repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
cisco-en-programmability/dnacentersdk
|
dnacentersdk/api/v2_2_1/tag.py
|
Tag.remove_tag_member
|
python
|
def remove_tag_member(self,
id,
member_id,
headers=None,
**request_parameters):
check_type(headers, dict)
check_type(id, basestring,
may_be_none=False)
check_type(member_id, basestring,
may_be_none=False)
if headers is not None:
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
'id': id,
'memberId': member_id,
}
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/tag/{id}/member/{memberId}')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.delete(endpoint_full_url, params=_params,
headers=_headers)
else:
json_data = self._session.delete(endpoint_full_url, params=_params)
return self._object_factory('bpm_cc9883be5c1cad1959347babb342_v2_2_1', json_data)
|
Removes Tag member from the tag specified by id.
Args:
id(basestring): id path parameter. Tag ID.
member_id(basestring): memberId path parameter. TagMember id to be removed from tag.
headers(dict): Dictionary of HTTP Headers to send with the Request
.
**request_parameters: Additional request parameters (provides
support for parameters that may be added in the future).
Returns:
MyDict: JSON response. Access the object's properties by using
the dot notation or the bracket notation.
Raises:
TypeError: If the parameter types are incorrect.
MalformedRequest: If the request body created is invalid.
ApiError: If the DNA Center cloud returns an error.
|
https://github.com/cisco-en-programmability/dnacentersdk/blob/ef2adde6113e7a6acd28a287007eb470fa39d31f/dnacentersdk/api/v2_2_1/tag.py#L919-L977
|
from __future__ import (
absolute_import,
division,
print_function,
unicode_literals,
)
from builtins import *
from past.builtins import basestring
from ...restsession import RestSession
from ...utils import (
check_type,
dict_from_items_with_values,
apply_path_params,
dict_of_str,
)
class Tag(object):
def __init__(self, session, object_factory, request_validator):
check_type(session, RestSession)
super(Tag, self).__init__()
self._session = session
self._object_factory = object_factory
self._request_validator = request_validator
def get_tag_members_by_id(self,
id,
member_type,
level=None,
limit=None,
member_association_type=None,
offset=None,
headers=None,
**request_parameters):
check_type(headers, dict)
check_type(member_type, basestring,
may_be_none=False)
check_type(offset, basestring)
check_type(limit, basestring)
check_type(member_association_type, basestring)
check_type(level, basestring)
check_type(id, basestring,
may_be_none=False)
if headers is not None:
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
'memberType':
member_type,
'offset':
offset,
'limit':
limit,
'memberAssociationType':
member_association_type,
'level':
level,
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
'id': id,
}
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/tag/{id}/member')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.get(endpoint_full_url, params=_params,
headers=_headers)
else:
json_data = self._session.get(endpoint_full_url, params=_params)
return self._object_factory('bpm_ff12c50ea3fb53c9a53f9c9e2c595d44_v2_2_1', json_data)
def add_members_to_the_tag(self,
id,
headers=None,
payload=None,
active_validation=True,
**request_parameters):
check_type(headers, dict)
check_type(payload, dict)
check_type(id, basestring,
may_be_none=False)
if headers is not None:
if 'Content-Type' in headers:
check_type(headers.get('Content-Type'),
basestring, may_be_none=False)
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
'id': id,
}
_payload = {
}
_payload.update(payload or {})
_payload = dict_from_items_with_values(_payload)
if active_validation:
self._request_validator('jsd_dcc43be0514e50fea80cfa827f13ee5c_v2_2_1') .validate(_payload)
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/tag/{id}/member')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.post(endpoint_full_url, params=_params,
json=_payload,
headers=_headers)
else:
json_data = self._session.post(endpoint_full_url, params=_params,
json=_payload)
return self._object_factory('bpm_dcc43be0514e50fea80cfa827f13ee5c_v2_2_1', json_data)
def get_tag(self,
additional_info_attributes=None,
additional_info_name_space=None,
field=None,
level=None,
limit=None,
name=None,
offset=None,
order=None,
size=None,
sort_by=None,
system_tag=None,
headers=None,
**request_parameters):
check_type(headers, dict)
check_type(name, basestring)
check_type(additional_info_name_space, basestring)
check_type(additional_info_attributes, basestring)
check_type(level, basestring)
check_type(offset, basestring)
check_type(limit, basestring)
check_type(size, basestring)
check_type(field, basestring)
check_type(sort_by, basestring)
check_type(order, basestring)
check_type(system_tag, basestring)
if headers is not None:
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
'name':
name,
'additionalInfo.nameSpace':
additional_info_name_space,
'additionalInfo.attributes':
additional_info_attributes,
'level':
level,
'offset':
offset,
'limit':
limit,
'size':
size,
'field':
field,
'sortBy':
sort_by,
'order':
order,
'systemTag':
system_tag,
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
}
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/tag')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.get(endpoint_full_url, params=_params,
headers=_headers)
else:
json_data = self._session.get(endpoint_full_url, params=_params)
return self._object_factory('bpm_a4185f5b40aabe991f8cdb2816_v2_2_1', json_data)
def update_tag(self,
description=None,
dynamicRules=None,
id=None,
instanceTenantId=None,
name=None,
systemTag=None,
headers=None,
payload=None,
active_validation=True,
**request_parameters):
check_type(headers, dict)
check_type(payload, dict)
if headers is not None:
if 'Content-Type' in headers:
check_type(headers.get('Content-Type'),
basestring, may_be_none=False)
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
}
_payload = {
'systemTag':
systemTag,
'description':
description,
'dynamicRules':
dynamicRules,
'name':
name,
'id':
id,
'instanceTenantId':
instanceTenantId,
}
_payload.update(payload or {})
_payload = dict_from_items_with_values(_payload)
if active_validation:
self._request_validator('jsd_c9f995abc21b54e7860f66aef2ffbc85_v2_2_1') .validate(_payload)
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/tag')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.put(endpoint_full_url, params=_params,
json=_payload,
headers=_headers)
else:
json_data = self._session.put(endpoint_full_url, params=_params,
json=_payload)
return self._object_factory('bpm_c9f995abc21b54e7860f66aef2ffbc85_v2_2_1', json_data)
def create_tag(self,
description=None,
dynamicRules=None,
id=None,
instanceTenantId=None,
name=None,
systemTag=None,
headers=None,
payload=None,
active_validation=True,
**request_parameters):
check_type(headers, dict)
check_type(payload, dict)
if headers is not None:
if 'Content-Type' in headers:
check_type(headers.get('Content-Type'),
basestring, may_be_none=False)
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
}
_payload = {
'systemTag':
systemTag,
'description':
description,
'dynamicRules':
dynamicRules,
'name':
name,
'id':
id,
'instanceTenantId':
instanceTenantId,
}
_payload.update(payload or {})
_payload = dict_from_items_with_values(_payload)
if active_validation:
self._request_validator('jsd_e8271b05b62c54609f74b4f2f373ad5a_v2_2_1') .validate(_payload)
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/tag')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.post(endpoint_full_url, params=_params,
json=_payload,
headers=_headers)
else:
json_data = self._session.post(endpoint_full_url, params=_params,
json=_payload)
return self._object_factory('bpm_e8271b05b62c54609f74b4f2f373ad5a_v2_2_1', json_data)
def get_tag_member_count(self,
id,
member_type,
level=None,
member_association_type=None,
headers=None,
**request_parameters):
check_type(headers, dict)
check_type(member_type, basestring,
may_be_none=False)
check_type(member_association_type, basestring)
check_type(level, basestring)
check_type(id, basestring,
may_be_none=False)
if headers is not None:
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
'memberType':
member_type,
'memberAssociationType':
member_association_type,
'level':
level,
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
'id': id,
}
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/tag/{id}/member/count')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.get(endpoint_full_url, params=_params,
headers=_headers)
else:
json_data = self._session.get(endpoint_full_url, params=_params)
return self._object_factory('bpm_ffacb52f745c15b40b9b352754e2e1_v2_2_1', json_data)
def get_tag_by_id(self,
id,
headers=None,
**request_parameters):
check_type(headers, dict)
check_type(id, basestring,
may_be_none=False)
if headers is not None:
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
'id': id,
}
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/tag/{id}')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.get(endpoint_full_url, params=_params,
headers=_headers)
else:
json_data = self._session.get(endpoint_full_url, params=_params)
return self._object_factory('bpm_d65f9b9d8ad5426bdf7e55461fcf761_v2_2_1', json_data)
def delete_tag(self,
id,
headers=None,
**request_parameters):
check_type(headers, dict)
check_type(id, basestring,
may_be_none=False)
if headers is not None:
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
'id': id,
}
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/tag/{id}')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.delete(endpoint_full_url, params=_params,
headers=_headers)
else:
json_data = self._session.delete(endpoint_full_url, params=_params)
return self._object_factory('bpm_ed48fc373506cb1688cff36c2cb0f_v2_2_1', json_data)
def updates_tag_membership(self,
memberToTags=None,
memberType=None,
headers=None,
payload=None,
active_validation=True,
**request_parameters):
check_type(headers, dict)
check_type(payload, dict)
if headers is not None:
if 'Content-Type' in headers:
check_type(headers.get('Content-Type'),
basestring, may_be_none=False)
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
}
_payload = {
'memberToTags':
memberToTags,
'memberType':
memberType,
}
_payload.update(payload or {})
_payload = dict_from_items_with_values(_payload)
if active_validation:
self._request_validator('jsd_e3934b0fb68a5ff787e65e9b7c8e6296_v2_2_1') .validate(_payload)
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/tag/member')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.put(endpoint_full_url, params=_params,
json=_payload,
headers=_headers)
else:
json_data = self._session.put(endpoint_full_url, params=_params,
json=_payload)
return self._object_factory('bpm_e3934b0fb68a5ff787e65e9b7c8e6296_v2_2_1', json_data)
def get_tag_resource_types(self,
headers=None,
**request_parameters):
check_type(headers, dict)
if headers is not None:
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
}
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/tag/member/type')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.get(endpoint_full_url, params=_params,
headers=_headers)
else:
json_data = self._session.get(endpoint_full_url, params=_params)
return self._object_factory('bpm_baf47897d525e5899f62e4d5bdd260b_v2_2_1', json_data)
def get_tag_count(self,
attribute_name=None,
level=None,
name=None,
name_space=None,
size=None,
system_tag=None,
headers=None,
**request_parameters):
check_type(headers, dict)
check_type(name, basestring)
check_type(name_space, basestring)
check_type(attribute_name, basestring)
check_type(level, basestring)
check_type(size, basestring)
check_type(system_tag, basestring)
if headers is not None:
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
'name':
name,
'nameSpace':
name_space,
'attributeName':
attribute_name,
'level':
level,
'size':
size,
'systemTag':
system_tag,
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
}
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/tag/count')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.get(endpoint_full_url, params=_params,
headers=_headers)
else:
json_data = self._session.get(endpoint_full_url, params=_params)
return self._object_factory('bpm_afb52259f7c3501ca4d8ccd277828658_v2_2_1', json_data)
|
MIT License
|
mdabrowski1990/uds
|
uds/messages/uds_message.py
|
UdsMessage.addressing
|
python
|
def addressing(self) -> AddressingType:
return self.__addressing
|
Addressing type for which this message is relevant.
|
https://github.com/mdabrowski1990/uds/blob/6fd4a994785565c099fca7cb7cc3f768f7311c92/uds/messages/uds_message.py#L51-L53
|
__all__ = ["UdsMessage", "UdsMessageRecord"]
from typing import Any
from uds.utilities import RawBytes, RawBytesTuple, validate_raw_bytes, ReassignmentError, TimeStamp
from .transmission_attributes import AddressingType, AddressingMemberTyping, TransmissionDirection
from .uds_packet import AbstractUdsPacketRecord, PacketsRecordsTuple, PacketsRecordsSequence
class UdsMessage:
def __init__(self, payload: RawBytes, addressing: AddressingMemberTyping) -> None:
self.payload = payload
self.addressing = addressing
@property
def payload(self) -> RawBytesTuple:
return self.__payload
@payload.setter
def payload(self, value: RawBytes):
validate_raw_bytes(value)
self.__payload = tuple(value)
@property
|
MIT License
|
signalfx/signalfx-python
|
signalfx/pyformance/registry.py
|
hist_calls
|
python
|
def hist_calls(fn):
@functools.wraps(fn)
def wrapper(*args, **kwargs):
_histogram = histogram(
"%s_calls" % pyformance.registry.get_qualname(fn))
rtn = fn(*args, **kwargs)
if type(rtn) in (int, float):
_histogram.add(rtn)
return rtn
return wrapper
|
Decorator to check the distribution of return values of a function.
|
https://github.com/signalfx/signalfx-python/blob/2d07b0f0ffb91ccba7071eafab306673c3d71cb7/signalfx/pyformance/registry.py#L161-L173
|
import functools
from .metadata import MetricMetadata
import pyformance.registry
import re
import time
from pyformance.registry import (clear, count_calls, dump_metrics,
global_registry, meter_calls,
set_global_registry, time_calls)
class MetricsRegistry(pyformance.registry.MetricsRegistry):
def __init__(self, clock=time):
self.metadata = MetricMetadata()
super(MetricsRegistry, self).__init__(clock=clock)
def add(self, key, metric, **dims):
return super(MetricsRegistry, self).add(
self.metadata.register(key, **dims), metric)
def counter(self, key, **dims):
return super(MetricsRegistry, self).counter(
self.metadata.register(key, **dims))
def histogram(self, key, **dims):
return super(MetricsRegistry, self).histogram(
self.metadata.register(key, **dims))
def gauge(self, key, gauge=None, default=float("nan"), **dims):
return super(MetricsRegistry, self).gauge(
self.metadata.register(key, **dims), gauge=gauge, default=default)
def meter(self, key, **dims):
return super(MetricsRegistry, self).meter(
self.metadata.register(key, **dims))
def timer(self, key, **dims):
return super(MetricsRegistry, self).timer(
self.metadata.register(key, **dims))
def clear(self):
self.metadata.clear()
super(MetricsRegistry, self).clear()
set_global_registry(MetricsRegistry())
class RegexRegistry(MetricsRegistry):
def __init__(self, pattern=None, clock=time):
super(RegexRegistry, self).__init__(clock)
if pattern is not None:
self.pattern = re.compile(pattern)
else:
self.pattern = re.compile('^$')
def _get_key(self, key):
matches = self.pattern.finditer(key)
key = '/'.join((v for match in matches for v in match.groups() if v))
return key
def timer(self, key, **dims):
return super(RegexRegistry, self).timer(self._get_key(key), **dims)
def histogram(self, key, **dims):
return super(RegexRegistry, self).histogram(self._get_key(key), **dims)
def counter(self, key, **dims):
return super(RegexRegistry, self).counter(self._get_key(key), **dims)
def gauge(self, key, gauge=None, default=float("nan"), **dims):
return super(RegexRegistry, self).gauge(
self._get_key(key), gauge=gauge, default=default, **dims)
def meter(self, key, **dims):
return super(RegexRegistry, self).meter(self._get_key(key), **dims)
def counter(key, **dims):
return global_registry().counter(key, **dims)
def histogram(key, **dims):
return global_registry().histogram(key, **dims)
def meter(key, **dims):
return global_registry().meter(key, **dims)
def timer(key, **dims):
return global_registry().timer(key, **dims)
def gauge(key, gauge=None, default=float("nan"), **dims):
return global_registry().gauge(key, gauge=gauge, default=default, **dims)
def count_calls_with_dims(**dims):
def counter_wrapper(fn):
@functools.wraps(fn)
def fn_wrapper(*args, **kwargs):
counter("%s_calls" %
pyformance.registry.get_qualname(fn), **dims).inc()
return fn(*args, **kwargs)
return fn_wrapper
return counter_wrapper
def meter_calls_with_dims(**dims):
def meter_wrapper(fn):
@functools.wraps(fn)
def fn_wrapper(*args, **kwargs):
meter("%s_calls" %
pyformance.registry.get_qualname(fn), **dims).mark()
return fn(*args, **kwargs)
return fn_wrapper
return meter_wrapper
|
Apache License 2.0
|
byceps/byceps
|
byceps/services/site/service.py
|
get_all_sites
|
python
|
def get_all_sites() -> set[Site]:
sites = db.session.query(DbSite).all()
return {_db_entity_to_site(site) for site in sites}
|
Return all sites.
|
https://github.com/byceps/byceps/blob/138f928e98fd1e3d79943e1a8744ea04cef465b5/byceps/services/site/service.py#L138-L142
|
from __future__ import annotations
import dataclasses
from typing import Optional, Union
from ...database import db
from ...typing import BrandID, PartyID
from ..board.transfer.models import BoardID
from ..brand import service as brand_service
from ..news import channel_service as news_channel_service
from ..news.transfer.models import ChannelID as NewsChannelID
from ..shop.storefront.transfer.models import StorefrontID
from .dbmodels.site import Site as DbSite
from .dbmodels.setting import Setting as DbSetting
from .transfer.models import Site, SiteID, SiteWithBrand
class UnknownSiteId(Exception):
pass
def create_site(
site_id: SiteID,
title: str,
server_name: str,
brand_id: BrandID,
*,
enabled: bool = False,
user_account_creation_enabled: bool = False,
login_enabled: bool = False,
party_id: Optional[PartyID] = None,
board_id: Optional[BoardID] = None,
storefront_id: Optional[StorefrontID] = None,
) -> Site:
site = DbSite(
site_id,
title,
server_name,
brand_id,
enabled,
user_account_creation_enabled,
login_enabled,
party_id=party_id,
board_id=board_id,
storefront_id=storefront_id,
)
db.session.add(site)
db.session.commit()
return _db_entity_to_site(site)
def update_site(
site_id: SiteID,
title: str,
server_name: str,
brand_id: BrandID,
party_id: Optional[PartyID],
enabled: bool,
user_account_creation_enabled: bool,
login_enabled: bool,
board_id: Optional[BoardID],
storefront_id: Optional[StorefrontID],
archived: bool,
) -> Site:
site = _get_db_site(site_id)
site.title = title
site.server_name = server_name
site.brand_id = brand_id
site.party_id = party_id
site.enabled = enabled
site.user_account_creation_enabled = user_account_creation_enabled
site.login_enabled = login_enabled
site.board_id = board_id
site.storefront_id = storefront_id
site.archived = archived
db.session.commit()
return _db_entity_to_site(site)
def delete_site(site_id: SiteID) -> None:
db.session.query(DbSetting) .filter_by(site_id=site_id) .delete()
db.session.query(DbSite) .filter_by(id=site_id) .delete()
db.session.commit()
def _find_db_site(site_id: SiteID) -> Optional[DbSite]:
return db.session.query(DbSite).get(site_id)
def _get_db_site(site_id: SiteID) -> DbSite:
site = _find_db_site(site_id)
if site is None:
raise UnknownSiteId(site_id)
return site
def find_site(site_id: SiteID) -> Optional[Site]:
site = _find_db_site(site_id)
if site is None:
return None
return _db_entity_to_site(site)
def get_site(site_id: SiteID) -> Site:
site = _get_db_site(site_id)
return _db_entity_to_site(site)
|
BSD 3-Clause New or Revised License
|
openshift/doozer
|
doozerlib/util.py
|
is_commit_in_public_upstream
|
python
|
def is_commit_in_public_upstream(revision: str, public_upstream_branch: str, source_dir: str):
cmd = ["git", "merge-base", "--is-ancestor", "--", revision, "public_upstream/" + public_upstream_branch]
rc, out, err = exectools.cmd_gather(cmd)
if rc == 0:
return True
if rc == 1:
return False
raise IOError(
f"Couldn't determine if the commit {revision} is in the public upstream source repo. `git merge-base` exited with {rc}, stdout={out}, stderr={err}")
|
Determine if the public upstream branch includes the specified commit.
:param revision: Git commit hash or reference
:param public_upstream_branch: Git branch of the public upstream source
:param source_dir: Path to the local Git repository
|
https://github.com/openshift/doozer/blob/9381af244e5d6533d45868bbab1a71888cc7d1d1/doozerlib/util.py#L185-L202
|
import copy
import functools
import json
import os
import pathlib
import re
import urllib.parse
from collections import deque
from contextlib import contextmanager
from datetime import datetime
from inspect import getframeinfo, stack
from itertools import chain
from os.path import abspath
from pathlib import Path
from sys import getsizeof, stderr
from typing import Dict, Iterable, List, Optional, Tuple, Union
import click
import semver
import yaml
try:
from reprlib import repr
except ImportError:
pass
from doozerlib import constants, exectools
def stringify(val):
try:
val = val.decode('utf-8')
except (UnicodeDecodeError, AttributeError):
pass
return val
def red_prefix(msg, file=None):
click.secho(stringify(msg), nl=False, bold=True, fg='red', file=file)
def red_print(msg, file=None):
click.secho(stringify(msg), nl=True, bold=False, fg='red', file=file)
def green_prefix(msg, file=None):
click.secho(stringify(msg), nl=False, bold=True, fg='green', file=file)
def green_print(msg, file=None):
click.secho(stringify(msg), nl=True, bold=False, fg='green', file=file)
def yellow_prefix(msg, file=None):
click.secho(stringify(msg), nl=False, bold=True, fg='yellow', file=file)
def yellow_print(msg, file=None):
click.secho(stringify(msg), nl=True, bold=False, fg='yellow', file=file)
def cprint(msg, file=None):
click.echo(stringify(msg), file=file)
def color_print(msg, color='white', nl=True, file=None):
click.secho(stringify(msg), nl=nl, bold=False, fg=color, file=file)
DICT_EMPTY = object()
def dict_get(dct, path, default=DICT_EMPTY):
dct = copy.deepcopy(dct)
for key in path.split('.'):
try:
dct = dct[key]
except KeyError:
if default is DICT_EMPTY:
raise Exception('Unable to follow key path {}'.format(path))
return default
return dct
def remove_prefix(s: str, prefix: str) -> str:
if s.startswith(prefix):
return s[len(prefix):]
else:
return s[:]
def remove_prefixes(s: str, *args) -> str:
for prefix in args:
s = remove_prefix(s, prefix)
return s
def remove_suffix(s: str, suffix: str) -> str:
if suffix and s.endswith(suffix):
return s[:-len(suffix)]
else:
return s[:]
def convert_remote_git_to_https(source_url: str):
url = source_url.strip().rstrip('/')
url = remove_prefixes(url, 'http://', 'https://', 'git://', 'git@', 'ssh://')
url = remove_suffix(url, '.git')
url = url.split('@', 1)[-1]
if url.find(':') > -1:
server, org_repo = url.rsplit(':', 1)
elif url.rfind('/') > -1:
server, org_repo = url.rsplit('/', 1)
else:
return f'https://{url}'
return f'https://{server}/{org_repo}'
def split_git_url(url) -> (str, str, str):
https_normalized = convert_remote_git_to_https(url)
url = https_normalized[8:]
server, repo = url.split('/', 1)
org, repo_name = repo.split('/', 1)
return server, org, repo_name
def convert_remote_git_to_ssh(url):
server, org, repo_name = split_git_url(url)
return f'git@{server}:{org}/{repo_name}.git'
def setup_and_fetch_public_upstream_source(public_source_url: str, public_upstream_branch: str, source_dir: str):
out, err = exectools.cmd_assert(["git", "-C", source_dir, "remote"])
if 'public_upstream' not in out.strip().split():
exectools.cmd_assert(["git", "-C", source_dir, "remote", "add", "--", "public_upstream", public_source_url])
else:
exectools.cmd_assert(["git", "-C", source_dir, "remote", "set-url", "--", "public_upstream", public_source_url])
exectools.cmd_assert(["git", "-C", source_dir, "fetch", "--", "public_upstream", public_upstream_branch], retries=3,
set_env=constants.GIT_NO_PROMPTS)
|
Apache License 2.0
|
buzzlawless/ynab-live-import
|
lambda_functions/postToYnab.py
|
is_duplicate_invocation
|
python
|
def is_duplicate_invocation(message_id):
response = ddbclient.get_item(TableName=TABLE_NAME,
Key={'message_id': {'S': message_id}},
ConsistentRead=True)
return 'Item' not in response
|
Checks if this lambda function has already been invoked for this
transaction
|
https://github.com/buzzlawless/ynab-live-import/blob/93c1e4e58b267ddb6c65fdb62b6b3ae7fe96cb30/lambda_functions/postToYnab.py#L37-L43
|
import os
import sys
import json
import boto3
import botocore
import requests
s3client = boto3.client('s3')
BUCKET_NAME = os.getenv('bucket_name')
ddbclient = boto3.client('dynamodb')
TABLE_NAME = os.getenv('table_name')
PERSONAL_ACCESS_TOKEN = os.getenv('personal_access_token')
BUDGET_ID = os.getenv('budget_id')
TIMEOUT = 5
def lambda_handler(event, context):
for record in event['Records']:
if record['eventName'] == 'INSERT':
image = record['dynamodb']['NewImage']
message_id = image['message_id']['S']
if is_duplicate_invocation(message_id):
continue
cleanup(message_id)
transaction_data = {'transaction': {
'account_id': get_account_id(image['last_digits']['S']),
'date': image['date']['S'],
'amount': to_milliunits(image['amount']['S']),
'payee_name': image['payee']['S'],
'cleared': 'uncleared'}
}
post_transaction(transaction_data)
|
MIT License
|
czbiohub/microdl
|
micro_dl/plotting/plot_utils.py
|
save_mask_overlay
|
python
|
def save_mask_overlay(input_image, mask, op_fname, alpha=0.7):
assert 0 <= alpha <= 1, 'alpha must be between 0 and 1'
fig, ax = plt.subplots(1, 3)
fig.set_size_inches((15, 5))
ax[0].imshow(input_image, cmap='gray')
ax[0].axis('off')
ax[1].imshow(mask, cmap='gray')
ax[1].axis('off')
im_rgb = input_image / input_image.max() * 255
im_rgb = im_rgb.astype(np.uint8)
im_rgb = cv2.cvtColor(im_rgb, cv2.COLOR_GRAY2RGB)
try:
_, contours, _ = cv2.findContours(
mask.astype(np.uint8),
cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE,
)
except ValueError:
contours, _ = cv2.findContours(
mask.astype(np.uint8),
cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE,
)
im_rgb = cv2.drawContours(im_rgb, contours, -1, (0, 255, 0), 2)
ax[2].imshow(im_rgb)
ax[2].axis('off')
fig.savefig(op_fname, dpi=250)
plt.close(fig)
|
Plot and save a collage of input, mask, overlay
:param np.array input_image: 2D input image
:param np.array mask: 2D mask image
:param str op_fname: fname will full path for saving the collage as a jpg
:param int alpha: opacity/transparency for the mask overlay
|
https://github.com/czbiohub/microdl/blob/d321807137f986a88f75258e44415206c7f6e481/micro_dl/plotting/plot_utils.py#L196-L235
|
import cv2
import glob
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import natsort
import numpy as np
import os
from micro_dl.utils.normalize import hist_clipping
def save_predicted_images(input_batch,
target_batch,
pred_batch,
output_dir,
batch_idx=None,
output_fname=None,
ext='jpg',
clip_limits=1,
font_size=15):
if not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
batch_size = len(input_batch)
if batch_size == 1:
assert output_fname is not None, 'need fname for saving image'
fname = os.path.join(output_dir, '{}.{}'.format(output_fname, ext))
if batch_size != 1:
assert len(input_batch.shape) == 4, 'saves 2D images only'
for img_idx in range(batch_size):
cur_input = input_batch[img_idx]
cur_target = target_batch[img_idx]
cur_prediction = pred_batch[img_idx]
n_channels = cur_input.shape[0]
fig, ax = plt.subplots(n_channels, 3)
fig.set_size_inches((15, 5 * n_channels))
axis_count = 0
for channel_idx in range(n_channels):
cur_im = hist_clipping(
cur_input[channel_idx],
clip_limits,
100 - clip_limits,
)
ax[axis_count].imshow(cur_im, cmap='gray')
ax[axis_count].axis('off')
if axis_count == 0:
ax[axis_count].set_title('Input', fontsize=font_size)
axis_count += 1
cur_im = cur_target[channel_idx]
ax[axis_count].imshow(cur_im, cmap='gray')
ax[axis_count].axis('off')
if axis_count == 1:
ax[axis_count].set_title('Target', fontsize=font_size)
axis_count += 1
cur_im = hist_clipping(
cur_prediction[channel_idx],
clip_limits,
100 - clip_limits,
)
ax[axis_count].imshow(cur_im, cmap='gray')
ax[axis_count].axis('off')
if axis_count == 2:
ax[axis_count].set_title('Prediction', fontsize=font_size)
axis_count += 1
if batch_size != 1:
fname = os.path.join(
output_dir,
'{}.{}'.format(str(batch_idx * batch_size + img_idx), ext)
)
fig.savefig(fname, dpi=300, bbox_inches='tight')
plt.close(fig)
def save_center_slices(image_dir,
pos_idx,
save_path,
mean_std=None,
clip_limits=1,
margin=20,
z_scale=5,
z_range=None,
channel_str=None,
font_size=15,
color_map='gray',
fig_title=None):
search_str = os.path.join(image_dir, "*p{:03d}*".format(pos_idx))
slice_names = natsort.natsorted(glob.glob(search_str))
if channel_str is not None:
slice_names = [s for s in slice_names if channel_str in s]
if z_range is not None:
assert len(z_range) == 2, 'Z-range must consist of two values'
slice_names = slice_names[z_range[0]:z_range[1]]
assert len(slice_names) > 0, "Couldn't find images with given search criteria"
im_stack = []
for im_z in slice_names:
im_stack.append(cv2.imread(im_z, cv2.IMREAD_ANYDEPTH))
im_stack = np.stack(im_stack, axis=-1)
im_norm = im_stack
if isinstance(mean_std, tuple):
im_norm = im_stack / im_stack.std() * mean_std[0]
im_norm = im_norm - im_norm.mean() + mean_std[1]
im_norm[im_norm < 0] = 0.
im_norm = im_norm.astype(np.uint16)
center_slice = hist_clipping(
im_norm[..., int(len(slice_names) // 2)],
clip_limits, 100 - clip_limits,
)
im_shape = im_stack.shape
canvas = center_slice.max() * np.ones(
(im_shape[0] + im_shape[2] * z_scale + margin,
im_shape[1] + im_shape[2] * z_scale + margin),
dtype=np.uint16,
)
canvas[0:im_shape[0], 0:im_shape[1]] = center_slice
yz_slice = hist_clipping(
np.squeeze(im_norm[:, int(im_shape[1] // 2), :]),
clip_limits, 100 - clip_limits,
)
yz_shape = yz_slice.shape
yz_slice = cv2.resize(yz_slice, (yz_shape[1] * int(z_scale), yz_shape[0]))
canvas[0:yz_shape[0], im_shape[1] + margin:] = yz_slice
xy_slice = hist_clipping(
np.squeeze(im_norm[int(im_shape[1] // 2), :, :]),
clip_limits, 100 - clip_limits,
)
xy_shape = xy_slice.shape
xy_slice = cv2.resize(xy_slice, (xy_shape[1] * int(z_scale), xy_shape[0]))
xy_slice = np.rot90(xy_slice)
canvas[im_shape[0] + margin:, 0:xy_slice.shape[1]] = xy_slice
plt.imshow(canvas, cmap=color_map)
plt.axis('off')
if fig_title is not None:
plt.title(fig_title, fontsize=font_size)
plt.savefig(save_path, dpi=300, bbox_inches='tight')
plt.close()
|
MIT License
|
tianzerl/pyanime4k
|
pyanime4k/ac.py
|
AC.list_GPUs
|
python
|
def list_GPUs():
c_length = ctypes.c_size_t()
c_ac.acListGPUs(None, ctypes.pointer(c_length), None, None)
length = c_length.value
info = (ctypes.c_char * length)()
c_ac.acListGPUs(info, None, None, None)
print(ctypes.string_at(info).decode())
|
print platforms and GPUs info
|
https://github.com/tianzerl/pyanime4k/blob/dc379805819db0718d6b044e59f2e6497af48f1d/pyanime4k/ac.py#L523-L532
|
from pyanime4k.wrapper import *
from pyanime4k.error import ACError
import numpy as np
import multiprocessing
(AC_INPUT_BGR, AC_INPUT_RGB, AC_INPUT_YUV444, AC_INPUT_RGB32, AC_INPUT_BGR32) = (
0,
1,
2,
3,
4,
)
(AC_PROCESS_PAUSED, AC_PROCESS_STOP, AC_PROCESS_RUNNING) = (0, 1, 2)
class Version(object):
pyanime4k = "2.5.2"
def __init__(self):
ac_version = c_ac.acGetVersion()
self.core = str(ac_version.coreVersion, "utf-8")
self.wrapper = str(ac_version.wrapperVersion, "utf-8")
def __str__(self):
return (
f"Version information:\n"
f" pyanime4k: {self.pyanime4k}\n"
f" core: {self.core}\n"
f" C wrapper: {self.wrapper}"
)
class Parameters(object):
def __init__(self):
self.passes = 2
self.pushColorCount = 2
self.strengthColor = 0.3
self.strengthGradient = 1.0
self.zoomFactor = 2.0
self.fastMode = False
self.videoMode = False
self.preprocessing = False
self.postprocessing = False
self.preFilters = 4
self.postFilters = 40
self.maxThreads = multiprocessing.cpu_count()
self.HDN = False
self.HDNLevel = 1
self.alpha = False
def reset(self):
self.passes = 2
self.pushColorCount = 2
self.strengthColor = 0.3
self.strengthGradient = 1.0
self.zoomFactor = 2.0
self.fastMode = False
self.videoMode = False
self.preprocessing = False
self.postprocessing = False
self.preFilters = 4
self.postFilters = 40
self.maxThreads = multiprocessing.cpu_count()
self.HDN = False
self.HDNLevel = 1
self.alpha = False
def print_info(self):
print(
"passes: %d\n"
"pushColorCount: %d\n"
"strengthColor: %.2f\n"
"strengthGradient: %.2f\n"
"zoomFactor: %.2f\n"
"fastMode: %r\n"
"videoMode: %r\n"
"preprocessing: %r\n"
"postprocessing: %r\n"
"preFilters: %d\n"
"postFilters: %d\n"
"maxThreads: %d\n"
"HDN: %r\n"
"HDNLevel %r\n"
"alpha %r"
% (
self.passes,
self.pushColorCount,
self.strengthColor,
self.strengthGradient,
self.zoomFactor,
self.fastMode,
self.videoMode,
self.preprocessing,
self.postprocessing,
self.preFilters,
self.postFilters,
self.maxThreads,
self.HDN,
self.HDNLevel,
self.alpha,
)
)
class ProcessorType(object):
CPU_Anime4K09 = AC_CPU_Anime4K09
CPU_ACNet = AC_CPU_ACNet
OpenCL_Anime4K09 = AC_OpenCL_Anime4K09
OpenCL_ACNet = AC_OpenCL_ACNet
Cuda_Anime4K09 = AC_Cuda_Anime4K09
Cuda_ACNet = AC_Cuda_ACNet
type_code_str = {
CPU_Anime4K09: " CPU_Anime4K09",
CPU_ACNet: "CPU_ACNet",
OpenCL_Anime4K09: "OpenCL_Anime4K09",
OpenCL_ACNet: "OpenCL_ACNet",
Cuda_Anime4K09: "Cuda_Anime4K09",
Cuda_ACNet: "Cuda_ACNet",
}
class Codec(object):
OTHER = AC_OTHER
MP4V = AC_MP4V
DXVA = AC_DXVA
AVC1 = AC_AVC1
VP09 = AC_VP09
HEVC = AC_HEVC
AV01 = AC_AV01
class CNNType(object):
AC_Default = 0
AC_ACNetHDNL0 = 1
AC_ACNetHDNL1 = 2
AC_ACNetHDNL2 = 3
AC_ACNetHDNL3 = 4
class GPGPUModel(object):
AC_CUDA = 0
AC_OpenCL = 1
class OpenCLAnime4K09Manager(object):
def __init__(
self,
pID: int = 0,
dID: int = 0,
OpenCLQueueNum: int = 4,
OpenCLParallelIO: bool = False,
):
self.pID = pID
self.dID = dID
self.OpenCLQueueNum = OpenCLQueueNum
self.OpenCLParallelIO = OpenCLParallelIO
def _get_manager_data(self):
manager_data = ac_OpenCLAnime4K09Data()
manager_data.pID = ctypes.c_uint(self.pID)
manager_data.dID = ctypes.c_uint(self.dID)
manager_data.OpenCLQueueNum = ctypes.c_int(self.OpenCLQueueNum)
manager_data.OpenCLParallelIO = ctypes.c_int(self.OpenCLParallelIO)
return manager_data
class OpenCLACNetManager(object):
def __init__(
self,
pID: int = 0,
dID: int = 0,
CNN: int = CNNType.AC_Default,
OpenCLQueueNum: int = 4,
OpenCLParallelIO: bool = False,
):
self.pID = pID
self.dID = dID
self.CNNType = CNN
self.OpenCLQueueNum = OpenCLQueueNum
self.OpenCLParallelIO = OpenCLParallelIO
def _get_manager_data(self):
manager_data = ac_OpenCLACNetData()
manager_data.pID = ctypes.c_uint(self.pID)
manager_data.dID = ctypes.c_uint(self.dID)
manager_data.OpenCLQueueNum = ctypes.c_int(self.OpenCLQueueNum)
manager_data.OpenCLParallelIO = ctypes.c_int(self.OpenCLParallelIO)
manager_data.CNNType = ctypes.c_int(self.CNNType)
return manager_data
class CUDAManager(object):
def __init__(self, dID: int = 0):
self.dID = dID
def _get_manager_data(self):
manager_data = ac_CUDAData()
manager_data.dID = ctypes.c_uint(self.dID)
return manager_data
class ManagerList(object):
def __init__(self, managerList: list):
self._manager_data = ac_managerData()
self._manager_mask = 0
for manager in managerList:
if isinstance(manager, OpenCLAnime4K09Manager):
self._manager_mask |= ac_manager.AC_Manager_OpenCL_Anime4K09
self._manager_data.OpenCLAnime4K09Data = ctypes.pointer(
manager._get_manager_data()
)
elif isinstance(manager, OpenCLACNetManager):
self._manager_mask |= ac_manager.AC_Manager_OpenCL_ACNet
self._manager_data.OpenCLACNetData = ctypes.pointer(
manager._get_manager_data()
)
elif isinstance(manager, CUDAManager):
self._manager_mask |= ac_manager.AC_Manager_Cuda
self._manager_data.CUDAData = ctypes.pointer(
manager._get_manager_data()
)
def get_managers(self):
return self._manager_mask
def get_manager_data(self):
return self._manager_data
class AC(object):
def __get_c_parameters(self, parameters):
c_struct = ac_parameters()
c_struct.passes = ctypes.c_int(parameters.passes)
c_struct.pushColorCount = ctypes.c_int(parameters.pushColorCount)
c_struct.strengthColor = ctypes.c_double(parameters.strengthColor)
c_struct.strengthGradient = ctypes.c_double(parameters.strengthGradient)
c_struct.zoomFactor = ctypes.c_double(parameters.zoomFactor)
c_struct.fastMode = ctypes.c_int(parameters.fastMode)
c_struct.videoMode = ctypes.c_int(parameters.videoMode)
c_struct.preprocessing = ctypes.c_int(parameters.preprocessing)
c_struct.postprocessing = ctypes.c_int(parameters.postprocessing)
c_struct.preFilters = ctypes.c_uint8(parameters.preFilters)
c_struct.postFilters = ctypes.c_uint8(parameters.postFilters)
c_struct.maxThreads = ctypes.c_uint(parameters.maxThreads)
c_struct.HDN = ctypes.c_int(parameters.HDN)
c_struct.HDNLevel = ctypes.c_int(parameters.HDNLevel)
c_struct.alpha = ctypes.c_int(parameters.alpha)
return c_struct
def __init__(
self,
managerList: ManagerList = None,
parameters: Parameters = Parameters(),
type: ProcessorType = ProcessorType.CPU_ACNet,
):
err = ctypes.c_int(AC_OK)
self.ac_object = c_ac.acGetInstance2(
ctypes.c_uint(managerList.get_managers() if managerList is not None else 0),
ctypes.byref(managerList.get_manager_data())
if managerList is not None
else None,
ctypes.byref(self.__get_c_parameters(parameters)),
ctypes.c_int(type),
ctypes.pointer(err),
)
if err.value != AC_OK:
raise ACError(err.value)
self.parameters = parameters
self.ac_object = ctypes.c_void_p(self.ac_object)
self.input_type = AC_INPUT_BGR
self.processor_type = type
self.process_status = AC_PROCESS_STOP
def __del__(self):
c_ac.acFreeInstance2(self.ac_object)
@staticmethod
def get_version() -> Version:
return Version()
def get_processor_type(self) -> str:
return ProcessorType.type_code_str[self.processor_type]
def set_video_mode(self, flag: bool = True):
err = c_ac.acSetVideoMode(self.ac_object, ctypes.c_int(flag))
if err != AC_OK:
raise ACError(err)
self.parameters.videoMode = flag
def set_arguments(self, parameters: Parameters):
err = c_ac.acSetArguments(
self.ac_object, ctypes.byref(self.__get_c_parameters(parameters))
)
if err != AC_OK:
raise ACError(err)
self.parameters = parameters
def load_image(self, src_path: str):
err = c_ac.acLoadImage(self.ac_object, ctypes.c_char_p(src_path.encode('utf-8')))
if err != AC_OK:
raise ACError(err)
def load_video(self, src_path: str):
if self.parameters.videoMode is False:
raise ACError(AC_ERROR_VIDEO_MODE_UNINIT)
err = c_ac.acLoadVideo(self.ac_object, ctypes.c_char_p(src_path.encode('utf-8')))
if err != AC_OK:
raise ACError(err)
def set_save_video_info(
self, dst_path: str, codec: Codec = Codec.MP4V, fps: float = 0
):
err = c_ac.acSetSaveVideoInfo(
self.ac_object,
ctypes.c_char_p(dst_path.encode('utf-8')),
ctypes.c_int(codec),
ctypes.c_double(fps),
)
if err != AC_OK:
raise ACError(err)
def process(self):
self.process_status = AC_PROCESS_RUNNING
err = c_ac.acProcess(self.ac_object)
if err != AC_OK:
raise ACError(err)
self.process_status = AC_PROCESS_STOP
def process_with_progress(self):
self.process_status = AC_PROCESS_RUNNING
err = c_ac.acProcessWithPrintProgress(self.ac_object)
if err != AC_OK:
raise ACError(err)
self.process_status = AC_PROCESS_STOP
def process_with_progress_callback(self, func):
self.process_status = AC_PROCESS_RUNNING
c_callback = ctypes.CFUNCTYPE(None, ctypes.c_double)
err = c_ac.acProcessWithProgress(self.ac_object, c_callback(func))
if err != AC_OK:
raise ACError(err)
self.process_status = AC_PROCESS_STOP
def process_with_progress_time_callback(self, func):
self.process_status = AC_PROCESS_RUNNING
c_callback = ctypes.CFUNCTYPE(None, ctypes.c_double, ctypes.c_double)
err = c_ac.acProcessWithProgressTime(self.ac_object, c_callback(func))
if err != AC_OK:
raise ACError(err)
self.process_status = AC_PROCESS_STOP
def pause_video_process(self):
err = c_ac.acPauseVideoProcess(self.ac_object)
if err != AC_OK:
raise ACError(err)
self.process_status = AC_PROCESS_PAUSED
def continue_video_process(self):
err = c_ac.acContinueVideoProcess(self.ac_object)
if err != AC_OK:
raise ACError(err)
self.process_status = AC_PROCESS_RUNNING
def stop_video_process(self):
err = c_ac.acStopVideoProcess(self.ac_object)
if err != AC_OK:
raise ACError(err)
self.process_status = AC_PROCESS_STOP
def get_process_status(self) -> int:
return self.process_status
def save_image(self, dst_path: str):
err = c_ac.acSaveImage(self.ac_object, ctypes.c_char_p(dst_path.encode('utf-8')))
if err != AC_OK:
raise ACError(err)
def save_video(self):
err = c_ac.acSaveVideo(self.ac_object)
if err != AC_OK:
raise ACError(err)
def show_image(self):
err = c_ac.acShowImage(self.ac_object, ctypes.c_int(self.input_type))
if err != AC_OK:
raise ACError(err)
def init_GPU(self):
err = c_ac.acInitGPU()
if err != AC_OK:
raise ACError(err)
def release_GPU(self):
c_ac.acReleaseGPU()
def is_initialized_GPU(self) -> bool:
flag = c_ac.acIsInitializedGPU()
return bool(flag)
def init_GPUCNN(self):
err = c_ac.acInitGPUCNN()
if err != AC_OK:
raise ACError(err)
def release_GPUCNN(self):
c_ac.acReleaseGPUCNN()
def is_initialized_GPUCNN(self) -> bool:
flag = c_ac.acIsInitializedGPUCNN()
return bool(flag)
@staticmethod
|
MIT License
|
hackertogether/tiktok-crawler
|
tiktok/hot/trend.py
|
trend
|
python
|
def trend(hot_trend_url, count, **kwargs):
offset = 0
while True:
common_parameter['cursor'] = str(offset)
result = fetch(hot_trend_url, params=common_parameter, **kwargs)
category_list = result.get('category_list')
datetime = parse_datetime(result.get('extra', {}).get('now'))
final = []
for item in category_list:
if item.get('desc') == '热门话题':
final.append(data_to_topic(item.get('challenge_info', {})))
if item.get('desc') == '热门音乐':
final.append(data_to_music(item.get('music_info', {})))
yield HotTrend(datetime=datetime, data=final, offset=offset, count=count)
offset += 10
|
get trend result
:return:
|
https://github.com/hackertogether/tiktok-crawler/blob/eba5bb2b0ecf9e9d82084609d04ab53fc1747121/tiktok/hot/trend.py#L8-L27
|
from tiktok.utils import fetch
from tiktok.config import common_parameter
from tiktok.utils.tranform import data_to_music, data_to_topic
from tiktok.structures.hot import HotTrend
from tiktok.utils.common import parse_datetime
|
MIT License
|
semiversus/python-broqer
|
broqer/coro_queue.py
|
CoroQueue._start_task
|
python
|
def _start_task(self, args: Tuple, future: asyncio.Future):
if self._mode is AsyncMode.LAST_DISTINCT and args == self._last_args:
self._task = None
future.set_result(NONE)
return
self._last_args = args
self._task = asyncio.ensure_future(self._coro(*args))
self._task.add_done_callback(partial(self._handle_done, future))
|
Start the coroutine as task
|
https://github.com/semiversus/python-broqer/blob/131a78b4e475c4134bc32e035b833c8b162cdff2/broqer/coro_queue.py#L95-L109
|
import asyncio
from collections import deque
from enum import Enum
from typing import Any, Deque, Optional, Tuple
from functools import partial
from broqer import NONE
def wrap_coro(coro, unpack, *args, **kwargs):
if unpack:
async def _coro(value):
return await coro(*args, *value, **kwargs)
else:
async def _coro(value):
return await coro(*args, value, **kwargs)
return _coro
class AsyncMode(Enum):
CONCURRENT = 1
INTERRUPT = 2
QUEUE = 3
LAST = 4
LAST_DISTINCT = 5
SKIP = 6
class CoroQueue:
def __init__(self, coro, mode=AsyncMode.CONCURRENT):
self._coro = coro
self._mode = mode
self._last_args = None
self._task = None
self._queue = None
if mode in (AsyncMode.QUEUE, AsyncMode.LAST, AsyncMode.LAST_DISTINCT):
maxlen = (None if mode is AsyncMode.QUEUE else 1)
self._queue = deque(maxlen=maxlen)
def schedule(self, *args: Any) -> asyncio.Future:
future = asyncio.Future()
if self._task is not None:
if self._queue is not None:
if self._queue.maxlen == 1 and len(self._queue) == 1:
_, queued_future = self._queue.popleft()
queued_future.set_result(NONE)
self._queue.append((args, future))
return future
if self._mode is AsyncMode.SKIP:
future.set_result(NONE)
return future
if self._mode is AsyncMode.INTERRUPT and not self._task.done():
self._task.cancel()
self._start_task(args, future)
return future
|
MIT License
|
2ndwatch/cloudendure-python
|
cloudendure/cloudendure_api/models/cloud_endure_job.py
|
CloudEndureJob.end_date_time
|
python
|
def end_date_time(self):
return self._end_date_time
|
Gets the end_date_time of this CloudEndureJob. # noqa: E501
:return: The end_date_time of this CloudEndureJob. # noqa: E501
:rtype: datetime
|
https://github.com/2ndwatch/cloudendure-python/blob/f81d1be1422b7c19adedb06c584803eaaa811919/cloudendure/cloudendure_api/models/cloud_endure_job.py#L205-L212
|
import pprint
import re
import six
class CloudEndureJob:
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
"status": "str",
"participating_machines": "list[str]",
"log": "list[object]",
"type": "str",
"end_date_time": "datetime",
"creation_date_time": "datetime",
"id": "str",
"initiated_by": "str",
}
attribute_map = {
"status": "status",
"participating_machines": "participatingMachines",
"log": "log",
"type": "type",
"end_date_time": "endDateTime",
"creation_date_time": "creationDateTime",
"id": "id",
"initiated_by": "initiatedBy",
}
def __init__(
self,
status=None,
participating_machines=None,
log=None,
type=None,
end_date_time=None,
creation_date_time=None,
id=None,
initiated_by=None,
):
self._status = None
self._participating_machines = None
self._log = None
self._type = None
self._end_date_time = None
self._creation_date_time = None
self._id = None
self._initiated_by = None
self.discriminator = None
if status is not None:
self.status = status
if participating_machines is not None:
self.participating_machines = participating_machines
if log is not None:
self.log = log
if type is not None:
self.type = type
if end_date_time is not None:
self.end_date_time = end_date_time
if creation_date_time is not None:
self.creation_date_time = creation_date_time
if id is not None:
self.id = id
if initiated_by is not None:
self.initiated_by = initiated_by
@property
def status(self):
return self._status
@status.setter
def status(self, status):
allowed_values = ["PENDING", "STARTED", "COMPLETED", "FAILED"]
if status not in allowed_values:
raise ValueError(
"Invalid value for `status` ({0}), must be one of {1}".format(
status, allowed_values
)
)
self._status = status
@property
def participating_machines(self):
return self._participating_machines
@participating_machines.setter
def participating_machines(self, participating_machines):
self._participating_machines = participating_machines
@property
def log(self):
return self._log
@log.setter
def log(self, log):
self._log = log
@property
def type(self):
return self._type
@type.setter
def type(self, type):
allowed_values = [
"CLEANUP",
"CUTOVER_LAUNCH",
"RECOVERY_LAUNCH",
"RESTORE_LAUNCH",
"TEST_LAUNCH",
"CONSOLIDATE_VMDKS",
"FILE_RESTORE",
"RECOVERY_PLAN_RECOVERY",
"RECOVERY_PLAN_TEST",
"RECOVERY_PLAN_CUTOVER",
"RECOVERY_PLAN_CLEANUP",
]
if type not in allowed_values:
raise ValueError(
"Invalid value for `type` ({0}), must be one of {1}".format(
type, allowed_values
)
)
self._type = type
@property
|
MIT License
|
mit-pdos/secfs-skeleton
|
secfs/fs.py
|
read
|
python
|
def read(read_as, i, off, size):
if not isinstance(i, I):
raise TypeError("{} is not an I, is a {}".format(i, type(i)))
if not isinstance(read_as, User):
raise TypeError("{} is not a User, is a {}".format(read_as, type(read_as)))
if not secfs.access.can_read(read_as, i):
if i.p.is_group():
raise PermissionError("cannot read from group-readable file {0} as {1}; user is not in group".format(i, read_as))
else:
raise PermissionError("cannot read from user-readable file {0} as {1}".format(i, read_as))
return get_inode(i).read()[off:off+size]
|
Read reads [off:off+size] bytes from the file at i.
|
https://github.com/mit-pdos/secfs-skeleton/blob/835ae6afc0ebd3708b5c08d081d5b4bc7f4165a1/secfs/fs.py#L146-L161
|
import time
import secfs.crypto
import secfs.tables
import secfs.access
import secfs.store.tree
import secfs.store.block
from secfs.store.inode import Inode
from secfs.store.tree import Directory
from cryptography.fernet import Fernet
from secfs.types import I, Principal, User, Group
usermap = {}
groupmap = {}
owner = None
root_i = None
def get_inode(i):
ihash = secfs.tables.resolve(i)
if ihash == None:
raise LookupError("asked to resolve i {}, but i does not exist".format(i))
return Inode.load(ihash)
def init(owner, users, groups):
if not isinstance(owner, User):
raise TypeError("{} is not a User, is a {}".format(owner, type(owner)))
node = Inode()
node.kind = 0
node.ex = True
node.ctime = time.time()
node.mtime = node.ctime
ihash = secfs.store.block.store(node.bytes())
root_i = secfs.tables.modmap(owner, I(owner), ihash)
if root_i == None:
raise RuntimeError
new_ihash = secfs.store.tree.add(root_i, b'.', root_i)
secfs.tables.modmap(owner, root_i, new_ihash)
new_ihash = secfs.store.tree.add(root_i, b'..', root_i)
secfs.tables.modmap(owner, root_i, new_ihash)
print("CREATED ROOT AT", new_ihash)
init = {
b".users": users,
b".groups": groups,
}
import pickle
for fn, c in init.items():
bts = pickle.dumps(c)
node = Inode()
node.kind = 1
node.size = len(bts)
node.mtime = node.ctime
node.ctime = time.time()
node.blocks = [secfs.store.block.store(bts)]
ihash = secfs.store.block.store(node.bytes())
i = secfs.tables.modmap(owner, I(owner), ihash)
link(owner, i, root_i, fn)
return root_i
def _create(parent_i, name, create_as, create_for, isdir):
if not isinstance(parent_i, I):
raise TypeError("{} is not an I, is a {}".format(parent_i, type(parent_i)))
if not isinstance(create_as, User):
raise TypeError("{} is not a User, is a {}".format(create_as, type(create_as)))
if not isinstance(create_for, Principal):
raise TypeError("{} is not a Principal, is a {}".format(create_for, type(create_for)))
assert create_as.is_user()
assert create_as == create_for or create_for.is_group()
if create_for.is_group() and create_for not in groupmap:
raise PermissionError("cannot create for unknown group {}".format(create_for))
if not secfs.access.can_write(create_as, parent_i):
if parent_i.p.is_group():
raise PermissionError("cannot create in group-writeable directory {0} as {1}; user is not in group".format(parent_i, create_as))
else:
raise PermissionError("cannot create in user-writeable directory {0} as {1}".format(parent_i, create_as))
node = Inode()
node.ctime = time.time()
node.mtime = node.ctime
node.kind = 0 if isdir else 1
node.ex = isdir
return I(User(0), 0)
def create(parent_i, name, create_as, create_for):
return _create(parent_i, name, create_as, create_for, False)
def mkdir(parent_i, name, create_as, create_for):
return _create(parent_i, name, create_as, create_for, True)
|
MIT License
|
hyangwinter/flownet3d_pytorch
|
util.py
|
sample_and_group_all
|
python
|
def sample_and_group_all(xyz, points):
device = xyz.device
B, N, C = xyz.shape
new_xyz = torch.zeros(B, 1, C).to(device)
grouped_xyz = xyz.view(B, 1, N, C)
if points is not None:
new_points = torch.cat([grouped_xyz, points.view(B, 1, N, -1)], dim=-1)
else:
new_points = grouped_xyz
return new_xyz, new_points
|
Input:
xyz: input points position data, [B, N, C]
points: input points data, [B, N, D]
Return:
new_xyz: sampled points position data, [B, 1, C]
new_points: sampled points data, [B, 1, N, C+D]
|
https://github.com/hyangwinter/flownet3d_pytorch/blob/ae0847d242d3582b3f6f115e64f61e637ef80355/util.py#L191-L208
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from time import time
import numpy as np
from lib import pointnet2_utils as pointutils
def quat2mat(quat):
x, y, z, w = quat[:, 0], quat[:, 1], quat[:, 2], quat[:, 3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w*x, w*y, w*z
xy, xz, yz = x*y, x*z, y*z
rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz,
2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx,
2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).reshape(B, 3, 3)
return rotMat
def transform_point_cloud(point_cloud, rotation, translation):
if len(rotation.size()) == 2:
rot_mat = quat2mat(rotation)
else:
rot_mat = rotation
return torch.matmul(rot_mat, point_cloud) + translation.unsqueeze(2)
def npmat2euler(mats, seq='zyx'):
eulers = []
for i in range(mats.shape[0]):
r = Rotation.from_dcm(mats[i])
eulers.append(r.as_euler(seq, degrees=True))
return np.asarray(eulers, dtype='float32')
def timeit(tag, t):
print("{}: {}s".format(tag, time() - t))
return time()
def pc_normalize(pc):
l = pc.shape[0]
centroid = np.mean(pc, axis=0)
pc = pc - centroid
m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
pc = pc / m
return pc
def square_distance(src, dst):
B, N, _ = src.shape
_, M, _ = dst.shape
dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
dist += torch.sum(src ** 2, -1).view(B, N, 1)
dist += torch.sum(dst ** 2, -1).view(B, 1, M)
return dist
def index_points(points, idx):
device = points.device
B = points.shape[0]
view_shape = list(idx.shape)
view_shape[1:] = [1] * (len(view_shape) - 1)
repeat_shape = list(idx.shape)
repeat_shape[0] = 1
batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
new_points = points[batch_indices, idx, :]
return new_points
def farthest_point_sample(xyz, npoint):
device = xyz.device
B, N, C = xyz.shape
centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
distance = torch.ones(B, N).to(device) * 1e10
farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
batch_indices = torch.arange(B, dtype=torch.long).to(device)
for i in range(npoint):
centroids[:, i] = farthest
centroid = xyz[batch_indices, farthest, :].view(B, 1, 3)
dist = torch.sum((xyz - centroid) ** 2, -1)
mask = dist < distance
distance[mask] = dist[mask]
farthest = torch.max(distance, -1)[1]
return centroids
def knn_point(k, pos1, pos2):
B, N, C = pos1.shape
M = pos2.shape[1]
pos1 = pos1.view(B,1,N,-1).repeat(1,M,1,1)
pos2 = pos2.view(B,M,1,-1).repeat(1,1,N,1)
dist = torch.sum(-(pos1-pos2)**2,-1)
val,idx = dist.topk(k=k,dim = -1)
return torch.sqrt(-val), idx
def query_ball_point(radius, nsample, xyz, new_xyz):
device = xyz.device
B, N, C = xyz.shape
_, S, _ = new_xyz.shape
group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
sqrdists = square_distance(new_xyz, xyz)
group_idx[sqrdists > radius ** 2] = N
mask = group_idx != N
cnt = mask.sum(dim=-1)
group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample]
group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample])
mask = group_idx == N
group_idx[mask] = group_first[mask]
return group_idx, cnt
def sample_and_group(npoint, radius, nsample, xyz, points, returnfps=False):
B, N, C = xyz.shape
S = npoint
fps_idx = farthest_point_sample(xyz, npoint)
new_xyz = index_points(xyz, fps_idx)
idx, _ = query_ball_point(radius, nsample, xyz, new_xyz)
grouped_xyz = index_points(xyz, idx)
grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C)
if points is not None:
grouped_points = index_points(points, idx)
new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=-1)
else:
new_points = grouped_xyz_norm
if returnfps:
return new_xyz, new_points, grouped_xyz, fps_idx
else:
return new_xyz, new_points
|
MIT License
|
square/connect-python-sdk
|
squareconnect/models/v1_order.py
|
V1Order.subtotal_money
|
python
|
def subtotal_money(self, subtotal_money):
self._subtotal_money = subtotal_money
|
Sets the subtotal_money of this V1Order.
The amount of all items purchased in the order, before taxes and shipping.
:param subtotal_money: The subtotal_money of this V1Order.
:type: V1Money
|
https://github.com/square/connect-python-sdk/blob/e00e2889b2dd2c55048219cbe64db79962a68633/squareconnect/models/v1_order.py#L294-L303
|
from pprint import pformat
from six import iteritems
import re
class V1Order(object):
def __init__(self, errors=None, id=None, buyer_email=None, recipient_name=None, recipient_phone_number=None, state=None, shipping_address=None, subtotal_money=None, total_shipping_money=None, total_tax_money=None, total_price_money=None, total_discount_money=None, created_at=None, updated_at=None, expires_at=None, payment_id=None, buyer_note=None, completed_note=None, refunded_note=None, canceled_note=None, tender=None, order_history=None, promo_code=None, btc_receive_address=None, btc_price_satoshi=None):
self.swagger_types = {
'errors': 'list[Error]',
'id': 'str',
'buyer_email': 'str',
'recipient_name': 'str',
'recipient_phone_number': 'str',
'state': 'str',
'shipping_address': 'Address',
'subtotal_money': 'V1Money',
'total_shipping_money': 'V1Money',
'total_tax_money': 'V1Money',
'total_price_money': 'V1Money',
'total_discount_money': 'V1Money',
'created_at': 'str',
'updated_at': 'str',
'expires_at': 'str',
'payment_id': 'str',
'buyer_note': 'str',
'completed_note': 'str',
'refunded_note': 'str',
'canceled_note': 'str',
'tender': 'V1Tender',
'order_history': 'list[V1OrderHistoryEntry]',
'promo_code': 'str',
'btc_receive_address': 'str',
'btc_price_satoshi': 'float'
}
self.attribute_map = {
'errors': 'errors',
'id': 'id',
'buyer_email': 'buyer_email',
'recipient_name': 'recipient_name',
'recipient_phone_number': 'recipient_phone_number',
'state': 'state',
'shipping_address': 'shipping_address',
'subtotal_money': 'subtotal_money',
'total_shipping_money': 'total_shipping_money',
'total_tax_money': 'total_tax_money',
'total_price_money': 'total_price_money',
'total_discount_money': 'total_discount_money',
'created_at': 'created_at',
'updated_at': 'updated_at',
'expires_at': 'expires_at',
'payment_id': 'payment_id',
'buyer_note': 'buyer_note',
'completed_note': 'completed_note',
'refunded_note': 'refunded_note',
'canceled_note': 'canceled_note',
'tender': 'tender',
'order_history': 'order_history',
'promo_code': 'promo_code',
'btc_receive_address': 'btc_receive_address',
'btc_price_satoshi': 'btc_price_satoshi'
}
self._errors = errors
self._id = id
self._buyer_email = buyer_email
self._recipient_name = recipient_name
self._recipient_phone_number = recipient_phone_number
self._state = state
self._shipping_address = shipping_address
self._subtotal_money = subtotal_money
self._total_shipping_money = total_shipping_money
self._total_tax_money = total_tax_money
self._total_price_money = total_price_money
self._total_discount_money = total_discount_money
self._created_at = created_at
self._updated_at = updated_at
self._expires_at = expires_at
self._payment_id = payment_id
self._buyer_note = buyer_note
self._completed_note = completed_note
self._refunded_note = refunded_note
self._canceled_note = canceled_note
self._tender = tender
self._order_history = order_history
self._promo_code = promo_code
self._btc_receive_address = btc_receive_address
self._btc_price_satoshi = btc_price_satoshi
@property
def errors(self):
return self._errors
@errors.setter
def errors(self, errors):
self._errors = errors
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def buyer_email(self):
return self._buyer_email
@buyer_email.setter
def buyer_email(self, buyer_email):
self._buyer_email = buyer_email
@property
def recipient_name(self):
return self._recipient_name
@recipient_name.setter
def recipient_name(self, recipient_name):
self._recipient_name = recipient_name
@property
def recipient_phone_number(self):
return self._recipient_phone_number
@recipient_phone_number.setter
def recipient_phone_number(self, recipient_phone_number):
self._recipient_phone_number = recipient_phone_number
@property
def state(self):
return self._state
@state.setter
def state(self, state):
self._state = state
@property
def shipping_address(self):
return self._shipping_address
@shipping_address.setter
def shipping_address(self, shipping_address):
self._shipping_address = shipping_address
@property
def subtotal_money(self):
return self._subtotal_money
@subtotal_money.setter
|
Apache License 2.0
|
kineticadb/kinetica-api-python
|
examples/table_monitor_example.py
|
GPUdbTableMonitorExample.on_delete
|
python
|
def on_delete(self, count):
self._logger.info("Delete count : %s " % count)
|
Callback method which is invoked with the number of records updated
as received from the table monitor when records are deleted
Args:
count (int): This is the actual number of records deleted.
|
https://github.com/kineticadb/kinetica-api-python/blob/530dd3fb73a10a035fe5ec25e4260be6f0514017/examples/table_monitor_example.py#L298-L305
|
from __future__ import print_function
import argparse
import datetime
import logging
import random
import time
import gpudb
from gpudb import GPUdbColumnProperty as GCP, GPUdbRecordColumn as GRC, GPUdbTableMonitor
def load_data(table_name):
city_data = [
["Washington", "DC", "USA", -77.016389, 38.904722, 58.5, "UTC-5"],
["Paris", "TX", "USA", -95.547778, 33.6625, 64.6, "UTC-6"],
["Memphis", "TN", "USA", -89.971111, 35.1175, 63, "UTC-6"],
["Sydney", "Nova Scotia", "Canada", -60.19551, 46.13631, 44.5, "UTC-4"],
["La Paz", "Baja California Sur", "Mexico", -110.310833, 24.142222, 77, "UTC-7"],
["St. Petersburg", "FL", "USA", -82.64, 27.773056, 74.5, "UTC-5"],
["Oslo", "--", "Norway", 10.75, 59.95, 45.5, "UTC+1"],
["Paris", "--", "France", 2.3508, 48.8567, 56.5, "UTC+1"],
["Memphis", "--", "Egypt", 31.250833, 29.844722, 73, "UTC+2"],
["St. Petersburg", "--", "Russia", 30.3, 59.95, 43.5, "UTC+3"],
["Lagos", "Lagos", "Nigeria", 3.384082, 6.455027, 83, "UTC+1"],
["La Paz", "Pedro Domingo Murillo", "Bolivia", -68.15, -16.5, 44, "UTC-4"],
["Sao Paulo", "Sao Paulo", "Brazil", -46.633333, -23.55, 69.5, "UTC-3"],
["Santiago", "Santiago Province", "Chile", -70.666667, -33.45, 62, "UTC-4"],
["Buenos Aires", "--", "Argentina", -58.381667, -34.603333, 65, "UTC-3"],
["Manaus", "Amazonas", "Brazil", -60.016667, -3.1, 83.5, "UTC-4"],
["Sydney", "New South Wales", "Australia", 151.209444, -33.865, 63.5, "UTC+10"],
["Auckland", "--", "New Zealand", 174.74, -36.840556, 60.5, "UTC+12"],
["Jakarta", "--", "Indonesia", 106.816667, -6.2, 83, "UTC+7"],
["Hobart", "--", "Tasmania", 147.325, -42.880556, 56, "UTC+10"],
["Perth", "Western Australia", "Australia", 115.858889, -31.952222, 68, "UTC+8"]
]
history_table = gpudb.GPUdbTable(name=table_name, db=h_db)
random.seed(0)
for iter in range(5):
city_updates = []
cities = random.sample(city_data, k=random.randint(1, int(len(city_data) / 2)))
for city in cities:
city_update = list(city)
city_update[5] = city_update[5] + random.randrange(-10, 10)
city_update.append(datetime.datetime.now())
city_updates.append(city_update)
print
print("[Main/Loader] Inserting <%s> new city temperatures..." % len(city_updates))
history_table.insert_records(city_updates)
time.sleep(2)
def create_table(table_name):
schema_option = {"collection_name": "examples"}
columns = [
["city", GRC._ColumnType.STRING, GCP.CHAR16],
["state_province", GRC._ColumnType.STRING, GCP.CHAR32],
["country", GRC._ColumnType.STRING, GCP.CHAR16],
["x", GRC._ColumnType.DOUBLE],
["y", GRC._ColumnType.DOUBLE],
["temperature", GRC._ColumnType.DOUBLE],
["time_zone", GRC._ColumnType.STRING, GCP.CHAR8],
["ts", GRC._ColumnType.STRING, GCP.DATETIME]
]
gpudb.GPUdbTable(
columns,
name="table_monitor_history",
options=schema_option,
db=h_db
)
def clear_table(table_name):
h_db.clear_table(table_name)
def delete_records(h_db, table_name):
print("In delete records ...")
history_table = gpudb.GPUdbTable(name=table_name, db=h_db)
pre_delete_records = history_table.size()
print("Records before = %s" % pre_delete_records)
delete_expr = ["state_province = 'Sao Paulo'"]
history_table.delete_records(expressions=delete_expr)
post_delete_records = history_table.size()
print("Records after = %s" % post_delete_records)
return pre_delete_records - post_delete_records
class GPUdbTableMonitorExample(GPUdbTableMonitor.Client):
def __init__(self, db, table_name, options=None):
callbacks = [
GPUdbTableMonitor.Callback(GPUdbTableMonitor.Callback.Type.INSERT_RAW,
self.on_insert_raw,
self.on_error),
GPUdbTableMonitor.Callback(GPUdbTableMonitor.Callback.Type.INSERT_DECODED,
self.on_insert_decoded,
self.on_error,
GPUdbTableMonitor.Callback.InsertDecodedOptions( GPUdbTableMonitor.Callback.InsertDecodedOptions.DecodeFailureMode.ABORT )),
GPUdbTableMonitor.Callback(GPUdbTableMonitor.Callback.Type.UPDATED,
self.on_update,
self.on_error),
GPUdbTableMonitor.Callback(GPUdbTableMonitor.Callback.Type.DELETED,
self.on_delete,
self.on_error),
GPUdbTableMonitor.Callback(GPUdbTableMonitor.Callback.Type.TABLE_DROPPED,
self.on_table_dropped,
self.on_error),
GPUdbTableMonitor.Callback(GPUdbTableMonitor.Callback.Type.TABLE_ALTERED,
self.on_table_altered,
self.on_error)
]
super(GPUdbTableMonitorExample, self).__init__(db, table_name,
callback_list=callbacks,
options=options)
def on_insert_raw(self, record):
self._logger.info("Raw payload received is : %s " % record)
def on_insert_decoded(self, record):
self._logger.info("Decoded payload received is : %s " % record)
def on_update(self, count):
self._logger.info("Update count : %s " % count)
|
MIT License
|
karlch/vimiv
|
vimiv/commandline.py
|
CommandLine._on_activate
|
python
|
def _on_activate(self, entry):
if self._app["completions"].activate_tab_completion():
return
command = entry.get_text()
self.set_text("")
if self._app.debug:
self._app["log"].write_message("commandline", command)
if command in self._history:
self._history.remove(command)
self._history.insert(0, command)
self._pos = 0
if command.lstrip(":") in self.commands.aliases:
command = self.commands.aliases[command.lstrip(":")]
self._run(command)
|
Handle input from the entry when activated.
Check for type of command (internal, external or path) and run the
correct function.
Args:
entry: The Gtk.Entry from which the command comes.
|
https://github.com/karlch/vimiv/blob/acbb83e003805e5304131be1f73d7f66528606d6/vimiv/commandline.py#L82-L111
|
import os
import re
from subprocess import PIPE, Popen
from threading import Thread
from gi.repository import GLib, GObject, Gtk
from vimiv.commands import Commands
from vimiv.exceptions import ArgumentAmountError, NoSearchResultsError
from vimiv.helpers import (error_message, expand_filenames, read_file,
get_user_data_dir)
from vimiv.settings import settings
class CommandLine(Gtk.Entry):
def __init__(self, app):
super(CommandLine, self).__init__()
self._app = app
self.commands = None
self.connect("activate", self._on_activate)
self.connect("key_press_event",
self._app["eventhandler"].on_key_press, "COMMAND")
self.connect("changed", self._on_text_changed)
self.set_hexpand(True)
self.search = Search(self)
datadir = os.path.join(get_user_data_dir(), "vimiv")
os.makedirs(datadir, exist_ok=True)
old_histfile = os.path.expanduser("~/.vimiv/history")
new_histfile = os.path.join(datadir, "history")
if os.path.isfile(old_histfile):
if os.path.isfile(new_histfile):
message = "There is a history file in the deprecated location" " %s and the new location %s. Using the new one. If you " "want the history from the old file you will have to " "merge it manually." % (old_histfile, new_histfile)
error_message(message, running_tests=self._app.running_tests)
else:
os.rename(old_histfile, new_histfile)
message = "Moved the old history file %s " "to the new location %s." % (old_histfile, new_histfile)
error_message(message, running_tests=self._app.running_tests)
self._history = read_file(os.path.join(datadir, "history"))
self._matching_history = []
self._last_index = 0
self._pos = 0
self.running_processes = []
self._last_widget = ""
|
MIT License
|
khan/alertlib
|
timeout.py
|
setup_parser
|
python
|
def setup_parser():
alert.DEFAULT_SEVERITY = logging.ERROR
parser = alert.setup_parser()
parser.add_argument('-k', '--kill-after', type=int,
help=('Also send a KILL signal if COMMAND is still '
'running this long after the initial signal '
'was sent.'))
parser.add_argument('-s', '--signal', type=int, default=15,
help=('The signal to be sent on timeout, as an int. '
'See "kill -l" for a list of signals.'))
parser.add_argument('--cwd', default=None,
help=('The directory to change to before running cmd'))
parser.add_argument('duration', type=int,
help=('How many seconds to let the command run.'))
parser.add_argument('command',
help=('The command to run'))
parser.add_argument('arg', nargs=argparse.REMAINDER,
help=('Arguments to the command'))
return parser
|
Create an ArgumentParser for timeout-alerting.
|
https://github.com/khan/alertlib/blob/975fbd4f322f615bcb3289df6014b7691f8249c8/timeout.py#L24-L50
|
import argparse
import logging
import os
import signal
import subprocess
import sys
import alert
import alertlib
|
MIT License
|
dcos/dcos-e2e
|
src/dcos_e2e_cli/dcos_aws/commands/_common.py
|
existing_cluster_ids
|
python
|
def existing_cluster_ids(aws_region: str) -> Set[str]:
ec2 = boto3.resource('ec2', region_name=aws_region)
ec2_filter = {'Name': 'tag:' + CLUSTER_ID_TAG_KEY, 'Values': ['*']}
state_filter = {'Name': 'instance-state-name', 'Values': ['running']}
ec2_instances = ec2.instances.filter(Filters=[ec2_filter, state_filter])
cluster_ids = set()
for instance in ec2_instances:
tag_dict = _tag_dict(instance=instance)
cluster_ids.add(tag_dict[CLUSTER_ID_TAG_KEY])
return cluster_ids
|
Return the IDs of existing clusters.
Args:
aws_region: The region to get clusters from.
|
https://github.com/dcos/dcos-e2e/blob/ab7c4bfd58872f458e5766fff01ca74322441065/src/dcos_e2e_cli/dcos_aws/commands/_common.py#L48-L65
|
from pathlib import Path
from typing import Any, Dict, Set
import boto3
from boto3.resources.base import ServiceResource
from dcos_e2e.backends import AWS
from dcos_e2e.cluster import Cluster
from dcos_e2e.distributions import Distribution
from dcos_e2e.node import Node, Role
from dcos_e2e_cli._vendor.dcos_launch import config, get_launcher
from dcos_e2e_cli.common.base_classes import ClusterRepresentation
CLUSTER_ID_TAG_KEY = 'dcos_e2e.cluster_id'
KEY_NAME_TAG_KEY = 'dcos_e2e.key_name'
LINUX_DISTRIBUTIONS = {
'centos-7': Distribution.CENTOS_7,
}
NODE_TYPE_TAG_KEY = 'dcos_e2e.node_type'
NODE_TYPE_MASTER_TAG_VALUE = 'master'
NODE_TYPE_AGENT_TAG_VALUE = 'agent'
NODE_TYPE_PUBLIC_AGENT_TAG_VALUE = 'public_agent'
SSH_USER_TAG_KEY = 'dcos_e2e.ssh_user'
WORKSPACE_DIR_TAG_KEY = 'dcos_e2e.workspace_dir'
def _tag_dict(instance: ServiceResource) -> Dict[str, str]:
tag_dict = dict()
if instance.tags is None:
return tag_dict
for tag in instance.tags:
key = tag['Key']
value = tag['Value']
tag_dict[key] = value
return tag_dict
|
Apache License 2.0
|
awslabs/dgl-ke
|
python/dglke/dist_train.py
|
is_local
|
python
|
def is_local(ip_addr):
if ip_addr in local_ip4_addr_list():
return True
else:
return False
|
If ip_addr is a local ip
|
https://github.com/awslabs/dgl-ke/blob/30558e069c42038cded08bddd26ac75f153aae75/python/dglke/dist_train.py#L78-L84
|
import os
import stat
import sys
import subprocess
import argparse
import socket
if os.name != 'nt':
import fcntl
import struct
from .utils import CommonArgParser
SCRIPT_FILE = 'dglke_start_kvserver_kvclient.sh'
class ArgParser(CommonArgParser):
def __init__(self):
super(ArgParser, self).__init__()
self.add_argument('--path', type=str, help='path of distributed workspace.')
self.add_argument('--ssh_key', type=str, help='ssh private key.')
self.add_argument('--ip_config', type=str, help='IP configuration file of kvstore.')
self.add_argument('--num_client_proc', type=int, default=1,
help='Number of client process on each machine.')
def get_machine_count(ip_config):
with open(ip_config) as f:
machine_count = len(f.readlines())
return machine_count
def local_ip4_addr_list():
nic = set()
for ix in socket.if_nameindex():
name = ix[1]
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
try:
ip = socket.inet_ntoa(fcntl.ioctl(
s.fileno(),
0x8915,
struct.pack('256s', name[:15].encode("UTF-8")))[20:24])
except OSError as e:
if e.errno == 99:
print("Warning!",
"Interface: {}".format(name),
"IP address not available for interface.",
sep='\n')
continue
else:
raise e
nic.add(ip)
return nic
|
Apache License 2.0
|
vlsida/openram
|
compiler/base/geometry.py
|
geometry.ur
|
python
|
def ur(self):
return self.boundary[1]
|
Return the upper right corner
|
https://github.com/vlsida/openram/blob/f66aac3264598eeae31225c62b6a4af52412d407/compiler/base/geometry.py#L121-L123
|
import debug
from vector import vector
import tech
import math
import copy
import numpy as np
from globals import OPTS
from utils import round_to_grid
class geometry:
def __init__(self, lpp=None):
self.width = 0
self.height = 0
if lpp:
self.lpp = lpp
self.layerNumber = lpp[0]
self.layerPurpose = lpp[1]
def __str__(self):
debug.error("__str__ must be overridden by all geometry types.", 1)
def __repr__(self):
debug.error("__repr__ must be overridden by all geometry types.", 1)
def transform_coords(self, coords, offset, mirr, angle):
coordinate = []
for item in coords:
x = item[0] * math.cos(angle) - item[1] * mirr * math.sin(angle) + offset[0]
y = item[0] * math.sin(angle) + item[1] * mirr * math.cos(angle) + offset[1]
coordinate += [[x, y]]
return coordinate
def normalize(self):
(first, second) = self.boundary
ll = vector(min(first[0], second[0]),
min(first[1], second[1])).snap_to_grid()
ur = vector(max(first[0], second[0]),
max(first[1], second[1])).snap_to_grid()
self.boundary = [ll, ur]
def update_boundary(self):
self.compute_boundary(self.offset, self.mirror, self.rotate)
def compute_boundary(self, offset=vector(0, 0), mirror="", rotate=0):
if OPTS.netlist_only:
self.boundary = [vector(0, 0), vector(0, 0)]
return
(ll, ur) = [vector(0, 0), vector(self.width, self.height)]
if mirror == "MX":
ll = ll.scale(1, -1)
ur = ur.scale(1, -1)
elif mirror == "MY":
ll = ll.scale(-1, 1)
ur = ur.scale(-1, 1)
elif mirror == "XY":
ll = ll.scale(-1, -1)
ur = ur.scale(-1, -1)
elif mirror == "" or mirror == "R0":
pass
else:
debug.error("Invalid mirroring: {}".format(mirror), -1)
if rotate == 0:
pass
elif rotate == 90:
ll = ll.rotate_scale(-1, 1)
ur = ur.rotate_scale(-1, 1)
elif rotate == 180:
ll = ll.scale(-1, -1)
ur = ur.scale(-1, -1)
elif rotate == 270:
ll = ll.rotate_scale(1, -1)
ur = ur.rotate_scale(1, -1)
else:
debug.error("Invalid rotation: {}".format(rotate), -1)
self.boundary = [offset + ll, offset + ur]
self.normalize()
def ll(self):
return self.boundary[0]
|
BSD 3-Clause New or Revised License
|
pathwaycommons/semantic-search
|
semantic_search/ncbi.py
|
_parse_medline
|
python
|
def _parse_medline(text: str) -> List[dict]:
f = io.StringIO(text)
medline_records = Medline.parse(f)
return medline_records
|
Convert the rettype=medline to dict.
See https://www.nlm.nih.gov/bsd/mms/medlineelements.html
|
https://github.com/pathwaycommons/semantic-search/blob/3581399f53a1efd460795098b432e3f7f36b88bd/semantic_search/ncbi.py#L66-L72
|
import io
import os
from pathlib import Path
from typing import Any, Dict, List, Generator
import logging
import time
import requests
from Bio import Medline
from dotenv import load_dotenv
from pydantic import BaseSettings
from fastapi import HTTPException
log = logging.getLogger(__name__)
def _compact(input: List) -> List:
return [x for x in input if x is not None and x is not False and x != ""]
MAX_EFETCH_RETMAX = 10000
dot_env_filepath = Path(__file__).absolute().parent.parent / ".env"
load_dotenv(dot_env_filepath)
class Settings(BaseSettings):
app_name: str = os.getenv("APP_NAME", "")
app_version: str = os.getenv("APP_VERSION", "")
app_url: str = os.getenv("APP_URL", "")
admin_email: str = os.getenv("ADMIN_EMAIL", "")
ncbi_eutils_api_key: str = os.getenv("NCBI_EUTILS_API_KEY", "")
eutils_base_url: str = os.getenv("EUTILS_BASE_URL", "")
eutils_efetch_url: str = eutils_base_url + os.getenv("EUTILS_EFETCH_BASENAME", "")
eutils_esummary_url: str = eutils_base_url + os.getenv("EUTILS_ESUMMARY_BASENAME", "")
http_request_timeout: int = int(os.getenv("HTTP_REQUEST_TIMEOUT", -1))
settings = Settings()
def _safe_request(url: str, method: str = "GET", headers={}, **opts):
user_agent = f"{settings.app_name}/{settings.app_version} ({settings.app_url};mailto:{settings.admin_email})"
request_headers = {"user-agent": user_agent}
request_headers.update(headers)
try:
r = requests.request(
method, url, headers=request_headers, timeout=settings.http_request_timeout, **opts
)
r.raise_for_status()
except requests.exceptions.Timeout as e:
logging.error(f"Timeout error {e}")
raise
except requests.exceptions.HTTPError as e:
logging.error(f"HTTP error {e}; status code: {r.status_code}")
raise
except requests.exceptions.RequestException as e:
logging.error(f"Error in request {e}")
raise
else:
return r
|
MIT License
|
cetic/python-msp430-tools
|
msp430/asm/mcu_definition_parser.py
|
MCUDefintitions.word_SYMBOL
|
python
|
def word_SYMBOL(self, stack):
symbol_name = self.next_word()
address = self.next_word()
if ':' in address:
self.memory_map[symbol_name] = {}
for pair in address.split(','):
key, value = pair.split(':')
self.memory_map[symbol_name][key] = value
else:
self.memory_map[symbol_name] = {'address':int(address,16)}
self.memory_map[symbol_name]['__name__'] = symbol_name
self.memory_map[symbol_name]['__type__'] = 'symbol'
|
\
Example::
symbol <name> <address>
Defines a symbol with the value specified. ``<address>`` can also be a computed
value. e.g. ``in:RAM,location:end``.
Supported are: ``in:<segment_name>`` and ``location:[start|end]``. These
values are computed at load time, i.e. the segment still have the address
range specified in the definition (opposed to the values after the linker has
"shrinked" the segments to the size of actually present data). Note that
``location:end`` is the segments last address plus one (end is exclusive in
this case).
|
https://github.com/cetic/python-msp430-tools/blob/71a86dd82206aaeb46dcf2c2f4f01c3aeb46eeef/msp430/asm/mcu_definition_parser.py#L306-L334
|
import rpn
import pkgutil
class MCUDefintitionError(Exception):
def filtered_words(words, mapping):
for word in words:
yield mapping.get(word, word)
class MCUDefintitions(rpn.RPN):
def __init__(self):
rpn.RPN.__init__(self)
self.flags = []
self.memory_maps = {}
self.memory_map = None
self.order = 0
def address_range(self, range_str):
a, b = range_str.split('-')
return int(a, 0), int(b, 0)
@rpn.word('TEMPLATE-BEGIN')
def word_TEMPLATE_BEGIN(self, stack):
template = []
while True:
word = self.next_word()
if word.lower() == 'template-variables':
break
template.append(word)
template_variables = []
while True:
word = self.next_word()
if word.lower() == 'template-values':
break
template_variables.append(word)
template_row = []
while True:
word = self.next_word()
if word.lower() == 'template-end':
if template_row:
raise MCUDefintitionError('number of values in template not a multiple of number of variables')
break
template_row.append(word)
if len(template_row) == len(template_variables):
self.memory_maps.update(parse_words(filtered_words(template, dict(zip(template_variables, template_row)))))
template_row = []
@rpn.word('PROGRAMMABLE')
def word_PROGRAMMABLE(self, stack):
if self.memory_map is None:
raise MCUDefintitionError('flags outside memory map definition not allowed')
self.flags.append('programmable')
@rpn.word('READ-ONLY')
def word_READ_ONLY(self, stack):
if self.memory_map is None:
raise MCUDefintitionError('flags outside memory map definition not allowed')
self.flags.append('read-only')
@rpn.word('MEMORY-MAP-BEGIN')
def word_MEMORY_MAP_BEGIN(self, stack):
if self.memory_map is not None:
raise MCUDefintitionError('MEMORY-MAP-BEGIN without terminating the last map')
self.memory_map = {}
@rpn.word('MEMORY-MAP-END')
def word_MEMORY_MAP_END(self, stack):
if '__name__' not in self.memory_map:
raise MCUDefintitionError('each memory map requires a NAME')
self.memory_maps[self.memory_map['__name__']] = self.memory_map
self.memory_map = None
@rpn.word('SEGMENT')
def word_SEGMENT(self, stack):
if self.memory_map is None:
raise MCUDefintitionError('SEGMENT outside memory map definition not allowed')
segment_name = self.next_word()
address = self.next_word()
if ':' in address:
self.memory_map[segment_name] = {}
for pair in address.split(','):
key, value = pair.split(':')
self.memory_map[segment_name][key] = value
else:
start, end = self.address_range(address)
self.memory_map[segment_name] = {'start':start, 'end':end}
self.memory_map[segment_name]['order'] = self.order
self.memory_map[segment_name]['flags'] = self.flags
self.memory_map[segment_name]['__name__'] = segment_name
self.memory_map[segment_name]['__type__'] = 'segment'
self.flags = []
self.order += 1
@rpn.word('SYMBOL')
|
BSD 3-Clause New or Revised License
|
raelgc/scudcloud
|
scudcloud/notify2.py
|
Notification.connect
|
python
|
def connect(self, event, callback):
if event != 'closed':
raise ValueError("'closed' is the only valid value for event", event)
self._closed_callback = callback
|
Set the callback for the notification closing; the only valid value
for event is 'closed'. The API is compatible with pynotify.
|
https://github.com/raelgc/scudcloud/blob/c8b00f4a1fc712c7323a723c45d3f860fd5c60aa/scudcloud/notify2.py#L299-L305
|
import dbus
EXPIRES_DEFAULT = -1
EXPIRES_NEVER = 0
URGENCY_LOW = 0
URGENCY_NORMAL = 1
URGENCY_CRITICAL = 2
urgency_levels = [URGENCY_LOW, URGENCY_NORMAL, URGENCY_CRITICAL]
initted = False
appname = ""
_have_mainloop = False
class UninittedError(RuntimeError):
pass
class UninittedDbusObj(object):
def __getattr__(self, name):
raise UninittedError("You must call notify2.init() before using the "
"notification features.")
dbus_iface = UninittedDbusObj()
def init(app_name, mainloop=None):
global appname, initted, dbus_iface, _have_mainloop
if mainloop == 'glib':
from dbus.mainloop.glib import DBusGMainLoop
mainloop = DBusGMainLoop()
elif mainloop == 'qt':
from dbus.mainloop.qt import DBusQtMainLoop
mainloop = DBusQtMainLoop(set_as_default=True)
bus = dbus.SessionBus(mainloop=mainloop)
dbus_obj = bus.get_object('org.freedesktop.Notifications',
'/org/freedesktop/Notifications')
dbus_iface = dbus.Interface(dbus_obj,
dbus_interface='org.freedesktop.Notifications')
appname = app_name
initted = True
if mainloop or dbus.get_default_main_loop():
_have_mainloop = True
dbus_iface.connect_to_signal('ActionInvoked', _action_callback)
dbus_iface.connect_to_signal('NotificationClosed', _closed_callback)
return True
def is_initted():
return initted
def get_app_name():
return appname
def uninit():
global initted, dbus_iface, _have_mainloop
initted = False
_have_mainloop = False
dbus_iface = UninittedDbusObj()
def get_server_caps():
return [str(x) for x in dbus_iface.GetCapabilities()]
def get_server_info():
res = dbus_iface.GetServerInformation()
return {'name': str(res[0]),
'vendor': str(res[1]),
'version': str(res[2]),
'spec-version': str(res[3]),
}
notifications_registry = {}
def _action_callback(nid, action):
nid, action = int(nid), str(action)
n = notifications_registry[nid]
n._action_callback(action)
def _closed_callback(nid, reason):
nid, reason = int(nid), int(reason)
n = notifications_registry[nid]
n._closed_callback(n)
del notifications_registry[nid]
def no_op(*args):
pass
class Notification(object):
id = 0
timeout = -1
_closed_callback = no_op
def __init__(self, summary, message='', icon=''):
self.summary = summary
self.message = message
self.icon = icon
self.hints = {}
self.actions = {}
self.data = {}
def show(self):
nid = dbus_iface.Notify(appname,
self.id,
self.icon,
self.summary,
self.message,
self._make_actions_array(),
self.hints,
self.timeout,
)
self.id = int(nid)
if _have_mainloop:
notifications_registry[self.id] = self
return True
def update(self, summary, message="", icon=None):
self.summary = summary
self.message = message
if icon is not None:
self.icon = icon
def close(self):
if self.id != 0:
dbus_iface.CloseNotification(self.id)
def set_hint(self, key, value):
self.hints[key] = value
set_hint_string = set_hint_int32 = set_hint_double = set_hint
def set_hint_byte(self, key, value):
self.hints[key] = dbus.Byte(value)
def set_urgency(self, level):
if level not in urgency_levels:
raise ValueError("Unknown urgency level specified", level)
self.set_hint_byte("urgency", level)
def set_category(self, category):
self.hints['category'] = category
def set_timeout(self, timeout):
if not isinstance(timeout, int):
raise TypeError("timeout value was not int", timeout)
self.timeout = timeout
def get_timeout(self):
return self.timeout
def add_action(self, action, label, callback, user_data=None):
self.actions[action] = (label, callback, user_data)
def _make_actions_array(self):
arr = []
for action, (label, callback, user_data) in self.actions.items():
arr.append(action)
arr.append(label)
return arr
def _action_callback(self, action):
try:
label, callback, user_data = self.actions[action]
except KeyError:
return
if user_data is None:
callback(self, action)
else:
callback(self, action, user_data)
|
MIT License
|
msiemens/tinydb
|
tinydb/queries.py
|
Query.matches
|
python
|
def matches(self, regex: str, flags: int = 0) -> QueryInstance:
def test(value):
if not isinstance(value, str):
return False
return re.match(regex, value, flags) is not None
return self._generate_test(test, ('matches', self._path, regex))
|
Run a regex test against a dict value (whole string has to match).
>>> Query().f1.matches(r'^\\w+$')
:param regex: The regular expression to use for matching
:param flags: regex flags to pass to ``re.match``
|
https://github.com/msiemens/tinydb/blob/187cd0dc24ef0df76f8f3d571bd348b1306cd2c2/tinydb/queries.py#L322-L337
|
import re
import sys
from typing import Mapping, Tuple, Callable, Any, Union, List
from .utils import freeze
if sys.version_info >= (3, 8):
from typing import Protocol
else:
from typing_extensions import Protocol
__all__ = ('Query', 'QueryLike', 'where')
def is_sequence(obj):
return hasattr(obj, '__iter__')
class QueryLike(Protocol):
def __call__(self, value: Mapping) -> bool: ...
def __hash__(self): ...
class QueryInstance:
def __init__(self, test: Callable[[Mapping], bool], hashval: Tuple):
self._test = test
self._hash = hashval
def __call__(self, value: Mapping) -> bool:
return self._test(value)
def __hash__(self):
return hash(self._hash)
def __repr__(self):
return 'QueryImpl{}'.format(self._hash)
def __eq__(self, other: object):
if isinstance(other, QueryInstance):
return self._hash == other._hash
return False
def __and__(self, other: 'QueryInstance') -> 'QueryInstance':
return QueryInstance(lambda value: self(value) and other(value),
('and', frozenset([self._hash, other._hash])))
def __or__(self, other: 'QueryInstance') -> 'QueryInstance':
return QueryInstance(lambda value: self(value) or other(value),
('or', frozenset([self._hash, other._hash])))
def __invert__(self) -> 'QueryInstance':
return QueryInstance(lambda value: not self(value),
('not', self._hash))
class Query(QueryInstance):
def __init__(self) -> None:
self._path = ()
def notest(_):
raise RuntimeError('Empty query was evaluated')
super().__init__(
test=notest,
hashval=(None,)
)
def __repr__(self):
return '{}()'.format(type(self).__name__)
def __hash__(self):
return super().__hash__()
def __getattr__(self, item: str):
query = type(self)()
query._path = self._path + (item,)
query._hash = ('path', query._path)
return query
def __getitem__(self, item: str):
return self.__getattr__(item)
def _generate_test(
self,
test: Callable[[Any], bool],
hashval: Tuple,
allow_empty_path: bool = False
) -> QueryInstance:
if not self._path and not allow_empty_path:
raise ValueError('Query has no path')
def runner(value):
try:
for part in self._path:
value = value[part]
except (KeyError, TypeError):
return False
else:
return test(value)
return QueryInstance(
lambda value: runner(value),
hashval
)
def __eq__(self, rhs: Any):
return self._generate_test(
lambda value: value == rhs,
('==', self._path, freeze(rhs))
)
def __ne__(self, rhs: Any):
return self._generate_test(
lambda value: value != rhs,
('!=', self._path, freeze(rhs))
)
def __lt__(self, rhs: Any) -> QueryInstance:
return self._generate_test(
lambda value: value < rhs,
('<', self._path, rhs)
)
def __le__(self, rhs: Any) -> QueryInstance:
return self._generate_test(
lambda value: value <= rhs,
('<=', self._path, rhs)
)
def __gt__(self, rhs: Any) -> QueryInstance:
return self._generate_test(
lambda value: value > rhs,
('>', self._path, rhs)
)
def __ge__(self, rhs: Any) -> QueryInstance:
return self._generate_test(
lambda value: value >= rhs,
('>=', self._path, rhs)
)
def exists(self) -> QueryInstance:
return self._generate_test(
lambda _: True,
('exists', self._path)
)
|
MIT License
|
city-of-helsinki/wagtail-svgmap
|
wagtail_svgmap/svg.py
|
Link.__init__
|
python
|
def __init__(self, url, target=None):
self.url = str(url)
self.target = target
|
Construct a link.
:param url: The URL to link to.
:type url: str
:param target: Optional link target (HTML semantics; `_blank` for a new window, etc.)
:type target: str|None
|
https://github.com/city-of-helsinki/wagtail-svgmap/blob/a9883570029a23b555fd0ce2b8bdfc423c3032ed/wagtail_svgmap/svg.py#L60-L70
|
import re
from six import BytesIO
try:
from xml.etree import cElementTree as ET
except ImportError:
from xml.etree import ElementTree as ET
SVG_NAMESPACE = 'http://www.w3.org/2000/svg'
XLINK_NAMESPACE = 'http://www.w3.org/1999/xlink'
ET.register_namespace('svg', SVG_NAMESPACE)
ET.register_namespace('xlink', XLINK_NAMESPACE)
VISIBLE_SVG_TAGS = frozenset({
'a',
'circle',
'ellipse',
'g',
'image',
'line',
'path',
'polygon',
'polyline',
'rect',
'switch',
'text',
'textPath',
'tref',
'tspan',
'use',
})
def find_ids(svg_stream, in_elements=VISIBLE_SVG_TAGS):
for event, elem in ET.iterparse(svg_stream, events=('end',)):
tag_without_ns = elem.tag.split('}')[-1]
if in_elements and tag_without_ns not in in_elements:
continue
id = elem.get('id')
if id:
yield id
class Link(object):
|
BSD 3-Clause New or Revised License
|
dmitriy-serdyuk/twinnet-asr
|
libs/Theano/theano/sandbox/cuda/opt.py
|
local_gpu_elemwise_0
|
python
|
def local_gpu_elemwise_0(node):
if (isinstance(node.op, tensor.Elemwise) and
dtype_in_elemwise_supported(node.op)):
if any([i.owner and
isinstance(i.owner.op, HostFromGpu)
for i in node.inputs]):
if all([o.type.dtype == 'float32' for o in node.outputs]):
if isinstance(node.op.scalar_op, Erfinv):
new_op = GpuElemwise(erfinv_gpu)
elif isinstance(node.op.scalar_op, Erfcx):
new_op = GpuElemwise(erfcx_gpu)
else:
try:
new_op = GpuElemwise(node.op.scalar_op)
except SupportCodeError:
return False
upcastable = set(['float32', 'int8', 'int16', 'uint8',
'uint16'])
if all([i.type.dtype == 'float32' for i in node.inputs]):
gpu_elemwise = new_op(*(gpu_from_host(i)
for i in node.inputs),
return_list=True)
elif all([i.type.dtype in upcastable
for i in node.inputs]):
upcasted = node.op.make_node(*[tensor.cast(i, 'float32')
for i in node.inputs])
if [o.type for o in upcasted.outputs] == [o.type for o in node.outputs]:
new_inputs = [gpu_from_host(tensor.cast(i, 'float32'))
for i in node.inputs]
gpu_elemwise = new_op(*new_inputs, return_list=True)
else:
return False
else:
return False
gpu_elemwise = split_huge_add_or_mul(gpu_elemwise[0].owner)
if not gpu_elemwise:
return False
if (max_inputs_to_GpuElemwise(node) <
len(gpu_elemwise.inputs)):
return False
return [host_from_gpu(out) for out in gpu_elemwise.outputs]
|
Elemwise(..., host_from_gpu, ...)
-> host_from_gpu(elemwise(gpu_from_host, ..., gpu_from_host)
|
https://github.com/dmitriy-serdyuk/twinnet-asr/blob/799220d682306467a2b401e42e788f8c33382b00/libs/Theano/theano/sandbox/cuda/opt.py#L261-L321
|
from __future__ import print_function
import copy
import logging
import pdb
import sys
import time
import warnings
import numpy
from six.moves import reduce, xrange
import theano
from theano import scalar as scal
from theano import config, tensor, gof
import theano.ifelse
from theano.compile import optdb
from theano.gof import (local_optimizer, EquilibriumDB, ProxyDB,
Optimizer, TopoOptimizer, toolbox)
from theano.gof.opt import LocalMetaOptimizer
from theano.sandbox.cuda import as_cuda_ndarray_variable
from theano.sandbox.cuda.basic_ops import (
gpu_eye, gpu_contiguous,
gpu_from_host, host_from_gpu, GpuFromHost, HostFromGpu,
GpuContiguous,
GpuElemwise, GpuDimShuffle, GpuReshape, GpuCAReduce,
GpuFlatten, gpu_flatten,
GpuSubtensor, GpuAdvancedSubtensor1,
GpuAdvancedIncSubtensor1, GpuAdvancedIncSubtensor1_dev20,
GpuIncSubtensor, gpu_alloc, GpuAlloc, gpu_shape, GpuSplit, GpuAllocEmpty)
from theano.sandbox.cuda.type import CudaNdarrayType
from theano.sandbox.cuda.blas import (
gpu_dot22, gpu_dot22scalar, gpu_gemm_inplace, gpu_gemm_no_inplace, GpuConv,
GpuBatchedDot, GpuCorrMM, GpuCorrMM_gradInputs, GpuCorrMM_gradWeights,
GpuCorr3dMM, GpuCorr3dMM_gradInputs, GpuCorr3dMM_gradWeights)
from theano.sandbox.cuda.blas import gpu_gemv_inplace
from theano.sandbox.cuda.cula import gpu_solve
from theano.sandbox.cuda.blas import gpu_gemv_no_inplace
from theano.sandbox.cuda.blas import gpu_ger_inplace
from theano.sandbox.cuda.blas import gpu_ger_no_inplace
from theano.sandbox.cuda.blas import (
GpuDownsampleFactorMax, GpuDownsampleFactorMaxGrad,
GpuDownsampleFactorMaxGradGrad)
from theano.tensor.nnet.blocksparse import SparseBlockGemv, SparseBlockOuter
from theano.sandbox.cuda.blocksparse import (
GpuSparseBlockGemv,
GpuSparseBlockOuter,
gpu_sparse_block_gemv_inplace,
gpu_sparse_block_outer_inplace)
from theano.sandbox.cuda.nnet import (
GpuCrossentropySoftmaxArgmax1HotWithBias,
GpuCrossentropySoftmax1HotWithBiasDx,
GpuSoftmax, GpuSoftmaxWithBias)
from theano.sandbox.cuda.elemwise import SupportCodeError
from theano.scalar.basic_scipy import Erfinv
from theano.scalar.basic_scipy import Erfcx
from theano.sandbox.cuda.elemwise import erfinv_gpu
from theano.sandbox.cuda.elemwise import erfcx_gpu
from theano.sandbox.cuda.var import CudaNdarrayConstant
from theano.sandbox.cuda import gpu_optimizer, register_opt, gpu_seqopt, GpuOp
import theano.sandbox.cuda.extra_ops
from theano.scan_module import scan_utils, scan_op, scan_opt
from theano.tensor.blas import _is_real_vector, _is_real_matrix
from theano.tensor import nlinalg
from theano.tensor import slinalg
from theano.tensor.nnet.Conv3D import Conv3D
from theano.tests.breakpoint import PdbBreakpoint
from theano.tensor.nnet.abstract_conv import (BaseAbstractConv2d,
AbstractConv2d,
AbstractConv2d_gradWeights,
AbstractConv2d_gradInputs)
from theano.tensor.opt import register_specialize_device
try:
from theano.sandbox.cuda import device_properties
except ImportError:
pass
_logger = logging.getLogger('theano.sandbox.cuda.opt')
gpu_cut_copies = EquilibriumDB()
gpu_seqopt.register('gpu_local_optimizations', gpu_optimizer, 1,
'fast_run', 'fast_compile', 'gpu')
gpu_seqopt.register('gpu_cut_transfers', gpu_cut_copies, 2,
'fast_run', 'fast_compile', 'gpu')
optdb.register('gpu_opt',
gpu_seqopt,
optdb.__position__.get('add_destroy_handler', 49.5) - 1,
'gpu')
optdb.register('gpu_after_fusion',
ProxyDB(gpu_seqopt),
optdb.__position__.get('elemwise_fusion', 49) + .1,
'gpu')
gpu_optimizer.register('gpu_merge', theano.gof.opt.MergeOptimizer(),
'fast_run', 'fast_compile', final_opt=True)
register_opt()(theano.tensor.opt.local_track_shape_i)
register_opt(final_opt=True, name='gpu_constant_folding')(
tensor.opt.constant_folding)
register_opt()(theano.tensor.opt.local_subtensor_make_vector)
gpu_optimizer.register('local_remove_all_assert',
theano.tensor.opt.local_remove_all_assert,
'unsafe')
register_opt(name='local_gpu_reshape_chain')(
theano.tensor.opt.local_reshape_chain(GpuReshape))
import theano.tensor.signal.pool
import theano.tensor.nnet.neighbours
cpu_ops_moved_to_gpu = [
tensor.blas.Dot22, tensor.blas.Dot22Scalar, tensor.blas.Gemm,
tensor.blas.Gemv, tensor.blas.Ger, tensor.nnet.conv.ConvOp,
tensor.signal.pool.Pool,
tensor.signal.pool.MaxPoolGrad,
tensor.signal.pool.AveragePoolGrad,
theano.tensor.nnet.neighbours.Images2Neibs,
tensor.nnet.CrossentropySoftmaxArgmax1HotWithBias,
tensor.nnet.CrossentropySoftmax1HotWithBiasDx,
tensor.nnet.Softmax, tensor.nnet.SoftmaxWithBias,
tensor.Elemwise, tensor.DimShuffle, tensor.CAReduce,
tensor.elemwise.All, tensor.elemwise.Any,
tensor.elemwise.CAReduceDtype, tensor.elemwise.Sum,
tensor.elemwise.Prod, tensor.elemwise.ProdWithoutZeros,
tensor.Reshape, tensor.flatten, tensor.Subtensor,
tensor.AdvancedSubtensor1, tensor.AdvancedIncSubtensor1,
tensor.IncSubtensor, tensor.Shape, tensor.Join,
tensor.Alloc, tensor.Eye, tensor.blas.BatchedDot]
class InputToGpuOptimizer(Optimizer):
def __init__(self):
Optimizer.__init__(self)
def add_requirements(self, fgraph):
fgraph.attach_feature(toolbox.ReplaceValidate())
def apply(self, fgraph):
for input in fgraph.inputs:
if isinstance(input.type, CudaNdarrayType):
continue
if (len(input.clients) == 1 and
(input.clients[0][0] == 'output' or
input.clients[0][0].op == gpu_from_host)):
continue
try:
new_input = host_from_gpu(gpu_from_host(input))
if new_input.type == input.type:
fgraph.replace_validate(input, new_input,
"InputToGpuOptimizer")
except TypeError:
pass
gpu_seqopt.register('InputToGpuOptimizer', InputToGpuOptimizer(),
0,
'fast_run',
'fast_compile',
'merge')
@local_optimizer([gpu_from_host, host_from_gpu])
def local_cut_gpu_host_gpu(node):
if tensor.opt.opt.check_chain(node, gpu_from_host, host_from_gpu):
return [node.inputs[0].owner.inputs[0]]
if tensor.opt.opt.check_chain(node, host_from_gpu, gpu_from_host):
return [node.inputs[0].owner.inputs[0]]
return False
gpu_cut_copies.register('cut_gpu_host_transfers', local_cut_gpu_host_gpu,
'fast_run', 'fast_compile', 'gpu')
gpu_cut_copies.register('cut_gpu_constant_transfers',
tensor.opt.constant_folding,
'fast_run', 'fast_compile', 'gpu')
optdb['canonicalize'].register('local_cut_gpu_host_gpu',
local_cut_gpu_host_gpu,
'fast_run', 'fast_compile', 'gpu')
elemwise_cuda_dtype_supported = ['float32', 'uint8', 'int8', 'uint16', 'int16',
'uint32', 'int32', 'uint64', 'int64']
def dtype_in_elemwise_supported(op):
def get_all_basic_scalar(composite_op):
l = []
for i in composite_op.fgraph.toposort():
if isinstance(i, theano.scalar.Composite):
l += get_all_basic_scalar(i)
else:
l.append(i)
return l
if isinstance(op, GpuElemwise) or isinstance(op, tensor.Elemwise):
if isinstance(op.scalar_op, theano.scalar.Composite):
scals = get_all_basic_scalar(op.scalar_op)
for s in scals:
if any([i.type.dtype not in elemwise_cuda_dtype_supported
for i in s.inputs + s.outputs]):
return False
return True
@register_opt()
@local_optimizer([tensor.Elemwise])
|
MIT License
|
treverhines/rbf
|
rbf/pde/fd.py
|
weight_matrix
|
python
|
def weight_matrix(x, p, n, diffs,
coeffs=None,
phi='phs3',
order=None,
eps=1.0,
chunk_size=1000):
x = np.asarray(x, dtype=float)
assert_shape(x, (None, None), 'x')
nx, ndim = x.shape
p = np.asarray(p, dtype=float)
assert_shape(p, (None, ndim), 'p')
diffs = np.asarray(diffs, dtype=int)
diffs = np.atleast_2d(diffs)
assert_shape(diffs, (None, ndim), 'diffs')
if coeffs is None:
coeffs = np.ones(len(diffs), dtype=float)
else:
coeffs = np.asarray(coeffs, dtype=float)
assert_shape(coeffs, (len(diffs), ...), 'coeffs')
coeffs = np.array([np.broadcast_to(c, (nx,)) for c in coeffs])
_, stencils = KDTree(p).query(x, n)
if chunk_size is None:
data = weights(
x, p[stencils], diffs,
coeffs=coeffs,
phi=phi,
order=order,
eps=eps)
else:
data = np.empty((nx, n), dtype=float)
for start in range(0, nx, chunk_size):
stop = start + chunk_size
data[start:stop] = weights(
x[start:stop], p[stencils[start:stop]], diffs,
coeffs=coeffs[:, start:stop],
phi=phi,
order=order,
eps=eps)
data = data.ravel()
rows = np.repeat(range(nx), n)
cols = stencils.ravel()
out = sp.coo_matrix((data, (rows, cols)), (nx, len(p)))
return out
|
Returns a weight matrix which maps a function's values at `p` to an
approximation of that function's derivative at `x`. This is a convenience
function which first creates stencils and then computes the RBF-FD weights
for each stencil.
Parameters
----------
x : (N, D) float array
Target points where the derivative is being approximated
p : (M, D) array
Source points. The derivatives will be approximated with a weighted sum
of values at these point.
n : int
The stencil size. Each target point will have a stencil made of the `n`
nearest neighbors from `p`
diffs : (D,) int array or (K, D) int array
Derivative orders for each spatial dimension. For example `[2, 0]`
indicates that the weights should approximate the second derivative
with respect to the first spatial dimension in two-dimensional space.
`diffs` can also be a (K, D) array, where each (D,) sub-array is a term
in a differential operator. For example the two-dimensional Laplacian
can be represented as `[[2, 0], [0, 2]]`.
coeffs : (K,) or (K, N) float array, optional
Coefficients for each term in the differential operator specified with
`diffs`. The coefficients can vary between target points. Defaults to
an array of ones.
phi : rbf.basis.RBF instance or str, optional
Type of RBF. Select from those available in `rbf.basis` or create your
own.
order : int, optional
Order of the added polynomial. This defaults to the highest derivative
order. For example, if `diffs` is `[[2, 0], [0, 1]]`, then this is set
to 2.
eps : float, optional
Shape parameter for each RBF
chunk_size : int, optional
Break the target points into chunks with this size to reduce the memory
requirements
Returns
-------
(N, M) coo sparse matrix
Examples
--------
Create a second order differentiation matrix in one-dimensional space
>>> x = np.arange(4.0)[:, None]
>>> W = weight_matrix(x, x, 3, (2,))
>>> W.toarray()
array([[ 1., -2., 1., 0.],
[ 1., -2., 1., 0.],
[ 0., 1., -2., 1.],
[ 0., 1., -2., 1.]])
|
https://github.com/treverhines/rbf/blob/49f378174f2921ff9976b846e6490f1d0c9ff83a/rbf/pde/fd.py#L168-L282
|
from __future__ import division
from functools import lru_cache
import logging
import numpy as np
import scipy.sparse as sp
from rbf.basis import phs3, get_rbf
from rbf.poly import monomial_count, monomial_powers, mvmonos
from rbf.utils import assert_shape, KDTree
from rbf.linalg import as_array
logger = logging.getLogger(__name__)
@lru_cache()
def _max_poly_order(size, dim):
order = -1
while monomial_count(order + 1, dim) <= size:
order += 1
return order
def weights(x, s, diffs, coeffs=None, phi=phs3, order=None, eps=1.0):
x = np.asarray(x, dtype=float)
assert_shape(x, (..., None), 'x')
bcast = x.shape[:-1]
ndim = x.shape[-1]
s = np.asarray(s, dtype=float)
assert_shape(s, (..., None, ndim), 's')
s = np.broadcast_to(s, bcast + s.shape[-2:])
ssize = s.shape[-2]
diffs = np.asarray(diffs, dtype=int)
diffs = np.atleast_2d(diffs)
assert_shape(diffs, (None, ndim), 'diffs')
if coeffs is None:
coeffs = np.ones(len(diffs), dtype=float)
else:
coeffs = np.asarray(coeffs, dtype=float)
assert_shape(coeffs, (len(diffs), ...), 'coeffs')
coeffs = [np.broadcast_to(c, bcast) for c in coeffs]
phi = get_rbf(phi)
max_order = _max_poly_order(ssize, ndim)
if order is None:
order = diffs.sum(axis=1).max()
order = min(order, max_order)
if order > max_order:
raise ValueError('Polynomial order is too high for the stencil size')
x = x[..., None, :]
s = s - x
x = np.zeros_like(x)
pwr = monomial_powers(order, ndim)
A = phi(s, s, eps=eps)
P = mvmonos(s, pwr)
Pt = np.einsum('...ij->...ji', P)
Z = np.zeros(bcast + (len(pwr), len(pwr)), dtype=float)
LHS = np.block([[A, P], [Pt, Z]])
a, p = 0.0, 0.0
for c, d in zip(coeffs, diffs):
a += c[..., None, None]*phi(x, s, eps=eps, diff=d)
p += c[..., None, None]*mvmonos(x, pwr, diff=d)
a = as_array(a)[..., 0, :]
p = p[..., 0, :]
rhs = np.concatenate((a, p), axis=-1)
w = np.linalg.solve(LHS, rhs)[..., :ssize]
return w
|
MIT License
|
karlgong/easyium-python
|
easyium/web_driver.py
|
WebDriver.quit
|
python
|
def quit(self):
self._selenium_web_driver().quit()
|
Quits the driver and closes every associated window.
|
https://github.com/karlgong/easyium-python/blob/3683c9895e0e1164848df082d456b6801f29e68a/easyium/web_driver.py#L74-L78
|
from appium.webdriver.clipboard_content_type import ClipboardContentType
from appium.webdriver.common.multi_action import MultiAction
from appium.webdriver.common.touch_action import TouchAction
from appium.webdriver.webdriver import WebDriver as _Appium
from selenium.common.exceptions import WebDriverException
from selenium.webdriver import ActionChains, Ie as _Ie, Firefox as _Firefox, Chrome as _Chrome, Opera as _Opera, Safari as _Safari, Edge as _Edge, PhantomJS as _PhantomJS, Remote as _Remote
from selenium.webdriver.common.desired_capabilities import DesiredCapabilities
from .alert import Alert
from .context import Context
from .decorator import SupportedBy
from .enumeration import WebDriverPlatform, WebDriverContext
from .utils import StringTypes
from .waiter import WebDriverWaitFor
class WebDriverInfo:
def __init__(self, platform, context):
self.platform = platform
self.context = context
class WebDriver(Context):
def __init__(self, selenium_web_driver, web_driver_info):
Context.__init__(self)
self.__selenium_web_driver = selenium_web_driver
self.__web_driver_info = web_driver_info
self.set_wait_interval(1000)
self.set_wait_timeout(30000)
def _selenium_context(self):
return self.__selenium_web_driver
def _selenium_web_driver(self):
return self.__selenium_web_driver
def get_web_driver(self):
return self
def get_web_driver_info(self):
return self.__web_driver_info
def get_desired_capabilities(self):
return self._selenium_web_driver().desired_capabilities
def get_application_cache(self):
return self._selenium_web_driver().application_cache
|
Apache License 2.0
|
jytime/dicl-flow
|
loss_functions.py
|
warp
|
python
|
def warp(x, flo):
B, C, H, W = x.size()
xx = torch.arange(0, W).view(1,-1).repeat(H,1)
yy = torch.arange(0, H).view(-1,1).repeat(1,W)
xx = xx.view(1,1,H,W).repeat(B,1,1,1)
yy = yy.view(1,1,H,W).repeat(B,1,1,1)
grid = torch.cat((xx,yy),1).float()
if x.is_cuda:
grid = grid.cuda()
vgrid = Variable(grid) + flo
vgrid[:,0,:,:] = 2.0*vgrid[:,0,:,:]/max(W-1,1)-1.0
vgrid[:,1,:,:] = 2.0*vgrid[:,1,:,:]/max(H-1,1)-1.0
vgrid = vgrid.permute(0,2,3,1)
output = nn.functional.grid_sample(x, vgrid)
mask = torch.autograd.Variable(torch.ones(x.size())).cuda()
mask = nn.functional.grid_sample(mask, vgrid)
mask[mask<0.9999] = 0
mask[mask>0] = 1
return output*mask
|
warp an image/tensor (im2) back to im1, according to the optical flow
x: [B, C, H, W] (im2)
flo: [B, 2, H, W] flow
|
https://github.com/jytime/dicl-flow/blob/7ec4ad869f406db8cc2cf901cf71f7476557cc28/loss_functions.py#L185-L217
|
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import cv2
import math
from config import cfg, cfg_from_file, save_config_to_file
def MultiScale_UP(output,target,loss_type='L1',weight=[1.,0.5,0.25],valid_range=None,removezero=False,extra_mask=None):
loss = 0
loss_list = []
b, _, h, w = target.size()
if (type(output) is not tuple) and (type(output) is not set):
output = {output}
for i, cur_output in enumerate(output):
realflow = F.interpolate(cur_output, (h,w), mode='bilinear', align_corners=True)
realflow[:,0,:,:] = realflow[:,0,:,:]*(w/cur_output.shape[3])
realflow[:,1,:,:] = realflow[:,1,:,:]*(h/cur_output.shape[2])
with torch.no_grad():
if i==0: epe = realEPE(realflow,target,extra_mask=extra_mask)
if loss_type=='L2':
lossvalue = torch.norm(realflow-target,p=2,dim=1)
elif loss_type=='robust':
lossvalue = ((realflow-target).abs().sum(dim=1)+1e-8)
lossvalue = lossvalue**0.4
elif loss_type=='L1':
lossvalue = (realflow-target).abs().sum(dim=1)
else:
raise NotImplementedError
if cfg.USE_VALID_RANGE and valid_range is not None:
with torch.no_grad():
mask = (target[:,0,:,:].abs()<=valid_range[i][1]) & (target[:,1,:,:].abs()<=valid_range[i][0])
else:
with torch.no_grad():
mask = torch.ones(target[:,0,:,:].shape).type_as(target)
lossvalue = lossvalue*mask.float()
if extra_mask is not None:
val = extra_mask > 0
lossvalue = lossvalue[val]
cur_loss = lossvalue.mean()*weight[i]
assert lossvalue.shape[0] == extra_mask.sum()
else:
cur_loss = lossvalue.mean()*weight[i]
loss+=cur_loss
loss_list.append(cur_loss)
loss = loss/len(output)
return loss,loss_list,epe
def random_select_points(x,y,x_,y_,samples=10):
idx=torch.randperm(x.shape[0])
x=x[idx[:samples],:]
y=y[idx[:samples],:]
x_=x_[idx[:samples],:]
y_=y_[idx[:samples],:]
return x,y,x_,y_
def subspace_loss_batch(flow):
B, _, H, W = flow.size()
xx = Variable(torch.arange(0, W).view(1,-1).repeat(H,1).cuda())
yy = Variable(torch.arange(0, H).view(-1,1).repeat(1,W).cuda())
grid_x = xx.view(1,1,H,W).repeat(B,1,1,1).float()
grid_y = yy.view(1,1,H,W).repeat(B,1,1,1).float()
flow_u = flow[:,0,:,:].unsqueeze(1)
flow_v = flow[:,1,:,:].unsqueeze(1)
pos_x = grid_x + flow_u
pos_y = grid_y + flow_v
inside_x = (pos_x <= (W-1)) & (pos_x >= 0.0)
inside_y = (pos_y <= (H-1)) & (pos_y >= 0.0)
inside = inside_x & inside_y
loss = 0
least_num = 2000
list_X =[]
list_X_ = []
for i in range(B):
grid_x_i = grid_x[i,:,:,:]
grid_y_i = grid_y[i,:,:,:]
pos_x_i = pos_x[i,:,:,:]
pos_y_i = pos_y[i,:,:,:]
inside_i= inside[i,:,:,:]
if inside_i.sum()>least_num:
x = torch.masked_select(grid_x_i, inside_i).view(-1,1)
y = torch.masked_select(grid_y_i, inside_i).view(-1,1)
x_ = torch.masked_select(pos_x_i, inside_i).view(-1,1)
y_ = torch.masked_select(pos_y_i, inside_i).view(-1,1)
x, y, x_, y_ = random_select_points(x,y,x_,y_,samples=least_num)
o = torch.ones_like(x)
x, y, x_, y_ = x/W, y/W, x_/W, y_/W
X = torch.cat((x,x,x,y,y,y,o,o,o),1).permute(1,0)
X_ = torch.cat((x_,y_,o,x_,y_,o,x_,y_,o),1).permute(1,0)
list_X.append(X.unsqueeze(0))
list_X_.append(X_.unsqueeze(0))
all_X = torch.cat(list_X)
all_X_ = torch.cat(list_X_)
M = all_X*all_X_
lambda1 = 10
MTM = lambda1 * torch.matmul(M.permute(0,2,1),M)
I = torch.eye(MTM.size()[1]).type_as(MTM).unsqueeze(0).repeat(B,1,1)
MTM_inverse = torch.inverse((I + MTM))
C = torch.matmul(MTM_inverse,MTM)
C2 = C**2
loss1 = torch.sum(C2.view(-1,1),dim=0)
loss2 = lambda1 * torch.sum(((torch.matmul(M,C)-M)**2).view(-1,1),dim=0)
loss += (loss1 + loss2)
return loss/B
def EPE_flow(input_flow, target_flow):
return torch.norm(target_flow-input_flow,p=2,dim=1).mean()
class L1(nn.Module):
def __init__(self):
super(L1, self).__init__()
def forward(self, output, target):
lossvalue = torch.abs(output - target).mean()
return lossvalue
class L2(nn.Module):
def __init__(self):
super(L2, self).__init__()
def forward(self, output, target):
lossvalue = torch.norm(output-target,p=2,dim=1).mean()
return lossvalue
class L1Loss(nn.Module):
def __init__(self):
super(L1Loss, self).__init__()
self.loss = L1()
self.loss_labels = ['L1', 'EPE']
def forward(self, output, target):
lossvalue = self.loss(output, target)
epevalue = EPE_flow(output, target)
return [lossvalue, epevalue]
class L2Loss(nn.Module):
def __init__(self):
super(L2Loss, self).__init__()
self.loss = L2()
self.loss_labels = ['L2', 'EPE']
def forward(self, output, target):
lossvalue = self.loss(output, target)
epevalue = EPE_flow(output, target)
return [lossvalue, epevalue]
|
MIT License
|
memgraph/mage
|
python/mage/graph_coloring_module/graph.py
|
Graph.label
|
python
|
def label(self, node: int) -> Any:
return self._indices_to_labels[node]
|
Returns the node label.
|
https://github.com/memgraph/mage/blob/69f0242aceb47fc383d0e56077f08b2b061273b5/python/mage/graph_coloring_module/graph.py#L95-L97
|
from typing import Tuple, List, Any, Dict, Iterator
from itertools import islice
class Graph:
def __init__(
self,
nodes: List[Any],
adjacency_list: Dict[Any, List[Tuple[Any, float]]],
name: str = "",
):
self._indices_to_labels = nodes
self._labels_to_indices = dict(
(label, index) for index, label in enumerate(nodes)
)
self._nodes_count = len(nodes)
self._neighbors_positions = []
self._neighbors = []
self._weights = []
self._name = name
for i in range(self._nodes_count):
self._neighbors.extend(
[
self._labels_to_indices[node[0]]
for node in adjacency_list[self._indices_to_labels[i]]
]
)
self._weights.extend(
[node[1] for node in adjacency_list[self._indices_to_labels[i]]]
)
self._neighbors_positions.append(len(self._neighbors))
def __str__(self):
return self._name
def __len__(self):
return self._nodes_count
def __getitem__(self, node: int) -> Iterator[int]:
start = self._neighbors_positions[node - 1] if node != 0 else 0
end = self._neighbors_positions[node]
return islice(self._neighbors, start, end)
@property
def nodes(self) -> Iterator[int]:
nodes = (node for node in range(self._nodes_count))
return nodes
def number_of_nodes(self) -> int:
return self._nodes_count
def number_of_edges(self) -> int:
return len(self._neighbors) // 2
def neighbors(self, node: int) -> Iterator[int]:
return self.__getitem__(node)
def weighted_neighbors(self, node: int) -> Iterator[Tuple[int, float]]:
start = self._neighbors_positions[node - 1] if node != 0 else 0
end = self._neighbors_positions[node]
return self._neighbor_weight_tuples(start, end)
def weight(self, node_1: int, node_2: int) -> float:
weighted_neighs = self.weighted_neighbors(node_1)
for node, weight in weighted_neighs:
if node == node_2:
return weight
return 0
def degree(self, node: int) -> int:
start = self._neighbors_positions[node - 1] if node != 0 else 0
end = self._neighbors_positions[node]
return start - end
|
Apache License 2.0
|
sciforce/phones-las
|
las/ops.py
|
pyramidal_stack
|
python
|
def pyramidal_stack(outputs, sequence_length):
shape = tf.shape(outputs)
batch_size, max_time = shape[0], shape[1]
num_units = outputs.get_shape().as_list()[-1]
paddings = [[0, 0], [0, tf.floormod(max_time, 2)], [0, 0]]
outputs = tf.pad(outputs, paddings)
'''
even_time = outputs[:, ::2, :]
odd_time = outputs[:, 1::2, :]
concat_outputs = tf.concat([even_time, odd_time], -1)
'''
concat_outputs = tf.reshape(outputs, (batch_size, -1, num_units * 2))
return concat_outputs, tf.floordiv(sequence_length, 2) + tf.floormod(sequence_length, 2)
|
even_time = outputs[:, ::2, :]
odd_time = outputs[:, 1::2, :]
concat_outputs = tf.concat([even_time, odd_time], -1)
|
https://github.com/sciforce/phones-las/blob/f95523fbbdf1dd7f1acce5b25c37b620f3eb8e9b/las/ops.py#L49-L65
|
import tensorflow as tf
__all__ = [
'lstm_cell',
'bilstm',
'pyramidal_bilstm',
]
def lstm_cell(num_units, dropout, mode):
cell = tf.nn.rnn_cell.LSTMCell(num_units,
initializer=tf.random_uniform_initializer(minval=-0.075, maxval=0.075))
dropout = dropout if mode == tf.estimator.ModeKeys.TRAIN else 0.0
if dropout > 0.0:
cell = tf.nn.rnn_cell.DropoutWrapper(
cell=cell, input_keep_prob=(1.0 - dropout))
return cell
def bilstm(inputs,
sequence_length,
num_units,
dropout,
mode,
unidirectional=False):
with tf.variable_scope('fw_cell'):
forward_cell = lstm_cell(num_units, dropout, mode)
if not unidirectional:
with tf.variable_scope('bw_cell'):
backward_cell = lstm_cell(num_units, dropout, mode)
return tf.nn.bidirectional_dynamic_rnn(
forward_cell,
backward_cell,
inputs,
sequence_length=sequence_length,
dtype=tf.float32)
else:
return tf.nn.dynamic_rnn(
forward_cell,
inputs,
sequence_length=sequence_length,
dtype=tf.float32)
|
Apache License 2.0
|
secondmind-labs/trieste
|
trieste/objectives/single_objectives.py
|
hartmann_6
|
python
|
def hartmann_6(x: TensorType) -> TensorType:
tf.debugging.assert_shapes([(x, (..., 6))])
a = [1.0, 1.2, 3.0, 3.2]
A = [
[10.0, 3.0, 17.0, 3.5, 1.7, 8.0],
[0.05, 10.0, 17.0, 0.1, 8.0, 14.0],
[3.0, 3.5, 1.7, 10.0, 17.0, 8.0],
[17.0, 8.0, 0.05, 10.0, 0.1, 14.0],
]
P = [
[0.1312, 0.1696, 0.5569, 0.0124, 0.8283, 0.5886],
[0.2329, 0.4135, 0.8307, 0.3736, 0.1004, 0.9991],
[0.2348, 0.1451, 0.3522, 0.2883, 0.3047, 0.6650],
[0.4047, 0.8828, 0.8732, 0.5743, 0.1091, 0.0381],
]
inner_sum = -tf.reduce_sum(A * (tf.expand_dims(x, 1) - P) ** 2, -1)
return -tf.reduce_sum(a * tf.math.exp(inner_sum), -1, keepdims=True)
|
The Hartmann 6 test function over :math:`[0, 1]^6`. This function has
6 local and one global minima. See https://www.sfu.ca/~ssurjano/hart6.html
for details.
:param x: The points at which to evaluate the function, with shape [..., 6].
:return: The function values at ``x``, with shape [..., 1].
:raise ValueError (or InvalidArgumentError): If ``x`` has an invalid shape.
|
https://github.com/secondmind-labs/trieste/blob/b58eb924a49ad86e27fa2e082defe2d37afcc14a/trieste/objectives/single_objectives.py#L339-L366
|
from __future__ import annotations
import math
from math import pi
import tensorflow as tf
from ..space import Box
from ..types import TensorType
def _branin_internals(x: TensorType, scale: TensorType, translate: TensorType) -> TensorType:
x0 = x[..., :1] * 15.0 - 5.0
x1 = x[..., 1:] * 15.0
b = 5.1 / (4 * math.pi ** 2)
c = 5 / math.pi
r = 6
s = 10
t = 1 / (8 * math.pi)
return scale * ((x1 - b * x0 ** 2 + c * x0 - r) ** 2 + s * (1 - t) * tf.cos(x0) + translate)
def branin(x: TensorType) -> TensorType:
tf.debugging.assert_shapes([(x, (..., 2))])
return _branin_internals(x, 1, 10)
def scaled_branin(x: TensorType) -> TensorType:
tf.debugging.assert_shapes([(x, (..., 2))])
return _branin_internals(x, 1 / 51.95, -44.81)
_ORIGINAL_BRANIN_MINIMIZERS = tf.constant(
[[-math.pi, 12.275], [math.pi, 2.275], [9.42478, 2.475]], tf.float64
)
BRANIN_MINIMIZERS = (_ORIGINAL_BRANIN_MINIMIZERS + [5.0, 0.0]) / 15.0
BRANIN_MINIMUM = tf.constant([0.397887], tf.float64)
SCALED_BRANIN_MINIMUM = tf.constant([-1.047393], tf.float64)
BRANIN_SEARCH_SPACE = Box([0.0], [1.0]) ** 2
def gramacy_lee(x: TensorType) -> TensorType:
tf.debugging.assert_shapes([(x, (..., 1))])
return tf.sin(10 * math.pi * x) / (2 * x) + (x - 1) ** 4
GRAMACY_LEE_MINIMIZER = tf.constant([[0.548562]], tf.float64)
GRAMACY_LEE_MINIMUM = tf.constant([-0.869011], tf.float64)
GRAMACY_LEE_SEARCH_SPACE = Box([0.5], [2.5])
def logarithmic_goldstein_price(x: TensorType) -> TensorType:
tf.debugging.assert_shapes([(x, (..., 2))])
x0, x1 = tf.split(4 * x - 2, 2, axis=-1)
a = (x0 + x1 + 1) ** 2
b = 19 - 14 * x0 + 3 * x0 ** 2 - 14 * x1 + 6 * x0 * x1 + 3 * x1 ** 2
c = (2 * x0 - 3 * x1) ** 2
d = 18 - 32 * x0 + 12 * x0 ** 2 + 48 * x1 - 36 * x0 * x1 + 27 * x1 ** 2
return (1 / 2.427) * (tf.math.log((1 + a * b) * (30 + c * d)) - 8.693)
LOGARITHMIC_GOLDSTEIN_PRICE_MINIMIZER = tf.constant([[0.5, 0.25]], tf.float64)
LOGARITHMIC_GOLDSTEIN_PRICE_MINIMUM = tf.constant([-3.12913], tf.float64)
LOGARITHMIC_GOLDSTEIN_PRICE_SEARCH_SPACE = Box([0.0], [1.0]) ** 2
def hartmann_3(x: TensorType) -> TensorType:
tf.debugging.assert_shapes([(x, (..., 3))])
a = [1.0, 1.2, 3.0, 3.2]
A = [[3.0, 10.0, 30.0], [0.1, 10.0, 35.0], [3.0, 10.0, 30.0], [0.1, 10.0, 35.0]]
P = [
[0.3689, 0.1170, 0.2673],
[0.4699, 0.4387, 0.7470],
[0.1091, 0.8732, 0.5547],
[0.0381, 0.5743, 0.8828],
]
inner_sum = -tf.reduce_sum(A * (tf.expand_dims(x, 1) - P) ** 2, -1)
return -tf.reduce_sum(a * tf.math.exp(inner_sum), -1, keepdims=True)
HARTMANN_3_MINIMIZER = tf.constant([[0.114614, 0.555649, 0.852547]], tf.float64)
HARTMANN_3_MINIMUM = tf.constant([-3.86278], tf.float64)
HARTMANN_3_SEARCH_SPACE = Box([0.0], [1.0]) ** 3
def shekel_4(x: TensorType) -> TensorType:
tf.debugging.assert_shapes([(x, (..., 4))])
y: TensorType = x * 10.0
beta = [0.1, 0.2, 0.2, 0.4, 0.4, 0.6, 0.3, 0.7, 0.5, 0.5]
C = [
[4.0, 1.0, 8.0, 6.0, 3.0, 2.0, 5.0, 8.0, 6.0, 7.0],
[4.0, 1.0, 8.0, 6.0, 7.0, 9.0, 3.0, 1.0, 2.0, 3.6],
[4.0, 1.0, 8.0, 6.0, 3.0, 2.0, 5.0, 8.0, 6.0, 7.0],
[4.0, 1.0, 8.0, 6.0, 7.0, 9.0, 3.0, 1.0, 2.0, 3.6],
]
inner_sum = tf.reduce_sum((tf.expand_dims(y, -1) - C) ** 2, 1)
inner_sum += tf.cast(tf.transpose(beta), dtype=inner_sum.dtype)
return -tf.reduce_sum(inner_sum ** (-1), -1, keepdims=True)
SHEKEL_4_MINIMIZER = tf.constant([[0.4, 0.4, 0.4, 0.4]], tf.float64)
SHEKEL_4_MINIMUM = tf.constant([-10.5363], tf.float64)
SHEKEL_4_SEARCH_SPACE = Box([0.0], [1.0]) ** 4
def rosenbrock_4(x: TensorType) -> TensorType:
tf.debugging.assert_shapes([(x, (..., 4))])
y: TensorType = x * 15.0 - 5
unscaled_function = tf.reduce_sum(
(100.0 * (y[..., 1:] - y[..., :-1]) ** 2 + (1 - y[..., :-1]) ** 2), axis=-1, keepdims=True
)
return (unscaled_function - 3.827 * 1e5) / (3.755 * 1e5)
ROSENBROCK_4_MINIMIZER = tf.constant([[0.4, 0.4, 0.4, 0.4]], tf.float64)
ROSENBROCK_4_MINIMUM = tf.constant([-1.01917], tf.float64)
ROSENBROCK_4_SEARCH_SPACE = Box([0.0], [1.0]) ** 4
def ackley_5(x: TensorType) -> TensorType:
tf.debugging.assert_shapes([(x, (..., 5))])
x = (x - 0.5) * (32.768 * 2.0)
exponent_1 = -0.2 * tf.math.sqrt((1 / 5.0) * tf.reduce_sum(x ** 2, -1))
exponent_2 = (1 / 5.0) * tf.reduce_sum(tf.math.cos(2.0 * math.pi * x), -1)
function = (
-20.0 * tf.math.exp(exponent_1)
- tf.math.exp(exponent_2)
+ 20.0
+ tf.cast(tf.math.exp(1.0), dtype=tf.float64)
)
return tf.expand_dims(function, -1)
ACKLEY_5_MINIMIZER = tf.constant([[0.5, 0.5, 0.5, 0.5, 0.5]], tf.float64)
ACKLEY_5_MINIMUM = tf.constant([0.0], tf.float64)
ACKLEY_5_SEARCH_SPACE = Box([0.0], [1.0]) ** 5
|
Apache License 2.0
|
gugarosa/opfython
|
opfython/math/distance.py
|
squared_euclidean_distance
|
python
|
def squared_euclidean_distance(x, y):
dist = (x - y) ** 2
return np.sum(dist)
|
Calculates the Squared Euclidean Distance.
Args:
x (np.array): N-dimensional array.
y (np.array): N-dimensional array.
Returns:
The Squared Euclidean Distance between x and y.
|
https://github.com/gugarosa/opfython/blob/9c737952f5bd109d5a8a50fd438fcac3d9c3e42b/opfython/math/distance.py#L775-L789
|
import math
import numpy as np
from numba import njit
import opfython.utils.constants as c
import opfython.utils.decorator as d
@d.avoid_zero_division
@njit(cache=True)
def additive_symmetric_distance(x, y):
dist = ((x - y) ** 2 * (x + y)) / (x * y)
return 2 * np.sum(dist)
@njit(cache=True)
def average_euclidean_distance(x, y):
dist = squared_euclidean_distance(x, y)
return (dist / x.shape[0]) ** 0.5
@d.avoid_zero_division
@njit(cache=True)
def bhattacharyya_distance(x, y):
dist = -math.log(np.sum((x * y) ** 0.5))
return dist
@d.avoid_zero_division
@njit(cache=True)
def bray_curtis_distance(x, y):
dist = np.sum(np.fabs(x - y)) / np.sum(x + y)
return dist
@d.avoid_zero_division
@njit(cache=True)
def canberra_distance(x, y):
dist = np.fabs(x - y) / (np.fabs(x) + np.fabs(y))
return np.sum(dist)
@njit(cache=True)
def chebyshev_distance(x, y):
dist = np.fabs(x - y)
return np.amax(dist)
@d.avoid_zero_division
@njit(cache=True)
def chi_squared_distance(x, y):
dist = ((x - y) ** 2 / (x + y))
return 0.5 * np.sum(dist)
@d.avoid_zero_division
@njit(cache=True)
def chord_distance(x, y):
dist = 2 - 2 * (np.sum(x * y) / (np.sum(x ** 2) ** 0.5 * np.sum(y ** 2) ** 0.5))
return dist ** 0.5
@d.avoid_zero_division
@njit(cache=True)
def clark_distance(x, y):
dist = ((x - y) / np.fabs(x + y)) ** 2
return np.sum(dist) ** 0.5
@d.avoid_zero_division
@njit(cache=True)
def cosine_distance(x, y):
dist = 1 - (np.sum(x * y) / (np.sum(x ** 2) ** 0.5 * np.sum(y ** 2) ** 0.5))
return dist
@d.avoid_zero_division
@njit(cache=True)
def dice_distance(x, y):
dist = 2 * np.sum(x * y) / (np.sum(x ** 2) + np.sum(y ** 2))
return 1 - dist
@d.avoid_zero_division
@njit(cache=True)
def divergence_distance(x, y):
dist = (x - y) ** 2 / (x + y) ** 2
return 2 * np.sum(dist)
@njit(cache=True)
def euclidean_distance(x, y):
dist = (x - y) ** 2
return np.sum(dist) ** 0.5
@njit(cache=True)
def gaussian_distance(x, y, gamma=1):
dist = (x - y) ** 2
return math.exp(-gamma * np.sum(dist) ** 0.5)
@njit(cache=True)
def gower_distance(x, y):
dist = np.fabs(x - y)
return np.sum(dist) / x.shape[0]
@njit(cache=True)
def hamming_distance(x, y):
dist = np.count_nonzero(x != y)
return dist
@d.avoid_zero_division
@njit(cache=True)
def hassanat_distance(x, y):
dist = np.zeros(x.shape[0])
mask = np.minimum(x, y) >= 0
for i in range(x.shape[0]):
if mask[i] is True:
dist[i] = 1 - (1 + np.minimum(x[i], y[i])) / (1 + np.maximum(x[i], y[i]))
else:
dist[i] = 1 - (1 + np.minimum(x[i], y[i]) + np.fabs(np.minimum(x[i], y[i]))) / (1 + np.maximum(x[i], y[i]) + np.fabs(np.minimum(x[i], y[i])))
return np.sum(dist)
@njit(cache=True)
def hellinger_distance(x, y):
dist = 2 * (x ** 0.5 - y ** 0.5) ** 2
return np.sum(dist) ** 0.5
@d.avoid_zero_division
def jaccard_distance(x, y):
dist = np.sum((x - y) ** 2) / (np.sum(x ** 2) + np.sum(y ** 2) - np.sum(x * y))
return dist
@d.avoid_zero_division
@njit(cache=True)
def jeffreys_distance(x, y):
dist = (x - y) * np.log(x / y)
return np.sum(dist)
@d.avoid_zero_division
@njit(cache=True)
def jensen_distance(x, y):
dist = (x * np.log(x) + y * np.log(y)) / 2 - ((x + y) / 2) * np.log((x + y) / 2)
return 0.5 * np.sum(dist)
@d.avoid_zero_division
@njit(cache=True)
def jensen_shannon_distance(x, y):
dist1 = x * np.log((2 * x) / (x + y))
dist2 = y * np.log((2 * y) / (x + y))
return 0.5 * (np.sum(dist1) + np.sum(dist2))
@d.avoid_zero_division
@njit(cache=True)
def k_divergence_distance(x, y):
dist = x * np.log((2 * x) / (x + y))
return np.sum(dist)
@d.avoid_zero_division
@njit(cache=True)
def kulczynski_distance(x, y):
dist = np.sum(np.fabs(x - y)) / np.sum(np.minimum(x, y))
return dist
@d.avoid_zero_division
@njit(cache=True)
def kullback_leibler_distance(x, y):
dist = x * np.log(x / y)
return np.sum(dist)
@njit(cache=True)
def log_euclidean_distance(x, y):
dist = euclidean_distance(x, y)
return c.MAX_ARC_WEIGHT * math.log(dist + 1)
@njit(cache=True)
def log_squared_euclidean_distance(x, y):
dist = squared_euclidean_distance(x, y)
return c.MAX_ARC_WEIGHT * math.log(dist + 1)
@njit(cache=True)
def lorentzian_distance(x, y):
dist = np.log(1 + np.fabs(x - y))
return np.sum(dist)
@njit(cache=True)
def manhattan_distance(x, y):
dist = np.fabs(x - y)
return np.sum(dist)
@njit(cache=True)
def matusita_distance(x, y):
dist = (x ** 0.5 - y ** 0.5) ** 2
return np.sum(dist) ** 0.5
@d.avoid_zero_division
@njit(cache=True)
def max_symmetric_distance(x, y):
dist1 = (x - y) ** 2 / x
dist2 = (x - y) ** 2 / y
return np.maximum(np.sum(dist1), np.sum(dist2))
@d.avoid_zero_division
@njit(cache=True)
def mean_censored_euclidean_distance(x, y):
dist = squared_euclidean_distance(x, y)
diff = np.count_nonzero(x + y != 0)
return (dist / diff) ** 0.5
@d.avoid_zero_division
@njit(cache=True)
def min_symmetric_distance(x, y):
dist1 = (x - y) ** 2 / x
dist2 = (x - y) ** 2 / y
return np.minimum(np.sum(dist1), np.sum(dist2))
@d.avoid_zero_division
@njit(cache=True)
def neyman_distance(x, y):
dist = (x - y) ** 2 / x
return np.sum(dist)
@njit(cache=True)
def non_intersection_distance(x, y):
dist = np.fabs(x - y)
return 0.5 * np.sum(dist)
@d.avoid_zero_division
@njit(cache=True)
def pearson_distance(x, y):
dist = (x - y) ** 2 / y
return np.sum(dist)
@d.avoid_zero_division
@njit(cache=True)
def sangvi_distance(x, y):
dist = (x - y) ** 2 / (x + y)
return 2 * np.sum(dist)
@d.avoid_zero_division
@njit(cache=True)
def soergel_distance(x, y):
dist = np.sum(np.fabs(x - y)) / np.sum(np.maximum(x, y))
return dist
@d.avoid_zero_division
@njit(cache=True)
def squared_distance(x, y):
dist = (x - y) ** 2 / (x + y)
return np.sum(dist)
@njit(cache=True)
def squared_chord_distance(x, y):
dist = (x ** 0.5 - y ** 0.5) ** 2
return np.sum(dist)
@njit(cache=True)
|
Apache License 2.0
|
google-research/federated
|
rcc_dp/modify_pi.py
|
modify_pi
|
python
|
def modify_pi(pi, eta, epsilon, multiplicative_factor):
if eta < epsilon / 2:
raise ValueError('eta should be larger than epsilon/2.')
number_candidates = len(pi)
p = np.zeros(number_candidates) + 1.0 / number_candidates
p = p * multiplicative_factor
pi_all = [pi]
mass_above = np.sum(np.maximum(pi - np.exp(eta) * p, 0))
mass_below = np.sum(np.maximum(np.exp(-eta) * p - pi, 0))
if mass_above == 0 and mass_below == 0:
return pi_all
elif mass_above > mass_below:
below = pi < np.exp(-eta) * p
pi_new = pi.copy()
pi_new[below] = np.exp(-eta) * p[below]
indices = np.argsort(np.exp(eta) * p - pi_all[-1])
budget = mass_below
for i in indices:
diff = pi_new[i] - np.exp(eta) * p[i]
if diff > budget:
pi_new[i] -= budget
break
elif diff > 0:
pi_new[i] -= diff
budget -= diff
pi_all.append(pi_new.copy())
mass_above = np.sum(np.maximum(pi_new - np.exp(eta) * p, 0))
while mass_above > 0:
above = pi_new >= np.exp(eta) * p
pi_new[above] = np.exp(eta) * p[above]
not_above = ~above
pi_new[not_above] += mass_above * pi[not_above] / np.sum(pi[not_above])
pi_all.append(pi_new.copy())
mass_above = np.sum(np.maximum(pi_new - np.exp(eta) * p, 0))
else:
above = pi > np.exp(eta) * p
pi_new = pi.copy()
pi_new[above] = np.exp(eta) * p[above]
indices = np.argsort(pi_all[-1] - np.exp(-eta) * p)
budget = mass_above
for i in indices:
diff = np.exp(-eta) * p[i] - pi_new[i]
if diff > budget:
pi_new[i] += budget
break
elif diff > 0:
pi_new[i] += diff
budget -= diff
pi_all.append(pi_new.copy())
mass_below = np.sum(np.maximum(np.exp(-eta) * p - pi_new, 0))
while mass_below > 0:
below = pi_new <= np.exp(-eta) * p
pi_new[below] = np.exp(-eta) * p[below]
not_below = ~below
pi_new[not_below] -= mass_below * pi[not_below] / np.sum(pi[not_below])
pi_all.append(pi_new.copy())
mass_below = np.sum(np.maximum(np.exp(-eta) * p - pi_new, 0))
return pi_all
|
This function modifies the distribution pi to make it 2eta-LDP.
The function essentially ensures that the new distribution lies between the
upper threshold `exp(eta) * multiplicative_factor * p` and the lower threshold
`exp(-eta) * multiplicative_factor * p`. It first checks if the distribution
already lies inside the thresholds. If not, it trades as mass beyond the upper
threshold with mass beyond the lower threshold. In other words, it ensures
that at least one of the constraint is satisfied (the one which is violated
less severely). This is done with the help of the helper function
`trade_mass`. Next, it iteratively enforces the constraint that is still
violated and renormalizes the distribution. This is done with the help of the
helper function `normalize`.
Args:
pi: The input distribution to be modified
eta: The privacy parameter that is half times the desired privacy guarantee.
epsilon: The privacy parameter epsilon.
multiplicative_factor: The factor by which the uniform distribution over the
candidates is scaled with.
Returns:
pi_all: The container containing how the distrbution pi evolved from pi to
tilde_pi (which is equal to pi_all[-1]). Further, tilde_pi is 2eta-LDP.
|
https://github.com/google-research/federated/blob/909953fa8945cfac01328e0a6d878e1dc0376c3c/rcc_dp/modify_pi.py#L22-L151
|
import numpy as np
|
Apache License 2.0
|
econ-ark/hark
|
HARK/ConsumptionSaving/ConsMarkovModel.py
|
MarkovConsumerType.update_solution_terminal
|
python
|
def update_solution_terminal(self):
IndShockConsumerType.update_solution_terminal(self)
StateCount = self.MrkvArray[0].shape[0]
self.solution_terminal.cFunc = StateCount * [self.cFunc_terminal_]
self.solution_terminal.vFunc = StateCount * [self.solution_terminal.vFunc]
self.solution_terminal.vPfunc = StateCount * [self.solution_terminal.vPfunc]
self.solution_terminal.vPPfunc = StateCount * [self.solution_terminal.vPPfunc]
self.solution_terminal.mNrmMin = np.zeros(StateCount)
self.solution_terminal.hRto = np.zeros(StateCount)
self.solution_terminal.MPCmax = np.ones(StateCount)
self.solution_terminal.MPCmin = np.ones(StateCount)
|
Update the terminal period solution. This method should be run when a
new AgentType is created or when CRRA changes.
Parameters
----------
none
Returns
-------
none
|
https://github.com/econ-ark/hark/blob/d59269d4ca41afd5e2c3bf8c50ebf99b2073b998/HARK/ConsumptionSaving/ConsMarkovModel.py#L931-L955
|
from copy import deepcopy
import numpy as np
from HARK import AgentType
from HARK.ConsumptionSaving.ConsIndShockModel import (
ConsIndShockSolver,
ConsumerSolution,
IndShockConsumerType,
PerfForesightConsumerType,
)
from HARK.distribution import (
DiscreteDistribution,
MarkovProcess,
Uniform,
calc_expectation
)
from HARK.interpolation import (
CubicInterp,
LowerEnvelope,
LinearInterp,
ValueFuncCRRA,MargValueFuncCRRA
)
from HARK.utilities import (
CRRAutility,
CRRAutilityP,
CRRAutilityPP,
CRRAutilityP_inv,
CRRAutility_invP,
CRRAutility_inv,
CRRAutilityP_invP,
)
__all__ = ["ConsMarkovSolver", "MarkovConsumerType"]
utility = CRRAutility
utilityP = CRRAutilityP
utilityPP = CRRAutilityPP
utilityP_inv = CRRAutilityP_inv
utility_invP = CRRAutility_invP
utility_inv = CRRAutility_inv
utilityP_invP = CRRAutilityP_invP
class ConsMarkovSolver(ConsIndShockSolver):
def __init__(
self,
solution_next,
IncShkDstn_list,
LivPrb,
DiscFac,
CRRA,
Rfree_list,
PermGroFac_list,
MrkvArray,
BoroCnstArt,
aXtraGrid,
vFuncBool,
CubicBool,
):
self.solution_next = solution_next
self.IncShkDstn_list = IncShkDstn_list
self.LivPrb = LivPrb
self.DiscFac = DiscFac
self.CRRA = CRRA
self.BoroCnstArt = BoroCnstArt
self.aXtraGrid = aXtraGrid
self.vFuncBool = vFuncBool
self.CubicBool = CubicBool
self.Rfree_list=Rfree_list
self.PermGroFac_list=PermGroFac_list
self.MrkvArray=MrkvArray
self.StateCount=MrkvArray.shape[0]
self.def_utility_funcs()
def solve(self):
self.def_boundary()
self.EndOfPrdvFunc_list = []
self.EndOfPrdvPfunc_list = []
self.Ex_IncNextAll = (
np.zeros(self.StateCount) + np.nan
)
self.WorstIncPrbAll = (
np.zeros(self.StateCount) + np.nan
)
for j in range(self.StateCount):
self.condition_on_state(j)
self.Ex_IncNextAll[j] = np.dot(
self.ShkPrbsNext, self.PermShkValsNext * self.TranShkValsNext
)
self.WorstIncPrbAll[j] = self.WorstIncPrb
EndOfPrdvPfunc_cond = self.make_EndOfPrdvPfuncCond()
self.EndOfPrdvPfunc_list.append(EndOfPrdvPfunc_cond)
if self.vFuncBool:
EndOfPrdvFunc_cond = self.make_EndOfPrdvFuncCond()
self.EndOfPrdvFunc_list.append(EndOfPrdvFunc_cond)
self.calc_EndOfPrdvP()
self.calc_HumWealth_and_BoundingMPCs()
aNrm = (
np.asarray(self.aXtraGrid)[np.newaxis, :]
+ np.array(self.BoroCnstNat_list)[:, np.newaxis]
)
self.get_points_for_interpolation(self.EndOfPrdvP, aNrm)
cNrm = np.hstack((np.zeros((self.StateCount, 1)), self.cNrmNow))
mNrm = np.hstack(
(np.reshape(self.mNrmMin_list, (self.StateCount, 1)), self.mNrmNow)
)
self.BoroCnstNat = self.BoroCnstNat_list
solution = self.make_solution(cNrm, mNrm)
return solution
def def_boundary(self):
self.BoroCnstNatAll = np.zeros(self.StateCount) + np.nan
for j in range(self.StateCount):
PermShkMinNext = np.min(self.IncShkDstn_list[j].X[0])
TranShkMinNext = np.min(self.IncShkDstn_list[j].X[1])
self.BoroCnstNatAll[j] = (
(self.solution_next.mNrmMin[j] - TranShkMinNext)
* (self.PermGroFac_list[j] * PermShkMinNext)
/ self.Rfree_list[j]
)
self.BoroCnstNat_list = np.zeros(self.StateCount) + np.nan
self.mNrmMin_list = np.zeros(self.StateCount) + np.nan
self.BoroCnstDependency = np.zeros((self.StateCount, self.StateCount)) + np.nan
for i in range(self.StateCount):
possible_next_states = self.MrkvArray[i, :] > 0
self.BoroCnstNat_list[i] = np.max(self.BoroCnstNatAll[possible_next_states])
if self.BoroCnstArt is None:
self.mNrmMin_list[i] = self.BoroCnstNat_list[i]
else:
self.mNrmMin_list[i] = np.max(
[self.BoroCnstNat_list[i], self.BoroCnstArt]
)
self.BoroCnstDependency[i, :] = (
self.BoroCnstNat_list[i] == self.BoroCnstNatAll
)
def condition_on_state(self, state_index):
self.IncShkDstn = self.IncShkDstn_list[state_index]
self.Rfree = self.Rfree_list[state_index]
self.PermGroFac = self.PermGroFac_list[state_index]
self.vPfuncNext = self.solution_next.vPfunc[state_index]
self.mNrmMinNow = self.mNrmMin_list[state_index]
self.BoroCnstNat = self.BoroCnstNatAll[state_index]
self.set_and_update_values(
self.solution_next, self.IncShkDstn, self.LivPrb, self.DiscFac
)
self.DiscFacEff = (
self.DiscFac
)
self.vPfuncNext = self.solution_next.vPfunc[state_index]
if self.CubicBool:
self.vPPfuncNext = self.solution_next.vPPfunc[state_index]
if self.vFuncBool:
self.vFuncNext = self.solution_next.vFunc[state_index]
def calc_EndOfPrdvPP(self):
def vpp_next(shocks, a_nrm):
return shocks[0] ** (- self.CRRA - 1.0) * self.vPPfuncNext(self.m_nrm_next(shocks, a_nrm))
EndOfPrdvPP = (
self.DiscFacEff
* self.Rfree
* self.Rfree
* self.PermGroFac ** (-self.CRRA - 1.0)
* calc_expectation(
self.IncShkDstn,
vpp_next,
self.aNrmNow
)
)
return EndOfPrdvPP
def make_EndOfPrdvFuncCond(self):
VLvlNext = (
self.PermShkVals_temp ** (1.0 - self.CRRA)
* self.PermGroFac ** (1.0 - self.CRRA)
) * self.vFuncNext(self.mNrmNext)
EndOfPrdv_cond = self.DiscFacEff * np.sum(VLvlNext * self.ShkPrbs_temp, axis=0)
EndOfPrdvNvrs_cond = self.uinv(EndOfPrdv_cond)
EndOfPrdvNvrsP_cond = self.EndOfPrdvP_cond * self.uinvP(EndOfPrdv_cond)
EndOfPrdvNvrs_cond = np.insert(EndOfPrdvNvrs_cond, 0, 0.0)
EndOfPrdvNvrsP_cond = np.insert(EndOfPrdvNvrsP_cond, 0, EndOfPrdvNvrsP_cond[0])
aNrm_temp = np.insert(self.aNrm_cond, 0, self.BoroCnstNat)
EndOfPrdvNvrsFunc_cond = CubicInterp(
aNrm_temp, EndOfPrdvNvrs_cond, EndOfPrdvNvrsP_cond
)
EndofPrdvFunc_cond = ValueFuncCRRA(EndOfPrdvNvrsFunc_cond, self.CRRA)
return EndofPrdvFunc_cond
def calc_EndOfPrdvPcond(self):
EndOfPrdvPcond = ConsIndShockSolver.calc_EndOfPrdvP(self)
return EndOfPrdvPcond
def make_EndOfPrdvPfuncCond(self):
self.aNrm_cond = self.prepare_to_calc_EndOfPrdvP()
self.EndOfPrdvP_cond = self.calc_EndOfPrdvPcond()
EndOfPrdvPnvrs_cond = self.uPinv(
self.EndOfPrdvP_cond
)
if self.CubicBool:
EndOfPrdvPP_cond = self.calc_EndOfPrdvPP()
EndOfPrdvPnvrsP_cond = EndOfPrdvPP_cond * self.uPinvP(
self.EndOfPrdvP_cond
)
if self.CubicBool:
EndOfPrdvPnvrsFunc_cond = CubicInterp(
self.aNrm_cond,
EndOfPrdvPnvrs_cond,
EndOfPrdvPnvrsP_cond,
lower_extrap=True,
)
else:
EndOfPrdvPnvrsFunc_cond = LinearInterp(
self.aNrm_cond, EndOfPrdvPnvrs_cond, lower_extrap=True
)
EndofPrdvPfunc_cond = MargValueFuncCRRA(
EndOfPrdvPnvrsFunc_cond, self.CRRA
)
return EndofPrdvPfunc_cond
def calc_EndOfPrdvP(self):
aNrmMin_unique, state_inverse = np.unique(
self.BoroCnstNat_list, return_inverse=True
)
self.possible_transitions = self.MrkvArray > 0
EndOfPrdvP = np.zeros((self.StateCount, self.aXtraGrid.size))
EndOfPrdvPP = np.zeros((self.StateCount, self.aXtraGrid.size))
for k in range(aNrmMin_unique.size):
aNrmMin = aNrmMin_unique[k]
which_states = (
state_inverse == k
)
aGrid = aNrmMin + self.aXtraGrid
EndOfPrdvP_all = np.zeros((self.StateCount, self.aXtraGrid.size))
EndOfPrdvPP_all = np.zeros((self.StateCount, self.aXtraGrid.size))
for j in range(self.StateCount):
if np.any(
np.logical_and(self.possible_transitions[:, j], which_states)
):
EndOfPrdvP_all[j, :] = self.EndOfPrdvPfunc_list[j](aGrid)
if (
self.CubicBool
):
EndOfPrdvPP_all[j, :] = self.EndOfPrdvPfunc_list[j].derivativeX(
aGrid
)
EndOfPrdvP_temp = np.dot(self.MrkvArray, EndOfPrdvP_all)
EndOfPrdvP[which_states, :] = EndOfPrdvP_temp[
which_states, :
]
if self.CubicBool:
EndOfPrdvPP_temp = np.dot(self.MrkvArray, EndOfPrdvPP_all)
EndOfPrdvPP[which_states, :] = EndOfPrdvPP_temp[which_states, :]
LivPrb_tiled = np.tile(
np.reshape(self.LivPrb, (self.StateCount, 1)), (1, self.aXtraGrid.size)
)
self.EndOfPrdvP = LivPrb_tiled * EndOfPrdvP
if self.CubicBool:
self.EndOfPrdvPP = LivPrb_tiled * EndOfPrdvPP
def calc_HumWealth_and_BoundingMPCs(self):
WorstIncPrb_array = self.BoroCnstDependency * np.tile(
np.reshape(self.WorstIncPrbAll, (1, self.StateCount)), (self.StateCount, 1)
)
temp_array = self.MrkvArray * WorstIncPrb_array
WorstIncPrbNow = np.sum(
temp_array, axis=1
)
ExMPCmaxNext = (
np.dot(
temp_array,
self.Rfree_list ** (1.0 - self.CRRA)
* self.solution_next.MPCmax ** (-self.CRRA),
)
/ WorstIncPrbNow
) ** (-1.0 / self.CRRA)
DiscFacEff_temp = self.DiscFac * self.LivPrb
self.MPCmaxNow = 1.0 / (
1.0
+ ((DiscFacEff_temp * WorstIncPrbNow) ** (1.0 / self.CRRA)) / ExMPCmaxNext
)
self.MPCmaxEff = self.MPCmaxNow
self.MPCmaxEff[self.BoroCnstNat_list < self.mNrmMin_list] = 1.0
hNrmPlusIncNext = self.Ex_IncNextAll + self.solution_next.hNrm
self.hNrmNow = np.dot(
self.MrkvArray, (self.PermGroFac_list / self.Rfree_list) * hNrmPlusIncNext
)
temp = (
DiscFacEff_temp
* np.dot(
self.MrkvArray,
self.solution_next.MPCmin ** (-self.CRRA)
* self.Rfree_list ** (1.0 - self.CRRA),
)
) ** (1.0 / self.CRRA)
self.MPCminNow = 1.0 / (1.0 + temp)
def make_solution(self, cNrm, mNrm):
solution = (
ConsumerSolution()
)
if self.CubicBool:
dcda = self.EndOfPrdvPP / self.uPP(np.array(self.cNrmNow))
MPC = dcda / (dcda + 1.0)
self.MPC_temp = np.hstack(
(np.reshape(self.MPCmaxNow, (self.StateCount, 1)), MPC)
)
interpfunc = self.make_cubic_cFunc
else:
interpfunc = self.make_linear_cFunc
for i in range(self.StateCount):
self.hNrmNow_j = self.hNrmNow[i]
self.MPCminNow_j = self.MPCminNow[i]
if self.CubicBool:
self.MPC_temp_j = self.MPC_temp[i, :]
self.cFuncNowCnst = LinearInterp(
[self.mNrmMin_list[i], self.mNrmMin_list[i] + 1.0], [0.0, 1.0]
)
cFuncNowUnc = interpfunc(mNrm[i, :], cNrm[i, :])
cFuncNow = LowerEnvelope(cFuncNowUnc, self.cFuncNowCnst)
vPfuncNow = MargValueFuncCRRA(cFuncNow, self.CRRA)
solution_cond = ConsumerSolution(
cFunc=cFuncNow, vPfunc=vPfuncNow, mNrmMin=self.mNrmMinNow
)
if (
self.CubicBool
):
solution_cond = self.add_vPPfunc(solution_cond)
solution.append_solution(solution_cond)
solution.mNrmMin = self.mNrmMin_list
solution = self.add_MPC_and_human_wealth(solution)
if self.vFuncBool:
vFuncNow = self.make_vFunc(solution)
solution.vFunc = vFuncNow
return solution
def make_linear_cFunc(self, mNrm, cNrm):
cFuncUnc = LinearInterp(
mNrm, cNrm, self.MPCminNow_j * self.hNrmNow_j, self.MPCminNow_j
)
return cFuncUnc
def make_cubic_cFunc(self, mNrm, cNrm):
cFuncUnc = CubicInterp(
mNrm,
cNrm,
self.MPC_temp_j,
self.MPCminNow_j * self.hNrmNow_j,
self.MPCminNow_j,
)
return cFuncUnc
def make_vFunc(self, solution):
vFuncNow = []
for i in range(self.StateCount):
mNrmMin = self.mNrmMin_list[i]
mGrid = mNrmMin + self.aXtraGrid
cGrid = solution.cFunc[i](mGrid)
aGrid = mGrid - cGrid
EndOfPrdv_all = np.zeros((self.StateCount, self.aXtraGrid.size))
for j in range(self.StateCount):
if self.possible_transitions[i, j]:
EndOfPrdv_all[j, :] = self.EndOfPrdvFunc_list[j](aGrid)
EndOfPrdv = np.dot(self.MrkvArray[i, :], EndOfPrdv_all)
vNrmNow = self.u(cGrid) + EndOfPrdv
vPnow = self.uP(cGrid)
vNvrs = self.uinv(vNrmNow)
vNvrsP = vPnow * self.uinvP(vNrmNow)
mNrm_temp = np.insert(mGrid, 0, mNrmMin)
vNvrs = np.insert(vNvrs, 0, 0.0)
vNvrsP = np.insert(
vNvrsP, 0, self.MPCmaxEff[i] ** (-self.CRRA / (1.0 - self.CRRA))
)
MPCminNvrs = self.MPCminNow[i] ** (-self.CRRA / (1.0 - self.CRRA))
vNvrsFunc_i = CubicInterp(
mNrm_temp, vNvrs, vNvrsP, MPCminNvrs * self.hNrmNow[i], MPCminNvrs
)
vFunc_i = ValueFuncCRRA(vNvrsFunc_i, self.CRRA)
vFuncNow.append(vFunc_i)
return vFuncNow
def _solve_ConsMarkov(
solution_next,
IncShkDstn,
LivPrb,
DiscFac,
CRRA,
Rfree,
PermGroFac,
MrkvArray,
BoroCnstArt,
aXtraGrid,
vFuncBool,
CubicBool,
):
solver = ConsMarkovSolver(
solution_next,
IncShkDstn,
LivPrb,
DiscFac,
CRRA,
Rfree,
PermGroFac,
MrkvArray,
BoroCnstArt,
aXtraGrid,
vFuncBool,
CubicBool,
)
solution_now = solver.solve()
return solution_now
class MarkovConsumerType(IndShockConsumerType):
time_vary_ = IndShockConsumerType.time_vary_ + ["MrkvArray"]
shock_vars_ = IndShockConsumerType.shock_vars_ + ["Mrkv"]
state_vars = IndShockConsumerType.state_vars + ["Mrkv"]
def __init__(self, **kwds):
IndShockConsumerType.__init__(self, **kwds)
self.solve_one_period = _solve_ConsMarkov
if not hasattr(self, "global_markov"):
self.global_markov = False
def check_markov_inputs(self):
StateCount = self.MrkvArray[0].shape[0]
if not isinstance(self.Rfree, np.ndarray) or self.Rfree.shape != (StateCount,):
raise ValueError(
"Rfree not the right shape, it should an array of Rfree of all the states."
)
for MrkvArray_t in self.MrkvArray:
if not isinstance(MrkvArray_t, np.ndarray) or MrkvArray_t.shape != (
StateCount,
StateCount,
):
raise ValueError(
"MrkvArray not the right shape, it should be of the size states*statres."
)
for LivPrb_t in self.LivPrb:
if not isinstance(LivPrb_t, np.ndarray) or LivPrb_t.shape != (StateCount,):
raise ValueError(
"Array in LivPrb is not the right shape, it should be an array of length equal to number of states"
)
for PermGroFac_t in self.PermGroFac:
if not isinstance(PermGroFac_t, np.ndarray) or PermGroFac_t.shape != (
StateCount,
):
raise ValueError(
"Array in PermGroFac is not the right shape, it should be an array of length equal to number of states"
)
for IncShkDstn_t in self.IncShkDstn:
if not isinstance(IncShkDstn_t, list):
raise ValueError(
"self.IncShkDstn is time varying and so must be a list"
+ "of lists of Distributions, one per Markov State. Found "
+ f"{self.IncShkDstn} instead"
)
elif len(IncShkDstn_t) != StateCount:
raise ValueError(
"List in IncShkDstn is not the right length, it should be length equal to number of states"
)
def pre_solve(self):
AgentType.pre_solve(self)
self.check_markov_inputs()
|
Apache License 2.0
|
ziirish/burp-ui
|
burpui/misc/parser/burp1.py
|
Parser._new_template_conf
|
python
|
def _new_template_conf(self, name, path):
self._load_conf_templates(name, path)
return self._templates_conf[name]
|
Create new template conf
|
https://github.com/ziirish/burp-ui/blob/668922753d97f0a71844d6985d9b8b2695fb2421/burpui/misc/parser/burp1.py#L204-L207
|
import re
import os
import json
import codecs
import shutil
from glob import glob
from .doc import Doc
from .utils import Config
from .openssl import OSSLConf, OSSLAuth
from ...exceptions import BUIserverException
from ...utils import NOTIF_ERROR, NOTIF_OK, NOTIF_WARN
class Parser(Doc):
pver = 1
_assume_server_version = ""
_assume_client_version = ""
def __init__(self, backend=None):
self.backend = backend
self.clients = []
self._server_conf = {}
self._client_conf = {}
self._clients_conf = {}
self._templates_conf = {}
self._static_templates_conf = {}
self.clientconfdir = None
self.clientconfdir_mtime = None
self.templates = []
self.templates_dir = ".buitemplates"
self.templates_path = None
self.templates_mtime = None
self.static_templates = []
self.static_templates_dir = ".buistatictemplates"
self.static_templates_path = None
self.static_templates_mtime = None
self.filescache = {}
self._configs = {}
self.root = None
if self.backend:
self.init_app()
def init_app(self, confsrv=None, confcli=None):
self.conf = confsrv or getattr(self.backend, "burpconfsrv", None)
self.confcli = confcli or getattr(self.backend, "burpconfcli", None)
self.logger.info("Parser initialized with: {}".format(self.conf))
if self.conf:
self.root = os.path.dirname(self.conf)
self._load_all_conf()
ca_conf = self.server_conf.get("ca_conf")
if self._is_secure_path(ca_conf):
self.openssl_conf = OSSLConf(ca_conf)
else:
self.openssl_conf = OSSLConf(os.devnull)
self.openssl_auth = OSSLAuth(
self.server_conf.get("ca_name"), self.openssl_conf, self.server_conf
)
@property
def server_conf(self):
if self._server_conf.changed:
self._load_conf_srv()
return self._server_conf
@property
def client_conf(self):
if self._client_conf.changed:
self._load_conf_cli()
return self._client_conf
@property
def clients_conf(self):
if self._clientconfdir_changed():
self._load_conf_clients()
for client, conf in self._clients_conf.items():
if conf.changed:
conf.parse(True)
return self._clients_conf
def _cleanup(self):
self._server_conf.clear()
self._client_conf.clear()
self._clients_conf.clear()
def _refresh_cache(self, purge=False):
if purge:
self._cleanup()
self._list_templates(True)
self._list_static_templates(True)
self._list_clients(True)
def _load_conf_srv(self):
self._server_conf = Config(self.conf, self, "srv")
self._server_conf.parse()
self.clientconfdir = self._server_conf.get("clientconfdir")
self.templates_path = os.path.join(self.clientconfdir, self.templates_dir)
if not os.path.exists(self.templates_path):
try:
os.makedirs(self.templates_path, 0o755)
except OSError as exp:
self.logger.warning(str(exp))
self.static_templates_path = os.path.join(
self.clientconfdir, self.static_templates_dir
)
if not os.path.exists(self.static_templates_path):
try:
os.makedirs(self.static_templates_path, 0o755)
except OSError as exp:
self.logger.warning(str(exp))
def _load_conf_cli(self):
self._client_conf = Config(self.confcli, self, "cli")
self._client_conf.parse()
def _load_conf_clients(self, name=None, in_path=None):
if name:
clients = [{"name": name, "value": in_path}]
else:
clients = self._list_clients(True)
for cli in clients:
conf = self.server_conf.clone()
path = cli["value"] or cli["name"]
if cli["name"] not in self._clients_conf:
if not os.path.isabs(path):
path = os.path.join(self.clientconfdir, path)
conf.add_file(path)
conf.set_default(path)
conf.parse()
self._clients_conf[cli["name"]] = conf
def _load_conf_templates(self, name=None, in_path=None):
if name:
templates = [{"name": name, "value": in_path}]
else:
templates = self._list_templates(True)
for template in templates:
conf = self.server_conf.clone()
conf.set_template(True)
path = os.path.join(self.templates_path, template["name"])
if template["name"] not in self._templates_conf:
conf.add_file(path)
conf.set_default(path)
conf.parse()
self._templates_conf[template["name"]] = conf
def _load_conf_static_templates(self, name=None, in_path=None):
if name:
templates = [{"name": name, "value": in_path}]
else:
templates = self._list_static_templates(True)
for template in templates:
conf = self.server_conf.clone()
path = os.path.join(self.static_templates_path, template["name"])
if template["name"] not in self._static_templates_conf:
conf.add_file(path)
conf.set_default(path)
conf.parse()
self._static_templates_conf[template["name"]] = conf
def _load_all_conf(self):
self._cleanup()
self._load_conf_srv()
self._load_conf_cli()
self._load_conf_clients()
self._load_conf_templates()
def _new_client_conf(self, name, path):
self._load_conf_clients(name, path)
return self.clients_conf[name]
|
BSD 3-Clause New or Revised License
|
cohesity/management-sdk-python
|
cohesity_management_sdk/models/node_to_tiered_storage_directories_map.py
|
NodeToTieredStorageDirectoriesMap.__init__
|
python
|
def __init__(self,
cassandra_node_name=None,
tiered_storage_directories_vec=None):
self.cassandra_node_name = cassandra_node_name
self.tiered_storage_directories_vec = tiered_storage_directories_vec
|
Constructor for the NodeToTieredStorageDirectoriesMap class
|
https://github.com/cohesity/management-sdk-python/blob/1c085d5a10f5f1a87b700e7ad1fc1dcabda41ae5/cohesity_management_sdk/models/node_to_tiered_storage_directories_map.py#L24-L31
|
class NodeToTieredStorageDirectoriesMap(object):
_names = {
"cassandra_node_name": 'cassandraNodeName',
"tiered_storage_directories_vec": 'tieredStorageDirectoriesVec'
}
|
Apache License 2.0
|
xanaduai/strawberryfields
|
strawberryfields/circuitdrawer.py
|
Circuit._init_document
|
python
|
def _init_document(self):
self._document = INIT_DOCUMENT
|
Adds the required latex headers to the document.
|
https://github.com/xanaduai/strawberryfields/blob/c1eed81a93419cb9c28a6ca205925691063722ce/strawberryfields/circuitdrawer.py#L534-L536
|
import datetime
import os
DOCUMENT_CLASS = r"\documentclass{article}"
EMPTY_PAGESTYLE = r"\pagestyle{empty}"
QCIRCUIT_PACKAGE = r"\usepackage{qcircuit}"
BEGIN_DOCUMENT = r"\begin{document}"
DOCUMENT_END = r"\end{document}"
CIRCUIT_START = r"\Qcircuit"
COLUMN_SPACING = "@C={0}"
ROW_SPACING = "@R={0}"
UNIFORM_ROW_SPACING = "@!R"
UNIFORM_COLUMN_SPACING = "@!C"
UNIFORM_ELEMENT_SPACING = "@!"
QUANTUM_WIRE = r"\qw"
MULTI_QUANTUM_WIRE = r"\qw[{0}]"
VERTICAL_QUANTUM_WIRE = r"\qwx[{0}]"
WIRE_END = r"\qwa[{0}]"
CLASSICAL_WIRE = r"\cw[{0}]"
CLASSICAL_WIRE_END = r"\cwa[{0}]"
VERTICAL_CLASSICAL_WIRE = r"\cwx[{0}]"
LABELLED_GATE = r"\gate{{{0}}}"
TARGET = r"\targ"
SWAP = r"\qswap"
MULTIGATE = r"\multigate{{{0}}}{{{1}}}"
NON_ADJACENT_MULTIGATE = r"\sgate{{{0}}}{{{1}}}"
GHOST = r"\ghost{{{0}}}"
CLASSICAL_GHOST = r"\cghost{{{0}}}"
NO_GHOST = r"\nghost{{{0}}}"
CONTROL = r"\ctrl{{{0}}}"
CONTROL_ON_ZERO = r"\ctrlo{{{0}}}"
CLASSICAL_CONTROL = r"\cctrl{{{0}}}"
CLASSICAL_CONTROL_ON_ZERO = r"\cctrlo{{{0}}}"
ISOLATED_CONTROL = r"\control"
ISOLATED_CONTROL_ON_ZERO = r"\controlo"
METER = r"\meter"
BASIS_METER = r"\meterB{{{0}}}"
SPLIT_BASIS_METER = r"\smeterB{{{0}}}{{{1}}}"
MEASURE = r"\measuretab{{{0}}}"
MULTIMEASURE = r"\multimeasure{{{0}}}{{{1}}}"
LEFT_WIRE_LABEL = r"\lstick{{{0}}}"
RIGHT_WIRE_LABEL = r"\rstick{{{0}}}"
BRA = r"\bra{{{0}}}"
KET = r"\ket{{{0}}}"
HADAMARD_COMP = LABELLED_GATE.format("H")
PAULI_X_COMP = LABELLED_GATE.format("X")
PAULI_Y_COMP = LABELLED_GATE.format("Y")
PAULI_Z_COMP = LABELLED_GATE.format("Z")
D_COMP = LABELLED_GATE.format("D")
S_COMP = LABELLED_GATE.format("S")
R_COMP = LABELLED_GATE.format("R")
P_COMP = LABELLED_GATE.format("P")
V_COMP = LABELLED_GATE.format("V")
K_COMP = LABELLED_GATE.format("K")
FOURIER_COMP = LABELLED_GATE.format("F")
BS_MULTI_COMP = "BS"
S_MULTI_COMP = "S"
WIRE_OPERATION = "& {0}"
WIRE_TERMINATOR = r"\\" + "\n"
CIRCUIT_BODY_TERMINATOR = "}\n"
CIRCUIT_BODY_START = " {" + "\n"
INIT_DOCUMENT = (
DOCUMENT_CLASS
+ "\n"
+ EMPTY_PAGESTYLE
+ "\n"
+ QCIRCUIT_PACKAGE
+ "\n"
+ BEGIN_DOCUMENT
+ "\n"
+ CIRCUIT_START
)
PIPE = "|"
LINE_RETURN = "\n"
class NotDrawableException(Exception):
pass
class ModeMismatchException(Exception):
pass
class UnsupportedGateException(Exception):
pass
class Circuit:
_circuit_matrix = []
def __init__(self, wires):
self._document = ""
self._circuit_matrix = [[QUANTUM_WIRE.format(1)] for wire in range(wires)]
self._column_spacing = None
self._row_spacing = None
self.single_mode_gates = {
"Xgate": self._x,
"Zgate": self._z,
"Dgate": self._d,
"Sgate": self._s,
"Rgate": self._r,
"Pgate": self._p,
"Vgate": self._v,
"Kgate": self._k,
"Fourier": self._fourier,
}
self.two_mode_gates = {
"CXgate": self._cx,
"CZgate": self._cz,
"CKgate": self._ck,
"BSgate": self._bs,
"S2gate": self._s2,
}
def _gate_from_operator(self, op):
operator = str(op).split(PIPE)[0]
method = None
mode = None
for two_mode_gate in self.two_mode_gates:
if two_mode_gate in operator:
method = self.two_mode_gates[two_mode_gate]
mode = 2
if method is None:
for single_mode_gate in self.single_mode_gates:
if single_mode_gate in operator:
method = self.single_mode_gates[single_mode_gate]
mode = 1
return method, mode
def parse_op(self, op):
if not op.__class__.__name__ == "Command":
return
method, mode = self._gate_from_operator(op)
wires = list(map(lambda register: register.ind, op.reg))
if method is None:
raise UnsupportedGateException(
"Unsupported operation {0} not printable by circuit builder!".format(str(op))
)
if mode == len(wires):
method(*wires)
else:
raise ModeMismatchException(
"{0} mode gate applied to {1} wires!".format(mode, len(wires))
)
def _x(self, wire):
self._single_mode_gate(wire, PAULI_X_COMP)
def _z(self, wire):
self._single_mode_gate(wire, PAULI_Z_COMP)
def _s(self, wire):
self._single_mode_gate(wire, S_COMP)
def _d(self, wire):
self._single_mode_gate(wire, D_COMP)
def _r(self, wire):
self._single_mode_gate(wire, R_COMP)
def _p(self, wire):
self._single_mode_gate(wire, P_COMP)
def _v(self, wire):
self._single_mode_gate(wire, V_COMP)
def _k(self, wire):
self._single_mode_gate(wire, K_COMP)
def _fourier(self, wire):
self._single_mode_gate(wire, FOURIER_COMP)
def _cx(self, source_wire, target_wire):
self._controlled_mode_gate(source_wire, target_wire, TARGET)
def _cz(self, source_wire, target_wire):
self._controlled_mode_gate(source_wire, target_wire, PAULI_Z_COMP)
def _ck(self, source_wire, target_wire):
self._controlled_mode_gate(source_wire, target_wire, K_COMP)
def _bs(self, first_wire, second_wire):
self._multi_mode_gate(BS_MULTI_COMP, [first_wire, second_wire])
def _s2(self, first_wire, second_wire):
self._multi_mode_gate(S_MULTI_COMP, [first_wire, second_wire])
def _single_mode_gate(self, wire, circuit_op):
matrix = self._circuit_matrix
wire_ops = matrix[wire]
if Circuit._is_empty(wire_ops[-1]):
wire_ops[-1] = circuit_op
else:
wire_ops.append(circuit_op)
for prev_wire in matrix[:wire]:
prev_wire.append(QUANTUM_WIRE.format(1))
for post_wire in matrix[wire + 1 :]:
post_wire.append(QUANTUM_WIRE.format(1))
def _multi_mode_gate(self, circuit_op, wires):
matrix = self._circuit_matrix
if not self._on_empty_column():
self._add_column()
wires.sort()
first_wire = wires.pop(0)
wire_ops = matrix[first_wire]
wire_ops[-1] = MULTIGATE.format(1, circuit_op)
matrix[first_wire] = wire_ops
previous_wire = first_wire
for wire in wires:
if not previous_wire == wire - 1:
raise NotDrawableException(
"{0} multi-mode gate applied to non-adjacent wires!".format(circuit_op)
)
wire_ops = matrix[wire]
wire_ops[-1] = GHOST.format(circuit_op)
matrix[wire] = wire_ops
previous_wire = wire
self._circuit_matrix = matrix
def _controlled_mode_gate(self, source_wire, target_wire, circuit_op):
matrix = self._circuit_matrix
source_ops = matrix[source_wire]
target_ops = matrix[target_wire]
distance = target_wire - source_wire
if Circuit._is_empty(source_ops[-1]) and Circuit._is_empty(target_ops[-1]):
source_ops[-1] = CONTROL.format(distance)
target_ops[-1] = circuit_op
else:
for index, wire_ops in enumerate(matrix):
if index == source_wire:
wire_ops.append(CONTROL.format(distance))
elif index == target_wire:
wire_ops.append(circuit_op)
else:
wire_ops.append(QUANTUM_WIRE.format(1))
def _on_empty_column(self):
matrix = self._circuit_matrix
empty_column = True
for wire in enumerate(matrix):
wire_ops = wire[1]
if not Circuit._is_empty(wire_ops[-1]):
empty_column = False
break
return empty_column
def _add_column(self):
for wire in self._circuit_matrix:
wire.append(QUANTUM_WIRE.format(1))
@staticmethod
def _is_empty(op):
return op == QUANTUM_WIRE.format(1)
def _set_column_spacing(self, spacing):
self._column_spacing = spacing
def _set_row_spacing(self, spacing):
self._row_spacing = spacing
@staticmethod
def _pad_with_spaces(string):
return " " + string + " "
def dump_to_document(self):
self._init_document()
self._apply_spacing()
self._begin_circuit()
self._add_column()
for wire_ops in enumerate(self._circuit_matrix):
for wire_op in wire_ops[1]:
self._write_operation_to_document(wire_op)
self._end_wire()
self._end_circuit()
self._end_document()
return self._document
def compile_document(self, tex_dir="./circuit_tex"):
tex_dir = os.path.abspath(tex_dir)
if not os.path.isdir(tex_dir):
os.mkdir(tex_dir)
file_name = "output_{0}".format(datetime.datetime.now().strftime("%Y_%B_%d_%I:%M%p"))
file_path = "{0}/{1}.tex".format(tex_dir, file_name)
with open(file_path, "w+") as output_file:
output_file.write(self._document)
return file_path
|
Apache License 2.0
|
tktech/pynbt
|
pynbt.py
|
BaseTag.pretty
|
python
|
def pretty(self, indent=0, indent_str=' '):
return '{0}{1}({2!r}): {3!r}'.format(
indent_str * indent,
self.__class__.__name__,
self.name,
self.value
)
|
Pretty-print a tag in the same general style as Markus's example
output.
|
https://github.com/tktech/pynbt/blob/bd7e545fee00e509276ee3dc90cb23949e450cda/pynbt.py#L163-L173
|
__all__ = (
'NBTFile',
'TAG_Byte',
'TAG_Short',
'TAG_Int',
'TAG_Long',
'TAG_Float',
'TAG_Double',
'TAG_Byte_Array',
'TAG_String',
'TAG_List',
'TAG_Compound',
'TAG_Int_Array',
'TAG_Long_Array'
)
from functools import partial
from struct import unpack, pack
import mutf8
class BaseTag(object):
def __init__(self, value, name=None):
self.name = name
self.value = value
@staticmethod
def _read_utf8(read):
name_length = read('h', 2)[0]
return mutf8.decode_modified_utf8(read.src.read(name_length))
@staticmethod
def _write_utf8(write, value):
encoded_value = mutf8.encode_modified_utf8(value)
write('h', len(encoded_value))
write.dst.write(encoded_value)
@classmethod
def read(cls, read, has_name=True):
name = cls._read_utf8(read) if has_name else None
if cls is TAG_Compound:
final = {}
while True:
tag = read('b', 1)[0]
if tag == 0:
break
tmp = _tags[tag].read(read)
final[tmp.name] = tmp
return cls(final, name=name)
elif cls is TAG_List:
tag_type, length = read('bi', 5)
tag_read = _tags[tag_type].read
return cls(
_tags[tag_type],
[tag_read(read, has_name=False) for x in range(0, length)],
name=name
)
elif cls is TAG_String:
value = cls._read_utf8(read)
return cls(value, name=name)
elif cls is TAG_Byte_Array:
length = read('i', 4)[0]
return cls(bytearray(read.src.read(length)), name=name)
elif cls is TAG_Int_Array:
length = read('i', 4)[0]
return cls(read('{0}i'.format(length), length * 4), name=name)
elif cls is TAG_Long_Array:
length = read('i', 4)[0]
return cls(read('{0}q'.format(length), length * 8), name=name)
elif cls is TAG_Byte:
return cls(read('b', 1)[0], name=name)
elif cls is TAG_Short:
return cls(read('h', 2)[0], name=name)
elif cls is TAG_Int:
return cls(read('i', 4)[0], name=name)
elif cls is TAG_Long:
return cls(read('q', 8)[0], name=name)
elif cls is TAG_Float:
return cls(read('f', 4)[0], name=name)
elif cls is TAG_Double:
return cls(read('d', 8)[0], name=name)
elif cls is TAG_End:
return cls(read('2b', 2)[0], name=name)
def write(self, write):
if self.name is not None:
if isinstance(self, NBTFile):
write('b', 0x0A)
else:
write('b', _tags.index(self.__class__))
self._write_utf8(write, self.name)
if isinstance(self, TAG_List):
write('bi', _tags.index(self.type_), len(self.value))
for item in self.value:
if not isinstance(item, self.type_):
item = self.type_(item)
item.write(write)
elif isinstance(self, TAG_Compound):
for v in self.value.values():
v.write(write)
write('b', 0)
elif isinstance(self, TAG_String):
self._write_utf8(write, self.value)
elif isinstance(self, TAG_Int_Array):
length = len(self.value)
write('i{0}i'.format(length), length, *self.value)
elif isinstance(self, TAG_Long_Array):
length = len(self.value)
write('i{0}q'.format(length), length, *self.value)
elif isinstance(self, TAG_Byte_Array):
write('i', len(self.value))
write.dst.write(bytes(self.value))
elif isinstance(self, TAG_Byte):
write('b', self.value)
elif isinstance(self, TAG_Short):
write('h', self.value)
elif isinstance(self, TAG_Int):
write('i', self.value)
elif isinstance(self, TAG_Long):
write('q', self.value)
elif isinstance(self, TAG_Float):
write('f', self.value)
elif isinstance(self, TAG_Double):
write('d', self.value)
|
MIT License
|
lululxvi/deeponet
|
seq2seq/learner/integrator/hamiltonian/stormer_verlet.py
|
SV.__init__
|
python
|
def __init__(self, H, dH, iterations=10, order=4, N=1):
self.H = H
self.dH = dH
self.iterations = iterations
self.order = order
self.N = N
|
H: H(x) or None
dH: dp,dq=dH(p,q) or None
``iterations`` is encouraged to be 1 if H is separable.
|
https://github.com/lululxvi/deeponet/blob/7a110731b73bcdeabfcff819f353fa87b0543cff/seq2seq/learner/integrator/hamiltonian/stormer_verlet.py#L12-L22
|
import numpy as np
import torch
from ...utils import grad
class SV:
|
Apache License 2.0
|
jmchilton/galaxy-central
|
tools/mdea/AlphaSubstPrep.py
|
AlphaSubstPrep.PrevAlphabetChar
|
python
|
def PrevAlphabetChar(self,CurrChar):
RevAlphabet = "ZYXWVUTSRQPONMLKJIHGFEDCBA"
if CurrChar == "":
return "Z"
else:
return RevAlphabet[RevAlphabet.find(CurrChar) + 1]
|
This function will return the previous character in the alphabet
|
https://github.com/jmchilton/galaxy-central/blob/31e2fd3a32b06ddfba06ae5b044efdce1d93f08c/tools/mdea/AlphaSubstPrep.py#L270-L276
|
import re
import string
class AlphaSubstPrep:
def __init__(self):
def PrepBaseML(self,AnalysisType,TreeData,SequenceCount,CompType,UserRandomKey,BaseMLLocation,SubstModel,GetSE,DoIntAlpha,DoExtAlpha,GalaxyLocation,FixAlpha,AlphaValue,FixKappa,KappaValue,FixRho,RhoValue):
self.Group1Branches = []
self.Group2Branches = []
self.Group1IntBranches = []
self.Group2IntBranches = []
self.Group1ExtBranches = []
self.Group2ExtBranches = []
self.InternalBranches = []
self.ExternalBranches = []
if int(AnalysisType) == 0: AlignmentTogether = 1
else: AlignmentTogether = 0
SpaceRemover = re.compile(" ")
TreeData = SpaceRemover.sub("",TreeData)
self.WriteTreeDef(AlignmentTogether,TreeData,SequenceCount,CompType,UserRandomKey,DoIntAlpha,DoExtAlpha)
self.WriteBaseMLctl(BaseMLLocation,UserRandomKey,SubstModel,GetSE,GalaxyLocation,FixAlpha,AlphaValue,FixKappa,KappaValue,FixRho,RhoValue)
def WriteBaseMLctl(self,BaseMLLocation,UserRandomKey,SubstModel,GetSE,GalaxyLocation,FixAlpha,AlphaValue,FixKappa,KappaValue,FixRho,RhoValue):
OutFile = GalaxyLocation + "tools/mdea/BaseMLWork/" + str(UserRandomKey) + "-tmp.out"
TreeFile = GalaxyLocation + "tools/mdea/BaseMLWork/" + str(UserRandomKey) + "-tmp.tree"
SeqFile = GalaxyLocation + "tools/mdea/BaseMLWork/" + str(UserRandomKey) + "-tmp.seq"
BaseMLControlFile = "\n outfile = " + OutFile + "\n treefile = " + TreeFile + "\n seqfile = " + SeqFile + "\n\n"
BaseMLControlFile += " noisy = 0\n verbose = 0\n runmode = 0\n model = " + str(SubstModel) + "\n"
BaseMLControlFile += " Mgene = 0\n fix_kappa = " + str(FixKappa) + "\n kappa = " + str(KappaValue) + "\n"
BaseMLControlFile += " fix_alpha = " + str(FixAlpha) + "\n alpha = " + str(AlphaValue) + "\n Malpha = 0\n"
BaseMLControlFile += " ncatG = 5\n fix_rho = " + str(FixRho) + "\n rho = " + str(RhoValue) + "\n nparK = 0\n clock = 0\n nhomo = 0\n"
BaseMLControlFile += " getSE = " + str(GetSE) + "\n RateAncestor = 0\n Small_Diff = 7e-6\n"
BaseMLControlFile += " cleandata = 1\n method = 0\n"
self.WriteFile("tools/mdea/BaseMLWork/" + str(UserRandomKey) + "-baseml.ctl",BaseMLControlFile)
def WriteTreeDef(self,AlignmentTogether,TreeData,SequenceCount,CompType,UserRandomKey,DoIntAlpha,DoExtAlpha):
RemoveAssign = re.compile('[_AWXYZ]')
BaseTreeDef = RemoveAssign.sub("",TreeData)
self.BranchDescriptions = self.ExplodeTree(BaseTreeDef,SequenceCount)
self.DetermineBranchOwnership(AlignmentTogether, self.BranchDescriptions,TreeData,CompType,SequenceCount,DoIntAlpha,DoExtAlpha)
BaseTreeDef = " " + str(SequenceCount) + " 1\n\n" + str(BaseTreeDef)
self.WriteFile("tools/mdea/BaseMLWork/" + str(UserRandomKey) + "-tmp.tree",BaseTreeDef)
def DetermineBranchOwnership(self,AlignmentTogether,BranchDesc,TreeData,CompType,SequenceCount,DoIntAlpha,DoExtAlpha):
Group1IDS = []
Group2IDS = []
OrderedBranchList = []
Group1Tag = self.ReturnGroupTag(CompType,"1")
Group2Tag = self.ReturnGroupTag(CompType,"2")
CommaSplitter = re.compile(',')
TwoPeriodSplitter = re.compile('\.\.')
UnderScoreSplitter = re.compile('_')
RemoveParens = re.compile('[\(\)]')
if str(AlignmentTogether) == "1":
TreeDefinition = RemoveParens.sub("",TreeData)
TreeDefinition = CommaSplitter.split(TreeDefinition)
for NodeAssignment in TreeDefinition:
if CompType != 0:
NodeParts = UnderScoreSplitter.split(NodeAssignment)
if NodeParts[1][0:] == Group1Tag:
Group1IDS.append(NodeParts[0])
elif NodeParts[1][0:] == Group2Tag:
Group2IDS.append(NodeParts[0])
HighestBranch = 0
for Branch in BranchDesc:
BranchParts = TwoPeriodSplitter.split(Branch)
if int(BranchParts[0]) > int(HighestBranch):
HighestBranch = BranchParts[0]
if int(BranchParts[1]) > int(HighestBranch):
HighestBranch = BranchParts[1]
for CountingIndex in range(1,int(HighestBranch)):
for BranchIndex in range(0,len(BranchDesc)):
if str(BranchDesc[BranchIndex]) != "":
BranchParts = TwoPeriodSplitter.split(BranchDesc[BranchIndex])
if str(BranchParts[0]) == str(CountingIndex) or str(BranchParts[1]) == str(CountingIndex):
BranchString = str(BranchParts[0]) + ".." + str(BranchParts[1])
if not OrderedBranchList.__contains__(BranchString):
OrderedBranchList.append(BranchString)
OriginNode = int(SequenceCount) + 1
InternalBranchesPresent1 = 0
ExternalBranchesPresent1 = 0
InternalBranchesPresent2 = 0
ExternalBranchesPresent2 = 0
for Branch in OrderedBranchList:
BranchParts = TwoPeriodSplitter.split(Branch)
BranchString = str(BranchParts[0]) + ".." + str(BranchParts[1])
if str(AlignmentTogether) == "1":
for Group1 in Group1IDS:
if int(Group1) == int(BranchParts[0]) or int(Group1) == int(BranchParts[1]):
if str(OriginNode) != str(BranchParts[0]) and str(OriginNode) != str(BranchParts[1]):
if not Group1IDS.__contains__(str(BranchParts[0])):
Group1IDS.append(str(BranchParts[0]))
if not Group1IDS.__contains__(str(BranchParts[1])):
Group1IDS.append(str(BranchParts[1]))
if not self.Group1Branches.__contains__(BranchString):
self.Group1Branches.append(BranchString)
if int(DoIntAlpha) == 1:
if int(BranchParts[0]) > int(SequenceCount) and int(BranchParts[1]) > int(SequenceCount):
if not self.Group1IntBranches.__contains__(BranchString):
self.Group1IntBranches.append(BranchString)
InternalBranchesPresent1 = 1
if int(DoExtAlpha) == 1:
if int(BranchParts[0]) <= int(SequenceCount) or int(BranchParts[1]) <= int(SequenceCount):
if not self.Group1ExtBranches.__contains__(BranchString):
self.Group1ExtBranches.append(BranchString)
ExternalBranchesPresent1 = 1
for Group2 in Group2IDS:
BranchString = str(BranchParts[0]) + ".." + str(BranchParts[1])
if str(Group2) == str(BranchParts[0]) or str(Group2) == str(BranchParts[1]):
if str(OriginNode) != str(BranchParts[0]) and str(OriginNode) != str(BranchParts[1]):
if not Group2IDS.__contains__(str(BranchParts[0])):
Group2IDS.append(str(BranchParts[0]))
if not Group2IDS.__contains__(str(BranchParts[1])):
Group2IDS.append(str(BranchParts[1]))
if not self.Group2Branches.__contains__(BranchString):
self.Group2Branches.append(str(BranchParts[0]) + ".." + str(BranchParts[1]))
if int(DoIntAlpha) == 1:
if int(BranchParts[0]) > int(SequenceCount) and int(BranchParts[1]) > int(SequenceCount):
if not self.Group2IntBranches.__contains__(BranchString):
self.Group2IntBranches.append(BranchString)
InternalBranchesPresent2 = 1
if int(DoExtAlpha) == 1:
if int(BranchParts[0]) <= int(SequenceCount) or int(BranchParts[1]) <= int(SequenceCount):
if not self.Group2ExtBranches.__contains__(BranchString):
self.Group2ExtBranches.append(BranchString)
ExternalBranchesPresent2 = 1
else:
if int(DoIntAlpha) == 1:
if int(BranchParts[0]) > int(SequenceCount) and int(BranchParts[1]) > int(SequenceCount):
if not self.InternalBranches.__contains__(BranchString):
self.InternalBranches.append(BranchString)
InternalBranchesPresent1 = 1
InternalBranchesPresent2 = 1
if int(DoExtAlpha) == 1:
if int(BranchParts[0]) <= int(SequenceCount) or int(BranchParts[1]) <= int(SequenceCount):
if not self.ExternalBranches.__contains__(BranchString):
self.ExternalBranches.append(BranchString)
if int(BranchParts[0]) != int(SequenceCount) + 1 and int(BranchParts[1]) != int(SequenceCount) + 1:
ExternalBranchesPresent1 = 1
ExternalBranchesPresent2 = 1
if int(DoIntAlpha) == 1 and InternalBranchesPresent1 == 1 and InternalBranchesPresent2 == 1:
self.DoIntAlpha = 1
else:
self.DoIntAlpha = 0
if int(DoExtAlpha) == 1 and ExternalBranchesPresent1 == 1 and ExternalBranchesPresent2 == 1:
self.DoExtAlpha = 1
else:
self.DoExtAlpha = 0
def ReturnGroupTag(self,CompType,GroupID):
if str(CompType) == "1":
if GroupID == "1":
return "Y"
else:
return "X"
elif str(CompType) == "2":
if GroupID == "1":
return "Y"
else:
return "A"
elif str(CompType) == "3":
if GroupID == "1":
return "X"
else:
return "A"
elif str(CompType) == "4":
if GroupID == "1":
return "Z"
else:
return "W"
elif str(CompType) == "5":
if GroupID == "1":
return "Z"
else:
return "A"
elif str(CompType) == "6":
if GroupID == "1":
return "W"
else:
return "A"
return ""
def ExplodeTree(self,TreeData,SequenceCount):
NodePairs = []
NodeIDs = []
NodeLetters = []
NodeComponents = []
BranchDescription = []
FoundPair = "0"
Alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
CurrentAlphabetChar = ""
CommaSplitter = re.compile(',')
while (1):
FoundPair = "0"
for RevIndex in range(len(TreeData)-1,-1,-1):
if TreeData[RevIndex] == ")":
for InnerRevIndex in range(RevIndex-1,-1,-1):
if TreeData[InnerRevIndex] == ")":
break
elif TreeData[InnerRevIndex] == "(":
FoundPair = "1"
NodePairs.append(TreeData[InnerRevIndex+1:RevIndex])
CurrentAlphabetChar = self.PrevAlphabetChar(CurrentAlphabetChar)
NodeLetters.append(CurrentAlphabetChar)
TreeData = TreeData[:InnerRevIndex] + str(CurrentAlphabetChar) + TreeData[RevIndex+1:]
break
if FoundPair == "1":
break
if FoundPair == "0":
break
SequenceCount = int(SequenceCount)
for NodePairsIndex in range(len(NodePairs),-1,-1):
SequenceCount += 1
for NodePairsIndex in range(len(NodePairs),0,-1):
SequenceCount -= 1
NodeIDs.append(SequenceCount)
for NodePairsIndex in range(len(NodePairs)-1,-1,-1):
NodeComponents = CommaSplitter.split(NodePairs[NodePairsIndex])
for NodeItem in NodeComponents:
if Alphabet.find(NodeItem) >= 0:
BranchDescription.append(str(NodeIDs[NodePairsIndex]) + ".." + str(self.FindParent(NodeLetters,NodeIDs,NodeItem)))
else:
BranchDescription.append(str(NodeIDs[NodePairsIndex]) + ".." + str(NodeItem))
return BranchDescription
def FindParent(self,Letters,IDs,SearchLetter):
for Index in range(0,len(Letters)):
if Letters[Index] == SearchLetter:
return IDs[Index]
return 0
|
MIT License
|
devbisme/myhdlpeek
|
myhdlpeek/peekerbase.py
|
PeekerBase.clear
|
python
|
def clear(cls):
cls.peekers = dict()
cls.unit_time = None
|
Clear the global list of Peekers.
|
https://github.com/devbisme/myhdlpeek/blob/31fdb25b077fa5720136f171db7c76193a051911/myhdlpeek/peekerbase.py#L129-L132
|
from __future__ import absolute_import, division, print_function, unicode_literals
import json
import re
from builtins import dict, int, str, super
from collections import namedtuple
import IPython.display as DISP
import matplotlib.pyplot as plt
import nbwavedrom
from future import standard_library
from tabulate import tabulate
from .trace import *
standard_library.install_aliases()
class PeekerBase(object):
peekers = dict()
USE_JUPYTER = False
USE_WAVEDROM = False
unit_time = None
def __new__(cls, *args, **kwargs):
if cls is PeekerBase:
raise TypeError("PeekerBase class may not be instantiated")
return object.__new__(cls)
def __init__(self, signal, name, **kwargs):
self.trace = Trace()
self.config(**kwargs)
self.name_dup = False
index = 0
nm = "{name}[{index}]".format(**locals())
while nm in self.peekers:
self.peekers[nm].name_dup = True
self.name_dup = True
index += 1
nm = "{name}[{index}]".format(**locals())
self.trace.name = nm
self.signal = signal
self.peekers[self.trace.name] = self
@classmethod
def config_defaults(cls, **kwargs):
Trace.config_defaults(**kwargs)
global clear_traces, show_traces, show_waveforms, show_text_table, show_html_table, export_dataframe
cls.USE_WAVEDROM = kwargs.pop("use_wavedrom", cls.USE_WAVEDROM)
if cls.USE_WAVEDROM:
cls.show_waveforms = cls.to_wavedrom
cls.show_traces = traces_to_wavedrom
else:
cls.show_waveforms = cls.to_matplotlib
cls.show_traces = traces_to_matplotlib
def shw_wvfrms(*args, **kwargs):
return cls.show_waveforms(*args, **kwargs)
show_waveforms = shw_wvfrms
def shw_trcs(*args, **kwargs):
return cls.show_traces(*args, **kwargs)
show_traces = shw_trcs
clear_traces = cls.clear_traces
export_dataframe = cls.to_dataframe
show_text_table = cls.to_text_table
show_html_table = cls.to_html_table
cls.USE_JUPYTER = kwargs.pop("use_jupyter", cls.USE_JUPYTER)
for k, v in kwargs.items():
setattr(cls, k, copy(v))
def config(self, **kwargs):
self.trace.config(**kwargs)
for k, v in kwargs.items():
if isinstance(v, dict):
setattr(self, k, copy(getattr(self, k, {})))
getattr(self, k).update(v)
else:
setattr(self, k, copy(v))
@classmethod
|
MIT License
|
a5kin/xentica
|
xentica/core/base.py
|
CellularAutomaton.save
|
python
|
def save(self, filename):
with open(filename, "wb") as ca_file:
ca_state = {
"cells": self.gpu.arrays.cells.get(),
"colors": self.gpu.arrays.colors.get(),
"random": self.random,
}
pickle.dump(ca_state, ca_file)
|
Save the CA state into ``filename`` file.
|
https://github.com/a5kin/xentica/blob/ca08fac9f85af71c9d6d98545a33d50323f851b3/xentica/core/base.py#L755-L763
|
import functools
import itertools
import operator
import threading
import pickle
import collections
from copy import deepcopy
import numpy as np
from pycuda.autoinit import context
from pycuda.compiler import SourceModule
import pycuda.gpuarray as gpuarray
from xentica.bridge import MoireBridge
from xentica.seeds.random import LocalRandom
from xentica.core.properties import Property, ContainerProperty
from xentica.core.renderers import RendererPlain
from xentica.core.exceptions import XenticaException
__all__ = ['context', 'BSCA', 'CellularAutomaton', 'CachedNeighbor']
class CachedNeighbor:
def __init__(self):
self.main = ContainerProperty()
self.buffer = ContainerProperty()
class BSCA(type):
mandatory_fields = (
'dimensions', 'lattice', 'neighborhood', 'border',
)
@classmethod
def __prepare__(mcs, _name, _bases):
return collections.OrderedDict()
def __new__(mcs, name, bases, attrs):
keys = []
for key in attrs.keys():
if key not in ('__module__', '__qualname__'):
keys.append(key)
attrs['__ordered__'] = keys
new_class = super().__new__(mcs, name, bases, attrs)
mcs._parents = [b for b in bases if isinstance(b, BSCA)]
if not mcs._parents:
return new_class
mcs._prepare_topology(new_class, attrs)
new_class.main = None
new_class.buffers = None
new_class.neighbors = None
mcs._prepare_properties(new_class, bases, attrs)
new_class.constants = {}
if not hasattr(new_class, 'renderer'):
new_class.renderer = RendererPlain()
num_dimensions = new_class.topology.dimensions
new_class.size = tuple(1 for i in range(num_dimensions))
return new_class
def _prepare_topology(cls, attrs):
if hasattr(cls, 'Topology'):
attrs['Topology'] = cls.Topology
cls.topology = attrs.get('Topology')
if cls.topology is None:
raise XenticaException("No Topology class declared.")
for field in cls.mandatory_fields:
if not hasattr(cls.topology, field):
msg = "No %s declared in Topology class." % field
raise XenticaException(msg)
cls.topology.lattice = deepcopy(cls.topology.lattice)
cls.topology.neighborhood = deepcopy(cls.topology.neighborhood)
cls.topology.border = deepcopy(cls.topology.border)
cls.topology.lattice.dimensions = cls.topology.dimensions
cls.topology.neighborhood.dimensions = cls.topology.dimensions
cls.topology.border.dimensions = cls.topology.dimensions
cls.topology.neighborhood.topology = cls.topology
cls.topology.border.topology = cls.topology
def _prepare_properties(cls, bases, attrs):
cls.main = ContainerProperty()
cls.buffers = []
cls.neighbors = []
cls.meta = type('MetaParams', (object,), dict())
num_neighbors = len(cls.topology.neighborhood)
for i in range(num_neighbors):
cls.buffers.append(ContainerProperty())
cls.neighbors.append(CachedNeighbor())
attrs_items = [base_class.__dict__.items() for base_class in bases]
attrs_items.append(attrs.items())
restricted_names = {"main", "buffer"}
for obj_name, obj in itertools.chain.from_iterable(attrs_items):
allowed_name = obj_name not in restricted_names
if isinstance(obj, Property) and allowed_name:
cls.main[obj_name] = deepcopy(obj)
vname = "_cell_%s" % obj_name
cls.main[obj_name].var_name = vname
for i in range(num_neighbors):
buffers = cls.buffers
buffers[i][obj_name] = deepcopy(obj)
vname = "_bcell_%s%d" % (obj_name, i)
buffers[i][obj_name].var_name = vname
neighbor = cls.neighbors[i]
neighbor.main[obj_name] = deepcopy(obj)
vname = "_dcell_%s%d" % (obj_name, i)
neighbor.main[obj_name].var_name = vname
neighbor.buffer[obj_name] = deepcopy(obj)
vname = "_dbcell_%s%d" % (obj_name, i)
neighbor.buffer[obj_name].var_name = vname
elif obj.__class__.__name__ == "Parameter" and allowed_name:
obj.name = obj_name
setattr(cls.meta, obj_name, obj)
cls.main.buf_num = 0
cls.main.nbr_num = -1
cls.main.var_name = "_cell"
for i in range(num_neighbors):
rev_i = cls.topology.neighborhood.rev_index_map[i]
cls.buffers[i].buf_num = rev_i + 1
cls.buffers[i].nbr_num = -1
cls.buffers[i].var_name = "_bcell%i" % i
cls.neighbors[i].main.buf_num = 0
cls.neighbors[i].main.nbr_num = i
cls.neighbors[i].main.var_name = "_dcell%d" % i
cls.neighbors[i].buffer.buf_num = i + 1
cls.neighbors[i].buffer.nbr_num = i
cls.neighbors[i].buffer.var_name = "_dbcell%d" % i
class Translator:
def __init__(self):
self.cuda_source = ""
self._func_body = ""
self._deferred_writes = set()
self._declarations = set()
self._unpacks = set()
self._params = {}
self._emit_params = []
self._absorb_params = []
self._render_params = []
self._coords_declared = False
@staticmethod
def _elementwise_kernel(name, args, body):
arg_string = ", ".join(["%s %s" % (t, v) for t, v in args])
kernel = """
__global__ void %s(%s, int n) {
unsigned tid = threadIdx.x;
unsigned total_threads = gridDim.x * blockDim.x;
unsigned cta_start = blockDim.x * blockIdx.x;
for (unsigned i = cta_start + tid; i < n; i += total_threads) {
%s
}
}
""" % (name, arg_string, body)
return kernel
def _translate_code(self, *funcs):
self._func_body = ""
self._deferred_writes = set()
self._declarations = set()
self._unpacks = set()
self._params = {}
self._coords_declared = False
for func in funcs:
func()
for prop in self._deferred_writes:
prop.deferred_write()
return self._func_body
def append_code(self, code):
self._func_body += code
def deferred_write(self, prop):
self._deferred_writes.add(prop)
def declare(self, prop):
self._declarations.add(prop)
def unpack(self, prop):
self._unpacks.add(prop)
def is_declared(self, prop):
return prop in self._declarations
def is_unpacked(self, prop):
return prop in self._unpacks
def declare_coords(self):
self._coords_declared = True
def define_constant(self, constant):
self.constants[constant.name] = deepcopy(constant)
def is_constant(self, constant_name):
return constant_name in self.constants
def define_parameter(self, param):
self._params[param.name] = param
def is_parameter(self, param_name):
return param_name in self._params
@property
def coords_declared(self):
return self._coords_declared
def build_source(self):
source = self.build_emit()
source += self.build_absorb()
source += self.build_render()
source = self.build_defines() + source
self.cuda_source = source
def build_defines(self):
defines = ""
for const in self.constants.values():
defines += const.get_define_code()
return defines
def build_emit(self):
args = [(self.main.ctype, "*fld"), ]
body = self._translate_code(self.emit)
self._emit_params = list(self._params.values())
args += [(param.ctype, param.name) for param in self._emit_params]
return self._elementwise_kernel("emit", args, body)
def build_absorb(self):
args = [(self.main.ctype, "*fld"), ("int3", "*col")]
body = self._translate_code(self.absorb, self.color)
self._absorb_params = list(self._params.values())
args += [(param.ctype, param.name) for param in self._absorb_params]
return self._elementwise_kernel("absorb", args, body)
def build_render(self):
args = self.renderer.args
body = self.renderer.render_code()
return self._elementwise_kernel("render", args, body)
def index_to_coord(self, i):
return self.topology.lattice.index_to_coord(i, self)
def pack_state(self, state):
val = 0
shift = 0
for name, prop in self.main.properties.items():
if name in state:
val += state[name] << shift
shift += prop.bit_width
return val
class GPUKernels:
def __init__(self, source):
cuda_module = SourceModule(source, options=["-w", ])
self.emit = cuda_module.get_function("emit")
self.absorb = cuda_module.get_function("absorb")
self.render = cuda_module.get_function("render")
class GPUArrays:
def __init__(self, init_cells, init_colors):
self.img = None
self.colors = gpuarray.to_gpu(init_colors)
self.cells = gpuarray.to_gpu(init_cells)
def init_img(self, num_cells):
self.img = gpuarray.zeros((num_cells, ), dtype=np.int32)
class GPU:
def __init__(self, source, init_cells, init_colors):
self.kernels = GPUKernels(source)
self.arrays = GPUArrays(init_cells, init_colors)
class CellularAutomaton(Translator, metaclass=BSCA):
def __init__(self, experiment_class):
super().__init__()
self.frame_buf = np.zeros((3, ), dtype=np.uint8)
self.width, self.height = 0, 0
self.random = LocalRandom(experiment_class.word)
experiment_class.seed.random = self.random
experiment_class.random = self.random
for attr_name in dir(experiment_class):
attr = getattr(experiment_class, attr_name)
if (not callable(attr) and not attr_name.startswith("__")):
if attr_name == 'seed':
continue
if hasattr(self.meta, attr_name):
self.meta.__dict__[attr_name].__set__(self, attr)
continue
setattr(self, attr_name, attr)
self.speed = 1
self.paused = False
self.timestep = 0
self.cells_num = functools.reduce(operator.mul, self.size)
self.build_source()
init_colors = np.zeros((self.cells_num * 3, ), dtype=np.int32)
cells_total = self.cells_num * (len(self.buffers) + 1) + 1
init_cells = np.zeros((cells_total, ), dtype=self.main.dtype)
experiment_class.seed.generate(init_cells, self)
self.gpu = GPU(self.cuda_source, init_cells, init_colors)
self.bridge = MoireBridge
self.renderer.setup_actions(self.bridge)
self._lock = threading.Lock()
def apply_speed(self, dval):
self.speed = max(1, (self.speed + dval))
def toggle_pause(self):
self.paused = not self.paused
def set_viewport(self, size):
self.width, self.height = size
num_cells = self.width * self.height * 3
self.gpu.arrays.init_img(num_cells)
def step(self):
if self.paused:
return
block, grid = self.gpu.arrays.cells._block, self.gpu.arrays.cells._grid
with self._lock:
args = [param.dtype(param.value) for param in self._emit_params]
self.gpu.kernels.emit(self.gpu.arrays.cells,
*args,
np.int32(self.cells_num),
block=block, grid=grid)
args = [param.dtype(param.value) for param in self._absorb_params]
self.gpu.kernels.absorb(self.gpu.arrays.cells,
self.gpu.arrays.colors,
*args,
np.int32(self.cells_num),
block=block, grid=grid)
self.timestep += 1
def render(self):
if self.gpu.arrays.img is None:
msg = "Viewport is not set, call set_viewport() before rendering."
raise XenticaException(msg)
block, grid = self.gpu.arrays.img._block, self.gpu.arrays.img._grid
with self._lock:
args = self.renderer.get_args_vals(self)
args += [param.dtype(param.value) for param in self._render_params]
args.append(np.int32(self.width * self.height))
self.gpu.kernels.render(*args, block=block, grid=grid)
return self.gpu.arrays.img.get().astype(np.uint8)
|
MIT License
|
duartegroup/autode
|
autode/species/species.py
|
Species.centre
|
python
|
def centre(self) -> None:
self.translate(vec=-np.average(self.coordinates, axis=0))
return None
|
Translate this molecule so the centroid (~COM) is at the origin
|
https://github.com/duartegroup/autode/blob/6505d5bbbd1906f57e4102e13f177510f166bbed/autode/species/species.py#L699-L702
|
import numpy as np
import autode.values as val
from copy import deepcopy
from datetime import date
from typing import Optional, Union, List, Sequence
from scipy.spatial import distance_matrix
from autode.log import logger
from autode.atoms import Atom, Atoms, AtomCollection
from autode.exceptions import CalculationException
from autode.geom import calc_rmsd, get_rot_mat_euler
from autode.constraints import Constraints
from autode.log.methods import methods
from autode.conformers.conformers import Conformers
from autode.solvent.solvents import ExplicitSolvent, get_solvent
from autode.calculation import Calculation
from autode.wrappers.keywords import Keywords
from autode.config import Config
from autode.input_output import atoms_to_xyz_file
from autode.mol_graphs import is_isomorphic, reorder_nodes
from autode.methods import get_lmethod, get_hmethod, ElectronicStructureMethod
from autode.mol_graphs import make_graph
from autode.hessians import Hessian
from autode.units import ha_per_ang_sq, ha_per_ang
from autode.thermochemistry.symmetry import symmetry_number
from autode.thermochemistry.igm import calculate_thermo_cont, LFMethod
from autode.utils import (requires_atoms,
work_in,
requires_conformers)
class Species(AtomCollection):
def __str__(self):
if self.atoms is None:
atoms_str = ''
else:
atoms_str = ''.join([atom.label for atom in self.atoms[:100]])
solv_str = self.solvent.name if self.solvent is not None else 'none'
return f'{self.name}_{self.charge}_{self.mult}_{atoms_str}_{solv_str}'
def _repr(self, prefix: str):
string = (f'{prefix}('
f'{self.name}, '
f'n_atoms={self.n_atoms}, '
f'charge={self.charge}, '
f'mult={self.mult})')
return string
def __repr__(self):
return self._repr(prefix='Species')
def copy(self) -> 'Species':
return deepcopy(self)
def new_species(self, name='species') -> 'Species':
species = Species(name, deepcopy(self.atoms), self.charge, self.mult)
species.graph = None if self.graph is None else self.graph.copy()
species.solvent = None if self.solvent is None else self.solvent.copy()
return species
@property
def charge(self) -> int:
return self._charge
@charge.setter
def charge(self, value) -> None:
self._charge = int(value)
@property
def mult(self) -> int:
return self._mult
@mult.setter
def mult(self, value) -> None:
self._mult = int(value)
@AtomCollection.atoms.setter
def atoms(self,
value: Union[List[Atom], Atoms, None]):
if value is None:
self._atoms = None
return
if (self.n_atoms == len(value)
and all(a.label == v.label for a, v in zip(self.atoms, value))):
rmsd = calc_rmsd(coords1=np.array([v.coord for v in value]),
coords2=np.array([a.coord for a in self.atoms]))
else:
rmsd = None
if rmsd is None or rmsd > 1E-8:
logger.info(f'Geometry changed- resetting energies of {self.name}')
self.energies.clear()
self.gradient = None
self.hessian = None
self._atoms = Atoms(value)
return
@property
def formula(self) -> str:
if self.atoms is None:
return ""
symbols = [atom.label for atom in self.atoms]
formula_str = ''
for symbol in sorted(set(symbols)):
num = symbols.count(symbol)
formula_str += f'{symbol}{num if num > 1 else ""}'
return formula_str
@property
def hessian(self) -> Optional[Hessian]:
return self._hess
@hessian.setter
def hessian(self,
value: Union[Hessian, np.ndarray, None]):
req_shape = (3*self.n_atoms, 3*self.n_atoms)
if hasattr(value, 'shape') and value.shape != req_shape:
raise ValueError('Could not set the Hessian. Incorrect shape: '
f'{value.shape} != {req_shape}')
if value is None:
self._hess = None
elif isinstance(value, Hessian):
self._hess = value
if self._hess.atoms is None:
self._hess.atoms = self.atoms
elif isinstance(value, np.ndarray):
logger.warning('Setting the Hessian from a numpy array - assuming '
'units of Ha Å^-2')
self._hess = Hessian(value, atoms=self.atoms, units=ha_per_ang_sq)
else:
raise ValueError(f'Could not set Hessian with {value}, Must be '
f'a numpy array or a Hessian.')
@property
def gradient(self) -> Optional[val.Gradient]:
return self._grad
@gradient.setter
def gradient(self,
value: Union[val.Gradient, np.ndarray, None]):
if hasattr(value, 'shape') and value.shape != (self.n_atoms, 3):
raise ValueError('Could not set the gradient. Incorrect shape: '
f'{value.shape} != {(self.n_atoms, 3)}')
if value is None:
self._grad = None
elif isinstance(value, val.Gradient):
self._grad = value
elif isinstance(value, np.ndarray):
logger.warning('Setting the gradients from a numpy array - '
'assuming Ha / Å units')
self._grad = val.Gradient(value, units=ha_per_ang)
else:
raise ValueError(f'Could not set the gradient with {value}, Must '
f'be a numpy array or a Hessian.')
@property
def frequencies(self) -> Optional[List[val.Frequency]]:
if self.hessian is None:
logger.warning('No Hessian has been calculated - no frequencies')
return None
return self.hessian.frequencies_proj
@property
def vib_frequencies(self) -> Optional[List[val.Frequency]]:
n = 6 if not self.is_linear() else 5
return self.frequencies[n:] if self.frequencies is not None else None
@property
def imaginary_frequencies(self) -> Optional[List[val.Frequency]]:
if self.frequencies is None:
logger.warning('Had no frequencies - could not find any imaginary')
return None
imag_freqs = [freq for freq in self.frequencies if freq.is_imaginary]
if len(imag_freqs) == 0:
logger.warning('No imaginary frequencies')
return None
return imag_freqs
def normal_mode(self, mode_number: int) -> Optional[val.Coordinates]:
if self.hessian is None:
logger.warning('Could not calculate a normal mode displacement')
return None
return self.hessian.normal_modes_proj[mode_number]
@property
@requires_atoms
def bond_matrix(self) -> np.ndarray:
matrix = np.zeros(shape=(self.n_atoms, self.n_atoms), dtype=bool)
if self.graph is None:
raise ValueError('No molecular graph set. Bonds are not defined')
for bond in self.graph.edges:
matrix[tuple(bond)] = matrix[tuple(reversed(bond))] = True
return matrix
@property
def radius(self) -> val.Distance:
if self.n_atoms == 0:
return val.Distance(0.0)
coords = self.coordinates
return val.Distance(np.max(distance_matrix(coords, coords)) / 2.0)
@property
def sn(self) -> int:
if self.n_atoms == 0:
return 1
if self.n_atoms > 50:
logger.warning('Symmetry number calculations are not implemented '
'for large molecules. Assuming C1 -> σ_R=1')
return 1
return symmetry_number(self)
@property
def is_explicitly_solvated(self) -> bool:
return isinstance(self.solvent, ExplicitSolvent)
@property
def energy(self) -> Optional[val.PotentialEnergy]:
return self.energies.last(val.PotentialEnergy)
@energy.setter
def energy(self, value: Union[val.Energy, float, None]):
if value is None:
pass
elif isinstance(value, val.PotentialEnergy):
self.energies.append(value)
else:
self.energies.append(val.PotentialEnergy(value))
@property
def h_cont(self) -> Optional[val.EnthalpyCont]:
return self.energies.last(val.EnthalpyCont)
@property
def g_cont(self) -> Optional[val.FreeEnergyCont]:
return self.energies.last(val.FreeEnergyCont)
@property
def free_energy(self) -> Optional[val.FreeEnergy]:
try:
return val.FreeEnergy(self.energy + self.g_cont)
except TypeError:
logger.warning('Could not calculate G - an energy was None')
return None
@property
def enthalpy(self) -> Optional[val.Enthalpy]:
try:
return val.Enthalpy(self.energy + self.h_cont)
except TypeError:
logger.warning('Could not calculate H - an energy was None')
return None
@property
def n_conformers(self) -> int:
return 0 if self.conformers is None else len(self.conformers)
@property
def conformers(self) -> 'autode.conformers.Conformers':
return self._conformers
@conformers.setter
def conformers(self,
value: Union[List['autode.conformers.Conformer'],
'autode.conformers.Conformers',
None]
) -> None:
if value is None:
self._conformers.clear()
return
self._conformers = Conformers([conf for conf in value])
def _generate_conformers(self, *args, **kwargs):
raise NotImplementedError('Could not generate conformers. '
'generate_conformers() not implemented')
def _run_hess_calculation(self, method):
if self.n_atoms < 2:
logger.warning(f'Not running a Hessian calculation on only '
f'{self.n_atoms} atom(s). Cannot have frequencies')
return None
method = method if method is not None else get_hmethod()
calc = Calculation(name=f'{self.name}_hess',
molecule=self,
method=method,
keywords=method.keywords.hess,
n_cores=Config.n_cores)
calc.run()
self.energy = calc.get_energy()
self.hessian = calc.get_hessian()
return None
@requires_conformers
def _set_lowest_energy_conformer(self):
lowest_energy = None
for conformer in self.conformers:
if conformer.energy is None or conformer.atoms is None:
continue
make_graph(conformer)
if not is_isomorphic(conformer.graph, self.graph,
ignore_active_bonds=True):
logger.warning('Conformer had a different graph. Ignoring')
continue
if lowest_energy is None:
lowest_energy = conformer.energy
if conformer.energy <= lowest_energy:
self.atoms = conformer.atoms
self.energy = conformer.energy
lowest_energy = conformer.energy
if lowest_energy is None:
raise RuntimeError("Failed to set the lowest energy conformer as "
"no suitable conformers were present")
return None
def populate_conformers(self, *args, **kwargs):
return self._generate_conformers(*args, **kwargs)
@requires_atoms
def reorder_atoms(self, mapping: dict) -> None:
if not (set(mapping.keys()) == set(mapping.values()) == set(list(range(self.n_atoms)))):
raise ValueError('Invalid mapping. Must be 1-1 for all atoms')
self._atoms = Atoms([self.atoms[i] for i in
sorted(mapping, key=mapping.get)])
if self.graph is None:
return
self.graph = reorder_nodes(graph=self.graph,
mapping={u: v for v, u in mapping.items()})
return
@requires_atoms
def is_linear(self,
tol: Optional[float] = None,
angle_tol: val.Angle = val.Angle(1.0, units='deg')) -> bool:
if tol is not None:
angle_tol = val.Angle(np.arccos(1.0 - tol), units='rad')
return self.atoms.are_linear(angle_tol=angle_tol)
@requires_atoms
def translate(self, vec: Sequence[float]) -> None:
for atom in self.atoms:
atom.translate(vec)
return None
@requires_atoms
def rotate(self,
axis: Union[np.ndarray, Sequence],
theta: Union[val.Angle, float],
origin: Union[np.ndarray, Sequence, None] = None) -> None:
origin = np.zeros(3) if origin is None else np.array(origin, copy=True)
coords = self.coordinates
coords -= origin
coords = np.dot(coords, get_rot_mat_euler(axis=axis, theta=theta).T)
coords += origin
for atom, new_coord in zip(self.atoms, coords):
atom.coord = new_coord
return None
@requires_atoms
|
MIT License
|
ufkapano/graphs-dict
|
graphtheory/coloring/edgecolorcs.py
|
ConnectedSequentialEdgeColoring1.__init__
|
python
|
def __init__(self, graph):
if graph.is_directed():
raise ValueError("the graph is directed")
self.graph = graph
self.parent = dict()
self.color = dict()
self.m = 0
for edge in self.graph.iteredges():
if edge.source == edge.target:
raise ValueError("a loop detected")
else:
self.color[edge] = None
self.m += 1
if len(self.color) < self.m:
raise ValueError("edges are not unique")
self.saturation = dict((node, set()) for node in self.graph.iternodes())
|
The algorithm initialization.
|
https://github.com/ufkapano/graphs-dict/blob/ab42c51b8fa2c4cdb8d5cfd0b7de4702824f22c9/graphtheory/coloring/edgecolorcs.py#L27-L43
|
try:
from Queue import Queue
except ImportError:
from queue import Queue
xrange = range
class ConnectedSequentialEdgeColoring1:
|
BSD 3-Clause New or Revised License
|
block42-blockchain-company/thornode-telegram-bot
|
bot/service/utils.py
|
tor_to_rune
|
python
|
def tor_to_rune(tor):
tor = int(float(tor))
if tor == 0:
return "0 RUNE"
elif tor >= 100000000:
return "{:,} RUNE".format(int(tor / 100000000))
else:
return '{:.4f} RUNE'.format(tor / 100000000)
|
1e8 Tor are 1 Rune
Format depending if RUNE > or < Zero
|
https://github.com/block42-blockchain-company/thornode-telegram-bot/blob/6478b1eb41e36c5fdd327b963b55343de1ce5337/bot/service/utils.py#L242-L255
|
import asyncio
from collections import defaultdict
from datetime import datetime, timedelta
from typing import Callable, Awaitable
from service.binance_network_service import get_binance_balance
from service.thorchain_network_service import *
from constants.messages import NetworkHealthStatus
from collections import MutableMapping
def flatten_dictionary(dictionary: dict) -> dict:
tuple_list = dictionary_to_flat_tuple_list(dictionary)
flat_dict = {tuple_list[i][0]: tuple_list[i][1] for i in range(0, len(tuple_list))}
return flat_dict
def dictionary_to_flat_tuple_list(dictionary: dict) -> list:
items = []
for k, v in dictionary.items():
if isinstance(v, MutableMapping):
items.extend(dictionary_to_flat_tuple_list(dictionary[k]))
else:
items.append((k, v))
return items
async def for_each_async(elements: [], function: Callable[...,
Awaitable[None]]):
tasks = []
for element in elements:
tasks.append(function(element))
await asyncio.gather(*tasks)
def format_to_days_and_hours(duration: timedelta) -> str:
result = ""
hours = duration.seconds // 3600
if duration.days > 0:
result += str(duration.days)
if duration.days == 1:
result += ' day'
else:
result += " days"
if hours > 0:
result += " "
if hours <= 0:
if duration.days <= 0:
result += "< 1 hour"
else:
result += str(hours)
if hours == 1:
result += ' hour'
else:
result += ' hours'
return result
def asgard_solvency_check() -> dict:
solvency_report = {'is_solvent': True}
asgard_actual = defaultdict(lambda: {"json": {}})
asgard_expected = get_asgard_json()
pool_addresses = get_pool_addresses_from_any_node()
for chain_data in pool_addresses:
chain = chain_data['chain']
if chain == 'BNB':
asgard_actual[chain]['json'] = get_binance_balance(chain_data['address'])
break
for chain_key, chain_value in asgard_actual.items():
if chain_key == 'BNB':
for balance in chain_value['json']:
chain_value[balance['symbol']] = balance['free']
break
for chain in asgard_expected:
if chain['status'] == 'active':
for coin in chain['coins']:
asset = coin['asset'].split('.')
actual_amount_formatted = (asgard_actual.get(asset[0]).
setdefault(asset[1], "0").replace(".", ""))
expected_amount_formatted = (coin['amount'].replace(".", ""))
if int(actual_amount_formatted) < int(expected_amount_formatted):
solvency_report['is_solvent'] = False
if 'insolvent_coins' not in solvency_report:
solvency_report['insolvent_coins'] = {}
solvency_report['insolvent_coins'][coin['asset']] = {
"expected": coin['amount'],
"actual": asgard_actual[asset[0]][asset[1]]
}
else:
if 'solvent_coins' not in solvency_report:
solvency_report['solvent_coins'] = {}
solvency_report['solvent_coins'][coin['asset']] = asgard_actual[asset[0]][asset[1]]
return solvency_report
def yggdrasil_solvency_check() -> dict:
solvency_report = {'is_solvent': True}
yggdrasil_actual = {}
yggdrasil_expected = get_yggdrasil_json()
for vault in yggdrasil_expected:
if vault['status'] == 'active' and vault['vault']['status'] == 'active':
for chain in vault['addresses']:
if chain['chain'] == 'BNB':
public_key = vault['vault']['pub_key']
if public_key not in yggdrasil_actual:
yggdrasil_actual[public_key] = {}
if chain['chain'] not in yggdrasil_actual[public_key]:
yggdrasil_actual[public_key][chain['chain']] = {}
yggdrasil_actual[public_key][chain['chain']] = {"json": {}}
yggdrasil_actual[public_key][chain['chain']]['json'] = get_binance_balance(chain['address'])
for vault in yggdrasil_actual:
for chain_key, chain_value in yggdrasil_actual[vault].items():
if chain_key == 'BNB':
for balance in chain_value['json']:
chain_value[balance['symbol']] = balance['free']
for vault in yggdrasil_expected:
if vault['status'] == 'active' and vault['vault']['status'] == 'active':
for coin in vault['vault']['coins']:
asset = coin['asset'].split('.')
actual_amount = (yggdrasil_actual[vault['vault']['pub_key']].get(asset[0]).setdefault(asset[1], "0")
.replace(".", ""))
expected_amount = (coin['amount'].replace(".", ""))
if int(actual_amount) < int(expected_amount):
solvency_report['is_solvent'] = False
if 'insolvent_coins' not in solvency_report:
solvency_report['insolvent_coins'] = {}
if vault['vault']['pub_key'] not in solvency_report['insolvent_coins']:
solvency_report['insolvent_coins'][vault['vault']['pub_key']] = {}
solvency_report['insolvent_coins'][vault['vault']['pub_key']][coin['asset']] = {
"expected": coin['amount'],
"actual": yggdrasil_actual[vault['vault']['pub_key']][asset[0]][asset[1]]
}
else:
if 'solvent_coins' not in solvency_report:
solvency_report['solvent_coins'] = {}
if coin['asset'] in solvency_report['solvent_coins']:
solvency_report['solvent_coins'][coin['asset']] += float(yggdrasil_actual[vault['vault']['pub_key']][asset[0]][asset[1]])
else:
solvency_report['solvent_coins'][coin['asset']] = float(yggdrasil_actual[vault['vault']['pub_key']][asset[0]][asset[1]])
return solvency_report
def get_solvency_message(asgard_solvency, yggdrasil_solvency) -> str:
message = "Tracked Balances of *Asgard*:\n"
if 'insolvent_coins' in asgard_solvency:
for coin_key, coin_value in asgard_solvency['insolvent_coins'].items():
message += f"*{coin_key}*:\n" f" Expected: {coin_value['expected']}\n" f" Actual: {coin_value['actual']}\n"
if 'solvent_coins' in asgard_solvency:
for coin_key, coin_value in asgard_solvency['solvent_coins'].items():
message += f"*{coin_key}*: {coin_value}\n"
message += "\nTracked Balances of *Yggdrasil*:\n"
if 'insolvent_coins' in yggdrasil_solvency:
for pub_key, coins in yggdrasil_solvency['insolvent_coins'].items():
for coin_key, coin_value in coins.items():
message += f"*{pub_key}*:\n" f"*{coin_key}*:\n" f" Expected: {coin_value['expected']}\n" f" Actual: {coin_value['actual']}\n"
if 'solvent_coins' in yggdrasil_solvency:
for coin_key, coin_value in yggdrasil_solvency['solvent_coins'].items():
message += f"*{coin_key}*: {coin_value}\n"
return message
def get_insolvent_balances_message(asgard_solvency, yggdrasil_solvency) -> str:
message = ""
if 'insolvent_coins' in asgard_solvency:
message += "Insolvent Balances of *Asgard*:\n"
for coin_key, coin_value in asgard_solvency['insolvent_coins'].items():
message += f"*{coin_key}*:\n" f" Expected: {coin_value['expected']}\n" f" Actual: {coin_value['actual']}\n"
if 'insolvent_coins' in yggdrasil_solvency:
message += "\nInsolvent Balances of *Yggdrasil*:\n"
for pub_key, coins in yggdrasil_solvency['insolvent_coins'].items():
for coin_key, coin_value in coins.items():
message += f"*{pub_key}*:\n" f"*{coin_key}*:\n" f" Expected: {coin_value['expected']}\n" f" Actual: {coin_value['actual']}\n"
return message
def network_security_ratio_to_string(network_security_ratio):
if network_security_ratio > 0.9:
network_security_string = NetworkHealthStatus.INEFFICIENT
elif 0.9 >= network_security_ratio > 0.75:
network_security_string = NetworkHealthStatus.OVERBONDED
elif 0.75 >= network_security_ratio >= 0.6:
network_security_string = NetworkHealthStatus.OPTIMAL
elif 0.6 > network_security_ratio >= 0.5:
network_security_string = NetworkHealthStatus.UNDBERBONDED
else:
network_security_string = NetworkHealthStatus.INSECURE
return network_security_string
def get_network_security_ratio(network_json):
total_active_bond = int(network_json['bondMetrics']['totalActiveBond'])
total_staked = int(network_json['totalPooledRune'])
return total_active_bond / (total_active_bond + total_staked)
|
MIT License
|
scikit-hep/cabinetry
|
src/cabinetry/histo.py
|
Histogram.validate
|
python
|
def validate(self, name: str) -> None:
empty_bins = np.where(np.atleast_1d(self.yields) == 0.0)[0]
if len(empty_bins) > 0:
log.warning(f"{name} has empty bins: {empty_bins}")
nan_pos = np.where(np.isnan(self.stdev))[0]
if len(nan_pos) > 0:
log.warning(f"{name} has bins with ill-defined stat. unc.: {nan_pos}")
not_empty_but_nan = [b for b in nan_pos if b not in empty_bins]
if len(not_empty_but_nan) > 0:
log.warning(
f"{name} has non-empty bins with ill-defined stat. unc.: "
f"{not_empty_but_nan}"
)
|
Runs consistency checks on a histogram.
Checks for empty bins and ill-defined statistical uncertainties. Logs warnings
if issues are founds, but does not raise exceptions.
Args:
name (str): name of the histogram for logging purposes
|
https://github.com/scikit-hep/cabinetry/blob/b89bb09b97608e984864cde6d45f9b8901612a06/src/cabinetry/histo.py#L194-L222
|
import logging
import os
import pathlib
from typing import Any, Dict, List, Optional, Type, TypeVar, Union
import boost_histogram as bh
import numpy as np
import cabinetry
from cabinetry._typing import Literal
log = logging.getLogger(__name__)
H = TypeVar("H", bound="Histogram")
class Histogram(bh.Histogram, family=cabinetry):
@classmethod
def from_arrays(
cls: Type[H],
bins: Union[List[float], np.ndarray],
yields: Union[List[float], np.ndarray],
stdev: Union[List[float], np.ndarray],
) -> H:
if len(bins) != len(yields) + 1:
raise ValueError("bin edges need one more entry than yields")
if len(yields) != len(stdev):
raise ValueError("yields and stdev need to have the same shape")
out = cls(
bh.axis.Variable(bins, underflow=False, overflow=False),
storage=bh.storage.Weight(),
)
yields = np.asarray(yields)
stdev = np.asarray(stdev)
out[...] = np.stack([yields, stdev ** 2], axis=-1)
return out
@classmethod
def from_path(
cls: Type[H], histo_path: pathlib.Path, *, modified: bool = True
) -> H:
if modified:
histo_path_modified = histo_path.parent / (histo_path.name + "_modified")
if not histo_path_modified.with_suffix(".npz").exists():
log.warning(
f"the modified histogram {histo_path_modified.with_suffix('.npz')} "
"does not exist"
)
log.warning("loading the un-modified histogram instead!")
else:
histo_path = histo_path_modified
histogram_npz = np.load(histo_path.with_suffix(".npz"))
bins = histogram_npz["bins"]
yields = histogram_npz["yields"]
stdev = histogram_npz["stdev"]
return cls.from_arrays(bins, yields, stdev)
@classmethod
def from_config(
cls: Type[H],
histo_folder: Union[str, pathlib.Path],
region: Dict[str, Any],
sample: Dict[str, Any],
systematic: Dict[str, Any],
*,
template: Optional[Literal["Up", "Down"]] = None,
modified: bool = True,
) -> H:
histo_name = name(region, sample, systematic, template=template)
histo_path = pathlib.Path(histo_folder) / histo_name
return cls.from_path(histo_path, modified=modified)
@property
def yields(self) -> np.ndarray:
return self.values()
@yields.setter
def yields(self, value: np.ndarray) -> None:
self.view().value = value
@property
def stdev(self) -> np.ndarray:
return np.sqrt(self.variances())
@stdev.setter
def stdev(self, value: np.ndarray) -> None:
self.view().variance = value ** 2
@property
def bins(self) -> np.ndarray:
return self.axes[0].edges
def save(self, histo_path: pathlib.Path) -> None:
log.debug(f"saving histogram to {histo_path.with_suffix('.npz')}")
if not os.path.exists(histo_path.parent):
os.mkdir(histo_path.parent)
np.savez(
histo_path.with_suffix(".npz"),
yields=self.yields,
stdev=self.stdev,
bins=self.bins,
)
|
BSD 3-Clause New or Revised License
|
fabtools/fabtools
|
fabtools/files.py
|
owner
|
python
|
def owner(path, use_sudo=False):
func = use_sudo and run_as_root or run
with settings(hide('running', 'stdout'), warn_only=True):
result = func('stat -c %%U "%(path)s"' % locals())
if result.failed and 'stat: illegal option' in result:
return func('stat -f %%Su "%(path)s"' % locals())
else:
return result
|
Get the owner name of a file or directory.
|
https://github.com/fabtools/fabtools/blob/5fdc7174c3fae5e93a16d677d0466f41dc2be175/fabtools/files.py#L52-L65
|
from pipes import quote
import os
from fabric.api import (
abort,
env,
hide,
run,
settings,
sudo,
warn,
)
from fabric.contrib.files import upload_template as _upload_template
from fabric.contrib.files import exists
import six
from fabtools.utils import run_as_root
def is_file(path, use_sudo=False):
func = use_sudo and run_as_root or run
with settings(hide('running', 'warnings'), warn_only=True):
return func('[ -f "%(path)s" ]' % locals()).succeeded
def is_dir(path, use_sudo=False):
func = use_sudo and run_as_root or run
with settings(hide('running', 'warnings'), warn_only=True):
return func('[ -d "%(path)s" ]' % locals()).succeeded
def is_link(path, use_sudo=False):
func = use_sudo and run_as_root or run
with settings(hide('running', 'warnings'), warn_only=True):
return func('[ -L "%(path)s" ]' % locals()).succeeded
|
BSD 2-Clause Simplified License
|
openstate-sdn/ryu
|
ryu/contrib/ovs/vlog.py
|
Vlog.exception
|
python
|
def exception(self, message):
self.err(message, exc_info=True)
|
Logs 'message' at ERR log level. Includes a backtrace when in
exception context.
|
https://github.com/openstate-sdn/ryu/blob/b4a7f6c3615a934eaf42894bcb1cc809fce96e93/ryu/contrib/ovs/vlog.py#L90-L93
|
import datetime
import logging
import logging.handlers
import re
import socket
import sys
import ovs.dirs
import ovs.unixctl
import ovs.util
FACILITIES = {"console": "info", "file": "info", "syslog": "info"}
LEVELS = {
"dbg": logging.DEBUG,
"info": logging.INFO,
"warn": logging.WARNING,
"err": logging.ERROR,
"emer": logging.CRITICAL,
"off": logging.CRITICAL
}
def get_level(level_str):
return LEVELS.get(level_str.lower())
class Vlog:
__inited = False
__msg_num = 0
__mfl = {}
__log_file = None
__file_handler = None
def __init__(self, name):
assert not Vlog.__inited
self.name = name.lower()
if name not in Vlog.__mfl:
Vlog.__mfl[self.name] = FACILITIES.copy()
def __log(self, level, message, **kwargs):
if not Vlog.__inited:
return
now = datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ")
message = ("%s|%s|%s|%s|%s"
% (now, Vlog.__msg_num, self.name, level, message))
level = LEVELS.get(level.lower(), logging.DEBUG)
Vlog.__msg_num += 1
for f, f_level in Vlog.__mfl[self.name].iteritems():
f_level = LEVELS.get(f_level, logging.CRITICAL)
if level >= f_level:
logging.getLogger(f).log(level, message, **kwargs)
def emer(self, message, **kwargs):
self.__log("EMER", message, **kwargs)
def err(self, message, **kwargs):
self.__log("ERR", message, **kwargs)
def warn(self, message, **kwargs):
self.__log("WARN", message, **kwargs)
def info(self, message, **kwargs):
self.__log("INFO", message, **kwargs)
def dbg(self, message, **kwargs):
self.__log("DBG", message, **kwargs)
|
Apache License 2.0
|
mindspore-ai/mindarmour
|
examples/common/networks/lenet5/lenet5_net_for_fuzzing.py
|
fc_with_initialize
|
python
|
def fc_with_initialize(input_channels, out_channels):
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
|
Wrap initialize method of full connection layer.
|
https://github.com/mindspore-ai/mindarmour/blob/df44e3de733cdfc568d856d120bd8a53e6f25cc1/examples/common/networks/lenet5/lenet5_net_for_fuzzing.py#L29-L33
|
from mindspore import nn
from mindspore.common.initializer import TruncatedNormal
from mindspore.ops import TensorSummary
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode="valid")
|
Apache License 2.0
|
geoscienceaustralia/agdc
|
src/landsat_ingester/landsat_dataset.py
|
LandsatDataset.get_cloud_cover
|
python
|
def get_cloud_cover(self):
return self._ds.cloud_cover_percentage
|
Percentage cloud cover of the aquisition if available.
|
https://github.com/geoscienceaustralia/agdc/blob/2e22c6bdd9305555db3615305ff6a5df6219cd51/src/landsat_ingester/landsat_dataset.py#L399-L401
|
import os
import logging
import glob
import re
from EOtools.DatasetDrivers import SceneDataset
from EOtools.execute import execute
from agdc.cube_util import DatasetError
from agdc.abstract_ingester import AbstractDataset
from landsat_bandstack import LandsatBandstack
LOGGER = logging.getLogger(__name__)
LOGGER.setLevel(logging.INFO)
class LandsatDataset(AbstractDataset):
PROCESSING_LEVEL_ALIASES = {
'Pixel Quality': 'PQA',
'Fractional Cover': 'FC'
}
def __init__(self, dataset_path):
self._dataset_path = dataset_path
LOGGER.info('Opening Dataset %s', self._dataset_path)
self._ds = SceneDataset(default_metadata_required=False, utm_fix=True)
self._ds = self._ds.Open(self.get_dataset_path())
if not self._ds:
raise DatasetError("Unable to open %s" % self.get_dataset_path())
self._dataset_size = self._get_directory_size()
if self.get_processing_level() in ['ORTHO', 'L1T', 'MAP']:
LOGGER.debug('Dataset %s is Level 1', self.get_dataset_path())
self._gcp_count = self._get_gcp_count()
self._mtl_text = self._get_mtl_text()
else:
self._gcp_count = None
self._mtl_text = None
self._xml_text = self._get_xml_text()
AbstractDataset.__init__(self)
def _get_directory_size(self):
command = "du -sk %s | cut -f1" % self.get_dataset_path()
LOGGER.debug('executing "%s"', command)
result = execute(command)
if result['returncode'] != 0:
raise DatasetError('Unable to calculate directory size: ' +
'"%s" failed: %s' % (command, result['stderr']))
LOGGER.debug('stdout = %s', result['stdout'])
return int(result['stdout'])
def _get_gcp_count(self):
gcp_pattern = os.path.join(self.get_dataset_path(), 'scene01',
'*_GCP.txt')
return self._extract_from_file(gcp_pattern, 'GCP.txt',
self._extract_gcp_count)
def _get_mtl_text(self):
mtl_pattern = os.path.join(self.get_dataset_path(), 'scene01',
'*_MTL.txt')
return self._extract_from_file(mtl_pattern, 'MTL.txt',
self._extract_text)
def _get_xml_text(self):
xml_pattern = os.path.join(self.get_dataset_path(), 'metadata.xml')
return self._extract_from_file(xml_pattern, 'metadata.xml',
self._extract_text)
@staticmethod
def _extract_from_file(file_pattern, file_description, extract_function):
try:
md_path = glob.glob(file_pattern)[0]
md_file = open(md_path)
metadata = extract_function(md_file)
md_file.close()
except IndexError:
metadata = None
LOGGER.debug('No %s file found.', file_description)
except IOError:
raise DatasetError('Unable to open %s file.' % file_description)
return metadata
@staticmethod
def _extract_text(md_file):
return md_file.read()
@staticmethod
def _extract_gcp_count(md_file):
return len([line for line in md_file.readlines()
if re.match(r'\d+(\s+-?\d+\.?\d*){7}', line)])
def get_dataset_path(self):
return self._dataset_path
def get_satellite_tag(self):
return self._ds.satellite.TAG
def get_sensor_name(self):
return self._ds.satellite.sensor
def get_processing_level(self):
level = self._ds.processor_level
if level in self.PROCESSING_LEVEL_ALIASES:
level = self.PROCESSING_LEVEL_ALIASES[level]
return level.upper()
def get_x_ref(self):
return self._ds.path_number
def get_y_ref(self):
return self._ds.row_number
def get_start_datetime(self):
try:
start_dt = self._ds.scene_alt_start_datetime
except AttributeError:
start_dt = None
if start_dt is None:
start_dt = self._ds.scene_start_datetime
return start_dt
def get_end_datetime(self):
try:
end_dt = self._ds.scene_alt_end_datetime
except AttributeError:
end_dt = None
if end_dt is None:
end_dt = self._ds.scene_end_datetime
return end_dt
def get_datetime_processed(self):
return self._ds.completion_datetime
def get_dataset_size(self):
return self._dataset_size
def get_ll_lon(self):
return self._ds.ll_lon
def get_ll_lat(self):
return self._ds.ll_lat
def get_lr_lon(self):
return self._ds.lr_lon
def get_lr_lat(self):
return self._ds.lr_lat
def get_ul_lon(self):
return self._ds.ul_lon
def get_ul_lat(self):
return self._ds.ul_lat
def get_ur_lon(self):
return self._ds.ur_lon
def get_ur_lat(self):
return self._ds.ur_lat
def get_projection(self):
return self._ds.GetProjection()
def get_ll_x(self):
return self._ds.ll_x
def get_ll_y(self):
return self._ds.ll_y
def get_lr_x(self):
return self._ds.lr_x
def get_lr_y(self):
return self._ds.lr_y
def get_ul_x(self):
return self._ds.ul_x
def get_ul_y(self):
return self._ds.ul_y
def get_ur_x(self):
return self._ds.ur_x
def get_ur_y(self):
return self._ds.ur_y
def get_x_pixels(self):
return self._ds.image_pixels
def get_y_pixels(self):
return self._ds.image_lines
def get_gcp_count(self):
return self._gcp_count
def get_mtl_text(self):
return self._mtl_text
|
BSD 3-Clause New or Revised License
|
google-research/pyreach
|
pyreach/impl/oracle_impl.py
|
OracleDevice.get_prediction
|
python
|
def get_prediction(self,
intent: str,
prediction_type: str,
request_type: str,
task_code: str,
label: str,
timeout: float = 15.0) -> Optional[oracle.Prediction]:
robot_id = self.get_key_value(
device_base.KeyValueKey("settings-engine", "", "robot-name"))
if robot_id is None:
robot_id = ""
q = self.send_tagged_request(
types_gen.CommandData(
ts=utils.timestamp_now(),
device_type=self._device_type,
device_name=self._device_name,
data_type="inference-request",
tag=utils.generate_tag(),
intent=intent,
prediction_type=prediction_type,
request_type=request_type,
task_code=task_code,
label=label,
robot_id=robot_id),
timeout=timeout,
expect_messages=1,
expect_cmd_status=False)
msgs = thread_util.extract_all_from_queue(q)
if not msgs:
return None
if (msgs[0][0].data_type == "cmd-status" and
msgs[0][0].status in {"rejected", "aborted"}):
return None
if len(msgs) != 1:
logging.warning("expected a single message: %s", msgs)
return self._prediction_from_message(msgs[0][0], intent, prediction_type,
request_type, task_code, label)
|
Return a current prediction (if available).
Args:
intent: The intent for the oracle.
prediction_type: The prediction_type for the oracle.
request_type: The request_type for the oracle.
task_code: The task_code for the oracle.
label: The label for the oracle.
timeout: The optional maximum time to wait for the prediction. If not
specified, it defaults to 15 seconds.
Returns:
The latest prediction, if available.
|
https://github.com/google-research/pyreach/blob/83cac8e235ba1392dcdc6b8d19202c3eff3ad9a6/pyreach/impl/oracle_impl.py#L143-L193
|
import logging
import threading
from typing import Callable, Optional, Set, Tuple
from pyreach import core
from pyreach import oracle
from pyreach.common.python import types_gen
from pyreach.impl import device_base
from pyreach.impl import requester
from pyreach.impl import thread_util
from pyreach.impl import utils
class OracleDevice(requester.Requester[oracle.Prediction]):
_device_type: str
_device_name: str
_request_lock: threading.Lock
_request_enable: bool
_request_in_progress: bool
_request_intent: str
_request_predication_type: str
_request_request_type: str
_request_task_code: str
_request_label: str
def __init__(self, device_type: str, device_name: str = "") -> None:
super().__init__()
self._device_type = device_type
self._device_name = device_name
self._request_lock = threading.Lock()
self._request_enable = False
self._request_in_progress = False
self._request_intent = ""
self._request_prediction_type = ""
self._request_request_type = ""
self._request_task_code = ""
self._request_label = ""
def start_tagged_requests(self, intent: str, prediction_type: str,
request_type: str, task_code: str,
label: str) -> None:
with self._request_lock:
self._request_enable = True
self._request_intent = intent
self._request_prediction_type = prediction_type
self._request_request_type = request_type
self._request_task_code = task_code
self._request_label = label
self._request_update()
def stop_tagged_requests(self) -> None:
with self._request_lock:
self._request_enable = False
def get_cached_prediction(self) -> Optional[oracle.Prediction]:
with self._request_lock:
cached_prediction = self.get_cached()
if cached_prediction is None:
return None
if self._request_intent != cached_prediction.intent:
return None
if self._request_prediction_type != cached_prediction.prediction_type:
return None
if self._request_request_type != cached_prediction.request_type:
return None
if self._request_task_code != cached_prediction.task_code:
return None
if self._request_label != cached_prediction.label:
return None
return cached_prediction
def _request_update(self) -> None:
with self._request_lock:
if self.is_closed():
return
if not self._request_enable:
return
if self._request_in_progress:
return
self._request_in_progress = True
self.get_prediction_callback(self._request_intent,
self._request_prediction_type,
self._request_request_type,
self._request_task_code, self._request_label,
self._on_request_completed,
self._on_request_error)
def _on_request_completed(self, prediction: oracle.Prediction) -> None:
self.set_cached(prediction)
with self._request_lock:
self._request_in_progress = False
self._request_update()
def _on_request_error(self, status: core.PyReachStatus) -> None:
with self._request_lock:
self._request_in_progress = False
self._request_update()
def get_key_values(self) -> Set[device_base.KeyValueKey]:
return set([device_base.KeyValueKey("settings-engine", "", "robot-name")])
|
Apache License 2.0
|
anyant/rssant
|
rssant_api/helper.py
|
reverse_url
|
python
|
def reverse_url(url):
url = yarl.URL(url)
host = '.'.join(reversed(url.host.split('.')))
result = f'{host}!{url.port}!{url.scheme}{url.raw_path_qs}'
if url.raw_fragment:
result += '#' + url.raw_fragment
return result
|
convert url to reversed url
|
https://github.com/anyant/rssant/blob/b84490574df81ea58a9dda2bc839bcfa56909745/rssant_api/helper.py#L19-L28
|
import yarl
from collections import defaultdict
def shorten(text, width, placeholder='...'):
if not text:
return text
if len(text) <= width:
return text
return text[: max(0, width - len(placeholder))] + placeholder
|
BSD 3-Clause New or Revised License
|
michael-wzhu/daguan_competition_2021_codes
|
src/Megatron-LM/megatron/optimizer/grad_scaler.py
|
MegatronGradScaler.__init__
|
python
|
def __init__(self, initial_scale):
assert initial_scale > 0.0
self._scale = torch.cuda.FloatTensor([initial_scale])
|
Initialize scale value with the input initial scale.
|
https://github.com/michael-wzhu/daguan_competition_2021_codes/blob/ab61f7e3ed11802759baf05b2b309448e38cacba/src/Megatron-LM/megatron/optimizer/grad_scaler.py#L26-L29
|
from abc import ABC
from abc import abstractmethod
import torch
class MegatronGradScaler(ABC):
|
Apache License 2.0
|
google-research/meta-dataset
|
meta_dataset/models/experimental/reparameterizable_distributions.py
|
DeepDensity.build_meta_parameters
|
python
|
def build_meta_parameters(self):
setattr(self, self.meta_attribute_name, self.build_class_density_model())
|
Assign to attributes the meta parameters.
|
https://github.com/google-research/meta-dataset/blob/67546ff9f6992acfa4bc17edb92c82ff7bbcfbbc/meta_dataset/models/experimental/reparameterizable_distributions.py#L505-L507
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import itertools
import math
import gin.tf
from meta_dataset.learners.experimental import base as learner_base
from meta_dataset.models.experimental import reparameterizable_base
import tensorflow as tf
import tensorflow_probability as tfp
tfd = tfp.distributions
tfb = tfp.bijectors
META_PARAMETER_SCOPE = 'meta_parameter'
TASK_PARAMETER_SCOPE = 'task_parameter'
def is_meta_variable(obj):
return isinstance(obj, tf.Variable) and META_PARAMETER_SCOPE in obj.name
def is_task_variable(obj):
return isinstance(obj, tf.Variable) and TASK_PARAMETER_SCOPE in obj.name
def _assign_pairs(vbls, values):
return [vbl.assign(value) for vbl, value in zip(vbls, values)]
def _split_and_squeeze(tensor, num_splits, axis=0):
return [
tf.squeeze(t)
for t in tf.split(tensor, axis=axis, num_or_size_splits=num_splits)
]
def fit_gaussian(embeddings, damping=1e-7, full_covariance=False):
if full_covariance:
num, dim = tf.split(tf.shape(input=embeddings), num_or_size_splits=2)
num, dim = tf.squeeze(num), tf.squeeze(dim)
sample_mean = tf.reduce_mean(input_tensor=embeddings, axis=0)
centered_embeddings = embeddings - sample_mean
sample_covariance = tf.einsum('ij,ik->kj', centered_embeddings,
centered_embeddings)
sample_covariance += damping * tf.eye(dim)
sample_covariance /= tf.cast(num, dtype=tf.float32)
return sample_mean, sample_covariance
else:
sample_mean, sample_variances = tf.nn.moments(x=embeddings)
log_variances = tf.math.log(sample_variances +
damping * tf.ones_like(sample_variances))
return sample_mean, log_variances
def fit_gaussian_mixture(embeddings,
responsibilities,
damping=1e-7,
full_covariance=False):
num, dim = tf.split(tf.shape(input=embeddings), num_or_size_splits=2)
num, dim = tf.squeeze(num), tf.squeeze(dim)
num_classes = responsibilities.shape[1]
mixing_proportion = tf.einsum('jk->k', responsibilities)
mixing_proportion /= tf.cast(num, dtype=tf.float32)
mixing_logits = tf.math.log(mixing_proportion)
sample_mean = tf.einsum('ij,ik->jk', responsibilities, embeddings)
sample_mean /= tf.reduce_sum(
input_tensor=responsibilities, axis=0)[:, tf.newaxis]
centered_embeddings = (
embeddings[:, tf.newaxis, :] - sample_mean[tf.newaxis, :, :])
if full_covariance:
sample_covariance = tf.einsum('ijk,ijl->ijkl', centered_embeddings,
centered_embeddings)
sample_covariance += damping * tf.eye(dim)
weighted_covariance = tf.einsum('ij,ijkl->jkl', responsibilities,
sample_covariance)
weighted_covariance /= tf.reduce_sum(
input_tensor=responsibilities, axis=0)[:, tf.newaxis, tf.newaxis]
return (
_split_and_squeeze(sample_mean, num_splits=num_classes),
_split_and_squeeze(weighted_covariance, num_splits=num_classes),
[mixing_logits],
)
else:
avg_x_squared = (
tf.matmul(responsibilities, embeddings**2, transpose_a=True) /
tf.reduce_sum(input_tensor=responsibilities, axis=0)[:, tf.newaxis])
avg_means_squared = sample_mean**2
avg_x_means = (
sample_mean *
tf.matmul(responsibilities, embeddings, transpose_a=True) /
tf.reduce_sum(input_tensor=responsibilities, axis=0)[:, tf.newaxis])
sample_variances = (
avg_x_squared - 2 * avg_x_means + avg_means_squared +
damping * tf.ones(dim))
log_variances = tf.math.log(sample_variances)
return (
_split_and_squeeze(sample_mean, num_splits=num_classes),
_split_and_squeeze(log_variances, num_splits=num_classes),
[mixing_logits],
)
class ReparameterizableClassMixture(
reparameterizable_base.ReparameterizableModule):
def __init__(self, num_dims, output_dim, name=None):
super(ReparameterizableClassMixture, self).__init__(name=name)
self.num_dims = num_dims
self.num_components = output_dim
with tf.compat.v1.name_scope(META_PARAMETER_SCOPE):
self.build_meta_parameters()
with tf.compat.v1.name_scope(TASK_PARAMETER_SCOPE):
self.build_task_parameters()
def reparameterizables(self, predicate, with_path=False):
def predicate_and_is_task_variable(obj):
return predicate(obj) and is_task_variable(obj)
return super(ReparameterizableClassMixture, self).reparameterizables(
predicate=predicate_and_is_task_variable, with_path=with_path)
@property
def task_parameters(self):
return self.reparameterizables(
lambda obj: isinstance(obj, tf.Variable), with_path=False)
def trainable_variables(self):
def trainable_and_is_meta_variable(obj):
return reparameterizable_base.is_trainable_variable(
obj) and is_meta_variable(obj)
return super(ReparameterizableClassMixture, self).reparameterizables(
predicate=trainable_and_is_meta_variable, with_path=False)
def build_meta_parameters(self):
raise NotImplementedError
def build_task_parameters(self):
raise NotImplementedError
def episodic_init_ops(self, onehot_labels, embeddings):
raise NotImplementedError
@property
def components(self):
raise NotImplementedError
def __call__(self, embeddings):
return tf.stack([c.log_prob(embeddings) for c in self.components], axis=-1)
@gin.configurable
class MultivariateNormalDiag(ReparameterizableClassMixture):
def __init__(self, estimate_scale, damping, **kwargs):
super(MultivariateNormalDiag, self).__init__(**kwargs)
self.damping = damping
self.estimate_scale = estimate_scale
def build_meta_parameters(self):
return
def build_task_parameters(self):
self.locs = [
tf.Variable(tf.zeros((self.num_dims)), name='loc_{}'.format(i))
for i in range(self.num_components)
]
self.log_scales = [
tf.Variable(tf.zeros((self.num_dims)), name='log_scale_{}'.format(i))
for i in range(self.num_components)
]
def episodic_init_ops(self, onehot_labels, embeddings, task_parameters):
del task_parameters
class_embeddings = learner_base.class_specific_data(onehot_labels,
embeddings,
self.num_components)
locs, log_scales = zip(
*map(fit_gaussian, class_embeddings, itertools.repeat(self.damping)))
if not self.estimate_scale:
log_scales = [tf.zeros_like(log_scale) for log_scale in log_scales]
return (_assign_pairs(self.locs, locs) +
_assign_pairs(self.log_scales, log_scales))
@property
def components(self):
return [
tfd.MultivariateNormalDiag(
loc=loc,
scale_diag=tf.math.softplus(log_scale),
allow_nan_stats=False)
for loc, log_scale in zip(self.locs, self.log_scales)
]
@gin.configurable
class GaussianMixture(ReparameterizableClassMixture):
def __init__(self,
num_modes,
damping,
loc_initializer=tf.initializers.random_uniform(),
log_scale_initializer=tf.initializers.zeros(),
logits_initializer=tf.initializers.zeros(),
trainable_loc=True,
trainable_scale=True,
trainable_logits=True,
estimate_loc=True,
estimate_scale=True,
estimate_logits=True,
**kwargs):
self.num_modes = num_modes
self.damping = damping
self.loc_initializer = loc_initializer
self.log_scale_initializer = log_scale_initializer
self.logits_initializer = logits_initializer
self.trainable_loc = trainable_loc
self.trainable_scale = trainable_scale
self.trainable_logits = trainable_logits
self.estimate_loc = estimate_loc
self.estimate_scale = estimate_scale
self.estimate_logits = estimate_logits
super(GaussianMixture, self).__init__(**kwargs)
def build_meta_parameters(self):
self.meta_loc = tf.Variable(
self.loc_initializer([self.num_modes, self.num_dims]),
trainable=self.trainable_loc,
name='meta_loc')
self.meta_log_scale = tf.Variable(
self.log_scale_initializer([self.num_modes, self.num_dims]),
trainable=self.trainable_scale,
name='meta_log_scale')
self.meta_logits = tf.Variable(
self.logits_initializer([self.num_modes]),
trainable=self.trainable_logits,
name='meta_logits')
def build_task_parameters(self):
def _construct_variables():
def _split_mode_params(params):
return [
tf.squeeze(p) for p in tf.split(
params, axis=0, num_or_size_splits=self.num_modes)
]
locs = _split_mode_params(tf.zeros_like(self.meta_loc))
log_scales = _split_mode_params(tf.zeros_like(self.meta_log_scale))
logits = tf.zeros_like(self.meta_logits)
return (
[tf.Variable(loc, 'loc') for loc in locs],
[tf.Variable(log_scale, 'log_scale') for log_scale in log_scales],
tf.Variable(logits, 'logits'),
)
locs, log_scales, logits = [], [], []
for i in range(self.num_components):
with tf.compat.v1.name_scope('class_{}'.format(i)):
class_locs, class_log_scales, class_logits = _construct_variables()
locs += [class_locs]
log_scales += [class_log_scales]
logits += [class_logits]
self.task_locs = locs
self.task_log_scales = log_scales
self.task_logits = logits
def episodic_init_ops(self, onehot_labels, embeddings):
del onehot_labels
del embeddings
def _split_mode_params(params):
return [
tf.squeeze(p)
for p in tf.split(params, axis=0, num_or_size_splits=self.num_modes)
]
init_ops = []
for component_locs, component_log_scales, component_logits in zip(
self.task_locs, self.task_log_scales, self.task_logits):
init_ops += _assign_pairs(component_locs,
_split_mode_params(self.meta_loc))
init_ops += _assign_pairs(component_log_scales,
_split_mode_params(self.meta_log_scale))
init_ops += [component_logits.assign(self.meta_logits)]
return init_ops
@property
def components(self):
return [
tfd.Mixture(
cat=tfd.Categorical(logits=logits),
components=[
tfd.MultivariateNormalDiag(
loc=loc,
scale_diag=tf.math.softplus(log_scale),
allow_nan_stats=False)
for loc, log_scale in zip(locs, log_scales)
])
for locs, log_scales, logits in zip(
self.task_locs, self.task_log_scales, self.task_logits)
]
def __call__(self, embeddings, components=False, class_idx=None):
if class_idx:
class_models = [self.components[i] for i in class_idx]
else:
class_models = self.components
if components:
return tf.stack([
tf.stack([c.log_prob(embeddings)
for c in cs.components], axis=-1)
for cs in class_models
],
axis=1)
else:
return tf.stack([c.log_prob(embeddings) for c in class_models], axis=-1)
class DeepDensity(ReparameterizableClassMixture):
@property
def meta_attribute_name(self):
raise NotImplementedError
@property
def task_attribute_name(self):
raise NotImplementedError
@property
def keyed_variables(self):
return
def build_class_density_model(self):
raise NotImplementedError
def episodic_init_ops(self, onehot_labels, embeddings):
del onehot_labels
del embeddings
init_ops = []
for i in range(self.num_components):
component_variables = dict(
(k, v)
for k, v in self.keyed_variables.items()
if '{}/{}'.format(self.task_attribute_name, i) in k)
sorted_component_variable_keys = sorted(component_variables.keys())
sorted_meta_variable_keys = sorted(self.meta_parameters.keys())
sorted_component_variables = (
component_variables[k] for k in sorted_component_variable_keys)
sorted_meta_variables = (
self.meta_parameters[k] for k in sorted_meta_variable_keys)
init_ops += [
assignee_variables.assign(assigner_variables)
for assignee_variables, assigner_variables in zip(
sorted_component_variables, sorted_meta_variables)
]
return init_ops
def trainable_variables(self):
return dict((k, v)
for k, v in self.keyed_variables.items()
if self.task_attribute_name in k)
|
Apache License 2.0
|
mozilla/moztrap
|
moztrap/model/library/bulk.py
|
BulkParser.description
|
python
|
def description(self, lc, orig, data):
if lc.startswith("when ") or lc.startswith("and when "):
data[-1].setdefault("description", [])
data[-1]["steps"] = [{"instruction": [orig]}]
return self.instruction
data[-1].setdefault("description", []).append(orig)
return self.description
|
Expecting to encounter description line(s).
|
https://github.com/mozilla/moztrap/blob/93b34a4cd21c9e08f73d3b1a7630cd873f8418a0/moztrap/model/library/bulk.py#L83-L90
|
class ParsingError(Exception):
pass
class BulkParser(object):
def parse(self, text):
data = []
state = self.begin
lines = text.splitlines()
error = False
for line in lines:
line = line.strip()
if line:
try:
state = state(line.lower(), line, data)
except ParsingError as e:
data = data or [{}]
data[-1]["error"] = str(e)
error = True
break
if not error and not state.expect_end:
if not data:
data.append({})
data[-1]["error"] = (
"Unexpected end of input, looking for %s"
% " or ".join(repr(k.title()) for k in state.keys)
)
for item in data:
if "description" in item:
item["description"] = "\n".join(item["description"])
for step in item.get("steps", []):
step["instruction"] = "\n".join(step["instruction"])
if "expected" in step:
step["expected"] = "\n".join(step["expected"])
return data
def begin(self, lc, orig, data):
if lc.startswith("test that "):
if len(orig) > 200:
data.append({})
raise ParsingError("Title should have at most 200 chracters, '%s...'" % orig[0:50])
data.append({"name": orig})
return self.description
raise ParsingError("Expected 'Test that ...', not '%s'" % orig)
begin.keys = ["Test that "]
begin.expect_end = False
|
BSD 2-Clause Simplified License
|
chahuja/language2pose
|
src/data/data.py
|
RawData.quat2fke
|
python
|
def quat2fke(self, df_quat, filename_fke, filename_rifke):
df_fke = pd.DataFrame(data=np.zeros((df_quat.shape[0], len(self.fke_columns))), columns=self.fke_columns)
df_fke[['root_tx', 'root_ty', 'root_tz']] = df_quat.loc[:, ['root_tx', 'root_ty', 'root_tz']].copy()
xyz_data = quat2xyz(df_quat, self.skel)
df_fke.loc[:, self.fke_columns] = xyz_data.reshape(-1, np.prod(xyz_data.shape[1:]))
os.makedirs(filename_fke.parent, exist_ok=True)
df_fke.to_csv(filename_fke.as_posix())
'''Save Rotation Invariant Forward Kinematics'''
df_rifke = pd.DataFrame(data=np.zeros((df_quat.shape[0]-1, len(self.rifke_columns))), columns=self.rifke_columns)
rifke_data = self.fke2rifke(xyz_data.copy())
df_rifke[self.rifke_columns] = rifke_data[..., 3:]
os.makedirs(filename_rifke.parent, exist_ok=True)
df_rifke.to_csv(filename_rifke.as_posix())
''' Convert rifke to fke to get comparable ground truths '''
new_df_fke = pd.DataFrame(data=self.rifke2fke(df_rifke[self.rifke_columns].values, filename_rifke).reshape(-1, len(self.fke_columns)),
columns=self.fke_columns)
new_fke_dir = filename_fke.parent/'new_fke'
os.makedirs(new_fke_dir, exist_ok=True)
new_df_fke.to_csv((new_fke_dir/filename_fke.name).as_posix())
return xyz_data
|
Save Forward Kinematics
|
https://github.com/chahuja/language2pose/blob/a65d6857d504b5c7cc154260ee946224d387da9d/src/data/data.py#L116-L142
|
import os
import numpy as np
import pandas as pd
from pathlib import Path
from tqdm import tqdm
import json
import os,sys,inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0,parentdir)
from utils.visualization import *
from utils.skeleton import Skeleton
from common.mmm import parse_motions
from common.transforms3dbatch import *
from common.quaternion import *
from renderUtils import quat2xyz
from model.model import Integrator
import torch
import pickle as pkl
import scipy.ndimage.filters as filters
import pdb
def permute(parents, root=0, new_parent=-1, new_joints=[], new_parents=[]):
new_joints.append(root)
new_parents.append(new_parent)
new_parent = len(new_joints) - 1
for idx, p in enumerate(parents):
if p == root:
permute(parents, root=idx, new_parent=new_parent, new_joints=new_joints, new_parents=new_parents)
return new_joints, new_parents
def softmax(x, **kw):
softness = kw.pop('softness', 1.0)
maxi, mini = np.max(x, **kw), np.min(x, **kw)
return maxi + np.log(softness + np.exp(mini - maxi))
def softmin(x, **kw):
return -softmax(-x, **kw)
class RawData():
def __init__(self):
pass
def _get_f(self):
raise NotImplementedError
def _get_df(self):
raise NotImplementedError
def preProcess(self):
raise NotImplementedError
def get_skeletonNpermutation(self):
raise NotImplementedError
@property
def quat_columns(self):
quat_columns = ['root_tx', 'root_ty', 'root_tz']
for joint in self.skel.joints:
quat_columns += ['{}_{}'.format(joint, col_suffix) for col_suffix in ['rw', 'rx', 'ry', 'rz']]
return quat_columns
@property
def fke_columns(self):
fke_columns = []
for joint in self.skel.joints:
fke_columns += ['{}_{}'.format(joint, col_suffix) for col_suffix in ['tx', 'ty', 'tz']]
return fke_columns
@property
def pose_columns(self):
pose_columns = []
for joint in self.skel.joints:
pose_columns += ['{}_{}'.format(joint, col_suffix) for col_suffix in ['rx', 'ry', 'rz']]
return pose_columns
@property
def rifke_columns(self):
rifke_columns = self.fke_columns + ['root_Vx', 'root_Vz', 'root_Ry', 'feet_l1', 'feet_l2', 'feet_r1', 'feet_r2']
return rifke_columns
@property
def rifke_dict(self):
raise NotImplementedError
def output_columns(self, feats_kind):
if feats_kind in {'euler'}:
return self.pose_columns
elif feats_kind in {'quaternion'}:
return self.quat_columns
elif feats_kind in {'fke'}:
return self.fke_columns
elif feats_kind in {'rifke'}:
return self.rifke_columns
def mat2csv(self, data, filename, columns):
pd.DataFrame(data=data, columns=columns).to_csv(filename)
|
MIT License
|
alliefitter/boto3_type_annotations
|
boto3_type_annotations_with_docs/boto3_type_annotations/config/paginator.py
|
GetAggregateComplianceDetailsByConfigRule.paginate
|
python
|
def paginate(self, ConfigurationAggregatorName: str, ConfigRuleName: str, AccountId: str, AwsRegion: str, ComplianceType: str = None, PaginationConfig: Dict = None) -> Dict:
pass
|
Creates an iterator that will paginate through responses from :py:meth:`ConfigService.Client.get_aggregate_compliance_details_by_config_rule`.
See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/config-2014-11-12/GetAggregateComplianceDetailsByConfigRule>`_
**Request Syntax**
::
response_iterator = paginator.paginate(
ConfigurationAggregatorName='string',
ConfigRuleName='string',
AccountId='string',
AwsRegion='string',
ComplianceType='COMPLIANT'|'NON_COMPLIANT'|'NOT_APPLICABLE'|'INSUFFICIENT_DATA',
PaginationConfig={
'MaxItems': 123,
'PageSize': 123,
'StartingToken': 'string'
}
)
**Response Syntax**
::
{
'AggregateEvaluationResults': [
{
'EvaluationResultIdentifier': {
'EvaluationResultQualifier': {
'ConfigRuleName': 'string',
'ResourceType': 'string',
'ResourceId': 'string'
},
'OrderingTimestamp': datetime(2015, 1, 1)
},
'ComplianceType': 'COMPLIANT'|'NON_COMPLIANT'|'NOT_APPLICABLE'|'INSUFFICIENT_DATA',
'ResultRecordedTime': datetime(2015, 1, 1),
'ConfigRuleInvokedTime': datetime(2015, 1, 1),
'Annotation': 'string',
'AccountId': 'string',
'AwsRegion': 'string'
},
],
}
**Response Structure**
- *(dict) --*
- **AggregateEvaluationResults** *(list) --*
Returns an AggregateEvaluationResults object.
- *(dict) --*
The details of an AWS Config evaluation for an account ID and region in an aggregator. Provides the AWS resource that was evaluated, the compliance of the resource, related time stamps, and supplementary information.
- **EvaluationResultIdentifier** *(dict) --*
Uniquely identifies the evaluation result.
- **EvaluationResultQualifier** *(dict) --*
Identifies an AWS Config rule used to evaluate an AWS resource, and provides the type and ID of the evaluated resource.
- **ConfigRuleName** *(string) --*
The name of the AWS Config rule that was used in the evaluation.
- **ResourceType** *(string) --*
The type of AWS resource that was evaluated.
- **ResourceId** *(string) --*
The ID of the evaluated AWS resource.
- **OrderingTimestamp** *(datetime) --*
The time of the event that triggered the evaluation of your AWS resources. The time can indicate when AWS Config delivered a configuration item change notification, or it can indicate when AWS Config delivered the configuration snapshot, depending on which event triggered the evaluation.
- **ComplianceType** *(string) --*
The resource compliance status.
For the ``AggregationEvaluationResult`` data type, AWS Config supports only the ``COMPLIANT`` and ``NON_COMPLIANT`` . AWS Config does not support the ``NOT_APPLICABLE`` and ``INSUFFICIENT_DATA`` value.
- **ResultRecordedTime** *(datetime) --*
The time when AWS Config recorded the aggregate evaluation result.
- **ConfigRuleInvokedTime** *(datetime) --*
The time when the AWS Config rule evaluated the AWS resource.
- **Annotation** *(string) --*
Supplementary information about how the agrregate evaluation determined the compliance.
- **AccountId** *(string) --*
The 12-digit account ID of the source account.
- **AwsRegion** *(string) --*
The source region from where the data is aggregated.
:type ConfigurationAggregatorName: string
:param ConfigurationAggregatorName: **[REQUIRED]**
The name of the configuration aggregator.
:type ConfigRuleName: string
:param ConfigRuleName: **[REQUIRED]**
The name of the AWS Config rule for which you want compliance information.
:type AccountId: string
:param AccountId: **[REQUIRED]**
The 12-digit account ID of the source account.
:type AwsRegion: string
:param AwsRegion: **[REQUIRED]**
The source region from where the data is aggregated.
:type ComplianceType: string
:param ComplianceType:
The resource compliance status.
.. note::
For the ``GetAggregateComplianceDetailsByConfigRuleRequest`` data type, AWS Config supports only the ``COMPLIANT`` and ``NON_COMPLIANT`` . AWS Config does not support the ``NOT_APPLICABLE`` and ``INSUFFICIENT_DATA`` values.
:type PaginationConfig: dict
:param PaginationConfig:
A dictionary that provides parameters to control pagination.
- **MaxItems** *(integer) --*
The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination.
- **PageSize** *(integer) --*
The size of each page.
- **StartingToken** *(string) --*
A token to specify where to start paginating. This is the ``NextToken`` from a previous response.
:rtype: dict
:returns:
|
https://github.com/alliefitter/boto3_type_annotations/blob/2a88aa562b1aee6e8a6cc30402980884b3707fbb/boto3_type_annotations_with_docs/boto3_type_annotations/config/paginator.py#L986-L1089
|
from typing import Dict
from datetime import datetime
from typing import List
from botocore.paginate import Paginator
class DescribeAggregateComplianceByConfigRules(Paginator):
def paginate(self, ConfigurationAggregatorName: str, Filters: Dict = None, PaginationConfig: Dict = None) -> Dict:
pass
class DescribeAggregationAuthorizations(Paginator):
def paginate(self, PaginationConfig: Dict = None) -> Dict:
pass
class DescribeComplianceByConfigRule(Paginator):
def paginate(self, ConfigRuleNames: List = None, ComplianceTypes: List = None, PaginationConfig: Dict = None) -> Dict:
pass
class DescribeComplianceByResource(Paginator):
def paginate(self, ResourceType: str = None, ResourceId: str = None, ComplianceTypes: List = None, Limit: int = None, PaginationConfig: Dict = None) -> Dict:
pass
class DescribeConfigRuleEvaluationStatus(Paginator):
def paginate(self, ConfigRuleNames: List = None, PaginationConfig: Dict = None) -> Dict:
pass
class DescribeConfigRules(Paginator):
def paginate(self, ConfigRuleNames: List = None, PaginationConfig: Dict = None) -> Dict:
pass
class DescribeConfigurationAggregatorSourcesStatus(Paginator):
def paginate(self, ConfigurationAggregatorName: str, UpdateStatus: List = None, PaginationConfig: Dict = None) -> Dict:
pass
class DescribeConfigurationAggregators(Paginator):
def paginate(self, ConfigurationAggregatorNames: List = None, PaginationConfig: Dict = None) -> Dict:
pass
class DescribePendingAggregationRequests(Paginator):
def paginate(self, PaginationConfig: Dict = None) -> Dict:
pass
class DescribeRemediationExecutionStatus(Paginator):
def paginate(self, ConfigRuleName: str, ResourceKeys: List = None, PaginationConfig: Dict = None) -> Dict:
pass
class DescribeRetentionConfigurations(Paginator):
def paginate(self, RetentionConfigurationNames: List = None, PaginationConfig: Dict = None) -> Dict:
pass
class GetAggregateComplianceDetailsByConfigRule(Paginator):
|
MIT License
|
mandiant/capa
|
capa/features/extractors/smda/file.py
|
extract_file_function_names
|
python
|
def extract_file_function_names(smda_report, **kwargs):
if False:
yield NotImplementedError("SMDA doesn't have library matching")
return
|
extract the names of statically-linked library functions.
|
https://github.com/mandiant/capa/blob/23a0aec1e6de99363023d327d1746b10968658c1/capa/features/extractors/smda/file.py#L63-L70
|
import lief
import capa.features.extractors.common
import capa.features.extractors.helpers
import capa.features.extractors.strings
from capa.features.file import Export, Import, Section
from capa.features.common import String, Characteristic
def extract_file_embedded_pe(buf, **kwargs):
for offset, _ in capa.features.extractors.helpers.carve_pe(buf, 1):
yield Characteristic("embedded pe"), offset
def extract_file_export_names(buf, **kwargs):
lief_binary = lief.parse(buf)
if lief_binary is not None:
for function in lief_binary.exported_functions:
yield Export(function.name), function.address
def extract_file_import_names(smda_report, buf):
lief_binary = lief.parse(buf)
if not isinstance(lief_binary, lief.PE.Binary):
return
for imported_library in lief_binary.imports:
library_name = imported_library.name.lower()
library_name = library_name[:-4] if library_name.endswith(".dll") else library_name
for func in imported_library.entries:
va = func.iat_address + smda_report.base_addr
if func.name:
for name in capa.features.extractors.helpers.generate_symbols(library_name, func.name):
yield Import(name), va
elif func.is_ordinal:
for name in capa.features.extractors.helpers.generate_symbols(library_name, "#%s" % func.ordinal):
yield Import(name), va
def extract_file_section_names(buf, **kwargs):
lief_binary = lief.parse(buf)
if not isinstance(lief_binary, lief.PE.Binary):
return
if lief_binary and lief_binary.sections:
base_address = lief_binary.optional_header.imagebase
for section in lief_binary.sections:
yield Section(section.name), base_address + section.virtual_address
def extract_file_strings(buf, **kwargs):
for s in capa.features.extractors.strings.extract_ascii_strings(buf):
yield String(s.s), s.offset
for s in capa.features.extractors.strings.extract_unicode_strings(buf):
yield String(s.s), s.offset
|
Apache License 2.0
|
pypa/pipenv
|
pipenv/patched/notpip/_internal/commands/show.py
|
print_results
|
python
|
def print_results(distributions, list_files=False, verbose=False):
results_printed = False
for i, dist in enumerate(distributions):
results_printed = True
if i > 0:
write_output("---")
write_output("Name: %s", dist.get('name', ''))
write_output("Version: %s", dist.get('version', ''))
write_output("Summary: %s", dist.get('summary', ''))
write_output("Home-page: %s", dist.get('home-page', ''))
write_output("Author: %s", dist.get('author', ''))
write_output("Author-email: %s", dist.get('author-email', ''))
write_output("License: %s", dist.get('license', ''))
write_output("Location: %s", dist.get('location', ''))
write_output("Requires: %s", ', '.join(dist.get('requires', [])))
write_output("Required-by: %s", ', '.join(dist.get('required_by', [])))
if verbose:
write_output("Metadata-Version: %s",
dist.get('metadata-version', ''))
write_output("Installer: %s", dist.get('installer', ''))
write_output("Classifiers:")
for classifier in dist.get('classifiers', []):
write_output(" %s", classifier)
write_output("Entry-points:")
for entry in dist.get('entry_points', []):
write_output(" %s", entry.strip())
if list_files:
write_output("Files:")
for line in dist.get('files', []):
write_output(" %s", line.strip())
if "files" not in dist:
write_output("Cannot locate installed-files.txt")
return results_printed
|
Print the informations from installed distributions found.
|
https://github.com/pypa/pipenv/blob/9378cb515189d11841a4de49a5ac3c01fca509ec/pipenv/patched/notpip/_internal/commands/show.py#L143-L180
|
from __future__ import absolute_import
import logging
import os
from email.parser import FeedParser
from pipenv.patched.notpip._vendor import pkg_resources
from pipenv.patched.notpip._vendor.packaging.utils import canonicalize_name
from pipenv.patched.notpip._internal.cli.base_command import Command
from pipenv.patched.notpip._internal.cli.status_codes import ERROR, SUCCESS
from pipenv.patched.notpip._internal.utils.misc import write_output
logger = logging.getLogger(__name__)
class ShowCommand(Command):
usage = """
%prog [options] <package> ..."""
ignore_require_venv = True
def __init__(self, *args, **kw):
super(ShowCommand, self).__init__(*args, **kw)
self.cmd_opts.add_option(
'-f', '--files',
dest='files',
action='store_true',
default=False,
help='Show the full list of installed files for each package.')
self.parser.insert_option_group(0, self.cmd_opts)
def run(self, options, args):
if not args:
logger.warning('ERROR: Please provide a package name or names.')
return ERROR
query = args
results = search_packages_info(query)
if not print_results(
results, list_files=options.files, verbose=options.verbose):
return ERROR
return SUCCESS
def search_packages_info(query):
installed = {}
for p in pkg_resources.working_set:
installed[canonicalize_name(p.project_name)] = p
query_names = [canonicalize_name(name) for name in query]
missing = sorted(
[name for name, pkg in zip(query, query_names) if pkg not in installed]
)
if missing:
logger.warning('Package(s) not found: %s', ', '.join(missing))
def get_requiring_packages(package_name):
canonical_name = canonicalize_name(package_name)
return [
pkg.project_name for pkg in pkg_resources.working_set
if canonical_name in
[canonicalize_name(required.name) for required in
pkg.requires()]
]
for dist in [installed[pkg] for pkg in query_names if pkg in installed]:
package = {
'name': dist.project_name,
'version': dist.version,
'location': dist.location,
'requires': [dep.project_name for dep in dist.requires()],
'required_by': get_requiring_packages(dist.project_name)
}
file_list = None
metadata = None
if isinstance(dist, pkg_resources.DistInfoDistribution):
if dist.has_metadata('RECORD'):
lines = dist.get_metadata_lines('RECORD')
paths = [l.split(',')[0] for l in lines]
paths = [os.path.join(dist.location, p) for p in paths]
file_list = [os.path.relpath(p, dist.location) for p in paths]
if dist.has_metadata('METADATA'):
metadata = dist.get_metadata('METADATA')
else:
if dist.has_metadata('installed-files.txt'):
paths = dist.get_metadata_lines('installed-files.txt')
paths = [os.path.join(dist.egg_info, p) for p in paths]
file_list = [os.path.relpath(p, dist.location) for p in paths]
if dist.has_metadata('PKG-INFO'):
metadata = dist.get_metadata('PKG-INFO')
if dist.has_metadata('entry_points.txt'):
entry_points = dist.get_metadata_lines('entry_points.txt')
package['entry_points'] = entry_points
if dist.has_metadata('INSTALLER'):
for line in dist.get_metadata_lines('INSTALLER'):
if line.strip():
package['installer'] = line.strip()
break
feed_parser = FeedParser()
feed_parser.feed(metadata)
pkg_info_dict = feed_parser.close()
for key in ('metadata-version', 'summary',
'home-page', 'author', 'author-email', 'license'):
package[key] = pkg_info_dict.get(key)
classifiers = []
for line in metadata.splitlines():
if line.startswith('Classifier: '):
classifiers.append(line[len('Classifier: '):])
package['classifiers'] = classifiers
if file_list:
package['files'] = sorted(file_list)
yield package
|
MIT License
|
pylons/pastedeploy
|
paste/deploy/config.py
|
DispatchingConfig.push_process_config
|
python
|
def push_process_config(self, conf):
self._process_configs.append(conf)
|
Like push_thread_config, but applies the configuration to
the entire process.
|
https://github.com/pylons/pastedeploy/blob/df109cacddc56af8cfe75fc7df39af6e1f2cd92d/paste/deploy/config.py#L90-L95
|
import threading
import re
wsgilib = None
local = None
__all__ = ['DispatchingConfig', 'CONFIG', 'ConfigMiddleware', 'PrefixMiddleware']
def local_dict():
global config_local, local
try:
return config_local.wsgi_dict
except NameError:
config_local = threading.local()
config_local.wsgi_dict = result = {}
return result
except AttributeError:
config_local.wsgi_dict = result = {}
return result
class DispatchingConfig(object):
_constructor_lock = threading.Lock()
def __init__(self):
self._constructor_lock.acquire()
try:
self.dispatching_id = 0
while 1:
self._local_key = 'paste.processconfig_%i' % self.dispatching_id
if not self._local_key in local_dict():
break
self.dispatching_id += 1
finally:
self._constructor_lock.release()
self._process_configs = []
def push_thread_config(self, conf):
local_dict().setdefault(self._local_key, []).append(conf)
def pop_thread_config(self, conf=None):
self._pop_from(local_dict()[self._local_key], conf)
def _pop_from(self, lst, conf):
popped = lst.pop()
if conf is not None and popped is not conf:
raise AssertionError(
"The config popped (%s) is not the same as the config "
"expected (%s)"
% (popped, conf))
|
MIT License
|
li-plus/dsnet
|
src/anchor_based/anchor_helper.py
|
offset2bbox
|
python
|
def offset2bbox(offsets: np.ndarray, anchors: np.ndarray) -> np.ndarray:
offsets = offsets.reshape(-1, 2)
anchors = anchors.reshape(-1, 2)
offset_center, offset_width = offsets[:, 0], offsets[:, 1]
anchor_center, anchor_width = anchors[:, 0], anchors[:, 1]
bbox_center = offset_center * anchor_width + anchor_center
bbox_width = np.exp(offset_width) * anchor_width
bbox = np.vstack((bbox_center, bbox_width)).T
return bbox
|
Convert predicted offsets to CW bounding boxes.
:param offsets: Predicted offsets.
:param anchors: Sequence anchors.
:return: Predicted bounding boxes.
|
https://github.com/li-plus/dsnet/blob/1804176e2e8b57846beb063667448982273fca89/src/anchor_based/anchor_helper.py#L74-L93
|
from typing import List, Tuple
import numpy as np
from helpers import bbox_helper
def get_anchors(seq_len: int, scales: List[int]) -> np.ndarray:
anchors = np.zeros((seq_len, len(scales), 2), dtype=np.int32)
for pos in range(seq_len):
for scale_idx, scale in enumerate(scales):
anchors[pos][scale_idx] = [pos, scale]
return anchors
def get_pos_label(anchors: np.ndarray,
targets: np.ndarray,
iou_thresh: float
) -> Tuple[np.ndarray, np.ndarray]:
seq_len, num_scales, _ = anchors.shape
anchors = np.reshape(anchors, (seq_len * num_scales, 2))
loc_label = np.zeros((seq_len * num_scales, 2))
cls_label = np.zeros(seq_len * num_scales, dtype=np.int32)
for target in targets:
target = np.tile(target, (seq_len * num_scales, 1))
iou = bbox_helper.iou_cw(anchors, target)
pos_idx = np.where(iou > iou_thresh)
cls_label[pos_idx] = 1
loc_label[pos_idx] = bbox2offset(target[pos_idx], anchors[pos_idx])
loc_label = loc_label.reshape((seq_len, num_scales, 2))
cls_label = cls_label.reshape((seq_len, num_scales))
return cls_label, loc_label
def get_neg_label(cls_label: np.ndarray, num_neg: int) -> np.ndarray:
seq_len, num_scales = cls_label.shape
cls_label = cls_label.copy().reshape(-1)
cls_label[cls_label < 0] = 0
neg_idx, = np.where(cls_label == 0)
np.random.shuffle(neg_idx)
neg_idx = neg_idx[:num_neg]
cls_label[neg_idx] = -1
cls_label = np.reshape(cls_label, (seq_len, num_scales))
return cls_label
|
MIT License
|
linode/linode-cli
|
linodecli/configuration.py
|
CLIConfig._username_for_token
|
python
|
def _username_for_token(self, token):
u = self._do_get_request('/profile', token=token, exit_on_error=False)
if "errors" in u:
print("That token didn't work: {}".format(','.join([c["reason"] for c in u['errors']])))
return None
return u['username']
|
A helper function that returns the username assocaited with a token by
requesting it from the API
|
https://github.com/linode/linode-cli/blob/abda241415d5805ee17f1697494a013d408d30ca/linodecli/configuration.py#L288-L298
|
from __future__ import print_function
import argparse
from datetime import datetime
import re
from http import server
import socket
import webbrowser
try:
import configparser
except ImportError:
import ConfigParser as configparser
import requests
import os
import sys
ENV_TOKEN_NAME='LINODE_CLI_TOKEN'
LEGACY_CONFIG_DIR = os.path.expanduser('~')
LEGACY_CONFIG_NAME = '.linode-cli'
CONFIG_DIR = os.environ.get('XDG_CONFIG_HOME', "{}/{}".format(os.path.expanduser('~'), '.config'))
CONFIG_NAME = 'linode-cli'
TOKEN_GENERATION_URL='https://cloud.linode.com/profile/tokens'
OAUTH_CLIENT_ID = '5823b4627e45411d18e9'
KNOWN_GOOD_BROWSERS = set(('chrome', 'firefox', 'mozilla', 'netscape', 'opera', 'safari', 'chromium', 'chromium-browser', 'epiphany'))
DEFAULT_LANDING_PAGE = """
<h2>Success</h2><br/><p>You may return to your terminal to continue..</p>
<script>
// this is gross, sorry
let r = new XMLHttpRequest('http://localhost:{port}');
r.open('GET', '/token/'+window.location.hash.substr(1));
r.send();
</script>
"""
def input_helper(prompt):
if sys.version_info[0] == 2:
return raw_input(prompt)
else:
return input(prompt)
class CLIConfig:
def __init__(self, base_url, username=None, skip_config=False):
self.base_url = base_url
self.username = username
self.config = self._get_config(load=not skip_config)
self.running_plugin = None
self.used_env_token = False
self._configured = False
self.configure_with_pat = "--token" in sys.argv
if not skip_config and not self.config.has_option('DEFAULT', 'default-user') and self.config.has_option('DEFAULT', 'token'):
self._handle_no_default_user()
environ_token = os.environ.get(ENV_TOKEN_NAME, None)
if (not self.config.has_option('DEFAULT', 'default-user')
and not skip_config and not environ_token):
self.configure()
elif environ_token:
self.used_env_token = True
def set_user(self, username):
if not self.config.has_section(username):
print('User {} is not configured!'.format(username))
sys.exit(1)
self.username = username
def default_username(self):
if self.config.has_option('DEFAULT', "default-user"):
return self.config.get('DEFAULT', 'default-user')
return ""
def update_namespace(self, namespace, new_dict):
ns_dict = vars(namespace)
for k in new_dict:
if k.startswith('plugin-'):
continue
if k in ns_dict and ns_dict[k] is None:
ns_dict[k] = new_dict[k]
return argparse.Namespace(**ns_dict)
def update(self, namespace, allowed_defaults):
if self.used_env_token and self.config is None:
return
username = self.username or self.default_username()
if not self.config.has_option(username, 'token') and not os.environ.get(ENV_TOKEN_NAME, None):
print("User {} is not configured.".format(username))
sys.exit(1)
if self.config.has_section(username) and allowed_defaults:
update_dicts = {
default_key: self.config.get(username, default_key)
for default_key in allowed_defaults if self.config.has_option(username, default_key)
}
return self.update_namespace(namespace, update_dicts)
return namespace
def get_token(self):
if self.used_env_token:
return os.environ.get(ENV_TOKEN_NAME, None)
if self.config.has_option(self.username or self.default_username(), "token"):
return self.config.get(self.username or self.default_username(), "token")
return ""
def remove_user(self, username):
if self.default_username() == username:
print('Cannot remote {} as they are the default user! You can change '
'the default user with: `linode-cli set-user USERNAME`'.format(username))
sys.exit(1)
if self.config.has_section(username):
self.config.remove_section(username)
self.write_config()
def print_users(self):
print('Configured Users: ')
default_user = self.default_username()
for sec in self.config.sections():
if sec != 'DEFAULT':
print('{} {}'.format('*' if sec == default_user else ' ', sec))
sys.exit(0)
def set_default_user(self, username):
if not self.config.has_section(username):
print('User {} is not configured!'.format(username))
sys.exit(1)
self.config.set('DEFAULT', 'default-user', username)
self.write_config()
def get_value(self, key):
username = self.username or self.default_username()
if not self.config.has_option(username, key):
return None
return self.config.get(username, key)
def plugin_set_value(self, key, value):
if self.running_plugin is None:
raise RuntimeError('No running plugin to retrieve configuration for!')
username = self.username or self.default_username()
self.config.set(username, 'plugin-{}-{}'.format(self.running_plugin, key), value)
def plugin_get_value(self, key):
if self.running_plugin is None:
raise RuntimeError('No running plugin to retrieve configuration for!')
username = self.username or self.default_username()
full_key = 'plugin-{}-{}'.format(self.running_plugin, key)
if not self.config.has_option(username, full_key):
return None
return self.config.get(username, full_key)
def write_config(self, silent=False):
if not os.path.exists("{}/{}".format(os.path.expanduser('~'), '.config')):
os.makedirs("{}/{}".format(os.path.expanduser('~'), '.config'))
with open(self._get_config_path(), 'w') as f:
self.config.write(f)
if not silent:
print("\nConfig written to {}".format(self._get_config_path()))
|
BSD 3-Clause New or Revised License
|
spcl/dace
|
dace/codegen/targets/fpga.py
|
is_fpga_kernel
|
python
|
def is_fpga_kernel(sdfg, state):
if ("is_FPGA_kernel" in state.location
and state.location["is_FPGA_kernel"] == False):
return False
data_nodes = state.data_nodes()
if len(data_nodes) == 0:
return False
for n in data_nodes:
if n.desc(sdfg).storage not in (dtypes.StorageType.FPGA_Global,
dtypes.StorageType.FPGA_Local,
dtypes.StorageType.FPGA_Registers,
dtypes.StorageType.FPGA_ShiftRegister):
return False
return True
|
Returns whether the given state is an FPGA kernel and should be dispatched
to the FPGA code generator.
:return: True if this is an FPGA kernel, False otherwise.
|
https://github.com/spcl/dace/blob/4c6695daaa43df22548b987024d1b681e92c7983/dace/codegen/targets/fpga.py#L57-L75
|
from six import StringIO
import collections
import enum
import functools
import itertools
import re
import warnings
import sympy as sp
import numpy as np
from typing import Dict, Iterable, List, Set, Tuple, Union
import copy
import dace
from dace.codegen.targets import cpp
from dace import subsets, data as dt, dtypes, memlet, symbolic
from dace.config import Config
from dace.frontend import operations
from dace.sdfg import SDFG, nodes, utils, dynamic_map_inputs
from dace.sdfg import ScopeSubgraphView, find_input_arraynode, find_output_arraynode
from dace.codegen import exceptions as cgx
from dace.codegen.codeobject import CodeObject
from dace.codegen.dispatcher import DefinedType
from dace.codegen.prettycode import CodeIOStream
from dace.codegen.targets.target import (TargetCodeGenerator, IllegalCopy,
make_absolute)
from dace.codegen import cppunparse
from dace.properties import Property, make_properties, indirect_properties
from dace.symbolic import evaluate
from dace.transformation.dataflow import MapUnroll
from collections import defaultdict
_CPU_STORAGE_TYPES = {
dtypes.StorageType.CPU_Heap, dtypes.StorageType.CPU_ThreadLocal,
dtypes.StorageType.CPU_Pinned
}
_FPGA_STORAGE_TYPES = {
dtypes.StorageType.FPGA_Global, dtypes.StorageType.FPGA_Local,
dtypes.StorageType.FPGA_Registers, dtypes.StorageType.FPGA_ShiftRegister
}
_FPGA_LOCAL_STORAGE_TYPES = {
dtypes.StorageType.FPGA_Local, dtypes.StorageType.FPGA_Registers,
dtypes.StorageType.FPGA_ShiftRegister
}
def vector_element_type_of(dtype):
if isinstance(dtype, dace.pointer):
return vector_element_type_of(dtype.base_type)
elif isinstance(dtype, dace.vector):
return dtype.base_type
return dtype
|
BSD 3-Clause New or Revised License
|
peerassets/pypeerassets
|
pypeerassets/provider/explorer.py
|
Explorer.getaddress
|
python
|
def getaddress(self, address: str) -> dict:
return cast(dict, self.ext_fetch('getaddress/' + address))
|
Returns information for given address.
|
https://github.com/peerassets/pypeerassets/blob/d1be8db9b2d0355f33aaf1d958086ca0f5042f69/pypeerassets/provider/explorer.py#L106-L109
|
from decimal import Decimal
from http.client import HTTPResponse
import json
from typing import Union, cast
from urllib.request import urlopen
from btcpy.structs.transaction import ScriptSig, Sequence, TxIn
from pypeerassets.exceptions import InsufficientFunds, UnsupportedNetwork
from pypeerassets.provider.common import Provider
class Explorer(Provider):
def __init__(self, network: str) -> None:
self.net = self._netname(network)['short']
if 'ppc' not in self.net:
raise UnsupportedNetwork('This API only supports Peercoin.')
def api_fetch(self, command: str) -> Union[dict, int, float, str]:
apiurl = 'https://explorer.peercoin.net/api/'
if self.is_testnet:
apiurl = 'https://testnet-explorer.peercoin.net/api/'
response = cast(HTTPResponse, urlopen(apiurl + command))
if response.status != 200:
raise Exception(response.reason)
r = response.read()
try:
return json.loads(r.decode())
except json.decoder.JSONDecodeError:
return r.decode()
def ext_fetch(self, command: str) -> Union[dict, int, float, str]:
extapiurl = 'https://explorer.peercoin.net/ext/'
if self.is_testnet:
extapiurl = 'https://testnet-explorer.peercoin.net/ext/'
response = cast(HTTPResponse, urlopen(extapiurl + command))
if response.status != 200:
raise Exception(response.reason)
try:
return json.loads(response.read().decode())
except json.decoder.JSONDecodeError:
return response.read().decode()
def getdifficulty(self) -> dict:
return cast(dict, self.api_fetch('getdifficulty'))
def getconnectioncount(self) -> int:
return cast(int, self.api_fetch('getconnectioncount'))
def getblockcount(self) -> int:
return cast(int, self.api_fetch('getblockcount'))
def getblockhash(self, index: int) -> str:
return cast(str, self.api_fetch('getblockhash?index=' + str(index)))
def getblock(self, hash: str) -> dict:
return cast(dict, self.api_fetch('getblock?hash=' + hash))
def getrawtransaction(self, txid: str, decrypt: int=0) -> dict:
q = 'getrawtransaction?txid={txid}&decrypt={decrypt}'.format(txid=txid, decrypt=decrypt)
return cast(dict, self.api_fetch(q))
def getnetworkghps(self) -> float:
return cast(float, self.api_fetch('getnetworkghps'))
def getmoneysupply(self) -> Decimal:
return Decimal(cast(float, self.ext_fetch('getmoneysupply')))
def getdistribution(self) -> dict:
return cast(dict, self.ext_fetch('getdistribution'))
|
BSD 3-Clause New or Revised License
|
dme722/ayx-blackbird
|
ayx_blackbird/mixins/anchor_utils_mixin.py
|
AnchorUtilsMixin.get_input_anchor
|
python
|
def get_input_anchor(self, input_anchor_name: str) -> InputAnchor:
try:
return [
anchor
for anchor in self.input_anchors
if anchor.name == input_anchor_name
][0]
except IndexError:
raise AnchorNotFoundException(f"{input_anchor_name} not found.")
|
Get an input anchor by name.
|
https://github.com/dme722/ayx-blackbird/blob/16533e22e3cbe36621328d94500a6e58ec0c73ea/ayx_blackbird/mixins/anchor_utils_mixin.py#L26-L35
|
from typing import List
from ..anchors import InputAnchor, OutputAnchor
from ..utilities.constants import ConnectionStatus
from ..utilities.exceptions import AnchorNotFoundException
class AnchorUtilsMixin:
def __init__(self) -> None:
self.input_anchors: List[InputAnchor] = []
self.output_anchors: List[OutputAnchor] = []
def push_all_metadata(self) -> None:
for anchor in self.output_anchors:
anchor.push_metadata()
def close_output_anchors(self) -> None:
for anchor in self.output_anchors:
anchor.close()
|
Apache License 2.0
|
qiskit/qiskit-ibmq-provider
|
test/fake_account_client.py
|
BaseFakeAccountClient.__init__
|
python
|
def __init__(self, job_limit=-1, job_class=BaseFakeJob):
self._jobs = {}
self._results_retrieved = set()
self._job_limit = job_limit
self._executor = ThreadPoolExecutor()
self._job_class = job_class
if isinstance(self._job_class, list):
self._job_class.reverse()
|
Initialize a fake account client.
|
https://github.com/qiskit/qiskit-ibmq-provider/blob/5e89e43eb7d97427946f3462cc6d814860c4a291/test/fake_account_client.py#L185-L193
|
import time
import copy
from random import randrange
import uuid
from concurrent.futures import ThreadPoolExecutor, wait
from qiskit.test.mock.backends.poughkeepsie.fake_poughkeepsie import FakePoughkeepsie
from qiskit.providers.ibmq.apiconstants import ApiJobStatus, API_JOB_FINAL_STATES
from qiskit.providers.ibmq.api.exceptions import RequestsApiError, UserTimeoutExceededError
VALID_RESULT_RESPONSE = {
'backend_name': 'ibmqx2',
'backend_version': '1.1.1',
'job_id': 'XC1323XG2',
'qobj_id': 'Experiment1',
'success': True,
'results': []
}
VALID_RESULT = {
'header': {
'name': 'Bell state',
'memory_slots': 2,
'creg_sizes': [['c', 2]],
'clbit_labels': [['c', 0], ['c', 1]],
'qubit_labels': [['q', 0], ['q', 1]]
},
'shots': 1024,
'status': 'DONE',
'success': True,
'data': {
'counts': {
'0x0': 484, '0x3': 540
}
}
}
class BaseFakeJob:
_job_progress = [
ApiJobStatus.CREATING,
ApiJobStatus.VALIDATING,
ApiJobStatus.RUNNING,
ApiJobStatus.COMPLETED
]
def __init__(self, executor, job_id, qobj, backend_name, job_tags=None,
job_name=None):
self._job_id = job_id
self._status = ApiJobStatus.CREATING
self.qobj = qobj
self._future = executor.submit(self._auto_progress)
self._result = None
self._backend_name = backend_name
self._job_tags = job_tags
self._job_name = job_name
def _auto_progress(self):
for status in self._job_progress:
time.sleep(0.5)
self._status = status
if self._status == ApiJobStatus.COMPLETED:
new_result = copy.deepcopy(VALID_RESULT_RESPONSE)
for _ in range(len(self.qobj['experiments'])):
valid_result = copy.deepcopy(VALID_RESULT)
counts = randrange(1024)
valid_result['data']['counts'] = {
'0x0': counts, '0x3': 1024-counts}
new_result['results'].append(valid_result)
new_result['job_id'] = self._job_id
new_result['backend_name'] = self._backend_name
self._result = new_result
def data(self):
data = {
'job_id': self._job_id,
'kind': 'q-object',
'status': self._status.value,
'creation_date': '2019-01-01T13:15:58.425972',
'_backend_info': {'name': self._backend_name}
}
if self._job_tags:
data['tags'] = self._job_tags.copy()
if self._job_name:
data['name'] = self._job_name
return data
def cancel(self):
self._future.cancel()
wait([self._future])
self._status = ApiJobStatus.CANCELLED
self._result = None
def result(self):
if not self._result:
raise RequestsApiError('Result is not available')
return self._result
def status(self):
return self._status
def name(self):
return self._job_name
class CancelableFakeJob(BaseFakeJob):
_job_progress = [
ApiJobStatus.CREATING,
ApiJobStatus.VALIDATING,
ApiJobStatus.RUNNING
]
class NewFieldFakeJob(BaseFakeJob):
def data(self):
data = super().data()
data['new_field'] = 'foo'
return data
class MissingFieldFakeJob(BaseFakeJob):
def data(self):
data = super().data()
del data['job_id']
return data
class FailedFakeJob(BaseFakeJob):
_job_progress = [
ApiJobStatus.CREATING,
ApiJobStatus.VALIDATING,
ApiJobStatus.RUNNING,
ApiJobStatus.ERROR_RUNNING_JOB
]
def data(self):
data = super().data()
if self.status() == ApiJobStatus.ERROR_RUNNING_JOB:
data['error'] = {'message': 'Job failed.', 'code': 1234}
return data
class BaseFakeAccountClient:
|
Apache License 2.0
|
catalyst-team/catalyst-rl
|
catalyst_rl/dl/experiment/base.py
|
BaseExperiment.get_loaders
|
python
|
def get_loaders(
self,
stage: str,
epoch: int = None,
) -> "OrderedDict[str, DataLoader]":
return self._loaders
|
Returns the loaders for a given stage
|
https://github.com/catalyst-team/catalyst-rl/blob/75ffa808e2bbb9071a169a1a9c813deb6a69a797/catalyst_rl/dl/experiment/base.py#L146-L152
|
from typing import Any, Dict, Iterable, List, Mapping, Union
from collections import OrderedDict
from torch import nn
from torch.utils.data import DataLoader
from catalyst_rl.dl import Callback, Experiment, utils
from catalyst_rl.utils.tools.typing import Criterion, Model, Optimizer, Scheduler
class BaseExperiment(Experiment):
def __init__(
self,
model: Model,
loaders: "OrderedDict[str, DataLoader]",
callbacks: "Union[OrderedDict[str, Callback], List[Callback]]" = None,
logdir: str = None,
stage: str = "train",
criterion: Criterion = None,
optimizer: Optimizer = None,
scheduler: Scheduler = None,
num_epochs: int = 1,
valid_loader: str = "valid",
main_metric: str = "loss",
minimize_metric: bool = True,
verbose: bool = False,
check_run: bool = False,
state_kwargs: Dict = None,
checkpoint_data: Dict = None,
distributed_params: Dict = None,
monitoring_params: Dict = None,
initial_seed: int = 42,
):
self._model = model
self._loaders = loaders
self._callbacks = utils.process_callbacks(callbacks)
self._criterion = criterion
self._optimizer = optimizer
self._scheduler = scheduler
self._initial_seed = initial_seed
self._logdir = logdir
self._stage = stage
self._num_epochs = num_epochs
self._valid_loader = valid_loader
self._main_metric = main_metric
self._minimize_metric = minimize_metric
self._verbose = verbose
self._check_run = check_run
self._additional_state_kwargs = state_kwargs or {}
self._checkpoint_data = checkpoint_data or {}
self._distributed_params = distributed_params or {}
self._monitoring_params = monitoring_params or {}
@property
def initial_seed(self) -> int:
return self._initial_seed
@property
def logdir(self):
return self._logdir
@property
def stages(self) -> Iterable[str]:
return [self._stage]
@property
def distributed_params(self) -> Dict:
return self._distributed_params
@property
def monitoring_params(self) -> Dict:
return self._monitoring_params
def get_state_params(self, stage: str) -> Mapping[str, Any]:
default_params = dict(
logdir=self.logdir,
num_epochs=self._num_epochs,
valid_loader=self._valid_loader,
main_metric=self._main_metric,
verbose=self._verbose,
minimize_metric=self._minimize_metric,
checkpoint_data=self._checkpoint_data,
)
state_params = {**default_params, **self._additional_state_kwargs}
return state_params
def get_model(self, stage: str) -> Model:
return self._model
def get_criterion(self, stage: str) -> Criterion:
return self._criterion
def get_optimizer(self, stage: str, model: nn.Module) -> Optimizer:
return self._optimizer
def get_scheduler(self, stage: str, optimizer=None) -> Scheduler:
return self._scheduler
|
Apache License 2.0
|
yen223/lunisolar
|
pycalcal/pycalcal.py
|
seconds
|
python
|
def seconds(clock):
return clock[2]
|
Return the seconds of clock time 'clock'.
|
https://github.com/yen223/lunisolar/blob/c130efe847d2fc9876c1b5458536c565e9d3ea7e/pycalcal/pycalcal.py#L282-L284
|
from __future__ import division
from mpmath import *
mp.prec = 50
BOGUS = 'bogus'
def quotient(m, n):
from operator import floordiv
return ifloor(m / n)
def ifloor(n):
from math import floor
return int(floor(n))
def iround(n):
from __builtin__ import round
return int(round(n))
from operator import mod
def amod(x, y):
return y + (mod(x, -y))
def next(i, p):
return i if p(i) else next(i+1, p)
def final(i, p):
return i - 1 if not p(i) else final(i+1, p)
def summa(f, k, p):
return 0 if not p(k) else f(k) + summa(f, k+1, p)
def altsumma(f, k, p):
if not p(k):
return 0
else:
S = f(k)
C = 0
j = k + 1
while p(j):
Y = f(j) - C
T = S + Y
C = (T - S) - Y
S = T
j += 1
return S
def binary_search(lo, hi, p, e):
x = (lo + hi) / 2
if p(lo, hi):
return x
elif e(x):
return binary_search(lo, x, p, e)
else:
return binary_search(x, hi, p, e)
def invert_angular(f, y, a, b, prec=10**-5):
return binary_search(a, b,
(lambda l, h: ((h - l) <= prec)),
(lambda x: mod((f(x) - y), 360) < 180))
def sigma(l, b):
return sum(b(*e) for e in zip(*l))
from copy import copy
def poly(x, a):
n = len(a) - 1
p = a[n]
for i in range(1, n+1):
p = p * x + a[n-i]
return p
def epoch():
return 0
def rd(tee):
return tee - epoch()
SUNDAY = 0
MONDAY = 1
TUESDAY = 2
WEDNESDAY = 3
THURSDAY = 4
FRIDAY = 5
SATURDAY = SUNDAY + 6
DAYS_OF_WEEK_NAMES = {
SUNDAY : "Sunday",
MONDAY : "Monday",
TUESDAY : "Tuesday",
WEDNESDAY : "Wednesday",
THURSDAY : "Thursday",
FRIDAY : "Friday",
SATURDAY : "Saturday"}
def day_of_week_from_fixed(date):
return mod(date - rd(0) - SUNDAY, 7)
def standard_month(date):
return date[1]
def standard_day(date):
return date[2]
def standard_year(date):
return date[0]
def time_of_day(hour, minute, second):
return [hour, minute, second]
def hour(clock):
return clock[0]
def minute(clock):
return clock[1]
|
MIT License
|
skorch-dev/skorch
|
skorch/net.py
|
NeuralNet.validation_step
|
python
|
def validation_step(self, batch, **fit_params):
self._set_training(False)
Xi, yi = unpack_data(batch)
with torch.no_grad():
y_pred = self.infer(Xi, **fit_params)
loss = self.get_loss(y_pred, yi, X=Xi, training=False)
return {
'loss': loss,
'y_pred': y_pred,
}
|
Perform a forward step using batched data and return the
resulting loss.
The module is set to be in evaluation mode (e.g. dropout is
not applied).
Parameters
----------
batch
A single batch returned by the data loader.
**fit_params : dict
Additional parameters passed to the ``forward`` method of
the module and to the ``self.train_split`` call.
|
https://github.com/skorch-dev/skorch/blob/32577c56b8765cbf2ed8b90c52ac6bc7b97d5c18/skorch/net.py#L844-L869
|
import fnmatch
from functools import partial
from itertools import chain
from collections import OrderedDict
from contextlib import contextmanager
import tempfile
import warnings
import numpy as np
from sklearn.base import BaseEstimator
import torch
from torch.utils.data import DataLoader
from skorch.callbacks import EpochTimer
from skorch.callbacks import PrintLog
from skorch.callbacks import PassthroughScoring
from skorch.callbacks.base import _issue_warning_if_on_batch_override
from skorch.dataset import Dataset
from skorch.dataset import CVSplit
from skorch.dataset import get_len
from skorch.dataset import unpack_data
from skorch.exceptions import DeviceWarning
from skorch.exceptions import SkorchAttributeError
from skorch.history import History
from skorch.setter import optimizer_setter
from skorch.utils import _identity
from skorch.utils import _infer_predict_nonlinearity
from skorch.utils import FirstStepAccumulator
from skorch.utils import TeeGenerator
from skorch.utils import _check_f_arguments
from skorch.utils import check_is_fitted
from skorch.utils import duplicate_items
from skorch.utils import get_map_location
from skorch.utils import is_dataset
from skorch.utils import params_for
from skorch.utils import to_device
from skorch.utils import to_numpy
from skorch.utils import to_tensor
class NeuralNet:
prefixes_ = ['iterator_train', 'iterator_valid', 'callbacks', 'dataset']
cuda_dependent_attributes_ = []
init_context_ = None
_modules = []
_criteria = []
_optimizers = []
def __init__(
self,
module,
criterion,
optimizer=torch.optim.SGD,
lr=0.01,
max_epochs=10,
batch_size=128,
iterator_train=DataLoader,
iterator_valid=DataLoader,
dataset=Dataset,
train_split=CVSplit(5),
callbacks=None,
predict_nonlinearity='auto',
warm_start=False,
verbose=1,
device='cpu',
**kwargs
):
self.module = module
self.criterion = criterion
self.optimizer = optimizer
self.lr = lr
self.max_epochs = max_epochs
self.batch_size = batch_size
self.iterator_train = iterator_train
self.iterator_valid = iterator_valid
self.dataset = dataset
self.train_split = train_split
self.callbacks = callbacks
self.predict_nonlinearity = predict_nonlinearity
self.warm_start = warm_start
self.verbose = verbose
self.device = device
self._check_deprecated_params(**kwargs)
history = kwargs.pop('history', None)
initialized = kwargs.pop('initialized_', False)
virtual_params = kwargs.pop('virtual_params_', dict())
self._kwargs = kwargs
vars(self).update(kwargs)
self.history_ = history
self.initialized_ = initialized
self.virtual_params_ = virtual_params
@property
def history(self):
return self.history_
@history.setter
def history(self, value):
self.history_ = value
@property
def _default_callbacks(self):
return [
('epoch_timer', EpochTimer()),
('train_loss', PassthroughScoring(
name='train_loss',
on_train=True,
)),
('valid_loss', PassthroughScoring(
name='valid_loss',
)),
('print_log', PrintLog()),
]
def get_default_callbacks(self):
return self._default_callbacks
def notify(self, method_name, **cb_kwargs):
if not self.history:
_issue_warning_if_on_batch_override(self.callbacks_)
getattr(self, method_name)(self, **cb_kwargs)
for _, cb in self.callbacks_:
getattr(cb, method_name)(self, **cb_kwargs)
def on_train_begin(self, net, X=None, y=None, **kwargs):
pass
def on_train_end(self, net, X=None, y=None, **kwargs):
pass
def on_epoch_begin(self, net, dataset_train=None, dataset_valid=None, **kwargs):
self.history.new_epoch()
self.history.record('epoch', len(self.history))
def on_epoch_end(self, net, dataset_train=None, dataset_valid=None, **kwargs):
pass
def on_batch_begin(self, net, batch=None, training=False, **kwargs):
self.history.new_batch()
def on_batch_end(self, net, batch=None, training=False, **kwargs):
pass
def on_grad_computed(
self, net, named_parameters, batch=None, training=False, **kwargs):
pass
def _yield_callbacks(self):
print_logs = []
for item in self.get_default_callbacks() + (self.callbacks or []):
if isinstance(item, (tuple, list)):
named_by_user = True
name, cb = item
else:
named_by_user = False
cb = item
if isinstance(cb, type):
name = cb.__name__
else:
name = cb.__class__.__name__
if isinstance(cb, PrintLog) or (cb == PrintLog):
print_logs.append((name, cb, named_by_user))
else:
yield name, cb, named_by_user
yield from print_logs
def _callbacks_grouped_by_name(self):
callbacks, names_set_by_user = OrderedDict(), set()
for name, cb, named_by_user in self._yield_callbacks():
if named_by_user:
names_set_by_user.add(name)
callbacks[name] = callbacks.get(name, []) + [cb]
return callbacks, names_set_by_user
def _uniquely_named_callbacks(self):
grouped_cbs, names_set_by_user = self._callbacks_grouped_by_name()
for name, cbs in grouped_cbs.items():
if len(cbs) > 1 and name in names_set_by_user:
raise ValueError("Found duplicate user-set callback name "
"'{}'. Use unique names to correct this."
.format(name))
for i, cb in enumerate(cbs):
if len(cbs) > 1:
unique_name = '{}_{}'.format(name, i+1)
if unique_name in grouped_cbs:
raise ValueError("Assigning new callback name failed "
"since new name '{}' exists already."
.format(unique_name))
else:
unique_name = name
yield unique_name, cb
def initialize_callbacks(self):
callbacks_ = []
class Dummy:
pass
for name, cb in self._uniquely_named_callbacks():
param_callback = getattr(self, 'callbacks__' + name, Dummy)
if param_callback is not Dummy:
cb = param_callback
params = self.get_params_for('callbacks__{}'.format(name))
if (cb is None) and params:
raise ValueError("Trying to set a parameter for callback {} "
"which does not exist.".format(name))
if cb is None:
continue
if isinstance(cb, type):
cb = cb(**params)
else:
cb.set_params(**params)
cb.initialize()
callbacks_.append((name, cb))
self.callbacks_ = callbacks_
return self
def initialized_instance(self, instance_or_cls, kwargs):
is_init = isinstance(instance_or_cls, torch.nn.Module)
if is_init and not kwargs:
return instance_or_cls
if is_init:
return type(instance_or_cls)(**kwargs)
return instance_or_cls(**kwargs)
def initialize_criterion(self):
kwargs = self.get_params_for('criterion')
criterion = self.initialized_instance(self.criterion, kwargs)
self.criterion_ = criterion
return self
def initialize_module(self):
kwargs = self.get_params_for('module')
module = self.initialized_instance(self.module, kwargs)
self.module_ = module
return self
def _is_virtual_param(self, key):
return any(fnmatch.fnmatch(key, pat) for pat in self.virtual_params_)
def _virtual_setattr(self, param, val):
setattr(self, param, val)
def _register_virtual_param(self, param_patterns, fn=_virtual_setattr):
if not isinstance(param_patterns, list):
param_patterns = [param_patterns]
for pattern in param_patterns:
self.virtual_params_[pattern] = fn
def _apply_virtual_params(self, virtual_kwargs):
for pattern, fn in self.virtual_params_.items():
for key, val in virtual_kwargs.items():
if not fnmatch.fnmatch(key, pattern):
continue
fn(self, key, val)
def initialize_virtual_params(self):
self.virtual_params_ = {}
def initialize_optimizer(self, triggered_directly=None):
if triggered_directly is not None:
warnings.warn(
"The 'triggered_directly' argument to 'initialize_optimizer' is "
"deprecated, please don't use it anymore.", DeprecationWarning)
named_parameters = self.get_all_learnable_params()
args, kwargs = self.get_params_for_optimizer(
'optimizer', named_parameters)
self.optimizer_ = self.optimizer(*args, **kwargs)
return self
def initialize_history(self):
self.history_ = History()
return self
def _format_reinit_msg(self, name, kwargs=None, triggered_directly=True):
msg = "Re-initializing {}".format(name)
if triggered_directly and kwargs:
msg += (" because the following parameters were re-set: {}"
.format(', '.join(sorted(kwargs))))
msg += "."
return msg
@contextmanager
def _current_init_context(self, name):
try:
self.init_context_ = name
yield
finally:
self.init_context_ = None
def _initialize_virtual_params(self):
with self._current_init_context('virtual_params'):
self.initialize_virtual_params()
return self
def _initialize_callbacks(self):
with self._current_init_context('callbacks'):
if self.callbacks == "disable":
self.callbacks_ = []
return self
self.initialize_callbacks()
return self
def _initialize_criterion(self, reason=None):
with self._current_init_context('criterion'):
kwargs = {}
for criterion_name in self._criteria:
kwargs.update(self.get_params_for(criterion_name))
has_init_criterion = any(
isinstance(getattr(self, criterion_name + '_', None), torch.nn.Module)
for criterion_name in self._criteria)
if kwargs or reason or has_init_criterion:
if self.initialized_ and self.verbose:
if reason:
msg = reason
else:
msg = self._format_reinit_msg("criterion", kwargs)
print(msg)
self.initialize_criterion()
for name in self._criteria:
criterion = getattr(self, name + '_')
if isinstance(criterion, torch.nn.Module):
setattr(self, name + '_', to_device(criterion, self.device))
return self
def _initialize_module(self, reason=None):
with self._current_init_context('module'):
kwargs = {}
for module_name in self._modules:
kwargs.update(self.get_params_for(module_name))
has_init_module = any(
isinstance(getattr(self, module_name + '_', None), torch.nn.Module)
for module_name in self._modules)
if kwargs or reason or has_init_module:
if self.initialized_ and self.verbose:
if reason:
msg = reason
else:
msg = self._format_reinit_msg("module", kwargs)
print(msg)
self.initialize_module()
for name in self._modules:
module = getattr(self, name + '_')
if isinstance(module, torch.nn.Module):
setattr(self, name + '_', to_device(module, self.device))
return self
def get_all_learnable_params(self):
seen = set()
for name in self._modules + self._criteria:
module = getattr(self, name + '_')
named_parameters = getattr(module, 'named_parameters', None)
if not named_parameters:
continue
for param_name, param in named_parameters():
if param in seen:
continue
seen.add(param)
yield param_name, param
def _initialize_optimizer(self, reason=None):
with self._current_init_context('optimizer'):
if self.initialized_ and self.verbose:
if reason:
msg = reason
else:
msg = self._format_reinit_msg("optimizer", triggered_directly=False)
print(msg)
self.initialize_optimizer()
for name in self._optimizers:
param_pattern = [name + '__param_groups__*__*', name + '__*']
if name == 'optimizer':
param_pattern.append('lr')
setter = partial(
optimizer_setter,
optimizer_attr=name + '_',
optimizer_name=name,
)
self._register_virtual_param(param_pattern, setter)
return self
def _initialize_history(self):
with self._current_init_context('history'):
self.initialize_history()
return self
def initialize(self):
self._initialize_virtual_params()
self._initialize_callbacks()
self._initialize_module()
self._initialize_criterion()
self._initialize_optimizer()
self._initialize_history()
self._check_kwargs(self._kwargs)
self.initialized_ = True
return self
def check_data(self, X, y=None):
pass
def _set_training(self, training=True):
for module_name in self._modules + self._criteria:
module = getattr(self, module_name + '_')
if isinstance(module, torch.nn.Module):
module.train(training)
|
BSD 3-Clause New or Revised License
|
openstack/kuryr-libnetwork
|
kuryr_libnetwork/port_driver/drivers/veth.py
|
VethDriver.get_supported_bindings
|
python
|
def get_supported_bindings(self):
return self.BINDING_DRIVERS
|
Returns a tuple of supported binding driver names for the driver.
:returns: a tuple of strings
|
https://github.com/openstack/kuryr-libnetwork/blob/e5daefc3c2dae2d4f65ef584eb257e841cd417e7/kuryr_libnetwork/port_driver/drivers/veth.py#L24-L29
|
from kuryr.lib import binding
from kuryr.lib.binding.drivers import utils
from kuryr_libnetwork.port_driver import driver
class VethDriver(driver.Driver):
BINDING_DRIVERS = ('veth',)
|
Apache License 2.0
|
amossys/fragscapy
|
fragscapy/modifications/mod.py
|
Mod.get_params
|
python
|
def get_params(self):
return {k: v for k, v in vars(self).items() if k[0] != "_"}
|
Returns a dictionnary of the options defining the mod.
|
https://github.com/amossys/fragscapy/blob/3ee7f5c73fc6c7eb64858e197c0b8d2b313734e0/fragscapy/modifications/mod.py#L110-L112
|
import abc
class Mod(abc.ABC):
name = None
doc = None
_nb_args = -1
def __init__(self, *args):
self.check_args(*args)
self.parse_args(*args)
def is_deterministic(self):
return True
def parse_args(self, *args):
def check_args(self, *args):
if self._nb_args >= 0 and len(args) != self._nb_args:
raise ValueError(
"Incorrect number of parameters specified. "
"Got {}, expected {}.".format(len(args), self._nb_args)
)
@abc.abstractmethod
def apply(self, pkt_list):
raise NotImplementedError
@classmethod
def usage(cls):
if cls.name is None:
print(cls.__class__.__name__.lower())
else:
print(cls.name)
print("==========")
if cls.doc is None:
print("No usage documented")
else:
print(" ", cls.doc.replace('\n', '\n '), sep='')
|
MIT License
|
jubatus/jubakit
|
jubakit/base.py
|
BaseSchema.predict
|
python
|
def predict(cls, row, typed):
raise NotImplementedError()
|
Predicts a Schema from dict-like row object.
|
https://github.com/jubatus/jubakit/blob/f6252ba627ce4e2e42eb9aafaaf05c882bc1c678/jubakit/base.py#L91-L95
|
from __future__ import absolute_import, division, print_function, unicode_literals
import collections
import copy
import random
import math
import jubatus
from .shell import JubaShell
from .compat import *
from .logger import get_logger
from ._process import _ServiceBackend
_logger = get_logger()
class BaseLoader(object):
def is_infinite(self):
return False
def preprocess(self, ent):
return ent
def __iter__(self):
for ent in self.rows():
processed = self.preprocess(ent)
if processed is not None:
yield processed
def rows(self):
raise NotImplementedError()
class BaseSchema(object):
IGNORE = '_'
AUTO = '.'
INFER = '?'
def __init__(self, mapping, fallback=None):
self._fallback = fallback
self._key2type, self._key2name = BaseSchema._normalize_mapping(mapping)
def transform(self, row):
raise NotImplementedError()
@classmethod
|
MIT License
|
opensearch-project/opensearch-py
|
opensearchpy/client/cat.py
|
CatClient.allocation
|
python
|
def allocation(self, node_id=None, params=None, headers=None):
return self.transport.perform_request(
"GET",
_make_path("_cat", "allocation", node_id),
params=params,
headers=headers,
)
|
Provides a snapshot of how many shards are allocated to each data node and how
much disk space they are using.
:arg node_id: A comma-separated list of node IDs or names to
limit the returned information
:arg bytes: The unit in which to display byte values Valid
choices: b, k, kb, m, mb, g, gb, t, tb, p, pb
:arg format: a short version of the Accept header, e.g. json,
yaml
:arg h: Comma-separated list of column names to display
:arg help: Return help information
:arg local: Return local information, do not retrieve the state
from master node (default: false)
:arg master_timeout: Explicit operation timeout for connection
to master node
:arg s: Comma-separated list of column names or column aliases
to sort by
:arg v: Verbose mode. Display column headers
|
https://github.com/opensearch-project/opensearch-py/blob/4281fe0e2c6baefc7abeda115b1f0cb1f746ebba/opensearchpy/client/cat.py#L57-L84
|
from .utils import NamespacedClient, _make_path, query_params
class CatClient(NamespacedClient):
@query_params("expand_wildcards", "format", "h", "help", "local", "s", "v")
def aliases(self, name=None, params=None, headers=None):
return self.transport.perform_request(
"GET", _make_path("_cat", "aliases", name), params=params, headers=headers
)
@query_params("bytes", "format", "h", "help", "local", "master_timeout", "s", "v")
|
Apache License 2.0
|
ancasag/ensembleobjectdetection
|
TestTimeAugmentation/kerasfcos/models/retinanet.py
|
__build_model_pyramid
|
python
|
def __build_model_pyramid(model_name, model, features):
return keras.layers.Concatenate(axis=1, name=model_name)([model(f) for f in features])
|
Applies a single submodel to each FPN level.
Args
model_name: Name of the submodel.
model: The submodel to evaluate.
features: The FPN features. [P3, P4, P5, P6, P7]
Returns
A tensor containing the response from the submodel on the FPN features.
|
https://github.com/ancasag/ensembleobjectdetection/blob/2c3be846caf31eafab8b5660a3f62a6d88578c03/TestTimeAugmentation/kerasfcos/models/retinanet.py#L240-L252
|
import sys
sys.path.append("../")
import keras
import keras.backend as K
from .. import initializers
from .. import layers
from ..utils.anchors import AnchorParameters
from . import assert_training_model
def default_shared_model(
pyramid_feature_size=256,
classification_feature_size=256,
name='shared_submodel'
):
options = {
'kernel_size': 3,
'strides': 1,
'padding': 'same',
}
inputs = keras.layers.Input(shape=(None, None, pyramid_feature_size))
outputs = inputs
for i in range(4):
outputs = keras.layers.Conv2D(
filters=classification_feature_size,
activation='relu',
name='pyramid_shared_{}'.format(i),
kernel_initializer=keras.initializers.normal(mean=0.0, stddev=0.01, seed=None),
bias_initializer='zeros',
**options
)(outputs)
return keras.models.Model(inputs=inputs, outputs=outputs, name=name)
def default_classification_model(
num_classes,
shared_model,
pyramid_feature_size=256,
prior_probability=0.01,
name='classification_submodel'
):
options = {
'kernel_size': 3,
'strides': 1,
'padding': 'same',
}
inputs = keras.layers.Input(shape=(None, None, pyramid_feature_size))
outputs = shared_model(inputs)
outputs = keras.layers.Conv2D(
filters=num_classes,
kernel_initializer=keras.initializers.normal(mean=0.0, stddev=0.01, seed=None),
bias_initializer=initializers.PriorProbability(probability=prior_probability),
name='pyramid_classification',
**options
)(outputs)
outputs = keras.layers.Reshape((-1, num_classes), name='pyramid_classification_reshape')(outputs)
outputs = keras.layers.Activation('sigmoid', name='pyramid_classification_sigmoid')(outputs)
return keras.models.Model(inputs=inputs, outputs=outputs, name=name)
def default_centerness_model(
shared_model,
pyramid_feature_size=256,
name='centerness_submodel'
):
options = {
'kernel_size': 3,
'strides': 1,
'padding': 'same',
}
inputs = keras.layers.Input(shape=(None, None, pyramid_feature_size))
outputs = shared_model(inputs)
outputs = keras.layers.Conv2D(
filters=1,
kernel_initializer=keras.initializers.normal(mean=0.0, stddev=0.01, seed=None),
bias_initializer='zeros',
name='pyramid_centerness',
**options
)(outputs)
outputs = keras.layers.Reshape((-1, 1), name='pyramid_centerness_reshape')(outputs)
outputs = keras.layers.Activation('sigmoid', name='pyramid_centerness_sigmoid')(outputs)
return keras.models.Model(inputs=inputs, outputs=outputs, name=name)
def default_regression_model(num_values=4, pyramid_feature_size=256, regression_feature_size=256,
name='regression_submodel'):
options = {
'kernel_size': 3,
'strides': 1,
'padding': 'same',
'kernel_initializer': keras.initializers.normal(mean=0.0, stddev=0.01, seed=None),
'bias_initializer': 'zeros'
}
inputs = keras.layers.Input(shape=(None, None, pyramid_feature_size))
outputs = inputs
for i in range(4):
outputs = keras.layers.Conv2D(
filters=regression_feature_size,
activation='relu',
name='pyramid_regression_{}'.format(i),
**options
)(outputs)
outputs = keras.layers.Conv2D(num_values, name='pyramid_regression', **options)(outputs)
outputs = keras.layers.Reshape((-1, num_values), name='pyramid_regression_reshape')(outputs)
outputs = keras.layers.Lambda(lambda x: K.exp(x))(outputs)
return keras.models.Model(inputs=inputs, outputs=outputs, name=name)
def __create_pyramid_features(C3, C4, C5, feature_size=256):
P5 = keras.layers.Conv2D(feature_size, kernel_size=1, strides=1, padding='same', name='C5_reduced')(C5)
P5_upsampled = layers.UpsampleLike(name='P5_upsampled')([P5, C4])
P5 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=1, padding='same', name='P5')(P5)
P4 = keras.layers.Conv2D(feature_size, kernel_size=1, strides=1, padding='same', name='C4_reduced')(C4)
P4 = keras.layers.Add(name='P4_merged')([P5_upsampled, P4])
P4_upsampled = layers.UpsampleLike(name='P4_upsampled')([P4, C3])
P4 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=1, padding='same', name='P4')(P4)
P3 = keras.layers.Conv2D(feature_size, kernel_size=1, strides=1, padding='same', name='C3_reduced')(C3)
P3 = keras.layers.Add(name='P3_merged')([P4_upsampled, P3])
P3 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=1, padding='same', name='P3')(P3)
P6 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=2, padding='same', name='P6')(C5)
P7 = keras.layers.Activation('relu', name='C6_relu')(P6)
P7 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=2, padding='same', name='P7')(P7)
return [P3, P4, P5, P6, P7]
def default_submodels(num_classes):
shared_model = default_shared_model(pyramid_feature_size=256, classification_feature_size=256)
return [
('regression', default_regression_model(num_values=4)),
('classification', default_classification_model(num_classes=num_classes, shared_model=shared_model)),
('centerness', default_centerness_model(shared_model=shared_model))
]
|
MIT License
|
pyoceans/pocean-core
|
pocean/dsg/utils.py
|
get_calculated_attributes
|
python
|
def get_calculated_attributes(df, axes=None, history=None):
axes = get_default_axes(axes)
attrs = get_geographic_attributes(df, axes)
attrs = dict_update(attrs, get_vertical_attributes(df, axes))
attrs = dict_update(attrs, get_temporal_attributes(df, axes))
attrs = dict_update(attrs, get_creation_attributes(history))
return attrs
|
Functions to automate netCDF attribute generation from the data itself
This is a wrapper for the other four functions, which could be called separately.
:param df: data (Pandas DataFrame)
:param axes: keys (x,y,z,t) are associated with actual column names (dictionary)
:param history: history: text initializing audit trail for modifications to the original data (optional, string)
:return: dictionary of global attributes
|
https://github.com/pyoceans/pocean-core/blob/a2434b249dfc7b020f5ecbf509a1af60d01a6294/pocean/dsg/utils.py#L19-L35
|
from __future__ import division
from datetime import datetime
import pandas as pd
from shapely.validation import explain_validity
from shapely.geometry import Point, Polygon, LineString, box
from pocean.utils import (
get_default_axes,
unique_justseen,
dict_update
)
from pocean import logger as L
|
MIT License
|
qiboteam/qibo
|
src/qibo/models/grover.py
|
Grover.execute
|
python
|
def execute(self, nshots=100, freq=False, logs=False):
if (self.num_sol or self.targ_a) and not self.iterative:
if self.targ_a:
it = int(np.pi * (1/self.targ_a) / 4)
else:
it = int(np.pi * np.sqrt(self.sup_size / self.num_sol) / 4)
circuit = self.circuit(it)
result = circuit(nshots=nshots).frequencies(binary=True)
if freq:
if logs:
log.info("Result of sampling Grover's algorihm")
log.info(result)
self.frequencies = result
if logs:
log.info(f"Most common states found using Grover's algorithm with {it} iterations:")
if self.targ_a:
most_common = result.most_common(1)
else:
most_common = result.most_common(self.num_sol)
self.solution = []
self.iterations = it
for i in most_common:
if logs:
log.info(i[0])
self.solution.append(i[0])
if logs:
if self.check:
if self.check(i[0], *self.check_args):
log.info('Solution checked and successful.')
else:
log.info('Not a solution of the problem. Something went wrong.')
else:
if not self.check:
raise_error(ValueError, "Check function needed for iterative approach.")
measured, total_iterations = self.iterative_grover()
if logs:
log.info('Solution found in an iterative process.')
log.info(f'Solution: {measured}')
log.info(f'Total Grover iterations taken: {total_iterations}')
self.solution = measured
self.iterations = total_iterations
return self.solution, self.iterations
|
Execute Grover's algorithm.
If the number of solutions is given, calculates iterations,
otherwise it uses an iterative approach.
Args:
nshots (int): number of shots in order to get the frequencies.
freq (bool): print the full frequencies after the exact Grover algorithm.
Returns:
solution (str): bitstring (or list of bitstrings) measured as solution of the search.
iterations (int): number of oracle calls done to reach a solution.
|
https://github.com/qiboteam/qibo/blob/d8bd2d3de0d8eb12a428a9125302e318480e982a/src/qibo/models/grover.py#L175-L229
|
import numpy as np
from qibo import gates
from qibo.config import log, raise_error
from qibo.models.circuit import Circuit
class Grover(object):
def __init__(self, oracle, superposition_circuit=None, initial_state_circuit=None,
superposition_qubits=None, superposition_size=None, number_solutions=None,
target_amplitude = None, check=None, check_args=(), iterative=False):
self.oracle = oracle
self.initial_state_circuit = initial_state_circuit
if superposition_circuit:
self.superposition = superposition_circuit
else:
if not superposition_qubits:
raise_error(ValueError, "Cannot create Grover model if the "
"superposition circuit or number of "
"qubits is not specified.")
self.superposition = Circuit(superposition_qubits)
self.superposition.add([gates.H(i) for i in range(superposition_qubits)])
if superposition_qubits:
self.sup_qubits = superposition_qubits
else:
self.sup_qubits = self.superposition.nqubits
if superposition_size:
self.sup_size = superposition_size
else:
self.sup_size = int(2 ** self.sup_qubits)
assert oracle.nqubits > self.sup_qubits
self.anc_qubits_sup = self.superposition.nqubits - self.sup_qubits
self.anc_qubits_ora = self.oracle.nqubits - self.sup_qubits - 1
self.nqubits = self.sup_qubits + max(self.anc_qubits_sup, self.anc_qubits_ora) + 1
self.check = check
self.check_args = check_args
self.num_sol = number_solutions
self.targ_a = target_amplitude
self.iterative = iterative
self.space_sup = list(range(self.sup_qubits + self.anc_qubits_sup))
self.space_ora = list(range(self.sup_qubits + self.anc_qubits_ora)) + [self.nqubits-1]
def initialize(self):
c = Circuit(self.nqubits)
c.add(gates.X(self.nqubits-1))
c.add(gates.H(self.nqubits-1))
if self.initial_state_circuit:
c.add(self.initial_state_circuit.invert().on_qubits(*range(self.initial_state_circuit.nqubits)))
c.add(self.superposition.on_qubits(*self.space_sup))
return c
def diffusion(self):
nqubits = self.superposition.nqubits + 1
c = Circuit(nqubits)
c.add(self.superposition.invert().on_qubits(*range(nqubits-1)))
if self.initial_state_circuit:
c.add(self.initial_state_circuit.invert().on_qubits(*range(self.initial_state_circuit.nqubits)))
c.add([gates.X(i) for i in range(self.sup_qubits)])
c.add(gates.X(nqubits-1).controlled_by(*range(self.sup_qubits)))
c.add([gates.X(i) for i in range(self.sup_qubits)])
if self.initial_state_circuit:
c.add(self.initial_state_circuit.on_qubits(*range(self.initial_state_circuit.nqubits)))
c.add(self.superposition.on_qubits(*range(nqubits-1)))
return c
def step(self):
c = Circuit(self.nqubits)
c.add(self.oracle.on_qubits(*self.space_ora))
c.add(self.diffusion().on_qubits(*(self.space_sup+[self.nqubits-1])))
return c
def circuit(self, iterations):
c = Circuit(self.nqubits)
c += self.initialize()
for _ in range(iterations):
c += self.step()
c.add(gates.M(*range(self.sup_qubits)))
return c
def iterative_grover(self, lamda_value=6/5):
k = 1
lamda = lamda_value
total_iterations = 0
while True:
it = np.random.randint(k + 1)
if it != 0:
total_iterations += it
circuit = self.circuit(it)
result = circuit(nshots=1)
measured = result.frequencies(binary=True).most_common(1)[0][0]
if self.check(measured, *self.check_args):
return measured, total_iterations
k = min(lamda * k, np.sqrt(self.sup_size))
if total_iterations > (9/4) * np.sqrt(self.sup_size):
log.warning("Too many total iterations, output might not be solution.")
return measured, total_iterations
|
Apache License 2.0
|
rainingcomputers/pykitml
|
pykitml/_minimize_model.py
|
MinimizeModel.train
|
python
|
def train(self, training_data, targets, batch_size, epochs, optimizer,
testing_data=None, testing_targets=None, testing_freq=1, decay_freq=1):
print('Training Model...')
self._performance_log = {}
self._performance_log['epoch'] = []
self._performance_log['cost_train'] = []
self._performance_log['learning_rate'] = []
if(testing_data is not None):
self._performance_log['cost_test'] = []
self._init_train(batch_size)
pbar = tqdm.trange(0, epochs, ncols=80, unit='epochs')
for epoch in pbar:
total_gradient = self._get_batch_grad(epoch, batch_size, training_data, targets)
self._mparams = optimizer._optimize(self._mparams, total_gradient)
if((epoch+1) % decay_freq == 0): optimizer._decay()
if((epoch+1)%testing_freq == 0):
self._performance_log['epoch'].append(epoch+1)
learning_rate = optimizer._learning_rate
self._performance_log['learning_rate'].append(learning_rate)
cost_train = self.cost(training_data, targets)
pbar.set_postfix(cost=cost_train)
self._performance_log['cost_train'].append(cost_train)
if(testing_data is None): continue
cost_test = self.cost(testing_data, testing_targets)
self._performance_log['cost_test'].append(cost_test)
pbar.close()
|
Trains the model on the training data, after training is complete, you can call
:py:func:`plot_performance` to plot performance graphs.
Parameters
----------
training_data : numpy.array
numpy array containing training data.
targets : numpy.array
numpy array containing training targets, corresponding to the training data.
batch_size : int
Number of training examples to use in one epoch, or
number of training examples to use to estimate the gradient.
epochs : int
Number of epochs the model should be trained for.
optimizer : any Optimizer object
See :ref:`optimizers`
testing_data : numpy.array
numpy array containing testing data.
testing_targets : numpy.array
numpy array containing testing targets, corresponding to the testing data.
testing_freq : int
How frequently the model should be tested, i.e the model will be tested
after every :code:`testing_freq` epochs. You may want to increase this to reduce
training time.
decay_freq : int
How frequently the model should decay the learning rate. The learning rate
will decay after every :code:`decay_freq` epochs.
Raises
------
ValueError
If :code:`training_data`, :code:`targets`, :code:`testing_data` or
:code:`testing_targets` has invalid dimensions/shape.
|
https://github.com/rainingcomputers/pykitml/blob/1c3e50cebcdb6c4da63979ef9a812b44d23a4857/pykitml/_minimize_model.py#L13-L93
|
from abc import ABC, abstractmethod
import numpy as np
import matplotlib.pyplot as plt
import tqdm
class MinimizeModel(ABC):
|
MIT License
|
petl-developers/petl
|
petl/transform/joins.py
|
lookupjoin
|
python
|
def lookupjoin(left, right, key=None, lkey=None, rkey=None, missing=None,
presorted=False, buffersize=None, tempdir=None, cache=True,
lprefix=None, rprefix=None):
lkey, rkey = keys_from_args(left, right, key, lkey, rkey)
return LookupJoinView(left, right, lkey, rkey, presorted=presorted,
missing=missing, buffersize=buffersize,
tempdir=tempdir, cache=cache,
lprefix=lprefix, rprefix=rprefix)
|
Perform a left join, but where the key is not unique in the right-hand
table, arbitrarily choose the first row and ignore others. E.g.::
>>> import petl as etl
>>> table1 = [['id', 'color', 'cost'],
... [1, 'blue', 12],
... [2, 'red', 8],
... [3, 'purple', 4]]
>>> table2 = [['id', 'shape', 'size'],
... [1, 'circle', 'big'],
... [1, 'circle', 'small'],
... [2, 'square', 'tiny'],
... [2, 'square', 'big'],
... [3, 'ellipse', 'small'],
... [3, 'ellipse', 'tiny']]
>>> table3 = etl.lookupjoin(table1, table2, key='id')
>>> table3
+----+----------+------+-----------+---------+
| id | color | cost | shape | size |
+====+==========+======+===========+=========+
| 1 | 'blue' | 12 | 'circle' | 'big' |
+----+----------+------+-----------+---------+
| 2 | 'red' | 8 | 'square' | 'tiny' |
+----+----------+------+-----------+---------+
| 3 | 'purple' | 4 | 'ellipse' | 'small' |
+----+----------+------+-----------+---------+
See also :func:`petl.transform.joins.leftjoin`.
|
https://github.com/petl-developers/petl/blob/da43793a378d4b80f2b9be4ff53bf2f1686b0382/petl/transform/joins.py#L643-L682
|
from __future__ import absolute_import, print_function, division
import itertools
import operator
from petl.compat import next, text_type
from petl.errors import ArgumentError
from petl.comparison import comparable_itemgetter, Comparable
from petl.util.base import Table, asindices, rowgetter, rowgroupby, header, data
from petl.transform.sorts import sort
from petl.transform.basics import cut, cutout
from petl.transform.dedup import distinct
def natural_key(left, right):
lhdr = header(left)
lflds = list(map(str, lhdr))
rhdr = header(right)
rflds = list(map(str, rhdr))
key = [f for f in lflds if f in rflds]
assert len(key) > 0, 'no fields in common'
if len(key) == 1:
key = key[0]
return key
def keys_from_args(left, right, key, lkey, rkey):
if key is lkey is rkey is None:
lkey = rkey = natural_key(left, right)
elif key is not None and lkey is rkey is None:
lkey = rkey = key
elif key is None and lkey is not None and rkey is not None:
pass
else:
raise ArgumentError(
'bad key arguments: either specify key, or specify both lkey and '
'rkey, or provide no key/lkey/rkey arguments at all (natural join)'
)
return lkey, rkey
def join(left, right, key=None, lkey=None, rkey=None, presorted=False,
buffersize=None, tempdir=None, cache=True, lprefix=None, rprefix=None):
lkey, rkey = keys_from_args(left, right, key, lkey, rkey)
return JoinView(left, right, lkey=lkey, rkey=rkey,
presorted=presorted, buffersize=buffersize, tempdir=tempdir,
cache=cache, lprefix=lprefix, rprefix=rprefix)
Table.join = join
class JoinView(Table):
def __init__(self, left, right, lkey, rkey,
presorted=False, leftouter=False, rightouter=False,
missing=None, buffersize=None, tempdir=None, cache=True,
lprefix=None, rprefix=None):
self.lkey = lkey
self.rkey = rkey
if presorted:
self.left = left
self.right = right
else:
self.left = sort(left, lkey, buffersize=buffersize,
tempdir=tempdir, cache=cache)
self.right = sort(right, rkey, buffersize=buffersize,
tempdir=tempdir, cache=cache)
self.leftouter = leftouter
self.rightouter = rightouter
self.missing = missing
self.lprefix = lprefix
self.rprefix = rprefix
def __iter__(self):
return iterjoin(self.left, self.right, self.lkey, self.rkey,
leftouter=self.leftouter, rightouter=self.rightouter,
missing=self.missing, lprefix=self.lprefix,
rprefix=self.rprefix)
def leftjoin(left, right, key=None, lkey=None, rkey=None, missing=None,
presorted=False, buffersize=None, tempdir=None, cache=True,
lprefix=None, rprefix=None):
lkey, rkey = keys_from_args(left, right, key, lkey, rkey)
return JoinView(left, right, lkey=lkey, rkey=rkey,
presorted=presorted, leftouter=True, rightouter=False,
missing=missing, buffersize=buffersize, tempdir=tempdir,
cache=cache, lprefix=lprefix, rprefix=rprefix)
Table.leftjoin = leftjoin
def rightjoin(left, right, key=None, lkey=None, rkey=None, missing=None,
presorted=False, buffersize=None, tempdir=None, cache=True,
lprefix=None, rprefix=None):
lkey, rkey = keys_from_args(left, right, key, lkey, rkey)
return JoinView(left, right, lkey=lkey, rkey=rkey,
presorted=presorted, leftouter=False, rightouter=True,
missing=missing, buffersize=buffersize,
tempdir=tempdir, cache=cache, lprefix=lprefix,
rprefix=rprefix)
Table.rightjoin = rightjoin
def outerjoin(left, right, key=None, lkey=None, rkey=None, missing=None,
presorted=False, buffersize=None, tempdir=None, cache=True,
lprefix=None, rprefix=None):
lkey, rkey = keys_from_args(left, right, key, lkey, rkey)
return JoinView(left, right, lkey=lkey, rkey=rkey,
presorted=presorted, leftouter=True, rightouter=True,
missing=missing, buffersize=buffersize, tempdir=tempdir,
cache=cache, lprefix=lprefix, rprefix=rprefix)
Table.outerjoin = outerjoin
def iterjoin(left, right, lkey, rkey, leftouter=False, rightouter=False,
missing=None, lprefix=None, rprefix=None):
lit = iter(left)
rit = iter(right)
lhdr = next(lit)
rhdr = next(rit)
lkind = asindices(lhdr, lkey)
rkind = asindices(rhdr, rkey)
lgetk = comparable_itemgetter(*lkind)
rgetk = comparable_itemgetter(*rkind)
rvind = [i for i in range(len(rhdr)) if i not in rkind]
rgetv = rowgetter(*rvind)
if lprefix is None:
outhdr = list(lhdr)
else:
outhdr = [(text_type(lprefix) + text_type(f)) for f in lhdr]
if rprefix is None:
outhdr.extend(rgetv(rhdr))
else:
outhdr.extend([(text_type(rprefix) + text_type(f)) for f in rgetv(rhdr)])
yield tuple(outhdr)
def joinrows(_lrowgrp, _rrowgrp):
if _rrowgrp is None:
for lrow in _lrowgrp:
outrow = list(lrow)
outrow.extend([missing] * len(rvind))
yield tuple(outrow)
elif _lrowgrp is None:
for rrow in _rrowgrp:
outrow = [missing] * len(lhdr)
for li, ri in zip(lkind, rkind):
outrow[li] = rrow[ri]
outrow.extend(rgetv(rrow))
yield tuple(outrow)
else:
_rrowgrp = list(_rrowgrp)
for lrow in _lrowgrp:
for rrow in _rrowgrp:
outrow = list(lrow)
outrow.extend(rgetv(rrow))
yield tuple(outrow)
lgit = itertools.groupby(lit, key=lgetk)
rgit = itertools.groupby(rit, key=rgetk)
lrowgrp = []
rrowgrp = []
lkval, rkval = Comparable(None), Comparable(None)
try:
lkval, lrowgrp = next(lgit)
rkval, rrowgrp = next(rgit)
while True:
if lkval < rkval:
if leftouter:
for row in joinrows(lrowgrp, None):
yield tuple(row)
lkval, lrowgrp = next(lgit)
elif lkval > rkval:
if rightouter:
for row in joinrows(None, rrowgrp):
yield tuple(row)
rkval, rrowgrp = next(rgit)
else:
for row in joinrows(lrowgrp, rrowgrp):
yield tuple(row)
lkval, lrowgrp = next(lgit)
rkval, rrowgrp = next(rgit)
except StopIteration:
pass
if leftouter:
if lkval > rkval:
for row in joinrows(lrowgrp, None):
yield tuple(row)
for lkval, lrowgrp in lgit:
for row in joinrows(lrowgrp, None):
yield tuple(row)
if rightouter:
if lkval < rkval:
for row in joinrows(None, rrowgrp):
yield tuple(row)
for rkval, rrowgrp in rgit:
for row in joinrows(None, rrowgrp):
yield tuple(row)
def crossjoin(*tables, **kwargs):
return CrossJoinView(*tables, **kwargs)
Table.crossjoin = crossjoin
class CrossJoinView(Table):
def __init__(self, *sources, **kwargs):
self.sources = sources
self.prefix = kwargs.get('prefix', False)
def __iter__(self):
return itercrossjoin(self.sources, self.prefix)
def itercrossjoin(sources, prefix):
outhdr = list()
for i, s in enumerate(sources):
if prefix:
outhdr.extend([text_type(i+1) + '_' + text_type(f) for f in header(s)])
else:
outhdr.extend(header(s))
yield tuple(outhdr)
datasrcs = [data(src) for src in sources]
for prod in itertools.product(*datasrcs):
outrow = list()
for row in prod:
outrow.extend(row)
yield tuple(outrow)
def antijoin(left, right, key=None, lkey=None, rkey=None, presorted=False,
buffersize=None, tempdir=None, cache=True):
lkey, rkey = keys_from_args(left, right, key, lkey, rkey)
return AntiJoinView(left=left, right=right, lkey=lkey, rkey=rkey,
presorted=presorted, buffersize=buffersize,
tempdir=tempdir, cache=cache)
Table.antijoin = antijoin
class AntiJoinView(Table):
def __init__(self, left, right, lkey, rkey, presorted=False,
buffersize=None, tempdir=None, cache=True):
if presorted:
self.left = left
self.right = right
else:
self.left = sort(left, lkey, buffersize=buffersize,
tempdir=tempdir, cache=cache)
self.right = sort(right, rkey, buffersize=buffersize,
tempdir=tempdir, cache=cache)
self.lkey = lkey
self.rkey = rkey
def __iter__(self):
return iterantijoin(self.left, self.right, self.lkey, self.rkey)
def iterantijoin(left, right, lkey, rkey):
lit = iter(left)
rit = iter(right)
lhdr = next(lit)
rhdr = next(rit)
yield tuple(lhdr)
lkind = asindices(lhdr, lkey)
rkind = asindices(rhdr, rkey)
lgetk = comparable_itemgetter(*lkind)
rgetk = comparable_itemgetter(*rkind)
lgit = itertools.groupby(lit, key=lgetk)
rgit = itertools.groupby(rit, key=rgetk)
lrowgrp = []
lkval, rkval = Comparable(None), Comparable(None)
try:
lkval, lrowgrp = next(lgit)
rkval, _ = next(rgit)
while True:
if lkval < rkval:
for row in lrowgrp:
yield tuple(row)
lkval, lrowgrp = next(lgit)
elif lkval > rkval:
rkval, _ = next(rgit)
else:
lkval, lrowgrp = next(lgit)
rkval, _ = next(rgit)
except StopIteration:
pass
if lkval > rkval:
for row in lrowgrp:
yield tuple(row)
for lkval, lrowgrp in lgit:
for row in lrowgrp:
yield tuple(row)
|
MIT License
|
zhaocq-nlp/njunmt-tf
|
njunmt/inference/decode.py
|
evaluate
|
python
|
def evaluate(sess, loss_op, eval_data):
total_loss = 0.
total_weight = 0.
for data in eval_data:
parallels = data["feed_dict"].pop("parallels")
avail = sum(numpy.array(parallels) > 0)
loss = _evaluate(sess, data["feed_dict"], loss_op[:avail])
data["feed_dict"]["parallels"] = parallels
total_loss += sum([_l[0] for _l in loss])
total_weight += sum([_l[1] for _l in loss])
loss = total_loss / total_weight
return loss
|
Evaluates data by loss.
Args:
sess: `tf.Session`.
loss_op: Tensorflow operation, computing the loss.
eval_data: An iterable instance that each element
is a packed feeding dictionary for `sess`.
Returns: Total loss averaged by number of data samples.
|
https://github.com/zhaocq-nlp/njunmt-tf/blob/f1440726b3c007bcf19126fc4dee43a91dccc718/njunmt/inference/decode.py#L48-L69
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy
import tensorflow as tf
from njunmt.inference.attention import postprocess_attention
from njunmt.inference.attention import select_attention_sample_by_sample
from njunmt.inference.attention import pack_batch_attention_dict
from njunmt.inference.attention import dump_attentions
from njunmt.tools.tokenizeChinese import to_chinese_char
from njunmt.utils.expert_utils import repeat_n_times
from njunmt.utils.misc import open_file
def _evaluate(
sess,
feed_dict,
eval_op):
return sess.run(eval_op, feed_dict=feed_dict)
|
Apache License 2.0
|
aboudykreidieh/h-baselines
|
hbaselines/envs/efficient_hrl/envs.py
|
UniversalHumanoidMazeEnv.reset
|
python
|
def reset(self):
try:
self.prev_obs = super(UniversalHumanoidMazeEnv, self).reset()
except (NotImplementedError, AttributeError):
self.prev_obs = np.empty(1)
self.step_number = 0
if self.use_contexts:
if not self.random_contexts:
if isinstance(self.context_range[0], list):
self.current_context = random.sample(self.context_range, 1)
self.current_context = self.current_context[0]
else:
self.current_context = self.context_range
else:
self.current_context = []
for range_i in self.context_range:
minval, maxval = range_i
self.current_context.append(random.uniform(minval, maxval))
self.current_context = np.asarray(self.current_context)
return self.prev_obs
|
Reset the environment.
If the environment is using the contextual setting, a new context is
issued.
Returns
-------
array_like
initial observation
|
https://github.com/aboudykreidieh/h-baselines/blob/47c858584c6de3867a9981dfe974e341188626ed/hbaselines/envs/efficient_hrl/envs.py#L437-L477
|
import numpy as np
import random
from gym.spaces import Box
from hbaselines.utils.reward_fns import negative_distance
from hbaselines.envs.efficient_hrl.ant_maze_env import AntMazeEnv
from hbaselines.envs.efficient_hrl.humanoid_maze_env import HumanoidMazeEnv
REWARD_SCALE = 0.1
DISTANCE_THRESHOLD = 5
class UniversalAntMazeEnv(AntMazeEnv):
def __init__(self,
maze_id,
contextual_reward,
use_contexts=False,
random_contexts=False,
context_range=None,
maze_size_scaling=8,
top_down_view=False,
image_size=32,
horizon=500,
ant_fall=False,
evaluate=False,
num_levels=1):
super(UniversalAntMazeEnv, self).__init__(
maze_id=maze_id,
maze_height=0.5,
maze_size_scaling=maze_size_scaling,
n_bins=0,
sensor_range=3.,
sensor_span=2 * np.pi,
observe_blocks=False,
put_spin_near_agent=False,
top_down_view=top_down_view,
image_size=image_size,
manual_collision=False,
ant_fall=ant_fall,
evaluate=evaluate,
num_levels=num_levels,
)
self.horizon = horizon
self.step_number = 0
self.use_contexts = use_contexts
self.random_contexts = random_contexts
self.context_range = context_range
self.contextual_reward = contextual_reward
self.current_context = None
self.prev_obs = None
if self.use_contexts:
if self.random_contexts:
assert all(isinstance(i, tuple) for i in self.context_range), "When using random contexts, every element in " "context_range, must be a tuple of (min,max) values."
else:
assert all(not isinstance(i, tuple) for i in
self.context_range), "When not using random contexts, every element in " "context_range, must be a single value or a list of " "values."
@property
def context_space(self):
if self.use_contexts:
if self.random_contexts:
context_low = []
context_high = []
for context_i in self.context_range:
low, high = context_i
context_low.append(low)
context_high.append(high)
return Box(low=np.asarray(context_low),
high=np.asarray(context_high),
dtype=np.float32)
else:
if isinstance(self.context_range[0], list):
min_val = []
max_val = []
for i in range(len(self.context_range[0])):
min_val.append(min(v[i] for v in self.context_range))
max_val.append(max(v[i] for v in self.context_range))
return Box(low=np.array(min_val), high=np.array(max_val))
else:
return Box(low=np.asarray(self.context_range),
high=np.asarray(self.context_range),
dtype=np.float32)
else:
return None
def step(self, action):
obs, rew, done, _ = super(UniversalAntMazeEnv, self).step(action)
info = {}
if self.use_contexts:
dist = self.contextual_reward(
states=self.prev_obs,
next_states=obs,
goals=self.current_context,
)
info["goal_distance"] = dist / REWARD_SCALE
info["is_success"] = abs(dist) < DISTANCE_THRESHOLD * REWARD_SCALE
rew = dist
self.step_number += 1
done = done or self.step_number == self.horizon
return obs, rew, done, info
def reset(self):
try:
self.prev_obs = super(UniversalAntMazeEnv, self).reset()
except NotImplementedError:
self.prev_obs = np.empty(1)
self.step_number = 0
if self.use_contexts:
if not self.random_contexts:
if isinstance(self.context_range[0], list):
self.current_context = random.sample(self.context_range, 1)
self.current_context = self.current_context[0]
else:
self.current_context = self.context_range
else:
self.current_context = []
for range_i in self.context_range:
minval, maxval = range_i
self.current_context.append(random.uniform(minval, maxval))
self.current_context = np.asarray(self.current_context)
return self.prev_obs
class UniversalHumanoidMazeEnv(HumanoidMazeEnv):
def __init__(self,
maze_id,
contextual_reward,
use_contexts=False,
random_contexts=False,
context_range=None,
maze_size_scaling=4,
top_down_view=False,
image_size=32,
horizon=1000):
super(UniversalHumanoidMazeEnv, self).__init__(
maze_id=maze_id,
maze_height=0.5,
maze_size_scaling=maze_size_scaling,
n_bins=0,
sensor_range=3.,
sensor_span=2 * np.pi,
observe_blocks=False,
put_spin_near_agent=False,
top_down_view=top_down_view,
image_size=image_size,
manual_collision=False,
)
self.horizon = horizon
self.step_number = 0
self.use_contexts = use_contexts
self.random_contexts = random_contexts
self.context_range = context_range
self.contextual_reward = contextual_reward
self.current_context = None
self.prev_obs = None
if self.use_contexts:
if self.random_contexts:
assert all(isinstance(i, tuple) for i in self.context_range), "When using random contexts, every element in " "context_range, must be a tuple of (min,max) values."
else:
assert all(not isinstance(i, tuple) for i in
self.context_range), "When not using random contexts, every element in " "context_range, must be a single value or a list of " "values."
@property
def context_space(self):
if self.use_contexts:
if self.random_contexts:
context_low = []
context_high = []
for context_i in self.context_range:
low, high = context_i
context_low.append(low)
context_high.append(high)
return Box(low=np.asarray(context_low),
high=np.asarray(context_high),
dtype=np.float32)
else:
if isinstance(self.context_range[0], list):
min_val = []
max_val = []
for i in range(len(self.context_range[0])):
min_val.append(min(v[i] for v in self.context_range))
max_val.append(max(v[i] for v in self.context_range))
return Box(low=np.array(min_val),
high=np.array(max_val),
dtype=np.float32)
else:
return Box(low=np.asarray(self.context_range),
high=np.asarray(self.context_range),
dtype=np.float32)
else:
return None
def step(self, action):
obs, rew, done, info = super(UniversalHumanoidMazeEnv, self).step(
action)
if self.use_contexts:
rew = self.contextual_reward(
states=self.prev_obs,
next_states=obs,
goals=self.current_context,
)
dist = 7.2 * np.log(rew)
info["is_success"] = abs(dist) < DISTANCE_THRESHOLD
self.step_number += 1
done = done or self.step_number == self.horizon
return obs, rew, done, info
|
MIT License
|
alexa/alexa-apis-for-python
|
ask-sdk-model/ask_sdk_model/services/reminder_management/push_notification.py
|
PushNotification.__eq__
|
python
|
def __eq__(self, other):
if not isinstance(other, PushNotification):
return False
return self.__dict__ == other.__dict__
|
Returns true if both objects are equal
|
https://github.com/alexa/alexa-apis-for-python/blob/bfe5e694daaca71bfb1a4199ca8d2514f1cac6c9/ask-sdk-model/ask_sdk_model/services/reminder_management/push_notification.py#L98-L104
|
import pprint
import re
import six
import typing
from enum import Enum
if typing.TYPE_CHECKING:
from typing import Dict, List, Optional, Union, Any
from datetime import datetime
from ask_sdk_model.services.reminder_management.push_notification_status import PushNotificationStatus as PushNotificationStatus_149f8706
class PushNotification(object):
deserialized_types = {
'status': 'ask_sdk_model.services.reminder_management.push_notification_status.PushNotificationStatus'
}
attribute_map = {
'status': 'status'
}
supports_multiple_types = False
def __init__(self, status=None):
self.__discriminator_value = None
self.status = status
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.deserialized_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else
x.value if isinstance(x, Enum) else x,
value
))
elif isinstance(value, Enum):
result[attr] = value.value
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else
(item[0], item[1].value)
if isinstance(item[1], Enum) else item,
value.items()
))
else:
result[attr] = value
return result
def to_str(self):
return pprint.pformat(self.to_dict())
def __repr__(self):
return self.to_str()
|
Apache License 2.0
|
jeeftor/alfredtoday
|
src/lib/oauth2client/client.py
|
OAuth2Credentials.access_token_expired
|
python
|
def access_token_expired(self):
if self.invalid:
return True
if not self.token_expiry:
return False
now = _UTCNOW()
if now >= self.token_expiry:
logger.info('access_token is expired. Now: %s, token_expiry: %s',
now, self.token_expiry)
return True
return False
|
True if the credential is expired or invalid.
If the token_expiry isn't set, we assume the token doesn't expire.
|
https://github.com/jeeftor/alfredtoday/blob/f6e2c2228caa71015e654e1fdbf552e2ca4f90ad/src/lib/oauth2client/client.py#L758-L774
|
import base64
import collections
import copy
import datetime
import json
import logging
import os
import socket
import sys
import tempfile
import time
import shutil
import six
from six.moves import http_client
from six.moves import urllib
import httplib2
from oauth2client import GOOGLE_AUTH_URI
from oauth2client import GOOGLE_DEVICE_URI
from oauth2client import GOOGLE_REVOKE_URI
from oauth2client import GOOGLE_TOKEN_URI
from oauth2client import GOOGLE_TOKEN_INFO_URI
from oauth2client._helpers import _from_bytes
from oauth2client._helpers import _to_bytes
from oauth2client._helpers import _urlsafe_b64decode
from oauth2client import clientsecrets
from oauth2client import util
__author__ = 'jcgregorio@google.com (Joe Gregorio)'
HAS_OPENSSL = False
HAS_CRYPTO = False
try:
from oauth2client import crypt
HAS_CRYPTO = True
HAS_OPENSSL = crypt.OpenSSLVerifier is not None
except ImportError:
pass
logger = logging.getLogger(__name__)
EXPIRY_FORMAT = '%Y-%m-%dT%H:%M:%SZ'
ID_TOKEN_VERIFICATION_CERTS = 'https://www.googleapis.com/oauth2/v1/certs'
ID_TOKEN_VERIFICATON_CERTS = ID_TOKEN_VERIFICATION_CERTS
OOB_CALLBACK_URN = 'urn:ietf:wg:oauth:2.0:oob'
REFRESH_STATUS_CODES = (http_client.UNAUTHORIZED,)
AUTHORIZED_USER = 'authorized_user'
SERVICE_ACCOUNT = 'service_account'
GOOGLE_APPLICATION_CREDENTIALS = 'GOOGLE_APPLICATION_CREDENTIALS'
_CLOUDSDK_CONFIG_DIRECTORY = 'gcloud'
_CLOUDSDK_CONFIG_ENV_VAR = 'CLOUDSDK_CONFIG'
ADC_HELP_MSG = (
'The Application Default Credentials are not available. They are '
'available if running in Google Compute Engine. Otherwise, the '
'environment variable ' +
GOOGLE_APPLICATION_CREDENTIALS +
' must be defined pointing to a file defining the credentials. See '
'https://developers.google.com/accounts/docs/'
'application-default-credentials for more information.')
_WELL_KNOWN_CREDENTIALS_FILE = 'application_default_credentials.json'
AccessTokenInfo = collections.namedtuple(
'AccessTokenInfo', ['access_token', 'expires_in'])
DEFAULT_ENV_NAME = 'UNKNOWN'
NO_GCE_CHECK = os.environ.setdefault('NO_GCE_CHECK', 'False')
_SERVER_SOFTWARE = 'SERVER_SOFTWARE'
_GCE_METADATA_HOST = '169.254.169.254'
_METADATA_FLAVOR_HEADER = 'Metadata-Flavor'
_DESIRED_METADATA_FLAVOR = 'Google'
_UTCNOW = datetime.datetime.utcnow
class SETTINGS(object):
env_name = None
class Error(Exception):
class FlowExchangeError(Error):
class AccessTokenRefreshError(Error):
class HttpAccessTokenRefreshError(AccessTokenRefreshError):
def __init__(self, *args, **kwargs):
super(HttpAccessTokenRefreshError, self).__init__(*args)
self.status = kwargs.get('status')
class TokenRevokeError(Error):
class UnknownClientSecretsFlowError(Error):
class AccessTokenCredentialsError(Error):
class VerifyJwtTokenError(Error):
class NonAsciiHeaderError(Error):
class ApplicationDefaultCredentialsError(Error):
class OAuth2DeviceCodeError(Error):
class CryptoUnavailableError(Error, NotImplementedError):
class MemoryCache(object):
def __init__(self):
self.cache = {}
def get(self, key):
return self.cache.get(key)
def set(self, key, value):
self.cache[key] = value
def delete(self, key):
self.cache.pop(key, None)
def _parse_expiry(expiry):
if expiry and isinstance(expiry, datetime.datetime):
return expiry.strftime(EXPIRY_FORMAT)
else:
return None
class Credentials(object):
NON_SERIALIZED_MEMBERS = frozenset(['store'])
def authorize(self, http):
raise NotImplementedError
def refresh(self, http):
raise NotImplementedError
def revoke(self, http):
raise NotImplementedError
def apply(self, headers):
raise NotImplementedError
def _to_json(self, strip, to_serialize=None):
curr_type = self.__class__
if to_serialize is None:
to_serialize = copy.copy(self.__dict__)
else:
to_serialize = copy.copy(to_serialize)
for member in strip:
if member in to_serialize:
del to_serialize[member]
to_serialize['token_expiry'] = _parse_expiry(
to_serialize.get('token_expiry'))
to_serialize['_class'] = curr_type.__name__
to_serialize['_module'] = curr_type.__module__
for key, val in to_serialize.items():
if isinstance(val, bytes):
to_serialize[key] = val.decode('utf-8')
if isinstance(val, set):
to_serialize[key] = list(val)
return json.dumps(to_serialize)
def to_json(self):
return self._to_json(self.NON_SERIALIZED_MEMBERS)
@classmethod
def new_from_json(cls, json_data):
json_data_as_unicode = _from_bytes(json_data)
data = json.loads(json_data_as_unicode)
module_name = data['_module']
try:
module_obj = __import__(module_name)
except ImportError:
module_name = module_name.replace('.googleapiclient', '')
module_obj = __import__(module_name)
module_obj = __import__(module_name,
fromlist=module_name.split('.')[:-1])
kls = getattr(module_obj, data['_class'])
return kls.from_json(json_data_as_unicode)
@classmethod
def from_json(cls, unused_data):
return Credentials()
class Flow(object):
pass
class Storage(object):
def __init__(self, lock=None):
self._lock = lock
def acquire_lock(self):
if self._lock is not None:
self._lock.acquire()
def release_lock(self):
if self._lock is not None:
self._lock.release()
def locked_get(self):
raise NotImplementedError
def locked_put(self, credentials):
raise NotImplementedError
def locked_delete(self):
raise NotImplementedError
def get(self):
self.acquire_lock()
try:
return self.locked_get()
finally:
self.release_lock()
def put(self, credentials):
self.acquire_lock()
try:
self.locked_put(credentials)
finally:
self.release_lock()
def delete(self):
self.acquire_lock()
try:
return self.locked_delete()
finally:
self.release_lock()
def clean_headers(headers):
clean = {}
try:
for k, v in six.iteritems(headers):
if not isinstance(k, six.binary_type):
k = str(k)
if not isinstance(v, six.binary_type):
v = str(v)
clean[_to_bytes(k)] = _to_bytes(v)
except UnicodeEncodeError:
raise NonAsciiHeaderError(k, ': ', v)
return clean
def _update_query_params(uri, params):
parts = urllib.parse.urlparse(uri)
query_params = dict(urllib.parse.parse_qsl(parts.query))
query_params.update(params)
new_parts = parts._replace(query=urllib.parse.urlencode(query_params))
return urllib.parse.urlunparse(new_parts)
def _initialize_headers(headers):
if headers is None:
headers = {}
else:
headers = dict(headers)
return headers
def _apply_user_agent(headers, user_agent):
if user_agent is not None:
if 'user-agent' in headers:
headers['user-agent'] = (user_agent + ' ' + headers['user-agent'])
else:
headers['user-agent'] = user_agent
return headers
class OAuth2Credentials(Credentials):
@util.positional(8)
def __init__(self, access_token, client_id, client_secret, refresh_token,
token_expiry, token_uri, user_agent, revoke_uri=None,
id_token=None, token_response=None, scopes=None,
token_info_uri=None):
self.access_token = access_token
self.client_id = client_id
self.client_secret = client_secret
self.refresh_token = refresh_token
self.store = None
self.token_expiry = token_expiry
self.token_uri = token_uri
self.user_agent = user_agent
self.revoke_uri = revoke_uri
self.id_token = id_token
self.token_response = token_response
self.scopes = set(util.string_to_scopes(scopes or []))
self.token_info_uri = token_info_uri
self.invalid = False
def authorize(self, http):
request_orig = http.request
def new_request(uri, method='GET', body=None, headers=None,
redirections=httplib2.DEFAULT_MAX_REDIRECTS,
connection_type=None):
if not self.access_token:
logger.info('Attempting refresh to obtain '
'initial access_token')
self._refresh(request_orig)
headers = _initialize_headers(headers)
self.apply(headers)
_apply_user_agent(headers, self.user_agent)
body_stream_position = None
if all(getattr(body, stream_prop, None) for stream_prop in
('read', 'seek', 'tell')):
body_stream_position = body.tell()
resp, content = request_orig(uri, method, body,
clean_headers(headers),
redirections, connection_type)
max_refresh_attempts = 2
for refresh_attempt in range(max_refresh_attempts):
if resp.status not in REFRESH_STATUS_CODES:
break
logger.info('Refreshing due to a %s (attempt %s/%s)',
resp.status, refresh_attempt + 1,
max_refresh_attempts)
self._refresh(request_orig)
self.apply(headers)
if body_stream_position is not None:
body.seek(body_stream_position)
resp, content = request_orig(uri, method, body,
clean_headers(headers),
redirections, connection_type)
return (resp, content)
http.request = new_request
setattr(http.request, 'credentials', self)
return http
def refresh(self, http):
self._refresh(http.request)
def revoke(self, http):
self._revoke(http.request)
def apply(self, headers):
headers['Authorization'] = 'Bearer ' + self.access_token
def has_scopes(self, scopes):
scopes = util.string_to_scopes(scopes)
return set(scopes).issubset(self.scopes)
def retrieve_scopes(self, http):
self._retrieve_scopes(http.request)
return self.scopes
@classmethod
def from_json(cls, json_data):
data = json.loads(_from_bytes(json_data))
if (data.get('token_expiry') and
not isinstance(data['token_expiry'], datetime.datetime)):
try:
data['token_expiry'] = datetime.datetime.strptime(
data['token_expiry'], EXPIRY_FORMAT)
except ValueError:
data['token_expiry'] = None
retval = cls(
data['access_token'],
data['client_id'],
data['client_secret'],
data['refresh_token'],
data['token_expiry'],
data['token_uri'],
data['user_agent'],
revoke_uri=data.get('revoke_uri', None),
id_token=data.get('id_token', None),
token_response=data.get('token_response', None),
scopes=data.get('scopes', None),
token_info_uri=data.get('token_info_uri', None))
retval.invalid = data['invalid']
return retval
@property
|
MIT License
|
googlecloudplatform/data-pipeline
|
app/src/csvmatchreplace/transform.py
|
WriteErrors
|
python
|
def WriteErrors(writer, row_value, errors):
row = {'row_value': row_value,
'errors': [{'message': err.message,
'value': err.value,
'index': err.index} for err in errors]}
writer.write(json.dumps(row) + '\r\n')
|
Write out row and errors with it for later _badrows table creation.
Args:
writer: an object we can write to.
row_value: the entire row we had a problem with.
errors: an array of CellError objects.
|
https://github.com/googlecloudplatform/data-pipeline/blob/0bdd1664bc9ff5e36928c4609ef6127ef1e1fb3f/app/src/csvmatchreplace/transform.py#L130-L142
|
import cStringIO as StringIO
import csv
import json
import logging
import re
from src.clients import bigquery
from src.csvmatchreplace import timestamp
class TableError(Exception):
class CellError(TableError):
def __init__(self, message, value=None, index=None):
super(CellError, self).__init__(message)
self.value = value
self.index = index
def TransformRow(row, config):
transformed_row = []
bad_columns = []
columns = config['columns']
if len(row) != len(columns):
bad_columns.append(CellError(
'Invalid number of elements in row. Found %d, expected %d' %
(len(row), len(columns))))
for i in range(min(len(row), len(columns))):
if columns[i]['wanted']:
try:
cell_data = TransformCell(row[i], i, columns[i])
transformed_row.append(cell_data)
except CellError as err:
logging.warning('Transform phase: Bad data @ Column %d = %r', i,
err)
bad_columns.append(err)
transformed_row.append(err.value)
return (transformed_row, bad_columns)
def TransformCell(cell, index, column):
output = cell
for pattern in column.get('transformations', []):
output = re.sub(pattern['match'], pattern['replace'], output)
output = NormalizeCellByType(output, index, column['type'])
return output
def NormalizeCellByType(cell, index, column_type):
if not cell:
return ''
try:
if column_type == bigquery.ColumnTypes.INTEGER:
cell = int(cell)
elif column_type == bigquery.ColumnTypes.FLOAT:
cell = float(cell)
elif column_type == bigquery.ColumnTypes.BOOLEAN:
if str(cell).lower() in ('true', '1'):
cell = 'True'
elif str(cell).lower() in ('false', '0'):
cell = 'False'
else:
raise ValueError('invalid value')
elif column_type == bigquery.ColumnTypes.TIMESTAMP:
cell = timestamp.NormalizeTimeStamp(cell)
except ValueError as err:
raise CellError('Invalid value %r for column type %s: %r' %
(cell, bigquery.ColumnTypes.strings[column_type], err),
str(cell), index)
return str(cell)
|
Apache License 2.0
|
lucas-emery/rocket-league-gym
|
rlgym/gym.py
|
Gym.close
|
python
|
def close(self):
self._comm_handler.close_pipe()
if self._game_process is not None:
self._game_process.terminate()
|
Disconnect communication with the Bakkesmod plugin and close the game. This should only be called if you are finished
with your current RLGym environment instance.
|
https://github.com/lucas-emery/rocket-league-gym/blob/7d8e37809126f6702c5f433e7dafdc3aedde4033/rlgym/gym.py#L127-L134
|
from time import sleep
from typing import List, Union, Tuple, Dict, Any
import numpy as np
from gym import Env
from rlgym.gamelaunch import launch_rocket_league, run_injector, page_rocket_league, LaunchPreference
from rlgym.communication import CommunicationHandler, Message
class Gym(Env):
def __init__(self, match, pipe_id=0, launch_preference=LaunchPreference.EPIC, use_injector=False, force_paging=False):
super().__init__()
self._match = match
self.observation_space = match.observation_space
self.action_space = match.action_space
self._launch_preference = launch_preference
self._use_injector = use_injector
self._force_paging = force_paging
self._comm_handler = CommunicationHandler()
self._local_pipe_name = CommunicationHandler.format_pipe_id(pipe_id)
self._local_pipe_id = pipe_id
self._game_process = None
self._open_game()
self._setup_plugin_connection()
if self._force_paging:
self._page_client()
self._prev_state = None
def _open_game(self):
print("Launching Rocket League, make sure bakkesmod is running.")
self._game_process = launch_rocket_league(self._local_pipe_name, self._launch_preference)
if self._use_injector:
sleep(3)
run_injector()
def _setup_plugin_connection(self):
self._comm_handler.open_pipe(self._local_pipe_name)
self._comm_handler.send_message(header=Message.RLGYM_CONFIG_MESSAGE_HEADER, body=self._match.get_config())
self._comm_handler.send_message(header=Message.RLGYM_RESET_GAME_STATE_MESSAGE_HEADER,
body=self._match.get_reset_state())
def _page_client(self) -> bool:
if self._game_process is None:
print("Forced paging is only supported for the epic games version")
return False
else:
print("Forcing Rocket League to page unused memory. PID:", self._game_process.pid)
return page_rocket_league(rl_pid=self._game_process.pid)
def reset(self) -> List:
state_str = self._match.get_reset_state()
exception = self._comm_handler.send_message(header=Message.RLGYM_RESET_GAME_STATE_MESSAGE_HEADER,
body=state_str)
if exception is not None:
self._attempt_recovery()
exception = self._comm_handler.send_message(header=Message.RLGYM_RESET_GAME_STATE_MESSAGE_HEADER,
body=state_str)
if exception is not None:
import sys
print("!UNABLE TO RECOVER ROCKET LEAGUE!\nEXITING")
sys.exit(-1)
state = self._receive_state()
self._match.episode_reset(state)
self._prev_state = state
return self._match.build_observations(state)
def step(self, actions: Any) -> Tuple[List, List, bool, Dict]:
actions = self._match.parse_actions(actions, self._prev_state)
actions_sent = self._send_actions(actions)
received_state = self._receive_state()
if received_state is None:
print("FAILED TO RECEIEVE STATE! FALLING TO",self._prev_state)
state = self._prev_state
else:
state = received_state
obs = self._match.build_observations(state)
done = self._match.is_done(state) or received_state is None or not actions_sent
reward = self._match.get_rewards(state, done)
self._prev_state = state
info = {
'state': state,
'result': self._match.get_result(state)
}
return obs, reward, done, info
|
Apache License 2.0
|
docusign/docusign-python-client
|
docusign_esign/models/account_signature_definition.py
|
AccountSignatureDefinition.date_stamp_properties
|
python
|
def date_stamp_properties(self, date_stamp_properties):
self._date_stamp_properties = date_stamp_properties
|
Sets the date_stamp_properties of this AccountSignatureDefinition.
:param date_stamp_properties: The date_stamp_properties of this AccountSignatureDefinition. # noqa: E501
:type: DateStampProperties
|
https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/account_signature_definition.py#L129-L137
|
import pprint
import re
import six
from docusign_esign.client.configuration import Configuration
class AccountSignatureDefinition(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'date_stamp_properties': 'DateStampProperties',
'disallow_user_resize_stamp': 'str',
'external_id': 'str',
'image_type': 'str',
'is_default': 'str',
'nrds_id': 'str',
'nrds_last_name': 'str',
'phonetic_name': 'str',
'signature_font': 'str',
'signature_groups': 'list[SignatureGroupDef]',
'signature_id': 'str',
'signature_initials': 'str',
'signature_name': 'str',
'signature_type': 'str',
'signature_users': 'list[SignatureUserDef]',
'stamp_format': 'str',
'stamp_size_mm': 'str'
}
attribute_map = {
'date_stamp_properties': 'dateStampProperties',
'disallow_user_resize_stamp': 'disallowUserResizeStamp',
'external_id': 'externalID',
'image_type': 'imageType',
'is_default': 'isDefault',
'nrds_id': 'nrdsId',
'nrds_last_name': 'nrdsLastName',
'phonetic_name': 'phoneticName',
'signature_font': 'signatureFont',
'signature_groups': 'signatureGroups',
'signature_id': 'signatureId',
'signature_initials': 'signatureInitials',
'signature_name': 'signatureName',
'signature_type': 'signatureType',
'signature_users': 'signatureUsers',
'stamp_format': 'stampFormat',
'stamp_size_mm': 'stampSizeMM'
}
def __init__(self, _configuration=None, **kwargs):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._date_stamp_properties = None
self._disallow_user_resize_stamp = None
self._external_id = None
self._image_type = None
self._is_default = None
self._nrds_id = None
self._nrds_last_name = None
self._phonetic_name = None
self._signature_font = None
self._signature_groups = None
self._signature_id = None
self._signature_initials = None
self._signature_name = None
self._signature_type = None
self._signature_users = None
self._stamp_format = None
self._stamp_size_mm = None
self.discriminator = None
setattr(self, "_{}".format('date_stamp_properties'), kwargs.get('date_stamp_properties', None))
setattr(self, "_{}".format('disallow_user_resize_stamp'), kwargs.get('disallow_user_resize_stamp', None))
setattr(self, "_{}".format('external_id'), kwargs.get('external_id', None))
setattr(self, "_{}".format('image_type'), kwargs.get('image_type', None))
setattr(self, "_{}".format('is_default'), kwargs.get('is_default', None))
setattr(self, "_{}".format('nrds_id'), kwargs.get('nrds_id', None))
setattr(self, "_{}".format('nrds_last_name'), kwargs.get('nrds_last_name', None))
setattr(self, "_{}".format('phonetic_name'), kwargs.get('phonetic_name', None))
setattr(self, "_{}".format('signature_font'), kwargs.get('signature_font', None))
setattr(self, "_{}".format('signature_groups'), kwargs.get('signature_groups', None))
setattr(self, "_{}".format('signature_id'), kwargs.get('signature_id', None))
setattr(self, "_{}".format('signature_initials'), kwargs.get('signature_initials', None))
setattr(self, "_{}".format('signature_name'), kwargs.get('signature_name', None))
setattr(self, "_{}".format('signature_type'), kwargs.get('signature_type', None))
setattr(self, "_{}".format('signature_users'), kwargs.get('signature_users', None))
setattr(self, "_{}".format('stamp_format'), kwargs.get('stamp_format', None))
setattr(self, "_{}".format('stamp_size_mm'), kwargs.get('stamp_size_mm', None))
@property
def date_stamp_properties(self):
return self._date_stamp_properties
@date_stamp_properties.setter
|
MIT License
|
colcarroll/carpo
|
test/util.py
|
ProjectManager.add_nb_with_input
|
python
|
def add_nb_with_input(self, nb_input):
new_filename = self.filename()
shutil.copyfile(SAMPLE_NB, new_filename)
self.set_nb_kernel(new_filename)
self.set_nb_input(new_filename, nb_input)
assert self.get_output(new_filename) == '0'
return new_filename
|
Add a notebook to the directory with the given input string.
|
https://github.com/colcarroll/carpo/blob/2f65290f4a77682dfdc6fa3311650583f7d3ca2a/test/util.py#L62-L71
|
import json
import os
import shutil
import tempfile
from git import Repo
from jupyter_client.kernelspec import find_kernel_specs
DIR = os.path.dirname(os.path.realpath(__file__))
SAMPLE_NB = os.path.join(DIR, 'sample_nb.ipynb')
class ProjectManager(object):
def __init__(self):
self.file_count = 0
self._repo = None
self.test_directory = tempfile.mkdtemp()
self.db_file = os.path.join(self.test_directory, 'carpo.db')
self.kernelspec = self.get_kernelspec()
def filename(self):
self.file_count += 1
return os.path.join(self.test_directory, 'sample_{}.ipynb'.format(self.file_count))
def get_kernelspec(self):
for name in find_kernel_specs():
if name.startswith('python'):
return name
raise RuntimeError('No python kernel found to run notebooks!')
def exists(self):
return os.path.isdir(self.test_directory)
def make_test_directory(self):
if not self.exists():
os.mkdir(self.test_directory)
def delete_test_directory(self):
if self.exists():
shutil.rmtree(self.test_directory)
@property
def repo(self):
if self._repo is None:
self._repo = Repo.init(self.test_directory)
return self._repo
def commit(self, *files):
to_add = self.repo.untracked_files[:]
to_add.extend(files)
if to_add:
self.repo.index.add(to_add)
return self.repo.index.commit('WIP').hexsha
|
MIT License
|
hoburg/pyxfoil
|
genpolar.py
|
sweep
|
python
|
def sweep(airfoils, res, min_alfa=4, write_file=True, plots_on=False, panels=200):
os.chdir(cwd)
sessionlog.comment("Beginning sweep with minimum alfa of " + str(min_alfa))
xf = pyxfoil.session(logfile='sweep', plots=plots_on, force_zero=True)
xf.naca('0010')
xf.set_panels(panels)
timeouts = 0
start_time = time.time()
last_time = start_time
airfoils, res = list(airfoils), list(res)
for naca in airfoils:
xf.naca(naca)
for re in res:
percentage = 100*round((airfoils.index(naca)*len(res)+res.index(re)+1.)/(len(airfoils)*len(res)), 5)
polarname = "NACA" + naca + "_Re" + str(int(round(re/1000))).zfill(8) + "k.pol"
if polarname in get_existing():
print "NACA " + naca + " Re " + (str(int(re/1000)) + 'k').rjust(8) + " has already been run: skipping (" + str(percentage) + "%)"
continue
xf.set_re(re)
try:
xf.generate_polar(filename=polarname, min_alfa=min_alfa, writefile=write_file)
sessionlog.comment("NACA " + naca + ", re=" + str(re) + " simulation complete.")
this_time = time.time()
print str(percentage) + "% complete, " + str(round(this_time-last_time, 3)) + " seconds"
last_time = this_time
except pexpect.TIMEOUT:
xf.force_quit()
print "XFOIL timed out at NACA=" + naca + " Re=" + str(re)
sessionlog.timeout(naca, re)
timeouts += 1
print "Attempting to restarting at current set."
xf = pyxfoil.session(airfoil=naca, re=re, logfile='sweep', plots=plots_on, force_zero=True)
try:
xf.generate_polar(filename=polarname, min_alfa=min_alfa, writefile=write_file)
sessionlog.comment("NACA " + naca + ", Re=" + str(re) + " recovered on second try.")
this_time = time.time()
print str(percentage) + "% complete, " + str(round(this_time-last_time, 3)) + " seconds"
last_time = this_time
except pexpect.TIMEOUT:
xf.force_quit()
sessionlog.comment("NACA " + naca + ", Re=" + str(re) + " failed to recover on second try. Continuing at next set.")
print "NACA " + naca + ", Re=" + str(re) + " failed to recover on second try. Continuing at next set."
xf = pyxfoil.session(logfile='sweep', plots=plots_on, force_zero=True, airfoil=naca)
xf.quit()
total_seconds = time.time()-start_time
average_time = round(total_seconds/(len(res)*len(airfoils)), 3)
m, s = divmod(total_seconds, 60)
h, m = divmod(m, 60)
timeout_count = "Number of xfoil timeouts: " + str(timeouts)
completion_time = "Time to complete: " + str(h) + " hours " + str(m) + " minutes " + str(round(s, 3)) + " seconds."
simulation_count = "Number of simulations: " + str(len(airfoils) * len(res))
average_time = "Average simulation length: " + str(average_time) + ' seconds.'
sessionlog.comment(timeout_count)
sessionlog.comment(completion_time)
sessionlog.comment(simulation_count)
sessionlog.comment(average_time)
sessionlog.sweep_param(airfoils, res)
print timeout_count + '\n' + completion_time + '\n' + simulation_count + '\n' + average_time
os.chdir(cwd)
|
Runs a large sweep over airfoil and re range
@param airfoils iterable of NACA numbers to sweep over
@param res iterable reynolds numbers to sweep over
@param write_file boolean indicating whether or not to create polars
@param plots_on boolean indicating whether or not to simulate with plots on
@param panels included as per original genpolar file
|
https://github.com/hoburg/pyxfoil/blob/aa089c3bbd0c0911400b1d525d544b796dc1253d/genpolar.py#L65-L138
|
import sys, os
from decimal import *
import pexpect, time, shutil, code, numpy
package_files = ['pyxfoil', 'sorter', 'div_sort', '__init__', 'runlog', 'plotter']
input_args = sys.argv[1:]
homedir = os.getcwd() + '/'
if len(input_args) == 0:
print "No directory specified:"
run_dir = raw_input("Enter a run directory >> " ).rstrip('/')
else:
run_dir = input_args[0].rstrip('/')
try:
os.chdir(run_dir)
cwd = os.getcwd() + '/'
runlogfile = file(cwd + 'logs/sessionlog.txt', 'a')
print "Existing run loaded: " + run_dir
except OSError:
try:
os.mkdir(run_dir)
os.chdir(run_dir)
os.mkdir('src')
os.mkdir('logs')
os.mkdir('mergedump')
os.mkdir('savedpolars')
cwd = os.getcwd() + '/'
for filename in package_files:
shutil.copyfile(homedir + 'pyxfoil/' + filename + '.py',
cwd + 'src/' + filename + '.py')
runlogfile = file(cwd + 'logs/sessionlog.txt', 'w')
print "New run created: " + run_dir
except OSError:
print "Fatal error: directory " + run_dir + " not found and could not be created."
sys.exit(0)
finally:
sys.path.append(cwd)
from src import pyxfoil, sorter, runlog, plotter
sessionlog = runlog.runlog(runlogfile)
def get_existing(dir='savedpolars'):
existing_polars = dict()
try:
os.chdir(cwd + dir)
existing_polars = [p for p in os.listdir(os.getcwd()) if '.pol' in p]
os.chdir(cwd)
except OSError:
pass
return existing_polars
|
MIT License
|
square/connect-python-sdk
|
squareconnect/models/employee.py
|
Employee.first_name
|
python
|
def first_name(self):
return self._first_name
|
Gets the first_name of this Employee.
Given (first) name of the employee.
:return: The first_name of this Employee.
:rtype: str
|
https://github.com/square/connect-python-sdk/blob/e00e2889b2dd2c55048219cbe64db79962a68633/squareconnect/models/employee.py#L97-L105
|
from pprint import pformat
from six import iteritems
import re
class Employee(object):
def __init__(self, id=None, first_name=None, last_name=None, email=None, phone_number=None, location_ids=None, status=None, created_at=None, updated_at=None):
self.swagger_types = {
'id': 'str',
'first_name': 'str',
'last_name': 'str',
'email': 'str',
'phone_number': 'str',
'location_ids': 'list[str]',
'status': 'str',
'created_at': 'str',
'updated_at': 'str'
}
self.attribute_map = {
'id': 'id',
'first_name': 'first_name',
'last_name': 'last_name',
'email': 'email',
'phone_number': 'phone_number',
'location_ids': 'location_ids',
'status': 'status',
'created_at': 'created_at',
'updated_at': 'updated_at'
}
self._id = id
self._first_name = first_name
self._last_name = last_name
self._email = email
self._phone_number = phone_number
self._location_ids = location_ids
self._status = status
self._created_at = created_at
self._updated_at = updated_at
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
|
Apache License 2.0
|
sony/nnabla
|
python/src/nnabla/utils/audio_utils/__init__.py
|
auresize
|
python
|
def auresize(audio_arr, size, channel_first=False, **kwargs):
return backend_manager.module.auresize(audio_arr, size, channel_first=channel_first, **kwargs)
|
Resize ''audio_arr'' to ''size''.
As default, the shape of input audio has to be (samples, channels).
Args:
audio_arr (numpy.ndarray): Input audio.
size (tuple of int): Output shape. The order is (samples, channels).
channel_first (bool):
This argument specifies the shape of audio is whether (samples, channels) or (channels, samples).
Default value is False, which means the audio shape is (samples, channels)
Returns:
numpy.ndarray (same sample-channel order as audio_arr)
|
https://github.com/sony/nnabla/blob/fef9b6bca02a002de880a13f3196df14369445f4/python/src/nnabla/utils/audio_utils/__init__.py#L146-L161
|
from __future__ import absolute_import
import numpy as np
from .backend_manager import backend_manager
from .common import rescale_intensity, _auto_scale_before
def set_backend(backend):
backend_manager.backend = backend
def get_backend():
return backend_manager.backend
def get_available_backends():
return backend_manager.get_available_backends()
def minmax_auto_scale(audio_arr, out_datatype):
_auto_scale_before(audio_arr, out_datatype)
if str(out_datatype).find('int') > -1:
output_high = np.iinfo(out_datatype).max
output_low = np.iinfo(out_datatype).min
else:
output_high = np.finfo(out_datatype).max
output_low = np.finfo(out_datatype).min
output_type = out_datatype
return rescale_intensity(audio_arr, input_low=audio_arr.min(),
input_high=audio_arr.max(), output_low=output_low,
output_high=output_high, output_type=output_type)
def auread(path, channel_first=False, raw_format_param=None,
**kwargs):
from nnabla.utils.data_source_loader import ResourceFileReader
source = ResourceFileReader(path)
return backend_manager.module.auread(source, channel_first=channel_first, raw_format_param=None,
**kwargs)
def ausave(path, audio_arr, channel_first=False, frame_rate=48000, **kwargs):
backend_manager.module.ausave(
path, audio_arr, channel_first=channel_first, frame_rate=frame_rate, **kwargs)
|
Apache License 2.0
|
ros-industrial/robodk_postprocessors
|
KUKA_KRC2_CamRob.py
|
RobotPost.setTool
|
python
|
def setTool(self, pose, tool_id, tool_name):
if tool_id is not None and tool_id >= 0:
self.TOOL_ID = tool_id
if self.ProgCSV < 0:
self.addline('$TOOL = {FRAME: ' + pose_2_str(pose) + '}')
else:
self.addlog('Warning: Can not set the tool frame inside CSV file')
|
Change the robot TCP
|
https://github.com/ros-industrial/robodk_postprocessors/blob/d7e6c1c07758d67d2906cfd638049bdff88cca72/KUKA_KRC2_CamRob.py#L230-L238
|
from robodk import *
HEADER = '''
;FOLD INI
BAS (#INITMOV,0 )
;ENDFOLD (INI)
;FOLD STARTPOS
$BWDSTART = FALSE
PDAT_ACT = PDEFAULT
BAS(#PTP_DAT)
FDAT_ACT = {TOOL_NO 0,BASE_NO 0,IPO_FRAME #BASE}
BAS(#FRAMES)
;ENDFOLD
;FOLD SET DEFAULT SPEED
$VEL.CP=0.2
BAS(#VEL_PTP,100)
BAS(#TOOL,0)
BAS(#BASE,0)
;ENDFOLD
PTP $AXIS_ACT ; skip BCO quickly
'''
def pose_2_str(pose):
[x,y,z,r,p,w] = pose_2_xyzrpw(pose)
return ('X %.3f,Y %.3f,Z %.3f,A %.3f,B %.3f,C %.3f' % (x,y,z,w,p,r))
def pose_2_str_ext(pose,joints):
njoints = len(joints)
if njoints <= 6:
return pose_2_str(pose)
else:
extaxes = ''
for i in range(njoints-6):
extaxes = extaxes + (',E%i %.5f' % (i+1, joints[i+6]))
return pose_2_str(pose) + extaxes
def angles_2_str(angles):
str = ''
data = ['A1','A2','A3','A4','A5','A6','E1','E2','E3','E4','E5','E6']
for i in range(len(angles)):
str = str + ('%s %.5f,' % (data[i], angles[i]))
str = str[:-1]
return str
class RobotPost(object):
PROG_EXT = 'src'
ROBOT_POST = ''
ROBOT_NAME = ''
PROG_FILES = []
PROG = ''
PROG_CSV = []
LOG = ''
nAxes = 6
E01 = 0
nProgs = 0
nLineCSV = 0
ProgCSV = -1
SPEED_MMS = 150
SPEED_MMS_MAX = 2000
ACCEL_MMSS = 2000
TOOL_ID = 0
FRAME_ID = 0
LAST_POSE_CSV = None
PROG_NAME_CSV = None
C_DIS = ''
C_PTP = ''
def __init__(self, robotpost=None, robotname=None, robot_axes = 6, **kwargs):
self.ROBOT_POST = robotpost
self.ROBOT_NAME = robotname
self.PROG = ''
self.LOG = ''
self.nAxes = robot_axes
def ProgStart(self, progname):
self.nProgs = self.nProgs + 1
self.PROG_NAME_CSV = progname
self.addline('DEF %s ( )' % progname)
self.PROG = self.PROG + HEADER
self.addline('$ACC.CP = %.5f' % (self.ACCEL_MMSS/1000.0))
def ProgFinish(self, progname):
self.addline('END')
def ProgSave(self, folder, progname, ask_user = False, show_result = False):
progname = progname + '.' + self.PROG_EXT
progname_csv = self.PROG_NAME_CSV + '.csv'
if ask_user or not DirExists(folder):
filesave = getSaveFile(folder, progname, 'Save program as...')
if filesave is not None:
filesave = filesave.name
filesave_csv = getFileDir(filesave) + '/' + progname_csv
else:
return
else:
filesave = folder + '/' + progname
filesave_csv = folder + '/' + progname_csv
fid = open(filesave, "w")
fid.write(self.PROG)
fid.close()
fidcsv = open(filesave_csv, "w")
for line in self.PROG_CSV:
fidcsv.write(line)
fidcsv.write('\n')
fidcsv.close()
print('SAVED: %s\n' % filesave)
self.PROG_FILES = filesave
if show_result:
if type(show_result) is str:
import subprocess
p = subprocess.Popen([show_result, filesave, filesave_csv])
elif type(show_result) is list:
import subprocess
p = subprocess.Popen(show_result + [filesave])
else:
import os
os.startfile(filesave)
if len(self.LOG) > 0:
mbox('Program generation LOG:\n\n' + self.LOG)
def ProgSendRobot(self, robot_ip, remote_path, ftp_user, ftp_pass):
UploadFTP(self.PROG_FILES, robot_ip, remote_path, ftp_user, ftp_pass)
def MoveJ(self, pose, joints, conf_RLF=None):
self.addline('PTP {' + angles_2_str(joints) + '}' + self.C_PTP)
def MoveL(self, pose, joints, conf_RLF=None):
if self.nAxes > 6:
self.E01 = joints[6]
if self.ProgCSV == self.nProgs:
self.addline_csv(pose)
elif self.ProgCSV < 0:
self.ProgCSV = self.nProgs
self.addline('CR_PROCESS_FILE("%s.csv", 1, -1, "OK" )' % (self.PROG_NAME_CSV));
self.addline_csv(pose)
else:
self.addline('LIN {' + pose_2_str_ext(pose,joints) + '}' + self.C_DIS)
def MoveC(self, pose1, joints1, pose2, joints2, conf_RLF_1=None, conf_RLF_2=None):
if self.ProgCSV < 0:
self.addline('CIRC {' + pose_2_str_ext(pose1,joints1) + '},{' + pose_2_str_ext(pose2,joints2) + '}' + self.C_DIS)
else:
self.addlog('Warning: Can not move circular inside a CSV file')
def setFrame(self, pose, frame_id=None, frame_name=None):
if frame_id is not None and frame_id >= 0:
self.FRAME_ID = frame_id
if self.ProgCSV < 0:
self.addline('$BASE = {FRAME: ' + pose_2_str(pose) + '}')
else:
self.addlog('Warning: Can not set the reference frame inside CSV file')
|
Apache License 2.0
|
getsentry/sentry-python
|
sentry_sdk/scope.py
|
Scope.span
|
python
|
def span(self):
return self._span
|
Get/set current tracing span or transaction.
|
https://github.com/getsentry/sentry-python/blob/cad2f65316bab4ee5792b1b788c32c57293eea5e/sentry_sdk/scope.py#L194-L197
|
from copy import copy
from collections import deque
from itertools import chain
from sentry_sdk._functools import wraps
from sentry_sdk._types import MYPY
from sentry_sdk.utils import logger, capture_internal_exceptions
from sentry_sdk.tracing import Transaction
from sentry_sdk.attachments import Attachment
if MYPY:
from typing import Any
from typing import Dict
from typing import Optional
from typing import Deque
from typing import List
from typing import Callable
from typing import TypeVar
from sentry_sdk._types import (
Breadcrumb,
Event,
EventProcessor,
ErrorProcessor,
ExcInfo,
Hint,
Type,
)
from sentry_sdk.tracing import Span
from sentry_sdk.session import Session
F = TypeVar("F", bound=Callable[..., Any])
T = TypeVar("T")
global_event_processors = []
def add_global_event_processor(processor):
global_event_processors.append(processor)
def _attr_setter(fn):
return property(fset=fn, doc=fn.__doc__)
def _disable_capture(fn):
@wraps(fn)
def wrapper(self, *args, **kwargs):
if not self._should_capture:
return
try:
self._should_capture = False
return fn(self, *args, **kwargs)
finally:
self._should_capture = True
return wrapper
class Scope(object):
__slots__ = (
"_level",
"_name",
"_fingerprint",
"_transaction",
"_user",
"_tags",
"_contexts",
"_extras",
"_breadcrumbs",
"_event_processors",
"_error_processors",
"_should_capture",
"_span",
"_session",
"_attachments",
"_force_auto_session_tracking",
)
def __init__(self):
self._event_processors = []
self._error_processors = []
self._name = None
self.clear()
def clear(self):
self._level = None
self._fingerprint = None
self._transaction = None
self._user = None
self._tags = {}
self._contexts = {}
self._extras = {}
self._attachments = []
self.clear_breadcrumbs()
self._should_capture = True
self._span = None
self._session = None
self._force_auto_session_tracking = None
@_attr_setter
def level(self, value):
self._level = value
def set_level(self, value):
self._level = value
@_attr_setter
def fingerprint(self, value):
self._fingerprint = value
@property
def transaction(self):
if self._span is None:
return None
if self._span.containing_transaction is None:
return None
return self._span.containing_transaction
@transaction.setter
def transaction(self, value):
self._transaction = value
span = self._span
if span and isinstance(span, Transaction):
span.name = value
@_attr_setter
def user(self, value):
self.set_user(value)
def set_user(self, value):
self._user = value
if self._session is not None:
self._session.update(user=value)
@property
|
BSD 2-Clause Simplified License
|
mozilla/remo
|
remo/profiles/api/api_v1.py
|
RepResource.apply_filters
|
python
|
def apply_filters(self, request, applicable_filters):
base_object_list = (super(RepResource, self).
apply_filters(request, applicable_filters))
query = request.GET.get('query', None)
if query:
query = unquote(query)
qset = Q()
for term in query.split():
for key in ('first_name__istartswith',
'last_name__istartswith'):
qset |= Q(**{key: term})
qset |= (Q(userprofile__display_name__istartswith=query)
| Q(userprofile__local_name__istartswith=query)
| Q(userprofile__irc_name__istartswith=query)
| Q(email__istartswith=query)
| Q(userprofile__private_email__istartswith=query)
| Q(userprofile__country__istartswith=query)
| Q(userprofile__region__istartswith=query)
| Q(userprofile__city__istartswith=query)
| Q(userprofile__mozillians_profile_url__icontains=query)
| Q(userprofile__functional_areas__name__istartswith=query)
| Q(userprofile__mobilising_skills__name__istartswith=query)
| Q(userprofile__mobilising_interests__name__istartswith=query))
base_object_list = base_object_list.filter(qset).distinct()
group = request.GET.get('group', None)
if group:
if group == 'mentor':
base_object_list = base_object_list.filter(groups__name='Mentor')
elif group == 'council':
base_object_list = base_object_list.filter(groups__name='Council')
elif group == 'rep':
base_object_list = base_object_list.filter(groups__name='Rep')
elif group == 'review':
base_object_list = base_object_list.filter(groups__name='Review')
elif group == 'peers':
base_object_list = base_object_list.filter(groups__name='Peers')
elif group == 'resources':
base_object_list = base_object_list.filter(groups__name='Resources')
elif group == 'onboarding':
base_object_list = base_object_list.filter(groups__name='Onboarding')
elif group == 'newsletter':
base_object_list = base_object_list.filter(groups__name='Newsletter')
return base_object_list
|
Add special 'query' parameter to filter Reps.
When 'query' parameter is present, Rep list is filtered by last
name, first name, display name and local name with a case
insensitive matching method.
The 'query' parameters exists in parallel with 'filter'
parameters as defined by tastypie and RepResource schema.
|
https://github.com/mozilla/remo/blob/751c266a09ea560220029d95eb54359564f93d5e/remo/profiles/api/api_v1.py#L183-L240
|
from datetime import timedelta
from urllib import unquote
from django.conf import settings
from django.contrib.auth.models import User
from django.core.urlresolvers import reverse
from django.db.models import Q
from django.http import QueryDict
from django.utils.timezone import now
from tastypie import fields
from tastypie.authentication import Authentication
from tastypie.authorization import ReadOnlyAuthorization
from tastypie.constants import ALL, ALL_WITH_RELATIONS
from tastypie.resources import ModelResource
from remo.api import HttpCache, RemoAPIThrottle, RemoThrottleMixin
from remo.base.serializers import CSVSerializer
from remo.profiles.templatetags.helpers import get_avatar_url
from remo.profiles.models import UserProfile, FunctionalArea, MobilisingInterest, MobilisingSkill
from remo.reports.models import NGReport
from remo.reports.utils import get_last_report
class FunctionalAreasResource(RemoThrottleMixin, ModelResource):
class Meta:
queryset = FunctionalArea.active_objects.all()
resource_name = 'functionalareas'
authentication = Authentication()
authorization = ReadOnlyAuthorization()
include_resource_uri = False
include_absolute_url = False
allowed_methods = ['get']
fields = ['name']
filtering = {'name': ALL}
throttle = RemoAPIThrottle()
class MobilisingSkillsResource(RemoThrottleMixin, ModelResource):
class Meta:
queryset = MobilisingSkill.active_objects.all()
resource_name = 'mobilisingskills'
authentication = Authentication()
authorization = ReadOnlyAuthorization()
include_resource_uri = False
include_absolute_url = False
allowed_methods = ['get']
fields = ['name']
filtering = {'name': ALL}
throttle = RemoAPIThrottle()
class MobilisingInterestsResource(RemoThrottleMixin, ModelResource):
class Meta:
queryset = MobilisingInterest.active_objects.all()
resource_name = 'mobilisinginterests'
authentication = Authentication()
authorization = ReadOnlyAuthorization()
include_resource_uri = False
include_absolute_url = False
allowed_methods = ['get']
fields = ['name']
filtering = {'name': ALL}
throttle = RemoAPIThrottle()
class ProfileResource(RemoThrottleMixin, ModelResource):
profile_url = fields.CharField()
avatar_url = fields.CharField()
is_mentor = fields.BooleanField()
is_council = fields.BooleanField()
functional_areas = fields.ToManyField(FunctionalAreasResource,
attribute='functional_areas',
full=True, null=True)
mobilising_skills = fields.ToManyField(MobilisingSkillsResource,
attribute='mobilising_skills',
full=True, null=True)
mobilising_interests = fields.ToManyField(MobilisingInterestsResource,
attribute='mobilising_interests',
full=True, null=True)
mentor = fields.ToOneField('remo.profiles.api.api_v1.RepResource',
attribute='mentor', null=True)
last_report_date = fields.DateField()
class Meta:
queryset = UserProfile.objects.filter(registration_complete=True)
resource_name = 'profile'
authentication = Authentication()
authorization = ReadOnlyAuthorization()
include_resource_uri = False
include_absolute_url = False
allowed_methods = ['get']
fields = ['city', 'region', 'country', 'display_name', 'local_name',
'lon', 'lat', 'mozillians_profile_url', 'twitter_account',
'facebook_url', 'diaspora_url', 'personal_blog_feed',
'irc_name']
ordering = ['country']
filtering = {'display_name': ALL,
'local_name': ALL,
'irc_name': ALL,
'country': ALL,
'region': ALL,
'city': ALL,
'functional_areas': ALL_WITH_RELATIONS,
'mobilising_skills': ALL_WITH_RELATIONS,
'mobilising_interests': ALL_WITH_RELATIONS}
max_limit = 40
throttle = RemoAPIThrottle()
def dehydrate(self, bundle):
if bundle.request.method == 'GET':
req = bundle.request.GET
if req.get('format') == 'csv':
bundle.data.pop('functional_areas', None)
bundle.data.pop('mobilising_skills', None)
bundle.data.pop('mobilising_interests', None)
bundle.data.pop('personal_blog_feed', None)
bundle.data.pop('profile_url', None)
return bundle
def dehydrate_profile_url(self, bundle):
return (settings.SITE_URL + reverse('profiles_view_profile',
kwargs={'display_name':
bundle.obj.display_name}))
def dehydrate_avatar_url(self, bundle):
return get_avatar_url(bundle.obj.user, -1)
def dehydrate_is_mentor(self, bundle):
return bundle.obj.user.groups.filter(name='Mentor').count() == 1
def dehydrate_is_council(self, bundle):
return bundle.obj.user.groups.filter(name='Council').count() == 1
def dehydrate_last_report_date(self, bundle):
start_period = now().date() - timedelta(weeks=4)
end_period = now().date() + timedelta(weeks=4)
reports = bundle.obj.user.ng_reports.filter(
report_date__range=(start_period, end_period))
try:
return reports.latest('report_date').report_date
except NGReport.DoesNotExist:
report = get_last_report(bundle.obj.user)
if report:
return report.report_date
return None
class RepResource(RemoThrottleMixin, ModelResource):
fullname = fields.CharField(attribute='get_full_name')
profile = fields.ToOneField(ProfileResource, attribute='userprofile',
full=True, null=True)
class Meta:
cache = HttpCache(control={'max_age': 3600, 'public': True, 's-maxage': 3600})
queryset = User.objects.filter(userprofile__registration_complete=True,
groups__name='Rep')
resource_name = 'rep'
authentication = Authentication()
authorization = ReadOnlyAuthorization()
serializer = CSVSerializer(formats=['json', 'jsonp', 'csv'])
allowed_methods = ['get']
fields = ['first_name', 'last_name']
ordering = ['profile', 'first_name', 'last_name']
filtering = {'first_name': ALL,
'last_name': ALL,
'profile': ALL_WITH_RELATIONS}
throttle = RemoAPIThrottle()
|
BSD 3-Clause New or Revised License
|
zeaphoo/postmodel
|
postmodel/models/model.py
|
Model.get_or_create
|
python
|
async def get_or_create(cls, defaults = None, **kwargs):
if not defaults:
defaults = {}
instance = await cls.filter(**kwargs).first()
if instance:
return instance, False
return await cls.create(**defaults, **kwargs), True
|
Fetches the object if exists (filtering on the provided parameters),
else creates an instance with any unspecified parameters as default values.
|
https://github.com/zeaphoo/postmodel/blob/727a0a4f12d313fc83488ebecf6368847c6c97a6/postmodel/models/model.py#L397-L407
|
from copy import copy, deepcopy
from postmodel.exceptions import ConfigurationError, OperationalError, StaleObjectError
from postmodel.main import Postmodel
from collections import OrderedDict
from .query import QuerySet, FilterBuilder
from .fields import Field, DataVersionField
import re
import datetime
import uuid
import json
_underscorer1 = re.compile(r'(.)([A-Z][a-z]+)')
_underscorer2 = re.compile('([a-z0-9])([A-Z])')
def camel_to_snake(s):
subbed = _underscorer1.sub(r'\1_\2', s)
return _underscorer2.sub(r'\1_\2', subbed).lower()
class MetaInfo:
__slots__ = (
"abstract",
"table",
"db_name",
"fields",
"db_fields",
"fields_db_projection",
"fields_db_projection_reverse",
"fields_map",
"auto_fields",
"dataversion_field",
"unique_together",
"indexes",
"pk_attr",
"table_description",
"pk",
"db_pk_field",
"filters"
)
def __init__(self, meta) -> None:
self.abstract = getattr(meta, "abstract", False)
self.table = getattr(meta, "table", )
self.db_name = getattr(meta, "db_name", 'default')
self.unique_together = self._get_together(meta, "unique_together")
self.indexes = self._get_together(meta, "indexes")
self.fields = set()
self.db_fields = set()
self.fields_db_projection = OrderedDict()
self.fields_db_projection_reverse = OrderedDict()
self.fields_map = OrderedDict()
self.auto_fields = []
self.dataversion_field = ""
self.pk_attr = getattr(meta, "pk_attr", "")
self.table_description = getattr(meta, "table_description", "")
self.pk = None
self.db_pk_field = ""
self.filters = {}
def _get_together(self, meta, together: str):
_together = getattr(meta, together, ())
if isinstance(_together, (list, tuple)):
if _together and isinstance(_together[0], str):
_together = (_together,)
return _together
def finalise_pk(self) -> None:
self.pk = self.fields_map[self.pk_attr]
self.db_pk_field = self.pk.db_field or self.pk_attr
def finalize_filters(self):
for field_name, db_field in self.fields_db_projection.items():
filters = FilterBuilder.get_filters_for_field(self.fields_map[field_name],
field_name, db_field)
self.filters[field_name] = filters
def get_filter(self, key: str) -> dict:
return self.filters.get(key, None)
def finalise_model(self) -> None:
if not self.abstract and not self.pk_attr:
raise Exception('model must have pk or be abstract.')
if self.pk_attr:
self.finalise_pk()
self.finalize_filters()
self.finalise_fields()
def finalise_fields(self) -> None:
self.db_fields = set(self.fields_db_projection.values())
self.fields = set(self.fields_map.keys())
self.fields_db_projection_reverse = {
value: key for key, value in self.fields_db_projection.items()
}
for field_name in self.fields:
field = self.fields_map[field_name]
if hasattr(field, 'auto_value'):
self.auto_fields.append(field)
if isinstance(field, DataVersionField):
if not self.dataversion_field:
self.dataversion_field = field_name
else:
raise Exception('model class can only have one DataVersionField.')
class ModelMeta(type):
__slots__ = ()
def __new__(mcs, name: str, bases, attrs: dict, *args, **kwargs):
fields_db_projection = OrderedDict()
fields_map = OrderedDict()
meta_class = attrs.pop("Meta", type("Meta", (), {}))
if not hasattr(meta_class, "table"):
setattr(meta_class, "table", camel_to_snake(name))
meta = MetaInfo(meta_class)
fields_map = {}
fields_db_projection = {}
pk_attr = None
for key, value in attrs.items():
if isinstance(value, Field):
fields_map[key] = value
value.model_field_name = key
if value.pk:
if pk_attr != None:
raise Exception('duplicated pk not allowed.')
pk_attr = key
fields_db_projection[key] = value.db_field or key
for key in fields_map.keys():
attrs.pop(key)
for base in bases:
_meta = getattr(base, "_meta", None)
if not _meta:
continue
fields_map.update(deepcopy(_meta.fields_map))
fields_db_projection.update(deepcopy(_meta.fields_db_projection))
if _meta.pk_attr:
if pk_attr != None:
raise Exception('duplicated pk not allowed.')
else:
pk_attr = _meta.pk_attr
meta.fields_map = fields_map
meta.fields_db_projection = fields_db_projection
if not fields_map:
meta.abstract = True
meta.pk_attr = pk_attr or ""
attrs["_meta"] = meta
new_class = super().__new__(mcs, name, bases, attrs)
meta.finalise_model()
new_class.check()
return new_class
class Model(metaclass=ModelMeta):
_meta = None
class Meta:
pass
def __init__(self, *args, load_from_db=False, **kwargs) -> None:
meta = self._meta
self._saved_in_db = load_from_db
passed_fields = {*kwargs.keys()}
for key, value in kwargs.items():
if key in meta.fields_db_projection:
field = meta.fields_map[key]
if value is None and not field.null:
raise ValueError(f"{key} is non nullable field, but null was passed")
setattr(self, key, field.to_python_value(value))
for key in meta.fields.difference(passed_fields):
field = meta.fields_map[key]
if callable(field.default):
setattr(self, key, field.default())
else:
setattr(self, key, field.default)
self._snapshot_data = {}
if self._saved_in_db:
self.make_snapshot()
@classmethod
def _init_from_db(cls, **kwargs):
instance = cls(load_from_db=True, **kwargs)
return instance
def make_snapshot(self):
new_data = dict()
for key in self._meta.fields_db_projection.keys():
new_data[key] = deepcopy(getattr(self, key))
self._snapshot_data = new_data
def to_dict(self):
data = dict()
for key in self._meta.fields_db_projection.keys():
data[key] = deepcopy(getattr(self, key))
return data
def to_jsondict(self):
json_data = dict()
for key in self._meta.fields_db_projection.keys():
value = deepcopy(getattr(self, key))
if isinstance(value, (datetime.date, datetime.datetime)):
json_data[key] = value.isoformat()
elif isinstance(value, uuid.UUID):
json_data[key] = str(value)
else:
json_data[key] = value
return json_data
def to_json(self):
return json.dumps(self.to_jsondict())
def changed(self):
now_data = dict()
for key in self._meta.fields_db_projection.keys():
now_data[key] = getattr(self, key)
diff = self.dict_diff(now_data, self._snapshot_data)
return diff.keys()
def dict_diff(self, first, second):
diff = {}
for key in first.keys():
if key not in second:
diff[key] = (first[key], None)
elif (first[key] != second[key]):
diff[key] = (first[key], second[key])
return diff
def __str__(self) -> str:
return "<{}>".format(self.__class__.__name__)
def __repr__(self) -> str:
if self.pk:
return "<{}: {}>".format(self.__class__.__name__, self.pk)
return "<{}>".format(self.__class__.__name__)
def __hash__(self) -> int:
if not self.pk:
raise TypeError("Model instances without id are unhashable")
return hash(self.pk)
def __eq__(self, other) -> bool:
if type(self) == type(other) and self.pk == other.pk:
return True
return False
@property
def pk(self):
return getattr(self, self._meta.pk_attr)
@pk.setter
def pk(self, value):
setattr(self, self._meta.pk_attr, value)
def _auto_values(self):
for field in self._meta.auto_fields:
field.auto_value(self)
@classmethod
def first(cls):
return QuerySet(cls).first()
@classmethod
def filter(cls, *args, **kwargs):
return QuerySet(cls).filter(*args, **kwargs)
@classmethod
def exclude(cls, *args, **kwargs):
return QuerySet(cls).exclude(*args, **kwargs)
@classmethod
def all(cls):
return QuerySet(cls)
@classmethod
def get(cls, *args, **kwargs):
return QuerySet(cls).get(*args, **kwargs)
@classmethod
def get_or_none(cls, *args, **kwargs):
return QuerySet(cls).filter(*args, **kwargs).first()
async def save(self, update_fields = None, force=False) -> int:
changed = self.changed()
if len(changed) == 0:
return
condition_fields = []
dataver_field_name = self._meta.dataversion_field
if not force:
self._auto_values()
if dataver_field_name and dataver_field_name in self._snapshot_data:
condition_fields.append((dataver_field_name, self._snapshot_data[dataver_field_name]))
fileds = list(set(update_fields or ()) | set(self.changed()))
mapper = self.get_mapper()
if self._saved_in_db:
ret = await mapper.update(self, update_fields=fileds, condition_fields=condition_fields)
if ret == 0:
raise StaleObjectError('model save failed.')
else:
ret = await mapper.insert(self)
if ret == 0:
raise StaleObjectError('model insert failed.')
self._saved_in_db = True
self.make_snapshot()
async def delete(self) -> int:
if not self._saved_in_db:
raise OperationalError("Can't delete unpersisted record")
mapper = self.get_mapper()
return await mapper.delete(self)
@classmethod
|
MIT License
|
azure/autorest.python
|
test/vanilla/legacy/Expected/AcceptanceTests/Xml/xmlservice/models/_models.py
|
AccessPolicy.__init__
|
python
|
def __init__(self, **kwargs):
super(AccessPolicy, self).__init__(**kwargs)
self.start = kwargs["start"]
self.expiry = kwargs["expiry"]
self.permission = kwargs["permission"]
|
:keyword start: Required. the date-time the policy is active.
:paramtype start: ~datetime.datetime
:keyword expiry: Required. the date-time the policy expires.
:paramtype expiry: ~datetime.datetime
:keyword permission: Required. the permissions for the acl policy.
:paramtype permission: str
|
https://github.com/azure/autorest.python/blob/90d60a965788e3b4c0809e6686bdc3525acac89c/test/vanilla/legacy/Expected/AcceptanceTests/Xml/xmlservice/models/_models.py#L38-L50
|
from azure.core.exceptions import HttpResponseError
import msrest.serialization
class AccessPolicy(msrest.serialization.Model):
_validation = {
"start": {"required": True},
"expiry": {"required": True},
"permission": {"required": True},
}
_attribute_map = {
"start": {"key": "Start", "type": "iso-8601"},
"expiry": {"key": "Expiry", "type": "iso-8601"},
"permission": {"key": "Permission", "type": "str"},
}
|
MIT License
|
mitodl/mitx-grading-library
|
mitxgraders/helpers/calc/robust_pow.py
|
robust_pow
|
python
|
def robust_pow(base, exponent):
try:
return base ** exponent
except ValueError:
return np.lib.scimath.power(base, exponent)
|
Calculates __pow__, and tries other approachs if that doesn't work.
Usage:
======
>>> robust_pow(5, 2)
25
>>> robust_pow(0.5, -1)
2.0
If base is negative and power is fractional, complex results are returned:
>>> almost_j = robust_pow(-1, 0.5)
>>> np.allclose(almost_j, 1j)
True
|
https://github.com/mitodl/mitx-grading-library/blob/5ce94addd91dbd3826b97ae44de6aa146018d455/mitxgraders/helpers/calc/robust_pow.py#L9-L31
|
from __future__ import print_function, division, absolute_import, unicode_literals
import numpy as np
|
BSD 3-Clause New or Revised License
|
graviti-ai/tensorbay-python-sdk
|
tensorbay/utility/attr.py
|
attr
|
python
|
def attr(
*,
is_dynamic: bool = False,
key: Union[str, None, _KeyConverter] = lambda x: x,
default: Any = ...,
error_message: Optional[str] = None,
loader: Optional[Callable[[Any], Any]] = None,
dumper: Optional[Callable[[Any], Any]] = None,
) -> Any:
if is_dynamic and default is not ...:
raise AttrError()
return Field(
is_dynamic=is_dynamic,
key=key,
default=default,
error_message=error_message,
loader=loader,
dumper=dumper,
)
|
Return an instance to identify attr fields.
Arguments:
is_dynamic: Determine if this is a dynamic attr.
key: Display value of the attr in contents.
default: Default value of the attr.
error_message: The custom error message of the attr.
loader: The custom loader of the attr.
dumper: The custom dumper of the attr.
Raises:
AttrError: Dynamic attr cannot have default value.
Returns:
A :class:`Field` instance containing all attr fields.
|
https://github.com/graviti-ai/tensorbay-python-sdk/blob/db60d259869d6a528ee1ad84103d2b9bab1bd72e/tensorbay/utility/attr.py#L220-L256
|
from sys import version_info
from typing import (
Any,
Callable,
Dict,
List,
Optional,
Sequence,
Tuple,
TypeVar,
Union,
no_type_check,
)
from typing_extensions import NoReturn, Protocol
from tensorbay.exception import AttrError
_T = TypeVar("_T")
_Callable = Callable[[Any], Any]
_KeyConverter = Callable[[str], str]
_BUILTINS = {"builtins", None, "typing"}
_DEFAULT_ERROR_MESSAGE = "'{class_name}' object has no attribute '{attr_name}'"
_ATTRS_BASE = "_attrs_base"
class _A(Protocol):
def dumps(self) -> Any:
class Field:
def __init__(
self,
*,
is_dynamic: bool,
key: Union[str, None, _KeyConverter],
default: Any,
error_message: Optional[str],
loader: Optional[_Callable],
dumper: Optional[_Callable],
) -> None:
if loader:
self.loader = loader
if dumper:
self.dumper = dumper
self.is_dynamic = is_dynamic
self.default = default
if callable(key):
self.key_converter = key
else:
self.key = key
if error_message:
self.error_message = error_message
def __getattr__(self, name: str) -> NoReturn:
raise AttributeError(
_DEFAULT_ERROR_MESSAGE.format(class_name=self.__class__.__name__, attr_name=name)
)
class BaseField:
def __init__(self, key: Optional[str]) -> None:
self.loader: _Callable
self.dumper: _Callable
self.key = key
class AttrsMixin:
_attrs_fields: Dict[str, Field]
_attrs_base: Any
def __init_subclass__(cls) -> None:
type_ = cls.__annotations__.pop(_ATTRS_BASE, None)
if type_:
cls._attrs_base.loader = type_._loads
cls._attrs_base.dumper = getattr(type_, "_dumps", type_.dumps)
attrs_fields = {}
for base_class in cls.__bases__:
base_fields = getattr(base_class, "_attrs_fields", None)
if base_fields:
attrs_fields.update(base_fields)
for name, type_ in getattr(cls, "__annotations__", {}).items():
field = getattr(cls, name, None)
if isinstance(field, Field):
need_loader = not hasattr(field, "loader")
need_dumper = not hasattr(field, "dumper")
if need_loader or need_dumper:
loader, dumper = _get_operators(type_)
if need_loader:
field.loader = loader
if need_dumper:
field.dumper = dumper
if hasattr(field, "key_converter"):
field.key = field.key_converter(name)
attrs_fields[name] = field
delattr(cls, name)
cls._attrs_fields = attrs_fields
def __eq__(self, other: object) -> bool:
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
@no_type_check
def __getattr__(self, name: str) -> NoReturn:
error_message = getattr(
self._attrs_fields.get(name), "error_message", _DEFAULT_ERROR_MESSAGE
)
raise AttributeError(
error_message.format(class_name=self.__class__.__name__, attr_name=name)
)
def _loads(self, contents: Any) -> None:
base = getattr(self, _ATTRS_BASE, None)
if base:
value = contents if base.key is None else contents[base.key]
base.loader(self, value)
for name, field in self._attrs_fields.items():
if field.is_dynamic and field.key not in contents:
continue
if field.key is None:
value = contents
elif field.default is not ...:
value = contents.get(field.key, field.default)
else:
value = contents[field.key]
setattr(self, name, field.loader(value))
def _dumps(self) -> Dict[str, Any]:
contents: Dict[str, Any] = {}
base = getattr(self, _ATTRS_BASE, None)
if base:
_key_dumper(base.key, contents, base.dumper(self))
for name, field in self._attrs_fields.items():
if field.is_dynamic and not hasattr(self, name):
continue
value = getattr(self, name)
if value == field.default:
continue
_key_dumper(field.key, contents, field.dumper(value))
return contents
|
MIT License
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/homeassistant/components/sensor/haveibeenpwned.py
|
setup_platform
|
python
|
def setup_platform(hass, config, add_devices, discovery_info=None):
emails = config.get(CONF_EMAIL)
data = HaveIBeenPwnedData(emails)
devices = []
for email in emails:
devices.append(HaveIBeenPwnedSensor(data, hass, email))
add_devices(devices)
for sensor in devices:
sensor.update_nothrottle()
|
Set up the HaveIBeenPwned sensor.
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/sensor/haveibeenpwned.py#L39-L53
|
from datetime import timedelta
import logging
from aiohttp.hdrs import USER_AGENT
import requests
import voluptuous as vol
from homeassistant.components.sensor import PLATFORM_SCHEMA
from homeassistant.const import CONF_EMAIL
import homeassistant.helpers.config_validation as cv
from homeassistant.helpers.entity import Entity
from homeassistant.helpers.event import track_point_in_time
from homeassistant.util import Throttle
import homeassistant.util.dt as dt_util
_LOGGER = logging.getLogger(__name__)
DATE_STR_FORMAT = "%Y-%m-%d %H:%M:%S"
HA_USER_AGENT = "Home Assistant HaveIBeenPwned Sensor Component"
MIN_TIME_BETWEEN_FORCED_UPDATES = timedelta(seconds=5)
MIN_TIME_BETWEEN_UPDATES = timedelta(minutes=15)
URL = 'https://haveibeenpwned.com/api/v2/breachedaccount/'
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Required(CONF_EMAIL): vol.All(cv.ensure_list, [cv.string]),
})
|
MIT License
|
mgear-dev/mgear_core
|
scripts/mgear/core/log.py
|
matrix4
|
python
|
def matrix4(m, msg="matrix4"):
s = msg + " : \n" + "| %s , %s , %s , %s |\n" % (m[0][0], m[0][1], m[0][2], m[0][3]) + "| %s , %s , %s , %s |\n" % (m[1][0], m[1][1], m[1][2], m[1][3]) + "| %s , %s , %s , %s |\n" % (m[2][0], m[2][1], m[2][2], m[2][3]) + "| %s , %s , %s , %s |" % (m[3][0], m[3][1], m[3][2], m[3][3])
print(s)
|
Print matrix 4x4 data.
Arguments:
m (matrix): 4x4 Matrix
msg (str): Message in front of the data print.
|
https://github.com/mgear-dev/mgear_core/blob/bb450fda44ff79c57f5f73d5a58c97a6b5c5d848/scripts/mgear/core/log.py#L4-L17
|
MIT License
|
|
opentoontowntools/openleveleditor
|
toontown/toon/Toon.py
|
unloadSellbotHQAnims
|
python
|
def unloadSellbotHQAnims():
loadPhaseAnims("phase_9", 0)
|
Unload the sellbot hq specific Toon anims
|
https://github.com/opentoontowntools/openleveleditor/blob/250c0c9b8e4dde406a7a9b921db59deb7b960ca9/toontown/toon/Toon.py#L454-L458
|
from otp.avatar import Avatar
from . import ToonDNA
from direct.task.Task import Task
from direct.actor import Actor
import string
from .ToonHead import *
from panda3d.core import *
from direct.interval.IntervalGlobal import *
from direct.directnotify import DirectNotifyGlobal
from toontown.toonbase import ToontownGlobals
from otp.otpbase import OTPLocalizer
from toontown.toonbase import TTLocalizer
import random
from . import TTEmote
from otp.avatar import Emote
from . import Motion
from otp.otpbase import OTPGlobals
from direct.showbase.PythonUtil import Functor
import types
SLEEP_STRING = TTLocalizer.ToonSleepString
DogDialogueArray = []
CatDialogueArray = []
HorseDialogueArray = []
RabbitDialogueArray = []
MouseDialogueArray = []
DuckDialogueArray = []
MonkeyDialogueArray = []
BearDialogueArray = []
PigDialogueArray = []
LegsAnimDict = {}
TorsoAnimDict = {}
HeadAnimDict = {}
Preloaded = []
Phase3AnimList = (
("neutral", "neutral"),
("run", "run"),
)
Phase3_5AnimList = (
("walk", "walk"),
("teleport", "teleport"),
("book", "book"),
("jump", "jump"),
("running-jump", "running-jump"),
("jump-squat", "jump-zstart"),
("jump-idle", "jump-zhang"),
("jump-land", "jump-zend"),
("running-jump-squat", "leap_zstart"),
("running-jump-idle", "leap_zhang"),
("running-jump-land", "leap_zend"),
("pushbutton", "press-button"),
("throw", "pie-throw"),
("victory", "victory-dance"),
("sidestep-left", "sidestep-left"),
("conked", "conked"),
("cringe", "cringe"),
("wave", "wave"),
("shrug", "shrug"),
("angry", "angry"),
("tutorial-neutral", "tutorial-neutral"),
("left-point", "left-point"),
("right-point", "right-point"),
("right-point-start", "right-point-start"),
("give-props", "give-props"),
("give-props-start", "give-props-start"),
("right-hand", "right-hand"),
("right-hand-start", "right-hand-start"),
("duck", "duck"),
("sidestep-right", "jump-back-right"),
("periscope", "periscope"),
)
Phase4AnimList = (
("sit", "sit"),
("sit-start", "intoSit"),
("swim", "swim"),
("tug-o-war", "tug-o-war"),
("sad-walk", "losewalk"),
("sad-neutral", "sad-neutral"),
("up", "up"),
("down", "down"),
("left", "left"),
("right", "right"),
("applause", "applause"),
("confused", "confused"),
("bow", "bow"),
("curtsy", "curtsy"),
("bored", "bored"),
("think", "think"),
("battlecast", "fish"),
("cast", "cast"),
("castlong", "castlong"),
("fish-end", "fishEND"),
("fish-neutral", "fishneutral"),
("fish-again", "fishAGAIN"),
("reel", "reel"),
("reel-H", "reelH"),
("reel-neutral", "reelneutral"),
("pole", "pole"),
("pole-neutral", "poleneutral"),
("slip-forward", "slip-forward"),
("slip-backward", "slip-backward"),
("catch-neutral", "gameneutral"),
("catch-run", "gamerun"),
("catch-eatneutral", "eat_neutral"),
("catch-eatnrun", "eatnrun"),
("catch-intro-throw", "gameThrow"),
('swing', 'swing'),
("pet-start", "petin"),
("pet-loop", "petloop"),
("pet-end", "petend"),
("scientistJealous", "scientistJealous"),
("scientistEmcee", "scientistEmcee"),
("scientistWork", "scientistWork"),
("scientistGame", "scientistGame"),
)
Phase5AnimList = (
("water-gun", "water-gun"),
("hold-bottle", "hold-bottle"),
("firehose", "firehose"),
("spit", "spit"),
("tickle", "tickle"),
("smooch", "smooch"),
("happy-dance", "happy-dance"),
("sprinkle-dust", "sprinkle-dust"),
("juggle", "juggle"),
("climb", "climb"),
("sound", "shout"),
("toss", "toss"),
("hold-magnet", "hold-magnet"),
("hypnotize", "hypnotize"),
("struggle", "struggle"),
("lose", "lose"),
("melt", "melt"),
)
Phase5_5AnimList = (
("takePhone", "takePhone"),
("phoneNeutral", "phoneNeutral"),
("phoneBack", "phoneBack"),
("bank", "jellybeanJar"),
("callPet", "callPet"),
("feedPet", "feedPet"),
("start-dig", "into_dig"),
("loop-dig", "loop_dig"),
("water", "water"),
)
Phase6AnimList = (
("headdown-putt","headdown-putt"),
("into-putt","into-putt"),
("loop-putt","loop-putt"),
("rotateL-putt","rotateL-putt"),
("rotateR-putt","rotateR-putt"),
("swing-putt","swing-putt"),
("look-putt","look-putt"),
("lookloop-putt","lookloop-putt"),
("bad-putt","bad-putt"),
("badloop-putt","badloop-putt"),
("good-putt","good-putt"),
)
Phase9AnimList = (
("push", "push"),
)
Phase10AnimList = (
("leverReach", "leverReach"),
("leverPull", "leverPull"),
("leverNeutral", "leverNeutral"),
)
Phase12AnimList = (
)
if not base.config.GetBool('want-new-anims', 1):
LegDict = { "s":"/models/char/dogSS_Shorts-legs-", "m":"/models/char/dogMM_Shorts-legs-", "l":"/models/char/dogLL_Shorts-legs-" }
TorsoDict = { "s":"/models/char/dogSS_Naked-torso-", "m":"/models/char/dogMM_Naked-torso-", "l":"/models/char/dogLL_Naked-torso-", "ss":"/models/char/dogSS_Shorts-torso-", "ms":"/models/char/dogMM_Shorts-torso-", "ls":"/models/char/dogLL_Shorts-torso-", "sd":"/models/char/dogSS_Skirt-torso-", "md":"/models/char/dogMM_Skirt-torso-", "ld":"/models/char/dogLL_Skirt-torso-" }
else:
LegDict = { "s":"/models/char/tt_a_chr_dgs_shorts_legs_", "m":"/models/char/tt_a_chr_dgm_shorts_legs_", "l":"/models/char/tt_a_chr_dgl_shorts_legs_" }
TorsoDict = { "s":"/models/char/dogSS_Naked-torso-", "m":"/models/char/dogMM_Naked-torso-", "l":"/models/char/dogLL_Naked-torso-", "ss":"/models/char/tt_a_chr_dgs_shorts_torso_", "ms":"/models/char/tt_a_chr_dgm_shorts_torso_", "ls":"/models/char/tt_a_chr_dgl_shorts_torso_", "sd":"/models/char/tt_a_chr_dgs_skirt_torso_", "md":"/models/char/tt_a_chr_dgm_skirt_torso_", "ld":"/models/char/tt_a_chr_dgl_skirt_torso_" }
def loadModels():
preloadAvatars = base.config.GetBool("preload-avatars", 0)
if preloadAvatars:
global Preloaded
def loadTex(path):
tex = loader.loadTexture(path)
tex.setMinfilter(Texture.FTLinearMipmapLinear)
tex.setMagfilter(Texture.FTLinear)
Preloaded.append(tex)
for shirt in ToonDNA.Shirts:
loadTex(shirt)
for sleeve in ToonDNA.Sleeves:
loadTex(sleeve)
for short in ToonDNA.BoyShorts:
loadTex(short)
for bottom in ToonDNA.GirlBottoms:
loadTex(bottom[0])
for key in list(LegDict.keys()):
fileRoot = LegDict[key]
model = loader.loadModelNode("phase_3" + fileRoot + "1000")
Preloaded.append(model)
model = loader.loadModelNode("phase_3" + fileRoot + "500")
Preloaded.append(model)
model = loader.loadModelNode("phase_3" + fileRoot + "250")
Preloaded.append(model)
for key in list(TorsoDict.keys()):
fileRoot = TorsoDict[key]
model = loader.loadModelNode("phase_3" + fileRoot + "1000")
Preloaded.append(model)
if (len(key) > 1):
model = loader.loadModelNode("phase_3" + fileRoot + "500")
Preloaded.append(model)
model = loader.loadModelNode("phase_3" + fileRoot + "250")
Preloaded.append(model)
for key in list(HeadDict.keys()):
fileRoot = HeadDict[key]
model = loader.loadModelNode("phase_3" + fileRoot + "1000")
Preloaded.append(model)
model = loader.loadModelNode("phase_3" + fileRoot + "500")
Preloaded.append(model)
model = loader.loadModelNode("phase_3" + fileRoot + "250")
Preloaded.append(model)
def loadBasicAnims():
loadPhaseAnims()
def unloadBasicAnims():
loadPhaseAnims(0)
def loadTutorialBattleAnims():
loadPhaseAnims("phase_3.5")
def unloadTutorialBattleAnims():
loadPhaseAnims("phase_3.5", 0)
def loadMinigameAnims():
loadPhaseAnims("phase_4")
def unloadMinigameAnims():
loadPhaseAnims("phase_4", 0)
def loadBattleAnims():
loadPhaseAnims("phase_5")
def unloadBattleAnims():
loadPhaseAnims("phase_5", 0)
def loadSellbotHQAnims():
loadPhaseAnims("phase_9")
|
MIT License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.