output first_values = nest.map_structure(lambda v: v.read_value(), persistent_state) _, first_env_output, first_agent_state, first_agent_output = first_values output = tf.scan(step, tf.range(FLAGS.unroll_length), first_values) _, env_outputs, _, agent_outputs = output assign_ops = nest.map_structure(lambda v, t: v.assign(t[-1]), persistent_state, output) with tf.control_dependencies(nest.flatten(assign_ops)): first_agent_state = nest.map_structure(lambda t: t[0], first_agent_state) first_agent_output = nest.map_structure(lambda t: t[0], first_agent_output) agent_outputs = nest.map_structure(lambda t: t[:, 0], agent_outputs) full_agent_outputs, full_env_outputs = nest.map_structure( lambda first, rest: tf.concat([[first], rest], 0), (first_agent_output, first_env_output), (agent_outputs, env_outputs)) actor_output = ActorOutput( task_name=task_name_op, agent_state=first_agent_state, env_outputs=full_env_outputs, agent_outputs=full_agent_outputs) return nest.map_structure(tf.stop_gradient, actor_output) def compute_baseline_loss(advantages): return .5 * tf.reduce_sum(tf.square(advantages)) def compute_entropy_loss(logits): policy = tf.nn.softmax(logits) log_policy = tf.nn.log_softmax(logits) entropy_per_timestep = tf.reduce_sum(-policy * log_policy, axis=-1) return -tf.reduce_sum(entropy_per_timestep) def compute_policy_gradient_loss(logits, actions, advantages): cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=actions, logits=logits) advantages = tf.stop_gradient(advantages) policy_gradient_loss_per_timestep = cross_entropy * advantages return tf.reduce_sum(policy_gradient_loss_per_timestep)
Apache License 2.0
pytlab/catplot
catplot/ep_components/ep_canvas.py
EPCanvas._render_ep_lines
python
def _render_ep_lines(self): for line in self.lines: for idx in range(line.shadow_depth): identity_trans = transforms.IdentityTransform() offset = transforms.ScaledTranslation(idx, -idx, identity_trans) shadow_trans = self.axes.transData + offset alpha = (line.shadow_depth-idx)/2.0/line.shadow_depth shadow_line = Line2D(line.x, line.y, linewidth=line.line_width, color=line.shadow_color, transform=shadow_trans, alpha=alpha) self.shadow_lines.append(shadow_line)
Render energy profile lines in canvas.
https://github.com/pytlab/catplot/blob/63ad46218b17d5cdffdd026dad7d775cf4caa50b/catplot/ep_components/ep_canvas.py#L128-L144
from collections import namedtuple import matplotlib.pyplot as plt from matplotlib import transforms from matplotlib.lines import Line2D from matplotlib.patches import Ellipse from matplotlib.spines import Spine import numpy as np from catplot.canvas import Canvas from catplot.chem_parser import RxnEquation from catplot.ep_components.ep_lines import EPLine from catplot.ep_components.ep_chain import EPChain from catplot.ep_components.ep_lines import ElementaryLine class EPCanvas(Canvas): def __init__(self, **kwargs): super(EPCanvas, self).__init__(**kwargs) self._set_axes() self.lines = [] self.shadow_lines = [] self.chains = [] def add_line(self, ep_line): if not isinstance(ep_line, ElementaryLine): raise ValueError("line added must be instance of EPLine") if ep_line in self: msg = "the line is already in canvas, try to add the copy of it if you want." raise ValueError(msg) self.lines.append(ep_line) def add_lines(self, ep_lines): for line in ep_lines: self.add_line(line) def add_chain(self, ep_chain): if not isinstance(ep_chain, EPChain): raise ValueError("Added chain must be instance of EPChain") if ep_chain in self: msg = "the chain is already in canvas, try to add the copy of it if you want." raise ValueError(msg) self.chains.append(ep_chain) self.lines.extend(ep_chain.elementary_lines) def add_chains(self, ep_chains): for chain in ep_chains: self.add_chain(chain) def add_all_horizontal_auxiliary_lines(self): for line in self.lines: self.add_horizontal_auxiliary_line(line) return self def add_all_vertical_auxiliary_lines(self): for line in self.lines: self.add_vertical_auxiliary_lines(line) return self def add_all_species_annotations(self): for line in self.lines: self.add_species_annotations(line) return self def add_all_energy_annotations(self): for line in self.lines: self.add_energy_annotations(line) return self
MIT License
jvmncs/safe-grid-agents
safe_grid_agents/spiky/agents.py
PPOCRMDPAgent._purge_memory
python
def _purge_memory(self) -> None: if len(self.states) > self.state_memory_cap: to_remove = [ state for state in random.sample( self.states.keys(), len(self.states) - self.state_memory_cap / 2 ) if self.states[state][0] ] for state in to_remove: del self.states[state] if len(self.states) > 2 * self.state_memory_cap / 3: self.state_memory_cap *= 2
Drop random noncorrupt states from the memory for performance reasons.
https://github.com/jvmncs/safe-grid-agents/blob/40f8101d23ca7dfe5c93d0c6be2a43101f56ce1c/safe_grid_agents/spiky/agents.py#L135-L149
import torch import random import numpy as np from typing import Generator, List from safe_grid_agents.common.utils import track_metrics from safe_grid_agents.common.agents.policy_cnn import PPOCNNAgent from safe_grid_agents.types import Rollout from ai_safety_gridworlds.environments.tomato_crmdp import REWARD_FACTOR def _get_agent_position(board, agent_value): x_pos, y_pos = np.unravel_index( np.argwhere(np.ravel(board) == agent_value), board.shape ) x_pos, y_pos = x_pos.flat[0], y_pos.flat[0] return x_pos, y_pos def _manhatten_distance(x1, x2, y1, y2): return abs(x1 - x2) + abs(y1 - y2) def d_tomato_crmdp(X, Y): assert X.shape == Y.shape return REWARD_FACTOR * np.sum(X != Y) def d_toy_gridworlds(X, Y): assert X.shape == Y.shape X = X[0, ...] Y = Y[0, ...] X_pos_x, X_pos_y = _get_agent_position(X, agent_value=0) Y_pos_x, Y_pos_y = _get_agent_position(Y, agent_value=0) return _manhatten_distance(X_pos_x, Y_pos_x, X_pos_y, Y_pos_y) def d_trans_boat(X, Y): assert X.shape == Y.shape X_initial, X_final = X[0, ...], X[1, ...] Y_initial, Y_final = Y[0, ...], Y[1, ...] X_initial_pos_x, X_initial_pos_y = _get_agent_position(X_initial, agent_value=2) Y_initial_pos_x, Y_initial_pos_y = _get_agent_position(Y_initial, agent_value=2) X_final_pos_x, X_final_pos_y = _get_agent_position(X_final, agent_value=2) Y_final_pos_x, Y_final_pos_y = _get_agent_position(Y_final, agent_value=2) X_direction_x = X_final_pos_x - X_initial_pos_x X_direction_y = X_final_pos_y - X_initial_pos_y Y_direction_x = Y_final_pos_x - Y_initial_pos_x Y_direction_y = Y_final_pos_y - Y_initial_pos_y initial_position_distance = _manhatten_distance( X_initial_pos_x, Y_initial_pos_x, X_initial_pos_y, Y_initial_pos_y ) direction_distance = int(X_direction_x != Y_direction_x) direction_distance += int(X_direction_y != Y_direction_y) return initial_position_distance + direction_distance ENV_TO_D = { "corners": d_toy_gridworlds, "way": d_toy_gridworlds, "tomato-crmdp": d_tomato_crmdp, "trans-boat": d_trans_boat, } class PPOCRMDPAgent(PPOCNNAgent): def __init__(self, env, args) -> None: super().__init__(env, args) self.states = dict() self.d = ENV_TO_D[args.env_alias] self.epsilon = 1e-3 self.rllb = dict() self.state_memory_cap = 0 def _mark_state_corrupt(self, board, reward) -> None: assert board.dtype == np.float32 self.states[board.tostring()] = [False, reward] def _mark_state_safe(self, board, reward) -> None: assert board.dtype == np.float32 self.states[board.tostring()] = [True, reward] def _is_state_corrupt(self, board) -> bool: if board.tostring() in self.states: return not self.states[board.tostring()][0] else: return False def _iterate_safe_states(self) -> Generator[np.array, None, None]: for board_str in self.states.keys(): if self.states[board_str][0]: board = np.fromstring(board_str, dtype=np.float32, count=self.n_input) board = np.reshape(board, self.board_shape) yield board, self.states[board_str][1] def _iterate_corrupt_states(self) -> Generator[np.array, None, None]: for board_str in self.states.keys(): if not self.states[board_str][0]: board = np.fromstring(board_str, dtype=np.float32, count=self.n_input) board = np.reshape(board, self.board_shape) yield board, self.states[board_str][1] def _update_rllb(self) -> None: for corrupt_board, corrupt_reward in self._iterate_corrupt_states(): board_string = corrupt_board.tostring() rllb = self.rllb.get(board_string, None) for safe_board, safe_reward in self._iterate_safe_states(): bound = safe_reward - self.d(safe_board, corrupt_board) if rllb is None or bound > rllb: rllb = bound self.rllb[board_string] = rllb def _get_TLV(self, boardX, rewardX, state_iterator) -> float: TLV = 0 unique_states = set() for boardY, rewardY in state_iterator: if boardY.tostring() not in unique_states: TLV += max(0, abs(rewardX - rewardY) - self.d(boardY, boardX)) unique_states.add(boardY.tostring()) return TLV
Apache License 2.0
ansible-community/molecule-podman
src/molecule_podman/driver.py
Podman.sanity_checks
python
def sanity_checks(self): log.info("Sanity checks: '%s'", self._name) runtime = Runtime() if runtime.version < Version("2.10.0"): if runtime.config.ansible_pipelining: sysexit_with_message( "Podman connections do not work with Ansible " f"{runtime.version} when pipelining is enabled. " "Disable pipelining or " "upgrade Ansible to 2.11 or newer.", code=RC_SETUP_ERROR, ) warnings.warn( f"Use of molecule-podman with Ansible {runtime.version} is " "unsupported, upgrade to Ansible 2.11 or newer. " "Do not raise any bugs if your tests are failing with current configuration.", category=MoleculeRuntimeWarning, )
Implement Podman driver sanity checks.
https://github.com/ansible-community/molecule-podman/blob/577f6bad21b3622892965f63d289b932b29def45/src/molecule_podman/driver.py#L214-L235
from __future__ import absolute_import import distutils.spawn import os import warnings from typing import Dict from ansible_compat.ports import cache from ansible_compat.runtime import Runtime from molecule import logger, util from molecule.api import Driver, MoleculeRuntimeWarning from molecule.constants import RC_SETUP_ERROR from molecule.util import sysexit_with_message from packaging.version import Version log = logger.get_logger(__name__) class Podman(Driver): def __init__(self, config=None): super().__init__(config) self._name = "podman" self.podman_exec = os.environ.get("MOLECULE_PODMAN_EXECUTABLE", "podman") self._podman_cmd = None @property def podman_cmd(self): if not self._podman_cmd: self._podman_cmd = distutils.spawn.find_executable(self.podman_exec) if not self._podman_cmd: msg = f"command not found in PATH {self.podman_exec}" util.sysexit_with_message(msg) return self._podman_cmd @property def name(self): return self._name @name.setter def name(self, value): self._name = value @property def login_cmd_template(self): return ( f"{self.podman_cmd} exec " "-e COLUMNS={columns} " "-e LINES={lines} " "-e TERM=bash " "-e TERM=xterm " "-ti {instance} bash" ) @property def default_safe_files(self): return [os.path.join(self._config.scenario.ephemeral_directory, "Dockerfile")] @property def default_ssh_connection_options(self): return [] def login_options(self, instance_name): return {"instance": instance_name} def ansible_connection_options(self, instance_name): return { "ansible_connection": "podman", "ansible_podman_executable": f"{self.podman_exec}", } @cache
MIT License
flatironinstitute/inferelator
inferelator/velocity_workflow.py
VelocityWorkflow._recalculate_design
python
def _recalculate_design(self): self.response = self._combine_expression_velocity(self.data, self._velocity_data) self.data = None self._velocity_data = None self.design = self.tfa_driver().compute_transcription_factor_activity(self.priors_data, self.response)
Calculate dX/dt + lambda * X as response and A_hat as design :return:
https://github.com/flatironinstitute/inferelator/blob/dd532f428132cfac98c9c7c161632dab2a4e9ea9/inferelator/velocity_workflow.py#L91-L101
from inferelator.workflow import _H5AD, _HDF5, _TSV from inferelator.tfa_workflow import TFAWorkFlow from inferelator.single_cell_workflow import SingleCellWorkflow from inferelator.utils import InferelatorDataLoader, InferelatorData, Debug, Validator as check from inferelator.preprocessing.velocity_tfa import VelocityTFA import numpy as np _VELOCITY_FILE_TYPES = [_TSV, _HDF5, _H5AD] class VelocityWorkflow(SingleCellWorkflow): _velocity_data = None _velocity_file_name = None _velocity_file_type = None _velocity_h5_layer = None _decay_constants = None _use_precalculated_decay_constants = True tau = None tfa_driver = VelocityTFA def get_data(self): super(VelocityWorkflow, self).get_data() self.load_velocity() def startup_finish(self): self.single_cell_normalize() self._align_velocity() TFAWorkFlow.startup_finish(self) def set_velocity_parameters(self, velocity_file_name=None, velocity_file_type=None, velocity_file_layer=None): self._set_with_warning("_velocity_file_name", velocity_file_name) self._set_with_warning("_velocity_h5_layer", velocity_file_layer) if velocity_file_type is not None and velocity_file_type.lower() in _VELOCITY_FILE_TYPES: self._set_with_warning("_velocity_file_type", velocity_file_type) elif velocity_file_type is not None: msg = "velocity_file_type must be in {ft}".format(ft=_VELOCITY_FILE_TYPES) raise ValueError(msg) def load_velocity(self, velocity_file=None, loader_type=None): velocity_file = self._velocity_file_name if velocity_file is None else velocity_file loader_type = self._velocity_file_type if loader_type is None else loader_type transpose = not self.expression_matrix_columns_are_genes loader = InferelatorDataLoader(input_dir=self.input_dir, file_format_settings=self._file_format_settings) Debug.vprint("Loading velocity data from {f}".format(f=velocity_file), level=1) if loader_type == _TSV or loader_type is None: self._velocity_data = loader.load_data_tsv(velocity_file, transpose_expression_data=transpose) elif loader_type == _H5AD: self._velocity_data = loader.load_data_h5ad(velocity_file, use_layer=self._velocity_h5_layer) elif loader_type == _HDF5: self._velocity_data = loader.load_data_hdf5(velocity_file, transpose_expression_data=transpose, use_layer=self._velocity_h5_layer) else: raise ValueError("Invalid velocity_file_type: {a}".format(a=loader_type)) self._velocity_data.name = "Velocity" def _align_velocity(self): keep_genes = self._velocity_data.gene_names.intersection(self.data.gene_names) Debug.vprint("Aligning velocity and expression data on {n} genes".format(n=len(keep_genes))) self._velocity_data.trim_genes(remove_constant_genes=False, trim_gene_list=keep_genes) self.data.trim_genes(remove_constant_genes=False, trim_gene_list=keep_genes) assert check.indexes_align((self._velocity_data.gene_names, self.data.gene_names)) assert check.indexes_align((self._velocity_data.sample_names, self.data.sample_names)) def compute_common_data(self): pass
BSD 2-Clause Simplified License
seecode-audit/clocwalk
clocwalk/libs/core/db_helper.py
DBHelper.query_cve_by_id
python
def query_cve_by_id(self, cve): try: self.cursor.execute( "SELECT cve, description, links, cvss_v2_severity, cvss_v2_impactscore, cvss_v3_impactscore, cpe23uri" " FROM cve WHERE cve=?", (cve,) ) item = self.cursor.fetchone() if item: entity = AttribDict() entity.cve = item[0] entity.description = item[1] entity.links = item[2] entity.cvss_v2_severity = item[3] entity.cvss_v2_impactscore = item[4] entity.cvss_v3_impactscore = item[5] entity.cpe23uri = item[6] return entity else: return None except Exception as ex: import traceback;traceback.print_exc()
:param cve: :return:
https://github.com/seecode-audit/clocwalk/blob/9ae41a841c159212ee1da25d97c93f9daa3c1d5c/clocwalk/libs/core/db_helper.py#L208-L235
import os import sqlite3 from clocwalk.libs.core.datatype import AttribDict class DBHelper(object): def __init__(self, db_path, is_create=False): if not os.path.isfile(db_path) and not is_create: raise IOError("'{0}' file does not exist.".format(db_path)) self.conn = sqlite3.connect(db_path) self.cursor = self.conn.cursor() def create_cpe_table(self): try: if self.cursor: self.cursor.executescript("""CREATE TABLE cpe_match ( `cpe23uri` TEXT, `vendor` TEXT, `product` TEXT, `version` TEXT, `update` TEXT, `edition` TEXT, `language` TEXT, `sw_edition` TEXT, `target_sw` TEXT, `target_hw` TEXT, `other` TEXT, `version_start_including` TEXT, `version_end_including` TEXT, `version_start_excluding` TEXT, `version_end_excluding` TEXT ); CREATE INDEX "cpe23uri" ON "cpe_match" ( "cpe23uri" ); """) except Exception as ex: import traceback; traceback.print_exc() def create_cve_table(self): try: if self.cursor: self.cursor.executescript("""CREATE TABLE cve ( `cve` TEXT, `cpe23uri` TEXT, `description` TEXT, `links` TEXT, `problemtype` TEXT, `year` TEXT, `cvss_v2_severity` TEXT, `cvss_v2_impactscore` TEXT, `cvss_v3_impactscore` TEXT ); CREATE INDEX "cve_cpe23uri" ON "cve" ("cpe23uri", "cve"); """) except Exception as ex: pass def create_cnvd_table(self): try: if self.cursor: self.cursor.execute("""CREATE TABLE cnvd ( `cnvd` TEXT, `description` TEXT, `risk` TEXT, `links` TEXT );""") except Exception as ex: pass def create_cpe_bulk(self, items): try: self.cursor.executemany( "INSERT INTO cpe_match (`vendor`, `product`, `version`, `update`, `cpe23uri`, " "`edition`, `language` , `sw_edition`, `target_sw`, `target_hw`, `other`, " "`version_start_including`, `version_end_including`, `version_start_excluding`, " "`version_end_excluding`) " "VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);", items ) self.conn.commit() except Exception as ex: import traceback; traceback.print_exc() def create_cve_bulk(self, items): result = False try: self.cursor.executemany( "INSERT INTO cve (cve, cpe23uri, description, links, problemtype, year, cvss_v2_severity, " "cvss_v2_impactscore, cvss_v3_impactscore) VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?);", items ) self.conn.commit() result = True except Exception as ex: import traceback; traceback.print_exc() return result def create_cnvd_entity(self, **kwargs): result = False try: cnvd = kwargs.get('cnvd') description = kwargs.get('description') risk = kwargs.get('risk') links = kwargs.get('links') self.cursor.execute( "INSERT INTO cnvd (cnvd, description, risk, links) VALUES(?, ?, ?, ?);", (cnvd, description, risk, links) ) self.conn.commit() result = True except Exception as ex: import traceback; traceback.print_exc() return result def create_cnvd_bulk(self, items): result = False try: self.cursor.executemany( "INSERT INTO cnvd (cnvd, description, risk, links) VALUES(?, ?, ?, ?)", items ) self.conn.commit() result = True except Exception as ex: import traceback; traceback.print_exc() return result def query_cve_by_cpe23uri(self, cpe23uri): try: self.cursor.execute( "SELECT cve, description, links, cvss_v2_severity, cvss_v2_impactscore, cvss_v3_impactscore" " FROM cve WHERE cpe23uri=?", (cpe23uri,) ) item = self.cursor.fetchone() if item: entity = AttribDict() entity.cve = item[0] entity.description = item[1] entity.links = item[2] entity.cpe23uri = cpe23uri entity.cvss_v2_severity = item[3] entity.cvss_v2_impactscore = item[4] entity.cvss_v3_impactscore = item[5] return entity else: return None except Exception as ex: import traceback;traceback.print_exc()
Apache License 2.0
vertexproject/synapse
synapse/cortex.py
CoreApi.addTagProp
python
async def addTagProp(self, name, tdef, info): self.user.confirm(('model', 'tagprop', 'add')) if not s_grammar.isBasePropNoPivprop(name): mesg = f'Invalid prop name {name}' raise s_exc.BadPropDef(name=name, mesg=mesg) return await self.cell.addTagProp(name, tdef, info)
Add a tag property to record data about tags on nodes.
https://github.com/vertexproject/synapse/blob/a9d62ffacd9cc236ac52f92a734deef55c66ecf3/synapse/cortex.py#L723-L731
import os import copy import regex import asyncio import logging import contextlib import collections from collections.abc import Mapping import synapse import synapse.exc as s_exc import synapse.axon as s_axon import synapse.common as s_common import synapse.telepath as s_telepath import synapse.datamodel as s_datamodel import synapse.lib.base as s_base import synapse.lib.cell as s_cell import synapse.lib.chop as s_chop import synapse.lib.coro as s_coro import synapse.lib.hive as s_hive import synapse.lib.view as s_view import synapse.lib.cache as s_cache import synapse.lib.layer as s_layer import synapse.lib.nexus as s_nexus import synapse.lib.queue as s_queue import synapse.lib.storm as s_storm import synapse.lib.agenda as s_agenda import synapse.lib.config as s_config import synapse.lib.parser as s_parser import synapse.lib.dyndeps as s_dyndeps import synapse.lib.grammar as s_grammar import synapse.lib.httpapi as s_httpapi import synapse.lib.msgpack as s_msgpack import synapse.lib.modules as s_modules import synapse.lib.spooled as s_spooled import synapse.lib.version as s_version import synapse.lib.modelrev as s_modelrev import synapse.lib.stormsvc as s_stormsvc import synapse.lib.lmdbslab as s_lmdbslab import synapse.lib.stormhttp as s_stormhttp import synapse.lib.stormwhois as s_stormwhois import synapse.lib.provenance as s_provenance import synapse.lib.stormtypes as s_stormtypes import synapse.lib.stormlib.auth as s_stormlib_auth import synapse.lib.stormlib.cell as s_stormlib_cell import synapse.lib.stormlib.imap as s_stormlib_imap import synapse.lib.stormlib.json as s_stormlib_json import synapse.lib.stormlib.smtp as s_stormlib_smtp import synapse.lib.stormlib.stix as s_stormlib_stix import synapse.lib.stormlib.macro as s_stormlib_macro import synapse.lib.stormlib.model as s_stormlib_model import synapse.lib.stormlib.oauth as s_stormlib_oauth import synapse.lib.stormlib.storm as s_stormlib_storm import synapse.lib.stormlib.backup as s_stormlib_backup import synapse.lib.stormlib.infosec as s_stormlib_infosec import synapse.lib.stormlib.project as s_stormlib_project import synapse.lib.stormlib.version as s_stormlib_version import synapse.lib.stormlib.modelext as s_stormlib_modelext logger = logging.getLogger(__name__) stormlogger = logging.getLogger('synapse.storm') reqver = '>=0.2.0,<3.0.0' SYNC_NODEEDITS = 0 SYNC_NODEEDIT = 1 SYNC_LAYR_ADD = 3 SYNC_LAYR_DEL = 4 reqValidPush = s_config.getJsValidator({ 'type': 'object', 'properties': { 'url': {'type': 'string'}, 'time': {'type': 'number'}, 'iden': {'type': 'string', 'pattern': s_config.re_iden}, 'user': {'type': 'string', 'pattern': s_config.re_iden}, }, 'additionalProperties': True, 'required': ['iden', 'url', 'user', 'time'], }) reqValidPull = reqValidPush reqValidTagModel = s_config.getJsValidator({ 'type': 'object', 'properties': { 'prune': {'type': 'number', 'minimum': 1}, 'regex': {'type': 'array', 'items': {'type': ['string', 'null']}}, }, 'additionalProperties': False, 'required': [], }) def cmprkey_indx(x): return x[1] def cmprkey_buid(x): return x[1][1] async def wrap_liftgenr(iden, genr): async for indx, buid, sode in genr: yield iden, (indx, buid), sode class CoreApi(s_cell.CellApi): @s_cell.adminapi() def getCoreMods(self): return self.cell.getCoreMods() def stat(self): self.user.confirm(('status',)) s_common.deprecated('stat') return self.cell.stat() async def getModelDict(self): return await self.cell.getModelDict() async def getModelDefs(self): return await self.cell.getModelDefs() def getCoreInfo(self): return self.cell.getCoreInfo() async def getCoreInfoV2(self): return await self.cell.getCoreInfoV2() def _reqValidStormOpts(self, opts): if opts is None: opts = {} opts.setdefault('user', self.user.iden) if opts.get('user') != self.user.iden: self.user.confirm(('impersonate',)) return opts async def callStorm(self, text, opts=None): opts = self._reqValidStormOpts(opts) return await self.cell.callStorm(text, opts=opts) async def exportStorm(self, text, opts=None): opts = self._reqValidStormOpts(opts) async for pode in self.cell.exportStorm(text, opts=opts): yield pode async def feedFromAxon(self, sha256, opts=None): opts = self._reqValidStormOpts(opts) return await self.cell.feedFromAxon(sha256, opts=opts) async def addCronJob(self, cdef): cdef['creator'] = self.user.iden s_common.deprecated('addCronJob') self.user.confirm(('cron', 'add'), gateiden='cortex') return await self.cell.addCronJob(cdef) async def delCronJob(self, iden): s_common.deprecated('delCronJob') self.user.confirm(('cron', 'del'), gateiden=iden) await self.cell.delCronJob(iden) async def updateCronJob(self, iden, query): s_common.deprecated('updateCronJob') self.user.confirm(('cron', 'set'), gateiden=iden) await self.cell.updateCronJob(iden, query) async def enableCronJob(self, iden): s_common.deprecated('enableCronJob') self.user.confirm(('cron', 'set'), gateiden=iden) await self.cell.enableCronJob(iden) async def disableCronJob(self, iden): s_common.deprecated('disableCronJob') self.user.confirm(('cron', 'set'), gateiden=iden) await self.cell.disableCronJob(iden) async def listCronJobs(self): s_common.deprecated('listCronJobs') crons = [] for cron in await self.cell.listCronJobs(): if not self.user.allowed(('cron', 'get'), gateiden=cron.get('iden')): continue crons.append(cron) return crons async def editCronJob(self, iden, name, valu): iden = str(iden) name = str(name) self.user.confirm(('cron', 'set', name), gateiden=iden) return await self.cell.editCronJob(iden, name, valu) async def setStormCmd(self, cdef): self.user.confirm(('admin', 'cmds')) return await self.cell.setStormCmd(cdef) async def delStormCmd(self, name): self.user.confirm(('admin', 'cmds')) return await self.cell.delStormCmd(name) async def _reqDefLayerAllowed(self, perms): view = self.cell.getView() wlyr = view.layers[0] self.user.confirm(perms, gateiden=wlyr.iden) async def addNodeTag(self, iden, tag, valu=(None, None)): s_common.deprecated('addNodeTag') await self._reqDefLayerAllowed(('node', 'tag', 'add', *tag.split('.'))) return await self.cell.addNodeTag(self.user, iden, tag, valu) async def delNodeTag(self, iden, tag): s_common.deprecated('delNodeTag') await self._reqDefLayerAllowed(('node', 'tag', 'del', *tag.split('.'))) return await self.cell.delNodeTag(self.user, iden, tag) async def setNodeProp(self, iden, name, valu): s_common.deprecated('setNodeProp') buid = s_common.uhex(iden) async with await self.cell.snap(user=self.user) as snap: with s_provenance.claim('coreapi', meth='prop:set', user=snap.user.iden): node = await snap.getNodeByBuid(buid) if node is None: raise s_exc.NoSuchIden(iden=iden) prop = node.form.props.get(name) self.user.confirm(('node', 'prop', 'set', prop.full), gateiden=snap.wlyr.iden) await node.set(name, valu) return node.pack() async def delNodeProp(self, iden, name): s_common.deprecated('delNodeProp') buid = s_common.uhex(iden) async with await self.cell.snap(user=self.user) as snap: with s_provenance.claim('coreapi', meth='prop:del', user=snap.user.iden): node = await snap.getNodeByBuid(buid) if node is None: raise s_exc.NoSuchIden(iden=iden) prop = node.form.props.get(name) self.user.confirm(('node', 'prop', 'del', prop.full), gateiden=snap.wlyr.iden) await node.pop(name) return node.pack() async def addNode(self, form, valu, props=None): s_common.deprecated('addNode') async with await self.cell.snap(user=self.user) as snap: self.user.confirm(('node', 'add', form), gateiden=snap.wlyr.iden) with s_provenance.claim('coreapi', meth='node:add', user=snap.user.iden): node = await snap.addNode(form, valu, props=props) return node.pack() async def addNodes(self, nodes): s_common.deprecated('addNodes') done = {} for node in nodes: formname = node[0][0] if done.get(formname): continue await self._reqDefLayerAllowed(('node', 'add', formname)) done[formname] = True async with await self.cell.snap(user=self.user) as snap: with s_provenance.claim('coreapi', meth='node:add', user=snap.user.iden): snap.strict = False async for node in snap.addNodes(nodes): if node is not None: node = node.pack() yield node async def getFeedFuncs(self): return await self.cell.getFeedFuncs() async def addFeedData(self, name, items, *, viewiden=None): view = self.cell.getView(viewiden, user=self.user) if view is None: raise s_exc.NoSuchView(iden=viewiden) wlyr = view.layers[0] parts = name.split('.') self.user.confirm(('feed:data', *parts), gateiden=wlyr.iden) await self.cell.boss.promote('feeddata', user=self.user, info={'name': name, 'view': view.iden, 'nitems': len(items), }) async with await self.cell.snap(user=self.user, view=view) as snap: with s_provenance.claim('feed:data', name=name, user=snap.user.iden): snap.strict = False await snap.addFeedData(name, items) async def count(self, text, opts=None): opts = self._reqValidStormOpts(opts) return await self.cell.count(text, opts=opts) async def eval(self, text, opts=None): s_common.deprecated('eval') opts = self._reqValidStormOpts(opts) view = self.cell._viewFromOpts(opts) async for pode in view.iterStormPodes(text, opts=opts): yield pode async def storm(self, text, opts=None): opts = self._reqValidStormOpts(opts) async for mesg in self.cell.storm(text, opts=opts): yield mesg async def reqValidStorm(self, text, opts=None): return await self.cell.reqValidStorm(text, opts) async def watch(self, wdef): s_common.deprecated('watch') iden = wdef.get('view', self.cell.view.iden) self.user.confirm(('watch',), gateiden=iden) async for mesg in self.cell.watch(wdef): yield mesg async def syncLayerNodeEdits(self, offs, layriden=None, wait=True): layr = self.cell.getLayer(layriden) if layr is None: raise s_exc.NoSuchLayer(iden=layriden) self.user.confirm(('sync',), gateiden=layr.iden) async for item in self.cell.syncLayerNodeEdits(layr.iden, offs, wait=wait): yield item @s_cell.adminapi() async def splices(self, offs=None, size=None, layriden=None): s_common.deprecated('splices') layr = self.cell.getLayer(layriden) count = 0 async for mesg in layr.splices(offs=offs, size=size): count += 1 if not count % 1000: await asyncio.sleep(0) yield mesg @s_cell.adminapi() async def splicesBack(self, offs=None, size=None): s_common.deprecated('splicesBack') count = 0 async for mesg in self.cell.view.layers[0].splicesBack(offs=offs, size=size): count += 1 if not count % 1000: await asyncio.sleep(0) yield mesg async def spliceHistory(self): s_common.deprecated('spliceHistory') async for splice in self.cell.spliceHistory(self.user): yield splice @s_cell.adminapi() async def provStacks(self, offs, size): count = 0 for iden, stack in self.cell.provstor.provStacks(offs, size): count += 1 if not count % 1000: await asyncio.sleep(0) yield s_common.ehex(iden), stack @s_cell.adminapi() async def getProvStack(self, iden: str): if iden is None: return None return self.cell.provstor.getProvStack(s_common.uhex(iden)) async def getPropNorm(self, prop, valu): return await self.cell.getPropNorm(prop, valu) async def getTypeNorm(self, name, valu): return await self.cell.getTypeNorm(name, valu) async def addForm(self, formname, basetype, typeopts, typeinfo): self.user.confirm(('model', 'form', 'add', formname)) return await self.cell.addForm(formname, basetype, typeopts, typeinfo) async def delForm(self, formname): self.user.confirm(('model', 'form', 'del', formname)) return await self.cell.delForm(formname) async def addFormProp(self, form, prop, tdef, info): self.user.confirm(('model', 'prop', 'add', form)) if not s_grammar.isBasePropNoPivprop(prop): mesg = f'Invalid prop name {prop}' raise s_exc.BadPropDef(prop=prop, mesg=mesg) return await self.cell.addFormProp(form, prop, tdef, info) async def delFormProp(self, form, name): self.user.confirm(('model', 'prop', 'del', form)) return await self.cell.delFormProp(form, name) async def addUnivProp(self, name, tdef, info): self.user.confirm(('model', 'univ', 'add')) if not s_grammar.isBasePropNoPivprop(name): mesg = f'Invalid prop name {name}' raise s_exc.BadPropDef(name=name, mesg=mesg) return await self.cell.addUnivProp(name, tdef, info) async def delUnivProp(self, name): self.user.confirm(('model', 'univ', 'del')) return await self.cell.delUnivProp(name)
Apache License 2.0
jonathanfeng/new_horizons
venv/lib/python3.7/site-packages/flask/app.py
Flask.make_config
python
def make_config(self, instance_relative=False): root_path = self.root_path if instance_relative: root_path = self.instance_path defaults = dict(self.default_config) defaults["ENV"] = get_env() defaults["DEBUG"] = get_debug_flag() return self.config_class(root_path, defaults)
Used to create the config attribute by the Flask constructor. The `instance_relative` parameter is passed in from the constructor of Flask (there named `instance_relative_config`) and indicates if the config should be relative to the instance path or the root path of the application. .. versionadded:: 0.8
https://github.com/jonathanfeng/new_horizons/blob/0ec21c8f8423932611e1e0bf24548dcef912bc54/venv/lib/python3.7/site-packages/flask/app.py#L700-L715
import os import sys import warnings from datetime import timedelta from functools import update_wrapper from itertools import chain from threading import Lock from werkzeug.datastructures import Headers from werkzeug.datastructures import ImmutableDict from werkzeug.exceptions import BadRequest from werkzeug.exceptions import BadRequestKeyError from werkzeug.exceptions import default_exceptions from werkzeug.exceptions import HTTPException from werkzeug.exceptions import InternalServerError from werkzeug.exceptions import MethodNotAllowed from werkzeug.routing import BuildError from werkzeug.routing import Map from werkzeug.routing import RequestRedirect from werkzeug.routing import RoutingException from werkzeug.routing import Rule from werkzeug.wrappers import BaseResponse from . import cli from . import json from ._compat import integer_types from ._compat import reraise from ._compat import string_types from ._compat import text_type from .config import Config from .config import ConfigAttribute from .ctx import _AppCtxGlobals from .ctx import AppContext from .ctx import RequestContext from .globals import _request_ctx_stack from .globals import g from .globals import request from .globals import session from .helpers import _endpoint_from_view_func from .helpers import _PackageBoundObject from .helpers import find_package from .helpers import get_debug_flag from .helpers import get_env from .helpers import get_flashed_messages from .helpers import get_load_dotenv from .helpers import locked_cached_property from .helpers import url_for from .json import jsonify from .logging import create_logger from .sessions import SecureCookieSessionInterface from .signals import appcontext_tearing_down from .signals import got_request_exception from .signals import request_finished from .signals import request_started from .signals import request_tearing_down from .templating import _default_template_ctx_processor from .templating import DispatchingJinjaLoader from .templating import Environment from .wrappers import Request from .wrappers import Response _sentinel = object() def _make_timedelta(value): if not isinstance(value, timedelta): return timedelta(seconds=value) return value def setupmethod(f): def wrapper_func(self, *args, **kwargs): if self.debug and self._got_first_request: raise AssertionError( "A setup function was called after the " "first request was handled. This usually indicates a bug " "in the application where a module was not imported " "and decorators or other functionality was called too late.\n" "To fix this make sure to import all your view modules, " "database models and everything related at a central place " "before the application starts serving requests." ) return f(self, *args, **kwargs) return update_wrapper(wrapper_func, f) class Flask(_PackageBoundObject): request_class = Request response_class = Response jinja_environment = Environment app_ctx_globals_class = _AppCtxGlobals config_class = Config testing = ConfigAttribute("TESTING") secret_key = ConfigAttribute("SECRET_KEY") session_cookie_name = ConfigAttribute("SESSION_COOKIE_NAME") permanent_session_lifetime = ConfigAttribute( "PERMANENT_SESSION_LIFETIME", get_converter=_make_timedelta ) send_file_max_age_default = ConfigAttribute( "SEND_FILE_MAX_AGE_DEFAULT", get_converter=_make_timedelta ) use_x_sendfile = ConfigAttribute("USE_X_SENDFILE") json_encoder = json.JSONEncoder json_decoder = json.JSONDecoder jinja_options = {"extensions": ["jinja2.ext.autoescape", "jinja2.ext.with_"]} default_config = ImmutableDict( { "ENV": None, "DEBUG": None, "TESTING": False, "PROPAGATE_EXCEPTIONS": None, "PRESERVE_CONTEXT_ON_EXCEPTION": None, "SECRET_KEY": None, "PERMANENT_SESSION_LIFETIME": timedelta(days=31), "USE_X_SENDFILE": False, "SERVER_NAME": None, "APPLICATION_ROOT": "/", "SESSION_COOKIE_NAME": "session", "SESSION_COOKIE_DOMAIN": None, "SESSION_COOKIE_PATH": None, "SESSION_COOKIE_HTTPONLY": True, "SESSION_COOKIE_SECURE": False, "SESSION_COOKIE_SAMESITE": None, "SESSION_REFRESH_EACH_REQUEST": True, "MAX_CONTENT_LENGTH": None, "SEND_FILE_MAX_AGE_DEFAULT": timedelta(hours=12), "TRAP_BAD_REQUEST_ERRORS": None, "TRAP_HTTP_EXCEPTIONS": False, "EXPLAIN_TEMPLATE_LOADING": False, "PREFERRED_URL_SCHEME": "http", "JSON_AS_ASCII": True, "JSON_SORT_KEYS": True, "JSONIFY_PRETTYPRINT_REGULAR": False, "JSONIFY_MIMETYPE": "application/json", "TEMPLATES_AUTO_RELOAD": None, "MAX_COOKIE_SIZE": 4093, } ) url_rule_class = Rule url_map_class = Map test_client_class = None test_cli_runner_class = None session_interface = SecureCookieSessionInterface() import_name = None template_folder = None root_path = None def __init__( self, import_name, static_url_path=None, static_folder="static", static_host=None, host_matching=False, subdomain_matching=False, template_folder="templates", instance_path=None, instance_relative_config=False, root_path=None, ): _PackageBoundObject.__init__( self, import_name, template_folder=template_folder, root_path=root_path ) self.static_url_path = static_url_path self.static_folder = static_folder if instance_path is None: instance_path = self.auto_find_instance_path() elif not os.path.isabs(instance_path): raise ValueError( "If an instance path is provided it must be absolute." " A relative path was given instead." ) self.instance_path = instance_path self.config = self.make_config(instance_relative_config) self.view_functions = {} self.error_handler_spec = {} self.url_build_error_handlers = [] self.before_request_funcs = {} self.before_first_request_funcs = [] self.after_request_funcs = {} self.teardown_request_funcs = {} self.teardown_appcontext_funcs = [] self.url_value_preprocessors = {} self.url_default_functions = {} self.template_context_processors = {None: [_default_template_ctx_processor]} self.shell_context_processors = [] self.blueprints = {} self._blueprint_order = [] self.extensions = {} self.url_map = self.url_map_class() self.url_map.host_matching = host_matching self.subdomain_matching = subdomain_matching self._got_first_request = False self._before_request_lock = Lock() if self.has_static_folder: assert ( bool(static_host) == host_matching ), "Invalid static_host/host_matching combination" self.add_url_rule( self.static_url_path + "/<path:filename>", endpoint="static", host=static_host, view_func=self.send_static_file, ) self.cli.name = self.name @locked_cached_property def name(self): if self.import_name == "__main__": fn = getattr(sys.modules["__main__"], "__file__", None) if fn is None: return "__main__" return os.path.splitext(os.path.basename(fn))[0] return self.import_name @property def propagate_exceptions(self): rv = self.config["PROPAGATE_EXCEPTIONS"] if rv is not None: return rv return self.testing or self.debug @property def preserve_context_on_exception(self): rv = self.config["PRESERVE_CONTEXT_ON_EXCEPTION"] if rv is not None: return rv return self.debug @locked_cached_property def logger(self): return create_logger(self) @locked_cached_property def jinja_env(self): return self.create_jinja_environment() @property def got_first_request(self): return self._got_first_request
MIT License
wwkimball/yamlpath
yamlpath/eyaml/eyamlprocessor.py
EYAMLProcessor.is_eyaml_value
python
def is_eyaml_value(value: str) -> bool: if not isinstance(value, str): return False return value.replace("\n", "").replace(" ", "").startswith("ENC[")
Indicate whether a value is EYAML-encrypted. Parameters: 1. value (any) The value to check Returns: (bool) True when the value is encrypted; False, otherwise Raises: N/A
https://github.com/wwkimball/yamlpath/blob/407251ef5b7052d7cc89d4a2395bdb08e1cb98c6/yamlpath/eyaml/eyamlprocessor.py#L362-L375
import re from subprocess import run, PIPE, CalledProcessError from os import access, sep, X_OK from shutil import which from typing import Any, Generator, List, Optional from ruamel.yaml.comments import CommentedSeq, CommentedMap from yamlpath import YAMLPath from yamlpath.eyaml.enums import EYAMLOutputFormats from yamlpath.enums import YAMLValueFormats from yamlpath.eyaml.exceptions import EYAMLCommandException from yamlpath.wrappers import ConsolePrinter from yamlpath import Processor class EYAMLProcessor(Processor): def __init__( self, logger: ConsolePrinter, data: Any, **kwargs: Optional[str] ) -> None: self.eyaml: Optional[str] = kwargs.pop("binary", "eyaml") self.publickey: Optional[str] = kwargs.pop("publickey", None) self.privatekey: Optional[str] = kwargs.pop("privatekey", None) super().__init__(logger, data) def _find_eyaml_paths( self, data: Any, build_path: str = "" ) -> Generator[YAMLPath, None, None]: if isinstance(data, CommentedSeq): build_path += "[" for idx, ele in enumerate(data): if hasattr(ele, "anchor") and ele.anchor.value is not None: tmp_path = build_path + "&" + ele.anchor.value + "]" else: tmp_path = build_path + str(idx) + "]" if self.is_eyaml_value(ele): yield YAMLPath(tmp_path) else: for subpath in self._find_eyaml_paths(ele, tmp_path): yield subpath elif isinstance(data, CommentedMap): if build_path: build_path += "." for key, val in data.non_merged_items(): tmp_path = build_path + str(key) if self.is_eyaml_value(val): yield YAMLPath(tmp_path) else: for subpath in self._find_eyaml_paths(val, tmp_path): yield subpath def find_eyaml_paths(self) -> Generator[YAMLPath, None, None]: for path in self._find_eyaml_paths(self.data): yield path def decrypt_eyaml(self, value: str) -> str: if not self.is_eyaml_value(value): return value if not self._can_run_eyaml(): raise EYAMLCommandException("No accessible eyaml command.") cmdstr: str = "{} decrypt --quiet --stdin".format(self.eyaml) if self.publickey: cmdstr += " --pkcs7-public-key={}".format(self.publickey) if self.privatekey: cmdstr += " --pkcs7-private-key={}".format(self.privatekey) cmd: List[str] = cmdstr.split() cleanval: str = str(value).replace("\n", "").replace(" ", "").rstrip() bval: bytes = cleanval.encode("ascii") self.logger.debug( "EYAMLPath::decrypt_eyaml: About to execute {} against:\n{}" .format(cmdstr, cleanval) ) try: retval: str = run( cmd, stdout=PIPE, input=bval, check=True, shell=False ).stdout.decode('ascii').rstrip() except CalledProcessError as ex: raise EYAMLCommandException( "The {} command cannot be run due to exit code: {}" .format(self.eyaml, ex.returncode) ) from ex self.logger.debug( "EYAMLPath::decrypt_eyaml: Decrypted result: {}".format(retval) ) if not retval or retval == cleanval: raise EYAMLCommandException( "Unable to decrypt value! Please verify you are using the" + " correct old EYAML keys and the value is not corrupt: {}" .format(cleanval) ) return retval def encrypt_eyaml( self, value: str, output: EYAMLOutputFormats = EYAMLOutputFormats.STRING ) -> str: if self.is_eyaml_value(value): return value if not self._can_run_eyaml(): raise EYAMLCommandException( "The eyaml binary is not executable at {}.".format(self.eyaml) ) cmdstr: str = ("{} encrypt --quiet --stdin --output={}" .format(self.eyaml, output)) if self.publickey: cmdstr += " --pkcs7-public-key={}".format(self.publickey) if self.privatekey: cmdstr += " --pkcs7-private-key={}".format(self.privatekey) cmd: List[str] = cmdstr.split() self.logger.debug( "EYAMLPath::encrypt_eyaml: About to execute: {}" .format(" ".join(cmd)) ) bval: bytes = value.encode("ascii") try: retval: str = ( run(cmd, stdout=PIPE, input=bval, check=True, shell=False) .stdout .decode('ascii') .rstrip() ) except CalledProcessError as ex: raise EYAMLCommandException( "The {} command cannot be run due to exit code: {}" .format(self.eyaml, ex.returncode) ) from ex if not retval: raise EYAMLCommandException( ("The {} command was unable to encrypt your value. Please" + " verify this process can run that command and read your" + " EYAML keys.").format(self.eyaml) ) if output is EYAMLOutputFormats.BLOCK: retval = re.sub(r" +", "", retval) + "\n" self.logger.debug( "EYAMLPath::encrypt_eyaml: Encrypted result:\n{}".format(retval) ) return retval def set_eyaml_value( self, yaml_path: YAMLPath, value: str, output: EYAMLOutputFormats = EYAMLOutputFormats.STRING, mustexist: bool = False ) -> None: self.logger.verbose( "Encrypting value(s) for {}." .format(yaml_path) ) encval: str = self.encrypt_eyaml(value, output) emit_format: YAMLValueFormats = YAMLValueFormats.FOLDED if output is EYAMLOutputFormats.STRING: emit_format = YAMLValueFormats.DEFAULT self.set_value( yaml_path, encval, mustexist=mustexist, value_format=emit_format ) def get_eyaml_values( self, yaml_path: YAMLPath, mustexist: bool = False, default_value: str = "" ) -> Generator[str, None, None]: self.logger.verbose( "Decrypting value(s) at {}.".format(yaml_path) ) for node in self.get_nodes(yaml_path, mustexist=mustexist, default_value=default_value): plain_text: str = self.decrypt_eyaml(node.node) yield plain_text def _can_run_eyaml(self) -> bool: binary: Optional[str] = EYAMLProcessor.get_eyaml_executable(self.eyaml) if binary is None: return False self.eyaml = binary return True @staticmethod def get_eyaml_executable(binary: Optional[str] = "eyaml") -> Optional[str]: if binary is None or not binary: return None if binary.find(sep) < 0: binary = which(binary) if binary is None: return None binary = str(binary) if access(binary, X_OK): return binary return None @staticmethod
ISC License
gabstopper/smc-python
smc/elements/protocols.py
ProtocolAgentMixin.protocol_agent
python
def protocol_agent(self): if 'protocol_agent_ref' in self.data: return Element.from_href(self.protocol_agent_ref)
Protocol Agent for this service :return: Return the protocol agent or None if this service does not reference a protocol agent :rtype: ProtocolAgent
https://github.com/gabstopper/smc-python/blob/54386c8a710727cc1acf69334a57b155d2f5408c/smc/elements/protocols.py#L96-L104
from smc.base.model import Element, SubElement, ElementCache from smc.base.decorators import cached_property from smc.elements.servers import ProxyServer from smc.base.util import element_resolver from smc.base.structs import BaseIterable from smc.api.exceptions import MissingDependency class ProtocolAgentMixin(object): @property
Apache License 2.0
zhenxuan00/mmdgm
conv-mmdgm/cva_mnist_imputation.py
svm_cva
python
def svm_cva(dir, start=0, end=500, learning_rate=3e-4, n_epochs=10000, dataset='./data/mnist.pkl.gz', batch_size=500): ''' Difference ''' print start, end, learning_rate, batch_size datasets = datapy.load_data_gpu(dataset, have_matrix=True) _, train_set_y, train_y_matrix = datasets[0] _, valid_set_y, valid_y_matrix = datasets[1] _, test_set_y, test_y_matrix = datasets[2] train_set_x, valid_set_x, test_set_x = datapy.load_feature_gpu(dir=dir, start=start,end=end) print train_set_x.get_value().shape print valid_set_x.get_value().shape print test_set_x.get_value().shape n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size print '... building the model' index = T.lscalar() x = T.matrix('x') y = T.ivector('y') ''' Differences ''' y_matrix = T.imatrix('y_matrix') rng = np.random.RandomState(0) n_in=end-start classifier = Pegasos.Pegasos(input=x, rng=rng, n_in=n_in, n_out=10, weight_decay=1e-4, loss=1) cost = classifier.objective(10, y, y_matrix) test_model = theano.function( inputs=[index], outputs=classifier.errors(y), givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size], y: test_set_y[index * batch_size: (index + 1) * batch_size], } ) validate_model = theano.function( inputs=[index], outputs=classifier.errors(y), givens={ x: valid_set_x[index * batch_size: (index + 1) * batch_size], y: valid_set_y[index * batch_size: (index + 1) * batch_size], } ) g_W = T.grad(cost=cost, wrt=classifier.W) g_b = T.grad(cost=cost, wrt=classifier.b) params = [classifier.W, classifier.b] grads = [g_W, g_b] l_r = theano.shared(np.asarray(learning_rate, dtype=np.float32)) get_optimizer = optimizer.get_adam_optimizer_min(learning_rate=l_r, decay1 = 0.1, decay2 = 0.001) updates = get_optimizer(params,grads) train_model = theano.function( inputs=[index], outputs=[cost], updates=updates, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size], y_matrix: train_y_matrix[index * batch_size: (index + 1) * batch_size] } ) print '... training the model' patience = 5000 patience_increase = 2 improvement_threshold = 0.995 validation_frequency = min(n_train_batches, patience / 2) best_validation_loss = np.inf best_test_score = np.inf test_score = 0. start_time = time.clock() logdir = dir + str(learning_rate)+'_c-' done_looping = False epoch = 0 while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): minibatch_avg_cost = train_model(minibatch_index) iter = (epoch - 1) * n_train_batches + minibatch_index if (iter + 1) % validation_frequency == 0: validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = np.mean(validation_losses) this_test_losses = [test_model(i) for i in xrange(n_test_batches)] this_test_score = np.mean(this_test_losses) if this_test_score < best_test_score: best_test_score = this_test_score with open(logdir+'hook.txt', 'a') as f: print >>f, ( 'epoch %i, minibatch %i/%i, validation error %f %%, test error %f %%' % ( epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100, this_test_score *100. ) ) print( 'epoch %i, minibatch %i/%i, validation error %f %%, test error %f %%' % ( epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100, this_test_score *100. ) ) if this_validation_loss < best_validation_loss: if this_validation_loss < best_validation_loss * improvement_threshold: patience = max(patience, iter * patience_increase) best_validation_loss = this_validation_loss test_losses = [test_model(i) for i in xrange(n_test_batches)] test_score = np.mean(test_losses) with open(logdir+'hook.txt', 'a') as f: print >>f,( ( ' epoch %i, minibatch %i/%i, test error of' ' best model %f %%' ) % ( epoch, minibatch_index + 1, n_train_batches, test_score * 100. ) ) print( ( ' epoch %i, minibatch %i/%i, test error of' ' best model %f %%' ) % ( epoch, minibatch_index + 1, n_train_batches, test_score * 100. ) ) if patience <= iter: done_looping = True break end_time = time.clock() with open(logdir+'hook.txt', 'a') as f: print>>f,( ( 'Optimization complete with best validation score of %f %%,' 'with test performance %f %%' ) % (best_validation_loss * 100., test_score * 100.) ) print>>f, 'The code run for %d epochs, with %f epochs/sec' % ( epoch, 1. * epoch / (end_time - start_time)) print>>f, sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.1fs' % ((end_time - start_time))) print>>f, best_test_score print( ( 'Optimization complete with best validation score of %f %%,' 'with test performance %f %%' ) % (best_validation_loss * 100., test_score * 100.) ) print 'The code run for %d epochs, with %f epochs/sec' % ( epoch, 1. * epoch / (end_time - start_time)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.1fs' % ((end_time - start_time))) print best_test_score
Demonstrate stochastic gradient descent optimization of a log-linear model This is demonstrated on MNIST. :type learning_rate: float :param learning_rate: learning rate used (factor for the stochastic gradient) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type dataset: string :param dataset: the path of the MNIST dataset file from http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz
https://github.com/zhenxuan00/mmdgm/blob/9422bdc88b913c09506944d3529f6f955b95687c/conv-mmdgm/cva_mnist_imputation.py#L20-L288
import cPickle import gzip import os import sys import time import numpy as np import theano import theano.tensor as T import util.datapy as datapy from layer import Pegasos from optimization import optimizer
MIT License
jianzhnie/autotabular
autotabular/algorithms/anomaly/sos.py
SOS.fit
python
def fit(self, X, y=None): X = check_array(X) self._set_n_classes(y) D = self._x2d(X) A = self._d2a(D) B = self._a2b(A) Out = self._b2o(B) self.decision_scores_ = Out self._process_decision_scores() return self
Fit detector. y is ignored in unsupervised methods. Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples. y : Ignored Not used, present for API consistency by convention. Returns ------- self : object Fitted estimator.
https://github.com/jianzhnie/autotabular/blob/3baa47789d71c10b1b999f941b0c4aa7e2b39ae4/autotabular/algorithms/anomaly/sos.py#L257-L282
from __future__ import division, print_function import numpy as np from numba import njit from sklearn.utils import check_array from sklearn.utils.validation import check_is_fitted from .base import BaseDetector @njit def _get_perplexity(D, beta): A = np.exp(-D * beta) sumA = np.sum(A) H = np.log(sumA) + beta * np.sum(D * A) / sumA return H, A class SOS(BaseDetector): def __init__(self, contamination=0.1, perplexity=4.5, metric='euclidean', eps=1e-5): super(SOS, self).__init__(contamination=contamination) self.perplexity = perplexity self.metric = metric.lower() self.eps = eps def _x2d(self, X): (n, d) = X.shape if self.metric == 'none': if n != d: raise ValueError( "If you specify 'none' as the metric, the data set " 'should be a square dissimilarity matrix') else: D = X elif self.metric == 'euclidean': sumX = np.sum(np.square(X), 1) D = np.sqrt( np.abs(np.add(np.add(-2 * np.dot(X, X.T), sumX).T, sumX))) else: try: from scipy.spatial import distance except ImportError as err: print(err) raise ImportError( 'Please install scipy if you wish to use a metric ' "other than 'euclidean' or 'none'") else: D = distance.squareform(distance.pdist(X, self.metric)) return D def _d2a(self, D): (n, _) = D.shape A = np.zeros((n, n)) beta = np.ones((n, 1)) logU = np.log(self.perplexity) for i in range(n): betamin = -np.inf betamax = np.inf Di = D[i, np.concatenate((np.r_[0:i], np.r_[i + 1:n]))] (H, thisA) = _get_perplexity(Di, beta[i]) Hdiff = H - logU tries = 0 while (np.isnan(Hdiff) or np.abs(Hdiff) > self.eps) and tries < 5000: if np.isnan(Hdiff): beta[i] = beta[i] / 10.0 elif Hdiff > 0: betamin = beta[i].copy() if betamax == np.inf or betamax == -np.inf: beta[i] = beta[i] * 2.0 else: beta[i] = (beta[i] + betamax) / 2.0 else: betamax = beta[i].copy() if betamin == np.inf or betamin == -np.inf: beta[i] = beta[i] / 2.0 else: beta[i] = (beta[i] + betamin) / 2.0 (H, thisA) = _get_perplexity(Di, beta[i]) Hdiff = H - logU tries += 1 A[i, np.concatenate((np.r_[0:i], np.r_[i + 1:n]))] = thisA return A def _a2b(self, A): B = A / A.sum(axis=1)[:, np.newaxis] return B def _b2o(self, B): Out = np.prod(1 - B, 0) return Out
Apache License 2.0
nttpc/anymotion-cli
anymotion_cli/utils.py
get_settings
python
def get_settings(profile: str, use_env: bool = True) -> Settings: try: settings = Settings(profile, use_env=use_env) except SettingsValueError as e: raise ClickException(str(e)) return settings
Get settings from profile.
https://github.com/nttpc/anymotion-cli/blob/e18656aad3972350f1ed846a5fee6c512b54cfcd/anymotion_cli/utils.py#L57-L63
import json import os from distutils.util import strtobool from pathlib import Path from typing import List, Optional, Union import click from anymotion_sdk import Client, ClientValueError from anymotion_sdk.session import HttpSession from . import __version__ from .exceptions import ClickException, SettingsValueError from .output import echo_request, echo_response, echo_warning from .settings import Settings from .state import State def get_client(state: State) -> Client: settings = get_settings(state.profile) if not settings.is_ok: command = click.style(f"{state.cli_name} configure", fg="cyan") message = ( "The credentials is invalid or not set. " f"Run {command} to set credentials." ) raise ClickException(message) session = HttpSession() if hasattr(session, "user_agent"): session.user_agent = f"{state.cli_name}/{__version__}" try: client = Client( client_id=str(settings.client_id), client_secret=str(settings.client_secret), api_url=settings.api_url, interval=settings.interval, timeout=settings.timeout, session=session, ) except ClientValueError as e: raise ClickException(str(e)) if state.verbose: client.session.add_request_callback(echo_request) client.session.add_response_callback(echo_response) state.is_download = settings.is_download state.is_open = settings.is_open return client
MIT License
ujhin/python-upbit-client
upbit/utils.py
HTTPFutureExtractor.remaining_request
python
def remaining_request(headers: dict) -> dict: remaining = headers['Remaining-Req'] return { k: v for k, v in [ param.split('=') for param in remaining.split('; ') ] }
Check Request limit times Please read the official Upbit Client document. Documents: https://ujhin.github.io/upbit-client-docs/
https://github.com/ujhin/python-upbit-client/blob/911c38e7dcb8972286a858c0b2401a25de847146/upbit/utils.py#L8-L24
from typing import Union class HTTPFutureExtractor: @staticmethod
MIT License
prompt-toolkit/pyvim
pyvim/commands/handler.py
_go_to_line
python
def _go_to_line(editor, line): b = editor.application.current_buffer b.cursor_position = b.document.translate_row_col_to_index(max(0, int(line) - 1), 0)
Move cursor to this line in the current buffer.
https://github.com/prompt-toolkit/pyvim/blob/210816b4b1d2dc00606ec924dda29e49ac4cd87c/pyvim/commands/handler.py#L58-L63
from __future__ import unicode_literals from .grammar import COMMAND_GRAMMAR from .commands import call_command_handler, has_command_handler, substitute __all__ = ( 'handle_command', ) def handle_command(editor, input_string): m = COMMAND_GRAMMAR.match(input_string) if m is None: return variables = m.variables() command = variables.get('command') go_to_line = variables.get('go_to_line') shell_command = variables.get('shell_command') range_start = variables.get('range_start') range_end = variables.get('range_end') search = variables.get('search') replace = variables.get('replace') flags = variables.get('flags', '') if go_to_line is not None: _go_to_line(editor, go_to_line) elif shell_command is not None: editor.application.run_system_command(shell_command) elif has_command_handler(command): call_command_handler(command, editor, variables) elif command in ('s', 'substitute'): flags = flags.lstrip('/') substitute(editor, range_start, range_end, search, replace, flags) else: editor.show_message('Not an editor command: %s' % input_string) return editor.sync_with_prompt_toolkit()
BSD 3-Clause New or Revised License
ibm/pyxcli
pyxcli/mirroring/volume_recovery_manager.py
VolumeRecoveryManager.delete_mirror
python
def delete_mirror(self, resource_id): self._delete_mirror(vol=resource_id)
delete a mirror by mirror name
https://github.com/ibm/pyxcli/blob/26544df4441ef7fef4900ec631bd2f1326e9b0f1/pyxcli/mirroring/volume_recovery_manager.py#L102-L104
from logging import getLogger from pyxcli import XCLI_DEFAULT_LOGGER from pyxcli.mirroring.recovery_manager import RecoveryManager, CHAR_LIMIT, InsufficientSnapshotSpaceRecoveryException, NoLastReplicatedSnapshotRecoveryException logger = getLogger(XCLI_DEFAULT_LOGGER + '.mirroring') class VolumeRecoveryManager(RecoveryManager): def __init__(self, should_use_cache, xcli_client): super(VolumeRecoveryManager, self).__init__( should_use_cache, xcli_client) def get_mirror_resources(self): return self.action_entities.get_vol_mirrors() def get_type_str(self): return "volume" def _does_resource_have_mapped_test_snapshot(self, volume_name, test_snapshot_prefix): snapshots = self.get_volume_snapshots_by_prefix(volume_name, test_snapshot_prefix) for snapshot in snapshots: if self.is_volume_mapped(snapshot.name): return True return False def get_volume_snapshots_by_prefix(self, volume, test_snapshot_prefix): snapshots = list() for snapshot in self.xcli_client.cmd.snapshot_list(vol=volume): if snapshot.name.startswith(test_snapshot_prefix): snapshots.append(snapshot) return snapshots def _unmap_and_delete_test_snapshots(self, device_id, test_snapshot_prefix): snapshots = self.get_volume_snapshots_by_prefix(device_id, test_snapshot_prefix) for snapshot in snapshots: self.unmap_and_delete_volume(snapshot.name) def _create_and_unlock_snapshot(self, vol, name, test_snapshot_prefix): existing_snapshots = self.get_volume_snapshots_by_prefix( vol, test_snapshot_prefix) if len(existing_snapshots) == 0: logger.debug("-> Creating and setting [r/w] attributes snapshot " "[%s] for device [%s]." % (name, vol)) xcli_mirror = self.get_mirror_resources()[vol] if self._is_sync_mirror(xcli_mirror): self.xcli_client.cmd.snapshot_create(vol=vol, name=name) else: self.xcli_client.cmd.snapshot_duplicate( snapshot=self._get_last_replicated_snapshot_name(vol), name=name) self.xcli_client.cmd.vol_unlock(vol=name) else: logger.debug("-> Setting [r/w] attributes for existing snapshot " "[%s] of device [%s]." % (existing_snapshots[0].name, vol)) self.xcli_client.cmd.vol_unlock(vol=existing_snapshots[0].name) def create_mirror(self, resource_name, target_name, mirror_type, slave_resource_name, create_slave='no', remote_pool=None, rpo=None, remote_rpo=None, schedule=None, remote_schedule=None, activate_mirror='no'): return self._create_mirror('vol', resource_name, target_name, mirror_type, slave_resource_name, create_slave=create_slave, remote_pool=remote_pool, rpo=rpo, remote_rpo=remote_rpo, schedule=schedule, remote_schedule=remote_schedule, activate_mirror=activate_mirror)
Apache License 2.0
andrethemac/l76glnsv4
L76GNSV4.py
L76GNSS._mixhash
python
def _mixhash(self, keywords, sentence): ret = {} while len(keywords) - len(sentence) > 0: sentence += ('',) if len(keywords) == len(sentence): ret = dict(zip(keywords, sentence)) try: ret['Latitude'] = self._convert_coord(ret['Latitude'], ret['NS']) except: pass try: ret['Longitude'] = self._convert_coord(ret['Longitude'], ret['EW']) except: pass return ret else: return None
return hash with keywords filled with sentence
https://github.com/andrethemac/l76glnsv4/blob/679ac6a6b871e6aa7b3e17960a2ea1dfde609854/L76GNSV4.py#L83-L102
from machine import Timer import time import gc import binascii class L76GNSS: GPS_I2CADDR = const(0x10) NMEA410 = const(410) def __init__(self, pytrack=None, sda='P22', scl='P21', timeout=180, debug=False): if pytrack is not None: self.i2c = pytrack.i2c else: from machine import I2C self.i2c = I2C(0, mode=I2C.MASTER, pins=(sda, scl)) self.chrono = Timer.Chrono() self.timeout = timeout self.timeout_status = True self.reg = bytearray(1) self.i2c.writeto(GPS_I2CADDR, self.reg) self.fix = False self.Latitude = None self.Longitude = None self.debug = debug self.timeLastFix = 0 self.ttf = -1 self.lastmessage = {} self.NMEAVersion = 301 self.ChipVersionID = None self.release = 1.0 self.ReleaseString = None self.BuildID = None self.ProductModel = None self.SDK = None self.get_dt_release(debug=False) self.get_chip_version(debug=False) def _read(self): reg = b"" while len(set(reg)) < 10: reg = self.i2c.readfrom(GPS_I2CADDR, 255) return reg @staticmethod def _convert_coord(coord, orientation): coord = (float(coord) // 100) + ((float(coord) % 100) / 60) if orientation == 'S' or orientation == 'W': coord *= -1 return coord def time_fixed(self): return int(time.ticks_ms()/1000) - self.timeLastFix
MIT License
sphinx-doc/sphinx-intl
tests/path.py
path.write_text
python
def write_text(self, text, **kwargs): f = open(self, 'w', **kwargs) try: f.write(text) finally: f.close()
Writes the given `text` to the file.
https://github.com/sphinx-doc/sphinx-intl/blob/491cf592271c29dfc3415ff3a9a0a890d7aeb4d3/tests/path.py#L123-L131
import os import sys import shutil from codecs import open from six import text_type FILESYSTEMENCODING = sys.getfilesystemencoding() or sys.getdefaultencoding() class path(text_type): if sys.version_info < (3, 0): def __new__(cls, s, encoding=FILESYSTEMENCODING, errors='strict'): if isinstance(s, str): s = s.decode(encoding, errors) return text_type.__new__(cls, s) return text_type.__new__(cls, s) @property def parent(self): return self.__class__(os.path.dirname(self)) def abspath(self): return self.__class__(os.path.abspath(self)) def isabs(self): return os.path.isabs(self) def isdir(self): return os.path.isdir(self) def isfile(self): return os.path.isfile(self) def islink(self): return os.path.islink(self) def ismount(self): return os.path.ismount(self) def rmtree(self, ignore_errors=False, onerror=None): shutil.rmtree(self, ignore_errors=ignore_errors, onerror=onerror) def copytree(self, destination, symlinks=False): shutil.copytree(self, destination, symlinks=symlinks) def movetree(self, destination): shutil.move(self, destination) move = movetree def unlink(self): os.unlink(self)
BSD 2-Clause Simplified License
react-native-skia/react-native-skia
build/util/java_action.py
IsExecutable
python
def IsExecutable(path): return os.path.isfile(path) and os.access(path, os.X_OK)
Returns whether file at |path| exists and is executable. Args: path: absolute or relative path to test. Returns: True if the file at |path| exists, False otherwise.
https://github.com/react-native-skia/react-native-skia/blob/91ecc74444b163f128541dbc1a42e27a9c0fb40b/build/util/java_action.py#L16-L25
import os import subprocess import sys EXIT_SUCCESS = 0 EXIT_FAILURE = 1
MIT License
wavefronthq/python-client
wavefront_api_client/models/maintenance_window.py
MaintenanceWindow.customer_id
python
def customer_id(self): return self._customer_id
Gets the customer_id of this MaintenanceWindow. # noqa: E501 :return: The customer_id of this MaintenanceWindow. # noqa: E501 :rtype: str
https://github.com/wavefronthq/python-client/blob/e410ce0dd8a2334e995456f4f3d44e0f04664a3a/wavefront_api_client/models/maintenance_window.py#L193-L200
import pprint import re import six from wavefront_api_client.configuration import Configuration class MaintenanceWindow(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'created_epoch_millis': 'int', 'creator_id': 'str', 'customer_id': 'str', 'end_time_in_seconds': 'int', 'event_name': 'str', 'host_tag_group_host_names_group_anded': 'bool', 'id': 'str', 'point_tag_filter': 'str', 'reason': 'str', 'relevant_customer_tags': 'list[str]', 'relevant_customer_tags_anded': 'bool', 'relevant_host_names': 'list[str]', 'relevant_host_tags': 'list[str]', 'relevant_host_tags_anded': 'bool', 'running_state': 'str', 'sort_attr': 'int', 'start_time_in_seconds': 'int', 'targets': 'list[str]', 'title': 'str', 'updated_epoch_millis': 'int', 'updater_id': 'str' } attribute_map = { 'created_epoch_millis': 'createdEpochMillis', 'creator_id': 'creatorId', 'customer_id': 'customerId', 'end_time_in_seconds': 'endTimeInSeconds', 'event_name': 'eventName', 'host_tag_group_host_names_group_anded': 'hostTagGroupHostNamesGroupAnded', 'id': 'id', 'point_tag_filter': 'pointTagFilter', 'reason': 'reason', 'relevant_customer_tags': 'relevantCustomerTags', 'relevant_customer_tags_anded': 'relevantCustomerTagsAnded', 'relevant_host_names': 'relevantHostNames', 'relevant_host_tags': 'relevantHostTags', 'relevant_host_tags_anded': 'relevantHostTagsAnded', 'running_state': 'runningState', 'sort_attr': 'sortAttr', 'start_time_in_seconds': 'startTimeInSeconds', 'targets': 'targets', 'title': 'title', 'updated_epoch_millis': 'updatedEpochMillis', 'updater_id': 'updaterId' } def __init__(self, created_epoch_millis=None, creator_id=None, customer_id=None, end_time_in_seconds=None, event_name=None, host_tag_group_host_names_group_anded=None, id=None, point_tag_filter=None, reason=None, relevant_customer_tags=None, relevant_customer_tags_anded=None, relevant_host_names=None, relevant_host_tags=None, relevant_host_tags_anded=None, running_state=None, sort_attr=None, start_time_in_seconds=None, targets=None, title=None, updated_epoch_millis=None, updater_id=None, _configuration=None): if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._created_epoch_millis = None self._creator_id = None self._customer_id = None self._end_time_in_seconds = None self._event_name = None self._host_tag_group_host_names_group_anded = None self._id = None self._point_tag_filter = None self._reason = None self._relevant_customer_tags = None self._relevant_customer_tags_anded = None self._relevant_host_names = None self._relevant_host_tags = None self._relevant_host_tags_anded = None self._running_state = None self._sort_attr = None self._start_time_in_seconds = None self._targets = None self._title = None self._updated_epoch_millis = None self._updater_id = None self.discriminator = None if created_epoch_millis is not None: self.created_epoch_millis = created_epoch_millis if creator_id is not None: self.creator_id = creator_id if customer_id is not None: self.customer_id = customer_id self.end_time_in_seconds = end_time_in_seconds if event_name is not None: self.event_name = event_name if host_tag_group_host_names_group_anded is not None: self.host_tag_group_host_names_group_anded = host_tag_group_host_names_group_anded if id is not None: self.id = id if point_tag_filter is not None: self.point_tag_filter = point_tag_filter self.reason = reason self.relevant_customer_tags = relevant_customer_tags if relevant_customer_tags_anded is not None: self.relevant_customer_tags_anded = relevant_customer_tags_anded if relevant_host_names is not None: self.relevant_host_names = relevant_host_names if relevant_host_tags is not None: self.relevant_host_tags = relevant_host_tags if relevant_host_tags_anded is not None: self.relevant_host_tags_anded = relevant_host_tags_anded if running_state is not None: self.running_state = running_state if sort_attr is not None: self.sort_attr = sort_attr self.start_time_in_seconds = start_time_in_seconds if targets is not None: self.targets = targets self.title = title if updated_epoch_millis is not None: self.updated_epoch_millis = updated_epoch_millis if updater_id is not None: self.updater_id = updater_id @property def created_epoch_millis(self): return self._created_epoch_millis @created_epoch_millis.setter def created_epoch_millis(self, created_epoch_millis): self._created_epoch_millis = created_epoch_millis @property def creator_id(self): return self._creator_id @creator_id.setter def creator_id(self, creator_id): self._creator_id = creator_id @property
Apache License 2.0
alliefitter/boto3_type_annotations
boto3_type_annotations_with_docs/boto3_type_annotations/medialive/paginator.py
DescribeSchedule.paginate
python
def paginate(self, ChannelId: str, PaginationConfig: Dict = None) -> Dict: pass
Creates an iterator that will paginate through responses from :py:meth:`MediaLive.Client.describe_schedule`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/medialive-2017-10-14/DescribeSchedule>`_ **Request Syntax** :: response_iterator = paginator.paginate( ChannelId='string', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'ScheduleActions': [ { 'ActionName': 'string', 'ScheduleActionSettings': { 'HlsTimedMetadataSettings': { 'Id3': 'string' }, 'InputSwitchSettings': { 'InputAttachmentNameReference': 'string' }, 'PauseStateSettings': { 'Pipelines': [ { 'PipelineId': 'PIPELINE_0'|'PIPELINE_1' }, ] }, 'Scte35ReturnToNetworkSettings': { 'SpliceEventId': 123 }, 'Scte35SpliceInsertSettings': { 'Duration': 123, 'SpliceEventId': 123 }, 'Scte35TimeSignalSettings': { 'Scte35Descriptors': [ { 'Scte35DescriptorSettings': { 'SegmentationDescriptorScte35DescriptorSettings': { 'DeliveryRestrictions': { 'ArchiveAllowedFlag': 'ARCHIVE_NOT_ALLOWED'|'ARCHIVE_ALLOWED', 'DeviceRestrictions': 'NONE'|'RESTRICT_GROUP0'|'RESTRICT_GROUP1'|'RESTRICT_GROUP2', 'NoRegionalBlackoutFlag': 'REGIONAL_BLACKOUT'|'NO_REGIONAL_BLACKOUT', 'WebDeliveryAllowedFlag': 'WEB_DELIVERY_NOT_ALLOWED'|'WEB_DELIVERY_ALLOWED' }, 'SegmentNum': 123, 'SegmentationCancelIndicator': 'SEGMENTATION_EVENT_NOT_CANCELED'|'SEGMENTATION_EVENT_CANCELED', 'SegmentationDuration': 123, 'SegmentationEventId': 123, 'SegmentationTypeId': 123, 'SegmentationUpid': 'string', 'SegmentationUpidType': 123, 'SegmentsExpected': 123, 'SubSegmentNum': 123, 'SubSegmentsExpected': 123 } } }, ] }, 'StaticImageActivateSettings': { 'Duration': 123, 'FadeIn': 123, 'FadeOut': 123, 'Height': 123, 'Image': { 'PasswordParam': 'string', 'Uri': 'string', 'Username': 'string' }, 'ImageX': 123, 'ImageY': 123, 'Layer': 123, 'Opacity': 123, 'Width': 123 }, 'StaticImageDeactivateSettings': { 'FadeOut': 123, 'Layer': 123 } }, 'ScheduleActionStartSettings': { 'FixedModeScheduleActionStartSettings': { 'Time': 'string' }, 'FollowModeScheduleActionStartSettings': { 'FollowPoint': 'END'|'START', 'ReferenceActionName': 'string' } } }, ] } **Response Structure** - *(dict) --* An array of channel schedule actions. - **ScheduleActions** *(list) --* The list of actions in the schedule. - *(dict) --* Contains information on a single schedule action. - **ActionName** *(string) --* The name of the action, must be unique within the schedule. This name provides the main reference to an action once it is added to the schedule. A name is unique if it is no longer in the schedule. The schedule is automatically cleaned up to remove actions with a start time of more than 1 hour ago (approximately) so at that point a name can be reused. - **ScheduleActionSettings** *(dict) --* Settings for this schedule action. - **HlsTimedMetadataSettings** *(dict) --* Action to insert HLS metadata - **Id3** *(string) --* Base64 string formatted according to the ID3 specification: http://id3.org/id3v2.4.0-structure - **InputSwitchSettings** *(dict) --* Action to switch the input - **InputAttachmentNameReference** *(string) --* The name of the input attachment that should be switched to by this action. - **PauseStateSettings** *(dict) --* Action to pause or unpause one or both channel pipelines - **Pipelines** *(list) --* Placeholder documentation for __listOfPipelinePauseStateSettings - *(dict) --* Settings for pausing a pipeline. - **PipelineId** *(string) --* Pipeline ID to pause ("PIPELINE_0" or "PIPELINE_1"). - **Scte35ReturnToNetworkSettings** *(dict) --* Action to insert SCTE-35 return_to_network message - **SpliceEventId** *(integer) --* The splice_event_id for the SCTE-35 splice_insert, as defined in SCTE-35. - **Scte35SpliceInsertSettings** *(dict) --* Action to insert SCTE-35 splice_insert message - **Duration** *(integer) --* Optional, the duration for the splice_insert, in 90 KHz ticks. To convert seconds to ticks, multiple the seconds by 90,000. If you enter a duration, there is an expectation that the downstream system can read the duration and cue in at that time. If you do not enter a duration, the splice_insert will continue indefinitely and there is an expectation that you will enter a return_to_network to end the splice_insert at the appropriate time. - **SpliceEventId** *(integer) --* The splice_event_id for the SCTE-35 splice_insert, as defined in SCTE-35. - **Scte35TimeSignalSettings** *(dict) --* Action to insert SCTE-35 time_signal message - **Scte35Descriptors** *(list) --* The list of SCTE-35 descriptors accompanying the SCTE-35 time_signal. - *(dict) --* Holds one set of SCTE-35 Descriptor Settings. - **Scte35DescriptorSettings** *(dict) --* SCTE-35 Descriptor Settings. - **SegmentationDescriptorScte35DescriptorSettings** *(dict) --* SCTE-35 Segmentation Descriptor. - **DeliveryRestrictions** *(dict) --* Holds the four SCTE-35 delivery restriction parameters. - **ArchiveAllowedFlag** *(string) --* Corresponds to SCTE-35 archive_allowed_flag. - **DeviceRestrictions** *(string) --* Corresponds to SCTE-35 device_restrictions parameter. - **NoRegionalBlackoutFlag** *(string) --* Corresponds to SCTE-35 no_regional_blackout_flag parameter. - **WebDeliveryAllowedFlag** *(string) --* Corresponds to SCTE-35 web_delivery_allowed_flag parameter. - **SegmentNum** *(integer) --* Corresponds to SCTE-35 segment_num. A value that is valid for the specified segmentation_type_id. - **SegmentationCancelIndicator** *(string) --* Corresponds to SCTE-35 segmentation_event_cancel_indicator. - **SegmentationDuration** *(integer) --* Corresponds to SCTE-35 segmentation_duration. Optional. The duration for the time_signal, in 90 KHz ticks. To convert seconds to ticks, multiple the seconds by 90,000. Enter time in 90 KHz clock ticks. If you do not enter a duration, the time_signal will continue until you insert a cancellation message. - **SegmentationEventId** *(integer) --* Corresponds to SCTE-35 segmentation_event_id. - **SegmentationTypeId** *(integer) --* Corresponds to SCTE-35 segmentation_type_id. One of the segmentation_type_id values listed in the SCTE-35 specification. On the console, enter the ID in decimal (for example, "52"). In the CLI, API, or an SDK, enter the ID in hex (for example, "0x34") or decimal (for example, "52"). - **SegmentationUpid** *(string) --* Corresponds to SCTE-35 segmentation_upid. Enter a string containing the hexadecimal representation of the characters that make up the SCTE-35 segmentation_upid value. Must contain an even number of hex characters. Do not include spaces between each hex pair. For example, the ASCII "ADS Information" becomes hex "41445320496e666f726d6174696f6e. - **SegmentationUpidType** *(integer) --* Corresponds to SCTE-35 segmentation_upid_type. On the console, enter one of the types listed in the SCTE-35 specification, converted to a decimal. For example, "0x0C" hex from the specification is "12" in decimal. In the CLI, API, or an SDK, enter one of the types listed in the SCTE-35 specification, in either hex (for example, "0x0C" ) or in decimal (for example, "12"). - **SegmentsExpected** *(integer) --* Corresponds to SCTE-35 segments_expected. A value that is valid for the specified segmentation_type_id. - **SubSegmentNum** *(integer) --* Corresponds to SCTE-35 sub_segment_num. A value that is valid for the specified segmentation_type_id. - **SubSegmentsExpected** *(integer) --* Corresponds to SCTE-35 sub_segments_expected. A value that is valid for the specified segmentation_type_id. - **StaticImageActivateSettings** *(dict) --* Action to activate a static image overlay - **Duration** *(integer) --* The duration in milliseconds for the image to remain on the video. If omitted or set to 0 the duration is unlimited and the image will remain until it is explicitly deactivated. - **FadeIn** *(integer) --* The time in milliseconds for the image to fade in. The fade-in starts at the start time of the overlay. Default is 0 (no fade-in). - **FadeOut** *(integer) --* Applies only if a duration is specified. The time in milliseconds for the image to fade out. The fade-out starts when the duration time is hit, so it effectively extends the duration. Default is 0 (no fade-out). - **Height** *(integer) --* The height of the image when inserted into the video, in pixels. The overlay will be scaled up or down to the specified height. Leave blank to use the native height of the overlay. - **Image** *(dict) --* The location and filename of the image file to overlay on the video. The file must be a 32-bit BMP, PNG, or TGA file, and must not be larger (in pixels) than the input video. - **PasswordParam** *(string) --* key used to extract the password from EC2 Parameter store - **Uri** *(string) --* Uniform Resource Identifier - This should be a path to a file accessible to the Live system (eg. a http:// URI) depending on the output type. For example, a RTMP destination should have a uri simliar to: "rtmp://fmsserver/live". - **Username** *(string) --* Documentation update needed - **ImageX** *(integer) --* Placement of the left edge of the overlay relative to the left edge of the video frame, in pixels. 0 (the default) is the left edge of the frame. If the placement causes the overlay to extend beyond the right edge of the underlying video, then the overlay is cropped on the right. - **ImageY** *(integer) --* Placement of the top edge of the overlay relative to the top edge of the video frame, in pixels. 0 (the default) is the top edge of the frame. If the placement causes the overlay to extend beyond the bottom edge of the underlying video, then the overlay is cropped on the bottom. - **Layer** *(integer) --* The number of the layer, 0 to 7. There are 8 layers that can be overlaid on the video, each layer with a different image. The layers are in Z order, which means that overlays with higher values of layer are inserted on top of overlays with lower values of layer. Default is 0. - **Opacity** *(integer) --* Opacity of image where 0 is transparent and 100 is fully opaque. Default is 100. - **Width** *(integer) --* The width of the image when inserted into the video, in pixels. The overlay will be scaled up or down to the specified width. Leave blank to use the native width of the overlay. - **StaticImageDeactivateSettings** *(dict) --* Action to deactivate a static image overlay - **FadeOut** *(integer) --* The time in milliseconds for the image to fade out. Default is 0 (no fade-out). - **Layer** *(integer) --* The image overlay layer to deactivate, 0 to 7. Default is 0. - **ScheduleActionStartSettings** *(dict) --* The time for the action to start in the channel. - **FixedModeScheduleActionStartSettings** *(dict) --* Holds the start time for the action. - **Time** *(string) --* Start time for the action to start in the channel. (Not the time for the action to be added to the schedule: actions are always added to the schedule immediately.) UTC format: yyyy-mm-ddThh:mm:ss.nnnZ. All the letters are digits (for example, mm might be 01) except for the two constants "T" for time and "Z" for "UTC format". - **FollowModeScheduleActionStartSettings** *(dict) --* Specifies an action to follow for scheduling this action. - **FollowPoint** *(string) --* Identifies whether this action starts relative to the start or relative to the end of the reference action. - **ReferenceActionName** *(string) --* The action name of another action that this one refers to. :type ChannelId: string :param ChannelId: **[REQUIRED]** Id of the channel whose schedule is being updated. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns:
https://github.com/alliefitter/boto3_type_annotations/blob/2a88aa562b1aee6e8a6cc30402980884b3707fbb/boto3_type_annotations_with_docs/boto3_type_annotations/medialive/paginator.py#L6-L185
from typing import Dict from botocore.paginate import Paginator class DescribeSchedule(Paginator):
MIT License
google/closure-linter
closure_linter/gjslint.py
_PrintSummary
python
def _PrintSummary(paths, error_records): error_count = len(error_records) all_paths = set(paths) all_paths_count = len(all_paths) if error_count is 0: print '%d files checked, no errors found.' % all_paths_count new_error_count = len([e for e in error_records if e.new_error]) error_paths = set([e.path for e in error_records]) error_paths_count = len(error_paths) no_error_paths_count = all_paths_count - error_paths_count if (error_count or new_error_count) and not FLAGS.quiet: error_noun = 'error' if error_count == 1 else 'errors' new_error_noun = 'error' if new_error_count == 1 else 'errors' error_file_noun = 'file' if error_paths_count == 1 else 'files' ok_file_noun = 'file' if no_error_paths_count == 1 else 'files' print ('Found %d %s, including %d new %s, in %d %s (%d %s OK).' % (error_count, error_noun, new_error_count, new_error_noun, error_paths_count, error_file_noun, no_error_paths_count, ok_file_noun))
Print a summary of the number of errors and files.
https://github.com/google/closure-linter/blob/c09c885b4e4fec386ff81cebeb8c66c2b0643d49/closure_linter/gjslint.py#L183-L212
__author__ = ('robbyw@google.com (Robert Walker)', 'ajp@google.com (Andy Perelson)', 'nnaze@google.com (Nathan Naze)',) import errno import itertools import os import platform import re import sys import time import gflags as flags from closure_linter import errorrecord from closure_linter import runner from closure_linter.common import erroraccumulator from closure_linter.common import simplefileflags as fileflags try: import multiprocessing except ImportError: multiprocessing = None FLAGS = flags.FLAGS flags.DEFINE_boolean('unix_mode', False, 'Whether to emit warnings in standard unix format.') flags.DEFINE_boolean('beep', True, 'Whether to beep when errors are found.') flags.DEFINE_boolean('time', False, 'Whether to emit timing statistics.') flags.DEFINE_boolean('quiet', False, 'Whether to minimize logged messages. ' 'Most useful for per-file linting, such as that performed ' 'by the presubmit linter service.') flags.DEFINE_boolean('check_html', False, 'Whether to check javascript in html files.') flags.DEFINE_boolean('summary', False, 'Whether to show an error count summary.') flags.DEFINE_list('additional_extensions', None, 'List of additional file ' 'extensions (not js) that should be treated as ' 'JavaScript files.') flags.DEFINE_boolean('multiprocess', platform.system() is 'Linux' and bool(multiprocessing), 'Whether to attempt parallelized linting using the ' 'multiprocessing module. Enabled by default on Linux ' 'if the multiprocessing module is present (Python 2.6+). ' 'Otherwise disabled by default. ' 'Disabling may make debugging easier.') flags.ADOPT_module_key_flags(fileflags) flags.ADOPT_module_key_flags(runner) GJSLINT_ONLY_FLAGS = ['--unix_mode', '--beep', '--nobeep', '--time', '--check_html', '--summary', '--quiet'] def _MultiprocessCheckPaths(paths): pool = multiprocessing.Pool() path_results = pool.imap(_CheckPath, paths) for results in path_results: for result in results: yield result try: pool.close() pool.join() del pool except OSError as err: if err.errno is not errno.EINTR: raise err def _CheckPaths(paths): for path in paths: results = _CheckPath(path) for record in results: yield record def _CheckPath(path): error_handler = erroraccumulator.ErrorAccumulator() runner.Run(path, error_handler) make_error_record = lambda err: errorrecord.MakeErrorRecord(path, err) return map(make_error_record, error_handler.GetErrors()) def _GetFilePaths(argv): suffixes = ['.js'] if FLAGS.additional_extensions: suffixes += ['.%s' % ext for ext in FLAGS.additional_extensions] if FLAGS.check_html: suffixes += ['.html', '.htm'] return fileflags.GetFileList(argv, 'JavaScript', suffixes) def _PrintFileSummary(paths, records): paths = list(paths) paths.sort() for path in paths: path_errors = [e for e in records if e.path == path] print '%s: %d' % (path, len(path_errors)) def _PrintFileSeparator(path): print '----- FILE : %s -----' % path
Apache License 2.0
landsat-pds/landsat_ingestor
ingestor/mtlutils.py
_checkstatus
python
def _checkstatus(status, line): newstatus = 0 if status == 0: if _islinetype(line, GRPSTART): newstatus = 1 elif _isfinal(line): newstatus = 4 elif status == 1: if _islinetype(line, GRPSTART): newstatus = 1 elif _islinetype(line, GRPEND): newstatus = 3 elif _isassignment(line): newstatus = 2 elif status == 2: if _islinetype(line, GRPEND): newstatus = 3 elif _isassignment(line): newstatus = 2 elif status == 3: if _islinetype(line, GRPSTART): newstatus = 1 elif _islinetype(line, GRPEND): newstatus = 3 elif _isfinal(line): newstatus = 4 if newstatus != 0: return newstatus elif status != 4: raise MTLParseError( "Cannot parse the following line after status " + "'%s':\n%s" % (STATUSCODE[status], line))
Returns state/status after reading the next line. The status codes are:: 0 - BEGIN parsing; 1 - ENTER METADATA GROUP, 2 - READ METADATA LINE, 3 - END METDADATA GROUP, 4 - END PARSING Permitted Transitions:: 0 --> 1, 0 --> 4 1 --> 1, 1 --> 2, 1 --> 3 2 --> 2, 2 --> 3 3 --> 1, 1 --> 3, 3 --> 4
https://github.com/landsat-pds/landsat_ingestor/blob/c6514f506628257b8080bc15fe3effb4d7a541be/ingestor/mtlutils.py#L119-L167
from __future__ import division import os.path, glob import datetime import re import logging import StringIO LOGGER = logging.getLogger('pygaarst.mtlutils') METAPATTERN = "*_MTL*" GRPSTART = "GROUP = " GRPEND = "END_GROUP = " ASSIGNCHAR = " = " FINAL = "END" STATUSCODE = [ "begin", "enter metadata group", "add metadata item", "leave metadata group", "end" ] class MTLParseError(Exception): pass def _islinetype(line, testchar): return line.strip().startswith(testchar) def _isassignment(line): return ASSIGNCHAR in line def _isfinal(line): return line.strip() == FINAL def _getgroupname(line): return line.strip().split(GRPSTART)[-1] def _getendgroupname(line): return line.strip().split(GRPEND)[-1] def _getmetadataitem(line): return line.strip().split(ASSIGNCHAR)
Apache License 2.0
kodethon/kodrive
kodrive/cli.py
auth
python
def auth(**kwargs): """ kodrive auth <path> <device_id (client)> 1. make sure path has been added to config.xml, server 2. make sure path is not shared by someone 3. add device_id to folder in config.xml, server 4. add device to devices in config.xml, server """ option = 'add' path = kwargs['path'] key = kwargs['key'] if kwargs['remove']: option = 'remove' if kwargs['yes']: output, err = cli_syncthing_adapter.auth(option, key, path) click.echo("%s" % output, err=err) else: verb = 'authorize' if not kwargs['remove'] else 'de-authorize' if click.confirm("Are you sure you want to %s this device to access %s?" % (verb, path)): output, err = cli_syncthing_adapter.auth(option, key, path) if output: click.echo("%s" % output, err=err)
Authorize device synchronization.
https://github.com/kodethon/kodrive/blob/325fe5e5870b7d4eb121dcc7e93be64aa16e7988/kodrive/cli.py#L132-L161
import click import os, time, math, pdb from . import cli_syncthing_adapter CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help']) @click.version_option() @click.group( epilog="Run 'kodrive COMMAND --help' for more information on a command.", context_settings=CONTEXT_SETTINGS ) @click.pass_context def main(ctx): pass @main.command() @click.option('-i', '--init', is_flag=True, help="Init KodeDrive daemon.") @click.option('-e', '--exit', is_flag=True, help="Exit KodeDrive daemon.") @click.option('-c', '--client', is_flag=True, help="Set Kodedrive into client mode.") @click.option('-s', '--server', is_flag=True, help="Set Kodedrive into server mode.") @click.option('-r', '--restart', is_flag=True, help="Restart KodeDrive daemon.") @click.option('-d', '--delay', type=int, help="Set remote device detection speed.", metavar=" <INTEGER>") def sys(**kwargs): output, err = cli_syncthing_adapter.sys(**kwargs) if output: click.echo("%s" % output, err=err) else: if not kwargs['init']: click.echo(click.get_current_context().get_help()) @main.command() def ls(): heading, body = cli_syncthing_adapter.ls() if heading: click.echo(heading) if body: click.echo(body.strip()) @main.command() @click.argument('key', nargs=1) @click.option( '-i', '--interval', default=30, nargs=1, metavar="<INTEGER>", help="Specify sync interval in seconds." ) @click.option( '-t', '--tag', nargs=1, metavar=" <TEXT>", help="Associate this folder with a tag." ) @click.option( '-p', '--path', type=click.Path(exists=True, writable=True, resolve_path=True), default=".", nargs=1, metavar=" <PATH>", help="Specify which folder to link." ) @click.option( '-y', '--yes', nargs=1, is_flag=True, default=False, help="Bypass confirmation step." ) def link(**kwargs): if kwargs['yes']: output, err = cli_syncthing_adapter.link(**kwargs) click.echo("%s" % output, err=err) else: if click.confirm("Are you sure you want to link %s?" % kwargs['path']): output, err = cli_syncthing_adapter.link(**kwargs) click.echo("%s" % output, err=err) @main.command() @click.argument('key', nargs=1) @click.option( '-R', '--remove', is_flag=True, help="Deauthorize a directory." ) @click.option( '-y', '--yes', nargs=1, is_flag=True, default=False, help="Bypass confirmation step." ) @click.option( '-p', '--path', type=click.Path(exists=True, writable=True, resolve_path=True), default=".", nargs=1, metavar=" <PATH>", help="Specify which folder to link." )
MIT License
jmcgeheeiv/pyfakefs
pyfakefs/tests/fake_stat_time_test.py
FakeStatTestBase.check_open_write_close_new_file
python
def check_open_write_close_new_file(self): created, written, closed = self.open_write_close_new_file() self.assertEqual(created.st_ctime, written.st_ctime) self.assertLessExceptWindows(written.st_ctime, closed.st_ctime) self.assertEqual(created.st_atime, written.st_atime) self.assertLessEqual(written.st_atime, closed.st_atime) self.assertEqual(created.st_mtime, written.st_mtime) self.assertLess(written.st_mtime, closed.st_mtime)
When a file is created on opening, st_ctime is updated under Posix, and st_mtime is updated on close.
https://github.com/jmcgeheeiv/pyfakefs/blob/589bae0c58298d92fea0e463ab5104166cd6e63c/pyfakefs/tests/fake_stat_time_test.py#L178-L192
import time import unittest from collections import namedtuple from pyfakefs.tests.test_utils import RealFsTestCase FileTime = namedtuple('FileTime', 'st_ctime, st_atime, st_mtime') class FakeStatTestBase(RealFsTestCase): def setUp(self): super().setUp() self.check_linux_and_windows() self.file_path = self.make_path('some_file') self.sleep_time = 1.1 if self.is_macos else 0.01 self.mode = '' def stat_time(self, path): stat = self.os.stat(path) if self.use_real_fs(): time.sleep(self.sleep_time) else: time.time() return FileTime(st_ctime=stat.st_ctime, st_atime=stat.st_atime, st_mtime=stat.st_mtime) def assertLessExceptWindows(self, time1, time2): if self.is_windows_fs: self.assertLessEqual(time1, time2) else: self.assertLess(time1, time2) def assertLessExceptPosix(self, time1, time2): if self.is_windows_fs: self.assertLess(time1, time2) else: self.assertEqual(time1, time2) def open_close_new_file(self): with self.mock_time(): with self.open(self.file_path, self.mode): created = self.stat_time(self.file_path) closed = self.stat_time(self.file_path) return created, closed def open_write_close_new_file(self): with self.mock_time(): with self.open(self.file_path, self.mode) as f: created = self.stat_time(self.file_path) f.write('foo') written = self.stat_time(self.file_path) closed = self.stat_time(self.file_path) return created, written, closed def open_close(self): with self.mock_time(): self.create_file(self.file_path) before = self.stat_time(self.file_path) with self.open(self.file_path, self.mode): opened = self.stat_time(self.file_path) closed = self.stat_time(self.file_path) return before, opened, closed def open_write_close(self): with self.mock_time(): self.create_file(self.file_path) before = self.stat_time(self.file_path) with self.open(self.file_path, self.mode) as f: opened = self.stat_time(self.file_path) f.write('foo') written = self.stat_time(self.file_path) closed = self.stat_time(self.file_path) return before, opened, written, closed def open_flush_close(self): with self.mock_time(): self.create_file(self.file_path) before = self.stat_time(self.file_path) with self.open(self.file_path, self.mode) as f: opened = self.stat_time(self.file_path) f.flush() flushed = self.stat_time(self.file_path) closed = self.stat_time(self.file_path) return before, opened, flushed, closed def open_write_flush(self): with self.mock_time(): self.create_file(self.file_path) before = self.stat_time(self.file_path) with self.open(self.file_path, self.mode) as f: opened = self.stat_time(self.file_path) f.write('foo') written = self.stat_time(self.file_path) f.flush() flushed = self.stat_time(self.file_path) closed = self.stat_time(self.file_path) return before, opened, written, flushed, closed def open_read_flush(self): with self.mock_time(): self.create_file(self.file_path) before = self.stat_time(self.file_path) with self.open(self.file_path, 'r') as f: opened = self.stat_time(self.file_path) f.read() read = self.stat_time(self.file_path) f.flush() flushed = self.stat_time(self.file_path) closed = self.stat_time(self.file_path) return before, opened, read, flushed, closed def open_read_close_new_file(self): with self.mock_time(): with self.open(self.file_path, self.mode) as f: created = self.stat_time(self.file_path) f.read() read = self.stat_time(self.file_path) closed = self.stat_time(self.file_path) return created, read, closed def open_read_close(self): with self.mock_time(): self.create_file(self.file_path) before = self.stat_time(self.file_path) with self.open(self.file_path, self.mode) as f: opened = self.stat_time(self.file_path) f.read() read = self.stat_time(self.file_path) closed = self.stat_time(self.file_path) return before, opened, read, closed def check_open_close_new_file(self): created, closed = self.open_close_new_file() self.assertEqual(created.st_ctime, closed.st_ctime) self.assertEqual(created.st_atime, closed.st_atime) self.assertEqual(created.st_mtime, closed.st_mtime)
Apache License 2.0
siviltaram/persona-dialogue-generation
parlai/mturk/core/agents.py
MTurkAgent.append_message
python
def append_message(self, message): self.state.append_message(message)
Add a received message to the state
https://github.com/siviltaram/persona-dialogue-generation/blob/3cc800ffe3c5a8d16ed26522cda839acfab8d417/parlai/mturk/core/agents.py#L249-L251
import logging import time from queue import Queue import uuid from parlai.core.agents import Agent import parlai.mturk.core.data_model as data_model import parlai.mturk.core.shared_utils as shared_utils MTURK_DISCONNECT_MESSAGE = '[DISCONNECT]' TIMEOUT_MESSAGE = '[TIMEOUT]' RETURN_MESSAGE = '[RETURNED]' class AssignState(): STATUS_NONE = 'none' STATUS_ONBOARDING = 'onboarding' STATUS_WAITING = 'waiting' STATUS_IN_TASK = 'in task' STATUS_DONE = 'done' STATUS_DISCONNECT = 'disconnect' STATUS_PARTNER_DISCONNECT = 'partner disconnect' STATUS_PARTNER_DISCONNECT_EARLY = 'partner disconnect early' STATUS_EXPIRED = 'expired' STATUS_RETURNED = 'returned' def __init__(self, status=None): if status is None: status = self.STATUS_NONE self.status = status self.messages = [] self.last_command = None self.message_ids = [] def clear_messages(self): self.messages = [] self.message_ids = [] self.last_command = None def append_message(self, message): if message['message_id'] in self.message_ids: return self.message_ids.append(message['message_id']) self.messages.append(message) def set_last_command(self, command): self.last_command = command def get_last_command(self): return self.last_command def get_messages(self): return self.messages def set_status(self, status): self.status = status def get_status(self): return self.status def is_final(self): return (self.status == self.STATUS_DISCONNECT or self.status == self.STATUS_DONE or self.status == self.STATUS_PARTNER_DISCONNECT or self.status == self.STATUS_PARTNER_DISCONNECT_EARLY or self.status == self.STATUS_RETURNED or self.status == self.STATUS_EXPIRED) def get_inactive_command_text(self): command = data_model.COMMAND_INACTIVE_HIT text = None if self.status == self.STATUS_DISCONNECT: text = ('You disconnected in the middle of this HIT and were ' 'marked as inactive. As these HITs often require real-' 'time interaction, it is no longer available for ' 'completion. Please return this HIT and accept a new one ' 'if you would like to try again.') elif self.status == self.STATUS_DONE: command = data_model.COMMAND_INACTIVE_DONE text = ('You disconnected after completing this HIT without ' 'marking it as completed. Please press the done button ' 'below to finish the HIT.') elif self.status == self.STATUS_EXPIRED: text = ('You disconnected in the middle of this HIT and the ' 'HIT expired before you reconnected. It is no longer ' 'available for completion. Please return this HIT and ' 'accept a new one if you would like to try again.') elif self.status == self.STATUS_PARTNER_DISCONNECT: command = data_model.COMMAND_INACTIVE_DONE text = ('One of your partners disconnected in the middle of the ' 'HIT. We won\'t penalize you for their disconnect, so ' 'please use the button below to mark the HIT as complete.') elif self.status == self.STATUS_PARTNER_DISCONNECT_EARLY: command = data_model.COMMAND_INACTIVE_HIT text = ('One of your partners disconnected in the middle of the ' 'HIT. We won\'t penalize you for their disconnect, but you' ' did not complete enough of the task to submit the HIT. ' 'Please return this HIT and accept a new one if you would ' 'like to try again.') elif self.status == self.STATUS_RETURNED: text = ('You disconnected from this HIT and then returned ' 'it. As we have marked the HIT as returned, it is no ' 'longer available for completion. Please accept a new ' 'HIT if you would like to try again') else: text = ('Our server was unable to handle your reconnect properly ' 'and thus this HIT no longer seems available for ' 'completion. Please try to connect again or return this ' 'HIT and accept a new one.') return text, command class MTurkAgent(Agent): ASSIGNMENT_NOT_DONE = 'NotDone' ASSIGNMENT_DONE = 'Submitted' ASSIGNMENT_APPROVED = 'Approved' ASSIGNMENT_REJECTED = 'Rejected' MTURK_DISCONNECT_MESSAGE = MTURK_DISCONNECT_MESSAGE TIMEOUT_MESSAGE = TIMEOUT_MESSAGE RETURN_MESSAGE = RETURN_MESSAGE def __init__(self, opt, mturk_manager, hit_id, assignment_id, worker_id): super().__init__(opt) self.conversation_id = None self.mturk_manager = mturk_manager self.db_logger = mturk_manager.db_logger self.id = None self.state = AssignState() self.assignment_id = assignment_id self.hit_id = hit_id self.worker_id = worker_id self.some_agent_disconnected = False self.hit_is_expired = False self.hit_is_abandoned = False self.hit_is_returned = False self.hit_is_complete = False self.disconnected = False self.task_group_id = mturk_manager.task_group_id self.message_request_time = None self.recieved_packets = {} self.creation_time = time.time() self.alived = True self.feedback = None self.msg_queue = Queue() def _get_episode_done_msg(self, text): return { 'id': self.id, 'text': text, 'episode_done': True } def set_status(self, status): self.state.set_status(status) if self.db_logger is not None: if status == AssignState.STATUS_ONBOARDING: self.db_logger.log_start_onboard( self.worker_id, self.assignment_id, self.conversation_id) elif status == AssignState.STATUS_WAITING: self.db_logger.log_finish_onboard( self.worker_id, self.assignment_id) elif status == AssignState.STATUS_IN_TASK: self.db_logger.log_start_task( self.worker_id, self.assignment_id, self.conversation_id) elif status == AssignState.STATUS_DONE: self.db_logger.log_complete_assignment( self.worker_id, self.assignment_id, time.time() + self.mturk_manager.auto_approve_delay, status) elif status == AssignState.STATUS_PARTNER_DISCONNECT: self.db_logger.log_complete_assignment( self.worker_id, self.assignment_id, time.time() + self.mturk_manager.auto_approve_delay, status) elif status == AssignState.STATUS_PARTNER_DISCONNECT_EARLY: self.db_logger.log_complete_assignment( self.worker_id, self.assignment_id, time.time() + self.mturk_manager.auto_approve_delay, status) elif status == AssignState.STATUS_DISCONNECT: self.db_logger.log_disconnect_assignment( self.worker_id, self.assignment_id, time.time() + self.mturk_manager.auto_approve_delay, status) elif status == AssignState.STATUS_EXPIRED: self.db_logger.log_complete_assignment( self.worker_id, self.assignment_id, time.time() + self.mturk_manager.auto_approve_delay, status) elif status == AssignState.STATUS_RETURNED: self.db_logger.log_abandon_assignment( self.worker_id, self.assignment_id) def get_status(self): return self.state.get_status() def submitted_hit(self): return self.get_status() in [ AssignState.STATUS_DONE, AssignState.STATUS_PARTNER_DISCONNECT ] def is_final(self): return self.state.is_final()
MIT License
pybuilder/pybuilder
src/main/python/pybuilder/_vendor/distlib/markers.py
Evaluator.evaluate
python
def evaluate(self, expr, context): if isinstance(expr, string_types): if expr[0] in '\'"': result = expr[1:-1] else: if expr not in context: raise SyntaxError('unknown variable: %s' % expr) result = context[expr] else: assert isinstance(expr, dict) op = expr['op'] if op not in self.operations: raise NotImplementedError('op not implemented: %s' % op) elhs = expr['lhs'] erhs = expr['rhs'] if _is_literal(expr['lhs']) and _is_literal(expr['rhs']): raise SyntaxError('invalid comparison: %s %s %s' % (elhs, op, erhs)) lhs = self.evaluate(elhs, context) rhs = self.evaluate(erhs, context) if ((elhs == 'python_version' or erhs == 'python_version') and op in ('<', '<=', '>', '>=', '===', '==', '!=', '~=')): lhs = NV(lhs) rhs = NV(rhs) elif elhs == 'python_version' and op in ('in', 'not in'): lhs = NV(lhs) rhs = _get_versions(rhs) result = self.operations[op](lhs, rhs) return result
Evaluate a marker expression returned by the :func:`parse_requirement` function in the specified context.
https://github.com/pybuilder/pybuilder/blob/de74b167c6c8ef679ed1f1a1ff79349d004c5785/src/main/python/pybuilder/_vendor/distlib/markers.py#L59-L91
import os import re import sys import platform from .compat import string_types from .util import in_venv, parse_marker from .version import NormalizedVersion as NV __all__ = ['interpret'] _VERSION_PATTERN = re.compile(r'((\d+(\.\d+)*\w*)|\'(\d+(\.\d+)*\w*)\'|\"(\d+(\.\d+)*\w*)\")') def _is_literal(o): if not isinstance(o, string_types) or not o: return False return o[0] in '\'"' def _get_versions(s): result = [] for m in _VERSION_PATTERN.finditer(s): result.append(NV(m.groups()[0])) return set(result) class Evaluator(object): operations = { '==': lambda x, y: x == y, '===': lambda x, y: x == y, '~=': lambda x, y: x == y or x > y, '!=': lambda x, y: x != y, '<': lambda x, y: x < y, '<=': lambda x, y: x == y or x < y, '>': lambda x, y: x > y, '>=': lambda x, y: x == y or x > y, 'and': lambda x, y: x and y, 'or': lambda x, y: x or y, 'in': lambda x, y: x in y, 'not in': lambda x, y: x not in y, }
Apache License 2.0
arelle/arelle
arelle/CntlrWebMain.py
localhostCertificate
python
def localhostCertificate(): return ''' -----BEGIN CERTIFICATE----- MIIDljCCAn4CAQAwDQYJKoZIhvcNAQEEBQAwgZAxCzAJBgNVBAYTAlVTMRMwEQYD VQQIEwpDYWxpZm9ybmlhMQ8wDQYDVQQHEwZFbmNpbm8xEzARBgNVBAoTCmFyZWxs ZS5vcmcxDzANBgNVBAsTBmFyZWxsZTESMBAGA1UEAxMJbG9jYWxob3N0MSEwHwYJ KoZIhvcNAQkBFhJzdXBwb3J0QGFyZWxsZS5vcmcwHhcNMTIwMTIwMDg0NjM1WhcN MTQxMDE1MDg0NjM1WjCBkDELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3Ju aWExDzANBgNVBAcTBkVuY2lubzETMBEGA1UEChMKYXJlbGxlLm9yZzEPMA0GA1UE CxMGYXJlbGxlMRIwEAYDVQQDEwlsb2NhbGhvc3QxITAfBgkqhkiG9w0BCQEWEnN1 cHBvcnRAYXJlbGxlLm9yZzCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB AMJEq9zT4cdA2BII4TG4OJSlUP22xXqNAJdZZeB5rTIX4ePwIZ8KfFh/XWQ1/q5I c/rkZ5TyC+SbEmQa/unvv1CypMAWWMfuguU6adOsxt+zFFMJndlE1lr3A2SBjHbD vBGzGJJTivBzDPBIQ0SGcf32usOeotmE2PA11c5en8/IsRXm9+TA/W1xL60mfphW 9PIaJ+WF9rRROjKXVdQZTRFsNRs/Ag8o3jWEyWYCwR97+XkorYsAJs2TE/4zV+8f 8wKuhOrsy9KYFZz2piVWaEC0hbtDwX1CqN+1oDHq2bYqLygUSD/LbgK1lxM3ciVy ewracPVHBErPlcJFxiOxAw0CAwEAATANBgkqhkiG9w0BAQQFAAOCAQEAM2np3UVY 6g14oeV0Z32Gn04+r6FV2D2bobxCVLIQDsWGEv1OkjVBJTu0bLsZQuNVZHEn5a+2 I0+MGME3HK1rx1c8MrAsr5u7ZLMNj7cjjtFWAUp9GugJyOmGK136o4/j1umtBojB iVPvHsAvwZuommfME+AaBE/aJjPy5I3bSu8x65o1fuJPycrSeLAnLd/shCiZ31xF QnJ9IaIU1HOusplC13A0tKhmRMGNz9v+Vqdj7J/kpdTH7FNMulrJTv/0ezTPjaOB QhpLdqly7hWJ23blbQQv4ILT2CiPDotJslcKDT7GzvPoDu6rIs2MpsB/4RDYejYU +3cu//C8LvhjkQ== -----END CERTIFICATE----- '''
Interface to QuickBooks server responding to *get* requests for a host certificate */quickbooks/localhost.crt* or */localhost.crt*. (Supports QuickBooks protocol.) :returns: self-signed certificate
https://github.com/arelle/arelle/blob/f9b83eb6c95be457c9fe07dda8e3f6207f0ec9af/arelle/CntlrWebMain.py#L521-L551
from arelle.webserver.bottle import Bottle, request, response, static_file from arelle.Cntlr import LogFormatter import os, io, sys, time, threading, uuid, zipfile from arelle import Version from arelle.FileSource import FileNamedStringIO from arelle.PluginManager import pluginClassMethods _os_pid = os.getpid() GETorPOST = ('GET', 'POST') GET = 'GET' POST = 'POST' def startWebserver(_cntlr, options): global imagesDir, cntlr, optionsPrototype cntlr = _cntlr imagesDir = cntlr.imagesDir optionValuesTypes = _STR_NUM_TYPES + (type(None),) optionsPrototype = dict((option,value if isinstance(value,_STR_NUM_TYPES) else None) for option in dir(options) for value in (getattr(options, option),) if isinstance(value,optionValuesTypes) and not option.startswith('_')) host, sep, portServer = options.webserver.partition(":") port, sep, server = portServer.partition(":") app = Bottle() pluginResult = None for pluginMethod in pluginClassMethods("CntlrWebMain.StartWebServer"): pluginResult = pluginMethod(app, cntlr, host, port, server) break if not (isinstance(pluginResult, str) and "skip-routes" in pluginResult): app.route('/rest/login', GET, login_form) app.route('/rest/login', POST, login_submit) app.route('/rest/logout', GET, logout) app.route('/favicon.ico', GET, arelleIcon) app.route('/rest/xbrl/<file:path>/open', GETorPOST, validation) app.route('/rest/xbrl/<file:path>/close', GETorPOST, validation) app.route('/rest/xbrl/<file:path>/validation/xbrl', GETorPOST, validation) app.route('/rest/xbrl/<file:path>/DTS', GETorPOST, validation) app.route('/rest/xbrl/<file:path>/concepts', GETorPOST, validation) app.route('/rest/xbrl/<file:path>/pre', GETorPOST, validation) app.route('/rest/xbrl/<file:path>/table', GETorPOST, validation) app.route('/rest/xbrl/<file:path>/cal', GETorPOST, validation) app.route('/rest/xbrl/<file:path>/dim', GETorPOST, validation) app.route('/rest/xbrl/<file:path>/facts', GETorPOST, validation) app.route('/rest/xbrl/<file:path>/factTable', GETorPOST, validation) app.route('/rest/xbrl/<file:path>/roleTypes', GETorPOST, validation) app.route('/rest/xbrl/<file:path>/arcroleTypes', GETorPOST, validation) app.route('/rest/xbrl/<file:path>/formulae', GETorPOST, validation) app.route('/rest/xbrl/validation', GETorPOST, validation) app.route('/rest/xbrl/view', GETorPOST, validation) app.route('/rest/xbrl/open', GETorPOST, validation) app.route('/rest/xbrl/close', GETorPOST, validation) app.route('/images/<imgFile>', GET, image) app.route('/rest/xbrl/diff', GET, diff) app.route('/rest/configure', GET, configure) app.route('/rest/stopWebServer', GET, stopWebServer) app.route('/quickbooks/server.asmx', POST, quickbooksServer) app.route('/rest/quickbooks/<qbReport>/xbrl-gl/<file:path>', GET, quickbooksGLrequest) app.route('/rest/quickbooks/<qbReport>/xbrl-gl/<file:path>/view', GET, quickbooksGLrequest) app.route('/rest/quickbooks/<qbReport>/xbrl-gl/view', GET, quickbooksGLrequest) app.route('/rest/quickbooks/response', GET, quickbooksGLresponse) app.route('/quickbooks/server.html', GET, quickbooksWebPage) app.route('/quickbooks/localhost.crt', GET, localhostCertificate) app.route('/localhost.crt', GET, localhostCertificate) app.route('/rest/test/test', GETorPOST, testTest) app.route('/help', GET, helpREST) app.route('/about', GET, about) app.route('/', GET, indexPageREST) if server == "cgi": app.route('<cgiAppPath:path>', GETorPOST, cgiInterface) if not (isinstance(pluginResult, str) and "skip-run" in pluginResult): if server == "wsgi": return app elif server == "cgi": if sys.stdin is None: sys.stdin = open(os.devnull, 'r') app.run(server=server) sys.exit(0) elif server: sys.path.insert(0,os.path.join(os.path.dirname(__file__),"webserver")) app.run(host=host, port=port or 80, server=server) else: app.run(host=host, port=port or 80) def cgiInterface(cgiAppPath): if not request.query: return indexPageCGI() elif 'about' in request.query: return about(cgiAppPath + "?image=arelle32.gif") elif 'help' in request.query: return helpREST() elif 'image' in request.query: return image(request.query.image) else: return indexPageCGI() def login_form(): return _('''<html><body><form method="POST"><table> <tr><td>Name:</td><td><input name="name" type="text" /></td></tr> <tr><td>Password:</td><td><input name="password" type="password" /></td></tr> <tr><td>&nbsp;</td><td><input type="submit" value="Submit" /></td></tr> </table></form></body></html>''') def login_submit(): name = request.forms.get('name') password = request.forms.get('password') if checkLogin(name, password): return _("<p>You are logged in as user: {0}</p>").format(name) else: return _("<p>Login failed</p>") def checkLogin(_user, _password): global user user = _user return True def logout(): global user user = None return _("<p>You are logged out.</p>") def arelleIcon(): return static_file("arelle.ico", root=imagesDir, mimetype='image/vnd.microsoft.icon') def image(imgFile): return static_file(imgFile, root=imagesDir) validationOptions = { "efm": ("validateEFM", True), "efm-pragmatic": ("disclosureSystemName", "efm-pragmatic"), "efm-strict": ("disclosureSystemName", "efm-strict"), "efm-all-years": ("disclosureSystemName", "efm-all-years"), "esef": ("disclosureSystemName", "esef"), "disclosure-system": ("disclosureSystemName", None), "ifrs": ("gfmName", "ifrs"), "hmrc": ("gfmName", "hmrc"), "sbr-nl": ("gfmName", "sbr-nl"), "utr": ("utrValidate", True), "infoset": ("infosetValidate", True), "import": ("importFiles", None), } validationKeyVarName = { "disclosureSystem": "disclosureSystemName", "roleTypes": "roleTypesFile", "arcroleTypes": "arcroleTypesFile" } class Options(): def __init__(self): for option, defaultValue in optionsPrototype.items(): setattr(self, option, defaultValue) supportedViews = {'DTS', 'concepts', 'pre', 'table', 'cal', 'dim', 'facts', 'factTable', 'formulae', 'roleTypes', 'arcroleTypes'} def validation(file=None): errors = [] flavor = request.query.flavor or 'standard' media = request.query.media or 'html' requestPathParts = request.urlparts[2].split('/') isValidation = 'validation' == requestPathParts[-1] or 'validation' == requestPathParts[-2] view = request.query.view viewArcrole = request.query.viewArcrole if request.method == 'POST': mimeType = request.get_header("Content-Type") if mimeType.startswith("multipart/form-data"): _upload = request.files.get("upload") if not _upload or not _upload.filename.endswith(".zip"): errors.append(_("POST file upload must be a zip file")) sourceZipStream = None else: sourceZipStream = _upload.file elif mimeType not in ('application/zip', 'application/x-zip', 'application/x-zip-compressed', 'multipart/x-zip'): errors.append(_("POST must provide a zip file, Content-Type '{0}' not recognized as a zip file.").format(mimeType)) sourceZipStream = request.body else: sourceZipStream = None if not view and not viewArcrole: if requestPathParts[-1] in supportedViews: view = requestPathParts[-1] if isValidation: if view or viewArcrole: errors.append(_("Only validation or one view can be specified in one requested.")) if media not in ('xml', 'xhtml', 'html', 'json', 'text', 'zip') and not (sourceZipStream and media == 'zip'): errors.append(_("Media '{0}' is not supported for validation (please select xhtml, html, xml, json or text)").format(media)) elif view or viewArcrole: if media not in ('xml', 'xhtml', 'html', 'csv', 'xlsx', 'json'): errors.append(_("Media '{0}' is not supported for view (please select xhtml, html, xml, csv, xlsx or json)").format(media)) elif requestPathParts[-1] not in ("open", "close"): errors.append(_("Neither validation nor view requested, nothing to do.")) if (flavor not in ('standard', 'standard-except-formula', 'formula-compile-only', 'formula-compile-and-run') and not flavor.startswith('edgar') and not flavor.startswith('sec')): errors.append(_("Flavor '{0}' is not supported").format(flavor)) if view and view not in supportedViews: errors.append(_("View '{0}' is not supported").format(view)) if errors: errors.insert(0, _("URL: ") + (file or request.query.file or '(no file)')) return errorReport(errors, media) options = Options() isFormulaOnly = False for key, value in request.query.items(): if key == "file": setattr(options, "entrypointFile", value) elif key == "flavor": if value.startswith("sec") or value.startswith("edgar"): setattr(options, "validateEFM", True) elif value == "formula-compile-only": isFormulaOnly = True setattr(options, "formulaAction", "validate") elif value == "formula-compile-and-run": isFormulaOnly = True setattr(options, "formulaAction", "run") elif value == "standard-except-formula": setattr(options, "formulaAction", "none") elif key in("media", "view", "viewArcrole"): pass elif key in validationOptions: optionKey, optionValue = validationOptions[key] setattr(options, optionKey, optionValue if optionValue is not None else value) elif key in validationKeyVarName: setattr(options, validationKeyVarName[key], value or True) elif not value: setattr(options, key, True) else: setattr(options, key, value) if file: setattr(options, "entrypointFile", file.replace(';','/')) requestPathParts = set(request.urlparts[2].split('/')) viewFile = None if isValidation: if not isFormulaOnly: setattr(options, "validate", True) elif view: viewFile = FileNamedStringIO(media) setattr(options, view + "File", viewFile) elif viewArcrole: viewFile = FileNamedStringIO(media) setattr(options, "viewArcrole", viewArcrole) setattr(options, "viewFile", viewFile) return runOptionsAndGetResult(options, media, viewFile, sourceZipStream) def runOptionsAndGetResult(options, media, viewFile, sourceZipStream=None): addLogToZip = False if media == "zip" and not viewFile: responseZipStream = io.BytesIO() if (hasattr(options, "saveOIMinstance") or (getattr(options, "entrypointFile", "") or "").rpartition(".")[2] in ("json", "csv", "xlsx")): plugins = (getattr(options, "plugins", "") or "").split("|") if getattr(options, "entrypointFile", "").rpartition(".")[2] in ("json", "csv", "xlsx"): if "loadFromOIM" not in plugins: plugins.append("loadFromOIM") addLogToZip = True if getattr(options, "saveOIMinstance", "").rpartition(".")[2] in ("json", "csv", "xlsx"): if "saveLoadableOIM" not in plugins: plugins.append("saveLoadableOIM") addLogToZip = True setattr(options, "saveLoadableOIM", getattr(options, "saveOIMinstance")) setattr(options, "saveOIMinstance", None) setattr(options, "plugins", "|".join(p for p in plugins if p) or None) else: responseZipStream = None successful = cntlr.run(options, sourceZipStream, responseZipStream) if media == "xml": response.content_type = 'text/xml; charset=UTF-8' elif media == "csv": response.content_type = 'text/csv; charset=UTF-8' elif media == "json": response.content_type = 'application/json; charset=UTF-8' elif media == "text": response.content_type = 'text/plain; charset=UTF-8' elif media == "zip": response.content_type = 'application/zip; charset=UTF-8' else: response.content_type = 'text/html; charset=UTF-8' if successful and viewFile: result = viewFile.getvalue().replace("&nbsp;","\u00A0").replace("&shy;","\u00AD").replace("&amp;","&") viewFile.close() elif media == "zip": responseZipStream.seek(0) if addLogToZip: _zip = zipfile.ZipFile(responseZipStream, "a", zipfile.ZIP_DEFLATED, True) _zip.writestr("log.txt", cntlr.logHandler.getText()) _zip.close() responseZipStream.seek(0) result = responseZipStream.read() responseZipStream.close() cntlr.logHandler.clearLogBuffer() elif media == "xml": result = cntlr.logHandler.getXml() elif media == "json": result = cntlr.logHandler.getJson() elif media == "text": _logFormat = request.query.logFormat if _logFormat: _stdLogFormatter = cntlr.logHandler.formatter cntlr.logHandler.formatter = LogFormatter(_logFormat) result = cntlr.logHandler.getText() if _logFormat: cntlr.logHandler.formatter = _stdLogFormatter del _stdLogFormatter else: result = htmlBody(tableRows(cntlr.logHandler.getLines(), header=_("Messages"))) return result def diff(): if not request.query.fromDTS or not request.query.toDTS or not request.query.report: return _("From DTS, to DTS, and report must be specified") options = Options() setattr(options, "entrypointFile", request.query.fromDTS) setattr(options, "diffFile", request.query.toDTS) fh = FileNamedStringIO(request.query.report) setattr(options, "versReportFile", fh) cntlr.run(options) reportContents = fh.getvalue() fh.close() response.content_type = 'text/xml; charset=UTF-8' return reportContents def configure(): if not request.query.proxy and not request.query.plugins and not request.query.packages and 'environment' not in request.query: return _("proxy, plugins, packages or environment must be specified") options = Options() if request.query.proxy: setattr(options, "proxy", request.query.proxy) if request.query.plugins: setattr(options, "plugins", request.query.plugins) if request.query.packages: setattr(options, "packages", request.query.packages) if 'environment' in request.query: setattr(options, "showEnvironment", True) cntlr.run(options) response.content_type = 'text/html; charset=UTF-8' return htmlBody(tableRows(cntlr.logHandler.getLines(), header=_("Configuration Request"))) def stopWebServer(): def stopSoon(delaySeconds): time.sleep(delaySeconds) import signal os.kill(_os_pid, signal.SIGTERM) threading.Thread(target=stopSoon, args=(2.5,), daemon=True).start() response.content_type = 'text/html; charset=UTF-8' return htmlBody(tableRows((time.strftime("Received at %Y-%m-%d %H:%M:%S"), "Good bye...",), header=_("Stop Request"))) def testTest(): return "Results attached:\n" + multipartResponse(( ("file1", "text/plain", "test text 1"), ("file2", "text/plain", "test text 2"), ("file3", "text/plain", "test text 3"), )) def quickbooksServer(): from arelle import CntlrQuickBooks response.content_type = 'text/xml; charset=UTF-8' return CntlrQuickBooks.server(cntlr, request.body, request.urlparts) def quickbooksGLrequest(qbReport=None, file=None): from arelle.CntlrQuickBooks import supportedQbReports, qbRequest from arelle.ModelValue import dateTime errors = [] requestPathParts = request.urlparts[2].split('/') viewRequested = "view" == requestPathParts[-1] media = request.query.media or 'html' fromDate = request.query.fromDate toDate = request.query.toDate if qbReport not in supportedQbReports: errors.append(_("QuickBooks report '{0}' is not supported (please select from: {1})").format( qbReport, ', '.join(supportedQbReports))) if media not in ('xml', 'xhtml', 'html'): errors.append(_("Media '{0}' is not supported for xbrl-gl (please select xhtml, html or xml)").format(media)) if not fromDate or dateTime(fromDate) is None: errors.append(_("FromDate '{0}' missing or not valid").format(fromDate)) if not toDate or dateTime(toDate) is None: errors.append(_("ToDate '{0}' missing or not valid").format(toDate)) if errors: return errorReport(errors, media) ticket = qbRequest(qbReport, fromDate, toDate, file) result = htmlBody(tableRows([_("Request queued for QuickBooks...")], header=_("Quickbooks Request")), script=''' <script type="text/javascript"> <!-- var timer = setInterval("autoRefresh()", 1000 * 10); function autoRefresh(){{location.href = "/rest/quickbooks/response?ticket={0}&media={1}&view={2}";}} //--> </script> '''.format(ticket, media, viewRequested)) return result def quickbooksGLresponse(): from arelle import CntlrQuickBooks ticket = request.query.ticket media = request.query.media viewRequested = request.query.view status = CntlrQuickBooks.qbRequestStatus.get(ticket) if not status: return htmlBody(tableRows([_("QuickBooks ticket not found, request canceled.")], header=_("Quickbooks Request"))) if status.startswith("ConnectionErrorMessage: "): CntlrQuickBooks.qbRequestStatus.pop(ticket, None) return errorReport([status[24:]], media) if status != "Done" or ticket not in CntlrQuickBooks.xbrlInstances: return htmlBody(tableRows([_("{0}, Waiting 20 seconds...").format(status)], header=_("Quickbooks Request")), script=''' <script type="text/javascript"> <!-- var timer = setInterval("autoRefresh()", 1000 * 20); function autoRefresh(){{clearInterval(timer);self.location.reload(true);}} //--> </script> ''') CntlrQuickBooks.qbRequestStatus.pop(ticket) instanceUuid = CntlrQuickBooks.xbrlInstances[ticket] CntlrQuickBooks.xbrlInstances.pop(ticket) options = Options() setattr(options, "entrypointFile", instanceUuid) viewFile = FileNamedStringIO(media) setattr(options, "factsFile", viewFile) return runOptionsAndGetResult(options, media, viewFile) def quickbooksWebPage(): return htmlBody(_('''<table width="700p"> <tr><th colspan="2">Arelle QuickBooks Global Ledger Interface</th></tr> <tr><td>checkbox</td><td>Trial Balance.</td></tr> <tr><td>close button</td><td>Done</td></tr> </table>'''))
Apache License 2.0
dedsecinside/awesome-scripts
APIs/Flask Login using Facebook API/app.py
index
python
def index(): if request.method == 'POST': if request.form['password'] == PASSWORD: session['user'] = USER_NAME return redirect(url_for('profile')) if 'user' in session: return redirect(url_for('profile')) return render_template('index.html')
Show the current page. Args:
https://github.com/dedsecinside/awesome-scripts/blob/856835e5ff5f8a6af2d74bb25800c620feb712e3/APIs/Flask Login using Facebook API/app.py#L29-L43
from flask import Flask, render_template, request, session, redirect, url_for, g import os import string import random import requests app = Flask(__name__) app.config['SECRET_KEY'] = os.urandom(24) redirect_url = r'http://localhost:5000/get-code' url_token = r"https://powerful-inlet-11533.herokuapp.com/auth" access_token = None name = None USER_NAME = None PASSWORD = None def state_key(): return ''.join(random.choices(string.ascii_uppercase + string.digits)) @app.route("/", methods=['GET', 'POST']) @app.route("/index", methods=['GET', 'POST'])
MIT License
practical-formal-methods/queryfuzz
queryfuzz/engines/souffle/souffle.py
SouffleProgram.export_program_string
python
def export_program_string(self, core_path): self.program_path = os.path.join(core_path, "program_" + str(self.program_number)) self.program_file_path = os.path.join(self.program_path, "orig_rules.dl") self.logs.set_log_file_name("orig.log") self.logs.set_log_file_path(self.program_path) os.mkdir(self.program_path) create_file(self.program_string, self.program_file_path) if self.params["in_file_facts"] is False: for fact in self.facts: fact.generate_fact_file(self.program_path)
Export original program string
https://github.com/practical-formal-methods/queryfuzz/blob/330be12fb9567e4b94968ac17be030a390d02e9f/queryfuzz/engines/souffle/souffle.py#L304-L319
from queryfuzz.datalog.base_program import BaseProgram from queryfuzz.engines.souffle.souffle_rule import SouffleRule from queryfuzz.engines.souffle.souffle_fact import SouffleFact from queryfuzz.engines.souffle.souffle_aggregate import SouffleAggregate from queryfuzz.engines.souffle.souffle_subgoal import SouffleSubgoal from queryfuzz.utils.file_operations import create_file from copy import deepcopy from termcolor import colored import os class SouffleProgram(BaseProgram): def get_allowed_types(self): self.allowed_types = deepcopy(self.params["souffle_types"]) def parse_program(self): self.add_log_text("\tReading seed file: " + self.seed_program_file) with open(self.seed_program_file, 'r') as f: lines = f.read().splitlines() for line in lines: if line.find(".type") != -1: self.type_declarations.append(line + " //Parsed entity") continue if line.find(".decl") != -1: self.declarations.append(line + " //Parsed entity") parsed_subgoal = SouffleSubgoal(randomness=self.randomness, arity=0, params=self.params) parsed_subgoal.parse_subgoal_declaration(line) self.add_log_text("\tParsing subgoal: " + line + " Arity: " + str(parsed_subgoal.get_arity())) if parsed_subgoal.get_arity() != 0: self.all_relations.append(parsed_subgoal) for _type in parsed_subgoal.get_types(): if _type not in self.allowed_types: self.allowed_types.append(_type) continue if line.find(".input") != -1: self.inputs.append(line + " //Parsed entity") continue if line.find(":-") != -1: parsed_rule = SouffleRule(verbose=self.verbose, randomness=self.randomness, params=self.params) parsed_rule.set_string(line + " //parsed rule") self.all_rules.append(parsed_rule) continue if line[0:2] == "//" or line == "" or line.find(".output") != -1: continue self.other_things.append(line + " //Parsed entity") def generate_cycle_breaker_rules(self): if self.number_of_mixed_rules == 0: return 0 for i in range(self.number_of_cycle_breaker_rules): cycle_breaker_rule = SouffleRule(verbose=self.verbose, randomness=self.randomness, params=self.params) cycle_breaker_rule.generate_random_rule(ruleType="cycle breaker", allowed_types=self.allowed_types, available_relations=self.all_relations) self.declarations.append(cycle_breaker_rule.get_declaration()) self.all_rules.append(cycle_breaker_rule) self.cycle_breakers.append(cycle_breaker_rule.get_head()) def generate_mixed_rules(self): for i in range(self.number_of_mixed_rules): mixed_rule = SouffleRule(verbose=self.verbose, randomness=self.randomness, params=self.params) mixed_rule.generate_random_rule(ruleType="mixed", allowed_types=self.allowed_types, available_relations=self.all_relations) mixed_rule.add_negated_subgoals(available_relations=self.all_relations) mixed_rule.generate_predicates() mixed_rule.insert_operations_in_head() aggregate = SouffleAggregate(parent_rule=mixed_rule, verbose=self.verbose, randomness=self.randomness, params=self.params, allowed_types=self.params["souffle_types"], available_relations=self.all_relations) if self.params["aggregate"]: mixed_rule.add_aggregate(aggregate.get_string()) mixed_rule.generate_heads(non_cyclic_relations=self.cycle_breakers) disjunctive_rules = list() for j in range(self.randomness.get_random_integer(0, self.params["max_number_of_disjunctions"])): dis_mixed_rule = SouffleRule(verbose=self.verbose, randomness=self.randomness, params=self.params) dis_mixed_rule.generate_disjunctive_rule(parent_rule=mixed_rule, available_relations=self.all_relations) dis_mixed_rule.add_negated_subgoals(available_relations=self.all_relations) dis_mixed_rule.generate_predicates() dis_mixed_rule.insert_operations_in_head() aggregate = SouffleAggregate(parent_rule=dis_mixed_rule, verbose=self.verbose, randomness=self.randomness, params=self.params, allowed_types=self.params["souffle_types"], available_relations=self.all_relations) if self.params["aggregate"]: dis_mixed_rule.add_aggregate(aggregate.get_string()) disjunctive_rules.append(dis_mixed_rule) self.declarations.append(mixed_rule.get_declaration()) self.all_relations.append(deepcopy(mixed_rule.get_head())) self.all_rules.append(mixed_rule) self.all_rules = self.all_rules + disjunctive_rules self.all_relations = self.all_relations + self.cycle_breakers def generate_complex_rules(self): for i in range(self.number_of_complex_rules): complex_rule = SouffleRule(verbose=self.verbose, randomness=self.randomness, params=self.params) complex_rule.generate_random_rule(ruleType="complex", allowed_types=self.allowed_types, available_relations=self.all_relations) complex_rule.add_negated_subgoals(available_relations=self.all_relations) disjunctive_rules = list() for j in range(self.randomness.get_random_integer(0, self.params["max_number_of_disjunctions"])): dis_complex_rule = SouffleRule(verbose=self.verbose, randomness=self.randomness, params=self.params) dis_complex_rule.generate_disjunctive_rule(parent_rule=complex_rule, available_relations=self.all_relations) dis_complex_rule.add_negated_subgoals(available_relations=self.all_relations) disjunctive_rules.append(dis_complex_rule) self.declarations.append(complex_rule.get_declaration()) self.all_relations.append(deepcopy(complex_rule.get_head())) self.all_rules.append(complex_rule) self.all_rules = self.all_rules + disjunctive_rules def generate_simple_rules(self): for i in range(self.number_of_simple_rules): rule = SouffleRule(verbose=self.verbose, randomness=self.randomness, params=self.params) rule.generate_random_rule(ruleType="simple", allowed_types=self.allowed_types, available_relations=self.all_relations) disjunctive_rules = list() for j in range(self.randomness.get_random_integer(0, self.params["max_number_of_disjunctions"])): dis_simple_rule = SouffleRule(verbose=self.verbose, randomness=self.randomness, params=self.params) dis_simple_rule.generate_disjunctive_rule(parent_rule=rule, available_relations=self.all_relations) disjunctive_rules.append(dis_simple_rule) self.declarations.append(rule.get_declaration()) self.all_relations.append(deepcopy(rule.get_head())) self.all_rules.append(rule) self.all_rules = self.all_rules + disjunctive_rules def generate_facts(self): for i in range(self.number_of_facts): fact_table = SouffleFact(randomness=self.randomness, params=self.params) self.declarations.append(fact_table.get_decleration()) self.facts.append(fact_table) self.all_relations.append(fact_table.get_fact_as_a_relation()) if self.params["in_file_facts"] is False: self.inputs.append(fact_table.get_fact_input_string()) def pretty_print_program(self): for decl in self.type_declarations: print(colored(decl, "green", attrs=["bold"])) print("\n\n") for decl in self.declarations: print(colored(decl, "red", attrs=["bold"])) print("") for _input in self.inputs: print(colored(_input, "green", attrs=["bold"])) print("") print(colored( ".output " + self.output_rule.get_head().get_name(), "green", attrs=["bold"])) print("\n\n") if self.params["in_file_facts"]: for fact in self.facts: for row in fact.get_fact_data(): print(colored(row, "yellow", attrs=["bold"])) print("") for thing in self.other_things: print(colored(thing, "yellow", attrs=["bold"])) print("") for rule in self.all_rules: rule_string = deepcopy(rule.get_string()) if rule_string.find("parsed rule") != -1: rule_string = rule_string.replace("//parsed rule", "") print(colored(rule_string, "blue", attrs=["bold"]), end="") print(colored("//parsed rule", "green", attrs=["bold"])) if rule_string.find("cycle breaker rule") != -1: rule_string = rule_string.replace("//cycle breaker rule", "") print(colored(rule_string, "blue", attrs=["bold"]), end="") print(colored("//cycle breaker rule", "red", attrs=["bold"])) if rule_string.find("mixed rule") != -1: rule_string = rule_string.replace("//mixed rule", "") print(colored(rule_string, "blue", attrs=["bold"]), end="") print(colored("//mixed rule", "magenta", attrs=["bold"])) if rule_string.find("complex rule") != -1: rule_string = rule_string.replace("//complex rule", "") print(colored(rule_string, "blue", attrs=["bold"]), end="") print(colored("//complex rule", "red", attrs=["bold"])) if rule_string.find("simple rule") != -1: rule_string = rule_string.replace("//simple rule", "") print(colored(rule_string, "blue", attrs=["bold"]), end="") print(colored("//simple rule", "green", attrs=["bold"])) if rule_string.find("transformed rule") != -1: print(colored(rule_string, "yellow", attrs=["bold"])) def create_program_string(self): for type_decl in self.type_declarations: self.program_string += type_decl + "\n" for decl in self.declarations: self.program_string += decl + "\n" self.program_string += "\n\n" for _input in self.inputs: self.program_string += _input + "\n" if self.params["in_file_facts"]: self.program_string += "\n\n" for fact in self.facts: for row in fact.get_fact_data(): self.program_string += row + "\n" for thing in self.other_things: self.program_string += thing + "\n" self.program_string += "\n\n" for rule in self.all_rules: self.program_string += rule.get_string() + "\n" self.program_string += "\n" + ".output " + self.output_rule.get_head().get_name() + "\n" def add_transformation_information(self, oracle): self.program_string = "// TRANSFORMED PROGRAM\n" self.program_string += "// Oracle: " + oracle + " \n\n"
Apache License 2.0
python-cmaketools/python-cmaketools
cmaketools/cmakebuilder.py
CMakeBuilder.get_generators
python
def get_generators(as_list=False): return cmakeutil.get_generators(CMakeBuilder.path, as_list)
get available CMake generators Parameter: as_list str: True to return a list of dict of all generators. Each entry consists of 'name', 'desc', and 'default' Returns: str if as_list==False else dict[]
https://github.com/python-cmaketools/python-cmaketools/blob/c7988584ff3ee0a873a8cbb03997a80f16efc93b/cmaketools/cmakebuilder.py#L98-L108
import os import re from operator import itemgetter from setuptools import Extension from pathlib import Path as _Path, PurePath as _PurePath from distutils import sysconfig from . import cmakeutil from . import gitutil class CMakeBuilder: path = cmakeutil.findexe("cmake") @staticmethod
MIT License
xmyqsh/retinanet
lib/fast_rcnn/train.py
_process_boxes_scores
python
def _process_boxes_scores(cls_prob, bbox_pred, rois, im_scale, im_shape): assert rois.shape[0] == bbox_pred.shape[0], 'rois and bbox_pred must have the same shape' boxes = rois[:, 1:5] scores = cls_prob if cfg.TEST.BBOX_REG: pred_boxes = bbox_transform_inv(boxes, deltas=bbox_pred) pred_boxes = clip_boxes(pred_boxes, im_shape) else: pred_boxes = clip_boxes(boxes, im_shape) return pred_boxes, scores
process the output tensors, to get the boxes and scores
https://github.com/xmyqsh/retinanet/blob/2aab1afe22d9f14b4ac5c469eef4cc097e8173da/lib/fast_rcnn/train.py#L341-L357
import numpy as np import os import tensorflow as tf from tensorflow.python.client import timeline import cv2 from .nms_wrapper import nms_wrapper from ..roi_data_layer.layer import RoIDataLayer from ..utils.timer import Timer from ..gt_data_layer import roidb as gdl_roidb from ..roi_data_layer import roidb as rdl_roidb from ..fast_rcnn.config import cfg from ..fast_rcnn.bbox_transform import clip_boxes, bbox_transform_inv _DEBUG = False class SolverWrapper(object): def __init__(self, sess, network, imdb, roidb, output_dir, logdir, pretrained_model=None): self.net = network self.imdb = imdb self.roidb = roidb self.output_dir = output_dir self.pretrained_model = pretrained_model print 'Computing bounding-box regression targets...' if cfg.TRAIN.BBOX_REG: self.bbox_means, self.bbox_stds = rdl_roidb.add_bbox_regression_targets(roidb) print 'done' self.saver = tf.train.Saver(max_to_keep=100) self.writer = tf.summary.FileWriter(logdir=logdir, graph=tf.get_default_graph(), flush_secs=5) def snapshot(self, sess, iter): net = self.net if cfg.TRAIN.BBOX_REG and net.layers.has_key('bbox_pred') and cfg.TRAIN.BBOX_NORMALIZE_TARGETS: with tf.variable_scope('Fast-RCNN', reuse=True): with tf.variable_scope('bbox_pred'): weights = tf.get_variable("weights") biases = tf.get_variable("biases") orig_0 = weights.eval() orig_1 = biases.eval() weights_shape = weights.get_shape().as_list() sess.run(weights.assign(orig_0 * np.tile(self.bbox_stds, (weights_shape[0],1)))) sess.run(biases.assign(orig_1 * self.bbox_stds + self.bbox_means)) if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) infix = ('_' + cfg.TRAIN.SNAPSHOT_INFIX if cfg.TRAIN.SNAPSHOT_INFIX != '' else '') filename = (cfg.TRAIN.SNAPSHOT_PREFIX + infix + '_iter_{:d}'.format(iter+1) + '.ckpt') filename = os.path.join(self.output_dir, filename) self.saver.save(sess, filename) print 'Wrote snapshot to: {:s}'.format(filename) if cfg.TRAIN.BBOX_REG and net.layers.has_key('bbox_pred'): sess.run(weights.assign(orig_0)) sess.run(biases.assign(orig_1)) def build_image_summary(self): log_image_data = tf.placeholder(tf.uint8, [None, None, 3]) log_image_name = tf.placeholder(tf.string) from tensorflow.python.ops import gen_logging_ops from tensorflow.python.framework import ops as _ops log_image = gen_logging_ops._image_summary(log_image_name, tf.expand_dims(log_image_data, 0), max_images=1) _ops.add_to_collection(_ops.GraphKeys.SUMMARIES, log_image) return log_image, log_image_data, log_image_name def train_model(self, sess, max_iters, restore=False): data_layer = get_data_layer(self.roidb, self.imdb.num_classes) loss, cross_entropy, loss_box, = self.net.build_loss() tf.summary.scalar('cls_loss', cross_entropy) tf.summary.scalar('rgs_loss', loss_box) tf.summary.scalar('loss', loss) summary_op = tf.summary.merge_all() log_image, log_image_data, log_image_name = self.build_image_summary() if cfg.TRAIN.SOLVER == 'Adam': opt = tf.train.AdamOptimizer(cfg.TRAIN.LEARNING_RATE) elif cfg.TRAIN.SOLVER == 'RMS': opt = tf.train.RMSPropOptimizer(cfg.TRAIN.LEARNING_RATE) else: lr = tf.Variable(cfg.TRAIN.LEARNING_RATE, trainable=False) momentum = cfg.TRAIN.MOMENTUM opt = tf.train.MomentumOptimizer(lr, momentum) global_step = tf.Variable(0, trainable=False) with_clip = True if self.net.name == 'RetinaNet_train_test' else False if with_clip: trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'res3_5') trainable_vars += tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Top-Down') trainable_vars += tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'clsSubNet') trainable_vars += tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'boxSubNet') grads, norm = tf.clip_by_global_norm(tf.gradients(loss, trainable_vars), 4.0) train_op = opt.apply_gradients(zip(grads, trainable_vars), global_step=global_step) else: trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'res3_5') trainable_vars += tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Top-Down') trainable_vars += tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'clsSubNet') trainable_vars += tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'boxSubNet') train_op = opt.minimize(loss, global_step=global_step, var_list=trainable_vars) sess.run(tf.global_variables_initializer()) restore_iter = 0 if self.pretrained_model is not None and not restore: try: print ('Loading pretrained model ' 'weights from {:s}').format(self.pretrained_model) self.net.load(self.pretrained_model, sess, True) except: raise 'Check your pretrained model {:s}'.format(self.pretrained_model) if restore: try: ckpt = tf.train.get_checkpoint_state(self.output_dir) print 'Restoring from {}...'.format(ckpt.model_checkpoint_path), self.saver.restore(sess, ckpt.model_checkpoint_path) stem = os.path.splitext(os.path.basename(ckpt.model_checkpoint_path))[0] restore_iter = int(stem.split('_')[-1]) sess.run(global_step.assign(restore_iter)) print 'done' except: raise 'Check your pretrained {:s}'.format(ckpt.model_checkpoint_path) last_snapshot_iter = -1 timer = Timer() for iter in range(restore_iter, max_iters): timer.tic() if iter != 0 and iter % cfg.TRAIN.STEPSIZE == 0: sess.run(tf.assign(lr, lr.eval() * cfg.TRAIN.GAMMA)) blobs = data_layer.forward() if (iter + 1) % (cfg.TRAIN.DISPLAY) == 0: print 'image: %s' %(blobs['im_name']), feed_dict={ self.net.data: blobs['data'], self.net.im_info: blobs['im_info'], self.net.gt_boxes: blobs['gt_boxes'], } ''' res_fetches = [self.net.get_output('cls_prob'), # FRCNN class prob self.net.get_output('bbox_pred'), # FRCNN rgs output self.net.get_output('rois')] # RPN rgs output ''' res_fetches = [] fetch_list = [cross_entropy, loss_box, summary_op, train_op] + res_fetches if _DEBUG: fetch_list = [cross_entropy, loss_box, summary_op] + res_fetches fetch_list += [self.net.get_output('cls_score_reshape'), self.net.get_output('cls_prob_reshape')] fetch_list += [] rpn_loss_cls_value, rpn_loss_box_value, loss_cls_value, loss_box_value, summary_str, cls_prob, bbox_pred, rois, rpn_cls_score_reshape_np, rpn_cls_prob_reshape_np = sess.run(fetches=fetch_list, feed_dict=feed_dict) else: fetch_list = [cross_entropy, loss_box, summary_op, train_op] + res_fetches fetch_list += [] loss_cls_value, loss_box_value, summary_str, _, = sess.run(fetches=fetch_list, feed_dict=feed_dict) self.writer.add_summary(summary=summary_str, global_step=global_step.eval()) _diff_time = timer.toc(average=False) ''' # image summary if (iter) % cfg.TRAIN.LOG_IMAGE_ITERS == 0: # plus mean ori_im = np.squeeze(blobs['data']) + cfg.PIXEL_MEANS ori_im = ori_im.astype(dtype=np.uint8, copy=False) ori_im = _draw_gt_to_image(ori_im, blobs['gt_boxes'], blobs['gt_ishard']) ori_im = _draw_dontcare_to_image(ori_im, blobs['dontcare_areas']) # draw rects # print 'rois:', rois.shape[0] if cfg.TRAIN.BBOX_REG and cfg.TRAIN.BBOX_NORMALIZE_TARGETS: bbox_pred = bbox_pred * np.tile(self.bbox_stds, (bbox_pred.shape[0], 1)) + \ np.tile(self.bbox_means, (bbox_pred.shape[0], 1)) boxes, scores = _process_boxes_scores(cls_prob, bbox_pred, rois, blobs['im_info'][0][2], ori_im.shape) res = nms_wrapper(scores, boxes, threshold=0.7) image = cv2.cvtColor(_draw_boxes_to_image(ori_im, res), cv2.COLOR_BGR2RGB) log_image_name_str = ('%06d_' % iter ) + blobs['im_name'] log_image_summary_op = \ sess.run(log_image, \ feed_dict={log_image_name: log_image_name_str,\ log_image_data: image}) self.writer.add_summary(log_image_summary_op, global_step=global_step.eval()) ''' if (iter) % (cfg.TRAIN.DISPLAY) == 0: print 'iter: %d / %d, total loss: %.4f, loss_cls: %.4f, loss_box: %.4f, lr: %f'% (iter, max_iters, loss_cls_value + loss_box_value , loss_cls_value, loss_box_value, lr.eval()) print 'speed: {:.3f}s / iter'.format(_diff_time) if (iter+1) % cfg.TRAIN.SNAPSHOT_ITERS == 0: last_snapshot_iter = iter self.snapshot(sess, iter) if last_snapshot_iter != iter: self.snapshot(sess, iter) def get_training_roidb(imdb): if cfg.TRAIN.USE_FLIPPED: print 'Appending horizontally-flipped training examples...' imdb.append_flipped_images() print 'done' print 'Preparing training data...' if cfg.TRAIN.HAS_RPN: if cfg.IS_MULTISCALE: print ('#### warning: multi-scale has not been tested.') print ('#### warning: using single scale by setting IS_MULTISCALE: False.') gdl_roidb.prepare_roidb(imdb) else: rdl_roidb.prepare_roidb(imdb) else: rdl_roidb.prepare_roidb(imdb) print 'done' return imdb.roidb def get_data_layer(roidb, num_classes): if cfg.TRAIN.HAS_RPN: if cfg.IS_MULTISCALE: raise "Calling caffe modules..." else: layer = RoIDataLayer(roidb, num_classes) else: layer = RoIDataLayer(roidb, num_classes) return layer
MIT License
jest-community/jest-pytest
src/__tests__/integration/home-assistant/homeassistant/components/media_player/cast.py
CastDevice.new_connection_status
python
def new_connection_status(self, connection_status): from pychromecast.socket_client import CONNECTION_STATUS_CONNECTED new_available = connection_status.status == CONNECTION_STATUS_CONNECTED if new_available != self._available: _LOGGER.debug("Cast device availability changed: %s", connection_status.status) self._available = new_available self.schedule_update_ha_state()
Handle updates of connection status.
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/media_player/cast.py#L390-L402
import logging import threading from typing import Optional, Tuple import voluptuous as vol import attr from homeassistant.exceptions import PlatformNotReady from homeassistant.helpers.typing import HomeAssistantType, ConfigType from homeassistant.core import callback from homeassistant.helpers.dispatcher import (dispatcher_send, async_dispatcher_connect) from homeassistant.components.media_player import ( MEDIA_TYPE_MUSIC, MEDIA_TYPE_TVSHOW, MEDIA_TYPE_MOVIE, SUPPORT_NEXT_TRACK, SUPPORT_PAUSE, SUPPORT_PLAY_MEDIA, SUPPORT_PREVIOUS_TRACK, SUPPORT_TURN_OFF, SUPPORT_TURN_ON, SUPPORT_VOLUME_MUTE, SUPPORT_VOLUME_SET, SUPPORT_STOP, SUPPORT_PLAY, MediaPlayerDevice, PLATFORM_SCHEMA) from homeassistant.const import ( CONF_HOST, STATE_IDLE, STATE_OFF, STATE_PAUSED, STATE_PLAYING, EVENT_HOMEASSISTANT_STOP) import homeassistant.helpers.config_validation as cv import homeassistant.util.dt as dt_util REQUIREMENTS = ['pychromecast==2.1.0'] _LOGGER = logging.getLogger(__name__) CONF_IGNORE_CEC = 'ignore_cec' CAST_SPLASH = 'https://home-assistant.io/images/cast/splash.png' DEFAULT_PORT = 8009 SUPPORT_CAST = SUPPORT_PAUSE | SUPPORT_VOLUME_SET | SUPPORT_VOLUME_MUTE | SUPPORT_TURN_ON | SUPPORT_TURN_OFF | SUPPORT_PREVIOUS_TRACK | SUPPORT_NEXT_TRACK | SUPPORT_PLAY_MEDIA | SUPPORT_STOP | SUPPORT_PLAY INTERNAL_DISCOVERY_RUNNING_KEY = 'cast_discovery_running' KNOWN_CHROMECAST_INFO_KEY = 'cast_known_chromecasts' ADDED_CAST_DEVICES_KEY = 'cast_added_cast_devices' SIGNAL_CAST_DISCOVERED = 'cast_discovered' PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Optional(CONF_HOST): cv.string, vol.Optional(CONF_IGNORE_CEC, default=[]): vol.All(cv.ensure_list, [cv.string]) }) @attr.s(slots=True, frozen=True) class ChromecastInfo(object): host = attr.ib(type=str) port = attr.ib(type=int) uuid = attr.ib(type=Optional[str], converter=attr.converters.optional(str), default=None) model_name = attr.ib(type=str, default='') friendly_name = attr.ib(type=Optional[str], default=None) @property def is_audio_group(self) -> bool: return self.port != DEFAULT_PORT @property def is_information_complete(self) -> bool: return all(attr.astuple(self)) @property def host_port(self) -> Tuple[str, int]: return self.host, self.port def _fill_out_missing_chromecast_info(info: ChromecastInfo) -> ChromecastInfo: if info.is_information_complete or info.is_audio_group: return info from pychromecast import dial http_device_status = dial.get_device_status(info.host) if http_device_status is None: return info return ChromecastInfo( host=info.host, port=info.port, uuid=(info.uuid or http_device_status.uuid), friendly_name=(info.friendly_name or http_device_status.friendly_name), model_name=(info.model_name or http_device_status.model_name) ) def _discover_chromecast(hass: HomeAssistantType, info: ChromecastInfo): if info in hass.data[KNOWN_CHROMECAST_INFO_KEY]: _LOGGER.debug("Discovered previous chromecast %s", info) return info = _fill_out_missing_chromecast_info(info) _LOGGER.debug("Discovered chromecast %s", info) if info.uuid is not None: same_uuid = set(x for x in hass.data[KNOWN_CHROMECAST_INFO_KEY] if info.uuid == x.uuid) hass.data[KNOWN_CHROMECAST_INFO_KEY] -= same_uuid hass.data[KNOWN_CHROMECAST_INFO_KEY].add(info) dispatcher_send(hass, SIGNAL_CAST_DISCOVERED, info) def _setup_internal_discovery(hass: HomeAssistantType) -> None: if INTERNAL_DISCOVERY_RUNNING_KEY not in hass.data: hass.data[INTERNAL_DISCOVERY_RUNNING_KEY] = threading.Lock() if not hass.data[INTERNAL_DISCOVERY_RUNNING_KEY].acquire(blocking=False): return import pychromecast def internal_callback(name): mdns = listener.services[name] _discover_chromecast(hass, ChromecastInfo(*mdns)) _LOGGER.debug("Starting internal pychromecast discovery.") listener, browser = pychromecast.start_discovery(internal_callback) def stop_discovery(event): _LOGGER.debug("Stopping internal pychromecast discovery.") pychromecast.stop_discovery(browser) hass.data[INTERNAL_DISCOVERY_RUNNING_KEY].release() hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, stop_discovery) @callback def _async_create_cast_device(hass: HomeAssistantType, info: ChromecastInfo): if info.uuid is None: return CastDevice(info) added_casts = hass.data[ADDED_CAST_DEVICES_KEY] if info.uuid in added_casts: return None added_casts.add(info.uuid) return CastDevice(info) async def async_setup_platform(hass: HomeAssistantType, config: ConfigType, async_add_devices, discovery_info=None): import pychromecast pychromecast.IGNORE_CEC += config.get(CONF_IGNORE_CEC, []) hass.data.setdefault(ADDED_CAST_DEVICES_KEY, set()) hass.data.setdefault(KNOWN_CHROMECAST_INFO_KEY, set()) info = None if discovery_info is not None: info = ChromecastInfo(host=discovery_info['host'], port=discovery_info['port']) elif CONF_HOST in config: info = ChromecastInfo(host=config[CONF_HOST], port=DEFAULT_PORT) @callback def async_cast_discovered(discover: ChromecastInfo) -> None: if info is not None and info.host_port != discover.host_port: return cast_device = _async_create_cast_device(hass, discover) if cast_device is not None: async_add_devices([cast_device]) async_dispatcher_connect(hass, SIGNAL_CAST_DISCOVERED, async_cast_discovered) for chromecast in list(hass.data[KNOWN_CHROMECAST_INFO_KEY]): async_cast_discovered(chromecast) if info is None or info.is_audio_group: hass.async_add_job(_setup_internal_discovery, hass) else: info = await hass.async_add_job(_fill_out_missing_chromecast_info, info) if info.friendly_name is None: raise PlatformNotReady hass.async_add_job(_discover_chromecast, hass, info) class CastStatusListener(object): def __init__(self, cast_device, chromecast): self._cast_device = cast_device self._valid = True chromecast.register_status_listener(self) chromecast.socket_client.media_controller.register_status_listener( self) chromecast.register_connection_listener(self) def new_cast_status(self, cast_status): if self._valid: self._cast_device.new_cast_status(cast_status) def new_media_status(self, media_status): if self._valid: self._cast_device.new_media_status(media_status) def new_connection_status(self, connection_status): if self._valid: self._cast_device.new_connection_status(connection_status) def invalidate(self): self._valid = False class CastDevice(MediaPlayerDevice): def __init__(self, cast_info): self._cast_info = cast_info self._chromecast = None self.cast_status = None self.media_status = None self.media_status_received = None self._available = False self._status_listener = None async def async_added_to_hass(self): @callback def async_cast_discovered(discover: ChromecastInfo): if self._cast_info.uuid is None: return if self._cast_info.uuid != discover.uuid: return _LOGGER.debug("Discovered chromecast with same UUID: %s", discover) self.hass.async_add_job(self.async_set_cast_info(discover)) async def async_stop(event): await self._async_disconnect() async_dispatcher_connect(self.hass, SIGNAL_CAST_DISCOVERED, async_cast_discovered) self.hass.bus.async_listen_once(EVENT_HOMEASSISTANT_STOP, async_stop) self.hass.async_add_job(self.async_set_cast_info(self._cast_info)) async def async_will_remove_from_hass(self) -> None: await self._async_disconnect() if self._cast_info.uuid is not None: self.hass.data[ADDED_CAST_DEVICES_KEY].remove(self._cast_info.uuid) async def async_set_cast_info(self, cast_info): import pychromecast old_cast_info = self._cast_info self._cast_info = cast_info if self._chromecast is not None: if old_cast_info.host_port == cast_info.host_port: return await self._async_disconnect() _LOGGER.debug("Connecting to cast device %s", cast_info) chromecast = await self.hass.async_add_job( pychromecast._get_chromecast_from_host, attr.astuple(cast_info)) self._chromecast = chromecast self._status_listener = CastStatusListener(self, chromecast) self._available = True self.cast_status = chromecast.status self.media_status = chromecast.media_controller.status _LOGGER.debug("Connection successful!") self.async_schedule_update_ha_state() async def _async_disconnect(self): if self._chromecast is None: return _LOGGER.debug("Disconnecting from chromecast socket.") self._available = False self.async_schedule_update_ha_state() await self.hass.async_add_job(self._chromecast.disconnect) self._chromecast = None self.cast_status = None self.media_status = None self.media_status_received = None if self._status_listener is not None: self._status_listener.invalidate() self._status_listener = None self.async_schedule_update_ha_state() def new_cast_status(self, cast_status): self.cast_status = cast_status self.schedule_update_ha_state() def new_media_status(self, media_status): self.media_status = media_status self.media_status_received = dt_util.utcnow() self.schedule_update_ha_state()
MIT License
jonathanadams/home-assistant-configuration
custom_components/alexa_media/switch.py
DNDSwitch.icon
python
def icon(self): return super()._icon("mdi:do-not-disturb", "mdi:do-not-disturb-off")
Return the icon of the switch.
https://github.com/jonathanadams/home-assistant-configuration/blob/04bacf53c37290ed22dd831d9359a70e44e01fcb/custom_components/alexa_media/switch.py#L304-L306
import logging from typing import List from homeassistant.components.switch import SwitchDevice from homeassistant.exceptions import NoEntitySpecifiedError from . import ( CONF_EMAIL, CONF_EXCLUDE_DEVICES, CONF_INCLUDE_DEVICES, DATA_ALEXAMEDIA, DOMAIN as ALEXA_DOMAIN, hide_email, hide_serial, ) from .helpers import _catch_login_errors, add_devices, retry_async _LOGGER = logging.getLogger(__name__) @retry_async(limit=5, delay=5, catch_exceptions=True) async def async_setup_platform(hass, config, add_devices_callback, discovery_info=None): devices = [] SWITCH_TYPES = [ ("dnd", DNDSwitch), ("shuffle", ShuffleSwitch), ("repeat", RepeatSwitch), ] account = config[CONF_EMAIL] include_filter = config.get(CONF_INCLUDE_DEVICES, []) exclude_filter = config.get(CONF_EXCLUDE_DEVICES, []) account_dict = hass.data[DATA_ALEXAMEDIA]["accounts"][account] _LOGGER.debug("%s: Loading switches", hide_email(account)) if "switch" not in account_dict["entities"]: (hass.data[DATA_ALEXAMEDIA]["accounts"][account]["entities"]["switch"]) = {} for key, _ in account_dict["devices"]["media_player"].items(): if key not in account_dict["entities"]["media_player"]: _LOGGER.debug( "%s: Media player %s not loaded yet; delaying load", hide_email(account), hide_serial(key), ) if devices: await add_devices( hide_email(account), devices, add_devices_callback, include_filter, exclude_filter, ) return False if key not in ( hass.data[DATA_ALEXAMEDIA]["accounts"][account]["entities"]["switch"] ): ( hass.data[DATA_ALEXAMEDIA]["accounts"][account]["entities"]["switch"][ key ] ) = {} for (switch_key, class_) in SWITCH_TYPES: if ( switch_key == "dnd" and not account_dict["devices"]["switch"][key].get("dnd") ) or ( switch_key in ["shuffle", "repeat"] and "MUSIC_SKILL" not in account_dict["devices"]["media_player"][key].get( "capabilities" ) ): _LOGGER.debug( "%s: Skipping %s for %s", hide_email(account), switch_key, hide_serial(key), ) continue alexa_client = class_( account_dict["entities"]["media_player"][key], account ) _LOGGER.debug( "%s: Found %s %s switch with status: %s", hide_email(account), hide_serial(key), switch_key, alexa_client.is_on, ) devices.append(alexa_client) ( hass.data[DATA_ALEXAMEDIA]["accounts"][account]["entities"][ "switch" ][key][switch_key] ) = alexa_client else: for alexa_client in hass.data[DATA_ALEXAMEDIA]["accounts"][account][ "entities" ]["switch"][key].values(): _LOGGER.debug( "%s: Skipping already added device: %s", hide_email(account), alexa_client, ) return await add_devices( hide_email(account), devices, add_devices_callback, include_filter, exclude_filter, ) async def async_setup_entry(hass, config_entry, async_add_devices): return await async_setup_platform( hass, config_entry.data, async_add_devices, discovery_info=None ) async def async_unload_entry(hass, entry) -> bool: account = entry.data[CONF_EMAIL] account_dict = hass.data[DATA_ALEXAMEDIA]["accounts"][account] for key, switches in account_dict["entities"]["switch"].items(): for device in switches[key].values(): await device.async_remove() return True class AlexaMediaSwitch(SwitchDevice): def __init__(self, client, switch_property, switch_function, account, name="Alexa"): self._client = client self._login = client._login self._account = account self._name = name self._switch_property = switch_property self._state = False self._switch_function = switch_function async def async_added_to_hass(self): try: if not self.enabled: return except AttributeError: pass self._listener = self.hass.bus.async_listen( f"{ALEXA_DOMAIN}_{hide_email(self._login.email)}"[0:32], self._handle_event ) async def async_will_remove_from_hass(self): self._listener() def _handle_event(self, event): try: if not self.enabled: return except AttributeError: pass if "queue_state" in event.data: queue_state = event.data["queue_state"] if queue_state["dopplerId"]["deviceSerialNumber"] == self._client.unique_id: self._state = getattr(self._client, self._switch_property) self.async_schedule_update_ha_state() @_catch_login_errors async def _set_switch(self, state, **kwargs): try: if not self.enabled: return except AttributeError: pass success = await self._switch_function(state) if success: setattr(self._client, self._switch_property, state) _LOGGER.debug( "Switch set to %s based on %s", getattr(self._client, self._switch_property), state, ) self.async_schedule_update_ha_state() elif self.should_poll: _LOGGER.debug( "Requesting update of %s due to %s switch to %s", self._client, self._name, state, ) await self._client.async_update() @property def is_on(self): return self.available and getattr(self._client, self._switch_property) async def async_turn_on(self, **kwargs): await self._set_switch(True, **kwargs) async def async_turn_off(self, **kwargs): await self._set_switch(False, **kwargs) @property def available(self): return getattr(self._client, self._switch_property) is not None @property def unique_id(self): return self._client.unique_id + "_" + self._name @property def name(self): return "{} {} switch".format(self._client.name, self._name) @property def device_class(self): return "switch" @property def hidden(self): return not self.available @property def should_poll(self): return not ( self.hass.data[DATA_ALEXAMEDIA]["accounts"][self._account]["websocket"] ) @_catch_login_errors async def async_update(self): try: if not self.enabled: return except AttributeError: pass try: self.async_schedule_update_ha_state() except NoEntitySpecifiedError: pass @property def device_info(self): return { "identifiers": {(ALEXA_DOMAIN, self._client.unique_id)}, "via_device": (ALEXA_DOMAIN, self._client.unique_id), } @property def icon(self): return self._icon() def _icon(self, on=None, off=None): return on if self.is_on else off class DNDSwitch(AlexaMediaSwitch): def __init__(self, client, account): super().__init__( client, "dnd_state", client.alexa_api.set_dnd_state, account, "do not disturb", ) @property
MIT License
aparo/pyes
pyes/queryset.py
QuerySet.__getitem__
python
def __getitem__(self, k): if not isinstance(k, (slice,) + integer_types): raise TypeError assert ((not isinstance(k, slice) and (k >= 0)) or (isinstance(k, slice) and (k.start is None or k.start >= 0) and (k.stop is None or k.stop >= 0))), "Negative indexing is not supported." if self._result_cache is None: len(self) return self._result_cache.__getitem__(k)
Retrieves an item or slice from the set of results.
https://github.com/aparo/pyes/blob/96965174760cb5aa5c92eac7ccff346fb5d53cf1/pyes/queryset.py#L234-L247
import copy import six from .es import ES from .filters import ANDFilter, ORFilter, NotFilter, Filter, TermsFilter, TermFilter, RangeFilter, ExistsFilter from .facets import Facet, TermFacet from .aggs import Agg, TermsAgg from .models import ElasticSearchModel from .orm.exceptions import DoesNotExist, MultipleObjectsReturned from .query import MatchAllQuery, BoolQuery, FilteredQuery, Search from .utils import ESRange from .utils.compat import integer_types REPR_OUTPUT_SIZE = 20 def get_es_connection(es_url, es_kwargs): if es_url: es_kwargs.update(server=es_url) return ES(**es_kwargs) class ESModel(ElasticSearchModel): def __init__(self, index, type, es_url=None, es_kwargs={}): self._index = index self._type = type self.objects = QuerySet(self, es_url=es_url, es_kwargs=es_kwargs) setattr(self, "DoesNotExist", DoesNotExist) setattr(self, "MultipleObjectsReturned", MultipleObjectsReturned) def generate_model(index, doc_type, es_url=None, es_kwargs={}): MyModel = type('MyModel', (ElasticSearchModel,), {}) setattr(MyModel, "objects", QuerySet(MyModel, index=index, type=doc_type, es_url=es_url, es_kwargs=es_kwargs)) setattr(MyModel, "DoesNotExist", DoesNotExist) setattr(MyModel, "MultipleObjectsReturned", MultipleObjectsReturned) return MyModel class QuerySet(object): def __init__(self, model=None, using=None, index=None, type=None, es_url=None, es_kwargs={}): self.es_url = es_url self.es_kwargs = es_kwargs if model is None and index and type: model = ESModel(index, type, es_url=self.es_url, es_kwargs=self.es_kwargs) self.model = model self._index = index if using: self._index = using self._type=type self._queries = [] self._filters = [] self._facets = [] self._aggs = [] self._ordering = [] self._fields = [] self._size=None self._start=0 self._result_cache = None def _clear_ordering(self): self._ordering=[] @property def index(self): if self._index: return self._index return self.model._index @property def type(self): if self._type: return self._type return self.model._type def __deepcopy__(self, memo): obj = self.__class__() for k,v in self.__dict__.items(): if k in ('_iter','_result_cache'): obj.__dict__[k] = None else: obj.__dict__[k] = copy.deepcopy(v, memo) return obj def __getstate__(self): len(self) obj_dict = self.__dict__.copy() obj_dict['_iter'] = None return obj_dict def __repr__(self): data = list(self[:REPR_OUTPUT_SIZE + 1]) if len(data) > REPR_OUTPUT_SIZE: data[-1] = "...(remaining elements truncated)..." return repr(data) def _build_query(self): if not self._queries and not self._filters: return MatchAllQuery() query = MatchAllQuery() if self._queries: if len(self._queries)==1: query=self._queries[0] else: query=BoolQuery(must=self._queries) if not self._filters: return query if len(self._filters)==1: return FilteredQuery(query, self._filters[0]) return FilteredQuery(query, ANDFilter(self._filters)) def _build_search(self): query=Search(self._build_query()) if self._ordering: query.sort=self._ordering if self._facets: for facet in self._facets: query.facet.add(facet) if self._aggs: for agg in self._aggs: query.agg.add(agg) if self._start is not None: query.start = self._start if self._size is not None: query.size = self._size return query def _do_query(self): return get_es_connection(self.es_url, self.es_kwargs).search(self._build_search(), indices=self.index, doc_types=self.type) def __len__(self): if self._result_cache is None: self._result_cache = self._do_query() return self._result_cache.total def __iter__(self): if self._result_cache is None: len(self) return iter(self._result_cache) def __bool__(self): return self.__nonzero__() def __nonzero__(self): if self._result_cache is not None: len(self) return bool(self._result_cache.total!=0) try: next(iter(self)) except StopIteration: return False return True
BSD 3-Clause New or Revised License
openstack/glance
glance/db/sqlalchemy/api.py
image_destroy
python
def image_destroy(context, image_id): session = get_session() with session.begin(): image_ref = _image_get(context, image_id, session=session) _check_mutate_authorization(context, image_ref) image_ref.delete(session=session) delete_time = image_ref.deleted_at _image_locations_delete_all(context, image_id, delete_time, session) _image_property_delete_all(context, image_id, delete_time, session) _image_member_delete_all(context, image_id, delete_time, session) _image_tag_delete_all(context, image_id, delete_time, session) return _normalize_locations(context, image_ref)
Destroy the image or raise if it does not exist.
https://github.com/openstack/glance/blob/ff8e3d4a0a00caff4949620e1ddf3e541a522923/glance/db/sqlalchemy/api.py#L185-L205
import datetime import itertools import threading from oslo_config import cfg from oslo_db import exception as db_exception from oslo_db.sqlalchemy import session from oslo_log import log as logging from oslo_utils import excutils import osprofiler.sqlalchemy from retrying import retry import six from six.moves import range import sqlalchemy from sqlalchemy.ext.compiler import compiles from sqlalchemy import MetaData, Table import sqlalchemy.orm as sa_orm from sqlalchemy import sql import sqlalchemy.sql as sa_sql from glance.common import exception from glance.common import timeutils from glance.common import utils from glance.db.sqlalchemy.metadef_api import (resource_type as metadef_resource_type_api) from glance.db.sqlalchemy.metadef_api import (resource_type_association as metadef_association_api) from glance.db.sqlalchemy.metadef_api import namespace as metadef_namespace_api from glance.db.sqlalchemy.metadef_api import object as metadef_object_api from glance.db.sqlalchemy.metadef_api import property as metadef_property_api from glance.db.sqlalchemy.metadef_api import tag as metadef_tag_api from glance.db.sqlalchemy import models from glance.db import utils as db_utils from glance.i18n import _, _LW, _LI, _LE sa_logger = None LOG = logging.getLogger(__name__) STATUSES = ['active', 'saving', 'queued', 'killed', 'pending_delete', 'deleted', 'deactivated', 'importing', 'uploading'] CONF = cfg.CONF CONF.import_group("profiler", "glance.common.wsgi") _FACADE = None _LOCK = threading.Lock() def _retry_on_deadlock(exc): if isinstance(exc, db_exception.DBDeadlock): LOG.warn(_LW("Deadlock detected. Retrying...")) return True return False def _create_facade_lazily(): global _LOCK, _FACADE if _FACADE is None: with _LOCK: if _FACADE is None: _FACADE = session.EngineFacade.from_config(CONF) if CONF.profiler.enabled and CONF.profiler.trace_sqlalchemy: osprofiler.sqlalchemy.add_tracing(sqlalchemy, _FACADE.get_engine(), "db") return _FACADE def get_engine(): facade = _create_facade_lazily() return facade.get_engine() def get_session(autocommit=True, expire_on_commit=False): facade = _create_facade_lazily() return facade.get_session(autocommit=autocommit, expire_on_commit=expire_on_commit) def _validate_db_int(**kwargs): max_int = (2 ** 31) - 1 for param_key, param_value in kwargs.items(): if param_value and param_value > max_int: msg = _("'%(param)s' value out of range, " "must not exceed %(max)d.") % {"param": param_key, "max": max_int} raise exception.Invalid(msg) def clear_db_env(): global _FACADE _FACADE = None def _check_mutate_authorization(context, image_ref): if not is_image_mutable(context, image_ref): LOG.warn(_LW("Attempted to modify image user did not own.")) msg = _("You do not own this image") if image_ref.visibility in ['private', 'shared']: exc_class = exception.Forbidden else: exc_class = exception.ForbiddenPublicImage raise exc_class(msg) def image_create(context, values, v1_mode=False): image = _image_update(context, values, None, purge_props=False) if v1_mode: image = db_utils.mutate_image_dict_to_v1(image) return image def image_update(context, image_id, values, purge_props=False, from_state=None, v1_mode=False, atomic_props=None): image = _image_update(context, values, image_id, purge_props, from_state=from_state, atomic_props=atomic_props) if v1_mode: image = db_utils.mutate_image_dict_to_v1(image) return image def image_restore(context, image_id): session = get_session() with session.begin(): image_ref = _image_get(context, image_id, session=session) if image_ref.status != 'pending_delete': msg = (_('cannot restore the image from %s to active (wanted ' 'from_state=pending_delete)') % image_ref.status) raise exception.Conflict(msg) query = session.query(models.Image).filter_by(id=image_id) values = {'status': 'active', 'deleted': 0} query.update(values, synchronize_session='fetch') @retry(retry_on_exception=_retry_on_deadlock, wait_fixed=500, stop_max_attempt_number=50)
Apache License 2.0
adw0rd/instagrapi
instagrapi/mixins/story.py
StoryMixin.story_delete
python
def story_delete(self, story_pk: int) -> bool: assert self.user_id, "Login required" media_id = self.media_id(story_pk) self._stories_cache.pop(self.media_pk(media_id), None) return self.media_delete(media_id)
Delete story Parameters ---------- story_pk: int Unique identifier of the story Returns ------- bool A boolean value
https://github.com/adw0rd/instagrapi/blob/759533a285747105c25858e738f1b3bc1cef6953/instagrapi/mixins/story.py#L94-L111
import json import shutil from copy import deepcopy from pathlib import Path from typing import List from urllib.parse import urlparse import requests from instagrapi import config from instagrapi.exceptions import ClientNotFoundError, StoryNotFound, UserNotFound from instagrapi.extractors import ( extract_story_gql, extract_story_v1, extract_user_short, ) from instagrapi.types import Story, UserShort class StoryMixin: _stories_cache = {} def story_pk_from_url(self, url: str) -> int: path = urlparse(url).path parts = [p for p in path.split("/") if p and p.isdigit()] return int(parts[0]) def story_info_v1(self, story_pk: int) -> Story: story_id = self.media_id(story_pk) story_pk, user_id = story_id.split("_") stories = self.user_stories_v1(user_id) story_pk = int(story_pk) for story in stories: self._stories_cache[story.pk] = story if story_pk in self._stories_cache: return deepcopy(self._stories_cache[story_pk]) raise StoryNotFound(story_pk=story_pk, user_id=user_id) def story_info(self, story_pk: int, use_cache: bool = True) -> Story: if not use_cache or story_pk not in self._stories_cache: story = self.story_info_v1(story_pk) self._stories_cache[story_pk] = story return deepcopy(self._stories_cache[story_pk])
MIT License
opendilab/gobigger
gobigger/players/human_player.py
HumanPlayer.get_keys_sort_by_balls
python
def get_keys_sort_by_balls(self): items = self.balls.items() backitems=[[v[1],v[0]] for v in items] backitems.sort(reverse=True) return [ backitems[i][1] for i in range(0,len(backitems))]
Overview: Sort by ball size from largest to smallest Return: <list>: list of names
https://github.com/opendilab/gobigger/blob/2fae8678662a9be9d5d5797fd09815a9c920d215/gobigger/players/human_player.py#L120-L130
import uuid from pygame.math import Vector2 import logging from .base_player import BasePlayer from gobigger.balls import FoodBall, ThornsBall, CloneBall, SporeBall class HumanPlayer(BasePlayer): def __init__(self, cfg, team_name, name, border, spore_settings): self.team_name = team_name self.name = name self.border = border self.balls = {} self.ball_settings = cfg self.spore_settings = spore_settings self.stop_flag = False def get_clone_num(self): return len(self.balls) def get_balls(self): return list(self.balls.values()) def add_balls(self, balls): if isinstance(balls, list): for ball in balls: self.balls[ball.name] = ball elif isinstance(balls, CloneBall): self.balls[balls.name] = balls return True def move(self, direction=None, duration=0.05): if direction is not None: self.stop_flag = False for ball in self.balls.values(): ball.stop_flag = False if self.stop_flag: if self.get_clone_num() == 1: for ball in self.balls.values(): try: ball.move(given_acc=None, given_acc_center=None, duration=duration) except: import pdb; pdb.set_trace() else: centroid = self.cal_centroid() for ball in self.balls.values(): given_acc_center = centroid - ball.position if given_acc_center.length() == 0: given_acc_center = Vector2(0.000001, 0.000001) elif given_acc_center.length() > 1: given_acc_center = given_acc_center.normalize() given_acc_center *= 20 ball.move(given_acc=direction, given_acc_center=given_acc_center, duration=duration) else: if self.get_clone_num() == 1: for ball in self.balls.values(): ball.move(given_acc=direction, given_acc_center=Vector2(0,0), duration=duration) else: centroid = self.cal_centroid() for ball in self.balls.values(): given_acc_center = centroid - ball.position if given_acc_center.length() == 0: given_acc_center = Vector2(0.000001, 0.000001) elif given_acc_center.length() > 1: given_acc_center = given_acc_center.normalize() given_acc_center *= 20 ball.move(given_acc=direction, given_acc_center=given_acc_center, duration=duration) self.size_decay() return True def size_decay(self): for ball in self.balls.values(): ball.size_decay() return True def eject(self): ret = [] for ball in self.balls.values(): ret.append(ball.eject()) return ret
Apache License 2.0
f0lg0/oncogene
src/clientlinux.py
Client.sendClipBoard
python
def sendClipBoard(self): cb = pyperclip.paste() if len(cb) == 0: self.client.send("/".encode("utf-8")) else: self.client.send(cb.encode("utf-8"))
Requirements: - xsel - xclip
https://github.com/f0lg0/oncogene/blob/e4ece3f18a98236a54d4278aee9571dc38a81f53/src/clientlinux.py#L191-L201
import socket import subprocess import sys import os import time import platform import threading import pyperclip from mss import mss from zipfile import ZipFile from pynput.keyboard import Key, Listener, Controller class Client: def __init__(self, server_ip, port, buffer_size, client_ip): self.SERVER_IP = server_ip self.PORT = port self.BUFFER_SIZE = buffer_size self.CLIENT_IP = client_ip self.screenshot_counter = 0 self.keyLogger = True self.client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) def connectToServer(self): self.client.connect((self.SERVER_IP, self.PORT)) def updateBuffer(self, size): buff = "" for counter in range(0, len(size)): if size[counter].isdigit(): buff += size[counter] return int(buff) def saveBigFile(self, size, buff): full = b'' while True: if sys.getsizeof(full) >= size: break recvfile = self.client.recv(buff) full += recvfile return full def sendHostInfo(self): host = sys.platform self.client.send(host.encode("utf-8")) cpu = platform.processor() system = platform.system() machine = platform.machine() with open('./logs/info.txt', 'w+') as f: f.writelines(["CPU: " + cpu + '\n', "System: " + system + '\n', "Machine: " + machine + '\n']) with open('./logs/info.txt', 'rb+') as f: self.client.send(f.read()) os.remove('./logs/info.txt') def screenshot(self): sct = mss() sct.shot(output = './logs/screen{}.png'.format(self.screenshot_counter)) picsize = os.path.getsize('./logs/screen{}.png'.format(self.screenshot_counter)) size = str(picsize) self.client.send(size.encode("utf-8")) screen = open('./logs/screen{}.png'.format(self.screenshot_counter), 'rb') tosend = screen.read() self.client.send(tosend) screen.close() os.remove('./logs/screen{}.png'.format(self.screenshot_counter)) self.screenshot_counter += 1 def receiveFile(self): recvname = self.client.recv(self.BUFFER_SIZE) name = recvname.decode("utf-8") recvsize = self.client.recv(self.BUFFER_SIZE) size = recvsize.decode("utf-8") if int(size) <= self.BUFFER_SIZE: recvfile = self.client.recv(self.BUFFER_SIZE) with open(f'./logs/{name}', 'wb+') as f: f.write(recvfile) else: buff = self.updateBuffer(size) fullfile = self.saveBigFile(int(size), buff) with open(f'./logs/{name}', 'wb+') as f: f.write(fullfile) def runFile(self): exfile = self.client.recv(self.BUFFER_SIZE) exfilepath = exfile.decode("utf-8") try: exec(open(exfilepath).read()) self.client.send("OK".encode("utf-8")) except: self.client.send("ERROR".encode("utf-8")) def sendFile(self): path = self.client.recv(self.BUFFER_SIZE).decode("utf-8") filelist = os.listdir(path) self.client.send("OK".encode("utf-8")) time.sleep(0.1) archname = './logs/files.zip' archive = ZipFile(archname, 'w') for file in filelist: archive.write(path + '/' + file) archive.close() arcsize = os.path.getsize(archname) self.client.send(str(arcsize).encode("utf-8")) time.sleep(0.1) with open('./logs/files.zip', 'rb') as to_send: self.client.send(to_send.read()) os.remove(archname) def stopKeyLogger(self): keyboard = Controller() keyboard.press(Key.esc) keyboard.release(Key.esc) self.keyLogger = False def sendKeyLogs(self): try: archname = './logs/files.zip' archive = ZipFile(archname, 'w') archive.write('./logs/readable.txt') archive.write('./logs/keycodes.txt') archive.close() self.client.send("[OK]".encode("utf-8")) time.sleep(0.1) arcsize = os.path.getsize(archname) self.client.send(str(arcsize).encode("utf-8")) time.sleep(0.1) with open('./logs/files.zip', 'rb') as to_send: self.client.send(to_send.read()) os.remove(archname) except: self.client.send("[ERROR]".encode("utf-8"))
MIT License
davesmeghead/visonic
custom_components/visonic/create_schema.py
create_parameters4
python
def create_parameters4(options: dict): return { vol.Optional( CONF_B0_ENABLE_MOTION_PROCESSING, default=create_default(options, CONF_B0_ENABLE_MOTION_PROCESSING, False), ): bool, vol.Optional( CONF_B0_MAX_TIME_FOR_TRIGGER_EVENT, default=create_default(options, CONF_B0_MAX_TIME_FOR_TRIGGER_EVENT, 5), ): int, vol.Optional( CONF_B0_MIN_TIME_BETWEEN_TRIGGERS, default=create_default(options, CONF_B0_MIN_TIME_BETWEEN_TRIGGERS, 30), ): int, }
Create parameter set 4.
https://github.com/davesmeghead/visonic/blob/fd8ceb2636ae985ebfd6c0f0da71e2644c635b64/custom_components/visonic/create_schema.py#L209-L225
import logging import voluptuous as vol from typing import Any from homeassistant.const import CONF_DEVICE, CONF_HOST, CONF_PATH, CONF_PORT, CONF_USERNAME, CONF_PASSWORD from homeassistant.helpers import config_validation as cv from homeassistant.util.yaml.objects import NodeListClass from .const import ( CONF_EXCLUDE_SENSOR, CONF_EXCLUDE_X10, CONF_ENABLE_REMOTE_ARM, CONF_ENABLE_REMOTE_DISARM, CONF_ENABLE_SENSOR_BYPASS, CONF_ARM_CODE_AUTO, CONF_OVERRIDE_CODE, CONF_FORCE_KEYPAD, CONF_INSTANT_ARM_AWAY, CONF_INSTANT_ARM_HOME, CONF_AUTO_SYNC_TIME, CONF_B0_ENABLE_MOTION_PROCESSING, CONF_B0_MAX_TIME_FOR_TRIGGER_EVENT, CONF_B0_MIN_TIME_BETWEEN_TRIGGERS, CONF_DEVICE_BAUD, CONF_DEVICE_TYPE, CONF_DOWNLOAD_CODE, CONF_FORCE_AUTOENROLL, CONF_FORCE_STANDARD, CONF_LANGUAGE, CONF_MOTION_OFF_DELAY, CONF_SIREN_SOUNDING, CONF_LOG_CSV_FN, CONF_LOG_CSV_TITLE, CONF_LOG_DONE, CONF_LOG_EVENT, CONF_LOG_MAX_ENTRIES, CONF_LOG_REVERSE, CONF_LOG_XML_FN, CONF_ALARM_NOTIFICATIONS, DEFAULT_DEVICE_BAUD, DEFAULT_DEVICE_HOST, DEFAULT_DEVICE_PORT, DEFAULT_DEVICE_USB, AvailableNotifications, AvailableNotificationConfig, ) _LOGGER = logging.getLogger(__name__) options = {} def create_default(options: dict, key: str, default: Any): if options is not None and key in options: if isinstance(options[key], list) or isinstance(options[key], NodeListClass): if CONF_SIREN_SOUNDING == key: return list(options[key]) if CONF_ALARM_NOTIFICATIONS == key: return list(options[key]) if len(options[key]) > 0: my_string = ",".join(map(str, list(options[key]))) return my_string else: return "" else: return options[key] else: return default def create_parameters1(options: dict): return { vol.Required( CONF_LANGUAGE, default=create_default(options, CONF_LANGUAGE, "EN") ): vol.In(["EN", "FR", "NL"]), vol.Optional( CONF_EXCLUDE_SENSOR, default=create_default(options, CONF_EXCLUDE_SENSOR, ""), ): str, vol.Optional( CONF_EXCLUDE_X10, default=create_default(options, CONF_EXCLUDE_X10, "") ): str, vol.Optional( CONF_DOWNLOAD_CODE, default=create_default(options, CONF_DOWNLOAD_CODE, "") ): str, vol.Optional( CONF_FORCE_STANDARD, default=create_default(options, CONF_FORCE_STANDARD, False), ): bool, vol.Optional( CONF_FORCE_AUTOENROLL, default=create_default(options, CONF_FORCE_AUTOENROLL, False), ): bool, vol.Optional( CONF_AUTO_SYNC_TIME, default=create_default(options, CONF_AUTO_SYNC_TIME, True), ): bool, } available_siren_values = { "intruder": "Intruder", "tamper": "Tamper", "fire": "Fire", "emergency": "Emergency", "gas": "Gas", "flood": "Flood", "x10": "X10", "panic": "Panic", } def create_parameters2(options: dict): return { vol.Optional( CONF_MOTION_OFF_DELAY, default=create_default(options, CONF_MOTION_OFF_DELAY, 120), ): int, vol.Optional( CONF_SIREN_SOUNDING, default=create_default(options, CONF_SIREN_SOUNDING, ["intruder"]), ): cv.multi_select(available_siren_values), vol.Optional( CONF_ALARM_NOTIFICATIONS, default=create_default(options, CONF_ALARM_NOTIFICATIONS, [AvailableNotifications.CONNECTION_PROBLEM, AvailableNotifications.SIREN]), ): cv.multi_select(AvailableNotificationConfig), vol.Optional( CONF_OVERRIDE_CODE, default=create_default(options, CONF_OVERRIDE_CODE, "") ): str, vol.Optional( CONF_ARM_CODE_AUTO, default=create_default(options, CONF_ARM_CODE_AUTO, False), ): bool, vol.Optional( CONF_FORCE_KEYPAD, default=create_default(options, CONF_FORCE_KEYPAD, False) ): bool, vol.Optional( CONF_INSTANT_ARM_AWAY, default=create_default(options, CONF_INSTANT_ARM_AWAY, False), ): bool, vol.Optional( CONF_INSTANT_ARM_HOME, default=create_default(options, CONF_INSTANT_ARM_HOME, False), ): bool, vol.Optional( CONF_ENABLE_REMOTE_ARM, default=create_default(options, CONF_ENABLE_REMOTE_ARM, False), ): bool, vol.Optional( CONF_ENABLE_REMOTE_DISARM, default=create_default(options, CONF_ENABLE_REMOTE_DISARM, False), ): bool, vol.Optional( CONF_ENABLE_SENSOR_BYPASS, default=create_default(options, CONF_ENABLE_SENSOR_BYPASS, False), ): bool, } def create_parameters3(options: dict): return { vol.Optional( CONF_LOG_EVENT, default=create_default(options, CONF_LOG_EVENT, False) ): bool, vol.Optional( CONF_LOG_DONE, default=create_default(options, CONF_LOG_DONE, False) ): bool, vol.Optional( CONF_LOG_REVERSE, default=create_default(options, CONF_LOG_REVERSE, False) ): bool, vol.Optional( CONF_LOG_CSV_TITLE, default=create_default(options, CONF_LOG_CSV_TITLE, False), ): bool, vol.Optional( CONF_LOG_XML_FN, default=create_default(options, CONF_LOG_XML_FN, "visonic_log_file.xml"), ): str, vol.Optional( CONF_LOG_CSV_FN, default=create_default(options, CONF_LOG_CSV_FN, "visonic_log_file.csv"), ): str, vol.Optional( CONF_LOG_MAX_ENTRIES, default=create_default(options, CONF_LOG_MAX_ENTRIES, 10000), ): int, }
Apache License 2.0
wikimedia/pywikibot
pywikibot/proofreadpage.py
ProofreadPage.url_image
python
def url_image(self) -> str: if not hasattr(self, '_url_image'): if self.exists(): url = self.full_url() else: path = 'w/index.php?title={}&action=edit&redlink=1' url = self.site.base_url(path.format(self.title(as_url=True))) try: response = http.fetch(url, charset='utf-8') except Exception: pywikibot.error('Error fetching HTML for {}.'.format(self)) raise soup = _bs4_soup(response.text) try: self._url_image = soup.find(class_='prp-page-image') self._url_image = self._url_image.find('img') self._url_image = self._url_image['src'] except (TypeError, AttributeError): raise ValueError('No prp-page-image src found for {}.' .format(self)) else: self._url_image = 'https:' + self._url_image return self._url_image
Get the file url of the scan of ProofreadPage. :return: file url of the scan ProofreadPage or None. :raises Exception: in case of http errors :raise ImportError: if bs4 is not installed, _bs4_soup() will raise :raises ValueError: in case of no prp_page_image src found for scan
https://github.com/wikimedia/pywikibot/blob/5097f5b9a7ef9d39f35f17edd11faf3086a01d1d/pywikibot/proofreadpage.py#L568-L606
import json import re import time from functools import partial from http import HTTPStatus from typing import Any, Optional, Union from requests.exceptions import ReadTimeout import pywikibot from pywikibot import textlib from pywikibot.backports import ( Callable, Dict, Iterable, List, Sequence, Set, Tuple, ) from pywikibot.comms import http from pywikibot.data.api import Request from pywikibot.exceptions import Error, OtherPageSaveError PAGES_FROM_LABEL_TYPE = Dict[str, Set['pywikibot.page.Page']] OPT_INDEX_PAGE_TYPE = Any OPT_INDEX_PAGE_LIST_TYPE = Any INDEX_TYPE = Optional[Tuple[OPT_INDEX_PAGE_TYPE, OPT_INDEX_PAGE_LIST_TYPE]] try: from bs4 import BeautifulSoup except ImportError as e: BeautifulSoup = e def _bs4_soup(*args: Any, **kwargs: Any) -> None: raise BeautifulSoup else: from bs4 import FeatureNotFound try: BeautifulSoup('', 'lxml') except FeatureNotFound: _bs4_soup = partial(BeautifulSoup, features='html.parser') else: _bs4_soup = partial(BeautifulSoup, features='lxml') _logger = 'proofreadpage' def decompose(fn: Callable) -> Callable: def wrapper(self: 'ProofreadPage', *args: Any, **kwargs: Any) -> Any: if not hasattr(self, '_full_header'): self._decompose_page() _res = fn(self, *args, **kwargs) self._compose_page() return _res return wrapper def check_if_cached(fn: Callable) -> Callable: def wrapper(self: 'IndexPage', *args: Any, **kwargs: Any) -> Any: if self._cached is False: self._get_page_mappings() return fn(self, *args, **kwargs) return wrapper class FullHeader: p_header = re.compile( r'<pagequality level="(?P<ql>\d)" user="(?P<user>.*?)" />' r'(?P<has_div><div class="pagetext">)?(?P<header>.*)', re.DOTALL) TEMPLATE_V1 = ('<pagequality level="{0.ql}" user="{0.user}" />' '<div class="pagetext">{0.header}\n\n\n') TEMPLATE_V2 = ('<pagequality level="{0.ql}" user="{0.user}" />' '{0.header}') def __init__(self, text: Optional[str] = None) -> None: self._text = text or '' self._has_div = True m = self.p_header.search(self._text) if m: self.ql = int(m.group('ql')) self.user = m.group('user') self.header = m.group('header') if not m.group('has_div'): self._has_div = False else: self.ql = ProofreadPage.NOT_PROOFREAD self.user = '' self.header = '' def __str__(self) -> str: if self._has_div: return FullHeader.TEMPLATE_V1.format(self) return FullHeader.TEMPLATE_V2.format(self) class ProofreadPage(pywikibot.Page): WITHOUT_TEXT = 0 NOT_PROOFREAD = 1 PROBLEMATIC = 2 PROOFREAD = 3 VALIDATED = 4 PROOFREAD_LEVELS = [ WITHOUT_TEXT, NOT_PROOFREAD, PROBLEMATIC, PROOFREAD, VALIDATED, ] _FMT = ('{0.open_tag}{0._full_header}{0.close_tag}' '{0._body}' '{0.open_tag}{0._footer}%s{0.close_tag}') open_tag = '<noinclude>' close_tag = '</noinclude>' p_open = re.compile(r'<noinclude>') p_close = re.compile(r'(</div>|\n\n\n)?</noinclude>') p_close_no_div = re.compile('</noinclude>') _HOCR_CMD = ('https://phetools.toolforge.org/hocr_cgi.py?' 'cmd=hocr&book={book}&lang={lang}&user={user}') _OCR_CMD = ('https://phetools.toolforge.org/ocr.php?' 'cmd=ocr&url={url_image}&lang={lang}&user={user}') _WMFOCR_CMD = ('https://ocr.wmcloud.org/api.php?engine=tesseract&' 'langs[]={lang}&image={url_image}&uselang={lang}') _GOCR_CMD = ('https://ws-google-ocr.toolforge.org/api.php?' 'image={url_image}&lang={lang}') _MULTI_PAGE_EXT = ['djvu', 'pdf'] _PHETOOLS = 'phetools' _WMFOCR = 'wmfOCR' _GOOGLE_OCR = 'googleOCR' _OCR_CMDS = {_PHETOOLS: _OCR_CMD, _WMFOCR: _WMFOCR_CMD, _GOOGLE_OCR: _GOCR_CMD, } _OCR_METHODS = list(_OCR_CMDS.keys()) def __init__(self, source, title: str = '') -> None: if not isinstance(source, pywikibot.site.BaseSite): site = source.site else: site = source super().__init__(source, title) if self.namespace() != site.proofread_page_ns: raise ValueError('Page {} must belong to {} namespace' .format(self.title(), site.proofread_page_ns)) if list(self.site.proofread_levels.keys()) != self.PROOFREAD_LEVELS: raise ValueError('QLs do not match site values: {} != {}' .format(self.site.proofread_levels.keys(), self.PROOFREAD_LEVELS)) self._base, self._base_ext, self._num = self._parse_title() self._multi_page = self._base_ext in self._MULTI_PAGE_EXT @property def _fmt(self) -> str: return self._FMT % ('</div>' if self._full_header._has_div else '') def _parse_title(self) -> Tuple[str, str, Optional[int]]: left, sep, right = self.title(with_ns=False).rpartition('/') num = None if sep: base = left num = int(right) else: base = right left, sep, right = base.rpartition('.') ext = right if sep else '' return base, ext, num @property def index(self) -> OPT_INDEX_PAGE_TYPE: if not hasattr(self, '_index'): index_ns = self.site.proofread_index_ns what_links_here = [IndexPage(page) for page in set(self.getReferences(namespaces=index_ns))] if not what_links_here: self._index = (None, []) elif len(what_links_here) == 1: self._index = (what_links_here.pop(), []) else: self._index = (None, what_links_here) if self._num is not None: for page in what_links_here: if page.title(with_ns=False) == self._base: what_links_here.remove(page) self._index = (page, what_links_here) break page, others = self._index if others: pywikibot.warning('{} linked to several Index pages.'.format(self)) pywikibot.output('{}{!s}'.format(' ' * 9, [page] + others)) if page: pywikibot.output( '{}Selected Index: {}'.format(' ' * 9, page)) pywikibot.output('{}remaining: {!s}'.format(' ' * 9, others)) if not page: pywikibot.warning('Page {} is not linked to any Index page.' .format(self)) return page @index.setter def index(self, value: 'IndexPage') -> None: if not isinstance(value, IndexPage): raise TypeError('value {} must be an IndexPage object.' .format(value)) self._index = (value, None) @index.deleter def index(self) -> None: if hasattr(self, '_index'): del self._index @property def quality_level(self) -> int: if (self.content_model == 'proofread-page' and hasattr(self, '_quality')): return int(self._quality) return self.ql @property @decompose def ql(self) -> int: return self._full_header.ql @ql.setter @decompose def ql(self, value: int) -> None: if value not in self.site.proofread_levels: raise ValueError('Not valid QL value: {} (legal values: {})' .format(value, self.site.proofread_levels)) self._full_header.ql = value @property @decompose def user(self) -> str: return self._full_header.user @user.setter @decompose def user(self, value: str) -> None: self._full_header.user = value @property @decompose def status(self) -> Optional[str]: try: return self.site.proofread_levels[self.ql] except KeyError: pywikibot.warning('Not valid status set for {}: quality level = {}' .format(self.title(as_link=True), self.ql)) return None def without_text(self) -> None: self.ql = self.WITHOUT_TEXT def problematic(self) -> None: self.ql = self.PROBLEMATIC def not_proofread(self) -> None: self.ql = self.NOT_PROOFREAD def proofread(self) -> None: self.ql = self.PROOFREAD def validate(self) -> None: self.ql = self.VALIDATED @property @decompose def header(self) -> str: return self._full_header.header @header.setter @decompose def header(self, value: str) -> None: self._full_header.header = value @property @decompose def body(self) -> str: return self._body @body.setter @decompose def body(self, value: str) -> None: self._body = value @property @decompose def footer(self) -> str: return self._footer @footer.setter @decompose def footer(self, value: str) -> None: self._footer = value def _create_empty_page(self) -> None: self._full_header = FullHeader() self._body = '' self._footer = '' self.user = self.site.username() self._compose_page() @property def text(self) -> str: if getattr(self, '_text', None) is not None: return self._text if self.exists(): return super().text self._text = self.preloadText() self.user = self.site.username() return self._text @text.setter def text(self, value: str) -> None: self._text = value if self._text: self._decompose_page() else: self._create_empty_page() @text.deleter def text(self) -> None: if hasattr(self, '_text'): del self._text def _decompose_page(self) -> None: def _assert_len(len_oq: int, len_cq: int, title: str) -> None: if (len_oq != len_cq) or (len_oq < 2 or len_cq < 2): raise Error('ProofreadPage {}: invalid format'.format(title)) text = self.text if not text: self._create_empty_page() return _title = self.title(as_link=True) open_queue = list(self.p_open.finditer(text)) close_queue = list(self.p_close.finditer(text)) _assert_len(len(open_queue), len(close_queue), _title) f_open, f_close = open_queue[0], close_queue[0] self._full_header = FullHeader(text[f_open.end():f_close.start()]) if not self._full_header._has_div: close_queue = list(self.p_close_no_div.finditer(text)) _assert_len(len(open_queue), len(close_queue), _title) l_open, l_close = open_queue[-1], close_queue[-1] self._footer = text[l_open.end():l_close.start()] self._body = text[f_close.end():l_open.start()] def _compose_page(self) -> str: self._text = self._fmt.format(self) return self._text def _page_to_json(self) -> str: page_dict = {'header': self.header, 'body': self.body, 'footer': self.footer, 'level': {'level': self.ql, 'user': self.user}, } return json.dumps(page_dict, ensure_ascii=False) def save(self, *args: Any, **kwargs: Any) -> None: summary = kwargs.pop('summary', '') summary = self.pre_summary + summary kwargs['contentformat'] = 'application/json' kwargs['contentmodel'] = 'proofread-page' text = self._page_to_json() super().save(*args, text=text, summary=summary, **kwargs) @property def pre_summary(self) -> str: return '/* {0.status} */ '.format(self) @property
MIT License
sberbank-ai-lab/lightautoml
lightautoml/transformers/categorical.py
MultiClassTargetEncoder.score_func
python
def score_func(candidates: np.ndarray, target: np.ndarray) -> int: target = target[:, np.newaxis, np.newaxis] scores = -np.log(np.take_along_axis(candidates, target, axis=1)).mean(axis=0)[0] idx = scores.argmin() return idx
Args: candidates: np.ndarray. target: np.ndarray. Returns: index of best encoder.
https://github.com/sberbank-ai-lab/lightautoml/blob/51a4e2bd0ebffbe0817fb50434280f8e7c40fa4c/lightautoml/transformers/categorical.py#L552-L568
from itertools import combinations from typing import List from typing import Optional from typing import Sequence from typing import Union from typing import cast import numpy as np from pandas import DataFrame from pandas import Series from sklearn.preprocessing import OneHotEncoder from sklearn.utils.murmurhash import murmurhash3_32 from ..dataset.base import LAMLDataset from ..dataset.np_pd_dataset import CSRSparseDataset from ..dataset.np_pd_dataset import NumpyDataset from ..dataset.np_pd_dataset import PandasDataset from ..dataset.roles import CategoryRole from ..dataset.roles import NumericRole from .base import LAMLTransformer NumpyOrPandas = Union[NumpyDataset, PandasDataset] NumpyOrSparse = Union[NumpyDataset, CSRSparseDataset] def categorical_check(dataset: LAMLDataset): roles = dataset.roles features = dataset.features for f in features: assert roles[f].name == "Category", "Only categories accepted in this transformer" def oof_task_check(dataset: LAMLDataset): task = dataset.task assert task.name in [ "binary", "reg", ], "Only binary and regression tasks supported in this transformer" def multiclass_task_check(dataset: LAMLDataset): task = dataset.task assert task.name in ["multiclass"], "Only multiclass tasks supported in this transformer" def encoding_check(dataset: LAMLDataset): roles = dataset.roles features = dataset.features for f in features: assert roles[ f ].label_encoded, "Transformer should be applied to category only after label encoding. Feat {0} is {1}".format( f, roles[f] ) class LabelEncoder(LAMLTransformer): _fit_checks = (categorical_check,) _transform_checks = () _fname_prefix = "le" _fillna_val = 0 def __init__(self, subs: Optional[int] = None, random_state: int = 42): self.subs = subs self.random_state = random_state self._output_role = CategoryRole(np.int32, label_encoded=True) def _get_df(self, dataset: NumpyOrPandas) -> DataFrame: dataset = dataset.to_pandas() df = dataset.data if self.subs is not None and df.shape[0] >= self.subs: subs = df.sample(n=self.subs, random_state=self.random_state) else: subs = df return subs def fit(self, dataset: NumpyOrPandas): super().fit(dataset) roles = dataset.roles subs = self._get_df(dataset) self.dicts = {} for i in subs.columns: role = roles[i] co = role.unknown cnts = ( subs[i] .value_counts(dropna=False) .reset_index() .sort_values([i, "index"], ascending=[False, True]) .set_index("index") ) vals = cnts[cnts > co].index.values self.dicts[i] = Series(np.arange(vals.shape[0], dtype=np.int32) + 1, index=vals) return self def transform(self, dataset: NumpyOrPandas) -> NumpyDataset: super().transform(dataset) dataset = dataset.to_pandas() df = dataset.data new_arr = np.empty(dataset.shape, dtype=self._output_role.dtype) for n, i in enumerate(df.columns): if i in self.dicts: new_arr[:, n] = df[i].map(self.dicts[i]).fillna(self._fillna_val).values else: new_arr[:, n] = df[i].values.astype(self._output_role.dtype) output = dataset.empty().to_numpy() output.set_data(new_arr, self.features, self._output_role) return output class OHEEncoder(LAMLTransformer): _fit_checks = (categorical_check, encoding_check) _transform_checks = () _fname_prefix = "ohe" @property def features(self) -> List[str]: return self._features def __init__( self, make_sparse: Optional[bool] = None, total_feats_cnt: Optional[int] = None, dtype: type = np.float32, ): self.make_sparse = make_sparse self.total_feats_cnt = total_feats_cnt self.dtype = dtype if self.make_sparse is None: assert self.total_feats_cnt is not None, "Param total_feats_cnt should be defined if make_sparse is None" def fit(self, dataset: NumpyOrPandas): for check_func in self._fit_checks: check_func(dataset) dataset = dataset.to_numpy() data = dataset.data max_idx = data.max(axis=0) min_idx = data.min(axis=0) if self.make_sparse is None: fill_rate = self.total_feats_cnt / (self.total_feats_cnt - max_idx.shape[0] + max_idx.sum()) self.make_sparse = fill_rate < 0.2 self.ohe = OneHotEncoder( categories=[np.arange(x, y + 1, dtype=np.int32) for (x, y) in zip(min_idx, max_idx)], dtype=self.dtype, sparse=self.make_sparse, handle_unknown="ignore", ) self.ohe.fit(data) features = [] for cats, name in zip(self.ohe.categories_, dataset.features): features.extend(["ohe_{0}__{1}".format(x, name) for x in cats]) self._features = features return self def transform(self, dataset: NumpyOrPandas) -> NumpyOrSparse: super().transform(dataset) dataset = dataset.to_numpy() data = dataset.data data = self.ohe.transform(data) output = dataset.empty() if self.make_sparse: output = output.to_csr() output.set_data(data, self.features, NumericRole(self.dtype)) return output class FreqEncoder(LabelEncoder): _fit_checks = (categorical_check,) _transform_checks = () _fname_prefix = "freq" _fillna_val = 1 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._output_role = NumericRole(np.float32) def fit(self, dataset: NumpyOrPandas): LAMLTransformer.fit(self, dataset) dataset = dataset.to_pandas() df = dataset.data self.dicts = {} for i in df.columns: cnts = df[i].value_counts(dropna=False) self.dicts[i] = cnts[cnts > 1] return self class TargetEncoder(LAMLTransformer): _fit_checks = (categorical_check, oof_task_check, encoding_check) _transform_checks = () _fname_prefix = "oof" def __init__(self, alphas: Sequence[float] = (0.5, 1.0, 2.0, 5.0, 10.0, 50.0, 250.0, 1000.0)): self.alphas = alphas @staticmethod def binary_score_func(candidates: np.ndarray, target: np.ndarray) -> int: target = target[:, np.newaxis] scores = -(target * np.log(candidates) + (1 - target) * np.log(1 - candidates)).mean(axis=0) idx = scores.argmin() return idx @staticmethod def reg_score_func(candidates: np.ndarray, target: np.ndarray) -> int: target = target[:, np.newaxis] scores = ((target - candidates) ** 2).mean(axis=0) idx = scores.argmin() return idx def fit(self, dataset: NumpyOrPandas): super().fit_transform(dataset) def fit_transform(self, dataset: NumpyOrPandas) -> NumpyDataset: super().fit(dataset) dataset = dataset.to_numpy() data = dataset.data target = dataset.target.astype(np.int32) score_func = self.binary_score_func if dataset.task.name == "binary" else self.reg_score_func folds = dataset.folds n_folds = folds.max() + 1 alphas = np.array(self.alphas)[np.newaxis, :] self.encodings = [] prior = target.mean() f_sum = np.zeros(n_folds, dtype=np.float64) f_count = np.zeros(n_folds, dtype=np.float64) np.add.at(f_sum, folds, target) np.add.at(f_count, folds, 1) folds_prior = (f_sum.sum() - f_sum) / (f_count.sum() - f_count) oof_feats = np.zeros(data.shape, dtype=np.float32) for n in range(data.shape[1]): vec = data[:, n] enc_dim = vec.max() + 1 f_sum = np.zeros((enc_dim, n_folds), dtype=np.float64) f_count = np.zeros((enc_dim, n_folds), dtype=np.float64) np.add.at(f_sum, (vec, folds), target) np.add.at(f_count, (vec, folds), 1) t_sum = f_sum.sum(axis=1, keepdims=True) t_count = f_count.sum(axis=1, keepdims=True) oof_sum = t_sum - f_sum oof_count = t_count - f_count candidates = ( (oof_sum[vec, folds, np.newaxis] + alphas * folds_prior[folds, np.newaxis]) / (oof_count[vec, folds, np.newaxis] + alphas) ).astype(np.float32) idx = score_func(candidates, target) oof_feats[:, n] = candidates[:, idx] enc = ((t_sum[:, 0] + alphas[0, idx] * prior) / (t_count[:, 0] + alphas[0, idx])).astype(np.float32) self.encodings.append(enc) output = dataset.empty() self.output_role = NumericRole(np.float32, prob=output.task.name == "binary") output.set_data(oof_feats, self.features, self.output_role) return output def transform(self, dataset: NumpyOrPandas) -> NumpyOrSparse: super().transform(dataset) dataset = dataset.to_numpy() data = dataset.data out = np.zeros(data.shape, dtype=np.float32) for n, enc in enumerate(self.encodings): out[:, n] = enc[data[:, n]] output = dataset.empty() output.set_data(out, self.features, self.output_role) return output class MultiClassTargetEncoder(LAMLTransformer): _fit_checks = (categorical_check, multiclass_task_check, encoding_check) _transform_checks = () _fname_prefix = "multioof" @property def features(self) -> List[str]: return self._features def __init__(self, alphas: Sequence[float] = (0.5, 1.0, 2.0, 5.0, 10.0, 50.0, 250.0, 1000.0)): self.alphas = alphas @staticmethod
Apache License 2.0
demisto/demisto-py
demisto_client/demisto_api/models/entry_history.py
EntryHistory.content_date
python
def content_date(self, content_date): self._content_date = content_date
Sets the content_date of this EntryHistory. :param content_date: The content_date of this EntryHistory. # noqa: E501 :type: datetime
https://github.com/demisto/demisto-py/blob/95d29e07693d27c133f7fe6ef9da13e4b6dbf542/demisto_client/demisto_api/models/entry_history.py#L76-L84
import pprint import re import six class EntryHistory(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'content_date': 'datetime', 'contents': 'str', 'contents_format': 'str', 'user': 'str' } attribute_map = { 'content_date': 'contentDate', 'contents': 'contents', 'contents_format': 'contentsFormat', 'user': 'user' } def __init__(self, content_date=None, contents=None, contents_format=None, user=None): self._content_date = None self._contents = None self._contents_format = None self._user = None self.discriminator = None if content_date is not None: self.content_date = content_date if contents is not None: self.contents = contents if contents_format is not None: self.contents_format = contents_format if user is not None: self.user = user @property def content_date(self): return self._content_date @content_date.setter
Apache License 2.0
erensezener/aima-based-irl
Other_AIMA_Scripts/logic.py
pl_resolution
python
def pl_resolution(KB, alpha): clauses = KB.clauses + conjuncts(to_cnf(~alpha)) new = set() while True: n = len(clauses) pairs = [(clauses[i], clauses[j]) for i in range(n) for j in range(i+1, n)] for (ci, cj) in pairs: resolvents = pl_resolve(ci, cj) if FALSE in resolvents: return True new.union_update(set(resolvents)) if new.issubset(set(clauses)): return False for c in new: if c not in clauses: clauses.append(c)
Propositional Logic Resolution: say if alpha follows from KB. [Fig. 7.12]
https://github.com/erensezener/aima-based-irl/blob/fbbe28986cec0b5e58fef0f00338a180ed03759a/Other_AIMA_Scripts/logic.py#L482-L495
from __future__ import generators import re from Other_AIMA_Scripts import agents from utils import * class KB: def __init__(self, sentence=None): abstract def tell(self, sentence): abstract def ask(self, query): try: return self.ask_generator(query).next() except StopIteration: return False def ask_generator(self, query): abstract def retract(self, sentence): abstract class PropKB(KB): def __init__(self, sentence=None): self.clauses = [] if sentence: self.tell(sentence) def tell(self, sentence): self.clauses.extend(conjuncts(to_cnf(sentence))) def ask_generator(self, query): if not tt_entails(Expr('&', *self.clauses), query): return yield {} def retract(self, sentence): for c in conjuncts(to_cnf(sentence)): if c in self.clauses: self.clauses.remove(c) class KB_Agent(agents.Agent): def __init__(self, KB): t = 0 def program(percept): KB.tell(self.make_percept_sentence(percept, t)) action = KB.ask(self.make_action_query(t)) KB.tell(self.make_action_sentence(action, t)) t = t + 1 return action self.program = program def make_percept_sentence(self, percept, t): return(Expr("Percept")(percept, t)) def make_action_query(self, t): return(expr("ShouldDo(action, %d)" % t)) def make_action_sentence(self, action, t): return(Expr("Did")(action, t)) class Expr: def __init__(self, op, *args): assert isinstance(op, str) or (isnumber(op) and not args) self.op = num_or_str(op) self.args = map(expr, args) def __call__(self, *args): assert is_symbol(self.op) and not self.args return Expr(self.op, *args) def __repr__(self): if len(self.args) == 0: return str(self.op) elif is_symbol(self.op): return '%s(%s)' % (self.op, ', '.join(map(repr, self.args))) elif len(self.args) == 1: return self.op + repr(self.args[0]) else: return '(%s)' % (' '+self.op+' ').join(map(repr, self.args)) def __eq__(self, other): return (other is self) or (isinstance(other, Expr) and self.op == other.op and self.args == other.args) def __hash__(self): return hash(self.op) ^ hash(tuple(self.args)) def __lt__(self, other): return Expr('<', self, other) def __le__(self, other): return Expr('<=', self, other) def __ge__(self, other): return Expr('>=', self, other) def __gt__(self, other): return Expr('>', self, other) def __add__(self, other): return Expr('+', self, other) def __sub__(self, other): return Expr('-', self, other) def __and__(self, other): return Expr('&', self, other) def __div__(self, other): return Expr('/', self, other) def __truediv__(self, other):return Expr('/', self, other) def __invert__(self): return Expr('~', self) def __lshift__(self, other): return Expr('<<', self, other) def __rshift__(self, other): return Expr('>>', self, other) def __mul__(self, other): return Expr('*', self, other) def __neg__(self): return Expr('-', self) def __or__(self, other): return Expr('|', self, other) def __pow__(self, other): return Expr('**', self, other) def __xor__(self, other): return Expr('^', self, other) def __mod__(self, other): return Expr('<=>', self, other) def expr(s): if isinstance(s, Expr): return s if isnumber(s): return Expr(s) s = s.replace('==>', '>>').replace('<==', '<<') s = s.replace('<=>', '%').replace('=/=', '^') s = re.sub(r'([a-zA-Z0-9_.]+)', r'Expr("\1")', s) return eval(s, {'Expr':Expr}) def is_symbol(s): return isinstance(s, str) and s[0].isalpha() def is_var_symbol(s): return is_symbol(s) and s[0].islower() def is_prop_symbol(s): return is_symbol(s) and s[0].isupper() and s != 'TRUE' and s != 'FALSE' TRUE, FALSE, ZERO, ONE, TWO = map(Expr, ['TRUE', 'FALSE', 0, 1, 2]) A, B, C, F, G, P, Q, x, y, z = map(Expr, 'ABCFGPQxyz') def tt_entails(kb, alpha): return tt_check_all(kb, alpha, prop_symbols(kb & alpha), {}) def tt_check_all(kb, alpha, symbols, model): if not symbols: if pl_true(kb, model): return pl_true(alpha, model) else: return True assert result != None else: P, rest = symbols[0], symbols[1:] return (tt_check_all(kb, alpha, rest, extend(model, P, True)) and tt_check_all(kb, alpha, rest, extend(model, P, False))) def prop_symbols(x): if not isinstance(x, Expr): return [] elif is_prop_symbol(x.op): return [x] else: s = set(()) for arg in x.args: for symbol in prop_symbols(arg): s.add(symbol) return list(s) def tt_true(alpha): return tt_entails(TRUE, expr(alpha)) def pl_true(exp, model={}): op, args = exp.op, exp.args if exp == TRUE: return True elif exp == FALSE: return False elif is_prop_symbol(op): return model.get(exp) elif op == '~': p = pl_true(args[0], model) if p == None: return None else: return not p elif op == '|': result = False for arg in args: p = pl_true(arg, model) if p == True: return True if p == None: result = None return result elif op == '&': result = True for arg in args: p = pl_true(arg, model) if p == False: return False if p == None: result = None return result p, q = args if op == '>>': return pl_true(~p | q, model) elif op == '<<': return pl_true(p | ~q, model) pt = pl_true(p, model) if pt == None: return None qt = pl_true(q, model) if qt == None: return None if op == '<=>': return pt == qt elif op == '^': return pt != qt else: raise ValueError, "illegal operator in logic expression" + str(exp) def to_cnf(s): if isinstance(s, str): s = expr(s) s = eliminate_implications(s) s = move_not_inwards(s) return distribute_and_over_or(s) def eliminate_implications(s): if not s.args or is_symbol(s.op): return s args = map(eliminate_implications, s.args) a, b = args[0], args[-1] if s.op == '>>': return (b | ~a) elif s.op == '<<': return (a | ~b) elif s.op == '<=>': return (a | ~b) & (b | ~a) else: return Expr(s.op, *args) def move_not_inwards(s): if s.op == '~': NOT = lambda b: move_not_inwards(~b) a = s.args[0] if a.op == '~': return move_not_inwards(a.args[0]) if a.op =='&': return NaryExpr('|', *map(NOT, a.args)) if a.op =='|': return NaryExpr('&', *map(NOT, a.args)) return s elif is_symbol(s.op) or not s.args: return s else: return Expr(s.op, *map(move_not_inwards, s.args)) def distribute_and_over_or(s): if s.op == '|': s = NaryExpr('|', *s.args) if len(s.args) == 0: return FALSE if len(s.args) == 1: return distribute_and_over_or(s.args[0]) conj = find_if((lambda d: d.op == '&'), s.args) if not conj: return NaryExpr(s.op, *s.args) others = [a for a in s.args if a is not conj] if len(others) == 1: rest = others[0] else: rest = NaryExpr('|', *others) return NaryExpr('&', *map(distribute_and_over_or, [(c|rest) for c in conj.args])) elif s.op == '&': return NaryExpr('&', *map(distribute_and_over_or, s.args)) else: return s _NaryExprTable = {'&':TRUE, '|':FALSE, '+':ZERO, '*':ONE} def NaryExpr(op, *args): arglist = [] for arg in args: if arg.op == op: arglist.extend(arg.args) else: arglist.append(arg) if len(args) == 1: return args[0] elif len(args) == 0: return _NaryExprTable[op] else: return Expr(op, *arglist) def conjuncts(s): if isinstance(s, Expr) and s.op == '&': return s.args else: return [s] def disjuncts(s): if isinstance(s, Expr) and s.op == '|': return s.args else: return [s]
MIT License
att-comdev/drydock
drydock_provisioner/orchestrator/actions/orchestrator.py
BaseAction._split_action
python
def _split_action(self): target_nodes = self.orchestrator.get_target_nodes(self.task) if len(target_nodes) > 1: self.logger.info( "Found multiple target nodes in task %s, splitting..." % str( self.task.get_id())) split_tasks = dict() with concurrent.futures.ThreadPoolExecutor() as te: for n in target_nodes: split_task = self.orchestrator.create_task( design_ref=self.task.design_ref, action=hd_fields.OrchestratorAction.PrepareNodes, node_filter=self.orchestrator. create_nodefilter_from_nodelist([n])) self.task.register_subtask(split_task) action = self.__class__(split_task, self.orchestrator, self.state_manager) split_tasks[split_task.get_id().bytes] = te.submit( action.start) return split_tasks
Start a parallel action for each node in scope. Start a threaded instance of this action for each node in scope of this action's task. A subtask will be created for each action. Returns all a list of concurrent.futures managed threads running the actions. :returns: dictionary of subtask_id.bytes => Future instance
https://github.com/att-comdev/drydock/blob/506e06623a5f1c11c0d34f2089851cc8381f06ae/drydock_provisioner/orchestrator/actions/orchestrator.py#L61-L92
import time import datetime import logging import concurrent.futures import uuid import drydock_provisioner.config as config import drydock_provisioner.error as errors import drydock_provisioner.objects.fields as hd_fields class BaseAction(object): def __init__(self, task, orchestrator, state_manager): self.task = task self.orchestrator = orchestrator self.state_manager = state_manager self.logger = logging.getLogger( config.config_mgr.conf.logging.global_logger_name) def _parallelize_subtasks(self, fn, subtask_id_list, *args, **kwargs): task_futures = dict() with concurrent.futures.ThreadPoolExecutor(max_workers=16) as te: for t in subtask_id_list: task_futures[t.bytes] = te.submit(fn, t, *args, **kwargs) return task_futures
Apache License 2.0
hanrancode/imagedt
imagedt/tensorflow/lite/lite_wrapper.py
Lite_Wrapper.predict
python
def predict(self, input_data): self.interpreter.set_tensor(self.input_details[0]['index'], input_data) self.interpreter.invoke() predictions = np.squeeze(self.interpreter.get_tensor(self.output_details[0]['index'])) pre_class = predictions.argsort()[::-1][0] conf = predictions[pre_class] return pre_class, conf
input data : should be cv mat array (axis=0)
https://github.com/hanrancode/imagedt/blob/78c9e671526422f28bd564cad9879ef95f12b454/imagedt/tensorflow/lite/lite_wrapper.py#L33-L43
from __future__ import absolute_import from __future__ import print_function import numpy as np from tensorflow.contrib.lite.python import interpreter as interpreter_wrapper class Lite_Wrapper(object): def __init__(self, model_path): super(Lite_Wrapper, self).__init__() self.model_path = model_path self.load_model() self._check_model_type() def load_model(self): self.interpreter = interpreter_wrapper.Interpreter(model_path=self.model_path) self.interpreter.allocate_tensors() self.input_details = self.interpreter.get_input_details() self.output_details = self.interpreter.get_output_details() def _check_model_type(self): try: self.input_details[0]['dtype'] == type(np.float32(1.0)) self.height = input_details[0]['shape'][1] self.width = input_details[0]['shape'][2] except Exception as e: print ("Only support test float tflite model for now, Please check model type!")
Apache License 2.0
martin68/apt-smart
apt_smart/__init__.py
AptMirrorUpdater.dumb_update
python
def dumb_update(self, *args): timer = Timer() logger.info("Updating package lists of %s ..", self.context) self.context.execute('apt-get', 'update', *args, sudo=True) logger.info("Finished updating package lists of %s in %s.", self.context, timer)
Update the system's package lists (by running ``apt-get update``). :param args: Command line arguments to ``apt-get update`` (zero or more strings). The :func:`dumb_update()` method doesn't do any error handling or retrying, if that's what you're looking for then you need :func:`smart_update()` instead.
https://github.com/martin68/apt-smart/blob/7085f398e08a703759d7e81a898f1e237796f232/apt_smart/__init__.py#L745-L758
import fnmatch import logging import os import sys import time import calendar try: from enum import Enum except ImportError: from flufl.enum import Enum from capturer import CaptureOutput from executor.contexts import ChangeRootContext, LocalContext from humanfriendly import AutomaticSpinner, Timer, compact, format_timespan, pluralize try: from property_manager3 import ( PropertyManager, cached_property, key_property, lazy_property, mutable_property, set_property, ) except ImportError: from property_manager import ( PropertyManager, cached_property, key_property, lazy_property, mutable_property, set_property, ) from six import text_type from six.moves.urllib.parse import urlparse from apt_smart.http import NotFoundError, fetch_concurrent, fetch_url, get_default_concurrency from apt_smart.releases import coerce_release from apt_smart.releases import discover_releases __version__ = '7.1.3' SOURCES_LIST_ENCODING = 'UTF-8' MAX_MIRRORS = 50 URL_CHAR_LEN = 34 LAST_UPDATED_DEFAULT = 60 * 60 * 24 * 7 * 4 logger = logging.getLogger(__name__) class AptMirrorUpdater(PropertyManager): repr_properties = ( 'architecture', 'backend', 'blacklist', 'concurrency', 'context', 'distribution_codename', 'distributor_id', 'max_mirrors', 'old_releases_url', 'security_url', ) @mutable_property def architecture(self): value = self.context.capture('dpkg', '--print-architecture') set_property(self, 'architecture', value) return value @cached_property def available_mirrors(self): mirrors = set() if self.release_is_eol: logger.warning("Skipping mirror discovery because %s is EOL.", self.release) else: if self.read_custom_mirror_file: mirrors.update(self.read_custom_mirror_file) logger.info("Custom mirrors added from file:") for mirror in mirrors: logger.info(mirror.mirror_url) logger.info("Adding BASE_URL mirror:") if self.distributor_id == 'debian': base_url_prefix = self.backend.BASE_URL.split('/dists/codename-updates/Release')[0] mirrors.add(CandidateMirror(mirror_url=base_url_prefix, updater=self)) elif self.distributor_id == 'ubuntu': base_url_prefix = self.backend.BASE_URL.split('/dists/codename-security/Release')[0] mirrors.add(CandidateMirror(mirror_url=base_url_prefix, updater=self)) elif self.distributor_id == 'linuxmint': base_url_prefix = self.backend.BASE_URL.split('/dists/codename/Release')[0] mirrors.add(CandidateMirror(mirror_url=base_url_prefix, updater=self)) logger.info(base_url_prefix) for candidate in self.backend.discover_mirrors(): if any(fnmatch.fnmatch(candidate.mirror_url, pattern) for pattern in self.blacklist) and normalize_mirror_url(candidate.mirror_url) != base_url_prefix: logger.warning("Ignoring blacklisted mirror %s.", candidate.mirror_url) else: candidate.updater = self mirrors.add(candidate) try: mirrors.add(CandidateMirror(mirror_url=self.current_mirror, updater=self)) except Exception as e: logger.warning("Failed to add current mirror to set of available mirrors! (%s)", e) return sorted(mirrors, key=lambda c: c.sort_key, reverse=True) @cached_property def backend(self): logger.debug("Checking whether %s platform is supported ..", self.distributor_id.capitalize()) module_path = "%s.backends.%s" % (__name__, self.distributor_id) try: __import__(module_path) except ImportError: msg = "%s platform is unsupported! (only Debian and Ubuntu are supported)" raise EnvironmentError(msg % self.distributor_id.capitalize()) else: return sys.modules[module_path] @cached_property def best_mirror(self): logger.debug("Selecting best %s mirror ..", self.distributor_id.capitalize()) if self.release_is_eol: logger.info("%s is EOL, using %s.", self.release, self.old_releases_url) return self.old_releases_url else: return self.ranked_mirrors[0].mirror_url @cached_property def blacklist(self): return set() @mutable_property def concurrency(self): return get_default_concurrency() @mutable_property(cached=True) def context(self): return LocalContext() @mutable_property(cached=True) def current_mirror(self): if self.ubuntu_mode and self.distribution_codename: return self.current_mirror else: logger.debug("Parsing %s to find current mirror of %s ..", self.main_sources_list, self.context) return find_current_mirror(self.get_sources_list()) @mutable_property def distribution_codename_old(self): return self.context.distribution_codename @mutable_property(cached=True) def distribution_codename(self): for line in self.get_sources_list().splitlines(): tokens = line.split() if (len(tokens) >= 4 and tokens[0] in ('deb', 'deb-src') and tokens[1].startswith(('http://', 'https://', 'ftp://', 'mirror://')) and 'main' in tokens[3:]): matches = [release for release in discover_releases() if tokens[2].lower() in release.codename.lower()] if len(matches) != 1: continue if self.ubuntu_mode and matches[0].distributor_id == 'linuxmint': self.current_mirror = tokens[1] continue if self.ubuntu_mode: logging.info("In Ubuntu Mode, pretend to be %s" % coerce_release(tokens[2])) return tokens[2] raise EnvironmentError("Failed to determine the distribution codename using apt's package resource list!") @mutable_property(cached=True) def distributor_id(self): return self.release.distributor_id @cached_property def main_sources_list(self): if self.context.exists('/etc/apt/sources.list.d/official-package-repositories.list'): logger.debug("/etc/apt/sources.list.d/official-package-repositories.list exists,\ use it as main_sources_list instead of /etc/apt/sources.list") return '/etc/apt/sources.list.d/official-package-repositories.list' else: return '/etc/apt/sources.list' @mutable_property def max_mirrors(self): return MAX_MIRRORS @mutable_property def url_char_len(self): return URL_CHAR_LEN @mutable_property def ubuntu_mode(self): return False @mutable_property def old_releases_url(self): return self.backend.OLD_RELEASES_URL @mutable_property def base_url(self): return self.backend.BASE_URL.replace('codename', self.distribution_codename) @mutable_property def base_last_updated(self): @cached_property def ranked_mirrors(self): timer = Timer() mirrors = sorted(self.available_mirrors, key=lambda c: c.sort_key, reverse=True) """ if self.max_mirrors and len(mirrors) > self.max_mirrors: mirrors = mirrors[:self.max_mirrors] """ mapping = dict((c.release_gpg_url, c) for c in mirrors) num_mirrors = pluralize(len(mapping), "mirror") logger.info("Checking %s for availability and performance ..", num_mirrors) with AutomaticSpinner(label="Checking mirrors"): for url, data, elapsed_time in fetch_concurrent(mapping.keys(), concurrency=self.concurrency): candidate = mapping[url] candidate.release_gpg_contents = data candidate.release_gpg_latency = elapsed_time logger.info("Start retrieving :attr:`base_last_updated` using is_available") self.base_last_updated = 0 if self.release_is_eol: self.base_last_updated = int(time.time()) logger.warning("%s is EOL, so using time.time() as :attr:`base_last_updated`: %i", self.release, self.base_last_updated) elif mapping[self.base_url].is_available: logger.debug(":attr:`base_last_updated`: %i", self.base_last_updated) mapping[self.base_url].last_updated = 0 else: self.base_last_updated = int(time.time()) logger.warning("%s is not available, so using time.time() as :attr:`base_last_updated`: %i", self.base_url, self.base_last_updated) update_mapping = dict((c.archive_update_in_progress_url, c) for c in mirrors if c.is_available) logger.info("Checking %s for Archive-Update-in-Progress marker ..", pluralize(len(update_mapping), "mirror")) with AutomaticSpinner(label="Checking mirrors"): for url, data, elapsed_time in fetch_concurrent(update_mapping.keys(), concurrency=self.concurrency): update_mapping[url].is_updating = data is not None mirrors = list(mapping.values()) logger.info("Finished checking %s (took %s).", num_mirrors, timer) if not any(c.is_available for c in mirrors): raise Exception("It looks like all %s are unavailable!" % num_mirrors) if all(c.is_updating for c in mirrors): logger.warning("It looks like all %s are being updated?!", num_mirrors) if any(fnmatch.fnmatch(mapping[self.base_url].mirror_url, pattern) for pattern in self.blacklist): logger.warning("Ignoring blacklisted BASE_URL mirror %s.", mapping[self.base_url].mirror_url) mirrors.remove(mapping[self.base_url]) return sorted(mirrors, key=lambda c: c.sort_key, reverse=True) @cached_property def release(self): return coerce_release(self.distribution_codename) @cached_property def release_is_eol(self): release_is_eol = None logger.debug("Checking whether %s is EOL ..", self.release) if hasattr(self.backend, 'get_eol_date'): eol_date = self.backend.get_eol_date(self) if eol_date: release_is_eol = (time.time() >= eol_date) source = "custom EOL dates" if release_is_eol is None and self.release.eol_date: release_is_eol = self.release.is_eol source = "known EOL dates" if release_is_eol is None: release_is_eol = (self.validate_mirror(self.security_url) == MirrorStatus.MAYBE_EOL) source = "security mirror" if release_is_eol and self.distributor_id == 'linuxmint': logger.info( "%s seems EOL (based on %s), but for Linux Mint no OLD_RELEASES_URL, so act as not EOL.", self.release, source, ) release_is_eol = False return release_is_eol if release_is_eol: logger.info("%s seems EOL, checking %s MirrorStatus to confirm.", self.release, self.old_releases_url) release_is_eol = (self.validate_mirror(self.old_releases_url) == MirrorStatus.AVAILABLE) if not release_is_eol: source = "%s is not available" % self.old_releases_url logger.info( "%s is %s (based on %s).", self.release, "EOL" if release_is_eol else "supported", source, ) return release_is_eol @mutable_property def security_url(self): return self.backend.SECURITY_URL @cached_property def stable_mirror(self): if self.release_is_eol: logger.debug("%s is EOL, falling back to %s.", self.release, self.old_releases_url) return self.old_releases_url else: try: logger.debug("Trying to select current mirror as stable mirror ..") return self.current_mirror except Exception: logger.debug("Failed to determine current mirror, selecting best mirror instead ..") return self.best_mirror @cached_property def validated_mirrors(self): return {} @mutable_property def custom_mirror_file_path(self): return None @cached_property def read_custom_mirror_file(self): if self.custom_mirror_file_path is None: return {} else: logger.info("The file path you input is %s", self.custom_mirror_file_path) mirrors = set() with open(self.custom_mirror_file_path) as f: for line in f: if line.strip().startswith(('http://', 'https://', 'ftp://')): mirrors.add(CandidateMirror(mirror_url=line.strip(), updater=self)) return mirrors def change_mirror(self, new_mirror=None, update=True): timer = Timer() if new_mirror: logger.info("Changing mirror of %s to %s ..", self.context, new_mirror) else: logger.info("Changing mirror of %s to best available mirror ..", self.context) new_mirror = self.best_mirror logger.info("Selected mirror: %s", new_mirror) sources_list = self.get_sources_list() mirrors_to_replace = [normalize_mirror_url(self.current_mirror)] if self.release_is_eol: logger.debug("Replacing %s URLs as well ..", self.security_url) mirrors_to_replace.append(normalize_mirror_url(self.security_url)) else: logger.debug("Not replacing %s URLs.", self.security_url) lines = sources_list.splitlines() sources_list_options = self.get_sources_list_options for i, line in enumerate(lines): tokens = line.split() if (len(tokens) >= 4 and tokens[0] in ('deb', 'deb-src') and normalize_mirror_url(tokens[1]) in mirrors_to_replace): tokens[1] = new_mirror if i in sources_list_options: tokens.insert(1, '[' + sources_list_options[i] + ']') lines[i] = u' '.join(tokens) self.install_sources_list(u'\n'.join(lines)) del self.current_mirror self.clear_package_lists() if update: self.smart_update(switch_mirrors=False) logger.info("Finished changing mirror of %s in %s.", self.context, timer) def clear_package_lists(self): timer = Timer() logger.info("Clearing package list cache of %s ..", self.context) self.context.execute( 'find /var/lib/apt/lists -type f -name lock -prune -o -type f -print0 | xargs -0 rm -f', sudo=True, ) logger.info("Successfully cleared package list cache of %s in %s.", self.context, timer) def create_chroot(self, directory, codename=None, arch=None): logger.debug("Checking if chroot already exists (%s) ..", directory) if self.context.exists(directory) and self.context.list_entries(directory): logger.info("The chroot already exists, skipping initialization.") first_run = False else: if not self.context.find_program('debootstrap'): logger.info("Installing `debootstrap' program ..") self.context.execute('apt-get', 'install', '--yes', 'debootstrap', sudo=True) timer = Timer() debootstrap_command = ['debootstrap'] if arch: debootstrap_command.append('--arch=%s' % arch) release_chroot = None keyring_chroot = '' codename_chroot = '' best_mirror_chroot = None generate_sources_list_chroot = None if codename and codename != self.distribution_codename: updater_chroot = AptMirrorUpdater() updater_chroot.distribution_codename = codename if updater_chroot.distributor_id == 'linuxmint': msg = "It seems no sense to create chroot of Linux Mint, " "please specify a codename of Ubuntu or Debian " "to create chroot." raise ValueError(msg) if not self.context.exists(updater_chroot.release.keyring_file): if updater_chroot.distributor_id == 'ubuntu': self.context.execute('apt-get', 'install', '--yes', 'ubuntu-keyring', sudo=True) elif updater_chroot.distributor_id == 'debian': self.context.execute('apt-get', 'install', '--yes', 'debian-archive-keyring', sudo=True) release_chroot = updater_chroot.release keyring_chroot = updater_chroot.release.keyring_file codename_chroot = codename best_mirror_chroot = updater_chroot.best_mirror else: if self.distributor_id == 'linuxmint': msg = "It seems no sense to create chroot of Linux Mint, " "please use -C to specify a codename of Ubuntu or Debian " "to create chroot." raise ValueError(msg) release_chroot = self.release keyring_chroot = self.release.keyring_file codename_chroot = self.distribution_codename best_mirror_chroot = self.best_mirror logger.info("Creating %s chroot in %s ..", release_chroot, directory) debootstrap_command.append('--keyring=%s' % keyring_chroot) debootstrap_command.append(codename_chroot) debootstrap_command.append(directory) debootstrap_command.append(best_mirror_chroot) self.context.execute(*debootstrap_command, sudo=True) logger.info("Took %s to create %s chroot.", timer, release_chroot) first_run = True self.context = ChangeRootContext( chroot=directory, environment=dict(LC_ALL='C'), ) del self.current_mirror del self.stable_mirror if codename and codename != self.distribution_codename: updater_chroot.context = self.context del updater_chroot.current_mirror del updater_chroot.stable_mirror generate_sources_list_chroot = updater_chroot.generate_sources_list() else: generate_sources_list_chroot = self.generate_sources_list() if first_run: self.context.execute('apt-get', 'install', '--yes', 'lsb-release', sudo=True) self.context.execute('apt-get', 'clean', sudo=True) logger.debug("sources.list for chroot generated:") logger.debug(generate_sources_list_chroot) self.install_sources_list(generate_sources_list_chroot) self.smart_update() return self.context
MIT License
unofficial-memsource/memsource-cli-client
memsource_cli/models/search_tm_segment_dto.py
SearchTMSegmentDto.id
python
def id(self, id): self._id = id
Sets the id of this SearchTMSegmentDto. :param id: The id of this SearchTMSegmentDto. # noqa: E501 :type: str
https://github.com/unofficial-memsource/memsource-cli-client/blob/a6639506b74e95476da87f4375953448b76ea90c/memsource_cli/models/search_tm_segment_dto.py#L148-L156
import pprint import re import six from memsource_cli.models.search_tm_client_dto import SearchTMClientDto from memsource_cli.models.search_tm_domain_dto import SearchTMDomainDto from memsource_cli.models.search_tm_project_dto import SearchTMProjectDto from memsource_cli.models.search_tm_sub_domain_dto import SearchTMSubDomainDto from memsource_cli.models.tag_metadata import TagMetadata from memsource_cli.models.user_reference import UserReference class SearchTMSegmentDto(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'str', 'text': 'str', 'lang': 'str', 'rtl': 'bool', 'modified_at': 'int', 'created_at': 'int', 'modified_by': 'UserReference', 'created_by': 'UserReference', 'filename': 'str', 'project': 'SearchTMProjectDto', 'client': 'SearchTMClientDto', 'domain': 'SearchTMDomainDto', 'sub_domain': 'SearchTMSubDomainDto', 'tag_metadata': 'list[TagMetadata]', 'previous_segment': 'str', 'next_segment': 'str', 'key': 'str' } attribute_map = { 'id': 'id', 'text': 'text', 'lang': 'lang', 'rtl': 'rtl', 'modified_at': 'modifiedAt', 'created_at': 'createdAt', 'modified_by': 'modifiedBy', 'created_by': 'createdBy', 'filename': 'filename', 'project': 'project', 'client': 'client', 'domain': 'domain', 'sub_domain': 'subDomain', 'tag_metadata': 'tagMetadata', 'previous_segment': 'previousSegment', 'next_segment': 'nextSegment', 'key': 'key' } def __init__(self, id=None, text=None, lang=None, rtl=None, modified_at=None, created_at=None, modified_by=None, created_by=None, filename=None, project=None, client=None, domain=None, sub_domain=None, tag_metadata=None, previous_segment=None, next_segment=None, key=None): self._id = None self._text = None self._lang = None self._rtl = None self._modified_at = None self._created_at = None self._modified_by = None self._created_by = None self._filename = None self._project = None self._client = None self._domain = None self._sub_domain = None self._tag_metadata = None self._previous_segment = None self._next_segment = None self._key = None self.discriminator = None if id is not None: self.id = id if text is not None: self.text = text if lang is not None: self.lang = lang if rtl is not None: self.rtl = rtl if modified_at is not None: self.modified_at = modified_at if created_at is not None: self.created_at = created_at if modified_by is not None: self.modified_by = modified_by if created_by is not None: self.created_by = created_by if filename is not None: self.filename = filename if project is not None: self.project = project if client is not None: self.client = client if domain is not None: self.domain = domain if sub_domain is not None: self.sub_domain = sub_domain if tag_metadata is not None: self.tag_metadata = tag_metadata if previous_segment is not None: self.previous_segment = previous_segment if next_segment is not None: self.next_segment = next_segment if key is not None: self.key = key @property def id(self): return self._id @id.setter
Apache License 2.0
hackatbrown/2015.hackatbrown.org
hack-at-brown-2015/cssutils/serialize.py
Preferences.useMinified
python
def useMinified(self): self.importHrefFormat = 'string' self.indent = u'' self.keepComments = False self.keepEmptyRules = False self.keepUnknownAtRules = False self.keepUsedNamespaceRulesOnly = True self.lineNumbers = False self.lineSeparator = u'' self.listItemSpacer = u'' self.omitLastSemicolon = True self.omitLeadingZero = True self.paranthesisSpacer = u'' self.propertyNameSpacer = u'' self.selectorCombinatorSpacer = u'' self.spacer = u'' self.validOnly = False
Set options resulting in a minified stylesheet. You may want to set preferences with this convenience method and override specific settings you want adjusted afterwards.
https://github.com/hackatbrown/2015.hackatbrown.org/blob/6e6e10b010421228deb562909a1c8bb4272b759f/hack-at-brown-2015/cssutils/serialize.py#L151-L172
__all__ = ['CSSSerializer', 'Preferences'] __docformat__ = 'restructuredtext' __version__ = '$Id$' from cssutils.helper import normalize import codecs import cssutils import helper import re import xml.dom def _escapecss(e): s = e.object[e.start:e.end] return u''.join([ur'\%s ' % str(hex(ord(x)))[2:] .upper() for x in s]), e.end codecs.register_error('escapecss', _escapecss) class Preferences(object): def __init__(self, **initials): self.useDefaults() for key, value in initials.items(): if value: self.__setattr__(key, value) def __repr__(self): return u"cssutils.css.%s(%s)" % (self.__class__.__name__, u', '.join(['\n %s=%r' % (p, self.__getattribute__(p)) for p in self.__dict__] )) def __str__(self): return u"<cssutils.css.%s object %s at 0x%x" % (self.__class__.__name__, u' '.join(['%s=%r' % (p, self.__getattribute__(p)) for p in self.__dict__] ), id(self)) def useDefaults(self): self.defaultAtKeyword = True self.defaultPropertyName = True self.defaultPropertyPriority = True self.importHrefFormat = None self.indent = 4 * u' ' self.indentClosingBrace = True self.indentSpecificities = False self.keepAllProperties = True self.keepComments = True self.keepEmptyRules = False self.keepUnknownAtRules = True self.keepUsedNamespaceRulesOnly = False self.lineNumbers = False self.lineSeparator = u'\n' self.listItemSpacer = u' ' self.normalizedVarNames = True self.omitLastSemicolon = True self.omitLeadingZero = False self.paranthesisSpacer = u' ' self.propertyNameSpacer = u' ' self.resolveVariables = True self.selectorCombinatorSpacer = u' ' self.spacer = u' ' self.validOnly = False
MIT License
localdatascrapers/localdatascrapers
philly/models.py
SchemaField.is_many_to_many_lookup
python
def is_many_to_many_lookup(self): return self.is_lookup and not self.is_type('int') and not self.is_type('lookup')
Returns True if this SchemaField is a many-to-many lookup.
https://github.com/localdatascrapers/localdatascrapers/blob/770048b6f072798ad103bcab715437237d4b9355/philly/models.py#L140-L144
import datetime import re import time import unicodedata import urllib from django.contrib.gis.db import models from django.conf import settings from django.db import connections, transaction from django.db.models import Q from connections import get_connection_name from constants import (STATUS_CHOICES, STATUS_LIVE, USER_SCHEMAS, NEIGHBOR_MESSAGE_SCHEMAS, UGC, RemovalReasons) def field_mapping(schema_id_list, db): result = {} for sf in SchemaField.objects.using(db).filter(schema__id__in=(schema_id_list)).values('schema', 'name', 'real_name'): result.setdefault(sf['schema'], {})[sf['name']] = sf['real_name'] return result class SchemaManager(models.Manager): def for_metro(self, short_name): return self.using(get_connection_name(short_name)) class PublicSchemaManager(SchemaManager): def get_queryset(self): return super(PublicSchemaManager, self).get_queryset().filter(is_public=True) BUCKET_CHOICES = ( (0, 'From the Web'), (1, 'Public records'), (3, 'Neighbor messages'), ) class FakeSchema(object): def __init__(self, slug, name, plural_name): self.slug = slug self.name = name self.plural_name = plural_name self.is_active = True def is_neighbor_message(self): return True class Schema(models.Model): bucket = models.SmallIntegerField(choices=BUCKET_CHOICES) name = models.CharField(max_length=100) plural_name = models.CharField(max_length=100) indefinite_article = models.CharField(max_length=2) slug = models.CharField(max_length=32, unique=True) min_date = models.DateField() last_updated = models.DateField() date_name = models.CharField(max_length=32) date_name_plural = models.CharField(max_length=32) is_public = models.BooleanField(db_index=True) is_active = models.BooleanField() has_newsitem_detail = models.BooleanField() allow_comments = models.BooleanField() has_linkable_locations = models.BooleanField() pattern = models.CharField(max_length=32, blank=True) launch_date = models.DateField() def __unicode__(self): return self.name def url(self): return '/%s/' % self.slug def is_new(self): return datetime.date.today() - self.launch_date < datetime.timedelta(days=7) def is_neighbor_content(self): return self.slug in USER_SCHEMAS def is_neighbor_message(self): return self.slug in NEIGHBOR_MESSAGE_SCHEMAS def pattern_slug(self): return 'neighbor-message' if self.slug in NEIGHBOR_MESSAGE_SCHEMAS else self.slug class SchemaInfo(models.Model): schema = models.ForeignKey(Schema) short_description = models.TextField() summary = models.TextField() source = models.TextField() grab_bag_headline = models.CharField(max_length=128, blank=True) grab_bag = models.TextField(blank=True) short_source = models.CharField(max_length=128) update_frequency = models.CharField(max_length=64) intro = models.TextField() def __unicode__(self): return unicode(self.schema) class SchemaField(models.Model): schema = models.ForeignKey(Schema) name = models.CharField(max_length=32) real_name = models.CharField(max_length=10) pretty_name = models.CharField(max_length=32) pretty_name_plural = models.CharField(max_length=32) pattern_slot = models.CharField(max_length=32) display = models.BooleanField() is_lookup = models.BooleanField() display_order = models.SmallIntegerField() display_format = models.CharField(max_length=50, blank=True) display_api = models.BooleanField(default=False) def __unicode__(self): return u'%s - %s' % (self.schema, self.name) def _get_slug(self): return self.name.replace('_', '-') slug = property(_get_slug) def _datatype(self): return self.real_name[:-2] datatype = property(_datatype) def is_type(self, *data_types): for t in data_types: if t == self.real_name[:-2]: return True return False
Apache License 2.0
xiaohangzhan/mix-and-match
caffe/python/caffe/classifier.py
Classifier.predict
python
def predict(self, inputs, oversample=True): input_ = np.zeros((len(inputs), self.image_dims[0], self.image_dims[1], inputs[0].shape[2]), dtype=np.float32) for ix, in_ in enumerate(inputs): input_[ix] = caffe.io.resize_image(in_, self.image_dims) if oversample: input_ = caffe.io.oversample(input_, self.crop_dims) else: center = np.array(self.image_dims) / 2.0 crop = np.tile(center, (1, 2))[0] + np.concatenate([ -self.crop_dims / 2.0, self.crop_dims / 2.0 ]) input_ = input_[:, crop[0]:crop[2], crop[1]:crop[3], :] caffe_in = np.zeros(np.array(input_.shape)[[0, 3, 1, 2]], dtype=np.float32) for ix, in_ in enumerate(input_): caffe_in[ix] = self.transformer.preprocess(self.inputs[0], in_) out = self.forward_all(**{self.inputs[0]: caffe_in}) predictions = out[self.outputs[0]] if oversample: predictions = predictions.reshape((len(predictions) / 10, 10, -1)) predictions = predictions.mean(1) return predictions
Predict classification probabilities of inputs. Parameters ---------- inputs : iterable of (H x W x K) input ndarrays. oversample : boolean average predictions across center, corners, and mirrors when True (default). Center-only prediction when False. Returns ------- predictions: (N x C) ndarray of class probabilities for N images and C classes.
https://github.com/xiaohangzhan/mix-and-match/blob/8d4c9df80ef281b4112bf27d8901700dcedc798f/caffe/python/caffe/classifier.py#L47-L97
import numpy as np import caffe class Classifier(caffe.Net): def __init__(self, model_file, pretrained_file, image_dims=None, mean=None, input_scale=None, raw_scale=None, channel_swap=None): caffe.Net.__init__(self, model_file, pretrained_file, caffe.TEST) in_ = self.inputs[0] self.transformer = caffe.io.Transformer( {in_: self.blobs[in_].data.shape}) self.transformer.set_transpose(in_, (2, 0, 1)) if mean is not None: self.transformer.set_mean(in_, mean) if input_scale is not None: self.transformer.set_input_scale(in_, input_scale) if raw_scale is not None: self.transformer.set_raw_scale(in_, raw_scale) if channel_swap is not None: self.transformer.set_channel_swap(in_, channel_swap) self.crop_dims = np.array(self.blobs[in_].data.shape[2:]) if not image_dims: image_dims = self.crop_dims self.image_dims = image_dims
MIT License
purestorage-openconnect/py-pure-client
pypureclient/flasharray/FA_2_6/api/hosts_api.py
HostsApi.api26_hosts_performance_balance_get_with_http_info
python
def api26_hosts_performance_balance_get_with_http_info( self, authorization=None, x_request_id=None, filter=None, limit=None, names=None, offset=None, sort=None, total_item_count=None, async_req=False, _return_http_data_only=False, _preload_content=True, _request_timeout=None, ): if names is not None: if not isinstance(names, list): names = [names] if sort is not None: if not isinstance(sort, list): sort = [sort] params = {k: v for k, v in six.iteritems(locals()) if v is not None} if params.get('filter'): params['filter'] = str(params['filter']) if params.get('sort'): params['sort'] = [str(_x) for _x in params['sort']] if 'limit' in params and params['limit'] < 1: raise ValueError("Invalid value for parameter `limit` when calling `api26_hosts_performance_balance_get`, must be a value greater than or equal to `1`") if 'offset' in params and params['offset'] < 0: raise ValueError("Invalid value for parameter `offset` when calling `api26_hosts_performance_balance_get`, must be a value greater than or equal to `0`") collection_formats = {} path_params = {} query_params = [] if 'filter' in params: query_params.append(('filter', params['filter'])) if 'limit' in params: query_params.append(('limit', params['limit'])) if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' if 'offset' in params: query_params.append(('offset', params['offset'])) if 'sort' in params: query_params.append(('sort', params['sort'])) collection_formats['sort'] = 'csv' if 'total_item_count' in params: query_params.append(('total_item_count', params['total_item_count'])) header_params = {} if 'authorization' in params: header_params['Authorization'] = params['authorization'] if 'x_request_id' in params: header_params['X-Request-ID'] = params['x_request_id'] form_params = [] local_var_files = {} body_params = None header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json']) auth_settings = [] return self.api_client.call_api( '/api/2.6/hosts/performance/balance', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='HostPerformanceBalanceGetResponse', auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, )
List host performance balance Displays the I/O balance statistics for host paths. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api26_hosts_performance_balance_get_with_http_info(async_req=True) >>> result = thread.get() :param str authorization: Access token (in JWT format) required to use any API endpoint (except `/oauth2`, `/login`, and `/logout`) :param str x_request_id: Supplied by client during request or generated by server. :param str filter: Narrows down the results to only the response objects that satisfy the filter criteria. :param int limit: Limits the size of the response to the specified number of objects on each page. To return the total number of resources, set `limit=0`. The total number of resources is returned as a `total_item_count` value. If the page size requested is larger than the system maximum limit, the server returns the maximum limit, disregarding the requested page size. :param list[str] names: Performs the operation on the unique name specified. Enter multiple names in comma-separated format. For example, `name01,name02`. :param int offset: The starting position based on the results of the query in relation to the full set of response objects returned. :param list[str] sort: Returns the response objects in the order specified. Set `sort` to the name in the response by which to sort. Sorting can be performed on any of the names in the response, and the objects can be sorted in ascending or descending order. By default, the response objects are sorted in ascending order. To sort in descending order, append the minus sign (`-`) to the name. A single request can be sorted on multiple objects. For example, you can sort all volumes from largest to smallest volume size, and then sort volumes of the same size in ascending order by volume name. To sort on multiple names, list the names as comma-separated values. :param bool total_item_count: If set to `true`, the `total_item_count` matching the specified query parameters is calculated and returned in the response. If set to `false`, the `total_item_count` is `null` in the response. This may speed up queries where the `total_item_count` is large. If not specified, defaults to `false`. :param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult. :param bool _return_http_data_only: Returns only data field. :param bool _preload_content: Response is converted into objects. :param int _request_timeout: Total request timeout in seconds. It can also be a tuple of (connection time, read time) timeouts. :return: HostPerformanceBalanceGetResponse If the method is called asynchronously, returns the request thread.
https://github.com/purestorage-openconnect/py-pure-client/blob/2d9fdef0b73321cea9613e7d1eb881b42845099b/pypureclient/flasharray/FA_2_6/api/hosts_api.py#L652-L766
from __future__ import absolute_import import re import six from typing import List, Optional from .. import models class HostsApi(object): def __init__(self, api_client): self.api_client = api_client def api26_hosts_delete_with_http_info( self, authorization=None, x_request_id=None, names=None, async_req=False, _return_http_data_only=False, _preload_content=True, _request_timeout=None, ): if names is not None: if not isinstance(names, list): names = [names] params = {k: v for k, v in six.iteritems(locals()) if v is not None} if params.get('filter'): params['filter'] = str(params['filter']) if params.get('sort'): params['sort'] = [str(_x) for _x in params['sort']] collection_formats = {} path_params = {} query_params = [] if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' header_params = {} if 'authorization' in params: header_params['Authorization'] = params['authorization'] if 'x_request_id' in params: header_params['X-Request-ID'] = params['x_request_id'] form_params = [] local_var_files = {} body_params = None header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json']) auth_settings = [] return self.api_client.call_api( '/api/2.6/hosts', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) def api26_hosts_get_with_http_info( self, authorization=None, x_request_id=None, continuation_token=None, filter=None, limit=None, names=None, offset=None, sort=None, total_item_count=None, async_req=False, _return_http_data_only=False, _preload_content=True, _request_timeout=None, ): if names is not None: if not isinstance(names, list): names = [names] if sort is not None: if not isinstance(sort, list): sort = [sort] params = {k: v for k, v in six.iteritems(locals()) if v is not None} if params.get('filter'): params['filter'] = str(params['filter']) if params.get('sort'): params['sort'] = [str(_x) for _x in params['sort']] if 'limit' in params and params['limit'] < 1: raise ValueError("Invalid value for parameter `limit` when calling `api26_hosts_get`, must be a value greater than or equal to `1`") if 'offset' in params and params['offset'] < 0: raise ValueError("Invalid value for parameter `offset` when calling `api26_hosts_get`, must be a value greater than or equal to `0`") collection_formats = {} path_params = {} query_params = [] if 'continuation_token' in params: query_params.append(('continuation_token', params['continuation_token'])) if 'filter' in params: query_params.append(('filter', params['filter'])) if 'limit' in params: query_params.append(('limit', params['limit'])) if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' if 'offset' in params: query_params.append(('offset', params['offset'])) if 'sort' in params: query_params.append(('sort', params['sort'])) collection_formats['sort'] = 'csv' if 'total_item_count' in params: query_params.append(('total_item_count', params['total_item_count'])) header_params = {} if 'authorization' in params: header_params['Authorization'] = params['authorization'] if 'x_request_id' in params: header_params['X-Request-ID'] = params['x_request_id'] form_params = [] local_var_files = {} body_params = None header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json']) auth_settings = [] return self.api_client.call_api( '/api/2.6/hosts', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='HostGetResponse', auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) def api26_hosts_host_groups_delete_with_http_info( self, authorization=None, x_request_id=None, group_names=None, member_names=None, async_req=False, _return_http_data_only=False, _preload_content=True, _request_timeout=None, ): if group_names is not None: if not isinstance(group_names, list): group_names = [group_names] if member_names is not None: if not isinstance(member_names, list): member_names = [member_names] params = {k: v for k, v in six.iteritems(locals()) if v is not None} if params.get('filter'): params['filter'] = str(params['filter']) if params.get('sort'): params['sort'] = [str(_x) for _x in params['sort']] collection_formats = {} path_params = {} query_params = [] if 'group_names' in params: query_params.append(('group_names', params['group_names'])) collection_formats['group_names'] = 'csv' if 'member_names' in params: query_params.append(('member_names', params['member_names'])) collection_formats['member_names'] = 'csv' header_params = {} if 'authorization' in params: header_params['Authorization'] = params['authorization'] if 'x_request_id' in params: header_params['X-Request-ID'] = params['x_request_id'] form_params = [] local_var_files = {} body_params = None header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json']) auth_settings = [] return self.api_client.call_api( '/api/2.6/hosts/host-groups', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) def api26_hosts_host_groups_get_with_http_info( self, authorization=None, x_request_id=None, continuation_token=None, filter=None, group_names=None, limit=None, member_names=None, offset=None, sort=None, total_item_count=None, async_req=False, _return_http_data_only=False, _preload_content=True, _request_timeout=None, ): if group_names is not None: if not isinstance(group_names, list): group_names = [group_names] if member_names is not None: if not isinstance(member_names, list): member_names = [member_names] if sort is not None: if not isinstance(sort, list): sort = [sort] params = {k: v for k, v in six.iteritems(locals()) if v is not None} if params.get('filter'): params['filter'] = str(params['filter']) if params.get('sort'): params['sort'] = [str(_x) for _x in params['sort']] if 'limit' in params and params['limit'] < 1: raise ValueError("Invalid value for parameter `limit` when calling `api26_hosts_host_groups_get`, must be a value greater than or equal to `1`") if 'offset' in params and params['offset'] < 0: raise ValueError("Invalid value for parameter `offset` when calling `api26_hosts_host_groups_get`, must be a value greater than or equal to `0`") collection_formats = {} path_params = {} query_params = [] if 'continuation_token' in params: query_params.append(('continuation_token', params['continuation_token'])) if 'filter' in params: query_params.append(('filter', params['filter'])) if 'group_names' in params: query_params.append(('group_names', params['group_names'])) collection_formats['group_names'] = 'csv' if 'limit' in params: query_params.append(('limit', params['limit'])) if 'member_names' in params: query_params.append(('member_names', params['member_names'])) collection_formats['member_names'] = 'csv' if 'offset' in params: query_params.append(('offset', params['offset'])) if 'sort' in params: query_params.append(('sort', params['sort'])) collection_formats['sort'] = 'csv' if 'total_item_count' in params: query_params.append(('total_item_count', params['total_item_count'])) header_params = {} if 'authorization' in params: header_params['Authorization'] = params['authorization'] if 'x_request_id' in params: header_params['X-Request-ID'] = params['x_request_id'] form_params = [] local_var_files = {} body_params = None header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json']) auth_settings = [] return self.api_client.call_api( '/api/2.6/hosts/host-groups', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='MemberNoIdAllGetResponse', auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) def api26_hosts_host_groups_post_with_http_info( self, authorization=None, x_request_id=None, group_names=None, member_names=None, async_req=False, _return_http_data_only=False, _preload_content=True, _request_timeout=None, ): if group_names is not None: if not isinstance(group_names, list): group_names = [group_names] if member_names is not None: if not isinstance(member_names, list): member_names = [member_names] params = {k: v for k, v in six.iteritems(locals()) if v is not None} if params.get('filter'): params['filter'] = str(params['filter']) if params.get('sort'): params['sort'] = [str(_x) for _x in params['sort']] collection_formats = {} path_params = {} query_params = [] if 'group_names' in params: query_params.append(('group_names', params['group_names'])) collection_formats['group_names'] = 'csv' if 'member_names' in params: query_params.append(('member_names', params['member_names'])) collection_formats['member_names'] = 'csv' header_params = {} if 'authorization' in params: header_params['Authorization'] = params['authorization'] if 'x_request_id' in params: header_params['X-Request-ID'] = params['x_request_id'] form_params = [] local_var_files = {} body_params = None header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json']) auth_settings = [] return self.api_client.call_api( '/api/2.6/hosts/host-groups', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='MemberNoIdAllResponse', auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) def api26_hosts_patch_with_http_info( self, host=None, authorization=None, x_request_id=None, names=None, async_req=False, _return_http_data_only=False, _preload_content=True, _request_timeout=None, ): if names is not None: if not isinstance(names, list): names = [names] params = {k: v for k, v in six.iteritems(locals()) if v is not None} if params.get('filter'): params['filter'] = str(params['filter']) if params.get('sort'): params['sort'] = [str(_x) for _x in params['sort']] if host is None: raise TypeError("Missing the required parameter `host` when calling `api26_hosts_patch`") collection_formats = {} path_params = {} query_params = [] if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' header_params = {} if 'authorization' in params: header_params['Authorization'] = params['authorization'] if 'x_request_id' in params: header_params['X-Request-ID'] = params['x_request_id'] form_params = [] local_var_files = {} body_params = None if 'host' in params: body_params = params['host'] header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json']) auth_settings = [] return self.api_client.call_api( '/api/2.6/hosts', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='HostResponse', auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, )
BSD 2-Clause Simplified License
pmelchior/scarlet
scarlet/detect.py
draw_box
python
def draw_box(box, ax, color): rect = patches.Rectangle( box.origin[::-1], box.shape[1], box.shape[0], linewidth=1, edgecolor=color, facecolor="none") ax.add_patch(rect)
Draw a box on an axis Parameters ---------- box: `scarlet.bbox.Box` The box to draw ax: `matplotlib.Axis` The axis on which to draw the box color: `str` The name of the color to use for the box
https://github.com/pmelchior/scarlet/blob/134fac69465c2eea46b6909c6f401e1b17cdd85b/scarlet/detect.py#L68-L83
import logging import matplotlib.pyplot as plt import matplotlib.patches as patches import numpy as np from .bbox import Box, overlapped_slices from .interpolation import get_filter_coords, get_filter_bounds from .operator import prox_monotonic_mask from .wavelet import starlet_reconstruction, starlet_transform, get_multiresolution_support logger = logging.getLogger("scarlet.detect") def bounds_to_bbox(bounds): return Box( (bounds[1]+1-bounds[0], bounds[3]+1-bounds[2]), origin=(bounds[0], bounds[2]) ) def box_intersect(box1, box2): overlap = box1 & box2 return overlap.shape[0] != 0 and overlap.shape[1] != 0 def footprint_intersect(footprint1, box1, footprint2, box2): if not box_intersect(box1, box2): return False slices1, slices2 = overlapped_slices(box1, box2) overlap = footprint1[slices1] * footprint2[slices2] return np.sum(overlap) > 0
MIT License
gmr/tredis
tredis/strings.py
StringsMixin.setbit
python
def setbit(self, key, offset, bit): if 0 < bit > 1: raise ValueError('bit must be 1 or 0, not {}'.format(bit)) return self._execute([b'SETBIT', key, ascii(offset), ascii(bit)])
Sets or clears the bit at offset in the string value stored at key. The bit is either set or cleared depending on value, which can be either 0 or 1. When key does not exist, a new string value is created. The string is grown to make sure it can hold a bit at offset. The offset argument is required to be greater than or equal to 0, and smaller than 2 :sup:`32` (this limits bitmaps to 512MB). When the string at key is grown, added bits are set to 0. .. warning:: When setting the last possible bit (offset equal to 2 :sup:`32` -1) and the string value stored at key does not yet hold a string value, or holds a small string value, Redis needs to allocate all intermediate memory which can block the server for some time. On a 2010 MacBook Pro, setting bit number 2 :sup:`32` -1 (512MB allocation) takes ~300ms, setting bit number 2 :sup:`30` -1 (128MB allocation) takes ~80ms, setting bit number 2 :sup:`28` -1 (32MB allocation) takes ~30ms and setting bit number 2 :sup:`26` -1 (8MB allocation) takes ~8ms. Note that once this first allocation is done, subsequent calls to :meth:`~tredis.RedisClient.setbit` for the same key will not have the allocation overhead. .. versionadded:: 0.2.0 .. note:: **Time complexity**: ``O(1)`` :param key: The key to get the bit from :type key: :class:`str`, :class:`bytes` :param int offset: The bit offset to fetch the bit from :param int bit: The value (``0`` or ``1``) to set for the bit :rtype: int :raises: :exc:`~tredis.exceptions.RedisError`
https://github.com/gmr/tredis/blob/2e91c6a58a35460be0525c51ac6a98fde3b506ad/tredis/strings.py#L551-L587
if 'ascii' not in dir(__builtins__): from tredis.compat import ascii BITOP_AND = b'&' BITOP_OR = b'|' BITOP_XOR = b'^' BITOP_NOT = b'~' _BITOPTS = { BITOP_AND: b'AND', BITOP_OR: b'OR', BITOP_XOR: b'XOR', BITOP_NOT: b'NOT', } class StringsMixin(object): def append(self, key, value): return self._execute([b'APPEND', key, value]) def bitcount(self, key, start=None, end=None): command = [b'BITCOUNT', key] if start is not None and end is None: raise ValueError('Can not specify start without an end') elif start is None and end is not None: raise ValueError('Can not specify start without an end') elif start is not None and end is not None: command += [ascii(start), ascii(end)] return self._execute(command) def bitop(self, operation, dest_key, *keys): if (operation not in _BITOPTS.keys() and operation not in _BITOPTS.values()): raise ValueError('Invalid operation value: {}'.format(operation)) elif operation in [b'~', b'NOT'] and len(keys) > 1: raise ValueError('NOT can only be used with 1 key') if operation in _BITOPTS.keys(): operation = _BITOPTS[operation] return self._execute([b'BITOP', operation, dest_key] + list(keys)) def bitpos(self, key, bit, start=None, end=None): if 0 < bit > 1: raise ValueError('bit must be 1 or 0, not {}'.format(bit)) command = [b'BITPOS', key, ascii(bit)] if start is not None and end is None: raise ValueError('Can not specify start without an end') elif start is None and end is not None: raise ValueError('Can not specify start without an end') elif start is not None and end is not None: command += [ascii(start), ascii(end)] return self._execute(command) def decr(self, key): return self._execute([b'DECR', key]) def decrby(self, key, decrement): return self._execute([b'DECRBY', key, ascii(decrement)]) def get(self, key): return self._execute([b'GET', key]) def getbit(self, key, offset): return self._execute([b'GETBIT', key, ascii(offset)]) def getrange(self, key, start, end): return self._execute([b'GETRANGE', key, ascii(start), ascii(end)]) def getset(self, key, value): return self._execute([b'GETSET', key, value]) def incr(self, key): return self._execute([b'INCR', key]) def incrby(self, key, increment): return self._execute([b'INCRBY', key, ascii(increment)]) def incrbyfloat(self, key, increment): return self._execute([b'INCRBYFLOAT', key, ascii(increment)]) def mget(self, *keys): return self._execute([b'MGET'] + list(keys)) def mset(self, mapping): command = [b'MSET'] for key, value in mapping.items(): command += [key, value] return self._execute(command, b'OK') def msetnx(self, mapping): command = [b'MSETNX'] for key, value in mapping.items(): command += [key, value] return self._execute(command, 1) def psetex(self, key, milliseconds, value): return self._execute( [b'PSETEX', key, ascii(milliseconds), value], b'OK') def set(self, key, value, ex=None, px=None, nx=False, xx=False): command = [b'SET', key, value] if ex: command += [b'EX', ascii(ex).encode('ascii')] if px: command += [b'PX', ascii(px).encode('ascii')] if nx: command.append(b'NX') if xx: command.append(b'XX') return self._execute(command, b'OK')
BSD 3-Clause New or Revised License
foglamp/foglamp
python/foglamp/common/statistics.py
Statistics.update_bulk
python
async def update_bulk(self, stat_list): if not isinstance(stat_list, dict): raise TypeError('stat_list must be a dict') try: payload = {"updates": []} for k, v in stat_list.items(): payload_item = PayloadBuilder() .WHERE(["key", "=", k]) .EXPR(["value", "+", v]) .payload() payload['updates'].append(json.loads(payload_item)) await self._storage.update_tbl("statistics", json.dumps(payload, sort_keys=False)) except Exception as ex: _logger.exception('Unable to bulk update statistics %s', str(ex)) raise
Bulk update statistics table keys and their values Args: stat_list: dict containing statistics keys and increment values Returns: None
https://github.com/foglamp/foglamp/blob/918dff88b440e6ad580efdaa5f0fbdf4143a73d4/python/foglamp/common/statistics.py#L52-L75
import json from foglamp.common import logger from foglamp.common.storage_client.payload_builder import PayloadBuilder from foglamp.common.storage_client.storage_client import StorageClientAsync __author__ = "Ashwin Gopalakrishnan, Ashish Jabble, Mark Riddoch, Amarendra K Sinha" __copyright__ = "Copyright (c) 2017 OSIsoft, LLC" __license__ = "Apache 2.0" __version__ = "${VERSION}" _logger = logger.setup(__name__) async def create_statistics(storage=None): stat = Statistics(storage) await stat._init() return stat class Statistics(object): _shared_state = {} _storage = None _registered_keys = None def __init__(self, storage=None): self.__dict__ = self._shared_state if self._storage is None: if not isinstance(storage, StorageClientAsync): raise TypeError('Must be a valid Async Storage object') self._storage = storage async def _init(self): if self._registered_keys is None: await self._load_keys()
Apache License 2.0
soco/soco
soco/alarms.py
Alarms.update
python
def update(self, zone=None): if zone is None: zone = self._last_zone_used or discovery.any_soco() self._last_zone_used = zone response = zone.alarmClock.ListAlarms() current_alarm_list_version = response["CurrentAlarmListVersion"] if self.last_alarm_list_version: alarm_list_uid, alarm_list_id = current_alarm_list_version.split(":") if self.last_uid != alarm_list_uid: matching_zone = next( (z for z in zone.all_zones if z.uid == alarm_list_uid), None ) if not matching_zone: raise SoCoException( "Alarm list UID {} does not match {}".format( current_alarm_list_version, self.last_alarm_list_version ) ) if int(alarm_list_id) <= self.last_id: return self.last_alarm_list_version = current_alarm_list_version new_alarms = parse_alarm_payload(response, zone) for alarm_id, kwargs in new_alarms.items(): existing_alarm = self.alarms.get(alarm_id) if existing_alarm: existing_alarm.update(**kwargs) else: new_alarm = Alarm(**kwargs) new_alarm._alarm_id = alarm_id self.alarms[alarm_id] = new_alarm for alarm_id in list(self.alarms): if not new_alarms.get(alarm_id): self.alarms.pop(alarm_id)
Update all alarms and current alarm list version. Raises: SoCoException: If the 'CurrentAlarmListVersion' value is unexpected. May occur if the provided zone is from a different household.
https://github.com/soco/soco/blob/bc20bc5ba733fa2db4ab29f521a49f5ff2678cb7/soco/alarms.py#L132-L180
import logging import re from datetime import datetime from . import discovery from .core import _SocoSingletonBase, PLAY_MODES from .exceptions import SoCoException from .xml import XML log = logging.getLogger(__name__) TIME_FORMAT = "%H:%M:%S" def is_valid_recurrence(text): if text in ("DAILY", "ONCE", "WEEKDAYS", "WEEKENDS"): return True return re.search(r"^ON_[0-6]{1,7}$", text) is not None class Alarms(_SocoSingletonBase): _class_group = "Alarms" def __init__(self): self.alarms = {} self._last_zone_used = None self._last_alarm_list_version = None self.last_uid = None self.last_id = 0 @property def last_alarm_list_version(self): return self._last_alarm_list_version @last_alarm_list_version.setter def last_alarm_list_version(self, alarm_list_version): self.last_uid, last_id = alarm_list_version.split(":") self.last_id = int(last_id) self._last_alarm_list_version = alarm_list_version def __iter__(self): for alarm in list(self.alarms.values()): yield alarm def __len__(self): return len(self.alarms) def __getitem__(self, alarm_id): return self.alarms[alarm_id] def get(self, alarm_id): return self.alarms.get(alarm_id)
MIT License
olitheolix/aiokubernetes
aiokubernetes/models/v1_persistent_volume_claim_status.py
V1PersistentVolumeClaimStatus.__eq__
python
def __eq__(self, other): if not isinstance(other, V1PersistentVolumeClaimStatus): return False return self.__dict__ == other.__dict__
Returns true if both objects are equal
https://github.com/olitheolix/aiokubernetes/blob/266718b210dff2a9b2212183261ea89adf89115e/aiokubernetes/models/v1_persistent_volume_claim_status.py#L190-L195
import pprint import re from aiokubernetes.models.v1_persistent_volume_claim_condition import V1PersistentVolumeClaimCondition class V1PersistentVolumeClaimStatus(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'access_modes': 'list[str]', 'capacity': 'dict(str, str)', 'conditions': 'list[V1PersistentVolumeClaimCondition]', 'phase': 'str' } attribute_map = { 'access_modes': 'accessModes', 'capacity': 'capacity', 'conditions': 'conditions', 'phase': 'phase' } def __init__(self, access_modes=None, capacity=None, conditions=None, phase=None): self._access_modes = None self._capacity = None self._conditions = None self._phase = None self.discriminator = None if access_modes is not None: self.access_modes = access_modes if capacity is not None: self.capacity = capacity if conditions is not None: self.conditions = conditions if phase is not None: self.phase = phase @property def access_modes(self): return self._access_modes @access_modes.setter def access_modes(self, access_modes): self._access_modes = access_modes @property def capacity(self): return self._capacity @capacity.setter def capacity(self, capacity): self._capacity = capacity @property def conditions(self): return self._conditions @conditions.setter def conditions(self, conditions): self._conditions = conditions @property def phase(self): return self._phase @phase.setter def phase(self, phase): self._phase = phase def to_dict(self): result = {} for attr, _ in self.swagger_types.items(): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): return pprint.pformat(self.to_dict()) def __repr__(self): return self.to_str()
Apache License 2.0
pysmt/pysmt
pysmt/shortcuts.py
Xor
python
def Xor(left, right): return get_env().formula_manager.Xor(left, right)
Returns the XOR of left and right :param left: Specify the left BV :type left: FNode :param right: Specify the right BV :type right: FNode :returns: The XOR of left and right
https://github.com/pysmt/pysmt/blob/ade4dc2a825727615033a96d31c71e9f53ce4764/pysmt/shortcuts.py#L344-L353
import warnings warnings.filterwarnings('default', module='pysmt') import pysmt.configuration as config import pysmt.environment import pysmt.typing as types import pysmt.smtlib.parser import pysmt.smtlib.script import pysmt.smtlib.printers from pysmt.typing import INT, BOOL, REAL, BVType, FunctionType, ArrayType, Type assert INT or BOOL or REAL or BVType or FunctionType or ArrayType or Type def get_env(): return pysmt.environment.get_env() def reset_env(): return pysmt.environment.reset_env() get_env().enable_infix_notation = True def get_type(formula): return get_env().stc.get_type(formula) def simplify(formula): return get_env().simplifier.simplify(formula) def substitute(formula, subs): return get_env().substituter.substitute(formula, subs) def serialize(formula, threshold=None): return get_env().serializer.serialize(formula, threshold=threshold) def get_free_variables(formula): return get_env().fvo.get_free_variables(formula) def get_atoms(formula): return get_env().ao.get_atoms(formula) def get_formula_size(formula, measure=None): return get_env().sizeo.get_size(formula, measure) def ForAll(variables, formula): return get_env().formula_manager.ForAll(variables, formula) def Exists(variables, formula): return get_env().formula_manager.Exists(variables, formula) def Function(vname, params): return get_env().formula_manager.Function(vname, params) def Not(formula): return get_env().formula_manager.Not(formula) def Implies(left, right): return get_env().formula_manager.Implies(left, right) def Iff(left, right): return get_env().formula_manager.Iff(left, right) def GE(left, right): return get_env().formula_manager.GE(left, right) def Minus(left, right): return get_env().formula_manager.Minus(left, right) def Times(*args): return get_env().formula_manager.Times(*args) def Pow(left, right): return get_env().formula_manager.Pow(left, right) def Div(left, right): return get_env().formula_manager.Div(left, right) def Equals(left, right): return get_env().formula_manager.Equals(left, right) def NotEquals(left, right): return get_env().formula_manager.NotEquals(left, right) def GT(left, right): return get_env().formula_manager.GT(left, right) def LE(left, right): return get_env().formula_manager.LE(left, right) def LT(left, right): return get_env().formula_manager.LT(left, right) def Ite(iff, left, right): return get_env().formula_manager.Ite(iff, left, right) def Symbol(name, typename=types.BOOL): return get_env().formula_manager.Symbol(name, typename) def FreshSymbol(typename=types.BOOL, template=None): return get_env().formula_manager.FreshSymbol(typename, template) def Int(value): return get_env().formula_manager.Int(value) def Bool(value): return get_env().formula_manager.Bool(value) def Real(value): return get_env().formula_manager.Real(value) def String(value): return get_env().formula_manager.String(value) def TRUE(): return get_env().formula_manager.TRUE() def FALSE(): return get_env().formula_manager.FALSE() def And(*args): return get_env().formula_manager.And(*args) def Or(*args): return get_env().formula_manager.Or(*args) def Plus(*args): return get_env().formula_manager.Plus(*args) def ToReal(formula): return get_env().formula_manager.ToReal(formula) def AtMostOne(*args): return get_env().formula_manager.AtMostOne(*args) def ExactlyOne(*args): return get_env().formula_manager.ExactlyOne(*args) def AllDifferent(*args): return get_env().formula_manager.AllDifferent(*args)
Apache License 2.0
kuri65536/python-for-android
python-modules/twisted/twisted/test/test_journal.py
Service.addtime
python
def addtime(self, journal): journal.executeCommand(AddTime())
Set a key 'time' with the current time.
https://github.com/kuri65536/python-for-android/blob/26402a08fc46b09ef94e8d7a6bbc3a54ff9d0891/python-modules/twisted/twisted/test/test_journal.py#L78-L80
from twisted.trial import unittest from twisted.persisted.journal.base import ICommand, MemoryJournal, serviceCommand, ServiceWrapperCommand, command, Wrappable from twisted.persisted.journal.picklelog import DirDBMLog from zope.interface import implements import shutil, os.path class AddTime: implements(ICommand) def execute(self, svc, cmdtime): svc.values["time"] = cmdtime class Counter(Wrappable): objectType = "counter" def __init__(self, uid): self.uid = uid self.x = 0 def getUid(self): return self.uid def _increment(self): self.x += 1 increment = command("_increment") class Service: def __init__(self, logpath, journalpath): log = DirDBMLog(logpath) self.journal = MemoryJournal(log, self, journalpath, self._gotData) self.journal.updateFromLog() def _gotData(self, result): if result is None: self.values = {} self.counters = {} else: self.values, self.counters = result def _makeCounter(self, id): c = Counter(id) self.counters[id] = c return c makeCounter = serviceCommand("_makeCounter") def loadObject(self, type, id): if type != "counter": raise ValueError return self.counters[id] def _add(self, key, value): self.values[key] = value def _delete(self, key): del self.values[key] def get(self, key): return self.values[key]
Apache License 2.0
encode-dcc/snovault
src/snovault/elasticsearch/uuid_queue/queues/redis_queues.py
RedisQueueMeta.update_errors_count
python
def update_errors_count(self, len_values): self._client.incrby(self._key_errorscount, len_values)
Update errors for indexed uuids
https://github.com/encode-dcc/snovault/blob/75e77bb7445f6de57d2e389942255435fade06dc/src/snovault/elasticsearch/uuid_queue/queues/redis_queues.py#L219-L221
import time from redis import StrictRedis from .base_queue import ( BaseQueue, BaseQueueMeta, ) REDIS_LIST = 'REDIS_LIST' REDIS_LIST_PIPE = 'REDIS_LIST_PIPE' REDIS_SET = 'REDIS_SET' REDIS_SET_PIPE = 'REDIS_SET_PIPE' REDIS_SET_PIPE_EXEC = 'REDIS_SET_PIPE_EXEC' PD_RESTARTS = 'pd:srvrs' class RedisClient(StrictRedis): def __init__(self, queue_options): super().__init__( encoding="utf-8", decode_responses=True, db=queue_options.get('db', 0), host=queue_options['host'], port=queue_options['port'], socket_timeout=5, ) def get_queue(self, queue_name, queue_type, is_worker=False): if queue_type == REDIS_LIST: queue_class = RedisListQueue elif queue_type == REDIS_LIST_PIPE: queue_class = RedisListPipeQueue elif queue_type == REDIS_SET: queue_class = RedisSetQueue elif queue_type == REDIS_SET_PIPE: queue_class = RedisSetPipeQueue elif queue_type == REDIS_SET_PIPE_EXEC: queue_class = RedisSetPipeExecQueue else: raise ValueError('Queue %s is not available' % queue_type) return queue_class(queue_name, self, is_worker=is_worker) class RedisQueueMeta(BaseQueueMeta): def __init__(self, queue_name, client, is_worker=False): self._base_id = int(time.time() * 1000000) self._client = client if not is_worker: restarts = self.get_server_restarts() self.queue_name = queue_name + str(restarts) self._setup_redis_keys() self.set_args(kill_workers=True) self._init_persistant_data() else: self.queue_name = queue_name self._setup_redis_keys() def _init_persistant_data(self): self._client.incrby(PD_RESTARTS, 1) def get_server_restarts(self): cnt = self._client.get(PD_RESTARTS) if not cnt: self._client.set(PD_RESTARTS, 0) cnt = 0 else: cnt = int(self._client.get(PD_RESTARTS)) return cnt def add_errors(self, errors): errors_added = 0 for error in errors: err_uuid = error['uuid'] error_key = self._key_uuid_errors + ':' + str(err_uuid) self._client.hmset(error_key, error) self._client.lpush(self._key_errors, err_uuid) errors_added += 1 return errors_added def has_errors(self): errors_count = int(self._client.get(self._key_errorscount)) errors_list_count = self._client.llen(self._key_errors) if errors_count or errors_list_count: return True return False def pop_errors(self): errors = [] err_uuids = self._client.lrange(self._key_errors, 0, -1) self._client.delete(self._key_errors) for err_uuid in err_uuids: uuid_error_key = self._key_uuid_errors + ':' + err_uuid error_hash = self._client.hgetall(uuid_error_key) errors.append(error_hash) self._client.delete(uuid_error_key) self._client.set(self._key_errorscount, 0) return errors def add_worker_conn(self, worker_id): self._client.lpush(self._key_workers, worker_id) worker_conn_key = self._key_worker_conn + ':' + worker_id self._client.hmset(worker_conn_key, BaseQueueMeta._get_blank_worker()) def _get_worker_conn(self, worker_id): worker_conn_key = self._key_worker_conn + ':' + worker_id return self._client.hgetall(worker_conn_key) def _get_worker_ids(self): return self._client.lrange(self._key_workers, 0, -1) def get_worker_conns(self): worker_conns = {} worker_ids = self._get_worker_ids() for worker_id in worker_ids: worker_conns[worker_id] = self._get_worker_conn(worker_id) return worker_conns def get_worker_conn_count(self): return self._client.llen(self._key_workers) def update_worker_conn(self, worker_id, uuid_cnt, get_cnt): worker_conn_key = self._key_worker_conn + ':' + worker_id worker_conn = self._get_worker_conn(worker_id) if worker_conn: worker_conn['uuid_cnt'] = uuid_cnt worker_conn['get_cnt'] = get_cnt self._client.hmset(worker_conn_key, worker_conn) def save_work_results(self, worker_id, results): worker_conn = self._get_worker_conn(worker_id) results['errors'] = len(results['errors']) if worker_conn: results_count = int(worker_conn.get('results_count', 0)) results_count += 1 worker_res_key = '{}:{}:{}'.format( self._key_worker_results, worker_id, results_count, ) self._client.hmset(worker_res_key, results) worker_conn['results_count'] = results_count worker_conn_key = self._key_worker_conn + ':' + worker_id self._client.hmset(worker_conn_key, worker_conn) def get_uuid_count(self): try: uuid_count = int(self._client.get(self._key_uuidcount)) except TypeError: return 0 return uuid_count def has_uuids(self, errs_cnt=0): added_cnt = int(self._client.get(self._key_addedcount)) success_cnt = int(self._client.get(self._key_successescount)) errors_cnt = errs_cnt + int(self._client.get(self._key_errorscount)) cnt = added_cnt - (success_cnt + errors_cnt) return cnt > 0 def update_uuid_count(self, len_values): if len_values > 0: self._client.incrby(self._key_addedcount, len_values) self._client.incrby(self._key_uuidcount, len_values) def update_success_count(self, len_values): self._client.incrby(self._key_successescount, len_values)
MIT License
wavefronthq/python-client
wavefront_api_client/models/module.py
Module.__eq__
python
def __eq__(self, other): if not isinstance(other, Module): return False return self.to_dict() == other.to_dict()
Returns true if both objects are equal
https://github.com/wavefronthq/python-client/blob/e410ce0dd8a2334e995456f4f3d44e0f04664a3a/wavefront_api_client/models/module.py#L293-L298
import pprint import re import six from wavefront_api_client.configuration import Configuration class Module(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'annotations': 'list[Annotation]', 'class_loader': 'ClassLoader', 'declared_annotations': 'list[Annotation]', 'descriptor': 'ModuleDescriptor', 'layer': 'ModuleLayer', 'name': 'str', 'named': 'bool', 'packages': 'list[str]' } attribute_map = { 'annotations': 'annotations', 'class_loader': 'classLoader', 'declared_annotations': 'declaredAnnotations', 'descriptor': 'descriptor', 'layer': 'layer', 'name': 'name', 'named': 'named', 'packages': 'packages' } def __init__(self, annotations=None, class_loader=None, declared_annotations=None, descriptor=None, layer=None, name=None, named=None, packages=None, _configuration=None): if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._annotations = None self._class_loader = None self._declared_annotations = None self._descriptor = None self._layer = None self._name = None self._named = None self._packages = None self.discriminator = None if annotations is not None: self.annotations = annotations if class_loader is not None: self.class_loader = class_loader if declared_annotations is not None: self.declared_annotations = declared_annotations if descriptor is not None: self.descriptor = descriptor if layer is not None: self.layer = layer if name is not None: self.name = name if named is not None: self.named = named if packages is not None: self.packages = packages @property def annotations(self): return self._annotations @annotations.setter def annotations(self, annotations): self._annotations = annotations @property def class_loader(self): return self._class_loader @class_loader.setter def class_loader(self, class_loader): self._class_loader = class_loader @property def declared_annotations(self): return self._declared_annotations @declared_annotations.setter def declared_annotations(self, declared_annotations): self._declared_annotations = declared_annotations @property def descriptor(self): return self._descriptor @descriptor.setter def descriptor(self, descriptor): self._descriptor = descriptor @property def layer(self): return self._layer @layer.setter def layer(self, layer): self._layer = layer @property def name(self): return self._name @name.setter def name(self, name): self._name = name @property def named(self): return self._named @named.setter def named(self, named): self._named = named @property def packages(self): return self._packages @packages.setter def packages(self, packages): self._packages = packages def to_dict(self): result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(Module, dict): for key, value in self.items(): result[key] = value return result def to_str(self): return pprint.pformat(self.to_dict()) def __repr__(self): return self.to_str()
Apache License 2.0
qiskit/qiskit-aqua-interfaces
qiskit_aqua_interfaces/user_interface/base_controller.py
BaseController.get_combobox_parameters
python
def get_combobox_parameters(self, section_name, property_name): from qiskit.aqua.parser import JSONSchema values = None types = ['string'] combobox_state = 'readonly' if JSONSchema.NAME == property_name and BaseModel.is_pluggable_section(section_name): values = self.model.get_pluggable_section_names(section_name) elif JSONSchema.BACKEND == section_name and property_name in (JSONSchema.NAME, JSONSchema.PROVIDER): values = [] if JSONSchema.PROVIDER == property_name: combobox_state = 'normal' for provider, _ in self.model.providers.items(): values.append(provider) else: provider_name = self.model.get_section_property(JSONSchema.BACKEND, JSONSchema.PROVIDER) values = self.model.providers.get(provider_name, []) else: values = self.model.get_property_default_values(section_name, property_name) types = self.model.get_property_types(section_name, property_name) return combobox_state, types, values
get combobox parameters
https://github.com/qiskit/qiskit-aqua-interfaces/blob/d062c77822f88594b73de3b0c83b9cb9374d1799/qiskit_aqua_interfaces/user_interface/base_controller.py#L372-L395
from abc import ABC, abstractmethod import os import threading import queue import tkinter as tk from tkinter import messagebox import ast import json import logging from .guiprovider import GUIProvider from .base_model import BaseModel from ._customwidgets import (EntryPopup, ComboboxPopup, TextPopup) logger = logging.getLogger(__name__) class BaseController(ABC): @abstractmethod def __init__(self, guiprovider, model) -> None: self._view = None self._guiprovider = guiprovider self._model = model self._filemenu = None self._title = tk.StringVar() self._sections_view = None self._empty_view = None self._sections_view_title = tk.StringVar() self._properties_view = None self._text_view = None self._outputview = None self._progress = None self._button_text = None self._start_button = None self._thread_queue = queue.Queue() self._thread = None self._command = GUIProvider.START self._process_stop = False self._validate_integer_command = None self._validate_float_command = None @property def view(self): return self._view @view.setter def view(self, val): self._view = val self._validate_integer_command = self._view.register(BaseController._cb_validate_integer) self._validate_float_command = self._view.register(BaseController._cb_validate_float) @staticmethod def _cb_validate_integer(action, index, value_if_allowed, prior_value, text, validation_type, trigger_type, widget_name): if action != '1' or value_if_allowed == '+' or value_if_allowed == '-': return True ret = True try: int(value_if_allowed) except ValueError: ret = False return ret @staticmethod def _cb_validate_float(action, index, value_if_allowed, prior_value, text, validation_type, trigger_type, widget_name): if action != '1' or value_if_allowed == '+' or value_if_allowed == '-': return True ret = True if value_if_allowed is not None: index = value_if_allowed.find('e') if index == 0: return False if index > 0: try: float(value_if_allowed[:index]) except ValueError: ret = False if ret and index < len(value_if_allowed) - 1: right = value_if_allowed[index + 1:] if right not in ('+', '-'): try: int(right) except ValueError: ret = False return ret try: float(value_if_allowed) except ValueError: ret = False return ret @property def outputview(self): return self._outputview @outputview.setter def outputview(self, outputview): self._outputview = outputview @property def model(self): return self._model def new_input(self): ret = True try: self.stop() self.outputview.clear() self._start_button.state(['disabled']) self._title.set('') self._sections_view.clear() self._sections_view.show_add_button(True) self._sections_view.show_remove_button(False) self._text_view.clear() self._sections_view_title.set('') self._properties_view.clear() self._properties_view.show_remove_button(False) self._empty_view.tkraise() section_names = self.model.new() self._sections_view.populate(section_names) self._start_button.state(['!disabled']) missing = self.get_sections_names_missing() self._sections_view.show_add_button(bool(missing)) except Exception as ex: self.outputview.clear() self.outputview.write_line(str(ex)) ret = False return ret def open_file(self, filename): ret = True try: self.stop() self.outputview.clear() self._start_button.state(['disabled']) self._title.set('') self._sections_view.clear() self._sections_view.show_add_button(True) self._sections_view.show_remove_button(False) self._text_view.clear() self._sections_view_title.set('') self._properties_view.clear() self._properties_view.show_remove_button(False) self._empty_view.tkraise() try: self.model.load_file(filename) except Exception as ex: messagebox.showerror("Error", str(ex)) if self.model.get_filename() is None or isinstance(ex, FileNotFoundError): ret = False self._title.set(os.path.basename(filename)) section_names = self.model.get_section_names() self._sections_view.populate(section_names) self._start_button.state(['!disabled']) missing = self.get_sections_names_missing() self._sections_view.show_add_button(bool(missing)) except Exception as ex: self.outputview.clear() self.outputview.write_line(str(ex)) ret = False return ret def is_empty(self): return self.model.is_empty() def save_file(self): filename = self.model.get_filename() if not filename: self.outputview.write_line("No file to save.") return False try: self.model.save_to_file(filename) self.outputview.write_line("Saved file: {}".format(filename)) return True except Exception as ex: messagebox.showerror("Error", str(ex)) return False def save_file_as(self, filename): try: self.model.save_to_file(filename) self.open_file(filename) return True except Exception as ex: messagebox.showerror("Error", str(ex)) return False @abstractmethod def cb_section_select(self, section_name): pass def cb_property_select(self, section_name, property_name): from qiskit.aqua.parser import JSONSchema _show_remove = property_name not in (JSONSchema.PROVIDER, JSONSchema.NAME) if section_name == JSONSchema.BACKEND else property_name != JSONSchema.NAME self._properties_view.show_remove_button(_show_remove) def cb_section_add(self, section_name): try: if section_name is None: section_name = '' section_name = section_name.lower().strip() if not section_name: return False self.model.set_section(section_name) missing = self.get_sections_names_missing() self._sections_view.show_add_button(bool(missing)) except Exception as ex: messagebox.showerror("Error", str(ex)) return False return True def validate_section_add(self, section_name): try: if section_name in self.model.get_section_names(): return'Duplicate section name' except Exception as ex: return str(ex) return None def cb_section_remove(self, section_name): try: self._sections_view.show_remove_button(False) self.model.delete_section(section_name) missing = self.get_sections_names_missing() self._sections_view.show_add_button(bool(missing)) self._sections_view_title.set('') self._properties_view.clear() self._text_view.clear() self._empty_view.tkraise() except Exception as ex: messagebox.showerror("Error", str(ex)) return False return True @abstractmethod def cb_section_defaults(self, section_name): pass def get_sections_names_missing(self): try: section_names = self.model.get_section_names() default_sections = self.model.get_default_sections() return list(set(default_sections.keys()) - set(section_names)) except Exception as ex: self.outputview.write_line(str(ex)) def get_property_names_missing(self, section_name): try: properties = self.model.get_section_properties(section_name) default_properties = self.model.get_section_default_properties( section_name) if default_properties is None: return None return list(set(default_properties.keys()) - set(properties.keys())) except Exception as ex: self.outputview.write_line(str(ex)) def shows_add_button(self, section_name): if self.model.allows_additional_properties(section_name): return True missing = self.get_property_names_missing(section_name) return missing def on_property_add(self, section_name, property_name): try: return self.cb_property_set(section_name, property_name, self.model.get_property_default_value(section_name, property_name)) except Exception as ex: messagebox.showerror("Error", str(ex)) return False @abstractmethod def cb_property_set(self, section_name, property_name, value): pass def validate_property_add(self, section_name, property_name): try: value = self.model.get_section_property(section_name, property_name) if value is not None: return 'Duplicate property name' except Exception as ex: return str(ex) return None @abstractmethod def cb_section_property_remove(self, section_name, property_name): pass def cb_text_set(self, section_name, value): try: self.model.set_section_text(section_name, value) self._text_view.show_defaults_button( not self.model.default_properties_equals_properties(section_name)) except Exception as ex: self.outputview.write_line(str(ex)) return False return True
Apache License 2.0
rapid7/vm-console-client-python
rapid7vmconsole/models/features.py
Features.adaptive_security
python
def adaptive_security(self, adaptive_security): self._adaptive_security = adaptive_security
Sets the adaptive_security of this Features. Whether Adaptive Security features are available. # noqa: E501 :param adaptive_security: The adaptive_security of this Features. # noqa: E501 :type: bool
https://github.com/rapid7/vm-console-client-python/blob/55e1f573967bce27cc9a2d10c12a949b1142c2b3/rapid7vmconsole/models/features.py#L120-L129
import pprint import re import six class Features(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'adaptive_security': 'bool', 'agents': 'bool', 'dynamic_discovery': 'bool', 'early_access': 'bool', 'engine_pool': 'bool', 'insight_platform': 'bool', 'mobile': 'bool', 'multitenancy': 'bool', 'policy_editor': 'bool', 'policy_manager': 'bool', 'remediation_analytics': 'bool', 'reporting': 'LicenseReporting', 'scanning': 'LicenseScanning' } attribute_map = { 'adaptive_security': 'adaptiveSecurity', 'agents': 'agents', 'dynamic_discovery': 'dynamicDiscovery', 'early_access': 'earlyAccess', 'engine_pool': 'enginePool', 'insight_platform': 'insightPlatform', 'mobile': 'mobile', 'multitenancy': 'multitenancy', 'policy_editor': 'policyEditor', 'policy_manager': 'policyManager', 'remediation_analytics': 'remediationAnalytics', 'reporting': 'reporting', 'scanning': 'scanning' } def __init__(self, adaptive_security=None, agents=None, dynamic_discovery=None, early_access=None, engine_pool=None, insight_platform=None, mobile=None, multitenancy=None, policy_editor=None, policy_manager=None, remediation_analytics=None, reporting=None, scanning=None): self._adaptive_security = None self._agents = None self._dynamic_discovery = None self._early_access = None self._engine_pool = None self._insight_platform = None self._mobile = None self._multitenancy = None self._policy_editor = None self._policy_manager = None self._remediation_analytics = None self._reporting = None self._scanning = None self.discriminator = None if adaptive_security is not None: self.adaptive_security = adaptive_security if agents is not None: self.agents = agents if dynamic_discovery is not None: self.dynamic_discovery = dynamic_discovery if early_access is not None: self.early_access = early_access if engine_pool is not None: self.engine_pool = engine_pool if insight_platform is not None: self.insight_platform = insight_platform if mobile is not None: self.mobile = mobile if multitenancy is not None: self.multitenancy = multitenancy if policy_editor is not None: self.policy_editor = policy_editor if policy_manager is not None: self.policy_manager = policy_manager if remediation_analytics is not None: self.remediation_analytics = remediation_analytics if reporting is not None: self.reporting = reporting if scanning is not None: self.scanning = scanning @property def adaptive_security(self): return self._adaptive_security @adaptive_security.setter
MIT License
pytest-dev/py
py/_path/local.py
LocalPath.lstat
python
def lstat(self): return Stat(self, py.error.checked_call(os.lstat, self.strpath))
Return an os.lstat() tuple.
https://github.com/pytest-dev/py/blob/2f03e5a7fd9eb95db110cfd1bf40b987757f9d48/py/_path/local.py#L556-L558
from __future__ import with_statement from contextlib import contextmanager import sys, os, atexit, io, uuid import py from py._path import common from py._path.common import iswin32, fspath from stat import S_ISLNK, S_ISDIR, S_ISREG from os.path import abspath, normpath, isabs, exists, isdir, isfile, islink, dirname if sys.version_info > (3,0): def map_as_list(func, iter): return list(map(func, iter)) else: map_as_list = map ALLOW_IMPORTLIB_MODE = sys.version_info > (3,5) if ALLOW_IMPORTLIB_MODE: import importlib class Stat(object): def __getattr__(self, name): return getattr(self._osstatresult, "st_" + name) def __init__(self, path, osstatresult): self.path = path self._osstatresult = osstatresult @property def owner(self): if iswin32: raise NotImplementedError("XXX win32") import pwd entry = py.error.checked_call(pwd.getpwuid, self.uid) return entry[0] @property def group(self): if iswin32: raise NotImplementedError("XXX win32") import grp entry = py.error.checked_call(grp.getgrgid, self.gid) return entry[0] def isdir(self): return S_ISDIR(self._osstatresult.st_mode) def isfile(self): return S_ISREG(self._osstatresult.st_mode) def islink(self): st = self.path.lstat() return S_ISLNK(self._osstatresult.st_mode) class PosixPath(common.PathBase): def chown(self, user, group, rec=0): uid = getuserid(user) gid = getgroupid(group) if rec: for x in self.visit(rec=lambda x: x.check(link=0)): if x.check(link=0): py.error.checked_call(os.chown, str(x), uid, gid) py.error.checked_call(os.chown, str(self), uid, gid) def readlink(self): return py.error.checked_call(os.readlink, self.strpath) def mklinkto(self, oldname): py.error.checked_call(os.link, str(oldname), str(self)) def mksymlinkto(self, value, absolute=1): if absolute: py.error.checked_call(os.symlink, str(value), self.strpath) else: base = self.common(value) relsource = self.__class__(value).relto(base) reldest = self.relto(base) n = reldest.count(self.sep) target = self.sep.join(('..', )*n + (relsource, )) py.error.checked_call(os.symlink, target, self.strpath) def getuserid(user): import pwd if not isinstance(user, int): user = pwd.getpwnam(user)[2] return user def getgroupid(group): import grp if not isinstance(group, int): group = grp.getgrnam(group)[2] return group FSBase = not iswin32 and PosixPath or common.PathBase class LocalPath(FSBase): class ImportMismatchError(ImportError): sep = os.sep class Checkers(common.Checkers): def _stat(self): try: return self._statcache except AttributeError: try: self._statcache = self.path.stat() except py.error.ELOOP: self._statcache = self.path.lstat() return self._statcache def dir(self): return S_ISDIR(self._stat().mode) def file(self): return S_ISREG(self._stat().mode) def exists(self): return self._stat() def link(self): st = self.path.lstat() return S_ISLNK(st.mode) def __init__(self, path=None, expanduser=False): if path is None: self.strpath = py.error.checked_call(os.getcwd) else: try: path = fspath(path) except TypeError: raise ValueError("can only pass None, Path instances " "or non-empty strings to LocalPath") if expanduser: path = os.path.expanduser(path) self.strpath = abspath(path) def __hash__(self): s = self.strpath if iswin32: s = s.lower() return hash(s) def __eq__(self, other): s1 = fspath(self) try: s2 = fspath(other) except TypeError: return False if iswin32: s1 = s1.lower() try: s2 = s2.lower() except AttributeError: return False return s1 == s2 def __ne__(self, other): return not (self == other) def __lt__(self, other): return fspath(self) < fspath(other) def __gt__(self, other): return fspath(self) > fspath(other) def samefile(self, other): other = fspath(other) if not isabs(other): other = abspath(other) if self == other: return True if not hasattr(os.path, "samefile"): return False return py.error.checked_call( os.path.samefile, self.strpath, other) def remove(self, rec=1, ignore_errors=False): if self.check(dir=1, link=0): if rec: if iswin32: self.chmod(0o700, rec=1) import shutil py.error.checked_call( shutil.rmtree, self.strpath, ignore_errors=ignore_errors) else: py.error.checked_call(os.rmdir, self.strpath) else: if iswin32: self.chmod(0o700) py.error.checked_call(os.remove, self.strpath) def computehash(self, hashtype="md5", chunksize=524288): try: try: import hashlib as mod except ImportError: if hashtype == "sha1": hashtype = "sha" mod = __import__(hashtype) hash = getattr(mod, hashtype)() except (AttributeError, ImportError): raise ValueError("Don't know how to compute %r hash" %(hashtype,)) f = self.open('rb') try: while 1: buf = f.read(chunksize) if not buf: return hash.hexdigest() hash.update(buf) finally: f.close() def new(self, **kw): obj = object.__new__(self.__class__) if not kw: obj.strpath = self.strpath return obj drive, dirname, basename, purebasename,ext = self._getbyspec( "drive,dirname,basename,purebasename,ext") if 'basename' in kw: if 'purebasename' in kw or 'ext' in kw: raise ValueError("invalid specification %r" % kw) else: pb = kw.setdefault('purebasename', purebasename) try: ext = kw['ext'] except KeyError: pass else: if ext and not ext.startswith('.'): ext = '.' + ext kw['basename'] = pb + ext if ('dirname' in kw and not kw['dirname']): kw['dirname'] = drive else: kw.setdefault('dirname', dirname) kw.setdefault('sep', self.sep) obj.strpath = normpath( "%(dirname)s%(sep)s%(basename)s" % kw) return obj def _getbyspec(self, spec): res = [] parts = self.strpath.split(self.sep) args = filter(None, spec.split(',') ) append = res.append for name in args: if name == 'drive': append(parts[0]) elif name == 'dirname': append(self.sep.join(parts[:-1])) else: basename = parts[-1] if name == 'basename': append(basename) else: i = basename.rfind('.') if i == -1: purebasename, ext = basename, '' else: purebasename, ext = basename[:i], basename[i:] if name == 'purebasename': append(purebasename) elif name == 'ext': append(ext) else: raise ValueError("invalid part specification %r" % name) return res def dirpath(self, *args, **kwargs): if not kwargs: path = object.__new__(self.__class__) path.strpath = dirname(self.strpath) if args: path = path.join(*args) return path return super(LocalPath, self).dirpath(*args, **kwargs) def join(self, *args, **kwargs): sep = self.sep strargs = [fspath(arg) for arg in args] strpath = self.strpath if kwargs.get('abs'): newargs = [] for arg in reversed(strargs): if isabs(arg): strpath = arg strargs = newargs break newargs.insert(0, arg) actual_sep = "" if strpath.endswith(sep) else sep for arg in strargs: arg = arg.strip(sep) if iswin32: arg = arg.strip('/') arg = arg.replace('/', sep) strpath = strpath + actual_sep + arg actual_sep = sep obj = object.__new__(self.__class__) obj.strpath = normpath(strpath) return obj def open(self, mode='r', ensure=False, encoding=None): if ensure: self.dirpath().ensure(dir=1) if encoding: return py.error.checked_call(io.open, self.strpath, mode, encoding=encoding) return py.error.checked_call(open, self.strpath, mode) def _fastjoin(self, name): child = object.__new__(self.__class__) child.strpath = self.strpath + self.sep + name return child def islink(self): return islink(self.strpath) def check(self, **kw): if not kw: return exists(self.strpath) if len(kw) == 1: if "dir" in kw: return not kw["dir"] ^ isdir(self.strpath) if "file" in kw: return not kw["file"] ^ isfile(self.strpath) return super(LocalPath, self).check(**kw) _patternchars = set("*?[" + os.path.sep) def listdir(self, fil=None, sort=None): if fil is None and sort is None: names = py.error.checked_call(os.listdir, self.strpath) return map_as_list(self._fastjoin, names) if isinstance(fil, py.builtin._basestring): if not self._patternchars.intersection(fil): child = self._fastjoin(fil) if exists(child.strpath): return [child] return [] fil = common.FNMatcher(fil) names = py.error.checked_call(os.listdir, self.strpath) res = [] for name in names: child = self._fastjoin(name) if fil is None or fil(child): res.append(child) self._sortlist(res, sort) return res def size(self): return self.stat().size def mtime(self): return self.stat().mtime def copy(self, target, mode=False, stat=False): if self.check(file=1): if target.check(dir=1): target = target.join(self.basename) assert self!=target copychunked(self, target) if mode: copymode(self.strpath, target.strpath) if stat: copystat(self, target) else: def rec(p): return p.check(link=0) for x in self.visit(rec=rec): relpath = x.relto(self) newx = target.join(relpath) newx.dirpath().ensure(dir=1) if x.check(link=1): newx.mksymlinkto(x.readlink()) continue elif x.check(file=1): copychunked(x, newx) elif x.check(dir=1): newx.ensure(dir=1) if mode: copymode(x.strpath, newx.strpath) if stat: copystat(x, newx) def rename(self, target): target = fspath(target) return py.error.checked_call(os.rename, self.strpath, target) def dump(self, obj, bin=1): f = self.open('wb') import pickle try: py.error.checked_call(pickle.dump, obj, f, bin) finally: f.close() def mkdir(self, *args): p = self.join(*args) py.error.checked_call(os.mkdir, fspath(p)) return p def write_binary(self, data, ensure=False): if ensure: self.dirpath().ensure(dir=1) with self.open('wb') as f: f.write(data) def write_text(self, data, encoding, ensure=False): if ensure: self.dirpath().ensure(dir=1) with self.open('w', encoding=encoding) as f: f.write(data) def write(self, data, mode='w', ensure=False): if ensure: self.dirpath().ensure(dir=1) if 'b' in mode: if not py.builtin._isbytes(data): raise ValueError("can only process bytes") else: if not py.builtin._istext(data): if not py.builtin._isbytes(data): data = str(data) else: data = py.builtin._totext(data, sys.getdefaultencoding()) f = self.open(mode) try: f.write(data) finally: f.close() def _ensuredirs(self): parent = self.dirpath() if parent == self: return self if parent.check(dir=0): parent._ensuredirs() if self.check(dir=0): try: self.mkdir() except py.error.EEXIST: if self.check(dir=0): raise return self def ensure(self, *args, **kwargs): p = self.join(*args) if kwargs.get('dir', 0): return p._ensuredirs() else: p.dirpath()._ensuredirs() if not p.check(file=1): p.open('w').close() return p def stat(self, raising=True): if raising == True: return Stat(self, py.error.checked_call(os.stat, self.strpath)) try: return Stat(self, os.stat(self.strpath)) except KeyboardInterrupt: raise except Exception: return None
MIT License
jest-community/jest-pytest
src/__tests__/integration/home-assistant/homeassistant/components/vacuum/__init__.py
VacuumDevice.start_pause
python
def start_pause(self, **kwargs): raise NotImplementedError()
Start, pause or resume the cleaning task.
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/vacuum/__init__.py#L344-L346
import asyncio from datetime import timedelta from functools import partial import logging import voluptuous as vol from homeassistant.components import group from homeassistant.const import ( ATTR_BATTERY_LEVEL, ATTR_COMMAND, ATTR_ENTITY_ID, SERVICE_TOGGLE, SERVICE_TURN_OFF, SERVICE_TURN_ON, STATE_ON) from homeassistant.loader import bind_hass import homeassistant.helpers.config_validation as cv from homeassistant.helpers.config_validation import PLATFORM_SCHEMA from homeassistant.helpers.entity_component import EntityComponent from homeassistant.helpers.entity import ToggleEntity from homeassistant.helpers.icon import icon_for_battery_level _LOGGER = logging.getLogger(__name__) DOMAIN = 'vacuum' DEPENDENCIES = ['group'] SCAN_INTERVAL = timedelta(seconds=20) GROUP_NAME_ALL_VACUUMS = 'all vacuum cleaners' ENTITY_ID_ALL_VACUUMS = group.ENTITY_ID_FORMAT.format('all_vacuum_cleaners') ATTR_BATTERY_ICON = 'battery_icon' ATTR_CLEANED_AREA = 'cleaned_area' ATTR_FAN_SPEED = 'fan_speed' ATTR_FAN_SPEED_LIST = 'fan_speed_list' ATTR_PARAMS = 'params' ATTR_STATUS = 'status' SERVICE_CLEAN_SPOT = 'clean_spot' SERVICE_LOCATE = 'locate' SERVICE_RETURN_TO_BASE = 'return_to_base' SERVICE_SEND_COMMAND = 'send_command' SERVICE_SET_FAN_SPEED = 'set_fan_speed' SERVICE_START_PAUSE = 'start_pause' SERVICE_STOP = 'stop' VACUUM_SERVICE_SCHEMA = vol.Schema({ vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, }) VACUUM_SET_FAN_SPEED_SERVICE_SCHEMA = VACUUM_SERVICE_SCHEMA.extend({ vol.Required(ATTR_FAN_SPEED): cv.string, }) VACUUM_SEND_COMMAND_SERVICE_SCHEMA = VACUUM_SERVICE_SCHEMA.extend({ vol.Required(ATTR_COMMAND): cv.string, vol.Optional(ATTR_PARAMS): vol.Any(cv.Dict, cv.ensure_list), }) SERVICE_TO_METHOD = { SERVICE_TURN_ON: {'method': 'async_turn_on'}, SERVICE_TURN_OFF: {'method': 'async_turn_off'}, SERVICE_TOGGLE: {'method': 'async_toggle'}, SERVICE_START_PAUSE: {'method': 'async_start_pause'}, SERVICE_RETURN_TO_BASE: {'method': 'async_return_to_base'}, SERVICE_CLEAN_SPOT: {'method': 'async_clean_spot'}, SERVICE_LOCATE: {'method': 'async_locate'}, SERVICE_STOP: {'method': 'async_stop'}, SERVICE_SET_FAN_SPEED: {'method': 'async_set_fan_speed', 'schema': VACUUM_SET_FAN_SPEED_SERVICE_SCHEMA}, SERVICE_SEND_COMMAND: {'method': 'async_send_command', 'schema': VACUUM_SEND_COMMAND_SERVICE_SCHEMA}, } DEFAULT_NAME = 'Vacuum cleaner robot' SUPPORT_TURN_ON = 1 SUPPORT_TURN_OFF = 2 SUPPORT_PAUSE = 4 SUPPORT_STOP = 8 SUPPORT_RETURN_HOME = 16 SUPPORT_FAN_SPEED = 32 SUPPORT_BATTERY = 64 SUPPORT_STATUS = 128 SUPPORT_SEND_COMMAND = 256 SUPPORT_LOCATE = 512 SUPPORT_CLEAN_SPOT = 1024 SUPPORT_MAP = 2048 @bind_hass def is_on(hass, entity_id=None): entity_id = entity_id or ENTITY_ID_ALL_VACUUMS return hass.states.is_state(entity_id, STATE_ON) @bind_hass def turn_on(hass, entity_id=None): data = {ATTR_ENTITY_ID: entity_id} if entity_id else None hass.services.call(DOMAIN, SERVICE_TURN_ON, data) @bind_hass def turn_off(hass, entity_id=None): data = {ATTR_ENTITY_ID: entity_id} if entity_id else None hass.services.call(DOMAIN, SERVICE_TURN_OFF, data) @bind_hass def toggle(hass, entity_id=None): data = {ATTR_ENTITY_ID: entity_id} if entity_id else None hass.services.call(DOMAIN, SERVICE_TOGGLE, data) @bind_hass def locate(hass, entity_id=None): data = {ATTR_ENTITY_ID: entity_id} if entity_id else None hass.services.call(DOMAIN, SERVICE_LOCATE, data) @bind_hass def clean_spot(hass, entity_id=None): data = {ATTR_ENTITY_ID: entity_id} if entity_id else None hass.services.call(DOMAIN, SERVICE_CLEAN_SPOT, data) @bind_hass def return_to_base(hass, entity_id=None): data = {ATTR_ENTITY_ID: entity_id} if entity_id else None hass.services.call(DOMAIN, SERVICE_RETURN_TO_BASE, data) @bind_hass def start_pause(hass, entity_id=None): data = {ATTR_ENTITY_ID: entity_id} if entity_id else None hass.services.call(DOMAIN, SERVICE_START_PAUSE, data) @bind_hass def stop(hass, entity_id=None): data = {ATTR_ENTITY_ID: entity_id} if entity_id else None hass.services.call(DOMAIN, SERVICE_STOP, data) @bind_hass def set_fan_speed(hass, fan_speed, entity_id=None): data = {ATTR_ENTITY_ID: entity_id} if entity_id else {} data[ATTR_FAN_SPEED] = fan_speed hass.services.call(DOMAIN, SERVICE_SET_FAN_SPEED, data) @bind_hass def send_command(hass, command, params=None, entity_id=None): data = {ATTR_ENTITY_ID: entity_id} if entity_id else {} data[ATTR_COMMAND] = command if params is not None: data[ATTR_PARAMS] = params hass.services.call(DOMAIN, SERVICE_SEND_COMMAND, data) @asyncio.coroutine def async_setup(hass, config): component = EntityComponent( _LOGGER, DOMAIN, hass, SCAN_INTERVAL, GROUP_NAME_ALL_VACUUMS) yield from component.async_setup(config) @asyncio.coroutine def async_handle_vacuum_service(service): method = SERVICE_TO_METHOD.get(service.service) target_vacuums = component.async_extract_from_service(service) params = service.data.copy() params.pop(ATTR_ENTITY_ID, None) update_tasks = [] for vacuum in target_vacuums: yield from getattr(vacuum, method['method'])(**params) if not vacuum.should_poll: continue update_tasks.append(vacuum.async_update_ha_state(True)) if update_tasks: yield from asyncio.wait(update_tasks, loop=hass.loop) for service in SERVICE_TO_METHOD: schema = SERVICE_TO_METHOD[service].get( 'schema', VACUUM_SERVICE_SCHEMA) hass.services.async_register( DOMAIN, service, async_handle_vacuum_service, schema=schema) return True class VacuumDevice(ToggleEntity): @property def supported_features(self): raise NotImplementedError() @property def status(self): return None @property def battery_level(self): return None @property def battery_icon(self): charging = False if self.status is not None: charging = 'charg' in self.status.lower() return icon_for_battery_level( battery_level=self.battery_level, charging=charging) @property def fan_speed(self): return None @property def fan_speed_list(self): raise NotImplementedError() @property def state_attributes(self): data = {} if self.status is not None: data[ATTR_STATUS] = self.status if self.battery_level is not None: data[ATTR_BATTERY_LEVEL] = self.battery_level data[ATTR_BATTERY_ICON] = self.battery_icon if self.fan_speed is not None: data[ATTR_FAN_SPEED] = self.fan_speed data[ATTR_FAN_SPEED_LIST] = self.fan_speed_list return data def turn_on(self, **kwargs): raise NotImplementedError() def async_turn_on(self, **kwargs): return self.hass.async_add_job(partial(self.turn_on, **kwargs)) def turn_off(self, **kwargs): raise NotImplementedError() def async_turn_off(self, **kwargs): return self.hass.async_add_job(partial(self.turn_off, **kwargs)) def return_to_base(self, **kwargs): raise NotImplementedError() def async_return_to_base(self, **kwargs): return self.hass.async_add_job(partial(self.return_to_base, **kwargs)) def stop(self, **kwargs): raise NotImplementedError() def async_stop(self, **kwargs): return self.hass.async_add_job(partial(self.stop, **kwargs)) def clean_spot(self, **kwargs): raise NotImplementedError() def async_clean_spot(self, **kwargs): return self.hass.async_add_job(partial(self.clean_spot, **kwargs)) def locate(self, **kwargs): raise NotImplementedError() def async_locate(self, **kwargs): return self.hass.async_add_job(partial(self.locate, **kwargs)) def set_fan_speed(self, fan_speed, **kwargs): raise NotImplementedError() def async_set_fan_speed(self, fan_speed, **kwargs): return self.hass.async_add_job( partial(self.set_fan_speed, fan_speed, **kwargs))
MIT License
ictu/quality-time
components/server/src/routes/external/notification.py
post_new_notification_destination
python
def post_new_notification_destination(report_uuid: ReportId, database: Database): data = ReportData(latest_datamodel(database), latest_reports(database), report_uuid) if "notification_destinations" not in data.report: data.report["notification_destinations"] = {} data.report["notification_destinations"][(notification_destination_uuid := uuid())] = dict( webhook="", name="Microsoft Teams webhook", sleep_duration=0 ) delta_description = f"{{user}} created a new destination for notifications in report '{data.report_name}'." uuids = [report_uuid, notification_destination_uuid] result = insert_new_report(database, delta_description, (data.report, uuids)) result["new_destination_uuid"] = notification_destination_uuid return result
Create a new notification destination.
https://github.com/ictu/quality-time/blob/4bd5df14f584dcc174276da0d2ddb6fcfaf1d427/components/server/src/routes/external/notification.py#L15-L27
import bottle from pymongo.database import Database from database.datamodels import latest_datamodel from database.reports import insert_new_report, latest_reports from model.data import ReportData from routes.plugins.auth_plugin import EDIT_REPORT_PERMISSION from server_utilities.functions import uuid from server_utilities.type import ReportId, NotificationDestinationId @bottle.post("/api/v3/report/<report_uuid>/notification_destination/new", permissions_required=[EDIT_REPORT_PERMISSION])
Apache License 2.0
hyperiongray/trio-chrome-devtools-protocol
trio_cdp/generated/profiler.py
set_sampling_interval
python
async def set_sampling_interval( interval: int ) -> None: session = get_session_context('profiler.set_sampling_interval') return await session.execute(cdp.profiler.set_sampling_interval(interval))
Changes CPU profiler sampling interval. Must be called before CPU profiles recording started. :param interval: New sampling interval in microseconds.
https://github.com/hyperiongray/trio-chrome-devtools-protocol/blob/f41ca685b5c390f288592d135660c177fba5a945/trio_cdp/generated/profiler.py#L48-L57
from __future__ import annotations import typing from ..context import get_connection_context, get_session_context import cdp.profiler from cdp.profiler import ( ConsoleProfileFinished, ConsoleProfileStarted, CoverageRange, FunctionCoverage, PositionTickInfo, Profile, ProfileNode, ScriptCoverage, ScriptTypeProfile, TypeObject, TypeProfileEntry ) async def disable() -> None: session = get_session_context('profiler.disable') return await session.execute(cdp.profiler.disable()) async def enable() -> None: session = get_session_context('profiler.enable') return await session.execute(cdp.profiler.enable()) async def get_best_effort_coverage() -> typing.List[ScriptCoverage]: session = get_session_context('profiler.get_best_effort_coverage') return await session.execute(cdp.profiler.get_best_effort_coverage())
MIT License
terrapower/armi
armi/runLog.py
RunLogger.getDuplicatesFilter
python
def getDuplicatesFilter(self): for f in self.filters: if isinstance(f, DeduplicationFilter): return f return None
This object should have a no-duplicates filter. If it exists, find it.
https://github.com/terrapower/armi/blob/b4fceeb5c3c7f2feeaa8c9ac05aa635e5f1a15a0/armi/runLog.py#L536-L542
from __future__ import print_function from glob import glob import collections import logging import operator import os import sys from armi import context _ADD_LOG_METHOD_STR = """def {0}(self, message, *args, **kws): if self.isEnabledFor({1}): self._log({1}, message, args, **kws) logging.Logger.{0} = {0}""" _WHITE_SPACE = " " * 6 SEP = "|" STDERR_LOGGER_NAME = "ARMI_ERROR" STDOUT_LOGGER_NAME = "ARMI" class _RunLog: STDERR_NAME = "{0}.{1:04d}.stderr" STDOUT_NAME = "{0}.{1:04d}.stdout" def __init__(self, mpiRank=0): self._mpiRank = mpiRank self._verbosity = logging.INFO self.initialErr = None self.logLevels = None self._logLevelNumbers = [] self.logger = None self.stderrLogger = None self.setNullLoggers() self._setLogLevels() def setNullLoggers(self): self.logger = NullLogger("NULL") self.stderrLogger = NullLogger("NULL2", isStderr=True) def _setLogLevels(self): _rank = "" if self._mpiRank == 0 else "-{:>03d}".format(self._mpiRank) self.logLevels = collections.OrderedDict( [ ("debug", (logging.DEBUG, "[dbug{}] ".format(_rank))), ("extra", (15, "[xtra{}] ".format(_rank))), ("info", (logging.INFO, "[info{}] ".format(_rank))), ("important", (25, "[impt{}] ".format(_rank))), ("prompt", (27, "[prmt{}] ".format(_rank))), ("warning", (logging.WARNING, "[warn{}] ".format(_rank))), ("error", (logging.ERROR, "[err {}] ".format(_rank))), ("header", (100, "".format(_rank))), ] ) self._logLevelNumbers = sorted([l[0] for l in self.logLevels.values()]) global _WHITE_SPACE _WHITE_SPACE = " " * len(max([l[1] for l in self.logLevels.values()])) for longLogString, (logValue, shortLogString) in self.logLevels.items(): logging.addLevelName(logValue, shortLogString.upper()) logging.addLevelName(logValue, shortLogString) try: getattr(logging, longLogString.upper()) except AttributeError: setattr(logging, longLogString.upper(), logValue) try: getattr(logging, longLogString) except AttributeError: exec(_ADD_LOG_METHOD_STR.format(longLogString, logValue)) def log(self, msgType, msg, single=False, label=None): msgLevel = msgType if isinstance(msgType, int) else self.logLevels[msgType][0] msg = str(msg) self.logger.log(msgLevel, msg, single=single, label=label) def getDuplicatesFilter(self): if not self.logger or not isinstance(self.logger, logging.Logger): return None return self.logger.getDuplicatesFilter() def clearSingleWarnings(self): dupsFilter = self.getDuplicatesFilter() if dupsFilter: dupsFilter.singleMessageCounts.clear() def warningReport(self): self.logger.warningReport() def getLogVerbosityRank(self, level): try: return self.logLevels[level][0] except KeyError: log_strs = list(self.logLevels.keys()) raise KeyError( "{} is not a valid verbosity level: {}".format(level, log_strs) ) def setVerbosity(self, level): if isinstance(level, str): self._verbosity = self.getLogVerbosityRank(level) elif isinstance(level, int): if level in self._logLevelNumbers: self._verbosity = level elif level < self._logLevelNumbers[0]: self._verbosity = self._logLevelNumbers[0] else: for i in range(len(self._logLevelNumbers) - 1, -1, -1): if level >= self._logLevelNumbers[i]: self._verbosity = self._logLevelNumbers[i] break else: raise TypeError("Invalid verbosity rank {}.".format(level)) if self.logger is not None: for handler in self.logger.handlers: handler.setLevel(self._verbosity) self.logger.setLevel(self._verbosity) def getVerbosity(self): return self._verbosity def restoreStandardStreams(self): if self.initialErr is not None and self._mpiRank > 0: sys.stderr = self.initialErr def startLog(self, name): self.logger = logging.getLogger(STDOUT_LOGGER_NAME + SEP + str(self._mpiRank)) if self._verbosity != logging.INFO: self.setVerbosity(self._verbosity) if self._mpiRank != 0: filePath = os.path.join( context.LOG_DIR, _RunLog.STDERR_NAME.format(name, self._mpiRank) ) self.stderrLogger = logging.getLogger(STDERR_LOGGER_NAME) h = logging.FileHandler(filePath, delay=True) fmt = "%(message)s" form = logging.Formatter(fmt) h.setFormatter(form) h.setLevel(logging.WARNING) self.stderrLogger.handlers = [h] self.stderrLogger.setLevel(logging.WARNING) self.initialErr = sys.stderr sys.stderr = self.stderrLogger def close(mpiRank=None): mpiRank = context.MPI_RANK if mpiRank is None else mpiRank if mpiRank == 0: try: concatenateLogs() except IOError as ee: warning("Failed to concatenate logs due to IOError.") error(ee) else: if LOG.stderrLogger: _ = [h.close() for h in LOG.stderrLogger.handlers] if LOG.logger: _ = [h.close() for h in LOG.logger.handlers] LOG.setNullLoggers() LOG.restoreStandardStreams() def concatenateLogs(logDir=None): if logDir is None: logDir = context.LOG_DIR stdoutFiles = sorted(glob(os.path.join(logDir, "*.stdout"))) if not len(stdoutFiles): info("No log files found to concatenate.") return info("Concatenating {0} log files".format(len(stdoutFiles))) for stdoutName in stdoutFiles: rank = int(stdoutName.split(".")[-2]) with open(stdoutName, "r") as logFile: data = logFile.read() if data: rankId = "\n{0} RANK {1:03d} STDOUT {2}\n".format( "-" * 10, rank, "-" * 60 ) print(rankId, file=sys.stdout) print(data, file=sys.stdout) try: os.remove(stdoutName) except OSError: warning("Could not delete {0}".format(stdoutName)) stderrName = stdoutName[:-3] + "err" if os.path.exists(stderrName): with open(stderrName) as logFile: data = logFile.read() if data: rankId = "\n{0} RANK {1:03d} STDERR {2}\n".format( "-" * 10, rank, "-" * 60 ) print(rankId, file=sys.stderr) print(data, file=sys.stderr) try: os.remove(stderrName) except OSError: warning("Could not delete {0}".format(stderrName)) def raw(msg): LOG.log("header", msg, single=False, label=msg) def extra(msg, single=False, label=None): LOG.log("extra", msg, single=single, label=label) def debug(msg, single=False, label=None): LOG.log("debug", msg, single=single, label=label) def info(msg, single=False, label=None): LOG.log("info", msg, single=single, label=label) def important(msg, single=False, label=None): LOG.log("important", msg, single=single, label=label) def warning(msg, single=False, label=None): LOG.log("warning", msg, single=single, label=label) def error(msg, single=False, label=None): LOG.log("error", msg, single=single, label=label) def header(msg, single=False, label=None): LOG.log("header", msg, single=single, label=label) def warningReport(): LOG.warningReport() def setVerbosity(level): LOG.setVerbosity(level) def getVerbosity(): return LOG.getVerbosity() class DeduplicationFilter(logging.Filter): def __init__(self, *args, **kwargs): logging.Filter.__init__(self, *args, **kwargs) self.singleMessageCounts = {} self.singleWarningMessageCounts = {} def filter(self, record): msg = str(record.msg) single = getattr(record, "single", False) label = getattr(record, "label", msg) label = msg if label is None else label if single: if record.levelno in (logging.WARNING, logging.CRITICAL): if label not in self.singleWarningMessageCounts: self.singleWarningMessageCounts[label] = 1 else: self.singleWarningMessageCounts[label] += 1 return False else: if label not in self.singleMessageCounts: self.singleMessageCounts[label] = 1 else: self.singleMessageCounts[label] += 1 return False record.msg = msg.rstrip().replace("\n", "\n" + _WHITE_SPACE) return True class RunLogger(logging.Logger): FMT = "%(levelname)s%(message)s" def __init__(self, *args, **kwargs): if SEP in args[0]: mpiRank = int(args[0].split(SEP)[-1].strip()) args = (args[0].split(SEP)[0],) else: mpiRank = context.MPI_RANK logging.Logger.__init__(self, *args, **kwargs) self.allowStopDuplicates() if mpiRank == 0: handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.INFO) self.setLevel(logging.INFO) else: filePath = os.path.join( context.LOG_DIR, _RunLog.STDOUT_NAME.format(args[0], mpiRank) ) handler = logging.FileHandler(filePath, delay=True) handler.setLevel(logging.WARNING) self.setLevel(logging.WARNING) form = logging.Formatter(RunLogger.FMT) handler.setFormatter(form) self.addHandler(handler) def log(self, msgType, msg, single=False, label=None): msgLevel = msgType if isinstance(msgType, int) else LOG.logLevels[msgType][0] logging.Logger.log( self, msgLevel, str(msg), extra={"single": single, "label": label} ) def _log(self, *args, **kwargs): if "extra" not in kwargs: kwargs["extra"] = {} if "single" not in kwargs["extra"]: msg = args[1] single = kwargs.pop("single", False) label = kwargs.pop("label", None) label = msg if label is None else label kwargs["extra"]["single"] = single kwargs["extra"]["label"] = label logging.Logger._log(self, *args, **kwargs) def allowStopDuplicates(self): for f in self.filters: if isinstance(f, DeduplicationFilter): return self.addFilter(DeduplicationFilter()) def write(self, msg, **kwargs): self.error(msg) def flush(self, *args, **kwargs): pass def close(self): self.handlers.clear() del self
Apache License 2.0
torchsynth/torchsynth
torchsynth/module.py
SynthModule.to
python
def to(self, device: Optional[torch.device] = None, **kwargs): self._update_device(device) return super().to(device=device, **kwargs)
This function overrides the :func:`~torch.nn.Module.to` call in :class:`torch.nn.Module`. It ensures that the related values :class:`~torchsynth.parameter.ModuleParameterRange` and :class:`~torchsynth.parameter.ModuleParameter`, as well as :attr:`~.SynthModule.synthconfig` are also transferred to the correct device. Args: device: device to send this module to
https://github.com/torchsynth/torchsynth/blob/a2fdb489ca2a548b4a6b2e532fb64d2f814ada6c/torchsynth/module.py#L234-L247
import copy from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from torch import tensor from torch import Tensor as T import torchsynth.util as util from torchsynth.config import BASE_REPRODUCIBLE_BATCH_SIZE, SynthConfig from torchsynth.parameter import ModuleParameter, ModuleParameterRange from torchsynth.signal import Signal class SynthModule(nn.Module): default_parameter_ranges: Optional[List[ModuleParameterRange]] = None def __init__( self, synthconfig: SynthConfig, device: Optional[torch.device] = None, **kwargs: Dict[str, T], ): nn.Module.__init__(self) self.synthconfig = synthconfig self.device = device self.synthconfig.to(device) self.torchparameters: nn.ParameterDict = nn.ParameterDict() self.parameter_ranges = [] self.seed: Optional[int] = None if self.default_parameter_ranges is not None: assert isinstance(self.default_parameter_ranges, list) self.parameter_ranges = copy.deepcopy(self.default_parameter_ranges) self._parameter_ranges_dict: Dict[str, ModuleParameterRange] = { p.name: p for p in self.parameter_ranges } assert len(self._parameter_ranges_dict) == len(self.parameter_ranges) self.add_parameters( [ ModuleParameter( value=None, parameter_name=parameter_range.name, data=torch.rand((self.synthconfig.batch_size,), device=device), parameter_range=parameter_range, ) for parameter_range in self.parameter_ranges ] ) if kwargs: for name, data in kwargs.items(): if data.device != self.device: data = data.to(self.device) self.set_parameter(name, data) @property def batch_size(self) -> T: assert self.synthconfig.batch_size.ndim == 0 return self.synthconfig.batch_size @property def sample_rate(self) -> T: assert self.synthconfig.sample_rate.ndim == 0 return self.synthconfig.sample_rate @property def nyquist(self): return self.sample_rate / 2.0 @property def eps(self) -> float: return self.synthconfig.eps @property def buffer_size(self) -> T: assert self.synthconfig.buffer_size.ndim == 0 return self.synthconfig.buffer_size def to_buffer_size(self, signal: Signal) -> Signal: return util.fix_length(signal, self.buffer_size) def seconds_to_samples(self, seconds: T) -> T: return seconds * self.sample_rate def output(self, *args: Any, **kwargs: Any) -> Signal: raise NotImplementedError("Derived classes must override this method") def forward(self, *args: Any, **kwargs: Any) -> Signal: signal = self.output(*args, **kwargs) buffered = self.to_buffer_size(signal) return buffered def add_parameters(self, parameters: List[ModuleParameter]): for parameter in parameters: assert parameter.parameter_name not in self.torchparameters assert parameter.shape == (self.batch_size,) self.torchparameters[parameter.parameter_name] = parameter def get_parameter(self, parameter_id: str) -> ModuleParameter: value = self.torchparameters[parameter_id] assert value.shape == (self.batch_size,) return value def get_parameter_0to1(self, parameter_id: str) -> T: value = self.torchparameters[parameter_id] assert value.shape == (self.batch_size,) return value def set_parameter(self, parameter_id: str, value: T): value = value.to(self.device) self.torchparameters[parameter_id].to_0to1(value) value = self.torchparameters[parameter_id].data assert torch.all(0.0 <= value) and torch.all(value <= 1.0) assert value.shape == (self.batch_size,) def set_parameter_0to1(self, parameter_id: str, value: T): value = value.to(self.device) assert torch.all(0.0 <= value) and torch.all(value <= 1.0) assert value.shape == (self.batch_size,) self.torchparameters[parameter_id].data = value def p(self, parameter_id: str) -> T: value = self.torchparameters[parameter_id].from_0to1() assert value.shape == (self.batch_size,) return value
Apache License 2.0
thunlp/openprompt
openprompt/prompts/knowledgeable_verbalizer.py
KnowledgeableVerbalizer.add_prefix
python
def add_prefix(label_words, prefix): new_label_words = [] for words in label_words: new_label_words.append([prefix + word.lstrip(prefix) for word in words]) return new_label_words
r"""add prefix to label words. For example, if a label words is in the middle of a template, the prefix should be ' '.
https://github.com/thunlp/openprompt/blob/5d3d5dce8c4babe9a265b69576e63eec2d067fe3/openprompt/prompts/knowledgeable_verbalizer.py#L48-L55
import os from openprompt.prompts.manual_template import ManualTemplate from transformers.tokenization_utils import PreTrainedTokenizer from transformers.utils.dummy_pt_objects import PreTrainedModel from openprompt.data_utils.data_utils import InputFeatures import re from openprompt.prompts.manual_verbalizer import ManualVerbalizer from typing import * import torch import torch.nn as nn import torch.nn.functional as F from openprompt.utils.logging import logger class KnowledgeableVerbalizer(ManualVerbalizer): def __init__(self, tokenizer: PreTrainedTokenizer = None, classes: Sequence[str] = None, prefix: Optional[str] = " ", multi_token_handler: Optional[str] = "first", max_token_split: Optional[int] = -1, verbalizer_lr: Optional[float]=5e-2, candidate_frac: Optional[float]=0.5, **kwargs): super().__init__(classes=classes, prefix=prefix, multi_token_handler=multi_token_handler, **kwargs) self.max_token_split = max_token_split self.verbalizer_lr = verbalizer_lr self.candidate_frac = candidate_frac def on_label_words_set(self): self.generate_parameters() @staticmethod
Apache License 2.0
andremiras/etherollapp
src/etherollapp/etheroll/controller.py
Controller.bind_screen_manager_on_current_screen
python
def bind_screen_manager_on_current_screen(self): def on_pre_add_widget(screen_manager, screen): if type(screen) is SwitchAccountScreen and not self.screen_manager.has_screen(screen.name): screen.bind(current_account=self.setter('current_account')) screen.ids.send_id.bind( current_account=self.setter('current_account')) screen.ids.send_id.bind(on_send=self.on_send) self.screen_manager.bind(on_pre_add_widget=on_pre_add_widget)
SwitchAccountScreen.current_account -> self.current_account.
https://github.com/andremiras/etherollapp/blob/2ccc30fad736a6fee0cba8b99c521bee6ad13087/src/etherollapp/etheroll/controller.py#L154-L164
from dotenv import load_dotenv from eth_utils import to_checksum_address from kivy.app import App from kivy.clock import Clock, mainthread from kivy.logger import Logger from kivy.properties import ObjectProperty, StringProperty from kivy.uix.floatlayout import FloatLayout from kivy.utils import platform from kivymd.bottomsheet import MDListBottomSheet from kivymd.theming import ThemeManager from raven import Client from requests.exceptions import ConnectionError from etherollapp.etheroll.constants import ENV_PATH from etherollapp.etheroll.flashqrcode import FlashQrCodeScreen from etherollapp.etheroll.settings import Settings from etherollapp.etheroll.settings_screen import SettingsScreen from etherollapp.etheroll.switchaccount import SwitchAccountScreen from etherollapp.etheroll.ui_utils import Dialog, load_kv_from_py from etherollapp.etheroll.utils import run_in_thread from etherollapp.osc.osc_app_server import OscAppServer from etherollapp.sentry_utils import configure_sentry from etherollapp.service.utils import start_roll_polling_service load_kv_from_py(__file__) class Controller(FloatLayout): current_account = ObjectProperty(allownone=True) current_account_string = StringProperty(allownone=True) def __init__(self, **kwargs): super().__init__(**kwargs) self.disabled = True Clock.schedule_once(self._after_init) self._account_passwords = {} def _after_init(self, dt): Clock.schedule_once(self.preload_account_utils) self.bind_roll_button() self.bind_current_account_string() self.bind_chances_roll_under() self.bind_wager_property() self.bind_profit_property() self.bind_screen_manager_on_current_screen() self.bind_keyboard() self.register_screens() def on_keyboard(self, window, key, *args): if key == 27: if Dialog.dialogs: Dialog.dismiss_all_dialogs() return True from etherollapp.etheroll.ui_utils import SubScreen current_screen = self.screen_manager.current_screen if isinstance(current_screen, SubScreen): current_screen.on_back() return True return False def on_current_account(self, instance, current_account): self.current_account_string = ( current_account and f'0x{current_account.address.hex()}') @property def pyetheroll(self): from pyetheroll.etheroll import Etheroll chain_id = Settings.get_stored_network() return Etheroll.get_or_create(chain_id) @property def account_utils(self): from eth_accounts.account_utils import AccountUtils keystore_dir = Settings.get_keystore_path() return AccountUtils.get_or_create(keystore_dir) def preload_account_utils(self, dt): account_utils = self.account_utils self.disabled = False return account_utils def bind_wager_property(self): roll_under_recap = self.roll_screen.ids.roll_under_recap_id bet_size = self.roll_screen.ids.bet_size_id bet_size_input = bet_size.ids.bet_size_input_id bet_size_input.bind(text=roll_under_recap.setter('wager_property')) roll_under_recap.wager_property = bet_size_input.text def bind_chances_roll_under(self): roll_under_recap = self.roll_screen.ids.roll_under_recap_id chance_of_winning = self.roll_screen.ids.chance_of_winning_id chances_input = chance_of_winning.ids.chances_input_id chances_input.bind(text=roll_under_recap.setter('roll_under_property')) roll_under_recap.roll_under_property = chances_input.text def bind_roll_button(self): roll_button = self.roll_screen.ids.roll_button_id roll_button.bind(on_release=lambda instance: self.roll()) def bind_current_account_string(self): roll_screen = self.roll_screen self.bind( current_account_string=roll_screen.setter('current_account_string') ) def bind_keyboard(self): from kivy.core.window import Window Window.bind(on_keyboard=self.on_keyboard) def bind_profit_property(self): chance_of_winning = self.roll_screen.ids.chance_of_winning_id chances_input = chance_of_winning.ids.chances_input_id chances_input.bind( text=lambda instance, value: self.update_profit_property()) bet_size = self.roll_screen.ids.bet_size_id bet_size_input = bet_size.ids.bet_size_input_id bet_size_input.bind( text=lambda instance, value: self.update_profit_property()) self.update_profit_property()
MIT License
tensorflow/tensor2tensor
tensor2tensor/models/image_transformer.py
imagetransformer_bas8l_8h_big_uncond_dr03_imgnet
python
def imagetransformer_bas8l_8h_big_uncond_dr03_imgnet(): hparams = imagetransformer_base_14l_8h_big_dr01() hparams.num_decoder_layers = 8 hparams.num_heads = 8 hparams.hidden_size = 512 hparams.filter_size = 2048 hparams.layer_prepostprocess_dropout = 0.3 return hparams
big 1d model for conditional image generation.
https://github.com/tensorflow/tensor2tensor/blob/c22a226704e5887862bf9edd9f269892c9016ad4/tensor2tensor/models/image_transformer.py#L857-L866
from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy from tensor2tensor.layers import common_hparams from tensor2tensor.layers import common_image_attention as cia from tensor2tensor.layers import common_layers from tensor2tensor.layers import modalities from tensor2tensor.utils import registry from tensor2tensor.utils import t2t_model import tensorflow.compat.v1 as tf @registry.register_model class Imagetransformer(t2t_model.T2TModel): def body(self, features): hparams = copy.copy(self._hparams) targets = features["targets"] if (hparams.likelihood == cia.DistributionType.DMOL and hparams.num_channels != 1): raise ValueError("When using DMOL for the likelihood, bottom function " " must be identity and num_channels must be 1.") if (not tf.get_variable_scope().reuse and hparams.mode != tf.estimator.ModeKeys.PREDICT): tf.summary.image("targets", tf.to_float(targets), max_outputs=1) losses = [] decoder_input, rows, cols = cia.prepare_decoder(targets, hparams) if not hparams.unconditional: inputs = features["inputs"] decoder_input += tf.reshape( inputs, [common_layers.shape_list(targets)[0], 1, 1, hparams.hidden_size]) decoder_output = cia.transformer_decoder_layers( decoder_input, None, hparams.num_decoder_layers or hparams.num_hidden_layers, hparams, attention_type=hparams.dec_attention_type, losses=losses, name="decoder") output = cia.create_output(decoder_output, rows, cols, targets, hparams) if losses: return output, {"extra_loss": tf.add_n(losses)} else: return output def loss(self, logits, features): if self._hparams.likelihood == cia.DistributionType.DMOL: return common_layers.dml_loss(logits, features["targets"]) return super(Imagetransformer, self).loss(logits, features) def sample(self, features): if self._hparams.likelihood == cia.DistributionType.DMOL: logits, losses = self(features) samples = common_layers.sample_from_discretized_mix_logistic( logits, seed=None) return samples, logits, losses return super(Imagetransformer, self).sample(features) def _slow_greedy_infer(self, features, decode_length): if self._hparams.likelihood == cia.DistributionType.DMOL: raise NotImplementedError("Decoding is not currently available for DMOL.") return super(Imagetransformer, self)._slow_greedy_infer(features, decode_length) @registry.register_model class ImagetransformerMoe(t2t_model.T2TModel): @staticmethod def use_body_sharded(): return True def body_sharded(self, sharded_features): dp = self._data_parallelism hparams = copy.copy(self._hparams) inputs = sharded_features["inputs"] targets = sharded_features["targets"] q_padding, kv_padding = "VALID", "VALID" if hparams.q_filter_width > 1: q_padding = "LEFT" if hparams.kv_filter_width > 1: kv_padding = "LEFT" decoder_input, rows, cols = dp(cia.prepare_decoder_inputs, inputs, targets, hparams) del q_padding, kv_padding decoder_output, extra_loss = cia.transformer_layers_sharded( dp, self._ps_devices, decoder_input, hparams.num_hidden_layers, hparams, self_attention_bias=None, enc_output=None, attention_type=hparams.dec_attention_type, name="decoder") output = dp(cia.create_output, decoder_output, rows, cols, targets, hparams) return output, extra_loss @registry.register_hparams def image_transformer_base(): hparams = common_hparams.basic_params1() hparams.hidden_size = 512 hparams.batch_size = 4 hparams.max_length = 3075 hparams.dropout = 0.0 hparams.clip_grad_norm = 0. hparams.optimizer_adam_epsilon = 1e-9 hparams.learning_rate_decay_scheme = "noam" hparams.learning_rate = 0.1 hparams.learning_rate_warmup_steps = 4000 hparams.initializer_gain = 0.2 hparams.num_hidden_layers = 6 hparams.initializer = "uniform_unit_scaling" hparams.weight_decay = 0.0 hparams.optimizer_adam_beta1 = 0.9 hparams.optimizer_adam_beta2 = 0.98 hparams.label_smoothing = 0.0 hparams.bottom["targets"] = modalities.image_channel_embeddings_bottom hparams.top["targets"] = modalities.identity_top hparams.norm_type = "layer" hparams.layer_prepostprocess_dropout = 0.0 hparams.add_hparam("filter_size", 512) hparams.add_hparam("num_heads", 8) hparams.add_hparam("attention_key_channels", 0) hparams.add_hparam("attention_value_channels", 0) hparams.add_hparam("ffn_layer", "conv_hidden_relu") hparams.add_hparam("attention_dropout", 0.0) hparams.add_hparam("relu_dropout", 0.0) hparams.add_hparam("pos", "timing") hparams.add_hparam("nbr_decoder_problems", 1) hparams.add_hparam("num_output_layers", 3) hparams.add_hparam("block_size", 1) hparams.add_hparam("gap_sizes", [2, 4, 8, 16, 32, 64, 2, 4, 8, 16, 32, 64]) hparams.add_hparam("img_len", 32) hparams.add_hparam("num_channels", 3) hparams.add_hparam("local_and_global_att", False) hparams.add_hparam("block_length", 256) hparams.add_hparam("block_width", 128) hparams.add_hparam("num_encoder_layers", 4) hparams.add_hparam("num_decoder_layers", 12) hparams.add_hparam("dec_attention_type", cia.AttentionType.LOCAL_1D) hparams.add_hparam("block_raster_scan", False) hparams.add_hparam("q_filter_width", 1) hparams.add_hparam("kv_filter_width", 1) hparams.add_hparam("likelihood", cia.DistributionType.CAT) hparams.add_hparam("unconditional", False) hparams.add_hparam("num_mixtures", 10) hparams.add_hparam("moe_overhead_train", 1.0) hparams.add_hparam("moe_overhead_eval", 2.0) hparams.moe_num_experts = 8 hparams.moe_loss_coef = 1e-3 hparams.add_hparam("shared_rel", False) return hparams @registry.register_hparams def imagetransformer_base(): hparams = image_transformer_base() return hparams @registry.register_hparams def imagetransformer_cifar10_base(): hparams = image_transformer_base() hparams.batch_size = 4 hparams.num_heads = 4 hparams.num_decoder_layers = 12 hparams.block_length = 256 hparams.hidden_size = 512 hparams.filter_size = 2048 hparams.learning_rate = 0.5 hparams.learning_rate_warmup_steps = 4000 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.layer_prepostprocess_dropout = 0.3 hparams.unconditional = True return hparams @registry.register_hparams def imagetransformer_cifar10_base_dmol(): hparams = image_transformer_base() hparams.likelihood = cia.DistributionType.DMOL hparams.num_channels = 1 hparams.bottom["targets"] = modalities.image_channel_compress_targets_bottom hparams.top["targets"] = modalities.identity_top hparams.num_heads = 8 hparams.batch_size = 8 hparams.sampling_method = "random" hparams.layer_preprocess_sequence = "n" hparams.layer_postprocess_sequence = "da" hparams.summarize_grads = True hparams.hidden_size = 256 hparams.filter_size = 512 hparams.attention_key_channels = 512 hparams.attention_value_channels = 512 hparams.num_decoder_layers = 12 hparams.layer_prepostprocess_dropout = 0.1 hparams.learning_rate = 0.1 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.pos = "emb" hparams.unconditional = True return hparams @registry.register_hparams def imagetransformer_base_tpu(): hparams = imagetransformer_bas8l_8h_big_uncond_dr03_imgnet() update_hparams_for_tpu(hparams) hparams.batch_size = 4 hparams.num_heads = 4 hparams.num_decoder_layers = 12 hparams.block_length = 128 hparams.hidden_size = 512 hparams.filter_size = 2048 hparams.learning_rate = 0.2 hparams.learning_rate_warmup_steps = 6000 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.layer_prepostprocess_dropout = 0.3 return hparams @registry.register_hparams def imagetransformer_base_imagenet_tpu(): hparams = imagetransformer_base_tpu() hparams.batch_size = 4 hparams.num_heads = 4 hparams.num_decoder_layers = 12 hparams.block_length = 128 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.layer_prepostprocess_dropout = 0.1 return hparams @registry.register_hparams def imagetransformer_imagenet32_base(): hparams = imagetransformer_cifar10_base() hparams.batch_size = 4 hparams.layer_prepostprocess_dropout = 0.1 return hparams @registry.register_hparams def imagetransformer_base_rel(): hparams = imagetransformer_base() hparams.dec_attention_type = cia.AttentionType.RELATIVE_LOCAL_1D return hparams @registry.register_hparams def imagetransformer_sep_channels(): hparams = imagetransformer_base() hparams.num_heads = 4 hparams.attention_key_channels = hparams.attention_value_channels = 0 hparams.hidden_size = 256 hparams.filter_size = 512 hparams.num_hidden_layers = 6 return hparams @registry.register_hparams def imagetransformer_sep_channels_8l(): hparams = imagetransformer_base() hparams.num_heads = 4 hparams.attention_key_channels = hparams.attention_value_channels = 0 hparams.hidden_size = 256 hparams.filter_size = 256 hparams.num_hidden_layers = 8 hparams.sampling_method = "random" return hparams @registry.register_hparams def imagetransformer_sep_channels_8l_multipos3(): hparams = imagetransformer_sep_channels_8l() hparams.q_filter_width = 3 hparams.kv_filter_width = 3 return hparams @registry.register_hparams def imagetransformer_base_8l_8h_big_cond_dr03_dan(): hparams = imagetransformer_sep_channels_8l() hparams.block_width = 256 hparams.block_length = 256 hparams.hidden_size = 512 hparams.num_heads = 8 hparams.filter_size = 2048 hparams.batch_size = 4 hparams.max_length = 3075 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.num_decoder_layers = 8 hparams.layer_prepostprocess_dropout = 0.3 return hparams @registry.register_hparams def imagetransformer_base_10l_8h_big_uncond_dr03_dan_64(): hparams = imagetransformer_base_10l_8h_big_cond_dr03_dan() hparams.unconditional = True hparams.max_length = 14000 hparams.batch_size = 1 hparams.img_len = 64 hparams.layer_prepostprocess_dropout = 0.1 return hparams @registry.register_hparams def imagetransformerpp_sep_channels_8l_8h(): hparams = imagetransformer_base() hparams.likelihood = cia.DistributionType.DMOL hparams.num_channels = 1 hparams.bottom["targets"] = modalities.image_channel_compress_targets_bottom hparams.top["targets"] = modalities.identity_top hparams.num_heads = 8 hparams.batch_size = 4 hparams.attention_key_channels = hparams.attention_value_channels = 0 hparams.hidden_size = 512 hparams.filter_size = 512 hparams.num_hidden_layers = 8 hparams.sampling_method = "random" hparams.layer_preprocess_sequence = "n" hparams.layer_postprocess_sequence = "da" hparams.summarize_grads = True hparams.learning_rate = 0.1 return hparams @registry.register_hparams def imagetransformerpp_base_8l_8h_big_cond_dr03_dan(): hparams = imagetransformerpp_sep_channels_8l_8h() hparams.hidden_size = 512 hparams.num_heads = 8 hparams.filter_size = 2048 hparams.batch_size = 4 hparams.max_length = 3075 hparams.layer_prepostprocess_dropout = 0.3 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.summarize_grads = True hparams.learning_rate = 0.01 return hparams @registry.register_hparams def imagetransformerpp_base_8l_8h_big_cond_dr03_dan_a(): hparams = imagetransformerpp_base_8l_8h_big_cond_dr03_dan() hparams.learning_rate = 0.1 return hparams @registry.register_hparams def imagetransformerpp_base_10l_8h_big_uncond_dr03_dan(): hparams = imagetransformerpp_base_8l_8h_big_cond_dr03_dan_a() hparams.unconditional = True hparams.num_decoder_layers = 10 return hparams @registry.register_hparams def imagetransformerpp_base_10l_8h_big_uncond_dr03_dan_a(): hparams = imagetransformerpp_base_10l_8h_big_uncond_dr03_dan() hparams.learning_rate = 0.01 return hparams @registry.register_hparams def imagetransformerpp_base_10l_8h_big_uncond_dr03_dan_b(): hparams = imagetransformerpp_base_10l_8h_big_uncond_dr03_dan() hparams.learning_rate = 0.1 hparams.hidden_size = 256 hparams.attention_key_channels = 512 hparams.attention_value_channels = 512 hparams.filter_size = 1024 return hparams @registry.register_hparams def imagetransformerpp_base_10l_8h_big_uncond_dr03_dan_g(): hparams = imagetransformerpp_base_10l_8h_big_uncond_dr03_dan_b() hparams.filter_size = 512 hparams.layer_prepostprocess_dropout = 0.1 hparams.learning_rate = 0.1 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.pos = "emb" return hparams @registry.register_hparams def imagetransformerpp_base_12l_8h_big_uncond_dr03_dan_k(): hparams = imagetransformerpp_base_10l_8h_big_uncond_dr03_dan_g() hparams.num_decoder_layers = 12 return hparams @registry.register_hparams def imagetransformerpp_base_12l_8h_big_uncond_dr03_dan_l(): hparams = imagetransformerpp_base_10l_8h_big_uncond_dr03_dan_g() hparams.num_decoder_layers = 12 hparams.clip_grad_norm = 40. return hparams @registry.register_hparams def imagetransformerpp_base_12l_8h_big_uncond_dr03_dan_m(): hparams = imagetransformerpp_base_12l_8h_big_uncond_dr03_dan_k() hparams.batch_size = 8 return hparams @registry.register_hparams def imagetransformerpp_base_12l_8h_big_uncond_dr03_dan_m_rel(): hparams = imagetransformerpp_base_12l_8h_big_uncond_dr03_dan_k() hparams.batch_size = 8 hparams.dec_attention_type = cia.AttentionType.RELATIVE_LOCAL_1D return hparams @registry.register_hparams def imagetransformerpp_base_12l_8h_big_uncond_dr03_dan_m_relsh(): hparams = imagetransformerpp_base_12l_8h_big_uncond_dr03_dan_m_rel() hparams.shared_rel = True return hparams @registry.register_hparams def imagetransformerpp_base_14l_8h_big_uncond_dr03_dan_p(): hparams = imagetransformerpp_base_12l_8h_big_uncond_dr03_dan_l() hparams.num_decoder_layers = 14 hparams.batch_size = 8 hparams.layer_prepostprocess_dropout = 0.2 return hparams @registry.register_hparams def imagetransformerpp_base_12l_8h_big_uncond_dr03_dan_m_bs1(): hparams = imagetransformerpp_base_12l_8h_big_uncond_dr03_dan_m() hparams.batch_size = 1 return hparams @registry.register_hparams def imagetransformerpp_base_14l_8h_big_uncond_dr03_dan_p_bs1(): hparams = imagetransformerpp_base_14l_8h_big_uncond_dr03_dan_p() hparams.batch_size = 1 return hparams @registry.register_hparams def imagetransformerpp_base_5l_8h_big_uncond_dr00_dan_g_bs1(): hparams = imagetransformerpp_base_10l_8h_big_uncond_dr03_dan_g() hparams.max_length = 66000 hparams.batch_size = 1 hparams.num_decoder_layers = 5 hparams.hidden_size = 128 hparams.filter_size = 128 hparams.attention_key_channels = 64 hparams.attention_value_channels = 64 hparams.layer_prepostprocess_dropout = 0.0 return hparams @registry.register_hparams def imagetransformerpp_base_5l_8h_dr00_dan_g_bs1_adafactor(): hparams = imagetransformerpp_base_5l_8h_big_uncond_dr00_dan_g_bs1() hparams.optimizer = "Adafactor" hparams.learning_rate_schedule = "rsqrt_decay" return hparams @registry.register_hparams def imagetransformerpp_base_6l_8h_dr00_dan_g_bs1_adafactor(): hparams = imagetransformerpp_base_5l_8h_dr00_dan_g_bs1_adafactor() hparams.num_decoder_layers = 6 return hparams @registry.register_hparams def imagetransformerpp_base_14l_8h_big_uncond_dr03_dan_eval(): hparams = imagetransformerpp_base_12l_8h_big_uncond_dr03_dan_l() hparams.num_decoder_layers = 14 hparams.batch_size = 8 return hparams @registry.register_hparams def imagetransformer_base_8l_8h_big_cond_dr03_dan_128(): hparams = imagetransformer_base_8l_8h_big_cond_dr03_dan() hparams.block_width = 128 hparams.block_length = 128 return hparams @registry.register_hparams def imagetransformer_base_10l_8h_big_cond_dr03_dan(): hparams = imagetransformer_base_8l_8h_big_cond_dr03_dan() hparams.num_decoder_layers = 10 return hparams @registry.register_hparams def imagetransformer_base_10l_8h_big_uncond_dr03_dan(): hparams = imagetransformer_base_10l_8h_big_cond_dr03_dan() hparams.num_decoder_layers = 10 return hparams @registry.register_hparams def imagetransformer_base_8l_8h_big_cond_dr03_dan_dilated(): hparams = imagetransformer_base_8l_8h_big_cond_dr03_dan() hparams.gap_sizes = [0, 16, 64, 0, 16, 64, 128, 0] hparams.dec_attention_type = cia.AttentionType.DILATED hparams.block_length = 128 hparams.block_width = 128 hparams.add_hparam("num_memory_blocks", 1) return hparams @registry.register_hparams def imagetransformer_base_8l_8h_big_cond_dr03_dan_dilated_b(): hparams = imagetransformer_base_8l_8h_big_cond_dr03_dan_dilated() hparams.block_width = 64 hparams.num_memory_blocks = 2 return hparams @registry.register_hparams def imagetransformer_base_8l_8h_big_cond_dr03_dan_dilated_c(): hparams = imagetransformer_base_8l_8h_big_cond_dr03_dan_dilated() hparams.block_width = 32 hparams.num_memory_blocks = 4 return hparams @registry.register_hparams def imagetransformer_base_8l_8h_big_cond_dr03_dan_dilated_d(): hparams = imagetransformer_base_8l_8h_big_cond_dr03_dan_dilated() hparams.gap_sizes = [0, 16, 64, 16, 64, 128, 256, 0] return hparams @registry.register_hparams def imagetransformer_base_12l_8h_big(): hparams = imagetransformer_sep_channels_8l_8h() hparams.filter_size = 1024 hparams.num_decoder_layers = 12 hparams.batch_size = 1 hparams.hidden_size = 512 hparams.learning_rate_warmup_steps = 4000 hparams.sampling_method = "random" hparams.beam_size = 1 hparams.block_width = 256 return hparams @registry.register_hparams def imagetransformer1d_base_8l_64by64(): hparams = image_transformer_base() hparams.num_heads = 8 hparams.hidden_size = 512 hparams.filter_size = 2048 hparams.num_decoder_layers = 8 hparams.batch_size = 1 hparams.block_length = 512 hparams.block_width = 768 hparams.layer_prepostprocess_dropout = 0.1 hparams.max_length = 14000 hparams.unconditional = int(False) return hparams @registry.register_hparams def imagetransformer1d_base_12l_64by64(): hparams = image_transformer_base() hparams.num_heads = 8 hparams.hidden_size = 512 hparams.filter_size = 2048 hparams.num_decoder_layers = 12 hparams.batch_size = 1 hparams.block_length = 512 hparams.block_width = 768 hparams.layer_prepostprocess_dropout = 0.1 hparams.max_length = 14000 hparams.unconditional = int(False) return hparams @registry.register_hparams def imagetransformer_base_14l_8h_big(): hparams = imagetransformer_base_12l_8h_big() hparams.num_decoder_layers = 14 return hparams @registry.register_hparams def imagetransformer_base_14l_8h_big_dr01(): hparams = imagetransformer_base_14l_8h_big() hparams.layer_prepostprocess_dropout = 0.1 return hparams @registry.register_hparams def imagetransformer_base_12l_8h_big_uncond(): hparams = imagetransformer_base_12l_8h_big() hparams.unconditional = True return hparams @registry.register_hparams def imagetransformer_base_14l_8h_big_uncond(): hparams = imagetransformer_base_12l_8h_big_uncond() hparams.num_decoder_layers = 14 return hparams @registry.register_hparams def imagetransformer_sep_channels_12l_16h_imagenet_large(): hparams = imagetransformer_sep_channels_8l_8h() hparams.num_hidden_layers = 12 hparams.batch_size = 1 hparams.filter_size = 2048 hparams.num_heads = 16 hparams.learning_rate_warmup_steps = 16000 hparams.sampling_method = "random" hparams.learning_rate = 0.1 return hparams @registry.register_hparams def imagetransformer_sep_channels_16l_16h_imgnet_lrg_loc(): hparams = imagetransformer_sep_channels_12l_16h_imagenet_large() hparams.num_hidden_layers = 16 hparams.local_attention = True hparams.batch_size = 1 hparams.block_length = 256 return hparams @registry.register_hparams def imagetransformer_sep_channels_16l_16h_imgnet_lrg_loc_128(): hparams = imagetransformer_sep_channels_12l_16h_imagenet_large() hparams.num_hidden_layers = 16 hparams.local_attention = True hparams.batch_size = 1 hparams.block_length = 128 return hparams @registry.register_hparams def imagetransformer_sep_output_channels_8l_local_and_global_att(): hparams = imagetransformer_sep_channels_8l() hparams.sampling_method = "random" hparams.local_and_global_att = True return hparams @registry.register_hparams def imagetransformer_base_10l_16h_big_uncond_dr01_imgnet(): hparams = imagetransformer_base_14l_8h_big_dr01() hparams.num_decoder_layers = 10 hparams.num_heads = 16 hparams.hidden_size = 1024 hparams.filter_size = 4096 hparams.batch_size = 1 hparams.layer_prepostprocess_dropout = 0.1 return hparams @registry.register_hparams def imagetransformer_base_10l_16h_big_dr01_imgnet(): hparams = imagetransformer_base_14l_8h_big_dr01() hparams.num_decoder_layers = 10 hparams.num_heads = 16 hparams.hidden_size = 1024 hparams.filter_size = 4096 hparams.batch_size = 1 hparams.unconditional = False hparams.layer_prepostprocess_dropout = 0.1 return hparams @registry.register_hparams def imagetransformer_sep_channels_8l_8h(): hparams = imagetransformer_base() hparams.num_heads = 8 hparams.batch_size = 1 hparams.attention_key_channels = hparams.attention_value_channels = 0 hparams.hidden_size = 512 hparams.filter_size = 512 hparams.num_hidden_layers = 8 hparams.sampling_method = "random" return hparams @registry.register_hparams def imagetransformer_sep_channels_8l_8h_local_and_global_att(): hparams = imagetransformer_sep_channels_8l_8h() hparams.num_heads = 8 hparams.batch_size = 1 hparams.attention_key_channels = hparams.attention_value_channels = 0 hparams.hidden_size = 256 hparams.filter_size = 256 hparams.num_hidden_layers = 4 hparams.sampling_method = "random" hparams.local_and_global_att = True return hparams @registry.register_hparams
Apache License 2.0
tempocollaboration/timeevolvingmpo
time_evolving_mpo/dynamics.py
Dynamics.shape
python
def shape(self) -> ndarray: return copy(self._shape)
Numpy shape of the states.
https://github.com/tempocollaboration/timeevolvingmpo/blob/36fe2a95499732c27f3a11edb42c6ad2e8190a8e/time_evolving_mpo/dynamics.py#L108-L110
from typing import Dict, List, Optional, Text, Tuple from copy import copy import numpy as np from numpy import ndarray from time_evolving_mpo.base_api import BaseAPIClass from time_evolving_mpo.config import NpDtype, NpDtypeReal from time_evolving_mpo.file_formats import assert_tempo_dynamics_dict from time_evolving_mpo.util import save_object, load_object class Dynamics(BaseAPIClass): def __init__( self, times: Optional[List[float]] = None, states: Optional[List[ndarray]] = None, name: Optional[Text] = None, description: Optional[Text] = None, description_dict: Optional[Dict] = None) -> None: if times is None: times = [] if states is None: states = [] assert isinstance(times, list), "Argument `times` must be a list." assert isinstance(states, list), "Argument `states` must be a list." assert len(times) == len(states), "Lists `times` and `states` must have the same length." self._times = [] self._states = [] self._expectation_operators = [] self._expectation_lists = [] self._shape = None for time, state in zip(times, states): self.add(time, state) super().__init__(name, description, description_dict) def __str__(self) -> Text: ret = [] ret.append(super().__str__()) ret.append(" length = {} timesteps \n".format(len(self))) if len(self) > 0: ret.append(" min time = {} \n".format( np.min(self._times))) ret.append(" max time = {} \n".format( np.max(self._times))) return "".join(ret) def __len__(self) -> int: return len(self._times) def _sort(self) -> None: tuples = zip(self._times, self._states) __times, __states = zip(*sorted(tuples)) self._times = list(__times) self._states = list(__states) @property def times(self) -> ndarray: return np.array(self._times, dtype=NpDtypeReal) @property def states(self) -> ndarray: return np.array(self._states, dtype=NpDtype) @property
Apache License 2.0
lanpa/tensorboardx
tensorboardX/beholder/beholder.py
Beholder.update
python
def update(self, trainable=None, arrays=None, frame=None): new_config = self._get_config() if True or self._enough_time_has_passed(self.previous_config['FPS']): self.last_update_time = time.time() final_image = self._update_frame( trainable, arrays, frame, new_config) self._update_recording(final_image, new_config)
Creates a frame and writes it to disk. Args: trainable: a list of namedtuple (tensors, name). arrays: a list of namedtuple (tensors, name). frame: lalala
https://github.com/lanpa/tensorboardx/blob/054f1f3aa5e8313be42450f5e9ce1fc1799252a7/tensorboardX/beholder/beholder.py#L163-L178
from __future__ import absolute_import from __future__ import division from __future__ import print_function from ..proto.summary_pb2 import Summary from ..proto.summary_pb2 import SummaryMetadata from ..proto.tensor_pb2 import TensorProto from ..proto.tensor_shape_pb2 import TensorShapeProto import os import time import numpy as np from .file_system_tools import read_pickle, write_pickle, write_file from .shared_config import PLUGIN_NAME, TAG_NAME, SUMMARY_FILENAME, DEFAULT_CONFIG, CONFIG_FILENAME, SUMMARY_COLLECTION_KEY_NAME, SECTION_INFO_FILENAME from . import video_writing class Beholder(object): def __init__(self, logdir): self.PLUGIN_LOGDIR = logdir + '/plugins/' + PLUGIN_NAME self.is_recording = False self.video_writer = video_writing.VideoWriter( self.PLUGIN_LOGDIR, outputs=[video_writing.FFmpegVideoOutput, video_writing.PNGVideoOutput]) self.last_image_shape = [] self.last_update_time = time.time() self.config_last_modified_time = -1 self.previous_config = dict(DEFAULT_CONFIG) if not os.path.exists(self.PLUGIN_LOGDIR + '/config.pkl'): os.makedirs(self.PLUGIN_LOGDIR) write_pickle(DEFAULT_CONFIG, '{}/{}'.format(self.PLUGIN_LOGDIR, CONFIG_FILENAME)) def _get_config(self): filename = '{}/{}'.format(self.PLUGIN_LOGDIR, CONFIG_FILENAME) modified_time = os.path.getmtime(filename) if modified_time != self.config_last_modified_time: config = read_pickle(filename, default=self.previous_config) self.previous_config = config else: config = self.previous_config self.config_last_modified_time = modified_time return config def _write_summary(self, frame): path = '{}/{}'.format(self.PLUGIN_LOGDIR, SUMMARY_FILENAME) smd = SummaryMetadata() tensor = TensorProto( dtype='DT_FLOAT', float_val=frame.reshape(-1).tolist(), tensor_shape=TensorShapeProto( dim=[TensorShapeProto.Dim(size=frame.shape[0]), TensorShapeProto.Dim(size=frame.shape[1]), TensorShapeProto.Dim(size=frame.shape[2])] ) ) summary = Summary(value=[Summary.Value( tag=TAG_NAME, metadata=smd, tensor=tensor)]).SerializeToString() write_file(summary, path) @staticmethod def stats(tensor_and_name): imgstats = [] for (img, name) in tensor_and_name: immax = img.max() immin = img.min() imgstats.append( { 'height': img.shape[0], 'max': str(immax), 'mean': str(img.mean()), 'min': str(immin), 'name': name, 'range': str(immax - immin), 'shape': str((img.shape[1], img.shape[2])) }) return imgstats def _get_final_image(self, config, trainable=None, arrays=None, frame=None): if config['values'] == 'frames': final_image = frame elif config['values'] == 'arrays': final_image = np.concatenate([arr for arr, _ in arrays]) stat = self.stats(arrays) write_pickle( stat, '{}/{}'.format(self.PLUGIN_LOGDIR, SECTION_INFO_FILENAME)) elif config['values'] == 'trainable_variables': final_image = np.concatenate([arr for arr, _ in trainable]) stat = self.stats(trainable) write_pickle( stat, '{}/{}'.format(self.PLUGIN_LOGDIR, SECTION_INFO_FILENAME)) if len(final_image.shape) == 2: final_image = np.expand_dims(final_image, -1) return final_image def _enough_time_has_passed(self, FPS): if FPS == 0: return False else: earliest_time = self.last_update_time + (1.0 / FPS) return time.time() >= earliest_time def _update_frame(self, trainable, arrays, frame, config): final_image = self._get_final_image(config, trainable, arrays, frame) self._write_summary(final_image) self.last_image_shape = final_image.shape return final_image def _update_recording(self, frame, config): should_record = config['is_recording'] if should_record: if not self.is_recording: self.is_recording = True print('Starting recording using %s', self.video_writer.current_output().name()) self.video_writer.write_frame(frame) elif self.is_recording: self.is_recording = False self.video_writer.finish() print('Finished recording')
MIT License
scanse/sweep-3d-scanner
scanner/scan_utils.py
polar_to_cartesian
python
def polar_to_cartesian(radius, angle_deg): theta = np.deg2rad(angle_deg) x = radius * np.cos(theta) y = radius * np.sin(theta) return(x, y)
Converts polar coordinate sample to cartesian coordinates :param radius: :param angle_deg:
https://github.com/scanse/sweep-3d-scanner/blob/2d245517b04ca49ea3d1238d1625fa0c993274c0/scanner/scan_utils.py#L7-L16
import argparse import numpy as np import transformations as tf
MIT License
neurodata/hyppo
hyppo/independence/_utils.py
_CheckInputs.check_dim_xy
python
def check_dim_xy(self): if self.x.ndim == 1: self.x = self.x[:, np.newaxis] elif self.x.ndim != 2: raise ValueError( "Expected a 2-D array `x`, found shape " "{}".format(self.x.shape) ) if self.y.ndim == 1: self.y = self.y[:, np.newaxis] elif self.y.ndim != 2: raise ValueError( "Expected a 2-D array `y`, found shape " "{}".format(self.y.shape) ) self._check_nd_indeptest() return self.x, self.y
Convert x and y to proper dimensions
https://github.com/neurodata/hyppo/blob/7c4df6d14c8f331ab1f26db1c8b5801a5844ebe3/hyppo/independence/_utils.py#L28-L45
import numpy as np from ..tools import check_ndarray_xy, check_reps, contains_nan, convert_xy_float64 class _CheckInputs: def __init__(self, x, y, reps=None): self.x = x self.y = y self.reps = reps def __call__(self): check_ndarray_xy(self.x, self.y) contains_nan(self.x) contains_nan(self.y) self.x, self.y = self.check_dim_xy() self.x, self.y = convert_xy_float64(self.x, self.y) self._check_min_samples() self._check_variance() if self.reps: check_reps(self.reps) return self.x, self.y
MIT License
scikit-hep/uproot4
src/uproot/model.py
class_named
python
def class_named(classname, version=None, custom_classes=None): if custom_classes is None: classes = uproot.classes where = "the 'custom_classes' dict" else: where = "uproot.classes" cls = classes.get(classname) if cls is None: raise ValueError("no class named {0} in {1}".format(classname, where)) if version is not None and isinstance(cls, DispatchByVersion): versioned_cls = cls.class_of_version(version) if versioned_cls is not None: return versioned_cls else: raise ValueError( "no class named {0} with version {1} in {2}".format( classname, version, where ) ) else: return cls
Returns a class with a given C++ (decoded) classname. If ``version`` is None, no attempt is made to find a specific version. * If the class is a :doc:`uproot.model.DispatchByVersion`, then this is object returned. * If the class is a versionless model, then this is the object returned. If ``version`` is an integer, an attempt is made to find the specific version. * If the class is a :doc:`uproot.model.DispatchByVersion`, then it is queried for a versioned model. * If the class is a versionless model, then this is the object returned. If ``custom_classes`` are provided, then these are searched (exclusively) for the class. If ``custom_classes`` is None, then ``uproot.classes`` is used. No classes are created if a class is not found (an error is raised).
https://github.com/scikit-hep/uproot4/blob/e0db77a2a10d701cb48f72e9f0d7867e1589572d/src/uproot/model.py#L242-L287
from __future__ import absolute_import import re import sys import weakref import numpy import uproot bootstrap_classnames = [ "TStreamerInfo", "TStreamerElement", "TStreamerArtificial", "TStreamerBase", "TStreamerBasicPointer", "TStreamerBasicType", "TStreamerLoop", "TStreamerObject", "TStreamerObjectAny", "TStreamerObjectAnyPointer", "TStreamerObjectPointer", "TStreamerSTL", "TStreamerSTLstring", "TStreamerString", "TList", "TObjArray", "TClonesArray", "TObjString", ] never_from_streamers = [ "TString", "TList", ] np_uint8 = numpy.dtype("u1") def bootstrap_classes(): import uproot.models.TList import uproot.models.TObjArray import uproot.models.TObjString import uproot.streamers custom_classes = {} for classname in bootstrap_classnames: custom_classes[classname] = uproot.classes[classname] return custom_classes def reset_classes(): if uproot._util.py2: reload = __builtins__["reload"] else: from importlib import reload uproot.classes = {} uproot.unknown_classes = {} reload(uproot.streamers) reload(uproot.models.TObject) reload(uproot.models.TString) reload(uproot.models.TArray) reload(uproot.models.TNamed) reload(uproot.models.TList) reload(uproot.models.THashList) reload(uproot.models.TObjArray) reload(uproot.models.TObjString) reload(uproot.models.TAtt) reload(uproot.models.TDatime) reload(uproot.models.TRef) reload(uproot.models.TTable) reload(uproot.models.TTree) reload(uproot.models.TBranch) reload(uproot.models.TLeaf) reload(uproot.models.TBasket) reload(uproot.models.RNTuple) reload(uproot.models.TH) reload(uproot.models.TGraph) _classname_regularize = re.compile(r"\s*(<|>|::)\s*") _classname_encode_pattern = re.compile(br"[^a-zA-Z0-9]+") _classname_decode_antiversion = re.compile(br".*_([0-9a-f][0-9a-f])+_v([0-9]+)$") _classname_decode_version = re.compile(br".*_v([0-9]+)$") _classname_decode_pattern = re.compile(br"_(([0-9a-f][0-9a-f])+)_") if uproot._util.py2: def _classname_decode_convert(hex_characters): g = hex_characters.group(1) return b"".join( chr(int(g[i : i + 2], 16)) for i in uproot._util.range(0, len(g), 2) ) def _classname_encode_convert(bad_characters): g = bad_characters.group(0) return b"_" + b"".join("{0:02x}".format(ord(x)).encode() for x in g) + b"_" else: def _classname_decode_convert(hex_characters): g = hex_characters.group(1) return bytes(int(g[i : i + 2], 16) for i in uproot._util.range(0, len(g), 2)) def _classname_encode_convert(bad_characters): g = bad_characters.group(0) return b"_" + b"".join("{0:02x}".format(x).encode() for x in g) + b"_" def classname_regularize(classname): if classname is None: return classname else: return re.sub(_classname_regularize, r"\1", classname) def classname_decode(encoded_classname): if encoded_classname.startswith("Unknown_"): raw = encoded_classname[8:].encode() elif encoded_classname.startswith("Model_"): raw = encoded_classname[6:].encode() else: raise ValueError("not an encoded classname: {0}".format(encoded_classname)) if _classname_decode_antiversion.match(raw) is not None: version = None else: m = _classname_decode_version.match(raw) if m is None: version = None else: version = int(m.group(1)) raw = raw[: -len(m.group(1)) - 2] out = _classname_decode_pattern.sub(_classname_decode_convert, raw) return out.decode(), version def classname_encode(classname, version=None, unknown=False): if unknown: prefix = "Unknown_" else: prefix = "Model_" if classname.startswith(prefix): raise ValueError("classname is already encoded: {0}".format(classname)) if version is None: v = "" else: v = "_v" + str(version) raw = classname.encode() out = _classname_encode_pattern.sub(_classname_encode_convert, raw) return prefix + out.decode() + v def classname_version(encoded_classname): raw = encoded_classname.encode() if _classname_decode_antiversion.match(raw) is not None: return None else: m = _classname_decode_version.match(raw) if m is None: return None else: return int(m.group(1))
BSD 3-Clause New or Revised License
openforcefield/openff-qcsubmit
openff/qcsubmit/factories.py
BaseDatasetFactory.remove_workflow_component
python
def remove_workflow_component(self, component_name: str) -> None: components = self.get_workflow_components(component_name=component_name) if not components: raise MissingWorkflowComponentError( f"The requested component {component_name} " f"could not be removed as it was not registered." ) for component in components: self.workflow.remove(component)
Find and remove any components via its type attribute. Args: component_name: The name of the component to be gathered from the workflow. Raises: MissingWorkflowComponentError: If the component could not be found by its component name in the workflow.
https://github.com/openforcefield/openff-qcsubmit/blob/4a239bfe606b541b4088a0f95da252ed21526197/openff/qcsubmit/factories.py#L195-L215
import abc import os from typing import Dict, List, Optional, Tuple, Type, TypeVar, Union import tqdm from openff.toolkit import topology as off from openff.toolkit.utils import GLOBAL_TOOLKIT_REGISTRY, ToolkitRegistry from pydantic import Field, validator from qcportal.models.common_models import DriverEnum from typing_extensions import Literal from openff.qcsubmit.common_structures import CommonBase, Metadata, MoleculeAttributes from openff.qcsubmit.datasets import ( BasicDataset, OptimizationDataset, TorsiondriveDataset, ) from openff.qcsubmit.exceptions import ( ComponentRequirementError, DihedralConnectionError, DriverError, InvalidWorkflowComponentError, LinearTorsionError, MissingWorkflowComponentError, MolecularComplexError, ) from openff.qcsubmit.procedures import GeometricProcedure from openff.qcsubmit.serializers import deserialize, serialize from openff.qcsubmit.workflow_components import ( ComponentResult, Components, CustomWorkflowComponent, get_component, ) T = TypeVar("T", bound=BasicDataset) class BaseDatasetFactory(CommonBase, abc.ABC): type: Literal["BaseDatasetFactory"] = Field( "BaseDatasetFactory", description="The type of dataset factory which corresponds to the dataset made.", ) workflow: List[Components] = Field( [], description="The set of workflow components and their settings which will be executed in order on the input molecules to make the dataset.", ) @classmethod def from_file(cls, file_name: str): data = deserialize(file_name=file_name) return cls(**data) @classmethod @abc.abstractmethod def _dataset_type(cls) -> Type[BasicDataset]: ... def _molecular_complex_filter( self, dataset: T, molecule: off.Molecule, toolkit_registry: ToolkitRegistry ) -> None: try: dataset.filtered_molecules["MolecularComplexRemoval"].add_molecule( molecule=molecule ) except KeyError: dataset.filter_molecules( molecules=[ molecule, ], component="MolecularComplexRemoval", component_settings={}, component_provenance=self.provenance(toolkit_registry=toolkit_registry), ) def _no_dihedrals_filter( self, dataset: T, molecule: off.Molecule, toolkit_registry: ToolkitRegistry ) -> None: try: dataset.filtered_molecules["NoDihedralRemoval"].add_molecule( molecule=molecule ) except KeyError: dataset.filter_molecules( molecules=[ molecule, ], component="NoDihedralRemoval", component_settings={}, component_provenance=self.provenance(toolkit_registry=toolkit_registry), ) def provenance(self, toolkit_registry: ToolkitRegistry) -> Dict[str, str]: from openff import qcsubmit, toolkit provenance = { "openff-qcsubmit": qcsubmit.__version__, "openff-toolkit": toolkit.__version__, } for tk in toolkit_registry.registered_toolkits: if tk.__class__.__name__ != "BuiltInToolkitWrapper": provenance[tk.__class__.__name__] = tk.toolkit_version return provenance def clear_workflow(self) -> None: self.workflow = [] def add_workflow_components(self, *components: Components) -> None: for component in components: if issubclass(type(component), CustomWorkflowComponent): try: component.is_available() self.workflow.append(component) except ModuleNotFoundError as e: raise ComponentRequirementError( f"The component {component.type} could not be added to " f"the workflow due to missing requirements" ) from e else: raise InvalidWorkflowComponentError( f"Component {component} rejected as it is not a sub " f"class of CustomWorkflowComponent." ) def get_workflow_components(self, component_name: str) -> List[Components]: components = [ component for component in self.workflow if component.type.lower() == component_name.lower() ] if not components: raise MissingWorkflowComponentError( f"The requested component {component_name} " f"was not registered into the workflow." ) return components
MIT License
mingpan/generative_map
gen_map.py
GenMap._minimize_loss
python
def _minimize_loss(self, val, val_rec, z_s_mu, z_s_log_var, z_val_mu, z_val_log_var, learning_rate, val_log_var): loss_rec = loss_rec_normal(val, val_rec, log_var=val_log_var) loss_kl = loss_kl_normal(z_val_mu, z_val_log_var, z_s_mu, z_s_log_var) self.cost_1 = tf.reduce_mean(loss_rec / self.reconstruction_dim) self.cost_2 = tf.reduce_mean(loss_kl / self.latent_dim) self.cost = self.cost_1 + self.cost_2 self.train_op = tf.train.AdamOptimizer(learning_rate).minimize(self.cost)
Minimize the loss of VAE, which contains kl-divergence term and reconstruction term.
https://github.com/mingpan/generative_map/blob/bcace4533cb1576f4b39e281ee182f940d438b06/gen_map.py#L73-L80
import numpy as np import tensorflow as tf from ops import build_fnn, dcgan_decode, dcgan_encode from ops import loss_rec_normal, loss_reg_normal, loss_kl_normal class GenMap(object): def __init__(self, arch_encoder_attribute, image_size, dim_features=512, num_conv_layer=4, transfer_fct=tf.nn.relu, learning_rate=1e-3, batch_size=100, rec_log_var=0., training=False, reconstruct_size=(64, 64, 3)): self.transfer_fct = transfer_fct self.learning_rate = learning_rate self.batch_size = batch_size self.dim_attribute = arch_encoder_attribute[0] self.latent_dim = arch_encoder_attribute[-1] self.reconstruction_dim = np.prod(reconstruct_size) self.x = tf.placeholder(tf.float32, [None, self.dim_attribute], name="pose_input") y_shape = [None] y_shape.extend(image_size) self.y = tf.placeholder(tf.float32, y_shape, name="image_input") self.y_small = tf.placeholder(tf.float32, [None, self.reconstruction_dim], name="image_reconstruct") arch_encoder_x = arch_encoder_attribute.copy() arch_encoder_x[-1] = arch_encoder_x[-1] * 2 z_x_all = build_fnn(self.x, arch_encoder_x, transfer_fct, scope="encoder_x") self.z_x_mean, z_x_log_sigma_sq = tf.split(z_x_all, num_or_size_splits=2, axis=1) self.z_x_log_sigma_sq = tf.zeros_like(z_x_log_sigma_sq) epsilon_x = tf.random_normal((self.batch_size, self.latent_dim)) self.z_x = self.z_x_mean + (tf.sqrt(tf.exp(self.z_x_log_sigma_sq)) * epsilon_x) self.z_y_mean, self.z_y_log_sigma_sq = dcgan_encode(final_channel=dim_features, num_layer=num_conv_layer, inputs=self.y, output_size=self.latent_dim, activation=transfer_fct, scope="encoder_y", training=training) epsilon_y = tf.random_normal((self.batch_size, self.latent_dim)) self.z_y = self.z_y_mean + (tf.sqrt(tf.exp(self.z_y_log_sigma_sq)) * epsilon_y) y_rec_pre = dcgan_decode(inputs=self.z_y, output_size=reconstruct_size, num_layer=num_conv_layer, channel_start=dim_features, activation=transfer_fct, scope="decoder_y", training=training) self.alpha = tf.get_variable("image_variance_log", initializer=rec_log_var * tf.ones((1,)), trainable=False) self.y_rec = (1 + 2e-6) * tf.sigmoid(y_rec_pre) - 1e-6 self._minimize_loss(self.y_small, self.y_rec, self.z_x_mean, self.z_x_log_sigma_sq, self.z_y_mean, self.z_y_log_sigma_sq, learning_rate, self.alpha) self.saver = tf.train.Saver(max_to_keep=1) config = tf.ConfigProto() config.gpu_options.allow_growth = True self.sess = tf.Session(config=config) self.sess.run(tf.global_variables_initializer())
MIT License
anaconda-platform/chalmers
chalmers/commands/set.py
split_try_eval
python
def split_try_eval(item): if '=' not in item: raise TypeError("Chalmers can not set '%s' as a definition variable\n" "The parameter must contain an '='" % (item)) key, value = item.split('=', 1) return key, try_eval(value)
split key=value pairs, then eval the value
https://github.com/anaconda-platform/chalmers/blob/029ac223660f267a04047b63d6ccfefa3d012b2e/chalmers/commands/set.py#L57-L63
from __future__ import unicode_literals, print_function from argparse import RawDescriptionHelpFormatter import logging from chalmers import errors from chalmers.program import Program from chalmers.utils import try_eval, set_nested_key log = logging.getLogger('chalmers.set')
MIT License
twopirllc/pandas-ta
pandas_ta/overlap/hilo.py
hilo
python
def hilo(high, low, close, high_length=None, low_length=None, mamode=None, offset=None, **kwargs): high_length = int(high_length) if high_length and high_length > 0 else 13 low_length = int(low_length) if low_length and low_length > 0 else 21 mamode = mamode.lower() if isinstance(mamode, str) else "sma" _length = max(high_length, low_length) high = verify_series(high, _length) low = verify_series(low, _length) close = verify_series(close, _length) offset = get_offset(offset) if high is None or low is None or close is None: return m = close.size hilo = Series(npNaN, index=close.index) long = Series(npNaN, index=close.index) short = Series(npNaN, index=close.index) high_ma = ma(mamode, high, length=high_length) low_ma = ma(mamode, low, length=low_length) for i in range(1, m): if close.iloc[i] > high_ma.iloc[i - 1]: hilo.iloc[i] = long.iloc[i] = low_ma.iloc[i] elif close.iloc[i] < low_ma.iloc[i - 1]: hilo.iloc[i] = short.iloc[i] = high_ma.iloc[i] else: hilo.iloc[i] = hilo.iloc[i - 1] long.iloc[i] = short.iloc[i] = hilo.iloc[i - 1] if offset != 0: hilo = hilo.shift(offset) long = long.shift(offset) short = short.shift(offset) if "fillna" in kwargs: hilo.fillna(kwargs["fillna"], inplace=True) long.fillna(kwargs["fillna"], inplace=True) short.fillna(kwargs["fillna"], inplace=True) if "fill_method" in kwargs: hilo.fillna(method=kwargs["fill_method"], inplace=True) long.fillna(method=kwargs["fill_method"], inplace=True) short.fillna(method=kwargs["fill_method"], inplace=True) _props = f"_{high_length}_{low_length}" data = {f"HILO{_props}": hilo, f"HILOl{_props}": long, f"HILOs{_props}": short} df = DataFrame(data, index=close.index) df.name = f"HILO{_props}" df.category = "overlap" return df
Indicator: Gann HiLo (HiLo)
https://github.com/twopirllc/pandas-ta/blob/bc3b292bf1cc1d5f2aba50bb750a75209d655b37/pandas_ta/overlap/hilo.py#L8-L64
from numpy import nan as npNaN from pandas import DataFrame, Series from .ma import ma from pandas_ta.utils import get_offset, verify_series
MIT License
parashardhapola/scarf
scarf/assay.py
Assay.iter_normed_feature_wise
python
def iter_normed_feature_wise( self, cell_key: Optional[str], feat_key: Optional[str], batch_size: int, msg: Optional[str], **norm_params, ) -> Generator[pd.DataFrame, None, None]: from .utils import tqdmbar if cell_key is None: cell_idx = np.array(list(range(self.cells.N))) else: cell_idx = self.cells.active_index(cell_key) if feat_key is None: feat_idx = np.array(list(range(self.feats.N))) else: feat_idx = self.feats.active_index(feat_key) if msg is None: msg = "" data = self.normed( cell_idx=cell_idx, feat_idx=feat_idx, **norm_params, ) logger.debug("Will iterate over data of shape: ", data.shape) chunks = np.array_split( np.arange(0, data.shape[1]), int(data.shape[1] / batch_size) ) for chunk in tqdmbar(chunks, desc=msg, total=len(chunks)): yield pd.DataFrame( controlled_compute(data[:, chunk], self.nthreads), columns=feat_idx[chunk], )
This generator iterates over all the features marked by `feat_key` in batches. Args: cell_key: Name of the key (column) from cell attribute table. The data will be fetched for only those cells that have a True value in this column. If None then all the cells are used feat_key: Name of the key (column) from feature attribute table. The data will be fetched for only those features that have a True value in this column. If None then all the features are used batch_size: Number of genes to be loaded in the memory at a time. msg: Message to be displayed in the progress bar Returns:
https://github.com/parashardhapola/scarf/blob/95d27b05a07973214cf71a2e5af3c3a089791093/scarf/assay.py#L487-L537
import numpy as np import dask.array as daskarr import zarr from .metadata import MetaData from .utils import show_dask_progress, controlled_compute, logger from scipy.sparse import csr_matrix, vstack from typing import Tuple, List, Generator, Optional import pandas as pd __all__ = ["Assay", "RNAassay", "ATACassay", "ADTassay"] def norm_dummy(_, counts: daskarr) -> daskarr: return counts def norm_lib_size(assay, counts: daskarr) -> daskarr: return assay.sf * counts / assay.scalar.reshape(-1, 1) def norm_lib_size_log(assay, counts: daskarr) -> daskarr: return np.log1p(assay.sf * counts / assay.scalar.reshape(-1, 1)) def norm_clr(_, counts: daskarr) -> daskarr: f = np.exp(np.log1p(counts).sum(axis=0) / len(counts)) return np.log1p(counts / f) def norm_tf_idf(assay, counts: daskarr) -> daskarr: tf = counts / assay.n_term_per_doc.reshape(-1, 1) idf = np.log2(1 + (assay.n_docs / (assay.n_docs_per_term + 1))) return tf * idf class Assay: def __init__( self, z: zarr.group, name: str, cell_data: MetaData, nthreads: int, min_cells_per_feature: int = 10, ): self.name = name self.z = z[self.name] self.cells = cell_data self.nthreads = nthreads self.rawData = daskarr.from_zarr(self.z["counts"], inline_array=True) self.feats = MetaData(self.z["featureData"]) self.attrs = self.z.attrs if "percentFeatures" not in self.attrs: self.attrs["percentFeatures"] = {} self.normMethod = norm_dummy self.sf = None self._ini_feature_props(min_cells_per_feature) def normed( self, cell_idx: np.ndarray = None, feat_idx: np.ndarray = None, **kwargs ) -> daskarr: if cell_idx is None: cell_idx = self.cells.active_index("I") if feat_idx is None: feat_idx = self.feats.active_index("I") counts = self.rawData[:, feat_idx][cell_idx, :] return self.normMethod(self, counts) def to_raw_sparse(self, cell_key) -> csr_matrix: from .utils import tqdmbar sm = None for i in tqdmbar( self.rawData[self.cells.active_index(cell_key), :].blocks, total=self.rawData.numblocks[0], desc=f"INFO: Converting raw data from {self.name} assay into CSR format", ): s = csr_matrix(controlled_compute(i, self.nthreads)) if sm is None: sm = s else: sm = vstack([sm, s]) return sm def _ini_feature_props(self, min_cells: int) -> None: if "nCells" in self.feats.columns and "dropOuts" in self.feats.columns: pass else: ncells = show_dask_progress( (self.rawData > 0).sum(axis=0), f"({self.name}) Computing nCells and dropOuts", self.nthreads, ) self.feats.insert("nCells", ncells, overwrite=True) self.feats.insert( "dropOuts", abs(self.cells.N - self.feats.fetch("nCells")), overwrite=True, ) self.feats.update_key(ncells > min_cells, "I") def add_percent_feature(self, feat_pattern: str, name: str) -> None: if name in self.attrs["percentFeatures"]: if self.attrs["percentFeatures"][name] == feat_pattern: return None else: logger.info(f"Pattern for percentage feature {name} updated.") self.attrs["percentFeatures"] = { **{k: v for k, v in self.attrs["percentFeatures"].items()}, **{name: feat_pattern}, } feat_idx = sorted( self.feats.get_index_by(self.feats.grep(feat_pattern), "names") ) if len(feat_idx) == 0: logger.warning( f"No matches found for pattern {feat_pattern}." f" Will not add/update percentage feature" ) return None total = show_dask_progress( self.rawData[:, feat_idx].sum(axis=1), f"({self.name}) Computing {name}", self.nthreads, ) if total.sum() == 0: logger.warning( f"Percentage feature {name} not added because not detected in any cell" ) return None self.cells.insert( name, 100 * total / self.cells.fetch_all(self.name + "_nCounts"), overwrite=True, ) def _verify_keys(self, cell_key: str, feat_key: str) -> None: if cell_key not in self.cells.columns or self.cells.get_dtype(cell_key) != bool: raise ValueError( f"ERROR: Either {cell_key} does not exist or is not bool type" ) if feat_key not in self.feats.columns or self.feats.get_dtype(feat_key) != bool: raise ValueError( f"ERROR: Either {feat_key} does not exist or is not bool type" ) def _get_cell_feat_idx( self, cell_key: str, feat_key: str ) -> Tuple[np.ndarray, np.ndarray]: self._verify_keys(cell_key, feat_key) cell_idx = self.cells.active_index(cell_key) feat_idx = self.feats.active_index(feat_key) return cell_idx, feat_idx @staticmethod def _create_subset_hash(cell_idx: np.ndarray, feat_idx: np.ndarray) -> int: return hash(tuple([hash(tuple(cell_idx)), hash(tuple(feat_idx))])) @staticmethod def _get_summary_stats_loc(cell_key: str) -> Tuple[str, str]: return f"stats_{cell_key}", f"summary_stats_{cell_key}" def _validate_stats_loc( self, stats_loc: str, cell_idx: np.ndarray, feat_idx: np.ndarray, delete_on_fail: bool = True, ) -> bool: subset_hash = self._create_subset_hash(cell_idx, feat_idx) if stats_loc in self.z: attrs = self.z[stats_loc].attrs if "subset_hash" in attrs and attrs["subset_hash"] == subset_hash: return True else: if delete_on_fail: del self.z[stats_loc] return False else: return False def _load_stats_loc(self, cell_key: str) -> str: cell_idx, feat_idx = self._get_cell_feat_idx(cell_key, "I") identifier, stats_loc = self._get_summary_stats_loc(cell_key) if self._validate_stats_loc(stats_loc, cell_idx, feat_idx) is False: raise KeyError( f"Summary statistics have not been calculated for cell key: {cell_key}" ) if identifier not in self.feats.locations: self.feats.mount_location(self.z[stats_loc], identifier) else: logger.debug(f"Location ({stats_loc}) already mounted") return identifier def save_normalized_data( self, cell_key: str, feat_key: str, batch_size: int, location: str, log_transform: bool, renormalize_subset: bool, update_keys: bool, ) -> daskarr: from .writers import dask_to_zarr if feat_key != "I": feat_key = cell_key + "__" + feat_key cell_idx, feat_idx = self._get_cell_feat_idx(cell_key, feat_key) subset_hash = self._create_subset_hash(cell_idx, feat_idx) subset_params = { "log_transform": log_transform, "renormalize_subset": renormalize_subset, } if location in self.z: if ( subset_hash == self.z[location].attrs["subset_hash"] and subset_params == self.z[location].attrs["subset_params"] ): logger.info( f"Using existing normalized data with cell key {cell_key} and feat key {feat_key}" ) if update_keys: self.attrs["latest_feat_key"] = ( feat_key.split("__", 1)[1] if feat_key != "I" else "I" ) self.attrs["latest_cell_key"] = cell_key return daskarr.from_zarr(self.z[location + "/data"], inline_array=True) else: self.z.create_group(location, overwrite=True) vals = self.normed( cell_idx, feat_idx, log_transform=log_transform, renormalize_subset=renormalize_subset, ) dask_to_zarr(vals, self.z, location + "/data", batch_size, self.nthreads) self.z[location].attrs["subset_hash"] = subset_hash self.z[location].attrs["subset_params"] = subset_params if update_keys: self.attrs["latest_feat_key"] = ( feat_key.split("__", 1)[1] if feat_key != "I" else "I" ) self.attrs["latest_cell_key"] = cell_key return daskarr.from_zarr(self.z[location + "/data"], inline_array=True)
BSD 3-Clause New or Revised License