repository_name
stringlengths
7
107
function_path
stringlengths
4
190
function_identifier
stringlengths
1
236
language
stringclasses
1 value
function
stringlengths
9
647k
docstring
stringlengths
5
488k
function_url
stringlengths
71
285
context
stringlengths
0
2.51M
license
stringclasses
5 values
datamllab/tods
tods/feature_analysis/StatisticalMeanAbsTemporalDerivative.py
StatisticalMeanAbsTemporalDerivativePrimitive._produce
python
def _produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: self.logger.info('Statistical MeanAbsTemporalDerivative Primitive called') self._fitted = False self._training_inputs, self._training_indices = self._get_columns_to_fit(inputs, self.hyperparams) self._input_column_names = self._training_inputs.columns if len(self._training_indices) > 0: self._fitted = True else: if self.hyperparams['error_on_no_input']: raise RuntimeError("No input columns were selected") self.logger.warn("No input columns were selected") if not self._fitted: raise PrimitiveNotFittedError("Primitive not fitted.") statistical_mean_abs_temporal_derivative_input = inputs if self.hyperparams['use_semantic_types']: statistical_mean_abs_temporal_derivative_input = inputs.iloc[:, self._training_indices] output_columns = [] if len(self._training_indices) > 0: statistical_mean_abs_temporal_derivative_output = self._mean_abs_temporal_derivative(statistical_mean_abs_temporal_derivative_input,self.hyperparams["window_size"]) if sparse.issparse(statistical_mean_abs_temporal_derivative_output): statistical_mean_abs_temporal_derivative_output = statistical_mean_abs_temporal_derivative_output.toarray() outputs = self._wrap_predictions(inputs, statistical_mean_abs_temporal_derivative_output) output_columns = [outputs] else: if self.hyperparams['error_on_no_input']: raise RuntimeError("No input columns were selected") self.logger.warn("No input columns were selected") outputs = base_utils.combine_columns(return_result=self.hyperparams['return_result'], add_index_columns=self.hyperparams['add_index_columns'], inputs=inputs, column_indices=self._training_indices, columns_list=output_columns) self.logger.info('Statistical MeanAbsTemporalDerivative Primitive returned') return base.CallResult(outputs)
Args: inputs: Container DataFrame timeout: Default iterations: Default Returns: Container DataFrame containing mean_abs_temporal_derivative of time series
https://github.com/datamllab/tods/blob/f77825bc6ee865db18e3930ce93de672969282d7/tods/feature_analysis/StatisticalMeanAbsTemporalDerivative.py#L114-L170
import os from typing import Any,Optional,List import statsmodels.api as sm import numpy as np from d3m import container, utils as d3m_utils from d3m import utils from numpy import ndarray from collections import OrderedDict from scipy import sparse import os import uuid import numpy import typing import time from d3m import container from d3m.primitive_interfaces import base, transformer from d3m.container import DataFrame as d3m_dataframe from d3m.metadata import hyperparams, params, base as metadata_base from d3m.base import utils as base_utils from d3m.exceptions import PrimitiveNotFittedError from ..common.TODSBasePrimitives import TODSTransformerPrimitiveBase __all__ = ('StatisticalMeanAbsTemporalDerivativePrimitive',) Inputs = container.DataFrame Outputs = container.DataFrame class Params(params.Params): use_column_names: Optional[Any] class Hyperparams(hyperparams.Hyperparams): window_size = hyperparams.Hyperparameter(default=-1, semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/TuningParameter', ], description="Window Size for decomposition") use_columns = hyperparams.Set( elements=hyperparams.Hyperparameter[int](-1), default=(), semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="A set of column indices to force primitive to operate on. If any specified column cannot be parsed, it is skipped.", ) exclude_columns = hyperparams.Set( elements=hyperparams.Hyperparameter[int](-1), default=(), semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="A set of column indices to not operate on. Applicable only if \"use_columns\" is not provided.", ) return_result = hyperparams.Enumeration( values=['append', 'replace', 'new'], default='append', semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Should parsed columns be appended, should they replace original columns, or should only parsed columns be returned? This hyperparam is ignored if use_semantic_types is set to false.", ) use_semantic_types = hyperparams.UniformBool( default=False, semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Controls whether semantic_types metadata will be used for filtering columns in input dataframe. Setting this to false makes the code ignore return_result and will produce only the output dataframe" ) add_index_columns = hyperparams.UniformBool( default=False, semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Also include primary index columns if input data has them. Applicable only if \"return_result\" is set to \"new\".", ) error_on_no_input = hyperparams.UniformBool( default=True, semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Throw an exception if no input column is selected/provided. Defaults to true to behave like sklearn. To prevent pipelines from breaking set this to False.", ) return_semantic_type = hyperparams.Enumeration[str]( values=['https://metadata.datadrivendiscovery.org/types/Attribute', 'https://metadata.datadrivendiscovery.org/types/ConstructedAttribute'], default='https://metadata.datadrivendiscovery.org/types/Attribute', description='Decides what semantic type to attach to generated attributes', semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'] ) class StatisticalMeanAbsTemporalDerivativePrimitive(TODSTransformerPrimitiveBase[Inputs, Outputs, Hyperparams]): metadata = metadata_base.PrimitiveMetadata({ "__author__": "DATA Lab @ Texas A&M University", 'name': 'Time Series Decompostional', 'python_path': 'd3m.primitives.tods.feature_analysis.statistical_mean_abs_temporal_derivative', 'keywords': ['Time Series','MeanAbsTemporalDerivative'], 'source': { 'name': 'DATA Lab @ Texas A&M University', 'contact': 'mailto:khlai037@tamu.edu' }, 'version': '0.1.0', "hyperparams_to_tune": ['window_size'], 'algorithm_types': [ metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE, ], 'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION, 'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalMeanAbsTemporalDerivativePrimitive')), })
Apache License 2.0
secondmind-labs/gpflux
gpflux/helpers.py
construct_basic_kernel
python
def construct_basic_kernel( kernels: Union[gpflow.kernels.Kernel, List[gpflow.kernels.Kernel]], output_dim: Optional[int] = None, share_hyperparams: bool = False, ) -> gpflow.kernels.MultioutputKernel: if isinstance(kernels, list): mo_kern = SeparateIndependent(kernels) elif not share_hyperparams: copies = [deepcopy(kernels) for _ in range(output_dim)] mo_kern = SeparateIndependent(copies) else: mo_kern = SharedIndependent(kernels, output_dim) return mo_kern
r""" Construct a :class:`~gpflow.kernels.MultioutputKernel` to use in :class:`GPLayer`\ s. :param kernels: A single kernel or list of :class:`~gpflow.kernels.Kernel`\ s. - When a single kernel is passed, the same kernel is used for all outputs. Depending on ``share_hyperparams``, the hyperparameters will be shared across outputs. You must also specify ``output_dim``. - When a list of kernels is passed, each kernel in the list is used on a separate output dimension and a :class:`gpflow.kernels.SeparateIndependent` is returned. :param output_dim: The number of outputs. This is equal to the number of latent GPs in the :class:`GPLayer`. When only a single kernel is specified for ``kernels``, you must also specify ``output_dim``. When a list of kernels is specified for ``kernels``, we assume that ``len(kernels) == output_dim``, and ``output_dim`` is not required. :param share_hyperparams: If `True`, use the type of kernel and the same hyperparameters (variance and lengthscales) for the different outputs. Otherwise, the same type of kernel (Squared-Exponential, Matern12, and so on) is used for the different outputs, but the kernel can have different hyperparameter values for each.
https://github.com/secondmind-labs/gpflux/blob/e05d7ba86aa3739a34dc6615de8f9ff810642605/gpflux/helpers.py#L42-L73
import inspect import warnings from dataclasses import fields from typing import List, Optional, Type, TypeVar, Union import numpy as np import gpflow from gpflow import default_float from gpflow.inducing_variables import ( InducingPoints, SeparateIndependentInducingVariables, SharedIndependentInducingVariables, ) from gpflow.kernels import SeparateIndependent, SharedIndependent from gpflow.utilities import deepcopy from gpflux.layers.gp_layer import GPLayer
Apache License 2.0
mozilla/make.mozilla.org
vendor-local/lib/python/requests/models.py
Request.send
python
def send(self, anyway=False, prefetch=False): url = self.full_url if self.config.get('verbose'): self.config.get('verbose').write('%s %s %s\n' % ( datetime.now().isoformat(), self.method, url )) body = None content_type = None if self.files: if not isinstance(self.data, str): try: fields = self.data.copy() except AttributeError: fields = dict(self.data) for (k, v) in list(self.files.items()): if isinstance(v, (tuple, list)): fn, fp = v else: fn = guess_filename(v) or k fp = v fields.update({k: (fn, fp.read())}) (body, content_type) = encode_multipart_formdata(fields) else: pass else: if self.data: body = self._enc_data if isinstance(self.data, str): content_type = None else: content_type = 'application/x-www-form-urlencoded' if (content_type) and (not 'content-type' in self.headers): self.headers['Content-Type'] = content_type if not self.auth and self.config.get('trust_env'): self.auth = get_netrc_auth(url) if self.auth: if isinstance(self.auth, tuple) and len(self.auth) == 2: self.auth = HTTPBasicAuth(*self.auth) r = self.auth(self) self.__dict__.update(r.__dict__) _p = urlparse(url) proxy = self.proxies.get(_p.scheme) if proxy: conn = poolmanager.proxy_from_url(proxy) _proxy = urlparse(proxy) if '@' in _proxy.netloc: auth, url = _proxy.netloc.split('@', 1) self.proxy_auth = HTTPProxyAuth(*auth.split(':', 1)) r = self.proxy_auth(self) self.__dict__.update(r.__dict__) else: if self.config.get('keep_alive'): conn = self._poolmanager.connection_from_url(url) else: conn = connectionpool.connection_from_url(url) if url.startswith('https') and self.verify: cert_loc = None if self.verify is not True: cert_loc = self.verify if not cert_loc and self.config.get('trust_env'): cert_loc = os.environ.get('REQUESTS_CA_BUNDLE') if not cert_loc and self.config.get('trust_env'): cert_loc = os.environ.get('CURL_CA_BUNDLE') if not cert_loc: cert_loc = __import__('certifi').where() conn.cert_reqs = 'CERT_REQUIRED' conn.ca_certs = cert_loc else: conn.cert_reqs = 'CERT_NONE' conn.ca_certs = None if self.cert and self.verify: if len(self.cert) == 2: conn.cert_file = self.cert[0] conn.key_file = self.cert[1] else: conn.cert_file = self.cert if not self.sent or anyway: if self.cookies: if 'cookie' not in self.headers: c = SimpleCookie() for (k, v) in list(self.cookies.items()): c[k] = v cookie_header = c.output(header='', sep='; ').strip() self.headers['Cookie'] = cookie_header r = dispatch_hook('pre_request', self.hooks, self) self.__dict__.update(r.__dict__) try: try: r = conn.urlopen( method=self.method, url=self.path_url, body=body, headers=self.headers, redirect=False, assert_same_host=False, preload_content=False, decode_content=False, retries=self.config.get('max_retries', 0), timeout=self.timeout, ) self.sent = True except MaxRetryError as e: raise ConnectionError(e) except (_SSLError, _HTTPError) as e: if self.verify and isinstance(e, _SSLError): raise SSLError(e) raise Timeout('Request timed out.') except RequestException as e: if self.config.get('safe_mode', False): r = HTTPResponse() r.error = e else: raise self._build_response(r) self.response = dispatch_hook('response', self.hooks, self.response) r = dispatch_hook('post_request', self.hooks, self) self.__dict__.update(r.__dict__) if prefetch: self.response.content if self.config.get('danger_mode'): self.response.raise_for_status() return self.sent
Sends the request. Returns True of successful, False if not. If there was an HTTPError during transmission, self.response.status_code will contain the HTTPError code. Once a request is successfully sent, `sent` will equal True. :param anyway: If True, request will be sent, even if it has already been sent.
https://github.com/mozilla/make.mozilla.org/blob/98b87c517b463a5bae09f29284b1dabca97bb376/vendor-local/lib/python/requests/models.py#L412-L614
import os from datetime import datetime from .hooks import dispatch_hook, HOOKS from .structures import CaseInsensitiveDict from .status_codes import codes from .auth import HTTPBasicAuth, HTTPProxyAuth from .packages.urllib3.response import HTTPResponse from .packages.urllib3.exceptions import MaxRetryError from .packages.urllib3.exceptions import SSLError as _SSLError from .packages.urllib3.exceptions import HTTPError as _HTTPError from .packages.urllib3 import connectionpool, poolmanager from .packages.urllib3.filepost import encode_multipart_formdata from .defaults import SCHEMAS from .exceptions import ( ConnectionError, HTTPError, RequestException, Timeout, TooManyRedirects, URLRequired, SSLError, MissingSchema, InvalidSchema) from .utils import ( get_encoding_from_headers, stream_untransfer, guess_filename, requote_uri, dict_from_string, stream_decode_response_unicode, get_netrc_auth) from .compat import ( urlparse, urlunparse, urljoin, urlsplit, urlencode, str, bytes, SimpleCookie, is_py2) try: import chardet except ImportError: pass REDIRECT_STATI = (codes.moved, codes.found, codes.other, codes.temporary_moved) class Request(object): def __init__(self, url=None, headers=dict(), files=None, method=None, data=dict(), params=dict(), auth=None, cookies=None, timeout=None, redirect=False, allow_redirects=False, proxies=None, hooks=None, config=None, _poolmanager=None, verify=None, session=None, cert=None): self.config = dict(config or []) self.timeout = timeout self.url = url self.headers = dict(headers or []) self.files = files self.method = method self.data = None self.params = None self.redirect = redirect self.allow_redirects = allow_redirects self.proxies = dict(proxies or []) if not self.proxies and self.config.get('trust_env'): if 'HTTP_PROXY' in os.environ: self.proxies['http'] = os.environ['HTTP_PROXY'] if 'HTTPS_PROXY' in os.environ: self.proxies['https'] = os.environ['HTTPS_PROXY'] self.data, self._enc_data = self._encode_params(data) self.params, self._enc_params = self._encode_params(params) self.response = Response() self.auth = auth self.cookies = dict(cookies or []) self.sent = False self.hooks = {} for event in HOOKS: self.hooks[event] = [] hooks = hooks or {} for (k, v) in list(hooks.items()): self.register_hook(event=k, hook=v) self.session = session self.verify = verify self.cert = cert if headers: headers = CaseInsensitiveDict(self.headers) else: headers = CaseInsensitiveDict() for (k, v) in list(self.config.get('base_headers', {}).items()): if k not in headers: headers[k] = v self.headers = headers self._poolmanager = _poolmanager def __repr__(self): return '<Request [%s]>' % (self.method) def _build_response(self, resp): def build(resp): response = Response() response.config = self.config if resp: response.status_code = getattr(resp, 'status', None) response.headers = CaseInsensitiveDict(getattr(resp, 'headers', None)) response.encoding = get_encoding_from_headers(response.headers) cookies = self.cookies or dict() if 'set-cookie' in response.headers: cookie_header = response.headers['set-cookie'] cookies = dict_from_string(cookie_header) response.cookies = cookies response.error = getattr(resp, 'error', None) response.raw = resp if isinstance(self.full_url, bytes): response.url = self.full_url.decode('utf-8') else: response.url = self.full_url return response history = [] r = build(resp) self.cookies.update(r.cookies) if r.status_code in REDIRECT_STATI and not self.redirect: while (('location' in r.headers) and ((r.status_code is codes.see_other) or (self.allow_redirects))): r.content if not len(history) < self.config.get('max_redirects'): raise TooManyRedirects() r.raw.release_conn() history.append(r) url = r.headers['location'] data = self.data if url.startswith('//'): parsed_rurl = urlparse(r.url) url = '%s:%s' % (parsed_rurl.scheme, url) if not urlparse(url).netloc: url = urljoin(r.url, requote_uri(url)) if r.status_code is codes.see_other: method = 'GET' data = None else: method = self.method if (not self.config.get('strict_mode')): if r.status_code in (codes.moved, codes.found) and self.method == 'POST': method = 'GET' data = None if (r.status_code == 303) and self.method != 'HEAD': method = 'GET' data = None headers = self.headers try: del headers['Cookie'] except KeyError: pass request = Request( url=url, headers=headers, files=self.files, method=method, params=self.session.params, auth=self.auth, cookies=self.cookies, redirect=True, data=data, config=self.config, timeout=self.timeout, _poolmanager=self._poolmanager, proxies=self.proxies, verify=self.verify, session=self.session, cert=self.cert ) request.send() r = request.response self.cookies.update(r.cookies) r.history = history self.response = r self.response.request = self self.response.cookies.update(self.cookies) @staticmethod def _encode_params(data): if isinstance(data, bytes): return data, data if hasattr(data, '__iter__') and not isinstance(data, str): data = dict(data) if hasattr(data, 'items'): result = [] for k, vs in list(data.items()): for v in isinstance(vs, list) and vs or [vs]: result.append((k.encode('utf-8') if isinstance(k, str) else k, v.encode('utf-8') if isinstance(v, str) else v)) return result, urlencode(result, doseq=True) else: return data, data @property def full_url(self): if not self.url: raise URLRequired() url = self.url scheme, netloc, path, params, query, fragment = urlparse(url) if not scheme: raise MissingSchema("Invalid URL %r: No schema supplied" % url) if not scheme in SCHEMAS: raise InvalidSchema("Invalid scheme %r" % scheme) netloc = netloc.encode('idna').decode('utf-8') if not path: path = '/' if is_py2: if isinstance(scheme, str): scheme = scheme.encode('utf-8') if isinstance(netloc, str): netloc = netloc.encode('utf-8') if isinstance(path, str): path = path.encode('utf-8') if isinstance(params, str): params = params.encode('utf-8') if isinstance(query, str): query = query.encode('utf-8') if isinstance(fragment, str): fragment = fragment.encode('utf-8') url = (urlunparse([scheme, netloc, path, params, query, fragment])) if self._enc_params: if urlparse(url).query: url = '%s&%s' % (url, self._enc_params) else: url = '%s?%s' % (url, self._enc_params) if self.config.get('encode_uri', True): url = requote_uri(url) return url @property def path_url(self): url = [] p = urlsplit(self.full_url) if p.scheme in self.proxies: return self.full_url path = p.path if not path: path = '/' url.append(path) query = p.query if query: url.append('?') url.append(query) return ''.join(url) def register_hook(self, event, hook): return self.hooks[event].append(hook)
BSD 3-Clause New or Revised License
qiskit/qiskit-aqua
qiskit/chemistry/algorithms/pes_samplers/extrapolator.py
WindowExtrapolator.window
python
def window(self, window: int) -> None: self._window = window
Set the size of the window Args: window: the size of the window to set.
https://github.com/qiskit/qiskit-aqua/blob/5ccf0e20129880e78a57f2f78c59b9a362ebb208/qiskit/chemistry/algorithms/pes_samplers/extrapolator.py#L306-L312
from abc import ABC, abstractmethod from typing import Optional, List, Dict, Union, cast import numpy as np from sklearn import linear_model from sklearn.decomposition import PCA, KernelPCA from qiskit.aqua import AquaError class Extrapolator(ABC): @abstractmethod def extrapolate(self, points: List[float], param_dict: Dict[float, List[float]]) -> Dict[float, List[float]]: raise NotImplementedError() @staticmethod def factory(mode: str, **kwargs) -> 'Extrapolator': if mode == 'window': return WindowExtrapolator(**kwargs) elif mode == 'poly': return PolynomialExtrapolator(**kwargs) elif mode == 'diff_model': return DifferentialExtrapolator(**kwargs) elif mode == 'pca': return PCAExtrapolator(**kwargs) elif mode == 'l1': return SieveExtrapolator(**kwargs) else: raise AquaError('No extrapolator called {}'.format(mode)) class PolynomialExtrapolator(Extrapolator): def __init__(self, degree: int = 1) -> None: self._degree = degree def extrapolate(self, points: List[float], param_dict: Optional[Dict[float, List[float]]]) -> Dict[float, List[float]]: param_arr = np.transpose(list(param_dict.values())) data_points = list(param_dict.keys()) ret_param_arr = [] for params in param_arr: coefficients = np.polyfit(data_points, params, deg=self._degree) poly = np.poly1d(coefficients) ret_param_arr += [poly(points)] ret_param_arr = np.transpose(ret_param_arr).tolist() ret_params = dict(zip(points, ret_param_arr)) return ret_params class DifferentialExtrapolator(Extrapolator): def __init__(self, degree: int = 1, model: Optional[Union[linear_model.LinearRegression, linear_model.Ridge, linear_model.RidgeCV, linear_model.SGDRegressor]] = None) -> None: self._degree = degree self._model = model or linear_model.LinearRegression() def extrapolate(self, points: List[float], param_dict: Optional[Dict[float, List[float]]]) -> Dict[float, List[float]]: response = list(param_dict.values())[1:] features = [list(param_dict.values())] for i in range(self._degree - 1): grad = np.gradient(features[i], axis=0) features.append(list(grad)) features = np.concatenate(features, axis=1) self._model.fit(features[:-1], response) next_params = np.asarray(self._model.predict([features[-1]])[0].tolist()) ret_params = {point: next_params for point in points} return cast(Dict[float, List[float]], ret_params) class WindowExtrapolator(Extrapolator): def __init__(self, extrapolator: Union[PolynomialExtrapolator, DifferentialExtrapolator] = None, window: int = 2) -> None: self._extrapolator = extrapolator self._window = window def extrapolate(self, points: List[float], param_dict: Optional[Dict[float, List[float]]]) -> Dict[float, List[float]]: ret_params = {} sorted_points = sorted(points) reference_points = [pt for pt in sorted(param_dict.keys()) if pt < max(sorted_points)] for bottom_index, bottom in enumerate(reference_points): if bottom_index < len(reference_points) - 1: top = reference_points[bottom_index + 1] else: top = float('inf') extrapolation_group = [pt for pt in sorted_points if bottom < pt <= top] window_points = [pt for pt in reference_points if pt <= bottom] if len(window_points) > self._window: window_points = window_points[-self._window:] window_param_dict = {pt: param_dict[pt] for pt in window_points} if extrapolation_group: ret_params.update(self._extrapolator.extrapolate(extrapolation_group, param_dict=window_param_dict)) return ret_params @property def extrapolator(self) -> Extrapolator: return self._extrapolator @extrapolator.setter def extrapolator(self, extrapolator: Union[PolynomialExtrapolator, DifferentialExtrapolator]) -> None: self._extrapolator = extrapolator @property def window(self) -> int: return self._window @window.setter
Apache License 2.0
danbradham/fsfs
fsfs/lockfile.py
LockFile.release
python
def release(self): if not self.acquired: raise LockFileError('Can not release an unacquired lock...') self._release_lockfile()
Release the lock
https://github.com/danbradham/fsfs/blob/7e0158b2b1db3160ff2955e6818dc7b3c0f437ed/fsfs/lockfile.py#L288-L294
from __future__ import absolute_import __all__ = [ 'LockFileError', 'LockFileTimeOutError', 'LockFilePump', 'LockFile', 'lockfile' ] import atexit import os import time import errno import threading from warnings import warn from datetime import datetime from timeit import default_timer from contextlib import contextmanager class LockFileError(Exception): pass class LockFileTimeOutError(Exception): pass class LockFilePump(threading.Thread): def __init__(self): super(LockFilePump, self).__init__() self.daemon = True self._shutdown = threading.Event() self._stopped = threading.Event() self._started = threading.Event() atexit.register(self.stop) @property def started(self): return self._started.is_set() @property def stopped(self): return self._stopped.is_set() @property def shutdown(self): return self._shutdown.is_set() def stop(self): if not self.started and not self.shutdown: return self._shutdown.set() self._stopped.wait() if self.isAlive(): self.join() def run(self): try: self._started.set() while True: for lock in list(LockFile._acquired_locks): if lock.locked: try: lock._touch() except OSError as e: msg = ( 'PumpThread failed to update mtime of lock: \n' '{errno}: {massge}' ).format(e.errno, e.message) warn(msg) if self._shutdown.wait(LockFile._pump_interval_): break finally: self._stopped.set() class LockFile(object): _pump_ = LockFilePump() _pump_interval_ = 1 _expiration = 2 _acquired_locks = [] def __init__(self, path): self.path = os.path.abspath(path) self.acquired = False self._depth = 0 self._start_pump() def __enter__(self): if self._depth == 0: self.acquire() self._depth += 1 return self def __exit__(self, exc_type, exc_val, exc_tb): if self._depth == 1: self.release() self._depth -= 1 @contextmanager def __call__(self, timeout=0): try: if self._depth == 0: self.acquire(timeout) self._depth += 1 yield self finally: if self._depth == 1: self.release() self._depth -= 1 @property def locked(self): return os.path.exists(self.path) @property def expired(self): return self._time_since_modified() > self._expiration def _start_pump(self): if self._pump_.started: return self._pump_.start() while not self._pump_.started: time.sleep(0.01) def _touch(self): with open(self.path, 'a'): os.utime(self.path, None) def _time_since_modified(self): return ( datetime.now() - datetime.fromtimestamp(os.path.getmtime(self.path)) ).total_seconds() def _acquire_expired_lock(self): self._release_lockfile() self._try_to_acquire() if not self.acquired: raise LockFileError('Failed to acquire expired lock...') def _try_to_acquire(self): if self.acquired: self.acquired = True return if self.locked: self.acquired = False return self._touch() self._acquired_locks.append(self) self.acquired = True def acquire(self, timeout=0): self._try_to_acquire() if self.acquired: return if self.locked and self.expired: self._acquire_expired_lock() return s = default_timer() while not self.acquired: if timeout > 0 and default_timer() - s > timeout: raise LockFileTimeOutError( 'Timed out while trying to acquire lock...' ) if self.locked and self.expired: self._acquire_expired_lock() return self._try_to_acquire() time.sleep(0.05) def _release_lockfile(self): try: os.remove(self.path) except OSError as e: if e.errno != errno.ENOENT: raise e finally: if self in self._acquired_locks: self._acquired_locks.remove(self) self.acquired = False
MIT License
digidotcom/xbee-micropython
lib/eddystonebeacon/EddystoneBeacon.py
parse
python
def parse(frame: bytes): if not _check_for_valid_eddystone(frame): raise TypeError("Incoming Eddystone frame is invalid") eddy_type = struct.unpack('>b', frame[11:12])[0] eddy_len = struct.unpack('>b', frame[_LENGTH_INDEX:_LENGTH_INDEX + 1])[0] if eddy_type == TYPE_URL: eddy_frame = EddystoneURLFrame(ranging_data=0, url='http://.com') elif eddy_type == TYPE_UID: eddy_frame = EddystoneUIDFrame(ranging_data=0, uid=bytearray(16)) elif eddy_type == TYPE_TLM: eddy_frame = EddystoneTLMFrame(advertisement_count=0, time_sec=0) else: raise TypeError("Eddystone type is not supported: {}".format(eddy_type)) eddy_frame.set_raw_payload(frame[(8 + 4):(12 + eddy_len - 4)]) if not eddy_frame.validate_payload(): raise TypeError("Eddystone Payload is invalid") return eddy_type, eddy_frame
Parses a raw advertisement frame, returning a parsed Eddystone frame. :param frame: The raw advertisement to be parsed. :return: The type of the frame and a parsed Eddystone frame of that type: int, (EddystoneUIDFrame or EddystoneURLFrame or EddystoneTLMFrame).
https://github.com/digidotcom/xbee-micropython/blob/209f94fcf2c2ecd794891ef505549d2a50af0edc/lib/eddystonebeacon/EddystoneBeacon.py#L372-L401
import struct TYPE_UID = 0x00 TYPE_URL = 0x10 TYPE_TLM = 0x20 _DEFAULT_FRAME = ( b"\x02" b"\x01" b"\x00" b"\x03" b"\x03" b"\xAA\xFE" b"\x04" b"\x16" b"\xAA\xFE" ) _FLAGS_INDEX = 2 _DEFAULT_FLAGS = 0x06 _LENGTH_INDEX = 7 def _check_for_valid_eddystone(frame, expected_len=None): frame_len = len(frame) parse_len = 0 while True: parse_len += frame[parse_len] + 1 if expected_len is not None and parse_len == _LENGTH_INDEX and frame[parse_len] != expected_len: return False if parse_len > frame_len: return False elif parse_len == frame_len: break if ( frame[:_FLAGS_INDEX] != _DEFAULT_FRAME[:_FLAGS_INDEX] or frame[_FLAGS_INDEX + 1:_LENGTH_INDEX] != _DEFAULT_FRAME[_FLAGS_INDEX + 1:_LENGTH_INDEX] or frame[8:11] != _DEFAULT_FRAME[8:11] ): return False return True class _EddystoneGenericFrame(object): def __init__(self, eddystone_type, payload_len, data_flags): self._frame = bytearray() self._frame.extend(_DEFAULT_FRAME) self._frame[_FLAGS_INDEX] = data_flags self._frame.append(eddystone_type) self._frame += bytearray(payload_len) self._set_payload_length(payload_len) def _set_payload_length(self, length): self._frame[_LENGTH_INDEX] = 4 + length def set_raw_payload(self, payload): payload_len = len(payload) if payload_len > 19: raise TypeError("The payload is too large") offset = len(_DEFAULT_FRAME) self._frame = self._frame[:offset + 1] self._frame.extend(payload) self._set_payload_length(payload_len) def get_bytes(self) -> bytes: return bytes(self._frame) def _validate_payload(self, expected_len=None): return _check_for_valid_eddystone(self._frame, expected_len) def validate_payload(self): return self._validate_payload(None) @property def eddystone_type(self): if len(self._frame) >= 13 and self._frame[11] in [TYPE_UID, TYPE_URL, TYPE_TLM]: return self._frame[11] else: return None class EddystoneURLFrame(_EddystoneGenericFrame): _EXTENSIONS = [ ".com/", ".org/", ".edu/", ".net/", ".info/", ".biz/", ".gov/", ".com", ".org", ".edu", ".net", ".info", ".biz", ".gov", ] _SCHEMES = [ "http://www.", "https://www.", "http://", "https://", ] def __init__(self, ranging_data, url, data_flags=_DEFAULT_FLAGS): super().__init__(eddystone_type=TYPE_URL, payload_len=3, data_flags=data_flags) self.ranging_data = ranging_data self.url = url @property def ranging_data(self) -> int: return struct.unpack('>b', self._frame[12:13])[0] @ranging_data.setter def ranging_data(self, ranging_data: int): if ranging_data < -100 or ranging_data > 20: raise ValueError("ranging_data is out of range") tx_power_byte = struct.pack('>b', ranging_data) self._frame = self._frame[:12] + tx_power_byte + self._frame[13:] def __find_scheme_id(self, input_url): for i in range(len(self._SCHEMES)): if input_url.startswith(self._SCHEMES[i]): return i, len(self._SCHEMES[i]) else: raise ValueError("The URL does not use a supported prefix scheme") def __find_extension_id(self, input_url, pos): for ext_id in range(len(self._EXTENSIONS)): extension = self._EXTENSIONS[ext_id] if input_url.startswith(extension, pos): return ext_id return None @property def url(self) -> str: url = self._frame[13:] if len(url) == 0: return str() if url[0] >= len(self._SCHEMES): raise ValueError("Invalid URL scheme") decoded_url = self._SCHEMES[url[0]] extension_index_max = len(self._EXTENSIONS) - 1 for c in url[1:]: if c <= extension_index_max: decoded_url += self._EXTENSIONS[c] elif 0x21 <= c < 0x7F: decoded_url += chr(c) else: raise ValueError("Invalid URL") return decoded_url @url.setter def url(self, input_url: str): encoded_url = bytearray() scheme_id, scheme_len = self.__find_scheme_id(input_url) encoded_url.append(scheme_id) pos = scheme_len while pos < len(input_url): ext_id = self.__find_extension_id(input_url, pos) if ext_id is not None: encoded_url += struct.pack('>b', ext_id) pos += len(self._EXTENSIONS[ext_id]) else: encoded_url.append(ord(input_url[pos])) pos += 1 self._frame = self._frame[:13] + encoded_url self._set_payload_length(len(encoded_url) + 1) class EddystoneUIDFrame(_EddystoneGenericFrame): def __init__(self, ranging_data, uid, data_flags=_DEFAULT_FLAGS): super().__init__(eddystone_type=TYPE_UID, payload_len=19, data_flags=data_flags) self.ranging_data = ranging_data self.uid = uid @property def ranging_data(self) -> int: return struct.unpack('>b', self._frame[12:13])[0] @ranging_data.setter def ranging_data(self, ranging_data: int): if ranging_data < -100 or ranging_data > 20: raise ValueError("ranging_data is out of range") ranging_data_byte = struct.pack('>b', ranging_data) self._frame = self._frame[:12] + ranging_data_byte + self._frame[13:] @property def uid(self) -> bytes: return bytes(self._frame[13:29]) @uid.setter def uid(self, uid: bytes): if len(uid) != 16: raise ValueError("The UID field is an incorrect size, expected 16 bytes") self._frame = self._frame[:13] + uid + self._frame[29:] def validate_payload(self): return self._validate_payload(23) class EddystoneTLMFrame(_EddystoneGenericFrame): def __init__(self, advertisement_count, time_sec, beacon_temperature=-128, battery_voltage=0, data_flags=_DEFAULT_FLAGS): super().__init__(eddystone_type=TYPE_TLM, payload_len=13, data_flags=data_flags) self.battery_voltage = battery_voltage self.beacon_temperature = beacon_temperature self.advertisement_count = advertisement_count self.time_sec = time_sec @staticmethod def __to_fixed88(fl): if fl < -128 or fl > 127.9961: raise ValueError("Out of range of representable values") return struct.pack('>h', int(fl * (2 ** 8))) @staticmethod def __from_fixed88(fp): return float(struct.unpack('>h', fp)[0] * (2 ** -8)) @property def battery_voltage(self) -> float: b = self._frame[13:15] return float(struct.unpack('>H', b)[0]) / 1000 @battery_voltage.setter def battery_voltage(self, voltage: float): voltage = int(voltage * 1000) if voltage & ~0xFFFF: raise ValueError("Voltage is out of range") voltage_bytes = struct.pack('>H', voltage) self._frame = self._frame[:13] + voltage_bytes + self._frame[15:] @property def beacon_temperature(self) -> float: return self.__from_fixed88(bytes(self._frame[15:17])) @beacon_temperature.setter def beacon_temperature(self, temperature: float): temperature_bytes = self.__to_fixed88(temperature) self._frame = self._frame[:15] + temperature_bytes + self._frame[17:] @property def advertisement_count(self) -> int: return struct.unpack('>I', self._frame[17:21])[0] @advertisement_count.setter def advertisement_count(self, count: int): if count >= 1 << 32: raise ValueError("Advertisement count is out of range of representable values") count_bytes = struct.pack('>I', count) self._frame = self._frame[:17] + count_bytes + self._frame[21:] @property def time_sec(self) -> float: return struct.unpack('>I', self._frame[21:25])[0] / 10.0 @time_sec.setter def time_sec(self, time_sec: float): count = int(time_sec * 10) if count >= 1 << 32: raise ValueError("Time stamp out of range") count_bytes = struct.pack('>I', count) self._frame = self._frame[:21] + count_bytes def validate_payload(self): return super()._validate_payload(17)
MIT License
microsoft/petridishnn
tensorpack/dataflow/parallel.py
MultiProcessPrefetchData.__init__
python
def __init__(self, ds, nr_prefetch, nr_proc): if os.name == 'nt': logger.warn("MultiProcessPrefetchData does support Windows. \ However, Windows requires more strict picklability on processes, which may \ lead of failure on some of the code.") super(MultiProcessPrefetchData, self).__init__(ds) try: self._size = len(ds) except NotImplementedError: self._size = -1 self.nr_proc = nr_proc self.nr_prefetch = nr_prefetch if nr_proc > 1: logger.info("[MultiProcessPrefetchData] Will fork a dataflow more than one times. " "This assumes the datapoints are i.i.d.") self.queue = mp.Queue(self.nr_prefetch) self.procs = [MultiProcessPrefetchData._Worker(self.ds, self.queue, idx) for idx in range(self.nr_proc)] ensure_proc_terminate(self.procs) start_proc_mask_signal(self.procs)
Args: ds (DataFlow): input DataFlow. nr_prefetch (int): size of the queue to hold prefetched datapoints. nr_proc (int): number of processes to use.
https://github.com/microsoft/petridishnn/blob/78a813a74896ec880812a2806d0b091f3e30dc4f/tensorpack/dataflow/parallel.py#L172-L200
import atexit import errno import itertools import multiprocessing as mp import os import sys import uuid import weakref from contextlib import contextmanager import zmq from six.moves import queue, range from ..utils import logger from ..utils.concurrency import ( StoppableThread, enable_death_signal, ensure_proc_terminate, start_proc_mask_signal) from ..utils.serialize import dumps, loads from .base import DataFlow, DataFlowReentrantGuard, DataFlowTerminated, ProxyDataFlow __all__ = ['PrefetchData', 'MultiProcessPrefetchData', 'PrefetchDataZMQ', 'MultiThreadPrefetchData'] def _repeat_iter(get_itr): while True: for x in get_itr(): yield x def _bind_guard(sock, name): try: sock.bind(name) except zmq.ZMQError: logger.error( "ZMQError in socket.bind('{}'). Perhaps you're \ using pipes on a non-local file system. See documentation of PrefetchDataZMQ \ for more information.".format(name)) raise def _get_pipe_name(name): if sys.platform.startswith('linux'): pipename = "ipc://@{}-pipe-{}".format(name, str(uuid.uuid1())[:8]) pipedir = os.environ.get('TENSORPACK_PIPEDIR', None) if pipedir is not None: logger.warn("TENSORPACK_PIPEDIR is not used on Linux any more! Abstract sockets will be used.") else: pipedir = os.environ.get('TENSORPACK_PIPEDIR', None) if pipedir is not None: logger.info("ZMQ uses TENSORPACK_PIPEDIR={}".format(pipedir)) else: pipedir = '.' assert os.path.isdir(pipedir), pipedir filename = '{}/{}-pipe-{}'.format(pipedir.rstrip('/'), name, str(uuid.uuid1())[:6]) assert not os.path.exists(filename), "Pipe {} exists! You may be unlucky.".format(filename) pipename = "ipc://{}".format(filename) return pipename def del_weakref(x): o = x() if o is not None: o.__del__() @contextmanager def _zmq_catch_error(name): try: yield except zmq.ContextTerminated: logger.info("[{}] Context terminated.".format(name)) raise DataFlowTerminated() except zmq.ZMQError as e: if e.errno == errno.ENOTSOCK: logger.info("[{}] Socket closed.".format(name)) raise DataFlowTerminated() else: raise except Exception: raise class _MultiProcessZMQDataFlow(DataFlow): def __init__(self): assert os.name != 'nt', "ZMQ IPC doesn't support windows!" self._reset_done = False self._procs = [] def reset_state(self): assert not self._reset_done, "reset_state() was called twice! This violates the API of DataFlow!" self._reset_done = True atexit.register(del_weakref, weakref.ref(self)) def _start_processes(self): start_proc_mask_signal(self._procs) def __del__(self): try: if not self._reset_done: return if not self.context.closed: self.socket.close(0) self.context.destroy(0) for x in self._procs: x.terminate() x.join(5) print("{} successfully cleaned-up.".format(type(self).__name__)) except Exception: pass class MultiProcessPrefetchData(ProxyDataFlow): class _Worker(mp.Process): def __init__(self, ds, queue, idx): super(MultiProcessPrefetchData._Worker, self).__init__() self.ds = ds self.queue = queue self.idx = idx def run(self): enable_death_signal(_warn=self.idx == 0) self.ds.reset_state() while True: for dp in self.ds: self.queue.put(dp)
MIT License
rogerzhangzz/cag_uda
data/base_dataset.py
__adjust
python
def __adjust(img): ow, oh = img.size mult = 4 if ow % mult == 0 and oh % mult == 0: return img w = (ow - 1) // mult w = (w + 1) * mult h = (oh - 1) // mult h = (h + 1) * mult if ow != w or oh != h: __print_size_warning(ow, oh, w, h) return img.resize((w, h), Image.BICUBIC)
Modify the width and height to be multiple of 4. Parameters: img (PIL image) -- input image Returns a modified image whose width and height are mulitple of 4. the size needs to be a multiple of 4, because going through generator network may change img size and eventually cause size mismatch error
https://github.com/rogerzhangzz/cag_uda/blob/422f99e2e0a5cb26a40d4f17ee5832f81580f7f0/data/base_dataset.py#L103-L127
import torch.utils.data as data from PIL import Image import torchvision.transforms as transforms from abc import ABC, abstractmethod class BaseDataset(data.Dataset, ABC): def __init__(self, cfg): self.cfg = cfg self.root = cfg['rootpath'] @staticmethod def modify_commandline_options(parser, is_train): return parser @abstractmethod def __len__(self): return 0 @abstractmethod def __getitem__(self, index): pass def get_transform(opt, grayscale=False, convert=True, crop=True, flip=True): transform_list = [] if grayscale: transform_list.append(transforms.Grayscale(1)) if opt.preprocess == 'resize_and_crop': osize = [opt.load_size, opt.load_size] transform_list.append(transforms.Resize(osize, Image.BICUBIC)) transform_list.append(transforms.RandomCrop(opt.crop_size)) elif opt.preprocess == 'crop' and crop: transform_list.append(transforms.RandomCrop(opt.crop_size)) elif opt.preprocess == 'scale_width': transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.crop_size))) elif opt.preprocess == 'scale_width_and_crop': transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size))) if crop: transform_list.append(transforms.RandomCrop(opt.crop_size)) elif opt.preprocess == 'none': transform_list.append(transforms.Lambda(lambda img: __adjust(img))) else: raise ValueError('--preprocess %s is not a valid option.' % opt.preprocess) if not opt.no_flip and flip: transform_list.append(transforms.RandomHorizontalFlip()) if convert: transform_list += [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list)
MIT License
sberbank-ai-lab/lightautoml
lightautoml/addons/uplift/metalearners.py
RLearner._fit_predict_propensity_learner
python
def _fit_predict_propensity_learner(self, train_data: DataFrame, roles: Dict, verbose: int = 0): propensity_roles = copy.deepcopy(roles) target_role, target_col = _get_target_role(roles) propensity_roles.pop(target_role) treatment_role, treatment_col = _get_treatment_role(roles) propensity_roles.pop(treatment_role) propensity_roles["target"] = treatment_col train_cp = train_data.copy() train_cp.drop(target_col, axis=1, inplace=True) propensity_pred = self.propensity_learner.fit_predict(train_cp, propensity_roles, verbose=verbose).data.ravel() return propensity_pred
Fit propensity score Args: train_data: Dataset to train roles: Roles dict with 'treatment' roles
https://github.com/sberbank-ai-lab/lightautoml/blob/51a4e2bd0ebffbe0817fb50434280f8e7c40fa4c/lightautoml/addons/uplift/metalearners.py#L831-L853
import copy import logging from abc import ABCMeta from abc import abstractmethod from typing import Any from typing import Dict from typing import Optional from typing import Sequence from typing import Tuple from typing import Union import numpy as np from pandas import DataFrame from lightautoml.automl.base import AutoML from lightautoml.automl.presets.tabular_presets import TabularAutoML from lightautoml.tasks import Task from lightautoml.utils.timer import Timer from lightautoml.validation.np_iterators import UpliftIterator from .utils import _get_target_role from .utils import _get_treatment_role from .utils import create_linear_automl logger = logging.getLogger(__name__) class NotTrainedError(Exception): pass class MetaLearner(metaclass=ABCMeta): def __init__( self, base_task: Task, timeout: Optional[int] = None, cpu_limit: int = 4, gpu_ids: Optional[str] = "all", ): self.base_task = base_task self.timeout = timeout self.cpu_limit = cpu_limit self.gpu_ids = gpu_ids self._is_fitted = False self._timer = Timer() if timeout is not None: self._timer._timeout = timeout def fit(self, train_data: DataFrame, roles: Dict, verbose: int = 0): self._timer.start() self._fit(train_data, roles, verbose) self._is_fitted = True if self._timer.time_limit_exceeded(): logger.warning("{} is trained, but time limit exceeded.", self.__class__.__name__) def predict(self, data: DataFrame) -> Tuple[np.ndarray, ...]: if not self._is_fitted: raise NotTrainedError() return self._predict(data) @abstractmethod def _fit(self, train_data: DataFrame, roles: Dict, verbose: int = 0): pass @abstractmethod def _predict(self, data: DataFrame): pass def _get_default_learner(self, task: Task): return create_linear_automl(task) def _get_task(self, learner: AutoML) -> Task: if isinstance(learner, TabularAutoML): return learner.task elif isinstance(learner, AutoML): return learner.reader.task else: raise RuntimeError("Can't extract 'task' from learner") def _check_timer(self): if self._timer.time_limit_exceeded(): logger.warning( "MetaLearner '%s' isn't trained, because time limit was exceeded", self.__class__.__name__, ) raise NotTrainedError() class SLearner(MetaLearner): def __init__( self, learner: Optional[AutoML] = None, base_task: Optional[Task] = None, timeout: Optional[int] = None, cpu_limit: int = 4, gpu_ids: Optional[str] = "all", ): if base_task is None: if learner is not None: base_task = self._get_task(learner) else: raise RuntimeError('Must specify any of learners or "base_task"') super().__init__(base_task, timeout, cpu_limit, gpu_ids) if learner is None: self.learner = self._get_default_learner(base_task) else: self.learner = learner self._treatment_col: str def _fit(self, train_data: DataFrame, roles: Dict, verbose: int = 0): treatment_role, treatment_col = _get_treatment_role(roles) self._treatment_col = treatment_col uplift_roles = copy.deepcopy(roles) uplift_roles.pop(treatment_role) self.learner.fit_predict(train_data, uplift_roles, verbose=verbose) def _predict(self, data: DataFrame) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: data_c = data.copy() data_c[self._treatment_col] = 0 control_pred = self.learner.predict(data_c).data.ravel() data_c[self._treatment_col] = 1 treatment_pred = self.learner.predict(data_c).data.ravel() uplift_pred = treatment_pred - control_pred return uplift_pred, treatment_pred, control_pred class TLearner(MetaLearner): def __init__( self, treatment_learner: Optional[AutoML] = None, control_learner: Optional[AutoML] = None, base_task: Optional[Task] = None, timeout: Optional[int] = None, cpu_limit: int = 4, gpu_ids: Optional[str] = "all", ): assert any( x is not None for x in [treatment_learner, control_learner, base_task] ), 'Must specify any of learners or "base_task"' if base_task is None: if treatment_learner is not None: base_task = self._get_task(treatment_learner) elif control_learner is not None: base_task = self._get_task(control_learner) super().__init__(base_task, timeout, cpu_limit, gpu_ids) self.treatment_learner = ( treatment_learner if treatment_learner is not None else self._get_default_learner(self.base_task) ) self.control_learner = ( control_learner if control_learner is not None else self._get_default_learner(self.base_task) ) def _fit(self, train_data: DataFrame, roles: Dict, verbose: int = 0): treatment_role, treatment_col = _get_treatment_role(roles) new_roles = copy.deepcopy(roles) new_roles.pop(treatment_role) control_train_data = train_data[train_data[treatment_col] == 0] treatment_train_data = train_data[train_data[treatment_col] == 1] control_train_data.drop(treatment_col, axis=1, inplace=True) treatment_train_data.drop(treatment_col, axis=1, inplace=True) self.treatment_learner.fit_predict(treatment_train_data, new_roles, verbose=verbose) self._check_timer() self.control_learner.fit_predict(control_train_data, new_roles, verbose=verbose) def _predict(self, data: Any) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: treatment_pred = self.treatment_learner.predict(data).data.ravel() control_pred = self.control_learner.predict(data).data.ravel() uplift = treatment_pred - control_pred return uplift, treatment_pred, control_pred class T2Learner(MetaLearner): def __init__( self, treatment_learner: Optional[AutoML] = None, control_learner: Optional[AutoML] = None, n_uplift_iterator_folds: int = 5, base_task: Optional[Task] = None, timeout: Optional[int] = None, cpu_limit: int = 4, gpu_ids: Optional[str] = "all", ): if base_task is None: if treatment_learner is not None: base_task = self._get_task(treatment_learner) elif control_learner is not None: base_task = self._get_task(control_learner) else: raise RuntimeError('Must specify any of learners or "base_task"') super().__init__(base_task, timeout, cpu_limit, gpu_ids) self._n_uplift_iterator_folds = n_uplift_iterator_folds self.treatment_learner = ( treatment_learner if treatment_learner is not None else self._get_default_learner(self.base_task) ) self.control_learner = ( control_learner if control_learner is not None else self._get_default_learner(self.base_task) ) def _fit(self, train_data: DataFrame, roles: Dict): treatment_role, treatment_col = _get_treatment_role(roles) _, target_col = _get_target_role(roles) self._treatment_col = treatment_col new_roles = copy.deepcopy(roles) new_roles.pop(treatment_role) train_data_c = train_data.copy() treatment_values = train_data_c[treatment_col].values target_values = train_data[target_col].values treatment_iterator = UpliftIterator( treatment_values, target_values, True, self.base_task, self._n_uplift_iterator_folds, ) self.treatment_learner.fit_predict(train_data_c, new_roles, cv_iter=treatment_iterator) control_iterator = UpliftIterator( treatment_values, target_values, False, self.base_task, self._n_uplift_iterator_folds, ) self.control_learner.fit_predict(train_data_c, new_roles, cv_iter=control_iterator) def _predict(self, data: DataFrame): data_с = data.copy() data_с[self._treatment_col] = True treatment_pred = self.treatment_learner.predict(data_с).data.ravel() data_с[self._treatment_col] = False control_pred = self.control_learner.predict(data_с).data.ravel() uplift = treatment_pred - control_pred return uplift, treatment_pred, control_pred class TDLearner(MetaLearner): def __init__( self, treatment_learner: Optional[AutoML] = None, control_learner: Optional[AutoML] = None, base_task: Optional[Task] = None, timeout: Optional[int] = None, dependent_group: Optional[int] = None, cpu_limit: int = 4, gpu_ids: Optional[str] = "all", ): assert any( x is not None for x in [treatment_learner, control_learner, base_task] ), 'Must specify any of learners or "base_task"' if base_task is None and (treatment_learner is None or control_learner is None): if treatment_learner is not None: base_task = self._get_task(treatment_learner) elif control_learner is not None: base_task = self._get_task(control_learner) super().__init__(base_task, timeout, cpu_limit, gpu_ids) self.treatment_learner = ( treatment_learner if treatment_learner is not None else self._get_default_learner(self.base_task) ) self.control_learner = ( control_learner if control_learner is not None else self._get_default_learner(self.base_task) ) self._other_group_pred_col = "__OTHER_GROUP_PREDICTION__" self._dependent_group: Optional[int] = dependent_group def _fit(self, train_data: DataFrame, roles: Dict, verbose: int = 0): treatment_role, treatment_col = _get_treatment_role(roles) self._set_dependent_group(train_data[treatment_col].mean()) new_roles = copy.deepcopy(roles) new_roles.pop(treatment_role) control_train_data = train_data[train_data[treatment_col] == 0] treatment_train_data = train_data[train_data[treatment_col] == 1] control_train_data.drop(treatment_col, axis=1, inplace=True) treatment_train_data.drop(treatment_col, axis=1, inplace=True) if self._dependent_group == 1: dependent_train_data = treatment_train_data dependent_learner = self.treatment_learner independent_train_data = control_train_data independent_learner = self.control_learner else: dependent_train_data = control_train_data dependent_learner = self.control_learner independent_train_data = treatment_train_data independent_learner = self.treatment_learner independent_learner.fit_predict(independent_train_data, new_roles) self._check_timer() sg_oof_pred = independent_learner.predict(dependent_train_data).data.ravel() dependent_train_data[self._other_group_pred_col] = sg_oof_pred self._check_timer() dependent_learner.fit_predict(dependent_train_data, new_roles) def _predict(self, data: Any) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: data_c = data.copy() if self._dependent_group == 1: dependent_learner, independent_learner = ( self.treatment_learner, self.control_learner, ) else: dependent_learner, independent_learner = ( self.control_learner, self.treatment_learner, ) independent_pred = independent_learner.predict(data_c).data.ravel() data_c[self._other_group_pred_col] = independent_pred dependent_pred = dependent_learner.predict(data_c).data.ravel() if self._dependent_group == 1: control_pred, treatment_pred = independent_pred, dependent_pred else: control_pred, treatment_pred = dependent_pred, independent_pred uplift = treatment_pred - control_pred return uplift, treatment_pred, control_pred def _set_dependent_group(self, treatment_rate: float): if self._dependent_group is None: self._dependent_group = 1 if treatment_rate > 0.5 else 0 class XLearner(MetaLearner): def __init__( self, outcome_learners: Optional[Sequence[AutoML]] = None, effect_learners: Optional[Sequence[AutoML]] = None, propensity_learner: Optional[AutoML] = None, base_task: Optional[Task] = None, timeout: Optional[int] = None, cpu_limit: int = 4, gpu_ids: Optional[str] = "all", ): if (outcome_learners is None or len(outcome_learners) == 0) and base_task is None: raise RuntimeError('Must specify any of learners or "base_task"') if outcome_learners is not None and len(outcome_learners) > 0: base_task = self._get_task(outcome_learners[0]) super().__init__(self._get_task(outcome_learners[0])) super().__init__(base_task, timeout, cpu_limit, gpu_ids) self.learners: Dict[str, Union[Dict[str, AutoML], AutoML]] = { "outcome": {}, "effect": {}, } if propensity_learner is None: self.learners["propensity"] = self._get_default_learner(Task("binary")) else: self.learners["propensity"] = propensity_learner if outcome_learners is None or len(outcome_learners) == 0: self.learners["outcome"]["control"] = self._get_default_learner(self.base_task) self.learners["outcome"]["treatment"] = self._get_default_learner(self.base_task) elif len(outcome_learners) == 1: self.learners["outcome"]["control"] = outcome_learners[0] self.learners["outcome"]["treatment"] = copy.deepcopy(outcome_learners[0]) elif len(outcome_learners) == 2: self.learners["outcome"]["control"] = outcome_learners[0] self.learners["outcome"]["treatment"] = outcome_learners[1] else: raise RuntimeError('The number of "outcome_learners" must be 0/1/2') if effect_learners is None or len(effect_learners) == 0: self.learners["effect"]["control"] = self._get_default_learner(Task("reg")) self.learners["effect"]["treatment"] = self._get_default_learner(Task("reg")) elif len(effect_learners) == 1: self.learners["effect"]["control"] = effect_learners[0] self.learners["effect"]["treatment"] = copy.deepcopy(effect_learners[0]) elif len(effect_learners) == 2: self.learners["effect"]["control"] = effect_learners[0] self.learners["effect"]["treatment"] = effect_learners[1] else: raise RuntimeError('The number of "effect_learners" must be 0/1/2') def _fit(self, train_data: DataFrame, roles: Dict, verbose: int = 0): self._fit_propensity_learner(train_data, roles, verbose) self._fit_outcome_learners(train_data, roles, verbose) self._fit_effect_learners(train_data, roles, verbose) def _fit_propensity_learner(self, train_data: DataFrame, roles: Dict, verbose: int = 0): propensity_roles = copy.deepcopy(roles) target_role, target_col = _get_target_role(roles) propensity_roles.pop(target_role) treatment_role, treatment_col = _get_treatment_role(roles) propensity_roles.pop(treatment_role) propensity_roles["target"] = treatment_col train_cp = train_data.copy() train_cp.drop(target_col, axis=1, inplace=True) self.learners["propensity"].fit_predict(train_cp, propensity_roles, verbose=verbose) def _fit_outcome_learners(self, train_data: DataFrame, roles: Dict, verbose: int = 0): treatment_role, treatment_col = _get_treatment_role(roles) outcome_roles = copy.deepcopy(roles) outcome_roles.pop(treatment_role) for group_name, outcome_learner in self.learners["outcome"].items(): self._check_timer() group = 1 if group_name == "treatment" else 0 train_data_outcome = train_data[train_data[treatment_col] == group].copy() train_data_outcome.drop(treatment_col, axis=1, inplace=True) outcome_learner.fit_predict(train_data_outcome, outcome_roles, verbose=verbose) def _fit_effect_learners(self, train_data: DataFrame, roles: Dict, verbose: int = 0): treatment_role, treatment_col = _get_treatment_role(roles) _, target_col = _get_target_role(roles) effect_roles: Dict = copy.deepcopy(roles) effect_roles.pop(treatment_role) for group_name, effect_learner in self.learners["effect"].items(): self._check_timer() group = 1 if group_name == "treatment" else 0 opposite_group_name = "treatment" if group_name == "control" else "control" train_data_effect = train_data[train_data[treatment_col] == group].copy() train_data_effect.drop(treatment_col, axis=1, inplace=True) outcome_pred = self.learners["outcome"][opposite_group_name].predict(train_data_effect).data.ravel() train_data_effect[target_col] = train_data_effect[target_col] - outcome_pred if group_name == "control": train_data_effect[target_col] *= -1 train_data_effect = train_data_effect[train_data_effect[target_col].notnull()] effect_learner.fit_predict(train_data_effect, effect_roles, verbose=verbose) def _predict(self, data: Any) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: outcome_control_pred = self.learners["outcome"]["control"].predict(data).data.ravel() outcome_treatment_pred = self.learners["outcome"]["treatment"].predict(data).data.ravel() propensity_score = self.learners["propensity"].predict(data).data.ravel() uplift_control_pred = self.learners["effect"]["control"].predict(data).data.ravel() uplift_treatment_pred = self.learners["effect"]["treatment"].predict(data).data.ravel() uplift = propensity_score * uplift_treatment_pred + (1.0 - propensity_score) * uplift_control_pred return uplift, outcome_treatment_pred, outcome_control_pred class RLearner(MetaLearner): _epsi = 10 ** -5 def __init__( self, propensity_learner: Optional[AutoML] = None, mean_outcome_learner: Optional[AutoML] = None, effect_learner: Optional[AutoML] = None, base_task: Optional[Task] = Task("binary"), timeout: Optional[int] = None, cpu_limit: int = 4, gpu_ids: Optional[str] = "all", ): if propensity_learner is not None and self._get_task(propensity_learner).name != "binary": raise RuntimeError("Task of 'propensity_learner' must be 'binary'") if mean_outcome_learner is None and base_task is None: raise RuntimeError("Must specify 'mean_outcome_learner' or base_task") if effect_learner is not None and self._get_task(effect_learner).name != "reg": raise RuntimeError("Task of effect_learner must be 'reg'") super().__init__(base_task, timeout, cpu_limit, gpu_ids) self.propensity_learner: AutoML self.mean_outcome_learner: AutoML self.effect_learner: AutoML no_learners = (propensity_learner is None) and (mean_outcome_learner is None) and (effect_learner is None) tabular_timeout = timeout / 3 if no_learners and timeout is not None else None if propensity_learner is None: self.propensity_learner = TabularAutoML(task=Task("binary"), timeout=tabular_timeout) else: self.propensity_learner = propensity_learner if mean_outcome_learner is not None: self.mean_outcome_learner = mean_outcome_learner self.base_task = self._get_task(mean_outcome_learner) elif base_task is not None: self.mean_outcome_learner = TabularAutoML(task=base_task, timeout=tabular_timeout) if effect_learner is None: self.effect_learner = TabularAutoML(task=Task("reg"), timeout=tabular_timeout) else: self.effect_learner = effect_learner def _fit(self, train_data: DataFrame, roles: Dict, verbose: int = 0): propensity_pred = self._fit_predict_propensity_learner(train_data, roles, verbose) self._check_timer() mean_outcome_pred = self._fit_predict_mean_outcome_learner(train_data, roles, verbose) self._check_timer() self._fit_effect_learner(train_data, roles, propensity_pred, mean_outcome_pred, verbose) def _predict(self, data: Any) -> Tuple[np.ndarray, None, None]: return self.effect_learner.predict(data).data.ravel(), None, None
Apache License 2.0
hichamjanati/mutar
mutar/otfunctions.py
barycenterkl_img_log
python
def barycenterkl_img_log(P, M, epsilon, gamma, b=None, tol=1e-4, max_iter=1000, xp=np, threshold=0.): xp = get_module(M) psum = P.sum() P = P.reshape(xp.r_[M.shape, -1]) n_tasks = P.shape[-1] n_features = P.size // n_tasks frac = gamma / (gamma + epsilon) if b is None: b = xp.zeros_like(P) Kb = utils.kls(b, M) log = {'cstr': [], 'flag': 0, 'obj': []} weights = xp.ones(n_tasks) / n_tasks logweights = xp.log(weights)[None, None, :] logp = xp.log(P + 1e-10) b = xp.zeros_like(logp) qold = P.mean(axis=-1) + 1e-10 for i in range(max_iter): a = frac * (logp - Kb) Ka = utils.kls(a, M.T) kaw = logweights + Ka * (1 - frac) logq = utils.logsumexp(kaw, axis=-1) - xp.log(weights.sum()) logq = (1 / (1 - frac)) * logq logQ = logq[:, :, xp.newaxis] b = frac * (logQ - Ka) Kb = utils.kls(b, M) q = xp.exp(logq) if i % 10 == 0: cstr = float((abs(q - qold)).max()) cstr /= float(max(q.max(), qold.max(), 1e-20)) qold = q.copy() log["cstr"].append(cstr) if cstr < tol and i > 5: break if i == max_iter - 1: log['flag'] = 3 marginals = xp.exp(a + Kb).reshape(n_features, n_tasks).T try: marginals = marginals.get() q = q.get() except AttributeError: pass f = wklobjective_converged(n_tasks * q.sum(), 0., psum, epsilon, gamma) return f, log, marginals, b, q.flatten()
KL OT Barycenters for 2D images.
https://github.com/hichamjanati/mutar/blob/b682ba951fdcb5cb18fb6eeca0de976de96d3193/mutar/otfunctions.py#L170-L220
import numpy as np from . import utils try: import cupy as cp get_module = cp.get_array_module except ImportError: def get_module(x): return np def wklobjective_converged(qsum, f0, plansum, epsilon, gamma): obj = gamma * (plansum + qsum) obj += epsilon * f0 obj += - (epsilon + 2 * gamma) * plansum return obj def barycenterkl_log(P, M, epsilon, gamma, b=None, tol=1e-4, max_iter=1000, weights=None, threshold=1e-10): xp = get_module(M) frac = gamma / (gamma + epsilon) n_tasks = P.shape[-1] n_features = M.shape[-1] psum = P.sum() support = (P > threshold).any(axis=1) logps = np.log(P[support] + 1e-100) logps = xp.asarray(logps) M = M[xp.asarray(support)] if b is None: Kb = utils.logsumexp(M, axis=1) Kb = xp.tile(Kb, (n_tasks, 1)).T else: Kb = xp.zeros((len(M), n_tasks)) for k in range(n_tasks): Kb[:, k] = utils.logsumexp(b[:, k][None, :] + M, axis=1) log = {'cstr': [], 'flag': 0, 'obj': []} if weights is None: weights = xp.ones(n_tasks) / n_tasks logweights = xp.log(weights)[None, :] qold = xp.ones(n_features)[:, None] Ka = xp.zeros((n_features, n_tasks)) for i in range(max_iter): a = frac * (logps - Kb) for k in range(n_tasks): Ka[:, k] = utils.logsumexp(a[:, k][:, None] + M, axis=0) logq = logweights + Ka * (1 - frac) logq = utils.logsumexp(logq, axis=1) logq = (1 / (1 - frac)) * logq b = frac * (logq[:, None] - Ka) for k in range(n_tasks): Kb[:, k] = utils.logsumexp(b[:, k][None, :] + M, axis=1) q = xp.exp(logq) cstr = float(abs(q - qold).max()) cstr /= float(max(q.max(), qold.max(), 1.)) qold = q.copy() log["cstr"].append(cstr) if cstr < tol and i > 3: break if i == max_iter - 1: log['flag'] = 3 try: a = a.get() Kb = Kb.get() q = q.get() logps = logps.get() except AttributeError: pass marginals = np.exp(a + Kb).T marginals[~np.isfinite(marginals)] = 1 m = np.zeros((n_tasks, n_features)) f = wklobjective_converged(n_tasks * q.sum(), 0., psum, epsilon, gamma) m[:, support] = marginals marginals = m b[~np.isfinite(b)] = 0. return f, log, marginals, b, q def barycenterkl(P, M, epsilon, gamma, b=None, tol=1e-4, max_iter=1000, weights=None, threshold=1e-10): xp = get_module(M) frac = gamma / (gamma + epsilon) psum = P.sum() n_features, n_tasks = P.shape frac = gamma / (gamma + epsilon) support = (P > threshold).any(axis=1) if len(support) == 0: support = P.any(axis=1) P = P[support] P = xp.asarray(P) M = M[xp.asarray(support)] M = xp.exp(M) if b is None: b = xp.ones((n_features, n_tasks)) Kb = M.dot(b) log = {'cstr': [], 'flag': 0, 'obj': []} if weights is None: weights = xp.ones(n_tasks) / n_tasks q = xp.ones(n_features) qold = q.copy() return_nan = False cstr = 1. qmax_old = 1. qmax = 1. for i in range(max_iter): a = (P / Kb) ** frac Ka = M.T.dot(a) q = ((Ka ** (1 - frac)).dot(weights)) q = q ** (1 / (1 - frac)) Q = q[:, None] qmax = q.max() if i > 2: cstr = float(abs(q - qold).max() / max(qmax_old, qmax, 1.)) qold = q.copy() qmax_old = qmax b_old = b.copy() b = (Q / Ka) ** frac if not xp.isfinite(b).all(): return_nan = True break Kb = M.dot(b) log["cstr"].append(cstr) if abs(cstr) < tol and i > 2: break if i == max_iter - 1: log['flag'] = - 1 marginals = (a * Kb).T try: marginals = marginals.get() q = q.get() utils.free_gpu_memory(xp) except AttributeError: pass f = wklobjective_converged(n_tasks * q.sum(), 0., psum, epsilon, gamma) m = np.zeros((n_tasks, n_features)) marginals[~np.isfinite(marginals)] = 1 m[:, support] = marginals marginals = m if return_nan or xp.isnan(f): f = None b = b_old return f, log, marginals, b, q
BSD 3-Clause New or Revised License
transceptor-technology/aiogcd
aiogcd/orm/filter.py
Filter.get_keys
python
async def get_keys( self, gcd: GcdConnector, offset=None, limit=None) -> list: self._set_offset(offset) self._set_limit(limit) return await gcd.get_keys(self)
Returns a list containing Gcd keys from the supplied filter. :param gcd: GcdConnector instance. :param offset: integer to specify how many keys to skip :param limit: integer to specify max number of keys to return :return: list containing Gcd key objects.
https://github.com/transceptor-technology/aiogcd/blob/5235b8ef272bee4a9dc6f46f515d983772e1bd3f/aiogcd/orm/filter.py#L140-L151
from ..connector.key import Key from ..connector import GcdConnector class Filter(dict): def __init__(self, model, *filters, has_ancestor=None, key=None): self._model = model self._cursor = None filters = list(filters) if has_ancestor is not None: assert isinstance(has_ancestor, Key), 'Keyword argument \'has_ancestor\' should be of type ' '\'Key\' but found type {!r}' .format(has_ancestor.__class__.__name__) filters.append({ 'property': {'name': '__key__'}, 'value': {'keyValue': has_ancestor.get_dict()}, 'op': 'HAS_ANCESTOR'}) if key is not None: assert isinstance(key, Key), 'Keyword argument \'key\' should be of type \'Key\' ' 'but found type {!r}' .format(key.__class__.__name__) filters.append({ 'property': {'name': '__key__'}, 'value': {'keyValue': key.get_dict()}, 'op': 'EQUAL'}) filter_dict = {'query': {'kind': [{'name': self._model.get_kind()}]}} if self._model.__namespace__: filter_dict['partitionId'] = { 'namespaceId': self._model.__namespace__ } if len(filters) == 1: filter_dict['query']['filter'] = { 'propertyFilter': filters[0] } elif len(filters) > 1: filter_dict['query']['filter'] = { 'compositeFilter': { 'op': 'AND', 'filters': [{'propertyFilter': f} for f in filters] } } super().__init__(**filter_dict) def _set_start_cursor(self, start_cursor): if start_cursor: if not isinstance(start_cursor, str): raise TypeError( 'start_cursor is expected to be str, {} passed'.format( type(start_cursor))) self['query']['startCursor'] = start_cursor def _set_offset(self, offset): if offset: if not isinstance(offset, int): raise TypeError( 'offset is expected to be int, {} passed'.format( type(offset))) self['query']['offset'] = offset def _set_limit(self, limit): if limit: if not isinstance(limit, int): raise TypeError( 'limit is expected to be int, {} passed'.format( type(limit))) self['query']['limit'] = limit @property def cursor(self): return self._cursor def order_by(self, *order): self['query']['order'] = [ { 'property': {'name': p[0]}, 'direction': p[1] } if isinstance(p, tuple) else { 'property': {'name': p.name}, 'direction': 'DIRECTION_UNSPECIFIED' } for p in order ] return self def limit(self, limit, start_cursor=None): self._set_limit(limit) self._set_start_cursor(start_cursor) return self async def get_entity(self, gcd: GcdConnector): entity = await gcd.get_entity(self) return None if entity is None else self._model(entity) async def get_entities( self, gcd: GcdConnector, offset=None, limit=None) -> list: self._set_offset(offset) self._set_limit(limit) entities, cursor = await gcd._get_entities_cursor(self) self._cursor = cursor return [self._model(ent) for ent in entities] async def get_key(self, gcd: GcdConnector): return await gcd.get_key(self)
MIT License
sissaschool/elementpath
elementpath/regex/patterns.py
translate_pattern
python
def translate_pattern(pattern: str, flags: int = 0, xsd_version: str = '1.0', back_references: bool = True, lazy_quantifiers: bool = True, anchors: bool = True) -> str: def parse_character_class(): nonlocal pos nonlocal msg pos += 1 if pattern[pos] == '^': pos += 1 negative = True else: negative = False char_class_pos = pos while True: if pattern[pos] == '[': msg = "invalid character '[' at position {}: {!r}" raise RegexError(msg.format(pos, pattern)) elif pattern[pos] == '\\': if pattern[pos + 1].isdigit(): msg = "illegal back-reference in character class at position {}: {!r}" raise RegexError(msg.format(pos, pattern)) pos += 2 elif pattern[pos] == ']' or pattern[pos:pos + 2] == '-[': if pos == char_class_pos: msg = "empty character class at position {}: {!r}" raise RegexError(msg.format(pos, pattern)) char_class_pattern = pattern[char_class_pos:pos] if HYPHENS_PATTERN.search(char_class_pattern) and pos - char_class_pos > 2: msg = "invalid character range '--' at position {}: {!r}" raise RegexError(msg.format(pos, pattern)) if xsd_version == '1.0': hyphen_match = INVALID_HYPHEN_PATTERN.search(char_class_pattern) if hyphen_match is not None: hyphen_pos = char_class_pos + hyphen_match.span()[1] - 2 msg = "unescaped character '-' at position {}: {!r}" raise RegexError(msg.format(hyphen_pos, pattern)) char_class = CharacterClass(char_class_pattern, xsd_version) if negative: char_class.complement() break else: pos += 1 if pattern[pos] != ']': pos += 1 subtracted_class = parse_character_class() pos += 1 char_class -= subtracted_class return char_class group_open_char = '(' if back_references else '(?:' regex = [] if anchors else ['^%s' % group_open_char] pos = 0 pattern_len = len(pattern) total_groups = 0 nested_groups = 0 dot_all = flags & re.DOTALL if back_references: match = FORBIDDEN_ESCAPES_REF_PATTERN.search(pattern) else: match = FORBIDDEN_ESCAPES_NOREF_PATTERN.search(pattern) if match: msg = "not allowed escape sequence {!r} at position {}: {!r}" raise RegexError(msg.format(match.group(), match.span()[0], pattern)) while pos < pattern_len: ch = pattern[pos] if ch == '.': regex.append(ch if dot_all else '[^\r\n]') elif ch in ('^', '$'): if not anchors: regex.append(r'\%s' % ch) elif ch == '^': regex.append(r'(?<!\n\Z)^' if flags & re.MULTILINE else '^') else: regex.append('$' if flags & re.MULTILINE else r'$(?!\n\Z)') elif ch == '[': try: char_class_repr = str(parse_character_class()) except IndexError: msg = "unterminated character class at position {}: {!r}" raise RegexError(msg.format(pos, pattern)) else: if char_class_repr == '[]': regex.append(r'[^\w\W]') else: regex.append(char_class_repr) elif ch == '{': if pos == 0: msg = "unexpected quantifier {!r} at position {}: {!r}" raise RegexError(msg.format(ch, pos, pattern)) match = QUANTIFIER_PATTERN.match(pattern[pos:]) if match is None: msg = "invalid quantifier {!r} at position {}: {!r}" raise RegexError(msg.format(ch, pos, pattern)) regex.append(match.group()) pos += len(match.group()) if not lazy_quantifiers and pos < pattern_len and pattern[pos] in ('?', '+', '*'): msg = "unexpected meta character {!r} at position {}: {!r}" raise RegexError(msg.format(pattern[pos], pos, pattern)) continue elif ch == '(': if pattern[pos:pos + 2] == '(?': msg = "invalid '(?...)' extension notation ad position {}: {!r}" raise RegexError(msg.format(pos, pattern)) total_groups += 1 nested_groups += 1 regex.append(group_open_char) elif ch == ']': msg = "unexpected meta character {!r} at position {}: {!r}" raise RegexError(msg.format(ch, pos, pattern)) elif ch == ')': if nested_groups == 0: msg = "unbalanced parenthesis ')' at position {}: {!r}" raise RegexError(msg.format(pos, pattern)) nested_groups -= 1 regex.append(ch) elif ch in ('?', '+', '*'): if pos == 0: msg = "unexpected quantifier {!r} at position {}: {!r}" raise RegexError(msg.format(ch, pos, pattern)) elif lazy_quantifiers: pass elif pos < pattern_len - 1 and pattern[pos + 1] in ('?', '+', '*', '{'): msg = "unexpected meta character {!r} at position {}: {!r}" raise RegexError(msg.format(pattern[pos + 1], pos + 1, pattern)) regex.append(ch) elif ch == '\\': pos += 1 if flags & re.VERBOSE: while pos < pattern_len and pattern[pos] == ' ': pos += 1 if pos >= pattern_len: regex.append('\\') elif pattern[pos].isdigit(): regex.append('\\%s' % pattern[pos]) reference = DIGITS_PATTERN.match(pattern[pos:]).group() if len(reference) > 1: k = 0 for k in range(1, len(reference)): if total_groups < int(reference[:k + 1]): regex.append('[%s]' % pattern[pos + k]) break else: regex.append(pattern[pos + k]) pos += k elif pattern[pos] == 'i': regex.append('[%s]' % I_SHORTCUT_REPLACE) elif pattern[pos] == 'I': regex.append('[^%s]' % I_SHORTCUT_REPLACE) elif pattern[pos] == 'c': regex.append('[%s]' % C_SHORTCUT_REPLACE) elif pattern[pos] == 'C': regex.append('[^%s]' % C_SHORTCUT_REPLACE) elif pattern[pos] in 'pP': block_pos = pos - 1 try: if pattern[pos + 1] != '{': raise RegexError("a '{' expected, found %r." % pattern[pos + 1]) while pattern[pos] != '}': pos += 1 except (IndexError, ValueError): msg = "truncated unicode block escape at position {}: {!r}" raise RegexError(msg.format(block_pos, pattern)) block_name = pattern[block_pos + 3:pos] if flags & re.VERBOSE: block_name = block_name.replace(' ', '') try: p_shortcut_set = unicode_subset(block_name) except RegexError: if xsd_version == '1.0' or not block_name.startswith('Is'): raise p_shortcut_group = '[%s]' % UnicodeSubset([(0, maxunicode)]) else: if pattern[block_pos + 1] == 'p': p_shortcut_group = '[%s]' % p_shortcut_set else: p_shortcut_group = '[^%s]' % p_shortcut_set if flags & re.IGNORECASE: regex.append('(?-i:%s)' % p_shortcut_group) else: regex.append(p_shortcut_group) else: regex.append('\\%s' % pattern[pos]) else: regex.append(ch) pos += 1 if nested_groups > 0: raise RegexError("unterminated subpattern in expression: %r" % pattern) if not anchors: regex.append(r')$(?!\n\Z)') return ''.join(regex)
Translates a pattern regex expression to a Python regex pattern. With default options the translator processes XPath 2.0/XQuery 1.0 regex patterns. For XML Schema patterns set all boolean options to `False`. :param pattern: the source XML Schema regular expression. :param flags: regex flags as represented by Python's re module. :param xsd_version: apply regex rules of a specific XSD version, '1.0' for default. :param back_references: if `True` supports back-references and capturing groups. :param lazy_quantifiers: if `True` supports lazy quantifiers (\\*?, +?). :param anchors: if `True` supports ^ and $ anchors, otherwise the translated \ pattern is anchored to its boundaries and anchors are treated as normal characters.
https://github.com/sissaschool/elementpath/blob/a74ce89c04622d8ae98ab739886c3e46f87b024e/elementpath/regex/patterns.py#L31-L265
import re from sys import maxunicode from .unicode_subsets import RegexError, UnicodeSubset, unicode_subset from .character_classes import I_SHORTCUT_REPLACE, C_SHORTCUT_REPLACE, CharacterClass HYPHENS_PATTERN = re.compile(r'(?<!\\)--') INVALID_HYPHEN_PATTERN = re.compile(r'[^\\]-[^\\]-[^\\]') DIGITS_PATTERN = re.compile(r'\d+') QUANTIFIER_PATTERN = re.compile(r'{\d+(,(\d+)?)?}') FORBIDDEN_ESCAPES_NOREF_PATTERN = re.compile( r'(?<!\\)\\(U[0-9a-fA-F]{8}|u[0-9a-fA-F]{4}|x[0-9a-fA-F]{2}|o{\d+}|\d+|A|Z|z|B|b|o)' ) FORBIDDEN_ESCAPES_REF_PATTERN = re.compile( r'(?<!\\)\\(U[0-9a-fA-F]{8}|u[0-9a-fA-F]{4}|x[0-9a-fA-F]{2}|o{\d+}|A|Z|z|B|b|o)' )
MIT License
pyro-ppl/pyro
pyro/contrib/timeseries/base.py
TimeSeriesModel.get_dist
python
def get_dist(self): raise NotImplementedError
Get a :class:`~pyro.distributions.Distribution` object corresponding to this time series model. Often this is a :class:`~pyro.distributions.GaussianHMM`.
https://github.com/pyro-ppl/pyro/blob/751843a16ffca0fec0ec722aa4d57cad246db648/pyro/contrib/timeseries/base.py#L43-L49
from pyro.nn import PyroModule, pyro_method class TimeSeriesModel(PyroModule): @pyro_method def log_prob(self, targets): raise NotImplementedError @pyro_method def forecast(self, targets, dts): raise NotImplementedError
Apache License 2.0
symbiflow/prjxray
fuzzers/046-clk-bufg-muxed-pips/top.py
ClockSources.get_random_source
python
def get_random_source(self, cmt): if cmt not in self.merged_sources: choices = [] if 'ANY' in self.sources: choices.extend(self.sources['ANY']) if cmt in self.sources: choices.extend(self.sources[cmt]) x, y = CMT_XY_FUN(cmt) if x % 2 == 0: x += 1 else: x -= 1 paired_cmt = 'X{}Y{}'.format(x, y) if paired_cmt in self.sources: choices.extend(self.sources[paired_cmt]) self.merged_sources[cmt] = choices if self.merged_sources[cmt]: source = random.choice(self.merged_sources[cmt]) source_cmt = self.source_to_cmt[source] if source_cmt not in self.used_sources_from_cmt: self.used_sources_from_cmt[source_cmt] = set() self.used_sources_from_cmt[source_cmt].add(source) if source_cmt != 'ANY' and len( self.used_sources_from_cmt[source_cmt]) > 14: print('//', self.used_sources_from_cmt) self.used_sources_from_cmt[source_cmt].remove(source) return None else: return source
Get a random source that is routable to the specific CMT. get_random_source will return a source that is either cmt='ANY', cmt equal to the input CMT, or the adjecent CMT.
https://github.com/symbiflow/prjxray/blob/60168e9b7e89956ce8a197f3cfdf6d4bc80926d3/fuzzers/046-clk-bufg-muxed-pips/top.py#L61-L105
import os import random random.seed(int(os.getenv("SEED"), 16)) from prjxray import util from prjxray.lut_maker import LutMaker from prjxray.db import Database from io import StringIO CMT_XY_FUN = util.create_xy_fun(prefix='') BUFGCTRL_XY_FUN = util.create_xy_fun('BUFGCTRL_') def read_site_to_cmt(): with open(os.path.join(os.getenv('FUZDIR'), 'build', 'cmt_regions.csv')) as f: for l in f: site, cmt = l.strip().split(',') yield (site, cmt) class ClockSources(object): def __init__(self): self.sources = {} self.merged_sources = {} self.source_to_cmt = {} self.used_sources_from_cmt = {} def add_clock_source(self, source, cmt): if cmt not in self.sources: self.sources[cmt] = [] self.sources[cmt].append(source) assert source not in self.source_to_cmt or self.source_to_cmt[ source] == cmt, source self.source_to_cmt[source] = cmt
ISC License
ktbyers/pyplus_course
class4/collateral/textfsm.py
TextFSM._ParseFSMVariables
python
def _ParseFSMVariables(self, template): self.values = [] for line in template: self._line_num += 1 line = line.rstrip() if not line: return if self.comment_regex.match(line): continue if line.startswith('Value '): try: value = TextFSMValue( fsm=self, max_name_len=self.MAX_NAME_LEN, options_class=self._options_cls) value.Parse(line) except TextFSMTemplateError as error: raise TextFSMTemplateError('%s Line %s.' % (error, self._line_num)) if value.name in self.header: raise TextFSMTemplateError( "Duplicate declarations for Value '%s'. Line: %s." % (value.name, self._line_num)) try: self._ValidateOptions(value) except TextFSMTemplateError as error: raise TextFSMTemplateError('%s Line %s.' % (error, self._line_num)) self.values.append(value) self.value_map[value.name] = value.template elif not self.values: raise TextFSMTemplateError('No Value definitions found.') else: raise TextFSMTemplateError( 'Expected blank line after last Value entry. Line: %s.' % (self._line_num))
Extracts Variables from start of template file. Values are expected as a contiguous block at the head of the file. These will be line separated from the State definitions that follow. Args: template: Valid template file, with Value definitions at the top. Raises: TextFSMTemplateError: If syntax or semantic errors are found.
https://github.com/ktbyers/pyplus_course/blob/b8cdeb61ea2abd5607e5da41134bedd116144220/class4/collateral/textfsm.py#L691-L745
from __future__ import absolute_import from __future__ import division from __future__ import print_function __version__ = '0.4.1' import getopt import inspect import re import string import sys import colorama DEBUG = True class Error(Exception): class Usage(Exception): class TextFSMError(Error): class TextFSMTemplateError(Error): class FSMAction(Exception): class SkipRecord(FSMAction): class SkipValue(FSMAction): class TextFSMOptions(object): class OptionBase(object): def __init__(self, value): self.value = value @property def name(self): return self.__class__.__name__.replace('option', '') def OnCreateOptions(self): def OnClearVar(self): def OnClearAllVar(self): def OnAssignVar(self): def OnGetValue(self): def OnSaveRecord(self): @classmethod def ValidOptions(cls): valid_options = [] for obj_name in dir(cls): obj = getattr(cls, obj_name) if inspect.isclass(obj) and issubclass(obj, cls.OptionBase): valid_options.append(obj_name) return valid_options @classmethod def GetOption(cls, name): return getattr(cls, name) class Required(OptionBase): def OnSaveRecord(self): if not self.value.value: raise SkipRecord class Filldown(OptionBase): def OnCreateOptions(self): self._myvar = None def OnAssignVar(self): self._myvar = self.value.value def OnClearVar(self): self.value.value = self._myvar def OnClearAllVar(self): self._myvar = None class Fillup(OptionBase): def OnAssignVar(self): if self.value.value: value_idx = self.value.fsm.values.index(self.value) for result in reversed(self.value.fsm._result): if result[value_idx]: break result[value_idx] = self.value.value class Key(OptionBase): class List(OptionBase): def OnCreateOptions(self): self.OnClearAllVar() def OnAssignVar(self): if self.value.compiled_regex.groups > 1: match = self.value.compiled_regex.match(self.value.value) else: match = None if match and match.groupdict(): self._value.append(match.groupdict()) else: self._value.append(self.value.value) def OnClearVar(self): if 'Filldown' not in self.value.OptionNames(): self._value = [] def OnClearAllVar(self): self._value = [] def OnSaveRecord(self): self.value.value = list(self._value) class TextFSMValue(object): def __init__(self, fsm=None, max_name_len=48, options_class=None): self.max_name_len = max_name_len self.name = None self.options = [] self.regex = None self.value = None self.fsm = fsm self._options_cls = options_class def AssignVar(self, value): self.value = value _ = [option.OnAssignVar() for option in self.options] def ClearVar(self): self.value = None _ = [option.OnClearVar() for option in self.options] def ClearAllVar(self): self.value = None _ = [option.OnClearAllVar() for option in self.options] def Header(self): _ = [option.OnGetValue() for option in self.options] return self.name def OptionNames(self): return [option.name for option in self.options] def Parse(self, value): value_line = value.split(' ') if len(value_line) < 3: raise TextFSMTemplateError('Expect at least 3 tokens on line.') if not value_line[2].startswith('('): options = value_line[1] for option in options.split(','): self._AddOption(option) _ = [option.OnCreateOptions() for option in self.options] self.name = value_line[2] self.regex = ' '.join(value_line[3:]) else: self.name = value_line[1] self.regex = ' '.join(value_line[2:]) if len(self.name) > self.max_name_len: raise TextFSMTemplateError( "Invalid Value name '%s' or name too long." % self.name) if (not re.match(r'^\(.*\)$', self.regex) or self.regex.count('(') != self.regex.count(')')): raise TextFSMTemplateError( "Value '%s' must be contained within a '()' pair." % self.regex) self.template = re.sub(r'^\(', '(?P<%s>' % self.name, self.regex) if any(map(lambda x: isinstance(x, TextFSMOptions.List), self.options)): try: self.compiled_regex = re.compile(self.regex) except re.error as e: raise TextFSMTemplateError(str(e)) def _AddOption(self, name): if name in [option.name for option in self.options]: raise TextFSMTemplateError('Duplicate option "%s"' % name) try: option = self._options_cls.GetOption(name)(self) except AttributeError: raise TextFSMTemplateError('Unknown option "%s"' % name) self.options.append(option) def OnSaveRecord(self): _ = [option.OnSaveRecord() for option in self.options] def __str__(self): if self.options: return 'Value %s %s %s' % ( ','.join(self.OptionNames()), self.name, self.regex) else: return 'Value %s %s' % (self.name, self.regex) class CopyableRegexObject(object): def __init__(self, pattern): self.pattern = pattern self.regex = re.compile(pattern) def match(self, *args, **kwargs): return self.regex.match(*args, **kwargs) def sub(self, *args, **kwargs): return self.regex.sub(*args, **kwargs) def __copy__(self): return CopyableRegexObject(self.pattern) def __deepcopy__(self, unused_memo): return self.__copy__() class TextFSMRule(object): MATCH_ACTION = re.compile(r'(?P<match>.*)(\s->(?P<action>.*))') LINE_OP = ('Continue', 'Next', 'Error') RECORD_OP = ('Clear', 'Clearall', 'Record', 'NoRecord') LINE_OP_RE = '(?P<ln_op>%s)' % '|'.join(LINE_OP) RECORD_OP_RE = '(?P<rec_op>%s)' % '|'.join(RECORD_OP) OPERATOR_RE = r'(%s(\.%s)?)' % (LINE_OP_RE, RECORD_OP_RE) NEWSTATE_RE = r'(?P<new_state>\w+|\".*\")' ACTION_RE = re.compile(r'\s+%s(\s+%s)?$' % (OPERATOR_RE, NEWSTATE_RE)) ACTION2_RE = re.compile(r'\s+%s(\s+%s)?$' % (RECORD_OP_RE, NEWSTATE_RE)) ACTION3_RE = re.compile(r'(\s+%s)?$' % (NEWSTATE_RE)) def __init__(self, line, line_num=-1, var_map=None): self.match = '' self.regex = '' self.regex_obj = None self.line_op = '' self.record_op = '' self.new_state = '' self.line_num = line_num line = line.strip() if not line: raise TextFSMTemplateError('Null data in FSMRule. Line: %s' % self.line_num) match_action = self.MATCH_ACTION.match(line) if match_action: self.match = match_action.group('match') else: self.match = line self.regex = self.match if var_map: try: self.regex = string.Template(self.match).substitute(var_map) except (ValueError, KeyError): raise TextFSMTemplateError( "Duplicate or invalid variable substitution: '%s'. Line: %s." % (self.match, self.line_num)) try: self.regex_obj = CopyableRegexObject(self.regex) except re.error: raise TextFSMTemplateError( "Invalid regular expression: '%s'. Line: %s." % (self.regex, self.line_num)) if not match_action: return action_re = self.ACTION_RE.match(match_action.group('action')) if not action_re: action_re = self.ACTION2_RE.match(match_action.group('action')) if not action_re: action_re = self.ACTION3_RE.match(match_action.group('action')) if not action_re: raise TextFSMTemplateError("Badly formatted rule '%s'. Line: %s." % (line, self.line_num)) if 'ln_op' in action_re.groupdict() and action_re.group('ln_op'): self.line_op = action_re.group('ln_op') if 'rec_op' in action_re.groupdict() and action_re.group('rec_op'): self.record_op = action_re.group('rec_op') if 'new_state' in action_re.groupdict() and action_re.group('new_state'): self.new_state = action_re.group('new_state') if self.line_op == 'Continue' and self.new_state: raise TextFSMTemplateError( "Action '%s' with new state %s specified. Line: %s." % (self.line_op, self.new_state, self.line_num)) if self.line_op != 'Error' and self.new_state: if not re.match(r'\w+', self.new_state): raise TextFSMTemplateError( 'Alphanumeric characters only in state names. Line: %s.' % (self.line_num)) def __str__(self): operation = '' if self.line_op and self.record_op: operation = '.' operation = '%s%s%s' % (self.line_op, operation, self.record_op) if operation and self.new_state: new_state = ' ' + self.new_state else: new_state = self.new_state if not (operation or new_state): return ' %s' % self.match return ' %s -> %s%s' % (self.match, operation, new_state) class TextFSM(object): MAX_NAME_LEN = 48 comment_regex = re.compile(r'^\s*#') state_name_re = re.compile(r'^(\w+)$') _DEFAULT_OPTIONS = TextFSMOptions def __init__(self, template, options_class=_DEFAULT_OPTIONS): self._options_cls = options_class self.states = {} self.state_list = [] self.values = [] self.value_map = {} self._line_num = 0 self._cur_state = None self._cur_state_name = None try: self._Parse(template) finally: template.seek(0) self.Reset() def __str__(self): result = '\n'.join([str(value) for value in self.values]) result += '\n' for state in self.state_list: result += '\n%s\n' % state state_rules = '\n'.join([str(rule) for rule in self.states[state]]) if state_rules: result += state_rules + '\n' return result def Reset(self): self._cur_state = self.states['Start'] self._cur_state_name = 'Start' self._result = [] self._ClearAllRecord() @property def header(self): return self._GetHeader() def _GetHeader(self): header = [] for value in self.values: try: header.append(value.Header()) except SkipValue: continue return header def _GetValue(self, name): for value in self.values: if value.name == name: return value def _AppendRecord(self): if not self.values: return cur_record = [] for value in self.values: try: value.OnSaveRecord() except SkipRecord: self._ClearRecord() return except SkipValue: continue cur_record.append(value.value) if len(cur_record) == (cur_record.count(None) + cur_record.count([])): return while None in cur_record: cur_record[cur_record.index(None)] = '' self._result.append(cur_record) if DEBUG: print("{}{}: {}".format(colorama.Fore.BLUE, "RECORD > ", cur_record)) print(colorama.Style.RESET_ALL) self._ClearRecord() def _Parse(self, template): if not template: raise TextFSMTemplateError('Null template.') self._ParseFSMVariables(template) while self._ParseFSMState(template): pass self._ValidateFSM()
Apache License 2.0
italia/cie-nis-python-sdk
pkg/lib/CIEInterface.py
CIEInterface.initialSelect
python
def initialSelect(self): apdu = string_to_byte("00A4040C07A0000002471001") return self.transmit(apdu)
Sends an "initial selection" APDU to the card preparing it for the EAC authentication :return: The response sent by the CIE
https://github.com/italia/cie-nis-python-sdk/blob/cc16e96fa2b4fe727f783e32d9f8d0367ea514eb/pkg/lib/CIEInterface.py#L115-L122
import progressbar import six import sys from smartcard.CardType import AnyCardType from smartcard.CardRequest import CardRequest from smartcard.util import toHexString from smartcard.Exceptions import CardRequestTimeoutException from .Utilities import * from .Algorithms import * from .asn1lib import * if six.PY3: xrange = range __author__ = "Alekos Filini, Daniela Brozzoni" __license__ = "BSD-3-Clause" __version__ = "1.0" __status__ = "Develop" class CIEInterface: def __init__(self): cardtype = AnyCardType() cardrequest = CardRequest(timeout=3, cardType=cardtype) self.seq = None self.kSessEnc = None self.kSessMac = None self.index = 0 print('Waiting for the CIE...') try: self.cardservice = cardrequest.waitforcard() except CardRequestTimeoutException: print('Card not found, exiting') sys.exit(1) self.cardservice.connection.connect() print('Connected!') def selectIAS(self): apdu = [0x00, 0xa4, 0x04, 0x0c, 0x0d, 0xA0, 0x00, 0x00, 0x00, 0x30, 0x80, 0x00, 0x00, 0x00, 0x09, 0x81, 0x60, 0x01 ] return self.transmit(apdu) def selectCIE(self): apdu = [ 0x00, 0xa4, 0x04, 0x0c, 0x06, 0xA0, 0x00, 0x00, 0x00, 0x00, 0x39 ] return self.transmit(apdu) def seqIncrement(self, index=None): if index is None: return self.seqIncrement(len(self.seq) - 1) if self.seq[index] == 0xFF: self.seq[index] = 0 self.seqIncrement(index - 1) else: self.seq[index] += 1 def readNIS(self): self.selectIAS() self.selectCIE() response, _ = self.transmit(string_to_byte("00B081000C")) return nfc_response_to_array(response)
BSD 3-Clause New or Revised License
alonazrael/keras-aquarium
keras_aquarium/hatt_rnn.py
HierarchicalAttentionRNN
python
def HierarchicalAttentionRNN( max_sents, max_sent_length, n_classes, embeddings=None, n_words=None, word_dim=50, word_hidden_dim=100, sent_hidden_dim=100, ): if embeddings is None: embedding_layer = Embedding(n_words+1, word_dim, input_length=max_sent_length, trainable=True) else: embedding_layer = Embedding(len(embeddings), len(embeddings[0]), weights=[embeddings], input_length=max_sent_length, mask_zero=True, trainable=True) sent_input = Input(shape=(max_sent_length,), dtype='int32') embedded_sequences = embedding_layer(sent_input) class AttLayer(Layer): def __init__(self, hit=None, **kwargs): self.init = initializers.glorot_uniform() super(AttLayer, self).__init__(**kwargs) self.hit = hit def build(self, input_shape_li): input_shape = input_shape_li[-1] assert len(input_shape)==3 self.W = self.init((input_shape[-1],)) self.W = K.variable(self.W) self._x_input_shape = input_shape self.trainable_weights = [self.W] super(AttLayer, self).build(input_shape) def call(self, xli, mask=None): hit, x = xli def get_weights_(x): eij = K.dot(x, K.reshape(self.W, [self._x_input_shape[-1], 1]) ) eij = K.squeeze(eij, axis=-1) ai = K.exp(eij) ai_sum = K.sum(ai, axis=1) ai_sum = K.reshape(ai_sum, [-1, 1]) weights = ai/ai_sum return weights weights = get_weights_(x) self.output_weights = Lambda(get_weights_, )(x) weights = K.expand_dims(weights, axis=1) weighted_input = K.batch_dot(weights, hit, axes=[2, 1, ]) weighted_input = K.squeeze(weighted_input, axis=1) return weighted_input def get_output_shape_for(self, input_shape_li): input_shape = input_shape_li[-1] return (input_shape[0], input_shape[-1]) def compute_output_shape(self, input_shape_li): return self.get_output_shape_for(input_shape_li) def get_weights(args): a, b = args eij = K.dot(a, K.transpose(b)) ai = K.exp(eij) weights = ai / K.sum(ai, axis=1) return weights layer_mode = True sent_hidden = Bidirectional( GRU(word_hidden_dim, activation="tanh", return_sequences=True) )(embedded_sequences) bi_word_hidden_dim = 2 * word_hidden_dim sent_hidden_att = TimeDistributed( Dense(bi_word_hidden_dim, activation="sigmoid") )(sent_hidden) if layer_mode: word_att_layer = AttLayer() sent_encoded = word_att_layer([sent_hidden, sent_hidden_att]) else: words_attention = K.random_uniform_variable( [1, bi_word_hidden_dim], low=0, high=1, ) word_weights = get_weights([sent_hidden_att, words_attention]) def attend_words(args): sent_hidden, sent_hidden_att = args weighted_input = sent_hidden * word_weights weighted_input = K.sum(weighted_input, axis=1) return weighted_input sent_encoded = Lambda(attend_words, )([sent_hidden, sent_hidden_att]) sent_encoder = Model(sent_input, sent_encoded) sents_input = Input( shape=(max_sents, max_sent_length), dtype='int32', ) sents_encoded = TimeDistributed(sent_encoder)(sents_input) doc_hidden = Bidirectional( GRU(sent_hidden_dim, activation="tanh", return_sequences=True) )(sents_encoded) bi_sent_hidden_dim = 2 * sent_hidden_dim doc_hidden_att = TimeDistributed( Dense(bi_sent_hidden_dim, activation="sigmoid") )(doc_hidden) if layer_mode: sent_att_layer = AttLayer() doc_encoded = sent_att_layer([doc_hidden, doc_hidden_att]) else: sents_attention = K.random_uniform_variable( [1, bi_sent_hidden_dim], low=0, high=1, ) sent_weights = get_weights([doc_hidden_att, sents_attention]) def attend_doc(args): doc_hidden, doc_hidden_att = args weighted_input = sent_hidden * sent_weights weighted_input = K.sum(weighted_input, axis=1) return weighted_input doc_encoded = Lambda(attend_doc, )([doc_hidden, doc_hidden_att]) pred = Dense(n_classes, activation='softmax')(doc_encoded) model = Model(sents_input, pred) model.compile( loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy']) if layer_mode: sent_weights_model = Model(sents_input, sent_att_layer.output_weights) else: word_weights_layer = Lambda(get_weights, )([sent_hidden_att, words_attention]) print K.int_shape(word_weights_layer) word_weights_model = Model(sent_input, word_weights_layer) sents_word_weights = TimeDistributed(word_weights_model)(sents_input) word_weights_model = Model(sents_input, sents_word_weights) sent_weights_layer = Lambda(get_weights, )([doc_hidden_att, sents_attention]) sent_weights_model = Model(sents_input, sent_weights_layer) model._keras_aquarium_params = dict( model_type="hatt_rnn", sent_weights_model=sent_weights_model, max_sents=max_sents, max_sent_length=max_sent_length, ) return model
Hierarchical Attention RNN(GRU) Two level of lstm network for text Classification, encode sentence by words first, then encode document by sentences. Also add attention for both words and sentences. Check paper [HIERARCHICAL ATTENTION NETWORKS FOR DOCUMENT CLASSIFICATION](https://www.cs.cmu.edu/~hovy/papers/16HLT-hierarchical-attention-networks.pdf) for more details. Parameters ---------- max_sents : number of sentences in a document max_sent_length : number of words in a sentence n_classes : number of classes embeddings : use it to initialize word embeddings if applied n_words : number of words in vocabulary word_dim : dim of word embeddings word_hidden_dim : number of word units in rnn sent_hidden_dim : number of sentence units in rnn Examples -------- import keras from keras_aquarium import hatt_rnn from scipy.sparse import csr_matrix import numpy as np # suppose you have a 3D matrix (n_docs * n_sentences_in_doc * n_words_in_sentence), represents documents, sequence_docs = np.zeros([n_docs, n_sentences_in_doc, n_words_in_sentence]) # padding zeros word_embeddings = load_glove_word_embeddings() vocabulary = load_vocabulary() model = hatt_rnn.HierarchicalAttentionRNN( max_sents, max_sent_length, n_classes, # if use word_embeddings to initialize word embeddings layer embeddings=word_embeddings, # else n_words=len(vocabulary), word_dim=50, # units in words and sentences gru layer word_hidden_dim=100, sent_hidden_dim=100, ) model.fit(sequence_docs, labels)
https://github.com/alonazrael/keras-aquarium/blob/4924417fbe4a4a8f6c8add42cd33278c66fb1922/keras_aquarium/hatt_rnn.py#L11-L249
from keras.layers import Embedding, Dense, Input, Flatten, Lambda, LSTM, GRU, Bidirectional, TimeDistributed, Layer from keras.models import Model from keras import initializers from keras import backend as K from keras.utils import to_categorical import numpy as np
MIT License
cymmetria/honeycomb
honeycomb/utils/config_utils.py
validate_config
python
def validate_config(config_json, fields): for field_name, validator_obj in six.iteritems(fields): field_value = config_json.get(field_name, None) if field_value is None: raise exceptions.ConfigFieldMissing(field_name) if not validator_obj.validator_func(field_value): raise exceptions.ConfigFieldValidationError(field_name, field_value, validator_obj.get_error_message())
Validate a JSON file configuration against list of :obj:`honeycomb.defs.ConfigField`.
https://github.com/cymmetria/honeycomb/blob/33ea91b5cf675000e4e85dd02efe580ea6e95c86/honeycomb/utils/config_utils.py#L30-L38
from __future__ import unicode_literals, absolute_import import os import re import json import logging import six import yaml from honeycomb import defs, exceptions from honeycomb.error_messages import CONFIG_FIELD_TYPE_ERROR logger = logging.getLogger(__name__) def config_field_type(field, cls): return defs.ConfigField(lambda _: isinstance(_, cls), lambda: CONFIG_FIELD_TYPE_ERROR.format(field, cls.__name__))
MIT License
burnysc2/python-sc2
sc2/bot_ai.py
BotAI.find_placement
python
async def find_placement( self, building: Union[UnitTypeId, AbilityId], near: Point2, max_distance: int = 20, random_alternative: bool = True, placement_step: int = 2, addon_place: bool = False, ) -> Optional[Point2]: assert isinstance(building, (AbilityId, UnitTypeId)) assert isinstance(near, Point2), f"{near} is no Point2 object" if isinstance(building, UnitTypeId): building = self._game_data.units[building.value].creation_ability.id if await self.can_place_single( building, near ) and (not addon_place or await self.can_place_single(UnitTypeId.SUPPLYDEPOT, near.offset((2.5, -0.5)))): return near if max_distance == 0: return None for distance in range(placement_step, max_distance, placement_step): possible_positions = [ Point2(p).offset(near).to2 for p in ( [(dx, -distance) for dx in range(-distance, distance + 1, placement_step)] + [(dx, distance) for dx in range(-distance, distance + 1, placement_step)] + [(-distance, dy) for dy in range(-distance, distance + 1, placement_step)] + [(distance, dy) for dy in range(-distance, distance + 1, placement_step)] ) ] res = await self._client._query_building_placement_fast(building, possible_positions) possible = [p for r, p in zip(res, possible_positions) if r] if addon_place: res = await self._client._query_building_placement_fast( AbilityId.TERRANBUILDDROP_SUPPLYDEPOTDROP, [p.offset((2.5, -0.5)) for p in possible], ) possible = [p for r, p in zip(res, possible) if r] if not possible: continue if random_alternative: return random.choice(possible) else: return min(possible, key=lambda p: p.distance_to_point2(near)) return None
Finds a placement location for building. Example:: if self.townhalls: cc = self.townhalls[0] depot_position = await self.find_placement(UnitTypeId.SUPPLYDEPOT, near=cc) :param building: :param near: :param max_distance: :param random_alternative: :param placement_step: :param addon_place:
https://github.com/burnysc2/python-sc2/blob/a0b90b4447f23fc352a9bd931ae95ee5f4911032/sc2/bot_ai.py#L863-L929
from __future__ import annotations import itertools import math import random import time import warnings from collections import Counter from contextlib import suppress from typing import TYPE_CHECKING, Dict, List, Optional, Set, Tuple, Union from loguru import logger from s2clientprotocol import sc2api_pb2 as sc_pb from sc2.cache import property_cache_once_per_frame, property_cache_once_per_frame_no_copy from sc2.constants import ( ALL_GAS, EQUIVALENTS_FOR_TECH_PROGRESS, IS_PLACEHOLDER, PROTOSS_TECH_REQUIREMENT, TERRAN_STRUCTURES_REQUIRE_SCV, TERRAN_TECH_REQUIREMENT, ZERG_TECH_REQUIREMENT, FakeEffectID, abilityid_to_unittypeid, geyser_ids, mineral_ids, ) from sc2.data import ActionResult, Alert, Race, Result, Target, race_townhalls from sc2.dicts.unit_research_abilities import RESEARCH_INFO from sc2.dicts.unit_train_build_abilities import TRAIN_INFO from sc2.dicts.unit_trained_from import UNIT_TRAINED_FROM from sc2.dicts.upgrade_researched_from import UPGRADE_RESEARCHED_FROM from sc2.distances import DistanceCalculation from sc2.game_data import AbilityData, Cost, GameData from sc2.game_state import Blip, EffectData, GameState from sc2.ids.ability_id import AbilityId from sc2.ids.unit_typeid import UnitTypeId from sc2.ids.upgrade_id import UpgradeId from sc2.pixel_map import PixelMap from sc2.position import Point2 from sc2.unit import Unit from sc2.unit_command import UnitCommand from sc2.units import Units if TYPE_CHECKING: from sc2.client import Client from sc2.game_info import GameInfo, Ramp class BotAI(DistanceCalculation): EXPANSION_GAP_THRESHOLD = 15 def _initialize_variables(self): DistanceCalculation.__init__(self) if not hasattr(self, "opponent_id"): self.opponent_id: str = None if not hasattr(self, "distance_calculation_method"): self.distance_calculation_method: int = 2 if not hasattr(self, "unit_command_uses_self_do"): self.unit_command_uses_self_do: bool = False self.realtime: bool = False self.base_build: int = -1 self.all_units: Units = Units([], self) self.units: Units = Units([], self) self.workers: Units = Units([], self) self.larva: Units = Units([], self) self.structures: Units = Units([], self) self.townhalls: Units = Units([], self) self.gas_buildings: Units = Units([], self) self.all_own_units: Units = Units([], self) self.enemy_units: Units = Units([], self) self.enemy_structures: Units = Units([], self) self.all_enemy_units: Units = Units([], self) self.resources: Units = Units([], self) self.destructables: Units = Units([], self) self.watchtowers: Units = Units([], self) self.mineral_field: Units = Units([], self) self.vespene_geyser: Units = Units([], self) self.placeholders: Units = Units([], self) self.techlab_tags: Set[int] = set() self.reactor_tags: Set[int] = set() self.minerals: int = 50 self.vespene: int = 0 self.supply_army: float = 0 self.supply_workers: float = 12 self.supply_cap: float = 15 self.supply_used: float = 12 self.supply_left: float = 3 self.idle_worker_count: int = 0 self.army_count: int = 0 self.warp_gate_count: int = 0 self.actions: List[UnitCommand] = [] self.blips: Set[Blip] = set() self.race: Race = None self.enemy_race: Race = None self._units_created: Counter = Counter() self._unit_tags_seen_this_game: Set[int] = set() self._units_previous_map: Dict[int, Unit] = {} self._structures_previous_map: Dict[int, Unit] = {} self._enemy_units_previous_map: Dict[int, Unit] = {} self._enemy_structures_previous_map: Dict[int, Unit] = {} self._all_units_previous_map: Dict[int, Unit] = {} self._previous_upgrades: Set[UpgradeId] = set() self._expansion_positions_list: List[Point2] = [] self._resource_location_to_expansion_position_dict: Dict[Point2, Point2] = {} self._time_before_step: float = None self._time_after_step: float = None self._min_step_time: float = math.inf self._max_step_time: float = 0 self._last_step_step_time: float = 0 self._total_time_in_on_step: float = 0 self._total_steps_iterations: int = 0 self.unit_tags_received_action: Set[int] = set() @property def time(self) -> float: return self.state.game_loop / 22.4 @property def time_formatted(self) -> str: t = self.time return f"{int(t // 60):02}:{int(t % 60):02}" @property def step_time(self) -> Tuple[float, float, float, float]: avg_step_duration = ( (self._total_time_in_on_step / self._total_steps_iterations) if self._total_steps_iterations else 0 ) return ( self._min_step_time * 1000, avg_step_duration * 1000, self._max_step_time * 1000, self._last_step_step_time * 1000, ) @property def game_info(self) -> GameInfo: return self._game_info @property def game_data(self) -> GameData: return self._game_data @property def client(self) -> Client: return self._client @property def larva_count(self): warnings.warn( "self.larva_count will be removed soon, please use len(self.larva) or self.larva.amount instead", DeprecationWarning, stacklevel=2, ) return len(self.larva) def alert(self, alert_code: Alert) -> bool: assert isinstance(alert_code, Alert), f"alert_code {alert_code} is no Alert" return alert_code.value in self.state.alerts @property def start_location(self) -> Point2: return self._game_info.player_start_location @property def enemy_start_locations(self) -> List[Point2]: return self._game_info.start_locations @property def main_base_ramp(self) -> Ramp: if hasattr(self, "cached_main_base_ramp"): return self.cached_main_base_ramp try: self.cached_main_base_ramp = min( (ramp for ramp in self.game_info.map_ramps if len(ramp.upper) in {2, 5}), key=lambda r: self.start_location.distance_to(r.top_center), ) except ValueError: self.cached_main_base_ramp = min( (ramp for ramp in self.game_info.map_ramps if len(ramp.upper) in {4, 9}), key=lambda r: self.start_location.distance_to(r.top_center), ) return self.cached_main_base_ramp @property_cache_once_per_frame def expansion_locations_list(self) -> List[Point2]: assert ( self._expansion_positions_list ), f"self._find_expansion_locations() has not been run yet, so accessing the list of expansion locations is pointless." return self._expansion_positions_list @property_cache_once_per_frame def expansion_locations_dict(self) -> Dict[Point2, Units]: assert ( self._expansion_positions_list ), f"self._find_expansion_locations() has not been run yet, so accessing the list of expansion locations is pointless." expansion_locations: Dict[Point2, Units] = {pos: Units([], self) for pos in self._expansion_positions_list} for resource in self.resources: exp_position: Point2 = self._resource_location_to_expansion_position_dict.get(resource.position, None) if exp_position: assert exp_position in expansion_locations expansion_locations[exp_position].append(resource) return expansion_locations @property_cache_once_per_frame def expansion_locations(self) -> Dict[Point2, Units]: assert ( self._expansion_positions_list ), f"self._find_expansion_locations() has not been run yet, so accessing the list of expansion locations is pointless." warnings.warn( f"You are using 'self.expansion_locations', please use 'self.expansion_locations_list' (fast) or 'self.expansion_locations_dict' (slow) instead.", DeprecationWarning, stacklevel=2, ) return self.expansion_locations_dict def _find_expansion_locations(self): resource_spread_threshold: float = 8.5 geysers: Units = self.vespene_geyser resource_groups: List[List[Unit]] = [ [resource] for resource in self.resources if resource.name != "MineralField450" ] merged_group = True while merged_group: merged_group = False for group_a, group_b in itertools.combinations(resource_groups, 2): if any( resource_a.distance_to(resource_b) <= resource_spread_threshold for resource_a, resource_b in itertools.product(group_a, group_b) ): resource_groups.remove(group_a) resource_groups.remove(group_b) resource_groups.append(group_a + group_b) merged_group = True break offset_range = 7 offsets = [ (x, y) for x, y in itertools.product(range(-offset_range, offset_range + 1), repeat=2) if 4 < math.hypot(x, y) <= 8 ] centers = {} for resources in resource_groups: amount = len(resources) center_x = int(sum(resource.position.x for resource in resources) / amount) + 0.5 center_y = int(sum(resource.position.y for resource in resources) / amount) + 0.5 possible_points = (Point2((offset[0] + center_x, offset[1] + center_y)) for offset in offsets) possible_points = ( point for point in possible_points if self._game_info.placement_grid[point.rounded] == 1 and all( point.distance_to(resource) >= (7 if resource._proto.unit_type in geyser_ids else 6) for resource in resources ) ) result: Point2 = min( possible_points, key=lambda point: sum(point.distance_to(resource) for resource in resources) ) centers[result] = resources self._expansion_positions_list.append(result) for resource in resources: self._resource_location_to_expansion_position_dict[resource.position] = result @property def units_created(self) -> Counter: return self._units_created def _correct_zerg_supply(self): half_supply_units = { UnitTypeId.ZERGLING, UnitTypeId.ZERGLINGBURROWED, UnitTypeId.BANELING, UnitTypeId.BANELINGBURROWED, UnitTypeId.BANELINGCOCOON, } correction = self.units(half_supply_units).amount % 2 self.supply_used += correction self.supply_army += correction self.supply_left -= correction async def get_available_abilities( self, units: Union[List[Unit], Units], ignore_resource_requirements: bool = False ) -> List[List[AbilityId]]: return await self._client.query_available_abilities(units, ignore_resource_requirements) async def expand_now( self, building: UnitTypeId = None, max_distance: float = 10, location: Optional[Point2] = None ): if not building: start_townhall_type = { Race.Protoss: UnitTypeId.NEXUS, Race.Terran: UnitTypeId.COMMANDCENTER, Race.Zerg: UnitTypeId.HATCHERY, } building = start_townhall_type[self.race] assert isinstance(building, UnitTypeId), f"{building} is no UnitTypeId" if not location: location = await self.get_next_expansion() if not location: logger.warning("Trying to expand_now() but bot is out of locations to expand to") return await self.build(building, near=location, max_distance=max_distance, random_alternative=False, placement_step=1) async def get_next_expansion(self) -> Optional[Point2]: closest = None distance = math.inf for el in self.expansion_locations_list: def is_near_to_expansion(t): return t.distance_to(el) < self.EXPANSION_GAP_THRESHOLD if any(map(is_near_to_expansion, self.townhalls)): continue startp = self._game_info.player_start_location d = await self._client.query_pathing(startp, el) if d is None: continue if d < distance: distance = d closest = el return closest async def distribute_workers(self, resource_ratio: float = 2): if not self.mineral_field or not self.workers or not self.townhalls.ready: return worker_pool = [worker for worker in self.workers.idle] bases = self.townhalls.ready gas_buildings = self.gas_buildings.ready deficit_mining_places = [] for mining_place in bases | gas_buildings: difference = mining_place.surplus_harvesters if not difference: continue if mining_place.has_vespene: local_workers = self.workers.filter( lambda unit: unit.order_target == mining_place.tag or (unit.is_carrying_vespene and unit.order_target == bases.closest_to(mining_place).tag) ) else: local_minerals_tags = { mineral.tag for mineral in self.mineral_field if mineral.distance_to(mining_place) <= 8 } local_workers = self.workers.filter( lambda unit: unit.order_target in local_minerals_tags or (unit.is_carrying_minerals and unit.order_target == mining_place.tag) ) if difference > 0: for worker in local_workers[:difference]: worker_pool.append(worker) else: deficit_mining_places += [mining_place for _ in range(-difference)] if len(worker_pool) > len(deficit_mining_places): all_minerals_near_base = [ mineral for mineral in self.mineral_field if any(mineral.distance_to(base) <= 8 for base in self.townhalls.ready) ] for worker in worker_pool: if deficit_mining_places: if self.vespene and self.minerals / self.vespene < resource_ratio: possible_mining_places = [place for place in deficit_mining_places if not place.vespene_contents] else: possible_mining_places = [place for place in deficit_mining_places if place.vespene_contents] if not possible_mining_places: possible_mining_places = deficit_mining_places current_place = min(deficit_mining_places, key=lambda place: place.distance_to(worker)) deficit_mining_places.remove(current_place) if current_place.vespene_contents: worker.gather(current_place) else: local_minerals = ( mineral for mineral in self.mineral_field if mineral.distance_to(current_place) <= 8 ) target_mineral = max(local_minerals, key=lambda mineral: mineral.mineral_contents, default=None) if target_mineral: worker.gather(target_mineral) elif worker.is_idle and all_minerals_near_base: target_mineral = min(all_minerals_near_base, key=lambda mineral: mineral.distance_to(worker)) worker.gather(target_mineral) else: pass @property def owned_expansions(self) -> Dict[Point2, Unit]: owned = {} for el in self.expansion_locations_list: def is_near_to_expansion(t): return t.distance_to(el) < self.EXPANSION_GAP_THRESHOLD th = next((x for x in self.townhalls if is_near_to_expansion(x)), None) if th: owned[el] = th return owned def calculate_supply_cost(self, unit_type: UnitTypeId) -> float: if unit_type in {UnitTypeId.ZERGLING}: return 1 unit_supply_cost = self._game_data.units[unit_type.value]._proto.food_required if unit_supply_cost > 0 and unit_type in UNIT_TRAINED_FROM and len(UNIT_TRAINED_FROM[unit_type]) == 1: producer: UnitTypeId for producer in UNIT_TRAINED_FROM[unit_type]: producer_unit_data = self.game_data.units[producer.value] if producer_unit_data._proto.food_required <= unit_supply_cost: producer_supply_cost = producer_unit_data._proto.food_required unit_supply_cost -= producer_supply_cost return unit_supply_cost def can_feed(self, unit_type: UnitTypeId) -> bool: required = self.calculate_supply_cost(unit_type) return required <= 0 or self.supply_left >= required def calculate_unit_value(self, unit_type: UnitTypeId) -> Cost: unit_data = self.game_data.units[unit_type.value] return Cost(unit_data._proto.mineral_cost, unit_data._proto.vespene_cost) def calculate_cost(self, item_id: Union[UnitTypeId, UpgradeId, AbilityId]) -> Cost: if isinstance(item_id, UnitTypeId): if item_id in {UnitTypeId.REACTOR, UnitTypeId.TECHLAB, UnitTypeId.ARCHON}: if item_id == UnitTypeId.REACTOR: return Cost(50, 50) elif item_id == UnitTypeId.TECHLAB: return Cost(50, 25) elif item_id == UnitTypeId.ARCHON: return self.calculate_unit_value(UnitTypeId.ARCHON) unit_data = self._game_data.units[item_id.value] return self._game_data.calculate_ability_cost(unit_data.creation_ability) elif isinstance(item_id, UpgradeId): cost = self._game_data.upgrades[item_id.value].cost else: cost = self._game_data.calculate_ability_cost(item_id) return cost def can_afford(self, item_id: Union[UnitTypeId, UpgradeId, AbilityId], check_supply_cost: bool = True) -> bool: cost = self.calculate_cost(item_id) if cost.minerals > self.minerals or cost.vespene > self.vespene: return False if check_supply_cost and isinstance(item_id, UnitTypeId): supply_cost = self.calculate_supply_cost(item_id) if supply_cost and supply_cost > self.supply_left: return False return True async def can_cast( self, unit: Unit, ability_id: AbilityId, target: Optional[Union[Unit, Point2]] = None, only_check_energy_and_cooldown: bool = False, cached_abilities_of_unit: List[AbilityId] = None, ) -> bool: assert isinstance(unit, Unit), f"{unit} is no Unit object" assert isinstance(ability_id, AbilityId), f"{ability_id} is no AbilityId" assert isinstance(target, (type(None), Unit, Point2)) if cached_abilities_of_unit: abilities = cached_abilities_of_unit else: abilities = (await self.get_available_abilities([unit], ignore_resource_requirements=False))[0] if ability_id in abilities: if only_check_energy_and_cooldown: return True cast_range = self._game_data.abilities[ability_id.value]._proto.cast_range ability_target = self._game_data.abilities[ability_id.value]._proto.target if ( ability_target == 1 or ability_target == Target.PointOrNone.value and isinstance(target, Point2) and unit.distance_to(target) <= unit.radius + target.radius + cast_range ): return True elif ( ability_target in {Target.Unit.value, Target.PointOrUnit.value} and isinstance(target, Unit) and unit.distance_to(target) <= unit.radius + target.radius + cast_range ): return True elif ( ability_target in {Target.Point.value, Target.PointOrUnit.value} and isinstance(target, Point2) and unit.distance_to(target) <= unit.radius + cast_range ): return True return False def select_build_worker(self, pos: Union[Unit, Point2], force: bool = False) -> Optional[Unit]: workers = ( self.workers.filter(lambda w: (w.is_gathering or w.is_idle) and w.distance_to(pos) < 20) or self.workers ) if workers: for worker in workers.sorted_by_distance_to(pos).prefer_idle: if ( worker not in self.unit_tags_received_action and not worker.orders or len(worker.orders) == 1 and worker.orders[0].ability.id in {AbilityId.MOVE, AbilityId.HARVEST_GATHER} ): return worker return workers.random if force else None async def can_place_single(self, building: Union[AbilityId, UnitTypeId], position: Point2) -> bool: if isinstance(building, UnitTypeId): creation_ability = self._game_data.units[building.value].creation_ability.id return (await self._client._query_building_placement_fast(creation_ability, [position]))[0] return (await self._client._query_building_placement_fast(building, [position]))[0] async def can_place(self, building: Union[AbilityData, AbilityId, UnitTypeId], positions: List[Point2]) -> List[bool]: building_type = type(building) assert type(building) in {AbilityData, AbilityId, UnitTypeId}, f"{building}, {building_type}" if building_type == UnitTypeId: building = self._game_data.units[building.value].creation_ability.id elif building_type == AbilityData: warnings.warn( "Using AbilityData is deprecated and may be removed soon. Please use AbilityId or UnitTypeId instead.", DeprecationWarning, stacklevel=2, ) building = building_type.id if isinstance(positions, (Point2, tuple)): warnings.warn( "The support for querying single entries will be removed soon. Please use either 'await self.can_place_single(building, position)' or 'await (self.can_place(building, [position]))[0]", DeprecationWarning, stacklevel=2, ) return await self.can_place_single(building, positions) else: assert isinstance(positions, list), f"Expected an iterable (list, tuple), but was: {positions}" assert isinstance( positions[0], Point2 ), f"List is expected to have Point2, but instead had: {positions[0]} {type(positions[0])}" return await self._client._query_building_placement_fast(building, positions)
MIT License
numba/numba
numba/np/numpy_support.py
_check_struct_alignment
python
def _check_struct_alignment(rec, fields): if rec.aligned: for k, dt in zip(fields['names'], fields['formats']): llvm_align = rec.alignof(k) npy_align = dt.alignment if llvm_align is not None and npy_align != llvm_align: msg = ( 'NumPy is using a different alignment ({}) ' 'than Numba/LLVM ({}) for {}. ' 'This is likely a NumPy bug.' ) raise ValueError(msg.format(npy_align, llvm_align, dt))
Check alignment compatibility with Numpy
https://github.com/numba/numba/blob/8d4559a83b7b12da9121c030b8e3780874204a34/numba/np/numpy_support.py#L188-L200
import collections import ctypes import re import numpy as np from numba.core import errors, types from numba.core.typing.templates import signature from numba.core.errors import TypingError from numba.core.cgutils import is_nonelike numpy_version = tuple(map(int, np.__version__.split('.')[:2])) FROM_DTYPE = { np.dtype('bool'): types.boolean, np.dtype('int8'): types.int8, np.dtype('int16'): types.int16, np.dtype('int32'): types.int32, np.dtype('int64'): types.int64, np.dtype('uint8'): types.uint8, np.dtype('uint16'): types.uint16, np.dtype('uint32'): types.uint32, np.dtype('uint64'): types.uint64, np.dtype('float32'): types.float32, np.dtype('float64'): types.float64, np.dtype('complex64'): types.complex64, np.dtype('complex128'): types.complex128, np.dtype(object): types.pyobject, } re_typestr = re.compile(r'[<>=\|]([a-z])(\d+)?$', re.I) re_datetimestr = re.compile(r'[<>=\|]([mM])8?(\[([a-z]+)\])?$', re.I) sizeof_unicode_char = np.dtype('U1').itemsize def _from_str_dtype(dtype): m = re_typestr.match(dtype.str) if not m: raise NotImplementedError(dtype) groups = m.groups() typecode = groups[0] if typecode == 'U': if dtype.byteorder not in '=|': raise NotImplementedError("Does not support non-native " "byteorder") count = dtype.itemsize // sizeof_unicode_char assert count == int(groups[1]), "Unicode char size mismatch" return types.UnicodeCharSeq(count) elif typecode == 'S': count = dtype.itemsize assert count == int(groups[1]), "Char size mismatch" return types.CharSeq(count) else: raise NotImplementedError(dtype) def _from_datetime_dtype(dtype): m = re_datetimestr.match(dtype.str) if not m: raise NotImplementedError(dtype) groups = m.groups() typecode = groups[0] unit = groups[2] or '' if typecode == 'm': return types.NPTimedelta(unit) elif typecode == 'M': return types.NPDatetime(unit) else: raise NotImplementedError(dtype) def from_dtype(dtype): if type(dtype) == type and issubclass(dtype, np.generic): dtype = np.dtype(dtype) elif getattr(dtype, "fields", None) is not None: return from_struct_dtype(dtype) try: return FROM_DTYPE[dtype] except KeyError: pass try: char = dtype.char except AttributeError: pass else: if char in 'SU': return _from_str_dtype(dtype) if char in 'mM': return _from_datetime_dtype(dtype) if char in 'V' and dtype.subdtype is not None: subtype = from_dtype(dtype.subdtype[0]) return types.NestedArray(subtype, dtype.shape) raise errors.NumbaNotImplementedError(dtype) _as_dtype_letters = { types.NPDatetime: 'M8', types.NPTimedelta: 'm8', types.CharSeq: 'S', types.UnicodeCharSeq: 'U', } def as_dtype(nbtype): nbtype = types.unliteral(nbtype) if isinstance(nbtype, (types.Complex, types.Integer, types.Float)): return np.dtype(str(nbtype)) if nbtype is types.bool_: return np.dtype('?') if isinstance(nbtype, (types.NPDatetime, types.NPTimedelta)): letter = _as_dtype_letters[type(nbtype)] if nbtype.unit: return np.dtype('%s[%s]' % (letter, nbtype.unit)) else: return np.dtype(letter) if isinstance(nbtype, (types.CharSeq, types.UnicodeCharSeq)): letter = _as_dtype_letters[type(nbtype)] return np.dtype('%s%d' % (letter, nbtype.count)) if isinstance(nbtype, types.Record): return as_struct_dtype(nbtype) if isinstance(nbtype, types.EnumMember): return as_dtype(nbtype.dtype) if isinstance(nbtype, types.npytypes.DType): return as_dtype(nbtype.dtype) if isinstance(nbtype, types.NumberClass): return as_dtype(nbtype.dtype) if isinstance(nbtype, types.NestedArray): spec = (as_dtype(nbtype.dtype), tuple(nbtype.shape)) return np.dtype(spec) if isinstance(nbtype, types.PyObject): return np.dtype(object) msg = f"{nbtype} cannot be represented as a NumPy dtype" raise errors.NumbaNotImplementedError(msg) def as_struct_dtype(rec): assert isinstance(rec, types.Record) names = [] formats = [] offsets = [] titles = [] for k, t in rec.members: if not rec.is_title(k): names.append(k) formats.append(as_dtype(t)) offsets.append(rec.offset(k)) titles.append(rec.fields[k].title) fields = { 'names': names, 'formats': formats, 'offsets': offsets, 'itemsize': rec.size, 'titles': titles, } _check_struct_alignment(rec, fields) return np.dtype(fields, align=rec.aligned)
BSD 2-Clause Simplified License
google-research/meta-dataset
meta_dataset/data/imagenet_specification.py
init_split_subgraphs
python
def init_split_subgraphs(class_splits, spanning_leaves, valid_test_roots): train_wn_ids = class_splits['train'] valid_wn_ids = class_splits['valid'] test_wn_ids = class_splits['test'] valid_root_wn_id = valid_test_roots['valid'].wn_id test_root_wn_id = valid_test_roots['test'].wn_id graph_copy_train, _ = copy_graph(spanning_leaves.keys()) graph_copy_valid, valid_root = copy_graph(spanning_leaves.keys(), valid_root_wn_id) graph_copy_test, test_root = copy_graph(spanning_leaves.keys(), test_root_wn_id) train_classes = set([s for s in graph_copy_train if s.wn_id in train_wn_ids]) valid_classes = set([s for s in graph_copy_valid if s.wn_id in valid_wn_ids]) test_classes = set([s for s in graph_copy_test if s.wn_id in test_wn_ids]) split_leaves = { 'train': train_classes, 'valid': valid_classes, 'test': test_classes } split_roots = {'valid': valid_root, 'test': test_root} return split_leaves, split_roots
Gets leaf and root Synsets from different copies of the graph. In particular, a new copy is created for each split. For all three splits, the leaf Synsets of the corresponding copy that correspond to split classes are returned. For the validation and test graphs, the corresponding root Synsets are returned as well from the new copies. These will have the same WordNet id and name as those in valid_test_roots but are nodes from the copy of the graph instead of the original one. Args: class_splits: a dict whose keys are 'train', 'valid' and 'test' and whose value for a given key is the set of WordNet id's of the classes that are assigned to the corresponding split. spanning_leaves: A dict mapping each Synset to the leaf Synsets that are reachable from it. valid_test_roots: A dict whose keys should be 'valid' and 'test' and whose value for a given key is a Synset that spans all and only the leaves that will desirably be assigned to the corresponding split. Returns: a dict mapping each of 'train', 'valid' and 'test' to the set of Synsets (of the respective copy of the graph) corresponding to the classes that are assigned to that split. Raises: ValueError: invalid keys for valid_test_roots, or same synset provided as the root of both valid and test.
https://github.com/google-research/meta-dataset/blob/67546ff9f6992acfa4bc17edb92c82ff7bbcfbbc/meta_dataset/data/imagenet_specification.py#L465-L519
from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os from absl import logging from meta_dataset.data import imagenet_stats import numpy as np import six import tensorflow.compat.v1 as tf tf.flags.DEFINE_string( 'ilsvrc_2012_data_root', '', 'Path to the root of the ImageNet data.') tf.flags.DEFINE_string( 'path_to_is_a', '', 'Path to the file containing is-a relationships (parent, child) pairs. ' 'If empty, it defaults to "wordnet.is_a.txt" in ilsvrc_2012_data_root.') tf.flags.DEFINE_string( 'path_to_words', '', 'Path to the file containing (synset, word description) pairs. ' 'If empty, it defaults to "words.txt" in ilsvrc_2012_data_root.') FLAGS = tf.flags.FLAGS class Synset(object): def __init__(self, wn_id, words, children, parents): self.wn_id = wn_id self.words = words self.children = children self.parents = parents def get_node_ancestors(synset): ancestors = set() to_visit = set(synset.parents) visited = set() while to_visit: ancestor = to_visit.pop() ancestors.add(ancestor) visited.add(ancestor) to_visit = to_visit | set(ancestor.parents) - visited return ancestors def get_ancestors(synsets): all_ancestors = set() for s in synsets: all_ancestors = all_ancestors | get_node_ancestors(s) return all_ancestors def isolate_graph(nodes): for n in nodes: n.children = list(nodes & set(n.children)) n.parents = list(nodes & set(n.parents)) def isolate_node(node): for p in node.parents: p.children.remove(node) for c in node.children: c.parents.remove(node) node.children = [] node.parents = [] def collapse(nodes): def collapse_once(nodes): num_collapsed = 0 non_collapsed_nodes = set() for n in nodes: if len(n.children) == 1: n.children[0].parents += n.parents for p in n.parents: p.children.append(n.children[0]) isolate_node(n) num_collapsed += 1 else: non_collapsed_nodes.add(n) assert len(nodes) - len(non_collapsed_nodes) == num_collapsed return non_collapsed_nodes, num_collapsed nodes, num_collapsed = collapse_once(nodes) while num_collapsed: nodes, num_collapsed = collapse_once(nodes) return nodes def get_leaves(nodes): leaves = [] for n in nodes: if not n.children: leaves.append(n) return leaves def get_synsets_from_ids(wn_ids, synsets): wn_ids = set(wn_ids) requested_synsets = {} for s in synsets: if s.wn_id in wn_ids: requested_synsets[s.wn_id] = s found = set(requested_synsets.keys()) assert found == wn_ids, ('Did not find synsets for ids: {}.'.format(wn_ids - found)) return requested_synsets def get_spanning_leaves(nodes): leaves = get_leaves(nodes) spanning_leaves = {} for n in nodes: spanning_leaves[n] = set() for l in leaves: if is_descendent(l, n) or l == n: spanning_leaves[n].add(l) return spanning_leaves def get_num_spanning_images(spanning_leaves, num_leaf_images): num_images = {} for node, leaves in spanning_leaves.items(): num_images[node] = sum([num_leaf_images[l.wn_id] for l in leaves]) return num_images def create_sampling_graph(synsets, root=None): nodes = get_ancestors(synsets) if root is not None: nodes_to_remove = [ n for n in nodes if not (root == n or is_descendent(n, root)) ] nodes = nodes - set(nodes_to_remove) nodes = nodes | set(synsets) isolate_graph(nodes) nodes = collapse(nodes) return nodes def propose_valid_test_roots(spanning_leaves, margin=50, desired_num_valid_classes=150, desired_num_test_classes=150): def _sort_key(synset_and_leaves): synset, leaves = synset_and_leaves return (len(leaves), synset.wn_id) spanning_leaves_sorted = sorted(six.iteritems(spanning_leaves), key=_sort_key) spanning_leaves_sorted.reverse() valid_candidates, test_candidates = [], [] for s, leaves in spanning_leaves_sorted: num_leaves = len(leaves) low_limit_valid = desired_num_valid_classes - margin high_limit_valid = desired_num_valid_classes + margin if low_limit_valid < num_leaves and num_leaves < high_limit_valid: valid_candidates.append(s) low_limit_test = desired_num_test_classes - margin high_limit_test = desired_num_test_classes + margin if low_limit_test < num_leaves and num_leaves < high_limit_test: test_candidates.append(s) if not valid_candidates or not test_candidates: raise RuntimeError('Found no root candidates. Try a different margin.') for cand in valid_candidates: logging.info('Candidate %s, %s with %d spanning leaves', cand.words, cand.wn_id, len(spanning_leaves[cand])) valid_root = valid_candidates[0] test_candidate_ind = 0 test_root = test_candidates[test_candidate_ind] while test_root == valid_root: test_candidate_ind += 1 if test_candidate_ind == len(test_candidates): raise RuntimeError('No candidates for test root. Try a different margin.') test_root = test_candidates[test_candidate_ind] return {'valid': valid_root, 'test': test_root} def get_class_splits(spanning_leaves, valid_test_roots=None, **kwargs): if valid_test_roots is not None: if valid_test_roots['valid'] is None or valid_test_roots['test'] is None: raise ValueError('A root cannot be None.') if valid_test_roots is None: valid_test_roots = propose_valid_test_roots(spanning_leaves, **kwargs) valid_root, test_root = valid_test_roots['valid'], valid_test_roots['test'] valid_wn_ids = set([s.wn_id for s in spanning_leaves[valid_root]]) test_wn_ids = set([s.wn_id for s in spanning_leaves[test_root]]) overlap = [s for s in valid_wn_ids if s in test_wn_ids] logging.info('Size of overlap: %d leaves', len(overlap)) assign_to_valid = True for s in overlap: if assign_to_valid: test_wn_ids.remove(s) else: valid_wn_ids.remove(s) assign_to_valid = not assign_to_valid leaves = get_leaves(spanning_leaves.keys()) train_wn_ids = set([ s.wn_id for s in leaves if s.wn_id not in valid_wn_ids and s.wn_id not in test_wn_ids ]) split_classes = { 'train': train_wn_ids, 'valid': valid_wn_ids, 'test': test_wn_ids } return split_classes, valid_test_roots
Apache License 2.0
yingtongdou/nash-detect
Utils/yelpFeatureExtraction.py
FeatureExtractor.PR_NR
python
def PR_NR(self, data): feature = {} for i, d in data.items(): positives = [1 for t in d if t[1] > 3] negatives = [1 for t in d if t[1] < 3] feature[i] = (float(len(positives)) / len(d), float(len(negatives)) / len(d)) return feature
Ratio of positive and negative reviews of a user or product Args: data is a dictionary with key=u_id or p_id and value = tuples of (neighbor id, rating, label, posting time) Return: dictionary with key = u_id or p_id and value = (PR, NR)
https://github.com/yingtongdou/nash-detect/blob/cda62b7a1c899b5640e46b11582cbdd68c89d5a6/Utils/yelpFeatureExtraction.py#L92-L106
import math from copy import deepcopy from datetime import datetime import numpy as np import sys import os sys.path.insert(0, os.path.abspath('../')) from Utils.iohelper import * class FeatureExtractor: date_time_format_str = '%Y-%m-%d' def __init__(self): self.user_mnr_normalizer = 0 self.prod_mnr_normalizer = 0 self.product_num_ratings = {} self.product_sum_ratings = {} def MNR(self, data, data_type='user'): feature = {} for i, d in data.items(): frequency = {} for t in d: if t[3] not in frequency: frequency[t[3]] = 1 else: frequency[t[3]] += 1 feature[i] = max(frequency.values()) if data_type == 'user': self.user_mnr_normalizer = max(feature.values()) for k in feature.keys(): feature[k] /= self.user_mnr_normalizer else: self.prod_mnr_normalizer = max(feature.values()) for k in feature.keys(): feature[k] /= self.prod_mnr_normalizer return feature def iMNR(self, data, new_data, data_type='user'): feature = {} for i, d in new_data.items(): all_d = deepcopy(d) if i in data: all_d += data[i] frequency = {} for t in all_d: if t[3] not in frequency: frequency[t[3]] = 1 else: frequency[t[3]] += 1 feature[i] = max(frequency.values()) if data_type == 'user': self.user_mnr_normalizer = max(max(feature.values()), self.user_mnr_normalizer) for k in feature.keys(): feature[k] /= self.user_mnr_normalizer else: self.prod_mnr_normalizer = max(max(feature.values()), self.prod_mnr_normalizer) for k in feature.keys(): feature[k] /= self.prod_mnr_normalizer return feature
Apache License 2.0
google/citest
citest/service_testing/http_agent.py
BaseHttpOperation.data
python
def data(self): return self.__data
The HTTP payload data to send, or None if there is no payload.
https://github.com/google/citest/blob/eda9171eed35b82ce6f048229bebd898edc25369/citest/service_testing/http_agent.py#L523-L525
import base64 import json import re import ssl import sys import traceback try: from urllib2 import build_opener from urllib2 import Request from urllib2 import HTTPCookieProcessor from urllib2 import HTTPSHandler from urllib2 import HTTPError from urllib2 import URLError except ImportError: from urllib.request import build_opener from urllib.request import Request from urllib.request import HTTPCookieProcessor from urllib.request import HTTPSHandler from urllib.error import HTTPError from urllib.error import URLError try: import httplib except ImportError: import http.client as httplib from citest.base import JournalLogger from citest.base import JsonSnapshotableEntity from .http_scrubber import HttpScrubber from . import base_agent class HttpResponseType(JsonSnapshotableEntity): @property def http_code(self): return self.__http_code @property def output(self): return self.__output @property def exception(self): return self.__exception @property def headers(self): return self.__headers @property def error_message(self): return (None if self.ok() else self.exception if self.exception else self.output) def __init__(self, http_code=None, output=None, exception=None, headers=None): if (http_code is None) == (exception is None): raise ValueError('http_code and exception should be disjoint.') self.__http_code = http_code self.__output = output self.__exception = exception self.__headers = headers or {} def __str__(self): return 'http_code={0} output={1!r} exception={2!r}'.format( self.http_code, self.output, self.exception) def export_to_json_snapshot(self, snapshot, entity, **kwargs): format = kwargs.pop('format', None) self.__export_to_json_snapshot_helper( snapshot, entity, as_summary=False, format=format) def export_summary_to_json_snapshot(self, snapshot, entity): self.__export_to_json_snapshot_helper(snapshot, entity, as_summary=True) def __export_to_json_snapshot_helper( self, snapshot, entity, as_summary=False, format=None): builder = snapshot.edge_builder code_relation = { 2: 'VALID', 4: 'INVALID', 5: 'ERROR' }.get( self.http_code // 100, None) edge = builder.make(entity, 'HTTP Code', self.http_code, relation=code_relation) if self.headers: edge = builder.make_data(entity, 'Response Headers', self.headers) if not self.ok(): edge.add_metadata('relation', 'ERROR') if self.exception: edge = builder.make_error(entity, 'Response Error', self.exception) if format: edge.add_metadata('format', format) if as_summary: return if self.output or not self.exception: edge = builder.make_output(entity, 'Response Output', self.output) if format: edge.add_metadata('format', format) def ok(self): return self.http_code >= 200 and self.http_code < 300 def check_ok(self): if not self.ok(): if self.exception: raise ValueError('HTTP has no response: {ex}'.format(ex=self.exception)) else: raise ValueError('Unexpected HTTP response {code}:\n{body}'.format( code=self.http_code, body=self.output)) def get_header(self, key, default=None): regex = re.compile(r'(?i)%s: (.*)\r?\n?' % key) for header in self.__headers: match = regex.match(header) if match: return match.group(1).strip() return default class HttpOperationStatus(base_agent.AgentOperationStatus): @property def finished(self): return True @property def timed_out(self): return self.__http_response.http_code in [httplib.REQUEST_TIMEOUT, httplib.GATEWAY_TIMEOUT] @property def id(self): return str(id(self)) @property def finished_ok(self): return self.__http_response.ok() @property def detail(self): return self.__http_response.output @property def error(self): return self.__http_response.error_message @property def snapshot_format(self): return self.__snapshot_format @property def raw_http_response(self): return self.__http_response def __init__(self, operation, http_response): super(HttpOperationStatus, self).__init__(operation) self.__http_response = http_response self.__snapshot_format = None def __cmp__(self, response): return self.__http_response.__cmp__(response.raw_http_response) def __str__(self): return 'http_response={0}'.format(self.__http_response) def set_snapshot_format(self, format): self.__snapshot_format = format def set_http_response(self, http_response): self.__http_response = http_response def export_to_json_snapshot(self, snapshot, entity): super(HttpOperationStatus, self).export_to_json_snapshot(snapshot, entity) self.__http_response.export_to_json_snapshot( snapshot, entity, format=self.__snapshot_format) def export_summary_to_json_snapshot(self, snapshot, entity): super(HttpOperationStatus, self).export_summary_to_json_snapshot( snapshot, entity) self.__http_response.export_summary_to_json_snapshot(snapshot, entity) class SynchronousHttpOperationStatus(HttpOperationStatus): @property def id(self): return None @property def timed_out(self): return False class HttpAgent(base_agent.BaseAgent): @property def headers(self): return self.__headers @property def base_url(self): return self.__base_url @property def http_scrubber(self): return self.__http_scrubber @http_scrubber.setter def http_scrubber(self, scrubber): self.__http_scrubber = scrubber @property def ignore_ssl_cert_verification(self): return self.__ignore_ssl_cert_verification @ignore_ssl_cert_verification.setter def ignore_ssl_cert_verification(self, ignore_ssl_cert_verification): self.__ignore_ssl_cert_verification = ignore_ssl_cert_verification @staticmethod def make_json_payload_from_object(payload_obj): return json.JSONEncoder().encode(payload_obj) @staticmethod def make_json_payload_from_kwargs(**kwargs): payload_dict = kwargs return json.JSONEncoder().encode(payload_dict) def __init__(self, base_url, logger=None): super(HttpAgent, self).__init__(logger=logger) self.__base_url = base_url self.__status_class = HttpOperationStatus self.__headers = {} self.__http_scrubber = HttpScrubber() self.__ignore_ssl_cert_verification = False def add_header(self, key, value): self.__headers[key] = value def add_basic_auth_header(self, user, password): text = '{user}:{password}'.format(user=user, password=password) encoded_auth = base64.encodestring(str.encode(text))[:-1] self.add_header('Authorization', 'Basic ' + bytes.decode(encoded_auth)) def export_to_json_snapshot(self, snapshot, entity): snapshot.edge_builder.make_control(entity, 'Base URL', self.__base_url) super(HttpAgent, self).export_to_json_snapshot(snapshot, entity) def new_post_operation(self, title, path, data, status_class=None, max_wait_secs=None): return HttpPostOperation(title, path, data, self, status_class=status_class, max_wait_secs=max_wait_secs) def new_delete_operation(self, title, path, data, status_class=None, max_wait_secs=None): return HttpDeleteOperation(title, path, data, self, status_class=status_class, max_wait_secs=max_wait_secs) def _new_messaging_status(self, operation, http_response): status_class = operation.status_class or self.__status_class return status_class(operation, http_response) def __send_http_request(self, path, http_type, data=None, headers=None): if headers is None: all_headers = self.__headers else: all_headers = self.__headers.copy() all_headers.update(headers) if path[0] == '/': path = path[1:] url = '{0}/{1}'.format(self.__base_url, path) encoded_data = str.encode(data) if data is not None else None req = Request(url=url, data=encoded_data, headers=all_headers) req.get_method = lambda: http_type scrubbed_url = self.__http_scrubber.scrub_url(url) scrubbed_data = self.__http_scrubber.scrub_request(data) if data is not None: JournalLogger.journal_or_log_detail( '{type} {url}'.format(type=http_type, url=scrubbed_url), scrubbed_data, _logger=self.logger, _context='request') else: JournalLogger.journal_or_log( '{type} {url}'.format(type=http_type, url=scrubbed_url), _logger=self.logger, _context='request') if self.__ignore_ssl_cert_verification: context = ssl._create_unverified_context() opener = build_opener(HTTPSHandler(context=context), HTTPCookieProcessor()) else: opener = build_opener(HTTPCookieProcessor()) code = None output = None exception = None headers = None try: response = opener.open(req) code = response.getcode() output = bytes.decode(response.read()) if sys.version_info[0] > 2: headers = dict(response.headers.items()) else: headers = response.info().headers scrubbed_output = self.__http_scrubber.scrub_response(output) JournalLogger.journal_or_log_detail( 'HTTP {code}'.format(code=code), scrubbed_output, _logger=self.logger, _context='response') except HTTPError as ex: code = ex.getcode() output = bytes.decode(ex.read()) scrubbed_error = self.__http_scrubber.scrub_response(output) JournalLogger.journal_or_log_detail( 'HTTP {code}'.format(code=code), scrubbed_error, _logger=self.logger, _context='response') except URLError as ex: JournalLogger.journal_or_log( 'Caught exception: {ex}\n{stack}'.format( ex=ex, stack=traceback.format_exc()), _logger=self.logger) exception = ex return HttpResponseType(http_code=code, output=output, exception=exception, headers=headers) def patch(self, path, data, content_type='application/json'): return self.__send_http_request( path, 'PATCH', data=data, headers={'Content-Type': content_type}) def post(self, path, data, content_type='application/json'): return self.__send_http_request( path, 'POST', data=data, headers={'Content-Type': content_type}) def put(self, path, data, content_type='application/json'): return self.__send_http_request( path, 'PUT', data=data, headers={'Content-Type': content_type}) def delete(self, path, data, content_type='application/json'): return self.__send_http_request( path, 'DELETE', data=data, headers={'Content-Type': content_type}) def get(self, path): return self.__send_http_request(path, 'GET') class BaseHttpOperation(base_agent.AgentOperation): @property def path(self): return self.__path @property
Apache License 2.0
tenzir/threatbus
plugins/backbones/threatbus_rabbitmq/threatbus_rabbitmq/rabbitmq_consumer.py
RabbitMQConsumer.on_connection_open_error
python
def on_connection_open_error( self, _connection: pika.connection.Connection, err: Exception ): self.logger.error(f"RabbitMQ consumer: connection failed to open {err}") self.__shutdown()
Invoked as callback when opening a new pika.SelectConnecion. Issues opening of a channel. @param _connection The opened connection
https://github.com/tenzir/threatbus/blob/baca18075b6b09c18950f3f23305c903a36b61de/plugins/backbones/threatbus_rabbitmq/threatbus_rabbitmq/rabbitmq_consumer.py#L130-L139
from dynaconf.utils.boxing import DynaBox import json import pika from logging import Logger from stix2 import Indicator, Sighting, parse import threatbus from threatbus.data import ( SnapshotRequest, SnapshotEnvelope, SnapshotRequestDecoder, SnapshotEnvelopeDecoder, ) import time from typing import Callable, List, Union class RabbitMQConsumer(threatbus.StoppableWorker): def __init__( self, conn_params: pika.ConnectionParameters, exchange_name: str, queue_params: DynaBox, provision_callback: Callable[ [str, Union[Indicator, Sighting, SnapshotEnvelope, SnapshotRequest]], None ], logger: Logger, ): super(RabbitMQConsumer, self).__init__() self.conn_params: pika.ConnectionParameters = conn_params self.__provision_callback: Callable[ [str, Union[Indicator, Sighting, SnapshotEnvelope, SnapshotRequest]], None ] = provision_callback self.logger: Logger = logger self.consumers: List[str] = list() self.exchange_name = exchange_name self._reconnect_delay: int = 5 self._connection: Union[pika.SelectConnection, None] = None self._channel: Union[pika.channel.Channel, None] = None join_symbol = queue_params.name_join_symbol queue_name_suffix = queue_params.name_suffix self.queue_name = f"threatbus{join_symbol}{queue_name_suffix}" queue_mode = "default" if not queue_params.lazy else "lazy" self.queue_kwargs = { "durable": queue_params.durable, "exclusive": queue_params.exclusive, "auto_delete": queue_params.auto_delete, "arguments": {"x-queue-mode": queue_mode}, } if queue_params.max_items: self.queue_kwargs["arguments"]["x-max-length"] = queue_params.max_items def __provision(self, _channel, method_frame, _header_frame, msg): msg_type = None try: dct = json.loads(msg) msg_type = dct.get("type", None) except Exception as e: self.logger.error(f"RabbitMQ consumer: error reading message {msg}: {e}") try: if msg_type == "indicator" or msg_type == "sighting": self.__provision_callback( f"stix2/{msg_type}", parse(msg, allow_custom=True) ) elif msg_type == "snapshotrequest": self.__provision_callback( f"threatbus/{msg_type}", json.loads(msg, cls=SnapshotRequestDecoder) ) elif msg_type == "snapshotenvelope": self.__provision_callback( f"threatbus/{msg_type}", json.loads(msg, cls=SnapshotEnvelopeDecoder), ) else: self.logger.error( f"RabbitMQ consumer: received message with unknown or missing 'type' field {msg}" ) except Exception as e: self.logger.error(f"RabbitMQ consumer: error decoding message {msg}: {e}") self._channel.basic_ack(delivery_tag=method_frame.delivery_tag) def __shutdown(self): self._connection.ioloop.stop() def join(self, *args, **kwargs): self._reconnect_delay = 0 self.__shutdown() super(RabbitMQConsumer, self).join(*args, **kwargs) def on_connection_open(self, _connection: pika.connection.Connection): self._connection.channel(on_open_callback=self.on_channel_open)
BSD 3-Clause New or Revised License
luci/recipes-py
recipe_modules/cas/api.py
CasApi._run
python
def _run(self, name, cmd, step_test_data=None): return self.m.step( name, [ self.m.cipd.ensure_tool('infra/tools/luci/cas/${platform}', self._version) ] + list(cmd), step_test_data=step_test_data, infra_step=True)
Returns a cas command step. Args: * name: (str): name of the step. * cmd (list(str|Path)): cas client subcommand to run.
https://github.com/luci/recipes-py/blob/32f0255a6910af47c6cb35546032ae4d60fe9a92/recipe_modules/cas/api.py#L49-L63
from recipe_engine import recipe_api class CasApi(recipe_api.RecipeApi): def __init__(self, env_properties, **kwargs): super(CasApi, self).__init__(**kwargs) self._instance = None self._cached_version = None self._env_properties = env_properties @property def instance(self): if self._instance: return self._instance swarming_server = ( self._env_properties.SWARMING_SERVER or 'https://example-cas-server.appspot.com') project = swarming_server[len('https://'):-len('.appspot.com')] self._instance = 'projects/%s/instances/default_instance' % project return self._instance @property def _version(self): if self.m.runtime.is_experimental: return 'latest' if self._cached_version is None: self._cached_version = self.m.file.read_text( "read infra revision", self.resource("infra.sha1"), test_data='git_revision:mock_infra_git_revision').strip() return self._cached_version
Apache License 2.0
chaffelson/whoville
whoville/cloudbreak/models/flex_subscription_response.py
FlexSubscriptionResponse.__init__
python
def __init__(self, name=None, subscription_id=None, smart_sense_subscription_id=None, used_as_default=False, used_for_controller=False, id=None, owner=None, account=None, public_in_account=False, smart_sense_subscription=None): self._name = None self._subscription_id = None self._smart_sense_subscription_id = None self._used_as_default = None self._used_for_controller = None self._id = None self._owner = None self._account = None self._public_in_account = None self._smart_sense_subscription = None self.name = name if subscription_id is not None: self.subscription_id = subscription_id if smart_sense_subscription_id is not None: self.smart_sense_subscription_id = smart_sense_subscription_id if used_as_default is not None: self.used_as_default = used_as_default if used_for_controller is not None: self.used_for_controller = used_for_controller if id is not None: self.id = id if owner is not None: self.owner = owner if account is not None: self.account = account if public_in_account is not None: self.public_in_account = public_in_account if smart_sense_subscription is not None: self.smart_sense_subscription = smart_sense_subscription
FlexSubscriptionResponse - a model defined in Swagger
https://github.com/chaffelson/whoville/blob/f71fda629c9fd50d0a482120165ea5abcc754522/whoville/cloudbreak/models/flex_subscription_response.py#L59-L93
from pprint import pformat from six import iteritems import re class FlexSubscriptionResponse(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'name': 'str', 'subscription_id': 'str', 'smart_sense_subscription_id': 'int', 'used_as_default': 'bool', 'used_for_controller': 'bool', 'id': 'int', 'owner': 'str', 'account': 'str', 'public_in_account': 'bool', 'smart_sense_subscription': 'SmartSenseSubscriptionJson' } attribute_map = { 'name': 'name', 'subscription_id': 'subscriptionId', 'smart_sense_subscription_id': 'smartSenseSubscriptionId', 'used_as_default': 'usedAsDefault', 'used_for_controller': 'usedForController', 'id': 'id', 'owner': 'owner', 'account': 'account', 'public_in_account': 'publicInAccount', 'smart_sense_subscription': 'smartSenseSubscription' }
Apache License 2.0
mozilla/firefox-flicks
flicks/videos/models.py
Video2013.has_vote_from
python
def has_vote_from(self, user): return (user.is_authenticated() and self.voters.filter(pk=user.pk).exists())
Check if the given user has voted for this video.
https://github.com/mozilla/firefox-flicks/blob/ad19ed59aac682744badae6d19a149327037f293/flicks/videos/models.py#L121-L124
import os from datetime import datetime from django.conf import settings from django.contrib.auth.models import User from django.core.files.base import ContentFile from django.db import models from django.dispatch import receiver import requests from caching.base import CachingManager, CachingMixin from funfactory.helpers import static from requests.exceptions import RequestException from tower import ugettext as _, ugettext_lazy as _lazy from flicks.base.util import get_object_or_none from flicks.videos import vimeo from flicks.videos.tasks import process_deletion from flicks.videos.util import (send_approval_email, vidly_embed_code, vimeo_embed_code) class Video2013(models.Model, CachingMixin): title = models.CharField(max_length=255, blank=False) description = models.TextField(blank=True) user = models.ForeignKey(User) created = models.DateTimeField(default=datetime.now) random_ordering = models.IntegerField(default=0) vimeo_id = models.IntegerField() filename = models.CharField(max_length=255, blank=False) approved = models.BooleanField(default=False) processed = models.BooleanField(default=False) user_notified = models.BooleanField(default=False) voters = models.ManyToManyField(User, through='Vote', related_name='voted_videos') def _thumbnail_path(self, filename): root, ext = os.path.splitext(filename) return 'vimeo_thumbs/{0}{1}'.format(self.vimeo_id, ext) thumbnail = models.ImageField(blank=True, upload_to=_thumbnail_path, max_length=settings.MAX_FILEPATH_LENGTH) objects = CachingManager() @property def region(self): return self.user.userprofile.region @property def thumbnail_url(self): return (self.thumbnail.url if self.thumbnail else static('img/video-blank.jpg')) @property def vote_count(self): return self.voters.count() def save(self, *args, **kwargs): original = get_object_or_none(Video2013, id=self.id) if original and original.approved != self.approved: self.process_approval() return_value = super(Video2013, self).save(*args, **kwargs) if original and self.approved and not self.user_notified: send_approval_email(self) self.user_notified = True return_value = super(Video2013, self).save(*args, **kwargs) return return_value def embed_html(self, **kwargs): return vimeo_embed_code(self.vimeo_id, **kwargs) def process_approval(self): if self.approved: try: self.download_thumbnail(commit=False) except (RequestException, vimeo.VimeoServiceError): pass vimeo.set_privacy(self.vimeo_id, 'anybody') else: vimeo.set_privacy(self.vimeo_id, 'password', password=settings.VIMEO_VIDEO_PASSWORD) def download_thumbnail(self, commit=True): thumbnails = vimeo.get_thumbnail_urls(self.vimeo_id) try: thumbnail = next(t for t in thumbnails if t['height'] == '150') except StopIteration: raise vimeo.VimeoServiceError('No medium thumbnail found.') response = requests.get(thumbnail['_content']) filename = response.url.rsplit('/')[-1] content_file = ContentFile(response.content) self.thumbnail.save(filename, content_file, save=False) if commit: self.save()
BSD 3-Clause New or Revised License
stephenhky/pyshorttextcategorization
shorttext/classifiers/embed/sumvec/SumEmbedVecClassification.py
SumEmbeddedVecClassifier.savemodel
python
def savemodel(self, nameprefix): if not self.trained: raise ModelNotTrainedException() pickle.dump(self.addvec, open(nameprefix+'_embedvecdict.pkl', 'wb'))
Save the trained model into files. Given the prefix of the file paths, save the model into files, with name given by the prefix, and add "_embedvecdict.pickle" at the end. If there is no trained model, a `ModelNotTrainedException` will be thrown. :param nameprefix: prefix of the file path :return: None :type nameprefix: str :raise: ModelNotTrainedException
https://github.com/stephenhky/pyshorttextcategorization/blob/52b49b6cf9b48c4211ce15c3310262c6b4bbc96c/shorttext/classifiers/embed/sumvec/SumEmbedVecClassification.py#L61-L75
import pickle from collections import defaultdict import numpy as np from scipy.spatial.distance import cosine from shorttext.utils.classification_exceptions import ModelNotTrainedException from shorttext.utils import shorttext_to_avgvec from shorttext.utils.compactmodel_io import CompactIOMachine class SumEmbeddedVecClassifier(CompactIOMachine): def __init__(self, wvmodel, vecsize=None, simfcn=lambda u, v: 1-cosine(u, v)): CompactIOMachine.__init__(self, {'classifier': 'sumvec'}, 'sumvec', ['_embedvecdict.pkl']) self.wvmodel = wvmodel self.vecsize = self.wvmodel.vector_size if vecsize == None else vecsize self.simfcn = simfcn self.trained = False def train(self, classdict): self.addvec = defaultdict(lambda : np.zeros(self.vecsize)) for classtype in classdict: self.addvec[classtype] = np.sum([self.shorttext_to_embedvec(shorttext) for shorttext in classdict[classtype]], axis=0) self.addvec[classtype] /= np.linalg.norm(self.addvec[classtype]) self.addvec = dict(self.addvec) self.trained = True
MIT License
enzet/roentgen
map_machine/feature/road.py
Road.draw
python
def draw(self, svg: Drawing, flinger: Flinger, is_border: bool) -> None: filter_: Filter = self.get_filter(svg, is_border) style: dict[str, Union[int, float, str]] = self.get_style( flinger, is_border ) path_commands: str = self.line.get_path() path: Path if filter_: path = Path(d=path_commands, filter=filter_.get_funciri()) else: path = Path(d=path_commands) path.update(style) svg.add(path)
Draw road as simple SVG path.
https://github.com/enzet/roentgen/blob/38c4e00de3d9429348485f114788baaccab64974/map_machine/feature/road.py#L481-L496
from dataclasses import dataclass from typing import Any, Optional, Union import numpy as np import svgwrite from colour import Color from svgwrite import Drawing from svgwrite.filters import Filter from svgwrite.path import Path from svgwrite.shapes import Circle from map_machine.drawing import PathCommands from map_machine.geometry.flinger import Flinger from map_machine.osm.osm_reader import OSMNode, Tagged from map_machine.scheme import RoadMatcher from map_machine.geometry.vector import ( Line, Polyline, compute_angle, norm, turn_by_angle, ) __author__ = "Sergey Vartanov" __email__ = "me@enzet.ru" USE_BLUR: bool = False @dataclass class Lane: width: Optional[float] = None is_forward: Optional[bool] = None min_speed: Optional[float] = None turn: Optional[str] = None change: Optional[str] = None destination: Optional[str] = None def set_forward(self, is_forward: bool) -> None: self.is_forward = is_forward def get_width(self, scale: float) -> float: if self.width is None: return 3.7 * scale return self.width * scale class RoadPart: def __init__( self, point_1: np.ndarray, point_2: np.ndarray, lanes: list[Lane], scale: float, ) -> None: self.point_1: np.ndarray = point_1 self.point_2: np.ndarray = point_2 self.lanes: list[Lane] = lanes if lanes: self.width = sum(map(lambda x: x.get_width(scale), lanes)) else: self.width = 1 self.left_offset: float = self.width / 2 self.right_offset: float = self.width / 2 self.turned: np.ndarray = norm( turn_by_angle(self.point_2 - self.point_1, np.pi / 2) ) self.right_vector: np.ndarray = self.turned * self.right_offset self.left_vector: np.ndarray = -self.turned * self.left_offset self.right_connection: Optional[np.ndarray] = None self.left_connection: Optional[np.ndarray] = None self.right_projection: Optional[np.ndarray] = None self.left_projection: Optional[np.ndarray] = None self.left_outer: Optional[np.ndarray] = None self.right_outer: Optional[np.ndarray] = None self.point_a: Optional[np.ndarray] = None self.point_middle: Optional[np.ndarray] = None def update(self) -> None: if self.left_connection is not None: self.right_projection = ( self.left_connection + self.right_vector - self.left_vector ) if self.right_connection is not None: self.left_projection = ( self.right_connection - self.right_vector + self.left_vector ) if ( self.left_connection is not None and self.right_connection is not None ): a = np.linalg.norm(self.right_connection - self.point_1) b = np.linalg.norm(self.right_projection - self.point_1) if a > b: self.right_outer = self.right_connection self.left_outer = self.left_projection else: self.right_outer = self.right_projection self.left_outer = self.left_connection self.point_middle = self.right_outer - self.right_vector max_: float = 100 if np.linalg.norm(self.point_middle - self.point_1) > max_: self.point_a = self.point_1 + max_ * norm( self.point_middle - self.point_1 ) self.right_outer = self.point_a + self.right_vector self.left_outer = self.point_a + self.left_vector else: self.point_a = self.point_middle def get_angle(self) -> float: return compute_angle(self.point_2 - self.point_1) def draw_normal(self, drawing: svgwrite.Drawing) -> None: line: Path = drawing.path( ("M", self.point_1, "L", self.point_2), fill="none", stroke="#8888FF", stroke_width=self.width, ) drawing.add(line) def draw_debug(self, drawing: svgwrite.Drawing) -> None: line: Path = drawing.path( ("M", self.point_1, "L", self.point_2), fill="none", stroke="#000000", ) drawing.add(line) line: Path = drawing.path( ( "M", self.point_1 + self.right_vector, "L", self.point_2 + self.right_vector, ), fill="none", stroke="#FF0000", stroke_width=0.5, ) drawing.add(line) line = drawing.path( ( "M", self.point_1 + self.left_vector, "L", self.point_2 + self.left_vector, ), fill="none", stroke="#0000FF", stroke_width=0.5, ) drawing.add(line) opacity: float = 0.4 radius: float = 2 if self.right_connection is not None: circle = drawing.circle( self.right_connection, 2.5, fill="#FF0000", opacity=opacity ) drawing.add(circle) if self.left_connection is not None: circle = drawing.circle( self.left_connection, 2.5, fill="#0000FF", opacity=opacity ) drawing.add(circle) if self.right_projection is not None: circle = drawing.circle( self.right_projection, 1.5, fill="#FF0000", opacity=opacity ) drawing.add(circle) if self.left_projection is not None: circle = drawing.circle( self.left_projection, 1.5, fill="#0000FF", opacity=opacity ) drawing.add(circle) if self.right_outer is not None: circle = drawing.circle( self.right_outer, 3.5, stroke_width=0.5, fill="none", stroke="#FF0000", opacity=opacity, ) drawing.add(circle) if self.left_outer is not None: circle = drawing.circle( self.left_outer, 3.5, stroke_width=0.5, fill="none", stroke="#0000FF", opacity=opacity, ) drawing.add(circle) if self.point_a is not None: circle = drawing.circle(self.point_a, radius, fill="#000000") drawing.add(circle) def draw(self, drawing: svgwrite.Drawing) -> None: if self.left_connection is not None: path_commands = [ "M", self.point_2 + self.right_vector, "L", self.point_2 + self.left_vector, "L", self.left_connection, "L", self.right_connection, "Z", ] drawing.add(drawing.path(path_commands, fill="#CCCCCC")) def draw_entrance( self, drawing: svgwrite.Drawing, is_debug: bool = False ) -> None: if ( self.left_connection is not None and self.right_connection is not None ): path_commands = [ "M", self.right_projection, "L", self.right_connection, "L", self.left_projection, "L", self.left_connection, "Z", ] if is_debug: path = drawing.path( path_commands, fill="none", stroke="#880088", stroke_width=0.5, ) drawing.add(path) else: drawing.add(drawing.path(path_commands, fill="#88FF88")) def draw_lanes(self, drawing: svgwrite.Drawing, scale: float) -> None: for lane in self.lanes: shift = self.right_vector - self.turned * lane.get_width(scale) path = drawing.path( ["M", self.point_middle + shift, "L", self.point_2 + shift], fill="none", stroke="#FFFFFF", stroke_width=2, stroke_dasharray="7,7", ) drawing.add(path) class Intersection: def __init__(self, parts: list[RoadPart]) -> None: self.parts: list[RoadPart] = sorted(parts, key=lambda x: x.get_angle()) for index in range(len(self.parts)): next_index: int = 0 if index == len(self.parts) - 1 else index + 1 part_1: RoadPart = self.parts[index] part_2: RoadPart = self.parts[next_index] line_1: Line = Line( part_1.point_1 + part_1.right_vector, part_1.point_2 + part_1.right_vector, ) line_2: Line = Line( part_2.point_1 + part_2.left_vector, part_2.point_2 + part_2.left_vector, ) intersection: np.ndarray = line_1.get_intersection_point(line_2) part_1.right_connection = intersection part_2.left_connection = intersection part_1.update() part_2.update() for index in range(len(self.parts)): next_index: int = 0 if index == len(self.parts) - 1 else index + 1 part_1: RoadPart = self.parts[index] part_2: RoadPart = self.parts[next_index] part_1.update() part_2.update() if ( part_1.right_connection is None and part_2.left_connection is None ): part_1.left_connection = part_1.right_projection part_2.right_connection = part_2.left_projection part_1.left_outer = part_1.right_projection part_2.right_outer = part_2.left_projection part_1.update() part_2.update() def draw(self, drawing: svgwrite.Drawing, is_debug: bool = False) -> None: inner_commands = ["M"] for part in self.parts: inner_commands += [part.left_connection, "L"] inner_commands[-1] = "Z" outer_commands = ["M"] for part in self.parts: outer_commands += [part.left_connection, "L"] outer_commands += [part.left_outer, "L"] outer_commands += [part.right_outer, "L"] outer_commands[-1] = "Z" if is_debug: drawing.add( drawing.path(outer_commands, fill="#0000FF", opacity=0.2) ) drawing.add( drawing.path(inner_commands, fill="#FF0000", opacity=0.2) ) for part in self.parts: if is_debug: part.draw_debug(drawing) else: part.draw_entrance(drawing) if not is_debug: drawing.add(drawing.path(inner_commands, fill="#FF8888")) class Road(Tagged): def __init__( self, tags: dict[str, str], nodes: list[OSMNode], matcher: RoadMatcher, flinger: Flinger, ) -> None: super().__init__(tags) self.nodes: list[OSMNode] = nodes self.matcher: RoadMatcher = matcher self.line: Polyline = Polyline( [flinger.fling(x.coordinates) for x in self.nodes] ) self.width: Optional[float] = matcher.default_width self.lanes: list[Lane] = [] if "lanes" in tags: try: self.width = int(tags["lanes"]) * 3.7 self.lanes = [Lane()] * int(tags["lanes"]) except ValueError: pass if "width:lanes" in tags: try: widths: list[float] = list( map(float, tags["width:lanes"].split("|")) ) if len(widths) == len(self.lanes): for index, lane in enumerate(self.lanes): lane.width = widths[index] except ValueError: pass number: int if "lanes:forward" in tags: number = int(tags["lanes:forward"]) [x.set_forward(True) for x in self.lanes[-number:]] if "lanes:backward" in tags: number = int(tags["lanes:backward"]) [x.set_forward(False) for x in self.lanes[:number]] if "width" in tags: try: self.width = float(tags["width"]) except ValueError: pass self.layer: float = 0 if "layer" in tags: self.layer = float(tags["layer"]) def get_style( self, flinger: Flinger, is_border: bool, is_for_stroke: bool = False ) -> dict[str, Union[int, float, str]]: width: float if self.width is not None: width = self.width else: width = self.matcher.default_width border_width: float if is_border: color = self.get_border_color() border_width = 2.0 else: color = self.get_color() border_width = 0.0 extra_width: float = 0.0 if is_border: if self.tags.get("bridge") == "yes": extra_width = 0.5 if self.tags.get("ford") == "yes": extra_width = 2.0 if self.tags.get("embankment") == "yes": extra_width = 4.0 scale: float = flinger.get_scale(self.nodes[0].coordinates) style: dict[str, Union[int, float, str]] = { "fill": "none", "stroke": color.hex, "stroke-linecap": "butt", "stroke-linejoin": "round", "stroke-width": scale * width + extra_width + border_width, } if is_for_stroke: style["stroke-width"] = 2 + extra_width if is_border and self.tags.get("embankment") == "yes": style["stroke-dasharray"] = "1,3" if self.tags.get("tunnel") == "yes": if is_border: style["stroke-dasharray"] = "3,3" return style def get_filter(self, svg: Drawing, is_border: bool) -> Optional[Filter]: if not USE_BLUR: return None if is_border and self.tags.get("bridge") == "yes": filter_ = svg.defs.add(svg.filter()) filter_.feGaussianBlur(in_="SourceGraphic", stdDeviation=2) return filter_ return None
MIT License
capitalone/rubicon
rubicon_ml/repository/asynchronous/base.py
AsynchronousBaseRepository.get_dataframe_metadata
python
async def get_dataframe_metadata(self, project_name, dataframe_id, experiment_id=None): dataframe_metadata_path = self._get_dataframe_metadata_path( project_name, experiment_id, dataframe_id ) try: dataframe = json.loads(await self.filesystem._cat_file(dataframe_metadata_path)) except FileNotFoundError: raise RubiconException(f"No dataframe with id `{dataframe_id}` found.") return domain.Dataframe(**dataframe)
Overrides `rubicon.repository.BaseRepository.get_dataframe_metadata` to asynchronously retrieve a dataframes's metadata from the configured filesystem. Parameters ---------- project_name : str The name of the project the dataframe with ID `dataframe_id` is logged to. dataframe_id : str The ID of the dataframe to retrieve. experiment_id : str, optional The ID of the experiment the dataframe with ID `dataframe_id` is logged to. Dataframes do not need to belong to an experiment. Returns ------- rubicon.domain.Dataframe The dataframe with ID `dataframe_id`.
https://github.com/capitalone/rubicon/blob/86278a98cf5fd0b7e179a2949fce5a12e42fd7be/rubicon_ml/repository/asynchronous/base.py#L572-L603
import asyncio import os import warnings import fsspec from rubicon_ml import domain from rubicon_ml.exceptions import RubiconException from rubicon_ml.repository import BaseRepository from rubicon_ml.repository.utils import json def connect(func): async def connect_first(*args, **kwargs): repo, *_ = args if not repo._is_connected: await repo._connect() repo._is_connected = True return await func(*args, **kwargs) return connect_first def invalidate_cache(func): async def invalidate_cache_after(*args, **kwargs): result = await func(*args, **kwargs) repo, *_ = args repo.filesystem.invalidate_cache() return result return invalidate_cache_after class AsynchronousBaseRepository(BaseRepository): PROTOCOL = None def __init__(self, root_dir, loop=None, **storage_options): self.root_dir = root_dir self.filesystem = fsspec.filesystem( self.PROTOCOL, asynchronous=True, loop=loop, **storage_options ) self._is_connected = False async def _ls_directories_only(self, path): return [ os.path.join(p.get("name"), "metadata.json") for p in await self.filesystem._ls(path, detail=True) if p.get("type", p.get("StorageClass")).lower() == "directory" ] async def _cat_paths(self, metadata_paths): files = [] paths = await self.filesystem._cat(metadata_paths, on_error="return") for metadata in paths.values(): if isinstance(metadata, FileNotFoundError): warning = f"{metadata} not found. Was this file unintentionally created?" warnings.warn(warning) else: files.append(metadata) return files async def _connect(self): pass @connect @invalidate_cache async def create_project(self, project): project_metadata_path = self._get_project_metadata_path(project.name) if await self.filesystem._exists(project_metadata_path): raise RubiconException(f"A project with name '{project.name}' already exists.") await self._persist_domain(project, project_metadata_path) @connect async def get_project(self, project_name): project_metadata_path = self._get_project_metadata_path(project_name) try: project = json.loads(await self.filesystem._cat_file(project_metadata_path)) except FileNotFoundError: raise RubiconException(f"No project with name '{project_name}' found.") return domain.Project(**project) @connect async def get_projects(self): try: project_metadata_paths = await self._ls_directories_only(self.root_dir) projects = [ domain.Project(**json.loads(metadata)) for metadata in await self._cat_paths(project_metadata_paths) ] except FileNotFoundError: return [] return projects @connect @invalidate_cache async def create_experiment(self, experiment): experiment_metadata_path = self._get_experiment_metadata_path( experiment.project_name, experiment.id ) await self._persist_domain(experiment, experiment_metadata_path) @connect async def get_experiment(self, project_name, experiment_id): experiment_metadata_path = self._get_experiment_metadata_path(project_name, experiment_id) try: experiment = json.loads(await self.filesystem._cat_file(experiment_metadata_path)) except FileNotFoundError: raise RubiconException(f"No experiment with id `{experiment_id}` found.") return domain.Experiment(**experiment) @connect async def get_experiments(self, project_name): experiment_metadata_root = self._get_experiment_metadata_root(project_name) try: experiment_metadata_paths = await self._ls_directories_only(experiment_metadata_root) experiments = [ domain.Experiment(**json.loads(metadata)) for metadata in await self._cat_paths(experiment_metadata_paths) ] except FileNotFoundError: return [] return experiments @connect @invalidate_cache async def create_feature(self, feature, project_name, experiment_id): feature_metadata_path = self._get_feature_metadata_path( project_name, experiment_id, feature.name ) if await self.filesystem._exists(feature_metadata_path): raise RubiconException(f"A feature with name '{feature.name}' already exists.") await self._persist_domain(feature, feature_metadata_path) @connect async def get_feature(self, project_name, experiment_id, feature_name): feature_metadata_path = self._get_feature_metadata_path( project_name, experiment_id, feature_name ) try: feature = json.loads(await self.filesystem._cat_file(feature_metadata_path)) except FileNotFoundError: raise RubiconException(f"No feature with name '{feature_name}' found.") return domain.Feature(**feature) @connect async def get_features(self, project_name, experiment_id): feature_metadata_root = self._get_feature_metadata_root(project_name, experiment_id) try: feature_metadata_paths = await self._ls_directories_only(feature_metadata_root) features = [ domain.Feature(**json.loads(metadata)) for metadata in await self._cat_paths(feature_metadata_paths) ] except FileNotFoundError: return [] return features @connect @invalidate_cache async def create_parameter(self, parameter, project_name, experiment_id): parameter_metadata_path = self._get_parameter_metadata_path( project_name, experiment_id, parameter.name ) if await self.filesystem._exists(parameter_metadata_path): raise RubiconException(f"A parameter with name '{parameter.name}' already exists.") await self._persist_domain(parameter, parameter_metadata_path) @connect async def get_parameter(self, project_name, experiment_id, parameter_name): parameter_metadata_path = self._get_parameter_metadata_path( project_name, experiment_id, parameter_name ) try: parameter = json.loads(await self.filesystem._cat_file(parameter_metadata_path)) except FileNotFoundError: raise RubiconException(f"No parameter with name '{parameter_name}' found.") return domain.Parameter(**parameter) @connect async def get_parameters(self, project_name, experiment_id): parameter_metadata_root = self._get_parameter_metadata_root(project_name, experiment_id) try: parameter_metadata_paths = await self._ls_directories_only(parameter_metadata_root) parameters = [ domain.Parameter(**json.loads(metadata)) for metadata in await self._cat_paths(parameter_metadata_paths) ] except FileNotFoundError: return [] return parameters @connect @invalidate_cache async def create_metric(self, metric, project_name, experiment_id): metric_metadata_path = self._get_metric_metadata_path( project_name, experiment_id, metric.name ) if await self.filesystem._exists(metric_metadata_path): raise RubiconException(f"A metric with name '{metric.name}' already exists.") await self._persist_domain(metric, metric_metadata_path) @connect async def get_metric(self, project_name, experiment_id, metric_name): metric_metadata_path = self._get_metric_metadata_path( project_name, experiment_id, metric_name ) try: metric = json.loads(await self.filesystem._cat_file(metric_metadata_path)) except FileNotFoundError: raise RubiconException(f"No metric with name '{metric_name}' found.") return domain.Metric(**metric) @connect async def get_metrics(self, project_name, experiment_id): metric_metadata_root = self._get_metric_metadata_root(project_name, experiment_id) try: metric_metadata_paths = await self._ls_directories_only(metric_metadata_root) metrics = [ domain.Metric(**json.loads(metadata)) for metadata in await self._cat_paths(metric_metadata_paths) ] except FileNotFoundError: return [] return metrics @connect @invalidate_cache async def create_dataframe(self, dataframe, data, project_name, experiment_id=None): dataframe_metadata_path = self._get_dataframe_metadata_path( project_name, experiment_id, dataframe.id ) dataframe_data_path = self._get_dataframe_data_path( project_name, experiment_id, dataframe.id ) self._persist_dataframe(data, dataframe_data_path) await self._persist_domain(dataframe, dataframe_metadata_path) @connect
Apache License 2.0
beta-team/beta-recsys
beta_rec/utils/common_util.py
print_dict_as_table
python
def print_dict_as_table(dic, tag=None, columns=["keys", "values"]): print("-" * 80) if tag is not None: print(tag) df = pd.DataFrame(dic.items(), columns=columns) print(tabulate(df, headers=columns, tablefmt="psql")) print("-" * 80) return tabulate(df, headers=columns, tablefmt="psql")
Print a dictionary as table. Args: dic (dict): dict object to be formatted. tag (str): A name for this dictionary. columns ([str,str]): default ["keys", "values"]. columns name for keys and values. Returns: None
https://github.com/beta-team/beta-recsys/blob/be6a5c9307e00cc7bb06cbfd407a637e9d5afbb0/beta_rec/utils/common_util.py#L166-L183
import argparse import gzip import os import random import time import zipfile from functools import wraps import numpy as np import pandas as pd import scipy.sparse as sp import torch from tabulate import tabulate from ..utils.constants import ( DEFAULT_ITEM_COL, DEFAULT_ORDER_COL, DEFAULT_RATING_COL, DEFAULT_TIMESTAMP_COL, DEFAULT_USER_COL, ) def normalized_adj_single(adj): rowsum = np.array(adj.sum(1)) d_inv = np.power(rowsum, -1).flatten() d_inv[np.isinf(d_inv)] = 0.0 d_mat_inv = sp.diags(d_inv) norm_adj = d_mat_inv.dot(adj) print("generate single-normalized adjacency matrix.") return norm_adj.tocoo() def ensureDir(dir_path): if not os.path.exists(dir_path): os.makedirs(dir_path) def update_args(config, args): args_dic = {} for cfg in ["system", "model", "dataset"]: for k, v in vars(args).items(): if v is not None and k in config[cfg]: config[cfg][k] = v args_dic[f"{cfg}:{k}"] = v print_dict_as_table(args_dic, "Received parameters from command line (or default):") def parse_gzip_file(path): file = gzip.open(path, "rb") for line in file: yield eval(line) def get_data_frame_from_gzip_file(path): i = 0 df = {} for d in parse_gzip_file(path): df[i] = d i += 1 return pd.DataFrame.from_dict(df, orient="index") def save_dataframe_as_npz(data, data_file): user_ids = data[DEFAULT_USER_COL].to_numpy(dtype=data[DEFAULT_USER_COL].dtypes) item_ids = data[DEFAULT_ITEM_COL].to_numpy(dtype=data[DEFAULT_ITEM_COL].dtypes) ratings = data[DEFAULT_RATING_COL].to_numpy(dtype=np.float32) data_dic = { "user_ids": user_ids, "item_ids": item_ids, "ratings": ratings, } if DEFAULT_ORDER_COL in data.columns: order_ids = data[DEFAULT_ORDER_COL].to_numpy(dtype=np.long) data_dic["order_ids"] = order_ids if DEFAULT_TIMESTAMP_COL in data.columns: timestamps = data[DEFAULT_TIMESTAMP_COL].to_numpy(dtype=np.long) data_dic["timestamps"] = timestamps else: data_dic["timestamps"] = np.zeros_like(ratings) np.savez_compressed(data_file, **data_dic) def get_dataframe_from_npz(data_file): np_data = np.load(data_file) data_dic = { DEFAULT_USER_COL: np_data["user_ids"], DEFAULT_ITEM_COL: np_data["item_ids"], DEFAULT_RATING_COL: np_data["ratings"], } if "timestamps" in np_data: data_dic[DEFAULT_TIMESTAMP_COL] = np_data["timestamps"] if "order_ids" in np_data: data_dic[DEFAULT_ORDER_COL] = np_data["order_ids"] data = pd.DataFrame(data_dic) return data def un_zip(file_name, target_dir=None): if target_dir is None: target_dir = os.path.dirname(file_name) zip_file = zipfile.ZipFile(file_name) for names in zip_file.namelist(): print(f"unzip file {names} ...") zip_file.extract(names, target_dir) zip_file.close()
MIT License
buysdb/singlecellmultiomics
singlecellmultiomics/features/features.py
FeatureContainer.get_gene_to_location_dict
python
def get_gene_to_location_dict(self, meta_key='gene_name', with_strand=False): location_map = {} for contig, start, end, name, strand, meta in self: meta =dict(meta) try: if with_strand: location_map[ meta[meta_key]] = (contig, start,end,strand) else: location_map[ meta[meta_key]] = (contig, start,end) except Exception as e: pass return location_map
generate dictionary, {gene_name: contig,start,end} Args: meta_key(str): key of the meta information used to use as primary key for the returned gene_locations Returns: gene_locations(dict)
https://github.com/buysdb/singlecellmultiomics/blob/8fc8455ef3109a423188cb0323dd1a185dc17b41/singlecellmultiomics/features/features.py#L83-L105
import numpy as np import gzip import itertools import re import functools import pysam from singlecellmultiomics.utils import Prefetcher from copy import copy import collections import pandas as pd def get_gene_id_to_gene_name_conversion_table(annotation_path_exons, featureTypes=['gene_name']): conversion_table = {} with (gzip.open(annotation_path_exons, 'rt') if annotation_path_exons.endswith('.gz') else open(annotation_path_exons, 'r')) as t: for i, line in enumerate(t): parts = line.rstrip().split(None, 8) keyValues = {} for part in parts[-1].split(';'): kv = part.strip().split() if len(kv) == 2: key = kv[0] value = kv[1].replace('"', '') keyValues[key] = value if 'gene_id' in keyValues and any( [feat in keyValues for feat in featureTypes]): conversion_table[keyValues['gene_id']] = '_'.join([ keyValues.get(feature, 'None') for feature in featureTypes]) return conversion_table class FeatureContainer(Prefetcher): def __init__(self, verbose=False): self.args = locals().copy() self.startCoordinates = {} self.features = {} self.endCoordinates = {} self.sorted = True self.debug = False self.remapKeys = {} self.verbose = verbose self.preload_list = [] def debugMsg(self, msg): if self.verbose: print(msg) def __repr__(self): s= 'FeatureContainer,' if len(self.preload_list): s+= ' Preloaded files:\n' for f in self.preload_list: s+=str(f)+'\n' if len(self.features): s+=f'Features in memory for {len(self.features)} contigs\n' else: s+='No features in memory\n' return s def __len__(self): return sum(len(f) for f in self.features.values()) def preload_GTF(self, **kwargs): self.preload_list.append( {'gtf':kwargs} )
MIT License
rspivak/slimit
src/slimit/parser.py
Parser.p_relational_expr
python
def p_relational_expr(self, p): if len(p) == 2: p[0] = p[1] else: p[0] = ast.BinOp(op=p[2], left=p[1], right=p[3])
relational_expr : shift_expr | relational_expr LT shift_expr | relational_expr GT shift_expr | relational_expr LE shift_expr | relational_expr GE shift_expr | relational_expr INSTANCEOF shift_expr | relational_expr IN shift_expr
https://github.com/rspivak/slimit/blob/3533eba9ad5b39f3a015ae6269670022ab310847/src/slimit/parser.py#L554-L566
__author__ = 'Ruslan Spivak <ruslan.spivak@gmail.com>' import ply.yacc from slimit import ast from slimit.lexer import Lexer try: from slimit import lextab, yacctab except ImportError: lextab, yacctab = 'lextab', 'yacctab' class Parser(object): def __init__(self, lex_optimize=True, lextab=lextab, yacc_optimize=True, yacctab=yacctab, yacc_debug=False): self.lex_optimize = lex_optimize self.lextab = lextab self.yacc_optimize = yacc_optimize self.yacctab = yacctab self.yacc_debug = yacc_debug self.lexer = Lexer() self.lexer.build(optimize=lex_optimize, lextab=lextab) self.tokens = self.lexer.tokens self.parser = ply.yacc.yacc( module=self, optimize=yacc_optimize, debug=yacc_debug, tabmodule=yacctab, start='program') self._error_tokens = {} def _has_been_seen_before(self, token): if token is None: return False key = token.type, token.value, token.lineno, token.lexpos return key in self._error_tokens def _mark_as_seen(self, token): if token is None: return key = token.type, token.value, token.lineno, token.lexpos self._error_tokens[key] = True def _raise_syntax_error(self, token): raise SyntaxError( 'Unexpected token (%s, %r) at %s:%s between %s and %s' % ( token.type, token.value, token.lineno, token.lexpos, self.lexer.prev_token, self.lexer.token()) ) def parse(self, text, debug=False): return self.parser.parse(text, lexer=self.lexer, debug=debug) def p_empty(self, p): pass def p_auto_semi(self, p): pass def p_error(self, token): if self._has_been_seen_before(token): self._raise_syntax_error(token) if token is None or token.type != 'SEMI': next_token = self.lexer.auto_semi(token) if next_token is not None: self._mark_as_seen(token) self.parser.errok() return next_token self._raise_syntax_error(token) def p_program(self, p): p[0] = ast.Program(p[1]) def p_source_elements(self, p): p[0] = p[1] def p_source_element_list(self, p): if len(p) == 2: p[0] = [p[1]] else: p[1].append(p[2]) p[0] = p[1] def p_source_element(self, p): p[0] = p[1] def p_statement(self, p): p[0] = p[1] def p_block(self, p): p[0] = ast.Block(p[2]) def p_literal(self, p): p[0] = p[1] def p_boolean_literal(self, p): p[0] = ast.Boolean(p[1]) def p_null_literal(self, p): p[0] = ast.Null(p[1]) def p_numeric_literal(self, p): p[0] = ast.Number(p[1]) def p_string_literal(self, p): p[0] = ast.String(p[1]) def p_regex_literal(self, p): p[0] = ast.Regex(p[1]) def p_identifier(self, p): p[0] = ast.Identifier(p[1]) def p_primary_expr(self, p): p[0] = p[1] def p_primary_expr_no_brace_1(self, p): p[1]._mangle_candidate = True p[1]._in_expression = True p[0] = p[1] def p_primary_expr_no_brace_2(self, p): p[0] = ast.This() def p_primary_expr_no_brace_3(self, p): p[0] = p[1] def p_primary_expr_no_brace_4(self, p): p[2]._parens = True p[0] = p[2] def p_array_literal_1(self, p): p[0] = ast.Array(items=p[2]) def p_array_literal_2(self, p): items = p[2] if len(p) == 6: items.extend(p[4]) p[0] = ast.Array(items=items) def p_element_list(self, p): if len(p) == 3: p[0] = p[1] + [p[2]] else: p[1].extend(p[3]) p[1].append(p[4]) p[0] = p[1] def p_elision_opt_1(self, p): p[0] = [] def p_elision_opt_2(self, p): p[0] = p[1] def p_elision(self, p): if len(p) == 2: p[0] = [ast.Elision(p[1])] else: p[1].append(ast.Elision(p[2])) p[0] = p[1] def p_object_literal(self, p): if len(p) == 3: p[0] = ast.Object() else: p[0] = ast.Object(properties=p[2]) def p_property_list(self, p): if len(p) == 2: p[0] = [p[1]] else: p[1].append(p[3]) p[0] = p[1] def p_property_assignment(self, p): if len(p) == 4: p[0] = ast.Assign(left=p[1], op=p[2], right=p[3]) elif len(p) == 8: p[0] = ast.GetPropAssign(prop_name=p[2], elements=p[6]) else: p[0] = ast.SetPropAssign( prop_name=p[2], parameters=p[4], elements=p[7]) def p_property_name(self, p): p[0] = p[1] def p_member_expr(self, p): if len(p) == 2: p[0] = p[1] elif p[1] == 'new': p[0] = ast.NewExpr(p[2], p[3]) elif p[2] == '.': p[0] = ast.DotAccessor(p[1], p[3]) else: p[0] = ast.BracketAccessor(p[1], p[3]) def p_member_expr_nobf(self, p): if len(p) == 2: p[0] = p[1] elif p[1] == 'new': p[0] = ast.NewExpr(p[2], p[3]) elif p[2] == '.': p[0] = ast.DotAccessor(p[1], p[3]) else: p[0] = ast.BracketAccessor(p[1], p[3]) def p_new_expr(self, p): if len(p) == 2: p[0] = p[1] else: p[0] = ast.NewExpr(p[2]) def p_new_expr_nobf(self, p): if len(p) == 2: p[0] = p[1] else: p[0] = ast.NewExpr(p[2]) def p_call_expr(self, p): if len(p) == 3: p[0] = ast.FunctionCall(p[1], p[2]) elif len(p) == 4: p[0] = ast.DotAccessor(p[1], p[3]) else: p[0] = ast.BracketAccessor(p[1], p[3]) def p_call_expr_nobf(self, p): if len(p) == 3: p[0] = ast.FunctionCall(p[1], p[2]) elif len(p) == 4: p[0] = ast.DotAccessor(p[1], p[3]) else: p[0] = ast.BracketAccessor(p[1], p[3]) def p_arguments(self, p): if len(p) == 4: p[0] = p[2] def p_argument_list(self, p): if len(p) == 2: p[0] = [p[1]] else: p[1].append(p[3]) p[0] = p[1] def p_lef_hand_side_expr(self, p): p[0] = p[1] def p_lef_hand_side_expr_nobf(self, p): p[0] = p[1] def p_postfix_expr(self, p): if len(p) == 2: p[0] = p[1] else: p[0] = ast.UnaryOp(op=p[2], value=p[1], postfix=True) def p_postfix_expr_nobf(self, p): if len(p) == 2: p[0] = p[1] else: p[0] = ast.UnaryOp(op=p[2], value=p[1], postfix=True) def p_unary_expr(self, p): p[0] = p[1] def p_unary_expr_nobf(self, p): p[0] = p[1] def p_unary_expr_common(self, p): p[0] = ast.UnaryOp(p[1], p[2]) def p_multiplicative_expr(self, p): if len(p) == 2: p[0] = p[1] else: p[0] = ast.BinOp(op=p[2], left=p[1], right=p[3]) def p_multiplicative_expr_nobf(self, p): if len(p) == 2: p[0] = p[1] else: p[0] = ast.BinOp(op=p[2], left=p[1], right=p[3]) def p_additive_expr(self, p): if len(p) == 2: p[0] = p[1] else: p[0] = ast.BinOp(op=p[2], left=p[1], right=p[3]) def p_additive_expr_nobf(self, p): if len(p) == 2: p[0] = p[1] else: p[0] = ast.BinOp(op=p[2], left=p[1], right=p[3]) def p_shift_expr(self, p): if len(p) == 2: p[0] = p[1] else: p[0] = ast.BinOp(op=p[2], left=p[1], right=p[3]) def p_shift_expr_nobf(self, p): if len(p) == 2: p[0] = p[1] else: p[0] = ast.BinOp(op=p[2], left=p[1], right=p[3])
MIT License
wdm0006/dummyrdd
dummy_spark/context.py
SparkContext.parallelize
python
def parallelize(self, c, numSlices=None): return RDD(c, self, None)
:param c: :param numSlices: :return:
https://github.com/wdm0006/dummyrdd/blob/d66c30495cbaa001a744128c89d41fb55741fba5/dummy_spark/context.py#L254-L261
from __future__ import print_function import gzip import time import sys if sys.version_info.major == 3: from io import BytesIO as buffer elif sys.version_info.major == 2: try: import cStringIO as buffer except ImportError: import StringIO as buffer else: raise ValueError('Python %s not supported' % (sys.version_info.major, )) from threading import Lock from dummy_spark.rdd import RDD try: import tinys3 has_tinys3 = True except ImportError as e: has_tinys3 = False __all__ = ['SparkContext'] __author__ = 'willmcginnis' class hadoopConfiguration(object): def __init__(self): pass def set(self, a, b): setattr(self, a, b) return True def get(self, a): return getattr(self, a, None) class jvm(object): def __init__(self): self.hc = hadoopConfiguration() def hadoopConfiguration(self): return self.hc def textFile(self, file_name): if file_name.startswith('s3'): if has_tinys3: file_name = file_name.split('://')[1] bucket_name = file_name.split('/')[0] key_name = file_name.replace(bucket_name, '')[1:] access_key = self.hc.get('fs.s3n.awsAccessKeyId') secret_key = self.hc.get('fs.s3n.awsSecretAccessKey') region = self.hc.get('fs.s3n.endpoint') if region is None: region = 's3.amazonaws.com' conn = tinys3.Connection(access_key, secret_key, endpoint=region) file = conn.get(key_name, bucket_name) if file_name.endswith('.gz'): compressed = buffer(file.content) gzipper = gzip.GzipFile(fileobj=compressed) return gzipper.readlines() return file.content.decode('utf-8').split('\n') else: raise Exception('Need TinyS3 to use s3 files') else: if file_name.endswith('.gz'): opener = gzip.open else: opener = open with opener(file_name, 'r') as f: return f.readlines() class SparkContext(object): _gateway = None _jvm = None _next_accum_id = 0 _active_spark_context = None _lock = Lock() _jsc = jvm() _python_includes = None PACKAGE_EXTENSIONS = ('.zip', '.egg', '.jar') DUMMY_VERSION = 'dummy version' def __init__(self, master=None, appName=None, sparkHome=None, pyFiles=None, environment=None, batchSize=0, serializer=None, conf=None, gateway=None, jsc=None, profiler_cls=None): self._callsite = None SparkContext._ensure_initialized(self, gateway=gateway) self.start_time = time.time() try: self._do_init(master, appName, sparkHome, pyFiles, environment, batchSize, serializer, conf, jsc, profiler_cls) except: self.stop() raise def _do_init(self, master, appName, sparkHome, pyFiles, environment, batchSize, serializer, conf, jsc, profiler_cls): return def _initialize_context(self, jconf): return None @classmethod def _ensure_initialized(cls, instance=None, gateway=None): return True def __enter__(self): return self def __exit__(self, type, value, trace): self.stop() def setLogLevel(self, logLevel): pass @classmethod def setSystemProperty(cls, key, value): pass @property def version(self): return self.DUMMY_VERSION @property def startTime(self): return self.start_time @property def defaultParallelism(self): return 1 @property def defaultMinPartitions(self): return 1 def stop(self): pass def emptyRDD(self): return RDD([], self, None) def range(self, start, end=None, step=1, numSlices=None): return RDD(list(range(start, end, step)), self, None)
BSD 3-Clause New or Revised License
eth-cscs/reframe
reframe/core/modules.py
ModulesSystemImpl.execute
python
def execute(self, cmd, *args): try: exec_output = self._execute(cmd, *args) except SpawnedProcessError as e: raise EnvironError('could not execute module operation') from e return exec_output
Execute an arbitrary module command using the modules backend. :arg cmd: The command to execute, e.g., ``load``, ``restore`` etc. :arg args: The arguments to pass to the command. :returns: The command output.
https://github.com/eth-cscs/reframe/blob/adca255dec1b731837c178e75653c57bc4d7f36a/reframe/core/modules.py#L447-L459
import abc import os import re from collections import OrderedDict import reframe.core.fields as fields import reframe.utility.osext as osext import reframe.utility.typecheck as types from reframe.core.exceptions import (ConfigError, EnvironError, SpawnedProcessError) from reframe.core.logging import getlogger from reframe.utility import OrderedSet class Module: def __init__(self, name, collection=False, path=None): if not isinstance(name, str): raise TypeError('module name not a string') name = name.strip() if not name: raise ValueError('module name cannot be empty') try: self._name, self._version = name.split('/', maxsplit=1) except ValueError: self._name, self._version = name, None self._path = path self._collection = collection @property def name(self): return self._name @property def version(self): return self._version @property def collection(self): return self._collection @property def path(self): return self._path @property def fullname(self): if self.version is not None: return '/'.join((self.name, self.version)) else: return self.name def __hash__(self): return hash(self.name) def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented if self.path != other.path: return False if self.collection != other.collection: return False if not self.version or not other.version: return self.name == other.name else: return self.name == other.name and self.version == other.version def __repr__(self): return (f'{type(self).__name__}({self.fullname}, ' '{self.collection}, {self.path})') def __str__(self): return self.fullname class ModulesSystem: module_map = fields.TypedField(types.Dict[str, types.List[str]]) @classmethod def create(cls, modules_kind=None): getlogger().debug(f'Initializing modules system {modules_kind!r}') if modules_kind is None or modules_kind == 'nomod': return ModulesSystem(NoModImpl()) elif modules_kind == 'tmod31': return ModulesSystem(TMod31Impl()) elif modules_kind == 'tmod': return ModulesSystem(TModImpl()) elif modules_kind == 'tmod32': return ModulesSystem(TModImpl()) elif modules_kind == 'tmod4': return ModulesSystem(TMod4Impl()) elif modules_kind == 'lmod': return ModulesSystem(LModImpl()) elif modules_kind == 'spack': return ModulesSystem(SpackImpl()) else: raise ConfigError('unknown module system: %s' % modules_kind) def __init__(self, backend): self._backend = backend self.module_map = {} def resolve_module(self, name): ret = OrderedSet() visited = set() unvisited = [(name, None)] path = [] while unvisited: node, parent = unvisited.pop() while path and path[-1] != parent: path.pop() if node == parent: ret.add(node) continue try: adjacent = reversed(self.module_map[node]) except KeyError: ret.add(node) else: path.append(node) for m in adjacent: if m in path and m != node: raise EnvironError('module cyclic dependency: ' + '->'.join(path + [m])) if m not in visited: unvisited.append((m, node)) visited.add(node) return list(ret) @property def backend(self): return(self._backend) def available_modules(self, substr=None): return [str(m) for m in self._backend.available_modules(substr or '')] def loaded_modules(self): return [str(m) for m in self._backend.loaded_modules()] def conflicted_modules(self, name, collection=False, path=None): ret = [] for m in self.resolve_module(name): ret += self._conflicted_modules(m, collection, path) return ret def _conflicted_modules(self, name, collection=False, path=None): return [ str(m) for m in self._backend.conflicted_modules( Module(name, collection, path) ) ] def execute(self, cmd, *args): return self._backend.execute(cmd, *args) def load_module(self, name, collection=False, path=None, force=False): ret = [] for m in self.resolve_module(name): ret.append((m, self._load_module(m, collection, path, force))) return ret def _load_module(self, name, collection=False, path=None, force=False): module = Module(name, collection, path) loaded_modules = self._backend.loaded_modules() if module in loaded_modules: return [] unload_list = set() if force: conflict_list = self._backend.conflicted_modules(module) unload_list = set(loaded_modules) & set(conflict_list) for m in unload_list: self._backend.unload_module(m) self._backend.load_module(module) return [str(m) for m in unload_list] def unload_module(self, name, collection=False, path=None): for m in reversed(self.resolve_module(name)): self._unload_module(m, collection, path) def _unload_module(self, name, collection=False, path=None): self._backend.unload_module(Module(name, collection, path)) def is_module_loaded(self, name): return all(self._is_module_loaded(m) for m in self.resolve_module(name)) def _is_module_loaded(self, name): return self._backend.is_module_loaded(Module(name)) def load_mapping(self, mapping): key, *rest = mapping.split(':') if len(rest) != 1: raise ConfigError('invalid mapping syntax: %s' % mapping) key = key.strip() values = rest[0].split() if not key: raise ConfigError('no key found in mapping: %s' % mapping) if not values: raise ConfigError('no mapping defined for module: %s' % key) self.module_map[key] = list(OrderedDict.fromkeys(values)) def load_mapping_from_file(self, filename): with open(filename) as fp: for lineno, line in enumerate(fp, start=1): line = line.strip().split('#')[0] if not line: continue try: self.load_mapping(line) except ConfigError as e: raise ConfigError('%s:%s' % (filename, lineno)) from e @property def name(self): return self._backend.name() @property def version(self): return self._backend.version() def unload_all(self): return self._backend.unload_all() @property def searchpath(self): return self._backend.searchpath() def searchpath_add(self, *dirs): return self._backend.searchpath_add(*dirs) def searchpath_remove(self, *dirs): return self._backend.searchpath_remove(*dirs) def change_module_path(self, *dirs): return self._backend.change_module_path(*dirs) def emit_load_commands(self, name, collection=False, path=None): return self._backend.emit_load_instr(Module(name, collection, path)) def emit_unload_commands(self, name, collection=False, path=None): return self._backend.emit_unload_instr(Module(name, collection, path)) def __str__(self): return str(self._backend) class ModulesSystemImpl(abc.ABC):
BSD 3-Clause New or Revised License
scalyr/scalyr-agent-2
scalyr_agent/third_party_python2/glob2/fnmatch.py
filter
python
def filter(names, pat, norm_paths=True, case_sensitive=True, sep=None): result = [] pat = _norm_paths(pat, norm_paths, sep) match = _compile_pattern(pat, case_sensitive) for name in names: m = match(_norm_paths(name, norm_paths, sep)) if m: result.append((name, tuple(_norm_paths(p, norm_paths, sep) for p in m.groups()))) return result
Return the subset of the list NAMES that match PAT.
https://github.com/scalyr/scalyr-agent-2/blob/6d32b861889078f044c9ab3f1f7157f2c89ba04a/scalyr_agent/third_party_python2/glob2/fnmatch.py#L83-L93
import os import re try: from functools import lru_cache except ImportError: from .compat import lru_cache __all__ = ["filter", "fnmatch", "fnmatchcase", "translate"] def _norm_paths(path, norm_paths, sep): if norm_paths is None: path = re.sub(r'\/', sep or os.sep, path) elif norm_paths: path = os.path.normcase(path) return path def fnmatch(name, pat, norm_paths=True, case_sensitive=True, sep=None): name, pat = [_norm_paths(p, norm_paths, sep) for p in (name, pat)] return fnmatchcase(name, pat, case_sensitive=case_sensitive) @lru_cache(maxsize=256, typed=True) def _compile_pattern(pat, case_sensitive): if isinstance(pat, bytes): pat_str = pat.decode('ISO-8859-1') res_str = translate(pat_str) res = res_str.encode('ISO-8859-1') else: res = translate(pat) flags = 0 if case_sensitive else re.IGNORECASE return re.compile(res, flags).match
Apache License 2.0
econforge/dolo.py
dolo/numeric/tensor.py
sdot
python
def sdot(U, V): nu = U.ndim return np.tensordot(U, V, axes=(nu - 1, 0))
Computes the tensorproduct reducing last dimensoin of U with first dimension of V. For matrices, it is equal to regular matrix product.
https://github.com/econforge/dolo.py/blob/eff42d454816919c81f9daed1dc20bbf8676a89d/dolo/numeric/tensor.py#L48-L55
import numpy as np def multidot_old(ten, mats): resp = ten n_d = ten.ndim n_m = len(mats) for i in range(n_m): resp = np.tensordot(resp, mats[i], (n_d - n_m, 0)) return resp def mdot_signature(M, *C): M_syms = [chr(97 + e) for e in range(len(M))] fC_syms = M_syms[-len(C) :] ic = 97 + len(M_syms) C_syms = [] for i in range(len(C)): c_sym = [fC_syms[i]] for j in range(len(C[i]) - 1): c_sym.append(chr(ic)) ic += 1 C_syms.append(c_sym) C_sig = [M_syms] + C_syms out_sig = [M_syms[: -len(C)]] + [cc[1:] for cc in C_syms] args = ",".join(["".join(g) for g in C_sig]) out = "".join(["".join(g) for g in out_sig]) return args + "->" + out from numpy import einsum def mdot(M, *C): sig = mdot_signature(M.shape, *[c.shape for c in C]) return einsum(sig, M, *C)
BSD 2-Clause Simplified License
danielslater/alphatoe
techniques/train_supervised.py
train_supervised
python
def train_supervised(game_spec, create_network, network_file_path, positions, test_set_ratio=0.4, regularization_coefficent=1e-5, batch_size=100, learn_rate=1e-4, stop_turns_without_improvement = 7): input_layer, output_layer, variables = create_network() test_set_count = int(len(positions) * test_set_ratio) train_set = positions[:-test_set_count] test_set = positions[-test_set_count:] actual_move_placeholder = tf.placeholder("float", (None, game_spec.outputs())) error = tf.reduce_sum(tf.square(actual_move_placeholder - output_layer)) regularizer = None for var in variables: if regularizer is None: regularizer = tf.nn.l2_loss(var) else: regularizer += tf.nn.l2_loss(var) loss = error + regularizer * regularization_coefficent train_step = tf.train.RMSPropOptimizer(learn_rate).minimize(loss) correct_pred = tf.equal(tf.argmax(output_layer, 1), tf.argmax(actual_move_placeholder, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) with tf.Session() as session: session.run(tf.global_variables_initializer()) if os.path.isfile(network_file_path): print("loading existing network") load_network(session, variables, network_file_path) episode_number = 1 turns_without_test_improvement = 0 best_test_error, test_accuracy = session.run([error, accuracy], feed_dict={ input_layer: [x[0] for x in test_set], actual_move_placeholder: [x[1] for x in test_set]}) while True: random.shuffle(train_set) train_error = 0 for start_index in range(0, len(train_set) - batch_size + 1, batch_size): mini_batch = train_set[start_index:start_index + batch_size] batch_error, _ = session.run([error, train_step], feed_dict={input_layer: [x[0] for x in mini_batch], actual_move_placeholder: [x[1] for x in mini_batch]}) train_error += batch_error new_test_error, test_accuracy = session.run([error, accuracy], feed_dict={input_layer: [x[0] for x in test_set], actual_move_placeholder: [x[1] for x in test_set]}) print("episode: %s train_error: %s test_error: %s test_acc: %s" % (episode_number, train_error, new_test_error, test_accuracy)) if new_test_error < best_test_error: best_test_error = new_test_error turns_without_test_improvement = 0 else: turns_without_test_improvement += 1 if turns_without_test_improvement > stop_turns_without_improvement: train_accuracy = session.run([accuracy], feed_dict={input_layer: [x[0] for x in train_set], actual_move_placeholder: [x[1] for x in train_set]}) print("test error not improving for %s turns, ending training" % (stop_turns_without_improvement, )) break episode_number += 1 print("final episode: %s train_error: %s train acc: %s test_error: %s test_acc: %s" % (episode_number, train_error, train_accuracy, new_test_error, test_accuracy)) save_network(session, variables, network_file_path) return episode_number, train_error, train_accuracy, new_test_error, test_accuracy
Train a network using supervised learning using against a list of game positions and moves chosen. We stop after we have had stop_turns_without_improvement without an improvement in the test error. The test set is used as a validation set as well, will possibly improve this in the future to have a seperate test and validation set. Args: stop_turns_without_improvement (int): we stop training after this many iterations without any improvement in the test error. regularization_coefficent (float): amount to multiply the l2 regularizer by in the loss function test_set_ratio (float): portion of the data to divide into the test set, positions ([(board_state, move)]): list of tuples of board states and the moves chosen in those board_states game_spec (games.base_game_spec.BaseGameSpec): The game we are playing create_network (->(input_layer : tf.placeholder, output_layer : tf.placeholder, variables : [tf.Variable])): Method that creates the network we will train. network_file_path (str): path to the file with weights we want to load for this network learn_rate (float): batch_size (int): Returns: episode_number, train_error, train_accuracy, new_test_error, test_accuracy
https://github.com/danielslater/alphatoe/blob/1220f4f883dbbd7ac1d84092bdaf04ca18a4dbc2/techniques/train_supervised.py#L9-L115
import os import random import tensorflow as tf from common.network_helpers import save_network, load_network
MIT License
biasvariancelabs/aitlas
aitlas/base/datasets.py
BaseDataset.__getitem__
python
def __getitem__(self, index): raise NotImplementedError( "Please implement the `__getittem__` method for your dataset" )
Implement here what you want to return
https://github.com/biasvariancelabs/aitlas/blob/20473cdd8c46211444b8ee742b944b07200a7d43/aitlas/base/datasets.py#L34-L38
import torch from torch.utils.data import Dataset from .config import Configurable from .schemas import BaseDatasetSchema from .transforms import load_transforms class BaseDataset(Dataset, Configurable): schema = BaseDatasetSchema labels = None name = None def __init__(self, config): Dataset.__init__(self) Configurable.__init__(self, config) self.shuffle = self.config.shuffle self.batch_size = self.config.batch_size self.num_workers = self.config.num_workers self.pin_memory = self.config.pin_memory if not self.labels and self.config.labels: self.labels = self.config.labels self.transform = self.load_transforms(self.config.transforms) self.target_transform = self.load_transforms(self.config.target_transforms) self.joint_transform = self.load_transforms(self.config.joint_transforms)
MIT License
ic-labs/django-icekit
icekit/workflow/admin.py
get_users_for_assigned_to
python
def get_users_for_assigned_to(): User = get_user_model() return User.objects.filter(is_active=True, is_staff=True)
Return a list of users who can be assigned to workflow states
https://github.com/ic-labs/django-icekit/blob/c507ea5b1864303732c53ad7c5800571fca5fa94/icekit/workflow/admin.py#L11-L14
from django.contrib import admin from django.contrib.auth import get_user_model from django.contrib.contenttypes.models import ContentType from django.contrib.contenttypes.admin import GenericTabularInline from django import forms from django.utils.text import Truncator from . import models
MIT License
weasyl/weasyl
weasyl/resetpassword.py
_find_reset_target
python
def _find_reset_target(db, email): matches = db.execute( "SELECT userid, email, username FROM login" " INNER JOIN profile USING (userid)" ' WHERE lower(email COLLATE "C") = lower(%(email)s COLLATE "C")', email=email, ).fetchall() for match in matches: if match.email == email: return match return matches[0] if matches else None
Get information about the user whose password can be reset by access to the provided normalized e-mail address, or None if there is no such user. Matches the address case-insensitively, with priority given to a case-sensitive match if there are multiple matches.
https://github.com/weasyl/weasyl/blob/80c86942c6f20a815086e2895fdad51d3aa77eed/weasyl/resetpassword.py#L35-L61
import hashlib import string from collections import namedtuple from libweasyl import security from weasyl import define as d from weasyl import emailer from weasyl.error import WeasylError Unregistered = namedtuple('Unregistered', ['email']) def _hash_token(token): return hashlib.sha256(token.encode("ascii")).digest() def request(email): token = security.generate_key(25, key_characters=string.digits + string.ascii_lowercase) token_sha256 = _hash_token(token) email = emailer.normalize_address(email) if email is None: raise WeasylError("emailInvalid") d.engine.execute( "INSERT INTO forgotpassword (email, token_sha256)" " VALUES (%(email)s, %(token_sha256)s)", email=email, token_sha256=bytearray(token_sha256)) emailer.send(email, "Weasyl Account Recovery", d.render("email/reset_password.html", [token]))
Apache License 2.0
astropy/photutils
photutils/centroids/core.py
centroid_sources
python
def centroid_sources(data, xpos, ypos, box_size=11, footprint=None, error=None, mask=None, centroid_func=centroid_com): xpos = np.atleast_1d(xpos) ypos = np.atleast_1d(ypos) if xpos.ndim != 1: raise ValueError('xpos must be a 1D array.') if ypos.ndim != 1: raise ValueError('ypos must be a 1D array.') if footprint is None: if box_size is None: raise ValueError('box_size or footprint must be defined.') box_size = np.atleast_1d(box_size) if len(box_size) == 1: box_size = np.repeat(box_size, 2) if len(box_size) != 2: raise ValueError('box_size must have 1 or 2 elements.') footprint = np.ones(box_size, dtype=bool) else: footprint = np.asanyarray(footprint, dtype=bool) if footprint.ndim != 2: raise ValueError('footprint must be a 2D array.') use_error = False spec = inspect.getfullargspec(centroid_func) if 'mask' not in spec.args: raise ValueError('The input "centroid_func" must have a "mask" ' 'keyword.') if 'error' in spec.args: use_error = True xcentroids = [] ycentroids = [] for xp, yp in zip(xpos, ypos): slices_large, slices_small = overlap_slices(data.shape, footprint.shape, (yp, xp)) data_cutout = data[slices_large] mask_cutout = None if mask is not None: mask_cutout = mask[slices_large] footprint_mask = ~footprint footprint_mask = footprint_mask[slices_small] if mask_cutout is None: mask_cutout = footprint_mask else: mask_cutout = np.logical_or(mask_cutout, footprint_mask) kwargs = {'mask': mask_cutout} if error is not None and use_error: kwargs['error'] = error[slices_large] xcen, ycen = centroid_func(data_cutout, **kwargs) xcentroids.append(xcen + slices_large[1].start) ycentroids.append(ycen + slices_large[0].start) return np.array(xcentroids), np.array(ycentroids)
Calculate the centroid of sources at the defined positions. A cutout image centered on each input position will be used to calculate the centroid position. The cutout image is defined either using the ``box_size`` or ``footprint`` keyword. The ``footprint`` keyword can be used to create a non-rectangular cutout image. Parameters ---------- data : array_like The 2D array of the image. xpos, ypos : float or array-like of float The initial ``x`` and ``y`` pixel position(s) of the center position. A cutout image centered on this position be used to calculate the centroid. box_size : int or array-like of int, optional The size of the cutout image along each axis. If ``box_size`` is a number, then a square cutout of ``box_size`` will be created. If ``box_size`` has two elements, they should be in ``(ny, nx)`` order. Either ``box_size`` or ``footprint`` must be defined. If they are both defined, then ``footprint`` overrides ``box_size``. footprint : `~numpy.ndarray` of bools, optional A 2D boolean array where `True` values describe the local footprint region to cutout. ``footprint`` can be used to create a non-rectangular cutout image, in which case the input ``xpos`` and ``ypos`` represent the center of the minimal bounding box for the input ``footprint``. ``box_size=(n, m)`` is equivalent to ``footprint=np.ones((n, m))``. Either ``box_size`` or ``footprint`` must be defined. If they are both defined, then ``footprint`` overrides ``box_size``. mask : array_like, bool, optional A 2D boolean array with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. ``error`` must have the same shape as ``data``. ``error`` will be used only if supported by the input ``centroid_func``. centroid_func : callable, optional A callable object (e.g., function or class) that is used to calculate the centroid of a 2D array. The ``centroid_func`` must accept a 2D `~numpy.ndarray`, have a ``mask`` keyword and optionally an ``error`` keyword. The callable object must return a tuple of two 1D `~numpy.ndarray`, representing the x and y centroids. The default is `~photutils.centroids.centroid_com`. Returns ------- xcentroid, ycentroid : `~numpy.ndarray` The ``x`` and ``y`` pixel position(s) of the centroids.
https://github.com/astropy/photutils/blob/17192d6ee4517514187fc01c7624fe6eb4b0e233/photutils/centroids/core.py#L271-L392
import inspect import warnings from astropy.nddata.utils import overlap_slices from astropy.utils.decorators import deprecated from astropy.utils.exceptions import AstropyUserWarning import numpy as np from ..utils._round import _py2intround __all__ = ['centroid_com', 'centroid_quadratic', 'centroid_sources', 'centroid_epsf'] def centroid_com(data, mask=None, oversampling=1): data = data.astype(float) if mask is not None and mask is not np.ma.nomask: mask = np.asarray(mask, dtype=bool) if data.shape != mask.shape: raise ValueError('data and mask must have the same shape.') data[mask] = 0. oversampling = np.atleast_1d(oversampling) if len(oversampling) == 1: oversampling = np.repeat(oversampling, 2) oversampling = oversampling[::-1] if np.any(oversampling <= 0): raise ValueError('Oversampling factors must all be positive numbers.') badmask = ~np.isfinite(data) if np.any(badmask): warnings.warn('Input data contains non-finite values (e.g., NaN or ' 'inf) that were automatically masked.', AstropyUserWarning) data[badmask] = 0. total = np.sum(data) indices = np.ogrid[[slice(0, i) for i in data.shape]] return np.array([np.sum(indices[axis] * data) / total / oversampling[axis] for axis in range(data.ndim)])[::-1] def centroid_quadratic(data, xpeak=None, ypeak=None, fit_boxsize=5, search_boxsize=None, mask=None): if ((xpeak is None and ypeak is not None) or (xpeak is not None and ypeak is None)): raise ValueError('xpeak and ypeak must both be input or "None"') data = np.asanyarray(data, dtype=float) ny, nx = data.shape badmask = ~np.isfinite(data) if np.any(badmask): warnings.warn('Input data contains non-finite values (e.g., NaN or ' 'inf) that were automatically masked.', AstropyUserWarning) data[badmask] = np.nan if mask is not None: if data.shape != mask.shape: raise ValueError('data and mask must have the same shape.') data[mask] = np.nan fit_boxsize = _process_boxsize(fit_boxsize, data.shape) if np.product(fit_boxsize) < 6: raise ValueError('fit_boxsize is too small. 6 values are required ' 'to fit a 2D quadratic polynomial.') if xpeak is None: yidx, xidx = np.unravel_index(np.nanargmax(data), data.shape) else: xidx = _py2intround(xpeak) yidx = _py2intround(ypeak) if search_boxsize is not None: search_boxsize = _process_boxsize(search_boxsize, data.shape) slc_data, _ = overlap_slices(data.shape, search_boxsize, (yidx, xidx), mode='trim') cutout = data[slc_data] yidx, xidx = np.unravel_index(np.nanargmax(cutout), cutout.shape) xidx += slc_data[1].start yidx += slc_data[0].start if xidx == 0 or xidx == nx - 1 or yidx == 0 or yidx == ny - 1: warnings.warn('maximum value is at the edge of the data and its ' 'position was returned; no quadratic fit was ' 'performed', AstropyUserWarning) return np.array((xidx, yidx), dtype=float) slc_data, _ = overlap_slices(data.shape, fit_boxsize, (yidx, xidx), mode='trim') xidx0, xidx1 = (slc_data[1].start, slc_data[1].stop) yidx0, yidx1 = (slc_data[0].start, slc_data[0].stop) if (xidx1 - xidx0) < fit_boxsize[1]: if xidx0 == 0: xidx1 = min(nx, xidx0 + fit_boxsize[1]) if xidx1 == nx: xidx0 = max(0, xidx1 - fit_boxsize[1]) if (yidx1 - yidx0) < fit_boxsize[0]: if yidx0 == 0: yidx1 = min(ny, yidx0 + fit_boxsize[0]) if yidx1 == ny: yidx0 = max(0, yidx1 - fit_boxsize[0]) cutout = data[yidx0:yidx1, xidx0:xidx1].ravel() if np.count_nonzero(~np.isnan(cutout)) < 6: warnings.warn('at least 6 unmasked data points are required to ' 'perform a 2D quadratic fit', AstropyUserWarning) return np.array((np.nan, np.nan)) xi = np.arange(xidx0, xidx1) yi = np.arange(yidx0, yidx1) x, y = np.meshgrid(xi, yi) x = x.ravel() y = y.ravel() coeff_matrix = np.vstack((np.ones_like(x), x, y, x * y, x * x, y * y)).T try: c = np.linalg.lstsq(coeff_matrix, cutout, rcond=None)[0] except np.linalg.LinAlgError: warnings.warn('quadratic fit failed', AstropyUserWarning) return np.array((np.nan, np.nan)) _, c10, c01, c11, c20, c02 = c det = 4 * c20 * c02 - c11**2 if det <= 0 or ((c20 > 0.0 and c02 >= 0.0) or (c20 >= 0.0 and c02 > 0.0)): warnings.warn('quadratic fit does not have a maximum', AstropyUserWarning) return np.array((np.nan, np.nan)) xm = (c01 * c11 - 2.0 * c02 * c10) / det ym = (c10 * c11 - 2.0 * c20 * c01) / det if 0.0 < xm < (nx - 1.0) and 0.0 < ym < (ny - 1.0): xycen = np.array((xm, ym), dtype=float) else: warnings.warn('quadratic polynomial maximum value falls outside ' 'of the image', AstropyUserWarning) return np.array((np.nan, np.nan)) return xycen def _process_boxsize(box_size, data_shape): box_size = np.round(np.atleast_1d(box_size)).astype(int) if len(box_size) == 1: box_size = np.repeat(box_size, 2) if len(box_size) > 2: raise ValueError('box size must contain only 1 or 2 values') if np.any(box_size < 0): raise ValueError('box size must be >= 0') box_size = (min(box_size[0], data_shape[0]), min(box_size[1], data_shape[1])) return box_size
BSD 3-Clause New or Revised License
reiinakano/scikit-plot
scikitplot/metrics.py
plot_calibration_curve
python
def plot_calibration_curve(y_true, probas_list, clf_names=None, n_bins=10, title='Calibration plots (Reliability Curves)', ax=None, figsize=None, cmap='nipy_spectral', title_fontsize="large", text_fontsize="medium"): y_true = np.asarray(y_true) if not isinstance(probas_list, list): raise ValueError('`probas_list` does not contain a list.') classes = np.unique(y_true) if len(classes) > 2: raise ValueError('plot_calibration_curve only ' 'works for binary classification') if clf_names is None: clf_names = ['Classifier {}'.format(x+1) for x in range(len(probas_list))] if len(clf_names) != len(probas_list): raise ValueError('Length {} of `clf_names` does not match length {} of' ' `probas_list`'.format(len(clf_names), len(probas_list))) if ax is None: fig, ax = plt.subplots(1, 1, figsize=figsize) ax.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for i, probas in enumerate(probas_list): probas = np.asarray(probas) if probas.ndim > 2: raise ValueError('Index {} in probas_list has invalid ' 'shape {}'.format(i, probas.shape)) if probas.ndim == 2: probas = probas[:, 1] if probas.shape != y_true.shape: raise ValueError('Index {} in probas_list has invalid ' 'shape {}'.format(i, probas.shape)) probas = (probas - probas.min()) / (probas.max() - probas.min()) fraction_of_positives, mean_predicted_value = calibration_curve(y_true, probas, n_bins=n_bins) color = plt.cm.get_cmap(cmap)(float(i) / len(probas_list)) ax.plot(mean_predicted_value, fraction_of_positives, 's-', label=clf_names[i], color=color) ax.set_title(title, fontsize=title_fontsize) ax.set_xlabel('Mean predicted value', fontsize=text_fontsize) ax.set_ylabel('Fraction of positives', fontsize=text_fontsize) ax.set_ylim([-0.05, 1.05]) ax.legend(loc='lower right') return ax
Plots calibration curves for a set of classifier probability estimates. Plotting the calibration curves of a classifier is useful for determining whether or not you can interpret their predicted probabilities directly as as confidence level. For instance, a well-calibrated binary classifier should classify the samples such that for samples to which it gave a score of 0.8, around 80% should actually be from the positive class. This function currently only works for binary classification. Args: y_true (array-like, shape (n_samples)): Ground truth (correct) target values. probas_list (list of array-like, shape (n_samples, 2) or (n_samples,)): A list containing the outputs of binary classifiers' :func:`predict_proba` method or :func:`decision_function` method. clf_names (list of str, optional): A list of strings, where each string refers to the name of the classifier that produced the corresponding probability estimates in `probas_list`. If ``None``, the names "Classifier 1", "Classifier 2", etc. will be used. n_bins (int, optional): Number of bins. A bigger number requires more data. title (string, optional): Title of the generated plot. Defaults to "Calibration plots (Reliabilirt Curves)" ax (:class:`matplotlib.axes.Axes`, optional): The axes upon which to plot the curve. If None, the plot is drawn on a new set of axes. figsize (2-tuple, optional): Tuple denoting figure size of the plot e.g. (6, 6). Defaults to ``None``. cmap (string or :class:`matplotlib.colors.Colormap` instance, optional): Colormap used for plotting the projection. View Matplotlib Colormap documentation for available options. https://matplotlib.org/users/colormaps.html title_fontsize (string or int, optional): Matplotlib-style fontsizes. Use e.g. "small", "medium", "large" or integer-values. Defaults to "large". text_fontsize (string or int, optional): Matplotlib-style fontsizes. Use e.g. "small", "medium", "large" or integer-values. Defaults to "medium". Returns: :class:`matplotlib.axes.Axes`: The axes on which the plot was drawn. Example: >>> import scikitplot as skplt >>> rf = RandomForestClassifier() >>> lr = LogisticRegression() >>> nb = GaussianNB() >>> svm = LinearSVC() >>> rf_probas = rf.fit(X_train, y_train).predict_proba(X_test) >>> lr_probas = lr.fit(X_train, y_train).predict_proba(X_test) >>> nb_probas = nb.fit(X_train, y_train).predict_proba(X_test) >>> svm_scores = svm.fit(X_train, y_train).decision_function(X_test) >>> probas_list = [rf_probas, lr_probas, nb_probas, svm_scores] >>> clf_names = ['Random Forest', 'Logistic Regression', ... 'Gaussian Naive Bayes', 'Support Vector Machine'] >>> skplt.metrics.plot_calibration_curve(y_test, ... probas_list, ... clf_names) <matplotlib.axes._subplots.AxesSubplot object at 0x7fe967d64490> >>> plt.show() .. image:: _static/examples/plot_calibration_curve.png :align: center :alt: Calibration Curves
https://github.com/reiinakano/scikit-plot/blob/2dd3e6a76df77edcbd724c4db25575f70abb57cb/scikitplot/metrics.py#L911-L1042
from __future__ import absolute_import, division, print_function, unicode_literals import itertools import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import confusion_matrix from sklearn.preprocessing import label_binarize from sklearn.preprocessing import LabelEncoder from sklearn.metrics import roc_curve from sklearn.metrics import auc from sklearn.metrics import precision_recall_curve from sklearn.metrics import average_precision_score from sklearn.utils.multiclass import unique_labels from sklearn.metrics import silhouette_score from sklearn.metrics import silhouette_samples from sklearn.calibration import calibration_curve from sklearn.utils import deprecated from scipy import interp from scikitplot.helpers import binary_ks_curve, validate_labels from scikitplot.helpers import cumulative_gain_curve def plot_confusion_matrix(y_true, y_pred, labels=None, true_labels=None, pred_labels=None, title=None, normalize=False, hide_zeros=False, hide_counts=False, x_tick_rotation=0, ax=None, figsize=None, cmap='Blues', title_fontsize="large", text_fontsize="medium"): y_true = np.asarray(y_true) y_pred = np.asarray(y_pred) if ax is None: fig, ax = plt.subplots(1, 1, figsize=figsize) cm = confusion_matrix(y_true, y_pred, labels=labels) if labels is None: classes = unique_labels(y_true, y_pred) else: classes = np.asarray(labels) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] cm = np.around(cm, decimals=2) cm[np.isnan(cm)] = 0.0 if true_labels is None: true_classes = classes else: validate_labels(classes, true_labels, "true_labels") true_label_indexes = np.in1d(classes, true_labels) true_classes = classes[true_label_indexes] cm = cm[true_label_indexes] if pred_labels is None: pred_classes = classes else: validate_labels(classes, pred_labels, "pred_labels") pred_label_indexes = np.in1d(classes, pred_labels) pred_classes = classes[pred_label_indexes] cm = cm[:, pred_label_indexes] if title: ax.set_title(title, fontsize=title_fontsize) elif normalize: ax.set_title('Normalized Confusion Matrix', fontsize=title_fontsize) else: ax.set_title('Confusion Matrix', fontsize=title_fontsize) image = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.get_cmap(cmap)) plt.colorbar(mappable=image) x_tick_marks = np.arange(len(pred_classes)) y_tick_marks = np.arange(len(true_classes)) ax.set_xticks(x_tick_marks) ax.set_xticklabels(pred_classes, fontsize=text_fontsize, rotation=x_tick_rotation) ax.set_yticks(y_tick_marks) ax.set_yticklabels(true_classes, fontsize=text_fontsize) thresh = cm.max() / 2. if not hide_counts: for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): if not (hide_zeros and cm[i, j] == 0): ax.text(j, i, cm[i, j], horizontalalignment="center", verticalalignment="center", fontsize=text_fontsize, color="white" if cm[i, j] > thresh else "black") ax.set_ylabel('True label', fontsize=text_fontsize) ax.set_xlabel('Predicted label', fontsize=text_fontsize) ax.grid(False) return ax @deprecated('This will be removed in v0.5.0. Please use ' 'scikitplot.metrics.plot_roc instead.') def plot_roc_curve(y_true, y_probas, title='ROC Curves', curves=('micro', 'macro', 'each_class'), ax=None, figsize=None, cmap='nipy_spectral', title_fontsize="large", text_fontsize="medium"): y_true = np.array(y_true) y_probas = np.array(y_probas) if 'micro' not in curves and 'macro' not in curves and 'each_class' not in curves: raise ValueError('Invalid argument for curves as it ' 'only takes "micro", "macro", or "each_class"') classes = np.unique(y_true) probas = y_probas fpr = dict() tpr = dict() roc_auc = dict() for i in range(len(classes)): fpr[i], tpr[i], _ = roc_curve(y_true, probas[:, i], pos_label=classes[i]) roc_auc[i] = auc(fpr[i], tpr[i]) micro_key = 'micro' i = 0 while micro_key in fpr: i += 1 micro_key += str(i) y_true = label_binarize(y_true, classes=classes) if len(classes) == 2: y_true = np.hstack((1 - y_true, y_true)) fpr[micro_key], tpr[micro_key], _ = roc_curve(y_true.ravel(), probas.ravel()) roc_auc[micro_key] = auc(fpr[micro_key], tpr[micro_key]) all_fpr = np.unique(np.concatenate([fpr[x] for x in range(len(classes))])) mean_tpr = np.zeros_like(all_fpr) for i in range(len(classes)): mean_tpr += interp(all_fpr, fpr[i], tpr[i]) mean_tpr /= len(classes) macro_key = 'macro' i = 0 while macro_key in fpr: i += 1 macro_key += str(i) fpr[macro_key] = all_fpr tpr[macro_key] = mean_tpr roc_auc[macro_key] = auc(fpr[macro_key], tpr[macro_key]) if ax is None: fig, ax = plt.subplots(1, 1, figsize=figsize) ax.set_title(title, fontsize=title_fontsize) if 'each_class' in curves: for i in range(len(classes)): color = plt.cm.get_cmap(cmap)(float(i) / len(classes)) ax.plot(fpr[i], tpr[i], lw=2, color=color, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(classes[i], roc_auc[i])) if 'micro' in curves: ax.plot(fpr[micro_key], tpr[micro_key], label='micro-average ROC curve ' '(area = {0:0.2f})'.format(roc_auc[micro_key]), color='deeppink', linestyle=':', linewidth=4) if 'macro' in curves: ax.plot(fpr[macro_key], tpr[macro_key], label='macro-average ROC curve ' '(area = {0:0.2f})'.format(roc_auc[macro_key]), color='navy', linestyle=':', linewidth=4) ax.plot([0, 1], [0, 1], 'k--', lw=2) ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.05]) ax.set_xlabel('False Positive Rate', fontsize=text_fontsize) ax.set_ylabel('True Positive Rate', fontsize=text_fontsize) ax.tick_params(labelsize=text_fontsize) ax.legend(loc='lower right', fontsize=text_fontsize) return ax def plot_roc(y_true, y_probas, title='ROC Curves', plot_micro=True, plot_macro=True, classes_to_plot=None, ax=None, figsize=None, cmap='nipy_spectral', title_fontsize="large", text_fontsize="medium"): y_true = np.array(y_true) y_probas = np.array(y_probas) classes = np.unique(y_true) probas = y_probas if classes_to_plot is None: classes_to_plot = classes if ax is None: fig, ax = plt.subplots(1, 1, figsize=figsize) ax.set_title(title, fontsize=title_fontsize) fpr_dict = dict() tpr_dict = dict() indices_to_plot = np.in1d(classes, classes_to_plot) for i, to_plot in enumerate(indices_to_plot): fpr_dict[i], tpr_dict[i], _ = roc_curve(y_true, probas[:, i], pos_label=classes[i]) if to_plot: roc_auc = auc(fpr_dict[i], tpr_dict[i]) color = plt.cm.get_cmap(cmap)(float(i) / len(classes)) ax.plot(fpr_dict[i], tpr_dict[i], lw=2, color=color, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(classes[i], roc_auc)) if plot_micro: binarized_y_true = label_binarize(y_true, classes=classes) if len(classes) == 2: binarized_y_true = np.hstack( (1 - binarized_y_true, binarized_y_true)) fpr, tpr, _ = roc_curve(binarized_y_true.ravel(), probas.ravel()) roc_auc = auc(fpr, tpr) ax.plot(fpr, tpr, label='micro-average ROC curve ' '(area = {0:0.2f})'.format(roc_auc), color='deeppink', linestyle=':', linewidth=4) if plot_macro: all_fpr = np.unique(np.concatenate([fpr_dict[x] for x in range(len(classes))])) mean_tpr = np.zeros_like(all_fpr) for i in range(len(classes)): mean_tpr += interp(all_fpr, fpr_dict[i], tpr_dict[i]) mean_tpr /= len(classes) roc_auc = auc(all_fpr, mean_tpr) ax.plot(all_fpr, mean_tpr, label='macro-average ROC curve ' '(area = {0:0.2f})'.format(roc_auc), color='navy', linestyle=':', linewidth=4) ax.plot([0, 1], [0, 1], 'k--', lw=2) ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.05]) ax.set_xlabel('False Positive Rate', fontsize=text_fontsize) ax.set_ylabel('True Positive Rate', fontsize=text_fontsize) ax.tick_params(labelsize=text_fontsize) ax.legend(loc='lower right', fontsize=text_fontsize) return ax def plot_ks_statistic(y_true, y_probas, title='KS Statistic Plot', ax=None, figsize=None, title_fontsize="large", text_fontsize="medium"): y_true = np.array(y_true) y_probas = np.array(y_probas) classes = np.unique(y_true) if len(classes) != 2: raise ValueError('Cannot calculate KS statistic for data with ' '{} category/ies'.format(len(classes))) probas = y_probas thresholds, pct1, pct2, ks_statistic, max_distance_at, classes = binary_ks_curve(y_true, probas[:, 1].ravel()) if ax is None: fig, ax = plt.subplots(1, 1, figsize=figsize) ax.set_title(title, fontsize=title_fontsize) ax.plot(thresholds, pct1, lw=3, label='Class {}'.format(classes[0])) ax.plot(thresholds, pct2, lw=3, label='Class {}'.format(classes[1])) idx = np.where(thresholds == max_distance_at)[0][0] ax.axvline(max_distance_at, *sorted([pct1[idx], pct2[idx]]), label='KS Statistic: {:.3f} at {:.3f}'.format(ks_statistic, max_distance_at), linestyle=':', lw=3, color='black') ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.0]) ax.set_xlabel('Threshold', fontsize=text_fontsize) ax.set_ylabel('Percentage below threshold', fontsize=text_fontsize) ax.tick_params(labelsize=text_fontsize) ax.legend(loc='lower right', fontsize=text_fontsize) return ax @deprecated('This will be removed in v0.5.0. Please use ' 'scikitplot.metrics.plot_precision_recall instead.') def plot_precision_recall_curve(y_true, y_probas, title='Precision-Recall Curve', curves=('micro', 'each_class'), ax=None, figsize=None, cmap='nipy_spectral', title_fontsize="large", text_fontsize="medium"): y_true = np.array(y_true) y_probas = np.array(y_probas) classes = np.unique(y_true) probas = y_probas if 'micro' not in curves and 'each_class' not in curves: raise ValueError('Invalid argument for curves as it ' 'only takes "micro" or "each_class"') precision = dict() recall = dict() average_precision = dict() for i in range(len(classes)): precision[i], recall[i], _ = precision_recall_curve( y_true, probas[:, i], pos_label=classes[i]) y_true = label_binarize(y_true, classes=classes) if len(classes) == 2: y_true = np.hstack((1 - y_true, y_true)) for i in range(len(classes)): average_precision[i] = average_precision_score(y_true[:, i], probas[:, i]) micro_key = 'micro' i = 0 while micro_key in precision: i += 1 micro_key += str(i) precision[micro_key], recall[micro_key], _ = precision_recall_curve( y_true.ravel(), probas.ravel()) average_precision[micro_key] = average_precision_score(y_true, probas, average='micro') if ax is None: fig, ax = plt.subplots(1, 1, figsize=figsize) ax.set_title(title, fontsize=title_fontsize) if 'each_class' in curves: for i in range(len(classes)): color = plt.cm.get_cmap(cmap)(float(i) / len(classes)) ax.plot(recall[i], precision[i], lw=2, label='Precision-recall curve of class {0} ' '(area = {1:0.3f})'.format(classes[i], average_precision[i]), color=color) if 'micro' in curves: ax.plot(recall[micro_key], precision[micro_key], label='micro-average Precision-recall curve ' '(area = {0:0.3f})'.format(average_precision[micro_key]), color='navy', linestyle=':', linewidth=4) ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.05]) ax.set_xlabel('Recall') ax.set_ylabel('Precision') ax.tick_params(labelsize=text_fontsize) ax.legend(loc='best', fontsize=text_fontsize) return ax def plot_precision_recall(y_true, y_probas, title='Precision-Recall Curve', plot_micro=True, classes_to_plot=None, ax=None, figsize=None, cmap='nipy_spectral', title_fontsize="large", text_fontsize="medium"): y_true = np.array(y_true) y_probas = np.array(y_probas) classes = np.unique(y_true) probas = y_probas if classes_to_plot is None: classes_to_plot = classes binarized_y_true = label_binarize(y_true, classes=classes) if len(classes) == 2: binarized_y_true = np.hstack( (1 - binarized_y_true, binarized_y_true)) if ax is None: fig, ax = plt.subplots(1, 1, figsize=figsize) ax.set_title(title, fontsize=title_fontsize) indices_to_plot = np.in1d(classes, classes_to_plot) for i, to_plot in enumerate(indices_to_plot): if to_plot: average_precision = average_precision_score( binarized_y_true[:, i], probas[:, i]) precision, recall, _ = precision_recall_curve( y_true, probas[:, i], pos_label=classes[i]) color = plt.cm.get_cmap(cmap)(float(i) / len(classes)) ax.plot(recall, precision, lw=2, label='Precision-recall curve of class {0} ' '(area = {1:0.3f})'.format(classes[i], average_precision), color=color) if plot_micro: precision, recall, _ = precision_recall_curve( binarized_y_true.ravel(), probas.ravel()) average_precision = average_precision_score(binarized_y_true, probas, average='micro') ax.plot(recall, precision, label='micro-average Precision-recall curve ' '(area = {0:0.3f})'.format(average_precision), color='navy', linestyle=':', linewidth=4) ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.05]) ax.set_xlabel('Recall') ax.set_ylabel('Precision') ax.tick_params(labelsize=text_fontsize) ax.legend(loc='best', fontsize=text_fontsize) return ax def plot_silhouette(X, cluster_labels, title='Silhouette Analysis', metric='euclidean', copy=True, ax=None, figsize=None, cmap='nipy_spectral', title_fontsize="large", text_fontsize="medium"): cluster_labels = np.asarray(cluster_labels) le = LabelEncoder() cluster_labels_encoded = le.fit_transform(cluster_labels) n_clusters = len(np.unique(cluster_labels)) silhouette_avg = silhouette_score(X, cluster_labels, metric=metric) sample_silhouette_values = silhouette_samples(X, cluster_labels, metric=metric) if ax is None: fig, ax = plt.subplots(1, 1, figsize=figsize) ax.set_title(title, fontsize=title_fontsize) ax.set_xlim([-0.1, 1]) ax.set_ylim([0, len(X) + (n_clusters + 1) * 10 + 10]) ax.set_xlabel('Silhouette coefficient values', fontsize=text_fontsize) ax.set_ylabel('Cluster label', fontsize=text_fontsize) y_lower = 10 for i in range(n_clusters): ith_cluster_silhouette_values = sample_silhouette_values[ cluster_labels_encoded == i] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i color = plt.cm.get_cmap(cmap)(float(i) / n_clusters) ax.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) ax.text(-0.05, y_lower + 0.5 * size_cluster_i, str(le.classes_[i]), fontsize=text_fontsize) y_lower = y_upper + 10 ax.axvline(x=silhouette_avg, color="red", linestyle="--", label='Silhouette score: {0:0.3f}'.format(silhouette_avg)) ax.set_yticks([]) ax.set_xticks(np.arange(-0.1, 1.0, 0.2)) ax.tick_params(labelsize=text_fontsize) ax.legend(loc='best', fontsize=text_fontsize) return ax
MIT License
educational-technology-collective/morf
morf-python-api/build/lib/morf/workflow/evaluate.py
evaluate_all
python
def evaluate_all(): return
Fetch metrics overall. :return:
https://github.com/educational-technology-collective/morf/blob/f17afcacef68929a5ce9e7714208be1002a42418/morf-python-api/build/lib/morf/workflow/evaluate.py#L112-L118
import numpy as np import sklearn.metrics from morf.utils.api_utils import * from morf.utils.config import MorfJobConfig from morf.utils.job_runner_utils import load_docker_image from morf.utils.log import set_logger_handlers from morf.utils.security import hash_df_column from morf.utils.s3interface import make_s3_key_path mode = "evaluate" CONFIG_FILENAME = "config.properties" module_logger = logging.getLogger(__name__) def check_dataframe_complete(df, job_config, columns): logger = set_logger_handlers(module_logger, job_config) logger.info("[INFO] checking predictions") courses = [x[0] for x in fetch_all_complete_courses_and_sessions(job_config)] df_to_check = df[df.course.isin(courses)] null_counts = df_to_check.loc[:,columns].apply(lambda x: sum(x.isnull()), axis=0) if null_counts.sum() > 0: logger.error("Null values detected in the following columns: {} \n Did you include predicted probabilities and labels for all users?".format(null_counts.loc[null_counts > 0].index.tolist())) missing_courses = df_to_check[df_to_check.prob.isnull()]['course'].unique() logger.error("missing values detected in these courses: {}".format(missing_courses)) raise else: return def fetch_binary_classification_metrics(job_config, df, course, pred_prob_col = "prob", pred_col = "pred", label_col = "label_value", course_col = "course"): logger = set_logger_handlers(module_logger, job_config) logger.info("fetching metrics for course {}".format(course)) df = df[df[course_col] == course] metrics = {} y_pred = df[pred_col].values.astype(float) y_true = df[label_col].values.astype(float) y_score = df[pred_prob_col].values metrics["accuracy"] = sklearn.metrics.accuracy_score(y_true, y_pred) try: metrics["auc"] = sklearn.metrics.roc_auc_score(y_true, y_score) metrics["log_loss"] = sklearn.metrics.log_loss(y_true, y_score) metrics["precision"] = sklearn.metrics.precision_score(y_true, y_pred) metrics["recall"] = sklearn.metrics.recall_score(y_true, y_pred) metrics["f1_score"] = sklearn.metrics.f1_score(y_true, y_pred) except ValueError: logger.warning("Only one class present in y_true for course {}. ROC AUC score, log_loss, precision, recall, F1 are undefined.".format(course)) metrics["auc"] = np.nan metrics["log_loss"] = np.nan metrics["precision"] = np.nan metrics["recall"] = np.nan metrics["f1_score"] = np.nan metrics["cohen_kappa_score"] = sklearn.metrics.cohen_kappa_score(y_true, y_pred) metrics["N"] = df.shape[0] metrics["N_n"] = df[label_col].value_counts().get(0,0) metrics["N_p"] = df[label_col].value_counts().get(1,0) cm = sklearn.metrics.confusion_matrix(y_true, y_pred) try: spec = cm[0,0] / float(cm[0,0] + cm[1,0]) except Exception as e: print("[ERROR] error when computing specificity from confusion matrix: {}".format(e)) print("confusion matrix is: {}".format(cm)) spec = np.nan metrics["specificity"] = spec metrics_df = pd.DataFrame(metrics, index = [course]) return metrics_df
MIT License
opennetworkingfoundation/tapi
RI/flask_server/tapi_server/models/tapi_topology_node_owned_node_edge_point.py
TapiTopologyNodeOwnedNodeEdgePoint.cep_list
python
def cep_list(self, cep_list): self._cep_list = cep_list
Sets the cep_list of this TapiTopologyNodeOwnedNodeEdgePoint. :param cep_list: The cep_list of this TapiTopologyNodeOwnedNodeEdgePoint. :type cep_list: TapiConnectivityContextTopologycontextTopologyNodeOwnednodeedgepointCepList
https://github.com/opennetworkingfoundation/tapi/blob/1f3fd9483d5674552c5a31206c97399c8c151897/RI/flask_server/tapi_server/models/tapi_topology_node_owned_node_edge_point.py#L160-L168
from __future__ import absolute_import from datetime import date, datetime from typing import List, Dict from tapi_server.models.base_model_ import Model from tapi_server.models.tapi_common_administrative_state import TapiCommonAdministrativeState from tapi_server.models.tapi_common_capacity import TapiCommonCapacity from tapi_server.models.tapi_common_layer_protocol_name import TapiCommonLayerProtocolName from tapi_server.models.tapi_common_lifecycle_state import TapiCommonLifecycleState from tapi_server.models.tapi_common_name_and_value import TapiCommonNameAndValue from tapi_server.models.tapi_common_operational_state import TapiCommonOperationalState from tapi_server.models.tapi_common_port_direction import TapiCommonPortDirection from tapi_server.models.tapi_common_port_role import TapiCommonPortRole from tapi_server.models.tapi_common_service_interface_point_ref import TapiCommonServiceInterfacePointRef from tapi_server.models.tapi_common_termination_direction import TapiCommonTerminationDirection from tapi_server.models.tapi_common_termination_state import TapiCommonTerminationState from tapi_server.models.tapi_connectivity_context_topologycontext_topology_node_ownednodeedgepoint_cep_list import TapiConnectivityContextTopologycontextTopologyNodeOwnednodeedgepointCepList from tapi_server.models.tapi_connectivity_owned_node_edge_point_augmentation3 import TapiConnectivityOwnedNodeEdgePointAugmentation3 from tapi_server.models.tapi_odu_odu_node_edge_point_spec import TapiOduOduNodeEdgePointSpec from tapi_server.models.tapi_odu_owned_node_edge_point_augmentation1 import TapiOduOwnedNodeEdgePointAugmentation1 from tapi_server.models.tapi_photonic_media_media_channel_node_edge_point_spec import TapiPhotonicMediaMediaChannelNodeEdgePointSpec from tapi_server.models.tapi_photonic_media_owned_node_edge_point_augmentation2 import TapiPhotonicMediaOwnedNodeEdgePointAugmentation2 from tapi_server.models.tapi_topology_node_edge_point import TapiTopologyNodeEdgePoint from tapi_server.models.tapi_topology_node_edge_point_ref import TapiTopologyNodeEdgePointRef from tapi_server import util class TapiTopologyNodeOwnedNodeEdgePoint(Model): def __init__(self, cep_list=None, odu_node_edge_point_spec=None, media_channel_node_edge_point_spec=None, operational_state=None, lifecycle_state=None, administrative_state=None, available_capacity=None, total_potential_capacity=None, name=None, uuid=None, termination_direction=None, termination_state=None, link_port_role=None, mapped_service_interface_point=None, aggregated_node_edge_point=None, layer_protocol_name=None, link_port_direction=None, supported_cep_layer_protocol_qualifier=None): self.openapi_types = { 'cep_list': TapiConnectivityContextTopologycontextTopologyNodeOwnednodeedgepointCepList, 'odu_node_edge_point_spec': TapiOduOduNodeEdgePointSpec, 'media_channel_node_edge_point_spec': TapiPhotonicMediaMediaChannelNodeEdgePointSpec, 'operational_state': TapiCommonOperationalState, 'lifecycle_state': TapiCommonLifecycleState, 'administrative_state': TapiCommonAdministrativeState, 'available_capacity': TapiCommonCapacity, 'total_potential_capacity': TapiCommonCapacity, 'name': List[TapiCommonNameAndValue], 'uuid': str, 'termination_direction': TapiCommonTerminationDirection, 'termination_state': TapiCommonTerminationState, 'link_port_role': TapiCommonPortRole, 'mapped_service_interface_point': List[TapiCommonServiceInterfacePointRef], 'aggregated_node_edge_point': List[TapiTopologyNodeEdgePointRef], 'layer_protocol_name': TapiCommonLayerProtocolName, 'link_port_direction': TapiCommonPortDirection, 'supported_cep_layer_protocol_qualifier': List[str] } self.attribute_map = { 'cep_list': 'cep-list', 'odu_node_edge_point_spec': 'odu-node-edge-point-spec', 'media_channel_node_edge_point_spec': 'media-channel-node-edge-point-spec', 'operational_state': 'operational-state', 'lifecycle_state': 'lifecycle-state', 'administrative_state': 'administrative-state', 'available_capacity': 'available-capacity', 'total_potential_capacity': 'total-potential-capacity', 'name': 'name', 'uuid': 'uuid', 'termination_direction': 'termination-direction', 'termination_state': 'termination-state', 'link_port_role': 'link-port-role', 'mapped_service_interface_point': 'mapped-service-interface-point', 'aggregated_node_edge_point': 'aggregated-node-edge-point', 'layer_protocol_name': 'layer-protocol-name', 'link_port_direction': 'link-port-direction', 'supported_cep_layer_protocol_qualifier': 'supported-cep-layer-protocol-qualifier' } self._cep_list = cep_list self._odu_node_edge_point_spec = odu_node_edge_point_spec self._media_channel_node_edge_point_spec = media_channel_node_edge_point_spec self._operational_state = operational_state self._lifecycle_state = lifecycle_state self._administrative_state = administrative_state self._available_capacity = available_capacity self._total_potential_capacity = total_potential_capacity self._name = name self._uuid = uuid self._termination_direction = termination_direction self._termination_state = termination_state self._link_port_role = link_port_role self._mapped_service_interface_point = mapped_service_interface_point self._aggregated_node_edge_point = aggregated_node_edge_point self._layer_protocol_name = layer_protocol_name self._link_port_direction = link_port_direction self._supported_cep_layer_protocol_qualifier = supported_cep_layer_protocol_qualifier @classmethod def from_dict(cls, dikt) -> 'TapiTopologyNodeOwnedNodeEdgePoint': return util.deserialize_model(dikt, cls) @property def cep_list(self): return self._cep_list @cep_list.setter
Apache License 2.0
blacktear23/py-servicebus
servicebus/pika/connection.py
Connection.consumer_cancel_notify
python
def consumer_cancel_notify(self): return self.server_capabilities.get('consumer_cancel_notify', False)
Specifies if the server supports consumer cancel notification on the active connection. :rtype: bool
https://github.com/blacktear23/py-servicebus/blob/c3d6ccf0b2abf131ca1060d89f3c0d4ab08481e4/servicebus/pika/connection.py#L809-L816
import ast import sys import collections import logging import math import platform import threading import urllib import warnings if sys.version_info > (3,): import urllib.parse as urlparse else: import urlparse from servicebus.pika import __version__ from servicebus.pika import callback from servicebus.pika import channel from servicebus.pika import credentials as pika_credentials from servicebus.pika import exceptions from servicebus.pika import frame from servicebus.pika import heartbeat from servicebus.pika import utils from servicebus.pika import spec from servicebus.pika.compat import basestring, url_unquote, dictkeys BACKPRESSURE_WARNING = ("Pika: Write buffer exceeded warning threshold at " "%i bytes and an estimated %i frames behind") PRODUCT = "Pika Python Client Library" LOGGER = logging.getLogger(__name__) class Parameters(object): DEFAULT_BACKPRESSURE_DETECTION = False DEFAULT_CONNECTION_ATTEMPTS = 1 DEFAULT_CHANNEL_MAX = 0 DEFAULT_FRAME_MAX = spec.FRAME_MAX_SIZE DEFAULT_HEARTBEAT_INTERVAL = None DEFAULT_HOST = 'localhost' DEFAULT_LOCALE = 'en_US' DEFAULT_PASSWORD = 'guest' DEFAULT_PORT = 5672 DEFAULT_RETRY_DELAY = 2.0 DEFAULT_SOCKET_TIMEOUT = 0.25 DEFAULT_SSL = False DEFAULT_SSL_OPTIONS = {} DEFAULT_SSL_PORT = 5671 DEFAULT_USERNAME = 'guest' DEFAULT_VIRTUAL_HOST = '/' def __init__(self): self.virtual_host = self.DEFAULT_VIRTUAL_HOST self.backpressure_detection = self.DEFAULT_BACKPRESSURE_DETECTION self.channel_max = self.DEFAULT_CHANNEL_MAX self.connection_attempts = self.DEFAULT_CONNECTION_ATTEMPTS self.credentials = self._credentials(self.DEFAULT_USERNAME, self.DEFAULT_PASSWORD) self.frame_max = self.DEFAULT_FRAME_MAX self.heartbeat = self.DEFAULT_HEARTBEAT_INTERVAL self.host = self.DEFAULT_HOST self.locale = self.DEFAULT_LOCALE self.port = self.DEFAULT_PORT self.retry_delay = self.DEFAULT_RETRY_DELAY self.ssl = self.DEFAULT_SSL self.ssl_options = self.DEFAULT_SSL_OPTIONS self.socket_timeout = self.DEFAULT_SOCKET_TIMEOUT def __repr__(self): return ('<%s host=%s port=%s virtual_host=%s ssl=%s>' % (self.__class__.__name__, self.host, self.port, self.virtual_host, self.ssl)) def _credentials(self, username, password): return pika_credentials.PlainCredentials(username, password) def _validate_backpressure(self, backpressure_detection): if not isinstance(backpressure_detection, bool): raise TypeError('backpressure detection must be a bool') return True def _validate_channel_max(self, channel_max): if not isinstance(channel_max, int): raise TypeError('channel_max must be an int') if channel_max < 1 or channel_max > 65535: raise ValueError('channel_max must be <= 65535 and > 0') return True def _validate_connection_attempts(self, connection_attempts): if not isinstance(connection_attempts, int): raise TypeError('connection_attempts must be an int') if connection_attempts < 1: raise ValueError('connection_attempts must be None or > 0') return True def _validate_credentials(self, credentials): for credential_type in pika_credentials.VALID_TYPES: if isinstance(credentials, credential_type): return True raise TypeError('Credentials must be an object of type: %r' % pika_credentials.VALID_TYPES) def _validate_frame_max(self, frame_max): if not isinstance(frame_max, int): raise TypeError('frame_max must be an int') if frame_max < spec.FRAME_MIN_SIZE: raise exceptions.InvalidMinimumFrameSize elif frame_max > spec.FRAME_MAX_SIZE: raise exceptions.InvalidMaximumFrameSize return True def _validate_heartbeat_interval(self, heartbeat_interval): if not isinstance(heartbeat_interval, int): raise TypeError('heartbeat must be an int') if heartbeat_interval < 0: raise ValueError('heartbeat_interval must >= 0') return True def _validate_host(self, host): if not isinstance(host, basestring): raise TypeError('host must be a str or unicode str') return True def _validate_locale(self, locale): if not isinstance(locale, basestring): raise TypeError('locale must be a str') return True def _validate_port(self, port): if not isinstance(port, int): raise TypeError('port must be an int') return True def _validate_retry_delay(self, retry_delay): if not any([isinstance(retry_delay, int), isinstance(retry_delay, float)]): raise TypeError('retry_delay must be a float or int') return True def _validate_socket_timeout(self, socket_timeout): if not any([isinstance(socket_timeout, int), isinstance(socket_timeout, float)]): raise TypeError('socket_timeout must be a float or int') if not socket_timeout > 0: raise ValueError('socket_timeout must be > 0') return True def _validate_ssl(self, ssl): if not isinstance(ssl, bool): raise TypeError('ssl must be a bool') return True def _validate_ssl_options(self, ssl_options): if not isinstance(ssl_options, dict) and ssl_options is not None: raise TypeError('ssl_options must be either None or dict') return True def _validate_virtual_host(self, virtual_host): if not isinstance(virtual_host, basestring): raise TypeError('virtual_host must be a str') return True class ConnectionParameters(Parameters): def __init__(self, host=None, port=None, virtual_host=None, credentials=None, channel_max=None, frame_max=None, heartbeat_interval=None, ssl=None, ssl_options=None, connection_attempts=None, retry_delay=None, socket_timeout=None, locale=None, backpressure_detection=None): super(ConnectionParameters, self).__init__() if not credentials: credentials = self._credentials(self.DEFAULT_USERNAME, self.DEFAULT_PASSWORD) if host and self._validate_host(host): self.host = host if port is not None and self._validate_port(port): self.port = port if virtual_host and self._validate_virtual_host(virtual_host): self.virtual_host = virtual_host if credentials and self._validate_credentials(credentials): self.credentials = credentials if channel_max is not None and self._validate_channel_max(channel_max): self.channel_max = channel_max if frame_max is not None and self._validate_frame_max(frame_max): self.frame_max = frame_max if locale and self._validate_locale(locale): self.locale = locale if (heartbeat_interval is not None and self._validate_heartbeat_interval(heartbeat_interval)): self.heartbeat = heartbeat_interval if ssl is not None and self._validate_ssl(ssl): self.ssl = ssl if ssl_options and self._validate_ssl_options(ssl_options): self.ssl_options = ssl_options or dict() if (connection_attempts is not None and self._validate_connection_attempts(connection_attempts)): self.connection_attempts = connection_attempts if retry_delay is not None and self._validate_retry_delay(retry_delay): self.retry_delay = retry_delay if (socket_timeout is not None and self._validate_socket_timeout(socket_timeout)): self.socket_timeout = socket_timeout if (backpressure_detection is not None and self._validate_backpressure(backpressure_detection)): self.backpressure_detection = backpressure_detection class URLParameters(Parameters): def __init__(self, url): super(URLParameters, self).__init__() self._process_url(url) def _process_url(self, url): if url[0:4] == 'amqp': url = 'http' + url[4:] parts = urlparse.urlparse(url) if parts.scheme == 'https': self.ssl = True if self._validate_host(parts.hostname): self.host = parts.hostname if not parts.port: if self.ssl: self.port = self.DEFAULT_SSL_PORT if self.ssl else self.DEFAULT_PORT elif self._validate_port(parts.port): self.port = parts.port if parts.username is not None: self.credentials = pika_credentials.PlainCredentials(parts.username, parts.password) if len(parts.path) <= 1: self.virtual_host = self.DEFAULT_VIRTUAL_HOST else: path_parts = parts.path.split('/') virtual_host = url_unquote(path_parts[1]) if self._validate_virtual_host(virtual_host): self.virtual_host = virtual_host values = urlparse.parse_qs(parts.query) for key in dictkeys(values): values[key] = values[key].pop(0) if values[key].isdigit(): values[key] = int(values[key]) else: try: values[key] = float(values[key]) except ValueError: pass if 'backpressure_detection' in values: if values['backpressure_detection'] == 't': self.backpressure_detection = True elif values['backpressure_detection'] == 'f': self.backpressure_detection = False else: raise ValueError('Invalid backpressure_detection value: %s' % values['backpressure_detection']) if ('channel_max' in values and self._validate_channel_max(values['channel_max'])): self.channel_max = values['channel_max'] if ('connection_attempts' in values and self._validate_connection_attempts(values['connection_attempts'])): self.connection_attempts = values['connection_attempts'] if ('frame_max' in values and self._validate_frame_max(values['frame_max'])): self.frame_max = values['frame_max'] if ('heartbeat_interval' in values and self._validate_heartbeat_interval(values['heartbeat_interval'])): self.heartbeat = values['heartbeat_interval'] if ('locale' in values and self._validate_locale(values['locale'])): self.locale = values['locale'] if ('retry_delay' in values and self._validate_retry_delay(values['retry_delay'])): self.retry_delay = values['retry_delay'] if ('socket_timeout' in values and self._validate_socket_timeout(values['socket_timeout'])): self.socket_timeout = values['socket_timeout'] if 'ssl_options' in values: options = ast.literal_eval(values['ssl_options']) if self._validate_ssl_options(options): self.ssl_options = options class Connection(object): ON_CONNECTION_BACKPRESSURE = '_on_connection_backpressure' ON_CONNECTION_BLOCKED = '_on_connection_blocked' ON_CONNECTION_CLOSED = '_on_connection_closed' ON_CONNECTION_ERROR = '_on_connection_error' ON_CONNECTION_OPEN = '_on_connection_open' ON_CONNECTION_UNBLOCKED = '_on_connection_unblocked' CONNECTION_CLOSED = 0 CONNECTION_INIT = 1 CONNECTION_PROTOCOL = 2 CONNECTION_START = 3 CONNECTION_TUNE = 4 CONNECTION_OPEN = 5 CONNECTION_CLOSING = 6 def __init__(self, parameters=None, on_open_callback=None, on_open_error_callback=None, on_close_callback=None): self._write_lock = threading.Lock() self.callbacks = callback.CallbackManager() self.callbacks.add(0, self.ON_CONNECTION_ERROR, on_open_error_callback or self._on_connection_error, False) self.heartbeat = None if on_open_callback: self.add_on_open_callback(on_open_callback) if on_close_callback: self.add_on_close_callback(on_close_callback) self.params = parameters or ConnectionParameters() self._init_connection_state() self.connect() def add_backpressure_callback(self, callback_method): self.callbacks.add(0, self.ON_CONNECTION_BACKPRESSURE, callback_method, False) def add_on_close_callback(self, callback_method): self.callbacks.add(0, self.ON_CONNECTION_CLOSED, callback_method, False) def add_on_connection_blocked_callback(self, callback_method): self.callbacks.add(0, spec.Connection.Blocked, callback_method, False) def add_on_connection_unblocked_callback(self, callback_method): self.callbacks.add(0, spec.Connection.Unblocked, callback_method, False) def add_on_open_callback(self, callback_method): self.callbacks.add(0, self.ON_CONNECTION_OPEN, callback_method, False) def add_on_open_error_callback(self, callback_method, remove_default=True): if remove_default: self.callbacks.remove(0, self.ON_CONNECTION_ERROR, self._on_connection_error) self.callbacks.add(0, self.ON_CONNECTION_ERROR, callback_method, False) def add_timeout(self, deadline, callback_method): raise NotImplementedError def channel(self, on_open_callback, channel_number=None): if not channel_number: channel_number = self._next_channel_number() self._channels[channel_number] = self._create_channel(channel_number, on_open_callback) self._add_channel_callbacks(channel_number) self._channels[channel_number].open() return self._channels[channel_number] def close(self, reply_code=200, reply_text='Normal shutdown'): if self.is_closing or self.is_closed: return if self._has_open_channels: self._close_channels(reply_code, reply_text) self._set_connection_state(self.CONNECTION_CLOSING) LOGGER.debug("Closing connection (%s): %s", reply_code, reply_text) self.closing = reply_code, reply_text if not self._has_open_channels: self._on_close_ready() def connect(self): self._set_connection_state(self.CONNECTION_INIT) error = self._adapter_connect() if not error: return self._on_connected() self.remaining_connection_attempts -= 1 LOGGER.warning('Could not connect, %i attempts left', self.remaining_connection_attempts) if self.remaining_connection_attempts: LOGGER.debug('Retrying in %i seconds', self.params.retry_delay) self.add_timeout(self.params.retry_delay, self.connect) else: self.callbacks.process(0, self.ON_CONNECTION_ERROR, self, self, error) self.remaining_connection_attempts = self.params.connection_attempts self._set_connection_state(self.CONNECTION_CLOSED) def remove_timeout(self, callback_method): raise NotImplementedError def set_backpressure_multiplier(self, value=10): self._backpressure = value @property def is_closed(self): return self.connection_state == self.CONNECTION_CLOSED @property def is_closing(self): return self.connection_state == self.CONNECTION_CLOSING @property def is_open(self): return self.connection_state == self.CONNECTION_OPEN @property def basic_nack(self): return self.server_capabilities.get('basic.nack', False) @property
BSD 3-Clause New or Revised License
inovex/illuminatio
src/illuminatio/test_generator.py
invert_cluster_host
python
def invert_cluster_host(host: ClusterHost): if host.pod_labels == {}: return [ClusterHost("%s%s" % (INVERTED_ATTRIBUTE_PREFIX, host.namespace), {})] inverted_hosts = [ ClusterHost( "%s%s" % (INVERTED_ATTRIBUTE_PREFIX, host.namespace), host.pod_labels ), ClusterHost( "%s%s" % (INVERTED_ATTRIBUTE_PREFIX, host.namespace), invert_label_selector(host.pod_labels), ), ClusterHost(host.namespace, invert_label_selector(host.pod_labels)), ] return inverted_hosts
Returns a list of ClusterHosts with once inverted pod label selectors, once inverted namespace label selectors and once both
https://github.com/inovex/illuminatio/blob/dd57599ef675451ddbb35225d5c4ee09c70a3b3a/src/illuminatio/test_generator.py#L320-L340
import time from typing import List import kubernetes as k8s from illuminatio.k8s_util import labels_to_string from illuminatio.rule import Rule from illuminatio.test_case import NetworkTestCase from illuminatio.host import ClusterHost, GenericClusterHost from illuminatio.util import rand_port, INVERTED_ATTRIBUTE_PREFIX def _get_other_host_from(connection_targets, rule_namespace): namespace_labels = "namespaceLabels" pod_labels = "podLabels" namespace = "namespace" if namespace_labels in connection_targets and pod_labels in connection_targets: return GenericClusterHost( connection_targets[namespace_labels], connection_targets[pod_labels] ) if namespace in connection_targets and pod_labels in connection_targets: return ClusterHost( connection_targets[namespace], connection_targets[pod_labels] ) if namespace_labels in connection_targets: return GenericClusterHost(connection_targets[namespace_labels], {}) if pod_labels in connection_targets: return ClusterHost(rule_namespace, connection_targets[pod_labels]) if connection_targets == {}: return GenericClusterHost({}, {}) raise ValueError( "Unknown combination of field in connection %s" % connection_targets ) def get_namespace_label_strings(namespace_labels, namespaces): return { labels_to_string(namespace_label): [ namespace.metadata.name for namespace in namespaces if namespace.metadata.labels is not None and namespace_label.items() <= namespace.metadata.labels.items() ] for namespace_label in namespace_labels } class NetworkTestCaseGenerator: def __init__(self, log): self.logger = log def generate_test_cases( self, network_policies: List[k8s.client.V1NetworkPolicy], namespaces: List[k8s.client.V1Namespace], ): runtimes = {} start_time = time.time() isolated_hosts = [] other_hosts = [] outgoing_test_cases = [] incoming_test_cases = [] self.logger.debug("Generating test cases for %s", network_policies) rules = [Rule.from_network_policy(netPol) for netPol in network_policies] net_pol_parsing_time = time.time() runtimes["parse"] = net_pol_parsing_time - start_time self.logger.debug("Rule: %s", rules) for rule in rules: rule_host = ClusterHost( rule.concerns["namespace"], rule.concerns["podLabels"] ) if rule_host not in isolated_hosts: isolated_hosts.append(rule_host) if rule.allowed: for connection in rule.allowed: for port in connection.ports: on_port = port other_host = _get_other_host_from( connection.targets, rule.concerns["namespace"] ) other_hosts.append(other_host) if connection.direction == "to": case = NetworkTestCase(rule_host, other_host, on_port, True) outgoing_test_cases.append(case) elif connection.direction == "from": case = NetworkTestCase(other_host, rule_host, on_port, True) incoming_test_cases.append(case) else: raise ValueError( "Direction '%s' unknown!" % connection.direction ) positive_test_time = time.time() runtimes["positiveTestGen"] = positive_test_time - net_pol_parsing_time ( negative_test_cases, negative_test_gen_runtimes, ) = self.generate_negative_cases_for_incoming_cases( isolated_hosts, incoming_test_cases, other_hosts, namespaces ) runtimes["negativeTestGen"] = negative_test_gen_runtimes return outgoing_test_cases + negative_test_cases + incoming_test_cases, runtimes def generate_negative_cases_for_incoming_cases( self, isolated_hosts, incoming_test_cases, other_hosts, namespaces ): runtimes = {} start_time = time.time() namespace_labels = [ h.namespace_labels for h in other_hosts if isinstance(h, GenericClusterHost) ] namespaces_per_label_strings = get_namespace_label_strings( namespace_labels, namespaces ) namespace_label_resolve_time = time.time() runtimes["nsLabelResolve"] = namespace_label_resolve_time - start_time labels_per_namespace = {n.metadata.name: n.metadata.labels for n in namespaces} overlaps_per_host = { host: self.get_overlapping_hosts( host, namespaces_per_label_strings, labels_per_namespace, isolated_hosts + other_hosts, ) for host in isolated_hosts } overlap_calc_time = time.time() runtimes["overlapCalc"] = overlap_calc_time - namespace_label_resolve_time cases = [] for host in isolated_hosts: host_string = str(host) host_start_time = time.time() runtimes[host_string] = {} self.logger.debug(overlaps_per_host[host]) allowed_hosts_with_ports = [ (test_case.from_host, test_case.port_string) for test_case in incoming_test_cases if test_case.to_host in overlaps_per_host[host] ] self.logger.debug("allowed_hosts_with_ports=%s", allowed_hosts_with_ports) reaching_host_find_time = time.time() runtimes[host_string]["findReachingHosts"] = ( reaching_host_find_time - host_start_time ) if allowed_hosts_with_ports: allowed_hosts, _ = zip(*allowed_hosts_with_ports) ports_per_host = { host: [ port for _host, port in allowed_hosts_with_ports if _host == host ] for host in allowed_hosts } match_all_host = GenericClusterHost({}, {}) if match_all_host in allowed_hosts: if "*" in ports_per_host[match_all_host]: self.logger.info( "Not generating negative tests for host %s" "as all connections to it are allowed", host, ) else: cases.append( NetworkTestCase( match_all_host, host, rand_port(ports_per_host[match_all_host]), False, ) ) runtimes[host_string]["matchAllCase"] = ( time.time() - reaching_host_find_time ) else: inverted_hosts = set( [ h for l in [invert_host(host) for host in allowed_hosts] for h in l ] ) hosts_on_inverted = { h: originalHost for l, originalHost in [ (invert_host(host), host) for host in allowed_hosts ] for h in l } host_inversion_time = time.time() runtimes[host_string]["hostInversion"] = ( host_inversion_time - reaching_host_find_time ) overlaps_for_inverted_hosts = { h: self.get_overlapping_hosts( h, namespaces_per_label_strings, labels_per_namespace, allowed_hosts, ) for h in inverted_hosts } overlap_calc_time = time.time() runtimes[host_string]["overlapCalc"] = ( overlap_calc_time - host_inversion_time ) self.logger.debug("InvertedHosts: %s", inverted_hosts) negative_test_targets = [ h for h in inverted_hosts if len(overlaps_for_inverted_hosts[h]) <= 1 ] self.logger.debug("NegativeTestTargets: %s", negative_test_targets) for target in negative_test_targets: ports_for_inverted_hosts_original_host = ports_per_host[ hosts_on_inverted[target] ] if ports_for_inverted_hosts_original_host: cases.append( NetworkTestCase( target, host, ports_for_inverted_hosts_original_host[0], False, ) ) else: cases.append(NetworkTestCase(target, host, "*", False)) runtimes[host_string]["casesGen"] = time.time() - overlap_calc_time else: cases.append(NetworkTestCase(host, host, "*", False)) runtimes["all"] = time.time() - start_time return cases, runtimes def get_overlapping_hosts( self, host, namespaces_per_label_strings, labels_per_namespace, other_hosts ): out = [host] for other in other_hosts: if host is not other: namespace_overlap = self.namespaces_overlap( host, namespaces_per_label_strings, labels_per_namespace, other ) pod_label_overlap = label_selector_overlap( other.pod_labels, host.pod_labels ) if namespace_overlap and pod_label_overlap: out.append(other) return out def namespaces_overlap( self, host, namespaces_per_label_strings, labels_per_namespace, other_host ): host_ns = self.resolve_namespaces(host, namespaces_per_label_strings) other_ns = self.resolve_namespaces(other_host, namespaces_per_label_strings) if host_ns and other_ns: return any(ns in other_ns for ns in host_ns) ns_labels = lookup_namespace_labels(host, labels_per_namespace) other_ns_labels = lookup_namespace_labels(other_host, labels_per_namespace) if ns_labels is not None and other_ns_labels is not None: return label_selector_overlap(ns_labels, other_ns_labels) return False def resolve_namespaces(self, host, namespaces_per_label_strings): self.logger.debug(host) if isinstance(host, ClusterHost): return [host.namespace] labels = labels_to_string(host.namespace_labels) return ( namespaces_per_label_strings[labels] if labels in namespaces_per_label_strings else [] ) def invert_host(host): if isinstance(host, GenericClusterHost): return invert_generic_cluster_host(host) if isinstance(host, ClusterHost): return invert_cluster_host(host) raise ValueError("Host %s is of unsupported type" % host)
Apache License 2.0
liyi14/mx-deepim
lib/render_glumpy/render_py_light_modelnet.py
Render_Py_Light_ModelNet.render
python
def render(self, r, t, light_position, light_intensity, brightness_k=0, r_type="quat"): if r_type == "quat": R = quat2mat(r) elif r_type == "mat": R = r self.brightness_k = brightness_k self.render_kernels[brightness_k]["u_view"] = self._get_view_mtx(R, t) self.render_kernels[brightness_k]["u_light_position"] = light_position self.render_kernels[brightness_k]["u_normal"] = np.array( np.matrix( np.dot( self.render_kernels[brightness_k]["u_view"].reshape(4, 4), self.render_kernels[brightness_k]["u_model"].reshape(4, 4), ) ).I.T ) self.render_kernels[brightness_k]["u_light_intensity"] = light_intensity app.run(framecount=0) rgb_buffer = np.zeros((self.height, self.width, 4), dtype=np.float32) gl.glReadPixels(0, 0, self.width, self.height, gl.GL_RGBA, gl.GL_FLOAT, rgb_buffer) rgb_gl = np.copy(rgb_buffer) rgb_gl.shape = 480, 640, 4 rgb_gl = rgb_gl[::-1, :] rgb_gl = np.round(rgb_gl[:, :, :3] * 255).astype(np.uint8) bgr_gl = rgb_gl[:, :, [2, 1, 0]] depth_buffer = np.zeros((self.height, self.width), dtype=np.float32) gl.glReadPixels(0, 0, self.width, self.height, gl.GL_DEPTH_COMPONENT, gl.GL_FLOAT, depth_buffer) depth_gl = np.copy(depth_buffer) depth_gl.shape = 480, 640 depth_gl = depth_gl[::-1, :] depth_bg = depth_gl == 1 depth_gl = 2 * self.zFar * self.zNear / (self.zFar + self.zNear - (self.zFar - self.zNear) * (2 * depth_gl - 1)) depth_gl[depth_bg] = 0 return bgr_gl, depth_gl
:param r: :param t: :param light_position: :param light_intensity: :param brightness_k: choose which brightness in __init__ :param r_type: :return:
https://github.com/liyi14/mx-deepim/blob/f1c850e5f8f75f1051a89c40daff9185870020f5/lib/render_glumpy/render_py_light_modelnet.py#L128-L173
from __future__ import print_function, division import numpy as np from glumpy import app, gl, gloo, data, log import logging log.setLevel(logging.WARNING) from lib.pair_matching.RT_transform import quat2mat vertex = """ uniform mat4 u_model; // Model matrix uniform mat4 u_view; // View matrix uniform mat4 u_projection; // Projection matrix attribute vec3 position; attribute vec3 normal; attribute vec2 texcoord; varying vec3 v_normal; varying vec3 v_position; varying vec2 v_texcoord; void main() { // Assign varying variables v_normal = normal; v_position = position; v_texcoord = texcoord; // Final position gl_Position = u_projection * u_view * u_model * vec4(position, 1.0); } """ def get_fragment(brightness_ratio=0.4): fragment = """ uniform mat4 u_model; // Model matrix uniform mat4 u_view; // View matrix uniform mat4 u_normal; // Normal matrix uniform mat4 u_projection; // Projection matrix uniform sampler2D u_texture; // Texture uniform vec3 u_light_position; // Light position uniform vec3 u_light_intensity; // Light intensity varying vec3 v_normal; // Interpolated normal (in) varying vec3 v_position; // Interpolated position (in) varying vec2 v_texcoord; // Interpolated fragment texture coordinates (in) void main() {{ // Calculate normal in world coordinates vec3 normal = normalize(u_normal * vec4(v_normal,1.0)).xyz; // Calculate the location of this fragment (pixel) in world coordinates vec3 position = vec3(u_view*u_model * vec4(v_position, 1)); //vec3 light_position = vec3(u_view*u_model * vec4(u_light_position, 1)); // Calculate the vector from this pixels surface to the light source vec3 surfaceToLight = u_light_position - position; // Calculate the cosine of the angle of incidence (brightness) float brightness = dot(normal, surfaceToLight) / (length(surfaceToLight) * length(normal)); brightness = max(min(brightness,1.0),0.0); // Calculate final color of the pixel, based on: // 1. The angle of incidence: brightness // 2. The color/intensities of the light: light.intensities // 3. The texture and texture coord: texture(tex, fragTexCoord) // Get texture color vec4 t_color = vec4(texture2D(u_texture, v_texcoord).rgb, 1.0); // Final color gl_FragColor = t_color * (({} + {}*brightness) * vec4(u_light_intensity, 1)); }} """.format( 1 - brightness_ratio, brightness_ratio ) return fragment class Render_Py_Light_ModelNet: def __init__( self, model_path, texture_path, K, width=640, height=480, zNear=0.25, zFar=6.0, brightness_ratios=[0.7] ): self.width = width self.height = height self.zNear = zNear self.zFar = zFar self.K = K self.model_path = model_path log.info("Loading mesh") vertices, indices = data.objload("{}".format(model_path), rescale=True) vertices["position"] = vertices["position"] / 10.0 self.render_kernels = [] for brightness_ratio in brightness_ratios: fragment = get_fragment(brightness_ratio=brightness_ratio) render_kernel = gloo.Program(vertex, fragment) render_kernel.bind(vertices) log.info("Loading texture") render_kernel["u_texture"] = np.copy(data.load("{}".format(texture_path))[::-1, :, :]) render_kernel["u_model"] = np.eye(4, dtype=np.float32) u_projection = self.my_compute_calib_proj(K, width, height, zNear, zFar) render_kernel["u_projection"] = np.copy(u_projection) render_kernel["u_light_intensity"] = 1, 1, 1 self.render_kernels.append(render_kernel) self.brightness_k = 0 self.window = app.Window(width=width, height=height, visible=False) @self.window.event def on_draw(dt): self.window.clear() gl.glDisable(gl.GL_BLEND) gl.glEnable(gl.GL_DEPTH_TEST) self.render_kernels[self.brightness_k].draw(gl.GL_TRIANGLES) @self.window.event def on_init(): gl.glEnable(gl.GL_DEPTH_TEST)
Apache License 2.0
jorritwillaert/pythonbattleshipgame
game_functions.py
convert_position
python
def convert_position(position): letter = position[0] column = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'].index(letter) row = int(position[1:]) - 1 return row, column
Convert position to 'absolute' position! (B7 becomes (1, 6))
https://github.com/jorritwillaert/pythonbattleshipgame/blob/18022317a654953ca2ab4d1e40d227a455f5efe4/game_functions.py#L110-L115
import time import random import helper class Game(): def __init__(self, player1, player2): self.player1 = player1 self.player2 = player2 def starting_up(self, own, opponent): helper.clear() ship_list = [("Destroyer", 2), ("Submarine", 3), ("Cruiser", 3), ('Battleship', 4), ('Carrier', 5)] input(own.name + ", press Enter if you're ready. ") for ship in reversed(ship_list): succesful = False while not succesful: helper.clear() own.draw_boards(own, opponent) position = insert_position(own, ship, starting = True) direction = insert_direction() if check_if_possible(own, position, direction, ship): succesful = True own.draw_ship(position, direction, ship) else: print("\nIt's not possible to place a ship here. Please chose an other location.\n") time.sleep(2) helper.clear() own.draw_boards(own, opponent) time.sleep(1) def make_move(self, own, opponent): succesful = False while not succesful: helper.clear() own.draw_boards(own, opponent) position = insert_position(own, ship = None, starting = False) coordinate = convert_position(position) if check_if_first_time(coordinate, opponent): succesful = True else: print('Please enter a non-chosen position.') time.sleep(1) helper.clear() if opponent.check_if_hit(coordinate): print('Hit!') else: print('Miss!') ships_name = opponent.check_if_sunk() if ships_name: print(ships_name + ' sunked!') time.sleep(1) own.draw_boards(own, opponent) time.sleep(1) def victory(self, own): helper.clear() if own.name != 'CPU': print("Congratulations " + own.name + ", you've won.") else: print('Unfortunately, but the computer did beat you...') while True: new_game = input("Do you want to play a new game? (y, n) ").lower() if new_game == 'y': return True elif new_game == 'n': return False else: print('Enter a valid option!\n') def starting_up_cpu(self, cpu): ship_list = [("Destroyer", 2), ("Submarine", 3), ("Cruiser", 3), ('Battleship', 4), ('Carrier', 5)] for ship in reversed(ship_list): succesful = False while not succesful: letters = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'] letter = letters[random.randint(0, 9)] number = str(random.randint(1, 10)) position = letter + number directions = ['h', 'v'] direction = directions[random.randint(0,1)] if check_if_possible(cpu, position, direction, ship): succesful = True cpu.draw_ship(position, direction, ship) def make_move_cpu(self, cpu, opponent): None def check_if_possible(player, position, direction, ship): row, column = convert_position(position) for length in range(ship[1]): if direction == 'h': if column + length >= 10 or player.board_obj.board[row][column + length].symbol != '.': return False else: if row + length >= 10 or player.board_obj.board[row + length][column].symbol != '.': return False return True
MIT License
argoproj-labs/argo-client-python
argo/workflows/client/models/v1alpha1_node_status.py
V1alpha1NodeStatus.memoization_status
python
def memoization_status(self): return self._memoization_status
Gets the memoization_status of this V1alpha1NodeStatus. # noqa: E501 :return: The memoization_status of this V1alpha1NodeStatus. # noqa: E501 :rtype: V1alpha1MemoizationStatus
https://github.com/argoproj-labs/argo-client-python/blob/993d684cab39a834770b296e028519cec035c7b5/argo/workflows/client/models/v1alpha1_node_status.py#L385-L392
import pprint import re import six from argo.workflows.client.configuration import Configuration class V1alpha1NodeStatus(object): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'boundary_id': 'str', 'children': 'list[str]', 'daemoned': 'bool', 'display_name': 'str', 'estimated_duration': 'int', 'finished_at': 'datetime', 'host_node_name': 'str', 'id': 'str', 'inputs': 'V1alpha1Inputs', 'memoization_status': 'V1alpha1MemoizationStatus', 'message': 'str', 'name': 'str', 'outbound_nodes': 'list[str]', 'outputs': 'V1alpha1Outputs', 'phase': 'str', 'pod_ip': 'str', 'progress': 'str', 'resources_duration': 'dict(str, int)', 'started_at': 'datetime', 'stored_template_id': 'str', 'synchronization_status': 'V1alpha1NodeSynchronizationStatus', 'template_name': 'str', 'template_ref': 'V1alpha1TemplateRef', 'template_scope': 'str', 'type': 'str', 'workflow_template_name': 'str' } attribute_map = { 'boundary_id': 'boundaryID', 'children': 'children', 'daemoned': 'daemoned', 'display_name': 'displayName', 'estimated_duration': 'estimatedDuration', 'finished_at': 'finishedAt', 'host_node_name': 'hostNodeName', 'id': 'id', 'inputs': 'inputs', 'memoization_status': 'memoizationStatus', 'message': 'message', 'name': 'name', 'outbound_nodes': 'outboundNodes', 'outputs': 'outputs', 'phase': 'phase', 'pod_ip': 'podIP', 'progress': 'progress', 'resources_duration': 'resourcesDuration', 'started_at': 'startedAt', 'stored_template_id': 'storedTemplateID', 'synchronization_status': 'synchronizationStatus', 'template_name': 'templateName', 'template_ref': 'templateRef', 'template_scope': 'templateScope', 'type': 'type', 'workflow_template_name': 'workflowTemplateName' } def __init__(self, boundary_id=None, children=None, daemoned=None, display_name=None, estimated_duration=None, finished_at=None, host_node_name=None, id=None, inputs=None, memoization_status=None, message=None, name=None, outbound_nodes=None, outputs=None, phase=None, pod_ip=None, progress=None, resources_duration=None, started_at=None, stored_template_id=None, synchronization_status=None, template_name=None, template_ref=None, template_scope=None, type=None, workflow_template_name=None, local_vars_configuration=None): if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._boundary_id = None self._children = None self._daemoned = None self._display_name = None self._estimated_duration = None self._finished_at = None self._host_node_name = None self._id = None self._inputs = None self._memoization_status = None self._message = None self._name = None self._outbound_nodes = None self._outputs = None self._phase = None self._pod_ip = None self._progress = None self._resources_duration = None self._started_at = None self._stored_template_id = None self._synchronization_status = None self._template_name = None self._template_ref = None self._template_scope = None self._type = None self._workflow_template_name = None self.discriminator = None if boundary_id is not None: self.boundary_id = boundary_id if children is not None: self.children = children if daemoned is not None: self.daemoned = daemoned if display_name is not None: self.display_name = display_name if estimated_duration is not None: self.estimated_duration = estimated_duration if finished_at is not None: self.finished_at = finished_at if host_node_name is not None: self.host_node_name = host_node_name self.id = id if inputs is not None: self.inputs = inputs if memoization_status is not None: self.memoization_status = memoization_status if message is not None: self.message = message self.name = name if outbound_nodes is not None: self.outbound_nodes = outbound_nodes if outputs is not None: self.outputs = outputs if phase is not None: self.phase = phase if pod_ip is not None: self.pod_ip = pod_ip if progress is not None: self.progress = progress if resources_duration is not None: self.resources_duration = resources_duration if started_at is not None: self.started_at = started_at if stored_template_id is not None: self.stored_template_id = stored_template_id if synchronization_status is not None: self.synchronization_status = synchronization_status if template_name is not None: self.template_name = template_name if template_ref is not None: self.template_ref = template_ref if template_scope is not None: self.template_scope = template_scope self.type = type if workflow_template_name is not None: self.workflow_template_name = workflow_template_name @property def boundary_id(self): return self._boundary_id @boundary_id.setter def boundary_id(self, boundary_id): self._boundary_id = boundary_id @property def children(self): return self._children @children.setter def children(self, children): self._children = children @property def daemoned(self): return self._daemoned @daemoned.setter def daemoned(self, daemoned): self._daemoned = daemoned @property def display_name(self): return self._display_name @display_name.setter def display_name(self, display_name): self._display_name = display_name @property def estimated_duration(self): return self._estimated_duration @estimated_duration.setter def estimated_duration(self, estimated_duration): self._estimated_duration = estimated_duration @property def finished_at(self): return self._finished_at @finished_at.setter def finished_at(self, finished_at): self._finished_at = finished_at @property def host_node_name(self): return self._host_node_name @host_node_name.setter def host_node_name(self, host_node_name): self._host_node_name = host_node_name @property def id(self): return self._id @id.setter def id(self, id): if self.local_vars_configuration.client_side_validation and id is None: raise ValueError("Invalid value for `id`, must not be `None`") self._id = id @property def inputs(self): return self._inputs @inputs.setter def inputs(self, inputs): self._inputs = inputs @property
Apache License 2.0
integreat/integreat-cms
src/cms/models/events/event.py
Event.get_translation
python
def get_translation(self, language_slug): return self.translations.filter(language__slug=language_slug).first()
This function uses the reverse foreign key ``self.translations`` to get all translations of ``self`` and filters them to the requested :class:`~cms.models.languages.language.Language` slug. :param language_slug: The slug of the desired :class:`~cms.models.languages.language.Language` :type language_slug: str :return: The event translation in the requested :class:`~cms.models.languages.language.Language` or :obj:`None` if no translation exists :rtype: ~cms.models.events.event_translation.EventTranslation
https://github.com/integreat/integreat-cms/blob/656680f8499e0458b5770fc6a8cbcfb98eec0d55/src/cms/models/events/event.py#L101-L113
from datetime import datetime, time, date from dateutil.rrule import weekday, rrule from django.db import models from django.utils.translation import get_language, ugettext_lazy as _ from ...constants import frequency, status from ...utils.slug_utils import generate_unique_slug from ..media.media_file import MediaFile from ..pois.poi import POI from ..regions.region import Region, Language from .recurrence_rule import RecurrenceRule class Event(models.Model): region = models.ForeignKey( Region, on_delete=models.CASCADE, related_name="events", verbose_name=_("region"), ) location = models.ForeignKey( POI, null=True, blank=True, on_delete=models.PROTECT, related_name="events", verbose_name=_("location"), ) start_date = models.DateField(verbose_name=_("start date")) start_time = models.TimeField(blank=True, verbose_name=_("start time")) end_date = models.DateField(verbose_name=_("end date")) end_time = models.TimeField(blank=True, verbose_name=_("end time")) recurrence_rule = models.OneToOneField( RecurrenceRule, null=True, on_delete=models.SET_NULL, verbose_name=_("recurrence rule"), ) icon = models.ForeignKey( MediaFile, verbose_name=_("icon"), on_delete=models.SET_NULL, related_name="icon_events", blank=True, null=True, ) archived = models.BooleanField(default=False, verbose_name=_("archived")) @property def languages(self): return Language.objects.filter(event_translations__event=self) @property def is_recurring(self): return bool(self.recurrence_rule) @property def is_all_day(self): return self.start_time == time.min and self.end_time == time.max.replace( second=0, microsecond=0 ) @property def has_location(self): return bool(self.location)
Apache License 2.0
by571/soft-actor-critic-and-extensions
files/ReplayBuffers.py
ReplayBuffer.add
python
def add(self, state, action, reward, next_state, done): if self.iter_ == self.parallel_env: self.iter_ = 0 self.n_step_buffer[self.iter_].append((state, action, reward, next_state, done)) if len(self.n_step_buffer[self.iter_]) == self.n_step: state, action, reward, next_state, done = self.calc_multistep_return(self.n_step_buffer[self.iter_]) e = self.experience(state, action, reward, next_state, done) self.memory.append(e) self.iter_ += 1
Add a new experience to memory.
https://github.com/by571/soft-actor-critic-and-extensions/blob/23ab34bd508d80409ebfb0df8bfe0981f16b1315/files/ReplayBuffers.py#L30-L39
import random import torch import numpy as np from collections import namedtuple, deque class ReplayBuffer: def __init__(self, buffer_size, batch_size, device, seed, gamma, n_step=1, parallel_env=1, ere=False): self.device = device self.memory = deque(maxlen=buffer_size) self.batch_size = batch_size self.n_step = n_step self.n_step_buffer = [deque(maxlen=self.n_step) for i in range(parallel_env)] self.parallel_env = parallel_env self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"]) self.seed = random.seed(seed) self.gamma = gamma self.iter_ = 0 self.ere = ere
MIT License
timvink/mkdocs-git-authors-plugin
mkdocs_git_authors_plugin/plugin.py
GitAuthorsPlugin.repo
python
def repo(self): return self._repo
Reference to the Repo object of the current project.
https://github.com/timvink/mkdocs-git-authors-plugin/blob/080b568519e07b18499a365ccd59b02302ce91c7/mkdocs_git_authors_plugin/plugin.py#L264-L268
from mkdocs_git_authors_plugin.git.command import GitCommandError import re import logging from mkdocs.config import config_options from mkdocs.plugins import BasePlugin from . import util from .git.repo import Repo from mkdocs_git_authors_plugin.ci import raise_ci_warnings from mkdocs_git_authors_plugin.exclude import exclude logger = logging.getLogger("mkdocs.plugins") class GitAuthorsPlugin(BasePlugin): config_scheme = ( ("show_contribution", config_options.Type(bool, default=False)), ("show_line_count", config_options.Type(bool, default=False)), ("count_empty_lines", config_options.Type(bool, default=True)), ("fallback_to_empty", config_options.Type(bool, default=False)), ("exclude", config_options.Type(list, default=[])), ("enabled", config_options.Type(bool, default=True)), ) def __init__(self): self._repo = None self._fallback = False def on_config(self, config, **kwargs): if not self.config.get('enabled'): return config try: self._repo = Repo() self._fallback = False self.repo().set_config(self.config) raise_ci_warnings(path = self.repo()._root) except GitCommandError: if self.config["fallback_to_empty"]: self._fallback = True logger.warning( "[git-authors-plugin] Unable to find a git directory and/or git is not installed." " Option 'fallback_to_empty' set to 'true': Falling back to empty authors list" ) else: raise def on_files(self, files, config, **kwargs): if not self.config.get('enabled'): return if self._fallback: return for file in files: excluded_pages = self.config.get("exclude", []) if exclude(file.src_path, excluded_pages): continue path = file.abs_src_path if path.endswith(".md"): _ = self.repo().page(path) def on_page_content(self, html, page, config, files, **kwargs): if not self.config.get('enabled'): return html excluded_pages = self.config.get("exclude", []) if exclude(page.file.src_path, excluded_pages): return html list_pattern = re.compile( r"\{\{\s*git_site_authors\s*\}\}", flags=re.IGNORECASE ) if list_pattern.search(html): html = list_pattern.sub( "" if self._fallback else util.site_authors_summary(self.repo().get_authors(), self.config), html ) return html def on_page_markdown(self, markdown, page, config, files, **kwargs): if not self.config.get('enabled'): return markdown excluded_pages = self.config.get("exclude", []) if exclude(page.file.src_path, excluded_pages): return markdown pattern_authors_summary = re.compile( r"\{\{\s*git_authors_summary\s*\}\}", flags=re.IGNORECASE ) pattern_page_authors = re.compile( r"\{\{\s*git_page_authors\s*\}\}", flags=re.IGNORECASE ) if not pattern_authors_summary.search( markdown ) and not pattern_page_authors.search(markdown): return markdown if self._fallback: markdown = pattern_authors_summary.sub("", markdown) markdown = pattern_page_authors.sub("", markdown) return markdown page_obj = self.repo().page(page.file.abs_src_path) page_authors = util.page_authors_summary(page_obj, self.config) markdown = pattern_authors_summary.sub(page_authors, markdown) markdown = pattern_page_authors.sub(page_authors, markdown) return markdown def on_page_context(self, context, page, config, nav, **kwargs): if not self.config.get('enabled'): return context if self._fallback: return context excluded_pages = self.config.get("exclude", []) if exclude(page.file.src_path, excluded_pages): logging.debug("on_page_context, Excluding page " + page.file.src_path) return context path = page.file.abs_src_path page_obj = self.repo().page(path) authors = page_obj.get_authors() page_authors = util.page_authors_summary(page_obj, self.config) site_authors = util.site_authors_summary(self.repo().get_authors(), self.config) context["git_info"] = { "page_authors": util.page_authors(authors, path), "site_authors": util.page_authors(self.repo().get_authors(), path), } context["git_page_authors"] = page_authors context["git_site_authors"] = site_authors context["git_authors"] = util.page_authors(authors, path) context["git_authors_summary"] = page_authors return context
MIT License
rockyzhengwu/transformer-en-zh
transformer/utils/tokenizer.py
_save_vocab_file
python
def _save_vocab_file(vocab_file, subtoken_list): with tf.gfile.Open(vocab_file, mode="w") as f: for subtoken in subtoken_list: f.write("'%s'\n" % _unicode_to_native(subtoken))
Save subtokens to file.
https://github.com/rockyzhengwu/transformer-en-zh/blob/4179c12f22842893931567877901758f6e064381/transformer/utils/tokenizer.py#L180-L184
from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import re import sys import unicodedata import numpy as np import six from six.moves import xrange import tensorflow as tf PAD = "<pad>" PAD_ID = 0 EOS = "<EOS>" EOS_ID = 1 RESERVED_TOKENS = [PAD, EOS] _ESCAPE_CHARS = set(u"\\_u;0123456789") _UNESCAPE_REGEX = re.compile(r"\\u|\\\\|\\([0-9]+);") _UNDEFINED_UNICODE = u"\u3013" _ALPHANUMERIC_CHAR_SET = set( six.unichr(i) for i in xrange(sys.maxunicode) if (unicodedata.category(six.unichr(i)).startswith("L") or unicodedata.category(six.unichr(i)).startswith("N"))) _MIN_MIN_COUNT = 1 _MAX_MIN_COUNT = 1000 class Subtokenizer(object): def __init__(self, vocab_file, reserved_tokens=None): tf.logging.info("Initializing Subtokenizer from file %s." % vocab_file) if reserved_tokens is None: reserved_tokens = RESERVED_TOKENS self.subtoken_list = _load_vocab_file(vocab_file, reserved_tokens) self.alphabet = _generate_alphabet_dict(self.subtoken_list) self.subtoken_to_id_dict = _list_to_index_dict(self.subtoken_list) self.max_subtoken_length = 0 for subtoken in self.subtoken_list: self.max_subtoken_length = max(self.max_subtoken_length, len(subtoken)) self._cache_size = 2 ** 20 self._cache = [(None, None)] * self._cache_size @staticmethod def init_from_files( vocab_file, files, target_vocab_size, threshold, min_count=None, file_byte_limit=1e6, reserved_tokens=None): if reserved_tokens is None: reserved_tokens = RESERVED_TOKENS if tf.gfile.Exists(vocab_file): tf.logging.info("Vocab file already exists (%s)" % vocab_file) else: tf.logging.info("Begin steps to create subtoken vocabulary...") token_counts = _count_tokens(files, file_byte_limit) alphabet = _generate_alphabet_dict(token_counts) subtoken_list = _generate_subtokens_with_target_vocab_size( token_counts, alphabet, target_vocab_size, threshold, min_count, reserved_tokens) tf.logging.info("Generated vocabulary with %d subtokens." % len(subtoken_list)) _save_vocab_file(vocab_file, subtoken_list) return Subtokenizer(vocab_file) def encode(self, raw_string, add_eos=False): ret = [] tokens = _split_string_to_tokens(_native_to_unicode(raw_string)) for token in tokens: ret.extend(self._token_to_subtoken_ids(token)) if add_eos: ret.append(EOS_ID) return ret def _token_to_subtoken_ids(self, token): cache_location = hash(token) % self._cache_size cache_key, cache_value = self._cache[cache_location] if cache_key == token: return cache_value ret = _split_token_to_subtokens( _escape_token(token, self.alphabet), self.subtoken_to_id_dict, self.max_subtoken_length) ret = [self.subtoken_to_id_dict[subtoken_id] for subtoken_id in ret] self._cache[cache_location] = (token, ret) return ret def decode(self, subtokens): if isinstance(subtokens, np.ndarray): subtokens = subtokens.tolist() if not subtokens: return "" assert isinstance(subtokens, list) and isinstance(subtokens[0], int), ( "Subtokens argument passed into decode() must be a list of integers.") return _unicode_to_native( _join_tokens_to_string(self._subtoken_ids_to_tokens(subtokens))) def _subtoken_ids_to_tokens(self, subtokens): escaped_tokens = "".join([ self.subtoken_list[s] for s in subtokens if s < len(self.subtoken_list)]) escaped_tokens = escaped_tokens.split("_") ret = [] for token in escaped_tokens: if token: ret.append(_unescape_token(token)) return ret
Apache License 2.0
googleapis/python-bigtable
google/cloud/bigtable/instance.py
Instance.create
python
def create( self, location_id=None, serve_nodes=None, default_storage_type=None, clusters=None, ): if clusters is None: warnings.warn( _INSTANCE_CREATE_WARNING.format( "location_id", "serve_nodes", "default_storage_type" ), DeprecationWarning, stacklevel=2, ) cluster_id = "{}-cluster".format(self.instance_id) clusters = [ self.cluster( cluster_id, location_id=location_id, serve_nodes=serve_nodes, default_storage_type=default_storage_type, ) ] elif ( location_id is not None or serve_nodes is not None or default_storage_type is not None ): raise ValueError( "clusters and one of location_id, serve_nodes, \ default_storage_type can not be set \ simultaneously." ) instance_pb = instance.Instance( display_name=self.display_name, type_=self.type_, labels=self.labels ) parent = self._client.project_path return self._client.instance_admin_client.create_instance( request={ "parent": parent, "instance_id": self.instance_id, "instance": instance_pb, "clusters": {c.cluster_id: c._to_pb() for c in clusters}, } )
Create this instance. For example: .. literalinclude:: snippets.py :start-after: [START bigtable_api_create_prod_instance] :end-before: [END bigtable_api_create_prod_instance] :dedent: 4 .. note:: Uses the ``project`` and ``instance_id`` on the current :class:`Instance` in addition to the ``display_name``. To change them before creating, reset the values via .. code:: python instance.display_name = 'New display name' instance.instance_id = 'i-changed-my-mind' before calling :meth:`create`. :type location_id: str :param location_id: (Creation Only) The location where nodes and storage of the cluster owned by this instance reside. For best performance, clients should be located as close as possible to cluster's location. For list of supported locations refer to https://cloud.google.com/bigtable/docs/locations :type serve_nodes: int :param serve_nodes: (Optional) The number of nodes in the instance's cluster; used to set up the instance's cluster. :type default_storage_type: int :param default_storage_type: (Optional) The storage media type for persisting Bigtable data. Possible values are represented by the following constants: :data:`google.cloud.bigtable.enums.StorageType.SSD`. :data:`google.cloud.bigtable.enums.StorageType.HDD`, Defaults to :data:`google.cloud.bigtable.enums.StorageType.UNSPECIFIED`. :type clusters: class:`~[~google.cloud.bigtable.cluster.Cluster]` :param clusters: List of clusters to be created. :rtype: :class:`~google.api_core.operation.Operation` :returns: The long-running operation corresponding to the create operation. :raises: :class:`ValueError <exceptions.ValueError>` if both ``clusters`` and one of ``location_id``, ``serve_nodes`` and ``default_storage_type`` are set.
https://github.com/googleapis/python-bigtable/blob/a99bf88417d6aec03923447c70c2752f6bb5c459/google/cloud/bigtable/instance.py#L225-L332
import re from google.cloud.bigtable.app_profile import AppProfile from google.cloud.bigtable.cluster import Cluster from google.cloud.bigtable.table import Table from google.protobuf import field_mask_pb2 from google.cloud.bigtable_admin_v2.types import instance from google.iam.v1 import options_pb2 from google.api_core.exceptions import NotFound from google.cloud.bigtable.policy import Policy import warnings _INSTANCE_NAME_RE = re.compile( r"^projects/(?P<project>[^/]+)/" r"instances/(?P<instance_id>[a-z][-a-z0-9]*)$" ) _INSTANCE_CREATE_WARNING = """ Use of `instance.create({0}, {1}, {2})` will be deprecated. Please replace with `cluster = instance.cluster({0}, {1}, {2})` `instance.create(clusters=[cluster])`.""" class Instance(object): def __init__( self, instance_id, client, display_name=None, instance_type=None, labels=None, _state=None, ): self.instance_id = instance_id self._client = client self.display_name = display_name or instance_id self.type_ = instance_type self.labels = labels self._state = _state def _update_from_pb(self, instance_pb): if not instance_pb.display_name: raise ValueError("Instance protobuf does not contain display_name") self.display_name = instance_pb.display_name self.type_ = instance_pb.type_ self.labels = dict(instance_pb.labels) self._state = instance_pb.state @classmethod def from_pb(cls, instance_pb, client): match = _INSTANCE_NAME_RE.match(instance_pb.name) if match is None: raise ValueError( "Instance protobuf name was not in the " "expected format.", instance_pb.name, ) if match.group("project") != client.project: raise ValueError( "Project ID on instance does not match the " "project ID on the client" ) instance_id = match.group("instance_id") result = cls(instance_id, client) result._update_from_pb(instance_pb) return result @property def name(self): return self._client.instance_admin_client.instance_path( project=self._client.project, instance=self.instance_id ) @property def state(self): return self._state def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented return other.instance_id == self.instance_id and other._client == self._client def __ne__(self, other): return not self == other
Apache License 2.0
ucb-art/bag_framework
bag/data/lti.py
LTICircuit.add_vccs
python
def add_vccs(self, gm, p_name, n_name, cp_name, cn_name='gnd'): node_p = self._get_node_id(p_name) node_n = self._get_node_id(n_name) node_cp = self._get_node_id(cp_name) node_cn = self._get_node_id(cn_name) if node_p == node_n or node_cp == node_cn: return if node_cp >= 0: if node_p >= 0: self._add(self._gmat_data, (node_p, node_cp), gm) if node_n >= 0: self._add(self._gmat_data, (node_n, node_cp), -gm) if node_cn >= 0: if node_p >= 0: self._add(self._gmat_data, (node_p, node_cn), -gm) if node_n >= 0: self._add(self._gmat_data, (node_n, node_cn), gm)
Adds a voltage controlled current source to the circuit. Parameters ---------- gm : float the gain of the voltage controlled current source, in Siemens. p_name : str the terminal that the current flows out of. n_name : str the terminal that the current flows in to. cp_name : str the positive voltage control terminal. cn_name : str the negative voltage control terminal. Defaults to 'gnd'.
https://github.com/ucb-art/bag_framework/blob/8efa57ad719b2b02a005e234d87ad6f0e5e7a3de/bag/data/lti.py#L104-L138
from typing import Dict, List, Tuple, Union, Optional import numpy as np import scipy.signal import scipy.sparse import scipy.sparse.linalg from scipy.signal.ltisys import StateSpaceContinuous, TransferFunctionContinuous class LTICircuit(object): _float_min = np.finfo(np.float64).eps def __init__(self, udot_tol=1e-12): self._num_n = 0 self._gmat_data = {} self._cmat_data = {} self._vcvs_list = [] self._ind_data = {} self._node_id = {'gnd': -1} self._udot_tol = udot_tol def _get_node_id(self, name): if name not in self._node_id: ans = self._num_n self._node_id[name] = ans self._num_n += 1 return ans else: return self._node_id[name] @staticmethod def _add(mat, key, val): if key in mat: mat[key] += val else: mat[key] = val def add_res(self, res, p_name, n_name): res_sgn = 1 if res >= 0 else -1 g = res_sgn / max(abs(res), self._float_min) self.add_conductance(g, p_name, n_name) def add_conductance(self, g, p_name, n_name): node_p = self._get_node_id(p_name) node_n = self._get_node_id(n_name) if node_p == node_n: return if node_p < node_n: node_p, node_n = node_n, node_p self._add(self._gmat_data, (node_p, node_p), g) if node_n >= 0: self._add(self._gmat_data, (node_p, node_n), -g) self._add(self._gmat_data, (node_n, node_p), -g) self._add(self._gmat_data, (node_n, node_n), g)
BSD 3-Clause New or Revised License
dask/dask
versioneer.py
git_get_keywords
python
def git_get_keywords(versionfile_abs): keywords = {} try: f = open(versionfile_abs) for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) f.close() except OSError: pass return keywords
Extract version information from the given file.
https://github.com/dask/dask/blob/e05d1cf32899a0379f38c9e2a971b11465f470a4/versioneer.py#L973-L994
try: import configparser except ImportError: import ConfigParser as configparser import errno import json import os import re import subprocess import sys class VersioneerConfig: def get_root(): root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, "setup.py") versioneer_py = os.path.join(root, "versioneer.py") if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, "setup.py") versioneer_py = os.path.join(root, "versioneer.py") if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = ("Versioneer was unable to run the project root directory. " "Versioneer requires setup.py to be executed from " "its immediate directory (like 'python setup.py COMMAND'), " "or in a way that lets it use sys.argv[0] to find the root " "(like 'python path/to/setup.py COMMAND').") raise VersioneerBadRootError(err) try: me = os.path.realpath(os.path.abspath(__file__)) if os.path.splitext(me)[0] != os.path.splitext(versioneer_py)[0]: print("Warning: build in %s is using versioneer.py from %s" % (os.path.dirname(me), versioneer_py)) except NameError: pass return root def get_config_from_root(root): setup_cfg = os.path.join(root, "setup.cfg") parser = configparser.SafeConfigParser() with open(setup_cfg) as f: parser.readfp(f) VCS = parser.get("versioneer", "VCS") def get(parser, name): if parser.has_option("versioneer", name): return parser.get("versioneer", name) return None cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = get(parser, "style") or "" cfg.versionfile_source = get(parser, "versionfile_source") cfg.versionfile_build = get(parser, "versionfile_build") cfg.tag_prefix = get(parser, "tag_prefix") if cfg.tag_prefix in ("''", '""'): cfg.tag_prefix = "" cfg.parentdir_prefix = get(parser, "parentdir_prefix") cfg.verbose = get(parser, "verbose") return cfg class NotThisMethod(Exception): LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): def decorate(f): if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False): assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) p = subprocess.Popen([c] + args, cwd=cwd, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except OSError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None else: if verbose: print(f"unable to find command, tried {commands}") return None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) return None return stdout LONG_VERSION_PY['git'] = r''' # This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.16 (https://github.com/warner/python-versioneer) """Git implementation of _version.py.""" import errno import os import re import subprocess import sys def get_keywords(): """Get the keywords needed to look up the version information.""" # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "%(DOLLAR)sFormat:%%d%(DOLLAR)s" git_full = "%(DOLLAR)sFormat:%%H%(DOLLAR)s" keywords = {"refnames": git_refnames, "full": git_full} return keywords class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_config(): """Create, populate and return the VersioneerConfig() object.""" # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "%(STYLE)s" cfg.tag_prefix = "%(TAG_PREFIX)s" cfg.parentdir_prefix = "%(PARENTDIR_PREFIX)s" cfg.versionfile_source = "%(VERSIONFILE_SOURCE)s" cfg.verbose = False return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False): """Call the given command(s).""" assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %%s" %% dispcmd) print(e) return None else: if verbose: print("unable to find command, tried %%s" %% (commands,)) return None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %%s (error)" %% dispcmd) return None return stdout def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. """ dirname = os.path.basename(root) if not dirname.startswith(parentdir_prefix): if verbose: print("guessing rootdir is '%%s', but '%%s' doesn't start with " "prefix '%%s'" %% (root, dirname, parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None} @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %%d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "main". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%%s', no digits" %% ",".join(refs-tags)) if verbose: print("likely tags: %%s" %% ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %%s" %% r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None } # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags"} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ if not os.path.exists(os.path.join(root, ".git")): if verbose: print("no .git in %%s" %% root) raise NotThisMethod("no .git directory") GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%%s*" %% tag_prefix], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%%s'" %% describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%%s' doesn't start with prefix '%%s'" print(fmt %% (full_tag, tag_prefix)) pieces["error"] = ("tag '%%s' doesn't start with prefix '%%s'" %% (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits return pieces def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%%d.g%%s" %% (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%%d.g%%s" %% (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%%d" %% pieces["distance"] else: # exception #1 rendered = "0.post.dev%%d" %% pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%%s" %% pieces["short"] else: # exception #1 rendered = "0.post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%%s" %% pieces["short"] return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%%d-g%%s" %% (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%%d-g%%s" %% (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"]} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%%s'" %% style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None} def get_versions(): """Get version information or return default if unable to do so.""" # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for i in cfg.versionfile_source.split('/'): root = os.path.dirname(root) except NameError: return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree"} try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version"} ''' @register_vcs_handler("git", "get_keywords")
BSD 3-Clause New or Revised License
evidence-surveillance/trial2rev
app/views.py
submit_trial
python
def submit_trial(): if not current_user.is_authenticated: return "Sorry! This action is only available to logged-in users", 400, { 'ContentType': 'application/json'} data = request.json conn = dblib.create_con(VERBOSE=True) cur = conn.cursor(cursor_factory=psycopg2.extras.DictCursor) if data['nct_id'] and data['review']: cur.execute("SELECT * FROM tregistry_entries WHERE nct_id =%s;", (data['nct_id'],)) trial_reg_data = cur.fetchone() conn.close() if not trial_reg_data: missing = crud.add_missing_trial(data['nct_id']) if not missing: conn.close() return json.dumps({'success': False, 'message': 'Unable to retrieve trial'}), 200, { 'ContentType': 'application/json'} if utils.is_doi(data['review']): data['review'] = crud.convert_id(data['review'], 'review_id') result = crud.check_existing_review_trial(data['review'], data['nct_id']) if not result: crud.review_trial(data['review'], data['nct_id'], False, data['relationship'], current_user.nickname, current_user.db_id) return json.dumps({'success': True, 'message': 'Added trial successfully', 'data': str(data)}), 200, { 'ContentType': 'application/json'} elif data['relationship'] == result['relationship']: return json.dumps({'success': False, 'message': 'Trial already exists', 'move': False}), 200, { 'ContentType': 'application/json'} elif data['relationship'] == 'relevant' and result['relationship'] == 'included': return json.dumps( {'success': False, 'message': 'Trial is already listed as included', 'move': True}), 200, { 'ContentType': 'application/json'} else: return json.dumps( {'success': False, 'message': 'Trial already in list of relevant trials', 'move': True}), 200, { 'ContentType': 'application/json'}
submit a relevant or included trial for the current article @return: success/failure message
https://github.com/evidence-surveillance/trial2rev/blob/c007df6ac54fa9f446c6a3c6b29442e4d77970df/app/views.py#L807-L848
import json import psycopg2.extras from flask import render_template, request, url_for, redirect, flash, send_file, abort from flask_login import login_required, LoginManager, login_user, logout_user, current_user from itsdangerous import URLSafeTimedSerializer import bot import config import dblib import plot import crud from app import app, mail, socketio, cache from .forms import EmailPasswordForm, NewUserForm, ChangePasswordForm, ForgotPasswordForm, PasswordForm, RequestRegisterForm, ContactForm from .user import User from celery import chord import random import utils import request_data import eventlet from flask_socketio import emit from eutils import Client from collections import OrderedDict from timeit import default_timer as time login_manager = LoginManager() login_manager.init_app(app) login_manager.login_view = 'login' ts = URLSafeTimedSerializer(app.secret_key) eutils_key = config.EUTILS_KEY @socketio.on('connect') def test_connect(): emit('my_response', {'data': 'Connected'}) @socketio.on('trigger_basicbot2') def trigger_basicbot2(json): review = json['review_id'] if not bot.check_basicbot2_running(review): bot.basicbot2.delay(review_id=review, sess_id=request.sid) @app.route('/plot', methods=['POST']) def get_plot(): ids = crud.get_locked() test_id = random.choice(ids) review_data = crud.review_medtadata_db(test_id) trials = crud.get_review_trials_fast(test_id, usr=current_user if current_user.is_authenticated else None) return json.dumps( {'success': True, 'data': {'section': 'plot', 'data': plot.get_tsne_data(trials['reg_trials']), 'page': 'home', 'review_id': test_id, 'title': review_data['title']} }), 200, { 'ContentType': 'application/json'} @socketio.on('get_trial') def trial_data(data): trial_id = data['trial_id'] trial = crud.get_trial_data(trial_id) socketio.emit('trial_data', { 'trial': trial }, room=request.sid) @socketio.on('refresh_related') def refresh_related(data): trials = data['trials'] related = crud.related_reviews_from_trials(trials) socketio.emit('page_content', { 'section': 'related_reviews_update', 'data': render_template('related_review_item.html', related_reviews=related) }, room=request.sid) @socketio.on('freetext_trials') def freetext_trials(data): start = time() freetext = '' if 'abstract' in data: freetext = data['abstract'] crud.update_ftext_review(data['review_id'], current_user.db_id, freetext) else: freetext = crud.get_ftext_review(data['review_id'], current_user.db_id)['abstract'] bp1 = time() print('1 Time since last breakpoint: ', bp1 - start) print('Total time: ', bp1 - start) emit('blank_update', {'msg': 'finding similar trials'}, room=request.sid) trial_ids = list( OrderedDict.fromkeys( bot.basicbot2_freetext(data['review_id']) + bot.docsim_freetext(freetext) ).keys() ) bp2 = time() print('2 Time since last breakpoint: ', bp2 - bp1) print('Total time: ', bp2 - start) emit('blank_update', {'msg': 'retrieving related reviews'}, room=request.sid) related = crud.related_reviews_from_trials(trial_ids, True) recommended_trials = crud.get_trials_by_id(trial_ids, True) if trial_ids else [] flagged_trials = crud.get_ftext_trials_fast(data['review_id'])['reg_trials'] flagged_ids = [flagged_trial['nct_id'] for flagged_trial in flagged_trials] recommended_trials = [trial for trial in recommended_trials if trial['nct_id'] not in flagged_ids] plot_trials = [] for t in (recommended_trials + flagged_trials): t = dict(t) t['sum'] = 2 t['verified'] = False t['relationship'] = 'included' if t['nct_id'] in flagged_ids else 'relevant' plot_trials.append(t) emit('blank_update', {'msg': 'loading plots'}, room=request.sid) formatted = utils.trials_to_plotdata(plot_trials) socketio.emit('page_content', {'section': 'plot', 'data': formatted, 'page': 'blank', }, room=request.sid) emit('blank_update', {'msg': 'rendering page'}, room=request.sid) bp3 = time() print('3 Time since last breakpoint: ', bp3 - bp2) print('Total time: ', bp3 - start) bp4 = time() print('4 Time since last breakpoint: ', bp4 - bp3) print('Total time: ', bp4 - start) emit('page_content', { 'section': 'recommended_trials', 'data': render_template('recommended_trials.html', reg_trials=recommended_trials), }, room=request.sid) emit('page_content', { 'section': 'related_reviews', 'data': render_template('related_reviews.html', related_reviews=related) }, room=request.sid) emit('page_content', {'section': 'incl_trials', 'data': render_template('ftext_incl_trials.html', reg_trials=flagged_trials) }, room=request.sid) emit('blank_update', {'msg': 'loading complete'}, room=request.sid) bp5 = time() print('5 Time since last breakpoint: ', bp5 - bp4) print('Total time: ', bp5 - start) @socketio.on('refresh_trials') def refresh_trials(json): id = json['review_id'] type = json['type'] plot_bool = json['plot'] ftext_bool = json.get('ftext', False) sort = json['sort'] if 'sort' in json else 'total_votes' if ftext_bool: trials = crud.get_ftext_trials_fast(id)['reg_trials'] emit('page_content', {'section': 'incl_trials', 'sort': sort, 'data': render_template('ftext_incl_trials.html', reg_trials=trials) }, room=request.sid) if plot_bool: recommended_trials = crud.get_trials_by_id(json['rec_trials']) flagged_ids = [trial['nct_id'] for trial in trials] recommended_trials = [trial for trial in recommended_trials if trial['nct_id'] not in flagged_ids] plot_trials = [] for t in (recommended_trials + trials): t = dict(t) t['sum'] = 2 t['verified'] = False t['relationship'] = 'included' if t['nct_id'] in flagged_ids else 'relevant' plot_trials.append(t) formatted = utils.trials_to_plotdata(plot_trials) socketio.emit('page_content', {'section': 'plot', 'data': formatted, 'page': 'reviewdetail', 'review_id': id }, room=request.sid) else: trials = crud.get_review_trials_fast(id, order=sort, usr=current_user if current_user.is_authenticated else None) locked = crud.review_lock_status(id) relevant = [trial['nct_id'] for trial in trials['reg_trials'] if trial['relationship'] == 'relevant'] verified = [trial['nct_id'] for trial in trials['reg_trials'] if trial['relationship'] == 'included'] if (type == 'rel' and relevant) or (type == 'incl' and verified): emit('page_content', {'section': 'rel_trials' if type == 'rel' else 'incl_trials', 'sort': sort, 'data': render_template('rel_trials.html' if type == 'rel' else 'incl_trials.html', reg_trials=trials['reg_trials'], locked=locked)}, room=request.sid) if plot_bool: formatted = utils.trials_to_plotdata(trials['reg_trials']) socketio.emit('page_content', {'section': 'plot', 'data': formatted, 'page': 'reviewdetail', 'review_id': id }, room=request.sid) elif type == 'incl' and not verified['ids']: emit('page_content', {'section': 'incl_trials', 'sort': sort, 'data': render_template('incl_trials.html', reg_trials=[], locked=False)}, room=request.sid) @socketio.on('search') def search(json): id = json['review_id'] emit('search_update', {'msg': 'Searching...'}, room=request.sid) eventlet.sleep(0) if not id: emit('page_content', {'section': 'no_results', 'data': render_template('noresults.html', id=id)}, room=request.sid) return conn = dblib.create_con(VERBOSE=True) cur = conn.cursor(cursor_factory=psycopg2.extras.DictCursor) review = '' found = True if (utils.RepresentsInt(id)): review = crud.review_medtadata_db(id) elif utils.is_doi(id): cur.execute("SELECT * FROM systematic_reviews WHERE doi = %s;", (id,)) review = cur.fetchone() conn.close() else: conn.close() emit('search_update', {'msg': 'Searching for keyword matches in our database'}, room=request.sid) search_result = request_data.advanced_search(id) if not search_result: emit('page_content', {'section': 'no_results', 'data': render_template('noresults.html', id=id)}, room=request.sid) return emit('page_content', {'section': 'search_results', 'data': render_template('searchresult.html', reviews=search_result, searchterm=id)}, room=request.sid) return if review is None: found = False if not current_user.is_authenticated: conn.close() emit('page_content', {'section': 'no_results', 'data': render_template('noresults.html', id=id)}, room=request.sid) return emit('search_update', {'msg': 'Not found in local database. Searching PubMed for article'}, room=request.sid) eventlet.sleep(0) if utils.is_doi(id): convert = crud.convert_id(id, 'pmid') if convert: id = convert else: emit('search_update', {'msg': 'Not found in Pubmed :('}, room=request.sid) emit('page_content', {'section': 'no_results', 'data': render_template('noresults.html', id=id)}, room=request.sid) return ec = Client(api_key=eutils_key) article = ec.efetch(db='pubmed', id=id) found_review = None for art in article: if art and str(art.pmid) == id: found_review = art break if found_review: result = found_review.pmid if not result: flash('Unable to retrieve metadata for this article. Please try again later') abort(404) emit('search_update', {'msg': 'Found article on PubMed. Downloading metadata...'}, room=request.sid) eventlet.sleep(0) crud.pubmedarticle_to_db(found_review, 'systematic_reviews') review = crud.review_medtadata_db(id) emit('page_content', {'data': render_template('review_data.html', review=review), 'section': 'review_data'}, room=request.sid) eventlet.sleep(0) emit('search_update', {'msg': 'Saved metadata... triggering bots'}, room=request.sid) bot.docsim.delay(id, sess_id=request.sid) eventlet.sleep(0) if 'cochrane' in review['source'].lower() and 'doi' in review: cb_bb = bot.cochrane_ongoing_excluded.si(review['doi'], id, sess_id=request.sid) cb_bb.link(bot.basicbot2.si(review_id=id, sess_id=request.sid)) chord((bot.cochranebot.s(review['doi'], id, sess_id=request.sid), bot.check_citations.s(id, sess_id=request.sid)), cb_bb).delay() else: chord((bot.check_citations.s(id, sess_id=request.sid)), bot.basicbot2.si(review_id=id, sess_id=request.sid)).delay() else: print emit('page_content', {'section': 'no_results', 'data': render_template('noresults.html', id=id)}, room=request.sid) return if found: print eventlet.sleep(0) emit('search_update', {'msg': 'Found review in our database! Retrieving data..'}, room=request.sid) eventlet.sleep(0) print emit('page_content', {'data': render_template('review_data.html', review=review, starred=crud.is_starred(review['review_id'], current_user.db_id) if current_user.is_authenticated else False), 'section': 'review_data', 'related_reviews': render_template('related_reviews.html', related_reviews=crud.related_reviews( review['review_id']))}, room=request.sid) eventlet.sleep(0) trials = crud.get_review_trials_fast(review[0], usr=current_user if current_user.is_authenticated else None) relevant = [trial['nct_id'] for trial in trials['reg_trials'] if trial['relationship'] == 'relevant'] verified = [trial['nct_id'] for trial in trials['reg_trials'] if trial['relationship'] == 'included'] emit('search_update', {'msg': 'Generating cool plots...'}, room=request.sid) eventlet.sleep(0) formatted = utils.trials_to_plotdata(trials['reg_trials']) socketio.emit('page_content', {'section': 'plot', 'data': formatted, 'page': 'reviewdetail', 'review_id': review[0] }, room=request.sid) emit('page_content', {'section': 'rel_trials', 'data': render_template('rel_trials.html', reg_trials=trials['reg_trials'], locked=review['included_complete'])}, room=request.sid) eventlet.sleep(0) if verified: emit('page_content', {'section': 'incl_trials', 'data': render_template('incl_trials.html', reg_trials=trials['reg_trials'], locked=review['included_complete'])}, room=request.sid) eventlet.sleep(0) else: emit('page_content', {'section': 'incl_trials', 'data': render_template('incl_trials.html', reg_trials=[], locked=False)}, room=request.sid) @login_manager.user_loader def load_user(id): obj = User.get(id) if obj is not None: return obj else: return None @cache.cached(timeout=60) @app.route('/') def index(): return render_template('index.html') @cache.cached(timeout=60) @app.route('/data_summary', methods=['GET']) def unique_reviews_trials(): return json.dumps({'success': True, 'data': crud.data_summary() }, default=str), 200, { 'ContentType': 'application/json'} @cache.cached(timeout=600) @app.route('/browse') def browse(): categories = [{ "name": category['category'], "badge_code": category['code'], "href": "/category/%s" % category['id'] } for category in crud.get_categories()] return render_template('browse.html', items=categories) @cache.cached(timeout=86400) @app.route('/category/<category>') def browse_category(category): conditions = [{ "name": condition['condition'], "badge_code": "condition_%s" % condition['id'], "href": "/condition/%s" % condition['id'] } for condition in crud.get_conditions(category)] return render_template('browse.html', items=conditions, title=crud.category_name(category) ) @app.route('/condition_counts', methods=['POST']) def condition_counts(): data = request.json try: only_verified = bool(int(data['onlyVerified'])) except ValueError as e: return json.dumps({'success': False, 'msg': 'bad value for onlyVerified' }), 400, { 'ContentType': 'application/json'} return json.dumps({'success': True, 'data': crud.condition_counts(data['category'], only_verified) }), 200, { 'ContentType': 'application/json'} @app.route('/category_counts', methods=['GET']) def category_counts(): try: only_verified = bool(int(request.args.get('onlyVerified'))) except ValueError as e: return json.dumps({'success': False, 'msg': 'bad value for onlyVerified' }), 400, { 'ContentType': 'application/json'} return json.dumps({'success': True, 'data': crud.category_counts(only_verified) }), 200, { 'ContentType': 'application/json'} @cache.cached(timeout=60) @app.route('/condition/<condition>') def review_conditions(condition): return render_template('reviews_by_condition.html', reviews=crud.reviews_for_condition(condition)) @app.route('/information') def information(): return render_template('information.html') @app.route("/logout") @login_required def logout(): logout_user() return redirect(url_for('login', _external=True, _scheme='https')) @app.route('/login', methods=['GET']) def login(): return render_template('login.html', loginform=EmailPasswordForm(), forgotpw=ForgotPasswordForm(), accessform=RequestRegisterForm()) @app.route('/login', methods=['POST']) def submit_login(): if request.form['submit'] == "Login": login_form = EmailPasswordForm(request.form) if login_form.validate_on_submit(): registered_user = User.get(login_form.login_email.data) if registered_user is None or registered_user.password is None: flash('Username is invalid', 'error') return render_template('login.html', loginform=login_form, forgotpw=ForgotPasswordForm(), accessform=RequestRegisterForm()) if not registered_user.check_password(login_form.password.data): flash('Password is invalid', 'error') return render_template('login.html', loginform=login_form, forgotpw=ForgotPasswordForm(), accessform=RequestRegisterForm()) login_user(registered_user) return redirect(request.args.get('next') or url_for('index', _external=True, _scheme='https')) else: return render_template('login.html', loginform=login_form, forgotpw=ForgotPasswordForm(), accessform=RequestRegisterForm()) @app.route('/search', methods=['GET']) def search(): return render_template('reviewdetail.html') @app.route('/trial', methods=['GET']) def trial(): return render_template('trial.html') @app.route('/blank', methods=['GET']) @login_required def blank(): if not current_user.is_authenticated: return "Sorry! This action is only available to logged-in users", 401, { 'ContentType': 'application/json'} review_id = request.args.get('id') if not review_id: review_id = crud.get_most_recent_ftext_review(current_user.db_id) return redirect('/blank?id=%s' % review_id) review = crud.get_ftext_review(review_id, current_user.db_id) if not review: return "That resource does not exist.", 404, { 'ContentType': 'application/json'} if current_user.db_id != review['user_id']: return "Sorry! You do not have access to view this.", 403, { 'ContentType': 'application/json'} return render_template('blank.html', review_id=review_id, abstract=review['abstract'], title=review['title']) @app.route('/recent_ftext_review', methods=['GET']) def recent_ftext_review(): if not current_user.is_authenticated: return "Sorry! This action is only available to logged-in users", 401, { 'ContentType': 'application/json'} user_id = current_user.db_id idx = crud.get_most_recent_ftext_review(user_id) return json.dumps({'success': True, 'message': 'Review retrieved successfully', 'idx': idx}), 200, { 'ContentType': 'application/json'} @app.route('/createftext', methods=['POST']) def create_ftext_review(): if not current_user.is_authenticated: return "Sorry! This action is only available to logged-in users", 401, { 'ContentType': 'application/json'} idx = crud.create_ftext_review(current_user.db_id) return json.dumps({'success': True, 'message': 'Review created successfully', 'idx': idx}), 201, { 'ContentType': 'application/json'} @app.route('/deleteftext', methods=['POST']) def delete_ftext_review(): if not current_user.is_authenticated: return "Sorry! This action is only available to logged-in users", 401, { 'ContentType': 'application/json'} data = request.json review_id = data['review_id'] user_id = current_user.db_id idx = crud.delete_ftext_review(review_id, user_id) if idx: return json.dumps({'success': True, 'message': 'Review deleted successfully', 'idx': review_id}), 200, { 'ContentType': 'application/json'} else: return json.dumps({'success': False, 'message': 'Review not found', 'idx': review_id}), 404, { 'ContentType': 'application/json'} @app.route('/updateftexttitle', methods=['POST']) def update_ftext_title(): if not current_user.is_authenticated: return "Sorry! This action is only available to logged-in users", 401, { 'ContentType': 'application/json'} data = request.json review_id = data['review_id'] user_id = current_user.db_id title = data['title'] idx = crud.update_ftext_title(review_id, title, user_id) if idx: return json.dumps({'success': True, 'message': 'Review deleted successfully', 'idx': review_id}), 200, { 'ContentType': 'application/json'} else: return json.dumps({'success': False, 'message': 'Review not found', 'idx': review_id}), 404, { 'ContentType': 'application/json'} @app.route('/saved', methods=['GET']) @login_required def saved(): if not current_user.is_authenticated: return "Sorry! This action is only available to logged-in users", 401, { 'ContentType': 'application/json'} reviews = crud.get_saved_reviews(current_user.db_id) ftext_reviews = crud.get_ftext_reviews(current_user.db_id) return render_template('saved.html', reviews=reviews, ftext_reviews=ftext_reviews) @app.route('/save_review', methods=['POST']) def save_review(): data = request.json crud.save_review(data['review_id'], current_user.db_id, data['value']) return json.dumps({'success': True, 'message': 'Review saved successfully'}), 200, { 'ContentType': 'application/json'} @app.route('/included_relevant', methods=['POST']) def incl_rel(): if not current_user.is_authenticated: return "Sorry! This action is only available to logged-in users", 400, { 'ContentType': 'application/json'} data = request.json if utils.is_doi(data['review']): data['review'] = crud.convert_id(data['review'], 'pmid') link_id = crud.get_link_id(data['nct_id'], data['review']) crud.change_relationship(link_id, 'relevant') return json.dumps({'success': True, 'message': 'Trial moved successfully'}), 200, { 'ContentType': 'application/json'} @app.route('/download/<detail>', methods=['GET']) @login_required def download_matrix(detail): try: if detail == 'all': return send_file('../review_trial_matrix.csv', as_attachment=True) if detail == 'complete': return send_file('../complete_review_matrix.csv', as_attachment=True) except Exception as e: abort(404) @app.route('/download', methods=['GET']) @login_required def download(): return render_template('download.html') @app.route('/relevant_included', methods=['POST']) def rel_incl(): if not current_user.is_authenticated: return "Sorry! This action is only available to logged-in users", 400, { 'ContentType': 'application/json'} data = request.json if utils.is_doi(data['review']): data['review'] = crud.convert_id(data['review'], 'pmid') link_id = crud.get_link_id(data['nct_id'], data['review']) crud.change_relationship(link_id, 'included') return json.dumps({'success': True, 'message': 'Trial moved successfully'}), 200, { 'ContentType': 'application/json'} @app.route('/included_complete', methods=['POST']) def included_complete(): if not current_user.is_authenticated: return "Sorry! This action is only available to logged-in users", 400, { 'ContentType': 'application/json'} data = request.json review = data['review_id'] complete = data['value'] crud.complete_studies(review, complete) return json.dumps({'success': True, 'message': 'Thanks for verifying!'}), 200, { 'ContentType': 'application/json'} @app.route('/vote', methods=['POST']) def vote(): if not current_user.is_authenticated: return "Sorry! This action is only available to logged-in users", 400, { 'ContentType': 'application/json'} current_userid = current_user.db_id data = request.json if utils.is_doi(data['review']): data['review'] = crud.convert_id(data['review'], 'pmid') conn = dblib.create_con(VERBOSE=True) cur = conn.cursor(cursor_factory=psycopg2.extras.DictCursor) link_id = crud.get_link_id(data['id'], data['review']) cur.execute( "SELECT * FROM votes WHERE link_id = %s AND user_id = %s;", (link_id, current_userid)) current = cur.fetchone() if data['up'] and (not current or (current and current['vote_type'] == 'down')): crud.vote(link_id, 'up', current_userid) if data['down'] and (not current or (current and current['vote_type'] == 'up')): crud.vote(link_id, 'down', current_userid) if current and (data['up'] is False and data['down'] is False) or (data['up'] is False and data['down'] == 0) or ( data['down'] is False and data['up'] == 0): cur.execute("DELETE FROM votes WHERE vote_id = %s;", (current['vote_id'],)) conn.commit() conn.close() return json.dumps({'success': True, 'voters': update_voters(data['review'], data['id'])}), 200, { 'ContentType': 'application/json'} @app.route('/removeftexttrial', methods=['POST']) def remove_ftext_trial(): if not current_user.is_authenticated: return "Sorry! This action is only available to logged-in users", 401, { 'ContentType': 'application/json'} data = request.json if data['nct_id'] and data['review_id']: crud.remove_ftext_trial(data['review_id'], data['nct_id']) return json.dumps({'success': True, 'message': 'Trial removed successfully'}), 200, { 'ContentType': 'application/json'} else: return json.dumps( {'success': False, 'message': 'Request requires nct_id and review_id parameters', 'move': True}), 400, { 'ContentType': 'application/json'} @app.route('/submitftexttrial', methods=['POST']) def submit_ftext_trial(): if not current_user.is_authenticated: return "Sorry! This action is only available to logged-in users", 401, { 'ContentType': 'application/json'} data = request.json if data['nct_id'] and data['review']: crud.link_ftext_trial(data['review'], data['nct_id']) return json.dumps({'success': True, 'message': 'Added trial successfully'}), 201, { 'ContentType': 'application/json'} else: return json.dumps( {'success': False, 'message': 'Request requires nct_id and review_id parameters', 'move': True}), 400, { 'ContentType': 'application/json'} @app.route('/submittrial', methods=['POST'])
MIT License
mozilla/firefox-flicks
vendor-local/lib/python/requests/adapters.py
HTTPAdapter.get_connection
python
def get_connection(self, url, proxies=None): proxies = proxies or {} proxy = proxies.get(urlparse(url).scheme) if proxy: proxy = prepend_scheme_if_needed(proxy, urlparse(url).scheme) conn = proxy_from_url(proxy) else: conn = self.poolmanager.connection_from_url(url) return conn
Returns a connection for the given URL.
https://github.com/mozilla/firefox-flicks/blob/ad19ed59aac682744badae6d19a149327037f293/vendor-local/lib/python/requests/adapters.py#L116-L127
import socket from .models import Response from .packages.urllib3.poolmanager import PoolManager, proxy_from_url from .packages.urllib3.response import HTTPResponse from .hooks import dispatch_hook from .compat import urlparse, basestring, urldefrag from .utils import (DEFAULT_CA_BUNDLE_PATH, get_encoding_from_headers, prepend_scheme_if_needed) from .structures import CaseInsensitiveDict from .packages.urllib3.exceptions import MaxRetryError from .packages.urllib3.exceptions import TimeoutError from .packages.urllib3.exceptions import SSLError as _SSLError from .packages.urllib3.exceptions import HTTPError as _HTTPError from .cookies import extract_cookies_to_jar from .exceptions import ConnectionError, Timeout, SSLError DEFAULT_POOLSIZE = 10 DEFAULT_RETRIES = 0 class BaseAdapter(object): def __init__(self): super(BaseAdapter, self).__init__() def send(self): raise NotImplementedError def close(self): raise NotImplementedError class HTTPAdapter(BaseAdapter): def __init__(self, pool_connections=DEFAULT_POOLSIZE, pool_maxsize=DEFAULT_POOLSIZE): self.max_retries = DEFAULT_RETRIES self.config = {} super(HTTPAdapter, self).__init__() self.init_poolmanager(pool_connections, pool_maxsize) def init_poolmanager(self, connections, maxsize): self.poolmanager = PoolManager(num_pools=connections, maxsize=maxsize) def cert_verify(self, conn, url, verify, cert): if url.startswith('https') and verify: cert_loc = None if verify is not True: cert_loc = verify if not cert_loc: cert_loc = DEFAULT_CA_BUNDLE_PATH if not cert_loc: raise Exception("Could not find a suitable SSL CA certificate bundle.") conn.cert_reqs = 'CERT_REQUIRED' conn.ca_certs = cert_loc else: conn.cert_reqs = 'CERT_NONE' conn.ca_certs = None if cert: if not isinstance(cert, basestring): conn.cert_file = cert[0] conn.key_file = cert[1] else: conn.cert_file = cert def build_response(self, req, resp): response = Response() response.status_code = getattr(resp, 'status', None) response.headers = CaseInsensitiveDict(getattr(resp, 'headers', {})) response.encoding = get_encoding_from_headers(response.headers) response.raw = resp response.reason = response.raw.reason if isinstance(req.url, bytes): response.url = req.url.decode('utf-8') else: response.url = req.url extract_cookies_to_jar(response.cookies, req, resp) response.request = req response.connection = self response = dispatch_hook('response', req.hooks, response) return response
BSD 3-Clause New or Revised License
discreetai/dashboard-api
dashboard-api/app.py
delete_repo
python
def delete_repo(repo_id): claims = authorize_user(request, use_header=False) if not claims: return jsonify(make_unauthorized_error()), 200 user_id = claims["pk"] try: run_delete_routine(repo_id) api_key = _remove_api_key(user_id, repo_id) _remove_logs(repo_id) _remove_repo_from_user_details(user_id, repo_id, api_key) _remove_creds_from_repo(user_id, repo_id) _remove_repo_details(user_id, repo_id) except Exception as e: return jsonify(make_error(str(e))), 200 return jsonify({ "Error": False, })
Deletes a repo under the authenticated user.
https://github.com/discreetai/dashboard-api/blob/918e7e00689852190d4795ef00ed47a91cb377cc/dashboard-api/app.py#L144-L166
import re import time import secrets import decimal import hashlib import jwt import boto3 import requests from flask_cors import CORS from boto3.dynamodb.conditions import Key, Attr from flask import Flask, request, jsonify from deploy import run_deploy_routine, run_delete_routine from dynamodb import DB JWT_SECRET = "datajbsnmd5h84rbewvzx6*cax^jgmqw@m3$ds_%z-4*qy0n44fjr5shark" JWT_ALGO = "HS256" APPLICATION_NAME = "cloud-node" app = Flask(__name__) db = DB() CORS(app) @app.route("/") def home(): return "This is the dashboard api homepage!" @app.route('/reset_state/<repo_id>', methods=['POST', 'GET']) def reset_state(repo_id): claims = authorize_user(request, use_header=False) if claims is None: return jsonify(make_unauthorized_error()), 400 try: response = requests.get(CLOUD_BASE_ENDPOINT.format(repo_id)) except Exception as e: print("Error: " + str(e)) return jsonify(make_error(str(e))) return jsonify(make_success(response.text)) @app.route('/get_username/<repo_id>', methods=['POST', 'GET']) def get_username(repo_id): claims = authorize_user(request, use_header=False) if claims is None: return jsonify(make_unauthorized_error()), 400 user_id = claims["pk"] try: username = db.get_username(user_id, repo_id) except Exception as e: print("Error: " + str(e)) return jsonify(make_error(str(e))) return jsonify(make_success(username)) @app.route("/userdata", methods=["GET"]) def get_user_data(): claims = authorize_user(request) if claims is None: return jsonify(make_unauthorized_error()), 400 user_id = claims["pk"] try: user_data = _get_user_data(user_id) repos_remaining = user_data['ReposRemaining'] except: return jsonify(make_error("Error while getting user's permissions.")), 400 return jsonify({"ReposRemaining": True if repos_remaining > 0 else False}) @app.route("/repo/<repo_id>", methods=["GET"]) def get_repo(repo_id): claims = authorize_user(request) if claims is None: return jsonify(make_unauthorized_error()), 400 user_id = claims["pk"] try: repo_details = _get_repo_details(user_id, repo_id) except: return jsonify(make_error("Error while getting the details for this repo.")), 400 return jsonify(repo_details) @app.route("/repo", methods=["POST"]) def create_new_repo(): claims = authorize_user(request) if claims is None: return jsonify(make_unauthorized_error()), 400 params = request.get_json() if "RepoName" not in params: return jsonify(make_error("Missing repo name from request.")), 400 if "RepoDescription" not in params: return jsonify(make_error("Missing repo description from request.")), 400 repo_name = params["RepoName"][:20] repo_description = params["RepoDescription"][:80] user_id = claims["pk"] repo_name = re.sub('[^a-zA-Z0-9-]', '-', repo_name) try: _assert_user_has_repos_left(user_id) repo_id = _create_new_repo_document(user_id, repo_name, repo_description) api_key, true_api_key = _create_new_api_key(user_id, repo_id) _update_user_data_with_new_repo(user_id, repo_id, api_key) _create_new_cloud_node(repo_id, api_key) except Exception as e: return jsonify(make_error(str(e))), 200 return jsonify({ "Error": False, "Results": { "RepoId": repo_id, "TrueApiKey": true_api_key } }) @app.route("/delete/<repo_id>", methods=["POST"])
MIT License
google/qkeras
qkeras/qtools/qgraph.py
GraphRemoveNodeWithNodeType
python
def GraphRemoveNodeWithNodeType(graph, node_type): nodes_to_remove = [v for v in graph.nodes if graph.nodes[v]["type"][-1] == node_type] for v in nodes_to_remove: GraphRemoveNode(graph, v)
Removes node with attribute node_type, reconnecting network.
https://github.com/google/qkeras/blob/8dbc20d3ca32cf4536ad675d57e70586f8aedbb2/qkeras/qtools/qgraph.py#L59-L67
from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import networkx as nx import tensorflow.keras.backend as K from tensorflow.keras.layers import InputLayer from qkeras.qtools.quantized_operators import quantizer_factory as quantizer_factory_module from qkeras.qtools.settings import cfg SOURCE = -1 SINK = -2 class WrongInputQuantizerError(ValueError): pass def GraphRemoveNode(graph, v): incoming = [u for u in graph.predecessors(v) if u != v] outgoing = [w for w in graph.successors(v) if w != v] for u in incoming: for w in outgoing: in_attr = graph[u][v] out_attr = graph[v][w] assert list(in_attr["shape"]) == list(out_attr["shape"]) graph.add_edges_from([(u, w, out_attr)]) graph.remove_node(v)
Apache License 2.0
sony/nnabla
python/src/nnabla/backward_function/max.py
max_backward
python
def max_backward(inputs, axes=None, keep_dims=False, with_index=False, only_index=False): dy = inputs[0] x0 = inputs[1] y0 = get_output(x0, "Max") if keep_dims: y0 = F.broadcast(y0, x0.shape) dy = F.broadcast(dy, x0.shape) else: axes = [i for i in range( x0.ndim)] if axes is None else force_list(axes) shape = [1 if i in axes else s for i, s in enumerate(x0.shape)] y0 = F.broadcast(F.reshape(y0, shape, inplace=False), x0.shape) dy = F.broadcast(F.reshape(dy, shape, inplace=False), x0.shape) m0 = F.equal(x0, y0) m0 = no_grad(m0) dx0 = dy * m0 if not with_index and not only_index: return dx0 elif with_index: return dx0, None elif only_index: return None
Args: inputs (list of nn.Variable): Incomming grads/inputs to/of the forward function. kwargs (dict of arguments): Dictionary of the corresponding function arguments. Return: list of Variable: Return the gradients wrt inputs of the corresponding function.
https://github.com/sony/nnabla/blob/fef9b6bca02a002de880a13f3196df14369445f4/python/src/nnabla/backward_function/max.py#L21-L50
import nnabla.functions as F from .utils import no_grad, force_list, get_output
Apache License 2.0
tusimple/simpledet
models/tridentnet/resnet_v1.py
TridentResNetV1Builder.resnet_trident_unit
python
def resnet_trident_unit(cls, data, name, filter, stride, dilate, proj, norm_type, norm_mom, ndev, branch_ids, branch_bn_shared, branch_conv_shared, branch_deform=False): if branch_ids is None: branch_ids = range(len(data)) norm = X.normalizer_factory(type=norm_type, ndev=ndev, mom=norm_mom) conv1 = cls.conv_shared( data, name=name + "_conv1", num_filter=filter // 4, kernel=(1, 1), stride=stride, branch_ids=branch_ids, share_weight=branch_conv_shared) bn1 = cls.bn_shared( conv1, name=name + "_bn1", normalizer=norm, branch_ids=branch_ids, share_weight=branch_bn_shared) relu1 = [X.relu(bn) for bn in bn1] if not branch_deform: conv2 = cls.conv_shared( relu1, name=name + "_conv2", num_filter=filter // 4, kernel=(3, 3), pad=dilate, dilate=dilate, branch_ids=branch_ids, share_weight=branch_conv_shared) else: conv2_offset = cls.conv_shared( relu1, name=name + "_conv2_offset", num_filter=72, kernel=(3, 3), pad=(1, 1), stride=(1, 1), dilate=(1, 1), no_bias=False, branch_ids=branch_ids, share_weight=branch_conv_shared) conv2 = cls.deform_conv_shared( relu1, name=name + "_conv2", conv_offset=conv2_offset, num_filter=filter // 4, kernel=(3, 3), pad=dilate, dilate=dilate, num_deformable_group=4, branch_ids=branch_ids, share_weight=branch_conv_shared) bn2 = cls.bn_shared( conv2, name=name + "_bn2", normalizer=norm, branch_ids=branch_ids, share_weight=branch_bn_shared) relu2 = [X.relu(bn) for bn in bn2] conv3 = cls.conv_shared( relu2, name=name + "_conv3", num_filter=filter, kernel=(1, 1), branch_ids=branch_ids, share_weight=branch_conv_shared) bn3 = cls.bn_shared( conv3, name=name + "_bn3", normalizer=norm, branch_ids=branch_ids, share_weight=branch_bn_shared) if proj: shortcut = cls.conv_shared( data, name=name + "_sc", num_filter=filter, kernel=(1, 1), branch_ids=branch_ids, share_weight=branch_conv_shared) shortcut = cls.bn_shared( shortcut, name=name + "_sc_bn", normalizer=norm, branch_ids=branch_ids, share_weight=branch_bn_shared) else: shortcut = data plus = [X.add(bn3_i, shortcut_i, name=name + "_plus_branch{}".format(i)) for i, bn3_i, shortcut_i in zip(branch_ids, bn3, shortcut)] return [X.relu(p) for p in plus]
One resnet unit is comprised of 2 or 3 convolutions and a shortcut. :param data: :param name: :param filter: :param stride: :param dilate: :param proj: :param norm_type: :param norm_mom: :param ndev: :param branch_ids: :param branch_bn_shared: :param branch_conv_shared: :param branch_deform: :return:
https://github.com/tusimple/simpledet/blob/97413463f0bc3116f684eaf7031fd3dd6ded3149/models/tridentnet/resnet_v1.py#L104-L172
from __future__ import print_function import mxnet as mx import mxnext as X from mxnext.backbone.resnet_v1 import Builder bn_count = [10000] class TridentResNetV1Builder(Builder): def __init__(self): super().__init__() @staticmethod def bn_shared(data, name, normalizer, branch_ids=None, share_weight=True): if branch_ids is None: branch_ids = range(len(data)) gamma = X.var(name + "_gamma") beta = X.var(name + "_beta") moving_mean = X.var(name + "_moving_mean") moving_var = X.var(name + "_moving_var") bn_layers = [] for i, data_i in zip(branch_ids, data): if share_weight: bn_i = normalizer(data=data_i, name=name + "_shared%d" % i, gamma=gamma, beta=beta, moving_mean=moving_mean, moving_var=moving_var) else: bn_i = normalizer(data=data_i, name=name + "_branch%d" % i) bn_layers.append(bn_i) return bn_layers @staticmethod def conv_shared(data, name, kernel, num_filter, branch_ids=None, no_bias=True, share_weight=True, pad=(0, 0), stride=(1, 1), dilate=(1, 1)): if branch_ids is None: branch_ids = range(len(data)) weight = X.var(name + '_weight') if no_bias: bias = None else: bias = X.var(name + '_bias') conv_layers = [] for i in range(len(data)): data_i = data[i] stride_i = stride[i] if type(stride) is list else stride dilate_i = dilate[i] if type(dilate) is list else dilate pad_i = pad[i] if type(pad) is list else pad branch_i = branch_ids[i] if share_weight: conv_i = X.conv(data=data_i, kernel=kernel, filter=num_filter, stride=stride_i, dilate=dilate_i, pad=pad_i, name=name + '_shared%d' % branch_i, no_bias=no_bias, weight=weight, bias=bias) else: conv_i = X.conv(data=data_i, kernel=kernel, filter=num_filter, stride=stride_i, dilate=dilate_i, pad=pad_i, name=name + '_branch%d' % branch_i, no_bias=no_bias) conv_layers.append(conv_i) return conv_layers @staticmethod def deform_conv_shared(data, name, conv_offset, kernel, num_filter, branch_ids=None, no_bias=True, share_weight=True, num_deformable_group=4, pad=(0, 0), stride=(1, 1), dilate=(1, 1)): if branch_ids is None: branch_ids = range(len(data)) weight = X.var(name + '_weight') if no_bias: bias = None else: bias = X.var(name + '_bias') conv_layers = [] for i in range(len(data)): data_i = data[i] stride_i = stride[i] if type(stride) is list else stride dilate_i = dilate[i] if type(dilate) is list else dilate pad_i = pad[i] if type(pad) is list else pad conv_offset_i = conv_offset[i] if type(conv_offset) is list else conv_offset branch_i = branch_ids[i] if share_weight: conv_i = mx.contrib.symbol.DeformableConvolution( data=data_i, offset=conv_offset_i, kernel=kernel, num_filter=num_filter, stride=stride_i, num_deformable_group=4, dilate=dilate_i, pad=pad_i, no_bias=no_bias, weight=weight, bias=bias, name=name + '_shared%d' % branch_i) else: conv_i = mx.contrib.symbol.DeformableConvolution( data=data_i, offset=conv_offset_i, kernel=kernel, num_filter=num_filter, stride=stride_i, num_deformable_group=4, dilate=dilate_i, pad=pad_i, no_bias=no_bias, name=name + '_branch%d' % branch_i) conv_layers.append(conv_i) return conv_layers @staticmethod def stack_branch_symbols(data_list): data = mx.symbol.stack(*data_list, axis=1) data = mx.symbol.Reshape(data, (-3, -2)) return data @classmethod
Apache License 2.0
slice/dogbot
dog/ext/info.py
Info.icon
python
async def icon(self, ctx: lifesaver.Context): if not ctx.guild.icon_url: await ctx.send("No server icon.") return await ctx.send(ctx.guild.icon_url_as(format="png"))
Sends this server's icon.
https://github.com/slice/dogbot/blob/7605093e2bd5b948884ff2065bf6ef2bd92620e0/dog/ext/info.py#L75-L81
from textwrap import dedent import discord import lifesaver from discord.ext import commands from lifesaver.utils import human_delta from dog.converters import HardMember def date(date) -> str: return f"{date}\n{human_delta(date)} ago" class Info(lifesaver.Cog): @lifesaver.command(aliases=["about"]) async def info(self, ctx: lifesaver.Context): app_info = await ctx.bot.application_info() embed = discord.Embed(color=discord.Color.green()) embed.set_author( name=ctx.bot.user, url="https://github.com/slice/dogbot", icon_url=ctx.bot.user.avatar_url, ) embed.description = ctx.bot.description embed.add_field( name="Created", value=human_delta(ctx.bot.user.created_at) + " ago" ) embed.set_footer( text=f"Owned by {app_info.owner}", icon_url=app_info.owner.avatar_url ) await ctx.send(embed=embed) @lifesaver.group( aliases=["guild", "guild_info", "server_info"], invoke_without_command=True ) @commands.guild_only() async def server(self, ctx: lifesaver.Context): embed = discord.Embed(title=ctx.guild.name) embed.set_thumbnail(url=ctx.guild.icon_url) embed.set_footer( text=f"Owned by {ctx.guild.owner}", icon_url=ctx.guild.owner.avatar_url ) g: discord.Guild = ctx.guild n_humans = sum(1 for m in g.members if not m.bot) n_bots = len(g.members) - n_humans embed.description = dedent( f"""\ {n_humans} humans, {n_bots} bots ({n_humans + n_bots} members) Created {g.created_at} {human_delta(g.created_at)} ago """ ) embed.add_field( name="Entities", value=dedent( f"""\ {len(g.text_channels)} text channels, {len(g.voice_channels)} voice channels, {len(g.categories)} categories {len(g.roles)} roles """ ), ) await ctx.send(embed=embed) @server.command(aliases=["icon_url"]) @commands.guild_only()
MIT License
mrod5/pyturb
src/pyturb/power_plant/control_volume.py
ControlVolume.rho_et
python
def rho_et(self): raise NotImplementedError
Stagnation density at the entrance of the CV. [kg/m**3]
https://github.com/mrod5/pyturb/blob/08b4016528fc50733fff58d967d1000bf1e634c9/src/pyturb/power_plant/control_volume.py#L125-L129
from abc import abstractmethod from pyturb.gas_models.perfect_ideal_gas import PerfectIdealGas from pyturb.gas_models.semiperfect_ideal_gas import SemiperfectIdealGas class ControlVolume(object): def __init__(self, fluid): if not(isinstance(fluid, PerfectIdealGas) or isinstance(fluid, SemiperfectIdealGas)): raise TypeError("PerfectIdealGas, SemiperfectIdealGas") self.fluid = fluid return @property @abstractmethod def p_e(self): raise NotImplementedError @property @abstractmethod def T_e(self): raise NotImplementedError @property @abstractmethod def rho_e(self): raise NotImplementedError @property @abstractmethod def h_e(self): raise NotImplementedError @property @abstractmethod def p_et(self): raise NotImplementedError @property @abstractmethod def T_et(self): raise NotImplementedError @property @abstractmethod
MIT License
iristyle/chocolateypackages
EthanBrown.SublimeText2.WebPackages/tools/PackageCache/Emmet/emmet-plugin.py
unindent_text
python
def unindent_text(text, pad): lines = text.splitlines() for i,line in enumerate(lines): if line.startswith(pad): lines[i] = line[len(pad):] return '\n'.join(lines)
Removes padding at the beginning of each text's line @type text: str @type pad: str
https://github.com/iristyle/chocolateypackages/blob/8c9833710577de6db6e8b1db5d9196e19e19d117/EthanBrown.SublimeText2.WebPackages/tools/PackageCache/Emmet/emmet-plugin.py#L197-L209
import sublime import sublime_plugin import re import imp import json import sys import os.path import traceback BASE_PATH = os.path.abspath(os.path.dirname(__file__)) PACKAGES_PATH = sublime.packages_path() or os.path.dirname(BASE_PATH) EMMET_GRAMMAR = 'Packages/%s/Emmet.tmLanguage' % os.path.basename(BASE_PATH) sys.path += [BASE_PATH] + [os.path.join(BASE_PATH, f) for f in ['emmet_completions', 'emmet']] if 'emmet.reloader' in sys.modules: imp.reload(sys.modules['emmet.reloader']) import emmet.reloader import emmet.pyv8loader as pyv8loader import emmet_completions as cmpl from emmet_completions.meta import HTML_ELEMENTS_ATTRIBUTES, HTML_ATTRIBUTES_VALUES from emmet.context import Context from emmet.context import js_file_reader as _js_file_reader from emmet.pyv8loader import LoaderDelegate __version__ = '1.1' __core_version__ = '1.0' __authors__ = ['"Sergey Chikuyonok" <serge.che@gmail.com>' '"Nicholas Dudfield" <ndudfield@gmail.com>'] is_python3 = sys.version_info[0] > 2 ctx = None settings = None user_settings = None def is_st3(): return sublime.version()[0] == '3' def js_file_reader(file_path, use_unicode=True): if hasattr(sublime, 'load_resource'): rel_path = file_path for prefix in [sublime.packages_path(), sublime.installed_packages_path()]: if rel_path.startswith(prefix): rel_path = os.path.join('Packages', rel_path[len(prefix) + 1:]) break rel_path = rel_path.replace('.sublime-package', '') rel_path = rel_path.replace('\\', '/') return sublime.load_resource(rel_path) return _js_file_reader(file_path, use_unicode) def init(): globals()['user_settings'] = sublime.load_settings('Preferences.sublime-settings') globals()['settings'] = sublime.load_settings('Emmet.sublime-settings') settings.add_on_change('extensions_path', update_settings) pyv8_paths = [ os.path.join(PACKAGES_PATH, 'PyV8'), os.path.join(PACKAGES_PATH, 'PyV8', pyv8loader.get_arch()), os.path.join(PACKAGES_PATH, 'PyV8', 'pyv8-%s' % pyv8loader.get_arch()) ] sys.path += pyv8_paths for p in pyv8_paths: pyv8loader.unpack_pyv8(p) contrib = { 'sublime': sublime, 'sublimeReplaceSubstring': replace_substring, 'sublimeGetOption': settings.get } delegate = SublimeLoaderDelegate() globals()['ctx'] = Context( files=['../editor.js'], ext_path=settings.get('extensions_path', None), contrib=contrib, logger=delegate.log, reader=js_file_reader ) update_settings() pyv8loader.load(pyv8_paths[1], delegate) if settings.get('remove_html_completions', False): sublime.set_timeout(cmpl.remove_html_completions, 2000) class SublimeLoaderDelegate(LoaderDelegate): def __init__(self, settings=None): if settings is None: settings = {} for k in ['http_proxy', 'https_proxy', 'timeout']: if user_settings.has(k): settings[k] = user_settings.get(k, None) LoaderDelegate.__init__(self, settings) self.state = None self.message = 'Loading PyV8 binary, please wait' self.i = 0 self.addend = 1 self.size = 8 def on_start(self, *args, **kwargs): self.state = 'loading' def on_progress(self, *args, **kwargs): if kwargs['progress'].is_background: return before = self.i % self.size after = (self.size - 1) - before msg = '%s [%s=%s]' % (self.message, ' ' * before, ' ' * after) if not after: self.addend = -1 if not before: self.addend = 1 self.i += self.addend sublime.set_timeout(lambda: sublime.status_message(msg), 0) def on_complete(self, *args, **kwargs): self.state = 'complete' if kwargs['progress'].is_background: return sublime.set_timeout(lambda: sublime.status_message('PyV8 binary successfully loaded'), 0) def on_error(self, exit_code=-1, thread=None): self.state = 'error' sublime.set_timeout(lambda: show_pyv8_error(exit_code), 0) def setting(self, name, default=None): return self.settings.get(name, default) def log(self, message): print('Emmet: %s' % message) def show_pyv8_error(exit_code): if 'PyV8' not in sys.modules: sublime.error_message('Error while loading PyV8 binary: exit code %s \nTry to manually install PyV8 from\nhttps://github.com/emmetio/pyv8-binaries' % exit_code) def active_view(): return sublime.active_window().active_view() def check_context(verbose=False): if not ctx.js(): if verbose: sublime.message_dialog('Please wait a bit while PyV8 binary is being downloaded') return False return True def replace_substring(start, end, value, no_indent=False): view = active_view() view.sel().clear() view.sel().add(sublime.Region(start, end or start)) if not is_python3: value = value.decode('utf-8') if no_indent: line = view.substr(view.line(view.sel()[0])) value = unindent_text(value, get_line_padding(line)) view.run_command('insert_snippet', {'contents': value})
MIT License
beloglazov/openstack-neat
neat/locals/overload/mhod/multisize_estimation.py
update_request_windows
python
def update_request_windows(request_windows, previous_state, current_state): request_windows[previous_state].append(current_state) return request_windows
Update and return the updated request windows. :param request_windows: The previous request windows. :type request_windows: list(deque) :param previous_state: The previous state. :type previous_state: int,>=0 :param current_state: The current state. :type current_state: int,>=0 :return: The updated request windows. :rtype: list(deque)
https://github.com/beloglazov/openstack-neat/blob/a5a853ae2affb0cdc582e3ab641737f5ebd3d0a7/neat/locals/overload/mhod/multisize_estimation.py#L98-L114
from contracts import contract from neat.contracts_primitive import * from neat.contracts_extra import * from itertools import islice from collections import deque import logging log = logging.getLogger(__name__) @contract def mean(data, window_size): return float(sum(data)) / window_size @contract def variance(data, window_size): m = mean(data, window_size) return float(sum((x - m) ** 2 for x in data)) / (window_size - 1) @contract def acceptable_variance(probability, window_size): return float(probability * (1 - probability)) / window_size @contract def estimate_probability(data, window_size, state): return float(data.count(state)) / window_size @contract
Apache License 2.0
lscsoft/bilby
bilby/gw/detector/calibration.py
Recalibrate.get_calibration_factor
python
def get_calibration_factor(self, frequency_array, **params): self.set_calibration_parameters(**params) return np.ones_like(frequency_array)
Apply calibration model This method should be overwritten by subclasses Parameters ========== frequency_array: array-like The frequency values to calculate the calibration factor for. params : dict Dictionary of sampling parameters which includes calibration parameters. Returns ======= calibration_factor : array-like The factor to multiply the strain by.
https://github.com/lscsoft/bilby/blob/b1e02f1dfae03d4939cae9c95eff300c22919689/bilby/gw/detector/calibration.py#L110-L129
import numpy as np from scipy.interpolate import interp1d def read_calibration_file(filename, frequency_array, number_of_response_curves, starting_index=0): import tables calibration_file = tables.open_file(filename, 'r') calibration_amplitude = calibration_file.root.deltaR.draws_amp_rel[starting_index:number_of_response_curves + starting_index] calibration_phase = calibration_file.root.deltaR.draws_phase[starting_index:number_of_response_curves + starting_index] calibration_frequencies = calibration_file.root.deltaR.freq[:] calibration_file.close() if len(calibration_amplitude.dtype) != 0: calibration_amplitude = calibration_amplitude.view(np.float64).reshape(calibration_amplitude.shape + (-1,)) calibration_phase = calibration_phase.view(np.float64).reshape(calibration_phase.shape + (-1,)) calibration_frequencies = calibration_frequencies.view(np.float64) calibration_draws = calibration_amplitude * np.exp(1j * calibration_phase) calibration_draws = interp1d( calibration_frequencies, calibration_draws, kind='cubic', bounds_error=False, fill_value=1)(frequency_array) return calibration_draws def write_calibration_file(filename, frequency_array, calibration_draws, calibration_parameter_draws=None): import tables calibration_file = tables.open_file(filename, 'w') deltaR_group = calibration_file.create_group(calibration_file.root, 'deltaR') calibration_file.create_carray(deltaR_group, 'draws_amp_rel', obj=np.abs(calibration_draws)) calibration_file.create_carray(deltaR_group, 'draws_phase', obj=np.angle(calibration_draws)) calibration_file.create_carray(deltaR_group, 'freq', obj=frequency_array) calibration_file.close() if calibration_parameter_draws is not None: calibration_parameter_draws.to_hdf(filename, key='CalParams', data_columns=True, format='table') class Recalibrate(object): name = 'none' def __init__(self, prefix='recalib_'): self.params = dict() self.prefix = prefix def __repr__(self): return self.__class__.__name__ + '(prefix=\'{}\')'.format(self.prefix)
MIT License
square/connect-python-sdk
squareconnect/models/create_order_request_discount.py
CreateOrderRequestDiscount.percentage
python
def percentage(self): return self._percentage
Gets the percentage of this CreateOrderRequestDiscount. Only used for ad hoc discounts. The percentage of the discount, as a string representation of a decimal number. A value of `7.25` corresponds to a percentage of 7.25%. This value range between 0.0 up to 100.0 :return: The percentage of this CreateOrderRequestDiscount. :rtype: str
https://github.com/square/connect-python-sdk/blob/e00e2889b2dd2c55048219cbe64db79962a68633/squareconnect/models/create_order_request_discount.py#L115-L123
from pprint import pformat from six import iteritems import re class CreateOrderRequestDiscount(object): def __init__(self, catalog_object_id=None, name=None, percentage=None, amount_money=None): self.swagger_types = { 'catalog_object_id': 'str', 'name': 'str', 'percentage': 'str', 'amount_money': 'Money' } self.attribute_map = { 'catalog_object_id': 'catalog_object_id', 'name': 'name', 'percentage': 'percentage', 'amount_money': 'amount_money' } self._catalog_object_id = catalog_object_id self._name = name self._percentage = percentage self._amount_money = amount_money @property def catalog_object_id(self): return self._catalog_object_id @catalog_object_id.setter def catalog_object_id(self, catalog_object_id): if catalog_object_id is None: raise ValueError("Invalid value for `catalog_object_id`, must not be `None`") if len(catalog_object_id) > 192: raise ValueError("Invalid value for `catalog_object_id`, length must be less than `192`") self._catalog_object_id = catalog_object_id @property def name(self): return self._name @name.setter def name(self, name): if name is None: raise ValueError("Invalid value for `name`, must not be `None`") if len(name) > 255: raise ValueError("Invalid value for `name`, length must be less than `255`") self._name = name @property
Apache License 2.0
grossjohannes/alignnet-3d
tp_utils/pointcloud.py
Calibration.read_calib_file
python
def read_calib_file(self, filepath): data = {} with open(filepath, 'r') as f: for line in f.readlines(): line = line.rstrip() if len(line) == 0: continue key, value = line.split(' ', 1) key = key.replace(':', '') try: data[key] = np.array([float(x) for x in value.split()]) except ValueError: pass data['Tr_velo_to_cam'] = data['Tr_velo_cam'] data['R0_rect'] = data['R_rect'] return data
Read in a calibration file and parse into a dictionary. Ref: https://github.com/utiasSTARS/pykitti/blob/master/pykitti/utils.py
https://github.com/grossjohannes/alignnet-3d/blob/eb34e03a38012f06f86bc2847ae4093b14355e04/tp_utils/pointcloud.py#L99-L122
import numpy as np import quaternion from pyntcloud import PyntCloud import pyntcloud import pandas as pd from scipy.spatial.transform import Rotation import io import base64 import open3d as o3 import pythreejs import time import sys import trimesh import copy from functools import lru_cache from IPython.display import display, clear_output import json from tqdm import tqdm_notebook import os from PIL import Image from tensorflow.python.util import nest from scipy.spatial import Delaunay import ipywidgets from contextlib import contextmanager def inverse_rigid_trans(Tr): inv_Tr = np.zeros_like(Tr) inv_Tr[0:3, 0:3] = np.transpose(Tr[0:3, 0:3]) inv_Tr[0:3, 3] = np.dot(-np.transpose(Tr[0:3, 0:3]), Tr[0:3, 3]) return inv_Tr class Calibration(object): def __init__(self, calib_filepath, from_video=False, from_sun=False): if from_video: calibs = self.read_calib_from_video(calib_filepath) elif from_sun: calibs = self.read_calib_from_sun(calib_filepath) else: calibs = self.read_calib_file(calib_filepath) self.P = calibs['P2'] self.P = np.reshape(self.P, [3, 4]) self.V2C = calibs['Tr_velo_to_cam'] self.V2C = np.reshape(self.V2C, [3, 4]) self.C2V = inverse_rigid_trans(self.V2C) self.R0 = calibs['R0_rect'] self.R0 = np.reshape(self.R0, [3, 3]) self.c_u = self.P[0, 2] self.c_v = self.P[1, 2] self.f_u = self.P[0, 0] self.f_v = self.P[1, 1] self.b_x = self.P[0, 3] / (-self.f_u) self.b_y = self.P[1, 3] / (-self.f_v)
BSD 3-Clause New or Revised License
killthekitten/kaggle-carvana-2017
keras_iterator.py
ImageDataGenerator.fit
python
def fit(self, x, augment=False, rounds=1, seed=None): x = np.asarray(x, dtype=K.floatx()) if x.ndim != 4: raise ValueError('Input to `.fit()` should have rank 4. ' 'Got array with shape: ' + str(x.shape)) if x.shape[self.channel_axis] not in {1, 3, 4}: raise ValueError( 'Expected input to be images (as Numpy array) ' 'following the data format convention "' + self.data_format + '" ' '(channels on axis ' + str( self.channel_axis) + '), i.e. expected ' 'either 1, 3 or 4 channels on axis ' + str(self.channel_axis) + '. ' 'However, it was passed an array with shape ' + str( x.shape) + ' (' + str(x.shape[self.channel_axis]) + ' channels).') if seed is not None: np.random.seed(seed) x = np.copy(x) if augment: ax = np.zeros(tuple([rounds * x.shape[0]] + list(x.shape)[1:]), dtype=K.floatx()) for r in range(rounds): for i in range(x.shape[0]): ax[i + r * x.shape[0]] = self.random_transform(x[i]) x = ax if self.featurewise_center: self.mean = np.mean(x, axis=(0, self.row_axis, self.col_axis)) broadcast_shape = [1, 1, 1] broadcast_shape[self.channel_axis - 1] = x.shape[self.channel_axis] self.mean = np.reshape(self.mean, broadcast_shape) x -= self.mean if self.featurewise_std_normalization: self.std = np.std(x, axis=(0, self.row_axis, self.col_axis)) broadcast_shape = [1, 1, 1] broadcast_shape[self.channel_axis - 1] = x.shape[self.channel_axis] self.std = np.reshape(self.std, broadcast_shape) x /= (self.std + K.epsilon()) if self.zca_whitening: flat_x = np.reshape(x, (x.shape[0], x.shape[1] * x.shape[2] * x.shape[3])) sigma = np.dot(flat_x.T, flat_x) / flat_x.shape[0] u, s, _ = linalg.svd(sigma) self.principal_components = np.dot(np.dot(u, np.diag(1. / np.sqrt(s + 10e-7))), u.T)
Fits internal statistics to some sample data. Required for featurewise_center, featurewise_std_normalization and zca_whitening. # Arguments x: Numpy array, the data to fit on. Should have rank 4. In case of grayscale data, the channels axis should have value 1, and in case of RGB data, it should have value 3. augment: Whether to fit on randomly augmented samples rounds: If `augment`, how many augmentation passes to do over the data seed: random seed. # Raises ValueError: in case of invalid input `x`.
https://github.com/killthekitten/kaggle-carvana-2017/blob/90795b1587af0714e5499ae72a301be38014d8b9/keras_iterator.py#L516-L582
import os import threading import warnings import keras.backend as K import numpy as np from keras.preprocessing.image import load_img, img_to_array, array_to_img, NumpyArrayIterator, flip_axis, random_channel_shift, apply_transform, transform_matrix_offset_center from scipy import linalg, random from six.moves import range class Iterator(object): def __init__(self, n, batch_size, shuffle, seed): self.n = n self.batch_size = batch_size self.shuffle = shuffle self.batch_index = 0 self.total_batches_seen = 0 self.lock = threading.Lock() self.index_generator = self._flow_index(n, batch_size, shuffle, seed) def reset(self): self.batch_index = 0 def _flow_index(self, n, batch_size=32, shuffle=False, seed=None): self.reset() while 1: if seed is not None: np.random.seed(seed + self.total_batches_seen) if self.batch_index == 0: index_array = np.arange(n) if shuffle: index_array = np.random.permutation(n) current_index = (self.batch_index * batch_size) % n if n > current_index + batch_size: current_batch_size = batch_size self.batch_index += 1 else: current_batch_size = n - current_index self.batch_index = 0 self.total_batches_seen += 1 yield (index_array[current_index: current_index + current_batch_size], current_index, current_batch_size) def __iter__(self): return self def __next__(self, *args, **kwargs): return self.next(*args, **kwargs) class DirectoryIterator(Iterator): def __init__(self, directory, image_data_generator, target_size=(256, 256), color_mode='rgb', classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, data_format=None, save_to_dir=None, save_prefix='', save_format='jpeg', follow_links=False, file_name_to_y=None, output_function=None): if data_format is None: data_format = K.image_data_format() self.directory = directory self.image_data_generator = image_data_generator self.target_size = tuple(target_size) self.output_function = output_function self.file_name_to_y = file_name_to_y if color_mode not in {'rgb', 'grayscale'}: raise ValueError('Invalid color mode:', color_mode, '; expected "rgb" or "grayscale".') self.color_mode = color_mode self.data_format = data_format if self.color_mode == 'rgb': if self.data_format == 'channels_last': self.image_shape = self.target_size + (3,) else: self.image_shape = (3,) + self.target_size else: if self.data_format == 'channels_last': self.image_shape = self.target_size + (1,) else: self.image_shape = (1,) + self.target_size self.classes = classes if class_mode not in {'categorical', 'binary', 'sparse', 'regression', None}: raise ValueError('Invalid class_mode:', class_mode, '; expected one of "categorical", ' '"binary", "sparse", "regression", or None.') self.class_mode = class_mode self.save_to_dir = save_to_dir self.save_prefix = save_prefix self.save_format = save_format white_list_formats = {'png', 'jpg', 'jpeg', 'bmp'} self.samples = 0 if not classes: classes = [] for subdir in sorted(os.listdir(directory)): if os.path.isdir(os.path.join(directory, subdir)): classes.append(subdir) self.num_class = len(classes) self.class_indices = dict(zip(classes, range(len(classes)))) def _recursive_list(subpath): return sorted(os.walk(subpath, followlinks=follow_links), key=lambda tpl: tpl[0]) for subdir in classes: subpath = os.path.join(directory, subdir) for root, _, files in _recursive_list(subpath): for fname in files: is_valid = False for extension in white_list_formats: if fname.lower().endswith('.' + extension): is_valid = True break if is_valid: self.samples += 1 print('Found %d images belonging to %d classes.' % (self.samples, self.num_class)) self.filenames = [] self.classes = np.zeros((self.samples,), dtype='int32') i = 0 for subdir in classes: subpath = os.path.join(directory, subdir) for root, _, files in _recursive_list(subpath): files = sorted(files) for fname in files: is_valid = False for extension in white_list_formats: if fname.lower().endswith('.' + extension): is_valid = True break if is_valid: self.classes[i] = self.class_indices[subdir] i += 1 absolute_path = os.path.join(root, fname) self.filenames.append(os.path.relpath(absolute_path, directory)) super(DirectoryIterator, self).__init__(self.samples, batch_size, shuffle, seed) def next(self): with self.lock: index_array, current_index, current_batch_size = next(self.index_generator) batch_x = np.zeros((current_batch_size,) + self.image_shape, dtype=K.floatx()) grayscale = self.color_mode == 'grayscale' for i, j in enumerate(index_array): fname = self.filenames[j] img = load_img(os.path.join(self.directory, fname), grayscale=grayscale, target_size=self.target_size) x = img_to_array(img, data_format=self.data_format) x = self.image_data_generator.random_transform(x) x = self.image_data_generator.standardize(x) batch_x[i] = x if self.save_to_dir: for i in range(current_batch_size): img = array_to_img(batch_x[i], self.data_format, scale=True) fname = '{prefix}_{index}_{hash}.{format}'.format(prefix=self.save_prefix, index=current_index + i, hash=np.random.randint(1e4), format=self.save_format) img.save(os.path.join(self.save_to_dir, fname)) if self.class_mode == 'sparse': batch_y = self.classes[index_array] elif self.class_mode == 'binary': batch_y = self.classes[index_array].astype(K.floatx()) elif self.class_mode == 'categorical': batch_y = np.zeros((len(batch_x), self.num_class), dtype=K.floatx()) for i, label in enumerate(self.classes[index_array]): batch_y[i, label] = 1. elif self.output_function: return self.output_function(batch_x, self.filenames, index_array, self.file_name_to_y) else: return batch_x return batch_x, batch_y class ImageDataGenerator(object): def __init__(self, featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0., width_shift_range=0., height_shift_range=0., shear_range=0., zoom_range=0., channel_shift_range=0., fill_mode='nearest', cval=0., horizontal_flip=False, vertical_flip=False, rescale=None, preprocessing_function=None, data_format=None): if data_format is None: data_format = K.image_data_format() self.featurewise_center = featurewise_center self.samplewise_center = samplewise_center self.featurewise_std_normalization = featurewise_std_normalization self.samplewise_std_normalization = samplewise_std_normalization self.zca_whitening = zca_whitening self.rotation_range = rotation_range self.width_shift_range = width_shift_range self.height_shift_range = height_shift_range self.shear_range = shear_range self.zoom_range = zoom_range self.channel_shift_range = channel_shift_range self.fill_mode = fill_mode self.cval = cval self.horizontal_flip = horizontal_flip self.vertical_flip = vertical_flip self.rescale = rescale self.preprocessing_function = preprocessing_function if data_format not in {'channels_last', 'channels_first'}: raise ValueError('data_format should be "channels_last" (channel after row and ' 'column) or "channels_first" (channel before row and column). ' 'Received arg: ', data_format) self.data_format = data_format if data_format == 'channels_first': self.channel_axis = 1 self.row_axis = 2 self.col_axis = 3 if data_format == 'channels_last': self.channel_axis = 3 self.row_axis = 1 self.col_axis = 2 self.mean = None self.std = None self.principal_components = None if np.isscalar(zoom_range): self.zoom_range = [1 - zoom_range, 1 + zoom_range] elif len(zoom_range) == 2: self.zoom_range = [zoom_range[0], zoom_range[1]] else: raise ValueError('zoom_range should be a float or ' 'a tuple or list of two floats. ' 'Received arg: ', zoom_range) def flow(self, x, y=None, batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_format='jpeg'): return NumpyArrayIterator( x, y, self, batch_size=batch_size, shuffle=shuffle, seed=seed, data_format=self.data_format, save_to_dir=save_to_dir, save_prefix=save_prefix, save_format=save_format) def flow_from_directory(self, directory, target_size=(256, 256), color_mode='rgb', classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_format='jpeg', follow_links=False, file_name_to_y=None, output_function=None, ): return DirectoryIterator( directory, self, target_size=target_size, color_mode=color_mode, classes=classes, class_mode=class_mode, data_format=self.data_format, batch_size=batch_size, shuffle=shuffle, seed=seed, save_to_dir=save_to_dir, save_prefix=save_prefix, save_format=save_format, follow_links=follow_links, file_name_to_y=file_name_to_y, output_function=output_function ) def standardize(self, x): if self.preprocessing_function: x = self.preprocessing_function(x) if self.rescale: x *= self.rescale img_channel_axis = self.channel_axis - 1 if self.samplewise_center: x -= np.mean(x, axis=img_channel_axis, keepdims=True) if self.samplewise_std_normalization: x /= (np.std(x, axis=img_channel_axis, keepdims=True) + 1e-7) if self.featurewise_center: if self.mean is not None: x -= self.mean else: warnings.warn('This ImageDataGenerator specifies ' '`featurewise_center`, but it hasn\'t' 'been fit on any training data. Fit it ' 'first by calling `.fit(numpy_data)`.') if self.featurewise_std_normalization: if self.std is not None: x /= (self.std + 1e-7) else: warnings.warn('This ImageDataGenerator specifies ' '`featurewise_std_normalization`, but it hasn\'t' 'been fit on any training data. Fit it ' 'first by calling `.fit(numpy_data)`.') if self.zca_whitening: if self.principal_components is not None: flatx = np.reshape(x, (x.size)) whitex = np.dot(flatx, self.principal_components) x = np.reshape(whitex, (x.shape[0], x.shape[1], x.shape[2])) else: warnings.warn('This ImageDataGenerator specifies ' '`zca_whitening`, but it hasn\'t' 'been fit on any training data. Fit it ' 'first by calling `.fit(numpy_data)`.') return x def random_transform(self, x): img_row_axis = self.row_axis - 1 img_col_axis = self.col_axis - 1 img_channel_axis = self.channel_axis - 1 if self.rotation_range: theta = np.pi / 180 * np.random.uniform(-self.rotation_range, self.rotation_range) else: theta = 0 if self.height_shift_range: tx = np.random.uniform(-self.height_shift_range, self.height_shift_range) * x.shape[img_row_axis] else: tx = 0 if self.width_shift_range: ty = np.random.uniform(-self.width_shift_range, self.width_shift_range) * x.shape[img_col_axis] else: ty = 0 if self.shear_range: shear = np.random.uniform(-self.shear_range, self.shear_range) else: shear = 0 if self.zoom_range[0] == 1 and self.zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(self.zoom_range[0], self.zoom_range[1], 2) transform_matrix = None if theta != 0: rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) transform_matrix = rotation_matrix if tx != 0 or ty != 0: shift_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix) if shear != 0: shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix) if zx != 1 or zy != 1: zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) transform_matrix = zoom_matrix if transform_matrix is None else np.dot(transform_matrix, zoom_matrix) if transform_matrix is not None: h, w = x.shape[img_row_axis], x.shape[img_col_axis] transform_matrix = transform_matrix_offset_center(transform_matrix, h, w) x = apply_transform(x, transform_matrix, img_channel_axis, fill_mode=self.fill_mode, cval=self.cval) if self.channel_shift_range != 0: x = random_channel_shift(x, self.channel_shift_range, img_channel_axis) if self.horizontal_flip: if np.random.random() < 0.5: x = flip_axis(x, img_col_axis) if self.vertical_flip: if np.random.random() < 0.5: x = flip_axis(x, img_row_axis) return x
MIT License
ros-industrial/robodk_postprocessors
ABB_RAPID_S4C.py
RobotPost.setTool
python
def setTool(self, pose, tool_id=None, tool_name=None): if self.TOOL_REF_FIRST is None: self.TOOL_REF_FIRST = pose else: self.addline('%s := [TRUE,[%s],[2,[0,0,50],[1,0,0,0],0,0,0.005]];' % (self.TOOL_NAME, pose_2_str(pose)))
Change the robot TCP
https://github.com/ros-industrial/robodk_postprocessors/blob/d7e6c1c07758d67d2906cfd638049bdff88cca72/ABB_RAPID_S4C.py#L256-L265
from robodk import * ONETAB = ' ' CUSTOM_HEADER = ''' ! ------------------------------- ! Define your variables here ! ... ''' CUSTOM_FUNCTIONS = ''' ! ------------------------------- ! Define your functions here ! ... ''' def pose_2_str(pose): [x,y,z,q1,q2,q3,q4] = Pose_2_ABB(pose) return ('[%.3f,%.3f,%.3f],[%.6f,%.6f,%.6f,%.6f]' % (x,y,z,q1,q2,q3,q4)) def angles_2_str(angles): njoints = len(angles) if njoints < 6: angles.extend([0]*(6-njoints)) return '[%s]' % (','.join(format(ji, ".6f") for ji in angles[0:6])) def extaxes_2_str(angles): njoints = len(angles) if njoints <= 6: return '[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]' extaxes_str = (','.join(format(ji, ".6f") for ji in angles[6:njoints])) if njoints < 12: extaxes_str = extaxes_str + ',' + ','.join(['9E9']*(12-njoints)) return '[%s]' % extaxes_str class RobotPost(object): PROG_EXT = 'prg' ROBOT_POST = 'unset' ROBOT_NAME = 'generic' PROG_FILES = [] nPROGS = 0 PROG = '' TAB = '' LOG = '' FRAME_REF = eye(4) TOOL_REF_FIRST = None MOD_NAME = 'module' ZONEDATA = 'fine' SPEEDDATA = '[500,500,5000,1000]' FRAME_NAME = 'rdkWObj' TOOL_NAME = 'rdkTool' def __init__(self, robotpost=None, robotname=None, robot_axes = 6, **kwargs): self.ROBOT_POST = robotpost self.ROBOT_NAME = robotname self.PROG = '' self.LOG = '' def ProgStart(self, progname): self.nPROGS = self.nPROGS + 1 if self.nPROGS == 1: self.MOD_NAME = progname self.TAB = ONETAB self.addline('PROC %s()' % progname) else: self.TAB = ONETAB self.addline('PROC %s()' % progname) self.TAB = ONETAB + ONETAB def ProgFinish(self, progname): self.TAB = ONETAB self.addline('ENDPROC') def ProgSave(self, folder, progname, ask_user = False, show_result = False): self.addline('') self.TAB = '' self.addline('ENDMODULE') progname = progname + '.' + self.PROG_EXT if ask_user or not DirExists(folder): filesave = getSaveFile(folder, progname, 'Save program as...') if filesave is not None: filesave = filesave.name else: return else: filesave = folder + '/' + progname fid = open(filesave, "w") fid.write('%%%\n') fid.write(' VERSION:1\n') fid.write(' LANGUAGE:ENGLISH\n') fid.write('%%%\n') fid.write('\n') fid.write('MODULE MOD_%s\n' % self.MOD_NAME) fid.write(' \n') if self.TOOL_REF_FIRST is None: self.TOOL_REF_FIRST = eye(4) fid.write(' PERS tooldata rdkTool := [TRUE,[%s],[2,[0,0,15],[1,0,0,0],0,0,0.005]];\n' % pose_2_str(self.TOOL_REF_FIRST)) fid.write(' PERS wobjdata rdkWObj := [FALSE, TRUE, "", [[0,0,0],[1,0,0,0]],[[0,0,0],[1,0,0,0]]];\n') fid.write(' \n') fid.write(self.PROG) fid.close() print('SAVED: %s\n' % filesave) self.PROG_FILES = filesave if show_result: if type(show_result) is str: import subprocess p = subprocess.Popen([show_result, filesave]) elif type(show_result) is list: import subprocess p = subprocess.Popen(show_result + [filesave]) else: import os os.startfile(filesave) if len(self.LOG) > 0: mbox('Program generation LOG:\n\n' + self.LOG) def ProgSendRobot(self, robot_ip, remote_path, ftp_user, ftp_pass): UploadFTP(self.PROG_FILES, robot_ip, remote_path, ftp_user, ftp_pass) def MoveJ(self, pose, joints, conf_RLF=None): self.addline('MoveAbsJ [%s,%s],%s,%s,%s,\WObj:=rdkWObj;' % (angles_2_str(joints), extaxes_2_str(joints), self.SPEEDDATA, self.ZONEDATA, self.TOOL_NAME)) def MoveL(self, pose, joints, conf_RLF=None): if conf_RLF is None: conf_RLF = [0,0,0] [REAR, LOWERARM, FLIP] = conf_RLF cf1 = math.floor(joints[0]/90.0) cf4 = math.floor(joints[3]/90.0) cf6 = math.floor(joints[5]/90.0) cfx = 4*REAR + 2*LOWERARM + FLIP self.addline('MoveL [%s,[%i,%i,%i,%i],%s],%s,%s,%s,\WObj:=rdkWObj;' % (pose_2_str(self.FRAME_REF*pose), cf1, cf4, cf6,cfx, extaxes_2_str(joints), self.SPEEDDATA, self.ZONEDATA, self.TOOL_NAME)) def MoveC(self, pose1, joints1, pose2, joints2, conf_RLF_1=None, conf_RLF_2=None): if conf_RLF_1 is None: conf_RLF_1 = [0,0,0] if conf_RLF_2 is None: conf_RLF_2 = [0,0,0] cf1_1 = 0 cf4_1 = 0 cf6_1 = 0 if joints1 is not None: cf1_1 = math.floor(joints1[0]/90.0) cf4_1 = math.floor(joints1[3]/90.0) cf6_1 = math.floor(joints1[5]/90.0) [REAR, LOWERARM, FLIP] = conf_RLF_1 cfx_1 = 4*REAR + 2*LOWERARM + FLIP cf1_2 = 0 cf4_2 = 0 cf6_2 = 0 if joints2 is not None: cf1_2 = math.floor(joints2[0]/90.0) cf4_2 = math.floor(joints2[3]/90.0) cf6_2 = math.floor(joints2[5]/90.0) [REAR, LOWERARM, FLIP] = conf_RLF_2 cfx_2 = 4*REAR + 2*LOWERARM + FLIP self.addline('MoveC [%s,[%i,%i,%i,%i],%s],[%s,[%i,%i,%i,%i],%s],%s,%s,rdkTool,\WObj:=rdkWObj;' % (pose_2_str(pose1), cf1_1, cf4_1, cf6_1,cfx_1, extaxes_2_str(joints1), pose_2_str(pose2), cf1_2, cf4_2, cf6_2,cfx_2, extaxes_2_str(joints2), self.SPEEDDATA, self.ZONEDATA)) def setFrame(self, pose, frame_id=None, frame_name=None): self.FRAME_REF = pose
Apache License 2.0
atmtools/typhon
typhon/retrieval/qrnn/models/keras.py
quantile_loss
python
def quantile_loss(y_true, y_pred, taus): e = skewed_absolute_error(K.flatten(y_true), K.flatten(y_pred[:, 0]), taus[0]) for i, tau in enumerate(taus[1:]): e += skewed_absolute_error(K.flatten(y_true), K.flatten(y_pred[:, i + 1]), tau) return e
The quantiles loss for a list of quantiles. Sums up the error contribution from the each of the quantile loss functions.
https://github.com/atmtools/typhon/blob/815dcb1d7cb2718ffe81cd08386739438e7782cc/typhon/retrieval/qrnn/models/keras.py#L78-L86
import logging import numpy as np import keras from keras.models import Sequential from keras.layers import Dense, Activation, deserialize from keras.optimizers import SGD import keras.backend as K def save_model(f, model): keras.models.save_model(model, f) def load_model(f, quantiles): def make_fully_connected(layers=None, **kwargs): layers = list(map(deserialize, layers)) input_dimensions = layers[0].batch_input_shape[1] return FullyConnected(input_dimensions, quantiles, (), layers) custom_objects = { "FullyConnected": make_fully_connected, "QuantileLoss": QuantileLoss, } model = keras.models.load_model(f, custom_objects=custom_objects) return model LOGGER = logging.getLogger(__name__) def skewed_absolute_error(y_true, y_pred, tau): dy = y_pred - y_true return K.mean((1.0 - tau) * K.relu(dy) + tau * K.relu(-dy), axis=-1)
MIT License
mindspore-ai/mindarmour
examples/model_security/model_attacks/cv/yolov3_darknet53/src/transforms.py
_choose_candidate_by_constraints
python
def _choose_candidate_by_constraints(max_trial, input_w, input_h, image_w, image_h, jitter, box, use_constraints): if use_constraints: constraints = ( (0.1, None), (0.3, None), (0.5, None), (0.7, None), (0.9, None), (None, 1), ) else: constraints = ( (None, None), ) candidates = [(0, 0, input_w, input_h)] for constraint in constraints: min_iou, max_iou = constraint min_iou = -np.inf if min_iou is None else min_iou max_iou = np.inf if max_iou is None else max_iou for _ in range(max_trial): new_ar = float(input_w) / float(input_h) * _rand(1 - jitter, 1 + jitter) / _rand(1 - jitter, 1 + jitter) scale = _rand(0.25, 2) if new_ar < 1: nh = int(scale * input_h) nw = int(nh * new_ar) else: nw = int(scale * input_w) nh = int(nw / new_ar) dx = int(_rand(0, input_w - nw)) dy = int(_rand(0, input_h - nh)) if box.size > 0: t_box = copy.deepcopy(box) t_box[:, [0, 2]] = t_box[:, [0, 2]] * float(nw) / float(image_w) + dx t_box[:, [1, 3]] = t_box[:, [1, 3]] * float(nh) / float(image_h) + dy crop_box = np.array((0, 0, input_w, input_h)) if not _is_iou_satisfied_constraint(min_iou, max_iou, t_box, crop_box[np.newaxis]): continue else: candidates.append((dx, dy, nw, nh)) else: raise Exception("!!! annotation box is less than 1") return candidates
Choose candidate by constraints.
https://github.com/mindspore-ai/mindarmour/blob/df44e3de733cdfc568d856d120bd8a53e6f25cc1/examples/model_security/model_attacks/cv/yolov3_darknet53/src/transforms.py#L280-L329
import random import threading import copy import numpy as np from PIL import Image import cv2 def _rand(a=0., b=1.): return np.random.rand() * (b - a) + a def bbox_iou(bbox_a, bbox_b, offset=0): if bbox_a.shape[1] < 4 or bbox_b.shape[1] < 4: raise IndexError("Bounding boxes axis 1 must have at least length 4") tl = np.maximum(bbox_a[:, None, :2], bbox_b[:, :2]) br = np.minimum(bbox_a[:, None, 2:4], bbox_b[:, 2:4]) area_i = np.prod(br - tl + offset, axis=2) * (tl < br).all(axis=2) area_a = np.prod(bbox_a[:, 2:4] - bbox_a[:, :2] + offset, axis=1) area_b = np.prod(bbox_b[:, 2:4] - bbox_b[:, :2] + offset, axis=1) return area_i / (area_a[:, None] + area_b - area_i) def statistic_normalize_img(img, statistic_norm): if isinstance(img, Image.Image): img = np.array(img) img = img/255. mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) if statistic_norm: img = (img - mean) / std return img def get_interp_method(interp, sizes=()): if interp == 9: if sizes: assert len(sizes) == 4 oh, ow, nh, nw = sizes if nh > oh and nw > ow: return 2 if nh < oh and nw < ow: return 0 return 1 return 2 if interp == 10: return random.randint(0, 4) if interp not in (0, 1, 2, 3, 4): raise ValueError('Unknown interp method %d' % interp) return interp def pil_image_reshape(interp): reshape_type = { 0: Image.NEAREST, 1: Image.BILINEAR, 2: Image.BICUBIC, 3: Image.NEAREST, 4: Image.LANCZOS, } return reshape_type[interp] def _preprocess_true_boxes(true_boxes, anchors, in_shape, num_classes, max_boxes, label_smooth, label_smooth_factor=0.1): anchors = np.array(anchors) num_layers = anchors.shape[0] // 3 anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] true_boxes = np.array(true_boxes, dtype='float32') input_shape = np.array(in_shape, dtype='int32') boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2. boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2] true_boxes[..., 0:2] = boxes_xy / input_shape[::-1] true_boxes[..., 2:4] = boxes_wh / input_shape[::-1] grid_shapes = [input_shape // 32, input_shape // 16, input_shape // 8] y_true = [np.zeros((grid_shapes[l][0], grid_shapes[l][1], len(anchor_mask[l]), 5 + num_classes), dtype='float32') for l in range(num_layers)] anchors = np.expand_dims(anchors, 0) anchors_max = anchors / 2. anchors_min = -anchors_max valid_mask = boxes_wh[..., 0] > 0 wh = boxes_wh[valid_mask] if wh.size > 0: wh = np.expand_dims(wh, -2) boxes_max = wh / 2. boxes_min = -boxes_max intersect_min = np.maximum(boxes_min, anchors_min) intersect_max = np.minimum(boxes_max, anchors_max) intersect_wh = np.maximum(intersect_max - intersect_min, 0.) intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1] box_area = wh[..., 0] * wh[..., 1] anchor_area = anchors[..., 0] * anchors[..., 1] iou = intersect_area / (box_area + anchor_area - intersect_area) best_anchor = np.argmax(iou, axis=-1) for t, n in enumerate(best_anchor): for l in range(num_layers): if n in anchor_mask[l]: i = np.floor(true_boxes[t, 0] * grid_shapes[l][1]).astype('int32') j = np.floor(true_boxes[t, 1] * grid_shapes[l][0]).astype('int32') k = anchor_mask[l].index(n) c = true_boxes[t, 4].astype('int32') y_true[l][j, i, k, 0:4] = true_boxes[t, 0:4] y_true[l][j, i, k, 4] = 1. if label_smooth: sigma = label_smooth_factor/(num_classes-1) y_true[l][j, i, k, 5:] = sigma y_true[l][j, i, k, 5+c] = 1-label_smooth_factor else: y_true[l][j, i, k, 5 + c] = 1. pad_gt_box0 = np.zeros(shape=[max_boxes, 4], dtype=np.float32) pad_gt_box1 = np.zeros(shape=[max_boxes, 4], dtype=np.float32) pad_gt_box2 = np.zeros(shape=[max_boxes, 4], dtype=np.float32) mask0 = np.reshape(y_true[0][..., 4:5], [-1]) gt_box0 = np.reshape(y_true[0][..., 0:4], [-1, 4]) gt_box0 = gt_box0[mask0 == 1] pad_gt_box0[:gt_box0.shape[0]] = gt_box0 mask1 = np.reshape(y_true[1][..., 4:5], [-1]) gt_box1 = np.reshape(y_true[1][..., 0:4], [-1, 4]) gt_box1 = gt_box1[mask1 == 1] pad_gt_box1[:gt_box1.shape[0]] = gt_box1 mask2 = np.reshape(y_true[2][..., 4:5], [-1]) gt_box2 = np.reshape(y_true[2][..., 0:4], [-1, 4]) gt_box2 = gt_box2[mask2 == 1] pad_gt_box2[:gt_box2.shape[0]] = gt_box2 return y_true[0], y_true[1], y_true[2], pad_gt_box0, pad_gt_box1, pad_gt_box2 def _reshape_data(image, image_size): if not isinstance(image, Image.Image): image = Image.fromarray(image) ori_w, ori_h = image.size ori_image_shape = np.array([ori_w, ori_h], np.int32) h, w = image_size interp = get_interp_method(interp=9, sizes=(ori_h, ori_w, h, w)) image = image.resize((w, h), pil_image_reshape(interp)) image_data = statistic_normalize_img(image, statistic_norm=True) if len(image_data.shape) == 2: image_data = np.expand_dims(image_data, axis=-1) image_data = np.concatenate([image_data, image_data, image_data], axis=-1) image_data = image_data.astype(np.float32) return image_data, ori_image_shape def color_distortion(img, hue, sat, val, device_num): hue = _rand(-hue, hue) sat = _rand(1, sat) if _rand() < .5 else 1 / _rand(1, sat) val = _rand(1, val) if _rand() < .5 else 1 / _rand(1, val) if device_num != 1: cv2.setNumThreads(1) x = cv2.cvtColor(img, cv2.COLOR_RGB2HSV_FULL) x = x / 255. x[..., 0] += hue x[..., 0][x[..., 0] > 1] -= 1 x[..., 0][x[..., 0] < 0] += 1 x[..., 1] *= sat x[..., 2] *= val x[x > 1] = 1 x[x < 0] = 0 x = x * 255. x = x.astype(np.uint8) image_data = cv2.cvtColor(x, cv2.COLOR_HSV2RGB_FULL) return image_data def filp_pil_image(img): return img.transpose(Image.FLIP_LEFT_RIGHT) def convert_gray_to_color(img): if len(img.shape) == 2: img = np.expand_dims(img, axis=-1) img = np.concatenate([img, img, img], axis=-1) return img def _is_iou_satisfied_constraint(min_iou, max_iou, box, crop_box): iou = bbox_iou(box, crop_box) return min_iou <= iou.min() and max_iou >= iou.max()
Apache License 2.0
hosford42/xcs
xcs/algorithms/xcs.py
XCSAlgorithm.action_selection_strategy
python
def action_selection_strategy(self): return ( self.exploration_strategy or EpsilonGreedySelectionStrategy(self.exploration_probability) )
The action selection strategy used to govern the trade-off between exploration (acquiring new experience) and exploitation (utilizing existing experience to maximize reward).
https://github.com/hosford42/xcs/blob/183bdd0dd339e19ded3be202f86e1b38bdb9f1e5/xcs/algorithms/xcs.py#L374-L381
import random from .. import bitstrings from ..framework import ClassifierRule, LCSAlgorithm, EpsilonGreedySelectionStrategy, MatchSet, ClassifierSet class XCSClassifierRule(ClassifierRule): def __init__(self, condition, action, algorithm, time_stamp): assert isinstance(algorithm, XCSAlgorithm) assert isinstance(time_stamp, int) self._algorithm = algorithm self._condition = condition self._action = action self.time_stamp = time_stamp self.average_reward = algorithm.initial_prediction self.error = algorithm.initial_error self.fitness = algorithm.initial_fitness self.experience = 0 self.action_set_size = 1 self.numerosity = 1 def __str__(self): return ( str(self.condition) + ' => ' + str(self.action) + '\n ' + '\n '.join( key.replace('_', ' ').title() + ': ' + str(getattr(self, key)) for key in ( 'time_stamp', 'average_reward', 'error', 'fitness', 'experience', 'action_set_size', 'numerosity' ) ) ) def __lt__(self, other): if not isinstance(other, XCSClassifierRule): return NotImplemented attribute_order = ( 'numerosity', 'fitness', 'experience', 'error', 'average_reward', 'action_set_size', 'time_stamp' ) for attribute in attribute_order: my_key = getattr(self, attribute) other_key = getattr(other, attribute) if my_key < other_key: return attribute not in ('error', 'action_set_size') if my_key > other_key: return attribute in ('error', 'action_set_size') return False @property def algorithm(self): return self._algorithm @property def condition(self): return self._condition @property def action(self): return self._action @property def prediction(self): return self.average_reward @property def prediction_weight(self): return self.fitness class XCSAlgorithm(LCSAlgorithm): max_population_size = 200 learning_rate = .15 accuracy_coefficient = .1 error_threshold = .01 accuracy_power = 5 discount_factor = .71 ga_threshold = 35 crossover_probability = .75 mutation_probability = .03 deletion_threshold = 20 fitness_threshold = .1 subsumption_threshold = 20 wildcard_probability = .33 initial_prediction = .00001 initial_error = .00001 initial_fitness = .00001 exploration_probability = .5 minimum_actions = None do_ga_subsumption = False do_action_set_subsumption = False exploration_strategy = None idealization_factor = 0 @property
BSD 3-Clause New or Revised License
opensourceeconomics/respy
respy/state_space.py
create_is_inadmissible
python
def create_is_inadmissible(df, optim_paras, options): df = df.copy() for choice in optim_paras["choices"]: df[f"_{choice}"] = False for formula in options["negative_choice_set"][choice]: try: df[f"_{choice}"] |= df.eval(formula) except pd.core.computation.ops.UndefinedVariableError: pass return df
Compute is_inadmissible for passed states.
https://github.com/opensourceeconomics/respy/blob/19b9602c6f34f39034b00a88f36219ed3c4cfe5a/respy/state_space.py#L699-L711
import itertools import numba as nb import numpy as np import pandas as pd from numba.typed import Dict from respy._numba import sum_over_numba_boolean_unituple from respy.exogenous_processes import create_transit_choice_set from respy.exogenous_processes import create_transition_objects from respy.exogenous_processes import weight_continuation_values from respy.parallelization import parallelize_across_dense_dimensions from respy.shared import apply_law_of_motion_for_core from respy.shared import compute_covariates from respy.shared import convert_dictionary_keys_to_dense_indices from respy.shared import create_base_draws from respy.shared import create_core_state_space_columns from respy.shared import create_dense_state_space_columns from respy.shared import downcast_to_smallest_dtype from respy.shared import dump_objects from respy.shared import load_objects from respy.shared import map_states_to_core_key_and_core_index from respy.shared import prepare_cache_directory from respy.shared import return_core_dense_key def create_state_space_class(optim_paras, options): prepare_cache_directory(options) core = _create_core_state_space(optim_paras, options) dense_grid = _create_dense_state_space_grid(optim_paras) core = compute_covariates(core, options["covariates_core"]) core = core.apply(downcast_to_smallest_dtype) dense = _create_dense_state_space_covariates(dense_grid, optim_paras, options) core_period_choice = _create_core_period_choice(core, optim_paras, options) core_key_to_complex = dict(enumerate(core_period_choice)) core_key_to_core_indices = { i: core_period_choice[complex_] for i, complex_ in core_key_to_complex.items() } indexer = _create_indexer(core, core_key_to_core_indices, optim_paras) dense_period_choice = _create_dense_period_choice( core, dense, core_key_to_core_indices, core_key_to_complex, optim_paras, options ) state_space = StateSpace( core, indexer, dense, dense_period_choice, core_key_to_complex, core_key_to_core_indices, optim_paras, options, ) return state_space class StateSpace: def __init__( self, core, indexer, dense, dense_period_cores, core_key_to_complex, core_key_to_core_indices, optim_paras, options, ): self.core = core self.indexer = indexer self.dense_period_cores = dense_period_cores self.dense = dense self.core_key_to_complex = core_key_to_complex self.core_key_to_core_indices = core_key_to_core_indices self.optim_paras = optim_paras self.options = options self.n_periods = options["n_periods"] self._create_conversion_dictionaries() self.base_draws_sol = self.create_draws(options) self.create_arrays_for_expected_value_functions() if len(self.optim_paras["exogenous_processes"]) > 0: self.create_objects_for_exogenous_processes() self.child_indices = self.collect_child_indices() def _create_conversion_dictionaries(self): self.dense_key_to_complex = { i: k for i, k in enumerate(self.dense_period_cores) } self.dense_key_to_core_key = { i: self.dense_period_cores[self.dense_key_to_complex[i]] for i in self.dense_key_to_complex } self.dense_key_to_choice_set = { i: self.dense_key_to_complex[i][1] for i in self.dense_key_to_complex } self.dense_key_to_core_indices = { i: np.array(self.core_key_to_core_indices[self.dense_key_to_core_key[i]]) for i in self.dense_key_to_complex } self.core_key_and_dense_index_to_dense_key = Dict.empty( key_type=nb.types.UniTuple(nb.types.int64, 2), value_type=nb.types.int64, ) for i in self.dense_key_to_complex: self.core_key_and_dense_index_to_dense_key[ return_core_dense_key( self.dense_key_to_core_key[i], *self.dense_key_to_complex[i][2:], ) ] = i if self.dense is False: self.dense_covariates_to_dense_index = {} self.dense_key_to_dense_covariates = { i: {} for i in self.dense_key_to_complex } else: n_dense = len(create_dense_state_space_columns(self.optim_paras)) self.dense_covariates_to_dense_index = Dict.empty( key_type=nb.types.UniTuple(nb.types.int64, n_dense), value_type=nb.types.int64, ) for i, k in enumerate(self.dense): self.dense_covariates_to_dense_index[k] = i self.dense_key_to_dense_covariates = { i: list(self.dense.keys())[self.dense_key_to_complex[i][2]] for i in self.dense_key_to_complex } def create_arrays_for_expected_value_functions(self): self.expected_value_functions = Dict.empty( key_type=nb.types.int64, value_type=nb.types.float64[:] ) for index, indices in self.dense_key_to_core_indices.items(): self.expected_value_functions[index] = np.zeros(len(indices)) def create_objects_for_exogenous_processes(self): exogenous_processes = self.optim_paras["exogenous_processes"] n_exog = len(exogenous_processes) levels_of_processes = [range(len(i)) for i in exogenous_processes.values()] self.exogenous_grid = list(itertools.product(*levels_of_processes)) self.dense_key_to_transit_keys = create_transition_objects( self.dense_key_to_dense_covariates, self.dense_key_to_core_key, self.exogenous_grid, n_exog, bypass={ "dense_covariates_to_dense_index": self.dense_covariates_to_dense_index, "core_key_and_dense_index_to_dense_key": self.core_key_and_dense_index_to_dense_key, }, ) self.transit_key_to_choice_set = create_transit_choice_set( self.dense_key_to_transit_keys, self.dense_key_to_choice_set ) def get_continuation_values(self, period): if period == self.n_periods - 1: shapes = self.get_attribute_from_period("base_draws_sol", period) states = self.get_attribute_from_period("dense_key_to_core_indices", period) continuation_values = { key: np.zeros((states[key].shape[0], shapes[key].shape[1])) for key in shapes } else: child_indices = self.get_attribute_from_period("child_indices", period) expected_value_functions = self.get_attribute_from_period( "expected_value_functions", period + 1 ) subset_expected_value_functions = Dict.empty( key_type=nb.types.int64, value_type=nb.types.float64[:] ) for key, value in expected_value_functions.items(): subset_expected_value_functions[key] = value transit_choice_sets = ( "transit_key_to_choice_set" if hasattr(self, "transit_key_to_choice_set") else "dense_key_to_choice_set" ) continuation_values = _get_continuation_values( self.get_attribute_from_period("dense_key_to_complex", period), self.get_attribute_from_period(transit_choice_sets, period), self.get_attribute_from_period("dense_key_to_core_indices", period), child_indices, self.core_key_and_dense_index_to_dense_key, bypass={"expected_value_functions": subset_expected_value_functions}, ) if len(self.optim_paras["exogenous_processes"]) > 0: continuation_values = weight_continuation_values( self.get_attribute_from_period("dense_key_to_complex", period), self.options, bypass={ "continuation_values": continuation_values, "transit_key_to_choice_set": self.get_attribute_from_period( transit_choice_sets, period ), }, ) return continuation_values def collect_child_indices(self): if self.n_periods == 1: child_indices = None else: dense_key_to_complex_except_last_period = { k: v for k, v in self.dense_key_to_complex.items() if v[0] < self.n_periods - 1 } transit_choice_sets = ( "transit_key_to_choice_set" if hasattr(self, "transit_key_to_choice_set") else "dense_key_to_choice_set" ) dense_key_to_choice_set_except_last_period = { k: getattr(self, transit_choice_sets)[k] for k in dense_key_to_complex_except_last_period } child_indices = _collect_child_indices( dense_key_to_complex_except_last_period, dense_key_to_choice_set_except_last_period, self.indexer, self.optim_paras, self.options, ) return child_indices def create_draws(self, options): n_choices_in_sets = list(set(map(sum, self.dense_key_to_choice_set.values()))) shocks_sets = [] for n_choices in n_choices_in_sets: draws = create_base_draws( (options["n_periods"], options["solution_draws"], n_choices), next(options["solution_seed_startup"]), options["monte_carlo_sequence"], ) shocks_sets.append(draws) draws = {} for dense_idx, complex_ix in self.dense_key_to_complex.items(): period = complex_ix[0] n_choices = sum(complex_ix[1]) idx = n_choices_in_sets.index(n_choices) draws[dense_idx] = shocks_sets[idx][period] return draws def get_dense_keys_from_period(self, period): return [ dense_index for dense_index, complex_ in self.dense_key_to_complex.items() if complex_[0] == period ] def get_attribute_from_period(self, attribute, period): dense_indices_in_period = self.get_dense_keys_from_period(period) return { dense_index: attr for dense_index, attr in getattr(self, attribute).items() if dense_index in dense_indices_in_period } def set_attribute_from_keys(self, attribute, value): for key in value: getattr(self, attribute)[key][:] = value[key] def _create_core_state_space(optim_paras, options): core = _create_core_from_choice_experiences(optim_paras) core = _add_lagged_choice_to_core_state_space(core, optim_paras) core = _filter_core_state_space(core, options) core = _add_initial_experiences_to_core_state_space(core, optim_paras) core = core.sort_values("period").reset_index(drop=True) return core def _create_core_from_choice_experiences(optim_paras): choices_w_exp = list(optim_paras["choices_w_exp"]) minimal_initial_experience = np.array( [min(optim_paras["choices"][choice]["start"]) for choice in choices_w_exp], dtype=np.uint8, ) maximum_exp = np.array( [optim_paras["choices"][choice]["max"] for choice in choices_w_exp], dtype=np.uint8, ) additional_exp = maximum_exp - minimal_initial_experience exp_cols = [f"exp_{choice}" for choice in choices_w_exp] container = [] for period in np.arange(optim_paras["n_periods"], dtype=np.uint8): data = _create_core_state_space_per_period( period, additional_exp, optim_paras, np.zeros(len(choices_w_exp), dtype=np.uint8), ) df_ = pd.DataFrame.from_records(data, columns=exp_cols) df_.insert(0, "period", period) container.append(df_) df = pd.concat(container, axis="rows", sort=False) return df def _create_core_state_space_per_period( period, additional_exp, optim_paras, experiences, pos=0 ): yield experiences if pos < experiences.shape[0]: remaining_time = period - experiences.sum() max_experience = additional_exp[pos] for i in np.arange(min(remaining_time, max_experience) + 1, dtype=np.uint8): updated_experiences = experiences.copy() updated_experiences[pos] += i yield from _create_core_state_space_per_period( period, additional_exp, optim_paras, updated_experiences, pos + 1 ) def _add_lagged_choice_to_core_state_space(df, optim_paras): container = [] for lag in range(1, optim_paras["n_lagged_choices"] + 1): for choice_code in range(len(optim_paras["choices"])): df_ = df.copy() df_[f"lagged_choice_{lag}"] = choice_code container.append(df_) df = pd.concat(container, axis="rows", sort=False) if container else df return df def _filter_core_state_space(df, options): for definition in options["core_state_space_filters"]: df = df.loc[~df.eval(definition)] return df def _add_initial_experiences_to_core_state_space(df, optim_paras): choices = optim_paras["choices"] initial_experiences_combinations = itertools.product( *(choices[choice]["start"] for choice in optim_paras["choices_w_exp"]) ) maximum_exp = np.array( [choices[choice]["max"] for choice in optim_paras["choices_w_exp"]] ) exp_cols = df.filter(like="exp_").columns.tolist() container = [] for initial_exp in initial_experiences_combinations: df_ = df.copy() df_[exp_cols] += initial_exp df_ = df_.loc[df_[exp_cols].le(maximum_exp).all(axis="columns")].copy() container.append(df_) df = pd.concat(container, axis="rows", sort=False).drop_duplicates() return df def _create_dense_state_space_grid(optim_paras): levels_of_observables = [range(len(i)) for i in optim_paras["observables"].values()] types = [range(optim_paras["n_types"])] if optim_paras["n_types"] >= 2 else [] dense_state_space_grid = list(itertools.product(*levels_of_observables, *types)) if dense_state_space_grid == [()]: dense_state_space_grid = False return dense_state_space_grid def _create_dense_state_space_covariates(dense_grid, optim_paras, options): if dense_grid: columns = create_dense_state_space_columns(optim_paras) df = pd.DataFrame(data=dense_grid, columns=columns).set_index( columns, drop=False ) covariates = compute_covariates(df, options["covariates_dense"]) covariates = covariates.apply(downcast_to_smallest_dtype) covariates = covariates.to_dict(orient="index") covariates = convert_dictionary_keys_to_dense_indices(covariates) else: covariates = False return covariates
MIT License
docusign/docusign-python-client
docusign_esign/models/brand_resource_urls.py
BrandResourceUrls.sending
python
def sending(self): return self._sending
Gets the sending of this BrandResourceUrls. # noqa: E501 # noqa: E501 :return: The sending of this BrandResourceUrls. # noqa: E501 :rtype: str
https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/brand_resource_urls.py#L90-L98
import pprint import re import six from docusign_esign.client.configuration import Configuration class BrandResourceUrls(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'email': 'str', 'sending': 'str', 'signing': 'str', 'signing_captive': 'str' } attribute_map = { 'email': 'email', 'sending': 'sending', 'signing': 'signing', 'signing_captive': 'signingCaptive' } def __init__(self, _configuration=None, **kwargs): if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._email = None self._sending = None self._signing = None self._signing_captive = None self.discriminator = None setattr(self, "_{}".format('email'), kwargs.get('email', None)) setattr(self, "_{}".format('sending'), kwargs.get('sending', None)) setattr(self, "_{}".format('signing'), kwargs.get('signing', None)) setattr(self, "_{}".format('signing_captive'), kwargs.get('signing_captive', None)) @property def email(self): return self._email @email.setter def email(self, email): self._email = email @property
MIT License
tfukaza/harvest
harvest/storage/base_storage.py
BaseStorage._append
python
def _append( self, current_data: pd.DataFrame, new_data: pd.DataFrame, remove_duplicate: bool = True, ) -> pd.DataFrame: new_df = current_data.append(new_data) if remove_duplicate: new_df = new_df[~new_df.index.duplicated(keep="last")].sort_index() return new_df
Appends the data as best it can with gaps in the data for weekends and time when no data is collected. :current_data: the current data that we have on the stock for the interval :new_data: data coming from the the broker's API call
https://github.com/tfukaza/harvest/blob/cf82bcbb121cb97f4753b66c79eddc0e5f222d5c/harvest/storage/base_storage.py#L213-L230
from numpy import ERR_CALL import pandas as pd import datetime as dt from threading import Lock from typing import Tuple import re from harvest.utils import * class BaseStorage: def __init__(self, queue_size: int = 200, limit_size: bool = True): self.storage_lock = Lock() self.storage = {} self.queue_size = int(queue_size) self.limit_size = limit_size def store( self, symbol: str, interval: Interval, data: pd.DataFrame, remove_duplicate=True ) -> None: if data.empty: return None self.storage_lock.acquire() if symbol in self.storage: intervals = self.storage[symbol] if interval in intervals: try: intervals[interval] = self._append( intervals[interval], data, remove_duplicate=remove_duplicate ) if self.limit_size: intervals[interval] = intervals[interval][-self.queue_size :] except: raise Exception("Append Failure, case not found!") else: intervals[interval] = data else: if self.limit_size: data = data[-self.queue_size :] if len(data) < self.queue_size: debugger.warning( f"Symbol {symbol}, interval {interval} initialized with only {len(data)} data points" ) self.storage[symbol] = {interval: data} cur_len = len(self.storage[symbol][interval]) if self.limit_size and cur_len > self.queue_size: self.storage[symbol][interval] = self.storage[symbol][interval].iloc[ -self.queue_size : ] self.storage_lock.release() def aggregate( self, symbol: str, base: Interval, target: Interval, remove_duplicate: bool = True, ): self.storage_lock.acquire() data = self.storage[symbol][base] self.storage[symbol][target] = self._append( self.storage[symbol][target], aggregate_df(data, target), remove_duplicate ) cur_len = len(self.storage[symbol][target]) if self.limit_size and cur_len > self.queue_size: self.storage[symbol][target] = self.storage[symbol][target].iloc[ -self.queue_size : ] self.storage_lock.release() def reset(self, symbol: str, interval: Interval): self.storage_lock.acquire() self.storage[symbol][interval] = pd.DataFrame() self.storage_lock.release() def load( self, symbol: str, interval: Interval = None, start: dt.datetime = None, end: dt.datetime = None, no_slice=False, ) -> pd.DataFrame: self.storage_lock.acquire() if symbol not in self.storage: self.storage_lock.release() return None self.storage_lock.release() if interval is None: intervals = [ (interval, interval_to_timedelta(interval)) for interval in self.storage[symbol] ] intervals.sort(key=lambda interval_timedelta: interval_timedelta[1]) for interval_timedelta in intervals: data = self.load(symbol, interval_timedelta[0], start, end) if data is not None: return data return None data = self.storage[symbol][interval] if no_slice: return data if start is None: start = data.index[0] if end is None: end = data.index[-1] return data.loc[start:end] def data_range(self, symbol: str, interval: Interval) -> Tuple[dt.datetime]: data = self.load(symbol, interval) if data is None: return None, None return data.index[0], data.index[-1]
MIT License
42school/norminette
norminette/lexer/lexer.py
Lexer.is_string
python
def is_string(self): if self.peek_sub_string(2) == 'L"' or self.peek_char() == '"': return True else: return False
True if current character could start a string constant
https://github.com/42school/norminette/blob/6e77cfd80a76879e4a28c34dad65d749271d1dab/norminette/lexer/lexer.py#L74-L79
import string import pdb from norminette.lexer.dictionary import brackets from norminette.lexer.dictionary import keywords from norminette.lexer.dictionary import operators from norminette.lexer.dictionary import preproc_keywords from norminette.lexer.tokens import Token def read_file(filename): with open(filename) as f: return f.read() class TokenError(Exception): def __init__(self, pos): self.msg = f"Error: Unrecognized token line {pos[0]}, col {pos[1]}" def __repr__(self): return self.msg class Lexer: def __init__(self, source_code, starting_line=1): self.src = source_code self.len = len(source_code) self.__char = self.src[0] if self.src != "" else None self.__pos = int(0) self.__line_pos = int(starting_line) self.__line = int(starting_line) self.tokens = [] def peek_sub_string(self, size): return self.src[self.__pos : self.__pos + size] def peek_char(self): if self.__pos < self.len: if self.src[self.__pos] == "\\": self.__char = self.src[self.__pos : self.__pos + 2] else: self.__char = self.src[self.__pos] else: self.__char = None return self.__char def pop_char(self): if self.peek_char() == "\t": self.__line_pos = int((self.__line_pos + 4 - (self.__line_pos - 1) % 4) * 5 / 5) else: self.__line_pos += 1 if self.__pos < self.len and self.src[self.__pos] == "\\": self.__pos += 1 self.__pos += 1 return self.peek_char() def peek_token(self): return self.tokens[-1] def line_pos(self): return self.__line, self.__line_pos
MIT License
cyberbotics/urdf2webots
tests/test_pep8.py
CustomReport.get_file_results
python
def get_file_results(self): if self._deferred_print: self._deferred_print.sort() for line_number, offset, code, text, _ in self._deferred_print: self.results.append({ 'path': self.filename, 'row': self.line_offset + line_number, 'col': offset + 1, 'code': code, 'text': text, }) return self.file_errors
Overload this function to collect the report.
https://github.com/cyberbotics/urdf2webots/blob/1d4ddbe3f0dc9b5a65edeed3249d91d5bf54b052/tests/test_pep8.py#L16-L28
import unittest import glob import pycodestyle import os packageDirectory = os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), '..')) class CustomReport(pycodestyle.StandardReport): results = []
Apache License 2.0
abel-research/ampscan
ampscan/core.py
AmpObject.calcStruct
python
def calcStruct(self, norm=True, edges=True, edgeFaces=True, faceEdges=True, vNorm=False): if norm is True: self.calcNorm() if edges is True: self.calcEdges() if edgeFaces is True: self.calcEdgeFaces() if faceEdges is True: self.calcFaceEdges() if vNorm is True: self.calcVNorm()
r""" Top level function to calculate the underlying structure of the AmpObject Parameters ---------- norm: boolean, default True If true, the normals of each face in the mesh will be calculated edges: boolean, default True If true, the edges of the mesh will be calculated, the refers to the vertex index that make up any edge edgeFaces: boolean, default True If true, the edgeFaces array of the mesh will be calculated, this refers to the index of the three edges that make up each face faceEdges: boolean, default True If true, the faceEdges array will be calculated, this refers to index of the faces that are coincident to each edge. Normally, there are two faces per edge, if there is only one, then -99999 will be used to indicate this vNorm: boolean, default False If true, the normals of each vertex in the mesh will be calculated
https://github.com/abel-research/ampscan/blob/6a010b5be3f9dec1e7165f667ae47320ad758e97/ampscan/core.py#L166-L200
import numpy as np import os import struct from ampscan.trim import trimMixin from ampscan.smooth import smoothMixin from ampscan.vis import visMixin filename = os.path.join(os.getcwd(), "tests", "stl_file.stl") class AmpObject(trimMixin, smoothMixin, visMixin): def __init__(self, data=None, stype='limb', unify=True, struc=True): self.stype = stype self.createCMap() if isinstance(data, str): self.read_stl(data, unify, struc) elif isinstance(data, dict): for k, v in data.items(): setattr(self, k, v) self.calcStruct() elif isinstance(data, bytes): self.read_bytes(data, unify, struc) def read_stl(self, filename, unify=True, struc=True): with open(filename, 'rb') as fh: HEADER_SIZE = 80 COUNT_SIZE = 4 data_type = np.dtype([('normals', np.float32, (3, )), ('vertices', np.float32, (9, )), ('atttr', '<i2', (1, ))]) head = fh.read(HEADER_SIZE).lower() NFaces, = struct.unpack('@i', fh.read(COUNT_SIZE)) data = np.fromfile(fh, data_type) if str(head[:5], 'utf-8') == 'solid': raise ValueError("ASCII files not supported") tfcond = NFaces==data['vertices'].shape[0] if not tfcond: raise ValueError("File is corrupt") vert = np.resize(np.array(data['vertices']), (NFaces*3, 3)) norm = np.array(data['normals']) faces = np.reshape(range(NFaces*3), [NFaces,3]) self.faces = faces self.vert = vert self.norm = norm if unify is True: self.unifyVert() if struc is True: self.calcStruct() self.values = np.zeros([len(self.vert)]) def read_bytes(self, data, unify=True, struc=True): HEADER_SIZE = 80 COUNT_SIZE = 4 data_type = np.dtype([('normals', np.float32, (3, )), ('vertices', np.float32, (9, )), ('atttr', '<i2', (1, ))]) head = data[:HEADER_SIZE].lower() NFaces, = struct.unpack('@i', data[HEADER_SIZE:HEADER_SIZE+COUNT_SIZE]) data = np.frombuffer(data[COUNT_SIZE+HEADER_SIZE:], data_type) if str(head[:5], 'utf-8') == 'solid': raise ValueError("ASCII files not supported") tfcond = NFaces==data['vertices'].shape[0] if not tfcond: raise ValueError("File is corrupt") vert = np.resize(np.array(data['vertices']), (NFaces*3, 3)) norm = np.array(data['normals']) faces = np.reshape(range(NFaces*3), [NFaces,3]) self.faces = faces self.vert = vert self.norm = norm if unify is True: self.unifyVert() if struc is True: self.calcStruct() self.values = np.zeros([len(self.vert)])
MIT License
carreau/papyri
papyri/gen.py
processed_example_data
python
def processed_example_data(example_section_data): new_example_section_data = Section() for in_out in example_section_data: type_ = in_out.__class__.__name__ if type_ == "Text": blocks = P2(in_out.value.split("\n")) for b in blocks: new_example_section_data.append(b) elif type_ == "Code": in_ = in_out.entries if len(in_[0]) == 2: text = "".join([x for x, y in in_]) classes = get_classes(text) in_out.entries = [ii + (cc,) for ii, cc in zip(in_, classes)] if type_ != "Text": new_example_section_data.append(in_out) return new_example_section_data
this should be no-op on already ingested
https://github.com/carreau/papyri/blob/cd8fe0a48da5645b78dde7c51b7ae026f642e36a/papyri/gen.py#L381-L401
from __future__ import annotations import inspect import io import json import os import sys from collections import defaultdict from functools import lru_cache from pathlib import Path from types import FunctionType, ModuleType from typing import Any, Dict, List, Optional, Tuple import jedi import toml from pygments import lex from pygments.formatters import HtmlFormatter from pygments.lexers import PythonLexer from rich.progress import BarColumn, Progress, ProgressColumn from rich.progress import Text as RichText from rich.progress import TextColumn from there import print from velin.examples_section_utils import InOut, splitblank, splitcode from .take2 import ( Code, Fig, Lines, Math, Node, Paragraph, Ref, Section, SeeAlsoItem, Text, ) from .take2 import parse_rst_to_papyri_tree, Node, make_block_3 from .utils import dedent_but_first, pos_to_nl, progress from .vref import NumpyDocString from typing import Optional, Any try: from . import ts except (ImportError, OSError): print( "Tree Sitter RST parser not available, you may need to do `papyri build-parser`" ) ts def paragraph(lines) -> List[Tuple[str, Any]]: p = Paragraph.parse_lines(lines) acc = [] for c in p.children: if type(c).__name__ == "Directive": if c.role == "math": acc.append(Math(c.value)) else: acc.append(c) else: acc.append(c) p.children = acc return p def paragraphs(lines) -> List[Any]: assert isinstance(lines, list) for l in lines: if isinstance(l, str): assert "\n" not in l else: assert "\n" not in l._line blocks_data = make_block_3(Lines(lines)) acc = [] for pre_blank_lines, blank_lines, post_blank_lines in blocks_data: if pre_blank_lines: acc.append(paragraph([x._line for x in pre_blank_lines])) if post_blank_lines: acc.append(paragraph([x._line for x in post_blank_lines])) return acc def parse_script(script, ns=None, infer=None, prev="", config=None): jeds = [] import warnings warnings.simplefilter("ignore", UserWarning) l_delta = len(prev.split("\n")) contextscript = prev + "\n" + script if ns: jeds.append(jedi.Interpreter(contextscript, namespaces=[ns])) jeds.append(jedi.Script(prev + "\n" + script)) P = PythonLexer() for index, type_, text in P.get_tokens_unprocessed(script): line_n, col_n = pos_to_nl(script, index) line_n += l_delta try: ref = None for jed in jeds: failed = "" try: if infer and (text not in (" .=()[],")) and text.isidentifier(): inf = jed.infer(line_n + 1, col_n) if inf: ref = inf[0].full_name else: ref = "" except (AttributeError, TypeError, Exception) as e: raise type(e)( f"{contextscript}, {line_n=}, {col_n=}, {prev=}, {jed=}" ) from e failed = "(jedi failed inference)" print("failed inference on ", script, ns, jed, col_n, line_n + 1) break except IndexError: raise ref = "" yield text + failed, ref warnings.simplefilter("default", UserWarning) class BlockExecutor: def __init__(self, ns): import matplotlib matplotlib.use("agg") self.ns = ns pass def __enter__(self): assert (len(self.fig_man())) == 0, f"init fail in {len(self.fig_man())}" def __exit__(self, *args, **kwargs): import matplotlib.pyplot as plt plt.close("all") assert (len(self.fig_man())) == 0, f"init fail in {len(self.fig_man())}" def fig_man(self): from matplotlib import _pylab_helpers return _pylab_helpers.Gcf.get_all_fig_managers() def get_figs(self): figs = [] for fig_man in self.fig_man(): buf = io.BytesIO() fig_man.canvas.figure.savefig(buf, dpi=300) buf.seek(0) figs.append(buf.read()) return figs def exec(self, text): from matplotlib import _pylab_helpers, cbook from matplotlib.backend_bases import FigureManagerBase with cbook._setattr_cm(FigureManagerBase, show=lambda self: None): res = exec(text, self.ns) fig_managers = _pylab_helpers.Gcf.get_all_fig_managers() return res, fig_managers def get_example_data(doc, infer=True, obj=None, exec_=True, qa=None, *, config): assert qa is not None blocks = list(map(splitcode, splitblank(doc["Examples"]))) example_section_data = Section() import matplotlib.pyplot as plt from matplotlib import _pylab_helpers acc = "" import numpy as np counter = 0 ns = {"np": np, "plt": plt, obj.__name__: obj} executor = BlockExecutor(ns) figs = [] fig_managers = _pylab_helpers.Gcf.get_all_fig_managers() assert (len(fig_managers)) == 0, f"init fail in {qa} {len(fig_managers)}" wait_for_show = config.get("wait_for_plt_show", True) with executor: for b in blocks: for item in b: if isinstance(item, InOut): script = "\n".join(item.in_) figname = None ce_status = "None" try: compile(script, "<>", "exec") ce_status = "compiled" except SyntaxError: ce_status = "syntax_error" pass raise_in_fig = "?" did_except = False if exec_ and ce_status == "compiled": try: if not wait_for_show: assert len(fig_managers) == 0 try: res, fig_managers = executor.exec(script) ce_status = "execed" except Exception: ce_status = "exception_in_exec" if config.get("exec_failure", "") != "fallback": raise if fig_managers and ( ("plt.show" in script) or not wait_for_show ): raise_in_fig = True for fig in executor.get_figs(): counter += 1 figname = f"fig-{qa}-{counter}.png" figs.append((figname, fig)) plt.close("all") raise_in_fig = False except Exception: did_except = True print(f"exception executing... {qa}") fig_managers = _pylab_helpers.Gcf.get_all_fig_managers() if raise_in_fig: raise finally: if not wait_for_show: if fig_managers: plt.close("all") fig_managers = _pylab_helpers.Gcf.get_all_fig_managers() assert len(fig_managers) == 0, fig_managers + [ did_except, ] infer_exclude = config.get("exclude_jedi", frozenset()) if qa in infer_exclude: print("Turning off type inference for this function:", qa) inf = False else: inf = infer entries = list( parse_script(script, ns=ns, infer=inf, prev=acc, config=config) ) acc += "\n" + script example_section_data.append( Code(entries, "\n".join(item.out), ce_status) ) if figname: example_section_data.append(Fig(figname)) else: assert isinstance(item.out, list) example_section_data.append(Text("\n".join(item.out))) fig_managers = _pylab_helpers.Gcf.get_all_fig_managers() if len(fig_managers) != 0: plt.close("all") return processed_example_data(example_section_data), figs def get_classes(code): list(lex(code, PythonLexer())) FMT = HtmlFormatter() classes = [FMT.ttype2class.get(x) for x, y in lex(code, PythonLexer())] classes = [c if c is not None else "" for c in classes] return classes def P2(lines) -> List[Node]: assert isinstance(lines, list) for l in lines: if isinstance(l, str): assert "\n" not in l else: assert "\n" not in l._line assert lines, lines blocks_data = parse_rst_to_papyri_tree("\n".join(lines)) for block in blocks_data: assert not block.__class__.__name__ == "Block", block return blocks_data
MIT License
openschc/openschc
src/frag_send.py
FragmentAckOnError.ack_timeout
python
def ack_timeout(self, *args): self.cancel_ack_wait_timer() dprint("----------------------- ACK timeout ----------------------- ") self.state = self.ACK_TIMEOUT assert len(args) == 2 assert isinstance(args[0], frag_msg.frag_sender_tx) assert isinstance(args[1], int) schc_frag = args[0] win = args[1] self.ack_requests_counter += 1 dprint("ack_requests_counter -> {}".format(self.ack_requests_counter)) if self.ack_requests_counter > max_ack_requests: schc_frag = frag_msg.frag_sender_tx_abort(self.rule, self.dtag) args = (schc_frag.packet.get_content(), self._session_id[0]) dprint("MESSSAGE TYPE ----> Sent Sender-Abort.", schc_frag.__dict__) if enable_statsct: Statsct.set_msg_type("SCHC_SENDER_ABORT") Statsct.set_header_size(frag_msg.get_sender_header_size(self.rule)) self.protocol.scheduler.add_event(0, self.protocol.layer2.send_packet, args) return self.event_id_ack_wait_timer = self.protocol.scheduler.add_event( self.ack_wait_timer, self.ack_timeout, args) dprint("*******event id {}".format(self.event_id_ack_wait_timer)) schc_frag = frag_msg.frag_sender_ack_req(self.rule, self.dtag, win) if enable_statsct: Statsct.set_msg_type("SCHC_ACK_REQ") args = (schc_frag.packet.get_content(), self._session_id[0], self.event_sent_frag) dprint("MESSSAGE TYPE ----> SCHC ACK REQ frag:", schc_frag.__dict__) self.protocol.scheduler.add_event(0, self.protocol.layer2.send_packet, args)
waits for all the acks before sending the ack request self.number_of_ack_waits += 1 dprint("number_of_ack_waits -> {}".format(self.number_of_ack_waits)) if self.number_of_ack_waits > self.num_of_windows: schc_frag = frag_msg.frag_sender_ack_req(self.rule, self.dtag, win) if enable_statsct: Statsct.set_msg_type("SCHC_ACK_REQ") # # retransmit MIC. args = (schc_frag.packet.get_content(), self._session_id[0], self.event_sent_frag) dprint("SCHC ACK REQ frag:", schc_frag.__dict__) # if enable_statsct: # Statsct.set_msg_type("SCHC_FRAG") # Statsct.set_header_size(frag_msg.get_sender_header_size(self.rule)) self.protocol.scheduler.add_event(0, self.protocol.layer2.send_packet, args) self.number_of_ack_waits = 0 else: dprint("Do no send ACK REQ, waiting for more ACKS") #the idea is that if the ack did not arrive, to send a SCHC ACK REQ
https://github.com/openschc/openschc/blob/7b0c165a27936d8f2732a90844a00c5ade23eea5/src/frag_send.py#L534-L592
import math from gen_base_import import * from gen_utils import dprint, dtrace import protocol import frag_msg from frag_tile import TileList from frag_bitmap import make_bit_list try: import utime as time except ImportError: import time enable_statsct = True if enable_statsct: from stats.statsct import Statsct from compr_core import * max_ack_requests = 8 class FragmentBase(): def __init__(self, protocol, context, rule, dtag): self.protocol = protocol self.context = context self.rule = rule self.l2word = self.rule[T_FRAG][T_FRAG_PROF][T_FRAG_L2WORDSIZE] self.dtag = dtag self.mic_sent = None self.event_id_ack_wait_timer = None self.ack_wait_timer = 150 self.ack_requests_counter = 0 self.resend = False self.all1_send = False self.number_tiles_send = 0 self.all_tiles = None self.state = "START" self.ACK_SUCCESS = "ACK_SUCCESS" self.ACK_FAILURE = "ACK_FAILURE" self.RECEIVER_ABORT = "RECEIVER_ABORT" self.SEND_ALL_1 = "SEND_ALL_1" self.WAITING_FOR_ACK = "WAITING_FOR_ACK" self.ACK_TIMEOUT = "ACK_TIMEOUT" self.schc_all_1 = None self.last_window_tiles = None self.num_of_windows = 0 self.number_of_ack_waits = 0 def set_packet(self, packet_bbuf): self.packet_bbuf = packet_bbuf.copy() self.mic_base = packet_bbuf.copy() def get_mic(self, mic_base, last_frag_base_size, penultimate_size=0): assert isinstance(mic_base, BitBuffer) extra_bits = (frag_msg.roundup(last_frag_base_size, self.l2word) - last_frag_base_size) mic_base.add_bits(0, extra_bits) if penultimate_size != 0: extra_bits = (frag_msg.roundup(penultimate_size, self.l2word) - penultimate_size) mic_base.add_bits(0, frag_msg.roundup(extra_bits, self.rule[T_FRAG][T_FRAG_PROF ][T_FRAG_MIC])) mic = get_mic(mic_base.get_content()).to_bytes(4, "big") dprint("Send MIC {}, base = {}, lenght = {}".format(mic.hex(), mic_base.get_content(), len(mic_base.get_content()))) return mic def start_sending(self): self.send_frag() def send_frag(self): raise NotImplementedError("it is implemented at the subclass.") def get_session_type(self): return "fragmentation" def get_state_info(self, **kw): return "<fragmentation session>" class FragmentNoAck(FragmentBase): def set_packet(self, packet_bbuf): super().set_packet(packet_bbuf) dprint(self.rule) min_size = (frag_msg.get_sender_header_size(self.rule) + frag_msg.get_mic_size(self.rule) + self.l2word) if self.protocol.layer2.get_mtu_size() < min_size: raise ValueError("the MTU={} is not enough to carry the SCHC fragment of No-ACK mode={}".format(self.protocol.layer2.get_mtu_size(), min_size)) def send_frag(self): payload_size = (self.protocol.layer2.get_mtu_size() - frag_msg.get_sender_header_size(self.rule)) remaining_data_size = self.packet_bbuf.count_remaining_bits() if remaining_data_size >= payload_size: dprint("----------------------- Fragmentation process -----------------------") tile = self.packet_bbuf.get_bits_as_buffer(payload_size) transmit_callback = self.event_sent_frag fcn = 0 self.mic_sent = None if enable_statsct: Statsct.set_msg_type("SCHC_FRAG") Statsct.set_header_size(frag_msg.get_sender_header_size(self.rule)) elif remaining_data_size < payload_size: dprint("----------------------- Fragmentation process -----------------------") if remaining_data_size <= ( payload_size - frag_msg.get_mic_size(self.rule)): tile = None if remaining_data_size > 0: tile = self.packet_bbuf.get_bits_as_buffer() assert self.mic_sent is None last_frag_base_size = 0 if tile is not None: last_frag_base_size += ( frag_msg.get_sender_header_size(self.rule) + frag_msg.get_mic_size(self.rule) + remaining_data_size) self.mic_sent = self.get_mic(self.mic_base, last_frag_base_size) transmit_callback = None fcn = frag_msg.get_fcn_all_1(self.rule) if enable_statsct: Statsct.set_msg_type("SCHC_ALL_1 ") Statsct.set_header_size(frag_msg.get_sender_header_size(self.rule) + frag_msg.get_mic_size(self.rule)) else: tile_size = (remaining_data_size - (frag_msg.get_sender_header_size(self.rule) + remaining_data_size) % self.l2word) tile = self.packet_bbuf.get_bits_as_buffer(tile_size) transmit_callback = self.event_sent_frag fcn = 0 self.mic_sent = None if enable_statsct: Statsct.set_msg_type("SCHC_FRAG") Statsct.set_header_size(frag_msg.get_sender_header_size(self.rule)) schc_frag = frag_msg.frag_sender_tx( self.rule, dtag=self.dtag, win=None, fcn=fcn, mic=self.mic_sent, payload=tile) args = (schc_frag.packet.get_content(), self._session_id[0], transmit_callback) dprint("frag sent:", schc_frag.__dict__) if self.rule[T_FRAG][T_FRAG_PROF][T_FRAG_DTAG] == 0: w_dtag = '-' else: w_dtag = schc_frag.dtag if self.rule[T_FRAG][T_FRAG_PROF][T_FRAG_W] == 0: w_w = '-' else: w_w = schc_frag.win all1 = 2**self.rule[T_FRAG][T_FRAG_PROF][T_FRAG_FCN]-1 if schc_frag.fcn == all1: w_fcn = "All-1" elif schc_frag.fcn == 0: w_fcn = "All-0" else: w_fcn = schc_frag.fcn dtrace ("r:{}/{} (noA) DTAG={} W={} FCN={}".format( self.rule[T_RULEID], self.rule[T_RULEIDLENGTH], w_dtag, w_w, w_fcn )) dtrace ("|----{:3}------------->".format(len(schc_frag.packet._content))) self.protocol.scheduler.add_event(0, self.protocol.layer2.send_packet, args) def event_sent_frag(self, status): dprint("event_sent_frag") delay = self.protocol.config.get("tx_interval", 0) self.protocol.scheduler.add_event(delay, self.send_frag, {}) def receive_frag(self, schc_frag, dtag): dprint("sender frag received:", schc_frag.__dict__) if ((self.rule[T_FRAG][T_FRAG_PROF ][T_FRAG_W] == 0 or schc_frag.win == frag_msg.get_win_all_1(self.rule)) and schc_frag.cbit == 1 and schc_frag.remaining.allones() == True): dprint("Receiver Abort rid={} dtag={}".format( self.rule.ruleID, self.dtag)) return else: dprint("XXX Unacceptable message has been received.") def get_state(self, **kw): result = { "type": "no-ack", "state": "XXX - need to be added" } return result class FragmentAckOnError(FragmentBase): def set_packet(self, packet_bbuf): super().set_packet(packet_bbuf) self.all_tiles = TileList(self.rule, packet_bbuf, self.l2word) a = self.all_tiles.get_all_tiles() if (a[-1]["t-num"] == 0 and a[-1]["tile"].count_added_bits() < self.l2word): raise ValueError("The size {} of the last tile with the tile number 0 must be equal to or greater than L2 word size {}.".format(a[-1]["tile"].count_added_bits(), self.l2word)) dprint("----------------------- Fragmentation process -----------------------") self.bit_list = make_bit_list(self.all_tiles.get_all_tiles(), self.rule[T_FRAG][T_FRAG_PROF][T_FRAG_FCN], self.rule[T_FRAG][T_FRAG_PROF][T_FRAG_W]) dprint("bit_list:", self.bit_list) for tile in self.all_tiles.get_all_tiles(): dprint("w: {}, t: {}, sent: {}".format(tile['w-num'],tile['t-num'],tile['sent'])) self.all1_send = False self.num_of_windows = 0 for pos in self.bit_list: dprint("bitmap: {}, length:{}".format(self.bit_list[pos], len(self.bit_list[pos]))) if len(self.bit_list[pos]) != 0: self.num_of_windows += 1 dprint("number of windows = {}".format(self.num_of_windows)) def send_frag(self): if self.state == self.ACK_SUCCESS: dprint("-----------------------------------------------------------------------") return dprint("----------------------- Preparing to send a message -----------------------") scheduler = self.protocol.system.get_scheduler() dprint("{} send_frag!!!!!!!!!!!!!!!!!".format(scheduler.get_clock())) dprint("all1_send-> {}, resend -> {}, state -> {}".format(self.all1_send, self.resend, self.state)) dprint("all tiles unsend -> {}".format(self.all_tiles.get_all_tiles())) for tile in self.all_tiles.get_all_tiles(): dprint("w: {}, t: {}, sent: {}".format(tile['w-num'], tile['t-num'], tile['sent'])) dprint("") mtu_size = self.protocol.layer2.get_mtu_size() window_tiles, nb_remaining_tiles, remaining_size = self.all_tiles.get_tiles(mtu_size) dprint("----window tiles to send: {}, nb_remaining_tiles: {}, remaining_size: {}".format(window_tiles, nb_remaining_tiles, remaining_size)) if window_tiles is None and self.resend: dprint("no more tiles to resend") if self.state == self.ACK_FAILURE and self.event_id_ack_wait_timer is None: win = self.last_window_tiles[0]["w-num"] if self.last_window_tiles[0]["w-num"] is not None else 0 if self.last_window_tiles[0]["t-num"] == 0: win += 1 schc_frag = frag_msg.frag_sender_tx( self.rule, dtag=self.dtag, win=win, fcn=frag_msg.get_fcn_all_1(self.rule), mic=self.mic_sent) args = (schc_frag, win,) self.event_id_ack_wait_timer = self.protocol.scheduler.add_event( self.ack_wait_timer, self.ack_timeout, args) dprint("*******event id {}".format(self.event_id_ack_wait_timer)) if window_tiles is not None: dprint("window_tiles is not None -> {}, resend -> {}".format(self.all1_send, self.resend)) dprint("") if self.all1_send and self.state != self.ACK_FAILURE: dprint('All-1 ones already send') return elif (nb_remaining_tiles == 0 and len(window_tiles) == 1 and remaining_size >= frag_msg.get_mic_size(self.rule)): dprint("MESSSAGE TYPE ----> ALL-1 prepared") fcn = frag_msg.get_fcn_all_1(self.rule) last_frag_base_size = ( frag_msg.get_sender_header_size(self.rule) + frag_msg.get_mic_size(self.rule) + TileList.get_tile_size(window_tiles)) if self.mic_sent is None: mic = self.get_mic(self.mic_base, last_frag_base_size) self.mic_sent = mic else: mic = self.mic_sent dprint("mic_sent -> {}".format(self.mic_sent)) if enable_statsct: Statsct.set_msg_type("SCHC_ALL_1") Statsct.set_header_size(frag_msg.get_sender_header_size(self.rule) + frag_msg.get_mic_size(self.rule)) self.all1_send = True self.state = self.SEND_ALL_1 else: dprint("MESSSAGE TYPE ----> regular SCHC frag") dprint("") fcn = window_tiles[0]["t-num"] mic = None if enable_statsct: Statsct.set_msg_type("SCHC_FRAG") Statsct.set_header_size(frag_msg.get_sender_header_size(self.rule)) schc_frag = frag_msg.frag_sender_tx( self.rule, dtag=self.dtag, win=window_tiles[0]["w-num"], fcn=fcn, mic=mic, payload=TileList.concat(window_tiles)) if mic is not None: dprint("mic is not None") if enable_statsct: Statsct.set_msg_type("SCHC_FRAG") Statsct.set_header_size(frag_msg.get_sender_header_size(self.rule)) args = (schc_frag, window_tiles[0]["w-num"],) dprint("all ones") self.schc_all_1 = schc_frag self.event_id_ack_wait_timer = self.protocol.scheduler.add_event( self.ack_wait_timer, self.ack_timeout, args) dprint("*******event id {}".format(self.event_id_ack_wait_timer)) self.last_window_tiles = window_tiles dprint("self.last_window_tiles -> {}".format(self.last_window_tiles)) elif self.mic_sent is not None or self.all1_send: dprint("self.mic_sent is not None state -> {}".format(self.state)) dprint("----------------------- all tiles have been sent -----------------------", window_tiles, nb_remaining_tiles, remaining_size) schc_frag = None self.all1_send = True if self.event_id_ack_wait_timer and self.state == self.ACK_SUCCESS: self.cancel_ack_wait_timer() return else: dprint("only mic all tiles send") assert self.last_window_tiles is not None last_frag_base_size = (frag_msg.get_sender_header_size(self.rule) + TileList.get_tile_size(self.last_window_tiles)) self.mic_sent = self.get_mic(self.mic_base, last_frag_base_size) win = self.last_window_tiles[0]["w-num"] if self.last_window_tiles[0]["t-num"] == 0: win += 1 schc_frag = frag_msg.frag_sender_tx( self.rule, dtag=self.dtag, win=win, fcn=frag_msg.get_fcn_all_1(self.rule), mic=self.mic_sent) args = (schc_frag, win,) if enable_statsct: Statsct.set_msg_type("SCHC_ALL_1") Statsct.set_header_size(frag_msg.get_sender_header_size(self.rule) + frag_msg.get_mic_size(self.rule)) self.schc_all_1 = schc_frag self.state = self.SEND_ALL_1 self.event_id_ack_wait_timer = self.protocol.scheduler.add_event( self.ack_wait_timer, self.ack_timeout, args) dprint("*******event id {}".format(self.event_id_ack_wait_timer)) args = (schc_frag.packet.get_content(), self._session_id[0], self.event_sent_frag) dprint("frag sent:", schc_frag.__dict__) self.protocol.scheduler.add_event(0, self.protocol.layer2.send_packet, args) def cancel_ack_wait_timer(self): dprint('----------------------- cancel_ack_wait_timer -----------------------') self.protocol.scheduler.cancel_event(self.event_id_ack_wait_timer) self.event_id_ack_wait_timer = None
MIT License
markharwood/nanosessionkontrol
src/nanoSessionKontrol/ChannelStripController.py
ChannelStripController.__apply_meter_mode
python
def __apply_meter_mode(self): enabled = self.__meters_enabled and self.__assignment_mode is CSM_VOLPAN for s in self.__channel_strips: s.enable_meter_mode(enabled) self.__main_display_controller.enable_meters(enabled)
Update the meter mode in the displays and channel strips
https://github.com/markharwood/nanosessionkontrol/blob/2a898dfca38c149977ba90feb15e85f95c2c86bc/src/nanoSessionKontrol/ChannelStripController.py#L580-L586
from itertools import chain from MHControlComponent import * from _Generic.Devices import * class ChannelStripController(MHControlComponent): def __init__(self, main_script, channel_strips, master_strip, main_display_controller): MHControlComponent.__init__(self, main_script) self.__left_extensions = [] self.__right_extensions = [] self.__own_channel_strips = channel_strips self.__master_strip = master_strip self.__channel_strips = channel_strips self.__main_display_controller = main_display_controller self.__meters_enabled = False self.__assignment_mode = CSM_VOLPAN self.__sub_mode_in_io_mode = CSM_IO_FIRST_MODE self.__plugin_mode = PCM_DEVICES self.__plugin_mode_offsets = [ 0 for x in range(PCM_NUMMODES) ] self.__chosen_plugin = None self.__ordered_plugin_parameters = [] self.__displayed_plugins = [] self.__last_attached_selected_track = None self.__send_mode_offset = 0 self.__flip = False self.__view_returns = False self.__bank_cha_offset = 0 self.__bank_cha_offset_returns = 0 self.__within_track_added_or_deleted = False self.song().add_visible_tracks_listener(self.__on_tracks_added_or_deleted) self.song().view.add_selected_track_listener(self.__on_selected_track_changed) for t in chain(self.song().visible_tracks, self.song().return_tracks): if not t.solo_has_listener(self.__update_rude_solo_led): t.add_solo_listener(self.__update_rude_solo_led) if not t.has_audio_output_has_listener(self.__on_any_tracks_output_type_changed): t.add_has_audio_output_listener(self.__on_any_tracks_output_type_changed) self.__on_selected_track_changed() for s in self.__own_channel_strips: s.set_channel_strip_controller(self) self.__reassign_channel_strip_offsets() self.__reassign_channel_strip_parameters(for_display_only=False) def destroy(self): self.song().remove_visible_tracks_listener(self.__on_tracks_added_or_deleted) self.song().view.remove_selected_track_listener(self.__on_selected_track_changed) for t in chain(self.song().visible_tracks, self.song().return_tracks): if t.solo_has_listener(self.__update_rude_solo_led): t.remove_solo_listener(self.__update_rude_solo_led) if t.has_audio_output_has_listener(self.__on_any_tracks_output_type_changed): t.remove_has_audio_output_listener(self.__on_any_tracks_output_type_changed) st = self.__last_attached_selected_track if st and st.devices_has_listener(self.__on_selected_device_chain_changed): st.remove_devices_listener(self.__on_selected_device_chain_changed) for note in channel_strip_assignment_switch_ids: self.send_midi((NOTE_ON_STATUS, note, BUTTON_STATE_OFF)) for note in channel_strip_control_switch_ids: self.send_midi((NOTE_ON_STATUS, note, BUTTON_STATE_OFF)) self.send_midi((NOTE_ON_STATUS, SELECT_RUDE_SOLO, BUTTON_STATE_OFF)) self.send_midi((CC_STATUS, 75, g7_seg_led_conv_table[' '])) self.send_midi((CC_STATUS, 74, g7_seg_led_conv_table[' '])) MHControlComponent.destroy(self) def set_controller_extensions(self, left_extensions, right_extensions): self.__left_extensions = left_extensions self.__right_extensions = right_extensions self.__channel_strips = [] stack_offset = 0 for le in left_extensions: for s in le.channel_strips(): self.__channel_strips.append(s) s.set_stack_offset(stack_offset) stack_offset += NUM_CHANNEL_STRIPS for s in self.__own_channel_strips: self.__channel_strips.append(s) s.set_stack_offset(stack_offset) stack_offset += NUM_CHANNEL_STRIPS for re in right_extensions: for s in re.channel_strips(): self.__channel_strips.append(s) s.set_stack_offset(stack_offset) stack_offset += NUM_CHANNEL_STRIPS for s in self.__channel_strips: s.set_channel_strip_controller(self) self.refresh_state() def refresh_state(self): self.__update_assignment_mode_leds() self.__update_assignment_display() self.__update_rude_solo_led() self.__reassign_channel_strip_offsets() self.__on_flip_changed() self.__update_view_returns_mode() def request_rebuild_midi_map(self): MHControlComponent.request_rebuild_midi_map(self) for ex in self.__left_extensions + self.__right_extensions: ex.request_rebuild_midi_map() def on_update_display_timer(self): self.__update_channel_strip_strings() def toggle_meter_mode(self): self.__meters_enabled = not self.__meters_enabled self.__apply_meter_mode() def handle_assignment_switch_ids(self, switch_id, value): if switch_id == SID_ASSIGNMENT_IO: if value == BUTTON_PRESSED: self.__set_assignment_mode(CSM_IO) elif switch_id == SID_ASSIGNMENT_SENDS: if value == BUTTON_PRESSED: self.__set_assignment_mode(CSM_SENDS) elif switch_id == SID_ASSIGNMENT_PAN: if value == BUTTON_PRESSED: self.__set_assignment_mode(CSM_VOLPAN) elif switch_id == SID_ASSIGNMENT_PLUG_INS: if value == BUTTON_PRESSED: self.__set_assignment_mode(CSM_PLUGINS) elif switch_id == SID_ASSIGNMENT_EQ: if value == BUTTON_PRESSED: self.__switch_to_prev_page() elif switch_id == SID_ASSIGNMENT_DYNAMIC: if value == BUTTON_PRESSED: self.__switch_to_next_page() elif switch_id == SID_FADERBANK_PREV_BANK: if value == BUTTON_PRESSED: print 'Previous scene' self.song().undo() elif switch_id == SID_FADERBANK_NEXT_BANK: if value == BUTTON_PRESSED: print 'Next scene' self.song().redo() elif switch_id == SID_FADERBANK_PREV_CH: if value == BUTTON_PRESSED: if self.shift_is_pressed(): self.__set_channel_offset(0) else: self.__set_channel_offset(self.__strip_offset() - 1) elif switch_id == SID_FADERBANK_NEXT_CH: if value == BUTTON_PRESSED: if self.shift_is_pressed(): self.__set_channel_offset(self.__controlled_num_of_tracks() - len(self.__channel_strips)) elif self.__strip_offset() < self.__controlled_num_of_tracks() - len(self.__channel_strips): self.__set_channel_offset(self.__strip_offset() + 1) elif switch_id == SID_FADERBANK_FLIP: if value == BUTTON_PRESSED: self.__toggle_flip() elif switch_id == SID_FADERBANK_EDIT: if value == BUTTON_PRESSED: self.__toggle_view_returns() def handle_vpot_rotation(self, strip_index, stack_offset, cc_value): if self.__assignment_mode == CSM_IO: if cc_value >= 64: direction = -1 else: direction = 1 channel_strip = self.__channel_strips[stack_offset + strip_index] current_routing = self.__routing_target(channel_strip) available_routings = self.__available_routing_targets(channel_strip) if current_routing and available_routings: if current_routing in available_routings: i = list(available_routings).index(current_routing) if direction == 1: new_i = min(len(available_routings) - 1, i + direction) else: new_i = max(0, i + direction) new_routing = available_routings[new_i] elif len(available_routings): new_routing = available_routings[0] self.__set_routing_target(channel_strip, new_routing) elif self.__assignment_mode == CSM_PLUGINS: pass else: channel_strip = self.__channel_strips[stack_offset + strip_index] raise not channel_strip.assigned_track() or not channel_strip.assigned_track().has_audio_output or AssertionError, 'in every other mode, the midimap should handle the messages' def handle_fader_touch(self, strip_offset, stack_offset, touched): self.__reassign_channel_strip_parameters(for_display_only=True) def handle_pressed_v_pot(self, strip_index, stack_offset): if self.__assignment_mode == CSM_VOLPAN or self.__assignment_mode == CSM_SENDS or self.__assignment_mode == CSM_PLUGINS and self.__plugin_mode == PCM_PARAMETERS: if stack_offset + strip_index in range(0, len(self.__channel_strips)): param = self.__channel_strips[stack_offset + strip_index].v_pot_parameter() if param and param.is_enabled: if param.is_quantized: if param.value + 1 > param.max: param.value = param.min else: param.value = param.value + 1 else: param.value = param.default_value elif self.__assignment_mode == CSM_PLUGINS: if self.__plugin_mode == PCM_DEVICES: device_index = strip_index + stack_offset + self.__plugin_mode_offsets[PCM_DEVICES] if device_index >= 0 and device_index < len(self.song().view.selected_track.devices): if self.__chosen_plugin != None: self.__chosen_plugin.remove_parameters_listener(self.__on_parameter_list_of_chosen_plugin_changed) self.__chosen_plugin = self.song().view.selected_track.devices[device_index] self.__chosen_plugin != None and self.__chosen_plugin.add_parameters_listener(self.__on_parameter_list_of_chosen_plugin_changed) self.__reorder_parameters() self.__plugin_mode_offsets[PCM_PARAMETERS] = 0 self.__set_plugin_mode(PCM_PARAMETERS) def __strip_offset(self): if self.__view_returns: return self.__bank_cha_offset_returns else: return self.__bank_cha_offset def __controlled_num_of_tracks(self): if self.__view_returns: return len(self.song().return_tracks) else: return len(self.song().visible_tracks) def __send_parameter(self, strip_index, stack_index): if not self.__assignment_mode == CSM_SENDS: raise AssertionError send_index = strip_index + stack_index + self.__send_mode_offset p = send_index < len(self.song().view.selected_track.mixer_device.sends) and self.song().view.selected_track.mixer_device.sends[send_index] return (p, p.name) return (None, None) def __plugin_parameter(self, strip_index, stack_index): if not self.__assignment_mode == CSM_PLUGINS: raise AssertionError return self.__plugin_mode == PCM_DEVICES and (None, None) elif not (self.__plugin_mode == PCM_PARAMETERS and self.__chosen_plugin): raise AssertionError parameters = self.__ordered_plugin_parameters parameter_index = strip_index + stack_index + self.__plugin_mode_offsets[PCM_PARAMETERS] if parameter_index >= 0 and parameter_index < len(parameters): return parameters[parameter_index] else: return (None, None) else: raise 0 or AssertionError def __any_slider_is_touched(self): for s in self.__channel_strips: if s.is_touched(): return True return False def __can_flip(self): if self.__assignment_mode == CSM_PLUGINS and self.__plugin_mode == PCM_DEVICES: return False elif self.__assignment_mode == CSM_IO: return False return True def __can_switch_to_prev_page(self): if self.__assignment_mode == CSM_PLUGINS: return self.__plugin_mode_offsets[self.__plugin_mode] > 0 elif self.__assignment_mode == CSM_SENDS: return self.__send_mode_offset > 0 else: return False def __can_switch_to_next_page(self): if self.__assignment_mode == CSM_PLUGINS: sel_track = self.song().view.selected_track if self.__plugin_mode == PCM_DEVICES: return self.__plugin_mode_offsets[PCM_DEVICES] + len(self.__channel_strips) < len(sel_track.devices) elif not (self.__plugin_mode == PCM_PARAMETERS and self.__chosen_plugin): raise AssertionError parameters = self.__ordered_plugin_parameters return self.__plugin_mode_offsets[PCM_PARAMETERS] + len(self.__channel_strips) < len(parameters) else: raise 0 or AssertionError elif self.__assignment_mode == CSM_SENDS: return self.__send_mode_offset + len(self.__channel_strips) < len(self.song().return_tracks) else: return False def __available_routing_targets(self, channel_strip): raise self.__assignment_mode == CSM_IO or AssertionError t = channel_strip.assigned_track() if t: if self.__sub_mode_in_io_mode == CSM_IO_MODE_INPUT_MAIN: return t.input_routings elif self.__sub_mode_in_io_mode == CSM_IO_MODE_INPUT_SUB: return t.input_sub_routings elif self.__sub_mode_in_io_mode == CSM_IO_MODE_OUTPUT_MAIN: return t.output_routings elif self.__sub_mode_in_io_mode == CSM_IO_MODE_OUTPUT_SUB: return t.output_sub_routings else: raise 0 or AssertionError else: return None def __routing_target(self, channel_strip): raise self.__assignment_mode == CSM_IO or AssertionError t = channel_strip.assigned_track() if t: if self.__sub_mode_in_io_mode == CSM_IO_MODE_INPUT_MAIN: return t.current_input_routing elif self.__sub_mode_in_io_mode == CSM_IO_MODE_INPUT_SUB: return t.current_input_sub_routing elif self.__sub_mode_in_io_mode == CSM_IO_MODE_OUTPUT_MAIN: return t.current_output_routing elif self.__sub_mode_in_io_mode == CSM_IO_MODE_OUTPUT_SUB: return t.current_output_sub_routing else: raise 0 or AssertionError else: return None def __set_routing_target(self, channel_strip, target_string): raise self.__assignment_mode == CSM_IO or AssertionError t = channel_strip.assigned_track() if t: if self.__sub_mode_in_io_mode == CSM_IO_MODE_INPUT_MAIN: t.current_input_routing = target_string elif self.__sub_mode_in_io_mode == CSM_IO_MODE_INPUT_SUB: t.current_input_sub_routing = target_string elif self.__sub_mode_in_io_mode == CSM_IO_MODE_OUTPUT_MAIN: t.current_output_routing = target_string elif self.__sub_mode_in_io_mode == CSM_IO_MODE_OUTPUT_SUB: t.current_output_sub_routing = target_string else: raise 0 or AssertionError def __set_channel_offset(self, new_offset): if new_offset < 0: new_offset = 0 elif new_offset >= self.__controlled_num_of_tracks(): new_offset = self.__controlled_num_of_tracks() - 1 if self.__view_returns: self.__bank_cha_offset_returns = new_offset else: self.__bank_cha_offset = new_offset self.__main_display_controller.set_channel_offset(new_offset) self.__reassign_channel_strip_offsets() self.__reassign_channel_strip_parameters(for_display_only=False) self.__update_channel_strip_strings() self.request_rebuild_midi_map() def __set_assignment_mode(self, mode): for plugin in self.__displayed_plugins: if plugin != None: plugin.remove_name_listener(self.__update_plugin_names) self.__displayed_plugins = [] if mode == CSM_PLUGINS: self.__assignment_mode = mode self.__main_display_controller.set_show_parameter_names(True) self.__set_plugin_mode(PCM_DEVICES) elif mode == CSM_SENDS: self.__main_display_controller.set_show_parameter_names(True) self.__assignment_mode = mode else: if mode == CSM_IO: for s in self.__channel_strips: s.unlight_vpot_leds() self.__main_display_controller.set_show_parameter_names(False) if self.__assignment_mode != mode: self.__assignment_mode = mode elif self.__assignment_mode == CSM_IO: self.__switch_to_next_io_mode() self.__update_assignment_mode_leds() self.__update_assignment_display() self.__apply_meter_mode() self.__reassign_channel_strip_parameters(for_display_only=False) self.__update_channel_strip_strings() self.__update_page_switch_leds() if mode == CSM_PLUGINS: self.__update_vpot_leds_in_plugins_device_choose_mode() self.__update_flip_led() self.request_rebuild_midi_map() def __set_plugin_mode(self, new_mode): if not (new_mode >= 0 and new_mode < PCM_NUMMODES): raise AssertionError if self.__plugin_mode != new_mode: self.__plugin_mode = new_mode self.__reassign_channel_strip_parameters(for_display_only=False) self.request_rebuild_midi_map() self.__plugin_mode == PCM_DEVICES and self.__update_vpot_leds_in_plugins_device_choose_mode() else: for plugin in self.__displayed_plugins: if plugin != None: plugin.remove_name_listener(self.__update_plugin_names) self.__displayed_plugins = [] self.__update_page_switch_leds() self.__update_flip_led() self.__update_page_switch_leds() def __switch_to_prev_page(self): if self.__can_switch_to_prev_page(): if self.__assignment_mode == CSM_PLUGINS: self.__plugin_mode_offsets[self.__plugin_mode] -= len(self.__channel_strips) if self.__plugin_mode == PCM_DEVICES: self.__update_vpot_leds_in_plugins_device_choose_mode() elif self.__assignment_mode == CSM_SENDS: self.__send_mode_offset -= len(self.__channel_strips) self.__reassign_channel_strip_parameters(for_display_only=False) self.__update_channel_strip_strings() self.__update_page_switch_leds() self.request_rebuild_midi_map() def __switch_to_next_page(self): if self.__can_switch_to_next_page(): if self.__assignment_mode == CSM_PLUGINS: self.__plugin_mode_offsets[self.__plugin_mode] += len(self.__channel_strips) if self.__plugin_mode == PCM_DEVICES: self.__update_vpot_leds_in_plugins_device_choose_mode() elif self.__assignment_mode == CSM_SENDS: self.__send_mode_offset += len(self.__channel_strips) else: raise 0 or AssertionError self.__reassign_channel_strip_parameters(for_display_only=False) self.__update_channel_strip_strings() self.__update_page_switch_leds() self.request_rebuild_midi_map() def __switch_to_next_io_mode(self): self.__sub_mode_in_io_mode += 1 if self.__sub_mode_in_io_mode > CSM_IO_LAST_MODE: self.__sub_mode_in_io_mode = CSM_IO_FIRST_MODE def __reassign_channel_strip_offsets(self): for s in self.__channel_strips: s.set_bank_and_channel_offset(self.__strip_offset(), self.__view_returns, self.__within_track_added_or_deleted) def __reassign_channel_strip_parameters(self, for_display_only): display_parameters = [] for s in self.__channel_strips: vpot_param = (None, None) slider_param = (None, None) vpot_display_mode = VPOT_DISPLAY_SINGLE_DOT slider_display_mode = VPOT_DISPLAY_SINGLE_DOT if self.__assignment_mode == CSM_VOLPAN: if s.assigned_track() and s.assigned_track().has_audio_output: vpot_param = (s.assigned_track().mixer_device.panning, 'Pan') vpot_display_mode = VPOT_DISPLAY_BOOST_CUT slider_param = (s.assigned_track().mixer_device.volume, 'Volume') slider_display_mode = VPOT_DISPLAY_WRAP elif self.__assignment_mode == CSM_PLUGINS: vpot_param = self.__plugin_parameter(s.strip_index(), s.stack_offset()) vpot_display_mode = VPOT_DISPLAY_WRAP if s.assigned_track() and s.assigned_track().has_audio_output: slider_param = (s.assigned_track().mixer_device.volume, 'Volume') slider_display_mode = VPOT_DISPLAY_WRAP elif self.__assignment_mode == CSM_SENDS: vpot_param = self.__send_parameter(s.strip_index(), s.stack_offset()) vpot_display_mode = VPOT_DISPLAY_WRAP if s.assigned_track() and s.assigned_track().has_audio_output: slider_param = (s.assigned_track().mixer_device.volume, 'Volume') slider_display_mode = VPOT_DISPLAY_WRAP elif self.__assignment_mode == CSM_IO: if s.assigned_track() and s.assigned_track().has_audio_output: slider_param = (s.assigned_track().mixer_device.volume, 'Volume') if self.__flip and self.__can_flip(): if self.__any_slider_is_touched(): display_parameters.append(vpot_param) else: display_parameters.append(slider_param) if not for_display_only: s.set_v_pot_parameter(slider_param[0], slider_display_mode) s.set_fader_parameter(vpot_param[0]) else: if self.__any_slider_is_touched(): display_parameters.append(slider_param) else: display_parameters.append(vpot_param) if not for_display_only: s.set_v_pot_parameter(vpot_param[0], vpot_display_mode) s.set_fader_parameter(slider_param[0]) self.__main_display_controller.set_channel_offset(self.__strip_offset()) if len(display_parameters): self.__main_display_controller.set_parameters(display_parameters)
Apache License 2.0
parquery/icontract
icontract/_recompute.py
_translate_all_expression_to_a_module
python
def _translate_all_expression_to_a_module(generator_exp: ast.GeneratorExp, generated_function_name: str, name_to_value: Mapping[str, Any]) -> ast.Module: assert generated_function_name not in name_to_value assert not hasattr(builtins, generated_function_name) relevant_names = _collect_stored_names(generator.target for generator in generator_exp.generators) assert generated_function_name not in relevant_names result_id = 'icontract_tracing_all_result_{}'.format(uuid.uuid4().hex) result_assignment = ast.Assign(targets=[ast.Name(id=result_id, ctx=ast.Store())], value=generator_exp.elt) exceptional_return = ast.Return( ast.Tuple( elts=[ ast.Name(id=result_id, ctx=ast.Load()), ast.Tuple( elts=[ ast.Tuple( elts=[ ast.Constant(value=relevant_name, kind=None), ast.Name(id=relevant_name, ctx=ast.Load()) ], ctx=ast.Load()) for relevant_name in relevant_names ], ctx=ast.Load()) ], ctx=ast.Load())) happy_return = ast.Return( ast.Tuple(elts=[ast.Name(id=result_id, ctx=ast.Load()), ast.Constant(value=None, kind=None)], ctx=ast.Load())) critical_if: If = ast.If( test=ast.Name(id=result_id, ctx=ast.Load()), body=[ast.Pass()], orelse=[exceptional_return]) block = None for i, comprehension in enumerate(reversed(generator_exp.generators)): if i == 0: block = [result_assignment, critical_if] assert block is not None for condition in reversed(comprehension.ifs): block = [ast.If(test=condition, body=block, orelse=[])] if not comprehension.is_async: block = [ast.For(target=comprehension.target, iter=comprehension.iter, body=block, orelse=[])] else: block = [ast.AsyncFor(target=comprehension.target, iter=comprehension.iter, body=block, orelse=[])] assert block is not None block.append(happy_return) is_async = any(comprehension.is_async for comprehension in generator_exp.generators) args = [ast.arg(arg=name, annotation=None) for name in sorted(name_to_value.keys())] if platform.python_version_tuple() < ('3', '5'): raise NotImplementedError("Python versions below 3.5 not supported, got: {}".format(platform.python_version())) if not is_async: if platform.python_version_tuple() < ('3', '8'): func_def_node = ast.FunctionDef( name=generated_function_name, args=ast.arguments(args=args, kwonlyargs=[], kw_defaults=[], defaults=[], vararg=None, kwarg=None), decorator_list=[], body=block) module_node = ast.Module(body=[func_def_node]) else: func_def_node = ast.FunctionDef( name=generated_function_name, args=ast.arguments( args=args, posonlyargs=[], kwonlyargs=[], kw_defaults=[], defaults=[], vararg=None, kwarg=None), decorator_list=[], body=block) module_node = ast.Module(body=[func_def_node], type_ignores=[]) else: if platform.python_version_tuple() < ('3', '8'): func_def_node = ast.AsyncFunctionDef( name=generated_function_name, args=ast.arguments(args=args, kwonlyargs=[], kw_defaults=[], defaults=[], vararg=None, kwarg=None), decorator_list=[], body=block) module_node = ast.Module(body=[func_def_node]) else: func_def_node = ast.AsyncFunctionDef( name=generated_function_name, args=ast.arguments( args=args, posonlyargs=[], kwonlyargs=[], kw_defaults=[], defaults=[], vararg=None, kwarg=None), decorator_list=[], body=block) module_node = ast.Module(body=[func_def_node], type_ignores=[]) ast.fix_missing_locations(module_node) return module_node
Generate the AST of the module to trace an all quantifier on an generator expression. :param generator_exp: generator expression to be translated :param generated_function_name: UUID of the tracing function to be used in the code :param name_to_value: mapping of all resolved values to the variable names (passed as arguments to the function so that the generation can access them) :return: translation to a module
https://github.com/parquery/icontract/blob/8d3193144a0b92e96f548b2ee828eb36a405ed40/icontract/_recompute.py#L89-L208
import ast import builtins import copy import functools import inspect import platform import sys import uuid from typing import (Any, Mapping, Dict, List, Optional, Union, Tuple, Set, Callable, cast, Iterable, TypeVar) from _ast import If class Placeholder: def __repr__(self) -> str: return "<Placeholder>" PLACEHOLDER = Placeholder() class FirstExceptionInAll: def __init__(self, result: Any, inputs: Tuple[Tuple[str, Any]]) -> None: self.result = result self.inputs = inputs def __bool__(self) -> Any: return self.result ContextT = TypeVar('ContextT', bound=ast.expr_context) class _CollectStoredNamesVisitor(ast.NodeVisitor): def __init__(self) -> None: self.names = [] self._name_set = set() def visit_Name(self, node: ast.Name) -> Any: if isinstance(node.ctx, ast.Store) and node.id not in self._name_set: self.names.append(node.id) self._name_set.add(node.id) def _collect_stored_names(nodes: Iterable[ast.expr]) -> List[str]: visitor = _CollectStoredNamesVisitor() for node in nodes: visitor.visit(node) return visitor.names class _CollectNameLoadsVisitor(ast.NodeVisitor): def __init__(self) -> None: self.nodes = [] def visit_Name(self, node: ast.Name) -> Any: if isinstance(node.ctx, ast.Load): self.nodes.append(node) def _collect_name_loads(nodes: Iterable[ast.expr]) -> List[ast.expr]: visitor = _CollectNameLoadsVisitor() for node in nodes: visitor.visit(node) return visitor.nodes
MIT License
b6d/lima
lima/fields.py
Reference.pack
python
def pack(self, val): return self._pack_func(val) if val is not None else None
Return value of reference field of marshalled representation of val. Args: val: The nested object to get the reference to. Returns: The value of the reference-field of the marshalled representation of val (see ``field`` argument of constructor) or ``None`` if ``val`` is ``None``. Note that the return value is determined using an (internal) dump field *function* of the associated schema object. This means that overriding the associated schema's :meth:`~lima.schema.Schema.dump` *method* has no effect on the result of this method.
https://github.com/b6d/lima/blob/13c5d184f7e3a26fc468d2658664c91f577017d9/lima/fields.py#L380-L397
import datetime import decimal from lima import abc from lima import registry from lima import util class Field(abc.FieldABC): def __init__(self, *, attr=None, key=None, get=None, val=None): if sum(v is not None for v in (attr, key, get, val)) > 1: raise ValueError('attr, key, get and val are mutually exclusive.') if attr is not None: if not isinstance(attr, str) or not str.isidentifier(attr): msg = 'attr is not a valid Python identifier: {}'.format(attr) raise ValueError(msg) self.attr = attr elif key is not None: self.key = key elif get is not None: if not callable(get): raise ValueError('get is not callable.') self.get = get elif val is not None: self.val = val class Boolean(Field): pass class Decimal(Field): @staticmethod def pack(val): return str(val) if val is not None else None class Float(Field): pass class Integer(Field): pass class String(Field): pass class Date(Field): @staticmethod def pack(val): return val.isoformat() if val is not None else None class DateTime(Field): @staticmethod def pack(val): return val.isoformat() if val is not None else None class _LinkedObjectField(Field): def __init__(self, *, schema, attr=None, key=None, get=None, val=None, **kwargs): super().__init__(attr=attr, key=key, get=get, val=val) self._schema_arg = schema self._schema_kwargs = kwargs @util.reify def _schema_inst(self): with util.exception_context('Lazy evaluation of schema instance'): schema = self._schema_arg kwargs = self._schema_kwargs if isinstance(schema, abc.SchemaABC): if kwargs: msg = ('No additional keyword args must be ' 'supplied to field constructor if ' 'schema already is a Schema object.') raise ValueError(msg) return schema elif (isinstance(schema, type) and issubclass(schema, abc.SchemaABC)): return schema(**kwargs) elif isinstance(schema, str): cls = registry.global_registry.get(schema) return cls(**kwargs) msg = 'schema arg supplied to constructor has illegal type ({})' raise TypeError(msg.format(type(schema))) def pack(self, val): raise NotImplementedError class Embed(_LinkedObjectField): @util.reify def _pack_func(self): return self._schema_inst._dump_fields def pack(self, val): return self._pack_func(val) if val is not None else None class Reference(_LinkedObjectField): def __init__(self, *, schema, field, attr=None, key=None, get=None, val=None, **kwargs): super().__init__(schema=schema, attr=attr, key=key, get=get, val=val, **kwargs) self._field = field @util.reify def _pack_func(self): return self._schema_inst._dump_field_func(self._field)
MIT License
intel/openfl
openfl/component/aggregator/aggregator.py
Aggregator.get_aggregated_tensor
python
def get_aggregated_tensor(self, collaborator_name, tensor_name, round_number, report, tags, require_lossless): self.logger.debug(f'Retrieving aggregated tensor {tensor_name},{round_number},{tags} ' f'for collaborator {collaborator_name}') if 'compressed' in tags or require_lossless: compress_lossless = True else: compress_lossless = False if 'compressed' in tags: tags.remove('compressed') if 'lossy_compressed' in tags: tags.remove('lossy_compressed') tensor_key = TensorKey( tensor_name, self.uuid, round_number, report, tuple(tags) ) tensor_name, origin, round_number, report, tags = tensor_key if 'aggregated' in tags and 'delta' in tags and round_number != 0: agg_tensor_key = TensorKey( tensor_name, origin, round_number, report, ('aggregated',) ) else: agg_tensor_key = tensor_key nparray = self.tensor_db.get_tensor_from_cache(agg_tensor_key) if nparray is None: raise ValueError(f'Aggregator does not have an aggregated tensor for {tensor_key}') named_tensor = self._nparray_to_named_tensor( agg_tensor_key, nparray, send_model_deltas=True, compress_lossless=compress_lossless ) return named_tensor
RPC called by collaborator. Performs local lookup to determine if there is an aggregated tensor available \ that matches the request. Args: collaborator_name : str Requested tensor key collaborator name tensor_name: str require_lossless: bool round_number: int report: bool tags: list[str] Returns: named_tensor : protobuf NamedTensor the tensor requested by the collaborator
https://github.com/intel/openfl/blob/4bda3850b6bce7c904a5ac3ed56115bec00be2e0/openfl/component/aggregator/aggregator.py#L312-L375
import queue from logging import getLogger from openfl.component.aggregation_functions import WeightedAverage from openfl.databases import TensorDB from openfl.pipelines import NoCompressionPipeline from openfl.pipelines import TensorCodec from openfl.protocols import ModelProto from openfl.protocols import utils from openfl.utilities import TaskResultKey from openfl.utilities import TensorKey from openfl.utilities.logs import write_metric class Aggregator: def __init__(self, aggregator_uuid, federation_uuid, authorized_cols, init_state_path, best_state_path, last_state_path, assigner, rounds_to_train=256, log_metric_callback=None, single_col_cert_common_name=None, compression_pipeline=None, db_store_rounds=1, **kwargs): self.round_number = 0 self.single_col_cert_common_name = single_col_cert_common_name if self.single_col_cert_common_name is not None: self._log_big_warning() else: self.single_col_cert_common_name = '' self.rounds_to_train = rounds_to_train self.authorized_cols = authorized_cols self.uuid = aggregator_uuid self.federation_uuid = federation_uuid self.assigner = assigner self.quit_job_sent_to = [] self.tensor_db = TensorDB() self.db_store_rounds = db_store_rounds self.compression_pipeline = compression_pipeline or NoCompressionPipeline() self.tensor_codec = TensorCodec(self.compression_pipeline) self.logger = getLogger(__name__) self.init_state_path = init_state_path self.best_state_path = best_state_path self.last_state_path = last_state_path self.best_tensor_dict: dict = {} self.last_tensor_dict: dict = {} self.metric_queue = queue.Queue() self.best_model_score = None if kwargs.get('initial_tensor_dict', None) is not None: self._load_initial_tensors_from_dict(kwargs['initial_tensor_dict']) self.model = utils.construct_model_proto( tensor_dict=kwargs['initial_tensor_dict'], round_number=0, tensor_pipe=self.compression_pipeline) else: self.model: ModelProto = utils.load_proto(self.init_state_path) self._load_initial_tensors() self.log_dir = f'logs/{self.uuid}_{self.federation_uuid}' self.collaborator_tensor_results = {} self.collaborator_tasks_results = {} self.collaborator_task_weight = {} self.log_metric = write_metric def _load_initial_tensors(self): tensor_dict, round_number = utils.deconstruct_model_proto( self.model, compression_pipeline=self.compression_pipeline) if round_number > self.round_number: self.logger.info( f'Starting training from round {round_number} of previously saved model' ) self.round_number = round_number tensor_key_dict = { TensorKey(k, self.uuid, self.round_number, False, ('model',)): v for k, v in tensor_dict.items() } self.tensor_db.cache_tensor(tensor_key_dict) self.logger.debug(f'This is the initial tensor_db: {self.tensor_db}') def _load_initial_tensors_from_dict(self, tensor_dict): tensor_key_dict = { TensorKey(k, self.uuid, self.round_number, False, ('model',)): v for k, v in tensor_dict.items() } self.tensor_db.cache_tensor(tensor_key_dict) self.logger.debug(f'This is the initial tensor_db: {self.tensor_db}') def _save_model(self, round_number, file_path): og_tensor_dict, _ = utils.deconstruct_model_proto( self.model, compression_pipeline=self.compression_pipeline) tensor_keys = [ TensorKey( k, self.uuid, round_number, False, ('model',) ) for k, v in og_tensor_dict.items() ] tensor_dict = {} for tk in tensor_keys: tk_name, _, _, _, _ = tk tensor_dict[tk_name] = self.tensor_db.get_tensor_from_cache(tk) if tensor_dict[tk_name] is None: self.logger.info(f'Cannot save model for round {round_number}. Continuing...') return if file_path == self.best_state_path: self.best_tensor_dict = tensor_dict if file_path == self.last_state_path: self.last_tensor_dict = tensor_dict self.model = utils.construct_model_proto( tensor_dict, round_number, self.compression_pipeline) utils.dump_proto(self.model, file_path) def valid_collaborator_cn_and_id(self, cert_common_name, collaborator_common_name): if self.single_col_cert_common_name == '': return (cert_common_name == collaborator_common_name and collaborator_common_name in self.authorized_cols) else: return (cert_common_name == self.single_col_cert_common_name and collaborator_common_name in self.authorized_cols) def all_quit_jobs_sent(self): return set(self.quit_job_sent_to) == set(self.authorized_cols) @staticmethod def _get_sleep_time(): return 10 def _time_to_quit(self): if self.round_number >= self.rounds_to_train: return True return False def get_tasks(self, collaborator_name): self.logger.debug( f'Aggregator GetTasks function reached from collaborator {collaborator_name}...' ) if self._time_to_quit(): self.logger.info(f'Sending signal to collaborator {collaborator_name} to shutdown...') self.quit_job_sent_to.append(collaborator_name) tasks = None sleep_time = 0 time_to_quit = True return tasks, self.round_number, sleep_time, time_to_quit time_to_quit = False tasks = self.assigner.get_tasks_for_collaborator( collaborator_name, self.round_number) if len(tasks) == 0: tasks = None sleep_time = self._get_sleep_time() return tasks, self.round_number, sleep_time, time_to_quit tasks = [ t for t in tasks if not self._collaborator_task_completed( collaborator_name, t, self.round_number) ] if len(tasks) == 0: tasks = None sleep_time = self._get_sleep_time() return tasks, self.round_number, sleep_time, time_to_quit self.logger.info( f'Sending tasks to collaborator {collaborator_name} for round {self.round_number}' ) sleep_time = 0 return tasks, self.round_number, sleep_time, time_to_quit
Apache License 2.0
thehappydinoa/ashssdk
lambda/awscli/argprocess.py
unpack_cli_arg
python
def unpack_cli_arg(cli_argument, value): return _unpack_cli_arg(cli_argument.argument_model, value, cli_argument.cli_name)
Parses and unpacks the encoded string command line parameter and returns native Python data structures that can be passed to the Operation. :type cli_argument: :class:`awscli.arguments.BaseCLIArgument` :param cli_argument: The CLI argument object. :param value: The value of the parameter. This can be a number of different python types (str, list, etc). This is the value as it's specified on the command line. :return: The "unpacked" argument than can be sent to the `Operation` object in python.
https://github.com/thehappydinoa/ashssdk/blob/d251a08ba6c35d81cf41b3267db666b08e875515/lambda/awscli/argprocess.py#L149-L166
import os import logging from awscli.compat import six from botocore.compat import OrderedDict, json from awscli import SCALAR_TYPES, COMPLEX_TYPES from awscli.paramfile import get_paramfile, ResourceLoadingError from awscli.paramfile import PARAMFILE_DISABLED from awscli import shorthand from awscli.utils import find_service_and_method_in_event_name from botocore.utils import is_json_value_header LOG = logging.getLogger('awscli.argprocess') class ParamError(Exception): def __init__(self, cli_name, message): full_message = ("Error parsing parameter '%s': %s" % (cli_name, message)) super(ParamError, self).__init__(full_message) self.cli_name = cli_name self.message = message class ParamSyntaxError(Exception): pass class ParamUnknownKeyError(Exception): def __init__(self, key, valid_keys): valid_keys = ', '.join(valid_keys) full_message = ( "Unknown key '%s', valid choices " "are: %s" % (key, valid_keys)) super(ParamUnknownKeyError, self).__init__(full_message) class TooComplexError(Exception): pass def unpack_argument(session, service_name, operation_name, cli_argument, value): param_name = getattr(cli_argument, 'name', 'anonymous') value_override = session.emit_first_non_none_response( 'load-cli-arg.%s.%s.%s' % (service_name, operation_name, param_name), param=cli_argument, value=value, service_name=service_name, operation_name=operation_name) if value_override is not None: value = value_override return value def uri_param(event_name, param, value, **kwargs): cli_argument = param qualified_param_name = '.'.join(event_name.split('.')[1:]) if qualified_param_name in PARAMFILE_DISABLED or getattr(cli_argument, 'no_paramfile', None): return else: return _check_for_uri_param(cli_argument, value) def _check_for_uri_param(param, value): if isinstance(value, list) and len(value) == 1: value = value[0] try: return get_paramfile(value) except ResourceLoadingError as e: raise ParamError(param.cli_name, six.text_type(e)) def detect_shape_structure(param): stack = [] return _detect_shape_structure(param, stack) def _detect_shape_structure(param, stack): if param.name in stack: return 'recursive' else: stack.append(param.name) try: if param.type_name in SCALAR_TYPES: return 'scalar' elif param.type_name == 'structure': sub_types = [_detect_shape_structure(p, stack) for p in param.members.values()] if len(sub_types) == 1 and all(p == 'scalar' for p in sub_types): return 'structure(scalar)' elif len(sub_types) > 1 and all(p == 'scalar' for p in sub_types): return 'structure(scalars)' else: return 'structure(%s)' % ', '.join(sorted(set(sub_types))) elif param.type_name == 'list': return 'list-%s' % _detect_shape_structure(param.member, stack) elif param.type_name == 'map': if param.value.type_name in SCALAR_TYPES: return 'map-scalar' else: return 'map-%s' % _detect_shape_structure(param.value, stack) finally: stack.pop()
MIT License
ai4finance-llc/neofinrl
stable_baselines3/common/distributions.py
StateDependentNoiseDistribution.proba_distribution_net
python
def proba_distribution_net( self, latent_dim: int, log_std_init: float = -2.0, latent_sde_dim: Optional[int] = None ) -> Tuple[nn.Module, nn.Parameter]: mean_actions_net = nn.Linear(latent_dim, self.action_dim) self.latent_sde_dim = latent_dim if latent_sde_dim is None else latent_sde_dim log_std = th.ones(self.latent_sde_dim, self.action_dim) if self.full_std else th.ones(self.latent_sde_dim, 1) log_std = nn.Parameter(log_std * log_std_init, requires_grad=True) self.sample_weights(log_std) return mean_actions_net, log_std
Create the layers and parameter that represent the distribution: one output will be the deterministic action, the other parameter will be the standard deviation of the distribution that control the weights of the noise matrix. :param latent_dim: Dimension of the last layer of the policy (before the action layer) :param log_std_init: Initial value for the log standard deviation :param latent_sde_dim: Dimension of the last layer of the features extractor for gSDE. By default, it is shared with the policy network. :return:
https://github.com/ai4finance-llc/neofinrl/blob/51338dbb0ec86f74e4fc6cce90bc385a4639de79/stable_baselines3/common/distributions.py#L494-L519
from abc import ABC, abstractmethod from typing import Any, Dict, List, Optional, Tuple, Union import gym import torch as th from gym import spaces from torch import nn from torch.distributions import Bernoulli, Categorical, Normal from stable_baselines3.common.preprocessing import get_action_dim class Distribution(ABC): def __init__(self): super(Distribution, self).__init__() self.distribution = None @abstractmethod def proba_distribution_net(self, *args, **kwargs) -> Union[nn.Module, Tuple[nn.Module, nn.Parameter]]: @abstractmethod def proba_distribution(self, *args, **kwargs) -> "Distribution": @abstractmethod def log_prob(self, x: th.Tensor) -> th.Tensor: @abstractmethod def entropy(self) -> Optional[th.Tensor]: @abstractmethod def sample(self) -> th.Tensor: @abstractmethod def mode(self) -> th.Tensor: def get_actions(self, deterministic: bool = False) -> th.Tensor: if deterministic: return self.mode() return self.sample() @abstractmethod def actions_from_params(self, *args, **kwargs) -> th.Tensor: @abstractmethod def log_prob_from_params(self, *args, **kwargs) -> Tuple[th.Tensor, th.Tensor]: def sum_independent_dims(tensor: th.Tensor) -> th.Tensor: if len(tensor.shape) > 1: tensor = tensor.sum(dim=1) else: tensor = tensor.sum() return tensor class DiagGaussianDistribution(Distribution): def __init__(self, action_dim: int): super(DiagGaussianDistribution, self).__init__() self.action_dim = action_dim self.mean_actions = None self.log_std = None def proba_distribution_net(self, latent_dim: int, log_std_init: float = 0.0) -> Tuple[nn.Module, nn.Parameter]: mean_actions = nn.Linear(latent_dim, self.action_dim) log_std = nn.Parameter(th.ones(self.action_dim) * log_std_init, requires_grad=True) return mean_actions, log_std def proba_distribution(self, mean_actions: th.Tensor, log_std: th.Tensor) -> "DiagGaussianDistribution": action_std = th.ones_like(mean_actions) * log_std.exp() self.distribution = Normal(mean_actions, action_std) return self def log_prob(self, actions: th.Tensor) -> th.Tensor: log_prob = self.distribution.log_prob(actions) return sum_independent_dims(log_prob) def entropy(self) -> th.Tensor: return sum_independent_dims(self.distribution.entropy()) def sample(self) -> th.Tensor: return self.distribution.rsample() def mode(self) -> th.Tensor: return self.distribution.mean def actions_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor, deterministic: bool = False) -> th.Tensor: self.proba_distribution(mean_actions, log_std) return self.get_actions(deterministic=deterministic) def log_prob_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor) -> Tuple[th.Tensor, th.Tensor]: actions = self.actions_from_params(mean_actions, log_std) log_prob = self.log_prob(actions) return actions, log_prob class SquashedDiagGaussianDistribution(DiagGaussianDistribution): def __init__(self, action_dim: int, epsilon: float = 1e-6): super(SquashedDiagGaussianDistribution, self).__init__(action_dim) self.epsilon = epsilon self.gaussian_actions = None def proba_distribution(self, mean_actions: th.Tensor, log_std: th.Tensor) -> "SquashedDiagGaussianDistribution": super(SquashedDiagGaussianDistribution, self).proba_distribution(mean_actions, log_std) return self def log_prob(self, actions: th.Tensor, gaussian_actions: Optional[th.Tensor] = None) -> th.Tensor: if gaussian_actions is None: gaussian_actions = TanhBijector.inverse(actions) log_prob = super(SquashedDiagGaussianDistribution, self).log_prob(gaussian_actions) log_prob -= th.sum(th.log(1 - actions ** 2 + self.epsilon), dim=1) return log_prob def entropy(self) -> Optional[th.Tensor]: return None def sample(self) -> th.Tensor: self.gaussian_actions = super().sample() return th.tanh(self.gaussian_actions) def mode(self) -> th.Tensor: self.gaussian_actions = super().mode() return th.tanh(self.gaussian_actions) def log_prob_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor) -> Tuple[th.Tensor, th.Tensor]: action = self.actions_from_params(mean_actions, log_std) log_prob = self.log_prob(action, self.gaussian_actions) return action, log_prob class CategoricalDistribution(Distribution): def __init__(self, action_dim: int): super(CategoricalDistribution, self).__init__() self.action_dim = action_dim def proba_distribution_net(self, latent_dim: int) -> nn.Module: action_logits = nn.Linear(latent_dim, self.action_dim) return action_logits def proba_distribution(self, action_logits: th.Tensor) -> "CategoricalDistribution": self.distribution = Categorical(logits=action_logits) return self def log_prob(self, actions: th.Tensor) -> th.Tensor: return self.distribution.log_prob(actions) def entropy(self) -> th.Tensor: return self.distribution.entropy() def sample(self) -> th.Tensor: return self.distribution.sample() def mode(self) -> th.Tensor: return th.argmax(self.distribution.probs, dim=1) def actions_from_params(self, action_logits: th.Tensor, deterministic: bool = False) -> th.Tensor: self.proba_distribution(action_logits) return self.get_actions(deterministic=deterministic) def log_prob_from_params(self, action_logits: th.Tensor) -> Tuple[th.Tensor, th.Tensor]: actions = self.actions_from_params(action_logits) log_prob = self.log_prob(actions) return actions, log_prob class MultiCategoricalDistribution(Distribution): def __init__(self, action_dims: List[int]): super(MultiCategoricalDistribution, self).__init__() self.action_dims = action_dims def proba_distribution_net(self, latent_dim: int) -> nn.Module: action_logits = nn.Linear(latent_dim, sum(self.action_dims)) return action_logits def proba_distribution(self, action_logits: th.Tensor) -> "MultiCategoricalDistribution": self.distribution = [Categorical(logits=split) for split in th.split(action_logits, tuple(self.action_dims), dim=1)] return self def log_prob(self, actions: th.Tensor) -> th.Tensor: return th.stack( [dist.log_prob(action) for dist, action in zip(self.distribution, th.unbind(actions, dim=1))], dim=1 ).sum(dim=1) def entropy(self) -> th.Tensor: return th.stack([dist.entropy() for dist in self.distribution], dim=1).sum(dim=1) def sample(self) -> th.Tensor: return th.stack([dist.sample() for dist in self.distribution], dim=1) def mode(self) -> th.Tensor: return th.stack([th.argmax(dist.probs, dim=1) for dist in self.distribution], dim=1) def actions_from_params(self, action_logits: th.Tensor, deterministic: bool = False) -> th.Tensor: self.proba_distribution(action_logits) return self.get_actions(deterministic=deterministic) def log_prob_from_params(self, action_logits: th.Tensor) -> Tuple[th.Tensor, th.Tensor]: actions = self.actions_from_params(action_logits) log_prob = self.log_prob(actions) return actions, log_prob class BernoulliDistribution(Distribution): def __init__(self, action_dims: int): super(BernoulliDistribution, self).__init__() self.action_dims = action_dims def proba_distribution_net(self, latent_dim: int) -> nn.Module: action_logits = nn.Linear(latent_dim, self.action_dims) return action_logits def proba_distribution(self, action_logits: th.Tensor) -> "BernoulliDistribution": self.distribution = Bernoulli(logits=action_logits) return self def log_prob(self, actions: th.Tensor) -> th.Tensor: return self.distribution.log_prob(actions).sum(dim=1) def entropy(self) -> th.Tensor: return self.distribution.entropy().sum(dim=1) def sample(self) -> th.Tensor: return self.distribution.sample() def mode(self) -> th.Tensor: return th.round(self.distribution.probs) def actions_from_params(self, action_logits: th.Tensor, deterministic: bool = False) -> th.Tensor: self.proba_distribution(action_logits) return self.get_actions(deterministic=deterministic) def log_prob_from_params(self, action_logits: th.Tensor) -> Tuple[th.Tensor, th.Tensor]: actions = self.actions_from_params(action_logits) log_prob = self.log_prob(actions) return actions, log_prob class StateDependentNoiseDistribution(Distribution): def __init__( self, action_dim: int, full_std: bool = True, use_expln: bool = False, squash_output: bool = False, learn_features: bool = False, epsilon: float = 1e-6, ): super(StateDependentNoiseDistribution, self).__init__() self.action_dim = action_dim self.latent_sde_dim = None self.mean_actions = None self.log_std = None self.weights_dist = None self.exploration_mat = None self.exploration_matrices = None self._latent_sde = None self.use_expln = use_expln self.full_std = full_std self.epsilon = epsilon self.learn_features = learn_features if squash_output: self.bijector = TanhBijector(epsilon) else: self.bijector = None def get_std(self, log_std: th.Tensor) -> th.Tensor: if self.use_expln: below_threshold = th.exp(log_std) * (log_std <= 0) safe_log_std = log_std * (log_std > 0) + self.epsilon above_threshold = (th.log1p(safe_log_std) + 1.0) * (log_std > 0) std = below_threshold + above_threshold else: std = th.exp(log_std) if self.full_std: return std return th.ones(self.latent_sde_dim, self.action_dim).to(log_std.device) * std def sample_weights(self, log_std: th.Tensor, batch_size: int = 1) -> None: std = self.get_std(log_std) self.weights_dist = Normal(th.zeros_like(std), std) self.exploration_mat = self.weights_dist.rsample() self.exploration_matrices = self.weights_dist.rsample((batch_size,))
MIT License
onshape-public/onshape-clients
python/onshape_client/oas/models/info.py
Info.openapi_types
python
def openapi_types(): return { "contact": (contact.Contact,), "description": (str,), "extensions": ( {str: (bool, date, datetime, dict, float, int, list, str,)}, ), "license": (license.License,), "terms_of_service": (str,), "title": (str,), "version": (str,), }
This must be a class method so a model may have properties that are of type self, this ensures that we don't create a cyclic import Returns openapi_types (dict): The key is attribute name and the value is attribute type.
https://github.com/onshape-public/onshape-clients/blob/20843a00c628e516e7219e17a23ec4ef2bf9f16f/python/onshape_client/oas/models/info.py#L74-L93
from __future__ import absolute_import import re import sys import six from onshape_client.oas.model_utils import ( ModelComposed, ModelNormal, ModelSimple, date, datetime, file_type, int, none_type, str, validate_get_composed_info, ) try: from onshape_client.oas.models import contact except ImportError: contact = sys.modules["onshape_client.oas.models.contact"] try: from onshape_client.oas.models import license except ImportError: license = sys.modules["onshape_client.oas.models.license"] class Info(ModelNormal): allowed_values = {} validations = {} additional_properties_type = None @staticmethod
MIT License
qiskit/qiskit-ibmq-provider
qiskit/providers/ibmq/job/ibmqjob.py
IBMQJob.name
python
def name(self) -> Optional[str]: return self._name
Return the name assigned to this job. Returns: Job name or ``None`` if no name was assigned to this job.
https://github.com/qiskit/qiskit-ibmq-provider/blob/5e89e43eb7d97427946f3462cc6d814860c4a291/qiskit/providers/ibmq/job/ibmqjob.py#L606-L612
import logging from typing import Dict, Optional, Tuple, Any, List, Callable, Union import warnings from datetime import datetime from concurrent import futures from threading import Event from queue import Empty import dateutil.parser from qiskit.providers.job import JobV1 as Job from qiskit.providers.jobstatus import JOB_FINAL_STATES, JobStatus from qiskit.providers.models import BackendProperties from qiskit.qobj import QasmQobj, PulseQobj from qiskit.result import Result from qiskit.providers.ibmq import ibmqbackend from qiskit.assembler.disassemble import disassemble from qiskit.circuit.quantumcircuit import QuantumCircuit from qiskit.pulse import Schedule from ..apiconstants import ApiJobStatus, ApiJobKind from ..api.clients import AccountClient from ..api.exceptions import ApiError, UserTimeoutExceededError from ..utils.utils import RefreshQueue, validate_job_tags, api_status_to_job_status from ..utils.qobj_utils import dict_to_qobj from ..utils.json_decoder import decode_backend_properties, decode_result from ..utils.converters import utc_to_local, utc_to_local_all from .exceptions import (IBMQJobApiError, IBMQJobFailureError, IBMQJobTimeoutError, IBMQJobInvalidStateError) from .queueinfo import QueueInfo from .utils import build_error_report, api_to_job_error, get_cancel_status logger = logging.getLogger(__name__) class IBMQJob(Job): _data = {} _executor = futures.ThreadPoolExecutor() def __init__( self, backend: 'ibmqbackend.IBMQBackend', api_client: AccountClient, job_id: str, creation_date: str, status: str, kind: Optional[str] = None, name: Optional[str] = None, time_per_step: Optional[dict] = None, result: Optional[dict] = None, qobj: Optional[Union[dict, QasmQobj, PulseQobj]] = None, error: Optional[dict] = None, tags: Optional[List[str]] = None, run_mode: Optional[str] = None, share_level: Optional[str] = None, client_info: Optional[Dict[str, str]] = None, experiment_id: Optional[str] = None, **kwargs: Any ) -> None: self._backend = backend self._api_client = api_client self._job_id = job_id self._creation_date = dateutil.parser.isoparse(creation_date) self._api_status = status self._kind = ApiJobKind(kind) if kind else None self._name = name self._time_per_step = time_per_step if isinstance(qobj, dict): qobj = dict_to_qobj(qobj) self._qobj = qobj self._error = error self._tags = tags or [] self._run_mode = run_mode self._status, self._queue_info = self._get_status_position(status, kwargs.pop('info_queue', None)) self._use_object_storage = (self._kind == ApiJobKind.QOBJECT_STORAGE) self._share_level = share_level self._set_client_version(client_info) self._experiment_id = experiment_id self._set_result(result) self._data = {} for key, value in kwargs.items(): self._data[key + '_'] = value super().__init__(self.backend(), self.job_id()) self._cancelled = False self._job_error_msg = None self._refreshed = False def qobj(self) -> Optional[Union[QasmQobj, PulseQobj]]: warnings.warn("The ``IBMQJob.qobj()`` method is deprecated and will " "be removed in a future release. You can now pass circuits " "to ``IBMQBackend.run()`` and use ``IBMQJob.circuits()``, " "``IBMQJob.backend_options()``, and ``IBMQJob.header()`` to retrieve " "circuits, run configuration, and Qobj header, respectively.", DeprecationWarning, stacklevel=2) return self._get_qobj() def properties(self) -> Optional[BackendProperties]: with api_to_job_error(): properties = self._api_client.job_properties(job_id=self.job_id()) if not properties: return None decode_backend_properties(properties) properties = utc_to_local_all(properties) return BackendProperties.from_dict(properties) def result( self, timeout: Optional[float] = None, wait: float = 5, partial: bool = False, refresh: bool = False ) -> Result: if not self._wait_for_completion(timeout=timeout, wait=wait, required_status=(JobStatus.DONE,)): if self._status is JobStatus.CANCELLED: raise IBMQJobInvalidStateError('Unable to retrieve result for job {}. ' 'Job was cancelled.'.format(self.job_id())) if partial: self._retrieve_result(refresh=refresh) if not partial or not self._result or not self._result.results: error_message = self.error_message() if '\n' in error_message: error_message = ". Use the error_message() method to get more details" else: error_message = ": " + error_message raise IBMQJobFailureError( 'Unable to retrieve result for job {}. Job has failed{}'.format( self.job_id(), error_message)) else: self._retrieve_result(refresh=refresh) return self._result def cancel(self) -> bool: try: response = self._api_client.job_cancel(self.job_id()) self._cancelled = get_cancel_status(response) logger.debug('Job %s cancel status is "%s". Response data: %s.', self.job_id(), self._cancelled, response) return self._cancelled except ApiError as error: self._cancelled = False raise IBMQJobApiError('Unexpected error when cancelling job {}: {}' .format(self.job_id(), str(error))) from error def update_name(self, name: str) -> str: if not isinstance(name, str): raise IBMQJobInvalidStateError( '"{}" of type "{}" is not a valid job name. ' 'The job name needs to be a string.'.format(name, type(name))) with api_to_job_error(): response = self._api_client.job_update_attribute( job_id=self.job_id(), attr_name='name', attr_value=name) updated_name = response.get('name', None) if (updated_name is None) or (name != updated_name): raise IBMQJobApiError('An unexpected error occurred when updating the ' 'name for job {}. The name was not updated for ' 'the job.'.format(self.job_id())) self._name = updated_name return self._name def update_tags( self, replacement_tags: Optional[List[str]] = None, additional_tags: Optional[List[str]] = None, removal_tags: Optional[List[str]] = None ) -> List[str]: if (replacement_tags is None) and (additional_tags is None) and (removal_tags is None): raise IBMQJobInvalidStateError( 'The tags cannot be updated since none of the parameters are specified.') tags_to_update = self._get_tags_to_update(replacement_tags=replacement_tags, additional_tags=additional_tags, removal_tags=removal_tags) with api_to_job_error(): response = self._api_client.job_update_attribute( job_id=self.job_id(), attr_name='tags', attr_value=tags_to_update) updated_tags = response.get('tags', None) if (updated_tags is None) or (set(updated_tags) != set(tags_to_update)): raise IBMQJobApiError('An unexpected error occurred when updating the ' 'tags for job {}. The tags were not updated for ' 'the job.'.format(self.job_id())) self._tags = updated_tags return self._tags def _get_tags_to_update(self, replacement_tags: Optional[List[str]], additional_tags: Optional[List[str]], removal_tags: Optional[List[str]]) -> List[str]: ibmq_jobset_prefix = 'ibmq_jobset_' tags_to_update = set(self._tags or []) if isinstance(replacement_tags, list): validate_job_tags(replacement_tags, IBMQJobInvalidStateError) tags_to_update = set(replacement_tags) tags_to_update.update( filter(lambda old_tag: old_tag.startswith(ibmq_jobset_prefix), self._tags)) if additional_tags: validate_job_tags(additional_tags, IBMQJobInvalidStateError) tags_to_update.update(additional_tags) if removal_tags: validate_job_tags(removal_tags, IBMQJobInvalidStateError) for tag_to_remove in removal_tags: if tag_to_remove.startswith(ibmq_jobset_prefix): logger.warning('The tag "%s" for job %s will not be removed, because ' 'it is used internally by the ibmq-provider.', tag_to_remove, self.job_id()) continue if tag_to_remove in tags_to_update: tags_to_update.remove(tag_to_remove) else: logger.warning('The tag "%s" for job %s will not be removed, because it was ' 'not found in the job tags to update %s', tag_to_remove, self.job_id(), tags_to_update) return list(tags_to_update) def status(self) -> JobStatus: if self._status in JOB_FINAL_STATES: return self._status with api_to_job_error(): api_response = self._api_client.job_status(self.job_id()) self._api_status = api_response['status'] self._status, self._queue_info = self._get_status_position( self._api_status, api_response.get('info_queue', None)) if self._status in JOB_FINAL_STATES: self.refresh() return self._status def error_message(self) -> Optional[str]: if not self._wait_for_completion(required_status=(JobStatus.ERROR,)): return None if not self._job_error_msg: self._retrieve_result() if not self._job_error_msg: if not self._error: self.refresh() if self._error: self._job_error_msg = self._format_message_from_error(self._error) elif self._api_status.startswith('ERROR'): self._job_error_msg = self._api_status else: self._job_error_msg = "Unknown error." return self._job_error_msg def queue_position(self, refresh: bool = False) -> Optional[int]: if refresh: self.status() if self._queue_info: return self._queue_info.position return None def queue_info(self) -> Optional[QueueInfo]: self.status() if self._queue_info and any( value is not None for attr, value in self._queue_info.__dict__.items() if not attr.startswith('_') and attr != 'job_id'): return self._queue_info return None def creation_date(self) -> datetime: creation_date_local_dt = utc_to_local(self._creation_date) return creation_date_local_dt def job_id(self) -> str: return self._job_id
Apache License 2.0
cigihub/opencanada
analytics/utils.py
get_analytics
python
def get_analytics(page): analytics, _ = Analytics.objects.get_or_create(page=page) return analytics
Ensure the analytics row exists for a given page
https://github.com/cigihub/opencanada/blob/6334ff412addc0562ac247080194e5d182e8e924/analytics/utils.py#L126-L131
from __future__ import absolute_import, division, unicode_literals import httplib2 import os import six from analytics.models import Analytics from apiclient.discovery import build from django.conf import settings from django.core.exceptions import ImproperlyConfigured from oauth2client.service_account import ServiceAccountCredentials def get_creds_path(): message = 'Setting ANALYTICS_CREDS_PATH must be defined, exist and be a directory.' try: path = getattr(settings, 'ANALYTICS_CREDS_PATH') except AttributeError: raise ImproperlyConfigured(message) if not os.path.isdir(path): raise ImproperlyConfigured(message) return path def get_service_account_email(): message = 'Setting ANALYTICS_SERVICE_ACCOUNT_EMAIL must be defined and non empty' try: email = getattr(settings, 'ANALYTICS_SERVICE_ACCOUNT_EMAIL') except AttributeError: raise ImproperlyConfigured(message) if email is None or email == '': raise ImproperlyConfigured(message) return email def get_key_file_location(): creds_path = get_creds_path() key_file_location = os.path.join(creds_path, 'open-canada-analytics.p12') if not os.path.isfile(key_file_location): raise ImproperlyConfigured( '{} must be a file which contains your api key.'.format(key_file_location) ) return key_file_location def get_service(api_name, api_version, scopes, key_file_location, service_account_email): credentials = ServiceAccountCredentials.from_p12_keyfile( service_account_email, key_file_location, scopes=scopes ) http = credentials.authorize(httplib2.Http()) service = build(api_name, api_version, http=http) return service def get_first_profile_id(service): accounts = service.management().accounts().list().execute() if not accounts.get('items'): return None account = accounts.get('items')[0].get('id') properties = service.management().webproperties().list( accountId=account ).execute() if not properties.get('items'): return None property = properties.get('items')[0].get('id') profiles = service.management().profiles().list( accountId=account, webPropertyId=property ).execute() if not profiles.get('items'): return None return profiles.get('items')[0].get('id') def reset_analytics(pages): for url, page in six.iteritems(pages): analytics = get_analytics(page) analytics.last_period_views = 0 analytics.save()
MIT License
varianapis/pyesapi
pyesapi/Lot.py
Lot.Select
python
def Select(self, fxn): if callable(fxn): return Lot(list(filter(fxn, self.collection))) else: raise TypeError('fxn is not callable')
returns a new lot of objects where fxn(object) == True
https://github.com/varianapis/pyesapi/blob/c7b1d2986cab9387e85dbb4331a44e5b743b86ea/pyesapi/Lot.py#L14-L19
class Lot: def __init__(self, some_collectable): self.collection = some_collectable def FirstOrDefault(self, fxn): result = list(filter(fxn, self.collection)) if len(result) == 0: return None else: return result[0]
MIT License
ufosc/swampymud
swampymud/inventory.py
ItemStack.__init__
python
def __init__(self, item_type, amount, data=None): if data == {}: data = None self._type = item_type self._amount = amount self._data = data
create a new ItemStack with Item class [item_type], integer [amount] Optionally, you can provide [data], where [data] is compatible with the .load method provided by [item_type]
https://github.com/ufosc/swampymud/blob/2e28f9db1f0f4e1c4aafccdf7f58bf2a22b82366/swampymud/inventory.py#L31-L41
from collections import defaultdict from swampymud.util import FindParams def matching_subset(main, sub): main_keys = set(main) sub_keys = set(sub) if not sub_keys.issubset(main_keys): return False for key in sub_keys: if main[key] != sub[key]: return False return True class ItemStack:
MIT License
xilinx/pyxir
python/pyxir/graph/ops/l2_convolution.py
upsampling2d_layout_transform
python
def upsampling2d_layout_transform(X: XLayer, target_layout: str) -> None: layout = X.attrs["data_layout"] axes_transpose = [layout.index(e) for e in target_layout] X.attrs["data_layout"] = target_layout X.shapes[:] = TensorShape([X.shapes[i] for i in axes_transpose])
Transform layout of provided Upsampling2D XLayer to target layout
https://github.com/xilinx/pyxir/blob/bef661d6d77adcdbd2cf4163f2cf3a1d31d40406/python/pyxir/graph/ops/l2_convolution.py#L867-L874
import math import logging import warnings import numpy as np from typing import Dict, List, Any from pyxir.shapes import TensorShape from ..layer.xlayer import defaultXLayer, XLayer, BatchData, ConvData, ScaleData from ..layer.xlayer_factory import xop_register_factory, xop_register from ..xop_registry import ( xop_register_op_layout_transform, xop_register_op_transpose_transform, ) logger = logging.getLogger("pyxir") @xop_register("Flatten") def batch_flatten( attrs: Dict[str, Any], in_xlayers: List[XLayer] ) -> Dict[str, List[int]]: assert len(in_xlayers) == 1, "Batch Flatten expects one input layer" flattened_shape = TensorShape( [list(in_xlayers[0].shapes)[0]] + [int(np.prod(list(in_xlayers[0].shapes)[1:]))] ) return {"shape": flattened_shape} @xop_register_factory("BatchNorm") def batch_norm( op_name: str, input_layer: XLayer, mean_layer: XLayer, variance_layer: XLayer, gamma_layer: XLayer, beta_layer: XLayer, axis: int, epsilon: float = 1e-5, **kwargs ) -> XLayer: bottoms = [input_layer.name] attrs = kwargs attrs.update( { "epsilon": epsilon, "axis": axis, } ) mean, variance = mean_layer.data[0], variance_layer.data[0] gamma, beta = gamma_layer.data[0], beta_layer.data[0] assert mean.shape == variance.shape bn_data = BatchData(mu=mean, sigma_square=variance, gamma=gamma, beta=beta) X = XLayer() X = X._replace( name=op_name, type=["BatchNorm"], shapes=input_layer.shapes[:], sizes=input_layer.sizes[:], data=bn_data, layer=[op_name], tops=[], bottoms=bottoms, attrs=attrs, targets=[], ) return X @xop_register_op_transpose_transform("BatchNorm") def batchnorm_transpose_transform(X: XLayer, axes: List[int]) -> None: new_shape = TensorShape([X.shapes[i] for i in axes]) X.shapes = new_shape X.attrs["axis"] = axes.index(X.attrs["axis"]) @xop_register_factory("Convolution") def conv2d( op_name: str, input_layer: XLayer, weights_layer: XLayer, kernel_size: List[int], strides: List[int] = [1, 1], padding_hw: List[int] = [0, 0, 0, 0], dilation: List[int] = [1, 1], groups: int = 1, channels: int = None, data_layout: str = "NCHW", kernel_layout: str = "OIHW", target_kernel_layout: str = "OIHW", **kwargs ) -> XLayer: assert "Constant" in weights_layer.type assert len(kernel_size) == 2 assert len(dilation) == 2 assert len(strides) == 2 assert len(padding_hw) in [2, 4] layout_idx = tuple([data_layout.index(e) for e in "NCHW"]) layout_idx_transpose = tuple(["NCHW".index(e) for e in data_layout]) B_idx, C_idx, H_idx, W_idx = layout_idx bottoms = [input_layer.name] logger.debug("-- Conv2D Kernel layout: {}".format(kernel_layout)) logger.debug("-- Conv2D W shape: {}".format(weights_layer.data[0].shape)) if len(kernel_layout) != 4 or sorted(kernel_layout) != ["H", "I", "O", "W"]: raise NotImplementedError( "Unsupported kernel layout: {} for" " convolution: {}, should be a permutation" " of `OIHW`".format(kernel_layout, op_name) ) transpose_axes = tuple([kernel_layout.index(e) for e in target_kernel_layout]) W = np.transpose(weights_layer.data[0], transpose_axes) kernel_layout_idx = tuple([target_kernel_layout.index(e) for e in "OIHW"]) kO_idx, kI_idx, kH_idx, kW_idx = kernel_layout_idx if len(padding_hw) == 4: pad_ht, pad_hb, pad_wl, pad_wr = padding_hw elif len(padding_hw) == 2: pad_ht, pad_wl = padding_hw pad_hb, pad_wr = padding_hw else: raise ValueError( "'padding_hw' argument should be a list of length 2" " but got: {}".format(len(padding_hw)) ) in_ch, out_ch = W.shape[kI_idx] * groups, W.shape[kO_idx] logger.debug("-- in_ch: {}, out_ch: {}".format(in_ch, out_ch)) logger.debug("-- channels: {}".format(channels)) assert channels is None or out_ch == channels channels = out_ch if channels is None else channels B = np.zeros([out_ch], dtype=np.float32) data = ConvData(W, B) insize = [input_layer.shapes[H_idx], input_layer.shapes[W_idx]] batches = input_layer.shapes[0] logger.debug("-- in shape: {}".format(input_layer.shapes)) logger.debug("-- padding (t,b,l,r): {}".format((pad_ht, pad_hb, pad_wl, pad_wr))) out_h = int( (insize[0] + pad_ht + pad_hb - dilation[0] * (kernel_size[0] - 1) - 1) / strides[0] + 1 ) out_w = int( (insize[1] + pad_wl + pad_wr - dilation[1] * (kernel_size[1] - 1) - 1) / strides[1] + 1 ) out_shape = TensorShape( [[batches, out_ch, out_h, out_w][i] for i in layout_idx_transpose] ) padding_hh = [pad_ht, pad_hb] padding_ww = [pad_wl, pad_wr] if data_layout == "NCHW": granular_padding = [[0, 0], [0, 0], padding_hh, padding_ww] else: granular_padding = [[0, 0], padding_hh, padding_ww, [0, 0]] logger.debug("-- out shape: {}".format(out_shape)) attrs = kwargs attrs.update( { "padding": granular_padding, "data_layout": data_layout, "kernel_layout": target_kernel_layout, "shape": out_shape.tolist(), "kernel_size": kernel_size, "strides": strides, "groups": groups, "dilation": dilation, "channels": [in_ch, out_ch], } ) X = XLayer() X = X._replace( name=op_name, type=["Convolution"], shapes=out_shape, sizes=out_shape.get_size(), data=data, layer=[op_name], tops=[], bottoms=bottoms, attrs=attrs, targets=[], ) return X @xop_register_op_layout_transform("Convolution") def conv2d_layout_transform(X: XLayer, target_layout: str) -> None: layout = X.attrs["data_layout"] axes_transpose = [layout.index(e) for e in target_layout] X.attrs["padding"] = [X.attrs["padding"][i] for i in axes_transpose] X.attrs["data_layout"] = target_layout X.shapes[:] = TensorShape([X.shapes[i] for i in axes_transpose]) @xop_register_factory("Conv2DTranspose") def conv2d_transpose( op_name: str, input_layer: XLayer, weights_layer: XLayer, kernel_size: List[int], strides: List[int] = [1, 1], padding_hw: List[int] = [0, 0, 0, 0], dilation: List[int] = [1, 1], groups: int = 1, channels: int = None, data_layout: str = "NCHW", kernel_layout: str = "OIHW", target_kernel_layout: str = "OIHW", **kwargs ) -> XLayer: bottoms = [input_layer.name] layout_idx = tuple([data_layout.index(e) for e in "NCHW"]) layout_idx_transpose = tuple(["NCHW".index(e) for e in data_layout]) B_idx, C_idx, H_idx, W_idx = layout_idx logger.debug("-- Conv2DTranspose Kernel layout: {}".format(kernel_layout)) logger.debug("-- Conv2DTranspose W shape: {}".format(weights_layer.data[0].shape)) if len(kernel_layout) != 4 or sorted(kernel_layout) != ["H", "I", "O", "W"]: raise NotImplementedError( "Unsupported kernel layout: {} for" " convolution: {}, should be a permutation" " of `OIHW`".format(kernel_layout, op_name) ) transpose_axes = tuple([kernel_layout.index(e) for e in target_kernel_layout]) W = np.transpose(weights_layer.data[0], transpose_axes) kernel_layout_idx = tuple([target_kernel_layout.index(e) for e in "OIHW"]) kO_idx, kI_idx, kH_idx, kW_idx = kernel_layout_idx assert len(padding_hw) in [2, 4] if len(padding_hw) == 4: pad_ht, pad_hb, pad_wl, pad_wr = padding_hw elif len(padding_hw) == 2: pad_ht, pad_wl = padding_hw pad_hb, pad_wr = padding_hw else: raise ValueError( "'padding_hw' argument should be a list of length 2" " but got: {}".format(len(padding_hw)) ) in_ch, out_ch = W.shape[kI_idx] * groups, W.shape[kO_idx] logger.debug("-- in_ch: {}, out_ch: {}".format(in_ch, out_ch)) logger.debug("-- channels: {}".format(channels)) assert channels is None or out_ch == channels channels = out_ch if channels is None else channels B = np.zeros([out_ch], dtype=np.float32) data = ConvData(W, B) insize = [input_layer.shapes[2], input_layer.shapes[3]] batches = input_layer.shapes[0] logger.debug("{} {}".format(input_layer.shapes, in_ch)) assert input_layer.shapes[C_idx] == in_ch if ( (pad_ht + pad_hb) == (kernel_size[0] - strides[0]) and abs(pad_ht - pad_hb) <= 1 and (pad_wl + pad_wr) == (kernel_size[1] - strides[1]) and abs(pad_wl - pad_wr) <= 1 ): padding_type = "SAME" elif pad_ht == 0 and pad_wl == 0: padding_type = "VALID" else: raise NotImplementedError( "Unsupported padding for Conv2DTranspose" " Only Tensorflow padding 'SAME' and 'VALID'" " are supported but got: {} which does not" " translate to 'SAME' == [pad_ht + pad_hb = {}, pad_wl + pad_wr = {}] or 'VALID'" " == [0, 0]".format( (pad_ht, pad_hb, pad_wl, pad_wr), (kernel_size[0] - strides[0]), (kernel_size[1] - strides[1]), ) ) if padding_type == "SAME": out_h = insize[0] * strides[0] out_w = insize[1] * strides[1] elif padding_type == "VALID": out_h = (insize[0] - 1) * strides[0] + kernel_size[0] out_w = (insize[1] - 1) * strides[1] + kernel_size[1] out_shape = TensorShape( [[batches, out_ch, out_h, out_w][i] for i in layout_idx_transpose] ) padding = [[0, 0], [0, 0], [pad_ht, pad_hb], [pad_wl, pad_wr]] padding = [padding["NCHW".index(i)] for i in data_layout] attrs = kwargs attrs.update( { "padding": padding, "data_layout": data_layout, "kernel_layout": "OIHW", "shape": out_shape.tolist(), "kernel_size": kernel_size, "strides": strides, "groups": groups, "dilation": dilation, "channels": [in_ch, out_ch], } ) X = XLayer() X = X._replace( name=op_name, type=["Conv2DTranspose"], shapes=out_shape, sizes=out_shape.get_size(), data=data, layer=[op_name], tops=[], bottoms=bottoms, attrs=attrs, targets=[], ) return X @xop_register_op_layout_transform("Conv2DTranspose") def conv2d_transpose_layout_transform(X: XLayer, target_layout: str) -> None: layout = X.attrs["data_layout"] axes_transpose = [layout.index(e) for e in target_layout] X.attrs["padding"] = [X.attrs["padding"][i] for i in axes_transpose] X.attrs["data_layout"] = target_layout X.shapes = TensorShape([X.shapes[i] for i in axes_transpose]) @xop_register_factory("GlobalPooling") def global_pool2d( op_name: str, input_layer: XLayer, pool_type: str, layout: str, **kwargs ) -> XLayer: if pool_type not in ["Max", "Avg"]: raise NotImplementedError( "Invalid pooling type: {}, can either be" " `Max` or `Avg`.".format(pool_type) ) insize = [input_layer.shapes[2], input_layer.shapes[3]] batches, channels = input_layer.shapes[0], input_layer.shapes[1] strides = [1, 1] padding = [0, 0] pool_size = insize out_h, out_w = 1, 1 attrs = kwargs attrs.update( { "padding": [[0, 0], [0, 0], [0, 0], [0, 0]], "insize": insize, "outsize": [out_h, out_w], "data_layout": layout, "strides": strides, "kernel_size": pool_size, "pool_type": pool_type, } ) out_shape = TensorShape( [batches, channels, out_h, out_w] if layout == "NCHW" else [batches, out_h, out_w, channels] ) X = XLayer() X = X._replace( name=op_name, type=["Pooling"], shapes=out_shape, sizes=out_shape.get_size(), attrs=attrs, layer=[op_name], tops=[], bottoms=[input_layer.name], targets=[], ) return X @xop_register_factory("Pad") def pad( op_name: str, input_layer: XLayer, padding: List[int], pad_value: float, **kwargs ) -> XLayer: if pad_value != 0: raise NotImplementedError( "Unsupported padding value: {}, only 0 is" " supported for now.".format(pad_value) ) if not len(input_layer.shapes) == 4: raise NotImplementedError( "Padding layer only supported after layer in" " `NCHW` or `NHWC` format, but found layer" " with {} dims".format(len(input_layer.shapes)) ) unpadded_dims = [[0, 0]] * len(input_layer.shapes[len(padding) :]) padding = unpadded_dims + [list(pad) for pad in padding] shape = TensorShape([s + p[0] + p[1] for s, p in zip(input_layer.shapes, padding)]) logger.debug("-- Pad shape: {}".format(shape)) attrs = kwargs attrs.update({"padding": padding}) X = XLayer() X = X._replace( name=op_name, type=["Pad"], shapes=shape, sizes=shape.get_size(), attrs=attrs, layer=[op_name], tops=[], bottoms=[input_layer.name], targets=[], ) return X @xop_register_op_transpose_transform("Pad") def padding_transpose_transform(X: XLayer, axes: List[int]) -> None: new_shape = [X.shapes[i] for i in axes] X.shapes = TensorShape(new_shape) new_padding = [X.attrs["padding"][i] for i in axes] X.attrs["padding"] = new_padding @xop_register_factory("Pooling") def pool2d( op_name: str, input_layer: XLayer, pool_type: str, pool_size: List[int], strides: List[int] = [1, 1], padding: List[int] = [0, 0, 0, 0], layout: str = "NCHW", ceil_mode: bool = False, count_include_pad: bool = False, **kwargs ) -> XLayer: if layout not in ["NCHW", "NHWC"]: raise ValueError( "Unsupported layout: {}, supported layouts are" "NCHW and NHWC".format(layout) ) if pool_type not in ["Max", "Avg"]: raise NotImplementedError( "Invalid pooling type: {}, can either be" " `Max` or `Avg`.".format(pool_type) ) def valid(x, k, p1, p2, s): return math.floor((x + p1 + p2 - k) / s) + 1 def full(x, k, p1, p2, s): return math.ceil((x + p1 + p2 - k) / s) + 1 if len(padding) == 4: full_paddings = [ [0, 0], [0, 0], [padding[0], padding[2]], [padding[1], padding[3]], ] elif len(padding) == 2: full_paddings = [ [0, 0], [0, 0], [padding[0], padding[0]], [padding[1], padding[1]], ] elif len(padding) == 1: full_paddings = [[0, 0], [0, 0], [padding, padding], [padding, padding]] else: raise ValueError( "Invalid padding size passed by Relay operator, " " Sizes of 1, 2 and 4 are supported but not {}".format(len(padding)) ) padding = [ min(full_paddings[2][0], full_paddings[2][1]), min(full_paddings[3][0], full_paddings[3][1]), ] if layout == "NCHW": insize = [input_layer.shapes[2], input_layer.shapes[3]] batches, channels = input_layer.shapes[0], input_layer.shapes[1] else: insize = [input_layer.shapes[1], input_layer.shapes[2]] batches, channels = input_layer.shapes[0], input_layer.shapes[3] full_paddings = [full_paddings[i] for i in [0, 2, 3, 1]] outsize = [] calc_func = full if ceil_mode else valid outsize = [ calc_func( insize[1], pool_size[1], full_paddings[3][0], full_paddings[3][1], strides[1], ), calc_func( insize[0], pool_size[0], full_paddings[2][0], full_paddings[2][1], strides[0], ), ] attrs = kwargs attrs.update( { "type": pool_type, "padding": full_paddings, "strides": strides, "kernel_size": pool_size, "insize": insize, "outsize": [outsize[1], outsize[0]], "data_layout": layout, "pool_type": pool_type, } ) if pool_type == "Avg": attrs["count_include_pad"] = count_include_pad out_h, out_w = outsize[1], outsize[0] out_shape = TensorShape( [batches, channels, out_h, out_w] if layout == "NCHW" else [batches, out_h, out_w, channels] ) X = XLayer() X = X._replace( name=op_name, type=["Pooling"], shapes=out_shape, sizes=out_shape.get_size(), attrs=attrs, layer=[op_name], tops=[], bottoms=[input_layer.name], targets=[], ) return X @xop_register_op_layout_transform("Pooling") def pooling_layout_transform(X: XLayer, target_layout: str) -> None: layout = X.attrs["data_layout"] axes_transpose = [layout.index(e) for e in target_layout] X.attrs["padding"] = [X.attrs["padding"][i] for i in axes_transpose] X.attrs["data_layout"] = target_layout X.shapes = TensorShape([X.shapes[i] for i in axes_transpose]) @xop_register("Upsampling2D") def upsampling2d( attrs: Dict[str, Any], in_xlayers: List[XLayer] ) -> Dict[str, List[int]]: assert len(in_xlayers) == 1 assert "scale_h" in attrs assert "scale_w" in attrs assert "data_layout" in attrs assert "method" in attrs if "align_corners" not in attrs: attrs["align_corners"] = False scale_h = attrs["scale_h"] scale_w = attrs["scale_w"] layout = attrs["data_layout"] assert sorted(layout) == ["C", "H", "N", "W"] h_idx = layout.index("H") w_idx = layout.index("W") shape = in_xlayers[0].shapes[:] shape[h_idx] = int(shape[h_idx] * scale_h) shape[w_idx] = int(shape[w_idx] * scale_w) return {"shape": shape} @xop_register_op_layout_transform("Upsampling2D")
Apache License 2.0
bartoszj/mallet
mallet/UIKit/UITextField.py
UITextFieldSyntheticProvider.get_placeholder_label_summary
python
def get_placeholder_label_summary(provider): value = provider.text_value if value is not None: return "placeholder={}".format(value) return None
Placeholder label summary. :param UILabel.UILabelSyntheticProvider provider: Label provider. :return: Placeholder label summary. :rtype: str
https://github.com/bartoszj/mallet/blob/0645b08c7eaea4b2f2769a0ca0d84fa8f0332357/mallet/UIKit/UITextField.py#L60-L71
from .. import helpers import UIControl import UILabel class UITextFieldSyntheticProvider(UIControl.UIControlSyntheticProvider): def __init__(self, value_obj, internal_dict): super(UITextFieldSyntheticProvider, self).__init__(value_obj, internal_dict) self.type_name = "UITextField" self.register_child_value("display_label", ivar_name="_displayLabel", provider_class=UILabel.UILabelSyntheticProvider, summary_function=self.get_display_label_summary) self.register_child_value("placeholder_label", ivar_name="_placeholderLabel", provider_class=UILabel.UILabelSyntheticProvider, summary_function=self.get_placeholder_label_summary) @staticmethod def get_display_label_summary(provider): value = provider.text_value if value is not None: return "text={}".format(value) return None @staticmethod
MIT License
miroozyx/bert_with_keras
create_pretraining_data.py
create_masked_lm_predictions
python
def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng=random): cand_indexes = [] for (i, token) in enumerate(tokens): if token == "[CLS]" or token == "[SEP]": continue cand_indexes.append(i) rng.shuffle(cand_indexes) output_tokens = list(tokens) masked_lm = collections.namedtuple("masked_lm", ["index", "label"]) num_to_predict = min(max_predictions_per_seq, max(1, int(round(len(tokens) * masked_lm_prob)))) masked_lms = [] covered_indexes = set() for index in cand_indexes: if len(masked_lms) >= num_to_predict: break if index in covered_indexes: continue covered_indexes.add(index) masked_token = None if rng.random() < 0.8: masked_token = "[MASK]" else: if rng.random() < 0.5: masked_token = tokens[index] else: masked_token = vocab_words[rng.randint(0, len(vocab_words) - 1)] output_tokens[index] = masked_token masked_lms.append(masked_lm(index=index, label=tokens[index])) masked_lms = sorted(masked_lms, key=lambda x: x.index) masked_lm_positions = [] masked_lm_labels = [] for p in masked_lms: masked_lm_positions.append(p.index) masked_lm_labels.append(p.label) return (output_tokens, masked_lm_positions, masked_lm_labels)
Creates the predictions for the masked LM objective.
https://github.com/miroozyx/bert_with_keras/blob/fa65241a292fe1807b5271697cc3005ff9c4384b/create_pretraining_data.py#L6-L58
import collections import random import spacy
MIT License
pelioniot/mbed-cloud-sdk-python
src/mbed_cloud/_backends/connector_ca/models/server_credentials_response_data.py
ServerCredentialsResponseData.__eq__
python
def __eq__(self, other): if not isinstance(other, ServerCredentialsResponseData): return False return self.__dict__ == other.__dict__
Returns true if both objects are equal
https://github.com/pelioniot/mbed-cloud-sdk-python/blob/71dc67fc2a8d1aff31e35ec781fb328e6a60639c/src/mbed_cloud/_backends/connector_ca/models/server_credentials_response_data.py#L240-L247
from pprint import pformat from six import iteritems import re class ServerCredentialsResponseData(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'created_at': 'datetime', 'etag': 'str', 'id': 'str', 'object': 'str', 'server_certificate': 'str', 'server_uri': 'str' } attribute_map = { 'created_at': 'created_at', 'etag': 'etag', 'id': 'id', 'object': 'object', 'server_certificate': 'server_certificate', 'server_uri': 'server_uri' } def __init__(self, created_at=None, etag=None, id=None, object=None, server_certificate=None, server_uri=None): self._created_at = created_at self._etag = etag self._id = id self._object = object self._server_certificate = server_certificate self._server_uri = server_uri self.discriminator = None @property def created_at(self): return self._created_at @created_at.setter def created_at(self, created_at): self._created_at = created_at @property def etag(self): return self._etag @etag.setter def etag(self, etag): self._etag = etag @property def id(self): return self._id @id.setter def id(self, id): self._id = id @property def object(self): return self._object @object.setter def object(self, object): self._object = object @property def server_certificate(self): return self._server_certificate @server_certificate.setter def server_certificate(self, server_certificate): self._server_certificate = server_certificate @property def server_uri(self): return self._server_uri @server_uri.setter def server_uri(self, server_uri): self._server_uri = server_uri def to_dict(self): result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): return pformat(self.to_dict()) def __repr__(self): return self.to_str()
Apache License 2.0
trinity-project/trinity-eth
lightwallet/prompt.py
PromptInterface.show_wallet
python
def show_wallet(self, arguments): if not self.Wallet: print("please open a wallet") return item = get_arg(arguments) if not item: print("Wallet %s " % json.dumps(self.Wallet.ToJson(), indent=4)) return else: print("wallet: '{}' is an invalid parameter".format(item))
:param arguments: :return:
https://github.com/trinity-project/trinity-eth/blob/a4e4fff1d1dbc0b422d7acc21ed95a308cf51967/lightwallet/prompt.py#L187-L207
import argparse import json import pprint import traceback from prompt_toolkit import print_formatted_text, PromptSession, ANSI from prompt_toolkit.completion import WordCompleter from prompt_toolkit.history import FileHistory from prompt_toolkit.formatted_text import FormattedText from prompt_toolkit.styles import Style from prompt_toolkit import prompt from prompt_toolkit.auto_suggest import AutoSuggestFromHistory import os import sys import re pythonpath = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(pythonpath) from common.log import LOG from common.number import TrinityNumber from common.console import console_log from lightwallet.Utils import get_arg, get_asset_id from lightwallet.Settings import settings from lightwallet.wallet import Wallet from model.base_enum import EnumStatusCode from blockchain.web3client import Client from lightwallet.UserPreferences import preferences import binascii from model.statistics_model import APIStatistics FILENAME_PROMPT_HISTORY = os.path.join(settings.DIR_CURRENT, '.prompt.py.history') def command_wapper(command): def handler(callback): def wrapper(*args, **kwargs): try: callback(*args, **kwargs) except Exception as error: console_log.error('Error occurred to run command: {}. Please check logs for details.'.format(command)) LOG.exception('Error occurred to run command: {}. Exception: {}'.format(command, error)) return wrapper return handler class PromptInterface(object): commands = [ 'help', 'quit', 'create wallet {path}', 'open wallet {path}', 'close', 'wallet', 'send {asset} {address} {amount}', 'history', 'lock cli', 'unlock cli', 'gas configure {amount}', 'gas query' ] go_on = True Wallet=None history = FileHistory(FILENAME_PROMPT_HISTORY) locked = False def __init__(self): self.token_style = Style.from_dict({ "command": preferences.token_style['Command'], "eth": preferences.token_style['Eth'], "default": preferences.token_style['Default'], "number": preferences.token_style['Number'], }) def get_bottom_toolbar(self, cli=None): return'[%s]' % (settings.NET_NAME if not PromptInterface.locked else settings.NET_NAME + " (Locked) ") def quit(self): self.go_on = False def help(self): tokens = [] for c in self.commands: tokens.append(("class:command", "%s\n" % c)) print_formatted_text(FormattedText(tokens), style=self.token_style) def do_create(self, arguments): if self.Wallet: self.do_close_wallet() item = get_arg(arguments) if self.Wallet: self.do_close_wallet() if item and item == 'wallet': path = get_arg(arguments, 1) if path: if os.path.exists(path): print("File already exists") return passwd1 = prompt("[Password 1]> ", is_password=True) passwd2 = prompt("[Password 2]> ", is_password=True) if passwd1 != passwd2 or len(passwd1) < 1: print("please provide matching passwords that are at least 1 characters long") return try: self.Wallet = Wallet.Create(path=path, password=passwd1) print("Wallet %s " % json.dumps(self.Wallet.ToJson(), indent=4)) APIStatistics.add_statistics(self.Wallet.address) except Exception as e: print("Exception creating wallet: %s " % e) self.Wallet = None if os.path.isfile(path): try: os.remove(path) except Exception as e: print("Could not remove {}: {}".format(path, e)) return else: print("Please specify a path") def do_open(self, arguments): if self.Wallet: self.do_close_wallet() item = get_arg(arguments) if item and item == 'wallet': path = get_arg(arguments, 1) if path: if not os.path.exists(path): print("wallet file not found") return passwd = prompt("[Password]> ", is_password=True) try: self.Wallet = Wallet.Open(path, passwd) print("Opened wallet at %s" % path) except Exception as e: print("could not open wallet: %s " % e) else: print("Please specify a path") else: print("please specify something to open") def do_close_wallet(self): if self.Wallet: path = self.Wallet._path self.Wallet = None print("closed wallet %s " % path) @command_wapper("wallet")
MIT License
rgal/gym-2048
training_data.py
training_data.hflip
python
def hflip(self): self._x = np.flip(self.get_x(), 2) output_digits = self.get_y_digit() temp = np.copy(output_digits) temp[temp == 1] = 33 temp[temp == 3] = 1 temp[temp == 33] = 3 self._y_digit = temp self._next_x = np.flip(self.get_next_x(), 2) self._check_lengths()
Flip all the data horizontally
https://github.com/rgal/gym-2048/blob/fe0ef1f8d999847acd518237c44454e3607574f0/training_data.py#L257-L272
from __future__ import print_function import copy import numpy as np def stack(flat, layers=16): representation = 2 ** (np.arange(layers, dtype=int) + 1) layered = np.repeat(flat[:,:,:,np.newaxis], layers, axis=-1) layered = np.where(layered == representation, 1, 0) return layered class training_data(object): def __init__(self): self._x = np.empty([0, 4, 4], dtype=int) self._y_digit = np.zeros([0, 1], dtype=int) self._reward = np.zeros([0, 1], dtype=float) self._next_x = np.empty([0, 4, 4], dtype=int) self._done = np.empty([0, 1], dtype=bool) def copy(self): return copy.deepcopy(self) def _check_lengths(self): assert self._x.shape[0] == self._y_digit.shape[0] assert self._x.shape[0] == self._reward.shape[0] assert self._x.shape[0] == self._next_x.shape[0] assert self._x.shape[0] == self._done.shape[0] def get_x(self): return self._x def get_x_stacked(self): return stack(self._x) def get_y_digit(self): return self._y_digit def get_y_one_hot(self): items = self.size() one_hot = np.zeros((items, 4)) flat_y = np.reshape(self._y_digit, (-1, )) one_hot[np.arange(items), flat_y] = 1 return one_hot def get_reward(self): return self._reward def get_next_x(self): return self._next_x def get_done(self): return self._done def add(self, board, action, reward, next_board=None, done=False): assert reward is not None self._x = np.append(self._x, np.reshape(board, (1, 4, 4)), axis=0) y_digit = np.zeros([1, 1], dtype=int) y_digit[0, 0] = action self._y_digit = np.append(self._y_digit, y_digit, axis=0) r = np.zeros([1, 1], dtype=float) r[0, 0] = reward self._reward = np.append(self._reward, r, axis=0) self._next_x = np.append(self._next_x, np.reshape(next_board, (1, 4, 4)), axis=0) done_array = np.zeros([1, 1], dtype=bool) done_array[0, 0] = done self._done = np.append(self._done, done_array, axis=0) self._check_lengths() def get_n(self, n): return self._x[n,:,:], self._y_digit[n,:], self._reward[n,:], self._next_x[n,:,:], self._done[n,:] def get_total_reward(self): return np.sum(self.get_reward()) def get_highest_tile(self): return np.max(self.get_next_x()) def log2_rewards(self): items = self.size() rewards = np.reshape(self._reward, (items)) log_rewards = np.ma.log(rewards) / np.ma.log(2) self._reward = np.reshape(np.array(log_rewards, float), (items, 1)) def get_discounted_return(self, gamma=0.9): items = self.size() rewards = list(np.reshape(self._reward, (items))) done_list = list(np.reshape(self._done, (items))) smoothed_rewards = list() previous = None rewards.reverse() done_list.reverse() for i, r in enumerate(rewards): smoothed = r if done_list[i]: previous = None if previous: smoothed += gamma * previous smoothed_rewards.append(smoothed) previous = smoothed smoothed_rewards.reverse() return np.reshape(np.array(smoothed_rewards, float), (items, 1)) def normalize_boards(self, mean=None, sd=None): boards = self._x if mean is None: mean = np.mean(boards) if sd is None: sd = np.std(boards) norm_boards = (boards - mean) / sd self._x = norm_boards norm_next_boards = (self._next_x - mean) / sd self._next_x = norm_next_boards def normalize_rewards(self, mean=None, sd=None): rewards = self._reward if mean is None: mean = np.mean(rewards) if sd is None: sd = np.std(rewards) norm_rewards = (rewards - mean) / sd self._reward = norm_rewards def merge(self, other): self._x = np.concatenate((self._x, other.get_x())) self._y_digit = np.concatenate((self._y_digit, other.get_y_digit())) self._reward = np.concatenate((self._reward, other.get_reward())) self._next_x = np.concatenate((self._next_x, other.get_next_x())) self._done = np.concatenate((self._done, other.get_done())) self._check_lengths() def split(self, split=0.5): splitpoint = int(self.size() * split) a = training_data() b = training_data() a._x = self._x[:splitpoint,:,:] b._x = self._x[splitpoint:,:,:] a._y_digit = self._y_digit[:splitpoint,:] b._y_digit = self._y_digit[splitpoint:,:] a._reward = self._reward[:splitpoint,:] b._reward = self._reward[splitpoint:,:] a._next_x = self._next_x[:splitpoint,:,:] b._next_x = self._next_x[splitpoint:,:,:] a._done = self._done[:splitpoint,:] b._done = self._done[splitpoint:,:] a._check_lengths() b._check_lengths() return a, b def sample(self, index_list): indexes = np.asarray(index_list) sample = training_data() sample._x = self._x[indexes] sample._y_digit = self._y_digit[indexes] sample._reward = self._reward[indexes] sample._next_x = self._next_x[indexes] sample._done = self._done[indexes] sample._check_lengths() return sample def size(self): return self._x.shape[0] def import_csv(self, filename): flat_data = np.loadtxt(filename, dtype=int, delimiter=',', skiprows=1, usecols=tuple(range(16))) self._x = np.reshape(flat_data, (-1, 4, 4)) digits = np.loadtxt(filename, dtype=int, delimiter=',', skiprows=1, usecols=16) self._y_digit = np.reshape(digits, (-1, 1)) reward_data = np.loadtxt(filename, delimiter=',', skiprows=1, usecols=17) self._reward = reward_data.reshape(-1, 1) flat_data = np.loadtxt(filename, dtype=int, delimiter=',', skiprows=1, usecols=tuple(range(18, 34))) self._next_x = np.reshape(flat_data, (-1, 4, 4)) done_data = np.loadtxt(filename, dtype=bool, delimiter=',', skiprows=1, usecols=34) self._done = done_data.reshape(-1, 1) self._check_lengths() def construct_header(self, add_returns=False): header = list() for m in range(1, 5): for n in range(1, 5): header.append('{}-{}'.format(m, n)) header.append('action') header.append('reward') for m in range(1, 5): for n in range(1, 5): header.append('next {}-{}'.format(m, n)) header.append('done') if add_returns: header.append('return') return header def export_csv(self, filename, add_returns=False): items = self.size() flat_x = np.reshape(self._x, (items, 16)) flat_data = np.concatenate((flat_x, self._y_digit), axis=1) flat_data = np.concatenate((flat_data, self._reward), axis=1) assert flat_data.shape[1] == 18 flat_next_x = np.reshape(self._next_x, (items, 16)) flat_data = np.concatenate((flat_data, flat_next_x), axis=1) assert flat_data.shape[1] == 34 flat_data = np.concatenate((flat_data, self._done), axis=1) if add_returns: flat_data = np.concatenate((flat_data, self.get_discounted_return()), axis=1) header = self.construct_header(add_returns) fformat = '%d,' * 17 + '%f,' + '%d,' * 16 + '%i' if add_returns: fformat += ',%f' np.savetxt(filename, flat_data, comments='', fmt=fformat, header=','.join(header)) def dump(self): print(self._x) print(self._y_digit) print(self._reward) print(self._next_x) print(self._done)
MIT License