repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
rkoshak/openhab-rules-tools
|
rules_utils/automation/lib/python/community/rules_utils.py
|
get_items_from_triggers
|
python
|
def get_items_from_triggers(triggers):
return [t.split(" ")[1] for t in triggers if t.startswith("Item")]
|
Given a list of Item rule triggers, extract the names of the Items and
return them in a list.
Arguments:
- triggers: the list of rule trigger strings.
Returns:
A list of item_names.
|
https://github.com/rkoshak/openhab-rules-tools/blob/476d5760f001e73da1743bb69c5a83cf4baa997d/rules_utils/automation/lib/python/community/rules_utils.py#L202-L212
|
from core.rules import rule
from core.triggers import when
from core.metadata import get_value
from core.jsr223 import scope
from core.log import log_traceback
@log_traceback
def create_switch_trigger_item(item_name, logger):
if item_name not in scope.items:
from core.items import add_item
logger.info("Creating Item {}".format(item_name))
add_item(item_name, item_type="Switch")
return True
else:
return True
@log_traceback
def delete_rule(function, logger):
if hasattr(function, "UID"):
logger.info("Deleting rule {}".format(function.UID))
scope.scriptExtension.get("ruleRegistry").remove(function.UID)
delattr(function, "triggers")
delattr(function, "UID")
if hasattr(function, "UID"):
logger.error("Failed to delete rule {}".format(function.UID))
return False
else:
return True
@log_traceback
def create_rule(name, triggers, function, logger, description=None, tags=None):
for trigger in triggers:
when(trigger)(function)
rule(name, description, tags)(function)
if hasattr(function, "UID"):
logger.info("Successfully created rule {}".format(name))
return True
else:
logger.error("Failed to create rule {}".format(name))
return False
@log_traceback
def create_simple_rule(item_name, name, function, logger, description=None,
tags=None):
if create_switch_trigger_item(item_name, logger):
triggers = ["Item {} received command ON".format(item_name)]
if create_rule(name, triggers, function, logger, description, tags):
return True
return False
@log_traceback
def load_rule_with_metadata(namespace, check_config, event, rule_name, function,
logger, description=None, tags=None, systemstarted=False):
logger.info("Creating {} rule...".format(rule_name))
if not delete_rule(function, logger):
return None
triggers = generate_triggers(namespace, check_config, event, logger)
if not triggers:
logger.warn("There are no Items with a valid {} metadata"
.format(namespace))
return None
if systemstarted:
triggers = ["System started"] + triggers
if not create_rule(rule_name, triggers, function, logger, description, tags):
return None
return get_items_from_triggers(triggers)
def generate_triggers(namespace, check_config, event, logger):
triggers = []
for i in [i for i in scope.items if get_value(i, namespace)]:
if check_config(i, logger):
triggers.append("Item {} {}".format(i, event))
return triggers
|
Apache License 2.0
|
nasa-ammos/ait-core
|
ait/core/seq.py
|
SeqCmd.parse
|
python
|
def parse (cls, line, lineno, log, cmddict):
delay = SeqDelay .parse(line, lineno, log, cmddict)
attrs = SeqCmdAttrs.parse(line, lineno, log, cmddict)
comment = SeqComment .parse(line, lineno, log, cmddict)
stop = len(line)
if comment:
stop = comment.pos.col.start - 1
if attrs and attrs.pos.col.stop != -1:
stop = attrs.pos.col.start - 1
tokens = line[:stop].split()
name = tokens[1]
args = tokens[2:]
start = line.find(name)
pos = SeqPos(line, lineno, start + 1, stop)
if name not in cmddict:
log.error('Unrecognized command "%s".' % name, pos)
elif cmddict[name].nargs != len(args):
msg = 'Command argument size mismatch: expected %d, but encountered %d.'
log.error(msg % (cmddict[name].nargs, len(args)), pos)
args = [ util.toNumber(a, a) for a in args ]
cmd = cmddict.create(name, *args)
return cls(cmd, delay, attrs, comment, pos)
|
Parses the sequence command from a line of text, according to the
given command dictionary, and returns a new SeqCmd.
|
https://github.com/nasa-ammos/ait-core/blob/40717498c20358303521cbd94e9bb2528b7a1f09/ait/core/seq.py#L437-L467
|
from __future__ import absolute_import
import os
import math
import struct
import sys
import time
from ait.core import cmd, log, util
def setBit (value, bit, bitval):
if bitval:
return value | (1 << bit)
else:
return value & ~(1 << bit)
class Seq (object):
def __init__ (self, pathname=None, cmddict=None, id=None, version=0, **kwargs):
self.pathname = pathname
self.cmddict = cmddict or cmd.getDefaultCmdDict()
self.crc32 = None
self.seqid = id
self.lines = [ ]
self.header = { }
self.version = version
self.log = SeqMsgLog()
self.magic = kwargs.get('magic', 0x0C03)
self.cmd_size = kwargs.get('cmd_size', 106)
if self.pathname is not None:
self.read()
def _parseHeader (self, line, lineno, log):
if line.startswith('#') and line.find(':') > 0:
tokens = [ t.strip().lower() for t in line[1:].split(":", 1) ]
name = tokens[0]
pos = SeqPos(line, lineno)
if name in self.header:
msg = 'Ignoring duplicate header parameter: %s'
log.warning(msg % name, pos)
else:
for expected in ['seqid', 'version']:
if name == expected:
value = util.toNumber(tokens[1], None)
if value is None:
msg = 'Parameter "%s" value "%s" is not a number.'
log.error(msg % (name, tokens[1]), poss)
else:
self.header[name] = value
@property
def cmddict (self):
return self._cmddict
@cmddict.setter
def cmddict (self, value):
if value is None:
value = cmd.getDefaultCmdDict()
self._cmddict = value
@property
def commands (self):
return list(filter(lambda line: type(line) is SeqCmd, self.lines))
@property
def duration (self):
return sum(cmd.delay.delay for cmd in self.commands)
@property
def binpath (self):
return self._basepath + '.bin'
@property
def pathname (self):
return self._pathname
@pathname.setter
def pathname (self, pathname):
self._pathname = None
self._basepath = None
self._basename = None
if pathname is not None:
self._pathname = pathname
self._basepath = os.path.splitext(self._pathname)[0]
self._basename = os.path.basename(self._basepath)
@property
def txtpath (self):
return self._basepath + '.txt'
def append (self, cmd, delay=0.000, attrs=None):
self.lines.append( SeqCmd(cmd, delay, attrs) )
def printText (self, stream=None):
if stream is None:
stream = sys.stdout
stream.write('# seqid : %u\n' % self.seqid )
stream.write('# version : %u\n' % self.version )
stream.write('# crc32 : 0x%04x\n' % self.crc32 )
stream.write('# ncmds : %u\n' % len(self.commands) )
stream.write('# duration: %.3fs\n' % self.duration )
stream.write('\n')
for line in self.lines:
stream.write( str(line) )
stream.write('\n')
def read (self, filename=None):
if filename is None:
filename = self.pathname
stream = open(filename, 'rb')
magic = struct.unpack('>H', stream.read(2))[0]
stream.close()
if magic == self.magic:
self.readBinary(filename)
else:
self.readText(filename)
def readBinary (self, filename=None):
if filename is None:
filename = self.pathname
stream = open(filename, 'rb')
magic = struct.unpack('>H', stream.read(2))[0]
uploadtype = stream.read(1)
self.version = struct.unpack('B', stream.read(1))[0]
ncmds = struct.unpack('>H', stream.read(2))[0]
self.seqid = struct.unpack('>H', stream.read(2))[0]
reserved = stream.read(20)
self.crc32 = struct.unpack('>I', stream.read(4))[0]
for n in range(ncmds):
bytes = stream.read(4 + self.cmd_size)
self.lines.append(SeqCmd.decode(bytes, self.cmddict))
def readText (self, filename=None):
if filename is None:
filename = self.pathname
self.header = { }
inBody = False
with open(filename, 'rt') as stream:
for (lineno, line) in enumerate(stream.readlines()):
stripped = line.strip()
if stripped == '':
continue
elif stripped.startswith('#'):
if not inBody:
self._parseHeader(line, lineno, self.log)
else:
inBody = True
self.lines.append( SeqCmd.parse(line, lineno, self.log, self.cmddict) )
if 'seqid' in self.header:
self.seqid = self.header['seqid']
elif self.seqid is None:
self.log.error('No sequence id present in header.')
if 'version' in self.header:
self.version = self.header['version']
elif self.version is None:
self.log.warning('No version present in header. Defaulting to zero (0).')
self.version = 0
def validate (self):
if not os.path.isfile(self.pathname):
self.message.append('Filename "%s" does not exist.')
else:
try:
with open(self.pathname, 'r') as stream:
pass
except IOError:
self.messages.append('Could not open "%s" for reading.' % self.pathname)
for line in self.commands:
messages = [ ]
if line.cmd and not line.cmd.validate(messages):
msg = 'error: %s: %s' % (line.cmd.name, " ".join(messages))
self.log.messages.append(msg)
return len(self.log.messages) == 0
def writeBinary (self, filename=None):
if filename is None:
filename = self.binpath
with open(filename, 'wb') as output:
output.write( struct.pack('>H', self.magic ) )
output.write( struct.pack('B', 9 ) )
output.write( struct.pack('B', self.version ) )
output.write( struct.pack('>H', len(self.commands) ) )
output.write( struct.pack('>H', self.seqid ) )
output.write( struct.pack('>I', 0 ) )
pad = struct.pack('B', 0)
for n in range(20):
output.write(pad)
for line in self.lines:
output.write( line.encode() )
self.crc32 = util.crc32File(filename, 0)
with open(filename, 'r+b') as output:
output.seek(28)
output.write( struct.pack('>I', self.crc32) )
def writeText (self, filename=None):
if filename is None:
filename = self.txtpath
with open(filename, 'wt') as output:
self.printText(output)
class SeqPos (object):
def __init__ (self, line=None, lineno=1, start=1, stop=None):
if line is None:
line = ''
start = 0
stop = 0
self.line = line
self.lineno = lineno
self.col = slice(start, stop or len(self.line))
def __str__ (self):
return str(self.lineno) + ':' + str(self.col.start) + ':'
class SeqAtom (object):
def __init__ (self, pos=None):
self.pos = pos or SeqPos()
def __str__ (self):
result = ''
if len(self.pos.line) is not None:
result = self.pos.line[self.pos.col.start - 1:self.pos.col.stop]
return result
@classmethod
def decode (cls, bytes, cmddict=None):
return cls()
def encode (self):
return bytearray()
@classmethod
def parse (cls, line, lineno, log, cmddict=None):
return cls(line)
def validate (self, log):
return True
class SeqCmd (SeqAtom):
def __init__ (self, cmd, delay=0.000, attrs=None, comment=None, pos=None):
super(SeqCmd, self).__init__(pos)
self.cmd = cmd
self.delay = delay
self.attrs = attrs
self.comment = comment
def __str__ (self):
s = '%s\t%s' % (str(self.delay), str(self.cmd))
if self.attrs:
s += '\t%s' % str(self.attrs)
if self.comment:
s += '\t%s' % str(self.comment)
return s
@classmethod
def decode (cls, bytes, cmddict):
attrs = SeqCmdAttrs.decode(bytes[0:1])
delay = SeqDelay .decode(bytes[1:4])
cmd = cmddict .decode(bytes[4:] )
return cls(cmd, delay, attrs)
def encode (self):
return self.attrs.encode() + self.delay.encode() + self.cmd.encode()
@classmethod
|
MIT License
|
mozilla/mozilla-ignite
|
apps/challenges/models.py
|
Submission.needs_booking
|
python
|
def needs_booking(self):
return all([self.is_winner, not self.timeslot_set.all()])
|
Determines if this entry needs to book a Timeslot.
- Entry has been gren lit
- User hasn't booked a timeslot
|
https://github.com/mozilla/mozilla-ignite/blob/148f5dae0bd6519431d573296a039798fe41eb31/apps/challenges/models.py#L474-L479
|
from datetime import datetime
from dateutil.relativedelta import relativedelta
from decimal import Decimal
from markdown import markdown
from django.conf import settings
from django.core.cache import cache
from django.core.exceptions import ValidationError
from django.core.urlresolvers import reverse, NoReverseMatch
from django.core.validators import MaxLengthValidator
from django.template.defaultfilters import slugify
from django.db import models
from django.db.models import signals
from django.dispatch import receiver
from challenges.lib import cached_bleach, cached_property
from challenges.managers import (SubmissionHelpManager, PhaseManager,
SubmissionManager)
from django_extensions.db.fields import (AutoSlugField,
CreationDateTimeField,
ModificationDateTimeField)
from innovate.models import BaseModel, BaseModelManager
from innovate.utils import ImageStorage
from projects.models import Project
from tower import ugettext_lazy as _
from users.models import Profile
class ChallengeManager(BaseModelManager):
def get_by_natural_key(self, slug):
return self.get(slug=slug)
class Challenge(BaseModel):
objects = ChallengeManager()
title = models.CharField(verbose_name=_(u'Title'), max_length=60, unique=True)
slug = models.SlugField(verbose_name=_(u'Slug'), max_length=60, unique=True)
summary = models.TextField(verbose_name=_(u'Summary'),
validators=[MaxLengthValidator(200)])
description = models.TextField(verbose_name=_(u'Description'))
def natural_key(self):
return (self.slug,)
@property
def description_html(self):
return cached_bleach(self.description)
image = models.ImageField(verbose_name=_(u'Project image'),
null=True, blank=True,
upload_to=settings.CHALLENGE_IMAGE_PATH)
start_date = models.DateTimeField(verbose_name=_(u'Start date'),
default=datetime.utcnow)
end_date = models.DateTimeField(verbose_name=_(u'End date'))
moderate = models.BooleanField(verbose_name=_(u'Moderate entries'),
default=False)
allow_voting = models.BooleanField(verbose_name=_(u'Can users vote on submissions?'),
default=False)
project = models.ForeignKey(Project, verbose_name=_(u'Project'),
limit_choices_to={'allow_participation': True})
def get_image_src(self):
media_url = getattr(settings, 'MEDIA_URL', '')
path = lambda f: f and '%s%s' % (media_url, f)
return path(self.image) or path('img/project-default.gif')
def __unicode__(self):
return self.title
def _lookup_url(self, view_name, kwargs=None):
if kwargs is None:
kwargs = {}
try:
return reverse(view_name, kwargs=kwargs)
except NoReverseMatch:
kwargs.update({'project': self.project.slug, 'slug': self.slug})
return reverse(view_name, kwargs=kwargs)
def get_absolute_url(self):
return self._lookup_url('challenge_show')
def in_six_months():
return datetime.utcnow() + relativedelta(months=6)
def has_phase_finished(phase):
cache_key = '%s_END_DATE' % phase.upper()
end_date = cache.get(cache_key)
if not end_date:
phase = Phase.objects.get_ideation_phase()
cache.set(cache_key, end_date)
if not phase:
return False
end_date = phase.end_date
return datetime.utcnow() > end_date
class Phase(BaseModel):
challenge = models.ForeignKey(Challenge, related_name='phases')
name = models.CharField(max_length=100)
start_date = models.DateTimeField(verbose_name=_(u'Start date'),
default=datetime.utcnow)
end_date = models.DateTimeField(verbose_name=_(u'End date'),
default=in_six_months)
judging_start_date = models.DateTimeField(
verbose_name=_(u'Judging start date'), blank=True, null=True)
judging_end_date = models.DateTimeField(
verbose_name=_(u'Judging end date'), blank=True, null=True)
order = models.IntegerField()
objects = PhaseManager()
class Meta:
unique_together = (('challenge', 'name'),)
ordering = ('order',)
def __unicode__(self):
return '%s (%s)' % (self.name, self.challenge.title)
def natural_key(self):
return self.challenge.natural_key() + (self.name,)
natural_key.dependencies = ['challenges.challenge']
@models.permalink
def get_absolute_url(self):
slug = 'ideas' if self.is_ideation else 'apps'
return ('entries_all', [slug])
@cached_property
def days_remaining(self):
now = datetime.utcnow()
if not self.is_open:
return -1
time_remaining = self.end_date - now
return time_remaining.days if time_remaining.days >= 0 else -1
@cached_property
def days_until(self):
now = datetime.utcnow()
if not self.is_closed:
return -1
time_until = self.start_date - now
return time_until.days if time_until.days >= 0 else -1
@cached_property
def phase_rounds(self):
return self.phaseround_set.all()
@cached_property
def current_round(self):
now = datetime.utcnow()
for item in self.phase_rounds:
if item.start_date < now and item.end_date > now:
return item
return None
@cached_property
def next_round(self):
now = datetime.utcnow()
upcoming_rounds = self.phase_rounds.filter(start_date__gte=now).order_by('start_date')
if upcoming_rounds:
return upcoming_rounds[0]
else:
return None
@cached_property
def current_judging_round(self):
now = datetime.utcnow()
for item in self.phase_rounds:
if item.judging_start_date and item.judging_end_date and item.judging_start_date < now and item.judging_end_date > now:
return item
return None
@cached_property
def is_judgable(self):
now = datetime.utcnow()
if self.judging_start_date and self.judging_end_date and self.judging_start_date < now and self.judging_end_date > now:
return True
if self.current_judging_round:
return True
return False
@cached_property
def is_open(self):
now = datetime.utcnow()
if self.phase_rounds:
if self.current_round:
return True
return False
return self.start_date < now and now < self.end_date
@property
def is_closed(self):
return not self.is_open
@cached_property
def has_started(self):
return datetime.utcnow() > self.start_date
@cached_property
def is_ideation(self):
return self.name == settings.IGNITE_IDEATION_NAME
@cached_property
def is_development(self):
return self.name == settings.IGNITE_DEVELOPMENT_NAME
@cached_property
def slug_url(self):
return 'apps' if self.is_development else 'ideas'
@receiver(signals.post_save, sender=Phase)
def phase_update_cache(instance, **kwargs):
key = '%s_end_date' % slugify(instance.name)
cache.set(key.upper(), instance.end_date)
class ExternalLink(BaseModel):
name = models.CharField(verbose_name=_(u'Link Name'),
max_length=50)
url = models.URLField(verbose_name=_(u'URL'),
max_length=255, verify_exists=False)
submission = models.ForeignKey('challenges.Submission',
blank=True, null=True)
def __unicode__(self):
return u"%s -> %s" % (self.name, self.url)
class CategoryManager(BaseModelManager):
def get_active_categories(self):
filtered_cats = []
for cat in Category.objects.all():
cat_submissions = cat.submission_set.all()
if cat_submissions.count():
filtered_cats.append(cat)
if len(filtered_cats) == 0:
return False
else:
return filtered_cats
class Category(BaseModel):
objects = CategoryManager()
name = models.CharField(verbose_name=_(u'Name'), max_length=60, unique=True)
slug = models.SlugField(verbose_name=_(u'Slug'), max_length=60, unique=True)
def __unicode__(self):
return self.name
class Meta:
verbose_name_plural = 'Categories'
class Submission(BaseModel):
title = models.CharField(verbose_name=_(u'Title'), max_length=60)
brief_description = models.CharField(
max_length=200, verbose_name=_(u'Brief Description'),
help_text = _(u"Think of this as an elevator pitch - keep it short"
u" and sweet"))
description = models.TextField(verbose_name=_(u'Description'))
sketh_note = models.ImageField(
verbose_name=_(u'Featured image'), blank=True, null=True,
help_text=_(u"This will be used in our summary and list views. You "
u"can add more images in your description or link out to "
u"sets or images out on the web by adding in an external link"),
upload_to=settings.CHALLENGE_IMAGE_PATH,
storage=ImageStorage())
category = models.ForeignKey(Category)
created_by = models.ForeignKey(Profile)
created_on = models.DateTimeField(default=datetime.utcnow)
updated_on = ModificationDateTimeField()
is_winner = models.BooleanField(verbose_name=_(u'A winning entry?'),
default=False,
help_text=_(u'Mark this entry as green lit'))
is_draft = models.BooleanField(verbose_name=_(u'Draft?'),
help_text=_(u"If you would like some extra time to polish your submission"
u" before making it publically then you can set it as draft. "
u"When you're ready just un-tick and it will go live"))
phase = models.ForeignKey('challenges.Phase')
phase_round = models.ForeignKey('challenges.PhaseRound',
blank=True, null=True,
on_delete=models.SET_NULL)
collaborators = models.TextField(blank=True)
life_improvements = models.TextField(default="",
verbose_name=_(u'How does this improve the lives of people?'))
take_advantage = models.TextField(blank=True, null=True,
verbose_name=_(u'How does this make the most of the GENI network?'))
interest_making = models.TextField(blank=True, null=True,
verbose_name=_(u'Are you interested in making this app?'))
team_members = models.TextField(blank=True, null=True,
verbose_name=_(u'Tell us about your team making this app'))
repository_url = models.URLField(max_length=500, verify_exists=False,
blank=True)
blog_url = models.URLField(max_length=500, verify_exists=False,
blank=True)
required_effort = models.TextField(blank=True, null=True,
verbose_name=_(u'How much effort do you expect this work to take?'))
objects = SubmissionManager()
class Meta:
ordering = ['-id']
def __unicode__(self):
return self.title
@property
def description_html(self):
return cached_bleach(markdown(self.description))
@property
def challenge(self):
return self.phase.challenge
def get_image_src(self):
media_url = getattr(settings, 'MEDIA_URL', '')
path = lambda f: f and '%s%s' % (media_url, f)
return path(self.sketh_note) or path('img/project-default.png')
def _lookup_url(self, view_name, kwargs=None):
if kwargs is None:
kwargs = {}
try:
return reverse(view_name, kwargs=kwargs)
except NoReverseMatch:
kwargs.update({'project': self.challenge.project.slug,
'slug': self.challenge.slug})
return reverse(view_name, kwargs=kwargs)
@cached_property
def parent(self):
parent_list = self.submissionparent_set.all()
if parent_list:
return parent_list[0]
return None
@cached_property
def parent_slug(self):
if self.parent:
return self.parent.slug
version_list = self.submissionversion_set.select_related('parent').all()
if version_list:
return version_list[0].parent.slug
return None
@cached_property
def is_idea(self):
return self.phase.name == settings.IGNITE_IDEATION_NAME
@cached_property
def is_proposal(self):
return self.phase.name == settings.IGNITE_DEVELOPMENT_NAME
@cached_property
def phase_slug(self):
if self.is_idea:
return 'ideas'
return 'apps'
def get_absolute_url(self):
if self.parent_slug and self.phase_slug:
return self._lookup_url('entry_show', {'entry_id': self.parent_slug,
'phase': self.phase_slug})
return u''
def get_edit_url(self):
return self._lookup_url('entry_edit', {'pk': self.parent_slug,
'phase': self.phase_slug})
def get_delete_url(self):
return self._lookup_url('entry_delete', {'pk': self.id,
'phase': self.phase_slug})
def get_judging_url(self):
return self._lookup_url('entry_judge', {'pk': self.id})
def _permission_check(self, user, permission_name):
return any(user.has_perm(permission_name, obj=obj)
for obj in [None, self])
def visible_to(self, user):
return self._permission_check(user, 'challenges.view_submission')
def editable_by(self, user):
return self._permission_check(user, 'challenges.edit_submission')
def deletable_by(self, user):
return self._permission_check(user, 'challenges.delete_submission')
def judgeable_by(self, user):
return self._permission_check(user, 'challenges.judge_submission')
def owned_by(self, user):
return user == self.created_by.user
@cached_property
|
BSD 3-Clause New or Revised License
|
jimcurrywang/python-shopee
|
pyshopee/item.py
|
Item.add_item_img
|
python
|
def add_item_img(self, **kwargs):
return self.client.execute("item/img/add", "POST", kwargs)
|
Use this call to add product item images.
:param kwargs:
:return:
|
https://github.com/jimcurrywang/python-shopee/blob/65fec9cecdd77a397720941ba35fd545fe71d5cd/pyshopee/item.py#L150-L157
|
from .base import BaseModule
class Item(BaseModule):
def add(self, product_data):
return self.client.execute("item/add", "POST", product_data)
def delete(self, **kwargs):
return self.client.execute("item/delete", "POST", kwargs)
def unlist_item(self, **kwargs):
return self.client.execute("items/unlist", "POST", kwargs)
def update_item(self, update_data):
return self.client.execute("item/update", "POST", update_data)
def update_img(self, **kwargs):
return self.client.execute("item/img/update", "POST", kwargs)
def get_item_list(self, **kwargs):
return self.client.execute("items/get", "POST", kwargs)
def get_item_detail(self, **kwargs):
return self.client.execute("item/get", "POST", kwargs)
def update_price(self, **kwargs):
return self.client.execute("items/update_price", "POST", kwargs)
def update_stock(self, **kwargs):
return self.client.execute("items/update_stock", "POST", kwargs)
def add_variations(self, variation_data):
return self.client.execute("item/add_variations", "POST", variation_data)
def delete_variation(self, **kwargs):
return self.client.execute("item/delete_variation", "POST", kwargs)
def update_variation_price(self, **kwargs):
return self.client.execute("items/update_variation_price", "POST", kwargs)
def update_variation_stock(self, **kwargs):
return self.client.execute("items/update_variation_stock", "POST", kwargs)
|
MIT License
|
naoina/pyroonga
|
pyroonga/odm/table.py
|
Column.__init__
|
python
|
def __init__(self, flags=ColumnFlags.COLUMN_SCALAR,
type=DataType.ShortText, source=None):
if not isinstance(flags, ColumnFlagsFlag):
raise TypeError('"flags" is must be instance of ColumnFlags')
self.flags = flags
if isinstance(type, self.__tablemeta__):
self.type = type.__tablename__
else:
self.type = type
self.source = source.name if isinstance(source, Column) else source
self.tablename = self.name = self.value = None
self._desc = False
|
Construct of table column
:param flags: const of :class:`ColumnFlags`\ .
Default is :const:`COLUMN_SCALAR`\ .
:param type: const of :class:`DataType` or instance of
:class:`TableMeta` or str.
Default is :const:`ShortText`\ .
:param source: instance of :class:`Column` or str.
Default is None
|
https://github.com/naoina/pyroonga/blob/fbc87d31386e2499ba87236338ec4c72e03d41f5/pyroonga/odm/table.py#L320-L341
|
__author__ = "Naoya Inada <naoina@kuune.org>"
__all__ = [
'Column', 'prop_attr', 'tablebase', 'SuggestTable', 'event_type',
'bigram', 'kana', 'item_query', 'pair_query', 'sequence_query',
'event_query',
]
import json
import logging
from pyroonga.groonga import Groonga
from pyroonga.odm.attributes import (
TableFlags,
ColumnFlagsFlag,
ColumnFlags,
DataType,
TokenizerSymbol,
Tokenizer,
NormalizerSymbol
)
from pyroonga.odm import query
from pyroonga.odm.query import (
GroongaRecord,
LoadQuery,
SuggestQuery,
SuggestLoadQuery,
SelectQuery,
SimpleQuery,
)
from pyroonga import utils
logger = logging.getLogger(__name__)
class prop_attr(property):
def __get__(self, instance, owner):
return self.fget(owner)
class TableMeta(type):
def __init__(cls, name, bases, dict_):
if '_tables' not in dict_:
cls._tables.append(cls)
cls.columns = []
for k, v in cls.__dict__.copy().items():
if isinstance(v, Column):
cls._setcolumn(k, v)
cls.columns.append(v)
cls._set_pseudocolumns()
return type.__init__(cls, name, bases, dict_)
def _set_pseudocolumns(cls):
for attr, name, typ in (('_id', '_id', DataType.UInt32),
('_nsubrecs', '_nsubrecs', DataType.Int32),
('_score', '_score', DataType.Int32),
('ALL', '*', DataType.ShortText)):
col = Column(flags=ColumnFlags.COLUMN_SCALAR, type=typ)
setattr(cls, attr, col)
cls._setcolumn(name, col)
if not cls._has_table_no_key():
cls._key = Column(flags=ColumnFlags.COLUMN_SCALAR,
type=cls.__key_type__)
cls._setcolumn('_key', cls._key)
def _has_table_no_key(cls):
return cls.__tableflags__ & TableFlags.TABLE_NO_KEY
def _setcolumn(cls, name, col):
col.name = name
col.tablename = cls.__tablename__
def __str__(cls):
flags = ['--name %s' % cls.__tablename__,
'--flags %s' % cls.__tableflags__]
if not cls._has_table_no_key():
flags.append('--key_type %s' % cls.__key_type__)
if isinstance(cls.__default_tokenizer__, TokenizerSymbol):
flags.append('--default_tokenizer %s' % cls.__default_tokenizer__)
if isinstance(cls.__normalizer__, NormalizerSymbol):
flags.append('--normalizer %s' % cls.__normalizer__)
return 'table_create ' + (' '.join(flags))
class TableBase(object):
__tableflags__ = TableFlags.TABLE_HASH_KEY
__key_type__ = DataType.ShortText
__default_tokenizer__ = None
__normalizer__ = None
grn = None
def __init__(self, **kwargs):
self.__dict__.update(GroongaRecord(self.__class__, **kwargs).asdict())
@prop_attr
def __tablename__(cls):
return cls.__name__
@classmethod
def bind(cls, grn):
if not isinstance(grn, Groonga):
raise TypeError("not %s instance" % Groonga.__name__)
if not grn.connected:
grn.connect()
cls.grn = grn
@classmethod
def create_all(cls):
if not isinstance(cls.grn, Groonga):
raise TypeError("%s object is not bind" % Groonga.__name__)
table_queries = []
column_queries = []
json_results = json.loads(cls.grn.query('table_list'))
defined_tables = utils.to_python(json_results, 0)
defined_table_names = tuple(v['name'] for v in defined_tables)
for tbl in (t for t in cls._tables if t.__tablename__ not in
defined_table_names):
table_queries.append(str(tbl))
column_queries.extend(str(col) for col in tbl.columns)
for queries in (table_queries, column_queries):
for query in queries:
logger.debug(query)
cls.grn.query(query)
@classmethod
def select(cls, *args, **kwargs):
query = SelectQuery(cls, *args, **kwargs)
return query
@classmethod
def load(cls, data, immediate=True):
query = cls._load(data)
return query.commit() if immediate else query
@classmethod
def _load(cls, data):
return LoadQuery(cls, data)
@classmethod
def delete(cls, immediate=True, *args, **kwargs):
query = SimpleQuery(cls).delete(*args, **kwargs)
return query.execute() if immediate else query
@classmethod
def truncate(cls, immediate=True):
query = SimpleQuery(cls).truncate()
return query.execute() if immediate else query
@classmethod
def cache_limit(cls, max_limit=None, immediate=True):
query = SimpleQuery(cls).cache_limit(max_limit=max_limit)
return query.execute() if immediate else query
@classmethod
def log_level(cls, level, immediate=True):
query = SimpleQuery(cls).log_level(level)
return query.execute() if immediate else query
@classmethod
def log_put(cls, level, message, immediate=True):
query = SimpleQuery(cls).log_put(level, message)
return query.execute() if immediate else query
@classmethod
def log_reopen(cls, immediate=True):
query = SimpleQuery(cls).log_reopen()
return query.execute() if immediate else query
def asdict(self, excludes=tuple()):
result = self.__dict__.copy()
for attr in excludes:
result.pop(attr, None)
return result
class Column(query.BaseExpression):
__tablemeta__ = TableMeta
|
MIT License
|
nunoplopes/alive
|
tests/lit/lit/util.py
|
to_unicode
|
python
|
def to_unicode(s):
if isinstance(s, bytes):
return s.decode('utf-8')
return s
|
Return the parameter as type which supports unicode, possibly decoding
it.
In Python2, this is the unicode type. In Python3 it's the str type.
|
https://github.com/nunoplopes/alive/blob/d32f848ef2117be301a3a3f17cf0bf1cbc056e1c/tests/lit/lit/util.py#L98-L109
|
from __future__ import print_function
import errno
import itertools
import math
import numbers
import os
import platform
import signal
import subprocess
import sys
import threading
def is_string(value):
try:
return isinstance(value, basestring)
except NameError:
return isinstance(value, str)
def pythonize_bool(value):
if value is None:
return False
if type(value) is bool:
return value
if isinstance(value, numbers.Number):
return value != 0
if is_string(value):
if value.lower() in ('1', 'true', 'on', 'yes'):
return True
if value.lower() in ('', '0', 'false', 'off', 'no'):
return False
raise ValueError('"{}" is not a valid boolean'.format(value))
def make_word_regex(word):
return r'\b' + word + r'\b'
def to_bytes(s):
if isinstance(s, bytes):
return s
return s.encode('utf-8')
def to_string(b):
if isinstance(b, str):
return b
if isinstance(b, bytes):
try:
return b.decode('utf-8')
except UnicodeDecodeError:
return str(b)
try:
return b.encode('utf-8')
except AttributeError:
raise TypeError('not sure how to convert %s to %s' % (type(b), str))
|
Apache License 2.0
|
tencent/pysc2tencentextension
|
pysc2/lib/remote_controller.py
|
RemoteController.quit
|
python
|
def quit(self):
try:
self._client.write(sc_pb.Request(quit=sc_pb.RequestQuit()))
except protocol.ConnectionError:
pass
finally:
self.close()
|
Shut down the SC2 process.
|
https://github.com/tencent/pysc2tencentextension/blob/1cb01427f720381125aef067ec14e8602777ee8a/pysc2/lib/remote_controller.py#L251-L259
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
from absl import logging
import socket
import time
from pysc2.lib import protocol
from pysc2.lib import static_data
from pysc2.lib import stopwatch
import websocket
from s2clientprotocol import sc2api_pb2 as sc_pb
sw = stopwatch.sw
Status = protocol.Status
class ConnectError(Exception):
pass
class RequestError(Exception):
def __init__(self, description, res):
super(RequestError, self).__init__(description)
self.res = res
def check_error(res, error_enum):
if res.HasField("error"):
enum_name = error_enum.DESCRIPTOR.full_name
error_name = error_enum.Name(res.error)
details = getattr(res, "error_details", "<none>")
raise RequestError("%s.%s: '%s'" % (enum_name, error_name, details), res)
return res
def decorate_check_error(error_enum):
def decorator(func):
@functools.wraps(func)
def _check_error(*args, **kwargs):
return check_error(func(*args, **kwargs), error_enum)
return _check_error
return decorator
def skip_status(*skipped):
def decorator(func):
@functools.wraps(func)
def _skip_status(self, *args, **kwargs):
if self.status not in skipped:
return func(self, *args, **kwargs)
return _skip_status
return decorator
def valid_status(*valid):
def decorator(func):
@functools.wraps(func)
def _valid_status(self, *args, **kwargs):
if self.status not in valid:
raise protocol.ProtocolError(
"`%s` called while in state: %s, valid: (%s)" % (
func.__name__, self.status, ",".join(map(str, valid))))
return func(self, *args, **kwargs)
return _valid_status
return decorator
class RemoteController(object):
def __init__(self, host, port, proc=None, timeout_seconds=None):
timeout_seconds = timeout_seconds or 120
sock = self._connect(host, port, proc, timeout_seconds)
self._client = protocol.StarcraftProtocol(sock)
self.ping()
@sw.decorate
def _connect(self, host, port, proc, timeout_seconds):
if ":" in host and not host.startswith("["):
host = "[%s]" % host
url = "ws://%s:%s/sc2api" % (host, port)
was_running = False
for i in range(timeout_seconds):
is_running = proc and proc.running
was_running = was_running or is_running
if (i >= timeout_seconds // 4 or was_running) and not is_running:
logging.warning(
"SC2 isn't running, so bailing early on the websocket connection.")
break
logging.info("Connecting to: %s, attempt: %s, running: %s", url, i,
is_running)
try:
return websocket.create_connection(url, timeout=timeout_seconds)
except socket.error:
pass
except websocket.WebSocketBadStatusException as err:
if err.status_code == 404:
pass
else:
raise
time.sleep(1)
raise ConnectError("Failed to connect to the SC2 websocket. Is it up?")
def close(self):
self._client.close()
@valid_status(Status.launched, Status.ended, Status.in_game, Status.in_replay)
@decorate_check_error(sc_pb.ResponseCreateGame.Error)
@sw.decorate
def create_game(self, req_create_game):
return self._client.send(create_game=req_create_game)
@valid_status(Status.launched, Status.init_game)
@decorate_check_error(sc_pb.ResponseSaveMap.Error)
@sw.decorate
def save_map(self, map_path, map_data):
return self._client.send(save_map=sc_pb.RequestSaveMap(
map_path=map_path, map_data=map_data))
@valid_status(Status.launched, Status.init_game)
@decorate_check_error(sc_pb.ResponseJoinGame.Error)
@sw.decorate
def join_game(self, req_join_game):
return self._client.send(join_game=req_join_game)
@valid_status(Status.ended, Status.in_game)
@decorate_check_error(sc_pb.ResponseRestartGame.Error)
@sw.decorate
def restart(self):
return self._client.send(restart_game=sc_pb.RequestRestartGame())
@valid_status(Status.launched, Status.ended, Status.in_game, Status.in_replay)
@decorate_check_error(sc_pb.ResponseStartReplay.Error)
@sw.decorate
def start_replay(self, req_start_replay):
return self._client.send(start_replay=req_start_replay)
@valid_status(Status.in_game, Status.in_replay, Status.ended)
@sw.decorate
def game_info(self):
return self._client.send(game_info=sc_pb.RequestGameInfo())
@valid_status(Status.in_game, Status.in_replay)
@sw.decorate
def data_raw(self):
return self._client.send(data=sc_pb.RequestData(
ability_id=True, unit_type_id=True, upgrade_id=True, buff_id=True, effect_id=True))
def data(self):
return static_data.StaticData(self.data_raw())
@valid_status(Status.in_game, Status.in_replay, Status.ended)
@sw.decorate
def observe(self, disable_fog=False, target_game_loop=0):
return self._client.send(observation=sc_pb.RequestObservation(
game_loop=target_game_loop,
disable_fog=disable_fog))
@valid_status(Status.in_game, Status.in_replay)
@sw.decorate
def step(self, count=1):
return self._client.send(step=sc_pb.RequestStep(count=count))
@skip_status(Status.in_replay)
@valid_status(Status.in_game)
@sw.decorate
def actions(self, req_action):
return self._client.send(action=req_action)
def act(self, action):
if action:
return self.actions(sc_pb.RequestAction(actions=[action]))
def chat(self, message):
if message:
action_chat = sc_pb.ActionChat(
channel=sc_pb.ActionChat.Broadcast, message=message)
action = sc_pb.Action(action_chat=action_chat)
return self.act(action)
def acts(self, act_list):
if len(act_list) > 0:
return self.actions(sc_pb.RequestAction(actions=act_list))
@valid_status(Status.in_game, Status.ended)
@sw.decorate
def leave(self):
return self._client.send(leave_game=sc_pb.RequestLeaveGame())
@valid_status(Status.in_game, Status.ended)
@sw.decorate
def save_replay(self):
res = self._client.send(save_replay=sc_pb.RequestSaveReplay())
return res.data
@skip_status(Status.quit)
@sw.decorate
|
Apache License 2.0
|
mindspore-ai/mindinsight
|
mindinsight/explainer/manager/explain_loader.py
|
ExplainLoader._import_metadata_from_event
|
python
|
def _import_metadata_from_event(self, metadata_event):
def take_union(existed_list, imported_data):
if isinstance(imported_data, Iterable):
for sample in imported_data:
if sample not in existed_list:
existed_list.append(sample)
take_union(self._metadata['explainers'], metadata_event.explain_method)
take_union(self._metadata['metrics'], metadata_event.benchmark_method)
take_union(self._metadata['labels'], metadata_event.label)
|
Import the metadata from event into loader.
|
https://github.com/mindspore-ai/mindinsight/blob/253a210719dbb1e55b826f2e489322f402d66676/mindinsight/explainer/manager/explain_loader.py#L371-L383
|
import math
import os
import re
import threading
from collections import defaultdict
from datetime import datetime
from enum import Enum
from typing import Dict, Iterable, List, Optional, Union
from mindinsight.datavisual.common.exceptions import TrainJobNotExistError
from mindinsight.datavisual.data_access.file_handler import FileHandler
from mindinsight.explainer.common.enums import ExplainFieldsEnum
from mindinsight.explainer.common.log import logger
from mindinsight.explainer.manager.explain_parser import ExplainParser
from mindinsight.utils.exceptions import ParamValueError, UnknownError
_NAN_CONSTANT = 'NaN'
_NUM_DIGITS = 6
_EXPLAIN_FIELD_NAMES = [
ExplainFieldsEnum.SAMPLE_ID,
ExplainFieldsEnum.BENCHMARK,
ExplainFieldsEnum.METADATA,
]
_SAMPLE_FIELD_NAMES = [
ExplainFieldsEnum.GROUND_TRUTH_LABEL,
ExplainFieldsEnum.INFERENCE,
ExplainFieldsEnum.EXPLANATION,
ExplainFieldsEnum.HIERARCHICAL_OCCLUSION
]
class _LoaderStatus(Enum):
STOP = 'STOP'
LOADING = 'LOADING'
PENDING = 'PENDING'
LOADED = 'LOADED'
def _round(score):
try:
return round(score, _NUM_DIGITS)
except TypeError:
return score
class ExplainLoader:
def __init__(self,
loader_id: str,
summary_dir: str):
self._parser = ExplainParser(summary_dir)
self._loader_info = {
'loader_id': loader_id,
'summary_dir': summary_dir,
'create_time': os.stat(summary_dir).st_ctime,
'update_time': os.stat(summary_dir).st_mtime,
'query_time': os.stat(summary_dir).st_ctime,
'uncertainty_enabled': False,
}
self._samples = defaultdict(dict)
self._metadata = {'explainers': [], 'metrics': [], 'labels': [], 'min_confidence': 0.5}
self._benchmark = {'explainer_score': defaultdict(dict), 'label_score': defaultdict(dict)}
self._status = _LoaderStatus.PENDING.value
self._status_mutex = threading.Lock()
@property
def all_classes(self) -> List[Dict]:
sample_count_per_label = defaultdict(int)
saliency_count_per_label = defaultdict(int)
hoc_count_per_label = defaultdict(int)
for sample in self._samples.values():
if sample.get('image') and (sample.get('ground_truth_label') or sample.get('predicted_label')):
for label in set(sample['ground_truth_label'] + sample['predicted_label']):
sample_count_per_label[label] += 1
if sample['inferences'][label]['saliency_maps']:
saliency_count_per_label[label] += 1
if sample['inferences'][label]['hoc_layers']:
hoc_count_per_label[label] += 1
all_classes_return = [{'id': label_id,
'label': label_name,
'sample_count': sample_count_per_label[label_id],
'saliency_sample_count': saliency_count_per_label[label_id],
'hoc_sample_count': hoc_count_per_label[label_id]}
for label_id, label_name in enumerate(self._metadata['labels'])]
return all_classes_return
@property
def query_time(self) -> float:
return self._loader_info['query_time']
@query_time.setter
def query_time(self, new_time: Union[datetime, float]):
if isinstance(new_time, datetime):
self._loader_info['query_time'] = new_time.timestamp()
elif isinstance(new_time, float):
self._loader_info['query_time'] = new_time
else:
raise TypeError('new_time should have type of datetime.datetime or float, but receive {}'
.format(type(new_time)))
@property
def create_time(self) -> float:
return self._loader_info['create_time']
@create_time.setter
def create_time(self, new_time: Union[datetime, float]):
if isinstance(new_time, datetime):
self._loader_info['create_time'] = new_time.timestamp()
elif isinstance(new_time, float):
self._loader_info['create_time'] = new_time
else:
raise TypeError('new_time should have type of datetime.datetime or float, but receive {}'
.format(type(new_time)))
@property
def explainers(self) -> List[str]:
return self._metadata['explainers']
@property
def explainer_scores(self) -> List[Dict]:
explainer_scores = []
for explainer, explainer_score_on_metric in self._benchmark['explainer_score'].copy().items():
metric_scores = [{'metric': metric, 'score': _round(score)}
for metric, score in explainer_score_on_metric.items()]
label_scores = []
for label, label_score_on_metric in self._benchmark['label_score'][explainer].copy().items():
score_of_single_label = {
'label': self._metadata['labels'][label],
'evaluations': [
{'metric': metric, 'score': _round(score)} for metric, score in label_score_on_metric.items()
],
}
label_scores.append(score_of_single_label)
explainer_scores.append({
'explainer': explainer,
'evaluations': metric_scores,
'class_scores': label_scores,
})
return explainer_scores
@property
def labels(self) -> List[str]:
return self._metadata['labels']
@property
def metrics(self) -> List[str]:
return self._metadata['metrics']
@property
def min_confidence(self) -> Optional[float]:
return self._metadata['min_confidence']
@property
def sample_count(self) -> int:
sample_count = 0
for sample in self._samples.values():
if sample.get('image', False):
sample_count += 1
return sample_count
@property
def samples(self) -> List[Dict]:
return self._samples
@property
def train_id(self) -> str:
return self._loader_info['loader_id']
@property
def uncertainty_enabled(self):
return self._loader_info['uncertainty_enabled']
@property
def update_time(self) -> float:
return self._loader_info['update_time']
@update_time.setter
def update_time(self, new_time: Union[datetime, float]):
if isinstance(new_time, datetime):
self._loader_info['update_time'] = new_time.timestamp()
elif isinstance(new_time, float):
self._loader_info['update_time'] = new_time
else:
raise TypeError('new_time should have type of datetime.datetime or float, but receive {}'
.format(type(new_time)))
def load(self):
if self.status != _LoaderStatus.LOADED.value:
self.status = _LoaderStatus.LOADING.value
filenames = []
for filename in FileHandler.list_dir(self._loader_info['summary_dir']):
if FileHandler.is_file(FileHandler.join(self._loader_info['summary_dir'], filename)):
filenames.append(filename)
filenames = ExplainLoader._filter_files(filenames)
if not filenames:
raise TrainJobNotExistError('No summary file found in %s, explain job will be delete.'
% self._loader_info['summary_dir'])
is_end = False
while not is_end and self.status != _LoaderStatus.STOP.value:
try:
file_changed, is_end, event_dict = self._parser.list_events(filenames)
except UnknownError:
is_end = True
break
if file_changed:
logger.info('Summary file in %s update, reload the data in the summary.',
self._loader_info['summary_dir'])
self._clear_job()
if self.status != _LoaderStatus.STOP.value:
self.status = _LoaderStatus.LOADING.value
if event_dict:
self._import_data_from_event(event_dict)
self._reform_sample_info()
if is_end:
self.status = _LoaderStatus.LOADED.value
@property
def status(self):
with self._status_mutex:
return self._status
@status.setter
def status(self, status):
with self._status_mutex:
self._status = status
def stop(self):
self.status = _LoaderStatus.STOP.value
def get_all_samples(self) -> List[Dict]:
returned_samples = [{'id': sample_id, 'name': info['name'], 'image': info['image'],
'inferences': list(info['inferences'].values())} for sample_id, info in
self._samples.items() if info.get('image', False)]
return returned_samples
def _import_data_from_event(self, event_dict: Dict):
if 'metadata' not in event_dict and self._is_metadata_empty():
raise ParamValueError('metadata is incomplete, should write metadata first in the summary.')
for tag, event in event_dict.items():
if tag == ExplainFieldsEnum.METADATA.value:
self._import_metadata_from_event(event.metadata)
elif tag == ExplainFieldsEnum.BENCHMARK.value:
self._import_benchmark_from_event(event.benchmark)
elif tag == ExplainFieldsEnum.SAMPLE_ID.value:
self._import_sample_from_event(event)
else:
logger.info('Unknown ExplainField: %s.', tag)
def _is_metadata_empty(self):
if not self._metadata['labels']:
return True
return False
|
Apache License 2.0
|
tnbar/tednet
|
tednet/tnn/tensor_ring/base.py
|
TRLinear.__init__
|
python
|
def __init__(self, in_shape: Union[list, np.ndarray], out_shape: Union[list, np.ndarray],
ranks: Union[list, np.ndarray], bias: bool = True):
super(TRLinear, self).__init__(in_shape=in_shape, out_shape=out_shape, ranks=ranks, bias=bias)
self.reset_parameters()
|
The Tensor Ring Decomposition Linear.
Parameters
----------
in_shape : Union[list, numpy.ndarray]
1-D param :math:`\in \mathbb{R}^m`. The decomposition shape of feature in
out_shape : Union[list, numpy.ndarray]
1-D param :math:`\in \mathbb{R}^n`. The decomposition shape of feature out
ranks : Union[list, numpy.ndarray]
1-D param :math:`\in \mathbb{R}^{m+n}`. The ranks of linear
bias : bool
use bias of linear or not. ``True`` to use, and ``False`` to not use
|
https://github.com/tnbar/tednet/blob/fe2c531ab9c388284b4ebc22edcc53df147a3a1f/tednet/tnn/tensor_ring/base.py#L197-L214
|
import math
from typing import Union
import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np
from ..tn_cnn import _TNConvNd
from ..tn_linear import _TNLinear
class TRConv2D(_TNConvNd):
def __init__(self, in_shape: Union[list, np.ndarray], out_shape: Union[list, np.ndarray],
ranks: Union[list, np.ndarray], kernel_size: Union[int, tuple], stride=1, padding=0, bias=True):
super(TRConv2D, self).__init__(in_shape=in_shape, out_shape=out_shape, ranks=ranks, kernel_size=kernel_size,
stride=stride, padding=padding, bias=bias)
self.reset_parameters()
def set_tn_type(self):
self.tn_info["type"] = "tr"
def set_nodes(self):
self.in_num = len(self.in_shape)
self.out_num = len(self.out_shape)
self.nodes_num = self.in_num + self.out_num
self.ranks_fill = np.append(self.ranks, self.ranks[0])
assert self.nodes_num + 1 == len(self.ranks), "The number of ranks is not suitable."
nodes_info = []
for i in range(self.nodes_num):
if i < self.in_num:
left_rank = self.ranks_fill[i]
right_rank = self.ranks_fill[i + 1]
middle_rank = self.in_shape[i]
node_info = dict(
name="in_node%d" % i,
shape=(left_rank, middle_rank, right_rank)
)
else:
out_i = i - self.in_num
left_rank = self.ranks_fill[i + 1]
right_rank = self.ranks_fill[i + 2]
middle_rank = self.out_shape[out_i]
node_info = dict(
name="out_node%d" % out_i,
shape=(left_rank, middle_rank, right_rank)
)
node = nn.Parameter(torch.Tensor(*node_info["shape"]))
self.register_parameter(node_info["name"], node)
nodes_info.append(node_info)
self.kernel_cin = self.ranks_fill[self.in_num]
self.kernel_cout = self.ranks_fill[self.in_num + 1]
self.kernel = nn.Conv2d(self.kernel_cin, self.kernel_cout, self.kernel_size, self.stride,
self.padding, bias=False)
self.tn_info["nodes"] = nodes_info
def set_params_info(self):
params_ori = self.in_size * self.out_size * np.prod(self.kernel_size)
params_in = np.sum(self.ranks_fill[:self.in_num] * self.in_shape * self.ranks_fill[1:(self.in_num+1)])
params_kernel = np.prod(self.kernel_size) * self.kernel_cin * self.kernel_cout
params_out = np.sum(self.ranks_fill[(self.in_num+1):-1] * self.out_shape * self.ranks_fill[(self.in_num+2):])
params_tr = params_in + params_kernel + params_out
compression_ration = params_ori / params_tr
self.tn_info["t_params"] = params_tr
self.tn_info["ori_params"] = params_ori
self.tn_info["cr"] = compression_ration
print("compression_ration is: ", compression_ration)
def reset_parameters(self):
node_vars = []
for i in range(self.in_num):
if i == 0:
node_vars.append(1./self.in_size)
else:
node_vars.append(1./self.ranks_fill[i])
for i in range(self.out_num):
if i == 0:
node_vars.append(1./(self.ranks_fill[0]*self.ranks_fill[self.in_num + 1]))
else:
node_vars.append(1./self.ranks_fill[self.in_num + 1])
conv_node_var = 2./(self.kernel_size[0]*self.kernel_size[1]*self.ranks_fill[self.in_num])
std = math.pow(math.sqrt(np.prod(node_vars)*conv_node_var), 1./(self.nodes_num + 1))
for i in range(self.in_num):
nn.init.normal_(getattr(self, "in_node%d" % i), std=std)
for i in range(self.out_num):
nn.init.normal_(getattr(self, "out_node%d" % i), std=std)
nn.init.normal_(self.kernel.weight.data, std=std)
if self.bias is not None:
nn.init.zeros_(self.bias)
def tn_contract(self, inputs: torch.Tensor)->torch.Tensor:
batch_size = inputs.shape[0]
image_hw = inputs.shape[2:]
res = inputs.view(batch_size, *self.in_shape, *image_hw)
I_in = getattr(self, "in_node0")
for i in range(1, self.in_num):
weight_tmp = getattr(self, "in_node%d" % i)
I_in = torch.tensordot(I_in, weight_tmp, dims=([-1], [0]))
in_positions = list(range(1, self.in_num+1))
res = torch.tensordot(res, I_in, dims=(in_positions, in_positions))
res = res.permute(0, 3, 4, 1, 2).contiguous()
res = res.reshape(-1, self.ranks_fill[self.in_num], *image_hw)
res = self.kernel(res)
image_new_hw = res.shape[2:]
res = res.reshape(batch_size, self.ranks_fill[0], self.ranks_fill[self.in_num + 1], -1)
O_out = getattr(self, "out_node0")
for i in range(1, self.out_num):
weight_tmp = getattr(self, "out_node%d" % i)
O_out = torch.tensordot(O_out, weight_tmp, dims=([-1], [0]))
res = torch.tensordot(res, O_out, dims=([1, 2], [-1, 0]))
res = res.reshape(batch_size, *image_new_hw, self.out_size)
return res
def recover(self):
pass
class TRLinear(_TNLinear):
|
MIT License
|
alliefitter/boto3_type_annotations
|
boto3_type_annotations_with_docs/boto3_type_annotations/machinelearning/client.py
|
Client.delete_ml_model
|
python
|
def delete_ml_model(self, MLModelId: str) -> Dict:
pass
|
Assigns the ``DELETED`` status to an ``MLModel`` , rendering it unusable.
After using the ``DeleteMLModel`` operation, you can use the ``GetMLModel`` operation to verify that the status of the ``MLModel`` changed to DELETED.
**Caution:** The result of the ``DeleteMLModel`` operation is irreversible.
See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteMLModel>`_
**Request Syntax**
::
response = client.delete_ml_model(
MLModelId='string'
)
**Response Syntax**
::
{
'MLModelId': 'string'
}
**Response Structure**
- *(dict) --*
Represents the output of a ``DeleteMLModel`` operation.
You can use the ``GetMLModel`` operation and check the value of the ``Status`` parameter to see whether an ``MLModel`` is marked as ``DELETED`` .
- **MLModelId** *(string) --*
A user-supplied ID that uniquely identifies the ``MLModel`` . This value should be identical to the value of the ``MLModelID`` in the request.
:type MLModelId: string
:param MLModelId: **[REQUIRED]**
A user-supplied ID that uniquely identifies the ``MLModel`` .
:rtype: dict
:returns:
|
https://github.com/alliefitter/boto3_type_annotations/blob/2a88aa562b1aee6e8a6cc30402980884b3707fbb/boto3_type_annotations_with_docs/boto3_type_annotations/machinelearning/client.py#L726-L757
|
from typing import Optional
from botocore.client import BaseClient
from typing import Dict
from botocore.paginate import Paginator
from botocore.waiter import Waiter
from typing import Union
from typing import List
class Client(BaseClient):
def add_tags(self, Tags: List, ResourceId: str, ResourceType: str) -> Dict:
pass
def can_paginate(self, operation_name: str = None):
pass
def create_batch_prediction(self, BatchPredictionId: str, MLModelId: str, BatchPredictionDataSourceId: str, OutputUri: str, BatchPredictionName: str = None) -> Dict:
pass
def create_data_source_from_rds(self, DataSourceId: str, RDSData: Dict, RoleARN: str, DataSourceName: str = None, ComputeStatistics: bool = None) -> Dict:
pass
def create_data_source_from_redshift(self, DataSourceId: str, DataSpec: Dict, RoleARN: str, DataSourceName: str = None, ComputeStatistics: bool = None) -> Dict:
pass
def create_data_source_from_s3(self, DataSourceId: str, DataSpec: Dict, DataSourceName: str = None, ComputeStatistics: bool = None) -> Dict:
pass
def create_evaluation(self, EvaluationId: str, MLModelId: str, EvaluationDataSourceId: str, EvaluationName: str = None) -> Dict:
pass
def create_ml_model(self, MLModelId: str, MLModelType: str, TrainingDataSourceId: str, MLModelName: str = None, Parameters: Dict = None, Recipe: str = None, RecipeUri: str = None) -> Dict:
pass
def create_realtime_endpoint(self, MLModelId: str) -> Dict:
pass
def delete_batch_prediction(self, BatchPredictionId: str) -> Dict:
pass
def delete_data_source(self, DataSourceId: str) -> Dict:
pass
def delete_evaluation(self, EvaluationId: str) -> Dict:
pass
|
MIT License
|
smart-lab/smartlearner
|
smartlearner/optimizers/adadelta.py
|
Adadelta.__init__
|
python
|
def __init__(self, loss, decay=0.95, epsilon=1e-6):
super().__init__(loss)
if decay <= 0 or decay > 1:
raise ValueError("Adadelta's decay must be in (0,1].")
self.dc = decay
self.eps = epsilon
self._updates = OrderedDict()
self.mean_squared_grads = []
self.mean_squared_dxs = []
|
Implements the Adadelta optimizer.
The implementation details are available in [Zeiler12]_.
Parameters
----------
loss : `Loss`
The value (a theano computation graph) to optimize.
decay : float, optional
Decay rate (related to the window of the moving average).
epsilon : float, optional
Used to prevent a division by zero in early iterations.
References
----------
.. [Zeiler12] Matthew D. Zeiler "AdaDelta: An Adaptive Learning Rate Method",
http://arxiv.org/abs/1212.5701, 2012
|
https://github.com/smart-lab/smartlearner/blob/0afdcd3b38dddfee16330b8324eb3b0e224f1c2b/smartlearner/optimizers/adadelta.py#L11-L39
|
import numpy as np
from collections import OrderedDict
import theano.tensor as T
from ..interfaces import Optimizer
from ..utils import sharedX
class Adadelta(Optimizer):
|
BSD 3-Clause New or Revised License
|
opennode/waldur-mastermind
|
src/waldur_jira/backend.py
|
AttachmentSynchronizer._download_file
|
python
|
def _download_file(self, url):
session = self.backend.manager._session
response = session.get(url)
response.raise_for_status()
return BytesIO(response.content)
|
Download file from URL using secure JIRA session.
:return: byte stream
:raises: requests.RequestException
|
https://github.com/opennode/waldur-mastermind/blob/1efd86ef417a736a88501c58faafd7d75950aac1/src/waldur_jira/backend.py#L827-L836
|
import functools
import logging
from io import BytesIO
from django.conf import settings
from django.db import IntegrityError, transaction
from django.utils import timezone
from django.utils.dateparse import parse_datetime
from django.utils.functional import cached_property
from jira.client import _get_template_list
from jira.utils import json_loads
from rest_framework import status
from waldur_core.core.models import StateMixin
from waldur_core.structure.backend import ServiceBackend
from waldur_core.structure.exceptions import ServiceBackendError
from waldur_core.structure.utils import update_pulled_fields
from . import models
from .jira_fix import JIRA, JIRAError
logger = logging.getLogger(__name__)
class JiraBackendError(ServiceBackendError):
pass
def check_captcha(e):
if e.response is None:
return False
if not hasattr(e.response, 'headers'):
return False
if 'X-Seraph-LoginReason' not in e.response.headers:
return False
return e.response.headers['X-Seraph-LoginReason'] == 'AUTHENTICATED_FAILED'
def reraise_exceptions(func):
@functools.wraps(func)
def wrapped(self, *args, **kwargs):
try:
return func(self, *args, **kwargs)
except JIRAError as e:
raise JiraBackendError(e)
return wrapped
class JiraBackend(ServiceBackend):
model_comment = models.Comment
model_issue = models.Issue
model_attachment = models.Attachment
model_project = models.Project
def __init__(self, settings, project=None, verify=False):
self.settings = settings
self.project = project
self.verify = verify
def pull_service_properties(self):
self.pull_project_templates()
self.pull_priorities()
def ping(self, raise_exception=False):
try:
self.manager.myself()
except JIRAError as e:
if raise_exception:
raise JiraBackendError(e)
return False
else:
return True
@staticmethod
def convert_field(value, choices, mapping=None):
if mapping:
mapping = {v: k for k, v in mapping.items()}
value = mapping.get(value, value)
try:
return next(k for k, v in choices if v == value)
except StopIteration:
return 0
@cached_property
def manager(self):
if self.settings.token:
if getattr(self.settings, 'email', None):
basic_auth = (self.settings.email, self.settings.token)
else:
basic_auth = (self.settings.username, self.settings.token)
else:
basic_auth = (self.settings.username, self.settings.password)
try:
return JIRA(
server=self.settings.backend_url,
options={'verify': self.verify},
basic_auth=basic_auth,
validate=False,
)
except JIRAError as e:
if check_captcha(e):
raise JiraBackendError(
'JIRA CAPTCHA is triggered. Please reset credentials.'
)
raise JiraBackendError(e)
@reraise_exceptions
def get_field_id_by_name(self, field_name):
if not field_name:
return None
try:
fields = getattr(self, '_fields')
except AttributeError:
fields = self._fields = self.manager.fields()
try:
return next(f['id'] for f in fields if field_name in f['clauseNames'])
except StopIteration:
raise JiraBackendError("Can't find custom field %s" % field_name)
@reraise_exceptions
def get_project_templates(self):
url = (
self.manager._options['server'] + '/rest/project-templates/latest/templates'
)
response = self.manager._session.get(url)
json_data = json_loads(response)
return _get_template_list(json_data)
@reraise_exceptions
def pull_project_templates(self):
backend_templates = self.get_project_templates()
with transaction.atomic():
for template in backend_templates:
backend_id = template['projectTemplateModuleCompleteKey']
icon_url = self.manager._options['server'] + template['iconUrl']
models.ProjectTemplate.objects.update_or_create(
backend_id=backend_id,
defaults={
'name': template['name'],
'description': template['description'],
'icon_url': icon_url,
},
)
@reraise_exceptions
def pull_priorities(self):
backend_priorities = self.manager.priorities()
with transaction.atomic():
backend_priorities_map = {
priority.id: priority for priority in backend_priorities
}
waldur_priorities = {
priority.backend_id: priority
for priority in models.Priority.objects.filter(settings=self.settings)
}
stale_priorities = set(waldur_priorities.keys()) - set(
backend_priorities_map.keys()
)
models.Priority.objects.filter(backend_id__in=stale_priorities)
for priority in backend_priorities:
models.Priority.objects.update_or_create(
backend_id=priority.id,
settings=self.settings,
defaults={
'name': priority.name,
'description': priority.description,
'icon_url': priority.iconUrl,
},
)
@reraise_exceptions
def import_priority(self, priority):
return models.Priority(
backend_id=priority.id,
settings=self.settings,
name=priority.name,
description=getattr(property, 'description', ''),
icon_url=priority.iconUrl,
)
@reraise_exceptions
def get_project(self, project_id):
return self.manager.project(project_id)
@cached_property
def default_assignee(self):
user = self.manager.myself()
return user['name']
@reraise_exceptions
def create_project(self, project):
self.manager.create_project(
key=project.backend_id,
name=project.name,
assignee=self.default_assignee,
template_name=project.template.name,
)
self.pull_issue_types(project)
def pull_issue_types(self, project):
backend_project = self.get_project(project.backend_id)
backend_issue_types = {
issue_type.id: issue_type for issue_type in backend_project.issueTypes
}
project_issue_types = {
issue_type.backend_id: issue_type
for issue_type in project.issue_types.all()
}
global_issue_types = {
issue_type.backend_id: issue_type
for issue_type in models.IssueType.objects.filter(settings=self.settings)
}
new_issue_types = set(backend_issue_types.keys()) - set(
project_issue_types.keys()
)
for issue_type_id in new_issue_types:
if issue_type_id in global_issue_types:
issue_type = global_issue_types[issue_type_id]
else:
issue_type = self.import_issue_type(backend_issue_types[issue_type_id])
issue_type.save()
project.issue_types.add(issue_type)
stale_issue_types = set(project_issue_types.keys()) - set(
backend_issue_types.keys()
)
project.issue_types.filter(backend_id__in=stale_issue_types).delete()
common_issue_types = set(project_issue_types.keys()) & set(
backend_issue_types.keys()
)
for issue_type_id in common_issue_types:
issue_type = project_issue_types[issue_type_id]
imported_issue_type = self.import_issue_type(
backend_issue_types[issue_type_id]
)
update_pulled_fields(
issue_type,
imported_issue_type,
('name', 'description', 'icon_url', 'subtask'),
)
def import_issue_type(self, backend_issue_type):
return models.IssueType(
settings=self.settings,
backend_id=backend_issue_type.id,
name=backend_issue_type.name,
description=backend_issue_type.description,
icon_url=backend_issue_type.iconUrl,
subtask=backend_issue_type.subtask,
)
@reraise_exceptions
def update_project(self, project):
backend_project = self.manager.project(project.backend_id)
backend_project.update(name=project.name)
@reraise_exceptions
def delete_project(self, project):
self.manager.delete_project(project.backend_id)
@reraise_exceptions
def create_issue(self, issue):
args = self._issue_to_dict(issue)
backend_issue = self.manager.create_issue(**args)
self._backend_issue_to_issue(backend_issue, issue)
issue.save()
def create_issue_from_jira(self, project, key):
backend_issue = self.get_backend_issue(key)
if not backend_issue:
logger.debug(
'Unable to create issue with key=%s, '
'because it has already been deleted on backend.',
key,
)
return
issue = self.model_issue(
project=project, backend_id=key, state=StateMixin.States.OK
)
self._backend_issue_to_issue(backend_issue, issue)
try:
issue.save()
except IntegrityError:
logger.debug(
'Unable to create issue with key=%s, '
'because it has been created in another thread.',
key,
)
def update_issue(self, issue):
backend_issue = self.get_backend_issue(issue.backend_id)
if not backend_issue:
logger.debug(
'Unable to update issue with key=%s, '
'because it has already been deleted on backend.',
issue.backend_id,
)
return
backend_issue.update(summary=issue.summary, description=issue.get_description())
def update_issue_from_jira(self, issue):
start_time = timezone.now()
backend_issue = self.get_backend_issue(issue.backend_id)
if not backend_issue:
logger.debug(
'Unable to update issue with key=%s, '
'because it has already been deleted on backend.',
issue.backend_id,
)
return
issue.refresh_from_db()
if issue.modified > start_time:
logger.debug(
'Skipping issue update with key=%s, '
'because it has been updated from other thread.',
issue.backend_id,
)
return
self._backend_issue_to_issue(backend_issue, issue)
issue.save()
def delete_issue(self, issue):
backend_issue = self.get_backend_issue(issue.backend_id)
if backend_issue:
backend_issue.delete()
else:
logger.debug(
'Unable to delete issue with key=%s, '
'because it has already been deleted on backend.',
issue.backend_id,
)
def delete_issue_from_jira(self, issue):
backend_issue = self.get_backend_issue(issue.backend_id)
if not backend_issue:
issue.delete()
else:
logger.debug(
'Skipping issue deletion with key=%s, '
'because it still exists on backend.',
issue.backend_id,
)
@reraise_exceptions
def create_comment(self, comment):
backend_comment = self.manager.add_comment(
comment.issue.backend_id, comment.prepare_message()
)
comment.backend_id = backend_comment.id
comment.save(update_fields=['backend_id'])
def create_comment_from_jira(self, issue, comment_backend_id):
backend_comment = self.get_backend_comment(issue.backend_id, comment_backend_id)
if not backend_comment:
logger.debug(
'Unable to create comment with id=%s, '
'because it has already been deleted on backend.',
comment_backend_id,
)
return
comment = self.model_comment(
issue=issue, backend_id=comment_backend_id, state=StateMixin.States.OK
)
self._backend_comment_to_comment(backend_comment, comment)
try:
comment.save()
except IntegrityError:
logger.debug(
'Unable to create comment issue_id=%s, backend_id=%s, '
'because it already exists n Waldur.',
issue.id,
comment_backend_id,
)
def update_comment(self, comment):
backend_comment = self.get_backend_comment(
comment.issue.backend_id, comment.backend_id
)
if not backend_comment:
logger.debug(
'Unable to update comment with id=%s, '
'because it has already been deleted on backend.',
comment.id,
)
return
backend_comment.update(body=comment.prepare_message())
def update_comment_from_jira(self, comment):
backend_comment = self.get_backend_comment(
comment.issue.backend_id, comment.backend_id
)
if not backend_comment:
logger.debug(
'Unable to update comment with id=%s, '
'because it has already been deleted on backend.',
comment.id,
)
return
comment.state = StateMixin.States.OK
self._backend_comment_to_comment(backend_comment, comment)
comment.save()
@reraise_exceptions
def delete_comment(self, comment):
backend_comment = self.get_backend_comment(
comment.issue.backend_id, comment.backend_id
)
if backend_comment:
backend_comment.delete()
else:
logger.debug(
'Unable to delete comment with id=%s, '
'because it has already been deleted on backend.',
comment.id,
)
def delete_comment_from_jira(self, comment):
backend_comment = self.get_backend_comment(
comment.issue.backend_id, comment.backend_id
)
if not backend_comment:
comment.delete()
else:
logger.debug(
'Skipping comment deletion with id=%s, '
'because it still exists on backend.',
comment.id,
)
@reraise_exceptions
def create_attachment(self, attachment):
backend_issue = self.get_backend_issue(attachment.issue.backend_id)
if not backend_issue:
logger.debug(
'Unable to add attachment to issue with id=%s, '
'because it has already been deleted on backend.',
attachment.issue.id,
)
return
backend_attachment = self.manager.waldur_add_attachment(
backend_issue, attachment.file
)
attachment.backend_id = backend_attachment.id
attachment.mime_type = getattr(backend_attachment, 'mimeType', '')
attachment.file_size = backend_attachment.size
attachment.save(update_fields=['backend_id', 'mime_type', 'file_size'])
@reraise_exceptions
def delete_attachment(self, attachment):
backend_attachment = self.get_backend_attachment(attachment.backend_id)
if backend_attachment:
backend_attachment.delete()
else:
logger.debug(
'Unable to remove attachment with id=%s, '
'because it has already been deleted on backend.',
attachment.id,
)
@reraise_exceptions
def import_project_issues(self, project, start_at=0, max_results=50, order=None):
waldur_issues = list(
self.model_issue.objects.filter(
project=project, backend_id__isnull=False
).values_list('backend_id', flat=True)
)
jql = 'project=%s' % project.backend_id
if order:
jql += ' ORDER BY %s' % order
for backend_issue in self.manager.search_issues(
jql, startAt=start_at, maxResults=max_results, fields='*all'
):
key = backend_issue.key
if key in waldur_issues:
logger.debug(
'Skipping import of issue with key=%s, '
'because it already exists in Waldur.',
key,
)
continue
issue = self.model_issue(
project=project, backend_id=key, state=StateMixin.States.OK
)
self._backend_issue_to_issue(backend_issue, issue)
issue.save()
attachment_synchronizer = AttachmentSynchronizer(self, issue, backend_issue)
attachment_synchronizer.perform_update()
for backend_comment in backend_issue.fields.comment.comments:
tmp = issue.comments.model()
tmp.clean_message(backend_comment.body)
issue.comments.create(
user=tmp.user,
message=tmp.message,
created=parse_datetime(backend_comment.created),
backend_id=backend_comment.id,
state=issue.comments.model.States.OK,
)
def _import_project(self, project_backend_id, waldur_project, state):
backend_project = self.get_project(project_backend_id)
project = self.model_project(
service_settings=self.settings,
project=waldur_project,
backend_id=project_backend_id,
state=state,
)
self._backend_project_to_project(backend_project, project)
project.save()
return project
def import_project(self, project_backend_id, waldur_project):
project = self._import_project(
project_backend_id, waldur_project, models.Project.States.OK,
)
self.import_project_issues(project)
return project
def import_project_scheduled(self, project_backend_id, waldur_project):
project = self._import_project(
project_backend_id, waldur_project, models.Project.States.OK,
)
return project
def import_project_batch(self, project):
max_results = settings.WALDUR_JIRA.get('ISSUE_IMPORT_LIMIT')
start_at = project.action_details.get('current_issue', 0)
self.import_project_issues(
project, order='id', start_at=start_at, max_results=max_results
)
total_added = project.action_details.get('current_issue', 0) + max_results
if total_added >= project.action_details.get('issues_count', 0):
project.action_details['current_issue'] = project.action_details.get(
'issues_count', 0
)
project.action_details['percentage'] = 100
project.runtime_state = 'success'
else:
project.action_details['current_issue'] = total_added
project.action_details['percentage'] = int(
(
project.action_details['current_issue']
/ project.action_details['issues_count']
)
* 100
)
project.save()
return max_results
def get_backend_comment(self, issue_backend_id, comment_backend_id):
return self._get_backend_obj('comment')(issue_backend_id, comment_backend_id)
def get_backend_issue(self, issue_backend_id):
return self._get_backend_obj('issue')(issue_backend_id)
def get_backend_attachment(self, attachment_backend_id):
return self._get_backend_obj('attachment')(attachment_backend_id)
def update_attachment_from_jira(self, issue):
backend_issue = self.get_backend_issue(issue.backend_id)
AttachmentSynchronizer(self, issue, backend_issue).perform_update()
def delete_old_comments(self, issue):
backend_issue = self.get_backend_issue(issue.backend_id)
CommentSynchronizer(self, issue, backend_issue).perform_update()
@reraise_exceptions
def _get_backend_obj(self, method):
def f(*args, **kwargs):
try:
func = getattr(self.manager, method)
backend_obj = func(*args, **kwargs)
except JIRAError as e:
if e.status_code == status.HTTP_404_NOT_FOUND:
logger.debug(
'Jira object {} has been already deleted on backend'.format(
method
)
)
return
else:
raise e
return backend_obj
return f
def _backend_issue_to_issue(self, backend_issue, issue):
priority = self._get_or_create_priority(
issue.project, backend_issue.fields.priority
)
issue_type = self._get_or_create_issue_type(
issue.project, backend_issue.fields.issuetype
)
resolution_sla = self._get_resolution_sla(backend_issue)
for obj in ['assignee', 'creator', 'reporter']:
backend_obj = getattr(backend_issue.fields, obj, None)
fields = [
['name', 'displayName'],
['username', 'name'],
['email', 'emailAddress'],
]
for waldur_key, backend_key in fields:
value = getattr(backend_obj, backend_key, '')
setattr(issue, obj + '_' + waldur_key, value)
issue.priority = priority
issue.summary = backend_issue.fields.summary
issue.description = backend_issue.fields.description or ''
issue.type = issue_type
issue.status = backend_issue.fields.status.name or ''
issue.resolution = (
backend_issue.fields.resolution and backend_issue.fields.resolution.name
) or ''
issue.resolution_date = backend_issue.fields.resolutiondate
issue.resolution_sla = resolution_sla
issue.backend_id = backend_issue.key
def _backend_comment_to_comment(self, backend_comment, comment):
comment.update_message(backend_comment.body)
def _backend_attachment_to_attachment(self, backend_attachment, attachment):
pass
def _backend_project_to_project(self, backend_project, project):
project.name = backend_project.name
project.description = backend_project.description
def _get_or_create_priority(self, project, backend_priority):
try:
priority = models.Priority.objects.get(
settings=project.service_settings, backend_id=backend_priority.id,
)
except models.Priority.DoesNotExist:
priority = self.import_priority(backend_priority)
priority.save()
return priority
def _get_or_create_issue_type(self, project, backend_issue_type):
try:
issue_type = models.IssueType.objects.get(
settings=project.service_settings, backend_id=backend_issue_type.id,
)
except models.IssueType.DoesNotExist:
issue_type = self.import_issue_type(backend_issue_type)
issue_type.save()
project.issue_types.add(issue_type)
return issue_type
def _get_resolution_sla(self, backend_issue):
issue_settings = settings.WALDUR_JIRA.get('ISSUE')
field_name = self.get_field_id_by_name(issue_settings['resolution_sla_field'])
value = getattr(backend_issue.fields, field_name, None)
if value and hasattr(value, 'ongoingCycle'):
milliseconds = value.ongoingCycle.remainingTime.millis
if milliseconds:
resolution_sla = milliseconds / 1000
else:
resolution_sla = None
return resolution_sla
def _issue_to_dict(self, issue):
args = dict(
project=issue.project.backend_id,
summary=issue.summary,
description=issue.get_description(),
issuetype={'name': issue.type.name},
)
if issue.priority:
args['priority'] = {'name': issue.priority.name}
if issue.parent:
args['parent'] = {'key': issue.parent.backend_id}
return args
def _get_property(self, object_name, object_id, property_name):
url = self.manager._get_url(
'{0}/{1}/properties/{2}'.format(object_name, object_id, property_name)
)
response = self.manager._session.get(url)
return response.json()
def get_issues_count(self, project_key):
base = '{server}/rest/{rest_path}/{rest_api_version}/{path}'
page_params = {
'jql': 'project=%s' % project_key,
'validateQuery': True,
'startAt': 0,
'fields': [],
'maxResults': 0,
'expand': None,
}
result = self.manager._get_json('search', params=page_params, base=base)
return result['total']
class AttachmentSynchronizer:
def __init__(self, backend, current_issue, backend_issue):
self.backend = backend
self.current_issue = current_issue
self.backend_issue = backend_issue
def perform_update(self):
if self.stale_attachment_ids:
self.backend.model_attachment.objects.filter(
backend_id__in=self.stale_attachment_ids
).delete()
for attachment_id in self.new_attachment_ids:
self._add_attachment(
self.current_issue, self.get_backend_attachment(attachment_id)
)
for attachment_id in self.updated_attachments_ids:
self._update_attachment(
self.current_issue,
self.get_backend_attachment(attachment_id),
self.get_current_attachment(attachment_id),
)
def get_current_attachment(self, attachment_id):
return self.current_attachments_map[attachment_id]
def get_backend_attachment(self, attachment_id):
return self.backend_attachments_map[attachment_id]
@cached_property
def current_attachments_map(self):
return {
str(attachment.backend_id): attachment
for attachment in self.current_issue.attachments.all()
}
@cached_property
def current_attachments_ids(self):
return set(self.current_attachments_map.keys())
@cached_property
def backend_attachments_map(self):
return {
str(attachment.id): attachment
for attachment in self.backend_issue.fields.attachment
}
@cached_property
def backend_attachments_ids(self):
return set(self.backend_attachments_map.keys())
@cached_property
def stale_attachment_ids(self):
return self.current_attachments_ids - self.backend_attachments_ids
@cached_property
def new_attachment_ids(self):
return self.backend_attachments_ids - self.current_attachments_ids
@cached_property
def updated_attachments_ids(self):
return filter(self._is_attachment_updated, self.backend_attachments_ids)
def _is_attachment_updated(self, attachment_id):
if not getattr(self.get_backend_attachment(attachment_id), 'thumbnail', False):
return False
if attachment_id not in self.current_attachments_ids:
return False
if self.get_current_attachment(attachment_id).thumbnail:
return False
return True
|
MIT License
|
susam/ice
|
ice.py
|
Wildcard.value
|
python
|
def value(self, value):
return value if self._type in ['str', 'path'] else int(value)
|
Convert specified value to a value of wildcard type.
This method does not check if the value matches the wildcard
type. The caller of this method must ensure that the value
passed to this method was obtained from a match by regular
expression returned by the regex method of this class. Ensuring
this guarantees that the value passed to the method matches the
wildcard type.
Arguments:
value (str): Value to convert.
Returns:
str or int: Converted value.
|
https://github.com/susam/ice/blob/532e685c504ea96f9e42833594585159ac1d2068/ice.py#L606-L622
|
__version__ = '0.0.2'
__date__ = '25 March 2014'
__author__ = 'Susam Pal <susam@susam.in>'
__credits__ = ('Marcel Hellkamp, for writing bottle, the inspiration '
'behind ice.')
import collections
import itertools
import re
import cgi
import urllib.parse
import http.server
import http.cookies
import os
import mimetypes
def cube():
app = Ice()
@app.get('/')
def default_home_page():
return simple_html('It works!',
'<h1>It works!</h1>\n'
'<p>This is the default ice web page.</p>')
@app.error()
def generic_error_page():
return simple_html(app.response.status_line,
'<h1>{title}</h1>\n'
'<p>{description}</p>\n'
'<hr>\n'
'<address>Ice/{version}</address>'.format(
title=app.response.status_line,
description=app.response.status_detail,
version=__version__))
def simple_html(title, body):
return (
'<!DOCTYPE html>\n'
'<html>\n<head><title>{title}</title></head>\n'
'<body>\n{body}\n</body>\n</html>\n'
).format(title=title, body=body)
return app
class Ice:
def __init__(self):
self._router = Router()
self._server = None
self._error_handlers = {}
def run(self, host='127.0.0.1', port=8080):
from wsgiref import simple_server
self._server = simple_server.make_server(host, port, self)
self._server.serve_forever()
def exit(self):
if self._server is not None:
self._server.shutdown()
self._server.server_close()
self._server = None
def running(self):
return self._server is not None
def get(self, pattern):
return self.route('GET', pattern)
def post(self, pattern):
return self.route('POST', pattern)
def route(self, method, pattern):
def decorator(callback):
self._router.add(method, pattern, callback)
return callback
return decorator
def error(self, status=None):
def decorator(callback):
self._error_handlers[status] = callback
return callback
return decorator
def static(self, root, path, media_type=None, charset='UTF-8'):
root = os.path.abspath(os.path.join(root, ''))
path = os.path.abspath(os.path.join(root, path.lstrip('/\\')))
self.response.state['filename'] = os.path.basename(path)
if not path.startswith(root):
return 403
elif not os.path.isfile(path):
return 404
if media_type is not None:
self.response.media_type = media_type
else:
self.response.media_type = mimetypes.guess_type(path)[0]
self.response.charset = charset
with open(path, 'rb') as f:
return f.read()
def download(self, content, filename=None,
media_type=None, charset='UTF-8'):
if isinstance(content, int) and content != 200:
return content
if filename is not None:
filename = os.path.basename(filename)
elif 'filename' in self.response.state:
filename = self.response.state['filename']
else:
filename = os.path.basename(self.request.path)
if filename == '':
raise LogicError('Cannot determine filename for download')
if media_type is not None:
self.response.media_type = media_type
else:
self.response.media_type = mimetypes.guess_type(filename)[0]
self.response.charset = charset
self.response.add_header('Content-Disposition', 'attachment; '
'filename="{}"'.format(filename))
return content
def __call__(self, environ, start_response):
self.request = Request(environ)
self.response = Response(start_response)
route = self._router.resolve(self.request.method,
self.request.path)
if route is not None:
callback, args, kwargs = route
value = callback(*args, **kwargs)
elif self._router.contains_method(self.request.method):
value = 404
else:
value = 501
if isinstance(value, str) or isinstance(value, bytes):
self.response.body = value
elif isinstance(value, int) and value in Response._responses:
self.response.status = value
if self.response.body is None:
self.response.body = self._get_error_page_callback()()
elif (isinstance(value, tuple) and
isinstance(value[0], int) and
isinstance(value[1], str) and
value[0] in Response._responses and
300 <= value[0] <= 308):
self.response.add_header('Location', value[1])
self.response.status = value[0]
if self.response.body is None:
self.response.body = self._get_error_page_callback()()
else:
raise Error('Route callback for {} {} returned invalid '
'value: {}: {!r}'.format(self.request.method,
self.request.path, type(value).__name__, value))
return self.response.response()
def _get_error_page_callback(self):
if self.response.status in self._error_handlers:
return self._error_handlers[self.response.status]
elif None in self._error_handlers:
return self._error_handlers[None]
else:
self.response.media_type = 'text/plain'
return lambda: self.response.status_line
class Router:
def __init__(self):
self._literal = collections.defaultdict(dict)
self._wildcard = collections.defaultdict(list)
self._regex = collections.defaultdict(list)
def add(self, method, pattern, callback):
pat_type, pat = self._normalize_pattern(pattern)
if pat_type == 'literal':
self._literal[method][pat] = callback
elif pat_type == 'wildcard':
self._wildcard[method].append(WildcardRoute(pat, callback))
else:
self._regex[method].append(RegexRoute(pat, callback))
def contains_method(self, method):
return method in itertools.chain(self._literal, self._wildcard,
self._regex)
def resolve(self, method, path):
if method in self._literal and path in self._literal[method]:
return self._literal[method][path], [], {}
else:
return self._resolve_non_literal_route(method, path)
def _resolve_non_literal_route(self, method, path):
for route_dict in (self._wildcard, self._regex):
if method in route_dict:
for route in reversed(route_dict[method]):
callback_data = route.match(path)
if callback_data is not None:
return callback_data
return None
@staticmethod
def _normalize_pattern(pattern):
if pattern.startswith('regex:'):
pattern_type = 'regex'
pattern = pattern[len('regex:'):]
elif pattern.startswith('wildcard:'):
pattern_type = 'wildcard'
pattern = pattern[len('wildcard:'):]
elif pattern.startswith('literal:'):
pattern_type = 'literal'
pattern = pattern[len('literal:'):]
elif RegexRoute.like(pattern):
pattern_type = 'regex'
elif WildcardRoute.like(pattern):
pattern_type = 'wildcard'
else:
pattern_type = 'literal'
return pattern_type, pattern
class WildcardRoute:
_wildcard_re = re.compile(r'<[^<>/]*>')
_tokenize_re = re.compile(r'<[^<>/]*>|[^<>/]+|/|<|>')
def __init__(self, pattern, callback):
self._re = []
self._wildcards = []
for token in WildcardRoute.tokens(pattern):
if token and token.startswith('<') and token.endswith('>'):
w = Wildcard(token)
self._wildcards.append(w)
self._re.append(w.regex())
else:
self._re.append(re.escape(token))
self._re = re.compile('^' + ''.join(self._re) + '$')
self._callback = callback
def match(self, path):
match = self._re.search(path)
if match is None:
return None
args = []
kwargs = {}
for i, wildcard in enumerate(self._wildcards):
if wildcard.name == '!':
continue
value = wildcard.value(match.groups()[i])
if not wildcard.name:
args.append(value)
else:
kwargs[wildcard.name] = value
return self._callback, args, kwargs
@staticmethod
def like(pattern):
return WildcardRoute._wildcard_re.search(pattern) is not None
@staticmethod
def tokens(pattern):
return WildcardRoute._tokenize_re.findall(pattern)
class Wildcard:
_types_re = {
'str': r'([^/]+)',
'path': r'(.+)',
'int': r'(0|[1-9][0-9]*)',
'+int': r'([1-9][0-9]*)',
'-int': r'(0|-?[1-9][0-9]*)',
}
_name_re = re.compile(r'^(?:[^\d\W]\w*|!|)$')
def __init__(self, spec):
tokens = spec[1:-1].split(':', 1)
if len(tokens) == 1:
tokens.append('')
self.name, self._type = tokens
if not self._type:
self._type = 'str'
if Wildcard._name_re.search(self.name) is None:
raise RouteError('Invalid wildcard name {!r} in {!r}'
.format(self.name, spec))
if self._type not in Wildcard._types_re.keys():
raise RouteError('Invalid wildcard type {!r} in {!r}'
.format(self._type, spec))
def regex(self):
return Wildcard._types_re[self._type]
|
MIT License
|
odatnurd/overrideaudit
|
src/core.py
|
setup_override_minidiff
|
python
|
def setup_override_minidiff(view):
settings = sublime.load_settings("Preferences.sublime-settings")
mini_diff = settings.get("mini_diff")
mini_diff_underlying = oa_setting("mini_diff_underlying") and mini_diff is True
filename = view.file_name()
if (not mini_diff_underlying or
filename is None or not filename.startswith(sublime.packages_path()) or
not os.path.isfile(filename)):
return
result = check_potential_override(filename, deep=True, get_content=mini_diff_underlying)
if result is not None:
override_group.apply(view, result[0], result[1], False)
if result[2] is not None:
view.set_reference_document(result[2])
else:
override_group.remove(view)
|
Check the view provided to see if it represents an edit session on a
package resource that is an override. If it isn't, or if the settings are
not set to indicate that the user wants the mini diff, this does nothing.
Otherwise, it will set up the reference document for this override to track
the base file.
|
https://github.com/odatnurd/overrideaudit/blob/2e1601753af1b4ffc57e362bf8423c2db0c6d317/src/core.py#L227-L253
|
import sublime
import sublime_plugin
from collections import OrderedDict
from operator import itemgetter
from datetime import datetime
from time import time
from bisect import bisect
from zipfile import ZipFile
from tempfile import mkstemp
import stat
import os
import threading
import subprocess
import sys
import re
from ..lib.packages import PackageInfo, PackageList, PackageFileSet
from ..lib.packages import override_display, check_potential_override
from ..lib.packages import find_zip_entry, check_potential_override
from ..lib.output_view import output_to_view
from ..lib.threads import BackgroundWorkerThread
from ..lib.utils import SettingsGroup
override_group = SettingsGroup("override_audit_package",
"override_audit_override",
"override_audit_diff")
def loaded():
log("Initializing")
oa_setting.obj = sublime.load_settings("OverrideAudit.sublime-settings")
oa_setting.default = {
"reuse_views": True,
"clear_existing": True,
"ignore_overrides_in": [],
"diff_unchanged": "diff",
"diff_context_lines": 3,
"diff_empty_hdr": False,
"save_on_diff": False,
"confirm_deletion": True,
"confirm_freshen": True,
"confirm_revert": True,
"report_on_unignore": True,
"external_diff": False,
"ignore_unknown_overrides": [
"^\\.git/",
"^\\.svn/",
"^\\.hg/"
],
"mini_diff_underlying": True,
"enable_hover_popup": True,
"binary_file_patterns": None
}
for window in sublime.windows():
for view in window.views():
setup_override_minidiff(view)
AutoReportTrigger()
def unloaded():
log("Shutting down")
AutoReportTrigger.unregister()
def log(message, *args, status=False, dialog=False):
message = message % args
print("OverrideAudit:", message)
if status:
sublime.status_message(message)
if dialog:
sublime.message_dialog(message)
def oa_syntax(file):
return "Packages/OverrideAudit/resources/syntax/%s.sublime-syntax" % file
def oa_setting(key):
default = oa_setting.default.get(key, None)
return oa_setting.obj.get(key, default)
def oa_can_diff_externally():
spec = oa_setting("external_diff")
if not spec:
return False
if isinstance(spec, bool):
return False
if isinstance(spec, dict):
return True
if isinstance(spec, str):
if spec == "sublimerge":
for res in sublime.find_resources("version"):
if res.split("/")[1] in ("Sublimerge 3", "Sublimerge Pro"):
return True
return False
return False
def get_ignore_unknown_patterns():
pattern_list = oa_setting("ignore_unknown_overrides")
re_opts = 0 if sublime.platform() == "linux" else re.IGNORECASE
patterns = []
if isinstance(pattern_list, bool):
return [re.compile(r'.')] if pattern_list else []
for regex in pattern_list:
try:
patterns.append(re.compile(regex, re_opts))
except Exception as e:
log("Invalid ignore_unknown_overrides regex '%s': %s",
regex, str(e), status=True)
return patterns
def packages_with_overrides(pkg_list, name_list=None):
ignored = oa_setting("ignore_overrides_in")
items = [name for name, pkg in pkg_list if len(pkg.override_files()) > 0
and name not in ignored]
if name_list is not None:
items = list(filter(lambda name: name in name_list, items))
return items
def decorate_pkg_name(pkg_info, name_only=False):
suffix = ""
pkg_name = pkg_info.name
if pkg_info.is_disabled:
pkg_name = "[%s]" % pkg_name
elif pkg_info.is_dependency:
pkg_name = "<%s>" % pkg_name
if name_only:
return pkg_name
if pkg_info.has_possible_overrides(simple=False):
suffix += " <Complete Override>"
if bool(pkg_info.expired_override_files(simple=False)):
suffix += " [EXPIRED]"
return "[{}{}{}] {}{}".format(
"S" if pkg_info.shipped_path is not None else " ",
"I" if pkg_info.installed_path is not None else " ",
"U" if pkg_info.unpacked_path is not None else " ",
pkg_name,
suffix)
|
MIT License
|
cstr-edinburgh/snickery
|
script/smoothing/libwavgen.py
|
fade_gen
|
python
|
def fade_gen(fade_len, ftype):
if fade_len < 1:
return None
len_tot = (fade_len + 1) * 2 + 1
v_win = np.hanning(len_tot)
v_fade = v_win[1:(fade_len+1)]
if ftype is 'fade_out':
v_fade = np.flipud(v_fade)
return v_fade
|
ftype: 'fade_in' or 'fade_out'
|
https://github.com/cstr-edinburgh/snickery/blob/6d7e0b48cbb21760089bbbe85f6d7bd206f89821/script/smoothing/libwavgen.py#L778-L792
|
import os
from scipy.stats import mode
from scipy import signal
import os.path
import libaudio as la
import libutils as lu
import numpy as np
import fft_feats as ff
from scipy import interpolate
def parse_utt_file(utt_file, pm_dir):
l_data = []
diphnx = 0
with open(utt_file) as file_id:
for line in file_id:
l_line = line.split()
if (len(l_line) >= 8) and (l_line[7] == 'ph1'):
diphone = l_line[5]
audio_file = l_line[23]
nframes = int(l_line[42])
middle_frm = int(l_line[20])
source_end_sec_orig = float(l_line[30])
pm_file = pm_dir + '/' + audio_file + '.pm'
v_pm_sec = np.loadtxt(pm_file, skiprows=9, usecols=[0])
mid_point_sec = source_end_sec_orig
nx_mid_pm = np.argmin(np.abs((mid_point_sec - v_pm_sec)))
source_strt_sec = v_pm_sec[nx_mid_pm - middle_frm]
source_end_sec = v_pm_sec[nx_mid_pm - middle_frm + nframes]
source_ph_bound_sec = v_pm_sec[nx_mid_pm]
l_data.append([ diphone, audio_file, source_strt_sec, source_end_sec, source_ph_bound_sec, diphnx])
diphnx += 1
return l_data
def parse_utt_src_file(utt_src_file):
d_data = {}
m_file_data = np.loadtxt(utt_src_file, comments=None, usecols=(0,1,2,3), dtype='string')
d_data['srcfile'] = m_file_data[:,0].tolist()
d_data['src_strt_sec'] = m_file_data[:,1].astype('float64')
d_data['src_end_sec'] = m_file_data[:,2].astype('float64')
d_data['diphone'] = m_file_data[:,3].tolist()
return d_data
def parse_utt_file2(utt_file, pm_dir):
d_data = {}
d_data['diphone'] = []
d_data['srcfile'] = []
d_data['src_strt_sec'] = np.array([])
d_data['src_end_sec'] = np.array([])
d_data['src_bnd_sec'] = np.array([])
d_data['src_end_sec'] = np.array([])
with open(utt_file) as file_id:
for line in file_id:
l_line = line.split()
if (len(l_line) >= 8) and (l_line[7] == 'ph1'):
diphone = l_line[5]
wavfile = l_line[23]
nframes = int(l_line[42])
middle_frm = int(l_line[20])
source_end_sec_orig = float(l_line[30])
pm_file = pm_dir + '/' + wavfile + '.pm'
v_pm_sec = np.loadtxt(pm_file, skiprows=9, usecols=[0])
mid_point_sec = source_end_sec_orig
nx_mid_pm = np.argmin(np.abs((mid_point_sec - v_pm_sec)))
source_strt_sec = v_pm_sec[nx_mid_pm - middle_frm]
if (nx_mid_pm - middle_frm + nframes)>=len(v_pm_sec):
source_end_sec = v_pm_sec[-1]
else:
source_end_sec = v_pm_sec[nx_mid_pm - middle_frm + nframes]
source_ph_bound_sec = v_pm_sec[nx_mid_pm]
d_data['diphone'].append(diphone)
d_data['srcfile'].append(wavfile)
d_data['src_strt_sec'] = np.append(d_data['src_strt_sec'], source_strt_sec)
d_data['src_bnd_sec'] = np.append(d_data['src_bnd_sec'] , source_ph_bound_sec)
d_data['src_end_sec'] = np.append(d_data['src_end_sec'] , source_end_sec)
return d_data
def extract_segments(l_utt_data, wav_dir, pm_dir):
npm_margin = 3
l_segs_data = []
ndiph = len(l_utt_data)
for i in xrange(ndiph):
wav_file = wav_dir + '/' + l_utt_data[i][1] + '.wav'
pm_file = pm_dir + '/' + l_utt_data[i][1] + '.pm'
v_src_sig, fs = la.read_audio_file(wav_file)
v_pm_sec = la.read_est_file(pm_file)[:,0]
src_strt_orig_sec = l_utt_data[i][2]
src_end_orig_sec = l_utt_data[i][3]
src_pm_strt_nx = np.argmin(np.abs(v_pm_sec - src_strt_orig_sec))
src_pm_end_nx = np.argmin(np.abs(v_pm_sec - src_end_orig_sec))
src_pm_strt_nx_w_marg = src_pm_strt_nx - npm_margin
src_pm_end_nx_w_marg = src_pm_end_nx + npm_margin
v_pm_smps = lu.round_to_int(v_pm_sec * fs)
v_pm_smps_seg = v_pm_smps[(src_pm_strt_nx_w_marg-1):(src_pm_end_nx_w_marg+2)]
v_sig_seg = v_src_sig[v_pm_smps_seg[0]:(v_pm_smps_seg[-1]+1)]
v_pm_smps_seg = v_pm_smps_seg - v_pm_smps_seg[0]
v_pm_smps_seg = v_pm_smps_seg[1:-1]
l_segs_data.append([v_sig_seg, v_pm_smps_seg])
return l_segs_data
def extract_segments2(l_utt_data, wav_dir, pm_reaper_dir, npm_margin):
l_segs_data = []
ndiph = len(l_utt_data)
nfrms = 0
for i in xrange(ndiph):
wav_file = wav_dir + '/' + l_utt_data[i][1] + '.wav'
pm_file = pm_reaper_dir + '/' + l_utt_data[i][1] + '.pm'
v_src_sig, fs = la.read_audio_file(wav_file)
v_pm_sec, v_voi = la.read_reaper_est_file(pm_file)
src_strt_orig_sec = l_utt_data[i][2]
src_end_orig_sec = l_utt_data[i][3]
src_ph_bnd_orig_sec = l_utt_data[i][4]
src_pm_strt_nx = np.argmin(np.abs(v_pm_sec - src_strt_orig_sec))
src_pm_end_nx = np.argmin(np.abs(v_pm_sec - src_end_orig_sec))
src_pm_ph_bnd_nx = np.argmin(np.abs(v_pm_sec - src_ph_bnd_orig_sec))
src_pm_strt_nx_w_marg = src_pm_strt_nx - npm_margin
src_pm_end_nx_w_marg = src_pm_end_nx + npm_margin
v_pm_smps = lu.round_to_int(v_pm_sec * fs)
v_pm_smps_seg = v_pm_smps[(src_pm_strt_nx_w_marg-1):(src_pm_end_nx_w_marg+2)]
v_voi_seg = v_voi[(src_pm_strt_nx_w_marg):(src_pm_end_nx_w_marg+1)]
v_sig_seg = v_src_sig[v_pm_smps_seg[0]:(v_pm_smps_seg[-1]+1)]
v_pm_smps_seg = v_pm_smps_seg - v_pm_smps_seg[0]
v_pm_smps_seg = v_pm_smps_seg[1:-1]
len_diff = len(v_voi_seg) - len(v_pm_smps_seg)
if len_diff > 0:
v_voi_seg = v_voi_seg[:-len_diff]
src_pm_ph_bnd_nx_seg = src_pm_ph_bnd_nx - src_pm_strt_nx_w_marg
nfrms += len(v_pm_smps_seg)
l_segs_data.append([v_sig_seg, v_pm_smps_seg, v_voi_seg, src_pm_ph_bnd_nx_seg])
d_data = { 'nfrms': nfrms, 'segs': l_segs_data}
return d_data
def extract_segments3(d_utt_data, wav_dir, pm_reaper_dir, npm_margin):
d_utt_data['v_sig'] = []
d_utt_data['v_pm_smpls'] = []
d_utt_data['v_voi'] = []
ndiph = len(d_utt_data['srcfile'])
nfrms = 0
for i in xrange(ndiph):
wav_file = wav_dir + '/' + d_utt_data['srcfile'][i] + '.wav'
pm_file = pm_reaper_dir + '/' + d_utt_data['srcfile'][i] + '.pm'
v_src_sig, fs = la.read_audio_file(wav_file)
v_pm_sec, v_voi = la.read_reaper_est_file(pm_file)
src_strt_orig_sec = d_utt_data['src_strt_sec'][i]
src_end_orig_sec = d_utt_data['src_end_sec' ][i]
src_pm_strt_nx = np.argmin(np.abs(v_pm_sec - src_strt_orig_sec))
src_pm_end_nx = np.argmin(np.abs(v_pm_sec - src_end_orig_sec))
src_pm_strt_nx_w_marg = src_pm_strt_nx - npm_margin
src_pm_end_nx_w_marg = src_pm_end_nx + npm_margin
if i==0:
src_pm_strt_nx_w_marg = src_pm_strt_nx
if (src_pm_strt_nx_w_marg - 1)<0:
src_pm_strt_nx_w_marg = 1
if i==(ndiph-1):
src_pm_end_nx_w_marg = src_pm_end_nx
nfrms_src = len(v_pm_sec)
if (src_pm_end_nx_w_marg+1)>(nfrms_src-1):
src_pm_end_nx_w_marg = nfrms_src - 2
v_pm_smps = lu.round_to_int(v_pm_sec * fs)
v_pm_smps_seg = v_pm_smps[(src_pm_strt_nx_w_marg-1):(src_pm_end_nx_w_marg+2)]
v_voi_seg = v_voi[(src_pm_strt_nx_w_marg):(src_pm_end_nx_w_marg+1)]
if v_voi_seg.size==0:
v_voi_seg = np.array([0.0])
v_sig_seg = v_src_sig[v_pm_smps_seg[0]:(v_pm_smps_seg[-1]+1)]
v_pm_smps_seg = v_pm_smps_seg - v_pm_smps_seg[0]
if len(v_pm_smps_seg)<=2:
v_pm_smps_seg = v_pm_smps_seg[-1]
else:
v_pm_smps_seg = v_pm_smps_seg[1:-1]
len_diff = v_voi_seg.size - v_pm_smps_seg.size
if len_diff > 0:
v_voi_seg = v_voi_seg[:-len_diff]
nfrms += v_pm_smps_seg.size
d_utt_data['v_sig' ].append(v_sig_seg)
d_utt_data['v_pm_smpls'].append(v_pm_smps_seg)
d_utt_data['v_voi' ].append(v_voi_seg)
d_utt_data['nfrms_tot'] = nfrms
return d_utt_data
def analysis_fft_feats(d_segs_data, nfft):
l_segs_data = d_segs_data['segs']
nfrms_tot = d_segs_data['nfrms']
nffthalf = 1 + nfft/2
m_mag_tot = np.zeros((nfrms_tot, nffthalf))
m_real_tot = np.zeros((nfrms_tot, nffthalf))
m_imag_tot = np.zeros((nfrms_tot, nffthalf))
v_shift_tot = np.zeros(nfrms_tot, dtype='int64')
v_voi_tot = np.zeros(nfrms_tot, dtype='int64')
nsegs = len(l_segs_data)
v_start_segs = np.zeros(nsegs, dtype='int64')
curr_nx = 0
for i in xrange(nsegs):
v_sig = l_segs_data[i][0]
v_pm_smps = l_segs_data[i][1]
v_voi = l_segs_data[i][2]
m_sp, m_ph, v_shift, m_frms, m_fft, v_lens = ff.analysis_with_del_comp_from_pm(v_sig, v_pm_smps, nfft)
m_mag, m_real, m_imag = ff.get_fft_params_from_complex_data(m_fft)
curr_nfrms = len(v_shift)
m_mag_tot[curr_nx:(curr_nx+curr_nfrms),:] = m_mag
m_real_tot[curr_nx:(curr_nx+curr_nfrms),:] = m_real
m_imag_tot[curr_nx:(curr_nx+curr_nfrms),:] = m_imag
v_shift_tot[curr_nx:(curr_nx+curr_nfrms)] = v_shift
v_voi_tot[curr_nx:(curr_nx+curr_nfrms)] = v_voi
v_start_segs[i] = curr_nx
curr_nx += curr_nfrms
return m_mag_tot, m_real_tot, m_imag_tot, v_shift_tot, v_voi_tot, v_start_segs
def analysis_fft_feats2(d_utt_data, nfft):
nfrms_tot = d_utt_data['nfrms_tot']
nffthalf = 1 + nfft/2
m_mag_tot = np.zeros((nfrms_tot, nffthalf))
m_real_tot = np.zeros((nfrms_tot, nffthalf))
m_imag_tot = np.zeros((nfrms_tot, nffthalf))
v_shift_tot = np.zeros(nfrms_tot, dtype='int64')
v_voi_tot = np.zeros(nfrms_tot, dtype='int64')
nsegs = len(d_utt_data['srcfile'])
v_start_segs = np.zeros(nsegs, dtype='int64')
curr_nx = 0
for i in xrange(nsegs):
v_sig = d_utt_data['v_sig' ][i]
v_pm_smps = d_utt_data['v_pm_smpls'][i]
v_voi = d_utt_data['v_voi' ][i]
m_sp, m_ph, v_shift, m_frms, m_fft, v_lens = ff.analysis_with_del_comp_from_pm(v_sig, v_pm_smps, nfft)
m_mag, m_real, m_imag = ff.get_fft_params_from_complex_data(m_fft)
curr_nfrms = len(v_shift)
m_mag_tot[curr_nx:(curr_nx+curr_nfrms),:] = m_mag
m_real_tot[curr_nx:(curr_nx+curr_nfrms),:] = m_real
m_imag_tot[curr_nx:(curr_nx+curr_nfrms),:] = m_imag
v_shift_tot[curr_nx:(curr_nx+curr_nfrms)] = v_shift
v_voi_tot[curr_nx:(curr_nx+curr_nfrms)] = v_voi
v_start_segs[i] = curr_nx
curr_nx += curr_nfrms
return m_mag_tot, m_real_tot, m_imag_tot, v_shift_tot, v_voi_tot, v_start_segs
def synthesis_fft_feats(m_mag, m_real, m_imag, v_shift):
m_ph_cmpx = (m_real + m_imag * 1j)
m_fft = m_mag * m_ph_cmpx / np.absolute(m_ph_cmpx)
m_fft = la.add_hermitian_half(m_fft, data_type='complex')
m_frm = np.fft.ifft(m_fft).real
m_frm = np.fft.fftshift(m_frm, axes=1)
v_pm = la.shift_to_pm(v_shift)
v_syn_sig = la.ola(m_frm,v_pm)
return v_syn_sig
def synthesis_fft_feats2(m_mag, m_real, m_imag, v_shift, v_start_segs=None):
if any(np.atleast_1d(v_start_segs)):
v_end_segs = v_start_segs[1:] - 1
m_mag = np.delete(m_mag, v_end_segs, axis=0)
m_real = np.delete(m_real, v_end_segs, axis=0)
m_imag = np.delete(m_imag, v_end_segs, axis=0)
v_shift = np.delete(v_shift, v_end_segs)
m_ph_cmpx = (m_real + m_imag * 1j)
m_fft = m_mag * m_ph_cmpx / np.absolute(m_ph_cmpx)
m_fft = la.add_hermitian_half(m_fft, data_type='complex')
m_frm = np.fft.ifft(m_fft).real
m_frm = np.fft.fftshift(m_frm, axes=1)
v_pm = la.shift_to_pm(v_shift)
v_syn_sig = la.ola(m_frm,v_pm)
return v_syn_sig
def synthesis_fft_feats_from_fft_matrix(m_fft, v_shift):
m_fft = la.add_hermitian_half(m_fft, data_type='complex')
m_frm = np.fft.ifft(m_fft).real
m_frm = np.fft.fftshift(m_frm, axes=1)
v_pm = la.shift_to_pm(v_shift)
v_syn_sig = la.ola(m_frm,v_pm)
return v_syn_sig
def concat_fft_feats_simple(l_fft_feats, npm_margin):
nsegs = len(l_fft_feats)
nfft = l_fft_feats[0]['m_mag'].shape[1]
m_mag = np.array([]).reshape((0,nfft))
m_real = np.array([]).reshape((0,nfft))
m_imag = np.array([]).reshape((0,nfft))
v_shift = np.array([], dtype='int64')
for i in xrange(nsegs):
d_data = l_fft_feats[i]
m_mag = np.append(m_mag, d_data['m_mag'][npm_margin:-(npm_margin+1),:] , axis=0)
m_real = np.append(m_real, d_data['m_real'][npm_margin:-(npm_margin+1),:], axis=0)
m_imag = np.append(m_imag, d_data['m_imag'][npm_margin:-(npm_margin+1),:], axis=0)
v_shift = np.append(v_shift, d_data['v_shift'][npm_margin:-(npm_margin+1)] , axis=0)
return m_mag, m_real, m_imag, v_shift
def smooth_by_slope_to_average_mat(m_data, v_start_segs, in_type=None):
m_data = m_data.copy()
nbins = m_data.shape[1]
for nxb in xrange(nbins):
m_data[:,nxb] = smooth_by_slope_to_average(m_data[:,nxb], v_start_segs, in_type=in_type)
return m_data
def smooth_by_slope_to_average(v_in_data, v_start_segs, in_type=None):
max_val = 450
min_val = 20
v_data = v_in_data.copy()
if in_type is 'f0':
v_voi = (v_data > 0).astype(int)
nsegs = len(v_start_segs)
v_start_segs = np.append(v_start_segs, len(v_data))
for nxj in xrange(1,nsegs):
strt = v_start_segs[nxj]
if v_data[strt] == v_data[strt-1]:
continue
if (in_type is 'f0') and ( (v_voi[strt]==0) or (v_voi[strt-1]==0) ):
continue
data_mean = (v_data[strt] + v_data[strt-1]) / 2.0
diff_w_mean_l = data_mean - v_data[strt-1]
v_line_l = np.linspace(0, diff_w_mean_l, strt - v_start_segs[nxj-1])
v_data[v_start_segs[nxj-1]:strt] += v_line_l
diff_w_mean_r = data_mean - v_data[strt]
v_line_r = np.linspace(diff_w_mean_r, 0, v_start_segs[nxj+1] - strt)
v_data[strt:v_start_segs[nxj+1]] += v_line_r
if any(v_data[strt:v_start_segs[nxj+1]]<min_val) or any(v_data[strt:v_start_segs[nxj+1]]>max_val):
v_data[strt:v_start_segs[nxj+1]] = v_in_data[strt:v_start_segs[nxj+1]]
if in_type is 'f0':
v_data *= v_voi
return v_data
def get_rms_energy_norm(m_mag, v_shift):
m_mag = la.add_hermitian_half(m_mag)
v_ener = np.sqrt(np.sum(m_mag**2, axis=1))
v_lens = v_shift[:-1] + v_shift[1:] + 1
v_lens = np.append(v_lens, 2 * v_shift[-1] + 1)
v_ener_norm = v_ener / v_lens
return v_ener_norm
def mod_rms_energy(m_mag, v_new_energy):
m_mag = la.add_hermitian_half(m_mag)
m_mag = np.multiply(m_mag, v_new_energy[:,None])
m_mag = la.remove_hermitian_half(m_mag)
return m_mag
def print_dict(d_data, width=22):
def format_column(col_data, width):
data_type = type(col_data)
l_column = []
if data_type is np.ndarray:
v_data = np.atleast_1d(col_data)
nlines = len(v_data)
if v_data.ndim > 1:
return None
for nxl in xrange(nlines):
l_column.append(("{:<%d}" % width).format(v_data[nxl]))
if data_type is list:
l_data = col_data
if type(l_data[0]) is not str:
return None
nlines = len(l_data)
for nxl in xrange(nlines):
l_column.append(("{:%d.%d}" % (width, width-2)).format(l_data[nxl]))
return l_column
l_keys = d_data.keys()
ncols = len(l_keys)
ll_table = []
for nxc in xrange(ncols):
l_curr_col = format_column(d_data[l_keys[nxc]], width)
if (l_curr_col is None) or (len(l_curr_col) == 0):
continue
s_header = ("{:%d.%d}" % (width, width-2)).format(l_keys[nxc])
l_curr_col.insert(0,s_header)
l_curr_col.insert(1,'=' * width)
ll_table.append(l_curr_col)
nlines = len(ll_table[0])
ncols_defi = len(ll_table)
for nxl in xrange(nlines):
curr_line = ''
for nxc in xrange(ncols_defi):
curr_line += ll_table[nxc][nxl]
print(curr_line)
return
def analysis_fft_feats3(d_utt_data, nfft, fs):
d_utt_data['m_mag'] = []
d_utt_data['m_real'] = []
d_utt_data['m_imag'] = []
d_utt_data['v_shift'] = []
d_utt_data['v_f0'] = []
d_utt_data['m_mag_db'] = []
d_utt_data['m_fft'] = []
nsegs = len(d_utt_data['srcfile'])
v_strt_segs = np.zeros(nsegs, dtype='int64')
curr_nx = 0
for i in xrange(nsegs):
v_sig = d_utt_data['v_sig' ][i]
v_pm_smps = d_utt_data['v_pm_smpls'][i]
v_voi = d_utt_data['v_voi' ][i]
m_sp, m_ph, v_shift, m_frms, m_fft, v_lens = ff.analysis_with_del_comp_from_pm(v_sig, v_pm_smps, nfft)
m_mag, m_real, m_imag = ff.get_fft_params_from_complex_data(m_fft)
v_f0 = ff.shift_to_f0(v_shift, v_voi, fs, b_filt=False)
curr_nfrms = len(v_shift)
d_utt_data['m_mag' ].append(m_mag)
d_utt_data['m_real' ].append(m_mag)
d_utt_data['m_imag' ].append(m_imag)
d_utt_data['v_shift' ].append(v_shift)
d_utt_data['v_f0' ].append(v_f0)
d_utt_data['m_mag_db'].append(la.db(m_mag))
d_utt_data['m_fft' ].append(m_fft)
v_strt_segs[i] = curr_nx
curr_nx += curr_nfrms
d_utt_data['v_strt_segs'] = v_strt_segs
return d_utt_data
def extract_segments4(d_utt_data, wav_dir, pm_reaper_dir, npm_margin):
d_utt_data['v_sig'] = []
d_utt_data['v_pm_smpls'] = []
d_utt_data['v_voi'] = []
d_utt_data['nfrms_add_strt'] = np.array([]).astype('int64')
d_utt_data['nfrms_add_end'] = np.array([]).astype('int64')
ndiph = len(d_utt_data['srcfile'])
nfrms_tot = 0
for i in xrange(ndiph):
wav_file = wav_dir + '/' + d_utt_data['srcfile'][i] + '.wav'
pm_file = pm_reaper_dir + '/' + d_utt_data['srcfile'][i] + '.pm'
v_src_sig, fs = la.read_audio_file(wav_file)
v_pm_sec, v_voi = la.read_reaper_est_file(pm_file)
src_strt_orig_sec = d_utt_data['src_strt_sec'][i]
src_end_orig_sec = d_utt_data['src_end_sec' ][i]
src_pm_strt_nx = np.argmin(np.abs(v_pm_sec - src_strt_orig_sec))
src_pm_end_nx = np.argmin(np.abs(v_pm_sec - src_end_orig_sec))
src_pm_strt_nx_w_marg = src_pm_strt_nx - npm_margin
if i==0:
src_pm_strt_nx_w_marg = src_pm_strt_nx
if (src_pm_strt_nx_w_marg - 1)<0:
src_pm_strt_nx_w_marg = 1
src_pm_end_nx_w_marg = src_pm_end_nx + npm_margin
if i==(ndiph-1):
src_pm_end_nx_w_marg = src_pm_end_nx
nfrms_src = len(v_pm_sec)
if (src_pm_end_nx_w_marg+1)>(nfrms_src-1):
src_pm_end_nx_w_marg = nfrms_src - 2
v_voi_seg = v_voi[src_pm_strt_nx_w_marg:(src_pm_end_nx_w_marg+1)]
v_pm_smpls = lu.round_to_int(v_pm_sec * fs)
v_pm_smpls_seg = v_pm_smpls[(src_pm_strt_nx_w_marg-1):(src_pm_end_nx_w_marg+1)]
v_pm_smpls_seg = v_pm_smpls_seg - v_pm_smpls_seg[0]
v_pm_smpls_seg = v_pm_smpls_seg[1:]
nx_strt_wav = v_pm_smpls[src_pm_strt_nx_w_marg-1]
nx_end_wav = v_pm_smpls[src_pm_end_nx_w_marg +1]
v_sig_seg = v_src_sig[nx_strt_wav:(nx_end_wav+1)]
nfrms_add_strt = np.maximum(0,src_pm_strt_nx - src_pm_strt_nx_w_marg)
nfrms_add_end = np.maximum(src_pm_end_nx_w_marg - src_pm_end_nx,0)
d_utt_data['v_sig' ].append(v_sig_seg)
d_utt_data['v_pm_smpls'].append(v_pm_smpls_seg)
d_utt_data['v_voi' ].append(v_voi_seg)
d_utt_data['nfrms_add_strt'] = np.append(d_utt_data['nfrms_add_strt'], nfrms_add_strt)
d_utt_data['nfrms_add_end'] = np.append(d_utt_data['nfrms_add_end'] , nfrms_add_end)
nfrms_tot += len(v_pm_smpls_seg)
d_utt_data['nfrms_tot'] = nfrms_tot
return d_utt_data
def crossfade_gen(fade_len):
len_tot = (fade_len + 1) * 2 + 1
v_win = np.hanning(len_tot)
v_fade_in = v_win[1:(fade_len+1)]
v_fade_out = np.flipud(v_fade_in)
return v_fade_in, v_fade_out
|
Apache License 2.0
|
msmbuilder/mdentropy
|
mdentropy/core/information.py
|
ncmutinf
|
python
|
def ncmutinf(n_bins, x, y, z, rng=None, method='knn'):
return (cmutinf(n_bins, x, y, z, rng=rng, method=method) /
centropy(n_bins, x, z, rng=rng, method=method))
|
Normalized conditional mutual information calculation
Parameters
----------
n_bins : int
Number of bins.
x : array_like, shape = (n_samples, n_dim)
Conditioned variable
y : array_like, shape = (n_samples, n_dim)
Conditioned variable
z : array_like, shape = (n_samples, n_dim)
Conditional variable
rng : list
List of min/max values to bin data over.
method : {'kde', 'chaowangjost', 'grassberger', 'knn', None}
Method used to calculate entropy.
Returns
-------
ncmi : float
|
https://github.com/msmbuilder/mdentropy/blob/82d616ddffe11283052b2d870c3b0274736a173c/mdentropy/core/information.py#L160-L183
|
from .entropy import entropy, centropy
from ..utils import avgdigamma, nearest_distances
from numpy import (atleast_2d, diff, finfo, float32, hstack, nan_to_num, sqrt)
from scipy.special import psi
__all__ = ['mutinf', 'nmutinf', 'cmutinf', 'ncmutinf']
EPS = finfo(float32).eps
def mutinf(n_bins, x, y, rng=None, method='knn'):
if method == 'knn':
return knn_mutinf(x, y, k=n_bins,
boxsize=diff(rng).max() if rng else None)
return (entropy(n_bins, [rng], method, x) +
entropy(n_bins, [rng], method, y) -
entropy(n_bins, 2 * [rng], method, x, y))
def knn_mutinf(x, y, k=None, boxsize=None):
data = hstack((x, y))
k = k if k else max(3, int(data.shape[0] * 0.01))
dvec = nearest_distances(data, k=k)
a, b, c, d = (avgdigamma(atleast_2d(x).reshape(data.shape[0], -1), dvec),
avgdigamma(atleast_2d(y).reshape(data.shape[0], -1), dvec),
psi(k), psi(data.shape[0]))
return max((-a - b + c + d), 0.)
def nmutinf(n_bins, x, y, rng=None, method='knn'):
return nan_to_num(mutinf(n_bins, x, y, method=method, rng=rng) /
sqrt(entropy(n_bins, [rng], method, x) *
entropy(n_bins, [rng], method, y)))
def cmutinf(n_bins, x, y, z, rng=None, method='knn'):
if method == 'knn':
return knn_cmutinf(x, y, z, k=n_bins,
boxsize=diff(rng).max() if rng else None)
return (centropy(n_bins, x, z, rng=rng, method=method) +
entropy(n_bins, 2 * [rng], method, y, z) -
entropy(n_bins, 3 * [rng], method, x, y, z))
def knn_cmutinf(x, y, z, k=None, boxsize=None):
data = hstack((x, y, z))
k = k if k else max(3, int(data.shape[0] * 0.01))
dvec = nearest_distances(data, k=k)
a, b, c, d = (avgdigamma(hstack((x, z)), dvec),
avgdigamma(hstack((y, z)), dvec),
avgdigamma(atleast_2d(z).reshape(data.shape[0], -1), dvec),
psi(k))
return max((-a - b + c + d), 0.)
|
MIT License
|
tektoncd/experimental
|
sdk/python/tekton_pipeline/models/v1beta1_task_resource.py
|
V1beta1TaskResource.__eq__
|
python
|
def __eq__(self, other):
if not isinstance(other, V1beta1TaskResource):
return False
return self.to_dict() == other.to_dict()
|
Returns true if both objects are equal
|
https://github.com/tektoncd/experimental/blob/0ba4e7a2b9d45ed4accaecbb34dac006d665796a/sdk/python/tekton_pipeline/models/v1beta1_task_resource.py#L238-L243
|
import pprint
import re
import six
from tekton_pipeline.configuration import Configuration
class V1beta1TaskResource(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'description': 'str',
'name': 'str',
'optional': 'bool',
'target_path': 'str',
'type': 'str'
}
attribute_map = {
'description': 'description',
'name': 'name',
'optional': 'optional',
'target_path': 'targetPath',
'type': 'type'
}
def __init__(self, description=None, name='', optional=None, target_path=None, type='', local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._description = None
self._name = None
self._optional = None
self._target_path = None
self._type = None
self.discriminator = None
if description is not None:
self.description = description
self.name = name
if optional is not None:
self.optional = optional
if target_path is not None:
self.target_path = target_path
self.type = type
@property
def description(self):
return self._description
@description.setter
def description(self, description):
self._description = description
@property
def name(self):
return self._name
@name.setter
def name(self, name):
if self.local_vars_configuration.client_side_validation and name is None:
raise ValueError("Invalid value for `name`, must not be `None`")
self._name = name
@property
def optional(self):
return self._optional
@optional.setter
def optional(self, optional):
self._optional = optional
@property
def target_path(self):
return self._target_path
@target_path.setter
def target_path(self, target_path):
self._target_path = target_path
@property
def type(self):
return self._type
@type.setter
def type(self, type):
if self.local_vars_configuration.client_side_validation and type is None:
raise ValueError("Invalid value for `type`, must not be `None`")
self._type = type
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.openapi_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
return result
def to_str(self):
return pprint.pformat(self.to_dict())
def __repr__(self):
return self.to_str()
|
Apache License 2.0
|
fruch/pytest-elk-reporter
|
tests/conftest.py
|
requests_mock
|
python
|
def requests_mock():
kwargs = {"real_http": False}
with rm_module.Mocker(**kwargs) as mock:
yield mock
|
Mock out the requests component of your code with defined responses.
Mocks out any requests made through the python requests library with useful
responses for unit testing. See:
https://requests-mock.readthedocs.io/en/latest/
|
https://github.com/fruch/pytest-elk-reporter/blob/5247bb02ec2b3a172553c0143d102c55b7970682/tests/conftest.py#L11-L20
|
import re
import pytest
import requests_mock as rm_module
pytest_plugins = "pytester"
@pytest.fixture(scope="function")
|
MIT License
|
open-mss/mss
|
tutorials/tutorial_satellitetrack.py
|
automate_rs
|
python
|
def automate_rs():
pag.sleep(5)
if platform == 'linux' or platform == 'linux2':
enter = 'enter'
wms_path = 'pictures/tutorial_wms/linux/'
st_path = 'pictures/satellite_track/linux/'
win = 'winleft'
ctrl = 'ctrl'
elif platform == 'win32':
enter = 'enter'
wms_path = 'pictures/tutorial_wms/win32/'
st_path = 'pictures/satellite_track/win32/'
win = 'win'
ctrl = 'ctrl'
elif platform == 'darwin':
enter = 'return'
wms_path = 'pictures/tutorial_wms/linux/'
st_path = 'pictures/satellite_track/linux/'
ctrl = 'command'
path = os.path.normpath(os.getcwd() + os.sep + os.pardir)
satellite_path = os.path.join(path, 'docs/samples/satellite_tracks/satellite_predictor.txt')
try:
pag.hotkey('ctrl', 'command', 'f') if platform == 'darwin' else pag.hotkey(win, 'up')
except Exception:
print("\nException : Enable Shortcuts for your system or try again!")
pag.sleep(2)
pag.hotkey('ctrl', 'h')
pag.sleep(3)
try:
x, y = pag.locateCenterOnScreen(f'{wms_path}selecttoopencontrol.png')
pag.click(x, y, interval=2)
pag.sleep(1)
pag.press('down', presses=2, interval=1)
pag.sleep(1)
pag.press(enter)
pag.sleep(2)
except (ImageNotFoundException, OSError, Exception):
print("\nException :\'select to open control\' button/option not found on the screen.")
try:
x, y = pag.locateCenterOnScreen(f'{st_path}load.png')
pag.sleep(1)
pag.click(x - 150, y, duration=2)
pag.sleep(1)
pag.hotkey(ctrl, 'a')
pag.sleep(1)
pag.typewrite(satellite_path, interval=0.1)
pag.sleep(1)
pag.click(x, y, duration=1)
pag.press(enter)
except (ImageNotFoundException, OSError, Exception):
print("\nException :\'Load\' button not found on the screen.")
try:
x, y = pag.locateCenterOnScreen(f'{st_path}predicted_satellite_overpasses.png')
pag.click(x + 200, y, duration=1)
for _ in range(10):
pag.click(x + 200, y, duration=1)
pag.sleep(1)
pag.press('down')
pag.sleep(1)
pag.press(enter)
pag.sleep(2)
pag.click(x + 200, y, duration=1)
pag.press('up', presses=3, interval=1)
pag.press(enter)
pag.sleep(1)
except (ImageNotFoundException, OSError, Exception):
print("\nException :\'Predicted Satellite Overpass\' dropdown menu not found on the screen.")
try:
if platform == 'linux' or platform == 'linux2' or platform == 'darwin':
x, y = pag.locateCenterOnScreen('pictures/europe(cyl).PNG')
pag.click(x, y, interval=2)
elif platform == 'win32':
x, y = pag.locateCenterOnScreen('pictures/europe(cyl)win.PNG')
pag.click(x, y, interval=2)
pag.press('down', presses=2, interval=0.5)
pag.press(enter, interval=1)
pag.sleep(5)
except ImageNotFoundException:
print("\n Exception : Map change dropdown could not be located on the screen")
try:
x, y = pag.locateCenterOnScreen('pictures/add_waypoint.PNG')
pag.click(x, y, interval=2)
pag.move(111, 153, duration=2)
pag.click(duration=2)
pag.move(36, 82, duration=2)
pag.click(duration=2)
pag.sleep(2)
except (ImageNotFoundException, OSError, Exception):
print("\nException : Add waypoint button in topview not found on the screen.")
try:
x, y = pag.locateCenterOnScreen('pictures/zoom.PNG')
pag.click(x, y, interval=2)
pag.move(260, 130, duration=1)
pag.dragRel(184, 135, duration=2)
pag.sleep(5)
except ImageNotFoundException:
print("\n Exception : Zoom button could not be located on the screen")
pag.sleep(1)
print("\nAutomation is over for this tutorial. Watch next tutorial for other functions.")
try:
if platform == 'linux' or platform == 'linux2':
for _ in range(2):
pag.hotkey('altleft', 'f4')
pag.sleep(3)
pag.press('left')
pag.sleep(3)
pag.press('enter')
pag.sleep(2)
pag.keyDown('altleft')
pag.press('tab')
pag.press('left')
pag.keyUp('altleft')
pag.press('q')
if platform == 'win32':
for _ in range(2):
pag.hotkey('alt', 'f4')
pag.sleep(3)
pag.press('left')
pag.sleep(3)
pag.press('enter')
pag.sleep(2)
pag.hotkey('alt', 'tab')
pag.press('q')
elif platform == 'darwin':
for _ in range(2):
pag.hotkey('command', 'w')
pag.sleep(3)
pag.press('left')
pag.sleep(3)
pag.press('return')
pag.sleep(2)
pag.hotkey('command', 'tab')
pag.press('q')
except Exception:
print("Cannot automate : Enable Shortcuts for your system or try again")
|
This is the main automating script of the MSS remote sensing tutorial which will be recorded and saved
to a file having dateframe nomenclature with a .mp4 extension(codec).
|
https://github.com/open-mss/mss/blob/179acb945ada3cc7adec37794439fd2defade3b9/tutorials/tutorial_satellitetrack.py#L71-L231
|
import pyautogui as pag
import multiprocessing
import sys
import os.path
from sys import platform
from pyscreeze import ImageNotFoundException
from tutorials import screenrecorder as sr
from mslib.msui import mss_pyui
def initial_ops():
pag.sleep(5)
if platform == "linux" or platform == "linux2":
pag.hotkey('winleft', 'd')
print("\n INFO : Automation is running on Linux system..\n")
elif platform == "darwin":
pag.hotkey('option', 'command', 'm')
print("\n INFO : Automation is running on Mac OS..\n")
elif platform == "win32":
pag.hotkey('win', 'd')
print("\n INFO : Automation is running on Windows OS..\n")
else:
pag.alert(text="Sorry, no support on this platform!", title="Platform Exception", button='OK')
def call_recorder():
rec = sr.ScreenRecorder(80, 20, int(pag.size()[0] / 1.5) - 100, int(pag.size()[1] - 100))
rec.capture()
rec.stop_capture()
def call_mss():
mss_pyui.main()
|
Apache License 2.0
|
ollo69/ha_tuya_custom
|
custom_components/tuya_custom/light.py
|
async_setup_entry
|
python
|
async def async_setup_entry(hass, config_entry, async_add_entities):
platform = config_entry.data[CONF_PLATFORM]
async def async_discover_sensor(dev_ids):
if not dev_ids:
return
entities = await hass.async_add_executor_job(
_setup_entities,
hass,
dev_ids,
platform,
)
async_add_entities(entities)
async_dispatcher_connect(
hass, TUYA_DISCOVERY_NEW.format(SENSOR_DOMAIN), async_discover_sensor
)
devices_ids = hass.data[DOMAIN]["pending"].pop(SENSOR_DOMAIN)
await async_discover_sensor(devices_ids)
|
Set up tuya sensors dynamically through tuya discovery.
|
https://github.com/ollo69/ha_tuya_custom/blob/66b8722afc9c771318b8c67865907e5ac0aac602/custom_components/tuya_custom/light.py#L45-L67
|
from datetime import timedelta
from homeassistant.components.light import (
ATTR_BRIGHTNESS,
ATTR_COLOR_TEMP,
ATTR_HS_COLOR,
DOMAIN as SENSOR_DOMAIN,
ENTITY_ID_FORMAT,
SUPPORT_BRIGHTNESS,
SUPPORT_COLOR,
SUPPORT_COLOR_TEMP,
LightEntity,
)
from homeassistant.const import CONF_PLATFORM
from homeassistant.core import callback
from homeassistant.helpers.dispatcher import async_dispatcher_connect
from homeassistant.util import color as colorutil
from . import TuyaDevice
from .const import (
CONF_BRIGHTNESS_RANGE_MODE,
CONF_MAX_KELVIN,
CONF_MIN_KELVIN,
CONF_SUPPORT_COLOR,
CONF_TUYA_MAX_COLTEMP,
DEFAULT_TUYA_MAX_COLTEMP,
DOMAIN,
SIGNAL_CONFIG_ENTITY,
TUYA_DATA,
TUYA_DISCOVERY_NEW,
)
SCAN_INTERVAL = timedelta(seconds=15)
TUYA_BRIGHTNESS_RANGE0 = (1, 255)
TUYA_BRIGHTNESS_RANGE1 = (10, 1000)
BRIGHTNESS_MODES = {
0: TUYA_BRIGHTNESS_RANGE0,
1: TUYA_BRIGHTNESS_RANGE1,
}
|
Apache License 2.0
|
uwbmrb/pynmrstar
|
pynmrstar/entry.py
|
Entry.__repr__
|
python
|
def __repr__(self) -> str:
return f"<pynmrstar.Entry '{self._entry_id}' {self.source}>"
|
Returns a description of the entry.
|
https://github.com/uwbmrb/pynmrstar/blob/c6e3cdccb4aa44dfbc3b4e984837a6bcde3cf171/pynmrstar/entry.py#L142-L145
|
import hashlib
import json
import logging
import warnings
from io import StringIO
from typing import TextIO, BinaryIO, Union, List, Optional, Dict, Any, Tuple
from pynmrstar import definitions, utils, loop as loop_mod, parser as parser_mod, saveframe as saveframe_mod
from pynmrstar._internal import _json_serialize, _interpret_file, _get_entry_from_database, write_to_file
from pynmrstar.exceptions import InvalidStateError
from pynmrstar.schema import Schema
class Entry(object):
def __contains__(self, item: Any):
if isinstance(item, (list, tuple)):
to_process: List[Union[str, saveframe_mod.Saveframe, loop_mod.Loop]] = list(item)
elif isinstance(item, (loop_mod.Loop, saveframe_mod.Saveframe, str)):
to_process = [item]
else:
return False
for item in to_process:
if isinstance(item, saveframe_mod.Saveframe):
if item not in self._frame_list:
return False
elif isinstance(item, (loop_mod.Loop, str)):
found = False
for saveframe in self._frame_list:
if item in saveframe:
found = True
break
if not found:
return False
else:
return False
return True
def __delitem__(self, item: Union['saveframe_mod.Saveframe', int, str]) -> None:
if isinstance(item, int):
try:
del self._frame_list[item]
except IndexError:
raise IndexError(f'Index out of range: no saveframe at index: {item}')
else:
self.remove_saveframe(item)
def __eq__(self, other) -> bool:
if not isinstance(other, Entry):
return False
return (self.entry_id, self._frame_list) == (other.entry_id, other._frame_list)
def __getitem__(self, item: Union[int, str]) -> 'saveframe_mod.Saveframe':
try:
return self._frame_list[item]
except TypeError:
return self.get_saveframe_by_name(item)
def __init__(self, **kwargs) -> None:
self._entry_id: Union[str, int] = 0
self._frame_list: List[saveframe_mod.Saveframe] = []
self.source: Optional[str] = None
if len(kwargs) == 0:
raise ValueError("You should not directly instantiate an Entry using this method. Instead use the "
"class methods: Entry.from_database(), Entry.from_file(), Entry.from_string(), "
"Entry.from_scratch(), and Entry.from_json().")
if 'the_string' in kwargs:
star_buffer: StringIO = StringIO(kwargs['the_string'])
self.source = "from_string()"
elif 'file_name' in kwargs:
star_buffer = _interpret_file(kwargs['file_name'])
self.source = f"from_file('{kwargs['file_name']}')"
elif 'all_tags' in kwargs:
self._entry_id = kwargs['entry_id']
saveframe_categories: dict = {}
schema = utils.get_schema(kwargs['schema'])
schema_obj = schema.schema
for tag in [schema_obj[x.lower()] for x in schema.schema_order]:
category = tag['SFCategory']
if category not in saveframe_categories:
saveframe_categories[category] = True
templated_saveframe = saveframe_mod.Saveframe.from_template(category, category + "_1",
entry_id=self._entry_id,
all_tags=kwargs['all_tags'],
default_values=kwargs['default_values'],
schema=schema)
self._frame_list.append(templated_saveframe)
entry_saveframe = self.get_saveframes_by_category('entry_information')[0]
entry_saveframe['NMR_STAR_version'] = schema.version
entry_saveframe['Original_NMR_STAR_version'] = schema.version
return
else:
self._entry_id = kwargs['entry_id']
self.source = "from_scratch()"
return
parser: parser_mod.Parser = parser_mod.Parser(entry_to_parse_into=self)
parser.parse(star_buffer.read(), source=self.source, convert_data_types=kwargs.get('convert_data_types', False))
def __iter__(self) -> saveframe_mod.Saveframe:
for saveframe in self._frame_list:
yield saveframe
def __len__(self) -> int:
return len(self._frame_list)
|
MIT License
|
facebookresearch/fvcore
|
fvcore/common/history_buffer.py
|
HistoryBuffer.global_avg
|
python
|
def global_avg(self) -> float:
return self._global_avg
|
Return the mean of all the elements in the buffer. Note that this
includes those getting removed due to limited buffer storage.
|
https://github.com/facebookresearch/fvcore/blob/4525b814c8bb0f70510e37e68247c958010eb285/fvcore/common/history_buffer.py#L59-L64
|
from typing import List, Optional, Tuple
import numpy as np
class HistoryBuffer:
def __init__(self, max_length: int = 1000000) -> None:
self._max_length: int = max_length
self._data: List[Tuple[float, float]] = []
self._count: int = 0
self._global_avg: float = 0
def update(self, value: float, iteration: Optional[float] = None) -> None:
if iteration is None:
iteration = self._count
if len(self._data) == self._max_length:
self._data.pop(0)
self._data.append((value, iteration))
self._count += 1
self._global_avg += (value - self._global_avg) / self._count
def latest(self) -> float:
return self._data[-1][0]
def median(self, window_size: int) -> float:
return np.median([x[0] for x in self._data[-window_size:]])
def avg(self, window_size: int) -> float:
return np.mean([x[0] for x in self._data[-window_size:]])
|
Apache License 2.0
|
pmorissette/bt
|
bt/algos.py
|
RunAfterDays.__init__
|
python
|
def __init__(self, days):
super(RunAfterDays, self).__init__()
self.days = days
|
Args:
* days (int): Number of trading days to wait before starting
|
https://github.com/pmorissette/bt/blob/abf3269d8152dc8f91141ed67026c51e58ae2bf9/bt/algos.py#L379-L385
|
from __future__ import division
import abc
import random
import re
import numpy as np
import pandas as pd
import sklearn.covariance
from future.utils import iteritems
import bt
from bt.core import Algo, AlgoStack, SecurityBase, is_zero
def run_always(f):
f.run_always = True
return f
class PrintDate(Algo):
def __call__(self, target):
print(target.now)
return True
class PrintTempData(Algo):
def __init__(self, fmt_string=None):
super(PrintTempData, self).__init__()
self.fmt_string = fmt_string
def __call__(self, target):
if self.fmt_string:
print(self.fmt_string.format(**target.temp))
else:
print(target.temp)
return True
class PrintInfo(Algo):
def __init__(self, fmt_string="{name} {now}"):
super(PrintInfo, self).__init__()
self.fmt_string = fmt_string
def __call__(self, target):
print(self.fmt_string.format(**target.__dict__))
return True
class Debug(Algo):
def __call__(self, target):
import pdb
pdb.set_trace()
return True
class RunOnce(Algo):
def __init__(self):
super(RunOnce, self).__init__()
self.has_run = False
def __call__(self, target):
if not self.has_run:
self.has_run = True
return True
return False
class RunPeriod(Algo):
def __init__(
self, run_on_first_date=True, run_on_end_of_period=False, run_on_last_date=False
):
super(RunPeriod, self).__init__()
self._run_on_first_date = run_on_first_date
self._run_on_end_of_period = run_on_end_of_period
self._run_on_last_date = run_on_last_date
def __call__(self, target):
now = target.now
if now is None:
return False
if now not in target.data.index:
return False
index = target.data.index.get_loc(target.now)
result = False
if index == 0:
return False
if index == 1:
if self._run_on_first_date:
result = True
elif index == (len(target.data.index) - 1):
if self._run_on_last_date:
result = True
else:
now = pd.Timestamp(now)
index_offset = -1
if self._run_on_end_of_period:
index_offset = 1
date_to_compare = target.data.index[index + index_offset]
date_to_compare = pd.Timestamp(date_to_compare)
result = self.compare_dates(now, date_to_compare)
return result
@abc.abstractmethod
def compare_dates(self, now, date_to_compare):
raise (NotImplementedError("RunPeriod Algo is an abstract class!"))
class RunDaily(RunPeriod):
def compare_dates(self, now, date_to_compare):
if now.date() != date_to_compare.date():
return True
return False
class RunWeekly(RunPeriod):
def compare_dates(self, now, date_to_compare):
if now.year != date_to_compare.year or now.week != date_to_compare.week:
return True
return False
class RunMonthly(RunPeriod):
def compare_dates(self, now, date_to_compare):
if now.year != date_to_compare.year or now.month != date_to_compare.month:
return True
return False
class RunQuarterly(RunPeriod):
def compare_dates(self, now, date_to_compare):
if now.year != date_to_compare.year or now.quarter != date_to_compare.quarter:
return True
return False
class RunYearly(RunPeriod):
def compare_dates(self, now, date_to_compare):
if now.year != date_to_compare.year:
return True
return False
class RunOnDate(Algo):
def __init__(self, *dates):
super(RunOnDate, self).__init__()
self.dates = [pd.to_datetime(d) for d in dates]
def __call__(self, target):
return target.now in self.dates
class RunAfterDate(Algo):
def __init__(self, date):
super(RunAfterDate, self).__init__()
self.date = pd.to_datetime(date)
def __call__(self, target):
return target.now > self.date
class RunAfterDays(Algo):
|
MIT License
|
ai4finance-llc/neofinrl
|
stable_baselines3/common/distributions.py
|
TanhBijector.inverse
|
python
|
def inverse(y: th.Tensor) -> th.Tensor:
eps = th.finfo(y.dtype).eps
return TanhBijector.atanh(y.clamp(min=-1.0 + eps, max=1.0 - eps))
|
Inverse tanh.
:param y:
:return:
|
https://github.com/ai4finance-llc/neofinrl/blob/51338dbb0ec86f74e4fc6cce90bc385a4639de79/stable_baselines3/common/distributions.py#L628-L637
|
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Tuple, Union
import gym
import torch as th
from gym import spaces
from torch import nn
from torch.distributions import Bernoulli, Categorical, Normal
from stable_baselines3.common.preprocessing import get_action_dim
class Distribution(ABC):
def __init__(self):
super(Distribution, self).__init__()
self.distribution = None
@abstractmethod
def proba_distribution_net(self, *args, **kwargs) -> Union[nn.Module, Tuple[nn.Module, nn.Parameter]]:
@abstractmethod
def proba_distribution(self, *args, **kwargs) -> "Distribution":
@abstractmethod
def log_prob(self, x: th.Tensor) -> th.Tensor:
@abstractmethod
def entropy(self) -> Optional[th.Tensor]:
@abstractmethod
def sample(self) -> th.Tensor:
@abstractmethod
def mode(self) -> th.Tensor:
def get_actions(self, deterministic: bool = False) -> th.Tensor:
if deterministic:
return self.mode()
return self.sample()
@abstractmethod
def actions_from_params(self, *args, **kwargs) -> th.Tensor:
@abstractmethod
def log_prob_from_params(self, *args, **kwargs) -> Tuple[th.Tensor, th.Tensor]:
def sum_independent_dims(tensor: th.Tensor) -> th.Tensor:
if len(tensor.shape) > 1:
tensor = tensor.sum(dim=1)
else:
tensor = tensor.sum()
return tensor
class DiagGaussianDistribution(Distribution):
def __init__(self, action_dim: int):
super(DiagGaussianDistribution, self).__init__()
self.action_dim = action_dim
self.mean_actions = None
self.log_std = None
def proba_distribution_net(self, latent_dim: int, log_std_init: float = 0.0) -> Tuple[nn.Module, nn.Parameter]:
mean_actions = nn.Linear(latent_dim, self.action_dim)
log_std = nn.Parameter(th.ones(self.action_dim) * log_std_init, requires_grad=True)
return mean_actions, log_std
def proba_distribution(self, mean_actions: th.Tensor, log_std: th.Tensor) -> "DiagGaussianDistribution":
action_std = th.ones_like(mean_actions) * log_std.exp()
self.distribution = Normal(mean_actions, action_std)
return self
def log_prob(self, actions: th.Tensor) -> th.Tensor:
log_prob = self.distribution.log_prob(actions)
return sum_independent_dims(log_prob)
def entropy(self) -> th.Tensor:
return sum_independent_dims(self.distribution.entropy())
def sample(self) -> th.Tensor:
return self.distribution.rsample()
def mode(self) -> th.Tensor:
return self.distribution.mean
def actions_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor, deterministic: bool = False) -> th.Tensor:
self.proba_distribution(mean_actions, log_std)
return self.get_actions(deterministic=deterministic)
def log_prob_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
actions = self.actions_from_params(mean_actions, log_std)
log_prob = self.log_prob(actions)
return actions, log_prob
class SquashedDiagGaussianDistribution(DiagGaussianDistribution):
def __init__(self, action_dim: int, epsilon: float = 1e-6):
super(SquashedDiagGaussianDistribution, self).__init__(action_dim)
self.epsilon = epsilon
self.gaussian_actions = None
def proba_distribution(self, mean_actions: th.Tensor, log_std: th.Tensor) -> "SquashedDiagGaussianDistribution":
super(SquashedDiagGaussianDistribution, self).proba_distribution(mean_actions, log_std)
return self
def log_prob(self, actions: th.Tensor, gaussian_actions: Optional[th.Tensor] = None) -> th.Tensor:
if gaussian_actions is None:
gaussian_actions = TanhBijector.inverse(actions)
log_prob = super(SquashedDiagGaussianDistribution, self).log_prob(gaussian_actions)
log_prob -= th.sum(th.log(1 - actions ** 2 + self.epsilon), dim=1)
return log_prob
def entropy(self) -> Optional[th.Tensor]:
return None
def sample(self) -> th.Tensor:
self.gaussian_actions = super().sample()
return th.tanh(self.gaussian_actions)
def mode(self) -> th.Tensor:
self.gaussian_actions = super().mode()
return th.tanh(self.gaussian_actions)
def log_prob_from_params(self, mean_actions: th.Tensor, log_std: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
action = self.actions_from_params(mean_actions, log_std)
log_prob = self.log_prob(action, self.gaussian_actions)
return action, log_prob
class CategoricalDistribution(Distribution):
def __init__(self, action_dim: int):
super(CategoricalDistribution, self).__init__()
self.action_dim = action_dim
def proba_distribution_net(self, latent_dim: int) -> nn.Module:
action_logits = nn.Linear(latent_dim, self.action_dim)
return action_logits
def proba_distribution(self, action_logits: th.Tensor) -> "CategoricalDistribution":
self.distribution = Categorical(logits=action_logits)
return self
def log_prob(self, actions: th.Tensor) -> th.Tensor:
return self.distribution.log_prob(actions)
def entropy(self) -> th.Tensor:
return self.distribution.entropy()
def sample(self) -> th.Tensor:
return self.distribution.sample()
def mode(self) -> th.Tensor:
return th.argmax(self.distribution.probs, dim=1)
def actions_from_params(self, action_logits: th.Tensor, deterministic: bool = False) -> th.Tensor:
self.proba_distribution(action_logits)
return self.get_actions(deterministic=deterministic)
def log_prob_from_params(self, action_logits: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
actions = self.actions_from_params(action_logits)
log_prob = self.log_prob(actions)
return actions, log_prob
class MultiCategoricalDistribution(Distribution):
def __init__(self, action_dims: List[int]):
super(MultiCategoricalDistribution, self).__init__()
self.action_dims = action_dims
def proba_distribution_net(self, latent_dim: int) -> nn.Module:
action_logits = nn.Linear(latent_dim, sum(self.action_dims))
return action_logits
def proba_distribution(self, action_logits: th.Tensor) -> "MultiCategoricalDistribution":
self.distribution = [Categorical(logits=split) for split in th.split(action_logits, tuple(self.action_dims), dim=1)]
return self
def log_prob(self, actions: th.Tensor) -> th.Tensor:
return th.stack(
[dist.log_prob(action) for dist, action in zip(self.distribution, th.unbind(actions, dim=1))], dim=1
).sum(dim=1)
def entropy(self) -> th.Tensor:
return th.stack([dist.entropy() for dist in self.distribution], dim=1).sum(dim=1)
def sample(self) -> th.Tensor:
return th.stack([dist.sample() for dist in self.distribution], dim=1)
def mode(self) -> th.Tensor:
return th.stack([th.argmax(dist.probs, dim=1) for dist in self.distribution], dim=1)
def actions_from_params(self, action_logits: th.Tensor, deterministic: bool = False) -> th.Tensor:
self.proba_distribution(action_logits)
return self.get_actions(deterministic=deterministic)
def log_prob_from_params(self, action_logits: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
actions = self.actions_from_params(action_logits)
log_prob = self.log_prob(actions)
return actions, log_prob
class BernoulliDistribution(Distribution):
def __init__(self, action_dims: int):
super(BernoulliDistribution, self).__init__()
self.action_dims = action_dims
def proba_distribution_net(self, latent_dim: int) -> nn.Module:
action_logits = nn.Linear(latent_dim, self.action_dims)
return action_logits
def proba_distribution(self, action_logits: th.Tensor) -> "BernoulliDistribution":
self.distribution = Bernoulli(logits=action_logits)
return self
def log_prob(self, actions: th.Tensor) -> th.Tensor:
return self.distribution.log_prob(actions).sum(dim=1)
def entropy(self) -> th.Tensor:
return self.distribution.entropy().sum(dim=1)
def sample(self) -> th.Tensor:
return self.distribution.sample()
def mode(self) -> th.Tensor:
return th.round(self.distribution.probs)
def actions_from_params(self, action_logits: th.Tensor, deterministic: bool = False) -> th.Tensor:
self.proba_distribution(action_logits)
return self.get_actions(deterministic=deterministic)
def log_prob_from_params(self, action_logits: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
actions = self.actions_from_params(action_logits)
log_prob = self.log_prob(actions)
return actions, log_prob
class StateDependentNoiseDistribution(Distribution):
def __init__(
self,
action_dim: int,
full_std: bool = True,
use_expln: bool = False,
squash_output: bool = False,
learn_features: bool = False,
epsilon: float = 1e-6,
):
super(StateDependentNoiseDistribution, self).__init__()
self.action_dim = action_dim
self.latent_sde_dim = None
self.mean_actions = None
self.log_std = None
self.weights_dist = None
self.exploration_mat = None
self.exploration_matrices = None
self._latent_sde = None
self.use_expln = use_expln
self.full_std = full_std
self.epsilon = epsilon
self.learn_features = learn_features
if squash_output:
self.bijector = TanhBijector(epsilon)
else:
self.bijector = None
def get_std(self, log_std: th.Tensor) -> th.Tensor:
if self.use_expln:
below_threshold = th.exp(log_std) * (log_std <= 0)
safe_log_std = log_std * (log_std > 0) + self.epsilon
above_threshold = (th.log1p(safe_log_std) + 1.0) * (log_std > 0)
std = below_threshold + above_threshold
else:
std = th.exp(log_std)
if self.full_std:
return std
return th.ones(self.latent_sde_dim, self.action_dim).to(log_std.device) * std
def sample_weights(self, log_std: th.Tensor, batch_size: int = 1) -> None:
std = self.get_std(log_std)
self.weights_dist = Normal(th.zeros_like(std), std)
self.exploration_mat = self.weights_dist.rsample()
self.exploration_matrices = self.weights_dist.rsample((batch_size,))
def proba_distribution_net(
self, latent_dim: int, log_std_init: float = -2.0, latent_sde_dim: Optional[int] = None
) -> Tuple[nn.Module, nn.Parameter]:
mean_actions_net = nn.Linear(latent_dim, self.action_dim)
self.latent_sde_dim = latent_dim if latent_sde_dim is None else latent_sde_dim
log_std = th.ones(self.latent_sde_dim, self.action_dim) if self.full_std else th.ones(self.latent_sde_dim, 1)
log_std = nn.Parameter(log_std * log_std_init, requires_grad=True)
self.sample_weights(log_std)
return mean_actions_net, log_std
def proba_distribution(
self, mean_actions: th.Tensor, log_std: th.Tensor, latent_sde: th.Tensor
) -> "StateDependentNoiseDistribution":
self._latent_sde = latent_sde if self.learn_features else latent_sde.detach()
variance = th.mm(self._latent_sde ** 2, self.get_std(log_std) ** 2)
self.distribution = Normal(mean_actions, th.sqrt(variance + self.epsilon))
return self
def log_prob(self, actions: th.Tensor) -> th.Tensor:
if self.bijector is not None:
gaussian_actions = self.bijector.inverse(actions)
else:
gaussian_actions = actions
log_prob = self.distribution.log_prob(gaussian_actions)
log_prob = sum_independent_dims(log_prob)
if self.bijector is not None:
log_prob -= th.sum(self.bijector.log_prob_correction(gaussian_actions), dim=1)
return log_prob
def entropy(self) -> Optional[th.Tensor]:
if self.bijector is not None:
return None
return sum_independent_dims(self.distribution.entropy())
def sample(self) -> th.Tensor:
noise = self.get_noise(self._latent_sde)
actions = self.distribution.mean + noise
if self.bijector is not None:
return self.bijector.forward(actions)
return actions
def mode(self) -> th.Tensor:
actions = self.distribution.mean
if self.bijector is not None:
return self.bijector.forward(actions)
return actions
def get_noise(self, latent_sde: th.Tensor) -> th.Tensor:
latent_sde = latent_sde if self.learn_features else latent_sde.detach()
if len(latent_sde) == 1 or len(latent_sde) != len(self.exploration_matrices):
return th.mm(latent_sde, self.exploration_mat)
latent_sde = latent_sde.unsqueeze(1)
noise = th.bmm(latent_sde, self.exploration_matrices)
return noise.squeeze(1)
def actions_from_params(
self, mean_actions: th.Tensor, log_std: th.Tensor, latent_sde: th.Tensor, deterministic: bool = False
) -> th.Tensor:
self.proba_distribution(mean_actions, log_std, latent_sde)
return self.get_actions(deterministic=deterministic)
def log_prob_from_params(
self, mean_actions: th.Tensor, log_std: th.Tensor, latent_sde: th.Tensor
) -> Tuple[th.Tensor, th.Tensor]:
actions = self.actions_from_params(mean_actions, log_std, latent_sde)
log_prob = self.log_prob(actions)
return actions, log_prob
class TanhBijector(object):
def __init__(self, epsilon: float = 1e-6):
super(TanhBijector, self).__init__()
self.epsilon = epsilon
@staticmethod
def forward(x: th.Tensor) -> th.Tensor:
return th.tanh(x)
@staticmethod
def atanh(x: th.Tensor) -> th.Tensor:
return 0.5 * (x.log1p() - (-x).log1p())
@staticmethod
|
MIT License
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/homeassistant/components/sensor/mqtt_room.py
|
MQTTRoomSensor.update
|
python
|
def update(self):
if self._updated and self._consider_home and dt.utcnow() - self._updated > self._consider_home:
self._state = STATE_NOT_HOME
|
Update the state for absent devices.
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/sensor/mqtt_room.py#L140-L145
|
import asyncio
import logging
import json
from datetime import timedelta
import voluptuous as vol
import homeassistant.components.mqtt as mqtt
import homeassistant.helpers.config_validation as cv
from homeassistant.components.mqtt import CONF_STATE_TOPIC
from homeassistant.components.sensor import PLATFORM_SCHEMA
from homeassistant.const import (
CONF_NAME, CONF_TIMEOUT, STATE_NOT_HOME, ATTR_ID)
from homeassistant.core import callback
from homeassistant.helpers.entity import Entity
from homeassistant.util import dt, slugify
_LOGGER = logging.getLogger(__name__)
DEPENDENCIES = ['mqtt']
ATTR_DEVICE_ID = 'device_id'
ATTR_DISTANCE = 'distance'
ATTR_ROOM = 'room'
CONF_DEVICE_ID = 'device_id'
CONF_AWAY_TIMEOUT = 'away_timeout'
DEFAULT_AWAY_TIMEOUT = 0
DEFAULT_NAME = 'Room Sensor'
DEFAULT_TIMEOUT = 5
DEFAULT_TOPIC = 'room_presence'
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Required(CONF_DEVICE_ID): cv.string,
vol.Required(CONF_STATE_TOPIC, default=DEFAULT_TOPIC): cv.string,
vol.Required(CONF_TIMEOUT, default=DEFAULT_TIMEOUT): cv.positive_int,
vol.Optional(CONF_AWAY_TIMEOUT,
default=DEFAULT_AWAY_TIMEOUT): cv.positive_int,
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string
})
MQTT_PAYLOAD = vol.Schema(vol.All(json.loads, vol.Schema({
vol.Required(ATTR_ID): cv.string,
vol.Required(ATTR_DISTANCE): vol.Coerce(float),
}, extra=vol.ALLOW_EXTRA)))
@asyncio.coroutine
def async_setup_platform(hass, config, async_add_devices, discovery_info=None):
async_add_devices([MQTTRoomSensor(
config.get(CONF_NAME),
config.get(CONF_STATE_TOPIC),
config.get(CONF_DEVICE_ID),
config.get(CONF_TIMEOUT),
config.get(CONF_AWAY_TIMEOUT)
)])
class MQTTRoomSensor(Entity):
def __init__(self, name, state_topic, device_id, timeout, consider_home):
self._state = STATE_NOT_HOME
self._name = name
self._state_topic = '{}{}'.format(state_topic, '/+')
self._device_id = slugify(device_id).upper()
self._timeout = timeout
self._consider_home = timedelta(seconds=consider_home) if consider_home else None
self._distance = None
self._updated = None
@asyncio.coroutine
def async_added_to_hass(self):
@callback
def update_state(device_id, room, distance):
self._state = room
self._distance = distance
self._updated = dt.utcnow()
self.async_schedule_update_ha_state()
@callback
def message_received(topic, payload, qos):
try:
data = MQTT_PAYLOAD(payload)
except vol.MultipleInvalid as error:
_LOGGER.debug(
"Skipping update because of malformatted data: %s", error)
return
device = _parse_update_data(topic, data)
if device.get(CONF_DEVICE_ID) == self._device_id:
if self._distance is None or self._updated is None:
update_state(**device)
else:
timediff = dt.utcnow() - self._updated
if device.get(ATTR_ROOM) == self._state or device.get(ATTR_DISTANCE) < self._distance or timediff.seconds >= self._timeout:
update_state(**device)
return mqtt.async_subscribe(
self.hass, self._state_topic, message_received, 1)
@property
def name(self):
return self._name
@property
def device_state_attributes(self):
return {
ATTR_DISTANCE: self._distance
}
@property
def state(self):
return self._state
|
MIT License
|
semiunsupervisedlearning/dgms_for_semi-unsupervised_learning
|
src/utils/dgm.py
|
discreteUniformKL
|
python
|
def discreteUniformKL(logits, n_size, dim=-1):
return - tf.nn.softmax_cross_entropy_with_logits_v2(
labels=tf.nn.softmax(logits),
logits=logits,
dim=dim) + tf.log(n_size)
|
KL divergence for discrete/categorical probabilties
returns KL(q||p) where q is a tf tensor in logits and
p, not given, is uniform.
|
https://github.com/semiunsupervisedlearning/dgms_for_semi-unsupervised_learning/blob/a89c7be92403c3582f3bce534f982382f9733055/src/utils/dgm.py#L80-L89
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow.contrib.layers import xavier_initializer
from tensorflow.contrib.distributions import RelaxedOneHotCategorical as Gumbel
from utils.utils import softmax
glorotNormal = xavier_initializer(uniform=False)
initNormal = tf.random_normal_initializer(stddev=1e-3)
def gaussianLogDensity(inputs, mu, log_var):
D = tf.cast(tf.shape(inputs)[-1], tf.float32)
xc = inputs - mu
return -0.5 * (tf.reduce_sum((xc * xc) / tf.exp(log_var), axis=-1) +
tf.reduce_sum(log_var, axis=-1) + D * tf.log(2.0 * np.pi))
def gaussianLogDensity_axis(inputs, mu, log_var):
xc = inputs - mu
return -0.5 * ((xc * xc) / tf.exp(log_var) + log_var + tf.log(2.0 * np.pi))
def gaussianLogDensity_np(inputs, mu, log_var):
D = inputs.shape[-1]
xc = inputs - mu
return -0.5 * (np.sum((xc * xc) / np.exp(log_var), axis=-1) +
np.sum(log_var, axis=-1) + D * np.log(2.0 * np.pi))
def standardNormalLogDensity(inputs):
mu = tf.zeros_like(inputs)
log_var = tf.log(tf.ones_like(inputs))
return gaussianLogDensity(inputs, mu, log_var)
def bernoulliLogDensity(inputs, logits):
return -tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(
labels=inputs, logits=logits), axis=-1)
def multinoulliLogDensity(inputs, preds, on_priors=False):
if on_priors is False:
return -tf.nn.softmax_cross_entropy_with_logits(
labels=inputs, logits=preds)
else:
return tf.reduce_sum(inputs * tf.log(preds + 1e-10), axis=-1)
def multinoulliUniformLogDensity(logits, dim=-1, order=True,):
if order is True:
labels = tf.divide(tf.ones_like(logits),
tf.norm(tf.ones_like(logits),
ord=1, axis=dim,
keepdims=True))
return - tf.nn.softmax_cross_entropy_with_logits(labels=labels,
logits=logits,
dim=dim)
else:
labels = tf.ones_like(logits)
return -tf.nn.softmax_cross_entropy_with_logits(labels=logits,
logits=labels,
dim=dim)
|
MIT License
|
davidomarf/ginpar
|
ginpar/utils/echo.py
|
alert
|
python
|
def alert(m):
click.secho(m, fg="yellow")
|
Warnings and alerts that may change Ginpar behavior. Yellow foreground.
|
https://github.com/davidomarf/ginpar/blob/cee1676ba2280d09f43a52f5145b28388b8e1152/ginpar/utils/echo.py#L35-L38
|
import click
def echo(m):
click.echo(m)
def info(m):
click.secho(m, fg="blue")
def success(m):
click.secho(m, fg="green")
def error(m):
click.secho(m, fg="red")
|
MIT License
|
docusign/docusign-python-client
|
docusign_esign/models/company.py
|
Company.anchor_allow_white_space_in_characters_metadata
|
python
|
def anchor_allow_white_space_in_characters_metadata(self, anchor_allow_white_space_in_characters_metadata):
self._anchor_allow_white_space_in_characters_metadata = anchor_allow_white_space_in_characters_metadata
|
Sets the anchor_allow_white_space_in_characters_metadata of this Company.
:param anchor_allow_white_space_in_characters_metadata: The anchor_allow_white_space_in_characters_metadata of this Company. # noqa: E501
:type: PropertyMetadata
|
https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/company.py#L484-L492
|
import pprint
import re
import six
from docusign_esign.client.configuration import Configuration
class Company(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'anchor_allow_white_space_in_characters': 'str',
'anchor_allow_white_space_in_characters_metadata': 'PropertyMetadata',
'anchor_case_sensitive': 'str',
'anchor_case_sensitive_metadata': 'PropertyMetadata',
'anchor_horizontal_alignment': 'str',
'anchor_horizontal_alignment_metadata': 'PropertyMetadata',
'anchor_ignore_if_not_present': 'str',
'anchor_ignore_if_not_present_metadata': 'PropertyMetadata',
'anchor_match_whole_word': 'str',
'anchor_match_whole_word_metadata': 'PropertyMetadata',
'anchor_string': 'str',
'anchor_string_metadata': 'PropertyMetadata',
'anchor_tab_processor_version': 'str',
'anchor_tab_processor_version_metadata': 'PropertyMetadata',
'anchor_units': 'str',
'anchor_units_metadata': 'PropertyMetadata',
'anchor_x_offset': 'str',
'anchor_x_offset_metadata': 'PropertyMetadata',
'anchor_y_offset': 'str',
'anchor_y_offset_metadata': 'PropertyMetadata',
'bold': 'str',
'bold_metadata': 'PropertyMetadata',
'conceal_value_on_document': 'str',
'conceal_value_on_document_metadata': 'PropertyMetadata',
'conditional_parent_label': 'str',
'conditional_parent_label_metadata': 'PropertyMetadata',
'conditional_parent_value': 'str',
'conditional_parent_value_metadata': 'PropertyMetadata',
'custom_tab_id': 'str',
'custom_tab_id_metadata': 'PropertyMetadata',
'disable_auto_size': 'str',
'disable_auto_size_metadata': 'PropertyMetadata',
'document_id': 'str',
'document_id_metadata': 'PropertyMetadata',
'error_details': 'ErrorDetails',
'font': 'str',
'font_color': 'str',
'font_color_metadata': 'PropertyMetadata',
'font_metadata': 'PropertyMetadata',
'font_size': 'str',
'font_size_metadata': 'PropertyMetadata',
'form_order': 'str',
'form_order_metadata': 'PropertyMetadata',
'form_page_label': 'str',
'form_page_label_metadata': 'PropertyMetadata',
'form_page_number': 'str',
'form_page_number_metadata': 'PropertyMetadata',
'height': 'str',
'height_metadata': 'PropertyMetadata',
'italic': 'str',
'italic_metadata': 'PropertyMetadata',
'locale_policy': 'LocalePolicyTab',
'locked': 'str',
'locked_metadata': 'PropertyMetadata',
'max_length': 'str',
'max_length_metadata': 'PropertyMetadata',
'merge_field': 'MergeField',
'merge_field_xml': 'str',
'name': 'str',
'name_metadata': 'PropertyMetadata',
'original_value': 'str',
'original_value_metadata': 'PropertyMetadata',
'page_number': 'str',
'page_number_metadata': 'PropertyMetadata',
'recipient_id': 'str',
'recipient_id_guid': 'str',
'recipient_id_guid_metadata': 'PropertyMetadata',
'recipient_id_metadata': 'PropertyMetadata',
'required': 'str',
'required_metadata': 'PropertyMetadata',
'smart_contract_information': 'SmartContractInformation',
'source': 'str',
'status': 'str',
'status_metadata': 'PropertyMetadata',
'tab_group_labels': 'list[str]',
'tab_group_labels_metadata': 'PropertyMetadata',
'tab_id': 'str',
'tab_id_metadata': 'PropertyMetadata',
'tab_label': 'str',
'tab_label_metadata': 'PropertyMetadata',
'tab_order': 'str',
'tab_order_metadata': 'PropertyMetadata',
'tab_type': 'str',
'tab_type_metadata': 'PropertyMetadata',
'template_locked': 'str',
'template_locked_metadata': 'PropertyMetadata',
'template_required': 'str',
'template_required_metadata': 'PropertyMetadata',
'tooltip': 'str',
'tool_tip_metadata': 'PropertyMetadata',
'underline': 'str',
'underline_metadata': 'PropertyMetadata',
'value': 'str',
'value_metadata': 'PropertyMetadata',
'width': 'str',
'width_metadata': 'PropertyMetadata',
'x_position': 'str',
'x_position_metadata': 'PropertyMetadata',
'y_position': 'str',
'y_position_metadata': 'PropertyMetadata'
}
attribute_map = {
'anchor_allow_white_space_in_characters': 'anchorAllowWhiteSpaceInCharacters',
'anchor_allow_white_space_in_characters_metadata': 'anchorAllowWhiteSpaceInCharactersMetadata',
'anchor_case_sensitive': 'anchorCaseSensitive',
'anchor_case_sensitive_metadata': 'anchorCaseSensitiveMetadata',
'anchor_horizontal_alignment': 'anchorHorizontalAlignment',
'anchor_horizontal_alignment_metadata': 'anchorHorizontalAlignmentMetadata',
'anchor_ignore_if_not_present': 'anchorIgnoreIfNotPresent',
'anchor_ignore_if_not_present_metadata': 'anchorIgnoreIfNotPresentMetadata',
'anchor_match_whole_word': 'anchorMatchWholeWord',
'anchor_match_whole_word_metadata': 'anchorMatchWholeWordMetadata',
'anchor_string': 'anchorString',
'anchor_string_metadata': 'anchorStringMetadata',
'anchor_tab_processor_version': 'anchorTabProcessorVersion',
'anchor_tab_processor_version_metadata': 'anchorTabProcessorVersionMetadata',
'anchor_units': 'anchorUnits',
'anchor_units_metadata': 'anchorUnitsMetadata',
'anchor_x_offset': 'anchorXOffset',
'anchor_x_offset_metadata': 'anchorXOffsetMetadata',
'anchor_y_offset': 'anchorYOffset',
'anchor_y_offset_metadata': 'anchorYOffsetMetadata',
'bold': 'bold',
'bold_metadata': 'boldMetadata',
'conceal_value_on_document': 'concealValueOnDocument',
'conceal_value_on_document_metadata': 'concealValueOnDocumentMetadata',
'conditional_parent_label': 'conditionalParentLabel',
'conditional_parent_label_metadata': 'conditionalParentLabelMetadata',
'conditional_parent_value': 'conditionalParentValue',
'conditional_parent_value_metadata': 'conditionalParentValueMetadata',
'custom_tab_id': 'customTabId',
'custom_tab_id_metadata': 'customTabIdMetadata',
'disable_auto_size': 'disableAutoSize',
'disable_auto_size_metadata': 'disableAutoSizeMetadata',
'document_id': 'documentId',
'document_id_metadata': 'documentIdMetadata',
'error_details': 'errorDetails',
'font': 'font',
'font_color': 'fontColor',
'font_color_metadata': 'fontColorMetadata',
'font_metadata': 'fontMetadata',
'font_size': 'fontSize',
'font_size_metadata': 'fontSizeMetadata',
'form_order': 'formOrder',
'form_order_metadata': 'formOrderMetadata',
'form_page_label': 'formPageLabel',
'form_page_label_metadata': 'formPageLabelMetadata',
'form_page_number': 'formPageNumber',
'form_page_number_metadata': 'formPageNumberMetadata',
'height': 'height',
'height_metadata': 'heightMetadata',
'italic': 'italic',
'italic_metadata': 'italicMetadata',
'locale_policy': 'localePolicy',
'locked': 'locked',
'locked_metadata': 'lockedMetadata',
'max_length': 'maxLength',
'max_length_metadata': 'maxLengthMetadata',
'merge_field': 'mergeField',
'merge_field_xml': 'mergeFieldXml',
'name': 'name',
'name_metadata': 'nameMetadata',
'original_value': 'originalValue',
'original_value_metadata': 'originalValueMetadata',
'page_number': 'pageNumber',
'page_number_metadata': 'pageNumberMetadata',
'recipient_id': 'recipientId',
'recipient_id_guid': 'recipientIdGuid',
'recipient_id_guid_metadata': 'recipientIdGuidMetadata',
'recipient_id_metadata': 'recipientIdMetadata',
'required': 'required',
'required_metadata': 'requiredMetadata',
'smart_contract_information': 'smartContractInformation',
'source': 'source',
'status': 'status',
'status_metadata': 'statusMetadata',
'tab_group_labels': 'tabGroupLabels',
'tab_group_labels_metadata': 'tabGroupLabelsMetadata',
'tab_id': 'tabId',
'tab_id_metadata': 'tabIdMetadata',
'tab_label': 'tabLabel',
'tab_label_metadata': 'tabLabelMetadata',
'tab_order': 'tabOrder',
'tab_order_metadata': 'tabOrderMetadata',
'tab_type': 'tabType',
'tab_type_metadata': 'tabTypeMetadata',
'template_locked': 'templateLocked',
'template_locked_metadata': 'templateLockedMetadata',
'template_required': 'templateRequired',
'template_required_metadata': 'templateRequiredMetadata',
'tooltip': 'tooltip',
'tool_tip_metadata': 'toolTipMetadata',
'underline': 'underline',
'underline_metadata': 'underlineMetadata',
'value': 'value',
'value_metadata': 'valueMetadata',
'width': 'width',
'width_metadata': 'widthMetadata',
'x_position': 'xPosition',
'x_position_metadata': 'xPositionMetadata',
'y_position': 'yPosition',
'y_position_metadata': 'yPositionMetadata'
}
def __init__(self, _configuration=None, **kwargs):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._anchor_allow_white_space_in_characters = None
self._anchor_allow_white_space_in_characters_metadata = None
self._anchor_case_sensitive = None
self._anchor_case_sensitive_metadata = None
self._anchor_horizontal_alignment = None
self._anchor_horizontal_alignment_metadata = None
self._anchor_ignore_if_not_present = None
self._anchor_ignore_if_not_present_metadata = None
self._anchor_match_whole_word = None
self._anchor_match_whole_word_metadata = None
self._anchor_string = None
self._anchor_string_metadata = None
self._anchor_tab_processor_version = None
self._anchor_tab_processor_version_metadata = None
self._anchor_units = None
self._anchor_units_metadata = None
self._anchor_x_offset = None
self._anchor_x_offset_metadata = None
self._anchor_y_offset = None
self._anchor_y_offset_metadata = None
self._bold = None
self._bold_metadata = None
self._conceal_value_on_document = None
self._conceal_value_on_document_metadata = None
self._conditional_parent_label = None
self._conditional_parent_label_metadata = None
self._conditional_parent_value = None
self._conditional_parent_value_metadata = None
self._custom_tab_id = None
self._custom_tab_id_metadata = None
self._disable_auto_size = None
self._disable_auto_size_metadata = None
self._document_id = None
self._document_id_metadata = None
self._error_details = None
self._font = None
self._font_color = None
self._font_color_metadata = None
self._font_metadata = None
self._font_size = None
self._font_size_metadata = None
self._form_order = None
self._form_order_metadata = None
self._form_page_label = None
self._form_page_label_metadata = None
self._form_page_number = None
self._form_page_number_metadata = None
self._height = None
self._height_metadata = None
self._italic = None
self._italic_metadata = None
self._locale_policy = None
self._locked = None
self._locked_metadata = None
self._max_length = None
self._max_length_metadata = None
self._merge_field = None
self._merge_field_xml = None
self._name = None
self._name_metadata = None
self._original_value = None
self._original_value_metadata = None
self._page_number = None
self._page_number_metadata = None
self._recipient_id = None
self._recipient_id_guid = None
self._recipient_id_guid_metadata = None
self._recipient_id_metadata = None
self._required = None
self._required_metadata = None
self._smart_contract_information = None
self._source = None
self._status = None
self._status_metadata = None
self._tab_group_labels = None
self._tab_group_labels_metadata = None
self._tab_id = None
self._tab_id_metadata = None
self._tab_label = None
self._tab_label_metadata = None
self._tab_order = None
self._tab_order_metadata = None
self._tab_type = None
self._tab_type_metadata = None
self._template_locked = None
self._template_locked_metadata = None
self._template_required = None
self._template_required_metadata = None
self._tooltip = None
self._tool_tip_metadata = None
self._underline = None
self._underline_metadata = None
self._value = None
self._value_metadata = None
self._width = None
self._width_metadata = None
self._x_position = None
self._x_position_metadata = None
self._y_position = None
self._y_position_metadata = None
self.discriminator = None
setattr(self, "_{}".format('anchor_allow_white_space_in_characters'), kwargs.get('anchor_allow_white_space_in_characters', None))
setattr(self, "_{}".format('anchor_allow_white_space_in_characters_metadata'), kwargs.get('anchor_allow_white_space_in_characters_metadata', None))
setattr(self, "_{}".format('anchor_case_sensitive'), kwargs.get('anchor_case_sensitive', None))
setattr(self, "_{}".format('anchor_case_sensitive_metadata'), kwargs.get('anchor_case_sensitive_metadata', None))
setattr(self, "_{}".format('anchor_horizontal_alignment'), kwargs.get('anchor_horizontal_alignment', None))
setattr(self, "_{}".format('anchor_horizontal_alignment_metadata'), kwargs.get('anchor_horizontal_alignment_metadata', None))
setattr(self, "_{}".format('anchor_ignore_if_not_present'), kwargs.get('anchor_ignore_if_not_present', None))
setattr(self, "_{}".format('anchor_ignore_if_not_present_metadata'), kwargs.get('anchor_ignore_if_not_present_metadata', None))
setattr(self, "_{}".format('anchor_match_whole_word'), kwargs.get('anchor_match_whole_word', None))
setattr(self, "_{}".format('anchor_match_whole_word_metadata'), kwargs.get('anchor_match_whole_word_metadata', None))
setattr(self, "_{}".format('anchor_string'), kwargs.get('anchor_string', None))
setattr(self, "_{}".format('anchor_string_metadata'), kwargs.get('anchor_string_metadata', None))
setattr(self, "_{}".format('anchor_tab_processor_version'), kwargs.get('anchor_tab_processor_version', None))
setattr(self, "_{}".format('anchor_tab_processor_version_metadata'), kwargs.get('anchor_tab_processor_version_metadata', None))
setattr(self, "_{}".format('anchor_units'), kwargs.get('anchor_units', None))
setattr(self, "_{}".format('anchor_units_metadata'), kwargs.get('anchor_units_metadata', None))
setattr(self, "_{}".format('anchor_x_offset'), kwargs.get('anchor_x_offset', None))
setattr(self, "_{}".format('anchor_x_offset_metadata'), kwargs.get('anchor_x_offset_metadata', None))
setattr(self, "_{}".format('anchor_y_offset'), kwargs.get('anchor_y_offset', None))
setattr(self, "_{}".format('anchor_y_offset_metadata'), kwargs.get('anchor_y_offset_metadata', None))
setattr(self, "_{}".format('bold'), kwargs.get('bold', None))
setattr(self, "_{}".format('bold_metadata'), kwargs.get('bold_metadata', None))
setattr(self, "_{}".format('conceal_value_on_document'), kwargs.get('conceal_value_on_document', None))
setattr(self, "_{}".format('conceal_value_on_document_metadata'), kwargs.get('conceal_value_on_document_metadata', None))
setattr(self, "_{}".format('conditional_parent_label'), kwargs.get('conditional_parent_label', None))
setattr(self, "_{}".format('conditional_parent_label_metadata'), kwargs.get('conditional_parent_label_metadata', None))
setattr(self, "_{}".format('conditional_parent_value'), kwargs.get('conditional_parent_value', None))
setattr(self, "_{}".format('conditional_parent_value_metadata'), kwargs.get('conditional_parent_value_metadata', None))
setattr(self, "_{}".format('custom_tab_id'), kwargs.get('custom_tab_id', None))
setattr(self, "_{}".format('custom_tab_id_metadata'), kwargs.get('custom_tab_id_metadata', None))
setattr(self, "_{}".format('disable_auto_size'), kwargs.get('disable_auto_size', None))
setattr(self, "_{}".format('disable_auto_size_metadata'), kwargs.get('disable_auto_size_metadata', None))
setattr(self, "_{}".format('document_id'), kwargs.get('document_id', None))
setattr(self, "_{}".format('document_id_metadata'), kwargs.get('document_id_metadata', None))
setattr(self, "_{}".format('error_details'), kwargs.get('error_details', None))
setattr(self, "_{}".format('font'), kwargs.get('font', None))
setattr(self, "_{}".format('font_color'), kwargs.get('font_color', None))
setattr(self, "_{}".format('font_color_metadata'), kwargs.get('font_color_metadata', None))
setattr(self, "_{}".format('font_metadata'), kwargs.get('font_metadata', None))
setattr(self, "_{}".format('font_size'), kwargs.get('font_size', None))
setattr(self, "_{}".format('font_size_metadata'), kwargs.get('font_size_metadata', None))
setattr(self, "_{}".format('form_order'), kwargs.get('form_order', None))
setattr(self, "_{}".format('form_order_metadata'), kwargs.get('form_order_metadata', None))
setattr(self, "_{}".format('form_page_label'), kwargs.get('form_page_label', None))
setattr(self, "_{}".format('form_page_label_metadata'), kwargs.get('form_page_label_metadata', None))
setattr(self, "_{}".format('form_page_number'), kwargs.get('form_page_number', None))
setattr(self, "_{}".format('form_page_number_metadata'), kwargs.get('form_page_number_metadata', None))
setattr(self, "_{}".format('height'), kwargs.get('height', None))
setattr(self, "_{}".format('height_metadata'), kwargs.get('height_metadata', None))
setattr(self, "_{}".format('italic'), kwargs.get('italic', None))
setattr(self, "_{}".format('italic_metadata'), kwargs.get('italic_metadata', None))
setattr(self, "_{}".format('locale_policy'), kwargs.get('locale_policy', None))
setattr(self, "_{}".format('locked'), kwargs.get('locked', None))
setattr(self, "_{}".format('locked_metadata'), kwargs.get('locked_metadata', None))
setattr(self, "_{}".format('max_length'), kwargs.get('max_length', None))
setattr(self, "_{}".format('max_length_metadata'), kwargs.get('max_length_metadata', None))
setattr(self, "_{}".format('merge_field'), kwargs.get('merge_field', None))
setattr(self, "_{}".format('merge_field_xml'), kwargs.get('merge_field_xml', None))
setattr(self, "_{}".format('name'), kwargs.get('name', None))
setattr(self, "_{}".format('name_metadata'), kwargs.get('name_metadata', None))
setattr(self, "_{}".format('original_value'), kwargs.get('original_value', None))
setattr(self, "_{}".format('original_value_metadata'), kwargs.get('original_value_metadata', None))
setattr(self, "_{}".format('page_number'), kwargs.get('page_number', None))
setattr(self, "_{}".format('page_number_metadata'), kwargs.get('page_number_metadata', None))
setattr(self, "_{}".format('recipient_id'), kwargs.get('recipient_id', None))
setattr(self, "_{}".format('recipient_id_guid'), kwargs.get('recipient_id_guid', None))
setattr(self, "_{}".format('recipient_id_guid_metadata'), kwargs.get('recipient_id_guid_metadata', None))
setattr(self, "_{}".format('recipient_id_metadata'), kwargs.get('recipient_id_metadata', None))
setattr(self, "_{}".format('required'), kwargs.get('required', None))
setattr(self, "_{}".format('required_metadata'), kwargs.get('required_metadata', None))
setattr(self, "_{}".format('smart_contract_information'), kwargs.get('smart_contract_information', None))
setattr(self, "_{}".format('source'), kwargs.get('source', None))
setattr(self, "_{}".format('status'), kwargs.get('status', None))
setattr(self, "_{}".format('status_metadata'), kwargs.get('status_metadata', None))
setattr(self, "_{}".format('tab_group_labels'), kwargs.get('tab_group_labels', None))
setattr(self, "_{}".format('tab_group_labels_metadata'), kwargs.get('tab_group_labels_metadata', None))
setattr(self, "_{}".format('tab_id'), kwargs.get('tab_id', None))
setattr(self, "_{}".format('tab_id_metadata'), kwargs.get('tab_id_metadata', None))
setattr(self, "_{}".format('tab_label'), kwargs.get('tab_label', None))
setattr(self, "_{}".format('tab_label_metadata'), kwargs.get('tab_label_metadata', None))
setattr(self, "_{}".format('tab_order'), kwargs.get('tab_order', None))
setattr(self, "_{}".format('tab_order_metadata'), kwargs.get('tab_order_metadata', None))
setattr(self, "_{}".format('tab_type'), kwargs.get('tab_type', None))
setattr(self, "_{}".format('tab_type_metadata'), kwargs.get('tab_type_metadata', None))
setattr(self, "_{}".format('template_locked'), kwargs.get('template_locked', None))
setattr(self, "_{}".format('template_locked_metadata'), kwargs.get('template_locked_metadata', None))
setattr(self, "_{}".format('template_required'), kwargs.get('template_required', None))
setattr(self, "_{}".format('template_required_metadata'), kwargs.get('template_required_metadata', None))
setattr(self, "_{}".format('tooltip'), kwargs.get('tooltip', None))
setattr(self, "_{}".format('tool_tip_metadata'), kwargs.get('tool_tip_metadata', None))
setattr(self, "_{}".format('underline'), kwargs.get('underline', None))
setattr(self, "_{}".format('underline_metadata'), kwargs.get('underline_metadata', None))
setattr(self, "_{}".format('value'), kwargs.get('value', None))
setattr(self, "_{}".format('value_metadata'), kwargs.get('value_metadata', None))
setattr(self, "_{}".format('width'), kwargs.get('width', None))
setattr(self, "_{}".format('width_metadata'), kwargs.get('width_metadata', None))
setattr(self, "_{}".format('x_position'), kwargs.get('x_position', None))
setattr(self, "_{}".format('x_position_metadata'), kwargs.get('x_position_metadata', None))
setattr(self, "_{}".format('y_position'), kwargs.get('y_position', None))
setattr(self, "_{}".format('y_position_metadata'), kwargs.get('y_position_metadata', None))
@property
def anchor_allow_white_space_in_characters(self):
return self._anchor_allow_white_space_in_characters
@anchor_allow_white_space_in_characters.setter
def anchor_allow_white_space_in_characters(self, anchor_allow_white_space_in_characters):
self._anchor_allow_white_space_in_characters = anchor_allow_white_space_in_characters
@property
def anchor_allow_white_space_in_characters_metadata(self):
return self._anchor_allow_white_space_in_characters_metadata
@anchor_allow_white_space_in_characters_metadata.setter
|
MIT License
|
a5kin/xentica
|
xentica/core/properties.py
|
Property.dtype
|
python
|
def dtype(self):
return self.best_type[1]
|
Get the NumPy dtype, based on the result of :meth:`best_type`.
:returns:
NumPy dtype that suits best to store a property.
|
https://github.com/a5kin/xentica/blob/ca08fac9f85af71c9d6d98545a33d50323f851b3/xentica/core/properties.py#L101-L109
|
import math
import abc
import inspect
from collections import OrderedDict
import numpy as np
from cached_property import cached_property
from xentica.core.expressions import DeferredExpression
from xentica.core.exceptions import XenticaException
from xentica.core.mixins import BscaDetectorMixin
from xentica.tools import xmath
__all__ = ['Property', 'IntegerProperty', 'ContainerProperty', ]
class Property(DeferredExpression, BscaDetectorMixin):
def __init__(self):
self._types = (
(8, np.uint8, 'char'),
(16, np.uint16, 'short'),
(32, np.uint32, 'int'),
(64, np.uint64, 'long'),
)
self._buf_num, self._nbr_num = 1, 1
super().__init__()
@cached_property
def best_type(self):
_best_type = self._types[-1]
for _type in self._types:
type_width = _type[0]
if self.bit_width <= type_width:
_best_type = _type
break
return _best_type
@cached_property
|
MIT License
|
sanskrit/sanskrit
|
sanskrit/setup.py
|
add_nominal_stems
|
python
|
def add_nominal_stems(ctx):
conn = ctx.engine.connect()
ins = NominalStem.__table__.insert()
gender_group = ENUM['gender_group']
buf = []
i = 0
tick = util.tick_every(5000)
for row in util.read_csv(ctx.config['NOMINAL_STEMS']):
genders_id = gender_group[row['stem_genders']]
buf.append({
'name': row['stem'],
'pos_id': Tag.NOMINAL,
'genders_id': genders_id,
})
tick(row['stem'])
i += 1
if i % 500 == 0:
conn.execute(ins, buf)
buf = []
if buf:
conn.execute(ins, buf)
|
Add regular noun stems to the database.
|
https://github.com/sanskrit/sanskrit/blob/97dd42ffbad5339945b7ecfd54c44ae94a047114/sanskrit/setup.py#L377-L406
|
from __future__ import print_function
import sys
from sanskrit import util
from sanskrit.schema import *
import sqlalchemy.schema
ENUM = {}
def add_tags(ctx):
session = ctx.session
for key in dir(Tag):
if key.isupper():
id = getattr(Tag, key)
session.add(Tag(id=id, name=key.lower()))
session.commit()
session.close()
def add_enums(ctx):
session = ctx.session
type_to_class = {
'case': Case,
'class': VClass,
'gender': Gender,
'gender_group': GenderGroup,
'modification': Modification,
'mode': Mode,
'number': Number,
'person': Person,
'sandhi_rule_type': SandhiType,
'voice': Voice,
}
for row in util.read_csv(ctx.config['ENUMS']):
if row['enum_type'] == 'gender_group':
continue
cls = type_to_class.get(row['enum_type'], None)
if cls is None:
continue
enum_abbr = cls.__tablename__
if enum_abbr not in ENUM:
util.tick(cls.__name__)
ENUM.setdefault(enum_abbr, {})
abbreviation = row['abbreviation']
e = cls(name=row['human_readable_value'], abbr=abbreviation)
session.add(e)
session.flush()
ENUM[enum_abbr][abbreviation] = e.id
session.commit()
for row in util.read_csv(ctx.config['ENUMS']):
if row['enum_type'] != 'gender_group':
continue
cls = type_to_class.get(row['enum_type'], None)
enum_abbr = cls.__tablename__
if enum_abbr not in ENUM:
util.tick(cls.__name__)
ENUM.setdefault(enum_abbr, {})
abbreviation = row['abbreviation']
e = cls(name=row['human_readable_value'], abbr=abbreviation)
session.add(e)
session.flush()
if set(abbreviation).issubset('mfn'):
e.members = [ENUM['gender'][x] for x in abbreviation]
ENUM[enum_abbr][abbreviation] = e.id
session.commit()
session.close()
def add_sandhi_rules(ctx):
session = ctx.session
stype = ENUM['sandhi_type']
for row in util.read_csv(ctx.config['SANDHI_RULES']):
session.add(SandhiRule(first=row['first'], second=row['second'],
result=row['result'],
rule_type=stype[row['type']]))
session.commit()
session.close()
def add_indeclinables(ctx):
session = ctx.session
tick = util.tick_every(300)
for row in util.read_csv(ctx.config['INDECLINABLES']):
session.add(Indeclinable(name=row['name']))
tick(row['name'])
session.commit()
session.close()
def add_verb_prefixes(ctx):
session = ctx.session
prefix_map = {}
for row in util.read_csv(ctx.config['VERB_PREFIXES']):
prefix = VerbPrefix(name=row['name'])
session.add(prefix)
session.flush()
prefix_map[row['name']] = prefix.id
session.commit()
session.close()
return prefix_map
def add_verb_endings(ctx):
session = ctx.session
person = ENUM['person']
number = ENUM['number']
mode = ENUM['mode']
voice = ENUM['voice']
for row in util.read_csv(ctx.config['VERB_ENDINGS']):
session.add(VerbEnding(name=row['ending'],
category=row['category'],
person_id=person[row['person']],
number_id=number[row['number']],
mode_id=mode[row['mode']],
voice_id=voice[row['voice']]))
session.commit()
session.close()
def add_roots(ctx, prefix_map):
session = ctx.session
e_vclass = ENUM['vclass']
e_voice = ENUM['voice']
root_map = {}
tick = util.tick_every(100)
for row in util.read_csv(ctx.config['UNPREFIXED_ROOTS']):
name, hom = row['root'], row['hom']
if (name, hom) in root_map:
continue
root = Root(name=name)
session.add(root)
session.flush()
root_map[(name, hom)] = root.id
tick(name)
for row in util.read_csv(ctx.config['UNPREFIXED_ROOTS']):
name, hom = row['root'], row['hom']
vclass, voice = row['class'], row['voice']
assert (name, hom) in root_map
root_id = root_map[(name, hom)]
paradigm = Paradigm(root_id=root_id, vclass_id=e_vclass[vclass],
voice_id=e_voice[voice])
session.add(paradigm)
session.commit()
for i, row in enumerate(util.read_csv(ctx.config['PREFIXED_ROOTS'])):
name = row['prefixed_root']
basis = row['unprefixed_root']
hom = row['hom']
prefixes = row['prefixes'].split('-')
assert (basis, hom) in root_map
basis_id = root_map[(basis, hom)]
for prefix in prefixes:
pass
prefixed_root = PrefixedRoot(name=name, basis_id=basis_id)
session.add(prefixed_root)
session.flush()
root_map[(name, hom)] = prefixed_root.id
tick(name)
session.commit()
session.close()
return root_map
def add_verbs(ctx, root_map):
session = ctx.session
vclass = ENUM['vclass']
person = ENUM['person']
number = ENUM['number']
mode = ENUM['mode']
voice = ENUM['voice']
skipped = set()
i = 0
for row in util.read_csv(ctx.config['VERBS']):
root = row['root']
hom = row['hom']
try:
root_id = root_map[(root, hom)]
except KeyError:
skipped.add((root, hom))
continue
data = {
'name': row['form'],
'root_id': root_id,
'vclass_id': vclass[row['class']] if row['class'] else None,
'person_id': person[row['person']],
'number_id': number[row['number']],
'mode_id': mode[row['mode']],
'voice_id': voice[row['voice']]
}
session.add(Verb(**data))
i += 1
if i % 1000 == 0:
util.tick(row['form'])
session.commit()
session.commit()
session.close()
print('Skipped', len(skipped), 'roots.')
def add_verbal_indeclinables(ctx, root_map):
session = ctx.session
root_map = root_map or {}
skipped = set()
for row in util.read_csv(ctx.config['VERBAL_INDECLINABLES']):
root, hom, pos = row['root'], row['hom'], row['pos']
try:
root_id = root_map[(root, hom)]
except KeyError:
skipped.add((root, hom))
continue
datum = {
'name': row['form'],
'root_id': root_id
}
if pos == 'gerund':
session.add(Gerund(**datum))
elif pos == 'infinitive':
session.add(Infinitive(**datum))
else:
assert False
session.commit()
def add_participle_stems(ctx, root_map):
session = ctx.session
root_map = root_map or {}
mode = ENUM['mode']
voice = ENUM['voice']
skipped = set()
i = 0
for row in util.read_csv(ctx.config['PARTICIPLE_STEMS']):
root = row['root']
hom = row['hom']
try:
root_id = root_map[(root, hom)]
except KeyError:
skipped.add((root, hom))
continue
data = {
'name': row['stem'],
'root_id': root_id,
'mode_id': mode[row['mode']],
'voice_id': voice[row['voice']]
}
session.add(ParticipleStem(**data))
i += 1
if i % 100 == 0:
util.tick(row['stem'])
session.commit()
session.commit()
session.close()
print('Skipped', len(skipped), 'roots.')
def add_nominal_endings(ctx):
session = ctx.session
gender = ENUM['gender']
case = ENUM['case']
number = ENUM['number']
for row in util.read_csv(ctx.config['COMPOUNDED_NOMINAL_ENDINGS']):
ending = NominalEnding(name=row['ending'],
stem_type=row['stem_type'],
gender_id=gender[row['form_gender']],
case_id=None, number_id=None, compounded=True)
session.add(ending)
seen = set()
for row in util.read_csv(ctx.config['INFLECTED_NOMINAL_ENDINGS']):
ending = NominalEnding(name=row['ending'],
stem_type=row['stem_type'],
gender_id=gender[row['form_gender']],
case_id=case[row['case']],
number_id=number[row['number']], compounded=False)
session.add(ending)
if row['stem_type'] not in seen:
util.tick(row['stem_type'])
seen.add(row['stem_type'])
session.commit()
session.close()
|
MIT License
|
datastore/datastore
|
datastore/core/key.py
|
Key.path
|
python
|
def path(self):
return Key(str(self.parent) + '/' + self.type)
|
Returns the path of this Key, the parent and the type.
|
https://github.com/datastore/datastore/blob/7ccf0cd4748001d3dbf5e6dda369b0f63e0269d3/datastore/core/key.py#L121-L123
|
import uuid
from .util import fasthash
class Namespace(str):
namespace_delimiter = ':'
def __repr__(self):
return "Namespace('%s')" % self
@property
def field(self):
if ':' in self:
return self.split(self.namespace_delimiter)[0]
return ''
@property
def value(self):
return self.split(self.namespace_delimiter)[-1]
class Key(object):
__slots__ = ('_string', '_list')
def __init__(self, key):
if isinstance(key, list):
key = '/'.join(key)
self._string = self.removeDuplicateSlashes(str(key))
self._list = None
def __str__(self):
return self._string
def __repr__(self):
return "Key('%s')" % self._string
@property
def list(self):
if not self._list:
self._list = map(Namespace, self._string.split('/'))
return self._list
@property
def reverse(self):
return Key(self.list[::-1])
@property
def namespaces(self):
return self.list
@property
def name(self):
return Namespace(self.list[-1]).value
@property
def type(self):
return Namespace(self.list[-1]).field
def instance(self, other):
assert '/' not in str(other)
return Key(str(self) + ':' + str(other))
@property
|
MIT License
|
tensorflow/estimator
|
tensorflow_estimator/python/estimator/head/base_head.py
|
create_estimator_spec_summary
|
python
|
def create_estimator_spec_summary(regularized_training_loss,
regularization_losses=None,
summary_key_fn=None):
with ops.name_scope(''):
keys = metric_keys.MetricKeys
loss_key = summary_key_fn(keys.LOSS) if summary_key_fn else keys.LOSS
tf.compat.v1.summary.scalar(loss_key, regularized_training_loss)
if regularization_losses is not None:
regularization_loss = tf.math.add_n(regularization_losses)
regularization_loss_key = (
summary_key_fn(keys.LOSS_REGULARIZATION)
if summary_key_fn else keys.LOSS_REGULARIZATION)
tf.compat.v1.summary.scalar(regularization_loss_key, regularization_loss)
|
Create summary for estimator_spec.
|
https://github.com/tensorflow/estimator/blob/fe1b51e15bade17d8b5085780c9ab78a6a961963/tensorflow_estimator/python/estimator/head/base_head.py#L916-L929
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import six
import tensorflow as tf
from tensorflow.python.feature_column import feature_column_lib
from tensorflow.python.feature_column.feature_column import _LazyBuilder
from tensorflow.python.feature_column.feature_column import _NumericColumn
from tensorflow.python.framework import ops
from tensorflow.python.util import function_utils
from tensorflow.python.util.tf_export import estimator_export
from tensorflow_estimator.python.estimator.canned import metric_keys
from tensorflow_estimator.python.estimator.export import export_output
DEFAULT_SERVING_KEY = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY
CLASSIFY_SERVING_KEY = 'classification'
REGRESS_SERVING_KEY = 'regression'
PREDICT_SERVING_KEY = 'predict'
@estimator_export('estimator.Head')
@six.add_metaclass(abc.ABCMeta)
class Head(object):
@abc.abstractproperty
def name(self):
raise NotImplementedError('Calling an abstract method.')
@abc.abstractproperty
def logits_dimension(self):
raise NotImplementedError('Calling an abstract method.')
@abc.abstractproperty
def loss_reduction(self):
raise NotImplementedError('Calling an abstract method.')
@abc.abstractmethod
def loss(self,
labels,
logits,
features=None,
mode=None,
regularization_losses=None):
raise NotImplementedError('Calling an abstract method.')
@abc.abstractmethod
def predictions(self, logits, keys=None):
raise NotImplementedError('Calling an abstract method.')
@abc.abstractmethod
def metrics(self, regularization_losses=None):
raise NotImplementedError('Calling an abstract method.')
@abc.abstractmethod
def update_metrics(self,
eval_metrics,
features,
logits,
labels,
mode=None,
regularization_losses=None):
raise NotImplementedError('Calling an abstract method.')
def _summary_key(self, key):
return '{}/{}'.format(key, self.name) if self.name else key
def create_estimator_spec(self,
features,
mode,
logits,
labels=None,
optimizer=None,
trainable_variables=None,
train_op_fn=None,
update_ops=None,
regularization_losses=None):
try:
tpu_estimator_spec = (
self._create_tpu_estimator_spec(
features=features,
mode=mode,
logits=logits,
labels=labels,
optimizer=optimizer,
trainable_variables=trainable_variables,
train_op_fn=train_op_fn,
update_ops=update_ops,
regularization_losses=regularization_losses))
return tpu_estimator_spec.as_estimator_spec()
except NotImplementedError:
raise NotImplementedError(
'Subclasses of Head must implement `create_estimator_spec()` or '
'_create_tpu_estimator_spec().')
def _create_tpu_estimator_spec(
self,
features,
mode,
logits,
labels=None,
optimizer=None,
trainable_variables=None,
train_op_fn=None,
update_ops=None,
regularization_losses=None,
):
raise NotImplementedError(
'TPUEstimatorSpec not available for this model head.')
_LABEL_NONE_ERR_MSG = (
'You must provide a labels Tensor. Given: None. '
'Suggested troubleshooting steps: Check that your data contains your label '
'feature. Check that your input_fn properly parses and returns labels.')
_SPARSE_LABEL_ERR_MSG = (
'SparseTensor labels are not supported. Labels must be a Tensor of shape '
'[D0, D1, ..., DN, {}], e.g. [batch_size, {}].Suggested Fix (1): Check the'
' label feature in your data. Each example must contain {} value(s). If '
'not, your choice of label was probably incorrect. Suggested Fix (2): In '
'your input_fn, use tf.sparse_tensor_to_dense() to turn labels into a '
'Tensor.')
_MISMATCHED_LABEL_DIM_ERR_MSG = (
'Mismatched label shape. Expected labels dimension={}. Received {}. '
'Suggested Fix: If your classifier expects one-hot encoding label, check '
'your n_classes argument to the estimator and/or the shape of your label. '
'Otherwise, check the shape of your label.')
_LABEL_SHAPE_ERR_MSG = (
'labels shape must be [D0, D1, ... DN, {}]. Suggested Fix: check your '
'n_classes argument to the head and/or the shape of your label.')
_VALIDATION_ERROR_MSG = '{} should be a list or a tuple. Given type: {}.'
def check_dense_labels_match_logits_and_reshape(labels, logits,
expected_labels_dimension):
if labels is None:
raise ValueError(_LABEL_NONE_ERR_MSG)
with ops.name_scope('labels', values=(labels, logits)) as scope:
labels = tf.compat.v1.convert_to_tensor_or_sparse_tensor(labels)
if isinstance(labels, tf.sparse.SparseTensor):
raise ValueError(
_SPARSE_LABEL_ERR_MSG.format(expected_labels_dimension,
expected_labels_dimension,
expected_labels_dimension))
if tf.executing_eagerly():
labels_rank = labels._rank()
logits_rank = logits._rank()
if (labels_rank is not None and logits_rank is not None and
labels_rank == logits_rank - 1):
labels = tf.compat.v1.expand_dims(labels, -1)
labels_rank += 1
labels_shape = labels._shape_tuple()
if labels_rank < 2:
raise ValueError('labels must have rank at least 2. Received rank {}, '
'shape {}'.format(labels_rank, labels_shape))
if labels_shape[-1] != expected_labels_dimension:
raise ValueError(
_MISMATCHED_LABEL_DIM_ERR_MSG.format(expected_labels_dimension,
labels_shape[-1]))
logits_shape = logits._shape_tuple()
expected_labels_shape = logits_shape[:-1] + (expected_labels_dimension,)
if expected_labels_shape != labels_shape:
raise ValueError(
'{}, expected_labels_shape: {}. labels_shape: {}.'.format(
_LABEL_SHAPE_ERR_MSG.format(expected_labels_dimension),
expected_labels_shape, labels_shape))
return labels
if (labels.shape.ndims is not None and logits.shape.ndims is not None and
labels.shape.ndims == logits.shape.ndims - 1):
labels = tf.compat.v1.expand_dims(labels, -1)
assert_rank = tf.compat.v1.debugging.assert_rank_at_least(
labels,
2,
message=_LABEL_SHAPE_ERR_MSG.format(expected_labels_dimension))
with tf.control_dependencies([assert_rank]):
static_shape = labels.shape
if static_shape.ndims is not None:
final_dim = static_shape[-1]
if (final_dim is not None) and (final_dim != expected_labels_dimension):
raise ValueError(
_MISMATCHED_LABEL_DIM_ERR_MSG.format(expected_labels_dimension,
final_dim))
logits_shape = tf.compat.v1.shape(logits)
expected_labels_shape = tf.concat(
[logits_shape[:-1], [expected_labels_dimension]], axis=0)
labels_shape = tf.compat.v1.shape(labels)
assert_dimension = tf.compat.v1.debugging.assert_equal(
expected_labels_shape,
labels_shape,
message=_LABEL_SHAPE_ERR_MSG.format(expected_labels_dimension),
data=[
'expected_labels_shape: ', expected_labels_shape,
'labels_shape: ', labels_shape
])
with tf.control_dependencies([assert_dimension]):
return tf.identity(labels, name=scope)
def get_weights_and_check_match_logits(features,
weight_column,
logits,
allow_per_logit_weights=False):
if allow_per_logit_weights:
err_msg = ('weights shape must be [D0, D1, ... DN], [D0, D1, ... DN, 1] or '
'[D0, D1, ... DN, logits_dimension]')
else:
err_msg = ('weights shape must be [D0, D1, ... DN] or [D0, D1, ... DN, 1]')
with ops.name_scope(
'weights', values=tuple(six.itervalues(features)) + (logits,)) as scope:
if weight_column is None:
return 1.
if isinstance(weight_column, six.string_types):
weight_column = tf.feature_column.numeric_column(
key=weight_column, shape=(1,))
if not isinstance(weight_column,
(feature_column_lib.NumericColumn, _NumericColumn)):
raise TypeError('Weight column must be either a string or NumericColumn.'
' Given type: {}.'.format(type(weight_column)))
weights = weight_column._get_dense_tensor(
_LazyBuilder(features))
if not (weights.dtype.is_floating or weights.dtype.is_integer):
raise ValueError('Weight column should be castable to float. '
'Given dtype: {}'.format(weights.dtype))
weights = tf.cast(weights, name='weights', dtype=tf.dtypes.float32)
if tf.executing_eagerly():
weights_shape = weights._shape_tuple()
logits_shape = logits._shape_tuple()
weights_rank = weights._rank()
logits_rank = logits._rank()
if (weights_rank is not None and logits_rank is not None and
weights_rank == logits_rank - 1):
if logits_shape[:-1] != weights_shape:
raise ValueError('{}, logits_shape: {}. weights_shape: {}.'.format(
err_msg, logits_shape, weights_shape))
return tf.compat.v1.expand_dims(weights, -1, name=scope)
supported_weights_shape = logits_shape[:-1] + (1,)
if allow_per_logit_weights:
if (logits_shape != weights_shape and
supported_weights_shape != weights_shape):
raise ValueError('{}, logits_shape: {}. weights_shape: {}.'.format(
err_msg, logits_shape, weights_shape))
else:
if supported_weights_shape != weights_shape:
raise ValueError('{}, logits_shape: {}. weights_shape: {}.'.format(
err_msg, logits_shape, weights_shape))
return weights
weights_shape = tf.compat.v1.shape(weights, name='weights_shape')
logits_shape = tf.compat.v1.shape(logits, name='logits_shape')
if (weights.shape.ndims is not None and logits.shape.ndims is not None and
weights.shape.ndims == logits.shape.ndims - 1):
assert_dimension = tf.compat.v1.debugging.assert_equal(
logits_shape[:-1],
weights_shape,
message=err_msg,
data=[
'logits_shape: ', logits_shape, 'weights_shape: ', weights_shape
])
with tf.control_dependencies([assert_dimension]):
return tf.compat.v1.expand_dims(weights, -1, name=scope)
supported_weights_shape = tf.concat([logits_shape[:-1], [1]], axis=0)
if allow_per_logit_weights:
condition = tf.math.reduce_any([
tf.reduce_all(tf.math.equal(logits_shape, weights_shape)),
tf.reduce_all(tf.math.equal(supported_weights_shape, weights_shape))
])
assert_dimension = tf.debugging.Assert(
condition=condition,
data=[
err_msg, 'logits_shape: ', logits_shape, 'weights_shape: ',
weights_shape
])
else:
assert_dimension = tf.compat.v1.debugging.assert_equal(
supported_weights_shape,
weights_shape,
message=err_msg,
data=[
'logits_shape: ', logits_shape, 'weights_shape: ', weights_shape
])
with tf.control_dependencies([assert_dimension]):
return tf.identity(weights, name=scope)
def check_logits_final_dim(logits, expected_logits_dimension):
with ops.name_scope('logits', values=(logits,)) as scope:
logits = tf.cast(logits, tf.dtypes.float32)
if tf.executing_eagerly():
logits_shape = logits._shape_tuple()
logits_rank = logits._rank()
if logits_rank < 2:
raise ValueError('logits must have rank at least 2. Received rank {}, '
'shape {}'.format(logits_rank, logits_shape))
if (isinstance(expected_logits_dimension, int) and
logits_shape[-1] != expected_logits_dimension):
raise ValueError(
'logits shape must be [D0, D1, ... DN, logits_dimension], '
'got {}.'.format(logits_shape))
return logits
logits_shape = tf.compat.v1.shape(logits)
assert_rank = tf.compat.v1.debugging.assert_rank_at_least(
logits,
2,
data=[logits_shape],
message='logits shape must be [D0, D1, ... DN, logits_dimension]')
with tf.control_dependencies([assert_rank]):
static_shape = logits.shape
if static_shape.ndims is not None and static_shape[-1] is not None:
if (isinstance(expected_logits_dimension, int) and
static_shape[-1] != expected_logits_dimension):
raise ValueError(
'logits shape must be [D0, D1, ... DN, logits_dimension], '
'got {}.'.format(static_shape))
return logits
assert_dimension = tf.compat.v1.debugging.assert_equal(
expected_logits_dimension,
logits_shape[-1],
data=[logits_shape],
message='logits shape must be [D0, D1, ... DN, logits_dimension]')
with tf.control_dependencies([assert_dimension]):
return tf.identity(logits, name=scope)
def validate_loss_fn_args(loss_fn):
loss_fn_args = function_utils.fn_args(loss_fn)
for required_arg in ['labels', 'logits']:
if required_arg not in loss_fn_args:
raise ValueError('loss_fn must contain argument: {}. '
'Given arguments: {}'.format(required_arg, loss_fn_args))
invalid_args = list(
set(loss_fn_args) -
set(['labels', 'logits', 'features', 'loss_reduction']))
if invalid_args:
raise ValueError('loss_fn has unexpected args: {}'.format(invalid_args))
def validate_loss_reduction(loss_reduction):
if (loss_reduction not in tf.losses.Reduction.all() or
loss_reduction == tf.losses.Reduction.NONE):
raise ValueError(
'Invalid loss_reduction: {}. See `tf.losses.Reduction` for valid '
'options.'.format(loss_reduction))
def validate_update_ops(update_ops=None):
if update_ops is not None and not isinstance(update_ops, (list, tuple)):
raise ValueError(
_VALIDATION_ERROR_MSG.format('update_ops', type(update_ops)))
def validate_v2_optimizer(optimzier):
if not isinstance(optimzier, tf.keras.optimizers.Optimizer):
raise ValueError(
'The given optimizer is not a tf.keras.optimizers.Optimizer instance. '
'Given: {}'.format(optimzier))
def validate_trainable_variables(trainable_variables=None):
if trainable_variables is None:
raise ValueError('trainable_variables cannot be None. Given {}'.format(
trainable_variables))
if not isinstance(trainable_variables, (list, tuple)):
raise ValueError(
_VALIDATION_ERROR_MSG.format('trainable_variables',
type(trainable_variables)))
def validate_n_classes(n_classes):
if isinstance(n_classes, int) and (n_classes <= 2):
raise ValueError('n_classes must be > 2: %s.' % n_classes)
n_classes_as_tensor = ops.convert_to_tensor(n_classes)
assert_n_classes = tf.compat.v1.debugging.assert_greater(
n_classes_as_tensor, 2, message='n_classes must be greater than 2')
with tf.control_dependencies([assert_n_classes]):
tf.no_op()
return n_classes
def call_loss_fn(loss_fn, labels, logits, features, expected_loss_dim=1):
loss_fn_args = function_utils.fn_args(loss_fn)
kwargs = {}
if 'features' in loss_fn_args:
kwargs['features'] = features
with ops.name_scope(
'call_loss_fn', values=[labels, logits] + list(six.itervalues(features))):
unweighted_loss = loss_fn(labels=labels, logits=logits, **kwargs)
if tf.executing_eagerly():
loss_shape = unweighted_loss._shape_tuple()
logits_shape = logits._shape_tuple()
expected_loss_shape = logits_shape[:-1] + (expected_loss_dim,)
if loss_shape != expected_loss_shape:
raise ValueError(
'loss_fn must return Tensor of shape '
'[D0, D1, ... DN, {}]. '.format(expected_loss_dim),
'logits_shape: ', logits_shape, 'loss_shape: ', loss_shape)
return unweighted_loss
logits_shape = tf.compat.v1.shape(logits, name='logits_shape')
expected_loss_shape = tf.concat([logits_shape[:-1], [expected_loss_dim]],
axis=0,
name='expected_loss_shape')
loss_shape = tf.compat.v1.shape(unweighted_loss, name='loss_shape')
check_loss_shape_op = tf.debugging.Assert(
tf.reduce_all(tf.math.equal(loss_shape, expected_loss_shape)),
data=[
'loss_fn must return Tensor of shape '
'[D0, D1, ... DN, {}]. '.format(expected_loss_dim),
'logits_shape: ', logits_shape, 'loss_shape: ', loss_shape
],
name='check_loss_shape')
with tf.control_dependencies([check_loss_shape_op]):
return tf.identity(unweighted_loss)
def check_prediction_keys(pred_keys, valid_keys):
for key in pred_keys:
if key not in valid_keys:
raise ValueError('Prediction key must be in PredictionKeys, given: {}.'
'Valid prediction keys include {}.'.format(
key, valid_keys))
def all_class_ids(logits, n_classes):
batch_size = tf.compat.v1.shape(logits)[0]
class_id_list = tf.range(n_classes)
return tf.tile(
input=tf.compat.v1.expand_dims(input=class_id_list, axis=0),
multiples=[batch_size, 1])
def all_classes(logits, n_classes, label_vocabulary=None):
batch_size = tf.compat.v1.shape(logits)[0]
if label_vocabulary:
classes_list = tf.convert_to_tensor([label_vocabulary])
else:
classes_list = tf.expand_dims(tf.range(n_classes), axis=0)
classes_list = tf.strings.as_string(classes_list)
return tf.tile(input=classes_list, multiples=[batch_size, 1])
def classification_output(scores, n_classes, label_vocabulary=None):
return export_output.ClassificationOutput(
scores=scores,
classes=all_classes(scores, n_classes, label_vocabulary))
def check_label_range(labels, n_classes, message=None):
with ops.name_scope('check_label_range', values=(labels,)):
if tf.executing_eagerly():
assert_less = tf.reduce_all(tf.math.less_equal(labels, n_classes - 1))
if not assert_less:
raise ValueError(message or
'Labels must be <= {} - 1'.format(n_classes))
assert_greater = tf.reduce_all(tf.math.greater_equal(labels, 0))
if not assert_greater:
raise ValueError(message or 'Labels must be >= 0')
return labels
assert_less = tf.compat.v1.debugging.assert_less_equal(
labels,
ops.convert_to_tensor(n_classes - 1, dtype=labels.dtype),
message=message or 'Labels must be <= n_classes - 1')
assert_greater = tf.compat.v1.debugging.assert_non_negative(
labels, message=message or 'Labels must be >= 0')
with tf.control_dependencies((assert_less, assert_greater)):
return tf.identity(labels)
def update_metric_with_broadcast_weights(eval_metric, values, weights):
values = tf.cast(values, dtype=tf.dtypes.float32)
if weights is not None:
weights = tf.compat.v2.__internal__.ops.broadcast_weights(weights, values)
eval_metric.update_state(values=values, sample_weight=weights)
def create_eval_metrics_tuple(fn, kwargs):
tensor_kwargs = {}
nontensor_kwargs = {}
for k, v in six.iteritems(kwargs):
if tf.is_tensor(v):
tensor_kwargs[k] = v
else:
nontensor_kwargs[k] = v
def _fn(**tensors):
return fn(**dict(nontensor_kwargs, **tensors))
return (_fn, tensor_kwargs)
def create_estimator_spec_train_op(
head_name,
optimizer=None,
trainable_variables=None,
train_op_fn=None,
update_ops=None,
regularized_training_loss=None,
loss_reduction=tf.losses.Reduction.SUM_OVER_BATCH_SIZE):
del head_name
validate_update_ops(update_ops)
with ops.name_scope(''):
with ops.name_scope('training'):
if optimizer is not None:
if train_op_fn is not None:
raise ValueError('train_op_fn and optimizer cannot both be set.')
validate_v2_optimizer(optimizer)
validate_trainable_variables(trainable_variables)
if loss_reduction == tf.losses.Reduction.SUM_OVER_BATCH_SIZE:
num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
if num_replicas > 1:
regularized_training_loss *= (1. / num_replicas)
train_op = optimizer.get_updates(regularized_training_loss,
trainable_variables)[0]
elif train_op_fn is not None:
train_op = train_op_fn(regularized_training_loss)
else:
raise ValueError('train_op_fn and optimizer cannot both be None.')
if update_ops is not None:
train_op = tf.group(train_op, *update_ops)
return train_op
|
Apache License 2.0
|
purestorage-openconnect/py-pure-client
|
pypureclient/pure1/Pure1_1_0/models/target.py
|
Target.to_dict
|
python
|
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.swagger_types):
if hasattr(self, attr):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
if issubclass(Target, dict):
for key, value in self.items():
result[key] = value
return result
|
Returns the model properties as a dict
|
https://github.com/purestorage-openconnect/py-pure-client/blob/2d9fdef0b73321cea9613e7d1eb881b42845099b/pypureclient/pure1/Pure1_1_0/models/target.py#L102-L128
|
import pprint
import re
import six
import typing
from ....properties import Property
if typing.TYPE_CHECKING:
from pypureclient.pure1.Pure1_1_0 import models
class Target(object):
swagger_types = {
'as_of': 'int',
'id': 'str',
'name': 'str',
'arrays': 'list[FixedReference]',
'address': 'str',
'status': 'str',
'status_details': 'str'
}
attribute_map = {
'as_of': '_as_of',
'id': 'id',
'name': 'name',
'arrays': 'arrays',
'address': 'address',
'status': 'status',
'status_details': 'status_details'
}
required_args = {
}
def __init__(
self,
as_of=None,
id=None,
name=None,
arrays=None,
address=None,
status=None,
status_details=None,
):
if as_of is not None:
self.as_of = as_of
if id is not None:
self.id = id
if name is not None:
self.name = name
if arrays is not None:
self.arrays = arrays
if address is not None:
self.address = address
if status is not None:
self.status = status
if status_details is not None:
self.status_details = status_details
def __setattr__(self, key, value):
if key not in self.attribute_map:
raise KeyError("Invalid key `{}` for `Target`".format(key))
self.__dict__[key] = value
def __getattribute__(self, item):
value = object.__getattribute__(self, item)
if isinstance(value, Property):
raise AttributeError
else:
return value
|
BSD 2-Clause Simplified License
|
lightd22/swainbot
|
src/data/champion_info.py
|
populate_champion_dictionary
|
python
|
def populate_champion_dictionary():
DISABLED_CHAMPIONS = []
if(look_local):
with open(LOCAL_CHAMPION_PATH, 'r') as local_data:
response = json.load(local_data)
else:
request = "{static}/{version}/champions".format(static="static-data",version=api_versions["staticdata"])
params = {"locale":"en_US", "dataById":"true", "api_key":myRiotApiKey.api_key }
response = make_request(request,"GET",params)
data = response["data"]
champions = []
for value in data.values():
if(value["name"] in DISABLED_CHAMPIONS):
continue
champion = Champion(value)
champions.append(champion)
__m.champion_name_from_id = {champion.id: champion.name for champion in champions}
__m.champion_id_from_name = {re.sub("[^A-Za-z0-9]+", "", champion.name.lower()): champion.id for champion in champions}
__m.valid_champion_ids = sorted(__m.champion_name_from_id.keys())
if not __m.champion_name_from_id:
return False
return True
|
Args:
None
Returns:
True if succesful, False otherwise
Populates the module dictionary whose keys are champion Ids and values are strings of the corresponding champion's name.
|
https://github.com/lightd22/swainbot/blob/7d4dad3ea57d3c2f3beda0e7b3278e25d1f17e55/src/data/champion_info.py#L171-L203
|
import numpy as np
from .riotapi import make_request, api_versions
import requests
import re
import json
from . import myRiotApiKey
class Box:
pass
__m = Box()
__m.champion_name_from_id = None
__m.champion_id_from_name = None
__m.valid_champion_ids = None
__m.championAliases = {
: "blitzcrank",
: "gangplank",
: "jarvaniv",
: "caitlyn",
: "leblanc",
: "cassiopeia",
: "cassiopeia",
: "orianna",
: "leesin",
: "vladimir",
: "jarvaniv",
: "aurelionsol",
: "kassadin",
: "tahmkench",
: "malzahar",
: "sejuani",
: "nidalee",
: "aurelionsol",
: "drmundo",
: "tahmkench",
: "kayn",
: "zilean",
: "nautilus",
: "morgana",
: "ezreal",
: "nunuwillump",
: "masteryi",
:"chogath",
:"maokai",
:"mordekaiser",
:"xinzhao",
:"evelynn",
:"aurelionsol",
:"fiddlesticks",
:"fiddlesticks",
:"heimerdinger",
:"nocturne",
:"twistedfate",
:"kogmaw"
}
look_local = True
LOCAL_CHAMPION_PATH = "../data/champions.json"
class Champion():
def __init__(self,dictionary):
if(look_local):
self.key = dictionary["id"]
self.id = int(dictionary["key"])
else:
self.key = dictionary["key"]
self.id = int(dictionary["id"])
self.name = dictionary["name"]
self.title = dictionary["title"]
class AliasException(Exception):
def __init__(self, message, errors):
super().__init__(message)
self.errors = errors
self.message = message
def convert_champion_alias(alias):
null_champion = ["none","lossofban"]
if (alias in null_champion):
return "none"
try:
if (alias in __m.championAliases):
return __m.championAliases[alias]
else:
raise AliasException("Champion alias not found!", alias)
except AliasException as e:
print("*****")
print(e.message)
print("Offending alias: {}".format(e.errors))
print("*****")
raise
def champion_name_from_id(champion_id):
if __m.champion_name_from_id is None:
populate_champion_dictionary()
if (champion_id in __m.champion_name_from_id):
return __m.champion_name_from_id[champion_id]
return None
def champion_id_from_name(champion_name):
if __m.champion_id_from_name is None:
populate_champion_dictionary()
if (champion_name in __m.champion_id_from_name):
return __m.champion_id_from_name[champion_name]
return None
def valid_champion_id(champion_id):
if __m.champion_name_from_id is None:
populate_champion_dictionary()
return champion_id in __m.valid_champion_ids
def get_champion_ids():
if __m.valid_champion_ids is None:
populate_champion_dictionary()
return __m.valid_champion_ids[:]
|
Apache License 2.0
|
chryswoods/acquire
|
Acquire/Client/_wallet.py
|
Wallet.remove_service
|
python
|
def remove_service(self, service):
if isinstance(service, str):
try:
service = self.get_service(service)
except:
return
service_url = service.canonical_url()
from Acquire.ObjectStore import string_to_safestring as _string_to_safestring
service_dir = Wallet._get_service_dir(service.uid())
service_file = "%s/service_%s.json" % (
service_dir, _string_to_safestring(service_url))
import os as _os
if _os.path.exists(service_file):
_os.unlink(service_file)
|
Remove the cached service info for the passed service
|
https://github.com/chryswoods/acquire/blob/bf8a0465a531f3b485cb2a14c69dc9aea79451fd/Acquire/Client/_wallet.py#L545-L565
|
_input = input
__all__ = ["Wallet"]
def _get_wallet_dir():
import os as _os
home = _os.path.expanduser("~")
return "%s/.acquire_wallet" % home
def _get_wallet_password(confirm_password=False):
import getpass as _getpass
if confirm_password:
password = _getpass.getpass(
prompt="Please enter a password to encrypt your wallet: ")
else:
password = _getpass.getpass(
prompt="Please enter the password to decrypt your wallet: "
)
if not confirm_password:
return password
password2 = _getpass.getpass(
prompt="Please confirm the password: ")
if password != password2:
_output("The passwords don't match. Please try again.")
return _get_wallet_password(confirm_password=confirm_password)
return password
def _output(s, end=None):
if end is None:
print(s)
else:
print(s, end=end)
def _flush_output():
try:
import sys as _sys
_sys.stdout.flush()
except:
pass
def _read_json(filename):
import json as _json
with open(filename, "rb") as FILE:
s = FILE.read().decode("utf-8")
return _json.loads(s)
def _write_json(data, filename):
import json as _json
s = _json.dumps(data)
with open(filename, "wb") as FILE:
FILE.write(s.encode("utf-8"))
def _read_service(filename):
from Acquire.Client import Service as _Service
return _Service.from_data(_read_json(filename))
def _write_service(service, filename):
_write_json(service.to_data(), filename)
def _could_match(userinfo, username, password):
if username is None:
return True
if "username" not in userinfo:
return False
if userinfo["username"] == username:
if password is None:
return True
if "password" in userinfo:
if userinfo["password"] == password:
return True
return False
class Wallet:
def __init__(self):
from Acquire.Service import is_running_service as _is_running_service
if _is_running_service():
from Acquire.Service import get_this_service as _get_this_service
service = _get_this_service(need_private_access=False)
raise PermissionError(
"You cannot open a Wallet on a running Service (%s)" %
service)
self._wallet_key = None
self._service_info = {}
import os as _os
wallet_dir = _get_wallet_dir()
if not _os.path.exists(wallet_dir):
_os.makedirs(wallet_dir, mode=0o700, exist_ok=False)
elif not _os.path.isdir(wallet_dir):
raise TypeError("The wallet directory must be a directory!")
self._wallet_dir = wallet_dir
def _create_wallet_key(self, filename):
password = _get_wallet_password(confirm_password=True)
from Acquire.Client import PrivateKey as _PrivateKey
key = _PrivateKey(name="wallet_key")
bytes = key.bytes(password)
with open(filename, "wb") as FILE:
FILE.write(bytes)
return key
def _get_wallet_key(self):
if self._wallet_key:
return self._wallet_key
wallet_dir = self._wallet_dir
keyfile = "%s/wallet_key.pem" % wallet_dir
import os as _os
if not _os.path.exists(keyfile):
self._wallet_key = self._create_wallet_key(filename=keyfile)
return self._wallet_key
with open(keyfile, "rb") as FILE:
bytes = FILE.read()
wallet_key = None
from Acquire.Client import PrivateKey as _PrivateKey
for _ in range(0, 5):
password = _get_wallet_password()
try:
wallet_key = _PrivateKey.read_bytes(bytes, password)
except:
_output("Invalid password. Please try again.")
if wallet_key:
break
if wallet_key is None:
raise PermissionError("Too many failed password attempts...")
self._wallet_key = wallet_key
return wallet_key
@staticmethod
def _get_service_dir(service_uid):
assert(service_uid is not None)
service_dir = "%s/%s" % (_get_wallet_dir(), service_uid)
import os as _os
if not _os.path.exists(service_dir):
_os.makedirs(service_dir, mode=0o700)
if not _os.path.isdir(service_dir):
raise PermissionError(
"Unable to get the directory to store wallet data for the "
"service with UID '%s'" % service_uid)
return service_dir
def _get_userinfo_filename(self, user_uid, service_uid):
assert(user_uid is not None)
service_dir = Wallet._get_service_dir(service_uid)
return "%s/user_%s.json" % (service_dir, user_uid)
def _set_userinfo(self, userinfo, user_uid, service_uid):
from Acquire.ObjectStore import bytes_to_string as _bytes_to_string
import json as _json
filename = self._get_userinfo_filename(user_uid=user_uid,
service_uid=service_uid)
key = self._get_wallet_key().public_key()
data = _bytes_to_string(key.encrypt(_json.dumps(userinfo)))
userinfo = {"username": userinfo["username"],
"user_uid": user_uid,
"data": data}
_write_json(data=userinfo, filename=filename)
def _unlock_userinfo(self, userinfo):
from Acquire.ObjectStore import string_to_bytes as _string_to_bytes
import json as _json
key = self._get_wallet_key()
data = _string_to_bytes(userinfo["data"])
result = _json.loads(key.decrypt(data))
result["user_uid"] = userinfo["user_uid"]
return result
def _get_userinfo(self, user_uid, service_uid):
filename = self._get_userinfo_filename(user_uid=user_uid,
service_uid=service_uid)
userinfo = _read_json(filename=filename)
return self._unlock_userinfo(userinfo)
def _find_userinfo(self, username=None, password=None, service_uid=None):
service_dir = Wallet._get_service_dir(service_uid)
import glob as _glob
userfiles = _glob.glob("%s/user_*.json" % service_dir)
userinfos = []
for userfile in userfiles:
try:
userinfo = _read_json(userfile)
if _could_match(userinfo, username, password):
userinfos.append((userinfo["username"], userinfo))
except:
pass
userinfos.sort(key=lambda x: x[0])
if len(userinfos) == 1:
return self._unlock_userinfo(userinfos[0][1])
if len(userinfos) == 0:
if username is None:
username = _input("Please type your username: ")
userinfo = {"username": username}
if password is not None:
userinfo["password"] = password
return userinfo
_output("Please choose the account by typing in its number, "
"or type a new username if you want a different account.")
for (i, (username, userinfo)) in enumerate(userinfos):
_output("[%d] %s {%s}" % (i+1, username, userinfo["user_uid"]))
max_tries = 5
for i in range(0, max_tries):
reply = _input(
"\nMake your selection (1 to %d) " %
(len(userinfos))
)
try:
idx = int(reply) - 1
except:
idx = None
if idx is None:
return self._find_userinfo(username=reply, password=password)
elif idx < 0 or idx >= len(userinfos):
_output("Invalid account.")
else:
return self._unlock_userinfo(userinfos[idx][1])
if i < max_tries-1:
_output("Try again...")
userinfo = {}
if username is not None:
userinfo["username"] = username
return userinfo
def _get_user_password(self, userinfo):
if "password" in userinfo:
return userinfo["password"]
else:
import getpass as _getpass
password = _getpass.getpass(
prompt="Please enter the login password: ")
userinfo["password"] = password
return password
def _get_otpcode(self, userinfo):
if "otpsecret" in userinfo:
from Acquire.Client import OTP as _OTP
otp = _OTP(userinfo["otpsecret"])
return otp.generate()
else:
import getpass as _getpass
return _getpass.getpass(
prompt="Please enter the one-time-password code: ")
def get_services(self):
import glob as _glob
service_files = _glob.glob("%s/*/service_*.json" % self._wallet_dir)
services = []
for service_file in service_files:
services.append(_read_service(service_file))
return services
def _get_service_from_registry(self, service_url=None, service_uid=None):
from Acquire.Registry import get_trusted_registry_service as _get_trusted_registry_service
from Acquire.ObjectStore import string_to_safestring as _string_to_safestring
_output("Connecting to registry...")
_flush_output()
registry = _get_trusted_registry_service(service_uid=service_uid,
service_url=service_url)
_output("...connected to registry %s" % registry)
_flush_output()
service_dir = Wallet._get_service_dir(registry.uid())
registry_file = "%s/service_%s.json" % (
service_dir, _string_to_safestring(registry.canonical_url()))
_write_service(service=registry, filename=registry_file)
if service_url is not None:
_output("Securely fetching keys for %s..." % service_url)
_flush_output()
else:
_output("Securely fetching keys for UID %s..." % service_uid)
_flush_output()
service = registry.get_service(service_url=service_url,
service_uid=service_uid)
_output("...success.\nFetched %s" % service)
_flush_output()
return service
def clear_cache(self):
from Acquire.Service import clear_services_cache as _clear_services_cache
_clear_services_cache()
def add_service(self, service):
from Acquire.Service import Service as _Service
from Acquire.ObjectStore import string_to_safestring as _string_to_safestring
s = _Service.resolve(service, fetch=True)
service = s["service"]
service_dir = Wallet._get_service_dir(service.uid())
service_file = "%s/service_%s.json" % (
service_dir, _string_to_safestring(service.canonical_url()))
_write_service(service=service, filename=service_file)
def get_service(self, service=None, service_url=None, service_uid=None,
service_type=None, autofetch=True):
from Acquire.ObjectStore import string_to_safestring as _string_to_safestring
from Acquire.Service import Service as _Service
if service is not None:
s = _Service.resolve(service, fetch=False)
if s["service"] is not None:
self.add_service(s["service"])
return s["service"]
service_uid = s["service_uid"]
service_url = s["service_url"]
service = None
import glob as _glob
if service_url is None:
if service_uid is None:
raise PermissionError(
"You need to specify one of service_uid or service_url")
service_dir = Wallet._get_service_dir(service_uid)
service_files = _glob.glob("%s/service_*.json" % service_dir)
for service_file in service_files:
s = _read_service(service_file)
if s.uid() == service_uid:
service = s
break
else:
from Acquire.Service import Service as _Service
service_url = _Service.get_canonical_url(service_url,
service_type=service_type)
service_files = _glob.glob("%s/*/service_%s.json" % (
self._wallet_dir,
_string_to_safestring(service_url)))
for service_file in service_files:
s = _read_service(service_file)
if s.canonical_url() == service_url:
service = s
break
must_write = False
if service is None:
if not autofetch:
from Acquire.Service import ServiceError
raise ServiceError("No service at %s:%s" %
(service_url, service_uid))
service = self._get_service_from_registry(service_url=service_url,
service_uid=service_uid)
must_write = True
elif service.should_refresh_keys():
try:
service.refresh_keys()
must_write = True
except:
_output("Something went wrong refreshing keys...")
_output("Refreshing service from the registry.")
service = self._get_service_from_registry(
service_url=service_url,
service_uid=service_uid)
must_write = True
if service_uid is not None:
if service.uid() != service_uid:
raise PermissionError(
"Disagreement over the service UID for '%s' (%s)" %
(service, service_uid))
if must_write:
self.add_service(service)
return service
def remove_all_services(self):
import glob as _glob
import os as _os
service_files = _glob.glob("%s/*/service_*.json" % self._wallet_dir)
for service_file in service_files:
if _os.path.exists(service_file):
_os.unlink(service_file)
|
Apache License 2.0
|
alibaba/elastic-federated-learning-solution
|
efls-train/python/efl/dataio/work_queue.py
|
WorkQueue.add_summary
|
python
|
def add_summary(self):
with ops.name_scope(self.name):
with ops.device(self._remote_device):
size = lib.ops.work_queue_size(self._handle)
summary.scalar(
"{}/fraction_of_{}_full".format(self.name, self._capacity),
math_ops.to_float(size) * (1. / self._capacity))
|
Gets size of the work queue.
Returns:
Size of the work queue.
|
https://github.com/alibaba/elastic-federated-learning-solution/blob/e3fb357ad838e49b244c8a16fcc5dbd8aadeaf81/efls-train/python/efl/dataio/work_queue.py#L313-L324
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import re
from six import string_types
from six.moves import xrange
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import data_flow_ops
from tensorflow.python.ops import io_ops
from tensorflow.python.ops import logging_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import string_ops
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.platform import gfile
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.summary import summary
from tensorflow.python.training import queue_runner
from tensorflow.python.training import saver
from tensorflow.python.training import checkpoint_utils
from tensorflow.python.training import training
from efl import lib
class WorkQueue(saver.BaseSaverBuilder.SaveableObject):
class Resource(object):
def __init__(self, name, works):
self._name = name
self._works = works
@property
def name(self):
return self._name
@property
def handle(self):
return self._works._handle
@property
def create(self):
return self._works._create
@property
def is_initialized(self):
return self._works._is_initialized
def __init__(
self,
works,
num_epochs=1,
shuffle=True,
seed=None,
set_end_file=False,
name=None):
try:
executing_eagerly = context.executing_eagerly()
except:
executing_eagerly = context.in_eager_mode()
else:
executing_eagerly = False
if not executing_eagerly:
name = ops.get_default_graph().unique_name(name or 'work_queue')
else:
name = name or context.context().scope_name
if not isinstance(works, list) or not works:
raise ValueError(
"WorkQueue requires works as a list of strings")
works = [
w.encode() if isinstance(w, string_types) else w for w in works]
if not all([isinstance(w, bytes) for w in works]):
raise ValueError(
"WorkQueue requires works as a list of strings not {}".format(
[type(w) for w in works]))
self._works = [w.strip() for w in works]
if num_epochs <= 0:
raise ValueError("num_epochs must be > 0 not {}.".format(num_epochs))
with ops.name_scope(name):
self._remote_device = vs.variable(
0,
name="colocator",
trainable=False,
validate_shape=False,
collections=[ops.GraphKeys.LOCAL_VARIABLES]).device
self._local_device = control_flow_ops.no_op().device
with ops.device(self._remote_device):
self._handle = lib.ops.work_queue_handle_op(shared_name=name)
self._digest_op = ops.convert_to_tensor(
self.digest, dtype=dtypes.string)
self._save = lib.ops.work_queue_save(self._handle)
specs = [
saver.BaseSaverBuilder.SaveSpec(
self._digest_op, "", name + "_digest"),
saver.BaseSaverBuilder.SaveSpec(
self._save, "", name + "_works")]
self._capacity = len(self._works)
works_tensor = ops.convert_to_tensor(
self._works, dtype=dtypes.string)
self._create = lib.ops.work_queue_create(
self._handle, shared_name=name, set_end_file=set_end_file)
for epoch_index in xrange(num_epochs):
with ops.control_dependencies([self._create]):
with ops.name_scope('epochs/{}'.format(epoch_index)):
epoch = works_tensor
if shuffle:
epoch = random_ops.random_shuffle(epoch, seed=seed)
with ops.control_dependencies(
[logging_ops.print_v2(
"Add epoch of",
array_ops.size(epoch),
"elements:",
epoch,
summarize=8)]):
epoch = array_ops.identity(epoch)
self._create = lib.ops.work_queue_put(self._handle, epoch)
with ops.control_dependencies([self._create]):
self._create = lib.ops.work_queue_close(self._handle)
self._is_initialized = lib.ops.work_queue_is_initialized(
self._handle)
ops.add_to_collection(ops.GraphKeys.SAVEABLE_OBJECTS, self)
ops.add_to_collection(
ops.GraphKeys.RESOURCES, WorkQueue.Resource(name, self))
logging.info("%s placed at %s.", name, self._remote_device)
super(WorkQueue, self).__init__(self, specs, name)
def __len__(self):
return self._capacity
@property
def works(self):
return self._works
@property
def digest(self):
return b','.join(self._works)
def load_from_checkpoint(
self, ckpt_dir_or_file, filename_tensor, preferred_shard):
del preferred_shard
ckpt_ready = False
try:
ckpt_reader = checkpoint_utils.load_checkpoint(ckpt_dir_or_file)
tensors_in_ckpt = ckpt_reader.get_variable_to_shape_map()
ckpt_ready = all([spec.name in tensors_in_ckpt for spec in self.specs])
del tensors_in_ckpt
del ckpt_reader
except:
pass
if ckpt_ready:
return [
io_ops.restore_v2(
filename_tensor,
[spec.name],
[spec.slice_spec],
[spec.dtype])[0]
for spec in self.specs]
return [None, None]
def restore(self, restored_tensors, _):
if len(restored_tensors) != 2:
raise ValueError('WorkQueue requires 2 tensors to restore')
if restored_tensors[0] is None or restored_tensors[1] is None:
logging.info("Work queue %s not found in checkpoint.", self.name)
with ops.name_scope("{}_restore".format(self.name)):
return self._create
logging.info("Restore work queue %s.", self.name)
packed_digest = ops.convert_to_tensor(
restored_tensors[0], dtype=dtypes.string)
current_digest = ops.convert_to_tensor(
self.digest, dtype=dtypes.string)
same_works_again = math_ops.equal(packed_digest, current_digest)
works = ops.convert_to_tensor(
restored_tensors[1], dtype=dtypes.string)
with ops.control_dependencies([self._create]):
create_with_prompt = logging_ops.print_v2(
"Works queue {} abandoned in checkpoint.".format(self.name))
with ops.name_scope("{}/restore".format(self.name)):
return control_flow_ops.cond(
same_works_again,
lambda: lib.ops.work_queue_restore(self._handle, works),
lambda: create_with_prompt)
def take_fn(self):
with ops.name_scope(self.name):
with ops.device(self._remote_device):
taken = lib.ops.work_queue_take(
self._handle)
with ops.device(self._local_device):
local_work = array_ops.identity(taken)
return local_work
def take(self):
return self.take_fn()
def input_producer(self):
work = self.take()
with ops.name_scope(self.name):
with ops.device(self._local_device):
proxy = data_flow_ops.FIFOQueue(
capacity=1,
dtypes=[dtypes.string],
shapes=[tensor_shape.TensorShape([1])],
name='proxy')
with ops.control_dependencies(
[logging_ops.print_v2("Take work:", work)]):
work = array_ops.identity(work)
enqueue_proxy = proxy.enqueue(array_ops.reshape(work, (1,)))
cancel_proxy = proxy.close(cancel_pending_enqueues=True)
proxy_runner = queue_runner.QueueRunner(
proxy, [enqueue_proxy], cancel_op=cancel_proxy)
queue_runner.add_queue_runner(proxy_runner)
return proxy
def input_dataset(self):
proxy = self.input_producer()
def get_next_work(_):
work = array_ops.reshape(proxy.dequeue(), [])
with ops.control_dependencies(
[logging_ops.print_v2("Take work outof local queue:", work)]):
return work
with ops.name_scope(self.name):
with ops.device(self._local_device):
dataset = dataset_ops.Dataset.from_tensors(0).repeat()
dataset = dataset.map(get_next_work)
return dataset
|
Apache License 2.0
|
pydata/sparse
|
sparse/_umath.py
|
_get_matching_coords
|
python
|
def _get_matching_coords(coords, params):
matching_coords = []
dims = np.zeros(len(coords), dtype=np.uint8)
for p_all in zip(*params):
for i, p in enumerate(p_all):
if p:
matching_coords.append(coords[i][dims[i]])
break
else:
matching_coords.append(coords[dims[0]])
for i, p in enumerate(p_all):
if p is not None:
dims[i] += 1
return np.asarray(matching_coords, dtype=np.intp)
|
Get the matching coords across a number of broadcast operands.
Parameters
----------
coords : list[numpy.ndarray]
The input coordinates.
params : list[Union[bool, none]]
The broadcast parameters.
Returns
-------
numpy.ndarray
The broacasted coordinates
|
https://github.com/pydata/sparse/blob/0b7dfeb35cc5894fe36ed1742704acbb37c0c54e/sparse/_umath.py#L326-L357
|
import itertools
import numba
import numpy as np
import scipy.sparse
from itertools import zip_longest
from ._utils import isscalar, equivalent, _zero_of_dtype
def elemwise(func, *args, **kwargs):
return _Elemwise(func, *args, **kwargs).get_result()
@numba.jit(nopython=True, nogil=True)
def _match_arrays(a, b):
if len(a) == 0 or len(b) == 0:
return np.empty(0, dtype=np.uintp), np.empty(0, dtype=np.uintp)
a_ind, b_ind = [], []
nb = len(b)
ib = 0
match = 0
for ia, j in enumerate(a):
if j == b[match]:
ib = match
while ib < nb and j >= b[ib]:
if j == b[ib]:
a_ind.append(ia)
b_ind.append(ib)
if b[match] < b[ib]:
match = ib
ib += 1
return np.array(a_ind, dtype=np.uintp), np.array(b_ind, dtype=np.uintp)
def _get_nary_broadcast_shape(*shapes):
result_shape = ()
for shape in shapes:
try:
result_shape = _get_broadcast_shape(shape, result_shape)
except ValueError:
shapes_str = ", ".join(str(shape) for shape in shapes)
raise ValueError(
"operands could not be broadcast together with shapes %s" % shapes_str
)
return result_shape
def _get_broadcast_shape(shape1, shape2, is_result=False):
if not all(
(l1 == l2) or (l1 == 1) or ((l2 == 1) and not is_result)
for l1, l2 in zip(shape1[::-1], shape2[::-1])
):
raise ValueError(
"operands could not be broadcast together with shapes %s, %s"
% (shape1, shape2)
)
result_shape = tuple(
l1 if l1 != 1 else l2
for l1, l2 in zip_longest(shape1[::-1], shape2[::-1], fillvalue=1)
)[::-1]
return result_shape
def _get_broadcast_parameters(shape, broadcast_shape):
params = [
None if l1 is None else l1 == l2
for l1, l2 in zip_longest(shape[::-1], broadcast_shape[::-1], fillvalue=None)
][::-1]
return params
def _get_reduced_coords(coords, params):
reduced_params = [bool(param) for param in params]
return coords[reduced_params]
def _get_reduced_shape(shape, params):
reduced_shape = tuple(l for l, p in zip(shape, params) if p)
return reduced_shape
def _get_expanded_coords_data(coords, data, params, broadcast_shape):
first_dim = -1
expand_shapes = []
for d, p, l in zip(range(len(broadcast_shape)), params, broadcast_shape):
if p and first_dim == -1:
expand_shapes.append(coords.shape[1])
first_dim = d
if not p:
expand_shapes.append(l)
all_idx = _cartesian_product(*(np.arange(d, dtype=np.intp) for d in expand_shapes))
false_dim = 0
dim = 0
expanded_coords = np.empty((len(broadcast_shape), all_idx.shape[1]), dtype=np.intp)
if first_dim != -1:
expanded_data = data[all_idx[first_dim]]
else:
expanded_coords = (
all_idx if len(data) else np.empty((0, all_idx.shape[1]), dtype=np.intp)
)
expanded_data = np.repeat(data, np.prod(broadcast_shape, dtype=np.int64))
return np.asarray(expanded_coords), np.asarray(expanded_data)
for d, p, l in zip(range(len(broadcast_shape)), params, broadcast_shape):
if p:
expanded_coords[d] = coords[dim, all_idx[first_dim]]
else:
expanded_coords[d] = all_idx[false_dim + (d > first_dim)]
false_dim += 1
if p is not None:
dim += 1
return np.asarray(expanded_coords), np.asarray(expanded_data)
def _cartesian_product(*arrays):
broadcastable = np.ix_(*arrays)
broadcasted = np.broadcast_arrays(*broadcastable)
rows, cols = np.prod(broadcasted[0].shape), len(broadcasted)
dtype = np.result_type(*arrays)
out = np.empty(rows * cols, dtype=dtype)
start, end = 0, rows
for a in broadcasted:
out[start:end] = a.reshape(-1)
start, end = end, end + rows
return out.reshape(cols, rows)
|
BSD 3-Clause New or Revised License
|
napari/napari
|
napari/layers/labels/labels.py
|
Labels._is_default_colors
|
python
|
def _is_default_colors(self, color):
if len(color) != 2:
return False
if not hasattr(self, '_color'):
return False
default_keys = [None, self._background_label]
if set(default_keys) != set(color.keys()):
return False
for key in default_keys:
if not np.allclose(self._color[key], color[key]):
return False
return True
|
Returns True if color contains only default colors, otherwise False.
Default colors are black for `None` and transparent for
`self._background_label`.
Parameters
----------
color : Dict
Dictionary of label value to color array
Returns
-------
bool
True if color contains only default colors, otherwise False.
|
https://github.com/napari/napari/blob/c4c987c880fe125da608edf427767eafe7f2b3f4/napari/layers/labels/labels.py#L460-L490
|
import warnings
from collections import deque
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from scipy import ndimage as ndi
from ...utils import config
from ...utils._dtype import normalize_dtype
from ...utils.colormaps import (
color_dict_to_colormap,
label_colormap,
low_discrepancy_image,
)
from ...utils.events import Event
from ...utils.events.custom_types import Array
from ...utils.geometry import clamp_point_to_bounding_box
from ...utils.status_messages import generate_layer_status
from ...utils.translations import trans
from ..base import no_op
from ..image._image_utils import guess_multiscale
from ..image.image import _ImageBase
from ..utils.color_transformations import transform_color
from ..utils.layer_utils import validate_properties
from ._labels_constants import LabelColorMode, Mode
from ._labels_mouse_bindings import draw, pick
from ._labels_utils import indices_in_shape, sphere_indices
_REV_SHAPE_HELP = {
trans._('enter paint or fill mode to edit labels'): {Mode.PAN_ZOOM},
trans._('hold <space> to pan/zoom, click to pick a label'): {
Mode.PICK,
Mode.FILL,
},
trans._(
'hold <space> to pan/zoom, hold <shift> to toggle preserve_labels, hold <control> to fill, hold <alt> to erase, drag to paint a label'
): {Mode.PAINT},
trans._('hold <space> to pan/zoom, drag to erase a label'): {Mode.ERASE},
}
_FWD_SHAPE_HELP = {}
for t, modes in _REV_SHAPE_HELP.items():
for m in modes:
_FWD_SHAPE_HELP[m] = t
class Labels(_ImageBase):
_history_limit = 100
def __init__(
self,
data,
*,
num_colors=50,
properties=None,
color=None,
seed=0.5,
name=None,
metadata=None,
scale=None,
translate=None,
rotate=None,
shear=None,
affine=None,
opacity=0.7,
blending='translucent',
rendering='iso_categorical',
visible=True,
multiscale=None,
cache=True,
experimental_slicing_plane=None,
experimental_clipping_planes=None,
):
self._seed = seed
self._background_label = 0
self._num_colors = num_colors
self._random_colormap = label_colormap(self.num_colors)
self._all_vals = low_discrepancy_image(
np.arange(self.num_colors), self._seed
)
self._all_vals[0] = 0
self._color_mode = LabelColorMode.AUTO
self._show_selected_label = False
self._contour = 0
data = self._ensure_int_labels(data)
self._color_lookup_func = None
self._properties, self._label_index = self._prepare_properties(
properties
)
super().__init__(
data,
rgb=False,
colormap=self._random_colormap,
contrast_limits=[0.0, 1.0],
interpolation='nearest',
rendering=rendering,
iso_threshold=0,
name=name,
metadata=metadata,
scale=scale,
translate=translate,
rotate=rotate,
shear=shear,
affine=affine,
opacity=opacity,
blending=blending,
visible=visible,
multiscale=multiscale,
cache=cache,
experimental_slicing_plane=experimental_slicing_plane,
experimental_clipping_planes=experimental_clipping_planes,
)
self.events.add(
mode=Event,
preserve_labels=Event,
properties=Event,
n_edit_dimensions=Event,
contiguous=Event,
brush_size=Event,
selected_label=Event,
color_mode=Event,
brush_shape=Event,
contour=Event,
)
self._n_edit_dimensions = 2
self._contiguous = True
self._brush_size = 10
self._selected_label = 1
self._selected_color = self.get_color(self._selected_label)
self.color = color
self._mode = Mode.PAN_ZOOM
self._status = self.mode
self._preserve_labels = False
self._help = trans._('enter paint or fill mode to edit labels')
self._block_saving = False
self._reset_history()
self._update_dims()
self._set_editable()
@property
def contiguous(self):
return self._contiguous
@contiguous.setter
def contiguous(self, contiguous):
self._contiguous = contiguous
self.events.contiguous()
@property
def n_edit_dimensions(self):
return self._n_edit_dimensions
@n_edit_dimensions.setter
def n_edit_dimensions(self, n_edit_dimensions):
self._n_edit_dimensions = n_edit_dimensions
self.events.n_edit_dimensions()
@property
def contour(self):
return self._contour
@contour.setter
def contour(self, contour):
self._contour = contour
self.events.contour()
self.refresh()
@property
def brush_size(self):
return self._brush_size
@brush_size.setter
def brush_size(self, brush_size):
self._brush_size = int(brush_size)
self.cursor_size = self._calculate_cursor_size()
self.events.brush_size()
def _calculate_cursor_size(self):
scale = self._data_to_world.scale
min_scale = np.min([abs(scale[d]) for d in self._dims_displayed])
return abs(self.brush_size * min_scale)
@property
def seed(self):
return self._seed
@seed.setter
def seed(self, seed):
self._seed = seed
self._all_vals = np.array([])
self._selected_color = self.get_color(self.selected_label)
self.refresh()
self.events.selected_label()
@property
def num_colors(self):
return self._num_colors
@num_colors.setter
def num_colors(self, num_colors):
self._num_colors = num_colors
self.colormap = label_colormap(num_colors)
self.refresh()
self._selected_color = self.get_color(self.selected_label)
self.events.selected_label()
@property
def data(self):
return self._data
@data.setter
def data(self, data):
data = self._ensure_int_labels(data)
self._data = data
self._update_dims()
self.events.data(value=self.data)
self._set_editable()
@property
def properties(self) -> Dict[str, np.ndarray]:
return self._properties
@properties.setter
def properties(self, properties: Dict[str, Array]):
self._properties, self._label_index = self._prepare_properties(
properties
)
self.events.properties()
@classmethod
def _prepare_properties(
cls, properties: Optional[Dict[str, Array]]
) -> Tuple[Dict[str, np.ndarray], Dict[int, int]]:
properties = validate_properties(properties)
label_index = {}
if 'index' in properties:
label_index = {i: k for k, i in enumerate(properties['index'])}
elif len(properties) > 0:
max_len = max(len(x) for x in properties.values())
label_index = {i: i for i in range(max_len)}
return properties, label_index
@property
def color(self):
return self._color
@color.setter
def color(self, color):
if not color:
color = {}
if self._background_label not in color:
color[self._background_label] = 'transparent'
if None not in color:
color[None] = 'black'
colors = {
label: transform_color(color_str)[0]
for label, color_str in color.items()
}
self._color = colors
if self._is_default_colors(colors):
color_mode = LabelColorMode.AUTO
else:
color_mode = LabelColorMode.DIRECT
self.color_mode = color_mode
|
BSD 3-Clause New or Revised License
|
django-erp/django-erp
|
djangoerp/pluggets/decorators.py
|
is_plugget_editable
|
python
|
def is_plugget_editable(get_plugget_func, redirect_to='/'):
def decorator(viewfunc):
@wraps(viewfunc)
def _wrapped_view(request, *args, **kwargs):
from .loading import registry
plugget = None
if isinstance(get_plugget_func, collections.Callable):
plugget = get_plugget_func(request, *args, **kwargs)
if plugget and (not isinstance(plugget, Plugget) or (plugget.source not in registry.get_plugget_sources())):
return redirect(redirect_to)
return viewfunc(request, *args, **kwargs)
return _wrapped_view
return decorator
|
Checks if the plugget returned by "get_plugget_func" is editable or not.
A plugget is editable if its source UID is registered.
|
https://github.com/django-erp/django-erp/blob/5813012647c56c139debc17351edad5accc2787f/djangoerp/pluggets/decorators.py#L25-L43
|
__author__ = 'Emanuele Bertoldi <emanuele.bertoldi@gmail.com>'
__copyright__ = 'Copyright (c) 2013-2015, django ERP Team'
__version__ = '0.0.5'
from functools import wraps
from django.shortcuts import redirect
from .models import Plugget
import collections
|
MIT License
|
rasmussenlab/vamb
|
src/mergeclusters.py
|
_iter_overlapping_pairs
|
python
|
def _iter_overlapping_pairs(contigsof, threshold=0.5):
pairs = set()
clustersof = _defaultdict(list)
for clustername, contigs in contigsof.items():
for contig in contigs:
clustersof[contig].append(clustername)
for clusterlist in clustersof.values():
pairs.update(set(_itertools.combinations(clusterlist, 2)))
del clustersof
while pairs:
cluster1, cluster2 = pairs.pop()
contigs1 = contigsof[cluster1]
contigs2 = contigsof[cluster2]
intersection = contigs1.intersection(contigs2)
overlap = len(intersection) / min(len(contigs1), len(contigs2))
if overlap >= threshold:
yield (cluster1, cluster2), overlap
|
This creates a generator that yields (clst1, clst2), overlap
for all pairs of clusters with nonzero overlap.
|
https://github.com/rasmussenlab/vamb/blob/d5c7b273049c20638d16cb7b71184f31e3088592/src/mergeclusters.py#L45-L69
|
__doc__ = """Merge clusters according to overlap in contigs.
This module is obsolete in the current version of Vamb, as VAMB now creates
disjoint clusters. We have retained it here because in the future, it might be
of interest to return to producing overlapping clusters to improve accuracy
and/or speed up clustering.
This module contains four merging functions, of which one is commented out
because it requires the python-igraph package. For all functions, the set of
clusters are converted to a graph with each vertex being a cluster and two
clusters are connected with an edge if the intersection of contigs divided
by the smaller clusters exceeds a threshold.
The four merging functions are:
community_merge: (commented out, requires python-igraph):
Merges nodes which form a community according to walktrap algorithm
clique_merge:
Merges all maximal cliques as new clusters. Note that this may increase
rather than reduce the number of clusters.
subgraph_merge:
Merges sets of nodes which form a connected subgraph
hierarchical_merge:
Merges pairs of nodes together from most to least connected
"""
import sys as _sys
import os as _os
import itertools as _itertools
import bisect as _bisect
from collections import defaultdict as _defaultdict
|
MIT License
|
facelessuser/easydiff
|
lib/hg.py
|
which
|
python
|
def which():
location = None
if os.path.basename(_hg_path) != _hg_path:
if os.path.isfile(_hg_path):
location = _hg_path
else:
paths = [x for x in os.environ["PATH"].split(os.pathsep) if not x.isspace()]
for path in paths:
exe = os.path.join(path, _hg_path)
if os.path.isfile(exe):
location = exe
break
return location
|
See if executable exists.
|
https://github.com/facelessuser/easydiff/blob/460934dc53df30a2bb1d22987421831f1716fc76/lib/hg.py#L23-L37
|
import xml.etree.ElementTree as ET
import os
import re
import subprocess
import sys
if sys.platform.startswith('win'):
_PLATFORM = "windows"
elif sys.platform == "darwin":
_PLATFORM = "osx"
else:
_PLATFORM = "linux"
_hg_path = "hg.exe" if _PLATFORM == "windows" else "hg"
|
MIT License
|
washingtonpost/clokta
|
clokta/aws_cred_generator.py
|
AwsCredentialsGenerator.__init__
|
python
|
def __init__(self, data_dir, clokta_config, saml_assertion):
self.clokta_config = clokta_config
self.saml_assertion = saml_assertion
self.data_dir = data_dir
self.bash_file = None
self.docker_file = None
self.roles = self.__deduce_roles_from_saml()
envars_to_clear = [
"AWS_PROFILE",
"AWS_ACCESS_KEY_ID",
"AWS_SECRET_ACCESS_KEY",
"AWS_SESSION_TOKEN"
]
for envvar in envars_to_clear:
if envvar in os.environ:
del os.environ[envvar]
|
Creates a credential generator capable of creating credentials in AWS
:param clokta_config: the clokta configuration with which role has been designated default
:type clokta_config: CloktaConfiguration
:param saml_assertion: the saml token generated by Okta. This will define what account and roles will be used
:type saml_assertion: str
|
https://github.com/washingtonpost/clokta/blob/104e398ba718e621bbec3ef7e1cbb8cb6cebf839/clokta/aws_cred_generator.py#L19-L44
|
import base64
import os
import boto3
from botocore.exceptions import ClientError
import xml.etree.ElementTree as ElementTree
from clokta.clokta_configuration import CloktaConfiguration
from clokta.common import Common
from clokta.awsrole import AwsRole
class AwsCredentialsGenerator:
|
MIT License
|
sci-bots/microdrop
|
microdrop/plugin_manager.py
|
emit_signal
|
python
|
def emit_signal(function, args=None, interface=IPlugin):
logger = _L()
i = 0
caller = caller_name(skip=i)
while not caller or caller == 'microdrop.plugin_manager.emit_signal':
i += 1
caller = caller_name(skip=i)
try:
observers = get_observers(function, interface)
schedule = get_schedule(observers, function)
return_codes = {}
if args is None:
args = []
elif not isinstance(args, list):
args = [args]
if not any((name in caller) for name in ('logger', 'emit_signal')):
logger.debug('caller: %s -> %s', caller, function)
if logger.getEffectiveLevel() <= logging.DEBUG:
logger.debug('args: (%s)', ', '.join(map(repr, args)))
for observer_name in schedule:
observer = observers[observer_name]
try:
f = getattr(observer, function)
logger.debug(' call: %s.%s(...)', observer.name, function)
return_codes[observer.name] = f(*args)
except Exception, why:
with closing(StringIO()) as message:
if hasattr(observer, "name"):
if interface == ILoggingPlugin:
continue
print >> message, '%s plugin crashed processing %s signal.' % (observer.name, function)
print >> message, 'Reason:', str(why)
logger.error(message.getvalue().strip())
map(logger.info, traceback.format_exc().splitlines())
return return_codes
except Exception, why:
logger.error(why, exc_info=True)
return {}
|
Call specified function on each enabled plugin implementing the function
and collect results.
Parameters
----------
function : str
Name of function to generate schedule for.
interface : class, optional
Plugin interface class.
Returns
-------
dict
Mapping from each service name to the respective function return value.
.. versionchanged:: 2.20
Log caller at info level, and log args and observers at debug level.
|
https://github.com/sci-bots/microdrop/blob/11229fa85c71957594a30ccb6dd693c978074bc6/microdrop/plugin_manager.py#L374-L441
|
from StringIO import StringIO
from collections import namedtuple
from contextlib import closing
import logging
import pprint
import sys
import traceback
from pyutilib.component.core import ExtensionPoint, PluginGlobals
from pyutilib.component.core import Plugin, SingletonPlugin, implements
import path_helpers as ph
import task_scheduler
from .interfaces import IPlugin, IWaveformGenerator, ILoggingPlugin
from logging_helpers import _L, caller_name
logger = logging.getLogger(__name__)
ScheduleRequest = namedtuple('ScheduleRequest', 'before after')
def load_plugins(plugins_dir='plugins', import_from_parent=True):
logger = _L()
logger.info('plugins_dir=`%s`', plugins_dir)
plugins_dir = ph.path(plugins_dir).realpath()
logger.info('Loading plugins:')
plugins_root = plugins_dir.parent if import_from_parent else plugins_dir
if plugins_root not in sys.path:
sys.path.insert(0, plugins_root)
e = PluginGlobals.env('microdrop.managed')
initial_plugins = set(e.plugin_registry.values())
imported_plugins = set()
for package_i in plugins_dir.dirs():
if package_i.isjunction() and not package_i.readlink().isdir():
logger.info('Skip import of `%s` (broken link to `%s`).',
package_i.name, package_i.readlink())
continue
elif package_i.name in (p.__module__.split('.')[0]
for p in initial_plugins):
logger.info('Skip import of `%s` (plugin with same name has '
'already been imported).', package_i.name)
continue
elif package_i.name.startswith('.'):
logger.info('Skip import of hidden directory `%s`.',
package_i.name)
continue
try:
plugin_module = package_i.name
if package_i.joinpath('pyutilib.py').isfile():
plugin_module = '.'.join([plugin_module, 'pyutilib'])
if import_from_parent:
plugin_module = '.'.join([plugins_dir.name, plugin_module])
import_statement = 'import {}'.format(plugin_module)
logger.debug(import_statement)
exec(import_statement)
all_plugins = set(e.plugin_registry.values())
current_plugin = list(all_plugins - initial_plugins -
imported_plugins)[0]
logger.info('\t Imported: %s (%s)', current_plugin.__name__,
package_i)
imported_plugins.add(current_plugin)
except Exception:
map(logger.info, traceback.format_exc().splitlines())
logger.error('Error loading %s plugin.', package_i.name,
exc_info=True)
new_plugins = []
for class_ in imported_plugins:
service = class_()
service.disable()
new_plugins.append(service)
logger.debug('\t Created new plugin services: %s',
','.join([p.__class__.__name__ for p in new_plugins]))
return new_plugins
def log_summary():
observers = ExtensionPoint(IPlugin)
logging.info('Registered plugins:')
for observer in observers:
logging.info('\t %s' % observer)
observers = ExtensionPoint(IWaveformGenerator)
logging.info('Registered function generator plugins:')
for observer in observers:
logging.info('\t %s' % observer)
observers = ExtensionPoint(ILoggingPlugin)
logging.info('Registered logging plugins:')
for observer in observers:
logging.info('\t %s' % observer)
def get_plugin_names(env=None):
if env is None:
env = 'pca'
e = PluginGlobals.env(env)
return list(e.plugin_registry.keys())
def get_service_class(name, env='microdrop.managed'):
e = PluginGlobals.env(env)
if name not in e.plugin_registry:
raise KeyError('No plugin registered with name: %s' % name)
return e.plugin_registry[name]
def get_service_instance_by_name(name, env='microdrop.managed'):
e = PluginGlobals.env(env)
plugins = [p for i, p in enumerate(e.services) if name == p.name]
if plugins:
return plugins[0]
else:
raise KeyError('No plugin registered with name: %s' % name)
def get_service_instance_by_package_name(name, env='microdrop.managed'):
e = PluginGlobals.env(env)
plugins = [p for i, p in enumerate(e.services)
if name ==
get_plugin_package_name(p.__class__.__module__.split('.')[0])]
if plugins:
return plugins[0]
else:
raise KeyError('No plugin registered with package name: %s' % name)
def get_plugin_package_name(module_name):
return module_name.split('.')[-1]
def get_service_instance(class_, env='microdrop.managed'):
e = PluginGlobals.env(env)
for service in e.services:
if isinstance(service, class_):
return service
return None
def get_service_names(env='microdrop.managed'):
e = PluginGlobals.env(env)
service_names = []
for name in get_plugin_names(env):
plugin_class = e.plugin_registry[name]
service = get_service_instance(plugin_class, env=env)
if service is None:
_L().warn('Plugin `%s` exists in registry, but instance cannot '
'be found.', name)
else:
service_names.append(service.name)
return service_names
def get_schedule(observers, function):
logger = _L()
schedule_requests = {}
for observer in observers.values():
if hasattr(observer, 'get_schedule_requests'):
schedule_requests[observer.name] = observer.get_schedule_requests(function)
if schedule_requests:
scheduler = task_scheduler.TaskScheduler(observers.keys())
for request in [r for name, requests in schedule_requests.items()
for r in requests]:
try:
scheduler.request_order(*request)
except AssertionError:
logger.debug('Schedule requests for `%s`', function)
map(logger.debug,
pprint.pformat(schedule_requests).splitlines())
logger.info('emit_signal(%s) could not add schedule request '
'%s', function, request)
continue
return scheduler.get_schedule()
else:
return observers.keys()
def get_observers(function, interface=IPlugin):
observers = {}
for obs in ExtensionPoint(interface):
if hasattr(obs, function):
observers[obs.name] = obs
return observers
|
BSD 3-Clause New or Revised License
|
gugarosa/opytimizer
|
opytimizer/optimizers/swarm/eho.py
|
EHO._updating_operator
|
python
|
def _updating_operator(self, agents, centers, function):
for i in range(self.n_clans):
clan_agents = self._get_agents_from_clan(agents, i)
for j, agent in enumerate(clan_agents):
a = copy.deepcopy(agent)
r1 = r.generate_uniform_random_number()
if j == 0:
a.position = self.beta * centers[i]
else:
a.position += self.alpha * (clan_agents[0].position - a.position) * r1
a.clip_by_bound()
a.fit = function(a.position)
if a.fit < agent.fit:
agent.position = copy.deepcopy(a.position)
agent.fit = copy.deepcopy(a.fit)
|
Performs the separating operator.
Args:
agents (list): List of agents.
centers (list): List of centers.
function (Function): A Function object that will be used as the objective function.
|
https://github.com/gugarosa/opytimizer/blob/09e5485b9e30eca622ad404e85c22de0c42c8abd/opytimizer/optimizers/swarm/eho.py#L155-L198
|
import copy
import numpy as np
import opytimizer.math.random as r
import opytimizer.utils.exception as e
import opytimizer.utils.logging as l
from opytimizer.core import Optimizer
logger = l.get_logger(__name__)
class EHO(Optimizer):
def __init__(self, params=None):
logger.info('Overriding class: Optimizer -> EHO.')
super(EHO, self).__init__()
self.alpha = 0.5
self.beta = 0.1
self.n_clans = 10
self.build(params)
logger.info('Class overrided.')
@property
def alpha(self):
return self._alpha
@alpha.setter
def alpha(self, alpha):
if not isinstance(alpha, (float, int)):
raise e.TypeError('`alpha` should be a float or integer')
if alpha < 0 or alpha > 1:
raise e.ValueError('`alpha` should be between 0 and 1')
self._alpha = alpha
@property
def beta(self):
return self._beta
@beta.setter
def beta(self, beta):
if not isinstance(beta, (float, int)):
raise e.TypeError('`beta` should be a float or integer')
if beta < 0 or beta > 1:
raise e.ValueError('`beta` should be between 0 and 1')
self._beta = beta
@property
def n_clans(self):
return self._n_clans
@n_clans.setter
def n_clans(self, n_clans):
if not isinstance(n_clans, int):
raise e.TypeError('`n_clans` should be an integer')
if n_clans < 1:
raise e.ValueError('`n_clans` should be > 0')
self._n_clans = n_clans
@property
def n_ci(self):
return self._n_ci
@n_ci.setter
def n_ci(self, n_ci):
if not isinstance(n_ci, int):
raise e.TypeError('`n_ci` should be an integer')
if n_ci < 1:
raise e.ValueError('`n_ci` should be > 0')
self._n_ci = n_ci
def compile(self, space):
self.n_ci = space.n_agents // self.n_clans
def _get_agents_from_clan(self, agents, index):
start, end = index * self.n_ci, (index + 1) * self.n_ci
if (index + 1) == self.n_clans:
return sorted(agents[start:], key=lambda x: x.fit)
return sorted(agents[start:end], key=lambda x: x.fit)
|
Apache License 2.0
|
nuagenetworks/vspk-python
|
vspk/v5_0/nuapplicationperformancemanagement.py
|
NUApplicationperformancemanagement.app_group_unique_id
|
python
|
def app_group_unique_id(self):
return self._app_group_unique_id
|
Get app_group_unique_id value.
Notes:
2 byte Id to uniquely identify Application Group between OVS, nuage_dpi and perfd processes for proper functioning of AAR.
This attribute is named `appGroupUniqueId` in VSD API.
|
https://github.com/nuagenetworks/vspk-python/blob/375cce10ae144ad6017104e57fcd3630898cc2a6/vspk/v5_0/nuapplicationperformancemanagement.py#L247-L257
|
from .fetchers import NUMetadatasFetcher
from .fetchers import NUGlobalMetadatasFetcher
from .fetchers import NUApplicationBindingsFetcher
from .fetchers import NUApplicationperformancemanagementbindingsFetcher
from bambou import NURESTObject
class NUApplicationperformancemanagement(NURESTObject):
__rest_name__ = "applicationperformancemanagement"
__resource_name__ = "applicationperformancemanagements"
CONST_ENTITY_SCOPE_GLOBAL = "GLOBAL"
CONST_ENTITY_SCOPE_ENTERPRISE = "ENTERPRISE"
def __init__(self, **kwargs):
super(NUApplicationperformancemanagement, self).__init__()
self._name = None
self._last_updated_by = None
self._read_only = None
self._description = None
self._entity_scope = None
self._app_group_unique_id = None
self._associated_performance_monitor_id = None
self._external_id = None
self.expose_attribute(local_name="name", remote_name="name", attribute_type=str, is_required=True, is_unique=False)
self.expose_attribute(local_name="last_updated_by", remote_name="lastUpdatedBy", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="read_only", remote_name="readOnly", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="description", remote_name="description", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="entity_scope", remote_name="entityScope", attribute_type=str, is_required=False, is_unique=False, choices=[u'ENTERPRISE', u'GLOBAL'])
self.expose_attribute(local_name="app_group_unique_id", remote_name="appGroupUniqueId", attribute_type=int, is_required=False, is_unique=False)
self.expose_attribute(local_name="associated_performance_monitor_id", remote_name="associatedPerformanceMonitorID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="external_id", remote_name="externalID", attribute_type=str, is_required=False, is_unique=True)
self.metadatas = NUMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.global_metadatas = NUGlobalMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.application_bindings = NUApplicationBindingsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.applicationperformancemanagementbindings = NUApplicationperformancemanagementbindingsFetcher.fetcher_with_object(parent_object=self, relationship="member")
self._compute_args(**kwargs)
@property
def name(self):
return self._name
@name.setter
def name(self, value):
self._name = value
@property
def last_updated_by(self):
return self._last_updated_by
@last_updated_by.setter
def last_updated_by(self, value):
self._last_updated_by = value
@property
def read_only(self):
return self._read_only
@read_only.setter
def read_only(self, value):
self._read_only = value
@property
def description(self):
return self._description
@description.setter
def description(self, value):
self._description = value
@property
def entity_scope(self):
return self._entity_scope
@entity_scope.setter
def entity_scope(self, value):
self._entity_scope = value
@property
|
BSD 3-Clause New or Revised License
|
fat-forensics/fat-forensics
|
fatf/transparency/models/feature_influence.py
|
_filter_rows
|
python
|
def _filter_rows(include_rows: Union[None, int, List[int]],
exclude_rows: Union[None, int, List[int]],
rows_number: int) -> List[int]:
def within_bounds(error_type, row_index):
if row_index < 0 or row_index >= rows_number:
raise ValueError('{} rows element {} is out of bounds. There are '
'only {} rows in the input dataset.'.format(
error_type, row_index, rows_number))
return True
assert isinstance(rows_number, int) and rows_number > 0, 'Rows number must be a positive integer.'
if include_rows is None:
include_rows = list(range(rows_number))
elif isinstance(include_rows, int):
assert within_bounds('Include', include_rows), 'Index within bounds.'
include_rows = [include_rows]
elif isinstance(include_rows, list):
for i in include_rows:
if not isinstance(i, int):
raise TypeError(
'Include rows element *{}* is not an integer.'.format(i))
assert within_bounds('Include', i), 'Every index is within bounds.'
else:
raise TypeError('The include_rows parameters must be either None or a '
'list of integers indicating which rows should be '
'included in the computation.')
if exclude_rows is None:
exclude_rows = []
elif isinstance(exclude_rows, int):
assert within_bounds('Exclude', exclude_rows), 'Index within bounds.'
exclude_rows = [exclude_rows]
elif isinstance(exclude_rows, list):
for i in exclude_rows:
if not isinstance(i, int):
raise TypeError(
'Exclude rows element *{}* is not an integer.'.format(i))
assert within_bounds('Exclude', i), 'Every index is within bounds.'
else:
raise TypeError('The exclude_rows parameters must be either None or a '
'list of integers indicating which rows should be '
'excluded in the computation.')
filtered_rows = sorted(set(include_rows).difference(exclude_rows))
return filtered_rows
|
Filters row indices given the include and exclude lists.
For the exceptions description please see the documentation of the
:func`fatf.transparency.model.feature_influence.
individual_conditional_expectation` function.
Parameters
----------
include_rows: Union[None, integer, List[integer]]
Indices of rows that will be included. If this parameter is specified,
only the selected rows will be included. If additionally
``exclude_rows`` is specified the selected rows will be a set
difference between the two. This parameter can either be a *list* of
indices, a single index (integer) or ``None`` -- all indices.
exclude_rows: Union[None, integer, List[integer]]
Indices of rows to be excluded. If this parameter is specified and
``include_rows`` is not, these indices will be excluded from all of the
rows. If both include and exclude parameters are specified, the
included rows will be a set difference of the two. This parameter can
either be a *list* of indices, a single index (integer) or ``None`` --
no indices.
rows_number : integer
The total number of rows from which these indices will be included/
excluded.
Returns
-------
filtered_rows : List[integer]
Sorted list of row indices computed as a set difference between the
``include_rows`` parameter (or the whole set of indices for the array
if the parameter is ``None``) and the ``exclude_rows`` parameters (or
an empty set of indices if the parameter is ``None``).
|
https://github.com/fat-forensics/fat-forensics/blob/6fa252a1d90fe543242ef030a5f8a3f9c9f692fe/fatf/transparency/models/feature_influence.py#L185-L266
|
from typing import List, Optional, Tuple, Union
import warnings
import numpy as np
import fatf.utils.array.tools as fuat
import fatf.utils.array.validation as fuav
import fatf.utils.models.validation as fumv
from fatf.exceptions import IncompatibleModelError, IncorrectShapeError
__all__ = ['individual_conditional_expectation',
'merge_ice_arrays',
'partial_dependence_ice',
'partial_dependence']
def _input_is_valid(dataset: np.ndarray,
model: object,
feature_index: Union[int, str],
treat_as_categorical: Optional[bool],
steps_number: Optional[int]) -> bool:
is_input_ok = False
if not fuav.is_2d_array(dataset):
raise IncorrectShapeError('The input dataset must be a 2-dimensional '
'array.')
if not fuav.is_base_array(dataset):
raise ValueError('The input dataset must only contain base types '
'(textual and numerical).')
if not fumv.check_model_functionality(model, require_probabilities=True):
raise IncompatibleModelError('This functionality requires the model '
'to be capable of outputting '
'probabilities via predict_proba method.')
if not fuat.are_indices_valid(dataset, np.array([feature_index])):
raise IndexError('Provided feature index is not valid for the input '
'dataset.')
if isinstance(steps_number, int):
if steps_number < 2:
raise ValueError('steps_number has to be at least 2.')
elif steps_number is None:
pass
else:
raise TypeError('steps_number parameter has to either be None or an '
'integer.')
if (not isinstance(treat_as_categorical, bool)
and treat_as_categorical is not None):
raise TypeError('treat_as_categorical has to either be None or a '
'boolean.')
is_input_ok = True
return is_input_ok
def _interpolate_array(
dataset: np.ndarray,
feature_index: Union[int, str],
treat_as_categorical: bool,
steps_number: Union[int, None]) -> Tuple[np.ndarray, np.ndarray]:
assert isinstance(dataset, np.ndarray), 'Dataset -> numpy array.'
assert isinstance(feature_index, (int, str)), 'Feature index -> str/ int.'
assert isinstance(treat_as_categorical, bool), 'As categorical -> bool.'
assert steps_number is None or isinstance(steps_number, int), 'Steps number -> None/ int.'
is_structured = fuav.is_structured_array(dataset)
if is_structured:
column = dataset[feature_index]
else:
column = dataset[:, feature_index]
if treat_as_categorical:
interpolated_values = np.unique(column)
interpolated_values.sort()
steps_number = interpolated_values.shape[0]
else:
assert isinstance(steps_number, int), 'Steps number must be an int.'
interpolated_values = np.linspace(column.min(), column.max(),
steps_number)
if (is_structured
and dataset.dtype[feature_index] != interpolated_values.dtype):
new_types = []
for name in dataset.dtype.names:
if name == feature_index:
dtype = fuat.generalise_dtype(interpolated_values.dtype,
dataset.dtype[name])
new_types.append((name, dtype))
else:
new_types.append((name, dataset.dtype[name]))
dataset = dataset.astype(new_types)
elif not is_structured and dataset.dtype != interpolated_values.dtype:
dtype = fuat.generalise_dtype(interpolated_values.dtype,
dataset.dtype)
dataset = dataset.astype(dtype)
interpolated_data = np.repeat(dataset[:, np.newaxis], steps_number, axis=1)
assert len(interpolated_values) == steps_number, 'Required for broadcast.'
if is_structured:
for idx in range(steps_number):
interpolated_data[:, idx][feature_index] = interpolated_values[idx]
else:
interpolated_data[:, :, feature_index] = interpolated_values
return interpolated_data, interpolated_values
|
BSD 3-Clause New or Revised License
|
camel-lab/camel_tools
|
camel_tools/morphology/generator.py
|
Generator.generate
|
python
|
def generate(self, lemma, feats):
lemma = strip_lex(lemma)
if lemma not in self._db.lemma_hash:
return []
for feat in feats:
if feat not in self._db.defines:
raise InvalidGeneratorFeature(feat)
elif (self._db.defines[feat] is not None and
feats[feat] not in self._db.defines[feat]):
raise InvalidGeneratorFeatureValue(feat, feats[feat])
if 'pos' not in feats or feats['pos'] not in self._db.defines['pos']:
raise InvalidGeneratorFeatureValue('pos', feats.get('pos', None))
feats = copy.copy(feats)
default = self._db.defaults[feats['pos']]
default_feat_set = frozenset(default.keys())
feat_set = frozenset(feats.keys())
if not feat_set.issubset(default_feat_set):
return []
for feat in ['prc0', 'prc1', 'prc2', 'prc3', 'enc0', 'enc1', 'enc2']:
if feat not in feats and feat in default:
feats[feat] = default[feat]
stem_feats_list = self._db.lemma_hash[lemma]
analyses = collections.deque()
for stem_feats in stem_feats_list:
if 'vox' in feats and stem_feats['vox'] != feats['vox']:
continue
if 'rat' in feats and stem_feats['rat'] != feats['rat']:
continue
if 'pos' in feats and stem_feats['pos'] != feats['pos']:
continue
ignore_stem = False
for feat in ['prc0', 'prc1', 'prc2', 'prc3', 'enc0', 'enc1', 'enc2']:
if feat not in feats:
continue
if (feat in stem_feats and
stem_feats[feat] != '0' and
feats[feat] != stem_feats[feat]):
ignore_stem = True
break
if ignore_stem:
continue
prefix_cats = self._db.stem_prefix_compat[stem_feats['stemcat']]
suffix_cats = self._db.stem_suffix_compat[stem_feats['stemcat']]
for prefix_cat in prefix_cats:
if prefix_cat not in self._db.prefix_cat_hash:
continue
prefix_feats_list = self._db.prefix_cat_hash[prefix_cat]
for prefix_feats in prefix_feats_list:
ignore_prefix = False
for feat in ['prc0', 'prc1', 'prc2', 'prc3']:
if feat not in feats:
continue
if ((feats[feat] != '0' and
feat not in prefix_feats and
stem_feats.get(feat, '0') != feats[feat]) or
(feat in prefix_feats and
feats[feat] != prefix_feats[feat])):
ignore_prefix = True
break
if ignore_prefix:
continue
for suffix_cat in suffix_cats:
if suffix_cat not in self._db.suffix_cat_hash:
continue
suffix_feats_list = (
self._db.suffix_cat_hash[suffix_cat])
for suffix_feats in suffix_feats_list:
if ((prefix_cat not in
self._db.prefix_suffix_compat) or
(suffix_cat not in
self._db.prefix_suffix_compat[prefix_cat])):
continue
ignore_suffix = False
for feat in ['enc0', 'enc1', 'enc2']:
if feat not in feats:
continue
if ((feats[feat] != '0' and
feat not in suffix_feats and
stem_feats.get(feat, '0') != feats[feat])
or (feat in suffix_feats and
feats[feat] != suffix_feats[feat])):
ignore_suffix = True
break
if ignore_suffix:
continue
merged = merge_features(self._db, prefix_feats,
stem_feats, suffix_feats)
ignore_analysis = False
for feat in feats.keys():
if (feat in merged and
merged[feat] != feats[feat]):
ignore_analysis = True
break
if not ignore_analysis:
analyses.append(merged)
return list(analyses)
|
Generate surface forms and their associated analyses for a given
lemma and a given set of (possibly underspecified) features.
The surface form is accessed through the `diac` feature.
Args:
lemma (:obj:`str`): Lemma to generate from.
feats (:obj:`dict`): Dictionary of features. Must contain 'pos'
feature.
See :doc:`/reference/camel_morphology_features` for
more information on features and their values.
Returns:
:obj:`list` of :obj:`dict`: List of generated analyses.
See :doc:`/reference/camel_morphology_features` for more
information on features and their values.
Raises:
:obj:`~camel_tools.morphology.errors.InvalidGeneratorFeature`: If
a feature is given that is not defined in database.
:obj:`~camel_tools.morphology.errors.InvalidGeneratorFeatureValue`:
If an invalid value is given to a feature or if 'pos' feature
is not defined.
|
https://github.com/camel-lab/camel_tools/blob/3f0655e382f9ef005892edccda7fe0a54a00f634/camel_tools/morphology/generator.py#L63-L207
|
from __future__ import absolute_import
import copy
import collections
from camel_tools.morphology.database import MorphologyDB
from camel_tools.morphology.errors import GeneratorError
from camel_tools.morphology.errors import InvalidGeneratorFeature
from camel_tools.morphology.errors import InvalidGeneratorFeatureValue
from camel_tools.morphology.utils import merge_features, strip_lex
class Generator(object):
def __init__(self, db):
if not isinstance(db, MorphologyDB):
raise GeneratorError('DB is not an instance of MorphologyDB')
if not db.flags.generation:
raise GeneratorError('DB does not support generation')
self._db = db
|
MIT License
|
hanqingwangai/active_vln
|
src/speaker.py
|
Speaker.infer_batch
|
python
|
def infer_batch(self, sampling=False, train=False, featdropmask=None):
if train:
self.encoder.train()
self.decoder.train()
else:
self.encoder.eval()
self.decoder.eval()
obs = self.env._get_obs()
batch_size = len(obs)
viewpoints_list = [list() for _ in range(batch_size)]
(img_feats, can_feats), lengths = self.from_shortest_path(viewpoints=viewpoints_list)
if featdropmask is not None:
img_feats[..., :-args.angle_feat_size] *= featdropmask
can_feats[..., :-args.angle_feat_size] *= featdropmask
ctx = self.encoder(can_feats, img_feats, lengths,
already_dropfeat=(featdropmask is not None))
ctx_mask = utils.length2mask(lengths)
words = []
log_probs = []
hidden_states = []
entropies = []
h_t = torch.zeros(1, batch_size, args.rnn_dim).cuda()
c_t = torch.zeros(1, batch_size, args.rnn_dim).cuda()
ended = np.zeros(len(obs), np.bool)
word = np.ones(len(obs), np.int64) * self.tok.word_to_index['<BOS>']
word = torch.from_numpy(word).view(-1, 1).cuda()
for i in range(args.maxDecode):
logits, h_t, c_t = self.decoder(word, ctx, ctx_mask, h_t, c_t)
logits = logits.squeeze()
logits[:, self.tok.word_to_index['<UNK>']] = -float("inf")
if sampling:
probs = F.softmax(logits, -1)
m = torch.distributions.Categorical(probs)
word = m.sample()
log_prob = m.log_prob(word)
if train:
log_probs.append(log_prob)
hidden_states.append(h_t.squeeze())
entropies.append(m.entropy())
else:
log_probs.append(log_prob.detach())
hidden_states.append(h_t.squeeze().detach())
entropies.append(m.entropy().detach())
else:
values, word = logits.max(1)
cpu_word = word.cpu().numpy()
cpu_word[ended] = self.tok.word_to_index['<PAD>']
words.append(cpu_word)
word = word.view(-1, 1)
ended = np.logical_or(ended, cpu_word == self.tok.word_to_index['<EOS>'])
if ended.all():
break
if train and sampling:
return np.stack(words, 1), torch.stack(log_probs, 1), torch.stack(hidden_states, 1), torch.stack(entropies, 1)
else:
return np.stack(words, 1)
|
:param sampling: if not, use argmax. else use softmax_multinomial
:param train: Whether in the train mode
:return: if sampling: return insts(np, [batch, max_len]),
log_probs(torch, requires_grad, [batch,max_len])
hiddens(torch, requires_grad, [batch, max_len, dim})
And if train: the log_probs and hiddens are detached
if not sampling: returns insts(np, [batch, max_len])
|
https://github.com/hanqingwangai/active_vln/blob/7b7b389fa371638be0bb837f70fb95c2ff80d4fe/src/speaker.py#L265-L350
|
import torch
import numpy as np
from param import args
import os
import utils
import model
import torch.nn.functional as F
class Speaker():
env_actions = {
'left': (0,-1, 0),
'right': (0, 1, 0),
'up': (0, 0, 1),
'down': (0, 0,-1),
'forward': (1, 0, 0),
'<end>': (0, 0, 0),
'<start>': (0, 0, 0),
'<ignore>': (0, 0, 0)
}
def __init__(self, env, listener, tok):
self.env = env
self.feature_size = self.env.feature_size
self.tok = tok
self.tok.finalize()
self.listener = listener
print("VOCAB_SIZE", self.tok.vocab_size())
self.encoder = model.SpeakerEncoder(self.feature_size+args.angle_feat_size, args.rnn_dim, args.dropout, bidirectional=args.bidir).cuda()
self.decoder = model.SpeakerDecoder(self.tok.vocab_size(), args.wemb, self.tok.word_to_index['<PAD>'],
args.rnn_dim, args.dropout).cuda()
self.encoder_optimizer = args.optimizer(self.encoder.parameters(), lr=args.lr)
self.decoder_optimizer = args.optimizer(self.decoder.parameters(), lr=args.lr)
self.softmax_loss = torch.nn.CrossEntropyLoss(ignore_index=self.tok.word_to_index['<PAD>'])
self.nonreduced_softmax_loss = torch.nn.CrossEntropyLoss(
ignore_index=self.tok.word_to_index['<PAD>'],
size_average=False,
reduce=False
)
def train(self, iters):
for i in range(iters):
self.env.reset()
self.encoder_optimizer.zero_grad()
self.decoder_optimizer.zero_grad()
loss = self.teacher_forcing(train=True)
loss.backward()
torch.nn.utils.clip_grad_norm(self.encoder.parameters(), 40.)
torch.nn.utils.clip_grad_norm(self.decoder.parameters(), 40.)
self.encoder_optimizer.step()
self.decoder_optimizer.step()
def get_insts(self, wrapper=(lambda x: x)):
self.env.reset_epoch(shuffle=True)
path2inst = {}
total = self.env.size()
for _ in wrapper(range(total // self.env.batch_size + 1)):
obs = self.env.reset()
insts = self.infer_batch()
path_ids = [ob['path_id'] for ob in obs]
for path_id, inst in zip(path_ids, insts):
if path_id not in path2inst:
path2inst[path_id] = self.tok.shrink(inst)
return path2inst
def valid(self, *aargs, **kwargs):
path2inst = self.get_insts(*aargs, **kwargs)
self.env.reset_epoch(shuffle=True)
N = 1 if args.fast_train else 3
metrics = np.zeros(3)
for i in range(N):
self.env.reset()
metrics += np.array(self.teacher_forcing(train=False))
metrics /= N
return (path2inst, *metrics)
def make_equiv_action(self, a_t, perm_obs, perm_idx=None, traj=None):
def take_action(i, idx, name):
if type(name) is int:
self.env.env.sims[idx].makeAction(name, 0, 0)
else:
self.env.env.sims[idx].makeAction(*self.env_actions[name])
state = self.env.env.sims[idx].getState()
if traj is not None:
traj[i]['path'].append((state.location.viewpointId, state.heading, state.elevation))
if perm_idx is None:
perm_idx = range(len(perm_obs))
for i, idx in enumerate(perm_idx):
action = a_t[i]
if action != -1:
select_candidate = perm_obs[i]['candidate'][action]
src_point = perm_obs[i]['viewIndex']
trg_point = select_candidate['pointId']
src_level = (src_point) // 12
trg_level = (trg_point) // 12
while src_level < trg_level:
take_action(i, idx, 'up')
src_level += 1
while src_level > trg_level:
take_action(i, idx, 'down')
src_level -= 1
while self.env.env.sims[idx].getState().viewIndex != trg_point:
take_action(i, idx, 'right')
assert select_candidate['viewpointId'] == self.env.env.sims[idx].getState().navigableLocations[select_candidate['idx']].viewpointId
take_action(i, idx, select_candidate['idx'])
def _teacher_action(self, obs, ended, tracker=None):
a = np.zeros(len(obs), dtype=np.int64)
for i, ob in enumerate(obs):
if ended[i]:
a[i] = args.ignoreid
else:
for k, candidate in enumerate(ob['candidate']):
if candidate['viewpointId'] == ob['teacher']:
a[i] = k
break
else:
assert ob['teacher'] == ob['viewpoint']
a[i] = len(ob['candidate'])
return torch.from_numpy(a).cuda()
def _candidate_variable(self, obs, actions):
candidate_feat = np.zeros((len(obs), self.feature_size + args.angle_feat_size), dtype=np.float32)
for i, (ob, act) in enumerate(zip(obs, actions)):
if act == -1:
pass
else:
c = ob['candidate'][act]
candidate_feat[i, :] = c['feature']
return torch.from_numpy(candidate_feat).cuda()
def from_shortest_path(self, viewpoints=None, get_first_feat=False):
obs = self.env._get_obs()
ended = np.array([False] * len(obs))
length = np.zeros(len(obs), np.int64)
img_feats = []
can_feats = []
first_feat = np.zeros((len(obs), self.feature_size+args.angle_feat_size), np.float32)
for i, ob in enumerate(obs):
first_feat[i, -args.angle_feat_size:] = utils.angle_feature(ob['heading'], ob['elevation'])
first_feat = torch.from_numpy(first_feat).cuda()
while not ended.all():
if viewpoints is not None:
for i, ob in enumerate(obs):
viewpoints[i].append(ob['viewpoint'])
img_feats.append(self.listener._feature_variable(obs))
teacher_action = self._teacher_action(obs, ended)
teacher_action = teacher_action.cpu().numpy()
for i, act in enumerate(teacher_action):
if act < 0 or act == len(obs[i]['candidate']):
teacher_action[i] = -1
can_feats.append(self._candidate_variable(obs, teacher_action))
self.make_equiv_action(teacher_action, obs)
length += (1 - ended)
ended[:] = np.logical_or(ended, (teacher_action == -1))
obs = self.env._get_obs()
img_feats = torch.stack(img_feats, 1).contiguous()
can_feats = torch.stack(can_feats, 1).contiguous()
if get_first_feat:
return (img_feats, can_feats, first_feat), length
else:
return (img_feats, can_feats), length
def gt_words(self, obs):
seq_tensor = np.array([ob['instr_encoding'] for ob in obs])
return torch.from_numpy(seq_tensor).cuda()
def teacher_forcing(self, train=True, features=None, insts=None, for_listener=False):
if train:
self.encoder.train()
self.decoder.train()
else:
self.encoder.eval()
self.decoder.eval()
if features is not None:
assert insts is not None
(img_feats, can_feats), lengths = features
ctx = self.encoder(can_feats, img_feats, lengths)
batch_size = len(lengths)
else:
obs = self.env._get_obs()
batch_size = len(obs)
(img_feats, can_feats), lengths = self.from_shortest_path()
ctx = self.encoder(can_feats, img_feats, lengths)
h_t = torch.zeros(1, batch_size, args.rnn_dim).cuda()
c_t = torch.zeros(1, batch_size, args.rnn_dim).cuda()
ctx_mask = utils.length2mask(lengths)
if insts is None:
insts = self.gt_words(obs)
logits, _, _ = self.decoder(insts, ctx, ctx_mask, h_t, c_t)
logits = logits.permute(0, 2, 1).contiguous()
loss = self.softmax_loss(
input = logits[:, :, :-1],
target = insts[:, 1:]
)
if for_listener:
return self.nonreduced_softmax_loss(
input = logits[:, :, :-1],
target = insts[:, 1:]
)
if train:
return loss
else:
_, predict = logits.max(dim=1)
gt_mask = (insts != self.tok.word_to_index['<PAD>'])
correct = (predict[:, :-1] == insts[:, 1:]) * gt_mask[:, 1:]
correct, gt_mask = correct.type(torch.LongTensor), gt_mask.type(torch.LongTensor)
word_accu = correct.sum().item() / gt_mask[:, 1:].sum().item()
sent_accu = (correct.sum(dim=1) == gt_mask[:, 1:].sum(dim=1)).sum().item() / batch_size
return loss.item(), word_accu, sent_accu
|
MIT License
|
brython-dev/brython
|
www/src/Lib/test/test_buffer.py
|
ndarray_print
|
python
|
def ndarray_print(nd):
try:
x = nd.tolist()
except (TypeError, NotImplementedError):
x = nd.tobytes()
if isinstance(nd, ndarray):
offset = nd.offset
flags = nd.flags
else:
offset = 'unknown'
flags = 'unknown'
print("ndarray(%s, shape=%s, strides=%s, suboffsets=%s, offset=%s, "
"format='%s', itemsize=%s, flags=%s)" %
(x, nd.shape, nd.strides, nd.suboffsets, offset,
nd.format, nd.itemsize, flags))
sys.stdout.flush()
|
Print ndarray for debugging.
|
https://github.com/brython-dev/brython/blob/33aeaab551f1b73209326c5a0aecf98642d4c126/www/src/Lib/test/test_buffer.py#L732-L748
|
import contextlib
import unittest
from test import support
from test.support import os_helper
from itertools import permutations, product
from random import randrange, sample, choice
import warnings
import sys, array, io, os
from decimal import Decimal
from fractions import Fraction
try:
from _testbuffer import *
except ImportError:
ndarray = None
try:
import struct
except ImportError:
struct = None
try:
import ctypes
except ImportError:
ctypes = None
try:
with os_helper.EnvironmentVarGuard() as os.environ, warnings.catch_warnings():
from numpy import ndarray as numpy_array
except ImportError:
numpy_array = None
try:
import _testcapi
except ImportError:
_testcapi = None
SHORT_TEST = True
NATIVE = {
'?':0, 'c':0, 'b':0, 'B':0,
'h':0, 'H':0, 'i':0, 'I':0,
'l':0, 'L':0, 'n':0, 'N':0,
'f':0, 'd':0, 'P':0
}
if numpy_array:
del NATIVE['n']
del NATIVE['N']
if struct:
try:
struct.pack('Q', 2**64-1)
NATIVE['q'] = 0
NATIVE['Q'] = 0
except struct.error:
pass
STANDARD = {
'?':(0, 2), 'c':(0, 1<<8),
'b':(-(1<<7), 1<<7), 'B':(0, 1<<8),
'h':(-(1<<15), 1<<15), 'H':(0, 1<<16),
'i':(-(1<<31), 1<<31), 'I':(0, 1<<32),
'l':(-(1<<31), 1<<31), 'L':(0, 1<<32),
'q':(-(1<<63), 1<<63), 'Q':(0, 1<<64),
'f':(-(1<<63), 1<<63), 'd':(-(1<<1023), 1<<1023)
}
def native_type_range(fmt):
if fmt == 'c':
lh = (0, 256)
elif fmt == '?':
lh = (0, 2)
elif fmt == 'f':
lh = (-(1<<63), 1<<63)
elif fmt == 'd':
lh = (-(1<<1023), 1<<1023)
else:
for exp in (128, 127, 64, 63, 32, 31, 16, 15, 8, 7):
try:
struct.pack(fmt, (1<<exp)-1)
break
except struct.error:
pass
lh = (-(1<<exp), 1<<exp) if exp & 1 else (0, 1<<exp)
return lh
fmtdict = {
'':NATIVE,
'@':NATIVE,
'<':STANDARD,
'>':STANDARD,
'=':STANDARD,
'!':STANDARD
}
if struct:
for fmt in fmtdict['@']:
fmtdict['@'][fmt] = native_type_range(fmt)
MEMORYVIEW = NATIVE.copy()
ARRAY = NATIVE.copy()
for k in NATIVE:
if not k in "bBhHiIlLfd":
del ARRAY[k]
BYTEFMT = NATIVE.copy()
for k in NATIVE:
if not k in "Bbc":
del BYTEFMT[k]
fmtdict['m'] = MEMORYVIEW
fmtdict['@m'] = MEMORYVIEW
fmtdict['a'] = ARRAY
fmtdict['b'] = BYTEFMT
fmtdict['@b'] = BYTEFMT
MODE = 0
MULT = 1
cap = {
'ndarray': (['', '@', '<', '>', '=', '!'], ['', '1', '2', '3']),
'array': (['a'], ['']),
'numpy': ([''], ['']),
'memoryview': (['@m', 'm'], ['']),
'bytefmt': (['@b', 'b'], ['']),
}
def randrange_fmt(mode, char, obj):
x = randrange(*fmtdict[mode][char])
if char == 'c':
x = bytes([x])
if obj == 'numpy' and x == b'\x00':
x = b'\x01'
if char == '?':
x = bool(x)
if char == 'f' or char == 'd':
x = struct.pack(char, x)
x = struct.unpack(char, x)[0]
return x
def gen_item(fmt, obj):
mode, chars = fmt.split('#')
x = []
for c in chars:
x.append(randrange_fmt(mode, c, obj))
return x[0] if len(x) == 1 else tuple(x)
def gen_items(n, fmt, obj):
if n == 0:
return gen_item(fmt, obj)
lst = [0] * n
for i in range(n):
lst[i] = gen_item(fmt, obj)
return lst
def struct_items(n, obj):
mode = choice(cap[obj][MODE])
xfmt = mode + '#'
fmt = mode.strip('amb')
nmemb = randrange(2, 10)
for _ in range(nmemb):
char = choice(tuple(fmtdict[mode]))
multiplier = choice(cap[obj][MULT])
xfmt += (char * int(multiplier if multiplier else 1))
fmt += (multiplier + char)
items = gen_items(n, xfmt, obj)
item = gen_item(xfmt, obj)
return fmt, items, item
def randitems(n, obj='ndarray', mode=None, char=None):
if mode is None:
mode = choice(cap[obj][MODE])
if char is None:
char = choice(tuple(fmtdict[mode]))
multiplier = choice(cap[obj][MULT])
fmt = mode + '#' + char * int(multiplier if multiplier else 1)
items = gen_items(n, fmt, obj)
item = gen_item(fmt, obj)
fmt = mode.strip('amb') + multiplier + char
return fmt, items, item
def iter_mode(n, obj='ndarray'):
for mode in cap[obj][MODE]:
for char in fmtdict[mode]:
yield randitems(n, obj, mode, char)
def iter_format(nitems, testobj='ndarray'):
for t in iter_mode(nitems, testobj):
yield t
if testobj != 'ndarray':
return
yield struct_items(nitems, testobj)
def is_byte_format(fmt):
return 'c' in fmt or 'b' in fmt or 'B' in fmt
def is_memoryview_format(fmt):
x = len(fmt)
return ((x == 1 or (x == 2 and fmt[0] == '@')) and
fmt[x-1] in MEMORYVIEW)
NON_BYTE_FORMAT = [c for c in fmtdict['@'] if not is_byte_format(c)]
def atomp(lst):
return not isinstance(lst, list)
def listp(lst):
return isinstance(lst, list)
def prod(lst):
if len(lst) == 0:
return 0
x = lst[0]
for v in lst[1:]:
x *= v
return x
def strides_from_shape(ndim, shape, itemsize, layout):
if ndim == 0:
return ()
if layout == 'C':
strides = list(shape[1:]) + [itemsize]
for i in range(ndim-2, -1, -1):
strides[i] *= strides[i+1]
else:
strides = [itemsize] + list(shape[:-1])
for i in range(1, ndim):
strides[i] *= strides[i-1]
return strides
def _ca(items, s):
if atomp(items):
return items
if len(s) == 0:
return items[0]
lst = [0] * s[0]
stride = len(items) // s[0] if s[0] else 0
for i in range(s[0]):
start = i*stride
lst[i] = _ca(items[start:start+stride], s[1:])
return lst
def _fa(items, s):
if atomp(items):
return items
if len(s) == 0:
return items[0]
lst = [0] * s[0]
stride = s[0]
for i in range(s[0]):
lst[i] = _fa(items[i::stride], s[1:])
return lst
def carray(items, shape):
if listp(items) and not 0 in shape and prod(shape) != len(items):
raise ValueError("prod(shape) != len(items)")
return _ca(items, shape)
def farray(items, shape):
if listp(items) and not 0 in shape and prod(shape) != len(items):
raise ValueError("prod(shape) != len(items)")
return _fa(items, shape)
def indices(shape):
iterables = [range(v) for v in shape]
return product(*iterables)
def getindex(ndim, ind, strides):
ret = 0
for i in range(ndim):
ret += strides[i] * ind[i]
return ret
def transpose(src, shape):
if not shape:
return src
ndim = len(shape)
sstrides = strides_from_shape(ndim, shape, 1, 'C')
dstrides = strides_from_shape(ndim, shape[::-1], 1, 'C')
dest = [0] * len(src)
for ind in indices(shape):
fr = getindex(ndim, ind, sstrides)
to = getindex(ndim, ind[::-1], dstrides)
dest[to] = src[fr]
return dest
def _flatten(lst):
if lst == []:
return lst
if atomp(lst):
return [lst]
return _flatten(lst[0]) + _flatten(lst[1:])
def flatten(lst):
if atomp(lst):
return lst
return _flatten(lst)
def slice_shape(lst, slices):
if atomp(lst):
return []
return [len(lst[slices[0]])] + slice_shape(lst[0], slices[1:])
def multislice(lst, slices):
if atomp(lst):
return lst
return [multislice(sublst, slices[1:]) for sublst in lst[slices[0]]]
def m_assign(llst, rlst, lslices, rslices):
if atomp(rlst):
return rlst
rlst = [m_assign(l, r, lslices[1:], rslices[1:])
for l, r in zip(llst[lslices[0]], rlst[rslices[0]])]
llst[lslices[0]] = rlst
return llst
def cmp_structure(llst, rlst, lslices, rslices):
lshape = slice_shape(llst, lslices)
rshape = slice_shape(rlst, rslices)
if (len(lshape) != len(rshape)):
return -1
for i in range(len(lshape)):
if lshape[i] != rshape[i]:
return -1
if lshape[i] == 0:
return 0
return 0
def multislice_assign(llst, rlst, lslices, rslices):
if cmp_structure(llst, rlst, lslices, rslices) < 0:
raise ValueError("lvalue and rvalue have different structures")
return m_assign(llst, rlst, lslices, rslices)
def verify_structure(memlen, itemsize, ndim, shape, strides, offset):
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:
return False
if any(v % itemsize for v in strides):
return False
if ndim <= 0:
return ndim == 0 and not shape and not strides
if 0 in shape:
return True
imin = sum(strides[j]*(shape[j]-1) for j in range(ndim)
if strides[j] <= 0)
imax = sum(strides[j]*(shape[j]-1) for j in range(ndim)
if strides[j] > 0)
return 0 <= offset+imin and offset+imax+itemsize <= memlen
def get_item(lst, indices):
for i in indices:
lst = lst[i]
return lst
def memory_index(indices, t):
memlen, itemsize, ndim, shape, strides, offset = t
p = offset
for i in range(ndim):
p += strides[i]*indices[i]
return p
def is_overlapping(t):
memlen, itemsize, ndim, shape, strides, offset = t
visited = 1<<memlen
for ind in indices(shape):
i = memory_index(ind, t)
bit = 1<<i
if visited & bit:
return True
visited |= bit
return False
def rand_structure(itemsize, valid, maxdim=5, maxshape=16, shape=()):
if not shape:
ndim = randrange(maxdim+1)
if (ndim == 0):
if valid:
return itemsize, itemsize, ndim, (), (), 0
else:
nitems = randrange(1, 16+1)
memlen = nitems * itemsize
offset = -itemsize if randrange(2) == 0 else memlen
return memlen, itemsize, ndim, (), (), offset
minshape = 2
n = randrange(100)
if n >= 95 and valid:
minshape = 0
elif n >= 90:
minshape = 1
shape = [0] * ndim
for i in range(ndim):
shape[i] = randrange(minshape, maxshape+1)
else:
ndim = len(shape)
maxstride = 5
n = randrange(100)
zero_stride = True if n >= 95 and n & 1 else False
strides = [0] * ndim
strides[ndim-1] = itemsize * randrange(-maxstride, maxstride+1)
if not zero_stride and strides[ndim-1] == 0:
strides[ndim-1] = itemsize
for i in range(ndim-2, -1, -1):
maxstride *= shape[i+1] if shape[i+1] else 1
if zero_stride:
strides[i] = itemsize * randrange(-maxstride, maxstride+1)
else:
strides[i] = ((1,-1)[randrange(2)] *
itemsize * randrange(1, maxstride+1))
imin = imax = 0
if not 0 in shape:
imin = sum(strides[j]*(shape[j]-1) for j in range(ndim)
if strides[j] <= 0)
imax = sum(strides[j]*(shape[j]-1) for j in range(ndim)
if strides[j] > 0)
nitems = imax - imin
if valid:
offset = -imin * itemsize
memlen = offset + (imax+1) * itemsize
else:
memlen = (-imin + imax) * itemsize
offset = -imin-itemsize if randrange(2) == 0 else memlen
return memlen, itemsize, ndim, shape, strides, offset
def randslice_from_slicelen(slicelen, listlen):
maxstart = listlen - slicelen
start = randrange(maxstart+1)
maxstep = (listlen - start) // slicelen if slicelen else 1
step = randrange(1, maxstep+1)
stop = start + slicelen * step
s = slice(start, stop, step)
_, _, _, control = slice_indices(s, listlen)
if control != slicelen:
raise RuntimeError
return s
def randslice_from_shape(ndim, shape):
lslices = [0] * ndim
rslices = [0] * ndim
for n in range(ndim):
l = shape[n]
slicelen = randrange(1, l+1) if l > 0 else 0
lslices[n] = randslice_from_slicelen(slicelen, l)
rslices[n] = randslice_from_slicelen(slicelen, l)
return tuple(lslices), tuple(rslices)
def rand_aligned_slices(maxdim=5, maxshape=16):
ndim = randrange(1, maxdim+1)
minshape = 2
n = randrange(100)
if n >= 95:
minshape = 0
elif n >= 90:
minshape = 1
all_random = True if randrange(100) >= 80 else False
lshape = [0]*ndim; rshape = [0]*ndim
lslices = [0]*ndim; rslices = [0]*ndim
for n in range(ndim):
small = randrange(minshape, maxshape+1)
big = randrange(minshape, maxshape+1)
if big < small:
big, small = small, big
if all_random:
start = randrange(-small, small+1)
stop = randrange(-small, small+1)
step = (1,-1)[randrange(2)] * randrange(1, small+2)
s_small = slice(start, stop, step)
_, _, _, slicelen = slice_indices(s_small, small)
else:
slicelen = randrange(1, small+1) if small > 0 else 0
s_small = randslice_from_slicelen(slicelen, small)
s_big = randslice_from_slicelen(slicelen, big)
if randrange(2) == 0:
rshape[n], lshape[n] = big, small
rslices[n], lslices[n] = s_big, s_small
else:
rshape[n], lshape[n] = small, big
rslices[n], lslices[n] = s_small, s_big
return lshape, rshape, tuple(lslices), tuple(rslices)
def randitems_from_structure(fmt, t):
memlen, itemsize, _, _, _, _ = t
return gen_items(memlen//itemsize, '#'+fmt, 'numpy')
def ndarray_from_structure(items, fmt, t, flags=0):
memlen, itemsize, ndim, shape, strides, offset = t
return ndarray(items, shape=shape, strides=strides, format=fmt,
offset=offset, flags=ND_WRITABLE|flags)
def numpy_array_from_structure(items, fmt, t):
memlen, itemsize, ndim, shape, strides, offset = t
buf = bytearray(memlen)
for j, v in enumerate(items):
struct.pack_into(fmt, buf, j*itemsize, v)
return numpy_array(buffer=buf, shape=shape, strides=strides,
dtype=fmt, offset=offset)
def cast_items(exporter, fmt, itemsize, shape=None):
bytelen = exporter.nbytes
if shape:
if prod(shape) * itemsize != bytelen:
return None, shape
elif shape == []:
if exporter.ndim == 0 or itemsize != bytelen:
return None, shape
else:
n, r = divmod(bytelen, itemsize)
shape = [n]
if r != 0:
return None, shape
mem = exporter.tobytes()
byteitems = [mem[i:i+itemsize] for i in range(0, len(mem), itemsize)]
items = []
for v in byteitems:
item = struct.unpack(fmt, v)[0]
if item != item:
return 'nan', shape
items.append(item)
return (items, shape) if shape != [] else (items[0], shape)
def gencastshapes():
for n in range(32):
yield [n]
ndim = randrange(4, 6)
minshape = 1 if randrange(100) > 80 else 2
yield [randrange(minshape, 5) for _ in range(ndim)]
ndim = randrange(2, 4)
minshape = 1 if randrange(100) > 80 else 2
yield [randrange(minshape, 5) for _ in range(ndim)]
def genslices(n):
return product(range(-n, n+1), range(-n, n+1), range(-n, n+1))
def genslices_ndim(ndim, shape):
iterables = [genslices(shape[n]) for n in range(ndim)]
return product(*iterables)
def rslice(n, allow_empty=False):
minlen = 0 if allow_empty or n == 0 else 1
slicelen = randrange(minlen, n+1)
return randslice_from_slicelen(slicelen, n)
def rslices(n, allow_empty=False):
for _ in range(5):
yield rslice(n, allow_empty)
def rslices_ndim(ndim, shape, iterations=5):
for _ in range(iterations):
yield tuple(rslice(shape[n]) for n in range(ndim))
for _ in range(iterations):
yield tuple(rslice(shape[n], allow_empty=True) for n in range(ndim))
yield tuple(slice(0,1,0) for _ in range(ndim))
def rpermutation(iterable, r=None):
pool = tuple(iterable)
r = len(pool) if r is None else r
yield tuple(sample(pool, r))
|
BSD 3-Clause New or Revised License
|
yunify/qingcloud-sdk-python
|
qingcloud/iaas/actions/instance_groups.py
|
InstanceGroupsAction.leave_instance_group
|
python
|
def leave_instance_group(self, instances,
instance_group,
**ignore):
action = const.ACTION_LEAVE_INSTANCE_GROUP
valid_keys = ['instances', 'instance_group']
body = filter_out_none(locals(), valid_keys)
if not self.conn.req_checker.check_params(body,
required_params=['instances', 'instance_group'],
list_params=['instances']
):
return None
return self.conn.send_request(action, body)
|
Delete the specific instance(s) from the group.
@param instances: An id list contains the instance(s) who want to leave the instance group.
@param instance_group: The instance group id.
|
https://github.com/yunify/qingcloud-sdk-python/blob/10faf28de8651f3fbfea326552ee19f7519935b1/qingcloud/iaas/actions/instance_groups.py#L81-L97
|
from qingcloud.iaas import constants as const
from qingcloud.misc.utils import filter_out_none
class InstanceGroupsAction(object):
def __init__(self, conn):
self.conn = conn
def create_instance_groups(self, relation,
instance_group_name=None,
description=None,
**ignore):
action = const.ACTION_CREATE_INSTANCE_GROUPS
valid_keys = ['relation', 'instance_group_name', 'description']
body = filter_out_none(locals(), valid_keys)
if not self.conn.req_checker.check_params(body,
required_params=['relation'],
):
return None
return self.conn.send_request(action, body)
def delete_instance_groups(self, instance_groups,
**ignore):
action = const.ACTION_DELETE_INSTANCE_GROUPS
valid_keys = ['instance_groups']
body = filter_out_none(locals(), valid_keys)
if not self.conn.req_checker.check_params(body,
required_params=['instance_groups'],
list_params=['instance_groups']
):
return None
return self.conn.send_request(action, body)
def join_instance_group(self, instances,
instance_group,
**ignore):
action = const.ACTION_JOIN_INSTANCE_GROUP
valid_keys = ['instances', 'instance_group']
body = filter_out_none(locals(), valid_keys)
if not self.conn.req_checker.check_params(body,
required_params=['instances', 'instance_group'],
list_params=['instances']
):
return None
return self.conn.send_request(action, body)
|
Apache License 2.0
|
bioconda/bioconda-utils
|
bioconda_utils/gitter.py
|
GitterAPI.join_room
|
python
|
async def join_room(self, user: User, room: Room) -> None:
await self._make_request('POST', self._USER_ROOMS, {'userId': user.id},
{'id': room.id})
|
Add **user** to a **room**
|
https://github.com/bioconda/bioconda-utils/blob/df49b2169672255d5937b181cb86fbe08f7ebaaa/bioconda_utils/gitter.py#L327-L330
|
import abc
import logging
import json
import urllib
from collections import namedtuple
from typing import Any, Dict, List, Mapping, Optional, Tuple, NamedTuple, AsyncIterator
import aiohttp
import uritemplate
logger = logging.getLogger(__name__)
class User(NamedTuple):
@classmethod
def from_dict(cls, data):
return cls(**data)
id: str
username: str
displayName: str
url: str
avatarUrl: str
avatarUrlSmall: str
avatarUrlMedium: str
v: str
gv: str
providers: List[str] = None
class Mention(NamedTuple):
@classmethod
def from_dict(cls, data):
return cls(**data)
screenName: str
userId: str = None
userIds: List[str] = None
class Message(NamedTuple):
@classmethod
def from_dict(cls, data):
if 'mentions' in data:
data['mentions'] = [Mention.from_dict(user) for user in data['mentions']]
if 'fromUser' in data:
data['fromUser'] = User.from_dict(data['fromUser'])
return cls(**data)
id: str
text: str
html: str
sent: str
fromUser: User
unread: bool
readBy: int
urls: List[str]
mentions: List[Mention]
issues: List[str]
meta: str
v: str
gv: str = None
editedAt: str = None
class Room(NamedTuple):
@classmethod
def from_dict(cls, data):
if 'user' in data:
data['user'] = User.from_dict(data['user'])
return cls(**data)
id: str
name: str
topic: str
userCount: int
mentions: List[str]
lurk: bool
url: str
githubType: str
tags: List[str]
unreadItems: int
avatarUrl: str
roomMember: str
groupId: str
public: str
lastAccessTime: str = None
favourite: bool = False
oneToOne: bool = None
user: User = None
uri: str = None
security: str = None
noindex: str = None
group: str = None
v: str = None
class GitterAPI:
_GITTER_API = "https://api.gitter.im/v1"
_GITTER_STREAM_API = "https://stream.gitter.im/v1"
_MESSAGES = "/rooms/{roomId}/chatMessages{/messageId}"
_ROOMS = "/rooms{/roomId}"
_USER_ROOMS = "/user/{userId}/rooms"
_UNREAD = "/user/{userId}/rooms/{roomId}/unreadItems"
_ROOM_USERS = "/rooms/{roomId}/users{/userId}"
_LIST_GROUPS = "/groups"
_GET_USER = "/user/me"
def __init__(self, token: str) -> None:
self.token = token
self.debug_once = False
@abc.abstractmethod
async def _request(self, method: str, url: str, headers: Mapping[str, str],
body: bytes = b'') -> Tuple[int, Mapping[str, str], bytes]:
@abc.abstractmethod
async def _stream_request(self, method: str, url: str,
headers: Mapping[str, str],
body: bytes = b'') -> AsyncIterator[bytes]:
def _prepare_request(self, url: str, var_dict: Mapping[str, str],
data: Any = None,
charset: str = 'utf-8',
accept: str = "application/json") -> Tuple[str, Mapping[str, str], bytes]:
url = uritemplate.expand(url, var_dict=var_dict)
headers = {}
headers['accept'] = accept
headers['Authorization'] = "Bearer " + self.token
body = b''
if isinstance(data, str):
body = data.encode(charset)
elif isinstance(data, Mapping):
body = json.dumps(data).encode(charset)
headers['content-type'] = "application/json; charset=" + charset
headers['content-length'] = str(len(body))
return url, headers, body
async def _make_request(self, method: str, url: str, var_dict: Mapping[str, str],
data: Any = None,
accept: str = "application/json") -> Tuple[str, Any]:
charset = 'utf-8'
url = ''.join((self._GITTER_API, url))
url, headers, body = self._prepare_request(url, var_dict, data, charset, accept)
status, res_headers, response = await self._request(method, url, headers, body)
if self.debug_once:
self.debug_once = False
logger.error("Called %s / %s", method, url)
logger.error("Headers: %s", headers)
logger.error("Body: %s", body)
logger.error("Result Status: %s", status)
logger.error("Result Headers: %s", res_headers)
logger.error("Response: %s", response.decode(charset))
response_text = response.decode(charset)
try:
return response_text, json.loads(response_text)
except json.decoder.JSONDecodeError:
logger.error("Call to '%s' yielded text '%s' - not JSON",
url.replace(self.token, "******"),
response_text.replace(self.token, "******"))
return response_text, None
async def _make_stream_request(self, method: str, url: str, var_dict: Mapping[str, str],
data: Any = None,
accept: str = "application/json") -> AsyncIterator[Any]:
charset = 'utf-8'
url = ''.join((self._GITTER_STREAM_API, url))
url, headers, body = self._prepare_request(url, var_dict, data, charset, accept)
async for line_bytes in self._stream_request(method, url, headers, body):
line_str = line_bytes.decode(charset)
if not line_str.strip():
continue
try:
yield json.loads(line_str)
except json.decoder.JSONDecodeError:
logger.error("Failed to decode json in line %s", line_str)
async def list_rooms(self, name: str = None) -> List[Room]:
_, data = await self._make_request('GET', self._ROOMS, {})
if not data:
return []
rooms = [Room.from_dict(item) for item in data]
if name:
rooms = list(filter(lambda room: room.name == name, rooms))
return rooms
async def get_room(self, uri: str) -> Room:
_, data = await self._make_request('POST', self._ROOMS, {}, {'uri': uri})
return Room.from_dict(data)
|
MIT License
|
sleuth-io/code-video-generator
|
code_video/code_walkthrough.py
|
HighlightLines.__init__
|
python
|
def __init__(self, code: Code, start: int = 1, end: int = -1, **kwargs):
super().__init__(code, **kwargs)
self.start_line_number = start
self.end_line_number = end
|
Args:
code: The code instance to highlight
start: The line number to start highlighting, inclusive
end: The last line number to highlight
|
https://github.com/sleuth-io/code-video-generator/blob/dde5bd9860b4944fa297b3083585c0036df17a0a/code_video/code_walkthrough.py#L14-L23
|
from tempfile import NamedTemporaryFile
from typing import List
from typing import Optional
from manim import Code
from manim import Transform
class HighlightLines(Transform):
|
Apache License 2.0
|
jithurjacob/windows-10-toast-notifications
|
win10toast/__init__.py
|
ToastNotifier.show_toast
|
python
|
def show_toast(self, title="Notification", msg="Here comes the message",
icon_path=None, duration=5, threaded=False):
if not threaded:
self._show_toast(title, msg, icon_path, duration)
else:
if self.notification_active():
return False
self._thread = threading.Thread(target=self._show_toast, args=(title, msg, icon_path, duration))
self._thread.start()
return True
|
Notification settings.
:title: notification title
:msg: notification message
:icon_path: path to the .ico file to custom notification
:duration: delay in seconds before notification self-destruction
|
https://github.com/jithurjacob/windows-10-toast-notifications/blob/9d52b73f1af6c60162cf09b99269c4f7b13cdb00/win10toast/__init__.py#L117-L135
|
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals
__all__ = ['ToastNotifier']
import logging
import threading
from os import path
from time import sleep
from pkg_resources import Requirement
from pkg_resources import resource_filename
from win32api import GetModuleHandle
from win32api import PostQuitMessage
from win32con import CW_USEDEFAULT
from win32con import IDI_APPLICATION
from win32con import IMAGE_ICON
from win32con import LR_DEFAULTSIZE
from win32con import LR_LOADFROMFILE
from win32con import WM_DESTROY
from win32con import WM_USER
from win32con import WS_OVERLAPPED
from win32con import WS_SYSMENU
from win32gui import CreateWindow
from win32gui import DestroyWindow
from win32gui import LoadIcon
from win32gui import LoadImage
from win32gui import NIF_ICON
from win32gui import NIF_INFO
from win32gui import NIF_MESSAGE
from win32gui import NIF_TIP
from win32gui import NIM_ADD
from win32gui import NIM_DELETE
from win32gui import NIM_MODIFY
from win32gui import RegisterClass
from win32gui import UnregisterClass
from win32gui import Shell_NotifyIcon
from win32gui import UpdateWindow
from win32gui import WNDCLASS
class ToastNotifier(object):
def __init__(self):
self._thread = None
def _show_toast(self, title, msg,
icon_path, duration):
message_map = {WM_DESTROY: self.on_destroy, }
self.wc = WNDCLASS()
self.hinst = self.wc.hInstance = GetModuleHandle(None)
self.wc.lpszClassName = str("PythonTaskbar")
self.wc.lpfnWndProc = message_map
try:
self.classAtom = RegisterClass(self.wc)
except:
pass
style = WS_OVERLAPPED | WS_SYSMENU
self.hwnd = CreateWindow(self.classAtom, "Taskbar", style,
0, 0, CW_USEDEFAULT,
CW_USEDEFAULT,
0, 0, self.hinst, None)
UpdateWindow(self.hwnd)
if icon_path is not None:
icon_path = path.realpath(icon_path)
else:
icon_path = resource_filename(Requirement.parse("win10toast"), "win10toast/data/python.ico")
icon_flags = LR_LOADFROMFILE | LR_DEFAULTSIZE
try:
hicon = LoadImage(self.hinst, icon_path,
IMAGE_ICON, 0, 0, icon_flags)
except Exception as e:
logging.error("Some trouble with the icon ({}): {}"
.format(icon_path, e))
hicon = LoadIcon(0, IDI_APPLICATION)
flags = NIF_ICON | NIF_MESSAGE | NIF_TIP
nid = (self.hwnd, 0, flags, WM_USER + 20, hicon, "Tooltip")
Shell_NotifyIcon(NIM_ADD, nid)
Shell_NotifyIcon(NIM_MODIFY, (self.hwnd, 0, NIF_INFO,
WM_USER + 20,
hicon, "Balloon Tooltip", msg, 200,
title))
sleep(duration)
DestroyWindow(self.hwnd)
UnregisterClass(self.wc.lpszClassName, None)
return None
|
MIT License
|
gimelstudio/gimel-studio
|
src/GimelStudio/node/object.py
|
NodeObject.UpdateView
|
python
|
def UpdateView(self):
self.View._viewData = self.Model.ModelViewData
|
Update the view from the model.
|
https://github.com/gimelstudio/gimel-studio/blob/e2750576e72edee6f2f4c268045b81459df82d89/src/GimelStudio/node/object.py#L48-L50
|
from .model import NodeModel
from .view import NodeView
class NodeObject(object):
def __init__(self, _id):
self._model = NodeModel(_id)
self._view = NodeView(_id)
@property
def Model(self):
return self._model
@property
def View(self):
return self._view
|
Apache License 2.0
|
trailofbits/polyfile
|
polyfile/kaitai/parsers/mac_os_resource_snd.py
|
MacOsResourceSnd.init_pan_mask
|
python
|
def init_pan_mask(self):
if hasattr(self, '_m_init_pan_mask'):
return self._m_init_pan_mask if hasattr(self, '_m_init_pan_mask') else None
self._m_init_pan_mask = 3
return self._m_init_pan_mask if hasattr(self, '_m_init_pan_mask') else None
|
mask for right/left pan values.
|
https://github.com/trailofbits/polyfile/blob/5c35f703c89cebc208c45adf140ec05e42fcc4c2/polyfile/kaitai/parsers/mac_os_resource_snd.py#L409-L415
|
from pkg_resources import parse_version
import kaitaistruct
from kaitaistruct import KaitaiStruct, KaitaiStream, BytesIO
from enum import Enum
import collections
if parse_version(kaitaistruct.__version__) < parse_version('0.9'):
raise Exception("Incompatible Kaitai Struct Python API: 0.9 or later is required, but you have %s" % (kaitaistruct.__version__))
class MacOsResourceSnd(KaitaiStruct):
class CmdType(Enum):
null_cmd = 0
quiet_cmd = 3
flush_cmd = 4
re_init_cmd = 5
wait_cmd = 10
pause_cmd = 11
resume_cmd = 12
call_back_cmd = 13
sync_cmd = 14
empty_cmd = 15
available_cmd = 24
version_cmd = 25
total_load_cmd = 26
load_cmd = 27
freq_duration_cmd = 40
rest_cmd = 41
freq_cmd = 42
amp_cmd = 43
timbre_cmd = 44
get_amp_cmd = 45
volume_cmd = 46
get_volume_cmd = 47
wave_table_cmd = 60
phase_cmd = 61
sound_cmd = 80
buffer_cmd = 81
rate_cmd = 82
get_rate_cmd = 85
class SoundHeaderType(Enum):
standard = 0
compressed = 254
extended = 255
class DataType(Enum):
square_wave_synth = 1
wave_table_synth = 3
sampled_synth = 5
class WaveInitOption(Enum):
channel0 = 4
channel1 = 5
channel2 = 6
channel3 = 7
class InitOption(Enum):
chan_left = 2
chan_right = 3
no_interp = 4
no_drop = 8
mono = 128
stereo = 192
mace3 = 768
mace6 = 1024
class CompressionTypeEnum(Enum):
variable_compression = -2
fixed_compression = -1
not_compressed = 0
two_to_one = 1
eight_to_three = 2
three_to_one = 3
six_to_one = 4
SEQ_FIELDS = ["format", "num_data_formats", "data_formats", "reference_count", "num_sound_commands", "sound_commands"]
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._debug = collections.defaultdict(dict)
def _read(self):
self._debug['format']['start'] = self._io.pos()
self.format = self._io.read_u2be()
self._debug['format']['end'] = self._io.pos()
if self.format == 1:
self._debug['num_data_formats']['start'] = self._io.pos()
self.num_data_formats = self._io.read_u2be()
self._debug['num_data_formats']['end'] = self._io.pos()
if self.format == 1:
self._debug['data_formats']['start'] = self._io.pos()
self.data_formats = [None] * (self.num_data_formats)
for i in range(self.num_data_formats):
if not 'arr' in self._debug['data_formats']:
self._debug['data_formats']['arr'] = []
self._debug['data_formats']['arr'].append({'start': self._io.pos()})
_t_data_formats = MacOsResourceSnd.DataFormat(self._io, self, self._root)
_t_data_formats._read()
self.data_formats[i] = _t_data_formats
self._debug['data_formats']['arr'][i]['end'] = self._io.pos()
self._debug['data_formats']['end'] = self._io.pos()
if self.format == 2:
self._debug['reference_count']['start'] = self._io.pos()
self.reference_count = self._io.read_u2be()
self._debug['reference_count']['end'] = self._io.pos()
self._debug['num_sound_commands']['start'] = self._io.pos()
self.num_sound_commands = self._io.read_u2be()
self._debug['num_sound_commands']['end'] = self._io.pos()
self._debug['sound_commands']['start'] = self._io.pos()
self.sound_commands = [None] * (self.num_sound_commands)
for i in range(self.num_sound_commands):
if not 'arr' in self._debug['sound_commands']:
self._debug['sound_commands']['arr'] = []
self._debug['sound_commands']['arr'].append({'start': self._io.pos()})
_t_sound_commands = MacOsResourceSnd.SoundCommand(self._io, self, self._root)
_t_sound_commands._read()
self.sound_commands[i] = _t_sound_commands
self._debug['sound_commands']['arr'][i]['end'] = self._io.pos()
self._debug['sound_commands']['end'] = self._io.pos()
class Extended(KaitaiStruct):
SEQ_FIELDS = ["instrument_chunk_ptr", "aes_recording_ptr"]
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._debug = collections.defaultdict(dict)
def _read(self):
self._debug['instrument_chunk_ptr']['start'] = self._io.pos()
self.instrument_chunk_ptr = self._io.read_u4be()
self._debug['instrument_chunk_ptr']['end'] = self._io.pos()
self._debug['aes_recording_ptr']['start'] = self._io.pos()
self.aes_recording_ptr = self._io.read_u4be()
self._debug['aes_recording_ptr']['end'] = self._io.pos()
class SoundHeader(KaitaiStruct):
SEQ_FIELDS = ["_unnamed0", "sample_ptr", "num_samples", "num_channels", "sample_rate", "loop_start", "loop_end", "encode", "midi_note", "extended_or_compressed", "sample_area"]
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._debug = collections.defaultdict(dict)
def _read(self):
if self.start_ofs < 0:
self._debug['_unnamed0']['start'] = self._io.pos()
self._unnamed0 = self._io.read_bytes(0)
self._debug['_unnamed0']['end'] = self._io.pos()
self._debug['sample_ptr']['start'] = self._io.pos()
self.sample_ptr = self._io.read_u4be()
self._debug['sample_ptr']['end'] = self._io.pos()
if self.sound_header_type == MacOsResourceSnd.SoundHeaderType.standard:
self._debug['num_samples']['start'] = self._io.pos()
self.num_samples = self._io.read_u4be()
self._debug['num_samples']['end'] = self._io.pos()
if ((self.sound_header_type == MacOsResourceSnd.SoundHeaderType.extended) or (self.sound_header_type == MacOsResourceSnd.SoundHeaderType.compressed)) :
self._debug['num_channels']['start'] = self._io.pos()
self.num_channels = self._io.read_u4be()
self._debug['num_channels']['end'] = self._io.pos()
self._debug['sample_rate']['start'] = self._io.pos()
self.sample_rate = MacOsResourceSnd.UnsignedFixedPoint(self._io, self, self._root)
self.sample_rate._read()
self._debug['sample_rate']['end'] = self._io.pos()
self._debug['loop_start']['start'] = self._io.pos()
self.loop_start = self._io.read_u4be()
self._debug['loop_start']['end'] = self._io.pos()
self._debug['loop_end']['start'] = self._io.pos()
self.loop_end = self._io.read_u4be()
self._debug['loop_end']['end'] = self._io.pos()
self._debug['encode']['start'] = self._io.pos()
self.encode = KaitaiStream.resolve_enum(MacOsResourceSnd.SoundHeaderType, self._io.read_u1())
self._debug['encode']['end'] = self._io.pos()
self._debug['midi_note']['start'] = self._io.pos()
self.midi_note = self._io.read_u1()
self._debug['midi_note']['end'] = self._io.pos()
if ((self.sound_header_type == MacOsResourceSnd.SoundHeaderType.extended) or (self.sound_header_type == MacOsResourceSnd.SoundHeaderType.compressed)) :
self._debug['extended_or_compressed']['start'] = self._io.pos()
self.extended_or_compressed = MacOsResourceSnd.ExtendedOrCompressed(self._io, self, self._root)
self.extended_or_compressed._read()
self._debug['extended_or_compressed']['end'] = self._io.pos()
if self.sample_ptr == 0:
self._debug['sample_area']['start'] = self._io.pos()
self.sample_area = self._io.read_bytes((self.num_samples if self.sound_header_type == MacOsResourceSnd.SoundHeaderType.standard else (((self.extended_or_compressed.num_frames * self.num_channels) * self.extended_or_compressed.bits_per_sample) // 8 if self.sound_header_type == MacOsResourceSnd.SoundHeaderType.extended else (self._io.size() - self._io.pos()))))
self._debug['sample_area']['end'] = self._io.pos()
@property
def start_ofs(self):
if hasattr(self, '_m_start_ofs'):
return self._m_start_ofs if hasattr(self, '_m_start_ofs') else None
self._m_start_ofs = self._io.pos()
return self._m_start_ofs if hasattr(self, '_m_start_ofs') else None
@property
def base_freqeuncy(self):
if hasattr(self, '_m_base_freqeuncy'):
return self._m_base_freqeuncy if hasattr(self, '_m_base_freqeuncy') else None
if ((self.midi_note >= 0) and (self.midi_note < 128)) :
self._m_base_freqeuncy = self._root.midi_note_to_frequency[self.midi_note]
return self._m_base_freqeuncy if hasattr(self, '_m_base_freqeuncy') else None
@property
def sound_header_type(self):
if hasattr(self, '_m_sound_header_type'):
return self._m_sound_header_type if hasattr(self, '_m_sound_header_type') else None
_pos = self._io.pos()
self._io.seek((self.start_ofs + 20))
self._debug['_m_sound_header_type']['start'] = self._io.pos()
self._m_sound_header_type = KaitaiStream.resolve_enum(MacOsResourceSnd.SoundHeaderType, self._io.read_u1())
self._debug['_m_sound_header_type']['end'] = self._io.pos()
self._io.seek(_pos)
return self._m_sound_header_type if hasattr(self, '_m_sound_header_type') else None
class UnsignedFixedPoint(KaitaiStruct):
SEQ_FIELDS = ["integer_part", "fraction_part"]
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._debug = collections.defaultdict(dict)
def _read(self):
self._debug['integer_part']['start'] = self._io.pos()
self.integer_part = self._io.read_u2be()
self._debug['integer_part']['end'] = self._io.pos()
self._debug['fraction_part']['start'] = self._io.pos()
self.fraction_part = self._io.read_u2be()
self._debug['fraction_part']['end'] = self._io.pos()
@property
def value(self):
if hasattr(self, '_m_value'):
return self._m_value if hasattr(self, '_m_value') else None
self._m_value = (self.integer_part + (self.fraction_part / 65535.0))
return self._m_value if hasattr(self, '_m_value') else None
class SoundCommand(KaitaiStruct):
SEQ_FIELDS = ["is_data_offset", "cmd", "param1", "param2"]
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._debug = collections.defaultdict(dict)
def _read(self):
self._debug['is_data_offset']['start'] = self._io.pos()
self.is_data_offset = self._io.read_bits_int_be(1) != 0
self._debug['is_data_offset']['end'] = self._io.pos()
self._debug['cmd']['start'] = self._io.pos()
self.cmd = KaitaiStream.resolve_enum(MacOsResourceSnd.CmdType, self._io.read_bits_int_be(15))
self._debug['cmd']['end'] = self._io.pos()
self._io.align_to_byte()
self._debug['param1']['start'] = self._io.pos()
self.param1 = self._io.read_u2be()
self._debug['param1']['end'] = self._io.pos()
self._debug['param2']['start'] = self._io.pos()
self.param2 = self._io.read_u4be()
self._debug['param2']['end'] = self._io.pos()
@property
def sound_header(self):
if hasattr(self, '_m_sound_header'):
return self._m_sound_header if hasattr(self, '_m_sound_header') else None
if ((self.is_data_offset) and (self.cmd == MacOsResourceSnd.CmdType.buffer_cmd)) :
_pos = self._io.pos()
self._io.seek(self.param2)
self._debug['_m_sound_header']['start'] = self._io.pos()
self._m_sound_header = MacOsResourceSnd.SoundHeader(self._io, self, self._root)
self._m_sound_header._read()
self._debug['_m_sound_header']['end'] = self._io.pos()
self._io.seek(_pos)
return self._m_sound_header if hasattr(self, '_m_sound_header') else None
class Compressed(KaitaiStruct):
SEQ_FIELDS = ["format", "reserved", "state_vars_ptr", "left_over_samples_ptr", "compression_id", "packet_size", "synthesizer_id"]
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._debug = collections.defaultdict(dict)
def _read(self):
self._debug['format']['start'] = self._io.pos()
self.format = (self._io.read_bytes(4)).decode(u"ASCII")
self._debug['format']['end'] = self._io.pos()
self._debug['reserved']['start'] = self._io.pos()
self.reserved = self._io.read_bytes(4)
self._debug['reserved']['end'] = self._io.pos()
self._debug['state_vars_ptr']['start'] = self._io.pos()
self.state_vars_ptr = self._io.read_u4be()
self._debug['state_vars_ptr']['end'] = self._io.pos()
self._debug['left_over_samples_ptr']['start'] = self._io.pos()
self.left_over_samples_ptr = self._io.read_u4be()
self._debug['left_over_samples_ptr']['end'] = self._io.pos()
self._debug['compression_id']['start'] = self._io.pos()
self.compression_id = self._io.read_s2be()
self._debug['compression_id']['end'] = self._io.pos()
self._debug['packet_size']['start'] = self._io.pos()
self.packet_size = self._io.read_u2be()
self._debug['packet_size']['end'] = self._io.pos()
self._debug['synthesizer_id']['start'] = self._io.pos()
self.synthesizer_id = self._io.read_u2be()
self._debug['synthesizer_id']['end'] = self._io.pos()
@property
def compression_type(self):
if hasattr(self, '_m_compression_type'):
return self._m_compression_type if hasattr(self, '_m_compression_type') else None
self._m_compression_type = KaitaiStream.resolve_enum(MacOsResourceSnd.CompressionTypeEnum, self.compression_id)
return self._m_compression_type if hasattr(self, '_m_compression_type') else None
class ExtendedOrCompressed(KaitaiStruct):
SEQ_FIELDS = ["num_frames", "aiff_sample_rate", "marker_chunk", "extended", "compressed", "bits_per_sample", "reserved"]
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._debug = collections.defaultdict(dict)
def _read(self):
self._debug['num_frames']['start'] = self._io.pos()
self.num_frames = self._io.read_u4be()
self._debug['num_frames']['end'] = self._io.pos()
self._debug['aiff_sample_rate']['start'] = self._io.pos()
self.aiff_sample_rate = self._io.read_bytes(10)
self._debug['aiff_sample_rate']['end'] = self._io.pos()
self._debug['marker_chunk']['start'] = self._io.pos()
self.marker_chunk = self._io.read_u4be()
self._debug['marker_chunk']['end'] = self._io.pos()
if self._parent.sound_header_type == MacOsResourceSnd.SoundHeaderType.extended:
self._debug['extended']['start'] = self._io.pos()
self.extended = MacOsResourceSnd.Extended(self._io, self, self._root)
self.extended._read()
self._debug['extended']['end'] = self._io.pos()
if self._parent.sound_header_type == MacOsResourceSnd.SoundHeaderType.compressed:
self._debug['compressed']['start'] = self._io.pos()
self.compressed = MacOsResourceSnd.Compressed(self._io, self, self._root)
self.compressed._read()
self._debug['compressed']['end'] = self._io.pos()
self._debug['bits_per_sample']['start'] = self._io.pos()
self.bits_per_sample = self._io.read_u2be()
self._debug['bits_per_sample']['end'] = self._io.pos()
if self._parent.sound_header_type == MacOsResourceSnd.SoundHeaderType.extended:
self._debug['reserved']['start'] = self._io.pos()
self.reserved = self._io.read_bytes(14)
self._debug['reserved']['end'] = self._io.pos()
class DataFormat(KaitaiStruct):
SEQ_FIELDS = ["id", "options"]
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._debug = collections.defaultdict(dict)
def _read(self):
self._debug['id']['start'] = self._io.pos()
self.id = KaitaiStream.resolve_enum(MacOsResourceSnd.DataType, self._io.read_u2be())
self._debug['id']['end'] = self._io.pos()
self._debug['options']['start'] = self._io.pos()
self.options = self._io.read_u4be()
self._debug['options']['end'] = self._io.pos()
@property
|
Apache License 2.0
|
dmort27/panphon
|
panphon/featuretable.py
|
FeatureTable.validate_word
|
python
|
def validate_word(self, word):
return word == ''.join(self.ipa_segs(word))
|
Returns True if `word` consists exhaustively of valid IPA segments
Args:
word (unicode): input word as Unicode IPA string
Returns:
bool: True if `word` can be divided exhaustively into IPA segments
that exist in the database
|
https://github.com/dmort27/panphon/blob/b7f556d41bbf8f643adaee8b87a97860f3a6b297/panphon/featuretable.py#L96-L107
|
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import os.path
import unicodedata
import collections
import numpy
import pkg_resources
import regex as re
import unicodecsv as csv
from . import xsampa
from .segment import Segment
feature_sets = {
'spe+': (os.path.join('data', 'ipa_all.csv'),
os.path.join('data', 'feature_weights.csv'))
}
class FeatureTable(object):
def __init__(self, feature_set='spe+'):
bases_fn, weights_fn = feature_sets[feature_set]
self.weights = self._read_weights(weights_fn)
self.segments, self.seg_dict, self.names = self._read_bases(bases_fn, self.weights)
self.seg_regex = self._build_seg_regex()
self.longest_seg = max([len(x) for x in self.seg_dict.keys()])
self.xsampa = xsampa.XSampa()
def _read_bases(self, fn, weights):
fn = pkg_resources.resource_filename(__name__, fn)
segments = []
with open(fn, 'rb') as f:
reader = csv.reader(f, encoding='utf-8')
header = next(reader)
names = header[1:]
for row in reader:
ipa = unicodedata.normalize('NFD', row[0])
vals = [{'-': -1, '0': 0, '+': 1}[x] for x in row[1:]]
vec = Segment(names,
{n: v for (n, v) in zip(names, vals)},
weights=weights)
segments.append((ipa, vec))
seg_dict = dict(segments)
return segments, seg_dict, names
def _read_weights(self, weights_fn):
weights_fn = pkg_resources.resource_filename(__name__, weights_fn)
with open(weights_fn, 'rb') as f:
reader = csv.reader(f, encoding='utf-8')
next(reader)
weights = [float(x) for x in next(reader)]
return weights
def _build_seg_regex(self):
segs = sorted(self.seg_dict.keys(), key=lambda x: len(x), reverse=True)
return re.compile(r'(?P<all>{})'.format('|'.join(segs)))
def fts(self, ipa):
if ipa in self.seg_dict:
return self.seg_dict[ipa]
else:
return None
def longest_one_seg_prefix(self, word):
for i in range(self.longest_seg, 0, -1):
if word[:i] in self.seg_dict:
return word[:i]
return ''
def ipa_segs(self, word):
word = unicodedata.normalize('NFD', word)
return [unicodedata.normalize('NFD', m.group('all'))
for m in self.seg_regex.finditer(word)]
|
MIT License
|
mosra/m.css
|
documentation/test_python/inspect_type_links/inspect_type_links/second.py
|
type_cant_link
|
python
|
def type_cant_link(a: _Hidden):
|
Annotation linking to a type that's a part of INPUT_MODULES but not known
|
https://github.com/mosra/m.css/blob/9385194fa3392a7162e7535cc2478814e382ff8a/documentation/test_python/inspect_type_links/inspect_type_links/second.py#L92-L93
|
from typing import Tuple, List, Any, Callable
import enum
class Enum(enum.Enum):
FIRST = 1
SECOND = 2
def type_enum(a: Enum):
class Foo:
@property
def type_property(self) -> Enum:
@property
def type_property_string_nested(self) -> 'Tuple[Foo, List[Enum], Any]':
@property
def type_property_string_invalid(self) -> 'FooBar':
def type_property_writeonly(self, a: Enum):
type_property_writeonly = property(None, type_property_writeonly)
def type_property_writeonly_string_nested(self, a: 'Tuple[Foo, List[Enum], Any]'):
type_property_writeonly_string_nested = property(None, type_property_writeonly_string_nested)
def type_property_writeonly_string_invalid(self, a: 'Foo.Bar'):
type_property_writeonly_string_invalid = property(None, type_property_writeonly_string_invalid)
TYPE_DATA_STRING_INVALID: 'Foo.Bar' = 3
class FooSlots:
__slots__ = ['type_slot', 'type_slot_string_nested']
type_slot: Enum
type_slot_string_nested: 'Tuple[Foo, List[Enum], Any]'
class FooSlotsInvalid:
__slots__ = ['type_slot_string_invalid']
type_slot_string_invalid: List['FooBar']
def type_string(a: 'Foo'):
def type_nested(a: Tuple[Foo, List[Enum], Any]):
def type_string_nested(a: 'Tuple[Foo, List[Enum], Any]'):
def type_nested_string(a: Tuple['Foo', 'List[Enum]', 'Any']):
def type_string_invalid(a: 'Foo.Bar'):
def type_nested_string_invalid(a: Tuple['FooBar', 'List[Enum]', 'Any']):
def type_return() -> Foo:
def type_return_string_nested() -> 'Tuple[Foo, List[Enum], Any]':
def type_return_string_invalid(a: Foo) -> 'FooBar':
class _Hidden:
pass
|
MIT License
|
tellapart/taba
|
src/taba/server/frontend.py
|
TabaServerFrontend.GetStatus
|
python
|
def GetStatus(self):
queue_stats = model_provider.GetQueues().GetQueueStats()
latency_stats = model_provider.GetLatency().GetStatistics()
queue_stats.update(latency_stats)
return queue_stats
|
Retrieve statistics about the cluster.
Returns:
Dict containing high level statistics.
|
https://github.com/tellapart/taba/blob/0254e76348d247ab957ff547df9662a69cab4c9c/src/taba/server/frontend.py#L423-L433
|
import logging
import re
import gevent
from taba import client
from taba.common import transport
from taba.server.model import model_provider
from taba.util import misc_util
from taba.util import thread_util
_CAPACITY_REJECTIONS = client.Tab('taba_updates_rejected')
LOG = logging.getLogger(__name__)
class CapacityException(Exception):
pass
class TabaServerFrontend(object):
def __init__(self, name_blacklist, client_blacklist):
self.name_blacklist_patterns = _ConvertReListToPatterns(name_blacklist)
self.client_blacklist_patterns = _ConvertReListToPatterns(client_blacklist)
def ReceiveEventsStreaming(self, events_buffer):
if not model_provider.GetQueues().CanAcceptUpdate():
_CAPACITY_REJECTIONS.Record()
raise CapacityException()
def _ReceiveBatch(event_bundle):
client = event_bundle.client
name = event_bundle.name
if (_ItemMatchesAnyPattern(self.name_blacklist_patterns, name) or
_ItemMatchesAnyPattern(self.client_blacklist_patterns, client)):
LOG.info(
'Filtering %d events for C:%s N:%s' %
(event_bundle.num_events, client, name))
return 0
cid = model_provider.GetClients().GetCids([client], True)[client]
nid = model_provider.GetNames().GetNids([name], True)[name]
tab_type = model_provider.GetNames().GetOrUpdateTypes(
{nid: event_bundle.tab_type})[nid]
try:
sstate = model_provider.GetStates().ConvertNewEvents(
client, cid, name, nid, tab_type, event_bundle)
except Exception:
LOG.error('Error folding events for %s (%s)' % (name, client))
raise
model_provider.GetQueues().EnqueueUpdate(nid, cid, sstate)
model_provider.GetLatency().RecordForPost(event_bundle)
return event_bundle.num_events
events_gen = transport.DecodeStreaming(events_buffer)
result_aggregator = misc_util.Aggregator()
processor = thread_util.AsyncProcessor(
events_gen,
_ReceiveBatch,
result_aggregator,
workers=4)
processor.Process()
return result_aggregator.value
def GetStates(self,
names=None,
clients=None,
use_re=False,
raw=False,
accept=None):
if names is not None and use_re:
all_names = model_provider.GetNames().GetAllNames()
filter_names = _FilterListByRegularExpression(all_names, names)
name_to_nid = model_provider.GetNames().GetNids(filter_names)
nid_to_name = dict((v, k) for k, v in name_to_nid.iteritems())
nids = filter(None, name_to_nid.values())
elif names is not None:
name_to_nid = model_provider.GetNames().GetNids(names)
nid_to_name = dict((v, k) for k, v in name_to_nid.iteritems())
nids = filter(None, name_to_nid.values())
else:
name_to_nid = model_provider.GetNames().GetNameToNidMap()
nid_to_name = dict((v, k) for k, v in name_to_nid.iteritems())
nids = None
if clients is not None and use_re:
all_clients = model_provider.GetClients().GetAllClients()
filter_clients = _FilterListByRegularExpression(all_clients, clients)
client_to_cid = model_provider.GetClients().GetCids(filter_clients)
cid_to_client = dict((v, k) for k, v in client_to_cid.iteritems())
cids = filter(None, client_to_cid.values())
elif clients is not None:
client_to_cid = model_provider.GetClients().GetCids(clients)
cid_to_client = dict((v, k) for k, v in client_to_cid.iteritems())
cids = filter(None, client_to_cid.values())
else:
client_to_cid = model_provider.GetClients().GetClientCidMap()
cid_to_client = dict((v, k) for k, v in client_to_cid.iteritems())
cids = None
it = model_provider.GetStates().StatesIterator(nids, cids, (not raw), accept)
return [
((nid_to_name.get(nid, None), cid_to_client.get(cid, None)), state)
for ((nid, cid), state) in it]
def GetAggregates(self,
names=None,
clients=None,
use_re=False,
raw=False,
accept=None):
if names is not None and use_re:
all_names = model_provider.GetNames().GetAllNames()
filter_names = _FilterListByRegularExpression(all_names, names)
name_to_nid = model_provider.GetNames().GetNids(filter_names)
nid_to_name = dict((v, k) for k, v in name_to_nid.iteritems())
nids = filter(None, name_to_nid.values())
elif names is not None:
name_to_nid = model_provider.GetNames().GetNids(names)
nid_to_name = dict((v, k) for k, v in name_to_nid.iteritems())
nids = filter(None, name_to_nid.values())
else:
name_to_nid = model_provider.GetNames().GetNameToNidMap()
nid_to_name = dict((v, k) for k, v in name_to_nid.iteritems())
nids = None
if clients is not None and use_re:
all_clients = model_provider.GetClients().GetAllClients()
filter_clients = _FilterListByRegularExpression(all_clients, clients)
client_to_cid = model_provider.GetClients().GetCids(filter_clients)
cids = filter(None, client_to_cid.values())
elif clients is not None:
client_to_cid = model_provider.GetClients().GetCids(clients)
cids = filter(None, client_to_cid.values())
else:
cids = None
it = model_provider.GetStates().AggregatesIterator(
nids, cids, (not raw), accept)
return [(nid_to_name[nid], state) for (nid, state) in it]
def GetSuperAggregate(self,
names=None,
clients=None,
use_re=False,
raw=False,
accept=None):
if names is not None and use_re:
all_names = model_provider.GetNames().GetAllNames()
filter_names = _FilterListByRegularExpression(all_names, names)
name_to_nid = model_provider.GetNames().GetNids(filter_names)
nids = filter(None, name_to_nid.values())
elif names is not None:
name_to_nid = model_provider.GetNames().GetNids(names)
nids = filter(None, name_to_nid.values())
else:
nids = None
if clients is not None and use_re:
all_clients = model_provider.GetClients().GetAllClients()
filter_clients = _FilterListByRegularExpression(all_clients, clients)
client_to_cid = model_provider.GetClients().GetCids(filter_clients)
cids = filter(None, client_to_cid.values())
elif clients is not None:
client_to_cid = model_provider.GetClients().GetCids(clients)
cids = filter(None, client_to_cid.values())
else:
cids = None
return model_provider.GetStates().SuperAggregate(
nids, cids, (not raw), accept)
def GetAllClients(self, filter_val=None, use_re=False):
clients = model_provider.GetClients().GetAllClients()
if filter_val and use_re:
return _FilterListByRegularExpression(clients, filter_val)
elif filter_val:
return list(set(filter_val).intersection(set(clients)))
else:
return clients
def GetNames(self, clients=None, filter_val=None, use_re=False):
if clients:
if use_re:
all_clients = model_provider.GetClients().GetAllClients()
filter_clients = _FilterListByRegularExpression(all_clients, clients)
else:
filter_clients = clients
cids = model_provider.GetClients().GetCids(filter_clients)
nids = set()
for cid in filter(None, cids.values()):
nids.update(model_provider.GetStates().GetNidsForCid(cid))
names = model_provider.GetNames().GetNames(nids).values()
else:
names = model_provider.GetNames().GetAllNames()
if filter_val is not None and use_re:
return _FilterListByRegularExpression(names, filter_val)
elif filter_val is not None:
return list(set(filter_val).intersection(set(names)))
else:
return names
def GetTypes(self, names=None, use_re=False):
if names:
if use_re:
all_names = model_provider.GetNames().GetAllNames()
filter_names = _FilterListByRegularExpression(all_names, names)
else:
filter_names = names
name_to_nid = model_provider.GetNames().GetNids(filter_names)
nid_to_name = dict([(nid, name) for name, nid in name_to_nid.iteritems()])
nid_to_type = model_provider.GetNames().GetTypes(name_to_nid.values())
types = dict([
(nid_to_name[nid], type)
for nid, type in nid_to_type.iteritems()])
else:
nid_to_type = model_provider.GetNames().GetAllTypes()
nids = nid_to_type.keys()
nid_to_name = model_provider.GetNames().GetNames(nids)
types = dict([
(nid_to_name[nid], tp)
for nid, tp in nid_to_type.iteritems()
if nid_to_name[nid]])
return types
def GetIdMaps(self):
names_map = model_provider.GetNames().GetNameToNidMap()
client_map = model_provider.GetClients().GetClientCidMap()
return names_map, client_map
|
Apache License 2.0
|
dallinger/dallinger
|
dallinger/experiment_server/experiment_server.py
|
create_participant
|
python
|
def create_participant(worker_id, hit_id, assignment_id, mode, entry_information=None):
try:
session.connection().execute("LOCK TABLE participant IN EXCLUSIVE MODE NOWAIT")
except exc.OperationalError as e:
e.orig = TransactionRollbackError()
raise e
missing = [p for p in (worker_id, hit_id, assignment_id) if p == "undefined"]
if missing:
msg = "/participant POST: required values were 'undefined'"
return error_response(error_type=msg, status=403)
fingerprint_hash = request.args.get("fingerprint_hash")
try:
fingerprint_found = models.Participant.query.filter_by(
fingerprint_hash=fingerprint_hash
).one_or_none()
except MultipleResultsFound:
fingerprint_found = True
if fingerprint_hash and fingerprint_found:
db.logger.warning("Same browser fingerprint detected.")
if mode == "live":
return error_response(
error_type="/participant POST: Same participant dectected.", status=403
)
already_participated = models.Participant.query.filter_by(
worker_id=worker_id
).one_or_none()
if already_participated:
db.logger.warning("Worker has already participated.")
return error_response(
error_type="/participant POST: worker has already participated.", status=403
)
duplicate = models.Participant.query.filter_by(
assignment_id=assignment_id, status="working"
).one_or_none()
if duplicate:
msg = """
AWS has reused assignment_id while existing participant is
working. Replacing older participant {}.
"""
app.logger.warning(msg.format(duplicate.id))
q.enqueue(worker_function, "AssignmentReassigned", None, duplicate.id)
nonfailed_count = (
models.Participant.query.filter(
(models.Participant.status == "working")
| (models.Participant.status == "overrecruited")
| (models.Participant.status == "submitted")
| (models.Participant.status == "approved")
).count()
+ 1
)
recruiter_name = request.args.get("recruiter")
exp = Experiment(session)
participant_vals = {
"worker_id": worker_id,
"hit_id": hit_id,
"assignment_id": assignment_id,
"mode": mode,
"recruiter_name": recruiter_name,
"fingerprint_hash": fingerprint_hash,
"entry_information": entry_information,
}
try:
participant = exp.create_participant(**participant_vals)
except Exception:
db.logger.exception(
"Error creating particant using these values: {}".format(participant_vals)
)
msg = "/participant POST: an error occurred while registering the participant."
return error_response(error_type=msg, status=400)
session.flush()
overrecruited = exp.is_overrecruited(nonfailed_count)
if overrecruited:
participant.status = "overrecruited"
result = {"participant": participant.__json__()}
if exp.quorum:
quorum = {
"q": exp.quorum,
"n": nonfailed_count,
"overrecruited": participant.status == "overrecruited",
}
db.queue_message(WAITING_ROOM_CHANNEL, dumps(quorum))
result["quorum"] = quorum
return success_response(**result)
|
Create a participant.
This route is hit early on. Any nodes the participant creates will be
defined in reference to the participant object. You must specify the
worker_id, hit_id, assignment_id, and mode in the url.
|
https://github.com/dallinger/dallinger/blob/2bc309c422935d372a7568cc18340e3b5b3f6a21/dallinger/experiment_server/experiment_server.py#L742-L850
|
from datetime import datetime
import gevent
from json import dumps
from json import loads
import os
import re
from flask import (
abort,
Flask,
redirect,
render_template,
request,
Response,
send_from_directory,
url_for,
)
from flask_login import LoginManager, login_required
from jinja2 import TemplateNotFound
from rq import Queue
from sqlalchemy.orm.exc import NoResultFound, MultipleResultsFound
from sqlalchemy import exc
from sqlalchemy import func
from sqlalchemy.sql.expression import true
from psycopg2.extensions import TransactionRollbackError
from dallinger import db
from dallinger import experiment
from dallinger import models
from dallinger.config import get_config
from dallinger import recruiters
from dallinger.notifications import admin_notifier
from dallinger.notifications import MessengerError
from dallinger.utils import generate_random_id
from . import dashboard
from .replay import ReplayBackend
from .worker_events import worker_function
from .utils import (
crossdomain,
nocache,
ValidatesBrowser,
error_page,
error_response,
success_response,
ExperimentError,
)
session = db.session
redis_conn = db.redis_conn
q = Queue(connection=redis_conn)
WAITING_ROOM_CHANNEL = "quorum"
app = Flask("Experiment_Server")
@app.before_first_request
def _config():
app.secret_key = app.config["SECRET_KEY"] = os.environ.get("FLASK_SECRET_KEY")
config = get_config()
if not config.ready:
config.load()
if config.get("dashboard_password", None):
app.config["ADMIN_USER"] = dashboard.User(
userid=config.get("dashboard_user", "admin"),
password=config.get("dashboard_password"),
)
return config
def Experiment(args):
klass = experiment.load()
return klass(args)
try:
from dallinger_experiment.experiment import extra_routes
except ImportError:
pass
else:
app.register_blueprint(extra_routes)
try:
exp_klass = experiment.load()
except ImportError:
exp_klass = None
if exp_klass is not None:
bp = exp_klass.experiment_routes
routes = experiment.EXPERIMENT_ROUTE_REGISTRATIONS
for route in routes:
route_func = getattr(exp_klass, route["func_name"], None)
if route_func is not None:
bp.add_url_rule(
route["rule"],
endpoint=route["func_name"],
view_func=route_func,
**dict(route["kwargs"])
)
if routes:
app.register_blueprint(bp)
dash_routes = dashboard.DASHBOARD_ROUTE_REGISTRATIONS
for route in dash_routes:
route_func = getattr(exp_klass, route["func_name"], None)
if route_func is not None:
route_func = login_required(route_func)
route_name = route["func_name"]
dashboard.dashboard.add_url_rule(
"/" + route_name,
endpoint=route_name,
view_func=route_func,
**dict(route["kwargs"])
)
tabs = dashboard.dashboard_tabs
full_tab = route.get("tab")
if route.get("before_route") and full_tab:
tabs.insert_tab_before_route(full_tab, route["before_route"])
elif route.get("before_route"):
tabs.insert_before_route(
route["title"], route_name, route["before_route"]
)
elif route.get("after_route") and full_tab:
tabs.insert_tab_after_route(full_tab, route["after_route"])
elif route.get("after_route"):
tabs.insert_after_route(
route["title"], route_name, route["after_route"]
)
elif full_tab:
tabs.insert(full_tab)
else:
tabs.insert(route["title"], route_name)
app.register_blueprint(recruiters.mturk_routes)
app.register_blueprint(dashboard.dashboard)
login = LoginManager(app)
login.login_view = "dashboard.login"
login.request_loader(dashboard.load_user_from_request)
login.user_loader(dashboard.load_user)
login.unauthorized_handler(dashboard.unauthorized)
app.config["dashboard_tabs"] = dashboard.dashboard_tabs
@app.route("/")
def index():
html = (
"<html><head></head><body><h1>Dallinger Experiment in progress</h1>"
"<p><a href={}>Dashboard</a></p></body></html>".format(
url_for("dashboard.index")
)
)
return html
@app.route("/robots.txt")
def static_robots_txt():
return send_from_directory("static", "robots.txt")
@app.route("/favicon.ico")
def static_favicon():
return send_from_directory("static", "favicon.ico", mimetype="image/x-icon")
@app.errorhandler(ExperimentError)
def handle_exp_error(exception):
app.logger.error(
"%s (%s) %s", exception.value, exception.errornum, str(dict(request.args))
)
return error_page(error_type=exception.value)
@app.teardown_request
def shutdown_session(_=None):
session.remove()
db.logger.debug("Closing Dallinger DB session at flask request end")
@app.context_processor
def inject_experiment():
exp = Experiment(session)
return dict(experiment=exp, env=os.environ)
@app.route("/error-page", methods=["POST", "GET"])
def render_error():
request_data = request.form.get("request_data")
participant_id = request.form.get("participant_id")
participant = None
if participant_id:
participant = models.Participant.query.get(participant_id)
return error_page(participant=participant, request_data=request_data)
hit_error_template = """Dear experimenter,
This is an automated email from Dallinger. You are receiving this email because
a recruited participant has been unable to complete the experiment due to
a bug.
The application id is: {app_id}
The information about the failed HIT is recorded in the database in the
Notification table, with assignment_id {assignment_id}.
To see the logs, use the command "dallinger logs --app {app_id}"
To pause the app, use the command "dallinger hibernate --app {app_id}"
To destroy the app, use the command "dallinger destroy --app {app_id}"
The Dallinger dev. team.
"""
@app.route("/handle-error", methods=["POST"])
def handle_error():
request_data = request.form.get("request_data")
error_feedback = request.form.get("error_feedback")
error_type = request.form.get("error_type")
error_text = request.form.get("error_text")
worker_id = request.form.get("worker_id")
assignment_id = request.form.get("assignment_id")
participant_id = request.form.get("participant_id")
hit_id = request.form.get("hit_id")
participant = None
completed = False
details = {"request_data": {}}
if request_data:
try:
request_data = loads(request_data)
except ValueError:
request_data = {}
details["request_data"] = request_data
try:
data = loads(request_data.get("data", "null")) or request_data
except ValueError:
data = request_data
if not participant_id and "participant_id" in data:
participant_id = data["participant_id"]
if not worker_id and "worker_id" in data:
worker_id = data["worker_id"]
if not assignment_id and "assignment_id" in data:
assignment_id = data["assignment_id"]
if not hit_id and "hit_id" in data:
hit_id = data["hit_id"]
if participant_id:
try:
participant_id = int(participant_id)
except (ValueError, TypeError):
participant_id = None
details["feedback"] = error_feedback
details["error_type"] = error_type
details["error_text"] = error_text
if participant_id is None and worker_id:
participants = (
session.query(models.Participant).filter_by(worker_id=worker_id).all()
)
if participants:
participant = participants[0]
if not assignment_id:
assignment_id = participant.assignment_id
if participant_id is None and assignment_id:
participants = (
session.query(models.Participant).filter_by(worker_id=assignment_id).all()
)
if participants:
participant = participants[0]
participant_id = participant.id
if not worker_id:
worker_id = participant.worker_id
if participant_id is not None:
_worker_complete(participant_id)
completed = True
details["request_data"].update(
{"worker_id": worker_id, "hit_id": hit_id, "participant_id": participant_id}
)
notif = models.Notification(
assignment_id=assignment_id or "unknown",
event_type="ExperimentError",
details=details,
)
session.add(notif)
session.commit()
config = _config()
message = {
"subject": "Error during HIT.",
"body": hit_error_template.format(
app_id=config.get("id", "unknown"), assignment_id=assignment_id or "unknown"
),
}
db.logger.debug("Reporting HIT error...")
messenger = admin_notifier(config)
try:
messenger.send(**message)
except MessengerError as ex:
db.logger.exception(ex)
return render_template(
"error-complete.html",
completed=completed,
contact_address=config.get("contact_email_on_error"),
hit_id=hit_id,
)
@app.route("/launch", methods=["POST"])
def launch():
try:
exp = Experiment(db.init_db(drop_all=False))
except Exception as ex:
return error_response(
error_text="Failed to load experiment in /launch: {}".format(str(ex)),
status=500,
simple=True,
)
try:
exp.log("Launching experiment...", "-----")
except IOError as ex:
return error_response(
error_text="IOError writing to experiment log: {}".format(str(ex)),
status=500,
simple=True,
)
try:
recruitment_details = exp.recruiter.open_recruitment(
n=exp.initial_recruitment_size
)
session.commit()
except Exception as e:
return error_response(
error_text="Failed to open recruitment, check experiment server log "
"for details: {}".format(str(e)),
status=500,
simple=True,
)
for task in exp.background_tasks:
try:
gevent.spawn(task)
except Exception:
return error_response(
error_text="Failed to spawn task on launch: {}, ".format(task)
+ "check experiment server log for details",
status=500,
simple=True,
)
if _config().get("replay", False):
try:
task = ReplayBackend(exp)
gevent.spawn(task)
except Exception:
return error_response(
error_text="Failed to launch replay task for experiment."
"check experiment server log for details",
status=500,
simple=True,
)
if exp.channel is not None:
try:
from dallinger.experiment_server.sockets import chat_backend
chat_backend.subscribe(exp, exp.channel)
except Exception:
return error_response(
error_text="Failed to subscribe to chat for channel on launch "
+ "{}".format(exp.channel)
+ ", check experiment server log for details",
status=500,
simple=True,
)
message = "\n".join(
(
"Initial recruitment list:\n{}".format(
"\n".join(recruitment_details["items"])
),
"Additional details:\n{}".format(recruitment_details["message"]),
)
)
return success_response(recruitment_msg=message)
@app.route("/ad", methods=["GET"])
@nocache
def advertisement():
config = _config()
browser = ValidatesBrowser(config)
if not browser.is_supported(request.user_agent.string):
raise ExperimentError("browser_type_not_allowed")
entry_information = request.args.to_dict()
if entry_information.get("generate_tokens", None) in ("1", "true", "yes"):
redirect_params = entry_information.copy()
del redirect_params["generate_tokens"]
for entry_param in ("hitId", "assignmentId", "workerId"):
if not redirect_params.get(entry_param):
redirect_params[entry_param] = generate_random_id()
return redirect(url_for("advertisement", **redirect_params))
app_id = config.get("id", "unknown")
exp = Experiment(session)
entry_data = exp.normalize_entry_information(entry_information)
hit_id = entry_data.get("hit_id")
assignment_id = entry_data.get("assignment_id")
worker_id = entry_data.get("worker_id")
if not (hit_id and assignment_id):
raise ExperimentError("hit_assign_worker_id_not_set_by_recruiter")
if worker_id is not None:
already_participated = (
models.Participant.query.filter(
models.Participant.worker_id == worker_id
).first()
is not None
)
if already_participated:
raise ExperimentError("already_did_exp_hit")
recruiter_name = request.args.get("recruiter")
if recruiter_name:
recruiter = recruiters.by_name(recruiter_name)
else:
recruiter = recruiters.from_config(config)
recruiter_name = recruiter.nickname
return render_template(
"ad.html",
recruiter=recruiter_name,
hitid=hit_id,
assignmentid=assignment_id,
workerid=worker_id,
mode=config.get("mode"),
app_id=app_id,
query_string=request.query_string.decode(),
)
@app.route("/recruiter-exit", methods=["GET"])
@nocache
def recriter_exit():
participant_id = request.args.get("participant_id")
if participant_id is None:
return error_response(
error_type="/recruiter-exit GET: param participant_id is required",
status=400,
)
participant = models.Participant.query.get(participant_id)
if participant is None:
return error_response(
error_type="/recruiter-exit GET: no participant found for ID {}".format(
participant_id
),
status=404,
)
recruiter = recruiters.by_name(participant.recruiter_id)
exp = Experiment(session)
return recruiter.exit_response(experiment=exp, participant=participant)
@app.route("/summary", methods=["GET"])
def summary():
exp = Experiment(session)
state = {
"status": "success",
"summary": exp.log_summary(),
"completed": exp.is_complete(),
}
unfilled_nets = (
models.Network.query.filter(models.Network.full != true())
.with_entities(models.Network.id, models.Network.max_size)
.all()
)
working = (
models.Participant.query.filter_by(status="working")
.with_entities(func.count(models.Participant.id))
.scalar()
)
state["unfilled_networks"] = len(unfilled_nets)
nodes_remaining = 0
required_nodes = 0
if state["unfilled_networks"] == 0:
if working == 0 and state["completed"] is None:
state["completed"] = True
else:
for net in unfilled_nets:
node_count = (
models.Node.query.filter_by(network_id=net.id, failed=False)
.with_entities(func.count(models.Node.id))
.scalar()
)
net_size = net.max_size
required_nodes += net_size
nodes_remaining += net_size - node_count
state["nodes_remaining"] = nodes_remaining
state["required_nodes"] = required_nodes
if state["completed"] is None:
state["completed"] = False
nonfailed_count = models.Participant.query.filter(
(models.Participant.status == "working")
| (models.Participant.status == "overrecruited")
| (models.Participant.status == "submitted")
| (models.Participant.status == "approved")
).count()
exp = Experiment(session)
overrecruited = exp.is_overrecruited(nonfailed_count)
if exp.quorum:
quorum = {"q": exp.quorum, "n": nonfailed_count, "overrecruited": overrecruited}
db.queue_message(WAITING_ROOM_CHANNEL, dumps(quorum))
return Response(dumps(state), status=200, mimetype="application/json")
@app.route("/experiment_property/<prop>", methods=["GET"])
@app.route("/experiment/<prop>", methods=["GET"])
def experiment_property(prop):
exp = Experiment(session)
try:
value = exp.public_properties[prop]
except KeyError:
abort(404)
return success_response(**{prop: value})
@app.route("/<page>", methods=["GET"])
def get_page(page):
try:
return render_template(page + ".html")
except TemplateNotFound:
abort(404)
@app.route("/<directory>/<page>", methods=["GET"])
def get_page_from_directory(directory, page):
return render_template(directory + "/" + page + ".html")
@app.route("/consent")
def consent():
config = _config()
entry_information = request.args.to_dict()
exp = Experiment(session)
entry_data = exp.normalize_entry_information(entry_information)
hit_id = entry_data.get("hit_id")
assignment_id = entry_data.get("assignment_id")
worker_id = entry_data.get("worker_id")
return render_template(
"consent.html",
hit_id=hit_id,
assignment_id=assignment_id,
worker_id=worker_id,
mode=config.get("mode"),
query_string=request.query_string.decode(),
)
def request_parameter(parameter, parameter_type=None, default=None, optional=False):
exp = Experiment(session)
try:
value = request.values[parameter]
except KeyError:
if default is not None:
return default
elif optional:
return None
else:
msg = "{} {} request, {} not specified".format(
request.url, request.method, parameter
)
return error_response(error_type=msg)
if parameter_type is None:
return value
elif parameter_type == "int":
try:
value = int(value)
return value
except ValueError:
msg = "{} {} request, non-numeric {}: {}".format(
request.url, request.method, parameter, value
)
return error_response(error_type=msg)
elif parameter_type == "known_class":
try:
value = exp.known_classes[value]
return value
except KeyError:
msg = "{} {} request, unknown_class: {} for parameter {}".format(
request.url, request.method, value, parameter
)
return error_response(error_type=msg)
elif parameter_type == "bool":
if value in ["True", "False"]:
return value == "True"
else:
msg = "{} {} request, non-boolean {}: {}".format(
request.url, request.method, parameter, value
)
return error_response(error_type=msg)
else:
msg = "/{} {} request, unknown parameter type: {} for parameter {}".format(
request.url, request.method, parameter_type, parameter
)
return error_response(error_type=msg)
def assign_properties(thing):
details = request_parameter(parameter="details", optional=True)
if details:
setattr(thing, "details", loads(details))
for p in range(5):
property_name = "property" + str(p + 1)
property = request_parameter(parameter=property_name, optional=True)
if property:
setattr(thing, property_name, property)
session.commit()
@app.route("/participant/<worker_id>/<hit_id>/<assignment_id>/<mode>", methods=["POST"])
@db.serialized
|
MIT License
|
elifesciences/elife-tools
|
elifetools/parseJATS.py
|
accepted_date_date
|
python
|
def accepted_date_date(soup):
return utils.date_text(history_date(soup, date_type="accepted"))
|
Find the accepted date in human readable form
|
https://github.com/elifesciences/elife-tools/blob/ee345bf0e6703ef0f7e718355e85730abbdfd117/elifetools/parseJATS.py#L616-L620
|
from collections import OrderedDict
import copy
import re
from bs4 import BeautifulSoup
from slugify import slugify
import elifetools.rawJATS as raw_parser
import elifetools.json_rewrite
from elifetools import utils
from elifetools.utils_html import xml_to_html, references_author_collab
XML_NAMESPACES = [
OrderedDict(
[
("prefix", "mml:"),
("attribute", "xmlns:mml"),
("uri", "http://www.w3.org/1998/Math/MathML"),
]
),
OrderedDict(
[
("prefix", "xlink:"),
("attribute", "xmlns:xlink"),
("uri", "http://www.w3.org/1999/xlink"),
]
),
]
SCIETY_URI_DOMAIN = "sciety.org"
def parse_xml(xml):
return BeautifulSoup(xml, "lxml-xml")
def parse_document(filelocation):
with open(filelocation, "rb") as open_file:
return parse_xml(open_file)
def title(soup):
return utils.node_text(raw_parser.article_title(soup))
def full_title(soup):
return utils.node_contents_str(raw_parser.article_title(soup))
def title_short(soup):
return str(title(soup))[:20]
def title_slug(soup):
return slugify(title(soup))
def title_prefix(soup):
prefix = None
display_channel_match_list = ["feature article", "insight", "editorial"]
for d_channel in display_channel(soup):
if d_channel.lower() in display_channel_match_list:
if raw_parser.sub_display_channel(soup):
prefix = utils.node_text(
utils.first(raw_parser.sub_display_channel(soup))
)
return prefix
def title_prefix_json(soup):
prefix = title_prefix(soup)
prefix_rewritten = elifetools.json_rewrite.rewrite_json(
"title_prefix_json", soup, prefix
)
return prefix_rewritten
def doi(soup):
return utils.doi_uri_to_doi(utils.node_text(raw_parser.doi(soup)))
def publisher_id(soup):
return utils.node_text(raw_parser.publisher_id(soup))
def journal_id(soup):
return utils.node_text(raw_parser.journal_id(soup))
def journal_title(soup):
return utils.node_text(raw_parser.journal_title(soup))
def journal_issn(soup, pub_format=None, pub_type=None):
return utils.node_text(raw_parser.journal_issn(soup, pub_format, pub_type))
def publisher(soup):
return utils.node_text(raw_parser.publisher(soup))
def article_type(soup):
return raw_parser.article_type(soup)
def volume(soup):
return utils.node_text(utils.first(raw_parser.volume(soup)))
def issue(soup):
return utils.node_text(utils.first(raw_parser.issue(raw_parser.article_meta(soup))))
def fpage(soup):
return utils.node_text(utils.first(raw_parser.fpage(raw_parser.article_meta(soup))))
def lpage(soup):
return utils.node_text(utils.first(raw_parser.lpage(raw_parser.article_meta(soup))))
def elocation_id(soup):
return utils.node_text(
utils.first(raw_parser.elocation_id(raw_parser.article_meta(soup)))
)
def research_organism(soup):
if not raw_parser.research_organism_keywords(soup):
return []
return list(map(utils.node_text, raw_parser.research_organism_keywords(soup)))
def full_research_organism(soup):
if not raw_parser.research_organism_keywords(soup):
return []
return list(
map(utils.node_contents_str, raw_parser.research_organism_keywords(soup))
)
def keywords(soup):
if not raw_parser.author_keywords(soup):
return []
return list(map(utils.node_text, raw_parser.author_keywords(soup)))
def full_keywords(soup):
if not raw_parser.author_keywords(soup):
return []
return list(map(utils.node_contents_str, raw_parser.author_keywords(soup)))
def full_keyword_groups(soup):
groups = {}
for group_tag in raw_parser.keyword_group(soup):
group = list(
map(utils.node_contents_str, utils.extract_nodes(group_tag, "kwd"))
)
group = list(map(lambda s: s.strip(), group))
if "kwd-group-type" in group_tag.attrs:
groups[group_tag["kwd-group-type"].strip()] = group
return groups
def full_custom_meta(soup, meta_name=None):
return raw_parser.custom_meta(soup, meta_name)
def impact_statement(soup):
tag = utils.first(full_custom_meta(soup, "Author impact statement"))
if tag is not None:
return utils.node_contents_str(
utils.first(utils.extract_nodes(tag, "meta-value"))
)
return ""
def version_history(soup, html_flag=True):
def convert(xml_string):
return xml_to_html(html_flag, xml_string)
version_history = []
related_object_tags = raw_parser.related_object(raw_parser.article_meta(soup))
for tag in related_object_tags:
article_version = OrderedDict()
date_tag = utils.first(raw_parser.date(tag))
if not date_tag:
continue
utils.copy_attribute(date_tag.attrs, "date-type", article_version, "version")
(day, month, year) = ymd(date_tag)
article_version["day"] = day
article_version["month"] = month
article_version["year"] = year
article_version["date"] = utils.date_struct_nn(year, month, day)
utils.copy_attribute(tag.attrs, "xlink:href", article_version, "xlink_href")
utils.set_if_value(
article_version,
"comment",
convert(utils.node_contents_str(utils.first(raw_parser.comment(tag)))),
)
version_history.append(article_version)
return version_history
def clinical_trials(soup):
clinical_trials = []
related_object_tags = raw_parser.related_object(raw_parser.article_meta(soup))
for tag in [tag for tag in related_object_tags if "source-id-type" in tag.attrs]:
clinical_trial = OrderedDict()
for attribute in [
"id",
"content-type",
"document-id",
"document-id-type",
"source-id",
"source-id-type",
"source-type",
]:
utils.copy_attribute(tag.attrs, attribute, clinical_trial)
clinical_trial["text"] = tag.text
utils.copy_attribute(tag.attrs, "xlink:href", clinical_trial, "xlink_href")
clinical_trials.append(clinical_trial)
return clinical_trials
def format_related_object(related_object):
return related_object["id"], {}
def related_object_ids(soup):
tags = []
if raw_parser.related_object(soup):
tags = list(
filter(
lambda tag: tag.get("id") is not None, raw_parser.related_object(soup)
)
)
return dict(map(format_related_object, tags))
def article_id_list(soup):
id_list = []
for article_id_tag in raw_parser.article_id(soup):
id_details = OrderedDict()
utils.set_if_value(id_details, "type", article_id_tag.get("pub-id-type"))
utils.set_if_value(id_details, "value", article_id_tag.text)
utils.set_if_value(
id_details, "assigning-authority", article_id_tag.get("assigning-authority")
)
id_list.append(id_details)
return id_list
def pub_history(soup):
events = []
pub_history = utils.first(raw_parser.pub_history(soup))
if pub_history:
event_tags = raw_parser.event(pub_history)
for event_tag in event_tags:
event = OrderedDict()
date_tag = utils.first(raw_parser.date(event_tag))
utils.set_if_value(event, "event_type", event_tag.get("event-type"))
if not event.get("event_type") and date_tag:
utils.set_if_value(event, "event_type", date_tag.get("date-type"))
event_desc_tag = utils.first(raw_parser.event_desc(event_tag))
if event_desc_tag:
event_desc = utils.node_contents_str(event_desc_tag).rstrip()
utils.set_if_value(event, "event_desc", event_desc)
utils.set_if_value(
event, "event_desc_html", xml_to_html(True, event_desc)
)
self_uri_tag = utils.first(raw_parser.self_uri(event_tag))
if self_uri_tag:
utils.set_if_value(event, "uri", self_uri_tag.get("xlink:href"))
else:
uri_tag = utils.first(raw_parser.ext_link(event_tag, "uri"))
if uri_tag:
utils.set_if_value(event, "uri", uri_tag.get("xlink:href"))
utils.set_if_value(
event, "uri_text", utils.node_contents_str(uri_tag)
)
if article_id_list(event_tag):
event["id_list"] = article_id_list(event_tag)
if date_tag:
(day, month, year) = ymd(date_tag)
event["day"] = day
event["month"] = month
event["year"] = year
event["date"] = utils.date_struct_nn(year, month, day)
utils.set_if_value(
event, "iso-8601-date", date_tag.get("iso-8601-date")
)
(day, month, year) = ymd(date_tag)
events.append(event)
return events
@utils.strippen
def acknowledgements(soup):
return utils.node_text(raw_parser.acknowledgements(soup))
def ack(soup):
return acknowledgements(soup)
@utils.nullify
@utils.strippen
def conflict(soup):
result = [utils.node_text(tag) for tag in raw_parser.conflict(soup)]
return result
def copyright_statement(soup):
permissions_tag = raw_parser.article_permissions(soup)
if permissions_tag:
return utils.node_text(raw_parser.copyright_statement(permissions_tag))
return None
@utils.inten
def copyright_year(soup):
permissions_tag = raw_parser.article_permissions(soup)
if permissions_tag:
return utils.node_text(raw_parser.copyright_year(permissions_tag))
return None
def copyright_holder(soup):
permissions_tag = raw_parser.article_permissions(soup)
if permissions_tag:
return utils.node_text(raw_parser.copyright_holder(permissions_tag))
return None
def copyright_holder_json(soup):
holder = None
permissions_tag = raw_parser.article_permissions(soup)
if permissions_tag:
holder = utils.node_text(raw_parser.copyright_holder(permissions_tag))
if holder is not None and holder.endswith("et al"):
holder = holder + "."
return holder
def license(soup):
permissions_tag = raw_parser.article_permissions(soup)
if permissions_tag:
return utils.node_text(utils.first(raw_parser.licence_p(permissions_tag)))
return None
def full_license(soup):
permissions_tag = raw_parser.article_permissions(soup)
if permissions_tag:
return utils.node_contents_str(
utils.first(raw_parser.licence_p(permissions_tag))
)
return None
def license_url(soup):
permissions_tag = raw_parser.article_permissions(soup)
if permissions_tag:
return raw_parser.licence_url(permissions_tag)
return None
def license_json(soup):
return xml_to_html(True, full_license(soup))
def funding_statement(soup):
return utils.node_text(raw_parser.funding_statement(soup))
def full_funding_statement(soup):
return utils.node_contents_str(raw_parser.funding_statement(soup))
def ref_text(tag):
ref_text = utils.node_text(tag)
ref_text = utils.strip_strings(ref_text)
ref_text = " ".join(ref_text.split())
ref_text = utils.strip_punctuation_space(utils.strip_strings(ref_text))
return ref_text
def subject_area(soup):
subject_area = []
tags = raw_parser.subject_area(soup)
for tag in tags:
subject_area.append(utils.node_text(tag))
return subject_area
def full_subject_area(soup):
subject_areas = raw_parser.full_subject_area(soup)
areas = {}
for tag in subject_areas:
subj_type = tag["subj-group-type"]
if subj_type not in areas:
areas[subj_type] = []
areas[subj_type].append(tag.get_text().strip())
return areas
def display_channel(soup):
display_channel = []
tags = raw_parser.display_channel(soup)
for tag in tags:
display_channel.append(utils.node_text(tag))
return display_channel
def category(soup):
category = []
tags = raw_parser.category(soup)
for tag in tags:
category.append(utils.node_text(tag))
return category
def ymd(soup):
day = utils.node_text(raw_parser.day(soup))
month = utils.node_text(raw_parser.month(soup))
year = utils.node_text(raw_parser.year(soup))
return (day, month, year)
def pub_date(soup):
pub_date = utils.first(raw_parser.pub_date(soup, date_type="pub"))
if pub_date is None:
pub_date = utils.first(raw_parser.pub_date(soup, date_type="publication"))
if pub_date is None:
return None
(day, month, year) = ymd(pub_date)
return utils.date_struct(year, month, day)
def pub_dates(soup):
pub_dates = []
tags = raw_parser.pub_date(soup)
for tag in tags:
pub_date = OrderedDict()
utils.copy_attribute(tag.attrs, "publication-format", pub_date)
utils.copy_attribute(tag.attrs, "date-type", pub_date)
utils.copy_attribute(tag.attrs, "pub-type", pub_date)
for tag_attr in ["date-type", "pub-type"]:
if tag_attr in tag.attrs:
(day, month, year) = ymd(tag)
pub_date["day"] = day
pub_date["month"] = month
pub_date["year"] = year
pub_date["date"] = utils.date_struct_nn(year, month, day)
pub_dates.append(pub_date)
return pub_dates
def history_date(soup, date_type=None):
if date_type is None:
return None
history_date = raw_parser.history_date(soup, date_type)
if history_date is None:
return None
(day, month, year) = ymd(history_date)
return utils.date_struct(year, month, day)
def pub_date_date(soup):
return utils.date_text(pub_date(soup))
def pub_date_day(soup):
return utils.day_text(pub_date(soup))
def pub_date_month(soup):
return utils.month_text(pub_date(soup))
def pub_date_year(soup):
return utils.year_text(pub_date(soup))
def pub_date_timestamp(soup):
return utils.date_timestamp(pub_date(soup))
def received_date_date(soup):
return utils.date_text(history_date(soup, date_type="received"))
def received_date_day(soup):
return utils.day_text(history_date(soup, date_type="received"))
def received_date_month(soup):
return utils.month_text(history_date(soup, date_type="received"))
def received_date_year(soup):
return utils.year_text(history_date(soup, date_type="received"))
def received_date_timestamp(soup):
return utils.date_timestamp(history_date(soup, date_type="received"))
|
MIT License
|
pykeen/pykeen
|
src/pykeen/hpo/cli.py
|
optimize
|
python
|
def optimize(
model: str,
dataset: str,
loss: str,
sampler: str,
storage: Optional[str],
n_trials: Optional[int],
timeout: Optional[int],
output: str,
):
if n_trials is None and timeout is None:
click.secho("Must specify either --n-trials or --timeout", fg="red")
sys.exit(1)
hpo_pipeline_result = hpo_pipeline(
model=model,
dataset=dataset,
loss=loss,
n_trials=n_trials,
timeout=timeout,
storage=storage,
sampler=sampler,
)
hpo_pipeline_result.save_to_directory(output)
|
Optimize hyper-parameters for a KGE model.
For example, use pykeen optimize TransE Nations --loss MarginRankingLoss
|
https://github.com/pykeen/pykeen/blob/7ee2a6f9bc43200d44c874bfc3de0a747bd3632d/src/pykeen/hpo/cli.py#L24-L51
|
import sys
from typing import Optional
import click
from .hpo import hpo_pipeline
from .samplers import sampler_resolver
from ..losses import loss_resolver
@click.command()
@click.argument("model")
@click.argument("dataset")
@loss_resolver.get_option("-l", "--loss")
@sampler_resolver.get_option("--sampler", help="Which sampler should be used?")
@click.option("--storage", help="Where to output trials dataframe")
@click.option("--n-trials", type=int, help="Number of trials to run")
@click.option("--timeout", type=int, help="The timeout in seconds")
@click.option("-o", "--output", type=click.Path(file_okay=False, dir_okay=True), help="Where to output results")
|
MIT License
|
google/clusterfuzz
|
src/clusterfuzz/_internal/metrics/fuzzer_stats.py
|
Query._group_by_select
|
python
|
def _group_by_select(self):
if self.group_by == QueryGroupBy.GROUP_BY_DAY:
return ('TIMESTAMP_TRUNC(TIMESTAMP_SECONDS(CAST('
'timestamp AS INT64)), DAY, "UTC") as date')
if self.group_by == QueryGroupBy.GROUP_BY_TIME:
return 'TIMESTAMP_SECONDS(CAST(timestamp AS INT64)) as time'
return group_by_to_field_name(self.group_by)
|
Return a group by field.
|
https://github.com/google/clusterfuzz/blob/e9e105d66f009356c4f3fe9ae7873ffff126b234/src/clusterfuzz/_internal/metrics/fuzzer_stats.py#L724-L733
|
import datetime
import functools
import itertools
import json
import os
import random
import re
from clusterfuzz._internal.base import memoize
from clusterfuzz._internal.base import utils
from clusterfuzz._internal.datastore import data_handler
from clusterfuzz._internal.datastore import data_types
from clusterfuzz._internal.datastore import fuzz_target_utils
from clusterfuzz._internal.google_cloud_utils import big_query
from clusterfuzz._internal.google_cloud_utils import storage
from clusterfuzz._internal.metrics import fuzzer_logs
from clusterfuzz._internal.metrics import logs
from clusterfuzz._internal.system import environment
from clusterfuzz._internal.system import shell
STATS_FILE_EXTENSION = '.stats2'
PERFORMANCE_REPORT_VIEWER_PATH = '/performance-report/{fuzzer}/{job}/{date}'
JOB_RUN_SCHEMA = {
'fields': [{
'name': 'testcases_executed',
'type': 'INTEGER',
'mode': 'NULLABLE'
}, {
'name': 'build_revision',
'type': 'INTEGER',
'mode': 'NULLABLE'
}, {
'name': 'new_crashes',
'type': 'INTEGER',
'mode': 'NULLABLE'
}, {
'name': 'job',
'type': 'STRING',
'mode': 'NULLABLE'
}, {
'name': 'timestamp',
'type': 'FLOAT',
'mode': 'NULLABLE'
}, {
'name':
'crashes',
'type':
'RECORD',
'mode':
'REPEATED',
'fields': [{
'name': 'crash_type',
'type': 'STRING',
'mode': 'NULLABLE'
}, {
'name': 'is_new',
'type': 'BOOLEAN',
'mode': 'NULLABLE'
}, {
'name': 'crash_state',
'type': 'STRING',
'mode': 'NULLABLE'
}, {
'name': 'security_flag',
'type': 'BOOLEAN',
'mode': 'NULLABLE'
}, {
'name': 'count',
'type': 'INTEGER',
'mode': 'NULLABLE'
}]
}, {
'name': 'known_crashes',
'type': 'INTEGER',
'mode': 'NULLABLE'
}, {
'name': 'fuzzer',
'type': 'STRING',
'mode': 'NULLABLE'
}, {
'name': 'kind',
'type': 'STRING',
'mode': 'NULLABLE'
}]
}
class FuzzerStatsException(Exception):
class BaseRun(object):
VALID_FIELDNAME_PATTERN = re.compile(r'[a-zA-Z][a-zA-Z0-9_]*')
def __init__(self, fuzzer, job, build_revision, timestamp):
self._stats_data = {
'fuzzer': fuzzer,
'job': job,
'build_revision': build_revision,
'timestamp': timestamp,
}
def __getitem__(self, key):
return self._stats_data.__getitem__(key)
def __setitem__(self, key, value):
if not re.compile(self.VALID_FIELDNAME_PATTERN):
raise ValueError('Invalid key name.')
return self._stats_data.__setitem__(key, value)
def __delitem__(self, key):
return self._stats_data.__delitem__(key)
def __contains__(self, key):
return self._stats_data.__contains__(key)
def to_json(self):
return json.dumps(self._stats_data)
def update(self, other):
self._stats_data.update(other)
@property
def data(self):
return self._stats_data
@property
def kind(self):
return self._stats_data['kind']
@property
def fuzzer(self):
return self._stats_data['fuzzer']
@property
def job(self):
return self._stats_data['job']
@property
def build_revision(self):
return self._stats_data['build_revision']
@property
def timestamp(self):
return self._stats_data['timestamp']
@staticmethod
def from_json(json_data):
try:
data = json.loads(json_data)
except (ValueError, TypeError):
return None
if not isinstance(data, dict):
return None
result = None
try:
kind = data['kind']
if kind == 'TestcaseRun':
result = TestcaseRun(data['fuzzer'], data['job'],
data['build_revision'], data['timestamp'])
elif kind == 'JobRun':
result = JobRun(data['fuzzer'], data['job'], data['build_revision'],
data['timestamp'], data['testcases_executed'],
data['new_crashes'], data['known_crashes'],
data.get('crashes'))
except KeyError:
return None
if result:
result.update(data)
return result
class JobRun(BaseRun):
SCHEMA = JOB_RUN_SCHEMA
def __init__(self, fuzzer, job, build_revision, timestamp,
number_of_testcases, new_crashes, known_crashes, crashes):
super(JobRun, self).__init__(fuzzer, job, build_revision, timestamp)
self._stats_data.update({
'kind': 'JobRun',
'testcases_executed': number_of_testcases,
'new_crashes': new_crashes,
'known_crashes': known_crashes,
'crashes': crashes
})
class TestcaseRun(BaseRun):
SCHEMA = None
def __init__(self, fuzzer, job, build_revision, timestamp):
super(TestcaseRun, self).__init__(fuzzer, job, build_revision, timestamp)
self._stats_data.update({
'kind': 'TestcaseRun',
})
source = environment.get_value('STATS_SOURCE')
if source:
self._stats_data['source'] = source
@staticmethod
def get_stats_filename(testcase_file_path):
return testcase_file_path + STATS_FILE_EXTENSION
@staticmethod
def read_from_disk(testcase_file_path, delete=False):
stats_file_path = TestcaseRun.get_stats_filename(testcase_file_path)
if not os.path.exists(stats_file_path):
return None
fuzzer_run = None
with open(stats_file_path) as f:
fuzzer_run = BaseRun.from_json(f.read())
if delete:
shell.remove_file(stats_file_path)
return fuzzer_run
@staticmethod
def write_to_disk(testcase_run, testcase_file_path):
if not testcase_run:
return
stats_file_path = TestcaseRun.get_stats_filename(testcase_file_path)
with open(stats_file_path, 'w') as f:
f.write(testcase_run.to_json())
class QueryGroupBy(object):
GROUP_BY_NONE = 0
GROUP_BY_REVISION = 1
GROUP_BY_DAY = 2
GROUP_BY_TIME = 3
GROUP_BY_JOB = 4
GROUP_BY_FUZZER = 5
def group_by_to_field_name(group_by):
if group_by == QueryGroupBy.GROUP_BY_REVISION:
return 'build_revision'
if group_by == QueryGroupBy.GROUP_BY_DAY:
return 'date'
if group_by == QueryGroupBy.GROUP_BY_TIME:
return 'time'
if group_by == QueryGroupBy.GROUP_BY_JOB:
return 'job'
if group_by == QueryGroupBy.GROUP_BY_FUZZER:
return 'fuzzer'
return None
class BuiltinFieldData(object):
def __init__(self, value, sort_key=None, link=None):
self.value = value
self.sort_key = sort_key
self.link = link
class BuiltinFieldSpecifier(object):
def __init__(self, name, alias=None):
self.name = name
self.alias = alias
def create(self, ctx=None):
constructor = BUILTIN_FIELD_CONSTRUCTORS.get(self.name)
if not constructor:
return None
return constructor(ctx)
def field_class(self):
constructor = BUILTIN_FIELD_CONSTRUCTORS.get(self.name)
if not constructor:
return None
if isinstance(constructor, functools.partial):
return constructor.func
return constructor
class BuiltinField(object):
def __init__(self, ctx=None):
self.ctx = ctx
def get(self, group_by, group_by_value):
return None
class BuiltinFieldContext(object):
def __init__(self, fuzzer=None, jobs=None):
self.fuzzer = fuzzer
self.jobs = jobs
def single_job_or_none(self):
if self.jobs and len(self.jobs) == 1:
return self.jobs[0]
return None
class CoverageFieldContext(BuiltinFieldContext):
def __init__(self, fuzzer=None, jobs=None):
super(CoverageFieldContext, self).__init__(fuzzer=fuzzer, jobs=jobs)
@memoize.wrap(memoize.FifoInMemory(256))
def get_coverage_info(self, fuzzer, date=None):
if fuzzer in data_types.BUILTIN_FUZZERS:
job = self.single_job_or_none()
project = data_handler.get_project_name(job)
return get_coverage_info(project, date)
fuzz_target = data_handler.get_fuzz_target(fuzzer)
if fuzz_target:
fuzzer = fuzz_target.project_qualified_name()
return get_coverage_info(fuzzer, date)
class BaseCoverageField(object):
CONTEXT_CLASS = CoverageFieldContext
def __init__(self, ctx):
self.ctx = ctx
def get_coverage_info(self, group_by, group_by_value):
coverage_info = None
if group_by == QueryGroupBy.GROUP_BY_DAY:
coverage_info = self.ctx.get_coverage_info(self.ctx.fuzzer,
group_by_value)
elif group_by == QueryGroupBy.GROUP_BY_FUZZER:
coverage_info = self.ctx.get_coverage_info(group_by_value)
elif group_by == QueryGroupBy.GROUP_BY_JOB:
coverage_info = self.ctx.get_coverage_info(self.ctx.fuzzer)
return coverage_info
class CoverageField(BaseCoverageField):
EDGE = 0
FUNCTION = 1
VALUE_TYPE = float
def __init__(self, coverage_type, ctx=None):
super(CoverageField, self).__init__(ctx)
self.coverage_type = coverage_type
def get(self, group_by, group_by_value):
coverage_info = self.get_coverage_info(group_by, group_by_value)
if not coverage_info:
return None
if self.coverage_type == self.EDGE:
covered = coverage_info.edges_covered
total = coverage_info.edges_total
else:
covered = coverage_info.functions_covered
total = coverage_info.functions_total
if covered is None or total is None:
return None
if not total:
logs.log_error(
'Invalid coverage info: total equals 0 for "%s".' % self.ctx.fuzzer)
return BuiltinFieldData('No coverage', sort_key=0.0)
percentage = 100.0 * float(covered) / total
display_value = '%.2f%% (%d/%d)' % (percentage, covered, total)
return BuiltinFieldData(display_value, sort_key=percentage)
class CorpusBackupField(BaseCoverageField):
VALUE_TYPE = str
def __init__(self, ctx=None):
super(CorpusBackupField, self).__init__(ctx)
def get(self, group_by, group_by_value):
coverage_info = self.get_coverage_info(group_by, group_by_value)
if not coverage_info:
return None
if not coverage_info.corpus_backup_location:
return None
corpus_backup_location = os.path.dirname(
coverage_info.corpus_backup_location)
display_value = 'Download'
return BuiltinFieldData(display_value, link=corpus_backup_location)
class CorpusSizeField(BaseCoverageField):
CORPUS = 0
QUARANTINE = 1
VALUE_TYPE = int
def __init__(self, corpus_type, ctx=None):
super(CorpusSizeField, self).__init__(ctx)
self.corpus_type = corpus_type
def get(self, group_by, group_by_value):
if (self.ctx.fuzzer in data_types.BUILTIN_FUZZERS and
group_by == QueryGroupBy.GROUP_BY_DAY):
return None
coverage_info = self.get_coverage_info(group_by, group_by_value)
if not coverage_info:
return None
if self.corpus_type == self.CORPUS:
corpus_size_units = coverage_info.corpus_size_units
corpus_size_bytes = coverage_info.corpus_size_bytes
corpus_location = coverage_info.corpus_location
else:
corpus_size_units = coverage_info.quarantine_size_units
corpus_size_bytes = coverage_info.quarantine_size_bytes
corpus_location = coverage_info.quarantine_location
if corpus_size_units is None or corpus_size_bytes is None:
return None
display_value = '%d (%s)' % (corpus_size_units,
utils.get_size_string(corpus_size_bytes))
return BuiltinFieldData(
display_value, sort_key=corpus_size_units, link=corpus_location)
class CoverageReportField(BaseCoverageField):
VALUE_TYPE = str
def __init__(self, ctx=None):
super(CoverageReportField, self).__init__(ctx)
def get(self, group_by, group_by_value):
coverage_info = self.get_coverage_info(group_by, group_by_value)
if not coverage_info or not coverage_info.html_report_url:
return None
display_value = 'Coverage'
return BuiltinFieldData(display_value, link=coverage_info.html_report_url)
def _logs_bucket_key_fn(func, args, kwargs):
return 'fuzzer_logs_bucket:' + args[1]
class FuzzerRunLogsContext(BuiltinFieldContext):
MEMCACHE_TTL = 30 * 60
def __init__(self, fuzzer=None, jobs=None):
super(FuzzerRunLogsContext, self).__init__(fuzzer=fuzzer, jobs=jobs)
@memoize.wrap(memoize.FifoInMemory(1024))
def _get_logs_bucket_from_job(self, job_type):
return data_handler.get_value_from_job_definition_or_environment(
job_type, 'FUZZ_LOGS_BUCKET')
@memoize.wrap(memoize.Memcache(MEMCACHE_TTL, key_fn=_logs_bucket_key_fn))
def _get_logs_bucket_from_fuzzer(self, fuzzer_name):
jobs = [
mapping.job for mapping in fuzz_target_utils.get_fuzz_target_jobs(
fuzz_target_name=fuzzer_name)
]
if not jobs:
return None
bucket = self._get_logs_bucket_from_job(jobs[0])
if all(bucket == self._get_logs_bucket_from_job(job) for job in jobs[1:]):
return bucket
return None
def get_logs_bucket(self, fuzzer_name=None, job_type=None):
if job_type:
return self._get_logs_bucket_from_job(job_type)
if fuzzer_name:
return self._get_logs_bucket_from_fuzzer(fuzzer_name)
return None
class FuzzerRunLogsField(BuiltinField):
CONTEXT_CLASS = FuzzerRunLogsContext
VALUE_TYPE = str
def _get_logs_bucket_path(self, group_by, group_by_value):
fuzzer = self.ctx.fuzzer
job = self.ctx.single_job_or_none()
date = None
if group_by == QueryGroupBy.GROUP_BY_FUZZER:
fuzzer = group_by_value
elif group_by == QueryGroupBy.GROUP_BY_DAY:
if not fuzzer:
return None
if not job:
date = None
else:
date = group_by_value
elif group_by == QueryGroupBy.GROUP_BY_JOB:
job = group_by_value
else:
return None
if not fuzzer:
return None
logs_bucket = self.ctx.get_logs_bucket(fuzzer_name=fuzzer, job_type=job)
if not logs_bucket:
return None
return 'gs:/' + fuzzer_logs.get_logs_directory(logs_bucket, fuzzer, job,
date)
def get(self, group_by, group_by_value):
logs_path = self._get_logs_bucket_path(group_by, group_by_value)
if not logs_path:
return None
return BuiltinFieldData('Logs', link=logs_path)
class PerformanceReportField(BuiltinField):
CONTEXT_CLASS = FuzzerRunLogsContext
VALUE_TYPE = str
def _get_performance_report_path(self, group_by, group_by_value):
fuzzer = self.ctx.fuzzer
job = self.ctx.single_job_or_none()
date = 'latest'
if group_by == QueryGroupBy.GROUP_BY_FUZZER:
fuzzer = group_by_value
elif group_by == QueryGroupBy.GROUP_BY_JOB:
job = group_by_value
elif group_by == QueryGroupBy.GROUP_BY_DAY:
date = group_by_value
else:
return None
if not fuzzer or not job:
return None
return PERFORMANCE_REPORT_VIEWER_PATH.format(
fuzzer=fuzzer, job=job, date=date)
def get(self, group_by, group_by_value):
report_path = self._get_performance_report_path(group_by, group_by_value)
if not report_path:
return None
return BuiltinFieldData('Performance', link=report_path)
class QueryField(object):
def __init__(self,
table_alias,
field_name,
aggregate_function,
select_alias=None):
self.table_alias = table_alias
self.name = field_name
self.aggregate_function = aggregate_function
self.select_alias = select_alias or field_name
def is_custom(self):
return (self.aggregate_function and
self.aggregate_function.lower() == 'custom')
def __str__(self):
if self.aggregate_function:
result = '%s(%s.%s)' % (self.aggregate_function, self.table_alias,
self.name)
else:
result = '%s.%s' % (self.table_alias, self.name)
if self.select_alias:
result += ' as ' + self.select_alias
return result
class Query(object):
def _ensure_valid_name(self, name, regex):
if name and not regex.match(name):
raise FuzzerStatsException('Invalid fuzzer or job name.')
def __init__(self, fuzzer_name, job_types, query_fields, group_by, date_start,
date_end, base_table, alias):
assert group_by is not None
self._ensure_valid_name(fuzzer_name, data_types.Fuzzer.VALID_NAME_REGEX)
if job_types:
for job_type in job_types:
self._ensure_valid_name(job_type, data_types.Job.VALID_NAME_REGEX)
self.fuzzer_name = fuzzer_name
self.job_types = job_types
self.query_fields = query_fields
self.group_by = group_by
self.date_start = date_start
self.date_end = date_end
self.base_table = base_table
self.alias = alias
self.fuzzer_or_engine_name = get_fuzzer_or_engine_name(fuzzer_name)
|
Apache License 2.0
|
woudt/bunq2ifttt
|
app/event.py
|
check_field_str
|
python
|
def check_field_str(orig, comparator, target):
result = False
if comparator in ["equal_nc", "not_equal_nc", "cont_nc", "not_cont_nc",
"in_nc", "not_in_nc"]:
orig = orig.casefold()
target = target.casefold()
if comparator == "ignore":
result = True
elif comparator in ["equal", "equal_nc"] and orig == target:
result = True
elif comparator in ["not_equal", "not_equal_nc"] and orig != target:
result = True
elif comparator in ["cont", "cont_nc"] and orig.find(target) > -1:
result = True
elif comparator in ["not_cont", "not_cont_nc"] and orig.find(target) == -1:
result = True
elif comparator in ["in", "in_nc"] and orig in json.loads(target):
result = True
elif comparator in ["not_in", "not_in_nc"] and orig not in json.loads(target):
result = True
return result
|
Check a string field
|
https://github.com/woudt/bunq2ifttt/blob/de53ca03743b705c4f5149c756e0fd90d55231ee/app/event.py#L327-L349
|
import json
import time
import traceback
import uuid
import arrow
import requests
from flask import request
import storage
import util
def bunq_callback_request():
try:
data = request.get_json()
print("[bunqcb_request] input: {}".format(json.dumps(data)))
if data["NotificationUrl"]["event_type"] != "REQUEST_RESPONSE_CREATED":
print("[bunqcb_request] ignoring {} event"
.format(data["NotificationUrl"]["event_type"]))
return 200
obj = data["NotificationUrl"]["object"]["RequestResponse"]
metaid = obj["id"]
if storage.seen("seen_request", metaid):
print("[bunqcb_request] duplicate transaction")
return 200
iban = obj["alias"]["iban"]
valid, accname = util.check_valid_bunq_account(iban, "Request")
if not valid:
print("[bunqcb_request] trigger not enabled for this account")
return 200
item = {
"created_at": obj["created"],
"date": arrow.get(obj["created"]).format("YYYY-MM-DD"),
"amount": obj["amount_inquired"]["value"],
"account": iban,
"account_name": accname,
"counterparty_account": counterparty_account(obj),
"counterparty_name": obj["counterparty_alias"]["display_name"],
"description": obj["description"],
"request_id": metaid,
"meta": {
"id": metaid,
"timestamp": arrow.get(obj["created"]).timestamp
}
}
print("[bunqcb_request] translated: {}".format(json.dumps(item)))
triggerids = []
for account in ["ANY", iban]:
for trigger in storage.query("trigger_request",
"account", "=", account):
ident = trigger["identity"]
if check_fields("request", ident, item, trigger["fields"]):
triggerids.append(ident)
storage.insert_value_maxsize("trigger_request",
ident+"_t", item, 50)
print("[bunqcb_request] Matched triggers:", json.dumps(triggerids))
if triggerids:
data = {"data": []}
for triggerid in triggerids:
data["data"].append({"trigger_identity": triggerid})
headers = {
"IFTTT-Channel-Key": util.get_ifttt_service_key(),
"IFTTT-Service-Key": util.get_ifttt_service_key(),
"X-Request-ID": uuid.uuid4().hex,
"Content-Type": "application/json"
}
print("[bunqcb_request] to ifttt: {}".format(json.dumps(data)))
res = requests.post("https://realtime.ifttt.com/v1/notifications",
headers=headers, data=json.dumps(data))
print("[bunqcb_request] result: {} {}"
.format(res.status_code, res.text))
except Exception:
traceback.print_exc()
print("[bunqcb_request] ERROR during handling bunq callback")
return 500
return 200
def bunq_callback_mutation():
try:
data = request.get_json()
print("[bunqcb_mutation] input: {}".format(json.dumps(data)))
payment = data["NotificationUrl"]["object"]["Payment"]
metaid = payment["id"]
if storage.seen("seen_mutation", metaid):
print("[bunqcb_mutation] duplicate transaction")
return 200
iban = payment["alias"]["iban"]
valid, accname = util.check_valid_bunq_account(iban, "Mutation")
if not valid:
print("[bunqcb_mutation] trigger not enabled for this account")
return 200
item = {
"created_at": payment["created"],
"date": arrow.get(payment["created"]).format("YYYY-MM-DD"),
"type": mutation_type(payment),
"amount": payment["amount"]["value"],
"balance": payment["balance_after_mutation"]["value"],
"account": iban,
"account_name": accname,
"counterparty_account": counterparty_account(payment),
"counterparty_name": payment["counterparty_alias"]["display_name"],
"description": payment["description"],
"payment_id": metaid,
"meta": {
"id": metaid,
"timestamp": arrow.get(payment["created"]).timestamp
}
}
print("[bunqcb_mutation] translated: {}".format(json.dumps(item)))
triggerids_1 = []
triggerids_2 = []
for account in ["ANY", iban]:
for trigger in storage.query("trigger_mutation",
"account", "=", account):
ident = trigger["identity"]
if check_fields("mutation", ident, item, trigger["fields"]):
triggerids_1.append(ident)
storage.insert_value_maxsize("trigger_mutation",
ident+"_t", item, 50)
for trigger in storage.query("trigger_balance",
"account", "=", account):
ident = trigger["identity"]
if check_fields("balance", ident, item, trigger["fields"]):
if not trigger["last"]:
triggerids_2.append(ident)
storage.insert_value_maxsize("trigger_balance",
ident+"_t", item, 50)
trigger["last"] = True
storage.store("trigger_balance", ident, trigger)
elif trigger["last"]:
trigger["last"] = False
storage.store("trigger_balance", ident, trigger)
print("Matched mutation triggers:", json.dumps(triggerids_1))
print("Matched balance triggers:", json.dumps(triggerids_2))
data = {"data": []}
for triggerid in triggerids_1 + triggerids_2:
data["data"].append({"trigger_identity": triggerid})
if data["data"]:
headers = {
"IFTTT-Channel-Key": util.get_ifttt_service_key(),
"IFTTT-Service-Key": util.get_ifttt_service_key(),
"X-Request-ID": uuid.uuid4().hex,
"Content-Type": "application/json"
}
print("[bunqcb_mutation] to ifttt: {}".format(
json.dumps(data)))
res = requests.post("https://realtime.ifttt.com/v1/notifications",
headers=headers, data=json.dumps(data))
print("[bunqcb_mutation] result: {} {}"
.format(res.status_code, res.text))
except Exception:
traceback.print_exc()
print("[bunqcb_mutation] ERROR during handling bunq callback")
return 500
return 200
def mutation_type(payment):
muttype = "TRANSFER_OTHER"
if payment["type"] == "MASTERCARD":
muttype = "CARD_" + payment["sub_type"]
elif payment["type"] == "IDEAL" or payment["type"] == "BUNQME":
muttype = "ONLINE_IDEAL"
elif payment["type"] == "SOFORT":
muttype = "ONLINE_SOFORT"
elif payment["type"] == "EBA_SCT":
muttype = "TRANSFER_REGULAR"
elif payment["type"] == "SAVINGS":
muttype = "TRANSFER_SAVINGS"
elif payment["type"] == "INTEREST":
muttype = "BUNQ_INTEREST"
elif payment["type"] == "BUNQ":
if payment["sub_type"] in ["BILLING", "REWARD"]:
muttype = "BUNQ_"+payment["sub_type"]
elif payment["sub_type"] == "REQUEST":
muttype = "TRANSFER_REQUEST"
elif payment["sub_type"] == "PAYMENT":
if "scheduled_id" in payment and payment["scheduled_id"] is not None:
muttype = "TRANSFER_SCHEDULED"
else:
muttype = "TRANSFER_REGULAR"
return muttype
def counterparty_account(payment):
if "counterparty_alias" in payment and "iban" in payment["counterparty_alias"]:
ctp_account = payment["counterparty_alias"]["iban"]
elif payment["type"] == "MASTERCARD":
ctp_account = "Card"
elif payment["type"] == "IDEAL":
ctp_account = "iDEAL"
elif payment["type"] == "SOFORT":
ctp_account = "SOFORT"
else:
ctp_account = "Other"
return ctp_account
def check_fields(triggertype, triggerid, item, fields):
try:
return check_types(item, fields) and check_comparators(item, fields)
except Exception:
print("Error in {} trigger {}".format(triggertype, triggerid))
traceback.print_exc()
def check_types(item, fields):
result = True
if "type" in fields and fields["type"] != "ANY":
result = item["type"].startswith(fields["type"])
if "type_2" in fields and fields["type_2"] != "---":
result |= item["type"].startswith(fields["type_2"])
if "type_3" in fields and fields["type_3"] != "---":
result |= item["type"].startswith(fields["type_3"])
if "type_4" in fields and fields["type_4"] != "---":
result |= item["type"].startswith(fields["type_4"])
return result
def check_comparators(item, fields):
result = True
if "amount_comparator" in fields:
result &= check_field_num(item["amount"],
fields["amount_comparator"],
fields["amount_value"])
if "amount_comparator_2" in fields:
result &= check_field_num(item["amount"],
fields["amount_comparator_2"],
fields["amount_value_2"])
if "balance_comparator" in fields:
result &= check_field_num(item["balance"],
fields["balance_comparator"],
fields["balance_value"])
if "balance_comparator_2" in fields:
result &= check_field_num(item["balance"],
fields["balance_comparator_2"],
fields["balance_value_2"])
if "counterparty_name_comparator" in fields:
result &= check_field_str(item["counterparty_name"],
fields["counterparty_name_comparator"],
fields["counterparty_name_value"])
if "counterparty_name_comparator_2" in fields:
result &= check_field_str(item["counterparty_name"],
fields["counterparty_name_comparator_2"],
fields["counterparty_name_value_2"])
if "counterparty_account_comparator" in fields:
result &= check_field_str(item["counterparty_account"],
fields["counterparty_account_comparator"],
fields["counterparty_account_value"])
if "counterparty_account_comparator_2" in fields:
result &= check_field_str(item["counterparty_account"],
fields["counterparty_account_comparator_2"],
fields["counterparty_account_value_2"])
if "description_comparator" in fields:
result &= check_field_str(item["description"],
fields["description_comparator"],
fields["description_value"])
if "description_comparator_2" in fields:
result &= check_field_str(item["description"],
fields["description_comparator_2"],
fields["description_value_2"])
return result
def check_field_num(orig, comparator, target):
result = False
if comparator == "ignore":
result = True
elif comparator == "equal" and float(orig) == float(target):
result = True
elif comparator == "not_equal" and float(orig) != float(target):
result = True
elif comparator == "above" and float(orig) > float(target):
result = True
elif comparator == "above_equal" and float(orig) >= float(target):
result = True
elif comparator == "below" and float(orig) < float(target):
result = True
elif comparator == "below_equal" and float(orig) <= float(target):
result = True
elif comparator == "in" and orig in json.loads(target):
result = True
elif comparator == "not_in" and orig not in json.loads(target):
result = True
return result
|
MIT License
|
qiuqiangkong/panns_inference
|
panns_inference/inference.py
|
SoundEventDetection.__init__
|
python
|
def __init__(self, model=None, checkpoint_path=None, device='cuda'):
if not checkpoint_path:
checkpoint_path='{}/panns_data/Cnn14_DecisionLevelMax.pth'.format(str(Path.home()))
print('Checkpoint path: {}'.format(checkpoint_path))
if not os.path.exists(checkpoint_path) or os.path.getsize(checkpoint_path) < 3e8:
create_folder(os.path.dirname(checkpoint_path))
os.system('wget -O "{}" https://zenodo.org/record/3987831/files/Cnn14_DecisionLevelMax_mAP%3D0.385.pth?download=1'.format(checkpoint_path))
if device == 'cuda' and torch.cuda.is_available():
self.device = 'cuda'
else:
self.device = 'cpu'
self.labels = labels
self.classes_num = classes_num
if model is None:
self.model = Cnn14_DecisionLevelMax(sample_rate=32000, window_size=1024,
hop_size=320, mel_bins=64, fmin=50, fmax=14000,
classes_num=self.classes_num)
else:
self.model = model
checkpoint = torch.load(checkpoint_path, map_location=self.device)
self.model.load_state_dict(checkpoint['model'])
if 'cuda' in str(self.device):
self.model.to(self.device)
print('GPU number: {}'.format(torch.cuda.device_count()))
self.model = torch.nn.DataParallel(self.model)
else:
print('Using CPU.')
|
Sound event detection inference wrapper.
|
https://github.com/qiuqiangkong/panns_inference/blob/013c0f6ab617c1be58f3b3564a6f2b17f5e1d2dc/panns_inference/inference.py#L80-L116
|
import os
import numpy as np
import argparse
import librosa
import matplotlib.pyplot as plt
import torch
from pathlib import Path
from .pytorch_utils import move_data_to_device
from .models import Cnn14, Cnn14_DecisionLevelMax
from .config import labels, classes_num
def create_folder(fd):
if not os.path.exists(fd):
os.makedirs(fd)
def get_filename(path):
path = os.path.realpath(path)
na_ext = path.split('/')[-1]
na = os.path.splitext(na_ext)[0]
return na
class AudioTagging(object):
def __init__(self, model=None, checkpoint_path=None, device='cuda'):
if not checkpoint_path:
checkpoint_path='{}/panns_data/Cnn14_mAP=0.431.pth'.format(str(Path.home()))
print('Checkpoint path: {}'.format(checkpoint_path))
if not os.path.exists(checkpoint_path) or os.path.getsize(checkpoint_path) < 3e8:
create_folder(os.path.dirname(checkpoint_path))
zenodo_path = 'https://zenodo.org/record/3987831/files/Cnn14_mAP%3D0.431.pth?download=1'
os.system('wget -O "{}" "{}"'.format(checkpoint_path, zenodo_path))
if device == 'cuda' and torch.cuda.is_available():
self.device = 'cuda'
else:
self.device = 'cpu'
self.labels = labels
self.classes_num = classes_num
if model is None:
self.model = Cnn14(sample_rate=32000, window_size=1024,
hop_size=320, mel_bins=64, fmin=50, fmax=14000,
classes_num=self.classes_num)
else:
self.model = model
checkpoint = torch.load(checkpoint_path, map_location=self.device)
self.model.load_state_dict(checkpoint['model'])
if 'cuda' in str(self.device):
self.model.to(self.device)
print('GPU number: {}'.format(torch.cuda.device_count()))
self.model = torch.nn.DataParallel(self.model)
else:
print('Using CPU.')
def inference(self, audio):
audio = move_data_to_device(audio, self.device)
with torch.no_grad():
self.model.eval()
output_dict = self.model(audio, None)
clipwise_output = output_dict['clipwise_output'].data.cpu().numpy()
embedding = output_dict['embedding'].data.cpu().numpy()
return clipwise_output, embedding
class SoundEventDetection(object):
|
MIT License
|
shiyuechengineer/meraki-dashboard
|
meraki_v0/aio/api/sm.py
|
AsyncSM.getNetworkSmPerformanceHistory
|
python
|
async def getNetworkSmPerformanceHistory(self, network_id: str, id: str, total_pages=1, direction='next', **kwargs):
kwargs.update(locals())
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmPerformanceHistory',
}
resource = f'/networks/{network_id}/sm/{id}/performanceHistory'
query_params = ['perPage', 'startingAfter', 'endingBefore']
params = {k.strip(): v for (k, v) in kwargs.items() if k.strip() in query_params}
return await self._session.get_pages(metadata, resource, params, total_pages, direction)
|
**Return historical records of various Systems Manager client metrics for desktop devices.**
https://developer.cisco.com/meraki/api/#!get-network-sm-performance-history
- network_id (string)
- id (string)
- total_pages (integer or string): total number of pages to retrieve, -1 or "all" for all pages
- direction (string): direction to paginate, either "next" (default) or "prev" page
- perPage (integer): The number of entries per page returned. Acceptable range is 3 - 1000. Default is 1000.
- startingAfter (string): A token used by the server to indicate the start of the page. Often this is a timestamp or an ID but it is not limited to those. This parameter should not be defined by client applications. The link for the first, last, prev, or next page in the HTTP Link header should define it.
- endingBefore (string): A token used by the server to indicate the end of the page. Often this is a timestamp or an ID but it is not limited to those. This parameter should not be defined by client applications. The link for the first, last, prev, or next page in the HTTP Link header should define it.
|
https://github.com/shiyuechengineer/meraki-dashboard/blob/f00442acf762a94e7e446f80a2485d120e7090d5/meraki_v0/aio/api/sm.py#L569-L594
|
class AsyncSM:
def __init__(self, session):
super().__init__()
self._session = session
async def createNetworkSmBypassActivationLockAttempt(self, networkId: str, ids: list):
kwargs = locals()
metadata = {
'tags': ['SM'],
'operation': 'createNetworkSmBypassActivationLockAttempt',
}
resource = f'/networks/{networkId}/sm/bypassActivationLockAttempts'
body_params = ['ids']
payload = {k.strip(): v for (k, v) in kwargs.items() if k.strip() in body_params}
return await self._session.post(metadata, resource, payload)
async def getNetworkSmBypassActivationLockAttempt(self, networkId: str, attemptId: str):
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmBypassActivationLockAttempt',
}
resource = f'/networks/{networkId}/sm/bypassActivationLockAttempts/{attemptId}'
return await self._session.get(metadata, resource)
async def updateNetworkSmDeviceFields(self, networkId: str, deviceFields: dict, **kwargs):
kwargs.update(locals())
metadata = {
'tags': ['SM'],
'operation': 'updateNetworkSmDeviceFields',
}
resource = f'/networks/{networkId}/sm/device/fields'
body_params = ['wifiMac', 'id', 'serial', 'deviceFields']
payload = {k.strip(): v for (k, v) in kwargs.items() if k.strip() in body_params}
return await self._session.put(metadata, resource, payload)
async def wipeNetworkSmDevice(self, networkId: str, **kwargs):
kwargs.update(locals())
metadata = {
'tags': ['SM'],
'operation': 'wipeNetworkSmDevice',
}
resource = f'/networks/{networkId}/sm/device/wipe'
body_params = ['wifiMac', 'id', 'serial', 'pin']
payload = {k.strip(): v for (k, v) in kwargs.items() if k.strip() in body_params}
return await self._session.put(metadata, resource, payload)
async def refreshNetworkSmDeviceDetails(self, networkId: str, deviceId: str):
metadata = {
'tags': ['SM'],
'operation': 'refreshNetworkSmDeviceDetails',
}
resource = f'/networks/{networkId}/sm/device/{deviceId}/refreshDetails'
return await self._session.post(metadata, resource)
async def getNetworkSmDevices(self, networkId: str, **kwargs):
kwargs.update(locals())
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmDevices',
}
resource = f'/networks/{networkId}/sm/devices'
query_params = ['fields', 'wifiMacs', 'serials', 'ids', 'scope', 'batchSize', 'batchToken']
params = {k.strip(): v for (k, v) in kwargs.items() if k.strip() in query_params}
return await self._session.get(metadata, resource, params)
async def checkinNetworkSmDevices(self, networkId: str, **kwargs):
kwargs.update(locals())
metadata = {
'tags': ['SM'],
'operation': 'checkinNetworkSmDevices',
}
resource = f'/networks/{networkId}/sm/devices/checkin'
body_params = ['wifiMacs', 'ids', 'serials', 'scope']
payload = {k.strip(): v for (k, v) in kwargs.items() if k.strip() in body_params}
return await self._session.put(metadata, resource, payload)
async def moveNetworkSmDevices(self, networkId: str, newNetwork: str, **kwargs):
kwargs.update(locals())
metadata = {
'tags': ['SM'],
'operation': 'moveNetworkSmDevices',
}
resource = f'/networks/{networkId}/sm/devices/move'
body_params = ['wifiMacs', 'ids', 'serials', 'scope', 'newNetwork']
payload = {k.strip(): v for (k, v) in kwargs.items() if k.strip() in body_params}
return await self._session.put(metadata, resource, payload)
async def updateNetworkSmDevicesTags(self, networkId: str, tags: str, updateAction: str, **kwargs):
kwargs.update(locals())
metadata = {
'tags': ['SM'],
'operation': 'updateNetworkSmDevicesTags',
}
resource = f'/networks/{networkId}/sm/devices/tags'
body_params = ['wifiMacs', 'ids', 'serials', 'scope', 'tags', 'updateAction']
payload = {k.strip(): v for (k, v) in kwargs.items() if k.strip() in body_params}
return await self._session.put(metadata, resource, payload)
async def unenrollNetworkSmDevice(self, networkId: str, deviceId: str):
metadata = {
'tags': ['SM'],
'operation': 'unenrollNetworkSmDevice',
}
resource = f'/networks/{networkId}/sm/devices/{deviceId}/unenroll'
return await self._session.post(metadata, resource)
async def getNetworkSmProfiles(self, networkId: str):
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmProfiles',
}
resource = f'/networks/{networkId}/sm/profiles'
return await self._session.get(metadata, resource)
async def getNetworkSmUserDeviceProfiles(self, networkId: str, userId: str):
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmUserDeviceProfiles',
}
resource = f'/networks/{networkId}/sm/user/{userId}/deviceProfiles'
return await self._session.get(metadata, resource)
async def getNetworkSmUserSoftwares(self, networkId: str, userId: str):
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmUserSoftwares',
}
resource = f'/networks/{networkId}/sm/user/{userId}/softwares'
return await self._session.get(metadata, resource)
async def getNetworkSmUsers(self, networkId: str, **kwargs):
kwargs.update(locals())
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmUsers',
}
resource = f'/networks/{networkId}/sm/users'
query_params = ['ids', 'usernames', 'emails', 'scope']
params = {k.strip(): v for (k, v) in kwargs.items() if k.strip() in query_params}
return await self._session.get(metadata, resource, params)
async def getNetworkSmCellularUsageHistory(self, networkId: str, deviceId: str):
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmCellularUsageHistory',
}
resource = f'/networks/{networkId}/sm/{deviceId}/cellularUsageHistory'
return await self._session.get(metadata, resource)
async def getNetworkSmCerts(self, networkId: str, deviceId: str):
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmCerts',
}
resource = f'/networks/{networkId}/sm/{deviceId}/certs'
return await self._session.get(metadata, resource)
async def getNetworkSmDeviceProfiles(self, networkId: str, deviceId: str):
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmDeviceProfiles',
}
resource = f'/networks/{networkId}/sm/{deviceId}/deviceProfiles'
return await self._session.get(metadata, resource)
async def getNetworkSmNetworkAdapters(self, networkId: str, deviceId: str):
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmNetworkAdapters',
}
resource = f'/networks/{networkId}/sm/{deviceId}/networkAdapters'
return await self._session.get(metadata, resource)
async def getNetworkSmRestrictions(self, networkId: str, deviceId: str):
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmRestrictions',
}
resource = f'/networks/{networkId}/sm/{deviceId}/restrictions'
return await self._session.get(metadata, resource)
async def getNetworkSmSecurityCenters(self, networkId: str, deviceId: str):
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmSecurityCenters',
}
resource = f'/networks/{networkId}/sm/{deviceId}/securityCenters'
return await self._session.get(metadata, resource)
async def getNetworkSmSoftwares(self, networkId: str, deviceId: str):
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmSoftwares',
}
resource = f'/networks/{networkId}/sm/{deviceId}/softwares'
return await self._session.get(metadata, resource)
async def getNetworkSmWlanLists(self, networkId: str, deviceId: str):
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmWlanLists',
}
resource = f'/networks/{networkId}/sm/{deviceId}/wlanLists'
return await self._session.get(metadata, resource)
async def lockNetworkSmDevices(self, network_id: str, **kwargs):
kwargs.update(locals())
metadata = {
'tags': ['SM'],
'operation': 'lockNetworkSmDevices',
}
resource = f'/networks/{network_id}/sm/devices/lock'
body_params = ['wifiMacs', 'ids', 'serials', 'scope', 'pin']
payload = {k.strip(): v for (k, v) in kwargs.items() if k.strip() in body_params}
return await self._session.put(metadata, resource, payload)
async def getNetworkSmConnectivity(self, network_id: str, id: str, total_pages=1, direction='next', **kwargs):
kwargs.update(locals())
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmConnectivity',
}
resource = f'/networks/{network_id}/sm/{id}/connectivity'
query_params = ['perPage', 'startingAfter', 'endingBefore']
params = {k.strip(): v for (k, v) in kwargs.items() if k.strip() in query_params}
return await self._session.get_pages(metadata, resource, params, total_pages, direction)
async def getNetworkSmDesktopLogs(self, network_id: str, id: str, total_pages=1, direction='next', **kwargs):
kwargs.update(locals())
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmDesktopLogs',
}
resource = f'/networks/{network_id}/sm/{id}/desktopLogs'
query_params = ['perPage', 'startingAfter', 'endingBefore']
params = {k.strip(): v for (k, v) in kwargs.items() if k.strip() in query_params}
return await self._session.get_pages(metadata, resource, params, total_pages, direction)
async def getNetworkSmDeviceCommandLogs(self, network_id: str, id: str, total_pages=1, direction='next', **kwargs):
kwargs.update(locals())
metadata = {
'tags': ['SM'],
'operation': 'getNetworkSmDeviceCommandLogs',
}
resource = f'/networks/{network_id}/sm/{id}/deviceCommandLogs'
query_params = ['perPage', 'startingAfter', 'endingBefore']
params = {k.strip(): v for (k, v) in kwargs.items() if k.strip() in query_params}
return await self._session.get_pages(metadata, resource, params, total_pages, direction)
|
MIT License
|
liberai/nspm
|
gsoc/zheyuan/pipeline/get_properties.py
|
get_properties
|
python
|
def get_properties(url, project_name="test_project", output_file = "get_properties.csv", multi=False):
page = urllib.request.urlopen(url)
soup = BeautifulSoup(page, "html.parser")
if(not os.path.isdir(project_name)):
os.makedirs(project_name)
if multi:
output_file = open(project_name + "/" + output_file, 'a', encoding="utf-8")
else:
output_file = open(project_name+"/" + output_file, 'w', encoding="utf-8")
fl = 0
accum = []
for rows in tqdm(soup.find_all("tr")):
x = rows.find_all("td")
if len(x) <= 2:
fl = 1
continue
if fl == 1:
fl = 2
continue
name = rows.find_all("td")[0].get_text().replace(" (edit)", "")
label = rows.find_all("td")[1].get_text()
dom = rows.find_all("td")[2].get_text()
rng = rows.find_all("td")[3].get_text()
if rows.find_all("td")[0].find('a'):
URL_name = ((rows.find_all("td")[0].find('a').attrs['href']))
final = name + "," + label + "," + dom + "," + rng
accum.append(final)
output_file.write(final+"\n")
output_file.close()
return accum
|
- This function extracts the information regarding : [Name, Label, Domain, Range] from a page like this :
http://mappings.dbpedia.org/server/ontology/classes/Place and saves it in a file in CSV format.
- This code on execution creates a csv which contains all the properties, ontology,
class related information and data types as field values in each row.
- This function also returns a 2D list of the information mentioned above to the calling
function
|
https://github.com/liberai/nspm/blob/cc352dbbda6751e8cf19769c9440c03e31687829/gsoc/zheyuan/pipeline/get_properties.py#L11-L50
|
import urllib
import json
import sys
import csv
import io
import argparse
import os
from bs4 import BeautifulSoup
from tqdm import tqdm
|
MIT License
|
pedrorrivero/qrand
|
qrand/qrng.py
|
Qrng.get_random_octal
|
python
|
def get_random_octal(self, num_bits: Optional[int] = None) -> str:
uint: int = self.quantum_bit_generator.random_uint(num_bits)
return f"{uint:o}"
|
Returns a random octal base encoded numeral string from a `num_bits`
uniform distribution.
Parameters
----------
num_bits: int, default: BITS (i.e. 32 or 64)
Number of bits to retrieve.
Returns
-------
out: str
Random octal base encoded numeral string.
|
https://github.com/pedrorrivero/qrand/blob/c88a7a8363a27eec02e65c4617d5d945690dfd77/qrand/qrng.py#L447-L463
|
import math
from struct import pack, unpack
from typing import Optional
from .errors import raise_future_warning
from .helpers import ALPHABETS, encode_numeral, validate_type
from .quantum_bit_generator import QuantumBitGenerator
class Qrng:
def __init__(self, quantum_bit_generator: QuantumBitGenerator):
raise_future_warning("This version of Qrng", "1.0.0")
self.quantum_bit_generator = quantum_bit_generator
@property
def quantum_bit_generator(self) -> QuantumBitGenerator:
raise_future_warning("quantum_bit_generator", "1.0.0")
return self._quantum_bit_generator
@quantum_bit_generator.setter
def quantum_bit_generator(
self, quantum_bit_generator: QuantumBitGenerator
) -> None:
raise_future_warning("quantum_bit_generator", "1.0.0")
validate_type(quantum_bit_generator, QuantumBitGenerator)
self._quantum_bit_generator: QuantumBitGenerator = (
quantum_bit_generator
)
@property
def state(self) -> dict:
raise_future_warning("state", "1.0.0")
return {
"quantum_bit_generator": self.quantum_bit_generator.state,
}
def get_bit_string(self, num_bits: Optional[int] = None) -> str:
raise_future_warning("get_bit_string", "1.0.0", "get_random_bitstring")
return self.quantum_bit_generator.random_bitstring(num_bits)
def get_random_base32(self, num_bits: Optional[int] = None) -> str:
uint: int = self.get_random_uint(num_bits)
return encode_numeral(uint, ALPHABETS["BASE32"])
def get_random_base64(self, num_bits: Optional[int] = None) -> str:
uint: int = self.get_random_uint(num_bits)
return encode_numeral(uint, ALPHABETS["BASE64"])
def get_random_bitstring(self, num_bits: Optional[int] = None) -> str:
return self.quantum_bit_generator.random_bitstring(num_bits)
def get_random_bytes(self, num_bytes: Optional[int] = None) -> bytes:
num_bits: int = (
num_bytes * 8
if num_bytes and type(num_bytes) is int and num_bytes > 0
else self.quantum_bit_generator.BITS
)
num_bytes = num_bits // 8
uint: int = self.quantum_bit_generator.random_uint(num_bits)
return uint.to_bytes(num_bytes, "big")
def get_random_complex_polar(
self, r: float = 1, theta: float = 2 * math.pi
) -> complex:
r0: float = r * math.sqrt(self.get_random_double(0, 1))
theta0: float = self.get_random_double(0, theta)
return r0 * math.cos(theta0) + r0 * math.sin(theta0) * 1j
def get_random_complex_rect(
self,
r1: float = -1,
r2: float = +1,
i1: Optional[float] = None,
i2: Optional[float] = None,
) -> complex:
re: float = self.get_random_double(r1, r2)
if i1 is None or i2 is None:
im: float = self.get_random_double(r1, r2)
else:
im = self.get_random_double(i1, i2)
return re + im * 1j
def get_random_decimal(self, num_bits: Optional[int] = None) -> str:
uint: int = self.quantum_bit_generator.random_uint(num_bits)
return f"{uint:d}"
def get_random_double(self, min: float = -1, max: float = +1) -> float:
min, max = float(min), float(max)
delta: float = max - min
shifted: float = self.quantum_bit_generator.random_double(delta)
return shifted + min
def get_random_float(self, min: float = -1, max: float = +1) -> float:
min, max = float(min), float(max)
bits_as_uint: int = (
0x3F800000 | self.quantum_bit_generator.random_uint(32 - 9)
)
to_bytes: bytes = pack(">I", bits_as_uint)
standard_value: float = unpack(">f", to_bytes)[0] - 1.0
return (max - min) * standard_value + min
def get_random_hex(self, num_bits: Optional[int] = None) -> str:
uint: int = self.quantum_bit_generator.random_uint(num_bits)
return f"{uint:X}"
def get_random_int(self, min: int = -1, max: int = +1) -> int:
delta: int = max - min
num_bits: int = math.floor(math.log(delta, 2)) + 1
shifted: int = self.quantum_bit_generator.random_uint(num_bits)
while shifted > delta:
shifted = self.quantum_bit_generator.random_uint(num_bits)
return shifted + min
def get_random_int32(self) -> int:
return self.quantum_bit_generator.random_uint(32)
def get_random_int64(self) -> int:
return self.quantum_bit_generator.random_uint(64)
|
Apache License 2.0
|
myriadrf/pylms7002soapy
|
pyLMS7002Soapy/LMS7002_CGEN.py
|
LMS7002_CGEN.PD_VCO_CGEN
|
python
|
def PD_VCO_CGEN(self):
return self._readReg('CFG', 'PD_VCO_CGEN')
|
Get the value of PD_VCO_CGEN
|
https://github.com/myriadrf/pylms7002soapy/blob/4f828eb9282c302dc6b187d91df5e77c8a6f2d61/pyLMS7002Soapy/LMS7002_CGEN.py#L235-L239
|
from pyLMS7002Soapy.LMS7002_base import LMS7002_base
from math import floor
from time import sleep
class LMS7002_CGEN(LMS7002_base):
__slots__ = []
def __init__(self, chip):
self.chip = chip
self.channel = None
self.prefix = "CGEN_"
@property
def RESET_N_CGEN(self):
return self._readReg('CFG', 'RESET_N_CGEN')
@RESET_N_CGEN.setter
def RESET_N_CGEN(self, value):
if value not in [0, 1, 'RESET', 'NORMAL']:
raise ValueError("Value must be [0,1,'RESET', 'NORMAL']")
if value == 0 or value == 'RESET':
val = 0
else:
val = 1
self._writeReg('CFG', 'RESET_N_CGEN', val)
@property
def SPDUP_VCO_CGEN(self):
return self._readReg('CFG', 'SPDUP_VCO_CGEN')
@SPDUP_VCO_CGEN.setter
def SPDUP_VCO_CGEN(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'OFF':
val = 0
else:
val = 1
self._writeReg('CFG', 'SPDUP_VCO_CGEN', val)
@property
def EN_ADCCLKH_CLKGN(self):
return self._readReg('CFG', 'EN_ADCCLKH_CLKGN')
@EN_ADCCLKH_CLKGN.setter
def EN_ADCCLKH_CLKGN(self, value):
if value not in [0, 1]:
raise ValueError("Value must be [0,1]")
self._writeReg('CFG', 'EN_ADCCLKH_CLKGN', value)
@property
def EN_COARSE_CKLGEN(self):
return self._readReg('CFG', 'EN_COARSE_CKLGEN')
@EN_COARSE_CKLGEN.setter
def EN_COARSE_CKLGEN(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'OFF':
val = 0
else:
val = 1
self._writeReg('CFG', 'EN_COARSE_CKLGEN', val)
@property
def EN_INTONLY_SDM_CGEN(self):
return self._readReg('CFG', 'EN_INTONLY_SDM_CGEN')
@EN_INTONLY_SDM_CGEN.setter
def EN_INTONLY_SDM_CGEN(self, value):
if value not in [0, 1, 'FRACN', 'INTN']:
raise ValueError("Value must be [0,1,'FRACN', 'INTN']")
if value == 0 or value == 'FRACN':
val = 0
else:
val = 1
self._writeReg('CFG', 'EN_INTONLY_SDM_CGEN', val)
@property
def EN_SDM_CLK_CGEN(self):
return self._readReg('CFG', 'EN_SDM_CLK_CGEN')
@EN_SDM_CLK_CGEN.setter
def EN_SDM_CLK_CGEN(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'OFF':
val = 0
else:
val = 1
self._writeReg('CFG', 'EN_SDM_CLK_CGEN', val)
@property
def PD_CP_CGEN(self):
return self._readReg('CFG', 'PD_CP_CGEN')
@PD_CP_CGEN.setter
def PD_CP_CGEN(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'ON':
val = 0
else:
val = 1
self._writeReg('CFG', 'PD_CP_CGEN', val)
@property
def PD_FDIV_FB_CGEN(self):
return self._readReg('CFG', 'PD_FDIV_FB_CGEN')
@PD_FDIV_FB_CGEN.setter
def PD_FDIV_FB_CGEN(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'ON':
val = 0
else:
val = 1
self._writeReg('CFG', 'PD_FDIV_FB_CGEN', val)
@property
def PD_FDIV_O_CGEN(self):
return self._readReg('CFG', 'PD_FDIV_O_CGEN')
@PD_FDIV_O_CGEN.setter
def PD_FDIV_O_CGEN(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'ON':
val = 0
else:
val = 1
self._writeReg('CFG', 'PD_FDIV_O_CGEN', val)
@property
def PD_SDM_CGEN(self):
return self._readReg('CFG', 'PD_SDM_CGEN')
@PD_SDM_CGEN.setter
def PD_SDM_CGEN(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'ON':
val = 0
else:
val = 1
self._writeReg('CFG', 'PD_SDM_CGEN', val)
@property
|
Apache License 2.0
|
kriaga/health-checker
|
HealthChecker/venv/Lib/site-packages/nltk/draw/tree.py
|
TreeWidget.bind_drag_nodes
|
python
|
def bind_drag_nodes(self, callback, button=1):
for node in self._nodes: node.bind_drag(callback, button)
for node in self._nodes: node.bind_drag(callback, button)
|
Add a binding to all nodes.
|
https://github.com/kriaga/health-checker/blob/3d9ce933f131bcbb897103b0f509cc45393cae4a/HealthChecker/venv/Lib/site-packages/nltk/draw/tree.py#L581-L586
|
from six.moves.tkinter import IntVar, Menu, Tk
from nltk.util import in_idle
from nltk.tree import Tree
from nltk.draw.util import (CanvasFrame, CanvasWidget, BoxWidget,
TextWidget, ParenWidget, OvalWidget)
class TreeSegmentWidget(CanvasWidget):
def __init__(self, canvas, label, subtrees, **attribs):
self._label = label
self._subtrees = subtrees
self._horizontal = 0
self._roof = 0
self._xspace = 10
self._yspace = 15
self._ordered = False
self._lines = [canvas.create_line(0,0,0,0, fill='#006060')
for c in subtrees]
self._polygon = canvas.create_polygon(0,0, fill='', state='hidden',
outline='#006060')
self._add_child_widget(label)
for subtree in subtrees:
self._add_child_widget(subtree)
self._managing = False
CanvasWidget.__init__(self, canvas, **attribs)
def __setitem__(self, attr, value):
canvas = self.canvas()
if attr == 'roof':
self._roof = value
if self._roof:
for l in self._lines: canvas.itemconfig(l, state='hidden')
canvas.itemconfig(self._polygon, state='normal')
else:
for l in self._lines: canvas.itemconfig(l, state='normal')
canvas.itemconfig(self._polygon, state='hidden')
elif attr == 'orientation':
if value == 'horizontal': self._horizontal = 1
elif value == 'vertical': self._horizontal = 0
else:
raise ValueError('orientation must be horizontal or vertical')
elif attr == 'color':
for l in self._lines: canvas.itemconfig(l, fill=value)
canvas.itemconfig(self._polygon, outline=value)
elif isinstance(attr, tuple) and attr[0] == 'color':
l = self._lines[int(attr[1])]
canvas.itemconfig(l, fill=value)
elif attr == 'fill':
canvas.itemconfig(self._polygon, fill=value)
elif attr == 'width':
canvas.itemconfig(self._polygon, {attr:value})
for l in self._lines: canvas.itemconfig(l, {attr:value})
elif attr in ('xspace', 'yspace'):
if attr == 'xspace': self._xspace = value
elif attr == 'yspace': self._yspace = value
self.update(self._label)
elif attr == 'ordered':
self._ordered = value
else:
CanvasWidget.__setitem__(self, attr, value)
def __getitem__(self, attr):
if attr == 'roof': return self._roof
elif attr == 'width':
return self.canvas().itemcget(self._polygon, attr)
elif attr == 'color':
return self.canvas().itemcget(self._polygon, 'outline')
elif isinstance(attr, tuple) and attr[0] == 'color':
l = self._lines[int(attr[1])]
return self.canvas().itemcget(l, 'fill')
elif attr == 'xspace': return self._xspace
elif attr == 'yspace': return self._yspace
elif attr == 'orientation':
if self._horizontal: return 'horizontal'
else: return 'vertical'
elif attr == 'ordered':
return self._ordered
else:
return CanvasWidget.__getitem__(self, attr)
def label(self):
return self._label
def subtrees(self):
return self._subtrees[:]
def set_label(self, label):
self._remove_child_widget(self._label)
self._add_child_widget(label)
self._label = label
self.update(self._label)
def replace_child(self, oldchild, newchild):
index = self._subtrees.index(oldchild)
self._subtrees[index] = newchild
self._remove_child_widget(oldchild)
self._add_child_widget(newchild)
self.update(newchild)
def remove_child(self, child):
index = self._subtrees.index(child)
del self._subtrees[index]
self._remove_child_widget(child)
self.canvas().delete(self._lines.pop())
self.update(self._label)
def insert_child(self, index, child):
canvas = self.canvas()
self._subtrees.insert(index, child)
self._add_child_widget(child)
self._lines.append(canvas.create_line(0,0,0,0, fill='#006060'))
self.update(self._label)
def _tags(self):
if self._roof:
return [self._polygon]
else:
return self._lines
def _subtree_top(self, child):
if isinstance(child, TreeSegmentWidget):
bbox = child.label().bbox()
else:
bbox = child.bbox()
if self._horizontal:
return (bbox[0], (bbox[1]+bbox[3])/2.0)
else:
return ((bbox[0]+bbox[2])/2.0, bbox[1])
def _node_bottom(self):
bbox = self._label.bbox()
if self._horizontal:
return (bbox[2], (bbox[1]+bbox[3])/2.0)
else:
return ((bbox[0]+bbox[2])/2.0, bbox[3])
def _update(self, child):
if len(self._subtrees) == 0: return
if self._label.bbox() is None: return
if child is self._label: need_update = self._subtrees
else: need_update = [child]
if self._ordered and not self._managing:
need_update = self._maintain_order(child)
(nodex, nodey) = self._node_bottom()
(xmin, ymin, xmax, ymax) = self._subtrees[0].bbox()
for subtree in self._subtrees[1:]:
bbox = subtree.bbox()
xmin = min(xmin, bbox[0])
ymin = min(ymin, bbox[1])
xmax = max(xmax, bbox[2])
ymax = max(ymax, bbox[3])
if self._horizontal:
self.canvas().coords(self._polygon, nodex, nodey, xmin,
ymin, xmin, ymax, nodex, nodey)
else:
self.canvas().coords(self._polygon, nodex, nodey, xmin,
ymin, xmax, ymin, nodex, nodey)
for subtree in need_update:
(nodex, nodey) = self._node_bottom()
line = self._lines[self._subtrees.index(subtree)]
(subtreex, subtreey) = self._subtree_top(subtree)
self.canvas().coords(line, nodex, nodey, subtreex, subtreey)
def _maintain_order(self, child):
if self._horizontal:
return self._maintain_order_horizontal(child)
else:
return self._maintain_order_vertical(child)
def _maintain_order_vertical(self, child):
(left, top, right, bot) = child.bbox()
if child is self._label:
for subtree in self._subtrees:
(x1, y1, x2, y2) = subtree.bbox()
if bot+self._yspace > y1:
subtree.move(0,bot+self._yspace-y1)
return self._subtrees
else:
moved = [child]
index = self._subtrees.index(child)
x = right + self._xspace
for i in range(index+1, len(self._subtrees)):
(x1, y1, x2, y2) = self._subtrees[i].bbox()
if x > x1:
self._subtrees[i].move(x-x1, 0)
x += x2-x1 + self._xspace
moved.append(self._subtrees[i])
x = left - self._xspace
for i in range(index-1, -1, -1):
(x1, y1, x2, y2) = self._subtrees[i].bbox()
if x < x2:
self._subtrees[i].move(x-x2, 0)
x -= x2-x1 + self._xspace
moved.append(self._subtrees[i])
(x1, y1, x2, y2) = self._label.bbox()
if y2 > top-self._yspace:
self._label.move(0, top-self._yspace-y2)
moved = self._subtrees
return moved
def _maintain_order_horizontal(self, child):
(left, top, right, bot) = child.bbox()
if child is self._label:
for subtree in self._subtrees:
(x1, y1, x2, y2) = subtree.bbox()
if right+self._xspace > x1:
subtree.move(right+self._xspace-x1)
return self._subtrees
else:
moved = [child]
index = self._subtrees.index(child)
y = bot + self._yspace
for i in range(index+1, len(self._subtrees)):
(x1, y1, x2, y2) = self._subtrees[i].bbox()
if y > y1:
self._subtrees[i].move(0, y-y1)
y += y2-y1 + self._yspace
moved.append(self._subtrees[i])
y = top - self._yspace
for i in range(index-1, -1, -1):
(x1, y1, x2, y2) = self._subtrees[i].bbox()
if y < y2:
self._subtrees[i].move(0, y-y2)
y -= y2-y1 + self._yspace
moved.append(self._subtrees[i])
(x1, y1, x2, y2) = self._label.bbox()
if x2 > left-self._xspace:
self._label.move(left-self._xspace-x2, 0)
moved = self._subtrees
return moved
def _manage_horizontal(self):
(nodex, nodey) = self._node_bottom()
y = 20
for subtree in self._subtrees:
subtree_bbox = subtree.bbox()
dx = nodex - subtree_bbox[0] + self._xspace
dy = y - subtree_bbox[1]
subtree.move(dx, dy)
y += subtree_bbox[3] - subtree_bbox[1] + self._yspace
center = 0.0
for subtree in self._subtrees:
center += self._subtree_top(subtree)[1]
center /= len(self._subtrees)
for subtree in self._subtrees:
subtree.move(0, nodey-center)
def _manage_vertical(self):
(nodex, nodey) = self._node_bottom()
x = 0
for subtree in self._subtrees:
subtree_bbox = subtree.bbox()
dy = nodey - subtree_bbox[1] + self._yspace
dx = x - subtree_bbox[0]
subtree.move(dx, dy)
x += subtree_bbox[2] - subtree_bbox[0] + self._xspace
center = 0.0
for subtree in self._subtrees:
center += self._subtree_top(subtree)[0]/len(self._subtrees)
for subtree in self._subtrees:
subtree.move(nodex-center, 0)
def _manage(self):
self._managing = True
(nodex, nodey) = self._node_bottom()
if len(self._subtrees) == 0: return
if self._horizontal: self._manage_horizontal()
else: self._manage_vertical()
for subtree in self._subtrees:
self._update(subtree)
self._managing = False
def __repr__(self):
return '[TreeSeg %s: %s]' % (self._label, self._subtrees)
def _tree_to_treeseg(canvas, t, make_node, make_leaf,
tree_attribs, node_attribs,
leaf_attribs, loc_attribs):
if isinstance(t, Tree):
label = make_node(canvas, t.label(), **node_attribs)
subtrees = [_tree_to_treeseg(canvas, child, make_node, make_leaf,
tree_attribs, node_attribs,
leaf_attribs, loc_attribs)
for child in t]
return TreeSegmentWidget(canvas, label, subtrees, **tree_attribs)
else:
return make_leaf(canvas, t, **leaf_attribs)
def tree_to_treesegment(canvas, t, make_node=TextWidget,
make_leaf=TextWidget, **attribs):
tree_attribs = {}
node_attribs = {}
leaf_attribs = {}
loc_attribs = {}
for (key, value) in list(attribs.items()):
if key[:5] == 'tree_': tree_attribs[key[5:]] = value
elif key[:5] == 'node_': node_attribs[key[5:]] = value
elif key[:5] == 'leaf_': leaf_attribs[key[5:]] = value
elif key[:4] == 'loc_': loc_attribs[key[4:]] = value
else: raise ValueError('Bad attribute: %s' % key)
return _tree_to_treeseg(canvas, t, make_node, make_leaf,
tree_attribs, node_attribs,
leaf_attribs, loc_attribs)
class TreeWidget(CanvasWidget):
def __init__(self, canvas, t, make_node=TextWidget,
make_leaf=TextWidget, **attribs):
self._make_node = make_node
self._make_leaf = make_leaf
self._tree = t
self._nodeattribs = {}
self._leafattribs = {}
self._locattribs = {'color': '#008000'}
self._line_color = '#008080'
self._line_width = 1
self._roof_color = '#008080'
self._roof_fill = '#c0c0c0'
self._shapeable = False
self._xspace = 10
self._yspace = 10
self._orientation = 'vertical'
self._ordered = False
self._keys = {}
self._expanded_trees = {}
self._collapsed_trees = {}
self._nodes = []
self._leaves = []
self._make_collapsed_trees(canvas, t, ())
self._treeseg = self._make_expanded_tree(canvas, t, ())
self._add_child_widget(self._treeseg)
CanvasWidget.__init__(self, canvas, **attribs)
def expanded_tree(self, *path_to_tree):
return self._expanded_trees[path_to_tree]
def collapsed_tree(self, *path_to_tree):
return self._collapsed_trees[path_to_tree]
def bind_click_trees(self, callback, button=1):
for tseg in list(self._expanded_trees.values()):
tseg.bind_click(callback, button)
for tseg in list(self._collapsed_trees.values()):
tseg.bind_click(callback, button)
def bind_drag_trees(self, callback, button=1):
for tseg in list(self._expanded_trees.values()):
tseg.bind_drag(callback, button)
for tseg in list(self._collapsed_trees.values()):
tseg.bind_drag(callback, button)
def bind_click_leaves(self, callback, button=1):
for leaf in self._leaves: leaf.bind_click(callback, button)
for leaf in self._leaves: leaf.bind_click(callback, button)
def bind_drag_leaves(self, callback, button=1):
for leaf in self._leaves: leaf.bind_drag(callback, button)
for leaf in self._leaves: leaf.bind_drag(callback, button)
def bind_click_nodes(self, callback, button=1):
for node in self._nodes: node.bind_click(callback, button)
for node in self._nodes: node.bind_click(callback, button)
|
MIT License
|
laserkelvin/pyspectools
|
pyspectools/pypickett.py
|
MoleculeFit.copy_settings
|
python
|
def copy_settings(self, iteration=0):
if iteration == 0:
iteration = "initial"
iteration_folder = str(iteration) + "/" + self.properties["name"]
if os.path.isfile(iteration_folder + ".fit.yml") is True:
iteration_file = iteration_folder + ".fit.yml"
else:
iteration_file = iteration_folder + ".yml"
iteration_params = read_yaml(iteration_file)
self.properties.update(iteration_params)
print("Settings copied from " + iteration_file)
|
Copy settings used in a previous iteration
If none specified, we'll take the settings from before the first fit
|
https://github.com/laserkelvin/pyspectools/blob/f8f38136d362c061cefc71fede56848829467666/pyspectools/pypickett.py#L406-L420
|
import os
from pathlib import Path
from glob import glob
from dataclasses import dataclass, field
import pickle
import shutil
import tempfile
from copy import deepcopy
from typing import List, Dict
from itertools import product, combinations_with_replacement
from subprocess import run, PIPE
import numpy as np
import pandas as pd
import stat
import pprint
import joblib
from tqdm.autonotebook import tqdm
from pyspectools import routines
from pyspectools import parsers
from pyspectools.spectra.assignment import LineList
class MoleculeFit:
@classmethod
def from_json(cls, json_filepath):
json_data = read_json(json_filepath)
species = MoleculeFit(json_data)
return species
@classmethod
def from_yaml(cls, yaml_filepath):
yaml_data = read_yaml(yaml_filepath)
species = MoleculeFit(yaml_data)
return species
@classmethod
def from_pickle(cls, picklepath):
with open(picklepath) as pickle_read:
species = pickle.load(pickle_read)
return species
def __init__(self, options=None):
self.properties = {
"name": "Molecule",
"tag": 0,
"parameters": dict(),
"linear": False,
"symmetric": False,
"prolate": False,
"dipole": {"A": 0.0, "B": 0.0, "C": 0.0},
"reduction": "A",
"spin": 1,
"spin degeneracy": 0,
"units": "MHz",
"temperature": 5.0,
"intensity threshold": [-8.0, -3.0],
"K range": [0, 0],
"partition function": 1e3,
"interactions": 0,
"quantum number range": [0, 99],
"odd state weight": 1,
"even state weight": 1,
"frequency limit": 100.0,
"vibration limit": 1,
"vsym": 1,
"ewt": 0,
"statistical axis": 1,
"number of parameters": 100,
"number of lines": 0,
"number of iterations": 10,
"number of skipped lines": 0,
"marquadrt-levenburg": 0.0000e00,
"maximum error": 1e13,
"fractional importance": 1.0000e00,
"IR scaling": 1.0,
"diagonalization": 0,
"xopt": 1,
}
self.param_objects = dict()
self.iteration_count = 1
self.iterations = dict()
self.top_dir = os.getcwd()
self.cwd = ""
self.experimental_lines = dict()
self.initialize(options)
self.interactive = False
def initialize(self, options=None):
if options is not None:
self.properties.update(options)
self.generate_parameter_objects(verbose=False)
self.check_input()
self.setup_int()
self.setup_par()
print("Initialized settings for molecule " + self.properties["name"])
def check_input(self):
if self.properties["K range"][1] == 0 and self.properties["linear"] is False:
raise UserWarning(
"Warning: You have specified a non-linear molecule \
and the maximum K value is unset. Result cat file \
may be empty!"
)
if ["A", "C"] in list(self.properties["parameters"].keys()):
if self.properties["linear"] is True:
raise UserWarning(
"Molecule flagged as linear, \
but A and C constants specified."
)
def generate_parameter_objects(self, verbose=True):
for param_key in self.properties["parameters"]:
self.param_objects[param_key] = self.parameter(
param_key,
self.properties["parameters"][param_key],
self.properties["reduction"],
linear=self.properties["linear"],
verbose=verbose,
)
def nuclear(self, delete=False):
filelist = [
".cat",
".var",
".par",
".int",
"_parsedlines.csv",
"_spectrum.pdf",
".fit",
".out",
]
files = [self.properties["name"] + name for name in filelist]
if delete is True:
for file in files:
try:
os.system("rm " + file)
except FileNotFoundError:
pass
else:
raise EnvironmentError("Please provide a True value to confirm deletion!")
def toggle_interactive(self, connected=False):
self.interactive = not self.interactive
init_notebook_mode(connected=connected)
if self.interactive is False:
init_notebook_mode(connected=True)
def setup_par(self):
opt_line = ""
opt_line += str(self.properties["number of parameters"]).rjust(4) + " "
opt_line += str(self.properties["number of lines"]).rjust(5) + " "
opt_line += str(self.properties["number of iterations"]).rjust(5) + " "
opt_line += str(self.properties["number of skipped lines"]).rjust(5) + " "
opt_line += str(self.properties["marquadrt-levenburg"]).rjust(12) + " "
opt_line += str(self.properties["maximum error"]).rjust(15) + " "
opt_line += str(self.properties["fractional importance"]).rjust(15) + " "
opt_line += str(self.properties["IR scaling"]).rjust(13) + " "
prop_line = ""
prop_line += str("'" + self.properties["reduction"] + "'").rjust(3)
if self.properties["symmetric"] is True and self.properties["linear"] is False:
prop_line += (
str(np.negative(self.properties["spin degeneracy"])).rjust(3) + " "
)
elif (
self.properties["symmetric"] is False and self.properties["linear"] is False
):
prop_line += (
str(np.absolute(self.properties["spin degeneracy"])).rjust(3) + " "
)
elif (
self.properties["symmetric"] is False and self.properties["linear"] is True
):
prop_line += (
str(np.negative(self.properties["spin degeneracy"])).rjust(3) + " "
)
if self.properties["prolate"] is True and self.properties["linear"] is False:
prop_line += (
str(np.absolute(self.properties["vibration limit"])).rjust(3) + " "
)
elif self.properties["prolate"] is False and self.properties["linear"] is False:
prop_line += (
str(np.negative(self.properties["vibration limit"])).rjust(3) + " "
)
else:
prop_line += str(self.properties["vibration limit"]).rjust(3) + " "
prop_line += str(self.properties["K range"][0]).rjust(3) + " "
prop_line += str(self.properties["K range"][1]).rjust(3) + " "
prop_line += str(self.properties["interactions"]).rjust(3) + " "
prop_line += str(self.properties["statistical axis"]).rjust(3) + " "
prop_line += str(self.properties["even state weight"]).rjust(3) + " "
prop_line += str(self.properties["odd state weight"]).rjust(3) + " "
prop_line += str(self.properties["vsym"]).rjust(3)
prop_line += str(self.properties["ewt"]).rjust(3)
prop_line += str(self.properties["diagonalization"]).rjust(3)
prop_line += str(self.properties["xopt"]).rjust(3)
with open(self.properties["name"] + ".par", "w+") as write_file:
write_file.write(self.properties["name"] + "\n")
write_file.write(opt_line + "\n")
write_file.write(prop_line + "\n")
for parameter in self.param_objects:
par_line = self.param_objects[parameter].format_line()
write_file.write(par_line + "\n")
def setup_int(self):
settings_line = " "
if self.properties["units"] == "wavenumbers":
settings_line += "1"
elif self.properties["units"] == "MHz":
settings_line += "0"
else:
settings_line += "0"
settings_line += " " + str(self.properties["tag"]).rjust(6)
settings_line += str(self.properties["partition function"]).rjust(10)
for value in self.properties["quantum number range"]:
settings_line += str(value).rjust(5)
for value in self.properties["intensity threshold"]:
settings_line += str(value).rjust(7)
settings_line += str(self.properties["frequency limit"]).rjust(9)
settings_line += str(self.properties["temperature"]).rjust(6)
settings_line += str(self.properties["vibration limit"]).rjust(7)
with open(self.properties["name"] + ".int", "w+") as write_file:
write_file.write(self.properties["name"] + "\n")
write_file.write(settings_line + "\n")
for projection in self.properties["dipole"]:
if projection == "A":
write_file.write(
" 1 " + str(self.properties["dipole"][projection]) + "\n"
)
elif projection == "B":
write_file.write(
" 2 " + str(self.properties["dipole"][projection]) + "\n"
)
elif projection == "C":
write_file.write(
" 3 " + str(self.properties["dipole"][projection]) + "\n"
)
def fit_lines(self, verbose=True):
os.chdir(self.top_dir)
if os.path.isfile(self.properties["name"] + ".lin") is False:
runinput = input("Run calbak to generate a .lin file from .cat? (Y/N)")
if runinput.lower() == "y":
run_calbak(self.properties["name"])
else:
raise FileNotFoundError(self.properties["name"] + ".lin not found!")
with open(self.properties["name"] + ".lin") as read_file:
self.lin_file = read_file.readlines()
folder_number = generate_folder()
self.cwd = str(folder_number) + "/"
if folder_number == 1:
if os.path.isdir("initial") is False:
os.mkdir("initial")
backup_files(self.properties["name"], "./initial/")
backup_files(self.properties["name"], self.cwd)
dump_yaml(
str(folder_number) + "/" + self.properties["name"] + ".yml", self.properties
)
os.chdir(self.cwd)
self.setup_int()
self.setup_par()
run_spfit(self.properties["name"])
self.iterations[self.iteration_count] = fit_output(
self.properties["name"] + ".fit",
verbose=verbose,
interactive=self.interactive,
)
self.predict_lines()
os.chdir(self.top_dir)
current_params = self.iterations[self.iteration_count].export_parameters()
self.iteration_count += 1
self.update_parameters(current_params, verbose=False)
dump_yaml(self.cwd + self.properties["name"] + ".fit.yml", self.properties)
print("Current parameters (MHz)")
for parameter in current_params:
print(
parameter
+ "\t"
+ str(current_params[parameter]["value"])
+ "("
+ str(current_params[parameter]["uncertainty"] + ")")
)
def calbak(self):
run_calbak(self.properties["name"])
with open(self.properties["name"] + ".lin") as read_file:
print(read_file.read())
def predict_lines(self, verbose=True):
self.properties["partition function"] = run_spcat(
self.properties["name"],
temperature="{:.3f}".format(self.properties["temperature"]),
)
self.setup_int()
run_spcat(self.properties["name"])
self.cat_lines = parsers.parse_cat(self.properties["name"] + ".cat")
print(
"Saving the parsed lines to " + self.properties["name"] + "_parsedlines.csv"
)
self.cat_lines.to_csv(self.properties["name"] + "_parsedlines.csv")
fig, ax = plot_pickett(self.cat_lines, verbose=verbose)
os.chdir(self.top_dir)
fig.savefig(self.properties["name"] + "_spectrum.pdf", format="pdf")
|
MIT License
|
aws-greengrass/aws-greengrass-component-examples
|
machine-learning/lambda-v2/lambda-artifacts/com.lambda.DLRObjectDetection/1.0.0/object_detection/inference.py
|
set_configuration
|
python
|
def set_configuration(config):
new_config = {}
if "ImageName" in config:
new_config["image_name"] = config["ImageName"]
else:
new_config["image_name"] = config_utils.DEFAULT_IMAGE_NAME
config_utils.logger.warning(
"Using default image name: {}".format(config_utils.DEFAULT_IMAGE_NAME)
)
if "ImageDirectory" in config:
new_config["image_dir"] = config["ImageDirectory"]
else:
new_config["image_dir"] = config_utils.IMAGE_DIR
config_utils.logger.warning(
"Using default image directory: {}".format(config_utils.IMAGE_DIR)
)
if "InferenceInterval" in config:
new_config["prediction_interval_secs"] = config["InferenceInterval"]
else:
new_config["prediction_interval_secs"] = config_utils.DEFAULT_PREDICTION_INTERVAL_SECS
config_utils.logger.warning(
"Using default inference interval: {}".format(
config_utils.DEFAULT_PREDICTION_INTERVAL_SECS
)
)
if "UseCamera" in config:
new_config["use_camera"] = config["UseCamera"]
else:
new_config["use_camera"] = config_utils.DEFAULT_USE_CAMERA
config_utils.logger.warning(
"Using default camera: {}".format(config_utils.DEFAULT_USE_CAMERA)
)
if "PublishResultsOnTopic" in config:
config_utils.TOPIC = config["PublishResultsOnTopic"]
else:
config_utils.TOPIC = ""
config_utils.logger.warning("Topic to publish inference results is empty.")
if new_config["use_camera"].lower() == "true":
prediction_utils.enable_camera()
new_config["image"] = prediction_utils.load_image(
path.join(new_config["image_dir"], new_config["image_name"])
)
makedirs(config_utils.BOUNDED_OUTPUT_DIR, exist_ok=True)
run_inference(new_config, True)
|
r"""
Sets a new config object with the combination of updated and default configuration as applicable.
Calls inference code with the new config and indicates that the configuration changed.
|
https://github.com/aws-greengrass/aws-greengrass-component-examples/blob/fb7e0aae7b49ed97a0ddba81c52f93a54ec9bb1f/machine-learning/lambda-v2/lambda-artifacts/com.lambda.DLRObjectDetection/1.0.0/object_detection/inference.py#L12-L70
|
from os import makedirs, path
from threading import Thread, Timer
import config_utils
import IPCUtils as ipc_utils
import prediction_utils
|
Apache License 2.0
|
openstack/mistral-dashboard
|
mistraldashboard/api.py
|
workbook_get
|
python
|
def workbook_get(request, workbook_name):
return mistralclient(request).workbooks.get(workbook_name)
|
Get specific workbook.
:param workbook_name: Workbook name
|
https://github.com/openstack/mistral-dashboard/blob/2980dfc44f11400c75a1113e468f50e7c6d6396c/mistraldashboard/api.py#L244-L250
|
import itertools
from django.conf import settings
from django.utils.translation import ugettext_lazy as _
from horizon.utils import functions as utils
from horizon.utils import memoized
from mistralclient.api import client as mistral_client
from mistraldashboard.handle_errors import handle_errors
from openstack_dashboard.api import base
SERVICE_TYPE = 'workflowv2'
@memoized.memoized
def mistralclient(request):
return mistral_client.client(
username=request.user.username,
auth_token=request.user.token.id,
project_id=request.user.tenant_id,
mistral_url=base.url_for(request, 'workflowv2'),
endpoint_type=getattr(
settings,
'OPENSTACK_ENDPOINT_TYPE',
'internalURL'
),
service_type=SERVICE_TYPE
)
@handle_errors(_("Unable to retrieve list"), [])
def pagination_list(entity, request, marker='', sort_keys='', sort_dirs='asc',
paginate=False, reversed_order=False, selector=None):
limit = getattr(settings, 'API_RESULT_LIMIT', 1000)
page_size = utils.get_page_size(request)
if paginate:
request_size = page_size + 1
else:
request_size = limit
if reversed_order:
sort_dirs = 'desc' if sort_dirs == 'asc' else 'asc'
api = mistralclient(request)
entities_iter = (
getattr(api, entity).list(
selector,
marker=marker,
limit=limit,
sort_keys=sort_keys,
sort_dirs=sort_dirs
) if selector else (
getattr(api, entity).list(
marker=marker,
limit=limit,
sort_keys=sort_keys,
sort_dirs=sort_dirs
)
)
)
has_prev_data = has_more_data = False
if paginate:
entities = list(itertools.islice(entities_iter, request_size))
if len(entities) > page_size:
entities.pop(-1)
has_more_data = True
if marker is not None:
has_prev_data = True
elif reversed_order and marker is not None:
has_more_data = True
elif marker is not None:
has_prev_data = True
if reversed_order:
entities = sorted(entities,
key=lambda ent:
(getattr(ent, sort_keys) or '').lower(),
reverse=(sort_dirs == 'desc')
)
else:
entities = list(entities_iter)
return entities, has_more_data, has_prev_data
def execution_create(request, **data):
return mistralclient(request).executions.create(**data)
def execution_get(request, execution_id):
return mistralclient(request).executions.get(execution_id)
def execution_update(request, execution_id, field, value):
if field == "state":
return mistralclient(request). executions.update(execution_id, value)
elif field == "description":
return mistralclient(request). executions.update(execution_id, None, value)
def execution_delete(request, execution_name):
return mistralclient(request).executions.delete(execution_name)
@handle_errors(_("Unable to retrieve tasks."), [])
def task_list(request, execution_id=None):
return mistralclient(request).tasks.list(execution_id)
def task_get(request, task_id=None):
return mistralclient(request).tasks.get(task_id)
@handle_errors(_("Unable to retrieve workflows"), [])
def workflow_list(request):
return mistralclient(request).workflows.list()
def workflow_get(request, workflow_name):
return mistralclient(request).workflows.get(workflow_name)
def workflow_create(request, workflows_definition):
return mistralclient(request).workflows.create(workflows_definition)
def workflow_validate(request, workflow_definition):
return mistralclient(request).workflows.validate(workflow_definition)
def workflow_delete(request, workflow_name):
return mistralclient(request).workflows.delete(workflow_name)
def workflow_update(request, workflows_definition):
return mistralclient(request).workflows.update(workflows_definition)
@handle_errors(_("Unable to retrieve workbooks."), [])
def workbook_list(request):
return mistralclient(request).workbooks.list()
|
Apache License 2.0
|
dejonghe/cfn-boto-interface
|
lambda_function.py
|
CfnBotoInterface.set_attributes_from_data
|
python
|
def set_attributes_from_data(self):
try:
self.action = self.data['RequestType']
logger.info("Action: {}".format(self.action))
self.action_obj = self.data['ResourceProperties'].get(self.action,{})
self.old_physical_resource_id = self.data.get('PhysicalResourceId', 'None')
self.physical_resource_id = self.action_obj.get('PhysicalResourceId', self.old_physical_resource_id)
logger.info("Physical Resource Id: {}".format(self.physical_resource_id))
self.response_data = self.action_obj.get('ResponseData', {})
logger.info("Response Data: {}".format(self.response_data))
except Exception as e:
self.reason = "Missing required property: {}".format(e)
logger.error(self.reason)
self._send_status(FAILED)
return
|
Sets object attributes from event data sent from CloudFormation
|
https://github.com/dejonghe/cfn-boto-interface/blob/482e1e58b82c97c3e1d6af3721f6b7ddab7abfbe/lambda_function.py#L80-L99
|
import argparse
import boto3
import json
import urllib
from cfnresponse import send, SUCCESS, FAILED
from command import Command
from helper import traverse_find, traverse_modify, to_path, json_serial, remove_prefix, inject_rand, return_modifier, convert
from logger import logger
class test_context(dict):
def __init__(self,profile,region):
self.profile = profile
self.region = region
def remove_prefix(text, prefix):
return text[text.startswith(prefix) and len(prefix):]
class CfnBotoInterface(object):
reason = None
response_data = {}
buff = None
prefix_event = '!event.'
prefix_random = '!random'
test = False
def __init__(self,event,context):
logger.debug("Event Received: {}".format(event))
self.raw_data = event
self.context = context
self.template_event()
self.set_attributes_from_data()
self.setup_session()
if self.action == 'Update' and bool(self.action_obj.get('Replace',False)):
logger.info('Replacement specified, running Create')
self.run_commands('Create')
else:
self.run_commands(self.action)
self._send_status(SUCCESS)
def template_event(self):
try:
logger.info("Raw Event: {}".format(self.raw_data))
self.data = traverse_find(self.raw_data,self.prefix_random,self._interpolate_rand)
self.data = traverse_find(self.data,self.prefix_event,self._template)
for modifier in [ '!str.', '!int.' ]:
self.data = traverse_find(self.data,modifier,self._mod)
logger.info("Templated Event: {}".format(self.data))
except Exception as e:
self.reason = "Templating Event Data Failed: {}".format(e)
logger.error(self.reason)
self._send_status(FAILED)
return
|
Apache License 2.0
|
dmdhrumilmistry/pyhtools
|
malwares/reverse_backdoor/TCP/reverse_backdoor.py
|
ReverseBackdoor.create_persistence
|
python
|
def create_persistence(self):
if os.name == 'nt':
backdoor_file_path = os.environ['appdata'] + '\\MyBackdoor.exe'
if not os.path.exists(backdoor_file_path):
shutil.copy(sys.executable, backdoor_file_path)
subprocess.call(f'reg add HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run /v MyBackdoor /t REG_SZ /d "{backdoor_file_path}"')
|
description: tries to connect to user when machine restarts.
params: None
returns: None
|
https://github.com/dmdhrumilmistry/pyhtools/blob/8a310fb70cea191b331df7883dc6c81bae5b4ce5/malwares/reverse_backdoor/TCP/reverse_backdoor.py#L29-L42
|
import socket
import subprocess
import json
import sys
import os
import base64
import shutil
class ReverseBackdoor:
def __init__(self, ip:str, port:int)->None:
self.create_persistence()
self.port = port
self.ip = ip
self.connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.connect_to_listener()
|
MIT License
|
wapm-packages/python
|
Python-3.6.7/Lib/imaplib.py
|
IMAP4.shutdown
|
python
|
def shutdown(self):
self.file.close()
try:
self.sock.shutdown(socket.SHUT_RDWR)
except OSError as exc:
if (exc.errno != errno.ENOTCONN
and getattr(exc, 'winerror', 0) != 10022):
raise
finally:
self.sock.close()
|
Close I/O established in "open".
|
https://github.com/wapm-packages/python/blob/658c1822f430f6d604ecf2bcc388e469cedb2238/Python-3.6.7/Lib/imaplib.py#L321-L334
|
__version__ = "2.58"
import binascii, errno, random, re, socket, subprocess, sys, time, calendar
from datetime import datetime, timezone, timedelta
from io import DEFAULT_BUFFER_SIZE
try:
import ssl
HAVE_SSL = True
except ImportError:
HAVE_SSL = False
__all__ = ["IMAP4", "IMAP4_stream", "Internaldate2tuple",
"Int2AP", "ParseFlags", "Time2Internaldate"]
CRLF = b'\r\n'
Debug = 0
IMAP4_PORT = 143
IMAP4_SSL_PORT = 993
AllowedVersions = ('IMAP4REV1', 'IMAP4')
_MAXLINE = 1000000
Commands = {
'APPEND': ('AUTH', 'SELECTED'),
'AUTHENTICATE': ('NONAUTH',),
'CAPABILITY': ('NONAUTH', 'AUTH', 'SELECTED', 'LOGOUT'),
'CHECK': ('SELECTED',),
'CLOSE': ('SELECTED',),
'COPY': ('SELECTED',),
'CREATE': ('AUTH', 'SELECTED'),
'DELETE': ('AUTH', 'SELECTED'),
'DELETEACL': ('AUTH', 'SELECTED'),
'ENABLE': ('AUTH', ),
'EXAMINE': ('AUTH', 'SELECTED'),
'EXPUNGE': ('SELECTED',),
'FETCH': ('SELECTED',),
'GETACL': ('AUTH', 'SELECTED'),
'GETANNOTATION':('AUTH', 'SELECTED'),
'GETQUOTA': ('AUTH', 'SELECTED'),
'GETQUOTAROOT': ('AUTH', 'SELECTED'),
'MYRIGHTS': ('AUTH', 'SELECTED'),
'LIST': ('AUTH', 'SELECTED'),
'LOGIN': ('NONAUTH',),
'LOGOUT': ('NONAUTH', 'AUTH', 'SELECTED', 'LOGOUT'),
'LSUB': ('AUTH', 'SELECTED'),
'MOVE': ('SELECTED',),
'NAMESPACE': ('AUTH', 'SELECTED'),
'NOOP': ('NONAUTH', 'AUTH', 'SELECTED', 'LOGOUT'),
'PARTIAL': ('SELECTED',),
'PROXYAUTH': ('AUTH',),
'RENAME': ('AUTH', 'SELECTED'),
'SEARCH': ('SELECTED',),
'SELECT': ('AUTH', 'SELECTED'),
'SETACL': ('AUTH', 'SELECTED'),
'SETANNOTATION':('AUTH', 'SELECTED'),
'SETQUOTA': ('AUTH', 'SELECTED'),
'SORT': ('SELECTED',),
'STARTTLS': ('NONAUTH',),
'STATUS': ('AUTH', 'SELECTED'),
'STORE': ('SELECTED',),
'SUBSCRIBE': ('AUTH', 'SELECTED'),
'THREAD': ('SELECTED',),
'UID': ('SELECTED',),
'UNSUBSCRIBE': ('AUTH', 'SELECTED'),
}
Continuation = re.compile(br'\+( (?P<data>.*))?')
Flags = re.compile(br'.*FLAGS \((?P<flags>[^\)]*)\)')
InternalDate = re.compile(br'.*INTERNALDATE "'
br'(?P<day>[ 0123][0-9])-(?P<mon>[A-Z][a-z][a-z])-(?P<year>[0-9][0-9][0-9][0-9])'
br' (?P<hour>[0-9][0-9]):(?P<min>[0-9][0-9]):(?P<sec>[0-9][0-9])'
br' (?P<zonen>[-+])(?P<zoneh>[0-9][0-9])(?P<zonem>[0-9][0-9])'
br'"')
Literal = re.compile(br'.*{(?P<size>\d+)}$', re.ASCII)
MapCRLF = re.compile(br'\r\n|\r|\n')
Response_code = re.compile(br'\[(?P<type>[A-Z-]+)( (?P<data>.*))?\]')
Untagged_response = re.compile(br'\* (?P<type>[A-Z-]+)( (?P<data>.*))?')
Untagged_status = re.compile(
br'\* (?P<data>\d+) (?P<type>[A-Z-]+)( (?P<data2>.*))?', re.ASCII)
_Literal = br'.*{(?P<size>\d+)}$'
_Untagged_status = br'\* (?P<data>\d+) (?P<type>[A-Z-]+)( (?P<data2>.*))?'
class IMAP4:
class error(Exception): pass
class abort(error): pass
class readonly(abort): pass
def __init__(self, host='', port=IMAP4_PORT):
self.debug = Debug
self.state = 'LOGOUT'
self.literal = None
self.tagged_commands = {}
self.untagged_responses = {}
self.continuation_response = ''
self.is_readonly = False
self.tagnum = 0
self._tls_established = False
self._mode_ascii()
self.open(host, port)
try:
self._connect()
except Exception:
try:
self.shutdown()
except OSError:
pass
raise
def _mode_ascii(self):
self.utf8_enabled = False
self._encoding = 'ascii'
self.Literal = re.compile(_Literal, re.ASCII)
self.Untagged_status = re.compile(_Untagged_status, re.ASCII)
def _mode_utf8(self):
self.utf8_enabled = True
self._encoding = 'utf-8'
self.Literal = re.compile(_Literal)
self.Untagged_status = re.compile(_Untagged_status)
def _connect(self):
self.tagpre = Int2AP(random.randint(4096, 65535))
self.tagre = re.compile(br'(?P<tag>'
+ self.tagpre
+ br'\d+) (?P<type>[A-Z]+) (?P<data>.*)', re.ASCII)
if __debug__:
self._cmd_log_len = 10
self._cmd_log_idx = 0
self._cmd_log = {}
if self.debug >= 1:
self._mesg('imaplib version %s' % __version__)
self._mesg('new IMAP4 connection, tag=%s' % self.tagpre)
self.welcome = self._get_response()
if 'PREAUTH' in self.untagged_responses:
self.state = 'AUTH'
elif 'OK' in self.untagged_responses:
self.state = 'NONAUTH'
else:
raise self.error(self.welcome)
self._get_capabilities()
if __debug__:
if self.debug >= 3:
self._mesg('CAPABILITIES: %r' % (self.capabilities,))
for version in AllowedVersions:
if not version in self.capabilities:
continue
self.PROTOCOL_VERSION = version
return
raise self.error('server not IMAP4 compliant')
def __getattr__(self, attr):
if attr in Commands:
return getattr(self, attr.lower())
raise AttributeError("Unknown IMAP4 command: '%s'" % attr)
def __enter__(self):
return self
def __exit__(self, *args):
try:
self.logout()
except OSError:
pass
def _create_socket(self):
host = None if not self.host else self.host
return socket.create_connection((host, self.port))
def open(self, host = '', port = IMAP4_PORT):
self.host = host
self.port = port
self.sock = self._create_socket()
self.file = self.sock.makefile('rb')
def read(self, size):
return self.file.read(size)
def readline(self):
line = self.file.readline(_MAXLINE + 1)
if len(line) > _MAXLINE:
raise self.error("got more than %d bytes" % _MAXLINE)
return line
def send(self, data):
self.sock.sendall(data)
|
Apache License 2.0
|
sfdo-tooling/metaci
|
metaci/api/views/testmethod_perf.py
|
TestMethodPerfListView.get_queryset
|
python
|
def get_queryset(self):
set_timeout(30)
self._check_params()
splitter_fields = self._get_splitter_fields()
aggregations = self._get_aggregation_fields()
queryset = (
TestResultPerfWeeklySummary.objects.for_user(self.request.user)
.values(method_name=F("method__name"), **splitter_fields)
.annotate(**aggregations)
)
if not self.orderby_field:
queryset = queryset.order_by("method_name")
return queryset
|
The main method that the Django infrastructure invokes.
|
https://github.com/sfdo-tooling/metaci/blob/2f1efe6ae91b12dc50bb007d0881c10cb52fea1b/metaci/api/views/testmethod_perf.py#L314-L331
|
from datetime import datetime, timedelta
import django_filters.rest_framework
from django.db import connection
from django.db.models import BigIntegerField, F, FloatField, Sum
from django.db.models.functions import Cast
from django_filters.widgets import DateRangeWidget
from rest_framework import exceptions, generics, pagination, permissions, viewsets
from metaci.api.serializers.simple_dict_serializer import SimpleDictSerializer
from metaci.plan.models import Plan
from metaci.repository.models import Branch, Repository
from metaci.testresults.models import FieldType, TestResultPerfWeeklySummary
thirty_days_ago = datetime.now() - timedelta(days=30)
class DEFAULTS:
page_size = 50
max_page_size = 100
branch = "main"
daterange_after = thirty_days_ago.isoformat("T").split("T")[0]
def set_timeout(timeout):
with connection.cursor() as cursor:
cursor.execute("SET LOCAL statement_timeout=%s", [timeout * 1000])
class StandardResultsSetPagination(pagination.PageNumberPagination):
page_size = DEFAULTS.page_size
page_size_query_param = "page_size"
max_page_size = DEFAULTS.max_page_size
class BuildFlowFilterSet(django_filters.rest_framework.FilterSet):
repo_choices = (
Repository.objects.values_list("name", "name").order_by("name").distinct()
)
repo = django_filters.rest_framework.ChoiceFilter(
field_name="rel_repo__name", label="Repo Name", choices=repo_choices
)
branch = django_filters.rest_framework.CharFilter(
field_name="rel_branch__name", label="Branch Name"
)
plan_choices = Plan.objects.values_list("name", "name").order_by("name").distinct()
plan = django_filters.rest_framework.ChoiceFilter(
field_name="rel_plan__name", label="Plan Name", choices=plan_choices
)
daterange = django_filters.rest_framework.DateFromToRangeFilter(
field_name="week_start",
label="Date range",
widget=DateRangeWidget(attrs={"type": "date"}),
)
def dummy_filter(self, queryset, name, value):
return queryset
fields_and_stuff = locals()
build_fields = {}
for name in ("repo", "plan", "branch"):
build_fields[name] = fields_and_stuff[name].field_name
def dynamicBuildFlowFilterSetBuilder(repo_name):
class DynamicBuildFlowFilterSet(BuildFlowFilterSet):
if repo_name:
branches = (
Branch.include_deleted.filter(repo__name=repo_name)
.values_list("name", "name")
.order_by("name")
.distinct()
)
branch = django_filters.rest_framework.ChoiceFilter(
field_name="rel_branch__name",
label="Branch Name",
choices=list(branches),
)
return DynamicBuildFlowFilterSet
def AsInt(expr):
return Cast(expr, BigIntegerField())
def AsFloat(expr):
return Cast(expr, FloatField())
def AvgofAvgs(fieldname):
return AsFloat(Sum(AsInt(F(fieldname) * F("agg_count"))) / Sum("agg_count"))
class TestMethodPerfFilterSet(
BuildFlowFilterSet, django_filters.rest_framework.FilterSet
):
success_percentage_gt = django_filters.rest_framework.NumberFilter(
label="Success percentage above",
field_name="success_percentage",
lookup_expr="gt",
)
success_percentage_lt = django_filters.rest_framework.NumberFilter(
label="Success percentage below",
field_name="success_percentage",
lookup_expr="lt",
)
count_gt = django_filters.rest_framework.NumberFilter(
label="Count above", field_name="count", lookup_expr="gt"
)
count_lt = django_filters.rest_framework.NumberFilter(
label="Count below", field_name="count", lookup_expr="lt"
)
method_name = django_filters.rest_framework.CharFilter(
field_name="method_name", label="Method Name", lookup_expr="icontains"
)
def dummy(queryset, name, value):
return queryset
metrics = {
"method_name": FieldType("Method Name", F("method__name")),
"duration_average": FieldType(
"Duration: Average", AvgofAvgs("agg_duration_average")
),
"duration_slow": FieldType("Duration: Slow", AvgofAvgs("agg_duration_slow")),
"duration_fast": FieldType("Duration: Fast", AvgofAvgs("agg_duration_fast")),
"cpu_usage_average": FieldType(
"CPU Usage: Average", AvgofAvgs("agg_cpu_usage_average")
),
"cpu_usage_low": FieldType("CPU Usage: Low", AvgofAvgs("agg_cpu_usage_low")),
"cpu_usage_high": FieldType("CPU Usage: High", AvgofAvgs("agg_cpu_usage_high")),
"count": FieldType("Count", Sum(F("agg_count"))),
"failures": FieldType("Failures", Sum("agg_failures")),
"assertion_failures": FieldType(
"Assertion Failures", Sum("agg_assertion_failures")
),
"success_percentage": FieldType(
"Success Percentage",
AsInt(
(AsFloat(Sum(F("agg_count"))) - Sum(F("agg_failures")))
/ AsFloat(Sum(F("agg_count")))
* 100
),
),
"DML_failures": FieldType("DML Failures", Sum("agg_DML_failures")),
"other_failures": FieldType("Other Failures", Sum("agg_other_failures")),
}
metric_choices = tuple((key, field.label) for key, field in metrics.items())
includable_fields = metric_choices + tuple(
zip(
BuildFlowFilterSet.build_fields.keys(),
BuildFlowFilterSet.build_fields.keys(),
)
)
include_fields = django_filters.rest_framework.MultipleChoiceFilter(
label="Include (multi-select okay)",
choices=includable_fields,
method=dummy,
initial=["repo", "duration_average"],
)
ordering_fields = tuple((name, name) for (name, label) in includable_fields)
ordering_fields += ("method_name", "method_name")
o = django_filters.rest_framework.OrderingFilter(fields=ordering_fields)
ordering_param_name = "o"
class MetaCIApiException(exceptions.APIException):
status_code = 400
default_detail = "Validation Error."
default_code = 400
class TestMethodPerfListView(generics.ListAPIView, viewsets.ViewSet):
serializer_class = SimpleDictSerializer
filter_backends = (django_filters.rest_framework.DjangoFilterBackend,)
filterset_class = TestMethodPerfFilterSet
pagination_class = StandardResultsSetPagination
ordering_param_name = filterset_class.ordering_param_name
permission_classes = (permissions.AllowAny,)
model_fields = set(
field.name for field in TestResultPerfWeeklySummary._meta.get_fields()
)
@property
def orderby_field(self):
return self.request.query_params.get(self.ordering_param_name)
def _get_aggregation_fields(self):
params = self.request.query_params
aggregations = {}
fields_to_include = params.getlist("include_fields")
filters = self.filterset_class.get_filters()
fields = self.filterset_class.metrics
for param, value in params.items():
if value and (
filters.get(param)
and filters[param].field_name
and param != "method_name"
and fields.get(filters[param].field_name)
):
fields_to_include.append(filters[param].field_name)
if fields_to_include == []:
filters = self.filterset_class.get_filters()
assert filters
include_filter = filters["include_fields"]
assert include_filter
default_include_fields = include_filter.extra["initial"]
assert default_include_fields
fields_to_include.extend(default_include_fields)
if self.orderby_field and self.orderby_field.strip("-") != "method_name":
fields_to_include.append(self.orderby_field.strip("-"))
for fieldname in fields_to_include:
if fields.get(fieldname):
aggregations[fieldname] = fields[fieldname].aggregation
return aggregations
def _get_splitter_fields(self):
params = self.request.query_params
output_fields = {}
build_fields = BuildFlowFilterSet.build_fields
group_by_fields = []
order_by_field = self.orderby_field
if order_by_field and order_by_field in build_fields:
group_by_fields.append(order_by_field)
fields_to_include = params.getlist("include_fields")
build_fields_in_include_fields = set(fields_to_include).intersection(
set(build_fields.keys())
)
for fieldname in build_fields_in_include_fields:
group_by_fields.append(fieldname)
if group_by_fields:
for param in group_by_fields:
output_fields[param] = F(build_fields[param])
return output_fields
def _check_params(self):
params = self.request.query_params
if params.get("recentdate") and (
params.get("daterange_after") or params.get("daterange_before")
):
raise MetaCIApiException(
detail="Specified both recentdate and daterange", code=400
)
|
BSD 3-Clause New or Revised License
|
biocommons/hgvs
|
hgvs/variantmapper.py
|
VariantMapper.__init__
|
python
|
def __init__(self,
hdp,
replace_reference=hgvs.global_config.mapping.replace_reference,
prevalidation_level=hgvs.global_config.mapping.prevalidation_level,
add_gene_symbol=hgvs.global_config.mapping.add_gene_symbol
):
self.hdp = hdp
self.replace_reference = replace_reference
self.add_gene_symbol = add_gene_symbol
if prevalidation_level is None:
self.prevalidation_level = PrevalidationLevel.NONE
else:
self.prevalidation_level = PrevalidationLevel[prevalidation_level.upper()]
if self.prevalidation_level == PrevalidationLevel.NONE:
self._validator = None
elif self.prevalidation_level == PrevalidationLevel.INTRINSIC:
self._validator = hgvs.validator.IntrinsicValidator(strict=False)
else:
self._validator = hgvs.validator.Validator(self.hdp, strict=False)
self.left_normalizer = hgvs.normalizer.Normalizer(hdp, shuffle_direction=5, variantmapper=self)
|
:param bool replace_reference: replace reference (entails additional network access)
:param str prevalidation_level: None or Intrinsic or Extrinsic validation before mapping
|
https://github.com/biocommons/hgvs/blob/18d8dc9754e4d4ac0d5d018b6231e34899452b03/hgvs/variantmapper.py#L71-L95
|
from __future__ import absolute_import, division, print_function, unicode_literals
import copy
import logging
from bioutils.sequences import reverse_complement
import hgvs
import hgvs.location
import hgvs.normalizer
import hgvs.posedit
import hgvs.edit
import hgvs.alignmentmapper
import hgvs.utils.altseq_to_hgvsp as altseq_to_hgvsp
import hgvs.utils.altseqbuilder as altseqbuilder
import hgvs.sequencevariant
import hgvs.validator
from hgvs.exceptions import HGVSDataNotAvailableError, HGVSUnsupportedOperationError, HGVSInvalidVariantError
from hgvs.decorators.lru_cache import lru_cache
from hgvs.enums import PrevalidationLevel
from hgvs.utils.reftranscriptdata import RefTranscriptData
_logger = logging.getLogger(__name__)
class VariantMapper(object):
|
Apache License 2.0
|
cohesity/management-sdk-python
|
cohesity_management_sdk/models/no_sql_backup_job_params.py
|
NoSqlBackupJobParams.__init__
|
python
|
def __init__(self,
bandwidth_bytes_per_second=None,
cassandra_backup_job_params=None,
compaction_job_interval_secs=None,
concurrency=None,
couchbase_backup_job_params=None,
gc_job_interval_secs=None,
gc_retention_period_days=None,
hbase_backup_job_params=None,
hdfs_backup_job_params=None,
hive_backup_job_params=None,
last_compaction_run_time_usecs=None,
last_gc_run_time_usecs=None,
mongodb_backup_job_params=None,
previous_protected_entity_ids_vec=None):
self.bandwidth_bytes_per_second = bandwidth_bytes_per_second
self.cassandra_backup_job_params = cassandra_backup_job_params
self.compaction_job_interval_secs = compaction_job_interval_secs
self.concurrency = concurrency
self.couchbase_backup_job_params = couchbase_backup_job_params
self.gc_job_interval_secs = gc_job_interval_secs
self.gc_retention_period_days = gc_retention_period_days
self.hbase_backup_job_params = hbase_backup_job_params
self.hdfs_backup_job_params = hdfs_backup_job_params
self.hive_backup_job_params = hive_backup_job_params
self.last_compaction_run_time_usecs = last_compaction_run_time_usecs
self.last_gc_run_time_usecs = last_gc_run_time_usecs
self.mongodb_backup_job_params = mongodb_backup_job_params
self.previous_protected_entity_ids_vec = previous_protected_entity_ids_vec
|
Constructor for the NoSqlBackupJobParams class
|
https://github.com/cohesity/management-sdk-python/blob/1c085d5a10f5f1a87b700e7ad1fc1dcabda41ae5/cohesity_management_sdk/models/no_sql_backup_job_params.py#L66-L97
|
import cohesity_management_sdk.models.cassandra_backup_job_params
import cohesity_management_sdk.models.couchbase_backup_job_params
import cohesity_management_sdk.models.h_base_backup_job_params
import cohesity_management_sdk.models.hdfs_backup_job_params
import cohesity_management_sdk.models.hive_backup_job_params
import cohesity_management_sdk.models.mongoDB_backup_job_params
class NoSqlBackupJobParams(object):
_names = {
"bandwidth_bytes_per_second":'bandwidthBytesPerSecond',
"cassandra_backup_job_params":'cassandraBackupJobParams',
"compaction_job_interval_secs":'compactionJobIntervalSecs',
"concurrency":'concurrency',
"couchbase_backup_job_params":'couchbaseBackupJobParams',
"gc_job_interval_secs":'gcJobIntervalSecs',
"gc_retention_period_days":'gcRetentionPeriodDays',
"hbase_backup_job_params":'hbaseBackupJobParams',
"hdfs_backup_job_params":'hdfsBackupJobParams',
"hive_backup_job_params":'hiveBackupJobParams',
"last_compaction_run_time_usecs":'lastCompactionRunTimeUsecs',
"last_gc_run_time_usecs":'lastGcRunTimeUsecs',
"mongodb_backup_job_params":'mongodbBackupJobParams',
"previous_protected_entity_ids_vec":'previousProtectedEntityIdsVec'
}
|
Apache License 2.0
|
google/transitfeed
|
kmlwriter.py
|
KMLWriter._CreateStopPlacemark
|
python
|
def _CreateStopPlacemark(self, stop_folder, stop, style_id):
desc_items = []
desc_items.append("Stop id: %s" % stop.stop_id)
if stop.stop_desc:
desc_items.append(stop.stop_desc)
if stop.stop_url:
desc_items.append('Stop info page: <a href="%s">%s</a>' % (
stop.stop_url, stop.stop_url))
description = '<br/>'.join(desc_items) or None
placemark = self._CreatePlacemark(stop_folder, stop.stop_name,
description=description,
style_id=style_id)
point = ET.SubElement(placemark, 'Point')
coordinates = ET.SubElement(point, 'coordinates')
coordinates.text = '%.6f,%.6f' % (stop.stop_lon, stop.stop_lat)
|
Creates a new stop <Placemark/> element.
Args:
stop_folder: the KML folder the placemark will be added to.
stop: the actual Stop to create a placemark for.
style_id: optional argument indicating a style id to add to the placemark.
|
https://github.com/google/transitfeed/blob/d727e97cb66ac2ca2d699a382ea1d449ee26c2a1/kmlwriter.py#L415-L436
|
from __future__ import print_function
try:
import xml.etree.ElementTree as ET
except ImportError as e:
import elementtree.ElementTree as ET
import extensions.googletransit as googletransit
import optparse
import os.path
import sys
import transitfeed
from transitfeed import util
class KMLWriter(object):
def __init__(self):
self.show_trips = False
self.show_stop_hierarchy = False
self.split_routes = False
self.shape_points = False
self.altitude_per_sec = 0.0
self.date_filter = None
def _SetIndentation(self, elem, level=0):
i = "\n" + level*" "
if len(elem):
if not elem.text or not elem.text.strip():
elem.text = i + " "
for elem in elem:
self._SetIndentation(elem, level+1)
if not elem.tail or not elem.tail.strip():
elem.tail = i
else:
if level and (not elem.tail or not elem.tail.strip()):
elem.tail = i
def _CreateFolder(self, parent, name, visible=True, description=None):
folder = ET.SubElement(parent, 'Folder')
name_tag = ET.SubElement(folder, 'name')
name_tag.text = name
if description is not None:
desc_tag = ET.SubElement(folder, 'description')
desc_tag.text = description
if not visible:
visibility = ET.SubElement(folder, 'visibility')
visibility.text = '0'
return folder
def _CreateStyleForRoute(self, doc, route):
style_id = 'route_%s' % route.route_id
style = ET.SubElement(doc, 'Style', {'id': style_id})
linestyle = ET.SubElement(style, 'LineStyle')
width = ET.SubElement(linestyle, 'width')
type_to_width = {0: '3',
1: '3',
2: '5',
3: '1'}
width.text = type_to_width.get(route.route_type, '1')
if route.route_color:
color = ET.SubElement(linestyle, 'color')
red = route.route_color[0:2].lower()
green = route.route_color[2:4].lower()
blue = route.route_color[4:6].lower()
color.text = 'ff%s%s%s' % (blue, green, red)
return style_id
def _CreatePlacemark(self, parent, name, style_id=None, visible=True,
description=None):
placemark = ET.SubElement(parent, 'Placemark')
placemark_name = ET.SubElement(placemark, 'name')
placemark_name.text = name
if description is not None:
desc_tag = ET.SubElement(placemark, 'description')
desc_tag.text = description
if style_id is not None:
styleurl = ET.SubElement(placemark, 'styleUrl')
styleurl.text = '#%s' % style_id
if not visible:
visibility = ET.SubElement(placemark, 'visibility')
visibility.text = '0'
return placemark
def _CreateLineString(self, parent, coordinate_list):
if not coordinate_list:
return None
linestring = ET.SubElement(parent, 'LineString')
tessellate = ET.SubElement(linestring, 'tessellate')
tessellate.text = '1'
if len(coordinate_list[0]) == 3:
altitude_mode = ET.SubElement(linestring, 'altitudeMode')
altitude_mode.text = 'absolute'
coordinates = ET.SubElement(linestring, 'coordinates')
if len(coordinate_list[0]) == 3:
coordinate_str_list = ['%f,%f,%f' % t for t in coordinate_list]
else:
coordinate_str_list = ['%f,%f' % t for t in coordinate_list]
coordinates.text = ' '.join(coordinate_str_list)
return linestring
def _CreateLineStringForShape(self, parent, shape):
coordinate_list = [(longitude, latitude) for
(latitude, longitude, distance) in shape.points]
return self._CreateLineString(parent, coordinate_list)
def _CreateStopsFolder(self, schedule, doc):
if not schedule.GetStopList():
return None
stop_folder = self._CreateFolder(doc, 'Stops')
stop_folder_selection = self._StopFolderSelectionMethod(stop_folder)
stop_style_selection = self._StopStyleSelectionMethod(doc)
stops = list(schedule.GetStopList())
stops.sort(key=lambda x: x.stop_name)
for stop in stops:
(folder, pathway_folder) = stop_folder_selection(stop)
(style_id, pathway_style_id) = stop_style_selection(stop)
self._CreateStopPlacemark(folder, stop, style_id)
if (self.show_stop_hierarchy and
stop.location_type != transitfeed.Stop.LOCATION_TYPE_STATION and
stop.parent_station and stop.parent_station in schedule.stops):
placemark = self._CreatePlacemark(
pathway_folder, stop.stop_name, pathway_style_id)
parent_station = schedule.stops[stop.parent_station]
coordinates = [(stop.stop_lon, stop.stop_lat),
(parent_station.stop_lon, parent_station.stop_lat)]
self._CreateLineString(placemark, coordinates)
return stop_folder
def _StopFolderSelectionMethod(self, stop_folder):
if not self.show_stop_hierarchy:
return lambda stop: (stop_folder, None)
station_folder = self._CreateFolder(stop_folder, 'Stations')
platform_folder = self._CreateFolder(stop_folder, 'Platforms')
platform_connections = self._CreateFolder(platform_folder, 'Connections')
entrance_folder = self._CreateFolder(stop_folder, 'Entrances')
entrance_connections = self._CreateFolder(entrance_folder, 'Connections')
standalone_folder = self._CreateFolder(stop_folder, 'Stand-Alone')
def FolderSelectionMethod(stop):
if stop.location_type == transitfeed.Stop.LOCATION_TYPE_STATION:
return (station_folder, None)
elif stop.location_type == googletransit.Stop.LOCATION_TYPE_ENTRANCE:
return (entrance_folder, entrance_connections)
elif stop.parent_station:
return (platform_folder, platform_connections)
return (standalone_folder, None)
return FolderSelectionMethod
def _StopStyleSelectionMethod(self, doc):
if not self.show_stop_hierarchy:
return lambda stop: (None, None)
self._CreateStyle(
doc, 'stop_entrance', {'IconStyle': {'color': 'ff0000ff'}})
self._CreateStyle(
doc,
'entrance_connection',
{'LineStyle': {'color': 'ff0000ff', 'width': '2'}})
self._CreateStyle(
doc, 'stop_platform', {'IconStyle': {'color': 'ffff0000'}})
self._CreateStyle(
doc,
'platform_connection',
{'LineStyle': {'color': 'ffff0000', 'width': '2'}})
self._CreateStyle(
doc, 'stop_standalone', {'IconStyle': {'color': 'ff00ff00'}})
def StyleSelectionMethod(stop):
if stop.location_type == transitfeed.Stop.LOCATION_TYPE_STATION:
return ('stop_station', None)
elif stop.location_type == googletransit.Stop.LOCATION_TYPE_ENTRANCE:
return ('stop_entrance', 'entrance_connection')
elif stop.parent_station:
return ('stop_platform', 'platform_connection')
return ('stop_standalone', None)
return StyleSelectionMethod
def _CreateStyle(self, doc, style_id, style_dict):
def CreateElements(current_element, current_dict):
for (key, value) in current_dict.iteritems():
element = ET.SubElement(current_element, key)
if isinstance(value,dict):
CreateElements(element, value)
else:
element.text = value
style = ET.SubElement(doc, 'Style', {'id': style_id})
CreateElements(style, style_dict)
return style
|
Apache License 2.0
|
thriftrw/thriftrw-python
|
thriftrw/idl/parser.py
|
ParserSpec.p_const_map
|
python
|
def p_const_map(self, p):
p[0] = ast.ConstMap(dict(p[2]), p.lineno(1))
|
const_map : '{' const_map_seq '}'
|
https://github.com/thriftrw/thriftrw-python/blob/22f6ab645f5af48cae2fee0dc1431dfacb971348/thriftrw/idl/parser.py#L149-L151
|
from __future__ import absolute_import, unicode_literals, print_function
from collections import deque
from ply import yacc
from . import ast
from .lexer import Lexer
from ..errors import ThriftParserError
__all__ = ['Parser']
class ParserSpec(object):
tokens = Lexer.tokens
def p_error(self, p):
if p is None:
raise ThriftParserError('Grammer error at EOF')
raise ThriftParserError(
'Grammar error %r at line %d' % (p.value, p.lineno)
)
def p_start(self, p):
p[0] = ast.Program(headers=p[1], definitions=p[2])
def p_header(self, p):
self._parse_seq(p)
def p_header_unit_(self, p):
p[0] = p[1]
def p_header_unit(self, p):
p[0] = p[1]
def p_include(self, p):
if len(p) == 4:
p[0] = ast.Include(name=p[2], path=p[3], lineno=p.lineno(1))
else:
p[0] = ast.Include(name=None, path=p[2], lineno=p.lineno(1))
def p_namespace(self, p):
p[0] = ast.Namespace(scope=p[2], name=p[3], lineno=p.lineno(1))
def p_namespace_scope(self, p):
p[0] = p[1]
def p_sep(self, p):
def p_definition(self, p):
self._parse_seq(p)
def p_definition_unit_(self, p):
p[0] = p[1]
def p_definition_unit(self, p):
p[0] = p[1]
def p_const_bool(self, p):
p[0] = p[1] == 'true'
def p_const(self, p):
p[0] = ast.Const(
name=p[3],
value_type=p[2],
value=p[5],
lineno=p.lineno(3),
)
def p_const_value(self, p):
p[0] = p[1]
def p_const_value_native(self, p):
p[0] = p[1]
def p_const_value_primitive(self, p):
p[0] = ast.ConstPrimitiveValue(p[1], lineno=p.lineno(1))
def p_const_list(self, p):
p[0] = ast.ConstList(list(p[2]), p.lineno(1))
def p_const_list_seq(self, p):
self._parse_seq(p)
|
MIT License
|
levlaz/braindump
|
app/api_v1/notebooks.py
|
Notebook.delete
|
python
|
def delete(self, notebook_id):
db.session.delete(self.get_notebook(notebook_id))
db.session.commit()
return {'notebook': 'deleted'}
|
Delete single notebook.
Args:
notebook_id (int, required): The id of the Notebook
Returns:
"deleted" if succeesful
|
https://github.com/levlaz/braindump/blob/9640dd03f99851dbd34dd6cac98a747a4a591b01/app/api_v1/notebooks.py#L90-L101
|
from flask import g
from flask_restful import reqparse
from app import db
from app.models import Notebook as NewNotebook
from app.api_v1.base import ProtectedBase
class NotebookList(ProtectedBase):
parser = reqparse.RequestParser()
def get(self):
return {'notebooks': list(map(
lambda notebook: notebook.to_json(), g.user.notebooks.all()))}
def post(self):
self.parser.add_argument(
'title', required=True,
type=str, help='Missing Title of the Notebook')
args = self.parser.parse_args()
notebook = NewNotebook(
title=args['title'],
author_id=g.user.id,
)
db.session.add(notebook)
db.session.commit()
return {'notebook': notebook.to_json()}, 201
class Notebook(ProtectedBase):
parser = reqparse.RequestParser()
@staticmethod
def get_notebook(notebook_id):
return g.user.notebooks.filter_by(
id=notebook_id).first_or_404()
def get(self, notebook_id):
return {'notebook': self.get_notebook(notebook_id).to_json()}
def put(self, notebook_id):
self.parser.add_argument(
'title', type=str,
help="Title of the Notebook")
self.parser.add_argument(
'is_deleted', type=bool, help="True if notebook is deleted")
args = self.parser.parse_args()
notebook = self.get_notebook(notebook_id)
for arg in args:
if args[str(arg)] is not None:
setattr(notebook, arg, args[str(arg)])
db.session.add(notebook)
db.session.commit()
return {'notebook': notebook.to_json()}
|
MIT License
|
xiaozhuchacha/openbottle
|
action_earley_srv/scripts/nltk/classify/weka.py
|
ARFF_Formatter.from_train
|
python
|
def from_train(tokens):
labels = set(label for (tok, label) in tokens)
features = {}
for tok, label in tokens:
for (fname, fval) in tok.items():
if issubclass(type(fval), bool):
ftype = '{True, False}'
elif issubclass(type(fval), (compat.integer_types, float, bool)):
ftype = 'NUMERIC'
elif issubclass(type(fval), compat.string_types):
ftype = 'STRING'
elif fval is None:
continue
else:
raise ValueError('Unsupported value type %r' % ftype)
if features.get(fname, ftype) != ftype:
raise ValueError('Inconsistent type for %s' % fname)
features[fname] = ftype
features = sorted(features.items())
return ARFF_Formatter(labels, features)
|
Constructs an ARFF_Formatter instance with class labels and feature
types determined from the given data. Handles boolean, numeric and
string (note: not nominal) types.
|
https://github.com/xiaozhuchacha/openbottle/blob/1a73998bb508eb506ff0917e54cd2c01667add65/action_earley_srv/scripts/nltk/classify/weka.py#L253-L282
|
from __future__ import print_function
import time
import tempfile
import os
import subprocess
import re
import zipfile
from sys import stdin
from nltk import compat
from nltk.probability import DictionaryProbDist
from nltk.internals import java, config_java
from nltk.classify.api import ClassifierI
_weka_classpath = None
_weka_search = ['.',
'/usr/share/weka',
'/usr/local/share/weka',
'/usr/lib/weka',
'/usr/local/lib/weka',]
def config_weka(classpath=None):
global _weka_classpath
config_java()
if classpath is not None:
_weka_classpath = classpath
if _weka_classpath is None:
searchpath = _weka_search
if 'WEKAHOME' in os.environ:
searchpath.insert(0, os.environ['WEKAHOME'])
for path in searchpath:
if os.path.exists(os.path.join(path, 'weka.jar')):
_weka_classpath = os.path.join(path, 'weka.jar')
version = _check_weka_version(_weka_classpath)
if version:
print(('[Found Weka: %s (version %s)]' %
(_weka_classpath, version)))
else:
print('[Found Weka: %s]' % _weka_classpath)
_check_weka_version(_weka_classpath)
if _weka_classpath is None:
raise LookupError('Unable to find weka.jar! Use config_weka() '
'or set the WEKAHOME environment variable. '
'For more information about Weka, please see '
'http://www.cs.waikato.ac.nz/ml/weka/')
def _check_weka_version(jar):
try:
zf = zipfile.ZipFile(jar)
except (SystemExit, KeyboardInterrupt):
raise
except:
return None
try:
try:
return zf.read('weka/core/version.txt')
except KeyError:
return None
finally:
zf.close()
class WekaClassifier(ClassifierI):
def __init__(self, formatter, model_filename):
self._formatter = formatter
self._model = model_filename
def prob_classify_many(self, featuresets):
return self._classify_many(featuresets, ['-p', '0', '-distribution'])
def classify_many(self, featuresets):
return self._classify_many(featuresets, ['-p', '0'])
def _classify_many(self, featuresets, options):
config_weka()
temp_dir = tempfile.mkdtemp()
try:
test_filename = os.path.join(temp_dir, 'test.arff')
self._formatter.write(test_filename, featuresets)
cmd = ['weka.classifiers.bayes.NaiveBayes',
'-l', self._model, '-T', test_filename] + options
(stdout, stderr) = java(cmd, classpath=_weka_classpath,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
if stderr and not stdout:
if 'Illegal options: -distribution' in stderr:
raise ValueError('The installed version of weka does '
'not support probability distribution '
'output.')
else:
raise ValueError('Weka failed to generate output:\n%s'
% stderr)
return self.parse_weka_output(stdout.decode(stdin.encoding).split('\n'))
finally:
for f in os.listdir(temp_dir):
os.remove(os.path.join(temp_dir, f))
os.rmdir(temp_dir)
def parse_weka_distribution(self, s):
probs = [float(v) for v in re.split('[*,]+', s) if v.strip()]
probs = dict(zip(self._formatter.labels(), probs))
return DictionaryProbDist(probs)
def parse_weka_output(self, lines):
for i,line in enumerate(lines):
if line.strip().startswith("inst#"):
lines = lines[i:]
break
if lines[0].split() == ['inst#', 'actual', 'predicted',
'error', 'prediction']:
return [line.split()[2].split(':')[1]
for line in lines[1:] if line.strip()]
elif lines[0].split() == ['inst#', 'actual', 'predicted',
'error', 'distribution']:
return [self.parse_weka_distribution(line.split()[-1])
for line in lines[1:] if line.strip()]
elif re.match(r'^0 \w+ [01]\.[0-9]* \?\s*$', lines[0]):
return [line.split()[1] for line in lines if line.strip()]
else:
for line in lines[:10]:
print(line)
raise ValueError('Unhandled output format -- your version '
'of weka may not be supported.\n'
' Header: %s' % lines[0])
_CLASSIFIER_CLASS = {
'naivebayes': 'weka.classifiers.bayes.NaiveBayes',
'C4.5': 'weka.classifiers.trees.J48',
'log_regression': 'weka.classifiers.functions.Logistic',
'svm': 'weka.classifiers.functions.SMO',
'kstar': 'weka.classifiers.lazy.KStar',
'ripper': 'weka.classifiers.rules.JRip',
}
@classmethod
def train(cls, model_filename, featuresets,
classifier='naivebayes', options=[], quiet=True):
config_weka()
formatter = ARFF_Formatter.from_train(featuresets)
temp_dir = tempfile.mkdtemp()
try:
train_filename = os.path.join(temp_dir, 'train.arff')
formatter.write(train_filename, featuresets)
if classifier in cls._CLASSIFIER_CLASS:
javaclass = cls._CLASSIFIER_CLASS[classifier]
elif classifier in cls._CLASSIFIER_CLASS.values():
javaclass = classifier
else:
raise ValueError('Unknown classifier %s' % classifier)
cmd = [javaclass, '-d', model_filename, '-t', train_filename]
cmd += list(options)
if quiet:
stdout = subprocess.PIPE
else: stdout = None
java(cmd, classpath=_weka_classpath, stdout=stdout)
return WekaClassifier(formatter, model_filename)
finally:
for f in os.listdir(temp_dir):
os.remove(os.path.join(temp_dir, f))
os.rmdir(temp_dir)
class ARFF_Formatter:
def __init__(self, labels, features):
self._labels = labels
self._features = features
def format(self, tokens):
return self.header_section() + self.data_section(tokens)
def labels(self):
return list(self._labels)
def write(self, outfile, tokens):
if not hasattr(outfile, 'write'):
outfile = open(outfile, 'w')
outfile.write(self.format(tokens))
outfile.close()
@staticmethod
|
MIT License
|
chaffelson/whoville
|
whoville/cloudbreak/models/images_response.py
|
ImagesResponse.base_images
|
python
|
def base_images(self, base_images):
self._base_images = base_images
|
Sets the base_images of this ImagesResponse.
:param base_images: The base_images of this ImagesResponse.
:type: list[BaseImageResponse]
|
https://github.com/chaffelson/whoville/blob/f71fda629c9fd50d0a482120165ea5abcc754522/whoville/cloudbreak/models/images_response.py#L77-L85
|
from pprint import pformat
from six import iteritems
import re
class ImagesResponse(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'base_images': 'list[BaseImageResponse]',
'hdp_images': 'list[ImageResponse]',
'hdf_images': 'list[ImageResponse]',
'supported_versions': 'list[str]'
}
attribute_map = {
'base_images': 'baseImages',
'hdp_images': 'hdpImages',
'hdf_images': 'hdfImages',
'supported_versions': 'supportedVersions'
}
def __init__(self, base_images=None, hdp_images=None, hdf_images=None, supported_versions=None):
self._base_images = None
self._hdp_images = None
self._hdf_images = None
self._supported_versions = None
if base_images is not None:
self.base_images = base_images
if hdp_images is not None:
self.hdp_images = hdp_images
if hdf_images is not None:
self.hdf_images = hdf_images
if supported_versions is not None:
self.supported_versions = supported_versions
@property
def base_images(self):
return self._base_images
@base_images.setter
|
Apache License 2.0
|
lisa-lab/pylearn2
|
pylearn2/models/tests/test_dbm.py
|
check_bvmp_samples
|
python
|
def check_bvmp_samples(value, num_samples, n, pool_size, mean, tol):
pv, hv = value
assert n % pool_size == 0
num_pools = n // pool_size
assert pv.ndim == 2
assert pv.shape[0] == num_samples
assert pv.shape[1] == num_pools
assert hv.ndim == 2
assert hv.shape[0] == num_samples
assert hv.shape[1] == n
assert is_binary(pv)
assert is_binary(hv)
for i in xrange(num_pools):
sub_p = pv[:,i]
assert sub_p.shape == (num_samples,)
sub_h = hv[:,i*pool_size:(i+1)*pool_size]
assert sub_h.shape == (num_samples, pool_size)
if not np.all(sub_p == sub_h.max(axis=1)):
for j in xrange(num_samples):
print(sub_p[j], sub_h[j,:])
assert sub_p[j] == sub_h[j,:]
assert False
assert np.max(sub_h.sum(axis=1)) == 1
p, h = mean
assert p.ndim == 1
assert h.ndim == 1
emp_p = pv.mean(axis=0)
emp_h = hv.mean(axis=0)
max_diff = np.abs(p - emp_p).max()
if max_diff > tol:
print('expected value of pooling units: ',p)
print('empirical expectation: ',emp_p)
print('maximum difference: ',max_diff)
raise ValueError("Pooling unit samples have an unlikely mean.")
max_diff = np.abs(h - emp_h).max()
if max_diff > tol:
assert False
|
bvmp=BinaryVectorMaxPool
value: a tuple giving (pooled batch, detector batch) (all made with same params)
num_samples: number of samples there should be in the batch
n: detector layer dimension
pool_size: size of each pool region
mean: (expected value of pool unit, expected value of detector units)
tol: amount the emprical mean is allowed to deviate from the analytical expectation
checks that:
1) all values are binary
2) detector layer units are mutually exclusive
3) pooled unit is max of the detector units
4) correct number of samples is present
5) variables are of the right shapes
6) samples converge to the right expected value
|
https://github.com/lisa-lab/pylearn2/blob/af81e5c362f0df4df85c3e54e23b2adeec026055/pylearn2/models/tests/test_dbm.py#L356-L417
|
from __future__ import print_function
from pylearn2.models.dbm.dbm import DBM
from pylearn2.models.dbm.layer import BinaryVector, BinaryVectorMaxPool, Softmax, GaussianVisLayer
__authors__ = "Ian Goodfellow"
__copyright__ = "Copyright 2012, Universite de Montreal"
__credits__ = ["Ian Goodfellow", "Devon Hjelm"]
__license__ = "3-clause BSD"
__maintainer__ = "LISA Lab"
import numpy as np
import random
assert hasattr(np, 'exp')
from theano.compat.six.moves import xrange
from theano import config
from theano import function
from theano.sandbox.rng_mrg import MRG_RandomStreams
from theano import tensor as T
from pylearn2.expr.basic import is_binary
from pylearn2.expr.nnet import inverse_sigmoid_numpy
from pylearn2.costs.dbm import VariationalCD
import pylearn2.testing.datasets as datasets
from pylearn2.space import VectorSpace
from pylearn2.utils import sharedX
from pylearn2.utils import safe_zip
from pylearn2.utils.data_specs import DataSpecsMapping
class DummyLayer(object):
def downward_state(self, state):
return state
def downward_message(self, state):
return state
class DummyDBM(object):
def __init__(self, rng):
self.rng = rng
class TestBinaryVector:
def setUp(self):
pass
@staticmethod
def check_samples(value, expected_shape, expected_mean, tol):
assert value.shape == expected_shape
assert is_binary(value)
mean = value.mean(axis=0)
max_error = np.abs(mean-expected_mean).max()
print('Actual mean:')
print(mean)
print('Expected mean:')
print(expected_mean)
print('Maximal error:', max_error)
if max_error > tol:
raise ValueError("Samples don't seem to have the right mean.")
def test_make_state(self):
n = 5
num_samples = 1000
tol = .04
layer = BinaryVector(nvis = n)
rng = np.random.RandomState([2012,11,1])
mean = rng.uniform(1e-6, 1. - 1e-6, (n,))
z = inverse_sigmoid_numpy(mean)
layer.set_biases(z.astype(config.floatX))
init_state = layer.make_state(num_examples=num_samples,
numpy_rng=rng)
value = init_state.get_value()
TestBinaryVector.check_samples(value, (num_samples, n), mean, tol)
def test_sample(self):
assert hasattr(np, 'exp')
n = 5
num_samples = 1000
tol = .04
vis = BinaryVector(nvis=n)
hid = DummyLayer()
rng = np.random.RandomState([2012,11,1,259])
mean = rng.uniform(1e-6, 1. - 1e-6, (n,))
ofs = rng.randn(n)
vis.set_biases(ofs.astype(config.floatX))
z = inverse_sigmoid_numpy(mean) - ofs
z_var = sharedX(np.zeros((num_samples, n)) + z)
theano_rng = MRG_RandomStreams(2012+11+1)
sample = vis.sample(state_above=z_var, layer_above=hid,
theano_rng=theano_rng)
sample = sample.eval()
TestBinaryVector.check_samples(sample, (num_samples, n), mean, tol)
def check_gaussian_samples(value, nsamples, nvis, rows, cols, channels, expected_mean, tol):
if nvis:
expected_shape = (nsamples, nvis)
else:
expected_shape = (nsamples,rows,cols,channels)
assert value.shape == expected_shape
assert not is_binary(value)
mean = value.mean(axis=0)
max_error = np.abs(mean-expected_mean).max()
print('Actual mean:')
print(mean)
print('Expected mean:')
print(expected_mean)
print('Maximal error:', max_error)
print('Tolerable variance:', tol)
if max_error > tol:
raise ValueError("Samples don't seem to have the right mean.")
else:
print('Mean is within expected range')
def test_gaussian_vis_layer_make_state():
n = 5
rows = None
cols = None
channels = None
num_samples = 1000
tol = .042
beta = 1/tol
layer = GaussianVisLayer(nvis = n, init_beta=beta)
rng = np.random.RandomState([2012,11,1])
mean = rng.uniform(1e-6, 1. - 1e-6, (n,))
z= mean
layer.set_biases(z.astype(config.floatX))
init_state = layer.make_state(num_examples=num_samples,
numpy_rng=rng)
value = init_state.get_value()
check_gaussian_samples(value, num_samples, n, rows, cols, channels, mean, tol)
def test_gaussian_vis_layer_make_state_conv():
n = None
rows = 3
cols = 3
channels = 3
num_samples = 1000
tol = .042
beta = 1/tol
axes = ['b', 0, 1, 'c']
random.shuffle(axes)
axes = tuple(axes)
print('axes:', axes)
layer = GaussianVisLayer(rows=rows, cols=cols, channels=channels, init_beta=beta, axes=axes)
rng = np.random.RandomState()
mean = rng.uniform(1e-6, 1. - 1e-6, (rows, cols, channels))
z= mean
layer.set_biases(z.astype(config.floatX))
init_state = layer.make_state(num_examples=num_samples,
numpy_rng=rng)
value = init_state.get_value()
check_gaussian_samples(value, num_samples, n, rows, cols, channels, mean, tol)
def test_gaussian_vis_layer_sample():
assert hasattr(np, 'exp')
n = 5
num_samples = 1000
tol = .042
beta = 1/tol
rows = None
cols = None
channels = None
class DummyLayer(object):
def downward_state(self, state):
return state
def downward_message(self, state):
return state
vis = GaussianVisLayer(nvis=n, init_beta=beta)
hid = DummyLayer()
rng = np.random.RandomState([2012,11,1,259])
mean = rng.uniform(1e-6, 1. - 1e-6, (n,))
ofs = rng.randn(n)
vis.set_biases(ofs.astype(config.floatX))
z=mean -ofs
z_var = sharedX(np.zeros((num_samples, n)) + z)
theano_rng = MRG_RandomStreams(2012+11+1)
sample = vis.sample(state_above=z_var, layer_above=hid,
theano_rng=theano_rng)
sample = sample.eval()
check_gaussian_samples(sample, num_samples, n, rows, cols, channels, mean, tol)
def test_gaussian_vis_layer_sample_conv():
assert hasattr(np, 'exp')
n = None
num_samples = 1000
tol = .042
beta = 1/tol
rows = 3
cols = 3
channels = 3
axes = ['b', 0, 1, 'c']
random.shuffle(axes)
axes = tuple(axes)
print('axes:', axes)
class DummyLayer(object):
def downward_state(self, state):
return state
def downward_message(self, state):
return state
vis = GaussianVisLayer(nvis=None,rows=rows, cols=cols, channels=channels, init_beta=beta, axes=axes)
hid = DummyLayer()
rng = np.random.RandomState([2012,11,1,259])
mean = rng.uniform(1e-6, 1. - 1e-6, (rows, cols, channels))
ofs = rng.randn(rows,cols,channels)
vis.set_biases(ofs.astype(config.floatX))
z = mean -ofs
z_var = sharedX(np.zeros((num_samples, rows, cols, channels)) + z)
theano_rng = MRG_RandomStreams(2012+11+1)
sample = vis.sample(state_above=z_var, layer_above=hid,
theano_rng=theano_rng)
sample = sample.eval()
check_gaussian_samples(sample, num_samples, n, rows, cols, channels, mean, tol)
|
BSD 3-Clause New or Revised License
|
the-academic-observatory/observatory-platform
|
observatory-platform/observatory/platform/workflows/workflow.py
|
Workflow.add_task
|
python
|
def add_task(self, func: Callable, **kwargs):
if not self._parallel_tasks:
self.task_funcs.append(Operator(func, kwargs))
elif len(self.task_funcs) == 0 or not isinstance(self.task_funcs[-1], List):
self.task_funcs.append([Operator(func, kwargs)])
else:
self.task_funcs[-1].append(Operator(func, kwargs))
|
Add a task, which is used to process releases. A task has the following properties:
- Has one of the following signatures 'def func(self, release: Release, **kwargs)' or 'def func(self,
releases: List[Release], **kwargs)'
- kwargs is the context passed from the PythonOperator. See https://airflow.apache.org/docs/stable/macros-ref.html
for a list of the keyword arguments that are passed to this argument.
- Run by a PythonOperator.
:param func: the function that will be called by the PythonOperator task.
:return: None.
|
https://github.com/the-academic-observatory/observatory-platform/blob/4b7e80b92cc8c20d6b3356ded1b23e658ac5157f/observatory-platform/observatory/platform/workflows/workflow.py#L308-L326
|
import contextlib
import copy
import dataclasses
import logging
import shutil
from abc import ABC, abstractmethod
from functools import partial
from typing import Any, Callable, Dict, List, Union
try:
from typing import Protocol
except ImportError:
from typing_extensions import Protocol
import pendulum
from airflow import DAG
from airflow.exceptions import AirflowException
from airflow.models.baseoperator import chain
from airflow.models.variable import Variable
from airflow.operators.python import PythonOperator, ShortCircuitOperator
from airflow.sensors.base import BaseSensorOperator
from observatory.platform.utils.airflow_utils import (
AirflowVars,
check_connections,
check_variables,
)
from observatory.platform.utils.file_utils import list_files
from observatory.platform.utils.workflow_utils import SubFolder, on_failure_callback, workflow_path
class ReleaseFunction(Protocol):
def __call__(self, release: "AbstractRelease", **kwargs: Any) -> Any:
...
"""
:param release: A single instance of an AbstractRelease
:param kwargs: the context passed from the PythonOperator. See
https://airflow.apache.org/docs/stable/macros-ref.html for a list of the keyword arguments that are passed to
this argument.
:return: Any.
"""
class ListReleaseFunction(Protocol):
def __call__(self, releases: List["AbstractRelease"], **kwargs: Any) -> Any:
...
"""
:param releases: A list of AbstractRelease instances
:param kwargs: the context passed from the PythonOperator. See
https://airflow.apache.org/docs/stable/macros-ref.html for a list of the keyword arguments that are passed to
this argument.
:return: Any.
"""
WorkflowFunction = Union[ReleaseFunction, ListReleaseFunction]
class AbstractWorkflow(ABC):
@abstractmethod
def add_setup_task(self, func: Callable):
pass
@abstractmethod
def add_setup_task_chain(self, funcs: List[Callable]):
pass
@abstractmethod
def add_sensor(self, sensor: BaseSensorOperator):
pass
@abstractmethod
def add_sensor_chain(self, sensors: List[BaseSensorOperator]):
pass
@abstractmethod
def add_task(self, func: Callable):
pass
@abstractmethod
def add_task_chain(self, funcs: List[Callable]):
pass
@abstractmethod
def task_callable(self, func: WorkflowFunction, **kwargs) -> Any:
pass
@abstractmethod
def make_release(self, **kwargs) -> Union["AbstractRelease", List["AbstractRelease"]]:
pass
@abstractmethod
def make_dag(self) -> DAG:
pass
def make_task_id(func: Callable, kwargs: Dict) -> str:
task_id_key = "task_id"
if task_id_key in kwargs:
task_id = kwargs["task_id"]
else:
task_id = func.__name__
return task_id
@dataclasses.dataclass
class Operator:
func: Callable
kwargs: Dict
class Workflow(AbstractWorkflow):
RELEASE_INFO = "releases"
def __init__(
self,
dag_id: str,
start_date: pendulum.DateTime,
schedule_interval: str,
catchup: bool = False,
queue: str = "default",
max_retries: int = 3,
max_active_runs: int = 1,
airflow_vars: list = None,
airflow_conns: list = None,
):
self.dag_id = dag_id
self.start_date = start_date
self.schedule_interval = schedule_interval
self.catchup = catchup
self.queue = queue
self.max_retries = max_retries
self.max_active_runs = max_active_runs
self.airflow_vars = airflow_vars
self.airflow_conns = airflow_conns
self._parallel_tasks = False
self.sensors = []
self.setup_task_funcs = []
self.task_funcs = []
self.default_args = {
"owner": "airflow",
"start_date": self.start_date,
"on_failure_callback": on_failure_callback,
"retries": self.max_retries,
}
self.description = self.__doc__
self.dag = DAG(
dag_id=self.dag_id,
schedule_interval=self.schedule_interval,
default_args=self.default_args,
catchup=self.catchup,
max_active_runs=self.max_active_runs,
doc_md=self.__doc__,
)
def add_sensor(self, sensor: BaseSensorOperator):
self.sensors.append(sensor)
def add_sensor_chain(self, sensors: List[BaseSensorOperator]):
self.sensors = sensors
def add_setup_task(self, func: Callable, **kwargs):
self.setup_task_funcs.append(Operator(func, kwargs))
def add_setup_task_chain(self, funcs: List[Callable], **kwargs):
self.setup_task_funcs += [Operator(func, copy.copy(kwargs)) for func in funcs]
|
Apache License 2.0
|
shotarokataoka/ls-improved
|
ls_improved/lsi_visual.py
|
LsiVisualTransforms.run
|
python
|
def run(self, item, condition):
prev_status = condition['status']
transforms = []
if condition['is_last']!=2:
transforms += [self._add_indent_to_new_line]
for tr in transforms:
prev_status, item = tr(item, prev_status)
status, output = self._concat_item(item, condition['is_last'])
return status, output
|
This apply visual_transforms to an item.
Parameters
----------
item : Dict
condition : Dict
Returns
-------
status : Boolean
0 == success
1 == failed
output : String
An visualized item.
This will be printed to the terminal.
|
https://github.com/shotarokataoka/ls-improved/blob/a4db1a4e9b6fe45393e2c44eef58460acdbf5758/ls_improved/lsi_visual.py#L111-L137
|
from .config import Config
from .lsi_text import Text
class LsiVisualTransforms():
def __init__(self):
self.config = Config()
def _add_indent_to_new_line(self, item, prev_status):
if 'description' not in item.keys():
status = 1
return status, item
indent_length = 3 * (item['depth']+1)
base_name = item['path']
description = item['description'].text
blank = '│' + ' '*int(indent_length + len(item['path']) + 3)
description = description.split('\n')
for i, desc in enumerate(description[::-1]):
if not (set(' ') == set(desc) or set('') == set(desc)):
break
description = description[:len(description) - i]
item['description'].text = '\n'.join(description)
if len(description)>=2:
insert_count = 0
for desc in description[:-1]:
insert_count += len(desc)+1
item['description'].insert_text(blank, insert_count)
item['description'].insert_style(';nl;', insert_count)
item['description'].insert_style(';nle;', insert_count+len(blank))
insert_count += len(blank)
status = 0
return status, item
def _select_indent_head(self, item, place):
if place==0:
return '├', item
if place==1:
if 'description' in item.keys():
item['description'].text = item['description'].text.replace('│', ' ')
return '└', item
if place==2:
return '', item
def _concat_item(self, item, place):
head, item = self._select_indent_head(item, place)
if 'description' in item.keys():
description = item['description']
else:
description = Text(item['type'], ';w;')
indent = head+' '*3*item['depth'] + self.config.indent
if place==2:
output = description.render()
else:
output = indent + item['path'].render() + ' / ' + description.render()
status = 0
return status, output
|
MIT License
|
rkibria/img2shadertoy
|
img2shadertoy.py
|
get_quantized_ints_block
|
python
|
def get_quantized_ints_block(dct_width, quantized_block):
ints_block = []
for y_index in range(dct_width):
current_int = 0
for x_index in range(dct_width):
quantized = quantized_block[y_index][x_index]
contrib = (quantized << (x_index * 8)) & (0xff << (x_index * 8))
current_int |= contrib
ints_block.append(current_int)
return ints_block
|
Store quantized block as integers.
The 4 float values of each row are stored as 1 byte each in an int.
First row value is stored in least significant byte.
Results in a list of 4 ints.
|
https://github.com/rkibria/img2shadertoy/blob/ebd9a10c2717b6809c22025d4530b43b282ca1d1/img2shadertoy.py#L324-L340
|
import argparse
import logging
import bmpfile
import rle
import bits
import dct
logging.basicConfig(format='-- %(message)s')
LOGGER = logging.getLogger('img2shadertoy')
LOGGER.setLevel(logging.DEBUG)
def output_header(bmp_data):
print("// Generated with https://github.com/rkibria/img2shadertoy")
print("const vec2 bitmap_size = vec2({0}, {1});".format(bmp_data.image_width,
bmp_data.image_height))
def output_palette(bmp_data):
print("const int[] palette = int[] (")
for i in range(bmp_data.palette_size):
color = bmp_data.palette[i]
print("0x00{0:02x}{1:02x}{2:02x}".format(color[2], color[1], color[0])
+ ("," if i != bmp_data.palette_size-1 else ""))
print(");")
def reverse_bitmap_order(bmp_data, reverse_type):
for i in range(bmp_data.image_height):
new_row = []
for k in range(bmp_data.row_size // 4):
bitmap_long = bmp_data.row_data[i][k * 4 : (k + 1)* 4]
if reverse_type == "bits":
bitmap_long = bits.get_reverse_bits(bitmap_long)
elif reverse_type == "nibbles":
bitmap_long = bits.get_reverse_nibbles(bitmap_long)
elif reverse_type == "endianness":
bitmap_long = bits.get_reverse_endian(bitmap_long)
else:
raise RuntimeError("Unknown reversal type %s" % reverse_type)
new_row.append(bitmap_long)
bmp_data.row_data[i] = bytes().join(new_row)
def output_bitmap(bmp_data):
print("const int longs_per_line = {0};".format(bmp_data.row_size // 4))
print("const int[] bitmap = int[] (")
for i in range(bmp_data.image_height):
hexvals = []
for k in range(bmp_data.row_size // 4):
bitmap_long = bmp_data.row_data[i][k * 4 : (k + 1)* 4]
hexvals.append("0x" + bitmap_long.hex())
print(", ".join(hexvals)+ ("," if i != bmp_data.image_height - 1 else ""))
print(");")
def output_footer():
print("""
int getPaletteIndex(in vec2 uv) {
int palette_index = 0;
ivec2 fetch_pos = ivec2(uv * bitmap_size);
palette_index = getPaletteIndexXY(fetch_pos);
return palette_index;
}
vec4 getColorFromPalette(in int palette_index) {
int int_color = palette[palette_index];
return vec4(float(int_color & 0xff)/ 255.0,
float((int_color >> 8)& 0xff)/ 255.0,
float((int_color >> 16)& 0xff)/ 255.0,
0);
}
vec4 getBitmapColor(in vec2 uv) {
return getColorFromPalette(getPaletteIndex(uv));
}
void mainImage(out vec4 fragColor, in vec2 fragCoord) {
vec2 uv = fragCoord / bitmap_size;
fragColor = getBitmapColor(uv);
}
""")
def output_rle(encoded):
print("const int[] rle = int[] (")
hexvals = []
for k in range(len(encoded)// 4):
long_val = encoded[k * 4 : (k + 1)* 4]
long_val = bits.get_reverse_endian(long_val)
hexvals.append("0x" + long_val.hex())
print(",\n".join(hexvals))
print(");")
print("""
const int rle_len_bytes = rle.length() << 2;
int get_rle_byte(in int byte_index) {
int long_val = rle[byte_index >> 2];
return (long_val >> ((byte_index & 0x03)<< 3))& 0xff;
}
int get_uncompr_byte(in int byte_index) {
int rle_index = 0;
int cur_byte_index = 0;
while(rle_index < rle_len_bytes) {
int cur_rle_byte = get_rle_byte(rle_index);
bool is_sequence = int(cur_rle_byte & 0x80)== 0;
int count = (cur_rle_byte & 0x7f)+ 1;
if(byte_index >= cur_byte_index && byte_index < cur_byte_index + count) {
if(is_sequence) {
return get_rle_byte(rle_index + 1 + (byte_index - cur_byte_index));
}
else{
return get_rle_byte(rle_index + 1);
}
}
else {
if(is_sequence) {
rle_index += count + 1;
cur_byte_index += count;
}
else {
rle_index += 2;
cur_byte_index += count;
}
}
}
return 0;
}
""")
def sequences_to_bytes(sequence, value_op=None):
result = []
for seq in sequence:
if seq[0] == "R":
count = seq[1]
val = seq[2]
while count != 0:
cur_reps = min(128, count)
result.append((0x80 | (cur_reps - 1)).to_bytes(1, "little"))
store_val = val.to_bytes(1, "little")
if value_op:
store_val = value_op(store_val)
result.append(store_val)
count -= cur_reps
else:
part_sequence = seq[1]
seq_len = len(part_sequence)
seq_i = 0
while seq_len != 0:
cur_len = min(128, seq_len)
result.append((cur_len - 1).to_bytes(1, "little"))
for seq_val in part_sequence[seq_i : seq_i + cur_len]:
store_val = seq_val.to_bytes(1, "little")
if value_op:
store_val = value_op(store_val)
result.append(store_val)
seq_i += cur_len
seq_len -= cur_len
return b''.join(result)
def process_one_bit(bmp_data, rle_enabled):
output_header(bmp_data)
output_palette(bmp_data)
if rle_enabled:
bitmap = bytes().join(bmp_data.row_data)
seq = rle.get_sequences(rle.get_repeat_counts(bitmap), 3)
encoded = sequences_to_bytes(seq, bits.get_reverse_bits)
output_rle(encoded)
print("""
int getPaletteIndexXY(in ivec2 fetch_pos) {
int palette_index = 0;
if(fetch_pos.x >= 0 && fetch_pos.y >= 0
&& fetch_pos.x < int(bitmap_size.x)&& fetch_pos.y < int(bitmap_size.y)) {
int uncompr_byte_index = fetch_pos.y * (int(bitmap_size.x)>> 3)
+ (fetch_pos.x >> 3);
int uncompr_byte = get_uncompr_byte(uncompr_byte_index);
int bit_index = fetch_pos.x & 0x07;
palette_index = (uncompr_byte >> bit_index)& 1;
}
return palette_index;
}
""")
else:
reverse_bitmap_order(bmp_data, "bits")
output_bitmap(bmp_data)
print("""
int getPaletteIndexXY(in ivec2 fetch_pos) {
int palette_index = 0;
if(fetch_pos.x >= 0 && fetch_pos.y >= 0
&& fetch_pos.x < int(bitmap_size.x)&& fetch_pos.y < int(bitmap_size.y)) {
int line_index = fetch_pos.y * longs_per_line;
int long_index = line_index + (fetch_pos.x >> 5);
int bitmap_long = bitmap[long_index];
int bit_index = fetch_pos.x & 0x1f;
palette_index = (bitmap_long >> bit_index)& 1;
}
return palette_index;
}
""")
output_footer()
def process_four_bit(bmp_data, rle_enabled):
output_header(bmp_data)
output_palette(bmp_data)
if rle_enabled:
bitmap = bytes().join(bmp_data.row_data)
seq = rle.get_sequences(rle.get_repeat_counts(bitmap), 3)
encoded = sequences_to_bytes(seq, bits.get_reverse_nibbles)
output_rle(encoded)
print("""
int getPaletteIndexXY(in ivec2 fetch_pos) {
int palette_index = 0;
if(fetch_pos.x >= 0 && fetch_pos.y >= 0
&& fetch_pos.x < int(bitmap_size.x)&& fetch_pos.y < int(bitmap_size.y)) {
int uncompr_byte_index = fetch_pos.y * (int(bitmap_size.x)>> 1)
+ (fetch_pos.x >> 1);
int uncompr_byte = get_uncompr_byte(uncompr_byte_index);
int nibble_index = fetch_pos.x & 0x01;
palette_index = (uncompr_byte >> (nibble_index << 2))& 0xf;
}
return palette_index;
}
""")
else:
reverse_bitmap_order(bmp_data, "nibbles")
output_bitmap(bmp_data)
print("""
int getPaletteIndexXY(in ivec2 fetch_pos) {
int palette_index = 0;
if(fetch_pos.x >= 0 && fetch_pos.y >= 0
&& fetch_pos.x < int(bitmap_size.x)&& fetch_pos.y < int(bitmap_size.y)) {
int line_index = fetch_pos.y * longs_per_line;
int long_index = line_index + (fetch_pos.x >> 3);
int bitmap_long = bitmap[long_index];
int nibble_index = fetch_pos.x & 0x07;
palette_index = (bitmap_long >> (nibble_index << 2))& 0xf;
}
return palette_index;
}
""")
output_footer()
QUANT_MTX = [
[16, 11, 10, 16,],
[12, 12, 14, 19,],
[14, 13, 16, 24,],
[14, 17, 22, 29,],
]
def get_quantized_dct_block(dct_width, compressed_dct_block):
quantized_block = []
for y_index in range(dct_width):
quantized_row = []
for x_index in range(dct_width):
unquantized = compressed_dct_block[y_index][x_index]
quant_factor = QUANT_MTX[y_index][x_index]
quantized = int(round(unquantized / quant_factor))
quantized_row.append(quantized)
quantized_block.append(quantized_row)
return quantized_block
|
MIT License
|
ethereum/beaconrunner
|
notebooks/thunderdome/eth2spec/test/context.py
|
default_activation_threshold
|
python
|
def default_activation_threshold(spec):
return spec.MAX_EFFECTIVE_BALANCE
|
Helper method to use the default balance activation threshold for state creation for tests.
Usage: `@with_custom_state(threshold_fn=default_activation_threshold, ...)`
|
https://github.com/ethereum/beaconrunner/blob/aac61ed7b2d8b9875a117b24b86f58d6a93b1dd2/notebooks/thunderdome/eth2spec/test/context.py#L109-L114
|
import pytest
from eth2spec.phase0 import spec as spec_phase0
from eth2spec.altair import spec as spec_altair
from eth2spec.utils import bls
from .exceptions import SkippedTest
from .helpers.genesis import create_genesis_state
from .utils import vector_test, with_meta_tags
from random import Random
from typing import Any, Callable, NewType, Sequence, TypedDict, Protocol
from lru import LRU
from importlib import reload
def reload_specs():
reload(spec_phase0)
reload(spec_altair)
SpecForkName = NewType("SpecForkName", str)
ConfigName = NewType("ConfigName", str)
PHASE0 = SpecForkName('phase0')
ALTAIR = SpecForkName('altair')
MERGE = SpecForkName('merge')
SHARDING = SpecForkName('sharding')
CUSTODY_GAME = SpecForkName('custody_game')
DAS = SpecForkName('das')
ALL_PHASES = (PHASE0, ALTAIR)
MAINNET = ConfigName('mainnet')
MINIMAL = ConfigName('minimal')
ALL_CONFIGS = (MINIMAL, MAINNET)
TESTGEN_FORKS = (PHASE0, ALTAIR)
class Spec(Protocol):
version: str
class SpecPhase0(Spec):
...
class SpecAltair(Spec):
...
class SpecForks(TypedDict, total=False):
PHASE0: SpecPhase0
ALTAIR: SpecAltair
def _prepare_state(balances_fn: Callable[[Any], Sequence[int]], threshold_fn: Callable[[Any], int],
spec: Spec, phases: SpecForks):
p0 = phases[PHASE0]
balances = balances_fn(p0)
activation_threshold = threshold_fn(p0)
state = create_genesis_state(spec=p0, validator_balances=balances,
activation_threshold=activation_threshold)
if spec.fork == ALTAIR:
state = phases[ALTAIR].upgrade_to_altair(state)
return state
_custom_state_cache_dict = LRU(size=10)
def with_custom_state(balances_fn: Callable[[Any], Sequence[int]],
threshold_fn: Callable[[Any], int]):
def deco(fn):
def entry(*args, spec: Spec, phases: SpecForks, **kw):
key = (spec.fork, spec.CONFIG_NAME, spec.__file__, balances_fn, threshold_fn)
global _custom_state_cache_dict
if key not in _custom_state_cache_dict:
state = _prepare_state(balances_fn, threshold_fn, spec, phases)
_custom_state_cache_dict[key] = state.get_backing()
state = spec.BeaconState(backing=_custom_state_cache_dict[key])
kw['state'] = state
return fn(*args, spec=spec, phases=phases, **kw)
return entry
return deco
|
MIT License
|
disqus/pgshovel
|
src/main/python/pgshovel/administration/__init__.py
|
unconfigure_set
|
python
|
def unconfigure_set(cluster, cursor, name, configuration):
logger.info('Unconfiguring replication set on %s...', cursor.connection.dsn)
logger.info('Dropping transaction queue...')
cursor.execute("SELECT pgq.drop_queue(%s)", (cluster.get_queue_name(name),))
for table in configuration.tables:
drop_trigger(cluster, cursor, name, table.schema, table.name)
|
Removes all triggers and log queue for the provided replication set.
|
https://github.com/disqus/pgshovel/blob/dc8039f9fe3331a99f10b7e6309151c08a292879/src/main/python/pgshovel/administration/__init__.py#L377-L388
|
import cPickle as pickle
import collections
import hashlib
import itertools
import logging
import operator
import random
import psycopg2
from pkg_resources import parse_version
from pgshovel import __version__
from pgshovel.cluster import check_version
from pgshovel.database import (
get_configuration_value,
get_node_identifier,
get_or_set_node_identifier,
set_configuration_value,
update_configuration_value,
)
from pgshovel.interfaces.configurations_pb2 import (
ClusterConfiguration,
ReplicationSetConfiguration,
)
from pgshovel.utilities import unique
from pgshovel.utilities.datastructures import FormattedSequence
from pgshovel.utilities.postgresql import (
Transaction,
managed,
quote,
)
from pgshovel.utilities.protobuf import BinaryCodec
from pgshovel.utilities.templates import resource_string
from pgshovel.utilities.zookeeper import commit
logger = logging.getLogger(__name__)
INSTALL_CONFIGURATION_TABLE_STATEMENT_TEMPLATE = """\
CREATE TABLE IF NOT EXISTS {schema}.configuration (
key varchar PRIMARY KEY,
value bytea
)
"""
def create_configuration_table(cluster, cursor):
statement = INSTALL_CONFIGURATION_TABLE_STATEMENT_TEMPLATE.format(
schema=quote(cluster.schema),
)
cursor.execute(statement)
INSTALL_REPLICATION_STATE_TABLE_STATEMENT_TEMPLATE = """\
CREATE TABLE IF NOT EXISTS {schema}.replication_state (
set varchar PRIMARY KEY,
state bytea
)
"""
def create_replication_state_table(cluster, cursor):
statement = INSTALL_REPLICATION_STATE_TABLE_STATEMENT_TEMPLATE.format(
schema=quote(cluster.schema),
)
cursor.execute(statement)
INSTALL_LOG_TRIGGER_STATEMENT_TEMPLATE = """\
CREATE OR REPLACE FUNCTION {schema}.log()
RETURNS trigger
LANGUAGE plpythonu AS
$TRIGGER$
# Generated by pgshovel=={version}
{body}
$TRIGGER$"""
def create_log_trigger_function(cluster, cursor, node_id):
body = resource_string('sql/log_trigger.py.tmpl')
statement = INSTALL_LOG_TRIGGER_STATEMENT_TEMPLATE.format(
schema=quote(cluster.schema),
body=body,
version=__version__,
)
cursor.execute(statement)
def setup_database(cluster, cursor):
logger.info('Creating PgQ extension (if it does not already exist)...')
cursor.execute('CREATE EXTENSION IF NOT EXISTS pgq')
logger.info('Creating (or updating) plpythonu language...')
cursor.execute('CREATE OR REPLACE LANGUAGE plpythonu')
logger.info('Creating schema (if it does not already exist)...')
cursor.execute('CREATE SCHEMA IF NOT EXISTS {schema}'.format(
schema=quote(cluster.schema),
))
logger.info('Creating configuration table (if it does not already exist)...')
create_configuration_table(cluster, cursor)
logger.info('Creating replication state table (if it does not already exist)...')
create_replication_state_table(cluster, cursor)
version = get_configuration_value(cluster, cursor, 'version')
if version is None:
set_configuration_value(cluster, cursor, 'version', __version__)
elif version is not None and str(version) != __version__:
update_configuration_value(cluster, cursor, 'version', __version__)
logger.info('Checking for node ID...')
node_id = get_or_set_node_identifier(cluster, cursor)
logger.info('Installing (or updating) log trigger function...')
create_log_trigger_function(cluster, cursor, node_id)
return node_id
def get_managed_databases(cluster, dsns, configure=True, skip_inaccessible=False, same_version=True):
if not dsns:
return {}
nodes = {}
if same_version:
ztransaction = check_version(cluster)
else:
ztransaction = cluster.zookeeper.transaction()
lock_id = random.randint(-2**63, 2**63-1)
logger.debug('Connecting to databases: %s', FormattedSequence(dsns))
transactions = []
for dsn in dsns:
try:
connection = psycopg2.connect(dsn)
except Exception as error:
if skip_inaccessible:
logger.warning('%s is inaccessible due to error, skipping: %s', dsn, error)
continue
else:
raise
logger.debug('Checking if %s has been configured...', dsn)
try:
with connection.cursor() as cursor:
node_id = get_node_identifier(cluster, cursor)
assert node_id is not None
except psycopg2.ProgrammingError:
if not configure:
raise
logger.info('%s has not been configured for use, setting up now...', dsn)
connection.rollback()
transaction = Transaction(connection, 'setup-database')
transactions.append(transaction)
with connection.cursor() as cursor:
cursor.execute('SELECT pg_try_advisory_lock(%s) as acquired', (lock_id,))
((acquired,),) = cursor.fetchall()
assert acquired, 'could not take out advisory lock on %s (possible deadlock?)' % (connection,)
node_id = setup_database(cluster, cursor)
else:
with connection.cursor() as cursor:
version = str(get_configuration_value(cluster, cursor, 'version'))
assert version == __version__, 'local and node versions do not match (local: %s, node: %s)' % (__version__, version)
logger.debug('%s is already configured as %s (version %s).', dsn, node_id, version)
connection.commit()
assert node_id not in nodes, 'found duplicate node: %s and %s' % (connection, nodes[node_id])
nodes[node_id] = connection
if transactions:
with managed(transactions):
commit(ztransaction)
return nodes
def setup_triggers(cluster, cursor, name, configuration):
trigger = cluster.get_trigger_name(name)
def create_trigger(table):
logger.info('Installing (or replacing) log trigger on %s.%s...', table.schema, table.name)
primary_keys = unique(list(table.primary_keys))
all_columns = unique(primary_keys + list(table.columns))
if table.columns:
column_list = 'OF %s' % ', '.join(map(quote, all_columns))
else:
column_list = ''
statement = """
CREATE TRIGGER {name}
AFTER INSERT OR UPDATE {columns} OR DELETE
ON {schema}.{table}
FOR EACH ROW EXECUTE PROCEDURE {cluster_schema}.log(%s, %s, %s, %s)
""".format(
name=quote(trigger),
columns=column_list,
schema=quote(table.schema),
table=quote(table.name),
cluster_schema=quote(cluster.schema),
)
cursor.execute("DROP TRIGGER IF EXISTS {name} ON {schema}.{table}".format(
name=quote(trigger),
schema=quote(table.schema),
table=quote(table.name),
))
cursor.execute(statement, (
cluster.get_queue_name(name),
pickle.dumps(primary_keys),
pickle.dumps(all_columns if table.columns else None),
get_version(configuration)),
)
for table in configuration.tables:
create_trigger(table)
def drop_trigger(cluster, cursor, name, schema, table):
logger.info('Dropping log trigger on %s.%s...', schema, table)
cursor.execute('DROP TRIGGER {name} ON {schema}.{table}'.format(
name=quote(cluster.get_trigger_name(name)),
schema=quote(schema),
table=quote(table),
))
def get_version(configuration):
return hashlib.md5(configuration.SerializeToString()).hexdigest()
class VersionedSet(collections.namedtuple('VersionedSet', 'name version')):
@classmethod
def expand(cls, value):
bits = value.split('@', 1)
if len(bits) == 1:
return cls(bits[0], None)
elif len(bits) == 2:
return cls(bits[0], bits[1])
else:
raise AssertionError('Invalid set identifier: %r' % (value,))
def fetch_sets(cluster, names=None):
if names is None:
names = cluster.zookeeper.get_children(cluster.get_set_path())
sets = map(VersionedSet.expand, names)
paths = map(
cluster.get_set_path,
map(operator.attrgetter('name'), sets),
)
futures = map(cluster.zookeeper.get_async, paths)
results = []
decode = BinaryCodec(ReplicationSetConfiguration).decode
for s, future in zip(sets, futures):
data, stat = future.get()
configuration = decode(data)
assert s.version is None or s.version == get_version(configuration), 'versions do not match (%s and %s)' % (s.version, get_version(configuration))
results.append((s.name, (configuration, stat)))
return results
def validate_set_configuration(configuration):
for table in configuration.tables:
assert len(table.primary_keys) > 0, 'table %s.%s must have associated primary key column(s)' % (quote(table.schema), quote(table.name),)
def configure_set(cluster, cursor, name, configuration, previous_configuration=None):
logger.info('Configuring replication set on %s...', cursor.connection.dsn)
logger.info('Creating transaction queue (if it does not already exist)...')
cursor.execute("SELECT pgq.create_queue(%s)", (cluster.get_queue_name(name),))
setup_triggers(cluster, cursor, name, configuration)
if previous_configuration is not None:
current_tables = set((t.schema, t.name) for t in previous_configuration.tables)
updated_tables = set((t.schema, t.name) for t in configuration.tables)
dropped_tables = current_tables - updated_tables
for schema, table in dropped_tables:
drop_trigger(cluster, cursor, name, schema, table)
|
Apache License 2.0
|
olitheolix/aiokubernetes
|
aiokubernetes/models/v1beta1_daemon_set_status.py
|
V1beta1DaemonSetStatus.updated_number_scheduled
|
python
|
def updated_number_scheduled(self):
return self._updated_number_scheduled
|
Gets the updated_number_scheduled of this V1beta1DaemonSetStatus. # noqa: E501
The total number of nodes that are running updated daemon pod # noqa: E501
:return: The updated_number_scheduled of this V1beta1DaemonSetStatus. # noqa: E501
:rtype: int
|
https://github.com/olitheolix/aiokubernetes/blob/266718b210dff2a9b2212183261ea89adf89115e/aiokubernetes/models/v1beta1_daemon_set_status.py#L308-L316
|
import pprint
import re
from aiokubernetes.models.v1beta1_daemon_set_condition import V1beta1DaemonSetCondition
class V1beta1DaemonSetStatus(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'collision_count': 'int',
'conditions': 'list[V1beta1DaemonSetCondition]',
'current_number_scheduled': 'int',
'desired_number_scheduled': 'int',
'number_available': 'int',
'number_misscheduled': 'int',
'number_ready': 'int',
'number_unavailable': 'int',
'observed_generation': 'int',
'updated_number_scheduled': 'int'
}
attribute_map = {
'collision_count': 'collisionCount',
'conditions': 'conditions',
'current_number_scheduled': 'currentNumberScheduled',
'desired_number_scheduled': 'desiredNumberScheduled',
'number_available': 'numberAvailable',
'number_misscheduled': 'numberMisscheduled',
'number_ready': 'numberReady',
'number_unavailable': 'numberUnavailable',
'observed_generation': 'observedGeneration',
'updated_number_scheduled': 'updatedNumberScheduled'
}
def __init__(self, collision_count=None, conditions=None, current_number_scheduled=None, desired_number_scheduled=None, number_available=None, number_misscheduled=None, number_ready=None, number_unavailable=None, observed_generation=None, updated_number_scheduled=None):
self._collision_count = None
self._conditions = None
self._current_number_scheduled = None
self._desired_number_scheduled = None
self._number_available = None
self._number_misscheduled = None
self._number_ready = None
self._number_unavailable = None
self._observed_generation = None
self._updated_number_scheduled = None
self.discriminator = None
if collision_count is not None:
self.collision_count = collision_count
if conditions is not None:
self.conditions = conditions
self.current_number_scheduled = current_number_scheduled
self.desired_number_scheduled = desired_number_scheduled
if number_available is not None:
self.number_available = number_available
self.number_misscheduled = number_misscheduled
self.number_ready = number_ready
if number_unavailable is not None:
self.number_unavailable = number_unavailable
if observed_generation is not None:
self.observed_generation = observed_generation
if updated_number_scheduled is not None:
self.updated_number_scheduled = updated_number_scheduled
@property
def collision_count(self):
return self._collision_count
@collision_count.setter
def collision_count(self, collision_count):
self._collision_count = collision_count
@property
def conditions(self):
return self._conditions
@conditions.setter
def conditions(self, conditions):
self._conditions = conditions
@property
def current_number_scheduled(self):
return self._current_number_scheduled
@current_number_scheduled.setter
def current_number_scheduled(self, current_number_scheduled):
if current_number_scheduled is None:
raise ValueError("Invalid value for `current_number_scheduled`, must not be `None`")
self._current_number_scheduled = current_number_scheduled
@property
def desired_number_scheduled(self):
return self._desired_number_scheduled
@desired_number_scheduled.setter
def desired_number_scheduled(self, desired_number_scheduled):
if desired_number_scheduled is None:
raise ValueError("Invalid value for `desired_number_scheduled`, must not be `None`")
self._desired_number_scheduled = desired_number_scheduled
@property
def number_available(self):
return self._number_available
@number_available.setter
def number_available(self, number_available):
self._number_available = number_available
@property
def number_misscheduled(self):
return self._number_misscheduled
@number_misscheduled.setter
def number_misscheduled(self, number_misscheduled):
if number_misscheduled is None:
raise ValueError("Invalid value for `number_misscheduled`, must not be `None`")
self._number_misscheduled = number_misscheduled
@property
def number_ready(self):
return self._number_ready
@number_ready.setter
def number_ready(self, number_ready):
if number_ready is None:
raise ValueError("Invalid value for `number_ready`, must not be `None`")
self._number_ready = number_ready
@property
def number_unavailable(self):
return self._number_unavailable
@number_unavailable.setter
def number_unavailable(self, number_unavailable):
self._number_unavailable = number_unavailable
@property
def observed_generation(self):
return self._observed_generation
@observed_generation.setter
def observed_generation(self, observed_generation):
self._observed_generation = observed_generation
@property
|
Apache License 2.0
|
xanaduai/strawberryfields
|
strawberryfields/apps/data/sample.py
|
SampleDataset._data_filename
|
python
|
def _data_filename(self) -> str:
pass
|
Base name of files containing the sample data stored in the ``./sample_data/`` directory.
Samples and corresponding adjacency matrix should both be provided as a
``scipy.sparse.csr_matrix`` saved in ``.npz`` format.
For ``_data_filename = "example"``, the corresponding samples should be stored as
``./sample_data/example.npz`` and the adjacency matrix as ``./sample_data/example_A.npz``.
|
https://github.com/xanaduai/strawberryfields/blob/c1eed81a93419cb9c28a6ca205925691063722ce/strawberryfields/apps/data/sample.py#L44-L52
|
from abc import ABC, abstractmethod
import pkg_resources
import numpy as np
import scipy
DATA_PATH = pkg_resources.resource_filename("strawberryfields", "apps/data/sample_data") + "/"
class SampleDataset(ABC):
_count = 0
@property
@abstractmethod
|
Apache License 2.0
|
raymondbutcher/pretf
|
pretf.aws/pretf/aws.py
|
provider_aws
|
python
|
def provider_aws(**body: dict) -> Block:
if body.get("profile"):
session = get_session(profile_name=body["profile"])
creds = session.get_credentials()
if not _profile_creds_definitely_supported_by_terraform(creds):
del body["profile"]
frozen_creds = creds.get_frozen_credentials()
body["access_key"] = frozen_creds.access_key
body["secret_key"] = frozen_creds.secret_key
if creds.token:
body["token"] = frozen_creds.token
return block("provider", "aws", body)
|
Returns an AWS provider block. If provided, the `profile` option
may be replaced with temporary credentials for that profile.
|
https://github.com/raymondbutcher/pretf/blob/3d2fe7619ce0adc38d5f0765e993bee2fd8c4bbd/pretf.aws/pretf/aws.py#L238-L262
|
import json
import os
from functools import lru_cache, wraps
from threading import RLock
from time import sleep
from typing import Any, Callable, Optional
from pretf.api import block, log
from pretf.blocks import Block
try:
from boto_source_profile_mfa import get_session as Session
except ImportError:
from boto3 import Session
lock = RLock()
def locked(func: Callable) -> Callable:
@wraps(func)
def wrapped(*args: Any, **kwargs: Any) -> Any:
with lock:
return func(*args, **kwargs)
return wrapped
@locked
def _assume_role(session: Session, **kwargs: str) -> Session:
for key, value in list(kwargs.items()):
if not value:
del kwargs[key]
sts_client = session.client("sts")
response = sts_client.assume_role(**kwargs)
creds = response["Credentials"]
return Session(
aws_access_key_id=creds["AccessKeyId"],
aws_secret_access_key=creds["SecretAccessKey"],
aws_session_token=creds["SessionToken"],
)
@locked
def _create_s3_backend(
session: Session, bucket: str, table: str, region_name: str
) -> None:
account_id = get_account_id(session)
bucket_arn = _get_s3_bucket_arn(region_name, account_id, bucket)
table_arn = _get_dynamodb_table_arn(region_name, account_id, table)
log.ok(f"backend: {bucket_arn}")
log.ok(f"backend: {table_arn}")
if not log.accept("backend: create backend resources"):
log.bad("backend: not created")
raise SystemExit(1)
if bucket == table:
stack_name = bucket
else:
stack_name = f"{bucket}-{table}"
stack_arn = _get_cloudformation_stack_arn(region_name, account_id, stack_name)
log.ok(f"backend: creating {stack_arn}")
cloudformation_client = session.client("cloudformation", region_name=region_name)
cloudformation_client.create_stack(
StackName=stack_name,
ResourceTypes=["AWS::DynamoDB::Table", "AWS::S3::Bucket"],
TemplateBody=json.dumps(
{
"Resources": {
"Table": {
"Type": "AWS::DynamoDB::Table",
"Properties": {
"TableName": table,
"AttributeDefinitions": [
{"AttributeName": "LockID", "AttributeType": "S"}
],
"KeySchema": [
{"AttributeName": "LockID", "KeyType": "HASH"}
],
"BillingMode": "PAY_PER_REQUEST",
},
},
"Bucket": {
"Type": "AWS::S3::Bucket",
"Properties": {
"AccessControl": "Private",
"BucketName": bucket,
"VersioningConfiguration": {"Status": "Enabled"},
},
},
}
}
),
)
log.ok("backend: please wait...")
while True:
sleep(10)
response = cloudformation_client.describe_stacks(StackName=stack_name)
for stack in response["Stacks"]:
if stack["StackStatus"] == "CREATE_IN_PROGRESS":
pass
elif stack["StackStatus"] == "CREATE_COMPLETE":
log.ok("backend: create complete")
return
else:
log.bad(f"backend: {stack['StackStatus']}")
log.bad(f"backend: {stack['StackStatusReason']}")
def _get_cloudformation_stack_arn(
region_name: str, account_id: str, stack_name: str
) -> str:
return f"arn:aws:cloudformation:{region_name}:{account_id}:stack/{stack_name}"
def _get_dynamodb_table_arn(region_name: str, account_id: str, table: str) -> str:
return f"arn:aws:dynamodb:{region_name}:{account_id}:{table}"
def _get_s3_bucket_arn(region_name: str, account_id: str, bucket: str) -> str:
return f"arn:aws:s3:{region_name}:{account_id}:{bucket}"
@locked
def _get_s3_backend_status(
session: Session, region_name: str, bucket: str, table: str
) -> dict:
s3_client = session.client("s3")
try:
response = s3_client.get_bucket_versioning(Bucket=bucket)
except s3_client.exceptions.NoSuchBucket:
bucket_exists = False
bucket_versioning_enabled = False
else:
bucket_exists = True
bucket_versioning_enabled = response["Status"] == "Enabled"
dynamodb_client = session.client("dynamodb", region_name=region_name)
try:
dynamodb_client.describe_table(TableName=table)
except dynamodb_client.exceptions.ResourceNotFoundException:
table_exists = False
else:
table_exists = True
return {
"bucket_exists": bucket_exists,
"bucket_versioning_enabled": bucket_versioning_enabled,
"table_exists": table_exists,
}
def _profile_creds_definitely_supported_by_terraform(creds: Any) -> bool:
if creds.method in ("config-file", "shared-credentials-file"):
return True
else:
return False
@locked
def export_environment_variables(
session: Optional[Session] = None, region_name: Optional[str] = None, **kwargs: dict
) -> None:
if session is None:
session = get_session(**kwargs)
creds = get_frozen_credentials(session)
if creds.access_key:
os.environ["AWS_ACCESS_KEY_ID"] = creds.access_key
if creds.secret_key:
os.environ["AWS_SECRET_ACCESS_KEY"] = creds.secret_key
if creds.token:
os.environ["AWS_SECURITY_TOKEN"] = creds.token
os.environ["AWS_SESSION_TOKEN"] = creds.token
if not region_name:
region_name = session.region_name
if region_name:
os.environ["AWS_REGION"] = region_name
os.environ["AWS_DEFAULT_REGION"] = region_name
@lru_cache()
@locked
def get_account_id(session: Optional[Session] = None, **kwargs: dict) -> str:
if session is None:
session = get_session(**kwargs)
sts_client = session.client("sts")
account_id = sts_client.get_caller_identity()["Account"]
return account_id
@locked
def get_frozen_credentials(session: Optional[Session] = None, **kwargs: dict) -> Any:
if session is None:
session = get_session(**kwargs)
return session.get_credentials().get_frozen_credentials()
@lru_cache()
def get_session(**kwargs: dict) -> Session:
return Session(**kwargs)
@locked
|
MIT License
|
darothen/cmip5_download
|
CEDA_download.py
|
get_credentials
|
python
|
def get_credentials():
username = input(" Username: ")
password = getpass(" Password: ")
return username, password
|
Retrieve a user's name and password safely from command
line.
|
https://github.com/darothen/cmip5_download/blob/7f8ba2f4b7c3b3356b2b5d8aee89a6e3b0c9f823/CEDA_download.py#L36-L42
|
from __future__ import print_function
from ftplib import FTP
from getpass import getpass
from itertools import product
from pprint import pprint
import os, pickle, re, sys
import logging
CEDA_FTP = "ftp.ceda.ac.uk"
CEDA_BASE_PATH = "badc/cmip5/data/cmip5/output1"
def set_logger(filename=None, level=logging.INFO):
logger_kwargs = dict(level=level, format="%(message)s")
if not (filename is None):
logger_kwargs['filename'] = filename
logging.basicConfig(**logger_kwargs)
|
MIT License
|
neuraxio/neuraxle
|
neuraxle/metaopt/tpe.py
|
TreeParzenEstimatorHyperparameterSelectionStrategy._adaptive_parzen_normal
|
python
|
def _adaptive_parzen_normal(self, hyperparam_distribution, distribution_trials):
use_prior = (self.prior_weight - 0.) > 1e-10
prior_mean = hyperparam_distribution.mean()
prior_sigma = hyperparam_distribution.std()
means = np.array(distribution_trials)
distributions_mins = hyperparam_distribution.min() * np.ones_like(means)
distributions_max = hyperparam_distribution.max() * np.ones_like(means)
sort_indexes = np.argsort(means)
if len(means) == 0:
if use_prior:
prior_pos = 0
sorted_means = np.array([prior_mean])
sorted_stds = np.array([prior_sigma])
elif len(means) == 1:
if use_prior and prior_mean < means[0]:
prior_pos = 0
sorted_means = np.array([prior_mean, means[0]])
sorted_stds = np.array([prior_sigma, prior_sigma * 0.5])
elif use_prior and prior_mean >= means[0]:
prior_pos = 1
sorted_means = np.array([means[0], prior_mean])
sorted_stds = np.array([prior_sigma * 0.5, prior_sigma])
else:
sorted_means = means
sorted_stds = prior_sigma
else:
if use_prior:
prior_pos = np.searchsorted(means[sort_indexes], prior_mean)
sorted_means = np.zeros(len(means) + 1)
sorted_means[:prior_pos] = means[sort_indexes[:prior_pos]]
sorted_means[prior_pos] = prior_mean
sorted_means[prior_pos + 1:] = means[sort_indexes[prior_pos:]]
else:
sorted_means = means[sort_indexes]
sorted_stds = np.zeros_like(sorted_means)
sorted_stds[1:-1] = np.maximum(sorted_means[1:-1] - sorted_means[0:-2],
sorted_means[2:] - sorted_means[1:-1])
left_std = sorted_means[1] - sorted_means[0]
right_std = sorted_means[-1] - sorted_means[-2]
sorted_stds[0] = left_std
sorted_stds[-1] = right_std
min_std = prior_sigma / min(100.0, (1.0 + len(sorted_means)))
max_std = prior_sigma / 1.0
sorted_stds = np.clip(sorted_stds, min_std, max_std)
if self.use_linear_forgetting_weights:
distribution_amplitudes = _linear_forgetting_Weights(len(means), self.number_recent_trial_at_full_weights)
else:
distribution_amplitudes = np.ones(len(means))
if use_prior:
sorted_stds[prior_pos] = prior_sigma
sorted_distribution_amplitudes = np.zeros_like(sorted_means)
sorted_distribution_amplitudes[:prior_pos] = distribution_amplitudes[sort_indexes[:prior_pos]]
sorted_distribution_amplitudes[prior_pos] = sort_indexes
sorted_distribution_amplitudes[prior_pos + 1:] = distribution_amplitudes[sort_indexes[prior_pos:]]
else:
sorted_distribution_amplitudes = distribution_amplitudes
distribution_amplitudes = np.array(distribution_amplitudes)
distribution_amplitudes /= np.sum(distribution_amplitudes)
return sorted_distribution_amplitudes, sorted_means, sorted_stds, distributions_mins, distributions_max
|
This code is enterily inspire from Hyperopt (https://github.com/hyperopt) code.
|
https://github.com/neuraxio/neuraxle/blob/18479c0adf5ebfd3504a83ef6711219961c2bfdb/neuraxle/metaopt/tpe.py#L213-L298
|
from collections import Counter
from operator import itemgetter
from typing import List, Any, Tuple
import numpy as np
from neuraxle.hyperparams.distributions import DistributionMixture, PriorityChoice, DiscreteHyperparameterDistribution, HyperparameterDistribution
from neuraxle.hyperparams.scipy_distributions import Choice, LogNormal, LogUniform, Quantized
from neuraxle.hyperparams.space import HyperparameterSamples, HyperparameterSpace
from neuraxle.metaopt.auto_ml import BaseHyperparameterSelectionStrategy, RandomSearchHyperparameterSelectionStrategy, TRIAL_STATUS, AutoMLContainer
from neuraxle.metaopt.trial import Trials
_LOG_DISTRIBUTION = (LogNormal, LogUniform)
_QUANTIZED_DISTRIBUTION = (Quantized,)
class TreeParzenEstimatorHyperparameterSelectionStrategy(BaseHyperparameterSelectionStrategy):
def __init__(
self,
number_of_initial_random_step: int = 40,
quantile_threshold: float = 0.3,
number_good_trials_max_cap: int = 25,
number_possible_hyperparams_candidates: int = 100,
prior_weight: float = 0.,
use_linear_forgetting_weights: bool = False,
number_recent_trial_at_full_weights: int = 25
):
super().__init__()
self.initial_auto_ml_algo: RandomSearchHyperparameterSelectionStrategy = RandomSearchHyperparameterSelectionStrategy()
self.number_of_initial_random_step: int = number_of_initial_random_step
self.quantile_threshold: float = quantile_threshold
self.number_good_trials_max_cap: int = number_good_trials_max_cap
self.number_possible_hyperparams_candidates: int = number_possible_hyperparams_candidates
self.prior_weight: float = prior_weight
self.use_linear_forgetting_weights: bool = use_linear_forgetting_weights
self.number_recent_trial_at_full_weights: int = number_recent_trial_at_full_weights
def find_next_best_hyperparams(self, auto_ml_container: AutoMLContainer) -> HyperparameterSamples:
hyperparams_space_list: List[(str, HyperparameterDistribution)] = list(
auto_ml_container.hyperparameter_space.to_flat_dict().items())
if auto_ml_container.trial_number < self.number_of_initial_random_step:
return self.initial_auto_ml_algo.find_next_best_hyperparams(auto_ml_container)
success_trials: Trials = auto_ml_container.trials.filter(TRIAL_STATUS.SUCCESS)
good_trials, bad_trials = success_trials.split_good_and_bad_trials(
quantile_threshold=self.quantile_threshold,
number_of_good_trials_max_cap=self.number_good_trials_max_cap
)
hyperparams_keys = list(map(itemgetter(0), hyperparams_space_list))
good_posteriors: List[HyperparameterDistribution] = self._create_posterior(hyperparams_space_list, good_trials)
bad_posteriors: List[HyperparameterDistribution] = self._create_posterior(hyperparams_space_list, bad_trials)
best_hyperparams = []
for (hyperparam_key, good_posterior, bad_posterior) in zip(hyperparams_keys, good_posteriors, bad_posteriors):
best_new_hyperparam_value = None
best_ratio = None
for _ in range(self.number_possible_hyperparams_candidates):
possible_new_hyperparm = good_posterior.rvs()
ratio = good_posterior.pdf(possible_new_hyperparm) / bad_posterior.pdf(
possible_new_hyperparm)
if best_new_hyperparam_value is None:
best_new_hyperparam_value = possible_new_hyperparm
best_ratio = ratio
else:
if ratio > best_ratio:
best_new_hyperparam_value = possible_new_hyperparm
best_ratio = ratio
best_hyperparams.append((hyperparam_key, best_new_hyperparam_value))
return HyperparameterSamples(best_hyperparams)
def _create_posterior(self, flat_hyperparameter_space_list: List[Tuple[str, HyperparameterDistribution]],
trials: Trials) -> HyperparameterSpace:
posterior_distributions = []
for (hyperparam_key, hyperparam_distribution) in flat_hyperparameter_space_list:
trial_hyperparams: List[HyperparameterSamples] = [
trial.hyperparams[hyperparam_key] for trial in trials
]
if hyperparam_distribution.is_discrete():
posterior_distribution = self._reweights_categorical(
discrete_distribution=hyperparam_distribution,
trial_hyperparameters=trial_hyperparams
)
else:
posterior_distribution = self._create_gaussian_mixture(
continuous_distribution=hyperparam_distribution,
trial_hyperparameters=trial_hyperparams
)
posterior_distributions.append(posterior_distribution)
return posterior_distributions
def _reweights_categorical(self, discrete_distribution: DiscreteHyperparameterDistribution, trial_hyperparameters):
probas: List[float] = discrete_distribution.probabilities()
values: List[Any] = discrete_distribution.values()
number_probas = len(probas)
reweighted_probas = number_probas * probas
count_trials = Counter(trial_hyperparameters)
values_keys = list(count_trials.keys())
counts = list(count_trials.values())
for value_key, count in zip(values_keys, counts):
index_value = values.index(value_key)
reweighted_probas[index_value] += count
reweighted_probas = np.array(reweighted_probas)
reweighted_probas = reweighted_probas / np.sum(reweighted_probas)
if isinstance(discrete_distribution, PriorityChoice):
return PriorityChoice(values, probas=reweighted_probas)
return Choice(values, probas=reweighted_probas)
def _create_gaussian_mixture(
self,
continuous_distribution: HyperparameterDistribution,
trial_hyperparameters: List[HyperparameterSamples]
):
use_logs = False
if isinstance(continuous_distribution, _LOG_DISTRIBUTION):
use_logs = True
use_quantized_distributions = False
if isinstance(continuous_distribution, Quantized):
use_quantized_distributions = True
if isinstance(continuous_distribution.hd, _LOG_DISTRIBUTION):
use_logs = True
distribution_amplitudes, means, stds, distributions_mins, distributions_max = self._adaptive_parzen_normal(
continuous_distribution,
trial_hyperparameters)
gmm = DistributionMixture.build_gaussian_mixture(
distribution_amplitudes=distribution_amplitudes,
means=means,
stds=stds,
distributions_mins=distributions_mins,
distributions_max=distributions_max,
use_logs=use_logs,
use_quantized_distributions=use_quantized_distributions
)
return gmm
|
Apache License 2.0
|
perslev/u-time
|
utime/utils/utils.py
|
ensure_list_or_tuple
|
python
|
def ensure_list_or_tuple(obj):
return [obj] if not isinstance(obj, (list, tuple)) else obj
|
Takes some object and wraps it in a list - i.e. [obj] - unless the object
is already a list or a tuple instance. In that case, simply returns 'obj'
Args:
obj: Any object
Returns:
[obj] if obj is not a list or tuple, else obj
|
https://github.com/perslev/u-time/blob/f7c8e3f1368f43226872a69b0fbb8c29990e4bd9/utime/utils/utils.py#L52-L63
|
import numpy as np
from contextlib import contextmanager
import logging
def exactly_one_specified(*inputs):
not_none = np.array(list(map(lambda x: x is not None, inputs)))
return np.sum(not_none) == 1
def b_if_a_is_none(a, b):
if a is None:
return b
else:
return a
def assert_all_loaded(pairs, raise_=True):
loaded_pairs = [p for p in pairs if p.loaded]
if len(loaded_pairs) != len(pairs):
if raise_:
raise NotImplementedError("BatchSequence currently requires all"
" samples to be loaded")
else:
return False
return True
|
MIT License
|
muneebalam/scrapenhl2
|
scrapenhl2/scrape/players.py
|
get_player_log_filename
|
python
|
def get_player_log_filename():
return os.path.join(organization.get_other_data_folder(), 'PLAYER_LOG.feather')
|
Returns the player log filename.
:return: str, /scrape/data/other/PLAYER_LOG.feather
|
https://github.com/muneebalam/scrapenhl2/blob/a9867f03d002773da852fc150f2976adc2ba8c25/scrapenhl2/scrape/players.py#L70-L76
|
import functools
import json
import os.path
import urllib.request
from tqdm import tqdm
import feather
import pandas as pd
import scrapenhl2.scrape.general_helpers as helpers
import scrapenhl2.scrape.organization as organization
import scrapenhl2.scrape.schedules as schedules
import scrapenhl2.scrape.team_info as team_info
_PLAYERS = None
_PLAYER_LOG = None
def get_player_log_file():
return _PLAYER_LOG
def _get_player_log_file():
return feather.read_dataframe(get_player_log_filename())
def get_player_ids_file():
return _PLAYERS
def _get_player_ids_file():
return feather.read_dataframe(get_player_ids_filename())
def write_player_log_file(df):
feather.write_dataframe(df.drop_duplicates(), get_player_log_filename())
player_setup()
|
MIT License
|
pokemongof/pokemongo-bot-desktop
|
build/pywin/Lib/nntplib.py
|
NNTP.artcmd
|
python
|
def artcmd(self, line, file=None):
resp, list = self.longcmd(line, file)
resp, nr, id = self.statparse(resp)
return resp, nr, id, list
|
Internal: process a HEAD, BODY or ARTICLE command.
|
https://github.com/pokemongof/pokemongo-bot-desktop/blob/4bfa94f0183406c6a86f93645eff7abd3ad4ced8/build/pywin/Lib/nntplib.py#L414-L418
|
import re
import socket
__all__ = ["NNTP","NNTPReplyError","NNTPTemporaryError",
"NNTPPermanentError","NNTPProtocolError","NNTPDataError",
"error_reply","error_temp","error_perm","error_proto",
"error_data",]
_MAXLINE = 2048
class NNTPError(Exception):
def __init__(self, *args):
Exception.__init__(self, *args)
try:
self.response = args[0]
except IndexError:
self.response = 'No response given'
class NNTPReplyError(NNTPError):
pass
class NNTPTemporaryError(NNTPError):
pass
class NNTPPermanentError(NNTPError):
pass
class NNTPProtocolError(NNTPError):
pass
class NNTPDataError(NNTPError):
pass
error_reply = NNTPReplyError
error_temp = NNTPTemporaryError
error_perm = NNTPPermanentError
error_proto = NNTPProtocolError
error_data = NNTPDataError
NNTP_PORT = 119
LONGRESP = ['100', '215', '220', '221', '222', '224', '230', '231', '282']
CRLF = '\r\n'
class NNTP:
def __init__(self, host, port=NNTP_PORT, user=None, password=None,
readermode=None, usenetrc=True):
self.host = host
self.port = port
self.sock = socket.create_connection((host, port))
self.file = self.sock.makefile('rb')
self.debugging = 0
self.welcome = self.getresp()
readermode_afterauth = 0
if readermode:
try:
self.welcome = self.shortcmd('mode reader')
except NNTPPermanentError:
pass
except NNTPTemporaryError, e:
if user and e.response[:3] == '480':
readermode_afterauth = 1
else:
raise
try:
if usenetrc and not user:
import netrc
credentials = netrc.netrc()
auth = credentials.authenticators(host)
if auth:
user = auth[0]
password = auth[2]
except IOError:
pass
if user:
resp = self.shortcmd('authinfo user '+user)
if resp[:3] == '381':
if not password:
raise NNTPReplyError(resp)
else:
resp = self.shortcmd(
'authinfo pass '+password)
if resp[:3] != '281':
raise NNTPPermanentError(resp)
if readermode_afterauth:
try:
self.welcome = self.shortcmd('mode reader')
except NNTPPermanentError:
pass
def getwelcome(self):
if self.debugging: print '*welcome*', repr(self.welcome)
return self.welcome
def set_debuglevel(self, level):
self.debugging = level
debug = set_debuglevel
def putline(self, line):
line = line + CRLF
if self.debugging > 1: print '*put*', repr(line)
self.sock.sendall(line)
def putcmd(self, line):
if self.debugging: print '*cmd*', repr(line)
self.putline(line)
def getline(self):
line = self.file.readline(_MAXLINE + 1)
if len(line) > _MAXLINE:
raise NNTPDataError('line too long')
if self.debugging > 1:
print '*get*', repr(line)
if not line: raise EOFError
if line[-2:] == CRLF: line = line[:-2]
elif line[-1:] in CRLF: line = line[:-1]
return line
def getresp(self):
resp = self.getline()
if self.debugging: print '*resp*', repr(resp)
c = resp[:1]
if c == '4':
raise NNTPTemporaryError(resp)
if c == '5':
raise NNTPPermanentError(resp)
if c not in '123':
raise NNTPProtocolError(resp)
return resp
def getlongresp(self, file=None):
openedFile = None
try:
if isinstance(file, str):
openedFile = file = open(file, "w")
resp = self.getresp()
if resp[:3] not in LONGRESP:
raise NNTPReplyError(resp)
list = []
while 1:
line = self.getline()
if line == '.':
break
if line[:2] == '..':
line = line[1:]
if file:
file.write(line + "\n")
else:
list.append(line)
finally:
if openedFile:
openedFile.close()
return resp, list
def shortcmd(self, line):
self.putcmd(line)
return self.getresp()
def longcmd(self, line, file=None):
self.putcmd(line)
return self.getlongresp(file)
def newgroups(self, date, time, file=None):
return self.longcmd('NEWGROUPS ' + date + ' ' + time, file)
def newnews(self, group, date, time, file=None):
cmd = 'NEWNEWS ' + group + ' ' + date + ' ' + time
return self.longcmd(cmd, file)
def list(self, file=None):
resp, list = self.longcmd('LIST', file)
for i in range(len(list)):
list[i] = tuple(list[i].split())
return resp, list
def description(self, group):
resp, lines = self.descriptions(group)
if len(lines) == 0:
return ""
else:
return lines[0][1]
def descriptions(self, group_pattern):
line_pat = re.compile("^(?P<group>[^ \t]+)[ \t]+(.*)$")
resp, raw_lines = self.longcmd('LIST NEWSGROUPS ' + group_pattern)
if resp[:3] != "215":
resp, raw_lines = self.longcmd('XGTITLE ' + group_pattern)
lines = []
for raw_line in raw_lines:
match = line_pat.search(raw_line.strip())
if match:
lines.append(match.group(1, 2))
return resp, lines
def group(self, name):
resp = self.shortcmd('GROUP ' + name)
if resp[:3] != '211':
raise NNTPReplyError(resp)
words = resp.split()
count = first = last = 0
n = len(words)
if n > 1:
count = words[1]
if n > 2:
first = words[2]
if n > 3:
last = words[3]
if n > 4:
name = words[4].lower()
return resp, count, first, last, name
def help(self, file=None):
return self.longcmd('HELP',file)
def statparse(self, resp):
if resp[:2] != '22':
raise NNTPReplyError(resp)
words = resp.split()
nr = 0
id = ''
n = len(words)
if n > 1:
nr = words[1]
if n > 2:
id = words[2]
return resp, nr, id
def statcmd(self, line):
resp = self.shortcmd(line)
return self.statparse(resp)
def stat(self, id):
return self.statcmd('STAT ' + id)
def next(self):
return self.statcmd('NEXT')
def last(self):
return self.statcmd('LAST')
|
MIT License
|
vnpy/vnpy_ctastrategy
|
vnpy_ctastrategy/engine.py
|
CtaEngine.send_email
|
python
|
def send_email(self, msg: str, strategy: CtaTemplate = None):
if strategy:
subject = f"{strategy.strategy_name}"
else:
subject = "CTA策略引擎"
self.main_engine.send_email(subject, msg)
|
Send email to default receiver.
|
https://github.com/vnpy/vnpy_ctastrategy/blob/58f71dcfc068efa9f04ba58a362ff040ff5daa0f/vnpy_ctastrategy/engine.py#L953-L962
|
import importlib
import traceback
from collections import defaultdict
from pathlib import Path
from typing import Any, Callable
from datetime import datetime, timedelta
from concurrent.futures import ThreadPoolExecutor
from copy import copy
from tzlocal import get_localzone
from glob import glob
from vnpy.event import Event, EventEngine
from vnpy.trader.engine import BaseEngine, MainEngine
from vnpy.trader.object import (
OrderRequest,
SubscribeRequest,
HistoryRequest,
LogData,
TickData,
BarData,
ContractData
)
from vnpy.trader.event import (
EVENT_TICK,
EVENT_ORDER,
EVENT_TRADE,
EVENT_POSITION
)
from vnpy.trader.constant import (
Direction,
OrderType,
Interval,
Exchange,
Offset,
Status
)
from vnpy.trader.utility import load_json, save_json, extract_vt_symbol, round_to
from vnpy.trader.converter import OffsetConverter
from vnpy.trader.database import BaseDatabase, get_database
from vnpy.trader.datafeed import BaseDatafeed, get_datafeed
from .base import (
APP_NAME,
EVENT_CTA_LOG,
EVENT_CTA_STRATEGY,
EVENT_CTA_STOPORDER,
EngineType,
StopOrder,
StopOrderStatus,
STOPORDER_PREFIX
)
from .template import CtaTemplate
STOP_STATUS_MAP = {
Status.SUBMITTING: StopOrderStatus.WAITING,
Status.NOTTRADED: StopOrderStatus.WAITING,
Status.PARTTRADED: StopOrderStatus.TRIGGERED,
Status.ALLTRADED: StopOrderStatus.TRIGGERED,
Status.CANCELLED: StopOrderStatus.CANCELLED,
Status.REJECTED: StopOrderStatus.CANCELLED
}
LOCAL_TZ = get_localzone()
class CtaEngine(BaseEngine):
engine_type = EngineType.LIVE
setting_filename = "cta_strategy_setting.json"
data_filename = "cta_strategy_data.json"
def __init__(self, main_engine: MainEngine, event_engine: EventEngine):
super(CtaEngine, self).__init__(
main_engine, event_engine, APP_NAME)
self.strategy_setting = {}
self.strategy_data = {}
self.classes = {}
self.strategies = {}
self.symbol_strategy_map = defaultdict(
list)
self.orderid_strategy_map = {}
self.strategy_orderid_map = defaultdict(
set)
self.stop_order_count = 0
self.stop_orders = {}
self.init_executor = ThreadPoolExecutor(max_workers=1)
self.rq_client = None
self.rq_symbols = set()
self.vt_tradeids = set()
self.offset_converter = OffsetConverter(self.main_engine)
self.database: BaseDatabase = get_database()
self.datafeed: BaseDatafeed = get_datafeed()
def init_engine(self):
self.init_datafeed()
self.load_strategy_class()
self.load_strategy_setting()
self.load_strategy_data()
self.register_event()
self.write_log("CTA策略引擎初始化成功")
def close(self):
self.stop_all_strategies()
def register_event(self):
self.event_engine.register(EVENT_TICK, self.process_tick_event)
self.event_engine.register(EVENT_ORDER, self.process_order_event)
self.event_engine.register(EVENT_TRADE, self.process_trade_event)
self.event_engine.register(EVENT_POSITION, self.process_position_event)
def init_datafeed(self):
result = self.datafeed.init()
if result:
self.write_log("数据服务初始化成功")
def query_bar_from_datafeed(
self, symbol: str, exchange: Exchange, interval: Interval, start: datetime, end: datetime
):
req = HistoryRequest(
symbol=symbol,
exchange=exchange,
interval=interval,
start=start,
end=end
)
data = self.datafeed.query_bar_history(req)
return data
def process_tick_event(self, event: Event):
tick = event.data
strategies = self.symbol_strategy_map[tick.vt_symbol]
if not strategies:
return
self.check_stop_order(tick)
for strategy in strategies:
if strategy.inited:
self.call_strategy_func(strategy, strategy.on_tick, tick)
def process_order_event(self, event: Event):
order = event.data
self.offset_converter.update_order(order)
strategy = self.orderid_strategy_map.get(order.vt_orderid, None)
if not strategy:
return
vt_orderids = self.strategy_orderid_map[strategy.strategy_name]
if order.vt_orderid in vt_orderids and not order.is_active():
vt_orderids.remove(order.vt_orderid)
if order.type == OrderType.STOP:
so = StopOrder(
vt_symbol=order.vt_symbol,
direction=order.direction,
offset=order.offset,
price=order.price,
volume=order.volume,
stop_orderid=order.vt_orderid,
strategy_name=strategy.strategy_name,
datetime=order.datetime,
status=STOP_STATUS_MAP[order.status],
vt_orderids=[order.vt_orderid],
)
self.call_strategy_func(strategy, strategy.on_stop_order, so)
self.call_strategy_func(strategy, strategy.on_order, order)
def process_trade_event(self, event: Event):
trade = event.data
if trade.vt_tradeid in self.vt_tradeids:
return
self.vt_tradeids.add(trade.vt_tradeid)
self.offset_converter.update_trade(trade)
strategy = self.orderid_strategy_map.get(trade.vt_orderid, None)
if not strategy:
return
if trade.direction == Direction.LONG:
strategy.pos += trade.volume
else:
strategy.pos -= trade.volume
self.call_strategy_func(strategy, strategy.on_trade, trade)
self.sync_strategy_data(strategy)
self.put_strategy_event(strategy)
def process_position_event(self, event: Event):
position = event.data
self.offset_converter.update_position(position)
def check_stop_order(self, tick: TickData):
for stop_order in list(self.stop_orders.values()):
if stop_order.vt_symbol != tick.vt_symbol:
continue
long_triggered = (
stop_order.direction == Direction.LONG and tick.last_price >= stop_order.price
)
short_triggered = (
stop_order.direction == Direction.SHORT and tick.last_price <= stop_order.price
)
if long_triggered or short_triggered:
strategy = self.strategies[stop_order.strategy_name]
if stop_order.direction == Direction.LONG:
if tick.limit_up:
price = tick.limit_up
else:
price = tick.ask_price_5
else:
if tick.limit_down:
price = tick.limit_down
else:
price = tick.bid_price_5
contract = self.main_engine.get_contract(stop_order.vt_symbol)
vt_orderids = self.send_limit_order(
strategy,
contract,
stop_order.direction,
stop_order.offset,
price,
stop_order.volume,
stop_order.lock,
stop_order.net
)
if vt_orderids:
self.stop_orders.pop(stop_order.stop_orderid)
strategy_vt_orderids = self.strategy_orderid_map[strategy.strategy_name]
if stop_order.stop_orderid in strategy_vt_orderids:
strategy_vt_orderids.remove(stop_order.stop_orderid)
stop_order.status = StopOrderStatus.TRIGGERED
stop_order.vt_orderids = vt_orderids
self.call_strategy_func(
strategy, strategy.on_stop_order, stop_order
)
self.put_stop_order_event(stop_order)
def send_server_order(
self,
strategy: CtaTemplate,
contract: ContractData,
direction: Direction,
offset: Offset,
price: float,
volume: float,
type: OrderType,
lock: bool,
net: bool
):
original_req = OrderRequest(
symbol=contract.symbol,
exchange=contract.exchange,
direction=direction,
offset=offset,
type=type,
price=price,
volume=volume,
reference=f"{APP_NAME}_{strategy.strategy_name}"
)
req_list = self.offset_converter.convert_order_request(original_req, lock, net)
vt_orderids = []
for req in req_list:
vt_orderid = self.main_engine.send_order(req, contract.gateway_name)
if not vt_orderid:
continue
vt_orderids.append(vt_orderid)
self.offset_converter.update_order_request(req, vt_orderid)
self.orderid_strategy_map[vt_orderid] = strategy
self.strategy_orderid_map[strategy.strategy_name].add(vt_orderid)
return vt_orderids
def send_limit_order(
self,
strategy: CtaTemplate,
contract: ContractData,
direction: Direction,
offset: Offset,
price: float,
volume: float,
lock: bool,
net: bool
):
return self.send_server_order(
strategy,
contract,
direction,
offset,
price,
volume,
OrderType.LIMIT,
lock,
net
)
def send_server_stop_order(
self,
strategy: CtaTemplate,
contract: ContractData,
direction: Direction,
offset: Offset,
price: float,
volume: float,
lock: bool,
net: bool
):
return self.send_server_order(
strategy,
contract,
direction,
offset,
price,
volume,
OrderType.STOP,
lock,
net
)
def send_local_stop_order(
self,
strategy: CtaTemplate,
direction: Direction,
offset: Offset,
price: float,
volume: float,
lock: bool,
net: bool
):
self.stop_order_count += 1
stop_orderid = f"{STOPORDER_PREFIX}.{self.stop_order_count}"
stop_order = StopOrder(
vt_symbol=strategy.vt_symbol,
direction=direction,
offset=offset,
price=price,
volume=volume,
stop_orderid=stop_orderid,
strategy_name=strategy.strategy_name,
datetime=datetime.now(LOCAL_TZ),
lock=lock,
net=net
)
self.stop_orders[stop_orderid] = stop_order
vt_orderids = self.strategy_orderid_map[strategy.strategy_name]
vt_orderids.add(stop_orderid)
self.call_strategy_func(strategy, strategy.on_stop_order, stop_order)
self.put_stop_order_event(stop_order)
return [stop_orderid]
def cancel_server_order(self, strategy: CtaTemplate, vt_orderid: str):
order = self.main_engine.get_order(vt_orderid)
if not order:
self.write_log(f"撤单失败,找不到委托{vt_orderid}", strategy)
return
req = order.create_cancel_request()
self.main_engine.cancel_order(req, order.gateway_name)
def cancel_local_stop_order(self, strategy: CtaTemplate, stop_orderid: str):
stop_order = self.stop_orders.get(stop_orderid, None)
if not stop_order:
return
strategy = self.strategies[stop_order.strategy_name]
self.stop_orders.pop(stop_orderid)
vt_orderids = self.strategy_orderid_map[strategy.strategy_name]
if stop_orderid in vt_orderids:
vt_orderids.remove(stop_orderid)
stop_order.status = StopOrderStatus.CANCELLED
self.call_strategy_func(strategy, strategy.on_stop_order, stop_order)
self.put_stop_order_event(stop_order)
def send_order(
self,
strategy: CtaTemplate,
direction: Direction,
offset: Offset,
price: float,
volume: float,
stop: bool,
lock: bool,
net: bool
):
contract = self.main_engine.get_contract(strategy.vt_symbol)
if not contract:
self.write_log(f"委托失败,找不到合约:{strategy.vt_symbol}", strategy)
return ""
price = round_to(price, contract.pricetick)
volume = round_to(volume, contract.min_volume)
if stop:
if contract.stop_supported:
return self.send_server_stop_order(
strategy, contract, direction, offset, price, volume, lock, net
)
else:
return self.send_local_stop_order(
strategy, direction, offset, price, volume, lock, net
)
else:
return self.send_limit_order(
strategy, contract, direction, offset, price, volume, lock, net
)
def cancel_order(self, strategy: CtaTemplate, vt_orderid: str):
if vt_orderid.startswith(STOPORDER_PREFIX):
self.cancel_local_stop_order(strategy, vt_orderid)
else:
self.cancel_server_order(strategy, vt_orderid)
def cancel_all(self, strategy: CtaTemplate):
vt_orderids = self.strategy_orderid_map[strategy.strategy_name]
if not vt_orderids:
return
for vt_orderid in copy(vt_orderids):
self.cancel_order(strategy, vt_orderid)
def get_engine_type(self):
return self.engine_type
def get_pricetick(self, strategy: CtaTemplate):
contract = self.main_engine.get_contract(strategy.vt_symbol)
if contract:
return contract.pricetick
else:
return None
def load_bar(
self,
vt_symbol: str,
days: int,
interval: Interval,
callback: Callable[[BarData], None],
use_database: bool
):
symbol, exchange = extract_vt_symbol(vt_symbol)
end = datetime.now(LOCAL_TZ)
start = end - timedelta(days)
bars = []
if not use_database:
contract = self.main_engine.get_contract(vt_symbol)
if contract and contract.history_data:
req = HistoryRequest(
symbol=symbol,
exchange=exchange,
interval=interval,
start=start,
end=end
)
bars = self.main_engine.query_history(req, contract.gateway_name)
else:
bars = self.query_bar_from_datafeed(symbol, exchange, interval, start, end)
if not bars:
bars = self.database.load_bar_data(
symbol=symbol,
exchange=exchange,
interval=interval,
start=start,
end=end,
)
for bar in bars:
callback(bar)
def load_tick(
self,
vt_symbol: str,
days: int,
callback: Callable[[TickData], None]
):
symbol, exchange = extract_vt_symbol(vt_symbol)
end = datetime.now(LOCAL_TZ)
start = end - timedelta(days)
ticks = self.database.load_tick_data(
symbol=symbol,
exchange=exchange,
start=start,
end=end,
)
for tick in ticks:
callback(tick)
def call_strategy_func(
self, strategy: CtaTemplate, func: Callable, params: Any = None
):
try:
if params:
func(params)
else:
func()
except Exception:
strategy.trading = False
strategy.inited = False
msg = f"触发异常已停止\n{traceback.format_exc()}"
self.write_log(msg, strategy)
def add_strategy(
self, class_name: str, strategy_name: str, vt_symbol: str, setting: dict
):
if strategy_name in self.strategies:
self.write_log(f"创建策略失败,存在重名{strategy_name}")
return
strategy_class = self.classes.get(class_name, None)
if not strategy_class:
self.write_log(f"创建策略失败,找不到策略类{class_name}")
return
if "." not in vt_symbol:
self.write_log("创建策略失败,本地代码缺失交易所后缀")
return
_, exchange_str = vt_symbol.split(".")
if exchange_str not in Exchange.__members__:
self.write_log("创建策略失败,本地代码的交易所后缀不正确")
return
strategy = strategy_class(self, strategy_name, vt_symbol, setting)
self.strategies[strategy_name] = strategy
strategies = self.symbol_strategy_map[vt_symbol]
strategies.append(strategy)
self.update_strategy_setting(strategy_name, setting)
self.put_strategy_event(strategy)
def init_strategy(self, strategy_name: str):
self.init_executor.submit(self._init_strategy, strategy_name)
def _init_strategy(self, strategy_name: str):
strategy = self.strategies[strategy_name]
if strategy.inited:
self.write_log(f"{strategy_name}已经完成初始化,禁止重复操作")
return
self.write_log(f"{strategy_name}开始执行初始化")
self.call_strategy_func(strategy, strategy.on_init)
data = self.strategy_data.get(strategy_name, None)
if data:
for name in strategy.variables:
value = data.get(name, None)
if value:
setattr(strategy, name, value)
contract = self.main_engine.get_contract(strategy.vt_symbol)
if contract:
req = SubscribeRequest(
symbol=contract.symbol, exchange=contract.exchange)
self.main_engine.subscribe(req, contract.gateway_name)
else:
self.write_log(f"行情订阅失败,找不到合约{strategy.vt_symbol}", strategy)
strategy.inited = True
self.put_strategy_event(strategy)
self.write_log(f"{strategy_name}初始化完成")
def start_strategy(self, strategy_name: str):
strategy = self.strategies[strategy_name]
if not strategy.inited:
self.write_log(f"策略{strategy.strategy_name}启动失败,请先初始化")
return
if strategy.trading:
self.write_log(f"{strategy_name}已经启动,请勿重复操作")
return
self.call_strategy_func(strategy, strategy.on_start)
strategy.trading = True
self.put_strategy_event(strategy)
def stop_strategy(self, strategy_name: str):
strategy = self.strategies[strategy_name]
if not strategy.trading:
return
self.call_strategy_func(strategy, strategy.on_stop)
strategy.trading = False
self.cancel_all(strategy)
self.sync_strategy_data(strategy)
self.put_strategy_event(strategy)
def edit_strategy(self, strategy_name: str, setting: dict):
strategy = self.strategies[strategy_name]
strategy.update_setting(setting)
self.update_strategy_setting(strategy_name, setting)
self.put_strategy_event(strategy)
def remove_strategy(self, strategy_name: str):
strategy = self.strategies[strategy_name]
if strategy.trading:
self.write_log(f"策略{strategy.strategy_name}移除失败,请先停止")
return
self.remove_strategy_setting(strategy_name)
strategies = self.symbol_strategy_map[strategy.vt_symbol]
strategies.remove(strategy)
if strategy_name in self.strategy_orderid_map:
vt_orderids = self.strategy_orderid_map.pop(strategy_name)
for vt_orderid in vt_orderids:
if vt_orderid in self.orderid_strategy_map:
self.orderid_strategy_map.pop(vt_orderid)
self.strategies.pop(strategy_name)
self.write_log(f"策略{strategy.strategy_name}移除移除成功")
return True
def load_strategy_class(self):
path1 = Path(__file__).parent.joinpath("strategies")
self.load_strategy_class_from_folder(path1, "vnpy_ctastrategy.strategies")
path2 = Path.cwd().joinpath("strategies")
self.load_strategy_class_from_folder(path2, "strategies")
def load_strategy_class_from_folder(self, path: Path, module_name: str = ""):
for suffix in ["py", "pyd", "so"]:
pathname: str = str(path.joinpath(f"*.{suffix}"))
for filepath in glob(pathname):
filename: str = Path(filepath).stem
name: str = f"{module_name}.{filename}"
self.load_strategy_class_from_module(name)
def load_strategy_class_from_module(self, module_name: str):
try:
module = importlib.import_module(module_name)
importlib.reload(module)
for name in dir(module):
value = getattr(module, name)
if (isinstance(value, type) and issubclass(value, CtaTemplate) and value is not CtaTemplate):
self.classes[value.__name__] = value
except:
msg = f"策略文件{module_name}加载失败,触发异常:\n{traceback.format_exc()}"
self.write_log(msg)
def load_strategy_data(self):
self.strategy_data = load_json(self.data_filename)
def sync_strategy_data(self, strategy: CtaTemplate):
data = strategy.get_variables()
data.pop("inited")
data.pop("trading")
self.strategy_data[strategy.strategy_name] = data
save_json(self.data_filename, self.strategy_data)
def get_all_strategy_class_names(self):
return list(self.classes.keys())
def get_strategy_class_parameters(self, class_name: str):
strategy_class = self.classes[class_name]
parameters = {}
for name in strategy_class.parameters:
parameters[name] = getattr(strategy_class, name)
return parameters
def get_strategy_parameters(self, strategy_name):
strategy = self.strategies[strategy_name]
return strategy.get_parameters()
def init_all_strategies(self):
for strategy_name in self.strategies.keys():
self.init_strategy(strategy_name)
def start_all_strategies(self):
for strategy_name in self.strategies.keys():
self.start_strategy(strategy_name)
def stop_all_strategies(self):
for strategy_name in self.strategies.keys():
self.stop_strategy(strategy_name)
def load_strategy_setting(self):
self.strategy_setting = load_json(self.setting_filename)
for strategy_name, strategy_config in self.strategy_setting.items():
self.add_strategy(
strategy_config["class_name"],
strategy_name,
strategy_config["vt_symbol"],
strategy_config["setting"]
)
def update_strategy_setting(self, strategy_name: str, setting: dict):
strategy = self.strategies[strategy_name]
self.strategy_setting[strategy_name] = {
"class_name": strategy.__class__.__name__,
"vt_symbol": strategy.vt_symbol,
"setting": setting,
}
save_json(self.setting_filename, self.strategy_setting)
def remove_strategy_setting(self, strategy_name: str):
if strategy_name not in self.strategy_setting:
return
self.strategy_setting.pop(strategy_name)
save_json(self.setting_filename, self.strategy_setting)
def put_stop_order_event(self, stop_order: StopOrder):
event = Event(EVENT_CTA_STOPORDER, stop_order)
self.event_engine.put(event)
def put_strategy_event(self, strategy: CtaTemplate):
data = strategy.get_data()
event = Event(EVENT_CTA_STRATEGY, data)
self.event_engine.put(event)
def write_log(self, msg: str, strategy: CtaTemplate = None):
if strategy:
msg = f"[{strategy.strategy_name}] {msg}"
log = LogData(msg=msg, gateway_name=APP_NAME)
event = Event(type=EVENT_CTA_LOG, data=log)
self.event_engine.put(event)
|
MIT License
|
res2net/res2net-detectron2
|
detectron2/evaluation/pascal_voc_evaluation.py
|
voc_eval
|
python
|
def voc_eval(detpath, annopath, imagesetfile, classname, ovthresh=0.5, use_07_metric=False):
with PathManager.open(imagesetfile, "r") as f:
lines = f.readlines()
imagenames = [x.strip() for x in lines]
recs = {}
for imagename in imagenames:
recs[imagename] = parse_rec(annopath.format(imagename))
class_recs = {}
npos = 0
for imagename in imagenames:
R = [obj for obj in recs[imagename] if obj["name"] == classname]
bbox = np.array([x["bbox"] for x in R])
difficult = np.array([x["difficult"] for x in R]).astype(np.bool)
det = [False] * len(R)
npos = npos + sum(~difficult)
class_recs[imagename] = {"bbox": bbox, "difficult": difficult, "det": det}
detfile = detpath.format(classname)
with open(detfile, "r") as f:
lines = f.readlines()
splitlines = [x.strip().split(" ") for x in lines]
image_ids = [x[0] for x in splitlines]
confidence = np.array([float(x[1]) for x in splitlines])
BB = np.array([[float(z) for z in x[2:]] for x in splitlines]).reshape(-1, 4)
sorted_ind = np.argsort(-confidence)
BB = BB[sorted_ind, :]
image_ids = [image_ids[x] for x in sorted_ind]
nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for d in range(nd):
R = class_recs[image_ids[d]]
bb = BB[d, :].astype(float)
ovmax = -np.inf
BBGT = R["bbox"].astype(float)
if BBGT.size > 0:
ixmin = np.maximum(BBGT[:, 0], bb[0])
iymin = np.maximum(BBGT[:, 1], bb[1])
ixmax = np.minimum(BBGT[:, 2], bb[2])
iymax = np.minimum(BBGT[:, 3], bb[3])
iw = np.maximum(ixmax - ixmin + 1.0, 0.0)
ih = np.maximum(iymax - iymin + 1.0, 0.0)
inters = iw * ih
uni = (
(bb[2] - bb[0] + 1.0) * (bb[3] - bb[1] + 1.0)
+ (BBGT[:, 2] - BBGT[:, 0] + 1.0) * (BBGT[:, 3] - BBGT[:, 1] + 1.0)
- inters
)
overlaps = inters / uni
ovmax = np.max(overlaps)
jmax = np.argmax(overlaps)
if ovmax > ovthresh:
if not R["difficult"][jmax]:
if not R["det"][jmax]:
tp[d] = 1.0
R["det"][jmax] = 1
else:
fp[d] = 1.0
else:
fp[d] = 1.0
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / float(npos)
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = voc_ap(rec, prec, use_07_metric)
return rec, prec, ap
|
rec, prec, ap = voc_eval(detpath,
annopath,
imagesetfile,
classname,
[ovthresh],
[use_07_metric])
Top level function that does the PASCAL VOC evaluation.
detpath: Path to detections
detpath.format(classname) should produce the detection results file.
annopath: Path to annotations
annopath.format(imagename) should be the xml annotations file.
imagesetfile: Text file containing the list of images, one image per line.
classname: Category name (duh)
[ovthresh]: Overlap threshold (default = 0.5)
[use_07_metric]: Whether to use VOC07's 11 point AP computation
(default False)
|
https://github.com/res2net/res2net-detectron2/blob/3677895d5d23635b67837e64a79370b9ee117c27/detectron2/evaluation/pascal_voc_evaluation.py#L181-L294
|
import logging
import numpy as np
import os
import tempfile
import xml.etree.ElementTree as ET
from collections import OrderedDict, defaultdict
from functools import lru_cache
import torch
from fvcore.common.file_io import PathManager
from detectron2.data import MetadataCatalog
from detectron2.utils import comm
from .evaluator import DatasetEvaluator
class PascalVOCDetectionEvaluator(DatasetEvaluator):
def __init__(self, dataset_name):
self._dataset_name = dataset_name
meta = MetadataCatalog.get(dataset_name)
self._anno_file_template = os.path.join(meta.dirname, "Annotations", "{}.xml")
self._image_set_path = os.path.join(meta.dirname, "ImageSets", "Main", meta.split + ".txt")
self._class_names = meta.thing_classes
assert meta.year in [2007, 2012], meta.year
self._is_2007 = meta.year == 2007
self._cpu_device = torch.device("cpu")
self._logger = logging.getLogger(__name__)
def reset(self):
self._predictions = defaultdict(list)
def process(self, inputs, outputs):
for input, output in zip(inputs, outputs):
image_id = input["image_id"]
instances = output["instances"].to(self._cpu_device)
boxes = instances.pred_boxes.tensor.numpy()
scores = instances.scores.tolist()
classes = instances.pred_classes.tolist()
for box, score, cls in zip(boxes, scores, classes):
xmin, ymin, xmax, ymax = box
xmin += 1
ymin += 1
self._predictions[cls].append(
f"{image_id} {score:.3f} {xmin:.1f} {ymin:.1f} {xmax:.1f} {ymax:.1f}"
)
def evaluate(self):
all_predictions = comm.gather(self._predictions, dst=0)
if not comm.is_main_process():
return
predictions = defaultdict(list)
for predictions_per_rank in all_predictions:
for clsid, lines in predictions_per_rank.items():
predictions[clsid].extend(lines)
del all_predictions
self._logger.info(
"Evaluating {} using {} metric. "
"Note that results do not use the official Matlab API.".format(
self._dataset_name, 2007 if self._is_2007 else 2012
)
)
with tempfile.TemporaryDirectory(prefix="pascal_voc_eval_") as dirname:
res_file_template = os.path.join(dirname, "{}.txt")
aps = defaultdict(list)
for cls_id, cls_name in enumerate(self._class_names):
lines = predictions.get(cls_id, [""])
with open(res_file_template.format(cls_name), "w") as f:
f.write("\n".join(lines))
for thresh in range(50, 100, 5):
rec, prec, ap = voc_eval(
res_file_template,
self._anno_file_template,
self._image_set_path,
cls_name,
ovthresh=thresh / 100.0,
use_07_metric=self._is_2007,
)
aps[thresh].append(ap * 100)
ret = OrderedDict()
mAP = {iou: np.mean(x) for iou, x in aps.items()}
ret["bbox"] = {"AP": np.mean(list(mAP.values())), "AP50": mAP[50], "AP75": mAP[75]}
return ret
@lru_cache(maxsize=None)
def parse_rec(filename):
with PathManager.open(filename) as f:
tree = ET.parse(f)
objects = []
for obj in tree.findall("object"):
obj_struct = {}
obj_struct["name"] = obj.find("name").text
obj_struct["pose"] = obj.find("pose").text
obj_struct["truncated"] = int(obj.find("truncated").text)
obj_struct["difficult"] = int(obj.find("difficult").text)
bbox = obj.find("bndbox")
obj_struct["bbox"] = [
int(bbox.find("xmin").text),
int(bbox.find("ymin").text),
int(bbox.find("xmax").text),
int(bbox.find("ymax").text),
]
objects.append(obj_struct)
return objects
def voc_ap(rec, prec, use_07_metric=False):
if use_07_metric:
ap = 0.0
for t in np.arange(0.0, 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.0
else:
mrec = np.concatenate(([0.0], rec, [1.0]))
mpre = np.concatenate(([0.0], prec, [0.0]))
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
i = np.where(mrec[1:] != mrec[:-1])[0]
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
|
Apache License 2.0
|
yingzhangdut/deep-mutual-learning
|
datasets/make_filename_list.py
|
run
|
python
|
def run(image_dir, output_dir, split_name):
if split_name == 'bounding_box_train':
_make_train_list(image_dir, output_dir, split_name)
else:
_make_test_list(image_dir, output_dir, split_name)
|
Make list file for images.
Args:
image_dir: The image directory where the raw images are stored.
output_dir: The directory where the lists and tfrecords are stored.
split_name: The split name of dataset.
|
https://github.com/yingzhangdut/deep-mutual-learning/blob/34a20583debe4e0dab1d9856db69bed278c5c011/datasets/make_filename_list.py#L51-L62
|
import numpy as np
from glob import glob
from utils import *
def _save(file_label_list, file_path):
content = ['{} {}'.format(x, y) for x, y in file_label_list]
write_list(content, file_path)
def _get_train_list(files):
ret = []
for views in files:
for v in views:
for f in v:
label = int(osp.basename(f)[7:12])
ret.append((f, label))
return np.asarray(ret)
def _make_train_list(image_dir, output_dir, split_name):
meta = read_json(osp.join(image_dir, 'meta.json'))
identities = np.asarray(meta['identities'])
images = _get_train_list(identities)
_save(images, os.path.join(output_dir, '%s.txt' % split_name))
def _get_test_list(files):
ret = []
for f in files:
if osp.basename(f)[:2] == '-1':
label = int(osp.basename(f)[:2])
else:
label = int(osp.basename(f)[:4])
ret.append((osp.basename(f), label))
return np.asarray(ret)
def _make_test_list(image_dir, output_dir, split_name):
files = sorted(glob(osp.join(image_dir, '*.jpg')))
images = _get_test_list(files)
_save(images, os.path.join(output_dir, '%s.txt' % split_name))
|
MIT License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.