|
--- |
|
license: mit |
|
task_categories: |
|
- robotics |
|
--- |
|
|
|
# Dataset of DeformPAM |
|
|
|
## Contents |
|
|
|
- [Description](#description) |
|
- [Structure](#structure) |
|
- [Usage](#usage) |
|
|
|
## Description |
|
|
|
This is the dataset used in the paper [DeformPAM: Data-Efficient Learning for Long-horizon Deformable |
|
Object Manipulation via Preference-based Action Alignment](https://deform-pam.robotflow.ai). |
|
|
|
- [Paper](https://arxiv.org/pdf/2410.11584.pdf) |
|
- [Project Homepage](https://deform-pam.robotflow.ai) |
|
- [GitHub Repository](https://github.com/xiaoxiaoxh/DeformPAM) |
|
- [Pretrained Models](https://huggingface.co/WendiChen/DeformPAM_PrimitiveDiffusion) |
|
|
|
## Structure |
|
|
|
We offer two versions of the dataset: one is the [full dataset](https://huggingface.co/datasets/WendiChen/DeformPAM_Dataset/tree/main/dataset_full) used to train the models in our paper, |
|
and the other is a [mini dataset](https://huggingface.co/datasets/WendiChen/DeformPAM_Dataset/tree/main/dataset_mini) for easier examination. |
|
Both versions include the supervised and finetuning subsets of granular pile shaping, rope shaping, and T-shirt unfolding. |
|
Each subset is structured as follows: |
|
|
|
``` |
|
βββ annotations |
|
β βββ 0aa71092-06c1-4d3f-8f70-e0bf86eeaeab |
|
β β βββ metadata.yaml annotations and other detailed information |
|
β βββ ... |
|
βββ observations |
|
βββ 0aa71092-06c1-4d3f-8f70-e0bf86eeaeab |
|
β βββ mask |
|
β β βββ begin.png mask img used for segmenting the point cloud |
|
β βββ metadata.yaml detailed information |
|
β βββ pcd |
|
β β βββ processed_begin.npz segmented point cloud of the object; processed_begin["points"]: np.ndarray (N, 3) float16 |
|
β β βββ raw_begin.npz raw point cloud of the object; raw_begin["points"]: np.ndarray (N, 3) float16 |
|
β βββ rgb |
|
β βββ begin.jpg RGB image of the object |
|
βββ ... |
|
``` |
|
|
|
## Usage |
|
|
|
There are two ways to utilize the dataset for training: |
|
|
|
- Install the tool according to the [data management toolkit's installation guide](https://github.com/xiaoxiaoxh/DeformPAM/blob/main/tools/data_management/README.md), |
|
and then store the metadata to MongoDB. |
|
- Or, you can modify the [dataset](https://github.com/xiaoxiaoxh/DeformPAM/blob/main/learning/datasets/runtime_dataset_real.py#L307) to load data from local files. |