repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
eric612/mobilenet-yolo-pytorch
|
utils/image_augmentation.py
|
Image_Augmentation.transform_od
|
python
|
def transform_od(self,image, boxes, labels, difficulties, mean = [0.485, 0.456, 0.406],std = [0.229, 0.224, 0.225],phase = 'train',expand = True,expand_scale = 1.5):
assert phase in {'train', 'test'}
new_image = image
new_boxes = boxes
new_labels = labels
new_difficulties = difficulties
if phase == 'train':
new_image = self.photometric_distort(new_image)
new_image = FT.to_tensor(new_image)
if random.random() < 0.5 and expand==True:
new_image, new_boxes = self.expand_od(new_image, boxes, filler=mean,expand_scale=expand_scale)
new_image, new_boxes, new_labels, new_difficulties = self.random_crop_od(new_image, new_boxes, new_labels,
new_difficulties)
new_image = FT.to_pil_image(new_image)
if random.random() < 0.5:
new_image, new_boxes = self.flip_od(new_image, new_boxes)
return new_image, new_boxes, new_labels, new_difficulties
|
Apply the transformations above.
:param image: image, a PIL Image
:param boxes: bounding boxes in boundary coordinates, a tensor of dimensions (n_objects, 4)
:param labels: labels of objects, a tensor of dimensions (n_objects)
:param difficulties: difficulties of detection of these objects, a tensor of dimensions (n_objects)
:param split: one of 'TRAIN' or 'TEST', since different sets of transformations are applied
:param dims: (H, W)
:return: transformed image, transformed bounding box coordinates, transformed labels, transformed difficulties
|
https://github.com/eric612/mobilenet-yolo-pytorch/blob/5ef0ff5944ac2d71152827361014b2c193e4b26c/utils/image_augmentation.py#L270-L319
|
import numpy as np
import torch
import random
import torchvision.transforms.functional as FT
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont
import cv2
from utils.iou import*
class Image_Augmentation():
def expand_od(self,image, boxes, filler,expand_scale):
original_h = image.size(1)
original_w = image.size(2)
max_scale = expand_scale
scale = random.uniform(1, max_scale)
new_h = int(scale * original_h)
new_w = int(scale * original_w)
filler = torch.FloatTensor(filler)
new_image = torch.ones((3, new_h, new_w), dtype=torch.float) * filler.unsqueeze(1).unsqueeze(1)
left = random.randint(0, new_w - original_w)
right = left + original_w
top = random.randint(0, new_h - original_h)
bottom = top + original_h
new_image[:, top:bottom, left:right] = image
new_boxes = boxes + torch.FloatTensor([left, top, left, top]).unsqueeze(0)
return new_image, new_boxes
def random_crop_od(self,image, boxes, labels, difficulties):
original_h = image.size(1)
original_w = image.size(2)
while True:
min_overlap = random.choice([0., .1, .3, .5, .7, .9, None])
if min_overlap is None:
return image, boxes, labels, difficulties
max_trials = 50
for _ in range(max_trials):
min_scale = 0.3
scale_h = random.uniform(min_scale, 1)
scale_w = random.uniform(min_scale, 1)
new_h = int(scale_h * original_h)
new_w = int(scale_w * original_w)
aspect_ratio = new_h / new_w
if not 0.5 < aspect_ratio < 2:
continue
left = random.randint(0, original_w - new_w)
right = left + new_w
top = random.randint(0, original_h - new_h)
bottom = top + new_h
crop = torch.FloatTensor([left, top, right, bottom])
overlap = find_jaccard_overlap(crop.unsqueeze(0),
boxes)
overlap = overlap.squeeze(0)
if overlap.max().item() < min_overlap:
continue
new_image = image[:, top:bottom, left:right]
bb_centers = (boxes[:, :2] + boxes[:, 2:]) / 2.
centers_in_crop = (bb_centers[:, 0] > left) * (bb_centers[:, 0] < right) * (bb_centers[:, 1] > top) * (
bb_centers[:, 1] < bottom)
if not centers_in_crop.any():
continue
new_boxes = boxes[centers_in_crop, :]
new_labels = labels[centers_in_crop]
new_difficulties = difficulties[centers_in_crop]
new_boxes[:, :2] = torch.max(new_boxes[:, :2], crop[:2])
new_boxes[:, :2] -= crop[:2]
new_boxes[:, 2:] = torch.min(new_boxes[:, 2:], crop[2:])
new_boxes[:, 2:] -= crop[:2]
return new_image, new_boxes, new_labels, new_difficulties
def flip_od(self,image, boxes):
new_image = FT.hflip(image)
new_boxes = boxes
new_boxes[:, 0] = image.width - boxes[:, 0] - 1
new_boxes[:, 2] = image.width - boxes[:, 2] - 1
new_boxes = new_boxes[:, [2, 1, 0, 3]]
return new_image, new_boxes
def photometric_distort(self,image):
new_image = image
distortions = [FT.adjust_brightness,
FT.adjust_contrast,
FT.adjust_saturation,
FT.adjust_hue,
FT.adjust_gamma]
random.shuffle(distortions)
for d in distortions:
if random.random() < 0.5:
if d.__name__ is 'adjust_hue':
adjust_factor = random.uniform(-18 / 255., 18 / 255.)
else:
adjust_factor = random.uniform(0.5, 1.5)
new_image = d(new_image, adjust_factor)
return new_image
def generate_mosaic_mask(self,num,size):
mosaic_mask = [[0,0,size[0],size[1]]]
x_center = int(random.uniform(.25,.75)*size[0])
y_center = int(random.uniform(.25,.75)*size[1])
if num == 2 :
mosaic_mask1 = [[0,0,x_center,size[1]],[x_center,0,size[0],size[1]]]
mosaic_mask2 = [[0,0,size[0],y_center],[0,y_center,size[0],size[1]]]
mosaic_mask = random.choice([mosaic_mask1,mosaic_mask2])
elif num == 3 :
mosaic_mask1 = [[0,0,size[0],y_center],[0,y_center,x_center,size[1]],[x_center,y_center,size[0],size[1]]]
mosaic_mask2 = [[0,0,x_center,y_center],[x_center,0,size[0],y_center],[0,y_center,size[0],size[1]]]
mosaic_mask3 = [[0,0,x_center,size[1]],[x_center,0,size[0],y_center],[x_center,y_center,size[0],size[1]]]
mosaic_mask4 = [[0,0,x_center,y_center],[x_center,0,size[0],size[1]],[0,y_center,x_center,size[1]]]
mosaic_mask = random.choice([mosaic_mask1,mosaic_mask2,mosaic_mask3,mosaic_mask4])
elif num == 4 :
mosaic_mask = [[0,0,x_center,y_center],[x_center,0,size[0],y_center],[0,y_center,x_center,size[1]],[x_center,y_center,size[0],size[1]]]
return mosaic_mask
def Mosaic(self,source,size):
new_data = list()
background = np.zeros((size[0],size[1],3))
counter = 0
num = len(source)
mosaic_mask = self.generate_mosaic_mask(num,size)
new_labels = torch.Tensor(0,5)
for img,label in source :
width, height = (mosaic_mask[counter][2]-mosaic_mask[counter][0]),(mosaic_mask[counter][3]-mosaic_mask[counter][1])
aspect_ratio_src = img.height/img.width
min_ratio,max_ratio = aspect_ratio_src*0.5 , aspect_ratio_src*2
aspect_ratio_tar = height/width
offset_x = 0
offset_y = 0
if aspect_ratio_tar<min_ratio :
scale = 1/min_ratio
offset_x = random.randint(0, int(width-height*scale))
width = int(height*scale)
if aspect_ratio_tar>max_ratio :
offset_y = random.randint(0, int(height-width*max_ratio))
height = int(width*max_ratio)
new_img = img.resize((width,height))
new_img = np.array(new_img)
mean = np.mean(new_img, axis=tuple(range(new_img.ndim-1)))
x1 = mosaic_mask[counter][0]+offset_x
y1 = mosaic_mask[counter][1]+offset_y
x2 = min(mosaic_mask[counter][2],x1+width)
y2 = min(mosaic_mask[counter][3],y1+height)
background[mosaic_mask[counter][1]:mosaic_mask[counter][3],mosaic_mask[counter][0]:mosaic_mask[counter][2]] = mean
background[y1:y2,x1:x2] = new_img
if label.size(0):
new_box = label[...,1:5]
w_scale = (size[0]/width)
h_scale = (size[1]/height)
new_box[...,0],new_box[...,2] = new_box[...,0]/w_scale,new_box[...,2]/w_scale
new_box[...,1],new_box[...,3] = new_box[...,1]/h_scale,new_box[...,3]/h_scale
new_box[...,0] = new_box[...,0] + (mosaic_mask[counter][0]+offset_x)/size[0]
new_box[...,1] = new_box[...,1] + (mosaic_mask[counter][1]+offset_y)/size[1]
new_label = torch.cat((label[...,0].unsqueeze(1),new_box),1)
new_labels = torch.cat((new_labels,new_label))
counter = counter + 1
new_img = Image.fromarray(background.astype(np.uint8))
new_data = [new_img,new_labels]
return new_data
|
MIT License
|
unity-technologies/datasetinsights
|
datasetinsights/dashboard.py
|
render_content
|
python
|
def render_content(value, json_data_root):
data_root = json.loads(json_data_root)
if value == "dataset_overview":
return overview.html_overview(data_root)
elif value == "object_detection":
return render_object_detection_layout(data_root)
|
Method for rendering dashboard layout based
on the selected tab value.
Args:
value(str): selected tab value
json_data_root: data root stored in hidden div in json format.
Returns:
html layout: layout for the selected tab.
|
https://github.com/unity-technologies/datasetinsights/blob/0c6e2407f3b6ceb7a38cb82e3bbcf41a6c2d4672/datasetinsights/dashboard.py#L85-L101
|
import argparse
import json
import os
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
import datasetinsights.stats.visualization.overview as overview
from datasetinsights.stats.visualization.app import get_app
from datasetinsights.stats.visualization.object_detection import (
render_object_detection_layout,
)
app = get_app()
def main_layout():
app_layout = html.Div(
[
html.H1(
children="Dataset Insights",
style={
"textAlign": "center",
"padding": 20,
"background": "lightgrey",
},
),
html.Div(
[
dcc.Tabs(
id="page_tabs",
value="dataset_overview",
children=[
dcc.Tab(
label="Overview", value="dataset_overview",
),
dcc.Tab(
label="Object Detection",
value="object_detection",
),
],
),
html.Div(id="main_page_tabs"),
]
),
dcc.Dropdown(id="dropdown", style={"display": "none"}),
html.Div(id="data_root_value", style={"display": "none"}),
]
)
return app_layout
@app.callback(
Output("data_root_value", "children"), [Input("dropdown", "value")]
)
def store_data_root(value):
json_data_root = json.dumps(data_root)
return json_data_root
@app.callback(
Output("main_page_tabs", "children"),
[Input("page_tabs", "value"), Input("data_root_value", "children")],
)
|
Apache License 2.0
|
esukhia/botok
|
botok/modifytokens/tokenmerge.py
|
TokenMerge.__merge_syls_idx
|
python
|
def __merge_syls_idx(self):
first_syl = True
if self.token2.syls_idx:
for syl in self.token2.syls_idx:
if syl:
new_syl = [i + self.token1.len for i in syl]
if (
first_syl
and (self.token1.affix_host and not self.token1.affix)
and (not self.token2.affix_host and self.token2.affix)
):
self.merged.syls_idx[-1] += new_syl
self.merged.affix = True
first_syl = False
else:
self.merged.syls_idx.append(new_syl)
|
Updates indices and add the syls to the merged object
Re-joins the host-syllable and affixed particle syllables into a single one;
then, affix is True and affixed also, so cleaned_content gets its tsek.
|
https://github.com/esukhia/botok/blob/9009581cc290c800e7d93a405969e10a7c9d2f51/botok/modifytokens/tokenmerge.py#L68-L90
|
import copy
from ..third_party.cqlparser import replace_token_attributes
class TokenMerge:
def __init__(self, token1, token2, token_changes=None):
self.token1 = token1
self.token2 = token2
self.merged = copy.deepcopy(token1)
if not self.merged.syls_idx:
self.merged.syls_idx = []
if not self.merged.syls:
self.merged.syls = []
self.token_changes = token_changes
def merge(self):
self.merge_attrs()
self.replace_attrs()
return self.merged
def replace_attrs(self):
if self.token_changes:
replace_token_attributes(self.merged, self.token_changes)
def merge_attrs(self):
self.__merge_texts()
self.__merge_indices()
self.__merge_syls_idx()
self.__merge_syls_start_end()
self.__del_lemma()
def __merge_texts(self):
self.merged.text += self.token2.text
def __merge_indices(self):
self.merged.len += self.token2.len
def __merge_syls_start_end(self):
if (
not self.merged.syls_start_end
or not self.token1.syls_start_end
or not self.token2.syls_start_end
):
return
if (
self.token1.affix_host
and not self.token1.affix
and not self.token2.affix_host
and self.token2.affix
):
self.merged.syls_start_end[-1]["end"] = self.token2.syls_start_end[0]["end"]
self.merged.syls_start_end.extend(self.token2.syls_start_end[1:])
else:
self.merged.syls_start_end.extend(self.token2.syls_start_end)
|
Apache License 2.0
|
4dnucleome/partseg
|
package/PartSegCore/analysis/calculation_plan.py
|
MaskMapper.get_mask_path
|
python
|
def get_mask_path(self, file_path: str) -> str:
|
Calculate mask path based od file_path
:param file_path: path to proceeded file
|
https://github.com/4dnucleome/partseg/blob/f6bb1bb02c006f2e009e873a0e3bad87469cc90e/package/PartSegCore/analysis/calculation_plan.py#L177-L182
|
import logging
import os
import sys
import textwrap
import typing
import uuid
from abc import abstractmethod
from copy import copy, deepcopy
from enum import Enum
from ..algorithm_describe_base import ROIExtractionProfile
from ..class_generator import BaseSerializableClass, enum_register
from ..mask_create import MaskProperty
from ..universal_const import Units
from . import analysis_algorithm_dict
from .measurement_calculation import MeasurementProfile
class MaskBase:
name: str
class RootType(Enum):
Image = 0
Project = 1
Mask_project = 2
def __str__(self):
return self.name.replace("_", " ")
enum_register.register_class(RootType)
class MaskCreate(MaskBase, BaseSerializableClass):
mask_property: MaskProperty
def __str__(self):
return f"Mask create: {self.name}\n" + str(self.mask_property).split("\n", 1)[1]
class MaskUse(MaskBase, BaseSerializableClass):
class MaskSum(MaskBase, BaseSerializableClass):
mask1: str
mask2: str
class MaskIntersection(MaskBase, BaseSerializableClass):
mask1: str
mask2: str
class Save(BaseSerializableClass):
suffix: str
directory: str
algorithm: str
short_name: str
values: dict
class MeasurementCalculate(BaseSerializableClass):
__old_names__ = "StatisticCalculate"
channel: int
units: Units
measurement_profile: MeasurementProfile
name_prefix: str
@typing.overload
def __init__(self, channel: int, units: Units, measurement_profile: MeasurementProfile, name_prefix: str):
...
@property
def name(self):
return self.measurement_profile.name
def __str__(self):
channel = "Like segmentation" if self.channel == -1 else str(self.channel)
desc = str(self.measurement_profile).split("\n", 1)[1]
return f"MeasurementCalculate \nChannel: {channel}\nUnits: {self.units}\n{desc}\n"
def get_save_path(op: Save, calculation: "FileCalculation") -> str:
from PartSegCore.analysis.save_functions import save_dict
extension = save_dict[op.algorithm].get_default_extension()
rel_path = os.path.relpath(calculation.file_path, calculation.base_prefix)
rel_path = os.path.splitext(rel_path)[0]
if op.directory:
file_name = os.path.basename(rel_path)
base_rel_path = os.path.dirname(rel_path)
return os.path.join(calculation.result_prefix, base_rel_path, op.directory, file_name + op.suffix + extension)
return os.path.join(calculation.result_prefix, rel_path + op.suffix + extension)
class MaskMapper:
name: str
@abstractmethod
|
BSD 3-Clause New or Revised License
|
aoikuiyuyou/aoikhotkey
|
src/aoikhotkey/hotkey_spec_parser.py
|
tag_call_with_info
|
python
|
def tag_call_with_info(func):
setattr(func, _TAG_CALL_WITH_INFO, True)
return func
|
Decorator that adds `call with info` tag attribute to decorated function.
:param func: Decorated function.
:return: Decorated function.
|
https://github.com/aoikuiyuyou/aoikhotkey/blob/7a04f8fddee02df41ff436a696b5261ae588cb62/src/aoikhotkey/hotkey_spec_parser.py#L113-L125
|
from __future__ import absolute_import
import os.path
from subprocess import Popen
import webbrowser
from .const import HOTKEY_INFO_K_HOTKEY_FULL_SPEC
from .const import HOTKEY_INFO_K_HOTKEY_FUNC
from .const import HOTKEY_INFO_K_HOTKEY_ORIG_SPEC
from .const import HOTKEY_INFO_K_HOTKEY_PATTERN
from .const import HOTKEY_INFO_K_HOTKEY_TYPE
from .const import HOTKEY_INFO_K_NEED_HOTKEY_INFO_LIST
from .const import HOTKEY_TYPE_V_DN
from .const import HOTKEY_TYPE_V_KS
from .const import HOTKEY_TYPE_V_UP
class _CallAll(object):
def __init__(self, funcs):
self._funcs = funcs
def __call__(self):
res = None
for func in self._funcs:
res = func()
if res is False:
return False
return res
class NeedHotkeyInfo(object):
def hotkey_info_set(self, hotkey_info):
raise NotImplementedError()
_TAG_CALL_IN_MAIN_THREAD = '_AOIKHOTKEY_TAG_CALL_IN_MAIN_THREAD'
def tag_call_in_main_thread(func):
setattr(func, _TAG_CALL_IN_MAIN_THREAD, True)
return func
def tag_call_in_main_thread_exists(func):
return getattr(func, _TAG_CALL_IN_MAIN_THREAD, False)
_TAG_CALL_WITH_INFO = '_AOIKHOTKEY_TAG_CALL_WITH_INFO'
|
MIT License
|
peerchemist/cryptotik
|
cryptotik/kraken.py
|
KrakenNormalized.buy_limit
|
python
|
def buy_limit(self, pair, rate, amount, leverage=None):
return self.private_api(self.url + 'private/AddOrder',
params={'pair': self.format_pair(pair),
'type': 'buy', 'ordertype': 'limit',
'price': rate, 'volume': amount
})
|
creates buy limit order for <pair> at <price> for <quantity>
|
https://github.com/peerchemist/cryptotik/blob/24ffd74c43ff1fc171081e135cb2b66b775af3f3/cryptotik/kraken.py#L521-L528
|
import hmac
import hashlib
import time
import base64
import requests
from cryptotik.common import (headers, ExchangeWrapper,
NormalizedExchangeWrapper)
from cryptotik.exceptions import (InvalidBaseCurrencyError,
InvalidDelimiterError,
APIError)
from re import findall
from decimal import Decimal
from datetime import datetime
class Kraken(ExchangeWrapper):
url = 'https://api.kraken.com/0/'
name = 'kraken'
delimiter = ""
headers = headers
taker_fee, maker_fee = 0.00, 0.00
quote_order = 0
base_currencies = ['xbt', 'eur', 'usd', 'eth', 'cad', 'gbp', 'jpy']
@classmethod
def format_pair(cls, pair):
return "".join(findall(r"[^\W\d_]+|\d+", pair)).upper()
def get_base_currencies(self):
raise NotImplementedError
def __init__(self, apikey=None, secret=None, timeout=None, proxy=None):
if apikey and secret:
self.apikey = apikey.encode('utf-8')
self.secret = secret.encode('utf-8')
if proxy:
assert proxy.startswith('https'), {'Error': 'Only https proxies supported.'}
self.proxy = {'https': proxy}
if not timeout:
self.timeout = (8, 15)
else:
self.timeout = timeout
self.api_session = requests.Session()
def _verify_response(self, response):
if response.json()['error']:
raise APIError(response.json()['error'])
def _generate_signature(self, message):
sig = hmac.new(base64.b64decode(self.secret), message, hashlib.sha512)
return base64.b64encode(sig.digest()).decode()
def api(self, url, params=None):
try:
result = self.api_session.get(url, headers=self.headers,
params=params, timeout=self.timeout,
proxies=self.proxy)
result.raise_for_status()
except requests.exceptions.HTTPError as e:
print(e)
self._verify_response(result)
return result.json()['result']
def get_nonce(self):
return int(1000 * time.time())
def private_api(self, url, params={}):
urlpath = url[22:]
data = params
data['nonce'] = self.get_nonce()
postdata = requests.compat.urlencode(data)
encoded = (str(data['nonce']) + postdata).encode()
message = urlpath.encode() + hashlib.sha256(encoded).digest()
signature = self._generate_signature(message)
try:
result = self.api_session.post(url, data=data, headers={
'API-Key': self.apikey,
'API-Sign': signature},
timeout=self.timeout,
proxies=self.proxy)
except requests.exceptions.HTTPError as e:
print(e)
self._verify_response(result)
return result.json()['result']
def get_markets(self):
markets = self.api(self.url + "public/AssetPairs")
return [markets[i]['altname'].lower() for i in markets.keys()]
def get_market_ohlcv_data(self, pair, interval, since=None):
if str(interval) not in "1, 5, 15, 30, 60, 240, 1440, 10080, 21600".split(', '):
raise APIError('Unsupported interval.')
return self.api(self.url + 'public/OHLC', params={'pair': self.format_pair(pair),
'interval': interval,
'since': since})
def get_market_ticker(self, pair):
p = self.format_pair(pair)
return self.api(self.url + "public/Ticker",
params={'pair': p})[p]
def get_market_volume(self, pair):
return self.get_market_ticker(self.format_pair(pair))['v'][1]
def get_market_trade_history(self, pair, limit=200):
p = self.format_pair(pair)
return self.api(self.url + "public/Trades",
params={'pair': p})[p][:limit]
def get_market_orders(self, pair, depth=100):
p = self.format_pair(pair)
r = self.api(self.url + "public/Depth",
params={'pair': p, 'count': depth})
pair_full_name = list(r.keys())[0]
return r[pair_full_name]
def get_market_sell_orders(self, pair, depth=100):
return self.get_market_orders(pair, depth)['asks']
def get_market_buy_orders(self, pair, depth=100):
return self.get_market_orders(pair, depth)['bids']
def get_balances(self):
return self.private_api(self.url + "private/Balance")
def get_deposit_method(self, currency):
return self.private_api(self.url + "private/DepositMethods",
params={'asset': currency.upper()}
)[0]['method']
def get_deposit_address(self, currency):
result = self.private_api(self.url + "private/DepositAddresses",
params={'asset': currency.upper(),
'method': self.get_deposit_method(currency)}
)
if result == []:
result = self.private_api(self.url + "private/DepositAddresses",
params={'asset': currency.upper(),
'method': self.get_deposit_method(currency),
'new': 'true'}
)
return result[0]['address']
def buy_limit(self, pair, rate, amount, leverage=None):
return self.private_api(self.url + 'private/AddOrder',
params={'pair': self.format_pair(pair),
'type': 'buy', 'ordertype': 'limit',
'price': rate, 'volume': amount,
'leverage': leverage
})
def buy_market(self, pair, amount, leverage=None):
return self.private_api(self.url + 'private/AddOrder',
params={'pair': self.format_pair(pair),
'type': 'buy', 'ordertype': 'market',
'volume': amount,
'leverage': leverage
})
def sell_limit(self, pair, rate, amount, leverage=None):
return self.private_api(self.url + 'private/AddOrder',
params={'pair': self.format_pair(pair),
'type': 'sell', 'ordertype': 'limit',
'price': rate, 'volume': amount,
'leverage': leverage
})
def sell_market(self, pair, amount, leverage=None):
return self.private_api(self.url + 'private/AddOrder',
params={'pair': self.format_pair(pair),
'type': 'sell', 'ordertype': 'market',
'volume': amount,
'leverage': leverage
})
def sell_stop_loss(self, pair, rate, amount, leverage=None):
return self.private_api(self.url + 'private/AddOrder',
params={'pair': self.format_pair(pair),
'type': 'sell',
'ordertype': 'stop-loss',
'price': rate,
'volume': amount,
'leverage': leverage
})
def buy_stop_loss(self, pair, rate, amount, leverage=None):
return self.private_api(self.url + 'private/AddOrder',
params={'pair': self.format_pair(pair),
'type': 'buy',
'ordertype': 'stop-loss',
'price': rate,
'volume': amount,
'leverage': leverage
})
def withdraw(self, currency, amount, withdrawal_key_name):
return self.private_api(self.url + 'private/Withdraw',
params={'asset': currency.upper(),
'key': withdrawal_key_name, 'amount': amount
})
def get_withdraw_history(self, currency):
return self.private_api(self.url + "private/WithdrawStatus",
params={'asset': currency.upper()})
def get_deposit_history(self, currency):
return self.private_api(self.url + "private/DepositStatus",
params={'asset': currency.upper(),
'method': self.get_deposit_method(currency)
})
def get_open_positions(self, docalcs=False):
return self.private_api(self.url + "private/OpenPositions",
params={'docalcs': docalcs}
)
def get_open_orders(self):
return self.private_api(self.url + "private/OpenOrders",
params={'trades': 'true'}
)['open']
def get_order(self, orderId):
return self.private_api(self.url + "private/QueryOrders",
params={'trades': 'true',
'txid': orderId})
def cancel_order(self, orderId):
return self.private_api(self.url + "private/CancelOrder",
params={'txid': orderId})
def cancel_all_orders(self):
for txid in self.get_open_orders():
self.cancel_order(txid)
class KrakenNormalized(Kraken, NormalizedExchangeWrapper):
def __init__(self, apikey=None, secret=None, timeout=None, proxy=None):
super(KrakenNormalized, self).__init__(apikey, secret, timeout, proxy)
_names = {
'GNO': 'GNO',
'EOS': 'EOS',
'DASH': 'DASH',
'BCH': 'BCH',
'XETC': 'ETC',
'XETH': 'ETH',
'XLTC': 'LTC',
'XXBT': 'XBT',
'XXMR': 'XMR',
'XXRP': 'XRP',
'XZEC': 'ZEC',
'XMLN': 'MLN',
'XREP': 'REP',
'XXLM': 'XLM',
'ZEUR': 'EUR',
'ZUSD': 'USD',
'ZCAD': 'CAD',
'ZGBP': 'GBP',
'ZJPY': 'JPY'
}
@classmethod
def format_pair(self, market_pair):
market_pair = market_pair.upper()
if "-" not in market_pair:
raise InvalidDelimiterError('Agreed upon delimiter is "-".')
quote, base = market_pair.split('-')
if base == "BTC":
base = "XBT"
if base.lower() not in self.base_currencies:
raise InvalidBaseCurrencyError('''Expected input is quote-base, you have provided with {pair}'''.format(pair=market_pair))
return quote + self.delimiter + base
@staticmethod
def _tstamp_to_datetime(timestamp):
return datetime.fromtimestamp(timestamp)
@staticmethod
def _is_sale(s):
if s == "s":
return True
else:
return False
def get_markets(self):
upstream = super(KrakenNormalized, self).get_markets()
quotes = []
for i in upstream:
for base in self.base_currencies:
if base in i:
quotes.append("".join(i.rsplit(base, 1)) + '-' + base)
return quotes
def get_market_ticker(self, market):
ticker = super(KrakenNormalized, self).get_market_ticker(market)
return {
'ask': ticker['a'][0],
'bid': ticker['b'][0],
'last': ticker['c'][0]
}
def get_balances(self):
ticker = super(KrakenNormalized, self).get_balances()
return {self._names[k]: v for k, v in ticker.items()}
def get_market_trade_history(self, market, depth=100):
upstream = super(KrakenNormalized, self).get_market_trade_history(market, depth)
downstream = []
for data in upstream:
downstream.append({
'timestamp': self._tstamp_to_datetime(data[2]),
'is_sale': self._is_sale(data[3]),
'rate': data[0],
'amount': data[1],
'trade_id': data[2]
})
return downstream
def get_market_orders(self, market, depth=100):
upstream = super(KrakenNormalized, self).get_market_orders(market, depth)
return {
'bids': [[i[0], i[1]] for i in upstream['bids']],
'asks': [[i[0], i[1]] for i in upstream['asks']]
}
def get_market_sell_orders(self, market, depth=100):
return self.get_market_orders(market, depth)['asks']
def get_market_buy_orders(self, market, depth=100):
return self.get_market_orders(market, depth)['bids']
def get_market_spread(self, market):
order_book = super(KrakenNormalized, self).get_market_orders(market, 1)
ask = order_book['asks'][0][0]
bid = order_book['bids'][0][0]
return Decimal(ask) - Decimal(bid)
def get_market_depth(self, market):
order_book = self.get_market_orders(market, 1000)
return {"bids": sum([Decimal(i[0]) * Decimal(i[1]) for i in order_book["bids"]]),
"asks": sum([Decimal(i[1]) for i in order_book["asks"]])
}
def get_market_ohlcv_data(self, market, interval=1, since=1):
if interval.endswith('m'):
interval = str(interval).rstrip('m')
elif interval.endswith('d'):
interval = int(interval.rstrip('d')) * 1440
elif interval.endswith('h'):
interval = int(interval.rstrip('h')) * 60
if str(interval) not in "1, 5, 15, 30, 60, 240, 1440, 10080, 21600".split(', '):
raise APIError('Unsupported interval.')
upstream = super(KrakenNormalized, self
).get_market_ohlcv_data(market,
interval,
int(since)
)
r = []
for ohlcv in upstream[next(iter(upstream))]:
r.append({
'open': float(ohlcv[1]),
'high': float(ohlcv[2]),
'low': float(ohlcv[3]),
'close': float(ohlcv[4]),
'volume': float(ohlcv[6]),
'time': self._tstamp_to_datetime(int(ohlcv[0]))
})
return r
|
BSD 3-Clause New or Revised License
|
snight1983/chia-rosechain
|
chia/wallet/wallet_node.py
|
WalletNode._sync
|
python
|
async def _sync(self) -> None:
if self.wallet_state_manager is None or self.backup_initialized is False or self.server is None:
return None
highest_weight: uint128 = uint128(0)
peak_height: uint32 = uint32(0)
peak: Optional[HeaderBlock] = None
potential_peaks: List[
Tuple[bytes32, HeaderBlock]
] = self.wallet_state_manager.sync_store.get_potential_peaks_tuples()
self.log.info(f"Have collected {len(potential_peaks)} potential peaks")
for header_hash, potential_peak_block in potential_peaks:
if potential_peak_block.weight > highest_weight:
highest_weight = potential_peak_block.weight
peak_height = potential_peak_block.height
peak = potential_peak_block
if peak_height is None or peak_height == 0:
return None
if self.wallet_state_manager.peak is not None and highest_weight <= self.wallet_state_manager.peak.weight:
self.log.info("Not performing sync, already caught up.")
return None
peers: List[WSChiaConnection] = self.server.get_full_node_connections()
if len(peers) == 0:
self.log.info("No peers to sync to")
return None
async with self.wallet_state_manager.blockchain.lock:
fork_height = None
if peak is not None:
fork_height = self.wallet_state_manager.sync_store.get_potential_fork_point(peak.header_hash)
our_peak_height = self.wallet_state_manager.blockchain.get_peak_height()
ses_heigths = self.wallet_state_manager.blockchain.get_ses_heights()
if len(ses_heigths) > 2 and our_peak_height is not None:
ses_heigths.sort()
max_fork_ses_height = ses_heigths[-3]
if (
self.wallet_state_manager.blockchain.get_peak_height() is not None
and fork_height == max_fork_ses_height
):
peers = self.server.get_full_node_connections()
for peer in peers:
potential_height = uint32(our_peak_height + 1)
block_response: Optional[Any] = await peer.request_header_blocks(
wallet_protocol.RequestHeaderBlocks(potential_height, potential_height)
)
if block_response is not None and isinstance(
block_response, wallet_protocol.RespondHeaderBlocks
):
our_peak = self.wallet_state_manager.blockchain.get_peak()
if (
our_peak is not None
and block_response.header_blocks[0].prev_header_hash == our_peak.header_hash
):
fork_height = our_peak_height
break
if fork_height is None:
fork_height = uint32(0)
await self.wallet_state_manager.blockchain.warmup(fork_height)
await self.batch_sync_to_peak(fork_height, peak)
|
Wallet has fallen far behind (or is starting up for the first time), and must be synced
up to the LCA of the blockchain.
|
https://github.com/snight1983/chia-rosechain/blob/caafdb0aaf044b26957047b4acf3eed89fbaa600/chia/wallet/wallet_node.py#L591-L660
|
import asyncio
import json
import logging
import socket
import time
import traceback
from pathlib import Path
from typing import Callable, Dict, List, Optional, Set, Tuple, Union, Any
from blspy import PrivateKey
from chia.consensus.block_record import BlockRecord
from chia.consensus.constants import ConsensusConstants
from chia.consensus.multiprocess_validation import PreValidationResult
from chia.pools.pool_puzzles import SINGLETON_LAUNCHER_HASH
from chia.protocols import wallet_protocol
from chia.protocols.full_node_protocol import RequestProofOfWeight, RespondProofOfWeight
from chia.protocols.protocol_message_types import ProtocolMessageTypes
from chia.protocols.wallet_protocol import (
RejectAdditionsRequest,
RejectRemovalsRequest,
RequestAdditions,
RequestHeaderBlocks,
RespondAdditions,
RespondBlockHeader,
RespondHeaderBlocks,
RespondRemovals,
)
from chia.server.node_discovery import WalletPeers
from chia.server.outbound_message import Message, NodeType, make_msg
from chia.server.server import ChiaServer
from chia.server.ws_connection import WSChiaConnection
from chia.types.blockchain_format.coin import Coin, hash_coin_list
from chia.types.blockchain_format.sized_bytes import bytes32
from chia.types.coin_spend import CoinSpend
from chia.types.header_block import HeaderBlock
from chia.types.mempool_inclusion_status import MempoolInclusionStatus
from chia.types.peer_info import PeerInfo
from chia.util.byte_types import hexstr_to_bytes
from chia.util.errors import Err, ValidationError
from chia.util.ints import uint32, uint128
from chia.util.keychain import Keychain
from chia.util.lru_cache import LRUCache
from chia.util.merkle_set import MerkleSet, confirm_included_already_hashed, confirm_not_included_already_hashed
from chia.util.path import mkdir, path_from_root
from chia.wallet.block_record import HeaderBlockRecord
from chia.wallet.derivation_record import DerivationRecord
from chia.wallet.settings.settings_objects import BackupInitialized
from chia.wallet.transaction_record import TransactionRecord
from chia.wallet.util.backup_utils import open_backup_file
from chia.wallet.util.wallet_types import WalletType
from chia.wallet.wallet_action import WalletAction
from chia.wallet.wallet_blockchain import ReceiveBlockResult
from chia.wallet.wallet_state_manager import WalletStateManager
from chia.util.profiler import profile_task
class WalletNode:
key_config: Dict
config: Dict
constants: ConsensusConstants
server: Optional[ChiaServer]
log: logging.Logger
wallet_peers: WalletPeers
wallet_state_manager: Optional[WalletStateManager]
short_sync_threshold: int
_shut_down: bool
root_path: Path
state_changed_callback: Optional[Callable]
syncing: bool
full_node_peer: Optional[PeerInfo]
peer_task: Optional[asyncio.Task]
logged_in: bool
wallet_peers_initialized: bool
def __init__(
self,
config: Dict,
keychain: Keychain,
root_path: Path,
consensus_constants: ConsensusConstants,
name: str = None,
):
self.config = config
self.constants = consensus_constants
self.root_path = root_path
self.log = logging.getLogger(name if name else __name__)
self.cached_blocks: Dict = {}
self.future_block_hashes: Dict = {}
self.keychain = keychain
self._shut_down = False
self.proof_hashes: List = []
self.header_hashes: List = []
self.header_hashes_error = False
self.short_sync_threshold = 15
self.potential_blocks_received: Dict = {}
self.potential_header_hashes: Dict = {}
self.state_changed_callback = None
self.wallet_state_manager = None
self.backup_initialized = False
self.server = None
self.wsm_close_task = None
self.sync_task: Optional[asyncio.Task] = None
self.logged_in_fingerprint: Optional[int] = None
self.peer_task = None
self.logged_in = False
self.wallet_peers_initialized = False
self.last_new_peak_messages = LRUCache(5)
def get_key_for_fingerprint(self, fingerprint: Optional[int]) -> Optional[PrivateKey]:
private_keys = self.keychain.get_all_private_keys()
if len(private_keys) == 0:
self.log.warning("No keys present. Create keys with the UI, or with the 'chia keys' program.")
return None
private_key: Optional[PrivateKey] = None
if fingerprint is not None:
for sk, _ in private_keys:
if sk.get_g1().get_fingerprint() == fingerprint:
private_key = sk
break
else:
private_key = private_keys[0][0]
return private_key
async def _start(
self,
fingerprint: Optional[int] = None,
new_wallet: bool = False,
backup_file: Optional[Path] = None,
skip_backup_import: bool = False,
) -> bool:
private_key = self.get_key_for_fingerprint(fingerprint)
if private_key is None:
self.logged_in = False
return False
if self.config.get("enable_profiler", False):
asyncio.create_task(profile_task(self.root_path, "wallet", self.log))
db_path_key_suffix = str(private_key.get_g1().get_fingerprint())
db_path_replaced: str = (
self.config["database_path"]
.replace("CHALLENGE", self.config["selected_network"])
.replace("KEY", db_path_key_suffix)
)
path = path_from_root(self.root_path, db_path_replaced)
mkdir(path.parent)
self.new_peak_lock = asyncio.Lock()
assert self.server is not None
self.wallet_state_manager = await WalletStateManager.create(
private_key, self.config, path, self.constants, self.server, self.root_path
)
self.wsm_close_task = None
assert self.wallet_state_manager is not None
backup_settings: BackupInitialized = self.wallet_state_manager.user_settings.get_backup_settings()
if backup_settings.user_initialized is False:
if new_wallet is True:
await self.wallet_state_manager.user_settings.user_created_new_wallet()
self.wallet_state_manager.new_wallet = True
elif skip_backup_import is True:
await self.wallet_state_manager.user_settings.user_skipped_backup_import()
elif backup_file is not None:
await self.wallet_state_manager.import_backup_info(backup_file)
else:
self.backup_initialized = False
await self.wallet_state_manager.close_all_stores()
self.wallet_state_manager = None
self.logged_in = False
return False
self.backup_initialized = True
if self.wallet_peers_initialized is False:
asyncio.create_task(self.wallet_peers.start())
self.wallet_peers_initialized = True
if backup_file is not None:
json_dict = open_backup_file(backup_file, self.wallet_state_manager.private_key)
if "start_height" in json_dict["data"]:
start_height = json_dict["data"]["start_height"]
self.config["starting_height"] = max(0, start_height - self.config["start_height_buffer"])
else:
self.config["starting_height"] = 0
else:
self.config["starting_height"] = 0
if self.state_changed_callback is not None:
self.wallet_state_manager.set_callback(self.state_changed_callback)
self.wallet_state_manager.set_pending_callback(self._pending_tx_handler)
self._shut_down = False
self.peer_task = asyncio.create_task(self._periodically_check_full_node())
self.sync_event = asyncio.Event()
self.sync_task = asyncio.create_task(self.sync_job())
self.logged_in_fingerprint = fingerprint
self.logged_in = True
return True
def _close(self):
self.log.info("self._close")
self.logged_in_fingerprint = None
self._shut_down = True
async def _await_closed(self):
self.log.info("self._await_closed")
await self.server.close_all_connections()
asyncio.create_task(self.wallet_peers.ensure_is_closed())
if self.wallet_state_manager is not None:
await self.wallet_state_manager.close_all_stores()
self.wallet_state_manager = None
if self.sync_task is not None:
self.sync_task.cancel()
self.sync_task = None
if self.peer_task is not None:
self.peer_task.cancel()
self.peer_task = None
self.logged_in = False
def _set_state_changed_callback(self, callback: Callable):
self.state_changed_callback = callback
if self.wallet_state_manager is not None:
self.wallet_state_manager.set_callback(self.state_changed_callback)
self.wallet_state_manager.set_pending_callback(self._pending_tx_handler)
def _pending_tx_handler(self):
if self.wallet_state_manager is None or self.backup_initialized is False:
return None
asyncio.create_task(self._resend_queue())
async def _action_messages(self) -> List[Message]:
if self.wallet_state_manager is None or self.backup_initialized is False:
return []
actions: List[WalletAction] = await self.wallet_state_manager.action_store.get_all_pending_actions()
result: List[Message] = []
for action in actions:
data = json.loads(action.data)
action_data = data["data"]["action_data"]
if action.name == "request_puzzle_solution":
coin_name = bytes32(hexstr_to_bytes(action_data["coin_name"]))
height = uint32(action_data["height"])
msg = make_msg(
ProtocolMessageTypes.request_puzzle_solution,
wallet_protocol.RequestPuzzleSolution(coin_name, height),
)
result.append(msg)
return result
async def _resend_queue(self):
if (
self._shut_down
or self.server is None
or self.wallet_state_manager is None
or self.backup_initialized is None
):
return None
for msg, sent_peers in await self._messages_to_resend():
if (
self._shut_down
or self.server is None
or self.wallet_state_manager is None
or self.backup_initialized is None
):
return None
full_nodes = self.server.get_full_node_connections()
for peer in full_nodes:
if peer.peer_node_id in sent_peers:
continue
await peer.send_message(msg)
for msg in await self._action_messages():
if (
self._shut_down
or self.server is None
or self.wallet_state_manager is None
or self.backup_initialized is None
):
return None
await self.server.send_to_all([msg], NodeType.FULL_NODE)
async def _messages_to_resend(self) -> List[Tuple[Message, Set[bytes32]]]:
if self.wallet_state_manager is None or self.backup_initialized is False or self._shut_down:
return []
messages: List[Tuple[Message, Set[bytes32]]] = []
records: List[TransactionRecord] = await self.wallet_state_manager.tx_store.get_not_sent()
for record in records:
if record.spend_bundle is None:
continue
msg = make_msg(
ProtocolMessageTypes.send_transaction,
wallet_protocol.SendTransaction(record.spend_bundle),
)
already_sent = set()
for peer, status, _ in record.sent_to:
if status == MempoolInclusionStatus.SUCCESS.value:
already_sent.add(hexstr_to_bytes(peer))
messages.append((msg, already_sent))
return messages
def set_server(self, server: ChiaServer):
self.server = server
DNS_SERVERS_EMPTY: list = []
self.wallet_peers = WalletPeers(
self.server,
self.root_path,
self.config["target_peer_count"],
self.config["wallet_peers_path"],
self.config["introducer_peer"],
DNS_SERVERS_EMPTY,
self.config["peer_connect_interval"],
self.config["selected_network"],
None,
self.log,
)
async def on_connect(self, peer: WSChiaConnection):
if self.wallet_state_manager is None or self.backup_initialized is False:
return None
messages_peer_ids = await self._messages_to_resend()
self.wallet_state_manager.state_changed("add_connection")
for msg, peer_ids in messages_peer_ids:
if peer.peer_node_id in peer_ids:
continue
await peer.send_message(msg)
if not self.has_full_node() and self.wallet_peers is not None:
asyncio.create_task(self.wallet_peers.on_connect(peer))
async def _periodically_check_full_node(self) -> None:
tries = 0
while not self._shut_down and tries < 5:
if self.has_full_node():
await self.wallet_peers.ensure_is_closed()
if self.wallet_state_manager is not None:
self.wallet_state_manager.state_changed("add_connection")
break
tries += 1
await asyncio.sleep(self.config["peer_connect_interval"])
def has_full_node(self) -> bool:
if self.server is None:
return False
if "full_node_peer" in self.config:
full_node_peer = PeerInfo(
self.config["full_node_peer"]["host"],
self.config["full_node_peer"]["port"],
)
peers = [c.get_peer_info() for c in self.server.get_full_node_connections()]
full_node_resolved = PeerInfo(socket.gethostbyname(full_node_peer.host), full_node_peer.port)
if full_node_peer in peers or full_node_resolved in peers:
self.log.info(f"Will not attempt to connect to other nodes, already connected to {full_node_peer}")
for connection in self.server.get_full_node_connections():
if (
connection.get_peer_info() != full_node_peer
and connection.get_peer_info() != full_node_resolved
):
self.log.info(f"Closing unnecessary connection to {connection.get_peer_info()}.")
asyncio.create_task(connection.close())
return True
return False
async def complete_blocks(self, header_blocks: List[HeaderBlock], peer: WSChiaConnection):
if self.wallet_state_manager is None:
return None
header_block_records: List[HeaderBlockRecord] = []
assert self.server
trusted = self.server.is_trusted_peer(peer, self.config["trusted_peers"])
async with self.wallet_state_manager.blockchain.lock:
for block in header_blocks:
if block.is_transaction_block:
(additions, removals,) = await self.wallet_state_manager.get_filter_additions_removals(
block, block.transactions_filter, None
)
added_coins = await self.get_additions(peer, block, additions)
if added_coins is None:
raise ValueError("Failed to fetch additions")
removed_coins = await self.get_removals(peer, block, added_coins, removals)
if removed_coins is None:
raise ValueError("Failed to fetch removals")
additional_coin_spends: List[CoinSpend] = await self.get_additional_coin_spends(
peer, block, added_coins, removed_coins
)
hbr = HeaderBlockRecord(block, added_coins, removed_coins)
else:
hbr = HeaderBlockRecord(block, [], [])
header_block_records.append(hbr)
additional_coin_spends = []
(result, error, fork_h,) = await self.wallet_state_manager.blockchain.receive_block(
hbr, trusted=trusted, additional_coin_spends=additional_coin_spends
)
if result == ReceiveBlockResult.NEW_PEAK:
if not self.wallet_state_manager.sync_mode:
self.wallet_state_manager.blockchain.clean_block_records()
self.wallet_state_manager.state_changed("new_block")
self.wallet_state_manager.state_changed("sync_changed")
await self.wallet_state_manager.new_peak()
elif result == ReceiveBlockResult.INVALID_BLOCK:
self.log.info(f"Invalid block from peer: {peer.get_peer_info()} {error}")
await peer.close()
return
else:
self.log.debug(f"Result: {result}")
async def new_peak_wallet(self, peak: wallet_protocol.NewPeakWallet, peer: WSChiaConnection):
if self.wallet_state_manager is None:
return
if self.wallet_state_manager.blockchain.contains_block(peak.header_hash):
self.log.debug(f"known peak {peak.header_hash}")
return
if self.wallet_state_manager.sync_mode:
self.last_new_peak_messages.put(peer, peak)
return
async with self.new_peak_lock:
curr_peak = self.wallet_state_manager.blockchain.get_peak()
if curr_peak is not None and curr_peak.weight >= peak.weight:
return
request = wallet_protocol.RequestBlockHeader(peak.height)
response: Optional[RespondBlockHeader] = await peer.request_block_header(request)
if response is None or not isinstance(response, RespondBlockHeader) or response.header_block is None:
self.log.warning(f"bad peak response from peer {response}")
return
header_block = response.header_block
curr_peak_height = 0 if curr_peak is None else curr_peak.height
if (curr_peak_height == 0 and peak.height < self.constants.WEIGHT_PROOF_RECENT_BLOCKS) or (
curr_peak_height > peak.height - 200
):
if peak.height <= curr_peak_height + self.config["short_sync_blocks_behind_threshold"]:
await self.wallet_short_sync_backtrack(header_block, peer)
else:
await self.batch_sync_to_peak(curr_peak_height, peak)
elif peak.height >= self.constants.WEIGHT_PROOF_RECENT_BLOCKS:
weight_request = RequestProofOfWeight(peak.height, peak.header_hash)
weight_proof_response: RespondProofOfWeight = await peer.request_proof_of_weight(
weight_request, timeout=360
)
if weight_proof_response is None:
return
weight_proof = weight_proof_response.wp
if self.wallet_state_manager is None:
return
if self.server is not None and self.server.is_trusted_peer(peer, self.config["trusted_peers"]):
valid, fork_point = self.wallet_state_manager.weight_proof_handler.get_fork_point_no_validations(
weight_proof
)
else:
valid, fork_point, _ = await self.wallet_state_manager.weight_proof_handler.validate_weight_proof(
weight_proof
)
if not valid:
self.log.error(
f"invalid weight proof, num of epochs {len(weight_proof.sub_epochs)}"
f" recent blocks num ,{len(weight_proof.recent_chain_data)}"
)
self.log.debug(f"{weight_proof}")
return
self.log.info(f"Validated, fork point is {fork_point}")
self.wallet_state_manager.sync_store.add_potential_fork_point(
header_block.header_hash, uint32(fork_point)
)
self.wallet_state_manager.sync_store.add_potential_peak(header_block)
self.start_sync()
async def wallet_short_sync_backtrack(self, header_block, peer):
top = header_block
blocks = [top]
while not self.wallet_state_manager.blockchain.contains_block(top.prev_header_hash) and top.height > 0:
request_prev = wallet_protocol.RequestBlockHeader(top.height - 1)
response_prev: Optional[RespondBlockHeader] = await peer.request_block_header(request_prev)
if response_prev is None or not isinstance(response_prev, RespondBlockHeader):
raise RuntimeError("bad block header response from peer while syncing")
prev_head = response_prev.header_block
blocks.append(prev_head)
top = prev_head
blocks.reverse()
await self.complete_blocks(blocks, peer)
await self.wallet_state_manager.create_more_puzzle_hashes()
async def batch_sync_to_peak(self, fork_height, peak):
advanced_peak = False
batch_size = self.constants.MAX_BLOCK_COUNT_PER_REQUESTS
for i in range(max(0, fork_height - 1), peak.height, batch_size):
start_height = i
end_height = min(peak.height, start_height + batch_size)
peers = self.server.get_full_node_connections()
added = False
for peer in peers:
try:
added, advanced_peak = await self.fetch_blocks_and_validate(
peer, uint32(start_height), uint32(end_height), None if advanced_peak else fork_height
)
if added:
break
except Exception as e:
await peer.close()
exc = traceback.format_exc()
self.log.error(f"Error while trying to fetch from peer:{e} {exc}")
if not added:
raise RuntimeError(f"Was not able to add blocks {start_height}-{end_height}")
curr_peak = self.wallet_state_manager.blockchain.get_peak()
assert peak is not None
self.wallet_state_manager.blockchain.clean_block_record(
min(end_height, curr_peak.height) - self.constants.BLOCKS_CACHE_SIZE
)
def start_sync(self) -> None:
self.log.info("self.sync_event.set()")
self.sync_event.set()
async def check_new_peak(self) -> None:
if self.wallet_state_manager is None:
return None
current_peak: Optional[BlockRecord] = self.wallet_state_manager.blockchain.get_peak()
if current_peak is None:
return None
potential_peaks: List[
Tuple[bytes32, HeaderBlock]
] = self.wallet_state_manager.sync_store.get_potential_peaks_tuples()
for _, block in potential_peaks:
if current_peak.weight < block.weight:
await asyncio.sleep(5)
self.start_sync()
return None
async def sync_job(self) -> None:
while True:
self.log.info("Loop start in sync job")
if self._shut_down is True:
break
asyncio.create_task(self.check_new_peak())
await self.sync_event.wait()
self.last_new_peak_messages = LRUCache(5)
self.sync_event.clear()
if self._shut_down is True:
break
try:
assert self.wallet_state_manager is not None
self.wallet_state_manager.set_sync_mode(True)
await self._sync()
except Exception as e:
tb = traceback.format_exc()
self.log.error(f"Loop exception in sync {e}. {tb}")
finally:
if self.wallet_state_manager is not None:
self.wallet_state_manager.set_sync_mode(False)
for peer, peak in self.last_new_peak_messages.cache.items():
asyncio.create_task(self.new_peak_wallet(peak, peer))
self.log.info("Loop end in sync job")
|
Apache License 2.0
|
openmdao/dymos
|
dymos/transcriptions/pseudospectral/gauss_lobatto.py
|
GaussLobatto.configure_path_constraints
|
python
|
def configure_path_constraints(self, phase):
super(GaussLobatto, self).configure_path_constraints(phase)
for var, options in phase._path_constraints.items():
con_name = options['constraint_name']
con_units = options['units']
var_type = phase.classify_var(var)
if var_type == 'time':
src = 'time'
tgt = f'path_constraints.all_values:{con_name}'
elif var_type == 'time_phase':
src = 'time_phase'
tgt = f'path_constraints.all_values:{con_name}'
elif var_type == 'state':
src = f'interleave_comp.all_values:states:{var}'
tgt = f'path_constraints.all_values:{con_name}'
elif var_type in ('indep_control', 'input_control'):
src = f'control_values:{var}'
tgt = f'path_constraints.all_values:{con_name}'
elif var_type in ('indep_polynomial_control', 'input_polynomial_control'):
src = f'polynomial_control_values:{var}'
tgt = f'path_constraints.all_values:{con_name}'
elif var_type == 'control_rate':
control_name = var[:-5]
src = f'control_rates:{control_name}_rate'
tgt = f'path_constraints.all_values:{con_name}'
elif var_type == 'control_rate2':
control_name = var[:-6]
src = f'control_rates:{control_name}_rate2'
tgt = f'path_constraints.all_values:{con_name}'
elif var_type == 'polynomial_control_rate':
control_name = var[:-5]
src = f'polynomial_control_rates:{control_name}_rate'
tgt = f'path_constraints.all_values:{con_name}'
elif var_type == 'polynomial_control_rate2':
control_name = var[:-6]
src = f'polynomial_control_rates:{control_name}_rate2'
tgt = f'path_constraints.all_values:{con_name}'
else:
interleave_comp = phase._get_subsystem('interleave_comp')
src = f'interleave_comp.all_values:{con_name}'
tgt = f'path_constraints.all_values:{con_name}'
ode_outputs = {opts['prom_name']: opts for (k, opts) in
phase.rhs_disc.get_io_metadata(iotypes=('output',)).items()}
if var in ode_outputs:
shape = (1,) if len(ode_outputs[var]['shape']) == 1 else ode_outputs[var]['shape'][1:]
units = ode_outputs[var]['units'] if con_units is None else con_units
src_added = interleave_comp.add_var(con_name, shape, units,
disc_src=f'rhs_disc.{var}',
col_src=f'rhs_col.{var}')
if src_added:
phase.connect(src_name=f'rhs_disc.{var}',
tgt_name=f'interleave_comp.disc_values:{con_name}')
phase.connect(src_name=f'rhs_col.{var}',
tgt_name=f'interleave_comp.col_values:{con_name}')
else:
raise ValueError(f'Path-constrained variable {var} is not a known variable in'
f' the phase {phase.pathname} nor is it a known output of '
f' the ODE.')
phase.connect(src_name=src, tgt_name=tgt)
|
Handle the common operations for configuration of the path constraints.
Parameters
----------
phase : dymos.Phase
The phase object to which this transcription instance applies.
|
https://github.com/openmdao/dymos/blob/936b838133088cf0f79bf980cc9c0f5938b3db7a/dymos/transcriptions/pseudospectral/gauss_lobatto.py#L440-L528
|
from collections import defaultdict
import warnings
import numpy as np
import openmdao.api as om
from openmdao.utils.general_utils import simple_warning
from .pseudospectral_base import PseudospectralBase
from .components import GaussLobattoInterleaveComp
from ..common import GaussLobattoContinuityComp
from ...utils.misc import get_rate_units, _unspecified
from ...utils.introspection import get_targets, get_source_metadata, get_target_metadata
from ...utils.indexing import get_src_indices_by_row
from ..grid_data import GridData, make_subset_map
from fnmatch import filter
class GaussLobatto(PseudospectralBase):
def __init__(self, **kwargs):
super(GaussLobatto, self).__init__(**kwargs)
self._rhs_source = 'rhs_disc'
def init_grid(self):
self.grid_data = GridData(num_segments=self.options['num_segments'],
transcription='gauss-lobatto',
transcription_order=self.options['order'],
segment_ends=self.options['segment_ends'],
compressed=self.options['compressed'])
def configure_time(self, phase):
super(GaussLobatto, self).configure_time(phase)
options = phase.time_options
for name, usr_tgts, dynamic in [('time', options['targets'], True),
('time_phase', options['time_phase_targets'], True)]:
targets = get_targets(phase.rhs_disc, name=name, user_targets=usr_tgts)
if targets:
if dynamic:
disc_src_idxs = self.grid_data.subset_node_indices['state_disc']
col_src_idxs = self.grid_data.subset_node_indices['col']
else:
disc_src_idxs = col_src_idxs = None
phase.connect(name,
[f'rhs_col.{t}' for t in targets],
src_indices=col_src_idxs, flat_src_indices=True)
phase.connect(name,
[f'rhs_disc.{t}' for t in targets],
src_indices=disc_src_idxs, flat_src_indices=True)
for name, usr_tgts, dynamic in [('t_initial', options['t_initial_targets'], False),
('t_duration', options['t_duration_targets'], False)]:
targets = get_targets(phase.rhs_disc, name=name, user_targets=usr_tgts)
shape, units, static_target = get_target_metadata(phase.rhs_disc, name=name,
user_targets=targets,
user_units=options['units'],
user_shape=(1,))
if shape == (1,):
disc_src_idxs = None
col_src_idxs = None
flat_src_idxs = None
src_shape = None
else:
disc_src_idxs = self.grid_data.subset_node_indices['state_disc']
col_src_idxs = self.grid_data.subset_node_indices['col']
flat_src_idxs = True
src_shape = (1,)
for t in targets:
phase.promotes('rhs_disc', inputs=[(t, name)], src_indices=disc_src_idxs,
flat_src_indices=flat_src_idxs, src_shape=src_shape)
phase.promotes('rhs_col', inputs=[(t, name)], src_indices=col_src_idxs,
flat_src_indices=flat_src_idxs, src_shape=src_shape)
if targets:
phase.set_input_defaults(name=name,
val=np.ones((1,)),
units=options['units'])
def configure_controls(self, phase):
super(GaussLobatto, self).configure_controls(phase)
grid_data = self.grid_data
for name, options in phase.control_options.items():
disc_idxs = grid_data.subset_node_indices['state_disc']
col_idxs = grid_data.subset_node_indices['col']
disc_src_idxs = get_src_indices_by_row(disc_idxs, options['shape'])
col_src_idxs = get_src_indices_by_row(col_idxs, options['shape'])
if options['shape'] == (1,):
disc_src_idxs = disc_src_idxs.ravel()
col_src_idxs = col_src_idxs.ravel()
disc_src_idxs = (disc_src_idxs,)
col_src_idxs = (col_src_idxs,)
targets = get_targets(phase.rhs_disc, name, options['targets'])
if targets:
phase.connect(f'control_values:{name}',
[f'rhs_disc.{t}' for t in targets],
src_indices=disc_src_idxs, flat_src_indices=True)
phase.connect(f'control_values:{name}',
[f'rhs_col.{t}' for t in targets],
src_indices=col_src_idxs, flat_src_indices=True)
targets = get_targets(phase.rhs_disc, f'{name}_rate', options['rate_targets'],
control_rates=1)
if targets:
phase.connect(f'control_rates:{name}_rate',
[f'rhs_disc.{t}' for t in targets],
src_indices=disc_src_idxs, flat_src_indices=True)
phase.connect(f'control_rates:{name}_rate',
[f'rhs_col.{t}' for t in targets],
src_indices=col_src_idxs, flat_src_indices=True)
targets = get_targets(phase.rhs_disc, f'{name}_rate2', options['rate2_targets'],
control_rates=2)
if targets:
phase.connect(f'control_rates:{name}_rate2',
[f'rhs_disc.{t}' for t in targets],
src_indices=disc_src_idxs, flat_src_indices=True)
phase.connect(f'control_rates:{name}_rate2',
[f'rhs_col.{t}' for t in targets],
src_indices=col_src_idxs, flat_src_indices=True)
def configure_polynomial_controls(self, phase):
super(GaussLobatto, self).configure_polynomial_controls(phase)
grid_data = self.grid_data
for name, options in phase.polynomial_control_options.items():
disc_idxs = grid_data.subset_node_indices['state_disc']
col_idxs = grid_data.subset_node_indices['col']
disc_src_idxs = get_src_indices_by_row(disc_idxs, options['shape'])
col_src_idxs = get_src_indices_by_row(col_idxs, options['shape'])
if options['shape'] == (1,):
disc_src_idxs = disc_src_idxs.ravel()
col_src_idxs = col_src_idxs.ravel()
disc_src_idxs = (disc_src_idxs,)
col_src_idxs = (col_src_idxs,)
targets = get_targets(ode=phase.rhs_disc, name=name, user_targets=options['targets'])
if targets:
phase.connect(f'polynomial_control_values:{name}',
[f'rhs_disc.{t}' for t in targets],
src_indices=disc_src_idxs, flat_src_indices=True)
phase.connect(f'polynomial_control_values:{name}',
[f'rhs_col.{t}' for t in targets],
src_indices=col_src_idxs, flat_src_indices=True)
targets = get_targets(ode=phase.rhs_disc, name=f'{name}_rate',
user_targets=options['rate_targets'])
if targets:
phase.connect(f'polynomial_control_rates:{name}_rate',
[f'rhs_disc.{t}' for t in targets],
src_indices=disc_src_idxs, flat_src_indices=True)
phase.connect(f'polynomial_control_rates:{name}_rate',
[f'rhs_col.{t}' for t in targets],
src_indices=col_src_idxs, flat_src_indices=True)
targets = get_targets(ode=phase.rhs_disc, name=f'{name}_rate2',
user_targets=options['rate2_targets'])
if targets:
phase.connect(f'polynomial_control_rates:{name}_rate2',
[f'rhs_disc.{t}' for t in targets],
src_indices=disc_src_idxs, flat_src_indices=True)
phase.connect(f'polynomial_control_rates:{name}_rate2',
[f'rhs_col.{t}' for t in targets],
src_indices=col_src_idxs, flat_src_indices=True)
def setup_ode(self, phase):
grid_data = self.grid_data
ode_class = phase.options['ode_class']
kwargs = phase.options['ode_init_kwargs']
rhs_disc = ode_class(num_nodes=grid_data.subset_num_nodes['state_disc'], **kwargs)
rhs_col = ode_class(num_nodes=grid_data.subset_num_nodes['col'], **kwargs)
phase.add_subsystem('rhs_disc', rhs_disc)
super(GaussLobatto, self).setup_ode(phase)
phase.add_subsystem('rhs_col', rhs_col)
phase.add_subsystem('interleave_comp', GaussLobattoInterleaveComp(grid_data=self.grid_data))
def configure_ode(self, phase):
super(GaussLobatto, self).configure_ode(phase)
map_input_indices_to_disc = self.grid_data.input_maps['state_input_to_disc']
for name, options in phase.state_options.items():
src_idxs = om.slicer[map_input_indices_to_disc, ...]
targets = get_targets(ode=phase.rhs_disc, name=name, user_targets=options['targets'])
if targets:
phase.connect(f'states:{name}',
[f'rhs_disc.{tgt}' for tgt in targets],
src_indices=src_idxs)
phase.connect(f'state_interp.state_col:{name}',
[f'rhs_col.{tgt}' for tgt in targets])
rate_src = options['rate_source']
if rate_src in phase.parameter_options:
shape = phase.parameter_options[rate_src]['shape']
param_size = np.prod(shape)
ndn = self.grid_data.subset_num_nodes['state_disc']
src_idxs = np.tile(np.arange(0, param_size, dtype=int), ndn)
src_idxs = np.reshape(src_idxs, (ndn,) + shape)
phase.promotes('state_interp',
inputs=[(f'staterate_disc:{name}', f'parameters:{rate_src}')],
src_indices=(src_idxs,), flat_src_indices=True, src_shape=shape)
else:
rate_path, disc_src_idxs = self.get_rate_source_path(name, nodes='state_disc',
phase=phase)
phase.connect(rate_path,
f'state_interp.staterate_disc:{name}',
src_indices=disc_src_idxs)
self.configure_interleave_comp(phase)
def configure_interleave_comp(self, phase):
interleave_comp = phase._get_subsystem('interleave_comp')
map_input_indices_to_disc = self.grid_data.input_maps['state_input_to_disc']
time_units = phase.time_options['units']
for state_name, options in phase.state_options.items():
shape = options['shape']
units = options['units']
rate_src = options['rate_source']
src_added = interleave_comp.add_var(f'states:{state_name}', shape, units,
disc_src=f'states:{state_name}',
col_src=f'state_interp.state_col:{state_name}')
if src_added:
phase.connect(f'states:{state_name}',
f'interleave_comp.disc_values:states:{state_name}',
src_indices=om.slicer[map_input_indices_to_disc, ...])
phase.connect(f'state_interp.state_col:{state_name}',
f'interleave_comp.col_values:states:{state_name}')
if rate_src in phase.parameter_options:
rate_path_disc = rate_path_col = f'parameters:{rate_src}'
else:
rate_path_disc, disc_src_idxs = self.get_rate_source_path(state_name,
nodes='state_disc',
phase=phase)
rate_path_col, col_src_idxs = self.get_rate_source_path(state_name,
nodes='col',
phase=phase)
src_added = interleave_comp.add_var(f'state_rates:{state_name}', shape,
units=get_rate_units(options['units'], time_units),
disc_src=rate_path_disc, col_src=rate_path_col)
if src_added:
if rate_src in phase.parameter_options:
shape = phase.parameter_options[rate_src]['shape']
param_size = np.prod(shape)
ndn = self.grid_data.subset_num_nodes['state_disc']
ncn = self.grid_data.subset_num_nodes['col']
src_idxs = np.tile(np.arange(0, param_size, dtype=int), ndn)
src_idxs = np.reshape(src_idxs, (ndn,) + shape)
phase.promotes('interleave_comp',
inputs=[(f'disc_values:state_rates:{state_name}', f'parameters:{rate_src}')],
src_indices=(src_idxs,), flat_src_indices=True, src_shape=shape)
src_idxs = np.tile(np.arange(0, param_size, dtype=int), ncn)
src_idxs = np.reshape(src_idxs, (ncn,) + shape)
phase.promotes('interleave_comp',
inputs=[(f'col_values:state_rates:{state_name}', f'parameters:{rate_src}')],
src_indices=(src_idxs,), flat_src_indices=True, src_shape=shape)
else:
rate_path_disc, disc_src_idxs = self.get_rate_source_path(state_name,
nodes='state_disc',
phase=phase)
phase.connect(rate_path_disc,
f'interleave_comp.disc_values:state_rates:{state_name}',
src_indices=disc_src_idxs)
rate_path_col, col_src_idxs = self.get_rate_source_path(state_name,
nodes='col',
phase=phase)
phase.connect(rate_path_col,
f'interleave_comp.col_values:state_rates:{state_name}',
src_indices=col_src_idxs)
def setup_defects(self, phase):
super(GaussLobatto, self).setup_defects(phase)
if any(self._requires_continuity_constraints(phase)):
phase.add_subsystem('continuity_comp',
GaussLobattoContinuityComp(grid_data=self.grid_data,
state_options=phase.state_options,
control_options=phase.control_options,
time_units=phase.time_options['units']))
def configure_defects(self, phase):
super(GaussLobatto, self).configure_defects(phase)
any_state_cnty, any_control_cnty, any_control_rate_cnty = self._requires_continuity_constraints(phase)
if any_control_rate_cnty:
phase.promotes('continuity_comp', inputs=['t_duration'])
if any((any_state_cnty, any_control_cnty, any_control_rate_cnty)):
phase._get_subsystem('continuity_comp').configure_io()
for name, options in phase.state_options.items():
phase.connect(f'state_interp.staterate_col:{name}',
f'collocation_constraint.f_approx:{name}')
rate_src = options['rate_source']
if rate_src in phase.parameter_options:
shape = phase.parameter_options[rate_src]['shape']
param_size = np.prod(shape)
ncn = self.grid_data.subset_num_nodes['col']
src_idxs = np.tile(np.arange(0, param_size, dtype=int), ncn)
src_idxs = np.reshape(src_idxs, (ncn,) + shape)
phase.promotes('collocation_constraint',
inputs=[(f'f_computed:{name}', f'parameters:{rate_src}')],
src_indices=(src_idxs,), flat_src_indices=True, src_shape=shape)
else:
rate_path, src_idxs = self.get_rate_source_path(name, nodes='col', phase=phase)
phase.connect(rate_path,
f'collocation_constraint.f_computed:{name}',
src_indices=src_idxs)
|
Apache License 2.0
|
matteoferla/fragmenstein
|
fragmenstein/monster/_blend_place.py
|
_MonsterBlend.transfer_ring_data
|
python
|
def transfer_ring_data(self, donor: Chem.Atom, acceptor: Chem.Atom):
pass
|
Transfer the info if a ringcore atom.
:param donor:
:param acceptor:
:return:
|
https://github.com/matteoferla/fragmenstein/blob/151bde01f4ebd930880cb7ad234bab68ac4a3e76/fragmenstein/monster/_blend_place.py#L409-L419
|
__doc__ = """
This is inherited by MonsterPlace
"""
from rdkit.Chem import rdmolops
import itertools
import json
from collections import Counter
from collections import defaultdict
from typing import Optional, Dict, List, Tuple
from warnings import warn
import numpy as np
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import rdFMCS, rdMolAlign, rdmolops
from rdkit.Chem import rdmolops
from rdkit.Geometry.rdGeometry import Point3D
from ._communal import _MonsterCommunal
from ._merge import _MonsterMerge
from .unmerge_mapper import Unmerge
class _MonsterBlend(_MonsterMerge):
def full_blending(self) -> None:
self.mol_options = [self.simply_merge_hits()]
scaffold = self.posthoc_refine(self.mol_options[0])
chimera = self.make_chimera(scaffold)
self.keep_copy(scaffold, 'scaffold')
self.keep_copy(chimera, 'chimera')
self.positioned_mol = self.place_from_map(target_mol=self.initial_mol,
template_mol=chimera,
atom_map=None)
def partial_blending(self) -> None:
self.mol_options = self.partially_blend_hits()
unrefined_scaffold, mode_index = self.pick_best()
used = unrefined_scaffold.GetProp('_Name').split('-')
self.unmatched = [h.GetProp('_Name') for h in self.hits if h.GetProp('_Name') not in used]
scaffold = self.posthoc_refine(unrefined_scaffold)
chimera = self.make_chimera(scaffold, mode_index)
self.keep_copy(scaffold, 'scaffold')
self.keep_copy(chimera, 'chimera')
self.positioned_mol = self.place_from_map(target_mol=self.positioned_mol,
template_mol=chimera,
atom_map=None)
def no_blending(self, broad=False) -> None:
maps = {}
for template in self.hits:
if broad:
pair_atom_maps, _ = self.get_mcs_mappings(self.initial_mol, template)
maps[template.GetProp('_Name')] = pair_atom_maps
else:
pair_atom_maps_t = self._get_atom_maps(self.initial_mol, template,
atomCompare=rdFMCS.AtomCompare.CompareElements,
bondCompare=rdFMCS.BondCompare.CompareOrder,
ringMatchesRingOnly=True,
ringCompare=rdFMCS.RingCompare.PermissiveRingFusion,
matchChiralTag=True)
pair_atom_maps = [dict(p) for p in pair_atom_maps_t]
maps[template.GetProp('_Name')] = pair_atom_maps
um = Unmerge(followup=self.initial_mol,
mols=self.hits,
maps=maps,
no_discard=self.throw_on_discard)
self.keep_copy(um.combined, 'scaffold')
self.keep_copy(um.combined_bonded, 'chimera')
self.unmatched = [m.GetProp('_Name') for m in um.disregarded]
if self.throw_on_discard and len(self.unmatched):
raise ConnectionError(f'{self.unmatched} was rejected.')
self.journal.debug(f'followup to scaffold {um.combined_map}')
placed = self.place_from_map(target_mol=self.initial_mol,
template_mol=um.combined_bonded,
atom_map=um.combined_map)
alts = zip(um.combined_bonded_alternatives, um.combined_map_alternatives)
placed_options = [self.place_from_map(target_mol=self.initial_mol,
template_mol=mol,
atom_map=mappa) for mol, mappa in alts]
self.positioned_mol = self.posthoc_refine(placed)
self.mol_options = [self.posthoc_refine(mol) for mol in placed_options]
def partially_blend_hits(self, hits: Optional[List[Chem.Mol]] = None) -> List[Chem.Mol]:
if hits is None:
hits = sorted(self.hits, key=lambda h: h.GetNumAtoms(), reverse=True)
for hi, hit in enumerate(hits):
if not hit.HasProp('_Name') or hit.GetProp('_Name').strip() == '':
hit.SetProp('_Name', f'hit{hi}')
def get_dodgies(skippers):
dodgy = []
for hit0, hit1, hit2 in itertools.combinations(hits, 3):
hn0 = hit0.GetProp('_Name')
hn1 = hit1.GetProp('_Name')
hn2 = hit2.GetProp('_Name')
if any([hit in skippers for hit in (hn0, hn1, hn2)]):
continue
for a, b in inter_mapping[(hn0, hn1)].items():
if a in inter_mapping[(hn0, hn2)] and b in inter_mapping[(hn1, hn2)]:
if inter_mapping[(hn0, hn2)][a] != inter_mapping[(hn1, hn2)][b]:
dodgy.extend((hn0, hn1, hn2))
d = Counter(dodgy).most_common()
if dodgy:
return get_dodgies(skippers=skippers + [d[0][0]])
else:
return skippers
inter_mapping = {}
for h1, h2 in itertools.combinations(hits, 2):
inter_mapping[(h1.GetProp('_Name'), h2.GetProp('_Name'))] = self.get_positional_mapping(h1, h2)
dodgy_names = get_dodgies([])
self.warning(f'These combiend badly: {dodgy_names}')
dodgies = [hit for hit in hits if hit.GetProp('_Name') in dodgy_names]
mergituri = [hit for hit in hits if hit.GetProp('_Name') not in dodgy_names]
merged = self.simply_merge_hits(mergituri)
dodgies += [hit for hit in hits if hit.GetProp('_Name') in self.unmatched]
self.unmatched = []
combined_dodgies = []
for h1, h2 in itertools.combinations(dodgies, 2):
h_alt = Chem.Mol(h1)
try:
combined_dodgies.append(self.merge_pair(h_alt, h2))
except ConnectionError:
pass
combinations = [merged] + dodgies + combined_dodgies
while self.propagate_alternatives(combinations) != 0:
pass
return combinations
def propagate_alternatives(self, fewer):
pt = Chem.GetPeriodicTable()
new = 0
for template in list(fewer):
for i, atom in enumerate(template.GetAtoms()):
if atom.HasProp('_AltSymbol'):
alt = Chem.Mol(template)
aa = alt.GetAtomWithIdx(i)
aa.SetAtomicNum(pt.GetAtomicNumber(atom.GetProp('_AltSymbol')))
aa.ClearProp('_AltSymbol')
atom.ClearProp('_AltSymbol')
fewer.append(alt)
new += 1
return new
def pick_best(self) -> Tuple[Chem.Mol, int]:
if len(self.mol_options) == 1:
return self.mol_options[0], 0
elif len(self.mol_options) == 0:
raise ValueError('No scaffolds made?!')
else:
mapx = {}
def template_sorter(t: List[Chem.Mol]) -> float:
n_atoms = len(mapx[t.GetProp('_Name')][0])
mode = mapx[t.GetProp('_Name')][1]
mode_i = self.matching_modes.index(mode)
return - n_atoms - mode_i / 10
for template in self.mol_options:
atom_maps = self._get_atom_maps(template, self.initial_mol,
atomCompare=rdFMCS.AtomCompare.CompareElements,
bondCompare=rdFMCS.BondCompare.CompareOrder,
ringMatchesRingOnly=True,
ringCompare=rdFMCS.RingCompare.PermissiveRingFusion,
matchChiralTag=False)
mapx[template.GetProp('_Name')] = (atom_maps, self.matching_modes[-1])
self.mol_options = sorted(self.mol_options, key=template_sorter)
for template in self.mol_options[:3]:
atom_map, mode = self.get_mcs_mapping(template, self.initial_mol)
mapx[template.GetProp('_Name')] = (atom_map, mode)
self.journal.debug(f"With {template.GetProp('_Name')}, "+ "{len(atom_map)} atoms map using mode {self.matching_modes.index(mode)}")
self.mol_options = sorted(self.mol_options, key=template_sorter)
best = self.mol_options[0]
return best, self.matching_modes.index(mapx[best.GetProp('_Name')][1])
def make_chimera(self, template: Chem.Mol, min_mode_index=0) -> Chem.Mol:
atom_map, mode = self.get_mcs_mapping(template, self.initial_mol, min_mode_index=min_mode_index)
follow = {**{k: str(v) for k, v in mode.items()}, 'N_atoms': len(atom_map)}
self.journal.debug(f"scaffold-followup: {follow}")
chimera = Chem.RWMol(template)
for scaff_ai, follow_ai in atom_map.items():
if template.GetAtomWithIdx(scaff_ai).GetSymbol() != self.initial_mol.GetAtomWithIdx(
follow_ai).GetSymbol():
v = {'F': 1, 'Br': 1, 'Cl': 1, 'H': 1, 'B': 3, 'C': 4, 'N': 3, 'O': 2, 'S': 2, 'Se': 2, 'P': 6}
wanted = self.initial_mol.GetAtomWithIdx(follow_ai)
if wanted.GetSymbol() == '*':
continue
owned = template.GetAtomWithIdx(scaff_ai)
diff_valance = owned.GetExplicitValence() - v[wanted.GetSymbol()]
if wanted.GetSymbol() in ('F', 'Br', 'Cl', 'C', 'H') and diff_valance > 0:
continue
elif owned.GetExplicitValence() > 4 and wanted.GetSymbol() not in ('P',):
continue
else:
newatom = Chem.Atom(wanted)
stdev = chimera.GetAtomWithIdx(scaff_ai).GetDoubleProp('_Stdev')
newatom.SetDoubleProp('_Stdev', stdev)
origin = chimera.GetAtomWithIdx(scaff_ai).GetProp('_Origin')
newatom.SetProp('_Origin', origin)
chimera.ReplaceAtom(scaff_ai, newatom)
if diff_valance > 0:
chimera.GetAtomWithIdx(scaff_ai).SetFormalCharge(diff_valance)
try:
chimera.UpdatePropertyCache()
except Chem.AtomValenceException as err:
warn('Valance issue' + str(err))
return chimera
def place_from_map(self, target_mol: Chem.Mol, template_mol: Chem.Mol, atom_map: Optional[Dict] = None) -> Chem.Mol:
if target_mol is None:
target_mol = self.initial_mol
sextant = Chem.Mol(target_mol)
Chem.SanitizeMol(sextant)
AllChem.EmbedMolecule(sextant)
AllChem.MMFFOptimizeMolecule(sextant)
if atom_map is None:
atom_map, mode = self.get_mcs_mapping(target_mol, template_mol)
msg = {**{k: str(v) for k, v in mode.items()}, 'N_atoms': len(atom_map)}
self.journal.debug(f"followup-chimera' = {msg}")
rdMolAlign.AlignMol(sextant, template_mol, atomMap=list(atom_map.items()), maxIters=500)
putty = Chem.Mol(sextant)
pconf = putty.GetConformer()
chimera_conf = template_mol.GetConformer()
uniques = set()
for i in range(putty.GetNumAtoms()):
p_atom = putty.GetAtomWithIdx(i)
p_atom.SetDoubleProp('_Stdev', 0.)
p_atom.SetProp('_Origin', 'none')
if i in atom_map:
ci = atom_map[i]
c_atom = template_mol.GetAtomWithIdx(ci)
if c_atom.HasProp('_Stdev'):
stdev = c_atom.GetDoubleProp('_Stdev')
origin = c_atom.GetProp('_Origin')
p_atom.SetDoubleProp('_Stdev', stdev)
p_atom.SetProp('_Origin', origin)
pconf.SetAtomPosition(i, chimera_conf.GetAtomPosition(ci))
else:
uniques.add(i)
categories = self._categorise(sextant, uniques)
done_already = []
for unique_idx in categories['pairs']:
if unique_idx in done_already:
continue
team = self._recruit_team(target_mol, unique_idx, categories['uniques'])
other_attachments = (team & set(categories['pairs'].keys())) - {unique_idx}
sights = set()
for att_idx in [unique_idx] + list(other_attachments):
for pd in categories['pairs'][att_idx]:
first_sight = pd['idx']
sights.add((first_sight, first_sight))
neighs = [i.GetIdx() for i in sextant.GetAtomWithIdx(first_sight).GetNeighbors() if
i.GetIdx() not in uniques]
for n in neighs:
sights.add((n, n))
if self.attachment and list(categories['dummies']) and list(categories['dummies'])[0] in team:
r = list(categories['dummies'])[0]
pconf.SetAtomPosition(r, self.attachment.GetConformer().GetAtomPosition(0))
sights.add((r, r))
rdMolAlign.AlignMol(sextant, putty, atomMap=list(sights), maxIters=500)
sconf = sextant.GetConformer()
self.journal.debug(f'alignment atoms for {unique_idx} ({team}): {sights}')
for atom_idx in team:
pconf.SetAtomPosition(atom_idx, sconf.GetAtomPosition(atom_idx))
for other in other_attachments:
done_already.append(other)
AllChem.SanitizeMol(putty)
return putty
|
MIT License
|
mkwiatkowski/pythoscope
|
pythoscope/execution.py
|
Execution.serialize
|
python
|
def serialize(self, obj):
return self._retrieve_or_capture(obj, self.create_serialized_object)
|
Return description of the given object in the form of a subclass of
SerializedObject.
|
https://github.com/mkwiatkowski/pythoscope/blob/b4b89b77b5184b25992893e320d58de32ed987f1/pythoscope/execution.py#L92-L96
|
import itertools
import time
import types
from pythoscope.serializer import BuiltinException, ImmutableObject, MapObject, UnknownObject, SequenceObject, LibraryObject, is_immutable, is_sequence, is_mapping, is_builtin_exception, is_library_object
from pythoscope.store import Call, Class, Function, FunctionCall, GeneratorObject, GeneratorObjectInvocation, MethodCall, Project, UserObject
from pythoscope.util import all_of_type, assert_argument_type, class_name, generator_has_ended, get_generator_from_frame, is_generator_code, map_values, module_name
class Execution(object):
def __init__(self, project):
self.project = project
self.started = time.time()
self.ended = None
self.captured_objects = {}
self.captured_calls = []
self.call_graph = None
self._preserved_objects = []
def finalize(self):
self._preserved_objects = []
self.ended = time.time()
self._fix_generator_objects()
def destroy(self):
self.destroy_references()
self.captured_objects = {}
self.captured_calls = []
self.call_graph = None
def destroy_references(self):
for obj in itertools.chain(self.captured_calls, self.captured_objects.values()):
if isinstance(obj, UserObject):
obj.klass.user_objects.remove(obj)
elif isinstance(obj, FunctionCall):
obj.definition.calls.remove(obj)
elif isinstance(obj, GeneratorObject):
if isinstance(obj.definition, Function):
obj.definition.calls.remove(obj)
|
MIT License
|
azure/walinuxagent
|
azurelinuxagent/common/agent_supported_feature.py
|
get_agent_supported_features_list_for_extensions
|
python
|
def get_agent_supported_features_list_for_extensions():
return dict((name, feature) for name, feature in __EXTENSION_ADVERTISED_FEATURES.items() if feature.is_supported)
|
List of features that the GuestAgent currently supports (like Extension Telemetry Pipeline, etc) needed by Extensions.
We need to send this list as environment variables when calling extension commands to inform Extensions of all the
features the agent supports.
:return: Dict containing all Extension supported features with the key as their names and the AgentFeature object as
the value if the feature is supported by the Agent.
Eg: {
CRPSupportedFeatureNames.ExtensionTelemetryPipeline: _ETPFeature()
}
|
https://github.com/azure/walinuxagent/blob/e65b6d5f02cf298c14df3d2a344f5ae39739698c/azurelinuxagent/common/agent_supported_feature.py#L110-L121
|
class SupportedFeatureNames(object):
MultiConfig = "MultipleExtensionsPerHandler"
ExtensionTelemetryPipeline = "ExtensionTelemetryPipeline"
class AgentSupportedFeature(object):
def __init__(self, name, version="1.0", supported=False):
self.__name = name
self.__version = version
self.__supported = supported
@property
def name(self):
return self.__name
@property
def version(self):
return self.__version
@property
def is_supported(self):
return self.__supported
class _MultiConfigFeature(AgentSupportedFeature):
__NAME = SupportedFeatureNames.MultiConfig
__VERSION = "1.0"
__SUPPORTED = True
def __init__(self):
super(_MultiConfigFeature, self).__init__(name=_MultiConfigFeature.__NAME,
version=_MultiConfigFeature.__VERSION,
supported=_MultiConfigFeature.__SUPPORTED)
class _ETPFeature(AgentSupportedFeature):
__NAME = SupportedFeatureNames.ExtensionTelemetryPipeline
__VERSION = "1.0"
__SUPPORTED = True
def __init__(self):
super(_ETPFeature, self).__init__(name=self.__NAME,
version=self.__VERSION,
supported=self.__SUPPORTED)
__CRP_ADVERTISED_FEATURES = {
SupportedFeatureNames.MultiConfig: _MultiConfigFeature()
}
__EXTENSION_ADVERTISED_FEATURES = {
SupportedFeatureNames.ExtensionTelemetryPipeline: _ETPFeature()
}
def get_supported_feature_by_name(feature_name):
if feature_name in __CRP_ADVERTISED_FEATURES:
return __CRP_ADVERTISED_FEATURES[feature_name]
if feature_name in __EXTENSION_ADVERTISED_FEATURES:
return __EXTENSION_ADVERTISED_FEATURES[feature_name]
raise NotImplementedError("Feature with Name: {0} not found".format(feature_name))
def get_agent_supported_features_list_for_crp():
return dict((name, feature) for name, feature in __CRP_ADVERTISED_FEATURES.items() if feature.is_supported)
|
Apache License 2.0
|
ganeti/ganeti
|
lib/cmdlib/instance_storage.py
|
_GenerateDRBD8Branch
|
python
|
def _GenerateDRBD8Branch(lu, primary_uuid, secondary_uuid, size, vgnames, names,
iv_name, forthcoming=False):
assert len(vgnames) == len(names) == 2
port = lu.cfg.AllocatePort()
shared_secret = lu.cfg.GenerateDRBDSecret(lu.proc.GetECId())
dev_data = objects.Disk(dev_type=constants.DT_PLAIN, size=size,
logical_id=(vgnames[0], names[0]),
nodes=[primary_uuid, secondary_uuid],
params={}, forthcoming=forthcoming)
dev_data.uuid = lu.cfg.GenerateUniqueID(lu.proc.GetECId())
dev_meta = objects.Disk(dev_type=constants.DT_PLAIN,
size=constants.DRBD_META_SIZE,
logical_id=(vgnames[1], names[1]),
nodes=[primary_uuid, secondary_uuid],
params={}, forthcoming=forthcoming)
dev_meta.uuid = lu.cfg.GenerateUniqueID(lu.proc.GetECId())
drbd_uuid = lu.cfg.GenerateUniqueID(lu.proc.GetECId())
minors = lu.cfg.AllocateDRBDMinor([primary_uuid, secondary_uuid], drbd_uuid)
assert len(minors) == 2
drbd_dev = objects.Disk(dev_type=constants.DT_DRBD8, size=size,
logical_id=(primary_uuid, secondary_uuid, port,
minors[0], minors[1],
shared_secret),
children=[dev_data, dev_meta],
nodes=[primary_uuid, secondary_uuid],
iv_name=iv_name, params={},
forthcoming=forthcoming)
drbd_dev.uuid = drbd_uuid
return drbd_dev
|
Generate a drbd8 device complete with its children.
|
https://github.com/ganeti/ganeti/blob/4d21019c72cba4d746f5d17ca22098f4c7682e9c/lib/cmdlib/instance_storage.py#L543-L576
|
import itertools
import logging
import os
import time
from ganeti import compat
from ganeti import constants
from ganeti import errors
from ganeti import ht
from ganeti import locking
from ganeti.masterd import iallocator
from ganeti import objects
from ganeti import utils
import ganeti.rpc.node as rpc
from ganeti.cmdlib.base import LogicalUnit, NoHooksLU, Tasklet
from ganeti.cmdlib.common import INSTANCE_DOWN, INSTANCE_NOT_RUNNING, AnnotateDiskParams, CheckIAllocatorOrNode, ExpandNodeUuidAndName, ComputeIPolicyDiskSizesViolation, CheckNodeOnline, CheckInstanceNodeGroups, CheckInstanceState, IsExclusiveStorageEnabledNode, FindFaultyInstanceDisks, GetWantedNodes, CheckDiskTemplateEnabled
from ganeti.cmdlib.instance_utils import GetInstanceInfoText, CopyLockList, ReleaseLocks, CheckNodeVmCapable, BuildInstanceHookEnvByObject, CheckNodeNotDrained, CheckTargetNodeIPolicy
import ganeti.masterd.instance
_DISK_TEMPLATE_NAME_PREFIX = {
constants.DT_PLAIN: "",
constants.DT_RBD: ".rbd",
constants.DT_EXT: ".ext",
constants.DT_FILE: ".file",
constants.DT_SHARED_FILE: ".sharedfile",
}
def CreateSingleBlockDev(lu, node_uuid, instance, device, info, force_open,
excl_stor):
result = lu.rpc.call_blockdev_create(node_uuid, (device, instance),
device.size, instance.name, force_open,
info, excl_stor)
result.Raise("Can't create block device %s on"
" node %s for instance %s" % (device,
lu.cfg.GetNodeName(node_uuid),
instance.name))
def _CreateBlockDevInner(lu, node_uuid, instance, device, force_create,
info, force_open, excl_stor):
created_devices = []
try:
if device.CreateOnSecondary():
force_create = True
if device.children:
for child in device.children:
devs = _CreateBlockDevInner(lu, node_uuid, instance, child,
force_create, info, force_open, excl_stor)
created_devices.extend(devs)
if not force_create:
return created_devices
CreateSingleBlockDev(lu, node_uuid, instance, device, info, force_open,
excl_stor)
created_devices = [(node_uuid, device)]
return created_devices
except errors.DeviceCreationError as e:
e.created_devices.extend(created_devices)
raise e
except errors.OpExecError as e:
raise errors.DeviceCreationError(str(e), created_devices)
def IsExclusiveStorageEnabledNodeUuid(cfg, node_uuid):
ni = cfg.GetNodeInfo(node_uuid)
if ni is None:
raise errors.OpPrereqError("Invalid node UUID %s" % node_uuid,
errors.ECODE_NOENT)
return IsExclusiveStorageEnabledNode(cfg, ni)
def _CreateBlockDev(lu, node_uuid, instance, device, force_create, info,
force_open):
(disk,) = AnnotateDiskParams(instance, [device], lu.cfg)
excl_stor = IsExclusiveStorageEnabledNodeUuid(lu.cfg, node_uuid)
return _CreateBlockDevInner(lu, node_uuid, instance, disk, force_create, info,
force_open, excl_stor)
def _UndoCreateDisks(lu, disks_created, instance):
for (node_uuid, disk) in disks_created:
result = lu.rpc.call_blockdev_remove(node_uuid, (disk, instance))
result.Warn("Failed to remove newly-created disk %s on node %s" %
(disk, lu.cfg.GetNodeName(node_uuid)), logging.warning)
def CreateDisks(lu, instance, disk_template=None,
to_skip=None, target_node_uuid=None, disks=None):
info = GetInstanceInfoText(instance)
if disks is None:
disks = lu.cfg.GetInstanceDisks(instance.uuid)
if target_node_uuid is None:
pnode_uuid = instance.primary_node
all_node_uuids = []
for disk in disks:
all_node_uuids.extend(disk.all_nodes)
all_node_uuids = set(all_node_uuids)
all_node_uuids.discard(pnode_uuid)
all_node_uuids = [pnode_uuid] + list(all_node_uuids)
else:
pnode_uuid = target_node_uuid
all_node_uuids = [pnode_uuid]
if disk_template is None:
disk_template = utils.GetDiskTemplate(disks)
if disk_template == constants.DT_MIXED:
raise errors.OpExecError("Creating disk for '%s' instances "
"only possible with explicit disk template."
% (constants.DT_MIXED,))
CheckDiskTemplateEnabled(lu.cfg.GetClusterInfo(), disk_template)
if disk_template in constants.DTS_FILEBASED:
file_storage_dir = os.path.dirname(disks[0].logical_id[1])
result = lu.rpc.call_file_storage_dir_create(pnode_uuid, file_storage_dir)
result.Raise("Failed to create directory '%s' on"
" node %s" % (file_storage_dir,
lu.cfg.GetNodeName(pnode_uuid)))
disks_created = []
for idx, device in enumerate(disks):
if to_skip and idx in to_skip:
continue
logging.info("Creating disk %s for instance '%s'", idx, instance.name)
for node_uuid in all_node_uuids:
f_create = node_uuid == pnode_uuid
try:
_CreateBlockDev(lu, node_uuid, instance, device, f_create, info,
f_create)
disks_created.append((node_uuid, device))
except errors.DeviceCreationError as e:
logging.warning("Creating disk %s for instance '%s' failed",
idx, instance.name)
disks_created.extend(e.created_devices)
_UndoCreateDisks(lu, disks_created, instance)
raise errors.OpExecError(e.message)
return disks_created
def ComputeDiskSizePerVG(disk_template, disks):
def _compute(disks, payload):
vgs = {}
for disk in disks:
vg_name = disk[constants.IDISK_VG]
vgs[vg_name] = vgs.get(vg_name, 0) + disk[constants.IDISK_SIZE] + payload
return vgs
req_size_dict = {
constants.DT_DISKLESS: {},
constants.DT_PLAIN: _compute(disks, 0),
constants.DT_DRBD8: _compute(disks, constants.DRBD_META_SIZE),
constants.DT_FILE: {},
constants.DT_SHARED_FILE: {},
constants.DT_GLUSTER: {},
}
if disk_template not in req_size_dict:
raise errors.ProgrammerError("Disk template '%s' size requirement"
" is unknown" % disk_template)
return req_size_dict[disk_template]
def ComputeDisks(disks, disk_template, default_vg):
new_disks = []
for disk in disks:
mode = disk.get(constants.IDISK_MODE, constants.DISK_RDWR)
if mode not in constants.DISK_ACCESS_SET:
raise errors.OpPrereqError("Invalid disk access mode '%s'" %
mode, errors.ECODE_INVAL)
size = disk.get(constants.IDISK_SIZE, None)
if size is None:
raise errors.OpPrereqError("Missing disk size", errors.ECODE_INVAL)
try:
size = int(size)
except (TypeError, ValueError):
raise errors.OpPrereqError("Invalid disk size '%s'" % size,
errors.ECODE_INVAL)
CheckDiskExtProvider(disk, disk_template)
data_vg = disk.get(constants.IDISK_VG, default_vg)
name = disk.get(constants.IDISK_NAME, None)
if name is not None and name.lower() == constants.VALUE_NONE:
name = None
new_disk = {
constants.IDISK_SIZE: size,
constants.IDISK_MODE: mode,
constants.IDISK_VG: data_vg,
constants.IDISK_NAME: name,
constants.IDISK_TYPE: disk_template,
}
for key in [
constants.IDISK_METAVG,
constants.IDISK_ADOPT,
constants.IDISK_SPINDLES,
]:
if key in disk:
new_disk[key] = disk[key]
if (disk_template in constants.DTS_HAVE_ACCESS and
constants.IDISK_ACCESS in disk):
new_disk[constants.IDISK_ACCESS] = disk[constants.IDISK_ACCESS]
if disk_template == constants.DT_EXT:
new_disk[constants.IDISK_PROVIDER] = disk[constants.IDISK_PROVIDER]
for key in disk:
if key not in constants.IDISK_PARAMS:
new_disk[key] = disk[key]
new_disks.append(new_disk)
return new_disks
def ComputeDisksInfo(disks, disk_template, default_vg, ext_params):
for key in ext_params:
if key != constants.IDISK_PROVIDER:
assert key not in constants.IDISK_PARAMS, "Invalid extstorage parameter '%s'" % key
inst_disks = [dict((key, value) for key, value in disk.items()
if key in constants.IDISK_PARAMS)
for disk in map(objects.Disk.ToDict, disks)]
for disk in inst_disks:
disk.update(ext_params)
new_disks = ComputeDisks(inst_disks, disk_template, default_vg)
for disk, new_disk in zip(disks, new_disks):
if (disk.dev_type == disk_template and
disk_template == constants.DT_EXT):
provider = new_disk[constants.IDISK_PROVIDER]
if provider == disk.params[constants.IDISK_PROVIDER]:
raise errors.OpPrereqError("Not converting, '%s' of type ExtStorage"
" already using provider '%s'" %
(disk.iv_name, provider), errors.ECODE_INVAL)
if (disk_template in constants.DTS_HAVE_ACCESS and
constants.IDISK_ACCESS in disk.params):
new_disk[constants.IDISK_ACCESS] = disk.params[constants.IDISK_ACCESS]
if disk_template in constants.DTS_LVM:
if disk.dev_type == constants.DT_PLAIN:
new_disk[constants.IDISK_VG] = disk.logical_id[0]
elif disk.dev_type == constants.DT_DRBD8:
new_disk[constants.IDISK_VG] = disk.children[0].logical_id[0]
return new_disks
def CalculateFileStorageDir(disk_type, cfg, instance_name,
file_storage_dir=None):
instance_file_storage_dir = None
if disk_type in constants.DTS_FILEBASED:
joinargs = []
cfg_storage = None
if disk_type == constants.DT_FILE:
cfg_storage = cfg.GetFileStorageDir()
elif disk_type == constants.DT_SHARED_FILE:
cfg_storage = cfg.GetSharedFileStorageDir()
elif disk_type == constants.DT_GLUSTER:
cfg_storage = cfg.GetGlusterStorageDir()
if not cfg_storage:
raise errors.OpPrereqError(
"Cluster file storage dir for {tpl} storage type not defined".format(
tpl=repr(disk_type)
),
errors.ECODE_STATE)
joinargs.append(cfg_storage)
if file_storage_dir is not None:
joinargs.append(file_storage_dir)
if disk_type != constants.DT_GLUSTER:
joinargs.append(instance_name)
if len(joinargs) > 1:
instance_file_storage_dir = utils.PathJoin(*joinargs)
else:
instance_file_storage_dir = joinargs[0]
return instance_file_storage_dir
def CheckRADOSFreeSpace():
pass
|
BSD 2-Clause Simplified License
|
krfricke/rl-benchmark
|
rl_benchmark/data/benchmark_data.py
|
BenchmarkData.from_file_or_hash
|
python
|
def from_file_or_hash(benchmark_lookup, db=None):
if isinstance(db, list):
dbs = db
else:
dbs = [db]
if isinstance(benchmark_lookup, str) and len(benchmark_lookup) == 40:
for db in dbs:
if not db:
continue
benchmark_data = db.get_benchmark(benchmark_lookup)
if benchmark_data:
return benchmark_data
if hasattr(benchmark_lookup, 'readline') or os.path.exists(benchmark_lookup):
return BenchmarkData.from_file(benchmark_lookup)
else:
raise ValueError("Could not find benchmark in db and fs: {}".format(benchmark_lookup))
|
Load benchmark data from file or hash. First checks database(s) for hash, then files. Returns first match.
Args:
benchmark_lookup: string of filename, or file object, or local db hash
db: `BenchmarkDatabase` object or list or `BenchmarkDatabase` objects
Returns: BenchmarkData object
|
https://github.com/krfricke/rl-benchmark/blob/73f16255452beb2cd91f7f1d1a6b0e76a3a511c8/rl_benchmark/data/benchmark_data.py#L42-L70
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import os
import pickle
from rl_benchmark.data import ExperimentData
class BenchmarkData(list):
def __iter__(self):
for item in super(BenchmarkData, self).__iter__():
yield ExperimentData(item)
def __getitem__(self, item):
return ExperimentData(super(BenchmarkData, self).__getitem__(item))
def min_x(self, var):
values = list()
for experiment_data in self:
values.append(np.max(experiment_data.extended_results()[var]))
return np.min(values)
@staticmethod
|
Apache License 2.0
|
tcalmant/ipopo
|
pelix/framework.py
|
Bundle._registered_service
|
python
|
def _registered_service(self, registration):
with self.__registration_lock:
self.__registered_services.add(registration)
|
Bundle is notified by the framework that a service has been registered
in the name of this bundle.
:param registration: The service registration object
|
https://github.com/tcalmant/ipopo/blob/1d4b81207e67890dfccc8f562336c7104f194c17/pelix/framework.py#L267-L276
|
import collections
import importlib
import inspect
import logging
import os
import sys
import threading
import uuid
try:
from typing import Any, List, Optional, Set, Union
import types
except ImportError:
pass
from pelix.constants import (
ACTIVATOR,
ACTIVATOR_LEGACY,
FRAMEWORK_UID,
OSGI_FRAMEWORK_UUID,
BundleException,
FrameworkException,
)
from pelix.internals.events import BundleEvent, ServiceEvent
from pelix.internals.registry import (
EventDispatcher,
ServiceRegistry,
ServiceReference,
ServiceRegistration,
)
from pelix.utilities import is_string
if hasattr(importlib, "reload"):
def reload_module(module_):
return importlib.reload(module_)
else:
import imp
def reload_module(module_):
return imp.reload(module_)
def walk_modules(path):
if path is None or not os.path.isdir(path):
return
yielded = set()
try:
file_names = os.listdir(path)
except OSError:
file_names = []
file_names.sort()
for filename in file_names:
modname = inspect.getmodulename(filename)
if modname == "__init__" or modname in yielded:
continue
file_path = os.path.join(path, filename)
is_package = False
if not modname and os.path.isdir(file_path) and "." not in filename:
modname = filename
try:
dir_contents = os.listdir(file_path)
except OSError:
dir_contents = []
for sub_filename in dir_contents:
sub_name = inspect.getmodulename(sub_filename)
if sub_name == "__init__":
is_package = True
break
else:
continue
if modname and "." not in modname:
yielded.add(modname)
yield modname, is_package
__version_info__ = (1, 0, 1)
__version__ = ".".join(str(x) for x in __version_info__)
__docformat__ = "restructuredtext en"
_logger = logging.getLogger("pelix.main")
class Bundle(object):
__slots__ = (
"_lock",
"__context",
"__id",
"__module",
"__name",
"__framework",
"_state",
"__registered_services",
"__registration_lock",
)
UNINSTALLED = 1
INSTALLED = 2
RESOLVED = 4
STARTING = 8
STOPPING = 16
ACTIVE = 32
def __init__(self, framework, bundle_id, name, module_):
self._lock = threading.RLock()
self.__context = BundleContext(framework, self)
self.__id = bundle_id
self.__module = module_
self.__name = name
self.__framework = framework
self._state = Bundle.RESOLVED
self.__registered_services = set()
self.__registration_lock = threading.Lock()
def __str__(self):
return "Bundle(ID={0}, Name={1})".format(self.__id, self.__name)
def __get_activator_method(self, method_name):
activator = getattr(self.__module, ACTIVATOR, None)
if activator is None:
activator = getattr(self.__module, ACTIVATOR_LEGACY, None)
if activator is not None:
_logger.warning(
"Bundle %s uses the deprecated '%s' to declare"
" its activator. Use @BundleActivator instead.",
self.__name,
ACTIVATOR_LEGACY,
)
return getattr(activator, method_name, None)
def _fire_bundle_event(self, kind):
self.__framework._dispatcher.fire_bundle_event(BundleEvent(kind, self))
|
Apache License 2.0
|
trojai/trojai
|
trojai/modelgen/config.py
|
ModelGeneratorConfig.__getstate__
|
python
|
def __getstate__(self):
return {'arch_factory': self.arch_factory,
'data': self.data,
'model_save_dir': self.model_save_dir,
'stats_save_dir': self.stats_save_dir,
'num_models': self.num_models,
'arch_factory_kwargs': self.arch_factory_kwargs,
'arch_factory_kwargs_generator': self.arch_factory_kwargs_generator,
'parallel': self.parallel,
'amp': self.amp,
'experiment_cfg': self.experiment_cfg,
'run_ids': self.run_ids,
'filenames': self.filenames,
'save_with_hash': self.save_with_hash
}
|
Function which dictates which objects will be saved when pickling the ModelGeneratorConfig object. This is
only useful for the UGEModelGenerator, which needs to save the data before parallelizing a job.
:return: a dictionary of the state of the ModelGeneratorConfig object.
|
https://github.com/trojai/trojai/blob/843f63aa1f7027139bfc97feac1be8433b1f7f69/trojai/modelgen/config.py#L913-L932
|
import collections.abc
import copy
import importlib
import logging
import os
from abc import ABC, abstractmethod
from typing import Callable
from typing import Union, Sequence, Any
import math
import cloudpickle as pickle
import numpy as np
import torch
from .architecture_factory import ArchitectureFactory
from .constants import VALID_LOSS_FUNCTIONS, VALID_DEVICES, VALID_OPTIMIZERS
from .data_manager import DataManager
from .optimizer_interface import OptimizerInterface
logger = logging.getLogger(__name__)
def identity_function(x):
return x
default_soft_to_hard_fn_kwargs = dict()
class DefaultSoftToHardFn:
def __init__(self):
pass
def __call__(self, y_hat, *args, **kwargs):
return torch.argmax(y_hat, dim=1)
def __repr__(self):
return "torch.argmax(y_hat, dim=1)"
class ConfigInterface(ABC):
@abstractmethod
def __deepcopy__(self, memodict={}):
pass
class OptimizerConfigInterface(ConfigInterface):
@abstractmethod
def get_device_type(self):
pass
def save(self, fname):
pass
@staticmethod
@abstractmethod
def load(fname):
pass
class EarlyStoppingConfig(ConfigInterface):
def __init__(self, num_epochs: int = 5, val_loss_eps: float = 1e-3):
self.num_epochs = num_epochs
self.val_loss_eps = val_loss_eps
self.validate()
def validate(self):
if not isinstance(self.num_epochs, int) or self.num_epochs < 2:
msg = "num_epochs to monitor must be an integer > 1!"
logger.error(msg)
raise ValueError(msg)
try:
self.val_loss_eps = float(self.val_loss_eps)
except ValueError:
msg = "val_loss_eps must be a float"
logger.error(msg)
raise ValueError(msg)
if self.val_loss_eps < 0:
msg = "val_loss_eps must be >= 0!"
logger.error(msg)
raise ValueError(msg)
def __deepcopy__(self, memodict={}):
return EarlyStoppingConfig(self.num_epochs, self.val_loss_eps)
def __eq__(self, other):
if self.num_epochs == other.num_epochs and math.isclose(self.val_loss_eps, other.val_acc_eps):
return True
else:
return False
def __str__(self):
return "ES[%d:%0.02f]" % (self.num_epochs, self.val_loss_eps)
class TrainingConfig(ConfigInterface):
def __init__(self,
device: Union[str, torch.device] = 'cpu',
epochs: int = 10,
batch_size: int = 32,
lr: float = 1e-4,
optim: Union[str, OptimizerInterface] = 'adam',
optim_kwargs: dict = None,
objective: Union[str, Callable] = 'cross_entropy_loss',
objective_kwargs: dict = None,
save_best_model: bool = False,
train_val_split: float = 0.05,
val_data_transform: Callable[[Any], Any] = None,
val_label_transform: Callable[[int], int] = None,
val_dataloader_kwargs: dict = None,
early_stopping: EarlyStoppingConfig = None,
soft_to_hard_fn: Callable = None,
soft_to_hard_fn_kwargs: dict = None,
lr_scheduler: Any = None,
lr_scheduler_init_kwargs: dict = None,
lr_scheduler_call_arg: Any = None,
clip_grad: bool = False,
clip_type: str = "norm",
clip_val: float = 1.,
clip_kwargs: dict = None,
adv_training_eps: float = None,
adv_training_iterations: int = None,
adv_training_ratio: float = None) -> None:
self.device = device
self.epochs = epochs
self.batch_size = batch_size
self.lr = lr
self.optim = optim
self.optim_kwargs = optim_kwargs
self.objective = objective
self.objective_kwargs = objective_kwargs
self.save_best_model = save_best_model
self.train_val_split = train_val_split
self.early_stopping = early_stopping
self.val_data_transform = val_data_transform
self.val_label_transform = val_label_transform
self.val_dataloader_kwargs = val_dataloader_kwargs
self.soft_to_hard_fn = soft_to_hard_fn
self.soft_to_hard_fn_kwargs = soft_to_hard_fn_kwargs
self.lr_scheduler = lr_scheduler
self.lr_scheduler_init_kwargs = lr_scheduler_init_kwargs
self.lr_scheduler_call_arg = lr_scheduler_call_arg
self.clip_grad = clip_grad
self.clip_type = clip_type
self.clip_val = clip_val
self.clip_kwargs = clip_kwargs
self.adv_training_eps = adv_training_eps
self.adv_training_iterations = adv_training_iterations
self.adv_training_ratio = adv_training_ratio
if self.adv_training_eps is None:
self.adv_training_eps = float(0.0)
if self.adv_training_ratio is None:
self.adv_training_ratio = float(0.0)
if self.adv_training_iterations is None:
self.adv_training_iterations = int(0)
if self.optim_kwargs is None:
self.optim_kwargs = {}
if self.lr_scheduler_init_kwargs is None:
self.lr_scheduler_init_kwargs = {}
if self.clip_kwargs is None:
self.clip_kwargs = {}
self.validate()
if isinstance(self.device, str):
self.device = torch.device(self.device)
def validate(self) -> None:
if not isinstance(self.device, torch.device) and self.device not in VALID_DEVICES:
msg = "device must be either a torch.device object, or one of the following:" + str(VALID_DEVICES)
logger.error(msg)
raise ValueError(msg)
if not isinstance(self.epochs, int) or self.epochs < 1:
msg = "epochs must be an integer > 0"
logger.error(msg)
raise ValueError(msg)
if not isinstance(self.batch_size, int) or self.batch_size < 1:
msg = "batch_size must be an integer > 0"
logger.error(msg)
raise ValueError(msg)
if not isinstance(self.lr, float):
msg = "lr must be a float!"
logger.error(msg)
raise ValueError(msg)
if not isinstance(self.optim, OptimizerInterface) and self.optim not in VALID_OPTIMIZERS:
msg = "optim must be either a OptimizerInterface object, or one of the following:" + str(VALID_OPTIMIZERS)
logger.error(msg)
raise ValueError(msg)
if not isinstance(self.optim_kwargs, dict):
msg = "optim_kwargs must be a dictionary!"
logger.error(msg)
raise ValueError(msg)
if not callable(self.objective) and self.objective not in VALID_LOSS_FUNCTIONS:
msg = "objective must be a callable, or one of the following:" + str(VALID_LOSS_FUNCTIONS)
logger.error(msg)
raise ValueError(msg)
if not self.objective_kwargs:
self.objective_kwargs = dict()
elif not isinstance(self.objective_kwargs, dict):
msg = "objective_kwargs must be a dictionary"
logger.error(msg)
raise ValueError(msg)
if not isinstance(self.save_best_model, bool):
msg = "save_best_model must be a boolean!"
logger.error(msg)
raise ValueError(msg)
if not isinstance(self.train_val_split, float):
msg = "train_val_split must a float between 0 and 1!"
logger.error(msg)
raise ValueError(msg)
else:
if self.train_val_split < 0 or self.train_val_split > 1:
msg = "train_val_split must be between 0 and 1, inclusive"
logger.error(msg)
raise ValueError(msg)
if self.early_stopping is not None and not isinstance(self.early_stopping, EarlyStoppingConfig):
msg = "early_stopping must be of type EarlyStoppingConfig or None"
logger.error(msg)
raise ValueError(msg)
if self.adv_training_eps < 0 or self.adv_training_eps > 1:
msg = "Adversarial training eps: {} must be between 0 and 1.".format(self.adv_training_eps)
logger.error(msg)
raise ValueError(msg)
if self.adv_training_ratio < 0 or self.adv_training_ratio > 1:
msg = "Adversarial training ratio (percent of images with perturbation applied): {} must be between 0 and 1.".format(self.adv_training_ratio)
logger.error(msg)
raise ValueError(msg)
if self.adv_training_iterations < 0:
msg = "Adversarial training iteration count: {} must be greater than or equal to 0.".format(self.adv_training_iterations)
logger.error(msg)
raise ValueError(msg)
if self.val_data_transform is not None and not callable(self.val_data_transform):
raise TypeError("Expected a function for argument 'val_data_transform', "
"instead got type: {}".format(type(self.val_data_transform)))
if self.val_label_transform is not None and not callable(self.val_label_transform):
raise TypeError("Expected a function for argument 'val_label_transform', "
"instead got type: {}".format(type(self.val_label_transform)))
if self.val_dataloader_kwargs is not None and not isinstance(self.val_dataloader_kwargs, dict):
msg = "val_dataloader_kwargs must be a dictionary or None!"
logger.error(msg)
raise ValueError(msg)
if self.soft_to_hard_fn is None:
self.soft_to_hard_fn = DefaultSoftToHardFn()
elif not callable(self.soft_to_hard_fn):
msg = "soft_to_hard_fn must be a callable which accepts as input the output of the model, and outputs " "hard-decisions"
logger.error(msg)
raise ValueError(msg)
if self.soft_to_hard_fn_kwargs is None:
self.soft_to_hard_fn_kwargs = copy.deepcopy(default_soft_to_hard_fn_kwargs)
elif not isinstance(self.soft_to_hard_fn_kwargs, dict):
msg = "soft_to_hard_fn_kwargs must be a dictionary of kwargs to pass to soft_to_hard_fn"
logger.error(msg)
raise ValueError(msg)
if self.lr_scheduler_call_arg is not None and self.lr_scheduler_call_arg != 'val_acc' and self.lr_scheduler_call_arg != 'val_loss':
msg = "lr_scheduler_call_arg must be one of: None, val_acc, val_loss"
logger.error(msg)
raise ValueError(msg)
if not isinstance(self.clip_grad, bool):
msg = "clip_grad must be a bool!"
logger.error(msg)
raise ValueError(msg)
if not isinstance(self.clip_type, str) or (self.clip_type != 'norm' and self.clip_type != 'val'):
msg = "clip type must be a string, either norm or val"
logger.error(msg)
raise ValueError(msg)
if not isinstance(self.clip_val, float):
msg = "clip_val must be a float"
logger.error(msg)
raise ValueError(msg)
if not isinstance(self.clip_kwargs, dict):
msg = "clip_kwargs must be a dict"
logger.error(msg)
raise ValueError(msg)
def get_cfg_as_dict(self):
output_dict = dict(device=str(self.device.type),
epochs=self.epochs,
batch_size=self.batch_size,
learning_rate=self.lr,
optim=self.optim,
objective=self.objective,
objective_kwargs=self.objective_kwargs,
save_best_model=self.save_best_model,
early_stopping=str(self.early_stopping),
val_data_transform=self.val_data_transform,
val_label_transform=self.val_label_transform,
val_dataloader_kwargs=self.val_dataloader_kwargs,
soft_to_hard_fn=self.soft_to_hard_fn,
soft_to_hard_fn_kwargs=self.soft_to_hard_fn_kwargs,
lr_scheduler=self.lr_scheduler,
lr_scheduler_init_kwargs=self.lr_scheduler_init_kwargs,
lr_scheduler_call_arg=self.lr_scheduler_call_arg,
clip_grad=self.clip_grad,
clip_type=self.clip_type,
clip_val=self.clip_val,
clip_kwargs=self.clip_kwargs,
adv_training_eps = self.adv_training_eps,
adv_training_iterations = self.adv_training_iterations,
adv_training_ratio = self.adv_training_ratio)
return output_dict
def __str__(self):
str_repr = "TrainingConfig: device[%s], num_epochs[%d], batch_size[%d], learning_rate[%.5e], adv_training_eps[%s], adv_training_iterations[%s], adv_training_ratio[%s], optimizer[%s], " "objective[%s], objective_kwargs[%s], train_val_split[%0.02f], val_data_transform[%s], " "val_label_transform[%s], val_dataloader_kwargs[%s], early_stopping[%s], " "soft_to_hard_fn[%s], soft_to_hard_fn_kwargs[%s], " "lr_scheduler[%s], lr_scheduler_init_kwargs[%s], lr_scheduler_call_arg[%s], " "clip_grad[%s] clip_type[%s] clip_val[%s] clip_kwargs[%s]" % (str(self.device.type), self.epochs, self.batch_size, self.lr, self.adv_training_eps, self.adv_training_iterations, self.adv_training_ratio,
str(self.optim), str(self.objective), str(
self.objective_kwargs),
self.train_val_split, str(self.val_data_transform),
str(self.val_label_transform), str(
self.val_dataloader_kwargs), str(self.early_stopping),
str(self.soft_to_hard_fn), str(
self.soft_to_hard_fn_kwargs),
str(self.lr_scheduler), str(self.lr_scheduler_init_kwargs), str(
self.lr_scheduler_call_arg),
str(self.clip_grad), str(self.clip_type), str(self.clip_val), str(self.clip_kwargs))
return str_repr
def __deepcopy__(self, memodict={}):
new_device = self.device.type
epochs = self.epochs
batch_size = self.batch_size
lr = self.lr
save_best_model = self.save_best_model
train_val_split = self.train_val_split
early_stopping = copy.deepcopy(self.early_stopping)
val_data_transform = copy.deepcopy(self.val_data_transform)
val_label_transform = copy.deepcopy(self.val_label_transform)
val_dataloader_kwargs = copy.deepcopy(self.val_dataloader_kwargs)
if isinstance(self.optim, str):
optim = self.optim
elif isinstance(self.optim, OptimizerInterface):
optim = copy.deepcopy(self.optim)
else:
msg = "The TrainingConfig object you are trying to copy is corrupted!"
logger.error(msg)
raise ValueError(msg)
optim_kwargs = self.optim_kwargs
if isinstance(self.objective, str):
objective = self.objective
elif callable(self.objective):
objective = copy.deepcopy(self.objective)
else:
msg = "The TrainingConfig object you are trying to copy is corrupted!"
logger.error(msg)
raise ValueError(msg)
objective_kwargs = self.objective_kwargs
soft_to_hard_fn = copy.deepcopy(self.soft_to_hard_fn)
soft_to_hard_fn_kwargs = copy.deepcopy(self.soft_to_hard_fn_kwargs)
lr_scheduler = self.lr_scheduler
lr_scheduler_kwargs = copy.deepcopy(self.lr_scheduler_init_kwargs)
lr_scheduler_call_arg = self.lr_scheduler_call_arg
clip_grad = self.clip_grad
clip_type = self.clip_type
clip_val = self.clip_val
clip_kwargs = copy.deepcopy(self.clip_kwargs)
adv_training_eps = self.adv_training_eps
adv_training_iterations = self.adv_training_iterations
adv_training_ratio = self.adv_training_ratio
return TrainingConfig(new_device, epochs, batch_size, lr, optim, optim_kwargs, objective, objective_kwargs,
save_best_model, train_val_split, val_data_transform, val_label_transform,
val_dataloader_kwargs, early_stopping, soft_to_hard_fn, soft_to_hard_fn_kwargs,
lr_scheduler, lr_scheduler_kwargs, lr_scheduler_call_arg,
clip_grad, clip_type, clip_val, clip_kwargs, adv_training_eps,
adv_training_iterations, adv_training_ratio)
def __eq__(self, other):
if self.device.type == other.device.type and self.epochs == other.epochs and self.batch_size == other.batch_size and self.lr == other.lr and self.save_best_model == other.save_best_model and self.train_val_split == other.train_val_split and self.early_stopping == other.early_stopping and self.val_data_transform == other.val_data_transform and self.val_label_transform == other.val_label_transform and self.val_dataloader_kwargs == other.val_dataloader_kwargs and self.soft_to_hard_fn_kwargs == other.soft_to_hard_fn_kwargs and self.lr_scheduler_init_kwargs == other.lr_scheduler_init_kwargs and self.lr_scheduler_call_arg == other.lr_scheduler_call_arg and self.clip_grad == other.clip_grad and self.clip_type == other.clip_type and self.adv_training_eps == other.adv_training_eps and self.adv_training_iterations == other.adv_training_iterations and self.adv_training_ratio == other.adv_training_ratio and self.clip_val == other.clip_val and self.clip_kwargs == other.clip_kwargs:
if self.optim == other.optim and self.objective == other.objective:
return True
else:
return False
else:
return False
class ReportingConfig(ConfigInterface):
def __init__(self,
num_batches_per_logmsg: int = 100,
disable_progress_bar: bool = False,
num_epochs_per_metric: int = 1,
num_batches_per_metrics: int = 50,
tensorboard_output_dir: str = None,
experiment_name: str = 'experiment'):
self.num_batches_per_logmsg = num_batches_per_logmsg
self.disable_progress_bar = disable_progress_bar
self.num_epochs_per_metrics = num_epochs_per_metric
self.num_batches_per_metrics = num_batches_per_metrics
self.tensorboard_output_dir = tensorboard_output_dir
self.experiment_name = experiment_name
self.validate()
def validate(self):
if not isinstance(self.num_batches_per_logmsg, int) or self.num_batches_per_logmsg < 0:
msg = "num_batches_per_logmsg must be an integer > 0"
logger.error(msg)
raise ValueError(msg)
if not isinstance(self.num_epochs_per_metrics, int) or self.num_epochs_per_metrics < 0:
msg = "num_epochs_per_metrics must be an integer > 0"
logger.error(msg)
raise ValueError(msg)
if self.num_batches_per_metrics is not None and (not isinstance(self.num_batches_per_metrics, int) or
self.num_batches_per_metrics < 0):
msg = "num_batches_per_metrics must be an integer > 0 or None!"
logger.error(msg)
raise ValueError(msg)
def __str__(self):
str_repr = "ReportingConfig: num_batches/log_msg[%d], num_epochs/metric[%d], num_batches/metric[%d], " "tensorboard_dir[%s] experiment_name=[%s], disable_progress_bar=[%s]" % (self.num_batches_per_logmsg, self.num_epochs_per_metrics, self.num_batches_per_metrics,
self.tensorboard_output_dir, self.experiment_name, self.disable_progress_bar)
return str_repr
def __copy__(self):
return ReportingConfig(self.num_batches_per_logmsg, self.disable_progress_bar, self.num_epochs_per_metrics, self.num_batches_per_metrics, self.tensorboard_output_dir, self.experiment_name)
def __deepcopy__(self, memodict={}):
return self.__copy__()
def __eq__(self, other):
if self.num_batches_per_logmsg == other.num_batches_per_logmsg and self.disable_progress_bar == other.disable_progress_bar and self.num_epochs_per_metrics == other.num_epochs_per_metrics and self.num_batches_per_metrics == other.num_batches_per_metrics and self.tensorboard_output_dir == other.tensorboard_output_dir and self.experiment_name == other.experiment_name:
return True
else:
return False
class TorchTextOptimizerConfig(OptimizerConfigInterface):
def __init__(self, training_cfg: TrainingConfig = None, reporting_cfg: ReportingConfig = None,
copy_pretrained_embeddings: bool = False):
self.training_cfg = training_cfg
self.reporting_cfg = reporting_cfg
self.copy_pretrained_embeddings = copy_pretrained_embeddings
self.validate()
def validate(self):
if self.training_cfg is None:
logger.debug(
"Using default training configuration to setup Optimizer!")
self.training_cfg = TrainingConfig()
elif not isinstance(self.training_cfg, TrainingConfig):
msg = "training_cfg must be of type TrainingConfig"
logger.error(msg)
raise TypeError(msg)
if self.reporting_cfg is None:
logger.debug(
"Using default reporting configuration to setup Optimizer!")
self.reporting_cfg = ReportingConfig()
elif not isinstance(self.reporting_cfg, ReportingConfig):
msg = "reporting_cfg must be of type ReportingConfig"
logger.error(msg)
raise TypeError(msg)
if not isinstance(self.copy_pretrained_embeddings, bool):
msg = "copy_pretrained_embeddings must be a boolean datatype!"
logger.error(msg)
raise TypeError(msg)
def __deepcopy__(self, memodict={}):
training_cfg_copy = copy.deepcopy(self.training_cfg)
reporting_cfg_copy = copy.deepcopy(self.reporting_cfg)
return TorchTextOptimizerConfig(training_cfg_copy, reporting_cfg_copy, self.copy_pretrained_embeddings)
def __eq__(self, other):
if self.training_cfg == other.training_cfg and self.reporting_cfg == other.reporting_cfg and self.copy_pretrained_embeddings == other.copy_pretrained_embeddings:
return True
else:
return False
def save(self, fname):
with open(fname, 'wb') as f:
pickle.dump(self, f)
@staticmethod
def load(fname):
with open(fname, 'rb') as f:
loaded_optimzier_cfg = pickle.load(f)
return loaded_optimzier_cfg
def get_device_type(self):
return str(self.training_cfg.device)
class DefaultOptimizerConfig(OptimizerConfigInterface):
def __init__(self, training_cfg: TrainingConfig = None, reporting_cfg: ReportingConfig = None):
if training_cfg is None:
logger.debug(
"Using default training configuration to setup Optimizer!")
self.training_cfg = TrainingConfig()
elif not isinstance(training_cfg, TrainingConfig):
msg = "training_cfg must be of type TrainingConfig"
logger.error(msg)
raise TypeError(msg)
else:
self.training_cfg = training_cfg
if reporting_cfg is None:
logger.debug(
"Using default reporting configuration to setup Optimizer!")
self.reporting_cfg = ReportingConfig()
elif not isinstance(reporting_cfg, ReportingConfig):
msg = "reporting_cfg must be of type ReportingConfig"
logger.error(msg)
raise TypeError(msg)
else:
self.reporting_cfg = reporting_cfg
def __deepcopy__(self, memodict={}):
training_cfg_copy = copy.deepcopy(self.training_cfg)
reporting_cfg_copy = copy.deepcopy(self.reporting_cfg)
return DefaultOptimizerConfig(training_cfg_copy, reporting_cfg_copy)
def __eq__(self, other):
if self.training_cfg == other.training_cfg and self.reporting_cfg == other.reporting_cfg:
return True
else:
return False
def get_device_type(self):
return str(self.training_cfg.device)
def save(self, fname):
with open(fname, 'wb') as f:
pickle.dump(self, f)
@staticmethod
def load(fname):
with open(fname, 'rb') as f:
loaded_optimzier_cfg = pickle.load(f)
return loaded_optimzier_cfg
class ModelGeneratorConfig(ConfigInterface):
def __init__(self, arch_factory: ArchitectureFactory, data: DataManager,
model_save_dir: str, stats_save_dir: str, num_models: int,
arch_factory_kwargs: dict = None, arch_factory_kwargs_generator: Callable = None,
optimizer: Union[Union[OptimizerInterface, DefaultOptimizerConfig],
Sequence[Union[OptimizerInterface, DefaultOptimizerConfig]]] = None,
parallel=False,
amp=False,
experiment_cfg: dict = None,
run_ids: Union[Any, Sequence[Any]] = None,
filenames: Union[str, Sequence[str]] = None,
save_with_hash: bool = False):
self.arch_factory = arch_factory
self.arch_factory_kwargs = arch_factory_kwargs
self.arch_factory_kwargs_generator = arch_factory_kwargs_generator
self.data = data
self.model_save_dir = model_save_dir
self.stats_save_dir = stats_save_dir
self.num_models = num_models
self.optimizer = optimizer
self.parallel = parallel
self.amp = amp
self.experiment_cfg = dict() if experiment_cfg is None else experiment_cfg
self.run_ids = run_ids
self.filenames = filenames
self.save_with_hash = save_with_hash
self.validate()
def __deepcopy__(self, memodict={}):
arch_factory_copy = copy.deepcopy(
self.arch_factory)
data_copy = copy.deepcopy(self.data)
optimizer_copy = copy.deepcopy(self.optimizer)
return ModelGeneratorConfig(arch_factory_copy, data_copy,
self.model_save_dir, self.stats_save_dir, self.num_models,
self.arch_factory_kwargs, self.arch_factory_kwargs_generator,
optimizer_copy, self.parallel, self.amp, self.experiment_cfg,
self.run_ids, self.filenames, self.save_with_hash)
def __eq__(self, other):
if self.arch_factory == other.arch_factory and self.data == other.data and self.optimizer == other.optimizer and self.parallel == other.parallel and self.amp == other.amp and self.model_save_dir == other.model_save_dir and self.stats_save_dir == other.stats_save_dir and self.arch_factory_kwargs == other.arch_factory_kwargs and self.arch_factory_kwargs_generator == other.arch_factory_kwargs_generator and self.experiment_cfg == other.experiment_cfg and self.run_ids == other.run_ids and self.filenames == other.filenames and self.save_with_hash == other.save_with_hash:
return True
else:
return False
def validate(self) -> None:
if not (isinstance(self.arch_factory, ArchitectureFactory)):
msg = "Expected an ArchitectureFactory object for argument 'architecture_factory', " "instead got type: {}".format(type(self.arch_factory))
logger.error(msg)
raise TypeError(msg)
if self.arch_factory_kwargs is not None and not isinstance(self.arch_factory_kwargs, dict):
msg = "Expected dictionary for arch_factory_kwargs"
logger.error(msg)
raise TypeError(msg)
if self.arch_factory_kwargs_generator is not None and not callable(self.arch_factory_kwargs_generator):
msg = "arch_factory_kwargs_generator must be a Callable!"
logger.error(msg)
raise TypeError(msg)
if not (isinstance(self.data, DataManager)):
msg = "Expected an TrojaiDataManager object for argument 'data', " "instead got type: {}".format(type(self.data))
logger.error(msg)
raise TypeError(msg)
if not type(self.model_save_dir) == str:
msg = "Expected type 'string' for argument 'model_save_dir, instead got type: " "{}".format(type(self.model_save_dir))
logger.error(msg)
raise TypeError(msg)
if not os.path.isdir(self.model_save_dir):
try:
os.makedirs(self.model_save_dir)
except IOError as e:
msg = "'model_save_dir' was not found and could not be created" "...\n{}".format(e.__traceback__)
logger.error(msg)
raise IOError(msg)
if not type(self.num_models) == int:
msg = "Expected type 'int' for argument 'num_models, instead got type: " "{}".format(type(self.num_models))
logger.error(msg)
raise TypeError(msg)
if self.filenames is not None:
if isinstance(self.filenames, Sequence):
for filename in self.filenames:
if not type(filename) == str:
msg = "Encountered non-string in argument 'filenames': {}".format(
filename)
logger.error(msg)
raise TypeError(msg)
else:
if not isinstance(self.filenames, str):
msg = "Filename provided as prefix must be of type string!"
logger.error(msg)
raise TypeError(msg)
if self.run_ids is not None and len(self.run_ids) != self.num_models:
msg = "Argument 'run_ids' was provided, but len(run_ids) != num_models"
logger.error(msg)
raise RuntimeError(msg)
if self.filenames is not None and len(self.filenames) != self.num_models:
msg = "Argument 'filenames' was provided, but len(filenames) != num_models"
logger.error(msg)
raise RuntimeError(msg)
if self.run_ids is not None and self.filenames is not None:
msg = "Argument 'filenames' was provided with argument 'run_ids', 'run_ids' will be ignored..."
logger.warning(msg)
if not isinstance(self.save_with_hash, bool):
msg = "Expected boolean for save_with_hash argument"
logger.error(msg)
raise ValueError(msg)
RunnerConfig.validate_optimizer(self.optimizer, self.data)
if not isinstance(self.parallel, bool):
msg = "parallel argument must be a boolean!"
logger.error(msg)
raise ValueError(msg)
|
Apache License 2.0
|
gkhayes/mlrose
|
mlrose/opt_probs.py
|
OptProb.set_state
|
python
|
def set_state(self, new_state):
if len(new_state) != self.length:
raise Exception("""new_state length must match problem length""")
self.state = new_state
self.fitness = self.eval_fitness(self.state)
|
Change the current state vector to a specified value
and get its fitness.
Parameters
----------
new_state: array
New state vector value.
|
https://github.com/gkhayes/mlrose/blob/2a9d604ea464cccc48f30b8fe6b81fe5c4337c80/mlrose/opt_probs.py#L210-L224
|
import numpy as np
from sklearn.metrics import mutual_info_score
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import minimum_spanning_tree, depth_first_tree
from .fitness import TravellingSales
class OptProb:
def __init__(self, length, fitness_fn, maximize=True):
if length < 0:
raise Exception("""length must be a positive integer.""")
elif not isinstance(length, int):
if length.is_integer():
self.length = int(length)
else:
raise Exception("""length must be a positive integer.""")
else:
self.length = length
self.state = np.array([0]*self.length)
self.neighbors = []
self.fitness_fn = fitness_fn
self.fitness = 0
self.population = []
self.pop_fitness = []
self.mate_probs = []
if maximize:
self.maximize = 1.0
else:
self.maximize = -1.0
def best_child(self):
best = self.population[np.argmax(self.pop_fitness)]
return best
def best_neighbor(self):
fitness_list = []
for neigh in self.neighbors:
fitness = self.eval_fitness(neigh)
fitness_list.append(fitness)
best = self.neighbors[np.argmax(fitness_list)]
return best
def eval_fitness(self, state):
if len(state) != self.length:
raise Exception("state length must match problem length")
fitness = self.maximize*self.fitness_fn.evaluate(state)
return fitness
def eval_mate_probs(self):
pop_fitness = np.copy(self.pop_fitness)
pop_fitness[pop_fitness == -1.0*np.inf] = 0
if np.sum(pop_fitness) == 0:
self.mate_probs = np.ones(len(pop_fitness)) / len(pop_fitness)
else:
self.mate_probs = pop_fitness/np.sum(pop_fitness)
def get_fitness(self):
return self.fitness
def get_length(self):
return self.length
def get_mate_probs(self):
return self.mate_probs
def get_maximize(self):
return self.maximize
def get_pop_fitness(self):
return self.pop_fitness
def get_population(self):
return self.population
def get_state(self):
return self.state
def set_population(self, new_population):
self.population = new_population
pop_fitness = []
for i in range(len(self.population)):
fitness = self.eval_fitness(self.population[i])
pop_fitness.append(fitness)
self.pop_fitness = np.array(pop_fitness)
|
BSD 3-Clause New or Revised License
|
csyxwei/ffwm
|
models/base_model.py
|
BaseModel.update_learning_rate
|
python
|
def update_learning_rate(self):
for scheduler in self.schedulers:
if self.opt.lr_policy == 'plateau':
scheduler.step(self.metric)
else:
scheduler.step()
lr = self.optimizers[0].param_groups[0]['lr']
print('learning rate = %.7f' % lr)
|
Update learning rates for all the networks; called at the end of every epoch
|
https://github.com/csyxwei/ffwm/blob/d42c578cabe1b81c6b1bb0c3cb707b190fca3c68/models/base_model.py#L145-L154
|
import os
import torch
from collections import OrderedDict
from abc import ABC, abstractmethod
from . import networks
class BaseModel(ABC):
def __init__(self, opt):
self.opt = opt
self.gpu_ids = opt.gpu_ids
self.isTrain = opt.isTrain
self.device = torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu')
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name)
self.load_dir = os.path.join(opt.checkpoints_dir, opt.name)
if opt.preprocess != 'scale_width':
torch.backends.cudnn.benchmark = True
self.loss_names = []
self.model_names = []
self.visual_names = []
self.optimizers = []
self.image_paths = []
self.metric = 0
@staticmethod
def modify_commandline_options(parser, is_train):
return parser
def set_input(self, input):
self.set_visual_name()
if self.isTrain:
self.set_train_input(input)
else:
self.set_test_input(input)
@abstractmethod
def forward(self):
pass
@abstractmethod
def optimize_parameters(self):
pass
@abstractmethod
def set_visual_name(self):
pass
def setup(self, opt):
if self.isTrain:
self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers]
if opt.continue_train:
load_suffix = 'iter_%d' % opt.load_iter if opt.load_iter > 0 else opt.epoch
self.load_networks(load_suffix)
self.print_networks(opt.verbose)
def setup4test(self, opt):
load_suffix = 'iter_%d' % opt.load_iter if opt.load_iter > 0 else opt.epoch
self.load_networks(load_suffix)
return self.print_networks(opt.verbose)
def set_eval(self):
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, name)
net.eval()
self.isTrain = False
def set_train(self):
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, name)
net.train()
self.isTrain = True
def compute_visuals(self):
pass
def get_image_paths(self):
return self.image_paths
|
MIT License
|
spesmilo/electrum
|
electrum/keystore.py
|
MasterPublicKeyMixin.derive_pubkey
|
python
|
def derive_pubkey(self, for_change: int, n: int) -> bytes:
pass
|
Returns pubkey at given path.
May raise CannotDerivePubkey.
|
https://github.com/spesmilo/electrum/blob/1ff9f9910f1a8d17ebba04439c1fcaf1476b3e8f/electrum/keystore.py#L375-L379
|
from unicodedata import normalize
import hashlib
import re
from typing import Tuple, TYPE_CHECKING, Union, Sequence, Optional, Dict, List, NamedTuple
from functools import lru_cache
from abc import ABC, abstractmethod
from . import bitcoin, ecc, constants, bip32
from .bitcoin import deserialize_privkey, serialize_privkey, BaseDecodeError
from .transaction import Transaction, PartialTransaction, PartialTxInput, PartialTxOutput, TxInput
from .bip32 import (convert_bip32_path_to_list_of_uint32, BIP32_PRIME,
is_xpub, is_xprv, BIP32Node, normalize_bip32_derivation,
convert_bip32_intpath_to_strpath, is_xkey_consistent_with_key_origin_info)
from .ecc import string_to_number
from .crypto import (pw_decode, pw_encode, sha256, sha256d, PW_HASH_VERSION_LATEST,
SUPPORTED_PW_HASH_VERSIONS, UnsupportedPasswordHashVersion, hash_160)
from .util import (InvalidPassword, WalletFileException,
BitcoinException, bh2u, bfh, inv_dict, is_hex_str)
from .mnemonic import Mnemonic, Wordlist, seed_type, is_seed
from .plugin import run_hook
from .logging import Logger
if TYPE_CHECKING:
from .gui.qt.util import TaskThread
from .plugins.hw_wallet import HW_PluginBase, HardwareClientBase, HardwareHandlerBase
from .wallet_db import WalletDB
class CannotDerivePubkey(Exception): pass
class KeyStore(Logger, ABC):
type: str
def __init__(self):
Logger.__init__(self)
self.is_requesting_to_be_rewritten_to_wallet_file = False
def has_seed(self) -> bool:
return False
def is_watching_only(self) -> bool:
return False
def can_import(self) -> bool:
return False
def get_type_text(self) -> str:
return f'{self.type}'
@abstractmethod
def may_have_password(self):
pass
def _get_tx_derivations(self, tx: 'PartialTransaction') -> Dict[str, Union[Sequence[int], str]]:
keypairs = {}
for txin in tx.inputs():
keypairs.update(self._get_txin_derivations(txin))
return keypairs
def _get_txin_derivations(self, txin: 'PartialTxInput') -> Dict[str, Union[Sequence[int], str]]:
if txin.is_complete():
return {}
keypairs = {}
for pubkey in txin.pubkeys:
if pubkey in txin.part_sigs:
continue
derivation = self.get_pubkey_derivation(pubkey, txin)
if not derivation:
continue
keypairs[pubkey.hex()] = derivation
return keypairs
def can_sign(self, tx: 'Transaction', *, ignore_watching_only=False) -> bool:
if not ignore_watching_only and self.is_watching_only():
return False
if not isinstance(tx, PartialTransaction):
return False
return bool(self._get_tx_derivations(tx))
def can_sign_txin(self, txin: 'TxInput', *, ignore_watching_only=False) -> bool:
if not ignore_watching_only and self.is_watching_only():
return False
if not isinstance(txin, PartialTxInput):
return False
return bool(self._get_txin_derivations(txin))
def ready_to_sign(self) -> bool:
return not self.is_watching_only()
@abstractmethod
def dump(self) -> dict:
pass
@abstractmethod
def is_deterministic(self) -> bool:
pass
@abstractmethod
def sign_message(self, sequence: 'AddressIndexGeneric', message, password) -> bytes:
pass
@abstractmethod
def decrypt_message(self, sequence: 'AddressIndexGeneric', message, password) -> bytes:
pass
@abstractmethod
def sign_transaction(self, tx: 'PartialTransaction', password) -> None:
pass
@abstractmethod
def get_pubkey_derivation(self, pubkey: bytes,
txinout: Union['PartialTxInput', 'PartialTxOutput'],
*, only_der_suffix=True) -> Union[Sequence[int], str, None]:
pass
def find_my_pubkey_in_txinout(
self, txinout: Union['PartialTxInput', 'PartialTxOutput'],
*, only_der_suffix: bool = False
) -> Tuple[Optional[bytes], Optional[List[int]]]:
for pubkey in txinout.bip32_paths:
path = self.get_pubkey_derivation(pubkey, txinout, only_der_suffix=only_der_suffix)
if path and not isinstance(path, (str, bytes)):
return pubkey, list(path)
return None, None
def can_have_deterministic_lightning_xprv(self) -> bool:
return False
class Software_KeyStore(KeyStore):
def __init__(self, d):
KeyStore.__init__(self)
self.pw_hash_version = d.get('pw_hash_version', 1)
if self.pw_hash_version not in SUPPORTED_PW_HASH_VERSIONS:
raise UnsupportedPasswordHashVersion(self.pw_hash_version)
def may_have_password(self):
return not self.is_watching_only()
def sign_message(self, sequence, message, password) -> bytes:
privkey, compressed = self.get_private_key(sequence, password)
key = ecc.ECPrivkey(privkey)
return key.sign_message(message, compressed)
def decrypt_message(self, sequence, message, password) -> bytes:
privkey, compressed = self.get_private_key(sequence, password)
ec = ecc.ECPrivkey(privkey)
decrypted = ec.decrypt_message(message)
return decrypted
def sign_transaction(self, tx, password):
if self.is_watching_only():
return
self.check_password(password)
keypairs = self._get_tx_derivations(tx)
for k, v in keypairs.items():
keypairs[k] = self.get_private_key(v, password)
if keypairs:
tx.sign(keypairs)
@abstractmethod
def update_password(self, old_password, new_password):
pass
@abstractmethod
def check_password(self, password):
pass
@abstractmethod
def get_private_key(self, sequence: 'AddressIndexGeneric', password) -> Tuple[bytes, bool]:
pass
class Imported_KeyStore(Software_KeyStore):
type = 'imported'
def __init__(self, d):
Software_KeyStore.__init__(self, d)
self.keypairs = d.get('keypairs', {})
def is_deterministic(self):
return False
def dump(self):
return {
'type': self.type,
'keypairs': self.keypairs,
'pw_hash_version': self.pw_hash_version,
}
def can_import(self):
return True
def check_password(self, password):
pubkey = list(self.keypairs.keys())[0]
self.get_private_key(pubkey, password)
def import_privkey(self, sec, password):
txin_type, privkey, compressed = deserialize_privkey(sec)
pubkey = ecc.ECPrivkey(privkey).get_public_key_hex(compressed=compressed)
serialized_privkey = serialize_privkey(
privkey, compressed, txin_type, internal_use=True)
self.keypairs[pubkey] = pw_encode(serialized_privkey, password, version=self.pw_hash_version)
return txin_type, pubkey
def delete_imported_key(self, key):
self.keypairs.pop(key)
def get_private_key(self, pubkey: str, password):
sec = pw_decode(self.keypairs[pubkey], password, version=self.pw_hash_version)
try:
txin_type, privkey, compressed = deserialize_privkey(sec)
except BaseDecodeError as e:
raise InvalidPassword() from e
if pubkey != ecc.ECPrivkey(privkey).get_public_key_hex(compressed=compressed):
raise InvalidPassword()
return privkey, compressed
def get_pubkey_derivation(self, pubkey, txin, *, only_der_suffix=True):
if pubkey.hex() in self.keypairs:
return pubkey.hex()
return None
def update_password(self, old_password, new_password):
self.check_password(old_password)
if new_password == '':
new_password = None
for k, v in self.keypairs.items():
b = pw_decode(v, old_password, version=self.pw_hash_version)
c = pw_encode(b, new_password, version=PW_HASH_VERSION_LATEST)
self.keypairs[k] = c
self.pw_hash_version = PW_HASH_VERSION_LATEST
class Deterministic_KeyStore(Software_KeyStore):
def __init__(self, d):
Software_KeyStore.__init__(self, d)
self.seed = d.get('seed', '')
self.passphrase = d.get('passphrase', '')
self._seed_type = d.get('seed_type', None)
def is_deterministic(self):
return True
def dump(self):
d = {
'type': self.type,
'pw_hash_version': self.pw_hash_version,
}
if self.seed:
d['seed'] = self.seed
if self.passphrase:
d['passphrase'] = self.passphrase
if self._seed_type:
d['seed_type'] = self._seed_type
return d
def has_seed(self):
return bool(self.seed)
def get_seed_type(self) -> Optional[str]:
return self._seed_type
def is_watching_only(self):
return not self.has_seed()
@abstractmethod
def format_seed(self, seed: str) -> str:
pass
def add_seed(self, seed):
if self.seed:
raise Exception("a seed exists")
self.seed = self.format_seed(seed)
self._seed_type = seed_type(seed) or None
def get_seed(self, password):
if not self.has_seed():
raise Exception("This wallet has no seed words")
return pw_decode(self.seed, password, version=self.pw_hash_version)
def get_passphrase(self, password):
if self.passphrase:
return pw_decode(self.passphrase, password, version=self.pw_hash_version)
else:
return ''
class MasterPublicKeyMixin(ABC):
@abstractmethod
def get_master_public_key(self) -> str:
pass
@abstractmethod
def get_derivation_prefix(self) -> Optional[str]:
pass
@abstractmethod
def get_root_fingerprint(self) -> Optional[str]:
pass
@abstractmethod
def get_fp_and_derivation_to_be_used_in_partial_tx(
self,
der_suffix: Sequence[int],
*,
only_der_suffix: bool,
) -> Tuple[bytes, Sequence[int]]:
pass
@abstractmethod
|
MIT License
|
rubienr/network-monitoring
|
data_vis/views.py
|
transformTransferProbes2PiechartData
|
python
|
def transformTransferProbes2PiechartData(direction, timeFrame):
objects = None
if "download" in direction and "upload" in direction:
objects = TransferTestResult.objects .filter(transferStart__range=[timeFrame["fromDateTime"], timeFrame["toDateTime"]])
else:
objects = TransferTestResult.objects .filter(transferStart__range=[timeFrame["fromDateTime"], timeFrame["toDateTime"]]) .filter(direction=direction)
results = {}
for result in objects:
if result.probeName in results:
results[result.probeName].append(result)
else:
results[result.probeName] = [result]
xdata = results.keys()
ydata = [len(results[x]) for x in results]
extra_serie = {"tooltip": {"y_start": "", "y_end": " probes"}}
chartdata = {'x': xdata, 'y': ydata, "extra": extra_serie}
charttype = "pieChart"
chartcontainer = 'piechart_container'
title = "Total %s"
if "download" in direction and "upload" in direction:
title = title % "Up-/Downloads"
elif "download" in direction:
title = title % "Downloads"
elif "upload" in direction:
title = title % "Uploads"
data = {
"title": title,
'charttype': charttype,
'chartdata': chartdata,
'chartcontainer': chartcontainer,
'extra': {
'x_is_date': False,
'x_axis_format': '',
'tag_script_js': True,
'jquery_on_ready': False,
"donut": True,
"showLabels": True,
}
}
return data
|
Arguments
direction: download, upload, downloadupload
|
https://github.com/rubienr/network-monitoring/blob/8bcdba2a60b9e418b9ba56181b1cbb08c0a099aa/data_vis/views.py#L304-L358
|
from __future__ import unicode_literals
import datetime
import time
from collections import OrderedDict
import speedtest_cli as speedtest
from django.db.models import Max, Min
from django.shortcuts import render
from django.shortcuts import render_to_response
from django.template.context import RequestContext
from django.views.generic import TemplateView
from common.models import PingTestResult
from common.models import SpeedtestServer
from common.models import TransferTestResult
from service.probing import getLocalIp
def defaultView(request):
return render_to_response('bootstrap/base.html', context_instance=RequestContext(request))
def transformPingProbes2TimelinechartData(timeFrame):
objects = PingTestResult.objects.filter(pingStart__range=[timeFrame["fromDateTime"], timeFrame["toDateTime"]])
hostToTimestampToValue = {}
for result in objects:
timestamp = time.mktime(result.pingStart.timetuple()) * 1000
host = result.probeName
value = result.rttAvg
if host not in hostToTimestampToValue .keys():
hostToTimestampToValue[host] = {}
hostToTimestampToValue[host][timestamp] = value
relaxedData = []
for host in hostToTimestampToValue.keys():
relaxedData.append(seriesToReturnToZeroSeries(hostToTimestampToValue[host]))
xValues, chartData = mergeDictionariesToChartData(relaxedData)
extra_serie = {"tooltip": {"y_start": "", "y_end": " [ms] avg. delay"}}
chartdata = {
'x': xValues,
}
idx = 1
hostnameLookup = dict(zip(chartData.keys(), hostToTimestampToValue.keys()))
for key, hostData in chartData.items():
chartdata["name%s" % idx] = hostnameLookup["y%s" % idx]
chartdata["y%s" % idx] = hostData.values()
chartdata["extra%s" % idx] = extra_serie
idx += 1
axis_date= "%H:%M %p"
tooltip_date = "%d %b %H:%M"
data = {
'charttype': "lineWithFocusChart",
'chartdata': chartdata,
"chartcontainer": "linewithfocuschart_container",
"title": "Average Ping Duration",
"extra": {
'x_is_date': True,
'x_axis_format': axis_date,
"charttooltip_dateformat": tooltip_date,
'tag_script_js': True,
'jquery_on_ready': False
}
}
return data
def transformTransferProbes2TimelinechartData(direction, timeFrame):
objects = None
isBothDirections = False
if "download" in direction and "upload" in direction:
isBothDirections = True
objects = TransferTestResult.objects .filter(transferStart__range=[timeFrame["fromDateTime"], timeFrame["toDateTime"]])
else:
objects = TransferTestResult.objects .filter(transferStart__range=[timeFrame["fromDateTime"], timeFrame["toDateTime"]]) .filter(direction=direction)
hostToTimestampToValue = {}
for result in objects:
timestamp = time.mktime(result.transferStart.timetuple()) * 1000.0
if isBothDirections:
host = "%s (%s)" % (result.probeName, result.direction)
else:
host = result.probeName
throughput = round(((result.transferredUnitsPerSecond * 1) / (1000.0 * 1000)), 2)
if host not in hostToTimestampToValue.keys():
hostToTimestampToValue[host] = {}
hostToTimestampToValue[host][timestamp] = throughput
relaxedData = []
for host in hostToTimestampToValue.keys():
relaxedData.append(seriesToReturnToZeroSeries(hostToTimestampToValue[host]))
xValues, chartData = mergeDictionariesToChartData(relaxedData)
extra_serie = {"tooltip": {"y_start": "", "y_end": "MBit/s"}}
chartdata = {
'x': xValues,
}
idx = 1
hostnameLookup = dict(zip(chartData.keys(), hostToTimestampToValue.keys()))
for key, hostData in chartData.items():
chartdata["name%s" % idx] = hostnameLookup["y%s" % idx]
chartdata["y%s" % idx] = hostData.values()
chartdata["extra%s" % idx] = extra_serie
idx += 1
title = ""
if "download" in direction and "upload" in direction:
title = "Up-/Download Speed Tests"
elif "download" in direction:
title = "Download Speed Tests"
elif "upload" in direction:
title = "Upload Speed Tests"
axis_date= "%H:%M"
tooltip_date = "%d %b %H:%M"
data = {
'charttype': "lineWithFocusChart",
'chartdata': chartdata,
"chartcontainer": "linewithfocuschart_container",
"title": title,
"extra": {
'x_is_date': True,
'x_axis_format': axis_date,
"charttooltip_dateformat": tooltip_date,
'tag_script_js': True,
'jquery_on_ready': False
}
}
return data
def transformProbes2PreviewTimelinechartData():
timestampToPingProbes = {}
roundSeconds = -2
for result in PingTestResult.objects.order_by('pingStart').all():
timestamp = int(round(time.mktime(result.pingStart.timetuple()), roundSeconds))
if timestamp in timestampToPingProbes.keys():
timestampToPingProbes[timestamp] = timestampToPingProbes[timestamp] + 1
else:
timestampToPingProbes[timestamp] = 1
timestampToTransferProbes = {}
for result in TransferTestResult.objects.order_by('transferStart').all():
timestamp = int(round(time.mktime(result.transferStart.timetuple()), roundSeconds))
if timestamp in timestampToTransferProbes.keys():
timestampToTransferProbes[timestamp] = timestampToTransferProbes[timestamp] + 1
else:
timestampToTransferProbes[timestamp] = 1
pingChartData = seriesToReturnToZeroSeries(timestampToPingProbes)
transferChartData = seriesToReturnToZeroSeries(timestampToTransferProbes)
xValues, theData = mergeDictionariesToChartData([pingChartData, transferChartData])
extra_serie = {"tooltip": {"y_start": "", "y_end": " probes"}}
chartdata = {'x': [1000 * s for s in xValues]}
chartdata["name1"] = "ping probes"
chartdata["y1"] = theData["y1"].values()
chartdata["extra1"] = extra_serie
chartdata["name2"] = "transfer probes"
chartdata["y2"] = theData["y2"].values()
chartdata["extra2"] = extra_serie
if len(chartdata["x"]) > 30:
title = "Specify time window to generate charts from (optional):"
elif len(chartdata["x"]) > 0:
title = "Data overview (still less probes):"
else:
title = "Unfortunately no data available. Please configure and start the service."
axis_date= "%d %b"
tooltip_date = "%d %b %H:%M"
data = {
'preview_charttype': "lineWithFocusChart",
'preview_chartdata': chartdata,
"preview_chartcontainer": "linewithfocuschart_container",
"preview_title": title,
"preview_extra": {
'x_is_date': True,
'x_axis_format': axis_date,
"charttooltip_dateformat": tooltip_date,
'tag_script_js': True,
'jquery_on_ready': False
}
}
return data
def getClosestServersView(request):
config = speedtest.getConfig()
closestServers = speedtest.closestServers(config['client'])
models = []
localIp = getLocalIp("speedtest.net")
for server in closestServers:
server["serverId"] = server.pop("id")
model = SpeedtestServer().fromDict(**server)
model.interfaceIp = localIp
models.append(model)
SpeedtestServer.objects.bulk_create(models)
title = "Speedtest.net - Closest Server"
columnToName = OrderedDict ([
("serverId", "ID"),
("name", "City"),
("url", "URL"),
("country", "Country"),
("d", "Distance [km]"),
("sponsor", ""),
("lat", "Latitude"),
("lon", "Longitude"),
])
columns = columnToName.keys()
servers = []
for c in closestServers:
server = OrderedDict([(columnToName[filteredColumn], c[filteredColumn]) for filteredColumn in columns])
distanceColumn = columnToName["d"]
server[distanceColumn] = round(server[distanceColumn],1)
servers.append(server)
data = {
"title": title,
"tableHeader" : servers[0].keys(),
"servers": servers,
}
return render_to_response('bootstrap/serverlist.html', data, context_instance=RequestContext(request))
def transformPingProbes2PiechartData(timeFrame):
objects = PingTestResult.objects.filter(pingStart__range=[timeFrame["fromDateTime"], timeFrame["toDateTime"]])
results = {}
for result in objects:
if result.probeName in results:
results[result.probeName].append(result)
else:
results[result.probeName] = [result]
xdata = results.keys()
ydata = [len(results[x]) for x in results]
extra_serie = {"tooltip": {"y_start": "", "y_end": " probes"}}
chartdata = {'x': xdata, 'y': ydata, "extra": extra_serie}
charttype = "pieChart"
chartcontainer = 'piechart_container'
data = {
"title": "Total Pings",
'charttype': charttype,
'chartdata': chartdata,
'chartcontainer': chartcontainer,
'extra': {
'x_is_date': False,
'tag_script_js': True,
'jquery_on_ready': False,
"donut": True,
"showLabels": True,
}
}
return data
|
Apache License 2.0
|
open-risk/opennpl
|
openNPL/views.py
|
api_root
|
python
|
def api_root(request, format=None):
data = [
{'NPL Template Endpoints':
[
{'npl_counterparty_group': reverse('npl_portfolio:npl_counterparty_group_api', request=request,
format=format)},
{'npl_counterparty': reverse('npl_portfolio:npl_counterparty_api', request=request, format=format)},
{'npl_loan': reverse('npl_portfolio:npl_loan_api', request=request, format=format)},
{'npl_enforcement': reverse('npl_portfolio:npl_enforcement_api', request=request, format=format)},
{'npl_forbearance': reverse('npl_portfolio:npl_forbearance_api', request=request, format=format)},
{'npl_nonproperty_collateral': reverse('npl_portfolio:npl_nonproperty_collateral_api', request=request,
format=format)},
{'npl_property_collateral': reverse('npl_portfolio:npl_property_collateral_api', request=request,
format=format)},
{'npl_external_collection': reverse('npl_portfolio:npl_external_collection_api', request=request,
format=format)},
]},
]
return Response(data)
|
Returns a list of all active API endpoints in the OpenNPL installation, grouped by functionality:
- **NPL Data Endpoints** implements a REST CRUD interface to EBA Templated NPL Data
|
https://github.com/open-risk/opennpl/blob/fff1d219b5180305fd8b9e742e0e26dc0306f45d/openNPL/views.py#L44-L71
|
from rest_framework import permissions
from rest_framework import status
from rest_framework.decorators import api_view, permission_classes
from rest_framework.response import Response
from rest_framework.parsers import JSONParser
from rest_framework.reverse import reverse
from npl_portfolio.models import CounterpartyGroup, Counterparty, Loan, Enforcement, Forbearance, NonPropertyCollateral, PropertyCollateral, ExternalCollection
from openNPL.serializers import NPL_CounterpartyGroupSerializer, NPL_CounterpartyGroupDetailSerializer
from openNPL.serializers import NPL_CounterpartySerializer, NPL_CounterpartyDetailSerializer
from openNPL.serializers import NPL_EnforcementSerializer, NPL_EnforcementDetailSerializer
from openNPL.serializers import NPL_ExternalCollectionSerializer, NPL_ExternalCollectionDetailSerializer
from openNPL.serializers import NPL_ForbearanceSerializer, NPL_ForbearanceDetailSerializer
from openNPL.serializers import NPL_LoanSerializer, NPL_LoanDetailSerializer
from openNPL.serializers import NPL_NonPropertyCollateralSerializer, NPL_NonPropertyCollateralDetailSerializer
from openNPL.serializers import NPL_PropertyCollateralSerializer, NPL_PropertyCollateralDetailSerializer
@api_view(['GET'])
@permission_classes((permissions.AllowAny,))
|
MIT License
|
spamexperts/orangeassassin
|
oa/db/bayes/sqlalchemy.py
|
Store.nspam_nham_change
|
python
|
def nspam_nham_change(self, spam, ham):
self.conn.execute(
"UPDATE bayes_vars "
"SET spam_count=:spam_count, ham_count=:ham_count",
{'spam_count': spam, 'ham_count': ham}
)
self.conn.commit()
|
Set the spam and ham counts for the database.
|
https://github.com/spamexperts/orangeassassin/blob/9d0d4bd3ef7d09bf2da195280730f790f1229458/oa/db/bayes/sqlalchemy.py#L161-L168
|
from __future__ import absolute_import
from sqlalchemy.orm.exc import NoResultFound
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, PrimaryKeyConstraint, String, LargeBinary
Base = declarative_base()
class BayesExpire(Base):
__tablename__ = 'bayes_expire'
id = Column("id", Integer)
runtime = Column("runtime", Integer)
__table_args__ = (
PrimaryKeyConstraint("id"),)
class BayesGlobalVars(Base):
__tablename__ = "bayes_global_vars"
variable = Column("variable", String(30))
value = Column("value", String(200))
__table_args__ = (
PrimaryKeyConstraint("variable"),)
class BayesSeen(Base):
__tablename__ = "bayes_seen"
id = Column("id", Integer)
msgid = Column("msgid", String(200))
flag = Column("flag", String(1))
__table_args__ = (
PrimaryKeyConstraint("id", "msgid"),)
class BayesToken(Base):
__tablename__ = "bayes_token"
id = Column("id", Integer)
token = Column("token", LargeBinary(5))
spam_count = Column("spam_count", Integer)
ham_count = Column("ham_count", Integer)
atime = Column("atime", Integer)
__table_args__ = (
PrimaryKeyConstraint("id", "token"),)
class BayesVars(Base):
__tablename__ = "bayes_vars"
id = Column("id", Integer)
username = Column("username", String(200))
spam_count = Column("spam_count", Integer)
ham_count = Column("ham_count", Integer)
token_count = Column("token_count", Integer)
last_expire = Column("last_expire", Integer)
last_atime_delta = Column("last_atime_delta", Integer)
last_expire_reduce = Column("last_expire_reduce", Integer)
oldest_token_age = Column("oldest_token_age", Integer, default=2147483647)
newest_token_age = Column("newest_token_age", Integer)
__table_args__ = (
PrimaryKeyConstraint("id"),)
class Store(object):
def __init__(self, plugin):
self.engine = plugin.get_engine()
self.conn = None
self.plugin = plugin
def untie_db(self):
if self.conn:
self.conn.close()
def tie_db_readonly(self):
return self.tie_db_writeable()
def tie_db_writeable(self):
self.conn = self.plugin.get_session()
return True
def tok_get(self, token):
return self.conn.execute(
"SELECT spam_count, ham_count, atime "
"FROM bayes_token WHERE token=:token",
{"token": token}
).fetchone()
def tok_get_all(self, tokens):
for token in tokens:
try:
yield self.conn.query(
BayesToken.token, BayesToken.spam_count,
BayesToken.ham_count, BayesToken.atime,
).filter(BayesToken.token==bytes(token)).one()
except NoResultFound:
yield None
def seen_get(self, msgid):
return self.conn.execute(
"SELECT flag FROM bayes_seen WHERE msgid=:msgid",
{'msgid': msgid}).fetchone()[0]
def seen_delete(self, id, msgid):
self.conn.execute(
"DELETE FROM bayes_seen WHERE msgid = :msgid",
{"msgid": msgid}
)
def seen_put(self, msgid, flag):
self.conn.execute(
"UPDATE bayes_seen SET flag=:flag WHERE msgid=:msgid",
{"flag": flag, "msgid": msgid})
self.conn.commit()
def cleanup(self):
pass
def nspam_nham_get(self):
return self.conn.execute(
"SELECT spam_count, ham_count FROM bayes_vars LIMIT 1"
).fetchone()
|
Apache License 2.0
|
itisfoundation/osparc-simcore
|
services/web/server/tests/integration/01/test_exporter.py
|
push_services_to_registry
|
python
|
def push_services_to_registry(docker_registry: str, node_meta_schema: Dict) -> None:
_pull_push_service(
"itisfoundation/sleeper", "2.0.2", docker_registry, node_meta_schema
)
_pull_push_service(
"itisfoundation/sleeper", "2.1.1", docker_registry, node_meta_schema
)
|
Adds a itisfoundation/sleeper in docker registry
|
https://github.com/itisfoundation/osparc-simcore/blob/a50b61735381231abba2cfcd57f3314785c656b0/services/web/server/tests/integration/01/test_exporter.py#L261-L270
|
import asyncio
import cgi
import itertools
import json
import logging
import operator
import sys
import tempfile
from collections import deque
from contextlib import contextmanager
from copy import deepcopy
from pathlib import Path
from typing import Any, Callable, Coroutine, Dict, List, Set, Tuple
import aiofiles
import aiohttp
import aiopg
import aioredis
import pytest
from models_library.settings.redis import RedisConfig
from pytest_simcore.docker_registry import _pull_push_service
from pytest_simcore.helpers.utils_login import log_client_in
from servicelib.aiohttp.application import create_safe_application
from simcore_postgres_database.models.services import (
services_access_rights,
services_meta_data,
)
from simcore_service_webserver.application import (
setup_director,
setup_director_v2,
setup_exporter,
setup_login,
setup_products,
setup_projects,
setup_resource_manager,
setup_rest,
setup_security,
setup_session,
setup_socketio,
setup_storage,
setup_users,
)
from simcore_service_webserver.catalog import setup_catalog
from simcore_service_webserver.constants import X_PRODUCT_NAME_HEADER
from simcore_service_webserver.db import setup_db
from simcore_service_webserver.db_models import projects
from simcore_service_webserver.exporter.async_hashing import Algorithm, checksum
from simcore_service_webserver.exporter.file_downloader import ParallelDownloader
from simcore_service_webserver.scicrunch.submodule_setup import (
setup_scicrunch_submodule,
)
from simcore_service_webserver.security_roles import UserRole
from simcore_service_webserver.storage_handlers import get_file_download_url
from sqlalchemy.dialects.postgresql import insert as pg_insert
from yarl import URL
log = logging.getLogger(__name__)
pytest_simcore_core_services_selection = [
"redis",
"rabbit",
"catalog",
"dask-scheduler",
"director",
"director-v2",
"postgres",
"storage",
]
pytest_simcore_ops_services_selection = ["minio"]
CURRENT_DIR = Path(sys.argv[0] if __name__ == "__main__" else __file__).resolve().parent
DATA_DIR = CURRENT_DIR.parent.parent / "data"
assert DATA_DIR.exists(), "expected folder under tests/data"
API_VERSION = "v0"
API_PREFIX = "/" + API_VERSION
SUPPORTED_EXPORTER_VERSIONS = {"v1", "v2"}
REMAPPING_KEY = "__reverse__remapping__dict__key__"
KEYS_TO_IGNORE_FROM_COMPARISON = {
"id",
"uuid",
"name",
"creation_date",
"last_change_date",
"runHash",
"eTag",
REMAPPING_KEY,
}
@pytest.fixture(autouse=True)
def __drop_and_recreate_postgres__(database_from_template_before_each_function) -> None:
yield
@pytest.fixture(autouse=True)
async def __delete_all_redis_keys__(redis_service: RedisConfig):
client = await aioredis.create_redis_pool(redis_service.dsn, encoding="utf-8")
await client.flushall()
client.close()
await client.wait_closed()
yield
@pytest.fixture
async def monkey_patch_aiohttp_request_url() -> None:
old_request = aiohttp.ClientSession._request
async def new_request(*args, **kwargs):
assert len(args) == 3
url = args[2]
if isinstance(url, str):
url = URL(url)
if url.host == "director-v2":
from pytest_simcore.helpers.utils_docker import get_service_published_port
log.debug("MOCKING _request [before] url=%s", url)
new_port = int(get_service_published_port("director-v2", 8000))
url = url.with_host("172.17.0.1").with_port(new_port)
log.debug("MOCKING _request [after] url=%s kwargs=%s", url, str(kwargs))
args = args[0], args[1], url
return await old_request(*args, **kwargs)
aiohttp.ClientSession._request = new_request
yield
aiohttp.ClientSession._request = old_request
@pytest.fixture
def client(
loop, aiohttp_client, app_config, postgres_with_template_db, mock_orphaned_services
):
cfg = deepcopy(app_config)
assert cfg["rest"]["version"] == API_VERSION
assert cfg["rest"]["enabled"]
cfg["projects"]["enabled"] = True
cfg["director"]["enabled"] = True
app = create_safe_application(cfg)
setup_db(app)
setup_session(app)
setup_security(app)
setup_rest(app)
setup_login(app)
setup_users(app)
setup_socketio(app)
setup_projects(app)
setup_director(app)
setup_director_v2(app)
setup_exporter(app)
setup_storage(app)
setup_products(app)
setup_catalog(app)
setup_scicrunch_submodule(app)
assert setup_resource_manager(app)
yield loop.run_until_complete(
aiohttp_client(
app,
server_kwargs={"port": cfg["main"]["port"], "host": cfg["main"]["host"]},
)
)
async def login_user(client):
return await log_client_in(client=client, user_data={"role": UserRole.USER.name})
def get_exported_projects() -> List[Path]:
exporter_dir = DATA_DIR / "exporter"
assert exporter_dir.exists()
exported_files = [x for x in exporter_dir.glob("*.osparc")]
assert exported_files, "expected *.osparc files, none found"
return exported_files
@pytest.fixture
async def apply_access_rights(aiopg_engine: aiopg.sa.Engine) -> Coroutine:
async def grant_rights_to_services(services: List[Tuple[str, str]]) -> None:
for service_key, service_version in services:
metada_data_values = dict(
key=service_key,
version=service_version,
owner=1,
name="",
description=f"OVERRIDEN BY TEST in {__file__}",
)
access_rights_values = dict(
key=service_key,
version=service_version,
gid=1,
execute_access=True,
write_access=True,
)
async with aiopg_engine.acquire() as conn:
await conn.execute(
pg_insert(services_meta_data)
.values(**metada_data_values)
.on_conflict_do_update(
index_elements=[
services_meta_data.c.key,
services_meta_data.c.version,
],
set_=metada_data_values,
)
)
await conn.execute(
pg_insert(services_access_rights)
.values(**access_rights_values)
.on_conflict_do_update(
index_elements=[
services_access_rights.c.key,
services_access_rights.c.version,
services_access_rights.c.gid,
services_access_rights.c.product_name,
],
set_=access_rights_values,
)
)
yield grant_rights_to_services
@pytest.fixture
async def grant_access_rights(apply_access_rights: Coroutine) -> None:
services = [
("simcore/services/comp/itis/sleeper", "2.0.2"),
("simcore/services/comp/itis/sleeper", "2.1.1"),
]
await apply_access_rights(services)
@pytest.fixture(scope="session")
|
MIT License
|
google/qkeras
|
experimental/lo/random_forest/parser.py
|
p_opt_new_line
|
python
|
def p_opt_new_line(p):
pass
|
opt_new_line : NEWLINE
|
|
https://github.com/google/qkeras/blob/8dbc20d3ca32cf4536ad675d57e70586f8aedbb2/experimental/lo/random_forest/parser.py#L134-L138
|
from ply import yacc
from ply import lex
import numpy as np
_1 = 1
_0 = 2
_X = 3
_U = 0
NOT = {_0: _1, _1: _0, _X: _U, _U: _U}
class PLA:
def __init__(self):
self.pla_i = []
self.pla_o = []
pla = PLA()
tokens = [
"I",
"O",
"MV",
"ILB",
"OB",
"P",
"L",
"E",
"TYPE",
"SYMBOL",
"NUMBER",
"NEWLINE"
]
t_ignore = " \t|"
t_I = r"\.[iI]"
t_O = r"\.[oO]"
t_MV = r"\.[mM][vV]"
t_ILB = r"\.[iI][lL][bB]"
t_OB = r"\.[oO][bB]"
t_P = r"\.[pP]"
t_L = r"\.[lL]"
t_E = r"\.[eE]"
t_TYPE = r"\.type"
t_SYMBOL = r"[a-zA-Z_][a-zA-Z0-9_\<\>\-\$]*"
def t_NUMBER(t):
return t
def t_NEWLINE(t):
t.lexer.lineno += t.value.count("\n")
return t
def t_error(t):
print("Illegal character '{}'".format(t.value))
t.lexer.skip(1)
lex.lex()
def p_pla(p):
def p_pla_declarations(p):
def p_pla_declaration(p):
token = p[1].lower()
if token == ".i":
pla.ni = int(p[2])
elif token == ".o":
pla.no = int(p[2])
elif token == ".mv":
pla.mv = [int(v) for v in p[2]]
elif token == ".ilb":
pla.ilb = p[2]
elif token == ".ob":
pla.ob = p[2]
elif token == ".l":
pla.label = p[2]
elif token == ".type":
pla.set_type = p[2]
def p_pla_table(p):
if len(p[1:]) == 3:
line = "".join(p[2])
else:
line = "".join(p[1])
assert hasattr(pla, "ni") and hasattr(pla, "no")
line = [_1 if v == "1" else _0 if v == "0" else _X for v in line]
pla.pla_i.append(line[0:pla.ni])
pla.pla_o.append(line[pla.ni:])
def p_pla_end(p):
pass
|
Apache License 2.0
|
voxelers/mcthings
|
mcthings/decorators/decorator.py
|
Decorator.create
|
python
|
def create(self):
|
Create the decorator
:return:
|
https://github.com/voxelers/mcthings/blob/7df7eba679864b31472e4da585e5273913f513e5/mcthings/decorators/decorator.py#L27-L32
|
from mcpi.minecraft import Minecraft
import mcpi.block
from mcthings.blocks_memory import BlocksMemory
from mcthings.world import World
class Decorator:
block = mcpi.block.AIR
def __init__(self, thing):
self._blocks_memory = BlocksMemory()
self._thing = thing
|
Apache License 2.0
|
roads/psiz
|
tests/examples/test_mle_1g.py
|
ground_truth
|
python
|
def ground_truth(n_stimuli, n_dim, similarity_func):
stimuli = tf.keras.layers.Embedding(
n_stimuli+1, n_dim, mask_zero=True,
embeddings_initializer=tf.keras.initializers.RandomNormal(
stddev=.17, seed=4
)
)
if similarity_func == 'Exponential':
similarity = psiz.keras.layers.ExponentialSimilarity(
fit_tau=False, fit_gamma=False,
tau_initializer=tf.keras.initializers.Constant(1.),
gamma_initializer=tf.keras.initializers.Constant(0.001),
)
elif similarity_func == 'StudentsT':
similarity = psiz.keras.layers.StudentsTSimilarity(
fit_tau=False, fit_alpha=False,
tau_initializer=tf.keras.initializers.Constant(2.),
alpha_initializer=tf.keras.initializers.Constant(1.),
)
elif similarity_func == 'HeavyTailed':
similarity = psiz.keras.layers.HeavyTailedSimilarity(
fit_tau=False, fit_kappa=False, fit_alpha=False,
tau_initializer=tf.keras.initializers.Constant(2.),
kappa_initializer=tf.keras.initializers.Constant(2.),
alpha_initializer=tf.keras.initializers.Constant(10.),
)
elif similarity_func == "Inverse":
similarity = psiz.keras.layers.InverseSimilarity(
fit_tau=False, fit_mu=False,
tau_initializer=tf.keras.initializers.Constant(2.),
mu_initializer=tf.keras.initializers.Constant(0.000001)
)
kernel = psiz.keras.layers.DistanceBased(
distance=psiz.keras.layers.Minkowski(
rho_initializer=tf.keras.initializers.Constant(2.),
w_initializer=tf.keras.initializers.Constant(1.),
trainable=False
),
similarity=similarity
)
model = psiz.keras.models.Rank(stimuli=stimuli, kernel=kernel)
return model
|
Return a ground truth embedding.
|
https://github.com/roads/psiz/blob/37068530a78e08792e827ee55cf55e627add115e/tests/examples/test_mle_1g.py#L27-L73
|
import pytest
import numpy as np
from scipy.stats import pearsonr
import tensorflow as tf
import psiz
|
Apache License 2.0
|
gnosis/safe-relay-service
|
safe_relay_service/gas_station/gas_station.py
|
GasStation.get_tx_gas_prices
|
python
|
def get_tx_gas_prices(self, block_numbers: Iterable[int]) -> List[int]:
cached_blocks = []
not_cached_block_numbers = []
for block_number in block_numbers:
block = self._get_block_from_cache(block_number)
if block:
cached_blocks.append(block)
else:
not_cached_block_numbers.append(block_number)
requested_blocks = self.ethereum_client.get_blocks(
not_cached_block_numbers, full_transactions=True
)
for block_number, block in zip(not_cached_block_numbers, requested_blocks):
if block:
requested_blocks.append(block)
self._store_block_in_cache(block["number"], block)
else:
logger.warning(
"Cannot find block-number=%d, a reorg happened", block_number
)
gas_prices = [
transaction["gasPrice"]
for block in requested_blocks + cached_blocks
for transaction in block["transactions"]
if transaction.get("gasPrice")
]
return gas_prices
|
:param block_numbers: Block numbers to retrieve
:return: Return a list with `gas_price` for every block provided
|
https://github.com/gnosis/safe-relay-service/blob/c36c94757c0eb3eade51006da5885eaddc4786b0/safe_relay_service/gas_station/gas_station.py#L81-L115
|
import math
from logging import getLogger
from typing import Iterable, List, Optional
from django.conf import settings
from django.core.cache import cache
import numpy as np
from web3 import Web3
from web3.types import BlockData
from gnosis.eth import EthereumClient, EthereumClientProvider
from .models import GasPrice
logger = getLogger(__name__)
class NoBlocksFound(Exception):
pass
class GasStationProvider:
def __new__(cls):
if not hasattr(cls, "instance"):
if settings.FIXED_GAS_PRICE is not None:
cls.instance = GasStationMock(gas_price=settings.FIXED_GAS_PRICE)
else:
cls.instance = GasStation(
EthereumClientProvider(), settings.GAS_STATION_NUMBER_BLOCKS
)
w3 = cls.instance.w3
if w3.isConnected() and int(w3.net.version) > 314158:
logger.warning(
"Using mock Gas Station because no `w3.net.version` was detected"
)
cls.instance = GasStationMock()
return cls.instance
@classmethod
def del_singleton(cls):
if hasattr(cls, "instance"):
del cls.instance
class GasStation:
def __init__(
self,
ethereum_client: EthereumClient,
number_of_blocks: int = 200,
cache_timeout_seconds: int = 10 * 60,
constant_gas_increment: int = 1,
):
self.ethereum_client = ethereum_client
self.number_of_blocks = number_of_blocks
self.cache_timeout = cache_timeout_seconds
self.constant_gas_increment = constant_gas_increment
self.w3 = self.ethereum_client.w3
def _get_block_cache_key(self, block_number: int):
return "block:%d" % block_number
def _get_block_from_cache(self, block_number: int) -> Optional[BlockData]:
return cache.get(self._get_block_cache_key(block_number))
def _store_block_in_cache(self, block_number: int, block: BlockData):
return cache.set(
self._get_block_cache_key(block_number), block, self.cache_timeout
)
def _get_gas_price_cache_key(self):
return "gas_price"
def _get_gas_price_from_cache(self) -> Optional[GasPrice]:
return cache.get(self._get_gas_price_cache_key())
def _store_gas_price_in_cache(self, gas_price: GasPrice):
return cache.set(self._get_gas_price_cache_key(), gas_price)
|
MIT License
|
nhynes/em
|
em/__main__.py
|
rename
|
python
|
def rename(args, _config, _extra_args):
repo = pygit2.init_repository('.')
name = args.name
new_name = args.newname
with shelve.open('.em') as emdb:
if name not in emdb:
return _die(E_NO_EXP.format(name))
if emdb[name]['status'] == 'running':
return _die(E_RENAME_RUNNING)
if new_name in emdb:
return _die(E_NAME_EXISTS.format(new_name))
br = _get_br(repo, name)
if br is None:
return _die(E_NO_BRANCH.format(name))
if _get_br(repo, new_name) is not None:
return _die(E_BRANCH_EXISTS.format(new_name))
exper_dir = _expath(name)
new_exper_dir = _expath(new_name)
try:
os.rename(exper_dir, new_exper_dir)
except OSError:
return _die(E_MOVE_DIR)
try:
br.rename(new_name)
except pygit2.GitError:
os.rename(new_exper_dir, exper_dir)
return _die(E_RENAME_BRANCH)
with shelve.open('.em') as emdb:
emdb[new_name] = emdb.pop(name)
|
Rename an experiment.
|
https://github.com/nhynes/em/blob/3d17963f70676950dec0693d4c1e320cb7903871/em/__main__.py#L526-L562
|
import argparse
import datetime
import os
from os import path as osp
import shelve
import shutil
import sys
import pygit2
GIT_UNCH = {pygit2.GIT_STATUS_CURRENT, pygit2.GIT_STATUS_IGNORED}
EM_KEY = '__em__'
E_BRANCH_EXISTS = 'error: branch "{}" already exists'
E_CHECKED_OUT = 'error: cannot run experiment on checked out branch'
E_CANT_CLEAN = 'error: could not clean up {}'
E_IS_NOT_RUNNING = 'error: experiment "{}" is not running'
E_IS_RUNNING = 'error: experiment "{}" is already running'
E_MODIFIED_SRC = 'error: not updating existing branch with source changes'
E_MOVE_DIR = 'error: could not move experiment directory'
E_NAME_EXISTS = 'error: experiment named "{}" already exists'
E_NO_BRANCH = 'error: no branch for experiment "{}"?'
E_NO_EXP = 'error: no experiment named "{}"'
E_NO_PROJ = 'error: "{}" is not a project directory'
E_OTHER_MACHINE = 'error: experiment "{}" is not running on this machine'
E_RENAME_BRANCH = 'error: could not rename branch'
E_RENAME_RUNNING = 'error: cannot rename running experiment'
RUN_RECREATE_PROMPT = 'Experiment {} already exists. Recreate? [yN] '
LI = '* {}'
CLEAN_NEEDS_FORCE = 'The following experiments require --force to be removed:'
CLEAN_PREAMBLE = 'The following experiments will be removed:'
CLEAN_SNAP_PREAMBLE = 'The following experiments\' snaps will be removed:'
CLEAN_PROMPT = 'Clean up {:d} experiments? [yN] '
CLEAN_SNAPS_PROMPT = 'Clean up snaps of {:d} experiments? [yN] '
LI_RUNNING = LI + ' (running)'
RESET_PREAMBLE = 'The following experiments will be reset:'
RESET_PROMPT = 'Reset {:d} experiments? [yN] '
def _die(msg, status=1):
print(msg, file=sys.stderr)
return status
def _ensure_proj(cb):
def _docmd(*args, **kwargs):
with shelve.open('.em') as emdb:
if EM_KEY not in emdb:
curdir = osp.abspath('.')
return _die(E_NO_PROJ.format(curdir))
cb(*args, **kwargs)
return _docmd
def _expath(*args):
return osp.abspath(osp.join('experiments', *args))
def proj_create(args, config, _extra_args):
tmpl_repo = config['project']['template_repo']
try:
pygit2.clone_repository(tmpl_repo, args.dest)
shutil.rmtree(osp.join(args.dest, '.git'), ignore_errors=True)
pygit2.init_repository(args.dest)
except ValueError:
pass
for em_dir in ['experiments', 'data']:
dpath = osp.join(args.dest, em_dir)
if not osp.isdir(dpath):
os.mkdir(dpath)
with shelve.open(osp.join(args.dest, '.em')) as emdb:
emdb['__em__'] = {}
def _cleanup(name, emdb, repo):
exper_dir = _expath(name)
if name not in emdb and not osp.isdir(exper_dir):
return
if osp.isdir(exper_dir):
shutil.rmtree(exper_dir)
try:
worktree = repo.lookup_worktree(name)
if worktree is not None:
worktree.prune(True)
except pygit2.GitError:
pass
try:
br = repo.lookup_branch(name)
if br is not None:
br.delete()
except pygit2.GitError:
pass
if name in emdb:
del emdb[name]
def _cleanup_snaps(name, _emdb, _repo):
exper_dir = _expath(name)
snaps_dir = osp.join(exper_dir, 'run', 'snaps')
if osp.isdir(snaps_dir):
shutil.rmtree(snaps_dir)
os.mkdir(snaps_dir)
def _tstamp():
import time
return datetime.datetime.fromtimestamp(time.time())
def _get_tracked_exts(config):
return set(config['experiment']['track_files'].split(','))
def _has_src_changes(repo, config):
has_src_changes = has_changes = False
for filepath, status in repo.status().items():
ext = osp.splitext(osp.basename(filepath))[1][1:]
changed = status not in GIT_UNCH
has_changes = has_changes or changed
if ext in _get_tracked_exts(config):
has_src_changes = has_src_changes or changed
return has_src_changes
def _create_experiment(name, repo, config, base_commit=None, desc=None):
head_commit = repo[repo.head.target]
stash = None
sig = repo.default_signature
has_src_changes = _has_src_changes(repo, config)
if has_src_changes:
repo.index.add_all([f'*.{ext}' for ext in _get_tracked_exts(config)])
snap_tree_id = repo.index.write_tree()
if base_commit is not None:
if base_commit.tree_id != snap_tree_id:
stash = repo.stash(sig, include_untracked=True)
else:
base_commit = head_commit
with shelve.open('.em') as emdb:
for existing_name in emdb:
existing_br = repo.lookup_branch(existing_name)
if existing_br is None:
continue
existing_ci = existing_br.get_object()
if existing_ci and existing_ci.tree_id == snap_tree_id:
base_commit = existing_ci
break
else:
base_commit = head_commit
if base_commit != head_commit:
repo.reset(base_commit.id,
pygit2.GIT_RESET_HARD if stash else pygit2.GIT_RESET_SOFT)
exper_dir = _expath(name)
repo.add_worktree(name, exper_dir)
if has_src_changes and base_commit == head_commit:
repo.create_commit(f'refs/heads/{name}', sig, sig,
desc or 'setup experiment',
snap_tree_id, [base_commit.id])
workdir = pygit2.Repository(exper_dir)
workdir.reset(workdir.head.target, pygit2.GIT_RESET_HARD)
os.symlink(osp.abspath('data'), osp.join(exper_dir, 'data'),
target_is_directory=True)
if base_commit != head_commit:
repo.reset(head_commit.id,
pygit2.GIT_RESET_HARD if stash else pygit2.GIT_RESET_SOFT)
if stash:
repo.stash_pop()
def _run_job(name, config, gpu=None, prog_args=None, background=False):
import socket
import subprocess
import daemon
exper_dir = _expath(name)
runem_cmd = ([config['experiment']['prog']] +
config['experiment']['prog_args'] +
(prog_args or []))
env = os.environ
if gpu:
env['CUDA_VISIBLE_DEVICES'] = gpu
def _do_run_job():
try:
job = subprocess.Popen(runem_cmd, cwd=exper_dir, env=env,
stdin=sys.stdin, stdout=sys.stdout,
stderr=sys.stderr)
with shelve.open('.em', writeback=True) as emdb:
emdb[name] = {
'started': _tstamp(),
'status': 'running',
'pid': job.pid,
'hostname': socket.getfqdn(),
}
if gpu:
emdb[name]['gpu'] = gpu
job.wait()
with shelve.open('.em', writeback=True) as emdb:
status = 'completed' if job.returncode == 0 else 'error'
emdb[name]['status'] = status
except KeyboardInterrupt:
with shelve.open('.em', writeback=True) as emdb:
emdb[name]['status'] = 'interrupted'
finally:
with shelve.open('.em', writeback=True) as emdb:
emdb[name].pop('pid', None)
emdb[name]['ended'] = _tstamp()
if background:
curdir = osp.abspath(os.curdir)
with daemon.DaemonContext(working_directory=curdir):
_do_run_job()
else:
_do_run_job()
def run(args, config, prog_args):
name = args.name
repo = pygit2.Repository('.')
with shelve.open('.em', writeback=True) as emdb:
exp_info = emdb.get(name)
if exp_info:
if exp_info['status'] == 'running':
return _die(E_IS_RUNNING.format(name))
newp = input(RUN_RECREATE_PROMPT.format(name))
if newp.lower() != 'y':
return
_cleanup(name, emdb, repo)
br = None
emdb[name] = {'status': 'starting'}
try:
br = repo.lookup_branch(name)
except pygit2.GitError:
br = None
base_commit = None
if br is not None:
if br.is_checked_out():
return _die(E_CHECKED_OUT)
base_commit = repo[br.target]
br.delete()
_create_experiment(name, repo, config, base_commit, desc=args.desc)
return _run_job(name, config, args.gpu, prog_args, args.background)
def fork(args, config, _extra_args):
name = args.name
fork_name = args.fork_name
repo = pygit2.Repository('.')
with shelve.open('.em', writeback=True) as emdb:
if fork_name in emdb:
return _die(E_NAME_EXISTS.format(fork_name))
exp_info = emdb.get(name)
if not exp_info:
return _die(E_NO_EXP.format(name))
try:
fork_br = repo.lookup_branch(fork_name)
if fork_br is not None:
return _die(E_BRANCH_EXISTS.format(fork_name))
except pygit2.GitError:
pass
try:
br = repo.lookup_branch(name)
except pygit2.GitError:
br = None
if br is None:
return _die(E_NO_BRANCH.format(name))
emdb[fork_name] = {
'status': 'starting',
'clone_of': name,
}
base_commit = repo[br.target]
_create_experiment(fork_name, repo, config, base_commit)
fork_snap_dir = osp.join(_expath(fork_name), 'run', 'snaps')
os.makedirs(fork_snap_dir)
def _link(*path_comps):
orig_path = osp.join(_expath(name), *path_comps)
os.symlink(orig_path, orig_path.replace(name, fork_name))
_link('run', 'opts.pkl')
orig_snap_dir = fork_snap_dir.replace(fork_name, name)
for snap_name in os.listdir(orig_snap_dir):
_link('run', 'snaps', snap_name)
def resume(args, config, prog_args):
name = args.name
repo = pygit2.Repository('.')
with shelve.open('.em') as emdb:
if name not in emdb:
return _die(E_NO_EXP.format(name))
info = emdb[name]
if 'pid' in info or info.get('status') == 'running':
return _die(E_IS_RUNNING.format(name))
try:
repo.lookup_branch(name)
except pygit2.GitError:
return _die(E_NO_EXP.format(name))
prog_args.append('--resume')
if args.epoch:
prog_args.append(args.epoch)
return _run_job(name, config, args.gpu, prog_args, args.background)
def _print_sorted(lines, tmpl=LI):
print('\n'.join(map(tmpl.format, sorted(lines))))
def clean(args, _config, _extra_args):
from fnmatch import fnmatch
repo = pygit2.Repository('.')
cleanup = _cleanup_snaps if args.snaps else _cleanup
with shelve.open('.em', writeback=True) as emdb:
matched = set()
needs_force = set()
for name in emdb:
if name == EM_KEY:
continue
is_match = sum(fnmatch(name, patt) for patt in args.name)
is_excluded = sum(fnmatch(name, patt) for patt in args.exclude)
if not is_match or is_excluded:
continue
matched.add(name)
info = emdb[name]
if 'pid' in info or info.get('status') == 'running':
needs_force.add(name)
if not matched:
return
clean_noforce = matched - needs_force
to_clean = clean_noforce if not args.force else matched
if len(args.name) == 1 and args.name[0] in to_clean:
cleanup(args.name[0], emdb, repo)
return
if not to_clean:
return
print(CLEAN_SNAP_PREAMBLE if args.snaps else CLEAN_PREAMBLE)
_print_sorted(clean_noforce)
if args.force:
_print_sorted(needs_force, tmpl=LI_RUNNING)
elif needs_force:
print(CLEAN_NEEDS_FORCE)
_print_sorted(needs_force)
prompt = CLEAN_SNAPS_PROMPT if args.snaps else CLEAN_PROMPT
cleanp = input(prompt.format(len(to_clean)))
if cleanp.lower() != 'y':
return
for name in to_clean:
try:
cleanup(name, emdb, repo)
except OSError:
print(E_CANT_CLEAN.format(name))
def reset(args, _config, _extra_args):
from fnmatch import fnmatch
with shelve.open('.em', writeback=True) as emdb:
def _reset(name):
for state_item in ['pid', 'gpu']:
emdb[name].pop(state_item, None)
emdb[name]['status'] = 'reset'
if len(args.name) == 1 and args.name[0] in emdb:
_reset(args.name[0])
return
to_reset = set()
for name in emdb:
is_match = sum(fnmatch(name, patt) for patt in args.name)
is_excluded = sum(fnmatch(name, patt) for patt in args.exclude)
if not is_match or is_excluded:
continue
to_reset.add(name)
if not to_reset:
return
print(RESET_PREAMBLE)
_print_sorted(to_reset)
resetp = input(RESET_PROMPT.format(len(to_reset)))
if resetp.lower() != 'y':
return
for name in to_reset:
_reset(name)
def list_experiments(args, _config, _extra_args):
import subprocess
if args.filter:
filter_key, filter_value = args.filter.split('=')
def _filt(stats):
return filter_key in stats and stats[filter_key] == filter_value
with shelve.open('.em') as emdb:
if args.filter:
names = {name
for name, info in sorted(emdb.items()) if _filt(info)}
else:
names = emdb.keys()
names -= {EM_KEY}
if not names:
return
subprocess.run(
['column'], input='\n'.join(sorted(names)) + '\n', encoding='utf8')
def show(args, _config, _extra_args):
import pickle
import pprint
name = args.name
with shelve.open('.em') as emdb:
if name not in emdb or name == EM_KEY:
return _die(E_NO_EXP.format(name))
for info_name, info_val in sorted(emdb[name].items()):
if isinstance(info_val, datetime.date):
info_val = info_val.ctime()
print(f'{info_name}: {info_val}')
if not args.opts:
return
opts_path = _expath(name, 'run', 'opts.pkl')
with open(opts_path, 'rb') as f_opts:
print('\noptions:')
opts = pickle.load(f_opts)
cols = shutil.get_terminal_size((80, 20)).columns
pprint.pprint(vars(opts), indent=2, compact=True, width=cols)
def _ps(pid):
try:
os.kill(pid, 0)
except OSError:
return False
return True
def ctl(args, _config, _extra_args):
import signal
name = args.name
with shelve.open('.em') as emdb:
if name not in emdb:
return _die(E_NO_EXP.format(name))
pid = emdb[name].get('pid')
if not pid:
return _die(E_IS_NOT_RUNNING.format(name))
if not _ps(pid):
return _die(E_OTHER_MACHINE.format(name))
cmd = args.cmd[0]
if cmd == 'stop':
os.kill(pid, signal.SIGINT)
else:
ctl_file = _expath(name, 'run', 'ctl')
with open(ctl_file, 'w') as f_ctl:
print(' '.join(args.cmd), file=f_ctl)
def _get_br(repo, branch_name):
br = None
try:
br = repo.lookup_branch(branch_name)
except pygit2.GitError:
pass
return br
|
MIT License
|
openstack/manila
|
manila/scheduler/filters/capacity.py
|
CapacityFilter.host_passes
|
python
|
def host_passes(self, host_state, filter_properties):
share_size = filter_properties.get('size', 0)
if host_state.free_capacity_gb is None:
LOG.error("Free capacity not set: "
"share node info collection broken.")
return False
free_space = host_state.free_capacity_gb
total_space = host_state.total_capacity_gb
if filter_properties.get('snapshot_id'):
reserved = float(host_state.reserved_snapshot_percentage) / 100
else:
reserved = float(host_state.reserved_percentage) / 100
if free_space == 'unknown':
return True
elif total_space == 'unknown':
return reserved == 0 and share_size <= free_space
total = float(total_space)
if total <= 0:
LOG.warning("Insufficient free space for share creation. "
"Total capacity is %(total).2f on host %(host)s.",
{"total": total,
"host": host_state.host})
return False
free = math.floor(free_space - total * reserved)
msg_args = {"host": host_state.host,
"requested": share_size,
"available": free}
LOG.debug("Space information for share creation "
"on host %(host)s (requested / avail): "
"%(requested)s/%(available)s", msg_args)
share_type = filter_properties.get('share_type', {})
use_thin_logic = utils.use_thin_logic(share_type)
thin_provisioning = utils.thin_provisioning(
host_state.thin_provisioning)
if (use_thin_logic and thin_provisioning and
host_state.max_over_subscription_ratio >= 1):
provisioned_ratio = ((host_state.provisioned_capacity_gb +
share_size) / total)
if provisioned_ratio > host_state.max_over_subscription_ratio:
LOG.warning(
"Insufficient free space for thin provisioning. "
"The ratio of provisioned capacity over total capacity "
"%(provisioned_ratio).2f would exceed the maximum over "
"subscription ratio %(oversub_ratio).2f on host "
"%(host)s.",
{"provisioned_ratio": provisioned_ratio,
"oversub_ratio": host_state.max_over_subscription_ratio,
"host": host_state.host})
return False
else:
adjusted_free_virtual = (
free * host_state.max_over_subscription_ratio)
return adjusted_free_virtual >= share_size
elif (use_thin_logic and thin_provisioning and
host_state.max_over_subscription_ratio < 1):
LOG.error("Invalid max_over_subscription_ratio: %(ratio)s. "
"Valid value should be >= 1.",
{"ratio": host_state.max_over_subscription_ratio})
return False
if free < share_size:
LOG.warning("Insufficient free space for share creation "
"on host %(host)s (requested / avail): "
"%(requested)s/%(available)s", msg_args)
return False
return True
|
Return True if host has sufficient capacity.
|
https://github.com/openstack/manila/blob/34d209484366cd921e052d37c5f9daef5e97af20/manila/scheduler/filters/capacity.py#L33-L129
|
import math
from oslo_log import log
from manila.scheduler.filters import base_host
from manila.scheduler import utils
LOG = log.getLogger(__name__)
class CapacityFilter(base_host.BaseHostFilter):
|
Apache License 2.0
|
morucci/repoxplorer
|
repoxplorer/index/projects.py
|
Projects._validate_projects
|
python
|
def _validate_projects(self, tids):
_, issues = self._check_basic('projects',
projects_schema,
'Project')
if issues:
return issues
for d in self.data:
projects = d.get('projects', {})
for pid, detail in projects.items():
for rid, repo in detail['repos'].items():
template = repo['template']
if template not in tids:
issues.append("Project ID '%s' Repo ID '%s' "
"references an unknown template %s" % (
pid, rid, template))
return issues
|
Validate self.data consistencies for projects
|
https://github.com/morucci/repoxplorer/blob/9f7a19fdf264985fd4c144d2e28724c30c65951d/repoxplorer/index/projects.py#L579-L597
|
import copy
import logging
from datetime import datetime
from elasticsearch.helpers import bulk
from elasticsearch.helpers import BulkIndexError
from elasticsearch.helpers import scan as scanner
from pecan import conf
from repoxplorer import index
from repoxplorer.index import YAMLDefinition
from repoxplorer.index import add_params
from repoxplorer.index import date2epoch
logger = logging.getLogger(__name__)
project_templates_schema = r"""
$schema: http://json-schema.org/draft-04/schema
definitions:
release:
type: object
additionalProperties: false
required:
- name
- date
properties:
name:
type: string
date:
type: string
type: object
properties:
project-templates:
type: object
additionalProperties: false
patternProperties:
^[a-zA-Z0-9_/\. \-\+]+$:
type: object
additionalProperties: false
required:
- uri
- branches
properties:
uri:
type: string
gitweb:
type: string
branches:
type: array
items:
type: string
minItems: 1
tags:
type: array
items:
type: string
paths:
type: array
items:
type: string
parsers:
type: array
items:
type: string
releases:
type: array
items:
$ref: "#/definitions/release"
index-tags:
type: boolean
"""
project_templates_example = """
templates:
default:
uri: https://github.com/%(name)s
branches:
- master
- stable/mitaka
- stable/newton
- stable/ocata
gitweb: https://github.com/%(name)s/commit/%%(sha)s
parsers:
- .*(blueprint) ([^ .]+).*
releases:
- name: 1.0
date: 2016-12-20
- name: 2.0
date: 2016-12-31
tags:
- openstack
- language:python
- type:cloud
paths:
- project/tests/
index-tags: true
"""
projects_schema = r"""
$schema: http://json-schema.org/draft-04/schema
definitions:
release:
type: object
additionalProperties: false
required:
- name
- date
properties:
name:
type: string
date:
type: string
type: object
properties:
projects:
type: object
additionalProperties: false
patternProperties:
^[a-zA-Z0-9_/\. \-\+]+$:
type: object
additionalProperties: false
properties:
description:
type: string
logo:
type: string
meta-ref:
type: boolean
bots-group:
type: string
releases:
type: array
items:
$ref: "#/definitions/release"
repos:
type: object
additionalProperties: false
patternProperties:
^[a-zA-Z0-9_/\. \-\+]+$:
type: object
additionalProperties: false
required:
- template
properties:
template:
type: string
description:
type: string
paths:
type: array
items:
type: string
tags:
type: array
items:
type: string
forks:
type: integer
stars:
type: integer
watchers:
type: integer
branches:
type: array
items:
type: string
minItems: 1
"""
projects_example = """
projects:
Barbican:
description: The Barbican project
bots-group: openstack-ci-bots
releases:
- name: ocata
date: 2017-02-22
repos:
openstack/barbican:
template: default
openstack/python-barbicanclient:
template: default
description: The barbican client
forks: 10
watchers: 20
stars: 30
tags:
- client
- language:python
paths:
- project/tests/
Swift:
repos:
openstack/swift:
template: default
branches:
- dev
openstack/python-swiftclient:
template: default
"""
class EProjects(object):
PROPERTIES = {
"aname": {"type": "text"},
"name": {"type": "keyword"},
"description": {"type": "text"},
"logo": {"type": "binary"},
"meta-ref": {"type": "boolean"},
"bots-group": {"type": "keyword"},
"index-tags": {"type": "boolean"},
"project": {"type": "keyword"},
"releases": {
"type": "nested",
"properties": {
"name": {"type": "keyword"},
"date": {"type": "keyword"},
}
},
"refs": {
"type": "nested",
"properties": {
"aname": {"type": "text"},
"name": {"type": "keyword"},
"description": {"type": "text"},
"forks": {"type": "integer"},
"watchers": {"type": "integer"},
"stars": {"type": "integer"},
"uri": {"type": "keyword"},
"gitweb": {"type": "keyword"},
"branch": {"type": "keyword"},
"tags": {"type": "keyword"},
"fullrid": {"type": "keyword"},
"shortrid": {"type": "keyword"},
"paths": {"type": "keyword"},
"parsers": {"type": "keyword"},
"index-tags": {"type": "boolean"},
"releases": {
"type": "nested",
"properties": {
"name": {"type": "keyword"},
"date": {"type": "keyword"},
}
}
}
}
}
def __init__(self, connector=None):
self.es = connector.es
self.ic = connector.ic
self.index = connector.index
self.dbname = 'projects'
self.mapping = {
self.dbname: {
"properties": self.PROPERTIES,
}
}
if not self.ic.exists_type(index=self.index,
doc_type=self.dbname):
kwargs = add_params(self.es)
self.ic.put_mapping(
index=self.index, doc_type=self.dbname, body=self.mapping,
**kwargs)
def manage_bulk_err(self, exc):
errs = [e['create']['error'] for e in exc[1]]
if not all([True for e in errs if
e['type'] == 'document_already_exists_exception']):
raise Exception(
"Unable to create one or more doc: %s" % errs)
def create(self, docs):
def gen():
for pid, doc in docs:
d = {}
d['_index'] = self.index
d['_type'] = self.dbname
d['_op_type'] = 'create'
d['_id'] = pid
d['_source'] = doc
yield d
try:
bulk(self.es, gen())
except BulkIndexError as exc:
self.manage_bulk_err(exc)
self.es.indices.refresh(index=self.index)
def delete_all(self):
def gen(docs):
for doc in docs:
d = {}
d['_index'] = self.index
d['_type'] = self.dbname
d['_op_type'] = 'delete'
d['_id'] = doc['_id']
yield d
bulk(self.es,
gen(self.get_all(source=False)))
self.es.indices.refresh(index=self.index)
def load(self, projects, rid2projects):
self.delete_all()
self.create(projects.items())
self.create(rid2projects.items())
def get_all(self, source=True, type=None):
query = {
'_source': source,
'query': {
'match_all': {}
}
}
return scanner(self.es, query=query, index=self.index)
def get_by_id(self, id, source=True):
try:
res = self.es.get(index=self.index,
doc_type=self.dbname,
_source=source,
id=id)
return res['_source']
except Exception as e:
logger.error('Unable to get the doc. %s' % e)
def exists(self, id):
return self.es.exists(
index=self.index, doc_type=self.dbname, id=id)
def get_by_attr_match(self, attribute, value, source=True):
params = {'index': self.index}
body = {
"query": {
'bool': {
'must': {'term': {attribute: value}},
}
}
}
params['body'] = body
params['_source'] = source
params['size'] = 10000
res = self.es.search(**params)
took = res['took']
hits = res['hits']['total']
docs = [r['_source'] for r in res['hits']['hits']]
return took, hits, docs
def get_by_nested_attr_match(
self, attribute, values, source=True,
inner_source=True, inner_hits_max=100):
if not isinstance(values, list):
values = (values,)
params = {'index': self.index}
body = {
"query": {
"bool": {
"must": {
"nested": {
"path": "refs",
"inner_hits": {
"_source": inner_source,
"size": inner_hits_max,
},
"query": {
"bool": {
"should": [
{"term":
{"refs.%s" % attribute: value}}
for value in values
]
}
}
}
}
}
}
}
params['body'] = body
params['_source'] = source
params['size'] = 10000
res = self.es.search(**params)
inner_hits = [r['inner_hits'] for r in res['hits']['hits']]
took = res['took']
hits = res['hits']['total']
docs = [r['_source'] for r in res['hits']['hits']]
return took, hits, docs, inner_hits
def get_projects_by_fullrids(self, fullrids):
body = {"ids": fullrids}
try:
res = self.es.mget(index=self.index,
doc_type=self.dbname,
_source=True,
body=body)
return res['docs']
except Exception as e:
logger.error('Unable to get projects by fullrids. %s' % e)
class Projects(YAMLDefinition):
def __init__(self, db_path=None, db_default_file=None, db_cache_path=None,
con=None, dump_yaml_in_index=None, vonly=False):
self.db_path = db_path or conf.get('db_path')
self.db_default_file = db_default_file or conf.get('db_default_file')
self.db_cache_path = db_cache_path or conf.get('db_cache_path')
if vonly:
return
self.eprojects = EProjects(
connector=(con or index.Connector(index_suffix='projects')))
self.el_version = self.eprojects.es.info().get(
'version', {}).get('number', '')
if dump_yaml_in_index:
YAMLDefinition.__init__(
self, self.db_path, self.db_default_file, self.db_cache_path)
issues = self.validate()
if issues:
raise RuntimeError(issues)
self._enrich_projects()
projects, rid2projects = self._flatten_projects()
self.eprojects.load(projects, rid2projects)
def _merge(self):
merged_templates = {}
merged_projects = {}
for d in self.data:
templates = d.get('project-templates', {})
projects = d.get('projects', {})
merged_templates.update(copy.copy(templates))
for p, v in projects.items():
merged_projects.setdefault(p, copy.copy(v))
merged_projects[p]['repos'].update(copy.copy(v['repos']))
self.templates = {}
self.projects = {}
if self.default_data:
self.templates = copy.copy(
self.default_data.get('project-templates', {}))
self.projects = copy.copy(
self.default_data.get('projects', {}))
self.templates.update(merged_templates)
self.projects.update(merged_projects)
def _enrich_projects(self):
for detail in list(self.projects.values()):
if 'meta-ref' not in detail:
detail['meta-ref'] = False
for rid, repo in list(detail['repos'].items()):
tags = []
if 'tags' in repo and repo['tags']:
tags = copy.copy(repo['tags'])
branches = []
if 'branches' in repo:
branches = copy.copy(repo['branches'])
paths = []
if 'paths' in repo:
paths = copy.copy(repo['paths'])
if 'template' in repo:
repo.update(copy.deepcopy(
self.templates[repo['template']]))
del repo['template']
for key in ('uri', 'gitweb'):
if key in repo:
repo[key] = repo[key] % {'name': rid}
if 'tags' not in repo:
repo['tags'] = []
repo['tags'].extend(tags)
repo['tags'] = list(set(repo['tags']))
if branches:
repo['branches'] = branches
if paths:
repo['paths'] = paths
if 'parsers' not in repo:
repo['parsers'] = []
if 'releases' not in repo:
repo['releases'] = []
if 'index-tags' not in repo:
repo['index-tags'] = True
for release in repo['releases']:
release['date'] = date2epoch(release['date'])
def _flatten_projects(self):
flatten = {}
rid2projects = {}
for pid, detail in self.projects.items():
flatten[pid] = {
'name': pid,
'aname': pid,
'meta-ref': detail.get('meta-ref'),
'refs': [],
'description': detail.get('description'),
'logo': detail.get('logo'),
'bots-group': detail.get('bots-group'),
'releases': detail.get('releases', []),
}
for release in flatten[pid]['releases']:
release['date'] = date2epoch(release['date'])
for rid, repo in detail['repos'].items():
for branch in repo['branches']:
r = {}
r.update(copy.deepcopy(repo))
r['name'] = rid
r['aname'] = rid
r['branch'] = branch
del r['branches']
r['fullrid'] = "%s:%s:%s" % (
r['uri'], r['name'], r['branch'])
r['shortrid'] = "%s:%s" % (r['uri'], r['name'])
flatten[pid]['refs'].append(r)
rid2projects.setdefault(r['fullrid'], {'project': []})
if pid not in rid2projects[r['fullrid']]['project']:
rid2projects[r['fullrid']]['project'].append(pid)
return flatten, rid2projects
def _validate_templates(self):
ids, issues = self._check_basic('project-templates',
project_templates_schema,
'Project template')
if issues:
return ids, issues
for d in self.data:
templates = d.get('project-templates', {})
for tid, templates in templates.items():
if 'releases' in templates:
for r in templates['releases']:
try:
datetime.strptime(r['date'], "%Y-%m-%d")
except Exception:
issues.append("Wrong date format %s defined "
"in template %s" % (r['date'], tid))
return ids, issues
|
Apache License 2.0
|
cjolowicz/hypermodern-python
|
noxfile.py
|
mypy
|
python
|
def mypy(session: Session) -> None:
args = session.posargs or locations
install_with_constraints(session, "mypy")
session.run("mypy", *args)
|
Type-check using mypy.
|
https://github.com/cjolowicz/hypermodern-python/blob/ed593b8399dd94e2fe6f618aca8ea5f43710b541/noxfile.py#L86-L90
|
import tempfile
from typing import Any
import nox
from nox.sessions import Session
package = "hypermodern_python"
nox.options.sessions = "lint", "safety", "mypy", "pytype", "tests"
locations = "src", "tests", "noxfile.py", "docs/conf.py"
def install_with_constraints(session: Session, *args: str, **kwargs: Any) -> None:
with tempfile.NamedTemporaryFile() as requirements:
session.run(
"poetry",
"export",
"--dev",
"--format=requirements.txt",
f"--output={requirements.name}",
external=True,
)
session.install(f"--constraint={requirements.name}", *args, **kwargs)
@nox.session(python="3.8")
def black(session: Session) -> None:
args = session.posargs or locations
install_with_constraints(session, "black")
session.run("black", *args)
@nox.session(python=["3.8", "3.7"])
def lint(session: Session) -> None:
args = session.posargs or locations
install_with_constraints(
session,
"flake8",
"flake8-annotations",
"flake8-bandit",
"flake8-black",
"flake8-bugbear",
"flake8-docstrings",
"flake8-import-order",
"darglint",
)
session.run("flake8", *args)
@nox.session(python="3.8")
def safety(session: Session) -> None:
with tempfile.NamedTemporaryFile() as requirements:
session.run(
"poetry",
"export",
"--dev",
"--format=requirements.txt",
"--without-hashes",
f"--output={requirements.name}",
external=True,
)
install_with_constraints(session, "safety")
session.run("safety", "check", f"--file={requirements.name}", "--full-report")
@nox.session(python=["3.8", "3.7"])
|
MIT License
|
ramonhagenaars/jsons
|
jsons/serializers/default_timezone.py
|
default_timezone_serializer
|
python
|
def default_timezone_serializer(obj: timezone, **kwargs) -> dict:
name = obj.tzname(None)
offset = dump(obj.utcoffset(None), **kwargs)
return {
'name': name,
'offset': offset
}
|
Serialize the given timezone instance to a dict holding the total
seconds.
:param obj: the timezone instance that is to be serialized.
:param kwargs: not used.
:return: ``timezone`` as a dict.
|
https://github.com/ramonhagenaars/jsons/blob/12594ebb13247a26a8511644e5ca324817075385/jsons/serializers/default_timezone.py#L6-L19
|
from datetime import timezone
from jsons._dump_impl import dump
|
MIT License
|
microsoft/azure-devops-python-api
|
azure-devops/azure/devops/v6_0/work_item_tracking_process/work_item_tracking_process_client.py
|
WorkItemTrackingProcessClient.create_new_process
|
python
|
def create_new_process(self, create_request):
content = self._serialize.body(create_request, 'CreateProcessModel')
response = self._send(http_method='POST',
location_id='02cc6a73-5cfb-427d-8c8e-b49fb086e8af',
version='6.0-preview.2',
content=content)
return self._deserialize('ProcessInfo', response)
|
CreateNewProcess.
[Preview API] Creates a process.
:param :class:`<CreateProcessModel> <azure.devops.v6_0.work_item_tracking_process.models.CreateProcessModel>` create_request: CreateProcessModel.
:rtype: :class:`<ProcessInfo> <azure.devops.v6_0.work_item_tracking_process.models.ProcessInfo>`
|
https://github.com/microsoft/azure-devops-python-api/blob/451cade4c475482792cbe9e522c1fee32393139e/azure-devops/azure/devops/v6_0/work_item_tracking_process/work_item_tracking_process_client.py#L642-L653
|
from msrest import Serializer, Deserializer
from ...client import Client
from . import models
class WorkItemTrackingProcessClient(Client):
def __init__(self, base_url=None, creds=None):
super(WorkItemTrackingProcessClient, self).__init__(base_url, creds)
client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
self._serialize = Serializer(client_models)
self._deserialize = Deserializer(client_models)
resource_area_identifier = '5264459e-e5e0-4bd8-b118-0985e68a4ec5'
def create_process_behavior(self, behavior, process_id):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
content = self._serialize.body(behavior, 'ProcessBehaviorCreateRequest')
response = self._send(http_method='POST',
location_id='d1800200-f184-4e75-a5f2-ad0b04b4373e',
version='6.0-preview.2',
route_values=route_values,
content=content)
return self._deserialize('ProcessBehavior', response)
def delete_process_behavior(self, process_id, behavior_ref_name):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if behavior_ref_name is not None:
route_values['behaviorRefName'] = self._serialize.url('behavior_ref_name', behavior_ref_name, 'str')
self._send(http_method='DELETE',
location_id='d1800200-f184-4e75-a5f2-ad0b04b4373e',
version='6.0-preview.2',
route_values=route_values)
def get_process_behavior(self, process_id, behavior_ref_name, expand=None):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if behavior_ref_name is not None:
route_values['behaviorRefName'] = self._serialize.url('behavior_ref_name', behavior_ref_name, 'str')
query_parameters = {}
if expand is not None:
query_parameters['$expand'] = self._serialize.query('expand', expand, 'str')
response = self._send(http_method='GET',
location_id='d1800200-f184-4e75-a5f2-ad0b04b4373e',
version='6.0-preview.2',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('ProcessBehavior', response)
def get_process_behaviors(self, process_id, expand=None):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
query_parameters = {}
if expand is not None:
query_parameters['$expand'] = self._serialize.query('expand', expand, 'str')
response = self._send(http_method='GET',
location_id='d1800200-f184-4e75-a5f2-ad0b04b4373e',
version='6.0-preview.2',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[ProcessBehavior]', self._unwrap_collection(response))
def update_process_behavior(self, behavior_data, process_id, behavior_ref_name):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if behavior_ref_name is not None:
route_values['behaviorRefName'] = self._serialize.url('behavior_ref_name', behavior_ref_name, 'str')
content = self._serialize.body(behavior_data, 'ProcessBehaviorUpdateRequest')
response = self._send(http_method='PUT',
location_id='d1800200-f184-4e75-a5f2-ad0b04b4373e',
version='6.0-preview.2',
route_values=route_values,
content=content)
return self._deserialize('ProcessBehavior', response)
def create_control_in_group(self, control, process_id, wit_ref_name, group_id):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
if group_id is not None:
route_values['groupId'] = self._serialize.url('group_id', group_id, 'str')
content = self._serialize.body(control, 'Control')
response = self._send(http_method='POST',
location_id='1f59b363-a2d0-4b7e-9bc6-eb9f5f3f0e58',
version='6.0-preview.1',
route_values=route_values,
content=content)
return self._deserialize('Control', response)
def move_control_to_group(self, control, process_id, wit_ref_name, group_id, control_id, remove_from_group_id=None):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
if group_id is not None:
route_values['groupId'] = self._serialize.url('group_id', group_id, 'str')
if control_id is not None:
route_values['controlId'] = self._serialize.url('control_id', control_id, 'str')
query_parameters = {}
if remove_from_group_id is not None:
query_parameters['removeFromGroupId'] = self._serialize.query('remove_from_group_id', remove_from_group_id, 'str')
content = self._serialize.body(control, 'Control')
response = self._send(http_method='PUT',
location_id='1f59b363-a2d0-4b7e-9bc6-eb9f5f3f0e58',
version='6.0-preview.1',
route_values=route_values,
query_parameters=query_parameters,
content=content)
return self._deserialize('Control', response)
def remove_control_from_group(self, process_id, wit_ref_name, group_id, control_id):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
if group_id is not None:
route_values['groupId'] = self._serialize.url('group_id', group_id, 'str')
if control_id is not None:
route_values['controlId'] = self._serialize.url('control_id', control_id, 'str')
self._send(http_method='DELETE',
location_id='1f59b363-a2d0-4b7e-9bc6-eb9f5f3f0e58',
version='6.0-preview.1',
route_values=route_values)
def update_control(self, control, process_id, wit_ref_name, group_id, control_id):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
if group_id is not None:
route_values['groupId'] = self._serialize.url('group_id', group_id, 'str')
if control_id is not None:
route_values['controlId'] = self._serialize.url('control_id', control_id, 'str')
content = self._serialize.body(control, 'Control')
response = self._send(http_method='PATCH',
location_id='1f59b363-a2d0-4b7e-9bc6-eb9f5f3f0e58',
version='6.0-preview.1',
route_values=route_values,
content=content)
return self._deserialize('Control', response)
def add_field_to_work_item_type(self, field, process_id, wit_ref_name):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
content = self._serialize.body(field, 'AddProcessWorkItemTypeFieldRequest')
response = self._send(http_method='POST',
location_id='bc0ad8dc-e3f3-46b0-b06c-5bf861793196',
version='6.0-preview.2',
route_values=route_values,
content=content)
return self._deserialize('ProcessWorkItemTypeField', response)
def get_all_work_item_type_fields(self, process_id, wit_ref_name):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
response = self._send(http_method='GET',
location_id='bc0ad8dc-e3f3-46b0-b06c-5bf861793196',
version='6.0-preview.2',
route_values=route_values)
return self._deserialize('[ProcessWorkItemTypeField]', self._unwrap_collection(response))
def get_work_item_type_field(self, process_id, wit_ref_name, field_ref_name, expand=None):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
if field_ref_name is not None:
route_values['fieldRefName'] = self._serialize.url('field_ref_name', field_ref_name, 'str')
query_parameters = {}
if expand is not None:
query_parameters['$expand'] = self._serialize.query('expand', expand, 'str')
response = self._send(http_method='GET',
location_id='bc0ad8dc-e3f3-46b0-b06c-5bf861793196',
version='6.0-preview.2',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('ProcessWorkItemTypeField', response)
def remove_work_item_type_field(self, process_id, wit_ref_name, field_ref_name):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
if field_ref_name is not None:
route_values['fieldRefName'] = self._serialize.url('field_ref_name', field_ref_name, 'str')
self._send(http_method='DELETE',
location_id='bc0ad8dc-e3f3-46b0-b06c-5bf861793196',
version='6.0-preview.2',
route_values=route_values)
def update_work_item_type_field(self, field, process_id, wit_ref_name, field_ref_name):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
if field_ref_name is not None:
route_values['fieldRefName'] = self._serialize.url('field_ref_name', field_ref_name, 'str')
content = self._serialize.body(field, 'UpdateProcessWorkItemTypeFieldRequest')
response = self._send(http_method='PATCH',
location_id='bc0ad8dc-e3f3-46b0-b06c-5bf861793196',
version='6.0-preview.2',
route_values=route_values,
content=content)
return self._deserialize('ProcessWorkItemTypeField', response)
def add_group(self, group, process_id, wit_ref_name, page_id, section_id):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
if page_id is not None:
route_values['pageId'] = self._serialize.url('page_id', page_id, 'str')
if section_id is not None:
route_values['sectionId'] = self._serialize.url('section_id', section_id, 'str')
content = self._serialize.body(group, 'Group')
response = self._send(http_method='POST',
location_id='766e44e1-36a8-41d7-9050-c343ff02f7a5',
version='6.0-preview.1',
route_values=route_values,
content=content)
return self._deserialize('Group', response)
def move_group_to_page(self, group, process_id, wit_ref_name, page_id, section_id, group_id, remove_from_page_id, remove_from_section_id):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
if page_id is not None:
route_values['pageId'] = self._serialize.url('page_id', page_id, 'str')
if section_id is not None:
route_values['sectionId'] = self._serialize.url('section_id', section_id, 'str')
if group_id is not None:
route_values['groupId'] = self._serialize.url('group_id', group_id, 'str')
query_parameters = {}
if remove_from_page_id is not None:
query_parameters['removeFromPageId'] = self._serialize.query('remove_from_page_id', remove_from_page_id, 'str')
if remove_from_section_id is not None:
query_parameters['removeFromSectionId'] = self._serialize.query('remove_from_section_id', remove_from_section_id, 'str')
content = self._serialize.body(group, 'Group')
response = self._send(http_method='PUT',
location_id='766e44e1-36a8-41d7-9050-c343ff02f7a5',
version='6.0-preview.1',
route_values=route_values,
query_parameters=query_parameters,
content=content)
return self._deserialize('Group', response)
def move_group_to_section(self, group, process_id, wit_ref_name, page_id, section_id, group_id, remove_from_section_id):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
if page_id is not None:
route_values['pageId'] = self._serialize.url('page_id', page_id, 'str')
if section_id is not None:
route_values['sectionId'] = self._serialize.url('section_id', section_id, 'str')
if group_id is not None:
route_values['groupId'] = self._serialize.url('group_id', group_id, 'str')
query_parameters = {}
if remove_from_section_id is not None:
query_parameters['removeFromSectionId'] = self._serialize.query('remove_from_section_id', remove_from_section_id, 'str')
content = self._serialize.body(group, 'Group')
response = self._send(http_method='PUT',
location_id='766e44e1-36a8-41d7-9050-c343ff02f7a5',
version='6.0-preview.1',
route_values=route_values,
query_parameters=query_parameters,
content=content)
return self._deserialize('Group', response)
def remove_group(self, process_id, wit_ref_name, page_id, section_id, group_id):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
if page_id is not None:
route_values['pageId'] = self._serialize.url('page_id', page_id, 'str')
if section_id is not None:
route_values['sectionId'] = self._serialize.url('section_id', section_id, 'str')
if group_id is not None:
route_values['groupId'] = self._serialize.url('group_id', group_id, 'str')
self._send(http_method='DELETE',
location_id='766e44e1-36a8-41d7-9050-c343ff02f7a5',
version='6.0-preview.1',
route_values=route_values)
def update_group(self, group, process_id, wit_ref_name, page_id, section_id, group_id):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
if page_id is not None:
route_values['pageId'] = self._serialize.url('page_id', page_id, 'str')
if section_id is not None:
route_values['sectionId'] = self._serialize.url('section_id', section_id, 'str')
if group_id is not None:
route_values['groupId'] = self._serialize.url('group_id', group_id, 'str')
content = self._serialize.body(group, 'Group')
response = self._send(http_method='PATCH',
location_id='766e44e1-36a8-41d7-9050-c343ff02f7a5',
version='6.0-preview.1',
route_values=route_values,
content=content)
return self._deserialize('Group', response)
def get_form_layout(self, process_id, wit_ref_name):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
response = self._send(http_method='GET',
location_id='fa8646eb-43cd-4b71-9564-40106fd63e40',
version='6.0-preview.1',
route_values=route_values)
return self._deserialize('FormLayout', response)
def create_list(self, picklist):
content = self._serialize.body(picklist, 'PickList')
response = self._send(http_method='POST',
location_id='01e15468-e27c-4e20-a974-bd957dcccebc',
version='6.0-preview.1',
content=content)
return self._deserialize('PickList', response)
def delete_list(self, list_id):
route_values = {}
if list_id is not None:
route_values['listId'] = self._serialize.url('list_id', list_id, 'str')
self._send(http_method='DELETE',
location_id='01e15468-e27c-4e20-a974-bd957dcccebc',
version='6.0-preview.1',
route_values=route_values)
def get_list(self, list_id):
route_values = {}
if list_id is not None:
route_values['listId'] = self._serialize.url('list_id', list_id, 'str')
response = self._send(http_method='GET',
location_id='01e15468-e27c-4e20-a974-bd957dcccebc',
version='6.0-preview.1',
route_values=route_values)
return self._deserialize('PickList', response)
def get_lists_metadata(self):
response = self._send(http_method='GET',
location_id='01e15468-e27c-4e20-a974-bd957dcccebc',
version='6.0-preview.1')
return self._deserialize('[PickListMetadata]', self._unwrap_collection(response))
def update_list(self, picklist, list_id):
route_values = {}
if list_id is not None:
route_values['listId'] = self._serialize.url('list_id', list_id, 'str')
content = self._serialize.body(picklist, 'PickList')
response = self._send(http_method='PUT',
location_id='01e15468-e27c-4e20-a974-bd957dcccebc',
version='6.0-preview.1',
route_values=route_values,
content=content)
return self._deserialize('PickList', response)
def add_page(self, page, process_id, wit_ref_name):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
content = self._serialize.body(page, 'Page')
response = self._send(http_method='POST',
location_id='1cc7b29f-6697-4d9d-b0a1-2650d3e1d584',
version='6.0-preview.1',
route_values=route_values,
content=content)
return self._deserialize('Page', response)
def remove_page(self, process_id, wit_ref_name, page_id):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
if page_id is not None:
route_values['pageId'] = self._serialize.url('page_id', page_id, 'str')
self._send(http_method='DELETE',
location_id='1cc7b29f-6697-4d9d-b0a1-2650d3e1d584',
version='6.0-preview.1',
route_values=route_values)
def update_page(self, page, process_id, wit_ref_name):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
if wit_ref_name is not None:
route_values['witRefName'] = self._serialize.url('wit_ref_name', wit_ref_name, 'str')
content = self._serialize.body(page, 'Page')
response = self._send(http_method='PATCH',
location_id='1cc7b29f-6697-4d9d-b0a1-2650d3e1d584',
version='6.0-preview.1',
route_values=route_values,
content=content)
return self._deserialize('Page', response)
|
MIT License
|
ncgeib/pypret
|
pypret/material.py
|
BaseMaterial.n
|
python
|
def n(self, x, unit='wl'):
return self._func(self._convert(x, unit))
|
The refractive index at frequency `x` specified in units `unit`.
|
https://github.com/ncgeib/pypret/blob/d47deb675640439df7c8b7c08d71f45ecea3c568/pypret/material.py#L69-L71
|
import numpy as np
from .frequencies import convert
from . import lib
from . import io
class BaseMaterial(io.IO):
def __init__(self, coefficients, freq_range, scaling=1.0e6,
check_bounds=True, name="", long_name=""):
if len(freq_range) != 2:
raise ValueError("Frequency range must specified with two elements.")
self._coefficients = np.array(coefficients)
self._range = np.array(freq_range)
self._scaling = scaling
self.check = check_bounds
self.name = name
self.long_name = long_name
def _check(self, x):
if not self.check:
return
minx, maxx = np.min(x), np.max(x)
if (minx < self._range[0]) or (maxx > self._range[1]):
raise ValueError('Wavelength array [%e, %e] outside of valid range '
'of the Sellmeier equation [%e, %e].' %
(minx, maxx, self._range[0], self._range[1]))
def _convert(self, x, unit):
if unit != 'wl':
x = convert(x, unit, 'wl')
self._check(x)
if self._scaling != 1.0:
x = x * self._scaling
return x
|
MIT License
|
hunch/hunch-gift-app
|
django/forms/widgets.py
|
ClearableFileInput.clear_checkbox_id
|
python
|
def clear_checkbox_id(self, name):
return name + '_id'
|
Given the name of the clear checkbox input, return the HTML id for it.
|
https://github.com/hunch/hunch-gift-app/blob/8c7cad24cc0d9900deb4175e6b768c64a3d7adcf/django/forms/widgets.py#L308-L312
|
import django.utils.copycompat as copy
from itertools import chain
from django.conf import settings
from django.utils.datastructures import MultiValueDict, MergeDict
from django.utils.html import escape, conditional_escape
from django.utils.translation import ugettext, ugettext_lazy
from django.utils.encoding import StrAndUnicode, force_unicode
from django.utils.safestring import mark_safe
from django.utils import datetime_safe, formats
import time
import datetime
from util import flatatt
from urlparse import urljoin
__all__ = (
'Media', 'MediaDefiningClass', 'Widget', 'TextInput', 'PasswordInput',
'HiddenInput', 'MultipleHiddenInput', 'ClearableFileInput',
'FileInput', 'DateInput', 'DateTimeInput', 'TimeInput', 'Textarea', 'CheckboxInput',
'Select', 'NullBooleanSelect', 'SelectMultiple', 'RadioSelect',
'CheckboxSelectMultiple', 'MultiWidget',
'SplitDateTimeWidget',
)
MEDIA_TYPES = ('css','js')
class Media(StrAndUnicode):
def __init__(self, media=None, **kwargs):
if media:
media_attrs = media.__dict__
else:
media_attrs = kwargs
self._css = {}
self._js = []
for name in MEDIA_TYPES:
getattr(self, 'add_' + name)(media_attrs.get(name, None))
def __unicode__(self):
return self.render()
def render(self):
return mark_safe(u'\n'.join(chain(*[getattr(self, 'render_' + name)() for name in MEDIA_TYPES])))
def render_js(self):
return [u'<script type="text/javascript" src="%s"></script>' % self.absolute_path(path) for path in self._js]
def render_css(self):
media = self._css.keys()
media.sort()
return chain(*[
[u'<link href="%s" type="text/css" media="%s" rel="stylesheet" />' % (self.absolute_path(path), medium)
for path in self._css[medium]]
for medium in media])
def absolute_path(self, path):
if path.startswith(u'http://') or path.startswith(u'https://') or path.startswith(u'/'):
return path
return urljoin(settings.MEDIA_URL,path)
def __getitem__(self, name):
if name in MEDIA_TYPES:
return Media(**{str(name): getattr(self, '_' + name)})
raise KeyError('Unknown media type "%s"' % name)
def add_js(self, data):
if data:
for path in data:
if path not in self._js:
self._js.append(path)
def add_css(self, data):
if data:
for medium, paths in data.items():
for path in paths:
if not self._css.get(medium) or path not in self._css[medium]:
self._css.setdefault(medium, []).append(path)
def __add__(self, other):
combined = Media()
for name in MEDIA_TYPES:
getattr(combined, 'add_' + name)(getattr(self, '_' + name, None))
getattr(combined, 'add_' + name)(getattr(other, '_' + name, None))
return combined
def media_property(cls):
def _media(self):
if hasattr(super(cls, self), 'media'):
base = super(cls, self).media
else:
base = Media()
definition = getattr(cls, 'Media', None)
if definition:
extend = getattr(definition, 'extend', True)
if extend:
if extend == True:
m = base
else:
m = Media()
for medium in extend:
m = m + base[medium]
return m + Media(definition)
else:
return Media(definition)
else:
return base
return property(_media)
class MediaDefiningClass(type):
def __new__(cls, name, bases, attrs):
new_class = super(MediaDefiningClass, cls).__new__(cls, name, bases,
attrs)
if 'media' not in attrs:
new_class.media = media_property(new_class)
return new_class
class Widget(object):
__metaclass__ = MediaDefiningClass
is_hidden = False
needs_multipart_form = False
is_localized = False
is_required = False
def __init__(self, attrs=None):
if attrs is not None:
self.attrs = attrs.copy()
else:
self.attrs = {}
def __deepcopy__(self, memo):
obj = copy.copy(self)
obj.attrs = self.attrs.copy()
memo[id(self)] = obj
return obj
def render(self, name, value, attrs=None):
raise NotImplementedError
def build_attrs(self, extra_attrs=None, **kwargs):
attrs = dict(self.attrs, **kwargs)
if extra_attrs:
attrs.update(extra_attrs)
return attrs
def value_from_datadict(self, data, files, name):
return data.get(name, None)
def _has_changed(self, initial, data):
if data is None:
data_value = u''
else:
data_value = data
if initial is None:
initial_value = u''
else:
initial_value = initial
if force_unicode(initial_value) != force_unicode(data_value):
return True
return False
def id_for_label(self, id_):
return id_
id_for_label = classmethod(id_for_label)
class Input(Widget):
input_type = None
def _format_value(self, value):
if self.is_localized:
return formats.localize_input(value)
return value
def render(self, name, value, attrs=None):
if value is None:
value = ''
final_attrs = self.build_attrs(attrs, type=self.input_type, name=name)
if value != '':
final_attrs['value'] = force_unicode(self._format_value(value))
return mark_safe(u'<input%s />' % flatatt(final_attrs))
class TextInput(Input):
input_type = 'text'
class PasswordInput(Input):
input_type = 'password'
def __init__(self, attrs=None, render_value=False):
super(PasswordInput, self).__init__(attrs)
self.render_value = render_value
def render(self, name, value, attrs=None):
if not self.render_value: value=None
return super(PasswordInput, self).render(name, value, attrs)
class HiddenInput(Input):
input_type = 'hidden'
is_hidden = True
class MultipleHiddenInput(HiddenInput):
def __init__(self, attrs=None, choices=()):
super(MultipleHiddenInput, self).__init__(attrs)
self.choices = choices
def render(self, name, value, attrs=None, choices=()):
if value is None: value = []
final_attrs = self.build_attrs(attrs, type=self.input_type, name=name)
id_ = final_attrs.get('id', None)
inputs = []
for i, v in enumerate(value):
input_attrs = dict(value=force_unicode(v), **final_attrs)
if id_:
input_attrs['id'] = '%s_%s' % (id_, i)
inputs.append(u'<input%s />' % flatatt(input_attrs))
return mark_safe(u'\n'.join(inputs))
def value_from_datadict(self, data, files, name):
if isinstance(data, (MultiValueDict, MergeDict)):
return data.getlist(name)
return data.get(name, None)
class FileInput(Input):
input_type = 'file'
needs_multipart_form = True
def render(self, name, value, attrs=None):
return super(FileInput, self).render(name, None, attrs=attrs)
def value_from_datadict(self, data, files, name):
return files.get(name, None)
def _has_changed(self, initial, data):
if data is None:
return False
return True
FILE_INPUT_CONTRADICTION = object()
class ClearableFileInput(FileInput):
initial_text = ugettext_lazy('Currently')
input_text = ugettext_lazy('Change')
clear_checkbox_label = ugettext_lazy('Clear')
template_with_initial = u'%(initial_text)s: %(initial)s %(clear_template)s<br />%(input_text)s: %(input)s'
template_with_clear = u'%(clear)s <label for="%(clear_checkbox_id)s">%(clear_checkbox_label)s</label>'
def clear_checkbox_name(self, name):
return name + '-clear'
|
MIT License
|
microsoft/azure-devops-python-api
|
azure-devops/azure/devops/v6_0/location/location_client.py
|
LocationClient.get_resource_areas_by_host
|
python
|
def get_resource_areas_by_host(self, host_id):
query_parameters = {}
if host_id is not None:
query_parameters['hostId'] = self._serialize.query('host_id', host_id, 'str')
response = self._send(http_method='GET',
location_id='e81700f7-3be2-46de-8624-2eb35882fcaa',
version='6.0-preview.1',
query_parameters=query_parameters)
return self._deserialize('[ResourceAreaInfo]', self._unwrap_collection(response))
|
GetResourceAreasByHost.
[Preview API]
:param str host_id:
:rtype: [ResourceAreaInfo]
|
https://github.com/microsoft/azure-devops-python-api/blob/451cade4c475482792cbe9e522c1fee32393139e/azure-devops/azure/devops/v6_0/location/location_client.py#L110-L123
|
from msrest import Serializer, Deserializer
from ...client import Client
from . import models
class LocationClient(Client):
def __init__(self, base_url=None, creds=None):
super(LocationClient, self).__init__(base_url, creds)
client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
self._serialize = Serializer(client_models)
self._deserialize = Deserializer(client_models)
resource_area_identifier = None
def get_connection_data(self, connect_options=None, last_change_id=None, last_change_id64=None):
query_parameters = {}
if connect_options is not None:
query_parameters['connectOptions'] = self._serialize.query('connect_options', connect_options, 'str')
if last_change_id is not None:
query_parameters['lastChangeId'] = self._serialize.query('last_change_id', last_change_id, 'int')
if last_change_id64 is not None:
query_parameters['lastChangeId64'] = self._serialize.query('last_change_id64', last_change_id64, 'long')
response = self._send(http_method='GET',
location_id='00d9565f-ed9c-4a06-9a50-00e7896ccab4',
version='6.0-preview.1',
query_parameters=query_parameters)
return self._deserialize('ConnectionData', response)
def get_resource_area(self, area_id, enterprise_name=None, organization_name=None):
route_values = {}
if area_id is not None:
route_values['areaId'] = self._serialize.url('area_id', area_id, 'str')
query_parameters = {}
if enterprise_name is not None:
query_parameters['enterpriseName'] = self._serialize.query('enterprise_name', enterprise_name, 'str')
if organization_name is not None:
query_parameters['organizationName'] = self._serialize.query('organization_name', organization_name, 'str')
response = self._send(http_method='GET',
location_id='e81700f7-3be2-46de-8624-2eb35882fcaa',
version='6.0-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('ResourceAreaInfo', response)
def get_resource_area_by_host(self, area_id, host_id):
route_values = {}
if area_id is not None:
route_values['areaId'] = self._serialize.url('area_id', area_id, 'str')
query_parameters = {}
if host_id is not None:
query_parameters['hostId'] = self._serialize.query('host_id', host_id, 'str')
response = self._send(http_method='GET',
location_id='e81700f7-3be2-46de-8624-2eb35882fcaa',
version='6.0-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('ResourceAreaInfo', response)
def get_resource_areas(self, enterprise_name=None, organization_name=None):
query_parameters = {}
if enterprise_name is not None:
query_parameters['enterpriseName'] = self._serialize.query('enterprise_name', enterprise_name, 'str')
if organization_name is not None:
query_parameters['organizationName'] = self._serialize.query('organization_name', organization_name, 'str')
response = self._send(http_method='GET',
location_id='e81700f7-3be2-46de-8624-2eb35882fcaa',
version='6.0-preview.1',
query_parameters=query_parameters)
return self._deserialize('[ResourceAreaInfo]', self._unwrap_collection(response))
|
MIT License
|
elektronn/elektronn3
|
elektronn3/modules/lovasz_losses.py
|
flatten_probas
|
python
|
def flatten_probas(probas, labels, ignore=None):
C = probas.shape[1]
if probas.dim() == 4:
probas = probas.permute(0, 2, 3, 1).contiguous().view(-1, C)
elif probas.dim() == 5:
probas = probas.permute(0, 2, 3, 4, 1).contiguous().view(-1, C)
labels = labels.view(-1)
if ignore is None:
return probas, labels
valid = (labels != ignore)
vprobas = probas[valid.nonzero().squeeze()]
vlabels = labels[valid]
return vprobas, vlabels
|
Flattens predictions in the batch
|
https://github.com/elektronn/elektronn3/blob/19c751855dffc67b744cd43e757aa4a5bd577d9b/elektronn3/modules/lovasz_losses.py#L206-L221
|
from __future__ import print_function, division
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
try:
from itertools import ifilterfalse
except ImportError:
from itertools import filterfalse
eps = 0.0001
def lovasz_grad(gt_sorted):
p = len(gt_sorted)
gts = gt_sorted.sum()
intersection = gts - gt_sorted.float().cumsum(0)
union = gts + (1 - gt_sorted).float().cumsum(0)
jaccard = 1. - intersection / (union + eps)
if p > 1:
jaccard[1:p] = jaccard[1:p] - jaccard[0:-1]
return jaccard
def iou_binary(preds, labels, EMPTY=1., ignore=None, per_image=True):
if not per_image:
preds, labels = (preds,), (labels,)
ious = []
for pred, label in zip(preds, labels):
intersection = ((label == 1) & (pred == 1)).sum()
union = ((label == 1) | ((pred == 1) & (label != ignore))).sum()
if not union:
iou = EMPTY
else:
iou = float(intersection) / (union + eps)
ious.append(iou)
iou = mean(ious)
return 100 * iou
def iou(preds, labels, C, EMPTY=1., ignore=None, per_image=False):
if not per_image:
preds, labels = (preds,), (labels,)
ious = []
for pred, label in zip(preds, labels):
iou = []
for i in range(C):
if i != ignore:
intersection = ((label == i) & (pred == i)).sum()
union = ((label == i) | ((pred == i) & (label != ignore))).sum()
if not union:
iou.append(EMPTY)
else:
iou.append(float(intersection) / (union + eps))
ious.append(iou)
ious = map(mean, zip(*ious))
return 100 * np.array(ious)
def lovasz_hinge(logits, labels, per_image=True, ignore=None):
if per_image:
loss = mean(lovasz_hinge_flat(*flatten_binary_scores(log.unsqueeze(0), lab.unsqueeze(0), ignore))
for log, lab in zip(logits, labels))
else:
loss = lovasz_hinge_flat(*flatten_binary_scores(logits, labels, ignore))
return loss
def lovasz_hinge_flat(logits, labels):
if len(labels) == 0:
return logits.sum() * 0.
signs = 2. * labels.float() - 1.
errors = (1. - logits * Variable(signs))
errors_sorted, perm = torch.sort(errors, dim=0, descending=True)
perm = perm.data
gt_sorted = labels[perm]
grad = lovasz_grad(gt_sorted)
loss = torch.dot(F.relu(errors_sorted), Variable(grad))
return loss
def flatten_binary_scores(scores, labels, ignore=None):
scores = scores.view(-1)
labels = labels.view(-1)
if ignore is None:
return scores, labels
valid = (labels != ignore)
vscores = scores[valid]
vlabels = labels[valid]
return vscores, vlabels
class StableBCELoss(torch.nn.modules.Module):
def __init__(self):
super(StableBCELoss, self).__init__()
def forward(self, input, target):
neg_abs = - input.abs()
loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log()
return loss.mean()
def binary_xloss(logits, labels, ignore=None):
logits, labels = flatten_binary_scores(logits, labels, ignore)
loss = StableBCELoss()(logits, Variable(labels.float()))
return loss
def lovasz_softmax(probas, labels, only_present=False, per_image=False, ignore=None):
if per_image:
loss = mean(lovasz_softmax_flat(*flatten_probas(prob.unsqueeze(0), lab.unsqueeze(0), ignore), only_present=only_present)
for prob, lab in zip(probas, labels))
else:
loss = lovasz_softmax_flat(*flatten_probas(probas, labels, ignore), only_present=only_present)
return loss
def lovasz_softmax_flat(probas, labels, only_present=False):
C = probas.size(1)
losses = []
for c in range(C):
fg = (labels == c).float()
if only_present and fg.sum() == 0:
continue
errors = (Variable(fg) - probas[:, c]).abs()
errors_sorted, perm = torch.sort(errors, 0, descending=True)
perm = perm.data
fg_sorted = fg[perm]
losses.append(torch.dot(errors_sorted, Variable(lovasz_grad(fg_sorted))))
return mean(losses)
|
MIT License
|
openshift/origin-ci-tool
|
oct/ansible/openshift-ansible/callback_plugins/openshift_quick_installer.py
|
CallbackModule.v2_runner_item_on_skipped
|
python
|
def v2_runner_item_on_skipped(self, result):
if C.DISPLAY_SKIPPED_HOSTS:
msg = "skipping: [%s] => (item=%s) " % (result._host.get_name(), self._get_item(result._result))
if (self._display.verbosity > 0 or '_ansible_verbose_always' in result._result) and '_ansible_verbose_override' not in result._result:
msg += " => %s" % self._dump_results(result._result)
self._display.display(msg, color=C.COLOR_SKIP, log_only=True)
|
Print out task results when an item is skipped
|
https://github.com/openshift/origin-ci-tool/blob/95a472392910104fc805c4ab8af39791105c956d/oct/ansible/openshift-ansible/callback_plugins/openshift_quick_installer.py#L231-L237
|
from __future__ import (absolute_import, print_function)
import imp
import os
import sys
from ansible import constants as C
from ansible.utils.color import colorize, hostcolor
ANSIBLE_PATH = imp.find_module('ansible')[1]
DEFAULT_PATH = os.path.join(ANSIBLE_PATH, 'plugins/callback/default.py')
DEFAULT_MODULE = imp.load_source(
'ansible.plugins.callback.default',
DEFAULT_PATH
)
try:
from ansible.plugins.callback import CallbackBase
BASECLASS = CallbackBase
except ImportError:
BASECLASS = DEFAULT_MODULE.CallbackModule
reload(sys)
sys.setdefaultencoding('utf-8')
class CallbackModule(DEFAULT_MODULE.CallbackModule):
CALLBACK_VERSION = 2.2
CALLBACK_TYPE = 'stdout'
CALLBACK_NAME = 'openshift_quick_installer'
CALLBACK_NEEDS_WHITELIST = False
plays_count = 0
plays_total_ran = 0
def banner(self, msg, color=None):
msg = msg.strip()
star_len = (79 - len(msg))
if star_len < 0:
star_len = 3
stars = "*" * star_len
self._display.display("\n%s %s" % (msg, stars), color=color, log_only=True)
def v2_playbook_on_start(self, playbook):
self.plays_count = len(playbook.get_plays())
self.plays_total_ran = 0
if self._display.verbosity > 1:
from os.path import basename
self.banner("PLAYBOOK: %s" % basename(playbook._file_name))
def v2_playbook_on_play_start(self, play):
self.plays_total_ran += 1
print("")
print("Play %s/%s (%s)" % (self.plays_total_ran, self.plays_count, play.get_name()))
name = play.get_name().strip()
if not name:
msg = "PLAY"
else:
msg = "PLAY [%s]" % name
self._play = play
self.banner(msg)
def v2_playbook_on_task_start(self, task, is_conditional):
sys.stdout.write('.')
args = ''
if not task.no_log and C.DISPLAY_ARGS_TO_STDOUT:
args = ', '.join(('%s=%s' % a for a in task.args.items()))
args = ' %s' % args
self.banner("TASK [%s%s]" % (task.get_name().strip(), args))
if self._display.verbosity >= 2:
path = task.get_path()
if path:
self._display.display("task path: %s" % path, color=C.COLOR_DEBUG, log_only=True)
def v2_playbook_on_handler_task_start(self, task):
sys.stdout.write('.')
self.banner("RUNNING HANDLER [%s]" % task.get_name().strip())
def v2_playbook_on_cleanup_task_start(self, task):
sys.stdout.write('.')
self.banner("CLEANUP TASK [%s]" % task.get_name().strip())
def v2_playbook_on_include(self, included_file):
msg = 'included: %s for %s' % (included_file._filename, ", ".join([h.name for h in included_file._hosts]))
self._display.display(msg, color=C.COLOR_SKIP, log_only=True)
def v2_runner_on_ok(self, result):
delegated_vars = result._result.get('_ansible_delegated_vars', None)
self._clean_results(result._result, result._task.action)
if result._task.action in ('include', 'include_role'):
return
elif result._result.get('changed', False):
if delegated_vars:
msg = "changed: [%s -> %s]" % (result._host.get_name(), delegated_vars['ansible_host'])
else:
msg = "changed: [%s]" % result._host.get_name()
color = C.COLOR_CHANGED
else:
if delegated_vars:
msg = "ok: [%s -> %s]" % (result._host.get_name(), delegated_vars['ansible_host'])
else:
msg = "ok: [%s]" % result._host.get_name()
color = C.COLOR_OK
if result._task.loop and 'results' in result._result:
self._process_items(result)
else:
if (self._display.verbosity > 0 or '_ansible_verbose_always' in result._result) and '_ansible_verbose_override' not in result._result:
msg += " => %s" % (self._dump_results(result._result),)
self._display.display(msg, color=color, log_only=True)
self._handle_warnings(result._result)
def v2_runner_item_on_ok(self, result):
delegated_vars = result._result.get('_ansible_delegated_vars', None)
if result._task.action in ('include', 'include_role'):
return
elif result._result.get('changed', False):
msg = 'changed'
color = C.COLOR_CHANGED
else:
msg = 'ok'
color = C.COLOR_OK
if delegated_vars:
msg += ": [%s -> %s]" % (result._host.get_name(), delegated_vars['ansible_host'])
else:
msg += ": [%s]" % result._host.get_name()
msg += " => (item=%s)" % (self._get_item(result._result),)
if (self._display.verbosity > 0 or '_ansible_verbose_always' in result._result) and '_ansible_verbose_override' not in result._result:
msg += " => %s" % self._dump_results(result._result)
self._display.display(msg, color=color, log_only=True)
|
Apache License 2.0
|
jkwill87/teletype
|
teletype/io/common.py
|
hide_cursor
|
python
|
def hide_cursor():
print(codes.CURSOR["hide"], end="")
stdout.flush()
|
Hides the cursor indicator; remember to call show_cursor before exiting
|
https://github.com/jkwill87/teletype/blob/e7290ed53f8e631c798c438607c0b6211c4aaab4/teletype/io/common.py#L67-L71
|
from __future__ import print_function
from re import sub
from sys import stdout
from teletype import codes
try:
input = raw_input
except NameError:
pass
__all__ = [
"erase_lines",
"erase_screen",
"hide_cursor",
"move_cursor",
"show_cursor",
"strip_format",
"style_format",
"style_print",
"style_input",
]
def erase_lines(n=1):
for _ in range(n):
print(codes.CURSOR["up"], end="")
print(codes.CURSOR["eol"], end="")
stdout.flush()
def erase_screen():
print(codes.CURSOR["clear"], end="")
stdout.flush()
def move_cursor(cols=0, rows=0):
if cols == 0 and rows == 0:
return
commands = ""
commands += codes.CURSOR["up" if rows < 0 else "down"] * abs(rows)
commands += codes.CURSOR["left" if cols < 0 else "right"] * abs(cols)
if commands:
print(commands, end="")
stdout.flush()
def show_cursor():
print(codes.CURSOR["show"], end="")
stdout.flush()
|
MIT License
|
threatconnect-inc/tcex
|
tcex/app_config_object/permutations.py
|
Permutations.db_insert_record
|
python
|
def db_insert_record(self, table_name, columns):
bindings = ('?,' * len(columns)).strip(',')
values = [None] * len(columns)
try:
sql = f"INSERT INTO {table_name} ({', '.join(columns)}) VALUES ({bindings})"
cur = self.db_conn.cursor()
cur.execute(sql, values)
except sqlite3.OperationalError as e:
raise RuntimeError(f'SQL insert failed - SQL: "{sql}", Error: "{e}"')
|
Insert records into DB.
Args:
table_name (str): The name of the table.
columns (list): List of columns for insert statement.
|
https://github.com/threatconnect-inc/tcex/blob/dae37b73d8b33cf26360f6d25c6b305a68f2f0e2/tcex/app_config_object/permutations.py#L156-L170
|
import json
import logging
import os
import random
import sys
try:
import sqlite3
except ImportError:
pass
from .install_json import InstallJson
from .layout_json import LayoutJson
class Permutations:
def __init__(self, logger=None):
self.log = logger or logging.getLogger('permutations')
self._db_conn = None
self._input_names = None
self._input_permutations = None
self._output_permutations = None
self.app_path = os.getcwd()
self.ij = InstallJson()
self.lj = LayoutJson()
self.input_table = 'inputs'
def _gen_permutations(self, index=0, args=None):
if args is None:
args = []
try:
hidden = False
if self.ij.runtime_level.lower() in [
'playbook',
'triggerservice',
'webhooktriggerservice',
]:
name = list(self.lj.parameters_names)[index]
display = self.lj.params_dict.get(name, {}).get('display')
hidden = self.lj.params_dict.get(name, {}).get('hidden', False)
else:
name = list(self.ij.params_dict.keys())[index]
display = False
input_type = self.ij.params_dict.get(name, {}).get('type')
if input_type is None:
self.handle_error(f'No value found in install.json for "{name}".')
if (
self.ij.runtime_level.lower() == 'organization'
or self.validate_layout_display(self.input_table, display)
or hidden
):
if input_type.lower() == 'boolean':
for val in [True, False]:
args.append({'name': name, 'value': val})
self.db_update_record(self.input_table, name, val)
self._gen_permutations(index + 1, list(args))
args.pop()
elif input_type.lower() == 'choice':
valid_values = self.ij.expand_valid_values(
self.ij.params_dict.get(name, {}).get('validValues', [])
)
for val in valid_values:
args.append({'name': name, 'value': val})
self.db_update_record(self.input_table, name, val)
self._gen_permutations(index + 1, list(args))
args.pop()
else:
args.append({'name': name, 'value': None})
self._gen_permutations(index + 1, list(args))
else:
self._gen_permutations(index + 1, list(args))
except IndexError:
self._input_permutations.append(args)
outputs = []
for output_data in self.ij.output_variables:
name = output_data.get('name')
if self.lj.outputs_dict.get(name) is not None:
display = self.lj.outputs_dict.get(name, {}).get('display')
valid = self.validate_layout_display(self.input_table, display)
if display is None or not valid:
continue
outputs.append(output_data)
self._output_permutations.append(outputs)
@property
def db_conn(self):
if self._db_conn is None:
try:
self._db_conn = sqlite3.connect(':memory:')
except sqlite3.Error as e:
self.handle_error(e)
return self._db_conn
def db_create_table(self, table_name, columns):
formatted_columns = ''
for col in set(columns):
formatted_columns += f""""{col.strip('"').strip("'")}" text, """
formatted_columns = formatted_columns.strip(', ')
create_table_sql = f'CREATE TABLE IF NOT EXISTS {table_name} ({formatted_columns});'
try:
cr = self.db_conn.cursor()
cr.execute(create_table_sql)
except sqlite3.Error as e:
self.handle_error(e)
def db_drop_table(self, table_name):
create_table_sql = f'DROP TABLE IF EXISTS {table_name};'
try:
cr = self.db_conn.cursor()
cr.execute(create_table_sql)
except sqlite3.Error as e:
self.handle_error(e)
|
Apache License 2.0
|
consensys/mythril
|
mythril/laser/smt/bool.py
|
is_false
|
python
|
def is_false(a: Bool) -> bool:
return z3.is_false(a.raw)
|
Returns whether the provided bool can be simplified to false.
:param a:
:return:
|
https://github.com/consensys/mythril/blob/df1d4dd0ebbb623054f4708717664dc6e27f76b9/mythril/laser/smt/bool.py#L126-L132
|
from typing import Union, cast, List, Set
import z3
from mythril.laser.smt.expression import Expression
class Bool(Expression[z3.BoolRef]):
@property
def is_false(self) -> bool:
self.simplify()
return z3.is_false(self.raw)
@property
def is_true(self) -> bool:
self.simplify()
return z3.is_true(self.raw)
@property
def value(self) -> Union[bool, None]:
self.simplify()
if self.is_true:
return True
elif self.is_false:
return False
else:
return None
def __eq__(self, other: object) -> "Bool":
if isinstance(other, Expression):
return Bool(cast(z3.BoolRef, self.raw == other.raw),
self.annotations.union(other.annotations))
return Bool(cast(z3.BoolRef, self.raw == other), self.annotations)
def __ne__(self, other: object) -> "Bool":
if isinstance(other, Expression):
return Bool(cast(z3.BoolRef, self.raw != other.raw),
self.annotations.union(other.annotations))
return Bool(cast(z3.BoolRef, self.raw != other), self.annotations)
def __bool__(self) -> bool:
if self.value is not None:
return self.value
else:
return False
def __hash__(self) -> int:
return self.raw.__hash__()
def And(*args: Union[Bool, bool]) -> Bool:
annotations = set()
args_list = [arg if isinstance(arg, Bool) else Bool(arg) for arg in args]
for arg in args_list:
annotations = annotations.union(arg.annotations)
return Bool(z3.And([a.raw for a in args_list]), annotations)
def Xor(a: Bool, b: Bool) -> Bool:
union = a.annotations.union(b.annotations)
return Bool(z3.Xor(a.raw, b.raw), union)
def Or(*args: Union[Bool, bool]) -> Bool:
args_list = [arg if isinstance(arg, Bool) else Bool(arg) for arg in args]
annotations = set()
for arg in args_list:
annotations = annotations.union(arg.annotations)
return Bool(z3.Or([a.raw for a in args_list]), annotations=annotations)
def Not(a: Bool) -> Bool:
return Bool(z3.Not(a.raw), a.annotations)
|
MIT License
|
andreafioraldi/angrdbg
|
angrdbg/page_8.py
|
SimDbgMemory.contains_no_backer
|
python
|
def contains_no_backer(self, addr):
for i, p in self._pages.items():
if i * self._page_size <= addr < (i + 1) * self._page_size:
return addr - (i * self._page_size) in p.keys()
return False
|
Tests if the address is contained in any page of paged memory, without considering memory backers.
:param int addr: The address to test.
:return: True if the address is included in one of the pages, False otherwise.
:rtype: bool
|
https://github.com/andreafioraldi/angrdbg/blob/59e130bbd1c64fcb9af6fbc2feddfa781c0b3036/angrdbg/page_8.py#L426-L438
|
import cooldict
import cffi
import cle
from angr.errors import SimMemoryError, SimSegfaultError, SimMemoryMissingError
from angr import sim_options as options
from angr.storage.memory_object import SimMemoryObject
from claripy.ast.bv import BV
_ffi = cffi.FFI()
import logging
l = logging.getLogger("angrdbg.page")
from angr.storage import paged_memory
import claripy
from .context import load_project, get_memory_type, get_debugger, USE_CLE_MEMORY
from .abstract_debugger import SEG_PROT_R, SEG_PROT_W, SEG_PROT_X
class DbgPage(paged_memory.BasePage):
def __init__(self, *args, **kwargs):
storage = kwargs.pop("storage", None)
self._sinkhole = kwargs.pop("sinkhole", None)
super(DbgPage, self).__init__(*args, **kwargs)
self._storage = [None] * self._page_size if storage is None else storage
def keys(self):
if self._sinkhole is not None:
return range(self._page_addr, self._page_addr + self._page_size)
else:
return [
self._page_addr + i for i,
v in enumerate(
self._storage) if v is not None]
def replace_mo(self, state, old_mo, new_mo):
if self._sinkhole is old_mo:
self._sinkhole = new_mo
else:
start, end = self._resolve_range(old_mo)
for i in range(start, end):
if self._storage[i - self._page_addr] is old_mo:
self._storage[i - self._page_addr] = new_mo
def store_overwrite(self, state, new_mo, start, end):
if start == self._page_addr and end == self._page_addr + self._page_size:
self._sinkhole = new_mo
self._storage = [None] * self._page_size
else:
for i in range(start, end):
self._storage[i - self._page_addr] = new_mo
def store_underwrite(self, state, new_mo, start, end):
if start == self._page_addr and end == self._page_addr + self._page_size:
self._sinkhole = new_mo
else:
for i in range(start, end):
if self._storage[i - self._page_addr] is None:
self._storage[i - self._page_addr] = new_mo
def load_mo(self, state, page_idx):
mo = self._storage[page_idx - self._page_addr]
if mo is None and hasattr(self, "from_dbg"):
byte_val = get_debugger().get_byte(page_idx)
mo = SimMemoryObject(claripy.BVV(byte_val, 8), page_idx)
self._storage[page_idx - self._page_addr] = mo
return mo
def load_slice(self, state, start, end):
items = []
if start > self._page_addr + self._page_size or end < self._page_addr:
l.warning("Calling load_slice on the wrong page.")
return items
for addr in range(max(start, self._page_addr), min(
end, self._page_addr + self._page_size)):
i = addr - self._page_addr
mo = self._storage[i]
if mo is None and hasattr(self, "from_dbg"):
byte_val = get_debugger().get_byte(addr)
mo = SimMemoryObject(claripy.BVV(byte_val, 8), addr)
self._storage[i] = mo
if mo is not None and (not items or items[-1][1] is not mo):
items.append((addr, mo))
return items
def _copy_args(self):
return {'storage': list(self._storage), 'sinkhole': self._sinkhole}
def copy(self):
c = DbgPage(
self._page_addr,
self._page_size,
permissions=self.permissions,
**self._copy_args())
if hasattr(self, "from_dbg"):
setattr(c, "from_dbg", True)
return c
class SimDbgMemory(object):
def __init__(self, memory_backer=None, permissions_backer=None, pages=None, initialized=None, name_mapping=None, hash_mapping=None, page_size=None, symbolic_addrs=None, check_permissions=False):
self._cowed = set()
self._memory_backer = { } if memory_backer is None else memory_backer
self._permissions_backer = permissions_backer
self._executable_pages = False if permissions_backer is None else permissions_backer[0]
self._permission_map = { } if permissions_backer is None else permissions_backer[1]
self._pages = { } if pages is None else pages
self._initialized = set() if initialized is None else initialized
self._page_size = 0x1000 if page_size is None else page_size
self._symbolic_addrs = dict() if symbolic_addrs is None else symbolic_addrs
self.state = None
self._preapproved_stack = range(0)
self._check_perms = check_permissions
self._name_mapping = cooldict.BranchingDict() if name_mapping is None else name_mapping
self._hash_mapping = cooldict.BranchingDict() if hash_mapping is None else hash_mapping
self._updated_mappings = set()
def __getstate__(self):
return {
'_memory_backer': self._memory_backer,
'_permissions_backer': self._permissions_backer,
'_executable_pages': self._executable_pages,
'_permission_map': self._permission_map,
'_pages': self._pages,
'_initialized': self._initialized,
'_page_size': self._page_size,
'state': None,
'_name_mapping': self._name_mapping,
'_hash_mapping': self._hash_mapping,
'_symbolic_addrs': self._symbolic_addrs,
'_preapproved_stack': self._preapproved_stack,
'_check_perms': self._check_perms
}
def __setstate__(self, s):
self._cowed = set()
self.__dict__.update(s)
def branch(self):
new_name_mapping = self._name_mapping.branch() if options.REVERSE_MEMORY_NAME_MAP in self.state.options else self._name_mapping
new_hash_mapping = self._hash_mapping.branch() if options.REVERSE_MEMORY_HASH_MAP in self.state.options else self._hash_mapping
new_pages = dict(self._pages)
self._cowed = set()
m = SimDbgMemory(memory_backer=self._memory_backer,
permissions_backer=self._permissions_backer,
pages=new_pages,
initialized=set(self._initialized),
page_size=self._page_size,
name_mapping=new_name_mapping,
hash_mapping=new_hash_mapping,
symbolic_addrs=dict(self._symbolic_addrs),
check_permissions=self._check_perms)
m._preapproved_stack = self._preapproved_stack
return m
def __getitem__(self, addr):
page_num = addr // self._page_size
page_idx = addr
try:
v = self._get_page(page_num).load_mo(self.state, page_idx)
return v
except KeyError:
raise KeyError(addr)
def __setitem__(self, addr, v):
page_num = addr // self._page_size
page_idx = addr
self._get_page(page_num, write=True, create=True)[page_idx] = v
self._update_mappings(addr, v.object)
def __delitem__(self, addr):
raise Exception("For performance reasons, deletion is not supported. Contact Yan if this needs to change.")
@property
def allow_segv(self):
return self._check_perms and not self.state.scratch.priv and options.STRICT_PAGE_ACCESS in self.state.options
@property
def byte_width(self):
return self.state.arch.byte_width if self.state is not None else 8
def load_objects(self, addr, num_bytes, ret_on_segv=False):
result = [ ]
end = addr + num_bytes
for page_addr in self._containing_pages(addr, end):
try:
page = self._get_page(page_addr // self._page_size)
except KeyError:
if self.allow_segv:
if ret_on_segv:
break
raise SimSegfaultError(addr, 'read-miss')
else:
continue
if self.allow_segv and not page.concrete_permissions & DbgPage.PROT_READ:
if ret_on_segv:
break
raise SimSegfaultError(addr, 'non-readable')
result.extend(page.load_slice(self.state, addr, end))
return result
def _create_page(self, page_num, permissions=None):
return DbgPage(
page_num*self._page_size, self._page_size,
executable=self._executable_pages, permissions=permissions
)
def _initialize_page(self, n, new_page):
if n in self._initialized:
return False
self._initialized.add(n)
new_page_addr = n * self._page_size
initialized = False
if self.state is not None:
self.state.scratch.push_priv(True)
project = load_project()
debugger = get_debugger()
seg = None
try:
seg = debugger.seg_by_addr(new_page_addr)
except BaseException:
pass
try:
if get_memory_type() == USE_CLE_MEMORY:
if isinstance(self._memory_backer, cle.Clemory):
for start, end in self._permission_map:
if start <= new_page_addr < end:
flags = self._permission_map[(start, end)]
new_page.permissions = claripy.BVV(flags, 3)
break
for backer_addr, backer in self._memory_backer.backers(new_page_addr):
if backer_addr >= new_page_addr + self._page_size:
break
relevant_region_start = max(new_page_addr, backer_addr)
relevant_region_end = min(new_page_addr + self._page_size, backer_addr + len(backer))
slice_start = relevant_region_start - backer_addr
slice_end = relevant_region_end - backer_addr
if self.byte_width == 8:
relevant_data = bytes(memoryview(backer)[slice_start:slice_end])
mo = SimMemoryObject(
claripy.BVV(relevant_data),
relevant_region_start,
byte_width=self.byte_width)
self._apply_object_to_page(new_page_addr, mo, page=new_page)
else:
for i, byte in enumerate(backer[slice_start:slice_end]):
mo = SimMemoryObject(claripy.BVV(byte, self.byte_width),
relevant_region_start + i,
byte_width=self.byte_width)
self._apply_object_to_page(new_page_addr, mo, page=new_page)
initialized = True
elif len(self._memory_backer) <= self._page_size:
for i in self._memory_backer:
if new_page_addr <= i <= new_page_addr + self._page_size:
if isinstance(self._memory_backer[i], claripy.ast.Base):
backer = self._memory_backer[i]
elif isinstance(self._memory_backer[i], bytes):
backer = claripy.BVV(self._memory_backer[i])
else:
backer = claripy.BVV(self._memory_backer[i], self.byte_width)
mo = SimMemoryObject(backer, i, byte_width=self.byte_width)
self._apply_object_to_page(n*self._page_size, mo, page=new_page)
initialized = True
elif len(self._memory_backer) > self._page_size:
for i in range(self._page_size):
try:
if isinstance(self._memory_backer[i], claripy.ast.Base):
backer = self._memory_backer[i]
elif isinstance(self._memory_backer[i], bytes):
backer = claripy.BVV(self._memory_backer[i])
else:
backer = claripy.BVV(self._memory_backer[i], self.byte_width)
mo = SimMemoryObject(backer, new_page_addr+i, byte_width=self.byte_width)
self._apply_object_to_page(n*self._page_size, mo, page=new_page)
initialized = True
except KeyError:
pass
except Exception as ee:
print(ee)
try:
if seg is not None:
perms = 0
if seg.perms & SEG_PROT_X:
perms += DbgPage.PROT_EXEC
if seg.perms & SEG_PROT_W:
perms += DbgPage.PROT_WRITE
if seg.perms & SEG_PROT_R:
perms += DbgPage.PROT_READ
new_page.permissions = claripy.BVV(perms, 3)
initialized = True
setattr(new_page, "from_dbg", True)
except Exception as ee:
import traceback
traceback.print_exc()
if self.state is not None:
self.state.scratch.pop_priv()
return initialized
def _get_page(self, page_num, write=False, create=False, initialize=True):
page_addr = page_num * self._page_size
try:
page = self._pages[page_num]
except KeyError:
if not (initialize or create or page_addr in self._preapproved_stack):
raise
page = self._create_page(page_num)
self._symbolic_addrs[page_num] = set()
if initialize:
initialized = self._initialize_page(page_num, page)
if not initialized and not create and page_addr not in self._preapproved_stack:
raise
self._pages[page_num] = page
self._cowed.add(page_num)
return page
if write and page_num not in self._cowed:
page = page.copy()
self._symbolic_addrs[page_num] = set(self._symbolic_addrs[page_num])
self._cowed.add(page_num)
self._pages[page_num] = page
return page
def __contains__(self, addr):
try:
return self.__getitem__(addr) is not None
except KeyError:
return False
|
BSD 2-Clause Simplified License
|
helios-protocol/py-helios-node
|
hvm/utils/env.py
|
env_int
|
python
|
def env_int(name: str, required: bool=False, default: Union[Type[empty], int]=empty) -> int:
value = get_env_value(name, required=required, default=default)
if value is empty:
raise ValueError(
"`env_int` requires either a default value to be specified, or for "
"the variable to be present in the environment"
)
return int(value)
|
Pulls an environment variable out of the environment and casts it to an
integer. If the name is not present in the environment and no default is
specified then a ``ValueError`` will be raised. Similarly, if the
environment value is not castable to an integer, a ``ValueError`` will be
raised.
:param name: The name of the environment variable be pulled
:type name: str
:param required: Whether the environment variable is required. If ``True``
and the variable is not present, a ``KeyError`` is raised.
:type required: bool
:param default: The value to return if the environment variable is not
present. (Providing a default alongside setting ``required=True`` will raise
a ``ValueError``)
:type default: bool
|
https://github.com/helios-protocol/py-helios-node/blob/691b378938f0a36bf8774dc1ee4e4370b6cf7c63/hvm/utils/env.py#L59-L84
|
import os
from typing import (
Any,
Type,
Iterable,
List,
Union,
TypeVar,
Dict,
Callable
)
TRUE_VALUES = set((
True,
'True',
'true',
))
class empty(object):
pass
def get_env_value(name: str, required: bool=False, default: Any=empty) -> str:
if required and default is not empty:
raise ValueError("Using `default` with `required=True` is invalid")
elif required:
try:
value = os.environ[name]
except KeyError:
raise KeyError(
"Must set environment variable {0}".format(name)
)
else:
value = os.environ.get(name, default)
return value
|
MIT License
|
aspose-words-cloud/aspose-words-cloud-python
|
asposewordscloud/models/page_setup.py
|
PageSetup.page_starting_number
|
python
|
def page_starting_number(self, page_starting_number):
self._page_starting_number = page_starting_number
|
Sets the page_starting_number of this PageSetup.
Gets or sets the starting page number of the section. # noqa: E501
:param page_starting_number: The page_starting_number of this PageSetup. # noqa: E501
:type: int
|
https://github.com/aspose-words-cloud/aspose-words-cloud-python/blob/abf8fccfed40aa2b09c6cdcaf3f2723e1f412d85/asposewordscloud/models/page_setup.py#L699-L707
|
import pprint
import re
import datetime
import six
import json
class PageSetup(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'link': 'WordsApiLink',
'bidi': 'bool',
'border_always_in_front': 'bool',
'border_applies_to': 'str',
'border_distance_from': 'str',
'bottom_margin': 'float',
'different_first_page_header_footer': 'bool',
'first_page_tray': 'int',
'footer_distance': 'float',
'gutter': 'float',
'header_distance': 'float',
'left_margin': 'float',
'line_number_count_by': 'int',
'line_number_distance_from_text': 'float',
'line_number_restart_mode': 'str',
'line_starting_number': 'int',
'orientation': 'str',
'other_pages_tray': 'int',
'page_height': 'float',
'page_number_style': 'str',
'page_starting_number': 'int',
'page_width': 'float',
'paper_size': 'str',
'restart_page_numbering': 'bool',
'right_margin': 'float',
'rtl_gutter': 'bool',
'section_start': 'str',
'suppress_endnotes': 'bool',
'top_margin': 'float',
'vertical_alignment': 'str'
}
attribute_map = {
'link': 'Link',
'bidi': 'Bidi',
'border_always_in_front': 'BorderAlwaysInFront',
'border_applies_to': 'BorderAppliesTo',
'border_distance_from': 'BorderDistanceFrom',
'bottom_margin': 'BottomMargin',
'different_first_page_header_footer': 'DifferentFirstPageHeaderFooter',
'first_page_tray': 'FirstPageTray',
'footer_distance': 'FooterDistance',
'gutter': 'Gutter',
'header_distance': 'HeaderDistance',
'left_margin': 'LeftMargin',
'line_number_count_by': 'LineNumberCountBy',
'line_number_distance_from_text': 'LineNumberDistanceFromText',
'line_number_restart_mode': 'LineNumberRestartMode',
'line_starting_number': 'LineStartingNumber',
'orientation': 'Orientation',
'other_pages_tray': 'OtherPagesTray',
'page_height': 'PageHeight',
'page_number_style': 'PageNumberStyle',
'page_starting_number': 'PageStartingNumber',
'page_width': 'PageWidth',
'paper_size': 'PaperSize',
'restart_page_numbering': 'RestartPageNumbering',
'right_margin': 'RightMargin',
'rtl_gutter': 'RtlGutter',
'section_start': 'SectionStart',
'suppress_endnotes': 'SuppressEndnotes',
'top_margin': 'TopMargin',
'vertical_alignment': 'VerticalAlignment'
}
def __init__(self, link=None, bidi=None, border_always_in_front=None, border_applies_to=None, border_distance_from=None, bottom_margin=None, different_first_page_header_footer=None, first_page_tray=None, footer_distance=None, gutter=None, header_distance=None, left_margin=None, line_number_count_by=None, line_number_distance_from_text=None, line_number_restart_mode=None, line_starting_number=None, orientation=None, other_pages_tray=None, page_height=None, page_number_style=None, page_starting_number=None, page_width=None, paper_size=None, restart_page_numbering=None, right_margin=None, rtl_gutter=None, section_start=None, suppress_endnotes=None, top_margin=None, vertical_alignment=None):
self._link = None
self._bidi = None
self._border_always_in_front = None
self._border_applies_to = None
self._border_distance_from = None
self._bottom_margin = None
self._different_first_page_header_footer = None
self._first_page_tray = None
self._footer_distance = None
self._gutter = None
self._header_distance = None
self._left_margin = None
self._line_number_count_by = None
self._line_number_distance_from_text = None
self._line_number_restart_mode = None
self._line_starting_number = None
self._orientation = None
self._other_pages_tray = None
self._page_height = None
self._page_number_style = None
self._page_starting_number = None
self._page_width = None
self._paper_size = None
self._restart_page_numbering = None
self._right_margin = None
self._rtl_gutter = None
self._section_start = None
self._suppress_endnotes = None
self._top_margin = None
self._vertical_alignment = None
self.discriminator = None
if link is not None:
self.link = link
if bidi is not None:
self.bidi = bidi
if border_always_in_front is not None:
self.border_always_in_front = border_always_in_front
if border_applies_to is not None:
self.border_applies_to = border_applies_to
if border_distance_from is not None:
self.border_distance_from = border_distance_from
if bottom_margin is not None:
self.bottom_margin = bottom_margin
if different_first_page_header_footer is not None:
self.different_first_page_header_footer = different_first_page_header_footer
if first_page_tray is not None:
self.first_page_tray = first_page_tray
if footer_distance is not None:
self.footer_distance = footer_distance
if gutter is not None:
self.gutter = gutter
if header_distance is not None:
self.header_distance = header_distance
if left_margin is not None:
self.left_margin = left_margin
if line_number_count_by is not None:
self.line_number_count_by = line_number_count_by
if line_number_distance_from_text is not None:
self.line_number_distance_from_text = line_number_distance_from_text
if line_number_restart_mode is not None:
self.line_number_restart_mode = line_number_restart_mode
if line_starting_number is not None:
self.line_starting_number = line_starting_number
if orientation is not None:
self.orientation = orientation
if other_pages_tray is not None:
self.other_pages_tray = other_pages_tray
if page_height is not None:
self.page_height = page_height
if page_number_style is not None:
self.page_number_style = page_number_style
if page_starting_number is not None:
self.page_starting_number = page_starting_number
if page_width is not None:
self.page_width = page_width
if paper_size is not None:
self.paper_size = paper_size
if restart_page_numbering is not None:
self.restart_page_numbering = restart_page_numbering
if right_margin is not None:
self.right_margin = right_margin
if rtl_gutter is not None:
self.rtl_gutter = rtl_gutter
if section_start is not None:
self.section_start = section_start
if suppress_endnotes is not None:
self.suppress_endnotes = suppress_endnotes
if top_margin is not None:
self.top_margin = top_margin
if vertical_alignment is not None:
self.vertical_alignment = vertical_alignment
@property
def link(self):
return self._link
@link.setter
def link(self, link):
self._link = link
@property
def bidi(self):
return self._bidi
@bidi.setter
def bidi(self, bidi):
self._bidi = bidi
@property
def border_always_in_front(self):
return self._border_always_in_front
@border_always_in_front.setter
def border_always_in_front(self, border_always_in_front):
self._border_always_in_front = border_always_in_front
@property
def border_applies_to(self):
return self._border_applies_to
@border_applies_to.setter
def border_applies_to(self, border_applies_to):
allowed_values = ["AllPages", "FirstPage", "OtherPages"]
if not border_applies_to.isdigit():
if border_applies_to not in allowed_values:
raise ValueError(
"Invalid value for `border_applies_to` ({0}), must be one of {1}"
.format(border_applies_to, allowed_values))
self._border_applies_to = border_applies_to
else:
self._border_applies_to = allowed_values[int(border_applies_to) if six.PY3 else long(border_applies_to)]
@property
def border_distance_from(self):
return self._border_distance_from
@border_distance_from.setter
def border_distance_from(self, border_distance_from):
allowed_values = ["Text", "PageEdge"]
if not border_distance_from.isdigit():
if border_distance_from not in allowed_values:
raise ValueError(
"Invalid value for `border_distance_from` ({0}), must be one of {1}"
.format(border_distance_from, allowed_values))
self._border_distance_from = border_distance_from
else:
self._border_distance_from = allowed_values[int(border_distance_from) if six.PY3 else long(border_distance_from)]
@property
def bottom_margin(self):
return self._bottom_margin
@bottom_margin.setter
def bottom_margin(self, bottom_margin):
self._bottom_margin = bottom_margin
@property
def different_first_page_header_footer(self):
return self._different_first_page_header_footer
@different_first_page_header_footer.setter
def different_first_page_header_footer(self, different_first_page_header_footer):
self._different_first_page_header_footer = different_first_page_header_footer
@property
def first_page_tray(self):
return self._first_page_tray
@first_page_tray.setter
def first_page_tray(self, first_page_tray):
self._first_page_tray = first_page_tray
@property
def footer_distance(self):
return self._footer_distance
@footer_distance.setter
def footer_distance(self, footer_distance):
self._footer_distance = footer_distance
@property
def gutter(self):
return self._gutter
@gutter.setter
def gutter(self, gutter):
self._gutter = gutter
@property
def header_distance(self):
return self._header_distance
@header_distance.setter
def header_distance(self, header_distance):
self._header_distance = header_distance
@property
def left_margin(self):
return self._left_margin
@left_margin.setter
def left_margin(self, left_margin):
self._left_margin = left_margin
@property
def line_number_count_by(self):
return self._line_number_count_by
@line_number_count_by.setter
def line_number_count_by(self, line_number_count_by):
self._line_number_count_by = line_number_count_by
@property
def line_number_distance_from_text(self):
return self._line_number_distance_from_text
@line_number_distance_from_text.setter
def line_number_distance_from_text(self, line_number_distance_from_text):
self._line_number_distance_from_text = line_number_distance_from_text
@property
def line_number_restart_mode(self):
return self._line_number_restart_mode
@line_number_restart_mode.setter
def line_number_restart_mode(self, line_number_restart_mode):
allowed_values = ["RestartPage", "RestartSection", "Continuous"]
if not line_number_restart_mode.isdigit():
if line_number_restart_mode not in allowed_values:
raise ValueError(
"Invalid value for `line_number_restart_mode` ({0}), must be one of {1}"
.format(line_number_restart_mode, allowed_values))
self._line_number_restart_mode = line_number_restart_mode
else:
self._line_number_restart_mode = allowed_values[int(line_number_restart_mode) if six.PY3 else long(line_number_restart_mode)]
@property
def line_starting_number(self):
return self._line_starting_number
@line_starting_number.setter
def line_starting_number(self, line_starting_number):
self._line_starting_number = line_starting_number
@property
def orientation(self):
return self._orientation
@orientation.setter
def orientation(self, orientation):
allowed_values = ["Portrait", "Landscape"]
if not orientation.isdigit():
if orientation not in allowed_values:
raise ValueError(
"Invalid value for `orientation` ({0}), must be one of {1}"
.format(orientation, allowed_values))
self._orientation = orientation
else:
self._orientation = allowed_values[int(orientation) if six.PY3 else long(orientation)]
@property
def other_pages_tray(self):
return self._other_pages_tray
@other_pages_tray.setter
def other_pages_tray(self, other_pages_tray):
self._other_pages_tray = other_pages_tray
@property
def page_height(self):
return self._page_height
@page_height.setter
def page_height(self, page_height):
self._page_height = page_height
@property
def page_number_style(self):
return self._page_number_style
@page_number_style.setter
def page_number_style(self, page_number_style):
allowed_values = ["Arabic", "UppercaseRoman", "LowercaseRoman", "UppercaseLetter", "LowercaseLetter", "Ordinal", "Number", "OrdinalText", "Hex", "ChicagoManual", "Kanji", "KanjiDigit", "AiueoHalfWidth", "IrohaHalfWidth", "ArabicFullWidth", "ArabicHalfWidth", "KanjiTraditional", "KanjiTraditional2", "NumberInCircle", "DecimalFullWidth", "Aiueo", "Iroha", "LeadingZero", "Bullet", "Ganada", "Chosung", "GB1", "GB2", "GB3", "GB4", "Zodiac1", "Zodiac2", "Zodiac3", "TradChinNum1", "TradChinNum2", "TradChinNum3", "TradChinNum4", "SimpChinNum1", "SimpChinNum2", "SimpChinNum3", "SimpChinNum4", "HanjaRead", "HanjaReadDigit", "Hangul", "Hanja", "Hebrew1", "Arabic1", "Hebrew2", "Arabic2", "HindiLetter1", "HindiLetter2", "HindiArabic", "HindiCardinalText", "ThaiLetter", "ThaiArabic", "ThaiCardinalText", "VietCardinalText", "NumberInDash", "LowercaseRussian", "UppercaseRussian", "None", "Custom"]
if not page_number_style.isdigit():
if page_number_style not in allowed_values:
raise ValueError(
"Invalid value for `page_number_style` ({0}), must be one of {1}"
.format(page_number_style, allowed_values))
self._page_number_style = page_number_style
else:
self._page_number_style = allowed_values[int(page_number_style) if six.PY3 else long(page_number_style)]
@property
def page_starting_number(self):
return self._page_starting_number
@page_starting_number.setter
|
MIT License
|
basho/riak-python-client
|
riak/security.py
|
SecurityCreds.username
|
python
|
def username(self):
return self._username
|
Riak Username
:rtype: str
|
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/security.py#L135-L141
|
import ssl
import warnings
from riak import RiakError
from riak.util import str_to_long
if hasattr(ssl, 'SSLContext'):
USE_STDLIB_SSL = True
else:
USE_STDLIB_SSL = False
if not USE_STDLIB_SSL:
import OpenSSL.SSL
from OpenSSL import crypto
OPENSSL_VERSION_101G = 268439679
if hasattr(ssl, 'OPENSSL_VERSION_NUMBER'):
sslver = ssl.OPENSSL_VERSION_NUMBER
tls_12 = hasattr(ssl, 'PROTOCOL_TLSv1_2')
if sslver < OPENSSL_VERSION_101G or not tls_12:
verstring = ssl.OPENSSL_VERSION
msg = "{0} (>= 1.0.1g required), TLS 1.2 support: {1}" .format(verstring, tls_12)
warnings.warn(msg, UserWarning)
if hasattr(ssl, 'PROTOCOL_TLSv1_2'):
DEFAULT_TLS_VERSION = ssl.PROTOCOL_TLSv1_2
elif hasattr(ssl, 'PROTOCOL_TLSv1_1'):
DEFAULT_TLS_VERSION = ssl.PROTOCOL_TLSv1_1
elif hasattr(ssl, 'PROTOCOL_TLSv1'):
DEFAULT_TLS_VERSION = ssl.PROTOCOL_TLSv1
else:
DEFAULT_TLS_VERSION = ssl.PROTOCOL_SSLv23
else:
sslver = OpenSSL.SSL.OPENSSL_VERSION_NUMBER
tls_12 = hasattr(OpenSSL.SSL, 'TLSv1_2_METHOD')
if (sslver < OPENSSL_VERSION_101G) or tls_12:
verstring = OpenSSL.SSL.SSLeay_version(OpenSSL.SSL.SSLEAY_VERSION)
msg = "{0} (>= 1.0.1g required), TLS 1.2 support: {1}" .format(verstring, tls_12)
warnings.warn(msg, UserWarning)
if hasattr(OpenSSL.SSL, 'TLSv1_2_METHOD'):
DEFAULT_TLS_VERSION = OpenSSL.SSL.TLSv1_2_METHOD
elif hasattr(OpenSSL.SSL, 'TLSv1_1_METHOD'):
DEFAULT_TLS_VERSION = OpenSSL.SSL.TLSv1_1_METHOD
elif hasattr(OpenSSL.SSL, 'TLSv1_METHOD'):
DEFAULT_TLS_VERSION = OpenSSL.SSL.TLSv1_METHOD
else:
DEFAULT_TLS_VERSION = OpenSSL.SSL.SSLv23_METHOD
class SecurityError(RiakError):
def __init__(self, message="Security error"):
super(SecurityError, self).__init__(message)
class SecurityCreds:
def __init__(self,
username=None,
password=None,
pkey_file=None,
pkey=None,
cert_file=None,
cert=None,
cacert_file=None,
cacert=None,
crl_file=None,
crl=None,
ciphers=None,
ssl_version=DEFAULT_TLS_VERSION):
self._username = username
self._password = password
self._pkey_file = pkey_file
self._pkey = pkey
self._cert_file = cert_file
self._cert = cert
self._cacert_file = cacert_file
self._cacert = cacert
self._crl_file = crl_file
self._crl = crl
self._ciphers = ciphers
self._ssl_version = ssl_version
@property
|
Apache License 2.0
|
wangheda/youtube-8m
|
youtube-8m-wangheda/inference-pre-ensemble.py
|
get_input_data_tensors
|
python
|
def get_input_data_tensors(reader, data_pattern, batch_size, num_readers=1):
with tf.name_scope("input"):
files = gfile.Glob(data_pattern)
files.sort()
if not files:
raise IOError("Unable to find input files. data_pattern='" +
data_pattern + "'")
logging.info("number of input files: " + str(len(files)))
filename_queue = tf.train.string_input_producer(
files, num_epochs=1, shuffle=False)
examples_and_labels = reader.prepare_reader(filename_queue)
video_id_batch, video_batch, unused_labels, num_frames_batch = (
tf.train.batch(examples_and_labels,
batch_size=batch_size,
capacity=batch_size * 8,
allow_smaller_final_batch=True,
enqueue_many=True))
return video_id_batch, video_batch, unused_labels, num_frames_batch
|
Creates the section of the graph which reads the input data.
Args:
reader: A class which parses the input data.
data_pattern: A 'glob' style path to the data files.
batch_size: How many examples to process at a time.
num_readers: How many I/O threads to use.
Returns:
A tuple containing the features tensor, labels tensor, and optionally a
tensor containing the number of frames per video. The exact dimensions
depend on the reader being used.
Raises:
IOError: If no files matching the given pattern were found.
|
https://github.com/wangheda/youtube-8m/blob/07e54b387ee027cb58b0c14f5eb7c88cfa516d58/youtube-8m-wangheda/inference-pre-ensemble.py#L96-L129
|
import gc
import os
import time
import eval_util
import losses
import frame_level_models
import video_level_models
import data_augmentation
import feature_transform
import readers
import utils
import numpy
import numpy as np
import tensorflow as tf
from tensorflow import app
from tensorflow import flags
from tensorflow import gfile
from tensorflow import logging
FLAGS = flags.FLAGS
if __name__ == '__main__':
flags.DEFINE_string("train_dir", "/tmp/yt8m_model/",
"The directory to load the model files from.")
flags.DEFINE_string("model_checkpoint_path", None,
"The file path to load the model from.")
flags.DEFINE_string("output_dir", "",
"The file to save the predictions to.")
flags.DEFINE_string(
"input_data_pattern", "",
"File glob defining the evaluation dataset in tensorflow.SequenceExample "
"format. The SequenceExamples are expected to have an 'rgb' byte array "
"sequence feature as well as a 'labels' int64 context feature.")
flags.DEFINE_string(
"distill_data_pattern", None,
"File glob defining the distillation data pattern")
flags.DEFINE_bool(
"frame_features", False,
"If set, then --eval_data_pattern must be frame-level features. "
"Otherwise, --eval_data_pattern must be aggregated video-level "
"features. The model must also be set appropriately (i.e. to read 3D "
"batches VS 4D batches.")
flags.DEFINE_integer(
"batch_size", 8192,
"How many examples to process per batch.")
flags.DEFINE_string("feature_names", "mean_rgb", "Name of the feature "
"to use for training.")
flags.DEFINE_string("feature_sizes", "1024", "Length of the feature vectors.")
flags.DEFINE_integer("file_size", 4096,
"Number of frames per batch for DBoF.")
flags.DEFINE_string(
"model", "YouShouldSpecifyAModel",
"Which architecture to use for the model. Models are defined "
"in models.py.")
flags.DEFINE_integer("num_readers", 1,
"How many threads to use for reading input files.")
flags.DEFINE_integer("top_k", 20,
"How many predictions to output per video.")
flags.DEFINE_bool(
"dropout", False,
"Whether to consider dropout")
flags.DEFINE_float("keep_prob", 1.0,
"probability to keep output (used in dropout, keep it unchanged in validationg and test)")
flags.DEFINE_float("noise_level", 0.0,
"standard deviation of noise (added to hidden nodes)")
def find_class_by_name(name, modules):
modules = [getattr(module, name, None) for module in modules]
return next(a for a in modules if a)
|
Apache License 2.0
|
pelioniot/mbed-cloud-sdk-python
|
src/mbed_cloud/_backends/device_directory/models/device_eq_neq_filter.py
|
DeviceEqNeqFilter.device_class
|
python
|
def device_class(self):
return self._device_class
|
Gets the device_class of this DeviceEqNeqFilter.
:return: The device_class of this DeviceEqNeqFilter.
:rtype: str
|
https://github.com/pelioniot/mbed-cloud-sdk-python/blob/71dc67fc2a8d1aff31e35ec781fb328e6a60639c/src/mbed_cloud/_backends/device_directory/models/device_eq_neq_filter.py#L368-L375
|
from pprint import pformat
from six import iteritems
import re
class DeviceEqNeqFilter(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'account_id': 'str',
'auto_update': 'bool',
'bootstrap_expiration_date': 'datetime',
'bootstrapped_timestamp': 'datetime',
'ca_id': 'str',
'connector_expiration_date': 'datetime',
'created_at': 'datetime',
'custom_attributes': 'dict(str, str)',
'deployed_state': 'str',
'deployment': 'str',
'description': 'str',
'device_class': 'str',
'device_execution_mode': 'int',
'device_key': 'str',
'endpoint_name': 'str',
'endpoint_type': 'str',
'enrolment_list_timestamp': 'datetime',
'etag': 'datetime',
'firmware_checksum': 'str',
'host_gateway': 'str',
'id': 'str',
'manifest': 'str',
'manifest_timestamp': 'datetime',
'mechanism': 'str',
'mechanism_url': 'str',
'name': 'str',
'serial_number': 'str',
'state': 'str',
'updated_at': 'datetime',
'vendor_id': 'str'
}
attribute_map = {
'account_id': 'account_id',
'auto_update': 'auto_update',
'bootstrap_expiration_date': 'bootstrap_expiration_date',
'bootstrapped_timestamp': 'bootstrapped_timestamp',
'ca_id': 'ca_id',
'connector_expiration_date': 'connector_expiration_date',
'created_at': 'created_at',
'custom_attributes': 'custom_attributes',
'deployed_state': 'deployed_state',
'deployment': 'deployment',
'description': 'description',
'device_class': 'device_class',
'device_execution_mode': 'device_execution_mode',
'device_key': 'device_key',
'endpoint_name': 'endpoint_name',
'endpoint_type': 'endpoint_type',
'enrolment_list_timestamp': 'enrolment_list_timestamp',
'etag': 'etag',
'firmware_checksum': 'firmware_checksum',
'host_gateway': 'host_gateway',
'id': 'id',
'manifest': 'manifest',
'manifest_timestamp': 'manifest_timestamp',
'mechanism': 'mechanism',
'mechanism_url': 'mechanism_url',
'name': 'name',
'serial_number': 'serial_number',
'state': 'state',
'updated_at': 'updated_at',
'vendor_id': 'vendor_id'
}
def __init__(self, account_id=None, auto_update=None, bootstrap_expiration_date=None, bootstrapped_timestamp=None, ca_id=None, connector_expiration_date=None, created_at=None, custom_attributes=None, deployed_state=None, deployment=None, description=None, device_class=None, device_execution_mode=None, device_key=None, endpoint_name=None, endpoint_type=None, enrolment_list_timestamp=None, etag=None, firmware_checksum=None, host_gateway=None, id=None, manifest=None, manifest_timestamp=None, mechanism=None, mechanism_url=None, name=None, serial_number=None, state=None, updated_at=None, vendor_id=None):
self._account_id = account_id
self._auto_update = auto_update
self._bootstrap_expiration_date = bootstrap_expiration_date
self._bootstrapped_timestamp = bootstrapped_timestamp
self._ca_id = ca_id
self._connector_expiration_date = connector_expiration_date
self._created_at = created_at
self._custom_attributes = custom_attributes
self._deployed_state = deployed_state
self._deployment = deployment
self._description = description
self._device_class = device_class
self._device_execution_mode = device_execution_mode
self._device_key = device_key
self._endpoint_name = endpoint_name
self._endpoint_type = endpoint_type
self._enrolment_list_timestamp = enrolment_list_timestamp
self._etag = etag
self._firmware_checksum = firmware_checksum
self._host_gateway = host_gateway
self._id = id
self._manifest = manifest
self._manifest_timestamp = manifest_timestamp
self._mechanism = mechanism
self._mechanism_url = mechanism_url
self._name = name
self._serial_number = serial_number
self._state = state
self._updated_at = updated_at
self._vendor_id = vendor_id
self.discriminator = None
@property
def account_id(self):
return self._account_id
@account_id.setter
def account_id(self, account_id):
self._account_id = account_id
@property
def auto_update(self):
return self._auto_update
@auto_update.setter
def auto_update(self, auto_update):
self._auto_update = auto_update
@property
def bootstrap_expiration_date(self):
return self._bootstrap_expiration_date
@bootstrap_expiration_date.setter
def bootstrap_expiration_date(self, bootstrap_expiration_date):
self._bootstrap_expiration_date = bootstrap_expiration_date
@property
def bootstrapped_timestamp(self):
return self._bootstrapped_timestamp
@bootstrapped_timestamp.setter
def bootstrapped_timestamp(self, bootstrapped_timestamp):
self._bootstrapped_timestamp = bootstrapped_timestamp
@property
def ca_id(self):
return self._ca_id
@ca_id.setter
def ca_id(self, ca_id):
self._ca_id = ca_id
@property
def connector_expiration_date(self):
return self._connector_expiration_date
@connector_expiration_date.setter
def connector_expiration_date(self, connector_expiration_date):
self._connector_expiration_date = connector_expiration_date
@property
def created_at(self):
return self._created_at
@created_at.setter
def created_at(self, created_at):
self._created_at = created_at
@property
def custom_attributes(self):
return self._custom_attributes
@custom_attributes.setter
def custom_attributes(self, custom_attributes):
self._custom_attributes = custom_attributes
@property
def deployed_state(self):
return self._deployed_state
@deployed_state.setter
def deployed_state(self, deployed_state):
self._deployed_state = deployed_state
@property
def deployment(self):
return self._deployment
@deployment.setter
def deployment(self, deployment):
self._deployment = deployment
@property
def description(self):
return self._description
@description.setter
def description(self, description):
self._description = description
@property
|
Apache License 2.0
|
alexpof/opycleid
|
opycleid/q_categoryaction.py
|
CategoryQAction.get_objects
|
python
|
def get_objects(self):
return list(sorted(self.objects.items()))
|
Returns the objects in the category action.
Parameters
----------
None
Returns
-------
A list of pairs (x,y), where:
- x is the name of the object
- y is the corresponding instance of CatObject
|
https://github.com/alexpof/opycleid/blob/5abffca1a52c0d221dcb46162cb0678f265204b7/opycleid/q_categoryaction.py#L791-L804
|
import numpy as np
import itertools
import time
from .categoryaction import CatObject
class MultQ(object):
def __init__(self,x):
if x<0 or x>1:
raise Exception("Real number should be comprised between 0 and 1")
self.x = x
@staticmethod
def Unit():
return MultQ(1.0)
@staticmethod
def Zero():
return MultQ(0.0)
def __mul__(self,rhs):
if not isinstance(rhs,self.__class__):
raise Exception("RHS is not a valid MultQ")
return self.__class__(self.x*rhs.x)
def __add__(self,rhs):
if not isinstance(rhs,self.__class__):
raise Exception("RHS is not a valid MultQ")
return self.__class__(max([self.x,rhs.x]))
def __eq__(self,rhs):
if not isinstance(rhs,self.__class__):
raise Exception("RHS is not a valid MultQ")
return self.x==rhs.x
def __lt__(self,rhs):
if not isinstance(rhs,self.__class__):
raise Exception("RHS is not a valid MultQ")
return self.x<rhs.x
def __le__(self,rhs):
if not isinstance(rhs,self.__class__):
raise Exception("RHS is not a valid MultQ")
return self.x<=rhs.x
def __str__(self):
return str(self.x)
def __repr__(self):
return "MultQ({})".format(self.x)
class IntvQ(object):
def __init__(self,x):
if x<0 or x>1:
raise Exception("Real number should be comprised between 0 and 1")
self.x = x
@staticmethod
def Unit():
return IntvQ(1.0)
@staticmethod
def Zero():
return IntvQ(0.0)
def __mul__(self,rhs):
if not isinstance(rhs,self.__class__):
raise Exception("RHS is not a valid IntvQ")
return self.__class__(min([self.x,rhs.x]))
def __add__(self,rhs):
if not isinstance(rhs,self.__class__):
raise Exception("RHS is not a valid IntvQ")
return self.__class__(max([self.x,rhs.x]))
def __eq__(self,rhs):
if not isinstance(rhs,self.__class__):
raise Exception("RHS is not a valid IntvQ")
return self.x==rhs.x
def __lt__(self,rhs):
if not isinstance(rhs,self.__class__):
raise Exception("RHS is not a valid IntvQ")
return self.x<rhs.x
def __le__(self,rhs):
if not isinstance(rhs,self.__class__):
raise Exception("RHS is not a valid IntvQ")
return self.x<=rhs.x
def __str__(self):
return str(self.x)
def __repr__(self):
return "IntvQ({})".format(self.x)
class Lin3Q(IntvQ):
def __init__(self,x):
if not (x==0 or x==0.5 or x==1):
raise Exception("The possibles values are 0, 1/2, and 1")
super().__init__(x)
@staticmethod
def Unit():
return Lin3Q(1.0)
@staticmethod
def Zero():
return Lin3Q(0.0)
def __str__(self):
return str(self.x)
def __repr__(self):
return "Lin3Q({})".format(self.x)
class QMorphism(object):
def __init__(self,name,source,target,qtype=None,mapping=None):
if not isinstance(source,CatObject):
raise Exception("Source is not a valid CatObject class\n")
if not isinstance(target,CatObject):
raise Exception("Target is not a valid CatObject class\n")
if qtype is None:
raise Exception("Type of quantale should be specified")
self.name = name
self.source = source
self.target = target
self.qtype = qtype
if mapping is not None:
if isinstance(mapping,np.ndarray)==False:
self.set_mapping(mapping)
else:
self.set_mapping_matrix(mapping)
def set_name(self,name):
if not len(name):
raise Exception("The specified morphism name is empty")
self.name = name
def set_to_identity(self):
if not (self.source==self.target):
raise Exception("Source and target should be identical")
card_source = self.source.get_cardinality()
M = np.empty((card_source,card_source),dtype=self.qtype)
for i in range(card_source):
for j in range(card_source):
if i==j:
M[i,j] = self.qtype.Unit()
else:
M[i,j] = self.qtype.Zero()
self.matrix = M
def set_mapping(self,mapping):
card_source = self.source.get_cardinality()
card_target = self.target.get_cardinality()
self.matrix = np.empty((card_target,card_source),dtype=self.qtype)
for i in range(card_source):
for j in range(card_target):
self.matrix[j,i] = self.qtype.Zero()
for elem,images in sorted(mapping.items()):
id_elem = self.source.get_idx_by_name(elem)
for image,value in images:
id_image = self.target.get_idx_by_name(image)
self.matrix[id_image,id_elem] = self.qtype(value)
def set_mapping_matrix(self,matrix):
self.matrix = matrix
def get_mapping(self):
dest_cardinality,source_cardinality = self.matrix.shape
d={}
for i in range(source_cardinality):
l=[]
for j in range(dest_cardinality):
v = self.matrix[j,i]
l.append((self.target.get_name_by_idx(j),v.x))
d[self.source.get_name_by_idx(i)]=l
return d
def get_mapping_matrix(self):
return self.matrix
def copy(self):
U = QMorphism(self.name,self.source,self.target,qtype=self.qtype)
U.set_mapping_matrix(self.get_mapping_matrix())
return U
def _is_lefttotal(self):
return np.all(np.sum(self.matrix,axis=0)>self.qtype.Zero())
def __str__(self):
descr = self.name+":"+self.source.name+"->"+self.target.name+"\n\n"
for s,t in sorted(self.get_mapping().items()):
descr += " "*(len(self.name)+1)
descr += s+"->"+(",".join([(x[0],str(x[1])) for x in t]))+"\n"
return descr
def __call__(self,elem):
idx_elem = self.source.get_idx_by_name(elem)
return [(self.target.get_name_by_idx(j),v.x) for j,v in enumerate(self.matrix[:,idx_elem]) if v!=self.qtype.Zero()]
def __pow__(self,int_power):
if not self.target==self.source:
raise Exception("Morphism should be an endomorphism")
U = self.copy()
U.set_to_identity()
for i in range(int_power):
U = self*U
U.set_name(self.name+"^"+str(int_power))
return U
def __mul__(self,morphism):
if not isinstance(morphism,QMorphism):
raise Exception("RHS is not a valid QMorphism class\n")
if not self.qtype==morphism.qtype:
raise Exception("QMorphisms use different quantales")
if not morphism.target==self.source:
return None
new_morphism = QMorphism(self.name+morphism.name,morphism.source,self.target,qtype=self.qtype)
new_morphism.set_mapping_matrix((self.matrix.dot(morphism.matrix)))
return new_morphism
def __eq__(self,morphism):
if not isinstance(morphism,QMorphism):
raise Exception("RHS is not a valid QMorphism class\n")
if not self.qtype==morphism.qtype:
raise Exception("QMorphisms use different quantales")
if self is None or morphism is None:
return False
return (self.source == morphism.source) and (self.target == morphism.target) and (np.array_equal(self.matrix,morphism.matrix))
def __le__(self, morphism):
if not isinstance(morphism,QMorphism):
raise Exception("RHS is not a valid CatMorphism class\n")
if not self.qtype==morphism.qtype:
raise Exception("QMorphisms use different quantales")
if self is None or morphism is None:
return False
if not (self.source == morphism.source) and (self.target == morphism.target):
raise Exception("Morphisms should have the same domain and codomain")
return np.all(self.matrix<=morphism.matrix)
def __lt__(self, morphism):
if not isinstance(morphism,QMorphism):
raise Exception("RHS is not a valid CatMorphism class\n")
if not self.qtype==morphism.qtype:
raise Exception("QMorphisms use different quantales")
if not (self.source == morphism.source) and (self.target == morphism.target):
raise Exception("Morphisms should have the same domain and codomain")
if self is None or morphism is None:
return False
return np.all(self.matrix<morphism.matrix)
class CategoryQAction(object):
def __init__(self,qtype=None,objects=None,generators=None,generate=True):
if qtype is None:
raise Exception("Type of quantale should be specified")
self.qtype=qtype
self.objects={}
self.generators={}
self.morphisms={}
self.equivalences=[]
if objects is not None:
self.set_objects(objects)
if generators is not None:
self.set_generators(generators)
if generate==True:
self.generate_category()
def set_objects(self,list_objects):
self.objects={}
self.generators={}
self.morphisms={}
self.equivalences=[]
ob_names = [catobject.name for catobject in list_objects]
if not len(ob_names)==len(np.unique(ob_names)):
raise Exception("Objects should have distinct names")
for catobject in list_objects:
self.objects[catobject.name] = catobject
|
BSD 3-Clause New or Revised License
|
demisto/demisto-py
|
demisto_client/demisto_api/models/automation_script.py
|
AutomationScript.roles
|
python
|
def roles(self):
return self._roles
|
Gets the roles of this AutomationScript. # noqa: E501
The role assigned to this investigation # noqa: E501
:return: The roles of this AutomationScript. # noqa: E501
:rtype: list[str]
|
https://github.com/demisto/demisto-py/blob/95d29e07693d27c133f7fe6ef9da13e4b6dbf542/demisto_client/demisto_api/models/automation_script.py#L670-L678
|
import pprint
import re
import six
from demisto_client.demisto_api.models.argument import Argument
from demisto_client.demisto_api.models.duration import Duration
from demisto_client.demisto_api.models.important import Important
from demisto_client.demisto_api.models.output import Output
from demisto_client.demisto_api.models.script_sub_type import ScriptSubType
from demisto_client.demisto_api.models.script_target import ScriptTarget
from demisto_client.demisto_api.models.script_type import ScriptType
class AutomationScript(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'arguments': 'list[Argument]',
'comment': 'str',
'commit_message': 'str',
'context_keys': 'list[str]',
'depends_on': 'dict(str, list[str])',
'deprecated': 'bool',
'docker_image': 'str',
'enabled': 'bool',
'has_role': 'bool',
'hidden': 'bool',
'id': 'str',
'important': 'list[Important]',
'locked': 'bool',
'modified': 'datetime',
'name': 'str',
'outputs': 'list[Output]',
'prev_name': 'str',
'previous_roles': 'list[str]',
'pswd': 'str',
'raw_tags': 'list[str]',
'roles': 'list[str]',
'run_as': 'str',
'run_once': 'bool',
'script': 'str',
'script_target': 'ScriptTarget',
'searchable_name': 'str',
'sensitive': 'bool',
'should_commit': 'bool',
'sort_values': 'list[str]',
'subtype': 'ScriptSubType',
'system': 'bool',
'tags': 'list[str]',
'timeout': 'Duration',
'type': 'ScriptType',
'user': 'str',
'vc_should_ignore': 'bool',
'version': 'int',
'visual_script': 'str'
}
attribute_map = {
'arguments': 'arguments',
'comment': 'comment',
'commit_message': 'commitMessage',
'context_keys': 'contextKeys',
'depends_on': 'dependsOn',
'deprecated': 'deprecated',
'docker_image': 'dockerImage',
'enabled': 'enabled',
'has_role': 'hasRole',
'hidden': 'hidden',
'id': 'id',
'important': 'important',
'locked': 'locked',
'modified': 'modified',
'name': 'name',
'outputs': 'outputs',
'prev_name': 'prevName',
'previous_roles': 'previousRoles',
'pswd': 'pswd',
'raw_tags': 'rawTags',
'roles': 'roles',
'run_as': 'runAs',
'run_once': 'runOnce',
'script': 'script',
'script_target': 'scriptTarget',
'searchable_name': 'searchableName',
'sensitive': 'sensitive',
'should_commit': 'shouldCommit',
'sort_values': 'sortValues',
'subtype': 'subtype',
'system': 'system',
'tags': 'tags',
'timeout': 'timeout',
'type': 'type',
'user': 'user',
'vc_should_ignore': 'vcShouldIgnore',
'version': 'version',
'visual_script': 'visualScript'
}
def __init__(self, arguments=None, comment=None, commit_message=None, context_keys=None, depends_on=None, deprecated=None, docker_image=None, enabled=None, has_role=None, hidden=None, id=None, important=None, locked=None, modified=None, name=None, outputs=None, prev_name=None, previous_roles=None, pswd=None, raw_tags=None, roles=None, run_as=None, run_once=None, script=None, script_target=None, searchable_name=None, sensitive=None, should_commit=None, sort_values=None, subtype=None, system=None, tags=None, timeout=None, type=None, user=None, vc_should_ignore=None, version=None, visual_script=None):
self._arguments = None
self._comment = None
self._commit_message = None
self._context_keys = None
self._depends_on = None
self._deprecated = None
self._docker_image = None
self._enabled = None
self._has_role = None
self._hidden = None
self._id = None
self._important = None
self._locked = None
self._modified = None
self._name = None
self._outputs = None
self._prev_name = None
self._previous_roles = None
self._pswd = None
self._raw_tags = None
self._roles = None
self._run_as = None
self._run_once = None
self._script = None
self._script_target = None
self._searchable_name = None
self._sensitive = None
self._should_commit = None
self._sort_values = None
self._subtype = None
self._system = None
self._tags = None
self._timeout = None
self._type = None
self._user = None
self._vc_should_ignore = None
self._version = None
self._visual_script = None
self.discriminator = None
if arguments is not None:
self.arguments = arguments
if comment is not None:
self.comment = comment
if commit_message is not None:
self.commit_message = commit_message
if context_keys is not None:
self.context_keys = context_keys
if depends_on is not None:
self.depends_on = depends_on
if deprecated is not None:
self.deprecated = deprecated
if docker_image is not None:
self.docker_image = docker_image
if enabled is not None:
self.enabled = enabled
if has_role is not None:
self.has_role = has_role
if hidden is not None:
self.hidden = hidden
if id is not None:
self.id = id
if important is not None:
self.important = important
if locked is not None:
self.locked = locked
if modified is not None:
self.modified = modified
if name is not None:
self.name = name
if outputs is not None:
self.outputs = outputs
if prev_name is not None:
self.prev_name = prev_name
if previous_roles is not None:
self.previous_roles = previous_roles
if pswd is not None:
self.pswd = pswd
if raw_tags is not None:
self.raw_tags = raw_tags
if roles is not None:
self.roles = roles
if run_as is not None:
self.run_as = run_as
if run_once is not None:
self.run_once = run_once
if script is not None:
self.script = script
if script_target is not None:
self.script_target = script_target
if searchable_name is not None:
self.searchable_name = searchable_name
if sensitive is not None:
self.sensitive = sensitive
if should_commit is not None:
self.should_commit = should_commit
if sort_values is not None:
self.sort_values = sort_values
if subtype is not None:
self.subtype = subtype
if system is not None:
self.system = system
if tags is not None:
self.tags = tags
if timeout is not None:
self.timeout = timeout
if type is not None:
self.type = type
if user is not None:
self.user = user
if vc_should_ignore is not None:
self.vc_should_ignore = vc_should_ignore
if version is not None:
self.version = version
if visual_script is not None:
self.visual_script = visual_script
@property
def arguments(self):
return self._arguments
@arguments.setter
def arguments(self, arguments):
self._arguments = arguments
@property
def comment(self):
return self._comment
@comment.setter
def comment(self, comment):
self._comment = comment
@property
def commit_message(self):
return self._commit_message
@commit_message.setter
def commit_message(self, commit_message):
self._commit_message = commit_message
@property
def context_keys(self):
return self._context_keys
@context_keys.setter
def context_keys(self, context_keys):
self._context_keys = context_keys
@property
def depends_on(self):
return self._depends_on
@depends_on.setter
def depends_on(self, depends_on):
self._depends_on = depends_on
@property
def deprecated(self):
return self._deprecated
@deprecated.setter
def deprecated(self, deprecated):
self._deprecated = deprecated
@property
def docker_image(self):
return self._docker_image
@docker_image.setter
def docker_image(self, docker_image):
self._docker_image = docker_image
@property
def enabled(self):
return self._enabled
@enabled.setter
def enabled(self, enabled):
self._enabled = enabled
@property
def has_role(self):
return self._has_role
@has_role.setter
def has_role(self, has_role):
self._has_role = has_role
@property
def hidden(self):
return self._hidden
@hidden.setter
def hidden(self, hidden):
self._hidden = hidden
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def important(self):
return self._important
@important.setter
def important(self, important):
self._important = important
@property
def locked(self):
return self._locked
@locked.setter
def locked(self, locked):
self._locked = locked
@property
def modified(self):
return self._modified
@modified.setter
def modified(self, modified):
self._modified = modified
@property
def name(self):
return self._name
@name.setter
def name(self, name):
self._name = name
@property
def outputs(self):
return self._outputs
@outputs.setter
def outputs(self, outputs):
self._outputs = outputs
@property
def prev_name(self):
return self._prev_name
@prev_name.setter
def prev_name(self, prev_name):
self._prev_name = prev_name
@property
def previous_roles(self):
return self._previous_roles
@previous_roles.setter
def previous_roles(self, previous_roles):
self._previous_roles = previous_roles
@property
def pswd(self):
return self._pswd
@pswd.setter
def pswd(self, pswd):
self._pswd = pswd
@property
def raw_tags(self):
return self._raw_tags
@raw_tags.setter
def raw_tags(self, raw_tags):
self._raw_tags = raw_tags
@property
|
Apache License 2.0
|
qecsim/qecsim
|
src/qecsim/cli.py
|
run
|
python
|
def run(code, error_model, decoder, error_probabilities, max_failures, max_runs, output, random_seed):
code.validate()
logger.info('RUN STARTING: code={}, error_model={}, decoder={}, error_probabilities={}, max_failures={}, '
'max_runs={}, random_seed={}.'
.format(code, error_model, decoder, error_probabilities, max_failures, max_runs, random_seed))
data = []
for error_probability in error_probabilities:
runs_data = app.run(code, error_model, decoder, error_probability,
max_runs=max_runs, max_failures=max_failures, random_seed=random_seed)
data.append(runs_data)
logger.info('RUN COMPLETE: data={}'.format(data))
_write_data(output, data)
|
Simulate quantum error correction.
Arguments:
\b
CODE Stabilizer code in format name(<args>)
#CODE_PARAMETERS#
\b
ERROR_MODEL Error model in format name(<args>)
#ERROR_MODEL_PARAMETERS#
\b
DECODER Decoder in format name(<args>)
#DECODER_PARAMETERS#
\b
ERROR_PROBABILITY... One or more probabilities as FLOAT in [0.0, 1.0]
Examples:
qecsim run -r10 "five_qubit" "generic.depolarizing" "generic.naive" 0.1
qecsim run -f5 -r50 -s13 "steane" "generic.phase_flip" "generic.naive" 0.1
qecsim run -r20 "planar(7,7)" "generic.bit_flip" "planar.mps(6)" 0.101 0.102 0.103
qecsim run -r10 "color666(7)" "generic.bit_flip" "color666.mps(16)" 0.09 0.10
qecsim run -o"data.json" -f9 "toric(3,3)" "generic.bit_flip" "toric.mwpm" 0.1
|
https://github.com/qecsim/qecsim/blob/24d6b8a320b292461b66b68fe4fba40c9ddc2257/src/qecsim/cli.py#L215-L265
|
import ast
import inspect
import json
import logging
import re
import click
import pkg_resources
import qecsim
from qecsim import app
from qecsim import util
from qecsim.model import ATTR_CLI_DESCRIPTION
logger = logging.getLogger(__name__)
class _ConstructorParamType(click.ParamType):
name = 'constructor'
def __init__(self, constructors):
self._constructors = constructors
def get_metavar(self, param):
return '[{}]'.format('|'.join(sorted(self._constructors.keys())))
def get_missing_message(self, param):
return '(choose from {})'.format(', '.join(sorted(self._constructors.keys())))
def convert(self, value, param, ctx):
constructor_match = re.fullmatch(r'''
# match 'toric(3,3)' as {'constructor_name': 'toric', 'constructor_args': '3,3'}
(?P<constructor_name>[\w.]+) # capture constructor_name, e.g. 'toric'
(?:\(\s* # skip opening parenthesis and leading whitespace
(?P<constructor_args>.*?) # capture constructor_args, e.g. '3,3'
,?\s*\))? # skip trailing comma, trailing whitespace and closing parenthesis
''', value, re.VERBOSE)
if constructor_match is None:
self.fail('{} (format as name(<args>))'.format(value), param, ctx)
constructor_name = constructor_match.group('constructor_name')
if constructor_name in self._constructors.keys():
constructor = self._constructors[constructor_name]
else:
self.fail('{} (choose from {})'.format(value, ', '.join(sorted(self._constructors.keys()))), param, ctx)
constructor_args = constructor_match.group('constructor_args')
if constructor_args:
try:
arguments = ast.literal_eval(constructor_args + ',')
except Exception as ex:
self.fail('{} (failed to parse arguments "{}")'.format(value, ex), param, ctx)
else:
arguments = tuple()
try:
return constructor(*arguments)
except Exception as ex:
self.fail('{} (failed to construct "{}")'.format(value, ex), param, ctx)
def __repr__(self):
return '{}({!r})'.format(type(self).__name__, self._constructors)
def _model_argument(model_type):
def _decorator(func):
entry_point_id = 'qecsim.cli.{}.{}s'.format(func.__name__, model_type)
entry_points = sorted(pkg_resources.iter_entry_points(entry_point_id), key=lambda ep: ep.name)
constructors = {ep.name: ep.load() for ep in entry_points}
func = click.argument(model_type, type=_ConstructorParamType(constructors), metavar=model_type.upper())(func)
model_definition_list = [(name, getattr(cls, ATTR_CLI_DESCRIPTION, '')) for name, cls in constructors.items()]
formatter = click.HelpFormatter()
formatter.indent()
if model_definition_list:
formatter.write_dl(model_definition_list)
model_doc_placeholder = '#{}_PARAMETERS#'.format(model_type.upper())
func.__doc__ = inspect.getdoc(func).replace(model_doc_placeholder, formatter.getvalue())
return func
return _decorator
def _validate_error_probability(ctx, param, value):
if not (0 <= value <= 1):
raise click.BadParameter('{} is not in [0.0, 1.0]'.format(value), ctx, param)
return value
def _validate_error_probabilities(ctx, param, value):
for v in value:
_validate_error_probability(ctx, param, v)
return value
def _validate_measurement_error_probability(ctx, param, value):
if not (value is None or (0 <= value <= 1)):
raise click.BadParameter('{} is not in [0.0, 1.0]'.format(value), ctx, param)
return value
@click.group()
@click.version_option(version=qecsim.__version__, prog_name='qecsim')
def cli():
util.init_logging()
@cli.command()
@_model_argument('code')
@_model_argument('error_model')
@_model_argument('decoder')
@click.argument('error_probabilities', required=True, nargs=-1, type=float, metavar='ERROR_PROBABILITY...',
callback=_validate_error_probabilities)
@click.option('--max-failures', '-f', type=click.IntRange(min=1), metavar='INT',
help='Maximum number of failures for each probability.')
@click.option('--max-runs', '-r', type=click.IntRange(min=1), metavar='INT',
help='Maximum number of runs for each probability. [default: 1 if max-failures unspecified]')
@click.option('--output', '-o', default='-', type=click.Path(allow_dash=True), metavar='FILENAME',
help='Output file. (Writes to log if file exists).')
@click.option('--random-seed', '-s', type=click.IntRange(min=0), metavar='INT',
help='Random seed for qubit error generation. (Re-applied for each probability).')
|
BSD 3-Clause New or Revised License
|
docusign/docusign-python-client
|
docusign_esign/models/currency.py
|
Currency.anchor_units
|
python
|
def anchor_units(self, anchor_units):
self._anchor_units = anchor_units
|
Sets the anchor_units of this Currency.
Specifies units of the X and Y offset. Units could be pixels, millimeters, centimeters, or inches. # noqa: E501
:param anchor_units: The anchor_units of this Currency. # noqa: E501
:type: str
|
https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/currency.py#L806-L815
|
import pprint
import re
import six
from docusign_esign.client.configuration import Configuration
class Currency(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'anchor_allow_white_space_in_characters': 'str',
'anchor_allow_white_space_in_characters_metadata': 'PropertyMetadata',
'anchor_case_sensitive': 'str',
'anchor_case_sensitive_metadata': 'PropertyMetadata',
'anchor_horizontal_alignment': 'str',
'anchor_horizontal_alignment_metadata': 'PropertyMetadata',
'anchor_ignore_if_not_present': 'str',
'anchor_ignore_if_not_present_metadata': 'PropertyMetadata',
'anchor_match_whole_word': 'str',
'anchor_match_whole_word_metadata': 'PropertyMetadata',
'anchor_string': 'str',
'anchor_string_metadata': 'PropertyMetadata',
'anchor_tab_processor_version': 'str',
'anchor_tab_processor_version_metadata': 'PropertyMetadata',
'anchor_units': 'str',
'anchor_units_metadata': 'PropertyMetadata',
'anchor_x_offset': 'str',
'anchor_x_offset_metadata': 'PropertyMetadata',
'anchor_y_offset': 'str',
'anchor_y_offset_metadata': 'PropertyMetadata',
'bold': 'str',
'bold_metadata': 'PropertyMetadata',
'conceal_value_on_document': 'str',
'conceal_value_on_document_metadata': 'PropertyMetadata',
'conditional_parent_label': 'str',
'conditional_parent_label_metadata': 'PropertyMetadata',
'conditional_parent_value': 'str',
'conditional_parent_value_metadata': 'PropertyMetadata',
'custom_tab_id': 'str',
'custom_tab_id_metadata': 'PropertyMetadata',
'disable_auto_size': 'str',
'disable_auto_size_metadata': 'PropertyMetadata',
'document_id': 'str',
'document_id_metadata': 'PropertyMetadata',
'error_details': 'ErrorDetails',
'font': 'str',
'font_color': 'str',
'font_color_metadata': 'PropertyMetadata',
'font_metadata': 'PropertyMetadata',
'font_size': 'str',
'font_size_metadata': 'PropertyMetadata',
'form_order': 'str',
'form_order_metadata': 'PropertyMetadata',
'form_page_label': 'str',
'form_page_label_metadata': 'PropertyMetadata',
'form_page_number': 'str',
'form_page_number_metadata': 'PropertyMetadata',
'height': 'str',
'height_metadata': 'PropertyMetadata',
'italic': 'str',
'italic_metadata': 'PropertyMetadata',
'locale_policy': 'LocalePolicyTab',
'locked': 'str',
'locked_metadata': 'PropertyMetadata',
'max_length': 'str',
'max_length_metadata': 'PropertyMetadata',
'merge_field': 'MergeField',
'merge_field_xml': 'str',
'name': 'str',
'name_metadata': 'PropertyMetadata',
'numerical_value': 'str',
'original_value': 'str',
'original_value_metadata': 'PropertyMetadata',
'page_number': 'str',
'page_number_metadata': 'PropertyMetadata',
'recipient_id': 'str',
'recipient_id_guid': 'str',
'recipient_id_guid_metadata': 'PropertyMetadata',
'recipient_id_metadata': 'PropertyMetadata',
'require_all': 'str',
'require_all_metadata': 'PropertyMetadata',
'required': 'str',
'required_metadata': 'PropertyMetadata',
'require_initial_on_shared_change': 'str',
'require_initial_on_shared_change_metadata': 'PropertyMetadata',
'sender_required': 'str',
'sender_required_metadata': 'PropertyMetadata',
'shared': 'str',
'shared_metadata': 'PropertyMetadata',
'smart_contract_information': 'SmartContractInformation',
'source': 'str',
'status': 'str',
'status_metadata': 'PropertyMetadata',
'tab_group_labels': 'list[str]',
'tab_group_labels_metadata': 'PropertyMetadata',
'tab_id': 'str',
'tab_id_metadata': 'PropertyMetadata',
'tab_label': 'str',
'tab_label_metadata': 'PropertyMetadata',
'tab_order': 'str',
'tab_order_metadata': 'PropertyMetadata',
'tab_type': 'str',
'tab_type_metadata': 'PropertyMetadata',
'template_locked': 'str',
'template_locked_metadata': 'PropertyMetadata',
'template_required': 'str',
'template_required_metadata': 'PropertyMetadata',
'tooltip': 'str',
'tool_tip_metadata': 'PropertyMetadata',
'underline': 'str',
'underline_metadata': 'PropertyMetadata',
'value': 'str',
'value_metadata': 'PropertyMetadata',
'width': 'str',
'width_metadata': 'PropertyMetadata',
'x_position': 'str',
'x_position_metadata': 'PropertyMetadata',
'y_position': 'str',
'y_position_metadata': 'PropertyMetadata'
}
attribute_map = {
'anchor_allow_white_space_in_characters': 'anchorAllowWhiteSpaceInCharacters',
'anchor_allow_white_space_in_characters_metadata': 'anchorAllowWhiteSpaceInCharactersMetadata',
'anchor_case_sensitive': 'anchorCaseSensitive',
'anchor_case_sensitive_metadata': 'anchorCaseSensitiveMetadata',
'anchor_horizontal_alignment': 'anchorHorizontalAlignment',
'anchor_horizontal_alignment_metadata': 'anchorHorizontalAlignmentMetadata',
'anchor_ignore_if_not_present': 'anchorIgnoreIfNotPresent',
'anchor_ignore_if_not_present_metadata': 'anchorIgnoreIfNotPresentMetadata',
'anchor_match_whole_word': 'anchorMatchWholeWord',
'anchor_match_whole_word_metadata': 'anchorMatchWholeWordMetadata',
'anchor_string': 'anchorString',
'anchor_string_metadata': 'anchorStringMetadata',
'anchor_tab_processor_version': 'anchorTabProcessorVersion',
'anchor_tab_processor_version_metadata': 'anchorTabProcessorVersionMetadata',
'anchor_units': 'anchorUnits',
'anchor_units_metadata': 'anchorUnitsMetadata',
'anchor_x_offset': 'anchorXOffset',
'anchor_x_offset_metadata': 'anchorXOffsetMetadata',
'anchor_y_offset': 'anchorYOffset',
'anchor_y_offset_metadata': 'anchorYOffsetMetadata',
'bold': 'bold',
'bold_metadata': 'boldMetadata',
'conceal_value_on_document': 'concealValueOnDocument',
'conceal_value_on_document_metadata': 'concealValueOnDocumentMetadata',
'conditional_parent_label': 'conditionalParentLabel',
'conditional_parent_label_metadata': 'conditionalParentLabelMetadata',
'conditional_parent_value': 'conditionalParentValue',
'conditional_parent_value_metadata': 'conditionalParentValueMetadata',
'custom_tab_id': 'customTabId',
'custom_tab_id_metadata': 'customTabIdMetadata',
'disable_auto_size': 'disableAutoSize',
'disable_auto_size_metadata': 'disableAutoSizeMetadata',
'document_id': 'documentId',
'document_id_metadata': 'documentIdMetadata',
'error_details': 'errorDetails',
'font': 'font',
'font_color': 'fontColor',
'font_color_metadata': 'fontColorMetadata',
'font_metadata': 'fontMetadata',
'font_size': 'fontSize',
'font_size_metadata': 'fontSizeMetadata',
'form_order': 'formOrder',
'form_order_metadata': 'formOrderMetadata',
'form_page_label': 'formPageLabel',
'form_page_label_metadata': 'formPageLabelMetadata',
'form_page_number': 'formPageNumber',
'form_page_number_metadata': 'formPageNumberMetadata',
'height': 'height',
'height_metadata': 'heightMetadata',
'italic': 'italic',
'italic_metadata': 'italicMetadata',
'locale_policy': 'localePolicy',
'locked': 'locked',
'locked_metadata': 'lockedMetadata',
'max_length': 'maxLength',
'max_length_metadata': 'maxLengthMetadata',
'merge_field': 'mergeField',
'merge_field_xml': 'mergeFieldXml',
'name': 'name',
'name_metadata': 'nameMetadata',
'numerical_value': 'numericalValue',
'original_value': 'originalValue',
'original_value_metadata': 'originalValueMetadata',
'page_number': 'pageNumber',
'page_number_metadata': 'pageNumberMetadata',
'recipient_id': 'recipientId',
'recipient_id_guid': 'recipientIdGuid',
'recipient_id_guid_metadata': 'recipientIdGuidMetadata',
'recipient_id_metadata': 'recipientIdMetadata',
'require_all': 'requireAll',
'require_all_metadata': 'requireAllMetadata',
'required': 'required',
'required_metadata': 'requiredMetadata',
'require_initial_on_shared_change': 'requireInitialOnSharedChange',
'require_initial_on_shared_change_metadata': 'requireInitialOnSharedChangeMetadata',
'sender_required': 'senderRequired',
'sender_required_metadata': 'senderRequiredMetadata',
'shared': 'shared',
'shared_metadata': 'sharedMetadata',
'smart_contract_information': 'smartContractInformation',
'source': 'source',
'status': 'status',
'status_metadata': 'statusMetadata',
'tab_group_labels': 'tabGroupLabels',
'tab_group_labels_metadata': 'tabGroupLabelsMetadata',
'tab_id': 'tabId',
'tab_id_metadata': 'tabIdMetadata',
'tab_label': 'tabLabel',
'tab_label_metadata': 'tabLabelMetadata',
'tab_order': 'tabOrder',
'tab_order_metadata': 'tabOrderMetadata',
'tab_type': 'tabType',
'tab_type_metadata': 'tabTypeMetadata',
'template_locked': 'templateLocked',
'template_locked_metadata': 'templateLockedMetadata',
'template_required': 'templateRequired',
'template_required_metadata': 'templateRequiredMetadata',
'tooltip': 'tooltip',
'tool_tip_metadata': 'toolTipMetadata',
'underline': 'underline',
'underline_metadata': 'underlineMetadata',
'value': 'value',
'value_metadata': 'valueMetadata',
'width': 'width',
'width_metadata': 'widthMetadata',
'x_position': 'xPosition',
'x_position_metadata': 'xPositionMetadata',
'y_position': 'yPosition',
'y_position_metadata': 'yPositionMetadata'
}
def __init__(self, _configuration=None, **kwargs):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._anchor_allow_white_space_in_characters = None
self._anchor_allow_white_space_in_characters_metadata = None
self._anchor_case_sensitive = None
self._anchor_case_sensitive_metadata = None
self._anchor_horizontal_alignment = None
self._anchor_horizontal_alignment_metadata = None
self._anchor_ignore_if_not_present = None
self._anchor_ignore_if_not_present_metadata = None
self._anchor_match_whole_word = None
self._anchor_match_whole_word_metadata = None
self._anchor_string = None
self._anchor_string_metadata = None
self._anchor_tab_processor_version = None
self._anchor_tab_processor_version_metadata = None
self._anchor_units = None
self._anchor_units_metadata = None
self._anchor_x_offset = None
self._anchor_x_offset_metadata = None
self._anchor_y_offset = None
self._anchor_y_offset_metadata = None
self._bold = None
self._bold_metadata = None
self._conceal_value_on_document = None
self._conceal_value_on_document_metadata = None
self._conditional_parent_label = None
self._conditional_parent_label_metadata = None
self._conditional_parent_value = None
self._conditional_parent_value_metadata = None
self._custom_tab_id = None
self._custom_tab_id_metadata = None
self._disable_auto_size = None
self._disable_auto_size_metadata = None
self._document_id = None
self._document_id_metadata = None
self._error_details = None
self._font = None
self._font_color = None
self._font_color_metadata = None
self._font_metadata = None
self._font_size = None
self._font_size_metadata = None
self._form_order = None
self._form_order_metadata = None
self._form_page_label = None
self._form_page_label_metadata = None
self._form_page_number = None
self._form_page_number_metadata = None
self._height = None
self._height_metadata = None
self._italic = None
self._italic_metadata = None
self._locale_policy = None
self._locked = None
self._locked_metadata = None
self._max_length = None
self._max_length_metadata = None
self._merge_field = None
self._merge_field_xml = None
self._name = None
self._name_metadata = None
self._numerical_value = None
self._original_value = None
self._original_value_metadata = None
self._page_number = None
self._page_number_metadata = None
self._recipient_id = None
self._recipient_id_guid = None
self._recipient_id_guid_metadata = None
self._recipient_id_metadata = None
self._require_all = None
self._require_all_metadata = None
self._required = None
self._required_metadata = None
self._require_initial_on_shared_change = None
self._require_initial_on_shared_change_metadata = None
self._sender_required = None
self._sender_required_metadata = None
self._shared = None
self._shared_metadata = None
self._smart_contract_information = None
self._source = None
self._status = None
self._status_metadata = None
self._tab_group_labels = None
self._tab_group_labels_metadata = None
self._tab_id = None
self._tab_id_metadata = None
self._tab_label = None
self._tab_label_metadata = None
self._tab_order = None
self._tab_order_metadata = None
self._tab_type = None
self._tab_type_metadata = None
self._template_locked = None
self._template_locked_metadata = None
self._template_required = None
self._template_required_metadata = None
self._tooltip = None
self._tool_tip_metadata = None
self._underline = None
self._underline_metadata = None
self._value = None
self._value_metadata = None
self._width = None
self._width_metadata = None
self._x_position = None
self._x_position_metadata = None
self._y_position = None
self._y_position_metadata = None
self.discriminator = None
setattr(self, "_{}".format('anchor_allow_white_space_in_characters'), kwargs.get('anchor_allow_white_space_in_characters', None))
setattr(self, "_{}".format('anchor_allow_white_space_in_characters_metadata'), kwargs.get('anchor_allow_white_space_in_characters_metadata', None))
setattr(self, "_{}".format('anchor_case_sensitive'), kwargs.get('anchor_case_sensitive', None))
setattr(self, "_{}".format('anchor_case_sensitive_metadata'), kwargs.get('anchor_case_sensitive_metadata', None))
setattr(self, "_{}".format('anchor_horizontal_alignment'), kwargs.get('anchor_horizontal_alignment', None))
setattr(self, "_{}".format('anchor_horizontal_alignment_metadata'), kwargs.get('anchor_horizontal_alignment_metadata', None))
setattr(self, "_{}".format('anchor_ignore_if_not_present'), kwargs.get('anchor_ignore_if_not_present', None))
setattr(self, "_{}".format('anchor_ignore_if_not_present_metadata'), kwargs.get('anchor_ignore_if_not_present_metadata', None))
setattr(self, "_{}".format('anchor_match_whole_word'), kwargs.get('anchor_match_whole_word', None))
setattr(self, "_{}".format('anchor_match_whole_word_metadata'), kwargs.get('anchor_match_whole_word_metadata', None))
setattr(self, "_{}".format('anchor_string'), kwargs.get('anchor_string', None))
setattr(self, "_{}".format('anchor_string_metadata'), kwargs.get('anchor_string_metadata', None))
setattr(self, "_{}".format('anchor_tab_processor_version'), kwargs.get('anchor_tab_processor_version', None))
setattr(self, "_{}".format('anchor_tab_processor_version_metadata'), kwargs.get('anchor_tab_processor_version_metadata', None))
setattr(self, "_{}".format('anchor_units'), kwargs.get('anchor_units', None))
setattr(self, "_{}".format('anchor_units_metadata'), kwargs.get('anchor_units_metadata', None))
setattr(self, "_{}".format('anchor_x_offset'), kwargs.get('anchor_x_offset', None))
setattr(self, "_{}".format('anchor_x_offset_metadata'), kwargs.get('anchor_x_offset_metadata', None))
setattr(self, "_{}".format('anchor_y_offset'), kwargs.get('anchor_y_offset', None))
setattr(self, "_{}".format('anchor_y_offset_metadata'), kwargs.get('anchor_y_offset_metadata', None))
setattr(self, "_{}".format('bold'), kwargs.get('bold', None))
setattr(self, "_{}".format('bold_metadata'), kwargs.get('bold_metadata', None))
setattr(self, "_{}".format('conceal_value_on_document'), kwargs.get('conceal_value_on_document', None))
setattr(self, "_{}".format('conceal_value_on_document_metadata'), kwargs.get('conceal_value_on_document_metadata', None))
setattr(self, "_{}".format('conditional_parent_label'), kwargs.get('conditional_parent_label', None))
setattr(self, "_{}".format('conditional_parent_label_metadata'), kwargs.get('conditional_parent_label_metadata', None))
setattr(self, "_{}".format('conditional_parent_value'), kwargs.get('conditional_parent_value', None))
setattr(self, "_{}".format('conditional_parent_value_metadata'), kwargs.get('conditional_parent_value_metadata', None))
setattr(self, "_{}".format('custom_tab_id'), kwargs.get('custom_tab_id', None))
setattr(self, "_{}".format('custom_tab_id_metadata'), kwargs.get('custom_tab_id_metadata', None))
setattr(self, "_{}".format('disable_auto_size'), kwargs.get('disable_auto_size', None))
setattr(self, "_{}".format('disable_auto_size_metadata'), kwargs.get('disable_auto_size_metadata', None))
setattr(self, "_{}".format('document_id'), kwargs.get('document_id', None))
setattr(self, "_{}".format('document_id_metadata'), kwargs.get('document_id_metadata', None))
setattr(self, "_{}".format('error_details'), kwargs.get('error_details', None))
setattr(self, "_{}".format('font'), kwargs.get('font', None))
setattr(self, "_{}".format('font_color'), kwargs.get('font_color', None))
setattr(self, "_{}".format('font_color_metadata'), kwargs.get('font_color_metadata', None))
setattr(self, "_{}".format('font_metadata'), kwargs.get('font_metadata', None))
setattr(self, "_{}".format('font_size'), kwargs.get('font_size', None))
setattr(self, "_{}".format('font_size_metadata'), kwargs.get('font_size_metadata', None))
setattr(self, "_{}".format('form_order'), kwargs.get('form_order', None))
setattr(self, "_{}".format('form_order_metadata'), kwargs.get('form_order_metadata', None))
setattr(self, "_{}".format('form_page_label'), kwargs.get('form_page_label', None))
setattr(self, "_{}".format('form_page_label_metadata'), kwargs.get('form_page_label_metadata', None))
setattr(self, "_{}".format('form_page_number'), kwargs.get('form_page_number', None))
setattr(self, "_{}".format('form_page_number_metadata'), kwargs.get('form_page_number_metadata', None))
setattr(self, "_{}".format('height'), kwargs.get('height', None))
setattr(self, "_{}".format('height_metadata'), kwargs.get('height_metadata', None))
setattr(self, "_{}".format('italic'), kwargs.get('italic', None))
setattr(self, "_{}".format('italic_metadata'), kwargs.get('italic_metadata', None))
setattr(self, "_{}".format('locale_policy'), kwargs.get('locale_policy', None))
setattr(self, "_{}".format('locked'), kwargs.get('locked', None))
setattr(self, "_{}".format('locked_metadata'), kwargs.get('locked_metadata', None))
setattr(self, "_{}".format('max_length'), kwargs.get('max_length', None))
setattr(self, "_{}".format('max_length_metadata'), kwargs.get('max_length_metadata', None))
setattr(self, "_{}".format('merge_field'), kwargs.get('merge_field', None))
setattr(self, "_{}".format('merge_field_xml'), kwargs.get('merge_field_xml', None))
setattr(self, "_{}".format('name'), kwargs.get('name', None))
setattr(self, "_{}".format('name_metadata'), kwargs.get('name_metadata', None))
setattr(self, "_{}".format('numerical_value'), kwargs.get('numerical_value', None))
setattr(self, "_{}".format('original_value'), kwargs.get('original_value', None))
setattr(self, "_{}".format('original_value_metadata'), kwargs.get('original_value_metadata', None))
setattr(self, "_{}".format('page_number'), kwargs.get('page_number', None))
setattr(self, "_{}".format('page_number_metadata'), kwargs.get('page_number_metadata', None))
setattr(self, "_{}".format('recipient_id'), kwargs.get('recipient_id', None))
setattr(self, "_{}".format('recipient_id_guid'), kwargs.get('recipient_id_guid', None))
setattr(self, "_{}".format('recipient_id_guid_metadata'), kwargs.get('recipient_id_guid_metadata', None))
setattr(self, "_{}".format('recipient_id_metadata'), kwargs.get('recipient_id_metadata', None))
setattr(self, "_{}".format('require_all'), kwargs.get('require_all', None))
setattr(self, "_{}".format('require_all_metadata'), kwargs.get('require_all_metadata', None))
setattr(self, "_{}".format('required'), kwargs.get('required', None))
setattr(self, "_{}".format('required_metadata'), kwargs.get('required_metadata', None))
setattr(self, "_{}".format('require_initial_on_shared_change'), kwargs.get('require_initial_on_shared_change', None))
setattr(self, "_{}".format('require_initial_on_shared_change_metadata'), kwargs.get('require_initial_on_shared_change_metadata', None))
setattr(self, "_{}".format('sender_required'), kwargs.get('sender_required', None))
setattr(self, "_{}".format('sender_required_metadata'), kwargs.get('sender_required_metadata', None))
setattr(self, "_{}".format('shared'), kwargs.get('shared', None))
setattr(self, "_{}".format('shared_metadata'), kwargs.get('shared_metadata', None))
setattr(self, "_{}".format('smart_contract_information'), kwargs.get('smart_contract_information', None))
setattr(self, "_{}".format('source'), kwargs.get('source', None))
setattr(self, "_{}".format('status'), kwargs.get('status', None))
setattr(self, "_{}".format('status_metadata'), kwargs.get('status_metadata', None))
setattr(self, "_{}".format('tab_group_labels'), kwargs.get('tab_group_labels', None))
setattr(self, "_{}".format('tab_group_labels_metadata'), kwargs.get('tab_group_labels_metadata', None))
setattr(self, "_{}".format('tab_id'), kwargs.get('tab_id', None))
setattr(self, "_{}".format('tab_id_metadata'), kwargs.get('tab_id_metadata', None))
setattr(self, "_{}".format('tab_label'), kwargs.get('tab_label', None))
setattr(self, "_{}".format('tab_label_metadata'), kwargs.get('tab_label_metadata', None))
setattr(self, "_{}".format('tab_order'), kwargs.get('tab_order', None))
setattr(self, "_{}".format('tab_order_metadata'), kwargs.get('tab_order_metadata', None))
setattr(self, "_{}".format('tab_type'), kwargs.get('tab_type', None))
setattr(self, "_{}".format('tab_type_metadata'), kwargs.get('tab_type_metadata', None))
setattr(self, "_{}".format('template_locked'), kwargs.get('template_locked', None))
setattr(self, "_{}".format('template_locked_metadata'), kwargs.get('template_locked_metadata', None))
setattr(self, "_{}".format('template_required'), kwargs.get('template_required', None))
setattr(self, "_{}".format('template_required_metadata'), kwargs.get('template_required_metadata', None))
setattr(self, "_{}".format('tooltip'), kwargs.get('tooltip', None))
setattr(self, "_{}".format('tool_tip_metadata'), kwargs.get('tool_tip_metadata', None))
setattr(self, "_{}".format('underline'), kwargs.get('underline', None))
setattr(self, "_{}".format('underline_metadata'), kwargs.get('underline_metadata', None))
setattr(self, "_{}".format('value'), kwargs.get('value', None))
setattr(self, "_{}".format('value_metadata'), kwargs.get('value_metadata', None))
setattr(self, "_{}".format('width'), kwargs.get('width', None))
setattr(self, "_{}".format('width_metadata'), kwargs.get('width_metadata', None))
setattr(self, "_{}".format('x_position'), kwargs.get('x_position', None))
setattr(self, "_{}".format('x_position_metadata'), kwargs.get('x_position_metadata', None))
setattr(self, "_{}".format('y_position'), kwargs.get('y_position', None))
setattr(self, "_{}".format('y_position_metadata'), kwargs.get('y_position_metadata', None))
@property
def anchor_allow_white_space_in_characters(self):
return self._anchor_allow_white_space_in_characters
@anchor_allow_white_space_in_characters.setter
def anchor_allow_white_space_in_characters(self, anchor_allow_white_space_in_characters):
self._anchor_allow_white_space_in_characters = anchor_allow_white_space_in_characters
@property
def anchor_allow_white_space_in_characters_metadata(self):
return self._anchor_allow_white_space_in_characters_metadata
@anchor_allow_white_space_in_characters_metadata.setter
def anchor_allow_white_space_in_characters_metadata(self, anchor_allow_white_space_in_characters_metadata):
self._anchor_allow_white_space_in_characters_metadata = anchor_allow_white_space_in_characters_metadata
@property
def anchor_case_sensitive(self):
return self._anchor_case_sensitive
@anchor_case_sensitive.setter
def anchor_case_sensitive(self, anchor_case_sensitive):
self._anchor_case_sensitive = anchor_case_sensitive
@property
def anchor_case_sensitive_metadata(self):
return self._anchor_case_sensitive_metadata
@anchor_case_sensitive_metadata.setter
def anchor_case_sensitive_metadata(self, anchor_case_sensitive_metadata):
self._anchor_case_sensitive_metadata = anchor_case_sensitive_metadata
@property
def anchor_horizontal_alignment(self):
return self._anchor_horizontal_alignment
@anchor_horizontal_alignment.setter
def anchor_horizontal_alignment(self, anchor_horizontal_alignment):
self._anchor_horizontal_alignment = anchor_horizontal_alignment
@property
def anchor_horizontal_alignment_metadata(self):
return self._anchor_horizontal_alignment_metadata
@anchor_horizontal_alignment_metadata.setter
def anchor_horizontal_alignment_metadata(self, anchor_horizontal_alignment_metadata):
self._anchor_horizontal_alignment_metadata = anchor_horizontal_alignment_metadata
@property
def anchor_ignore_if_not_present(self):
return self._anchor_ignore_if_not_present
@anchor_ignore_if_not_present.setter
def anchor_ignore_if_not_present(self, anchor_ignore_if_not_present):
self._anchor_ignore_if_not_present = anchor_ignore_if_not_present
@property
def anchor_ignore_if_not_present_metadata(self):
return self._anchor_ignore_if_not_present_metadata
@anchor_ignore_if_not_present_metadata.setter
def anchor_ignore_if_not_present_metadata(self, anchor_ignore_if_not_present_metadata):
self._anchor_ignore_if_not_present_metadata = anchor_ignore_if_not_present_metadata
@property
def anchor_match_whole_word(self):
return self._anchor_match_whole_word
@anchor_match_whole_word.setter
def anchor_match_whole_word(self, anchor_match_whole_word):
self._anchor_match_whole_word = anchor_match_whole_word
@property
def anchor_match_whole_word_metadata(self):
return self._anchor_match_whole_word_metadata
@anchor_match_whole_word_metadata.setter
def anchor_match_whole_word_metadata(self, anchor_match_whole_word_metadata):
self._anchor_match_whole_word_metadata = anchor_match_whole_word_metadata
@property
def anchor_string(self):
return self._anchor_string
@anchor_string.setter
def anchor_string(self, anchor_string):
self._anchor_string = anchor_string
@property
def anchor_string_metadata(self):
return self._anchor_string_metadata
@anchor_string_metadata.setter
def anchor_string_metadata(self, anchor_string_metadata):
self._anchor_string_metadata = anchor_string_metadata
@property
def anchor_tab_processor_version(self):
return self._anchor_tab_processor_version
@anchor_tab_processor_version.setter
def anchor_tab_processor_version(self, anchor_tab_processor_version):
self._anchor_tab_processor_version = anchor_tab_processor_version
@property
def anchor_tab_processor_version_metadata(self):
return self._anchor_tab_processor_version_metadata
@anchor_tab_processor_version_metadata.setter
def anchor_tab_processor_version_metadata(self, anchor_tab_processor_version_metadata):
self._anchor_tab_processor_version_metadata = anchor_tab_processor_version_metadata
@property
def anchor_units(self):
return self._anchor_units
@anchor_units.setter
|
MIT License
|
ninthdevilhaunster/arknightsautohelper
|
vendor/penguin_client/penguin_client/models/event_period.py
|
EventPeriod.label_i18n
|
python
|
def label_i18n(self):
return self._label_i18n
|
Gets the label_i18n of this EventPeriod. # noqa: E501
:return: The label_i18n of this EventPeriod. # noqa: E501
:rtype: dict(str, str)
|
https://github.com/ninthdevilhaunster/arknightsautohelper/blob/d24b4e22a73b333c1acc152556566efad4e94c04/vendor/penguin_client/penguin_client/models/event_period.py#L134-L141
|
import pprint
import re
import six
class EventPeriod(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'conditions': 'ExistConditions',
'end': 'int',
'existence': 'dict(str, Existence)',
'label_i18n': 'dict(str, str)',
'start': 'int'
}
attribute_map = {
'conditions': 'conditions',
'end': 'end',
'existence': 'existence',
'label_i18n': 'label_i18n',
'start': 'start'
}
def __init__(self, conditions=None, end=None, existence=None, label_i18n=None, start=None):
self._conditions = None
self._end = None
self._existence = None
self._label_i18n = None
self._start = None
self.discriminator = None
if conditions is not None:
self.conditions = conditions
if end is not None:
self.end = end
if existence is not None:
self.existence = existence
if label_i18n is not None:
self.label_i18n = label_i18n
if start is not None:
self.start = start
@property
def conditions(self):
return self._conditions
@conditions.setter
def conditions(self, conditions):
self._conditions = conditions
@property
def end(self):
return self._end
@end.setter
def end(self, end):
self._end = end
@property
def existence(self):
return self._existence
@existence.setter
def existence(self, existence):
self._existence = existence
@property
|
MIT License
|
openstack/tempest
|
tempest/lib/services/identity/v3/oauth_token_client.py
|
OAUTHTokenClient.create_access_token
|
python
|
def create_access_token(self, consumer_key, consumer_secret, request_key,
request_secret, oauth_verifier):
endpoint = 'OS-OAUTH1/access_token'
oauth_params = self._generate_params_with_signature(
consumer_key,
self.base_url + '/' + endpoint,
client_secret=consumer_secret,
resource_owner_key=request_key,
resource_owner_secret=request_secret,
verifier=oauth_verifier,
http_method='POST')
headers = self._generate_oauth_header(oauth_params)
resp, body = self.post(endpoint, body=None, headers=headers)
self.expected_success(201, resp.status)
if not isinstance(body, str):
body = body.decode('utf-8')
body = dict(item.split("=") for item in body.split("&"))
return rest_client.ResponseBody(resp, body)
|
Create access token.
For more information, please refer to the official API reference:
https://docs.openstack.org/api-ref/identity/v3-ext/#create-access-token
|
https://github.com/openstack/tempest/blob/d458bf329739ae7b7652d329e6415ad6ba54e490/tempest/lib/services/identity/v3/oauth_token_client.py#L154-L176
|
import binascii
import hashlib
import hmac
import random
import time
from urllib import parse as urlparse
from oslo_serialization import jsonutils as json
from tempest.lib.common import rest_client
class OAUTHTokenClient(rest_client.RestClient):
api_version = "v3"
def _escape(self, s):
safe = b'~'
s = s.encode('utf-8') if isinstance(s, str) else s
s = urlparse.quote(s, safe)
if isinstance(s, bytes):
s = s.decode('utf-8')
return s
def _generate_params_with_signature(self, client_key, uri,
client_secret=None,
resource_owner_key=None,
resource_owner_secret=None,
callback_uri=None,
verifier=None,
http_method='GET'):
timestamp = str(int(time.time()))
nonce = str(random.getrandbits(64)) + timestamp
oauth_params = [
('oauth_nonce', nonce),
('oauth_timestamp', timestamp),
('oauth_version', '1.0'),
('oauth_signature_method', 'HMAC-SHA1'),
('oauth_consumer_key', client_key),
]
if resource_owner_key:
oauth_params.append(('oauth_token', resource_owner_key))
if callback_uri:
oauth_params.append(('oauth_callback', callback_uri))
if verifier:
oauth_params.append(('oauth_verifier', verifier))
key_values = [(self._escape(k), self._escape(v))
for k, v in oauth_params]
key_values.sort()
parameter_parts = ['{0}={1}'.format(k, v) for k, v in key_values]
normalized_params = '&'.join(parameter_parts)
scheme, netloc, path, params, _, _ = urlparse.urlparse(uri)
scheme = scheme.lower()
netloc = netloc.lower()
path = path.replace('//', '/')
normalized_uri = urlparse.urlunparse((scheme, netloc, path,
params, '', ''))
base_string = self._escape(http_method.upper())
base_string += '&'
base_string += self._escape(normalized_uri)
base_string += '&'
base_string += self._escape(normalized_params)
key = self._escape(client_secret or '')
key += '&'
key += self._escape(resource_owner_secret or '')
key_utf8 = key.encode('utf-8')
text_utf8 = base_string.encode('utf-8')
signature = hmac.new(key_utf8, text_utf8, hashlib.sha1)
sig = binascii.b2a_base64(signature.digest())[:-1].decode('utf-8')
oauth_params.append(('oauth_signature', sig))
return oauth_params
def _generate_oauth_header(self, oauth_params):
authorization_header = {}
authorization_header_parameters_parts = []
for oauth_parameter_name, value in oauth_params:
escaped_name = self._escape(oauth_parameter_name)
escaped_value = self._escape(value)
part = '{0}="{1}"'.format(escaped_name, escaped_value)
authorization_header_parameters_parts.append(part)
authorization_header_parameters = ', '.join(
authorization_header_parameters_parts)
oauth_string = 'OAuth %s' % authorization_header_parameters
authorization_header['Authorization'] = oauth_string
return authorization_header
def create_request_token(self, consumer_key, consumer_secret, project_id):
endpoint = 'OS-OAUTH1/request_token'
headers = {'Requested-Project-Id': project_id}
oauth_params = self._generate_params_with_signature(
consumer_key,
self.base_url + '/' + endpoint,
client_secret=consumer_secret,
callback_uri='oob',
http_method='POST')
oauth_header = self._generate_oauth_header(oauth_params)
headers.update(oauth_header)
resp, body = self.post(endpoint,
body=None,
headers=headers)
self.expected_success(201, resp.status)
if not isinstance(body, str):
body = body.decode('utf-8')
body = dict(item.split("=") for item in body.split("&"))
return rest_client.ResponseBody(resp, body)
def authorize_request_token(self, request_token_id, role_ids):
roles = [{'id': role_id} for role_id in role_ids]
body = {'roles': roles}
post_body = json.dumps(body)
resp, body = self.put("OS-OAUTH1/authorize/%s" % request_token_id,
post_body)
self.expected_success(200, resp.status)
body = json.loads(body)
return rest_client.ResponseBody(resp, body)
|
Apache License 2.0
|
decentfox/aioh2
|
aioh2/protocol.py
|
H2Protocol.initial_window_size
|
python
|
def initial_window_size(self):
return self._conn.local_settings.initial_window_size
|
Self initial window size (in octets) for stream-level flow control.
Setting a larger value may cause the inbound buffer increase, and allow
more data to be received. Setting with a smaller value does not
decrease the buffer immediately, but may prevent the peer from sending
more data to overflow the buffer for a while. However, it is still up
to the peer whether to respect this setting or not.
|
https://github.com/decentfox/aioh2/blob/2f9b76161e99e32317083cd2ebd17ce2ed3e41ab/aioh2/protocol.py#L678-L688
|
import struct
from collections import deque
from logging import getLogger
import asyncio
import priority
from h2 import events
from h2 import settings
from h2.config import H2Configuration
from h2.connection import H2Connection
from h2.exceptions import NoSuchStreamError, StreamClosedError, ProtocolError
from . import exceptions, async_task
__all__ = ['H2Protocol']
logger = getLogger(__package__)
@asyncio.coroutine
def _wait_for_events(*events_):
while not all([event.is_set() for event in events_]):
yield from asyncio.wait([event.wait() for event in events_])
class _StreamEndedException(Exception):
def __init__(self, bufs=None):
if bufs is None:
bufs = []
self.bufs = bufs
class CallableEvent(asyncio.Event):
def __init__(self, func, *, loop=None):
super().__init__(loop=loop)
self._func = func
@asyncio.coroutine
def wait(self):
while not self._func():
self.clear()
yield from super().wait()
def sync(self):
if self._func():
self.set()
else:
self.clear()
def is_set(self):
self.sync()
return super().is_set()
class H2Stream:
def __init__(self, stream_id, window_getter, loop=None):
if loop is None:
loop = asyncio.get_event_loop()
self._stream_id = stream_id
self._window_getter = window_getter
self._wlock = asyncio.Lock(loop=loop)
self._window_open = CallableEvent(self._is_window_open, loop=loop)
self._rlock = asyncio.Lock(loop=loop)
self._buffers = deque()
self._buffer_size = 0
self._buffer_ready = asyncio.Event(loop=loop)
self._response = asyncio.Future(loop=loop)
self._trailers = asyncio.Future(loop=loop)
self._eof_received = False
self._closed = False
@property
def id(self):
return self._stream_id
@property
def window_open(self):
return self._window_open
@property
def rlock(self):
return self._rlock
@property
def wlock(self):
return self._wlock
@property
def buffer_size(self):
return self._buffer_size
@property
def response(self):
return self._response
@property
def trailers(self):
return self._trailers
def _is_window_open(self):
try:
window = self._window_getter(self._stream_id)
except NoSuchStreamError:
self._closed = True
return True
else:
return window > 0
def feed_data(self, data):
if data:
self._buffers.append(data)
self._buffer_size += len(data)
self._buffer_ready.set()
def feed_eof(self):
self._eof_received = True
self._buffer_ready.set()
self.feed_trailers({})
def feed_response(self, headers):
self._response.set_result(headers)
def feed_trailers(self, headers):
if not self._trailers.done():
self._trailers.set_result(headers)
@asyncio.coroutine
def read_frame(self):
yield from self._buffer_ready.wait()
rv = b''
if self._buffers:
rv = self._buffers.popleft()
self._buffer_size -= len(rv)
if not self._buffers:
if self._eof_received:
raise _StreamEndedException([rv])
else:
self._buffer_ready.clear()
return rv
@asyncio.coroutine
def read_all(self):
yield from self._buffer_ready.wait()
rv = []
rv.extend(self._buffers)
self._buffers.clear()
self._buffer_size = 0
if self._eof_received:
raise _StreamEndedException(rv)
else:
self._buffer_ready.clear()
return rv
@asyncio.coroutine
def read(self, n):
yield from self._buffer_ready.wait()
rv = []
count = 0
while n > count and self._buffers:
buf = self._buffers.popleft()
count += len(buf)
if n < count:
rv.append(buf[:n - count])
self._buffers.appendleft(buf[n - count:])
count = n
else:
rv.append(buf)
self._buffer_size -= count
if not self._buffers:
if self._eof_received:
raise _StreamEndedException(rv)
else:
self._buffer_ready.clear()
return rv, count
class H2Protocol(asyncio.Protocol):
def __init__(self, client_side: bool, *, loop=None,
concurrency=8, functional_timeout=2):
if loop is None:
loop = asyncio.get_event_loop()
self._loop = loop
config = H2Configuration(client_side=client_side,
header_encoding='utf-8')
self._conn = H2Connection(config=config)
self._transport = None
self._streams = {}
self._inbound_requests = asyncio.Queue(concurrency, loop=loop)
self._priority = priority.PriorityTree()
self._priority_events = {}
self._handler = None
self._is_resumed = False
self._resumed = CallableEvent(lambda: self._is_resumed, loop=loop)
self._stream_creatable = CallableEvent(self._is_stream_creatable,
loop=loop)
self._last_active = 0
self._ping_index = -1
self._ping_time = 0
self._rtt = None
self._functional_timeout = functional_timeout
self._functional = CallableEvent(self._is_functional, loop=loop)
self._event_handlers = {
events.RequestReceived: self._request_received,
events.ResponseReceived: self._response_received,
events.TrailersReceived: self._trailers_received,
events.DataReceived: self._data_received,
events.WindowUpdated: self._window_updated,
events.RemoteSettingsChanged: self._remote_settings_changed,
events.PingAcknowledged: self._ping_acknowledged,
events.StreamEnded: self._stream_ended,
events.StreamReset: self._stream_reset,
events.PushedStreamReceived: self._pushed_stream_received,
events.SettingsAcknowledged: self._settings_acknowledged,
events.PriorityUpdated: self._priority_updated,
events.ConnectionTerminated: self._connection_terminated,
}
def connection_made(self, transport):
self._transport = transport
self._conn.initiate_connection()
self._conn.update_settings({
settings.SettingCodes.MAX_CONCURRENT_STREAMS: self._inbound_requests.maxsize})
self._flush()
self._stream_creatable.sync()
self.resume_writing()
self._last_active = self._loop.time()
self._functional.sync()
def connection_lost(self, exc):
self._conn = None
self._transport = None
self.pause_writing()
if self._handler:
self._handler.cancel()
def pause_writing(self):
self._is_resumed = False
self._resumed.sync()
def resume_writing(self):
self._is_resumed = True
self._resumed.sync()
def data_received(self, data):
self._last_active = self._loop.time()
self._functional.sync()
events_ = self._conn.receive_data(data)
self._flush()
for event in events_:
self._event_received(event)
def eof_received(self):
self._conn.close_connection()
self._flush()
def _event_received(self, event):
self._event_handlers[type(event)](event)
def _request_received(self, event: events.RequestReceived):
self._inbound_requests.put_nowait((0, event.stream_id, event.headers))
self._priority.insert_stream(event.stream_id)
self._priority.block(event.stream_id)
def _response_received(self, event: events.ResponseReceived):
self._get_stream(event.stream_id).feed_response(event.headers)
def _trailers_received(self, event: events.TrailersReceived):
self._get_stream(event.stream_id).feed_trailers(event.headers)
def _data_received(self, event: events.DataReceived):
self._get_stream(event.stream_id).feed_data(event.data)
if self._conn.inbound_flow_control_window < 1073741823:
self._conn.increment_flow_control_window(
2 ** 31 - 1 - self._conn.inbound_flow_control_window)
self._flush()
def _window_updated(self, event: events.WindowUpdated):
if event.stream_id:
self._get_stream(event.stream_id).window_open.sync()
else:
for stream in list(self._streams.values()):
stream.window_open.sync()
def _remote_settings_changed(self, event: events.RemoteSettingsChanged):
if settings.SettingCodes.INITIAL_WINDOW_SIZE in event.changed_settings:
for stream in list(self._streams.values()):
stream.window_open.sync()
if settings.SettingCodes.MAX_CONCURRENT_STREAMS in event.changed_settings:
self._stream_creatable.sync()
def _ping_acknowledged(self, event: events.PingAcknowledged):
if struct.unpack('Q', event.ping_data) == (self._ping_index,):
self._rtt = self._loop.time() - self._ping_time
def _stream_ended(self, event: events.StreamEnded):
self._get_stream(event.stream_id).feed_eof()
self._stream_creatable.sync()
def _stream_reset(self, event: events.StreamReset):
self._get_stream(event.stream_id).window_open.set()
self._stream_creatable.sync()
def _pushed_stream_received(self, event: events.PushedStreamReceived):
pass
def _settings_acknowledged(self, event: events.SettingsAcknowledged):
pass
def _priority_updated(self, event: events.PriorityUpdated):
self._priority.reprioritize(
event.stream_id, event.depends_on, event.weight, event.exclusive)
def _connection_terminated(self, event: events.ConnectionTerminated):
logger.warning('Remote peer sent GOAWAY [ERR: %s], disconnect now.',
event.error_code)
self._transport.close()
def _get_stream(self, stream_id):
stream = self._streams.get(stream_id)
if stream is None:
stream = self._streams[stream_id] = H2Stream(
stream_id, self._conn.local_flow_control_window,
loop=self._loop)
return stream
def _flush(self):
self._transport.write(self._conn.data_to_send())
def _is_stream_creatable(self):
return (self._conn.open_outbound_streams <
self._conn.remote_settings.max_concurrent_streams)
def _flow_control(self, stream_id):
delta = (self._conn.local_settings.initial_window_size -
self._get_stream(stream_id).buffer_size -
self._conn.remote_flow_control_window(stream_id))
if delta > 0:
self._conn.increment_flow_control_window(delta, stream_id)
self._flush()
def _is_functional(self):
return self._last_active + self._functional_timeout > self._loop.time()
def _priority_step(self):
try:
for stream_id in self._priority:
fut = self._priority_events.pop(stream_id, None)
if fut is not None:
fut.set_result(None)
break
except Exception:
if self._priority_events:
self._priority_events.popitem()[1].set_result(None)
def set_handler(self, handler):
if self._handler:
raise Exception('Handler was already set')
if handler:
self._handler = async_task(handler, loop=self._loop)
def close_connection(self):
self._transport.close()
@asyncio.coroutine
def start_request(self, headers, *, end_stream=False):
yield from _wait_for_events(self._resumed, self._stream_creatable)
stream_id = self._conn.get_next_available_stream_id()
self._priority.insert_stream(stream_id)
self._priority.block(stream_id)
self._conn.send_headers(stream_id, headers, end_stream=end_stream)
self._flush()
return stream_id
@asyncio.coroutine
def start_response(self, stream_id, headers, *, end_stream=False):
yield from self._resumed.wait()
self._conn.send_headers(stream_id, headers, end_stream=end_stream)
self._flush()
@asyncio.coroutine
def send_data(self, stream_id, data, *, end_stream=False):
try:
with (yield from self._get_stream(stream_id).wlock):
while True:
yield from _wait_for_events(
self._resumed, self._get_stream(stream_id).window_open)
self._priority.unblock(stream_id)
waiter = asyncio.Future()
if not self._priority_events:
self._loop.call_soon(self._priority_step)
self._priority_events[stream_id] = waiter
try:
yield from waiter
data_size = len(data)
size = min(
data_size,
self._conn.local_flow_control_window(stream_id),
self._conn.max_outbound_frame_size)
if data_size == 0 or size == data_size:
self._conn.send_data(stream_id, data,
end_stream=end_stream)
self._flush()
break
elif size > 0:
self._conn.send_data(stream_id, data[:size])
data = data[size:]
self._flush()
finally:
self._priority_events.pop(stream_id, None)
self._priority.block(stream_id)
if self._priority_events:
self._loop.call_soon(self._priority_step)
except ProtocolError:
raise exceptions.SendException(data)
@asyncio.coroutine
def send_trailers(self, stream_id, headers):
with (yield from self._get_stream(stream_id).wlock):
yield from self._resumed.wait()
self._conn.send_headers(stream_id, headers, end_stream=True)
self._flush()
@asyncio.coroutine
def end_stream(self, stream_id):
with (yield from self._get_stream(stream_id).wlock):
yield from self._resumed.wait()
self._conn.end_stream(stream_id)
self._flush()
@asyncio.coroutine
def recv_request(self):
rv = yield from self._inbound_requests.get()
return rv[1:]
@asyncio.coroutine
def recv_response(self, stream_id):
return (yield from self._get_stream(stream_id).response)
@asyncio.coroutine
def recv_trailers(self, stream_id):
return (yield from self._get_stream(stream_id).trailers)
@asyncio.coroutine
def read_stream(self, stream_id, size=None):
rv = []
try:
with (yield from self._get_stream(stream_id).rlock):
if size is None:
rv.append((
yield from self._get_stream(stream_id).read_frame()))
self._flow_control(stream_id)
elif size < 0:
while True:
rv.extend((
yield from self._get_stream(stream_id).read_all()))
self._flow_control(stream_id)
else:
while size > 0:
bufs, count = yield from self._get_stream(
stream_id).read(size)
rv.extend(bufs)
size -= count
self._flow_control(stream_id)
except StreamClosedError:
pass
except _StreamEndedException as e:
try:
self._flow_control(stream_id)
except StreamClosedError:
pass
rv.extend(e.bufs)
return b''.join(rv)
def update_settings(self, new_settings):
self._conn.update_settings(new_settings)
self._flush()
@asyncio.coroutine
def wait_functional(self):
while not self._is_functional():
self._rtt = None
self._ping_index += 1
self._ping_time = self._loop.time()
self._conn.ping(struct.pack('Q', self._ping_index))
self._flush()
try:
yield from asyncio.wait_for(self._functional.wait(),
self._functional_timeout)
except asyncio.TimeoutError:
pass
return self._rtt
def reprioritize(self, stream_id,
depends_on=None, weight=16, exclusive=False):
self._priority.reprioritize(stream_id, depends_on, weight, exclusive)
@property
def functional_timeout(self):
return self._functional_timeout
@functional_timeout.setter
def functional_timeout(self, val):
self._functional_timeout = val
self._functional.sync()
@property
|
BSD 3-Clause New or Revised License
|
jamesturk/scrapelib
|
scrapelib/__init__.py
|
CachingSession.should_cache_response
|
python
|
def should_cache_response(self, response: Response) -> bool:
return response.status_code == 200
|
Check if a given Response object should be cached.
Default behavior is to only cache responses with a 200
status code.
|
https://github.com/jamesturk/scrapelib/blob/a4332f2afb670e8742a7712bf58ffb03b0c12952/scrapelib/__init__.py#L329-L335
|
import logging
import os
import tempfile
import time
from urllib.request import urlopen as urllib_urlopen
from urllib.error import URLError
from typing import (
Any,
Callable,
Container,
IO,
Mapping,
MutableMapping,
Optional,
Text,
Tuple,
Union,
cast,
)
import requests
from .cache import (
CacheStorageBase,
FileCache,
SQLiteCache,
MemoryCache,
CacheResponse,
)
from ._types import (
_Data,
PreparedRequest,
RequestsCookieJar,
_HooksInput,
_AuthType,
Response,
)
__version__ = "2.0.6"
_user_agent = " ".join(("scrapelib", __version__, requests.utils.default_user_agent()))
_log = logging.getLogger("scrapelib")
_log.addHandler(logging.NullHandler())
class HTTPMethodUnavailableError(requests.RequestException):
def __init__(self, message: str, method: str):
super().__init__(message)
self.method = method
class HTTPError(requests.HTTPError):
def __init__(self, response: Response, body: dict = None):
message = "%s while retrieving %s" % (response.status_code, response.url)
super().__init__(message)
self.response = response
self.body = body or self.response.text
class FTPError(requests.HTTPError):
def __init__(self, url: str):
message = "error while retrieving %s" % url
super().__init__(message)
class RetrySession(requests.Session):
def __init__(self) -> None:
super().__init__()
self._retry_attempts = 0
self.retry_wait_seconds: float = 10
@property
def retry_attempts(self) -> int:
return self._retry_attempts
@retry_attempts.setter
def retry_attempts(self, value: int) -> None:
self._retry_attempts = max(value, 0)
def accept_response(self, response: Response, **kwargs: dict) -> bool:
return response.status_code < 400
def request(
self,
method: str,
url: Union[str, bytes, Text],
params: Union[None, bytes, MutableMapping[Text, Text]] = None,
data: _Data = None,
headers: Optional[MutableMapping[Text, Text]] = None,
cookies: Union[None, RequestsCookieJar, MutableMapping[Text, Text]] = None,
files: Optional[MutableMapping[Text, IO[Any]]] = None,
auth: _AuthType = None,
timeout: Union[None, float, Tuple[float, float], Tuple[float, None]] = None,
allow_redirects: Optional[bool] = True,
proxies: Optional[MutableMapping[Text, Text]] = None,
hooks: Optional[_HooksInput] = None,
stream: Optional[bool] = None,
verify: Union[None, bool, Text] = True,
cert: Union[Text, Tuple[Text, Text], None] = None,
json: Optional[Any] = None,
retry_on_404: bool = False,
) -> Response:
tries = 0
exception_raised = None
while tries <= self.retry_attempts:
exception_raised = None
try:
resp = super().request(
method,
url,
params=params,
data=data,
headers=headers,
cookies=cookies,
files=files,
auth=auth,
timeout=timeout,
allow_redirects=allow_redirects,
proxies=proxies,
hooks=hooks,
stream=stream,
verify=verify,
cert=cert,
json=json,
)
if self.accept_response(resp) or (
resp.status_code == 404 and not retry_on_404
):
break
except Exception as e:
if isinstance(e, requests.exceptions.SSLError):
raise
exception_raised = e
tries += 1
if tries <= self.retry_attempts:
wait = self.retry_wait_seconds * (2 ** (tries - 1))
_log.debug("sleeping for %s seconds before retry" % wait)
if exception_raised:
_log.warning(
"got %s sleeping for %s seconds before retry",
exception_raised,
wait,
)
else:
_log.warning("sleeping for %s seconds before retry", wait)
time.sleep(wait)
if exception_raised:
raise exception_raised
return resp
class ThrottledSession(RetrySession):
_last_request: float
_throttled: bool = False
def _throttle(self) -> None:
now = time.time()
diff = self._request_frequency - (now - self._last_request)
if diff > 0:
_log.debug("sleeping for %fs" % diff)
time.sleep(diff)
self._last_request = time.time()
else:
self._last_request = now
@property
def requests_per_minute(self) -> int:
return self._requests_per_minute
@requests_per_minute.setter
def requests_per_minute(self, value: int) -> None:
if value > 0:
self._throttled = True
self._requests_per_minute = value
self._request_frequency = 60.0 / value
self._last_request = 0
else:
self._throttled = False
self._requests_per_minute = 0
self._request_frequency = 0.0
self._last_request = 0
def request(
self,
method: str,
url: Union[str, bytes, Text],
params: Union[None, bytes, MutableMapping[Text, Text]] = None,
data: _Data = None,
headers: Optional[MutableMapping[Text, Text]] = None,
cookies: Union[None, RequestsCookieJar, MutableMapping[Text, Text]] = None,
files: Optional[MutableMapping[Text, IO[Any]]] = None,
auth: _AuthType = None,
timeout: Union[None, float, Tuple[float, float], Tuple[float, None]] = None,
allow_redirects: Optional[bool] = True,
proxies: Optional[MutableMapping[Text, Text]] = None,
hooks: Optional[_HooksInput] = None,
stream: Optional[bool] = None,
verify: Union[None, bool, Text] = True,
cert: Union[Text, Tuple[Text, Text], None] = None,
json: Optional[Any] = None,
retry_on_404: bool = False,
) -> Response:
if self._throttled:
self._throttle()
return super().request(
method,
url,
params=params,
data=data,
headers=headers,
cookies=cookies,
files=files,
auth=auth,
timeout=timeout,
allow_redirects=allow_redirects,
proxies=proxies,
hooks=hooks,
stream=stream,
verify=verify,
cert=cert,
json=json,
retry_on_404=retry_on_404,
)
class DummyObject(object):
_original_response: "DummyObject"
msg: "DummyObject"
def getheaders(self, name: str) -> str:
return ""
def get_all(self, name: str, default: str) -> str:
return default
_dummy = DummyObject()
_dummy._original_response = DummyObject()
_dummy._original_response.msg = DummyObject()
class FTPAdapter(requests.adapters.BaseAdapter):
def send(
self,
request: PreparedRequest,
stream: bool = False,
timeout: Union[None, float, Tuple[float, float], Tuple[float, None]] = None,
verify: Union[bool, str] = False,
cert: Union[None, Union[bytes, Text], Container[Union[bytes, Text]]] = None,
proxies: Optional[Mapping[str, str]] = None,
) -> Response:
if request.method != "GET":
raise HTTPMethodUnavailableError(
"FTP requests do not support method '%s'" % request.method,
cast(str, request.method),
)
try:
if isinstance(timeout, tuple):
timeout_float = timeout[0]
else:
timeout_float = cast(float, timeout)
real_resp = urllib_urlopen(cast(str, request.url), timeout=timeout_float)
resp = requests.Response()
resp.status_code = 200
resp.url = cast(str, request.url)
resp.headers = requests.structures.CaseInsensitiveDict()
resp._content = real_resp.read()
resp.raw = _dummy
return resp
except URLError:
raise FTPError(cast(str, request.url))
class CachingSession(ThrottledSession):
def __init__(self, cache_storage: Optional[CacheStorageBase] = None) -> None:
super().__init__()
self.cache_storage = cache_storage
self.cache_write_only = False
def key_for_request(
self,
method: str,
url: Union[str, bytes],
params: Union[None, bytes, MutableMapping[Text, Text]] = None,
) -> Optional[str]:
if method != "get":
return None
return requests.Request(url=url, params=params).prepare().url
|
BSD 2-Clause Simplified License
|
exopy/exopy
|
exopy/tasks/tasks/task_interface.py
|
InterfaceableInterfaceMixin.preferences_from_members
|
python
|
def preferences_from_members(self):
prefs = super(InterfaceableInterfaceMixin,
self).preferences_from_members()
if self.interface:
i_prefs = self.interface.preferences_from_members()
prefs['interface'] = i_prefs
return prefs
|
Update the values stored in the preference system.
|
https://github.com/exopy/exopy/blob/aeda9bcfad2d2f76903c7ad2800ea2110ff689b2/exopy/tasks/tasks/task_interface.py#L235-L246
|
from atom.api import (Atom, ForwardTyped, Typed, Str, Dict, Property,
Constant)
from ...utils.traceback import format_exc
from ...utils.atom_util import HasPrefAtom, tagged_members
from .base_tasks import BaseTask
from . import validators
DEP_TYPE = 'exopy.tasks.interface'
class InterfaceableMixin(Atom):
interface = ForwardTyped(lambda: BaseInterface)
def check(self, *args, **kwargs):
test = True
traceback = {}
err_path = self.get_error_path()
if not self.interface and not hasattr(self, 'i_perform'):
traceback[err_path + '-interface'] = 'Missing interface'
return False, traceback
if self.interface:
i_test, i_traceback = self.interface.check(*args, **kwargs)
traceback.update(i_traceback)
test &= i_test
res = super(InterfaceableMixin, self).check(*args, **kwargs)
test &= res[0]
traceback.update(res[1])
return test, traceback
def prepare(self):
super(InterfaceableMixin, self).prepare()
if self.interface:
self.interface.prepare()
def perform(self, *args, **kwargs):
if self.interface:
return self.interface.perform(*args, **kwargs)
else:
return self.i_perform(*args, **kwargs)
def traverse(self, depth=-1):
it = super(InterfaceableMixin, self).traverse(depth)
yield next(it)
interface = self.interface
if interface:
if depth == 0:
yield interface
else:
for i in interface.traverse(depth - 1):
yield i
for c in it:
yield c
@classmethod
def build_from_config(cls, config, dependencies):
new = super(InterfaceableMixin, cls).build_from_config(config,
dependencies)
if 'interface' in config:
iclass = config['interface'].pop('interface_id')
inter_class = dependencies[DEP_TYPE][iclass]
new.interface = inter_class.build_from_config(config['interface'],
dependencies)
return new
def get_error_path(self):
raise NotImplementedError()
class InterfaceableTaskMixin(InterfaceableMixin):
def register_preferences(self):
super(InterfaceableTaskMixin, self).register_preferences()
if self.interface:
prefs = self.interface.preferences_from_members()
self.preferences['interface'] = prefs
if len(self.preferences.sections) > 1:
ind = self.preferences.sections.index('interface')
del self.preferences.sections[ind]
self.preferences.sections.insert(0, 'interface')
def update_preferences_from_members(self):
super(InterfaceableTaskMixin, self).update_preferences_from_members()
if self.interface:
prefs = self.interface.preferences_from_members()
self.preferences['interface'] = prefs
if len(self.preferences.sections) > 1:
ind = self.preferences.sections.index('interface')
del self.preferences.sections[ind]
self.preferences.sections.insert(0, 'interface')
def get_error_path(self):
return self.path + '/' + self.name
def _post_setattr_interface(self, old, new):
new_entries = dict(self.database_entries)
if old:
inter = old
inter.task = None
for entry in inter.database_entries:
new_entries.pop(entry, None)
if new:
inter = new
inter.task = self
if isinstance(inter, InterfaceableInterfaceMixin):
inter._post_setattr_interface(None, inter.interface)
for entry, value in inter.database_entries.items():
new_entries[entry] = value
self.database_entries = new_entries
class InterfaceableInterfaceMixin(InterfaceableMixin):
def get_error_path(self):
try:
return self.parent.get_error_path() + '/' + type(self).__name__
except AttributeError:
return '/'.join((self.task.path, self.task.name,
type(self).__name__))
|
BSD 3-Clause New or Revised License
|
calebbell/thermo
|
thermo/eos_mix_methods.py
|
a_alpha_and_derivatives_quadratic_terms
|
python
|
def a_alpha_and_derivatives_quadratic_terms(a_alphas, a_alpha_roots,
da_alpha_dTs, d2a_alpha_dT2s, T,
zs, kijs, a_alpha_j_rows=None,
da_alpha_dT_j_rows=None):
N = len(a_alphas)
a_alpha = da_alpha_dT = d2a_alpha_dT2 = 0.0
if a_alpha_j_rows is None:
a_alpha_j_rows = [0.0]*N
if da_alpha_dT_j_rows is None:
da_alpha_dT_j_rows = [0.0]*N
for i in range(N):
kijs_i = kijs[i]
a_alpha_i_root_i = a_alpha_roots[i]
a_alphai = a_alphas[i]
da_alpha_dT_i = da_alpha_dTs[i]
d2a_alpha_dT2_i = d2a_alpha_dT2s[i]
workingd1 = workings2 = 0.0
for j in range(i):
v0 = a_alpha_i_root_i*a_alpha_roots[j]
a_alpha_ijs_ij = (1. - kijs_i[j])*v0
t200 = a_alpha_ijs_ij*zs[i]
a_alpha_j_rows[j] += t200
a_alpha_j_rows[i] += zs[j]*a_alpha_ijs_ij
t200 *= zs[j]
a_alpha += t200 + t200
a_alphaj = a_alphas[j]
da_alpha_dT_j = da_alpha_dTs[j]
zi_zj = zs[i]*zs[j]
x1 = a_alphai*da_alpha_dT_j
x2 = a_alphaj*da_alpha_dT_i
x1_x2 = x1 + x2
kij_m1 = kijs_i[j] - 1.0
v0_inv = 1.0/v0
v1 = kij_m1*v0_inv
da_alpha_dT_ij = x1_x2*v1
da_alpha_dT_j_rows[j] += zs[i]*da_alpha_dT_ij
da_alpha_dT_j_rows[i] += zs[j]*da_alpha_dT_ij
da_alpha_dT_ij *= zi_zj
x0 = a_alphai*a_alphaj
d2a_alpha_dT2_ij = v0_inv*v0_inv*v1*( (x0*(
-0.5*(a_alphai*d2a_alpha_dT2s[j] + a_alphaj*d2a_alpha_dT2_i)
- da_alpha_dT_i*da_alpha_dT_j) +.25*x1_x2*x1_x2))
d2a_alpha_dT2_ij *= zi_zj
workingd1 += da_alpha_dT_ij
workings2 += d2a_alpha_dT2_ij
t200 = a_alphas[i]*zs[i]
a_alpha_j_rows[i] += t200
a_alpha += t200*zs[i]
zi_zj = zs[i]*zs[i]
da_alpha_dT_ij = -da_alpha_dT_i - da_alpha_dT_i
da_alpha_dT_j_rows[i] += zs[i]*da_alpha_dT_ij
da_alpha_dT_ij *= zi_zj
da_alpha_dT -= 0.5*(da_alpha_dT_ij + (workingd1 + workingd1))
d2a_alpha_dT2 += d2a_alpha_dT2_i*zi_zj + (workings2 + workings2)
for i in range(N):
da_alpha_dT_j_rows[i] *= -0.5
return a_alpha, da_alpha_dT, d2a_alpha_dT2, a_alpha_j_rows, da_alpha_dT_j_rows
|
r'''Calculates the `a_alpha` term, and its first two temperature
derivatives, for an equation of state along with the
vector quantities needed to compute the fugacitie and temperature
derivatives of fugacities of the mixture. This
routine is efficient in both numba and PyPy.
.. math::
a \alpha = \sum_i \sum_j z_i z_j {(a\alpha)}_{ij}
.. math::
\frac{\partial (a\alpha)}{\partial T} = \sum_i \sum_j z_i z_j
\frac{\partial (a\alpha)_{ij}}{\partial T}
.. math::
\frac{\partial^2 (a\alpha)}{\partial T^2} = \sum_i \sum_j z_i z_j
\frac{\partial^2 (a\alpha)_{ij}}{\partial T^2}
.. math::
(a\alpha)_{ij} = (1-k_{ij})\sqrt{(a\alpha)_{i}(a\alpha)_{j}}
.. math::
\frac{\partial (a\alpha)_{ij}}{\partial T} =
\frac{\sqrt{\operatorname{a\alpha_{i}}{\left(T \right)} \operatorname{a\alpha_{j}}
{\left(T \right)}} \left(1 - k_{ij}\right) \left(\frac{\operatorname{a\alpha_{i}}
{\left(T \right)} \frac{d}{d T} \operatorname{a\alpha_{j}}{\left(T \right)}}{2}
+ \frac{\operatorname{a\alpha_{j}}{\left(T \right)} \frac{d}{d T} \operatorname{
a\alpha_{i}}{\left(T \right)}}{2}\right)}{\operatorname{a\alpha_{i}}{\left(T \right)}
\operatorname{a\alpha_{j}}{\left(T \right)}}
.. math::
\frac{\partial^2 (a\alpha)_{ij}}{\partial T^2} =
- \frac{\sqrt{\operatorname{a\alpha_{i}}{\left(T \right)} \operatorname{a\alpha_{j}}
{\left(T \right)}} \left(k_{ij} - 1\right) \left(\frac{\left(\operatorname{
a\alpha_{i}}{\left(T \right)} \frac{d}{d T} \operatorname{a\alpha_{j}}{\left(T \right)}
+ \operatorname{a\alpha_{j}}{\left(T \right)} \frac{d}{d T} \operatorname{a\alpha_{i}}
{\left(T \right)}\right)^{2}}{4 \operatorname{a\alpha_{i}}{\left(T \right)}
\operatorname{a\alpha_{j}}{\left(T \right)}} - \frac{\left(\operatorname{a\alpha_{i}}
{\left(T \right)} \frac{d}{d T} \operatorname{a\alpha_{j}}{\left(T \right)}
+ \operatorname{a\alpha_{j}}{\left(T \right)} \frac{d}{d T}
\operatorname{a\alpha_{i}}{\left(T \right)}\right) \frac{d}{d T}
\operatorname{a\alpha_{j}}{\left(T \right)}}{2 \operatorname{a\alpha_{j}}
{\left(T \right)}} - \frac{\left(\operatorname{a\alpha_{i}}{\left(T \right)}
\frac{d}{d T} \operatorname{a\alpha_{j}}{\left(T \right)}
+ \operatorname{a\alpha_{j}}{\left(T \right)} \frac{d}{d T}
\operatorname{a\alpha_{i}}{\left(T \right)}\right) \frac{d}{d T}
\operatorname{a\alpha_{i}}{\left(T \right)}}{2 \operatorname{a\alpha_{i}}
{\left(T \right)}} + \frac{\operatorname{a\alpha_{i}}{\left(T \right)}
\frac{d^{2}}{d T^{2}} \operatorname{a\alpha_{j}}{\left(T \right)}}{2}
+ \frac{\operatorname{a\alpha_{j}}{\left(T \right)} \frac{d^{2}}{d T^{2}}
\operatorname{a\alpha_{i}}{\left(T \right)}}{2} + \frac{d}{d T}
\operatorname{a\alpha_{i}}{\left(T \right)} \frac{d}{d T}
\operatorname{a\alpha_{j}}{\left(T \right)}\right)}
{\operatorname{a\alpha_{i}}{\left(T \right)} \operatorname{a\alpha_{j}}
{\left(T \right)}}
The secondary values are as follows:
.. math::
\sum_i y_i(a\alpha)_{ij}
.. math::
\sum_i y_i \frac{\partial (a\alpha)_{ij}}{\partial T}
Parameters
----------
a_alphas : list[float]
EOS attractive terms, [J^2/mol^2/Pa]
a_alpha_roots : list[float]
Square roots of `a_alphas`; provided for speed [J/mol/Pa^0.5]
da_alpha_dTs : list[float]
Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]
d2a_alpha_dT2s : list[float]
Second temperature derivative of coefficient calculated by
EOS-specific method, [J^2/mol^2/Pa/K**2]
T : float
Temperature, not used, [K]
zs : list[float]
Mole fractions of each species
kijs : list[list[float]]
Constant kijs, [-]
Returns
-------
a_alpha : float
EOS attractive term, [J^2/mol^2/Pa]
da_alpha_dT : float
Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]
d2a_alpha_dT2 : float
Second temperature derivative of coefficient calculated by
EOS-specific method, [J^2/mol^2/Pa/K**2]
a_alpha_j_rows : list[float]
EOS attractive term row sums, [J^2/mol^2/Pa]
da_alpha_dT_j_rows : list[float]
Temperature derivative of EOS attractive term row sums, [J^2/mol^2/Pa/K]
Notes
-----
Examples
--------
>>> kijs = [[0,.083],[0.083,0]]
>>> zs = [0.1164203, 0.8835797]
>>> a_alphas = [0.2491099357671155, 0.6486495863528039]
>>> a_alpha_roots = [i**0.5 for i in a_alphas]
>>> da_alpha_dTs = [-0.0005102028006086241, -0.0011131153520304886]
>>> d2a_alpha_dT2s = [1.8651128859234162e-06, 3.884331923127011e-06]
>>> a_alpha_and_derivatives_quadratic_terms(a_alphas, a_alpha_roots, da_alpha_dTs, d2a_alpha_dT2s, 299.0, zs, kijs)
(0.58562139582, -0.001018667672, 3.56669817856e-06, [0.35469988173, 0.61604757237], [-0.000672387374, -0.001064293501])
|
https://github.com/calebbell/thermo/blob/554425bd7b6fae231b9659f09fce392f347505fd/thermo/eos_mix_methods.py#L556-L745
|
from fluids.constants import R
from fluids.numerics import numpy as np, catanh
from math import sqrt, log
from thermo.eos import eos_lnphi
from thermo.eos_volume import volume_solutions_halley, volume_solutions_fast
__all__ = ['a_alpha_aijs_composition_independent',
'a_alpha_and_derivatives', 'a_alpha_and_derivatives_full',
'a_alpha_quadratic_terms', 'a_alpha_and_derivatives_quadratic_terms',
'PR_lnphis', 'VDW_lnphis', 'SRK_lnphis', 'eos_mix_lnphis_general',
'VDW_lnphis_fastest', 'PR_lnphis_fastest',
'SRK_lnphis_fastest', 'RK_lnphis_fastest',
'PR_translated_lnphis_fastest',
'G_dep_lnphi_d_helper',
'RK_d3delta_dninjnks',
'PR_ddelta_dzs', 'PR_ddelta_dns',
'PR_d2delta_dninjs', 'PR_d3delta_dninjnks',
'PR_depsilon_dns', 'PR_d2epsilon_dninjs', 'PR_d3epsilon_dninjnks',
'PR_d2epsilon_dzizjs', 'PR_depsilon_dzs',
'PR_translated_d2delta_dninjs', 'PR_translated_d3delta_dninjnks',
'PR_translated_d3epsilon_dninjnks',
'PR_translated_ddelta_dzs', 'PR_translated_ddelta_dns',
'PR_translated_depsilon_dzs', 'PR_translated_depsilon_dns',
'PR_translated_d2epsilon_dzizjs', 'PR_translated_d2epsilon_dninjs',
'SRK_translated_ddelta_dns', 'SRK_translated_depsilon_dns',
'SRK_translated_d2epsilon_dzizjs', 'SRK_translated_depsilon_dzs',
'SRK_translated_d2delta_dninjs',
'SRK_translated_d3delta_dninjnks',
'SRK_translated_d2epsilon_dninjs', 'SRK_translated_d3epsilon_dninjnks',
'SRK_translated_lnphis_fastest',
'eos_mix_db_dns', 'eos_mix_da_alpha_dns',
'eos_mix_dV_dzs', 'eos_mix_a_alpha_volume']
R2 = R*R
R_inv = 1.0/R
R2_inv = R_inv*R_inv
root_two = sqrt(2.)
root_two_m1 = root_two - 1.0
root_two_p1 = root_two + 1.0
def a_alpha_aijs_composition_independent(a_alphas, kijs):
N = len(a_alphas)
_sqrt = sqrt
a_alpha_ijs = [[0.0]*N for _ in range(N)]
a_alpha_roots = [0.0]*N
for i in range(N):
a_alpha_roots[i] = _sqrt(a_alphas[i])
a_alpha_ij_roots_inv = [[0.0]*N for _ in range(N)]
for i in range(N):
kijs_i = kijs[i]
a_alpha_ijs_is = a_alpha_ijs[i]
a_alpha_ij_roots_i_inv = a_alpha_ij_roots_inv[i]
a_alpha_i_root_i = a_alpha_roots[i]
for j in range(i, N):
term = a_alpha_i_root_i*a_alpha_roots[j]
a_alpha_ij_roots_i_inv[j] = a_alpha_ij_roots_inv[j][i] = 1.0/term
a_alpha_ijs_is[j] = a_alpha_ijs[j][i] = (1. - kijs_i[j])*term
return a_alpha_ijs, a_alpha_roots, a_alpha_ij_roots_inv
def a_alpha_aijs_composition_independent_support_zeros(a_alphas, kijs):
N = len(a_alphas)
cmps = range(N)
a_alpha_ijs = [[0.0] * N for _ in cmps]
a_alpha_roots = [a_alpha_i ** 0.5 for a_alpha_i in a_alphas]
a_alpha_ij_roots_inv = [[0.0] * N for _ in cmps]
for i in cmps:
kijs_i = kijs[i]
a_alpha_i = a_alphas[i]
a_alpha_ijs_is = a_alpha_ijs[i]
a_alpha_ij_roots_i_inv = a_alpha_ij_roots_inv[i]
a_alpha_i_root_i = a_alpha_roots[i]
for j in range(i, N):
term = a_alpha_i_root_i * a_alpha_roots[j]
try:
a_alpha_ij_roots_i_inv[j] = 1.0/term
except ZeroDivisionError:
a_alpha_ij_roots_i_inv[j] = 1e100
a_alpha_ijs_is[j] = a_alpha_ijs[j][i] = (1. - kijs_i[j]) * term
return a_alpha_ijs, a_alpha_roots, a_alpha_ij_roots_inv
def a_alpha_and_derivatives(a_alphas, T, zs, kijs, a_alpha_ijs=None,
a_alpha_roots=None, a_alpha_ij_roots_inv=None):
N = len(a_alphas)
da_alpha_dT, d2a_alpha_dT2 = 0.0, 0.0
if a_alpha_ijs is None or a_alpha_roots is None or a_alpha_ij_roots_inv is None:
a_alpha_ijs, a_alpha_roots, a_alpha_ij_roots_inv = a_alpha_aijs_composition_independent(a_alphas, kijs)
a_alpha = 0.0
for i in range(N):
a_alpha_ijs_i = a_alpha_ijs[i]
zi = zs[i]
for j in range(i+1, N):
term = a_alpha_ijs_i[j]*zi*zs[j]
a_alpha += term + term
a_alpha += a_alpha_ijs_i[i]*zi*zi
return a_alpha, None, a_alpha_ijs
def a_alpha_and_derivatives_full(a_alphas, da_alpha_dTs, d2a_alpha_dT2s, T, zs,
kijs, a_alpha_ijs=None, a_alpha_roots=None,
a_alpha_ij_roots_inv=None):
N = len(a_alphas)
da_alpha_dT, d2a_alpha_dT2 = 0.0, 0.0
if a_alpha_ijs is None or a_alpha_roots is None or a_alpha_ij_roots_inv is None:
a_alpha_ijs, a_alpha_roots, a_alpha_ij_roots_inv = a_alpha_aijs_composition_independent(a_alphas, kijs)
z_products = [[zs[i]*zs[j] for j in range(N)] for i in range(N)]
a_alpha = 0.0
for i in range(N):
a_alpha_ijs_i = a_alpha_ijs[i]
z_products_i = z_products[i]
for j in range(i):
term = a_alpha_ijs_i[j]*z_products_i[j]
a_alpha += term + term
a_alpha += a_alpha_ijs_i[i]*z_products_i[i]
da_alpha_dT_ijs = [[0.0]*N for _ in range(N)]
d2a_alpha_dT2_ijs = [[0.0]*N for _ in range(N)]
d2a_alpha_dT2_ij = 0.0
for i in range(N):
kijs_i = kijs[i]
a_alphai = a_alphas[i]
z_products_i = z_products[i]
da_alpha_dT_i = da_alpha_dTs[i]
d2a_alpha_dT2_i = d2a_alpha_dT2s[i]
a_alpha_ij_roots_inv_i = a_alpha_ij_roots_inv[i]
da_alpha_dT_ijs_i = da_alpha_dT_ijs[i]
for j in range(N):
if j < i:
continue
a_alphaj = a_alphas[j]
x0_05_inv = a_alpha_ij_roots_inv_i[j]
zi_zj = z_products_i[j]
da_alpha_dT_j = da_alpha_dTs[j]
x1 = a_alphai*da_alpha_dT_j
x2 = a_alphaj*da_alpha_dT_i
x1_x2 = x1 + x2
x3 = x1_x2 + x1_x2
kij_m1 = kijs_i[j] - 1.0
da_alpha_dT_ij = -0.5*kij_m1*x1_x2*x0_05_inv
da_alpha_dT_ijs_i[j] = da_alpha_dT_ijs[j][i] = da_alpha_dT_ij
da_alpha_dT_ij *= zi_zj
x0 = a_alphai*a_alphaj
d2a_alpha_dT2_ij = kij_m1*( (x0*(
-0.5*(a_alphai*d2a_alpha_dT2s[j] + a_alphaj*d2a_alpha_dT2_i)
- da_alpha_dT_i*da_alpha_dT_j) +.25*x1_x2*x1_x2)/(x0_05_inv*x0*x0))
d2a_alpha_dT2_ijs[i][j] = d2a_alpha_dT2_ijs[j][i] = d2a_alpha_dT2_ij
d2a_alpha_dT2_ij *= zi_zj
if i != j:
da_alpha_dT += da_alpha_dT_ij + da_alpha_dT_ij
d2a_alpha_dT2 += d2a_alpha_dT2_ij + d2a_alpha_dT2_ij
else:
da_alpha_dT += da_alpha_dT_ij
d2a_alpha_dT2 += d2a_alpha_dT2_ij
return a_alpha, da_alpha_dT, d2a_alpha_dT2, a_alpha_ijs, da_alpha_dT_ijs, d2a_alpha_dT2_ijs
def a_alpha_quadratic_terms(a_alphas, a_alpha_roots, T, zs, kijs,
a_alpha_j_rows=None, vec0=None):
N = len(a_alphas)
if a_alpha_j_rows is None:
a_alpha_j_rows = [0.0]*N
for i in range(N):
a_alpha_j_rows[i] = 0.0
if vec0 is None:
vec0 = [0.0]*N
for i in range(N):
vec0[i] = a_alpha_roots[i]*zs[i]
a_alpha = 0.0
i = 0
while i < N:
kijs_i = kijs[i]
j = 0
while j < i:
a_alpha_j_rows[j] += (1. - kijs_i[j])*vec0[i]
a_alpha_j_rows[i] += (1. - kijs_i[j])*vec0[j]
j += 1
i += 1
for i in range(N):
a_alpha_j_rows[i] *= a_alpha_roots[i]
a_alpha_j_rows[i] += (1. - kijs[i][i])*a_alphas[i]*zs[i]
a_alpha += a_alpha_j_rows[i]*zs[i]
return a_alpha, a_alpha_j_rows
'''
N = len(a_alphas)
a_alpha_j_rows = [0.0]*N
a_alpha = 0.0
for i in range(N):
kijs_i = kijs[i]
a_alpha_i_root_i = a_alpha_roots[i]
for j in range(i):
a_alpha_ijs_ij = (1. - kijs_i[j])*a_alpha_i_root_i*a_alpha_roots[j]
t200 = a_alpha_ijs_ij*zs[i]
a_alpha_j_rows[j] += t200
a_alpha_j_rows[i] += zs[j]*a_alpha_ijs_ij
t200 *= zs[j]
a_alpha += t200 + t200
t200 = (1. - kijs_i[i])*a_alphas[i]*zs[i]
a_alpha += t200*zs[i]
a_alpha_j_rows[i] += t200
return a_alpha, a_alpha_j_rows
'''
|
MIT License
|
vlsida/openram
|
compiler/modules/multibank.py
|
multibank.route_control_lines
|
python
|
def route_control_lines(self):
connection = []
connection.append((self.prefix+"clk_buf_bar", self.precharge_array_inst.get_pin("en").lc()))
connection.append((self.prefix+"w_en", self.write_driver_array_inst.get_pin("en").lc()))
connection.append((self.prefix+"s_en", self.sense_amp_array_inst.get_pin("en").lc()))
for (control_signal, pin_pos) in connection:
control_pos = vector(self.bus_xoffset[control_signal].x ,pin_pos.y)
self.add_path("m1", [control_pos, pin_pos])
self.add_via_center(layers=self.m1_stack,
offset=control_pos,
rotate=90)
control_signal = self.prefix+"clk_buf"
pin_pos = self.wordline_driver_inst.get_pin("en").uc()
mid_pos = pin_pos + vector(0,self.m1_pitch)
control_x_offset = self.bus_xoffset[control_signal].x
control_pos = vector(control_x_offset + self.m1_width, mid_pos.y)
self.add_wire(self.m1_stack,[pin_pos, mid_pos, control_pos])
control_via_pos = vector(control_x_offset, mid_pos.y)
self.add_via_center(layers=self.m1_stack,
offset=control_via_pos,
rotate=90)
|
Route the control lines of the entire bank
|
https://github.com/vlsida/openram/blob/f66aac3264598eeae31225c62b6a4af52412d407/compiler/modules/multibank.py#L752-L783
|
import sys
from tech import drc, parameter
import debug
import design
import math
from math import log,sqrt,ceil
import contact
from vector import vector
from sram_factory import factory
from globals import OPTS
class multibank(design.design):
def __init__(self, name, word_size, num_words, words_per_row, num_banks=1):
super().__init__(name)
debug.info(2, "create sram of size {0} with {1} words".format(word_size,num_words))
self.word_size = word_size
self.num_words = num_words
self.words_per_row = words_per_row
self.num_banks = num_banks
if self.num_banks>1:
self.prefix="gated_"
else:
self.prefix=""
self.compute_sizes()
self.add_pins()
self.add_modules()
self.create_instances()
self.setup_layout_constraints()
self.add_bank_select()
self.route_layout()
self.add_lvs_correspondence_points()
self.bank_center=self.offset_all_coordinates().scale(-1,-1)
self.DRC_LVS()
def add_pins(self):
for i in range(self.word_size):
self.add_pin("dout_{0}".format(i),"OUT")
for i in range(self.word_size):
self.add_pin("bank_din_{0}".format(i),"IN")
for i in range(self.addr_size):
self.add_pin("a_{0}".format(i),"INPUT")
if self.num_banks > 1:
self.add_pin("bank_sel","INPUT")
for pin in ["s_en","w_en","tri_en_bar","tri_en",
"clk_buf_bar","clk_buf"]:
self.add_pin(pin,"INPUT")
self.add_pin("vdd","POWER")
self.add_pin("gnd","GROUND")
def route_layout(self):
self.route_central_bus()
self.route_precharge_to_bitcell_array()
self.route_col_mux_to_bitcell_array()
self.route_sense_amp_to_col_mux_or_bitcell_array()
self.route_sense_amp_out()
self.route_wordline_driver()
self.route_write_driver()
self.route_row_decoder()
self.route_column_address_lines()
self.route_control_lines()
self.add_control_pins()
if self.num_banks > 1:
self.route_bank_select()
self.route_supplies()
def create_instances(self):
self.add_bitcell_array()
self.add_precharge_array()
self.add_column_mux_array()
self.add_sense_amp_array()
self.add_write_driver_array()
self.add_row_decoder()
self.add_wordline_driver()
self.add_column_decoder()
def compute_sizes(self):
self.num_cols = int(self.words_per_row*self.word_size)
self.num_rows = int(self.num_words / self.words_per_row)
self.row_addr_size = int(log(self.num_rows, 2))
self.col_addr_size = int(log(self.words_per_row, 2))
self.addr_size = self.col_addr_size + self.row_addr_size
debug.check(self.num_rows*self.num_cols==self.word_size*self.num_words,"Invalid bank sizes.")
debug.check(self.addr_size==self.col_addr_size + self.row_addr_size,"Invalid address break down.")
self.supply_rail_width = 4*self.m2_width
self.supply_rail_pitch = self.supply_rail_width + 4*self.m2_space
self.num_control_lines = 6
self.input_control_signals = ["clk_buf", "tri_en_bar", "tri_en", "clk_buf_bar", "w_en", "s_en"]
if self.num_banks > 1:
self.control_signals = ["gated_"+str for str in self.input_control_signals]
else:
self.control_signals = self.input_control_signals
if self.col_addr_size>0:
self.num_col_addr_lines = 2**self.col_addr_size
else:
self.num_col_addr_lines = 0
self.central_bus_width = self.m2_pitch * self.num_control_lines + 2*self.m2_width
self.m2_gap = max(2*drc("pwell_to_nwell"] + drc["well_enclose_active"),
2*self.m2_pitch)
def add_modules(self):
self.tri = self.mod_tri_gate()
self.bitcell = self.mod_bitcell()
self.bitcell_array = self.mod_bitcell_array(cols=self.num_cols,
rows=self.num_rows)
self.add_mod(self.bitcell_array)
self.precharge_array = self.mod_precharge_array(columns=self.num_cols)
self.add_mod(self.precharge_array)
if self.col_addr_size > 0:
self.column_mux_array = self.mod_column_mux_array(columns=self.num_cols,
word_size=self.word_size)
self.add_mod(self.column_mux_array)
self.sense_amp_array = self.mod_sense_amp_array(word_size=self.word_size,
words_per_row=self.words_per_row)
self.add_mod(self.sense_amp_array)
if self.write_size:
self.write_mask_driver_array = self.mod_write_mask_driver_array(columns=self.num_cols,
word_size=self.word_size,
write_size=self.write_size)
self.add_mod(self.write_mask_driver_array)
else:
self.write_driver_array = self.mod_write_driver_array(columns=self.num_cols,
word_size=self.word_size)
self.add_mod(self.write_driver_array)
self.row_decoder = self.mod_decoder(rows=self.num_rows)
self.add_mod(self.row_decoder)
self.tri_gate_array = self.mod_tri_gate_array(columns=self.num_cols,
word_size=self.word_size)
self.add_mod(self.tri_gate_array)
self.wordline_driver = self.mod_wordline_driver(rows=self.num_rows)
self.add_mod(self.wordline_driver)
self.inv = pinv()
self.add_mod(self.inv)
if(self.num_banks > 1):
self.bank_select = self.mod_bank_select()
self.add_mod(self.bank_select)
def add_bitcell_array(self):
self.bitcell_array_inst=self.add_inst(name="bitcell_array",
mod=self.bitcell_array,
offset=vector(0,0))
temp = []
for i in range(self.num_cols):
temp.append("bl_{0}".format(i))
temp.append("br_{0}".format(i))
for j in range(self.num_rows):
temp.append("wl_{0}".format(j))
temp.extend(["vdd", "gnd"])
self.connect_inst(temp)
def add_precharge_array(self):
y_offset = self.bitcell_array.height + self.m2_gap
self.precharge_array_inst=self.add_inst(name="precharge_array",
mod=self.precharge_array,
offset=vector(0,y_offset))
temp = []
for i in range(self.num_cols):
temp.append("bl_{0}".format(i))
temp.append("br_{0}".format(i))
temp.extend([self.prefix+"clk_buf_bar", "vdd"])
self.connect_inst(temp)
def add_column_mux_array(self):
if self.col_addr_size > 0:
self.column_mux_height = self.column_mux_array.height + self.m2_gap
else:
self.column_mux_height = 0
return
y_offset = self.column_mux_height
self.col_mux_array_inst=self.add_inst(name="column_mux_array",
mod=self.column_mux_array,
offset=vector(0,y_offset).scale(-1,-1))
temp = []
for i in range(self.num_cols):
temp.append("bl_{0}".format(i))
temp.append("br_{0}".format(i))
for k in range(self.words_per_row):
temp.append("sel_{0}".format(k))
for j in range(self.word_size):
temp.append("bl_out_{0}".format(j))
temp.append("br_out_{0}".format(j))
temp.append("gnd")
self.connect_inst(temp)
def add_sense_amp_array(self):
y_offset = self.column_mux_height + self.sense_amp_array.height + self.m2_gap
self.sense_amp_array_inst=self.add_inst(name="sense_amp_array",
mod=self.sense_amp_array,
offset=vector(0,y_offset).scale(-1,-1))
temp = []
for i in range(self.word_size):
temp.append("sa_out_{0}".format(i))
if self.words_per_row == 1:
temp.append("bl_{0}".format(i))
temp.append("br_{0}".format(i))
else:
temp.append("bl_out_{0}".format(i))
temp.append("br_out_{0}".format(i))
temp.extend([self.prefix+"s_en", "vdd", "gnd"])
self.connect_inst(temp)
def add_write_driver_array(self):
y_offset = self.sense_amp_array.height + self.column_mux_height + self.m2_gap + self.write_driver_array.height
self.write_driver_array_inst=self.add_inst(name="write_driver_array",
mod=self.write_driver_array,
offset=vector(0,y_offset).scale(-1,-1))
temp = []
for i in range(self.word_size):
temp.append("bank_din_{0}".format(i))
for i in range(self.word_size):
if (self.words_per_row == 1):
temp.append("bl_{0}".format(i))
temp.append("br_{0}".format(i))
else:
temp.append("bl_out_{0}".format(i))
temp.append("br_out_{0}".format(i))
temp.extend([self.prefix+"w_en", "vdd", "gnd"])
self.connect_inst(temp)
def add_tri_gate_array(self):
y_offset = self.sense_amp_array.height+self.column_mux_height + self.m2_gap + self.tri_gate_array.height
self.tri_gate_array_inst=self.add_inst(name="tri_gate_array",
mod=self.tri_gate_array,
offset=vector(0,y_offset).scale(-1,-1))
temp = []
for i in range(self.word_size):
temp.append("sa_out_{0}".format(i))
for i in range(self.word_size):
temp.append("dout_{0}".format(i))
temp.extend([self.prefix+"tri_en", self.prefix+"tri_en_bar", "vdd", "gnd"])
self.connect_inst(temp)
def add_row_decoder(self):
x_offset = -(self.row_decoder.width + self.central_bus_width + self.wordline_driver.width)
self.row_decoder_inst=self.add_inst(name="row_decoder",
mod=self.row_decoder,
offset=vector(x_offset,0))
temp = []
for i in range(self.row_addr_size):
temp.append("A_{0}".format(i+self.col_addr_size))
for j in range(self.num_rows):
temp.append("dec_out_{0}".format(j))
temp.extend(["vdd", "gnd"])
self.connect_inst(temp)
def add_wordline_driver(self):
x_offset = -(self.central_bus_width + self.wordline_driver.width) + self.m2_pitch
self.wordline_driver_inst=self.add_inst(name="wordline_driver",
mod=self.wordline_driver,
offset=vector(x_offset,0))
temp = []
for i in range(self.num_rows):
temp.append("dec_out_{0}".format(i))
for i in range(self.num_rows):
temp.append("wl_{0}".format(i))
temp.append(self.prefix+"clk_buf")
temp.append("vdd")
temp.append("gnd")
self.connect_inst(temp)
def add_column_decoder_module(self):
x_off = -(self.central_bus_width + self.wordline_driver.width + self.col_decoder.width)
y_off = -(self.col_decoder.height + 2*drc("well_to_well"))
self.col_decoder_inst=self.add_inst(name="col_address_decoder",
mod=self.col_decoder,
offset=vector(x_off,y_off))
temp = []
for i in range(self.col_addr_size):
temp.append("A_{0}".format(i))
for j in range(self.num_col_addr_lines):
temp.append("sel_{0}".format(j))
temp.extend(["vdd", "gnd"])
self.connect_inst(temp)
def add_column_decoder(self):
if self.col_addr_size == 0:
return
elif self.col_addr_size == 1:
self.col_decoder = pinvbuf(height=self.mod_dff.height)
self.add_mod(self.col_decoder)
elif self.col_addr_size == 2:
self.col_decoder = self.row_decoder.pre2_4
elif self.col_addr_size == 3:
self.col_decoder = self.row_decoder.pre3_8
else:
debug.error("Invalid column decoder?",-1)
self.add_column_decoder_module()
def add_bank_select(self):
if not self.num_banks > 1:
return
x_off = -(self.row_decoder.width + self.central_bus_width + self.wordline_driver.width)
if self.col_addr_size > 0:
y_off = min(self.col_decoder_inst.by(), self.col_mux_array_inst.by())
else:
y_off = self.row_decoder_inst.by()
y_off -= (self.bank_select.height + drc("well_to_well"))
self.bank_select_pos = vector(x_off,y_off)
self.bank_select_inst = self.add_inst(name="bank_select",
mod=self.bank_select,
offset=self.bank_select_pos)
temp = []
temp.extend(self.input_control_signals)
temp.append("bank_sel")
temp.extend(self.control_signals)
temp.extend(["vdd", "gnd"])
self.connect_inst(temp)
def route_supplies(self):
for inst in self.insts:
self.copy_power_pins(inst,"vdd")
self.copy_power_pins(inst,"gnd")
def route_bank_select(self):
for input_name in self.input_control_signals+["bank_sel"]:
self.copy_layout_pin(self.bank_select_inst, input_name)
for gated_name in self.control_signals:
out_pos = self.bank_select_inst.get_pin(gated_name).rc()
bus_pos = vector(self.bus_xoffset[gated_name], out_pos.y)
self.add_path("m3",[out_pos, bus_pos])
self.add_via_center(layers=self.m2_stack,
offset=bus_pos,
rotate=90)
self.add_via_center(layers=self.m1_stack,
offset=out_pos,
rotate=90)
self.add_via_center(layers=self.m2_stack,
offset=out_pos,
rotate=90)
def setup_layout_constraints(self):
write_driver_min_y_offset = self.write_driver_array_inst.by() - 3*self.m2_pitch
row_decoder_min_y_offset = self.row_decoder_inst.by()
if self.col_addr_size > 0:
col_decoder_min_y_offset = self.col_decoder_inst.by()
else:
col_decoder_min_y_offset = row_decoder_min_y_offset
if self.num_banks>1:
self.min_y_offset = min(col_decoder_min_y_offset - self.bank_select.height, write_driver_min_y_offset)
else:
self.min_y_offset = min(col_decoder_min_y_offset, write_driver_min_y_offset)
self.max_y_offset = self.precharge_array_inst.uy() + 3*self.m1_width
self.max_x_offset = self.bitcell_array_inst.ur().x + 3*self.m1_width
self.min_x_offset = self.row_decoder_inst.lx()
ur = vector(self.max_x_offset, self.max_y_offset)
ll = vector(self.min_x_offset, self.min_y_offset)
self.core_bbox = [ll, ur]
self.height = ur.y - ll.y
self.width = ur.x - ll.x
def route_central_bus(self):
control_bus_offset = vector(-self.m2_pitch * self.num_control_lines - self.m2_width, 0)
control_bus_length = self.bitcell_array_inst.uy()
self.bus_xoffset = self.create_vertical_bus(layer="m2",
pitch=self.m2_pitch,
offset=control_bus_offset,
names=self.control_signals,
length=control_bus_length)
def route_precharge_to_bitcell_array(self):
for i in range(self.num_cols):
precharge_bl = self.precharge_array_inst.get_pin("bl_{}".format(i)).bc()
precharge_br = self.precharge_array_inst.get_pin("br_{}".format(i)).bc()
bitcell_bl = self.bitcell_array_inst.get_pin("bl_{}".format(i)).uc()
bitcell_br = self.bitcell_array_inst.get_pin("br_{}".format(i)).uc()
yoffset = 0.5*(precharge_bl.y+bitcell_bl.y)
self.add_path("m2",[precharge_bl, vector(precharge_bl.x,yoffset),
vector(bitcell_bl.x,yoffset), bitcell_bl])
self.add_path("m2",[precharge_br, vector(precharge_br.x,yoffset),
vector(bitcell_br.x,yoffset), bitcell_br])
def route_col_mux_to_bitcell_array(self):
if self.col_addr_size==0:
return
for i in range(self.num_cols):
col_mux_bl = self.col_mux_array_inst.get_pin("bl_{}".format(i)).uc()
col_mux_br = self.col_mux_array_inst.get_pin("br_{}".format(i)).uc()
bitcell_bl = self.bitcell_array_inst.get_pin("bl_{}".format(i)).bc()
bitcell_br = self.bitcell_array_inst.get_pin("br_{}".format(i)).bc()
yoffset = 0.5*(col_mux_bl.y+bitcell_bl.y)
self.add_path("m2",[col_mux_bl, vector(col_mux_bl.x,yoffset),
vector(bitcell_bl.x,yoffset), bitcell_bl])
self.add_path("m2",[col_mux_br, vector(col_mux_br.x,yoffset),
vector(bitcell_br.x,yoffset), bitcell_br])
def route_sense_amp_to_col_mux_or_bitcell_array(self):
for i in range(self.word_size):
sense_amp_bl = self.sense_amp_array_inst.get_pin("bl_{}".format(i)).uc()
sense_amp_br = self.sense_amp_array_inst.get_pin("br_{}".format(i)).uc()
if self.col_addr_size>0:
connect_bl = self.col_mux_array_inst.get_pin("bl_out_{}".format(i)).bc()
connect_br = self.col_mux_array_inst.get_pin("br_out_{}".format(i)).bc()
else:
connect_bl = self.bitcell_array_inst.get_pin("bl_{}".format(i)).bc()
connect_br = self.bitcell_array_inst.get_pin("br_{}".format(i)).bc()
yoffset = 0.5*(sense_amp_bl.y+connect_bl.y)
self.add_path("m2",[sense_amp_bl, vector(sense_amp_bl.x,yoffset),
vector(connect_bl.x,yoffset), connect_bl])
self.add_path("m2",[sense_amp_br, vector(sense_amp_br.x,yoffset),
vector(connect_br.x,yoffset), connect_br])
def route_sense_amp_to_trigate(self):
for i in range(self.word_size):
tri_gate_in = self.tri_gate_array_inst.get_pin("in_{}".format(i)).lc()
sa_data_out = self.sense_amp_array_inst.get_pin("data_{}".format(i)).bc()
self.add_via_center(layers=self.m2_stack,
offset=tri_gate_in)
self.add_via_center(layers=self.m2_stack,
offset=sa_data_out)
self.add_path("m3",[sa_data_out,tri_gate_in])
def route_sense_amp_out(self):
for i in range(self.word_size):
data_pin = self.sense_amp_array_inst.get_pin("data_{}".format(i))
self.add_layout_pin_rect_center(text="dout_{}".format(i),
layer=data_pin.layer,
offset=data_pin.center(),
height=data_pin.height(),
width=data_pin.width()),
def route_tri_gate_out(self):
for i in range(self.word_size):
data_pin = self.tri_gate_array_inst.get_pin("out_{}".format(i))
self.add_layout_pin_rect_center(text="dout_{}".format(i),
layer=data_pin.layer,
offset=data_pin.center(),
height=data_pin.height(),
width=data_pin.width()),
def route_row_decoder(self):
for i in range(self.row_addr_size):
addr_idx = i + self.col_addr_size
decoder_name = "a_{}".format(i)
addr_name = "a_{}".format(addr_idx)
self.copy_layout_pin(self.row_decoder_inst, decoder_name, addr_name)
def route_write_driver(self):
for i in range(self.word_size):
data_name = "data_{}".format(i)
din_name = "bank_din_{}".format(i)
self.copy_layout_pin(self.write_driver_array_inst, data_name, din_name)
def route_wordline_driver(self):
for i in range(self.num_rows):
decoder_out_pos = self.row_decoder_inst.get_pin("decode_{}".format(i)).rc()
driver_in_pos = self.wordline_driver_inst.get_pin("in_{}".format(i)).lc()
mid1 = decoder_out_pos.scale(0.5,1)+driver_in_pos.scale(0.5,0)
mid2 = decoder_out_pos.scale(0.5,0)+driver_in_pos.scale(0.5,1)
self.add_path("m1", [decoder_out_pos, mid1, mid2, driver_in_pos])
driver_wl_pos = self.wordline_driver_inst.get_pin("wl_{}".format(i)).rc()
bitcell_wl_pos = self.bitcell_array_inst.get_pin("wl_{}".format(i)).lc()
mid1 = driver_wl_pos.scale(0.5,1)+bitcell_wl_pos.scale(0.5,0)
mid2 = driver_wl_pos.scale(0.5,0)+bitcell_wl_pos.scale(0.5,1)
self.add_path("m1", [driver_wl_pos, mid1, mid2, bitcell_wl_pos])
def route_column_address_lines(self):
if not self.col_addr_size>0:
return
if self.col_addr_size == 1:
decode_names = ["Zb", "Z"]
self.copy_layout_pin(self.col_decoder_inst, "A", "a[0]")
elif self.col_addr_size > 1:
decode_names = []
for i in range(self.num_col_addr_lines):
decode_names.append("out_{}".format(i))
for i in range(self.col_addr_size):
decoder_name = "in_{}".format(i)
addr_name = "a_{}".format(i)
self.copy_layout_pin(self.col_decoder_inst, decoder_name, addr_name)
top_y_offset = self.col_mux_array_inst.get_pin("sel_{}".format(self.num_col_addr_lines-1)).cy()
for (decode_name,i) in zip(decode_names,range(self.num_col_addr_lines)):
mux_name = "sel_{}".format(i)
mux_addr_pos = self.col_mux_array_inst.get_pin(mux_name).lc()
decode_out_pos = self.col_decoder_inst.get_pin(decode_name).center()
delta_offset = self.col_decoder_inst.rx() - decode_out_pos.x + self.m2_pitch
if decode_out_pos.y > top_y_offset:
mid1_pos = vector(decode_out_pos.x + delta_offset + i*self.m2_pitch,decode_out_pos.y)
else:
mid1_pos = vector(decode_out_pos.x + delta_offset + (self.num_col_addr_lines-i)*self.m2_pitch,decode_out_pos.y)
mid2_pos = vector(mid1_pos.x,mux_addr_pos.y)
self.add_path("m1",[decode_out_pos, mid1_pos, mid2_pos, mux_addr_pos])
def add_lvs_correspondence_points(self):
for i in range(self.num_rows):
wl_name = "wl_{}".format(i)
wl_pin = self.bitcell_array_inst.get_pin(wl_name)
self.add_label(text=wl_name,
layer="m1",
offset=wl_pin.center())
for i in range(self.num_cols):
bl_name = "bl_{}".format(i)
br_name = "br_{}".format(i)
bl_pin = self.bitcell_array_inst.get_pin(bl_name)
br_pin = self.bitcell_array_inst.get_pin(br_name)
self.add_label(text=bl_name,
layer="m2",
offset=bl_pin.center())
self.add_label(text=br_name,
layer="m2",
offset=br_pin.center())
for i in range(self.word_size):
data_name = "dec_out_{}".format(i)
pin_name = "in_{}".format(i)
data_pin = self.wordline_driver_inst.get_pin(pin_name)
self.add_label(text=data_name,
layer="m1",
offset=data_pin.center())
|
BSD 3-Clause New or Revised License
|
airbnb/omniduct
|
omniduct/caches/base.py
|
Cache.unset
|
python
|
def unset(self, key, namespace=None):
namespace, key = self._namespace(namespace), self._key(key)
if not self._has_key(namespace, key):
raise KeyError("{} (namespace: {})".format(key, namespace))
self._remove_key(namespace, key)
|
Remove the nominated key from the cache.
Args:
key (str): The key which should be unset.
namespace (str, None): The namespace to be used.
|
https://github.com/airbnb/omniduct/blob/af0148e1f0de147c6c3757dc8c22293225caa543/omniduct/caches/base.py#L268-L279
|
import datetime
import functools
import sys
from abc import abstractmethod
import dateutil
import pandas
import six
import yaml
from decorator import decorator
from interface_meta import quirk_docs
from omniduct.duct import Duct
from omniduct.utils.config import config
from omniduct.utils.debug import logger
from omniduct.utils.decorators import function_args_as_kwargs, require_connection
from ._serializers import PickleSerializer
config.register(
'cache_fail_hard',
description='Raise an exception if a cache fails to save (otherwise errors are logged and suppressed).',
default=False
)
def cached_method(
key,
namespace=lambda self, kwargs: (
self.cache_namespace or "{}.{}".format(self.__class__.__name__, self.name)
),
cache=lambda self, kwargs: self.cache,
use_cache=lambda self, kwargs: kwargs.pop('use_cache', True),
renew=lambda self, kwargs: kwargs.pop('renew', False),
serializer=lambda self, kwargs: PickleSerializer(),
metadata=lambda self, kwargs: None
):
@decorator
def wrapped(method, self, *args, **kwargs):
kwargs = function_args_as_kwargs(method, self, *args, **kwargs)
kwargs.pop('self')
_key = key(self, kwargs)
_namespace = namespace(self, kwargs)
_cache = cache(self, kwargs)
_use_cache = use_cache(self, kwargs)
_renew = renew(self, kwargs)
_serializer = serializer(self, kwargs)
_metadata = metadata(self, kwargs)
if _cache is None or not _use_cache:
return method(self, **kwargs)
if _cache.has_key(_key, namespace=_namespace) and not _renew:
try:
return _cache.get(
_key,
namespace=_namespace,
serializer=_serializer
)
except:
logger.warning("Failed to retrieve results from cache. Renewing the cache...")
if config.cache_fail_hard:
six.reraise(*sys.exc_info())
finally:
logger.caveat('Loaded from cache')
value = method(self, **kwargs)
if value is None:
logger.warning("Method value returned None. Not saving to cache.")
return
try:
_cache.set(
_key,
value=value,
namespace=_namespace,
serializer=_serializer,
metadata=_metadata
)
return _cache.get(
_key,
namespace=_namespace,
serializer=_serializer
)
except:
logger.warning("Failed to save results to cache. If needed, please save them manually.")
if config.cache_fail_hard:
six.reraise(*sys.exc_info())
return value
return wrapped
class Cache(Duct):
DUCT_TYPE = Duct.Type.CACHE
@quirk_docs('_init', mro=True)
def __init__(self, **kwargs):
Duct.__init_with_kwargs__(self, kwargs)
self._init(**kwargs)
@abstractmethod
def _init(self):
pass
@require_connection
def set(self, key, value, namespace=None, serializer=None, metadata=None):
namespace, key = self._namespace(namespace), self._key(key)
serializer = serializer or PickleSerializer()
try:
with self._get_stream_for_key(namespace, key, 'data{}'.format(serializer.file_extension), mode='wb', create=True) as fh:
serializer.serialize(value, fh)
self.set_metadata(key, metadata, namespace=namespace, replace=True)
except:
self.unset(key, namespace=namespace)
six.reraise(*sys.exc_info())
@require_connection
def set_metadata(self, key, metadata, namespace=None, replace=False):
namespace, key = self._namespace(namespace), self._key(key)
if replace:
orig_metadata = {'created': datetime.datetime.utcnow()}
else:
orig_metadata = self.get_metadata(key, namespace=namespace)
orig_metadata.update(metadata or {})
with self._get_stream_for_key(namespace, key, 'metadata', mode='w', create=True) as fh:
yaml.safe_dump(orig_metadata, fh, default_flow_style=False)
@require_connection
def get(self, key, namespace=None, serializer=None):
namespace, key = self._namespace(namespace), self._key(key)
serializer = serializer or PickleSerializer()
if not self._has_key(namespace, key):
raise KeyError("{} (namespace: {})".format(key, namespace))
try:
with self._get_stream_for_key(namespace, key, 'data{}'.format(serializer.file_extension), mode='rb', create=False) as fh:
return serializer.deserialize(fh)
finally:
self.set_metadata(key, namespace=namespace, metadata={'last_accessed': datetime.datetime.utcnow()})
@require_connection
def get_bytecount(self, key, namespace=None):
namespace, key = self._namespace(namespace), self._key(key)
if not self._has_key(namespace, key):
raise KeyError("{} (namespace: {})".format(key, namespace))
return self._get_bytecount_for_key(namespace, key)
@require_connection
def get_metadata(self, key, namespace=None):
namespace, key = self._namespace(namespace), self._key(key)
if not self._has_key(namespace, key):
raise KeyError("{} (namespace: {})".format(key, namespace))
try:
with self._get_stream_for_key(namespace, key, 'metadata', mode='r', create=False) as fh:
return yaml.safe_load(fh)
except:
return {}
@require_connection
|
MIT License
|
vanderhoof/pydbml
|
pydbml/definitions/reference.py
|
parse_ref
|
python
|
def parse_ref(s, l, t):
init_dict = {
'type_': t['type'],
'table1': t['table1'],
'col1': t['field1'],
'table2': t['table2'],
'col2': t['field2']
}
if 'name' in t:
init_dict['name'] = t['name']
if 'settings' in t:
init_dict.update(t['settings'])
if 'comment' in t:
init_dict['comment'] = t['comment'][0]
if 'comment' not in init_dict and 'comment_before' in t:
comment = '\n'.join(c[0] for c in t['comment_before'])
init_dict['comment'] = comment
ref = ReferenceBlueprint(**init_dict)
return ref
|
ref name: table1.col1 > table2.col2
or
ref name {
table1.col1 < table2.col2
}
|
https://github.com/vanderhoof/pydbml/blob/4e2bec69232a6d751d616225e717e90901cd6ca9/pydbml/definitions/reference.py#L101-L129
|
import pyparsing as pp
from pydbml.classes import ReferenceBlueprint
from .common import _
from .common import _c
from .common import c
from .common import n
from .generic import name
pp.ParserElement.setDefaultWhitespaceChars(' \t\r')
relation = pp.oneOf("> - <")
ref_inline = pp.Literal("ref:") - relation('type') - name('table') - '.' - name('field')
def parse_inline_relation(s, l, t):
return ReferenceBlueprint(type_=t['type'],
table2=t['table'],
col2=t['field'])
ref_inline.setParseAction(parse_inline_relation)
on_option = (
pp.CaselessLiteral('no action')
| pp.CaselessLiteral('restrict')
| pp.CaselessLiteral('cascade')
| pp.CaselessLiteral('set null')
| pp.CaselessLiteral('set default')
)
update = pp.CaselessLiteral("update:").suppress() + _ + on_option
delete = pp.CaselessLiteral("delete:").suppress() + _ + on_option
ref_setting = _ + (update('update') | delete('delete')) + _
ref_settings = (
'['
+ ref_setting
+ (
','
+ ref_setting
)[...]
+ ']' + c
)
def parse_ref_settings(s, l, t):
result = {}
if 'update' in t:
result['on_update'] = t['update'][0]
if 'delete' in t:
result['on_delete'] = t['delete'][0]
if 'comment' in t:
result['comment'] = t['comment'][0]
return result
ref_settings.setParseAction(parse_ref_settings)
composite_name = (
'(' + pp.White()[...]
- name + pp.White()[...]
+ (
pp.White()[...] + ","
+ pp.White()[...] + name
+ pp.White()[...]
)[...]
+ ')'
)
name_or_composite = name | pp.Combine(composite_name)
ref_body = (
name('table1')
- '.'
- name_or_composite('field1')
- relation('type')
- name('table2')
- '.'
- name_or_composite('field2') + c
+ ref_settings('settings')[0, 1]
)
ref_short = _c + pp.CaselessLiteral('ref') + name('name')[0, 1] + ':' - ref_body
ref_long = _c + (
pp.CaselessLiteral('ref') + _
+ name('name')[0, 1] + _
+ '{' + _
- ref_body + _
- '}'
)
|
MIT License
|
stanfordvl/jrmot_ros
|
paper_experiments/models/pointnet_model.py
|
PointNet.get_model
|
python
|
def get_model(self, point_cloud, is_training, bn_decay=None):
batch_size = point_cloud.get_shape()[0].value
end_points = {}
with tf.variable_scope('transform_net1', reuse=tf.AUTO_REUSE) as sc:
transform = input_transform_net(point_cloud, is_training, bn_decay, K=3)
point_cloud_transformed = tf.matmul(point_cloud, transform)
input_image = tf.expand_dims(point_cloud_transformed, -1)
net = pointnet_tf_util.conv2d(input_image, 64, [1,3],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training,
scope='conv1', bn_decay=bn_decay)
net = pointnet_tf_util.conv2d(net, 64, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training,
scope='conv2', bn_decay=bn_decay)
with tf.variable_scope('transform_net2', reuse=tf.AUTO_REUSE) as sc:
transform = feature_transform_net(net, is_training, bn_decay, K=64)
end_points['transform'] = transform
net_transformed = tf.matmul(tf.squeeze(net, axis=[2]), transform)
net_transformed = tf.expand_dims(net_transformed, [2])
net = pointnet_tf_util.conv2d(net_transformed, 64, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training,
scope='conv3', bn_decay=bn_decay)
net = pointnet_tf_util.conv2d(net, 128, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training,
scope='conv4', bn_decay=bn_decay)
net = pointnet_tf_util.conv2d(net, 1024, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training,
scope='conv5', bn_decay=bn_decay)
net = tf.reduce_max(net, axis = 1)
net = tf.reshape(net, [batch_size, -1])
feature = net
return feature
|
Classification PointNet, input is BxNx3, output Bx40
|
https://github.com/stanfordvl/jrmot_ros/blob/4ae2006e2ec6a8314b56e265f656e131d12a049d/paper_experiments/models/pointnet_model.py#L49-L93
|
import os, pdb
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.ERROR)
import configparser
from utils.pointnet_transform_nets import input_transform_net, feature_transform_net
import utils.pointnet_tf_util as pointnet_tf_util
class PointNet():
def __init__(self, config_path):
parser = configparser.SafeConfigParser()
parser.read(config_path)
num_points = parser.getint('general', 'num_point')
depth_model_path = parser.get('general', 'depth_model_path')
with tf.device('/gpu:'+str(0)):
self.pointclouds_pl, _ = self.placeholder_inputs(1, num_points)
self.is_training_pl = tf.placeholder(tf.bool, shape=())
feature = self.get_model(self.pointclouds_pl, self.is_training_pl)
self.feature = feature
self.saver = tf.train.Saver()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
self.sess = tf.Session(config=config)
self.sess.run(tf.global_variables_initializer())
self.saver.restore(self.sess, depth_model_path)
def __call__(self, input_point_cloud):
feed_dict = {self.pointclouds_pl: input_point_cloud,
self.is_training_pl: False}
features = self.sess.run(self.feature,feed_dict=feed_dict)
return features
def placeholder_inputs(self, batch_size, num_point):
pointclouds_pl = tf.placeholder(tf.float32, shape=(batch_size, None, 3))
labels_pl = tf.placeholder(tf.int32, shape=(batch_size))
return pointclouds_pl, labels_pl
|
MIT License
|
deepmind/acme
|
acme/utils/lp_utils.py
|
StepsLimiter.run
|
python
|
def run(self):
logging.info('StepsLimiter: Starting with max_steps = %d (%s)',
self._max_steps, self._steps_key)
while True:
counts = self._counter.get_counts()
num_steps = counts.get(self._steps_key, 0)
logging.info('StepsLimiter: Reached %d recorded steps', num_steps)
if num_steps > self._max_steps:
logging.info('StepsLimiter: Max steps of %d was reached, terminating',
self._max_steps)
lp.stop()
for _ in range(10):
time.sleep(1)
|
Run steps limiter to terminate an experiment when max_steps is reached.
|
https://github.com/deepmind/acme/blob/39232315e1761219bcc98e7a4ecdd308a42b00e4/acme/utils/lp_utils.py#L81-L103
|
import functools
import inspect
import time
from typing import Any, Callable
from absl import flags
from absl import logging
from acme.utils import counting
import launchpad as lp
FLAGS = flags.FLAGS
def partial_kwargs(function: Callable[..., Any],
**kwargs: Any) -> Callable[..., Any]:
argspec = inspect.getfullargspec(function)
if argspec.defaults is None:
defaults = []
else:
defaults = argspec.args[-len(argspec.defaults):]
unknown_kwargs = set(kwargs.keys()).difference(defaults)
if unknown_kwargs:
error_string = 'Cannot override unknown or non-default kwargs: {}'
raise ValueError(error_string.format(', '.join(unknown_kwargs)))
return functools.partial(function, **kwargs)
class StepsLimiter:
def __init__(self,
counter: counting.Counter,
max_steps: int,
steps_key: str = 'actor_steps'):
self._counter = counter
self._max_steps = max_steps
self._steps_key = steps_key
|
Apache License 2.0
|
geertj/python-ad
|
lib/ad/core/client.py
|
Client._credentials
|
python
|
def _credentials(self):
creds = instance(Creds)
if creds is None or not creds.principal():
m = 'No current credentials or credentials not activated.'
raise ADError, m
return creds
|
Return our current AD credentials.
|
https://github.com/geertj/python-ad/blob/3089eae072bd2e871c11251961ec35a09b83dd38/lib/ad/core/client.py#L55-L61
|
import re
import dns
import dns.resolver
import dns.exception
import ldap
import ldap.sasl
import ldap.controls
import socket
from ad.core.exception import Error as ADError
from ad.core.object import factory, instance
from ad.core.creds import Creds
from ad.core.locate import Locator
from ad.core.constant import LDAP_PORT, GC_PORT
from ad.protocol import krb5
from ad.util import compat
class Client(object):
_timelimit = 0
_sizelimit = 0
_referrals = False
_pagesize = 500
def __init__(self, domain):
self.m_locator = None
self.m_connections = None
self.m_naming_contexts = None
self.m_domain = self.dn_from_domain_name(domain)
self.m_forest = None
self.m_schema = None
self.m_configuration = None
def _locator(self):
if self.m_locator is None:
self.m_locator = factory(Locator)
return self.m_locator
|
MIT License
|
gabfl/sql2csv
|
src/sql2csv.py
|
query_to_csv
|
python
|
def query_to_csv(engine, host, user, port, password, database, query, headers=False, out_type='stdout', destination_file=None, delimiter=',', quotechar='"', print_info=1000):
connection = get_connection(
engine=engine,
host=host,
user=user,
port=port,
password=password,
database=database
)
cursor = get_cursor(connection)
if out_type == 'file':
print('\n* Exporting rows...')
with open_tempfile() if out_type == 'stdout' else open_file(resolve_home_dir(destination_file)) as file_:
writer = get_writer(file_, delimiter=delimiter, quotechar=quotechar)
execute_query(cursor=cursor, query=query)
if headers:
writer.writerow(fetch_headers(cursor=cursor))
i = 0
for row in fetch_rows(cursor=cursor):
i += 1
if out_type == 'file' and i % print_info == 0:
print(' ...%s rows written' % "{:,}".format(i))
row = stringify_items(row)
writer.writerow(row)
if out_type == 'file':
print(' ...done')
print('* The result has been exported to %s.\n' %
(destination_file))
if out_type == 'stdout':
file_to_stdout()
|
Run a query and store the result to a CSV file
|
https://github.com/gabfl/sql2csv/blob/44f18eb4243785615f24cf2169b33cc6a125f7d4/src/sql2csv.py#L217-L264
|
import sys
import csv
import tempfile
from os.path import expanduser
import json
import argparse
import pymysql.cursors
import pymysql.constants.CLIENT
import psycopg2.extras
import psycopg2
file_ = None
def get_mysql_connection(host, user, port, password, database):
return pymysql.connect(host=host,
user=user,
port=port,
password=password,
db=database,
charset='utf8mb4',
client_flag=pymysql.constants.CLIENT.MULTI_STATEMENTS
)
def get_pg_connection(host, user, port, password, database):
return psycopg2.connect(host=host,
user=user,
port=port,
password=password,
dbname=database
)
def get_connection(engine, host, user, port, password, database):
if engine == 'mysql':
return get_mysql_connection(host, user, port, password, database)
elif engine == 'postgresql':
return get_pg_connection(host, user, port, password, database)
else:
raise RuntimeError(
'"%s" engine is not supported.' % (engine))
def get_cursor(connection):
return connection.cursor()
def execute_query(cursor, query):
cursor.execute(query)
def fetch_rows(cursor):
for row in cursor.fetchall():
yield row
def fetch_headers(cursor):
return [i[0] for i in cursor.description]
def discard_line(line):
if line[:1] in ['', '+', '(', '-']:
return True
return False
def remove_leading_trailing_pipe(line):
return line.strip('|')
def get_column_separator(input_):
if input_.count('|') > input_.count('\t'):
return '|'
return '\t'
def split_columns(line, separator='\t'):
return line.split(separator)
def strip_whitespaces(tpl):
return [item.strip() for item in tpl]
def stringify_items(row):
row = list(row)
for k, item in enumerate(row):
if(isinstance(item, dict)):
row[k] = json.dumps(item)
return tuple(row)
def has_stdin_input():
if not sys.stdin.isatty():
return True
return False
def resolve_home_dir(destination):
if destination[:1] == '~':
return expanduser("~") + destination[1:]
return destination
def open_file(destination):
global file_
file_ = open(destination, 'w+', newline='')
return file_
def open_tempfile():
global file_
file_ = tempfile.NamedTemporaryFile('w+', newline='', delete=False)
return file_
def get_writer(file_, delimiter=',', quotechar='"'):
return csv.writer(
file_,
delimiter=delimiter,
quotechar=quotechar,
quoting=csv.QUOTE_MINIMAL
)
def file_to_stdout():
with open(file_.name) as f:
print(f.read())
def stdin_to_csv(delimiter=',', quotechar='"'):
with open_tempfile() as file_:
writer = get_writer(file_, delimiter=delimiter, quotechar=quotechar)
separator = None
for line in sys.stdin:
line.strip()
if not discard_line(line):
separator = get_column_separator(
line) if not separator else separator
line = remove_leading_trailing_pipe(line)
if line.strip():
row = split_columns(line, separator)
row = strip_whitespaces(row)
writer.writerow(row)
file_to_stdout()
|
MIT License
|
wavefronthq/python-client
|
wavefront_api_client/models/response_container_list_integration.py
|
ResponseContainerListIntegration.response
|
python
|
def response(self, response):
self._response = response
|
Sets the response of this ResponseContainerListIntegration.
:param response: The response of this ResponseContainerListIntegration. # noqa: E501
:type: list[Integration]
|
https://github.com/wavefronthq/python-client/blob/e410ce0dd8a2334e995456f4f3d44e0f04664a3a/wavefront_api_client/models/response_container_list_integration.py#L70-L78
|
import pprint
import re
import six
from wavefront_api_client.configuration import Configuration
class ResponseContainerListIntegration(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'response': 'list[Integration]',
'status': 'ResponseStatus'
}
attribute_map = {
'response': 'response',
'status': 'status'
}
def __init__(self, response=None, status=None, _configuration=None):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._response = None
self._status = None
self.discriminator = None
if response is not None:
self.response = response
self.status = status
@property
def response(self):
return self._response
@response.setter
|
Apache License 2.0
|
yoavaviram/python-amazon-simple-product-api
|
amazon/api.py
|
AmazonAPI.search_n
|
python
|
def search_n(self, n, **kwargs):
region = kwargs.get('region', self.region)
kwargs.update({'region': region})
items = AmazonSearch(self.api, self.aws_associate_tag, **kwargs)
return list(islice(items, n))
|
Search and return first N results..
:param n:
An integer specifying the number of results to return.
:return:
A list of :class:`~.AmazonProduct`.
|
https://github.com/yoavaviram/python-amazon-simple-product-api/blob/84c16f519e5a349a30669bc4218b9325ca37f651/amazon/api.py#L277-L288
|
import datetime
from itertools import islice
import bottlenose
from lxml import objectify, etree
import dateutil.parser
from decimal import Decimal
DOMAINS = {
'CA': 'ca',
'DE': 'de',
'ES': 'es',
'FR': 'fr',
'IN': 'in',
'IT': 'it',
'JP': 'co.jp',
'UK': 'co.uk',
'US': 'com',
'CN': 'cn'
}
AMAZON_ASSOCIATES_BASE_URL = 'http://www.amazon.{domain}/dp/'
class AmazonException(Exception):
pass
class CartException(AmazonException):
pass
class CartInfoMismatchException(CartException):
pass
class AsinNotFound(AmazonException):
pass
class LookupException(AmazonException):
pass
class SearchException(AmazonException):
pass
class NoMorePages(SearchException):
pass
class RequestThrottled(AmazonException):
pass
class SimilartyLookupException(AmazonException):
pass
class BrowseNodeLookupException(AmazonException):
pass
class AmazonAPI(object):
def __init__(self, aws_key, aws_secret, aws_associate_tag, **kwargs):
if 'region' in kwargs:
kwargs['Region'] = kwargs['region']
del kwargs['region']
if 'Version' not in kwargs:
kwargs['Version'] = '2013-08-01'
self.api = bottlenose.Amazon(
aws_key, aws_secret, aws_associate_tag, **kwargs)
self.aws_associate_tag = aws_associate_tag
self.region = kwargs.get('Region', 'US')
def lookup(self, ResponseGroup="Large", **kwargs):
response = self.api.ItemLookup(ResponseGroup=ResponseGroup, **kwargs)
root = objectify.fromstring(response)
if root.Items.Request.IsValid == 'False':
code = root.Items.Request.Errors.Error.Code
msg = root.Items.Request.Errors.Error.Message
raise LookupException(
u"Amazon Product Lookup Error: '{0}', '{1}'".format(code, msg))
if not hasattr(root.Items, 'Item'):
raise AsinNotFound("ASIN(s) not found: '{0}'".format(
etree.tostring(root, pretty_print=True)))
if len(root.Items.Item) > 1:
return [
AmazonProduct(
item,
self.aws_associate_tag,
self,
region=self.region) for item in root.Items.Item
]
else:
return AmazonProduct(
root.Items.Item,
self.aws_associate_tag,
self,
region=self.region
)
def lookup_bulk(self, ResponseGroup="Large", **kwargs):
response = self.api.ItemLookup(ResponseGroup=ResponseGroup, **kwargs)
root = objectify.fromstring(response)
if not hasattr(root.Items, 'Item'):
return []
return list(
AmazonProduct(
item,
self.aws_associate_tag,
self,
region=self.region) for item in root.Items.Item
)
def similarity_lookup(self, ResponseGroup="Large", **kwargs):
response = self.api.SimilarityLookup(
ResponseGroup=ResponseGroup, **kwargs)
root = objectify.fromstring(response)
if root.Items.Request.IsValid == 'False':
code = root.Items.Request.Errors.Error.Code
msg = root.Items.Request.Errors.Error.Message
raise SimilartyLookupException(
"Amazon Similarty Lookup Error: '{0}', '{1}'".format(
code, msg))
return [
AmazonProduct(
item,
self.aws_associate_tag,
self.api,
region=self.region
)
for item in getattr(root.Items, 'Item', [])
]
def browse_node_lookup(self, ResponseGroup="BrowseNodeInfo", **kwargs):
response = self.api.BrowseNodeLookup(
ResponseGroup=ResponseGroup, **kwargs)
root = objectify.fromstring(response)
if root.BrowseNodes.Request.IsValid == 'False':
code = root.BrowseNodes.Request.Errors.Error.Code
msg = root.BrowseNodes.Request.Errors.Error.Message
raise BrowseNodeLookupException(
"Amazon BrowseNode Lookup Error: '{0}', '{1}'".format(
code, msg))
return [AmazonBrowseNode(node.BrowseNode) for node in root.BrowseNodes]
def search(self, **kwargs):
region = kwargs.get('region', self.region)
kwargs.update({'region': region})
return AmazonSearch(self.api, self.aws_associate_tag, **kwargs)
|
Apache License 2.0
|
astroml/astroml
|
doc/sphinxext/numpy_ext/docscrape_sphinx.py
|
SphinxDocString._process_param
|
python
|
def _process_param(self, param, desc, fake_autosummary):
param = param.strip()
display_param = '**%s**' % param
if not fake_autosummary:
return display_param, desc
param_obj = getattr(self._obj, param, None)
if not (callable(param_obj)
or isinstance(param_obj, property)
or inspect.isgetsetdescriptor(param_obj)):
param_obj = None
obj_doc = pydoc.getdoc(param_obj)
if not (param_obj and obj_doc):
return display_param, desc
prefix = getattr(self, '_name', '')
if prefix:
autosum_prefix = '~%s.' % prefix
link_prefix = '%s.' % prefix
else:
autosum_prefix = ''
link_prefix = ''
display_param = ':obj:`{} <{}{}>`'.format(param,
link_prefix,
param)
if obj_doc:
desc = re.split('\n\\s*\n', obj_doc.strip(), 1)[0]
m = re.search(r"^([A-Z].*?\.)(?:\s|$)",
' '.join(desc.split()))
if m:
desc = m.group(1).strip()
else:
desc = desc.partition('\n')[0]
desc = desc.split('\n')
return display_param, desc
|
Determine how to display a parameter
Emulates autosummary behavior if fake_autosummary
Parameters
----------
param : str
The name of the parameter
desc : list of str
The parameter description as given in the docstring. This is
ignored when autosummary logic applies.
fake_autosummary : bool
If True, autosummary-style behaviour will apply for params
that are attributes of the class and have a docstring.
Returns
-------
display_param : str
The marked up parameter name for display. This may include a link
to the corresponding attribute's own documentation.
desc : list of str
A list of description lines. This may be identical to the input
``desc``, if ``autosum is None`` or ``param`` is not a class
attribute, or it will be a summary of the class attribute's
docstring.
Notes
-----
This does not have the autosummary functionality to display a method's
signature, and hence is not used to format methods. It may be
complicated to incorporate autosummary's signature mangling, as it
relies on Sphinx's plugin mechanism.
|
https://github.com/astroml/astroml/blob/f66558232f6d33cb34ecd1bed8a80b9db7ae1c30/doc/sphinxext/numpy_ext/docscrape_sphinx.py#L83-L160
|
import re
import inspect
import textwrap
import pydoc
import collections
import os
from jinja2 import FileSystemLoader
from jinja2.sandbox import SandboxedEnvironment
import sphinx
from sphinx.jinja2glue import BuiltinTemplateLoader
from .docscrape import NumpyDocString, FunctionDoc, ClassDoc
IMPORT_MATPLOTLIB_RE = r'\b(import +matplotlib|from +matplotlib +import)\b'
class SphinxDocString(NumpyDocString):
def __init__(self, docstring, config={}):
NumpyDocString.__init__(self, docstring, config=config)
self.load_config(config)
def load_config(self, config):
self.use_plots = config.get('use_plots', False)
self.use_blockquotes = config.get('use_blockquotes', False)
self.class_members_toctree = config.get('class_members_toctree', True)
self.template = config.get('template', None)
if self.template is None:
template_dirs = [os.path.join(os.path.dirname(__file__), 'templates')]
template_loader = FileSystemLoader(template_dirs)
template_env = SandboxedEnvironment(loader=template_loader)
self.template = template_env.get_template('numpydoc_docstring.rst')
def _str_header(self, name, symbol='`'):
return ['.. rubric:: ' + name, '']
def _str_field_list(self, name):
return [':' + name + ':']
def _str_indent(self, doc, indent=4):
out = []
for line in doc:
out += [' '*indent + line]
return out
def _str_signature(self):
return ['']
if self['Signature']:
return ['``%s``' % self['Signature']] + ['']
else:
return ['']
def _str_summary(self):
return self['Summary'] + ['']
def _str_extended_summary(self):
return self['Extended Summary'] + ['']
def _str_returns(self, name='Returns'):
typed_fmt = '**%s** : %s'
untyped_fmt = '**%s**'
out = []
if self[name]:
out += self._str_field_list(name)
out += ['']
for param, param_type, desc in self[name]:
if param_type:
out += self._str_indent([typed_fmt % (param.strip(),
param_type)])
else:
out += self._str_indent([untyped_fmt % param.strip()])
if desc and self.use_blockquotes:
out += ['']
elif not desc:
desc = ['..']
out += self._str_indent(desc, 8)
out += ['']
return out
|
BSD 2-Clause Simplified License
|
winhamwr/neckbeard
|
neckbeard/cloud_resource.py
|
InfrastructureNode.passes_health_check
|
python
|
def passes_health_check(self):
status_url = self.get_health_check_url()
if not status_url:
logger.info("No health check defined. Assuming healthy.")
return True
health_check = self._deployment_info['health_check']
status_success_string = health_check['status_contains']
timeout = health_check['status_check_timeout']
try:
site_status = requests.get(status_url, timeout=timeout)
except ConnectionError:
logger.info("health_check unavailable for %s", self)
logger.debug("status url: %s", status_url)
return False
except Timeout:
logger.info("health_check timed out for %s", self)
logger.debug("status url: %s", status_url)
return False
except RequestException, e:
logger.info("health_check raised exception for %s", self)
logger.debug("status url: %s", status_url)
logger.debug("Exception: %s", e)
return False
if status_success_string not in site_status.text:
logger.debug(
"Required string not present in health_check for %s",
self,
)
logger.debug("status url: %s", status_url)
logger.debug("Required string: %s", status_success_string)
return False
return True
|
Does this node currently pass the `health_check` as defined in its
configuration.
If no `health_check` is defined, returns True.
|
https://github.com/winhamwr/neckbeard/blob/2fbeda8f217c43936c941bb9ce3ba6d23be675f9/neckbeard/cloud_resource.py#L380-L420
|
import logging
import time
import boto.exception
import dateutil.parser
import requests
from boto.ec2 import elb
from requests.exceptions import (
ConnectionError,
Timeout,
RequestException,
)
from simpledb import models
from neckbeard.output import fab_out_opts
NODE_AWS_TYPES = ['ec2', 'rds', 'elb']
EC2_RETIRED_STATES = ['shutting-down', 'terminated']
RDS_RETIRED_STATES = ['deleted']
logger = logging.getLogger('cloud_resource')
fab_output_hides = fab_out_opts[logger.getEffectiveLevel()]
fab_quiet = fab_output_hides + ['stderr']
REQUIRED_CONFIGURATION = {
'ec2': [
'aws.keypair',
],
}
OPTIONAL_CONFIGURATION = {
'ec2': [
'aws.elastic_ip',
],
}
class InfrastructureNode(models.Model):
nodename = models.ItemName()
generation_id = models.NumberField(required=True)
deployment_name = models.Field(required=True)
aws_type = models.Field(required=True)
aws_id = models.Field(required=True)
name = models.Field(required=True)
creation_date = models.DateTimeField(required=True)
is_running = models.NumberField(default=1, required=True)
is_active_generation = models.NumberField(default=0, required=True)
initial_deploy_complete = models.NumberField(default=0, required=True)
def __init__(self, *args, **kwargs):
self.ec2conn = None
self.rdsconn = None
self.elbconn = None
self._boto_instance = None
self._deployment_info = None
super(InfrastructureNode, self).__init__(*args, **kwargs)
def __str__(self):
if self.aws_type in NODE_AWS_TYPES:
output_str = '%s:%s[%s]<%s>' % (
self.aws_type,
self.name,
self.aws_id,
self.creation_date,
)
return output_str
return super(InfrastructureNode, self).__str__()
def save(self):
logger.critical("Called save on %s", self)
return
def get_status_output(self):
if self.aws_type in NODE_AWS_TYPES:
status_str = ''
if not self.is_running:
status_str += 'RETIRED-'
else:
if self.is_operational:
status_str += 'UP-'
else:
status_str += 'INACTIVE-'
if not self.is_healthy:
status_str += 'UNHEALTHY-'
return "%s-%s" % (status_str, self)
return "UNKNOWN-%s" % self
def set_aws_conns(self, ec2conn, rdsconn):
self.ec2conn = ec2conn
self.rdsconn = rdsconn
def set_deployment_info(self, deployment_info):
self._deployment_info = deployment_info
def is_actually_running(self):
if self.aws_type == 'ec2':
if self.boto_instance:
if self.boto_instance.state not in EC2_RETIRED_STATES:
return True
elif self.aws_type == 'rds':
if self.boto_instance:
if self.boto_instance.status not in RDS_RETIRED_STATES:
return True
return False
def terminate(self):
if (self.is_active_generation and self.is_operational):
raise Exception("Can't hard-terminate an active, operational node")
if self.aws_type == 'ec2':
if self.is_actually_running():
self.boto_instance.terminate()
elif self.aws_type == 'rds':
if self.is_actually_running():
final_snapshot = self._deployment_info.get(
'final_snapshot',
None,
)
if final_snapshot:
self.boto_instance.stop(
skip_final_snapshot=False,
final_snapshot_id=final_snapshot,
)
else:
self.boto_instance.stop(
skip_final_snapshot=True, final_snapshot_id=None)
self.is_running = 0
self.save()
def retire(self):
if (self.is_active_generation and self.is_operational):
raise Exception("Can't retire an active, operational node")
self.is_running = 0
self.save()
def make_temporarily_inoperative(self):
if self.aws_type == 'ec2':
self._remove_from_loadbalancer()
elif self.aws_type == 'rds':
pass
def _remove_from_loadbalancer(self):
if self.aws_type != 'ec2':
return
loadbalancer = self.get_loadbalancer()
if not loadbalancer:
return
if not self._instance_in_load_balancer():
logger.debug(
"_remove_from_loadbalancer: Instance %s not in loadbalancer",
self.boto_instance,
)
return
logger.info(
"Removing node from loadbalancer: %s",
loadbalancer,
)
loadbalancer.deregister_instances([self.aws_id])
def make_fully_inoperative(self):
if self.aws_type == 'ec2':
elastic_ip = self.get_elastic_ip()
if elastic_ip and elastic_ip.instance_id:
if elastic_ip.instance_id == self.boto_instance.id:
logger.info(
"Dissociating elastic IP %s from instance %s",
elastic_ip,
elastic_ip.instance_id,
)
self.ec2conn.disassociate_address(elastic_ip.public_ip)
self._remove_from_loadbalancer()
elif self.aws_type == 'rds':
pass
def refresh_boto_instance(self):
self._boto_instance = None
@property
def boto_instance(self):
if not self._boto_instance:
if self.aws_type == 'ec2':
reservations = self.ec2conn.get_all_instances(
instance_ids=[self.aws_id])
if len(reservations) == 1:
self._boto_instance = reservations[0].instances[0]
elif self.aws_type == 'rds':
try:
db_instances = self.rdsconn.get_all_dbinstances(
instance_id=self.aws_id)
except boto.exception.BotoServerError:
return self._boto_instance
if len(db_instances) == 1:
self._boto_instance = db_instances[0]
return self._boto_instance
@property
def launch_time(self):
if not self.boto_instance:
return None
if self.aws_type == 'ec2':
return dateutil.parser.parse(self.boto_instance.launch_time)
elif self.aws_type == 'rds':
return dateutil.parser.parse(self.boto_instance.create_time)
def _instance_in_load_balancer(self):
loadbalancer = self.get_loadbalancer()
if self.boto_instance is None:
return False
if loadbalancer is None:
return False
ids_in_lb = [i.id for i in loadbalancer.instances]
return self.boto_instance.id in ids_in_lb
@property
def is_operational(self):
if not self.boto_instance:
return False
if not self._deployment_info:
logger.critical(
"No deployment configuration found for node: %s",
self,
)
logger.critical(
"Unable to determine operational status. "
"Assuming NOT operational."
)
return False
if self.aws_type == 'ec2':
key_name = self._deployment_info['aws']['keypair']
elastic_ip = self.get_elastic_ip()
loadbalancer = self.get_loadbalancer()
if self.boto_instance.state != 'running':
logger.debug(
"is_operational: Instance %s not running",
self.boto_instance,
)
return False
if self.boto_instance.key_name != key_name:
logger.debug(
"is_operational: Instance %s has wrong key",
self.boto_instance,
)
return False
if elastic_ip:
if self.boto_instance.id != elastic_ip.instance_id:
logger.debug(
"is_operational: Instance %s has wrong elastic ip",
self.boto_instance,
)
return False
if loadbalancer:
if not self._instance_in_load_balancer():
logger.debug(
"is_operational: Instance %s not in loadbalancer",
self.boto_instance,
)
logger.debug(
'Instances in loadbalancer: %s',
loadbalancer.instances,
)
return False
health_list = loadbalancer.get_instance_health(
instances=[self.aws_id])
assert len(health_list) == 1
if health_list[0].state != 'InService':
logger.debug(
"is_operational: Node %s not healthy in loadbalancer.",
self.boto_instance,
)
logger.debug("LB health state: %s", health_list[0].state)
return False
return True
elif self.aws_type == 'rds':
if self.boto_instance.status != 'available':
logger.debug(
"is_operational: Instance %s not available",
self.boto_instance,
)
return False
return True
return False
def get_health_check_url(self):
if 'health_check' not in self._deployment_info:
return None
if not self.boto_instance.public_dns_name:
logger.debug(
"No health check url due to no public dns name",
)
return None
health_check = self._deployment_info['health_check']
status_url = health_check['status_url']
status_url = 'http://%s%s' % (
self.boto_instance.public_dns_name,
status_url,
)
return status_url
|
BSD 3-Clause New or Revised License
|
chengyangfu/pytorch-twitch-lol
|
vgg.py
|
vgg19
|
python
|
def vgg19(pretrained=False, **kwargs):
model = VGG(make_layers(cfg['E']), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg19']))
return model
|
VGG 19-layer model (configuration "E")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
https://github.com/chengyangfu/pytorch-twitch-lol/blob/618fe5a268c68d5c3e91850cc73e93a1fffb2b8a/vgg.py#L164-L173
|
import math
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
from torch.nn.parameter import Parameter
__all__ = [
'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn',
'vgg19_bn', 'vgg19',
]
model_urls = {
'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
}
class VGG(nn.Module):
def __init__(self, features, num_classes=1000):
super(VGG, self).__init__()
self.features = features
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
)
self.final = nn.Linear(4096, num_classes)
self._initialize_weights()
def forward(self, img):
conv_feature = self.features(img)
fc_feature = conv_feature.view(conv_feature.size(0), -1)
last_feature = self.classifier(fc_feature)
prediction = self.final(last_feature)
return prediction
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
def load_pretrained_model(self, state_dict):
own_state = self.state_dict()
for name, param in state_dict.items():
if name not in own_state:
print "=>{} is in the pretrained model, but not in the current model".format(name)
continue
print "=> loading {}".format(name)
if isinstance(param, Parameter):
param = param.data
own_state[name].copy_(param)
missing = set(own_state.keys()) - set(state_dict.keys())
print ("The following parameters are not set by the pre-trained model:", missing)
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
cfg = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def vgg11(pretrained=False, **kwargs):
model = VGG(make_layers(cfg['A']), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg11']))
return model
def vgg11_bn(**kwargs):
return VGG(make_layers(cfg['A'], batch_norm=True), **kwargs)
def vgg13(pretrained=False, **kwargs):
model = VGG(make_layers(cfg['B']), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg13']))
return model
def vgg13_bn(**kwargs):
return VGG(make_layers(cfg['B'], batch_norm=True), **kwargs)
def vgg16(pretrained=False, **kwargs):
model = VGG(make_layers(cfg['D']), **kwargs)
if pretrained:
model.load_pretrained_model(model_zoo.load_url(model_urls['vgg16']))
return model
def vgg16_bn(**kwargs):
return VGG(make_layers(cfg['D'], batch_norm=True), **kwargs)
|
MIT License
|
whimian/pygeostatistics
|
pygeostatistics/gslib_reader.py
|
SpatialData._read_data
|
python
|
def _read_data(self):
column_name = []
with open(self.datafl, 'r') as fin:
_ = fin.readline().strip()
ncols = int(fin.readline().strip())
for _ in range(ncols):
column_name.append(fin.readline().strip())
self.property_name = [item for item in column_name
if item not in ['x', 'y', 'z']]
df = pd.read_csv(self.datafl, sep='\t', header=None, names=column_name,
skiprows=ncols+2)
if 'z' not in column_name:
self._2d = True
column_name.append('z')
df['z'] = 0
self.df = df
data_dtype = np.dtype({
'names': column_name,
'formats': ['f8'] * len(column_name)})
self.vr = np.core.records.fromarrays(
df.values.transpose(), dtype=data_dtype)
|
read gslib file
|
https://github.com/whimian/pygeostatistics/blob/e119c4e47c57e0dc1ba3ff13e45782d0e33e0c36/pygeostatistics/gslib_reader.py#L25-L50
|
from __future__ import absolute_import, division, print_function
__author__ = "yuhao"
import numpy as np
import pandas as pd
from scipy.spatial.distance import pdist
from mpl_toolkits.mplot3d import Axes3D
class SpatialData(object):
def __init__(self, file_path):
self.datafl = file_path
self.vr = None
self.property_name = None
self._2d = False
self._read_data()
|
MIT License
|
facebookresearch/blink
|
elq/biencoder/biencoder.py
|
GetContextEmbedsHead.__init__
|
python
|
def __init__(self, mention_aggregation_type, ctxt_output_dim, cand_output_dim, dropout=0.1):
super(GetContextEmbedsHead, self).__init__()
self.mention_aggregation_type = mention_aggregation_type.split('_')
self.tokens_to_aggregate = self.mention_aggregation_type[0]
self.aggregate_method = "_".join(self.mention_aggregation_type[1:])
self.dropout = nn.Dropout(dropout)
if self.mention_aggregation_type == 'all_avg' or self.mention_aggregation_type == 'none':
assert ctxt_output_dim == cand_output_dim
if self.aggregate_method == 'linear':
self.mention_agg_linear = nn.Linear(ctxt_output_dim * 2, cand_output_dim)
elif self.aggregate_method == 'avg_linear':
self.mention_agg_linear = nn.Linear(ctxt_output_dim, cand_output_dim)
elif self.aggregate_method == 'mlp':
self.mention_agg_mlp = nn.Sequential(
nn.Linear(bert_output_dim, bert_output_dim),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(bert_output_dim, output_dim),
)
else:
self.mention_agg_mlp = None
|
mention_aggregation_type
`all_avg`: average across tokens in mention
`fl_avg`: to average across first/last tokens in mention
`{all/fl}_linear`: for linear layer over mention
`{all/fl}_mlp` to MLP over mention
|
https://github.com/facebookresearch/blink/blob/5fe254dd64d37332347edc73738edcb56096183f/elq/biencoder/biencoder.py#L146-L175
|
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
from collections import OrderedDict
from pytorch_transformers.modeling_bert import (
BertPreTrainedModel,
BertConfig,
BertModel,
)
from pytorch_transformers.tokenization_bert import BertTokenizer
from elq.common.ranker_base import BertEncoder, get_model_obj
from blink.common.optimizer import get_bert_optimizer
from elq.biencoder.allennlp_span_utils import batched_span_select, batched_index_select
from elq.biencoder.utils import batch_reshape_mask_left
def load_biencoder(params):
biencoder = BiEncoderRanker(params)
return biencoder
def get_submodel_from_state_dict(state_dict, prefix):
new_state_dict = OrderedDict()
for key, value in state_dict.items():
if key.startswith(prefix):
key = key[len(prefix)+1:]
new_state_dict[key] = value
return new_state_dict
class MentionScoresHead(nn.Module):
def __init__(
self, bert_output_dim, scoring_method="qa_linear", max_mention_length=10,
):
super(MentionScoresHead, self).__init__()
self.scoring_method = scoring_method
self.max_mention_length = max_mention_length
if self.scoring_method == "qa_linear":
self.bound_classifier = nn.Linear(bert_output_dim, 3)
elif self.scoring_method == "qa_mlp" or self.scoring_method == "qa":
self.bound_classifier = nn.Sequential(
nn.Linear(bert_output_dim, bert_output_dim),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(bert_output_dim, 3),
)
else:
raise NotImplementedError()
def forward(self, bert_output, mask_ctxt):
logits = self.bound_classifier(bert_output)
if self.scoring_method[:2] == "qa":
start_logprobs, end_logprobs, mention_logprobs = logits.split(1, dim=-1)
start_logprobs = start_logprobs.squeeze(-1)
end_logprobs = end_logprobs.squeeze(-1)
mention_logprobs = mention_logprobs.squeeze(-1)
start_logprobs[~mask_ctxt] = -float("Inf")
end_logprobs[~mask_ctxt] = -float("Inf")
mention_logprobs[~mask_ctxt] = -float("Inf")
mention_scores = start_logprobs.unsqueeze(2) + end_logprobs.unsqueeze(1)
mention_cum_scores = torch.zeros(mention_scores.size(), dtype=mention_scores.dtype).to(mention_scores.device)
mention_logprobs_end_cumsum = torch.zeros(mask_ctxt.size(0), dtype=mention_scores.dtype).to(mention_scores.device)
for i in range(mask_ctxt.size(1)):
mention_logprobs_end_cumsum += mention_logprobs[:,i]
mention_cum_scores[:,:,i] += mention_logprobs_end_cumsum.unsqueeze(-1)
mention_logprobs_start_cumsum = torch.zeros(mask_ctxt.size(0), dtype=mention_scores.dtype).to(mention_scores.device)
for i in range(mask_ctxt.size(1)-1):
mention_logprobs_start_cumsum += mention_logprobs[:,i]
mention_cum_scores[:,(i+1),:] -= mention_logprobs_start_cumsum.unsqueeze(-1)
mention_scores += mention_cum_scores
mention_bounds = torch.stack([
torch.arange(mention_scores.size(1)).unsqueeze(-1).expand(mention_scores.size(1), mention_scores.size(2)),
torch.arange(mention_scores.size(1)).unsqueeze(0).expand(mention_scores.size(1), mention_scores.size(2)),
], dim=-1).to(mask_ctxt.device)
mention_sizes = mention_bounds[:,:,1] - mention_bounds[:,:,0] + 1
valid_mask = (mention_sizes.unsqueeze(0) > 0) & mask_ctxt.unsqueeze(1)
mention_scores[~valid_mask] = -float("inf")
mention_scores = mention_scores.view(mention_scores.size(0), -1)
mention_bounds = mention_bounds.view(-1, 2)
mention_bounds = mention_bounds.unsqueeze(0).expand(mention_scores.size(0), mention_scores.size(1), 2)
if self.max_mention_length is not None:
mention_scores, mention_bounds = self.filter_by_mention_size(
mention_scores, mention_bounds, self.max_mention_length,
)
return mention_scores, mention_bounds
def filter_by_mention_size(self, mention_scores, mention_bounds, max_mention_length):
mention_bounds_mask = (mention_bounds[:,:,1] - mention_bounds[:,:,0] <= max_mention_length)
mention_scores = mention_scores[mention_bounds_mask]
mention_scores = mention_scores.view(mention_bounds_mask.size(0),-1)
mention_bounds = mention_bounds[mention_bounds_mask]
mention_bounds = mention_bounds.view(mention_bounds_mask.size(0),-1,2)
return mention_scores, mention_bounds
class GetContextEmbedsHead(nn.Module):
|
MIT License
|
bovee/aston
|
aston/trace/math_traces.py
|
movingaverage
|
python
|
def movingaverage(arr, window):
m = np.ones(int(window)) / int(window)
return scipy.ndimage.convolve1d(arr, m, axis=0, mode='reflect')
|
Calculates the moving average ("rolling mean") of an array
of a certain window size.
|
https://github.com/bovee/aston/blob/315871346df72b3e8fcfa9943e8a3519e60299ff/aston/trace/math_traces.py#L73-L79
|
import struct
import zlib
import numpy as np
import scipy.ndimage
from aston.trace import Chromatogram, Trace
def series_from_str(val, times, name=''):
def is_num(x):
try:
float(x)
return True
except ValueError:
return False
if ',' in val:
tpts = dict([tpt.split(':') for tpt in val.split(',')])
valid_x = [v for v in tpts if is_num(v)]
x = np.array([float(v) for v in valid_x])
y = np.array([float(tpts[v]) for v in valid_x])
srt_ind = np.argsort(x)
if 'S' in tpts:
d = np.interp(times, x[srt_ind], y[srt_ind], float(tpts['S']))
else:
d = np.interp(times, x[srt_ind], y[srt_ind])
elif is_num(val):
d = np.ones(times.shape) * float(val)
else:
d = np.ones(times.shape) * np.nan
return Trace(d, times, name=name)
def fft(ts):
t_step = ts.index[1] - ts.index[0]
oc = np.abs(np.fft.fftshift(np.fft.fft(ts.values))) / len(ts.values)
t = np.fft.fftshift(np.fft.fftfreq(len(oc), d=t_step))
return Trace(oc, t)
def ifft(ic, t):
raise NotImplementedError
def noisefilter(arr, bandwidth=0.2):
i = np.fft.fftshift(np.fft.fft(arr))
p = np.zeros(len(i), dtype=complex)
c1 = len(i) / 2
r = float(bandwidth)
r = int((r * len(i)) / 2)
for i in range(c1 - r, c1 + r):
p[i] = i[i]
return np.real(np.fft.ifft(np.fft.ifftshift(p)))
|
BSD 3-Clause New or Revised License
|
tdicola/smartalarmclock
|
SmartAlarmClock/www/temboo/Library/Google/Calendar/UpdateCalendar.py
|
UpdateCalendar.__init__
|
python
|
def __init__(self, temboo_session):
Choreography.__init__(self, temboo_session, '/Library/Google/Calendar/UpdateCalendar')
|
Create a new instance of the UpdateCalendar Choreo. A TembooSession object, containing a valid
set of Temboo credentials, must be supplied.
|
https://github.com/tdicola/smartalarmclock/blob/0cc704c3998a724942e4c44e9692aaefe50baa0a/SmartAlarmClock/www/temboo/Library/Google/Calendar/UpdateCalendar.py#L21-L26
|
from temboo.core.choreography import Choreography
from temboo.core.choreography import InputSet
from temboo.core.choreography import ResultSet
from temboo.core.choreography import ChoreographyExecution
import json
class UpdateCalendar(Choreography):
|
MIT License
|
microsoft/nn-meter
|
nn_meter/prediction/predictors/predict_by_kernel.py
|
predict_model
|
python
|
def predict_model(model, predictors):
py = 0
dicts = {}
for layer in model:
kernel = list(model[layer].keys())[0]
features = model[layer][kernel]
rkernel = merge_conv_kernels(kernel)
if rkernel not in dicts:
dicts[rkernel] = []
dicts[rkernel].append(features)
for kernel in dicts:
kernelname = get_kernel_name(kernel)
if kernelname in predictors:
pred = predictors[kernelname]
pys = pred.predict(dicts[kernel])
if len(pys) != 0:
py += sum(pys)
return py
|
@params:
model: the model config with prediction features
predictors: loaded pkl predictors
|
https://github.com/microsoft/nn-meter/blob/a478371d309a53fdd19f4d1c497017c5aabb902a/nn_meter/prediction/predictors/predict_by_kernel.py#L19-L43
|
from .utils import get_kernel_name
from .extract_feature import get_predict_features
def merge_conv_kernels(kernelname):
if "conv" in kernelname and "dwconv" not in kernelname:
return "conv-bn-relu"
elif "dwconv" in kernelname:
return "dwconv-bn-relu"
else:
return kernelname
|
MIT License
|
google/tensornetwork
|
tensornetwork/backends/pytorch/decompositions.py
|
svd
|
python
|
def svd(
torch: Any,
tensor: Tensor,
pivot_axis: int,
max_singular_values: Optional[int] = None,
max_truncation_error: Optional[float] = None,
relative: Optional[bool] = False) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
left_dims = list(tensor.shape)[:pivot_axis]
right_dims = list(tensor.shape)[pivot_axis:]
tensor = torch.reshape(tensor, (np.prod(left_dims), np.prod(right_dims)))
u, s, v = torch.svd(tensor)
if max_singular_values is None:
max_singular_values = s.nelement()
if max_truncation_error is not None:
s_sorted, _ = torch.sort(s**2)
trunc_errs = torch.sqrt(torch.cumsum(s_sorted, 0))
if relative:
abs_max_truncation_error = max_truncation_error * s[0]
else:
abs_max_truncation_error = max_truncation_error
num_sing_vals_err = torch.nonzero(
trunc_errs > abs_max_truncation_error).nelement()
else:
num_sing_vals_err = max_singular_values
num_sing_vals_keep = min(max_singular_values, num_sing_vals_err)
s = s.type(tensor.type())
s_rest = s[num_sing_vals_keep:]
s = s[:num_sing_vals_keep]
u = u[:, :num_sing_vals_keep]
v = v[:, :num_sing_vals_keep]
vh = torch.transpose(v, 0, 1)
dim_s = s.shape[0]
u = torch.reshape(u, left_dims + [dim_s])
vh = torch.reshape(vh, [dim_s] + right_dims)
return u, s, vh, s_rest
|
Computes the singular value decomposition (SVD) of a tensor.
The SVD is performed by treating the tensor as a matrix, with an effective
left (row) index resulting from combining the axes `tensor.shape[:pivot_axis]`
and an effective right (column) index resulting from combining the axes
`tensor.shape[pivot_axis:]`.
For example, if `tensor` had a shape (2, 3, 4, 5) and `pivot_axis` was 2, then
`u` would have shape (2, 3, 6), `s` would have shape (6), and `vh` would
have shape (6, 4, 5).
If `max_singular_values` is set to an integer, the SVD is truncated to keep
at most this many singular values.
If `max_truncation_error > 0`, as many singular values will be truncated as
possible, so that the truncation error (the norm of discarded singular
values) is at most `max_truncation_error`.
If `relative` is set `True` then `max_truncation_err` is understood
relative to the largest singular value.
If both `max_singular_values` snd `max_truncation_error` are specified, the
number of retained singular values will be
`min(max_singular_values, nsv_auto_trunc)`, where `nsv_auto_trunc` is the
number of singular values that must be kept to maintain a truncation error
smaller than `max_truncation_error`.
The output consists of three tensors `u, s, vh` such that:
```python
u[i1,...,iN, j] * s[j] * vh[j, k1,...,kM] == tensor[i1,...,iN, k1,...,kM]
```
Note that the output ordering matches numpy.linalg.svd rather than tf.svd.
Args:
tf: The tensorflow module.
tensor: A tensor to be decomposed.
pivot_axis: Where to split the tensor's axes before flattening into a
matrix.
max_singular_values: The number of singular values to keep, or `None` to
keep them all.
max_truncation_error: The maximum allowed truncation error or `None` to not
do any truncation.
relative: Multiply `max_truncation_err` with the largest singular value.
Returns:
u: Left tensor factor.
s: Vector of ordered singular values from largest to smallest.
vh: Right tensor factor.
s_rest: Vector of discarded singular values (length zero if no
truncation).
|
https://github.com/google/tensornetwork/blob/e12580f1749493dbe05f474d2fecdec4eaba73c5/tensornetwork/backends/pytorch/decompositions.py#L22-L121
|
from typing import Optional, Tuple, Any
import numpy as np
Tensor = Any
|
Apache License 2.0
|
yfauser/planespotter
|
app-server/app/lib/python2.7/site-packages/flask_restless/helpers.py
|
assign_attributes
|
python
|
def assign_attributes(model, **kwargs):
cls = type(model)
for field, value in kwargs.items():
if not hasattr(cls, field):
msg = '{0} has no field named "{1!r}"'.format(cls.__name__, field)
raise TypeError(msg)
setattr(model, field, value)
|
Assign all attributes from the supplied `kwargs` dictionary to the
model. This does the same thing as the default declarative constructor,
when provided a dictionary of attributes and values.
|
https://github.com/yfauser/planespotter/blob/d400216502b6b5592a4889eb9fa277b2ddb75f9b/app-server/app/lib/python2.7/site-packages/flask_restless/helpers.py#L198-L209
|
import datetime
import inspect
import uuid
from dateutil.parser import parse as parse_datetime
from sqlalchemy import Date
from sqlalchemy import DateTime
from sqlalchemy import Interval
from sqlalchemy.exc import NoInspectionAvailable
from sqlalchemy.exc import OperationalError
from sqlalchemy.ext.associationproxy import AssociationProxy
from sqlalchemy.ext import hybrid
from sqlalchemy.ext.hybrid import hybrid_property
from sqlalchemy.orm import ColumnProperty
from sqlalchemy.orm import RelationshipProperty as RelProperty
from sqlalchemy.orm.attributes import InstrumentedAttribute
from sqlalchemy.orm.attributes import QueryableAttribute
from sqlalchemy.orm.query import Query
from sqlalchemy.sql import func
from sqlalchemy.sql.expression import ColumnElement
from sqlalchemy.inspection import inspect as sqlalchemy_inspect
RELATION_BLACKLIST = ('query', 'query_class', '_sa_class_manager',
'_decl_class_registry')
COLUMN_BLACKLIST = ('_sa_polymorphic_on', )
COLUMN_TYPES = (InstrumentedAttribute, hybrid_property)
CURRENT_TIME_MARKERS = ('CURRENT_TIMESTAMP', 'CURRENT_DATE', 'LOCALTIMESTAMP')
def partition(l, condition):
return [x for x in l if condition(x)], [x for x in l if not condition(x)]
def session_query(session, model):
if hasattr(model, 'query'):
if callable(model.query):
query = model.query()
else:
query = model.query
if hasattr(query, 'filter'):
return query
return session.query(model)
def upper_keys(d):
return dict(zip((k.upper() for k in d.keys()), d.values()))
def get_columns(model):
columns = {}
for superclass in model.__mro__:
for name, column in superclass.__dict__.items():
if isinstance(column, COLUMN_TYPES):
columns[name] = column
return columns
def get_relations(model):
return [k for k in dir(model)
if not (k.startswith('__') or k in RELATION_BLACKLIST)
and get_related_model(model, k)]
def get_related_model(model, relationname):
if hasattr(model, relationname):
attr = getattr(model, relationname)
if hasattr(attr, 'property') and isinstance(attr.property, RelProperty):
return attr.property.mapper.class_
if isinstance(attr, AssociationProxy):
return get_related_association_proxy_model(attr)
return None
def get_related_association_proxy_model(attr):
prop = attr.remote_attr.property
for attribute in ('mapper', 'parent'):
if hasattr(prop, attribute):
return getattr(prop, attribute).class_
return None
def has_field(model, fieldname):
descriptors = sqlalchemy_inspect(model).all_orm_descriptors._data
if fieldname in descriptors and hasattr(descriptors[fieldname], 'fset'):
return descriptors[fieldname].fset is not None
return hasattr(model, fieldname)
def get_field_type(model, fieldname):
field = getattr(model, fieldname)
if isinstance(field, ColumnElement):
fieldtype = field.type
else:
if isinstance(field, AssociationProxy):
field = field.remote_attr
if hasattr(field, 'property'):
prop = field.property
if isinstance(prop, RelProperty):
return None
fieldtype = prop.columns[0].type
else:
return None
return fieldtype
def is_date_field(model, fieldname):
fieldtype = get_field_type(model, fieldname)
return isinstance(fieldtype, Date) or isinstance(fieldtype, DateTime)
def is_interval_field(model, fieldname):
fieldtype = get_field_type(model, fieldname)
return isinstance(fieldtype, Interval)
|
MIT License
|
openstack/cyborg
|
cyborg/db/sqlalchemy/api.py
|
Connection.attach_handle_allocate
|
python
|
def attach_handle_allocate(self, context, deployable_id):
try:
ah = self._do_allocate_attach_handle(
context, deployable_id)
except NoResultFound:
msg = 'Matching deployable_id {0}'.format(deployable_id)
raise exception.ResourceNotFound(
resource='AttachHandle', msg=msg)
return ah
|
Allocate an attach handle with given deployable.
To allocate is to get an unused resource and mark it as in_use.
|
https://github.com/openstack/cyborg/blob/17b18248f45aafa0cbc04a3307bd83f3deceb8e1/cyborg/db/sqlalchemy/api.py#L284-L296
|
import copy
import threading
import uuid
from oslo_db import api as oslo_db_api
from oslo_db import exception as db_exc
from oslo_db.sqlalchemy import enginefacade
from oslo_db.sqlalchemy import utils as sqlalchemyutils
from oslo_log import log
from oslo_utils import strutils
from oslo_utils import timeutils
from oslo_utils import uuidutils
from sqlalchemy.orm.exc import NoResultFound
from sqlalchemy.orm import load_only
from cyborg.common import exception
from cyborg.common.i18n import _
from cyborg.db import api
from cyborg.db.sqlalchemy import models
_CONTEXT = threading.local()
LOG = log.getLogger(__name__)
main_context_manager = enginefacade.transaction_context()
def get_backend():
return Connection()
def _session_for_read():
return enginefacade.reader.using(_CONTEXT)
def _session_for_write():
return enginefacade.writer.using(_CONTEXT)
def get_session(use_slave=False, **kwargs):
return main_context_manager._factory.get_legacy_facade().get_session(
use_slave=use_slave, **kwargs)
def model_query(context, model, *args, **kwargs):
if kwargs.pop("project_only", False):
kwargs["project_id"] = context.tenant
with _session_for_read() as session:
query = sqlalchemyutils.model_query(
model, session, args, **kwargs)
return query
def add_identity_filter(query, value):
if strutils.is_int_like(value):
return query.filter_by(id=value)
elif uuidutils.is_uuid_like(value):
return query.filter_by(uuid=value)
else:
raise exception.InvalidIdentity(identity=value)
def _paginate_query(context, model, query, limit=None, marker=None,
sort_key=None, sort_dir=None):
sort_keys = ['id']
if sort_key and sort_key not in sort_keys:
sort_keys.insert(0, sort_key)
try:
query = sqlalchemyutils.paginate_query(query, model, limit, sort_keys,
marker=marker,
sort_dir=sort_dir)
except db_exc.InvalidSortKey:
raise exception.InvalidParameterValue(
_('The sort_key value "%(key)s" is an invalid field for sorting')
% {'key': sort_key})
return query.all()
class Connection(api.Connection):
def __init__(self):
pass
def attach_handle_create(self, context, values):
if not values.get('uuid'):
values['uuid'] = uuidutils.generate_uuid()
attach_handle = models.AttachHandle()
attach_handle.update(values)
with _session_for_write() as session:
try:
session.add(attach_handle)
session.flush()
except db_exc.DBDuplicateEntry:
raise exception.AttachHandleAlreadyExists(uuid=values['uuid'])
return attach_handle
def attach_handle_get_by_uuid(self, context, uuid):
query = model_query(
context,
models.AttachHandle).filter_by(uuid=uuid)
try:
return query.one()
except NoResultFound:
raise exception.ResourceNotFound(
resource='AttachHandle',
msg='with uuid=%s' % uuid)
def attach_handle_get_by_id(self, context, id):
query = model_query(
context,
models.AttachHandle).filter_by(id=id)
try:
return query.one()
except NoResultFound:
raise exception.ResourceNotFound(
resource='AttachHandle',
msg='with id=%s' % id)
def attach_handle_list_by_type(self, context, attach_type='PCI'):
query = model_query(context, models.AttachHandle). filter_by(attach_type=attach_type)
try:
return query.all()
except NoResultFound:
raise exception.ResourceNotFound(
resource='AttachHandle',
msg='with type=%s' % attach_type)
def attach_handle_get_by_filters(self, context,
filters, sort_key='created_at',
sort_dir='desc', limit=None,
marker=None, join_columns=None):
if limit == 0:
return []
query_prefix = model_query(context, models.AttachHandle)
filters = copy.deepcopy(filters)
exact_match_filter_names = ['uuid', 'id', 'deployable_id', 'cpid_id']
query_prefix = self._exact_filter(models.AttachHandle, query_prefix,
filters, exact_match_filter_names)
if query_prefix is None:
return []
return _paginate_query(context, models.AttachHandle, query_prefix,
limit, marker, sort_key, sort_dir)
def _exact_filter(self, model, query, filters, legal_keys=None):
if filters is None:
filters = {}
if legal_keys is None:
legal_keys = []
filter_dict = {}
for key in legal_keys:
if key not in filters:
continue
value = filters.pop(key)
if isinstance(value, (list, tuple, set, frozenset)):
if not value:
return None
column_attr = getattr(model, key)
query = query.filter(column_attr.in_(value))
else:
filter_dict[key] = value
if filter_dict:
query = query.filter(*[getattr(model, k) == v
for k, v in filter_dict.items()])
return query
def attach_handle_list(self, context):
query = model_query(context, models.AttachHandle)
return _paginate_query(context, models.AttachHandle, query=query)
def attach_handle_update(self, context, uuid, values):
if 'uuid' in values:
msg = _("Cannot overwrite UUID for an existing AttachHandle.")
raise exception.InvalidParameterValue(err=msg)
return self._do_update_attach_handle(context, uuid, values)
@oslo_db_api.retry_on_deadlock
def _do_update_attach_handle(self, context, uuid, values):
with _session_for_write():
query = model_query(context, models.AttachHandle)
query = add_identity_filter(query, uuid)
try:
ref = query.with_for_update().one()
except NoResultFound:
raise exception.ResourceNotFound(
resource='AttachHandle',
msg='with uuid=%s' % uuid)
ref.update(values)
return ref
@oslo_db_api.retry_on_deadlock
def _do_allocate_attach_handle(self, context, deployable_id):
with _session_for_write() as session:
query = model_query(context, models.AttachHandle). filter_by(deployable_id=deployable_id,
in_use=False)
values = {"in_use": True}
ref = query.with_for_update().first()
if not ref:
msg = 'Matching deployable_id {0}'.format(deployable_id)
raise exception.ResourceNotFound(
resource='AttachHandle', msg=msg)
ref.update(values)
session.flush()
return ref
|
Apache License 2.0
|
tcalmant/ipopo
|
tests/services/test_mqtt.py
|
MqttServiceTest._setup_mqtt
|
python
|
def _setup_mqtt(self, context):
config = self.config.create_factory_configuration(
services.MQTT_CONNECTOR_FACTORY_PID)
config.update({"host": self.HOST, "port": self.PORT})
for _ in range(10):
svc_ref = context.get_service_reference(
services.SERVICE_MQTT_CONNECTION,
"(id={})".format(config.get_pid()))
if svc_ref is not None:
break
time.sleep(.5)
else:
self.fail("Connection Service not found")
return config, svc_ref
|
Common code for MQTT service creation
|
https://github.com/tcalmant/ipopo/blob/1d4b81207e67890dfccc8f562336c7104f194c17/tests/services/test_mqtt.py#L104-L123
|
import random
import shutil
import string
import tempfile
import time
try:
import unittest2 as unittest
except ImportError:
import unittest
import pelix.framework
import pelix.services as services
from tests.mqtt_utilities import find_mqtt_server
__version_info__ = (1, 0, 1)
__version__ = ".".join(str(x) for x in __version_info__)
class Listener:
def __init__(self):
self.messages = []
def handle_mqtt_message(self, topic, payload, qos):
self.messages.append((topic, payload, qos))
class MqttServiceTest(unittest.TestCase):
HOST = find_mqtt_server()
PORT = 1883
def setUp(self):
self.conf_dir = tempfile.mkdtemp()
self.framework = pelix.framework.create_framework(
('pelix.ipopo.core',
'pelix.services.configadmin',
'pelix.services.mqtt'),
{'configuration.folder': self.conf_dir})
self.framework.start()
context = self.framework.get_bundle_context()
self.config_ref = context.get_service_reference(
services.SERVICE_CONFIGURATION_ADMIN)
self.config = context.get_service(self.config_ref)
def tearDown(self):
pelix.framework.FrameworkFactory.delete_framework(self.framework)
self.framework = None
shutil.rmtree(self.conf_dir)
def test_no_config(self):
time.sleep(.5)
context = self.framework.get_bundle_context()
svc_ref = context.get_service_reference(
services.SERVICE_MQTT_CONNECTION)
self.assertIsNone(svc_ref, "Found a MQTT connection")
|
Apache License 2.0
|
google/seqio
|
seqio/vocabularies.py
|
ByteVocabulary._base_vocab_size
|
python
|
def _base_vocab_size(self):
return self._num_special_tokens + self._byte_size
|
Number of ids.
Returns:
an integer, the vocabulary size
|
https://github.com/google/seqio/blob/6fae6ef97ae9d2995bd954a8bdf537c74d04e956/seqio/vocabularies.py#L414-L420
|
import abc
import hashlib
from typing import Any, Dict, Iterable, Optional, Sequence, Union
from absl import logging
import tensorflow.compat.v2 as tf
import tensorflow_text as tf_text
from sentencepiece import sentencepiece_model_pb2
import sentencepiece as sentencepiece_processor
PAD_ID = 0
class Vocabulary(metaclass=abc.ABCMeta):
def __init__(self, extra_ids: int = 0):
self._extra_ids = extra_ids or 0
@abc.abstractproperty
def eos_id(self) -> Optional[int]:
raise NotImplementedError("need to implement eos_id")
@property
def pad_id(self) -> int:
return PAD_ID
@abc.abstractproperty
def unk_id(self) -> Optional[int]:
raise NotImplementedError("need to implement unk_id")
@property
def extra_ids(self) -> int:
return self._extra_ids
@property
def vocab_size(self) -> int:
return self._base_vocab_size + self.extra_ids
@abc.abstractproperty
def _base_vocab_size(self) -> int:
raise NotImplementedError
@abc.abstractmethod
def _encode(self, s: str) -> Sequence[int]:
raise NotImplementedError
def encode(self, s: Union[Sequence[int], str]) -> Sequence[int]:
return self._encode(s)
@abc.abstractmethod
def _decode(self, ids):
raise NotImplementedError
def decode(self, ids: Iterable[int]):
clean_ids = list(ids)
if self.unk_id is not None:
vocab_size = self._base_vocab_size
clean_ids = [
self.unk_id if i >= vocab_size else i
for i in clean_ids
]
if self.eos_id is not None and self.eos_id in clean_ids:
clean_ids = clean_ids[:clean_ids.index(self.eos_id) + 1]
return self._decode(clean_ids)
@abc.abstractmethod
def _encode_tf(self, s: tf.Tensor) -> tf.Tensor:
raise NotImplementedError
def encode_tf(self, s: tf.Tensor) -> tf.Tensor:
return self._encode_tf(s)
@abc.abstractmethod
def _decode_tf(self, ids: tf.Tensor) -> tf.Tensor:
raise NotImplementedError
def decode_tf(self, ids: tf.Tensor) -> tf.Tensor:
clean_ids = ids
if self.unk_id is not None:
clean_ids = tf.where(
tf.less(clean_ids, self._base_vocab_size), clean_ids, self.unk_id)
if self.eos_id is not None:
after_eos = tf.cumsum(
tf.cast(tf.equal(clean_ids, self.eos_id), tf.int32),
exclusive=True, axis=-1)
clean_ids = tf.where(tf.cast(after_eos, tf.bool), self.pad_id, clean_ids)
return self._decode_tf(clean_ids)
class PassThroughVocabulary(Vocabulary):
def __init__(
self,
size: int,
eos_id: Optional[int] = None):
self._size = size
self._eos_id = eos_id
super().__init__()
@property
def _base_vocab_size(self):
return self._size
def _encode(self, s: Sequence[int]) -> Sequence[int]:
return s
def _decode(self, ids: Sequence[int]) -> Sequence[int]:
return ids
def _encode_tf(self, s: tf.Tensor) -> tf.Tensor:
return s
def _decode_tf(self, ids: tf.Tensor) -> tf.Tensor:
return ids
@property
def eos_id(self) -> Optional[int]:
return self._eos_id
@property
def unk_id(self) -> Optional[int]:
return None
def __eq__(self, other):
if not isinstance(other, PassThroughVocabulary):
return False
return (self._size == other._size and
self.eos_id == other.eos_id)
class SentencePieceVocabulary(Vocabulary):
def __init__(self, sentencepiece_model_file, extra_ids=None):
self._sentencepiece_model_file = sentencepiece_model_file
self._tokenizer = None
self._sp_model = None
super().__init__(extra_ids=extra_ids)
def _load_model(self):
with tf.io.gfile.GFile(self._sentencepiece_model_file, "rb") as f:
self._sp_model = f.read()
model = sentencepiece_model_pb2.ModelProto.FromString(self._sp_model)
if self._extra_ids:
for i in reversed(range(self._extra_ids)):
model.pieces.add(
piece=f"▁<extra_id_{i}>", score=0.0,
type=
sentencepiece_model_pb2.ModelProto.SentencePiece.USER_DEFINED)
self._sp_model = model.SerializeToString()
self._tokenizer = sentencepiece_processor.SentencePieceProcessor()
self._tokenizer.LoadFromSerializedProto(self._sp_model)
if self._tokenizer.pad_id() != PAD_ID:
logging.warning(
"T5 library uses PAD_ID=%s, which is different from the "
"sentencepiece vocabulary, which defines pad_id=%s",
PAD_ID, self._tokenizer.pad_id())
@property
def eos_id(self) -> Optional[int]:
return self.tokenizer.eos_id()
@property
def unk_id(self) -> Optional[int]:
return self.tokenizer.unk_id()
@property
def sp_model(self):
if self._sp_model is None:
self._load_model()
return self._sp_model
@property
def sentencepiece_model_file(self):
return self._sentencepiece_model_file
@property
def tokenizer(self):
if not self._tokenizer:
self._load_model()
return self._tokenizer
@property
def tf_tokenizer(self):
return tf_text.SentencepieceTokenizer(model=self.sp_model)
@property
def vocab_size(self):
return self._base_vocab_size
@property
def _base_vocab_size(self):
return self.tokenizer.GetPieceSize()
def _encode(self, s):
return self.tokenizer.EncodeAsIds(s)
def _decode(self, ids):
ids = [
self.tokenizer.unk_id() if i >= self.tokenizer.GetPieceSize()
else i for i in ids]
return self.tokenizer.DecodeIds(ids)
def _encode_tf(self, s):
return self.tf_tokenizer.tokenize(s)
def _decode_tf(self, ids):
return self.tf_tokenizer.detokenize(ids)
def __eq__(self, other):
if not isinstance(other, SentencePieceVocabulary):
return False
try:
their_md5 = hashlib.md5(other.sp_model).hexdigest()
except AttributeError:
return False
our_md5 = hashlib.md5(self.sp_model).hexdigest()
return our_md5 == their_md5
def __str__(self) -> str:
return (f"SentencePieceVocabulary(file={self._sentencepiece_model_file}, "
f"extra_ids={self.extra_ids}, "
f"spm_md5={hashlib.md5(self.sp_model).hexdigest()})")
class ByteVocabulary(Vocabulary):
def __init__(self, extra_ids: int = 0):
self._byte_size = 256
self._num_special_tokens = 3
super().__init__(extra_ids=extra_ids)
@property
def eos_id(self) -> Optional[int]:
return 1
@property
def unk_id(self) -> Optional[int]:
return 2
def _convert_strings_to_ids(self, s):
return list(s.encode("utf-8"))
def _convert_ids_to_strings(self, ids):
return bytes(ids).decode("utf-8", errors="ignore")
def _filter_non_string_ids(self, ids):
lower_bound = self._num_special_tokens
upper_bound = self._byte_size + self._num_special_tokens
return [id for id in ids if lower_bound <= id < upper_bound]
@property
|
Apache License 2.0
|
zju-robotics-lab/cict
|
ROS/src/imu/scripts/mtdevice.py
|
MTDevice.GetOutputConfiguration
|
python
|
def GetOutputConfiguration(self):
self._ensure_config_state()
data = self.write_ack(MID.SetOutputConfiguration)
output_configuration = [struct.unpack('!HH', data[o:o+4])
for o in range(0, len(data), 4)]
return output_configuration
|
Get the output configuration of the device (mark IV).
|
https://github.com/zju-robotics-lab/cict/blob/ff873a03ab03d9113b8db96d26246939bb5da0d4/ROS/src/imu/scripts/mtdevice.py#L374-L380
|
import serial
import struct
import sys
import getopt
import time
import glob
import re
import pprint
from mtdef import MID, OutputMode, OutputSettings, MTException, Baudrates, XDIGroup, getMIDName, DeviceState, DeprecatedMID, MTErrorMessage, MTTimeoutException
class MTDevice(object):
def __init__(self, port, baudrate=115200, timeout=0.002, autoconf=True,
config_mode=False, verbose=False):
self.verbose = verbose
try:
self.device = serial.Serial(port, baudrate, timeout=timeout,
writeTimeout=timeout)
except IOError:
self.device = serial.Serial(port, baudrate, timeout=timeout,
writeTimeout=timeout, rtscts=True,
dsrdtr=True)
self.device.flushInput()
self.device.flushOutput()
self.timeout = 100*timeout
self.state = None
if autoconf:
self.auto_config_legacy()
else:
self.mode = None
self.settings = None
self.length = None
self.header = None
if config_mode:
self.GoToConfig()
def write_msg(self, mid, data=b''):
length = len(data)
if length > 254:
lendat = b'\xFF' + struct.pack('!H', length)
else:
lendat = struct.pack('!B', length)
packet = b'\xFA\xFF' + struct.pack('!B', mid) + lendat + data
packet += struct.pack('!B', 0xFF & (-(sum(map(ord,packet[1:])))))
msg = packet
start = time.time()
while ((time.time()-start) < self.timeout) and self.device.read():
pass
self.device.write(msg)
if self.verbose:
print("MT: Write message id 0x%02X (%s) with %d data bytes: [%s]" % (mid, getMIDName(mid), length,
' '.join("%02X" % ord(v) for v in data)))
def waitfor(self, size=1):
buf = bytearray()
for _ in range(100):
buf.extend(self.device.read(size-len(buf)))
if len(buf) == size:
return buf
if self.verbose:
print("waiting for %d bytes, got %d so far: [%s]" % (size, len(buf), ' '.join('%02X' % v for v in buf)))
raise MTTimeoutException("waiting for message")
def read_data_msg(self, buf=bytearray()):
start = time.time()
if self.length <= 254:
totlength = 5 + self.length
else:
totlength = 7 + self.length
while (time.time()-start) < self.timeout:
buf.extend(self.waitfor(totlength - len(buf)))
preamble_ind = buf.find(self.header)
if preamble_ind == -1:
if self.verbose:
sys.stderr.write("MT: discarding (no preamble).\n")
del buf[:-3]
continue
elif preamble_ind:
if self.verbose:
sys.stderr.write("MT: discarding (before preamble).\n")
del buf[:preamble_ind]
buf.extend(self.waitfor(totlength-len(buf)))
if 0xFF & sum(buf[1:]):
if self.verbose:
sys.stderr.write("MT: invalid checksum; discarding data and"
" waiting for next message.\n")
del buf[:buf.find(self.header)-2]
continue
data = str(buf[-self.length-1:-1])
del buf[:]
return data
else:
raise MTException("could not find MTData message.")
def read_msg(self):
start = time.time()
while (time.time()-start) < self.timeout:
if ord(self.waitfor()) != 0xFA:
continue
if ord(self.waitfor()) != 0xFF:
continue
mid, length = struct.unpack('!BB', self.waitfor(2))
if length == 255:
length, = struct.unpack('!H', self.waitfor(2))
buf = self.waitfor(length+1)
checksum = buf[-1]
data = struct.unpack('!%dB' % length, buf[:-1])
if 0xFF & sum(data, 0xFF+mid+length+checksum):
if self.verbose:
sys.stderr.write("invalid checksum; discarding data and "
"waiting for next message.\n")
continue
if self.verbose:
print("MT: Got message id 0x%02X (%s) with %d data bytes: [%s]" % (mid, getMIDName(mid), length,
' '.join("%02X" % v for v in data)))
if mid == MID.Error:
raise MTErrorMessage(data[0])
return (mid, buf[:-1])
else:
raise MTException("could not find message.")
def write_ack(self, mid, data=b'', n_retries=500):
self.write_msg(mid, data)
for _ in range(n_retries):
mid_ack, data_ack = self.read_msg()
if mid_ack == (mid+1):
break
elif self.verbose:
print("ack (0x%02X) expected, got 0x%02X instead" % (mid+1, mid_ack))
else:
raise MTException("Ack (0x%02X) expected, MID 0x%02X received "
"instead (after %d retries)." % (mid+1, mid_ack,
n_retries))
return data_ack
def _ensure_config_state(self):
if self.state != DeviceState.Config:
self.GoToConfig()
def _ensure_measurement_state(self):
if self.state != DeviceState.Measurement:
self.GoToMeasurement()
def Reset(self, go_to_config=False):
self.write_ack(MID.Reset)
if go_to_config:
time.sleep(0.01)
mid, _ = self.read_msg()
if mid == MID.WakeUp:
self.write_msg(MID.WakeUpAck)
self.state = DeviceState.Config
else:
self.state = DeviceState.Measurement
def GoToConfig(self):
self.write_ack(MID.GoToConfig)
self.state = DeviceState.Config
def GoToMeasurement(self):
self._ensure_config_state()
self.write_ack(MID.GoToMeasurement)
self.state = DeviceState.Measurement
def GetDeviceID(self):
self._ensure_config_state()
data = self.write_ack(MID.ReqDID)
deviceID, = struct.unpack('!I', data)
return deviceID
def GetProductCode(self):
self._ensure_config_state()
data = self.write_ack(MID.ReqProductCode)
return str(data).strip()
def GetFirmwareRev(self):
self._ensure_config_state()
data = self.write_ack(MID.ReqFWRev)
major, minor, revision = struct.unpack('!BBB', data[:3])
return (major, minor, revision)
def RunSelfTest(self):
self._ensure_config_state()
data = self.write_ack(MID.RunSelfTest)
bit_names = ['accX', 'accY', 'accZ', 'gyrX', 'gyrY', 'gyrZ',
'magX', 'magY', 'magZ']
self_test_results = []
for i, name in enumerate(bit_names):
self_test_results.append((name, (data >> i) & 1))
return self_test_results
def GetBaudrate(self):
self._ensure_config_state()
data = self.write_ack(MID.SetBaudrate)
return data[0]
def SetBaudrate(self, brid):
self._ensure_config_state()
self.write_ack(MID.SetBaudrate, (brid,))
def GetErrorMode(self):
self._ensure_config_state()
data = self.write_ack(MID.SetErrorMode)
error_mode, = struct.unpack('!H', data)
return error_mode
def SetErrorMode(self, error_mode):
self._ensure_config_state()
data = struct.pack('!H', error_mode)
self.write_ack(MID.SetErrorMode, data)
def GetOptionFlags(self):
self._ensure_config_state()
data = self.write_ack(MID.SetOptionFlags)
set_flags, clear_flags = struct.unpack('!II', data)
return set_flags, clear_flags
def SetOptionFlags(self, set_flags, clear_flags):
self._ensure_config_state()
data = struct.pack('!II', set_flags, clear_flags)
self.write_ack(MID.SetOptionFlags, data)
def GetLocationID(self):
self._ensure_config_state()
data = self.write_ack(MID.SetLocationID)
location_id, = struct.unpack('!H', data)
return location_id
def SetLocationID(self, location_id):
self._ensure_config_state()
data = struct.pack('!H', location_id)
self.write_ack(MID.SetLocationID, data)
def RestoreFactoryDefaults(self):
self._ensure_config_state()
self.write_ack(MID.RestoreFactoryDef)
def GetTransmitDelay(self):
self._ensure_config_state()
data = self.write_ack(MID.SetTransmitDelay)
transmit_delay, = struct.unpack('!H', data)
return transmit_delay
def SetTransmitDelay(self, transmit_delay):
self._ensure_config_state()
data = struct.pack('!H', transmit_delay)
self.write_ack(MID.SetTransmitDelay, data)
def GetSyncSettings(self):
self._ensure_config_state()
data = self.write_ack(MID.SetSyncSettings)
sync_settings = [struct.unpack('!BBBBHHHH', data[o:o+12])
for o in range(0, len(data), 12)]
return sync_settings
def SetSyncSettings(self, sync_settings):
self._ensure_config_state()
data = b''.join(struct.pack('!BBBBHHHH', *sync_setting)
for sync_setting in sync_settings)
self.write_ack(MID.SetSyncSettings, data)
def GetConfiguration(self):
self._ensure_config_state()
config = self.write_ack(MID.ReqConfiguration)
try:
masterID, period, skipfactor, _, _, _, date, time, num, deviceID, length, mode, settings = struct.unpack('!IHHHHI8s8s32x32xHIHHI8x', config)
except struct.error:
raise MTException("could not parse configuration.")
self.mode = mode
self.settings = settings
self.length = length
if self.length <= 254:
self.header = b'\xFA\xFF\x32' + struct.pack('!B', self.length)
else:
self.header = b'\xFA\xFF\x32\xFF' + struct.pack('!H', self.length)
conf = {'output-mode': mode,
'output-settings': settings,
'length': length,
'period': period,
'skipfactor': skipfactor,
'Master device ID': masterID,
'date': date,
'time': time,
'number of devices': num,
'device ID': deviceID}
return conf
|
MIT License
|
microsoft/simplify-docx
|
src/simplify_docx/iterators/generic.py
|
register_iterator
|
python
|
def register_iterator(name: str,
TAGS_TO_YIELD: Dict[str, Type[el]] = None,
TAGS_TO_NEST: Dict[str, str] = None,
TAGS_TO_IGNORE: Sequence[str] = None,
TAGS_TO_WARN: Dict[str, str] = None,
TAGS_TO_SKIP: Dict[str, Tuple[str, str]] = None,
extends: Optional[Sequence[str]] = None,
check_name: bool = True,
) -> None:
if check_name and name in __definitions__:
raise ValueError("iterator named '%s' already registered" % name)
__definitions__[name] = ElementHandlers(
TAGS_TO_YIELD,
TAGS_TO_NEST,
TAGS_TO_IGNORE,
TAGS_TO_WARN,
TAGS_TO_SKIP,
extends=extends
)
|
An opinionated iterator which ignores deleted and moved resources, and
passes through in-line revision containers such as InsertedRun, and
orientation elements like bookmarks, comments, and permissions
|
https://github.com/microsoft/simplify-docx/blob/a706c290a5fd61d7f10e157d01f134abb85bff65/src/simplify_docx/iterators/generic.py#L45-L70
|
from warnings import warn
from typing import (
Optional,
Tuple,
Type,
Dict,
Sequence,
NamedTuple,
NewType,
Callable,
Generator,
List
)
from ..elements.base import el
from ..types import xmlFragment
from ..utils.tag import get_tag
from ..utils.warnings import UnexpectedElementWarning
FragmentIterator = NewType('FragmentIterator',
Callable[[xmlFragment, Optional[str]], Generator[xmlFragment, None, None]])
class ElementHandlers(NamedTuple):
TAGS_TO_YIELD: Optional[Dict[str, Type[el]]]
TAGS_TO_NEST: Optional[Dict[str, str]]
TAGS_TO_IGNORE: Optional[Sequence[str]]
TAGS_TO_WARN: Optional[Dict[str, str]]
TAGS_TO_SKIP: Optional[Dict[str, Tuple[str, str]]]
extends: Optional[Sequence[str]]
ElementHandlers.__new__.__defaults__ = (None,)* 6
__definitions__: Dict[str, ElementHandlers] = {}
__built__: Dict[str, ElementHandlers] = {}
|
MIT License
|
pabigot/pyxb
|
pyxb/__init__.py
|
BIND.__init__
|
python
|
def __init__ (self, *args, **kw):
self.__args = args
self.__kw = kw
|
Cache parameters for subsequent binding creation.
Invoke just as you would the factory for a binding class.
|
https://github.com/pabigot/pyxb/blob/14737c23a125fd12c954823ad64fc4497816fae3/pyxb/__init__.py#L93-L97
|
import logging
from pyxb.utils import six
_log = logging.getLogger(__name__)
class cscRoot (object):
def __init__ (self, *args, **kw):
if issubclass(self.__class__.mro()[-2], ( list, dict )):
super(cscRoot, self).__init__(*args)
__version__ = '1.2.7-DEV'
__url__ = 'http://pyxb.sourceforge.net'
__license__ = 'Apache License 2.0'
from pyxb.exceptions_ import *
import pyxb.namespace
class BIND (object):
__args = None
__kw = None
|
Apache License 2.0
|
ucb-art/bag_framework
|
bag/io/sim_data.py
|
_get_sweep_params
|
python
|
def _get_sweep_params(fname):
mat = np.genfromtxt(fname, dtype=np.unicode_)
header = mat[0, :]
data = mat[1:, :]
idx_list = []
for idx in range(len(header)):
bool_vec = data[:, idx] == data[0, idx]
if not np.all(bool_vec):
idx_list.append(idx)
header = header[idx_list]
data = data[:, idx_list]
last_first_idx = [np.where(data[:, idx] == data[-1, idx])[0][0] for idx in range(len(header))]
order_list = np.argsort(last_first_idx)
values_list = []
skip_len = 1
for idx in order_list:
end_idx = last_first_idx[idx] + 1
values = data[0:end_idx:skip_len, idx]
if header[idx] != 'corner':
values = values.astype(np.float)
skip_len *= len(values)
values_list.append(values)
swp_list = header[order_list][::-1].tolist()
values_list.reverse()
return swp_list, values_list
|
Parse the sweep information file and reverse engineer sweep parameters.
Parameters
----------
fname : str
the sweep information file name.
Returns
-------
swp_list : list[str]
list of sweep parameter names. index 0 is the outer-most loop.
values_list : list[list[float or str]]
list of values list for each sweep parameter.
|
https://github.com/ucb-art/bag_framework/blob/8efa57ad719b2b02a005e234d87ad6f0e5e7a3de/bag/io/sim_data.py#L55-L102
|
import os
import glob
import numpy as np
import h5py
from .common import bag_encoding, bag_codec_error
illegal_var_name = ['sweep_params']
class SweepArray(np.ndarray):
def __new__(cls, data, sweep_params=None):
obj = np.asarray(data).view(cls)
obj.sweep_params = sweep_params
return obj
def __array_finalize__(self, obj):
if obj is None:
return
self.sweep_params = getattr(obj, 'sweep_params', None)
def __reduce__(self):
pickled_state = super(SweepArray, self).__reduce__()
new_state = pickled_state[2] + (self.sweep_params,)
return pickled_state[0], pickled_state[1], new_state
def __setstate__(self, state):
self.sweep_params = state[-1]
super(SweepArray, self).__setstate__(state[0:-1])
|
BSD 3-Clause New or Revised License
|
polyswarm/polyswarm-client
|
src/microengine/__main__.py
|
main
|
python
|
def main(log, client_log, polyswarmd_addr, keyfile, password, api_key, backend, testing, insecure_transport,
allow_key_over_http, chains, log_format, artifact_type, bid_strategy, accept, exclude, filter, confidence):
loglevel = getattr(logging, log.upper(), None)
clientlevel = getattr(logging, client_log.upper(), None)
if not isinstance(loglevel, int) or not isinstance(clientlevel, int):
logging.error('invalid log level')
raise FatalError('Invalid log level', 1)
polyswarmd_addr = utils.finalize_polyswarmd_addr(polyswarmd_addr, api_key, allow_key_over_http, insecure_transport)
if insecure_transport:
warnings.warn('--insecure-transport will be removed soon. Please add http:// or https:// to polyswarmd-addr`',
DeprecationWarning)
logger_name, microengine_class = choose_backend(backend)
bid_logger_name, bid_strategy_class = choose_bid_strategy(bid_strategy)
artifact_types = None
init_logging(['microengine', logger_name], log_format, loglevel)
init_logging(['polyswarmclient'], log_format, clientlevel)
if artifact_type:
artifact_types = [ArtifactType.from_string(artifact) for artifact in artifact_type]
filter_accept = filter.get('accept', [])
filter_reject = filter.get('reject', [])
if accept or exclude:
warnings.warn('Options `--exclude|accept key:value` are deprecated, please switch to'
' `--filter accept|reject key comparison value`', DeprecationWarning)
filter_accept.extend(accept)
filter_reject.extend(exclude)
favor = confidence.get('favor', [])
penalize = confidence.get('penalize', [])
microengine_class.connect(polyswarmd_addr, keyfile, password,
api_key=api_key,
artifact_types=artifact_types,
bid_strategy=bid_strategy_class(),
bounty_filter=BountyFilter(filter_accept, filter_reject),
chains=set(chains),
confidence_modifier=ConfidenceModifier(favor, penalize),
testing=testing).run()
|
Entrypoint for the microengine driver
|
https://github.com/polyswarm/polyswarm-client/blob/5e0647511d15b3a36595fe015e7c8afad61d1f74/src/microengine/__main__.py#L138-L181
|
import click
import importlib.util
import logging
import sys
import warnings
from polyswarmartifact import ArtifactType
from polyswarmclient import utils
from polyswarmclient.config import init_logging, validate_apikey
from polyswarmclient.exceptions import FatalError, SecurityWarning
from polyswarmclient.filters.bountyfilter import split_filter, FilterComparison, BountyFilter
from polyswarmclient.filters.confidencefilter import ConfidenceModifier
from polyswarmclient.filters.filter import parse_filters
logger = logging.getLogger(__name__)
def choose_backend(backend):
backend_list = backend.split(':')
module_name_string = backend_list[0]
mod_spec = importlib.util.find_spec(module_name_string) or importlib.util.find_spec(
'microengine.{0}'.format(module_name_string))
if mod_spec is None:
raise Exception('Microengine backend `{0}` cannot be imported as a python module.'.format(backend))
microengine_module = importlib.import_module(mod_spec.name)
if hasattr(microengine_module, 'Microengine'):
microengine_class = microengine_module.Microengine
elif len(backend_list) == 2 and hasattr(microengine_module, backend_list[1]):
microengine_class = getattr(microengine_module, backend_list[1])
else:
raise Exception('No microengine backend found {0}'.format(backend))
return microengine_module.__name__, microengine_class
def choose_bid_strategy(bid_strategy):
mod_spec = importlib.util.find_spec(bid_strategy) or importlib.util.find_spec(f'microengine.bidstrategy.{bid_strategy}')
if mod_spec is None:
raise Exception('Bid strategy `{0}` cannot be imported as a python module.'.format(bid_strategy))
bid_strategy_module = importlib.import_module(mod_spec.name)
if hasattr(bid_strategy_module, 'BidStrategy'):
bid_strategy_class = bid_strategy_module.BidStrategy
else:
raise Exception('No bid strategy found {0}'.format(bid_strategy))
return bid_strategy_module.__name__, bid_strategy_class
@click.command()
@click.option('--log', envvar='LOG_LEVEL', default='WARNING',
help='App Log level')
@click.option('--client-log', envvar='CLIENT_LOG_LEVEL', default='WARNING',
help='PolySwarm Client log level')
@click.option('--polyswarmd-addr', envvar='POLYSWARMD_ADDR', default='https://api.polyswarm.network/v1/default',
help='Address (scheme://host:port) of polyswarmd instance')
@click.option('--keyfile', envvar='KEYFILE', type=click.Path(exists=True), default='keyfile',
help='Keystore file containing the private key to use with this microengine')
@click.option('--password', envvar='PASSWORD', prompt=True, hide_input=True,
help='Password to decrypt the keyfile with')
@click.option('--api-key', envvar='API_KEY', default='',
callback=validate_apikey,
help='API key to use with polyswarmd')
@click.option('--backend', envvar='BACKEND', required=True,
help='Backend to use')
@click.option('--testing', default=0,
help='Activate testing mode for integration testing, respond to N bounties and N offers then exit')
@click.option('--insecure-transport', is_flag=True,
help='Deprecated. Used only to change the default scheme to http in polyswarmd-addr if not present')
@click.option('--allow-key-over-http', is_flag=True, envvar='ALLOW_KEY_OVER_HTTP',
help='Force api keys over http (Not Recommended)')
@click.option('--chains', multiple=True, default=['side'],
help='Chain(s) to operate on')
@click.option('--log-format', envvar='LOG_FORMAT', default='text',
help='Log format. Can be `json` or `text` (default)')
@click.option('--artifact-type', multiple=True, default=['file'],
help='List of artifact types to scan')
@click.option('--bid-strategy', envvar='BID_STRATEGY', default='default',
help='Bid strategy for bounties')
@click.option('--accept', multiple=True, default=[], callback=split_filter,
help='Declared metadata in format key:value:modifier that is required to allow scans on any artifact.')
@click.option('--exclude', multiple=True, default=[], callback=split_filter,
help='Declared metadata in format key:value:modifier that cannot be present to allow scans on any '
'artifact.')
@click.option('--filter', multiple=True, default=[], callback=parse_filters,
type=(
click.Choice(['reject', 'accept']),
str,
click.Choice([member.value for _name, member in FilterComparison.__members__.items()]),
str
),
help='Add filter in format `[accept|reject] key [eq|gt|gte|lt|lte|startswith|endswith|regex] value` '
'to accept or reject artifacts based on metadata.')
@click.option('--confidence', multiple=True, default=[], callback=parse_filters,
type=(
click.Choice(['favor', 'penalize']),
str,
click.Choice([member.value for _name, member in FilterComparison.__members__.items()]),
str
),
help='Add filter in format `[favor|penalize] key [eq|gt|gte|lt|lte|startswith|endswith|regex] value` '
'to modify confidence based on metadata.')
|
MIT License
|
psc-g/psc2
|
talks/arturia/server.py
|
generate_drums
|
python
|
def generate_drums():
global drum_type
global drums_bundle
global generated_drums
global playable_notes
global seed_drum_sequence
global num_steps
global qpm
global total_seconds
global temperature
drums_config_id = drums_bundle.generator_details.id
drums_config = drums_rnn_model.default_configs[drums_config_id]
generator = drums_rnn_sequence_generator.DrumsRnnSequenceGenerator(
model=drums_rnn_model.DrumsRnnModel(drums_config),
details=drums_config.details,
steps_per_quarter=drums_config.steps_per_quarter,
checkpoint=melody_rnn_generate.get_checkpoint(),
bundle=drums_bundle)
generator_options = generator_pb2.GeneratorOptions()
generator_options.args['temperature'].float_value = temperature
generator_options.args['beam_size'].int_value = 1
generator_options.args['branch_factor'].int_value = 1
generator_options.args['steps_per_iteration'].int_value = 1
if seed_drum_sequence is None:
primer_drums = magenta.music.DrumTrack([frozenset([36])])
primer_sequence = primer_drums.to_sequence(qpm=qpm)
local_num_steps = num_steps
else:
primer_sequence = seed_drum_sequence
local_num_steps = num_steps * 2
tempo = primer_sequence.tempos.add()
tempo.qpm = qpm
step_length = 60. / qpm / 4.0
total_seconds = local_num_steps * step_length
last_end_time = (max(n.end_time for n in primer_sequence.notes)
if primer_sequence.notes else 0)
generator_options.generate_sections.add(
start_time=last_end_time + step_length,
end_time=total_seconds)
generated_sequence = generator.generate(primer_sequence, generator_options)
generated_sequence = sequences_lib.quantize_note_sequence(generated_sequence, 4)
if seed_drum_sequence is not None:
i = 0
while i < len(generated_sequence.notes):
if generated_sequence.notes[i].quantized_start_step < num_steps:
del generated_sequence.notes[i]
else:
generated_sequence.notes[i].quantized_start_step -= num_steps
generated_sequence.notes[i].quantized_end_step -= num_steps
i += 1
drum_pattern = [(n.pitch,
n.quantized_start_step,
n.quantized_end_step) for n in generated_sequence.notes]
if len(playable_notes) > 0:
playable_notes = SortedList([x for x in playable_notes if x.type != 'drums'],
key=lambda x: x.onset)
for p, s, e in drum_pattern:
playable_notes.add(PlayableNote(type='drums',
note=[],
instrument=DRUM_MAPPING[p],
onset=s))
drum_type = 'AI DRUMS!'
print_status()
|
Generate a new drum groove by querying the model.
|
https://github.com/psc-g/psc2/blob/6676fc67263c9268ff65784d583cb838cfd42c28/talks/arturia/server.py#L319-L384
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
import sys
import collections
import importlib
import os
import OSC
from sortedcontainers import SortedList
import threading
import tensorflow as tf
import time
import magenta
from magenta.models.melody_rnn import melody_rnn_model
from magenta.models.melody_rnn import melody_rnn_generate
from magenta.models.melody_rnn import melody_rnn_sequence_generator
from magenta.models.drums_rnn import drums_rnn_model
from magenta.models.drums_rnn import drums_rnn_sequence_generator
from magenta.music import sequences_lib
from magenta.protobuf import generator_pb2
from magenta.protobuf import music_pb2
importlib.import_module('ascii_arts')
import ascii_arts
importlib.import_module('arturiamap')
import arturiamap
receive_address = ('127.0.0.1', 12345)
send_address = ('127.0.0.1', 57120)
server = OSC.OSCServer(receive_address)
client = OSC.OSCClient()
client.connect(send_address)
class TimeSignature:
numerator = 4
denominator = 4
time_signature = TimeSignature()
qpm = magenta.music.DEFAULT_QUARTERS_PER_MINUTE
num_bars = 2
num_steps = int(num_bars * time_signature.numerator * 16 / time_signature.denominator)
PlayableNote = collections.namedtuple('playable_note',
['type', 'note', 'instrument', 'onset'])
playable_notes = SortedList(key=lambda x: x.onset)
play_loop = False
seed_drum_sequence = None
last_tap_onset = None
beat_length = None
last_first_beat = 0.0
last_first_beat_for_record = None
bass_line = []
bass_volume = 5.0
chords_volume = 1.0
improv_volume = 1.0
MAX_TAP_DELAY = 5.0
min_primer_length = 20
max_robot_length = 20
accumulated_primer_melody = []
generated_melody = []
note_mapping = {i:i for i in range(21, 109)}
mode = 'free'
improv_status = 'psc'
playable_instruments = set(['click', 'bass', 'drums', 'chords', 'stop'])
gracias_splash = False
BASE_MODELS_PATH = sys.argv[1]
MELODY_MODEL_PATH = BASE_MODELS_PATH + '/attention_rnn.mag'
DRUMS_MODEL_PATH = BASE_MODELS_PATH + '/drum_kit_rnn.mag'
melody_bundle = magenta.music.read_bundle_file(MELODY_MODEL_PATH)
drums_bundle = magenta.music.read_bundle_file(DRUMS_MODEL_PATH)
temperature = 1.0
DRUM_MAPPING = {
36: 'kick', 35: 'kick',
38: 'snare', 27: 'snare', 28: 'snare', 31: 'snare', 32: 'snare',
33: 'snare', 34: 'snare', 37: 'snare', 39: 'snare', 40: 'snare',
56: 'snare', 65: 'snare', 66: 'snare', 75: 'snare', 85: 'snare',
42: 'clhat', 44: 'clhat', 54: 'clhat', 68: 'clhat', 69: 'clhat',
70: 'clhat', 71: 'clhat', 73: 'clhat', 78: 'clhat', 80: 'clhat',
46: 'ophat', 67: 'ophat', 72: 'ophat', 74: 'ophat', 79: 'ophat',
81: 'ophat',
45: 'lowtom', 29: 'lowtom', 41: 'lowtom', 61: 'lowtom', 64: 'lowtom',
84: 'lowtom',
48: 'midtom', 47: 'midtom', 60: 'midtom', 63: 'midtom', 77: 'midtom',
86: 'midtom', 87: 'midtom',
50: 'hightom', 30: 'hightom', 43: 'hightom', 62: 'hightom',
76: 'hightom', 83: 'hightom',
49: 'crash', 55: 'crash', 57: 'crash', 58: 'crash',
51: 'ride', 52: 'ride', 53: 'ride', 59: 'ride', 82: 'ride'
}
drum_type = 'STRAIGHT FROM THE BASSLINE'
MIN_MIDI = 48
MAX_MIDI = 72
WHITE_CHAR = ' '
BLACK_CHAR = '-'
PLAYING_CHAR = 'H'
SEPARATOR_CHAR = '|'
BOTTOM_CHAR = '_'
WHITE_WIDTH = 5
WHITE_HEIGHT = 6
BLACK_WIDTH = 3
BLACK_HEIGHT = 4
TOP_SIDE_WHITE_WIDTH = WHITE_WIDTH - (BLACK_WIDTH - 1) // 2
TOP_MID_WHITE_WIDTH = WHITE_WIDTH - (BLACK_WIDTH - 1)
KEY_LAYOUTS = [
'lw',
'b',
'mw',
'b',
'rw',
'lw',
'b',
'mw',
'b',
'mw',
'b',
'rw'
]
NoteSpec = collections.namedtuple('note_spec', ['midi', 'layout'])
midi_key_status = {}
midi_keys = []
def setup_keyboard():
i = 0
for key in range(MIN_MIDI, MAX_MIDI + 1):
midi_key_status[key] = False
midi_keys.append(NoteSpec(key, KEY_LAYOUTS[i % len(KEY_LAYOUTS)]))
i += 1
def draw_keyboard():
global generated_melody
global midi_keys
ai_chars = ['A', 'I']
for h in range(WHITE_HEIGHT):
play_char = ai_chars[h % 2] if len(generated_melody) else PLAYING_CHAR
line = ''
for key in midi_keys:
if key.layout == 'b':
if h < BLACK_HEIGHT:
char_to_print = (
play_char if midi_key_status[key.midi] else BLACK_CHAR)
line += char_to_print * BLACK_WIDTH
continue
char_to_print = play_char if midi_key_status[key.midi] else WHITE_CHAR
if h < BLACK_HEIGHT:
if key.layout == 'lw':
line += SEPARATOR_CHAR
if key.layout == 'lw' or key.layout == 'rw':
line += char_to_print * TOP_SIDE_WHITE_WIDTH
else:
line += char_to_print * TOP_MID_WHITE_WIDTH
else:
line += SEPARATOR_CHAR + char_to_print * WHITE_WIDTH
line += SEPARATOR_CHAR
print(line)
line = ''
for key in midi_keys:
if key.layout == 'b':
continue
line += '{}{}'.format(SEPARATOR_CHAR, BOTTOM_CHAR * WHITE_WIDTH)
line += SEPARATOR_CHAR
print(line)
def set_click():
global num_bars
global num_steps
global time_signature
global playable_notes
if len(playable_notes) > 0:
playable_notes = SortedList([x for x in playable_notes if x.type != 'click'],
key=lambda x: x.onset)
num_steps = int(num_bars * time_signature.numerator * 16 / time_signature.denominator)
step = 0
beat = 0
note_length = int(16 / time_signature.denominator)
while step < num_steps:
if step == 0:
instrument = 'click0'
else:
instrument = 'click1' if beat % time_signature.numerator == 0 else 'click2'
playable_notes.add(PlayableNote(type='click',
note=[],
instrument=instrument,
onset=step))
step += note_length
beat += 1
def looper():
global playable_notes
global last_first_beat
global last_first_beat_for_record
global num_steps
global qpm
global mode
global playable_instruments
global bass_volume
global chords_volume
global play_loop
local_playable_notes = None
while True:
if not play_loop or len(playable_notes) == 0:
time.sleep(0.5)
continue
step_length = 60. / qpm / 4.0
curr_step = 0
local_playable_notes = list(playable_notes)
last_first_beat = time.time()
if (last_first_beat_for_record is not None and
last_first_beat > last_first_beat_for_record):
last_first_beat_for_record = None
mode = 'free'
print_status()
if local_playable_notes[0].onset != 0:
curr_step = local_playable_notes[0].onset
for playable_note in local_playable_notes:
tts = step_length * (playable_note.onset - curr_step)
if tts < 0:
continue
time.sleep(tts)
curr_step = playable_note.onset
if playable_note.type not in playable_instruments:
continue
prefix = '/stop' if playable_note.type == 'stop' else '/play'
msg = OSC.OSCMessage()
msg.setAddress(prefix + playable_note.instrument)
note = list(playable_note.note)
if playable_note.type == 'chords':
note[1] *= chords_volume
msg.append(note)
client.send(msg)
tts = step_length * (num_steps - local_playable_notes[-1].onset)
if tts > 0:
time.sleep(tts)
def generate_melody():
global melody_bundle
global accumulated_primer_melody
global generated_melody
global max_robot_length
global qpm
melody_config_id = melody_bundle.generator_details.id
melody_config = melody_rnn_model.default_configs[melody_config_id]
generator = melody_rnn_sequence_generator.MelodyRnnSequenceGenerator(
model=melody_rnn_model.MelodyRnnModel(melody_config),
details=melody_config.details,
steps_per_quarter=melody_config.steps_per_quarter,
checkpoint=melody_rnn_generate.get_checkpoint(),
bundle=melody_bundle)
generator_options = generator_pb2.GeneratorOptions()
generator_options.args['temperature'].float_value = 1.0
generator_options.args['beam_size'].int_value = 1
generator_options.args['branch_factor'].int_value = 1
generator_options.args['steps_per_iteration'].int_value = 1
primer_melody = magenta.music.Melody(accumulated_primer_melody)
primer_sequence = primer_melody.to_sequence(qpm=qpm)
seconds_per_step = 60.0 / qpm / generator.steps_per_quarter
last_end_time = (max(n.end_time for n in primer_sequence.notes)
if primer_sequence.notes else 0)
melody_total_seconds = last_end_time * 3
generate_section = generator_options.generate_sections.add(
start_time=last_end_time + seconds_per_step,
end_time=melody_total_seconds)
generated_sequence = generator.generate(primer_sequence, generator_options)
generated_melody = [n.pitch for n in generated_sequence.notes]
generated_melody = generated_melody[len(accumulated_primer_melody):]
generated_melody = generated_melody[:max_robot_length]
accumulated_primer_melody = []
|
Apache License 2.0
|
andyclymer/controlboard
|
ControlBoard.roboFontExt/lib/modules/pyserial-2.7/serial/serialcli.py
|
IronSerial.getCD
|
python
|
def getCD(self):
if not self._port_handle: raise portNotOpenError
return self._port_handle.CDHolding
|
Read terminal status line: Carrier Detect
|
https://github.com/andyclymer/controlboard/blob/e9b56341c38b982fe22db4e40a86c6b219c85d7e/ControlBoard.roboFontExt/lib/modules/pyserial-2.7/serial/serialcli.py#L232-L235
|
import clr
import System
import System.IO.Ports
from serial.serialutil import *
def device(portnum):
return System.IO.Ports.SerialPort.GetPortNames()[portnum]
sab = System.Array[System.Byte]
def as_byte_array(string):
return sab([ord(x) for x in string])
class IronSerial(SerialBase):
BAUDRATES = (50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
9600, 19200, 38400, 57600, 115200)
def open(self):
if self._port is None:
raise SerialException("Port must be configured before it can be used.")
if self._isOpen:
raise SerialException("Port is already open.")
try:
self._port_handle = System.IO.Ports.SerialPort(self.portstr)
except Exception, msg:
self._port_handle = None
raise SerialException("could not open port %s: %s" % (self.portstr, msg))
self._reconfigurePort()
self._port_handle.Open()
self._isOpen = True
if not self._rtscts:
self.setRTS(True)
self.setDTR(True)
self.flushInput()
self.flushOutput()
def _reconfigurePort(self):
if not self._port_handle:
raise SerialException("Can only operate on a valid port handle")
if self._timeout is None:
self._port_handle.ReadTimeout = System.IO.Ports.SerialPort.InfiniteTimeout
else:
self._port_handle.ReadTimeout = int(self._timeout*1000)
if self._writeTimeout is None:
self._port_handle.WriteTimeout = System.IO.Ports.SerialPort.InfiniteTimeout
else:
self._port_handle.WriteTimeout = int(self._writeTimeout*1000)
try:
self._port_handle.BaudRate = self._baudrate
except IOError, e:
raise ValueError(str(e))
if self._bytesize == FIVEBITS:
self._port_handle.DataBits = 5
elif self._bytesize == SIXBITS:
self._port_handle.DataBits = 6
elif self._bytesize == SEVENBITS:
self._port_handle.DataBits = 7
elif self._bytesize == EIGHTBITS:
self._port_handle.DataBits = 8
else:
raise ValueError("Unsupported number of data bits: %r" % self._bytesize)
if self._parity == PARITY_NONE:
self._port_handle.Parity = getattr(System.IO.Ports.Parity, 'None')
elif self._parity == PARITY_EVEN:
self._port_handle.Parity = System.IO.Ports.Parity.Even
elif self._parity == PARITY_ODD:
self._port_handle.Parity = System.IO.Ports.Parity.Odd
elif self._parity == PARITY_MARK:
self._port_handle.Parity = System.IO.Ports.Parity.Mark
elif self._parity == PARITY_SPACE:
self._port_handle.Parity = System.IO.Ports.Parity.Space
else:
raise ValueError("Unsupported parity mode: %r" % self._parity)
if self._stopbits == STOPBITS_ONE:
self._port_handle.StopBits = System.IO.Ports.StopBits.One
elif self._stopbits == STOPBITS_ONE_POINT_FIVE:
self._port_handle.StopBits = System.IO.Ports.StopBits.OnePointFive
elif self._stopbits == STOPBITS_TWO:
self._port_handle.StopBits = System.IO.Ports.StopBits.Two
else:
raise ValueError("Unsupported number of stop bits: %r" % self._stopbits)
if self._rtscts and self._xonxoff:
self._port_handle.Handshake = System.IO.Ports.Handshake.RequestToSendXOnXOff
elif self._rtscts:
self._port_handle.Handshake = System.IO.Ports.Handshake.RequestToSend
elif self._xonxoff:
self._port_handle.Handshake = System.IO.Ports.Handshake.XOnXOff
else:
self._port_handle.Handshake = getattr(System.IO.Ports.Handshake, 'None')
def close(self):
if self._isOpen:
if self._port_handle:
try:
self._port_handle.Close()
except System.IO.Ports.InvalidOperationException:
pass
self._port_handle = None
self._isOpen = False
def makeDeviceName(self, port):
try:
return device(port)
except TypeError, e:
raise SerialException(str(e))
def inWaiting(self):
if not self._port_handle: raise portNotOpenError
return self._port_handle.BytesToRead
def read(self, size=1):
if not self._port_handle: raise portNotOpenError
data = bytearray()
while size:
try:
data.append(self._port_handle.ReadByte())
except System.TimeoutException, e:
break
else:
size -= 1
return bytes(data)
def write(self, data):
if not self._port_handle: raise portNotOpenError
if not isinstance(data, (bytes, bytearray)):
raise TypeError('expected %s or bytearray, got %s' % (bytes, type(data)))
try:
self._port_handle.Write(as_byte_array(data), 0, len(data))
except System.TimeoutException, e:
raise writeTimeoutError
return len(data)
def flushInput(self):
if not self._port_handle: raise portNotOpenError
self._port_handle.DiscardInBuffer()
def flushOutput(self):
if not self._port_handle: raise portNotOpenError
self._port_handle.DiscardOutBuffer()
def sendBreak(self, duration=0.25):
if not self._port_handle: raise portNotOpenError
import time
self._port_handle.BreakState = True
time.sleep(duration)
self._port_handle.BreakState = False
def setBreak(self, level=True):
if not self._port_handle: raise portNotOpenError
self._port_handle.BreakState = bool(level)
def setRTS(self, level=True):
if not self._port_handle: raise portNotOpenError
self._port_handle.RtsEnable = bool(level)
def setDTR(self, level=True):
if not self._port_handle: raise portNotOpenError
self._port_handle.DtrEnable = bool(level)
def getCTS(self):
if not self._port_handle: raise portNotOpenError
return self._port_handle.CtsHolding
def getDSR(self):
if not self._port_handle: raise portNotOpenError
return self._port_handle.DsrHolding
def getRI(self):
if not self._port_handle: raise portNotOpenError
return False
|
MIT License
|
matuiss2/jackbot
|
actions/macro/build/hydraden_construction.py
|
HydradenConstruction.handle
|
python
|
async def handle(self):
await self.main.place_building(UnitTypeId.HYDRALISKDEN)
|
Build the hydraden
|
https://github.com/matuiss2/jackbot/blob/1b45ce782df666dd21996011a04c92211c0e6368/actions/macro/build/hydraden_construction.py#L22-L24
|
from sc2.constants import UnitTypeId
class HydradenConstruction:
def __init__(self, main):
self.main = main
async def should_handle(self):
return (
self.main.can_build_unique(
UnitTypeId.HYDRALISKDEN, self.main.hydradens, (self.main.lairs and self.main.pools)
)
and not self.main.close_enemy_production
and not self.main.floated_buildings_bm
and self.main.base_amount >= 3
)
|
MIT License
|
edlanglois/mbbl-pilco
|
pilco/utils/numpy.py
|
batch_apply
|
python
|
def batch_apply(fn, x, in_dims=1, out=None):
x = np.asarray(x)
if in_dims == 0:
batch_shape = x.shape
else:
batch_shape = x.shape[:-in_dims]
if out is None:
out = np.empty(batch_shape, dtype=object)
merge_output = True
else:
merge_output = False
for idx in np.ndindex(batch_shape):
out[idx] = fn(x[idx])
if merge_output:
out = np.array(out.tolist())
return out
|
Batch apply some function over an array-like.
Args:
fn: A function that maps arrays of shape [D_1, ..., D_N] to arrays with
a consistent output shape [C_1, ..., C_K].
x: An array of shape [B_1, ..., B_M, D_1, ..., D_N]
in_dims: The number of input dimensions to `fn`.
Equal to `N` in the array shape expressions.
out: An optional output array of shape [B_1, ..., B_M, C_1, ..., C_K]
into which the output is placed. This will be faster as it avoids
concatenation across the batch dimensions.
Returns:
The batched output. An array of shape [B_1, ..., B_M, C_1, ..., C_K]
|
https://github.com/edlanglois/mbbl-pilco/blob/66d153ac57e1fcf676faadb93e5d552d09d2a081/pilco/utils/numpy.py#L34-L70
|
import functools
import itertools
import scipy.linalg
import numpy as np
|
MIT License
|
billpmurphy/hask
|
hask/Data/Foldable.py
|
null
|
python
|
def null(t):
return Foldable[t].null(t)
|
null :: Foldable t => t a -> Bool
Source
Test whether the structure is empty.
|
https://github.com/billpmurphy/hask/blob/4609cc8d9d975f51b6ecdbd33640cdffdc28f953/hask/Data/Foldable.py#L141-L148
|
import functools
import operator
from ..lang import sig
from ..lang import H
from ..lang import t
from ..lang import L
from ..lang import Typeclass
from ..lang import build_instance
from ..lang import is_builtin
from ..lang import List
from ..lang import instance
import List as DL
from ..Control.Applicative import Applicative
from ..Control.Monad import Monad
from Eq import Eq
from Num import Num
from Maybe import Maybe
from Ord import Ord
from Ord import Ordering
class Foldable(Typeclass):
@classmethod
def make_instance(typeclass, cls, foldr, foldr1=None, foldl=None,
foldl_=None, foldl1=None, toList=None, null=None, length=None,
elem=None, maximum=None, minimum=None, sum=None, product=None):
if toList is None:
if hasattr(cls, "__iter__"):
toList = lambda x: L[iter(x)]
else:
toList = lambda t: foldr(lambda x, y: x ^ y, L[[]], t)
foldr1 = (lambda x: DL.foldr1(toList(x))) if foldr1 is None else foldr1
foldl = (lambda x: DL.foldl(toList(x))) if foldl is None else foldl
foldl_ = (lambda x: DL.foldl_(toList(x))) if foldl_ is None else foldl_
foldl1 = (lambda x: DL.foldl1(toList(x))) if foldl1 is None else foldl1
null = (lambda x: DL.null(toList(x))) if null is None else null
length = (lambda x: DL.length(toList(x))) if length is None else length
elem = (lambda x: DL.length(toList(x))) if length is None else length
mi = (lambda x: DL.minimum(toList(x))) if minimum is None else minimum
ma = (lambda x: DL.maximum(toList(x))) if maximum is None else maximum
sum = (lambda x: DL.sum(toList(x))) if sum is None else sum
p = (lambda x: DL.product(toList(x))) if product is None else product
attrs = {"foldr":foldr, "foldr1":foldr1, "foldl":foldl,
"foldl_":foldl_, "foldl1":foldl1, "toList":toList, "null":null,
"length":length, "elem":elem, "maximum":ma, "minimum":mi,
"sum":sum, "product":p}
build_instance(Foldable, cls, attrs)
if not hasattr(cls, "__len__") and not is_builtin(cls):
cls.__len__ = length
if not hasattr(cls, "__iter__") and not is_builtin(cls):
cls.__iter__ = lambda x: iter(toList(x))
return
@sig(H[(Foldable, "t")]/ (H/ "a" >> "b" >> "b") >> "b" >> t("t", "a") >> "b")
def foldr(f, z, t):
return Foldable[t].foldr(f, z, t)
@sig(H[(Foldable, "t")]/ (H/ "a" >> "a" >> "a") >> t("t", "a") >> "a")
def foldr1(f, t):
return Foldable[t].foldr(f, t)
@sig(H[(Foldable, "t")]/ (H/ "a" >> "a" >> "b") >> "b" >> t("t", "a") >> "b")
def foldl(f, z, t):
return Foldable[t].foldl(f, z, t)
@sig(H[(Foldable, "t")]/ (H/ "a" >> "a" >> "b") >> "b" >> t("t", "a") >> "b")
def foldl_(f, z, t):
return Foldable[t].foldl_(f, z, t)
@sig(H[(Foldable, "t")]/ (H/ "a" >> "a" >> "a") >> t("t", "a") >> "a")
def foldl1(f, t):
Foldable[t].foldl1(f, t)
@sig(H[(Foldable, "t")]/ t("t", "a") >> ["a"])
def toList(t):
return Foldable[t].toList(t)
@sig(H[(Foldable, "t")]/ t("t", "a") >> bool)
|
BSD 2-Clause Simplified License
|
cadair/parfive
|
parfive/downloader.py
|
Downloader._get_http
|
python
|
async def _get_http(self, session, *, url, filepath_partial, chunksize=None,
file_pb=None, token, overwrite, timeouts, max_splits=5, **kwargs):
if chunksize is None:
chunksize = self.default_chunk_size
timeout = aiohttp.ClientTimeout(**timeouts)
try:
scheme = urllib.parse.urlparse(url).scheme
if 'HTTP_PROXY' in os.environ and scheme == 'http':
kwargs['proxy'] = os.environ['HTTP_PROXY']
elif 'HTTPS_PROXY' in os.environ and scheme == 'https':
kwargs['proxy'] = os.environ['HTTPS_PROXY']
async with session.get(url, timeout=timeout, **kwargs) as resp:
parfive.log.debug("%s request made to %s with headers=%s",
resp.request_info.method,
resp.request_info.url,
resp.request_info.headers)
parfive.log.debug("Response received from %s with headers=%s",
resp.request_info.url,
resp.headers)
if resp.status != 200:
raise FailedDownload(filepath_partial, url, resp)
else:
filepath, skip = get_filepath(filepath_partial(resp, url), overwrite)
if skip:
parfive.log.debug("File %s already exists and overwrite is False; skipping download.", filepath)
return str(filepath)
if callable(file_pb):
file_pb = file_pb(position=token.n, unit='B', unit_scale=True,
desc=filepath.name, leave=False,
total=get_http_size(resp))
else:
file_pb = None
downloaded_chunk_queue = asyncio.Queue()
download_workers = []
writer = asyncio.create_task(
self._write_worker(downloaded_chunk_queue, file_pb, filepath))
if not DISABLE_RANGE and max_splits and resp.headers.get('Accept-Ranges', None) == "bytes":
content_length = int(resp.headers['Content-length'])
split_length = content_length // max_splits
ranges = [
[start, start + split_length]
for start in range(0, content_length, split_length)
]
ranges[-1][1] = ''
for _range in ranges:
download_workers.append(
asyncio.create_task(self._http_download_worker(
session, url, chunksize, _range, timeout, downloaded_chunk_queue, **kwargs
))
)
else:
download_workers.append(
asyncio.create_task(self._http_download_worker(
session, url, chunksize, None, timeout, downloaded_chunk_queue, **kwargs
))
)
await asyncio.gather(*download_workers)
await downloaded_chunk_queue.join()
writer.cancel()
return str(filepath)
except Exception as e:
raise FailedDownload(filepath_partial, url, e)
|
Read the file from the given url into the filename given by ``filepath_partial``.
Parameters
----------
session : `aiohttp.ClientSession`
The `aiohttp.ClientSession` to use to retrieve the files.
url : `str`
The url to retrieve.
filepath_partial : `callable`
A function to call which returns the filepath to save the url to.
Takes two arguments ``resp, url``.
chunksize : `int`
The number of bytes to read into the file at a time.
file_pb : `tqdm.tqdm` or `False`
Should progress bars be displayed for each file downloaded.
token : `parfive.downloader.Token`
A token for this download slot.
max_splits: `int`
Number of maximum concurrent connections per file.
kwargs : `dict`
Extra keyword arguments are passed to `aiohttp.ClientSession.get`.
Returns
-------
`str`
The name of the file saved.
|
https://github.com/cadair/parfive/blob/a2d6c727c1341c0e2e60d8673bb97ea3d875896f/parfive/downloader.py#L464-L565
|
import os
import sys
import asyncio
import logging
import pathlib
import warnings
import contextlib
import urllib.parse
from functools import partial, lru_cache
from concurrent.futures import ThreadPoolExecutor
import aiohttp
from tqdm import tqdm, tqdm_notebook
import parfive
from .results import Results
from .utils import (
FailedDownload,
Token,
_QueueList,
default_name,
get_filepath,
get_ftp_size,
get_http_size,
in_notebook,
run_in_thread,
)
try:
import aioftp
except ImportError:
aioftp = None
try:
import aiofiles
except ImportError:
aiofiles = None
SERIAL_MODE = "PARFIVE_SINGLE_DOWNLOAD" in os.environ
DISABLE_RANGE = "PARFIVE_DISABLE_RANGE" in os.environ or SERIAL_MODE
__all__ = ['Downloader']
class Downloader:
def __init__(self, max_conn=5, progress=True, file_progress=True,
loop=None, notebook=None, overwrite=False, headers=None,
use_aiofiles=False):
if loop:
warnings.warn('The loop argument is no longer used, and will be '
'removed in a future release.')
self.max_conn = max_conn if not SERIAL_MODE else 1
self._init_queues()
if notebook is None:
notebook = in_notebook()
self.progress = progress
self.file_progress = file_progress if self.progress else False
self.tqdm = tqdm if not notebook else tqdm_notebook
self.overwrite = overwrite
self.headers = headers
if headers is None or 'User-Agent' not in headers:
self.headers = {
'User-Agent': f"parfive/{parfive.__version__} aiohttp/{aiohttp.__version__} python/{sys.version[:5]}"}
self._use_aiofiles = use_aiofiles
def _init_queues(self):
self.http_queue = _QueueList()
self.ftp_queue = _QueueList()
def _generate_tokens(self):
queue = asyncio.Queue(maxsize=self.max_conn)
for i in range(self.max_conn):
queue.put_nowait(Token(i + 1))
return queue
@property
@lru_cache()
def use_aiofiles(self):
if aiofiles is None:
return False
if "PARFIVE_OVERWRITE_ENABLE_AIOFILES" in os.environ:
return True
return self._use_aiofiles
@property
@lru_cache()
def default_chunk_size(self):
return 1024 if self.use_aiofiles else 100
@property
def queued_downloads(self):
return len(self.http_queue) + len(self.ftp_queue)
def enqueue_file(self, url, path=None, filename=None, overwrite=None, **kwargs):
overwrite = overwrite or self.overwrite
if path is None and filename is None:
raise ValueError("Either path or filename must be specified.")
elif path is None:
path = './'
path = pathlib.Path(path)
if not filename:
filepath = partial(default_name, path)
elif callable(filename):
filepath = filename
else:
def filepath(*args):
return path / filename
scheme = urllib.parse.urlparse(url).scheme
if scheme in ('http', 'https'):
get_file = partial(self._get_http, url=url, filepath_partial=filepath,
overwrite=overwrite, **kwargs)
self.http_queue.append(get_file)
elif scheme == 'ftp':
if aioftp is None:
raise ValueError("The aioftp package must be installed to download over FTP.")
get_file = partial(self._get_ftp, url=url, filepath_partial=filepath,
overwrite=overwrite, **kwargs)
self.ftp_queue.append(get_file)
else:
raise ValueError("URL must start with either 'http' or 'ftp'.")
@staticmethod
def _run_in_loop(coro):
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = None
if loop and loop.is_running():
aio_pool = ThreadPoolExecutor(1)
new_loop = asyncio.new_event_loop()
return run_in_thread(aio_pool, new_loop, coro)
return asyncio.run(coro)
@staticmethod
def _configure_debug():
sh = logging.StreamHandler()
sh.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(name)s - %(levelname)s - %(message)s')
sh.setFormatter(formatter)
parfive.log.addHandler(sh)
parfive.log.setLevel(logging.DEBUG)
aiohttp_logger = logging.getLogger('aiohttp.client')
aioftp_logger = logging.getLogger('aioftp.client')
aioftp_logger.addHandler(sh)
aioftp_logger.setLevel(logging.DEBUG)
aiohttp_logger.addHandler(sh)
aiohttp_logger.setLevel(logging.DEBUG)
parfive.log.debug("Configured parfive to run with debug logging...")
async def run_download(self, timeouts=None):
if "PARFIVE_DEBUG" in os.environ:
self._configure_debug()
timeouts = timeouts or {"total": os.environ.get("PARFIVE_TOTAL_TIMEOUT", 5 * 60),
"sock_read": os.environ.get("PARFIVE_SOCK_READ_TIMEOUT", 90)}
total_files = self.queued_downloads
done = set()
with self._get_main_pb(total_files) as main_pb:
if len(self.http_queue):
done.update(await self._run_http_download(main_pb, timeouts))
if len(self.ftp_queue):
done.update(await self._run_ftp_download(main_pb, timeouts))
dl_results = await asyncio.gather(*done, return_exceptions=True)
results = Results()
for res in dl_results:
if isinstance(res, FailedDownload):
results.add_error(res.filepath_partial, res.url, res.exception)
parfive.log.info(f'{res.url} failed to download with exception\n'
f'{res.exception}')
elif isinstance(res, Exception):
raise res
else:
results.append(res)
return results
def download(self, timeouts=None):
return self._run_in_loop(self.run_download(timeouts))
def retry(self, results):
self._init_queues()
for err in results.errors:
self.enqueue_file(err.url, filename=err.filepath_partial)
new_res = self.download()
results += new_res
results._errors = new_res._errors
return results
@classmethod
def simple_download(cls, urls, *, path="./", overwrite=None):
dl = cls()
for url in urls:
dl.enqueue_file(url, path=path, overwrite=overwrite)
return dl.download()
def _get_main_pb(self, total):
if self.progress:
return self.tqdm(total=total, unit='file',
desc="Files Downloaded",
position=0)
else:
return contextlib.contextmanager(lambda: iter([None]))()
async def _run_http_download(self, main_pb, timeouts):
async with aiohttp.ClientSession(headers=self.headers) as session:
self._generate_tokens()
futures = await self._run_from_queue(
self.http_queue.generate_queue(),
self._generate_tokens(),
main_pb, session=session, timeouts=timeouts)
done, _ = await asyncio.wait(futures)
return done
async def _run_ftp_download(self, main_pb, timeouts):
futures = await self._run_from_queue(
self.ftp_queue.generate_queue(),
self._generate_tokens(),
main_pb, timeouts=timeouts)
done, _ = await asyncio.wait(futures)
return done
async def _run_from_queue(self, queue, tokens, main_pb, *, session=None, timeouts):
futures = []
while not queue.empty():
get_file = await queue.get()
token = await tokens.get()
file_pb = self.tqdm if self.file_progress else False
future = asyncio.create_task(get_file(session, token=token,
file_pb=file_pb,
timeouts=timeouts))
def callback(token, future, main_pb):
tokens.put_nowait(token)
if main_pb and not future.exception():
main_pb.update(1)
future.add_done_callback(partial(callback, token, main_pb=main_pb))
futures.append(future)
return futures
|
MIT License
|
commvault/cvpysdk
|
cvpysdk/subclients/fssubclient.py
|
FileSystemSubclient.block_level_backup_option
|
python
|
def block_level_backup_option(self, block_level_backup_value):
self._set_subclient_properties(
"_fsSubClientProp['blockLevelBackup']",
block_level_backup_value)
|
Creates the JSON with the specified blocklevel flag
to pass to the API to update the blocklevel of this
File System Subclient.
Args:
block_level_backup_value (bool) -- Specifies to enable or disable blocklevel option
|
https://github.com/commvault/cvpysdk/blob/66df30e6e31d619812b7756cb4f7e130b220a08f/cvpysdk/subclients/fssubclient.py#L713-L724
|
from __future__ import unicode_literals
from base64 import b64encode
from past.builtins import basestring
from ..client import Client
from ..subclient import Subclient
from ..exception import SDKException
from ..job import Job
def _nested_dict(source, update_dict):
for key, value in update_dict.items():
if isinstance(value, dict) and value:
source[key] = _nested_dict(source.get(key, {}), value)
else:
source[key] = value
return source
class FileSystemSubclient(Subclient):
def _get_subclient_properties(self):
super(FileSystemSubclient, self)._get_subclient_properties()
self._impersonateUser={}
if 'impersonateUser' in self._subclient_properties:
self._impersonateUser = self._subclient_properties['impersonateUser']
if 'fsSubClientProp' in self._subclient_properties:
self._fsSubClientProp = self._subclient_properties['fsSubClientProp']
if 'content' in self._subclient_properties:
self._content = self._subclient_properties['content']
self._global_filter_status_dict = {
'OFF': 0,
'ON': 1,
'USE CELL LEVEL POLICY': 2
}
def _get_subclient_properties_json(self):
subclient_json = {
"subClientProperties":
{
"impersonateUser": self._impersonateUser,
"proxyClient": self._proxyClient,
"subClientEntity": self._subClientEntity,
"fsSubClientProp": self._fsSubClientProp,
"content": self._content,
"commonProperties": self._commonProperties,
"contentOperationType": 1
}
}
if 'isDDBSubclient' in self._fs_subclient_prop:
if self._fs_subclient_prop['isDDBSubclient']:
del subclient_json["subClientProperties"]["content"]
return subclient_json
@property
def _fs_subclient_prop(self):
return self._fsSubClientProp
@_fs_subclient_prop.setter
def _fs_subclient_prop(self, value):
if not isinstance(value, dict):
raise SDKException('Subclient', '101')
_nested_dict(self._fsSubClientProp, value)
if 'enableOnePass' in self._fsSubClientProp:
del self._fsSubClientProp['enableOnePass']
if 'isTurboSubclient' in self._commonProperties:
del self._commonProperties['isTurboSubclient']
def _set_content(self,
content=None,
filter_content=None,
exception_content=None):
if content is None:
content = self.content
if filter_content is None:
filter_content = self.filter_content
if exception_content is None:
exception_content = self.exception_content
update_content = []
for path in content:
file_system_dict = {
"path": path
}
update_content.append(file_system_dict)
for path in filter_content:
filter_dict = {
"excludePath": path
}
update_content.append(filter_dict)
for path in exception_content:
exception_dict = {
"includePath": path
}
update_content.append(exception_dict)
self._set_subclient_properties("_content", update_content)
def _common_backup_options(self, options):
final_dict = super(FileSystemSubclient, self)._common_backup_options(options)
common_options = {
"jobDescription": options.get('job_description', ""),
"jobRetryOpts": {
"killRunningJobWhenTotalRunningTimeExpires": options.get(
'kill_running_job_when_total_running_time_expires', False),
"numberOfRetries": options.get('number_of_retries', 0),
"enableNumberOfRetries": options.get('enable_number_of_retries', False),
"runningTime": {
"enableTotalRunningTime": options.get('enable_total_running_time', False),
"totalRunningTime": options.get('total_running_time', 3600)
}
},
"startUpOpts": {
"startInSuspendedState": options.get('start_in_suspended_state', False),
"useDefaultPriority": options.get('use_default_priority', True),
"priority": options.get('priority', 166)
}
}
return common_options
def _advanced_backup_options(self, options):
final_dict = super(FileSystemSubclient, self)._advanced_backup_options(options)
if 'on_demand_input' in options and options['on_demand_input'] is not None:
final_dict['onDemandInputFile'] = options['on_demand_input']
if 'directive_file' in options and options['directive_file'] is not None:
final_dict['onDemandInputFile'] = options['directive_file']
if 'adhoc_backup' in options and options['adhoc_backup'] is not None:
final_dict['adHocBackup'] = options['adhoc_backup']
if 'inline_bkp_cpy' in options or 'skip_catalog' in options:
final_dict['dataOpt'] = {
'createBackupCopyImmediately': options.get('inline_bkp_cpy', False),
'skipCatalogPhaseForSnapBackup': options.get('skip_catalog', False)}
if 'adhoc_backup_contents' in options and options['adhoc_backup_contents'] is not None:
if not isinstance(options['adhoc_backup_contents'], list):
raise SDKException('Subclient', '101')
final_dict['adHocBkpContents'] = {
'selectedAdHocPaths': options['adhoc_backup_contents']
}
if 'use_multi_stream' in options and options['use_multi_stream']:
multi_stream_opts = {
'useMultiStream': options.get('use_multi_stream', False),
'useMaximumStreams': options.get('use_maximum_streams', True),
'maxNumberOfStreams': options.get('max_number_of_streams', 1)
}
if 'dataOpt' in final_dict and isinstance(final_dict['dataOpt'], dict):
final_dict['dataOpt'].update(multi_stream_opts)
else:
final_dict['dataOpt'] = multi_stream_opts
return final_dict
@property
def _vlr_restore_options_dict(self):
physical_volume = 'PHYSICAL_VOLUME'
vlr_options_dict = {
"volumeRstOption": {
"volumeLeveRestore": True,
"volumeLevelRestoreType": physical_volume
},
"virtualServerRstOption": {
"isDiskBrowse": False,
"isVolumeBrowse": True,
"isBlockLevelReplication": False
}
}
return vlr_options_dict
@property
def content(self):
content = []
for path in self._content:
if 'path' in path:
content.append(path["path"])
return content
@content.setter
def content(self, subclient_content):
if isinstance(subclient_content, list) and subclient_content != []:
self._set_content(content=subclient_content)
else:
raise SDKException(
'Subclient',
'102',
'Subclient content should be a list value and not empty')
@property
def filter_content(self):
_filter_content = []
for path in self._content:
if 'excludePath' in path:
_filter_content.append(path["excludePath"])
return _filter_content
@filter_content.setter
def filter_content(self, value):
if isinstance(value, list) and value != []:
self._set_content(filter_content=value)
else:
raise SDKException(
'Subclient',
'102',
'Subclient filter content should be a list value and not empty')
@property
def exception_content(self):
_exception_content = []
for path in self._content:
if 'includePath' in path:
_exception_content.append(path["includePath"])
return _exception_content
@exception_content.setter
def exception_content(self, value):
if isinstance(value, list) and value != []:
self._set_content(exception_content=value)
else:
raise SDKException(
'Subclient',
'102',
'Subclient exception content should be a list value and not empty')
@property
def scan_type(self):
return self._fsSubClientProp['scanOption']
@scan_type.setter
def scan_type(self, scan_type_value):
if isinstance(scan_type_value, int) and scan_type_value >= 1 and scan_type_value <= 3:
self._set_subclient_properties("_fsSubClientProp['scanOption']", scan_type_value)
else:
raise SDKException('Subclient', '102', 'Invalid scan type')
@property
def trueup_option(self):
return self._fsSubClientProp['isTrueUpOptionEnabledForFS']
@trueup_option.setter
def trueup_option(self, trueup_option_value):
self._set_subclient_properties(
"_fsSubClientProp['isTrueUpOptionEnabledForFS']",
trueup_option_value
)
def run_backup_copy(self):
request_json = {
"taskInfo": {
"associations": [
{
"clientName": self._client_object._client_name,
"subclientName": self._subclient_name,
"backupsetName": self._backupset_object._backupset_name,
"storagePolicyName": self.storage_policy,
"_type_": 17,
"appName": self._agent_object._agent_name
}
],
"task": {
"taskType": 1,
"initiatedFrom": 1,
"taskId": 0,
"taskFlags": {
"disabled": False
}
},
"subTasks": [
{
"subTaskOperation": 1,
"subTask": {
"subTaskType": 1,
"operationType": 4028
},
"options": {
"adminOpts": {
"snapToTapeOption": {
"allowMaximum": True,
"noofJobsToRun": 1
}
}
}
}
]
}
}
backup_copy = self._commcell_object._services['CREATE_TASK']
flag, response = self._commcell_object._cvpysdk_object.make_request(
'POST', backup_copy, request_json)
if flag:
if response.json():
if "jobIds" in response.json():
return Job(self._commcell_object, response.json()['jobIds'][0])
elif "errorCode" in response.json():
error_message = response.json()['errorMessage']
o_str = 'Backup copy job failed\nError: "{0}"'.format(error_message)
raise SDKException('Subclient', '118', o_str)
else:
raise SDKException('Subclient', '118', 'Failed to run the backup copy job')
else:
raise SDKException('Response', '102')
else:
response_string = self._commcell_object._update_response_(response.text)
raise SDKException('Response', '101', response_string)
@property
def backup_retention(self):
return self._fsSubClientProp['backupRetention']
@backup_retention.setter
def backup_retention(self, value):
if isinstance(value, bool):
if value:
new_value = {
'extendStoragePolicyRetention': True,
'backupRetention': True}
else:
new_value = {'backupRetention': False}
self._set_subclient_properties("_fs_subclient_prop", new_value)
else:
raise SDKException(
'Subclient',
'102',
'argument should only be boolean')
@property
def block_level_backup_option(self):
return self._fsSubClientProp['blockLevelBackup']
@block_level_backup_option.setter
|
Apache License 2.0
|
microstrategy/mstrio-py
|
admin_demo_scripts/delete_subscriptions_of_departed_users.py
|
delete_subscriptions_of_departed_users
|
python
|
def delete_subscriptions_of_departed_users(connection: "Connection") -> None:
response = get_projects(connection, whitelist=[('ERR014', 403)])
prjcts = response.json() if response.ok else []
all_usrs = list_users(connection=connection)
dsbld_usrs = [u for u in all_usrs if not u.enabled]
for prjct in prjcts:
project_id = prjct['id']
sub_mngr = SubscriptionManager(connection=connection, project_id=project_id)
for usr in dsbld_usrs:
subs = sub_mngr.list_subscriptions(owner={'id': usr.id})
msg = f"subscriptions of user with ID: {usr.id}"
msg += f" in project {prjct.name} with ID: {prjct.id}"
if sub_mngr.delete(subscriptions=subs, force=True):
print("All " + msg + " were deleted.")
else:
print("Not all " + msg + " were deleted or there was no subsscriptions.")
|
Delete all subscription in all projects which owners are departed users.
Args:
Args:
connection: MicroStrategy connection object returned by
`connection.Connection()`
|
https://github.com/microstrategy/mstrio-py/blob/720af7e673ed62462366d1406e5ea14792461e94/admin_demo_scripts/delete_subscriptions_of_departed_users.py#L7-L35
|
from mstrio.users_and_groups import list_users
from mstrio.api.projects import get_projects
from mstrio.distribution_services.subscription.subscription_manager import SubscriptionManager
from mstrio.connection import Connection
|
Apache License 2.0
|
livid/v2ex-gae
|
mapreduce/lib/blobstore/blobstore.py
|
fetch_data
|
python
|
def fetch_data(blob, start_index, end_index):
if isinstance(blob, BlobInfo):
blob = blob.key()
return blobstore.fetch_data(blob, start_index, end_index)
|
Fetch data for blob.
Fetches a fragment of a blob up to MAX_BLOB_FETCH_SIZE in length. Attempting
to fetch a fragment that extends beyond the boundaries of the blob will return
the amount of data from start_index until the end of the blob, which will be
a smaller size than requested. Requesting a fragment which is entirely
outside the boundaries of the blob will return empty string. Attempting
to fetch a negative index will raise an exception.
Args:
blob: BlobInfo, BlobKey, str or unicode representation of BlobKey of
blob to fetch data from.
start_index: Start index of blob data to fetch. May not be negative.
end_index: End index (inclusive) of blob data to fetch. Must be
>= start_index.
Returns:
str containing partial data of blob. If the indexes are legal but outside
the boundaries of the blob, will return empty string.
Raises:
TypeError if start_index or end_index are not indexes. Also when blob
is not a string, BlobKey or BlobInfo.
DataIndexOutOfRangeError when start_index < 0 or end_index < start_index.
BlobFetchSizeTooLargeError when request blob fragment is larger than
MAX_BLOB_FETCH_SIZE.
BlobNotFoundError when blob does not exist.
|
https://github.com/livid/v2ex-gae/blob/32be3a77d535e7c9df85a333e01ab8834d0e8581/mapreduce/lib/blobstore/blobstore.py#L439-L470
|
import cgi
import email
import os
from google.appengine.api import datastore
from google.appengine.api import datastore_errors
from google.appengine.api import datastore_types
from google.appengine.api.blobstore import blobstore
from google.appengine.ext import db
__all__ = ['BLOB_INFO_KIND',
'BLOB_KEY_HEADER',
'BLOB_RANGE_HEADER',
'BlobFetchSizeTooLargeError',
'BlobInfo',
'BlobInfoParseError',
'BlobKey',
'BlobNotFoundError',
'BlobReferenceProperty',
'BlobReader',
'DataIndexOutOfRangeError',
'Error',
'InternalError',
'MAX_BLOB_FETCH_SIZE',
'UPLOAD_INFO_CREATION_HEADER',
'create_upload_url',
'delete',
'fetch_data',
'get',
'parse_blob_info']
Error = blobstore.Error
InternalError = blobstore.InternalError
BlobFetchSizeTooLargeError = blobstore.BlobFetchSizeTooLargeError
BlobNotFoundError = blobstore.BlobNotFoundError
_CreationFormatError = blobstore._CreationFormatError
DataIndexOutOfRangeError = blobstore.DataIndexOutOfRangeError
BlobKey = blobstore.BlobKey
create_upload_url = blobstore.create_upload_url
delete = blobstore.delete
class BlobInfoParseError(Error):
BLOB_INFO_KIND = blobstore.BLOB_INFO_KIND
BLOB_KEY_HEADER = blobstore.BLOB_KEY_HEADER
BLOB_RANGE_HEADER = blobstore.BLOB_RANGE_HEADER
MAX_BLOB_FETCH_SIZE = blobstore.MAX_BLOB_FETCH_SIZE
UPLOAD_INFO_CREATION_HEADER = blobstore.UPLOAD_INFO_CREATION_HEADER
class _GqlQuery(db.GqlQuery):
def __init__(self, query_string, model_class, *args, **kwds):
from google.appengine.ext import gql
app = kwds.pop('_app', None)
self._proto_query = gql.GQL(query_string, _app=app, namespace='')
super(db.GqlQuery, self).__init__(model_class, namespace='')
self.bind(*args, **kwds)
class BlobInfo(object):
_unindexed_properties = frozenset()
@property
def content_type(self):
return self.__get_value('content_type')
@property
def creation(self):
return self.__get_value('creation')
@property
def filename(self):
return self.__get_value('filename')
@property
def size(self):
return self.__get_value('size')
def __init__(self, entity_or_blob_key, _values=None):
if isinstance(entity_or_blob_key, datastore.Entity):
self.__entity = entity_or_blob_key
self.__key = BlobKey(entity_or_blob_key.key().name())
elif isinstance(entity_or_blob_key, BlobKey):
self.__entity = _values
self.__key = entity_or_blob_key
else:
TypeError('Must provide Entity or BlobKey')
@classmethod
def from_entity(cls, entity):
return BlobInfo(entity)
@classmethod
def properties(cls):
return set(('content_type', 'creation', 'filename', 'size'))
def __get_value(self, name):
if self.__entity is None:
self.__entity = datastore.Get(
datastore_types.Key.from_path(
self.kind(), str(self.__key), namespace=''))
try:
return self.__entity[name]
except KeyError:
raise AttributeError(name)
def key(self):
return self.__key
def delete(self):
delete(self.key())
@classmethod
def get(cls, blob_keys):
blob_keys = cls.__normalize_and_convert_keys(blob_keys)
try:
entities = datastore.Get(blob_keys)
except datastore_errors.EntityNotFoundError:
return None
if isinstance(entities, datastore.Entity):
return BlobInfo(entities)
else:
references = []
for entity in entities:
if entity is not None:
references.append(BlobInfo(entity))
else:
references.append(None)
return references
@classmethod
def all(cls):
return db.Query(model_class=cls, namespace='')
@classmethod
def __factory_for_kind(cls, kind):
if kind == BLOB_INFO_KIND:
return BlobInfo
raise ValueError('Cannot query for kind %s' % kind)
@classmethod
def gql(cls, query_string, *args, **kwds):
return _GqlQuery('SELECT * FROM %s %s'
% (cls.kind(), query_string),
cls,
*args,
**kwds)
@classmethod
def kind(self):
return BLOB_INFO_KIND
@classmethod
def __normalize_and_convert_keys(cls, keys):
if isinstance(keys, (list, tuple)):
multiple = True
keys = list(keys)
else:
multiple = False
keys = [keys]
for index, key in enumerate(keys):
if not isinstance(key, (basestring, BlobKey)):
raise datastore_errors.BadArgumentError(
'Expected str or BlobKey; received %s (a %s)' % (
key,
datastore.typename(key)))
keys[index] = datastore.Key.from_path(cls.kind(), str(key), namespace='')
if multiple:
return keys
else:
return keys[0]
def get(blob_key):
return BlobInfo.get(blob_key)
def parse_blob_info(field_storage):
if field_storage is None:
return None
field_name = field_storage.name
def get_value(dict, name):
value = dict.get(name, None)
if value is None:
raise BlobInfoParseError(
'Field %s has no %s.' % (field_name, name))
return value
filename = get_value(field_storage.disposition_options, 'filename')
blob_key = BlobKey(get_value(field_storage.type_options, 'blob-key'))
upload_content = email.message_from_file(field_storage.file)
content_type = get_value(upload_content, 'content-type')
size = get_value(upload_content, 'content-length')
creation_string = get_value(upload_content, UPLOAD_INFO_CREATION_HEADER)
try:
size = int(size)
except (TypeError, ValueError):
raise BlobInfoParseError(
'%s is not a valid value for %s size.' % (size, field_name))
try:
creation = blobstore._parse_creation(creation_string, field_name)
except blobstore._CreationFormatError, err:
raise BlobInfoParseError(str(err))
return BlobInfo(blob_key,
{'content_type': content_type,
'creation': creation,
'filename': filename,
'size': size,
})
class BlobReferenceProperty(db.Property):
data_type = BlobInfo
def get_value_for_datastore(self, model_instance):
blob_info = getattr(model_instance, self.name)
if blob_info is None:
return None
return blob_info.key()
def make_value_from_datastore(self, value):
if value is None:
return None
return BlobInfo(value)
def validate(self, value):
if isinstance(value, (basestring)):
value = BlobInfo(BlobKey(value))
elif isinstance(value, BlobKey):
value = BlobInfo(value)
return super(BlobReferenceProperty, self).validate(value)
|
BSD 3-Clause New or Revised License
|
alexa/alexa-apis-for-python
|
ask-sdk-model/ask_sdk_model/interfaces/audioplayer/clear_queue_directive.py
|
ClearQueueDirective.__init__
|
python
|
def __init__(self, clear_behavior=None):
self.__discriminator_value = "AudioPlayer.ClearQueue"
self.object_type = self.__discriminator_value
super(ClearQueueDirective, self).__init__(object_type=self.__discriminator_value)
self.clear_behavior = clear_behavior
|
:param clear_behavior:
:type clear_behavior: (optional) ask_sdk_model.interfaces.audioplayer.clear_behavior.ClearBehavior
|
https://github.com/alexa/alexa-apis-for-python/blob/bfe5e694daaca71bfb1a4199ca8d2514f1cac6c9/ask-sdk-model/ask_sdk_model/interfaces/audioplayer/clear_queue_directive.py#L48-L59
|
import pprint
import re
import six
import typing
from enum import Enum
from ask_sdk_model.directive import Directive
if typing.TYPE_CHECKING:
from typing import Dict, List, Optional, Union, Any
from datetime import datetime
from ask_sdk_model.interfaces.audioplayer.clear_behavior import ClearBehavior as ClearBehavior_94e71750
class ClearQueueDirective(Directive):
deserialized_types = {
'object_type': 'str',
'clear_behavior': 'ask_sdk_model.interfaces.audioplayer.clear_behavior.ClearBehavior'
}
attribute_map = {
'object_type': 'type',
'clear_behavior': 'clearBehavior'
}
supports_multiple_types = False
|
Apache License 2.0
|
microsoft/restler-fuzzer
|
restler/checkers/payload_body_bucketing.py
|
PayloadBodyBuckets.add_bug
|
python
|
def add_bug(self, request, new_request_data):
new_body = utils.get_response_body(new_request_data)
with open(os.path.join(logger.LOGS_DIR, 'payload_buckets.txt'), 'a', encoding='utf-8') as file:
if request.method_endpoint_hex_definition not in self._buckets:
self._buckets[request.method_endpoint_hex_definition] = set()
file.write(f'{request.method} {request.endpoint_no_dynamic_objects}\n')
error_str = self._get_error_str(request, new_body) or 'Other'
if error_str not in self._buckets[request.method_endpoint_hex_definition]:
if error_str == INVALID_JSON_STR:
new_body = new_request_data.split(DELIM)[-1]
self._buckets[request.method_endpoint_hex_definition].add(error_str)
file.write(f'\t{error_str}\n\t{new_body}\n\n')
return (error_str, new_body)
return None
|
Adds a bug to the payload body buckets log if it is unique.
@param request: The request being fuzzed
@type request: Request
@param new_request_data: The request data of the new request that
includes the fuzzed payload body.
@type new_request_data: Str
@return: Tuple containing the error string and the response body
@rtype : Tuple(str, str) or None
|
https://github.com/microsoft/restler-fuzzer/blob/d74a267467a2d43fb37c8a16754d0b28e80b649a/restler/checkers/payload_body_bucketing.py#L17-L48
|
import os
import utils.logger as logger
import engine.fuzzing_parameters.fuzzing_utils as utils
from engine.transport_layer.messaging import DELIM
INVALID_JSON_STR = 'InvalidJson'
class PayloadBodyBuckets():
def __init__(self):
self._buckets = dict()
|
MIT License
|
zxz7/zfundpredictor
|
ZFundETL.py
|
FundETL.read_files
|
python
|
def read_files(self, path, date):
funds = pd.read_csv(path+f'funds_{date}.csv')
funds = funds.set_index(pd.to_datetime(funds['Date']).dt.date).drop(columns='Date').sort_index()
categorical = pd.read_csv(path+f'categorical_{date}.csv')
categorical['fticker'] = [t for t in funds.columns if t not in ['sindex_r', 'tbond_d']]
categorical.set_index('fticker', inplace=True)
self.funds = funds
self.categorical = categorical
return funds, categorical
|
Read in existing `funds` and `categorical` datasets.
`date`: a time string taking the form of '%Y%m%d'.
|
https://github.com/zxz7/zfundpredictor/blob/0f0350efcfd57eb8cef20f6711911fd7582d775c/ZFundETL.py#L372-L387
|
import math
from datetime import datetime, timedelta, date
import re
import pymysql
import yfinance as yf
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
class FundETL:
def __init__(self):
self.industries = ['制造业', '金融业', '信息传输、软件和信息技术服务业',
'房地产业', '交通运输、仓储和邮政业', '农、林、牧、渔业', '批发和零售业',
'采矿业', '住宿和餐饮业', '租赁和商务服务业', '水利、环境和公共设施管理业',
'文化、体育和娱乐业', '科学研究和技术服务业', '卫生和社会工作', '建筑业',
'电力、热力、燃气及水生产和供应业', '教育', '综合']
sns.set_style("darkgrid")
sns.set_context("notebook")
def sql_queries(self):
connection = pymysql.connect(host='localhost',
user='root',
password='root',
db='funds',
charset='utf8mb4')
cursor = connection.cursor()
sql = '''
CREATE OR REPLACE VIEW picked AS
SELECT a.* FROM (
SELECT fticker FROM histories
WHERE hdate >= '2015-01-05'
AND r_d != 0
GROUP BY fticker
HAVING COUNT(*) > CEIL(DATEDIFF(CURDATE(), '2016-01-05')*0.75)) f
JOIN (
SELECT * FROM all_funds
WHERE current_stocks >= 75
AND current_net_assets > 2) a
ON a.fticker = f.fticker
WHERE current_bonds < 25 OR current_bonds IS NULL;
'''
cursor.execute(sql)
connection.commit()
sql = '''
SELECT h.fticker, h.hdate, accu_nav
FROM histories h
RIGHT JOIN picked p
ON h.fticker = p.fticker
WHERE h.hdate >= '2015-01-05';
'''
self.funds_sql = pd.read_sql(sql, connection)
sql = '''
SELECT
fticker, ftype, current_style, current_net_assets,
current_stocks, current_bonds, current_cash,
industry_1, industry_1_pct, industry_2, industry_2_pct, industry_3, industry_3_pct,
industry_4, industry_4_pct, industry_5, industry_5_pct, manager_ranking
FROM picked;
'''
self.st_invariants = pd.read_sql(sql, connection)
connection.close()
cursor.close()
def get_index(self, index_type='stock'):
if index_type == 'stock':
sindex = yf.download("000001.ss", start=str(self.funds_sql['hdate'].min()),
end=str(self.funds_sql['hdate'].max()+timedelta(days=1)))
sindex.loc['2019-12-19'] = [3017.15,3021.42,3007.99,3017.07,3017.07,208600]
sindex.loc['2019-04-29'] = [3090.63,3107.76,3050.03,3062.50,3062.50,292100]
sindex.loc['2019-04-30'] = [3052.62,3088.41,3052.62,3078.34,3078.34,222300]
sindex['sindex_r'] = (sindex['Adj Close'] - sindex['Adj Close'].shift(1)) / sindex['Adj Close'].shift(1)*100
sindex['Date'] = sindex.index
sindex = sindex.set_index(pd.to_datetime(sindex['Date']).dt.date).drop(columns='Date').sort_index()
return sindex
if index_type == 'bond':
tbond = pd.read_csv(r'China 10-Year Bond Yield Historical Data.csv')
tbond = tbond.set_index(pd.to_datetime(tbond['Date']).dt.date).sort_index()
tbond['tbond_d'] = tbond['Change %'].str.rstrip('%').astype('float') / 100.0
tbond.drop(columns=['Date', 'Change %'], inplace=True)
return tbond
def find_missing_values(self, show_results=True):
drop_tickers = self.funds_sql[self.funds_sql['accu_nav'].isnull()]['fticker'].unique()
if show_results:
n_col = math.ceil(len(drop_tickers)/2)
fig = plt.figure(figsize=(2*n_col,4))
fig.suptitle('Funds With Missing Values in Historical Prices', fontsize=14)
for i, ticker in enumerate(drop_tickers):
_null = self.funds_sql[self.funds_sql['fticker'] == ticker]['accu_nav'].isnull().sum()
_notnull = self.funds_sql[self.funds_sql['fticker'] == ticker]['accu_nav'].notnull().sum()
ax = fig.add_subplot(2, n_col, i+1)
fig.tight_layout()
ax.pie([_null, _notnull], radius=1.1, wedgeprops=dict(width=0.2),
colors=sns.color_palette('twilight_shifted', n_colors=2),
autopct=lambda pct: '# NA: {:.0f}\n# All: {:.0f}'.format(_null, _null+_notnull)
if int(pct) == int(_null/(_notnull+_null)*100) else '')
plt.xlabel(ticker)
print('Number of funds with missing values in *Historical Prices*:', len(drop_tickers))
drop_tickers2 = self.st_invariants[(self.st_invariants['industry_1'].isnull()) |
(self.st_invariants['manager_ranking'].isnull())]['fticker']
print('Number of funds with missing values in *Short-Term Invariant Variables*:', len(drop_tickers2))
drop_tickers = set(drop_tickers) | set(drop_tickers2)
print('Total number of funds to be dropped because of missing data:', len(drop_tickers))
plt.show()
return drop_tickers
def count_days(self, show_results=True):
funds_length = self.funds_sql.groupby('fticker')['hdate'].count()
count_per_length = funds_length.groupby(funds_length.values).count()
max_count = count_per_length.max()
rest = count_per_length.sum() - max_count
most_common_length = count_per_length[count_per_length == max_count].index[0]
tickers_common_length = funds_length[funds_length == most_common_length].index
if show_results:
fig, ax = plt.subplots(figsize=(3,3))
ax.pie([max_count, rest], wedgeprops=dict(width=0.15), radius=0.9,
colors=sns.color_palette('twilight_shifted', n_colors=2),
autopct=lambda pct: '{:.2f}%\n(# funds: {})'.format(pct, max_count) if pct>50 else '')
plt.title('Available Length of Funds', fontsize=14)
plt.legend([str(most_common_length)+' days', 'Other lengths'], loc='lower center', ncol=2)
plt.show()
return tickers_common_length
def ticker_filter(self, show_results=True):
drop_tickers = self.find_missing_values(show_results)
tickers_common_length = self.count_days(show_results)
return np.array([t for t in tickers_common_length if t not in drop_tickers])
def get_funds(self, selected_tickers, stock_index, bond_index=None, show_results=True):
for ticker, histories in self.funds_sql.groupby('fticker'):
if ticker in selected_tickers:
if ticker == selected_tickers[0]:
funds = pd.DataFrame(index=histories['hdate'])
funds[ticker] = histories['accu_nav'].values
fund_std = funds.apply(lambda x: x.std())
cutoff = 0.75
highly_volatile = fund_std[fund_std > cutoff]
if show_results:
fig, ax = plt.subplots(figsize=(10, 1.5))
sns.boxplot(data=fund_std, orient='h', color='mediumslateblue', width=0.3, ax=ax)
ax.vlines(cutoff, -0.5, 0.5, linestyles='dashed', colors='orange')
for order, sorting_idx in enumerate(highly_volatile.argsort()[::-1]):
stv = highly_volatile[sorting_idx]
stv_ticker = fund_std[fund_std == stv].index[0]
arrowprops = {'arrowstyle':'simple,head_length=0.8,head_width=0.6,tail_width=0.3',
'ec':None, 'facecolor':'orange', 'connectionstyle':'arc3',
'shrinkA':0, 'shrinkB':5}
if order%4 == 0:
ax.text(stv-0.06, -0.1, stv_ticker)
elif order%4 == 2:
plt.annotate(stv_ticker, xy=(stv, 0), xytext=(stv-0.01, -0.3), arrowprops=arrowprops)
elif order%4 == 1:
ax.text(stv-0.06, 0.2, stv_ticker)
else:
plt.annotate(stv_ticker, xy=(stv, 0), xytext=(stv-0.04, 0.4), arrowprops=arrowprops)
plt.yticks([0], ['STDEV'])
plt.title('Volatility of Funds', fontsize=14)
plt.show()
new_cols = [c for c in funds.columns if c not in highly_volatile.index]
funds = funds.loc[:, new_cols]
if bond_index:
funds_ = pd.concat([funds, stock_index, bond_index], axis=1, join='inner').dropna()
else:
funds_ = pd.concat([funds, stock_index], axis=1, join='inner').dropna()
funds_.index.rename('Date', inplace=True)
if show_results:
print('Removing funds with excessive volatility:', [c for c in highly_volatile.index])
print('Dates further dropped:', [str(i) for i in funds.index if i not in funds_.index])
print('Final available funds:', funds.shape[1])
print('Final available days:', funds_.shape[0])
self.funds = funds_
return self.funds
def build_categories(self):
categorical = pd.DataFrame(index=self.st_invariants['fticker'])
categorical['fund_type'] = self.st_invariants['ftype'].astype('category').values
categorical['fund_style'] = self.st_invariants['current_style'].astype('category').values
categorical['asset_size'] = pd.qcut(self.st_invariants['current_net_assets'].values, 4)
categorical['ranking_score'] = pd.cut(self.st_invariants['manager_ranking'].values, [0,0.25,0.5,0.75,1])
for col in ['current_stocks', 'current_bonds', 'current_cash']:
categorical[col] = (self.st_invariants[col]/100).fillna(0).values
weighted_oh = []
for x in range(1,6):
_oh = pd.get_dummies(self.st_invariants['industry_%s'%x].values)
for ind in range(_oh.shape[1]):
_oh.iloc[:,ind] = _oh.iloc[:,ind]*self.st_invariants['industry_%s_pct'%x].values/100
weighted_oh.append(_oh)
industry_w = pd.DataFrame(index=self.st_invariants['fticker'], columns=self.industries).applymap(lambda x: 0)
columns = []
for num, indust in enumerate(self.industries):
for x in range(1,6):
if indust in set(self.st_invariants['industry_%s'%x]):
industry_w[indust] = industry_w[indust].values + weighted_oh[x-1][indust].values
columns.append('ind_%s'%num)
industry_w.columns = columns
categorical = pd.concat([categorical, industry_w], axis=1)
tickers_ = [t for t in self.funds.columns if t not in ['sindex_r', 'tbond_d']]
self.categorical = categorical.loc[tickers_]
return self.categorical
def categorical_summary(self):
industry_count = len(self.industries)
dicts = [{'混合型':'hybrid', '股票型':'stock', '股票指数':'stock index'},
{'大盘价值':'large value', '大盘平衡':'large balanced', '大盘成长':'large growth',
'中盘价值':'mid value', '中盘平衡':'mid balanced', '中盘成长':'mid growth',
'小盘价值':'small value', '小盘平衡':'small balanced', '小盘成长':'small growth'}]
groups = ['fund_type', 'fund_style', 'asset_size', 'ranking_score']
industry_w = self.categorical.iloc[:,-industry_count:]
allocation = self.categorical.loc[:,['current_stocks','current_bonds','current_cash']]
fig = plt.figure(figsize=(14,3.5))
cmap = plt.get_cmap('tab20b')
fig.suptitle('Categorical Features', fontsize=16)
for i,feat in enumerate(groups):
ax = fig.add_subplot(1,4,i+1)
fig.tight_layout()
grouped = self.categorical[groups].groupby(feat)[feat]
ax.pie(grouped.count(), radius=0.85, wedgeprops=dict(width=0.15),
colors=sns.color_palette('twilight_shifted', n_colors=len(grouped)),
autopct=lambda pct:
'{:.2f}%\n({:.0f})'.format(pct, self.categorical.shape[0]*pct/100)
if pct>5 else '')
legend_param = {'loc':'lower center', 'ncol':2}
if i in [0, 1]:
plt.legend([dicts[i][idx] for idx, group in grouped], **legend_param)
else:
plt.legend([idx for idx, group in grouped], **legend_param)
plt.title(re.sub('_',' ', feat).capitalize(), fontsize=13, pad=-20)
fig, ax1 = plt.subplots(figsize=(12,4))
sns.boxplot(data=pd.concat((allocation, industry_w), axis=1), ax=ax1, width=0.4,
palette=sns.color_palette('Set2', n_colors=len(industry_w.columns)+3))
plt.xticks(range(len(industry_w.columns)+3),
['Stocks', 'Bonds', 'Cash']+['Industry '+col.strip('ind_') for col in industry_w.columns], rotation=90)
plt.ylabel('Weights')
plt.show()
industry_dict = {'住宿和餐饮业':'Hospitality & Catering',
'租赁和商务服务业':'Lease & Business Services',
'水利、环境和公共设施管理业':'Water Conservancy, Environment & Public Facilities Management',
'金融业':'Finance',
'文化、体育和娱乐业':'Culture, Sports & Entertainment',
'房地产业':'Real Estate',
'科学研究和技术服务业':'Scientific Research & Technical Services',
'交通运输、仓储和邮政业':'Transportation, Warehousing & Postal Services',
'批发和零售业':'Wholesale & Retail Trade',
'卫生和社会工作':'Health & Social Work',
'农、林、牧、渔业':'Agriculture, Forestry, Animal Husbandry & Fishery',
'综合':'Comprehensive',
'电力、热力、燃气及水生产和供应业':'Power, Heat, Gas & Water Production and Supply',
'建筑业':'Construction',
'制造业':'Manufacturing',
'采矿业':'Mining',
'信息传输、软件和信息技术服务业':'Information Transmission, Software & Information Technology Services',
'教育':'Education'}
industries_ = self.industries + [industry_dict[ind] for ind in self.industries]
industries_ = pd.DataFrame(np.array(industries_).reshape(2,-1),
columns=industry_w.columns, index=['行业','Industry'])
summary = industry_w.describe()[1:].applymap(lambda x: round(x,4))
summary = pd.concat((industries_, summary),axis=0)
return summary
def quick_prepossessing(self):
self.sql_queries()
sindex = self.get_index()
selected_tickers = self.ticker_filter(show_results=False)
funds = self.get_funds(selected_tickers, sindex['sindex_r'], show_results=False)
categorical = self.build_categories()
return funds, categorical
def save_files(self, path):
date = self.funds.index[-1].strftime('%Y%m%d')
self.funds.to_csv(path+f'funds_{date}.csv')
self.categorical.to_csv(path+f'categorical_{date}.csv', index=False)
|
MIT License
|
authorizon/opal
|
opal_common/git/repo_cloner.py
|
RepoCloner.__init__
|
python
|
def __init__(
self,
repo_url: str,
clone_path: str,
branch_name: str = "master",
retry_config = None,
ssh_key: Optional[str] = None,
ssh_key_file_path: Optional[str] = None,
clone_timeout: int = 0,
):
if repo_url is None:
raise ValueError("must provide repo url!")
self.url = repo_url
self.path = os.path.expanduser(clone_path)
self.branch_name = branch_name
self._ssh_key = ssh_key
self._ssh_key_file_path = ssh_key_file_path or opal_common_config.GIT_SSH_KEY_FILE
self._retry_config = retry_config if retry_config is not None else self.DEFAULT_RETRY_CONFIG
if clone_timeout > 0:
self._retry_config.update({'stop': stop.stop_after_delay(clone_timeout)})
|
inits the repo cloner.
Args:
repo_url (str): the url to the remote repo we want to clone
clone_path (str): the target local path in our file system we want the
repo to be cloned to
retry_config (dict): Tenacity.retry config (@see https://tenacity.readthedocs.io/en/latest/api.html#retry-main-api)
ssh_key (str, optional): private ssh key used to gain access to the cloned repo
ssh_key_file_path (str, optional): local path to save the private ssh key contents
|
https://github.com/authorizon/opal/blob/9b88bab67c1696308131f23d20f3fd6ddb62c0f1/opal_common/git/repo_cloner.py#L106-L137
|
import os
import uuid
import shutil
import asyncio
from functools import partial
from typing import Optional, Generator
from pathlib import Path
from tenacity import retry, wait, stop, RetryError
from git import Repo, GitError, GitCommandError
from opal_common.logger import logger
from opal_common.git.exceptions import GitFailed
from opal_common.config import opal_common_config
from opal_common.utils import get_filepaths_with_glob
SSH_PREFIX = "ssh://"
GIT_SSH_USER_PREFIX = "git@"
def is_ssh_repo_url(repo_url: str):
return repo_url.startswith(SSH_PREFIX) or repo_url.startswith(GIT_SSH_USER_PREFIX)
class CloneResult:
def __init__(self, repo: Repo):
self._repo = repo
@property
def repo(self) -> Repo:
return self._repo
class RepoClonePathFinder:
def __init__(self, base_clone_path: str, clone_subdirectory_prefix: str):
if not base_clone_path:
raise ValueError("base_clone_path cannot be empty!")
if not clone_subdirectory_prefix:
raise ValueError("clone_subdirectory_prefix cannot be empty!")
self._base_clone_path = os.path.expanduser(base_clone_path)
self._clone_subdirectory_prefix = clone_subdirectory_prefix
def get_clone_subdirectories(self) -> Generator[str, None, None]:
folders_with_pattern = get_filepaths_with_glob(self._base_clone_path, f"{self._clone_subdirectory_prefix}*")
for folder in folders_with_pattern:
yield folder
def get_single_clone_path(self) -> Optional[str]:
subdirectories = list(self.get_clone_subdirectories())
if len(subdirectories) != 1:
return None
return subdirectories[0]
def create_new_clone_path(self) -> str:
folder_name = f"{self._clone_subdirectory_prefix}-{uuid.uuid4().hex}"
full_local_repo_path = os.path.join(self._base_clone_path, folder_name)
os.makedirs(full_local_repo_path, exist_ok=True)
return full_local_repo_path
class RepoCloner:
DEFAULT_RETRY_CONFIG = {
'wait': wait.wait_random_exponential(multiplier=0.5, max=30),
}
|
Apache License 2.0
|
autodesk/aomi
|
aomi/error.py
|
output
|
python
|
def output(message, opt, extra=None):
print(message, file=sys.stderr)
if opt.verbose:
if extra:
print(extra)
traceback.print_exc(sys.stderr)
|
Politely display an unexpected error
|
https://github.com/autodesk/aomi/blob/84da2dfb0424837adf9c4ddc1aa352e942bb7a4a/aomi/error.py#L25-L32
|
from __future__ import print_function
import sys
import traceback
def unhandled(exception, opt):
exmod = type(exception).__module__
name = "%s.%s" % (exmod, type(exception).__name__)
if exmod == 'aomi.exceptions' or exmod == 'cryptorito':
if hasattr(exception, 'source'):
output(exception.message, opt, extra=exception.source)
else:
output(exception.message, opt)
else:
output("Unexpected error: %s" % name, opt)
sys.exit(1)
|
MIT License
|
google-research/morph-net
|
morph_net/framework/concat_and_slice_regularizers.py
|
SlicingReferenceRegularizer.__init__
|
python
|
def __init__(self, get_regularizer_to_slice, begin, size):
self._get_regularizer_to_slice = get_regularizer_to_slice
self._begin = begin
self._size = size
self._alive_vector = None
self._regularization_vector = None
|
Creates an instance.
Args:
get_regularizer_to_slice: A callable, such that get_regularizer_to_slice()
returns an OpRegularizer that has to be sliced.
begin: An integer, where to begin the slice.
size: An integer, the length of the slice (so the slice ends at
begin + size).
|
https://github.com/google-research/morph-net/blob/49c5679e03c79e56ac013c7b62a88e5d893b9d14/morph_net/framework/concat_and_slice_regularizers.py#L75-L89
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from morph_net.framework import generic_regularizers
import tensorflow.compat.v1 as tf
class ConcatRegularizer(generic_regularizers.OpRegularizer):
def __init__(self, regularizers_to_concatenate):
for r in regularizers_to_concatenate:
if not generic_regularizers.dimensions_are_compatible(r):
raise ValueError('Bad regularizer: dimensions are not compatible')
self._alive_vector = tf.concat(
[r.alive_vector for r in regularizers_to_concatenate], 0)
self._regularization_vector = tf.concat(
[r.regularization_vector for r in regularizers_to_concatenate], 0)
@property
def regularization_vector(self):
return self._regularization_vector
@property
def alive_vector(self):
return self._alive_vector
class SlicingReferenceRegularizer(generic_regularizers.OpRegularizer):
|
Apache License 2.0
|
jsxlei/scale
|
scale/specifity.py
|
cluster_specific
|
python
|
def cluster_specific(score_mat, classes=None, top=0):
scores = score_mat.max(1)
peak_labels = np.argmax(score_mat.values, axis=1)
inds = []
labels = []
if classes is None:
classes = np.unique(peak_labels)
for i in classes:
index = np.where(peak_labels==i)[0]
ind = np.argsort(scores[index])[-top:]
ind = index[ind]
inds.append(ind)
labels.append(peak_labels[ind])
return np.concatenate(inds), np.concatenate(labels)
|
Identify top specific peaks for each cluster
Input:
score_mat calculated by mat_specificity_score
Return:
specific peaks index and peaks labels
|
https://github.com/jsxlei/scale/blob/ea9351387bf63bee45ede86199929f54dd673d3b/scale/specifity.py#L64-L85
|
import numpy as np
import pandas as pd
import scipy as sp
def jsd(p, q, base=np.e):
p, q = np.asarray(p), np.asarray(q)
p, q = p/p.sum(), q/q.sum()
m = 1./2*(p + q)
return sp.stats.entropy(p,m, base=base)/2. + sp.stats.entropy(q, m, base=base)/2.
def jsd_sp(p, q, base=np.e):
return 1- jsd(p, q, base=np.e)**0.5
def log2norm(e):
loge = np.log2(e+1)
return loge/sum(loge)
def predefined_pattern(t, labels):
q = np.zeros(len(labels))
q[np.where(labels==t)[0]] = 1
return q
def vec_specificity_score(e, t, labels):
e = log2norm(e)
et = log2norm(predefined_pattern(t, labels))
return jsd_sp(e, et)
def mat_specificity_score(mat, labels):
scores = []
for i in np.unique(labels):
score = mat.apply(lambda x: vec_specificity_score(x, i, labels), axis=1)
scores.append(score)
return pd.concat(scores, axis=1)
|
MIT License
|
marineam/nagcat
|
python/twirrdy/twist.py
|
RRDTwistedAPI._update_cache
|
python
|
def _update_cache(self, filename, timestamp, values, defer=None):
if defer is None:
defer = self._defer
if not defer:
super(RRDTwistedAPI, self).update(filename, timestamp, values)
else:
assert self._client
filename = self._escape_filename(filename)
line = "UPDATE %s %s:%s" % (filename, int(timestamp),
':'.join(str(v) for v in values))
return self._client.sendLine(line)
|
Update via rrdcached
|
https://github.com/marineam/nagcat/blob/445d0efe1fb2ec93c31d1f9d8fa0c0563189ffaf/python/twirrdy/twist.py#L126-L140
|
import os
import stat
from twisted.internet import defer, error, reactor, threads
from twirrdy import RRDBasicAPI, OrderedDict
from twirrdy import protocol
def issock(path):
mode = os.stat(path)[stat.ST_MODE]
return stat.S_ISSOCK(mode)
class RRDTwistedAPI(RRDBasicAPI):
def __init__(self, defer=True):
self._defer = defer
self._client = None
self.update = self._update_direct
def open(self, address, pidfile=None):
deferred = defer.Deferred()
self._client = protocol.RRDCacheClient(deferred)
reactor.connectUNIX(address, self._client, checkPID=pidfile)
self.update = self._update_cache
return deferred
def close(self):
def filter_done(result):
if isinstance(result.value, error.ConnectionDone):
return None
else:
return result
assert self._client
self._client.stopTrying()
deferred = self._client.sendLine('QUIT')
deferred.addErrback(filter_done)
self._client = None
self.update = self._update_direct
return deferred
def flush(self, filename):
assert self._client
filename = self._escape_filename(filename)
return self._client.sendLine("FLUSH %s" % filename)
def pending(self, filename):
def parse_value(value):
if value == "U":
return None
else:
return float(value)
def parse_line(line):
fields = line.split(':')
ds_time = int(fields.pop(0))
ds_values = [parse_value(v) for v in fields]
return ds_time, ds_values
def parse_result(result):
lines = result.splitlines()
updates = [parse_line(l) for l in lines[1:]]
updates.sort()
return updates
def mask_error(failure):
if (isinstance(failure.value, protocol.RRDCacheError) and
failure.value.args[0] == "-1 No such file or directory"):
return []
else:
return failure
assert self._client
filename = self._escape_filename(filename)
d = self._client.sendLine("PENDING %s" % filename)
d.addCallbacks(parse_result, mask_error)
return d
def _escape_filename(self, filename):
return filename.replace('\\', '\\\\').replace(' ', '\\ ')
|
Apache License 2.0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.