repository_name
stringlengths
7
107
function_path
stringlengths
4
190
function_identifier
stringlengths
1
236
language
stringclasses
1 value
function
stringlengths
9
647k
docstring
stringlengths
5
488k
function_url
stringlengths
71
285
context
stringlengths
0
2.51M
license
stringclasses
5 values
qarnot/qarnot-sdk-python
qarnot/bucket.py
Bucket.sync_files
python
def sync_files(self, files, verbose=False, remote=None): class Comparable(object): def __init__(self, name_, e_tag, filepath_): self.name = name_ self.e_tag = e_tag self.filepath = filepath_ def __repr__(self): return "Name {0}, ETag {1}".format(self.name, self.e_tag) def __eq__(self, other): return self.name == other.name and self.e_tag == other.e_tag def __hash__(self): return hash(self.name) ^ hash(self.e_tag) def aws_md5sum(sourcepath): if os.stat(sourcepath).st_size < AWS_UPLOAD_MAX_SIZE: hash_md5 = hashlib.md5() with open(sourcepath, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return "\"{0}\"".format(hash_md5.hexdigest()) else: md5s = [] with open(sourcepath, 'rb') as fp: while True: data = fp.read(AWS_UPLOAD_PART_SIZE) if not data: break md5s.append(hashlib.md5(data)) digests = b"".join(m.digest() for m in md5s) new_md5 = hashlib.md5(digests) return "\"{0}-{1}\"".format(new_md5.hexdigest(), len(md5s)) def localtocomparable(name_, filepath_, remote): if remote is not None: name_ = os.path.join(remote, name_.lstrip('/')) return Comparable(name_.replace(os.sep, '/'), aws_md5sum(filepath_), filepath_) def objectsummarytocomparable(object_): return Comparable(object_.key, object_.e_tag, None) localfiles = set() for name, filepath in files.items(): localfiles.add(localtocomparable(name.replace(os.path.sep, '/'), filepath, remote)) remotefiles = set(map(objectsummarytocomparable, self.list_files())) adds = localfiles - remotefiles removes = remotefiles - localfiles for file_ in removes: if remote is not None and not file_.name.startswith(remote): continue renames = (x for x in adds if x.e_tag == file_.e_tag and all(rem.name != x.name for rem in remotefiles)) for dup in renames: if verbose: print("Copy", file_.name, "to", dup.name) self.copy_file(file_.name, dup.name) if verbose: print("Remove:", file_.name) self.delete_file(file_.name) remotefiles = set(map(objectsummarytocomparable, self.list_files())) sadds = sorted(adds, key=lambda x: x.e_tag) groupedadds = (list(g) for _, g in itertools.groupby(sadds, lambda x: x.e_tag)) for entry in groupedadds: try: rem = next(x for x in remotefiles if x.e_tag == entry[0].e_tag) if rem.name == entry[0].name: continue if verbose: print("Copy", rem.name, "to", entry[0].name) self.copy_file(rem.name, entry[0].name) except StopIteration: if verbose: print("Upload:", entry[0].filepath, '->', entry[0].name) self.add_file(entry[0].filepath, entry[0].name) for link in entry[1:]: if verbose: print("Copy", entry[0].name, "to", link.name) self.copy_file(entry[0].name, link.name)
Synchronize files with the remote buckets. :param dict files: Dictionary of synchronized files :param bool verbose: Print information about synchronization operations :param str remote: path of the directory on remote node (defaults to *local*) Dictionary key is the remote file path while value is the local file path. .. warning:: Local changes are reflected on the server, a file present on the bucket but not in the local directory will be deleted from the bucket. A file present in the directory but not in the bucket will be uploaded. .. note:: The following parameters are used to determine whether synchronization is required : * name * size * sha1sum
https://github.com/qarnot/qarnot-sdk-python/blob/733b8b31fd016c7dba50cdd0e39c7434ea1bd4e9/qarnot/bucket.py#L231-L344
from __future__ import print_function import hashlib import sys import os import posixpath import shutil import itertools from typing import Optional from boto3.s3.transfer import TransferConfig from itertools import groupby from operator import attrgetter from . import _util from .exceptions import BucketStorageUnavailableException from .storage import Storage from .advanced_bucket import Filtering, ResourcesTransformation AWS_UPLOAD_MAX_SIZE = 8 * 1024 * 1024 AWS_UPLOAD_PART_SIZE = 8 * 1024 * 1024 s3_multipart_config = TransferConfig( multipart_threshold=AWS_UPLOAD_MAX_SIZE, multipart_chunksize=AWS_UPLOAD_PART_SIZE, max_concurrency=10, num_download_attempts=10, ) class Bucket(Storage): def __init__(self, connection, name, create=True, filtering: Filtering = None, resources_transformation: ResourcesTransformation = None): if connection.s3client is None: raise BucketStorageUnavailableException() self._connection = connection self._uuid = name self._filtering: Optional[Filtering] = filtering or Filtering() self._resources_transformation: Optional[ResourcesTransformation] = resources_transformation or ResourcesTransformation() if create: self._connection.s3client.create_bucket(Bucket=name) def to_json(self): as_json_dict = dict() as_json_dict['bucketName'] = self._uuid as_json_dict['filtering'] = None if self._filtering is None else self._filtering.to_json() as_json_dict['resourcesTransformation'] = (None if self._resources_transformation is None else self._resources_transformation.to_json()) return as_json_dict @classmethod def from_json(cls, connection, json_bucket): filtering = Filtering.from_json(json_bucket['filtering']) resource_transformation = ResourcesTransformation.from_json(json_bucket['resourcesTransformation']) bucket = Bucket(connection, json_bucket['bucketName'], create=False, filtering=filtering, resources_transformation=resource_transformation) return bucket def with_filtering(self, filtering): bucket_copy = Bucket(self._connection, self._uuid, create=False, filtering=Filtering(), resources_transformation=self._resources_transformation) bucket_copy._filtering.append(filtering) return bucket_copy def with_resource_transformation(self, resource): bucket_copy = Bucket(self._connection, self._uuid, create=False, filtering=self._filtering, resources_transformation=ResourcesTransformation()) bucket_copy._resources_transformation.append(resource) return bucket_copy @classmethod def _retrieve(cls, connection, bucket_uuid): return connection.retrieve_bucket(uuid=bucket_uuid) def delete(self): n = 1000 bucket = self._connection.s3resource.Bucket(self._uuid) versioned_bucket = self._connection.s3resource.BucketVersioning(self._uuid) if versioned_bucket.status == 'None': objectlist = list(bucket.objects.all()) if sys.version_info >= (3, 0): listofobjectlist = [[{'Key': x.key} for x in objectlist[i:i + n]] for i in range(0, len(objectlist), n)] else: listofobjectlist = [[{'Key': x.key} for x in objectlist[i:i + n]] for i in xrange(0, len(objectlist), n)] else: objectlist = list(bucket.object_versions.all()) if sys.version_info >= (3, 0): listofobjectlist = [[{'Key': x.key, 'VersionId': x.id} for x in objectlist[i:i + n]] for i in range(0, len(objectlist), n)] else: listofobjectlist = [[{'Key': x.key, 'VersionId': x.id} for x in objectlist[i:i + n]] for i in xrange(0, len(objectlist), n)] for item in listofobjectlist: bucket.delete_objects( Delete={ 'Objects': item } ) self._connection.s3client.delete_bucket(Bucket=self._uuid) def list_files(self): bucket = self._connection.s3resource.Bucket(self._uuid) return bucket.objects.all() def directory(self, directory=''): bucket = self._connection.s3resource.Bucket(self._uuid) return bucket.objects.filter(Prefix=directory) def sync_directory(self, directory, verbose=False, remote=None): if not directory.endswith(os.sep): directory += os.sep filesdict = {} for root, _, files in os.walk(directory): root = _util.decode(root) files = map(_util.decode, files) for file_ in files: filepath = os.path.join(root, file_) name = filepath[len(directory):] name = name.replace(os.sep, '/') filesdict[name] = filepath self.sync_files(filesdict, verbose, remote)
Apache License 2.0
michaelhly/solana-py
src/spl/token/instructions.py
get_associated_token_address
python
def get_associated_token_address(owner: PublicKey, mint: PublicKey) -> PublicKey: key, _ = PublicKey.find_program_address( seeds=[bytes(owner), bytes(TOKEN_PROGRAM_ID), bytes(mint)], program_id=ASSOCIATED_TOKEN_PROGRAM_ID ) return key
Derives the associated token address for the given wallet address and token mint.
https://github.com/michaelhly/solana-py/blob/b3855f39f25bd632f78c9f33c4bcd15a574b3320/src/spl/token/instructions.py#L925-L930
from enum import IntEnum from typing import Any, List, NamedTuple, Optional, Union from solana.publickey import PublicKey from solana.system_program import SYS_PROGRAM_ID from solana.sysvar import SYSVAR_RENT_PUBKEY from solana.transaction import AccountMeta, TransactionInstruction from solana.utils.validate import validate_instruction_keys, validate_instruction_type from spl.token._layouts import INSTRUCTIONS_LAYOUT, InstructionType from spl.token.constants import ASSOCIATED_TOKEN_PROGRAM_ID, TOKEN_PROGRAM_ID class AuthorityType(IntEnum): MINT_TOKENS = 0 FREEZE_ACCOUNT = 1 ACCOUNT_OWNER = 2 CLOSE_ACCOUNT = 3 class InitializeMintParams(NamedTuple): decimals: int program_id: PublicKey mint: PublicKey mint_authority: PublicKey freeze_authority: Optional[PublicKey] = None class InitializeAccountParams(NamedTuple): program_id: PublicKey account: PublicKey mint: PublicKey owner: PublicKey class InitializeMultisigParams(NamedTuple): program_id: PublicKey multisig: PublicKey m: int signers: List[PublicKey] = [] class TransferParams(NamedTuple): program_id: PublicKey source: PublicKey dest: PublicKey owner: PublicKey amount: int signers: List[PublicKey] = [] class ApproveParams(NamedTuple): program_id: PublicKey source: PublicKey delegate: PublicKey owner: PublicKey amount: int signers: List[PublicKey] = [] class RevokeParams(NamedTuple): program_id: PublicKey account: PublicKey owner: PublicKey signers: List[PublicKey] = [] class SetAuthorityParams(NamedTuple): program_id: PublicKey account: PublicKey authority: AuthorityType current_authority: PublicKey signers: List[PublicKey] = [] new_authority: Optional[PublicKey] = None class MintToParams(NamedTuple): program_id: PublicKey mint: PublicKey dest: PublicKey mint_authority: PublicKey amount: int signers: List[PublicKey] = [] class BurnParams(NamedTuple): program_id: PublicKey account: PublicKey mint: PublicKey owner: PublicKey amount: int signers: List[PublicKey] = [] class CloseAccountParams(NamedTuple): program_id: PublicKey account: PublicKey dest: PublicKey owner: PublicKey signers: List[PublicKey] = [] class FreezeAccountParams(NamedTuple): program_id: PublicKey account: PublicKey mint: PublicKey authority: PublicKey multi_signers: List[PublicKey] = [] class ThawAccountParams(NamedTuple): program_id: PublicKey account: PublicKey mint: PublicKey authority: PublicKey multi_signers: List[PublicKey] = [] class TransferCheckedParams(NamedTuple): program_id: PublicKey source: PublicKey mint: PublicKey dest: PublicKey owner: PublicKey amount: int decimals: int signers: List[PublicKey] = [] class ApproveCheckedParams(NamedTuple): program_id: PublicKey source: PublicKey mint: PublicKey delegate: PublicKey owner: PublicKey amount: int decimals: int signers: List[PublicKey] = [] class MintToCheckedParams(NamedTuple): program_id: PublicKey mint: PublicKey dest: PublicKey mint_authority: PublicKey amount: int decimals: int signers: List[PublicKey] = [] class BurnCheckedParams(NamedTuple): program_id: PublicKey mint: PublicKey account: PublicKey owner: PublicKey amount: int decimals: int signers: List[PublicKey] = [] def __parse_and_validate_instruction( instruction: TransactionInstruction, expected_keys: int, expected_type: InstructionType, ) -> Any: validate_instruction_keys(instruction, expected_keys) data = INSTRUCTIONS_LAYOUT.parse(instruction.data) validate_instruction_type(data, expected_type) return data def decode_initialize_mint(instruction: TransactionInstruction) -> InitializeMintParams: parsed_data = __parse_and_validate_instruction(instruction, 2, InstructionType.INITIALIZE_MINT) return InitializeMintParams( decimals=parsed_data.args.decimals, program_id=instruction.program_id, mint=instruction.keys[0].pubkey, mint_authority=PublicKey(parsed_data.args.mint_authority), freeze_authority=PublicKey(parsed_data.args.freeze_authority) if parsed_data.args.freeze_authority_option else None, ) def decode_initialize_account(instruction: TransactionInstruction) -> InitializeAccountParams: _ = __parse_and_validate_instruction(instruction, 4, InstructionType.INITIALIZE_ACCOUNT) return InitializeAccountParams( program_id=instruction.program_id, account=instruction.keys[0].pubkey, mint=instruction.keys[1].pubkey, owner=instruction.keys[2].pubkey, ) def decode_initialize_multisig(instruction: TransactionInstruction) -> InitializeMultisigParams: parsed_data = __parse_and_validate_instruction(instruction, 2, InstructionType.INITIALIZE_MULTISIG) num_signers = parsed_data.args.m validate_instruction_keys(instruction, 2 + num_signers) return InitializeMultisigParams( program_id=instruction.program_id, multisig=instruction.keys[0].pubkey, signers=[signer.pubkey for signer in instruction.keys[-num_signers:]], m=num_signers, ) def decode_transfer(instruction: TransactionInstruction) -> TransferParams: parsed_data = __parse_and_validate_instruction(instruction, 3, InstructionType.TRANSFER) return TransferParams( program_id=instruction.program_id, source=instruction.keys[0].pubkey, dest=instruction.keys[1].pubkey, owner=instruction.keys[2].pubkey, signers=[signer.pubkey for signer in instruction.keys[3:]], amount=parsed_data.args.amount, ) def decode_approve(instruction: TransactionInstruction) -> ApproveParams: parsed_data = __parse_and_validate_instruction(instruction, 3, InstructionType.APPROVE) return ApproveParams( program_id=instruction.program_id, source=instruction.keys[0].pubkey, delegate=instruction.keys[1].pubkey, owner=instruction.keys[2].pubkey, signers=[signer.pubkey for signer in instruction.keys[3:]], amount=parsed_data.args.amount, ) def decode_revoke(instruction: TransactionInstruction) -> RevokeParams: _ = __parse_and_validate_instruction(instruction, 2, InstructionType.REVOKE) return RevokeParams( program_id=instruction.program_id, account=instruction.keys[0].pubkey, owner=instruction.keys[1].pubkey, signers=[signer.pubkey for signer in instruction.keys[2:]], ) def decode_set_authority(instruction: TransactionInstruction) -> SetAuthorityParams: parsed_data = __parse_and_validate_instruction(instruction, 2, InstructionType.SET_AUTHORITY) return SetAuthorityParams( program_id=instruction.program_id, account=instruction.keys[0].pubkey, authority=AuthorityType(parsed_data.args.authority_type), new_authority=PublicKey(parsed_data.args.new_authority) if parsed_data.args.new_authority_option else None, current_authority=instruction.keys[1].pubkey, signers=[signer.pubkey for signer in instruction.keys[2:]], ) def decode_mint_to(instruction: TransactionInstruction) -> MintToParams: parsed_data = __parse_and_validate_instruction(instruction, 3, InstructionType.MINT_TO) return MintToParams( program_id=instruction.program_id, amount=parsed_data.args.amount, mint=instruction.keys[0].pubkey, dest=instruction.keys[1].pubkey, mint_authority=instruction.keys[2].pubkey, signers=[signer.pubkey for signer in instruction.keys[3:]], ) def decode_burn(instruction: TransactionInstruction) -> BurnParams: parsed_data = __parse_and_validate_instruction(instruction, 3, InstructionType.BURN) return BurnParams( program_id=instruction.program_id, amount=parsed_data.args.amount, account=instruction.keys[0].pubkey, mint=instruction.keys[1].pubkey, owner=instruction.keys[2].pubkey, signers=[signer.pubkey for signer in instruction.keys[3:]], ) def decode_close_account(instruction: TransactionInstruction) -> CloseAccountParams: _ = __parse_and_validate_instruction(instruction, 3, InstructionType.CLOSE_ACCOUNT) return CloseAccountParams( program_id=instruction.program_id, account=instruction.keys[0].pubkey, dest=instruction.keys[1].pubkey, owner=instruction.keys[2].pubkey, signers=[signer.pubkey for signer in instruction.keys[3:]], ) def decode_freeze_account(instruction: TransactionInstruction) -> FreezeAccountParams: _ = __parse_and_validate_instruction(instruction, 3, InstructionType.FREEZE_ACCOUNT) return FreezeAccountParams( program_id=instruction.program_id, account=instruction.keys[0].pubkey, mint=instruction.keys[1].pubkey, authority=instruction.keys[2].pubkey, multi_signers=[signer.pubkey for signer in instruction.keys[3:]], ) def decode_thaw_account(instruction: TransactionInstruction) -> ThawAccountParams: _ = __parse_and_validate_instruction(instruction, 3, InstructionType.THAW_ACCOUNT) return ThawAccountParams( program_id=instruction.program_id, account=instruction.keys[0].pubkey, mint=instruction.keys[1].pubkey, authority=instruction.keys[2].pubkey, multi_signers=[signer.pubkey for signer in instruction.keys[3:]], ) def decode_transfer_checked(instruction: TransactionInstruction) -> TransferCheckedParams: parsed_data = __parse_and_validate_instruction(instruction, 4, InstructionType.TRANSFER2) return TransferCheckedParams( program_id=instruction.program_id, amount=parsed_data.args.amount, decimals=parsed_data.args.decimals, source=instruction.keys[0].pubkey, mint=instruction.keys[1].pubkey, dest=instruction.keys[2].pubkey, owner=instruction.keys[3].pubkey, signers=[signer.pubkey for signer in instruction.keys[4:]], ) def decode_approve_checked(instruction: TransactionInstruction) -> ApproveCheckedParams: parsed_data = __parse_and_validate_instruction(instruction, 4, InstructionType.APPROVE2) return ApproveCheckedParams( program_id=instruction.program_id, amount=parsed_data.args.amount, decimals=parsed_data.args.decimals, source=instruction.keys[0].pubkey, mint=instruction.keys[1].pubkey, delegate=instruction.keys[2].pubkey, owner=instruction.keys[3].pubkey, signers=[signer.pubkey for signer in instruction.keys[4:]], ) def decode_mint_to_checked(instruction: TransactionInstruction) -> MintToCheckedParams: parsed_data = __parse_and_validate_instruction(instruction, 3, InstructionType.MINT_TO2) return MintToCheckedParams( program_id=instruction.program_id, amount=parsed_data.args.amount, decimals=parsed_data.args.decimals, mint=instruction.keys[0].pubkey, dest=instruction.keys[1].pubkey, mint_authority=instruction.keys[2].pubkey, signers=[signer.pubkey for signer in instruction.keys[3:]], ) def decode_burn_checked(instruction: TransactionInstruction) -> BurnCheckedParams: parsed_data = __parse_and_validate_instruction(instruction, 3, InstructionType.BURN2) return BurnCheckedParams( program_id=instruction.program_id, amount=parsed_data.args.amount, decimals=parsed_data.args.decimals, account=instruction.keys[0].pubkey, mint=instruction.keys[1].pubkey, owner=instruction.keys[2].pubkey, signers=[signer.pubkey for signer in instruction.keys[3:]], ) def __add_signers(keys: List[AccountMeta], owner: PublicKey, signers: List[PublicKey]) -> None: if signers: keys.append(AccountMeta(pubkey=owner, is_signer=False, is_writable=False)) for signer in signers: keys.append(AccountMeta(pubkey=signer, is_signer=True, is_writable=False)) else: keys.append(AccountMeta(pubkey=owner, is_signer=True, is_writable=False)) def __burn_instruction(params: Union[BurnParams, BurnCheckedParams], data: Any) -> TransactionInstruction: keys = [ AccountMeta(pubkey=params.account, is_signer=False, is_writable=True), AccountMeta(pubkey=params.mint, is_signer=False, is_writable=True), ] __add_signers(keys, params.owner, params.signers) return TransactionInstruction(keys=keys, program_id=params.program_id, data=data) def __freeze_or_thaw_instruction( params: Union[FreezeAccountParams, ThawAccountParams], instruction_type: InstructionType ) -> TransactionInstruction: data = INSTRUCTIONS_LAYOUT.build(dict(instruction_type=instruction_type, args=None)) keys = [ AccountMeta(pubkey=params.account, is_signer=False, is_writable=True), AccountMeta(pubkey=params.mint, is_signer=False, is_writable=False), ] __add_signers(keys, params.authority, params.multi_signers) return TransactionInstruction(keys=keys, program_id=params.program_id, data=data) def __mint_to_instruction(params: Union[MintToParams, MintToCheckedParams], data: Any) -> TransactionInstruction: keys = [ AccountMeta(pubkey=params.mint, is_signer=False, is_writable=True), AccountMeta(pubkey=params.dest, is_signer=False, is_writable=True), ] __add_signers(keys, params.mint_authority, params.signers) return TransactionInstruction(keys=keys, program_id=params.program_id, data=data) def initialize_mint(params: InitializeMintParams) -> TransactionInstruction: freeze_authority, opt = (params.freeze_authority, 1) if params.freeze_authority else (PublicKey(0), 0) data = INSTRUCTIONS_LAYOUT.build( dict( instruction_type=InstructionType.INITIALIZE_MINT, args=dict( decimals=params.decimals, mint_authority=bytes(params.mint_authority), freeze_authority_option=opt, freeze_authority=bytes(freeze_authority), ), ) ) return TransactionInstruction( keys=[ AccountMeta(pubkey=params.mint, is_signer=False, is_writable=True), AccountMeta(pubkey=SYSVAR_RENT_PUBKEY, is_signer=False, is_writable=False), ], program_id=params.program_id, data=data, ) def initialize_account(params: InitializeAccountParams) -> TransactionInstruction: data = INSTRUCTIONS_LAYOUT.build(dict(instruction_type=InstructionType.INITIALIZE_ACCOUNT, args=None)) return TransactionInstruction( keys=[ AccountMeta(pubkey=params.account, is_signer=False, is_writable=True), AccountMeta(pubkey=params.mint, is_signer=False, is_writable=False), AccountMeta(pubkey=params.owner, is_signer=False, is_writable=False), AccountMeta(pubkey=SYSVAR_RENT_PUBKEY, is_signer=False, is_writable=False), ], program_id=params.program_id, data=data, ) def initialize_multisig(params: InitializeMultisigParams) -> TransactionInstruction: data = INSTRUCTIONS_LAYOUT.build(dict(instruction_type=InstructionType.INITIALIZE_MULTISIG, args=dict(m=params.m))) keys = [ AccountMeta(pubkey=params.multisig, is_signer=False, is_writable=True), AccountMeta(pubkey=SYSVAR_RENT_PUBKEY, is_signer=False, is_writable=False), ] for signer in params.signers: keys.append(AccountMeta(pubkey=signer, is_signer=False, is_writable=False)) return TransactionInstruction(keys=keys, program_id=params.program_id, data=data) def transfer(params: TransferParams) -> TransactionInstruction: data = INSTRUCTIONS_LAYOUT.build(dict(instruction_type=InstructionType.TRANSFER, args=dict(amount=params.amount))) keys = [ AccountMeta(pubkey=params.source, is_signer=False, is_writable=True), AccountMeta(pubkey=params.dest, is_signer=False, is_writable=True), ] __add_signers(keys, params.owner, params.signers) return TransactionInstruction(keys=keys, program_id=params.program_id, data=data) def approve(params: ApproveParams) -> TransactionInstruction: data = INSTRUCTIONS_LAYOUT.build(dict(instruction_type=InstructionType.APPROVE, args=dict(amount=params.amount))) keys = [ AccountMeta(pubkey=params.source, is_signer=False, is_writable=True), AccountMeta(pubkey=params.delegate, is_signer=False, is_writable=False), ] __add_signers(keys, params.owner, params.signers) return TransactionInstruction(keys=keys, program_id=params.program_id, data=data) def revoke(params: RevokeParams) -> TransactionInstruction: data = INSTRUCTIONS_LAYOUT.build(dict(instruction_type=InstructionType.REVOKE, args=None)) keys = [AccountMeta(pubkey=params.account, is_signer=False, is_writable=True)] __add_signers(keys, params.owner, params.signers) return TransactionInstruction(keys=keys, program_id=params.program_id, data=data) def set_authority(params: SetAuthorityParams) -> TransactionInstruction: new_authority, opt = (params.new_authority, 1) if params.new_authority else (PublicKey(0), 0) data = INSTRUCTIONS_LAYOUT.build( dict( instruction_type=InstructionType.SET_AUTHORITY, args=dict(authority_type=params.authority, new_authority_option=opt, new_authority=bytes(new_authority)), ) ) keys = [AccountMeta(pubkey=params.account, is_signer=False, is_writable=True)] __add_signers(keys, params.current_authority, params.signers) return TransactionInstruction(keys=keys, program_id=params.program_id, data=data) def mint_to(params: MintToParams) -> TransactionInstruction: data = INSTRUCTIONS_LAYOUT.build(dict(instruction_type=InstructionType.MINT_TO, args=dict(amount=params.amount))) return __mint_to_instruction(params, data) def burn(params: BurnParams) -> TransactionInstruction: data = INSTRUCTIONS_LAYOUT.build(dict(instruction_type=InstructionType.BURN, args=dict(amount=params.amount))) return __burn_instruction(params, data) def close_account(params: CloseAccountParams) -> TransactionInstruction: data = INSTRUCTIONS_LAYOUT.build(dict(instruction_type=InstructionType.CLOSE_ACCOUNT, args=None)) keys = [ AccountMeta(pubkey=params.account, is_signer=False, is_writable=True), AccountMeta(pubkey=params.dest, is_signer=False, is_writable=True), ] __add_signers(keys, params.owner, params.signers) return TransactionInstruction(keys=keys, program_id=params.program_id, data=data) def freeze_account(params: FreezeAccountParams) -> TransactionInstruction: return __freeze_or_thaw_instruction(params, InstructionType.FREEZE_ACCOUNT) def thaw_account(params: ThawAccountParams) -> TransactionInstruction: return __freeze_or_thaw_instruction(params, InstructionType.THAW_ACCOUNT) def transfer_checked(params: TransferCheckedParams) -> TransactionInstruction: data = INSTRUCTIONS_LAYOUT.build( dict(instruction_type=InstructionType.TRANSFER2, args=dict(amount=params.amount, decimals=params.decimals)) ) keys = [ AccountMeta(pubkey=params.source, is_signer=False, is_writable=True), AccountMeta(pubkey=params.mint, is_signer=False, is_writable=False), AccountMeta(pubkey=params.dest, is_signer=False, is_writable=True), ] __add_signers(keys, params.owner, params.signers) return TransactionInstruction(keys=keys, program_id=params.program_id, data=data) def approve_checked(params: ApproveCheckedParams) -> TransactionInstruction: data = INSTRUCTIONS_LAYOUT.build( dict(instruction_type=InstructionType.APPROVE2, args=dict(amount=params.amount, decimals=params.decimals)) ) keys = [ AccountMeta(pubkey=params.source, is_signer=False, is_writable=True), AccountMeta(pubkey=params.mint, is_signer=False, is_writable=False), AccountMeta(pubkey=params.delegate, is_signer=False, is_writable=False), ] __add_signers(keys, params.owner, params.signers) return TransactionInstruction(keys=keys, program_id=params.program_id, data=data) def mint_to_checked(params: MintToCheckedParams) -> TransactionInstruction: data = INSTRUCTIONS_LAYOUT.build( dict(instruction_type=InstructionType.MINT_TO2, args=dict(amount=params.amount, decimals=params.decimals)) ) return __mint_to_instruction(params, data) def burn_checked(params: BurnCheckedParams) -> TransactionInstruction: data = INSTRUCTIONS_LAYOUT.build( dict(instruction_type=InstructionType.BURN2, args=dict(amount=params.amount, decimals=params.decimals)) ) return __burn_instruction(params, data)
MIT License
zmk5/ros2_robotarium
robotarium_node/robotarium_node/robotarium_abc.py
RobotariumABC.set_velocities
python
def set_velocities(self, ids, velocities) -> None: idxs = np.where(np.abs(velocities[0, :]) > self.max_linear_velocity) velocities[0, idxs] = self.max_linear_velocity * np.sign(velocities[0, idxs]) idxs = np.where(np.abs(velocities[1, :]) > self.max_angular_velocity) velocities[1, idxs] = self.max_angular_velocity * np.sign(velocities[1, idxs]) self.velocities = velocities
Set the velocities of the robots.
https://github.com/zmk5/ros2_robotarium/blob/6fc31bb6d3cdd89cf0b0b063d674897287ec1f8d/robotarium_node/robotarium_node/robotarium_abc.py#L149-L158
from typing import Dict from abc import ABC, abstractmethod import numpy as np import robotarium_node.utilities.misc as misc class RobotariumABC(ABC): def __init__( self, number_of_robots: int = -1, show_figure: bool = True, sim_in_real_time: bool = True, initial_conditions: np.ndarray = np.array([])) -> None: assert isinstance(number_of_robots, int), f'The number of robots used argument (number_of_robots) provided to create the Robotarium object must be an integer type. Recieved type {type(number_of_robots).__name__}.' assert isinstance(initial_conditions, np.ndarray), f'The initial conditions array argument (initial_conditions) provided to create the Robotarium object must be a numpy ndarray. Recieved type {type(initial_conditions).__name__}.' assert isinstance(show_figure, bool), f'The display figure window argument (show_figure) provided to create the Robotarium object must be boolean type. Recieved type {type(show_figure).__name__}.' assert isinstance(sim_in_real_time, bool), f'The simulation running at 0.033s per loop (sim_real_time) provided to create the Robotarium object must be boolean type. Recieved type {type(show_figure).__name__}.' assert (0 <= number_of_robots <= 50), f'Requested {number_of_robots} robots to be used when creating the Robotarium object. The deployed number of robots must be between 0 and 50.' if (initial_conditions.size > 0): assert initial_conditions.shape == (3, number_of_robots), f'Initial conditions provided when creating the Robotarium object must of size 3xN, where N is the number of robots used. Expected a 3 x {number_of_robots} array but recieved a {initial_conditions.shape[0]} x {initial_conditions.shape[1]} array.' self.number_of_robots = number_of_robots self.show_figure = show_figure self.initial_conditions = initial_conditions self.boundaries = [-1.6, -1, 3.2, 2] self.file_path = None self.current_file_size = 0 self.time_step = 0.033 self.robot_diameter = 0.11 self.wheel_radius = 0.016 self.base_length = 0.105 self.max_linear_velocity = 0.2 self.max_angular_velocity = 2 * ( (self.wheel_radius / self.robot_diameter) * (self.max_linear_velocity / self.wheel_radius)) self.max_wheel_velocity = self.max_linear_velocity / self.wheel_radius self.robot_radius = self.robot_diameter/2 self.velocities = np.zeros((2, number_of_robots)) self.poses = self.initial_conditions if self.initial_conditions.size == 0: self.poses = misc.generate_initial_conditions( self.number_of_robots, spacing=0.2, width=2.5, height=1.5) self.left_led_commands = [] self.right_led_commands = [] """ # Visualization self.figure = [] self.axes = [] self.left_led_patches = [] self.right_led_patches = [] self.chassis_patches = [] self.right_wheel_patches = [] self.left_wheel_patches = [] if self.show_figure: self.figure, self.axes = plt.subplots() self.axes.set_axis_off() for i in range(number_of_robots): p = patches.RegularPolygon( self.poses[:2, i], 4, math.sqrt(2) * self.robot_radius, self.poses[2, i] + math.pi / 4, facecolor='#FFD700', edgecolor='k') rled = patches.Circle( self.poses[:2, i] + 0.75 * self.robot_radius * np.array((np.cos(self.poses[2, i]), np.sin(self.poses[2, i])) + 0.04 * np.array((-np.sin(self.poses[2, i] + math.pi / 2), np.cos(self.poses[2, i]+math.pi/2)))), self.robot_radius / 5, fill=False) lled = patches.Circle( self.poses[:2, i] + 0.75 * self.robot_radius * np.array((np.cos(self.poses[2, i]), np.sin(self.poses[2, i])) + 0.015 * np.array((-np.sin(self.poses[2, i] + math.pi / 2), np.cos(self.poses[2, i] + math.pi / 2)))), self.robot_radius / 5, fill=False) rw = patches.Circle( self.poses[:2, i] + self.robot_radius * np.array((np.cos(self.poses[2, i] + math.pi / 2), np.sin(self.poses[2, i] + math.pi / 2))) + 0.04 * np.array((-np.sin(self.poses[2, i] + math.pi / 2), np.cos(self.poses[2, i] + math.pi / 2))), 0.02, facecolor='k') lw = patches.Circle( self.poses[:2, i]+self.robot_radius*np.array((np.cos(self.poses[2, i] - math.pi / 2), np.sin(self.poses[2, i] - math.pi / 2))) + 0.04 * np.array((-np.sin(self.poses[2, i] + math.pi / 2))), 0.02, facecolor='k') #lw = patches.RegularPolygon(self.poses[:2, i]+self.robot_radius*np.array((np.cos(self.poses[2, i]-math.pi/2), np.sin(self.poses[2, i]-math.pi/2)))+\ # 0.035*np.array((-np.sin(self.poses[2, i]+math.pi/2), np.cos(self.poses[2, i]+math.pi/2))),\ # 4, math.sqrt(2)*0.02, self.poses[2,i]+math.pi/4, facecolor='k') self.chassis_patches.append(p) self.left_led_patches.append(lled) self.right_led_patches.append(rled) self.right_wheel_patches.append(rw) self.left_wheel_patches.append(lw) self.axes.add_patch(rw) self.axes.add_patch(lw) self.axes.add_patch(p) self.axes.add_patch(lled) self.axes.add_patch(rled) # Draw arena self.boundary_patch = self.axes.add_patch( patches.Rectangle( self.boundaries[:2], self.boundaries[2], self.boundaries[3], fill=False)) self.axes.set_xlim( self.boundaries[0] - 0.1, self.boundaries[0] + self.boundaries[2] + 0.1) self.axes.set_ylim( self.boundaries[1] - 0.1, self.boundaries[1] + self.boundaries[3] + 0.1) plt.ion() plt.show() plt.subplots_adjust( left=-0.03, right=1.03, bottom=-0.03, top=1.03, wspace=0, hspace=0) """
MIT License
luhsra/chash
experiments/lib.py
read_hash_directory
python
def read_hash_directory(hash_dir, remove_keys = []): ret = [] for root, dirnames, filenames in os.walk(hash_dir): for filename in fnmatch.filter(filenames, '*.info'): with open(os.path.join(root, filename)) as fd: data = "[%s]" % (",".join(fd.readlines())) data = eval(data) for record in data: for key in remove_keys: del record[key] ret.extend(data) print len(ret) return ret
Read in all records from a hash dir
https://github.com/luhsra/chash/blob/12b1afdc17533ac48285474d9daaf92eb122e426/experiments/lib.py#L8-L22
import os import fnmatch import time from versuchung.execute import shell, CommandFailed, shell_failok import logging import tempfile
Apache License 2.0
workshoft/capablanca-api
api/models.py
Board.from_fen
python
def from_fen(cls, fen): board = chess.Board(fen) board_data = { "fen": fen, "turn": board.turn, "castling_xfen": board.castling_xfen(), "castling_rights": board.castling_rights, "ep_square": board.ep_square, "fullmove_number": board.fullmove_number, "halfmove_clock": board.halfmove_clock, } return cls(**board_data)
A FEN string contains the position part board_fen(), the turn, the castling part (castling_rights), the en passant square (ep_square), the halfmove_clock and the fullmove_number.
https://github.com/workshoft/capablanca-api/blob/28b81b164dee79d13299d7569c5382e1af4e2c91/api/models.py#L158-L176
import uuid import chess from annoying.fields import AutoOneToOneField from django.conf import settings from django.db.models import ( CASCADE, BooleanField, CharField, DateTimeField, ForeignKey, IntegerField, Model, OneToOneField, TextField, UUIDField, ) class Elo(Model): rating = IntegerField(default=1200) previous_rating = IntegerField(default=1200) wins = IntegerField(default=0) losses = IntegerField(default=0) draws = IntegerField(default=0) updated_at = DateTimeField(auto_now=True) uuid = UUIDField(default=uuid.uuid4) player = AutoOneToOneField( settings.AUTH_USER_MODEL, on_delete=CASCADE, null=True, related_name="elo" ) def update_rating(self, new_rating): self.previous_rating = self.rating self.rating = new_rating self.save() class Result(Model): WHITE_WINS = "White wins" BLACK_WINS = "Black wins" DRAW = "Draw" IN_PROGRESS = "In progress" ABANDONED = "Abandoned" ADJUDICATION = "Adjudication" DEATH = "Death" EMERGENCY = "Emergency" NORMAL = "Normal" RULES_INFRACTION = "Rules infraction" TIME_FORFEIT = "Time forfeit" UNTERMINATED = "Unterminated" RESULT_CHOICES = [ (WHITE_WINS, "White wins"), (BLACK_WINS, "Black wins"), (DRAW, "Drawn game"), ( IN_PROGRESS, "Game still in progress, game abandoned, or result otherwise unknown", ), ] TERMINATION_CHOICES = [ (ABANDONED, "Abandoned game."), (ADJUDICATION, "Result due to third party adjudication process."), (DEATH, "One or both players died during the course of this game."), (EMERGENCY, "Game concluded due to unforeseen circumstances."), (NORMAL, "Game terminated in a normal fashion."), ( RULES_INFRACTION, "Administrative forfeit due to losing player's failure to observe either the Laws of Chess or the event regulations.", ), ( TIME_FORFEIT, "Loss due to losing player's failure to meet time control requirements.", ), (UNTERMINATED, "Game not terminated."), ] result = TextField(choices=RESULT_CHOICES, default=IN_PROGRESS,) termination = TextField(choices=TERMINATION_CHOICES, default=UNTERMINATED,) def __str__(self): return self.result class Board(Model): BLACK_PIECES = ["q", "k", "b", "n", "r", "p"] WHITE_PIECES = [p.upper() for p in BLACK_PIECES] fen = TextField(default="rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1") board_fen = TextField(default="rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR") board_fen_flipped = TextField(default="RNBKQBNR/PPPPPPPP/8/8/8/8/pppppppp/rnbkqbnr") ep_square = IntegerField(null=True) castling_xfen = TextField(null=True) castling_rights = TextField(null=True) turn = BooleanField(default=True) fullmove_number = IntegerField(default=1) halfmove_clock = IntegerField(default=0) updated_at = DateTimeField(auto_now=True) game_uuid = UUIDField(default=uuid.uuid4) def update(self, chess_board, *args, **kwargs): attributes = [ "ep_square", "turn", "fullmove_number", "halfmove_clock", ] for i in attributes: setattr(self, i, getattr(chess_board, i)) chess_board_flip_vert = chess_board.transform(chess.flip_vertical) chess_board_rotated = chess_board_flip_vert.transform(chess.flip_horizontal) self.castling_rights = str(chess_board.castling_rights) self.fen = chess_board.fen() self.board_fen = chess_board.board_fen() self.board_fen_flipped = chess_board_rotated.board_fen() self.castling_xfen = chess_board.castling_xfen() self.save() @property def move_stack(self): if self.move_set: moves = self.move_set.all() move_ucis = [m.uci() for m in moves] return move_ucis return [] @classmethod
Apache License 2.0
jbusecke/xarrayutils
xarrayutils/xgcm_utils.py
dll_dist
python
def dll_dist(dlon, dlat, lon, lat): distance_1deg_equator = 111000.0 dx = dlon * xr.ufuncs.cos(xr.ufuncs.deg2rad(lat)) * distance_1deg_equator dy = ((lon * 0) + 1) * dlat * distance_1deg_equator return dx, dy
Converts lat/lon differentials into distances in meters PARAMETERS ---------- dlon : xarray.DataArray longitude differentials dlat : xarray.DataArray latitude differentials lon : xarray.DataArray longitude values lat : xarray.DataArray latitude values RETURNS ------- dx : xarray.DataArray distance inferred from dlon dy : xarray.DataArray distance inferred from dlat
https://github.com/jbusecke/xarrayutils/blob/d575823d015afd8c9dceaa8d69c0deba43ae0e60/xarrayutils/xgcm_utils.py#L279-L298
import xarray as xr from xarrayutils.weighted_operations import weighted_mean def _get_name(coord): if isinstance(coord, xr.DataArray): return coord.name elif isinstance(coord, str): return coord else: raise ValueError( "coord input not recognized.\ Needs to be xr.DataArray or str. Is %s" % (type(coord)) ) def _get_axis_pos(grid, axis, da): if axis not in grid.axes.keys(): return None else: co = grid.axes[axis].coords return [k for k, v in co.items() if _get_name(v) in da.dims][0] def _find_dim(grid, obj, axis): if axis not in grid.axes.keys(): return None else: dimlist = list(grid.axes[axis].coords.values()) dimlist = [_get_name(d) for d in dimlist] matches = [d for d in dimlist if d in obj.dims] if len(matches) == 0: return None else: return matches def _infer_gridtype(grid, u, v, verbose=False): u = u.copy() v = v.copy() u_x_pos = _get_axis_pos(grid, "X", u) u_y_pos = _get_axis_pos(grid, "Y", u) v_x_pos = _get_axis_pos(grid, "X", v) v_y_pos = _get_axis_pos(grid, "Y", v) if any([a in ["outer", "inner"] for a in [u_x_pos, u_y_pos, v_x_pos, v_y_pos]]): raise RuntimeError("`inner` or `outer` grid positions are not supported yet.") if verbose: print( "Found: (u @X=%s,Y=%s and v @X=%s,Y=%s)" % (u_x_pos, u_y_pos, v_x_pos, v_y_pos) ) if ((u_x_pos == "right") and (u_y_pos == "right")) and ( (v_x_pos == "right") and (v_y_pos == "right") ): gridtype = "B" elif (u_x_pos == "right" and u_y_pos == "center") and ( v_x_pos == "center" and v_y_pos == "right" ): gridtype = "C" else: raise RuntimeError( "Gridtype not recognized. \ Currently only supports \ B-grids(u @X=right,Y=right and v @X=right,Y=right) and \ C-grids (u @X=right,Y=center and v @X=center,Y=right). \ Found: (u @X=%s,Y=%s and v @X=%s,Y=%s)" % (u_x_pos, u_y_pos, v_x_pos, v_y_pos) ) return gridtype def _check_dims(a, b, a_name): if not all([dd in a.dims for dd in b.dims]): raise RuntimeError( "%s does not have the appropriate dimensions. \ Expected %s, but found %s" % (a_name, list(b.dims), list(a.dims)) ) else: return True def _find_metric(da, dim_metric_list): matches = [m for m in dim_metric_list if m in da.coords] if len(matches) > 1: raise ValueError( "found more than one matching metric(%s), \ something is wrong with the `metric_list`" % matches ) elif len(matches) == 0: return None else: return matches[0] def w_mean(grid, dat, axis, dim_metric_list, verbose=False): dat = dat.copy() dim = _find_dim(grid, dat, axis) if dim is None: return dat else: metric = _find_metric(dat, dim_metric_list) if verbose: print(metric) if metric is None: return dat else: return weighted_mean(dat, dat.coords[metric], dim=dim) def xgcm_weighted_mean(grid, dat, axis, dim_metric_list, verbose=False): dat = dat.copy() if isinstance(dat, xr.Dataset): ds_mean = xr.Dataset() for vv in dat.data_vars: ds_mean[vv] = w_mean(grid, dat[vv], axis, dim_metric_list, verbose=verbose) elif isinstance(dat, xr.DataArray): ds_mean = w_mean(grid, dat, axis, dim_metric_list, verbose=verbose) return ds_mean def calculate_rel_vorticity(grid, u, v, dx, dy, area, gridtype=None): u = u.copy() v = v.copy() dx = dx.copy() dy = dy.copy() if gridtype is None: gridtype = _infer_gridtype(grid, u, v) _check_dims(u, dx, "dx") u_int = u * dx _check_dims(v, dy, "dy") v_int = v * dy if gridtype == "B": u_int = grid.interp(u_int, "X") v_int = grid.interp(v_int, "Y") dx_v = grid.diff(v_int, "X") dy_u = grid.diff(u_int, "Y") _check_dims(dx_v, area, "area and dv/dx") _check_dims(dy_u, area, "area and du/dy") zeta = (dx_v - dy_u) / area zeta.name = "relative vorticity" return zeta def interp_all(grid, ds, target="center", keep_coords=True): ds = ds.copy() ds_new = xr.Dataset() def _core_interp(da, grid): for ax in grid.axes.keys(): ax_coords = [_get_name(a) for a in grid.axes[ax].coords.values()] match = [a for a in da.dims if a in ax_coords] if len(match) > 0: pos = [ p for p, a in grid.axes[ax].coords.items() if _get_name(a) in match ] if target not in pos: da = grid.interp(da, ax, to=target) return da for vv in ds.data_vars: ds_new[vv] = _core_interp(ds[vv], grid) if keep_coords: for co in ds.coords: if co not in list(ds_new.coords): ds_new.coords[co] = ds[co] return ds_new
MIT License
openstack/ironic
ironic/drivers/modules/ansible/deploy.py
AnsibleDeploy.process_next_step
python
def process_next_step(self, task, step_type): if step_type == 'deploy' and self.in_core_deploy_step(task): manager_utils.notify_conductor_resume_deploy(task)
Start the next clean/deploy step if the previous one is complete. :param task: a TaskManager instance :param step_type: "clean" or "deploy"
https://github.com/openstack/ironic/blob/a4a6f26333be31b84a9b1a874dde506e61d407d3/ironic/drivers/modules/ansible/deploy.py#L457-L465
import json import os import shlex from urllib import parse as urlparse from ironic_lib import metrics_utils from ironic_lib import utils as irlib_utils from oslo_concurrency import processutils from oslo_log import log from oslo_utils import strutils from oslo_utils import units import tenacity import yaml from ironic.common import dhcp_factory from ironic.common import exception from ironic.common import faults from ironic.common.i18n import _ from ironic.common import images from ironic.common import states from ironic.common import utils from ironic.conductor import steps as conductor_steps from ironic.conductor import task_manager from ironic.conductor import utils as manager_utils from ironic.conf import CONF from ironic.drivers import base from ironic.drivers.modules import agent_base from ironic.drivers.modules import deploy_utils LOG = log.getLogger(__name__) METRICS = metrics_utils.get_metrics_logger(__name__) OPTIONAL_PROPERTIES = { 'ansible_username': _('Deploy ramdisk username for Ansible. ' 'This user must have passwordless sudo ' 'permissions. Optional.'), 'ansible_key_file': _('Full path to private SSH key file. ' 'If not specified, default keys for user running ' 'ironic-conductor process will be used. ' 'Note that for keys with password, those ' 'must be pre-loaded into ssh-agent. ' 'Optional.'), 'ansible_playbooks_path': _('Path to folder holding playbooks to use ' 'for this node. Optional. ' 'Default is set in ironic config.'), 'ansible_deploy_playbook': _('Name of the Ansible playbook file inside ' 'the "ansible_playbooks_path" folder which ' 'is used for node deployment. Optional.'), 'ansible_shutdown_playbook': _('Name of the Ansible playbook file inside ' 'the "ansible_playbooks_path" folder which ' 'is used for node shutdown. Optional.'), 'ansible_clean_playbook': _('Name of the Ansible playbook file inside ' 'the "ansible_playbooks_path" folder which ' 'is used for node cleaning. Optional.'), 'ansible_clean_steps_config': _('Name of the file inside the ' '"ansible_playbooks_path" folder with ' 'cleaning steps configuration. Optional.'), 'ansible_python_interpreter': _('Absolute path to the python interpreter ' 'on the managed machines. Optional.'), } COMMON_PROPERTIES = OPTIONAL_PROPERTIES class PlaybookNotFound(exception.IronicException): _msg_fmt = _('Failed to set ansible playbook for action %(action)s') def _get_playbooks_path(node): return node.driver_info.get('ansible_playbooks_path', CONF.ansible.playbooks_path) def _parse_ansible_driver_info(node, action='deploy'): user = node.driver_info.get('ansible_username', CONF.ansible.default_username) key = node.driver_info.get('ansible_key_file', CONF.ansible.default_key_file) playbook = node.driver_info.get('ansible_%s_playbook' % action, getattr(CONF.ansible, 'default_%s_playbook' % action, None)) if not playbook: raise PlaybookNotFound(action=action) return os.path.basename(playbook), user, key def _get_python_interpreter(node): return node.driver_info.get('ansible_python_interpreter', CONF.ansible.default_python_interpreter) def _get_configdrive_path(basename): return os.path.join(CONF.tempdir, basename + '.cndrive') def _get_node_ip(task): callback_url = task.node.driver_internal_info.get('agent_url', '') return urlparse.urlparse(callback_url).netloc.split(':')[0] def _prepare_extra_vars(host_list, variables=None): nodes_var = [] for node_uuid, ip, user, extra in host_list: nodes_var.append(dict(name=node_uuid, ip=ip, user=user, extra=extra)) extra_vars = dict(nodes=nodes_var) if variables: extra_vars.update(variables) return extra_vars def _run_playbook(node, name, extra_vars, key, tags=None, notags=None): root = _get_playbooks_path(node) playbook = os.path.join(root, name) inventory = os.path.join(root, 'inventory') ironic_vars = {'ironic': extra_vars} python_interpreter = _get_python_interpreter(node) if python_interpreter: ironic_vars['ansible_python_interpreter'] = python_interpreter args = [CONF.ansible.ansible_playbook_script, playbook, '-i', inventory, '-e', json.dumps(ironic_vars), ] if CONF.ansible.config_file_path: env = ['env', 'ANSIBLE_CONFIG=%s' % CONF.ansible.config_file_path] args = env + args if tags: args.append('--tags=%s' % ','.join(tags)) if notags: args.append('--skip-tags=%s' % ','.join(notags)) if key: args.append('--private-key=%s' % key) verbosity = CONF.ansible.verbosity if verbosity is None and CONF.debug: verbosity = 4 if verbosity: args.append('-' + 'v' * verbosity) if CONF.ansible.ansible_extra_args: args.extend(shlex.split(CONF.ansible.ansible_extra_args)) try: out, err = utils.execute(*args) return out, err except processutils.ProcessExecutionError as e: raise exception.InstanceDeployFailure(reason=e) def _calculate_memory_req(task): image_source = task.node.instance_info['image_source'] image_size = images.download_size(task.context, image_source) return image_size // units.Mi + CONF.ansible.extra_memory def _parse_partitioning_info(node): info = node.instance_info i_info = {'label': deploy_utils.get_disk_label(node) or 'msdos'} is_gpt = i_info['label'] == 'gpt' unit = 'MiB' partitions = {} def add_partition(name, start, end): partitions[name] = {'number': len(partitions) + 1, 'part_start': '%i%s' % (start, unit), 'part_end': '%i%s' % (end, unit)} if is_gpt: partitions[name]['name'] = name end = 1 if is_gpt: start, end = end, end + 1 add_partition('bios', start, end) partitions['bios']['flags'] = ['bios_grub'] ephemeral_mb = info['ephemeral_mb'] if ephemeral_mb: start, end = end, end + ephemeral_mb add_partition('ephemeral', start, end) i_info['ephemeral_format'] = info['ephemeral_format'] i_info['preserve_ephemeral'] = ( 'yes' if info['preserve_ephemeral'] else 'no') swap_mb = info['swap_mb'] if swap_mb: start, end = end, end + swap_mb add_partition('swap', start, end) configdrive = info.get('configdrive') if configdrive: start, end = end, end + 64 add_partition('configdrive', start, end) start, end = end, end + info['root_mb'] add_partition('root', start, end) if not is_gpt: partitions['root']['flags'] = ['boot'] i_info['partitions'] = partitions return {'partition_info': i_info} def _parse_root_device_hints(node): parsed_hints = deploy_utils.get_root_device_for_deploy(node) if not parsed_hints: return {} root_device_hints = {} advanced = {} for hint, value in parsed_hints.items(): if isinstance(value, str): if value.startswith('== '): root_device_hints[hint] = int(value[3:]) elif value.startswith('s== '): root_device_hints[hint] = urlparse.unquote(value[4:]) else: advanced[hint] = value else: root_device_hints[hint] = value if advanced: raise exception.InvalidParameterValue( _('Ansible-deploy does not support advanced root device hints ' 'based on oslo.utils operators. ' 'Present advanced hints for node %(node)s are %(hints)s.') % { 'node': node.uuid, 'hints': advanced}) return root_device_hints def _add_ssl_image_options(image): image['validate_certs'] = ('no' if CONF.ansible.image_store_insecure else 'yes') if CONF.ansible.image_store_cafile: image['cafile'] = CONF.ansible.image_store_cafile if CONF.ansible.image_store_certfile and CONF.ansible.image_store_keyfile: image['client_cert'] = CONF.ansible.image_store_certfile image['client_key'] = CONF.ansible.image_store_keyfile def _prepare_variables(task): node = task.node i_info = node.instance_info image = {} for i_key, i_value in i_info.items(): if i_key.startswith('image_'): image[i_key[6:]] = i_value checksum = image.get('checksum') if checksum: if ':' not in checksum: image['checksum'] = 'md5:%s' % checksum _add_ssl_image_options(image) variables = {'image': image} configdrive = manager_utils.get_configdrive_image(task.node) if configdrive: if urlparse.urlparse(configdrive).scheme in ('http', 'https'): cfgdrv_type = 'url' cfgdrv_location = configdrive else: cfgdrv_location = _get_configdrive_path(node.uuid) with open(cfgdrv_location, 'w') as f: f.write(configdrive) cfgdrv_type = 'file' variables['configdrive'] = {'type': cfgdrv_type, 'location': cfgdrv_location} root_device_hints = _parse_root_device_hints(node) if root_device_hints: variables['root_device_hints'] = root_device_hints return variables def _validate_clean_steps(steps, node_uuid): missing = [] for step in steps: name = step.get('name') if not name: missing.append({'name': 'undefined', 'field': 'name'}) continue if 'interface' not in step: missing.append({'name': name, 'field': 'interface'}) args = step.get('args', {}) for arg_name, arg in args.items(): if arg.get('required', False) and 'value' not in arg: missing.append({'name': name, 'field': '%s.value' % arg_name}) if missing: err_string = ', '.join( 'name %(name)s, field %(field)s' % i for i in missing) msg = _("Malformed clean_steps file: %s") % err_string LOG.error(msg) raise exception.NodeCleaningFailure(node=node_uuid, reason=msg) if len(set(s['name'] for s in steps)) != len(steps): msg = _("Cleaning steps do not have unique names.") LOG.error(msg) raise exception.NodeCleaningFailure(node=node_uuid, reason=msg) def _get_clean_steps(node, interface=None, override_priorities=None): clean_steps_file = node.driver_info.get( 'ansible_clean_steps_config', CONF.ansible.default_clean_steps_config) path = os.path.join(node.driver_info.get('ansible_playbooks_path', CONF.ansible.playbooks_path), os.path.basename(clean_steps_file)) try: with open(path) as f: internal_steps = yaml.safe_load(f) except Exception as e: msg = _('Failed to load clean steps from file ' '%(file)s: %(exc)s') % {'file': path, 'exc': e} raise exception.NodeCleaningFailure(node=node.uuid, reason=msg) _validate_clean_steps(internal_steps, node.uuid) steps = [] override = override_priorities or {} for params in internal_steps: name = params['name'] clean_if = params['interface'] if interface is not None and interface != clean_if: continue new_priority = override.get(name) priority = (new_priority if new_priority is not None else params.get('priority', 0)) args = {} argsinfo = params.get('args', {}) for arg, arg_info in argsinfo.items(): args[arg] = arg_info.pop('value', None) step = { 'interface': clean_if, 'step': name, 'priority': priority, 'abortable': False, 'argsinfo': argsinfo, 'args': args } steps.append(step) return steps class AnsibleDeploy(agent_base.HeartbeatMixin, agent_base.AgentOobStepsMixin, base.DeployInterface): collect_deploy_logs = False def get_properties(self): props = COMMON_PROPERTIES.copy() props.update(agent_base.VENDOR_PROPERTIES) return props @METRICS.timer('AnsibleDeploy.validate') def validate(self, task): task.driver.boot.validate(task) node = task.node iwdi = node.driver_internal_info.get('is_whole_disk_image') if not iwdi and deploy_utils.get_boot_option(node) == "netboot": raise exception.InvalidParameterValue(_( "Node %(node)s is configured to use the ansible deploy " "interface, which does not support netboot.") % {'node': node.uuid}) params = {} image_source = node.instance_info.get('image_source') params['instance_info.image_source'] = image_source error_msg = _('Node %s failed to validate deploy image info. Some ' 'parameters were missing') % node.uuid deploy_utils.check_for_missing_params(params, error_msg) _parse_root_device_hints(node) def _ansible_deploy(self, task, node_address): node = task.node LOG.debug('IP of node %(node)s is %(ip)s', {'node': node.uuid, 'ip': node_address}) variables = _prepare_variables(task) if not node.driver_internal_info.get('is_whole_disk_image'): variables.update(_parse_partitioning_info(node)) if node.target_raid_config: variables.update({'raid_config': node.target_raid_config}) playbook, user, key = _parse_ansible_driver_info(node) node_list = [(node.uuid, node_address, user, node.extra)] extra_vars = _prepare_extra_vars(node_list, variables=variables) LOG.debug('Starting deploy on node %s', node.uuid) _run_playbook(node, playbook, extra_vars, key) @METRICS.timer('AnsibleDeploy.deploy') @base.deploy_step(priority=100) @task_manager.require_exclusive_lock def deploy(self, task): self._required_image_info(task) manager_utils.node_power_action(task, states.REBOOT) return states.DEPLOYWAIT def in_core_deploy_step(self, task): step = task.node.deploy_step return (step and step['interface'] == 'deploy' and step['step'] == 'deploy')
Apache License 2.0
devopshq/teamcity
dohq_teamcity/models/change.py
Change.id
python
def id(self): return self._id
Gets the id of this Change. # noqa: E501 :return: The id of this Change. # noqa: E501 :rtype: int
https://github.com/devopshq/teamcity/blob/84f1757ec1fddef27d39246a75739d047be0e831/dohq_teamcity/models/change.py#L120-L127
from dohq_teamcity.custom.base_model import TeamCityObject class Change(TeamCityObject): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'int', 'version': 'str', 'internal_version': 'str', 'username': 'str', '_date': 'str', 'registration_date': 'str', 'personal': 'bool', 'href': 'str', 'web_url': 'str', 'comment': 'str', 'user': 'User', 'files': 'FileChanges', 'vcs_root_instance': 'VcsRootInstance', 'parent_changes': 'Changes', 'parent_revisions': 'Items', 'locator': 'str' } attribute_map = { 'id': 'id', 'version': 'version', 'internal_version': 'internalVersion', 'username': 'username', '_date': 'date', 'registration_date': 'registrationDate', 'personal': 'personal', 'href': 'href', 'web_url': 'webUrl', 'comment': 'comment', 'user': 'user', 'files': 'files', 'vcs_root_instance': 'vcsRootInstance', 'parent_changes': 'parentChanges', 'parent_revisions': 'parentRevisions', 'locator': 'locator' } def __init__(self, id=None, version=None, internal_version=None, username=None, _date=None, registration_date=None, personal=False, href=None, web_url=None, comment=None, user=None, files=None, vcs_root_instance=None, parent_changes=None, parent_revisions=None, locator=None, teamcity=None): self._id = None self._version = None self._internal_version = None self._username = None self.__date = None self._registration_date = None self._personal = None self._href = None self._web_url = None self._comment = None self._user = None self._files = None self._vcs_root_instance = None self._parent_changes = None self._parent_revisions = None self._locator = None self.discriminator = None if id is not None: self.id = id if version is not None: self.version = version if internal_version is not None: self.internal_version = internal_version if username is not None: self.username = username if _date is not None: self._date = _date if registration_date is not None: self.registration_date = registration_date if personal is not None: self.personal = personal if href is not None: self.href = href if web_url is not None: self.web_url = web_url if comment is not None: self.comment = comment if user is not None: self.user = user if files is not None: self.files = files if vcs_root_instance is not None: self.vcs_root_instance = vcs_root_instance if parent_changes is not None: self.parent_changes = parent_changes if parent_revisions is not None: self.parent_revisions = parent_revisions if locator is not None: self.locator = locator super(Change, self).__init__(teamcity=teamcity) @property
MIT License
sketchfab/c4d-plugin
dependencies/OSX/PIL/ImageDraw.py
ImageDraw.pieslice
python
def pieslice(self, xy, start, end, fill=None, outline=None, width=1): ink, fill = self._getink(outline, fill) if fill is not None: self.draw.draw_pieslice(xy, start, end, fill, 1) if ink is not None and ink != fill and width != 0: self.draw.draw_pieslice(xy, start, end, ink, 0, width)
Draw a pieslice.
https://github.com/sketchfab/c4d-plugin/blob/d06ef20acdeffa53032b521073b820ed374807ef/dependencies/OSX/PIL/ImageDraw.py#L223-L229
import math import numbers from . import Image, ImageColor class ImageDraw: def __init__(self, im, mode=None): im.load() if im.readonly: im._copy() blend = 0 if mode is None: mode = im.mode if mode != im.mode: if mode == "RGBA" and im.mode == "RGB": blend = 1 else: raise ValueError("mode mismatch") if mode == "P": self.palette = im.palette else: self.palette = None self.im = im.im self.draw = Image.core.draw(self.im, blend) self.mode = mode if mode in ("I", "F"): self.ink = self.draw.draw_ink(1) else: self.ink = self.draw.draw_ink(-1) if mode in ("1", "P", "I", "F"): self.fontmode = "1" else: self.fontmode = "L" self.fill = 0 self.font = None def getfont(self): if not self.font: from . import ImageFont self.font = ImageFont.load_default() return self.font def _getink(self, ink, fill=None): if ink is None and fill is None: if self.fill: fill = self.ink else: ink = self.ink else: if ink is not None: if isinstance(ink, str): ink = ImageColor.getcolor(ink, self.mode) if self.palette and not isinstance(ink, numbers.Number): ink = self.palette.getcolor(ink) ink = self.draw.draw_ink(ink) if fill is not None: if isinstance(fill, str): fill = ImageColor.getcolor(fill, self.mode) if self.palette and not isinstance(fill, numbers.Number): fill = self.palette.getcolor(fill) fill = self.draw.draw_ink(fill) return ink, fill def arc(self, xy, start, end, fill=None, width=1): ink, fill = self._getink(fill) if ink is not None: self.draw.draw_arc(xy, start, end, ink, width) def bitmap(self, xy, bitmap, fill=None): bitmap.load() ink, fill = self._getink(fill) if ink is None: ink = fill if ink is not None: self.draw.draw_bitmap(xy, bitmap.im, ink) def chord(self, xy, start, end, fill=None, outline=None, width=1): ink, fill = self._getink(outline, fill) if fill is not None: self.draw.draw_chord(xy, start, end, fill, 1) if ink is not None and ink != fill and width != 0: self.draw.draw_chord(xy, start, end, ink, 0, width) def ellipse(self, xy, fill=None, outline=None, width=1): ink, fill = self._getink(outline, fill) if fill is not None: self.draw.draw_ellipse(xy, fill, 1) if ink is not None and ink != fill and width != 0: self.draw.draw_ellipse(xy, ink, 0, width) def line(self, xy, fill=None, width=0, joint=None): ink = self._getink(fill)[0] if ink is not None: self.draw.draw_lines(xy, ink, width) if joint == "curve" and width > 4: if not isinstance(xy[0], (list, tuple)): xy = [tuple(xy[i : i + 2]) for i in range(0, len(xy), 2)] for i in range(1, len(xy) - 1): point = xy[i] angles = [ math.degrees(math.atan2(end[0] - start[0], start[1] - end[1])) % 360 for start, end in ((xy[i - 1], point), (point, xy[i + 1])) ] if angles[0] == angles[1]: continue def coord_at_angle(coord, angle): x, y = coord angle -= 90 distance = width / 2 - 1 return tuple( [ p + (math.floor(p_d) if p_d > 0 else math.ceil(p_d)) for p, p_d in ( (x, distance * math.cos(math.radians(angle))), (y, distance * math.sin(math.radians(angle))), ) ] ) flipped = ( angles[1] > angles[0] and angles[1] - 180 > angles[0] ) or (angles[1] < angles[0] and angles[1] + 180 > angles[0]) coords = [ (point[0] - width / 2 + 1, point[1] - width / 2 + 1), (point[0] + width / 2 - 1, point[1] + width / 2 - 1), ] if flipped: start, end = (angles[1] + 90, angles[0] + 90) else: start, end = (angles[0] - 90, angles[1] - 90) self.pieslice(coords, start - 90, end - 90, fill) if width > 8: if flipped: gapCoords = [ coord_at_angle(point, angles[0] + 90), point, coord_at_angle(point, angles[1] + 90), ] else: gapCoords = [ coord_at_angle(point, angles[0] - 90), point, coord_at_angle(point, angles[1] - 90), ] self.line(gapCoords, fill, width=3) def shape(self, shape, fill=None, outline=None): shape.close() ink, fill = self._getink(outline, fill) if fill is not None: self.draw.draw_outline(shape, fill, 1) if ink is not None and ink != fill: self.draw.draw_outline(shape, ink, 0)
Apache License 2.0
necaris/python3-openid
openid/store/filestore.py
_ensureDir
python
def _ensureDir(dir_name): try: os.makedirs(dir_name) except OSError as why: if why.errno != EEXIST or not os.path.isdir(dir_name): raise
Create dir_name as a directory if it does not exist. If it exists, make sure that it is, in fact, a directory. Can raise OSError str -> NoneType
https://github.com/necaris/python3-openid/blob/5c7f8f8fa4d2a0124516046ab2f84130eb8c10cb/openid/store/filestore.py#L66-L78
import string import os import os.path import time import logging from errno import EEXIST, ENOENT from tempfile import mkstemp from openid.association import Association from openid.store.interface import OpenIDStore from openid.store import nonce from openid import cryptutil, oidutil logger = logging.getLogger(__name__) _filename_allowed = string.ascii_letters + string.digits + '.' _isFilenameSafe = set(_filename_allowed).__contains__ def _safe64(s): h64 = oidutil.toBase64(cryptutil.sha1(s)) h64 = bytearray(h64) h64 = h64.replace(b'+', b'_') h64 = h64.replace(b'/', b'.') h64 = h64.replace(b'=', b'') return bytes(h64) def _filenameEscape(s): filename_chunks = [] for c in s: if _isFilenameSafe(c): filename_chunks.append(c) else: filename_chunks.append('_%02X' % ord(c)) return ''.join(filename_chunks) def _removeIfPresent(filename): try: os.unlink(filename) except OSError as why: if why.errno == ENOENT: return 0 else: raise else: return 1
Apache License 2.0
luciferjack/python-mysql-pool
PyMysqlPool/mysql/connector/protocol.py
MySQLProtocol.parse_eof
python
def parse_eof(self, packet): if packet[4] == 0: return self.parse_ok(packet) err_msg = "Failed parsing EOF packet." res = {} try: unpacked = struct_unpack('<xxxBBHH', packet) except struct.error: raise errors.InterfaceError(err_msg) if not (unpacked[1] == 254 and len(packet) <= 9): raise errors.InterfaceError(err_msg) res['warning_count'] = unpacked[2] res['status_flag'] = unpacked[3] return res
Parse a MySQL EOF-packet
https://github.com/luciferjack/python-mysql-pool/blob/7b812c6fc7f04255620cb86f272a2d8900c2240d/PyMysqlPool/mysql/connector/protocol.py#L262-L280
import datetime import struct from decimal import Decimal from . import errors, utils from .authentication import get_auth_plugin from .catch23 import PY2, struct_unpack from .constants import ( FieldFlag, ServerCmd, FieldType, ClientFlag, MAX_MYSQL_TABLE_COLUMNS) from .errors import get_exception class MySQLProtocol(object): def _connect_with_db(self, client_flags, database): if client_flags & ClientFlag.CONNECT_WITH_DB and database: return database.encode('utf8') + b'\x00' return b'\x00' def _auth_response(self, client_flags, username, password, database, auth_plugin, auth_data, ssl_enabled): if not password: return b'\x00' try: auth = get_auth_plugin(auth_plugin)( auth_data, username=username, password=password, database=database, ssl_enabled=ssl_enabled) plugin_auth_response = auth.auth_response() except (TypeError, errors.InterfaceError) as exc: raise errors.ProgrammingError( "Failed authentication: {0}".format(str(exc))) if client_flags & ClientFlag.SECURE_CONNECTION: resplen = len(plugin_auth_response) auth_response = struct.pack('<B', resplen) + plugin_auth_response else: auth_response = plugin_auth_response + b'\x00' return auth_response def make_auth(self, handshake, username=None, password=None, database=None, charset=33, client_flags=0, max_allowed_packet=1073741824, ssl_enabled=False, auth_plugin=None): try: auth_data = handshake['auth_data'] auth_plugin = auth_plugin or handshake['auth_plugin'] except (TypeError, KeyError) as exc: raise errors.ProgrammingError( "Handshake misses authentication info ({0})".format(exc)) if not username: username = b'' try: username_bytes = username.encode('utf8') except AttributeError: username_bytes = username packet = struct.pack('<IIB{filler}{usrlen}sx'.format( filler='x' * 23, usrlen=len(username_bytes)), client_flags, max_allowed_packet, charset, username_bytes) packet += self._auth_response(client_flags, username, password, database, auth_plugin, auth_data, ssl_enabled) packet += self._connect_with_db(client_flags, database) if client_flags & ClientFlag.PLUGIN_AUTH: packet += auth_plugin.encode('utf8') + b'\x00' return packet def make_auth_ssl(self, charset=33, client_flags=0, max_allowed_packet=1073741824): return utils.int4store(client_flags) + utils.int4store(max_allowed_packet) + utils.int1store(charset) + b'\x00' * 23 def make_command(self, command, argument=None): data = utils.int1store(command) if argument is not None: data += argument return data def make_change_user(self, handshake, username=None, password=None, database=None, charset=33, client_flags=0, ssl_enabled=False, auth_plugin=None): try: auth_data = handshake['auth_data'] auth_plugin = auth_plugin or handshake['auth_plugin'] except (TypeError, KeyError) as exc: raise errors.ProgrammingError( "Handshake misses authentication info ({0})".format(exc)) if not username: username = b'' try: username_bytes = username.encode('utf8') except AttributeError: username_bytes = username packet = struct.pack('<B{usrlen}sx'.format(usrlen=len(username_bytes)), ServerCmd.CHANGE_USER, username_bytes) packet += self._auth_response(client_flags, username, password, database, auth_plugin, auth_data, ssl_enabled) packet += self._connect_with_db(client_flags, database) packet += struct.pack('<H', charset) if client_flags & ClientFlag.PLUGIN_AUTH: packet += auth_plugin.encode('utf8') + b'\x00' return packet def parse_handshake(self, packet): res = {} res['protocol'] = struct_unpack('<xxxxB', packet[0:5])[0] (packet, res['server_version_original']) = utils.read_string( packet[5:], end=b'\x00') (res['server_threadid'], auth_data1, capabilities1, res['charset'], res['server_status'], capabilities2, auth_data_length ) = struct_unpack('<I8sx2sBH2sBxxxxxxxxxx', packet[0:31]) res['server_version_original'] = res['server_version_original'].decode() packet = packet[31:] capabilities = utils.intread(capabilities1 + capabilities2) auth_data2 = b'' if capabilities & ClientFlag.SECURE_CONNECTION: size = min(13, auth_data_length - 8) if auth_data_length else 13 auth_data2 = packet[0:size] packet = packet[size:] if auth_data2[-1] == 0: auth_data2 = auth_data2[:-1] if capabilities & ClientFlag.PLUGIN_AUTH: if (b'\x00' not in packet and res['server_version_original'].startswith("5.5.8")): (packet, res['auth_plugin']) = (b'', packet) else: (packet, res['auth_plugin']) = utils.read_string( packet, end=b'\x00') res['auth_plugin'] = res['auth_plugin'].decode('utf-8') else: res['auth_plugin'] = 'mysql_native_password' res['auth_data'] = auth_data1 + auth_data2 res['capabilities'] = capabilities return res def parse_ok(self, packet): if not packet[4] == 0: raise errors.InterfaceError("Failed parsing OK packet (invalid).") ok_packet = {} try: ok_packet['field_count'] = struct_unpack('<xxxxB', packet[0:5])[0] (packet, ok_packet['affected_rows']) = utils.read_lc_int(packet[5:]) (packet, ok_packet['insert_id']) = utils.read_lc_int(packet) (ok_packet['status_flag'], ok_packet['warning_count']) = struct_unpack('<HH', packet[0:4]) packet = packet[4:] if packet: (packet, ok_packet['info_msg']) = utils.read_lc_string(packet) ok_packet['info_msg'] = ok_packet['info_msg'].decode('utf-8') except ValueError: raise errors.InterfaceError("Failed parsing OK packet.") return ok_packet def parse_column_count(self, packet): try: count = utils.read_lc_int(packet[4:])[1] if count > MAX_MYSQL_TABLE_COLUMNS: return None return count except (struct.error, ValueError): raise errors.InterfaceError("Failed parsing column count") def parse_column(self, packet, charset='utf-8'): (packet, _) = utils.read_lc_string(packet[4:]) (packet, _) = utils.read_lc_string(packet) (packet, _) = utils.read_lc_string(packet) (packet, _) = utils.read_lc_string(packet) (packet, name) = utils.read_lc_string(packet) (packet, _) = utils.read_lc_string(packet) try: (_, _, field_type, flags, _) = struct_unpack('<xHIBHBxx', packet) except struct.error: raise errors.InterfaceError("Failed parsing column information") return ( name.decode(charset), field_type, None, None, None, None, ~flags & FieldFlag.NOT_NULL, flags, )
MIT License
ebellocchia/bip_utils
bip_utils/bip/conf/common/bip_coin_conf.py
BipCoinConf.CoinIndex
python
def CoinIndex(self) -> int: return self.m_coin_idx
Get coin index. Returns: int: Coin index
https://github.com/ebellocchia/bip_utils/blob/b04f9ef493a5b57983412c0ce460a9ca05ee1f50/bip_utils/bip/conf/common/bip_coin_conf.py#L86-L93
from typing import Any, Dict, Optional, Type from bip_utils.addr import IAddrEncoder from bip_utils.bip.bip32 import Bip32KeyNetVersions, Bip32Base from bip_utils.utils.conf import CoinNames as UtilsCoinNames class BipCoinConf: m_coin_names: UtilsCoinNames m_coin_idx: int m_is_testnet: bool m_def_path: str m_key_net_ver: Bip32KeyNetVersions m_wif_net_ver: Optional[bytes] m_bip32_cls: Type[Bip32Base] m_addr_params: Dict[str, Any] m_addr_cls: Type[IAddrEncoder] def __init__(self, coin_names: UtilsCoinNames, coin_idx: int, is_testnet: bool, def_path: str, key_net_ver: Bip32KeyNetVersions, wif_net_ver: Optional[bytes], bip32_cls: Type[Bip32Base], addr_cls: Type[IAddrEncoder], addr_params: Dict[str, Any]) -> None: self.m_coin_names = coin_names self.m_coin_idx = coin_idx self.m_is_testnet = is_testnet self.m_def_path = def_path self.m_key_net_ver = key_net_ver self.m_wif_net_ver = wif_net_ver self.m_bip32_cls = bip32_cls self.m_addr_params = addr_params self.m_addr_cls = addr_cls def CoinNames(self) -> UtilsCoinNames: return self.m_coin_names
MIT License
radish-bdd/radish
src/radish/models/step.py
Step.set_rule
python
def set_rule(self, rule): self.rule = rule
Set the Rule for this Step
https://github.com/radish-bdd/radish/blob/1685a48cacd491114cb6fb7e1dc3e1a54e8821a5/src/radish/models/step.py#L76-L78
import base64 import radish.utils as utils from radish.errors import RadishError, StepBehaveLikeRecursionError from radish.models.state import State from radish.models.stepfailurereport import StepFailureReport from radish.models.timed import Timed class Step(Timed): def __init__( self, step_id: int, keyword: str, used_keyword: str, text: str, doc_string, data_table, path: str, line: int, ) -> None: super().__init__() self.id = step_id self.keyword = keyword self.used_keyword = used_keyword self.text = text self.doc_string = doc_string self.data_table = data_table self.path = path self.line = line self.feature = None self.rule = None self.scenario = None self.step_impl = None self.step_impl_match = None self._behave_like_runner = None self.state = State.UNTESTED self.failure_report = None self.embeddings = [] def __repr__(self) -> str: return "<Step: {id} '{keyword} {text}' @ {path}:{line}>".format( id=self.id, keyword=self.keyword, text=self.text, path=self.path, line=self.line, ) def set_feature(self, feature): self.feature = feature
MIT License
digitalsleuth/time_decode
time_decode/time_decode.py
TimeDecoder.from_ole_be
python
def from_ole_be(self): reason = "[!] OLE Big-Endian timestamps are 16 hex characters (8 bytes)" ts_type = self.ts_types['ole_be'] try: if not len(self.oleb) == 16 or not all(char in hexdigits for char in self.oleb): self.in_ole_be = indiv_output = combined_output = False pass else: delta = struct.unpack('>d', struct.pack('>Q', int(self.oleb, 16)))[0] if int(delta) < 0: self.in_ole_be = indiv_output = combined_output = False pass else: dt_obj = self.epoch_1899 + timedelta(days=delta) self.in_ole_be = dt_obj.strftime('%Y-%m-%d %H:%M:%S.%f') indiv_output = str("{} {} UTC".format(ts_type, self.in_ole_be)) combined_output = str("{}{}\t{} UTC{}".format(self.left_color, ts_type, self.in_ole_be, self.right_color)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.in_ole_be = indiv_output = combined_output = False return self.in_ole_be, indiv_output, combined_output, reason
Convert an OLE Big-Endian timestamp to a date
https://github.com/digitalsleuth/time_decode/blob/247ca8d4765ef52cd02d8153cca6ffd0c925727b/time_decode/time_decode.py#L838-L860
from datetime import datetime as dt, timedelta import struct from binascii import hexlify, unhexlify from string import hexdigits import argparse import re import sys import base64 import uuid from calendar import monthrange from dateutil import parser as duparser from colorama import init init(autoreset=True) __author__ = 'Corey Forman' __date__ = '18 Sep 2021' __version__ = '3.2.0' __description__ = 'Python 3 CLI Date Time Conversion Tool' class TimeDecoder(object): def __init__(self, args): all_args = vars(args) if args.guess: for each_arg in all_args: all_args[each_arg] = args.guess for name, value in all_args.items(): if not hasattr(self, name): setattr(self, name, value) self.epoch_1601 = dt(1601, 1, 1) self.epoch_1899 = dt(1899, 12, 30) self.epoch_1904 = dt(1904, 1, 1) self.epoch_1970 = dt(1970, 1, 1) self.epoch_1980 = dt(1980, 1, 6) self.epoch_2000 = dt(2000, 1, 1) self.epoch_2001 = dt(2001, 1, 1) self.hundreds_nano = 10000000 self.nano_2001 = 1000000000 self.epoch_active = 116444736000000000 self.hfs_dec_subtract = 2082844800 self.ts_funcs = [self.from_unix_sec, self.from_unix_milli, self.from_win_64_hex, self.from_win_64_hexle, self.from_chrome, self.from_ad, self.from_unix_hex_32be, self.from_unix_hex_32le, self.from_cookie, self.from_ole_be, self.from_ole_le, self.from_mac, self.from_hfs_dec, self.from_hfs_be, self.from_hfs_le, self.from_msdos, self.from_fat, self.from_systime, self.from_filetime, self.from_hotmail, self.from_prtime, self.from_ole_auto, self.from_ms1904, self.from_ios_time, self.from_sym_time, self.from_gps_time, self.from_eitime, self.from_bplist, self.from_gsm, self.from_vm, self.from_tiktok, self.from_twitter, self.from_discord, self.from_ksuid, self.from_mastodon, self.from_metasploit, self.from_sony, self.from_uuid] self.date_funcs = [self.to_unix_sec, self.to_unix_milli, self.to_win_64_hex, self.to_win_64_hexle, self.to_chrome, self.to_ad, self.to_unix_hex_32be, self.to_unix_hex_32le, self.to_cookie, self.to_ole_be, self.to_ole_le, self.to_mac, self.to_hfs_dec, self.to_hfs_be, self.to_hfs_le, self.to_msdos, self.to_fat, self.to_systime, self.to_filetime, self.to_hotmail, self.to_prtime, self.to_ole_auto, self.to_ms1904, self.to_ios_time, self.to_sym_time, self.to_gps_time, self.to_eitime, self.to_bplist, self.to_gsm, self.to_vm] self.in_unix_sec = self.in_unix_milli = self.in_windows_hex_64 = None self.in_windows_hex_le = self.in_chrome = self.in_ad = self.in_unix_hex_32 = None self.in_unix_hex_32le = self.in_cookie = self.in_ole_be = self.in_ole_le = None self.in_mac = self.in_hfs_dec = self.in_hfs_be = self.in_hfs_le = self.in_fat = None self.in_msdos = self.in_systemtime = self.in_filetime = self.in_prtime = None self.in_ole_auto = self.in_ms1904 = self.in_iostime = self.in_symtime = self.in_hotmail = None self.in_gpstime = self.in_eitime = self.in_bplist = self.in_gsm = self.in_vm = None self.in_tiktok = self.in_twitter = self.in_discord = self.in_ksuid = self.in_mastodon = None self.in_metasploit = self.in_sony = self.in_uuid = None self.out_unix_sec = self.out_unix_milli = self.out_windows_hex_64 = self.out_hotmail = None self.out_windows_hex_le = self.out_chrome = self.out_adtime = self.out_unix_hex_32 = None self.out_unix_hex_32le = self.out_cookie = self.out_ole_be = self.out_ole_le = None self.out_mac = self.out_hfs_dec = self.out_hfs_be = self.out_hfs_le = self.out_fat = None self.out_msdos = self.out_systemtime = self.out_filetime = self.out_prtime = None self.out_ole_auto = self.out_ms1904 = self.out_iostime = self.out_symtime = None self.out_gpstime = self.out_eitime = self.out_bplist = self.out_gsm = self.out_vm = None self.leapseconds = { 10: [dt(1972, 1, 1), dt(1972, 7, 1)], 11: [dt(1972, 7, 1), dt(1973, 1, 1)], 12: [dt(1973, 1, 1), dt(1974, 1, 1)], 13: [dt(1974, 1, 1), dt(1975, 1, 1)], 14: [dt(1975, 1, 1), dt(1976, 1, 1)], 15: [dt(1976, 1, 1), dt(1977, 1, 1)], 16: [dt(1977, 1, 1), dt(1978, 1, 1)], 17: [dt(1978, 1, 1), dt(1979, 1, 1)], 18: [dt(1979, 1, 1), dt(1980, 1, 1)], 19: [dt(1980, 1, 1), dt(1981, 7, 1)], 20: [dt(1981, 7, 1), dt(1982, 7, 1)], 21: [dt(1982, 7, 1), dt(1983, 7, 1)], 22: [dt(1983, 7, 1), dt(1985, 7, 1)], 23: [dt(1985, 7, 1), dt(1988, 1, 1)], 24: [dt(1988, 1, 1), dt(1990, 1, 1)], 25: [dt(1990, 1, 1), dt(1991, 1, 1)], 26: [dt(1991, 1, 1), dt(1992, 7, 1)], 27: [dt(1992, 7, 1), dt(1993, 7, 1)], 28: [dt(1993, 7, 1), dt(1994, 7, 1)], 29: [dt(1994, 7, 1), dt(1996, 1, 1)], 30: [dt(1996, 1, 1), dt(1997, 7, 1)], 31: [dt(1997, 7, 1), dt(1999, 1, 1)], 32: [dt(1999, 1, 1), dt(2006, 1, 1)], 33: [dt(2006, 1, 1), dt(2009, 1, 1)], 34: [dt(2009, 1, 1), dt(2012, 7, 1)], 35: [dt(2012, 7, 1), dt(2015, 7, 1)], 36: [dt(2015, 7, 1), dt(2017, 1, 1)], 37: [dt(2017, 1, 1), dt.now() - timedelta(seconds=37)] } self.left_color = "\033[1;31m" self.right_color = "\033[1;m" self.ts_types = {'unix_sec': 'Unix Seconds:', 'unix_milli': 'Unix Milliseconds:', 'windows_hex_64': 'Windows 64-bit Hex BE:', 'windows_hex_le': 'Windows 64-bit Hex LE:', 'chrome': 'Google Chrome:', 'ad': 'Active Directory/LDAP dt:', 'unix_hex_32': 'Unix Hex 32-bit BE:', 'unix_hex_32le': 'Unix Hex 32-bit LE:', 'cookie': 'Windows Cookie Date:', 'ole_be': 'Windows OLE 64-bit double BE:', 'ole_le': 'Windows OLE 64-bit double LE:', 'mac': 'Mac Absolute Time:', 'hfs_dec': 'Mac OS/HFS+ Decimal Time:', 'hfs_be': 'HFS/HFS+ 32-bit Hex BE:', 'hfs_le': 'HFS/HFS+ 32-bit Hex LE:', 'msdos': 'MS-DOS 32-bit Hex Value:', 'fat': 'FAT Date + Time:', 'systemtime': 'Microsoft 128-bit SYSTEMTIME:', 'filetime': 'Microsoft FILETIME time:', 'hotmail': 'Microsoft Hotmail time:', 'prtime': 'Mozilla PRTime:', 'ole_auto': 'OLE Automation Date:', 'ms1904': 'MS Excel 1904 Date:', 'iostime': 'iOS 11 Date:', 'symtime': 'Symantec AV time:', 'gpstime': 'GPS time:', 'eitime': 'Google EI time:', 'bplist': 'iOS Binary Plist time:', 'gsm': 'GSM time:', 'vm': 'VMSD time:', 'tiktok': 'TikTok time:', 'twitter': 'Twitter time:', 'discord': 'Discord time:', 'ksuid': 'KSUID time:', 'mastodon': 'Mastodon time:', 'metasploit': 'Metasploit Payload UUID:', 'sony': 'Sonyflake time:', 'uu': 'UUID time:'} def run(self): try: if self.guess: self.from_all() return if self.unix: result, indiv_output, combined_output, reason = self.from_unix_sec() if indiv_output is False: print(reason) else: print(indiv_output) if self.umil: result, indiv_output, combined_output, reason = self.from_unix_milli() if indiv_output is False: print(reason) else: print(indiv_output) if self.wh: result, indiv_output, combined_output, reason = self.from_win_64_hex() if indiv_output is False: print(reason) else: print(indiv_output) if self.whle: result, indiv_output, combined_output, reason = self.from_win_64_hexle() if indiv_output is False: print(reason) else: print(indiv_output) if self.chrome: result, indiv_output, combined_output, reason = self.from_chrome() if indiv_output is False: print(reason) else: print(indiv_output) if self.active: result, indiv_output, combined_output, reason = self.from_ad() if indiv_output is False: print(reason) else: print(indiv_output) if self.uhbe: result, indiv_output, combined_output, reason = self.from_unix_hex_32be() if indiv_output is False: print(reason) else: print(indiv_output) if self.uhle: result, indiv_output, combined_output, reason = self.from_unix_hex_32le() if indiv_output is False: print(reason) else: print(indiv_output) if self.cookie: result, indiv_output, combined_output, reason = self.from_cookie() if indiv_output is False: print(reason) else: print(indiv_output) if self.oleb: result, indiv_output, combined_output, reason = self.from_ole_be() if indiv_output is False: print(reason) else: print(indiv_output) if self.olel: result, indiv_output, combined_output, reason = self.from_ole_le() if indiv_output is False: print(reason) else: print(indiv_output) if self.mac: result, indiv_output, combined_output, reason = self.from_mac() if indiv_output is False: print(reason) else: print(indiv_output) if self.hfsdec: result, indiv_output, combined_output, reason = self.from_hfs_dec() if indiv_output is False: print(reason) else: print(indiv_output) if self.hfsbe: result, indiv_output, combined_output, reason = self.from_hfs_be() if indiv_output is False: print(reason) else: print(indiv_output) if self.hfsle: result, indiv_output, combined_output, reason = self.from_hfs_le() if indiv_output is False: print(reason) else: print(indiv_output) if self.fat: result, indiv_output, combined_output, reason = self.from_fat() if indiv_output is False: print(reason) else: print(indiv_output) if self.msdos: result, indiv_output, combined_output, reason = self.from_msdos() if indiv_output is False: print(reason) else: print(indiv_output) if self.systime: result, indiv_output, combined_output, reason = self.from_systime() if indiv_output is False: print(reason) else: print(indiv_output) if self.ft: result, indiv_output, combined_output, reason = self.from_filetime() if indiv_output is False: print(reason) else: print(indiv_output) if self.hotmail: result, indiv_output, combined_output, reason = self.from_hotmail() if indiv_output is False: print(reason) else: print(indiv_output) if self.pr: result, indiv_output, combined_output, reason = self.from_prtime() if indiv_output is False: print(reason) else: print(indiv_output) if self.auto: result, indiv_output, combined_output, reason = self.from_ole_auto() if indiv_output is False: print(reason) else: print(indiv_output) if self.ms1904: result, indiv_output, combined_output, reason = self.from_ms1904() if indiv_output is False: print(reason) else: print(indiv_output) if self.ios: result, indiv_output, combined_output, reason = self.from_ios_time() if indiv_output is False: print(reason) else: print(indiv_output) if self.sym: result, indiv_output, combined_output, reason = self.from_sym_time() if indiv_output is False: print(reason) else: print(indiv_output) if self.gps: result, indiv_output, combined_output, reason = self.from_gps_time() if indiv_output is False: print(reason) else: print(indiv_output) if self.eitime: result, indiv_output, combined_output, reason = self.from_eitime() if indiv_output is False: print(reason) else: print(indiv_output) if self.bplist: result, indiv_output, combined_output, reason = self.from_bplist() if indiv_output is False: print(reason) else: print(indiv_output) if self.gsm: result, indiv_output, combined_output, reason = self.from_gsm() if indiv_output is False: print(reason) else: print(indiv_output) if self.vm: result, indiv_output, combined_output, reason = self.from_vm() if indiv_output is False: print(reason) else: print(indiv_output) if self.tiktok: result, indiv_output, combined_output, reason = self.from_tiktok() if indiv_output is False: print(reason) else: print(indiv_output) if self.twitter: result, indiv_output, combined_output, reason = self.from_twitter() if indiv_output is False: print(reason) else: print(indiv_output) if self.discord: result, indiv_output, combined_output, reason = self.from_discord() if indiv_output is False: print(reason) else: print(indiv_output) if self.ksuid: result, indiv_output, combined_output, reason = self.from_ksuid() if indiv_output is False: print(reason) else: print(indiv_output) if self.mastodon: result, indiv_output, combined_output, reason = self.from_mastodon() if indiv_output is False: print(reason) else: print(indiv_output) if self.meta: result, indiv_output, combined_output, reason = self.from_metasploit() if indiv_output is False: print(reason) else: print(indiv_output) if self.sony: result, indiv_output, combined_output, reason = self.from_sony() if indiv_output is False: print(reason) else: print(indiv_output) if self.uu: result, indiv_output, combined_output, reason = self.from_uuid() if indiv_output is False: print(reason) else: print(indiv_output) if self.timestamp: self.to_timestamps() except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) def to_timestamps(self): print('\nConverting Date: ' + self.timestamp + '\n') for func in self.date_funcs: func() self.timestamp_output() def from_unix_sec(self): reason = "[!] Unix seconds timestamp is 10 digits in length" ts_type = self.ts_types['unix_sec'] try: if not len(self.unix) == 10 or not self.unix.isdigit(): self.in_unix_sec = indiv_output = combined_output = False pass else: self.in_unix_sec = dt.utcfromtimestamp(float(self.unix)).strftime('%Y-%m-%d %H:%M:%S.%f') indiv_output = str("{} {} UTC".format(ts_type, self.in_unix_sec)) combined_output = str("{}{}\t\t\t{} UTC{}".format(self.left_color, ts_type, self.in_unix_sec, self.right_color)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.in_unix_sec = indiv_output = combined_output = False return self.in_unix_sec, indiv_output, combined_output, reason def to_unix_sec(self): ts_type = self.ts_types['unix_sec'] try: dt_obj = duparser.parse(self.timestamp) if hasattr(dt_obj.tzinfo, '_offset'): dt_tz = dt_obj.tzinfo._offset.total_seconds() dt_obj = duparser.parse(self.timestamp, ignoretz=True) else: dt_tz = 0 self.out_unix_sec = str(int((dt_obj - self.epoch_1970).total_seconds()) - int(dt_tz)) ts_output = str("{}\t\t\t{}".format(ts_type, self.out_unix_sec)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.out_unix_sec = ts_output = False return self.out_unix_sec, ts_output def from_unix_milli(self): reason = "[!] Unix milliseconds timestamp is 13 digits in length" ts_type = self.ts_types['unix_milli'] try: if not len(self.umil) == 13 or not self.umil.isdigit(): self.in_unix_milli = indiv_output = combined_output = False pass else: self.in_unix_milli = dt.utcfromtimestamp(float(self.umil) / 1000.0).strftime('%Y-%m-%d %H:%M:%S.%f') indiv_output = str("{} {} UTC".format(ts_type, self.in_unix_milli)) combined_output = str("{}{}\t\t{} UTC{}".format(self.left_color, ts_type, self.in_unix_milli, self.right_color)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.in_unix_milli = indiv_output = combined_output = False return self.in_unix_milli, indiv_output, combined_output, reason def to_unix_milli(self): ts_type = self.ts_types['unix_milli'] try: dt_obj = duparser.parse(self.timestamp) if hasattr(dt_obj.tzinfo, '_offset'): dt_tz = dt_obj.tzinfo._offset.total_seconds() dt_obj = duparser.parse(self.timestamp, ignoretz=True) else: dt_tz = 0 self.out_unix_milli = str(int(((dt_obj - self.epoch_1970).total_seconds() - int(dt_tz))*1000)) ts_output = str("{}\t\t{}".format(ts_type, self.out_unix_milli)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.out_unix_milli = ts_output = False return self.out_unix_milli, ts_output def from_win_64_hex(self): reason = "[!] Windows 64-bit Hex Big-Endian timestamp is 16 hex characters (8 bytes)" ts_type = self.ts_types['windows_hex_64'] try: if not len(self.wh) == 16 or not all(char in hexdigits for char in self.wh): self.in_windows_hex_64 = indiv_output = combined_output = False pass else: base10_microseconds = int(self.wh, 16) / 10 if base10_microseconds >= 1e+17: self.in_windows_hex_64 = indiv_output = combined_output = False pass else: dt_obj = self.epoch_1601 + timedelta(microseconds=base10_microseconds) self.in_windows_hex_64 = dt_obj.strftime('%Y-%m-%d %H:%M:%S.%f') indiv_output = str("{} {} UTC".format(ts_type, self.in_windows_hex_64)) combined_output = str("{}{}\t\t{} UTC{}".format(self.left_color, ts_type, self.in_windows_hex_64, self.right_color)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.in_windows_hex_64 = indiv_output = combined_output = False return self.in_windows_hex_64, indiv_output, combined_output, reason def to_win_64_hex(self): ts_type = self.ts_types['windows_hex_64'] try: dt_obj = duparser.parse(self.timestamp) if hasattr(dt_obj.tzinfo, '_offset'): dt_tz = dt_obj.tzinfo._offset.total_seconds() dt_obj = duparser.parse(self.timestamp, ignoretz=True) else: dt_tz = 0 minus_epoch = dt_obj - self.epoch_1601 calculated_time = minus_epoch.microseconds + ((minus_epoch.seconds - int(dt_tz)) * 1000000) + (minus_epoch.days * 86400000000) self.out_windows_hex_64 = str(hex(int(calculated_time)*10))[2:].zfill(16) ts_output = str("{}\t\t{}".format(ts_type, self.out_windows_hex_64)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.out_windows_hex_64 = ts_output = False return self.out_windows_hex_64, ts_output def from_win_64_hexle(self): reason = "[!] Windows 64-bit Hex Little-Endian timestamp is 16 hex characters (8 bytes)" ts_type = self.ts_types['windows_hex_le'] try: if not len(self.whle) == 16 or not all(char in hexdigits for char in self.whle): self.in_windows_hex_le = indiv_output = combined_output = False pass else: indiv_output = combined_output = False endianness_change, = struct.unpack("<Q", unhexlify(self.whle)) converted_time = endianness_change / 10 try: dt_obj = self.epoch_1601 + timedelta(microseconds=converted_time) self.in_windows_hex_le = dt_obj.strftime('%Y-%m-%d %H:%M:%S.%f') indiv_output = str("{} {} UTC".format(ts_type, self.in_windows_hex_le)) combined_output = str("{}{}\t\t{} UTC{}".format(self.left_color, ts_type, self.in_windows_hex_le, self.right_color)) except OverflowError: pass except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.in_windows_hex_le = indiv_output = combined_output = False return self.in_windows_hex_le, indiv_output, combined_output, reason def to_win_64_hexle(self): ts_type = self.ts_types['windows_hex_le'] try: dt_obj = duparser.parse(self.timestamp) if hasattr(dt_obj.tzinfo, '_offset'): dt_tz = dt_obj.tzinfo._offset.total_seconds() dt_obj = duparser.parse(self.timestamp, ignoretz=True) else: dt_tz = 0 minus_epoch = dt_obj - self.epoch_1601 calculated_time = minus_epoch.microseconds + ((minus_epoch.seconds - int(dt_tz)) * 1000000) + (minus_epoch.days * 86400000000) self.out_windows_hex_le = str(struct.pack("<Q", int(calculated_time*10)).hex()).zfill(16) ts_output = str("{}\t\t{}".format(ts_type, self.out_windows_hex_le)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.out_windows_hex_le = ts_output = False return self.out_windows_hex_le, ts_output def from_chrome(self): reason = "[!] Chrome/Webkit timestamp is 17 digits" ts_type = self.ts_types['chrome'] try: if not len(self.chrome) == 17 or not self.chrome.isdigit(): self.in_chrome = indiv_output = combined_output = False pass else: delta = timedelta(microseconds=int(self.chrome)) converted_time = self.epoch_1601 + delta self.in_chrome = converted_time.strftime('%Y-%m-%d %H:%M:%S.%f') indiv_output = str("{} {} UTC".format(ts_type, self.in_chrome)) combined_output = str("{}{}\t\t\t{} UTC{}".format(self.left_color, ts_type, self.in_chrome, self.right_color)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.in_chrome = indiv_output = combined_output = False return self.in_chrome, indiv_output, combined_output, reason def to_chrome(self): ts_type = self.ts_types['chrome'] try: dt_obj = duparser.parse(self.timestamp) nano_seconds = '' if '.' in self.timestamp: nano_seconds = self.timestamp.split('.')[1].split(' ')[0] if hasattr(dt_obj.tzinfo, '_offset'): dt_tz = dt_obj.tzinfo._offset.total_seconds() dt_obj = duparser.parse(self.timestamp, ignoretz=True) else: dt_tz = 0 micro_seconds = (dt_obj - self.epoch_1601).microseconds chrome_time = ((dt_obj - self.epoch_1601).total_seconds() - int(dt_tz)) chrome_micro = str(chrome_time).split('.')[1] if (len(nano_seconds) == 6 and len(chrome_micro) < 6) or len(nano_seconds) > 6 or len(nano_seconds) == 6: chrome_time = str(chrome_time).replace(str(chrome_time).split('.')[1], str(micro_seconds).zfill(6)) self.out_chrome = str(chrome_time).replace('.', '') else: self.out_chrome = str(int(chrome_time * 1000000)) ts_output = str("{}\t\t\t{}".format(ts_type, self.out_chrome)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.out_chrome = ts_output = False return self.out_chrome, ts_output def from_ad(self): reason = "[!] Active Directory/LDAP timestamps are 18 digits" ts_type = self.ts_types['ad'] try: if not len(self.active) == 18 or not self.active.isdigit(): self.in_ad = indiv_output = combined_output = False pass else: dt_obj = dt.utcfromtimestamp((float(int(self.active) - self.epoch_active) / self.hundreds_nano)) self.in_ad = dt_obj.strftime('%Y-%m-%d %H:%M:%S.%f') indiv_output = str("{} {} UTC".format(ts_type, self.in_ad)) combined_output = str("{}{}\t{} UTC{}".format(self.left_color, ts_type, self.in_ad, self.right_color)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.in_ad = indiv_output = combined_output = False return self.in_ad, indiv_output, combined_output, reason def to_ad(self): ts_type = self.ts_types['ad'] try: nano_seconds = '' if '.' in self.timestamp: nano_seconds = self.timestamp.split('.')[1].split(' ')[0] dt_obj = duparser.parse(self.timestamp) if hasattr(dt_obj.tzinfo, '_offset'): dt_tz = dt_obj.tzinfo._offset.total_seconds() dt_obj = duparser.parse(self.timestamp, ignoretz=True) else: dt_tz = 0 if len(nano_seconds) == 7: dt_obj = dt_obj.replace(microsecond=0) nano_seconds = int(nano_seconds) elif len(nano_seconds) > 7: dt_obj = dt_obj.replace(microsecond=0) nano_seconds = int(nano_seconds[:-(len(nano_seconds) - 7)]) elif len(nano_seconds) == 6 or (len(nano_seconds) == 5 and len(str(dt_obj.microsecond)) == 6): nano_seconds = dt_obj.microsecond * 10 dt_obj = dt_obj.replace(microsecond=0) else: nano_seconds = 0 tz_shift = int(((dt_obj - self.epoch_1970).total_seconds() - int(dt_tz)) * self.hundreds_nano) + nano_seconds self.out_adtime = str(int(tz_shift) + int(self.epoch_active)) ts_output = str("{}\t{}".format(ts_type, self.out_adtime)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.out_adtime = ts_output = False return self.out_adtime, ts_output def from_unix_hex_32be(self): reason = "[!] Unix Hex 32-bit Big-Endian timestamps are 8 hex characters (4 bytes)" ts_type = self.ts_types['unix_hex_32'] try: if not len(self.uhbe) == 8 or not all(char in hexdigits for char in self.uhbe): self.in_unix_hex_32 = indiv_output = combined_output = False pass else: to_dec = int(self.uhbe, 16) self.in_unix_hex_32 = dt.utcfromtimestamp(float(to_dec)).strftime('%Y-%m-%d %H:%M:%S.%f') indiv_output = str("{} {} UTC".format(ts_type, self.in_unix_hex_32)) combined_output = str("{}{}\t\t{} UTC{}".format(self.left_color, ts_type, self.in_unix_hex_32, self.right_color)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.in_unix_hex_32 = indiv_output = combined_output = False return self.in_unix_hex_32, indiv_output, combined_output, reason def to_unix_hex_32be(self): ts_type = self.ts_types['unix_hex_32'] try: dt_obj = duparser.parse(self.timestamp) if hasattr(dt_obj.tzinfo, '_offset'): dt_tz = dt_obj.tzinfo._offset.total_seconds() dt_obj = duparser.parse(self.timestamp, ignoretz=True) else: dt_tz = 0 unix_time = int((dt_obj - self.epoch_1970).total_seconds() - int(dt_tz)) self.out_unix_hex_32 = str(struct.pack(">L", unix_time).hex()) ts_output = str("{}\t\t{}".format(ts_type, self.out_unix_hex_32)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.out_unix_hex_32 = ts_output = False return self.out_unix_hex_32, ts_output def from_unix_hex_32le(self): reason = "[!] Unix Hex 32-bit Little-Endian timestamps are 8 hex characters (4 bytes)" ts_type = self.ts_types['unix_hex_32le'] try: if not len(self.uhle) == 8 or not all(char in hexdigits for char in self.uhle): self.in_unix_hex_32le = indiv_output = combined_output = False pass else: to_dec = struct.unpack("<L", unhexlify(self.uhle))[0] self.in_unix_hex_32le = dt.utcfromtimestamp(float(to_dec)).strftime('%Y-%m-%d %H:%M:%S.%f') indiv_output = str("{} {} UTC".format(ts_type, self.in_unix_hex_32le)) combined_output = str("{}{}\t\t{} UTC{}".format(self.left_color, ts_type, self.in_unix_hex_32le, self.right_color)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.in_unix_hex_32le = indiv_output = combined_output = False return self.in_unix_hex_32le, indiv_output, combined_output, reason def to_unix_hex_32le(self): ts_type = self.ts_types['unix_hex_32le'] try: dt_obj = duparser.parse(self.timestamp) if hasattr(dt_obj.tzinfo, '_offset'): dt_tz = dt_obj.tzinfo._offset.total_seconds() dt_obj = duparser.parse(self.timestamp, ignoretz=True) else: dt_tz = 0 unix_time = int((dt_obj - self.epoch_1970).total_seconds() - int(dt_tz)) self.out_unix_hex_32le = str(struct.pack("<L", unix_time).hex()) ts_output = str("{}\t\t{}".format(ts_type, self.out_unix_hex_32le)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.out_unix_hex_32le = ts_output = False return self.out_unix_hex_32le, ts_output def from_cookie(self): reason = "[!] Internet Explorer Cookie timestamps (txt cookies) consist of 2 integers values. Must be input with a comma between them." ts_type = self.ts_types['cookie'] try: if not ("," in self.cookie) or not (self.cookie.split(",")[0].isdigit() and self.cookie.split(",")[1].isdigit()): self.in_cookie = indiv_output = combined_output = False pass else: low, high = [int(h, base=10) for h in self.cookie.split(',')] calc = 10**-7 * (high * 2**32 + low) - 11644473600 if calc >= 1e+11: self.in_cookie = indiv_output = combined_output = False pass else: dt_obj = dt.utcfromtimestamp(calc) self.in_cookie = dt_obj.strftime('%Y-%m-%d %H:%M:%S.%f') indiv_output = str("{} {} UTC".format(ts_type, self.in_cookie)) combined_output = str("{}{}\t\t{} UTC{}".format(self.left_color, ts_type, self.in_cookie, self.right_color)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.in_cookie = indiv_output = combined_output = False return self.in_cookie, indiv_output, combined_output, reason def to_cookie(self): ts_type = self.ts_types['cookie'] try: dt_obj = duparser.parse(self.timestamp) if hasattr(dt_obj.tzinfo, '_offset'): dt_tz = dt_obj.tzinfo._offset.total_seconds() dt_obj = duparser.parse(self.timestamp, ignoretz=True) else: dt_tz = 0 unix_time = int((dt_obj - self.epoch_1970).total_seconds() - int(dt_tz)) high = int(((unix_time + 11644473600) * 10**7) / 2**32) low = int((unix_time + 11644473600) * 10**7) - (high * 2**32) self.out_cookie = str(low) + ',' + str(high) ts_output = str("{}\t\t{}".format(ts_type, self.out_cookie)) except Exception: exc_type, exc_obj, exc_tb = sys.exc_info() print(str(exc_type) + " - " + str(exc_obj) + " - line " + str(exc_tb.tb_lineno)) self.out_cookie = ts_output = False return self.out_cookie, ts_output
MIT License
snudm-starlab/falcon2
src/imagenetutils/dataloaders.py
get_dali_train_loader
python
def get_dali_train_loader(dali_cpu=False): def gdtl(data_path, batch_size, workers=5, _worker_init_fn=None): if torch.distributed.is_initialized(): local_rank = torch.distributed.get_rank() world_size = torch.distributed.get_world_size() else: local_rank = 0 world_size = 1 traindir = os.path.join(data_path, 'train') pipe = HybridTrainPipe(batch_size=batch_size, num_threads=workers, device_id = local_rank, data_dir = traindir, crop = 224, dali_cpu=dali_cpu) pipe.build() train_loader = DALIClassificationIterator(pipe, size = int(pipe.epoch_size("Reader") / world_size)) return DALIWrapper(train_loader), int(pipe.epoch_size("Reader") / (world_size * batch_size)) return gdtl
DALI train loader :param dali_cpu: whether cpus is used :return: gdtl: output of gdtl function
https://github.com/snudm-starlab/falcon2/blob/8f41ea2f14d640972aabbf074fa181078edc2d53/src/imagenetutils/dataloaders.py#L179-L217
import os import torch import numpy as np import torchvision.datasets as datasets import torchvision.transforms as transforms DATA_BACKEND_CHOICES = ['pytorch'] try: from nvidia.dali.plugin.pytorch import DALIClassificationIterator from nvidia.dali.pipeline import Pipeline import nvidia.dali.ops as ops import nvidia.dali.types as types DATA_BACKEND_CHOICES.append('dali-gpu') DATA_BACKEND_CHOICES.append('dali-cpu') except ImportError: print("Please install DALI from https://www.github.com/NVIDIA/DALI to run this example.") class HybridTrainPipe(Pipeline): def __init__(self, batch_size, num_threads, device_id, data_dir, crop, dali_cpu=False): super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed = 12 + device_id) if torch.distributed.is_initialized(): local_rank = torch.distributed.get_rank() world_size = torch.distributed.get_world_size() else: local_rank = 0 world_size = 1 self.input = ops.FileReader( file_root = data_dir, shard_id = local_rank, num_shards = world_size, random_shuffle = True) if dali_cpu: dali_device = "cpu" self.decode = ops.HostDecoderRandomCrop(device=dali_device, output_type=types.RGB, random_aspect_ratio=[0.75, 4./3.], random_area=[0.08, 1.0], num_attempts=100) else: dali_device = "gpu" self.decode = ops.ImageDecoderRandomCrop(device="mixed", output_type=types.RGB, device_memory_padding=211025920, host_memory_padding=140544512, random_aspect_ratio=[0.75, 4./3.], random_area=[0.08, 1.0], num_attempts=100) self.res = ops.Resize(device=dali_device, resize_x=crop, resize_y=crop, interp_type=types.INTERP_TRIANGULAR) self.cmnp = ops.CropMirrorNormalize(device = "gpu", output_dtype = types.FLOAT, output_layout = types.NCHW, crop = (crop, crop), image_type = types.RGB, mean = [0.485 * 255,0.456 * 255,0.406 * 255], std = [0.229 * 255,0.224 * 255,0.225 * 255]) self.coin = ops.CoinFlip(probability = 0.5) def define_graph(self): rng = self.coin() self.jpegs, self.labels = self.input(name = "Reader") images = self.decode(self.jpegs) images = self.res(images) output = self.cmnp(images.gpu(), mirror = rng) return [output, self.labels] class HybridValPipe(Pipeline): def __init__(self, batch_size, num_threads, device_id, data_dir, crop, size): super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed = 12 + device_id) if torch.distributed.is_initialized(): local_rank = torch.distributed.get_rank() world_size = torch.distributed.get_world_size() else: local_rank = 0 world_size = 1 self.input = ops.FileReader( file_root = data_dir, shard_id = local_rank, num_shards = world_size, random_shuffle = False) self.decode = ops.ImageDecoder(device = "mixed", output_type = types.RGB) self.res = ops.Resize(device = "gpu", resize_shorter = size) self.cmnp = ops.CropMirrorNormalize(device = "gpu", output_dtype = types.FLOAT, output_layout = types.NCHW, crop = (crop, crop), image_type = types.RGB, mean = [0.485 * 255,0.456 * 255,0.406 * 255], std = [0.229 * 255,0.224 * 255,0.225 * 255]) def define_graph(self): self.jpegs, self.labels = self.input(name = "Reader") images = self.decode(self.jpegs) images = self.res(images) output = self.cmnp(images) return [output, self.labels] class DALIWrapper: def gen_wrapper(dalipipeline): for data in dalipipeline: input = data[0]["data"] target = data[0]["label"].squeeze().cuda().long() yield input, target dalipipeline.reset() def __init__(self, dalipipeline): self.dalipipeline = dalipipeline def __iter__(self): return DALIWrapper.gen_wrapper(self.dalipipeline)
Apache License 2.0
pyobo/pyobo
src/pyobo/sources/msigdb.py
iter_terms
python
def iter_terms(version: str) -> Iterable[Term]: xml_url = f"{BASE_URL}/{version}/msigdb_v{version}.xml" path = ensure_path(prefix=PREFIX, url=xml_url, version=version) tree = ElementTree.parse(path) for entry in tqdm(tree.getroot(), desc=f"{PREFIX} v{version}"): attrib = dict(entry.attrib) tax_id = _SPECIES[attrib["ORGANISM"]] reference_id = attrib["PMID"].strip() if not reference_id: reference = None elif reference_id.startswith("GSE"): reference = Reference("gse", reference_id) else: reference = Reference("pubmed", reference_id) identifier = attrib["SYSTEMATIC_NAME"] name = attrib["STANDARD_NAME"] is_obsolete = attrib["CATEGORY_CODE"] == "ARCHIVED" term = Term( reference=Reference(PREFIX, identifier, name), definition=_get_definition(attrib), provenance=reference and [reference], is_obsolete=is_obsolete, ) for key in [ "CATEGORY_CODE", "SUB_CATEGORY_CODE", "CONTRIBUTOR", "EXACT_SOURCE", "EXTERNAL_DETAILS_URL", ]: value = attrib[key].strip() if value: term.append_property(key.lower(), value) term.set_species(tax_id) contributor = attrib["CONTRIBUTOR"] external_id = attrib["EXACT_SOURCE"] external_details = attrib["EXTERNAL_DETAILS_URL"] if contributor == "WikiPathways": if not external_id: logger.warning( "missing %s source: msigdb:%s (%s)", contributor, identifier, external_details ) term.append_xref(Reference("wikipathways", external_id)) elif contributor == "Reactome": if not external_id: logger.warning( "missing %s source: msigdb:%s (%s)", contributor, identifier, external_details ) term.append_xref(Reference("reactome", external_id)) elif contributor == "Gene Ontology": if not external_id: external_id = external_details[len(GO_URL_PREFIX) :] if not external_id: logger.warning( "missing %s source: msigdb:%s (%s)", contributor, identifier, external_details ) term.append_xref(Reference("go", external_id)) elif contributor == "KEGG": if not external_id: external_id = external_details[len(KEGG_URL_PREFIX) : len(".html")] if not external_id: logger.warning( "missing %s source: msigdb:%s (%s)", contributor, identifier, external_details ) term.append_xref(Reference("kegg.pathway", external_id)) for ncbigene_id in attrib["MEMBERS_EZID"].strip().split(","): if ncbigene_id: term.append_relationship( has_part, Reference(prefix="ncbigene", identifier=ncbigene_id) ) yield term
Get MSigDb terms.
https://github.com/pyobo/pyobo/blob/678b4eeb5ba40205ab5ed8315ae0cc1d4ff3199f/src/pyobo/sources/msigdb.py#L50-L131
import logging from typing import Iterable, Optional from xml.etree import ElementTree import bioversions import click from more_click import verbose_option from tqdm import tqdm from ..struct import Obo, Reference, Term, has_part from ..utils.path import ensure_path logger = logging.getLogger(__name__) PREFIX = "msigdb" BASE_URL = "https://data.broadinstitute.org/gsea-msigdb/msigdb/release" def get_obo() -> Obo: version = bioversions.get_version(PREFIX) return Obo( ontology=PREFIX, name="Molecular Signatures Database", iter_terms=iter_terms, iter_terms_kwargs=dict(version=version), data_version=version, auto_generated_by=f"bio2obo:{PREFIX}", typedefs=[has_part], ) _SPECIES = { "Homo sapiens": "9606", "Mus musculus": "10090", "Rattus norvegicus": "10116", "Macaca mulatta": "9544", "Danio rerio": "7955", } REACTOME_URL_PREFIX = "https://www.reactome.org/content/detail/" GO_URL_PREFIX = "http://amigo.geneontology.org/amigo/term/GO:" KEGG_URL_PREFIX = "http://www.genome.jp/kegg/pathway/hsa/"
MIT License
howardhsu/bert-for-rrc-absa
pytorch-pretrained-bert/src/absa_data_utils.py
AscProcessor._create_examples
python
def _create_examples(self, lines, set_type): examples = [] for (i, ids) in enumerate(lines): guid = "%s-%s" % (set_type, ids ) text_a = lines[ids]['term'] text_b = lines[ids]['sentence'] label = lines[ids]['polarity'] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
Creates examples for the training and dev sets.
https://github.com/howardhsu/bert-for-rrc-absa/blob/2d194b1b2fb106c93e64b68513eff48ad0b99a9f/pytorch-pretrained-bert/src/absa_data_utils.py#L152-L162
import json import os from collections import defaultdict import random from pytorch_pretrained_bert.tokenization import BertTokenizer class ABSATokenizer(BertTokenizer): def subword_tokenize(self, tokens, labels): split_tokens, split_labels= [], [] idx_map=[] for ix, token in enumerate(tokens): sub_tokens=self.wordpiece_tokenizer.tokenize(token) for jx, sub_token in enumerate(sub_tokens): split_tokens.append(sub_token) if labels[ix]=="B" and jx>0: split_labels.append("I") else: split_labels.append(labels[ix]) idx_map.append(ix) return split_tokens, split_labels, idx_map class InputExample(object): def __init__(self, guid, text_a, text_b=None, label=None): self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class InputFeatures(object): def __init__(self, input_ids, input_mask, segment_ids, label_id): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id class DataProcessor(object): def get_train_examples(self, data_dir): raise NotImplementedError() def get_dev_examples(self, data_dir): raise NotImplementedError() def get_test_examples(self, data_dir): raise NotImplementedError() def get_labels(self): raise NotImplementedError() @classmethod def _read_json(cls, input_file): with open(input_file) as f: return json.load(f) class AeProcessor(DataProcessor): def get_train_examples(self, data_dir, fn="train.json"): return self._create_examples( self._read_json(os.path.join(data_dir, fn)), "train") def get_dev_examples(self, data_dir, fn="dev.json"): return self._create_examples( self._read_json(os.path.join(data_dir, fn)), "dev") def get_test_examples(self, data_dir, fn="test.json"): return self._create_examples( self._read_json(os.path.join(data_dir, fn)), "test") def get_labels(self): return ["O", "B", "I"] def _create_examples(self, lines, set_type): examples = [] for (i, ids) in enumerate(lines): guid = "%s-%s" % (set_type, ids ) text_a = lines[ids]['sentence'] label = lines[ids]['label'] examples.append( InputExample(guid=guid, text_a=text_a, label=label) ) return examples class AscProcessor(DataProcessor): def get_train_examples(self, data_dir, fn="train.json"): return self._create_examples( self._read_json(os.path.join(data_dir, fn)), "train") def get_dev_examples(self, data_dir, fn="dev.json"): return self._create_examples( self._read_json(os.path.join(data_dir, fn)), "dev") def get_test_examples(self, data_dir, fn="test.json"): return self._create_examples( self._read_json(os.path.join(data_dir, fn)), "test") def get_labels(self): return ["positive", "negative", "neutral"]
Apache License 2.0
2ndwatch/cloudendure-python
cloudendure/cloudendure_api/models/cloud_endure_configurations.py
CloudEndureConfigurations.value
python
def value(self, value): self._value = value
Sets the value of this CloudEndureConfigurations. :param value: The value of this CloudEndureConfigurations. # noqa: E501 :type: str
https://github.com/2ndwatch/cloudendure-python/blob/f81d1be1422b7c19adedb06c584803eaaa811919/cloudendure/cloudendure_api/models/cloud_endure_configurations.py#L78-L86
import pprint import re import six class CloudEndureConfigurations: """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = {"name": "str", "value": "str"} attribute_map = {"name": "name", "value": "value"} def __init__(self, name=None, value=None): self._name = None self._value = None self.discriminator = None if name is not None: self.name = name if value is not None: self.value = value @property def name(self): return self._name @name.setter def name(self, name): self._name = name @property def value(self): return self._value @value.setter
MIT License
haltakov/simple-photo-gallery
simplegallery/common.py
log
python
def log(message): print(message)
Log a message to the console :param message: message string
https://github.com/haltakov/simple-photo-gallery/blob/d47299072644b2e9d319d1e0bc52b020fa06c42f/simplegallery/common.py#L16-L21
import json class SPGException(Exception): def __init__(self, message): super().__init__() self.message = message
MIT License
ganeti/ganeti
lib/hypervisor/hv_xen.py
_GetAllInstanceList
python
def _GetAllInstanceList(fn, include_node, delays, timeout): instance_list_errors = [] try: lines = utils.Retry(_RunInstanceList, delays, timeout, args=(fn, instance_list_errors)) except utils.RetryTimeout: if instance_list_errors: instance_list_result = instance_list_errors.pop() errmsg = ("listing instances failed, timeout exceeded (%s): %s" % (instance_list_result.fail_reason, instance_list_result.output)) else: errmsg = "listing instances failed" raise errors.HypervisorError(errmsg) return _ParseInstanceList(lines, include_node)
Return the list of instances including running and shutdown. See L{_RunInstanceList} and L{_ParseInstanceList} for parameter details.
https://github.com/ganeti/ganeti/blob/4d21019c72cba4d746f5d17ca22098f4c7682e9c/lib/hypervisor/hv_xen.py#L203-L224
import logging import errno import os import string import shutil import time from io import StringIO from ganeti import constants from ganeti import errors from ganeti import utils from ganeti.hypervisor import hv_base from ganeti import netutils from ganeti import objects from ganeti import pathutils XEND_CONFIG_FILE = utils.PathJoin(pathutils.XEN_CONFIG_DIR, "xend-config.sxp") XL_CONFIG_FILE = utils.PathJoin(pathutils.XEN_CONFIG_DIR, "xen/xl.conf") VIF_BRIDGE_SCRIPT = utils.PathJoin(pathutils.XEN_CONFIG_DIR, "scripts/vif-bridge") _DOM0_NAME = "Domain-0" _DISK_LETTERS = string.ascii_lowercase _FILE_DRIVER_MAP = { constants.FD_LOOP: "file", constants.FD_BLKTAP: "tap:aio", constants.FD_BLKTAP2: "tap2:tapdisk:aio", } def _CreateConfigCpus(cpu_mask): cpu_list = utils.ParseMultiCpuMask(cpu_mask) if len(cpu_list) == 1: all_cpu_mapping = cpu_list[0] if all_cpu_mapping == constants.CPU_PINNING_OFF: return None else: return "cpu = \"%s\"" % ",".join(map(str, all_cpu_mapping)) else: def _GetCPUMap(vcpu): if vcpu[0] == constants.CPU_PINNING_ALL_VAL: cpu_map = constants.CPU_PINNING_ALL_XEN else: cpu_map = ",".join(map(str, vcpu)) return "\"%s\"" % cpu_map return "cpus = [ %s ]" % ", ".join(map(_GetCPUMap, cpu_list)) def _RunInstanceList(fn, instance_list_errors): result = fn() if result.failed: logging.error("Retrieving the instance list from xen failed (%s): %s", result.fail_reason, result.output) instance_list_errors.append(result) raise utils.RetryAgain() return result.stdout.splitlines() class _InstanceCrashed(errors.GenericError): def _ParseInstanceList(lines, include_node): result = [] for line in lines[1:]: data = line.split() if len(data) != 6: raise errors.HypervisorError("Can't parse instance list," " line: %s" % line) try: data[1] = int(data[1]) data[2] = int(data[2]) data[3] = int(data[3]) data[4] = _XenToHypervisorInstanceState(data[4]) data[5] = float(data[5]) except (TypeError, ValueError) as err: raise errors.HypervisorError("Can't parse instance list," " line: %s, error: %s" % (line, err)) except _InstanceCrashed: continue if include_node or data[0] != _DOM0_NAME: result.append(data) return result def _InstanceDomID(info): return info[1] def _InstanceRunning(info): return info[4] == hv_base.HvInstanceState.RUNNING def _InstanceRuntime(info): return info[5]
BSD 2-Clause Simplified License
atomlinter/linter-pylama
bin/deps/flake8/options/manager.py
Option.to_optparse
python
def to_optparse(self): if self._opt is None: self._opt = optparse.Option(*self.option_args, **self.option_kwargs) return self._opt
Convert a Flake8 Option to an optparse Option.
https://github.com/atomlinter/linter-pylama/blob/9157f7f84083007161814c93b537a712984f3c86/bin/deps/flake8/options/manager.py#L149-L154
import collections import logging import optparse from flake8 import utils LOG = logging.getLogger(__name__) class Option(object): def __init__(self, short_option_name=None, long_option_name=None, action=None, default=None, type=None, dest=None, nargs=None, const=None, choices=None, callback=None, callback_args=None, callback_kwargs=None, help=None, metavar=None, parse_from_config=False, comma_separated_list=False, normalize_paths=False): self.short_option_name = short_option_name self.long_option_name = long_option_name self.option_args = [ x for x in (short_option_name, long_option_name) if x is not None ] self.option_kwargs = { 'action': action, 'default': default, 'type': type, 'dest': self._make_dest(dest), 'nargs': nargs, 'const': const, 'choices': choices, 'callback': callback, 'callback_args': callback_args, 'callback_kwargs': callback_kwargs, 'help': help, 'metavar': metavar, } for key, value in self.option_kwargs.items(): setattr(self, key, value) self.parse_from_config = parse_from_config self.comma_separated_list = comma_separated_list self.normalize_paths = normalize_paths self.config_name = None if parse_from_config: if not long_option_name: raise ValueError('When specifying parse_from_config=True, ' 'a long_option_name must also be specified.') self.config_name = long_option_name[2:].replace('-', '_') self._opt = None def __repr__(self): return ( 'Option({0}, {1}, action={action}, default={default}, ' 'dest={dest}, type={type}, callback={callback}, help={help},' ' callback={callback}, callback_args={callback_args}, ' 'callback_kwargs={callback_kwargs}, metavar={metavar})' ).format(self.short_option_name, self.long_option_name, **self.option_kwargs) def _make_dest(self, dest): if dest: return dest if self.long_option_name: return self.long_option_name[2:].replace('-', '_') return self.short_option_name[1] def normalize(self, value, *normalize_args): if self.normalize_paths: normalize = utils.normalize_path if self.comma_separated_list: normalize = utils.normalize_paths return normalize(value, *normalize_args) elif self.comma_separated_list: return utils.parse_comma_separated_list(value) return value def normalize_from_setuptools(self, value): value = self.normalize(value) if self.type == 'int' or self.action == 'count': return int(value) if self.action in ('store_true', 'store_false'): value = str(value).upper() if value in ('1', 'T', 'TRUE', 'ON'): return True if value in ('0', 'F', 'FALSE', 'OFF'): return False return value
MIT License
phonopy/phono3py
phono3py/phonon3/conductivity_LBTE.py
Conductivity_LBTE._prepare_collision_matrix
python
def _prepare_collision_matrix(self): if self._is_reducible_collision_matrix: if self._is_kappa_star: self._average_collision_matrix_by_degeneracy() num_mesh_points = np.prod(self._pp.mesh_numbers) num_rot = len(self._point_operations) rot_grid_points = np.zeros((num_rot, num_mesh_points), dtype="int_") ir_gr_grid_points = np.array( self._pp.bz_grid.bzg2grg[self._ir_grid_points], dtype="int_" ) for i in range(num_mesh_points): rot_grid_points[:, i] = self._pp.bz_grid.bzg2grg[ get_grid_points_by_rotations( self._pp.bz_grid.grg2bzg[i], self._pp.bz_grid ) ] self._expand_collisions(ir_gr_grid_points, rot_grid_points) self._expand_local_values(ir_gr_grid_points, rot_grid_points) self._combine_reducible_collisions() weights = np.ones(np.prod(self._pp.mesh_numbers), dtype="int_") self._symmetrize_collision_matrix() else: self._combine_collisions() weights = self._get_weights() for i, w_i in enumerate(weights): for j, w_j in enumerate(weights): self._collision_matrix[:, :, i, :, :, j, :, :] *= w_i * w_j self._average_collision_matrix_by_degeneracy() self._symmetrize_collision_matrix() return weights
Prepare collision matrix to be solved.
https://github.com/phonopy/phono3py/blob/55df7fb796732a8b8ee893420152468a344b5f92/phono3py/phonon3/conductivity_LBTE.py#L469-L502
import sys import time import warnings from typing import List import numpy as np from phonopy.phonon.degeneracy import degenerate_sets from phonopy.phonon.group_velocity import GroupVelocity from phonopy.units import Kb, THzToEv from phono3py.file_IO import ( read_collision_from_hdf5, read_pp_from_hdf5, write_collision_eigenvalues_to_hdf5, write_collision_to_hdf5, write_kappa_to_hdf5, write_unitary_matrix_to_hdf5, ) from phono3py.phonon3.collision_matrix import CollisionMatrix from phono3py.phonon3.conductivity import Conductivity, all_bands_exist, unit_to_WmK from phono3py.phonon3.conductivity import write_pp as _write_pp from phono3py.phonon3.interaction import Interaction from phono3py.phonon.grid import get_grid_points_by_rotations class Conductivity_LBTE(Conductivity): def __init__( self, interaction: Interaction, grid_points=None, temperatures=None, sigmas=None, sigma_cutoff=None, is_isotope=False, mass_variances=None, boundary_mfp=None, solve_collective_phonon=False, is_reducible_collision_matrix=False, is_kappa_star=True, gv_delta_q=None, is_full_pp=False, read_pp=False, pp_filename=None, pinv_cutoff=1.0e-8, pinv_solver=0, log_level=0, ): self._pp: Interaction self._gv_obj: GroupVelocity self._sigmas: List self._grid_point_count: int self._temperatures = None self._sigma_cutoff = None self._is_kappa_star = None self._is_full_pp = None self._log_level = None self._boundary_mfp = None self._point_operations = None self._rotations_cartesian = None self._grid_points = None self._grid_weights = None self._ir_grid_points = None self._ir_grid_weights = None self._kappa = None self._mode_kappa = None self._kappa_RTA = None self._mode_kappa_RTA = None self._read_gamma = False self._read_gamma_iso = False self._frequencies = None self._cv = None self._gv = None self._f_vectors = None self._gv_sum2 = None self._mfp = None self._gamma = None self._gamma_iso = None self._averaged_pp_interaction = None self._conversion_factor = None self._is_isotope = None self._isotope = None self._mass_variances = None self._collision_eigenvalues = None super().__init__( interaction, grid_points=grid_points, temperatures=temperatures, sigmas=sigmas, sigma_cutoff=sigma_cutoff, is_isotope=is_isotope, mass_variances=mass_variances, boundary_mfp=boundary_mfp, is_kappa_star=is_kappa_star, gv_delta_q=gv_delta_q, is_full_pp=is_full_pp, log_level=log_level, ) self._is_reducible_collision_matrix = is_reducible_collision_matrix self._solve_collective_phonon = solve_collective_phonon if not self._is_kappa_star: self._is_reducible_collision_matrix = True self._collision_matrix = None self._read_pp = read_pp self._pp_filename = pp_filename self._pinv_cutoff = pinv_cutoff self._pinv_solver = pinv_solver if grid_points is None: self._all_grid_points = True else: self._all_grid_points = False if self._temperatures is not None: self._allocate_values() def set_kappa_at_sigmas(self): if len(self._grid_points) != len(self._ir_grid_points): print("Collision matrix is not well created.") import sys sys.exit(1) else: weights = self._prepare_collision_matrix() self._set_kappa_at_sigmas(weights) def get_f_vectors(self): return self._f_vectors @property def collision_matrix(self): return self._collision_matrix @collision_matrix.setter def collision_matrix(self, collision_matrix): self._collision_matrix = collision_matrix def get_collision_matrix(self): warnings.warn( "Use attribute, Conductivity_LBTE.collision_matrix " "instead of Conductivity_LBTE.get_collision_matrix().", DeprecationWarning, ) return self.collision_matrix def set_collision_matrix(self, collision_matrix): warnings.warn( "Use attribute, Conductivity_LBTE.collision_matrix " "instead of Conductivity_LBTE.set_collision_matrix().", DeprecationWarning, ) self.collision_matrix = collision_matrix def get_collision_eigenvalues(self): return self._collision_eigenvalues def get_mean_free_path(self): return self._mfp def get_frequencies_all(self): return self._frequencies[self._pp.bz_grid.grg2bzg] def get_kappa_RTA(self): return self._kappa_RTA def get_mode_kappa_RTA(self): return self._mode_kappa_RTA def delete_gp_collision_and_pp(self): self._collision.delete_integration_weights() self._pp.delete_interaction_strength() def _run_at_grid_point(self): i_gp = self._grid_point_count self._show_log_header(i_gp) gp = self._grid_points[i_gp] if not self._all_grid_points: self._collision_matrix[:] = 0 if not self._read_gamma: self._collision.set_grid_point(gp) if self._log_level: print("Number of triplets: %d" % len(self._pp.get_triplets_at_q()[0])) self._set_collision_matrix_at_sigmas(i_gp) if self._is_reducible_collision_matrix: i_data = self._pp.bz_grid.bzg2grg[gp] else: i_data = i_gp self._set_cv(i_gp, i_data) self._set_gv(i_gp, i_data) self._set_gv_by_gv(i_gp, i_data) if self._isotope is not None: gamma_iso = self._get_gamma_isotope_at_sigmas(i_gp) band_indices = self._pp.band_indices self._gamma_iso[:, i_data, :] = gamma_iso[:, band_indices] if self._log_level: self._show_log(i_gp) def _allocate_values(self): num_band0 = len(self._pp.band_indices) num_band = len(self._pp.primitive) * 3 num_temp = len(self._temperatures) if self._is_reducible_collision_matrix: self._allocate_reducible_colmat_values(num_temp, num_band0, num_band) else: self._allocate_ir_colmat_values(num_temp, num_band0, num_band) def _allocate_local_values(self, num_temp, num_band0, num_grid_points): self._kappa = np.zeros( (len(self._sigmas), num_temp, 6), dtype="double", order="C" ) self._kappa_RTA = np.zeros( (len(self._sigmas), num_temp, 6), dtype="double", order="C" ) self._gv = np.zeros((num_grid_points, num_band0, 3), dtype="double", order="C") self._f_vectors = np.zeros( (num_grid_points, num_band0, 3), dtype="double", order="C" ) self._gv_sum2 = np.zeros( (num_grid_points, num_band0, 6), dtype="double", order="C" ) self._mfp = np.zeros( (len(self._sigmas), num_temp, num_grid_points, num_band0, 3), dtype="double", order="C", ) self._cv = np.zeros( (num_temp, num_grid_points, num_band0), dtype="double", order="C" ) if self._is_full_pp: self._averaged_pp_interaction = np.zeros( (num_grid_points, num_band0), dtype="double", order="C" ) if self._gamma is None: self._gamma = np.zeros( (len(self._sigmas), num_temp, num_grid_points, num_band0), dtype="double", order="C", ) if self._isotope is not None: self._gamma_iso = np.zeros( (len(self._sigmas), num_grid_points, num_band0), dtype="double", order="C", ) self._mode_kappa = np.zeros( (len(self._sigmas), num_temp, num_grid_points, num_band0, 6), dtype="double" ) self._mode_kappa_RTA = np.zeros( (len(self._sigmas), num_temp, num_grid_points, num_band0, 6), dtype="double" ) def _allocate_reducible_colmat_values(self, num_temp, num_band0, num_band): num_mesh_points = np.prod(self._pp.mesh_numbers) if self._all_grid_points: num_stored_grid_points = num_mesh_points else: num_stored_grid_points = 1 self._allocate_local_values(num_temp, num_band0, num_mesh_points) self._collision = CollisionMatrix( self._pp, is_reducible_collision_matrix=True, log_level=self._log_level ) if self._collision_matrix is None: self._collision_matrix = np.empty( ( len(self._sigmas), num_temp, num_stored_grid_points, num_band0, num_mesh_points, num_band, ), dtype="double", order="C", ) self._collision_matrix[:] = 0 self._collision_eigenvalues = np.zeros( (len(self._sigmas), num_temp, num_mesh_points * num_band), dtype="double", order="C", ) def _allocate_ir_colmat_values(self, num_temp, num_band0, num_band): num_ir_grid_points = len(self._ir_grid_points) num_grid_points = len(self._grid_points) if self._all_grid_points: num_stored_grid_points = num_grid_points else: num_stored_grid_points = 1 self._allocate_local_values(num_temp, num_band0, num_grid_points) self._rot_grid_points = np.zeros( (num_ir_grid_points, len(self._point_operations)), dtype="int_" ) for i, ir_gp in enumerate(self._ir_grid_points): self._rot_grid_points[i] = get_grid_points_by_rotations( ir_gp, self._pp.bz_grid ) self._collision = CollisionMatrix( self._pp, rotations_cartesian=self._rotations_cartesian, num_ir_grid_points=num_ir_grid_points, rot_grid_points=self._rot_grid_points, log_level=self._log_level, ) if self._collision_matrix is None: self._collision_matrix = np.empty( ( len(self._sigmas), num_temp, num_stored_grid_points, num_band0, 3, num_ir_grid_points, num_band, 3, ), dtype="double", order="C", ) self._collision_matrix[:] = 0 self._collision_eigenvalues = np.zeros( (len(self._sigmas), num_temp, num_ir_grid_points * num_band * 3), dtype="double", order="C", ) def _set_collision_matrix_at_sigmas(self, i_gp): for j, sigma in enumerate(self._sigmas): if self._log_level: text = "Calculating collision matrix with " if sigma is None: text += "tetrahedron method." else: text += "sigma=%s" % sigma if self._sigma_cutoff is None: text += "." else: text += "(%4.2f SD)." % self._sigma_cutoff print(text) self._collision.set_sigma(sigma, sigma_cutoff=self._sigma_cutoff) self._collision.set_integration_weights() if self._read_pp: pp, _g_zero = read_pp_from_hdf5( self._pp.mesh_numbers, grid_point=self._grid_points[i_gp], sigma=sigma, sigma_cutoff=self._sigma_cutoff, filename=self._pp_filename, verbose=(self._log_level > 0), ) _, g_zero = self._collision.get_integration_weights() if self._log_level: if len(self._sigmas) > 1: print( "Multiple sigmas or mixing smearing and " "tetrahedron method is not supported." ) if _g_zero is not None and (_g_zero != g_zero).any(): raise ValueError("Inconsistency found in g_zero.") self._collision.set_interaction_strength(pp) elif j != 0 and (self._is_full_pp or self._sigma_cutoff is None): if self._log_level: print("Existing ph-ph interaction is used.") else: if self._log_level: print("Calculating ph-ph interaction...") self._collision.run_interaction(is_full_pp=self._is_full_pp) if self._is_full_pp and j == 0: self._averaged_pp_interaction[ i_gp ] = self._pp.get_averaged_interaction() for k, t in enumerate(self._temperatures): self._collision.set_temperature(t) self._collision.run() if self._all_grid_points: if self._is_reducible_collision_matrix: i_data = self._pp.bz_grid.bzg2grg[self._grid_points[i_gp]] else: i_data = i_gp else: i_data = 0 self._gamma[j, k, i_data] = self._collision.get_imag_self_energy() self._collision_matrix[ j, k, i_data ] = self._collision.get_collision_matrix()
BSD 3-Clause New or Revised License
irc-sphere/hyperstream
hyperstream/tool/tool.py
Tool._execute
python
def _execute(self, sources, alignment_stream, interval): raise NotImplementedError
Tool implementations should override this function to actually perform computations :param sources: The source streams (possibly None) :param alignment_stream: The alignment stream :param interval: The time interval :type sources: list[Stream] | tuple[Stream] | None :type alignment_stream: Stream | None :type interval: TimeInterval :return: None
https://github.com/irc-sphere/hyperstream/blob/35d63962f78cdfaac0383e38d79b16af373f1492/hyperstream/tool/tool.py#L35-L47
from . import BaseTool from ..time_interval import TimeInterval, TimeIntervals from ..stream import Stream from ..utils import StreamNotAvailableError import logging class Tool(BaseTool):
MIT License
chryswoods/acquire
Acquire/Client/_resources.py
Resources.from_data
python
def from_data(data): r = Resources() if data is None or len(data) == 0: return r r.image = str(data["image"]) r._nodes = int(data["nodes"]) r._cores_per_node = int(data["cores_per_node"]) r._mem_per_core = str(data["mem_per_core"]) r._gpus_per_node = str(data["gpus_per_node"]) r._shape = str(data["shape"]) r._tmp_disk_per_node = str(data["tmp_disk_per_node"]) r._scratch_disk = str(data["scratch_disk"]) r._campaign_disk = str(data["campaign_disk"]) return r
Return Resources constructed from a json-deserialised dictionary
https://github.com/chryswoods/acquire/blob/bf8a0465a531f3b485cb2a14c69dc9aea79451fd/Acquire/Client/_resources.py#L51-L68
__all__ = ["Resources"] class Resources: def __init__(self, image=None, nodes=1, cores_per_node=1, mem_per_core="100MB", gpus_per_node=0, shape=None, tmp_disk_per_node="4GB", scratch_disk="10GB", campaign_disk="5GB"): self._image = str(image) self._nodes = int(nodes) self._cores_per_node = int(cores_per_node) self._mem_per_core = str(mem_per_core) self._gpus_per_node = int(gpus_per_node) if shape is not None: self._shape = str(shape) else: self._shape = None self._tmp_disk_per_node = str(tmp_disk_per_node) self._scratch_disk = str(scratch_disk) self._campaign_disk = str(campaign_disk) def to_data(self): data = {} data["image"] = self._image data["nodes"] = self._nodes data["cores_per_node"] = self._cores_per_node data["mem_per_core"] = self._mem_per_core data["gpus_per_node"] = self._gpus_per_node data["shape"] = self._shape data["tmp_disk_per_node"] = self._tmp_disk_per_node data["scratch_disk"] = self._scratch_disk data["campaign_disk"] = self._campaign_disk return data @staticmethod
Apache License 2.0
clovaai/extd_pytorch
logger.py
Logger.scalar_summary
python
def scalar_summary(self, tag, value, step, scope=None): if USE_NSML: if self.last and self.last['step'] != step: nsml.report(scope=scope, **self.last) self.last = None if self.last is None: self.last = {'step': step, 'iter': step, 'epoch': 1} self.last[tag] = value else: summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)]) self.writer.add_summary(summary, step)
Log a scalar variable.
https://github.com/clovaai/extd_pytorch/blob/e99af10f282d07054c1cf7c4b8c035084daaff78/logger.py#L21-L33
import scipy.misc import numpy as np import tensorflow as tf from io import BytesIO try: import nsml USE_NSML=True except ImportError: USE_NSML=False pass class Logger(object): def __init__(self, log_dir): self.writer = tf.summary.FileWriter(log_dir) self.last = None
MIT License
ivan-vasilev/atpy
atpy/backtesting/environments.py
add_postgres_ohlc_1m
python
def add_postgres_ohlc_1m(dre: DataReplayEvents, bgn_prd: datetime.datetime, historical_depth=300, run_async=False, url: str = None, lmdb_path: str = None): con = psycopg2.connect(url if url is not None else os.environ['POSTGRESQL_CACHE']) lmdb_path = os.environ['ATPY_LMDB_PATH'] if lmdb_path is None and 'ATPY_LMDB_PATH' in os.environ else lmdb_path cache = functools.partial(read_pickle, lmdb_path=lmdb_path) if lmdb_path is not None else None bars_in_period = BarsInPeriodProvider(conn=con, interval_len=60, interval_type='s', bars_table='bars_1m', bgn_prd=bgn_prd, delta=relativedelta(weeks=1), overlap=relativedelta(microseconds=-1), cache=cache) if run_async: bars_in_period = AsyncInPeriodProvider(bars_in_period) dre.data_replay.add_source(bars_in_period, 'bars_1m', historical_depth=historical_depth, listeners=dre.listeners) return dre.event_filter_by_source('bars_1m'), dre.event_filter_function('bars_1m')
Create DataReplay environment for bar data using PostgreSQL :param dre: DataReplayEvents :param bgn_prd: begin period :param historical_depth: historical depth for source :param run_async: generate data asynchronously :param url: postgre url (can be obtained via env variable) :param lmdb_path: path to lmdb cache file :return: filter function, that only accepts this event
https://github.com/ivan-vasilev/atpy/blob/abe72832ae8cec818b0e67989892c25456e9e5f5/atpy/backtesting/environments.py#L25-L48
import datetime import functools import logging import os import typing import psycopg2 from dateutil.relativedelta import relativedelta import atpy.data.iqfeed.util as iqutil from atpy.backtesting.data_replay import DataReplayEvents, DataReplay from atpy.backtesting.mock_exchange import MockExchange, StaticSlippageLoss, PerShareCommissionLoss from atpy.backtesting.random_strategy import RandomStrategy from atpy.data.cache.lmdb_cache import read_pickle from atpy.data.cache.postgres_cache import BarsInPeriodProvider from atpy.data.quandl.postgres_cache import SFInPeriodProvider from atpy.data.ts_util import current_period, current_phase, gaps, rolling_mean, AsyncInPeriodProvider from atpy.portfolio.portfolio_manager import PortfolioManager def data_replay_events(listeners): return DataReplayEvents(listeners, DataReplay(), event_name='data')
MIT License
vlasovskikh/funcparserlib
funcparserlib/parser.py
a
python
def a(value): name = getattr(value, "name", value) return some(lambda t: t == value).named(repr(name))
Return a parser that parses a token if it's equal to `value`. Type: `(A) -> Parser[A, A]` Examples: ```pycon >>> expr = a("x") >>> expr.parse("x") 'x' >>> expr.parse("y") Traceback (most recent call last): ... parser.NoParseError: got unexpected token: 'y', expected: 'x' ``` Note: Although `Parser.parse()` can parse sequences of any objects (including `str` which is a sequence of `str` chars), **the recommended way** is parsing sequences of `Token` objects. You **should** use a regexp-based tokenizer `make_tokenizer()` defined in `funcparserlib.lexer` to convert your text into a sequence of `Token` objects before parsing it. You will get more readable parsing error messages (as `Token` objects contain their position in the source file) and good separation of the lexical and syntactic levels of the grammar.
https://github.com/vlasovskikh/funcparserlib/blob/3162777144d0013aad6a0293de57ad2ca63ed4cf/funcparserlib/parser.py#L619-L649
from __future__ import unicode_literals __all__ = [ "some", "a", "tok", "many", "pure", "finished", "maybe", "skip", "oneplus", "forward_decl", "NoParseError", "Parser", ] import sys import logging import warnings from funcparserlib.lexer import Token log = logging.getLogger("funcparserlib") debug = False PY2 = sys.version_info < (3,) if PY2: string_types = (str, unicode) else: string_types = str class Parser(object): def __init__(self, p): self.name = "" self.define(p) def named(self, name): self.name = name return self def define(self, p): f = getattr(p, "run", p) if debug: setattr(self, "_run", f) else: setattr(self, "run", f) self.named(getattr(p, "name", p.__doc__)) def run(self, tokens, s): if debug: log.debug("trying %s" % self.name) return self._run(tokens, s) def _run(self, tokens, s): raise NotImplementedError("you must define() a parser") def parse(self, tokens): try: (tree, _) = self.run(tokens, State(0, 0, None)) return tree except NoParseError as e: max = e.state.max if len(tokens) > max: t = tokens[max] if isinstance(t, Token): if t.start is None or t.end is None: loc = "" else: s_line, s_pos = t.start e_line, e_pos = t.end loc = "%d,%d-%d,%d: " % (s_line, s_pos, e_line, e_pos) msg = "%s%s: %r" % (loc, e.msg, t.value) elif isinstance(t, string_types): msg = "%s: %r" % (e.msg, t) else: msg = "%s: %s" % (e.msg, t) else: msg = "got unexpected end of file" if e.state.parser is not None: msg = "%s, expected: %s" % (msg, e.state.parser.name) e.msg = msg raise def __add__(self, other): def magic(v1, v2): if isinstance(v1, _Tuple): return _Tuple(v1 + (v2,)) else: return _Tuple((v1, v2)) @_TupleParser def _add(tokens, s): (v1, s2) = self.run(tokens, s) (v2, s3) = other.run(tokens, s2) return magic(v1, v2), s3 @Parser def ignored_right(tokens, s): v, s2 = self.run(tokens, s) _, s3 = other.run(tokens, s2) return v, s3 name = "(%s, %s)" % (self.name, other.name) if isinstance(other, _IgnoredParser): return ignored_right.named(name) else: return _add.named(name) def __or__(self, other): @Parser def _or(tokens, s): try: return self.run(tokens, s) except NoParseError as e: state = e.state try: return other.run(tokens, State(s.pos, state.max, state.parser)) except NoParseError as e: if s.max == e.state.max: e.state = State(e.state.pos, e.state.max, _or) raise _or.name = "%s or %s" % (self.name, other.name) return _or def __rshift__(self, f): @Parser def _shift(tokens, s): (v, s2) = self.run(tokens, s) return f(v), s2 return _shift.named(self.name) def bind(self, f): @Parser def _bind(tokens, s): (v, s2) = self.run(tokens, s) return f(v).run(tokens, s2) _bind.name = "(%s >>=)" % (self.name,) return _bind def __neg__(self): return _IgnoredParser(self) class State(object): def __init__(self, pos, max, parser=None): self.pos = pos self.max = max self.parser = parser def __str__(self): return str((self.pos, self.max)) def __repr__(self): return "State(%r, %r)" % (self.pos, self.max) class NoParseError(Exception): def __init__(self, msg="", state=None): self.msg = msg self.state = state def __str__(self): return self.msg class _Tuple(tuple): pass class _TupleParser(Parser): pass class _Ignored(object): def __init__(self, value): self.value = value def __repr__(self): return "_Ignored(%s)" % repr(self.value) def __eq__(self, other): return isinstance(other, _Ignored) and self.value == other.value @Parser def finished(tokens, s): if s.pos >= len(tokens): return None, s else: s2 = State(s.pos, s.max, finished) raise NoParseError("got unexpected token", s2) finished.name = "end of file" def many(p): @Parser def _many(tokens, s): res = [] try: while True: (v, s) = p.run(tokens, s) res.append(v) except NoParseError as e: return res, State(s.pos, e.state.max, e.state.parser) _many.name = "{ %s }" % p.name return _many def some(pred): @Parser def _some(tokens, s): if s.pos >= len(tokens): s2 = State(s.pos, s.max, _some if s.pos == s.max else s.parser) raise NoParseError("got unexpected end of file", s2) else: t = tokens[s.pos] if pred(t): pos = s.pos + 1 s2 = State(pos, max(pos, s.max), s.parser) if debug: log.debug('*matched* "%s", new state = %s' % (t, s2)) return t, s2 else: if debug: log.debug('failed "%s", state = %s' % (t, s)) s2 = State(s.pos, s.max, _some if s.pos == s.max else s.parser) raise NoParseError("got unexpected token", s2) _some.name = "some(...)" return _some
MIT License
nikikilbertus/blind-justice
python/src/tools.py
abs_fp
python
def abs_fp(x): if _np_instance(x): return np.abs(x) return _apply_vectorized(x, lambda z: (z if z > 0. else -z))
Element wise absolute value with fallback to numpy.abs.
https://github.com/nikikilbertus/blind-justice/blob/2344609e55a2af20396ec042627ffed368e01e56/python/src/tools.py#L182-L186
import collections from functools import reduce import numpy as np from spfpm.FixedPoint import FXnum def to_fixed(x, family): if family is None: return x xtype = _type_of(x) if xtype == 'scal': return FXnum(x, family=family) if xtype == 'vec': return [FXnum(a, family=family) for a in x] else: return [[FXnum(a, family=family) for a in x_row] for x_row in x] def to_float(x): if _np_instance(x): return x xtype = _type_of(x) if xtype == 'scal': return float(x) if xtype == 'vec': return np.array([float(a) for a in x], dtype=float) else: return np.array([[float(a) for a in x_row] for x_row in x], dtype=float) def stack_fp(x, y): if _np_instance(x, y): return np.hstack((x, y)) optype = _operation_type(x, y) assert optype == 'vec_vec', "Cannot stack {} with {}".format(dimensions(x), dimensions(y)) return x + y def sigmoid_pw(x): positive = True if x < 0.: positive = False x = -x if x < 1.: y = 0.23105 * x + 0.50346 elif x < 2.: y = 0.14973 * x + 0.58714 elif x < 3.: y = 0.07177 * x + 0.74097 elif x < 4.: y = 0.02943 * x + 0.86595 elif x < 5.: y = 0.01129 * x + 0.93751 else: y = 1.0 return y if positive else 1. - y def sigmoid_secureml(x): if x < -0.5: return 0.0 elif x > 0.5: return 1.0 else: return x + 0.5 def d_sigmoid_pw(x): if x < 0.: return d_sigmoid_pw(-x) elif x < 0.5: return -0.02999 * x + 0.25175 elif x < 1.: return -0.07678 * x + 0.27442 elif x < 2.: return -0.09161 * x + 0.28729 elif x < 3.: return -0.05981 * x + 0.22213 elif x < 4.: return -0.02751 * x + 0.12623 elif x < 5.: return -0.01101 * x + 0.06108 else: return -0.00001 * x + 0.00608 def _apply_vectorized(x, func): xtype = _type_of(x) if xtype == 'scal': return func(x) if xtype == 'vec': return [func(a) for a in x] else: return [[func(a) for a in x_row] for x_row in x] def inv_fp(x): if _np_instance(x): return 1 / x return _apply_vectorized(x, lambda z: 1/z) def neg_fp(x): if _np_instance(x): return -x return _apply_vectorized(x, lambda z: -z) def div_pow2_fp(x, powof2): if _np_instance(x): return x / np.power(2, powof2) return _apply_vectorized(x, lambda z: z >> powof2) def mul_pow2_fp(x, powof2): if _np_instance(x): return x * np.power(2, powof2) return _apply_vectorized(x, lambda z: z << powof2)
MIT License
hunterjm/hassio-addons
xboxone/xboxone.py
XboxOneDevice.media_pause
python
def media_pause(self): self._xboxone.media_command('pause')
Send pause command.
https://github.com/hunterjm/hassio-addons/blob/05bf8b146fa4bf0d47439b9b9870d11626143aac/xboxone/xboxone.py#L638-L640
import logging import functools import requests import voluptuous as vol from urllib.parse import urljoin from homeassistant.components.media_player import ( MediaPlayerDevice, PLATFORM_SCHEMA) from homeassistant.components.media_player.const import ( SUPPORT_NEXT_TRACK, SUPPORT_PAUSE, SUPPORT_PREVIOUS_TRACK, SUPPORT_SELECT_SOURCE, SUPPORT_TURN_OFF, SUPPORT_TURN_ON, SUPPORT_VOLUME_STEP, SUPPORT_VOLUME_MUTE, SUPPORT_PLAY, MEDIA_TYPE_MUSIC, MEDIA_TYPE_VIDEO, MEDIA_TYPE_TVSHOW, MEDIA_TYPE_CHANNEL) from homeassistant.const import ( STATE_IDLE, STATE_OFF, STATE_PAUSED, STATE_PLAYING, STATE_UNKNOWN, STATE_ON, CONF_HOST, CONF_PORT, CONF_SSL, CONF_NAME, CONF_DEVICE, CONF_AUTHENTICATION, CONF_IP_ADDRESS) import homeassistant.util.dt as dt_util import homeassistant.helpers.config_validation as cv _LOGGER = logging.getLogger(__name__) SUPPORT_XBOXONE = SUPPORT_PAUSE | SUPPORT_TURN_ON | SUPPORT_TURN_OFF | SUPPORT_PREVIOUS_TRACK | SUPPORT_NEXT_TRACK | SUPPORT_SELECT_SOURCE | SUPPORT_PLAY | SUPPORT_VOLUME_STEP | SUPPORT_VOLUME_MUTE REQUIRED_SERVER_VERSION = '0.9.8' DEFAULT_SSL = False DEFAULT_HOST = 'localhost' DEFAULT_NAME = 'Xbox One SmartGlass' DEFAULT_PORT = 5557 DEFAULT_AUTHENTICATION = True PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_DEVICE): cv.string, vol.Optional(CONF_IP_ADDRESS, default=''): cv.string, vol.Optional(CONF_HOST, default=DEFAULT_HOST): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Optional(CONF_SSL, default=DEFAULT_SSL): cv.boolean, vol.Optional(CONF_AUTHENTICATION, default=DEFAULT_AUTHENTICATION): cv.boolean, }) def setup_platform(hass, config, add_devices, discovery_info=None): name = config.get(CONF_NAME) ssl = config.get(CONF_SSL) host = config.get(CONF_HOST) port = config.get(CONF_PORT) liveid = config.get(CONF_DEVICE) ip = config.get(CONF_IP_ADDRESS) auth = config.get(CONF_AUTHENTICATION) proto = 'https' if ssl else 'http' base_url = '{0}://{1}:{2}'.format(proto, host, port) add_devices([XboxOneDevice(base_url, liveid, ip, name, auth)]) class XboxOne: def __init__(self, base_url, liveid, ip, auth): self.is_server_up = False self.is_server_correct_version = True self.base_url = base_url self.liveid = liveid self._ip = ip self._auth = auth self._available = False self._connected = False self._media_status = None self._console_status = None self._volume_controls = None self._pins = None def get(self, endpoint, *args, **kwargs): endpoint = endpoint.replace('<liveid>', self.liveid) full_url = urljoin(self.base_url, endpoint) return requests.get(full_url, *args, **kwargs) @property def available(self): return self._available @property def connected(self): return self._connected @property def console_status(self): return self._console_status @property def media_status(self): return self._media_status @property def volume_controls(self): volume_controls = self._volume_controls if not volume_controls: return None controls = volume_controls.get('avr') or volume_controls.get('tv') if not controls: return None return { 'mute': controls['buttons']['btn.vol_mute']['url'], 'up': controls['buttons']['btn.vol_up']['url'], 'down': controls['buttons']['btn.vol_down']['url'], } @property def media_playback_state(self): if self.media_status: return self.media_status.get('playback_status') @property def media_type(self): if self.media_status: return self.media_status.get('media_type') @property def media_position(self): if self.media_status: position = self.media_status.get('position') if isinstance(position, int) and position >= 10000000: return position / 10000000 @property def media_duration(self): if self.media_status: media_end = self.media_status.get('media_end') if isinstance(media_end, int) and media_end >= 10000000: return media_end / 10000000 @property def media_title(self): if self.media_status: return self.media_status.get('metadata', {}).get('title') @property def active_app(self): if self.console_status: active_titles = self.console_status.get('active_titles') app = [a.get('name') for a in active_titles if a.get('has_focus')] if len(app): return app[0] @property def active_app_image(self): if self.console_status: active_titles = self.console_status.get('active_titles') app = [a.get('image') for a in active_titles if a.get('has_focus')] if len(app): return app[0] or None @property def active_app_type(self): if self.console_status: active_titles = self.console_status.get('active_titles') app = [a.get('type') for a in active_titles if a.get('has_focus')] if len(app): return app[0] @property def all_apps(self): apps = { 'Home': 'ms-xbox-dashboard://home?view=home', 'TV': 'ms-xbox-livetv://' } if not self._pins and self._check_authentication(): self._pins = self.get('/web/pins').json() if self._pins: try: for item in self._pins['ListItems']: if item['Item']['ContentType'] == 'DApp' and item['Item']['Title'] not in apps.keys(): apps[item['Item']['Title']] = 'appx:{0}!App'.format(item['Item']['ItemId']) except: pass if self.console_status: active_titles = self.console_status.get('active_titles') for app in active_titles: if app.get('has_focus') and app.get('name') not in apps.keys(): apps[app.get('name')] = app.get('aum') return apps def _check_authentication(self): try: response = self.get('/auth').json() if response.get('authenticated'): return True response = self.get('/auth/refresh').json() if response.get('success'): return True except requests.exceptions.RequestException: _LOGGER.error('Unreachable /auth endpoint') return False except Exception as e: _LOGGER.error('Unknown Error: %s', e) _LOGGER.error('Refreshing authentication tokens failed!') return False def _refresh_devicelist(self): params = None if self._ip: params = {'addr': self._ip} self.get('/device', params=params) def _connect(self): if self._auth and not self._check_authentication(): return False try: url = '/device/<liveid>/connect' params = {} if not self._auth: params['anonymous'] = True response = self.get(url, params=params).json() if not response.get('success'): _LOGGER.error('Failed to connect to console {0}: {1}'.format(self.liveid, str(response))) return False except requests.exceptions.RequestException: _LOGGER.error('Unreachable /connect endpoint') return False except Exception as e: _LOGGER.error('Unknown Error: %s', e) return None return True def _get_device_info(self): try: response = self.get('/device/<liveid>').json() if not response.get('success'): _LOGGER.debug('Console {0} not available'.format(self.liveid)) return None except requests.exceptions.RequestException: _LOGGER.error('Unreachable device info /<liveid> endpoint') return None except Exception as e: _LOGGER.error('Unknown Error: %s', e) return None return response['device'] def _update_console_status(self): try: response = self.get('/device/<liveid>/console_status').json() if not response.get('success'): _LOGGER.error('Console {0} not available'.format(self.liveid)) return None except requests.exceptions.RequestException: _LOGGER.error('Unreachable /console_status endpoint') return None except Exception as e: _LOGGER.error('Unknown Error: %s', e) return None self._console_status = response['console_status'] def _update_media_status(self): try: response = self.get('/device/<liveid>/media_status').json() if not response.get('success'): _LOGGER.error('Console {0} not available'.format(self.liveid)) return None except requests.exceptions.RequestException: _LOGGER.error('Unreachable /media_status endpoint') return None except Exception as e: _LOGGER.error('Unknown Error: %s', e) return None self._media_status = response['media_status'] def _update_volume_controls(self): if self._volume_controls: return try: response = self.get('/device/<liveid>/ir').json() if not response.get('success'): _LOGGER.error('Console {0} not available'.format(self.liveid)) return None except requests.exceptions.RequestException: _LOGGER.error('Unreachable /ir endpoint') return None except Exception as e: _LOGGER.error('Unknown Error: %s', e) return None self._volume_controls = response def poweron(self): try: url = '/device/<liveid>/poweron' params = None if self._ip: params = { 'addr': self._ip } response = self.get(url, params=params).json() if not response.get('success'): _LOGGER.error('Failed to poweron {0}'.format(self.liveid)) return None except requests.exceptions.RequestException: _LOGGER.error('Unreachable /poweron endpoint') return None return response def poweroff(self): try: response = self.get('/device/<liveid>/poweroff').json() if not response.get('success'): _LOGGER.error('Failed to poweroff {0}'.format(self.liveid)) return None except requests.exceptions.RequestException: _LOGGER.error('Failed to call poweroff for {0}'.format(self.liveid)) return None return response def ir_command(self, device, command): try: response = self.get('/device/<liveid>/ir').json() if not response.get('success'): return None except requests.exceptions.RequestException: _LOGGER.error('Failed to get enabled media commands for {0}'.format(self.liveid)) return None except Exception as e: _LOGGER.error('Unknown Error: %s', e) return enabled_commands = response.get(device).get('buttons') if command not in enabled_commands: _LOGGER.error('Provided command {0} not enabled for current ir device'.format(command)) return None else: button_url = enabled_commands.get(command).get('url') try: response = self.get('{0}'.format(button_url)).json() if not response.get('success'): return None except requests.exceptions.RequestException: _LOGGER.error('Failed to get enabled ir commands for {0}'.format(self.liveid)) return None except Exception as e: _LOGGER.error('Unknown Error: %s', e) return response def media_command(self, command): try: response = self.get('/device/<liveid>/media').json() if not response.get('success'): return None except requests.exceptions.RequestException: _LOGGER.error('Failed to get enabled media commands for {0}'.format(self.liveid)) return None except Exception as e: _LOGGER.error('Unknown Error: %s', e) return None enabled_commands = response.get('commands') if command not in enabled_commands: _LOGGER.error('Provided command {0} not enabled for current media'.format(command)) return None try: response = self.get('/device/<liveid>/media/{0}'.format(command)).json() if not response.get('success'): return None except requests.exceptions.RequestException: _LOGGER.error('Failed to get enabled media commands for {0}'.format(self.liveid)) return None except Exception as e: _LOGGER.error('Unknown Error: %s', e) return None return response def volume_command(self, command): if not self._volume_controls: return None url = self._volume_controls.get(command) if not url: return None try: response = self.get(url).json() if not response.get('success'): return None except requests.exceptions.RequestException: _LOGGER.error('Failed to get enabled volume commands for {0}'.format(self.liveid)) return None except Exception as e: _LOGGER.error('Unknown Error: %s', e) return None return response def launch_title(self, launch_uri): try: apps = self.all_apps if launch_uri in apps.keys(): launch_uri = apps[launch_uri] response = self.get('/device/<liveid>/launch/{0}'.format(launch_uri)).json() if not response.get('success'): return None except requests.exceptions.RequestException: _LOGGER.error('Failed to launch title \'{0}\' for {1}'.format(launch_uri, self.liveid)) return None except Exception as e: _LOGGER.error('Unknown Error: %s', e) return None return response def _check_server(self): if not self.is_server_correct_version: return False try: resp = self.get('/versions').json() version = resp['versions']['xbox-smartglass-rest'] if version != REQUIRED_SERVER_VERSION: self.is_server_correct_version = False _LOGGER.error("Invalid xbox-smartglass-rest version: %s. Required: %s", version, REQUIRED_SERVER_VERSION) except requests.exceptions.RequestException: self.is_server_up = False return False self.is_server_up = True return True def refresh(self): if not self._check_server(): return self._check_authentication() self._refresh_devicelist() device_info = self._get_device_info() if not device_info or device_info.get('device_status') == 'Unavailable': self._available = False self._connected = False self._console_status = None self._media_status = None self._volume_controls = None else: self._available = True connection_state = device_info.get('connection_state') if connection_state == 'Connected': self._connected = True else: success = self._connect() if not success: _LOGGER.error('Failed to connect to {0}'.format(self.liveid)) self._connected = False else: self._connected = True if self.available and self.connected: self._update_console_status() self._update_media_status() self._update_volume_controls() class XboxOneDevice(MediaPlayerDevice): def __init__(self, base_url, liveid, ip, name, auth): self._xboxone = XboxOne(base_url, liveid, ip, auth) self._name = name self._liveid = liveid self._state = STATE_UNKNOWN self._running_apps = None self._current_app = None @property def name(self): return self._name @property def unique_id(self): return self._liveid @property def should_poll(self): return True @property def supported_features(self): active_support = SUPPORT_XBOXONE if self.state not in [STATE_PLAYING, STATE_PAUSED] and (self._xboxone.active_app_type not in ['Application', 'App'] or self._xboxone.active_app == 'Home'): active_support &= ~SUPPORT_NEXT_TRACK & ~SUPPORT_PREVIOUS_TRACK if not self._xboxone.volume_controls: active_support &= ~SUPPORT_VOLUME_MUTE & ~SUPPORT_VOLUME_STEP return active_support @property def state(self): playback_state = { 'Closed': STATE_IDLE, 'Changing': STATE_IDLE, 'Stopped': STATE_IDLE, 'Playing': STATE_PLAYING, 'Paused': STATE_PAUSED }.get(self._xboxone.media_playback_state) if playback_state: state = playback_state elif self._xboxone.connected or self._xboxone.available: if self._xboxone.active_app_type in ['Application', 'App'] or self._xboxone.active_app == 'Home': state = STATE_ON else: state = STATE_UNKNOWN else: state = STATE_OFF return state @property def media_content_type(self): if self.state in [STATE_PLAYING, STATE_PAUSED]: return { 'Music': MEDIA_TYPE_MUSIC, 'Video': MEDIA_TYPE_VIDEO }.get(self._xboxone.media_type) @property def media_duration(self): if self.state in [STATE_PLAYING, STATE_PAUSED]: return self._xboxone.media_duration @property def media_position(self): if self.state in [STATE_PLAYING, STATE_PAUSED]: return self._xboxone.media_position @property def media_position_updated_at(self): if self.state in [STATE_PLAYING, STATE_PAUSED]: return dt_util.utcnow() @property def media_image_url(self): return self._xboxone.active_app_image @property def media_title(self): if self.state in [STATE_PLAYING, STATE_PAUSED]: return self._xboxone.media_title return self._xboxone.active_app @property def source(self): return self._xboxone.active_app @property def source_list(self): return list(self._xboxone.all_apps.keys()) def update(self): self._xboxone.refresh() def turn_on(self): self._xboxone.poweron() def turn_off(self): self._xboxone.poweroff() def mute_volume(self, mute): self._xboxone.volume_command('mute') def volume_up(self): self._xboxone.volume_command('up') def volume_down(self): self._xboxone.volume_command('down') def media_play(self): self._xboxone.media_command('play')
MIT License
jnulzl/prnet-train
utils/estimate_pose.py
P2sRt
python
def P2sRt(P): t2d = P[:2, 3] R1 = P[0:1, :3] R2 = P[1:2, :3] s = (np.linalg.norm(R1) + np.linalg.norm(R2))/2.0 r1 = R1/np.linalg.norm(R1) r2 = R2/np.linalg.norm(R2) r3 = np.cross(r1, r2) R = np.concatenate((r1, r2, r3), 0) return s, R, t2d
decompositing camera matrix P. Args: P: (3, 4). Affine Camera Matrix. Returns: s: scale factor. R: (3, 3). rotation matrix. t2d: (2,). 2d translation.
https://github.com/jnulzl/prnet-train/blob/4b70a3b48e00cdd0e7e0670706997f3c8427be81/utils/estimate_pose.py#L43-L61
import numpy as np from math import cos, sin, atan2, asin def isRotationMatrix(R): Rt = np.transpose(R) shouldBeIdentity = np.dot(Rt, R) I = np.identity(3, dtype = R.dtype) n = np.linalg.norm(I - shouldBeIdentity) return n < 1e-6 def matrix2angle(R): if R[2,0] !=1 or R[2,0] != -1: x = asin(R[2,0]) y = atan2(R[2,1]/cos(x), R[2,2]/cos(x)) z = atan2(R[1,0]/cos(x), R[0,0]/cos(x)) else: z = 0 if R[2,0] == -1: x = np.pi/2 y = z + atan2(R[0,1], R[0,2]) else: x = -np.pi/2 y = -z + atan2(-R[0,1], -R[0,2]) return x, y, z
MIT License
superbird11/ranges
ranges/ranges.py
Range.isdisjoint
python
def isdisjoint(self, rng): if isinstance(rng, RangeSet): return rng.isdisjoint(self) try: if not isinstance(rng, Range): rng = Range(rng) except ValueError: raise TypeError(str(rng) + " is not Range-like") rng_a, rng_b = (self, rng) if self < rng else (rng, self) return not ( rng_a == rng_b or (rng_a.end in rng_b if rng_a.end != rng_b.start else (rng_a.include_end and rng_b.include_start)) or (rng_b.start in rng_a if rng_a.end != rng_b.start else (rng_a.include_end and rng_b.include_start)) )
returns `False` if this range overlaps with the given range, and `True` otherwise.
https://github.com/superbird11/ranges/blob/e285da71f3572e7d1c753d3bafd7d0fc07a70f69/ranges/ranges.py#L204-L224
import re from collections.abc import Iterable from ._helper import _LinkedList, _InfiniteValue, _is_iterable_non_string, Inf, _UnhashableFriendlyDict class Range: def __init__(self, *args, **kwargs): start = kwargs.get('start', _InfiniteValue(negative=True)) end = kwargs.get('end', _InfiniteValue(negative=False)) include_start = kwargs.get('include_start', True) include_end = kwargs.get('include_end', False) self.include_start = include_start self.include_end = include_end if len(args) == 0: rng = None elif len(args) == 1: if not args[0] and not isinstance(args[0], Range): raise ValueError("Cannot take a falsey non-Range value as only positional argument") rng = args[0] else: start = args[0] end = args[1] rng = None if rng is not None: if isinstance(rng, Range): self.start = rng.start self.end = rng.end self.include_start = rng.include_start self.include_end = rng.include_end elif isinstance(rng, str): pattern = r"(\[|\()\s*([^\s,]+)\s*(?:,|\.\.)\s*([^\s,]+)\s*(\]|\))" match = re.match(pattern, rng) try: if match.group(1) == "[": self.include_start = True elif match.group(1) == "(": self.include_start = False else: raise AttributeError() if match.group(4) == "]": self.include_end = True elif match.group(4) == ")": self.include_end = False else: raise AttributeError() self.start = float(match.group(2)) self.end = float(match.group(3)) if self.start.is_integer(): self.start = int(self.start) if self.end.is_integer(): self.end = int(self.end) except (AttributeError, IndexError): raise ValueError(f"Range '{rng}' was given in wrong format. Must be like '(start, end)' " + "where () means exclusive, [] means inclusive") except ValueError: raise ValueError("start and end must be numbers") else: raise ValueError(f"cannot construct a new Range from an object of type '{type(rng)}'") else: self.start = start self.end = end try: if self.start > self.end: raise ValueError("start must be less than or equal to end") except TypeError as _: raise ValueError("start and end are not comparable types")
MIT License
openstack/cinder
cinder/volume/flows/manager/create_volume.py
OnFailureRescheduleTask._reschedule
python
def _reschedule(self, context, cause, request_spec, filter_properties, volume): create_volume = self.scheduler_rpcapi.create_volume if not filter_properties: filter_properties = {} if 'retry' not in filter_properties: filter_properties['retry'] = {} retry_info = filter_properties['retry'] num_attempts = retry_info.get('num_attempts', 0) request_spec['volume_id'] = volume.id LOG.debug("Volume %(volume_id)s: re-scheduling %(method)s " "attempt %(num)d due to %(reason)s", {'volume_id': volume.id, 'method': common.make_pretty_name(create_volume), 'num': num_attempts, 'reason': cause.exception_str}) if all(cause.exc_info): retry_info['exc'] = traceback.format_exception(*cause.exc_info) return create_volume(context, volume, request_spec=request_spec, filter_properties=filter_properties)
Actions that happen during the rescheduling attempt occur here.
https://github.com/openstack/cinder/blob/4558e4b53a7e41dc1263417a4824f39bb6fd30e1/cinder/volume/flows/manager/create_volume.py#L145-L171
import binascii import traceback import typing from typing import Any, Dict, List, Optional, Tuple from castellan import key_manager import os_brick.initiator.connectors from oslo_concurrency import processutils from oslo_config import cfg from oslo_log import log as logging from oslo_utils import excutils from oslo_utils import fileutils from oslo_utils import netutils from oslo_utils import timeutils from oslo_utils import uuidutils import taskflow.engines from taskflow.patterns import linear_flow from taskflow.types import failure as ft from cinder import backup as backup_api from cinder.backup import rpcapi as backup_rpcapi from cinder import context as cinder_context from cinder import coordination from cinder import exception from cinder import flow_utils from cinder.i18n import _ from cinder.image import glance from cinder.image import image_utils from cinder.message import api as message_api from cinder.message import message_field from cinder import objects from cinder.objects import consistencygroup from cinder.objects import fields from cinder import utils from cinder.volume.flows import common from cinder.volume import volume_utils LOG = logging.getLogger(__name__) ACTION = 'volume:create' CONF = cfg.CONF IMAGE_ATTRIBUTES = ( 'checksum', 'container_format', 'disk_format', 'min_disk', 'min_ram', 'size', ) REKEY_SUPPORTED_CONNECTORS = ( os_brick.initiator.connectors.iscsi.ISCSIConnector, os_brick.initiator.connectors.fibre_channel.FibreChannelConnector, ) class OnFailureRescheduleTask(flow_utils.CinderTask): def __init__(self, reschedule_context, db, manager, scheduler_rpcapi, do_reschedule): requires = ['filter_properties', 'request_spec', 'volume', 'context'] super(OnFailureRescheduleTask, self).__init__(addons=[ACTION], requires=requires) self.do_reschedule = do_reschedule self.scheduler_rpcapi = scheduler_rpcapi self.db = db self.manager = manager self.reschedule_context = reschedule_context self.no_reschedule_types = [ exception.ImageCopyFailure, exception.MetadataCopyFailure, exception.MetadataUpdateFailure, exception.VolumeNotFound, exception.SnapshotNotFound, exception.VolumeTypeNotFound, exception.ImageUnacceptable, exception.ImageTooBig, exception.InvalidSignatureImage, exception.ImageSignatureVerificationException ] def execute(self, **kwargs): pass def _pre_reschedule(self, volume): try: update = { 'scheduled_at': timeutils.utcnow(), 'host': None, } LOG.debug("Updating volume %(volume_id)s with %(update)s.", {'update': update, 'volume_id': volume.id}) volume.update(update) volume.save() except exception.CinderException: LOG.exception("Volume %s: update volume state failed.", volume.id)
Apache License 2.0
morganstanley/testplan
testplan/testing/multitest/driver/tcp/server.py
TCPServerConfig.get_options
python
def get_options(cls): return { ConfigOption("host", default="localhost"): str, ConfigOption("port", default=0): Use(int), }
Schema for options validation and assignment of default values.
https://github.com/morganstanley/testplan/blob/8cb6a0ed0682698b2d6af82382fbb66d8d9e3ff7/testplan/testing/multitest/driver/tcp/server.py#L23-L30
import socket from schema import Use from testplan.common.config import ConfigOption from testplan.common.utils.timing import TimeoutException, TimeoutExceptionInfo from testplan.common.utils.sockets import Server from ..base import Driver, DriverConfig class TCPServerConfig(DriverConfig): @classmethod
Apache License 2.0
peterdsharpe/aerosandbox
aerosandbox/modeling/fitting.py
FittedModel.goodness_of_fit
python
def goodness_of_fit(self, type="R^2" ): if type == "R^2": y_mean = np.mean(self.y_data) SS_tot = np.sum( (self.y_data - y_mean) ** 2 ) y_model = self(self.x_data) SS_res = np.sum( (self.y_data - y_model) ** 2 ) R_squared = 1 - SS_res / SS_tot return R_squared elif type == "deviation" or type == "Linf": return np.max(np.abs(self.y_data - self(self.x_data))) else: raise ValueError("Bad value of `type`!")
Returns a metric of the goodness of the fit. Args: type: Type of metric to use for goodness of fit. One of: * "R^2": The coefficient of determination. Strictly speaking only mathematically rigorous to use this for linear fits. https://en.wikipedia.org/wiki/Coefficient_of_determination * "deviation" or "Linf": The maximum deviation of the fit from any of the data points. Returns: The metric of the goodness of the fit.
https://github.com/peterdsharpe/aerosandbox/blob/8fbf9449cba2f02e14424690ba2e34b438f21c69/aerosandbox/modeling/fitting.py#L328-L370
import aerosandbox.numpy as np from aerosandbox.optimization.opti import Opti from typing import Union, Dict, Callable, List from aerosandbox.modeling.surrogate_model import SurrogateModel import copy import warnings class FittedModel(SurrogateModel): def __init__(self, model: Callable[ [ Union[np.ndarray, Dict[str, np.ndarray]], Dict[str, float] ], np.ndarray ], x_data: Union[np.ndarray, Dict[str, np.ndarray]], y_data: np.ndarray, parameter_guesses: Dict[str, float], parameter_bounds: Dict[str, tuple] = None, residual_norm_type: str = "L2", fit_type: str = "best", weights: np.ndarray = None, put_residuals_in_logspace: bool = False, verbose=True, ): super().__init__() def flatten(input): return np.array(input).flatten() try: x_data = { k: flatten(v) for k, v in x_data.items() } x_data_is_dict = True except AttributeError: x_data = flatten(x_data) x_data_is_dict = False y_data = flatten(y_data) n_datapoints = np.length(y_data) if weights is None: weights = np.ones(n_datapoints) else: weights = flatten(weights) sum_weights = np.sum(weights) if sum_weights <= 0: raise ValueError("The weights must sum to a positive number!") if np.any(weights < 0): raise ValueError("No entries of the weights vector are allowed to be negative!") weights = weights / np.sum(weights) if parameter_bounds is None: parameter_bounds = {} for param_name, v in parameter_bounds.items(): if param_name not in parameter_guesses.keys(): raise ValueError( f"A parameter name (key = \"{param_name}\") in parameter_bounds was not found in parameter_guesses.") if not np.length(v) == 2: raise ValueError( "Every value in parameter_bounds must be a tuple in the format (lower_bound, upper_bound). " "For one-sided bounds, use None for the unbounded side.") if put_residuals_in_logspace: if not np.all(y_data > 0): raise ValueError("You can't fit a model with residuals in logspace if y_data is not entirely positive!") relevant_inputs = { "y_data" : y_data, "weights": weights, } try: relevant_inputs.update(x_data) except TypeError: relevant_inputs.update({"x_data": x_data}) for key, value in relevant_inputs.items(): series_length = np.length(value) if not series_length == n_datapoints: raise ValueError( f"The supplied data series \"{key}\" has length {series_length}, but y_data has length {n_datapoints}.") opti = Opti() params = {} for param_name, param_initial_guess in parameter_guesses.items(): if param_name in parameter_bounds: params[param_name] = opti.variable( init_guess=param_initial_guess, lower_bound=parameter_bounds[param_name][0], upper_bound=parameter_bounds[param_name][1], ) else: params[param_name] = opti.variable( init_guess=param_initial_guess, ) x_data_original = copy.deepcopy( x_data) try: y_model = model(x_data, params) except Exception: raise Exception(""" There was an error when evaluating the model you supplied with the x_data you supplied. Likely possible causes: * Your model() does not have the call syntax model(x, p), where x is the x_data and p are parameters. * Your model should take in p as a dict of parameters, but it does not. * Your model assumes x is an array-like but you provided x_data as a dict, or vice versa. See the docstring of FittedModel() if you have other usage questions or would like to see examples. """) try: x_data_is_unchanged = np.all(x_data == x_data_original) except ValueError: x_data_is_unchanged = np.all([ x_series == x_series_original for x_series, x_series_original in zip(x_data, x_data_original) ]) if not x_data_is_unchanged: raise TypeError("model(x_data, parameter_guesses) did in-place operations on x, which is not allowed!") if y_model is None: raise TypeError("model(x_data, parameter_guesses) returned None, when it should've returned a 1D ndarray.") if not put_residuals_in_logspace: error = y_model - y_data else: y_model = np.fmax(y_model, 1e-300) error = np.log(y_model) - np.log(y_data) if residual_norm_type.lower() == "l1": abs_error = opti.variable(init_guess=0, n_vars=np.length(y_data)) opti.subject_to([ abs_error >= error, abs_error >= -error, ]) opti.minimize(np.sum(weights * abs_error)) elif residual_norm_type.lower() == "l2": opti.minimize(np.sum(weights * error ** 2)) elif residual_norm_type.lower() == "linf": linf_value = opti.variable(init_guess=0) opti.subject_to([ linf_value >= weights * error, linf_value >= -weights * error ]) opti.minimize(linf_value) else: raise ValueError("Bad input for the 'residual_type' parameter.") if fit_type == "best": pass elif fit_type == "upper bound": opti.subject_to(y_model >= y_data) elif fit_type == "lower bound": opti.subject_to(y_model <= y_data) else: raise ValueError("Bad input for the 'fit_type' parameter.") sol = opti.solve(verbose=verbose) params_solved = {} for param_name in params: try: params_solved[param_name] = sol.value(params[param_name]) except: params_solved[param_name] = np.NaN self.model = model self.x_data = x_data self.y_data = y_data self.parameters = params_solved self.parameter_guesses = parameter_guesses self.parameter_bounds = parameter_bounds self.residual_norm_type = residual_norm_type self.fit_type = fit_type self.weights = weights self.put_residuals_in_logspace = put_residuals_in_logspace def __call__(self, x): super().__call__(x) return self.model(x, self.parameters) def plot_fit(self): raise DeprecationWarning( "Use FittedModel.plot() instead, which generalizes plotting to non-fitted surrogate models")
MIT License
rroller/dahua
custom_components/dahua/light.py
DahuaIlluminator.is_on
python
def is_on(self): return self._coordinator.is_illuminator_on()
Return true if the light is on
https://github.com/rroller/dahua/blob/83c09300098b6e446d218a60280a7d5babfd2c6f/custom_components/dahua/light.py#L124-L126
from homeassistant.core import HomeAssistant from homeassistant.components.light import ( ATTR_BRIGHTNESS, SUPPORT_BRIGHTNESS, LightEntity, ) from . import DahuaDataUpdateCoordinator, dahua_utils from .const import DOMAIN, SECURITY_LIGHT_ICON, INFRARED_ICON from .entity import DahuaBaseEntity from .client import SECURITY_LIGHT_TYPE DAHUA_SUPPORTED_OPTIONS = SUPPORT_BRIGHTNESS async def async_setup_entry(hass: HomeAssistant, entry, async_add_entities): coordinator = hass.data[DOMAIN][entry.entry_id] entities = [] if coordinator.supports_infrared_light(): entities.append(DahuaInfraredLight(coordinator, entry, "Infrared")) if coordinator.supports_illuminator(): entities.append(DahuaIlluminator(coordinator, entry, "Illuminator")) if coordinator.supports_security_light(): entities.append(DahuaSecurityLight(coordinator, entry, "Security Light")) async_add_entities(entities) class DahuaInfraredLight(DahuaBaseEntity, LightEntity): def __init__(self, coordinator: DahuaDataUpdateCoordinator, entry, name): super().__init__(coordinator, entry) self._name = name self._coordinator = coordinator @property def name(self): return self._coordinator.get_device_name() + " " + self._name @property def unique_id(self): return self._coordinator.get_serial_number() + "_infrared" @property def is_on(self): return self._coordinator.is_infrared_light_on() @property def brightness(self): return self._coordinator.get_infrared_brightness() @property def supported_features(self): return DAHUA_SUPPORTED_OPTIONS @property def should_poll(self): return False async def async_turn_on(self, **kwargs): hass_brightness = kwargs.get(ATTR_BRIGHTNESS) dahua_brightness = dahua_utils.hass_brightness_to_dahua_brightness(hass_brightness) channel = self._coordinator.get_channel() await self._coordinator.client.async_set_lighting_v1(channel, True, dahua_brightness) await self.coordinator.async_refresh() async def async_turn_off(self, **kwargs): hass_brightness = kwargs.get(ATTR_BRIGHTNESS) dahua_brightness = dahua_utils.hass_brightness_to_dahua_brightness(hass_brightness) channel = self._coordinator.get_channel() await self._coordinator.client.async_set_lighting_v1(channel, False, dahua_brightness) await self.coordinator.async_refresh() @property def icon(self): return INFRARED_ICON class DahuaIlluminator(DahuaBaseEntity, LightEntity): def __init__(self, coordinator: DahuaDataUpdateCoordinator, entry, name): super().__init__(coordinator, entry) self._name = name self._coordinator = coordinator @property def name(self): return self._coordinator.get_device_name() + " " + self._name @property def unique_id(self): return self._coordinator.get_serial_number() + "_illuminator" @property
MIT License
thriftrw/thriftrw-python
thriftrw/idl/parser.py
ParserSpec.p_definition_unit
python
def p_definition_unit(self, p): p[0] = p[1]
definition_unit : const | ttype
https://github.com/thriftrw/thriftrw-python/blob/22f6ab645f5af48cae2fee0dc1431dfacb971348/thriftrw/idl/parser.py#L100-L104
from __future__ import absolute_import, unicode_literals, print_function from collections import deque from ply import yacc from . import ast from .lexer import Lexer from ..errors import ThriftParserError __all__ = ['Parser'] class ParserSpec(object): tokens = Lexer.tokens def p_error(self, p): if p is None: raise ThriftParserError('Grammer error at EOF') raise ThriftParserError( 'Grammar error %r at line %d' % (p.value, p.lineno) ) def p_start(self, p): p[0] = ast.Program(headers=p[1], definitions=p[2]) def p_header(self, p): self._parse_seq(p) def p_header_unit_(self, p): p[0] = p[1] def p_header_unit(self, p): p[0] = p[1] def p_include(self, p): if len(p) == 4: p[0] = ast.Include(name=p[2], path=p[3], lineno=p.lineno(1)) else: p[0] = ast.Include(name=None, path=p[2], lineno=p.lineno(1)) def p_namespace(self, p): p[0] = ast.Namespace(scope=p[2], name=p[3], lineno=p.lineno(1)) def p_namespace_scope(self, p): p[0] = p[1] def p_sep(self, p): def p_definition(self, p): self._parse_seq(p) def p_definition_unit_(self, p): p[0] = p[1]
MIT License
matir/pwnableweb
pwntalk/views.py
require_login
python
def require_login(func): @functools.wraps(func) def _login_wrapper(*args, **kwargs): if not _check_login(): return flask.redirect(flask.url_for('home')) return func(*args, **kwargs) return _login_wrapper
Send to homepage if not logged in.
https://github.com/matir/pwnableweb/blob/81b2d3dc1da473d8833e2206401ec2808a6660b3/pwntalk/views.py#L29-L36
import base64 import binascii import flask import functools import hashlib import re from sqlalchemy import exc from sqlalchemy.orm import exc as orm_exc import subprocess from pwntalk import models from pwntalk.app import app, get_flag
Apache License 2.0
crypto-toolbox/bitex
bitex/api/WSS/bitfinex.py
BitfinexWSS.ticker
python
def ticker(self, pair, **kwargs): self._subscribe('ticker', symbol=pair, **kwargs)
Subscribe to the passed pair's ticker channel. :param pair: str, Pair to request data for. :param kwargs: :return:
https://github.com/crypto-toolbox/bitex/blob/56d46ea3db6de5219a72dad9b052fbabc921232f/bitex/api/WSS/bitfinex.py#L764-L771
import logging import json import time import queue import threading from threading import Thread from websocket import create_connection, WebSocketTimeoutException from websocket import WebSocketConnectionClosedException from bitex.api.WSS.base import WSSAPI from bitex.api.WSS.exceptions import InvalidBookLengthError, GenericSubscriptionError from bitex.api.WSS.exceptions import NotSubscribedError, AlreadySubscribedError from bitex.api.WSS.exceptions import InvalidPairError, InvalidChannelError from bitex.api.WSS.exceptions import InvalidEventError, InvalidBookPrecisionError from bitex.api.WSS.exceptions import UnknownEventError, UnknownWSSError from bitex.api.WSS.exceptions import UnknownWSSInfo, AlreadyRegisteredError from bitex.api.WSS.exceptions import NotRegisteredError, UnknownChannelError from bitex.api.WSS.exceptions import FaultyPayloadError log = logging.getLogger(__name__) class BitfinexWSS(WSSAPI): def __init__(self, pairs=None): super(BitfinexWSS, self).__init__('wss://api.bitfinex.com/ws/2', 'Bitfinex') self.conn = None if pairs: self.pairs = pairs else: self.pairs = ['ETHBTC', 'BTCUSD', 'ETHUSD', 'ETCUSD', 'ETCBTC', 'ZECUSD', 'ZECBTC', 'XMRUSD', 'XMRBTC', 'LTCUSD', 'LTCBTC', 'DSHUSD', 'DSHBTC'] self._receiver_lock = threading.Lock() self._processor_lock = threading.Lock() self.receiver_q = queue.Queue() self.receiver_thread = None self.processing_thread = None self.ping_timer = None self.timeout = 5 self._heartbeats = {} self._late_heartbeats = {} self.api_version = None self.channels = {} self.channel_labels = {} self.channel_states = {} self.channel_configs = {} self.wss_config = {} self._event_handlers = {'error': self._raise_error, 'unsubscribed': self._handle_unsubscribed, 'subscribed': self._handle_subscribed, 'auth': self._handle_subscribed, 'unauth': self._handle_unsubscribed, 'info': self._handle_info, 'pong': self._handle_pong, 'conf': self._handle_conf} self._data_handlers = {'ticker': self._handle_ticker, 'book': self._handle_book, 'raw_book': self._handle_raw_book, 'candles': self._handle_candles, 'trades': self._handle_trades, 'auth': self._handle_auth} def restart_client(): self._controller_q.put('restart') self._code_handlers = {'20051': restart_client, '20060': self.pause, '20061': self.unpause, '10000': InvalidEventError, '10001': InvalidPairError, '10300': GenericSubscriptionError, '10301': AlreadySubscribedError, '10302': InvalidChannelError, '10400': GenericSubscriptionError, '10401': NotSubscribedError, '10011': InvalidBookPrecisionError, '10012': InvalidBookLengthError} def eval_command(self, cmd): if cmd == 'restart': self.restart(soft=True) elif cmd == 'stop': self.stop() def _check_heartbeats(self, ts, *args, **kwargs): for chan_id in self._heartbeats: if ts - self._heartbeats[chan_id] >= 10: if chan_id not in self._late_heartbeats: try: log.warning("BitfinexWSS.heartbeats: Channel %s hasn't " "sent a heartbeat in %s seconds!", self.channel_labels[chan_id], ts - self._heartbeats[chan_id]) self._late_heartbeats[chan_id] = ts except KeyError: log.error("BitfinexWSS.heartbeats: Channel %s is not " "registered in the connector's registry! " "Restarting Connection to avoid errors..", chan_id) raise UnknownChannelError else: continue else: try: self._late_heartbeats.pop(chan_id) except KeyError: continue log.info("BitfinexWSS.heartbeats: Channel %s has sent a " "heartbeat again!", self.channel_labels[chan_id]) self.ping() def _check_ping(self): if time.time() - self.ping_timer > self.timeout: raise TimeoutError("Ping Command timed out!") def pause(self): self._receiver_lock.acquire() log.info("BitfinexWSS.pause(): Pausing client..") def unpause(self): self._receiver_lock.release() log.info("BitfinexWSS.pause(): Unpausing client..") def start(self): super(BitfinexWSS, self).start() log.info("BitfinexWSS.start(): Initializing Websocket connection..") while self.conn is None: try: self.conn = create_connection(self.addr, timeout=10) except WebSocketTimeoutException: self.conn = None print("Couldn't create websocket connection - retrying!") log.info("BitfinexWSS.start(): Initializing receiver thread..") if not self.receiver_thread: self.receiver_thread = Thread(target=self.receive, name='Receiver Thread') self.receiver_thread.start() else: log.info("BitfinexWSS.start(): Thread not started! " "self.receiver_thread is populated!") log.info("BitfinexWSS.start(): Initializing processing thread..") if not self.processing_thread: self.processing_thread = Thread(target=self.process, name='Processing Thread') self.processing_thread.start() else: log.info("BitfinexWSS.start(): Thread not started! " "self.processing_thread is populated!") self.setup_subscriptions() def stop(self): super(BitfinexWSS, self).stop() log.info("BitfinexWSS.stop(): Stopping client..") log.info("BitfinexWSS.stop(): Joining receiver thread..") try: self.receiver_thread.join() if self.receiver_thread.is_alive(): time.time(1) except AttributeError: log.debug("BitfinexWSS.stop(): Receiver thread was not running!") log.info("BitfinexWSS.stop(): Joining processing thread..") try: self.processing_thread.join() if self.processing_thread.is_alive(): time.time(1) except AttributeError: log.debug("BitfinexWSS.stop(): Processing thread was not running!") log.info("BitfinexWSS.stop(): Closing websocket conection..") try: self.conn.close() except WebSocketConnectionClosedException: pass except AttributeError: pass self.conn = None self.processing_thread = None self.receiver_thread = None log.info("BitfinexWSS.stop(): Done!") def restart(self, soft=False): log.info("BitfinexWSS.restart(): Restarting client..") super(BitfinexWSS, self).restart() channel_labels = [self.channel_labels[k] for k in self.channel_labels] if soft else None self.channels = {} self.channel_labels = {} self.channel_states = {} if channel_labels: for channel_name, kwargs in channel_labels: self._subscribe(channel_name, **kwargs) def receive(self): while self.running: if self._receiver_lock.acquire(blocking=False): try: raw = self.conn.recv() except WebSocketTimeoutException: self._receiver_lock.release() continue except WebSocketConnectionClosedException: self.conn = None self._controller_q.put('restart') except AttributeError: self._receiver_lock.release() continue msg = time.time(), json.loads(raw) log.debug("receiver Thread: Data Received: %s", msg) self.receiver_q.put(msg) self._receiver_lock.release() else: time.sleep(0.5) def process(self): while self.running: if self._processor_lock.acquire(blocking=False): if self.ping_timer: try: self._check_ping() except TimeoutError: log.exception("BitfinexWSS.ping(): TimedOut! (%ss)" % self.ping_timer) except (WebSocketConnectionClosedException, ConnectionResetError): log.exception("BitfinexWSS.ping(): Connection Error!") self.conn = None if not self.conn: self._controller_q.put('restart') skip_processing = False try: ts, data = self.receiver_q.get(timeout=0.1) except queue.Empty: skip_processing = True ts = time.time() data = None if not skip_processing: log.debug("Processing Data: %s", data) if isinstance(data, list): self.handle_data(ts, data) else: try: self.handle_response(ts, data) except UnknownEventError: log.exception("main() - UnknownEventError: %s", data) log.info("main() - Shutting Down due to " "Unknown Error!") self._controller_q.put('stop') except ConnectionResetError: log.info("processor Thread: Connection Was reset, " "initiating restart") self._controller_q.put('restart') self._check_heartbeats(ts) self._processor_lock.release() else: time.sleep(0.5) def handle_response(self, ts, resp): log.info("handle_response: Handling response %s", resp) event = resp['event'] try: self._event_handlers[event](ts, **resp) except (InvalidChannelError, InvalidPairError, InvalidBookLengthError, InvalidBookPrecisionError) as e: log.exception(e) print(e) except (NotSubscribedError, AlreadySubscribedError) as e: log.exception(e) print(e) except GenericSubscriptionError as e: log.exception(e) print(e) except InvalidEventError as e: log.critical("handle_response(): %s; %s", e, resp) log.exception(e) raise SystemError(e) except KeyError: raise UnknownEventError("handle_response(): %s" % resp) def _handle_subscribed(self, *args, chanId=None, channel=None, **kwargs): log.debug("_handle_subscribed: %s - %s - %s", chanId, channel, kwargs) if chanId in self.channels: raise AlreadyRegisteredError() self._heartbeats[chanId] = time.time() try: channel_key = ('raw_'+channel if kwargs['prec'].startswith('R') and channel == 'book' else channel) except KeyError: channel_key = channel try: self.channels[chanId] = self._data_handlers[channel_key] except KeyError: raise UnknownChannelError() try: kwargs.pop('event') except KeyError: pass try: kwargs.pop('len') except KeyError: pass try: kwargs.pop('chanId') except KeyError: pass self.channel_labels[chanId] = (channel_key, kwargs) def _handle_unsubscribed(self, *args, chanId=None, **kwargs): log.debug("_handle_unsubscribed: %s - %s", chanId, kwargs) try: self.channels.pop(chanId) except KeyError: raise NotRegisteredError() try: self._heartbeats.pop(chanId) except KeyError: pass try: self._late_heartbeats.pop(chanId) except KeyError: pass def _raise_error(self, *args, **kwargs): log.debug("_raise_error(): %s" % kwargs) try: error_code = str(kwargs['code']) except KeyError as e: raise FaultyPayloadError('_raise_error(): %s' % kwargs) try: raise self._code_handlers[error_code]() except KeyError: raise UnknownWSSError() def _handle_info(self, *args, **kwargs): if 'version' in kwargs: self.api_version = kwargs['version'] print("Initialized API with version %s" % self.api_version) return try: info_code = str(kwargs['code']) except KeyError: raise FaultyPayloadError("_handle_info: %s" % kwargs) if not info_code.startswith('2'): raise ValueError("Info Code must start with 2! %s", kwargs) output_msg = "_handle_info(): %s" % kwargs log.info(output_msg) try: self._code_handlers[info_code]() except KeyError: raise UnknownWSSInfo(output_msg) def _handle_pong(self, ts, *args, **kwargs): log.info("BitfinexWSS.ping(): Ping received! (%ss)", ts - self.ping_timer) self.ping_timer = None def _handle_conf(self, ts, *args, **kwargs): pass def handle_data(self, ts, msg): try: chan_id, *data = msg except ValueError as e: raise FaultyPayloadError("handle_data(): %s - %s" % (msg, e)) self._heartbeats[chan_id] = ts if data[0] == 'hb': self._handle_hearbeat(ts, chan_id) return try: self.channels[chan_id](ts, chan_id, data) except KeyError: raise NotRegisteredError("handle_data: %s not registered - " "Payload: %s" % (chan_id, msg)) @staticmethod def _handle_hearbeat(*args, **kwargs): pass def _handle_ticker(self, ts, chan_id, data): pair = self.channel_labels[chan_id][1]['pair'] entry = (*data, ts) self.data_q.put(('ticker', pair, entry)) def _handle_book(self, ts, chan_id, data): pair = self.channel_labels[chan_id][1]['pair'] entry = data, ts self.data_q.put(('order_book', pair, entry)) def _handle_raw_book(self, ts, chan_id, data): pair = self.channel_labels[chan_id][1]['pair'] entry = data, ts self.data_q.put(('raw_order_book', pair, entry)) def _handle_trades(self, ts, chan_id, data): pair = self.channel_labels[chan_id][1]['pair'] entry = data, ts self.data_q.put(('trades', pair, entry)) def _handle_candles(self, ts, chan_id, data): pair = self.channel_labels[chan_id][1]['key'].split(':')[-1][1:] entry = data, ts self.data_q.put(('ohlc', pair, entry)) def _handle_auth(self, ts, chan_id, data): keys = {'hts': self._handle_auth_trades, 'te': self._handle_auth_trades, 'tu': self._handle_auth_trades, 'ps': self._handle_auth_positions, 'pn': self._handle_auth_positions, 'pu': self._handle_auth_positions, 'pc': self._handle_auth_positions, 'os': self._handle_auth_orders, 'on': self._handle_auth_orders, 'ou': self._handle_auth_orders, 'oc': self._handle_auth_orders, 'hos': self._handle_auth_orders, 'ws': self._handle_auth_wallet, 'wu': self._handle_auth_wallet, 'bs': self._handle_auth_balance, 'bu': self._handle_auth_balance, 'mis': self._handle_auth_margin_info, 'miu': self._handle_auth_margin_info, 'fis': self._handle_auth_funding_info, 'fiu': self._handle_auth_funding_info, 'fos': self._handle_auth_offers, 'fon': self._handle_auth_offers, 'fou': self._handle_auth_offers, 'foc': self._handle_auth_offers, 'hfos': self._handle_auth_offers, 'fcs': self._handle_auth_credits, 'fcn': self._handle_auth_credits, 'fcu': self._handle_auth_credits, 'fcc': self._handle_auth_credits, 'hfcs': self._handle_auth_credits, 'fls': self._handle_auth_loans, 'fln': self._handle_auth_loans, 'flu': self._handle_auth_loans, 'flc': self._handle_auth_loans, 'hfls': self._handle_auth_loans, 'hfts': self._handle_auth_funding_trades, 'fte': self._handle_auth_funding_trades, 'ftu': self._handle_auth_funding_trades} event, *_ = data try: keys[event](ts, data) except KeyError: log.exception('%s; %s', chan_id, data) raise UnknownEventError('The Passed event in data[0] is not ' 'associated with any data handler!') except Exception: log.exception("_handle_auth: %s - %s, %s", chan_id, event, data) raise def _handle_auth_trades(self, ts, data): entry = data, ts self.data_q.put(('account_trades', 'NA', entry)) def _handle_auth_positions(self, ts, data): entry = data, ts self.data_q.put(('account_positions', 'NA', entry)) def _handle_auth_orders(self, ts, data): entry = data, ts self.data_q.put(('account_orders', 'NA', entry)) def _handle_auth_wallet(self, ts, data): entry = data, ts self.data_q.put(('account_wallet', 'NA', entry)) def _handle_auth_balance(self, ts, data): entry = data, ts self.data_q.put(('account_balance', 'NA', entry)) def _handle_auth_margin_info(self, ts, data): entry = data, ts self.data_q.put(('account_margin_info', 'NA', entry)) def _handle_auth_funding_info(self, ts, data): entry = data, ts self.data_q.put(('account_funding_info', 'NA', entry)) def _handle_auth_offers(self, ts, data): entry = data, ts self.data_q.put(('account_offers', 'NA', entry)) def _handle_auth_credits(self, ts, data): entry = data, ts self.data_q.put(('account_credits', 'NA', entry)) def _handle_auth_loans(self, event, data): entry = data, time.time() self.data_q.put(('account_loans', 'NA', entry)) def _handle_auth_funding_trades(self, event, data): entry = data, time.time() self.data_q.put(('account_funding_trades', 'NA', entry)) def send(self, payload): self.conn.send(json.dumps(payload)) def ping(self): self.ping_timer = time.time() self.send({'event': 'ping'}) def setup_subscriptions(self): self.config(decimals_as_strings=True) for pair in self.pairs: self.ticker(pair) self.ohlc(pair) self.order_book(pair) self.raw_order_book(pair) self.trades(pair) def config(self, decimals_as_strings=True, ts_as_dates=False, sequencing=False, **kwargs): flags = 0 if decimals_as_strings: flags += 8 if ts_as_dates: flags += 32 if sequencing: flags += 65536 payload = {'event': 'conf', 'flags': flags} payload.update(kwargs) self.send(payload) def _subscribe(self, channel_name, **kwargs): if not self.conn: log.error("_subscribe(): Cannot subscribe to channel," "since the client has not been started!") return payload = {'event': 'subscribe', 'channel': channel_name} payload.update(**kwargs) log.debug("_subscribe: %s", payload) self.send(payload)
MIT License
allenai/allennlp
allennlp/confidence_checks/task_checklists/utils.py
random_string
python
def random_string(n: int) -> str: return "".join(np.random.choice([x for x in string.ascii_letters + string.digits], n))
Returns a random alphanumeric string of length `n`.
https://github.com/allenai/allennlp/blob/dcd8d9e9671da5a87de51f2bb42ceb3abdce8b3b/allennlp/confidence_checks/task_checklists/utils.py#L155-L159
import string from typing import Dict, Callable, List, Union import numpy as np import spacy from checklist.editor import Editor def add_common_lexicons(editor: Editor): profession = [ "journalist", "historian", "secretary", "nurse", "waitress", "accountant", "engineer", "attorney", "artist", "editor", "architect", "model", "interpreter", "analyst", "actor", "actress", "assistant", "intern", "economist", "organizer", "author", "investigator", "agent", "administrator", "executive", "educator", "investor", "DJ", "entrepreneur", "auditor", "advisor", "instructor", "activist", "consultant", "apprentice", "reporter", "expert", "psychologist", "examiner", "painter", "manager", "contractor", "therapist", "programmer", "musician", "producer", "associate", "intermediary", "designer", "cook", "salesperson", "dentist", "attorney", "detective", "banker", "researcher", "cop", "driver", "counselor", "clerk", "professor", "tutor", "coach", "chemist", "scientist", "veterinarian", "firefighter", "baker", "psychiatrist", "prosecutor", "director", "technician", ] editor.add_lexicon("profession", profession, overwrite=True) def spacy_wrap(fn: Callable, language: str = "en_core_web_sm", **kwargs) -> Callable: from allennlp.common.util import get_spacy_model def new_fn(data: Union[spacy.tokens.doc.Doc, Dict, str]): if not isinstance(data, spacy.tokens.doc.Doc): model = get_spacy_model(language, **kwargs) if isinstance(data, Dict): for key, val in data.items(): if isinstance(val, str): data[key] = model(val) elif isinstance(data, tuple): data = tuple(model(tup) if isinstance(tup, str) else tup for tup in data) elif isinstance(data, str): data = model(data) else: pass return fn(data) return new_fn def strip_punctuation(data: Union[str, spacy.tokens.doc.Doc]) -> str: if isinstance(data, str): return data.rstrip(string.punctuation) elif isinstance(data, spacy.tokens.doc.Doc): while len(data) and data[-1].is_punct: data = data[:-1] else: pass return str(data) def toggle_punctuation(data: str) -> List[str]: s = strip_punctuation(data) ret = [] if s != data: ret.append(s) if s + "." != data: ret.append(s + ".") return ret
Apache License 2.0
encode/httpx
httpx/_client.py
Client.send
python
def send( self, request: Request, *, stream: bool = False, auth: typing.Union[AuthTypes, UseClientDefault] = USE_CLIENT_DEFAULT, follow_redirects: typing.Union[bool, UseClientDefault] = USE_CLIENT_DEFAULT, ) -> Response: if self._state == ClientState.CLOSED: raise RuntimeError("Cannot send a request, as the client has been closed.") self._state = ClientState.OPENED follow_redirects = ( self.follow_redirects if isinstance(follow_redirects, UseClientDefault) else follow_redirects ) auth = self._build_request_auth(request, auth) response = self._send_handling_auth( request, auth=auth, follow_redirects=follow_redirects, history=[], ) try: if not stream: response.read() return response except Exception as exc: response.close() raise exc
Send a request. The request is sent as-is, unmodified. Typically you'll want to build one with `Client.build_request()` so that any client-level configuration is merged into the request, but passing an explicit `httpx.Request()` is supported as well. See also: [Request instances][0] [0]: /advanced/#request-instances
https://github.com/encode/httpx/blob/deb1a2b921eb4cbf9afb4622539accaf89db477d/httpx/_client.py#L841-L888
import datetime import enum import typing import warnings from contextlib import contextmanager from types import TracebackType from .__version__ import __version__ from ._auth import Auth, BasicAuth, FunctionAuth from ._compat import asynccontextmanager from ._config import ( DEFAULT_LIMITS, DEFAULT_MAX_REDIRECTS, DEFAULT_TIMEOUT_CONFIG, Limits, Proxy, Timeout, ) from ._decoders import SUPPORTED_DECODERS from ._exceptions import ( InvalidURL, RemoteProtocolError, TooManyRedirects, request_context, ) from ._models import URL, Cookies, Headers, QueryParams, Request, Response from ._status_codes import codes from ._transports.asgi import ASGITransport from ._transports.base import AsyncBaseTransport, BaseTransport from ._transports.default import AsyncHTTPTransport, HTTPTransport from ._transports.wsgi import WSGITransport from ._types import ( AsyncByteStream, AuthTypes, CertTypes, CookieTypes, HeaderTypes, ProxiesTypes, QueryParamTypes, RequestContent, RequestData, RequestFiles, SyncByteStream, TimeoutTypes, URLTypes, VerifyTypes, ) from ._utils import ( NetRCInfo, Timer, URLPattern, get_environment_proxies, get_logger, same_origin, ) T = typing.TypeVar("T", bound="Client") U = typing.TypeVar("U", bound="AsyncClient") class UseClientDefault: USE_CLIENT_DEFAULT = UseClientDefault() logger = get_logger(__name__) USER_AGENT = f"python-httpx/{__version__}" ACCEPT_ENCODING = ", ".join( [key for key in SUPPORTED_DECODERS.keys() if key != "identity"] ) class ClientState(enum.Enum): UNOPENED = 1 OPENED = 2 CLOSED = 3 class BoundSyncStream(SyncByteStream): def __init__( self, stream: SyncByteStream, response: Response, timer: Timer ) -> None: self._stream = stream self._response = response self._timer = timer def __iter__(self) -> typing.Iterator[bytes]: for chunk in self._stream: yield chunk def close(self) -> None: seconds = self._timer.sync_elapsed() self._response.elapsed = datetime.timedelta(seconds=seconds) self._stream.close() class BoundAsyncStream(AsyncByteStream): def __init__( self, stream: AsyncByteStream, response: Response, timer: Timer ) -> None: self._stream = stream self._response = response self._timer = timer async def __aiter__(self) -> typing.AsyncIterator[bytes]: async for chunk in self._stream: yield chunk async def aclose(self) -> None: seconds = await self._timer.async_elapsed() self._response.elapsed = datetime.timedelta(seconds=seconds) await self._stream.aclose() class BaseClient: def __init__( self, *, auth: AuthTypes = None, params: QueryParamTypes = None, headers: HeaderTypes = None, cookies: CookieTypes = None, timeout: TimeoutTypes = DEFAULT_TIMEOUT_CONFIG, follow_redirects: bool = False, max_redirects: int = DEFAULT_MAX_REDIRECTS, event_hooks: typing.Mapping[str, typing.List[typing.Callable]] = None, base_url: URLTypes = "", trust_env: bool = True, ): event_hooks = {} if event_hooks is None else event_hooks self._base_url = self._enforce_trailing_slash(URL(base_url)) self._auth = self._build_auth(auth) self._params = QueryParams(params) self.headers = Headers(headers) self._cookies = Cookies(cookies) self._timeout = Timeout(timeout) self.follow_redirects = follow_redirects self.max_redirects = max_redirects self._event_hooks = { "request": list(event_hooks.get("request", [])), "response": list(event_hooks.get("response", [])), } self._trust_env = trust_env self._netrc = NetRCInfo() self._state = ClientState.UNOPENED @property def is_closed(self) -> bool: return self._state == ClientState.CLOSED @property def trust_env(self) -> bool: return self._trust_env def _enforce_trailing_slash(self, url: URL) -> URL: if url.raw_path.endswith(b"/"): return url return url.copy_with(raw_path=url.raw_path + b"/") def _get_proxy_map( self, proxies: typing.Optional[ProxiesTypes], allow_env_proxies: bool ) -> typing.Dict[str, typing.Optional[Proxy]]: if proxies is None: if allow_env_proxies: return { key: None if url is None else Proxy(url=url) for key, url in get_environment_proxies().items() } return {} if isinstance(proxies, dict): new_proxies = {} for key, value in proxies.items(): proxy = Proxy(url=value) if isinstance(value, (str, URL)) else value new_proxies[str(key)] = proxy return new_proxies else: proxy = Proxy(url=proxies) if isinstance(proxies, (str, URL)) else proxies return {"all://": proxy} @property def timeout(self) -> Timeout: return self._timeout @timeout.setter def timeout(self, timeout: TimeoutTypes) -> None: self._timeout = Timeout(timeout) @property def event_hooks(self) -> typing.Dict[str, typing.List[typing.Callable]]: return self._event_hooks @event_hooks.setter def event_hooks( self, event_hooks: typing.Dict[str, typing.List[typing.Callable]] ) -> None: self._event_hooks = { "request": list(event_hooks.get("request", [])), "response": list(event_hooks.get("response", [])), } @property def auth(self) -> typing.Optional[Auth]: return self._auth @auth.setter def auth(self, auth: AuthTypes) -> None: self._auth = self._build_auth(auth) @property def base_url(self) -> URL: return self._base_url @base_url.setter def base_url(self, url: URLTypes) -> None: self._base_url = self._enforce_trailing_slash(URL(url)) @property def headers(self) -> Headers: return self._headers @headers.setter def headers(self, headers: HeaderTypes) -> None: client_headers = Headers( { b"Accept": b"*/*", b"Accept-Encoding": ACCEPT_ENCODING.encode("ascii"), b"Connection": b"keep-alive", b"User-Agent": USER_AGENT.encode("ascii"), } ) client_headers.update(headers) self._headers = client_headers @property def cookies(self) -> Cookies: return self._cookies @cookies.setter def cookies(self, cookies: CookieTypes) -> None: self._cookies = Cookies(cookies) @property def params(self) -> QueryParams: return self._params @params.setter def params(self, params: QueryParamTypes) -> None: self._params = QueryParams(params) def build_request( self, method: str, url: URLTypes, *, content: RequestContent = None, data: RequestData = None, files: RequestFiles = None, json: typing.Any = None, params: QueryParamTypes = None, headers: HeaderTypes = None, cookies: CookieTypes = None, timeout: typing.Union[TimeoutTypes, UseClientDefault] = USE_CLIENT_DEFAULT, ) -> Request: url = self._merge_url(url) headers = self._merge_headers(headers) cookies = self._merge_cookies(cookies) params = self._merge_queryparams(params) timeout = ( self.timeout if isinstance(timeout, UseClientDefault) else Timeout(timeout) ) return Request( method, url, content=content, data=data, files=files, json=json, params=params, headers=headers, cookies=cookies, extensions={"timeout": timeout.as_dict()}, ) def _merge_url(self, url: URLTypes) -> URL: merge_url = URL(url) if merge_url.is_relative_url: merge_raw_path = self.base_url.raw_path + merge_url.raw_path.lstrip(b"/") return self.base_url.copy_with(raw_path=merge_raw_path) return merge_url def _merge_cookies( self, cookies: CookieTypes = None ) -> typing.Optional[CookieTypes]: if cookies or self.cookies: merged_cookies = Cookies(self.cookies) merged_cookies.update(cookies) return merged_cookies return cookies def _merge_headers( self, headers: HeaderTypes = None ) -> typing.Optional[HeaderTypes]: merged_headers = Headers(self.headers) merged_headers.update(headers) return merged_headers def _merge_queryparams( self, params: QueryParamTypes = None ) -> typing.Optional[QueryParamTypes]: if params or self.params: merged_queryparams = QueryParams(self.params) return merged_queryparams.merge(params) return params def _build_auth(self, auth: AuthTypes) -> typing.Optional[Auth]: if auth is None: return None elif isinstance(auth, tuple): return BasicAuth(username=auth[0], password=auth[1]) elif isinstance(auth, Auth): return auth elif callable(auth): return FunctionAuth(func=auth) else: raise TypeError(f'Invalid "auth" argument: {auth!r}') def _build_request_auth( self, request: Request, auth: typing.Union[AuthTypes, UseClientDefault] = USE_CLIENT_DEFAULT, ) -> Auth: auth = ( self._auth if isinstance(auth, UseClientDefault) else self._build_auth(auth) ) if auth is not None: return auth username, password = request.url.username, request.url.password if username or password: return BasicAuth(username=username, password=password) if self.trust_env and "Authorization" not in request.headers: credentials = self._netrc.get_credentials(request.url.host) if credentials is not None: return BasicAuth(username=credentials[0], password=credentials[1]) return Auth() def _build_redirect_request(self, request: Request, response: Response) -> Request: method = self._redirect_method(request, response) url = self._redirect_url(request, response) headers = self._redirect_headers(request, url, method) stream = self._redirect_stream(request, method) cookies = Cookies(self.cookies) return Request( method=method, url=url, headers=headers, cookies=cookies, stream=stream ) def _redirect_method(self, request: Request, response: Response) -> str: method = request.method if response.status_code == codes.SEE_OTHER and method != "HEAD": method = "GET" if response.status_code == codes.FOUND and method != "HEAD": method = "GET" if response.status_code == codes.MOVED_PERMANENTLY and method == "POST": method = "GET" return method def _redirect_url(self, request: Request, response: Response) -> URL: location = response.headers["Location"] try: url = URL(location) except InvalidURL as exc: raise RemoteProtocolError( f"Invalid URL in location header: {exc}.", request=request ) from None if url.scheme and not url.host: url = url.copy_with(host=request.url.host) if url.is_relative_url: url = request.url.join(url) if request.url.fragment and not url.fragment: url = url.copy_with(fragment=request.url.fragment) return url def _redirect_headers(self, request: Request, url: URL, method: str) -> Headers: headers = Headers(request.headers) if not same_origin(url, request.url): headers.pop("Authorization", None) headers["Host"] = url.netloc.decode("ascii") if method != request.method and method == "GET": headers.pop("Content-Length", None) headers.pop("Transfer-Encoding", None) headers.pop("Cookie", None) return headers def _redirect_stream( self, request: Request, method: str ) -> typing.Optional[typing.Union[SyncByteStream, AsyncByteStream]]: if method != request.method and method == "GET": return None return request.stream class Client(BaseClient): def __init__( self, *, auth: AuthTypes = None, params: QueryParamTypes = None, headers: HeaderTypes = None, cookies: CookieTypes = None, verify: VerifyTypes = True, cert: CertTypes = None, http1: bool = True, http2: bool = False, proxies: ProxiesTypes = None, mounts: typing.Mapping[str, BaseTransport] = None, timeout: TimeoutTypes = DEFAULT_TIMEOUT_CONFIG, follow_redirects: bool = False, limits: Limits = DEFAULT_LIMITS, max_redirects: int = DEFAULT_MAX_REDIRECTS, event_hooks: typing.Mapping[str, typing.List[typing.Callable]] = None, base_url: URLTypes = "", transport: BaseTransport = None, app: typing.Callable = None, trust_env: bool = True, ): super().__init__( auth=auth, params=params, headers=headers, cookies=cookies, timeout=timeout, follow_redirects=follow_redirects, max_redirects=max_redirects, event_hooks=event_hooks, base_url=base_url, trust_env=trust_env, ) if http2: try: import h2 except ImportError: raise ImportError( "Using http2=True, but the 'h2' package is not installed. " "Make sure to install httpx using `pip install httpx[http2]`." ) from None allow_env_proxies = trust_env and app is None and transport is None proxy_map = self._get_proxy_map(proxies, allow_env_proxies) self._transport = self._init_transport( verify=verify, cert=cert, http1=http1, http2=http2, limits=limits, transport=transport, app=app, trust_env=trust_env, ) self._mounts: typing.Dict[URLPattern, typing.Optional[BaseTransport]] = { URLPattern(key): None if proxy is None else self._init_proxy_transport( proxy, verify=verify, cert=cert, http1=http1, http2=http2, limits=limits, trust_env=trust_env, ) for key, proxy in proxy_map.items() } if mounts is not None: self._mounts.update( {URLPattern(key): transport for key, transport in mounts.items()} ) self._mounts = dict(sorted(self._mounts.items())) def _init_transport( self, verify: VerifyTypes = True, cert: CertTypes = None, http1: bool = True, http2: bool = False, limits: Limits = DEFAULT_LIMITS, transport: BaseTransport = None, app: typing.Callable = None, trust_env: bool = True, ) -> BaseTransport: if transport is not None: return transport if app is not None: return WSGITransport(app=app) return HTTPTransport( verify=verify, cert=cert, http1=http1, http2=http2, limits=limits, trust_env=trust_env, ) def _init_proxy_transport( self, proxy: Proxy, verify: VerifyTypes = True, cert: CertTypes = None, http1: bool = True, http2: bool = False, limits: Limits = DEFAULT_LIMITS, trust_env: bool = True, ) -> BaseTransport: return HTTPTransport( verify=verify, cert=cert, http1=http1, http2=http2, limits=limits, trust_env=trust_env, proxy=proxy, ) def _transport_for_url(self, url: URL) -> BaseTransport: for pattern, transport in self._mounts.items(): if pattern.matches(url): return self._transport if transport is None else transport return self._transport def request( self, method: str, url: URLTypes, *, content: RequestContent = None, data: RequestData = None, files: RequestFiles = None, json: typing.Any = None, params: QueryParamTypes = None, headers: HeaderTypes = None, cookies: CookieTypes = None, auth: typing.Union[AuthTypes, UseClientDefault] = USE_CLIENT_DEFAULT, follow_redirects: typing.Union[bool, UseClientDefault] = USE_CLIENT_DEFAULT, timeout: typing.Union[TimeoutTypes, UseClientDefault] = USE_CLIENT_DEFAULT, ) -> Response: if cookies is not None: message = ( "Setting per-request cookies=<...> is being deprecated, because " "the expected behaviour on cookie persistence is ambiguous. Set " "cookies directly on the client instance instead." ) warnings.warn(message, DeprecationWarning) request = self.build_request( method=method, url=url, content=content, data=data, files=files, json=json, params=params, headers=headers, cookies=cookies, timeout=timeout, ) return self.send(request, auth=auth, follow_redirects=follow_redirects) @contextmanager def stream( self, method: str, url: URLTypes, *, content: RequestContent = None, data: RequestData = None, files: RequestFiles = None, json: typing.Any = None, params: QueryParamTypes = None, headers: HeaderTypes = None, cookies: CookieTypes = None, auth: typing.Union[AuthTypes, UseClientDefault] = USE_CLIENT_DEFAULT, follow_redirects: typing.Union[bool, UseClientDefault] = USE_CLIENT_DEFAULT, timeout: typing.Union[TimeoutTypes, UseClientDefault] = USE_CLIENT_DEFAULT, ) -> typing.Iterator[Response]: request = self.build_request( method=method, url=url, content=content, data=data, files=files, json=json, params=params, headers=headers, cookies=cookies, timeout=timeout, ) response = self.send( request=request, auth=auth, follow_redirects=follow_redirects, stream=True, ) try: yield response finally: response.close()
BSD 3-Clause New or Revised License
elliot79313/tra-tracking-on-gae
gaesessions/__init__.py
Session.regenerate_id
python
def regenerate_id(self, expiration_ts=None): if self.sid or expiration_ts is not None: self.ensure_data_loaded() if expiration_ts is None: expiration_ts = self.get_expiration() self.__set_sid(self.__make_sid(expiration_ts, self.is_ssl_only())) self.dirty = True
Assigns the session a new session ID (data carries over). This should be called whenever a user authenticates to prevent session fixation attacks. ``expiration_ts`` - The UNIX timestamp the session will expire at. If omitted, the session expiration time will not be changed.
https://github.com/elliot79313/tra-tracking-on-gae/blob/9f920a6e96b357bccba2d4328a3a7e2dcdebfc0a/gaesessions/__init__.py#L219-L232
from Cookie import CookieError, SimpleCookie from base64 import b64decode, b64encode import datetime import hashlib import hmac import logging import pickle import os import threading import time from google.appengine.api import memcache from google.appengine.ext import db COOKIE_NAME_PREFIX = "DgU" COOKIE_PATH = "/" DEFAULT_COOKIE_ONLY_THRESH = 10240 DEFAULT_LIFETIME = datetime.timedelta(days=7) SID_LEN = 43 SIG_LEN = 44 MAX_COOKIE_LEN = 4096 EXPIRE_COOKIE_FMT = ' %s=; expires=Wed, 01-Jan-1970 00:00:00 GMT; Path=' + COOKIE_PATH COOKIE_FMT = ' ' + COOKIE_NAME_PREFIX + '%02d="%s"; %sPath=' + COOKIE_PATH + '; HttpOnly' COOKIE_FMT_SECURE = COOKIE_FMT + '; Secure' COOKIE_DATE_FMT = '%a, %d-%b-%Y %H:%M:%S GMT' COOKIE_OVERHEAD = len(COOKIE_FMT % (0, '', '')) + len('expires=Xxx, xx XXX XXXX XX:XX:XX GMT; ') + 150 MAX_DATA_PER_COOKIE = MAX_COOKIE_LEN - COOKIE_OVERHEAD _tls = threading.local() def get_current_session(): return _tls.current_session def set_current_session(session): _tls.current_session = session def is_gaesessions_key(k): return k.startswith(COOKIE_NAME_PREFIX) class SessionModel(db.Model): pdump = db.BlobProperty() class Session(object): DIRTY_BUT_DONT_PERSIST_TO_DB = 1 def __init__(self, sid=None, lifetime=DEFAULT_LIFETIME, no_datastore=False, cookie_only_threshold=DEFAULT_COOKIE_ONLY_THRESH, cookie_key=None): self._accessed = False self.sid = None self.cookie_keys = [] self.cookie_data = None self.data = {} self.dirty = False self.lifetime = lifetime self.no_datastore = no_datastore self.cookie_only_thresh = cookie_only_threshold self.base_key = cookie_key if sid: self.__set_sid(sid, False) self.data = None else: self.__read_cookie() @staticmethod def __compute_hmac(base_key, sid, text): key = base_key + sid return b64encode(hmac.new(key, text, hashlib.sha256).digest()) def __read_cookie(self): try: cookie = SimpleCookie(os.environ['HTTP_COOKIE']) self.cookie_keys = filter(is_gaesessions_key, cookie.keys()) if not self.cookie_keys: return self.cookie_keys.sort() data = ''.join(cookie[k].value for k in self.cookie_keys) i = SIG_LEN + SID_LEN sig, sid, b64pdump = data[:SIG_LEN], data[SIG_LEN:i], data[i:] pdump = b64decode(b64pdump) actual_sig = Session.__compute_hmac(self.base_key, sid, pdump) if sig == actual_sig: self.__set_sid(sid, False) if self.get_expiration() != 0 and time.time() > self.get_expiration(): return self.terminate() if pdump: self.data = self.__decode_data(pdump) else: self.data = None else: logging.warn('cookie with invalid sig received from %s: %s' % (os.environ.get('REMOTE_ADDR'), b64pdump)) except (CookieError, KeyError, IndexError, TypeError): self.terminate(False) def make_cookie_headers(self): if not self.sid: return [EXPIRE_COOKIE_FMT % k for k in self.cookie_keys] if self.cookie_data is None: return [] if self.is_ssl_only(): m = MAX_DATA_PER_COOKIE - 8 fmt = COOKIE_FMT_SECURE else: m = MAX_DATA_PER_COOKIE fmt = COOKIE_FMT sig = Session.__compute_hmac(self.base_key, self.sid, self.cookie_data) cv = sig + self.sid + b64encode(self.cookie_data) num_cookies = 1 + (len(cv) - 1) / m if self.get_expiration() > 0: ed = "expires=%s; " % datetime.datetime.fromtimestamp(self.get_expiration()).strftime(COOKIE_DATE_FMT) else: ed = '' cookies = [fmt % (i, cv[i * m:i * m + m], ed) for i in xrange(num_cookies)] old_cookies = xrange(num_cookies, len(self.cookie_keys)) key = COOKIE_NAME_PREFIX + '%02d' cookies_to_ax = [EXPIRE_COOKIE_FMT % (key % i) for i in old_cookies] return cookies + cookies_to_ax def is_active(self): return self.sid is not None def is_ssl_only(self): return self.sid is not None and self.sid[-33] == 'S' def is_accessed(self): return self._accessed def ensure_data_loaded(self): self._accessed = True if self.data is None and self.sid: self.__retrieve_data() def get_expiration(self): try: return int(self.sid[:-33]) except: return 0 def __make_sid(self, expire_ts=None, ssl_only=False): if expire_ts is None: expire_dt = datetime.datetime.now() + self.lifetime expire_ts = int(time.mktime((expire_dt).timetuple())) else: expire_ts = int(expire_ts) if ssl_only: sep = 'S' else: sep = '_' return ('%010d' % expire_ts) + sep + hashlib.md5(os.urandom(16)).hexdigest() @staticmethod def __encode_data(d): eP = {} eO = {} for k, v in d.iteritems(): if isinstance(v, db.Model): eP[k] = db.model_to_protobuf(v) else: eO[k] = v return pickle.dumps((eP, eO), 2) @staticmethod def __decode_data(pdump): try: eP, eO = pickle.loads(pdump) for k, v in eP.iteritems(): eO[k] = db.model_from_protobuf(v) except Exception, e: logging.warn("failed to decode session data: %s" % e) eO = {} return eO
MIT License
hexrd/hexrd
hexrd/imageseries/baseclass.py
ImageSeries.__init__
python
def __init__(self, adapter): self._adapter = adapter return
Build FrameSeries from adapter instance *adapter* - object instance based on abstract Sequence class with properties for image shape, data type and metadata.
https://github.com/hexrd/hexrd/blob/90e9b26e5e5091dd5ecf460b3227072e6d90bcd5/hexrd/imageseries/baseclass.py#L12-L20
from .imageseriesabc import ImageSeriesABC class ImageSeries(ImageSeriesABC):
BSD 3-Clause New or Revised License
react-native-skia/react-native-skia
build/config/ios/compile_xcassets.py
FilterCompilerOutput
python
def FilterCompilerOutput(compiler_output, relative_paths): filtered_output = [] current_section = None data_in_section = False for line in compiler_output.splitlines(): match = SECTION_HEADER.search(line) if match is not None: data_in_section = False current_section = match.group(1) continue if current_section and current_section != NOTICE_SECTION: if IsSpuriousMessage(line): continue absolute_path = line.split(':')[0] relative_path = relative_paths.get(absolute_path, absolute_path) if absolute_path != relative_path: line = relative_path + line[len(absolute_path):] if not data_in_section: data_in_section = True filtered_output.append('/* %s */\n' % current_section) filtered_output.append(line + '\n') return ''.join(filtered_output)
Filers actool compilation output. The compiler output is composed of multiple sections for each different level of output (error, warning, notices, ...). Each section starts with the section name on a single line, followed by all the messages from the section. The function filter any lines that are not in com.apple.actool.errors or com.apple.actool.document.warnings sections (as spurious messages comes before any section of the output). See crbug.com/730054, crbug.com/739163 and crbug.com/770634 for some example messages that pollute the output of actool and cause flaky builds. Args: compiler_output: string containing the output generated by the compiler (contains both stdout and stderr) relative_paths: mapping from absolute to relative paths used to convert paths in the warning and error messages (unknown paths will be left unaltered) Returns: The filtered output of the compiler. If the compilation was a success, then the output will be empty, otherwise it will use relative path and omit any irrelevant output.
https://github.com/react-native-skia/react-native-skia/blob/91ecc74444b163f128541dbc1a42e27a9c0fb40b/build/config/ios/compile_xcassets.py#L65-L114
import argparse import os import re import subprocess import sys import tempfile SECTION_HEADER = re.compile('^/\\* ([^ ]*) \\*/$') NOTICE_SECTION = 'com.apple.actool.compilation-results' SPURIOUS_PATTERNS = [ re.compile(v) for v in [ r'\[\]\[ipad\]\[76x76\]\[\]\[\]\[1x\]\[\]\[\]: notice: \(null\)', r'\[\]\[ipad\]\[76x76\]\[\]\[\]\[1x\]\[\]\[\]: notice: 76x76@1x app icons' ' only apply to iPad apps targeting releases of iOS prior to 10.0.', ] ] ACTOOL_FLAG_FOR_ASSET_TYPE = { '.appiconset': '--app-icon', '.launchimage': '--launch-image', } def IsSpuriousMessage(line): for pattern in SPURIOUS_PATTERNS: match = pattern.search(line) if match is not None: return True return False
MIT License
googleads/google-ads-python
google/ads/googleads/v8/services/services/label_service/transports/grpc.py
LabelServiceGrpcTransport.mutate_labels
python
def mutate_labels( self, ) -> Callable[ [label_service.MutateLabelsRequest], label_service.MutateLabelsResponse ]: if "mutate_labels" not in self._stubs: self._stubs["mutate_labels"] = self.grpc_channel.unary_unary( "/google.ads.googleads.v8.services.LabelService/MutateLabels", request_serializer=label_service.MutateLabelsRequest.serialize, response_deserializer=label_service.MutateLabelsResponse.deserialize, ) return self._stubs["mutate_labels"]
r"""Return a callable for the mutate labels method over gRPC. Creates, updates, or removes labels. Operation statuses are returned. List of thrown errors: `AuthenticationError <>`__ `AuthorizationError <>`__ `DatabaseError <>`__ `DateError <>`__ `DistinctError <>`__ `FieldError <>`__ `FieldMaskError <>`__ `HeaderError <>`__ `IdError <>`__ `InternalError <>`__ `LabelError <>`__ `MutateError <>`__ `NewResourceCreationError <>`__ `NotEmptyError <>`__ `NullError <>`__ `OperatorError <>`__ `QuotaError <>`__ `RangeError <>`__ `RequestError <>`__ `ResourceCountLimitExceededError <>`__ `SizeLimitError <>`__ `StringFormatError <>`__ `StringLengthError <>`__ Returns: Callable[[~.MutateLabelsRequest], ~.MutateLabelsResponse]: A function that, when called, will call the underlying RPC on the server.
https://github.com/googleads/google-ads-python/blob/6794993e146abcfe21292677144c66cb546446bc/google/ads/googleads/v8/services/services/label_service/transports/grpc.py#L243-L280
import warnings from typing import Callable, Dict, Optional, Sequence, Tuple from google.api_core import grpc_helpers from google.api_core import gapic_v1 import google.auth from google.auth import credentials as ga_credentials from google.auth.transport.grpc import SslCredentials import grpc from google.ads.googleads.v8.resources.types import label from google.ads.googleads.v8.services.types import label_service from .base import LabelServiceTransport, DEFAULT_CLIENT_INFO class LabelServiceGrpcTransport(LabelServiceTransport): def __init__( self, *, host: str = "googleads.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: self._ssl_channel_credentials = ssl_channel_credentials if channel: credentials = False self._grpc_channel = channel self._ssl_channel_credentials = None elif api_mtls_endpoint: warnings.warn( "api_mtls_endpoint and client_cert_source are deprecated", DeprecationWarning, ) host = ( api_mtls_endpoint if ":" in api_mtls_endpoint else api_mtls_endpoint + ":443" ) if credentials is None: credentials, _ = google.auth.default( scopes=self.AUTH_SCOPES, quota_project_id=quota_project_id ) if client_cert_source: cert, key = client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: ssl_credentials = SslCredentials().ssl_credentials self._grpc_channel = type(self).create_channel( host, credentials=credentials, credentials_file=credentials_file, ssl_credentials=ssl_credentials, scopes=scopes or self.AUTH_SCOPES, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) self._ssl_channel_credentials = ssl_credentials else: host = host if ":" in host else host + ":443" if credentials is None: credentials, _ = google.auth.default(scopes=self.AUTH_SCOPES) self._grpc_channel = type(self).create_channel( host, credentials=credentials, ssl_credentials=ssl_channel_credentials, scopes=self.AUTH_SCOPES, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) self._stubs = {} super().__init__( host=host, credentials=credentials, client_info=client_info, ) @classmethod def create_channel( cls, host: str = "googleads.googleapis.com", credentials: ga_credentials.Credentials = None, scopes: Optional[Sequence[str]] = None, **kwargs, ) -> grpc.Channel: return grpc_helpers.create_channel( host, credentials=credentials, scopes=scopes or cls.AUTH_SCOPES, **kwargs, ) @property def grpc_channel(self) -> grpc.Channel: return self._grpc_channel @property def get_label( self, ) -> Callable[[label_service.GetLabelRequest], label.Label]: if "get_label" not in self._stubs: self._stubs["get_label"] = self.grpc_channel.unary_unary( "/google.ads.googleads.v8.services.LabelService/GetLabel", request_serializer=label_service.GetLabelRequest.serialize, response_deserializer=label.Label.deserialize, ) return self._stubs["get_label"] @property
Apache License 2.0
chaffelson/whoville
whoville/cloudbreak/apis/v1connectors_api.py
V1connectorsApi.get_ochestrators_by_type_with_http_info
python
def get_ochestrators_by_type_with_http_info(self, type, **kwargs): all_params = ['type'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_ochestrators_by_type" % key ) params[key] = val del params['kwargs'] if ('type' not in params) or (params['type'] is None): raise ValueError("Missing the required parameter `type` when calling `get_ochestrators_by_type`") collection_formats = {} path_params = {} if 'type' in params: path_params['type'] = params['type'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None header_params['Accept'] = self.api_client. select_header_accept(['application/json']) header_params['Content-Type'] = self.api_client. select_header_content_type(['application/json']) auth_settings = ['tokenAuth'] return self.api_client.call_api('/v1/connectors/ochestrators/{type}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[str]', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
retrive orchestrators by type Each cloud provider has it's own specific resources like instance types and disk types. These endpoints are collecting them. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_ochestrators_by_type_with_http_info(type, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str type: (required) :return: list[str] If the method is called asynchronously, returns the request thread.
https://github.com/chaffelson/whoville/blob/f71fda629c9fd50d0a482120165ea5abcc754522/whoville/cloudbreak/apis/v1connectors_api.py#L788-L866
from __future__ import absolute_import import sys import os import re from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class V1connectorsApi(object): def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def create_recommendation(self, **kwargs): kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.create_recommendation_with_http_info(**kwargs) else: (data) = self.create_recommendation_with_http_info(**kwargs) return data def create_recommendation_with_http_info(self, **kwargs): all_params = ['body'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method create_recommendation" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] header_params['Accept'] = self.api_client. select_header_accept(['application/json']) header_params['Content-Type'] = self.api_client. select_header_content_type(['application/json']) auth_settings = ['tokenAuth'] return self.api_client.call_api('/v1/connectors/recommendation', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='RecommendationResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_access_configs(self, **kwargs): kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_access_configs_with_http_info(**kwargs) else: (data) = self.get_access_configs_with_http_info(**kwargs) return data def get_access_configs_with_http_info(self, **kwargs): all_params = ['body'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_access_configs" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] header_params['Accept'] = self.api_client. select_header_accept(['application/json']) header_params['Content-Type'] = self.api_client. select_header_content_type(['application/json']) auth_settings = ['tokenAuth'] return self.api_client.call_api('/v1/connectors/accessconfigs', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='PlatformAccessConfigsResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_disktype_by_type(self, type, **kwargs): kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_disktype_by_type_with_http_info(type, **kwargs) else: (data) = self.get_disktype_by_type_with_http_info(type, **kwargs) return data def get_disktype_by_type_with_http_info(self, type, **kwargs): all_params = ['type'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_disktype_by_type" % key ) params[key] = val del params['kwargs'] if ('type' not in params) or (params['type'] is None): raise ValueError("Missing the required parameter `type` when calling `get_disktype_by_type`") collection_formats = {} path_params = {} if 'type' in params: path_params['type'] = params['type'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None header_params['Accept'] = self.api_client. select_header_accept(['application/json']) header_params['Content-Type'] = self.api_client. select_header_content_type(['application/json']) auth_settings = ['tokenAuth'] return self.api_client.call_api('/v1/connectors/disktypes/{type}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[str]', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_disktypes(self, **kwargs): kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_disktypes_with_http_info(**kwargs) else: (data) = self.get_disktypes_with_http_info(**kwargs) return data def get_disktypes_with_http_info(self, **kwargs): all_params = [] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_disktypes" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None header_params['Accept'] = self.api_client. select_header_accept(['application/json']) header_params['Content-Type'] = self.api_client. select_header_content_type(['application/json']) auth_settings = ['tokenAuth'] return self.api_client.call_api('/v1/connectors/disktypes', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='PlatformDisksJson', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_encryption_keys(self, **kwargs): kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_encryption_keys_with_http_info(**kwargs) else: (data) = self.get_encryption_keys_with_http_info(**kwargs) return data def get_encryption_keys_with_http_info(self, **kwargs): all_params = ['body'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_encryption_keys" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] header_params['Accept'] = self.api_client. select_header_accept(['application/json']) header_params['Content-Type'] = self.api_client. select_header_content_type(['application/json']) auth_settings = ['tokenAuth'] return self.api_client.call_api('/v1/connectors/encryptionkeys', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='PlatformEncryptionKeysResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_gateways_credential_id(self, **kwargs): kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_gateways_credential_id_with_http_info(**kwargs) else: (data) = self.get_gateways_credential_id_with_http_info(**kwargs) return data def get_gateways_credential_id_with_http_info(self, **kwargs): all_params = ['body'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_gateways_credential_id" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] header_params['Accept'] = self.api_client. select_header_accept(['application/json']) header_params['Content-Type'] = self.api_client. select_header_content_type(['application/json']) auth_settings = ['tokenAuth'] return self.api_client.call_api('/v1/connectors/gateways', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='PlatformGatewaysResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_ip_pools_credential_id(self, **kwargs): kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_ip_pools_credential_id_with_http_info(**kwargs) else: (data) = self.get_ip_pools_credential_id_with_http_info(**kwargs) return data def get_ip_pools_credential_id_with_http_info(self, **kwargs): all_params = ['body'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_ip_pools_credential_id" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] header_params['Accept'] = self.api_client. select_header_accept(['application/json']) header_params['Content-Type'] = self.api_client. select_header_content_type(['application/json']) auth_settings = ['tokenAuth'] return self.api_client.call_api('/v1/connectors/ippools', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='PlatformIpPoolsResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_ochestrators_by_type(self, type, **kwargs): kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_ochestrators_by_type_with_http_info(type, **kwargs) else: (data) = self.get_ochestrators_by_type_with_http_info(type, **kwargs) return data
Apache License 2.0
adafruit/adafruit_python_bluefruitle
Adafruit_BluefruitLE/corebluetooth/adapter.py
CoreBluetoothAdapter.power_off
python
def power_off(self, timeout_sec=TIMEOUT_SEC): self._powered_off.clear() IOBluetoothPreferenceSetControllerPowerState(0) if not self._powered_off.wait(timeout_sec): raise RuntimeError('Exceeded timeout waiting for adapter to power off!')
Power off Bluetooth.
https://github.com/adafruit/adafruit_python_bluefruitle/blob/a01dec2c88fa38143afb855e1df4f9ac774156b7/Adafruit_BluefruitLE/corebluetooth/adapter.py#L102-L108
import logging import threading import time import objc from ..config import TIMEOUT_SEC from ..interfaces import Adapter from ..platform import get_provider objc.loadBundleFunctions( objc.loadBundle("IOBluetooth", globals(), bundle_path=objc.pathForFramework(u'/System/Library/Frameworks/IOBluetooth.framework')), globals(), [('IOBluetoothPreferenceGetControllerPowerState', b'oI'),('IOBluetoothPreferenceSetControllerPowerState', b'vI')] ) logger = logging.getLogger(__name__) class CoreBluetoothAdapter(Adapter): def __init__(self): self._is_scanning = False self._powered_on = threading.Event() self._powered_off = threading.Event() def _state_changed(self, state): logger.debug('Adapter state change: {0}'.format(state)) if state == 5: self._powered_off.clear() self._powered_on.set() elif state == 4: self._powered_on.clear() self._powered_off.set() @property def name(self): return "Default Adapter" def start_scan(self, timeout_sec=TIMEOUT_SEC): get_provider()._central_manager.scanForPeripheralsWithServices_options_(None, None) self._is_scanning = True def stop_scan(self, timeout_sec=TIMEOUT_SEC): get_provider()._central_manager.stopScan() self._is_scanning = False @property def is_scanning(self): return self._is_scanning def power_on(self, timeout_sec=TIMEOUT_SEC): self._powered_on.clear() IOBluetoothPreferenceSetControllerPowerState(1) if not self._powered_on.wait(timeout_sec): raise RuntimeError('Exceeded timeout waiting for adapter to power on!')
MIT License
google/flax
examples/ogbg_molpcba/input_pipeline.py
convert_to_graphs_tuple
python
def convert_to_graphs_tuple(graph: Dict[str, tf.Tensor], add_virtual_node: bool, add_undirected_edges: bool, add_self_loops: bool) -> jraph.GraphsTuple: num_nodes = tf.squeeze(graph['num_nodes']) num_edges = tf.squeeze(graph['num_edges']) nodes = graph['node_feat'] edges = graph['edge_feat'] edge_feature_dim = edges.shape[-1] labels = graph['labels'] senders = graph['edge_index'][:, 0] receivers = graph['edge_index'][:, 1] if add_virtual_node: nodes = tf.concat( [nodes, tf.zeros_like(nodes[0, None])], axis=0) senders = tf.concat( [senders, tf.range(num_nodes)], axis=0) receivers = tf.concat( [receivers, tf.fill((num_nodes,), num_nodes + 1)], axis=0) edges = tf.concat( [edges, tf.zeros((num_nodes, edge_feature_dim))], axis=0) num_edges += num_nodes num_nodes += 1 if add_undirected_edges: new_senders = tf.concat([senders, receivers], axis=0) new_receivers = tf.concat([receivers, senders], axis=0) edges = tf.concat([edges, edges], axis=0) senders, receivers = new_senders, new_receivers num_edges *= 2 if add_self_loops: senders = tf.concat([senders, tf.range(num_nodes)], axis=0) receivers = tf.concat([receivers, tf.range(num_nodes)], axis=0) edges = tf.concat([edges, tf.zeros((num_nodes, edge_feature_dim))], axis=0) num_edges += num_nodes return jraph.GraphsTuple( n_node=tf.expand_dims(num_nodes, 0), n_edge=tf.expand_dims(num_edges, 0), nodes=nodes, edges=edges, senders=senders, receivers=receivers, globals=tf.expand_dims(labels, axis=0), )
Converts a dictionary of tf.Tensors to a GraphsTuple.
https://github.com/google/flax/blob/48b34ab87c7d20afc567f6e0fe5d67e423cf08bc/examples/ogbg_molpcba/input_pipeline.py#L108-L162
import functools from typing import Dict, NamedTuple import jraph import numpy as np import tensorflow as tf import tensorflow_datasets as tfds class GraphsTupleSize(NamedTuple): n_node: int n_edge: int n_graph: int def get_raw_datasets() -> Dict[str, tf.data.Dataset]: ds_builder = tfds.builder('ogbg_molpcba') ds_builder.download_and_prepare() ds_splits = ['train', 'validation', 'test'] datasets = { split: ds_builder.as_dataset(split=split) for split in ds_splits } return datasets def get_datasets(batch_size: int, add_virtual_node: bool = True, add_undirected_edges: bool = True, add_self_loops: bool = True) -> Dict[str, tf.data.Dataset]: if batch_size <= 1: raise ValueError('Batch size must be > 1 to account for padding graphs.') datasets = get_raw_datasets() convert_to_graphs_tuple_fn = functools.partial( convert_to_graphs_tuple, add_virtual_node=add_self_loops, add_undirected_edges=add_undirected_edges, add_self_loops=add_virtual_node, ) for split_name in datasets: datasets[split_name] = datasets[split_name].map( convert_to_graphs_tuple_fn, num_parallel_calls=tf.data.AUTOTUNE, deterministic=True) budget = estimate_padding_budget_for_batch_size(datasets['train'], batch_size, num_estimation_graphs=100) example_graph = next(datasets['train'].as_numpy_iterator()) example_padded_graph = jraph.pad_with_graphs(example_graph, *budget) padded_graphs_spec = specs_from_graphs_tuple(example_padded_graph) for split_name, dataset_split in datasets.items(): if split_name == 'train': dataset_split = dataset_split.shuffle(100, reshuffle_each_iteration=True) dataset_split = dataset_split.repeat() batching_fn = functools.partial( jraph.dynamically_batch, graphs_tuple_iterator=iter(dataset_split), n_node=budget.n_node, n_edge=budget.n_edge, n_graph=budget.n_graph) dataset_split = tf.data.Dataset.from_generator( batching_fn, output_signature=padded_graphs_spec) if split_name in ['validation', 'test']: dataset_split = dataset_split.cache() datasets[split_name] = dataset_split return datasets
Apache License 2.0
stilljake/openvpn-azure-ad-auth
openvpn-azure-ad-auth.py
success
python
def success(): sys.exit(0)
The user has authenticated and is authorized
https://github.com/stilljake/openvpn-azure-ad-auth/blob/ba62d62d61c481f419e125eb4191a359da1325eb/openvpn-azure-ad-auth.py#L28-L30
import binascii from backports.pbkdf2 import pbkdf2_hmac, compare_digest import logging import os import sys import adal import requests import yaml loggerName = __name__ logging.basicConfig( format='%(asctime) 25s openvpn-azure-aad-auth %(levelname) 7s %(pathname)s %(module)s: %(message)s' ) logger = logging.getLogger(loggerName)
MIT License
matijakolaric-com/django-music-publisher
music_publisher/templatetags/dmp_dashboard.py
yield_sections
python
def yield_sections(model_dict, sections): for name, object_names in sections.items(): models = [] for object_name in object_names: if object_name in model_dict: models.append(model_dict[object_name]) del model_dict[object_name] if models: yield { 'name': name, 'models': models}
Convert model dictionary according to section structure
https://github.com/matijakolaric-com/django-music-publisher/blob/8c73696673cf1a2928a6b66a5bb027f12cbcb6b1/music_publisher/templatetags/dmp_dashboard.py#L9-L20
from django import template from collections import OrderedDict register = template.Library()
MIT License
prometheus/client_python
prometheus_client/metrics.py
Counter.inc
python
def inc(self, amount=1): self._raise_if_not_observable() if amount < 0: raise ValueError('Counters can only be incremented by non-negative amounts.') self._value.inc(amount)
Increment counter by the given amount.
https://github.com/prometheus/client_python/blob/09fb45953bac018a90e89f0b1e7bcd1d5d81c01b/prometheus_client/metrics.py#L259-L264
import sys from threading import Lock import time import types from . import values from .context_managers import ExceptionCounter, InprogressTracker, Timer from .metrics_core import ( Metric, METRIC_LABEL_NAME_RE, METRIC_NAME_RE, RESERVED_METRIC_LABEL_NAME_RE, ) from .registry import REGISTRY from .utils import floatToGoString, INF if sys.version_info > (3,): unicode = str create_bound_method = types.MethodType else: def create_bound_method(func, obj): return types.MethodType(func, obj, obj.__class__) def _build_full_name(metric_type, name, namespace, subsystem, unit): full_name = '' if namespace: full_name += namespace + '_' if subsystem: full_name += subsystem + '_' full_name += name if metric_type == 'counter' and full_name.endswith('_total'): full_name = full_name[:-6] if unit and not full_name.endswith("_" + unit): full_name += "_" + unit if unit and metric_type in ('info', 'stateset'): raise ValueError('Metric name is of a type that cannot have a unit: ' + full_name) return full_name def _validate_labelnames(cls, labelnames): labelnames = tuple(labelnames) for l in labelnames: if not METRIC_LABEL_NAME_RE.match(l): raise ValueError('Invalid label metric name: ' + l) if RESERVED_METRIC_LABEL_NAME_RE.match(l): raise ValueError('Reserved label metric name: ' + l) if l in cls._reserved_labelnames: raise ValueError('Reserved label metric name: ' + l) return labelnames class MetricWrapperBase(object): _type = None _reserved_labelnames = () def _is_observable(self): return not self._labelnames or (self._labelnames and self._labelvalues) def _raise_if_not_observable(self): if not self._is_observable(): raise ValueError('%s metric is missing label values' % str(self._type)) def _is_parent(self): return self._labelnames and not self._labelvalues def _get_metric(self): return Metric(self._name, self._documentation, self._type, self._unit) def describe(self): return [self._get_metric()] def collect(self): metric = self._get_metric() for suffix, labels, value in self._samples(): metric.add_sample(self._name + suffix, labels, value) return [metric] def __str__(self): return "{0}:{1}".format(self._type, self._name) def __repr__(self): metric_type = type(self) return "{0}.{1}({2})".format(metric_type.__module__, metric_type.__name__, self._name) def __init__(self, name, documentation, labelnames=(), namespace='', subsystem='', unit='', registry=REGISTRY, _labelvalues=None, ): self._name = _build_full_name(self._type, name, namespace, subsystem, unit) self._labelnames = _validate_labelnames(self, labelnames) self._labelvalues = tuple(_labelvalues or ()) self._kwargs = {} self._documentation = documentation self._unit = unit if not METRIC_NAME_RE.match(self._name): raise ValueError('Invalid metric name: ' + self._name) if self._is_parent(): self._lock = Lock() self._metrics = {} if self._is_observable(): self._metric_init() if not self._labelvalues: if registry: registry.register(self) def labels(self, *labelvalues, **labelkwargs): if not self._labelnames: raise ValueError('No label names were set when constructing %s' % self) if self._labelvalues: raise ValueError('%s already has labels set (%s); can not chain calls to .labels()' % ( self, dict(zip(self._labelnames, self._labelvalues)) )) if labelvalues and labelkwargs: raise ValueError("Can't pass both *args and **kwargs") if labelkwargs: if sorted(labelkwargs) != sorted(self._labelnames): raise ValueError('Incorrect label names') labelvalues = tuple(unicode(labelkwargs[l]) for l in self._labelnames) else: if len(labelvalues) != len(self._labelnames): raise ValueError('Incorrect label count') labelvalues = tuple(unicode(l) for l in labelvalues) with self._lock: if labelvalues not in self._metrics: self._metrics[labelvalues] = self.__class__( self._name, documentation=self._documentation, labelnames=self._labelnames, unit=self._unit, _labelvalues=labelvalues, **self._kwargs ) return self._metrics[labelvalues] def remove(self, *labelvalues): if not self._labelnames: raise ValueError('No label names were set when constructing %s' % self) """Remove the given labelset from the metric.""" if len(labelvalues) != len(self._labelnames): raise ValueError('Incorrect label count (expected %d, got %s)' % (len(self._labelnames), labelvalues)) labelvalues = tuple(unicode(l) for l in labelvalues) with self._lock: del self._metrics[labelvalues] def clear(self): with self._lock: self._metrics = {} def _samples(self): if self._is_parent(): return self._multi_samples() else: return self._child_samples() def _multi_samples(self): with self._lock: metrics = self._metrics.copy() for labels, metric in metrics.items(): series_labels = list(zip(self._labelnames, labels)) for suffix, sample_labels, value in metric._samples(): yield (suffix, dict(series_labels + list(sample_labels.items())), value) def _child_samples(self): raise NotImplementedError('_child_samples() must be implemented by %r' % self) def _metric_init(self): raise NotImplementedError('_metric_init() must be implemented by %r' % self) class Counter(MetricWrapperBase): _type = 'counter' def _metric_init(self): self._value = values.ValueClass(self._type, self._name, self._name + '_total', self._labelnames, self._labelvalues) self._created = time.time()
Apache License 2.0
pyqode/pyqode.core
pyqode/core/widgets/interactive.py
InteractiveConsole.merge_outputs
python
def merge_outputs(self): return self._merge_outputs
Merge stderr with stdout. Default is False. If set to true, stderr and stdin will use the same color: stdin_color.
https://github.com/pyqode/pyqode.core/blob/0ffabebe4f0397d53429024f6f44db3fe97b0828/pyqode/core/widgets/interactive.py#L229-L236
import locale import logging import sys from pyqode.core.api.client import PROCESS_ERROR_STRING from pyqode.core.managers.decorations import TextDecorationsManager from pyqode.core.managers.panels import PanelsManager from pyqode.qt.QtCore import Qt, Signal, QProcess, QProcessEnvironment from pyqode.qt.QtWidgets import QTextEdit, QAction, QApplication from pyqode.qt.QtGui import QColor, QTextCursor, QFont, QKeySequence def _logger(): return logging.getLogger(__name__) class InteractiveConsole(QTextEdit): process_finished = Signal(int) process_started = Signal() def __init__(self, parent=None): super(InteractiveConsole, self).__init__(parent) self.panels = PanelsManager(self) self.decorations = TextDecorationsManager(self) from pyqode.core.panels import SearchAndReplacePanel self.panels.append(SearchAndReplacePanel(), SearchAndReplacePanel.Position.TOP) self._stdout_col = QColor("#404040") self._app_msg_col = QColor("#4040FF") self._stdin_col = QColor("#22AA22") self._stderr_col = QColor("#FF0000") self._write_app_messages = True self._process_name = '' self.process = None self._args = None self._usr_buffer = "" self._clear_on_start = True self._merge_outputs = False self._running = False self._writer = self.write self._user_stop = False font = "monospace" if sys.platform == "win32": font = "Consolas" elif sys.platform == "darwin": font = 'Monaco' self._font_family = font self.setFont(QFont(font, 10)) self.setReadOnly(True) self._mask_user_input = False action = QAction(_('Copy'), self) action.setShortcut(QKeySequence.Copy) action.triggered.connect(self.copy) self.add_action(action) action = QAction(_('Paste'), self) action.setShortcut(QKeySequence.Paste) action.triggered.connect(self.paste) self.add_action(action) def showEvent(self, event): super(InteractiveConsole, self).showEvent(event) self.panels.refresh() def resizeEvent(self, e): super(InteractiveConsole, self).resizeEvent(e) self.panels.resize() def add_action(self, action): self.addAction(action) action.setShortcutContext(Qt.WidgetShortcut) def set_writer(self, writer): if self._writer != writer and self._writer: self._writer = None if writer: self._writer = writer def _on_stdout(self): raw = bytes(self.process.readAllStandardOutput()) try: txt = raw.decode(sys.getfilesystemencoding()) except UnicodeDecodeError: txt = str(raw).replace("b'", '')[:-1].replace( '\\r\\n', '\n').replace('\\\\', '\\') _logger().debug('stdout: %s', txt) self._writer(self, txt, self.stdout_color) def _on_stderr(self): raw = bytes(self.process.readAllStandardError()) try: txt = raw.decode(sys.getfilesystemencoding()) except UnicodeDecodeError: txt = str(raw).replace("b'", '')[:-1].replace( '\\r\\n', '\n').replace('\\\\', '\\') _logger().debug('stderr: %s', txt) self._writer(self, txt, self.stderr_color) @property def exit_code(self): if self.is_running: return None exit_status = self.process.exitStatus() if exit_status == self.process.Crashed: exit_code = 139 else: exit_code = self.process.exitCode() return exit_code @property def write_app_messages(self): return self._write_app_messages @write_app_messages.setter def write_app_messages(self, value): self._write_app_messages = value @property def background_color(self): pal = self.palette() return pal.color(pal.Base) @background_color.setter def background_color(self, color): pal = self.palette() pal.setColor(pal.Base, color) pal.setColor(pal.Text, self.stdout_color) self.setPalette(pal) @property def stdout_color(self): return self._stdout_col @stdout_color.setter def stdout_color(self, color): self._stdout_col = color pal = self.palette() pal.setColor(pal.Text, self._stdout_col) self.setPalette(pal) @property def stderr_color(self): return self._stderr_col @stderr_color.setter def stderr_color(self, color): self._stderr_col = color @property def stdin_color(self): return self._stdin_col @stdin_color.setter def stdin_color(self, color): self._stdin_col = color @property def app_msg_color(self): return self._app_msg_col @app_msg_color.setter def app_msg_color(self, color): self._app_msg_col = color @property def clear_on_start(self): return self._clear_on_start @clear_on_start.setter def clear_on_start(self, value): self._clear_on_start = value @property
MIT License
wuziyi616/if-defense
baselines/defense/drop_points/SRS.py
SRSDefense.__init__
python
def __init__(self, drop_num=500): super(SRSDefense, self).__init__() self.drop_num = drop_num
SRS defense method. Args: drop_num (int, optional): number of points to drop. Defaults to 500.
https://github.com/wuziyi616/if-defense/blob/4b1d69d03d76e8d5ca1b4d45f81a8c9c60791263/baselines/defense/drop_points/SRS.py#L12-L21
import numpy as np import torch import torch.nn as nn class SRSDefense(nn.Module):
MIT License
amzn/metalearn-leap
src/omniglot/utils.py
convert_arg
python
def convert_arg(arg): if arg.lower() == 'none': arg = None elif arg.lower() == 'false': arg = False elif arg.lower() == 'true': arg = True elif '.' in arg: try: arg = float(arg) except Exception: pass else: try: arg = int(arg) except Exception: pass return arg
Convert string to type
https://github.com/amzn/metalearn-leap/blob/9d6fa0c1c27fa7812cb9510ab0b23d5f25f575f0/src/omniglot/utils.py#L22-L41
import os from os.path import join import numpy as np
Apache License 2.0
stackstorm-exchange/stackstorm-napalm
actions/lib/action.py
NapalmBaseAction.find_device_from_config
python
def find_device_from_config(self, search, driver=None, credentials=None, port=None): try: devices = self.config['devices'] except KeyError: message = ("Configuration Error: Please provide a pack config and ensure it's loaded " " with `st2ctl reload --register-configs`") raise Exception(message) search = search.lower() host_result = search for d in devices: hostname = d['hostname'].lower() if hostname.startswith(search): if not driver: driver = d['driver'] if not credentials: credentials = d['credentials'] if not port: port = d.get('port') host_result = hostname break if not driver: raise ValueError('Can not find driver for host {}, try with ' 'driver parameter.'.format(host_result)) if not credentials: raise ValueError(('Can not find credential group for host {}, try with credentials ' 'parameter.').format(host_result)) if driver not in ["ios", "iosxr", "junos", "eos", "fortios", "ibm", "nxos", "pluribus", "panos", "ros", "vyos", "nxos_ssh"]: raise ValueError('Driver "{}" is not a valid NAPALM Driver.'.format(driver)) return { "hostname": host_result, "port": port, "driver": driver, "credentials": credentials, }
Locates device in configuration based on search parameters
https://github.com/stackstorm-exchange/stackstorm-napalm/blob/64fedfbaa5ec519c4a9af3d1c254582f75dbcd2c/actions/lib/action.py#L85-L158
from json2table import convert from st2common.runners.base_action import Action from napalm import get_network_driver __all__ = [ 'NapalmBaseAction' ] class NapalmBaseAction(Action): def __init__(self, config): super(NapalmBaseAction, self).__init__(config) def get_driver(self, **std_kwargs): hostname = std_kwargs['hostname'] credentials = std_kwargs.get('credentials') driver = std_kwargs.get('driver') port = std_kwargs.get('port') htmlout = std_kwargs.get('htmlout', False) found_device = self.find_device_from_config(hostname, driver, credentials, port) login = self.get_credentials(found_device['credentials']) optional_args = {} if not found_device['port']: pass else: optional_args = {'port': int(found_device['port'])} if 'secret' in login: optional_args = {'secret': login['secret']} if 'key_file' in login: optional_args = {'key_file': str(login['key_file'])} login['password'] = None self.hostname = found_device['hostname'] self.driver = found_device['driver'] self.htmlout = htmlout return get_network_driver(self.driver)( hostname=str(found_device['hostname']), username=login['username'], password=login['password'], optional_args=optional_args ) def get_credentials(self, credentials): authconfig = self.config['credentials'].get(credentials, None) if not authconfig: raise ValueError('Can not find credentials group {}.'.format(credentials)) if 'password' not in authconfig and 'key_file' not in authconfig: raise ValueError("Missing password or SSH key in credentials.") if authconfig['username'] is None: raise ValueError("Missing username in credentials.") return authconfig
Apache License 2.0
allegro/django-powerdns-dnssec
powerdns/models/requests.py
ChangeCreateRequest.copy_records_data
python
def copy_records_data(self, fields_to_copy): all_fields = self._meta.get_all_field_names() for field_name, value in fields_to_copy: if field_name in all_fields: setattr(self, field_name, value) elif 'target_' + field_name in all_fields: setattr(self, 'target_' + field_name, value) else: log.warning("Unknown field {}:{}".format(field_name, value))
Sets data from `fields_to_copy` on self args: fields_to_copy: [(key, value), ..]
https://github.com/allegro/django-powerdns-dnssec/blob/333bdc668b6cda1a2ff240efd814a1896a1a8e07/powerdns/models/requests.py#L217-L230
import logging from django.db import models, transaction from django.conf import settings from django_extensions.db.fields.json import JSONField from dj.choices import Choices from dj.choices.fields import ChoiceField from django.contrib.contenttypes.fields import ContentType, GenericForeignKey from django.utils.translation import ugettext_lazy as _ from threadlocals.threadlocals import get_current_user from .powerdns import ( Domain, Owned, Record, validate_domain_name, ) from .ownership import Service from ..utils import AutoPtrOptions, RecordLike, TimeTrackable, flat_dict_diff log = logging.getLogger(__name__) def can_auto_accept_record_request(user_request, user, action): def _validate_domain(domain): if not domain: raise Exception( "Can't check auto acceptance without domain set" ) can_auto_accept = False domain = ( user_request.domain if action != 'delete' else user_request.target.domain ) _validate_domain(domain) if action == 'create': can_auto_accept = ( user_request.domain.can_auto_accept(user) and not user_request.is_sec_acceptance_required() ) elif action == 'update': can_auto_accept = ( user_request.domain.can_auto_accept(user) and user_request.record.can_auto_accept(user) and not user_request.is_sec_acceptance_required() ) elif action == 'delete': can_auto_accept = ( user_request.target.domain.can_auto_accept(user) and user_request.target.can_auto_accept(user) and not user_request.is_seo_acceptance_required() ) return can_auto_accept class RequestStates(Choices): _ = Choices.Choice OPEN = _('Open') ACCEPTED = _('Accepted') REJECTED = _('Rejected') class Request(Owned, TimeTrackable): class Meta: abstract = True state = ChoiceField( choices=RequestStates, default=RequestStates.OPEN, ) key = models.CharField( max_length=255, null=True, blank=True ) last_change_json = JSONField(null=True, blank=True) def save(self, *args, **kwargs): if self.owner is None: self.owner = get_current_user() super().save(*args, **kwargs) def _log_processed_request_message(self): log.warning('{} (id:{}) already {}'.format( self._meta.object_name, self.id, RequestStates.DescFromID(self.state).lower(), )) class DeleteRequest(Request): content_type = models.ForeignKey(ContentType) target_id = models.PositiveIntegerField() target = GenericForeignKey('content_type', 'target_id') @transaction.atomic def accept(self): if self.state != RequestStates.OPEN: self._log_processed_request_message() return old_dict = self.target.as_history_dump() new_dict = self.target.as_empty_history() result = flat_dict_diff(old_dict, new_dict) result['_request_type'] = 'delete' self.last_change_json = result self.target.delete() self.state = RequestStates.ACCEPTED self.save() @transaction.atomic def reject(self): if self.state != RequestStates.OPEN: self._log_processed_request_message() return self.state = RequestStates.REJECTED self.save() def __str__(self): return 'Delete {}'.format(self.target) def is_seo_acceptance_required(self): if self.owner and self.owner.is_superuser: return False return ( isinstance(self.target, Record) and self.target.type in settings.SEO_ACCEPTANCE_FOR_RECORD_TYPE and ( not self.target.domain.template or self.target.domain.template.is_public_domain ) and self.target.domain.require_seo_acceptance ) class ChangeCreateRequest(Request): ignore_fields = {'created', 'modified'} prefix = 'target_' class Meta: abstract = True def _get_json_history(self, object_): if object_.id: old_dict = object_.as_history_dump() else: old_dict = object_.as_empty_history() new_dict = self.as_history_dump() result = flat_dict_diff(old_dict, new_dict) result['_request_type'] = 'update' if object_.id else 'create' return result def _set_json_history(self, object_): self.last_change_json = self._get_json_history(object_) @transaction.atomic def accept(self): object_ = self.get_object() if self.state != RequestStates.OPEN: self._log_processed_request_message() return object_ self._set_json_history(object_) for field_name in type(self).copy_fields: if field_name in self.ignore_fields: continue if field_name == 'target_owner' and not getattr(self, field_name): continue setattr( object_, field_name[len(self.prefix):], getattr(self, field_name) ) object_.save() self.assign_object(object_) self.state = RequestStates.ACCEPTED self.save() return object_ @transaction.atomic def reject(self): if self.state != RequestStates.OPEN: self._log_processed_request_message() return object_ = self.get_object() self._set_json_history(object_) self.state = RequestStates.REJECTED self.save()
BSD 2-Clause Simplified License
wagtail/wagtail-live
src/wagtail_live/webapp/receiver.py
WebAppReceiver.get_message_id_from_message
python
def get_message_id_from_message(self, message): return message["id"]
See base class.
https://github.com/wagtail/wagtail-live/blob/3395f473c3c34f8932d8b0ea6de56745d446e3bd/src/wagtail_live/webapp/receiver.py#L33-L36
from wagtail_live.receivers.base import BaseMessageReceiver from .models import Image MESSAGE_CREATED = 1 MESSAGE_EDITED = 2 MESSAGE_DELETED = 3 class WebAppReceiver(BaseMessageReceiver): def dispatch_event(self, event): message = event if message["update_type"] == MESSAGE_EDITED: self.change_message(message=message) return elif message["update_type"] == MESSAGE_DELETED: self.delete_message(message=message) return else: self.add_message(message=message) def get_channel_id_from_message(self, message): return message["channel"]
BSD 3-Clause New or Revised License
carlos-jenkins/plantweb
lib/plantweb/defaults.py
_read_defaults_git
python
def _read_defaults_git(path): git = find_executable('git') if not git: log.debug( 'Unable to read defaults from repository. ' 'git executable not found.' ) return {} proc = Popen( [git, 'rev-parse', '--show-toplevel'], stdout=PIPE, stderr=PIPE ) stdout_raw, stderr_raw = proc.communicate() stdout = stdout_raw.decode(getdefaultencoding()) stderr = stderr_raw.decode(getdefaultencoding()) if proc.returncode != 0: if 'not a git repository' in stderr.lower(): log.debug( 'Not in a git repository: {}'.format(getcwd()) ) else: log.error( 'Unable to determine git root directory:\n{}'.format(stderr) ) return {} repo_root = stdout.strip() return _read_defaults_file( join(repo_root, path) )
Read defaults from given path in current git repository. See :data:`DEFAULTS_PROVIDERS` for inner workings.
https://github.com/carlos-jenkins/plantweb/blob/6898b08b5377d70272e507bc668e02d2cd323d2e/lib/plantweb/defaults.py#L91-L132
from __future__ import unicode_literals, absolute_import from __future__ import print_function, division import logging from os import getcwd from json import loads from copy import deepcopy from inspect import isfunction from traceback import format_exc from sys import getdefaultencoding from subprocess import Popen, PIPE from importlib import import_module from distutils.spawn import find_executable from os.path import isfile, expanduser, join log = logging.getLogger(__name__) DEFAULT_CONFIG = { 'engine': 'plantuml', 'format': 'svg', 'server': 'http://plantuml.com/plantuml/', 'use_cache': True, 'cache_dir': '~/.cache/plantweb' } DEFAULTS_PROVIDERS = [ 'python://plantweb.defaults.DEFAULT_CONFIG', 'file://~/.plantwebrc', 'git://.plantwebrc' ]
Apache License 2.0
urinieto/msaf
msaf/eval.py
get_results_file_name
python
def get_results_file_name(boundaries_id, labels_id, config, annotator_id): utils.ensure_dir(msaf.config.results_dir) file_name = os.path.join(msaf.config.results_dir, "results") file_name += "_boundsE%s_labelsE%s" % (boundaries_id, labels_id) file_name += "_annotatorE%d" % (annotator_id) sorted_keys = sorted(config.keys(), key=str.lower) for key in sorted_keys: file_name += "_%sE%s" % (key, str(config[key]).replace("/", "_")) if len(file_name) > 255 - len(msaf.config.results_ext): file_name = file_name[:255 - len(msaf.config.results_ext)] return file_name + msaf.config.results_ext
Based on the config and the dataset, get the file name to store the results.
https://github.com/urinieto/msaf/blob/17db5b698e06d662dfa5c7442d826022746454b7/msaf/eval.py#L281-L297
import jams from joblib import Parallel, delayed import logging import mir_eval import numpy as np import os import pandas as pd import six import msaf from msaf.exceptions import NoReferencesError import msaf.input_output as io from msaf import utils def print_results(results): if len(results) == 0: logging.warning("No results to print!") return res = results.mean() logging.info("Results:\n%s" % res) def compute_results(ann_inter, est_inter, ann_labels, est_labels, bins, est_file, weight=0.58): res = {} res["HitRate_3P"], res["HitRate_3R"], res["HitRate_3F"] = mir_eval.segment.detection(ann_inter, est_inter, window=3, trim=False) res["HitRate_0.5P"], res["HitRate_0.5R"], res["HitRate_0.5F"] = mir_eval.segment.detection(ann_inter, est_inter, window=.5, trim=False) res["HitRate_t3P"], res["HitRate_t3R"], res["HitRate_t3F"] = mir_eval.segment.detection(ann_inter, est_inter, window=3, trim=True) res["HitRate_t0.5P"], res["HitRate_t0.5R"], res["HitRate_t0.5F"] = mir_eval.segment.detection(ann_inter, est_inter, window=.5, trim=True) _, _, res["HitRate_w3F"] = mir_eval.segment.detection( ann_inter, est_inter, window=3, trim=False, beta=weight) _, _, res["HitRate_w0.5F"] = mir_eval.segment.detection( ann_inter, est_inter, window=.5, trim=False, beta=weight) _, _, res["HitRate_wt3F"] = mir_eval.segment.detection( ann_inter, est_inter, window=3, trim=True, beta=weight) _, _, res["HitRate_wt0.5F"] = mir_eval.segment.detection( ann_inter, est_inter, window=.5, trim=True, beta=weight) res["D"] = compute_information_gain(ann_inter, est_inter, est_file, bins=bins) res["DevR2E"], res["DevE2R"] = mir_eval.segment.deviation( ann_inter, est_inter, trim=False) res["DevtR2E"], res["DevtE2R"] = mir_eval.segment.deviation( ann_inter, est_inter, trim=True) if est_labels is not None and ("-1" in est_labels or "@" in est_labels): est_labels = None if est_labels is not None and len(est_labels) != 0: ann_labels = list(ann_labels) est_labels = list(est_labels) ann_inter, ann_labels = mir_eval.util.adjust_intervals(ann_inter, ann_labels) est_inter, est_labels = mir_eval.util.adjust_intervals( est_inter, est_labels, t_min=0.0, t_max=ann_inter.max()) res["PWP"], res["PWR"], res["PWF"] = mir_eval.segment.pairwise( ann_inter, ann_labels, est_inter, est_labels) res["So"], res["Su"], res["Sf"] = mir_eval.segment.nce( ann_inter, ann_labels, est_inter, est_labels) base = os.path.basename(est_file) res["track_id"] = base[:-5] res["ds_name"] = base.split("_")[0] return res def compute_gt_results(est_file, ref_file, boundaries_id, labels_id, config, bins=251, annotator_id=0): if config["hier"]: ref_times, ref_labels, ref_levels = msaf.io.read_hier_references( ref_file, annotation_id=annotator_id, exclude_levels=["segment_salami_function"]) else: jam = jams.load(ref_file, validate=False) ann = jam.search(namespace='segment_.*')[annotator_id] ref_inter, ref_labels = ann.to_interval_values() est_inter, est_labels = io.read_estimations(est_file, boundaries_id, labels_id, **config) logging.info("Evaluating %s" % os.path.basename(est_file)) if config["hier"]: assert len(est_inter) == len(est_labels), "Same number of levels " "are required in the boundaries and labels for the hierarchical " "evaluation." est_times = [] est_labels = [] est_inter = sorted(est_inter, key=lambda level: len(level)) for inter in est_inter: est_times.append(msaf.utils.intervals_to_times(inter)) est_labels.append(np.ones(len(est_times[-1]) - 1) * -1) utils.align_end_hierarchies(est_times, ref_times, thres=1) est_hier = [utils.times_to_intervals(times) for times in est_times] ref_hier = [utils.times_to_intervals(times) for times in ref_times] res = {} res["t_recall10"], res["t_precision10"], res["t_measure10"] = mir_eval.hierarchy.tmeasure(ref_hier, est_hier, window=10) res["t_recall15"], res["t_precision15"], res["t_measure15"] = mir_eval.hierarchy.tmeasure(ref_hier, est_hier, window=15) res["track_id"] = os.path.basename(est_file)[:-5] return res else: return compute_results(ref_inter, est_inter, ref_labels, est_labels, bins, est_file) def compute_information_gain(ann_inter, est_inter, est_file, bins): ann_times = utils.intervals_to_times(ann_inter) est_times = utils.intervals_to_times(est_inter) return mir_eval.beat.information_gain(ann_times, est_times, bins=bins) def process_track(file_struct, boundaries_id, labels_id, config, annotator_id=0): if isinstance(file_struct, six.string_types): file_struct = io.FileStruct(file_struct) est_file = file_struct.est_file ref_file = file_struct.ref_file assert os.path.basename(est_file)[:-4] == os.path.basename(ref_file)[:-4], "File names are different %s --- %s" % (os.path.basename(est_file)[:-4], os.path.basename(ref_file)[:-4]) if not os.path.isfile(ref_file): raise NoReferencesError("Reference file %s does not exist. You must " "have annotated references to run " "evaluations." % ref_file) one_res = compute_gt_results(est_file, ref_file, boundaries_id, labels_id, config, annotator_id=annotator_id) return one_res
MIT License
ljvmiranda921/gym-lattice
gym_lattice/envs/lattice2d_env.py
Lattice2DEnv.reset
python
def reset(self): self.state = OrderedDict({(0, 0) : self.seq[0]}) self.actions = [] self.collisions = 0 self.trapped = 0 self.done = len(self.seq) == 1 self.grid = np.zeros(shape=(self.grid_length, self.grid_length), dtype=int) self.grid[self.midpoint] = POLY_TO_INT[self.seq[0]] self.last_action = None return self.grid
Resets the environment
https://github.com/ljvmiranda921/gym-lattice/blob/8e94972751de96bbd3768d42ab54aa22c1c98822/gym_lattice/envs/lattice2d_env.py#L228-L241
import sys from math import floor from collections import OrderedDict import gym from gym import (spaces, utils, logger) import numpy as np from six import StringIO ACTION_TO_STR = { 0 : 'L', 1 : 'D', 2 : 'U', 3 : 'R'} POLY_TO_INT = { 'H' : 1, 'P' : -1 } class Lattice2DEnv(gym.Env): metadata = {'render.modes': ['human', 'ansi']} def __init__(self, seq, collision_penalty=-2, trap_penalty=0.5): try: if not set(seq.upper()) <= set('HP'): raise ValueError("%r (%s) is an invalid sequence" % (seq, type(seq))) self.seq = seq.upper() except AttributeError: logger.error("%r (%s) must be of type 'str'" % (seq, type(seq))) raise try: if collision_penalty >= 0: raise ValueError("%r (%s) must be negative" % (collision_penalty, type(collision_penalty))) if not isinstance(collision_penalty, int): raise ValueError("%r (%s) must be of type 'int'" % (collision_penalty, type(collision_penalty))) self.collision_penalty = collision_penalty except TypeError: logger.error("%r (%s) must be of type 'int'" % (collision_penalty, type(collision_penalty))) raise try: if not 0 < trap_penalty < 1: raise ValueError("%r (%s) must be between 0 and 1" % (trap_penalty, type(trap_penalty))) self.trap_penalty = trap_penalty except TypeError: logger.error("%r (%s) must be of type 'float'" % (trap_penalty, type(trap_penalty))) raise self.grid_length = 2 * len(seq) + 1 self.midpoint = (len(self.seq), len(self.seq)) self.action_space = spaces.Discrete(4) self.observation_space = spaces.Box(low=-2, high=1, shape=(self.grid_length, self.grid_length), dtype=int) self.reset() def step(self, action): if not self.action_space.contains(action): raise ValueError("%r (%s) invalid" % (action, type(action))) self.last_action = action is_trapped = False collision = False x, y = next(reversed(self.state)) adj_coords = self._get_adjacent_coords((x, y)) next_move = adj_coords[action] idx = len(self.state) if next_move in self.state: self.collisions += 1 collision = True else: self.actions.append(action) try: self.state.update({next_move : self.seq[idx]}) except IndexError: logger.error('All molecules have been placed! Nothing can be added to the protein chain.') raise if set(self._get_adjacent_coords(next_move).values()).issubset(self.state.keys()): logger.warn('Your agent was trapped! Ending the episode.') self.trapped += 1 is_trapped = True grid = self._draw_grid(self.state) self.done = True if (len(self.state) == len(self.seq) or is_trapped) else False reward = self._compute_reward(is_trapped, collision) info = { 'chain_length' : len(self.state), 'seq_length' : len(self.seq), 'collisions' : self.collisions, 'actions' : [ACTION_TO_STR[i] for i in self.actions], 'is_trapped' : is_trapped, 'state_chain' : self.state } return (grid, reward, self.done, info)
MIT License
sciter-sdk/pysciter
sciter/value.py
value.__bool__
python
def __bool__(self): return bool(self.get_value())
Value to bool conversion.
https://github.com/sciter-sdk/pysciter/blob/f5f00112d635f9d1ee98661eeebb2afcaa56c1f4/sciter/value.py#L162-L165
import inspect import ctypes import sciter import sciter.error import sciter.capi.scdef import sciter.capi.sctypes from sciter.capi.scvalue import * _api = sciter.SciterAPI() byref = ctypes.byref _python_types = {VALUE_TYPE.T_UNDEFINED: type(None), VALUE_TYPE.T_NULL: type(None), VALUE_TYPE.T_BOOL: bool, VALUE_TYPE.T_INT: int, VALUE_TYPE.T_FLOAT: float, VALUE_TYPE.T_STRING: str, VALUE_TYPE.T_ARRAY: list, VALUE_TYPE.T_MAP: dict, VALUE_TYPE.T_BYTES: bytes, VALUE_TYPE.T_DURATION: float, VALUE_TYPE.T_ANGLE: float, VALUE_TYPE.T_COLOR: int, } _value_type_names = {val: name.lower()[2:] for name, val in VALUE_TYPE.__members__.items()} def _subtype_name(subtype): return {val: name.split('_')[-1].lower() for name, val in subtype.__members__.items()} _value_subtypes = {VALUE_TYPE.T_LENGTH: _subtype_name(VALUE_UNIT_TYPE), VALUE_TYPE.T_DATE: _subtype_name(VALUE_UNIT_TYPE_DATE), VALUE_TYPE.T_OBJECT: _subtype_name(VALUE_UNIT_TYPE_OBJECT), VALUE_TYPE.T_STRING: _subtype_name(VALUE_UNIT_TYPE_STRING), } class ValueError(sciter.error.SciterError): def __init__(self, hv_code, script=None): msg = "Incompatible type" if hv_code == 2 else "Bad parameter" if script: msg = msg + " at " + script super().__init__(msg) pass class value(): @classmethod def parse(cls, json: str, how=VALUE_STRING_CVT_TYPE.CVT_JSON_LITERAL, throw=True): rv = value() ok = _api.ValueFromString(rv, json, len(json), how) if ok != 0 and throw: raise sciter.value.ValueError(VALUE_RESULT.HV_BAD_PARAMETER, "value.parse") return rv @classmethod def null(cls): rv = value() rv.data.t = VALUE_TYPE.T_NULL return rv @classmethod def symbol(cls, name): rv = value() rv._assign_str(name, VALUE_UNIT_TYPE_STRING.UT_STRING_SYMBOL) return rv @classmethod def secure_string(cls, val): rv = value() rv._assign_str(val, VALUE_UNIT_TYPE_STRING.UT_STRING_SECURE) return rv @classmethod def color(cls, val): rv = value() ok = _api.ValueIntDataSet(rv, val, VALUE_TYPE.T_COLOR, 0) rv._throw_if(ok) return rv @classmethod def duration(cls, val): rv = value() ok = _api.ValueFloatDataSet(rv, val, VALUE_TYPE.T_DURATION, 0) rv._throw_if(ok) return rv @classmethod def angle(cls, val): rv = value() ok = _api.ValueFloatDataSet(rv, val, VALUE_TYPE.T_ANGLE, 0) rv._throw_if(ok) return rv def __init__(self, val=None): super().__init__() self.data = SCITER_VALUE() self.ptr = ctypes.pointer(self.data) self._as_parameter_ = self.ptr _api.ValueInit(self.ptr) if val is not None: self.set_value(val) pass def __del__(self): self.clear() pass def __call__(self, *args, **kwargs): return self.call(*args, **kwargs) def __repr__(self): t = VALUE_TYPE(self.data.t) tname = _value_type_names.get(self.data.t, hex(self.data.t)) if t in (VALUE_TYPE.T_UNDEFINED, VALUE_TYPE.T_NULL): return "<%s>" % (tname) if self.data.u != 0: subtypes = _value_subtypes.get(t) if subtypes: tname = tname + ':' + subtypes.get(self.data.u, hex(self.data.u)) return "<%s: %s>" % (tname, str(self)) def __str__(self): copy = self.copy() ok = _api.ValueToString(copy, VALUE_STRING_CVT_TYPE.CVT_JSON_LITERAL) self._throw_if(ok) return copy.get_value()
MIT License
adeelmufti/cryptobot
app/model/model.py
cross_validate
python
def cross_validate(X, y, model, window): in_sample_score = [] out_sample_score = [] for i in range(1, len(y)/window): train_index = np.arange(0, i*window) test_index = np.arange(i*window, (i+1)*window) print 'Train index',train_index print 'Test index', test_index y_train = y.take(train_index) y_test = y.take(test_index) X_train = X.take(train_index, axis=0) X_test = X.take(test_index, axis=0) model.fit(X_train, y_train) in_sample_score.append(model.score(X_train, y_train)) out_sample_score.append(model.score(X_test, y_test)) print 'Window', i print 'in-sample score', in_sample_score[-1] print 'out-sample score:', out_sample_score[-1] print '---' return model, np.mean(in_sample_score), np.mean(out_sample_score)
Cross validates time series data using a shifting window where train data is always before test data
https://github.com/adeelmufti/cryptobot/blob/6cbdfea43af9690d289f92db6b1b3b371abbd2fb/app/model/model.py#L8-L31
import numpy as np from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor import pickle import pandas as pd
Apache License 2.0
learningequality/studio
contentcuration/contentcuration/views/nodes.py
get_channel_details
python
def get_channel_details(request, channel_id): channel = get_object_or_404(Channel.filter_view_queryset(Channel.objects.all(), request.user), id=channel_id) if not channel.main_tree: raise Http404 data = get_node_details_cached(channel.main_tree, channel_id=channel_id) return HttpResponse(json.dumps(data))
Generates data for channel contents. Used for look-inside previews Keyword arguments: channel_id (str): id of channel to get details from
https://github.com/learningequality/studio/blob/92ef5585d9dd4f61d060c01437e233674258cad6/contentcuration/contentcuration/views/nodes.py#L32-L42
import json from datetime import datetime from django.conf import settings from django.core.cache import cache from django.db.models import Max from django.db.models import Q from django.http import Http404 from django.http import HttpResponse from django.http import HttpResponseNotFound from django.shortcuts import get_object_or_404 from rest_framework import status from rest_framework.authentication import SessionAuthentication from rest_framework.authentication import TokenAuthentication from rest_framework.decorators import api_view from rest_framework.decorators import authentication_classes from rest_framework.decorators import permission_classes from rest_framework.permissions import AllowAny from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from contentcuration.models import Channel from contentcuration.models import ContentNode from contentcuration.models import Task from contentcuration.tasks import create_async_task from contentcuration.tasks import getnodedetails_task from contentcuration.utils.nodes import get_diff @api_view(["GET"]) @permission_classes((AllowAny,))
MIT License
kthyng/tracpy
tracpy/tracpy_class.py
Tracpy.prepare_for_model_step
python
def prepare_for_model_step(self, tind, nc, flag, xend, yend, zend, j, nsubstep, T0): xstart = xend[:, j*self.N] ystart = yend[:, j*self.N] zstart = zend[:, j*self.N] xstart = np.ma.masked_where(flag[:] == 1, xstart) ystart = np.ma.masked_where(flag[:] == 1, ystart) zstart = np.ma.masked_where(flag[:] == 1, zstart) if T0 is not None: T0 = np.ma.masked_where(flag[:] == 1, T0) self.uf[0, :, :, :] = self.uf[1, :, :, :].copy() self.vf[0, :, :, :] = self.vf[1, :, :, :].copy() self.dzt[0, :, :, :] = self.dzt[1, :, :, :].copy() self.zrt[0, :, :, :] = self.zrt[1, :, :, :].copy() self.zwt[0, :, :, :] = self.zwt[1, :, :, :].copy() if isinstance(self.z0, str): self.uf[1, :, :, :], self.vf[1, :, :, :], self.dzt[1, :, :, :], self.zrt[1, :, :, :], self.zwt[1, :, :, :] = tracpy.inout.readfields(tind, self.grid, nc, self.z0, self.zpar, zparuv=self.zparuv) else: self.uf[1, :, :, :], self.vf[1, :, :, :], self.dzt[1, :, :, :], self.zrt[1, :, :, :], self.zwt[1, :, :, :] = tracpy.inout.readfields(tind, self.grid, nc) ufsub = np.ones(self.uf.shape)*np.nan vfsub = np.ones(self.vf.shape)*np.nan rp = nsubstep/self.nsubsteps rm = 1 - rp ufsub[0, :, :, :] = rm*self.uf[0, :, :, :] + rp*self.uf[1, :, :, :] vfsub[0, :, :, :] = rm*self.vf[0, :, :, :] + rp*self.vf[1, :, :, :] rp = (nsubstep+1)/self.nsubsteps rm = 1 - rp ufsub[1, :, :, :] = rm*self.uf[0, :, :, :] + rp*self.uf[1, :, :, :] vfsub[1, :, :, :] = rm*self.vf[0, :, :, :] + rp*self.vf[1, :, :, :] xstart, ystart = tracpy.tools.convert_indices('py2f', xstart, ystart) ufsub = np.ma.masked_where(ufsub>1e30, ufsub) vfsub = np.ma.masked_where(vfsub>1e30, vfsub) return xstart, ystart, zstart, ufsub, vfsub, T0
Already in a step, get ready to actually do step
https://github.com/kthyng/tracpy/blob/6cc53006cba58381daa543089787e1e77625f3c6/tracpy/tracpy_class.py#L373-L432
import tracpy import numpy as np from . import tracmass from matplotlib.mlab import find class Tracpy(object): def __init__(self, currents_filename, grid, nsteps=1, ndays=1, ff=1, tseas=3600., ah=0., av=0., z0='s', zpar=1, do3d=0, doturb=0, name='test', dostream=0, N=1, time_units='seconds since 1970-01-01', dtFromTracmass=None, zparuv=None, tseas_use=None, savell=True, doperiodic=0, usespherical=True, ellps='WGS84'): self.currents_filename = currents_filename self.grid = grid self.nsteps = nsteps self.ndays = ndays self.ff = ff self.tseas = float(tseas) self.ah = ah self.av = av self.z0 = z0 self.zpar = zpar self.do3d = do3d self.doturb = doturb self.name = name self.dostream = dostream self.N = N self.time_units = time_units self.savell = savell self.doperiodic = doperiodic self.usespherical = usespherical if dtFromTracmass is None: self.dtFromTracmass = tseas else: self.N = 1 self.dtFromTracmass = dtFromTracmass self.nsubsteps = int(self.tseas/self.dtFromTracmass) if zparuv is None: self.zparuv = zpar else: self.zparuv = zparuv if tseas_use is None: self.tseas_use = tseas self.tout = np.int(np.ceil((ndays*(24*3600))/tseas + 1)) self.tstride = int(self.tseas_use/self.tseas) self.uf = None self.vf = None self.dzt = None self.zrt = None self.zwt = None def prepare_for_model_run(self, date, lon0, lat0): nc, tinds = tracpy.inout.setupROMSfiles(self.currents_filename, date, self.ff, self.tout, self.time_units, tstride=self.tstride) if self.usespherical: xstart0, ystart0, _ = tracpy.tools.interpolate2d(lon0, lat0, self.grid, 'd_ll2ij') else: xstart0, ystart0, _ = tracpy.tools.interpolate2d(lon0, lat0, self.grid, 'd_xy2ij') ia = np.ceil(xstart0).astype(int) ja = np.ceil(ystart0).astype(int) ind2 = ~np.isnan(ia) * ~np.isnan(ja) ia = ia[ind2] ja = ja[ind2] xstart0 = xstart0[ind2] ystart0 = ystart0[ind2] unmasked = np.where(self.grid.mask_rho[ja, ia] == 1)[0] ia = ia[unmasked] ja = ja[unmasked] xstart0 = xstart0[unmasked] ystart0 = ystart0[unmasked] if 'ocean_time' in nc.variables: dates = nc.variables['ocean_time'][:] elif 'time' in nc.variables: dates = nc.variables['time'][:] t0save = dates[tinds[0]] xend = np.ones((ia.size, (len(tinds)-1)*self.N+1))*np.nan yend = np.ones((ia.size, (len(tinds)-1)*self.N+1))*np.nan zend = np.ones((ia.size, (len(tinds)-1)*self.N+1))*np.nan zp = np.ones((ia.size, (len(tinds)-1)*self.N+1))*np.nan ttend = np.ones((ia.size, (len(tinds)-1)*self.N+1)) flag = np.zeros((ia.size), dtype=np.int) lx = self.grid.imt ly = self.grid.jmt try: lk = self.grid.sc_r.size except: lk = 2 self.uf = np.ones((2, lk-1, ly, lx-1))*np.nan self.vf = np.ones((2, lk-1, ly-1, lx))*np.nan self.dzt = np.ones((2, lk-1, ly, lx))*np.nan self.zrt = np.ones((2, lk-1, ly, lx))*np.nan self.zwt = np.ones((2, lk, ly, lx))*np.nan if isinstance(self.z0, str): self.uf[1, :, :, :], self.vf[1, :, :, :], self.dzt[1, :, :, :], self.zrt[1, :, :, :], self.zwt[1, :, :, :] = tracpy.inout.readfields(tinds[0], self.grid, nc, self.z0, self.zpar, zparuv=self.zparuv) else: self.uf[1, :, :, :], self.vf[1, :, :, :], self.dzt[1, :, :, :], self.zrt[1, :, :, :], self.zwt[1, :, :, :] = tracpy.inout.readfields(tinds[0], self.grid, nc) if isinstance(self.z0, str): ka = np.ones(ia.size) zstart0 = np.ones(ia.size)*0.5 else: ka = np.ones(ia.size, dtype=int)*-999 zstart0 = np.ones(ia.size)*np.nan if self.zpar == 'fromMSL': raise NotImplementedError("zpar==''fromMSL'' not implemented\ yet...") elif self.zpar == 'fromZeta': for i in range(ia.size): ind = (self.zwt[1, :, ja[i], ia[i]] <= self.z0[i]) ka[i] = find(ind)[-1] if (self.z0[i] != self.zwt[1, ka[i], ja[i], ia[i]]) and (ka[i] != self.grid.km): ka[i] = ka[i]+1 zstart0[i] = ka[i] - abs(self.z0[i]-self.zwt[1, ka[i], ja[i], ia[i]]) / abs(self.zwt[1, ka[i]-1, ja[i], ia[i]] - self.zwt[1, ka[i], ja[i], ia[i]]) xend[:, 0] = xstart0 yend[:, 0] = ystart0 zend[:, 0] = zstart0 return tinds, nc, t0save, xend, yend, zend, zp, ttend, flag
MIT License
necaris/python3-openid
openid/yadis/xri.py
rootAuthority
python
def rootAuthority(xri): if xri.startswith('xri://'): xri = xri[6:] authority = xri.split('/', 1)[0] if authority[0] == '(': root = authority[:authority.index(')') + 1] elif authority[0] in XRI_AUTHORITIES: root = authority[0] else: segments = authority.split('!') segments = reduce(list.__add__, [s.split('*') for s in segments]) root = segments[0] return XRI(root)
Return the root authority for an XRI. Example:: rootAuthority("xri://@example") == "xri://@" @type xri: unicode @returntype: unicode
https://github.com/necaris/python3-openid/blob/5c7f8f8fa4d2a0124516046ab2f84130eb8c10cb/openid/yadis/xri.py#L78-L107
import re from functools import reduce from openid import codecutil XRI_AUTHORITIES = ['!', '=', '@', '+', '$', '('] def identifierScheme(identifier): if identifier.startswith('xri://') or (identifier and identifier[0] in XRI_AUTHORITIES): return "XRI" else: return "URI" def toIRINormal(xri): if not xri.startswith('xri://'): xri = 'xri://' + xri return escapeForIRI(xri) _xref_re = re.compile(r'\((.*?)\)') def _escape_xref(xref_match): xref = xref_match.group() xref = xref.replace('/', '%2F') xref = xref.replace('?', '%3F') xref = xref.replace('#', '%23') return xref def escapeForIRI(xri): xri = xri.replace('%', '%25') xri = _xref_re.sub(_escape_xref, xri) return xri def toURINormal(xri): return iriToURI(toIRINormal(xri)) def iriToURI(iri): if isinstance(iri, bytes): iri = str(iri, encoding="utf-8") return iri.encode('ascii', errors='oid_percent_escape').decode() def providerIsAuthoritative(providerID, canonicalID): lastbang = canonicalID.rindex('!') parent = canonicalID[:lastbang] return parent == providerID
Apache License 2.0
ambron60/l-system-drawing
venv/Lib/site-packages/pip-9.0.1-py3.5.egg/pip/_vendor/appdirs.py
_get_win_folder_from_registry
python
def _get_win_folder_from_registry(csidl_name): import _winreg shell_folder_name = { "CSIDL_APPDATA": "AppData", "CSIDL_COMMON_APPDATA": "Common AppData", "CSIDL_LOCAL_APPDATA": "Local AppData", }[csidl_name] key = _winreg.OpenKey( _winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders" ) dir, type = _winreg.QueryValueEx(key, shell_folder_name) return dir
This is a fallback technique at best. I'm not sure if using the registry for this guarantees us the correct answer for all CSIDL_* names.
https://github.com/ambron60/l-system-drawing/blob/3a4ecface1d862b87acd58ff2d5303cd4475370b/venv/Lib/site-packages/pip-9.0.1-py3.5.egg/pip/_vendor/appdirs.py#L408-L426
__version_info__ = (1, 4, 0) __version__ = '.'.join(map(str, __version_info__)) import sys import os PY3 = sys.version_info[0] == 3 if PY3: unicode = str if sys.platform.startswith('java'): import platform os_name = platform.java_ver()[3][0] if os_name.startswith('Windows'): system = 'win32' elif os_name.startswith('Mac'): system = 'darwin' else: system = 'linux2' else: system = sys.platform def user_data_dir(appname=None, appauthor=None, version=None, roaming=False): if system == "win32": if appauthor is None: appauthor = appname const = roaming and "CSIDL_APPDATA" or "CSIDL_LOCAL_APPDATA" path = os.path.normpath(_get_win_folder(const)) if appname: if appauthor is not False: path = os.path.join(path, appauthor, appname) else: path = os.path.join(path, appname) elif system == 'darwin': path = os.path.expanduser('~/Library/Application Support/') if appname: path = os.path.join(path, appname) else: path = os.getenv('XDG_DATA_HOME', os.path.expanduser("~/.local/share")) if appname: path = os.path.join(path, appname) if appname and version: path = os.path.join(path, version) return path def site_data_dir(appname=None, appauthor=None, version=None, multipath=False): if system == "win32": if appauthor is None: appauthor = appname path = os.path.normpath(_get_win_folder("CSIDL_COMMON_APPDATA")) if appname: if appauthor is not False: path = os.path.join(path, appauthor, appname) else: path = os.path.join(path, appname) elif system == 'darwin': path = os.path.expanduser('/Library/Application Support') if appname: path = os.path.join(path, appname) else: path = os.getenv('XDG_DATA_DIRS', os.pathsep.join(['/usr/local/share', '/usr/share'])) pathlist = [os.path.expanduser(x.rstrip(os.sep)) for x in path.split(os.pathsep)] if appname: if version: appname = os.path.join(appname, version) pathlist = [os.sep.join([x, appname]) for x in pathlist] if multipath: path = os.pathsep.join(pathlist) else: path = pathlist[0] return path if appname and version: path = os.path.join(path, version) return path def user_config_dir(appname=None, appauthor=None, version=None, roaming=False): if system in ["win32", "darwin"]: path = user_data_dir(appname, appauthor, None, roaming) else: path = os.getenv('XDG_CONFIG_HOME', os.path.expanduser("~/.config")) if appname: path = os.path.join(path, appname) if appname and version: path = os.path.join(path, version) return path def site_config_dir(appname=None, appauthor=None, version=None, multipath=False): if system in ["win32", "darwin"]: path = site_data_dir(appname, appauthor) if appname and version: path = os.path.join(path, version) else: path = os.getenv('XDG_CONFIG_DIRS', '/etc/xdg') pathlist = [os.path.expanduser(x.rstrip(os.sep)) for x in path.split(os.pathsep)] if appname: if version: appname = os.path.join(appname, version) pathlist = [os.sep.join([x, appname]) for x in pathlist] if multipath: path = os.pathsep.join(pathlist) else: path = pathlist[0] return path def user_cache_dir(appname=None, appauthor=None, version=None, opinion=True): if system == "win32": if appauthor is None: appauthor = appname path = os.path.normpath(_get_win_folder("CSIDL_LOCAL_APPDATA")) if appname: if appauthor is not False: path = os.path.join(path, appauthor, appname) else: path = os.path.join(path, appname) if opinion: path = os.path.join(path, "Cache") elif system == 'darwin': path = os.path.expanduser('~/Library/Caches') if appname: path = os.path.join(path, appname) else: path = os.getenv('XDG_CACHE_HOME', os.path.expanduser('~/.cache')) if appname: path = os.path.join(path, appname) if appname and version: path = os.path.join(path, version) return path def user_log_dir(appname=None, appauthor=None, version=None, opinion=True): if system == "darwin": path = os.path.join( os.path.expanduser('~/Library/Logs'), appname) elif system == "win32": path = user_data_dir(appname, appauthor, version) version = False if opinion: path = os.path.join(path, "Logs") else: path = user_cache_dir(appname, appauthor, version) version = False if opinion: path = os.path.join(path, "log") if appname and version: path = os.path.join(path, version) return path class AppDirs(object): def __init__(self, appname, appauthor=None, version=None, roaming=False, multipath=False): self.appname = appname self.appauthor = appauthor self.version = version self.roaming = roaming self.multipath = multipath @property def user_data_dir(self): return user_data_dir(self.appname, self.appauthor, version=self.version, roaming=self.roaming) @property def site_data_dir(self): return site_data_dir(self.appname, self.appauthor, version=self.version, multipath=self.multipath) @property def user_config_dir(self): return user_config_dir(self.appname, self.appauthor, version=self.version, roaming=self.roaming) @property def site_config_dir(self): return site_config_dir(self.appname, self.appauthor, version=self.version, multipath=self.multipath) @property def user_cache_dir(self): return user_cache_dir(self.appname, self.appauthor, version=self.version) @property def user_log_dir(self): return user_log_dir(self.appname, self.appauthor, version=self.version)
MIT License
mosdef-hub/gmso
gmso/abc/abstract_site.py
Site.name
python
def name(self) -> str: return self.__dict__.get("name_")
Return the name of the site.
https://github.com/mosdef-hub/gmso/blob/0f2ef1e79d43579da70e472c008e7fd25a9b2dee/gmso/abc/abstract_site.py#L68-L70
import warnings from typing import Any, ClassVar, Optional, Sequence, TypeVar, Union import numpy as np import unyt as u from pydantic import Field, StrictInt, StrictStr, validator from unyt.exceptions import InvalidUnitOperation from gmso.abc.gmso_base import GMSOBase from gmso.exceptions import GMSOError PositionType = Union[Sequence[float], np.ndarray, u.unyt_array] SiteT = TypeVar("SiteT", bound="Site") BASE_DOC_ATTR = "__base_doc__" FIELDS_IN_DOCSTRING = "alias_to_fields" def default_position(): return u.unyt_array([np.nan] * 3, u.nm) class Site(GMSOBase): __iterable_attributes__: ClassVar[set] = { "label", "residue_name", "residue_number", } __base_doc__: ClassVar[ str ] = """An interaction site object in the topology hierarchy. Site is the object that represents any general interaction site in a molecular simulation. Sites have been designed to be as general as possible, making no assumptions about representing atoms or beads, or having mass or charge. That is, a Site can represent an atom in an atomistic system, a bead in a coarse-grained system, and much more. Notes ----- The label attribute for a site takes its meaning when used with some sort of container (like topology) such that a label for a site can then be used to group sites together. The rules for defining a site label and their meaning the responsibility of the container where the sites will reside. """ name_: str = Field( "", description="Name of the site, defaults to class name", ) label_: str = Field("", description="Label to be assigned to the site") residue_number_: Optional[StrictInt] = Field( None, description="Residue number for the site" ) residue_name_: Optional[StrictStr] = Field( None, description="Residue label for the site" ) position_: PositionType = Field( default_factory=default_position, description="The 3D Cartesian coordinates of the position of the site", ) @property
MIT License
yaqiangcao/cloops
cLoops/io.py
parseRawBedpe2
python
def parseRawBedpe2(fs, fout, cs, cut, logger): chroms = {} cfs = [] ds = [] i, j, = 0, 0 for f in fs: r = "Parsing PETs from %s, requiring initial distance cutoff > %s" % ( f, cut) logger.info(r) if f.endswith(".gz"): of = gzip.open(f, "rb") else: of = open(f) for line in of: i += 1 if i % 100000 == 0: cFlush("%s PETs processed from %s" % (i, f)) line = line.split("\n")[0].split("\t") if "*" in line and "-1" in line: continue if len(line) < 6: continue try: pet = PET(line) except: continue if pet.chromA != pet.chromB: continue if len(cs) > 0 and (not (pet.chromA in cs and pet.chromB in cs)): continue if cut > 0 and pet.distance < cut: continue if pet.chromA not in chroms: cf = os.path.join(fout, "%s-%s" % (pet.chromA, pet.chromB) + ".txt") chroms[pet.chromA] = {"f": open(cf, "w"), "c": 0} cfs.append(cf) nline = [chroms[pet.chromA]["c"], pet.cA, pet.cB] chroms[pet.chromA]["f"].write("\t".join(map(str, nline)) + "\n") chroms[pet.chromA]["c"] += 1 j += 1 print() del(chroms) r = "Totaly %s PETs from %s, in which %s cis PETs" % (i, ",".join(fs), j) logger.info(r) return cfs
Get the cis-PETs, organized by chromosomes. Input could be mixed PETs in bedpe.gz or bedpe. Also change read id to numbers to minize memory usage. @param fs: bedpe files of replicates, could be .bedpe or .bedpe.gz @param fout: output prefix, the name for directory @param cs: chroms that wanted, list like ["chr1","chr2"]
https://github.com/yaqiangcao/cloops/blob/12472a63d6ecaa190f79c22140e860d2aae7c827/cLoops/io.py#L132-L189
__author__ = "CAO Yaqiang" __date__ = "" __modified__ = "" __email__ = "caoyaqiang0410@gmail.com" import os, random, gzip import joblib import numpy as np from cLoops.utils import callSys from cLoops.utils import cFlush class PET(object): __slots__ = [ "chromA", "chromB", "startA", "startB", "endA", "endB", "strandA", "strandB", "cA", "cB", "distance" ] def __init__(self, d): self.chromA = d[0] self.startA = int(d[1]) self.endA = int(d[2]) self.strandA = d[8] self.chromB = d[3] self.startB = int(d[4]) self.endB = int(d[5]) self.strandB = d[9] if self.chromA == self.chromB: if self.startA + self.endA > self.startB + self.endB: self.startA, self.startB = self.startB, self.startA self.endA, self.endB = self.endB, self.endA self.strandA, self.strandB = self.strandB, self.strandA self.cA = (self.startA + self.endA) / 2 self.cB = (self.startB + self.endB) / 2 self.distance = self.cB - self.cA else: self.cA, self.cB, self.distance = None, None, None def parseRawBedpe(fs, fout, cs, cut, logger): chroms = {} cfs = [] ds = [] i, j, = 0, 0 for f in fs: r = "Parsing PETs from %s, requiring initial distance cutoff > %s" % ( f, cut) logger.info(r) if f.endswith(".gz"): of = gzip.open(f, "rb") else: of = open(f) for line in of: i += 1 if i % 100000 == 0: cFlush("%s PETs processed from %s" % (i, f)) line = line.split("\n")[0].split("\t") if "*" in line and "-1" in line: continue if len(line) < 6: continue try: pet = PET(line) except: continue if pet.chromA != pet.chromB: continue if len(cs) > 0 and (not (pet.chromA in cs)): continue if cut > 0 and pet.distance < cut: continue if pet.chromA not in chroms: cf = os.path.join(fout, "%s-%s" % (pet.chromA, pet.chromB) + ".txt") chroms[pet.chromA] = {"f": open(cf, "w"), "c": 0, "r": set()} cfs.append(cf) if (pet.cA, pet.cB) in chroms[pet.chromA]["r"]: continue nline = [chroms[pet.chromA]["c"], pet.cA, pet.cB] chroms[pet.chromA]["f"].write("\t".join(map(str, nline)) + "\n") chroms[pet.chromA]["c"] += 1 chroms[pet.chromA]["r"].add((pet.cA, pet.cB)) j += 1 if pet.strandA != pet.strandB: ds.append(pet.distance) print() del chroms r = "Totaly %s PETs from %s, in which %s cis PETs" % (i, ",".join(fs), j) logger.info(r) return cfs, ds
MIT License
kyrus/pymyo
modules/geoip/command.py
parse_record
python
def parse_record(pymyo, record): for key, value in record.items(): pymyo.output("%s :\t%s"%(key, value))
Pretty print the record data
https://github.com/kyrus/pymyo/blob/0c5c63813b176484083cc50dc0d072264bf7a9ef/modules/geoip/command.py#L69-L74
import os import socket import pygeoip MODULE_LOCATION = os.path.abspath(os.path.dirname(__file__)) __author__ = "rich@kyr.us" __version__ = 1.0 __updated__ = "26/09/2012" __help__ = "Module for looking up the geoip location of a host" __alias__ = ["geo"] def Command(pymyo, name, *args): target = args[0] if target == "update": return update(pymyo) try: socket.inet_pton(socket.AF_INET, target) gi = pygeoip.GeoIP(os.path.join(MODULE_LOCATION, "GeoLiteCity.dat")) record = gi.record_by_addr(args[0]) pymyo.output("ipv4 :\t%s"%(args[0])) parse_record(pymyo, record) return None except Exception, err: pass try: gi = pygeoip.GeoIP(os.path.join(MODULE_LOCATION, "GeoLiteCity.dat")) record = gi.record_by_name(args[0]) pymyo.output("hostname :\t%s"%(args[0]) ) parse_record(pymyo,record) return None except Exception, err: pymyo.error("Unable to use geoip lookup on %s"%(target))
BSD 3-Clause New or Revised License
pypperoni/pypperoni
cmake.py
CMakeFileGenerator.add_directory
python
def add_directory(self, path): cwd = os.getcwd() path = os.path.abspath(path) os.chdir(path) try: for root, _, filenames in os.walk('.'): for filename in filenames: if filename.endswith('.py'): self.add_file(os.path.join(root, filename)) finally: os.chdir(cwd)
Adds all Python files (.py) in a directory to modules. For example, dir1/ file1.py file2.py will add the modules "file1" and "file2"
https://github.com/pypperoni/pypperoni/blob/d3bee7a5eecbc4b94227b39f0ec8a0d07bf4e09c/cmake.py#L76-L97
from .files import ConditionalFile, FileContainer from .module import Module, PackageModule, write_modules_file from .modulereducer import reduce_modules from .util import safePrint from threading import Thread, Lock from queue import Queue, Empty import traceback import hashlib import math import sys import os PYPPERONI_ROOT = os.path.abspath(os.path.dirname(__file__)) PYTHON_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'python')) class CMakeFileGenerator: def __init__(self, project, outputdir='build', nthreads=4): self.project = project self.outputdir = outputdir self.nthreads = nthreads self.modules = {} self.__files = [] self.cmake_in_file = os.path.join(PYPPERONI_ROOT, 'cmake.in') self.add_directory(os.path.join(PYTHON_ROOT, 'Lib')) self.generate_codecs_index() def add_file(self, filename, name=None): with open(filename, 'rb') as f: data = f.read() is_pkg = False if name is None: name = os.path.normpath(filename.rsplit('.', 1)[0]).replace(os.sep, '.') if name.endswith('.__init__'): name = name[:-9] is_pkg = True self.add_module(name, data, is_pkg) def add_module(self, name, data, is_pkg=False): if is_pkg: obj = PackageModule(name, data) else: obj = Module(name, data) self.modules[name] = obj
MIT License
bloodaxe/pytorch-toolbelt
pytorch_toolbelt/utils/catalyst/visualization.py
ShowPolarBatchesCallback.__init__
python
def __init__( self, visualize_batch: Callable, metric: str = "loss", minimize: bool = True, min_delta: float = 1e-6, targets="tensorboard", ): super().__init__(CallbackOrder.Logging) assert isinstance(targets, (list, str)) self.best_score = None self.best_input = None self.best_output = None self.worst_score = None self.worst_input = None self.worst_output = None self.target_metric = metric self.num_bad_epochs = 0 self.is_better = None self.visualize_batch = visualize_batch self.targets = [targets] if isinstance(targets, str) else targets if minimize: self.is_better = lambda score, best: score <= (best - min_delta) self.is_worse = lambda score, worst: score >= (worst + min_delta) else: self.is_better = lambda score, best: score >= (best + min_delta) self.is_worse = lambda score, worst: score <= (worst - min_delta)
:param visualize_batch: Visualization function that must return list of images. It's takes two arguments: (batch input, predicted output). :param metric: :param minimize: :param min_delta: :param targets: Str 'tensorboard' or 'matplotlib, or ['tensorboard', 'matplotlib']
https://github.com/bloodaxe/pytorch-toolbelt/blob/1728059f9d2a799cc91cb6e8bf230e5421b6888f/pytorch_toolbelt/utils/catalyst/visualization.py#L39-L78
import warnings from typing import Callable, Optional, List, Union, Dict, Iterable import cv2 import matplotlib.pyplot as plt import numpy as np import torch import torch.nn.functional as F from catalyst.dl import Callback, CallbackOrder, IRunner, CallbackNode from catalyst.dl.callbacks import TensorboardLogger from catalyst.contrib.tools.tensorboard import SummaryWriter from pytorch_toolbelt.utils import render_figure_to_tensor from pytorch_toolbelt.utils.distributed import all_gather from ..torch_utils import rgb_image_from_tensor, to_numpy, image_to_tensor __all__ = [ "get_tensorboard_logger", "ShowPolarBatchesCallback", "ShowEmbeddingsCallback", "UMAPCallback", "draw_binary_segmentation_predictions", "draw_semantic_segmentation_predictions", ] def get_tensorboard_logger(runner: IRunner, tensorboard_callback_name: str = "_tensorboard") -> SummaryWriter: tb_callback: TensorboardLogger = runner.callbacks[tensorboard_callback_name] if runner.loader_name not in tb_callback.loggers: raise RuntimeError(f"Cannot find Tensorboard logger for loader {runner.loader_name}") return tb_callback.loggers[runner.loader_name] class ShowPolarBatchesCallback(Callback):
MIT License
geoscienceaustralia/agdc
src/abstract_ingester/collection.py
Lock.__exit__
python
def __exit__(self, exc_type, exc_value, exc_traceback): for object_to_unlock in self.lock_list: self.datacube.unlock_object(object_to_unlock)
Auto-called on 'with' statement exit. Releases the locks whether or not there has been an exception. Implicitly returns None which causes any exception to be re-raised.
https://github.com/geoscienceaustralia/agdc/blob/2e22c6bdd9305555db3615305ff6a5df6219cd51/src/abstract_ingester/collection.py#L484-L493
import logging import os import time import shutil from agdc.cube_util import DatasetError, create_directory from tile_contents import TileContents from acquisition_record import AcquisitionRecord from ingest_db_wrapper import IngestDBWrapper LOGGER = logging.getLogger(__name__) LOGGER.setLevel(logging.INFO) class Collection(object): def __init__(self, datacube): self.datacube = datacube self.db = IngestDBWrapper(datacube.db_connection) self.new_bands = self.__reindex_bands(datacube.bands) self.transaction_stack = [] self.temp_tile_directory = os.path.join(self.datacube.tile_root, 'ingest_temp', self.datacube.process_id) create_directory(self.temp_tile_directory) def cleanup(self): shutil.rmtree(self.temp_tile_directory, ignore_errors=True) @staticmethod def get_dataset_key(dataset): derived_levels = {'PQA', 'FC'} satellite = dataset.get_satellite_tag() sensor = dataset.get_sensor_name() level = dataset.get_processing_level() if level in derived_levels: satellite = 'DERIVED' sensor = level return (satellite, sensor, level) def get_temp_tile_directory(self): return self.temp_tile_directory def check_metadata(self, dataset): self.__check_satellite_and_sensor(dataset) self.__check_processing_level(dataset) self.__check_bands(dataset) def transaction(self, db=None): return Transaction(self.db if db is None else db, self.transaction_stack) def lock_datasets(self, dataset_list): lock_list = ['Dataset-' + str(dataset_id) for dataset_id in dataset_list] return Lock(self.datacube, lock_list) def create_acquisition_record(self, dataset): return AcquisitionRecord(self, dataset) def create_tile_contents(self, tile_type_id, tile_footprint, band_stack): tile_type_info = self.datacube.tile_type_dict[tile_type_id] tile_contents = TileContents(self.datacube.tile_root, tile_type_info, tile_footprint, band_stack) return tile_contents def current_transaction(self): return self.transaction_stack[-1] def mark_tile_for_removal(self, tile_pathname): self.current_transaction().mark_tile_for_removal(tile_pathname) def mark_tile_for_creation(self, tile_contents): self.current_transaction().mark_tile_for_creation(tile_contents) @staticmethod def __reindex_bands(bands): new_bands = {} for (tile_type, band_dict) in bands.items(): for ((satellite, sensor), sensor_dict) in band_dict.items(): for (file_number, band_info) in sensor_dict.items(): dataset_key = (satellite, sensor, band_info['level_name']) new_bands.setdefault(dataset_key, {}) new_bands[dataset_key].setdefault(tile_type, {}) new_bands[dataset_key][tile_type][file_number] = band_info return new_bands def __check_satellite_and_sensor(self, dataset): satellite_id = self.db.get_satellite_id(dataset.get_satellite_tag()) if satellite_id is None: raise DatasetError("Unknown satellite tag: '%s'" % dataset.get_satellite_tag()) sensor_id = self.db.get_sensor_id(satellite_id, dataset.get_sensor_name()) if sensor_id is None: msg = ("Unknown satellite and sensor pair: '%s', '%s'" % (dataset.get_satellite_tag(), dataset.get_sensor_name())) raise DatasetError(msg) def __check_processing_level(self, dataset): level_id = self.db.get_level_id(dataset.get_processing_level()) if level_id is None: raise DatasetError("Unknown processing level: '%s'" % dataset.get_processing_level()) def __check_bands(self, dataset): try: dataset_bands = self.new_bands[self.get_dataset_key(dataset)] except KeyError: raise DatasetError('No tile types for this dataset.') for tile_type_bands in dataset_bands.values(): for band_info in tile_type_bands.values(): dataset.find_band_file(band_info['file_pattern']) class Transaction(object): def __init__(self, db, tr_stack=None): self.db = db self.tr_stack = tr_stack self.tile_remove_list = None self.tile_create_list = None self.previous_commit_mode = None def __enter__(self): self.tile_remove_list = [] self.tile_create_list = [] self.previous_commit_mode = self.db.turn_off_autocommit() if self.tr_stack is not None: self.tr_stack.append(self) return self def __exit__(self, exc_type, exc_value, exc_traceback): if exc_type is None: self.__commit() else: self.__rollback() self.tile_remove_list = None self.tile_create_list = None self.db.restore_commit_mode(self.previous_commit_mode) if self.tr_stack is not None: tr = self.tr_stack.pop() assert tr is self, "Unexpected value on transaction stack." def __commit(self): for tile_contents in self.tile_create_list: tile_contents.make_permanent() self.db.commit() tile_create_set = {t.get_output_path() for t in self.tile_create_list} for tile_pathname in self.tile_remove_list: if tile_pathname not in tile_create_set: if os.path.isfile(tile_pathname): os.remove(tile_pathname) def __rollback(self): for tile_contents in self.tile_create_list: tile_contents.remove() self.db.rollback() def mark_tile_for_removal(self, tile_pathname): if tile_pathname not in self.tile_remove_list: self.tile_remove_list.append(tile_pathname) def mark_tile_for_creation(self, tile_contents): self.tile_create_list.append(tile_contents) class Lock(object): DEFAULT_WAIT = 10 DEFAULT_RETRIES = 6 def __init__(self, datacube, lock_list, wait=DEFAULT_WAIT, retries=DEFAULT_RETRIES): self.datacube = datacube self.lock_list = sorted(lock_list) self.wait = wait self.retries = retries def __enter__(self): for dummy_tries in range(self.retries + 1): try: self.__acquire_locks(self.lock_list) break except LockError: time.sleep(self.wait) else: raise LockError(("Unable to lock objects after %s tries: " % self.retries) + self.lock_list) return self
BSD 3-Clause New or Revised License
pwwang/datar
datar/dplyr/group_data.py
group_size
python
def group_size(_data: DataFrame) -> List[int]: return [_data.shape[0]]
Gives the size of each group
https://github.com/pwwang/datar/blob/4e2b5db026ad35918954576badef9951928c0cb1/datar/dplyr/group_data.py#L117-L119
from typing import List from pandas import DataFrame from pipda import register_verb from pipda.utils import CallingEnvs from ..core.grouped import DataFrameGroupBy from ..base import setdiff @register_verb(DataFrame) def group_data(_data: DataFrame) -> DataFrame: rows = list(range(_data.shape[0])) return DataFrame({"_rows": [rows]}) @group_data.register(DataFrameGroupBy) def _(_data: DataFrameGroupBy) -> DataFrame: return _data._group_data @register_verb(DataFrame) def group_keys(_data: DataFrame) -> DataFrame: return DataFrame(index=[0]) @group_keys.register(DataFrameGroupBy) def _(_data: DataFrameGroupBy) -> DataFrame: return ( group_data(_data, __calling_env=CallingEnvs.REGULAR).iloc[:, :-1].copy() ) @register_verb(DataFrame) def group_rows(_data: DataFrame) -> List[List[int]]: rows = list(range(_data.shape[0])) return [rows] @group_rows.register(DataFrameGroupBy) def _(_data: DataFrame) -> List[List[int]]: return group_data(_data, __calling_env=CallingEnvs.REGULAR)[ "_rows" ].tolist() @register_verb(DataFrame) def group_indices(_data: DataFrame) -> List[int]: return [0] * _data.shape[0] @group_indices.register(DataFrameGroupBy) def _(_data: DataFrameGroupBy) -> List[int]: ret = {} for row in group_data( _data, __calling_env=CallingEnvs.REGULAR ).itertuples(): for index in row[-1]: ret[index] = row.Index return [ret[key] for key in sorted(ret)] @register_verb(DataFrame) def group_vars(_data: DataFrame) -> List[str]: index = _data.attrs.get("_group_index", None) if index is None: return [] gdata = _data.attrs["_group_data"] return setdiff(gdata.columns, ["_rows"], __calling_env=CallingEnvs.REGULAR) @group_vars.register(DataFrameGroupBy) def _(_data: DataFrameGroupBy) -> List[str]: return _data.attrs["_group_vars"] groups = group_vars group_cols = group_vars @register_verb(DataFrame)
MIT License
aakhundov/tf-example-models
models/tf_cnn.py
conv_pool_layer
python
def conv_pool_layer(x, in_channels, out_channels, layer_name): with tf.name_scope(layer_name): weights = tf.Variable(tf.truncated_normal([5, 5, in_channels, out_channels], stddev=0.1)) biases = tf.Variable(tf.constant(0.1, shape=[out_channels])) conv = tf.nn.relu(tf.nn.conv2d(x, weights, strides=[1, 1, 1, 1], padding='SAME') + biases) pool = tf.nn.max_pool(conv, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') return pool
Creates a single convpool layer of a NN
https://github.com/aakhundov/tf-example-models/blob/40b32991a76cb8d7201f9a5851789847db310b79/models/tf_cnn.py#L41-L56
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data LOCAL_FOLDER = "MNIST_data/" IMAGE_SIZE = 28 IMAGE_PIXELS = 784 NUM_CLASSES = 10 CONVPOOL1_CHANNELS = 32 CONVPOOL2_CHANNELS = 64 DENSE_HIDDEN_UNITS = 1024 LEARNING_RATE = 1e-4 TRAINING_STEPS = 2000 BATCH_SIZE = 100 def dense_layer(x, in_dim, out_dim, layer_name, act): with tf.name_scope(layer_name): weights = tf.Variable( tf.truncated_normal( [in_dim, out_dim], stddev=1.0 / tf.sqrt(float(out_dim)) ), name="weights" ) biases = tf.Variable(tf.zeros([out_dim]), name="biases") layer = act(tf.matmul(x, weights) + biases, name="activations") return layer
Apache License 2.0
openstack/networking-hyperv
networking_hyperv/neutron/agent/layer2.py
Layer2Agent._load_physical_network_mappings
python
def _load_physical_network_mappings(self, phys_net_vswitch_mappings): for mapping in phys_net_vswitch_mappings: parts = mapping.split(':') if len(parts) != 2: LOG.debug('Invalid physical network mapping: %s', mapping) else: pattern = re.escape(parts[0].strip()).replace('\\*', '.*') pattern = pattern + '$' vswitch = parts[1].strip() self._physical_network_mappings[pattern] = vswitch
Load all the information regarding the physical network.
https://github.com/openstack/networking-hyperv/blob/7619f8c9974dcceeb4f04b43c30564a753c357ec/networking_hyperv/neutron/agent/layer2.py#L134-L144
import abc import collections import re import eventlet from eventlet import tpool from neutron.agent import rpc as agent_rpc from neutron_lib.agent import topics from neutron_lib import constants as n_const from neutron_lib import rpc as n_rpc from os_win import constants as os_win_const from os_win import exceptions as os_win_exc from oslo_concurrency import lockutils from oslo_log import log as logging from oslo_service import loopingcall import six from networking_hyperv.common.i18n import _, _LI, _LE from networking_hyperv.neutron import _common_utils as c_util from networking_hyperv.neutron.agent import base as base_agent from networking_hyperv.neutron import config from networking_hyperv.neutron import constants from networking_hyperv.neutron import exception LOG = logging.getLogger(__name__) CONF = config.CONF _synchronized = lockutils.synchronized_with_prefix('n-hv-agent-') _port_synchronized = c_util.get_port_synchronized_decorator('n-hv-agent-') class Layer2Agent(base_agent.BaseAgent): _AGENT_TOPIC = n_const.L2_AGENT_TOPIC _OVS_EXT_NAME_RE = re.compile(r'.*((open.?v.?switch)|(ovs)).*', re.IGNORECASE) def __init__(self): super(Layer2Agent, self).__init__() self._network_vswitch_map = {} self._added_ports = set() self._removed_ports = set() self._bound_ports = set() self._unbound_ports = set() self._physical_network_mappings = collections.OrderedDict() self._consumers = [] self._event_callback_pairs = [] self._setup() self._set_agent_state() self._setup_rpc() def _setup(self): agent_config = CONF.get("AGENT", {}) self._worker_count = agent_config.get('worker_count') self._phys_net_map = agent_config.get( 'physical_network_vswitch_mappings', []) self._local_network_vswitch = agent_config.get( 'local_network_vswitch') self._load_physical_network_mappings(self._phys_net_map) self._validate_vswitches() self._endpoints.append(self) self._event_callback_pairs.extend([ (self._utils.EVENT_TYPE_CREATE, self._process_added_port_event), (self._utils.EVENT_TYPE_DELETE, self._process_removed_port_event) ]) tpool.set_num_threads(self._worker_count) def _setup_qos_extension(self): pass def _setup_rpc(self): self._plugin_rpc = agent_rpc.PluginApi(topics.PLUGIN) self._state_rpc = agent_rpc.PluginReportStateAPI(topics.PLUGIN) self._client = n_rpc.get_client(self.target) self._consumers.extend([ [topics.PORT, topics.UPDATE], [topics.NETWORK, topics.DELETE], [topics.PORT, topics.DELETE] ]) self._connection = agent_rpc.create_consumers( self._endpoints, self._topic, self._consumers, start_listening=False ) self._setup_qos_extension() self._connection.consume_in_threads() report_interval = CONF.AGENT.report_interval if report_interval: heartbeat = loopingcall.FixedIntervalLoopingCall( self._report_state) heartbeat.start(interval=report_interval) def _process_added_port_event(self, port_name): LOG.info("Hyper-V VM vNIC added: %s", port_name) self._added_ports.add(port_name) def _process_removed_port_event(self, port_name): LOG.info("Hyper-V VM vNIC removed: %s", port_name) self._removed_ports.add(port_name)
Apache License 2.0
purestorage-openconnect/py-pure-client
pypureclient/flasharray/FA_2_0/models/volume_snapshot_transfer_get_response.py
VolumeSnapshotTransferGetResponse.__init__
python
def __init__( self, more_items_remaining=None, total_item_count=None, items=None, total=None, ): if more_items_remaining is not None: self.more_items_remaining = more_items_remaining if total_item_count is not None: self.total_item_count = total_item_count if items is not None: self.items = items if total is not None: self.total = total
Keyword args: more_items_remaining (bool): Returns a value of `true` if subsequent items can be retrieved. total_item_count (int): The total number of records after applying all filter query parameters. The `total_item_count` will be calculated if and only if the corresponding query parameter `total_item_count` is set to `true`. If this query parameter is not set or set to `false`, a value of `null` will be returned. items (list[VolumeSnapshotTransfer]): Returns a list of all items after filtering. The values are displayed for each name where meaningful. If `total_only=true`, the `items` list will be empty. total (list[VolumeSnapshotTransfer]): The aggregate value of all items after filtering. Where it makes more sense, the average value is displayed instead. The values are displayed for each field where meaningful.
https://github.com/purestorage-openconnect/py-pure-client/blob/2d9fdef0b73321cea9613e7d1eb881b42845099b/pypureclient/flasharray/FA_2_0/models/volume_snapshot_transfer_get_response.py#L49-L70
import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_0 import models class VolumeSnapshotTransferGetResponse(object): swagger_types = { 'more_items_remaining': 'bool', 'total_item_count': 'int', 'items': 'list[VolumeSnapshotTransfer]', 'total': 'list[VolumeSnapshotTransfer]' } attribute_map = { 'more_items_remaining': 'more_items_remaining', 'total_item_count': 'total_item_count', 'items': 'items', 'total': 'total' } required_args = { }
BSD 2-Clause Simplified License
alecwangcq/grasp
utils/prune_utils.py
ComputeMatGrad.linear
python
def linear(input, grad_output, layer): with torch.no_grad(): if layer.bias is not None: input = torch.cat([input, input.new(input.size(0), 1).fill_(1)], 1) input = input.unsqueeze(1) grad_output = grad_output.unsqueeze(2) grad = torch.bmm(grad_output, input) return grad
:param input: batch_size * input_dim :param grad_output: batch_size * output_dim :param layer: [nn.module] output_dim * input_dim :return: batch_size * output_dim * (input_dim + [1 if with bias])
https://github.com/alecwangcq/grasp/blob/f17d87ac537bfce476ac2424171a8b6eb56499db/utils/prune_utils.py#L89-L102
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from .common_utils import try_contiguous def _fetch_weights_collections(scores, _prev_masks): weights = [] eps = 1e-10 if _prev_masks is None: for m in scores.keys(): if isinstance(m, (nn.Linear, nn.Conv2d)): w = scores[m].view(-1).data.cpu().numpy() weights.extend(w.tolist()) else: for m in scores.keys(): if isinstance(m, (nn.Linear, nn.Conv2d)): w = scores[m] w = filter_weights(w, _prev_masks[m]) weights.extend(w) return weights def _extract_patches(x, kernel_size, stride, padding): if padding[0] + padding[1] > 0: x = F.pad(x, (padding[1], padding[1], padding[0], padding[0])).data x = x.unfold(2, kernel_size[0], stride[0]) x = x.unfold(3, kernel_size[1], stride[1]) x = x.transpose_(1, 2).transpose_(2, 3).contiguous() x = x.view( x.size(0), x.size(1), x.size(2), x.size(3) * x.size(4) * x.size(5)) return x def filter_weights(weights, mask): w = weights.view(-1).tolist() m = mask.view(-1).tolist() res = [] for idx in range(len(m)): if m[idx] > 0.5: res.append(w[idx]) return res def _extract_patches(x, kernel_size, stride, padding): if padding[0] + padding[1] > 0: x = F.pad(x, (padding[1], padding[1], padding[0], padding[0])).data x = x.unfold(2, kernel_size[0], stride[0]) x = x.unfold(3, kernel_size[1], stride[1]) x = x.transpose_(1, 2).transpose_(2, 3).contiguous() x = x.view( x.size(0), x.size(1), x.size(2), x.size(3) * x.size(4) * x.size(5)) return x class ComputeMatGrad: @classmethod def __call__(cls, input, grad_output, layer): if isinstance(layer, nn.Linear): grad = cls.linear(input, grad_output, layer) elif isinstance(layer, nn.Conv2d): grad = cls.conv2d(input, grad_output, layer) else: raise NotImplementedError return grad @staticmethod
MIT License
vishal-v/stackgan
model.py
load_images
python
def load_images(image_path, bounding_box, size): image = Image.open(image_path).convert('RGB') w, h = image.size if bounding_box is not None: r = int(np.maximum(bounding_box[2], bounding_box[3]) * 0.75) c_x = int((bounding_box[0] + bounding_box[2]) / 2) c_y = int((bounding_box[1] + bounding_box[3]) / 2) y1 = np.maximum(0, c_y - r) y2 = np.minimum(h, c_y + r) x1 = np.maximum(0, c_x - r) x2 = np.minimum(w, c_x + r) image = image.crop([x1, y1, x2, y2]) image = image.resize(size, PIL.Image.BILINEAR) return image
Crops the image to the bounding box and then resizes it.
https://github.com/vishal-v/stackgan/blob/f83587e5f73f9fa05f31e14dcf4b67daa8e6e118/model.py#L461-L477
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import pickle import random import time import numpy as np import pandas as pd import tensorflow as tf assert tf.__version__.startswith('2') import PIL from PIL import Image import matplotlib.pyplot as plt import tensorflow.keras.backend as K from tensorflow.keras import Input, Model from tensorflow.keras.layers import LeakyReLU, BatchNormalization, ReLU, Activation from tensorflow.keras.layers import UpSampling2D, Conv2D, Concatenate, Dense, concatenate from tensorflow.keras.layers import Flatten, Lambda, Reshape, ZeroPadding2D, add from tensorflow.keras.optimizers import Adam from tensorflow.keras.preprocessing.image import ImageDataGenerator def conditioning_augmentation(x): mean = x[:, :128] log_sigma = x[:, 128:] stddev = tf.math.exp(log_sigma) epsilon = K.random_normal(shape=K.constant((mean.shape[1], ), dtype='int32')) c = mean + stddev * epsilon return c def build_ca_network(): input_layer1 = Input(shape=(1024,)) mls = Dense(256)(input_layer1) mls = LeakyReLU(alpha=0.2)(mls) ca = Lambda(conditioning_augmentation)(mls) return Model(inputs=[input_layer1], outputs=[ca]) def UpSamplingBlock(x, num_kernels): x = UpSampling2D(size=(2,2))(x) x = Conv2D(num_kernels, kernel_size=(3,3), padding='same', strides=1, use_bias=False, kernel_initializer='he_uniform')(x) x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) x = ReLU()(x) return x def build_stage1_generator(): input_layer1 = Input(shape=(1024,)) ca = Dense(256)(input_layer1) ca = LeakyReLU(alpha=0.2)(ca) c = Lambda(conditioning_augmentation)(ca) input_layer2 = Input(shape=(100,)) concat = Concatenate(axis=1)([c, input_layer2]) x = Dense(16384, use_bias=False)(concat) x = ReLU()(x) x = Reshape((4, 4, 1024), input_shape=(16384,))(x) x = UpSamplingBlock(x, 512) x = UpSamplingBlock(x, 256) x = UpSamplingBlock(x, 128) x = UpSamplingBlock(x, 64) x = Conv2D(3, kernel_size=3, padding='same', strides=1, use_bias=False, kernel_initializer='he_uniform')(x) x = Activation('tanh')(x) stage1_gen = Model(inputs=[input_layer1, input_layer2], outputs=[x, ca]) return stage1_gen def ConvBlock(x, num_kernels, kernel_size=(4,4), strides=2, activation=True): x = Conv2D(num_kernels, kernel_size=kernel_size, padding='same', strides=strides, use_bias=False, kernel_initializer='he_uniform')(x) x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) if activation: x = LeakyReLU(alpha=0.2)(x) return x def build_embedding_compressor(): input_layer1 = Input(shape=(1024,)) x = Dense(128)(input_layer1) x = ReLU()(x) model = Model(inputs=[input_layer1], outputs=[x]) return model def build_stage1_discriminator(): input_layer1 = Input(shape=(64, 64, 3)) x = Conv2D(64, kernel_size=(4,4), strides=2, padding='same', use_bias=False, kernel_initializer='he_uniform')(input_layer1) x = LeakyReLU(alpha=0.2)(x) x = ConvBlock(x, 128) x = ConvBlock(x, 256) x = ConvBlock(x, 512) input_layer2 = Input(shape=(4, 4, 128)) concat = concatenate([x, input_layer2]) x1 = Conv2D(512, kernel_size=(1,1), padding='same', strides=1, use_bias=False, kernel_initializer='he_uniform')(concat) x1 = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) x1 = LeakyReLU(alpha=0.2)(x) x1 = Flatten()(x1) x1 = Dense(1)(x1) x1 = Activation('sigmoid')(x1) stage1_dis = Model(inputs=[input_layer1, input_layer2], outputs=[x1]) return stage1_dis def build_adversarial(generator_model, discriminator_model): input_layer1 = Input(shape=(1024,)) input_layer2 = Input(shape=(100,)) input_layer3 = Input(shape=(4, 4, 128)) x, ca = generator_model([input_layer1, input_layer2]) discriminator_model.trainable = False probabilities = discriminator_model([x, input_layer3]) adversarial_model = Model(inputs=[input_layer1, input_layer2, input_layer3], outputs=[probabilities, ca]) return adversarial_model def concat_along_dims(inputs): c = inputs[0] x = inputs[1] c = K.expand_dims(c, axis=1) c = K.expand_dims(c, axis=1) c = K.tile(c, [1, 16, 16, 1]) return K.concatenate([c, x], axis = 3) def residual_block(input): x = Conv2D(512, kernel_size=(3,3), padding='same', use_bias=False, kernel_initializer='he_uniform')(input) x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) x = ReLU()(x) x = Conv2D(512, kernel_size=(3,3), padding='same', use_bias=False, kernel_initializer='he_uniform')(x) x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) x = add([x, input]) x = ReLU()(x) return x def build_stage2_generator(): input_layer1 = Input(shape=(1024,)) input_images = Input(shape=(64, 64, 3)) ca = Dense(256)(input_layer1) mls = LeakyReLU(alpha=0.2)(ca) c = Lambda(conditioning_augmentation)(mls) x = ZeroPadding2D(padding=(1,1))(input_images) x = Conv2D(128, kernel_size=(3,3), strides=1, use_bias=False, kernel_initializer='he_uniform')(x) x = ReLU()(x) x = ZeroPadding2D(padding=(1,1))(x) x = Conv2D(256, kernel_size=(4,4), strides=2, use_bias=False, kernel_initializer='he_uniform')(x) x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) x = ReLU()(x) x = ZeroPadding2D(padding=(1,1))(x) x = Conv2D(512, kernel_size=(4,4), strides=2, use_bias=False, kernel_initializer='he_uniform')(x) x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) x = ReLU()(x) concat = concat_along_dims([c, x]) x = ZeroPadding2D(padding=(1,1))(concat) x = Conv2D(512, kernel_size=(3,3), use_bias=False, kernel_initializer='he_uniform')(x) x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) x = ReLU()(x) x = residual_block(x) x = residual_block(x) x = residual_block(x) x = residual_block(x) x = UpSamplingBlock(x, 512) x = UpSamplingBlock(x, 256) x = UpSamplingBlock(x, 128) x = UpSamplingBlock(x, 64) x = Conv2D(3, kernel_size=(3,3), padding='same', use_bias=False, kernel_initializer='he_uniform')(x) x = Activation('tanh')(x) stage2_gen = Model(inputs=[input_layer1, input_images], outputs=[x, mls]) return stage2_gen def build_stage2_discriminator(): input_layer1 = Input(shape=(256, 256, 3)) x = Conv2D(64, kernel_size=(4,4), padding='same', strides=2, use_bias=False, kernel_initializer='he_uniform')(input_layer1) x = LeakyReLU(alpha=0.2)(x) x = ConvBlock(x, 128) x = ConvBlock(x, 256) x = ConvBlock(x, 512) x = ConvBlock(x, 1024) x = ConvBlock(x, 2048) x = ConvBlock(x, 1024, (1,1), 1) x = ConvBlock(x, 512, (1,1), 1, False) x1 = ConvBlock(x, 128, (1,1), 1) x1 = ConvBlock(x1, 128, (3,3), 1) x1 = ConvBlock(x1, 512, (3,3), 1, False) x2 = add([x, x1]) x2 = LeakyReLU(alpha=0.2)(x2) input_layer2 = Input(shape=(4, 4, 128)) concat = concatenate([x2, input_layer2]) x3 = Conv2D(512, kernel_size=(1,1), strides=1, padding='same', kernel_initializer='he_uniform')(concat) x3 = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x3) x3 = LeakyReLU(alpha=0.2)(x3) x3 = Flatten()(x3) x3 = Dense(1)(x3) x3 = Activation('sigmoid')(x3) stage2_dis = Model(inputs=[input_layer1, input_layer2], outputs=[x3]) return stage2_dis def stage2_adversarial_network(stage2_disc, stage2_gen, stage1_gen): conditioned_embedding = Input(shape=(1024, )) latent_space = Input(shape=(100, )) compressed_replicated = Input(shape=(4, 4, 128)) input_images, ca = stage1_gen([conditioned_embedding, latent_space]) stage2_disc.trainable = False stage1_gen.trainable = False images, ca2 = stage2_gen([conditioned_embedding, input_images]) probability = stage2_disc([images, compressed_replicated]) return Model(inputs=[conditioned_embedding, latent_space, compressed_replicated], outputs=[probability, ca2]) def checkpoint_prefix(): checkpoint_dir = './training_checkpoints' checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt') return checkpoint_prefix def adversarial_loss(y_true, y_pred): mean = y_pred[:, :128] ls = y_pred[:, 128:] loss = -ls + 0.5 * (-1 + tf.math.exp(2.0 * ls) + tf.math.square(mean)) loss = K.mean(loss) return loss def normalize(input_image, real_image): input_image = (input_image / 127.5) - 1 real_image = (real_image / 127.5) - 1 return input_image, real_image def load_class_ids_filenames(class_id_path, filename_path): with open(class_id_path, 'rb') as file: class_id = pickle.load(file, encoding='latin1') with open(filename_path, 'rb') as file: filename = pickle.load(file, encoding='latin1') return class_id, filename def load_text_embeddings(text_embeddings): with open(text_embeddings, 'rb') as file: embeds = pickle.load(file, encoding='latin1') embeds = np.array(embeds) return embeds def load_bbox(data_path): bbox_path = data_path + '/bounding_boxes.txt' image_path = data_path + '/images.txt' bbox_df = pd.read_csv(bbox_path, delim_whitespace=True, header=None).astype(int) filename_df = pd.read_csv(image_path, delim_whitespace=True, header=None) filenames = filename_df[1].tolist() bbox_dict = {i[:-4]:[] for i in filenames[:2]} for i in range(0, len(filenames)): bbox = bbox_df.iloc[i][1:].tolist() dict_key = filenames[i][:-4] bbox_dict[dict_key] = bbox return bbox_dict
MIT License
tarsqi/ttk
components/merging/sputlink/graph.py
Graph._remove_derived_relations
python
def _remove_derived_relations(self): for edge in self.get_edges(): if edge.is_derived(): edge.remove_constraint()
Remove all derived relations from the graph.
https://github.com/tarsqi/ttk/blob/773273098475e1631084aca5264f5732724cd8dd/components/merging/sputlink/graph.py#L318-L322
from __future__ import absolute_import from __future__ import print_function from .objects import Node, Edge, Constraint from .utils import intersect_relations from .utils import compare_id from .utils import html_graph_prefix from .mappings import invert_interval_relation from .mappings import abbreviate_convex_relation from utilities import logger from library.main import LIBRARY from io import open DEBUG = True DEBUG = False TIMEX = LIBRARY.timeml.TIMEX TID = LIBRARY.timeml.TID EVENT = LIBRARY.timeml.EVENT EID = LIBRARY.timeml.EID EIID = LIBRARY.timeml.EIID EVENTID = LIBRARY.timeml.EVENTID FORM = LIBRARY.timeml.FORM VALUE = LIBRARY.timeml.VALUE class Graph(object): def __init__(self, compositions): self.compositions = compositions self.cycle = 0 self.queue = [] self.nodes = {} self.edges = {} def add_nodes(self, events, timexes): for timex in timexes: node = Node(timex=timex) self.nodes[node.id] = node for event in events: node = Node(event=event) self.nodes[node.id] = node for n1 in self.nodes.keys(): self.edges[n1] = {} for n2 in self.nodes.keys(): self.edges[n1][n2] = Edge(n1, n2, self) def add_nodes(self, sources, source_type): for source in sources: if source_type == 'IDENTIFIER': identifier = source text = '' elif source_type == TIMEX: identifier = source.attrs[TID] text = source.attrs[VALUE] elif source_type == EVENT: identifier = source.attrs[EIID] text = source.attrs[FORM] node = Node(source, identifier, source_type, text) self.nodes[node.id] = node for n1 in self.nodes.keys(): self.edges[n1] = {} for n2 in self.nodes.keys(): self.edges[n1][n2] = Edge(n1, n2, self) def propagate(self, constraint): self.cycle += 1 if constraint.is_garbage(): return self.added = [] self.queue.append(constraint) debug(str="\n%d %s\n" % (self.cycle, constraint)) while self.queue: constraint_i_j = self.queue.pop(0) constraint_i_j.cycle = self.cycle debug(1, "POP QUEUE: %s" % (constraint_i_j)) edge_i_j = self.edges[constraint_i_j.node1][constraint_i_j.node2] (status, intersection) = self._intersect_constraints(edge_i_j, constraint_i_j) if status == 'INTERSECTION-IS-MORE-SPECIFIC': self.added.append(constraint_i_j) self._update_constraint(edge_i_j, constraint_i_j, intersection) def reduce(self): self.cycle += 1 self.added = [] self._remove_derived_relations() def remove_node(self, node_id): node = self.nodes[node_id] for node_in_id in node.edges_in.keys(): del self.nodes[node_in_id].edges_out[node_id] for node_out_id in node.edges_out.keys(): del self.nodes[node_out_id].edges_in[node_id] del self.nodes[node_id] del self.edges[node_id] for other_node_id in self.edges.keys(): del self.edges[other_node_id][node_id] def _update_constraint(self, edge_i_j, constraint_i_j, intersection): constraint_i_j.relset = intersection self._add_constraint_to_edge(constraint_i_j, edge_i_j) node_i = constraint_i_j.get_node1() node_j = constraint_i_j.get_node2() node_i.edges_out[constraint_i_j.node2] = edge_i_j node_j.edges_in[constraint_i_j.node1] = edge_i_j self._check_all_k_i_j(node_i, node_j, edge_i_j) self._check_all_i_j_k(node_i, node_j, edge_i_j) def _check_all_k_i_j(self, node_i, node_j, edge_i_j): debug(1, "CHECKING: X --> %s --> %s" % (node_i.id, node_j.id)) for edge_k_i in node_i.edges_in.values(): debug(2, "%s * %s" % (edge_k_i, edge_i_j)) self._check_k_i_j(edge_k_i, edge_i_j, node_i, node_j) def _check_all_i_j_k(self, node_i, node_j, edge_i_j): debug(1, "CHECKING: %s --> %s --> X" % (node_i.id, node_j.id)) for edge_j_k in node_j.edges_out.values(): debug(2, "%s * %s" % (edge_i_j, edge_j_k)) self._check_i_j_k(edge_i_j, edge_j_k, node_i, node_j) def _check_k_i_j(self, edge_k_i, edge_i_j, node_i, node_j): node_k = edge_k_i.get_node1() if node_k.id == node_j.id: return edge_k_j = self._get_edge(node_k, node_j) relset_k_j = self._compose(edge_k_i, edge_i_j.constraint) debug(3, "{%s} * {%s} --> {%s} || %s " % (edge_k_i.constraint.relset, edge_i_j.constraint.relset, relset_k_j, edge_k_j.constraint)) if relset_k_j is not None: self._combine(edge_k_j, relset_k_j, edge_k_i.constraint, edge_i_j.constraint) def _check_i_j_k(self, edge_i_j, edge_j_k, node_i, node_j): node_k = edge_j_k.get_node2() if node_k.id == node_i.id: return edge_i_k = self._get_edge(node_i, node_k) relset_i_k = self._compose(edge_i_j.constraint, edge_j_k) debug(3, "{%s} * {%s} --> {%s} || %s " % (edge_i_j.constraint.relset, edge_j_k.constraint.relset, relset_i_k, edge_i_k.constraint)) if relset_i_k is not None: self._combine(edge_i_k, relset_i_k, edge_i_j.constraint, edge_j_k.constraint) def _combine(self, edge, relset, c1, c2): edge_relset = edge.relset intersection = intersect_relations(edge_relset, relset) if intersection == '': debug(4, "WARNING: found an inconsistency where it shouldn't be") pass elif intersection is None: debug(4, "WARNING: intersection is None, this should not happen") pass elif edge_relset is None: self._add_constraint_to_queue(edge, intersection, c1, c2) elif len(intersection) < len(edge_relset): self._add_constraint_to_queue(edge, intersection, c1, c2) def _add_constraint_to_queue(self, edge, relset, c1, c2): new_constraint = Constraint(edge.node1, relset, edge.node2, cycle=self.cycle, source='closure', history=(c1, c2)) self.queue.append(new_constraint) debug(3, "ADD QUEUE %s " % new_constraint) add_inverted = False if add_inverted: relset = invert_interval_relation(relset) new_constraint2 = Constraint(edge.node2, relset, edge.node1, cycle=self.cycle, source='closure-inverted', history=(c1, c2)) self.queue.append(new_constraint2) debug(3, "ADD QUEUE %s " % new_constraint2) def _intersect_constraints(self, edge, constraint): edge = self.edges[constraint.node1][constraint.node2] new_relset = constraint.relset existing_relset = edge.relset intersection = intersect_relations(new_relset, existing_relset) debug(2, "INTERSECT NEW {%s} WITH EXISTING {%s} --> {%s}" % (constraint.relset, edge.relset, intersection)) if intersection == '': status = 'INCONSISTENT' logger.warn("Inconsistent new contraint: %s" % constraint) logger.warn("Clashes with: [%s] (derived from %s)" % (edge.constraint, edge.constraint.history_string())) elif new_relset == existing_relset: status = 'NEW=EXISTING' elif intersection == existing_relset: status = 'INTERSECTION=EXISTING' else: status = 'INTERSECTION-IS-MORE-SPECIFIC' debug(2, "STATUS: %s" % status) return (status, intersection) def _compose(self, object1, object2): rels1 = object1.relset rels2 = object2.relset return self.compositions.compose_rels(rels1, rels2) def _add_constraint_to_edge(self, constraint, edge): edge.add_constraint(constraint) constraint.edge = edge def _get_edge(self, node1, node2): return self.edges[node1.id][node2.id] def get_edges(self): edges = [] for n1 in self.edges.keys(): for n2 in self.edges[n1].keys(): edge = self.edges[n1][n2] if n1 != n2 and edge.constraint: edges.append(edge) return edges def _remove_disjunctions(self): for edge in self.get_edges(): if edge.constraint: if edge.constraint.is_disjunction(): edge.remove_constraint()
Apache License 2.0
databricks/koalas
databricks/koalas/frame.py
_create_tuple_for_frame_type
python
def _create_tuple_for_frame_type(params): from databricks.koalas.typedef import NameTypeHolder if isinstance(params, zip): params = [slice(name, tpe) for name, tpe in params] if isinstance(params, slice): params = (params,) if ( hasattr(params, "__len__") and isinstance(params, Iterable) and all(isinstance(param, slice) for param in params) ): for param in params: if isinstance(param.start, str) and param.step is not None: raise TypeError( "Type hints should be specified as " "DataFrame['name': type]; however, got %s" % param ) name_classes = [] for param in params: new_class = type("NameType", (NameTypeHolder,), {}) new_class.name = param.start new_class.tpe = param.stop.type if isinstance(param.stop, np.dtype) else param.stop name_classes.append(new_class) return Tuple[tuple(name_classes)] if not isinstance(params, Iterable): params = [params] new_params = [] for param in params: if isinstance(param, ExtensionDtype): new_class = type("NameType", (NameTypeHolder,), {}) new_class.tpe = param new_params.append(new_class) else: new_params.append(param.type if isinstance(param, np.dtype) else param) return Tuple[tuple(new_params)]
This is a workaround to support variadic generic in DataFrame. See https://github.com/python/typing/issues/193 we always wraps the given type hints by a tuple to mimic the variadic generic.
https://github.com/databricks/koalas/blob/e971d6f37ede45297bbf9d509ae2a7b51717f322/databricks/koalas/frame.py#L338-L386
from collections import OrderedDict, defaultdict, namedtuple from collections.abc import Mapping from distutils.version import LooseVersion import re import warnings import inspect import json import types from functools import partial, reduce import sys from itertools import zip_longest from typing import ( Any, Optional, List, Tuple, Union, Generic, TypeVar, Iterable, Iterator, Dict, Callable, cast, TYPE_CHECKING, ) import datetime import numpy as np import pandas as pd from pandas.api.types import is_list_like, is_dict_like, is_scalar from pandas.api.extensions import ExtensionDtype from pandas.tseries.frequencies import DateOffset, to_offset if TYPE_CHECKING: from pandas.io.formats.style import Styler if LooseVersion(pd.__version__) >= LooseVersion("0.24"): from pandas.core.dtypes.common import infer_dtype_from_object else: from pandas.core.dtypes.common import _get_dtype_from_object as infer_dtype_from_object from pandas.core.accessor import CachedAccessor from pandas.core.dtypes.inference import is_sequence import pyspark from pyspark import StorageLevel from pyspark import sql as spark from pyspark.sql import Column, DataFrame as SparkDataFrame, functions as F from pyspark.sql.functions import pandas_udf from pyspark.sql.types import ( BooleanType, DoubleType, FloatType, NumericType, StringType, StructType, StructField, ArrayType, ) from pyspark.sql.window import Window from databricks import koalas as ks from databricks.koalas.accessors import KoalasFrameMethods from databricks.koalas.config import option_context, get_option from databricks.koalas.spark import functions as SF from databricks.koalas.spark.accessors import SparkFrameMethods, CachedSparkFrameMethods from databricks.koalas.utils import ( align_diff_frames, column_labels_level, combine_frames, default_session, is_name_like_tuple, is_name_like_value, is_testing, name_like_string, same_anchor, scol_for, validate_arguments_and_invoke_function, validate_axis, validate_bool_kwarg, validate_how, verify_temp_column_name, ) from databricks.koalas.spark.utils import as_nullable_spark_type, force_decimal_precision_scale from databricks.koalas.generic import Frame from databricks.koalas.internal import ( InternalFrame, HIDDEN_COLUMNS, NATURAL_ORDER_COLUMN_NAME, SPARK_INDEX_NAME_FORMAT, SPARK_DEFAULT_INDEX_NAME, SPARK_DEFAULT_SERIES_NAME, ) from databricks.koalas.missing.frame import _MissingPandasLikeDataFrame from databricks.koalas.ml import corr from databricks.koalas.typedef import ( as_spark_type, infer_return_type, spark_type_to_pandas_dtype, DataFrameType, SeriesType, Scalar, ScalarType, ) from databricks.koalas.plot import KoalasPlotAccessor if TYPE_CHECKING: from databricks.koalas.indexes import Index from databricks.koalas.series import Series REPR_PATTERN = re.compile(r"\n\n\[(?P<rows>[0-9]+) rows x (?P<columns>[0-9]+) columns\]$") REPR_HTML_PATTERN = re.compile( r"\n\<p\>(?P<rows>[0-9]+) rows × (?P<columns>[0-9]+) columns\<\/p\>\n\<\/div\>$" ) _flex_doc_FRAME = """ Get {desc} of dataframe and other, element-wise (binary operator `{op_name}`). Equivalent to ``{equiv}``. With reverse version, `{reverse}`. Among flexible wrappers (`add`, `sub`, `mul`, `div`) to arithmetic operators: `+`, `-`, `*`, `/`, `//`. Parameters ---------- other : scalar Any single data Returns ------- DataFrame Result of the arithmetic operation. Examples -------- >>> df = ks.DataFrame({{'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}}, ... index=['circle', 'triangle', 'rectangle'], ... columns=['angles', 'degrees']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. Also reverse version. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(df) angles degrees circle 0 720 triangle 6 360 rectangle 8 720 >>> df + df + df angles degrees circle 0 1080 triangle 9 540 rectangle 12 1080 >>> df.radd(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide and true divide by constant with reverse version. >>> df / 10 angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 >>> df.truediv(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rtruediv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract by constant with reverse version. >>> df - 1 angles degrees circle -1 359 triangle 2 179 rectangle 3 359 >>> df.sub(1) angles degrees circle -1 359 triangle 2 179 rectangle 3 359 >>> df.rsub(1) angles degrees circle 1 -359 triangle -2 -179 rectangle -3 -359 Multiply by constant with reverse version. >>> df * 1 angles degrees circle 0 360 triangle 3 180 rectangle 4 360 >>> df.mul(1) angles degrees circle 0 360 triangle 3 180 rectangle 4 360 >>> df.rmul(1) angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Floor Divide by constant with reverse version. >>> df // 10 angles degrees circle 0.0 36.0 triangle 0.0 18.0 rectangle 0.0 36.0 >>> df.floordiv(10) angles degrees circle 0.0 36.0 triangle 0.0 18.0 rectangle 0.0 36.0 >>> df.rfloordiv(10) # doctest: +SKIP angles degrees circle inf 0.0 triangle 3.0 0.0 rectangle 2.0 0.0 Mod by constant with reverse version. >>> df % 2 angles degrees circle 0 0 triangle 1 0 rectangle 0 0 >>> df.mod(2) angles degrees circle 0 0 triangle 1 0 rectangle 0 0 >>> df.rmod(2) angles degrees circle NaN 2 triangle 2.0 2 rectangle 2.0 2 Power by constant with reverse version. >>> df ** 2 angles degrees circle 0.0 129600.0 triangle 9.0 32400.0 rectangle 16.0 129600.0 >>> df.pow(2) angles degrees circle 0.0 129600.0 triangle 9.0 32400.0 rectangle 16.0 129600.0 >>> df.rpow(2) angles degrees circle 1.0 2.348543e+108 triangle 8.0 1.532496e+54 rectangle 16.0 2.348543e+108 """ T = TypeVar("T")
Apache License 2.0
docusign/docusign-python-client
docusign_esign/models/document_template.py
DocumentTemplate.document_end_page
python
def document_end_page(self, document_end_page): self._document_end_page = document_end_page
Sets the document_end_page of this DocumentTemplate. # noqa: E501 :param document_end_page: The document_end_page of this DocumentTemplate. # noqa: E501 :type: str
https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/document_template.py#L82-L91
import pprint import re import six from docusign_esign.client.configuration import Configuration class DocumentTemplate(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'document_end_page': 'str', 'document_id': 'str', 'document_start_page': 'str', 'error_details': 'ErrorDetails', 'template_id': 'str' } attribute_map = { 'document_end_page': 'documentEndPage', 'document_id': 'documentId', 'document_start_page': 'documentStartPage', 'error_details': 'errorDetails', 'template_id': 'templateId' } def __init__(self, _configuration=None, **kwargs): if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._document_end_page = None self._document_id = None self._document_start_page = None self._error_details = None self._template_id = None self.discriminator = None setattr(self, "_{}".format('document_end_page'), kwargs.get('document_end_page', None)) setattr(self, "_{}".format('document_id'), kwargs.get('document_id', None)) setattr(self, "_{}".format('document_start_page'), kwargs.get('document_start_page', None)) setattr(self, "_{}".format('error_details'), kwargs.get('error_details', None)) setattr(self, "_{}".format('template_id'), kwargs.get('template_id', None)) @property def document_end_page(self): return self._document_end_page @document_end_page.setter
MIT License
centerforopenscience/osf.io
tests/base.py
CaptureSignals.signals_sent
python
def signals_sent(self): return set([signal for signal, _ in self._records.items() if self._records[signal]])
Return a set of the signals sent. :rtype: list of blinker `NamedSignals`.
https://github.com/centerforopenscience/osf.io/blob/6552a01fe250997cd3eb67cf72fc7157d9bc5af6/tests/base.py#L355-L360
import abc import datetime as dt import functools import logging import re import unittest import uuid import blinker import responses import mock import pytest from django.test import TestCase as DjangoTestCase from django.test import override_settings from faker import Factory from framework.auth.core import Auth from framework.celery_tasks.handlers import celery_before_request from framework.celery_tasks.handlers import handlers as celery_handlers from framework.django.handlers import handlers as django_handlers from framework.flask import rm_handlers from osf.models import RegistrationSchema from website import settings from website.app import init_app from website.notifications.listeners import (subscribe_contributor, subscribe_creator) from website.project.signals import contributor_added, project_created from website.project.views.contributor import notify_added_contributor from website.signals import ALL_SIGNALS from webtest_plus import TestApp from .json_api_test_app import JSONAPITestApp from nose.tools import * logger = logging.getLogger(__name__) def get_default_metaschema(): return RegistrationSchema.objects.first() try: test_app = init_app(routes=True, set_backends=False) except AssertionError: test_app = init_app(routes=False, set_backends=False) rm_handlers(test_app, django_handlers) rm_handlers(test_app, celery_handlers) test_app.testing = True SILENT_LOGGERS = [ 'api.caching.tasks', 'factory.generate', 'factory.containers', 'framework.analytics', 'framework.auth.core', 'website.app', 'website.archiver.tasks', 'website.mails', 'website.notifications.listeners', 'website.search.elastic_search', 'website.search_migration.migrate', 'website.util.paths', 'requests_oauthlib.oauth2_session', 'raven.base.Client', 'raven.contrib.django.client.DjangoClient', 'transitions.core', 'MARKDOWN', ] for logger_name in SILENT_LOGGERS: logging.getLogger(logger_name).setLevel(logging.CRITICAL) fake = Factory.create() @pytest.mark.django_db class DbTestCase(unittest.TestCase): @classmethod def setUpClass(cls): super(DbTestCase, cls).setUpClass() cls._original_enable_email_subscriptions = settings.ENABLE_EMAIL_SUBSCRIPTIONS settings.ENABLE_EMAIL_SUBSCRIPTIONS = False cls._original_bcrypt_log_rounds = settings.BCRYPT_LOG_ROUNDS settings.BCRYPT_LOG_ROUNDS = 4 @classmethod def tearDownClass(cls): super(DbTestCase, cls).tearDownClass() settings.ENABLE_EMAIL_SUBSCRIPTIONS = cls._original_enable_email_subscriptions settings.BCRYPT_LOG_ROUNDS = cls._original_bcrypt_log_rounds class AppTestCase(unittest.TestCase): PUSH_CONTEXT = True DISCONNECTED_SIGNALS = { contributor_added: [notify_added_contributor] } def setUp(self): super(AppTestCase, self).setUp() self.app = TestApp(test_app) self.app.lint = False if not self.PUSH_CONTEXT: return self.context = test_app.test_request_context(headers={ 'Remote-Addr': '146.9.219.56', 'User-Agent': 'Mozilla/5.0 (X11; U; SunOS sun4u; en-US; rv:0.9.4.1) Gecko/20020518 Netscape6/6.2.3' }) self.context.push() with self.context: celery_before_request() for signal in self.DISCONNECTED_SIGNALS: for receiver in self.DISCONNECTED_SIGNALS[signal]: signal.disconnect(receiver) def tearDown(self): super(AppTestCase, self).tearDown() if not self.PUSH_CONTEXT: return with mock.patch('website.mailchimp_utils.get_mailchimp_api'): self.context.pop() for signal in self.DISCONNECTED_SIGNALS: for receiver in self.DISCONNECTED_SIGNALS[signal]: signal.connect(receiver) class ApiAppTestCase(unittest.TestCase): allow_database_queries = True def setUp(self): super(ApiAppTestCase, self).setUp() self.app = JSONAPITestApp() class SearchTestCase(unittest.TestCase): def setUp(self): settings.ELASTIC_INDEX = uuid.uuid1().hex settings.ELASTIC_TIMEOUT = 60 from website.search import elastic_search elastic_search.INDEX = settings.ELASTIC_INDEX elastic_search.create_index(settings.ELASTIC_INDEX) super(SearchTestCase, self).setUp() def tearDown(self): super(SearchTestCase, self).tearDown() from website.search import elastic_search elastic_search.delete_index(settings.ELASTIC_INDEX) class OsfTestCase(DbTestCase, AppTestCase, SearchTestCase): pass class ApiTestCase(DbTestCase, ApiAppTestCase, SearchTestCase): def setUp(self): super(ApiTestCase, self).setUp() settings.USE_EMAIL = False class ApiAddonTestCase(ApiTestCase): DISABLE_OUTGOING_CONNECTIONS = True @abc.abstractproperty def short_name(self): pass @abc.abstractproperty def addon_type(self): pass @abc.abstractmethod def _apply_auth_configuration(self): pass @abc.abstractmethod def _set_urls(self): pass def _settings_kwargs(self, node, user_settings): return { 'user_settings': self.user_settings, 'folder_id': '1234567890', 'owner': self.node } def setUp(self): super(ApiAddonTestCase, self).setUp() from osf_tests.factories import ( ProjectFactory, AuthUserFactory, ) from addons.base.models import ( BaseOAuthNodeSettings, BaseOAuthUserSettings ) assert self.addon_type in ('CONFIGURABLE', 'OAUTH', 'UNMANAGEABLE', 'INVALID') self.account = None self.node_settings = None self.user_settings = None self.user = AuthUserFactory() self.auth = Auth(self.user) self.node = ProjectFactory(creator=self.user) if self.addon_type not in ('UNMANAGEABLE', 'INVALID'): if self.addon_type in ('OAUTH', 'CONFIGURABLE'): self.account = self.AccountFactory() self.user.external_accounts.add(self.account) self.user.save() self.user_settings = self.user.get_or_add_addon(self.short_name) self.node_settings = self.node.get_or_add_addon(self.short_name, auth=self.auth) if self.addon_type in ('OAUTH', 'CONFIGURABLE'): self.node_settings.set_auth(self.account, self.user) self._apply_auth_configuration() if self.addon_type in ('OAUTH', 'CONFIGURABLE'): assert isinstance(self.node_settings, BaseOAuthNodeSettings) assert isinstance(self.user_settings, BaseOAuthUserSettings) self.node_settings.reload() self.user_settings.reload() self.account_id = self.account._id if self.account else None self.set_urls() def tearDown(self): super(ApiAddonTestCase, self).tearDown() self.user.delete() self.node.delete() if self.account: self.account.delete() @override_settings(ROOT_URLCONF='admin.base.urls') class AdminTestCase(DbTestCase, DjangoTestCase, SearchTestCase): pass class NotificationTestCase(OsfTestCase): DISCONNECTED_SIGNALS = { contributor_added: [notify_added_contributor, subscribe_contributor], project_created: [subscribe_creator] } def setUp(self): super(NotificationTestCase, self).setUp() def tearDown(self): super(NotificationTestCase, self).tearDown() class ApiWikiTestCase(ApiTestCase): def setUp(self): from osf_tests.factories import AuthUserFactory super(ApiWikiTestCase, self).setUp() self.user = AuthUserFactory() self.non_contributor = AuthUserFactory() def _add_project_wiki_page(self, node, user): from addons.wiki.tests.factories import WikiFactory, WikiVersionFactory with mock.patch('osf.models.AbstractNode.update_search'): wiki_page = WikiFactory(node=node, user=user) wiki_version = WikiVersionFactory(wiki_page=wiki_page) return wiki_page def _add_project_wiki_version(self, node, user): from addons.wiki.tests.factories import WikiFactory, WikiVersionFactory with mock.patch('osf.models.AbstractNode.update_search'): wiki_page = WikiFactory(node=node, user=user) wiki_version = WikiVersionFactory(wiki_page=wiki_page, user=user) return wiki_version class CaptureSignals(object): def __init__(self, signals): self._records = {} self._receivers = {} for signal in signals: self._records[signal] = [] self._receivers[signal] = functools.partial(self._record, signal) def __getitem__(self, signal): if isinstance(signal, blinker.base.NamedSignal): return self._records[signal] else: super(CaptureSignals, self).__setitem__(signal) def _record(self, signal, *args, **kwargs): self._records[signal].append((args, kwargs)) def __enter__(self): for signal, receiver in self._receivers.items(): signal.connect(receiver) return self def __exit__(self, type, value, traceback): for signal, receiver in self._receivers.items(): signal.disconnect(receiver)
Apache License 2.0
fredreichbier/genie
browse_slp.py
SLPLoader.get_files
python
def get_files(self): for table in self.drs_file.tables: for embedded in table.embedded_files.itervalues(): fname = '%d.%s' % (embedded.resource_id, table.file_extension) yield (embedded.resource_id, fname)
yield all SLP files as tuples (resource id, pseudo-filename)
https://github.com/fredreichbier/genie/blob/befe10c56207fb471d7f8a9fb9f8ee2e9bee6617/browse_slp.py#L45-L52
import sys import argparse import shlex import traceback import cmd import os import fnmatch import subprocess from StringIO import StringIO import pyglet from genie import slp, drs from genie.environment import Environment, INTERFAC_DRS from genie.slp.pyglet_adapter import PygletAdapter, load_aoe_animations BAR_HEIGHT = 12 def _get_resource_id(filename): if not filename: return -1 return int(filename.split('.')[0]) class SLPLoader(object): def __init__(self, path, audio_player, interfac_drs=INTERFAC_DRS): self.env = Environment(path, interfac_drs=interfac_drs) self._drs_filename = None self.audio_player = audio_player self.palette = 0 self.player = 0 def _set_drs_filename(self, drs_filename): self._drs_filename = drs_filename def _get_drs_filename(self): return self._drs_filename drs_filename = property(_get_drs_filename, _set_drs_filename) @property def drs_file(self): return self.env.get_drs(self.drs_filename)
BSD 2-Clause Simplified License
mcieslik-mctp/papy
src/papy/util/runtime.py
get_runtime
python
def get_runtime(): PAPY_RUNTIME = {} return PAPY_RUNTIME
Returns a PAPY_RUNTIME dictionary.
https://github.com/mcieslik-mctp/papy/blob/708e50827b5db46bbea081982cb74b9b0e464064/src/papy/util/runtime.py#L9-L15
MIT License
volkamerlab/opencadd
opencadd/io/dataframe.py
DataFrame.from_text
python
def from_text(cls, text, ext, verbose=False, **kwargs): if ext == "mol2": return cls._from_mol2_text(text, verbose) elif ext == "pdb": return cls._from_pdb_text(text, verbose) else: raise ValueError(f"The {ext} format is not supported or invalid.")
Load structures as DataFrame from text (file content as string). Parameters ---------- text : str Structure file content as string. ext : str Structure format: "pdb" or "mol2". verbose : bool Show only default columns (False) or additionally input-format specific columns (True). Returns ------- pandas.DataFrame Structure as DataFrame.
https://github.com/volkamerlab/opencadd/blob/ce20b50b7e65b6a11e5f1fed050d2d4b7f3b65b9/opencadd/io/dataframe.py#L55-L79
import logging from biopandas.mol2 import PandasMol2 from biopandas.pdb import PandasPdb import numpy as np import pandas as pd from .core import _Base from .schema import DATAFRAME_COLUMNS, PDB_COLUMNS, MOL2_COLUMNS logger = logging.getLogger(__name__) class DataFrame(_Base): @classmethod def from_file(cls, filepath, verbose=False, **kwargs): filepath = cls._convert_filepath(filepath) if filepath.suffix == ".mol2": return cls._from_mol2_file(filepath, verbose) elif filepath.suffix == ".pdb": return cls._from_pdb_file(filepath, verbose) else: raise ValueError(f"The {filepath.suffix} format is not supported or invalid.") return dataframe @classmethod
MIT License
tensorflow/privacy
tensorflow_privacy/privacy/analysis/rdp_privacy_accountant.py
_compute_rdp_sample_wor_gaussian_int
python
def _compute_rdp_sample_wor_gaussian_int(q, sigma, alpha): max_alpha = 256 assert isinstance(alpha, six.integer_types) if np.isinf(alpha): return np.inf elif alpha == 1: return 0 def cgf(x): return x * 1.0 * (x + 1) / (2.0 * sigma**2) def func(x): return 1.0 * x / (2.0 * sigma**2) log_a = 0 log_f2m1 = func(2.0) + np.log(1 - np.exp(-func(2.0))) if alpha <= max_alpha: deltas, _ = _get_forward_diffs(cgf, alpha) for i in range(2, alpha + 1): if i == 2: s = 2 * np.log(q) + _log_comb(alpha, 2) + np.minimum( np.log(4) + log_f2m1, func(2.0) + np.log(2)) elif i > 2: delta_lo = deltas[int(2 * np.floor(i / 2.0)) - 1] delta_hi = deltas[int(2 * np.ceil(i / 2.0)) - 1] s = np.log(4) + 0.5 * (delta_lo + delta_hi) s = np.minimum(s, np.log(2) + cgf(i - 1)) s += i * np.log(q) + _log_comb(alpha, i) log_a = _log_add(log_a, s) return float(log_a) else: for i in range(2, alpha + 1): if i == 2: s = 2 * np.log(q) + _log_comb(alpha, 2) + np.minimum( np.log(4) + log_f2m1, func(2.0) + np.log(2)) else: s = np.log(2) + cgf(i - 1) + i * np.log(q) + _log_comb(alpha, i) log_a = _log_add(log_a, s) return log_a
Compute log(A_alpha) for integer alpha, subsampling without replacement. When alpha is smaller than max_alpha, compute the bound Theorem 27 exactly, otherwise compute the bound with Stirling approximation. Args: q: The sampling proportion = m / n. Assume m is an integer <= n. sigma: The std of the additive Gaussian noise. alpha: The order at which RDP is computed. Returns: RDP at alpha, can be np.inf.
https://github.com/tensorflow/privacy/blob/977647a3bf3ff11643804169b52be5bdddb8f666/tensorflow_privacy/privacy/analysis/rdp_privacy_accountant.py#L417-L483
import math from typing import Collection, Optional import numpy as np from scipy import special import six from tensorflow_privacy.privacy.analysis import dp_event from tensorflow_privacy.privacy.analysis import privacy_accountant NeighborRel = privacy_accountant.NeighboringRelation def _log_add(logx, logy): a, b = min(logx, logy), max(logx, logy) if a == -np.inf: return b return math.log1p(math.exp(a - b)) + b def _log_sub(logx, logy): if logx < logy: raise ValueError('The result of subtraction must be non-negative.') if logy == -np.inf: return logx if logx == logy: return -np.inf try: return math.log(math.expm1(logx - logy)) + logy except OverflowError: return logx def _log_sub_sign(logx, logy): if logx > logy: s = True mag = logx + np.log(1 - np.exp(logy - logx)) elif logx < logy: s = False mag = logy + np.log(1 - np.exp(logx - logy)) else: s = True mag = -np.inf return s, mag def _log_comb(n, k): return (special.gammaln(n + 1) - special.gammaln(k + 1) - special.gammaln(n - k + 1)) def _compute_log_a_int(q, sigma, alpha): assert isinstance(alpha, six.integer_types) log_a = -np.inf for i in range(alpha + 1): log_coef_i = ( _log_comb(alpha, i) + i * math.log(q) + (alpha - i) * math.log(1 - q)) s = log_coef_i + (i * i - i) / (2 * (sigma**2)) log_a = _log_add(log_a, s) return float(log_a) def _compute_log_a_frac(q, sigma, alpha): log_a0, log_a1 = -np.inf, -np.inf i = 0 z0 = sigma**2 * math.log(1 / q - 1) + .5 while True: coef = special.binom(alpha, i) log_coef = math.log(abs(coef)) j = alpha - i log_t0 = log_coef + i * math.log(q) + j * math.log(1 - q) log_t1 = log_coef + j * math.log(q) + i * math.log(1 - q) log_e0 = math.log(.5) + _log_erfc((i - z0) / (math.sqrt(2) * sigma)) log_e1 = math.log(.5) + _log_erfc((z0 - j) / (math.sqrt(2) * sigma)) log_s0 = log_t0 + (i * i - i) / (2 * (sigma**2)) + log_e0 log_s1 = log_t1 + (j * j - j) / (2 * (sigma**2)) + log_e1 if coef > 0: log_a0 = _log_add(log_a0, log_s0) log_a1 = _log_add(log_a1, log_s1) else: log_a0 = _log_sub(log_a0, log_s0) log_a1 = _log_sub(log_a1, log_s1) i += 1 if max(log_s0, log_s1) < -30: break return _log_add(log_a0, log_a1) def _log_erfc(x): try: return math.log(2) + special.log_ndtr(-x * 2**.5) except NameError: r = special.erfc(x) if r == 0.0: return (-math.log(math.pi) / 2 - math.log(x) - x**2 - .5 * x**-2 + .625 * x**-4 - 37. / 24. * x**-6 + 353. / 64. * x**-8) else: return math.log(r) def _compute_delta(orders, rdp, epsilon): if epsilon < 0: raise ValueError(f'Epsilon cannot be negative. Found {epsilon}.') if len(orders) != len(rdp): raise ValueError('Input lists must have the same length.') logdeltas = [] for (a, r) in zip(orders, rdp): if a < 1: raise ValueError(f'Renyi divergence order must be at least 1. Found {a}.') if r < 0: raise ValueError(f'Renyi divergence cannot be negative. Found {r}.') if r == 0: logdelta = -np.inf else: logdelta = 0.5 * math.log1p(-math.exp(-r)) if a > 1.01: rdp_bound = (a - 1) * (r - epsilon + math.log1p(-1 / a)) - math.log(a) logdelta = min(logdelta, rdp_bound) logdeltas.append(logdelta) return min(math.exp(np.min(logdeltas)), 1.) def _compute_epsilon(orders, rdp, delta): if delta < 0: raise ValueError(f'Delta cannot be negative. Found {delta}.') if delta == 0: if all(r == 0 for r in rdp): return 0 else: return np.inf if len(orders) != len(rdp): raise ValueError('Input lists must have the same length.') eps = [] for (a, r) in zip(orders, rdp): if a < 1: raise ValueError(f'Renyi divergence order must be at least 1. Found {a}.') if r < 0: raise ValueError(f'Renyi divergence cannot be negative. Found {r}.') if delta**2 + math.expm1(-r) > 0: epsilon = 0 elif a > 1.01: epsilon = r + math.log1p(-1 / a) - math.log(delta * a) / (a - 1) else: epsilon = np.inf eps.append(epsilon) return max(0, np.min(eps)) def _stable_inplace_diff_in_log(vec, signs, n=-1): assert vec.shape == signs.shape if n < 0: n = np.max(vec.shape) - 1 else: assert np.max(vec.shape) >= n + 1 for j in range(0, n, 1): if signs[j] == signs[j + 1]: signs[j], vec[j] = _log_sub_sign(vec[j + 1], vec[j]) if not signs[j + 1]: signs[j] = ~signs[j] else: vec[j] = _log_add(vec[j], vec[j + 1]) signs[j] = signs[j + 1] def _get_forward_diffs(fun, n): func_vec = np.zeros(n + 3) signs_func_vec = np.ones(n + 3, dtype=bool) deltas = np.zeros(n + 2) signs_deltas = np.zeros(n + 2, dtype=bool) for i in range(1, n + 3, 1): func_vec[i] = fun(1.0 * (i - 1)) for i in range(0, n + 2, 1): _stable_inplace_diff_in_log(func_vec, signs_func_vec, n=n + 2 - i) deltas[i] = func_vec[0] signs_deltas[i] = signs_func_vec[0] return deltas, signs_deltas def _compute_log_a(q, noise_multiplier, alpha): if float(alpha).is_integer(): return _compute_log_a_int(q, noise_multiplier, int(alpha)) else: return _compute_log_a_frac(q, noise_multiplier, alpha) def _compute_rdp_poisson_subsampled_gaussian(q, noise_multiplier, orders): def compute_one_order(q, alpha): if np.isinf(alpha) or noise_multiplier == 0: return np.inf if q == 0: return 0 if q == 1.: return alpha / (2 * noise_multiplier**2) return _compute_log_a(q, noise_multiplier, alpha) / (alpha - 1) return np.array([compute_one_order(q, order) for order in orders]) def _compute_rdp_sample_wor_gaussian(q, noise_multiplier, orders): return np.array([ _compute_rdp_sample_wor_gaussian_scalar(q, noise_multiplier, order) for order in orders ]) def _compute_rdp_sample_wor_gaussian_scalar(q, sigma, alpha): assert (q <= 1) and (q >= 0) and (alpha >= 1) if q == 0: return 0 if q == 1.: return alpha / (2 * sigma**2) if np.isinf(alpha): return np.inf if float(alpha).is_integer(): return _compute_rdp_sample_wor_gaussian_int(q, sigma, int(alpha)) / ( alpha - 1) else: alpha_f = math.floor(alpha) alpha_c = math.ceil(alpha) x = _compute_rdp_sample_wor_gaussian_int(q, sigma, alpha_f) y = _compute_rdp_sample_wor_gaussian_int(q, sigma, alpha_c) t = alpha - alpha_f return ((1 - t) * x + t * y) / (alpha - 1)
Apache License 2.0
larsks/kiwi
kiwi/addresswatcher.py
iter_events
python
def iter_events(url, interval=1, recursive=True): waitindex = None while True: try: params = {'recursive': recursive, 'wait': True, 'waitIndex': waitindex} r = requests.get(url, params=params) r.raise_for_status() event = r.json() waitindex = event['node']['modifiedIndex'] + 1 yield event except Exception as exc: LOG.error('connection failed: %s' % exc) time.sleep(interval)
Produces an inifite stream of events from etcd regarding the given URL.
https://github.com/larsks/kiwi/blob/8f591dd8bc0f8c8fbb2bc587eb7eb6e7092b4c8d/kiwi/addresswatcher.py#L12-L32
import logging import requests import time import re import defaults LOG = logging.getLogger(__name__) re_address = re.compile('\d+\.\d+\.\d+\.\d+')
Apache License 2.0
uber-archive/plato-research-dialogue-system
plato/agent/component/dialogue_policy/deep_learning/reinforce_policy.py
ReinforcePolicy.softmax
python
def softmax(x): e_x = np.exp(x - np.max(x)) out = e_x / e_x.sum() return out
Calculates the softmax of x :param x: a number :return: the softmax of the number
https://github.com/uber-archive/plato-research-dialogue-system/blob/1db30be390df6903be89fdf5a515debc7d7defb4/plato/agent/component/dialogue_policy/deep_learning/reinforce_policy.py#L345-L354
__author__ = "Alexandros Papangelis" from .. import dialogue_policy from plato.agent.component.dialogue_policy.slot_filling_policy import HandcraftedPolicy from plato.domain.ontology import Ontology from plato.domain.database import DataBase from plato.dialogue.action import DialogueAct, DialogueActItem, Operator from plato.dialogue.state import SlotFillingDialogueState from plato.agent.component.user_simulator. agenda_based_user_simulator.agenda_based_us import AgendaBasedUS from copy import deepcopy import numpy as np import random import os import pickle class ReinforcePolicy(dialogue_policy.DialoguePolicy): def __init__(self, args): super(ReinforcePolicy, self).__init__() self.ontology = None if 'ontology' in args: ontology = args['ontology'] if isinstance(ontology, Ontology): self.ontology = ontology else: raise ValueError('ReinforcePolicy Unacceptable ' 'ontology type %s ' % ontology) else: raise ValueError('ReinforcePolicy: No ontology provided') self.database = None if 'database' in args: database = args['database'] if isinstance(database, DataBase): self.database = database else: raise ValueError('ReinforcePolicy: Unacceptable ' 'database type %s ' % database) else: raise ValueError('ReinforcePolicy: No database provided') self.agent_id = args['agent_id'] if 'agent_id' in args else 0 self.agent_role = args['agent_role'] if 'agent_role' in args else 'system' domain = args['domain'] if 'domain' in args else None self.alpha = args['alpha'] if 'alpha' in args else 0.2 self.gamma = args['gamma'] if 'gamma' in args else 0.95 self.epsilon = args['epsilon'] if 'epsilon' in args else 0.95 self.alpha_decay_rate = args['alpha_decay'] if 'alpha_decay' in args else 0.995 self.exploration_decay_rate = args['epsilon_decay'] if 'epsilon_decay' in args else 0.9995 self.IS_GREEDY = False self.policy_path = None self.weights = None self.sess = None self.warmup_policy = None self.warmup_simulator = None if self.agent_role == 'system': self.warmup_policy = HandcraftedPolicy({ 'ontology': self.ontology}) elif self.agent_role == 'user': usim_args = dict( zip(['ontology', 'database'], [self.ontology, self.database])) self.warmup_simulator = AgendaBasedUS(usim_args) self.tf_scope = "policy_" + self.agent_role + '_' + str(self.agent_id) self.is_training = True self.informable_slots = deepcopy(list(self.ontology.ontology['informable'].keys())) self.requestable_slots = deepcopy(self.ontology.ontology['requestable']) self.system_requestable_slots = deepcopy(self.ontology.ontology['system_requestable']) if not domain: self.NStateFeatures = 56 self.dstc2_acts = ['inform', 'offer', 'request', 'canthelp', 'affirm', 'negate', 'deny', 'ack', 'thankyou', 'bye', 'reqmore', 'hello', 'welcomemsg', 'expl-conf', 'select', 'repeat', 'reqalts', 'confirm-domain', 'confirm'] else: if domain in ['CamRest', 'SFH', 'SlotFilling']: d_state = SlotFillingDialogueState( {'slots': self.system_requestable_slots}) if domain == 'CamRest': self.dstc2_acts_sys = ['offer', 'canthelp', 'affirm', 'deny', 'ack', 'bye', 'reqmore', 'welcomemsg', 'expl-conf', 'select', 'repeat', 'confirm-domain', 'confirm'] self.dstc2_acts_usr = ['affirm', 'negate', 'deny', 'ack', 'thankyou', 'bye', 'reqmore', 'hello', 'expl-conf', 'repeat', 'reqalts', 'restart', 'confirm'] else: print('Warning! domain has not been defined. Using ' 'Slot-Filling dialogue State') d_state = SlotFillingDialogueState({'slots': self.informable_slots}) d_state.initialize() self.NStateFeatures = len(self.encode_state(d_state)) print('Reinforce policy {0} automatically determined ' 'number of state features: {1}' .format(self.agent_role, self.NStateFeatures)) if domain == 'CamRest' and self.dstc2_acts_sys: if self.agent_role == 'system': self.NActions = len(self.dstc2_acts_sys) + len(self.requestable_slots) + len(self.system_requestable_slots) self.NOtherActions = len(self.dstc2_acts_usr) + 2 * len(self.requestable_slots) elif self.agent_role == 'user': self.NActions = len(self.dstc2_acts_usr) + 2 * len(self.requestable_slots) self.NOtherActions = len(self.dstc2_acts_sys) + len(self.requestable_slots) + len(self.system_requestable_slots) else: if self.agent_role == 'system': self.NActions = 3 + len(self.system_requestable_slots) + len(self.requestable_slots) self.NOtherActions = 2 + len(self.requestable_slots) + len(self.requestable_slots) elif self.agent_role == 'user': self.NActions = 2 + len(self.requestable_slots) + len(self.requestable_slots) self.NOtherActions = 3 + len(self.system_requestable_slots) + len(self.requestable_slots) print('Reinforce {0} policy Number of Actions: {1}' .format(self.agent_role, self.NActions)) def initialize(self, args): if 'is_training' in args: self.is_training = bool(args['is_training']) if self.agent_role == 'user' and self.warmup_simulator: if 'goal' in args: self.warmup_simulator.initialize({args['goal']}) else: print('WARNING ! No goal provided for Reinforce policy ' 'user simulator @ initialize') self.warmup_simulator.initialize({}) if 'policy_path' in args: self.policy_path = args['policy_path'] if 'learning_rate' in args: self.alpha = args['learning_rate'] if 'learning_decay_rate' in args: self.alpha_decay_rate = args['learning_decay_rate'] if 'discount_factor' in args: self.gamma = args['discount_factor'] if 'exploration_rate' in args: self.alpha = args['exploration_rate'] if 'exploration_decay_rate' in args: self.exploration_decay_rate = args['exploration_decay_rate'] if self.weights is None: self.weights = np.random.rand(self.NStateFeatures, self.NActions) def restart(self, args): if self.agent_role == 'user' and self.warmup_simulator: if 'goal' in args: self.warmup_simulator.initialize(args) else: print('WARNING! No goal provided for Reinforce ' 'policy user simulator @ restart') self.warmup_simulator.initialize({}) def next_action(self, state): if self.is_training and random.random() < self.epsilon: if random.random() < 0.5: print('--- {0}: Selecting warmup action.' .format(self.agent_role)) if self.agent_role == 'system': return self.warmup_policy.next_action(state) else: self.warmup_simulator.receive_input( state.user_acts, state.user_goal) return self.warmup_simulator.respond() else: print('--- {0}: Selecting random action.' .format(self.agent_role)) return self.decode_action( random.choice( range(0, self.NActions)), self.agent_role == "system") probs = self.calculate_policy(self.encode_state(state)) if any(np.isnan(probs)): print('WARNING! NAN detected in action probabilities! Selecting ' 'random action.') return self.decode_action( random.choice(range(0, self.NActions)), self.agent_role == "system") if self.IS_GREEDY: max_pi = max(probs) maxima = [i for i, j in enumerate(probs) if j == max_pi] if maxima: sys_acts = self.decode_action( random.choice(maxima), self.agent_role == 'system') else: print( f'--- {self.agent_role}: Warning! No maximum value ' f'identified for policy. Selecting random action.') return self.decode_action( random.choice( range(0, self.NActions)), self.agent_role == 'system') else: top_3 = np.argsort(-probs)[0:2] sys_acts = self.decode_action( random.choices( top_3, probs[top_3])[0], self.agent_role == 'system') return sys_acts @staticmethod
Apache License 2.0
pykeen/pykeen
src/pykeen/triples/triples_factory.py
TriplesFactory.entity_word_cloud
python
def entity_word_cloud(self, top: Optional[int] = None): return self._word_cloud( ids=self.mapped_triples[:, [0, 2]], id_to_label=self.entity_labeling.id_to_label, top=top or 100, )
Make a word cloud based on the frequency of occurrence of each entity in a Jupyter notebook. :param top: The number of top entities to show. Defaults to 100. .. warning:: This function requires the ``word_cloud`` package. Use ``pip install pykeen[plotting]`` to install it automatically, or install it yourself with ``pip install git+https://github.com/kavgan/word_cloud.git``.
https://github.com/pykeen/pykeen/blob/7ee2a6f9bc43200d44c874bfc3de0a747bd3632d/src/pykeen/triples/triples_factory.py#L869-L884
import dataclasses import itertools import logging import pathlib import re from typing import Any, Callable, Collection, Dict, List, Mapping, Optional, Sequence, Set, TextIO, Type, Union, cast import numpy as np import pandas as pd import torch from .instances import Instances, LCWAInstances, SLCWAInstances from .splitting import split from .utils import TRIPLES_DF_COLUMNS, get_entities, get_relations, load_triples, tensor_to_df from ..typing import EntityMapping, LabeledTriples, MappedTriples, RelationMapping, TorchRandomHint from ..utils import compact_mapping, format_relative_comparison, invert_mapping, torch_is_in_1d __all__ = [ "CoreTriplesFactory", "TriplesFactory", "create_entity_mapping", "create_relation_mapping", "INVERSE_SUFFIX", "cat_triples", "splits_steps", "splits_similarity", ] logger = logging.getLogger(__name__) INVERSE_SUFFIX = "_inverse" def create_entity_mapping(triples: LabeledTriples) -> EntityMapping: heads, tails = triples[:, 0], triples[:, 2] entity_labels = sorted(set(heads).union(tails)) return {str(label): i for (i, label) in enumerate(entity_labels)} def create_relation_mapping(relations: set) -> RelationMapping: relation_labels = sorted( set(relations), key=lambda x: (re.sub(f"{INVERSE_SUFFIX}$", "", x), x.endswith(f"{INVERSE_SUFFIX}")), ) return {str(label): i for (i, label) in enumerate(relation_labels)} def _map_triples_elements_to_ids( triples: LabeledTriples, entity_to_id: EntityMapping, relation_to_id: RelationMapping, ) -> MappedTriples: if triples.size == 0: logger.warning("Provided empty triples to map.") return torch.empty(0, 3, dtype=torch.long) entity_getter = np.vectorize(entity_to_id.get) head_column = entity_getter(triples[:, 0:1], [-1]) tail_column = entity_getter(triples[:, 2:3], [-1]) relation_getter = np.vectorize(relation_to_id.get) relation_column = relation_getter(triples[:, 1:2], [-1]) head_filter = head_column < 0 relation_filter = relation_column < 0 tail_filter = tail_column < 0 num_no_head = head_filter.sum() num_no_relation = relation_filter.sum() num_no_tail = tail_filter.sum() if (num_no_head > 0) or (num_no_relation > 0) or (num_no_tail > 0): logger.warning( f"You're trying to map triples with {num_no_head + num_no_tail} entities and {num_no_relation} relations" f" that are not in the training set. These triples will be excluded from the mapping.", ) non_mappable_triples = head_filter | relation_filter | tail_filter head_column = head_column[~non_mappable_triples, None] relation_column = relation_column[~non_mappable_triples, None] tail_column = tail_column[~non_mappable_triples, None] logger.warning( f"In total {non_mappable_triples.sum():.0f} from {triples.shape[0]:.0f} triples were filtered out", ) triples_of_ids = np.concatenate([head_column, relation_column, tail_column], axis=1) triples_of_ids = np.array(triples_of_ids, dtype=np.int64) unique_mapped_triples = np.unique(ar=triples_of_ids, axis=0) return torch.tensor(unique_mapped_triples, dtype=torch.long) def _get_triple_mask( ids: Collection[int], triples: MappedTriples, columns: Union[int, Collection[int]], invert: bool = False, max_id: Optional[int] = None, ) -> torch.BoolTensor: triples = triples[:, columns] if isinstance(columns, int): columns = [columns] mask = torch_is_in_1d( query_tensor=triples, test_tensor=ids, max_id=max_id, invert=invert, ) if len(columns) > 1: mask = mask.all(dim=-1) return mask def _ensure_ids( labels_or_ids: Union[Collection[int], Collection[str]], label_to_id: Mapping[str, int], ) -> Collection[int]: return [label_to_id[l_or_i] if isinstance(l_or_i, str) else l_or_i for l_or_i in labels_or_ids] @dataclasses.dataclass class Labeling: label_to_id: Mapping[str, int] id_to_label: Mapping[int, str] = dataclasses.field(init=False) _vectorized_mapper: Callable[..., np.ndarray] = dataclasses.field(init=False) _vectorized_labeler: Callable[..., np.ndarray] = dataclasses.field(init=False) def __post_init__(self): self.id_to_label = invert_mapping(mapping=self.label_to_id) self._vectorized_mapper = np.vectorize(self.label_to_id.get, otypes=[int]) self._vectorized_labeler = np.vectorize(self.id_to_label.get, otypes=[str]) def label( self, ids: Union[int, Sequence[int], np.ndarray, torch.LongTensor], unknown_label: str = "unknown", ) -> np.ndarray: if isinstance(ids, torch.Tensor): ids = ids.cpu().numpy() if isinstance(ids, int): ids = [ids] ids = np.asanyarray(ids) return self._vectorized_labeler(ids, (unknown_label,)) @dataclasses.dataclass class CoreTriplesFactory: def __init__( self, mapped_triples: MappedTriples, num_entities: int, num_relations: int, entity_ids: Collection[int], relation_ids: Collection[int], create_inverse_triples: bool = False, metadata: Optional[Mapping[str, Any]] = None, ): super().__init__() self.mapped_triples = mapped_triples self._num_entities = num_entities self._num_relations = num_relations self.entity_ids = entity_ids self.relation_ids = relation_ids self.create_inverse_triples = create_inverse_triples if metadata is None: metadata = dict() self.metadata = metadata @classmethod def create( cls, mapped_triples: MappedTriples, num_entities: Optional[int] = None, num_relations: Optional[int] = None, entity_ids: Collection[int] = None, relation_ids: Collection[int] = None, create_inverse_triples: bool = False, metadata: Optional[Mapping[str, Any]] = None, ) -> "CoreTriplesFactory": if num_entities is None: num_entities = mapped_triples[:, [0, 2]].max().item() + 1 if num_relations is None: num_relations = mapped_triples[:, 1].max().item() + 1 if entity_ids is None: entity_ids = get_entities(mapped_triples) if relation_ids is None: relation_ids = get_relations(mapped_triples) return CoreTriplesFactory( mapped_triples=mapped_triples, num_entities=num_entities, num_relations=num_relations, entity_ids=entity_ids, relation_ids=relation_ids, create_inverse_triples=create_inverse_triples, metadata=metadata, ) @property def num_entities(self) -> int: return self._num_entities @property def num_relations(self) -> int: if self.create_inverse_triples: return 2 * self.real_num_relations return self.real_num_relations @property def real_num_relations(self) -> int: return self._num_relations @property def num_triples(self) -> int: return self.mapped_triples.shape[0] def extra_repr(self) -> str: d = [ ("num_entities", self.num_entities), ("num_relations", self.num_relations), ("num_triples", self.num_triples), ("inverse_triples", self.create_inverse_triples), ] d.extend(sorted(self.metadata.items())) return ", ".join(f'{k}="{v}"' if isinstance(v, (str, pathlib.Path)) else f"{k}={v}" for k, v in d) def __repr__(self): return f"{self.__class__.__name__}({self.extra_repr()})" def with_labels( self, entity_to_id: Mapping[str, int], relation_to_id: Mapping[str, int], ) -> "TriplesFactory": for name, columns, new_labeling in ( ("entity", [0, 2], entity_to_id), ("relation", 1, relation_to_id), ): existing_ids = set(self.mapped_triples[:, columns].unique().tolist()) if not existing_ids.issubset(new_labeling.values()): diff = existing_ids.difference(new_labeling.values()) raise ValueError(f"Some existing IDs do not occur in the new {name} labeling: {diff}") return TriplesFactory( mapped_triples=self.mapped_triples, entity_to_id=entity_to_id, relation_to_id=relation_to_id, create_inverse_triples=self.create_inverse_triples, metadata=self.metadata, ) def get_inverse_relation_id(self, relation: int) -> int: if not self.create_inverse_triples: raise ValueError("Can not get inverse triple, they have not been created.") return self._get_inverse_relation_id(relation) @staticmethod def _get_inverse_relation_id(relation_id: Union[int, torch.LongTensor]) -> Union[int, torch.LongTensor]: return relation_id + 1 def _add_inverse_triples_if_necessary(self, mapped_triples: MappedTriples) -> MappedTriples: if not self.create_inverse_triples: return mapped_triples logger.info("Creating inverse triples.") h, r, t = mapped_triples.t() r = 2 * r return torch.cat( [ torch.stack([h, r, t], dim=-1), torch.stack([t, self._get_inverse_relation_id(r), h], dim=-1), ] ) def create_slcwa_instances(self) -> Instances: return self._create_instances(SLCWAInstances) def create_lcwa_instances(self, use_tqdm: Optional[bool] = None, target: Optional[int] = None) -> Instances: return self._create_instances(LCWAInstances, target=target) def _create_instances(self, instances_cls: Type[Instances], **kwargs) -> Instances: return instances_cls.from_triples( mapped_triples=self._add_inverse_triples_if_necessary(mapped_triples=self.mapped_triples), num_entities=self.num_entities, num_relations=self.num_relations, **kwargs, ) def get_most_frequent_relations(self, n: Union[int, float]) -> Set[int]: logger.info(f"applying cutoff of {n} to {self}") if isinstance(n, float): assert 0 < n < 1 n = int(self.num_relations * n) elif not isinstance(n, int): raise TypeError("n must be either an integer or a float") uniq, counts = self.mapped_triples[:, 1].unique(return_counts=True) top_counts, top_ids = counts.topk(k=n, largest=True) return set(uniq[top_ids].tolist()) def clone_and_exchange_triples( self, mapped_triples: MappedTriples, extra_metadata: Optional[Dict[str, Any]] = None, keep_metadata: bool = True, create_inverse_triples: Optional[bool] = None, ) -> "CoreTriplesFactory": if create_inverse_triples is None: create_inverse_triples = self.create_inverse_triples return CoreTriplesFactory( mapped_triples=mapped_triples, num_entities=self.num_entities, num_relations=self.real_num_relations, entity_ids=self.entity_ids, relation_ids=self.relation_ids, create_inverse_triples=create_inverse_triples, metadata={ **(extra_metadata or {}), **(self.metadata if keep_metadata else {}), }, ) def split( self, ratios: Union[float, Sequence[float]] = 0.8, *, random_state: TorchRandomHint = None, randomize_cleanup: bool = False, method: Optional[str] = None, ) -> List["CoreTriplesFactory"]: return [ self.clone_and_exchange_triples( mapped_triples=triples, create_inverse_triples=None if i == 0 else False, ) for i, triples in enumerate( split( mapped_triples=self.mapped_triples, ratios=ratios, random_state=random_state, randomize_cleanup=randomize_cleanup, method=method, ) ) ] def get_mask_for_entities( self, entities: Union[Collection[int]], invert: bool = False, ) -> torch.BoolTensor: return _get_triple_mask( ids=entities, triples=self.mapped_triples, columns=(0, 2), invert=invert, max_id=self.num_entities, ) def get_mask_for_relations( self, relations: Collection[int], invert: bool = False, ) -> torch.BoolTensor: return _get_triple_mask( ids=relations, triples=self.mapped_triples, columns=1, invert=invert, max_id=self.num_relations, ) def tensor_to_df( self, tensor: torch.LongTensor, **kwargs: Union[torch.Tensor, np.ndarray, Sequence], ) -> pd.DataFrame: return tensor_to_df(tensor=tensor, **kwargs) def new_with_restriction( self, entities: Union[None, Collection[int], Collection[str]] = None, relations: Union[None, Collection[int], Collection[str]] = None, invert_entity_selection: bool = False, invert_relation_selection: bool = False, ) -> "CoreTriplesFactory": keep_mask: Optional[torch.BoolTensor] = None extra_metadata = {} if entities is not None: if any(isinstance(e, str) for e in entities): raise ValueError(f"{self.__class__} does not support label-based restriction.") entities = cast(Collection[int], entities) extra_metadata["entity_restriction"] = entities keep_mask = self.get_mask_for_entities(entities=entities, invert=invert_entity_selection) remaining_entities = self.num_entities - len(entities) if invert_entity_selection else len(entities) logger.info(f"keeping {format_relative_comparison(remaining_entities, self.num_entities)} entities.") if relations is not None: if any(isinstance(r, str) for r in relations): raise ValueError(f"{self.__class__} does not support label-based restriction.") relations = cast(Collection[int], relations) extra_metadata["relation_restriction"] = relations relation_mask = self.get_mask_for_relations(relations=relations, invert=invert_relation_selection) remaining_relations = self.num_relations - len(relations) if invert_entity_selection else len(relations) logger.info(f"keeping {format_relative_comparison(remaining_relations, self.num_relations)} relations.") keep_mask = relation_mask if keep_mask is None else keep_mask & relation_mask if keep_mask is None: return self num_triples = keep_mask.sum().item() logger.info(f"keeping {format_relative_comparison(num_triples, self.num_triples)} triples.") return self.clone_and_exchange_triples( mapped_triples=self.mapped_triples[keep_mask], extra_metadata=extra_metadata, ) class TriplesFactory(CoreTriplesFactory): def __init__( self, mapped_triples: MappedTriples, entity_to_id: EntityMapping, relation_to_id: RelationMapping, create_inverse_triples: bool = False, metadata: Optional[Mapping[str, Any]] = None, ): super().__init__( mapped_triples=mapped_triples, num_entities=len(entity_to_id), num_relations=len(relation_to_id), entity_ids=sorted(entity_to_id.values()), relation_ids=sorted(relation_to_id.values()), create_inverse_triples=create_inverse_triples, metadata=metadata, ) self.entity_labeling = Labeling(label_to_id=entity_to_id) self.relation_labeling = Labeling(label_to_id=relation_to_id) @classmethod def from_labeled_triples( cls, triples: LabeledTriples, create_inverse_triples: bool = False, entity_to_id: Optional[EntityMapping] = None, relation_to_id: Optional[RelationMapping] = None, compact_id: bool = True, filter_out_candidate_inverse_relations: bool = True, metadata: Optional[Dict[str, Any]] = None, ) -> "TriplesFactory": if filter_out_candidate_inverse_relations: unique_relations, inverse = np.unique(triples[:, 1], return_inverse=True) suspected_to_be_inverse_relations = {r for r in unique_relations if r.endswith(INVERSE_SUFFIX)} if len(suspected_to_be_inverse_relations) > 0: logger.warning( f"Some triples already have the inverse relation suffix {INVERSE_SUFFIX}. " f"Re-creating inverse triples to ensure consistency. You may disable this behaviour by passing " f"filter_out_candidate_inverse_relations=False", ) relation_ids_to_remove = [ i for i, r in enumerate(unique_relations.tolist()) if r in suspected_to_be_inverse_relations ] mask = np.isin(element=inverse, test_elements=relation_ids_to_remove, invert=True) logger.info(f"keeping {mask.sum() / mask.shape[0]} triples.") triples = triples[mask] if entity_to_id is None: entity_to_id = create_entity_mapping(triples=triples) if compact_id: entity_to_id = compact_mapping(mapping=entity_to_id)[0] if relation_to_id is None: relation_to_id = create_relation_mapping(triples[:, 1]) if compact_id: relation_to_id = compact_mapping(mapping=relation_to_id)[0] mapped_triples = _map_triples_elements_to_ids( triples=triples, entity_to_id=entity_to_id, relation_to_id=relation_to_id, ) return cls( entity_to_id=entity_to_id, relation_to_id=relation_to_id, mapped_triples=mapped_triples, create_inverse_triples=create_inverse_triples, metadata=metadata, ) @classmethod def from_path( cls, path: Union[str, pathlib.Path, TextIO], create_inverse_triples: bool = False, entity_to_id: Optional[EntityMapping] = None, relation_to_id: Optional[RelationMapping] = None, compact_id: bool = True, metadata: Optional[Dict[str, Any]] = None, load_triples_kwargs: Optional[Mapping[str, Any]] = None, ) -> "TriplesFactory": path = normalize_path(path) triples = load_triples(path, **(load_triples_kwargs or {})) return cls.from_labeled_triples( triples=triples, create_inverse_triples=create_inverse_triples, entity_to_id=entity_to_id, relation_to_id=relation_to_id, compact_id=compact_id, metadata={ "path": path, **(metadata or {}), }, ) def clone_and_exchange_triples( self, mapped_triples: MappedTriples, extra_metadata: Optional[Dict[str, Any]] = None, keep_metadata: bool = True, create_inverse_triples: Optional[bool] = None, ) -> "TriplesFactory": if create_inverse_triples is None: create_inverse_triples = self.create_inverse_triples return TriplesFactory( entity_to_id=self.entity_to_id, relation_to_id=self.relation_to_id, mapped_triples=mapped_triples, create_inverse_triples=create_inverse_triples, metadata={ **(extra_metadata or {}), **(self.metadata if keep_metadata else {}), }, ) @property def entity_to_id(self) -> Mapping[str, int]: return self.entity_labeling.label_to_id @property def entity_id_to_label(self) -> Mapping[int, str]: return self.entity_labeling.id_to_label @property def relation_to_id(self) -> Mapping[str, int]: return self.relation_labeling.label_to_id @property def relation_id_to_label(self) -> Mapping[int, str]: return self.relation_labeling.id_to_label @property def triples(self) -> np.ndarray: logger.warning("Reconstructing all label-based triples. This is expensive and rarely needed.") return self.label_triples(self.mapped_triples) def get_inverse_relation_id(self, relation: Union[str, int]) -> int: relation = next(iter(self.relations_to_ids(relations=[relation]))) return super().get_inverse_relation_id(relation=relation) def label_triples( self, triples: MappedTriples, unknown_entity_label: str = "[UNKNOWN]", unknown_relation_label: Optional[str] = None, ) -> LabeledTriples: if len(triples) == 0: return np.empty(shape=(0, 3), dtype=str) if unknown_relation_label is None: unknown_relation_label = unknown_entity_label return np.stack( [ labeling.label(ids=column, unknown_label=unknown_label) for (labeling, unknown_label), column in zip( [ (self.entity_labeling, unknown_entity_label), (self.relation_labeling, unknown_relation_label), (self.entity_labeling, unknown_entity_label), ], triples.t().numpy(), ) ], axis=1, ) def entities_to_ids(self, entities: Union[Collection[int], Collection[str]]) -> Collection[int]: return _ensure_ids(labels_or_ids=entities, label_to_id=self.entity_labeling.label_to_id) def get_mask_for_entities( self, entities: Union[Collection[int], Collection[str]], invert: bool = False, ) -> torch.BoolTensor: return super().get_mask_for_entities(entities=self.entities_to_ids(entities=entities)) def relations_to_ids( self, relations: Union[Collection[int], Collection[str]], ) -> Collection[int]: return _ensure_ids(labels_or_ids=relations, label_to_id=self.relation_labeling.label_to_id) def get_mask_for_relations( self, relations: Union[Collection[int], Collection[str]], invert: bool = False, ) -> torch.BoolTensor: return super().get_mask_for_relations(relations=self.relations_to_ids(relations=relations))
MIT License
mgear-dev/mgear_core
scripts/mgear/core/attribute.py
setInvertMirror
python
def setInvertMirror(node, invList=None): aDic = {"tx": "invTx", "ty": "invTy", "tz": "invTz", "rx": "invRx", "ry": "invRy", "rz": "invRz", "sx": "invSx", "sy": "invSy", "sz": "invSz"} for axis in invList: if axis not in aDic: mgear.log("Invalid Invert Axis : " + axis, mgear.sev_error) return False node.setAttr(aDic[axis], True)
Set invert mirror pose values Arguments: node (dagNode): The object to set invert mirror Values
https://github.com/mgear-dev/mgear_core/blob/bb450fda44ff79c57f5f73d5a58c97a6b5c5d848/scripts/mgear/core/attribute.py#L521-L544
import collections import mgear import pymel.core as pm import maya.cmds as cmds import pymel.core.datatypes as datatypes def addAttribute(node, longName, attributeType, value=None, niceName=None, shortName=None, minValue=None, maxValue=None, keyable=True, readable=True, storable=True, writable=True, channelBox=False): if node.hasAttr(longName): mgear.log("Attribute already exists", mgear.sev_error) return data = {} if shortName is not None: data["shortName"] = shortName if niceName is not None: data["niceName"] = niceName if attributeType == "string": data["dataType"] = attributeType else: data["attributeType"] = attributeType if minValue is not None and minValue is not False: data["minValue"] = minValue if maxValue is not None and maxValue is not False: data["maxValue"] = maxValue data["keyable"] = keyable data["readable"] = readable data["storable"] = storable data["writable"] = writable if value is not None and attributeType not in ["string"]: data["defaultValue"] = value node.addAttr(longName, **data) if value is not None: node.setAttr(longName, value) if channelBox: node.attr(longName).set(channelBox=True) return node.attr(longName) def addColorAttribute(node, longName, value=False, keyable=True, readable=True, storable=True, writable=True, niceName=None, shortName=None): if node.hasAttr(longName): mgear.log("Attribute already exists", mgear.sev_error) return data = {} data["attributeType"] = "float3" if shortName is not None: data["shortName"] = shortName if niceName is not None: data["niceName"] = niceName data["usedAsColor"] = True data["keyable"] = keyable data["readable"] = readable data["storable"] = storable data["writable"] = writable dataChild = {} dataChild["attributeType"] = 'float' dataChild["parent"] = longName node.addAttr(longName, **data) node.addAttr(longName + "_r", **dataChild) node.addAttr(longName + "_g", **dataChild) node.addAttr(longName + "_b", **dataChild) if value: node.setAttr(longName + "_r", value[0]) node.setAttr(longName + "_g", value[1]) node.setAttr(longName + "_b", value[2]) return node.attr(longName) def addEnumAttribute(node, longName, value, enum, niceName=None, shortName=None, keyable=True, readable=True, storable=True, writable=True): if node.hasAttr(longName): mgear.log("Attribute '" + longName + "' already exists", mgear.sev_warning) return data = {} if shortName is not None: data["shortName"] = shortName if niceName is not None: data["niceName"] = niceName data["attributeType"] = "enum" data["en"] = ":".join(enum) data["keyable"] = keyable data["readable"] = readable data["storable"] = storable data["writable"] = writable node.addAttr(longName, **data) node.setAttr(longName, value) return node.attr(longName) def addProxyAttribute(sourceAttrs, targets, duplicatedPolicy=None): if not isinstance(targets, list): targets = [targets] if not isinstance(sourceAttrs, list): sourceAttrs = [sourceAttrs] for sourceAttr in sourceAttrs: for target in targets: attrName = sourceAttr.longName() if target.hasAttr(sourceAttr.longName()): if duplicatedPolicy == "index": i = 0 while target.hasAttr(sourceAttr.longName() + str(i)): i += 1 attrName = sourceAttr.longName() + str(i) elif duplicatedPolicy == "fullName": attrName = "{}_{}".format(sourceAttr.nodeName(), sourceAttr.longName()) if not target.hasAttr(attrName): target.addAttr(attrName, pxy=sourceAttr) else: pm.displayWarning( "The proxy channel %s already exist on: %s." % (sourceAttr.longName(), target.name())) def moveChannel(attr, sourceNode, targetNode, duplicatedPolicy=None): if isinstance(sourceNode, str) or isinstance(sourceNode, unicode): sourceNode = pm.PyNode(sourceNode) if isinstance(targetNode, str) or isinstance(targetNode, unicode): targetNode = pm.PyNode(targetNode) try: at = sourceNode.attr(attr) if pm.addAttr(at, q=True, usedAsProxy=True): pm.displayWarning("{} is a proxy channel and move operation is " "not yet supported.".format(attr)) return except Exception: pm.displayWarning("Looks like the {} is not in the" " source: {}".format(attr, sourceNode.name())) return atType = at.type() if atType in ["double", "float", "enum"]: newAtt = None attrName = attr nName = pm.attributeQuery( at.shortName(), node=at.node(), niceName=True) if sourceNode.name() != targetNode.name(): if pm.attributeQuery(attr, node=targetNode, exists=True): if duplicatedPolicy == "index": i = 0 while targetNode.hasAttr(attr + str(i)): i += 1 attrName = attr + str(i) elif duplicatedPolicy == "fullName": attrName = "{}_{}".format(sourceNode.name(), attr) elif duplicatedPolicy == "merge": newAtt = pm.PyNode(".".join([targetNode.name(), attr])) else: pm.displayWarning("Duplicated channel policy, is not " "defined. Move channel operation will " "fail if the channel already exist on " "the target.") return False outcnx = at.listConnections(p=True) if not newAtt: value = at.get() if atType in ["double", "float"]: kwargs = {} min = at.getMin() if min: kwargs["min"] = min max = at.getMax() if max: kwargs["max"] = max elif atType == "enum": en = at.getEnums() oEn = collections.OrderedDict(sorted(en.items(), key=lambda t: t[1])) enStr = ":".join([n for n in oEn]) pm.deleteAttr(at) if atType in ["double", "float"]: pm.addAttr(targetNode, ln=attrName, niceName=nName, at=atType, dv=value, k=True, **kwargs) elif atType == "enum": pm.addAttr(targetNode, ln=attrName, niceName=nName, at="enum", en=enStr, dv=value, k=True) newAtt = pm.PyNode(".".join([targetNode.name(), attrName])) else: pm.deleteAttr(at) for cnx in outcnx: try: pm.connectAttr(newAtt, cnx, f=True) except RuntimeError: pm.displayError("There is a problem connecting the " "channel %s maybe is already move? Please " "check your configuration" % newAtt.name()) else: pm.displayWarning("MoveChannel function can't handle an attribute " "of type: %s. Only supported 'double' adn 'enum' " "types." % atType) def lockAttribute(node, attributes=["tx", "ty", "tz", "rx", "ry", "rz", "sx", "sy", "sz", "v"]): _lockUnlockAttribute(node, attributes, lock=True, keyable=False) def unlockAttribute(node, attributes=["tx", "ty", "tz", "rx", "ry", "rz", "sx", "sy", "sz", "v"]): _lockUnlockAttribute(node, attributes, lock=False, keyable=True) def _lockUnlockAttribute(node, attributes, lock, keyable): if not isinstance(attributes, list): attributes = [attributes] for attr_name in attributes: node.setAttr(attr_name, lock=lock, keyable=keyable) def setKeyableAttributes(nodes, params=["tx", "ty", "tz", "ro", "rx", "ry", "rz", "sx", "sy", "sz"]): localParams = ["tx", "ty", "tz", "ro", "rx", "ry", "rz", "sx", "sy", "sz", "v"] if not isinstance(nodes, list): nodes = [nodes] for attr_name in params: for node in nodes: node.setAttr(attr_name, lock=False, keyable=True) for attr_name in localParams: if attr_name not in params: for node in nodes: node.setAttr(attr_name, lock=True, keyable=False) def setNotKeyableAttributes(nodes, attributes=["tx", "ty", "tz", "ro", "rx", "ry", "rz", "sx", "sy", "sz", "v"]): if not isinstance(nodes, list): nodes = [nodes] for attr_name in attributes: for node in nodes: node.setAttr(attr_name, lock=False, keyable=False, cb=True) def setRotOrder(node, s="XYZ"): a = ["XYZ", "YZX", "ZXY", "XZY", "YXZ", "ZYX"] if s not in a: mgear.log("Invalid Rotorder : " + s, mgear.sev_error) return False er = datatypes.EulerRotation([pm.getAttr(node + ".rx"), pm.getAttr(node + ".ry"), pm.getAttr(node + ".rz")], unit="degrees") er.reorderIt(s) node.setAttr("ro", a.index(s)) node.setAttr("rotate", er.x, er.y, er.z)
MIT License
brainiak/brainiak
brainiak/utils/fmrisim_real_time_generator.py
generate_data
python
def generate_data(outputDir, user_settings): data_dict = default_settings.copy() data_dict.update(user_settings) os.system('mkdir -p %s' % outputDir) logger.info('Load template of average voxel value') ROI_A_file, ROI_B_file, template_path, noise_dict_file = _get_input_names(data_dict) if isinstance(template_path, str): template_nii = nibabel.load(template_path) template = template_nii.get_data() else: template = template_path dimensions = np.array(template.shape[0:3]) logger.info('Create binary mask and normalize the template range') mask, template = sim.mask_brain(volume=template, mask_self=True, ) outFile = os.path.join(outputDir, 'mask.npy') np.save(outFile, mask.astype(np.uint8)) logger.info('Loading noise parameters') if type(noise_dict_file) is str: with open(noise_dict_file, 'r') as f: noise_dict = f.read() else: noise_dict = noise_dict_file.decode() noise_dict = eval(noise_dict) noise_dict['matched'] = 0 data_dict['noise_dict'] = noise_dict logger.info('Generating noise') temp_stimfunction = np.zeros((data_dict['numTRs'], 1)) noise = sim.generate_noise(dimensions=dimensions, stimfunction_tr=temp_stimfunction, tr_duration=int(data_dict['trDuration']), template=template, mask=mask, noise_dict=noise_dict, ) total_time = int(data_dict['numTRs'] * data_dict['trDuration']) onsets_A = [] onsets_B = [] curr_time = data_dict['burn_in'] while curr_time < (total_time - data_dict['event_duration']): if np.random.randint(0, 2) == 1: onsets_A.append(curr_time) else: onsets_B.append(curr_time) curr_time += data_dict['event_duration'] + data_dict['isi'] temporal_res = 1 / data_dict['trDuration'] event_durations = [data_dict['event_duration']] stimfunc_A = sim.generate_stimfunction(onsets=onsets_A, event_durations=event_durations, total_time=total_time, temporal_resolution=temporal_res, ) stimfunc_B = sim.generate_stimfunction(onsets=onsets_B, event_durations=event_durations, total_time=total_time, temporal_resolution=temporal_res, ) outFile = os.path.join(outputDir, 'labels.npy') np.save(outFile, (stimfunc_A + (stimfunc_B * 2))) signal_A = _generate_ROIs(ROI_A_file, stimfunc_A, noise, data_dict['scale_percentage'], data_dict) if data_dict['different_ROIs'] is True: signal_B = _generate_ROIs(ROI_B_file, stimfunc_B, noise, data_dict['scale_percentage'], data_dict) else: if data_dict['multivariate_pattern'] is False: signal_B = _generate_ROIs(ROI_A_file, stimfunc_B, noise, data_dict['scale_percentage'] * 0.5, data_dict) else: signal_B = _generate_ROIs(ROI_A_file, stimfunc_B, noise, data_dict['scale_percentage'], data_dict) signal = signal_A + signal_B logger.info('Generating TRs in real time') for idx in range(data_dict['numTRs']): brain = noise[:, :, :, idx] + signal[:, :, :, idx] brain_int32 = brain.astype(np.int32) if data_dict['save_dicom'] is True: output_file = os.path.join(outputDir, 'rt_' + format(idx, '03d') + '.dcm') _write_dicom(output_file, brain_int32, idx+1) else: output_file = os.path.join(outputDir, 'rt_' + format(idx, '03d') + '.npy') np.save(output_file, brain_int32) logger.info("Generate {}".format(output_file)) if data_dict['save_realtime'] == 1: time.sleep(data_dict['trDuration'])
Generate simulated fMRI data Use a few parameters that might be relevant for real time analysis Parameters ---------- outputDir : str Specify output data dir where the data should be saved user_settings : dict A dictionary to specify the parameters used for making data, specifying the following keys numTRs - int - Specify the number of time points multivariate_patterns - bool - Is the difference between conditions univariate (0) or multivariate (1) different_ROIs - bool - Are there different ROIs for each condition ( 1) or is it in the same ROI (0). If it is the same ROI and you are using univariate differences, the second condition will have a smaller evoked response than the other. event_duration - int - How long, in seconds, is each event scale_percentage - float - What is the percent signal change trDuration - float - How many seconds per volume save_dicom - bool - Save to data as a dicom (1) or numpy (0) save_realtime - bool - Do you want to save the data in real time (1) or as fast as possible (0)? isi - float - What is the time between each event (in seconds) burn_in - int - How long before the first event (in seconds)
https://github.com/brainiak/brainiak/blob/ee093597c6c11597b0a59e95b48d2118e40394a5/brainiak/utils/fmrisim_real_time_generator.py#L338-L522
import os import time import argparse import datetime import nibabel import numpy as np import pydicom as dicom from brainiak.utils import fmrisim as sim import logging from pkg_resources import resource_stream from nibabel.nifti1 import Nifti1Image import gzip __all__ = ["generate_data"] logger = logging.getLogger(__name__) script_datetime = datetime.datetime.now() default_settings = { 'ROI_A_file': None, 'ROI_B_file': None, 'template_path': None, 'noise_dict_file': None, 'numTRs': 200, 'trDuration': 2, 'isi': 6, 'burn_in': 6, 'event_duration': 10, 'scale_percentage': 0.5, 'multivariate_pattern': False, 'different_ROIs': False, 'save_dicom': False, 'save_realtime': False, } def _generate_ROIs(ROI_file, stimfunc, noise, scale_percentage, data_dict): if isinstance(ROI_file, str): logger.info('Loading', ROI_file) nii = nibabel.load(ROI_file) ROI = nii.get_data() else: ROI = ROI_file idx_list = np.where(ROI == 1) idxs = np.zeros([len(idx_list[0]), 3]) for idx_counter in list(range(0, len(idx_list[0]))): idxs[idx_counter, 0] = int(idx_list[0][idx_counter]) idxs[idx_counter, 1] = int(idx_list[1][idx_counter]) idxs[idx_counter, 2] = int(idx_list[2][idx_counter]) idxs = idxs.astype('int8') voxels = int(ROI.sum()) if data_dict['multivariate_pattern'] is True: pattern = np.random.rand(voxels).reshape((voxels, 1)) else: pattern = np.tile(1, voxels).reshape((voxels, 1)) weights = np.tile(stimfunc, voxels) * pattern.T temporal_res = 1 / data_dict['trDuration'] signal_func = sim.convolve_hrf(stimfunction=weights, tr_duration=data_dict['trDuration'], temporal_resolution=temporal_res, scale_function=1, ) noise = noise.astype('double') noise_function = noise[idxs[:, 0], idxs[:, 1], idxs[:, 2], :].T sf_scaled = sim.compute_signal_change(signal_function=signal_func, noise_function=noise_function, noise_dict=data_dict['noise_dict'], magnitude=[scale_percentage], method='PSC', ) signal = sim.apply_signal(sf_scaled, ROI, ) return signal def _write_dicom(output_name, data, image_number=0): dataInts = data.astype(np.int16) file_meta = dicom.Dataset() file_meta.MediaStorageSOPClassUID = '1.2' file_meta.MediaStorageSOPInstanceUID = "1.2.3" file_meta.ImplementationClassUID = "1.2.3.4" file_meta.TransferSyntaxUID = '1.2.840.10008.1.2' ds = dicom.FileDataset(output_name, {}, file_meta=file_meta, preamble=b"\0" * 128) frames, rows, cols = dataInts.shape ds.Rows = rows ds.Columns = cols ds.NumberOfFrames = frames ds.SamplesPerPixel = 1 ds.BitsAllocated = 16 ds.BitsStored = 16 ds.PixelRepresentation = 0 ds.InstanceNumber = image_number ds.ImagePositionPatient = [0, 0, 0] ds.ImageOrientationPatient = [.01, 0, 0, 0, 0, 0] ds.PhotometricInterpretation = 'MONOCHROME1' ds.PatientName = "sim" ds.PatientID = "sim" ds.is_little_endian = True ds.is_implicit_VR = True image_datetime = script_datetime + datetime.timedelta(seconds=image_number) timeStr = image_datetime.strftime('%H%M%S') ds.ContentDate = image_datetime.strftime('%Y%m%d') ds.ContentTime = timeStr ds.PixelData = dataInts.tobytes() ds.save_as(output_name) def _get_input_names(data_dict): if data_dict.get('ROI_A_file') is None: vol = resource_stream(__name__, "sim_parameters/ROI_A.nii.gz").read() ROI_A_file = Nifti1Image.from_bytes(gzip.decompress(vol)).get_data() else: ROI_A_file = data_dict['ROI_A_file'] if data_dict.get('ROI_B_file') is None: vol = resource_stream(__name__, "sim_parameters/ROI_B.nii.gz").read() ROI_B_file = Nifti1Image.from_bytes(gzip.decompress(vol)).get_data() else: ROI_B_file = data_dict['ROI_B_file'] if data_dict.get('template_path') is None: vol = resource_stream(__name__, "sim_parameters/sub_template.nii.gz").read() template_path = Nifti1Image.from_bytes(gzip.decompress(vol)).get_data() else: template_path = data_dict['template_path'] if data_dict.get('noise_dict_file') is None: file = resource_stream(__name__, 'sim_parameters/sub_noise_dict.txt').read() noise_dict_file = file else: noise_dict_file = data_dict['noise_dict_file'] return ROI_A_file, ROI_B_file, template_path, noise_dict_file
Apache License 2.0
harrystech/arthur-redshift-etl
python/etl/extract/extractor.py
Extractor.source_info
python
def source_info(source: DataWarehouseSchema, relation: RelationDescription) -> Dict: return { "name": relation.source_name, "schema": relation.source_table_name.schema, "table": relation.source_table_name.table, }
Return info for the job monitor that says from where the data is extracted. Defaults to the relation's idea of the source but may be overridden by child classes.
https://github.com/harrystech/arthur-redshift-etl/blob/126b93e998b5b393597e333e4f6eb11f531809df/python/etl/extract/extractor.py#L68-L78
import concurrent.futures import logging import random import time from itertools import groupby from operator import attrgetter from typing import Dict, List, Set import etl.config import etl.db import etl.file_sets import etl.monitor import etl.s3 from etl.config.dw import DataWarehouseSchema from etl.errors import DataExtractError, ETLRuntimeError, MissingCsvFilesError from etl.relation import RelationDescription from etl.text import join_with_single_quotes from etl.timer import Timer from etl.util.retry import call_with_retry class Extractor: def __init__( self, name: str, schemas: Dict[str, DataWarehouseSchema], relations: List[RelationDescription], keep_going: bool, needs_to_wait: bool, dry_run: bool, ) -> None: self.name = name self.schemas = schemas self.relations = relations self.keep_going = keep_going self.needs_to_wait = needs_to_wait self.dry_run = dry_run self.logger = logging.getLogger(__name__) self.failed_sources: Set[str] = set() def options_info(self) -> List[str]: return ["with-{0.name}-extractor".format(self)] @staticmethod
MIT License
jeetshetty/greenpithumb_frontend
server/images.py
Indexer.index
python
def index(self): file_index = [] for filename in _files_in_directory(self._images_path): try: file_index.append(_filename_to_index_entry(filename)) except ValueError: pass return file_index
Generates an index of the GreenPiThumb image files. Creates an index of all the GreenPiThumb image files in the specified images path. If there are non-image files in the directory, these are ignored. Any GreenPiThumb image files in subdirectories are also ignored. Returns: A list of dictionaries, one for each GreenPiThumb image file, where the dictionary has keys 'timestamp' with the datetime when the file was created and 'filename' of the image's filename (without path prefix).
https://github.com/jeetshetty/greenpithumb_frontend/blob/4d2700ff7fbb22b26f697500badfbda1c0a13646/server/images.py#L38-L59
import datetime import os import pytz _FILENAME_FORMAT = '%Y-%m-%dT%H%MZ.jpg' def _files_in_directory(directory): paths = os.listdir(directory) return [f for f in paths if os.path.isfile(os.path.join(directory, f))] def _timestamp_from_filename(filename): return datetime.datetime.strptime(filename, _FILENAME_FORMAT).replace( tzinfo=pytz.utc) def _filename_to_index_entry(filename): return { 'timestamp': _timestamp_from_filename(filename), 'filename': filename, } class Indexer(object): def __init__(self, images_path): self._images_path = images_path
Apache License 2.0
netket/netket
netket/graph/lattice.py
Lattice.vector_to_site
python
def vector_to_site(self, vector: CoordT) -> int: return self.id_from_basis_coords([*vector, 0])
Deprecated. please use :code:`id_from_basis_coords([*vector, 0])` instead.
https://github.com/netket/netket/blob/74248a39e86bb501eaf6822e76107c4926321f80/netket/graph/lattice.py#L743-L748
from dataclasses import dataclass from math import pi from netket.utils.types import Array from typing import Callable, Dict, Sequence, Tuple, Union, Optional, TYPE_CHECKING import warnings import igraph import numpy as _np from scipy.spatial import cKDTree from scipy.sparse import find, triu from netket.utils.deprecation import deprecated as _deprecated from netket.utils import HashableArray from netket.utils.float import comparable, comparable_periodic, is_approx_int from netket.utils.group import PointGroup, PermutationGroup, trivial_point_group from .graph import Graph if TYPE_CHECKING: from .space_group import SpaceGroupBuilder PositionT = _np.ndarray CoordT = _np.ndarray class InvalidSiteError(Exception): pass class InvalidWaveVectorError(Exception): pass @dataclass class LatticeSite: id: int position: PositionT basis_coord: CoordT def __repr__(self): s = ", ".join(map(str, (self.id, self.basis_coord))) return f"LatticeSite({s})" def create_sites( basis_vectors, extent, apositions, pbc ) -> Tuple[Sequence[LatticeSite], Sequence[bool], Dict[HashableArray, int]]: shell_vec = _np.where(pbc, 2, 0) shift_vec = _np.where(pbc, 1, 0) shell_min = 0 - shift_vec shell_max = _np.asarray(extent) + shell_vec - shift_vec ranges = [slice(lo, hi) for lo, hi in zip(shell_min, shell_max)] ranges += [slice(0, len(apositions))] basis_coords = _np.vstack([_np.ravel(x) for x in _np.mgrid[ranges]]).T site_coords = ( basis_coords[:, :-1] + _np.tile(apositions.T, reps=len(basis_coords) // len(apositions)).T ) positions = site_coords @ basis_vectors sites = [] coord_to_site = {} for idx, (coord, pos) in enumerate(zip(basis_coords, positions)): sites.append( LatticeSite( id=None, basis_coord=coord, position=pos, ), ) coord_to_site[HashableArray(coord)] = idx is_inside = ~( _np.any(basis_coords[:, :-1] < 0, axis=1) | _np.any(basis_coords[:, :-1] > (extent - 1), axis=1) ) return sites, is_inside, coord_to_site def get_edges(positions, cutoff): kdtree = cKDTree(positions) dist_matrix = kdtree.sparse_distance_matrix(kdtree, cutoff) row, col, dst = find(triu(dist_matrix)) dst = comparable(dst) _, ii = _np.unique(dst, return_inverse=True) return sorted(list(zip(row[ii == 0], col[ii == 0]))) def get_true_edges( basis_vectors: PositionT, sites: Sequence[LatticeSite], inside: Sequence[bool], basis_coord_to_site, extent, distance_atol, ): positions = _np.array([p.position for p in sites]) naive_edges = get_edges( positions, _np.linalg.norm(basis_vectors, axis=1).max() + distance_atol ) true_edges = set() for node1, node2 in naive_edges: site1, inside1 = sites[node1], inside[node1] site2, inside2 = sites[node2], inside[node2] if inside1 and inside2: true_edges.add((node1, node2)) elif inside1 or inside2: cell1 = site1.basis_coord cell2 = site2.basis_coord cell1[:-1] = cell1[:-1] % extent cell2[:-1] = cell2[:-1] % extent node1 = basis_coord_to_site[HashableArray(cell1)] node2 = basis_coord_to_site[HashableArray(cell2)] edge = (node1, node2) if edge not in true_edges and (node2, node1) not in true_edges: true_edges.add(edge) return list(true_edges) def deprecated(alternative): def wrapper(fn): msg = ( f"{fn.__name__} is deprecated and may be removed in the future. " f"You can use `{alternative}`` instead." ) f = _deprecated(msg)(fn) return f return wrapper REPR_TEMPLATE = """Lattice( n_nodes={}, extent={}, basis_vectors= {}, site_offsets= {}, ) """ class Lattice(Graph): def __init__( self, basis_vectors: _np.ndarray, extent: _np.ndarray, *, pbc: Union[bool, Sequence[bool]] = True, site_offsets: Optional[_np.ndarray] = None, atoms_coord: Optional[_np.ndarray] = None, distance_atol: float = 1e-5, point_group: Optional[PointGroup] = None, ): self._basis_vectors = self._clean_basis(basis_vectors) self._ndim = self._basis_vectors.shape[1] self._site_offsets, site_pos_fractional = self._clean_site_offsets( site_offsets, atoms_coord, self._basis_vectors, ) self._pbc = self._clean_pbc(pbc, self._ndim) self._extent = _np.asarray(extent, dtype=int) self._point_group = point_group sites, inside, self._basis_coord_to_site = create_sites( self._basis_vectors, self._extent, site_pos_fractional, self._pbc ) edges = get_true_edges( self._basis_vectors, sites, inside, self._basis_coord_to_site, self._extent, distance_atol, ) old_nodes = sorted(set(node for edge in edges for node in edge)) new_nodes = {old_node: new_node for new_node, old_node in enumerate(old_nodes)} graph = igraph.Graph() graph.add_vertices(len(old_nodes)) graph.add_edges([(new_nodes[edge[0]], new_nodes[edge[1]]) for edge in edges]) graph.simplify() self._sites = [] for i, site in enumerate(sites[old_node] for old_node in old_nodes): site.id = i self._sites.append(site) self._basis_coord_to_site = { HashableArray(p.basis_coord): p.id for p in self._sites } self._positions = _np.array([p.position for p in self._sites]) self._basis_coords = _np.array([p.basis_coord for p in self._sites]) self._lattice_dims = _np.expand_dims(self._extent, 1) * self.basis_vectors self._inv_dims = _np.linalg.inv(self._lattice_dims) int_positions = self._to_integer_position(self._positions) self._int_position_to_site = { HashableArray(pos): index for index, pos in enumerate(int_positions) } super().__init__(list(graph.get_edgelist()), graph.vcount()) @staticmethod def _clean_basis(basis_vectors): basis_vectors = _np.asarray(basis_vectors) if basis_vectors.ndim != 2: raise ValueError( "'basis_vectors' must have ndim==2 (as array of primtive vectors)" ) if basis_vectors.shape[0] != basis_vectors.shape[1]: raise ValueError("The number of primitive vectors must match their length") return basis_vectors @staticmethod def _clean_site_offsets(site_offsets, atoms_coord, basis_vectors): if atoms_coord is not None and site_offsets is not None: raise ValueError( "atoms_coord is deprecated and replaced by site_offsets, " "so both cannot be specified at the same time." ) if atoms_coord is not None: warnings.warn( "atoms_coord is deprecated and may be removed in future versions, " "please use site_offsets instead", FutureWarning, ) site_offsets = atoms_coord if site_offsets is None: site_offsets = _np.zeros(basis_vectors.shape[0])[None, :] site_offsets = _np.asarray(site_offsets) fractional_coords = site_offsets @ _np.linalg.inv(basis_vectors) fractional_coords_int = comparable_periodic(fractional_coords) uniques, idx = _np.unique(fractional_coords_int, axis=0, return_index=True) if len(site_offsets) != len(uniques): site_offsets = site_offsets[idx] fractional_coords = fractional_coords[idx] fractional_coords_int = fractional_coords_int[idx] warnings.warn( "Some atom positions are not unique. Duplicates were dropped, and " f"now atom positions are {site_offsets}", UserWarning, ) if _np.any(fractional_coords_int < comparable(0.0)) or _np.any( fractional_coords_int > comparable(1.0) ): warnings.warn( "Some sites were specified outside the primitive unit cell. This may" "cause errors in automatic edge finding.", UserWarning, ) return site_offsets, fractional_coords @staticmethod def _clean_pbc(pbc, ndim): if isinstance(pbc, bool): return _np.array([pbc] * ndim, dtype=bool) elif ( not isinstance(pbc, Sequence) or len(pbc) != ndim or not all(isinstance(b, bool) for b in pbc) ): raise ValueError( "pbc must be either a boolean or a sequence of booleans with length" "equal to the lattice dimenion" ) else: return _np.asarray(pbc, dtype=bool) @property def basis_vectors(self): return self._basis_vectors @property def site_offsets(self): return self._site_offsets @property def ndim(self): return self._ndim @property def pbc(self): return self._pbc @property def extent(self): return self._extent @property def sites(self) -> Sequence[LatticeSite]: return self._sites @property def positions(self) -> PositionT: return self._positions @property def basis_coords(self) -> CoordT: return self._basis_coords def _to_integer_position(self, positions: PositionT) -> Array: frac_positions = _np.matmul(positions, self._inv_dims) return comparable_periodic(frac_positions, self.pbc) @staticmethod def _get_id_from_dict( dict: Dict[HashableArray, int], key: Array ) -> Union[int, Array]: try: if key.ndim == 1: return dict[HashableArray(key)] elif key.ndim == 2: return _np.array([dict[HashableArray(k)] for k in key]) else: raise ValueError("Input needs to be rank 1 or rank 2 array") except KeyError as e: raise InvalidSiteError( "Some coordinates do not correspond to a valid lattice site" ) from e def id_from_position(self, position: PositionT) -> Union[int, Array]: int_pos = self._to_integer_position(position) ids = self._get_id_from_dict(self._int_position_to_site, int_pos) return ids def id_from_basis_coords(self, basis_coords: CoordT) -> Union[int, Array]: key = _np.asarray(basis_coords) return self._get_id_from_dict(self._basis_coord_to_site, key) def position_from_basis_coords(self, basis_coords: CoordT) -> PositionT: ids = self.id_from_basis_coords(basis_coords) return self.positions[ids] def to_reciprocal_lattice(self, ks: Array) -> Array: ks = _np.asarray(ks) if ks.ndim == 1: ks = ks[_np.newaxis, :] result = ks @ self._lattice_dims.T / (2 * pi) is_valid = is_approx_int(result) if not _np.all(is_valid): raise InvalidWaveVectorError( "Some wave vectors are not reciprocal lattice vectors of the simulation" "box spanned by\n" + "\n".join( [ str(self._lattice_dims[i]) + (" (PBC)" if self.pbc[i] else " (OBC)") for i in range(self.ndim) ] ) ) result = _np.asarray(_np.rint(result), dtype=int) is_valid = _np.logical_or(self.pbc, result == 0) if not _np.all(is_valid): raise InvalidWaveVectorError( "Some wave vectors are inconisistent with open boundary conditions" ) return result def space_group_builder( self, point_group: Optional[PointGroup] = None ) -> "SpaceGroupBuilder": from .space_group import SpaceGroupBuilder if point_group is None: if isinstance(self._point_group, PointGroup): point_group = self._point_group elif isinstance(self._point_group, Callable): self._point_group = self._point_group() point_group = self._point_group else: raise RuntimeError( "space_group_builder() missing required argument 'point_group'\n" "(lattice has no default point group)" ) return SpaceGroupBuilder(self, point_group) def space_group(self, point_group: Optional[PointGroup] = None) -> PermutationGroup: return self.space_group_builder(point_group).space_group def point_group(self, point_group: Optional[PointGroup] = None) -> PermutationGroup: return self.space_group_builder(point_group).point_group def rotation_group( self, point_group: Optional[PointGroup] = None ) -> PermutationGroup: return self.space_group_builder(point_group).rotation_group def translation_group( self, dim: Optional[Union[int, Sequence[int]]] = None ) -> PermutationGroup: return self.space_group_builder( trivial_point_group(self.ndim) ).translation_group(dim) def __repr__(self) -> str: return REPR_TEMPLATE.format( self.n_nodes, self._extent, str(self.basis_vectors).replace("\n", "\n" + " " * 8), str(self.site_offsets).replace("\n", "\n" + " " * 8), ) def draw( self, ax=None, figsize: Optional[Tuple[Union[int, float]]] = None, node_color: str = "#1f78b4", node_size: int = 300, edge_color: str = "k", curvature: float = 0.2, font_size: int = 12, font_color: str = "k", ): import matplotlib.pyplot as plt if self._ndim == 1: positions = _np.pad(self.positions, (0, 1), "constant") elif self._ndim == 2: positions = self.positions else: raise ValueError( "Make sure that the graph is 1D or 2D in order to be drawn. " f" Now it is {self._ndim}D" ) if ax is None: _, ax = plt.subplots(figsize=figsize) for edge in self.edges(): x1, y1 = positions[edge[0]] x2, y2 = positions[edge[1]] annotation = ax.annotate( "", xy=(x1, y1), xycoords="data", xytext=(x2, y2), textcoords="data", arrowprops=dict( arrowstyle="-", color=edge_color, shrinkA=0, shrinkB=0, patchA=None, patchB=None, connectionstyle=f"arc3,rad={curvature}", ), ) ax.scatter( *positions.T, s=node_size, c=node_color, marker="o", zorder=annotation.get_zorder() + 1, ) for node in self.nodes(): x1, y1 = positions[node] ax.text( x1, y1, str(node), horizontalalignment="center", verticalalignment="center", fontsize=font_size, color=font_color, zorder=annotation.get_zorder() + 1, ) ax.axis("equal") return ax @deprecated("basis_coords[site_id, -1]") def atom_label(self, site_id: int) -> int: return self.basis_coords[site_id, -1] @deprecated("basis_coords[site_id, :-1]") def site_to_vector(self, site_id: int) -> CoordT: return self.basis_coords[site_id, :-1] @deprecated("positions[site_id]") def site_to_coord(self, site_id: int) -> PositionT: return self.positions[site_id] @deprecated("id_from_basis_coords([*vector, 0])")
Apache License 2.0
tristandeleu/pytorch-meta
torchmeta/datasets/helpers_tabular.py
helper_with_default_tabular
python
def helper_with_default_tabular(klass, folder, shots, ways, shuffle=True, test_shots=None, seed=None, defaults=None, **kwargs): if defaults is None: defaults = {} if 'num_classes_per_task' in kwargs: warnings.warn('Both arguments `ways` and `num_classes_per_task` were ' 'set in the helper function for the number of classes per task. ' 'Ignoring the argument `ways`.', stacklevel=2) ways = kwargs['num_classes_per_task'] if 'transform' not in kwargs: kwargs['transform'] = defaults.get('transform', NumpyToTorch()) if 'target_transform' not in kwargs: kwargs['target_transform'] = defaults.get('target_transform', Categorical(ways)) if 'class_augmentations' not in kwargs: kwargs['class_augmentations'] = defaults.get('class_augmentations', None) if test_shots is None: test_shots = shots dataset = klass(folder, num_classes_per_task=ways, **kwargs) dataset = ClassSplitter(dataset, shuffle=shuffle, num_train_per_class=shots, num_test_per_class=test_shots) dataset.seed(seed) return dataset
Parameters ---------- klass : CombinationMetaDataset the class corresponding to the meta-dataset, e.g., Covertype folder : string Root directory where the dataset folder exists, e.g., `covertype_task_id_2118`. shots : int Number of (training) examples per class in each task. This corresponds to `k` in `k-shot` classification. ways : int Number of classes per task. This corresponds to `N` in `N-way` classification. shuffle : bool (default: `True`) Shuffle the examples when creating the tasks. test_shots : int, optional Number of test examples per class in each task. If `None`, then the number of test examples is equal to the number of training examples per class. seed : int, optional Random seed to be used in the meta-dataset. kwargs Additional arguments passed to the `TieredImagenet` class. Returns ------- klass The meta-dataset with ClassSplitter applied, e.g., Covertype.
https://github.com/tristandeleu/pytorch-meta/blob/d55d89ebd47f340180267106bde3e4b723f23762/torchmeta/datasets/helpers_tabular.py#L16-L84
import warnings from torchmeta.datasets import Letter, PlantsTexture, PlantsShape, PlantsMargin, Bach from torchmeta.transforms import Categorical, ClassSplitter from torchmeta.transforms.tabular_transforms import NumpyToTorch __all__ = [ 'letter', 'plants_texture', 'plants_shape', 'plants_margin', 'bach' ]
MIT License
googledatalab/pydatalab
datalab/utils/_utils.py
pick_unused_port
python
def pick_unused_port(): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('localhost', 0)) addr, port = s.getsockname() s.close() return port
get an unused port on the VM. Returns: An unused port.
https://github.com/googledatalab/pydatalab/blob/1d6865237fdc8d184123d1e89193578da56d73b3/datalab/utils/_utils.py#L86-L96
from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals from builtins import str try: import http.client as httplib except ImportError: import httplib import pytz import subprocess import socket import traceback import types def print_exception_with_last_stack(e): traceback.print_exc() print(str(e)) def get_item(env, name, default=None): for key in name.split('.'): if isinstance(env, dict) and key in env: env = env[key] elif isinstance(env, types.ModuleType) and key in env.__dict__: env = env.__dict__[key] else: return default return env def compare_datetimes(d1, d2): if d1.tzinfo is None or d1.tzinfo.utcoffset(d1) is None: d1 = d1.replace(tzinfo=pytz.UTC) if d2.tzinfo is None or d2.tzinfo.utcoffset(d2) is None: d2 = d2.replace(tzinfo=pytz.UTC) if d1 < d2: return -1 elif d1 > d2: return 1 return 0
Apache License 2.0
zhenlohuang/pyaria2
pyaria2.py
PyAria2.changeGlobalOption
python
def changeGlobalOption(self, options): return self.server.aria2.changeGlobalOption(options)
This method changes global options dynamically. options: dict, the options. return: This method returns OK for success.
https://github.com/zhenlohuang/pyaria2/blob/034965c0243db8157e8dc99767d076d43f9fc7c5/pyaria2.py#L338-L346
import subprocess import xmlrpc.client import os import time DEFAULT_HOST = 'localhost' DEFAULT_PORT = 6800 SERVER_URI_FORMAT = 'http://{}:{:d}/rpc' class PyAria2(object): def __init__(self, host=DEFAULT_HOST, port=DEFAULT_PORT, session=None): if not isAria2Installed(): raise Exception('aria2 is not installed, please install it before.') if not isAria2rpcRunning(): cmd = 'aria2c' ' --enable-rpc' ' --rpc-listen-port %d' ' --continue' ' --max-concurrent-downloads=20' ' --max-connection-per-server=10' ' --rpc-max-request-size=1024M' % port if not session is None: cmd += ' --input-file=%s' ' --save-session-interval=60' ' --save-session=%s' % (session, session) subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE) count = 0 while True: if isAria2rpcRunning(): break else: count += 1 time.sleep(3) if count == 5: raise Exception('aria2 RPC server started failure.') print('aria2 RPC server is started.') else: print('aria2 RPC server is already running.') server_uri = SERVER_URI_FORMAT.format(host, port) self.server = xmlrpc.client.ServerProxy(server_uri, allow_none=True) def addUri(self, uris, options=None, position=None): return self.server.aria2.addUri(uris, options, position) def addTorrent(self, torrent, uris=None, options=None, position=None): return self.server.aria2.addTorrent(xmlrpc.client.Binary(open(torrent, 'rb').read()), uris, options, position) def addMetalink(self, metalink, options=None, position=None): return self.server.aria2.addMetalink(xmlrpc.client.Binary(open(metalink, 'rb').read()), options, position) def remove(self, gid): return self.server.aria2.remove(gid) def forceRemove(self, gid): return self.server.aria2.forceRemove(gid) def pause(self, gid): return self.server.aria2.pause(gid) def pauseAll(self): return self.server.aria2.pauseAll() def forcePause(self, gid): return self.server.aria2.forcePause(gid) def forcePauseAll(self): return self.server.aria2.forcePauseAll() def unpause(self, gid): return self.server.aria2.unpause(gid) def unpauseAll(self): return self.server.aria2.unpauseAll() def tellStatus(self, gid, keys=None): return self.server.aria2.tellStatus(gid, keys) def getUris(self, gid): return self.server.aria2.getUris(gid) def getFiles(self, gid): return self.server.aria2.getFiles(gid) def getPeers(self, gid): return self.server.aria2.getPeers(gid) def getServers(self, gid): return self.server.aria2.getServers(gid) def tellActive(self, keys=None): return self.server.aria2.tellActive(keys) def tellWaiting(self, offset, num, keys=None): return self.server.aria2.tellWaiting(offset, num, keys) def tellStopped(self, offset, num, keys=None): return self.server.aria2.tellStopped(offset, num, keys) def changePosition(self, gid, pos, how): return self.server.aria2.changePosition(gid, pos, how) def changeUri(self, gid, fileIndex, delUris, addUris, position=None): return self.server.aria2.changeUri(gid, fileIndex, delUris, addUris, position) def getOption(self, gid): return self.server.aria2.getOption(gid) def changeOption(self, gid, options): return self.server.aria2.changeOption(gid, options) def getGlobalOption(self): return self.server.aria2.getGlobalOption()
MIT License
beancount/fava
src/fava/application.py
download_journal
python
def download_journal() -> Any: now = datetime.datetime.now().replace(microsecond=0) filename = f"journal_{now.isoformat()}.beancount" data = BytesIO(bytes(render_template("beancount_file"), "utf8")) return send_file(data, as_attachment=True, download_name=filename)
Download a Journal file.
https://github.com/beancount/fava/blob/703497d31c467702c59004dc2143b04ba178dce8/src/fava/application.py#L369-L374
import datetime import functools import threading from io import BytesIO from typing import Any from typing import Dict from typing import List from typing import Optional import flask import markdown2 import werkzeug.urls from beancount import __version__ as beancount_version from beancount.core.account import ACCOUNT_RE from beancount.utils.text_utils import replace_numbers from flask import abort from flask import Flask from flask import redirect from flask import render_template from flask import render_template_string from flask import request from flask import send_file from flask_babel import Babel from flask_babel import get_translations from werkzeug.utils import secure_filename from fava import __version__ as fava_version from fava import LANGUAGES from fava import template_filters from fava.context import g from fava.core import FavaLedger from fava.core.charts import FavaJSONEncoder from fava.core.documents import is_document_or_import_file from fava.help import HELP_PAGES from fava.helpers import FavaAPIException from fava.json_api import json_api from fava.serialisation import serialise from fava.util import next_key from fava.util import resource_path from fava.util import send_file_inline from fava.util import setup_logging from fava.util import slugify from fava.util.date import Interval from fava.util.excel import HAVE_EXCEL STATIC_FOLDER = resource_path("static") setup_logging() app = Flask( __name__, template_folder=str(resource_path("templates")), static_folder=str(STATIC_FOLDER), ) app.register_blueprint(json_api, url_prefix="/<bfile>/api") app.json_encoder = FavaJSONEncoder jinja_extensions = app.jinja_options.setdefault("extensions", []) jinja_extensions.append("jinja2.ext.do") jinja_extensions.append("jinja2.ext.loopcontrols") app.jinja_env.trim_blocks = True app.jinja_env.lstrip_blocks = True app.config["HAVE_EXCEL"] = HAVE_EXCEL app.config["ACCOUNT_RE"] = ACCOUNT_RE REPORTS = [ "balance_sheet", "commodities", "documents", "events", "editor", "errors", "holdings", "import", "income_statement", "journal", "options", "query", "statistics", "trial_balance", ] LOAD_FILE_LOCK = threading.Lock() def ledger_slug(ledger: FavaLedger) -> str: title_slug = slugify(ledger.options["title"]) return title_slug or slugify(ledger.beancount_file_path) def update_ledger_slugs(ledgers: List[FavaLedger]) -> None: ledgers_by_slug: Dict[str, FavaLedger] = {} for ledger in ledgers: slug = ledger_slug(ledger) unique_key = next_key(slug, ledgers_by_slug) ledgers_by_slug[unique_key] = ledger app.config["LEDGERS"] = ledgers_by_slug def _load_file() -> None: ledgers = [ FavaLedger(filepath) for filepath in app.config["BEANCOUNT_FILES"] ] update_ledger_slugs(ledgers) def get_locale() -> Optional[str]: lang = g.ledger.fava_options["language"] if lang is not None: return lang return request.accept_languages.best_match(["en"] + LANGUAGES) BABEL = Babel(app) BABEL.localeselector(get_locale) for function in template_filters.FILTERS: app.add_template_filter(function) app.add_template_filter(serialise) @app.url_defaults def _inject_filters(endpoint: str, values: Dict[str, Any]) -> None: if "bfile" not in values and app.url_map.is_endpoint_expecting( endpoint, "bfile" ): values["bfile"] = g.beancount_file_slug if endpoint in ["static", "index"]: return for name in ["conversion", "interval", "account", "filter", "time"]: if name not in values: values[name] = request.args.get(name) def static_url(filename: str) -> str: file_path = STATIC_FOLDER / filename try: mtime = int(file_path.stat().st_mtime) except FileNotFoundError: mtime = 0 return url_for("static", filename=filename, mtime=mtime) CACHED_URL_FOR = functools.lru_cache(2048)(flask.url_for) def url_for(endpoint: str, **values: Any) -> str: _inject_filters(endpoint, values) return CACHED_URL_FOR(endpoint, **values) def url_for_source(**kwargs: Any) -> str: if g.ledger.fava_options["use-external-editor"]: return ( f"beancount://{kwargs.get('file_path')}" + f"?lineno={kwargs.get('line', 1)}" ) return url_for("report", report_name="editor", **kwargs) def translations() -> Any: return get_translations()._catalog app.add_template_global(static_url, "static_url") app.add_template_global(datetime.date.today, "today") app.add_template_global(url_for, "url_for") app.add_template_global(url_for_source, "url_for_source") app.add_template_global(translations, "translations") @app.context_processor def template_context() -> Dict[str, Any]: return dict(ledger=g.ledger) @app.before_request def _perform_global_filters() -> None: ledger = getattr(g, "ledger", None) if ledger: if request.blueprint != "json_api": ledger.changed() ledger.filter( account=request.args.get("account"), filter=request.args.get("filter"), time=request.args.get("time"), ) @app.after_request def _incognito(response: flask.wrappers.Response) -> flask.wrappers.Response: if app.config.get("INCOGNITO") and response.content_type.startswith( "text/html" ): is_editor = ( request.endpoint == "report" and request.view_args is not None and request.view_args["report_name"] == "editor" ) if not is_editor: original_text = response.get_data(as_text=True) response.set_data(replace_numbers(original_text)) return response @app.url_value_preprocessor def _pull_beancount_file( _: Optional[str], values: Optional[Dict[str, str]] ) -> None: g.beancount_file_slug = values.pop("bfile", None) if values else None with LOAD_FILE_LOCK: if not app.config.get("LEDGERS"): _load_file() if g.beancount_file_slug: if g.beancount_file_slug not in app.config["LEDGERS"]: if not any( g.beancount_file_slug == ledger_slug(ledger) for ledger in app.config["LEDGERS"].values() ): abort(404) update_ledger_slugs(app.config["LEDGERS"].values()) g.ledger = app.config["LEDGERS"][g.beancount_file_slug] g.conversion = request.args.get("conversion", "at_cost") g.interval = Interval.get(request.args.get("interval", "month")) @app.errorhandler(FavaAPIException) def fava_api_exception(error: FavaAPIException) -> str: return render_template( "_layout.html", page_title="Error", content=error.message ) @app.route("/") @app.route("/<bfile>/") def index() -> werkzeug.wrappers.response.Response: if not g.beancount_file_slug: g.beancount_file_slug = next(iter(app.config["LEDGERS"])) index_url = url_for("index") default_path = app.config["LEDGERS"][g.beancount_file_slug].fava_options[ "default-page" ] return redirect(f"{index_url}{default_path}") @app.route("/<bfile>/account/<name>/") @app.route("/<bfile>/account/<name>/<subreport>/") def account(name: str, subreport: str = "journal") -> str: if subreport in ["journal", "balances", "changes"]: return render_template( "account.html", account_name=name, subreport=subreport ) return abort(404) @app.route("/<bfile>/document/", methods=["GET"]) def document() -> Any: filename = request.args.get("filename") if filename is None: return abort(404) if is_document_or_import_file(filename, g.ledger): return send_file_inline(filename) return abort(404) @app.route("/<bfile>/statement/", methods=["GET"]) def statement() -> Any: entry_hash = request.args.get("entry_hash", "") key = request.args.get("key", "") document_path = g.ledger.statement_path(entry_hash, key) return send_file_inline(document_path) @app.route("/<bfile>/holdings/by_<aggregation_key>/") def holdings_by(aggregation_key: str) -> str: if aggregation_key in ["account", "currency", "cost_currency"]: return render_template( "_layout.html", active_page="holdings", aggregation_key=aggregation_key, ) return abort(404) @app.route("/<bfile>/_query_result/") def query_result() -> str: return render_template("_query_result.html") @app.route("/<bfile>/<report_name>/") def report(report_name: str) -> str: if report_name in REPORTS: return render_template("_layout.html", active_page=report_name) return abort(404) @app.route("/<bfile>/extension/<report_name>/") def extension_report(report_name: str) -> str: try: template, extension = g.ledger.extensions.template_and_extension( report_name ) content = render_template_string(template, extension=extension) return render_template( "_layout.html", content=content, page_title=extension.report_title ) except LookupError: return abort(404) @app.route("/<bfile>/download-query/query_result.<result_format>") def download_query(result_format: str) -> Any: name, data = g.ledger.query_shell.query_to_file( request.args.get("query_string", ""), result_format ) filename = f"{secure_filename(name.strip())}.{result_format}" return send_file(data, as_attachment=True, download_name=filename) @app.route("/<bfile>/download-journal/")
MIT License
docusign/docusign-python-client
docusign_esign/models/envelope_documents_result.py
EnvelopeDocumentsResult.__eq__
python
def __eq__(self, other): if not isinstance(other, EnvelopeDocumentsResult): return False return self.to_dict() == other.to_dict()
Returns true if both objects are equal
https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/envelope_documents_result.py#L139-L144
import pprint import re import six from docusign_esign.client.configuration import Configuration class EnvelopeDocumentsResult(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'envelope_documents': 'list[EnvelopeDocument]', 'envelope_id': 'str' } attribute_map = { 'envelope_documents': 'envelopeDocuments', 'envelope_id': 'envelopeId' } def __init__(self, _configuration=None, **kwargs): if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._envelope_documents = None self._envelope_id = None self.discriminator = None setattr(self, "_{}".format('envelope_documents'), kwargs.get('envelope_documents', None)) setattr(self, "_{}".format('envelope_id'), kwargs.get('envelope_id', None)) @property def envelope_documents(self): return self._envelope_documents @envelope_documents.setter def envelope_documents(self, envelope_documents): self._envelope_documents = envelope_documents @property def envelope_id(self): return self._envelope_id @envelope_id.setter def envelope_id(self, envelope_id): self._envelope_id = envelope_id def to_dict(self): result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(EnvelopeDocumentsResult, dict): for key, value in self.items(): result[key] = value return result def to_str(self): return pprint.pformat(self.to_dict()) def __repr__(self): return self.to_str()
MIT License
mrod5/pyturb
src/pyturb/gas_models/gas.py
Gas.cp_molar
python
def cp_molar(self, temperature): raise NotImplementedError
Molar heat capacity ratio at constant pressure [J/mol/K]
https://github.com/mrod5/pyturb/blob/08b4016528fc50733fff58d967d1000bf1e634c9/src/pyturb/gas_models/gas.py#L121-L125
from abc import abstractmethod class Gas(object): @property @abstractmethod def gas_species(self): return NotImplementedError @property @abstractmethod def Ng(self): return NotImplementedError @property @abstractmethod def mg(self): return NotImplementedError @property @abstractmethod def Ru(self): return NotImplementedError @property @abstractmethod def Rg(self): raise NotImplementedError @property @abstractmethod def Mg(self): raise NotImplementedError @abstractmethod def cp(self, temperature): raise NotImplementedError @abstractmethod def cv(self, temperature): raise NotImplementedError @abstractmethod def gamma(self, temperature): raise NotImplementedError @abstractmethod
MIT License
orange-opensource/rtpy
rtpy/repositories.py
RtpyRepositories.repository_configuration
python
def repository_configuration(self, repo_key, **kwargs): api_method = self._category + "Repository Configuration" target = self._prefix + repo_key return self._request("GET", target, api_method, kwargs)
Retrieve the current configuration of a repository. Supported by local, remote and virtual repositories. Parameters ---------- repo_key: str Key of the repository **kwargs Keyword arguments
https://github.com/orange-opensource/rtpy/blob/389d2fd0186176862b1dbf2cf1df77d9e5b5e623/rtpy/repositories.py#L35-L51
from .tools import RtpyBase class RtpyRepositories(RtpyBase): def get_repositories(self, options=None, **kwargs): api_method = self._category + "Get Repositories" target = self._append_to_string("repositories", options) return self._request("GET", target, api_method, kwargs)
Apache License 2.0