repository_name
stringlengths
7
107
function_path
stringlengths
4
190
function_identifier
stringlengths
1
236
language
stringclasses
1 value
function
stringlengths
9
647k
docstring
stringlengths
5
488k
function_url
stringlengths
71
285
context
stringlengths
0
2.51M
license
stringclasses
5 values
shivamsarodia/shivyc
shivyc/asm_gen.py
ASMGen._get_global_spotmap
python
def _get_global_spotmap(self): global_spotmap = {} EXTERNAL = self.symbol_table.EXTERNAL DEFINED = self.symbol_table.DEFINED num = 0 for value in (set(self.il_code.literals.keys()) | set(self.il_code.string_literals.keys()) | set(self.symbol_table.storage.keys())): num += 1 spot = self._get_nondynamic_spot(value, num) if spot: global_spotmap[value] = spot externs = self.symbol_table.linkages[EXTERNAL].values() for v in externs: if self.symbol_table.def_state.get(v) == DEFINED: self.asm_code.add_global(self.symbol_table.names[v]) return global_spotmap
Generate global spotmap and add global values to ASM. This function generates a spotmap for variables which are not specific to a single function. This includes literals and variables with static storage duration.
https://github.com/shivamsarodia/shivyc/blob/e7d72eff237e1ef49ec70333497348baf86be425/shivyc/asm_gen.py#L412-L438
import itertools import shivyc.asm_cmds as asm_cmds import shivyc.spots as spots from shivyc.spots import Spot, RegSpot, MemSpot, LiteralSpot class ASMCode: def __init__(self): self.lines = [] self.comm = [] self.globals = [] self.data = [] self.string_literals = [] def add(self, cmd): self.lines.append(cmd) label_num = 0 @staticmethod def get_label(): ASMCode.label_num += 1 return f"__shivyc_label{ASMCode.label_num}" def add_global(self, name): self.globals.append(f"\t.global {name}") def add_data(self, name, size, init): self.data.append(f"{name}:") size_strs = {1: "byte", 2: "word", 4: "int", 8: "quad"} if init: self.data.append(f"\t.{size_strs[size]} {init}") else: self.data.append(f"\t.zero {size}") def add_comm(self, name, size, local): if local: self.comm.append(f"\t.local {name}") self.comm.append(f"\t.comm {name} {size}") def add_string_literal(self, name, chars): self.string_literals.append(f"{name}:") data = ",".join(str(char) for char in chars) self.string_literals.append(f"\t.byte {data}") def full_code(self): header = ["\t.intel_syntax noprefix"] header += self.comm if self.string_literals or self.data: header += ["\t.section .data"] header += self.data header += self.string_literals header += [""] header += ["\t.section .text"] + self.globals header += [str(line) for line in self.lines] return "\n".join(header + ["\t.att_syntax noprefix", ""]) class NodeGraph: def __init__(self, nodes=None): self._real_nodes = nodes or [] self._all_nodes = self._real_nodes[:] self._conf = {n: [] for n in self._all_nodes} self._pref = {n: [] for n in self._all_nodes} def is_node(self, n): return n in self._conf and n in self._pref def add_dummy_node(self, v): self._all_nodes.append(v) self._conf[v] = [] self._pref[v] = [] for n in self._all_nodes: if n not in self._real_nodes and n != v: self.add_conflict(n, v) def add_conflict(self, n1, n2): if n2 not in self._conf[n1]: self._conf[n1].append(n2) if n1 not in self._conf[n2]: self._conf[n2].append(n1) def add_pref(self, n1, n2): if n2 not in self._pref[n1]: self._pref[n1].append(n2) if n1 not in self._pref[n2]: self._pref[n2].append(n1) def pop(self, n): del self._conf[n] del self._pref[n] if n in self._real_nodes: self._real_nodes.remove(n) self._all_nodes.remove(n) for v in self._conf: if n in self._conf[v]: self._conf[v].remove(n) for v in self._pref: if n in self._pref[v]: self._pref[v].remove(n) return n def merge(self, n1, n2): total_conf = self._conf[n1][:] for c in self._conf[n2]: if c not in total_conf: total_conf.append(c) self._conf[n1] = total_conf for c in self._conf[n1]: if n2 in self._conf[c]: self._conf[c].remove(n2) if n1 not in self._conf[c]: self._conf[c].append(n1) total_pref = self._pref[n1][:] for p in self._pref[n2]: if p not in total_pref: total_pref.append(p) if n1 in total_pref: total_pref.remove(n1) if n2 in total_pref: total_pref.remove(n2) self._pref[n1] = total_pref for c in self._pref[n1]: if n2 in self._pref[c]: self._pref[c].remove(n2) if n1 not in self._pref[c]: self._pref[c].append(n1) del self._conf[n2] del self._pref[n2] self._real_nodes.remove(n2) self._all_nodes.remove(n2) def remove_pref(self, n1, n2): self._pref[n1].remove(n2) self._pref[n2].remove(n1) def prefs(self, n): return self._pref[n] def confs(self, n): return self._conf[n] def nodes(self): return self._real_nodes def all_nodes(self): return self._all_nodes def copy(self): g = NodeGraph() g._real_nodes = self._real_nodes[:] g._all_nodes = self._all_nodes[:] for n in self._all_nodes: g._conf[n] = self._conf[n][:] g._pref[n] = self._pref[n][:] return g def __str__(self): return ("Conf\n" + "\n".join(str((v, self._conf[v])) for v in self._all_nodes) + "\nPref\n" + "\n".join(str((v, self._pref[v])) for v in self._all_nodes)) class ASMGen: alloc_registers = spots.registers all_registers = alloc_registers def __init__(self, il_code, symbol_table, asm_code, arguments): self.il_code = il_code self.symbol_table = symbol_table self.asm_code = asm_code self.arguments = arguments self.offset = 0 def make_asm(self): global_spotmap = self._get_global_spotmap() for func in self.il_code.commands: self.asm_code.add(asm_cmds.Label(func)) self._make_asm(self.il_code.commands[func], global_spotmap) def _make_asm(self, commands, global_spotmap): free_values = self._get_free_values(commands, global_spotmap) move_to_mem = [] for command in commands: refs = command.references().values() for line in refs: for v in line: if v not in refs: move_to_mem.append(v) for v in free_values: if v.ctype.size not in {1, 2, 4, 8}: move_to_mem.append(v) for v in move_to_mem: if v in free_values: self.offset += v.ctype.size global_spotmap[v] = MemSpot(spots.RBP, -self.offset) free_values.remove(v) live_vars = self._get_live_vars(commands, free_values) g_bak = self._generate_graph(commands, free_values, live_vars) spilled_nodes = [] while True: g = g_bak.copy() for n in spilled_nodes: g.pop(n) removed_nodes = [] merged_nodes = {} while True: while True: simplified = self._simplify_all(removed_nodes, g) merged = self._coalesce_all(merged_nodes, g) if not simplified and not merged: break if not self._freeze(g): break if not g.nodes(): break else: n = max(g.nodes(), key=lambda n: len(g.confs(n))) spilled_nodes.append(n) while g.all_nodes(): removed_nodes.append(g.pop(g.all_nodes()[0])) spotmap = self._generate_spotmap(removed_nodes, merged_nodes, g_bak) for v in spilled_nodes: self.offset += v.ctype.size spotmap[v] = MemSpot(spots.RBP, -self.offset) for v in global_spotmap: spotmap[v] = global_spotmap[v] if self.arguments.show_reg_alloc_perf: total_prefs = 0 matched_prefs = 0 for n1, n2 in itertools.combinations(g_bak.all_nodes(), 2): if n2 in g_bak.prefs(n1): total_prefs += 1 if spotmap[n1] == spotmap[n2]: matched_prefs += 1 print("total prefs", total_prefs) print("matched prefs", matched_prefs) print("total ILValues", len(g_bak.nodes())) print("register ILValues", len(g_bak.nodes()) - len(spilled_nodes)) self._generate_asm(commands, live_vars, spotmap)
MIT License
reconnaissanceblindchess/reconchess
reconchess/history.py
Turn.next
python
def next(self): return Turn(not self.color, self.turn_number + (0 if self.color == chess.WHITE else 1))
:return: The :class:`Turn` that happens immediately after this, which is the other player's next turn.
https://github.com/reconnaissanceblindchess/reconchess/blob/ad5666004a564a1a8ce79538df64337fc190bd99/reconchess/history.py#L22-L26
import chess from .types import * from typing import Callable, TypeVar, Iterable, Mapping import json import math from .utilities import ChessJSONEncoder, ChessJSONDecoder T = TypeVar('T') class Turn(object): def __init__(self, color: Color, turn_number: int): self.color = color self.turn_number = turn_number @property
BSD 3-Clause New or Revised License
hyperledger/sawtooth-core
validator/sawtooth_validator/journal/block_store.py
BlockStore.get_batch_count
python
def get_batch_count(self): return self._get_count('commit_store_get_batch_count')
Returns the count of batches in the block store. Returns: Integer: The count of batches
https://github.com/hyperledger/sawtooth-core/blob/2ab9b8fb8383887dc33c67a72e194c30f7b3f7dc/validator/sawtooth_validator/journal/block_store.py#L419-L425
import ctypes from enum import IntEnum from sawtooth_validator.journal.block_wrapper import BlockWrapper from sawtooth_validator.protobuf.block_pb2 import Block from sawtooth_validator.protobuf.batch_pb2 import Batch from sawtooth_validator.protobuf.transaction_pb2 import Transaction from sawtooth_validator.state.merkle import INIT_ROOT_KEY from sawtooth_validator import ffi class ErrorCode(IntEnum): Success = ffi.CommonErrorCode.Success NullPointerProvided = ffi.CommonErrorCode.NullPointerProvided InvalidArgument = 2 DatabaseError = 0x10 NotFound = 0x11 StopIteration = 0x20 def _check_error(return_code): if return_code == ErrorCode.Success: return if return_code == ErrorCode.NullPointerProvided: raise TypeError("Provided null pointer(s)") if return_code == ErrorCode.InvalidArgument: raise TypeError("An invalid argument was provided") if return_code == ErrorCode.DatabaseError: raise RuntimeError("A database error occurred") if return_code == ErrorCode.NotFound: raise ValueError("Unable to find requested item") if return_code == ErrorCode.StopIteration: raise StopIteration() raise RuntimeError("An unknown error occurred: {}".format(return_code)) def _libexec(name, *args): _check_error(ffi.LIBRARY.call(name, *args)) def _pylibexec(name, *args): _check_error(ffi.PY_LIBRARY.call(name, *args)) class _PutEntry(ctypes.Structure): _fields_ = [('block_bytes', ctypes.c_char_p), ('block_bytes_len', ctypes.c_size_t)] @staticmethod def new(block_bytes): return _PutEntry( block_bytes, len(block_bytes) ) class BlockStore(ffi.OwnedPointer): def __init__(self, database): super().__init__('commit_store_drop') _libexec( 'commit_store_new', database.pointer, ctypes.byref(self.pointer)) def _get_data_by_num(self, object_id, ffi_fn_name): (vec_ptr, vec_len, vec_cap) = ffi.prepare_vec_result() _pylibexec(ffi_fn_name, self.pointer, ctypes.c_ulonglong(object_id), ctypes.byref(vec_ptr), ctypes.byref(vec_len), ctypes.byref(vec_cap)) return ffi.from_rust_vec(vec_ptr, vec_len, vec_cap) def _get_data_by_id(self, object_id, ffi_fn_name): (vec_ptr, vec_len, vec_cap) = ffi.prepare_vec_result() _pylibexec(ffi_fn_name, self.pointer, ctypes.c_char_p(object_id.encode()), ctypes.byref(vec_ptr), ctypes.byref(vec_len), ctypes.byref(vec_cap)) return ffi.from_rust_vec(vec_ptr, vec_len, vec_cap) def _get_block_by_num(self, object_id, ffi_fn_name): return self.deserialize_block( self._get_data_by_num(object_id, ffi_fn_name)) def _get_block_by_id(self, object_id, ffi_fn_name): return self.deserialize_block( self._get_data_by_id(object_id, ffi_fn_name)) def __getitem__(self, key): try: return self._get_block_by_id(key, 'commit_store_get_by_block_id') except ValueError: raise KeyError("Unable to find block id: %s" % key) from ValueError def put_blocks(self, blocks): c_put_items = (ctypes.POINTER(_PutEntry) * len(blocks))() for (i, block) in enumerate(blocks): c_put_items[i] = ctypes.pointer(_PutEntry.new( block.SerializeToString(), )) _libexec('commit_store_put_blocks', self.pointer, c_put_items, ctypes.c_size_t(len(blocks))) def _contains_id(self, object_id, fn_name): contains = ctypes.c_bool(False) _pylibexec(fn_name, self.pointer, ctypes.c_char_p(object_id.encode()), ctypes.byref(contains)) return contains.value def __contains__(self, block_id): return self._contains_id(block_id, 'commit_store_contains_block') def __iter__(self): return self.get_block_iter() @staticmethod def create_index_configuration(): return ['index_batch', 'index_transaction', 'index_block_num'] @staticmethod def deserialize_block(value): block = Block() block.ParseFromString(value) return BlockWrapper( block=block) @property def chain_head(self): (vec_ptr, vec_len, vec_cap) = ffi.prepare_vec_result() try: _libexec( 'commit_store_get_chain_head', self.pointer, ctypes.byref(vec_ptr), ctypes.byref(vec_len), ctypes.byref(vec_cap)) except ValueError: return None return self.deserialize_block( ffi.from_rust_vec(vec_ptr, vec_len, vec_cap)) def chain_head_state_root(self): chain_head = self.chain_head if chain_head is not None: return chain_head.state_root_hash return INIT_ROOT_KEY def get_predecessor_iter(self, starting_block=None): return self.get_block_iter(start_block=starting_block) def get_block_iter(self, start_block=None, start_block_num=None, reverse=True): start = None if start_block_num: if len(start_block_num) < 2: raise ValueError("Invalid start block num") if start_block_num[:2] != "0x": raise ValueError("Invalid start block num") start = int(start_block_num, 16) elif start_block: start = start_block.block_num return _BlockStoreIter( self.pointer, start, reverse) def get_blocks(self, block_ids): return list( filter( lambda b: b is not None, map(self._get_block_by_id_or_none, block_ids))) def _get_block_by_id_or_none(self, block_id): try: return self[block_id] except KeyError: return None def get_block_by_transaction_id(self, txn_id): return self._get_block_by_id( txn_id, 'commit_store_get_by_transaction_id') def get_block_by_number(self, block_num): try: return self._get_block_by_num( block_num, 'commit_store_get_by_block_num') except ValueError: raise KeyError( "Unable to find block number: %s" % repr( block_num)) from ValueError def has_transaction(self, txn_id): return self._contains_id(txn_id, 'commit_store_contains_transaction') def get_block_by_batch_id(self, batch_id): return self._get_block_by_id( batch_id, 'commit_store_get_by_batch_id') def has_batch(self, batch_id): return self._contains_id(batch_id, 'commit_store_contains_batch') def get_batch_by_transaction(self, transaction_id): payload = self._get_data_by_id( transaction_id, 'commit_store_get_batch_by_transaction') batch = Batch() batch.ParseFromString(payload) return batch def get_batch(self, batch_id): payload = self._get_data_by_id(batch_id, 'commit_store_get_batch') batch = Batch() batch.ParseFromString(payload) return batch def get_transaction(self, transaction_id): payload = self._get_data_by_id( transaction_id, 'commit_store_get_transaction') txn = Transaction() txn.ParseFromString(payload) return txn def _get_count(self, fn_name): count = ctypes.c_size_t(0) _libexec(fn_name, self.pointer, ctypes.byref(count)) return count.value def get_transaction_count(self): return self._get_count('commit_store_get_transaction_count')
Apache License 2.0
azure/autorest.az
test/scenarios/msgraphuser/output/users_v1_0/azext_users_v1_0/vendored_sdks/users/operations/_users_outlook_operations.py
UsersOutlookOperations.list_master_categories
python
def list_master_categories( self, user_id, orderby=None, select=None, expand=None, **kwargs ): cls = kwargs.pop('cls', None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" def prepare_request(next_link=None): header_parameters = {} header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: url = self.list_master_categories.metadata['url'] path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) query_parameters = {} if self._config.top is not None: query_parameters['$top'] = self._serialize.query("self._config.top", self._config.top, 'int', minimum=0) if self._config.skip is not None: query_parameters['$skip'] = self._serialize.query("self._config.skip", self._config.skip, 'int', minimum=0) if self._config.search is not None: query_parameters['$search'] = self._serialize.query("self._config.search", self._config.search, 'str') if self._config.filter is not None: query_parameters['$filter'] = self._serialize.query("self._config.filter", self._config.filter, 'str') if self._config.count is not None: query_parameters['$count'] = self._serialize.query("self._config.count", self._config.count, 'bool') if orderby is not None: query_parameters['$orderby'] = self._serialize.query("orderby", orderby, '[str]', div=',') if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('CollectionOfOutlookCategory', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.odata_next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.OdataError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data )
Get masterCategories from users. Get masterCategories from users. :param user_id: key: id of user. :type user_id: str :param orderby: Order items by property values. :type orderby: list[str or ~users.models.Enum83] :param select: Select properties to be returned. :type select: list[str or ~users.models.Enum84] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CollectionOfOutlookCategory or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~users.models.CollectionOfOutlookCategory] :raises: ~azure.core.exceptions.HttpResponseError
https://github.com/azure/autorest.az/blob/b000db70f608c64918d04a0e0f5b50bb5468baa0/test/scenarios/msgraphuser/output/users_v1_0/azext_users_v1_0/vendored_sdks/users/operations/_users_outlook_operations.py#L48-L141
from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models if TYPE_CHECKING: from typing import Any, Callable, Dict, Generic, Iterable, List, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class UsersOutlookOperations(object): models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config
MIT License
thejessleigh/betterreads
betterreads/author.py
GoodreadsAuthor.fans_count
python
def fans_count(self): return int(self._author_dict["fans_count"]["#text"])
Number of fans
https://github.com/thejessleigh/betterreads/blob/70dff47a1e0cc76adaa89184bc04278cb39d6663/betterreads/author.py#L55-L57
from datetime import datetime class GoodreadsAuthor: def __init__(self, author_dict, client): self._author_dict = author_dict self._client = client def __repr__(self): return self.name @property def gid(self): return int(self._author_dict["id"]) @property def name(self): return self._author_dict["name"] @property def about(self): return self._author_dict["about"] @property def books(self): from .book import GoodreadsBook if type(self._author_dict["books"]["book"]) == list: return [ GoodreadsBook(book_dict, self._client) for book_dict in self._author_dict["books"]["book"] ] else: return [GoodreadsBook(self._author_dict["books"]["book"], self._client)] @property def born_at(self): born_date = self._author_dict["born_at"] return datetime.strptime(born_date, "%Y/%m/%d") @property def died_at(self): died_date = self._author_dict["died_at"] return datetime.strptime(died_date, "%Y/%m/%d") @property
MIT License
stencila/hub
manager/projects/models/reviews.py
Review.extract_callback
python
def extract_callback(self, job: Job): json = job.result if not json: self.status = ReviewStatus.FAILED.name else: self.review = Node.objects.create( project=self.project, creator=job.creator, app="hub.reviews", json=json ) authors = json.get("authors", []) if len(authors) > 0: self.review_author_name = authors[0].get("name") self.review_date = ( json.get("datePublished") or json.get("dateModified") or json.get("dateCreated") ) self.review_title = node_text_content(json.get("title")) self.review_description = node_text_content( json.get("description") or json.get("content") ) self.review_comments = len(json.get("comments", [])) self.status = ReviewStatus.EXTRACTED.name self.save()
Store the extracted review.
https://github.com/stencila/hub/blob/e696c39213156bb43a098f81286197e919379cdf/manager/projects/models/reviews.py#L382-L413
import re from datetime import datetime from typing import Dict, List, Optional, Tuple import shortuuid from django.db import models from dois.models import Doi from jobs.models import Job from manager.helpers import EnumChoice from manager.nodes import node_text_content from projects.models.nodes import Node from projects.models.projects import Project, ProjectAgent, ProjectRole from projects.models.sources import Source from users.models import User class ReviewStatus(EnumChoice): PENDING = "PENDING" REQUESTED = "REQUESTED" CANCELLED = "CANCELLED" ACCEPTED = "ACCEPTED" DECLINED = "DECLINED" COMPLETED = "COMPLETED" EXTRACTING = "EXTRACTING" EXTRACTED = "EXTRACTED" FAILED = "FAILED" REGISTERED = "REGISTERED" @staticmethod def as_choices() -> List[Tuple[str, str]]: return [ (ReviewStatus.PENDING.name, "Pending"), (ReviewStatus.REQUESTED.name, "Requested"), (ReviewStatus.CANCELLED.name, "Cancelled"), (ReviewStatus.ACCEPTED.name, "Accepted"), (ReviewStatus.DECLINED.name, "Declined"), (ReviewStatus.COMPLETED.name, "Completed"), (ReviewStatus.EXTRACTING.name, "Retrieval in progress"), (ReviewStatus.EXTRACTED.name, "Retrieved"), (ReviewStatus.FAILED.name, "Retrieval failed"), (ReviewStatus.REGISTERED.name, "Registered"), ] @classmethod def get_description(cls, status: str) -> Optional[str]: choices = cls.as_choices() for choice in choices: if status == choice[0]: return choice[1] return None def generate_review_key(): return shortuuid.ShortUUID().random(length=32) class Review(models.Model): project = models.ForeignKey( Project, null=False, blank=False, on_delete=models.CASCADE, related_name="reviews", help_text="The project that the review is for.", ) creator = models.ForeignKey( User, null=True, blank=True, on_delete=models.SET_NULL, related_name="reviews_created", help_text="The user who created the review.", ) created = models.DateTimeField( auto_now_add=True, help_text="The time the review was created." ) updated = models.DateTimeField( auto_now=True, help_text="The time the review was last updated." ) status = models.CharField( max_length=16, choices=ReviewStatus.as_choices(), default=ReviewStatus.PENDING.name, help_text="The status of the review.", ) reviewer = models.ForeignKey( User, null=True, blank=True, on_delete=models.SET_NULL, related_name="reviews_authored", help_text="The user who authored the review.", ) reviewer_email = models.EmailField( null=True, blank=True, help_text="The email address of the reviewer.", ) key = models.CharField( default=generate_review_key, max_length=64, help_text="A unique, and very difficult to guess, key for the reviewer " "to access the review if they are not a user.", ) request_message = models.TextField( null=True, blank=True, help_text="The message sent to the reviewer in the request to review.", ) response_message = models.TextField( null=True, blank=True, help_text="The message provided by the reviewer when accepting or declining to review.", ) cancel_message = models.TextField( null=True, blank=True, help_text="The message sent to the reviewer when the review was cancelled.", ) source = models.ForeignKey( Source, null=True, blank=True, on_delete=models.SET_NULL, related_name="reviews", help_text="The source for this review.", ) job = models.ForeignKey( Job, null=True, blank=True, on_delete=models.PROTECT, related_name="reviews", help_text="The job that extracted the review from the source.", ) subject = models.ForeignKey( Node, null=True, blank=True, on_delete=models.PROTECT, related_name="reviews", help_text="The node, usually a `CreativeWork`, that is the subject of the review.", ) review = models.ForeignKey( Node, null=True, blank=True, on_delete=models.PROTECT, help_text="The node, of type `Review`, representing the actual review.", ) review_author_name = models.CharField( max_length=128, null=True, blank=True, help_text="The name of the reviewer.", ) review_date = models.DateTimeField( null=True, blank=True, help_text="The date of the review e.g it's `datePublished`.", ) review_title = models.TextField( null=True, blank=True, help_text="The title of the review.", ) review_description = models.TextField( null=True, blank=True, help_text="The description of the review.", ) review_comments = models.IntegerField( null=True, blank=True, help_text="The number of comments that the review has." ) def get_status(self) -> Optional[str]: return ReviewStatus.get_description(self.status) def get_date(self) -> datetime: return self.review_date or self.updated or self.created() def get_reviewer_name(self) -> Optional[str]: return ( self.reviewer.personal_account.display_name or self.reviewer.username if self.reviewer else self.review_author_name ) def get_reviewer_image(self) -> Optional[str]: return self.reviewer.personal_account.image.medium if self.reviewer else None def get_doi(self) -> Optional[str]: return self.review and self.review.dois.order_by("-created").first() def get_comments(self) -> Optional[int]: return self.review_comments def request(self): if self.reviewer_email or self.reviewer: self.status = ReviewStatus.REQUESTED.name self.save() def update( self, status: str, response_message: Optional[str] = None, cancel_message: Optional[str] = None, user: Optional[User] = None, filters: Dict = {}, ): if ( status == ReviewStatus.CANCELLED.name and self.status == ReviewStatus.REQUESTED.name ): self.cancel_message = cancel_message or None elif ( status == ReviewStatus.ACCEPTED.name and self.status == ReviewStatus.REQUESTED.name ): self.reviewer = user self.response_message = response_message or None try: agent = ProjectAgent.objects.get(project_id=self.project, user=user) except ProjectAgent.DoesNotExist: ProjectAgent.objects.create( project_id=self.project, user=user, role=ProjectRole.REVIEWER.name, ) else: if agent.role not in ProjectRole.and_above(ProjectRole.REVIEWER): agent.role = ProjectRole.REVIEWER.name agent.save() elif ( status == ReviewStatus.DECLINED.name and self.status == ReviewStatus.REQUESTED.name ): self.reviewer = user self.response_message = response_message or None elif status == ReviewStatus.COMPLETED.name and self.status in ( ReviewStatus.PENDING.name, ReviewStatus.ACCEPTED.name, ReviewStatus.FAILED.name, ): return self.extract(user, filters) elif ( status == ReviewStatus.REGISTERED.name and self.status == ReviewStatus.EXTRACTED.name ): return self.register(user) else: raise ValueError( f"Review can not be updated from {self.status} to {status}." ) self.status = status self.save() def extract(self, user: User, filters: Dict = {}): if self.source.type_name == "Github": match = re.match( r"https:\/\/github.com\/(?:\w+)\/(?:\w+)\/pull\/(\d+)#pullrequestreview-(\d+)", filters.get("filter_a", ""), ) if match: filters = dict( pr_number=int(match.group(1)), review_id=int(match.group(2)) ) elif self.source.type_name.startswith("Google"): filters = dict(name=filters.get("filter_a")) job = self.source.extract(review=self, user=user, filters=filters) job.dispatch() self.job = job self.status = ReviewStatus.EXTRACTING.name self.save()
Apache License 2.0
spacepatcher/firehol-ip-aggregator
app/api.py
search_get
python
def search_get(v: hug.types.text): if General.validate_request(v): payload = [v] else: return {"errors": "Data validation error in '%s'" % v} return FeedsStorage.search(payload)
Search for an IP object in all available feeds. Input: HTTP GET with parameter containing a single IP address
https://github.com/spacepatcher/firehol-ip-aggregator/blob/f96290330d9e632126049c8815b43f0e52938bfd/app/api.py#L40-L49
import hug from modules.db_sync import FeedsStorage from modules.general import General FeedsStorage = FeedsStorage() General = General() General.logger.info("API instance successfully started") @hug.post("/search", output=hug.output_format.json, version=1) def search(body): try: payload = body.read().decode("utf-8") except AttributeError: payload = body payload = payload.split(",") if isinstance(payload, list): for item in payload: if General.validate_request(item): pass else: return {"errors": "Data validation error in '%s'" % item} else: return {"errors": "Got an unrecognized structure"} return FeedsStorage.search(list(set(payload))) @hug.get("/search/ip", output=hug.output_format.json, examples="v=8.8.8.8", version=1)
Apache License 2.0
asheshjain399/tensormodels
tensormodels/data_reader/data_feeder.py
DataFeeder._launch_pipeline
python
def _launch_pipeline(self): self.data_processes = [] queue_size = 2 * self.num_preprocess_threads + 2 * self.num_gpu_towers self.data_queue = Queue(queue_size) image_files = open(self.data_file, 'r').readlines() labels = open(self.label_file, 'r').readlines() print 'Size of queue: ', queue_size self.filename_queue = Queue(len(image_files)) p = Process(target=self._create_filename_queue, args=(self.filename_queue, image_files, labels, self.num_epochs)) p.start() self.data_processes.append(p) print 'Data feeder started' for each_worker in range(self.num_preprocess_threads): p = Process(target=self._each_worker_process, args=(self.data_queue,)) p.start() self.data_processes.append(p)
This method creates two queues. filename_queue: stores the list of filesnames in data_file and label_file data_queue: stores the mini-batch
https://github.com/asheshjain399/tensormodels/blob/d808dc8d34067238f98d8a35372b2bb6cb344b31/tensormodels/data_reader/data_feeder.py#L46-L69
from multiprocessing import Queue, Process import multiprocessing as mp import numpy as np from numpy.random import RandomState rand = RandomState(123) class DataFeeder(): def __init__(self, data_file, label_file, reader_handle, data_list_shapes, label_list_shapes, batch_size=32, num_preprocess_threads=int(0.3 * mp.cpu_count()), num_gpu_towers=1, num_epochs=-1, data_type=np.uint8, label_type=np.int32 ): self.data_file = data_file self.label_file = label_file self.data_list_shapes = data_list_shapes self.label_list_shapes = label_list_shapes self.reader_handle = reader_handle self.num_preprocess_threads = num_preprocess_threads self.num_gpu_towers = num_gpu_towers self.batch_size = batch_size self.num_epochs = num_epochs self.data_type = data_type self.label_type = label_type self._launch_pipeline()
MIT License
square/connect-python-sdk
squareconnect/models/v1_merchant.py
V1Merchant.business_name
python
def business_name(self): return self._business_name
Gets the business_name of this V1Merchant. The name of the merchant's business. :return: The business_name of this V1Merchant. :rtype: str
https://github.com/square/connect-python-sdk/blob/e00e2889b2dd2c55048219cbe64db79962a68633/squareconnect/models/v1_merchant.py#L276-L284
from pprint import pformat from six import iteritems import re class V1Merchant(object): def __init__(self, id=None, name=None, email=None, account_type=None, account_capabilities=None, country_code=None, language_code=None, currency_code=None, business_name=None, business_address=None, business_phone=None, business_type=None, shipping_address=None, location_details=None, market_url=None): self.swagger_types = { 'id': 'str', 'name': 'str', 'email': 'str', 'account_type': 'str', 'account_capabilities': 'list[str]', 'country_code': 'str', 'language_code': 'str', 'currency_code': 'str', 'business_name': 'str', 'business_address': 'Address', 'business_phone': 'V1PhoneNumber', 'business_type': 'str', 'shipping_address': 'Address', 'location_details': 'V1MerchantLocationDetails', 'market_url': 'str' } self.attribute_map = { 'id': 'id', 'name': 'name', 'email': 'email', 'account_type': 'account_type', 'account_capabilities': 'account_capabilities', 'country_code': 'country_code', 'language_code': 'language_code', 'currency_code': 'currency_code', 'business_name': 'business_name', 'business_address': 'business_address', 'business_phone': 'business_phone', 'business_type': 'business_type', 'shipping_address': 'shipping_address', 'location_details': 'location_details', 'market_url': 'market_url' } self._id = id self._name = name self._email = email self._account_type = account_type self._account_capabilities = account_capabilities self._country_code = country_code self._language_code = language_code self._currency_code = currency_code self._business_name = business_name self._business_address = business_address self._business_phone = business_phone self._business_type = business_type self._shipping_address = shipping_address self._location_details = location_details self._market_url = market_url @property def id(self): return self._id @id.setter def id(self, id): self._id = id @property def name(self): return self._name @name.setter def name(self, name): self._name = name @property def email(self): return self._email @email.setter def email(self, email): self._email = email @property def account_type(self): return self._account_type @account_type.setter def account_type(self, account_type): self._account_type = account_type @property def account_capabilities(self): return self._account_capabilities @account_capabilities.setter def account_capabilities(self, account_capabilities): self._account_capabilities = account_capabilities @property def country_code(self): return self._country_code @country_code.setter def country_code(self, country_code): self._country_code = country_code @property def language_code(self): return self._language_code @language_code.setter def language_code(self, language_code): self._language_code = language_code @property def currency_code(self): return self._currency_code @currency_code.setter def currency_code(self, currency_code): self._currency_code = currency_code @property
Apache License 2.0
riotkit-org/riotkit-harbor
src/rkd_harbor/tasks/maintenance.py
BaseMaintenanceManagementTask.run
python
def run(self, context: ExecutionContext) -> bool: is_global = context.get_arg('--global') domain = context.get_arg('--domain') service = context.get_arg('--service') directory = self.get_data_path(context) + '/maintenance-mode' if not self._validate_switches(is_global, domain, service): self.io().error_msg('Cannot use together --global, --domain and --service switch. Pick one of them.') return False try: if is_global: return self.act([directory + '/on'], 'globally') elif service: return self.act_for_service(directory, service, context) elif domain: return self.act_for_domain(directory, domain, context) else: self.io().error_msg('Must specify --global or --domain switch') return False except PermissionError as e: self.io().error_msg('No write permissions. Set permissions or use sudo? %s' % str(e)) return False
Validate parameters and select action
https://github.com/riotkit-org/riotkit-harbor/blob/f6b47b74fc0b1655f4e98968a3f104ceb6d7c682/src/rkd_harbor/tasks/maintenance.py#L21-L49
import os from typing import List from argparse import ArgumentParser from abc import abstractmethod from rkd.api.contract import ExecutionContext from .base import HarborBaseTask from ..formatting import prod_formatting from ..exception import ServiceNotFoundInYamlLookedByCriteria from ..exception import ServiceNotFoundInYaml class BaseMaintenanceManagementTask(HarborBaseTask): def get_group_name(self) -> str: return ':harbor:maintenance' def configure_argparse(self, parser: ArgumentParser): parser.add_argument('--domain', '-d', help='Domain name', default='') parser.add_argument('--service', '-s', help='Service name', default='') parser.add_argument('--global', '-g', help='Set maintenance for all domains', action='store_true')
Apache License 2.0
jhuapl-boss/boss
django/boss/views.py
Metric._get_admin_user
python
def _get_admin_user(self): return User.objects.get(username=ADMIN_USER)
Lookup the admin user Returns: the User object for the Admin user
https://github.com/jhuapl-boss/boss/blob/c2e26d272bd7b8d54abdc2948193163537e31291/django/boss/views.py#L164-L170
from rest_framework.renderers import JSONRenderer from rest_framework.response import Response from rest_framework.views import APIView from rest_framework import permissions from django.contrib.auth.mixins import LoginRequiredMixin from bosscore.error import BossHTTPError, ErrorCodes from django.conf import settings from bossutils.logger import bossLogger import socket version = settings.BOSS_VERSION class Ping(APIView): authentication_classes = () permission_classes = (permissions.AllowAny,) renderer_classes = (JSONRenderer, ) def get(self, request): content = {'ip': socket.gethostbyname(socket.gethostname())} return Response(content) class Unsupported(APIView): authentication_classes = () permission_classes = (permissions.AllowAny,) renderer_classes = (JSONRenderer, ) def get(self, request): return BossHTTPError(" This API version is unsupported. Update to version {}".format(version), ErrorCodes.UNSUPPORTED_VERSION) def post(self, request): return BossHTTPError(" This API version is unsupported. Update to version {}".format(version), ErrorCodes.UNSUPPORTED_VERSION) def delete(self, request): return BossHTTPError(" This API version is unsupported. Update to version {}".format(version), ErrorCodes.UNSUPPORTED_VERSION) def put(self, request): return BossHTTPError(" This API version is unsupported. Update to version {}".format(version), ErrorCodes.UNSUPPORTED_VERSION) from django.http import HttpResponse, HttpResponseRedirect from django.views.generic import View from rest_framework.authtoken.models import Token as TokenModel class Token(LoginRequiredMixin, View): def get(self, request): action = request.GET.get('action', None) try: token = TokenModel.objects.get(user = request.user) if action == "Revoke": token.delete() token = None except: if action == "Generate": token = TokenModel.objects.create(user = request.user) else: token = None if token is None: content = "" button = "Generate" else: content = "<textarea>{}</textarea>".format(token) button = "Revoke" html = """ <html> <head><title>BOSS Token Management</title></head> <body> {1} <a href="{0}?action={2}">{2}</a> </body> </html> """.format(request.path_info, content, button) return HttpResponse(html) from boss.throttling import MetricDatabase from bosscore.constants import ADMIN_USER from django.contrib.auth.models import User from bosscore.models import ThrottleMetric, ThrottleThreshold, ThrottleUsage class Metric(LoginRequiredMixin, APIView): renderer_classes = (JSONRenderer, ) def __init__(self): self.blog = bossLogger() self.metricdb = MetricDatabase()
Apache License 2.0
kraymer/flinck
flinck/confit.py
config_dirs
python
def config_dirs(): paths = [] if platform.system() == 'Darwin': paths.append(MAC_DIR) paths.append(UNIX_DIR_FALLBACK) if UNIX_DIR_VAR in os.environ: paths.append(os.environ[UNIX_DIR_VAR]) elif platform.system() == 'Windows': paths.append(WINDOWS_DIR_FALLBACK) if WINDOWS_DIR_VAR in os.environ: paths.append(os.environ[WINDOWS_DIR_VAR]) else: paths.append(UNIX_DIR_FALLBACK) if UNIX_DIR_VAR in os.environ: paths.append(os.environ[UNIX_DIR_VAR]) out = [] for path in paths: path = os.path.abspath(os.path.expanduser(path)) if path not in out: out.append(path) return out
Return a platform-specific list of candidates for user configuration directories on the system. The candidates are in order of priority, from highest to lowest. The last element is the "fallback" location to be used when no higher-priority config file exists.
https://github.com/kraymer/flinck/blob/b3d0076e2b3ab74c0a8f4a3c8abf5631ee362438/flinck/confit.py#L559-L592
from __future__ import division, absolute_import, print_function import platform import os import pkgutil import sys import yaml import types import collections import re try: from collections import OrderedDict except ImportError: from ordereddict import OrderedDict UNIX_DIR_VAR = 'XDG_CONFIG_HOME' UNIX_DIR_FALLBACK = '~/.config' WINDOWS_DIR_VAR = 'APPDATA' WINDOWS_DIR_FALLBACK = '~\\AppData\\Roaming' MAC_DIR = '~/Library/Application Support' CONFIG_FILENAME = 'config.yaml' DEFAULT_FILENAME = 'config_default.yaml' ROOT_NAME = 'root' YAML_TAB_PROBLEM = "found character '\\t' that cannot start any token" REDACTED_TOMBSTONE = 'REDACTED' PY3 = sys.version_info[0] == 3 STRING = str if PY3 else unicode BASESTRING = str if PY3 else basestring NUMERIC_TYPES = (int, float) if PY3 else (int, float, long) TYPE_TYPES = (type,) if PY3 else (type, types.ClassType) def iter_first(sequence): it = iter(sequence) try: if PY3: return next(it) else: return it.next() except StopIteration: raise ValueError() class ConfigError(Exception): class NotFoundError(ConfigError): class ConfigValueError(ConfigError): class ConfigTypeError(ConfigValueError): class ConfigTemplateError(ConfigError): class ConfigReadError(ConfigError): def __init__(self, filename, reason=None): self.filename = filename self.reason = reason message = u'file {0} could not be read'.format(filename) if isinstance(reason, yaml.scanner.ScannerError) and reason.problem == YAML_TAB_PROBLEM: message += u': found tab character at line {0}, column {1}'.format( reason.problem_mark.line + 1, reason.problem_mark.column + 1, ) elif reason: message += u': {0}'.format(reason) super(ConfigReadError, self).__init__(message) class ConfigSource(dict): def __init__(self, value, filename=None, default=False): super(ConfigSource, self).__init__(value) if filename is not None and not isinstance(filename, BASESTRING): raise TypeError(u'filename must be a string or None') self.filename = filename self.default = default def __repr__(self): return 'ConfigSource({0!r}, {1!r}, {2!r})'.format( super(ConfigSource, self), self.filename, self.default, ) @classmethod def of(self, value): if isinstance(value, ConfigSource): return value elif isinstance(value, dict): return ConfigSource(value) else: raise TypeError(u'source value must be a dict') class ConfigView(object): name = None def resolve(self): raise NotImplementedError def first(self): pairs = self.resolve() try: return iter_first(pairs) except ValueError: raise NotFoundError(u"{0} not found".format(self.name)) def exists(self): try: self.first() except NotFoundError: return False return True def add(self, value): raise NotImplementedError def set(self, value): raise NotImplementedError def root(self): raise NotImplementedError def __repr__(self): return '<{}: {}>'.format(self.__class__.__name__, self.name) def __iter__(self): try: keys = self.keys() for key in keys: yield key except ConfigTypeError: collection = self.get() if not isinstance(collection, (list, tuple)): raise ConfigTypeError( u'{0} must be a dictionary or a list, not {1}'.format( self.name, type(collection).__name__ ) ) for index in range(len(collection)): yield self[index] def __getitem__(self, key): return Subview(self, key) def __setitem__(self, key, value): self.set({key: value}) def __contains__(self, key): return self[key].exists() def set_args(self, namespace): args = {} for key, value in namespace.__dict__.items(): if value is not None: args[key] = value self.set(args) def __str__(self): if PY3: return self.__unicode__() else: return bytes(self.get()) def __unicode__(self): return STRING(self.get()) def __nonzero__(self): return self.__bool__() def __bool__(self): return bool(self.get()) def keys(self): keys = [] for dic, _ in self.resolve(): try: cur_keys = dic.keys() except AttributeError: raise ConfigTypeError( u'{0} must be a dict, not {1}'.format( self.name, type(dic).__name__ ) ) for key in cur_keys: if key not in keys: keys.append(key) return keys def items(self): for key in self.keys(): yield key, self[key] def values(self): for key in self.keys(): yield self[key] def all_contents(self): for collection, _ in self.resolve(): try: it = iter(collection) except TypeError: raise ConfigTypeError( u'{0} must be an iterable, not {1}'.format( self.name, type(collection).__name__ ) ) for value in it: yield value def flatten(self, redact=False): od = OrderedDict() for key, view in self.items(): if redact and view.redact: od[key] = REDACTED_TOMBSTONE else: try: od[key] = view.flatten(redact=redact) except ConfigTypeError: od[key] = view.get() return od def get(self, template=None): return as_template(template).value(self, template) def as_filename(self): return self.get(Filename()) def as_choice(self, choices): return self.get(Choice(choices)) def as_number(self): return self.get(Number()) def as_str_seq(self): return self.get(StrSeq()) @property def redact(self): return () in self.get_redactions() @redact.setter def redact(self, flag): self.set_redaction((), flag) def set_redaction(self, path, flag): raise NotImplementedError() def get_redactions(self): raise NotImplementedError() class RootView(ConfigView): def __init__(self, sources): self.sources = list(sources) self.name = ROOT_NAME self.redactions = set() def add(self, obj): self.sources.append(ConfigSource.of(obj)) def set(self, value): self.sources.insert(0, ConfigSource.of(value)) def resolve(self): return ((dict(s), s) for s in self.sources) def clear(self): del self.sources[:] self.redactions.clear() def root(self): return self def set_redaction(self, path, flag): if flag: self.redactions.add(path) elif path in self.redactions: self.redactions.remove(path) def get_redactions(self): return self.redactions class Subview(ConfigView): def __init__(self, parent, key): self.parent = parent self.key = key if isinstance(self.parent, RootView): self.name = '' else: self.name = self.parent.name if not isinstance(self.key, int): self.name += '.' if isinstance(self.key, int): self.name += u'#{0}'.format(self.key) elif isinstance(self.key, BASESTRING): if isinstance(self.key, bytes): self.name += self.key.decode('utf8') else: self.name += self.key else: self.name += repr(self.key) def resolve(self): for collection, source in self.parent.resolve(): try: value = collection[self.key] except IndexError: continue except KeyError: continue except TypeError: raise ConfigTypeError( u"{0} must be a collection, not {1}".format( self.parent.name, type(collection).__name__ ) ) yield value, source def set(self, value): self.parent.set({self.key: value}) def add(self, value): self.parent.add({self.key: value}) def root(self): return self.parent.root() def set_redaction(self, path, flag): self.parent.set_redaction((self.key,) + path, flag) def get_redactions(self): return (kp[1:] for kp in self.parent.get_redactions() if kp and kp[0] == self.key) def _package_path(name): loader = pkgutil.get_loader(name) if loader is None or name == b'__main__': return None if hasattr(loader, 'get_filename'): filepath = loader.get_filename(name) else: __import__(name) filepath = sys.modules[name].__file__ return os.path.dirname(os.path.abspath(filepath))
MIT License
pimoroni/grow-python
library/grow/__init__.py
Piezo.beep
python
def beep(self, frequency=440, timeout=0.1, blocking=True, force=False): if blocking: self.start(frequency=frequency) time.sleep(timeout) self.stop() return True else: if self._timeout is not None: if self._timeout.is_alive(): if force: self._timeout.cancel() else: return False self._timeout = threading.Timer(timeout, self.stop) self.start(frequency=frequency) self._timeout.start() return True
Beep the piezo for time seconds. :param freq: Frequency, in hertz, of the piezo :param timeout: Time, in seconds, of the piezo beep :param blocking: If true, function will block until piezo has stopped
https://github.com/pimoroni/grow-python/blob/9ddb040294da4ac0184e09fb0765d46c71edd5d1/library/grow/__init__.py#L45-L68
__version__ = '0.0.2' import time import atexit import threading import RPi.GPIO as GPIO class Piezo(): def __init__(self, gpio_pin=13): GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(gpio_pin, GPIO.OUT, initial=GPIO.LOW) self.pwm = GPIO.PWM(gpio_pin, 440) self.pwm.start(0) self._timeout = None atexit.register(self._exit) def frequency(self, value): self.pwm.ChangeFrequency(value) def start(self, frequency=None): if frequency is not None: self.frequency(frequency) self.pwm.ChangeDutyCycle(1) def stop(self): self.pwm.ChangeDutyCycle(0)
MIT License
trusat/trusat-backend
test_API_snapshots.py
api_get
python
def api_get(endpoint, is_json, params): return api_request(endpoint, is_json, False, params)
GETs a resource from an API endpoint, decoding it and prettifying it if JSON. Also prints timing info.
https://github.com/trusat/trusat-backend/blob/8ae226dbe52231fac42ff7d799f484ffa6e888ed/test_API_snapshots.py#L54-L59
import requests import json from snapshottest.file import FileSnapshot import time from enum import Enum API_BASE_URL = "http://127.0.0.1:8080" TEST_OBJECT_IDENTIFIER = {'norad_number': 40538} class RequestMethod(Enum): GET = 1 POST = 2 def api_request(endpoint, expect_json_response, post_data, get_params): start = time.time() if post_data: r = requests.post(API_BASE_URL + endpoint, json=post_data) else: r = requests.get(API_BASE_URL + endpoint, params=get_params, headers={'Accept': 'Cache-Control'}) end = time.time() print(f"{'POST' if post_data else 'GET'} {endpoint} took {end - start} seconds") if (expect_json_response): output = json.loads(r.content) formatted = json.dumps(output, sort_keys=True, indent=4, separators=(',', ': ')) else: formatted = r.content.decode('utf-8') headers = r.headers headers['Date'] = 'XXX' return f"STATUS: {r.status_code}\n\nHEADERS:{headers}\n\nCONTENT:{formatted}" def api_post(endpoint, data, expect_json_response=True): return api_request(endpoint, expect_json_response, data,{})
Apache License 2.0
mitmproxy/mitmproxy
mitmproxy/tools/console/layoutwidget.py
LayoutWidget.layout_pushed
python
def layout_pushed(self, prev): pass
We have just pushed a window onto the stack.
https://github.com/mitmproxy/mitmproxy/blob/667d4e04749a4bc2212f58fa2b8c31cd1d91fc7b/mitmproxy/tools/console/layoutwidget.py#L36-L40
class LayoutWidget: title = "" keyctx = "" def key_responder(self): return self def focus_changed(self): pass def view_changed(self): pass def layout_popping(self): pass
MIT License
skoltechrobotics/hokuyolx
hokuyolx/hokuyo.py
HokuyoLX._get_info
python
def _get_info(self, cmd): status, data = self._send_req(cmd) if status != '00': raise HokuyoStatusException(status) return dict(self._process_info_line(line) for line in data if line)
Generic method for recieving and decoding sensor information, accepts the following commands: II, VV and PP
https://github.com/skoltechrobotics/hokuyolx/blob/07bb42d76db5b458001f65fe9eb7109ed1995330/hokuyolx/hokuyo.py#L790-L796
import socket import logging import time import numpy as np from codecs import encode, decode from .exceptions import HokuyoException, HokuyoStatusException from .exceptions import HokuyoChecksumMismatch from .statuses import activation_statuses, laser_states, tsync_statuses class HokuyoLX(object): addr = ('192.168.0.10', 10940) dmin = 20 dmax = 30000 ares = 1440 amin = 0 amax = 1080 aforw = 540 scan_freq = 40 model = 'UST-10LX' tzero = 0 tn = 0 convert_time = True _sock = None _logger = None def __init__(self, activate=True, info=True, tsync=True, addr=None, buf=512, timeout=5, time_tolerance=300, logger=None, convert_time=True): super(HokuyoLX, self).__init__() if addr is not None: self.addr = addr self.buf = buf self.timeout = timeout self._logger = logging.getLogger('hokuyo') if logger is None else logger self.time_tolerance = time_tolerance self.convert_time = convert_time self._connect_to_laser(False) if tsync: self.time_sync() if info: self.update_info() if activate: self.activate() @staticmethod def _check_sum(msg, cc=None): if cc is None: cmsg, cc = msg[:-1], msg[-1:] else: cmsg = msg conv_msg = cmsg if isinstance(cmsg, bytes) else encode(cmsg, 'ascii') conv_sum = decode(cc, 'ascii') if isinstance(msg, bytes) else cc calc_sum = chr((sum(bytearray(conv_msg)) & 0x3f) + 0x30) if calc_sum != conv_sum: raise HokuyoChecksumMismatch( 'For message %s sum mismatch: %s vs %s' % (decode(conv_msg, 'ascii'), calc_sum, cc)) return cmsg @staticmethod def _convert2int(chars): return sum([(ord(char) - 0x30) << (6*(len(chars) - i - 1)) for i, char in enumerate(chars)]) def _convert2ts(self, chars, convert=None): ts = self._convert2int(self._check_sum(chars)) if not (self.convert_time if convert is None else convert): return ts logging.debug('Sensor timestamp: %d', ts) t = self.tzero + ts + self._tn*(1 << 24) logging.debug('Converted timestamp: %d (t0: %d, tn: %d)', t, self.tzero, self._tn) dt = int(time.time()*1000) - t logging.debug('Delta t with local time: %d', dt) if abs(dt) > self.time_tolerance: diff = (1 << 24) - self.time_tolerance if dt > diff and self.tzero != 0: self._logger.warning('Timestamp overflow detected, ' '%d -- %d' % (dt, diff)) self._tn += 1 else: self._logger.warning( 'Time difference %d is too big. Resyncing...', dt) self.time_sync() return self._convert2ts(chars) return t def _connect_to_laser(self, close=True): if close: self.close() self._logger.info('Connecting to the laser') self._sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._sock.settimeout(self.timeout) try: self._sock.connect(self.addr) except socket.timeout: raise HokuyoException('Failed to connect to the sensor') def _send_cmd(self, cmd, params='', string=''): if not (len(cmd) == 2 or (cmd[0] == '%' and len(cmd) == 3)): raise HokuyoException( 'Command must be two chars string ' 'or three chars starting with %%, got %d chars' % len(cmd)) self._logger.debug( 'Sending command to the sensor; ' 'cmd: %s, params: %s, string: %s', cmd, params, string) req = cmd + params if string: req += ';' + string if self._sock is None: raise HokuyoException('Not connected to the laser') n = self._sock.send(encode(req, 'ascii') + b'\n') if len(req) + 1 != n: raise HokuyoException('Failed to send all data to the sensor') return req def _recv(self, header=None): self._logger.debug('Recieving data from sensor') if self._sock is None: raise HokuyoException('Not connected to the laser') try: while True: data = b'' while not data.endswith(b'\n\n'): data += self._sock.recv(self.buf) self._logger.debug('Recieved data: %s' % data) split_data = decode(data[:-2], 'ascii').split('\n') if header is not None and split_data[0] != header: self._logger.warning( 'Discarded data due header mismatch: %s' % data) continue break except socket.timeout: raise HokuyoException('Connection timeout') return split_data def _send_req(self, cmd, params='', string=''): self._logger.debug( 'Performing request; cmd: %s, params: %s, string: %s', cmd, params, string) header = self._send_cmd(cmd, params, string) resp = self._recv(header) if resp.pop(0) != header: raise HokuyoException('Response header mismatch') status_str = resp.pop(0) status = self._check_sum(status_str) self._logger.debug('Got response with status %s', status) return status, resp def get_angles(self, start=None, end=None, grouping=0): start = self.amin if start is None else start end = self.amax if end is None else end grouping = 1 if grouping == 0 else grouping num = self.amax - self.amin + 1 space = np.linspace(self.amin, self.amax, num) - self.aforw angles = 2*np.pi*space/self.ares return angles[start:end+1:grouping] def _process_scan_data(self, data, with_intensity): raw_data = ''.join([self._check_sum(block) for block in data]) if len(raw_data) % 3 != 0: raise HokuyoException('Wrong length of scan data') scan = np.array([ self._convert2int(raw_data[3*i:3*i+3]) for i in range(len(raw_data)//3)], np.uint32) if with_intensity: return scan.reshape((len(scan)//2, 2)) return scan def _filter(self, scan, start=None, end=None, grouping=0, dmin=None, dmax=None, imin=None, imax=None): angles = self.get_angles(start, end, grouping) if scan.ndim == 1: tpl = (angles, scan) elif scan.ndim == 2: tpl = (angles, scan[:, 0], scan[:, 1]) else: raise HokuyoException('Unexpected scan dimensions') data = np.vstack(tpl).T dmin = self.dmin if dmin is None else dmin dmax = self.dmax if dmax is None else dmax data = data[(data[:, 1] >= dmin) & (data[:, 1] <= dmax)] if imin is not None: data = data[data[:, 2] >= imin] if imax is not None: data = data[data[:, 2] <= imax] return data def _force_standby(self): state, description = self.laser_state() if state in (3, 4, 5): self.standby() elif state == 2: self.tsync_exit() elif state != 0: raise HokuyoException('Unexpected laser state: %s' % description) def activate(self): self._logger.info('Activating sensor') status, _ = self._send_req('BM') if status not in activation_statuses: raise HokuyoStatusException(status) return int(status), activation_statuses[status] def standby(self): self._logger.info('Switching sensor to the standby state') status, _ = self._send_req('QT') if status != '00': raise HokuyoStatusException(status) def sleep(self): self._logger.info('Switching sensor to the sleep state') self._force_standby() status, _ = self._send_req('%SL') if status != '00': raise HokuyoStatusException(status) def _single_measurment(self, with_intensity, start, end, grouping): start = self.amin if start is None else start end = self.amax if end is None else end params = '%0.4d%0.4d%0.2d' % (start, end, grouping) cmd = 'GE' if with_intensity else 'GD' status, data = self._send_req(cmd, params) if status != '00': raise HokuyoStatusException(status) timestamp = self._convert2ts(data.pop(0)) scan = self._process_scan_data(data, with_intensity) return timestamp, scan def get_dist(self, start=None, end=None, grouping=0): return self._single_measurment(False, start, end, grouping) def get_intens(self, start=None, end=None, grouping=0): return self._single_measurment(True, start, end, grouping) def get_filtered_dist(self, start=None, end=None, grouping=0, dmin=None, dmax=None): ts, scan = self.get_dist(start, end, grouping) return ts, self._filter(scan, start, end, grouping, dmin, dmax) def get_filtered_intens(self, start=None, end=None, grouping=0, dmin=None, dmax=None, imin=None, imax=None): ts, scan = self.get_intens(start, end, grouping) return ts, self._filter(scan, start, end, grouping, dmin, dmax, imin, imax) def _iter_meas(self, with_intensity, scans, start, end, grouping, skips): self._logger.info('Initializing continous measurment') start = self.amin if start is None else start end = self.amax if end is None else end params = '%0.4d%0.4d%0.2d%0.1d%0.2d' % (start, end, grouping, skips, scans) cmd = 'ME' if with_intensity else 'MD' status, _ = self._send_req(cmd, params) if status != '00': raise HokuyoStatusException(status) self._logger.info('Starting scan response cycle') while True: data = self._recv() self._logger.debug('Recieved data in the scan response cycle: %s' % data) header = data.pop(0) req = cmd + params[:-2] if not header.startswith(req): raise HokuyoException('Header mismatch in the scan ' 'response message') pending = int(header[len(req):len(req) + 2]) status = self._check_sum(data.pop(0)) if status == '0M': self._logger.warning('Unstable scanner condition') continue elif status != '99': raise HokuyoStatusException(status) timestamp = self._convert2ts(data.pop(0)) scan = self._process_scan_data(data, with_intensity) self._logger.info('Got new scan, yielding...') yield (scan, timestamp, pending) if pending == 0 and scans != 0: self._logger.info('Last scan recieved, exiting generator') break def iter_dist(self, scans=0, start=None, end=None, grouping=0, skips=0): return self._iter_meas(False, scans, start, end, grouping, skips) def iter_intens(self, scans=0, start=None, end=None, grouping=0, skips=0): return self._iter_meas(True, scans, start, end, grouping, skips) def iter_filtered_dist(self, scans=0, start=None, end=None, grouping=0, skips=0, dmin=None, dmax=None): gen = self.iter_dist(scans, start, end, grouping, skips) for scan, timestamp, pending in gen: scan = self._filter(scan, start, end, grouping, dmin, dmax) yield (scan, timestamp, pending) def iter_filtered_intens(self, scans=0, start=None, end=None, grouping=0, skips=0, dmin=None, dmax=None, imin=None, imax=None): gen = self.iter_intens(scans, start, end, grouping, skips) for scan, timestamp, pending in gen: scan = self._filter(scan, start, end, grouping, dmin, dmax, imin, imax) yield (scan, timestamp, pending) def _tsync_cmd(self, code): status, data = self._send_req('TM', str(code)) if status not in tsync_statuses: raise HokuyoStatusException(status) if data: return status, tsync_statuses[status], data[0] else: return status, tsync_statuses[status] def tsync_enter(self): self._logger.info('Entering time sync mode') return self._tsync_cmd(0) def tsync_get(self): resp = self._tsync_cmd(1) if resp[0] != '00': raise HokuyoException( 'Failed to get sensor time: %s (%s)' % (resp[1], resp[0])) return self._convert2ts(resp[2], False) def tsync_exit(self): self._logger.info('Exiting time sync mode') return self._tsync_cmd(2) def time_sync(self, N=10, dt=0.1): self._logger.info('Starting time synchronization.') self._force_standby() code, description = self.tsync_enter() if code != '00': self._logger.info( 'Failed to enter time sync mode: %s (%s)' % (description, code)) self._logger.info('Collecting timestamps...') tzero_list = [] for _ in range(N): tzero_list.append(time.time()*1000 - self.tsync_get()) time.sleep(dt) self.tzero = int(np.mean(np.rint(np.array(tzero_list)))) self._tn = 0 self._logger.info('Time sync done, t0: %d ms' % self.tzero) code, description = self.tsync_exit() if code != '00': self._logger.info( 'Failed to exit time sync mode: %s (%s)' % (description, code)) def _process_info_line(self, line): key, value = self._check_sum(line[:-2], line[-1:]).split(':') return key, int(value) if value.isdigit() else value
MIT License
shaunduncan/nosqlite
nosqlite.py
_eq
python
def _eq(field, value, document): try: return document.get(field, None) == value except TypeError: return False
Returns True if the value of a document field is equal to a given value
https://github.com/shaunduncan/nosqlite/blob/3033c029b7c8290c66a8b36dc512e560505d4c85/nosqlite.py#L430-L437
import json import re import sqlite3 import sys import warnings from functools import partial from itertools import starmap try: from itertools import ifilter as filter, imap as map except ImportError: pass class MalformedQueryException(Exception): pass class Connection(object): def __init__(self, *args, **kwargs): self._collections = {} self.connect(*args, **kwargs) def connect(self, *args, **kwargs): self.db = sqlite3.connect(*args, **kwargs) self.db.isolation_level = None def close(self): if self.db is not None: self.db.close() def __getitem__(self, name): if name not in self._collections: self._collections[name] = Collection(self.db, name) return self._collections[name] def __getattr__(self, name): if name in self.__dict__: return self.__dict__[name] return self[name] def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_traceback): self.close() return False def drop_collection(self, name): self.db.execute("drop table if exists %s" % name) class Collection(object): def __init__(self, db, name, create=True): self.db = db self.name = name if create: self.create() def clear(self): self.db.execute("delete from %s" % self.name) def exists(self): return self._object_exists('table', self.name) def _object_exists(self, type, name): row = self.db.execute( "select count(1) from sqlite_master where type = ? and name = ?", (type, name.strip('[]')) ).fetchone() return int(row[0]) > 0 def create(self): self.db.execute(""" create table if not exists %s ( id integer primary key autoincrement, data text not null ) """ % self.name) def insert(self, document): if '_id' in document: return self.update(document) cursor = self.db.execute(""" insert into %s(data) values (?) """ % self.name, (json.dumps(document),)) document['_id'] = cursor.lastrowid return document def update(self, document): if '_id' not in document: return self.insert(document) copy = document.copy() del copy['_id'] self.db.execute(""" update %s set data = ? where id = ? """ % self.name, (json.dumps(copy), document['_id'])) return document def remove(self, document): assert '_id' in document, 'Document must have an id' self.db.execute("delete from %s where id = ?" % self.name, (document['_id'],)) def save(self, document): return self.update(document) def delete(self, document): return self.remove(document) def _load(self, id, data): if isinstance(data, bytes): data = data.decode('utf-8') document = json.loads(data) document['_id'] = id return document def find(self, query=None, limit=None): results = [] query = query or {} cursor = self.db.execute("select id, data from %s" % self.name) apply = partial(self._apply_query, query) for match in filter(apply, starmap(self._load, cursor.fetchall())): results.append(match) if limit and len(results) == limit: return results return results def _apply_query(self, query, document): matches = [] reapply = lambda q: self._apply_query(q, document) for field, value in query.items(): if field == '$and': matches.append(all(map(reapply, value))) elif field == '$or': matches.append(any(map(reapply, value))) elif field == '$nor': matches.append(not any(map(reapply, value))) elif field == '$not': matches.append(not self._apply_query(value, document)) elif isinstance(value, dict): for operator, arg in value.items(): if not self._get_operator_fn(operator)(field, arg, document): matches.append(False) break else: matches.append(True) elif value != document.get(field, None): if '.' in field: nodes = field.split('.') document_section = document try: for path in nodes[:-1]: document_section = document_section.get(path, None) except AttributeError: document_section = None if document_section is None: matches.append(False) else: if value != document_section.get(nodes[-1], None): matches.append(False) else: matches.append(False) return all(matches) def _get_operator_fn(self, op): if not op.startswith('$'): raise MalformedQueryException("Operator '%s' is not a valid query operation" % op) try: return getattr(sys.modules[__name__], op.replace('$', '_')) except AttributeError: raise MalformedQueryException("Operator '%s' is not currently implemented" % op) def find_one(self, query=None): try: return self.find(query=query, limit=1)[0] except (sqlite3.OperationalError, IndexError): return None def find_and_modify(self, query=None, update=None): update = update or {} for document in self.find(query=query): document.update(update) self.update(document) def count(self, query=None): return len(self.find(query=query)) def rename(self, new_name): new_collection = Collection(self.db, new_name, create=False) assert not new_collection.exists() self.db.execute("alter table %s rename to %s" % (self.name, new_name)) self.name = new_name def distinct(self, key): return set(d[key] for d in filter(lambda d: key in d, self.find())) def create_index(self, key, reindex=True, sparse=False): warnings.warn('Index support is currently very alpha and is not guaranteed') if isinstance(key, (list, tuple)): index_name = ','.join(key) index_columns = ', '.join('%s text' % f for f in key) else: index_name = key index_columns = '%s text' % key table_name = '[%s{%s}]' % (self.name, index_name) reindex = reindex or not self._object_exists('table', table_name) self.db.execute(""" create table if not exists {table} ( id integer primary key, {columns}, foreign key(id) references {collection}(id) on delete cascade on update cascade ) """.format( table=table_name, collection=self.name, columns=index_columns )) self.db.execute(""" create index if not exists [idx.{collection}{{index}}] on {table}({index}) """.format( collection=self.name, index=index_name, table=table_name, )) if reindex: self.reindex(key) def ensure_index(self, key, sparse=False): self.create_index(key, reindex=False, sparse=False) def reindex(self, table, sparse=False): warnings.warn('Index support is currently very alpha and is not guaranteed') index = re.findall(r'^\[.*\{(.*)\}\]$', table)[0].split(',') update = "update {table} set {key} = ? where id = ?" insert = "insert into {table}({index}) values({q})" count = "select count(1) from {table} where id = ?" qs = ('?,' * len(index)).rstrip(',') for document in self.find(): row = self.db.execute(count.format(table=table), (document['_id'],)).fetchone() if int(row[0]) == 0: self.db.execute(insert.format(table=table, index=index, q=qs), [None for x in index]) for key in index: if key not in document and sparse: continue self.db.execute(update.format(table=table, key=key), (document.get(key, None), document['_id'])) def drop_index(self): warnings.warn('Index support is currently very alpha and is not guaranteed') pass def drop_indexes(self): warnings.warn('Index support is currently very alpha and is not guaranteed') pass
MIT License
thalesgroup/pycryptoki
pycryptoki/ca_extensions/hsm_info.py
ca_retrieve_license_list
python
def ca_retrieve_license_list(slot): license_len = c_ulong() ret = CA_RetrieveLicenseList(slot, byref(license_len), None) if ret == CKR_OK: licenses = (c_ulong * license_len.value)() ret = CA_RetrieveLicenseList(slot, license_len, cast(licenses, POINTER(c_ulong))) LOG.info("Getting license id. slot=%s", slot) if ret != CKR_OK: return ret, [] else: return ret, [] return ret, [(licenses[x], licenses[x + 1]) for x in range(0, license_len.value, 2)]
Gets the license info for a given slot id :param int slot_id: Slot index to get the license id's :returns: (A python list representing the license id's) :rtype: list
https://github.com/thalesgroup/pycryptoki/blob/b1c97389b9db11c8bd96722db5347cc54a051602/pycryptoki/ca_extensions/hsm_info.py#L20-L38
import logging from ctypes import c_ulong, byref, cast, POINTER from pycryptoki.cryptoki import ( CK_ULONG, CA_GetNumberOfAllowedContainers, CA_RetrieveLicenseList, CA_GetHSMStorageInformation, CA_GetTSV, CA_GetCVFirmwareVersion, ) from pycryptoki.exceptions import make_error_handle_function from pycryptoki.defines import CKR_OK LOG = logging.getLogger(__name__)
Apache License 2.0
ibm/low-resource-text-classification-framework
lrtc_lib/oracle_data_access/oracle_data_access_api.py
get_gold_labels
python
def get_gold_labels(dataset_name: str, text_element_uris: Sequence[str], category_name: str = None) -> List[Tuple[str, Mapping[str, Label]]]: gold_labels = oracle_utils.get_gold_labels(dataset_name, category_name) return [(uri, gold_labels[uri]) for uri in text_element_uris if gold_labels[uri]]
Return the gold labels information for the given TextElements uris, keeping the same order, for the given dataset. If no gold labels information was added for this dataset, an empty dict is returned. :param dataset_name: the name of the dataset from which the gold labels should be retrieved :param text_element_uris: :param category_name: the name of the category for which label information is needed. Default is None, meaning all categories. :return: a list of tuples of TextElement uri and a dictionary of categories to Labels. The order of tuples is the same order as the order of the TextElement uris given as input.
https://github.com/ibm/low-resource-text-classification-framework/blob/4380755a65b35265e84ecbf4b87e872d79e8f079/lrtc_lib/oracle_data_access/oracle_data_access_api.py#L37-L52
import dataclasses import os import ujson as json from typing import Sequence, List, Mapping, Tuple, Set import lrtc_lib.oracle_data_access.core.utils as oracle_utils from lrtc_lib.data_access.core.data_structs import Label from lrtc_lib.orchestrator.orchestrator_api import LABEL_POSITIVE, LABEL_NEGATIVE def add_gold_labels(dataset_name: str, text_and_gold_labels: List[Tuple[str, Mapping[str, Label]]]): oracle_utils.gold_labels_per_dataset = (dataset_name, dict(text_and_gold_labels)) simplified_labels = {k: {str(category): label.to_dict() for category, label in v.items()} for k, v in oracle_utils.gold_labels_per_dataset[1].items()} gold_labels_encoded = json.dumps(simplified_labels) os.makedirs(oracle_utils.get_gold_labels_dump_dir(), exist_ok=True) with open(oracle_utils.get_labels_dump_filename(dataset_name), 'w') as f: f.write(gold_labels_encoded)
Apache License 2.0
lscsoft/bilby
bilby/core/result.py
Result.nested_samples
python
def nested_samples(self): if self._nested_samples is not None: return self._nested_samples else: raise ValueError("Result object has no stored nested samples")
An array of unweighted samples
https://github.com/lscsoft/bilby/blob/b1e02f1dfae03d4939cae9c95eff300c22919689/bilby/core/result.py#L628-L633
import inspect import json import os from collections import OrderedDict, namedtuple from copy import copy from importlib import import_module from itertools import product import numpy as np import pandas as pd import scipy.stats from . import utils from .utils import ( logger, infer_parameters_from_function, check_directory_exists_and_if_not_mkdir, latex_plot_format, safe_save_figure, BilbyJsonEncoder, load_json, move_old_file, get_version_information, decode_bilby_json, docstring, recursively_save_dict_contents_to_group, recursively_load_dict_contents_from_group, recursively_decode_bilby_json, ) from .prior import Prior, PriorDict, DeltaFunction, ConditionalDeltaFunction def result_file_name(outdir, label, extension='json', gzip=False): if extension == 'pickle': extension = 'pkl' if extension in ['json', 'hdf5', 'pkl']: if extension == 'json' and gzip: return os.path.join(outdir, '{}_result.{}.gz'.format(label, extension)) else: return os.path.join(outdir, '{}_result.{}'.format(label, extension)) else: raise ValueError("Extension type {} not understood".format(extension)) def _determine_file_name(filename, outdir, label, extension, gzip): if filename is not None: return filename else: if (outdir is None) and (label is None): raise ValueError("No information given to load file") else: return result_file_name(outdir, label, extension, gzip) def read_in_result(filename=None, outdir=None, label=None, extension='json', gzip=False): filename = _determine_file_name(filename, outdir, label, extension, gzip) extension = os.path.splitext(filename)[1].lstrip('.') if extension == 'gz': extension = os.path.splitext(os.path.splitext(filename)[0])[1].lstrip('.') if 'json' in extension: result = Result.from_json(filename=filename) elif ('hdf5' in extension) or ('h5' in extension): result = Result.from_hdf5(filename=filename) elif ("pkl" in extension) or ("pickle" in extension): result = Result.from_pickle(filename=filename) elif extension is None: raise ValueError("No filetype extension provided") else: raise ValueError("Filetype {} not understood".format(extension)) return result def get_weights_for_reweighting( result, new_likelihood=None, new_prior=None, old_likelihood=None, old_prior=None, resume_file=None, n_checkpoint=5000): from tqdm.auto import tqdm nposterior = len(result.posterior) if (resume_file is not None) and os.path.exists(resume_file): old_log_likelihood_array, old_log_prior_array, new_log_likelihood_array, new_log_prior_array = np.genfromtxt(resume_file) starting_index = np.argmin(np.abs(old_log_likelihood_array)) logger.info(f'Checkpoint resuming from {starting_index}.') else: old_log_likelihood_array = np.zeros(nposterior) old_log_prior_array = np.zeros(nposterior) new_log_likelihood_array = np.zeros(nposterior) new_log_prior_array = np.zeros(nposterior) starting_index = 0 for ii, sample in tqdm(result.posterior.iloc[starting_index:].iterrows()): par_sample = {key: sample[key] for key in result.posterior} if old_likelihood is not None: old_likelihood.parameters.update(par_sample) old_log_likelihood_array[ii] = old_likelihood.log_likelihood() else: old_log_likelihood_array[ii] = sample["log_likelihood"] if new_likelihood is not None: new_likelihood.parameters.update(par_sample) new_log_likelihood_array[ii] = new_likelihood.log_likelihood() else: new_log_likelihood_array[ii] = old_log_likelihood_array[ii] if old_prior is not None: old_log_prior_array[ii] = old_prior.ln_prob(par_sample) else: old_log_prior_array[ii] = sample["log_prior"] if new_prior is not None: new_log_prior_array[ii] = new_prior.ln_prob(par_sample) else: new_log_prior_array[ii] = old_log_prior_array[ii] if (ii % (n_checkpoint) == 0) and (resume_file is not None): checkpointed_index = np.argmin(np.abs(old_log_likelihood_array)) logger.info(f'Checkpointing with {checkpointed_index} samples') np.savetxt( resume_file, [old_log_likelihood_array, old_log_prior_array, new_log_likelihood_array, new_log_prior_array]) ln_weights = ( new_log_likelihood_array + new_log_prior_array - old_log_likelihood_array - old_log_prior_array) return ln_weights, new_log_likelihood_array, new_log_prior_array, old_log_likelihood_array, old_log_prior_array def rejection_sample(posterior, weights): keep = weights > np.random.uniform(0, max(weights), weights.shape) return posterior[keep] def reweight(result, label=None, new_likelihood=None, new_prior=None, old_likelihood=None, old_prior=None, conversion_function=None, npool=1, verbose_output=False, resume_file=None, n_checkpoint=5000, use_nested_samples=False): from scipy.special import logsumexp result = copy(result) if use_nested_samples: result.posterior = result.nested_samples nposterior = len(result.posterior) logger.info("Reweighting posterior with {} samples".format(nposterior)) ln_weights, new_log_likelihood_array, new_log_prior_array, old_log_likelihood_array, old_log_prior_array = get_weights_for_reweighting( result, new_likelihood=new_likelihood, new_prior=new_prior, old_likelihood=old_likelihood, old_prior=old_prior, resume_file=resume_file, n_checkpoint=n_checkpoint) weights = np.exp(ln_weights) if use_nested_samples: weights *= result.posterior['weights'] result.posterior["log_likelihood"] = new_log_likelihood_array result.posterior["log_prior"] = new_log_prior_array result.posterior = rejection_sample(result.posterior, weights=weights) result.posterior = result.posterior.reset_index(drop=True) logger.info("Rejection sampling resulted in {} samples".format(len(result.posterior))) result.meta_data["reweighted_using_rejection_sampling"] = True if use_nested_samples: result.log_evidence += np.log(np.sum(weights)) else: result.log_evidence += logsumexp(ln_weights) - np.log(nposterior) if new_prior is not None: for key, prior in new_prior.items(): result.priors[key] = prior if conversion_function is not None: data_frame = result.posterior if "npool" in inspect.getargspec(conversion_function).args: data_frame = conversion_function(data_frame, new_likelihood, new_prior, npool=npool) else: data_frame = conversion_function(data_frame, new_likelihood, new_prior) result.posterior = data_frame if label: result.label = label else: result.label += "_reweighted" if verbose_output: return result, weights, new_log_likelihood_array, new_log_prior_array, old_log_likelihood_array, old_log_prior_array else: return result class Result(object): def __init__(self, label='no_label', outdir='.', sampler=None, search_parameter_keys=None, fixed_parameter_keys=None, constraint_parameter_keys=None, priors=None, sampler_kwargs=None, injection_parameters=None, meta_data=None, posterior=None, samples=None, nested_samples=None, log_evidence=np.nan, log_evidence_err=np.nan, information_gain=np.nan, log_noise_evidence=np.nan, log_bayes_factor=np.nan, log_likelihood_evaluations=None, log_prior_evaluations=None, sampling_time=None, nburn=None, num_likelihood_evaluations=None, walkers=None, max_autocorrelation_time=None, use_ratio=None, parameter_labels=None, parameter_labels_with_unit=None, version=None): self.label = label self.outdir = os.path.abspath(outdir) self.sampler = sampler self.search_parameter_keys = search_parameter_keys self.fixed_parameter_keys = fixed_parameter_keys self.constraint_parameter_keys = constraint_parameter_keys self.parameter_labels = parameter_labels self.parameter_labels_with_unit = parameter_labels_with_unit self.priors = priors self.sampler_kwargs = sampler_kwargs self.meta_data = meta_data self.injection_parameters = injection_parameters self.posterior = posterior self.samples = samples self.nested_samples = nested_samples self.walkers = walkers self.nburn = nburn self.use_ratio = use_ratio self.log_evidence = log_evidence self.log_evidence_err = log_evidence_err self.information_gain = information_gain self.log_noise_evidence = log_noise_evidence self.log_bayes_factor = log_bayes_factor self.log_likelihood_evaluations = log_likelihood_evaluations self.log_prior_evaluations = log_prior_evaluations self.num_likelihood_evaluations = num_likelihood_evaluations self.sampling_time = sampling_time self.version = version self.max_autocorrelation_time = max_autocorrelation_time self.prior_values = None self._kde = None @classmethod def _from_hdf5_old(cls, filename=None, outdir=None, label=None): import deepdish filename = _determine_file_name(filename, outdir, label, 'hdf5', False) if os.path.isfile(filename): dictionary = deepdish.io.load(filename) if len(dictionary) == 1 and 'data' in dictionary: dictionary = dictionary['data'] if "priors" in dictionary: if not isinstance(dictionary["priors"], PriorDict): try: priordict = PriorDict() for key, value in dictionary["priors"].items(): if key not in ["__module__", "__name__", "__prior_dict__"]: try: priordict[key] = decode_bilby_json(value) except AttributeError: continue dictionary["priors"] = priordict except Exception as e: raise IOError( "Unable to parse priors from '{}':\n{}".format( filename, e, ) ) try: if isinstance(dictionary.get('posterior', None), dict): dictionary['posterior'] = pd.DataFrame(dictionary['posterior']) return cls(**dictionary) except TypeError as e: raise IOError("Unable to load dictionary, error={}".format(e)) else: raise IOError("No result '{}' found".format(filename)) _load_doctstring = """ Read in a saved .{format} data file Parameters ========== filename: str If given, try to load from this filename outdir, label: str If given, use the default naming convention for saved results file Returns ======= result: bilby.core.result.Result Raises ======= ValueError: If no filename is given and either outdir or label is None If no bilby.core.result.Result is found in the path """ @staticmethod @docstring(_load_doctstring.format(format="pickle")) def from_pickle(filename=None, outdir=None, label=None): filename = _determine_file_name(filename, outdir, label, 'hdf5', False) import dill with open(filename, "rb") as ff: return dill.load(ff) @classmethod @docstring(_load_doctstring.format(format="hdf5")) def from_hdf5(cls, filename=None, outdir=None, label=None): import h5py filename = _determine_file_name(filename, outdir, label, 'hdf5', False) with h5py.File(filename, "r") as ff: data = recursively_load_dict_contents_from_group(ff, '/') if list(data.keys()) == ["data"]: return cls._from_hdf5_old(filename=filename) data["posterior"] = pd.DataFrame(data["posterior"]) data["priors"] = PriorDict._get_from_json_dict( json.loads(data["priors"], object_hook=decode_bilby_json) ) try: cls = getattr(import_module(data['__module__']), data['__name__']) except ImportError: logger.debug( "Module {}.{} not found".format(data["__module__"], data["__name__"]) ) except KeyError: logger.debug("No class specified, using base Result.") for key in ["__module__", "__name__"]: if key in data: del data[key] return cls(**data) @classmethod @docstring(_load_doctstring.format(format="json")) def from_json(cls, filename=None, outdir=None, label=None, gzip=False): filename = _determine_file_name(filename, outdir, label, 'json', gzip) if os.path.isfile(filename): dictionary = load_json(filename, gzip) try: return cls(**dictionary) except TypeError as e: raise IOError("Unable to load dictionary, error={}".format(e)) else: raise IOError("No result '{}' found".format(filename)) def __str__(self): if getattr(self, 'posterior', None) is not None: if getattr(self, 'log_noise_evidence', None) is not None: return ("nsamples: {:d}\n" "ln_noise_evidence: {:6.3f}\n" "ln_evidence: {:6.3f} +/- {:6.3f}\n" "ln_bayes_factor: {:6.3f} +/- {:6.3f}\n" .format(len(self.posterior), self.log_noise_evidence, self.log_evidence, self.log_evidence_err, self.log_bayes_factor, self.log_evidence_err)) else: return ("nsamples: {:d}\n" "ln_evidence: {:6.3f} +/- {:6.3f}\n" .format(len(self.posterior), self.log_evidence, self.log_evidence_err)) else: return '' @property def meta_data(self): return self._meta_data @meta_data.setter def meta_data(self, meta_data): if meta_data is None: meta_data = dict() meta_data = recursively_decode_bilby_json(meta_data) self._meta_data = meta_data @property def priors(self): if self._priors is not None: return self._priors else: raise ValueError('Result object has no priors') @priors.setter def priors(self, priors): if isinstance(priors, dict): if isinstance(priors, PriorDict): self._priors = priors else: self._priors = PriorDict(priors) if self.parameter_labels is None: self.parameter_labels = [self.priors[k].latex_label for k in self.search_parameter_keys] if self.parameter_labels_with_unit is None: self.parameter_labels_with_unit = [ self.priors[k].latex_label_with_unit for k in self.search_parameter_keys] elif priors is None: self._priors = priors self.parameter_labels = self.search_parameter_keys self.parameter_labels_with_unit = self.search_parameter_keys else: raise ValueError("Input priors not understood") @property def samples(self): if self._samples is not None: return self._samples else: raise ValueError("Result object has no stored samples") @samples.setter def samples(self, samples): self._samples = samples @property def num_likelihood_evaluations(self): if self._num_likelihood_evaluations is not None: return self._num_likelihood_evaluations else: raise ValueError("Result object has no stored likelihood evaluations") @num_likelihood_evaluations.setter def num_likelihood_evaluations(self, num_likelihood_evaluations): self._num_likelihood_evaluations = num_likelihood_evaluations @property
MIT License
rcscott/ynab-python
ynab/models/month_summaries_wrapper.py
MonthSummariesWrapper.__eq__
python
def __eq__(self, other): if not isinstance(other, MonthSummariesWrapper): return False return self.__dict__ == other.__dict__
Returns true if both objects are equal
https://github.com/rcscott/ynab-python/blob/a4ef77dd9680f16fcb6e0983771c47dcfb28239c/ynab/models/month_summaries_wrapper.py#L106-L111
import pprint import re import six from ynab.models.month_summary import MonthSummary class MonthSummariesWrapper(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'months': 'list[MonthSummary]' } attribute_map = { 'months': 'months' } def __init__(self, months=None): self._months = None self.discriminator = None self.months = months @property def months(self): return self._months @months.setter def months(self, months): if months is None: raise ValueError("Invalid value for `months`, must not be `None`") self._months = months def to_dict(self): result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): return pprint.pformat(self.to_dict()) def __repr__(self): return self.to_str()
Apache License 2.0
dvska/gdata-python3
src/gdata/apps/organization/data.py
OrgUnitEntry.SetOrgUnitBlockInheritance
python
def SetOrgUnitBlockInheritance(self, value): self._SetProperty(ORG_UNIT_BLOCK_INHERITANCE, value)
Set the block_inheritance flag of the OrganizationUnit object. Args: value: [string] The new block_inheritance flag to give this object.
https://github.com/dvska/gdata-python3/blob/a34c35901473e4ba7223ea4607136141301fbe88/src/gdata/apps/organization/data.py#L200-L206
import gdata.data pyproperty = property ORG_UNIT_NAME = 'name' ORG_UNIT_PATH = 'orgUnitPath' PARENT_ORG_UNIT_PATH = 'parentOrgUnitPath' ORG_UNIT_DESCRIPTION = 'description' ORG_UNIT_BLOCK_INHERITANCE = 'blockInheritance' USER_EMAIL = 'orgUserEmail' USERS_TO_MOVE = 'usersToMove' MOVED_USERS = 'usersMoved' CUSTOMER_ID = 'customerId' CUSTOMER_ORG_UNIT_NAME = 'customerOrgUnitName' CUSTOMER_ORG_UNIT_DESCRIPTION = 'customerOrgUnitDescription' OLD_ORG_UNIT_PATH = 'oldOrgUnitPath' class CustomerIdEntry(gdata.apps.apps_property_entry.AppsPropertyEntry): def GetCustomerId(self): return self._GetProperty(CUSTOMER_ID) customer_id = pyproperty(GetCustomerId) def GetOrgUnitName(self): return self._GetProperty(ORG_UNIT_NAME) org_unit_name = pyproperty(GetOrgUnitName) def GetCustomerOrgUnitName(self): return self._GetProperty(CUSTOMER_ORG_UNIT_NAME) customer_org_unit_name = pyproperty(GetCustomerOrgUnitName) def GetOrgUnitDescription(self): return self._GetProperty(ORG_UNIT_DESCRIPTION) org_unit_description = pyproperty(GetOrgUnitDescription) def GetCustomerOrgUnitDescription(self): return self._GetProperty(CUSTOMER_ORG_UNIT_DESCRIPTION) customer_org_unit_description = pyproperty(GetCustomerOrgUnitDescription) class OrgUnitEntry(gdata.apps.apps_property_entry.AppsPropertyEntry): def GetOrgUnitName(self): return self._GetProperty(ORG_UNIT_NAME) def SetOrgUnitName(self, value): self._SetProperty(ORG_UNIT_NAME, value) org_unit_name = pyproperty(GetOrgUnitName, SetOrgUnitName) def GetOrgUnitPath(self): return self._GetProperty(ORG_UNIT_PATH) def SetOrgUnitPath(self, value): self._SetProperty(ORG_UNIT_PATH, value) org_unit_path = pyproperty(GetOrgUnitPath, SetOrgUnitPath) def GetParentOrgUnitPath(self): return self._GetProperty(PARENT_ORG_UNIT_PATH) def SetParentOrgUnitPath(self, value): self._SetProperty(PARENT_ORG_UNIT_PATH, value) parent_org_unit_path = pyproperty(GetParentOrgUnitPath, SetParentOrgUnitPath) def GetOrgUnitDescription(self): return self._GetProperty(ORG_UNIT_DESCRIPTION) def SetOrgUnitDescription(self, value): self._SetProperty(ORG_UNIT_DESCRIPTION, value) org_unit_description = pyproperty(GetOrgUnitDescription, SetOrgUnitDescription) def GetOrgUnitBlockInheritance(self): return self._GetProperty(ORG_UNIT_BLOCK_INHERITANCE)
Apache License 2.0
blacklight/platypush
platypush/plugins/camera/__init__.py
CameraPlugin.wait_capture
python
def wait_capture(self, camera: Camera) -> None: if camera.capture_thread and camera.capture_thread.is_alive() and threading.get_ident() != camera.capture_thread.ident: try: camera.capture_thread.join(timeout=camera.info.capture_timeout) except Exception as e: self.logger.warning('Error on FFmpeg capture wait: {}'.format(str(e)))
Wait until a capture session terminates. :param camera: Camera object. ``camera.info.capture_timeout`` is used as a capture thread termination timeout if set.
https://github.com/blacklight/platypush/blob/a5f1dc2638d7c6308325e0ca39dc7d5e262836aa/platypush/plugins/camera/__init__.py#L201-L213
import io import os import pathlib import socket import threading import time from abc import ABC, abstractmethod from contextlib import contextmanager from datetime import datetime from multiprocessing import Process from queue import Queue from typing import Optional, Union, Dict, Tuple, IO from platypush.config import Config from platypush.message.event.camera import CameraRecordingStartedEvent, CameraPictureTakenEvent, CameraRecordingStoppedEvent, CameraVideoRenderedEvent from platypush.plugins import Plugin, action from platypush.plugins.camera.model.camera import CameraInfo, Camera from platypush.plugins.camera.model.exceptions import CameraException, CaptureAlreadyRunningException from platypush.plugins.camera.model.writer import VideoWriter, StreamWriter from platypush.plugins.camera.model.writer.ffmpeg import FFmpegFileWriter from platypush.plugins.camera.model.writer.preview import PreviewWriter, PreviewWriterFactory from platypush.utils import get_plugin_name_by_class __all__ = ['Camera', 'CameraInfo', 'CameraException', 'CameraPlugin', 'CaptureAlreadyRunningException', 'StreamWriter'] class CameraPlugin(Plugin, ABC): _camera_class = Camera _camera_info_class = CameraInfo _video_writer_class = FFmpegFileWriter def __init__(self, device: Optional[Union[int, str]] = None, resolution: Tuple[int, int] = (640, 480), frames_dir: Optional[str] = None, warmup_frames: int = 5, warmup_seconds: Optional[float] = 0., capture_timeout: Optional[float] = 20.0, scale_x: Optional[float] = None, scale_y: Optional[float] = None, rotate: Optional[float] = None, grayscale: Optional[bool] = None, color_transform: Optional[Union[int, str]] = None, fps: float = 16, horizontal_flip: bool = False, vertical_flip: bool = False, input_format: Optional[str] = None, output_format: Optional[str] = None, stream_format: str = 'mjpeg', listen_port: Optional[int] = 5000, bind_address: str = '0.0.0.0', ffmpeg_bin: str = 'ffmpeg', input_codec: Optional[str] = None, output_codec: Optional[str] = None, **kwargs): super().__init__(**kwargs) self.workdir = os.path.join(Config.get('workdir'), get_plugin_name_by_class(self)) pathlib.Path(self.workdir).mkdir(mode=0o755, exist_ok=True, parents=True) self.camera_info = self._camera_info_class(device, color_transform=color_transform, warmup_frames=warmup_frames, warmup_seconds=warmup_seconds, rotate=rotate, scale_x=scale_x, scale_y=scale_y, capture_timeout=capture_timeout, fps=fps, input_format=input_format, output_format=output_format, stream_format=stream_format, resolution=resolution, grayscale=grayscale, listen_port=listen_port, horizontal_flip=horizontal_flip, vertical_flip=vertical_flip, ffmpeg_bin=ffmpeg_bin, input_codec=input_codec, output_codec=output_codec, bind_address=bind_address, frames_dir=os.path.abspath( os.path.expanduser(frames_dir or os.path.join(self.workdir, 'frames')))) self._devices: Dict[Union[int, str], Camera] = {} self._streams: Dict[Union[int, str], Camera] = {} def _merge_info(self, **info) -> CameraInfo: merged_info = self.camera_info.clone() merged_info.set(**info) return merged_info def open_device(self, device: Optional[Union[int, str]] = None, stream: bool = False, **params) -> Camera: info = self._merge_info(**params) if device is None: device = info.device elif device not in self._devices: info.device = device else: info = self._devices[device].info.clone() assert device is not None, 'No device specified/configured' if device in self._devices: camera = self._devices[device] if camera.capture_thread and camera.capture_thread.is_alive() and camera.start_event.is_set(): raise CaptureAlreadyRunningException(device) camera.start_event.clear() camera.capture_thread = None else: camera = self._camera_class(info=info) camera.info.set(**params) camera.object = self.prepare_device(camera) if stream: writer_class = StreamWriter.get_class_by_name(camera.info.stream_format) camera.stream = writer_class(camera=camera, plugin=self) if camera.info.frames_dir: pathlib.Path(os.path.abspath(os.path.expanduser(camera.info.frames_dir))).mkdir( mode=0o755, exist_ok=True, parents=True) self._devices[device] = camera return camera def close_device(self, camera: Camera, wait_capture: bool = True) -> None: name = camera.info.device self.stop_preview(camera) self.release_device(camera) camera.start_event.clear() if wait_capture: self.wait_capture(camera) if name in self._devices: del self._devices[name]
MIT License
schettino72/pyregurgitator
pyreg/astview.py
AstNode.tree
python
def tree(cls, stream, filename): ct = ast.parse(stream.read(), filename) stream.seek(0) lines = stream.readlines() cls.line_list = lines return cls(ct, '', [l for l in lines], None)
build whole AST from a module
https://github.com/schettino72/pyregurgitator/blob/988f507d5e2a02c38f98673fa8c57245bdae3da4/pyreg/astview.py#L106-L114
import platform import os import ast import json import argparse from pkg_resources import resource_filename import jinja2 class AstField(object): class TypeField(AstField): def __init__(self, value, path, lines): self.value = value self.path = path def to_text(self): return repr(self.value) def to_map(self): return ["%s => %s" % (self.path, repr(self.value))] def to_html(self): if isinstance(self.value, str): str_value = repr(self.value.replace('\n', '\n<br/>')) else: str_value = repr(self.value) return '<span class="final">%s</span>' % str_value class NodeField(AstField): def __init__(self, value, path, lines, parent): self.value = parent.__class__(value, path, lines, parent) self.path = path def to_text(self): return self.value.to_text() def to_map(self): ll = ["%s (%s)" % (self.path, self.value.node.__class__.__name__)] ll.extend(self.value.to_map()) return ll def to_html(self): return self.value.to_html() class ListField(AstField): def __init__(self, value, path, lines, parent): self.value = [] for i,n in enumerate(value): path = "%s[%d]" % (path,i) if isinstance(n , ast.AST): node = parent.__class__(n, path, lines, parent) self.value.append(node) else: self.value.append(TypeField(n, path, lines)) self.path = path def to_text(self): return "[%s]" % ", ".join((n.to_text() for n in self.value)) def to_map(self): ll = ["%s []" % self.path] for n in self.value: ll.append("%s (%s)" % (n.path, n.node.__class__.__name__)) ll.extend(n.to_map()) return ll def to_html(self): t_head = '<table class="field_list">' row = "<tr><td>%s</td></tr>" t_body = "".join(row % n.to_html() for n in self.value) t_foot = '</table>' return t_head + t_body + t_foot class AstNode(object): node_template = None MAP = None @classmethod
MIT License
claws/txpachube
txpachube/client.py
Client._handleRequestFailure
python
def _handleRequestFailure(self, failure, url=None): if url: logging.error('Error communicating with url %s\nError: %s\n' % (url, failure)) else: logging.error('Error detected: %s' % (failure))
Callback to handle an error resulting from an attempt to communicate with pachube. @param failure: A failure instance @type failure: twisted.python.failure.Failure instance @param url: The url used during the request @type url: string
https://github.com/claws/txpachube/blob/d9ba7b7440408bc459de75270a60c8eb6e14cf5b/txpachube/client.py#L156-L168
import json import logging import txpachube import urllib import uuid from twisted.internet import reactor, defer from twisted.internet.protocol import Protocol, ReconnectingClientFactory from twisted.web.client import Agent, ResponseDone from twisted.web.http_headers import Headers from twisted.web.iweb import IBodyProducer from zope.interface import implements class RequestBodyProducer(object): implements(IBodyProducer) def __init__(self, body=None): if body is None: self.body = "" else: self.body = body self.length = len(body) def startProducing(self, consumer): consumer.write(self.body) return defer.succeed(None) def pauseProducing(self): pass def stopProducing(self): pass class ResponseBodyProtocol(Protocol): def __init__(self, finished, response): self.finished = finished self.response = response self.buffer = [] def dataReceived(self, bytes): self.buffer.append(bytes) def connectionLost(self, reason): r = reason.trap(ResponseDone) if r == ResponseDone: logging.debug(reason.getErrorMessage()) responseData = "".join(self.buffer) self.buffer = [] result = (self.response, responseData) self.finished.callback(result) else: logging.error("Problem reading response body: %s" % reason.getErrorMessage()) class Client(object): api_url = "api.pachube.com/v2" def __init__(self, api_key=None, feed_id=None, use_http=False, timezone=None): self.feed_id = feed_id self.api_key = api_key prefix = "https" if use_http: prefix = "http" self.api_url = "%s://api.pachube.com/v2" % (prefix) self.timezone = None if timezone: self.timezone = "timezone=%s" % timezone self.agent = Agent(reactor) self.headers = {'User-Agent': 'txpachube Client', 'Content-Type' : 'application/x-www-form-urlencoded'} def _handleResponseHeader(self, response, url): logging.debug("Success communicating with url: %s" % (url)) finished = defer.Deferred() response.deliverBody(ResponseBodyProtocol(finished, response)) return finished
MIT License
jmchilton/galaxy-central
modules/docutils/statemachine.py
StateMachine.get_text_block
python
def get_text_block(self, flush_left=0): try: block = self.input_lines.get_text_block(self.line_offset, flush_left) self.next_line(len(block) - 1) return block except UnexpectedIndentationError, error: block, source, lineno = error self.next_line(len(block) - 1) raise
Return a contiguous block of text. If `flush_left` is true, raise `UnexpectedIndentationError` if an indented line is encountered before the text block ends (with a blank line).
https://github.com/jmchilton/galaxy-central/blob/31e2fd3a32b06ddfba06ae5b044efdce1d93f08c/modules/docutils/statemachine.py#L367-L383
__docformat__ = 'restructuredtext' import sys import re from types import SliceType as _SliceType class StateMachine: def __init__(self, state_classes, initial_state, debug=0): self.input_lines = None self.input_offset = 0 self.line = None self.line_offset = -1 self.debug = debug self.initial_state = initial_state self.current_state = initial_state self.states = {} self.add_states(state_classes) self.observers = [] def unlink(self): for state in self.states.values(): state.unlink() self.states = None def run(self, input_lines, input_offset=0, context=None, input_source=None): self.runtime_init() if isinstance(input_lines, StringList): self.input_lines = input_lines else: self.input_lines = StringList(input_lines, source=input_source) self.input_offset = input_offset self.line_offset = -1 self.current_state = self.initial_state if self.debug: print >>sys.stderr, ( '\nStateMachine.run: input_lines (line_offset=%s):\n| %s' % (self.line_offset, '\n| '.join(self.input_lines))) transitions = None results = [] state = self.get_state() try: if self.debug: print >>sys.stderr, ('\nStateMachine.run: bof transition') context, result = state.bof(context) results.extend(result) while 1: try: try: self.next_line() if self.debug: source, offset = self.input_lines.info( self.line_offset) print >>sys.stderr, ( '\nStateMachine.run: line (source=%r, ' 'offset=%r):\n| %s' % (source, offset, self.line)) context, next_state, result = self.check_line( context, state, transitions) except EOFError: if self.debug: print >>sys.stderr, ( '\nStateMachine.run: %s.eof transition' % state.__class__.__name__) result = state.eof(context) results.extend(result) break else: results.extend(result) except TransitionCorrection, exception: self.previous_line() transitions = (exception.args[0],) if self.debug: print >>sys.stderr, ( '\nStateMachine.run: TransitionCorrection to ' 'state "%s", transition %s.' % (state.__class__.__name__, transitions[0])) continue except StateCorrection, exception: self.previous_line() next_state = exception.args[0] if len(exception.args) == 1: transitions = None else: transitions = (exception.args[1],) if self.debug: print >>sys.stderr, ( '\nStateMachine.run: StateCorrection to state ' '"%s", transition %s.' % (next_state, transitions[0])) else: transitions = None state = self.get_state(next_state) except: if self.debug: self.error() raise self.observers = [] return results def get_state(self, next_state=None): if next_state: if self.debug and next_state != self.current_state: print >>sys.stderr, ('\nStateMachine.get_state: Changing state from ' '"%s" to "%s" (input line %s).' % (self.current_state, next_state, self.abs_line_number())) self.current_state = next_state try: return self.states[self.current_state] except KeyError: raise UnknownStateError(self.current_state) def next_line(self, n=1): try: try: self.line_offset += n self.line = self.input_lines[self.line_offset] except IndexError: self.line = None raise EOFError return self.line finally: self.notify_observers() def is_next_line_blank(self): try: return not self.input_lines[self.line_offset + 1].strip() except IndexError: return 1 def at_eof(self): return self.line_offset >= len(self.input_lines) - 1 def at_bof(self): return self.line_offset <= 0 def previous_line(self, n=1): self.line_offset -= n if self.line_offset < 0: self.line = None else: self.line = self.input_lines[self.line_offset] self.notify_observers() return self.line def goto_line(self, line_offset): try: try: self.line_offset = line_offset - self.input_offset self.line = self.input_lines[self.line_offset] except IndexError: self.line = None raise EOFError return self.line finally: self.notify_observers() def get_source(self, line_offset): return self.input_lines.source(line_offset - self.input_offset) def abs_line_offset(self): return self.line_offset + self.input_offset def abs_line_number(self): return self.line_offset + self.input_offset + 1 def insert_input(self, input_lines, source): self.input_lines.insert(self.line_offset + 1, '', source='internal padding') self.input_lines.insert(self.line_offset + 1, '', source='internal padding') self.input_lines.insert(self.line_offset + 2, StringList(input_lines, source))
MIT License
osmr/imgclsmob
gluon/gluoncv2/models/resnext.py
resnext101_32x4d
python
def resnext101_32x4d(**kwargs): return get_resnext(blocks=101, cardinality=32, bottleneck_width=4, model_name="resnext101_32x4d", **kwargs)
ResNeXt-101 (32x4d) model from 'Aggregated Residual Transformations for Deep Neural Networks,' http://arxiv.org/abs/1611.05431. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters.
https://github.com/osmr/imgclsmob/blob/ea5f784eea865ce830f3f97c5c1d1f6491d9cbb2/gluon/gluoncv2/models/resnext.py#L415-L429
__all__ = ['ResNeXt', 'resnext14_16x4d', 'resnext14_32x2d', 'resnext14_32x4d', 'resnext26_16x4d', 'resnext26_32x2d', 'resnext26_32x4d', 'resnext38_32x4d', 'resnext50_32x4d', 'resnext101_32x4d', 'resnext101_64x4d', 'ResNeXtBottleneck', 'ResNeXtUnit'] import os import math from mxnet import cpu from mxnet.gluon import nn, HybridBlock from .common import conv1x1_block, conv3x3_block from .resnet import ResInitBlock class ResNeXtBottleneck(HybridBlock): def __init__(self, in_channels, out_channels, strides, cardinality, bottleneck_width, bn_use_global_stats, bottleneck_factor=4, **kwargs): super(ResNeXtBottleneck, self).__init__(**kwargs) mid_channels = out_channels // bottleneck_factor D = int(math.floor(mid_channels * (bottleneck_width / 64.0))) group_width = cardinality * D with self.name_scope(): self.conv1 = conv1x1_block( in_channels=in_channels, out_channels=group_width, bn_use_global_stats=bn_use_global_stats) self.conv2 = conv3x3_block( in_channels=group_width, out_channels=group_width, strides=strides, groups=cardinality, bn_use_global_stats=bn_use_global_stats) self.conv3 = conv1x1_block( in_channels=group_width, out_channels=out_channels, bn_use_global_stats=bn_use_global_stats, activation=None) def hybrid_forward(self, F, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) return x class ResNeXtUnit(HybridBlock): def __init__(self, in_channels, out_channels, strides, cardinality, bottleneck_width, bn_use_global_stats, **kwargs): super(ResNeXtUnit, self).__init__(**kwargs) self.resize_identity = (in_channels != out_channels) or (strides != 1) with self.name_scope(): self.body = ResNeXtBottleneck( in_channels=in_channels, out_channels=out_channels, strides=strides, cardinality=cardinality, bottleneck_width=bottleneck_width, bn_use_global_stats=bn_use_global_stats) if self.resize_identity: self.identity_conv = conv1x1_block( in_channels=in_channels, out_channels=out_channels, strides=strides, bn_use_global_stats=bn_use_global_stats, activation=None) self.activ = nn.Activation("relu") def hybrid_forward(self, F, x): if self.resize_identity: identity = self.identity_conv(x) else: identity = x x = self.body(x) x = x + identity x = self.activ(x) return x class ResNeXt(HybridBlock): def __init__(self, channels, init_block_channels, cardinality, bottleneck_width, bn_use_global_stats=False, in_channels=3, in_size=(224, 224), classes=1000, **kwargs): super(ResNeXt, self).__init__(**kwargs) self.in_size = in_size self.classes = classes with self.name_scope(): self.features = nn.HybridSequential(prefix="") self.features.add(ResInitBlock( in_channels=in_channels, out_channels=init_block_channels, bn_use_global_stats=bn_use_global_stats)) in_channels = init_block_channels for i, channels_per_stage in enumerate(channels): stage = nn.HybridSequential(prefix="stage{}_".format(i + 1)) with stage.name_scope(): for j, out_channels in enumerate(channels_per_stage): strides = 2 if (j == 0) and (i != 0) else 1 stage.add(ResNeXtUnit( in_channels=in_channels, out_channels=out_channels, strides=strides, cardinality=cardinality, bottleneck_width=bottleneck_width, bn_use_global_stats=bn_use_global_stats)) in_channels = out_channels self.features.add(stage) self.features.add(nn.AvgPool2D( pool_size=7, strides=1)) self.output = nn.HybridSequential(prefix="") self.output.add(nn.Flatten()) self.output.add(nn.Dense( units=classes, in_units=in_channels)) def hybrid_forward(self, F, x): x = self.features(x) x = self.output(x) return x def get_resnext(blocks, cardinality, bottleneck_width, model_name=None, pretrained=False, ctx=cpu(), root=os.path.join("~", ".mxnet", "models"), **kwargs): if blocks == 14: layers = [1, 1, 1, 1] elif blocks == 26: layers = [2, 2, 2, 2] elif blocks == 38: layers = [3, 3, 3, 3] elif blocks == 50: layers = [3, 4, 6, 3] elif blocks == 101: layers = [3, 4, 23, 3] else: raise ValueError("Unsupported ResNeXt with number of blocks: {}".format(blocks)) assert (sum(layers) * 3 + 2 == blocks) init_block_channels = 64 channels_per_layers = [256, 512, 1024, 2048] channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)] net = ResNeXt( channels=channels, init_block_channels=init_block_channels, cardinality=cardinality, bottleneck_width=bottleneck_width, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import get_model_file net.load_parameters( filename=get_model_file( model_name=model_name, local_model_store_dir_path=root), ctx=ctx) return net def resnext14_16x4d(**kwargs): return get_resnext(blocks=14, cardinality=16, bottleneck_width=4, model_name="resnext14_16x4d", **kwargs) def resnext14_32x2d(**kwargs): return get_resnext(blocks=14, cardinality=32, bottleneck_width=2, model_name="resnext14_32x2d", **kwargs) def resnext14_32x4d(**kwargs): return get_resnext(blocks=14, cardinality=32, bottleneck_width=4, model_name="resnext14_32x4d", **kwargs) def resnext26_16x4d(**kwargs): return get_resnext(blocks=26, cardinality=16, bottleneck_width=4, model_name="resnext26_16x4d", **kwargs) def resnext26_32x2d(**kwargs): return get_resnext(blocks=26, cardinality=32, bottleneck_width=2, model_name="resnext26_32x2d", **kwargs) def resnext26_32x4d(**kwargs): return get_resnext(blocks=26, cardinality=32, bottleneck_width=4, model_name="resnext26_32x4d", **kwargs) def resnext38_32x4d(**kwargs): return get_resnext(blocks=38, cardinality=32, bottleneck_width=4, model_name="resnext38_32x4d", **kwargs) def resnext50_32x4d(**kwargs): return get_resnext(blocks=50, cardinality=32, bottleneck_width=4, model_name="resnext50_32x4d", **kwargs)
MIT License
scanapi/scanapi
scanapi/tree/request_node.py
RequestNode._validate
python
def _validate(self): validate_keys( self.spec.keys(), self.ALLOWED_KEYS, self.REQUIRED_KEYS, self.SCOPE )
Validate spec keys. Returns: None
https://github.com/scanapi/scanapi/blob/f974b4e4abff8d061e8f8c1cec70b1845034ef2a/scanapi/tree/request_node.py#L178-L187
import logging import time from scanapi.errors import HTTPMethodNotAllowedError from scanapi.evaluators.spec_evaluator import SpecEvaluator from scanapi.hide_utils import hide_sensitive_info from scanapi.test_status import TestStatus from scanapi.tree.testing_node import TestingNode from scanapi.tree.tree_keys import ( BODY_KEY, DELAY_KEY, HEADERS_KEY, METHOD_KEY, NAME_KEY, PARAMS_KEY, PATH_KEY, RETRY_KEY, TESTS_KEY, VARS_KEY, ) from scanapi.utils import join_urls, session_with_retry, validate_keys logger = logging.getLogger(__name__) class RequestNode: SCOPE = "request" ALLOWED_KEYS = ( BODY_KEY, HEADERS_KEY, METHOD_KEY, NAME_KEY, PARAMS_KEY, PATH_KEY, TESTS_KEY, VARS_KEY, DELAY_KEY, RETRY_KEY, ) ALLOWED_HTTP_METHODS = ( "GET", "POST", "PUT", "PATCH", "DELETE", "HEAD", "OPTIONS", ) REQUIRED_KEYS = (NAME_KEY,) def __init__(self, spec, endpoint): self.spec = spec self.endpoint = endpoint self._validate() def __repr__(self): return f"<{self.__class__.__name__} {self.full_url_path}>" def __getitem__(self, item): return self.spec[item] @property def http_method(self): method = self.spec.get(METHOD_KEY, "get").upper() if method not in self.ALLOWED_HTTP_METHODS: raise HTTPMethodNotAllowedError(method, self.ALLOWED_HTTP_METHODS) return method @property def name(self): return self[NAME_KEY] @property def full_url_path(self): base_path = self.endpoint.path path = str(self.spec.get(PATH_KEY, "")) full_url = join_urls(base_path, path) return self.endpoint.spec_vars.evaluate(full_url) @property def headers(self): endpoint_headers = self.endpoint.headers headers = self.spec.get(HEADERS_KEY, {}) return self.endpoint.spec_vars.evaluate({**endpoint_headers, **headers}) @property def params(self): endpoint_params = self.endpoint.params params = self.spec.get(PARAMS_KEY, {}) return self.endpoint.spec_vars.evaluate({**endpoint_params, **params}) @property def delay(self): delay = self.spec.get(DELAY_KEY, 0) return delay or self.endpoint.delay @property def body(self): body = self.spec.get(BODY_KEY) return self.endpoint.spec_vars.evaluate(body) @property def tests(self): return ( TestingNode(spec, self) for spec in self.spec.get(TESTS_KEY, []) ) @property def retry(self): return self.spec.get(RETRY_KEY) def run(self): time.sleep(self.delay / 1000) method = self.http_method url = self.full_url_path logger.info("Making request %s %s", method, url) self.endpoint.spec_vars.update( self.spec.get(VARS_KEY, {}), extras=dict(self.endpoint.spec_vars), filter_responses=True, ) session = session_with_retry(self.retry) response = session.request( method, url, headers=self.headers, params=self.params, json=self.body, allow_redirects=False, ) extras = dict(self.endpoint.spec_vars) extras["response"] = response self.endpoint.spec_vars.update( self.spec.get(VARS_KEY, {}), extras=extras, ) tests_results = self._run_tests() hide_sensitive_info(response) del self.endpoint.spec_vars["response"] return { "response": response, "tests_results": tests_results, "no_failure": all( test_result["status"] == TestStatus.PASSED for test_result in tests_results ), "request_node_name": self.name, } def _run_tests(self): return [test.run() for test in self.tests]
MIT License
regionmask/regionmask
regionmask/core/regions.py
Regions.numbers
python
def numbers(self): return self.combiner("number")
list of the numbers of the regions
https://github.com/regionmask/regionmask/blob/43e478288700ff6da6b957b8342ae4e5ed4ceb85/regionmask/core/regions.py#L199-L201
import copy from collections import OrderedDict import numpy as np from shapely.geometry import MultiPolygon, Polygon from .formatting import _display from .mask import _inject_mask_docstring, _mask_2D, _mask_3D from .plot import _plot, _plot_regions from .utils import _is_180, _is_numeric, _maybe_to_dict, _sanitize_names_abbrevs class Regions: def __init__( self, outlines, numbers=None, names=None, abbrevs=None, name="unnamed", source=None, ): if numbers is None: numbers = range(len(outlines)) if not _is_numeric(numbers): raise ValueError("'numbers' must be numeric") outlines = _maybe_to_dict(numbers, outlines) names = _sanitize_names_abbrevs(numbers, names, "Region") abbrevs = _sanitize_names_abbrevs(numbers, abbrevs, "r") regions = OrderedDict() for n in sorted(numbers): regions[n] = _OneRegion(n, names[n], abbrevs[n], outlines[n]) self.regions = regions self.name = name self.source = source def __getitem__(self, key): key = self.map_keys(key) if isinstance(key, (int, np.integer)): return self.regions[key] else: regions = OrderedDict() for k in key: regions[k] = self.regions[k] new_self = copy.copy(self) new_self.regions = regions return new_self def __len__(self): return len(self.numbers) def map_keys(self, key): if isinstance(key, (int, np.integer, str)): key = self.region_ids[key] else: key = [self.region_ids[k] for k in key] key = np.unique(key).tolist() return key def __repr__(self): return self._display() def __iter__(self): for i in self.numbers: yield self[i] def combiner(self, prop): return [getattr(r, prop) for r in self.regions.values()] @property def region_ids(self): abbrevs = self.abbrevs names = self.names numbers = self.numbers all_comb = zip(numbers + abbrevs + names, (numbers * 3)) region_ids = {key: value for key, value in all_comb} return region_ids @property def abbrevs(self): return self.combiner("abbrev") @property def names(self): return self.combiner("name") @property
MIT License
adriangb/scikeras
scikeras/wrappers.py
BaseWrapper.current_epoch
python
def current_epoch(self) -> int: if not hasattr(self, "history_"): return 0 return len(self.history_["loss"])
Returns the current training epoch. Returns ------- int Current training epoch.
https://github.com/adriangb/scikeras/blob/b6f5979eb99e19114b0685743e06a96f02724bbb/scikeras/wrappers.py#L250-L260
import inspect import warnings from collections import defaultdict from typing import Any, Callable, Dict, Iterable, List, Mapping, Set, Tuple, Type, Union import numpy as np import tensorflow as tf from sklearn.base import BaseEstimator from sklearn.exceptions import NotFittedError from sklearn.metrics import accuracy_score as sklearn_accuracy_score from sklearn.metrics import r2_score as sklearn_r2_score from sklearn.preprocessing import FunctionTransformer from sklearn.utils.class_weight import compute_sample_weight from sklearn.utils.multiclass import type_of_target from sklearn.utils.validation import _check_sample_weight, check_array, check_X_y from tensorflow.keras import losses as losses_module from tensorflow.keras.models import Model from tensorflow.keras.utils import register_keras_serializable from scikeras._utils import ( TFRandomState, accepts_kwargs, get_loss_class_function_or_string, get_metric_class, get_optimizer_class, has_param, route_params, try_to_convert_strings_to_classes, unflatten_params, ) from scikeras.utils import loss_name, metric_name from scikeras.utils.transformers import ClassifierLabelEncoder, RegressorTargetEncoder class BaseWrapper(BaseEstimator): _tags = { "poor_score": True, "multioutput": True, } _fit_kwargs = { "batch_size", "epochs", "verbose", "validation_split", "shuffle", "class_weight", "sample_weight", "initial_epoch", "validation_steps", "validation_batch_size", "validation_freq", } _predict_kwargs = { "batch_size", "verbose", "steps", } _compile_kwargs = { "optimizer", "loss", "metrics", "loss_weights", "weighted_metrics", "run_eagerly", } _wrapper_params = { "warm_start", "random_state", } _routing_prefixes = { "model", "fit", "compile", "predict", "optimizer", "loss", "metrics", } def __init__( self, model: Union[None, Callable[..., tf.keras.Model], tf.keras.Model] = None, *, build_fn: Union[ None, Callable[..., tf.keras.Model], tf.keras.Model ] = None, warm_start: bool = False, random_state: Union[int, np.random.RandomState, None] = None, optimizer: Union[ str, tf.keras.optimizers.Optimizer, Type[tf.keras.optimizers.Optimizer] ] = "rmsprop", loss: Union[ Union[str, tf.keras.losses.Loss, Type[tf.keras.losses.Loss], Callable], None ] = None, metrics: Union[ List[ Union[ str, tf.keras.metrics.Metric, Type[tf.keras.metrics.Metric], Callable, ] ], None, ] = None, batch_size: Union[int, None] = None, validation_batch_size: Union[int, None] = None, verbose: int = 1, callbacks: Union[ List[Union[tf.keras.callbacks.Callback, Type[tf.keras.callbacks.Callback]]], None, ] = None, validation_split: float = 0.0, shuffle: bool = True, run_eagerly: bool = False, epochs: int = 1, **kwargs, ): self.model = model self.build_fn = build_fn self.warm_start = warm_start self.random_state = random_state self.optimizer = optimizer self.loss = loss self.metrics = metrics self.batch_size = batch_size self.validation_batch_size = validation_batch_size self.verbose = verbose self.callbacks = callbacks self.validation_split = validation_split self.shuffle = shuffle self.run_eagerly = run_eagerly self.epochs = epochs vars(self).update(**kwargs) if kwargs: self._user_params = set(kwargs) @property def __name__(self): return self.__class__.__name__ @property
MIT License
randsleadershipslack/destalinator
utils/__init__.py
get_local_file_content
python
def get_local_file_content(file_name): f = codecs.open(file_name, encoding='utf-8') ret = f.read().strip() f.close() return ret
Read the contents of `file_name` into a unicode string, return the unicode string.
https://github.com/randsleadershipslack/destalinator/blob/d9c2cf8126a1cddace9cba2d8288807549337e23/utils/__init__.py#L4-L9
import codecs
Apache License 2.0
pelioniot/mbed-cloud-sdk-python
src/mbed_cloud/update/update.py
CampaignDeviceState.id
python
def id(self): return self._id
The id of the metadata record (readonly). :rtype: str
https://github.com/pelioniot/mbed-cloud-sdk-python/blob/71dc67fc2a8d1aff31e35ec781fb328e6a60639c/src/mbed_cloud/update/update.py#L715-L720
from __future__ import absolute_import from __future__ import unicode_literals import logging from mbed_cloud.core import BaseAPI from mbed_cloud.core import BaseObject from mbed_cloud.pagination import PaginatedResponse from mbed_cloud.utils import force_utc from mbed_cloud.decorators import catch_exceptions from mbed_cloud.device_directory import Device from six import iteritems from mbed_cloud import filters import mbed_cloud._backends.update_service as update_service from mbed_cloud._backends.update_service.models import UpdateCampaignPostRequest from mbed_cloud._backends.update_service.rest import ApiException as UpdateServiceApiException LOG = logging.getLogger(__name__) class UpdateAPI(BaseAPI): api_structure = {update_service: [update_service.DefaultApi]} @catch_exceptions(UpdateServiceApiException) def list_campaigns(self, **kwargs): kwargs = self._verify_sort_options(kwargs) kwargs = self._verify_filters(kwargs, Campaign, True) api = self._get_api(update_service.DefaultApi) return PaginatedResponse(api.update_campaign_list, lwrap_type=Campaign, **kwargs) @catch_exceptions(UpdateServiceApiException) def get_campaign(self, campaign_id): api = self._get_api(update_service.DefaultApi) return Campaign(api.update_campaign_retrieve(campaign_id)) @catch_exceptions(UpdateServiceApiException) def add_campaign(self, name, device_filter, **kwargs): device_filter = filters.legacy_filter_formatter( dict(filter=device_filter), Device._get_attributes_map() ) campaign = Campaign._create_request_map(kwargs) if 'when' in campaign: campaign['when'] = force_utc(campaign['when']) body = UpdateCampaignPostRequest( name=name, device_filter=device_filter['filter'], **campaign) api = self._get_api(update_service.DefaultApi) return Campaign(api.update_campaign_create(body)) @catch_exceptions(UpdateServiceApiException) def start_campaign(self, campaign_object): campaign_object._state = "scheduled" return self.update_campaign(campaign_object) @catch_exceptions(UpdateServiceApiException) def update_campaign(self, campaign_object=None, campaign_id=None, **kwargs): api = self._get_api(update_service.DefaultApi) if campaign_object: campaign_id = campaign_object.id campaign_object = campaign_object._create_patch_request() else: campaign_object = Campaign._create_request_map(kwargs) if 'device_filter' in campaign_object: campaign_object["device_filter"] = filters.legacy_filter_formatter( dict(filter=campaign_object["device_filter"]), Device._get_attributes_map() )['filter'] if 'when' in campaign_object: campaign_object['when'] = force_utc(campaign_object['when']) return Campaign(api.update_campaign_update(campaign_id=campaign_id, campaign=campaign_object)) @catch_exceptions(UpdateServiceApiException) def delete_campaign(self, campaign_id): api = self._get_api(update_service.DefaultApi) api.update_campaign_destroy(campaign_id) return @catch_exceptions(UpdateServiceApiException) def list_campaign_device_states(self, campaign_id, **kwargs): kwargs = self._verify_sort_options(kwargs) kwargs = self._verify_filters(kwargs, CampaignDeviceState, True) kwargs["campaign_id"] = campaign_id api = self._get_api(update_service.DefaultApi) return PaginatedResponse(api.update_campaign_metadata_list, lwrap_type=CampaignDeviceState, **kwargs) @catch_exceptions(UpdateServiceApiException) def get_firmware_image(self, image_id): api = self._get_api(update_service.DefaultApi) return FirmwareImage(api.firmware_image_retrieve(image_id)) @catch_exceptions(UpdateServiceApiException) def list_firmware_images(self, **kwargs): kwargs = self._verify_sort_options(kwargs) kwargs = self._verify_filters(kwargs, FirmwareImage, True) api = self._get_api(update_service.DefaultApi) return PaginatedResponse(api.firmware_image_list, lwrap_type=FirmwareImage, **kwargs) @catch_exceptions(UpdateServiceApiException) def add_firmware_image(self, name, datafile, **kwargs): kwargs.update({'name': name}) firmware_image = FirmwareImage._create_request_map(kwargs) firmware_image.update({'datafile': datafile}) api = self._get_api(update_service.DefaultApi) return FirmwareImage( api.firmware_image_create(**firmware_image) ) @catch_exceptions(UpdateServiceApiException) def delete_firmware_image(self, image_id): api = self._get_api(update_service.DefaultApi) api.firmware_image_destroy(image_id=image_id) return @catch_exceptions(UpdateServiceApiException) def get_firmware_manifest(self, manifest_id): api = self._get_api(update_service.DefaultApi) return FirmwareManifest(api.firmware_manifest_retrieve(manifest_id=manifest_id)) @catch_exceptions(UpdateServiceApiException) def list_firmware_manifests(self, **kwargs): kwargs = self._verify_sort_options(kwargs) kwargs = self._verify_filters(kwargs, FirmwareManifest, True) api = self._get_api(update_service.DefaultApi) return PaginatedResponse(api.firmware_manifest_list, lwrap_type=FirmwareManifest, **kwargs) @catch_exceptions(UpdateServiceApiException) def add_firmware_manifest(self, name, datafile, key_table_file=None, **kwargs): kwargs.update({ 'name': name, 'url': datafile, }) if key_table_file is not None: kwargs.update({'key_table_url': key_table_file}) firmware_manifest = FirmwareManifest._create_request_map(kwargs) api = self._get_api(update_service.DefaultApi) return FirmwareManifest( api.firmware_manifest_create(**firmware_manifest) ) @catch_exceptions(UpdateServiceApiException) def delete_firmware_manifest(self, manifest_id): api = self._get_api(update_service.DefaultApi) return api.firmware_manifest_destroy(manifest_id) class FirmwareImage(BaseObject): @staticmethod def _get_attributes_map(): return { "created_at": "created_at", "datafile_checksum": "datafile_checksum", "datafile_size": "datafile_size", "description": "description", "id": "id", "name": "name", "updated_at": "updated_at", "url": "datafile", } @property def created_at(self): return self._created_at @property def url(self): return self._url @property def datafile_checksum(self): return self._datafile_checksum @property def datafile_size(self): return self._datafile_size @property def description(self): return self._description @property def id(self): return self._id @property def name(self): return self._name @property def updated_at(self): return self._updated_at class FirmwareManifest(BaseObject): @staticmethod def _get_attributes_map(): return { "created_at": "created_at", "url": "datafile", "key_table_url": "key_table", "description": "description", "device_class": "device_class", "datafile_size": "datafile_size", "id": "id", "name": "name", "timestamp": "timestamp", "updated_at": "updated_at", "version": "version" } @property def created_at(self): return self._created_at @property def url(self): return self._url @property def key_table_url(self): return self._key_table_url @property def description(self): return self._description @property def device_class(self): return self._device_class @property def datafile_size(self): return self._datafile_size @property def id(self): return self._id @property def name(self): return self._name @property def timestamp(self): return self._timestamp @property def updated_at(self): return self._updated_at @property def version(self): return self._version class Campaign(BaseObject): @staticmethod def _get_attributes_map(): return { "created_at": "created_at", "description": "description", "device_filter": "device_filter", "finished_at": "finished", "id": "id", "manifest_id": "root_manifest_id", "manifest_url": "root_manifest_url", "name": "name", "phase": "phase", "scheduled_at": "when", "started_at": "started_at", "state": "state", "updated_at": "updated_at", } def _create_patch_request(self): patch_map = { "description": "description", "device_filter": "device_filter", "manifest_id": "root_manifest_id", "name": "name", "scheduled_at": "when", "state": "state", } map_patch = {} for key, value in iteritems(patch_map): val = getattr(self, key, None) if val is not None: map_patch[value] = val return map_patch @property def phase(self): return self._phase @property def device_filter(self): if isinstance(self._device_filter, str): return self._decode_query(self._device_filter) return self._device_filter @device_filter.setter def device_filter(self, device_filter): self._device_filter = device_filter @property def created_at(self): return self._created_at @property def updated_at(self): return self._updated_at @property def description(self): return self._description @description.setter def description(self, description): self._description = description @property def finished_at(self): return self._finished_at @property def id(self): return self._id @property def manifest_id(self): return self._manifest_id @manifest_id.setter def manifest_id(self, manifest_id): self._manifest_id = manifest_id @property def manifest_url(self): return self._manifest_url @property def name(self): return self._name @name.setter def name(self, name): if name is not None and len(name) > 128: raise ValueError("Invalid value for `name`, length must be less than or equal to `128`") self._name = name @property def started_at(self): return self._started_at @property def state(self): return self._state @property def scheduled_at(self): return self._scheduled_at @scheduled_at.setter def scheduled_at(self, scheduled_at): self._scheduled_at = scheduled_at class CampaignDeviceState(BaseObject): @staticmethod def _get_attributes_map(): return { "id": "id", "device_id": "device_id", "campaign_id": "campaign", "state": "deployment_state", "name": "name", "description": "description", "created_at": "created_at", "updated_at": "updated_at", "mechanism": "mechanism", "mechanism_url": "mechanism_url" } @property
Apache License 2.0
cirada-tools/rm-tools
RMutils/nestle.py
Ellipsoid.sample
python
def sample(self, rstate=np.random): return self.ctr + self.randoffset(rstate=rstate)
Chose a sample randomly distributed within the ellipsoid. Returns ------- x : 1-d array A single point within the ellipsoid.
https://github.com/cirada-tools/rm-tools/blob/083354a22292f4a6ae27a7336fbbfe22e8868c1e/RMutils/nestle.py#L288-L296
import sys import warnings import math import numpy as np try: from scipy.cluster.vq import kmeans2 HAVE_KMEANS = True except ImportError: HAVE_KMEANS = False __all__ = ["sample", "print_progress", "mean_and_cov", "resample_equal", "Result"] __version__ = "0.2.0" SQRTEPS = math.sqrt(float(np.finfo(np.float64).eps)) def vol_prefactor(n): if n % 2 == 0: f = 1. i = 2 while i <= n: f *= (2. / i * math.pi) i += 2 else: f = 2. i = 3 while i <= n: f *= (2. / i * math.pi) i += 2 return f def randsphere(n, rstate=np.random): z = rstate.randn(n) return z * rstate.rand()**(1./n) / np.sqrt(np.sum(z**2)) def random_choice(a, p, rstate=np.random): if abs(np.sum(p) - 1.) > SQRTEPS: raise ValueError("probabilities do not sum to 1") r = rstate.rand() i = 0 t = p[i] while t < r: i += 1 t += p[i] return i def resample_equal(samples, weights, rstate=None): if abs(np.sum(weights) - 1.) > SQRTEPS: raise ValueError("weights do not sum to 1") if rstate is None: rstate = np.random N = len(weights) positions = (rstate.random() + np.arange(N)) / N idx = np.zeros(N, dtype=np.int) cumulative_sum = np.cumsum(weights) i, j = 0, 0 while i < N: if positions[i] < cumulative_sum[j]: idx[i] = j i += 1 else: j += 1 return samples[idx] class Result(dict): def __getattr__(self, name): try: return self[name] except KeyError: raise AttributeError(name) __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def __repr__(self): if list(self.keys()): m = max(list(map(len, list(self.keys())))) + 1 return '\n'.join([k.rjust(m) + ': ' + repr(v) for k, v in list(self.items())]) else: return self.__class__.__name__ + "()" def summary(self): return ("niter: {:d}\n" "ncall: {:d}\n" "nsamples: {:d}\n" "logz: {:6.3f} +/- {:6.3f}\n" "h: {:6.3f}" .format(self.niter, self.ncall, len(self.samples), self.logz, self.logzerr, self.h)) def mean_and_cov(x, weights): mean = np.average(x, weights=weights, axis=0) dx = x - mean wsum = np.sum(weights) w2sum = np.sum(weights**2) cov = wsum / (wsum**2 - w2sum) * np.einsum('i,ij,ik', weights, dx, dx) return mean, cov def print_progress(info): print("\r\033[Kit={:6d} logz={:8f}".format(info['it'], info['logz']), end='') sys.stdout.flush() class Ellipsoid(object): def __init__(self, ctr, a): self.n = len(ctr) self.ctr = ctr self.a = a self.vol = vol_prefactor(self.n) / np.sqrt(np.linalg.det(a)) l, v = np.linalg.eigh(a) self.axlens = 1. / np.sqrt(l) self.axes = np.dot(v, np.diag(self.axlens)) def scale_to_vol(self, vol): f = (vol / self.vol) ** (1.0 / self.n) self.a *= f**-2 self.axlens *= f self.axes *= f self.vol = vol def major_axis_endpoints(self): i = np.argmax(self.axlens) v = self.axes[:, i] return self.ctr - v, self.ctr + v def contains(self, x): d = x - self.ctr return np.dot(np.dot(d, self.a), d) <= 1.0 def randoffset(self, rstate=np.random): return np.dot(self.axes, randsphere(self.n, rstate=rstate))
MIT License
borchero/pycave
pycave/core/estimator.py
Estimator.load
python
def load(cls: Type[E], path: Path) -> E: estimator = cls() with (path / "estimator.pickle").open("rb") as f: estimator.set_params(pickle.load(f)) if (path / "config.json").exists(): model_cls = cls._get_model_class() model = model_cls.load(path) estimator.load_model(model) return estimator
Loads the estimator and (if available) the fitted model. See :meth:`save` for more information about the required filenames for loading. Args: path: The directory from which to load the estimator. Returns: The loaded estimator, either fitted or not, depending on the availability of the ``config.json`` file.
https://github.com/borchero/pycave/blob/8c19dbd7b0b123d9d2bcdd28913918cd6555b8a0/pycave/core/estimator.py#L137-L158
from __future__ import annotations import inspect import logging import pickle from abc import ABC from pathlib import Path from typing import ( Any, Callable, Dict, Generic, get_args, get_origin, Optional, Sized, Type, TypeVar, Union, ) import numpy as np import numpy.typing as npt import pytorch_lightning as pl import torch from pytorch_lightning.plugins import DataParallelPlugin, DDP2Plugin, DDPSpawnPlugin from torch.utils.data import DataLoader, Dataset from pycave.data import ( DistributedTensorBatchSampler, TensorBatchSampler, TensorDataLoader, UnrepeatedDistributedTensorBatchSampler, ) from .exception import NotFittedError from .module import ConfigModule M = TypeVar("M", bound=ConfigModule) E = TypeVar("E", bound="Estimator") logger = logging.getLogger(__name__) class Estimator(Generic[M], ABC): _model: M def __init__( self, *, batch_size: Optional[int] = None, num_workers: int = 0, verbose: bool = False, default_params: Optional[Dict[str, Any]] = None, user_params: Optional[Dict[str, Any]] = None, overwrite_params: Optional[Dict[str, Any]] = None, ): self.batch_size = batch_size self.num_workers = num_workers self.verbose = verbose self.trainer_params_user = user_params self.trainer_params = { **dict( checkpoint_callback=False, logger=False, log_every_n_steps=1, progress_bar_refresh_rate=( None if logger.getEffectiveLevel() <= logging.INFO else 0 ), weights_summary=( "top" if logger.getEffectiveLevel() <= logging.DEBUG else None ), ), **(default_params or {}), **(user_params or {}), **(overwrite_params or {}), } @property def model_(self) -> M: return self._model @property def _is_fitted(self) -> bool: try: getattr(self, "model_") return True except NotFittedError: return False def load_model(self, model: M) -> None: self._model = model def save(self, path: Path) -> None: assert path.is_dir(), "Estimators can only be saved to a directory." with (path / "estimator.pickle").open("wb+") as f: pickle.dump(self.get_params(), f) if self._is_fitted: self.model_.save(path) @classmethod
MIT License
restran/hacker-scripts
misc/win_file_monitor/watchdog/events.py
PatternMatchingEventHandler.ignore_patterns
python
def ignore_patterns(self): return self._ignore_patterns
(Read-only) Patterns to ignore matching event paths.
https://github.com/restran/hacker-scripts/blob/30bbfd8bb97cda2b4762156aaf2973296f0e7cde/misc/win_file_monitor/watchdog/events.py#L401-L406
import os.path import logging import re from pathtools.patterns import match_any_paths from watchdog.utils import has_attribute from watchdog.utils import unicode_paths EVENT_TYPE_MOVED = 'moved' EVENT_TYPE_DELETED = 'deleted' EVENT_TYPE_CREATED = 'created' EVENT_TYPE_MODIFIED = 'modified' class FileSystemEvent(object): event_type = None is_directory = False def __init__(self, src_path): self._src_path = src_path @property def src_path(self): return self._src_path def __str__(self): return self.__repr__() def __repr__(self): return ("<%(class_name)s: event_type=%(event_type)s, " "src_path=%(src_path)r, " "is_directory=%(is_directory)s>" ) % (dict( class_name=self.__class__.__name__, event_type=self.event_type, src_path=self.src_path, is_directory=self.is_directory)) @property def key(self): return (self.event_type, self.src_path, self.is_directory) def __eq__(self, event): return self.key == event.key def __ne__(self, event): return self.key != event.key def __hash__(self): return hash(self.key) class FileSystemMovedEvent(FileSystemEvent): event_type = EVENT_TYPE_MOVED def __init__(self, src_path, dest_path): super(FileSystemMovedEvent, self).__init__(src_path) self._dest_path = dest_path @property def dest_path(self): return self._dest_path @property def key(self): return (self.event_type, self.src_path, self.dest_path, self.is_directory) def __repr__(self): return ("<%(class_name)s: src_path=%(src_path)r, " "dest_path=%(dest_path)r, " "is_directory=%(is_directory)s>" ) % (dict(class_name=self.__class__.__name__, src_path=self.src_path, dest_path=self.dest_path, is_directory=self.is_directory)) class FileDeletedEvent(FileSystemEvent): event_type = EVENT_TYPE_DELETED def __init__(self, src_path): super(FileDeletedEvent, self).__init__(src_path) def __repr__(self): return "<%(class_name)s: src_path=%(src_path)r>" % dict(class_name=self.__class__.__name__, src_path=self.src_path) class FileModifiedEvent(FileSystemEvent): event_type = EVENT_TYPE_MODIFIED def __init__(self, src_path): super(FileModifiedEvent, self).__init__(src_path) def __repr__(self): return ("<%(class_name)s: src_path=%(src_path)r>" ) % (dict(class_name=self.__class__.__name__, src_path=self.src_path)) class FileCreatedEvent(FileSystemEvent): event_type = EVENT_TYPE_CREATED def __init__(self, src_path): super(FileCreatedEvent, self).__init__(src_path) def __repr__(self): return ("<%(class_name)s: src_path=%(src_path)r>" ) % (dict(class_name=self.__class__.__name__, src_path=self.src_path)) class FileMovedEvent(FileSystemMovedEvent): def __init__(self, src_path, dest_path): super(FileMovedEvent, self).__init__(src_path, dest_path) def __repr__(self): return ("<%(class_name)s: src_path=%(src_path)r, " "dest_path=%(dest_path)r>" ) % (dict(class_name=self.__class__.__name__, src_path=self.src_path, dest_path=self.dest_path)) class DirDeletedEvent(FileSystemEvent): event_type = EVENT_TYPE_DELETED is_directory = True def __init__(self, src_path): super(DirDeletedEvent, self).__init__(src_path) def __repr__(self): return ("<%(class_name)s: src_path=%(src_path)r>" ) % (dict(class_name=self.__class__.__name__, src_path=self.src_path)) class DirModifiedEvent(FileSystemEvent): event_type = EVENT_TYPE_MODIFIED is_directory = True def __init__(self, src_path): super(DirModifiedEvent, self).__init__(src_path) def __repr__(self): return ("<%(class_name)s: src_path=%(src_path)r>" ) % (dict(class_name=self.__class__.__name__, src_path=self.src_path)) class DirCreatedEvent(FileSystemEvent): event_type = EVENT_TYPE_CREATED is_directory = True def __init__(self, src_path): super(DirCreatedEvent, self).__init__(src_path) def __repr__(self): return ("<%(class_name)s: src_path=%(src_path)r>" ) % (dict(class_name=self.__class__.__name__, src_path=self.src_path)) class DirMovedEvent(FileSystemMovedEvent): is_directory = True def __init__(self, src_path, dest_path): super(DirMovedEvent, self).__init__(src_path, dest_path) def __repr__(self): return ("<%(class_name)s: src_path=%(src_path)r, " "dest_path=%(dest_path)r>" ) % (dict(class_name=self.__class__.__name__, src_path=self.src_path, dest_path=self.dest_path)) class FileSystemEventHandler(object): def dispatch(self, event): self.on_any_event(event) _method_map = { EVENT_TYPE_MODIFIED: self.on_modified, EVENT_TYPE_MOVED: self.on_moved, EVENT_TYPE_CREATED: self.on_created, EVENT_TYPE_DELETED: self.on_deleted, } event_type = event.event_type _method_map[event_type](event) def on_any_event(self, event): def on_moved(self, event): def on_created(self, event): def on_deleted(self, event): def on_modified(self, event): class PatternMatchingEventHandler(FileSystemEventHandler): def __init__(self, patterns=None, ignore_patterns=None, ignore_directories=False, case_sensitive=False): super(PatternMatchingEventHandler, self).__init__() self._patterns = patterns self._ignore_patterns = ignore_patterns self._ignore_directories = ignore_directories self._case_sensitive = case_sensitive @property def patterns(self): return self._patterns @property
MIT License
openmotics/sdk
python/sdk.py
OpenMoticsApi.get_output_configurations
python
def get_output_configurations(self): return self.exec_action("get_output_configurations")
Get all output_configurations. :returns: list of output_configuration dict: contains 'id' (Id), 'floor' (Byte), 'module_type' (String[1]), 'name' (String[16]), 'timer' (Word), 'type' (Byte)
https://github.com/openmotics/sdk/blob/7bdbacb60e26e1a5a645e6546fe8ae256e3268d4/python/sdk.py#L497-L503
import json import requests import random import traceback import time class AuthenticationException(Exception): def __init__(self): self.msg = "The provided credentials are not valid." def __str__(self): return self.msg class MaintenanceModeException(Exception): def __init__(self): self.msg = "The gateway is currently in maintenance mode." def __str__(self): return self.msg class ApiException(Exception): def __init__(self, msg): self.msg = "Non successful api call: %s" % msg def __str__(self): return self.msg class OpenMoticsApi: def __init__(self, username, password, hostname, verify_https=False, port=443): self.auth = { "username" : username, "password" : password } self.hostname = hostname self.verify_https = verify_https self.port = port self.token = None def get_url(self, action): return "https://%s:%s/%s" % (self.hostname, self.port, action) def get_post_data(self, post_data): d = post_data.copy() if self.token != None: d["token"] = self.token return d def fetch_url(self, action, post_data={}, get_params={}, json_decode=True): url = self.get_url(action) post_data = self.get_post_data(post_data) print "Fetching url: %s" % url r = requests.post(url, params=get_params, data=post_data, verify=self.verify_https) if r.status_code == 401: self.token = None raise AuthenticationException() elif r.status_code == 503: raise MaintenanceModeException() elif r.status_code == 200: if json_decode: msg = r.json() if 'success' in msg and msg['success'] is False: raise ApiException(msg) else: return msg else: return r.text else: raise Exception("Unknown status code: %s. Text: %s" % (r.status_code, r.text)) def login(self): self.token = self.fetch_url("login", self.auth)["token"] def exec_action(self, action, post_data={}, get_params={}, json_decode=True): if self.token == None: self.login() try: return self.fetch_url(action, post_data, get_params, json_decode) except AuthenticationException: self.login() return self.fetch_url(action, post_data, get_params, json_decode) def get_version(self): return self.exec_action('get_version') def get_status(self): return self.exec_action('get_status') def get_output_status(self): return self.exec_action('get_output_status') def get_thermostat_status(self): return self.exec_action('get_thermostat_status') def get_sensor_brightness_status(self): return self.exec_action('get_sensor_brightness_status') def get_sensor_humidity_status(self): return self.exec_action('get_sensor_humidity_status') def get_sensor_temperature_status(self): return self.exec_action('get_sensor_temperature_status') def set_output(self, id, on, dimmer=None, timer=None): post_data = {'id' : id, 'is_on' : on} if dimmer is not None: post_data['dimmer'] = dimmer if timer is not None: post_data['timer'] = timer return self.exec_action('set_output', post_data=post_data) def set_all_lights_off(self): return self.exec_action('set_all_lights_off') def set_all_lights_floor_off(self, floor): return self.exec_action('set_all_lights_floor_off', post_data={'floor': floor}) def set_all_lights_floor_on(self, floor): return self.exec_action('set_all_lights_floor_on', post_data={'floor': floor}) def set_current_setpoint(self, thermostat, temperature): return self.exec_action('set_current_setpoint', post_data={'thermostat': thermostat, 'temperature': temperature}) def set_thermostat_mode(self, on, automatic, setpoint): return self.exec_action('set_thermostat_mode', post_data={'thermostat_on': on, 'automatic': automatic, 'setpoint': setpoint}) def do_group_action(self, group_action_id): return self.exec_action('do_group_action', post_data={'group_action_id': group_action_id}) def module_discover_start(self): return self.exec_action('module_discover_start') def module_discover_stop(self): return self.exec_action('module_discover_stop') def get_modules(self): return self.exec_action('get_modules') def flash_leds(self, type, id): return self.exec_action('flash_leds', post_data={'type': type, 'id': id}) def get_last_inputs(self): return self.exec_action('get_last_inputs') def get_pulse_counter_status(self): return self.exec_action('get_pulse_counter_status') def get_errors(self): return self.exec_action('get_errors') def master_clear_error_list(self): return self.exec_action('master_clear_error_list') def reset_master(self): return self.exec_action('reset_master') def get_power_modules(self): return self.exec_action('get_power_modules') def set_power_modules(self, modules): return self.exec_action('set_power_modules', post_data={'modules': json.dumps(modules)}) def get_realtime_power(self): return self.exec_action('get_realtime_power') def get_total_energy(self): return self.exec_action('get_total_energy') def set_power_voltage(self, module_id, voltage): return self.exec_action('set_power_voltage', post_data={'module_id': module_id, 'voltage': voltage}) def start_power_address_mode(self): return self.exec_action('start_power_address_mode') def stop_power_address_mode(self): return self.exec_action('stop_power_address_mode') def in_power_address_mode(self): return self.exec_action('in_power_address_mode') def set_timezone(self, timezone): return self.exec_action('set_timezone', post_data={'timezone': timezone}) def get_timezone(self): return self.exec_action('get_timezone') def do_url_action(self, url, method='GET', headers=None, data=None, auth=None, timeout=10): return self.exec_action('do_url_action', post_data={ 'url':url, 'method':method, 'headers':headers, 'data':data, 'auth':auth, 'timeout':timeout }) def schedule_action(self, timestamp, action): return self.exec_action('schedule_action', post_data = { 'timestamp' : timestamp, 'action' : json.dumps(action) }) def list_scheduled_actions(self): return self.exec_action('list_scheduled_actions') def remove_scheduled_action(self, id): return self.exec_action('remove_scheduled_action', post_data = { 'id' : id }) def set_output_delayed(self, timestamp, description, output_nr, on, dimmer=None, timer=None): action = { 'type' : 'basic', 'action' : 'set_output', 'description' : description, 'params' : { 'output_nr' : output_nr, 'is_on' : on, 'dimmer': dimmer, 'timer' : timer } } return self.schedule_action(timestamp, action) def set_all_lights_off_delayed(self, timestamp, description): return self.schedule_action(timestamp, { 'type' : 'basic', 'action' : 'set_all_lights_off', 'description' : description }) def set_all_lights_floor_off_delayed(self, timestamp, description, floor): action = { 'type' : 'basic', 'action' : 'set_all_lights_floor_off', 'description' : description, 'params' : { 'floor' : floor } } return self.schedule_action(timestamp, action) def set_all_lights_floor_on_delayed(self, timestamp, description, floor): action = { 'type' : 'basic', 'action' : 'set_all_lights_floor_on', 'description' : description, 'params' : { 'floor' : floor } } return self.schedule_action(timestamp, action) def set_current_setpoint_delayed(self, timestamp, description, thermostat, temperature): action = { 'type' : 'basic', 'action' : 'set_current_setpoint', 'description' : description, 'params' : { 'thermostat': thermostat, 'temperature': temperature } } return self.schedule_action(timestamp, action) def set_mode_delayed(self, timestamp, description, on, automatic, setpoint): action = { 'type' : 'basic', 'action' : 'set_thermostat_mode', 'description' : description, 'params' : { 'thermostat_on': on, 'automatic': automatic, 'setpoint': setpoint } } return self.schedule_action(timestamp, action) def do_group_action_delayed(self, timestamp, description, group_action_id): action = { 'type' : 'basic', 'action' : 'do_group_action', 'description' : description, 'params' : { 'group_action_id': group_action_id } } return self.schedule_action(timestamp, action) def get_output_configuration(self, id): return self.exec_action("get_output_configuration", post_data = { "id" : id })
MIT License
docusign/docusign-python-client
docusign_esign/models/signer.py
Signer.client_user_id
python
def client_user_id(self, client_user_id): self._client_user_id = client_user_id
Sets the client_user_id of this Signer. Specifies whether the recipient is embedded or remote. If the `clientUserId` property is not null then the recipient is embedded. Note that if the `ClientUserId` property is set and either `SignerMustHaveAccount` or `SignerMustLoginToSign` property of the account settings is set to **true**, an error is generated on sending.ng. Maximum length: 100 characters. # noqa: E501 :param client_user_id: The client_user_id of this Signer. # noqa: E501 :type: str
https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/signer.py#L681-L690
import pprint import re import six from docusign_esign.client.configuration import Configuration class Signer(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'access_code': 'str', 'access_code_metadata': 'PropertyMetadata', 'add_access_code_to_email': 'str', 'additional_notifications': 'list[RecipientAdditionalNotification]', 'agent_can_edit_email': 'str', 'agent_can_edit_name': 'str', 'allow_system_override_for_locked_recipient': 'str', 'auto_navigation': 'str', 'auto_responded_reason': 'str', 'bulk_recipients_uri': 'str', 'can_sign_offline': 'str', 'client_user_id': 'str', 'completed_count': 'str', 'creation_reason': 'str', 'custom_fields': 'list[str]', 'declined_date_time': 'str', 'declined_reason': 'str', 'default_recipient': 'str', 'delivered_date_time': 'str', 'delivery_method': 'str', 'delivery_method_metadata': 'PropertyMetadata', 'designator_id': 'str', 'designator_id_guid': 'str', 'document_visibility': 'list[DocumentVisibility]', 'email': 'str', 'email_metadata': 'PropertyMetadata', 'email_notification': 'RecipientEmailNotification', 'embedded_recipient_start_url': 'str', 'error_details': 'ErrorDetails', 'excluded_documents': 'list[str]', 'fax_number': 'str', 'fax_number_metadata': 'PropertyMetadata', 'first_name': 'str', 'first_name_metadata': 'PropertyMetadata', 'full_name': 'str', 'full_name_metadata': 'PropertyMetadata', 'id_check_configuration_name': 'str', 'id_check_configuration_name_metadata': 'PropertyMetadata', 'id_check_information_input': 'IdCheckInformationInput', 'identity_verification': 'RecipientIdentityVerification', 'inherit_email_notification_configuration': 'str', 'is_bulk_recipient': 'str', 'is_bulk_recipient_metadata': 'PropertyMetadata', 'last_name': 'str', 'last_name_metadata': 'PropertyMetadata', 'locked_recipient_phone_auth_editable': 'str', 'locked_recipient_sms_editable': 'str', 'name': 'str', 'name_metadata': 'PropertyMetadata', 'notary_id': 'str', 'note': 'str', 'note_metadata': 'PropertyMetadata', 'offline_attributes': 'OfflineAttributes', 'phone_authentication': 'RecipientPhoneAuthentication', 'phone_number': 'RecipientPhoneNumber', 'proof_file': 'RecipientProofFile', 'recipient_attachments': 'list[RecipientAttachment]', 'recipient_authentication_status': 'AuthenticationStatus', 'recipient_feature_metadata': 'list[FeatureAvailableMetadata]', 'recipient_id': 'str', 'recipient_id_guid': 'str', 'recipient_signature_providers': 'list[RecipientSignatureProvider]', 'recipient_supplies_tabs': 'str', 'recipient_type': 'str', 'recipient_type_metadata': 'PropertyMetadata', 'require_id_lookup': 'str', 'require_id_lookup_metadata': 'PropertyMetadata', 'require_signer_certificate': 'str', 'require_sign_on_paper': 'str', 'require_upload_signature': 'str', 'role_name': 'str', 'routing_order': 'str', 'routing_order_metadata': 'PropertyMetadata', 'sent_date_time': 'str', 'signature_info': 'RecipientSignatureInformation', 'signed_date_time': 'str', 'sign_in_each_location': 'str', 'sign_in_each_location_metadata': 'PropertyMetadata', 'signing_group_id': 'str', 'signing_group_id_metadata': 'PropertyMetadata', 'signing_group_name': 'str', 'signing_group_users': 'list[UserInfo]', 'sms_authentication': 'RecipientSMSAuthentication', 'social_authentications': 'list[SocialAuthentication]', 'status': 'str', 'status_code': 'str', 'suppress_emails': 'str', 'tabs': 'Tabs', 'template_locked': 'str', 'template_required': 'str', 'total_tab_count': 'str', 'user_id': 'str' } attribute_map = { 'access_code': 'accessCode', 'access_code_metadata': 'accessCodeMetadata', 'add_access_code_to_email': 'addAccessCodeToEmail', 'additional_notifications': 'additionalNotifications', 'agent_can_edit_email': 'agentCanEditEmail', 'agent_can_edit_name': 'agentCanEditName', 'allow_system_override_for_locked_recipient': 'allowSystemOverrideForLockedRecipient', 'auto_navigation': 'autoNavigation', 'auto_responded_reason': 'autoRespondedReason', 'bulk_recipients_uri': 'bulkRecipientsUri', 'can_sign_offline': 'canSignOffline', 'client_user_id': 'clientUserId', 'completed_count': 'completedCount', 'creation_reason': 'creationReason', 'custom_fields': 'customFields', 'declined_date_time': 'declinedDateTime', 'declined_reason': 'declinedReason', 'default_recipient': 'defaultRecipient', 'delivered_date_time': 'deliveredDateTime', 'delivery_method': 'deliveryMethod', 'delivery_method_metadata': 'deliveryMethodMetadata', 'designator_id': 'designatorId', 'designator_id_guid': 'designatorIdGuid', 'document_visibility': 'documentVisibility', 'email': 'email', 'email_metadata': 'emailMetadata', 'email_notification': 'emailNotification', 'embedded_recipient_start_url': 'embeddedRecipientStartURL', 'error_details': 'errorDetails', 'excluded_documents': 'excludedDocuments', 'fax_number': 'faxNumber', 'fax_number_metadata': 'faxNumberMetadata', 'first_name': 'firstName', 'first_name_metadata': 'firstNameMetadata', 'full_name': 'fullName', 'full_name_metadata': 'fullNameMetadata', 'id_check_configuration_name': 'idCheckConfigurationName', 'id_check_configuration_name_metadata': 'idCheckConfigurationNameMetadata', 'id_check_information_input': 'idCheckInformationInput', 'identity_verification': 'identityVerification', 'inherit_email_notification_configuration': 'inheritEmailNotificationConfiguration', 'is_bulk_recipient': 'isBulkRecipient', 'is_bulk_recipient_metadata': 'isBulkRecipientMetadata', 'last_name': 'lastName', 'last_name_metadata': 'lastNameMetadata', 'locked_recipient_phone_auth_editable': 'lockedRecipientPhoneAuthEditable', 'locked_recipient_sms_editable': 'lockedRecipientSmsEditable', 'name': 'name', 'name_metadata': 'nameMetadata', 'notary_id': 'notaryId', 'note': 'note', 'note_metadata': 'noteMetadata', 'offline_attributes': 'offlineAttributes', 'phone_authentication': 'phoneAuthentication', 'phone_number': 'phoneNumber', 'proof_file': 'proofFile', 'recipient_attachments': 'recipientAttachments', 'recipient_authentication_status': 'recipientAuthenticationStatus', 'recipient_feature_metadata': 'recipientFeatureMetadata', 'recipient_id': 'recipientId', 'recipient_id_guid': 'recipientIdGuid', 'recipient_signature_providers': 'recipientSignatureProviders', 'recipient_supplies_tabs': 'recipientSuppliesTabs', 'recipient_type': 'recipientType', 'recipient_type_metadata': 'recipientTypeMetadata', 'require_id_lookup': 'requireIdLookup', 'require_id_lookup_metadata': 'requireIdLookupMetadata', 'require_signer_certificate': 'requireSignerCertificate', 'require_sign_on_paper': 'requireSignOnPaper', 'require_upload_signature': 'requireUploadSignature', 'role_name': 'roleName', 'routing_order': 'routingOrder', 'routing_order_metadata': 'routingOrderMetadata', 'sent_date_time': 'sentDateTime', 'signature_info': 'signatureInfo', 'signed_date_time': 'signedDateTime', 'sign_in_each_location': 'signInEachLocation', 'sign_in_each_location_metadata': 'signInEachLocationMetadata', 'signing_group_id': 'signingGroupId', 'signing_group_id_metadata': 'signingGroupIdMetadata', 'signing_group_name': 'signingGroupName', 'signing_group_users': 'signingGroupUsers', 'sms_authentication': 'smsAuthentication', 'social_authentications': 'socialAuthentications', 'status': 'status', 'status_code': 'statusCode', 'suppress_emails': 'suppressEmails', 'tabs': 'tabs', 'template_locked': 'templateLocked', 'template_required': 'templateRequired', 'total_tab_count': 'totalTabCount', 'user_id': 'userId' } def __init__(self, _configuration=None, **kwargs): if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._access_code = None self._access_code_metadata = None self._add_access_code_to_email = None self._additional_notifications = None self._agent_can_edit_email = None self._agent_can_edit_name = None self._allow_system_override_for_locked_recipient = None self._auto_navigation = None self._auto_responded_reason = None self._bulk_recipients_uri = None self._can_sign_offline = None self._client_user_id = None self._completed_count = None self._creation_reason = None self._custom_fields = None self._declined_date_time = None self._declined_reason = None self._default_recipient = None self._delivered_date_time = None self._delivery_method = None self._delivery_method_metadata = None self._designator_id = None self._designator_id_guid = None self._document_visibility = None self._email = None self._email_metadata = None self._email_notification = None self._embedded_recipient_start_url = None self._error_details = None self._excluded_documents = None self._fax_number = None self._fax_number_metadata = None self._first_name = None self._first_name_metadata = None self._full_name = None self._full_name_metadata = None self._id_check_configuration_name = None self._id_check_configuration_name_metadata = None self._id_check_information_input = None self._identity_verification = None self._inherit_email_notification_configuration = None self._is_bulk_recipient = None self._is_bulk_recipient_metadata = None self._last_name = None self._last_name_metadata = None self._locked_recipient_phone_auth_editable = None self._locked_recipient_sms_editable = None self._name = None self._name_metadata = None self._notary_id = None self._note = None self._note_metadata = None self._offline_attributes = None self._phone_authentication = None self._phone_number = None self._proof_file = None self._recipient_attachments = None self._recipient_authentication_status = None self._recipient_feature_metadata = None self._recipient_id = None self._recipient_id_guid = None self._recipient_signature_providers = None self._recipient_supplies_tabs = None self._recipient_type = None self._recipient_type_metadata = None self._require_id_lookup = None self._require_id_lookup_metadata = None self._require_signer_certificate = None self._require_sign_on_paper = None self._require_upload_signature = None self._role_name = None self._routing_order = None self._routing_order_metadata = None self._sent_date_time = None self._signature_info = None self._signed_date_time = None self._sign_in_each_location = None self._sign_in_each_location_metadata = None self._signing_group_id = None self._signing_group_id_metadata = None self._signing_group_name = None self._signing_group_users = None self._sms_authentication = None self._social_authentications = None self._status = None self._status_code = None self._suppress_emails = None self._tabs = None self._template_locked = None self._template_required = None self._total_tab_count = None self._user_id = None self.discriminator = None setattr(self, "_{}".format('access_code'), kwargs.get('access_code', None)) setattr(self, "_{}".format('access_code_metadata'), kwargs.get('access_code_metadata', None)) setattr(self, "_{}".format('add_access_code_to_email'), kwargs.get('add_access_code_to_email', None)) setattr(self, "_{}".format('additional_notifications'), kwargs.get('additional_notifications', None)) setattr(self, "_{}".format('agent_can_edit_email'), kwargs.get('agent_can_edit_email', None)) setattr(self, "_{}".format('agent_can_edit_name'), kwargs.get('agent_can_edit_name', None)) setattr(self, "_{}".format('allow_system_override_for_locked_recipient'), kwargs.get('allow_system_override_for_locked_recipient', None)) setattr(self, "_{}".format('auto_navigation'), kwargs.get('auto_navigation', None)) setattr(self, "_{}".format('auto_responded_reason'), kwargs.get('auto_responded_reason', None)) setattr(self, "_{}".format('bulk_recipients_uri'), kwargs.get('bulk_recipients_uri', None)) setattr(self, "_{}".format('can_sign_offline'), kwargs.get('can_sign_offline', None)) setattr(self, "_{}".format('client_user_id'), kwargs.get('client_user_id', None)) setattr(self, "_{}".format('completed_count'), kwargs.get('completed_count', None)) setattr(self, "_{}".format('creation_reason'), kwargs.get('creation_reason', None)) setattr(self, "_{}".format('custom_fields'), kwargs.get('custom_fields', None)) setattr(self, "_{}".format('declined_date_time'), kwargs.get('declined_date_time', None)) setattr(self, "_{}".format('declined_reason'), kwargs.get('declined_reason', None)) setattr(self, "_{}".format('default_recipient'), kwargs.get('default_recipient', None)) setattr(self, "_{}".format('delivered_date_time'), kwargs.get('delivered_date_time', None)) setattr(self, "_{}".format('delivery_method'), kwargs.get('delivery_method', None)) setattr(self, "_{}".format('delivery_method_metadata'), kwargs.get('delivery_method_metadata', None)) setattr(self, "_{}".format('designator_id'), kwargs.get('designator_id', None)) setattr(self, "_{}".format('designator_id_guid'), kwargs.get('designator_id_guid', None)) setattr(self, "_{}".format('document_visibility'), kwargs.get('document_visibility', None)) setattr(self, "_{}".format('email'), kwargs.get('email', None)) setattr(self, "_{}".format('email_metadata'), kwargs.get('email_metadata', None)) setattr(self, "_{}".format('email_notification'), kwargs.get('email_notification', None)) setattr(self, "_{}".format('embedded_recipient_start_url'), kwargs.get('embedded_recipient_start_url', None)) setattr(self, "_{}".format('error_details'), kwargs.get('error_details', None)) setattr(self, "_{}".format('excluded_documents'), kwargs.get('excluded_documents', None)) setattr(self, "_{}".format('fax_number'), kwargs.get('fax_number', None)) setattr(self, "_{}".format('fax_number_metadata'), kwargs.get('fax_number_metadata', None)) setattr(self, "_{}".format('first_name'), kwargs.get('first_name', None)) setattr(self, "_{}".format('first_name_metadata'), kwargs.get('first_name_metadata', None)) setattr(self, "_{}".format('full_name'), kwargs.get('full_name', None)) setattr(self, "_{}".format('full_name_metadata'), kwargs.get('full_name_metadata', None)) setattr(self, "_{}".format('id_check_configuration_name'), kwargs.get('id_check_configuration_name', None)) setattr(self, "_{}".format('id_check_configuration_name_metadata'), kwargs.get('id_check_configuration_name_metadata', None)) setattr(self, "_{}".format('id_check_information_input'), kwargs.get('id_check_information_input', None)) setattr(self, "_{}".format('identity_verification'), kwargs.get('identity_verification', None)) setattr(self, "_{}".format('inherit_email_notification_configuration'), kwargs.get('inherit_email_notification_configuration', None)) setattr(self, "_{}".format('is_bulk_recipient'), kwargs.get('is_bulk_recipient', None)) setattr(self, "_{}".format('is_bulk_recipient_metadata'), kwargs.get('is_bulk_recipient_metadata', None)) setattr(self, "_{}".format('last_name'), kwargs.get('last_name', None)) setattr(self, "_{}".format('last_name_metadata'), kwargs.get('last_name_metadata', None)) setattr(self, "_{}".format('locked_recipient_phone_auth_editable'), kwargs.get('locked_recipient_phone_auth_editable', None)) setattr(self, "_{}".format('locked_recipient_sms_editable'), kwargs.get('locked_recipient_sms_editable', None)) setattr(self, "_{}".format('name'), kwargs.get('name', None)) setattr(self, "_{}".format('name_metadata'), kwargs.get('name_metadata', None)) setattr(self, "_{}".format('notary_id'), kwargs.get('notary_id', None)) setattr(self, "_{}".format('note'), kwargs.get('note', None)) setattr(self, "_{}".format('note_metadata'), kwargs.get('note_metadata', None)) setattr(self, "_{}".format('offline_attributes'), kwargs.get('offline_attributes', None)) setattr(self, "_{}".format('phone_authentication'), kwargs.get('phone_authentication', None)) setattr(self, "_{}".format('phone_number'), kwargs.get('phone_number', None)) setattr(self, "_{}".format('proof_file'), kwargs.get('proof_file', None)) setattr(self, "_{}".format('recipient_attachments'), kwargs.get('recipient_attachments', None)) setattr(self, "_{}".format('recipient_authentication_status'), kwargs.get('recipient_authentication_status', None)) setattr(self, "_{}".format('recipient_feature_metadata'), kwargs.get('recipient_feature_metadata', None)) setattr(self, "_{}".format('recipient_id'), kwargs.get('recipient_id', None)) setattr(self, "_{}".format('recipient_id_guid'), kwargs.get('recipient_id_guid', None)) setattr(self, "_{}".format('recipient_signature_providers'), kwargs.get('recipient_signature_providers', None)) setattr(self, "_{}".format('recipient_supplies_tabs'), kwargs.get('recipient_supplies_tabs', None)) setattr(self, "_{}".format('recipient_type'), kwargs.get('recipient_type', None)) setattr(self, "_{}".format('recipient_type_metadata'), kwargs.get('recipient_type_metadata', None)) setattr(self, "_{}".format('require_id_lookup'), kwargs.get('require_id_lookup', None)) setattr(self, "_{}".format('require_id_lookup_metadata'), kwargs.get('require_id_lookup_metadata', None)) setattr(self, "_{}".format('require_signer_certificate'), kwargs.get('require_signer_certificate', None)) setattr(self, "_{}".format('require_sign_on_paper'), kwargs.get('require_sign_on_paper', None)) setattr(self, "_{}".format('require_upload_signature'), kwargs.get('require_upload_signature', None)) setattr(self, "_{}".format('role_name'), kwargs.get('role_name', None)) setattr(self, "_{}".format('routing_order'), kwargs.get('routing_order', None)) setattr(self, "_{}".format('routing_order_metadata'), kwargs.get('routing_order_metadata', None)) setattr(self, "_{}".format('sent_date_time'), kwargs.get('sent_date_time', None)) setattr(self, "_{}".format('signature_info'), kwargs.get('signature_info', None)) setattr(self, "_{}".format('signed_date_time'), kwargs.get('signed_date_time', None)) setattr(self, "_{}".format('sign_in_each_location'), kwargs.get('sign_in_each_location', None)) setattr(self, "_{}".format('sign_in_each_location_metadata'), kwargs.get('sign_in_each_location_metadata', None)) setattr(self, "_{}".format('signing_group_id'), kwargs.get('signing_group_id', None)) setattr(self, "_{}".format('signing_group_id_metadata'), kwargs.get('signing_group_id_metadata', None)) setattr(self, "_{}".format('signing_group_name'), kwargs.get('signing_group_name', None)) setattr(self, "_{}".format('signing_group_users'), kwargs.get('signing_group_users', None)) setattr(self, "_{}".format('sms_authentication'), kwargs.get('sms_authentication', None)) setattr(self, "_{}".format('social_authentications'), kwargs.get('social_authentications', None)) setattr(self, "_{}".format('status'), kwargs.get('status', None)) setattr(self, "_{}".format('status_code'), kwargs.get('status_code', None)) setattr(self, "_{}".format('suppress_emails'), kwargs.get('suppress_emails', None)) setattr(self, "_{}".format('tabs'), kwargs.get('tabs', None)) setattr(self, "_{}".format('template_locked'), kwargs.get('template_locked', None)) setattr(self, "_{}".format('template_required'), kwargs.get('template_required', None)) setattr(self, "_{}".format('total_tab_count'), kwargs.get('total_tab_count', None)) setattr(self, "_{}".format('user_id'), kwargs.get('user_id', None)) @property def access_code(self): return self._access_code @access_code.setter def access_code(self, access_code): self._access_code = access_code @property def access_code_metadata(self): return self._access_code_metadata @access_code_metadata.setter def access_code_metadata(self, access_code_metadata): self._access_code_metadata = access_code_metadata @property def add_access_code_to_email(self): return self._add_access_code_to_email @add_access_code_to_email.setter def add_access_code_to_email(self, add_access_code_to_email): self._add_access_code_to_email = add_access_code_to_email @property def additional_notifications(self): return self._additional_notifications @additional_notifications.setter def additional_notifications(self, additional_notifications): self._additional_notifications = additional_notifications @property def agent_can_edit_email(self): return self._agent_can_edit_email @agent_can_edit_email.setter def agent_can_edit_email(self, agent_can_edit_email): self._agent_can_edit_email = agent_can_edit_email @property def agent_can_edit_name(self): return self._agent_can_edit_name @agent_can_edit_name.setter def agent_can_edit_name(self, agent_can_edit_name): self._agent_can_edit_name = agent_can_edit_name @property def allow_system_override_for_locked_recipient(self): return self._allow_system_override_for_locked_recipient @allow_system_override_for_locked_recipient.setter def allow_system_override_for_locked_recipient(self, allow_system_override_for_locked_recipient): self._allow_system_override_for_locked_recipient = allow_system_override_for_locked_recipient @property def auto_navigation(self): return self._auto_navigation @auto_navigation.setter def auto_navigation(self, auto_navigation): self._auto_navigation = auto_navigation @property def auto_responded_reason(self): return self._auto_responded_reason @auto_responded_reason.setter def auto_responded_reason(self, auto_responded_reason): self._auto_responded_reason = auto_responded_reason @property def bulk_recipients_uri(self): return self._bulk_recipients_uri @bulk_recipients_uri.setter def bulk_recipients_uri(self, bulk_recipients_uri): self._bulk_recipients_uri = bulk_recipients_uri @property def can_sign_offline(self): return self._can_sign_offline @can_sign_offline.setter def can_sign_offline(self, can_sign_offline): self._can_sign_offline = can_sign_offline @property def client_user_id(self): return self._client_user_id @client_user_id.setter
MIT License
opendilab/di-star
ctools/torch_utils/network/activation.py
GLU.__init__
python
def __init__(self, input_dim, output_dim, context_dim, input_type='fc'): super(GLU, self).__init__() assert (input_type in ['fc', 'conv2d']) if input_type == 'fc': self.layer1 = nn.Linear(context_dim, input_dim) self.layer2 = nn.Linear(input_dim, output_dim) elif input_type == 'conv2d': self.layer1 = nn.Conv2d(context_dim, input_dim, 1, 1, 0) self.layer2 = nn.Conv2d(input_dim, output_dim, 1, 1, 0)
r""" Overview: Init glu Arguments: - input_dim (:obj:`int`): the input dimension - output_dim (:obj:`int`): the output dimension - context_dim (:obj:`int`): the context dimension - input_type (:obj:`str`): the type of input, now support ['fc', 'conv2d']
https://github.com/opendilab/di-star/blob/f12d79403488e7df0498d7b116fc23a67506112b/ctools/torch_utils/network/activation.py#L32-L49
import torch import torch.nn as nn class GLU(nn.Module):
Apache License 2.0
rpotter12/whatsapp-play
tests/test_func.py
safe_rmpath
python
def safe_rmpath(path): def retry_fun(fun): stop_at = time.time() + 1 while time.time() < stop_at: try: return fun() except FileNotFoundError: pass try: st = os.stat(path) if stat.S_ISDIR(st.st_mode): fun = functools.partial(shutil.rmtree, path) else: fun = functools.partial(os.remove, path) if POSIX: fun() else: retry_fun(fun) except FileNotFoundError: pass
Convenience function for removing temporary test files or dirs
https://github.com/rpotter12/whatsapp-play/blob/f925c7ac84f8cf4a962788cf30712073b955255b/tests/test_func.py#L130-L155
import functools import os import shutil import stat import subprocess import sys import time import psutil from psutil import MACOS from psutil import POSIX from psutil import WINDOWS from psutil._compat import which __all__ = [ 'DEVNULL' , 'PYTHON_EXE', 'TESTFILE_PREFIX' , 'TESTFN', 'get_test_subprocess', 'safe_rmpath' , 'wait_for_pid', 'wait_for_file', ] TESTFILE_PREFIX = '$testfn' if os.name == 'java': TESTFILE_PREFIX = '$psutil-test-' else: TESTFILE_PREFIX = '@psutil-test-' TESTFN = os.path.join(os.path.realpath(os.getcwd()), TESTFILE_PREFIX) TESTFN = TESTFN + str(os.getpid()) _TESTFN = TESTFN + '-internal' def _get_py_exe(): def attempt(exe): try: subprocess.check_call( [exe, "-V"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) except Exception: return None else: return exe if MACOS: exe = attempt(sys.executable) or attempt(os.path.realpath(sys.executable)) or attempt(which("python%s.%s" % sys.version_info[:2])) or attempt(psutil.Process().exe()) if not exe: raise ValueError("can't find python exe real abspath") return exe else: exe = os.path.realpath(sys.executable) assert os.path.exists(exe), exe return exe PYTHON_EXE = _get_py_exe() DEVNULL = open(os.devnull, 'r+') _subprocesses_started = set() def get_test_subprocess(cmd=None, **kwds): kwds.setdefault("stdin", DEVNULL) kwds.setdefault("stdout", DEVNULL) kwds.setdefault("cwd", os.getcwd()) kwds.setdefault("env", os.environ) if WINDOWS: CREATE_NO_WINDOW = 0x8000000 kwds.setdefault("creationflags", CREATE_NO_WINDOW) if cmd is None: safe_rmpath(_TESTFN) pyline = "from time import sleep;" "open(r'%s', 'w').close();" "sleep(30);" % _TESTFN cmd = [PYTHON_EXE, "-c", pyline] sproc = subprocess.Popen(cmd, **kwds) _subprocesses_started.add(sproc) else: sproc = subprocess.Popen(cmd, **kwds) _subprocesses_started.add(sproc) wait_for_pid(sproc.pid) return sproc def wait_for_pid(pid): psutil.Process(pid) if WINDOWS: time.sleep(0.01) def wait_for_file(fname, delete=True, empty=False): with open(fname, "rb") as f: data = f.read() if not empty: assert data if delete: safe_rmpath(fname) return data
MIT License
happyleavesaoc/python-snapcast
snapcast/control/server.py
Snapserver.client
python
def client(self, client_identifier): return self._clients[client_identifier]
Get a client.
https://github.com/happyleavesaoc/python-snapcast/blob/891ebb6001ad98f668668a77716fdeccb9a8cca1/snapcast/control/server.py#L203-L205
import asyncio import logging from packaging import version from snapcast.control.client import Snapclient from snapcast.control.group import Snapgroup from snapcast.control.protocol import SERVER_ONDISCONNECT, SnapcastProtocol from snapcast.control.stream import Snapstream _LOGGER = logging.getLogger(__name__) CONTROL_PORT = 1705 SERVER_GETSTATUS = 'Server.GetStatus' SERVER_GETRPCVERSION = 'Server.GetRPCVersion' SERVER_DELETECLIENT = 'Server.DeleteClient' SERVER_ONUPDATE = 'Server.OnUpdate' CLIENT_GETSTATUS = 'Client.GetStatus' CLIENT_SETNAME = 'Client.SetName' CLIENT_SETLATENCY = 'Client.SetLatency' CLIENT_SETSTREAM = 'Client.SetStream' CLIENT_SETVOLUME = 'Client.SetVolume' CLIENT_ONCONNECT = 'Client.OnConnect' CLIENT_ONDISCONNECT = 'Client.OnDisconnect' CLIENT_ONVOLUMECHANGED = 'Client.OnVolumeChanged' CLIENT_ONLATENCYCHANGED = 'Client.OnLatencyChanged' CLIENT_ONNAMECHANGED = 'Client.OnNameChanged' GROUP_GETSTATUS = 'Group.GetStatus' GROUP_SETMUTE = 'Group.SetMute' GROUP_SETSTREAM = 'Group.SetStream' GROUP_SETCLIENTS = 'Group.SetClients' GROUP_SETNAME = 'Group.SetName' GROUP_ONMUTE = 'Group.OnMute' GROUP_ONSTREAMCHANGED = 'Group.OnStreamChanged' STREAM_SETMETA = 'Stream.SetMeta' STREAM_ONUPDATE = 'Stream.OnUpdate' STREAM_ONMETA = 'Stream.OnMetadata' SERVER_RECONNECT_DELAY = 5 _EVENTS = [SERVER_ONUPDATE, CLIENT_ONVOLUMECHANGED, CLIENT_ONLATENCYCHANGED, CLIENT_ONNAMECHANGED, CLIENT_ONCONNECT, CLIENT_ONDISCONNECT, GROUP_ONMUTE, GROUP_ONSTREAMCHANGED, STREAM_ONUPDATE, STREAM_ONMETA] _METHODS = [SERVER_GETSTATUS, SERVER_GETRPCVERSION, SERVER_DELETECLIENT, SERVER_DELETECLIENT, CLIENT_GETSTATUS, CLIENT_SETNAME, CLIENT_SETLATENCY, CLIENT_SETSTREAM, CLIENT_SETVOLUME, GROUP_GETSTATUS, GROUP_SETMUTE, GROUP_SETSTREAM, GROUP_SETCLIENTS, GROUP_SETNAME, STREAM_SETMETA] _VERSIONS = { GROUP_SETNAME: '0.16.0', } class ServerVersionError(NotImplementedError): pass class Snapserver(object): def __init__(self, loop, host, port=CONTROL_PORT, reconnect=False): self._loop = loop self._port = port self._reconnect = reconnect self._clients = {} self._streams = {} self._groups = {} self._host = host self._version = None self._protocol = None self._callbacks = { CLIENT_ONCONNECT: self._on_client_connect, CLIENT_ONDISCONNECT: self._on_client_disconnect, CLIENT_ONVOLUMECHANGED: self._on_client_volume_changed, CLIENT_ONNAMECHANGED: self._on_client_name_changed, CLIENT_ONLATENCYCHANGED: self._on_client_latency_changed, GROUP_ONMUTE: self._on_group_mute, GROUP_ONSTREAMCHANGED: self._on_group_stream_changed, STREAM_ONMETA: self._on_stream_meta, STREAM_ONUPDATE: self._on_stream_update, SERVER_ONDISCONNECT: self._on_server_disconnect, SERVER_ONUPDATE: self._on_server_update } self._on_update_callback_func = None self._on_connect_callback_func = None self._on_disconnect_callback_func = None self._new_client_callback_func = None @asyncio.coroutine def start(self): yield from self._do_connect() _LOGGER.info('connected to snapserver on %s:%s', self._host, self._port) status = yield from self.status() self.synchronize(status) self._on_server_connect() @asyncio.coroutine def _do_connect(self): _, self._protocol = yield from self._loop.create_connection( lambda: SnapcastProtocol(self._callbacks), self._host, self._port) def _reconnect_cb(self): @asyncio.coroutine def try_reconnect(): try: yield from self._do_connect() except IOError: self._loop.call_later(SERVER_RECONNECT_DELAY, self._reconnect_cb) asyncio.ensure_future(try_reconnect()) @asyncio.coroutine def _transact(self, method, params=None): result = yield from self._protocol.request(method, params) return result @property def version(self): return self._version @asyncio.coroutine def status(self): result = yield from self._transact(SERVER_GETSTATUS) return result def rpc_version(self): return self._transact(SERVER_GETRPCVERSION) @asyncio.coroutine def delete_client(self, identifier): params = {'id': identifier} response = yield from self._transact(SERVER_DELETECLIENT, params) self.synchronize(response) def client_name(self, identifier, name): return self._request(CLIENT_SETNAME, identifier, 'name', name) def client_latency(self, identifier, latency): return self._request(CLIENT_SETLATENCY, identifier, 'latency', latency) def client_volume(self, identifier, volume): return self._request(CLIENT_SETVOLUME, identifier, 'volume', volume) def client_status(self, identifier): return self._request(CLIENT_GETSTATUS, identifier, 'client') def group_status(self, identifier): return self._request(GROUP_GETSTATUS, identifier, 'group') def group_mute(self, identifier, status): return self._request(GROUP_SETMUTE, identifier, 'mute', status) def group_stream(self, identifier, stream_id): return self._request(GROUP_SETSTREAM, identifier, 'stream_id', stream_id) def group_clients(self, identifier, clients): return self._request(GROUP_SETCLIENTS, identifier, 'clients', clients) def group_name(self, identifier, name): self._version_check(GROUP_SETNAME) return self._request(GROUP_SETNAME, identifier, 'name', name) def stream_setmeta(self, identifier, meta): return self._request(STREAM_SETMETA, identifier, 'meta', meta) def group(self, group_identifier): return self._groups[group_identifier] def stream(self, stream_identifier): return self._streams[stream_identifier]
MIT License
tobkra96/music_led_strip_control
server/libs/dsp.py
Melbank.compute_melmat
python
def compute_melmat(self, num_mel_bands=12, freq_min=64, freq_max=8000, num_fft_bands=513, sample_rate=16000): center_frequencies_mel, lower_edges_mel, upper_edges_mel = self.melfrequencies_mel_filterbank( num_mel_bands, freq_min, freq_max, num_fft_bands ) center_frequencies_hz = self.mel_to_hertz(center_frequencies_mel) lower_edges_hz = self.mel_to_hertz(lower_edges_mel) upper_edges_hz = self.mel_to_hertz(upper_edges_mel) freqs = linspace(0.0, sample_rate / 2.0, num_fft_bands) melmat = zeros((num_mel_bands, num_fft_bands)) for imelband, (center, lower, upper) in enumerate(zip( center_frequencies_hz, lower_edges_hz, upper_edges_hz)): left_slope = (freqs >= lower) == (freqs <= center) melmat[imelband, left_slope] = ( (freqs[left_slope] - lower) / (center - lower) ) right_slope = (freqs >= center) == (freqs <= upper) melmat[imelband, right_slope] = ( (upper - freqs[right_slope]) / (upper - center) ) return melmat, (center_frequencies_mel, freqs)
Returns tranformation matrix for mel spectrum. Parameters ---------- num_mel_bands : int Number of mel bands. Number of rows in melmat. Default: 24 freq_min : scalar Minimum frequency for the first band. Default: 64 freq_max : scalar Maximum frequency for the last band. Default: 8000 num_fft_bands : int Number of fft-frequenc bands. This ist NFFT/2+1 ! number of columns in melmat. Default: 513 (this means NFFT=1024) sample_rate : scalar Sample rate for the signals that will be used. Default: 44100 Returns ------- melmat : ndarray Transformation matrix for the mel spectrum. Use this with fft spectra of num_fft_bands_bands length and multiply the spectrum with the melmat this will tranform your fft-spectrum to a mel-spectrum. frequencies : tuple (ndarray <num_mel_bands>, ndarray <num_fft_bands>) Center frequencies of the mel bands, center frequencies of fft spectrum.
https://github.com/tobkra96/music_led_strip_control/blob/33d6e9ca3c5cc699f1f700e6bf00727fa2f65f3c/server/libs/dsp.py#L239-L297
from scipy.ndimage.filters import gaussian_filter1d from numpy import abs, arange, linspace, zeros from math import log import numpy as np class DSP(): def __init__(self, config, device_config=None): self._config = config self._device_config = device_config n_fft_bins = self._config["general_settings"]["n_fft_bins"] min_volume_threshold = self._config["general_settings"]["min_volume_threshold"] frames_per_buffer = self._config["general_settings"]["frames_per_buffer"] n_rolling_history = self._config["general_settings"]["n_rolling_history"] if device_config is None: led_count = 200 else: led_count = self._device_config["led_count"] self.fft_plot_filter = ExpFilter(np.tile(1e-1, n_fft_bins), alpha_decay=0.5, alpha_rise=0.99) self.mel_gain = ExpFilter(np.tile(1e-1, n_fft_bins), alpha_decay=0.01, alpha_rise=0.99) self.mel_smoothing = ExpFilter(np.tile(1e-1, n_fft_bins), alpha_decay=0.5, alpha_rise=0.99) self.gain = ExpFilter(np.tile(0.01, n_fft_bins), alpha_decay=0.001, alpha_rise=0.99) self.r_filt = ExpFilter(np.tile(0.01, led_count // 2), alpha_decay=0.2, alpha_rise=0.99) self.g_filt = ExpFilter(np.tile(0.01, led_count // 2), alpha_decay=0.05, alpha_rise=0.3) self.b_filt = ExpFilter(np.tile(0.01, led_count // 2), alpha_decay=0.1, alpha_rise=0.5) self.common_mode = ExpFilter(np.tile(0.01, led_count // 2), alpha_decay=0.99, alpha_rise=0.01) self.p_filt = ExpFilter(np.tile(1, (3, led_count // 2)), alpha_decay=0.1, alpha_rise=0.99) self.volume = ExpFilter(min_volume_threshold, alpha_decay=0.02, alpha_rise=0.02) self.p = np.tile(1.0, (3, led_count // 2)) self.samples_per_frame = int(frames_per_buffer) self.y_roll = np.random.rand(n_rolling_history, self.samples_per_frame) / 1e16 self.fft_window = np.hamming(int(frames_per_buffer) * n_rolling_history) self.samples = None self.mel_y = None self.mel_x = None self.melbank = Melbank() self.create_mel_bank() def update(self, audio_samples): min_frequency = self._config["general_settings"]["min_frequency"] max_frequency = self._config["general_settings"]["max_frequency"] audio_data = {} y = audio_samples / 2.0**15 self.y_roll[:-1] = self.y_roll[1:] self.y_roll[-1, :] = np.copy(y) y_data = np.concatenate(self.y_roll, axis=0).astype(np.float32) vol = np.max(np.abs(y_data)) N = len(y_data) N_zeros = 2**int(np.ceil(np.log2(N))) - N y_data *= self.fft_window y_padded = np.pad(y_data, (0, N_zeros), mode='constant') YS = np.abs(np.fft.rfft(y_padded)[:N // 2]) mel = np.atleast_2d(YS).T * self.mel_y.T mel = np.sum(mel, axis=0) mel = mel**2.0 self.mel_gain.update(np.max(gaussian_filter1d(mel, sigma=1.0))) mel /= self.mel_gain.value mel = self.mel_smoothing.update(mel) x = np.linspace(min_frequency, max_frequency, len(mel)) y = self.fft_plot_filter.update(mel) audio_data["mel"] = mel audio_data["vol"] = vol audio_data["x"] = x audio_data["y"] = y return audio_data def rfft(self, data, window=None): default_sample_rate = self._config["general_settings"]["default_sample_rate"] window = 1.0 if window is None else window(len(data)) ys = np.abs(np.fft.rfft(data * window)) xs = np.fft.rfftfreq(len(data), 1.0 / default_sample_rate) return xs, ys def fft(self, data, window=None): default_sample_rate = self._config["general_settings"]["default_sample_rate"] window = 1.0 if window is None else window(len(data)) ys = np.fft.fft(data * window) xs = np.fft.fftfreq(len(data), 1.0 / default_sample_rate) return xs, ys def create_mel_bank(self): default_sample_rate = self._config["general_settings"]["default_sample_rate"] min_frequency = self._config["general_settings"]["min_frequency"] max_frequency = self._config["general_settings"]["max_frequency"] frames_per_buffer = self._config["general_settings"]["frames_per_buffer"] n_rolling_history = self._config["general_settings"]["n_rolling_history"] n_fft_bins = self._config["general_settings"]["n_fft_bins"] samples = int(frames_per_buffer * (n_rolling_history / 2)) self.mel_y, (_, self.mel_x) = self.melbank.compute_melmat( num_mel_bands=n_fft_bins, freq_min=min_frequency, freq_max=max_frequency, num_fft_bands=samples, sample_rate=default_sample_rate ) class ExpFilter(): def __init__(self, val=0.0, alpha_decay=0.5, alpha_rise=0.5): assert 0.0 < alpha_decay < 1.0, 'Invalid decay smoothing factor.' assert 0.0 < alpha_rise < 1.0, 'Invalid rise smoothing factor.' self.alpha_decay = alpha_decay self.alpha_rise = alpha_rise self.value = val def update(self, value): if isinstance(self.value, (list, np.ndarray, tuple)): alpha = value - self.value alpha[alpha > 0.0] = self.alpha_rise alpha[alpha <= 0.0] = self.alpha_decay else: alpha = self.alpha_rise if value > self.value else self.alpha_decay self.value = alpha * value + (1.0 - alpha) * self.value return self.value class Melbank(): def hertz_to_mel(self, freq): return 3340.0 * log(1 + (freq / 250.0), 9) def mel_to_hertz(self, mel): return 250.0 * (9**(mel / 3340.0)) - 250.0 def melfrequencies_mel_filterbank(self, num_bands, freq_min, freq_max, num_fft_bands): mel_max = self.hertz_to_mel(freq_max) mel_min = self.hertz_to_mel(freq_min) delta_mel = abs(mel_max - mel_min) / (num_bands + 1.0) frequencies_mel = mel_min + delta_mel * arange(0, num_bands + 2) lower_edges_mel = frequencies_mel[:-2] upper_edges_mel = frequencies_mel[2:] center_frequencies_mel = frequencies_mel[1:-1] return center_frequencies_mel, lower_edges_mel, upper_edges_mel
MIT License
adrobinoga/pyzatt
pyzatt/zkmodules/terminal.py
TerminalMixin.get_firmware_version
python
def get_firmware_version(self): self.send_command(DEFS.CMD_GET_VERSION) self.recv_reply() return self.last_payload_data.decode('ascii')
Returns the firmware version. :return: String.
https://github.com/adrobinoga/pyzatt/blob/dc30714ed641388f53537319f6c0e7bd8dba544a/pyzatt/zkmodules/terminal.py#L240-L248
import socket import struct import pyzatt.zkmodules.defs as DEFS import pyzatt.misc as misc class TerminalMixin: def connect_net(self, ip_addr, dev_port): self.soc_zk = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.soc_zk.connect((ip_addr, dev_port)) self.send_command(DEFS.CMD_CONNECT) self.recv_reply() self.session_id = self.last_session_code self.set_device_info('SDKBuild', '1') self.connected_flg = self.recvd_ack() return self.connected_flg def disconnect(self): self.send_command(DEFS.CMD_EXIT) self.recv_reply() self.soc_zk.close() self.connected_flg = False return self.recvd_ack() def get_device_time(self): self.send_command(DEFS.CMD_GET_TIME) self.recv_reply() return misc.decode_time(self.last_payload_data) def set_device_time(self, t=misc.datetime.datetime.now()): self.send_command(DEFS.CMD_SET_TIME, data=misc.encode_time(t)) self.recv_reply() return self.recvd_ack() def get_device_status(self, stat_keys): self.send_command(DEFS.CMD_GET_FREE_SIZES) self.recv_reply() self.dev_status = self.last_payload_data for k in stat_keys: try: stat_keys[k] = self.read_status(DEFS.STATUS[k]) except struct.error: print("Failed to read field: {0}".format(k)) stat_keys[k] = -1 return stat_keys def read_status(self, p): return struct.unpack('<I', self.dev_status[p: p + 4])[0] def read_attlog_count(self): return self.read_status(DEFS.STATUS['attlog_count']) def read_user_count(self): return self.read_status(DEFS.STATUS['user_count']) def get_device_info(self, param_name): self.send_command(DEFS.CMD_OPTIONS_RRQ, bytearray("{0}\x00".format(param_name), 'ascii')) self.recv_reply() return self.last_payload_data.decode('ascii').split('=')[-1] def set_device_info(self, param_name, new_value): self.send_command(DEFS.CMD_OPTIONS_WRQ, bytearray( "{0}={1}\x00".format(param_name, new_value), 'ascii')) self.recv_reply() ack1 = self.recvd_ack() self.send_command(DEFS.CMD_REFRESHOPTION) self.recv_reply() ack2 = self.recvd_ack() return ack1 and ack2 def get_serial_number(self): return self.get_device_info("~SerialNumber") def get_product_code(self): return self.get_device_info("~DeviceName") def get_cardfun(self): self.get_device_info("~IsOnlyRFMachine") return self.get_device_info("~RFCardOn") def get_vendor(self): return self.get_device_info("~OEMVendor") def get_product_time(self): return self.get_device_info("~ProductTime") def get_platform(self): return self.get_device_info("~Platform") def get_pinwidth(self): return int(self.get_device_info('~PIN2Width').replace('\x00', ''))
MIT License
attzonko/mmpy_bot
mmpy_bot/threadpool.py
ThreadPool.__init__
python
def __init__(self, num_workers: int): self.num_workers = num_workers self.alive = False self._queue = Queue() self._busy_workers = Queue() self._threads = []
Threadpool class to easily specify a number of worker threads and assign work to any of them. Arguments: - num_workers: int, how many threads to run simultaneously.
https://github.com/attzonko/mmpy_bot/blob/2c8d8c3f08c9a006186a34ce69239509400301aa/mmpy_bot/threadpool.py#L14-L25
import asyncio import logging import threading import time from queue import Queue from mmpy_bot.scheduler import default_scheduler from mmpy_bot.webhook_server import WebHookServer log = logging.getLogger("mmpy.threadpool") class ThreadPool(object):
MIT License
tensorpack/tensorpack
tensorpack/callbacks/monitor.py
Monitors.put_scalar
python
def put_scalar(self, name, val): if isinstance(val, np.floating): val = float(val) if isinstance(val, np.integer): val = int(val) self._dispatch(lambda m: m.process_scalar(name, val)) s = create_scalar_summary(name, val) self._dispatch(lambda m: m.process_summary(s))
Put a scalar.
https://github.com/tensorpack/tensorpack/blob/1a79d595f7eda9dc9dc8428f4461680ed2222ab6/tensorpack/callbacks/monitor.py#L163-L173
import json import numpy as np import operator import os import re import shutil import time from collections import defaultdict from datetime import datetime import six import threading from ..compat import tfv1 as tf from ..libinfo import __git_version__ from ..tfutils.summary import create_image_summary, create_scalar_summary from ..utils import fs, logger from ..utils.develop import HIDE_DOC from .base import Callback __all__ = ['MonitorBase', 'Monitors', 'TFEventWriter', 'JSONWriter', 'ScalarPrinter', 'SendMonitorData', 'CometMLMonitor'] def image_to_nhwc(arr): if arr.ndim == 4: pass elif arr.ndim == 3: if arr.shape[-1] in [1, 3, 4]: arr = arr[np.newaxis, :] else: arr = arr[:, :, :, np.newaxis] elif arr.ndim == 2: arr = arr[np.newaxis, :, :, np.newaxis] else: raise ValueError("Array of shape {} is not an image!".format(arr.shape)) return arr class MonitorBase(Callback): _chief_only = False def setup_graph(self, trainer): self.trainer = trainer self.graph = tf.get_default_graph() self._setup_graph() def _setup_graph(self): pass def process_summary(self, summary): pass def process(self, name, val): pass def process_scalar(self, name, val): pass def process_image(self, name, val): pass def process_event(self, evt): pass class NoOpMonitor(MonitorBase): def __init__(self, name=None): self._name = name def __str__(self): if self._name is None: return "NoOpMonitor" return "NoOpMonitor({})".format(self._name) class Monitors(Callback): _chief_only = False def __init__(self, monitors): self._scalar_history = ScalarHistory() self._monitors = monitors + [self._scalar_history] for m in self._monitors: assert isinstance(m, MonitorBase), m def _setup_graph(self): self._scalar_history.setup_graph(self.trainer) def _dispatch(self, func): for m in self._monitors: func(m) def put_summary(self, summary): if isinstance(summary, six.binary_type): summary = tf.Summary.FromString(summary) assert isinstance(summary, tf.Summary), type(summary) for val in summary.value: if val.WhichOneof('value') == 'simple_value': val.tag = re.sub('tower[0-9]+/', '', val.tag) suffix = '-summary' if val.tag.endswith(suffix): val.tag = val.tag[:-len(suffix)] self._dispatch(lambda m: m.process_scalar(val.tag, val.simple_value)) self._dispatch(lambda m: m.process_summary(summary))
Apache License 2.0
bashfuscator/bashfuscator
bashfuscator/core/mutators/command_obfuscator.py
Stub.genStub
python
def genStub(self, userCmd): if self.escapeQuotes: userCmd = userCmd.replace("'", "'\"'\"'") genStub = self.stub for var in re.findall(r"VAR\d+", genStub): genStub = genStub.replace(var, self.randGen.randGenVar()) genStub = self.mangler.getMangledLine(genStub) if "CMD" not in genStub: printError(f"Stub '{self.name}' is improperly formatted: no 'CMD' string found") else: genStub = genStub.replace("CMD", userCmd) return genStub
Generate a valid deobfuscation stub and wrap an obfuscated command in it. :param userCmd: command that need to be wrapped in a deobfuscation stub :type userCmd: str
https://github.com/bashfuscator/bashfuscator/blob/7487348da2d0112213f8540ae28bf12b652f924a/bashfuscator/core/mutators/command_obfuscator.py#L86-L110
import re from bashfuscator.common.messages import printError from bashfuscator.core.mutators.mutator import Mutator class CommandObfuscator(Mutator): def __init__(self, name, description, sizeRating, timeRating, notes=None, author=None, credits=None, evalWrap=True, unreadableOutput=False, reversible=False): super().__init__(name, "command", description, sizeRating, timeRating, notes, author, credits, evalWrap, unreadableOutput) self.reversible = reversible self.stubs = [] self.deobStub = None class Stub(object): def __init__(self, name, sizeRating, timeRating, binariesUsed, fileWrite, escapeQuotes, stub): self.name = name self.longName = self.name.replace(" ", "_").lower() self.sizeRating = sizeRating self.timeRating = timeRating self.binariesUsed = binariesUsed self.fileWrite = fileWrite self.escapeQuotes = escapeQuotes self.stub = stub self.mangler = None self.randGen = None
MIT License
nowsecure/datagrid-gtk3
datagrid_gtk3/ui/grid.py
OptionsPopup.on_combo_view_changed
python
def on_combo_view_changed(self, widget): model = widget.get_model() value = model[widget.get_active()][1] self.emit('view-changed', value) self.popdown()
Handle changes on the view combo. Emit 'view-changed' for the given view. :param widget: the combobox that received the event :type widget: :class:`Gtk.ComboBox`
https://github.com/nowsecure/datagrid-gtk3/blob/28083a4b9b4e2e0c7fbe2755d8464d2b02163086/datagrid_gtk3/ui/grid.py#L299-L310
import base64 import contextlib import datetime import itertools import logging import os from gi.repository import ( GLib, GObject, Gdk, GdkPixbuf, Gtk, Pango, ) from pygtkcompat.generictreemodel import GenericTreeModel from datagrid_gtk3.ui.popupcal import DateEntry from datagrid_gtk3.ui.uifile import UIFile from datagrid_gtk3.utils.dateutils import normalize_timestamp from datagrid_gtk3.utils.imageutils import ImageCacheManager from datagrid_gtk3.utils.transformations import get_transformer _MEDIA_FILES = os.path.join( os.path.dirname(os.path.realpath(__file__)), os.pardir, "data", "media" ) logger = logging.getLogger(__name__) _no_image_loader = GdkPixbuf.PixbufLoader.new_with_type("png") _no_image_loader.write(base64.b64decode(""" iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAABmJLR0QA/wD/AP+gvaeTAAAACXBI WXMAAAsTAAALEwEAmpwYAAAAB3RJTUUH3wEPEDYaIuf2wwAAABl0RVh0Q29tbWVudABDcmVhdGVk IHdpdGggR0lNUFeBDhcAAAANSURBVAjXY2BgYGAAAAAFAAFe8yo6AAAAAElFTkSuQmCC """)) _no_image_loader.close() NO_IMAGE_PIXBUF = _no_image_loader.get_pixbuf() NO_FILTER_OPTION = object() class OptionsPopup(Gtk.Window): OPTIONS_PADDING = 5 MAX_HEIGHT = 500 (VIEW_TREE, VIEW_FLAT, VIEW_ICON) = range(3) __gsignals__ = { 'column-visibility-changed': (GObject.SignalFlags.RUN_FIRST, None, (str, bool)), 'view-changed': (GObject.SignalFlags.RUN_FIRST, None, (int, )) } def __init__(self, toggle_btn, controller, *args, **kwargs): self._toggle_btn = toggle_btn self._toggled_id = self._toggle_btn.connect( 'toggled', self.on_toggle_button_toggled) self._controller = controller super(OptionsPopup, self).__init__( Gtk.WindowType.POPUP, *args, **kwargs) self.connect('button-press-event', self.on_button_press_event) self.connect('key-press-event', self.on_key_press_event) self._scrolled_window = Gtk.ScrolledWindow( vscrollbar_policy=Gtk.PolicyType.AUTOMATIC, hscrollbar_policy=Gtk.PolicyType.NEVER) alignment = Gtk.Alignment() alignment.set_padding(5, 5, 5, 5) alignment.add(self._scrolled_window) self.add(alignment) def popup(self): if not self._toggle_btn.get_realized(): return child = self._scrolled_window.get_child() if child: self._scrolled_window.remove(child) vbox = Gtk.VBox() combo = self._get_view_options() if combo is not None: vbox.pack_start(combo, expand=False, fill=False, padding=self.OPTIONS_PADDING) if not isinstance(self._controller.view, DataGridIconView): if combo is not None: vbox.pack_start( Gtk.Separator(orientation=Gtk.Orientation.HORIZONTAL), expand=True, fill=True, padding=self.OPTIONS_PADDING) for switch in self._get_visibility_options(): vbox.pack_start(switch, expand=False, fill=False, padding=self.OPTIONS_PADDING) self._scrolled_window.add(vbox) toplevel = self._toggle_btn.get_toplevel().get_toplevel() if isinstance(toplevel, (Gtk.Window, Gtk.Dialog)): group = toplevel.get_group() if group: group.add_window(self) x, y = self._get_position() self.move(x, y) self.show_all() allocation = vbox.get_allocation() height = min(allocation.height + 2 * self.OPTIONS_PADDING, self.MAX_HEIGHT) self.set_size_request(-1, height) if not self._popup_grab_window(): self.popdown() def popdown(self): if not self._toggle_btn.get_realized(): return with self._toggle_btn.handler_block(self._toggled_id): self._toggle_btn.set_active(False) self.grab_remove() self.hide() def _popup_grab_window(self): window = self.get_window() grab_status = Gdk.pointer_grab( window, True, (Gdk.EventMask.BUTTON_PRESS_MASK | Gdk.EventMask.BUTTON_RELEASE_MASK | Gdk.EventMask.POINTER_MOTION_MASK), None, None, 0L) if grab_status == Gdk.GrabStatus.SUCCESS: if Gdk.keyboard_grab(window, True, 0L) != Gdk.GrabStatus.SUCCESS: display = window.get_display() display.pointer_ungrab(0L) return False self.grab_add() return True def _get_position(self): allocation = self._toggle_btn.get_allocation() window = self._toggle_btn.get_window() if self._toggle_btn.get_has_window(): x_coord = 0 y_coord = 0 else: x_coord = allocation.x y_coord = allocation.y x, y = window.get_root_coords(x_coord, y_coord) return x, y + allocation.height def _get_view_options(self): iters = {} model = Gtk.ListStore(str, int) iters[self.VIEW_TREE] = model.append(("Tree View", self.VIEW_TREE)) if self._controller.model.flat_column_idx is not None: iters[self.VIEW_FLAT] = model.append(("Flat View", self.VIEW_FLAT)) if any(c['transform'] == 'image' for c in self._controller.model.columns): iters[self.VIEW_ICON] = model.append(("Icon View", self.VIEW_ICON)) if len(iters) == 1: return None combo = Gtk.ComboBox() combo.set_model(model) renderer = Gtk.CellRendererText() combo.pack_start(renderer, True) combo.add_attribute(renderer, 'text', 0) if isinstance(self._controller.view, DataGridView): if self._controller.model.active_params.get('flat', False): combo.set_active_iter(iters[self.VIEW_FLAT]) else: combo.set_active_iter(iters[self.VIEW_TREE]) elif isinstance(self._controller.view, DataGridIconView): combo.set_active_iter(iters[self.VIEW_ICON]) else: raise AssertionError("Unknown view type %r" % ( self._controller.view, )) combo.connect('changed', self.on_combo_view_changed) return combo def _get_visibility_options(self): model = self._controller.model hidden_columns = model.hidden_columns for column in model.columns: if column['name'] in hidden_columns: continue switch = Gtk.Switch() label = Gtk.Label(column['display']) switch.set_active(column['name'] in model.display_columns) hbox = Gtk.HBox(spacing=5) hbox.pack_start(switch, expand=False, fill=True, padding=0) hbox.pack_start(label, expand=True, fill=True, padding=0) switch.connect( 'notify::active', self.on_column_switch_notify_active, column['name']) yield hbox def on_key_press_event(self, window, event): if event.get_keyval()[1] == Gdk.KEY_Escape: self.popdown() return True return False def on_button_press_event(self, window, event): event_rect = Gdk.Rectangle() event_rect.x, event_rect.y = event.get_root_coords() event_rect.width = 1 event_rect.height = 1 allocation = self.get_allocation() window_rect = Gdk.Rectangle() window_rect.x, window_rect.y = self._get_position() window_rect.width = allocation.width window_rect.height = allocation.height intersection = Gdk.rectangle_intersect( event_rect, window_rect) if not intersection[0]: self.popdown()
MIT License
lithops-cloud/lithops
lithops/monitor.py
RabbitmqMonitor._create_resources
python
def _create_resources(self): logger.debug(f'ExecutorID {self.executor_id} - Creating RabbitMQ queue {self.queue}') self.pikaparams = pika.URLParameters(self.rabbit_amqp_url) self.connection = pika.BlockingConnection(self.pikaparams) channel = self.connection.channel() channel.queue_declare(queue=self.queue, auto_delete=True) channel.close()
Creates RabbitMQ queues and exchanges of a given job
https://github.com/lithops-cloud/lithops/blob/a274a0bc423e22b9a68834cac5d63130666a4ee8/lithops/monitor.py#L136-L146
import json import pika import logging import time import lithops import pickle import sys import queue import threading import concurrent.futures as cf from tblib import pickling_support pickling_support.install() logger = logging.getLogger(__name__) class Monitor(threading.Thread): def __init__(self, executor_id, internal_storage, token_bucket_q, generate_tokens, config): super().__init__() self.executor_id = executor_id self.futures = [] self.internal_storage = internal_storage self.should_run = True self.token_bucket_q = token_bucket_q self.generate_tokens = generate_tokens self.config = config self.daemon = True self.workers = {} self.workers_done = [] self.callids_done_worker = {} self.job_chunksize = {} self.present_jobs = set() def add_futures(self, fs, job_id=None, chunksize=None): self.futures.extend(fs) if job_id: self.job_chunksize[job_id] = chunksize present_jobs = {f.job_id for f in fs} for job_id in present_jobs: self.present_jobs.add(job_id) def _all_ready(self): return all([f.ready or f.success or f.done for f in self.futures]) def _check_new_futures(self, call_status, f): if 'new_futures' not in call_status: return False f._set_futures(call_status) self.futures.extend(f._new_futures) logger.debug(f'ExecutorID {self.executor_id} - Got {len(f._new_futures)} new futures to track') return True def _future_timeout_checker(self, futures): current_time = time.time() futures_running = [f for f in futures if f.running] for fut in futures_running: try: start_tstamp = fut._call_status['worker_start_tstamp'] fut_timeout = start_tstamp + fut.execution_timeout + 5 if current_time > fut_timeout: msg = 'The function did not run as expected.' raise TimeoutError('HANDLER', msg) except TimeoutError: pickled_exception = str(pickle.dumps(sys.exc_info())) call_status = {'type': '__end__', 'exception': True, 'exc_info': pickled_exception, 'executor_id': fut.executor_id, 'job_id': fut.job_id, 'call_id': fut.call_id, 'activation_id': fut.activation_id} fut._set_ready(call_status) def _print_status_log(self): callids_pending = len([f for f in self.futures if f.invoked]) callids_running = len([f for f in self.futures if f.running]) callids_done = len([f for f in self.futures if f.ready or f.success or f.done]) logger.debug(f'ExecutorID {self.executor_id} - Pending: {callids_pending} ' f'- Running: {callids_running} - Done: {callids_done}') class RabbitmqMonitor(Monitor): def __init__(self, executor_id, internal_storage, token_bucket_q, generate_tokens, config): super().__init__(executor_id, internal_storage, token_bucket_q, generate_tokens, config) self.rabbit_amqp_url = config.get('amqp_url') self.queue = f'lithops-{self.executor_id}' self._create_resources()
Apache License 2.0
georgesung/deep_rl_acrobot
learning_agent.py
sample_action
python
def sample_action(probs): num_actions = len(probs) threshold = random.uniform(0,1) cumulative_prob = 0. for action in range(num_actions): cumulative_prob += probs[action] if cumulative_prob > threshold: return action return num_actions - 1
Sample action (0/1/2/etc.) from probability distribution probs
https://github.com/georgesung/deep_rl_acrobot/blob/ef4d266f2fb16bb6cccf393404047542b3eb9ea2/learning_agent.py#L65-L76
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import tensorflow.contrib.slim as slim import numpy as np import random import gym import math import matplotlib.pyplot as plt ENV = 'Acrobot-v1' OBS_WIDTH = 6 NUM_ACTIONS = 3 RESUME = False SAVE_MODEL = False MODEL_LOC = 'models/model.ckpt' SAVE_THRESHOLD = -200 RECORD_LOC = 'openai_data' NUM_EPISODES = 1000 MAX_ITER = 3000 NUM_ENVS = 5 EPISODES_PER_UPDATE = 1 DS_FACTOR = 1 ACTOR_LR = 0.005 CRITIC_LR_SCALE = 0.5 CRITIC_LR = ACTOR_LR * CRITIC_LR_SCALE REWARD_DISCOUNT = 0.97 A_REG_SCALE = 0.0005 C_REG_SCALE = 0.0005 def discount_rewards(r): discounted_r = np.zeros_like(r) running_add = 0. for t in reversed(range(len(r))): running_add = running_add * REWARD_DISCOUNT + r[t] discounted_r[t] = running_add return discounted_r
MIT License
ai4finance-llc/neofinrl
rllib/agents/mbmpo/model_ensemble.py
DynamicsEnsembleCustomModel.__init__
python
def __init__(self, obs_space, action_space, num_outputs, model_config, name): nn.Module.__init__(self) if isinstance(action_space, Discrete): input_space = gym.spaces.Box( obs_space.low[0], obs_space.high[0], shape=(obs_space.shape[0] + action_space.n, )) elif isinstance(action_space, Box): input_space = gym.spaces.Box( obs_space.low[0], obs_space.high[0], shape=(obs_space.shape[0] + action_space.shape[0], )) else: raise NotImplementedError super(DynamicsEnsembleCustomModel, self).__init__( input_space, action_space, num_outputs, model_config, name) self.env_obs_space = obs_space self.num_models = model_config["ensemble_size"] self.max_epochs = model_config["train_epochs"] self.lr = model_config["lr"] self.valid_split = model_config["valid_split_ratio"] self.batch_size = model_config["batch_size"] self.normalize_data = model_config["normalize_data"] self.normalizations = {} self.dynamics_ensemble = [ TDModel( input_size=input_space.shape[0], output_size=obs_space.shape[0], hidden_layers=model_config["fcnet_hiddens"], hidden_nonlinearity=nn.ReLU, output_nonlinearity=None, weight_normalization=True) for _ in range(self.num_models) ] for i in range(self.num_models): self.add_module("TD-model-" + str(i), self.dynamics_ensemble[i]) self.replay_buffer_max = 10000 self.replay_buffer = None self.optimizers = [ torch.optim.Adam( self.dynamics_ensemble[i].parameters(), lr=self.lr) for i in range(self.num_models) ] self.metrics = {} self.metrics[STEPS_SAMPLED_COUNTER] = 0 worker_index = get_global_worker().worker_index self.sample_index = int((worker_index - 1) / self.num_models) self.global_itr = 0 self.device = (torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"))
Initializes a DynamicEnsemble object.
https://github.com/ai4finance-llc/neofinrl/blob/51338dbb0ec86f74e4fc6cce90bc385a4639de79/rllib/agents/mbmpo/model_ensemble.py#L124-L182
import gym from gym.spaces import Discrete, Box import numpy as np from ray.rllib.models.torch.torch_modelv2 import TorchModelV2 from ray.rllib.utils.framework import try_import_torch from ray.rllib.evaluation.rollout_worker import get_global_worker from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.execution.common import STEPS_SAMPLED_COUNTER from ray.rllib.utils.typing import SampleBatchType from ray.rllib.utils.torch_ops import convert_to_torch_tensor torch, nn = try_import_torch() class TDModel(nn.Module): def __init__(self, input_size, output_size, hidden_layers=(512, 512), hidden_nonlinearity=None, output_nonlinearity=None, weight_normalization=False, use_bias=True): super().__init__() assert len(hidden_layers) >= 1 if not hidden_nonlinearity: hidden_nonlinearity = nn.ReLU if weight_normalization: weight_norm = nn.utils.weight_norm self.layers = [] cur_size = input_size for h_size in hidden_layers: layer = nn.Linear(cur_size, h_size, bias=use_bias) if weight_normalization: layer = weight_norm(layer) self.layers.append(layer) if hidden_nonlinearity: self.layers.append(hidden_nonlinearity()) cur_size = h_size layer = nn.Linear(cur_size, output_size, bias=use_bias) if weight_normalization: layer = weight_norm(layer) self.layers.append(layer) if output_nonlinearity: self.layers.append(output_nonlinearity()) self.model = nn.Sequential(*self.layers) def forward(self, x): return self.model(x) if torch: class TDDataset(torch.utils.data.Dataset): def __init__(self, dataset: SampleBatchType, norms): self.count = dataset.count obs = dataset[SampleBatch.CUR_OBS] actions = dataset[SampleBatch.ACTIONS] delta = dataset[SampleBatch.NEXT_OBS] - obs if norms: obs = normalize(obs, norms[SampleBatch.CUR_OBS]) actions = normalize(actions, norms[SampleBatch.ACTIONS]) delta = normalize(delta, norms["delta"]) self.x = np.concatenate([obs, actions], axis=1) self.y = delta def __len__(self): return self.count def __getitem__(self, index): return self.x[index], self.y[index] def normalize(data_array, stats): mean, std = stats return (data_array - mean) / (std + 1e-10) def denormalize(data_array, stats): mean, std = stats return data_array * (std + 1e-10) + mean def mean_std_stats(dataset: SampleBatchType): norm_dict = {} obs = dataset[SampleBatch.CUR_OBS] act = dataset[SampleBatch.ACTIONS] delta = dataset[SampleBatch.NEXT_OBS] - obs norm_dict[SampleBatch.CUR_OBS] = (np.mean(obs, axis=0), np.std( obs, axis=0)) norm_dict[SampleBatch.ACTIONS] = (np.mean(act, axis=0), np.std( act, axis=0)) norm_dict["delta"] = (np.mean(delta, axis=0), np.std(delta, axis=0)) return norm_dict def process_samples(samples: SampleBatchType): filter_keys = [ SampleBatch.CUR_OBS, SampleBatch.ACTIONS, SampleBatch.NEXT_OBS ] filtered = {} for key in filter_keys: filtered[key] = samples[key] return SampleBatch(filtered) class DynamicsEnsembleCustomModel(TorchModelV2, nn.Module):
MIT License
airbnb/streamalert
streamalert/threat_intel_downloader/main.py
ThreatStream.runner
python
def runner(self, event): event = event or {} self._load_api_creds() query = '(status="{}")+AND+({})+AND+NOT+({})'.format( self._IOC_STATUS, "+OR+".join(['type="{}"'.format(ioc) for ioc in self.ioc_types]), "+OR+".join(['itype="{}"'.format(itype) for itype in self.excluded_sub_types]) ) next_url = event.get( 'next_url', '/api/v2/{}/?username={}&api_key={}&limit={}&q={}'.format( self._API_RESOURCE, self.api_user, self.api_key, self._API_MAX_LIMIT, query ) ) self._connect(next_url)
Process URL before making API call Args: event (dict): Contains lambda function invocation information. Initially, Threat Intel Downloader lambda funciton is invoked by Cloudwatch event. 'next_url' key will be inserted to event lambda function invokes itself to retrieve more IOCs. Returns: (tuple): (list, str, bool) - First object is a list of intelligence. - Second object is a string of next token to retrieve more IOCs. - Third object is bool to indicated if retrieve more IOCs from threat feed.
https://github.com/airbnb/streamalert/blob/ceb680b7b821ebf6b6800adf164977e57c886fef/streamalert/threat_intel_downloader/main.py#L279-L314
from datetime import datetime, timedelta import json import backoff import boto3 from botocore.exceptions import ClientError import requests from streamalert.shared.backoff_handlers import ( backoff_handler, success_handler, giveup_handler ) from streamalert.shared.config import load_config, parse_lambda_arn from streamalert.shared.logger import get_logger from streamalert.threat_intel_downloader.exceptions import ( ThreatStreamCredsError, ThreatStreamLambdaInvokeError, ThreatStreamRequestsError ) LOGGER = get_logger(__name__) class ThreatStream: _API_URL = 'https://api.threatstream.com' _API_RESOURCE = 'intelligence' _IOC_STATUS = 'active' _API_MAX_LIMIT = 1000 _API_MAX_INDEX = 500000 _END_TIME_BUFFER = 5 CRED_PARAMETER_NAME = 'threat_intel_downloader_api_creds' EXCEPTIONS_TO_BACKOFF = (requests.exceptions.Timeout, requests.exceptions.ConnectionError, requests.exceptions.ChunkedEncodingError, ThreatStreamRequestsError) BACKOFF_MAX_RETRIES = 3 def __init__(self, function_arn, timing_func): self._config = self._load_config(function_arn) self.timing_func = timing_func self.api_user = None self.api_key = None @staticmethod def _load_config(function_arn): base_config = parse_lambda_arn(function_arn) config = load_config(include={'lambda.json'})['lambda'] base_config.update(config.get('threat_intel_downloader_config', {})) return base_config def _load_api_creds(self): if self.api_user and self.api_key: return try: ssm = boto3.client('ssm', self.region) response = ssm.get_parameter(Name=self.CRED_PARAMETER_NAME, WithDecryption=True) except ClientError: LOGGER.exception('Failed to get SSM parameters') raise if not response: raise ThreatStreamCredsError('Invalid response') try: decoded_creds = json.loads(response['Parameter']['Value']) except ValueError: raise ThreatStreamCredsError('Cannot load value for parameter with name ' '\'{}\'. The value is not valid json: ' '\'{}\''.format(response['Parameter']['Name'], response['Parameter']['Value'])) self.api_user = decoded_creds['api_user'] self.api_key = decoded_creds['api_key'] if not (self.api_user and self.api_key): raise ThreatStreamCredsError('API Creds Error') @backoff.on_exception(backoff.constant, EXCEPTIONS_TO_BACKOFF, max_tries=BACKOFF_MAX_RETRIES, on_backoff=backoff_handler(), on_success=success_handler(), on_giveup=giveup_handler()) def _connect(self, next_url): intelligence = list() https_req = requests.get('{}{}'.format(self._API_URL, next_url), timeout=10) next_url = None if https_req.status_code == 200: data = https_req.json() if data.get('objects'): intelligence.extend(self._process_data(data['objects'])) LOGGER.info('IOC Offset: %d', data['meta']['offset']) if not (data['meta']['next'] and data['meta']['offset'] < self.threshold): LOGGER.debug('Either next token is empty or IOC offset reaches threshold ' '%d. Stop retrieve more IOCs.', self.threshold) else: next_url = data['meta']['next'] elif https_req.status_code == 401: raise ThreatStreamRequestsError('Response status code 401, unauthorized.') elif https_req.status_code == 500: raise ThreatStreamRequestsError('Response status code 500, retry now.') else: raise ThreatStreamRequestsError( 'Unknown status code {}, do not retry.'.format(https_req.status_code)) self._finalize(intelligence, next_url) def _finalize(self, intel, next_url): if intel: LOGGER.info('Write %d IOCs to DynamoDB table', len(intel)) self._write_to_dynamodb_table(intel) if next_url and self.timing_func() > self._END_TIME_BUFFER * 1000: self._invoke_lambda_function(next_url) LOGGER.debug("Time remaining (MS): %s", self.timing_func()) def _invoke_lambda_function(self, next_url): LOGGER.debug('This invocation is invoked by lambda function self.') lambda_client = boto3.client('lambda', region_name=self.region) try: lambda_client.invoke( FunctionName=self._config['function_name'], InvocationType='Event', Payload=json.dumps({'next_url': next_url}), Qualifier=self._config['qualifier'] ) except ClientError as err: raise ThreatStreamLambdaInvokeError('Error invoking function: {}'.format(err)) @staticmethod def _epoch_time(time_str, days=90): if not time_str: return int((datetime.utcnow() + timedelta(days) - datetime.utcfromtimestamp(0)).total_seconds()) try: utc_time = datetime.strptime(time_str, "%Y-%m-%dT%H:%M:%S.%fZ") return int((utc_time - datetime.utcfromtimestamp(0)).total_seconds()) except ValueError: LOGGER.error('Cannot convert expiration date \'%s\' to epoch time', time_str) raise def _process_data(self, data): results = list() for obj in data: for source in self.ioc_sources: if source in obj['source'].lower(): filtered_obj = {key: value for key, value in obj.items() if key in self.ioc_keys} filtered_obj['expiration_ts'] = self._epoch_time(filtered_obj['expiration_ts']) results.append(filtered_obj) return results def _write_to_dynamodb_table(self, intelligence): try: dynamodb = boto3.resource('dynamodb', region_name=self.region) table = dynamodb.Table(self.table_name) with table.batch_writer() as batch: for ioc in intelligence: batch.put_item( Item={ 'ioc_value': ioc['value'], 'ioc_type': ioc['type'], 'sub_type': ioc['itype'], 'source': ioc['source'], 'expiration_ts': ioc['expiration_ts'] } ) except ClientError as err: LOGGER.debug('DynamoDB client error: %s', err) raise
Apache License 2.0
rstudio/mlflow-original
mlflow/tracking/service.py
MLflowService.create_run
python
def create_run(self, experiment_id, user_id=None, run_name=None, source_type=None, source_name=None, entry_point_name=None, start_time=None, source_version=None, tags=None): tags = tags if tags else {} return self.store.create_run( experiment_id=experiment_id, user_id=user_id if user_id is not None else _get_user_id(), run_name=run_name, source_type=source_type, source_name=source_name, entry_point_name=entry_point_name, start_time=start_time or int(time.time() * 1000), source_version=source_version, tags=[RunTag(key, value) for (key, value) in iteritems(tags)], )
Creates a new :py:class:`mlflow.entities.Run` object, which can be associated with metrics, parameters, artifacts, etc. Unlike :py:func:`mlflow.projects.run`, does not actually run code, just creates objects. Unlike :py:func:`mlflow.start_run`, this does not change the "active run" used by :py:func:`mlflow.log_param` and friends. :param user_id: If not provided, we will use the current user as a default. :param start_time: If not provided, we will use the current timestamp. :param tags: A dictionary of key-value pairs which will be converted into RunTag objects. :return: :py:class:`mlflow.entities.Run` which was created
https://github.com/rstudio/mlflow-original/blob/4eb703bc9af5f5bb6c63b8772ccde590624cf73d/mlflow/tracking/service.py#L34-L60
import os import time from six import iteritems from mlflow.utils.validation import _validate_metric_name, _validate_param_name, _validate_tag_name, _validate_run_id from mlflow.entities import Param, Metric, RunStatus, RunTag from mlflow.tracking.utils import _get_store from mlflow.store.artifact_repo import ArtifactRepository _DEFAULT_USER_ID = "unknown" class MLflowService(object): def __init__(self, store): self.store = store def get_run(self, run_id): _validate_run_id(run_id) return self.store.get_run(run_id)
Apache License 2.0
docusign/docusign-python-client
docusign_esign/models/approve.py
Approve.anchor_ignore_if_not_present
python
def anchor_ignore_if_not_present(self): return self._anchor_ignore_if_not_present
Gets the anchor_ignore_if_not_present of this Approve. # noqa: E501 When set to **true**, this tab is ignored if anchorString is not found in the document. # noqa: E501 :return: The anchor_ignore_if_not_present of this Approve. # noqa: E501 :rtype: str
https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/approve.py#L527-L535
import pprint import re import six from docusign_esign.client.configuration import Configuration class Approve(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'anchor_allow_white_space_in_characters': 'str', 'anchor_allow_white_space_in_characters_metadata': 'PropertyMetadata', 'anchor_case_sensitive': 'str', 'anchor_case_sensitive_metadata': 'PropertyMetadata', 'anchor_horizontal_alignment': 'str', 'anchor_horizontal_alignment_metadata': 'PropertyMetadata', 'anchor_ignore_if_not_present': 'str', 'anchor_ignore_if_not_present_metadata': 'PropertyMetadata', 'anchor_match_whole_word': 'str', 'anchor_match_whole_word_metadata': 'PropertyMetadata', 'anchor_string': 'str', 'anchor_string_metadata': 'PropertyMetadata', 'anchor_tab_processor_version': 'str', 'anchor_tab_processor_version_metadata': 'PropertyMetadata', 'anchor_units': 'str', 'anchor_units_metadata': 'PropertyMetadata', 'anchor_x_offset': 'str', 'anchor_x_offset_metadata': 'PropertyMetadata', 'anchor_y_offset': 'str', 'anchor_y_offset_metadata': 'PropertyMetadata', 'bold': 'str', 'bold_metadata': 'PropertyMetadata', 'button_text': 'str', 'button_text_metadata': 'PropertyMetadata', 'conditional_parent_label': 'str', 'conditional_parent_label_metadata': 'PropertyMetadata', 'conditional_parent_value': 'str', 'conditional_parent_value_metadata': 'PropertyMetadata', 'custom_tab_id': 'str', 'custom_tab_id_metadata': 'PropertyMetadata', 'document_id': 'str', 'document_id_metadata': 'PropertyMetadata', 'error_details': 'ErrorDetails', 'font': 'str', 'font_color': 'str', 'font_color_metadata': 'PropertyMetadata', 'font_metadata': 'PropertyMetadata', 'font_size': 'str', 'font_size_metadata': 'PropertyMetadata', 'form_order': 'str', 'form_order_metadata': 'PropertyMetadata', 'form_page_label': 'str', 'form_page_label_metadata': 'PropertyMetadata', 'form_page_number': 'str', 'form_page_number_metadata': 'PropertyMetadata', 'height': 'str', 'height_metadata': 'PropertyMetadata', 'italic': 'str', 'italic_metadata': 'PropertyMetadata', 'locale_policy': 'LocalePolicyTab', 'merge_field': 'MergeField', 'merge_field_xml': 'str', 'page_number': 'str', 'page_number_metadata': 'PropertyMetadata', 'recipient_id': 'str', 'recipient_id_guid': 'str', 'recipient_id_guid_metadata': 'PropertyMetadata', 'recipient_id_metadata': 'PropertyMetadata', 'smart_contract_information': 'SmartContractInformation', 'source': 'str', 'status': 'str', 'status_metadata': 'PropertyMetadata', 'tab_group_labels': 'list[str]', 'tab_group_labels_metadata': 'PropertyMetadata', 'tab_id': 'str', 'tab_id_metadata': 'PropertyMetadata', 'tab_label': 'str', 'tab_label_metadata': 'PropertyMetadata', 'tab_order': 'str', 'tab_order_metadata': 'PropertyMetadata', 'tab_type': 'str', 'tab_type_metadata': 'PropertyMetadata', 'template_locked': 'str', 'template_locked_metadata': 'PropertyMetadata', 'template_required': 'str', 'template_required_metadata': 'PropertyMetadata', 'tooltip': 'str', 'tool_tip_metadata': 'PropertyMetadata', 'underline': 'str', 'underline_metadata': 'PropertyMetadata', 'width': 'str', 'width_metadata': 'PropertyMetadata', 'x_position': 'str', 'x_position_metadata': 'PropertyMetadata', 'y_position': 'str', 'y_position_metadata': 'PropertyMetadata' } attribute_map = { 'anchor_allow_white_space_in_characters': 'anchorAllowWhiteSpaceInCharacters', 'anchor_allow_white_space_in_characters_metadata': 'anchorAllowWhiteSpaceInCharactersMetadata', 'anchor_case_sensitive': 'anchorCaseSensitive', 'anchor_case_sensitive_metadata': 'anchorCaseSensitiveMetadata', 'anchor_horizontal_alignment': 'anchorHorizontalAlignment', 'anchor_horizontal_alignment_metadata': 'anchorHorizontalAlignmentMetadata', 'anchor_ignore_if_not_present': 'anchorIgnoreIfNotPresent', 'anchor_ignore_if_not_present_metadata': 'anchorIgnoreIfNotPresentMetadata', 'anchor_match_whole_word': 'anchorMatchWholeWord', 'anchor_match_whole_word_metadata': 'anchorMatchWholeWordMetadata', 'anchor_string': 'anchorString', 'anchor_string_metadata': 'anchorStringMetadata', 'anchor_tab_processor_version': 'anchorTabProcessorVersion', 'anchor_tab_processor_version_metadata': 'anchorTabProcessorVersionMetadata', 'anchor_units': 'anchorUnits', 'anchor_units_metadata': 'anchorUnitsMetadata', 'anchor_x_offset': 'anchorXOffset', 'anchor_x_offset_metadata': 'anchorXOffsetMetadata', 'anchor_y_offset': 'anchorYOffset', 'anchor_y_offset_metadata': 'anchorYOffsetMetadata', 'bold': 'bold', 'bold_metadata': 'boldMetadata', 'button_text': 'buttonText', 'button_text_metadata': 'buttonTextMetadata', 'conditional_parent_label': 'conditionalParentLabel', 'conditional_parent_label_metadata': 'conditionalParentLabelMetadata', 'conditional_parent_value': 'conditionalParentValue', 'conditional_parent_value_metadata': 'conditionalParentValueMetadata', 'custom_tab_id': 'customTabId', 'custom_tab_id_metadata': 'customTabIdMetadata', 'document_id': 'documentId', 'document_id_metadata': 'documentIdMetadata', 'error_details': 'errorDetails', 'font': 'font', 'font_color': 'fontColor', 'font_color_metadata': 'fontColorMetadata', 'font_metadata': 'fontMetadata', 'font_size': 'fontSize', 'font_size_metadata': 'fontSizeMetadata', 'form_order': 'formOrder', 'form_order_metadata': 'formOrderMetadata', 'form_page_label': 'formPageLabel', 'form_page_label_metadata': 'formPageLabelMetadata', 'form_page_number': 'formPageNumber', 'form_page_number_metadata': 'formPageNumberMetadata', 'height': 'height', 'height_metadata': 'heightMetadata', 'italic': 'italic', 'italic_metadata': 'italicMetadata', 'locale_policy': 'localePolicy', 'merge_field': 'mergeField', 'merge_field_xml': 'mergeFieldXml', 'page_number': 'pageNumber', 'page_number_metadata': 'pageNumberMetadata', 'recipient_id': 'recipientId', 'recipient_id_guid': 'recipientIdGuid', 'recipient_id_guid_metadata': 'recipientIdGuidMetadata', 'recipient_id_metadata': 'recipientIdMetadata', 'smart_contract_information': 'smartContractInformation', 'source': 'source', 'status': 'status', 'status_metadata': 'statusMetadata', 'tab_group_labels': 'tabGroupLabels', 'tab_group_labels_metadata': 'tabGroupLabelsMetadata', 'tab_id': 'tabId', 'tab_id_metadata': 'tabIdMetadata', 'tab_label': 'tabLabel', 'tab_label_metadata': 'tabLabelMetadata', 'tab_order': 'tabOrder', 'tab_order_metadata': 'tabOrderMetadata', 'tab_type': 'tabType', 'tab_type_metadata': 'tabTypeMetadata', 'template_locked': 'templateLocked', 'template_locked_metadata': 'templateLockedMetadata', 'template_required': 'templateRequired', 'template_required_metadata': 'templateRequiredMetadata', 'tooltip': 'tooltip', 'tool_tip_metadata': 'toolTipMetadata', 'underline': 'underline', 'underline_metadata': 'underlineMetadata', 'width': 'width', 'width_metadata': 'widthMetadata', 'x_position': 'xPosition', 'x_position_metadata': 'xPositionMetadata', 'y_position': 'yPosition', 'y_position_metadata': 'yPositionMetadata' } def __init__(self, _configuration=None, **kwargs): if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._anchor_allow_white_space_in_characters = None self._anchor_allow_white_space_in_characters_metadata = None self._anchor_case_sensitive = None self._anchor_case_sensitive_metadata = None self._anchor_horizontal_alignment = None self._anchor_horizontal_alignment_metadata = None self._anchor_ignore_if_not_present = None self._anchor_ignore_if_not_present_metadata = None self._anchor_match_whole_word = None self._anchor_match_whole_word_metadata = None self._anchor_string = None self._anchor_string_metadata = None self._anchor_tab_processor_version = None self._anchor_tab_processor_version_metadata = None self._anchor_units = None self._anchor_units_metadata = None self._anchor_x_offset = None self._anchor_x_offset_metadata = None self._anchor_y_offset = None self._anchor_y_offset_metadata = None self._bold = None self._bold_metadata = None self._button_text = None self._button_text_metadata = None self._conditional_parent_label = None self._conditional_parent_label_metadata = None self._conditional_parent_value = None self._conditional_parent_value_metadata = None self._custom_tab_id = None self._custom_tab_id_metadata = None self._document_id = None self._document_id_metadata = None self._error_details = None self._font = None self._font_color = None self._font_color_metadata = None self._font_metadata = None self._font_size = None self._font_size_metadata = None self._form_order = None self._form_order_metadata = None self._form_page_label = None self._form_page_label_metadata = None self._form_page_number = None self._form_page_number_metadata = None self._height = None self._height_metadata = None self._italic = None self._italic_metadata = None self._locale_policy = None self._merge_field = None self._merge_field_xml = None self._page_number = None self._page_number_metadata = None self._recipient_id = None self._recipient_id_guid = None self._recipient_id_guid_metadata = None self._recipient_id_metadata = None self._smart_contract_information = None self._source = None self._status = None self._status_metadata = None self._tab_group_labels = None self._tab_group_labels_metadata = None self._tab_id = None self._tab_id_metadata = None self._tab_label = None self._tab_label_metadata = None self._tab_order = None self._tab_order_metadata = None self._tab_type = None self._tab_type_metadata = None self._template_locked = None self._template_locked_metadata = None self._template_required = None self._template_required_metadata = None self._tooltip = None self._tool_tip_metadata = None self._underline = None self._underline_metadata = None self._width = None self._width_metadata = None self._x_position = None self._x_position_metadata = None self._y_position = None self._y_position_metadata = None self.discriminator = None setattr(self, "_{}".format('anchor_allow_white_space_in_characters'), kwargs.get('anchor_allow_white_space_in_characters', None)) setattr(self, "_{}".format('anchor_allow_white_space_in_characters_metadata'), kwargs.get('anchor_allow_white_space_in_characters_metadata', None)) setattr(self, "_{}".format('anchor_case_sensitive'), kwargs.get('anchor_case_sensitive', None)) setattr(self, "_{}".format('anchor_case_sensitive_metadata'), kwargs.get('anchor_case_sensitive_metadata', None)) setattr(self, "_{}".format('anchor_horizontal_alignment'), kwargs.get('anchor_horizontal_alignment', None)) setattr(self, "_{}".format('anchor_horizontal_alignment_metadata'), kwargs.get('anchor_horizontal_alignment_metadata', None)) setattr(self, "_{}".format('anchor_ignore_if_not_present'), kwargs.get('anchor_ignore_if_not_present', None)) setattr(self, "_{}".format('anchor_ignore_if_not_present_metadata'), kwargs.get('anchor_ignore_if_not_present_metadata', None)) setattr(self, "_{}".format('anchor_match_whole_word'), kwargs.get('anchor_match_whole_word', None)) setattr(self, "_{}".format('anchor_match_whole_word_metadata'), kwargs.get('anchor_match_whole_word_metadata', None)) setattr(self, "_{}".format('anchor_string'), kwargs.get('anchor_string', None)) setattr(self, "_{}".format('anchor_string_metadata'), kwargs.get('anchor_string_metadata', None)) setattr(self, "_{}".format('anchor_tab_processor_version'), kwargs.get('anchor_tab_processor_version', None)) setattr(self, "_{}".format('anchor_tab_processor_version_metadata'), kwargs.get('anchor_tab_processor_version_metadata', None)) setattr(self, "_{}".format('anchor_units'), kwargs.get('anchor_units', None)) setattr(self, "_{}".format('anchor_units_metadata'), kwargs.get('anchor_units_metadata', None)) setattr(self, "_{}".format('anchor_x_offset'), kwargs.get('anchor_x_offset', None)) setattr(self, "_{}".format('anchor_x_offset_metadata'), kwargs.get('anchor_x_offset_metadata', None)) setattr(self, "_{}".format('anchor_y_offset'), kwargs.get('anchor_y_offset', None)) setattr(self, "_{}".format('anchor_y_offset_metadata'), kwargs.get('anchor_y_offset_metadata', None)) setattr(self, "_{}".format('bold'), kwargs.get('bold', None)) setattr(self, "_{}".format('bold_metadata'), kwargs.get('bold_metadata', None)) setattr(self, "_{}".format('button_text'), kwargs.get('button_text', None)) setattr(self, "_{}".format('button_text_metadata'), kwargs.get('button_text_metadata', None)) setattr(self, "_{}".format('conditional_parent_label'), kwargs.get('conditional_parent_label', None)) setattr(self, "_{}".format('conditional_parent_label_metadata'), kwargs.get('conditional_parent_label_metadata', None)) setattr(self, "_{}".format('conditional_parent_value'), kwargs.get('conditional_parent_value', None)) setattr(self, "_{}".format('conditional_parent_value_metadata'), kwargs.get('conditional_parent_value_metadata', None)) setattr(self, "_{}".format('custom_tab_id'), kwargs.get('custom_tab_id', None)) setattr(self, "_{}".format('custom_tab_id_metadata'), kwargs.get('custom_tab_id_metadata', None)) setattr(self, "_{}".format('document_id'), kwargs.get('document_id', None)) setattr(self, "_{}".format('document_id_metadata'), kwargs.get('document_id_metadata', None)) setattr(self, "_{}".format('error_details'), kwargs.get('error_details', None)) setattr(self, "_{}".format('font'), kwargs.get('font', None)) setattr(self, "_{}".format('font_color'), kwargs.get('font_color', None)) setattr(self, "_{}".format('font_color_metadata'), kwargs.get('font_color_metadata', None)) setattr(self, "_{}".format('font_metadata'), kwargs.get('font_metadata', None)) setattr(self, "_{}".format('font_size'), kwargs.get('font_size', None)) setattr(self, "_{}".format('font_size_metadata'), kwargs.get('font_size_metadata', None)) setattr(self, "_{}".format('form_order'), kwargs.get('form_order', None)) setattr(self, "_{}".format('form_order_metadata'), kwargs.get('form_order_metadata', None)) setattr(self, "_{}".format('form_page_label'), kwargs.get('form_page_label', None)) setattr(self, "_{}".format('form_page_label_metadata'), kwargs.get('form_page_label_metadata', None)) setattr(self, "_{}".format('form_page_number'), kwargs.get('form_page_number', None)) setattr(self, "_{}".format('form_page_number_metadata'), kwargs.get('form_page_number_metadata', None)) setattr(self, "_{}".format('height'), kwargs.get('height', None)) setattr(self, "_{}".format('height_metadata'), kwargs.get('height_metadata', None)) setattr(self, "_{}".format('italic'), kwargs.get('italic', None)) setattr(self, "_{}".format('italic_metadata'), kwargs.get('italic_metadata', None)) setattr(self, "_{}".format('locale_policy'), kwargs.get('locale_policy', None)) setattr(self, "_{}".format('merge_field'), kwargs.get('merge_field', None)) setattr(self, "_{}".format('merge_field_xml'), kwargs.get('merge_field_xml', None)) setattr(self, "_{}".format('page_number'), kwargs.get('page_number', None)) setattr(self, "_{}".format('page_number_metadata'), kwargs.get('page_number_metadata', None)) setattr(self, "_{}".format('recipient_id'), kwargs.get('recipient_id', None)) setattr(self, "_{}".format('recipient_id_guid'), kwargs.get('recipient_id_guid', None)) setattr(self, "_{}".format('recipient_id_guid_metadata'), kwargs.get('recipient_id_guid_metadata', None)) setattr(self, "_{}".format('recipient_id_metadata'), kwargs.get('recipient_id_metadata', None)) setattr(self, "_{}".format('smart_contract_information'), kwargs.get('smart_contract_information', None)) setattr(self, "_{}".format('source'), kwargs.get('source', None)) setattr(self, "_{}".format('status'), kwargs.get('status', None)) setattr(self, "_{}".format('status_metadata'), kwargs.get('status_metadata', None)) setattr(self, "_{}".format('tab_group_labels'), kwargs.get('tab_group_labels', None)) setattr(self, "_{}".format('tab_group_labels_metadata'), kwargs.get('tab_group_labels_metadata', None)) setattr(self, "_{}".format('tab_id'), kwargs.get('tab_id', None)) setattr(self, "_{}".format('tab_id_metadata'), kwargs.get('tab_id_metadata', None)) setattr(self, "_{}".format('tab_label'), kwargs.get('tab_label', None)) setattr(self, "_{}".format('tab_label_metadata'), kwargs.get('tab_label_metadata', None)) setattr(self, "_{}".format('tab_order'), kwargs.get('tab_order', None)) setattr(self, "_{}".format('tab_order_metadata'), kwargs.get('tab_order_metadata', None)) setattr(self, "_{}".format('tab_type'), kwargs.get('tab_type', None)) setattr(self, "_{}".format('tab_type_metadata'), kwargs.get('tab_type_metadata', None)) setattr(self, "_{}".format('template_locked'), kwargs.get('template_locked', None)) setattr(self, "_{}".format('template_locked_metadata'), kwargs.get('template_locked_metadata', None)) setattr(self, "_{}".format('template_required'), kwargs.get('template_required', None)) setattr(self, "_{}".format('template_required_metadata'), kwargs.get('template_required_metadata', None)) setattr(self, "_{}".format('tooltip'), kwargs.get('tooltip', None)) setattr(self, "_{}".format('tool_tip_metadata'), kwargs.get('tool_tip_metadata', None)) setattr(self, "_{}".format('underline'), kwargs.get('underline', None)) setattr(self, "_{}".format('underline_metadata'), kwargs.get('underline_metadata', None)) setattr(self, "_{}".format('width'), kwargs.get('width', None)) setattr(self, "_{}".format('width_metadata'), kwargs.get('width_metadata', None)) setattr(self, "_{}".format('x_position'), kwargs.get('x_position', None)) setattr(self, "_{}".format('x_position_metadata'), kwargs.get('x_position_metadata', None)) setattr(self, "_{}".format('y_position'), kwargs.get('y_position', None)) setattr(self, "_{}".format('y_position_metadata'), kwargs.get('y_position_metadata', None)) @property def anchor_allow_white_space_in_characters(self): return self._anchor_allow_white_space_in_characters @anchor_allow_white_space_in_characters.setter def anchor_allow_white_space_in_characters(self, anchor_allow_white_space_in_characters): self._anchor_allow_white_space_in_characters = anchor_allow_white_space_in_characters @property def anchor_allow_white_space_in_characters_metadata(self): return self._anchor_allow_white_space_in_characters_metadata @anchor_allow_white_space_in_characters_metadata.setter def anchor_allow_white_space_in_characters_metadata(self, anchor_allow_white_space_in_characters_metadata): self._anchor_allow_white_space_in_characters_metadata = anchor_allow_white_space_in_characters_metadata @property def anchor_case_sensitive(self): return self._anchor_case_sensitive @anchor_case_sensitive.setter def anchor_case_sensitive(self, anchor_case_sensitive): self._anchor_case_sensitive = anchor_case_sensitive @property def anchor_case_sensitive_metadata(self): return self._anchor_case_sensitive_metadata @anchor_case_sensitive_metadata.setter def anchor_case_sensitive_metadata(self, anchor_case_sensitive_metadata): self._anchor_case_sensitive_metadata = anchor_case_sensitive_metadata @property def anchor_horizontal_alignment(self): return self._anchor_horizontal_alignment @anchor_horizontal_alignment.setter def anchor_horizontal_alignment(self, anchor_horizontal_alignment): self._anchor_horizontal_alignment = anchor_horizontal_alignment @property def anchor_horizontal_alignment_metadata(self): return self._anchor_horizontal_alignment_metadata @anchor_horizontal_alignment_metadata.setter def anchor_horizontal_alignment_metadata(self, anchor_horizontal_alignment_metadata): self._anchor_horizontal_alignment_metadata = anchor_horizontal_alignment_metadata @property
MIT License
ethereum/py-evm
eth/db/chain.py
ChainDB._add_transaction_to_canonical_chain
python
def _add_transaction_to_canonical_chain(db: DatabaseAPI, transaction_hash: Hash32, block_header: BlockHeaderAPI, index: int) -> None: transaction_key = TransactionKey(block_header.block_number, index) db.set( SchemaV1.make_transaction_hash_to_block_lookup_key(transaction_hash), rlp.encode(transaction_key), )
:param bytes transaction_hash: the hash of the transaction to add the lookup for :param block_header: The header of the block with the txn that is in the canonical chain :param int index: the position of the transaction in the block - add lookup from transaction hash to the block number and index that the body is stored at - remove transaction hash to body lookup in the pending pool
https://github.com/ethereum/py-evm/blob/21759ee681315f7099b14893b6ac6d1a5e659bc0/eth/db/chain.py#L436-L451
import functools import itertools from typing import ( Dict, Iterable, Sequence, Tuple, Type, cast, ) from eth_typing import ( BlockNumber, Hash32 ) from eth_utils import ( encode_hex, ) from eth_hash.auto import keccak from trie.exceptions import ( MissingTrieNode, ) from eth.abc import ( BlockAPI, BlockHeaderAPI, ChainDatabaseAPI, DatabaseAPI, AtomicDatabaseAPI, ReceiptAPI, ReceiptDecoderAPI, SignedTransactionAPI, TransactionDecoderAPI, ) from eth.constants import ( EMPTY_UNCLE_HASH, GENESIS_PARENT_HASH, ) from eth.db.chain_gaps import ( fill_gap, GapChange, GapInfo, GENESIS_CHAIN_GAPS, is_block_number_in_gap, reopen_gap, ) from eth.db.trie import make_trie_root_and_nodes from eth.exceptions import ( HeaderNotFound, ReceiptNotFound, TransactionNotFound, ) from eth.db.header import HeaderDB from eth.db.schema import SchemaV1 from eth.rlp.sedes import chain_gaps from eth.typing import ChainGaps from eth.validation import ( validate_word, ) from eth.vm.header import HeaderSedes from eth._warnings import catch_and_ignore_import_warning with catch_and_ignore_import_warning(): import rlp from trie import ( HexaryTrie, ) from eth_utils import ( to_tuple, ValidationError, ) class TransactionKey(rlp.Serializable): fields = [ ('block_number', rlp.sedes.big_endian_int), ('index', rlp.sedes.big_endian_int), ] class ChainDB(HeaderDB, ChainDatabaseAPI): def __init__(self, db: AtomicDatabaseAPI) -> None: self.db = db def get_chain_gaps(self) -> ChainGaps: return self._get_chain_gaps(self.db) @classmethod def _get_chain_gaps(cls, db: DatabaseAPI) -> ChainGaps: try: encoded_gaps = db[SchemaV1.make_chain_gaps_lookup_key()] except KeyError: return GENESIS_CHAIN_GAPS else: return rlp.decode(encoded_gaps, sedes=chain_gaps) @classmethod def _update_chain_gaps( cls, db: DatabaseAPI, persisted_block: BlockAPI, base_gaps: ChainGaps = None ) -> GapInfo: if base_gaps is None: base_gaps = cls._get_chain_gaps(db) gap_change, gaps = fill_gap(persisted_block.number, base_gaps) if gap_change is not GapChange.NoChange: db.set( SchemaV1.make_chain_gaps_lookup_key(), rlp.encode(gaps, sedes=chain_gaps) ) return gap_change, gaps @classmethod def _update_header_chain_gaps( cls, db: DatabaseAPI, persisting_header: BlockHeaderAPI, base_gaps: ChainGaps = None ) -> GapInfo: gap_change, gaps = super()._update_header_chain_gaps(db, persisting_header, base_gaps) if gap_change is not GapChange.NoChange or persisting_header.block_number == 0: return gap_change, gaps current_gaps = cls._get_chain_gaps(db) if not is_block_number_in_gap(persisting_header.block_number, current_gaps): old_canonical_header = cls._get_canonical_block_header_by_number( db, persisting_header.block_number ) if old_canonical_header != persisting_header: updated_gaps = reopen_gap(persisting_header.block_number, current_gaps) db.set( SchemaV1.make_chain_gaps_lookup_key(), rlp.encode(updated_gaps, sedes=chain_gaps) ) return gap_change, gaps def get_block_uncles(self, uncles_hash: Hash32) -> Tuple[BlockHeaderAPI, ...]: validate_word(uncles_hash, title="Uncles Hash") if uncles_hash == EMPTY_UNCLE_HASH: return () try: encoded_uncles = self.db[uncles_hash] except KeyError as exc: raise HeaderNotFound( f"No uncles found for hash {uncles_hash!r}" ) from exc else: return tuple(rlp.decode(encoded_uncles, sedes=rlp.sedes.CountableList(HeaderSedes))) @classmethod def _decanonicalize_old_headers( cls, db: DatabaseAPI, numbers_to_decanonicalize: Sequence[BlockNumber], ) -> Tuple[BlockHeaderAPI, ...]: old_canonical_headers = [] for block_number in numbers_to_decanonicalize: try: old_hash = cls._get_canonical_block_hash(db, block_number) except HeaderNotFound: break else: old_header = cls._get_block_header_by_hash(db, old_hash) old_canonical_headers.append(old_header) try: transaction_hashes = cls._get_block_transaction_hashes(db, old_header) for transaction_hash in transaction_hashes: cls._remove_transaction_from_canonical_chain(db, transaction_hash) except MissingTrieNode: pass return tuple(old_canonical_headers) def persist_block(self, block: BlockAPI, genesis_parent_hash: Hash32 = GENESIS_PARENT_HASH ) -> Tuple[Tuple[Hash32, ...], Tuple[Hash32, ...]]: with self.db.atomic_batch() as db: return self._persist_block(db, block, genesis_parent_hash) def persist_unexecuted_block(self, block: BlockAPI, receipts: Tuple[ReceiptAPI, ...], genesis_parent_hash: Hash32 = GENESIS_PARENT_HASH ) -> Tuple[Tuple[Hash32, ...], Tuple[Hash32, ...]]: tx_root_hash, tx_kv_nodes = make_trie_root_and_nodes(block.transactions) if tx_root_hash != block.header.transaction_root: raise ValidationError( f"Block's transaction_root ({block.header.transaction_root!r}) " f"does not match expected value: {tx_root_hash!r}" ) receipt_root_hash, receipt_kv_nodes = make_trie_root_and_nodes(receipts) if receipt_root_hash != block.header.receipt_root: raise ValidationError( f"Block's receipt_root ({block.header.receipt_root!r}) " f"does not match expected value: {receipt_root_hash!r}" ) with self.db.atomic_batch() as db: self._persist_trie_data_dict(db, receipt_kv_nodes) self._persist_trie_data_dict(db, tx_kv_nodes) return self._persist_block(db, block, genesis_parent_hash) @classmethod def _persist_block( cls, db: DatabaseAPI, block: BlockAPI, genesis_parent_hash: Hash32) -> Tuple[Tuple[Hash32, ...], Tuple[Hash32, ...]]: header_chain = (block.header, ) new_canonical_headers, old_canonical_headers = cls._persist_header_chain( db, header_chain, genesis_parent_hash ) for header in new_canonical_headers: if header.hash == block.hash: tx_hashes = tuple(tx.hash for tx in block.transactions) else: tx_hashes = cls._get_block_transaction_hashes(db, header) for index, transaction_hash in enumerate(tx_hashes): cls._add_transaction_to_canonical_chain(db, transaction_hash, header, index) if block.uncles: uncles_hash = cls._persist_uncles(db, block.uncles) else: uncles_hash = EMPTY_UNCLE_HASH if uncles_hash != block.header.uncles_hash: raise ValidationError( "Block's uncles_hash (%s) does not match actual uncles' hash (%s)", block.header.uncles_hash, uncles_hash) new_canonical_hashes = tuple(header.hash for header in new_canonical_headers) old_canonical_hashes = tuple( header.hash for header in old_canonical_headers) cls._update_chain_gaps(db, block) return new_canonical_hashes, old_canonical_hashes def persist_uncles( self, uncles: Tuple[BlockHeaderAPI]) -> Hash32: return self._persist_uncles(self.db, uncles) @staticmethod def _persist_uncles( db: DatabaseAPI, uncles: Tuple[BlockHeaderAPI, ...]) -> Hash32: uncles_hash = keccak(rlp.encode(uncles)) db.set( uncles_hash, rlp.encode(uncles, sedes=rlp.sedes.CountableList(HeaderSedes))) return cast(Hash32, uncles_hash) def add_receipt(self, block_header: BlockHeaderAPI, index_key: int, receipt: ReceiptAPI) -> Hash32: receipt_db = HexaryTrie(db=self.db, root_hash=block_header.receipt_root) receipt_db[index_key] = receipt.encode() return receipt_db.root_hash def add_transaction(self, block_header: BlockHeaderAPI, index_key: int, transaction: SignedTransactionAPI) -> Hash32: transaction_db = HexaryTrie(self.db, root_hash=block_header.transaction_root) transaction_db[index_key] = transaction.encode() return transaction_db.root_hash def get_block_transactions( self, header: BlockHeaderAPI, transaction_decoder: Type[TransactionDecoderAPI]) -> Tuple[SignedTransactionAPI, ...]: return self._get_block_transactions(header.transaction_root, transaction_decoder) def get_block_transaction_hashes(self, block_header: BlockHeaderAPI) -> Tuple[Hash32, ...]: return self._get_block_transaction_hashes(self.db, block_header) @classmethod @to_tuple def _get_block_transaction_hashes( cls, db: DatabaseAPI, block_header: BlockHeaderAPI) -> Iterable[Hash32]: all_encoded_transactions = cls._get_block_transaction_data( db, block_header.transaction_root, ) for encoded_transaction in all_encoded_transactions: yield cast(Hash32, keccak(encoded_transaction)) @to_tuple def get_receipts(self, header: BlockHeaderAPI, receipt_decoder: Type[ReceiptDecoderAPI]) -> Iterable[ReceiptAPI]: receipt_db = HexaryTrie(db=self.db, root_hash=header.receipt_root) for receipt_idx in itertools.count(): receipt_key = rlp.encode(receipt_idx) receipt_data = receipt_db[receipt_key] if receipt_data != b'': yield receipt_decoder.decode(receipt_data) else: break def get_transaction_by_index( self, block_number: BlockNumber, transaction_index: int, transaction_decoder: Type[TransactionDecoderAPI]) -> SignedTransactionAPI: try: block_header = self.get_canonical_block_header_by_number(block_number) except HeaderNotFound: raise TransactionNotFound(f"Block {block_number} is not in the canonical chain") transaction_db = HexaryTrie(self.db, root_hash=block_header.transaction_root) encoded_index = rlp.encode(transaction_index) encoded_transaction = transaction_db[encoded_index] if encoded_transaction != b'': return transaction_decoder.decode(encoded_transaction) else: raise TransactionNotFound( f"No transaction is at index {transaction_index} of block {block_number}" ) def get_transaction_index(self, transaction_hash: Hash32) -> Tuple[BlockNumber, int]: key = SchemaV1.make_transaction_hash_to_block_lookup_key(transaction_hash) try: encoded_key = self.db[key] except KeyError: raise TransactionNotFound( f"Transaction {encode_hex(transaction_hash)} not found in canonical chain" ) transaction_key = rlp.decode(encoded_key, sedes=TransactionKey) return (transaction_key.block_number, transaction_key.index) def get_receipt_by_index(self, block_number: BlockNumber, receipt_index: int, receipt_decoder: Type[ReceiptDecoderAPI], ) -> ReceiptAPI: try: block_header = self.get_canonical_block_header_by_number(block_number) except HeaderNotFound: raise ReceiptNotFound(f"Block {block_number} is not in the canonical chain") receipt_db = HexaryTrie(db=self.db, root_hash=block_header.receipt_root) receipt_key = rlp.encode(receipt_index) receipt_data = receipt_db[receipt_key] if receipt_data != b'': return receipt_decoder.decode(receipt_data) else: raise ReceiptNotFound( f"Receipt with index {receipt_index} not found in block" ) @staticmethod def _get_block_transaction_data(db: DatabaseAPI, transaction_root: Hash32) -> Iterable[Hash32]: transaction_db = HexaryTrie(db, root_hash=transaction_root) for transaction_idx in itertools.count(): transaction_key = rlp.encode(transaction_idx) encoded = transaction_db[transaction_key] if encoded != b'': yield encoded else: break @functools.lru_cache(maxsize=32) @to_tuple def _get_block_transactions( self, transaction_root: Hash32, transaction_decoder: Type[TransactionDecoderAPI]) -> Iterable[SignedTransactionAPI]: for encoded_transaction in self._get_block_transaction_data(self.db, transaction_root): yield transaction_decoder.decode(encoded_transaction) @staticmethod def _remove_transaction_from_canonical_chain(db: DatabaseAPI, transaction_hash: Hash32) -> None: db.delete(SchemaV1.make_transaction_hash_to_block_lookup_key(transaction_hash)) @staticmethod
MIT License
tudelft-cda-lab/groot
groot/model.py
GrootTree.__fit_recursive
python
def __fit_recursive(self, X, y, constraints, depth=0): if ( (self.max_depth is not None and depth == self.max_depth) or len(y) < self.min_samples_split or np.sum(y == 0) == 0 or np.sum(y == 1) == 0 ): return self.__create_leaf(y) current_gini = gini_impurity(np.sum(y == 0), np.sum(y == 1)) numeric, rule, feature, split_gini = self.__best_adversarial_decision( X, y, constraints ) gini_gain = current_gini - split_gini if rule is None or gini_gain <= 0.00: return self.__create_leaf(y) if numeric: assert rule >= constraints[feature][0] assert rule < constraints[feature][1] else: assert rule[0].isdisjoint(constraints[feature]) assert rule[1].isdisjoint(constraints[feature]) X_left, y_left, X_right, y_right = self.__split_left_right( X, y, rule, feature, numeric, self.attack_model_[feature] ) if len(y_left) < self.min_samples_leaf or len(y_right) < self.min_samples_leaf: return self.__create_leaf(y) if numeric: old_right_bound = constraints[feature][1] constraints[feature][1] = rule else: constraints[feature].update(rule[1]) left_node = self.__fit_recursive(X_left, y_left, constraints, depth + 1) if numeric: constraints[feature][1] = old_right_bound old_left_bound = constraints[feature][0] constraints[feature][0] = rule else: constraints[feature].difference_update(rule[1]) constraints[feature].update(rule[0]) right_node = self.__fit_recursive(X_right, y_right, constraints, depth + 1) if numeric: constraints[feature][0] = old_left_bound node = NumericalNode(feature, rule, left_node, right_node, _TREE_UNDEFINED) else: constraints[feature].difference_update(rule[0]) node = CategoricalNode( feature, rule, left_node, right_node, _TREE_UNDEFINED ) return node
Recursively fit the decision tree on the training dataset (X, y). The constraints make sure that leaves are well formed, e.g. don't cross an earlier split. Stop when the depth has reached self.max_depth, when a leaf is pure or when the leaf contains too few samples.
https://github.com/tudelft-cda-lab/groot/blob/3c06ab8521cf22b76fdc3a38a73e8e9b5a8fa912/groot/model.py#L948-L1026
import json import numbers import time import numpy as np from collections import defaultdict from itertools import product from numba import jit from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.multiclass import type_of_target from sklearn.utils.validation import check_X_y, check_array, check_is_fitted from sklearn.utils import check_random_state from joblib import Parallel, delayed from sklearn.base import clone from .util import convert_numpy _TREE_LEAF = -1 _TREE_UNDEFINED = -2 LEFT = 0 LEFT_INTERSECT = 1 RIGHT_INTERSECT = 2 RIGHT = 3 NOGIL = True class Node: def __init__(self, feature, left_child, right_child, value): self.feature = feature self.left_child = left_child self.right_child = right_child self.value = value def predict(self, _): assert self.left_child == _TREE_LEAF assert self.right_child == _TREE_LEAF n_samples_in_leaf = np.sum(self.value) if n_samples_in_leaf == 0: return [0.0, 1.0] else: return self.value / n_samples_in_leaf def pretty_print(self, depth=0): indentation = depth * " " return f"{indentation}return [{self.value[0]:.3f}, {self.value[1]:.3f}]" def to_json(self): return { "value": [self.value[0], self.value[1]], } def to_xgboost_json(self, node_id, depth): return {"nodeid": node_id, "leaf": self.value[1] * 2 - 1}, node_id def is_leaf(self): return self.left_child == _TREE_LEAF and self.right_child == _TREE_LEAF def prune(self, _): return self class CategoricalNode(Node): def __init__(self, feature, category_split, left_child, right_child, value): super().__init__(feature, left_child, right_child, value) self.categories_left = category_split[0] self.categories_right = category_split[1] def predict(self, sample): sample_feature = int(sample[self.feature]) if sample_feature in self.categories_left: return self.left_child.predict(sample) else: return self.right_child.predict(sample) def pretty_print(self, depth=0): indentation = depth * " " return f"""{indentation}if x{self.feature} in {self.categories_left}: {self.left_child.pretty_print(depth + 1)} {indentation}elif x{self.feature} in {self.categories_right}: {self.right_child.pretty_print(depth + 1)}""" def to_json(self): return { "feature": self.feature, "categories_left": list(self.categories_left), "categories_right": list(self.categories_right), "left_child": self.left_child.to_json(), "right_child": self.right_child.to_json(), } def to_xgboost_json(self, node_id, depth): raise NotImplementedError( "XGBoost JSON is not yet supported for categorical features" ) class NumericalNode(Node): def __init__(self, feature, threshold, left_child, right_child, value): super().__init__(feature, left_child, right_child, value) self.threshold = threshold def predict(self, sample): comparison = sample[self.feature] <= self.threshold if comparison: return self.left_child.predict(sample) else: return self.right_child.predict(sample) def pretty_print(self, depth=0): indentation = depth * " " return f"""{indentation}if x{self.feature} <= {self.threshold}: {self.left_child.pretty_print(depth + 1)} {indentation}else: {self.right_child.pretty_print(depth + 1)}""" def to_json(self): return { "feature": self.feature, "threshold": self.threshold, "left_child": self.left_child.to_json(), "right_child": self.right_child.to_json(), } def to_xgboost_json(self, node_id, depth): left_id = node_id + 1 left_dict, new_node_id = self.left_child.to_xgboost_json(left_id, depth + 1) right_id = new_node_id + 1 right_dict, new_node_id = self.right_child.to_xgboost_json(right_id, depth + 1) return ( { "nodeid": node_id, "depth": depth, "split": self.feature, "split_condition": self.threshold, "yes": left_id, "no": right_id, "missing": left_id, "children": [left_dict, right_dict], }, new_node_id, ) def prune(self, bounds=defaultdict(lambda: [-np.inf, np.inf])): old_high = bounds[self.feature][1] bounds[self.feature][1] = self.threshold self.left_child = self.left_child.prune(bounds) bounds[self.feature][1] = old_high old_low = bounds[self.feature][0] bounds[self.feature][0] = self.threshold self.right_child = self.right_child.prune(bounds) bounds[self.feature][0] = old_low if self.threshold >= bounds[self.feature][1] or self.threshold == np.inf: return self.left_child elif self.threshold <= bounds[self.feature][0] or self.threshold == -np.inf: return self.right_child elif ( self.left_child.is_leaf() and self.right_child.is_leaf() and self.left_child.value[1] == self.right_child.value[1] ): return self.left_child else: return self def _attack_model_to_tuples(attack_model): new_attack_model = [] for attack_mode in attack_model: if attack_mode == "": new_attack_model.append((0, 0)) elif attack_mode == ">": new_attack_model.append((0, 10e9)) elif attack_mode == "<": new_attack_model.append((10e9, 0)) elif attack_mode == "<>": new_attack_model.append((10e9, 10e9)) elif isinstance(attack_mode, numbers.Number): new_attack_model.append((attack_mode, attack_mode)) elif isinstance(attack_mode, tuple) and len(attack_mode) == 2: new_attack_model.append(attack_mode) elif isinstance(attack_mode, dict): new_attack_model.append(attack_mode) else: raise Exception("Unknown attack model spec:", attack_mode) return new_attack_model @jit(nopython=True, nogil=NOGIL) def _split_left_right_fast(self, X, y, rule, feature, inc, dec, chen_heuristic): b_L = X[:, feature] <= rule - dec b_LI = (X[:, feature] <= rule) & (X[:, feature] > rule - dec) b_RI = (X[:, feature] <= rule + inc) & (X[:, feature] > rule) b_R = X[:, feature] > rule + inc i_L_0 = np.where(b_L & (y == 0))[0] i_L_1 = np.where(b_L & (y == 1))[0] i_LI_0 = np.where(b_LI & (y == 0))[0] i_LI_1 = np.where(b_LI & (y == 1))[0] i_RI_0 = np.where(b_RI & (y == 0))[0] i_RI_1 = np.where(b_RI & (y == 1))[0] i_R_0 = np.where(b_R & (y == 0))[0] i_R_1 = np.where(b_R & (y == 1))[0] if chen_heuristic: _, x, y = chen_adversarial_gini_gain_two_class( len(i_L_0), len(i_L_1), len(i_LI_0), len(i_LI_1), len(i_RI_0), len(i_RI_1), len(i_R_0), len(i_R_1), ) else: _, x, y = adversarial_gini_gain_two_class( len(i_L_0), len(i_L_1), len(i_LI_0), len(i_LI_1), len(i_RI_0), len(i_RI_1), len(i_R_0), len(i_R_1), ) if len(i_LI_0) < y: i_LI_0 = np.append(i_LI_0, i_RI_0[: y - len(i_LI_0)]) i_RI_0 = i_RI_0[y - len(i_LI_0) :] elif len(i_LI_0) > y: i_RI_0 = np.append(i_RI_0, i_LI_0[: len(i_LI_0) - y]) i_LI_0 = i_LI_0[: len(i_LI_0) - y] if len(i_LI_1) < x: i_LI_1 = np.append(i_LI_1, i_RI_1[: x - len(i_LI_1)]) i_RI_1 = i_RI_1[x - len(i_LI_1) :] elif len(i_LI_1) > x: i_RI_1 = np.append(i_RI_1, i_LI_1[: len(i_LI_1) - x]) i_LI_1 = i_LI_1[: len(i_LI_1) - x] i_left = np.concatenate((i_RI_0, i_RI_1, i_R_0, i_R_1)) i_right = np.concatenate((i_RI_0, i_RI_1, i_R_0, i_R_1)) return X[i_left], y[i_left], X[i_right], y[i_right] @jit(nopython=True, nogil=NOGIL) def _scan_numerical_feature_fast( samples, y, dec, inc, left_bound, right_bound, chen_heuristic, ): sort_order = samples.argsort() sorted_labels = y[sort_order] sample_queue = samples[sort_order] dec_queue = sample_queue - dec inc_queue = sample_queue + inc l_0 = l_1 = li_0 = li_1 = ri_0 = ri_1 = 0 label_counts = np.bincount(y) r_0 = label_counts[0] r_1 = label_counts[1] sample_i = dec_i = inc_i = 0 sample_val = sample_queue[0] dec_val = dec_queue[0] inc_val = inc_queue[0] best_score = 10e9 best_split = None adv_gini = None while True: smallest_val = min(sample_val, dec_val, inc_val) if sample_val == smallest_val: point = sample_val label = sorted_labels[sample_i] if label == 0: ri_0 -= 1 li_0 += 1 else: ri_1 -= 1 li_1 += 1 if sample_i < sample_queue.shape[0] - 1: sample_i += 1 sample_val = sample_queue[sample_i] else: sample_val = 10e9 elif dec_val == smallest_val: point = dec_val label = sorted_labels[dec_i] if label == 0: r_0 -= 1 ri_0 += 1 else: r_1 -= 1 ri_1 += 1 if dec_i < dec_queue.shape[0] - 1: dec_i += 1 dec_val = dec_queue[dec_i] else: dec_val = 10e9 else: point = inc_val label = sorted_labels[inc_i] if label == 0: li_0 -= 1 l_0 += 1 else: li_1 -= 1 l_1 += 1 if inc_i < inc_queue.shape[0] - 1: inc_i += 1 inc_val = inc_queue[inc_i] else: inc_val = 10e9 if point >= right_bound: break next_point = min(sample_val, dec_val, inc_val) if next_point != point: if chen_heuristic: adv_gini, _, __ = chen_adversarial_gini_gain_two_class( l_0, l_1, li_0, li_1, ri_0, ri_1, r_0, r_1 ) else: adv_gini, _, __ = adversarial_gini_gain_two_class( l_0, l_1, li_0, li_1, ri_0, ri_1, r_0, r_1 ) split = (point + next_point) * 0.5 if ( adv_gini is not None and adv_gini < best_score and split > left_bound and split < right_bound ): best_score = adv_gini best_split = split return True, best_score, best_split def chen_adversarial_gini_gain_one_class(l_0, l_1, r_0, r_1, li_1, ri_1): i_1 = li_1 + ri_1 s1 = weighted_gini(l_0, l_1 + li_1, r_0, r_1 + ri_1) s2 = weighted_gini(l_0, l_1, r_0, r_1 + i_1) s3 = weighted_gini(l_0, l_1 + i_1, r_0, r_1) s4 = weighted_gini(l_0, l_1 + ri_1, r_0, r_1 + li_1) worst_case = max(s1, s2, s3, s4) if s1 == worst_case: return s1, li_1 if s2 == worst_case: return s2, 0 if s3 == worst_case: return s3, i_1 if s4 == worst_case: return s4, ri_1 @jit(nopython=True, nogil=NOGIL) def chen_adversarial_gini_gain_two_class(l_0, l_1, li_0, li_1, ri_0, ri_1, r_0, r_1): i_0 = li_0 + ri_0 i_1 = li_1 + ri_1 s1 = weighted_gini(l_0 + li_0, l_1 + li_1, r_0 + ri_0, r_1 + ri_1) s2 = weighted_gini(l_0, l_1, r_0 + i_0, r_1 + i_1) s3 = weighted_gini(l_0 + i_0, l_1 + i_1, r_0, r_1) s4 = weighted_gini(l_0 + ri_0, l_1 + ri_1, r_0 + li_0, r_1 + li_1) worst_case = max(s1, s2, s3, s4) if s1 == worst_case: return s1, li_1, li_0 if s2 == worst_case: return s2, 0, 0 if s3 == worst_case: return s3, i_1, i_0 if s4 == worst_case: return s4, ri_1, ri_0 @jit(nopython=True, nogil=NOGIL) def adversarial_gini_gain_one_class(l_0, l_1, r_0, r_1, i_1): x = max(min((l_0 * r_1 + l_0 * i_1 - l_1 * r_0) / (l_0 + r_0), i_1), 0) x_floor = np.floor(x) x_ceil = np.ceil(x) adv_gini_floor = weighted_gini(l_0, l_1 + x_floor, r_0, r_1 + i_1 - x_floor) adv_gini_ceil = weighted_gini(l_0, l_1 + x_ceil, r_0, r_1 + i_1 - x_ceil) if adv_gini_floor > adv_gini_ceil: return adv_gini_floor, x_floor else: return adv_gini_ceil, x_ceil @jit(nopython=True, nogil=NOGIL) def adversarial_gini_gain_two_class(l_0, l_1, li_0, li_1, ri_0, ri_1, r_0, r_1): i_0 = li_0 + ri_0 i_1 = li_1 + ri_1 if i_0 == 0 and i_1 == 0: return weighted_gini(l_0, l_1, r_0, r_1), 0, 0 if l_1 + r_1 + i_1 == 0: return ( weighted_gini(l_0 + li_0, l_1 + li_1, r_0 + i_0 - li_0, r_1 + i_1 - li_1), li_1, li_0, ) x_coef = (l_0 + r_0 + i_0) / (l_1 + r_1 + i_1) intercept = (l_1 * r_0 - l_0 * r_1 - l_0 * i_1 + l_1 * i_0) / (l_1 + r_1 + i_1) denominator = x_coef ** 2 + 1 x_prime = round((li_1 + x_coef * (li_0 - intercept)) / denominator) y_prime = round((x_coef * (li_1 + x_coef * li_0) + intercept) / denominator) if x_prime < 0 and y_prime > i_0: x_prime = 0 y_prime = i_0 elif x_prime < 0: x_prime = 0 y_prime = ( l_1 * r_0 - l_0 * r_1 - l_0 * i_1 + l_1 * i_0 + (l_0 + r_0 + i_0) * x_prime ) / (l_1 + r_1 + i_1) if y_prime > i_0: x_prime = 0 y_prime = i_0 elif x_prime > i_1 and y_prime < 0: x_prime = i_1 y_prime = 0 elif x_prime > i_1: x_prime = i_1 y_prime = ( l_1 * r_0 - l_0 * r_1 - l_0 * i_1 + l_1 * i_0 + (l_0 + r_0 + i_0) * x_prime ) / (l_1 + r_1 + i_1) if y_prime < 0: x_prime = i_1 y_prime = 0 elif y_prime < 0: y_prime = 0 x_prime = ( l_0 * r_1 + l_0 * i_1 - l_1 * r_0 - l_1 * i_0 + (l_1 + r_1 + i_1) * y_prime ) / (l_0 + r_0 + i_0) if x_prime > i_1: x_prime = i_1 y_prime = 0 elif y_prime > i_0: y_prime = i_0 x_prime = ( l_0 * r_1 + l_0 * i_1 - l_1 * r_0 - l_1 * i_0 + (l_1 + r_1 + i_1) * y_prime ) / (l_0 + r_0 + i_0) if x_prime < 0: x_prime = 0 y_prime = i_0 x_prime = int(round(x_prime)) y_prime = int(round(y_prime)) assert x_prime >= 0 and x_prime <= i_1 assert y_prime >= 0 and y_prime <= i_0 return ( weighted_gini( l_0 + y_prime, l_1 + x_prime, r_0 + i_0 - y_prime, r_1 + i_1 - x_prime ), x_prime, y_prime, ) @jit(nopython=True, nogil=NOGIL) def gini_impurity(i_0, i_1): if i_0 + i_1 == 0: return 1.0 ratio = i_0 / (i_0 + i_1) return 1.0 - (ratio ** 2) - ((1 - ratio) ** 2) @jit(nopython=True, nogil=NOGIL) def weighted_gini(l_0, l_1, r_0, r_1): l_t = l_0 + l_1 r_t = r_0 + r_1 if l_t == 0: l_p = 1.0 else: l_p = l_0 / (l_0 + l_1) if r_t == 0: r_p = 1.0 else: r_p = r_0 / (r_0 + r_1) gini = l_t * (1 - (l_p ** 2) - ((1 - l_p) ** 2)) + r_t * ( 1 - (r_p ** 2) - ((1 - r_p) ** 2) ) total = l_t + r_t if total != 0: gini /= total return gini else: return 1.0 def _counts_to_one_class_adv_gini(counts, rho, chen_heuristic): rho_inv = 1.0 - rho left_mal = counts[LEFT][1] + int(round(rho_inv * counts[LEFT_INTERSECT][1])) right_mal = counts[RIGHT][1] + int(round(rho_inv * counts[RIGHT_INTERSECT][1])) left_i_mal = int(round(rho * counts[LEFT_INTERSECT][1])) right_i_mal = int(round(rho * counts[RIGHT_INTERSECT][1])) if chen_heuristic: adv_gini, _ = chen_adversarial_gini_gain_one_class( counts[LEFT][0], left_mal, counts[RIGHT][0], right_mal, left_i_mal, right_i_mal, ) else: adv_gini, _ = adversarial_gini_gain_one_class( counts[LEFT][0], left_mal, counts[RIGHT][0], right_mal, left_i_mal + right_i_mal, ) return adv_gini @jit(nopython=True, nogil=NOGIL) def _counts_to_two_class_adv_gini(counts, rho, chen_heuristic): rho_inv = 1.0 - rho left = counts[LEFT] + np.rint(rho_inv * counts[LEFT_INTERSECT]).astype(np.int64) right = counts[RIGHT] + np.rint(rho_inv * counts[RIGHT_INTERSECT]).astype(np.int64) left_i = np.rint(rho * counts[LEFT_INTERSECT]).astype(np.int64) right_i = np.rint(rho * counts[RIGHT_INTERSECT]).astype(np.int64) if chen_heuristic: adv_gini, _, _ = chen_adversarial_gini_gain_two_class( left[0], left[1], left_i[0], left_i[1], right_i[0], right_i[1], right[0], right[1], ) else: adv_gini, _, _ = adversarial_gini_gain_two_class( left[0], left[1], left_i[0], left_i[1], right_i[0], right_i[1], right[0], right[1], ) return adv_gini @jit(nopython=True, nogil=NOGIL) def _categorical_counts_to_one_class_adv_gini( left_counts, left_intersection_counts, right_intersection_counts, right_counts, rho, chen_heuristic, ): inv_rho = 1.0 - rho left_counts += np.rint(inv_rho * left_intersection_counts).astype(np.int64) right_counts += np.rint(inv_rho * right_intersection_counts).astype(np.int64) left_intersection_counts = np.rint(rho * left_intersection_counts).astype(np.int64) right_intersection_counts = np.rint(rho * right_intersection_counts).astype( np.int64 ) if chen_heuristic: adv_gini, _ = chen_adversarial_gini_gain_one_class( left_counts[0], left_counts[1], right_counts[0], right_counts[1], left_intersection_counts[1], right_intersection_counts[1], ) else: adv_gini, _ = adversarial_gini_gain_one_class( left_counts[0], left_counts[1], right_counts[0], right_counts[1], left_intersection_counts[1] + right_intersection_counts[1], ) return adv_gini @jit(nopython=True, nogil=NOGIL) def _categorical_counts_to_two_class_adv_gini( left_counts, left_intersection_counts, right_intersection_counts, right_counts, rho, chen_heuristic, ): inv_rho = 1.0 - rho left_counts += np.rint(inv_rho * left_intersection_counts).astype(np.int64) right_counts += np.rint(inv_rho * right_intersection_counts).astype(np.int64) left_intersection_counts = np.rint(rho * left_intersection_counts).astype(np.int64) right_intersection_counts = np.rint(rho * right_intersection_counts).astype( np.int64 ) if chen_heuristic: adv_gini, _, _ = chen_adversarial_gini_gain_two_class( left_counts[0], left_counts[1], left_intersection_counts[0], left_intersection_counts[1], right_intersection_counts[0], right_intersection_counts[1], right_counts[0], right_counts[1], ) else: adv_gini, _, _ = adversarial_gini_gain_two_class( left_counts[0], left_counts[1], left_intersection_counts[0], left_intersection_counts[1], right_intersection_counts[0], right_intersection_counts[1], right_counts[0], right_counts[1], ) return adv_gini def _identify_intersection_categories( left_categories, right_categories, categories_counts, attack_mode_array, one_adversarial_class, ): left_intersection_mask = np.any(attack_mode_array[:, right_categories], axis=1) left_intersection_mask[right_categories] = 0 left_intersection_counts = np.sum(categories_counts[left_intersection_mask], axis=0) right_intersection_mask = np.any(attack_mode_array[:, left_categories], axis=1) right_intersection_mask[left_categories] = 0 right_intersection_counts = np.sum( categories_counts[right_intersection_mask], axis=0 ) if one_adversarial_class: left_intersection_counts[0] = 0 right_intersection_counts[0] = 0 return left_intersection_counts, right_intersection_counts class GrootTree(BaseEstimator, ClassifierMixin): def __init__( self, max_depth=5, min_samples_split=2, min_samples_leaf=1, max_features=None, robust_weight=1.0, attack_model=None, is_numerical=None, one_adversarial_class=False, chen_heuristic=False, random_state=None, ): self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.max_features = max_features self.robust_weight = robust_weight self.attack_model = attack_model self.is_numerical = is_numerical self.one_adversarial_class = one_adversarial_class self.chen_heuristic = chen_heuristic self.random_state = random_state def fit(self, X, y): X, y = check_X_y(X, y) target_type = type_of_target(y) if target_type != "binary": raise ValueError( f"Unknown label type: classifier only supports binary labels but found {target_type}" ) self.classes_, y = np.unique(y, return_inverse=True) self.n_classes_ = len(self.classes_) self.n_samples_, self.n_features_in_ = X.shape if self.attack_model is None: self.attack_model = [""] * X.shape[1] if self.is_numerical is None: self.is_numerical = [True] * X.shape[1] self.attack_model_ = _attack_model_to_tuples(self.attack_model) self.n_categories_ = [] for feature, numeric in enumerate(self.is_numerical): if numeric: self.n_categories_.append(None) else: self.n_categories_.append(int(np.max(X[:, feature])) + 1) self.random_state_ = check_random_state(self.random_state) if self.max_features == "sqrt": self.max_features_ = int(np.sqrt(self.n_features_in_)) elif self.max_features == "log2": self.max_features_ = int(np.log2(self.n_features_in_)) elif self.max_features is None: self.max_features_ = self.n_features_in_ else: self.max_features_ = self.max_features if self.max_features_ == 0: self.max_features_ = 1 constraints = [] for feature_i, numeric in enumerate(self.is_numerical): if numeric: constraints.append([np.min(X[:, feature_i]), np.max(X[:, feature_i])]) else: constraints.append(set()) self.root_ = self.__fit_recursive(X, y, constraints) return self
MIT License
peerchemist/cryptotik
cryptotik/bittrex.py
Bittrex.private_api
python
def private_api(self, url, params): params.update({"apikey": self.apikey, "nonce": self.get_nonce()}) url += "?" + requests.compat.urlencode(params) self.headers.update({"apisign": self._generate_signature(url) }) try: response = self.api_session.get(url, headers=self.headers, timeout=self.timeout, proxies=self.proxy) response.raise_for_status() except requests.exceptions.HTTPError as e: print(e) self._verify_response(response) return response.json()
handles private api methods
https://github.com/peerchemist/cryptotik/blob/24ffd74c43ff1fc171081e135cb2b66b775af3f3/cryptotik/bittrex.py#L109-L126
import requests from cryptotik.common import (headers, ExchangeWrapper, NormalizedExchangeWrapper) from cryptotik.exceptions import (InvalidBaseCurrencyError, InvalidDelimiterError, APIError, OutdatedBaseCurrenciesError) from cryptotik.common import is_sale import time import hmac import hashlib from datetime import datetime from decimal import Decimal class Bittrex(ExchangeWrapper): name = 'bittrex' url = 'https://bittrex.com/api/v1.1/' url2 = 'https://bittrex.com/Api/v2.0/' delimiter = "-" headers = headers taker_fee, maker_fee = 0.0025, 0.0025 private_commands = ('getopenorders', 'cancel', 'sellmarket', 'selllimit', 'buymarket', 'buylimit') public_commands = ('getbalances', 'getbalance', 'getdepositaddress', 'withdraw') base_currencies = ['btc', 'eth', 'usdt'] quote_order = 1 def __init__(self, apikey=None, secret=None, timeout=None, proxy=None): if apikey and secret: self.apikey = apikey.encode("utf-8") self.secret = secret.encode("utf-8") if proxy: assert proxy.startswith('https'), {'Error': 'Only https proxies supported.'} self.proxy = {'https': proxy} if not timeout: self.timeout = (8, 15) else: self.timeout = timeout self.api_session = requests.Session() def get_base_currencies(self): bases = list(set([i.split('-')[0] for i in self.get_markets()])) try: assert sorted(bases) == sorted(self.base_currencies) except AssertionError: raise OutdatedBaseCurrenciesError('Update the hardcoded base currency clist!', {'actual': bases, 'hardcoded': self.base_currencies}) def get_nonce(self): nonce = getattr(self, '_nonce', 0) if nonce: nonce += 1 self._nonce = max(int(time.time()), nonce) return self._nonce @classmethod def format_pair(self, pair): pair = pair.replace("_", self.delimiter) if not pair.islower(): return pair.lower() else: return pair def _verify_response(self, response): if not response.json()['success'] is True: raise APIError(response.json()['message']) def _generate_signature(self, url): return hmac.new(self.secret, url.encode(), hashlib.sha512).hexdigest() def api(self, url, params): try: response = self.api_session.get(url, params=params, headers=self.headers, timeout=self.timeout, proxies=self.proxy) response.raise_for_status() except requests.exceptions.HTTPError as e: print(e) self._verify_response(response) return response.json()
BSD 3-Clause New or Revised License
ibm-security/ibmsecurity
ibmsecurity/isds/appliance.py
_changes_available
python
def _changes_available(isdsAppliance): return True
Check for pending changes on the appliance :param isdsAppliance: :return:
https://github.com/ibm-security/ibmsecurity/blob/da098f7d555e571a99a0d7cd47a51add483feb6f/ibmsecurity/isds/appliance.py#L32-L54
import json import logging import time logger = logging.getLogger(__name__) def reboot(isdsAppliance, check_mode=False, force=False): if check_mode is True: return isdsAppliance.create_return_object(changed=True) else: return isdsAppliance.invoke_post("Rebooting appliance", "/diagnostics/restart_shutdown/reboot", {}) def shutdown(isdsAppliance, check_mode=False, force=False): if check_mode is True: return isdsAppliance.create_return_object(changed=True) else: return isdsAppliance.invoke_post("Shutting down appliance", "/diagnostics/restart_shutdown/shutdown", {})
Apache License 2.0
vincentstimper/normalizing-flows
normflow/distributions.py
Sinusoidal.__init__
python
def __init__(self, scale, period): self.scale = scale self.period = period
Distribution 2d with sinusoidal density :param loc: distance of modes from the origin :param scale: scale of modes
https://github.com/vincentstimper/normalizing-flows/blob/8ee48560a864ac9821c9ea5fef8104c7d8c5b038/normflow/distributions.py#L778-L785
import torch import torch.nn as nn import numpy as np from . import flows class BaseDistribution(nn.Module): def __init__(self): super().__init__() def forward(self, num_samples=1): raise NotImplementedError def log_prob(self, z): raise NotImplementedError class DiagGaussian(BaseDistribution): def __init__(self, shape, trainable=True): super().__init__() if isinstance(shape, int): shape = (shape,) self.shape = shape self.n_dim = len(shape) self.d = np.prod(shape) if trainable: self.loc = nn.Parameter(torch.zeros(1, *self.shape)) self.log_scale = nn.Parameter(torch.zeros(1, *self.shape)) else: self.register_buffer("loc", torch.zeros(1, *self.shape)) self.register_buffer("log_scale", torch.zeros(1, *self.shape)) self.temperature = None def forward(self, num_samples=1): eps = torch.randn((num_samples,) + self.shape, dtype=self.loc.dtype, device=self.loc.device) if self.temperature is None: log_scale = self.log_scale else: log_scale = self.log_scale + np.log(self.temperature) z = self.loc + torch.exp(log_scale) * eps log_p = - 0.5 * self.d * np.log(2 * np.pi) - torch.sum(log_scale + 0.5 * torch.pow(eps, 2), list(range(1, self.n_dim + 1))) return z, log_p def log_prob(self, z): if self.temperature is None: log_scale = self.log_scale else: log_scale = self.log_scale + np.log(self.temperature) log_p = - 0.5 * self.d * np.log(2 * np.pi) - torch.sum(log_scale + 0.5 * torch.pow((z - self.loc) / torch.exp(log_scale), 2), list(range(1, self.n_dim + 1))) return log_p class ClassCondDiagGaussian(BaseDistribution): def __init__(self, shape, num_classes): super().__init__() if isinstance(shape, int): shape = (shape,) self.shape = shape self.n_dim = len(shape) self.perm = [self.n_dim] + list(range(self.n_dim)) self.d = np.prod(shape) self.num_classes = num_classes self.loc = nn.Parameter(torch.zeros(*self.shape, num_classes)) self.log_scale = nn.Parameter(torch.zeros(*self.shape, num_classes)) self.temperature = None def forward(self, num_samples=1, y=None): if y is not None: num_samples = len(y) else: y = torch.randint(self.num_classes, (num_samples,), device=self.loc.device) if y.dim() == 1: y_onehot = torch.zeros((self.num_classes, num_samples), dtype=self.loc.dtype, device=self.loc.device) y_onehot.scatter_(0, y[None], 1) y = y_onehot else: y = y.t() eps = torch.randn((num_samples,) + self.shape, dtype=self.loc.dtype, device=self.loc.device) loc = (self.loc @ y).permute(*self.perm) log_scale = (self.log_scale @ y).permute(*self.perm) if self.temperature is not None: log_scale = np.log(self.temperature) + log_scale z = loc + torch.exp(log_scale) * eps log_p = - 0.5 * self.d * np.log(2 * np.pi) - torch.sum(log_scale + 0.5 * torch.pow(eps, 2), list(range(1, self.n_dim + 1))) return z, log_p def log_prob(self, z, y): if y.dim() == 1: y_onehot = torch.zeros((self.num_classes, len(y)), dtype=self.loc.dtype, device=self.loc.device) y_onehot.scatter_(0, y[None], 1) y = y_onehot else: y = y.t() loc = (self.loc @ y).permute(*self.perm) log_scale = (self.log_scale @ y).permute(*self.perm) if self.temperature is not None: log_scale = np.log(self.temperature) + log_scale log_p = - 0.5 * self.d * np.log(2 * np.pi) - torch.sum(log_scale + 0.5 * torch.pow((z - loc) / torch.exp(log_scale), 2), list(range(1, self.n_dim + 1))) return log_p class GlowBase(BaseDistribution): def __init__(self, shape, num_classes=None, logscale_factor=3.): super().__init__() if isinstance(shape, int): shape = (shape,) self.shape = shape self.n_dim = len(shape) self.num_pix = np.prod(shape[1:]) self.d = np.prod(shape) self.sum_dim = list(range(1, self.n_dim + 1)) self.num_classes = num_classes self.class_cond = num_classes is not None self.logscale_factor = logscale_factor self.loc = nn.Parameter(torch.zeros(1, self.shape[0], *((self.n_dim - 1) * [1]))) self.loc_logs = nn.Parameter(torch.zeros(1, self.shape[0], *((self.n_dim - 1) * [1]))) self.log_scale = nn.Parameter(torch.zeros(1, self.shape[0], *((self.n_dim - 1) * [1]))) self.log_scale_logs = nn.Parameter(torch.zeros(1, self.shape[0], *((self.n_dim - 1) * [1]))) if self.class_cond: self.loc_cc = nn.Parameter(torch.zeros(self.num_classes, self.shape[0])) self.log_scale_cc = nn.Parameter(torch.zeros(self.num_classes, self.shape[0])) self.temperature = None def forward(self, num_samples=1, y=None): loc = self.loc * torch.exp(self.loc_logs * self.logscale_factor) log_scale = self.log_scale * torch.exp(self.log_scale_logs * self.logscale_factor) if self.class_cond: if y is not None: num_samples = len(y) else: y = torch.randint(self.num_classes, (num_samples,), device=self.loc.device) if y.dim() == 1: y_onehot = torch.zeros((len(y), self.num_classes), dtype=self.loc.dtype, device=self.loc.device) y_onehot.scatter_(1, y[:, None], 1) y = y_onehot loc = loc + (y @ self.loc_cc).view(y.size(0), self.shape[0], *((self.n_dim - 1) * [1])) log_scale = log_scale + (y @ self.log_scale_cc).view(y.size(0), self.shape[0], *((self.n_dim - 1) * [1])) if self.temperature is not None: log_scale = log_scale + np.log(self.temperature) eps = torch.randn((num_samples,) + self.shape, dtype=self.loc.dtype, device=self.loc.device) z = loc + torch.exp(log_scale) * eps log_p = - 0.5 * self.d * np.log(2 * np.pi) - self.num_pix * torch.sum(log_scale, dim=self.sum_dim) - 0.5 * torch.sum(torch.pow(eps, 2), dim=self.sum_dim) return z, log_p def log_prob(self, z, y=None): loc = self.loc * torch.exp(self.loc_logs * self.logscale_factor) log_scale = self.log_scale * torch.exp(self.log_scale_logs * self.logscale_factor) if self.class_cond: if y.dim() == 1: y_onehot = torch.zeros((len(y), self.num_classes), dtype=self.loc.dtype, device=self.loc.device) y_onehot.scatter_(1, y[:, None], 1) y = y_onehot loc = loc + (y @ self.loc_cc).view(y.size(0), self.shape[0], *((self.n_dim - 1) * [1])) log_scale = log_scale + (y @ self.log_scale_cc).view(y.size(0), self.shape[0], *((self.n_dim - 1) * [1])) if self.temperature is not None: log_scale = log_scale + np.log(self.temperature) log_p = - 0.5 * self.d * np.log(2 * np.pi) - self.num_pix * torch.sum(log_scale, dim=self.sum_dim) - 0.5 * torch.sum(torch.pow((z - loc) / torch.exp(log_scale), 2), dim=self.sum_dim) return log_p class AffineGaussian(BaseDistribution): def __init__(self, shape, affine_shape, num_classes=None): super().__init__() self.shape = shape self.n_dim = len(shape) self.d = np.prod(shape) self.sum_dim = list(range(1, self.n_dim + 1)) self.affine_shape = affine_shape self.num_classes = num_classes self.class_cond = num_classes is not None if self.class_cond: self.transform = flows.CCAffineConst(self.affine_shape, self.num_classes) else: self.transform = flows.AffineConstFlow(self.affine_shape) self.temperature = None def forward(self, num_samples=1, y=None): dtype = self.transform.s.dtype device = self.transform.s.device if self.class_cond: if y is not None: num_samples = len(y) else: y = torch.randint(self.num_classes, (num_samples,), device=device) if y.dim() == 1: y_onehot = torch.zeros((len(y), self.num_classes), dtype=dtype, device=device) y_onehot.scatter_(1, y[:, None], 1) y = y_onehot if self.temperature is not None: log_scale = np.log(self.temperature) else: log_scale = 0. eps = torch.randn((num_samples,) + self.shape, dtype=dtype, device=device) z = np.exp(log_scale) * eps log_p = - 0.5 * self.d * np.log(2 * np.pi) - self.d * log_scale - 0.5 * torch.sum(torch.pow(eps, 2), dim=self.sum_dim) if self.class_cond: z, log_det = self.transform(z, y) else: z, log_det = self.transform(z) log_p -= log_det return z, log_p def log_prob(self, z, y=None): if self.class_cond: if y.dim() == 1: y_onehot = torch.zeros((len(y), self.num_classes), dtype=self.transform.s.dtype, device=self.transform.s.device) y_onehot.scatter_(1, y[:, None], 1) y = y_onehot if self.temperature is not None: log_scale = np.log(self.temperature) else: log_scale = 0. if self.class_cond: z, log_p = self.transform.inverse(z, y) else: z, log_p = self.transform.inverse(z) z = z / np.exp(log_scale) log_p = log_p - self.d * log_scale - 0.5 * self.d * np.log(2 * np.pi) - 0.5 * torch.sum(torch.pow(z, 2), dim=self.sum_dim) return log_p class GaussianMixture(BaseDistribution): def __init__(self, n_modes, dim, loc=None, scale=None, weights=None, trainable=True): super().__init__() self.n_modes = n_modes self.dim = dim if loc is None: loc = np.random.randn(self.n_modes, self.dim) loc = np.array(loc)[None, ...] if scale is None: scale = np.ones((self.n_modes, self.dim)) scale = np.array(scale)[None, ...] if weights is None: weights = np.ones(self.n_modes) weights = np.array(weights)[None, ...] weights /= weights.sum(1) if trainable: self.loc = nn.Parameter(torch.tensor(1. * loc)) self.log_scale = nn.Parameter(torch.tensor(np.log(1. * scale))) self.weight_scores = nn.Parameter(torch.tensor(np.log(1. * weights))) else: self.register_buffer("loc", torch.tensor(1. * loc)) self.register_buffer("log_scale", torch.tensor(np.log(1. * scale))) self.register_buffer("weight_scores", torch.tensor(np.log(1. * weights))) def forward(self, num_samples=1): mode_ind = torch.randint(high=self.n_modes, size=(num_samples,)) mode_1h = torch.zeros((num_samples, self.n_modes), dtype=torch.int64) mode_1h.scatter_(1, mode_ind[:, None], 1) mode_1h = mode_1h[..., None] weights = torch.softmax(self.weight_scores, 1) eps = torch.randn(num_samples, self.dim, dtype=self.loc.dtype, device=self.loc.device) scale_sample = torch.sum(torch.exp(self.log_scale) * mode_1h, 1) loc_sample = torch.sum(self.loc * mode_1h, 1) z = eps * scale_sample + loc_sample log_p = - 0.5 * self.dim * np.log(2 * np.pi) + torch.log(weights) - 0.5 * torch.sum(torch.pow(eps, 2), 1, keepdim=True) - torch.sum(self.log_scale, 2) log_p = torch.logsumexp(log_p, 1) return z, log_p def log_prob(self, z): weights = torch.softmax(self.weight_scores, 1) eps = (z[:, None, :] - self.loc) / torch.exp(self.log_scale) log_p = - 0.5 * self.dim * np.log(2 * np.pi) + torch.log(weights) - 0.5 * torch.sum(torch.pow(eps, 2), 2) - torch.sum(self.log_scale, 2) log_p = torch.logsumexp(log_p, 1) return log_p class GaussianPCA(BaseDistribution): def __init__(self, dim, latent_dim=None, sigma=0.1): super().__init__() self.dim = dim if latent_dim is None: self.latent_dim = dim else: self.latent_dim = latent_dim self.loc = nn.Parameter(torch.zeros(1, dim)) self.W = nn.Parameter(torch.randn(latent_dim, dim)) self.log_sigma = nn.Parameter(torch.tensor(np.log(sigma))) def forward(self, num_samples=1): eps = torch.randn(num_samples, self.latent_dim, dtype=self.loc.dtype, device=self.loc.device) z_ = torch.matmul(eps, self.W) z = z_ + self.loc Sig = torch.matmul(self.W.T, self.W) + torch.exp(self.log_sigma * 2) * torch.eye(self.dim, dtype=self.loc.dtype, device=self.loc.device) log_p = self.dim / 2 * np.log(2 * np.pi) - 0.5 * torch.det(Sig) - 0.5 * torch.sum(z_ * torch.matmul(z_, torch.inverse(Sig)), 1) return z, log_p def log_prob(self, z): z_ = z - self.loc Sig = torch.matmul(self.W.T, self.W) + torch.exp(self.log_sigma * 2) * torch.eye(self.dim, dtype=self.loc.dtype, device=self.loc.device) log_p = self.dim / 2 * np.log(2 * np.pi) - 0.5 * torch.det(Sig) - 0.5 * torch.sum(z_ * torch.matmul(z_, torch.inverse(Sig)), 1) return log_p class BaseEncoder(nn.Module): def __init__(self): super().__init__() def forward(self, x, num_samples=1): raise NotImplementedError def log_prob(self, z, x): raise NotImplementedError class Dirac(BaseEncoder): def __init__(self): super().__init__() def forward(self, x, num_samples=1): z = x.unsqueeze(1).repeat(1, num_samples, 1) log_p = torch.zeros(z.size()[0:2]) return z, log_p def log_prob(self, z, x): log_p = torch.zeros(z.size()[0:2]) return log_p class Uniform(BaseEncoder): def __init__(self, zmin=0.0, zmax=1.0): super().__init__() self.zmin = zmin self.zmax = zmax self.log_p = -torch.log(zmax-zmin) def forward(self, x, num_samples=1): z = x.unsqueeze(1).repeat(1, num_samples, 1).uniform_(min=self.zmin, max=self.zmax) log_p = torch.zeros(z.size()[0:2]).fill_(self.log_p) return z, log_p def log_prob(self, z, x): log_p = torch.zeros(z.size()[0:2]).fill_(self.log_p) return log_p class ConstDiagGaussian(BaseEncoder): def __init__(self, loc, scale): super().__init__() self.d = len(loc) if not torch.is_tensor(loc): loc = torch.tensor(loc).float() if not torch.is_tensor(scale): scale = torch.tensor(scale).float() self.loc = nn.Parameter(loc.reshape((1, 1, self.d))) self.scale = nn.Parameter(scale) def forward(self, x=None, num_samples=1): if x is not None: batch_size = len(x) else: batch_size = 1 eps = torch.randn((batch_size, num_samples, self.d), device=x.device) z = self.loc + self.scale * eps log_p = - 0.5 * self.d * np.log(2 * np.pi) - torch.sum(torch.log(self.scale) + 0.5 * torch.pow(eps, 2), 2) return z, log_p def log_prob(self, z, x): if z.dim() == 1: z = z.unsqueeze(0) if z.dim() == 2: z = z.unsqueeze(0) log_p = - 0.5 * self.d * np.log(2 * np.pi) - torch.sum(torch.log(self.scale) + 0.5 * ((z - self.loc) / self.scale) ** 2, 2) return log_p class NNDiagGaussian(BaseEncoder): def __init__(self, net): super().__init__() self.net = net def forward(self, x, num_samples=1): batch_size = len(x) mean_std = self.net(x) n_hidden = mean_std.size()[1] // 2 mean = mean_std[:, :n_hidden, ...].unsqueeze(1) std = torch.exp(0.5 * mean_std[:, n_hidden:(2 * n_hidden), ...].unsqueeze(1)) eps = torch.randn((batch_size, num_samples) + tuple(mean.size()[2:]), device=x.device) z = mean + std * eps log_p = - 0.5 * torch.prod(torch.tensor(z.size()[2:])) * np.log(2 * np.pi) - torch.sum(torch.log(std) + 0.5 * torch.pow(eps, 2), list(range(2, z.dim()))) return z, log_p def log_prob(self, z, x): if z.dim() == 1: z = z.unsqueeze(0) if z.dim() == 2: z = z.unsqueeze(0) mean_std = self.net(x) n_hidden = mean_std.size()[1] // 2 mean = mean_std[:, :n_hidden, ...].unsqueeze(1) var = torch.exp(mean_std[:, n_hidden:(2 * n_hidden), ...].unsqueeze(1)) log_p = - 0.5 * torch.prod(torch.tensor(z.size()[2:])) * np.log(2 * np.pi) - 0.5 * torch.sum(torch.log(var) + (z - mean) ** 2 / var, 2) return log_p class Decoder(nn.Module): def __init__(self): super().__init__() def forward(self, z): raise NotImplementedError def log_prob(self, x, z): raise NotImplementedError class NNDiagGaussianDecoder(Decoder): def __init__(self, net): super().__init__() self.net = net def forward(self, z): z_size = z.size() mean_std = self.net(z.view(-1, *z_size[2:])).view(z_size) n_hidden = mean_std.size()[2] // 2 mean = mean_std[:, :, :n_hidden, ...] std = torch.exp(0.5 * mean_std[:, :, n_hidden:(2 * n_hidden), ...]) return mean, std def log_prob(self, x, z): mean_std = self.net(z.view(-1, *z.size()[2:])).view(*z.size()[:2], x.size(1) * 2, *x.size()[3:]) n_hidden = mean_std.size()[2] // 2 mean = mean_std[:, :, :n_hidden, ...] var = torch.exp(mean_std[:, :, n_hidden:(2 * n_hidden), ...]) log_p = - 0.5 * torch.prod(torch.tensor(z.size()[2:])) * np.log(2 * np.pi) - 0.5 * torch.sum(torch.log(var) + (x.unsqueeze(1) - mean) ** 2 / var, list(range(2, z.dim()))) return log_p class NNBernoulliDecoder(Decoder): def __init__(self, net): super().__init__() self.net = net def forward(self, z): mean = torch.sigmoid(self.net(z)) return mean def log_prob(self, x, z): score = self.net(z) x = x.unsqueeze(1) x = x.repeat(1, z.size()[0] // x.size()[0], *((x.dim() - 2) * [1])).view(-1, *x.size()[2:]) log_sig = lambda a: -torch.relu(-a) - torch.log(1 + torch.exp(-torch.abs(a))) log_p = torch.sum(x * log_sig(score) + (1 - x) * log_sig(-score), list(range(1, x.dim()))) return log_p class PriorDistribution: def __init__(self): raise NotImplementedError def log_prob(self, z): raise NotImplementedError class ImagePrior(nn.Module): def __init__(self, image, x_range=[-3, 3], y_range=[-3, 3], eps=1.e-10): super().__init__() image_ = np.flip(image, 0).transpose() + eps self.image_cpu = torch.tensor(image_ / np.max(image_)) self.image_size_cpu = self.image_cpu.size() self.x_range = torch.tensor(x_range) self.y_range = torch.tensor(y_range) self.register_buffer('image', self.image_cpu) self.register_buffer('image_size', torch.tensor(self.image_size_cpu).unsqueeze(0)) self.register_buffer('density', torch.log(self.image_cpu / torch.sum(self.image_cpu))) self.register_buffer('scale', torch.tensor([[self.x_range[1] - self.x_range[0], self.y_range[1] - self.y_range[0]]])) self.register_buffer('shift', torch.tensor([[self.x_range[0], self.y_range[0]]])) def log_prob(self, z): z_ = torch.clamp((z - self.shift) / self.scale, max=1, min=0) ind = (z_ * (self.image_size - 1)).long() return self.density[ind[:, 0], ind[:, 1]] def rejection_sampling(self, num_steps=1): z_ = torch.rand((num_steps, 2), dtype=self.image.dtype, device=self.image.device) prob = torch.rand(num_steps, dtype=self.image.dtype, device=self.image.device) ind = (z_ * (self.image_size - 1)).long() intensity = self.image[ind[:, 0], ind[:, 1]] accept = intensity > prob z = z_[accept, :] * self.scale + self.shift return z def sample(self, num_samples=1): z = torch.ones((0, 2), dtype=self.image.dtype, device=self.image.device) while len(z) < num_samples: z_ = self.rejection_sampling(num_samples) ind = np.min([len(z_), num_samples - len(z)]) z = torch.cat([z, z_[:ind, :]], 0) return z class TwoModes(PriorDistribution): def __init__(self, loc, scale): self.loc = loc self.scale = scale def log_prob(self, z): a = torch.abs(z[:, 0]) eps = torch.abs(torch.tensor(self.loc)) log_prob = - 0.5 * ((torch.norm(z, dim=1) - self.loc) / (2 * self.scale)) ** 2 - 0.5 * ((a - eps) / (3 * self.scale)) ** 2 + torch.log(1 + torch.exp(-2 * (a * eps) / (3 * self.scale) ** 2)) return log_prob class Sinusoidal(PriorDistribution):
MIT License
blocktrail/blocktrail-sdk-python
blocktrail/client.py
APIClient.address
python
def address(self, address): response = self.client.get("/address/%s" % (address, )) return response.json()
get a single address :param str address: the address hash :rtype: dict
https://github.com/blocktrail/blocktrail-sdk-python/blob/93b0afce79ae94d46257c85190aed1e876c87b4f/blocktrail/client.py#L23-L32
from blocktrail import connection class APIClient(object): def __init__(self, api_key, api_secret, network='BTC', testnet=False, api_version='v1', api_endpoint=None, debug=False): if api_endpoint is None: network = ("t" if testnet else "") + network.upper() api_endpoint = "https://api.blocktrail.com/%s/%s" % (api_version, network) self.client = connection.RestClient(api_endpoint=api_endpoint, api_key=api_key, api_secret=api_secret, debug=debug)
MIT License
google/clusterfuzz
src/appengine/libs/issue_management/issue_tracker_policy.py
IssueTrackerPolicy.substitution_mapping
python
def substitution_mapping(self, label): if 'substitutions' not in self._data: return label mapped = self._data['substitutions'].get(label) if not mapped: return label return str(mapped)
Get an explicit substitution mapping.
https://github.com/google/clusterfuzz/blob/e9e105d66f009356c4f3fe9ae7873ffff126b234/src/appengine/libs/issue_management/issue_tracker_policy.py#L79-L88
from collections import namedtuple from clusterfuzz._internal.config import local_config Status = namedtuple('Status', ['assigned', 'duplicate', 'wontfix', 'fixed', 'verified']) EXPECTED_STATUSES = [ 'assigned', 'duplicate', 'wontfix', 'fixed', 'verified', 'new', ] class ConfigurationError(Exception): class NewIssuePolicy(object): def __init__(self): self.status = '' self.ccs = [] self.labels = [] self.issue_body_footer = '' def _to_str_list(values): return [str(value) for value in values] class IssueTrackerPolicy(object): def __init__(self, data): self._data = data if 'status' not in self._data: raise ConfigurationError('Status not set in policies.') if 'labels' not in self._data: raise ConfigurationError('Labels not set in policies.') for status in EXPECTED_STATUSES: if status not in self._data['status']: raise ConfigurationError( 'Expected status {} is not set.'.format(status)) def status(self, status_type): return self._data['status'][status_type] def label(self, label_type): label = self._data['labels'].get(label_type) if label is None: return None return str(label)
Apache License 2.0
maniacallabs/bibliopixel
bibliopixel/drivers/SimPixel/SimpleWebSocketServer.py
WebSocket.handleMessage
python
def handleMessage(self): pass
Called when websocket frame is received. To access the frame data call self.data. If the frame is Text then self.data is a unicode object. If the frame is Binary then self.data is a bytearray object.
https://github.com/maniacallabs/bibliopixel/blob/afb993fbbe56e75e7c98f252df402b0f3e83bb6e/bibliopixel/drivers/SimPixel/SimpleWebSocketServer.py#L113-L121
import sys VER = sys.version_info[0] if VER >= 3: import socketserver from http.server import BaseHTTPRequestHandler from io import StringIO, BytesIO else: import SocketServer from BaseHTTPServer import BaseHTTPRequestHandler from StringIO import StringIO import hashlib import base64 import socket import struct import ssl import errno import codecs from collections import deque from select import select __all__ = ['WebSocket', 'SimpleWebSocketServer'] def _check_unicode(val): if VER >= 3: return isinstance(val, str) else: return isinstance(val, unicode) class HTTPRequest(BaseHTTPRequestHandler): def __init__(self, request_text): if VER >= 3: self.rfile = BytesIO(request_text) else: self.rfile = StringIO(request_text) self.raw_requestline = self.rfile.readline() self.error_code = self.error_message = None self.parse_request() _VALID_STATUS_CODES = [1000, 1001, 1002, 1003, 1007, 1008, 1009, 1010, 1011, 3000, 3999, 4000, 4999] HANDSHAKE_STR = ( "HTTP/1.1 101 Switching Protocols\r\n" "Upgrade: WebSocket\r\n" "Connection: Upgrade\r\n" "Sec-WebSocket-Accept: %(acceptstr)s\r\n\r\n" ) GUID_STR = '258EAFA5-E914-47DA-95CA-C5AB0DC85B11' STREAM = 0x0 TEXT = 0x1 BINARY = 0x2 CLOSE = 0x8 PING = 0x9 PONG = 0xA HEADERB1 = 1 HEADERB2 = 3 LENGTHSHORT = 4 LENGTHLONG = 5 MASK = 6 PAYLOAD = 7 MAXHEADER = 65536 MAXPAYLOAD = 33554432 class WebSocket(object): def __init__(self, server, sock, address): self.server = server self.client = sock self.address = address self.handshaked = False self.headerbuffer = bytearray() self.headertoread = 2048 self.fin = 0 self.data = bytearray() self.opcode = 0 self.hasmask = 0 self.maskarray = None self.length = 0 self.lengtharray = None self.index = 0 self.request = None self.usingssl = False self.frag_start = False self.frag_type = BINARY self.frag_buffer = None self.frag_decoder = codecs.getincrementaldecoder( 'utf-8')(errors='strict') self.closed = False self.sendq = deque() self.state = HEADERB1 self.maxheader = MAXHEADER self.maxpayload = MAXPAYLOAD
MIT License
tmthydvnprt/compfipy
compfipy/market.py
opening_time
python
def opening_time(): return datetime.time(9, 30)
Get opening time of the current date.
https://github.com/tmthydvnprt/compfipy/blob/82a40cb9a7acbd3111b3d3a86222084f96e7fd7a/compfipy/market.py#L171-L175
import os import sys import json import urllib import urllib2 import datetime import StringIO import multiprocessing import calendar as cal import cPickle as pickle import numpy as np import pandas as pd import dateutil.easter import tabulate DATA_SET = False NO_DATA_SET = 'DATA_LOCATION and DATA_SOURCE are not defined. See set locations with set_data_location().' DATA_LOCATION = '' DATA_SOURCE = 'google' SYMBOL_MANIFEST = '' HISTORY_STATUS = '' LOG_FILE = '' HISTORY_PATH = '' GOOGLE_URL = 'http://www.google.com/finance/historical?q={symbol}&startdate={start}&enddate={end}&output=csv' YAHOO_URL = 'http://ichart.finance.yahoo.com/table.csv?s={symbol}&c={start}' EXCHANGES = {'', 'NYSE:', 'NASDAQ:', 'NYSEMKT:', 'NYSEARCA:'} NASDAQ_URL = 'ftp://ftp.nasdaqtrader.com/SymbolDirectory/' NASDAQ_FILE = 'nasdaqlisted.txt' OTHERS_FILE = 'otherlisted.txt' NASDAQ_SECTOR_URL = 'http://www.nasdaq.com/screening/companies-by-name.aspx?letter=0&exchange={}&render=download' NASDAQ_SECTOR_EX = ['nasdaq', 'nyse', 'amex'] COLUMN_ORDER = ['Symbol', 'Security Name', 'Exchange', 'ETF', 'NASDAQ Symbol', 'Test Issue'] EXCHANGE_ABBR = { 'Q' : 'NASDAQ', 'A' : 'NYSE MKT', 'N' : 'NYSE', 'P' : 'ARCA', 'Z' : 'BATS' } def next_open_day(date=datetime.date.today()): date = date.date() if isinstance(date, datetime.datetime) else date date = date + datetime.timedelta(days=1) while not is_open_on(date): date = date + datetime.timedelta(days=1) return date def move_weekend_holiday(d): if d.weekday() == 5: return d - datetime.timedelta(days=1) elif d.weekday() == 6: return d + datetime.timedelta(days=1) else: return d def nth_week_day_of_month(n, weekday, month=datetime.date.today().month, year=datetime.date.today().year): if isinstance(weekday, str) and len(weekday) == 3: weekday = list(cal.day_abbr).index(weekday) elif isinstance(weekday, str) and len(weekday) > 3: weekday = list(cal.day_name).index(weekday) if n > 0: first_day_of_month = datetime.date(year, month, 1) weekday_difference = (weekday - first_day_of_month.weekday()) % 7 first_weekday_of_month = first_day_of_month + datetime.timedelta(days=weekday_difference) return first_weekday_of_month + datetime.timedelta(days=(n - 1) * 7) else: last_day_of_month = datetime.date(year, month + 1, 1) - datetime.timedelta(days=1) weekday_difference = (last_day_of_month.weekday() - weekday) % 7 last_weekday_of_month = last_day_of_month - datetime.timedelta(days=weekday_difference) return last_weekday_of_month - datetime.timedelta(days=(abs(n) - 1) * 7) def nyse_holidays(year=datetime.date.today().year): if year < 1817: print 'The NYSE was not open in ' + str(year) +'! It was founded in March 8, 1817. Returning empty list []' return [] else: typical_holidays = [ datetime.date(year, 1, 1), nth_week_day_of_month(3, 'Mon', 1, year), nth_week_day_of_month(3, 'Mon', 2, year), dateutil.easter.easter(year) - datetime.timedelta(days=2), nth_week_day_of_month(-1, 'Mon', 5, year), datetime.date(year, 7, 4), nth_week_day_of_month(1, 'Mon', 9, year), nth_week_day_of_month(4, 'Thu', 11, year), datetime.date(year, 12, 25) ] historical_holidays = [ datetime.date(2012, 10, 29), datetime.date(2012, 10, 30), ] special_holidays = [v for v in historical_holidays if v.year == year] holidays = [move_weekend_holiday(h) for h in typical_holidays] + special_holidays holidays.sort() return holidays def nyse_close_early_dates(year=datetime.date.today().year): return [ datetime.date(year, 6, 3), nth_week_day_of_month(4, 'Wed', 11, year), datetime.date(year, 12, 24) ] def closing_time(date=datetime.date.today()): return datetime.time(13, 0) if date in nyse_close_early_dates(date.year) else datetime.time(16, 0)
MIT License
but3k4/youtube-views
modules/youtube.py
YouTube.open_url
python
def open_url(self): self.browser.get(self.url)
opens the URL
https://github.com/but3k4/youtube-views/blob/ddca3fcc32c6063d9342b8c24d8b10ff700ba3d3/modules/youtube.py#L155-L158
import time from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import TimeoutException from selenium.common.exceptions import NoSuchElementException from selenium.common.exceptions import ElementNotInteractableException from selenium.common.exceptions import ElementClickInterceptedException from selenium.common.exceptions import JavascriptException from modules import utils class YouTube: def __init__(self, url='https://youtube.com', proxy=None, verbose=False): self.url = url self.proxy = proxy self.verbose = verbose self.options = webdriver.ChromeOptions() self.options.add_argument('--headless') self.options.add_argument('--disable-gpu') self.options.add_argument('--mute-audio') self.options.add_argument('--single-process') self.options.add_argument('--autoplay-policy=no-user-gesture-required') if self.proxy: self.options.add_argument('--proxy-server={0}'.format(self.proxy)) self.user_agent = utils.user_agent() self.options.add_argument('--user-agent={0}'.format(self.user_agent)) self.browser = webdriver.Chrome(options=self.options) self.default_timeout = 20 self.browser.implicitly_wait(self.default_timeout) self.browser.set_window_size(1920, 1080) self.open_url() def find_by_class(self, class_name): return self.browser.find_element_by_class_name(class_name) def find_all_by_class(self, class_name): return self.browser.find_elements_by_class_name(class_name) def find_by_id(self, id_name): return self.browser.find_element_by_id(id_name) def find_all_by_id(self, id_name): return self.browser.find_elements_by_id(id_name) def find_by_name(self, name): return self.browser.find_element_by_name(name) def find_all_by_name(self, name): return self.browser.find_elements_by_name(name) def find_by_xpath(self, xpath): return self.browser.find_element_by_xpath(xpath) def find_all_by_xpath(self, xpath): return self.browser.find_elements_by_xpath(xpath) def click(self, how, what): try: wait = WebDriverWait(self.browser, self.default_timeout) wait.until(EC.element_to_be_clickable((how, what))).click() except (ElementClickInterceptedException, TimeoutException): return False return True
BSD 3-Clause New or Revised License
rcos/observatory-retired
observatory/lib/dulwich/repo.py
RefsContainer.allkeys
python
def allkeys(self): raise NotImplementedError(self.allkeys)
All refs present in this container.
https://github.com/rcos/observatory-retired/blob/cada27eaf96998ca1ba97a4cca30d2b5ce5021ac/observatory/lib/dulwich/repo.py#L157-L159
from cStringIO import StringIO import errno import os from lib.dulwich.errors import ( MissingCommitError, NoIndexPresent, NotBlobError, NotCommitError, NotGitRepository, NotTreeError, NotTagError, PackedRefsException, CommitError, RefFormatError, ) from lib.dulwich.file import ( ensure_dir_exists, GitFile, ) from lib.dulwich.object_store import ( DiskObjectStore, MemoryObjectStore, ) from lib.dulwich.objects import ( Blob, Commit, ShaFile, Tag, Tree, hex_to_sha, ) import warnings OBJECTDIR = 'objects' SYMREF = 'ref: ' REFSDIR = 'refs' REFSDIR_TAGS = 'tags' REFSDIR_HEADS = 'heads' INDEX_FILENAME = "index" BASE_DIRECTORIES = [ ["branches"], [REFSDIR], [REFSDIR, REFSDIR_TAGS], [REFSDIR, REFSDIR_HEADS], ["hooks"], ["info"] ] def read_info_refs(f): ret = {} for l in f.readlines(): (sha, name) = l.rstrip("\r\n").split("\t", 1) ret[name] = sha return ret def check_ref_format(refname): if '/.' in refname or refname.startswith('.'): return False if '/' not in refname: return False if '..' in refname: return False for c in refname: if ord(c) < 040 or c in '\177 ~^:?*[': return False if refname[-1] in '/.': return False if refname.endswith('.lock'): return False if '@{' in refname: return False if '\\' in refname: return False return True class RefsContainer(object): def set_ref(self, name, other): warnings.warn("RefsContainer.set_ref() is deprecated." "Use set_symblic_ref instead.", category=DeprecationWarning, stacklevel=2) return self.set_symbolic_ref(name, other) def set_symbolic_ref(self, name, other): raise NotImplementedError(self.set_symbolic_ref) def get_packed_refs(self): raise NotImplementedError(self.get_packed_refs) def get_peeled(self, name): return None def import_refs(self, base, other): for name, value in other.iteritems(): self["%s/%s" % (base, name)] = value
ISC License
jeroenzegers/nabu-msss
nabu/neuralnetworks/models/model.py
Model.__init__
python
def __init__(self, conf, name=None): self.conf = conf self.num_outputs = 1 self.trainable = 'trainable' not in conf or conf['trainable'] == 'True' self.scope = tf.VariableScope(False, name or type(self).__name__)
Model constructor Args: conf: The model configuration as a configparser object
https://github.com/jeroenzegers/nabu-msss/blob/5e862cbf846d45b8a317f87588533f3fde9f0726/nabu/neuralnetworks/models/model.py#L12-L27
from abc import ABCMeta, abstractmethod import tensorflow as tf import numpy as np class Model(object): __metaclass__ = ABCMeta
MIT License
sibirrer/lenstronomy
lenstronomy/LensModel/Profiles/uldm.py
Uldm.mass_3d_lens
python
def mass_3d_lens(self, r, kappa_0, theta_c, slope=8): m_3d = self.mass_3d(r, kappa_0, theta_c, slope) return m_3d
mass enclosed a 3d sphere or radius r :param r: radius over which the mass is computed :param kappa_0: central convergence of profile :param theta_c: core radius (in arcsec) :param slope: exponent entering the profile :return: mass enclosed in 3D ball
https://github.com/sibirrer/lenstronomy/blob/e6d0e179a98ecb0c4db25cdf7cfb73e83c6aeded/lenstronomy/LensModel/Profiles/uldm.py#L223-L233
__author__ = 'lucateo' import numpy as np import scipy.interpolate as interp from scipy.special import gamma, hyp2f1 from mpmath import hyp3f2 from lenstronomy.LensModel.Profiles.base_profile import LensProfileBase import lenstronomy.Util.constants as const __all__ = ['Uldm'] class Uldm(LensProfileBase): _s = 0.000001 param_names = ['kappa_0', 'theta_c', 'slope', 'center_x', 'center_y'] lower_limit_default = {'kappa_0': 0, 'theta_c': 0, 'slope': 3.5, 'center_x': -100, 'center_y': -100} upper_limit_default = {'kappa_0': 1., 'theta_c': 100, 'slope': 10, 'center_x': 100, 'center_y': 100} def rhotilde(self, kappa_0, theta_c, slope=8): a_factor_sqrt = np.sqrt( (0.5)**(-1/slope) -1) num_factor = gamma(slope) / gamma(slope - 1/2) * a_factor_sqrt / np.sqrt(np.pi) return kappa_0 * num_factor / theta_c def function(self, x, y, kappa_0, theta_c, center_x=0, center_y=0, slope=8): x_ = x - center_x y_ = y - center_y r = np.sqrt(x_** 2 + y_** 2) r = np.maximum(r, self._s) a_factor_sqrt = np.sqrt( (0.5)**(-1./slope) -1) if np.isscalar(r) == True: hypgeom = float(kappa_0 /2 * r**2 * hyp3f2(1, 1, slope - 0.5, 2, 2, -(a_factor_sqrt * r /theta_c )**2)) else: hypgeom = np.array([ kappa_0 /2. * r_i**2. * hyp3f2(1, 1, slope - 0.5, 2, 2, -(a_factor_sqrt * r_i / theta_c)**2.) for r_i in r], dtype=float) return hypgeom def alpha_radial(self, r, kappa_0, theta_c, slope=8): a_factor = (0.5)**(-1./slope) -1 prefactor = 2./(2*slope -3) * kappa_0 * theta_c**2 / a_factor denominator_factor = (1 + a_factor * r**2/theta_c**2)**(slope - 3./2) return prefactor/r * (1 - 1/denominator_factor) def derivatives(self, x, y, kappa_0, theta_c, center_x=0, center_y=0, slope=8): x_ = x - center_x y_ = y - center_y R = np.sqrt(x_**2 + y_**2) R = np.maximum(R,0.00000001) f_x = self.alpha_radial(R, kappa_0, theta_c, slope) * x_ / R f_y = self.alpha_radial(R, kappa_0, theta_c, slope) * y_ / R return f_x, f_y def hessian(self, x, y, kappa_0, theta_c, center_x=0, center_y=0, slope=8): x_ = x - center_x y_ = y - center_y R = np.sqrt(x_**2 + y_**2) R = np.maximum(R,0.00000001) a_factor = (0.5)**(-1./slope) -1 prefactor = 2./(2*slope -3) * kappa_0 * theta_c**2 / a_factor denominator = 1 + a_factor * R**2/theta_c**2 factor1 = (2*slope - 3) * a_factor * denominator**(1./2 - slope) / (theta_c**2 * R**2) factor2 = 1/R**4 * (1 - denominator**(3./2 - slope)) f_xx = prefactor * (factor1 * x_**2 + factor2 * (y_**2 - x_**2)) f_yy = prefactor * (factor1 * y_**2 + factor2 * (x_**2 - y_**2)) f_xy = prefactor * (factor1 * x_ * y_ - factor2 * 2*x_*y_) return f_xx, f_xy, f_xy, f_yy def density(self, R, kappa_0, theta_c, slope=8): rhotilde = self.rhotilde(kappa_0, theta_c, slope) a_factor = (0.5)**(-1./slope) -1 return rhotilde/(1 + a_factor* (R/theta_c)**2)**slope def density_lens(self, r, kappa_0, theta_c, slope=8): return self.density(r, kappa_0, theta_c, slope) def kappa_r(self, R, kappa_0, theta_c, slope=8): a_factor = (0.5)**(-1./slope) -1 return kappa_0 * (1 + a_factor * (R/theta_c)**2)**(1./2 - slope) def density_2d(self, x, y, kappa_0, theta_c, center_x=0, center_y=0, slope=8): x_ = x - center_x y_ = y - center_y R = np.sqrt(x_**2 + y_**2) return self.kappa_r(R, kappa_0, theta_c, slope) def _mass_integral(self, x, slope=8): hypF = np.real(hyp2f1(3./2, slope, 5./2, - x**2)) return 1./3 * x**3 * hypF def mass_3d(self, R, kappa_0, theta_c, slope=8): rhotilde = self.rhotilde(kappa_0, theta_c, slope) a_factor = (0.5)**(-1./slope) -1 prefactor = 4. * np.pi * rhotilde * theta_c**3 / (a_factor)**(1.5) m_3d = prefactor * (self._mass_integral(R/theta_c * np.sqrt(a_factor), slope) - self._mass_integral(0, slope) ) return m_3d
MIT License
pyplati/platipy
platipy/imaging/registration/utils.py
smooth_and_resample
python
def smooth_and_resample( image, isotropic_voxel_size_mm=None, shrink_factor=None, smoothing_sigma=None, interpolator=sitk.sitkLinear, ): if smoothing_sigma: if hasattr(smoothing_sigma, "__iter__"): smoothing_variance = [i * i for i in smoothing_sigma] else: smoothing_variance = (smoothing_sigma ** 2,) * 3 maximum_kernel_width = int( max([8 * j * i for i, j in zip(image.GetSpacing(), smoothing_variance)]) ) image = sitk.DiscreteGaussian(image, smoothing_variance, maximum_kernel_width) original_spacing = image.GetSpacing() original_size = image.GetSize() if shrink_factor and isotropic_voxel_size_mm: raise AttributeError( "Function must be called with either isotropic_voxel_size_mm or " "shrink_factor, not both." ) elif isotropic_voxel_size_mm: scale_factor = ( isotropic_voxel_size_mm * np.ones_like(image.GetSize()) / np.array(image.GetSpacing()) ) new_size = [int(sz / float(sf) + 0.5) for sz, sf in zip(original_size, scale_factor)] elif shrink_factor: if isinstance(shrink_factor, list): new_size = [int(sz / float(sf) + 0.5) for sz, sf in zip(original_size, shrink_factor)] else: new_size = [int(sz / float(shrink_factor) + 0.5) for sz in original_size] else: return image new_spacing = [ ((size_o_i - 1) * spacing_o_i) / (size_n_i - 1) for size_o_i, spacing_o_i, size_n_i in zip(original_size, original_spacing, new_size) ] return sitk.Resample( image, new_size, sitk.Transform(), interpolator, image.GetOrigin(), new_spacing, image.GetDirection(), 0.0, image.GetPixelID(), )
Args: image (SimpleITK.Image): The image we want to resample. isotropic_voxel_size_mm (float | None): New voxel size in millimetres shrink_factor (list | float): A number greater than one, such that the new image's size is original_size/shrink_factor. Can also be specified independently for each dimension (sagittal, coronal, axial). smoothing_sigma (list | float): Scale for Gaussian smoothing, this is in physical (image spacing) units, not pixels. Can also be specified independently for each dimension (sagittal, coronal, axial). Return: SimpleITK.Image: Image which is a result of smoothing the input and then resampling it using the specified Gaussian kernel and shrink factor.
https://github.com/pyplati/platipy/blob/f183ac5b459055376a7e61ccc1bfa0ccbdacfd2b/platipy/imaging/registration/utils.py#L194-L266
import numpy as np import SimpleITK as sitk from loguru import logger def registration_command_iteration(method): print("{0:3} = {1:10.5f}".format(method.GetOptimizerIteration(), method.GetMetricValue())) def stage_iteration(method): print(f"Number of parameters = {method.GetInitialTransform().GetNumberOfParameters()}") def deformable_registration_command_iteration(method): print("{0:3} = {1:10.5f}".format(method.GetElapsedIterations(), method.GetMetric())) def control_point_spacing_distance_to_number(image, grid_spacing): image_spacing = np.array(image.GetSpacing()) image_size = np.array(image.GetSize()) number_points = image_size * image_spacing / np.array(grid_spacing) return (number_points + 0.5).astype(int) def apply_linear_transform( input_image, reference_image, transform, is_structure=False, default_value=0, interpolator=sitk.sitkNearestNeighbor, ): if is_structure: if default_value != 0 or interpolator != sitk.sitkNearestNeighbor: logger.warning( "is_structure is set to True, but you have set default_value " "and/or interpolator. default_value and/or interpolator will be overwritten." ) default_value = 0 interpolator = sitk.sitkNearestNeighbor return apply_transform( input_image=input_image, reference_image=reference_image, transform=transform, default_value=default_value, interpolator=interpolator, ) def apply_deformable_transform( input_image, transform, is_structure=False, default_value=0, interpolator=sitk.sitkNearestNeighbor, ): if is_structure: if default_value != 0 or interpolator != sitk.sitkNearestNeighbor: logger.warning( "is_structure is set to True, but you have set default_value " "and/or interpolator. default_value and/or interpolator will be overwritten." ) default_value = 0 interpolator = sitk.sitkNearestNeighbor return apply_transform( input_image=input_image, reference_image=None, transform=transform, default_value=default_value, interpolator=interpolator, ) def apply_transform( input_image, reference_image=None, transform=None, default_value=0, interpolator=sitk.sitkNearestNeighbor, ): original_image_type = input_image.GetPixelID() resampler = sitk.ResampleImageFilter() if reference_image: resampler.SetReferenceImage(reference_image) else: resampler.SetReferenceImage(input_image) if transform: resampler.SetTransform(transform) resampler.SetDefaultPixelValue(default_value) resampler.SetInterpolator(interpolator) output_image = resampler.Execute(input_image) output_image = sitk.Cast(output_image, original_image_type) return output_image
Apache License 2.0
stephenhky/pyqentangle
pyqentangle/quantumstates/harmonics.py
coupled_excited_harmonics
python
def coupled_excited_harmonics(n): return lambda x1, x2: harmonic_wavefcn(0)(0.5*(x1+x2)) * harmonic_wavefcn(n)(x1-x2)
Return a bipartitite wavefunction, with ground state of center of mass, but excited state for the interaction. :param n: quantum harmonic state number for the interaction :return: wavefunction of two variables :type n: int :rtype: function
https://github.com/stephenhky/pyqentangle/blob/401ad45b332ac279fedcf01dd14cf15aa1b7f4ea/pyqentangle/quantumstates/harmonics.py#L76-L85
from math import sqrt, pi import numpy as np from scipy.special import hermite from scipy.integrate import dblquad from ..utils import InvalidMatrix def disentangled_gaussian_wavefcn(): return lambda x1, x2: np.exp(-0.5 * (x1 * x1 + x2 * x2)) / np.sqrt(np.pi) def correlated_bipartite_gaussian_wavefcn(covmatrix): if not covmatrix.shape == (2, 2): raise InvalidMatrix("Invalid matrix shape: "+str(covmatrix.shape)+"; desired shape: (2, 2)") if covmatrix[0, 1] != covmatrix[1, 0]: raise InvalidMatrix("Not a symmetric covariance matrix") norm = 2 * np.pi / np.sqrt(np.linalg.det(covmatrix)) const = 1 / np.sqrt(norm) return lambda x1, x2: const * np.exp(-0.25* np.matmul(np.array([[x1, x2]]), np.matmul(covmatrix, np.array([[x1], [x2]]) ) ) ) def tail_factorial(n, accumulator=1): if n == 0: return accumulator else: return tail_factorial(n-1, accumulator * n) def harmonic_wavefcn(n): const = 1/sqrt(2**n * tail_factorial(n)) * 1/sqrt(sqrt(pi)) return lambda x: const * np.exp(-0.5*x*x) * hermite(n)(x)
MIT License
wdm0006/dummyrdd
dummy_spark/rdd.py
RDD.repartitionAndSortWithinPartitions
python
def repartitionAndSortWithinPartitions(self, numPartitions=None, partitionFunc=None, ascending=True, keyfunc=lambda x: x): data = sorted(self._jrdd, key=keyfunc, reverse=ascending) return RDD(data, self.ctx)
:param numPartitions: :param partitionFunc: :param ascending: :param keyfunc: :return:
https://github.com/wdm0006/dummyrdd/blob/d66c30495cbaa001a744128c89d41fb55741fba5/dummy_spark/rdd.py#L277-L287
import random import uuid from collections import OrderedDict from functools import reduce from dummy_spark.resultsiterable import ResultIterable __author__ = 'willmcginnis' class RDD(object): def __init__(self, jrdd, ctx, jrdd_deserializer=None): self._id = str(uuid.uuid4()) if jrdd is None: self._jrdd = [] else: if isinstance(jrdd, list): self._jrdd = jrdd elif isinstance(jrdd, set): self._jrdd = list(jrdd) else: raise AttributeError('Type %s for jrdd not supported' % (type(jrdd), )) self.ctx = ctx self.is_cached = True self._name = 'dummpy-rdd' self.is_checkpointed = False self._jrdd_deserializer = jrdd_deserializer self.partitioner = None def id(self): return self._id @property def context(self): return self.ctx def name(self): return self._name def setName(self, name): self._name = name return self def __repr__(self): return str(self._jrdd) def cache(self): return self def persist(self, storageLevel=None): return self def unpersist(self): return self def _reserialize(self, serializer=None): return self def checkpoint(self): pass def isCheckpointed(self): return True def getCheckpointFile(self): return None def map(self, f, preservesPartitioning=False): data = list(map(f, self._jrdd)) return RDD(data, self.ctx) def flatMap(self, f, preservesPartitioning=False): data = [item for sl in map(f, self._jrdd) for item in sl] return RDD(data, self.ctx) def mapPartitions(self, f, preservesPartitioning=False): return self.map(f, preservesPartitioning=preservesPartitioning) def getNumPartitions(self): return 1 def filter(self, f): data = list(filter(f, self._jrdd)) return RDD(data, self.ctx) def distinct(self, numPartitions=None): data = set(self._jrdd) return RDD(data, self.ctx) def sample(self, withReplacement, fraction, seed=None): assert fraction >= 0.0, "Negative fraction value: %s" % fraction if seed is not None: random.seed(seed) idx_list = list(range(len(self._jrdd))) if withReplacement: data = [self._jrdd[random.choice(idx_list)] for _ in list(range(int(fraction * len(self._jrdd))))] else: random.shuffle(idx_list) data = [self._jrdd[idx] for idx in idx_list[:int(fraction * len(self._jrdd))]] return RDD(data, self.ctx) def randomSplit(self, weights, seed=None): pass def takeSample(self, withReplacement, num, seed=None): assert num >= 0.0, "Negative sample num: %s" % num if seed is not None: random.seed(seed) if withReplacement: out = [self._jrdd[random.choice(list(range(len(self._jrdd))))] for _ in num] else: idx_list = list(range(len(self._jrdd))) random.shuffle(idx_list) out = [self._jrdd[idx] for idx in idx_list[:num]] return out def union(self, other): return RDD(self._jrdd + other._jrdd, self.ctx) def intersection(self, other): data = [item for item in self._jrdd if item in other._jrdd] return RDD(data, self.ctx) def __add__(self, other): if not isinstance(other, RDD): raise TypeError return self.union(other)
BSD 3-Clause New or Revised License
byceps/byceps
byceps/services/newsletter/service.py
get_subscription_state
python
def get_subscription_state( user_id: UserID, list_id: ListID ) -> SubscriptionState: current_subscription = db.session .query(DbSubscriptionUpdate) .filter_by(user_id=user_id) .filter_by(list_id=list_id) .order_by(DbSubscriptionUpdate.expressed_at.desc()) .first() if current_subscription is None: return SubscriptionState.declined return current_subscription.state
Return the user's current subscription state for that list.
https://github.com/byceps/byceps/blob/138f928e98fd1e3d79943e1a8744ea04cef465b5/byceps/services/newsletter/service.py#L212-L226
from __future__ import annotations from operator import itemgetter from typing import Iterable, Iterator, Optional, Sequence, Union from ...database import db, Query from ...typing import UserID from ..user.dbmodels.user import User as DbUser from .dbmodels import ( List as DbList, Subscriber, SubscriptionUpdate as DbSubscriptionUpdate, ) from .transfer.models import List, ListID from .types import SubscriptionState def find_list(list_id: ListID) -> Optional[List]: list_ = db.session.query(DbList).get(list_id) if list_ is None: return None return _db_entity_to_list(list_) def get_all_lists() -> Sequence[List]: lists = db.session.query(DbList).all() return [_db_entity_to_list(list_) for list_ in lists] def count_subscribers_for_list(list_id: ListID) -> int: return _build_query_for_current_subscribers(list_id).count() def get_subscribers(list_id: ListID) -> Iterable[Subscriber]: subscriber_id_rows = _build_query_for_current_subscribers(list_id).all() subscriber_ids = set(map(itemgetter(0), subscriber_id_rows)) return _get_subscriber_details(subscriber_ids) def _build_query_for_current_subscribers(list_id: ListID) -> Query: subquery = _build_query_for_latest_expressed_at().subquery() return db.session .query( DbSubscriptionUpdate.user_id ) .join(subquery, db.and_( DbSubscriptionUpdate.user_id == subquery.c.user_id, DbSubscriptionUpdate.list_id == subquery.c.list_id, DbSubscriptionUpdate.expressed_at == subquery.c.latest_expressed_at )) .filter(DbSubscriptionUpdate._state == SubscriptionState.requested.name) .filter(DbSubscriptionUpdate.list_id == list_id) def _get_subscriber_details(user_ids: set[UserID]) -> Iterator[Subscriber]: if not user_ids: return [] rows = db.session .query( DbUser.screen_name, DbUser.email_address, ) .filter(DbUser.id.in_(user_ids)) .filter(DbUser.email_address != None) .filter_by(initialized=True) .filter_by(email_address_verified=True) .filter_by(suspended=False) .filter_by(deleted=False) .all() for row in rows: yield Subscriber(row.screen_name, row.email_address) def count_subscriptions_by_state( list_id: ListID, ) -> dict[Union[SubscriptionState, str], int]: rows = _build_query_for_current_state(list_id) .all() totals: dict[Union[SubscriptionState, str], int] = { state: 0 for state in SubscriptionState } for state_name, count in rows: state = SubscriptionState[state_name] totals[state] = count totals['total'] = sum(totals.values()) return totals def _build_query_for_current_state(list_id: ListID) -> Query: subquery = _build_query_for_latest_expressed_at().subquery() return db.session .query( DbSubscriptionUpdate._state, db.func.count(DbSubscriptionUpdate._state), ) .join(subquery, db.and_( DbSubscriptionUpdate.user_id == subquery.c.user_id, DbSubscriptionUpdate.list_id == subquery.c.list_id, DbSubscriptionUpdate.expressed_at == subquery.c.latest_expressed_at )) .filter_by(list_id=list_id) .group_by( DbSubscriptionUpdate.list_id, DbSubscriptionUpdate._state, ) def _build_query_for_latest_expressed_at() -> Query: return db.session .query( DbSubscriptionUpdate.user_id, DbSubscriptionUpdate.list_id, db.func.max(DbSubscriptionUpdate.expressed_at) .label('latest_expressed_at') ) .group_by( DbSubscriptionUpdate.user_id, DbSubscriptionUpdate.list_id )
BSD 3-Clause New or Revised License
albertz/music-player
mac/pyobjc-core/Lib/objc/_descriptors.py
signature
python
def signature(signature, **kw): warnings.warn("Usage objc.typedSelector instead of objc.signature", DeprecationWarning) kw['signature'] = signature def makeSignature(func): return selector(func, **kw) return makeSignature
A Python method decorator that allows easy specification of Objective-C selectors. Usage:: @objc.signature('i@:if') def methodWithX_andY_(self, x, y): return 0
https://github.com/albertz/music-player/blob/d23586f5bf657cbaea8147223be7814d117ae73d/mac/pyobjc-core/Lib/objc/_descriptors.py#L272-L287
__all__ = ['IBOutlet', 'IBAction', 'accessor', 'Accessor', 'typedAccessor', 'callbackFor', 'selectorFor', 'synthesize', 'namedselector', 'typedSelector', 'namedSelector', 'instancemethod', 'signature' ] from objc._objc import ivar, selector, _makeClosure, selector, _C_SEL, _C_ID, _C_NSUInteger, _C_NSBOOL import sys, textwrap import warnings from inspect import getargspec _C_NSRange = [b"{_NSRange=II}", b"{_NSRange=QQ}"][sys.maxsize > 2**32] def IBOutlet(name=None): if name is None: return ivar(isOutlet=1) else: return ivar(name, isOutlet=1) def IBAction(func): if func is None: raise TypeError("IBAction argument must be a callable") return selector(func, signature=b"v@:@") def instancemethod(func): if func is None: raise TypeError("instancemethod argument must be a callable") return selector(func, isClassMethod=False) def accessor(func, typeSignature=b'@'): args, varargs, varkw, defaults = getargspec(func) funcName = func.__name__ maxArgs = len(args) minArgs = maxArgs - len(defaults or ()) selArgs = 1 + funcName.count('_') if varargs is not None or varkw is not None: raise TypeError('%s can not be an accessor because it accepts varargs or varkw' % (funcName,)) if not (minArgs <= selArgs <= maxArgs): if minArgs == maxArgs: raise TypeError('%s expected to take %d args, but must accept %d from Objective-C (implicit self plus count of underscores)' % (funcName, maxArgs, selArgs)) else: raise TypeError('%s expected to take between %d and %d args, but must accept %d from Objective-C (implicit self plus count of underscores)' % (funcName, minArgs, maxArgs, selArgs)) if selArgs == 3: if funcName.startswith('validate') and funcName.endswith('_error_'): return selector(func, signature=_C_NSBOOL + b'@:N^@o^@') if funcName.startswith('insertObject_in') and funcName.endswith('AtIndex_'): return selector(func, signature=b'v@:' + typeSignature + _C_NSUInteger) elif funcName.startswith('replaceObjectIn') and funcName.endswith('AtIndex_withObject_'): return selector(func, signature=b'v@:' + _C_NSUInteger + typeSignature) elif funcName.startswith('get') and funcName.endswith('_range_'): return selector(func, signature=b'v@:o^@' + _C_NSRange) elif funcName.startswith('insert') and funcName.endswith('_atIndexes_'): return selector(func, signature=b'v@:@@') elif funcName.startswith('replace') and 'AtIndexes_with' in funcName: return selector(func, signature=b'v@:@@') elif selArgs == 2: if funcName.startswith('objectIn') and funcName.endswith('AtIndex_'): return selector(func, signature=typeSignature + b'@:' + _C_NSUInteger) elif funcName.startswith('removeObjectFrom') and funcName.endswith('AtIndex_'): return selector(func, signature=b'v@:' + _C_NSUInteger) elif funcName.startswith('remove') and funcName.endswith('AtIndexes_'): return selector(func, signature=b"v@:@") elif funcName.endswith('AtIndexes_'): return selector(func, signature=b"@@:@") elif funcName.startswith('memberOf'): return selector(func, signature=_C_NSBOOL + b"@:" + typeSignature) elif funcName.startswith('add') and funcName.endswith('Object_'): return selector(func, signature=b"v@:" + typeSignature) elif funcName.startswith('add'): return selector(func, signature=b"v@:@") elif funcName.startswith('intersect'): return selector(func, signature=b"v@:@") return selector(func, signature=b"v@:" + typeSignature) elif selArgs == 1: if funcName.startswith('countOf'): typeSignature = _C_NSUInteger elif funcName.startswith('enumerator'): typeSignature = b"@" return selector(func, signature=typeSignature + b"@:") raise TypeError("%s not recognized as an accessor" % (funcName,)) def typedSelector(signature): def _typedSelector(func): if func is None: raise TypeError("typedSelector() function argument must be a callable") return selector(func, signature=signature) return _typedSelector def namedSelector(name, signature=None): if signature is not None: def _namedselector(func): if func is None: raise TypeError("IBAction argument must be a callable") return selector(func, selector=name, signature=signature) else: def _namedselector(func): if func is None: raise TypeError("IBAction argument must be a callable") return selector(func, selector=name) return _namedselector def namedselector(name, signature=None): warnings.warn("use objc.namedSelector instead of objc.namedselector", DeprecationWarning, stacklevel=2) return namedSelector(name, signature) def typedAccessor(typeSignature): def _typedAccessor(func): return accessor(func, typeSignature) return _typedAccessor def Accessor(func): warnings.warn( "Use objc.accessor instead of objc.Accessor", DeprecationWarning) return accessor(func) def callbackFor(callable, argIndex=-1): def addClosure(function): closure = _makeClosure(function, callable, argIndex) function.pyobjc_closure = closure return function return addClosure def selectorFor(callable, argIndex=-1): if argIndex == -1: for arg in callable.__metadata__()['arguments']: if arg['type'] == _C_SEL and 'sel_of_type' in arg: signature = arg['sel_of_type'] break else: raise ValueError("No selector argument with type information") else: try: signature = callable.__metadata__()['arguments'][argIndex]['sel_of_type'] except (IndexError, KeyError): raise ValueError("Not a selector argument with type information") def addSignature(function): return selector(function, signature=signature) return addSignature def synthesize(name, copy=False, readwrite=True, type=_C_ID, ivarName=None): if not name: raise ValueError("Empty property name") if ivarName is None: ivarName = '_' + name classDict = sys._getframe(1).f_locals setterName = 'set%s%s_'%(name[0].upper(), name[1:]) if copy: setter = textwrap.dedent(''' def %(name)s(self, value): self.%(ivar)s = value.copy() ''' % dict(name=setterName, ivar=ivarName)) else: setter = textwrap.dedent(''' def %(name)s(self, value): self.%(ivar)s = value ''' % dict(name=setterName, ivar=ivarName)) getter = textwrap.dedent(''' def %(name)s(self): return self.%(ivar)s ''' % dict(name=name, ivar=ivarName)) if readwrite: exec(setter, globals(), classDict) exec(getter, globals(), classDict) classDict[ivarName] = ivar(type=type)
BSD 2-Clause Simplified License
maljovec/topopy
topopy/TopologicalObject.py
TopologicalObject.get_normed_x
python
def get_normed_x(self, rows=None, cols=None): if rows is None: rows = list(range(0, self.get_sample_size())) if cols is None: cols = list(range(0, self.get_dimensionality())) if not hasattr(rows, "__iter__"): rows = [rows] rows = sorted(list(set(rows))) retValue = self.Xnorm[rows, :] return retValue[:, cols]
Returns the normalized input data requested by the user. Parameters ---------- rows : list of int A list of non-negative integers specifying the row indices to return cols : list of int A list of non-negative integers specifying the column indices to return Returns ------- np.ndarray A matrix of floating point values specifying the normalized data values used in internal computations filtered by the three input parameters.
https://github.com/maljovec/topopy/blob/73ccc9510bd34be2ead875bc3bc1081ccad26b1f/topopy/TopologicalObject.py#L264-L294
import sys import time import warnings import numpy as np import sklearn.preprocessing import nglpy as ngl class TopologicalObject(object): precision = 16 @staticmethod def aggregate_duplicates(X, Y, aggregator="mean", precision=precision): if callable(aggregator): pass elif "min" in aggregator.lower(): aggregator = np.min elif "max" in aggregator.lower(): aggregator = np.max elif "median" in aggregator.lower(): aggregator = np.median elif aggregator.lower() in ["average", "mean"]: aggregator = np.mean elif "first" in aggregator.lower(): def aggregator(x): return x[0] elif "last" in aggregator.lower(): def aggregator(x): return x[-1] else: warnings.warn( 'Aggregator "{}" not understood. Skipping sample ' "aggregation.".format(aggregator) ) return X, Y is_y_multivariate = Y.ndim > 1 X_rounded = X.round(decimals=precision) unique_xs = np.unique(X_rounded, axis=0) old_size = len(X_rounded) new_size = len(unique_xs) if old_size == new_size: return X, Y if not is_y_multivariate: Y = np.atleast_2d(Y).T reduced_y = np.empty((new_size, Y.shape[1])) warnings.warn( "Domain space duplicates caused a data reduction. " + "Original size: {} vs. New size: {}".format(old_size, new_size) ) for col in range(Y.shape[1]): for i, distinct_row in enumerate(unique_xs): filtered_rows = np.all(X_rounded == distinct_row, axis=1) reduced_y[i, col] = aggregator(Y[filtered_rows, col]) if not is_y_multivariate: reduced_y = reduced_y.flatten() return unique_xs, reduced_y def __init__( self, graph=None, gradient="steepest", normalization=None, aggregator=None, debug=False, ): super(TopologicalObject, self).__init__() self.reset() if graph is None: graph = ngl.EmptyRegionGraph() self.graph = graph self.gradient = gradient self.normalization = normalization self.debug = debug self.aggregator = aggregator def reset(self): self.X = [] self.Y = [] self.w = [] self.Xnorm = [] def __set_data(self, X, Y, w=None): self.X = X self.Y = Y self.check_duplicates() if w is not None: self.w = np.array(w) else: self.w = np.ones(len(Y)) * 1.0 / float(len(Y)) if self.normalization == "feature": min_max_scaler = sklearn.preprocessing.MinMaxScaler() self.Xnorm = min_max_scaler.fit_transform(np.atleast_2d(self.X)) elif self.normalization == "zscore": self.Xnorm = sklearn.preprocessing.scale( self.X, axis=0, with_mean=True, with_std=True, copy=True ) else: self.Xnorm = np.array(self.X) def build(self, X, Y, w=None): self.reset() if X is None or Y is None: return self.__set_data(X, Y, w) if self.debug: sys.stdout.write("Graph Preparation: ") start = time.perf_counter() self.graph.build(self.Xnorm) if self.debug: end = time.perf_counter() sys.stdout.write("%f s\n" % (end - start)) def load_data_and_build(self, filename, delimiter=","): data = np.genfromtxt( filename, dtype=float, delimiter=delimiter, names=True ) data = data.view(np.float64).reshape(data.shape + (-1,)) X = data[:, 0:-1] Y = data[:, -1] self.build(X=X, Y=Y)
BSD 3-Clause New or Revised License
azure/azure-event-hubs-python
azure/eventhub/common.py
parse_sas_token
python
def parse_sas_token(sas_token): sas_data = {} token = sas_token.partition(' ')[2] fields = token.split('&') for field in fields: key, value = field.split('=', 1) sas_data[key.lower()] = value return sas_data
Parse a SAS token into its components. :param sas_token: The SAS token. :type sas_token: str :rtype: dict[str, str]
https://github.com/azure/azure-event-hubs-python/blob/326f772f5cbe3d3eaf68b24485554aada463430a/azure/eventhub/common.py#L49-L62
from __future__ import unicode_literals import datetime import calendar import json import six from uamqp import Message, BatchMessage from uamqp import types, constants, errors from uamqp.message import MessageHeader, MessageProperties _NO_RETRY_ERRORS = ( b"com.microsoft:argument-out-of-range", b"com.microsoft:entity-disabled", b"com.microsoft:auth-failed", b"com.microsoft:precondition-failed", b"com.microsoft:argument-error" ) def _error_handler(error): if error.condition == b'com.microsoft:server-busy': return errors.ErrorAction(retry=True, backoff=4) if error.condition == b'com.microsoft:timeout': return errors.ErrorAction(retry=True, backoff=2) if error.condition == b'com.microsoft:operation-cancelled': return errors.ErrorAction(retry=True) if error.condition == b"com.microsoft:container-close": return errors.ErrorAction(retry=True, backoff=4) if error.condition in _NO_RETRY_ERRORS: return errors.ErrorAction(retry=False) return errors.ErrorAction(retry=True)
MIT License
google-tasks-backup/tasks-backup
apiclient/discovery.py
_add_query_parameter
python
def _add_query_parameter(url, name, value): if value is None: return url else: parsed = list(urlparse.urlparse(url)) q = dict(parse_qsl(parsed[4])) q[name] = value parsed[4] = urllib.urlencode(q) return urlparse.urlunparse(parsed)
Adds a query parameter to a url. Replaces the current value if it already exists in the URL. Args: url: string, url to add the query parameter to. name: string, query parameter name. value: string, query parameter value. Returns: Updated query parameter. Does not update the url if value is None.
https://github.com/google-tasks-backup/tasks-backup/blob/ffcb2044eb6089d20e1be3f93025fa33c2efbe3e/apiclient/discovery.py#L96-L116
__author__ = 'jcgregorio@google.com (Joe Gregorio)' __all__ = [ 'build', 'build_from_document' 'fix_method_name', 'key2param' ] import copy import httplib2 import logging import os import random import re import uritemplate import urllib import urlparse import mimeparse import mimetypes try: from urlparse import parse_qsl except ImportError: from cgi import parse_qsl from apiclient.errors import HttpError from apiclient.errors import InvalidJsonError from apiclient.errors import MediaUploadSizeError from apiclient.errors import UnacceptableMimeTypeError from apiclient.errors import UnknownApiNameOrVersion from apiclient.errors import UnknownLinkType from apiclient.http import HttpRequest from apiclient.http import MediaFileUpload from apiclient.http import MediaUpload from apiclient.model import JsonModel from apiclient.model import MediaModel from apiclient.model import RawModel from apiclient.schema import Schemas from email.mime.multipart import MIMEMultipart from email.mime.nonmultipart import MIMENonMultipart from oauth2client.util import positional from oauth2client.anyjson import simplejson logger = logging.getLogger(__name__) URITEMPLATE = re.compile('{[^}]*}') VARNAME = re.compile('[a-zA-Z0-9_-]+') DISCOVERY_URI = ('https://www.googleapis.com/discovery/v1/apis/' '{api}/{apiVersion}/rest') DEFAULT_METHOD_DOC = 'A description of how to use this function' STACK_QUERY_PARAMETERS = ['trace', 'pp', 'userip', 'strict'] RESERVED_WORDS = ['and', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'exec', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'not', 'or', 'pass', 'print', 'raise', 'return', 'try', 'while', 'body'] def fix_method_name(name): if name in RESERVED_WORDS: return name + '_' else: return name
Apache License 2.0
barrust/pyprobables
probables/cuckoo/cuckoo.py
CuckooFilter.expansion_rate
python
def expansion_rate(self): return self.__expansion_rate
int: The rate at expansion when the filter grows
https://github.com/barrust/pyprobables/blob/f348fb878cdfbe6c1d997be093c073d26f9b05aa/probables/cuckoo/cuckoo.py#L162-L164
import os import random from numbers import Number from struct import calcsize, pack, unpack from ..exceptions import CuckooFilterFullError, InitializationError from ..hashes import fnv_1a from ..utilities import get_x_bits, is_valid_file class CuckooFilter(object): __slots__ = [ "_bucket_size", "_cuckoo_capacity", "__max_cuckoo_swaps", "__expansion_rate", "__auto_expand", "__fingerprint_size", "__hash_func", "_inserted_elements", "_buckets", ] def __init__( self, capacity=10000, bucket_size=4, max_swaps=500, expansion_rate=2, auto_expand=True, finger_size=4, filepath=None, hash_function=None, ): valid_prms = ( isinstance(capacity, Number) and capacity >= 1 and isinstance(bucket_size, Number) and bucket_size >= 1 and isinstance(max_swaps, Number) and max_swaps >= 1 ) if not valid_prms: msg = "CuckooFilter: capacity, bucket_size, and max_swaps " "must be an integer greater than 0" raise InitializationError(msg) self._bucket_size = int(bucket_size) self._cuckoo_capacity = int(capacity) self.__max_cuckoo_swaps = int(max_swaps) self.__expansion_rate = None self.expansion_rate = expansion_rate self.__auto_expand = None self.auto_expand = auto_expand self.__fingerprint_size = None self.fingerprint_size = finger_size if hash_function is None: self.__hash_func = fnv_1a else: self.__hash_func = hash_function self._inserted_elements = 0 if filepath is None: self._buckets = list() for _ in range(self.capacity): self.buckets.append(list()) elif is_valid_file(filepath): self._load(filepath) else: msg = "CuckooFilter: failed to load provided file" raise InitializationError(msg) def __contains__(self, key): return self.check(key) def __str__(self): msg = ( "{0}:\n" "\tCapacity: {1}\n" "\tTotal Bins: {2}\n" "\tLoad Factor: {3}%\n" "\tInserted Elements: {4}\n" "\tMax Swaps: {5}\n" "\tExpansion Rate: {6}\n" "\tAuto Expand: {7}" ) return msg.format( self.__class__.__name__, self.capacity, self.capacity * self.bucket_size, self.load_factor() * 100, self.elements_added, self.max_swaps, self.expansion_rate, self.auto_expand, ) @property def elements_added(self): return self._inserted_elements @property def capacity(self): return self._cuckoo_capacity @property def max_swaps(self): return self.__max_cuckoo_swaps @property def bucket_size(self): return self._bucket_size @property def buckets(self): return self._buckets @property
MIT License
astrocatalogs/astrocats
astrocats/catalog/entry.py
Entry.__repr__
python
def __repr__(self): jsonstring = dict_to_pretty_string({ENTRY.NAME: self}) return jsonstring
Return JSON representation of self.
https://github.com/astrocatalogs/astrocats/blob/11abc3131c6366ecd23964369e55ff264add7805/astrocats/catalog/entry.py#L161-L164
import codecs import gzip as gz import hashlib import json import logging import os import sys from collections import OrderedDict from copy import deepcopy from decimal import Decimal from astrocats.catalog.catdict import CatDict, CatDictError from astrocats.catalog.error import ERROR, Error from astrocats.catalog.key import KEY_TYPES, Key, KeyCollection from astrocats.catalog.model import MODEL, Model from astrocats.catalog.photometry import PHOTOMETRY, Photometry from astrocats.catalog.quantity import QUANTITY, Quantity from astrocats.catalog.source import SOURCE, Source from astrocats.catalog.spectrum import SPECTRUM, Spectrum from astrocats.catalog.utils import (alias_priority, dict_to_pretty_string, is_integer, is_number, listify) from past.builtins import basestring from six import string_types class ENTRY(KeyCollection): _DIST_PREF_KINDS = [ 'heliocentric', 'cmb', 'spectroscopic', 'photometric', 'host', 'cluster' ] _HOST_DIST_PREF_KINDS = [ 'heliocentric', 'cmb', 'spectroscopic', 'photometric', 'host', 'cluster' ] ALIAS = Key('alias', KEY_TYPES.STRING) COMOVING_DIST = Key('comovingdist', KEY_TYPES.NUMERIC, kind_preference=_DIST_PREF_KINDS, replace_better=True) DEC = Key('dec', KEY_TYPES.STRING) DISCOVER_DATE = Key('discoverdate', KEY_TYPES.STRING, replace_better=True) DISCOVERER = Key('discoverer', KEY_TYPES.STRING) DISTINCT_FROM = Key('distinctfrom', KEY_TYPES.STRING) EBV = Key('ebv', KEY_TYPES.NUMERIC, replace_better=True) AV_CIRCUM = Key('avcircum', KEY_TYPES.NUMERIC, replace_better=True) ERRORS = Key('errors', no_source=True) HOST = Key('host', KEY_TYPES.STRING) HOST_DEC = Key('hostdec', KEY_TYPES.STRING) HOST_OFFSET_ANG = Key('hostoffsetang', KEY_TYPES.NUMERIC) HOST_OFFSET_DIST = Key('hostoffsetdist', KEY_TYPES.NUMERIC) HOST_RA = Key('hostra', KEY_TYPES.STRING) HOST_REDSHIFT = Key('hostredshift', KEY_TYPES.NUMERIC, kind_preference=_HOST_DIST_PREF_KINDS, replace_better=True) HOST_VELOCITY = Key('hostvelocity', KEY_TYPES.NUMERIC, kind_preference=_HOST_DIST_PREF_KINDS, replace_better=True) HOST_LUM_DIST = Key('hostlumdist', KEY_TYPES.NUMERIC, kind_preference=_HOST_DIST_PREF_KINDS, replace_better=True) HOST_COMOVING_DIST = Key('hostcomovingdist', KEY_TYPES.NUMERIC, kind_preference=_HOST_DIST_PREF_KINDS, replace_better=True) LUM_DIST = Key('lumdist', KEY_TYPES.NUMERIC, kind_preference=_DIST_PREF_KINDS, replace_better=True) MAX_ABS_MAG = Key('maxabsmag', KEY_TYPES.NUMERIC) MAX_APP_MAG = Key('maxappmag', KEY_TYPES.NUMERIC) MAX_BAND = Key('maxband', KEY_TYPES.STRING) MAX_DATE = Key('maxdate', KEY_TYPES.STRING, replace_better=True) MODELS = Key('models') NAME = Key('name', KEY_TYPES.STRING, no_source=True) PHOTOMETRY = Key('photometry') RA = Key('ra', KEY_TYPES.STRING) REDSHIFT = Key('redshift', KEY_TYPES.NUMERIC, kind_preference=_DIST_PREF_KINDS, replace_better=True) SCHEMA = Key('schema', no_source=True) SOURCES = Key('sources', no_source=True) SPECTRA = Key('spectra') VELOCITY = Key('velocity', KEY_TYPES.NUMERIC, kind_preference=_DIST_PREF_KINDS, replace_better=True) class Entry(OrderedDict): _KEYS = ENTRY def __init__(self, catalog=None, name=None, stub=False): super(Entry, self).__init__() self.catalog = catalog self.filename = None self.dupe_of = [] self._stub = stub if catalog: self._log = catalog.log else: from astrocats.catalog.catalog import Catalog self._log = logging.getLogger() self.catalog = Catalog(None, self._log) self[self._KEYS.NAME] = name return
MIT License
aleph-im/pyaleph
src/aleph/jobs.py
retry_messages_job
python
async def retry_messages_job(shared_stats: Optional[Dict]): seen_ids: Dict = {} actions: List = [] messages_actions: List = [] gtasks: List[Coroutine] = [] tasks: List = [asyncio.Task] loop = asyncio.get_event_loop() i: int = 0 j: int = 0 find_params: Dict = {} while await PendingMessage.collection.count_documents(find_params): async for pending in PendingMessage.collection.find(find_params).sort( [("message.time", 1)] ).batch_size(256): LOGGER.debug( f"retry_message_job len_seen_ids={len(seen_ids)} " f"len_gtasks={len(gtasks)} len_tasks={len(tasks)}" ) if shared_stats is not None: shared_stats["retry_messages_job_seen_ids"] = len(seen_ids) shared_stats["retry_messages_job_gtasks"] = len(gtasks) shared_stats["retry_messages_job_tasks"] = len(tasks) shared_stats["retry_messages_job_actions"] = len(actions) shared_stats["retry_messages_job_messages_actions"] = len( messages_actions ) shared_stats["retry_messages_job_i"] = i shared_stats["retry_messages_job_j"] = j if ( pending["message"]["item_type"] == ItemType.IPFS or pending["message"]["type"] == "STORE" ): i += 15 j += 100 else: i += 1 j += 1 tasks.append( asyncio.create_task( handle_pending_message(pending, seen_ids, actions, messages_actions) ) ) if j >= 20000: gtasks.append( asyncio.create_task( join_pending_message_tasks( tasks, actions_list=actions, messages_actions_list=messages_actions, ) ) ) tasks = [] actions = [] messages_actions = [] i = 0 j = 0 if i >= 1024: await join_pending_message_tasks(tasks) tasks = [] i = 0 gtasks.append( asyncio.create_task( join_pending_message_tasks( tasks, actions_list=actions, messages_actions_list=messages_actions ) ) ) await asyncio.gather(*gtasks, return_exceptions=True) gtasks = [] if await PendingMessage.collection.count_documents(find_params) > 100000: LOGGER.info("Cleaning messages") clean_actions = [] for key, height in seen_ids.items(): clean_actions.append( DeleteMany( { "message.item_hash": key[0], "message.sender": key[1], "source.chain_name": key[2], "source.height": {"$gt": height}, } ) ) result = await PendingMessage.collection.bulk_write(clean_actions) LOGGER.info(repr(result)) await asyncio.sleep(5)
Each few minutes, try to handle message that were added to the pending queue (Unavailable messages).
https://github.com/aleph-im/pyaleph/blob/6e8348b8a3eb33aa3ca33f7ff24be5b3575e923b/src/aleph/jobs.py#L71-L184
import asyncio from logging import getLogger from multiprocessing import Process from multiprocessing.managers import SyncManager, RemoteError from typing import Coroutine, List, Dict, Optional import aioipfs from pymongo import DeleteOne, InsertOne, DeleteMany from pymongo.errors import CursorNotFound from aleph.chains.common import incoming, get_chaindata_messages from aleph.model.messages import Message, CappedMessage from aleph.model.p2p import get_peers from aleph.model.pending import PendingMessage, PendingTX from aleph.network import check_message from aleph.services import filestore from aleph.services.ipfs.common import connect_ipfs_peer from aleph.types import ItemType LOGGER = getLogger("JOBS") MANAGER = None RETRY_LOCK = asyncio.Lock() class DBManager(SyncManager): pass async def handle_pending_message( pending, seen_ids, actions_list, messages_actions_list ): result = await incoming( pending["message"], chain_name=pending["source"].get("chain_name"), tx_hash=pending["source"].get("tx_hash"), height=pending["source"].get("height"), seen_ids=seen_ids, check_message=pending["source"].get("check_message", True), retrying=True, bulk_operation=True, ) if result is not None: if result is not True: messages_actions_list.append(result) actions_list.append(DeleteOne({"_id": pending["_id"]})) async def join_pending_message_tasks( tasks, actions_list=None, messages_actions_list=None ): try: await asyncio.gather(*tasks, return_exceptions=True) except Exception: LOGGER.exception("error in incoming task") tasks.clear() if messages_actions_list is not None and len(messages_actions_list): await Message.collection.bulk_write(messages_actions_list) await CappedMessage.collection.bulk_write(messages_actions_list) messages_actions_list.clear() if actions_list is not None and len(actions_list): await PendingMessage.collection.bulk_write(actions_list) actions_list.clear()
MIT License
gofrendiasgard/kokoropy
kokoropy/packages/alembic/script.py
ScriptDirectory.from_config
python
def from_config(cls, config): script_location = config.get_main_option('script_location') if script_location is None: raise util.CommandError("No 'script_location' key " "found in configuration.") truncate_slug_length = config.get_main_option("truncate_slug_length") if truncate_slug_length is not None: truncate_slug_length = int(truncate_slug_length) return ScriptDirectory( util.coerce_resource_to_filename(script_location), file_template=config.get_main_option( 'file_template', _default_file_template), truncate_slug_length=truncate_slug_length, sourceless=config.get_main_option("sourceless") == "true" )
Produce a new :class:`.ScriptDirectory` given a :class:`.Config` instance. The :class:`.Config` need only have the ``script_location`` key present.
https://github.com/gofrendiasgard/kokoropy/blob/49c8ca4b7dd2a084f2ced33fc5987b8a8b62c995/kokoropy/packages/alembic/script.py#L49-L71
import datetime import os import re import shutil from . import util _sourceless_rev_file = re.compile(r'(.*\.py)(c|o)?$') _only_source_rev_file = re.compile(r'(.*\.py)$') _legacy_rev = re.compile(r'([a-f0-9]+)\.py$') _mod_def_re = re.compile(r'(upgrade|downgrade)_([a-z0-9]+)') _slug_re = re.compile(r'\w+') _default_file_template = "%(rev)s_%(slug)s" _relative_destination = re.compile(r'(?:\+|-)\d+') class ScriptDirectory(object): def __init__(self, dir, file_template=_default_file_template, truncate_slug_length=40, sourceless=False): self.dir = dir self.versions = os.path.join(self.dir, 'versions') self.file_template = file_template self.truncate_slug_length = truncate_slug_length or 40 self.sourceless = sourceless if not os.access(dir, os.F_OK): raise util.CommandError("Path doesn't exist: %r. Please use " "the 'init' command to create a new " "scripts folder." % dir) @classmethod
MIT License
mytechnotalent/python-for-kids
Part_6_Classes/0014_escape_room/Game.py
Game.ask_random_question
python
def ask_random_question(d_questions): random_question = choice(list(d_questions)) answer_1 = d_questions[random_question][0] answer_2 = d_questions[random_question][1] answer_3 = d_questions[random_question][2] correct_answer_index = d_questions[random_question][3] correct_answer = d_questions[random_question][correct_answer_index] return random_question, answer_1, answer_2, answer_3, correct_answer_index, correct_answer
Method to ask a random question from the database Params: d_questions: dict Returns: str, str, str, str, int, str
https://github.com/mytechnotalent/python-for-kids/blob/4487df5f8d39a200016a7fa4da5c66345e6ead56/Part_6_Classes/0014_escape_room/Game.py#L43-L58
from random import randint, choice class Game: @staticmethod def generate_random_number(grid): x = randint(1, grid.available_width) return x @staticmethod def generate_random_numbers(grid): x = randint(1, grid.available_width) y = randint(1, grid.available_height) while x == 1 and y == 1: x = randint(1, grid.available_width) y = randint(1, grid.available_width) return x, y @staticmethod
Apache License 2.0
hunch/hunch-gift-app
django/views/generic/list.py
MultipleObjectMixin.get_context_object_name
python
def get_context_object_name(self, object_list): if self.context_object_name: return self.context_object_name elif hasattr(object_list, 'model'): return smart_str(object_list.model._meta.verbose_name_plural) else: return None
Get the name of the item to be used in the context.
https://github.com/hunch/hunch-gift-app/blob/8c7cad24cc0d9900deb4175e6b768c64a3d7adcf/django/views/generic/list.py#L65-L74
from django.core.paginator import Paginator, InvalidPage from django.core.exceptions import ImproperlyConfigured from django.http import Http404 from django.utils.encoding import smart_str from django.views.generic.base import TemplateResponseMixin, View class MultipleObjectMixin(object): allow_empty = True queryset = None model = None paginate_by = None context_object_name = None def get_queryset(self): if self.queryset is not None: queryset = self.queryset if hasattr(queryset, '_clone'): queryset = queryset._clone() elif self.model is not None: queryset = self.model._default_manager.all() else: raise ImproperlyConfigured(u"'%s' must define 'queryset' or 'model'" % self.__class__.__name__) return queryset def paginate_queryset(self, queryset, page_size): if queryset.count() > page_size: paginator = Paginator(queryset, page_size, allow_empty_first_page=self.get_allow_empty()) page = self.kwargs.get('page', None) or self.request.GET.get('page', 1) try: page_number = int(page) except ValueError: if page == 'last': page_number = paginator.num_pages else: raise Http404("Page is not 'last', nor can it be converted to an int.") try: page = paginator.page(page_number) return (paginator, page, page.object_list, True) except InvalidPage: raise Http404(u'Invalid page (%s)' % page_number) else: return (None, None, queryset, False) def get_paginate_by(self, queryset): return self.paginate_by def get_allow_empty(self): return self.allow_empty
MIT License
aldebaran/qibuild
python/qisys/ui.py
_unicode_representation
python
def _unicode_representation(data): if isinstance(data, six.string_types): return "'" + data + "'" elif isinstance(data, tuple): unicode_data = "(" for value in data: if unicode_data != "(": unicode_data += ", " unicode_data += _unicode_representation(value) unicode_data += ")" return unicode_data elif isinstance(data, list): unicode_data = "[" for value in data: if unicode_data != "[": unicode_data += ", " unicode_data += _unicode_representation(value) unicode_data += "]" return unicode_data if six.PY3: return str(data).encode("utf-8") return unicode(data)
Return an unicode representation of a data
https://github.com/aldebaran/qibuild/blob/efea6fa3744664348717fe5e8df708a3cf392072/python/qisys/ui.py#L171-L193
from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function import os import sys import struct import difflib import platform import datetime import functools import traceback import six _console = None HAS_PYREADLINE = True if os.name == 'nt': try: from pyreadline.console import Console _console = Console() except Exception: HAS_PYREADLINE = False class _Color(object): def __init__(self, code, modifier=None): self.code = '\033[%d' % code if modifier is not None: self.code += ';%dm' % modifier else: self.code += 'm' reset = _Color(0) bold = _Color(1) faint = _Color(2) standout = _Color(3) underline = _Color(4) blink = _Color(5) overline = _Color(6) black = _Color(30) darkred = _Color(31) darkgreen = _Color(32) brown = _Color(33) darkblue = _Color(34) purple = _Color(35) teal = _Color(36) lightgray = _Color(37) darkgray = _Color(30, 1) red = _Color(31, 1) green = _Color(32, 1) yellow = _Color(33, 1) blue = _Color(34, 1) fuchsia = _Color(35, 1) turquoise = _Color(36, 1) white = _Color(37, 1) darkteal = turquoise darkyellow = brown fuscia = fuchsia CONFIG = { "verbose": os.environ.get("VERBOSE"), "quiet": False, "color": "auto", "title": "auto", "timestamp": False, "interactive": True, "record": False } _MESSAGES = list() def configure_logging(args): verbose = os.environ.get("VERBOSE", False) if not verbose: verbose = args.verbose CONFIG["color"] = args.color CONFIG["title"] = args.title CONFIG["verbose"] = verbose CONFIG["quiet"] = args.quiet CONFIG["timestamp"] = args.timestamp def config_title(fp): _config_title = CONFIG["title"] if _config_title.lower() == "never": return False if _config_title.lower() == "always": return True if os.name == 'nt': return fp.isatty() and _console is not None legal_terms = ["xterm", "xterm-256color", "xterm-color", "Eterm", "aterm", "rxvt", "screen", "kterm", "rxvt-unicode", "gnome", "interix", "cygwin", "rxvt-unicode-256color"] return fp.isatty() and 'TERM' in os.environ and os.environ['TERM'] in legal_terms def config_color(fp): _config_color = CONFIG["color"] if _config_color.lower() == "never": return False if _config_color.lower() == "always": return True if os.name == 'nt' and not HAS_PYREADLINE or not fp.isatty(): return False return True _enable_xterm_title = None def update_title(mystr, fp): if os.name == "nt": _update_title_windows(mystr) else: _update_title_unix(mystr, fp) def _update_title_unix(mystr, fp): global _enable_xterm_title if _enable_xterm_title is None: _enable_xterm_title = config_title(fp) if _enable_xterm_title: mystr = '\x1b]0;%s\x07' % mystr fp.write(mystr) fp.flush() def _update_title_windows(mystr): if _console and config_title(sys.stdout): _console.title(txt=mystr)
BSD 3-Clause New or Revised License
yaqwsx/kikit
kikit/panelize.py
Panel.makeFrame
python
def makeFrame(self, width, hspace, vspace): frameInnerRect = expandRect(shpBoxToRect(self.boardsBBox()), hspace - SHP_EPSILON, vspace + SHP_EPSILON) frameOuterRect = expandRect(frameInnerRect, width + SHP_EPSILON) outerRing = rectToRing(frameOuterRect) innerRing = rectToRing(frameInnerRect) polygon = Polygon(outerRing, [innerRing]) self.appendSubstrate(polygon) innerArea = self.substrates[0].boundingBox() for s in self.substrates: innerArea = combineBoundingBoxes(innerArea, s.boundingBox()) frameCutsV = self.makeFrameCutsV(innerArea, frameInnerRect, frameOuterRect) frameCutsH = self.makeFrameCutsH(innerArea, frameInnerRect, frameOuterRect) return frameCutsV, frameCutsH
Build a frame around the board. Specify width and spacing between the boards substrates and the frame. Return a tuple of vertical and horizontal cuts.
https://github.com/yaqwsx/kikit/blob/cddb09d784fbd84d3736538f466597f43e6ab045/kikit/panelize.py#L715-L734
from kikit import pcbnew_compatibility from kikit.pcbnew_compatibility import pcbnew from kikit.common import normalize from pcbnew import (GetBoard, LoadBoard, FromMM, ToMM, wxPoint, wxRect, wxRectMM, wxPointMM) from enum import Enum, IntEnum from shapely.geometry import (Polygon, MultiPolygon, Point, LineString, box, GeometryCollection, MultiLineString) from shapely.prepared import prep import shapely from itertools import product, chain import numpy as np import os from kikit import substrate from kikit import units from kikit.substrate import Substrate, linestringToKicad, extractRings from kikit.defs import STROKE_T, Layer, EDA_TEXT_HJUSTIFY_T, EDA_TEXT_VJUSTIFY_T from kikit.common import * class PanelError(RuntimeError): pass def identity(x): return x class BasicGridPosition: def __init__(self, destination, boardSize, horSpace, verSpace): self.destination = destination self.boardSize = boardSize self.horSpace = horSpace self.verSpace = verSpace def position(self, i, j): return wxPoint(self.destination[0] + j * (self.boardSize.GetWidth() + self.horSpace), self.destination[1] + i * (self.boardSize.GetHeight() + self.verSpace)) def rotation(self, i, j): return 0 class OddEvenRowsPosition(BasicGridPosition): def rotation(self, i, j): if i % 2 == 0: return 0 return 1800 class OddEvenColumnPosition(BasicGridPosition): def rotation(self, i, j): if j % 2 == 0: return 0 return 1800 class OddEvenRowsColumnsPosition(BasicGridPosition): def rotation(self, i, j): if (i * j) % 2 == 0: return 0 return 1800 class Origin(Enum): Center = 0 TopLeft = 1 TopRight = 2 BottomLeft = 3 BottomRight = 4 def getOriginCoord(origin, bBox): if origin == Origin.Center: return wxPoint(bBox.GetX() + bBox.GetWidth() // 2, bBox.GetY() + bBox.GetHeight() // 2) if origin == Origin.TopLeft: return wxPoint(bBox.GetX(), bBox.GetY()) if origin == Origin.TopRight: return wxPoint(bBox.GetX() + bBox.GetWidth(), bBox.GetY()) if origin == Origin.BottomLeft: return wxPoint(bBox.GetX(), bBox.GetY() + bBox.GetHeight()) if origin == Origin.BottomRight: return wxPoint(bBox.GetX() + bBox.GetWidth(), bBox.GetY() + bBox.GetHeight()) def appendItem(board, item): try: newItem = item.Duplicate() except TypeError: newItem = pcbnew.Cast_to_BOARD_ITEM(item).Duplicate().Cast() board.Add(newItem) def transformArea(board, sourceArea, translate, origin, rotationAngle): for drawing in collectItems(board.GetDrawings(), sourceArea): drawing.Rotate(origin, rotationAngle) drawing.Move(translate) for footprint in collectItems(board.GetFootprints(), sourceArea): footprint.Rotate(origin, rotationAngle) footprint.Move(translate) for track in collectItems(board.GetTracks(), sourceArea): track.Rotate(origin, rotationAngle) track.Move(translate) for zone in collectItems(board.Zones(), sourceArea): zone.Rotate(origin, rotationAngle) zone.Move(translate) def collectNetNames(board): return [str(x) for x in board.GetNetInfo().NetsByName() if len(str(x)) > 0] def remapNets(collection, mapping): for item in collection: item.SetNetCode(mapping[item.GetNetname()].GetNet()) def toPolygon(entity): if isinstance(entity, list): return list([toPolygon(e) for e in entity]) if isinstance(entity, Polygon) or isinstance(entity, MultiPolygon): return entity if isinstance(entity, wxRect): return Polygon([ (entity.GetX(), entity.GetY()), (entity.GetX() + entity.GetWidth(), entity.GetY()), (entity.GetX() + entity.GetWidth(), entity.GetY() + entity.GetHeight()), (entity.GetX(), entity.GetY() + entity.GetHeight())]) raise NotImplementedError("Cannot convert {} to Polygon".format(type(entity))) def rectString(rect): return "({}, {}) w: {}, h: {}".format( ToMM(rect.GetX()), ToMM(rect.GetY()), ToMM(rect.GetWidth()), ToMM(rect.GetHeight())) def expandRect(rect, offsetX, offsetY=None): if offsetY is None: offsetY = offsetX offsetX = int(offsetX) offsetY = int(offsetY) return wxRect(rect.GetX() - offsetX, rect.GetY() - offsetY, rect.GetWidth() + 2 * offsetX, rect.GetHeight() + 2 * offsetY) def rectToRing(rect): return [ (rect.GetX(), rect.GetY()), (rect.GetX() + rect.GetWidth(), rect.GetY()), (rect.GetX() + rect.GetWidth(), rect.GetY() + rect.GetHeight()), (rect.GetX(), rect.GetY() + rect.GetHeight()) ] def roundPoint(point, precision=-4): if isinstance(point, Point): return Point(round(point.x, precision), round(point.y, precision)) return Point(round(point[0], precision), round(point[1], precision)) def undoTransformation(point, rotation, origin, translation): segment = pcbnew.PCB_SHAPE() segment.SetShape(STROKE_T.S_SEGMENT) segment.SetStart(wxPoint(point[0], point[1])) segment.SetEnd(wxPoint(0, 0)) segment.Move(wxPoint(-translation[0], -translation[1])) segment.Rotate(origin, -rotation) return segment.GetStart() def removeCutsFromFootprint(footprint): edges = [] for edge in footprint.GraphicalItems(): if edge.GetLayerName() != "Edge.Cuts": continue footprint.Remove(edge) edges.append(edge) return edges def renameNets(board, renamer): originalNetNames = collectNetNames(board) netinfo = board.GetNetInfo() newNetMapping = { "": netinfo.GetNetItem("") } newNames = set() for name in originalNetNames: newName = renamer(name) newNet = pcbnew.NETINFO_ITEM(board, newName) newNetMapping[name] = newNet board.Add(newNet) newNames.add(newName) remapNets(board.GetPads(), newNetMapping) remapNets(board.GetTracks(), newNetMapping) remapNets(board.Zones(), newNetMapping) for name in originalNetNames: if name != "" and name not in newNames: board.RemoveNative(netinfo.GetNetItem(name)) def renameRefs(board, renamer): for footprint in board.GetFootprints(): ref = footprint.Reference().GetText() footprint.Reference().SetText(renamer(ref)) def isBoardEdge(edge): return isinstance(edge, pcbnew.PCB_SHAPE) and edge.GetLayerName() == "Edge.Cuts" def increaseZonePriorities(board, amount=1): for zone in board.Zones(): zone.SetPriority(zone.GetPriority() + amount) def tabSpacing(width, count): return [width * i / (count + 1) for i in range(1, count + 1)] def prolongCut(cut, prolongation): c = list([np.array(x) for x in cut.coords]) c[0] += normalize(c[0] - c[1]) * prolongation c[-1] += normalize(c[-1] - c[-2]) * prolongation return LineString(c) def polygonToZone(polygon, board): zone = pcbnew.ZONE(board) boundary = polygon.exterior zone.Outline().AddOutline(linestringToKicad(boundary)) for hole in polygon.interiors: boundary = hole.exterior zone.Outline().AddHole(linestringToKicad(boundary)) return zone def isAnnotation(footprint): info = footprint.GetFPID() if info.GetLibNickname() != "kikit": return False return info.GetLibItemName() in ["Tab", "Board"] def readKiKitProps(footprint): for x in footprint.GraphicalItemsList(): if not isinstance(x, pcbnew.FP_TEXT): continue text = x.GetText() if text.startswith("KIKIT:"): return readParameterList(text[len("KIKIT:"):]) return {} class TabAnnotation: def __init__(self, ref, origin, direction, width, maxLength=fromMm(100)): self.ref = ref self.origin = origin self.direction = direction self.width = width self.maxLength = maxLength @staticmethod def fromFootprint(footprint): origin = footprint.GetPosition() radOrientaion = footprint.GetOrientationRadians() direction = (np.cos(radOrientaion), -np.sin(radOrientaion)) props = readKiKitProps(footprint) width = units.readLength(props["width"]) return TabAnnotation(footprint.GetReference(), origin, direction, width) def convertToAnnotation(footprint): name = footprint.GetFPID().GetLibItemName() if name == "Tab": return [TabAnnotation.fromFootprint(footprint)] return [] def buildTabs(substrate, partitionLines, tabAnnotations): tabs, cuts = [], [] for annotation in tabAnnotations: t, c = substrate.tab(annotation.origin, annotation.direction, annotation.width, partitionLines, annotation.maxLength) if t is not None: tabs.append(t) cuts.append(c) return tabs, cuts def normalizePartitionLineOrientation(line): if isinstance(line, MultiLineString): return MultiLineString([normalizePartitionLineOrientation(x) for x in line.geoms]) if isinstance(line, GeometryCollection): return GeometryCollection([normalizePartitionLineOrientation(l) for l in line.geoms]) if not isLinestringCyclic(line): return line r = LinearRing(line.coords) if not r.is_ccw: return line return LineString(list(r.coords)[::-1]) def maxTabCount(edgeLen, width, minDistance): if edgeLen < width: return 0 c = 1 + (edgeLen - minDistance) // (minDistance + width) return max(0, int(c)) class Panel: def __init__(self): self.board = pcbnew.BOARD() self.substrates = [] self.boardSubstrate = Substrate([]) self.backboneLines = [] self.hVCuts = set() self.vVCuts = set() self.vCutLayer = Layer.Cmts_User self.vCutClearance = 0 self.copperLayerCount = None self.zonesToRefill = pcbnew.ZONES() def save(self, filename): for edge in self.boardSubstrate.serialize(): self.board.Add(edge) vcuts = self._renderVCutH() + self._renderVCutV() keepouts = [] for cut, clearanceArea in vcuts: self.board.Add(cut) if clearanceArea is not None: keepouts.append(self.addKeepout(clearanceArea)) fillerTool = pcbnew.ZONE_FILLER(self.board) fillerTool.Fill(self.zonesToRefill) self.board.Save(filename) for cut, _ in vcuts: self.board.Remove(cut) for keepout in keepouts: self.board.Remove(keepout) for edge in collectEdges(self.board, "Edge.Cuts"): self.board.Remove(edge) def _uniquePrefix(self): return "Board_{}-".format(len(self.substrates)) def inheritDesignSettings(self, boardFilename): b = pcbnew.LoadBoard(boardFilename) self.setDesignSettings(b.GetDesignSettings()) def setDesignSettings(self, designSettings): self.board.SetDesignSettings(designSettings) def inheritProperties(self, boardFilename): b = pcbnew.LoadBoard(boardFilename) self.board.SetProperties(b.GetProperties()) def setProperties(self, properties): self.board.SetProperties(properties) def appendBoard(self, filename, destination, sourceArea=None, origin=Origin.Center, rotationAngle=0, shrink=False, tolerance=0, bufferOutline=fromMm(0.001), netRenamer=None, refRenamer=None): board = LoadBoard(filename) thickness = board.GetDesignSettings().GetBoardThickness() if len(self.substrates) == 0: self.board.GetDesignSettings().SetBoardThickness(thickness) else: panelThickness = self.board.GetDesignSettings().GetBoardThickness() if panelThickness != thickness: raise PanelError(f"Cannot append board {filename} as its " f"thickness ({toMm(thickness)} mm) differs from " f"thickness of the panel ({toMm(panelThickness)}) mm") self.inheritCopperLayers(board) if not sourceArea: sourceArea = findBoardBoundingBox(board) elif shrink: sourceArea = findBoardBoundingBox(board, sourceArea) enlargedSourceArea = expandRect(sourceArea, tolerance) originPoint = getOriginCoord(origin, sourceArea) translation = wxPoint(destination[0] - originPoint[0], destination[1] - originPoint[1]) if netRenamer is None: netRenamer = lambda x, y: self._uniquePrefix() + y renameNets(board, lambda x: netRenamer(len(self.substrates), x)) if refRenamer is not None: renameRefs(board, lambda x: refRenamer(len(self.substrates), x)) drawings = collectItems(board.GetDrawings(), enlargedSourceArea) footprints = collectFootprints(board.GetFootprints(), enlargedSourceArea) tracks = collectItems(board.GetTracks(), enlargedSourceArea) zones = collectItems(board.Zones(), enlargedSourceArea) edges = [] annotations = [] for footprint in footprints: for item in (*footprint.GraphicalItems(), footprint.Value(), footprint.Reference()): if isinstance(item, pcbnew.TEXTE_MODULE) and item.IsKeepUpright(): actualOrientation = item.GetDrawRotation() item.SetKeepUpright(False) item.SetTextAngle(actualOrientation - footprint.GetOrientation()) footprint.Rotate(originPoint, rotationAngle) footprint.Move(translation) edges += removeCutsFromFootprint(footprint) if isAnnotation(footprint): annotations.extend(convertToAnnotation(footprint)) else: appendItem(self.board, footprint) for track in tracks: track.Rotate(originPoint, rotationAngle) track.Move(translation) appendItem(self.board, track) for zone in zones: zone.Rotate(originPoint, rotationAngle) zone.Move(translation) appendItem(self.board, zone) for netId in board.GetNetInfo().NetsByNetcode(): self.board.Add(board.GetNetInfo().GetNetItem(netId)) for drawing in drawings: drawing.Rotate(originPoint, rotationAngle) drawing.Move(translation) edges += [edge for edge in drawings if isBoardEdge(edge)] otherDrawings = [edge for edge in drawings if not isBoardEdge(edge)] try: o = Substrate(edges, -bufferOutline) s = Substrate(edges, bufferOutline) self.boardSubstrate.union(s) self.substrates.append(o) self.substrates[-1].annotations = annotations except substrate.PositionError as e: point = undoTransformation(e.point, rotationAngle, originPoint, translation) raise substrate.PositionError(filename + ": " + e.origMessage, point) for drawing in otherDrawings: appendItem(self.board, drawing) return findBoundingBox(edges) def appendSubstrate(self, substrate): polygon = toPolygon(substrate) self.boardSubstrate.union(polygon) def boardsBBox(self): if len(self.substrates) == 0: raise RuntimeError("There are no substrates, cannot compute bounding box") bbox = self.substrates[0].bounds() for p in islice(self.substrates, 1, None): bbox = shpBBoxMerge(bbox, p.bounds()) return bbox def panelBBox(self): return self.boardSubstrate.bounds() def addVCutH(self, pos): self.hVCuts.add(pos) def addVCutV(self, pos): self.vVCuts.add(pos) def setVCutLayer(self, layer): self.vCutLayer = layer def setVCutClearance(self, clearance): self.vCutClearance = clearance def _setVCutSegmentStyle(self, segment, layer): segment.SetShape(STROKE_T.S_SEGMENT) segment.SetLayer(layer) segment.SetWidth(fromMm(0.4)) def _setVCutLabelStyle(self, label, layer): label.SetText("V-CUT") label.SetLayer(layer) label.SetTextThickness(fromMm(0.4)) label.SetTextSize(pcbnew.wxSizeMM(2, 2)) label.SetHorizJustify(EDA_TEXT_HJUSTIFY_T.GR_TEXT_HJUSTIFY_LEFT) def _renderVCutV(self): bBox = self.boardSubstrate.boundingBox() minY, maxY = bBox.GetY() - fromMm(3), bBox.GetY() + bBox.GetHeight() + fromMm(3) segments = [] for cut in self.vVCuts: segment = pcbnew.PCB_SHAPE() self._setVCutSegmentStyle(segment, self.vCutLayer) segment.SetStart(pcbnew.wxPoint(cut, minY)) segment.SetEnd(pcbnew.wxPoint(cut, maxY)) keepout = None if self.vCutClearance != 0: keepout = shapely.geometry.box( cut - self.vCutClearance / 2, bBox.GetY(), cut + self.vCutClearance / 2, bBox.GetY() + bBox.GetHeight()) segments.append((segment, keepout)) label = pcbnew.PCB_TEXT(segment) self._setVCutLabelStyle(label, self.vCutLayer) label.SetPosition(wxPoint(cut, minY - fromMm(3))) label.SetTextAngle(900) segments.append((label, None)) return segments def _renderVCutH(self): bBox = self.boardSubstrate.boundingBox() minX, maxX = bBox.GetX() - fromMm(3), bBox.GetX() + bBox.GetWidth() + fromMm(3) segments = [] for cut in self.hVCuts: segment = pcbnew.PCB_SHAPE() self._setVCutSegmentStyle(segment, self.vCutLayer) segment.SetStart(pcbnew.wxPoint(minX, cut)) segment.SetEnd(pcbnew.wxPoint(maxX, cut)) keepout = None if self.vCutClearance != 0: keepout = shapely.geometry.box( bBox.GetX(), cut - self.vCutClearance / 2, bBox.GetX() + bBox.GetWidth(), cut + self.vCutClearance / 2) segments.append((segment, keepout)) label = pcbnew.PCB_TEXT(segment) self._setVCutLabelStyle(label, self.vCutLayer) label.SetPosition(wxPoint(maxX + fromMm(3), cut)) segments.append((label, None)) return segments def _placeBoardsInGrid(self, boardfile, rows, cols, destination, sourceArea, tolerance, verSpace, horSpace, rotation, netRenamer, refRenamer, placementClass): boardSize = wxRect(0, 0, 0, 0) topLeftSize = None placement = placementClass(destination, boardSize, horSpace, verSpace) for i, j in product(range(rows), range(cols)): placement.boardSize = boardSize dest = placement.position(i, j) boardRotation = rotation + placement.rotation(i, j) boardSize = self.appendBoard( boardfile, dest, sourceArea=sourceArea, tolerance=tolerance, origin=Origin.Center, rotationAngle=boardRotation, netRenamer=netRenamer, refRenamer=refRenamer) if not topLeftSize: topLeftSize = boardSize return topLeftSize def makeGrid(self, boardfile, sourceArea, rows, cols, destination, verSpace, horSpace, rotation, placementClass=BasicGridPosition, netRenamePattern="Board_{n}-{orig}", refRenamePattern="Board_{n}-{orig}"): substrateCount = len(self.substrates) netRenamer = lambda x, y: netRenamePattern.format(n=x, orig=y) refRenamer = lambda x, y: refRenamePattern.format(n=x, orig=y) self._placeBoardsInGrid(boardfile, rows, cols, destination, sourceArea, 0, verSpace, horSpace, rotation, netRenamer, refRenamer, placementClass) return self.substrates[substrateCount:]
MIT License
avast/retdec-regression-tests-framework
tests/parsers/c_parser/stmts/statement_tests.py
StatementTests.get_for_loop
python
def get_for_loop(self, code): func = self.insert_into_function_body(code) return func.for_loops[0]
Returns the first for loop in the given code.
https://github.com/avast/retdec-regression-tests-framework/blob/a8d024475bf76cd6acdee3c9df3a3d38a2ec63df/tests/parsers/c_parser/stmts/statement_tests.py#L32-L35
from unittest import mock from regression_tests.parsers.c_parser.stmts.break_stmt import BreakStmt from regression_tests.parsers.c_parser.stmts.continue_stmt import ContinueStmt from regression_tests.parsers.c_parser.stmts.do_while_loop import DoWhileLoop from regression_tests.parsers.c_parser.stmts.empty_stmt import EmptyStmt from regression_tests.parsers.c_parser.stmts.for_loop import ForLoop from regression_tests.parsers.c_parser.stmts.goto_stmt import GotoStmt from regression_tests.parsers.c_parser.stmts.if_stmt import IfStmt from regression_tests.parsers.c_parser.stmts.return_stmt import ReturnStmt from regression_tests.parsers.c_parser.stmts.statement import Statement from regression_tests.parsers.c_parser.stmts.switch_stmt import SwitchStmt from regression_tests.parsers.c_parser.stmts.while_loop import WhileLoop from tests.parsers.c_parser import WithModuleTests class StatementTests(WithModuleTests): def insert_into_function_body(self, code): return self.get_func(""" void func() { %s } """ % code, 'func')
MIT License
duerrp/pyexperiment
tests/test_replicate.py
TestTargetCreator.tearDown
python
def tearDown(self): log.reset_instance()
Clean up after the test
https://github.com/duerrp/pyexperiment/blob/c426565d870d944bd5b9712629d8f1ba2527c67f/tests/test_replicate.py#L174-L177
from __future__ import print_function from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import import unittest import numpy as np import logging import io import multiprocessing import functools if True: from six.moves import range from pyexperiment import state from pyexperiment import Logger from pyexperiment import log from pyexperiment.replicate import replicate, collect_results, TargetCreator from pyexperiment.replicate import SUBSTATE_KEY_PATTERN FAKE_ERROR = RuntimeError("Foo") def experiment(): state['result'] = "bla" def experiment2(): state['result'] = "bla" _bla = state['result'] del state['result'] def experiment3(): raise FAKE_ERROR def experiment4(): np.random.seed() state['result'] = np.random.rand(1) class TestReplicate(unittest.TestCase): def tearDown(self): state.reset_instance() def test_setting_state(self): no_replicates = 25 replicate(experiment, no_replicates) for i in range(no_replicates): self.assertIn('result', state[SUBSTATE_KEY_PATTERN % i]) self.assertEqual(state[SUBSTATE_KEY_PATTERN % i]['result'], "bla") def test_getting_state(self): no_replicates = 25 replicate(experiment2, no_replicates) for i in range(no_replicates): self.assertNotIn('result', state[SUBSTATE_KEY_PATTERN % i]) def test_raises(self): no_replicates = 25 try: replicate(experiment3, no_replicates) except RuntimeError as err: self.assertEqual(err, FAKE_ERROR) else: assert False def test_setting_state_parallel(self): no_replicates = 25 replicate(experiment, no_replicates, parallel=True, no_processes=2) for i in range(no_replicates): self.assertIn('result', state[SUBSTATE_KEY_PATTERN % i]) self.assertEqual(state[SUBSTATE_KEY_PATTERN % i]['result'], "bla") def test_getting_state_parallel(self): no_replicates = 25 replicate(experiment2, no_replicates, parallel=True, no_processes=2) for i in range(no_replicates): self.assertNotIn(SUBSTATE_KEY_PATTERN % i + '.result', state) def test_collecting(self): no_replicates = 25 replicate(experiment4, no_replicates) for i in range(no_replicates): self.assertIn('result', state[SUBSTATE_KEY_PATTERN % i]) results = collect_results('result', no_replicates=no_replicates) self.assertEqual(len(results), no_replicates) for i, r_1 in enumerate(results): for k, r_2 in enumerate(results): if not i == k: self.assertFalse((r_1 == r_2).all()) def test_collecting_parallel(self): no_replicates = 25 replicate(experiment4, no_replicates, parallel=True, no_processes=2) for i in range(no_replicates): self.assertIn('result', state[SUBSTATE_KEY_PATTERN % i]) results = collect_results('result', no_replicates=no_replicates) self.assertEqual(len(results), no_replicates) for i, r_1 in enumerate(results): for k, r_2 in enumerate(results): if not i == k: self.assertFalse((r_1 == r_2).all()) class TestTargetCreator(unittest.TestCase):
MIT License
apache/bloodhound
bloodhound_dashboard/bhdashboard/widgets/product.py
ProductWidget.get_widget_params
python
def get_widget_params(self, name): return { 'max': {'desc': """Limit the number of products displayed""", 'type': int}, 'cols': {'desc': """Number of columns""", 'type': int} }
Return a dictionary containing arguments specification for the widget with specified name.
https://github.com/apache/bloodhound/blob/c3e31294e68af99d4e040e64fbdf52394344df9e/bloodhound_dashboard/bhdashboard/widgets/product.py#L48-L57
import itertools from genshi.builder import tag from trac.resource import Neighborhood from trac.ticket.model import Milestone, Component, Version from trac.ticket.query import Query from bhdashboard.util import pretty_wrapper from bhdashboard.util.widgets import WidgetBase, check_widget_name from bhdashboard.util.translation import _ from multiproduct.env import Product, ProductEnvironment __metaclass__ = type class ProductWidget(WidgetBase):
Apache License 2.0
bio2bel/bio2bel
src/bio2bel/sources/biogrid.py
_process_pmid
python
def _process_pmid(s: str) -> str: if not s.startswith('pubmed:'): raise ValueError(f'Non pubmed: {s}') return s[len('pubmed:')]
Process provenance column.
https://github.com/bio2bel/bio2bel/blob/f2c015c23e9e1f4b996716ec48f61687c5e347fe/src/bio2bel/sources/biogrid.py#L199-L203
import logging import os from functools import lru_cache from typing import Iterable, List, Optional, Tuple import click import pandas as pd import pyobo.sources.biogrid from more_click import verbose_option from pyobo.identifier_utils import normalize_curie from tqdm import tqdm import pybel.dsl from pybel import BELGraph from ..utils import ensure_path, get_data_dir __all__ = [ 'get_bel', ] logger = logging.getLogger(__name__) EVIDENCE = 'From BioGRID' MODULE_NAME = 'biogrid' VERSION = '3.5.186' BASE_URL = 'https://downloads.thebiogrid.org/Download/BioGRID/Release-Archive' URL = f'{BASE_URL}/BIOGRID-{VERSION}/BIOGRID-ALL-{VERSION}.mitab.zip' BIOGRID_GENE_ASSOCIATION = { 'psi-mi:"MI:0794"(synthetic genetic interaction defined by inequality)', 'psi-mi:"MI:0799"(additive genetic interaction defined by inequality)', 'psi-mi:"MI:0796"(suppressive genetic interaction defined by inequality)', } BIOGRID_ASSOCIATION_ACTIONS = { 'psi-mi:"MI:0403"(colocalization)', 'psi-mi:"MI:0914"(association)', 'psi-mi:"MI:0915"(physical association)', } BIOGRID_BINDS_ACTIONS = { 'psi-mi:"MI:0407"(direct interaction)', } @lru_cache() def _get_ncbigene_mapping(): return pyobo.sources.biogrid.get_ncbigene_mapping() def _map_ncbigene(identifier): return _get_ncbigene_mapping().get(identifier) BIOGRID_NCBIGENE_REMAPPING = { '4349295': None, '4349491': None, '4349337': None, '4349775': None, '4349716': None, '4349853': None, '4383869': None, '4383875': None, } UNIPROT_NCBIGENE_REMAPPING = { 'P0DTC1': None, 'P0DTD2': '1489679', 'Q7TLC7': None, } def _process_interactor(s: str) -> Optional[str]: prefix, identifier = normalize_curie(s) if prefix is None: logger.warning('could not parse %s', s) return if prefix == 'ncbigene': return identifier elif prefix == 'biogrid': ncbigene_identifier = _map_ncbigene(identifier) if ncbigene_identifier is not None: return ncbigene_identifier elif identifier in BIOGRID_NCBIGENE_REMAPPING: remapped = BIOGRID_NCBIGENE_REMAPPING[identifier] if not remapped: logger.debug('tried but failed curation on %s', s) return remapped else: logger.warning('need to curate: %s', s) return elif prefix == 'uniprot': if identifier in UNIPROT_NCBIGENE_REMAPPING: remapped = UNIPROT_NCBIGENE_REMAPPING[identifier] if not remapped: logger.debug('tried but failed curation on %s', s) return remapped else: logger.warning('need to curate: %s', s) return else: logger.warning('unhandled interactor: %s (%s:%s)', s, prefix, identifier) def _process_xrefs(s: str) -> List[Tuple[str, str]]: return list(_iter_process_xrefs(s)) def _iter_process_xrefs(s: str) -> Iterable[Tuple[str, str]]: for curie in s.split('|'): curie = curie.strip() prefix, identifier = normalize_curie(curie) if prefix is not None: yield prefix, identifier
MIT License
apple-network/apple-blockchain
apple/full_node/full_node.py
FullNode.short_sync_backtrack
python
async def short_sync_backtrack( self, peer: ws.WSAppleConnection, peak_height: uint32, target_height: uint32, target_unf_hash: bytes32 ): try: if peer.peer_node_id not in self.sync_store.backtrack_syncing: self.sync_store.backtrack_syncing[peer.peer_node_id] = 0 self.sync_store.backtrack_syncing[peer.peer_node_id] += 1 unfinished_block: Optional[UnfinishedBlock] = self.full_node_store.get_unfinished_block(target_unf_hash) curr_height: int = target_height found_fork_point = False responses = [] while curr_height > peak_height - 5: fetch_tx: bool = unfinished_block is None or curr_height != target_height curr = await peer.request_block(full_node_protocol.RequestBlock(uint32(curr_height), fetch_tx)) if curr is None: raise ValueError(f"Failed to fetch block {curr_height} from {peer.get_peer_logging()}, timed out") if curr is None or not isinstance(curr, full_node_protocol.RespondBlock): raise ValueError( f"Failed to fetch block {curr_height} from {peer.get_peer_logging()}, wrong type {type(curr)}" ) responses.append(curr) if self.blockchain.contains_block(curr.block.prev_header_hash) or curr_height == 0: found_fork_point = True break curr_height -= 1 if found_fork_point: for response in reversed(responses): await self.respond_block(response, peer) except Exception as e: self.sync_store.backtrack_syncing[peer.peer_node_id] -= 1 raise e self.sync_store.backtrack_syncing[peer.peer_node_id] -= 1 return found_fork_point
Performs a backtrack sync, where blocks are downloaded one at a time from newest to oldest. If we do not find the fork point 5 deeper than our peak, we return False and do a long sync instead. Args: peer: peer to sync from peak_height: height of our peak target_height: target height target_unf_hash: partial hash of the unfinished block of the target Returns: True iff we found the fork point, and we do not need to long sync.
https://github.com/apple-network/apple-blockchain/blob/74351fd5cea80da40a84777c6e1659b845a22d1c/apple/full_node/full_node.py#L310-L360
import asyncio import dataclasses import logging import random import time import traceback from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union import aiosqlite from blspy import AugSchemeMPL import apple.server.ws_connection as ws from apple.consensus.block_creation import unfinished_block_to_full_block from apple.consensus.block_record import BlockRecord from apple.consensus.blockchain import Blockchain, ReceiveBlockResult from apple.consensus.blockchain_interface import BlockchainInterface from apple.consensus.constants import ConsensusConstants from apple.consensus.difficulty_adjustment import get_next_sub_slot_iters_and_difficulty from apple.consensus.make_sub_epoch_summary import next_sub_epoch_summary from apple.consensus.multiprocess_validation import PreValidationResult from apple.consensus.pot_iterations import calculate_sp_iters from apple.full_node.block_store import BlockStore from apple.full_node.bundle_tools import detect_potential_template_generator from apple.full_node.coin_store import CoinStore from apple.full_node.full_node_store import FullNodeStore from apple.full_node.hint_store import HintStore from apple.full_node.mempool_manager import MempoolManager from apple.full_node.signage_point import SignagePoint from apple.full_node.sync_store import SyncStore from apple.full_node.weight_proof import WeightProofHandler from apple.protocols import farmer_protocol, full_node_protocol, timelord_protocol, wallet_protocol from apple.protocols.full_node_protocol import ( RequestBlocks, RespondBlock, RespondBlocks, RespondSignagePoint, ) from apple.protocols.protocol_message_types import ProtocolMessageTypes from apple.protocols.wallet_protocol import CoinState, CoinStateUpdate from apple.server.node_discovery import FullNodePeers from apple.server.outbound_message import Message, NodeType, make_msg from apple.server.server import AppleServer from apple.types.blockchain_format.classgroup import ClassgroupElement from apple.types.blockchain_format.pool_target import PoolTarget from apple.types.blockchain_format.sized_bytes import bytes32 from apple.types.blockchain_format.sub_epoch_summary import SubEpochSummary from apple.types.blockchain_format.vdf import CompressibleVDFField, VDFInfo, VDFProof from apple.types.coin_record import CoinRecord from apple.types.end_of_slot_bundle import EndOfSubSlotBundle from apple.types.full_block import FullBlock from apple.types.header_block import HeaderBlock from apple.types.mempool_inclusion_status import MempoolInclusionStatus from apple.types.spend_bundle import SpendBundle from apple.types.unfinished_block import UnfinishedBlock from apple.util.bech32m import encode_puzzle_hash from apple.util.check_fork_next_block import check_fork_next_block from apple.util.db_wrapper import DBWrapper from apple.util.errors import ConsensusError, Err from apple.util.ints import uint8, uint32, uint64, uint128 from apple.util.path import mkdir, path_from_root from apple.util.safe_cancel_task import cancel_task_safe from apple.util.profiler import profile_task from datetime import datetime class FullNode: block_store: BlockStore full_node_store: FullNodeStore full_node_peers: Optional[FullNodePeers] sync_store: Any coin_store: CoinStore mempool_manager: MempoolManager connection: aiosqlite.Connection _sync_task: Optional[asyncio.Task] _init_weight_proof: Optional[asyncio.Task] = None blockchain: Blockchain config: Dict server: Any log: logging.Logger constants: ConsensusConstants _shut_down: bool root_path: Path state_changed_callback: Optional[Callable] timelord_lock: asyncio.Lock initialized: bool weight_proof_handler: Optional[WeightProofHandler] _ui_tasks: Set[asyncio.Task] def __init__( self, config: Dict, root_path: Path, consensus_constants: ConsensusConstants, name: str = None, ): self.initialized = False self.root_path = root_path self.config = config self.server = None self._shut_down = False self.constants = consensus_constants self.pow_creation: Dict[uint32, asyncio.Event] = {} self.state_changed_callback: Optional[Callable] = None self.full_node_peers = None self.sync_store = None self.signage_point_times = [time.time() for _ in range(self.constants.NUM_SPS_SUB_SLOT)] self.full_node_store = FullNodeStore(self.constants) self.uncompact_task = None self.compact_vdf_requests: Set[bytes32] = set() self.log = logging.getLogger(name if name else __name__) self._ui_tasks = set() db_path_replaced: str = config["database_path"].replace("CHALLENGE", config["selected_network"]) self.db_path = path_from_root(root_path, db_path_replaced) self.coin_subscriptions: Dict[bytes32, Set[bytes32]] = {} self.ph_subscriptions: Dict[bytes32, Set[bytes32]] = {} self.peer_coin_ids: Dict[bytes32, Set[bytes32]] = {} self.peer_puzzle_hash: Dict[bytes32, Set[bytes32]] = {} self.peer_sub_counter: Dict[bytes32, int] = {} mkdir(self.db_path.parent) def _set_state_changed_callback(self, callback: Callable): self.state_changed_callback = callback async def _start(self): self.timelord_lock = asyncio.Lock() self.compact_vdf_sem = asyncio.Semaphore(4) self.new_peak_sem = asyncio.Semaphore(8) self.connection = await aiosqlite.connect(self.db_path) await self.connection.execute("pragma journal_mode=wal") await self.connection.execute("pragma synchronous=OFF") if self.config.get("log_sqlite_cmds", False): sql_log_path = path_from_root(self.root_path, "log/sql.log") self.log.info(f"logging SQL commands to {sql_log_path}") def sql_trace_callback(req: str): timestamp = datetime.now().strftime("%H:%M:%S.%f") log = open(sql_log_path, "a") log.write(timestamp + " " + req + "\n") log.close() await self.connection.set_trace_callback(sql_trace_callback) self.db_wrapper = DBWrapper(self.connection) self.block_store = await BlockStore.create(self.db_wrapper) self.sync_store = await SyncStore.create() self.hint_store = await HintStore.create(self.db_wrapper) self.coin_store = await CoinStore.create(self.db_wrapper) self.log.info("Initializing blockchain from disk") start_time = time.time() self.blockchain = await Blockchain.create(self.coin_store, self.block_store, self.constants, self.hint_store) self.mempool_manager = MempoolManager(self.coin_store, self.constants) self.weight_proof_handler = None self._init_weight_proof = asyncio.create_task(self.initialize_weight_proof()) if self.config.get("enable_profiler", False): asyncio.create_task(profile_task(self.root_path, "node", self.log)) self._sync_task = None self._segment_task = None time_taken = time.time() - start_time if self.blockchain.get_peak() is None: self.log.info(f"Initialized with empty blockchain time taken: {int(time_taken)}s") else: self.log.info( f"Blockchain initialized to peak {self.blockchain.get_peak().header_hash} height" f" {self.blockchain.get_peak().height}, " f"time taken: {int(time_taken)}s" ) pending_tx = await self.mempool_manager.new_peak(self.blockchain.get_peak()) assert len(pending_tx) == 0 peak: Optional[BlockRecord] = self.blockchain.get_peak() if peak is not None: full_peak = await self.blockchain.get_full_peak() await self.peak_post_processing(full_peak, peak, max(peak.height - 1, 0), None, ([], {})) if self.config["send_uncompact_interval"] != 0: sanitize_weight_proof_only = False if "sanitize_weight_proof_only" in self.config: sanitize_weight_proof_only = self.config["sanitize_weight_proof_only"] assert self.config["target_uncompact_proofs"] != 0 self.uncompact_task = asyncio.create_task( self.broadcast_uncompact_blocks( self.config["send_uncompact_interval"], self.config["target_uncompact_proofs"], sanitize_weight_proof_only, ) ) self.initialized = True if self.full_node_peers is not None: asyncio.create_task(self.full_node_peers.start()) async def initialize_weight_proof(self): self.weight_proof_handler = WeightProofHandler(self.constants, self.blockchain) peak = self.blockchain.get_peak() if peak is not None: await self.weight_proof_handler.create_sub_epoch_segments() def set_server(self, server: AppleServer): self.server = server dns_servers = [] try: network_name = self.config["selected_network"] default_port = self.config["network_overrides"]["config"][network_name]["default_full_node_port"] except Exception: self.log.info("Default port field not found in config.") default_port = None if "dns_servers" in self.config: dns_servers = self.config["dns_servers"] elif self.config["port"] == 26666: dns_servers.append("dns.applecoin.in") try: self.full_node_peers = FullNodePeers( self.server, self.root_path, self.config["target_peer_count"] - self.config["target_outbound_peer_count"], self.config["target_outbound_peer_count"], self.config["peer_db_path"], self.config["introducer_peer"], dns_servers, self.config["peer_connect_interval"], self.config["selected_network"], default_port, self.log, ) except Exception as e: error_stack = traceback.format_exc() self.log.error(f"Exception: {e}") self.log.error(f"Exception in peer discovery: {e}") self.log.error(f"Exception Stack: {error_stack}") def _state_changed(self, change: str): if self.state_changed_callback is not None: self.state_changed_callback(change) async def short_sync_batch(self, peer: ws.WSAppleConnection, start_height: uint32, target_height: uint32) -> bool: if ( peer.peer_node_id in self.sync_store.backtrack_syncing and self.sync_store.backtrack_syncing[peer.peer_node_id] > 0 ): return True if peer.peer_node_id in self.sync_store.batch_syncing: return True self.sync_store.batch_syncing.add(peer.peer_node_id) self.log.info(f"Starting batch short sync from {start_height} to height {target_height}") if start_height > 0: first = await peer.request_block(full_node_protocol.RequestBlock(uint32(start_height), False)) if first is None or not isinstance(first, full_node_protocol.RespondBlock): self.sync_store.batch_syncing.remove(peer.peer_node_id) raise ValueError(f"Error short batch syncing, could not fetch block at height {start_height}") if not self.blockchain.contains_block(first.block.prev_header_hash): self.log.info("Batch syncing stopped, this is a deep chain") self.sync_store.batch_syncing.remove(peer.peer_node_id) return False batch_size = self.constants.MAX_BLOCK_COUNT_PER_REQUESTS if self._segment_task is not None and (not self._segment_task.done()): try: self._segment_task.cancel() except Exception as e: self.log.warning(f"failed to cancel segment task {e}") self._segment_task = None try: for height in range(start_height, target_height, batch_size): end_height = min(target_height, height + batch_size) request = RequestBlocks(uint32(height), uint32(end_height), True) response = await peer.request_blocks(request) if not response: raise ValueError(f"Error short batch syncing, invalid/no response for {height}-{end_height}") async with self.blockchain.lock: success, advanced_peak, fork_height, coin_changes = await self.receive_block_batch( response.blocks, peer, None ) if not success: raise ValueError(f"Error short batch syncing, failed to validate blocks {height}-{end_height}") if advanced_peak: peak = self.blockchain.get_peak() peak_fb: Optional[FullBlock] = await self.blockchain.get_full_peak() assert peak is not None and peak_fb is not None and fork_height is not None await self.peak_post_processing(peak_fb, peak, fork_height, peer, coin_changes) self.log.info(f"Added blocks {height}-{end_height}") except Exception: self.sync_store.batch_syncing.remove(peer.peer_node_id) raise self.sync_store.batch_syncing.remove(peer.peer_node_id) return True
Apache License 2.0
jcmgray/cotengra
cotengra/core.py
ContractionTree.get_subtree
python
def get_subtree(self, node, size, search='bfs'): branches = [] real_leaves = [] queue = [node] while (len(queue) + len(real_leaves) < size) and queue: if search == 'bfs': p = queue.pop(0) elif search == 'dfs': p = queue.pop(-1) elif search == 'random': p = queue.pop(random.randint(0, len(queue) - 1)) if len(p) == 1: real_leaves.append(p) continue l, r = self.children[p] queue.append(r) queue.append(l) branches.append(p) sub_leaves = queue + real_leaves return tuple(sub_leaves), tuple(branches)
Get a subtree spanning down from ``node`` which will have ``size`` leaves (themselves not necessarily leaves of the actual tree). Parameters ---------- node : node The node of the tree to start with. size : int How many subtree leaves to aim for. search : {'bfs', 'dfs', 'random'}, optional How to build the tree: - 'bfs': breadth first expansion - 'dfs': depth first expansion (largest nodes first) - 'random': random expansion Returns ------- sub_leaves : tuple[node] Nodes which are subtree leaves. branches : tuple[node] Nodes which are between the subtree leaves and root.
https://github.com/jcmgray/cotengra/blob/9fa1ebb046009b83e874be1213d3c72817e36f76/cotengra/core.py#L930-L988
import re import math import random import warnings import operator import itertools import functools import collections from string import ascii_letters from opt_einsum.helpers import compute_size_by_dict, flop_count from opt_einsum.paths import get_path_fn, DynamicProgramming, linear_to_ssa from autoray import do from .utils import ( MaxCounter, BitSet, node_from_seq, node_from_single, node_supremum, node_get_single_el, is_valid_node, oset, groupby, interleave, unique, prod, dynary, ) from .parallel import ( parse_parallel_arg, maybe_leave_pool, maybe_rejoin_pool, submit, ) from .plot import ( plot_tree_ring, plot_tree_tent, plot_tree_span, plot_tree_rubberband, plot_contractions, plot_contractions_alt, plot_hypergraph, ) try: from opt_einsum.paths import DEFAULT_COMBO_FACTOR except ImportError: DEFAULT_COMBO_FACTOR = 64 try: from cotengra.cotengra import HyperGraph as HyperGraphRust except ImportError: HyperGraphRust = None def cached_node_property(name): def wrapper(meth): @functools.wraps(meth) def getter(self, node): try: return self.info[node][name] except KeyError: self.info[node][name] = value = meth(self, node) return value return getter return wrapper def union_it(bs): b0, *bs = bs return b0.union(*bs) def get_with_default(k, obj, default): return obj.get(k, default) class ContractionTree: def __init__( self, inputs, output, size_dict, track_childless=False, track_flops=False, track_write=False, track_size=False, ): self.inputs = inputs self.output = output self.size_dict = size_dict self.N = len(self.inputs) self.bitset_edges = BitSet(size_dict.keys()) self.inputs_legs = list(map(self.bitset_edges, self.inputs)) self.output_legs = self.bitset_edges(self.output) self.children = {} self.info = {} self.root = node_supremum(self.N) self.info[self.root] = { 'legs': self.output_legs, 'keep': self.output_legs, 'size': compute_size_by_dict(self.output, size_dict), } self.track_childless = track_childless if self.track_childless: self.childless = {self.root} self._track_flops = track_flops if track_flops: self._flops = 0 self._track_write = track_write if track_write: self._write = 0 self._track_size = track_size if track_size: self._sizes = MaxCounter() self.already_optimized = dict() self.multiplicity = 1 self.sliced_inds = self.sliced_sizes = () self.sliced_inputs = frozenset() self.contraction_cores = {} def set_state_from(self, other): for attr in ('inputs', 'output', 'size_dict', 'N', 'root', 'multiplicity', 'sliced_inds', 'sliced_sizes', 'sliced_inputs', 'bitset_edges'): setattr(self, attr, getattr(other, attr)) for attr in ('children', 'inputs_legs', 'output_legs', 'contraction_cores'): setattr(self, attr, getattr(other, attr).copy()) for attr in ('info', 'already_optimized'): setattr(self, attr, {k: v.copy() for k, v in getattr(other, attr).items()}) self.track_childless = other.track_childless if other.track_childless: self.childless = other.childless.copy() self._track_flops = other._track_flops if other._track_flops: self._flops = other._flops self._track_write = other._track_write if other._track_write: self._write = other._write self._track_size = other._track_size if other._track_size: self._sizes = other._sizes.copy() def copy(self): tree = object.__new__(ContractionTree) tree.set_state_from(self) return tree @property def nslices(self): return self.multiplicity @property def nchunks(self): return prod( d for ix, d in zip(self.sliced_inds, self.sliced_sizes) if ix in self.output ) def node_to_terms(self, node): return map(self.inputs_legs.__getitem__, node) def gen_leaves(self): return map(node_from_single, range(self.N)) @classmethod def from_path(cls, inputs, output, size_dict, *, path=None, ssa_path=None, check=False, **kwargs): if int(path is None) + int(ssa_path is None) != 1: raise ValueError("Exactly one of ``path`` or ``ssa_path`` must be " "supplied.") if ssa_path is not None: path = ssa_path tree = cls(inputs, output, size_dict, **kwargs) terms = list(tree.gen_leaves()) for p in path: if ssa_path is not None: merge = [terms[i] for i in p] else: merge = [terms.pop(i) for i in sorted(p, reverse=True)] terms.append(tree.contract_nodes(merge, check=check)) return tree @classmethod def from_info(cls, info, **kwargs): return cls.from_path(inputs=info.input_subscripts.split(','), output=info.output_subscript, size_dict=info.size_dict, path=info.path, **kwargs) @classmethod def from_eq(cls, eq, size_dict, **kwargs): lhs, output = eq.split('->') inputs = lhs.split(',') return cls(inputs, output, size_dict, **kwargs) @classmethod def from_edge_path(cls, edge_path, inputs, output, size_dict, check=False, **kwargs): tree = cls(inputs, output, size_dict, **kwargs) nodes = list(tree.gen_leaves()) for e in edge_path: new_terms, merge = [], [] for node in nodes: term = union_it(tree.node_to_terms(node)) if e in term: merge.append(node) else: new_terms.append(node) if merge: nodes = new_terms + [tree.contract_nodes(merge, check=check)] nt = len(nodes) if nt > 1: warnings.warn( f"Ended up with {nt} nodes - contracting all remaining.") tree.contract_nodes(nodes, check=check) return tree def _add_node(self, node, check=False): if check: if len(self.info) > 2 * self.N - 1: raise ValueError("There are too many children already.") if len(self.children) > self.N - 1: raise ValueError("There are too many branches already.") if not is_valid_node(node): raise ValueError("{} is not a valid node.".format(node)) self.info.setdefault(node, dict()) def _remove_node(self, node): if self._track_flops: self._flops -= self.get_flops(node) if self._track_write: self._write -= self.get_size(node) if self._track_size: self._sizes.discard(self.get_size(node)) del self.info[node] del self.children[node] @cached_node_property('keep') def get_keep(self, node): nodes_above = self.root.difference(node) terms_above = self.node_to_terms(nodes_above) return union_it((self.output_legs, *terms_above)) @cached_node_property('legs') def get_legs(self, node): if len(node) == 1: return self.inputs_legs[node_get_single_el(node)] try: involved = self.get_involved(node) except KeyError: involved = union_it(self.node_to_terms(node)) keep = self.get_keep(node) return involved.intersection(keep) @cached_node_property('involved') def get_involved(self, node): if len(node) == 1: return self.bitset_edges.infimum sub_legs = map(self.get_legs, self.children[node]) return union_it(sub_legs) @cached_node_property('removed') def get_removed(self, node): return self.get_involved(node).difference(self.get_legs(node)) @cached_node_property('size') def get_size(self, node): return compute_size_by_dict(self.get_legs(node), self.size_dict) @cached_node_property('flops') def get_flops(self, node): if len(node) == 1: return 0 involved = self.get_involved(node) removed = self.get_removed(node) return flop_count(involved, removed, 2, self.size_dict) @cached_node_property('can_dot') def get_can_dot(self, node): l, r = self.children[node] sp, sl, sr = map(self.get_legs, (node, l, r)) return sl.symmetric_difference(sr) == sp @cached_node_property('inds') def get_inds(self, node): if len(node) == 1: i = node_get_single_el(node) if not self.sliced_inds: return "".join(self.inputs[i]) legs = self.get_legs(node) return "".join(filter(legs.__contains__, self.inputs[i])) if len(node) == self.N: if not self.sliced_inds: return "".join(self.output) return "".join(filter(self.output_legs.__contains__, self.output)) legs = self.get_legs(node) l_inds, r_inds = map(self.get_inds, self.children[node]) return "".join( unique(filter(legs.__contains__, itertools.chain(l_inds, r_inds))) ) @cached_node_property('tensordot_axes') def get_tensordot_axes(self, node): l_inds, r_inds = map(self.get_inds, self.children[node]) l_axes, r_axes = [], [] for i, ind in enumerate(l_inds): j = r_inds.find(ind) if j != -1: l_axes.append(i) r_axes.append(j) return tuple(l_axes), tuple(r_axes) @cached_node_property('tensordot_perm') def get_tensordot_perm(self, node): l_inds, r_inds = map(self.get_inds, self.children[node]) p_inds = self.get_inds(node) td_inds = "".join(sorted(p_inds, key=f"{l_inds}{r_inds}".find)) if td_inds == p_inds: return None return tuple(map(td_inds.find, p_inds)) @cached_node_property('einsum_eq') def get_einsum_eq(self, node): l, r = self.children[node] l_inds, r_inds, p_inds = map(self.get_inds, (l, r, node)) char_mapping = { ord(ix): ascii_letters[i] for i, ix in enumerate(unique(itertools.chain(l_inds, r_inds))) } return f"{l_inds},{r_inds}->{p_inds}".translate(char_mapping) def get_centrality(self, node): try: return self.info[node]['centrality'] except KeyError: self.compute_centralities() return self.info[node]['centrality'] def total_flops(self, dtype='float'): if self._track_flops: real_flops = self.multiplicity * self._flops else: self._flops = 0 for node, _, _ in self.traverse(): self._flops += self.get_flops(node) self._track_flops = True real_flops = self.multiplicity * self._flops if dtype is None: return real_flops // 2 if 'float' in dtype: return real_flops if 'complex' in dtype: return real_flops * 4 def total_write(self): if self._track_write: return self.multiplicity * self._write self._write = 0 for node, _, _ in self.traverse(): self._write += self.get_size(node) self._track_write = True return self.multiplicity * self._write def total_cost(self, factor=DEFAULT_COMBO_FACTOR, combine=sum): t = 0 for p in self.children: f = self.get_flops(p) // 2 w = self.get_size(p) t += combine((f, factor * w)) return self.multiplicity * t def max_size(self): if self._track_size: return self._sizes.max() self._sizes = MaxCounter() for node, _, _ in self.traverse(): self._sizes.add(self.get_size(node)) self._track_size = True return self._sizes.max() def peak_size(self, order=None): tot_size = sum(self.get_size(node) for node in self.gen_leaves()) peak = tot_size for p, l, r in self.traverse(order=order): tot_size -= self.get_size(l) tot_size -= self.get_size(r) tot_size += self.get_size(p) peak = max(peak, tot_size) return peak def total_size(self): tot_size = sum(self.get_size(node) for node in self.gen_leaves()) for node, _, _ in self.traverse(): tot_size += self.get_size(node) return tot_size def arithmetic_intensity(self): return self.total_flops() / self.total_write() def contraction_cost(self): return float(self.total_flops(dtype=None)) def contraction_width(self): return math.log2(self.max_size()) def compressed_contract_stats( self, chi, order='surface_order', compress_late=True, ): hg = self.get_hypergraph(accel='auto') tree_map = dict(zip(self.gen_leaves(), range(hg.get_num_nodes()))) max_size = 0 current_size = 0 for i in range(hg.get_num_nodes()): s = hg.node_size(i) max_size = max(max_size, s) current_size += s total_size = peak_size = current_size for p, l, r in self.traverse(order): li = tree_map[l] ri = tree_map[r] current_size -= hg.neighborhood_size((li, ri)) if compress_late: hg.compress(chi=chi, edges=hg.get_node(li)) hg.compress(chi=chi, edges=hg.get_node(ri)) pi = tree_map[p] = hg.contract(li, ri) pi_size = hg.node_size(pi) max_size = max(max_size, pi_size) current_size += hg.neighborhood_size((pi,)) peak_size = max(peak_size, current_size) total_size += pi_size if not compress_late: hg.compress(chi=chi, edges=hg.get_node(pi)) return { 'max_size': max_size, 'total_size': total_size, 'peak_size': peak_size, } def max_size_compressed(self, chi, order='surface_order', compress_late=True): return self.compressed_contract_stats( chi=chi, order=order, compress_late=compress_late, )['max_size'] def peak_size_compressed(self, chi, order='surface_order', compress_late=True, accel='auto'): return self.compressed_contract_stats( chi=chi, order=order, compress_late=compress_late, )['peak_size'] def total_size_compressed(self, chi, order='surface_order', compress_late=True, accel='auto'): return self.compressed_contract_stats( chi=chi, order=order, compress_late=compress_late, )['total_size'] def contract_nodes_pair(self, x, y, check=False): parent = x.union(y) for node in (x, y, parent): self._add_node(node, check=check) nx, ny = len(x), len(y) hx, hy = hash(x), hash(y) if (nx, hx) > (ny, hy): lr = (x, y) else: lr = (y, x) self.children[parent] = lr if self.track_childless: self.childless.discard(parent) if x not in self.children and nx > 1: self.childless.add(x) if y not in self.children and ny > 1: self.childless.add(y) if self._track_flops: self._flops += self.get_flops(parent) if self._track_write: self._write += self.get_size(parent) if self._track_size: self._sizes.add(self.get_size(parent)) return parent def contract_nodes(self, nodes, optimize='auto-hq', check=False): if len(nodes) == 1: return next(iter(nodes)) if len(nodes) == 2: return self.contract_nodes_pair(*nodes, check=check) grandparent = union_it(nodes) self._add_node(grandparent, check=check) for node in nodes: self._add_node(node, check=check) path_inputs = [oset(self.get_legs(x)) for x in nodes] path_output = oset(self.get_legs(grandparent)) if isinstance(optimize, str): path_fn = get_path_fn(optimize) else: path_fn = optimize path = path_fn(path_inputs, path_output, self.size_dict) temp_nodes = list(nodes) for p in path: to_contract = [ temp_nodes.pop(i) for i in sorted(p, reverse=True) ] temp_nodes.append( self.contract_nodes( to_contract, optimize=optimize, check=check ) ) parent, = temp_nodes if check: assert parent == grandparent return parent def is_complete(self): too_many_nodes = len(self.info) > 2 * self.N - 1 too_many_branches = len(self.children) > self.N - 1 if too_many_nodes or too_many_branches: raise ValueError("Contraction tree seems to be over complete!") queue = [self.root] while queue: x = queue.pop() if len(x) == 1: continue try: queue.extend(self.children[x]) except KeyError: return False return True def get_default_order(self): return "dfs" def _traverse_ordered(self, order): from bisect import bisect if order == 'surface_order': order = self.surface_order seen = set() queue = [self.root] scores = [order(self.root)] while len(seen) != len(self.children): i = 0 while i < len(queue): node = queue[i] if node not in seen: for child in self.children[node]: if len(child) > 1: score = order(child) ci = bisect(scores[:i], score) scores.insert(ci, score) queue.insert(ci, child) i += 1 seen.add(node) i += 1 for node in queue: yield (node, *self.children[node]) def traverse(self, order=None): if order is None: order = self.get_default_order() if order != "dfs": yield from self._traverse_ordered(order=order) return ready = set(self.gen_leaves()) queue = [self.root] while queue: node = queue[-1] l, r = self.children[node] if (l in ready) and (r in ready): ready.add(queue.pop()) yield node, l, r continue if r not in ready: queue.append(r) if l not in ready: queue.append(l) def descend(self, mode='dfs'): queue = [self.root] while queue: if mode == 'dfs': parent = queue.pop(-1) elif mode == 'bfs': parent = queue.pop(0) l, r = self.children[parent] yield parent, l, r if len(l) > 1: queue.append(l) if len(r) > 1: queue.append(r)
Apache License 2.0
cvignac/smp
models/utils/layers.py
NodeExtractor.forward
python
def forward(self, x: Tensor, u: Tensor, batch_info: dict): new_u = self.lin2_u(torch.relu(self.lin1_u(u))) index_tensor = batch_info['coloring'][:, :, None].expand(u.shape[0], 1, u.shape[-1]) x1 = torch.gather(new_u, 1, index_tensor) x1 = x1[:, 0, :] x2 = torch.sum(new_u / batch_info['n_batch'], dim=1) x3 = torch.max(new_u, dim=1)[0] x_full = torch.cat((x1, x2, x3), dim=1) out = self.combine1(x_full) return out
u: (num_nodes, num_nodes, in_features). output: (num_nodes, out_feat). this method can probably be made more efficient.
https://github.com/cvignac/smp/blob/95b55a880d0fc9149ddf32e8c2fdf5eac5b474b3/models/utils/layers.py#L193-L212
import torch import torch.nn as nn from torch import Tensor as Tensor from torch.nn import Linear as Linear import torch.nn.init as init from torch.nn.init import _calculate_correct_fan, calculate_gain import torch.nn.functional as F from torch_geometric.nn import global_mean_pool, global_add_pool, global_max_pool, MessagePassing import math small_gain = 0.01 def pooling(x: torch.Tensor, batch_info, method): if method == 'add': return global_add_pool(x, batch_info['batch'], batch_info['num_graphs']) elif method == 'mean': return global_mean_pool(x, batch_info['batch'], batch_info['num_graphs']) elif method == 'max': return global_max_pool(x, batch_info['batch'], batch_info['num_graphs']) else: raise ValueError("Pooling method not implemented") def kaiming_init_with_gain(x: Tensor, gain: float, a=0, mode='fan_in', nonlinearity='relu'): fan = _calculate_correct_fan(x, mode) non_linearity_gain = calculate_gain(nonlinearity, a) std = non_linearity_gain / math.sqrt(fan) bound = math.sqrt(3.0) * std * gain with torch.no_grad(): return x.uniform_(-bound, bound) class BatchNorm(nn.Module): def __init__(self, channels: int, use_x: bool): super().__init__() self.bn = nn.BatchNorm1d(channels) self.use_x = use_x def reset_parameters(self): self.bn.reset_parameters() def forward(self, u): if self.use_x: return self.bn(u) else: return self.bn(u.transpose(1, 2)).transpose(1, 2) class EdgeCounter(MessagePassing): def __init__(self): super().__init__(aggr='add') def forward(self, x, edge_index, batch, batch_size): n_edges = self.propagate(edge_index, size=(x.size(0), x.size(0)), x=x) return global_mean_pool(n_edges, batch, batch_size)[batch] class Linear(nn.Module): __constants__ = ['bias', 'in_features', 'out_features'] def __init__(self, in_features, out_features, bias=True, gain: float = 1.0): super().__init__() self.gain = gain self.lin = nn.Linear(in_features, out_features, bias) def reset_parameters(self): kaiming_init_with_gain(self.lin.weight, self.gain) if self.lin.bias is not None: nn.init.normal_(self.lin.bias, 0, self.gain / math.sqrt(self.lin.out_features)) def forward(self, x): return self.lin.forward(x) class XtoX(Linear): def forward(self, x, batch_info: dict = None): return self.lin.forward(x) class XtoGlobal(Linear): def forward(self, x: Tensor, batch_info: dict, method='mean'): g = pooling(x, batch_info, method) return self.lin.forward(g) class EntrywiseU(nn.Module): def __init__(self, in_features: int, out_features: int, num_towers=None): super().__init__() if num_towers is None: num_towers = in_features self.lin1 = torch.nn.Conv1d(in_features, out_features, kernel_size=1, groups=num_towers, bias=False) def forward(self, u): u = u.transpose(1, 2) u = self.lin1(u) return u.transpose(1, 2) class EntryWiseX(nn.Module): def __init__(self, in_features: int, out_features: int, n_groups=None, residual=False): super().__init__() self.residual = residual if n_groups is None: n_groups = in_features self.lin1 = torch.nn.Conv1d(in_features, out_features, kernel_size=1, groups=n_groups, bias=False) def forward(self, x, batch_info=None): new_x = self.lin1(x.unsqueeze(-1)).squeeze() return (new_x + x) if self.residual else new_x class UtoU(nn.Module): def __init__(self, in_features: int, out_features: int, residual=True, n_groups=None): super().__init__() if n_groups is None: n_groups = 1 self.residual = residual self.lin1 = torch.nn.Conv1d(in_features, out_features, kernel_size=1, groups=n_groups, bias=True) self.lin2 = torch.nn.Conv1d(in_features, out_features, kernel_size=1, groups=n_groups, bias=False) self.lin3 = torch.nn.Conv1d(in_features, out_features, kernel_size=1, groups=n_groups, bias=False) def forward(self, u: Tensor, batch_info: dict = None): old_u = u n = batch_info['num_nodes'] num_colors = u.shape[1] out_feat = self.lin1.out_channels mask = batch_info['mask'][..., None].expand(n, num_colors, out_feat) normalizer = batch_info['n_batch'] mean2 = torch.sum(u / normalizer, dim=1) mean2 = mean2.unsqueeze(-1) u = u.permute(0, 2, 1) out = self.lin1(u).permute(0, 2, 1) z2 = self.lin2(mean2) * 0.1 z2 = z2.transpose(1, 2) index_tensor = batch_info['coloring'][:, :, None].expand(out.shape[0], 1, out_feat) out.scatter_add_(1, index_tensor, z2) z3 = self.lin3(mean2) z3 = z3.transpose(1, 2) out3 = z3.expand(n, num_colors, out_feat) out += out3 * mask * 0.1 if self.residual: return old_u + out return out class UtoGlobal(nn.Module): def __init__(self, in_features: int , out_features: int, bias: bool, gain: float): super().__init__() self.lin1 = Linear(in_features, out_features, bias, gain=gain) self.lin2 = Linear(in_features, out_features, bias, gain=gain) def reset_parameters(self): for layer in [self.lin1, self.lin2]: layer.reset_parameters() def forward(self, u, batch_info: dict, method='mean'): coloring = batch_info['coloring'] index_tensor = coloring[:, :, None].expand(u.shape[0], 1, u.shape[2]) extended_diag = u.gather(1, index_tensor)[:, 0, :] mean_batch_trace = pooling(extended_diag, batch_info, 'mean') out1 = self.lin1(mean_batch_trace) mean = torch.sum(u / batch_info['n_batch'], dim=1) batch_sum = pooling(mean, batch_info, 'mean') batch_sum = batch_sum - mean_batch_trace out2 = self.lin2(batch_sum) return out1 + out2 class NodeExtractor(nn.Module): def __init__(self, in_features_u: int, out_features_u: int): super().__init__() self.lin1_u = nn.Linear(in_features_u, in_features_u) self.lin2_u = nn.Linear(in_features_u, in_features_u) self.combine1 = nn.Linear(3 * in_features_u, out_features_u)
MIT License
atreichel/numerapi
numerapi/numerapi.py
NumerAPI.__unzip_file
python
def __unzip_file(self, src_path, dest_path, filename): self.logger.info("unzipping file...") unzip_path = "{0}/{1}".format(dest_path, filename) try: os.makedirs(unzip_path) except OSError as exception: if exception.errno != errno.EEXIST: raise with zipfile.ZipFile(src_path, "r") as z: z.extractall(unzip_path) return True
unzips file located at src_path into destination_path
https://github.com/atreichel/numerapi/blob/5de3d61ab34233c7ef21e021dc2db3b52665543e/numerapi/numerapi.py#L92-L110
import zipfile import json import os from datetime import datetime, timedelta import getpass import errno import logging import requests import numpy as np class NumerAPI(object): def __init__(self, verbosity="INFO"): self.logger = logging.getLogger(__name__) numeric_log_level = getattr(logging, verbosity.upper()) if not isinstance(numeric_log_level, int): raise ValueError('invalid verbosity: %s' % verbosity) log_format = "%(asctime)s %(levelname)s %(name)s: %(message)s" self._date_format = "%Y-%m-%dT%H:%M:%S" logging.basicConfig(format=log_format, level=numeric_log_level, datefmt=self._date_format) self.api_base_url = "https://api.numer.ai" self._FIRST_ROUND = 51 not_logged_in_msg = "username not specified and not logged in" self._not_logged_in_error = ValueError(not_logged_in_msg) self._username = None self._access_token = None self.url_paths = None def __get_url(self, url_path_name, query_params=None): self.url_paths = { "login": "/sessions", "auth": "/submission_authorizations", "dataset": "/competitions/current/dataset", "submissions": "/submissions", "users": "/users", "competitions": "/competitions", "competitions_by_id": "/competitions/id", "current_leaderboard_url": "/currentLeaderboard" } if query_params is None: query_params_str = "" elif isinstance(query_params, dict): query_params_str = "?" + json.dumps(query_params) elif isinstance(query_params, str): query_params_str = "?" + query_params else: self.logger.warning("invalid query params") query_params = "" return (self.api_base_url + self.url_paths[url_path_name] + query_params_str) def __get_username(self, username): if username is None: if hasattr(self, "_username"): username = self._username else: raise self._not_Logged_in_error return username
MIT License
purestorage-openconnect/py-pure-client
pypureclient/flasharray/FA_2_5/models/snmp_managers.py
SNMPManagers.__init__
python
def __init__( self, name=None, host=None, notification=None, v2c=None, v3=None, version=None, ): if name is not None: self.name = name if host is not None: self.host = host if notification is not None: self.notification = notification if v2c is not None: self.v2c = v2c if v3 is not None: self.v3 = v3 if version is not None: self.version = version
Keyword args: name (str): A user-specified name. The name must be locally unique and can be changed. host (str): DNS hostname or IP address of a computer that hosts an SNMP manager to which Purity//FA is to send trap messages when it generates alerts. notification (str): The type of notification the agent will send. Valid values are `inform` and `trap`. v2c (SnmpV2c) v3 (SnmpV3) version (str): Version of the SNMP protocol to be used by Purity//FA to communicate with the specified manager. Valid values are `v2c` and `v3`.
https://github.com/purestorage-openconnect/py-pure-client/blob/2d9fdef0b73321cea9613e7d1eb881b42845099b/pypureclient/flasharray/FA_2_5/models/snmp_managers.py#L53-L82
import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_5 import models class SNMPManagers(object): swagger_types = { 'name': 'str', 'host': 'str', 'notification': 'str', 'v2c': 'SnmpV2c', 'v3': 'SnmpV3', 'version': 'str' } attribute_map = { 'name': 'name', 'host': 'host', 'notification': 'notification', 'v2c': 'v2c', 'v3': 'v3', 'version': 'version' } required_args = { }
BSD 2-Clause Simplified License
netflix/dispatch
src/dispatch/project/views.py
create_project
python
def create_project(*, db_session: Session = Depends(get_db), project_in: ProjectCreate): project = get_by_name(db_session=db_session, name=project_in.name) if project: raise ValidationError( [ErrorWrapper(ExistsError(msg="A project with this name already exists."), loc="name")], model=ProjectCreate, ) project = create(db_session=db_session, project_in=project_in) return project
Create a new project.
https://github.com/netflix/dispatch/blob/e30705938e970d8ef0dfdd04246a3f3004a6a44f/src/dispatch/project/views.py#L40-L50
from fastapi import APIRouter, Depends, HTTPException, status from pydantic.error_wrappers import ErrorWrapper, ValidationError from sqlalchemy.orm import Session from dispatch.exceptions import ExistsError from dispatch.auth.permissions import ( ProjectCreatePermission, PermissionsDependency, ProjectUpdatePermission, ) from dispatch.database.core import get_db from dispatch.database.service import common_parameters, search_filter_sort_paginate from dispatch.models import PrimaryKey from .models import ( ProjectCreate, ProjectRead, ProjectUpdate, ProjectPagination, ) from .service import create, delete, get, get_by_name, update router = APIRouter() @router.get("", response_model=ProjectPagination) def get_projects(common: dict = Depends(common_parameters)): return search_filter_sort_paginate(model="Project", **common) @router.post( "", response_model=ProjectRead, summary="Create a new project.", dependencies=[Depends(PermissionsDependency([ProjectCreatePermission]))], )
Apache License 2.0
openstack/zaqar
zaqar/storage/mongodb/messages.py
MessageController._inc_counter
python
def _inc_counter(self, queue_name, project=None, amount=1, window=None): if hasattr(self._queue_ctrl, '_inc_counter'): return self._queue_ctrl._inc_counter(queue_name, project, amount, window) now = timeutils.utcnow_ts() update = {'$inc': {'c.v': amount}, '$set': {'c.t': now}} query = _get_scoped_query(queue_name, project) if window is not None: threshold = now - window query['c.t'] = {'$lt': threshold} while True: try: collection = self._collection(queue_name, project).stats doc = collection.find_one_and_update( query, update, return_document=pymongo.ReturnDocument.AFTER, projection={'c.v': 1, '_id': 0}) break except pymongo.errors.AutoReconnect: LOG.exception('Auto reconnect error') if doc is None: if window is None: message = (u'Failed to increment the message ' u'counter for queue %(name)s and ' u'project %(project)s') message %= dict(name=queue_name, project=project) LOG.warning(message) raise errors.QueueDoesNotExist(queue_name, project) return None return doc['c']['v']
Increments the message counter and returns the new value. :param queue_name: Name of the queue to which the counter is scoped :param project: Queue's project name :param amount: (Default 1) Amount by which to increment the counter :param window: (Default None) A time window, in seconds, that must have elapsed since the counter was last updated, in order to increment the counter. :returns: Updated message counter value, or None if window was specified, and the counter has already been updated within the specified time period. :raises QueueDoesNotExist: if not found
https://github.com/openstack/zaqar/blob/5ec4277546e94e4dd2d1e3c5cde805debb5be1c8/zaqar/storage/mongodb/messages.py#L417-L482
import datetime import time from bson import objectid from oslo_log import log as logging from oslo_utils import timeutils import pymongo.errors import pymongo.read_preferences from zaqar.i18n import _ from zaqar import storage from zaqar.storage import errors from zaqar.storage.mongodb import utils from zaqar.storage import utils as s_utils LOG = logging.getLogger(__name__) MAX_RETRY_POST_DURATION = 45 COUNTER_STALL_WINDOW = 5 ID_INDEX_FIELDS = [('_id', 1)] TTL_INDEX_FIELDS = [ ('e', 1), ] PROJ_QUEUE = utils.PROJ_QUEUE_KEY ACTIVE_INDEX_FIELDS = [ (PROJ_QUEUE, 1), ('k', 1), ('c.e', 1), ] COUNTING_INDEX_FIELDS = [ (PROJ_QUEUE, 1), ('c.e', 1), ] CLAIMED_INDEX_FIELDS = [ (PROJ_QUEUE, 1), ('c.id', 1), ('k', 1), ('c.e', 1), ] MARKER_INDEX_FIELDS = [ ('k', 1), (PROJ_QUEUE, 1), ] TRANSACTION_INDEX_FIELDS = [ ('tx', 1), ] class MessageController(storage.Message): def __init__(self, *args, **kwargs): super(MessageController, self).__init__(*args, **kwargs) self._num_partitions = self.driver.mongodb_conf.partitions self._queue_ctrl = self.driver.queue_controller self._retry_range = range(self.driver.mongodb_conf.max_attempts) self._collections = [db.messages for db in self.driver.message_databases] for collection in self._collections: self._ensure_indexes(collection) def _ensure_indexes(self, collection): collection.ensure_index(TTL_INDEX_FIELDS, name='ttl', expireAfterSeconds=0, background=True) collection.ensure_index(ACTIVE_INDEX_FIELDS, name='active', background=True) collection.ensure_index(CLAIMED_INDEX_FIELDS, name='claimed', background=True) collection.ensure_index(COUNTING_INDEX_FIELDS, name='counting', background=True) collection.ensure_index(MARKER_INDEX_FIELDS, name='queue_marker', background=True) collection.ensure_index(TRANSACTION_INDEX_FIELDS, name='transaction', background=True) def _collection(self, queue_name, project=None): return self._collections[utils.get_partition(self._num_partitions, queue_name, project)] def _backoff_sleep(self, attempt): conf = self.driver.mongodb_conf seconds = utils.calculate_backoff(attempt, conf.max_attempts, conf.max_retry_sleep, conf.max_retry_jitter) time.sleep(seconds) def _purge_queue(self, queue_name, project=None): scope = utils.scope_queue_name(queue_name, project) collection = self._collection(queue_name, project) collection.delete_many({PROJ_QUEUE: scope}) def _list(self, queue_name, project=None, marker=None, echo=False, client_uuid=None, projection=None, include_claimed=False, include_delayed=False, sort=1, limit=None): if sort not in (1, -1): raise ValueError(u'sort must be either 1 (ascending) ' u'or -1 (descending)') now = timeutils.utcnow_ts() query = { PROJ_QUEUE: utils.scope_queue_name(queue_name, project), 'tx': None, } if not echo: query['u'] = {'$ne': client_uuid} if marker is not None: query['k'] = {'$gt': marker} collection = self._collection(queue_name, project) if not include_claimed: query['c.e'] = {'$lte': now} if not include_delayed: query['$or'] = [{'d': {'$lte': now}}, {'d': {'$exists': False}}] cursor = collection.find(query, projection=projection, sort=[('k', sort)]) if limit is not None: cursor.limit(limit) return cursor.hint(ACTIVE_INDEX_FIELDS) def _count(self, queue_name, project=None, include_claimed=False): query = { PROJ_QUEUE: utils.scope_queue_name(queue_name, project), 'tx': None, } if not include_claimed: query['c.e'] = {'$lte': timeutils.utcnow_ts()} collection = self._collection(queue_name, project) return collection.count(filter=query, hint=COUNTING_INDEX_FIELDS) def _active(self, queue_name, marker=None, echo=False, client_uuid=None, projection=None, project=None, limit=None, include_delayed=False): return self._list(queue_name, project=project, marker=marker, echo=echo, client_uuid=client_uuid, projection=projection, include_claimed=False, include_delayed=include_delayed, limit=limit) def _claimed(self, queue_name, claim_id, expires=None, limit=None, project=None): if claim_id is None: claim_id = {'$ne': None} query = { PROJ_QUEUE: utils.scope_queue_name(queue_name, project), 'c.id': claim_id, 'c.e': {'$gt': expires or timeutils.utcnow_ts()}, } kwargs = {} collection = self._collection(queue_name, project) msgs = collection.find(query, sort=[('k', 1)], **kwargs).hint( CLAIMED_INDEX_FIELDS) if limit is not None: msgs = msgs.limit(limit) now = timeutils.utcnow_ts() def denormalizer(msg): doc = _basic_message(msg, now) doc['claim'] = msg['c'] return doc return utils.HookedCursor(msgs, denormalizer) def _unclaim(self, queue_name, claim_id, project=None): cid = utils.to_oid(claim_id) if cid is None: return now = timeutils.utcnow_ts() scope = utils.scope_queue_name(queue_name, project) collection = self._collection(queue_name, project) collection.update_many({PROJ_QUEUE: scope, 'c.id': cid}, {'$set': {'c': {'id': None, 'e': now}}}, upsert=False)
Apache License 2.0
the-academic-observatory/observatory-platform
observatory-platform/observatory/platform/terraform_api.py
TerraformApi.plan_variable_changes
python
def plan_variable_changes( self, new_vars: List[TerraformVariable], workspace_id: str ) -> Tuple[ List[TerraformVariable], List[Tuple[TerraformVariable, TerraformVariable]], List[TerraformVariable], List[TerraformVariable], ]: add: List[TerraformVariable] = [] edit: List[Tuple[TerraformVariable, TerraformVariable]] = [] unchanged: List[TerraformVariable] = [] old_vars = self.list_workspace_variables(workspace_id) old_var_ids = {} for old_var in old_vars: old_var_ids[old_var.key] = old_var for new_var in new_vars: if new_var.key in old_var_ids.keys(): old_var = old_var_ids[new_var.key] if new_var.sensitive or new_var.value != old_var.value: new_var.var_id = old_var.var_id edit.append((old_var, new_var)) else: unchanged.append(new_var) else: add.append(new_var) delete = list(set(old_vars) - set(new_vars)) return add, edit, unchanged, delete
Compares the current variables in the workspace with a list of new variables. It sorts the new variables in one of 4 different categories and adds them to the corresponding list. Sensitive variables can never be 'unchanged'. :param new_vars: list of potential new variables where each variable is a variable attributes dict :param workspace_id: the workspace id :return: lists of variables in different categories (add, edit, unchanged, delete). add: list of attributes dicts edit: list of tuples with (attributes dict, var id, old value) unchanged: list of attributes dicts delete: list of tuples with (var key, var id, old value)
https://github.com/the-academic-observatory/observatory-platform/blob/4b7e80b92cc8c20d6b3356ded1b23e658ac5157f/observatory-platform/observatory/platform/terraform_api.py#L434-L486
from __future__ import annotations import json import logging import os from dataclasses import dataclass from enum import Enum from http import HTTPStatus from typing import Tuple, List import requests class TerraformVariableCategory(Enum): terraform = "terraform" env = "env" @dataclass class TerraformVariable: key: str value: str var_id: str = None description: str = "" category: TerraformVariableCategory = TerraformVariableCategory.terraform hcl: bool = False sensitive: bool = False def __str__(self): return self.key def __hash__(self): return hash(str(self)) def __eq__(self, other): return self.key == other.key @staticmethod def from_dict(dict_) -> TerraformVariable: var_id = dict_.get("id") attributes = dict_["attributes"] key = attributes.get("key") value = attributes.get("value") sensitive = attributes.get("sensitive") category = attributes.get("category") hcl = attributes.get("hcl") description = attributes.get("description") return TerraformVariable( key, value, sensitive=sensitive, category=TerraformVariableCategory(category), hcl=hcl, description=description, var_id=var_id, ) def to_dict(self): var = { "type": "vars", "attributes": { "key": self.key, "value": self.value, "description": self.description, "category": self.category.value, "hcl": self.hcl, "sensitive": self.sensitive, }, } if self.var_id is not None: var["id"] = self.var_id return var class TerraformApi: TERRAFORM_WORKSPACE_VERSION = "0.13.5" VERBOSITY_WARNING = 0 VERBOSITY_INFO = 1 VERBOSITY_DEBUG = 2 def __init__(self, token: str, verbosity: int = VERBOSITY_WARNING): self.token = token if verbosity == TerraformApi.VERBOSITY_WARNING: logging.getLogger().setLevel(logging.WARNING) elif verbosity == TerraformApi.VERBOSITY_INFO: logging.getLogger().setLevel(logging.INFO) elif verbosity >= TerraformApi.VERBOSITY_DEBUG: logging.getLogger().setLevel(logging.DEBUG) self.api_url = "https://app.terraform.io/api/v2" self.headers = {"Content-Type": "application/vnd.api+json", "Authorization": f"Bearer {token}"} @staticmethod def token_from_file(file_path: str) -> str: with open(file_path, "r") as file: token = json.load(file)["credentials"]["app.terraform.io"]["token"] return token def create_workspace( self, organisation: str, workspace: str, auto_apply: bool, description: str, version: str = TERRAFORM_WORKSPACE_VERSION, ) -> int: attributes = { "name": workspace, "auto-apply": str(auto_apply).lower(), "description": description, "terraform_version": version, } data = {"data": {"type": "workspaces", "attributes": attributes}} response = requests.post( f"{self.api_url}/organizations/{organisation}/workspaces", headers=self.headers, json=data ) if response.status_code == HTTPStatus.CREATED: logging.info(f"Created workspace {workspace}") logging.debug(f"response: {response.text}") elif response.status_code == HTTPStatus.UNPROCESSABLE_ENTITY: logging.warning(f"Workspace with name {workspace} already exists") logging.debug(f"response: {response.text}") else: logging.error(f"Response status: {response.status_code}") logging.error(f"Unsuccessful creating workspace, response: {response.text}") exit(os.EX_CONFIG) return response.status_code def delete_workspace(self, organisation: str, workspace: str) -> int: response = requests.delete( f"{self.api_url}/organizations/{organisation}/workspaces/{workspace}", headers=self.headers ) return response.status_code def workspace_id(self, organisation: str, workspace: str) -> str: response = requests.get( f"{self.api_url}/organizations/{organisation}/workspaces/{workspace}", headers=self.headers ) if response.status_code == HTTPStatus.OK: logging.info(f"Retrieved workspace id for workspace '{workspace}'.") logging.debug(f"response: {response.text}") else: logging.error(f"Response status: {response.status_code}") logging.error( f"Unsuccessful retrieving workspace id for workspace '{workspace}', response: {response.text}" ) exit(os.EX_CONFIG) workspace_id = json.loads(response.text)["data"]["id"] return workspace_id def add_workspace_variable(self, variable: TerraformVariable, workspace_id: str) -> str: response = requests.post( f"{self.api_url}/workspaces/{workspace_id}/vars", headers=self.headers, json={"data": variable.to_dict()} ) key = variable.key if response.status_code == HTTPStatus.CREATED: logging.info(f"Added variable {key}") else: msg = f"Unsuccessful adding variable {key}, response: {response.text}, status_code: {response.status_code}" logging.error(msg) raise ValueError(msg) var_id = json.loads(response.text)["data"]["id"] return var_id def update_workspace_variable(self, variable: TerraformVariable, workspace_id: str) -> int: response = requests.patch( f"{self.api_url}/workspaces/{workspace_id}/vars/{variable.var_id}", headers=self.headers, json={"data": variable.to_dict()}, ) try: key = json.loads(response.text)["data"]["attributes"]["key"] except KeyError: try: key = variable.key except KeyError: key = None if response.status_code == HTTPStatus.OK: logging.info(f"Updated variable {key}") else: msg = f"Unsuccessful updating variable with id {variable.var_id} and key {key}, response: {response.text}, status_code: {response.status_code}" logging.error(msg) raise ValueError(msg) return response.status_code def delete_workspace_variable(self, var: TerraformVariable, workspace_id: str) -> int: response = requests.delete(f"{self.api_url}/workspaces/{workspace_id}/vars/{var.var_id}", headers=self.headers) if response.status_code == HTTPStatus.NO_CONTENT: logging.info(f"Deleted variable with id {var.var_id}") else: msg = f"Unsuccessful deleting variable with id {var.var_id}, response: {response.text}, status_code: {response.status_code}" logging.error(msg) raise ValueError(msg) return response.status_code def list_workspace_variables(self, workspace_id: str) -> List[TerraformVariable]: response = requests.get(f"{self.api_url}/workspaces/{workspace_id}/vars", headers=self.headers) if response.status_code == HTTPStatus.OK: logging.info(f"Retrieved workspace variables.") logging.debug(f"response: {response.text}") else: logging.error(f"Response status: {response.status_code}") logging.error(f"Unsuccessful retrieving workspace variables, response: {response.text}") exit(os.EX_CONFIG) workspace_vars = json.loads(response.text)["data"] return [TerraformVariable.from_dict(dict_) for dict_ in workspace_vars] def create_configuration_version(self, workspace_id: str) -> Tuple[str, str]: data = {"data": {"type": "configuration-versions", "attributes": {"auto-queue-runs": "false"}}} response = requests.post( f"{self.api_url}/workspaces/{workspace_id}/configuration-versions", headers=self.headers, json=data ) if response.status_code == 201: logging.info(f"Created configuration version.") logging.debug(f"response: {response.text}") else: logging.error(f"Response status: {response.status_code}") logging.error(f"Unsuccessful creating configuration version, response: {response.text}") exit(os.EX_CONFIG) upload_url = json.loads(response.text)["data"]["attributes"]["upload-url"] configuration_id = json.loads(response.text)["data"]["id"] return upload_url, configuration_id def get_configuration_version_status(self, configuration_id: str) -> str: response = requests.get(f"{self.api_url}/configuration-versions/{configuration_id}", headers=self.headers) if response.status_code == HTTPStatus.OK: logging.info(f"Retrieved configuration version info.") logging.debug(f"response: {response.text}") else: logging.error(f"Response status: {response.status_code}") logging.error(f"Unsuccessful retrieving configuration version info, response: {response.text}") exit(os.EX_CONFIG) status = json.loads(response.text)["data"]["attributes"]["status"] return status @staticmethod def upload_configuration_files(upload_url: str, configuration_path: str) -> int: headers = {"Content-Type": "application/octet-stream"} with open(configuration_path, "rb") as configuration: response = requests.put(upload_url, headers=headers, data=configuration.read()) if response.status_code == HTTPStatus.OK: logging.info(f"Uploaded configuration.") logging.debug(f"response: {response.text}") else: logging.error(f"Response status: {response.status_code}") logging.error(f"Unsuccessful uploading configuration, response: {response.text}") exit(os.EX_CONFIG) return response.status_code def create_run(self, workspace_id: str, target_addrs: str = None, message: str = "") -> str: data = { "data": { "attributes": {"message": message}, "type": "runs", "relationships": {"workspace": {"data": {"type": "workspaces", "id": workspace_id}}}, } } if target_addrs: data["data"]["attributes"]["target-addrs"] = [target_addrs] response = requests.post(f"{self.api_url}/runs", headers=self.headers, json=data) if response.status_code == HTTPStatus.CREATED: logging.info(f"Created run.") logging.debug(f"response: {response.text}") else: logging.error(f"Response status: {response.status_code}") logging.error(f"Unsuccessful creating run, response: {response.text}") exit(os.EX_CONFIG) run_id = json.loads(response.text)["data"]["id"] return run_id def get_run_details(self, run_id: str) -> dict: response = requests.get(f"{self.api_url}/runs/{run_id}", headers=self.headers) if not response.status_code == HTTPStatus.OK: logging.error(f"Response status: {response.status_code}") logging.error(f"Unsuccessful retrieving run details, response: {response.text}") exit(os.EX_CONFIG) return json.loads(response.text)
Apache License 2.0
mindspore-ai/mindinsight
mindinsight/debugger/stream_handler/tensor_handler.py
TensorHandler.get_tensor_info_for_tensor_graph
python
def get_tensor_info_for_tensor_graph(self, tensor_name, node_type, step): res = {} tensor = self._get_tensor(tensor_name, node_type, step) if tensor and (not tensor.empty or tensor.stats): res['statistics'] = tensor.get_tensor_statistics() res['shape'] = tensor.shape missing_tensors_info = self.get_missing_tensor_info(tensor_name, node_type, step, self._check_tensor_stats) if not missing_tensors_info and node_type == NodeTypeEnum.PARAMETER.value and step > 0: res['has_prev_step'] = True return res, missing_tensors_info
Get Tensor info for tensor graphs. Args: tensor_name (str): Tensor name, format like `node_name:slot`. node_type (str): Node type. step (int): The step of tensor info. Returns: dict, tensor infos, including overall statistics, tensor shape and has_prev_step info. list, list of missing tensor basic information.
https://github.com/mindspore-ai/mindinsight/blob/253a210719dbb1e55b826f2e489322f402d66676/mindinsight/debugger/stream_handler/tensor_handler.py#L682-L703
import os import tempfile import threading import time from collections import OrderedDict from collections import namedtuple import numpy as np from mindinsight.conf import settings from mindinsight.datavisual.data_transform.graph.node import NodeTypeEnum from mindinsight.debugger.common.exceptions.exceptions import DebuggerParamValueError, DebuggerDownloadOverQueue, DebuggerDownloadTensorNotExist from mindinsight.debugger.common.log import LOGGER as log from mindinsight.debugger.common.utils import MAX_CACHE_SPACE_BYTES, MAX_SINGLE_TENSOR_CACHE_BYTES from mindinsight.debugger.stream_cache.tensor import OpTensor, ConstTensor, TensorStatusEnum, DownloadStatusEnum from mindinsight.debugger.stream_handler.base_handler import StreamHandlerBase from mindinsight.domain.graph.proto.ms_graph_pb2 import DataType from mindinsight.utils.tensor import TensorUtils, TensorComparison TensorBasicInfo = namedtuple('tensor_basic_info', ['full_name', 'node_type', 'iter']) FILE_MODE = 0o600 DIR_MODE = 0o700 class MemoryMgr: def __init__(self): self._memory_queue = OrderedDict() self._remaining_cache_space = MAX_CACHE_SPACE_BYTES self._lock = threading.Lock() @property def remaining_cache_space(self): return self._remaining_cache_space def request(self, key, request_space, release_func): if self.check_space(request_space): release_func(True) return if request_space == 0: return with self._lock: if key in self._memory_queue: log.error("Key already exist error for memory queue.") raise ValueError("Key already exist error for memory queue.") self._remaining_cache_space -= request_space while self._remaining_cache_space <= 0: self.release() with self._lock: self._memory_queue[key] = (request_space, release_func) def release(self, key=None): with self._lock: if key is not None: if key not in self._memory_queue: return self._memory_queue.move_to_end(key, last=False) _, value = self._memory_queue.popitem(last=False) free_space, release_func = value release_func() self._remaining_cache_space += free_space log.debug("Update cache space.") @staticmethod def check_space(space): return space >= MAX_SINGLE_TENSOR_CACHE_BYTES class DownloadMgr: def __init__(self): self._temp_base_dir = self.mk_temp_base_dir() self.tensor_info = None self.file_name = None self.file_path = None self.temp_dir = None self._lock = threading.Lock() self.status = DownloadStatusEnum.PENDING.value @property def temp_base_dir(self): return self._temp_base_dir def add(self, file_name, file_path, temp_dir, **tensor_info): with self._lock: if self.status != DownloadStatusEnum.SENDING.value: self.file_name = file_name self.file_path = file_path self.temp_dir = temp_dir self.tensor_info = tensor_info return log.error("There is already a tensor in download") raise DebuggerDownloadOverQueue() def get(self, **tensor_info): with self._lock: if self.tensor_info == tensor_info: self.status = DownloadStatusEnum.SENDING.value return self.file_name, self.file_path, self.clean log.error("No such tensor to download") raise DebuggerDownloadTensorNotExist() def check_status(self): if self.status == DownloadStatusEnum.SENDING.value: log.error("There is already a tensor in download") raise DebuggerDownloadOverQueue() @staticmethod def mk_temp_base_dir(): workspace = settings.WORKSPACE temp_base_dir = os.path.join(workspace, 'tempdata') os.makedirs(temp_base_dir, DIR_MODE, exist_ok=True) return temp_base_dir def clean(self): with self._lock: if self.temp_dir: self.temp_dir.cleanup() self.temp_dir = None self.tensor_info = None self.file_name = None self.file_path = None self.status = DownloadStatusEnum.PENDING.value class MultiCardTensorHandler: def __init__(self): self._memory_mgr = MemoryMgr() self._download_mgr = DownloadMgr() self.tensor_handlers = {0: TensorHandler(self._memory_mgr, self._download_mgr, rank_id=0)} @property def download_mgr(self): return self._download_mgr def set_step(self, step_id): for tensor_handler in self.tensor_handlers.values(): tensor_handler.cur_step = step_id def get_tensor_handler_by_rank_id(self, rank_id=0, create_if_not_exit=False): if rank_id in self.tensor_handlers: return self.tensor_handlers.get(rank_id) if create_if_not_exit: tensor_handler = TensorHandler(self._memory_mgr, self._download_mgr, rank_id=rank_id) self.tensor_handlers[rank_id] = tensor_handler return tensor_handler log.error("There is no rank id %d in MultiCardTensorHandler.", rank_id) raise ValueError def put(self, value): for rank_id, tensor in value: if rank_id not in self.tensor_handlers: self.tensor_handlers[rank_id] = TensorHandler(self._memory_mgr, self._download_mgr, rank_id=rank_id) self.tensor_handlers[rank_id].put(tensor) def get(self, filter_condition=None, rank_id=0): if rank_id in self.tensor_handlers: return self.tensor_handlers.get(rank_id).get(filter_condition) log.error("There is no rank id %d.", rank_id) raise ValueError def clean(self): self.__init__() @staticmethod def tensor_basic_info(full_name, node_type, iter_step): return TensorBasicInfo(full_name=full_name, node_type=node_type, iter=iter_step) class TensorHandler(StreamHandlerBase): def __init__(self, memory_mgr, download_mgr, rank_id): self._param_names = set() self._const_vals = {} self._tensors = {} self._cur_step = 0 self._memory_mgr = memory_mgr self.download_mgr = download_mgr self._rank_id = rank_id self._hold_value = {} @property def cur_step(self): return self._cur_step @cur_step.setter def cur_step(self, step_id): self._cur_step = step_id @property def prev_step(self): return self._cur_step - 1 def put(self, value): tensor = self._deal_with_tensor(value) stats = None if value.get('stats', False) and tensor.status == TensorStatusEnum.CACHED.value: tensor.calculate_stats() stats = tensor.stats flag = self._put_tensors(tensor) new_tensor = self._tensors.get(tensor.name).get(tensor.step) new_tensor.stats = stats log.info("Put tensor %s of step: %d, into cache. Flag: %s", tensor.name, tensor.step, flag) return flag @staticmethod def _deal_with_tensor(value): step = value.get('step', 0) tensor_content = b''.join(value.get('tensor_contents')) tensor = OpTensor(value.get('name'), value.get('tensor_base'), tensor_content=tensor_content, step=step) if value.get('oversize'): tensor.clean_tensor_value(oversize=True) return tensor def put_empty_tensor(self, name, step): cache_tensor = self._tensors.get(name) if cache_tensor is None: cache_tensor = {} self._tensors[name] = cache_tensor old_tensor = cache_tensor.get(step) if old_tensor is None: tensor = OpTensor(name, step=step) cache_tensor[step] = tensor return True return False def put_tensor_base(self, name, step, tensor_base): cache_tensor = self._tensors.get(name) if cache_tensor is None: cache_tensor = {} self._tensors[name] = cache_tensor old_tensor = cache_tensor.get(step) if old_tensor is None or old_tensor.tensor_base != tensor_base: tensor = OpTensor(name, tensor_base, step=step) cache_tensor[step] = tensor return True return False def put_tensor_stats(self, name, step, tensor_base, tensor_stats): cache_tensor = self._tensors.get(name) if cache_tensor is None: cache_tensor = {} self._tensors[name] = cache_tensor old_tensor = cache_tensor.get(step) if old_tensor is None: tensor = OpTensor(name, tensor_base, tensor_stats=tensor_stats, step=step) cache_tensor[step] = tensor return True if old_tensor.get_tensor_statistics() != TensorUtils.get_overall_statistic_dict(tensor_stats): old_tensor.stats = tensor_stats return True return False def _put_tensors(self, tensor): step = tensor.step cache_tensor = self._tensors.get(tensor.name) if cache_tensor is None: cache_tensor = {} self._tensors[tensor.name] = cache_tensor if not self._hold_value.pop((tensor.name, tensor.step), False): tensor.clean_tensor_value(oversize=False, remain_scalar=True) old_tensor = cache_tensor.get(step) if self._check_tensor_update(old_tensor, tensor): self._put_tensor_into_cache(cache_tensor, tensor) return True return False def _check_tensor_update(self, old_tensor, tensor): if not old_tensor or (old_tensor.status == TensorStatusEnum.CACHED.value and self._is_value_diff( old_tensor.value, tensor.value)) or (old_tensor.status == TensorStatusEnum.UNCACHED.value and tensor.status == TensorStatusEnum.CACHED.value): return True return False def _put_tensor_into_cache(self, cache_tensor, tensor): step = tensor.step self._memory_mgr.release((self._rank_id, tensor.name, step)) def release_func(over_size=False): cache_tensor.get(step).clean_tensor_value(over_size) self._memory_mgr.request((self._rank_id, tensor.name, step), tensor.nbytes, release_func) cache_tensor[step] = tensor log.debug("Put updated tensor value for %s of step %s.", tensor.name, step) @staticmethod def _is_value_diff(old_value, new_value): log.debug("old value type: %s, new_value type: %s", type(old_value), type(new_value)) if old_value is None and new_value is None: return False flag = old_value != new_value if isinstance(flag, np.ndarray): return flag.any() return flag def put_const_vals(self, const_vals): for const_val in const_vals: if not (const_val.value and const_val.key): continue if DataType.Name(const_val.value.dtype) == "DT_TENSOR": tensor_proto = const_val.value.tensor_val tensor_value = tensor_proto.tensor_content tensor_proto.ClearField('tensor_content') tensor_proto.node_name = const_val.key tensor_proto.slot = '0' tensor_base = { 'dtype': tensor_proto.data_type, 'shape': tensor_proto.dims, 'data_size': len(tensor_value) } name = ':'.join([tensor_proto.node_name, tensor_proto.slot]) const_tensor = OpTensor(name, tensor_base, tensor_content=tensor_value) else: const_tensor = ConstTensor(const_val) self._const_vals[const_tensor.name] = const_tensor def record_parameter_names(self, names): self._param_names.update(names) log.debug("Record %d parameters in cache. Total parameter number: %d", len(names), len(self._param_names)) def get(self, filter_condition=None): name = filter_condition.get('name') node_type = filter_condition.get('node_type') shape = filter_condition.get('shape') if filter_condition.get('prev'): step = self.prev_step else: step = self.cur_step tensor = self._get_tensor(name, node_type, step) if not tensor: log.error("No tensor named %s at the step %s", name, step) raise DebuggerParamValueError("No tensor named {}".format(name)) tensor_info = tensor.get_full_info(shape) missing_tensors_info = self.get_missing_tensor_info(name, node_type, step, self._check_tensor_value) if not missing_tensors_info and node_type == NodeTypeEnum.PARAMETER.value and step > 0: tensor_info['has_prev_step'] = True res = { 'tensor_value': tensor_info, 'view_cmd': False } if tensor.status == TensorStatusEnum.UNCACHED.value: self._add_hold_value_tensors(name, step) res['view_cmd'] = True return res def _get_tensor(self, tensor_name, node_type=None, step=None): if step is None: step = self._cur_step tensor = self._tensors.get(tensor_name, {}).get(step) if not tensor and node_type == NodeTypeEnum.CONST.value: const_name = tensor_name.rsplit('/', 1)[-1] tensor = self._const_vals.get(const_name) if tensor: self._tensors[tensor_name] = {step: tensor} return tensor def _get_basic_info(self, tensor_name, node_type, step): tensor = self._get_tensor(tensor_name, node_type, step) if tensor: return tensor.get_basic_info() return None def update_tensor_history(self, tensor_history, step): missed_tensors = [] for tensor_info in tensor_history.get('tensor_history'): tensor_name = tensor_info.get('full_name') node_type = tensor_info.get('node_type') basic_info = self._get_basic_info(tensor_name, node_type, step) missing_tensors_info = self.get_missing_tensor_info(tensor_name, node_type, step, self._check_tensor_base) if not missing_tensors_info and node_type == NodeTypeEnum.PARAMETER.value and step > 0: basic_info['has_prev_step'] = True if basic_info: tensor_info.update(basic_info) if missing_tensors_info: missed_tensors.extend(missing_tensors_info) return missed_tensors def get_missing_tensor_info(self, tensor_name, node_type, step=None, check_func=None): if step is None: step = self._cur_step if check_func is None: check_func = self._check_tensor_value missing_tensors_info = [] if check_func(tensor_name, step): missing_tensors_info.append(TensorBasicInfo(full_name=tensor_name, node_type=node_type, iter='')) log.debug("Add current step tensor base view cmd for %s", tensor_name) if node_type == NodeTypeEnum.PARAMETER.value and step > 0 and check_func(tensor_name, step - 1): missing_tensors_info.append(TensorBasicInfo(full_name=tensor_name, node_type=node_type, iter='prev')) log.debug("Add previous step tensor base view cmd for %s", tensor_name) return missing_tensors_info def _check_tensor_base(self, tensor_name, step): tensor = self._get_tensor(tensor_name, step=step) if tensor is not None and ((tensor.tensor_base and tensor.tensor_base.get( 'data_size') > 0) or tensor.status == TensorStatusEnum.OVERSIZE.value): return False return True def _check_tensor_stats(self, tensor_name, step): tensor = self._get_tensor(tensor_name, step=step) if tensor is not None and (tensor.stats or tensor.status == TensorStatusEnum.OVERSIZE.value): return False return True def _check_tensor_value(self, tensor_name, step): tensor = self._get_tensor(tensor_name, step=step) res = bool(not tensor or tensor.status == TensorStatusEnum.OVERSIZE.value) res = bool(res or tensor.status == TensorStatusEnum.UNCACHED.value) return res def get_valid_tensor_by_name(self, tensor_name, step, prev=False): target_step = step - 1 if prev else step if target_step < 0: log.warning("Step %d has no previous value for tensor: %s", target_step, tensor_name) return None tensor = self._get_tensor(tensor_name, step=target_step) return tensor def clean_tensors(self, cur_step): if cur_step != self._cur_step: self._cur_step = cur_step self._clean_expired_tensors(cur_step) self._clean_parameters() def _clean_expired_tensors(self, cur_step): expired_tensor = [] for tensor_name, tensor in self._tensors.items(): expired_step = [step for step in tensor.keys() if step <= cur_step - 2] for step in expired_step: self._memory_mgr.release((self._rank_id, tensor_name, step)) if not tensor: expired_tensor.append(tensor_name) for tensor_name in expired_tensor: self._tensors.pop(tensor_name) def _clean_parameters(self): for param in self._param_names: if param in self._tensors: params = self._tensors.pop(param) for step in params: self._memory_mgr.release((self._rank_id, param, step)) log.debug("Clean param %s in cache.", param) def get_tensors_diff(self, tensor_name, shape, tolerance=0, step=None): curr_tensor = self.get_valid_tensor_by_name(tensor_name, step=step) prev_tensor = self.get_valid_tensor_by_name(tensor_name, prev=True, step=step) if not (curr_tensor and prev_tensor) or self._check_no_comparison_status( curr_tensor) or self._check_no_comparison_status(prev_tensor): log.error("Get current step and previous step for this tensor name %s failed.", tensor_name) raise DebuggerParamValueError(f"Get current step and previous step for this tensor name " f"{tensor_name} failed.") if self._check_not_cached_status(curr_tensor) or self._check_not_cached_status(prev_tensor): self._add_hold_value_tensors(tensor_name, step) reply = { 'tensor_status': TensorStatusEnum.UNCACHED.value, 'view_cmd': True } return reply curr_tensor_slice = curr_tensor.get_tensor_value_by_shape(shape) prev_tensor_slice = prev_tensor.get_tensor_value_by_shape(shape) tensor_info = curr_tensor.get_basic_info() tensor_info.pop('has_prev_step') tensor_info.pop('value') tensor_comparison = curr_tensor.tensor_comparison if not tensor_comparison or tensor_comparison.tolerance != tolerance: if curr_tensor.value.shape != prev_tensor.value.shape: raise DebuggerParamValueError("The shape of these two step tensors is not the same.") tensor_diff = TensorUtils.calc_diff_between_two_tensor(curr_tensor.value, prev_tensor.value, tolerance) stats = TensorUtils.get_statistics_from_tensor(tensor_diff) tensor_comparison = TensorComparison(tolerance, stats, tensor_diff) curr_tensor.update_tensor_comparisons(tensor_comparison) if isinstance(curr_tensor_slice, np.ndarray) and isinstance(prev_tensor_slice, np.ndarray): if not shape: tensor_diff_slice = tensor_comparison.value else: tensor_diff_slice = tensor_comparison.value[shape] result = np.stack([prev_tensor_slice, curr_tensor_slice, tensor_diff_slice], axis=-1) tensor_info['diff'] = result.tolist() elif isinstance(curr_tensor_slice, str): tensor_info['diff'] = curr_tensor_slice tensor_info.update(self._get_comparison_statistics(curr_tensor, prev_tensor)) reply = { 'tensor_status': TensorStatusEnum.CACHED.value, 'tensor_value': tensor_info } return reply def _add_hold_value_tensors(self, tensor_name, step): self._hold_value[(tensor_name, step)] = True if step - 1 >= 0: self._hold_value[(tensor_name, step - 1)] = True @staticmethod def _check_no_comparison_status(tensor): return tensor.status == TensorStatusEnum.EMPTY.value or tensor.status == TensorStatusEnum.OVERSIZE.value @staticmethod def _check_not_cached_status(tensor): return tensor.status == TensorStatusEnum.UNCACHED.value @staticmethod def _get_comparison_statistics(curr_tensor, prev_tensor): stats_info = {} diff_tensor_stats = curr_tensor.tensor_comparison.stats curr_tensor_stats = TensorUtils.get_statistics_from_tensor(curr_tensor.value) prev_tensor_stats = TensorUtils.get_statistics_from_tensor(prev_tensor.value) stats_info['curr_step_statistics'] = TensorUtils.get_overall_statistic_dict(overall_stats=curr_tensor_stats) stats_info['prev_step_statistics'] = TensorUtils.get_overall_statistic_dict(overall_stats=prev_tensor_stats) stats_info['statistics'] = TensorUtils.get_overall_statistic_dict(overall_stats=diff_tensor_stats) return stats_info
Apache License 2.0
fishilico/shared
java/keystore/util_bin.py
run_process_with_input
python
def run_process_with_input(cmdline, data, fatal=False, indent=None): if indent is None: logger.info("Running %s", ' '.join(cmdline)) sys.stdout.flush() if indent: proc = subprocess.Popen(cmdline, stdin=subprocess.PIPE, stdout=subprocess.PIPE) indent_thread = threading.Thread( target=indentify_byte_stream, args=(indent.encode('ascii'), proc.stdout)) indent_thread.start() else: proc = subprocess.Popen(cmdline, stdin=subprocess.PIPE) if data: proc.stdin.write(data) proc.stdin.close() ret = proc.wait() if indent: indent_thread.join() if ret != 0: logger.error("Command %s returned %d", ' '.join(cmdline), ret) if fatal: raise ValueError("Command {} failed".format(cmdline[0])) return False return True
Run the given command with the given data and show its output in colors
https://github.com/fishilico/shared/blob/170a16abf8b8cd946ccb1c45c322151fd22a1e2c/java/keystore/util_bin.py#L58-L85
import binascii import logging import subprocess import sys import threading logger = logging.getLogger(__name__) def xx(data): return binascii.hexlify(data).decode('ascii') def indentify_byte_stream(indent_bytes, stream): need_indent_before_data = True stdout_buffer = sys.stdout.buffer if sys.version_info >= (3,) else sys.stdout while True: data = stream.read(4096) if not data: break if need_indent_before_data: stdout_buffer.write(indent_bytes) if data.endswith(b'\n'): need_indent_before_data = True stdout_buffer.write(data[:-1].replace(b'\n', b'\n' + indent_bytes)) stdout_buffer.write(b'\n') else: need_indent_before_data = False stdout_buffer.write(data.replace(b'\n', b'\n' + indent_bytes)) stdout_buffer.flush()
MIT License
pymeasure/pymeasure
pymeasure/instruments/ni/virtualbench.py
VirtualBench.validate_dmm_function
python
def validate_dmm_function(self, dmm_function): try: pyvb.DmmFunction(dmm_function) except Exception: try: dmm_function = pyvb.DmmFunction[dmm_function.upper()] except Exception: raise ValueError( "DMM Function may be 0-5, 'DC_VOLTS'," + " 'AC_VOLTS', 'DC_CURRENT', 'AC_CURRENT'," + " 'RESISTANCE' or 'DIODE'") return dmm_function
Check if DMM function *dmm_function* exists :param dmm_function: DMM function index or name: - ``'DC_VOLTS'``, ``'AC_VOLTS'`` - ``'DC_CURRENT'``, ``'AC_CURRENT'`` - ``'RESISTANCE'`` - ``'DIODE'`` :type dmm_function: int or str :return: DMM function index to pass to the instrument :rtype: int
https://github.com/pymeasure/pymeasure/blob/658d8fb9a02bdb62f64cc3838875c0de12f49ca1/pymeasure/instruments/ni/virtualbench.py#L546-L570
import logging import re from ctypes import (c_bool, c_size_t, c_double, c_uint8, c_int32, c_uint32, c_int64, c_uint64, c_wchar, c_wchar_p, Structure, c_int, cdll, byref) from datetime import datetime, timezone, timedelta import numpy as np import pandas as pd from pymeasure.instruments import Instrument, RangeException from pymeasure.instruments.validators import ( strict_discrete_set, strict_discrete_range, truncated_discrete_set, strict_range ) log = logging.getLogger(__name__) log.addHandler(logging.NullHandler()) try: import pyvirtualbench as pyvb except ModuleNotFoundError as err: log.info('Failed loading the pyvirtualbench package. ' + 'Check the NI VirtualBench documentation on how to ' + 'install this external dependency. ' + 'ImportError: {}'.format(err)) raise class VirtualBench_Direct(pyvb.PyVirtualBench): def __init__(self, device_name='', name='VirtualBench'): self.device_name = device_name self.name = name self.nilcicapi = cdll.LoadLibrary("nilcicapi") self.library_handle = c_int(0) status = self.nilcicapi.niVB_Initialize(pyvb.NIVB_LIBRARY_VERSION, byref(self.library_handle)) if (status != pyvb.Status.SUCCESS): raise pyvb.PyVirtualBenchException(status, self.nilcicapi, self.library_handle) log.info("Initializing %s." % self.name) def __del__(self): self.release() class VirtualBench(): def __init__(self, device_name='', name='VirtualBench'): self.device_name = device_name self.name = name self.vb = pyvb.PyVirtualBench(self.device_name) log.info("Initializing %s." % self.name) def __del__(self): if self.vb.library_handle is not None: self.vb.release() def shutdown(self): log.info("Shutting down %s" % self.name) self.vb.release() self.isShutdown = True def get_library_version(self): return self.vb.get_library_version() def convert_timestamp_to_values(self, timestamp): if not isinstance(timestamp, pyvb.Timestamp): raise ValueError("{0} is not a VirtualBench Timestamp object" .format(timestamp)) return self.vb.convert_timestamp_to_values(timestamp) def convert_values_to_timestamp(self, seconds_since_1970, fractional_seconds): return self.vb.convert_values_to_timestamp(seconds_since_1970, fractional_seconds) def convert_values_to_datetime(self, timestamp): (seconds_since_1970, fractional_seconds) = self.convert_timestamp_to_values(timestamp) fractional_seconds = timedelta(seconds=fractional_seconds) return (datetime.fromtimestamp(seconds_since_1970, timezone.utc) + fractional_seconds) def collapse_channel_string(self, names_in): if not isinstance(names_in, str): raise ValueError("{0} is not a string".format(names_in)) return self.vb.collapse_channel_string(names_in) def expand_channel_string(self, names_in): return self.vb.expand_channel_string(names_in) def get_calibration_information(self): return self.vb.get_calibration_information(self.device_name) def acquire_digital_input_output(self, lines, reset=False): reset = strict_discrete_set(reset, [True, False]) self.dio = self.DigitalInputOutput(self.vb, lines, reset, vb_name=self.name) def acquire_power_supply(self, reset=False): reset = strict_discrete_set(reset, [True, False]) self.ps = self.PowerSupply(self.vb, reset, vb_name=self.name) def acquire_function_generator(self, reset=False): reset = strict_discrete_set(reset, [True, False]) self.fgen = self.FunctionGenerator(self.vb, reset, vb_name=self.name) def acquire_mixed_signal_oscilloscope(self, reset=False): reset = strict_discrete_set(reset, [True, False]) self.mso = self.MixedSignalOscilloscope(self.vb, reset, vb_name=self.name) def acquire_digital_multimeter(self, reset=False): reset = strict_discrete_set(reset, [True, False]) self.dmm = self.DigitalMultimeter(self.vb, reset=reset, vb_name=self.name) class VirtualBenchInstrument(): def __init__(self, acquire_instr, reset, instr_identifier, vb_name=''): self._vb_handle = acquire_instr.__self__ self._device_name = self._vb_handle.device_name self.name = (vb_name + " " + instr_identifier.upper()).strip() log.info("Initializing %s." % self.name) self._instrument_handle = acquire_instr(self._device_name, reset) self.isShutdown = False def __del__(self): if self.isShutdown is not True: self._instrument_handle.release() def shutdown(self): log.info("Shutting down %s" % self.name) self._instrument_handle.release() self.isShutdown = True class DigitalInputOutput(VirtualBenchInstrument): def __init__(self, virtualbench, lines, reset, vb_name=''): self._device_name = virtualbench.device_name self._vb_handle = virtualbench self.name = vb_name + " DIO" (self._line_names, self._line_numbers) = self.validate_lines( lines, return_single_lines=True, validate_init=False) log.info("Initializing %s." % self.name) self.dio = self._vb_handle.acquire_digital_input_output( self._line_names, reset) self._instrument_handle = self.dio self.isShutdown = False def validate_lines(self, lines, return_single_lines=False, validate_init=False): def error(lines=lines): raise ValueError( "Line specification {0} is not valid!".format(lines)) lines = self._vb_handle.expand_channel_string(lines)[0] lines = lines.split(', ') return_lines = [] single_lines = [] for line in lines: if line == 'trig': device = self._device_name else: try: (device, line) = re.match( r'(.*)(?:/)(.+)', line).groups() except IndexError: error() if (line == 'trig') and (device == self._device_name): single_lines.append('trig') return_lines.append(self._device_name + '/' + line) elif int(line) in range(0, 8): line = int(line) single_lines.append(line) if device == 'dig': pass else: try: device = re.match( r'(VB[0-9]{4}-[0-9a-zA-Z]{7})(?:/dig)', device).groups()[0] except (IndexError, KeyError): error() if not device == self._device_name: error() return_lines.append((self._device_name + '/dig/%d') % line) else: error() if validate_init is True: if line not in self._line_numbers: raise ValueError( "Digital Line {} is not initialized".format(line)) return_lines = ', '.join(return_lines) return_lines = self._vb_handle.collapse_channel_string( return_lines)[0] if return_single_lines is True: return return_lines, single_lines else: return return_lines def tristate_lines(self, lines): lines = self.validate_lines(lines, validate_init=True) self.dio.tristate_lines(lines) def export_signal(self, line, digitalSignalSource): line = self.validate_lines(line, validate_init=True) digitalSignalSource_values = {"FGEN START": 0, "MSO TRIGGER": 1} digitalSignalSource = strict_discrete_set( digitalSignalSource.upper(), digitalSignalSource_values) digitalSignalSource = digitalSignalSource_values[ digitalSignalSource.upper()] self.dio.export_signal(line, digitalSignalSource) def query_line_configuration(self): return self.dio.query_line_configuration() def query_export_signal(self, line): line = self.validate_lines(line, validate_init=True) return self.dio.query_export_signal(line) def write(self, lines, data): lines = self.validate_lines(lines, validate_init=True) try: for value in data: strict_discrete_set(value, [True, False]) except Exception: raise ValueError( "Data {} is not iterable (list or tuple).".format(data)) log.debug("{}: {} output {}.".format(self.name, lines, data)) self.dio.write(lines, data) def read(self, lines): lines = self.validate_lines(lines, validate_init=False) return self.dio.read(lines) def reset_instrument(self): self.dio.reset_instrument() class DigitalMultimeter(VirtualBenchInstrument): def __init__(self, virtualbench, reset, vb_name=''): super().__init__( virtualbench.acquire_digital_multimeter, reset, 'dmm', vb_name) self.dmm = self._instrument_handle @staticmethod def validate_range(dmm_function, range): ref_ranges = { 0: [0.1, 1, 10, 100, 300], 1: [0.1, 1, 10, 100, 265], 2: [0.01, 0.1, 1, 10], 3: [0.005, 0.05, 0.5, 5], 4: [100, 1000, 10000, 100000, 1000000, 10000000, 100000000], } range = truncated_discrete_set(range, ref_ranges[dmm_function]) return range
MIT License
evankepner/mutatest
mutatest/cache.py
get_cache_file_loc
python
def get_cache_file_loc(src_file: Union[str, Path]) -> Path: if not src_file: raise ValueError("src_file cannot be an empty string.") cache_file = importlib.util.cache_from_source(str(src_file)) if os.path.islink(cache_file): msg = ( "{} is a symlink and will be changed into a regular file if " "import writes a byte-compiled file to it" ) raise FileExistsError(msg.format(cache_file)) elif os.path.exists(cache_file) and not os.path.isfile(cache_file): msg = ( "{} is a non-regular file and will be changed into a regular " "one if import writes a byte-compiled file to it" ) raise FileExistsError(msg.format(cache_file)) return Path(cache_file)
Use importlib to determine the cache file location for the source file. Reference: https://github.com/python/cpython/blob/master/Lib/py_compile.py#L130 Args: src_file: source file to determine cache file Returns: Path to the cache file Raises: FileExistsError: if the cache-file path is symlink or irregular file
https://github.com/evankepner/mutatest/blob/d1a2aa15e9da99b252ee771f0ce0170e8c4a3bd7/mutatest/cache.py#L48-L81
import importlib import logging import os from pathlib import Path from py_compile import PycInvalidationMode from typing import Union LOGGER = logging.getLogger(__name__) def check_cache_invalidation_mode() -> PycInvalidationMode: if os.environ.get("SOURCE_DATE_EPOCH"): raise EnvironmentError( "SOURCE_DATE_EPOCH set, but only TIMESTAMP cache invalidation is supported. " "Clear this environment variable so that timestamp invalidation of the Python " "cache can be used to trigger mutations for the testing suite." ) return PycInvalidationMode.TIMESTAMP
MIT License
centerforopenscience/osf.io
addons/gitlab/api.py
GitLabClient.branches
python
def branches(self, repo_id, branch=None): if branch: return self.gitlab.projects.get(repo_id).branches.get(branch) return self.gitlab.projects.get(repo_id).branches.list()
List a repo's branches or get a single branch (in a list). https://docs.gitlab.com/ce/api/branches.html#list-repository-branches :param str user: GitLab user name :param str repo: GitLab repo name :param str branch: Branch name if getting a single branch :return: List of branch dicts
https://github.com/centerforopenscience/osf.io/blob/6552a01fe250997cd3eb67cf72fc7157d9bc5af6/addons/gitlab/api.py#L70-L83
from future.moves.urllib.parse import urlencode import requests import gitlab import cachecontrol from requests.adapters import HTTPAdapter from rest_framework import status as http_status from framework.exceptions import HTTPError from addons.gitlab.exceptions import NotFoundError, AuthError from addons.gitlab.settings import DEFAULT_HOSTS https_cache = cachecontrol.CacheControlAdapter() default_adapter = HTTPAdapter() class GitLabClient(object): def __init__(self, external_account=None, access_token=None, host=None): self.access_token = getattr(external_account, 'oauth_key', None) or access_token self.host = getattr(external_account, 'oauth_secret', None) or host or DEFAULT_HOSTS[0] if self.access_token: self.gitlab = gitlab.Gitlab(self.host, private_token=self.access_token) else: self.gitlab = gitlab.Gitlab(self.host) def user(self, user=None): try: self.gitlab.auth() except gitlab.GitlabGetError as exc: raise AuthError(exc.error_message) return self.gitlab.users.get(self.gitlab.user.id) def repo(self, repo_id): try: return self.gitlab.projects.get(repo_id) except gitlab.GitlabGetError as exc: if exc.response_code == 404: raise NotFoundError(exc.error_message) else: raise exc except gitlab.GitlabAuthenticationError as exc: raise AuthError(exc.error_message) def repos(self, all=False): try: return self.gitlab.projects.list(membership=True, all=all) except gitlab.GitlabAuthenticationError: raise HTTPError(http_status.HTTP_403_FORBIDDEN, data={ 'message_long': 'Your Gitlab token is deleted or invalid you may disconnect your Gitlab account and ' 'reconnect with a valid token <a href="/settings/addons/">here</a>.' })
Apache License 2.0
asuiu/pyxtension
py3/pyxtension/streams.py
_IStream.head
python
def head(self, n: int) -> 'stream[_K]': return stream(itertools.islice(self, n))
Return a stream over the first n items
https://github.com/asuiu/pyxtension/blob/feb4abcc26dcc4d0d13c6e8be6899e3514ee0358/py3/pyxtension/streams.py#L773-L775
import collections import io import itertools import math import numbers import pickle import struct import sys import threading from abc import ABC from collections import abc, defaultdict from functools import partial, reduce from itertools import groupby from multiprocessing import cpu_count, Pool from operator import itemgetter from queue import Queue from random import shuffle from types import GeneratorType from typing import AbstractSet, Any, BinaryIO, Callable, Dict, Generator, Iterable, Iterator, List, Mapping, MutableSet, NamedTuple, Optional, overload, Set, Tuple, TypeVar, Union from tblib import pickling_support from pyxtension import validate, PydanticValidated ifilter = filter imap = map izip = zip xrange = range from pyxtension.fileutils import openByExtension from tqdm import tqdm __author__ = 'ASU' _K = TypeVar('_K') _V = TypeVar('_V') _T = TypeVar('_T') _T_co = TypeVar('_T_co', covariant=True) _IDENTITY_FUNC: Callable[[_T], _T] = lambda _: _ class ItrFromFunc(Iterable[_K]): def __init__(self, f: Callable[[], Iterable[_K]]): if callable(f): self._f = f else: raise TypeError( "Argument f to %s should be callable, but f.__class__=%s" % (str(self.__class__), str(f.__class__))) def __iter__(self) -> Iterator[_T_co]: return iter(self._f()) class EndQueue: pass class MapException: def __init__(self, exc_info): self.exc_info = exc_info class TqdmMapper: def __init__(self, *args, **kwargs) -> None: self._tqdm = tqdm(*args, **kwargs) def __call__(self, el: _K) -> _K: self._tqdm.update() return el class _QElement(NamedTuple): i: int el: Any class _IStream(Iterable[_K], ABC): @staticmethod def _init_itr(itr: Optional[Union[Iterator[_K], Callable[[], Iterable[_K]]]] = None) -> Tuple[ Optional[Iterable[_K]], Optional[Callable[[], Iterable[_K]]] ]: _f = None if itr is None: _itr = [] elif isinstance(itr, (abc.Iterable, abc.Iterator)) or hasattr(itr, '__iter__') or hasattr(itr, '__getitem__'): _itr = itr elif callable(itr): _f = itr _itr = None else: raise TypeError( "Argument f to _IStream should be callable or iterable, but itr.__class__=%s" % ( str(itr.__class__))) return _itr, _f @staticmethod def __fastmap_thread(f, qin, qout): while True: el = qin.get() if isinstance(el, EndQueue): qin.put(el) return try: newEl = f(el) qout.put(newEl) except: qout.put(MapException(sys.exc_info())) @staticmethod def __mtmap_thread(f, qin, qout): while True: q_el = qin.get() if isinstance(q_el, EndQueue): qin.put(q_el) return try: newEl = f(q_el.el) qout.put(_QElement(q_el.i, newEl)) except: qout.put(MapException(sys.exc_info())) @staticmethod def __fastFlatMap_thread(f, qin, qout): while True: itr = qin.get() if isinstance(itr, EndQueue): qin.put(itr) qout.put(EndQueue()) return try: newItr = f(itr) for el in newItr: qout.put(el) except: qout.put(MapException(sys.exc_info())) def __fastmap_generator(self, f: Callable[[_K], _V], poolSize: int, bufferSize: int): qin = Queue(bufferSize) qout = Queue(max(bufferSize, poolSize + 1)) threadPool = [threading.Thread(target=_IStream.__fastmap_thread, args=(f, qin, qout)) for _ in range(poolSize)] for t in threadPool: t.start() i = 0 itr = iter(self) hasNext = True while i < bufferSize and hasNext: try: el = next(itr) i += 1 qin.put(el) except StopIteration: hasNext = False try: while 1: try: el = next(itr) except StopIteration: qin.put(EndQueue()) for t in threadPool: t.join() while not qout.empty(): newEl = qout.get() if isinstance(newEl, MapException): raise newEl.exc_info[0](newEl.exc_info[1]).with_traceback(newEl.exc_info[2]) yield newEl break else: qin.put(el) newEl = qout.get() if isinstance(newEl, MapException): raise newEl.exc_info[0](newEl.exc_info[1]).with_traceback(newEl.exc_info[2]) yield newEl finally: while not qin.empty(): qin.get() qin.put(EndQueue()) while not qout.empty() or not qout.empty(): qout.get() for t in threadPool: t.join() def __mtmap_generator(self, f: Callable[[_K], _V], poolSize: int, bufferSize: int): qin = Queue(bufferSize) qout = Queue(max(bufferSize, poolSize + 1)) threadPool = [threading.Thread(target=_IStream.__mtmap_thread, args=(f, qin, qout)) for _ in range(poolSize)] for t in threadPool: t.start() in_i = 0 itr = iter(self) hasNext = True while in_i < bufferSize and hasNext: try: el = next(itr) except StopIteration: hasNext = False else: in_i += 1 qin.put(_QElement(in_i, el)) cache = {} out_i = 1 def extract_all_from_cache(): nonlocal out_i nonlocal in_i nonlocal cache while out_i in cache: yield cache[out_i] out_i += 1 def wait_for_all(): nonlocal out_i nonlocal in_i nonlocal cache while not qout.empty(): q_el = qout.get() if isinstance(q_el, MapException): raise q_el.exc_info[0](q_el.exc_info[1]).with_traceback(q_el.exc_info[2]) cache[q_el.i] = q_el.el for el in extract_all_from_cache(): yield el validate(out_i == in_i + 1, "__mtmap_generator Expecting for all elements to be in cache") try: while 1: try: el = next(itr) except StopIteration: qin.put(EndQueue()) for t in threadPool: t.join() for el in wait_for_all(): yield el break else: in_i += 1 qin.put(_QElement(in_i, el)) q_el = qout.get() if isinstance(q_el, MapException): raise q_el.exc_info[0](q_el.exc_info[1]).with_traceback(q_el.exc_info[2]) cache[q_el.i] = q_el.el for el in extract_all_from_cache(): yield el finally: while not qin.empty(): qin.get() qin.put(EndQueue()) while not qout.empty() or not qout.empty(): qout.get() for t in threadPool: t.join() @staticmethod def __fastFlatMap_input_thread(itr: Iterator[_K], qin: Queue): while 1: try: el = next(itr) except StopIteration: qin.put(EndQueue()) return else: qin.put(el) def __fastFlatMap_generator(self, predicate, poolSize: int, bufferSize: int): qin = Queue(bufferSize) qout = Queue(bufferSize * 2) threadPool = [threading.Thread(target=_IStream.__fastFlatMap_thread, args=(predicate, qin, qout)) for i in range(poolSize)] for t in threadPool: t.start() i = 0 itr = iter(self) hasNext = True while i < bufferSize and hasNext: try: el = next(itr) i += 1 qin.put(el) except StopIteration: hasNext = False inputThread = threading.Thread(target=_IStream.__fastFlatMap_input_thread, args=(itr, qin)) inputThread.start() qout_counter = 0 while qout_counter < len(threadPool): newEl = qout.get() if isinstance(newEl, MapException): raise newEl.exc_info[0](newEl.exc_info[1]).with_traceback(newEl.exc_info[2]) if isinstance(newEl, EndQueue): qout_counter += 1 if qout_counter >= len(threadPool): inputThread.join() for t in threadPool: t.join() while not qout.empty(): newEl = qout.get() if isinstance(newEl, MapException): raise newEl.exc_info[0](newEl.exc_info[1]).with_traceback(newEl.exc_info[2]) yield newEl else: yield newEl @staticmethod def exc_info_decorator(f: Callable[[_K], _V], el: _K) -> Union[MapException, _V]: try: return f(el) except Exception as e: pickling_support.install(e) return MapException(sys.exc_info()) def __mp_pool_generator(self, f: Callable[[_K], _V], poolSize: int, bufferSize: int) -> Generator[_V, None, None]: p = Pool(poolSize) decorated_f_with_exc_passing = partial(self.exc_info_decorator, f) for el in p.imap(decorated_f_with_exc_passing, self, chunksize=bufferSize): if isinstance(el, MapException): raise el.exc_info[0](el.exc_info[1]).with_traceback(el.exc_info[2]) yield el p.close() p.join() def __mp_fast_pool_generator(self, f: Callable[[_K], _V], poolSize: int, bufferSize: int ) -> Generator[_V, None, None]: p = Pool(poolSize) try: decorated_f_with_exc_passing = partial(self.exc_info_decorator, f) for el in p.imap_unordered(decorated_f_with_exc_passing, iter(self), chunksize=bufferSize): if isinstance(el, MapException): raise el.exc_info[0](el.exc_info[1]).with_traceback(el.exc_info[2]) yield el except GeneratorExit: p.terminate() finally: p.close() p.join() @staticmethod def __unique_generator(itr, f): st = set() for el in itr: m_el = f(el) if m_el not in st: st.add(m_el) yield el def map(self, f: Callable[[_K], _V]) -> 'stream[_V]': return stream(partial(map, f, self)) def starmap(self, f: Callable[[_K], _V]) -> 'stream[_V]': return stream(partial(itertools.starmap, f, self)) def mpmap(self, f: Callable[[_K], _V], poolSize: int = cpu_count(), bufferSize: Optional[int] = 1) -> 'stream[_V]': if not isinstance(poolSize, int) or poolSize <= 0 or poolSize > 2 ** 12: raise ValueError("poolSize should be an integer between 1 and 2^12. Received: %s" % str(poolSize)) elif poolSize == 1: return self.map(f) if bufferSize is None: bufferSize = poolSize * 2 if not isinstance(bufferSize, int) or bufferSize <= 0 or bufferSize > 2 ** 12: raise ValueError("bufferSize should be an integer between 1 and 2^12. Received: %s" % str(poolSize)) return stream(self.__mp_pool_generator(f, poolSize, bufferSize)) def mpfastmap(self, f: Callable[[_K], _V], poolSize: int = cpu_count(), bufferSize: Optional[int] = 1) -> 'stream[_V]': if not isinstance(poolSize, int) or poolSize <= 0 or poolSize > 2 ** 12: raise ValueError("poolSize should be an integer between 1 and 2^12. Received: %s" % str(poolSize)) elif poolSize == 1: return self.map(f) if bufferSize is None: bufferSize = poolSize * 2 if not isinstance(bufferSize, int) or bufferSize <= 0 or bufferSize > 2 ** 12: raise ValueError("bufferSize should be an integer between 1 and 2^12. Received: %s" % str(poolSize)) return stream(self.__mp_fast_pool_generator(f, poolSize, bufferSize)) def fastmap(self, f: Callable[[_K], _V], poolSize: int = cpu_count(), bufferSize: Optional[int] = None) -> 'stream[_V]': if not isinstance(poolSize, int) or poolSize <= 0 or poolSize > 2 ** 12: raise ValueError("poolSize should be an integer between 1 and 2^12. Received: %s" % str(poolSize)) elif poolSize == 1: return self.map(f) if bufferSize is None: bufferSize = poolSize if not isinstance(bufferSize, int) or bufferSize <= 0 or bufferSize > 2 ** 12: raise ValueError("bufferSize should be an integer between 1 and 2^12. Received: %s" % str(poolSize)) return stream(ItrFromFunc(lambda: self.__fastmap_generator(f, poolSize, bufferSize))) def mtmap(self, f: Callable[[_K], _V], poolSize: int = cpu_count(), bufferSize: Optional[int] = None) -> 'stream[_V]': if not isinstance(poolSize, int) or poolSize <= 0 or poolSize > 2 ** 12: raise ValueError("poolSize should be an integer between 1 and 2^12. Received: %s" % str(poolSize)) elif poolSize == 1: return self.map(f) if bufferSize is None: bufferSize = poolSize if not isinstance(bufferSize, int) or bufferSize <= 0 or bufferSize > 2 ** 12: raise ValueError("bufferSize should be an integer between 1 and 2^12. Received: %s" % str(poolSize)) return stream(ItrFromFunc(lambda: self.__mtmap_generator(f, poolSize, bufferSize))) def fastFlatMap(self, predicate: Callable[[_K], Iterable[_V]] = _IDENTITY_FUNC, poolSize: int = cpu_count(), bufferSize: Optional[int] = None) -> 'stream[_V]': if not isinstance(poolSize, int) or poolSize <= 0 or poolSize > 2 ** 12: raise ValueError("poolSize should be an integer between 1 and 2^12. Received: %s" % str(poolSize)) elif poolSize == 1: return self.flatMap(predicate) if bufferSize is None: bufferSize = poolSize if not isinstance(bufferSize, int) or bufferSize <= 0 or bufferSize > 2 ** 12: raise ValueError("bufferSize should be an integer between 1 and 2^12. Received: %s" % str(poolSize)) return stream(lambda: self.__fastFlatMap_generator(predicate, poolSize, bufferSize)) def enumerate(self) -> 'stream[Tuple[int,_K]]': return stream(zip(range(0, sys.maxsize), self)) def flatMap(self, predicate: Callable[[_K], Iterable[_V]] = _IDENTITY_FUNC) -> 'stream[_V]': if id(predicate) == id(_IDENTITY_FUNC): return stream(ItrFromFunc(lambda: itertools.chain.from_iterable(self))) return stream(ItrFromFunc(lambda: itertools.chain.from_iterable(self.map(predicate)))) def filter(self, predicate: Optional[Callable[[_K], bool]] = None) -> 'stream[_K]': return stream(ItrFromFunc(lambda: filter(predicate, self))) def reversed(self) -> 'stream[_K]': try: return stream(self.__reversed__()) except AttributeError: return stream(lambda: reversed(self.toList())) def exists(self, f: Callable[[_K], bool]) -> bool: for e in self: if f(e): return True return False def keyBy(self, keyfunc: Callable[[_K], _V] = _IDENTITY_FUNC) -> 'stream[Tuple[_K, _V]]': return self.map(lambda h: (keyfunc(h), h)) def keystream(self: 'stream[Tuple[_T,_V]]') -> 'stream[_T]': return self.map(itemgetter(0)) def values(self: 'stream[Tuple[_T,_V]]') -> 'stream[_V]': return self.map(itemgetter(1)) def groupBy(self, keyfunc: Callable[[_K], _T] = _IDENTITY_FUNC) -> 'slist[Tuple[_T, slist[_K]]]': h = defaultdict(slist) for v in self: h[keyfunc(v)].append(v) return slist(h.items()) @staticmethod def __stream_on_second_el(t: Tuple[_K, Iterable[_T]]) -> 'Tuple[_K, stream[_T]]': return t[0], stream(t[1]) @staticmethod def __slist_on_second_el(t: Tuple[_K, Iterable[_T]]) -> 'Tuple[_K, slist[_T]]': return t[0], slist(t[1]) def groupBySorted(self, keyfunc: Optional[Callable[[_K], _T]] = None) -> 'stream[Tuple[_T, stream[_K]]]': return stream(partial(groupby, iterable=self, key=keyfunc)).map(self.__stream_on_second_el) def groupBySortedToList(self, keyfunc: Callable[[_K], _T] = _IDENTITY_FUNC) -> 'stream[Tuple[_T, slist[_K]]]': return stream(partial(groupby, iterable=self, key=keyfunc)).map(self.__slist_on_second_el) def countByValue(self) -> 'sdict[_K,int]': return sdict(collections.Counter(self)) def distinct(self) -> 'stream[_K]': return self.unique() @overload def reduce(self, f: Callable[[_K, _K], _K], init: Optional[_K] = None) -> _K: ... @overload def reduce(self, f: Callable[[_T, _K], _T], init: _T = None) -> _T: ... @overload def reduce(self, f: Callable[[Union[_K, _T], _K], _T], init: Optional[_T] = None) -> _T: ... @overload def reduce(self, f: Callable[[Union[_K, _T], _K], _T], init: Optional[_K] = None) -> _T: ... @overload def reduce(self, f: Callable[[_T, _K], _T], init: _T = None) -> _T: ... def reduce(self, f, init=None): if init is None: return reduce(f, self) else: return reduce(f, self, init) def transform(self, f: Callable[[Iterable[_K]], Iterable[_V]]) ->'stream[_V]': return stream(partial(f, self)) def shuffle(self, random=None) -> 'slist[_K]': lst = self.toList() shuffle(lst, random=random) return lst def toSet(self) -> 'sset[_K]': return sset(self) def toList(self) -> 'slist[_K]': return slist(self) def sorted(self, key=None, reverse=False): return slist(sorted(self, key=key, reverse=reverse)) def toMap(self: 'stream[Tuple[_T,_V]]') -> 'sdict[_T,_V]': return sdict(self) def toSumCounter(self: 'stream[Tuple[_T,_V]]') -> 'sdict[_T,_V]': res = sdict() for k, v in self: if k in res: res[k] += v else: res[k] = v return res def toJson(self) -> 'JsonList': from pyxtension.Json import JsonList return JsonList(self) @overload def __getitem__(self, i: slice) -> 'stream[_K]': ... @overload def __getitem__(self, i: int) -> _K: ... def __getitem__(self, i: Union[slice, int]): if isinstance(i, slice): return self.__getslice(i.start, i.stop, i.step) else: tk = 0 while tk < i: self.next() tk += 1 return self.next() def __getslice(self, start: Optional[int] = None, stop: Optional[int] = None, step: Optional[int] = None) -> 'stream[_K]': return stream(lambda: itertools.islice(self, start, stop, step)) def __add__(self, other) -> 'stream[_K]': if not isinstance(other, (ItrFromFunc, stream)): othItr = stream(lambda: other) else: othItr = other if isinstance(self._itr, (ItrFromFunc, stream)): i = self._itr elif self._itr is None: i = ItrFromFunc(self._f) else: i = ItrFromFunc(lambda: self._itr) return stream(partial(itertools.chain.from_iterable, (i, othItr))) def __iadd__(self, other) -> 'stream[_K]': if not isinstance(other, (ItrFromFunc, stream)): othItr = stream(lambda: other) else: othItr = other if isinstance(self._itr, ItrFromFunc): i = self._itr elif self._itr is None: i = ItrFromFunc(self._f) else: j = self._itr i = ItrFromFunc(lambda: j) self._itr, self._f = self._init_itr(partial(itertools.chain.from_iterable, (i, othItr))) return self def size(self) -> int: try: return len(self) except TypeError: pass return sum(1 for _ in iter(self)) def join(self, f: Callable[[_K], _V] = None) -> Union[_K, str]: if f is None: return ''.join(self) elif isinstance(f, str): return f.join(self) else: itr = iter(self) r = next(itr) last = r while True: try: n = next(itr) r += f(last) last = n r += n except StopIteration: break return r def mkString(self, c) -> str: return self.join(c) def batch(self, size: int) -> 'stream[_K]': def batch_gen(itr): while True: batch = slist(itertools.islice(itr, 0, size)) if not batch: break yield batch return stream(lambda: stream(batch_gen(iter(self)))) def take(self, n: int) -> 'stream[_K]': def gen(other_gen: GeneratorType, n): count = 0 while count < n: if count < n: try: el = next(other_gen) count += 1 yield el except StopIteration: break other_gen.close() if isinstance(self._itr, GeneratorType): return stream(gen(self._itr, n)) else: return self[:n] def takeWhile(self, predicate: Callable[[_K], bool]) -> 'stream[_K]': def gen(other_gen: Union[GeneratorType, Iterable[_K]], pred: Callable[[_K], bool]): isGen = True if not isinstance(other_gen, GeneratorType): isGen = False other_gen = iter(other_gen) while True: try: el = next(other_gen) if pred(el): yield el else: break except StopIteration: break if isGen: other_gen.close() return stream(gen(self, predicate)) def dropWhile(self, predicate: Callable[[_K], bool]): return stream(partial(itertools.dropwhile, predicate, self)) def next(self) -> _K: if self._itr is not None: try: n = next(self._itr) return n except TypeError: self._itr = iter(self._itr) return next(self._itr) else: self._itr = iter(self) self._f = None return next(self._itr)
MIT License
rwl/muntjac
muntjac/ui/form.py
Form.addField
python
def addField(self, propertyId, field): self.registerField(propertyId, field) self.attachField(propertyId, field) self.requestRepaint()
Registers the field with the form and adds the field to the form layout. The property id must not be already used in the form. This field is added to the layout using the L{attachField} method. @param propertyId: the Property id the the field. @param field: the field which should be added to the form.
https://github.com/rwl/muntjac/blob/8db97712edd81b4d25deaaa48587d2a08010f2c8/muntjac/ui/form.py#L374-L389
from warnings import warn from muntjac.data.item import IEditor, IItem from muntjac.data.buffered import IBuffered, SourceException from muntjac.data.validatable import IValidatable from muntjac.data.validator import InvalidValueException from muntjac.data.property import IValueChangeListener from muntjac.event.action_manager import ActionManager from muntjac.ui.abstract_field import AbstractField from muntjac.ui.default_field_factory import DefaultFieldFactory from muntjac.ui.abstract_component import AbstractComponent from muntjac.ui.field import IField from muntjac.ui.custom_layout import CustomLayout from muntjac.ui.component_container import IComponentContainer from muntjac.ui.grid_layout import GridLayout from muntjac.ui.field_factory import IFieldFactory from muntjac.ui.form_layout import FormLayout from muntjac.ui.horizontal_layout import HorizontalLayout from muntjac.ui.select import Select from muntjac.event.action import INotifier from muntjac.terminal.composite_error_message import CompositeErrorMessage class Form(AbstractField, IEditor, IBuffered, IItem, IValidatable, INotifier): CLIENT_WIDGET = None def __init__(self, formLayout=None, fieldFactory=None): self._propertyValue = None self._layout = None self._itemDatasource = None self._propertyIds = list() self._currentBufferedSourceException = None self._writeThrough = True self._readThrough = True self._fields = dict() self._ownProperties = dict() self._fieldFactory = None self._visibleItemProperties = None self._fieldValueChangeListener = FieldValueChangeListener(self) self._formFooter = None self._validationVisibleOnCommit = True self._gridlayoutCursorX = -1 self._gridlayoutCursorY = -1 self._ownActionManager = ActionManager(self) if fieldFactory is None: fieldFactory = DefaultFieldFactory.get() super(Form, self).__init__() self.setLayout(formLayout) self.setFormFieldFactory(fieldFactory) self.setValidationVisible(False) self.setWidth(100, self.UNITS_PERCENTAGE) def paintContent(self, target): super(Form, self).paintContent(target) self._layout.paint(target) if self._formFooter is not None: self._formFooter.paint(target) if self._ownActionManager is not None: self._ownActionManager.paintActions(None, target) def changeVariables(self, source, variables): super(Form, self).changeVariables(source, variables) if self._ownActionManager is not None: self._ownActionManager.handleActions(variables, self) def getErrorMessage(self): validationError = None if self.isValidationVisible(): for i in self._propertyIds: f = self._fields.get(i) if isinstance(f, AbstractComponent): field = f validationError = field.getErrorMessage() if validationError is not None: if '' == str(validationError): e = InvalidValueException(field.getCaption()) validationError = e break elif isinstance(f, IField) and not f.isValid(): e = InvalidValueException(field.getCaption()) validationError = e break if (self.getComponentError() is None and validationError is None and self._currentBufferedSourceException is None): return None return CompositeErrorMessage([self.getComponentError(), validationError, self._currentBufferedSourceException]) def setValidationVisibleOnCommit(self, makeVisible): self._validationVisibleOnCommit = makeVisible def isValidationVisibleOnCommit(self): return self._validationVisibleOnCommit def commit(self): problems = None if not self.isInvalidCommitted() and not self.isValid(): if self._validationVisibleOnCommit: self.setValidationVisible(True) self.validate() for i in self._propertyIds: try: f = self._fields.get(i) if not f.isReadOnly(): f.commit() except SourceException, e: if problems is None: problems = list() problems.append(e) if problems is None: if self._currentBufferedSourceException is not None: self._currentBufferedSourceException = None self.requestRepaint() return causes = [None] * len(problems) index = 0 for i in problems: causes[index] = i index += 1 e = SourceException(self, causes) self._currentBufferedSourceException = e self.requestRepaint() raise e def discard(self): problems = None for i in self._propertyIds: try: self._fields.get(i).discard() except SourceException, e: if problems is None: problems = list() problems.append(e) if problems is None: if self._currentBufferedSourceException is not None: self._currentBufferedSourceException = None self.requestRepaint() return causes = [None] * len(problems) index = 0 for i in problems: causes[index] = i index += 1 e = SourceException(self, causes) self._currentBufferedSourceException = e self.requestRepaint() raise e def isModified(self): for i in self._propertyIds: f = self._fields.get(i) if f is not None and f.isModified(): return True return False def isReadThrough(self): return self._readThrough def isWriteThrough(self): return self._writeThrough def setReadThrough(self, readThrough): if readThrough != self._readThrough: self._readThrough = readThrough for i in self._propertyIds: self._fields.get(i).setReadThrough(readThrough) def setWriteThrough(self, writeThrough): if writeThrough != self._writeThrough: self._writeThrough = writeThrough for i in self._propertyIds: self._fields.get(i).setWriteThrough(writeThrough) def addItemProperty(self, idd, prop): if (idd is None) or (prop is None): raise ValueError, 'Id and property must be non-null' if self._propertyIds.contains(idd): return False self._propertyIds.add(idd) self._ownProperties[idd] = prop field = self._fieldFactory.createField(self, idd, self) if field is None: return False field.setPropertyDataSource(prop) self.addField(idd, field) return True
Apache License 2.0