query
stringlengths 9
60
| language
stringclasses 1
value | code
stringlengths 105
25.7k
| url
stringlengths 91
217
|
---|---|---|---|
export to excel
|
python
|
def export_analytics_data_to_excel(data, output_file_name, result_info_key, identifier_keys):
"""Creates an Excel file containing data returned by the Analytics API
Args:
data: Analytics API data as a list of dicts
output_file_name: File name for output Excel file (use .xlsx extension).
"""
workbook = create_excel_workbook(data, result_info_key, identifier_keys)
workbook.save(output_file_name)
print('Saved Excel file to {}'.format(output_file_name))
|
https://github.com/housecanary/hc-api-python/blob/2bb9e2208b34e8617575de45934357ee33b8531c/housecanary/excel/__init__.py#L18-L28
|
export to excel
|
python
|
def export_envar(self, key, val):
"""Export an environment variable."""
line = "export " + key + "=" + str(val)
self._add(line)
|
https://github.com/materialsproject/pymatgen/blob/4ca558cf72f8d5f8a1f21dfdfc0181a971c186da/pymatgen/io/abinit/launcher.py#L88-L91
|
export to excel
|
python
|
def del_export(exports='/etc/exports', path=None):
'''
Remove an export
CLI Example:
.. code-block:: bash
salt '*' nfs.del_export /media/storage
'''
edict = list_exports(exports)
del edict[path]
_write_exports(exports, edict)
return edict
|
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/nfs3.py#L69-L82
|
export to excel
|
python
|
def env_export(prefix, exported, env):
"""
Define the list of 'exported' variables with 'prefix' with values from 'env'
"""
for exp in exported:
ENV["_".join([prefix, exp])] = env[exp]
|
https://github.com/refenv/cijoe/blob/21d7b2ed4ff68e0a1457e7df2db27f6334f1a379/modules/cij/__init__.py#L136-L142
|
export to excel
|
python
|
def from_export(cls, endpoint):
# type: (ExportEndpoint) -> EndpointDescription
"""
Converts an ExportEndpoint bean to an EndpointDescription
:param endpoint: An ExportEndpoint bean
:return: An EndpointDescription bean
"""
assert isinstance(endpoint, ExportEndpoint)
# Service properties
properties = endpoint.get_properties()
# Set import keys
properties[pelix.remote.PROP_ENDPOINT_ID] = endpoint.uid
properties[pelix.remote.PROP_IMPORTED_CONFIGS] = endpoint.configurations
properties[
pelix.remote.PROP_EXPORTED_INTERFACES
] = endpoint.specifications
# Remove export keys
for key in (
pelix.remote.PROP_EXPORTED_CONFIGS,
pelix.remote.PROP_EXPORTED_INTERFACES,
pelix.remote.PROP_EXPORTED_INTENTS,
pelix.remote.PROP_EXPORTED_INTENTS_EXTRA,
):
try:
del properties[key]
except KeyError:
pass
# Other information
properties[pelix.remote.PROP_ENDPOINT_NAME] = endpoint.name
properties[
pelix.remote.PROP_ENDPOINT_FRAMEWORK_UUID
] = endpoint.framework
return EndpointDescription(None, properties)
|
https://github.com/tcalmant/ipopo/blob/2f9ae0c44cd9c34ef1a9d50837b3254e75678eb1/pelix/remote/beans.py#L655-L693
|
export to excel
|
python
|
def make_export(self, exports):
"""Populate library exported function data."""
sql = 'drop table if exists export'
logging.debug(sql)
self.cursor.execute(sql)
sql = 'create table if not exists export ' \
'(func text unique, module text)'
logging.debug(sql)
self.cursor.execute(sql)
for module in exports:
logging.debug(_('insering exports from %s'), module)
sql = 'insert into export values (?, ?)'
for func in exports[module]:
if func:
try:
self.cursor.execute(sql, (func, module))
except sqlite3.IntegrityError:
pass
self.con.commit()
|
https://github.com/NoviceLive/intellicoder/blob/6cac5ebfce65c370dbebe47756a1789b120ef982/intellicoder/intellisense/database.py#L267-L285
|
export to excel
|
python
|
def database_to_excel(engine, excel_file_path):
"""Export database to excel.
:param engine:
:param excel_file_path:
"""
from sqlalchemy import MetaData, select
metadata = MetaData()
metadata.reflect(engine)
writer = pd.ExcelWriter(excel_file_path)
for table in metadata.tables.values():
sql = select([table])
df = pd.read_sql(sql, engine)
df.to_excel(writer, table.name, index=False)
writer.save()
|
https://github.com/MacHu-GWU/pymongo_mate-project/blob/be53170c2db54cb705b9e548d32ef26c773ff7f3/pymongo_mate/pkg/pandas_mate/sql_io.py#L100-L117
|
export to excel
|
python
|
def add_export(exports='/etc/exports', path=None, hosts=None, options=None):
'''
Add an export
CLI Example:
.. code-block:: bash
salt '*' nfs3.add_export path='/srv/test' hosts='127.0.0.1' options=['rw']
'''
if options is None:
options = []
if not isinstance(hosts, six.string_types):
# Lists, etc would silently mangle /etc/exports
raise TypeError('hosts argument must be a string')
edict = list_exports(exports)
if path not in edict:
edict[path] = []
new = {'hosts': hosts, 'options': options}
edict[path].append(new)
_write_exports(exports, edict)
return new
|
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/nfs3.py#L85-L107
|
export to excel
|
python
|
def simple_export2xlsx(filename, titles, qs, func_data):
"""
export as excel
filename: file name
titles: title for this table
qs: queryset to export
func_data: a function to format object to list. ex: `lambda o: [o.pk, o.name]`
"""
output = BytesIO()
wb = xlwt.Workbook(output)
ws = wb.add_worksheet(filename)
header_fmt = wb.add_format()
header_fmt.set_bg_color('#C4D89E')
row_idx = 0
row_idx = xlsw_write_row(ws, row_idx, titles, header_fmt)
for o in qs:
row_idx = xlsw_write_row(ws, row_idx, func_data(o))
fn = '%s-%s.xlsx' % (filename, datetime.now())
return export_xlsx(wb, output, fn)
|
https://github.com/vicalloy/lbutils/blob/66ae7e73bc939f073cdc1b91602a95e67caf4ba6/lbutils/xlsxutils.py#L48-L66
|
export to excel
|
python
|
def usufyToTextExport(d, fPath=None):
"""
Workaround to export to a .txt file or to show the information.
Args:
-----
d: Data to export.
fPath: File path for the output file. If None was provided, it will
assume that it has to print it.
Returns:
--------
unicode: It sometimes returns a unicode representation of the Sheet
received.
"""
# Manual check...
if d == []:
return "+------------------+\n| No data found... |\n+------------------+"
import pyexcel as pe
import pyexcel.ext.text as text
if fPath == None:
isTerminal = True
else:
isTerminal = False
try:
oldData = get_data(fPath)
except:
# No information has been recovered
oldData = {"OSRFramework":[]}
# Generating the new tabular data
tabularData = _generateTabularData(d, {"OSRFramework":[[]]}, True, canUnicode=False)
# The tabular data contains a dict representing the whole book and we need only the sheet!!
sheet = pe.Sheet(tabularData["OSRFramework"])
sheet.name = "Profiles recovered (" + getCurrentStrDatetime() +")."
# Defining the headers
sheet.name_columns_by_row(0)
text.TABLEFMT = "grid"
try:
with open(fPath, "w") as oF:
oF.write(str(sheet))
except Exception as e:
# If a fPath was not provided... We will only print the info:
return unicode(sheet)
|
https://github.com/i3visio/osrframework/blob/83437f4c14c9c08cb80a896bd9834c77f6567871/osrframework/utils/general.py#L294-L342
|
export to excel
|
python
|
def inkscape_export(input_file, output_file, export_flag="-A", dpi=90, inkscape_binpath=None):
""" Call Inkscape to export the input_file to output_file using the
specific export argument flag for the output file type.
Parameters
----------
input_file: str
Path to the input file
output_file: str
Path to the output file
export_flag: str
Inkscape CLI flag to indicate the type of the output file
Returns
-------
return_value
Command call return value
"""
if not os.path.exists(input_file):
log.error('File {} not found.'.format(input_file))
raise IOError((0, 'File not found.', input_file))
if '=' not in export_flag:
export_flag += ' '
arg_strings = []
arg_strings += ['--without-gui']
arg_strings += ['--export-text-to-path']
arg_strings += ['{}"{}"'.format(export_flag, output_file)]
arg_strings += ['--export-dpi={}'.format(dpi)]
arg_strings += ['"{}"'.format(input_file)]
return call_inkscape(arg_strings, inkscape_binpath=inkscape_binpath)
|
https://github.com/PythonSanSebastian/docstamp/blob/b43808f2e15351b0b2f0b7eade9c7ef319c9e646/docstamp/inkscape.py#L48-L84
|
export to excel
|
python
|
def _write_export(export, file_obj=None):
"""
Write a string to a file.
If file_obj isn't specified, return the string
Parameters
---------
export: a string of the export data
file_obj: a file-like object or a filename
"""
if file_obj is None:
return export
if hasattr(file_obj, 'write'):
out_file = file_obj
else:
out_file = open(file_obj, 'wb')
try:
out_file.write(export)
except TypeError:
out_file.write(export.encode('utf-8'))
out_file.close()
return export
|
https://github.com/mikedh/trimesh/blob/25e059bf6d4caa74f62ffd58ce4f61a90ee4e518/trimesh/path/exchange/export.py#L50-L75
|
export to excel
|
python
|
def csv_export(self, csv_dest, fieldnames=None, encoding="UTF-8"):
"""Exports the contents of the table to a CSV-formatted file.
@param csv_dest: CSV file - if a string is given, the file with that name will be
opened, written, and closed; if a file object is given, then that object
will be written as-is, and left for the caller to be closed.
@type csv_dest: string or file
@param fieldnames: attribute names to be exported; can be given as a single
string with space-delimited names, or as a list of attribute names
@type fieldnames: list of strings
@param encoding: string (default="UTF-8"); if csv_dest is provided as a string
representing an output filename, an encoding argument can be provided (Python 3 only)
@type encoding: string
"""
close_on_exit = False
if isinstance(csv_dest, basestring):
if PY_3:
csv_dest = open(csv_dest, 'w', newline='', encoding=encoding)
else:
csv_dest = open(csv_dest, 'wb')
close_on_exit = True
try:
if fieldnames is None:
fieldnames = list(_object_attrnames(self.obs[0]))
if isinstance(fieldnames, basestring):
fieldnames = fieldnames.split()
csv_dest.write(','.join(fieldnames) + NL)
csvout = csv.DictWriter(csv_dest, fieldnames, extrasaction='ignore', lineterminator=NL)
if hasattr(self.obs[0], "__dict__"):
csvout.writerows(o.__dict__ for o in self.obs)
else:
do_all(csvout.writerow(ODict(starmap(lambda obj, fld: (fld, getattr(obj, fld)),
zip(repeat(o), fieldnames)))) for o in self.obs)
finally:
if close_on_exit:
csv_dest.close()
|
https://github.com/ptmcg/littletable/blob/8352f7716e458e55a6997372dadf92e179d19f98/littletable.py#L1187-L1222
|
export to excel
|
python
|
def export_xlsx(wb, output, fn):
"""
export as excel
wb:
output:
fn: file name
"""
wb.close()
output.seek(0)
response = HttpResponse(output.read(), content_type="application/vnd.ms-excel")
cd = codecs.encode('attachment;filename=%s' % fn, 'utf-8')
response['Content-Disposition'] = cd
return response
|
https://github.com/vicalloy/lbutils/blob/66ae7e73bc939f073cdc1b91602a95e67caf4ba6/lbutils/xlsxutils.py#L20-L32
|
export to excel
|
python
|
def write_exports(self, exports):
"""
Write a dictionary of exports to a file in .ini format.
:param exports: A dictionary of exports, mapping an export category to
a list of :class:`ExportEntry` instances describing the
individual export entries.
"""
rf = self.get_distinfo_file(EXPORTS_FILENAME)
with open(rf, 'w') as f:
write_exports(exports, f)
|
https://github.com/pypa/pipenv/blob/cae8d76c210b9777e90aab76e9c4b0e53bb19cde/pipenv/vendor/distlib/database.py#L632-L641
|
export to excel
|
python
|
def export(self, file_to_export, xformat='csv'):
"""Export epochwise annotations to csv file.
Parameters
----------
file_to_export : path to file
file to write to
"""
if 'csv' == xformat:
with open(file_to_export, 'w', newline='') as f:
csv_file = writer(f)
csv_file.writerow(['Wonambi v{}'.format(__version__)])
csv_file.writerow(('clock start time', 'start', 'end',
'stage'))
for epoch in self.epochs:
epoch_time = (self.start_time +
timedelta(seconds=epoch['start']))
csv_file.writerow((epoch_time.strftime('%H:%M:%S'),
epoch['start'],
epoch['end'],
epoch['stage']))
if 'remlogic' in xformat:
columns = 'Time [hh:mm:ss]\tEvent\tDuration[s]\n'
if 'remlogic_fr' == xformat:
columns = 'Heure [hh:mm:ss]\tEvénement\tDurée[s]\n'
patient_id = splitext(basename(self.dataset))[0]
rec_date = self.start_time.strftime('%d/%m/%Y')
stkey = {v:k for k, v in REMLOGIC_STAGE_KEY.items()}
stkey['Artefact'] = 'SLEEP-UNSCORED'
stkey['Unknown'] = 'SLEEP-UNSCORED'
stkey['Movement'] = 'SLEEP-UNSCORED'
with open(file_to_export, 'w') as f:
f.write('RemLogic Event Export\n')
f.write('Patient:\t' + patient_id + '\n')
f.write('Patient ID:\t' + patient_id + '\n')
f.write('Recording Date:\t' + rec_date + '\n')
f.write('\n')
f.write('Events Included:\n')
for i in sorted(set([stkey[x['stage']] for x in self.epochs])):
f.write(i + '\n')
f.write('\n')
f.write(columns)
for epoch in self.epochs:
epoch_time = (self.start_time +
timedelta(seconds=epoch['start']))
f.write((epoch_time.strftime('%Y-%m-%dT%H:%M:%S.000000') +
'\t' +
stkey[epoch['stage']] +
'\t' +
str(self.epoch_length) +
'\n'))
|
https://github.com/wonambi-python/wonambi/blob/1d8e3d7e53df8017c199f703bcab582914676e76/wonambi/attr/annotations.py#L1440-L1499
|
export to excel
|
python
|
def db_export(schema, uuid, object_filter, export_format, filename, pretty, all_schemata, omit):
"""Export stored objects
Warning! This functionality is work in progress and you may destroy live data by using it!
Be very careful when using the export/import functionality!"""
internal_backup(schema, uuid, object_filter, export_format, filename, pretty, all_schemata, omit)
|
https://github.com/Hackerfleet/hfos/blob/b6df14eacaffb6be5c844108873ff8763ec7f0c9/hfos/tool/backup.py#L45-L51
|
export to excel
|
python
|
def _export_figure(self, filepath, data, format):
"""Export of single cell that contains a matplotlib figure
Parameters
----------
filepath: String
\tPath of export file
data: Matplotlib Figure
\tMatplotlib figure that is eported
format: String in ["png", "pdf", "ps", "eps", "svg"]
"""
formats = ["svg", "eps", "ps", "pdf", "png"]
assert format in formats
data = fig2x(data, format)
try:
outfile = open(filepath, "wb")
outfile.write(data)
except IOError, err:
msg = _("The file {filepath} could not be fully written\n \n"
"Error message:\n{msg}")
msg = msg.format(filepath=filepath, msg=err)
short_msg = _('Error writing SVG file')
self.main_window.interfaces.display_warning(msg, short_msg)
finally:
outfile.close()
|
https://github.com/manns/pyspread/blob/0e2fd44c2e0f06605efc3058c20a43a8c1f9e7e0/pyspread/src/actions/_main_window_actions.py#L187-L217
|
export to excel
|
python
|
def to_excel(self, *args):
"""
Dump all the data to excel, fname and path can be passed as args
"""
path = os.getcwd()
fname = self.fname.replace(".ppl", "_ppl") + ".xlsx"
if len(args) > 0 and args[0] != "":
path = args[0]
if os.path.exists(path) == False:
os.mkdir(path)
xl_file = pd.ExcelWriter(path + os.sep + fname)
for idx in self.filter_data(""):
self.extract(idx)
labels = list(self.filter_data("").values())
for prof in self.data:
data_df = pd.DataFrame()
data_df["X"] = self.data[prof][0]
for timestep, data in zip(self.time, self.data[prof][1]):
data_df[timestep] = data
myvar = labels[prof-1].split(" ")[0]
br_label = labels[prof-1].split("\'")[5]
unit = labels[prof-1].split("\'")[7].replace("/", "-")
mylabel = "{} - {} - {}".format(myvar, br_label, unit)
data_df.to_excel(xl_file, sheet_name=mylabel)
xl_file.save()
|
https://github.com/gpagliuca/pyfas/blob/5daa1199bd124d315d02bef0ad3888a8f58355b2/build/lib/pyfas/ppl.py#L127-L151
|
export to excel
|
python
|
def export_to_xls(table, filename_or_fobj=None, sheet_name="Sheet1", *args, **kwargs):
"""Export the rows.Table to XLS file and return the saved file."""
workbook = xlwt.Workbook()
sheet = workbook.add_sheet(sheet_name)
prepared_table = prepare_to_export(table, *args, **kwargs)
field_names = next(prepared_table)
for column_index, field_name in enumerate(field_names):
sheet.write(0, column_index, field_name)
_convert_row = _python_to_xls([table.fields.get(field) for field in field_names])
for row_index, row in enumerate(prepared_table, start=1):
for column_index, (value, data) in enumerate(_convert_row(row)):
sheet.write(row_index, column_index, value, **data)
return_result = False
if filename_or_fobj is None:
filename_or_fobj = BytesIO()
return_result = True
source = Source.from_file(filename_or_fobj, mode="wb", plugin_name="xls")
workbook.save(source.fobj)
source.fobj.flush()
if return_result:
source.fobj.seek(0)
result = source.fobj.read()
else:
result = source.fobj
if source.should_close:
source.fobj.close()
return result
|
https://github.com/turicas/rows/blob/c74da41ae9ed091356b803a64f8a30c641c5fc45/rows/plugins/xls.py#L215-L250
|
export to excel
|
python
|
def export_to_xlsx(table, filename_or_fobj=None, sheet_name="Sheet1", *args, **kwargs):
"""Export the rows.Table to XLSX file and return the saved file."""
workbook = Workbook()
sheet = workbook.active
sheet.title = sheet_name
prepared_table = prepare_to_export(table, *args, **kwargs)
# Write header
field_names = next(prepared_table)
for col_index, field_name in enumerate(field_names):
cell = sheet.cell(row=1, column=col_index + 1)
cell.value = field_name
# Write sheet rows
_convert_row = _python_to_cell(list(map(table.fields.get, field_names)))
for row_index, row in enumerate(prepared_table, start=1):
for col_index, (value, number_format) in enumerate(_convert_row(row)):
cell = sheet.cell(row=row_index + 1, column=col_index + 1)
cell.value = value
if number_format is not None:
cell.number_format = number_format
return_result = False
if filename_or_fobj is None:
filename_or_fobj = BytesIO()
return_result = True
source = Source.from_file(filename_or_fobj, mode="wb", plugin_name="xlsx")
workbook.save(source.fobj)
source.fobj.flush()
if return_result:
source.fobj.seek(0)
result = source.fobj.read()
else:
result = source.fobj
if source.should_close:
source.fobj.close()
return result
|
https://github.com/turicas/rows/blob/c74da41ae9ed091356b803a64f8a30c641c5fc45/rows/plugins/xlsx.py#L152-L193
|
export to excel
|
python
|
def export_file(self, record, field, event=None, return_format='json'):
"""
Export the contents of a file stored for a particular record
Notes
-----
Unlike other export methods, this works on a single record.
Parameters
----------
record : str
record ID
field : str
field name containing the file to be exported.
event: str
for longitudinal projects, specify the unique event here
return_format: ('json'), 'csv', 'xml'
format of error message
Returns
-------
content : bytes
content of the file
content_map : dict
content-type dictionary
"""
self._check_file_field(field)
# load up payload
pl = self.__basepl(content='file', format=return_format)
# there's no format field in this call
del pl['format']
pl['returnFormat'] = return_format
pl['action'] = 'export'
pl['field'] = field
pl['record'] = record
if event:
pl['event'] = event
content, headers = self._call_api(pl, 'exp_file')
#REDCap adds some useful things in content-type
if 'content-type' in headers:
splat = [kv.strip() for kv in headers['content-type'].split(';')]
kv = [(kv.split('=')[0], kv.split('=')[1].replace('"', '')) for kv
in splat if '=' in kv]
content_map = dict(kv)
else:
content_map = {}
return content, content_map
|
https://github.com/redcap-tools/PyCap/blob/f44c9b62a4f62675aa609c06608663f37e12097e/redcap/project.py#L503-L549
|
export to excel
|
python
|
def cmd_export_all(*args):
"""
Arguments:
<output folder> [-- [--quality <0-100>] [--page_format <page_format>]]
Export all documents as PDF files.
Default quality is 50.
Default page format is A4.
Possible JSON replies:
--
{
"status": "error", "exception": "yyy",
"reason": "xxxx", "args": "(xxxx, )"
}
--
{
"status": "ok",
"docids": [
["xxx", "file:///tmp/xxx.pdf"],
["yyy", "file:///tmp/yyy.pdf"],
["zzz", "file:///tmp/zzz.pdf"]
],
"output_dir": "file:///tmp",
}
"""
(output_dir, quality, page_format) = _get_export_params(args)
dsearch = get_docsearch()
try:
os.mkdir(output_dir)
except FileExistsError: # NOQA (Python 3.x only)
pass
out = []
docs = [d for d in dsearch.docs]
docs.sort(key=lambda doc: doc.docid)
output_dir = FS.safe(output_dir)
for (doc_idx, doc) in enumerate(docs):
output_pdf = FS.join(output_dir, doc.docid + ".pdf")
exporter = doc.build_exporter(file_format="pdf")
if exporter.can_change_quality:
exporter.set_quality(quality)
if exporter.can_select_format:
exporter.set_page_format(page_format)
verbose(
"[{}/{}] Exporting {} --> {} ...".format(
doc_idx + 1, len(docs), doc.docid, output_pdf
)
)
exporter.save(output_pdf)
out.append((doc.docid, output_pdf))
doc = None
gc.collect()
verbose("Done")
reply({
"docids": out,
"output_dir": output_dir,
})
|
https://github.com/openpaperwork/paperwork-backend/blob/114b831e94e039e68b339751fd18250877abad76/paperwork_backend/shell.py#L210-L273
|
export to excel
|
python
|
def export(app, local):
"""Export the data."""
print_header()
log("Preparing to export the data...")
id = str(app)
subdata_path = os.path.join("data", id, "data")
# Create the data package
os.makedirs(subdata_path)
# Copy the experiment code into a code/ subdirectory
try:
shutil.copyfile(
os.path.join("snapshots", id + "-code.zip"),
os.path.join("data", id, id + "-code.zip")
)
except:
pass
# Copy in the DATA readme.
# open(os.path.join(id, "README.txt"), "a").close()
# Save the experiment id.
with open(os.path.join("data", id, "experiment_id.md"), "a+") as file:
file.write(id)
if not local:
# Export the logs
subprocess.call(
"heroku logs " +
"-n 10000 > " + os.path.join("data", id, "server_logs.md") +
" --app " + id,
shell=True)
dump_path = dump_database(id)
subprocess.call(
"pg_restore --verbose --clean -d wallace " +
os.path.join("data", id) + "/data.dump",
shell=True)
all_tables = [
"node",
"network",
"vector",
"info",
"transformation",
"transmission",
"participant",
"notification",
"question"
]
for table in all_tables:
subprocess.call(
"psql -d wallace --command=\"\\copy " + table + " to \'" +
os.path.join(subdata_path, table) + ".csv\' csv header\"",
shell=True)
if not local:
os.remove(dump_path)
log("Zipping up the package...")
shutil.make_archive(
os.path.join("data", id + "-data"),
"zip",
os.path.join("data", id)
)
shutil.rmtree(os.path.join("data", id))
log("Done. Data available in " + str(id) + ".zip")
|
https://github.com/berkeley-cocosci/Wallace/blob/3650c0bc3b0804d0adb1d178c5eba9992babb1b0/wallace/command_line.py#L724-L799
|
export to excel
|
python
|
def export(self,
file_obj=None,
file_type=None,
**kwargs):
"""
Export the path to a file object or return data.
Parameters
---------------
file_obj : None, str, or file object
File object or string to export to
file_type : None or str
Type of file: dxf, dict, svg
Returns
---------------
exported : bytes or str
Exported as specified type
"""
return export_path(self,
file_type=file_type,
file_obj=file_obj,
**kwargs)
|
https://github.com/mikedh/trimesh/blob/25e059bf6d4caa74f62ffd58ce4f61a90ee4e518/trimesh/path/path.py#L665-L687
|
export to excel
|
python
|
def export_file(self, filepath, __filter, data, preview_data=None):
"""Export data for other applications
Parameters
----------
filepath: String
\tPath of export file
__filter: String
\tImport filter
data: Object
\tCode array result object slice, i. e. one object or iterable of
\tsuch objects
"""
if __filter.startswith("cell_"):
self._export_figure(filepath, data, __filter[5:])
elif __filter == "csv":
self._export_csv(filepath, data, preview_data=preview_data)
elif __filter in ["pdf", "svg"]:
self.export_cairo(filepath, __filter)
|
https://github.com/manns/pyspread/blob/0e2fd44c2e0f06605efc3058c20a43a8c1f9e7e0/pyspread/src/actions/_main_window_actions.py#L219-L241
|
export to excel
|
python
|
def export_env_string(name, value):
# type: (AEnvName, AEnvValue) -> ADefine
"""Exports an environment variable with the given value"""
os.environ[name] = value
return Define(name, value)
|
https://github.com/dls-controls/pymalcolm/blob/80ea667e4da26365a6cebc0249f52fdc744bd983/malcolm/modules/builtin/defines.py#L97-L101
|
export to excel
|
python
|
def to_excel(self, filepath: str, title: str):
"""Write the main dataframe to an Excell file
:param filepath: path of the Excel file to write
:type filepath: str
:param title: Title of the stylesheet
:type title: str
:example: ``ds.to_excel_("./myfile.xlsx", "My data")``
"""
try:
self.start("Saving data to Excell file: "+filepath + " ...")
writer = pytablewriter.ExcelXlsxTableWriter()
writer.from_dataframe(self.df)
writer.open(filepath)
writer.make_worksheet(title)
writer.write_table()
writer.close()
self.end("File exported to", filepath)
except Exception as e:
self.err(e, "Can not convert data to Excel")
|
https://github.com/synw/dataswim/blob/4a4a53f80daa7cd8e8409d76a19ce07296269da2/dataswim/data/export.py#L158-L178
|
export to excel
|
python
|
def submit_export(cls, file, volume, location, properties=None,
overwrite=False, copy_only=False, api=None):
"""
Submit new export job.
:param file: File to be exported.
:param volume: Volume identifier.
:param location: Volume location.
:param properties: Properties dictionary.
:param overwrite: If true it will overwrite file if exists
:param copy_only: If true files are kept on SevenBridges bucket.
:param api: Api Instance.
:return: Export object.
"""
data = {}
params = {}
volume = Transform.to_volume(volume)
file = Transform.to_file(file)
destination = {
'volume': volume,
'location': location
}
source = {
'file': file
}
if properties:
data['properties'] = properties
data['source'] = source
data['destination'] = destination
data['overwrite'] = overwrite
extra = {
'resource': cls.__name__,
'query': data
}
logger.info('Submitting export', extra=extra)
api = api if api else cls._API
if copy_only:
params['copy_only'] = True
_export = api.post(
cls._URL['query'], data=data, params=params).json()
else:
_export = api.post(
cls._URL['query'], data=data).json()
return Export(api=api, **_export)
|
https://github.com/sbg/sevenbridges-python/blob/f62640d1018d959f0b686f2dbe5e183085336607/sevenbridges/models/storage_export.py#L74-L122
|
export to excel
|
python
|
def cmd_export_doc(*args):
"""
Arguments:
<document id> <output PDF file path>
[-- [--quality <0-100>] [--page_format <page_format>]]
Export one document as a PDF file.
Default quality is 50.
Default page format is A4.
Possible JSON replies:
--
{
"status": "error", "exception": "yyy",
"reason": "xxxx", "args": "(xxxx, )"
}
--
{
"status": "ok",
"docid": "xxxx",
"output_file": "file:///tmp/xxxx.pdf",
"quality": 50,
"page_format": "A4",
}
"""
(docid, output_pdf, quality, page_format) = _get_export_params(args)
dsearch = get_docsearch()
doc = dsearch.get(docid)
exporter = doc.build_exporter(file_format="pdf")
if exporter.can_change_quality:
exporter.set_quality(quality)
if exporter.can_select_format:
exporter.set_page_format(page_format)
verbose("Exporting {} --> {} ...".format(docid, output_pdf))
output_pdf = FS.safe(output_pdf)
exporter.save(output_pdf)
verbose("Done")
r = {
"docid": doc.docid,
"output_file": output_pdf,
}
if exporter.can_change_quality:
r['quality'] = quality
if exporter.can_select_format:
r['page_format'] = page_format
reply(r)
|
https://github.com/openpaperwork/paperwork-backend/blob/114b831e94e039e68b339751fd18250877abad76/paperwork_backend/shell.py#L276-L324
|
export to excel
|
python
|
def export(self, export_type, what):
"""
:param export_type: 'csv', 'json', ...
:param what: string describing what to export
:returns: list of exported file names
"""
aids, arefs, spec, key = self.parse(what)
if key.startswith('rlz'):
curves = self.export_curves_rlzs(aids, key)
else: # statistical exports
curves = self.export_curves_stats(aids, key)
return getattr(self, 'export_' + export_type)(spec, arefs, curves)
|
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/calculators/export/loss_curves.py#L134-L145
|
export to excel
|
python
|
def save_excel(self, fd):
""" Saves the case as an Excel spreadsheet.
"""
from pylon.io.excel import ExcelWriter
ExcelWriter(self).write(fd)
|
https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/case.py#L981-L985
|
export to excel
|
python
|
def exports(self):
"""
Return the information exported by this distribution.
:return: A dictionary of exports, mapping an export category to a dict
of :class:`ExportEntry` instances describing the individual
export entries, and keyed by name.
"""
result = {}
r = self.get_distinfo_resource(EXPORTS_FILENAME)
if r:
result = self.read_exports()
return result
|
https://github.com/pypa/pipenv/blob/cae8d76c210b9777e90aab76e9c4b0e53bb19cde/pipenv/vendor/distlib/database.py#L604-L615
|
export to excel
|
python
|
def export_as_file(self, file_path, cv_source):
"""Export the ensemble as a single Python file and saves it to `file_path`.
This is EXPERIMENTAL as putting different modules together would probably wreak havoc
especially on modules that make heavy use of global variables.
Args:
file_path (str, unicode): Absolute/local path of place to save file in
cv_source (str, unicode): String containing actual code for base learner
cross-validation used to generate secondary meta-features.
"""
if os.path.exists(file_path):
raise exceptions.UserError('{} already exists'.format(file_path))
with open(file_path, 'wb') as f:
f.write(self.export_as_code(cv_source).encode('utf8'))
|
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/models.py#L488-L504
|
export to excel
|
python
|
def output(self):
"""
Create full path for excel file to save parsed translations strings.
Returns:
unicode: full path for excel file to save parsed translations strings.
"""
path, src = os.path.split(self.src)
src, ext = os.path.splitext(src)
return os.path.join(path, "{src}.xls".format(**{"src": src, }))
|
https://github.com/vint21h/django-po2xls/blob/e76d26cfae6d9e5ca95ff053d05a00f875875019/po2xls/utils.py#L66-L76
|
export to excel
|
python
|
def export_output(dskey, calc_id, datadir, target_dir, export_types):
"""
Simple UI wrapper around
:func:`openquake.engine.export.core.export_from_db` yielding
a summary of files exported, if any.
"""
outkey = get_outkey(dskey, export_types.split(','))
if export_types and not outkey:
yield 'There is no exporter for %s, %s' % (dskey, export_types)
return
yield from export_from_db(outkey, calc_id, datadir, target_dir)
|
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/engine/export/core.py#L115-L125
|
export to excel
|
python
|
def to_excel(self,
workbook=None,
worksheet=None,
xl_app=None,
clear=True,
rename=True,
resize_columns=True):
"""
Writes worksheet to an Excel Worksheet COM object.
Requires :py:module:`pywin32` to be installed.
:param workbook: xltable.Workbook this sheet belongs to.
:param worksheet: Excel COM Worksheet instance to write to.
:param xl_app: Excel COM Excel Application to write to.
:param bool clear: If a worksheet is provided, clear worksheet before writing.
:param bool rename: If a worksheet is provided, rename self to match the worksheet.
:param bool resize_columns: Resize sheet columns after writing.
"""
from win32com.client import Dispatch, constants, gencache
if xl_app is None:
if worksheet is not None:
xl_app = worksheet.Parent.Application
elif workbook is not None and hasattr(workbook.workbook_obj, "Application"):
xl_app = workbook.workbook_obj.Application
else:
xl_app = Dispatch("Excel.Application")
xl = xl_app = gencache.EnsureDispatch(xl_app)
# Create a workbook if there isn't one already
if not workbook:
from .workbook import Workbook
workbook = Workbook(worksheets=[self])
if worksheet is None:
# If there's no worksheet then call Workbook.to_excel which will create one
return workbook.to_excel(xl_app=xl_app, resize_columns=resize_columns)
if rename:
self.__name = worksheet.Name
# set manual calculation and turn off screen updating while we update the cells
calculation = xl.Calculation
screen_updating = xl.ScreenUpdating
xl.Calculation = constants.xlCalculationManual
xl.ScreenUpdating = False
try:
# clear the worksheet and reset the styles
if clear:
worksheet.Cells.ClearContents()
worksheet.Cells.Font.Bold = False
worksheet.Cells.Font.Size = 11
worksheet.Cells.Font.Color = 0x000000
worksheet.Cells.Interior.ColorIndex = 0
worksheet.Cells.NumberFormat = "General"
# get any array formula tables
array_formula_tables = []
for table, (row, col) in self.__tables.values():
if isinstance(table, ArrayFormula):
array_formula_tables.append((row, col, row + table.height, col + table.width))
def _is_in_array_formula_table(row, col):
"""returns True if this formula cell is part of an array formula table"""
for top, left, bottom, right in array_formula_tables:
if bottom >= row >= top and left <= col <= right:
return True
return False
origin = worksheet.Range("A1")
xl_cell = origin
for r, row in enumerate(self.iterrows(workbook)):
row = _to_pywintypes(row)
# set the value and formulae to the excel range (it's much quicker to
# write a row at a time and update the formula than it is it do it
# cell by cell)
if clear:
xl_row = worksheet.Range(xl_cell, xl_cell.Offset(1, len(row)))
xl_row.Value = row
else:
for c, value in enumerate(row):
if value is not None:
xl_cell.Offset(1, 1 + c).Value = value
for c, value in enumerate(row):
if isinstance(value, str):
if value.startswith("="):
formula_value = self.__formula_values.get((r, c), 0)
xl_cell.Offset(1, 1 + c).Value = formula_value
xl_cell.Offset(1, 1 + c).Formula = value
elif value.startswith("{=") \
and not _is_in_array_formula_table(r, c):
formula_value = self.__formula_values.get((r, c), 0)
xl_cell.Offset(1, 1 + c).Value = formula_value
xl_cell.Offset(1, 1 + c).FormulaArray = value
# move to the next row
xl_cell = xl_cell.Offset(2, 1)
# set any array formulas
for table, (row, col) in self.__tables.values():
if isinstance(table, ArrayFormula):
data = table.get_data(workbook, row, col)
height, width = data.shape
upper_left = origin.Offset(row+1, col+1)
lower_right = origin.Offset(row + height, col + width)
xl_range = worksheet.Range(upper_left, lower_right)
xl_range.FormulaArray = table.formula.get_formula(workbook, row, col)
# set any formatting
for (row, col), style in self._get_all_styles().items():
r = origin.Offset(1 + row, 1 + col)
if style.bold:
r.Font.Bold = True
if style.excel_number_format is not None:
r.NumberFormat = style.excel_number_format
if style.size is not None:
r.Font.Size = style.size
if style.text_color is not None:
r.Font.Color = _to_bgr(style.text_color)
if style.bg_color is not None:
r.Interior.Color = _to_bgr(style.bg_color)
if style.text_wrap or style.border:
raise Exception("text wrap and border not implemented")
# add any charts
for chart, (row, col) in self.__charts:
top_left = origin.Offset(1 + row, 1 + col)
xl_chart = worksheet.ChartObjects().Add(top_left.Left, top_left.Top, 360, 220).Chart
xl_chart.ChartType = _to_excel_chart_type(chart.type, chart.subtype)
if chart.title:
xl_chart.ChartTitle = chart.title
for series in chart.iter_series(self, row, col):
xl_series = xl_chart.SeriesCollection().NewSeries()
xl_series.Values = "=%s!%s" % (self.name, series["values"].lstrip("="))
if "categories" in series:
xl_series.XValues = "=%s!%s" % (self.name, series["categories"].lstrip("="))
if "name" in series:
xl_series.Name = series["name"]
finally:
xl.ScreenUpdating = screen_updating
xl.Calculation = calculation
if resize_columns:
try:
worksheet.Cells.EntireColumn.AutoFit()
except:
pass
|
https://github.com/fkarb/xltable/blob/7a592642d27ad5ee90d2aa8c26338abaa9d84bea/xltable/worksheet.py#L280-L431
|
export to excel
|
python
|
def write_export_node_to_file(file_object, export_elements):
"""
Exporting process to CSV file
:param file_object: object of File class,
:param export_elements: a dictionary object. The key is a node ID, value is a dictionary of parameters that
will be used in exported CSV document.
"""
for export_element in export_elements:
# Order,Activity,Condition,Who,Subprocess,Terminated
file_object.write(
export_element["Order"] + "," + export_element["Activity"] + "," + export_element["Condition"] + "," +
export_element["Who"] + "," + export_element["Subprocess"] + "," + export_element["Terminated"] + "\n")
|
https://github.com/KrzyHonk/bpmn-python/blob/6e5e28e3d656dbf5bd3d85d78fe8e3f2fb462629/bpmn_python/bpmn_process_csv_export.py#L287-L299
|
export to excel
|
python
|
def get_export(request):
"""Retrieve an export file."""
settings = get_current_registry().settings
exports_dirs = settings['exports-directories'].split()
args = request.matchdict
ident_hash, type = args['ident_hash'], args['type']
id, version = split_ident_hash(ident_hash)
with db_connect() as db_connection:
with db_connection.cursor() as cursor:
try:
results = get_export_files(cursor, id, version, [type],
exports_dirs, read_file=True)
if not results:
raise httpexceptions.HTTPNotFound()
filename, mimetype, size, modtime, state, file_content \
= results[0]
except ExportError as e:
logger.debug(str(e))
raise httpexceptions.HTTPNotFound()
if state == 'missing':
raise httpexceptions.HTTPNotFound()
encoded_filename = urllib.quote(filename.encode('utf-8'))
resp = request.response
resp.status = "200 OK"
resp.content_type = mimetype
# Need both filename and filename* below for various browsers
# See: https://fastmail.blog/2011/06/24/download-non-english-filenames/
resp.content_disposition = "attachment; filename={fname};" \
" filename*=UTF-8''{fname}".format(
fname=encoded_filename)
resp.body = file_content
# Remove version and extension from filename, to recover title slug
slug_title = '-'.join(encoded_filename.split('-')[:-1])
resp.headerlist.append(
('Link', '<https://{}/contents/{}/{}> ;rel="Canonical"'.format(
request.host, id, slug_title)))
return resp
|
https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/views/exports.py#L50-L89
|
export to excel
|
python
|
def get_export(
self,
export_type,
generate=False,
wait=False,
wait_timeout=None,
):
"""
Downloads a data export over HTTP. Returns a `Requests Response
<http://docs.python-requests.org/en/master/api/#requests.Response>`_
object containing the content of the export.
- **export_type** is a string specifying which type of export should be
downloaded.
- **generate** is a boolean specifying whether to generate a new export
and wait for it to be ready, or to just download the latest export.
- **wait** is a boolean specifying whether to wait for an in-progress
export to finish, if there is one. Has no effect if ``generate`` is
``True``.
- **wait_timeout** is the number of seconds to wait if ``wait`` is
``True``. Has no effect if ``wait`` is ``False`` or if ``generate``
is ``True``.
The returned :py:class:`.Response` object has two additional attributes
as a convenience for working with the CSV content; **csv_reader** and
**csv_dictreader**, which are wrappers for :py:meth:`.csv.reader`
and :py:class:`csv.DictReader` respectively. These wrappers take care
of correctly decoding the export content for the CSV parser.
Example::
classification_export = Project(1234).get_export('classifications')
for row in classification_export.csv_reader():
print(row)
classification_export = Project(1234).get_export('classifications')
for row in classification_export.csv_dictreader():
print(row)
"""
if generate:
self.generate_export(export_type)
if generate or wait:
export = self.wait_export(export_type, wait_timeout)
else:
export = self.describe_export(export_type)
if export_type in TALK_EXPORT_TYPES:
media_url = export['data_requests'][0]['url']
else:
media_url = export['media'][0]['src']
response = requests.get(media_url, stream=True)
response.csv_reader = functools.partial(
csv.reader,
response.iter_lines(decode_unicode=True),
)
response.csv_dictreader = functools.partial(
csv.DictReader,
response.iter_lines(decode_unicode=True),
)
return response
|
https://github.com/zooniverse/panoptes-python-client/blob/138d93cb03378501a8d349428e381ad73f928680/panoptes_client/exportable.py#L30-L92
|
export to excel
|
python
|
def exportEPublication(epub):
"""
Send `epub` :class:`.EPublication` object to Aleph, where it will be
processed by librarians.
Args:
epub (EPublication): structure for export
Warning:
The export function is expecting some of the EPublication properties to
be filled with non-blank data.
Specifically:
- :attr:`.EPublication.ISBN`
- :attr:`.EPublication.nazev`
- :attr:`.EPublication.mistoVydani`
- :attr:`.EPublication.datumVydani`
- :attr:`.EPublication.poradiVydani`
- :attr:`.EPublication.zpracovatelZaznamu`
- :attr:`.EPublication.vazba`
- :attr:`.EPublication.format`
- :attr:`.EPublication.format`
- :attr:`.EPublication.nakladatelVydavatel`
"""
epub = _removeSpecialCharacters(epub)
post_dict = PostData(epub).get_POST_data()
return _sendPostDict(post_dict)
|
https://github.com/edeposit/edeposit.amqp.aleph/blob/360342c0504d5daa2344e864762cdf938d4149c7/src/edeposit/amqp/aleph/export.py#L378-L405
|
export to excel
|
python
|
def export_olx(self, tarball, root_path):
"""if sequestered, only export the assets"""
def append_asset_to_soup_and_export(asset_):
if isinstance(asset_, Item):
try:
unique_url = asset_.export_olx(tarball, root_path)
except AttributeError:
pass
else:
unique_name = get_file_name_without_extension(unique_url)
asset_type = asset_.genus_type.identifier
asset_tag = my_soup.new_tag(asset_type)
asset_tag['url_name'] = unique_name
getattr(my_soup, my_tag).append(asset_tag)
else:
try:
unique_urls = asset_.export_olx(tarball, root_path)
except AttributeError:
pass
else:
for index, ac in enumerate(asset_.get_asset_contents()):
asset_type = ac.genus_type.identifier
unique_url = unique_urls[index]
unique_name = get_file_name_without_extension(unique_url)
asset_tag = my_soup.new_tag(asset_type)
asset_tag['url_name'] = unique_name
getattr(my_soup, my_tag).append(asset_tag)
def get_file_name_without_extension(filepath):
return filepath.split('/')[-1].replace('.xml', '')
my_path = None
if self.my_osid_object.is_sequestered():
# just export assets
for asset in self.assets:
try:
asset.export_olx(tarball, root_path)
except AttributeError:
pass
else:
# also add to the /<tag>/ folder
my_tag = self.my_osid_object.genus_type.identifier
expected_name = self.get_unique_name(tarball, self.url, my_tag, root_path)
my_path = '{0}{1}/{2}.xml'.format(root_path,
my_tag,
expected_name)
my_soup = BeautifulSoup('<' + my_tag + '/>', 'xml')
getattr(my_soup, my_tag)['display_name'] = self.my_osid_object.display_name.text
if my_tag == 'split_test':
getattr(my_soup, my_tag)['group_id_to_child'] = self.my_osid_object.group_id_to_child
getattr(my_soup, my_tag)['user_partition_id'] = self.my_osid_object.user_partition_id.text
rm = self.my_osid_object._get_provider_manager('REPOSITORY')
if self.my_osid_object._proxy is None:
cls = rm.get_composition_lookup_session()
else:
cls = rm.get_composition_lookup_session(proxy=self.my_osid_object._proxy)
cls.use_federated_repository_view()
cls.use_unsequestered_composition_view()
for child_id in self.my_osid_object.get_child_ids():
child = cls.get_composition(child_id)
if child.is_sequestered():
# append its assets here
for asset in child.assets:
append_asset_to_soup_and_export(asset)
else:
child_type = child.genus_type.identifier
child_tag = my_soup.new_tag(child_type)
child_path = child.export_olx(tarball, root_path)
if child_path is not None:
child_tag['url_name'] = get_file_name_without_extension(child_path)
getattr(my_soup, my_tag).append(child_tag)
for asset in self.assets:
append_asset_to_soup_and_export(asset)
self.write_to_tarfile(tarball, my_path, my_soup)
return my_path
|
https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/records/repository/edx/compositions.py#L522-L604
|
export to excel
|
python
|
def usufyToXlsExport(d, fPath):
"""
Workaround to export to a .xls file.
Args:
-----
d: Data to export.
fPath: File path for the output file.
"""
from pyexcel_xls import get_data
try:
#oldData = get_data(fPath)
# A change in the API now returns only an array of arrays if there is only one sheet.
oldData = {"OSRFramework": get_data(fPath) }
except:
# No information has been recovered
oldData = {"OSRFramework":[]}
# Generating the new tabular data
tabularData = _generateTabularData(d, oldData)
from pyexcel_xls import save_data
# Storing the file
save_data(fPath, tabularData)
|
https://github.com/i3visio/osrframework/blob/83437f4c14c9c08cb80a896bd9834c77f6567871/osrframework/utils/general.py#L397-L419
|
export to excel
|
python
|
def __build_export(self, stats):
"""Build the export lists."""
export_names = []
export_values = []
if isinstance(stats, dict):
# Stats is a dict
# Is there a key ?
if 'key' in iterkeys(stats) and stats['key'] in iterkeys(stats):
pre_key = '{}.'.format(stats[stats['key']])
else:
pre_key = ''
# Walk through the dict
for key, value in iteritems(stats):
if isinstance(value, bool):
value = json.dumps(value)
if isinstance(value, list):
try:
value = value[0]
except IndexError:
value = ''
if isinstance(value, dict):
item_names, item_values = self.__build_export(value)
item_names = [pre_key + key.lower() + str(i) for i in item_names]
export_names += item_names
export_values += item_values
else:
export_names.append(pre_key + key.lower())
export_values.append(value)
elif isinstance(stats, list):
# Stats is a list (of dict)
# Recursive loop through the list
for item in stats:
item_names, item_values = self.__build_export(item)
export_names += item_names
export_values += item_values
return export_names, export_values
|
https://github.com/nicolargo/glances/blob/5bd4d587a736e0d2b03170b56926841d2a3eb7ee/glances/exports/glances_export.py#L187-L223
|
export to excel
|
python
|
def initial_export(agent_id, force):
"""Performs the initial data export for an agent"""
agent = LiveSyncAgent.find_first(id=agent_id)
if agent is None:
print 'No such agent'
return
if agent.backend is None:
print cformat('Cannot run agent %{red!}{}%{reset} (backend not found)').format(agent.name)
return
print cformat('Selected agent: %{white!}{}%{reset} ({})').format(agent.name, agent.backend.title)
if agent.initial_data_exported and not force:
print 'The initial export has already been performed for this agent.'
print cformat('To re-run it, use %{yellow!}--force%{reset}')
return
agent.create_backend().run_initial_export(Event.find(is_deleted=False))
agent.initial_data_exported = True
db.session.commit()
|
https://github.com/indico/indico-plugins/blob/fe50085cc63be9b8161b09539e662e7b04e4b38e/livesync/indico_livesync/cli.py#L72-L89
|
export to excel
|
python
|
def main(argv=None):
"""ben-elastic entry point"""
arguments = cli_common(__doc__, argv=argv)
es_export = ESExporter(arguments['CAMPAIGN-DIR'], arguments['--es'])
es_export.export()
if argv is not None:
return es_export
|
https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/cli/benelastic.py#L20-L26
|
export to excel
|
python
|
def to_file(self, path):
"""Export the contents to a file as comma separated values.
Parameters
----------
path : string
File path where the data should be saved to
Example
-------
Export the last ten elements of AME2012 to a new file:
>>> Table('AME2012').tail(10).to_file('last_ten.txt')
"""
with open(path, 'w') as f:
f.write('Z N M\n')
self.df.to_csv(path, sep='\t', mode='a')
|
https://github.com/elyase/masstable/blob/3eb72b22cd3337bc5c6bb95bb7bb73fdbe6ae9e2/masstable/masstable.py#L96-L112
|
export to excel
|
python
|
def usufyToXlsxExport(d, fPath):
"""
Workaround to export to a .xlsx file.
Args:
-----
d: Data to export.
fPath: File path for the output file.
"""
from pyexcel_xlsx import get_data
try:
#oldData = get_data(fPath)
# A change in the API now returns only an array of arrays if there is only one sheet.
oldData = {"OSRFramework": get_data(fPath) }
except:
# No information has been recovered
oldData = {"OSRFramework":[]}
# Generating the new tabular data
tabularData = _generateTabularData(d, oldData)
from pyexcel_xlsx import save_data
# Storing the file
save_data(fPath, tabularData)
|
https://github.com/i3visio/osrframework/blob/83437f4c14c9c08cb80a896bd9834c77f6567871/osrframework/utils/general.py#L422-L445
|
export to excel
|
python
|
def exportData(self, datfile):
"""
Create a .dat file with the data that has been loaded.
Args:
datfile: Path to the file (Relative to the current working
directory or absolute).
"""
def ampl_set(name, values):
def format_entry(e):
return repr(e).replace(' ', '')
return 'set {0} := {1};'.format(
name, ','.join(format_entry(e) for e in values)
)
def ampl_param(name, values):
def format_entry(k, v):
k = repr(k).strip('()').replace(' ', '')
if v == inf:
v = "Infinity"
elif v == -inf:
v = "-Infinity"
else:
v = repr(v).strip('()').replace(' ', '')
return '[{0}]{1}'.format(k, v)
return 'param {0} := {1};'.format(
name, ''.join(format_entry(k, v) for k, v in values.items())
)
with open(datfile, 'w') as f:
for name, entity in self.getSets():
values = entity.getValues().toList()
print(ampl_set(name, values), file=f)
for name, entity in self.getParameters():
if entity.isScalar():
print(
'param {} := {};'.format(name, entity.value()),
file=f
)
else:
values = entity.getValues().toDict()
print(ampl_param(name, values), file=f)
|
https://github.com/ampl/amplpy/blob/39df6954049a11a8f666aed26853259b4687099a/amplpy/ampl.py#L959-L1003
|
export to excel
|
python
|
def export(self, output=Mimetypes.PLAINTEXT, exclude=None, **kwargs):
""" Export the collection item in the Mimetype required.
..note:: If current implementation does not have special mimetypes, reuses default_export method
:param output: Mimetype to export to (Uses Mimetypes)
:type output: str
:param exclude: Informations to exclude. Specific to implementations
:type exclude: [str]
:return: Object using a different representation
"""
return self.getTextualNode().export(output, exclude)
|
https://github.com/Capitains/MyCapytain/blob/b11bbf6b6ae141fc02be70471e3fbf6907be6593/MyCapytain/resources/texts/remote/cts.py#L368-L379
|
export to excel
|
python
|
def ExportTextFile(self, fname, title='unknown plot'):
"save plot data to external file"
buff = ["# Plot Data for %s" % title,
"#---------------------------------"]
out = []
labels = []
itrace = 0
for ax in self.panel.fig.get_axes():
for line in ax.lines:
itrace += 1
x = line.get_xdata()
y = line.get_ydata()
ylab = line.get_label()
if len(ylab) < 1:
ylab = 'Y%i' % itrace
for c in ' .:";|/\\(){}[]\'&^%*$+=-?!@#':
ylab = ylab.replace(c, '_')
xlab = (' X%d' % itrace + ' '*3)[:4]
ylab = ' '*(18-len(ylab)) + ylab + ' '
out.extend([x, y])
labels.extend([xlab, ylab])
if itrace == 0:
return
buff.append('# %s' % (' '.join(labels)))
npts = [len(a) for a in out]
for i in range(max(npts)):
oline = []
for a in out:
d = np.nan
if i < len(a):
d = a[i]
oline.append(gformat(d, 12))
buff.append(' '.join(oline))
buff.append('')
with open(fname, 'w') as fout:
fout.write("\n".join(buff))
fout.close()
self.write_message("Exported data to '%s'" % fname, panel=0)
|
https://github.com/newville/wxmplot/blob/8e0dc037453e5cdf18c968dc5a3d29efd761edee/wxmplot/plotframe.py#L64-L108
|
export to excel
|
python
|
def _export_service(self, svc, ed):
# type: (Any, EndpointDescription) -> None
"""
Registers a service export
:param svc: Service instance
:param ed: Endpoint description
"""
self._add_export(ed.get_id(), (svc, ed))
|
https://github.com/tcalmant/ipopo/blob/2f9ae0c44cd9c34ef1a9d50837b3254e75678eb1/pelix/rsa/providers/distribution/__init__.py#L586-L594
|
export to excel
|
python
|
def export_csv(ekey, dstore):
"""
Default csv exporter for arrays stored in the output.hdf5 file
:param ekey: export key
:param dstore: datastore object
:returns: a list with the path of the exported file
"""
name = ekey[0] + '.csv'
try:
array = dstore[ekey[0]].value
except AttributeError:
# this happens if the key correspond to a HDF5 group
return [] # write a custom exporter in this case
if len(array.shape) == 1: # vector
array = array.reshape((len(array), 1))
return [write_csv(dstore.export_path(name), array)]
|
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/calculators/export/__init__.py#L28-L44
|
export to excel
|
python
|
def export(app, local, no_scrub):
"""Export the data."""
log(header, chevrons=False)
data.export(str(app), local=local, scrub_pii=(not no_scrub))
|
https://github.com/Dallinger/Dallinger/blob/76ca8217c709989c116d0ebd8fca37bd22f591af/dallinger/command_line.py#L706-L709
|
export to excel
|
python
|
def export(self):
"""
export dictionary with values
"""
data = {}
for key in self._specification:
data[key] = self[key]
return data
|
https://github.com/gijzelaerr/python-snap7/blob/a6db134c7a3a2ef187b9eca04669221d6fc634c3/snap7/util.py#L363-L370
|
export to excel
|
python
|
def to_export(export):
"""Serializes export to id string
:param export: object to serialize
:return: string id
"""
from sevenbridges.models.storage_export import Export
if not export:
raise SbgError('Export is required!')
elif isinstance(export, Export):
return export.id
elif isinstance(export, six.string_types):
return export
else:
raise SbgError('Invalid export parameter!')
|
https://github.com/sbg/sevenbridges-python/blob/f62640d1018d959f0b686f2dbe5e183085336607/sevenbridges/meta/transformer.py#L211-L224
|
export to excel
|
python
|
def export_to_file(self, filepath, level_prefix = ' '):
"""
Exports this model to a file.
@param filepath: File to be exported to.
@type filepath: str
"""
xmldom = self.export_to_dom()
xmlstr = xmldom.toprettyxml(level_prefix, '\n',)
f = open(filepath, 'w')
f.write(xmlstr)
f.close()
|
https://github.com/LEMS/pylems/blob/4eeb719d2f23650fe16c38626663b69b5c83818b/lems/model/model.py#L313-L326
|
export to excel
|
python
|
def mark_entities_to_export(self, export_config):
"""
Apply the specified :class:`meteorpi_model.ExportConfiguration` to the database, running its contained query and
creating rows in t_observationExport or t_fileExport for matching entities.
:param ExportConfiguration export_config:
An instance of :class:`meteorpi_model.ExportConfiguration` to apply.
:returns:
The integer number of rows added to the export tables
"""
# Retrieve the internal ID of the export configuration, failing if it hasn't been stored
self.con.execute('SELECT uid FROM archive_exportConfig WHERE exportConfigID = %s;',
(export_config.config_id,))
export_config_id = self.con.fetchall()
if len(export_config_id) < 1:
raise ValueError("Attempt to run export on ExportConfiguration not in database")
export_config_id = export_config_id[0]['uid']
# If the export is inactive then do nothing
if not export_config.enabled:
return 0
# Track the number of rows created, return it later
rows_created = 0
# Handle ObservationSearch
if isinstance(export_config.search, mp.ObservationSearch):
# Create a deep copy of the search and set the properties required when creating exports
search = mp.ObservationSearch.from_dict(export_config.search.as_dict())
search.exclude_export_to = export_config.config_id
b = search_observations_sql_builder(search)
self.con.execute(b.get_select_sql(columns='o.uid, o.obsTime'), b.sql_args)
for result in self.con.fetchall():
self.con.execute('INSERT INTO archive_observationExport '
'(observationId, obsTime, exportConfig, exportState) '
'VALUES (%s,%s,%s,%s)', (result['uid'], result['obsTime'], export_config_id, 1))
rows_created += 1
# Handle FileSearch
elif isinstance(export_config.search, mp.FileRecordSearch):
# Create a deep copy of the search and set the properties required when creating exports
search = mp.FileRecordSearch.from_dict(export_config.search.as_dict())
search.exclude_export_to = export_config.config_id
b = search_files_sql_builder(search)
self.con.execute(b.get_select_sql(columns='f.uid, f.fileTime'), b.sql_args)
for result in self.con.fetchall():
self.con.execute('INSERT INTO archive_fileExport '
'(fileId, fileTime, exportConfig, exportState) '
'VALUES (%s,%s,%s,%s)', (result['uid'], result['fileTime'], export_config_id, 1))
rows_created += 1
# Handle ObservatoryMetadataSearch
elif isinstance(export_config.search, mp.ObservatoryMetadataSearch):
# Create a deep copy of the search and set the properties required when creating exports
search = mp.ObservatoryMetadataSearch.from_dict(export_config.search.as_dict())
search.exclude_export_to = export_config.config_id
b = search_metadata_sql_builder(search)
self.con.execute(b.get_select_sql(columns='m.uid, m.setAtTime'), b.sql_args)
for result in self.con.fetchall():
self.con.execute('INSERT INTO archive_metadataExport '
'(metadataId, setAtTime, exportConfig, exportState) '
'VALUES (%s,%s,%s,%s)', (result['uid'], result['setAtTime'], export_config_id, 1))
rows_created += 1
# Complain if it's anything other than these two (nothing should be at the moment but we might introduce
# more search types in the future
else:
raise ValueError("Unknown search type %s" % str(type(export_config.search)))
return rows_created
|
https://github.com/camsci/meteor-pi/blob/7b01527650bd1b2b76d6f364e8122e25b8812c8d/src/pythonModules/meteorpi_db/meteorpi_db/__init__.py#L1102-L1173
|
export to excel
|
python
|
def exportTreeItem(self, sheet, cols, item):
"""
Exports the inputed item to the given Excel worksheet for the
given visible columns.
:param sheet | <xlwt.WorkSheet>
cols | [<int>, ..]
item | <QTreeWidgetItem>
"""
# export item information
for c, col in enumerate(cols):
data = unwrapVariant(item.data(Qt.EditRole, col))
if data:
sheet.write(self._currrow, c, nativestring(data))
else:
sheet.write(self._currrow, c, nativestring(item.text(col)))
self._currrow += 1
# export children as rows
for c in range(item.childCount()):
self.exportTreeItem(sheet, cols, item.child(c))
|
https://github.com/bitesofcode/projexui/blob/f18a73bec84df90b034ca69b9deea118dbedfc4d/projexui/exporters/xexcelexporter.py#L76-L97
|
export to excel
|
python
|
def generate_exports():
"""Print export commands for setting environment variables.
"""
env = []
for name in list_installed_genomes():
try:
g = Genome(name)
env_name = re.sub(r'[^\w]+', "_", name).upper()
env.append("export {}={}".format(env_name, g.filename))
except:
pass
return env
|
https://github.com/simonvh/genomepy/blob/abace2366511dbe855fe1430b1f7d9ec4cbf6d29/genomepy/functions.py#L238-L249
|
export to excel
|
python
|
def export(self, output: str=None, exclude: List[str]=None, **kwargs):
""" Export the collection item in the Mimetype required.
..note:: If current implementation does not have special mimetypes, reuses default_export method
:param output: Mimetype to export to (Uses MyCapytain.common.constants.Mimetypes)
:type output: str
:param exclude: Information to exclude. Specific to implementations
:type exclude: [str]
:return: Object using a different representation
"""
return Exportable.export(self, output, exclude=exclude, **kwargs)
|
https://github.com/Capitains/MyCapytain/blob/b11bbf6b6ae141fc02be70471e3fbf6907be6593/MyCapytain/resources/prototypes/text.py#L158-L169
|
export to excel
|
python
|
def export_to_file(self, filename):
"""Export this instrument's settings to a file.
:param filename: the name of the file
"""
instr_json = self.export_struct()
with open(filename, 'w') as fp:
json.dump(instr_json, fp, indent=2)
|
https://github.com/alexras/pylsdj/blob/1c45a7919dd324e941f76b315558b9647892e4d5/pylsdj/instrument.py#L88-L96
|
export to excel
|
python
|
def export(self):
"""
See DiskExportManager.export
"""
with LogTask('Exporting disk {} to {}'.format(self.name, self.dst)):
with utils.RollbackContext() as rollback:
rollback.prependDefer(
shutil.rmtree, self.dst, ignore_errors=True
)
self.copy()
if not self.disk['format'] == 'iso':
self.sparse()
self.calc_sha('sha1')
self.update_lago_metadata()
self.write_lago_metadata()
self.compress()
rollback.clear()
|
https://github.com/lago-project/lago/blob/5b8970f7687e063e4619066d5b8093ca997678c9/lago/export.py#L246-L262
|
export to excel
|
python
|
def export(self, output_folder):
"""Export matrices as ``*.npy`` files to an output folder."""
if not os.path.exists(output_folder):
os.makedirs(output_folder)
self._interact_with_folder(output_folder, 'w')
|
https://github.com/erget/StereoVision/blob/1adff45e291362f52188e0fd0211265845a4461a/stereovision/calibration.py#L124-L128
|
export to excel
|
python
|
def _write_exports(exports, edict):
'''
Write an exports file to disk
If multiple shares were initially configured per line, like:
/media/storage /media/data *(ro,sync,no_subtree_check)
...then they will be saved to disk with only one share per line:
/media/storage *(ro,sync,no_subtree_check)
/media/data *(ro,sync,no_subtree_check)
'''
with salt.utils.files.fopen(exports, 'w') as efh:
for export in edict:
line = salt.utils.stringutils.to_str(export)
for perms in edict[export]:
hosts = perms['hosts']
options = ','.join(perms['options'])
line += ' {0}({1})'.format(hosts, options)
efh.write('{0}\n'.format(line))
|
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/nfs3.py#L110-L130
|
export to excel
|
python
|
def panel_export(panel_id):
"""Export panel to PDF file"""
panel_obj = store.panel(panel_id)
data = controllers.panel_export(store, panel_obj)
data['report_created_at'] = datetime.datetime.now().strftime("%Y-%m-%d")
html_report = render_template('panels/panel_pdf_simple.html', **data)
return render_pdf(HTML(string=html_report), download_filename=data['panel']['panel_name']+'_'+str(data['panel']['version'])+'_'+datetime.datetime.now().strftime("%Y-%m-%d")+'_scout.pdf')
|
https://github.com/Clinical-Genomics/scout/blob/90a551e2e1653a319e654c2405c2866f93d0ebb9/scout/server/blueprints/panels/views.py#L136-L142
|
export to excel
|
python
|
def export_file(file_path):
"""Prepend the given parameter with ``export``"""
if not os.path.isfile(file_path):
return error("Referenced file does not exist: '{}'.".format(file_path))
return "export {}".format(file_path)
|
https://github.com/genialis/resolwe-runtime-utils/blob/5657d7cf981972a5259b9b475eae220479401001/resolwe_runtime_utils.py#L305-L311
|
export to excel
|
python
|
def export(self, name, columns, points):
"""Export the stats to the Statsd server."""
for i in range(len(columns)):
if not isinstance(points[i], Number):
continue
stat_name = '{}.{}.{}'.format(self.prefix, name, columns[i])
stat_value = points[i]
tags = self.parse_tags(self.tags)
try:
self.client.send(stat_name, stat_value, **tags)
except Exception as e:
logger.error("Can not export stats %s to OpenTSDB (%s)" % (name, e))
logger.debug("Export {} stats to OpenTSDB".format(name))
|
https://github.com/nicolargo/glances/blob/5bd4d587a736e0d2b03170b56926841d2a3eb7ee/glances/exports/glances_opentsdb.py#L76-L88
|
export to excel
|
python
|
def export_csv(self, table, output=None, columns="*", **kwargs):
"""
Export a table to a CSV file.
If an output path is provided, write to file. Else, return a
string.
Wrapper around pandas.sql.to_csv(). See:
http://pandas.pydata.org/pandas-docs/stable/io.html#io-store-in-csv
Arguments:
table (str): Name of the table to export.
output (str, optional): Path of the file to write.
columns (str, optional): A comma separated list of columns
to export.
**kwargs: Additional args passed to pandas.sql.to_csv()
Returns:
str: CSV string, or None if writing to file.
Raises:
IOError: In case of error writing to file.
SchemaError: If the named table is not found.
"""
import pandas.io.sql as panda
# Determine if we're writing to a file or returning a string.
isfile = output is not None
output = output or StringIO()
if table not in self.tables:
raise SchemaError("Cannot find table '{table}'"
.format(table=table))
# Don't print row indexes by default.
if "index" not in kwargs:
kwargs["index"] = False
table = panda.read_sql("SELECT {columns} FROM {table}"
.format(columns=columns, table=table),
self.connection)
table.to_csv(output, **kwargs)
return None if isfile else output.getvalue()
|
https://github.com/ChrisCummins/labm8/blob/dd10d67a757aefb180cb508f86696f99440c94f5/db.py#L442-L487
|
export to excel
|
python
|
def export(self):
"""
Make the actual request to the Import API (exporting is part of the
Import API) to export a map visualization as a .carto file
:return: A URL pointing to the .carto file
:rtype: str
:raise: CartoException
.. warning:: Non-public API. It may change with no previous notice
.. note:: The export is asynchronous, but this method waits for the export to complete. See `MAX_NUMBER_OF_RETRIES` and `INTERVAL_BETWEEN_RETRIES_S`
"""
export_job = ExportJob(self.client, self.get_id())
export_job.run()
export_job.refresh()
count = 0
while export_job.state in ("exporting", "enqueued", "pending"):
if count >= MAX_NUMBER_OF_RETRIES:
raise CartoException(_("Maximum number of retries exceeded \
when polling the import API for \
visualization export"))
time.sleep(INTERVAL_BETWEEN_RETRIES_S)
export_job.refresh()
count += 1
if export_job.state == "failure":
raise CartoException(_("Visualization export failed"))
if (export_job.state != "complete" and export_job.state != "created"):
raise CartoException(_("Unexpected problem on visualization export \
(state: {state})").
format(state=export_job.state))
return export_job.url
|
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/visualizations.py#L80-L117
|
export to excel
|
python
|
def exportUsufy(data, ext, fileH):
"""
Method that exports the different structures onto different formats.
Args:
-----
data: Data to export.
ext: One of the following: csv, excel, json, ods.
fileH: Fileheader for the output files.
Returns:
--------
Performs the export as requested by parameter.
"""
if ext == "csv":
usufyToCsvExport(data, fileH+"."+ext)
elif ext == "gml":
usufyToGmlExport(data, fileH+"."+ext)
elif ext == "json":
usufyToJsonExport(data, fileH+"."+ext)
elif ext == "ods":
usufyToOdsExport(data, fileH+"."+ext)
elif ext == "png":
usufyToPngExport(data, fileH+"."+ext)
elif ext == "txt":
usufyToTextExport(data, fileH+"."+ext)
elif ext == "xls":
usufyToXlsExport(data, fileH+"."+ext)
elif ext == "xlsx":
usufyToXlsxExport(data, fileH+"."+ext)
|
https://github.com/i3visio/osrframework/blob/83437f4c14c9c08cb80a896bd9834c77f6567871/osrframework/utils/general.py#L40-L69
|
export to excel
|
python
|
def exportItem(self,
title,
itemId,
exportFormat,
tags="export",
snippet=None,
exportParameters=None,
wait=True):
"""
Exports a service item (POST only) to the specified output format.
Available only to users with an organizational subscription.
Invokable only by the service item owner or an administrator.
Inputs:
title - name of export item
itemId - id of the item to export
exportFormat - out format. Values: Shapefile, CSV or File
Geodatabase, feature collection, GeoJson,
or Scene Package
tags - comma seperated list of quick descriptors, the default is
export.
snippet - short explination of the exported item
exportParameters - A JSON object describing the layers to be
exported and the export parameters for each
layer.
wait - optional - default false. Export item is an a synchronus
operation. If true is specified, the process will wait till the
operation is completed.
Output:
If wait is True:
UserItem class
else:
job id for the export item.
"""
url = "%s/export" % self.location
params = {
"f" : "json",
"title" : title,
"tags" : tags,
"itemId" : itemId,
"exportFormat" : exportFormat,
}
if snippet is not None:
params['snippet'] = snippet
if exportParameters is not None:
params["exportParameters"] = json.dumps(exportParameters)
res = self._post(url=url,
param_dict=params,
securityHandler=self._securityHandler,
proxy_port=self._proxy_port,
proxy_url=self._proxy_url)
itemURL = "%s/items/%s" % (self.location, res['exportItemId'])
if self.currentFolder is not None or self.currentFolder['title'] != "root":
self.moveItems(items=res['exportItemId'], folder=self.currentFolder['id'])
ui = UserItem(url=itemURL,
securityHandler=self._securityHandler,
proxy_url=self._proxy_url,
proxy_port=self._proxy_port)
if wait == True:
status = "partial"
while status != "completed":
status = ui.status(jobId=res['jobId'], jobType="export")
if status['status'] == 'failed':
raise Exception("Could not export item: %s" % itemId)
elif status['status'].lower() == "completed":
break
time.sleep(2)
else:
return res['jobId'], ui
return ui
|
https://github.com/Esri/ArcREST/blob/ab240fde2b0200f61d4a5f6df033516e53f2f416/src/arcrest/manageorg/_content.py#L2444-L2513
|
export to excel
|
python
|
def export(self, path, session):
"""See `Module.export`."""
def variables_saver(variables_path):
if self._saver:
self._saver.save(
session, variables_path,
write_meta_graph=False,
write_state=False)
self._spec._export(path, variables_saver)
|
https://github.com/tensorflow/hub/blob/09f45963f6787322967b6fec61459f3ac56fbb27/tensorflow_hub/native_module.py#L569-L578
|
export to excel
|
python
|
def export(infile, outfile, format, outcsv, transition_quantification, max_transition_pep, ipf, ipf_max_peptidoform_pep, max_rs_peakgroup_qvalue, peptide, max_global_peptide_qvalue, protein, max_global_protein_qvalue):
"""
Export TSV/CSV tables
"""
if format == "score_plots":
export_score_plots(infile)
else:
if outfile is None:
if outcsv:
outfile = infile.split(".osw")[0] + ".csv"
else:
outfile = infile.split(".osw")[0] + ".tsv"
else:
outfile = outfile
export_tsv(infile, outfile, format, outcsv, transition_quantification, max_transition_pep, ipf, ipf_max_peptidoform_pep, max_rs_peakgroup_qvalue, peptide, max_global_peptide_qvalue, protein, max_global_protein_qvalue)
|
https://github.com/PyProphet/pyprophet/blob/f546ad171750cd7685afbde6785fe71f82cadb35/pyprophet/main.py#L277-L292
|
export to excel
|
python
|
def export(id, local=False, scrub_pii=False):
"""Export data from an experiment."""
print("Preparing to export the data...")
if local:
db_uri = db.db_url
else:
db_uri = HerokuApp(id).db_uri
# Create the data package if it doesn't already exist.
subdata_path = os.path.join("data", id, "data")
try:
os.makedirs(subdata_path)
except OSError as e:
if e.errno != errno.EEXIST or not os.path.isdir(subdata_path):
raise
# Copy in the data.
copy_db_to_csv(db_uri, subdata_path, scrub_pii=scrub_pii)
# Copy the experiment code into a code/ subdirectory.
try:
shutil.copyfile(
os.path.join("snapshots", id + "-code.zip"),
os.path.join("data", id, id + "-code.zip"),
)
except Exception:
pass
# Copy in the DATA readme.
# open(os.path.join(id, "README.txt"), "a").close()
# Save the experiment id.
with open(os.path.join("data", id, "experiment_id.md"), "a+") as file:
file.write(id)
# Zip data
src = os.path.join("data", id)
dst = os.path.join("data", id + "-data.zip")
archive_data(id, src, dst)
cwd = os.getcwd()
data_filename = "{}-data.zip".format(id)
path_to_data = os.path.join(cwd, "data", data_filename)
# Backup data on S3 unless run locally
if not local:
bucket = user_s3_bucket()
bucket.upload_file(path_to_data, data_filename)
url = _generate_s3_url(bucket, data_filename)
# Register experiment UUID with dallinger
register(id, url)
return path_to_data
|
https://github.com/Dallinger/Dallinger/blob/76ca8217c709989c116d0ebd8fca37bd22f591af/dallinger/data.py#L206-L263
|
export to excel
|
python
|
def get_export_table(self):
"""Get the export table."""
symbols = self.binary.DIRECTORY_ENTRY_EXPORT.symbols
names = AttrsGetter(symbols, join=False).name
return names
|
https://github.com/NoviceLive/intellicoder/blob/6cac5ebfce65c370dbebe47756a1789b120ef982/intellicoder/executables/pe.py#L54-L58
|
export to excel
|
python
|
def export_csv(self, path, idx=None, header=None, formatted=False,
sort_idx=True, fmt='%.18e'):
"""
Export to a csv file
Parameters
----------
path : str
path of the csv file to save
idx : None or array-like, optional
the indices of the variables to export. Export all by default
header : None or array-like, optional
customized header if not `None`. Use the names from the lst file
by default
formatted : bool, optional
Use LaTeX-formatted header. Does not apply when using customized
header
sort_idx : bool, optional
Sort by idx or not, # TODO: implement sort
fmt : str
cell formatter
"""
if not idx:
idx = self._idx
if not header:
header = self.get_header(idx, formatted=formatted)
assert len(idx) == len(header), \
"Idx length does not match header length"
body = self.get_values(idx)
with open(path, 'w') as fd:
fd.write(','.join(header) + '\n')
np.savetxt(fd, body, fmt=fmt, delimiter=',')
|
https://github.com/cuihantao/andes/blob/7067898d4f26ce7534e968b8486c4aa8fe3a511a/andes/plot.py#L141-L175
|
export to excel
|
python
|
def export_csv_file(self, directory, filename):
"""
Exports diagram inner graph to BPMN 2.0 XML file (with Diagram Interchange data).
:param directory: strings representing output directory,
:param filename: string representing output file name.
"""
bpmn_csv_export.BpmnDiagramGraphCsvExport.export_process_to_csv(self, directory, filename)
|
https://github.com/KrzyHonk/bpmn-python/blob/6e5e28e3d656dbf5bd3d85d78fe8e3f2fb462629/bpmn_python/bpmn_diagram_rep.py#L95-L102
|
export to excel
|
python
|
def export_envars(self, env):
"""Export the environment variables contained in the dict env."""
for k, v in env.items():
self.export_envar(k, v)
|
https://github.com/materialsproject/pymatgen/blob/4ca558cf72f8d5f8a1f21dfdfc0181a971c186da/pymatgen/io/abinit/launcher.py#L93-L96
|
export to excel
|
python
|
def values_export(self, **params):
""" Method for `Export Values from all Data Streams of a Device <https://m2x.att.com/developer/documentation/v2/device#Export-Values-from-all-Data-Streams-of-a-Device>`_ endpoint.
:param params: Query parameters passed as keyword arguments. View M2X API Docs for listing of available parameters.
:return: The API response, see M2X API docs for details
:rtype: dict
:raises: :class:`~requests.exceptions.HTTPError` if an error occurs when sending the HTTP request
"""
self.api.get(self.subpath('/values/export.csv'), params=params)
return self.api.last_response
|
https://github.com/attm2x/m2x-python/blob/df83f590114692b1f96577148b7ba260065905bb/m2x/v2/devices.py#L181-L192
|
export to excel
|
python
|
def list_to_file(orig_list, file_name, file_location):
"""
Function to export a list to a text file
Args:
orig_list: The list you want exported
file_name: The name of the exported file
file_location: The location of the file, derive from the os module
Returns: returns the filename info
"""
file = __os.path.join(file_location, file_name)
def add_line_break(list_line):
"""
Create a line break at the end of a string
Args:
list_line: string
Returns: A string with a line break
"""
list_line = ('%s\n' % (list_line,))
return list_line
write_file = open(file, "a")
for orig_list_line in orig_list:
write_file.write(add_line_break(str(orig_list_line)))
write_file.close()
return file_name
|
https://github.com/btr1975/persistentdatatools/blob/39e1294ce34a0a34363c65d94cdd592be5ad791b/persistentdatatools/persistentdatatools.py#L134-L162
|
export to excel
|
python
|
def csv(self, output):
"""Output data as excel-compatible CSV"""
import csv
csvwriter = csv.writer(self.outfile)
csvwriter.writerows(output)
|
https://github.com/juju/charm-helpers/blob/aa785c40c3b7a8c69dbfbc7921d6b9f30142e171/charmhelpers/cli/__init__.py#L75-L79
|
export to excel
|
python
|
def usufyToCsvExport(d, fPath):
"""
Workaround to export to a CSV file.
Args:
-----
d: Data to export.
fPath: File path for the output file.
"""
from pyexcel_io import get_data
try:
oldData = {"OSRFramework": get_data(fPath) }
except:
# No information has been recovered
oldData = {"OSRFramework":[]}
# Generating the new tabular data.
tabularData = _generateTabularData(d, oldData)
from pyexcel_io import save_data
# Storing the file
# NOTE: when working with CSV files it is no longer a dict because it is a one-sheet-format
save_data(fPath, tabularData["OSRFramework"])
|
https://github.com/i3visio/osrframework/blob/83437f4c14c9c08cb80a896bd9834c77f6567871/osrframework/utils/general.py#L345-L368
|
export to excel
|
python
|
def export(self, input_stats=None):
"""Export all the stats.
Each export module is ran in a dedicated thread.
"""
# threads = []
input_stats = input_stats or {}
for e in self._exports:
logger.debug("Export stats using the %s module" % e)
thread = threading.Thread(target=self._exports[e].update,
args=(input_stats,))
# threads.append(thread)
thread.start()
|
https://github.com/nicolargo/glances/blob/5bd4d587a736e0d2b03170b56926841d2a3eb7ee/glances/stats.py#L228-L241
|
export to excel
|
python
|
def export(self, exports=None):
"""
Export all the outputs in the datastore in the given export formats.
Individual outputs are not exported if there are multiple realizations.
"""
self.exported = getattr(self.precalc, 'exported', {})
if isinstance(exports, tuple):
fmts = exports
elif exports: # is a string
fmts = exports.split(',')
elif isinstance(self.oqparam.exports, tuple):
fmts = self.oqparam.exports
else: # is a string
fmts = self.oqparam.exports.split(',')
keys = set(self.datastore)
has_hcurves = ('hcurves-stats' in self.datastore or
'hcurves-rlzs' in self.datastore)
if has_hcurves:
keys.add('hcurves')
for fmt in fmts:
if not fmt:
continue
for key in sorted(keys): # top level keys
if 'rlzs' in key and self.R > 1:
continue # skip individual curves
self._export((key, fmt))
if has_hcurves and self.oqparam.hazard_maps:
self._export(('hmaps', fmt))
if has_hcurves and self.oqparam.uniform_hazard_spectra:
self._export(('uhs', fmt))
|
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/calculators/base.py#L260-L289
|
export to excel
|
python
|
def export_process_to_csv(bpmn_diagram, directory, filename):
"""
Root method of CSV export functionality.
:param bpmn_diagram: an instance of BpmnDiagramGraph class,
:param directory: a string object, which is a path of output directory,
:param filename: a string object, which is a name of output file.
"""
nodes = copy.deepcopy(bpmn_diagram.get_nodes())
start_nodes = []
export_elements = []
for node in nodes:
incoming_list = node[1].get(consts.Consts.incoming_flow)
if len(incoming_list) == 0:
start_nodes.append(node)
if len(start_nodes) != 1:
raise bpmn_exception.BpmnPythonError("Exporting to CSV format accepts only one start event")
nodes_classification = utils.BpmnImportUtils.generate_nodes_clasification(bpmn_diagram)
start_node = start_nodes.pop()
BpmnDiagramGraphCsvExport.export_node(bpmn_diagram, export_elements, start_node, nodes_classification)
try:
os.makedirs(directory)
except OSError as exception:
if exception.errno != errno.EEXIST:
raise
file_object = open(directory + filename, "w")
file_object.write("Order,Activity,Condition,Who,Subprocess,Terminated\n")
BpmnDiagramGraphCsvExport.write_export_node_to_file(file_object, export_elements)
file_object.close()
|
https://github.com/KrzyHonk/bpmn-python/blob/6e5e28e3d656dbf5bd3d85d78fe8e3f2fb462629/bpmn_python/bpmn_process_csv_export.py#L44-L75
|
export to excel
|
python
|
def write_to_file(data, path):
"""Export extracted fields to xml
Appends .xml to path if missing and generates xml file in specified directory, if not then in root
Parameters
----------
data : dict
Dictionary of extracted fields
path : str
directory to save generated xml file
Notes
----
Do give file name to the function parameter path.
Only `date`, `desc`, `amount` and `currency` are exported
Examples
--------
>>> from invoice2data.output import to_xml
>>> to_xml.write_to_file(data, "/exported_xml/invoice.xml")
>>> to_xml.write_to_file(data, "invoice.xml")
"""
if path.endswith('.xml'):
filename = path
else:
filename = path + '.xml'
tag_data = ET.Element('data')
xml_file = open(filename, "w")
i = 0
for line in data:
i += 1
tag_item = ET.SubElement(tag_data, 'item')
tag_date = ET.SubElement(tag_item, 'date')
tag_desc = ET.SubElement(tag_item, 'desc')
tag_currency = ET.SubElement(tag_item, 'currency')
tag_amount = ET.SubElement(tag_item, 'amount')
tag_item.set('id', str(i))
tag_date.text = line['date'].strftime('%d/%m/%Y')
tag_desc.text = line['desc']
tag_currency.text = line['currency']
tag_amount.text = str(line['amount'])
xml_file.write(prettify(tag_data))
xml_file.close()
|
https://github.com/invoice-x/invoice2data/blob/d97fdc5db9c1844fd77fa64f8ea7c42fefd0ba20/src/invoice2data/output/to_xml.py#L12-L59
|
export to excel
|
python
|
def export_formats(self, pid_type):
"""List of export formats."""
if pid_type not in self._export_formats:
fmts = self.app.config.get('RECORDS_UI_EXPORT_FORMATS', {}).get(
pid_type, {})
self._export_formats[pid_type] = sorted(
[(k, v) for k, v in fmts.items() if v],
key=lambda x: x[1]['order'],
)
return self._export_formats[pid_type]
|
https://github.com/inveniosoftware/invenio-records-ui/blob/ae92367978f2e1e96634685bd296f0fd92b4da54/invenio_records_ui/ext.py#L29-L38
|
export to excel
|
python
|
def export(self):
"""Export all attributes of the user to a dict.
:return: attributes of the user.
:rtype: dict.
"""
data = {}
data["name"] = self.name
data["contributions"] = self.contributions
data["avatar"] = self.avatar
data["followers"] = self.followers
data["join"] = self.join
data["organizations"] = self.organizations
data["repositories"] = self.numberOfRepos
data["bio"] = self.bio
data["private"] = self.private
data["public"] = self.public
data["location"] = self.location
return data
|
https://github.com/iblancasa/GitHubCity/blob/c5299c6859dbefbd869e2ac6ff2faff2a39cf32f/src/githubcity/ghuser.py#L79-L97
|
export to excel
|
python
|
def export_csv(self, spec, asset_refs, curves_dict):
"""
:param asset_ref: name of the asset
:param curves_dict: a dictionary tag -> loss curves
"""
writer = writers.CsvWriter(fmt=writers.FIVEDIGITS)
ebr = hasattr(self, 'builder')
for key in sorted(curves_dict):
recs = curves_dict[key]
data = [['asset', 'loss_type', 'loss', 'period' if ebr else 'poe']]
for li, loss_type in enumerate(self.loss_types):
if ebr: # event_based_risk
array = recs[:, :, li] # shape (A, P, LI)
periods = self.builder.return_periods
for aref, losses in zip(asset_refs, array):
for period, loss in zip(periods, losses):
data.append((aref, loss_type, loss, period))
else: # classical_risk
array = recs[loss_type] # shape (A,) loss_curve_dt
for aref, losses, poes in zip(
asset_refs, array['losses'], array['poes']):
for loss, poe in zip(losses, poes):
data.append((aref, loss_type, loss, poe))
dest = self.dstore.build_fname(
'loss_curves', '%s-%s' % (spec, key) if spec else key, 'csv')
writer.save(data, dest)
return writer.getsaved()
|
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/calculators/export/loss_curves.py#L106-L132
|
export to excel
|
python
|
def _export_csv(self, filepath, data, preview_data):
"""CSV export of code_array results
Parameters
----------
filepath: String
\tPath of export file
data: Object
\tCode array result object slice, i. e. one object or iterable of
\tsuch objects
"""
# Get csv info
csv_info = \
self.main_window.interfaces.get_csv_export_info(preview_data)
if csv_info is None:
return
try:
dialect, digest_types, has_header = csv_info
except TypeError:
return
# Export CSV file
csv_interface = CsvInterface(self.main_window, filepath, dialect,
digest_types, has_header)
try:
csv_interface.write(data)
except IOError, err:
msg = _("The file {filepath} could not be fully written\n \n"
"Error message:\n{msg}")
msg = msg.format(filepath=filepath, msg=err)
short_msg = _('Error writing CSV file')
self.main_window.interfaces.display_warning(msg, short_msg)
|
https://github.com/manns/pyspread/blob/0e2fd44c2e0f06605efc3058c20a43a8c1f9e7e0/pyspread/src/actions/_main_window_actions.py#L146-L185
|
export to excel
|
python
|
def export_results(job, fsid, file_name, univ_options, subfolder=None):
"""
Write out a file to a given location. The location can be either a directory on the local
machine, or a folder with a bucket on AWS.
:param str fsid: The file store id for the file to be exported
:param str file_name: The name of the file that neeeds to be exported (path to file is also
acceptable)
:param dict univ_options: Dict of universal options used by almost all tools
:param str subfolder: A sub folder within the main folder where this data should go
:return: None
"""
job.fileStore.logToMaster('Exporting %s to output location' % fsid)
file_name = os.path.basename(file_name)
try:
assert univ_options['output_folder'], 'Need a path to a folder to write out files'
assert univ_options['storage_location'], 'Need to know where the files need to go. ' + \
'Local or AWS/Azure, etc.'
except AssertionError as err:
# This isn't a game killer. Continue the pipeline without erroring out but do inform the
# user about it.
print('ERROR:', err.message, file=sys.stderr)
return
if univ_options['output_folder'] == 'NA':
output_folder = ''
else:
output_folder = univ_options['output_folder']
output_folder = os.path.join(output_folder, univ_options['patient'])
output_folder = os.path.join(output_folder, subfolder) if subfolder else output_folder
if univ_options['storage_location'] == 'local':
# Handle Local
try:
# Create the directory if required
os.makedirs(output_folder, 0755)
except OSError as err:
if err.errno != errno.EEXIST:
raise
output_url = 'file://' + os.path.join(output_folder, file_name)
elif univ_options['storage_location'].startswith('aws'):
# Handle AWS
bucket_name = univ_options['storage_location'].split(':')[-1]
output_url = os.path.join('S3://', bucket_name, output_folder.strip('/'), file_name)
# Can't do Azure or google yet.
else:
# TODO: Azure support
print("Currently doesn't support anything but Local and aws.")
return
job.fileStore.exportFile(fsid, output_url)
|
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/common.py#L401-L448
|
export to excel
|
python
|
def export(self, xformat='csv'):
"""action: export annotations to CSV."""
if self.annot is None: # remove if buttons are disabled
self.parent.statusBar().showMessage('No score file loaded')
return
if xformat == 'csv':
filename = splitext(self.annot.xml_file)[0] + '.csv'
filename, _ = QFileDialog.getSaveFileName(self, 'Export stages',
filename,
'Sleep stages (*.csv)')
if 'remlogic' in xformat:
filename = splitext(self.annot.xml_file)[0] + '.txt'
filename, _ = QFileDialog.getSaveFileName(self, 'Export stages',
filename,
'Sleep stages (*.txt)')
if filename == '':
return
self.annot.export(filename, xformat=xformat)
|
https://github.com/wonambi-python/wonambi/blob/1d8e3d7e53df8017c199f703bcab582914676e76/wonambi/widgets/notes.py#L1577-L1596
|
export to excel
|
python
|
def to_csv(objects, filename, digits=5, warnings=True):
"""
Export the flatten indicators of one or several users to CSV.
Parameters
----------
objects : list
List of objects to be exported.
filename : string
File to export to.
digits : int
Precision of floats.
Examples
--------
This function can be used to export the results of
:meth`bandicoot.utils.all`.
>>> U_1 = bc.User()
>>> U_2 = bc.User()
>>> bc.to_csv([bc.utils.all(U_1), bc.utils.all(U_2)], 'results_1_2.csv')
If you only have one object, you can simply pass it as argument:
>>> bc.to_csv(bc.utils.all(U_1), 'results_1.csv')
"""
if not isinstance(objects, list):
objects = [objects]
data = [flatten(obj) for obj in objects]
all_keys = [d for datum in data for d in datum.keys()]
field_names = sorted(set(all_keys), key=lambda x: all_keys.index(x))
with open(filename, 'w') as f:
w = csv.writer(f)
w.writerow(field_names)
def make_repr(item):
if item is None:
return None
elif isinstance(item, float):
return repr(round(item, digits))
else:
return str(item)
for row in data:
row = dict((k, make_repr(v)) for k, v in row.items())
w.writerow([make_repr(row.get(k, None)) for k in field_names])
if warnings:
print("Successfully exported {} object(s) to {}".format(len(objects),
filename))
|
https://github.com/yvesalexandre/bandicoot/blob/73a658f6f17331541cf0b1547028db9b70e8d58a/bandicoot/io.py#L46-L96
|
export to excel
|
python
|
def export(self, top=True):
"""Exports object to its string representation.
Args:
top (bool): if True appends `internal_name` before values.
All non list objects should be exported with value top=True,
all list objects, that are embedded in as fields inlist objects
should be exported with `top`=False
Returns:
str: The objects string representation
"""
out = []
if top:
out.append(self._internal_name)
out.append(self._to_str(self.leapyear_observed))
out.append(self._to_str(self.daylight_saving_start_day))
out.append(self._to_str(self.daylight_saving_end_day))
out.append(str(len(self.holidays)))
for obj in self.holidays:
out.append(obj.export(top=False))
return ",".join(out)
|
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4868-L4890
|
export to excel
|
python
|
def to_csv(self, encoding=export.ENCODING, dialect=export.DIALECT,
make_filename=export.MAKE_FILENAME):
"""Dump all worksheets of the spreadsheet to individual CSV files.
Args:
encoding (str): result string encoding
dialect (str): :mod:`csv` dialect name or object to use
make_filename: template or one-argument callable returning the filename
If ``make_filename`` is a string, it is string-interpolated with an
infos-dictionary with the fields ``id`` (spreadhseet id), ``title``
(spreadsheet title), ``sheet`` (worksheet title), ``gid`` (worksheet
id), ``index`` (worksheet index), and ``dialect`` CSV dialect to
generate the filename: ``filename = make_filename % infos``.
If ``make_filename`` is a callable, it will be called with the
infos-dictionary to generate the filename:
``filename = make_filename(infos)``.
"""
for s in self._sheets:
s.to_csv(None, encoding, dialect, make_filename)
|
https://github.com/xflr6/gsheets/blob/ca4f1273044704e529c1138e3f942836fc496e1b/gsheets/models.py#L170-L190
|
export to excel
|
python
|
def export(name,
target=None,
rev=None,
user=None,
username=None,
password=None,
force=False,
overwrite=False,
externals=True,
trust=False,
trust_failures=None):
'''
Export a file or directory from an SVN repository
name
Address and path to the file or directory to be exported.
target
Name of the target directory where the checkout will put the working
directory
rev : None
The name revision number to checkout. Enable "force" if the directory
already exists.
user : None
Name of the user performing repository management operations
username : None
The user to access the name repository with. The svn default is the
current user
password
Connect to the Subversion server with this password
.. versionadded:: 0.17.0
force : False
Continue if conflicts are encountered
overwrite : False
Overwrite existing target
externals : True
Change to False to not checkout or update externals
trust : False
Automatically trust the remote server. SVN's --trust-server-cert
trust_failures : None
Comma-separated list of certificate trust failures, that shall be
ignored. This can be used if trust=True is not sufficient. The
specified string is passed to SVN's --trust-server-cert-failures
option as-is.
.. versionadded:: 2019.2.0
'''
ret = {'name': name, 'result': True, 'comment': '', 'changes': {}}
if not target:
return _fail(ret, 'Target option is required')
svn_cmd = 'svn.export'
cwd, basename = os.path.split(target)
opts = tuple()
if not overwrite and os.path.exists(target) and not os.path.isdir(target):
return _fail(ret,
'The path "{0}" exists and is not '
'a directory.'.format(target)
)
if __opts__['test']:
if not os.path.exists(target):
return _neutral_test(
ret,
('{0} doesn\'t exist and is set to be checked out.').format(target))
svn_cmd = 'svn.list'
rev = 'HEAD'
out = __salt__[svn_cmd](cwd, target, user, username, password, *opts)
return _neutral_test(
ret,
('{0}').format(out))
if not rev:
rev = 'HEAD'
if force:
opts += ('--force',)
if externals is False:
opts += ('--ignore-externals',)
if trust:
opts += ('--trust-server-cert',)
if trust_failures:
opts += ('--trust-server-cert-failures', trust_failures)
out = __salt__[svn_cmd](cwd, name, basename, user, username, password, rev, *opts)
ret['changes']['new'] = name
ret['changes']['comment'] = name + ' was Exported to ' + target
return ret
|
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/states/svn.py#L190-L291
|
export to excel
|
python
|
def export_cmd(cmd, src_path, dest_dir=None, item_id=None, export_format=None, scale=None):
''' Executes a `sketchtool export` command and returns formatted output
:src_path: File to export. :type <str>
:dest_dir: Items are exported at /dest_dir/name@scale.export_format e.g. `~/Desktop/Page 1@2x.png`
:param export_format: 'png', 'pdf' etc. :type <ExportFormat>
:param scale: Specify as 1.0, 2.0 etc. :type <float>
:param item_id: id or name of an Exportable :type <str>
:returns: list of exported item paths
'''
cmd.extend([src_path])
if not dest_dir:
dest_dir = mkdtemp(prefix='pyglass')
cmd.extend(['--output=%s' % dest_dir])
if export_format:
cmd.extend(['--formats=%s' % export_format])
if scale:
cmd.extend(['--scales=%s' % scale])
if item_id:
cmd.extend(['--items=%s' % item_id])
logger.debug(u'Executing cmd: %s' % cmd)
exported_str = execute(cmd)
logger.debug(u'Raw result: %s' % exported_str)
# Raw result is in the form: 'Exported <item-name-1>\nExported <item-name-2>\n'
exported_items = [os.path.join(dirpath, f)
for dirpath, dirnames, files in os.walk(dest_dir)
for f in files if f.endswith('.%s' % export_format)]
return exported_items
|
https://github.com/Pixelapse/pyglass/blob/83cd0ff2b0b7cdaf4ec6f54559a626e67455cd33/pyglass/sketch/export.py#L19-L54
|
export to excel
|
python
|
def OnExport(self, event):
"""File export event handler
Currently, only CSV export is supported
"""
code_array = self.main_window.grid.code_array
tab = self.main_window.grid.current_table
selection = self.main_window.grid.selection
# Check if no selection is present
selection_bbox = selection.get_bbox()
f2w = get_filetypes2wildcards(["csv", "pdf", "svg"])
filters = f2w.keys()
wildcards = f2w.values()
wildcard = "|".join(wildcards)
if selection_bbox is None:
# No selection --> Use smallest filled area for bottom right edge
maxrow, maxcol, __ = code_array.get_last_filled_cell(tab)
(top, left), (bottom, right) = (0, 0), (maxrow, maxcol)
else:
(top, left), (bottom, right) = selection_bbox
# Generator of row and column keys in correct order
__top = 0 if top is None else top
__bottom = code_array.shape[0] if bottom is None else bottom + 1
__left = 0 if left is None else left
__right = code_array.shape[1] if right is None else right + 1
def data_gen(top, bottom, left, right):
for row in xrange(top, bottom):
yield (code_array[row, col, tab]
for col in xrange(left, right))
data = data_gen(__top, __bottom, __left, __right)
preview_data = data_gen(__top, __bottom, __left, __right)
# Get target filepath from user
# No selection --> Provide svg export of current cell
# if current cell is a matplotlib figure
if selection_bbox is None:
cursor = self.main_window.grid.actions.cursor
figure = code_array[cursor]
if Figure is not None and isinstance(figure, Figure):
wildcard += \
"|" + _("SVG of current cell") + " (*.svg)|*.svg" + \
"|" + _("EPS of current cell") + " (*.eps)|*.eps" + \
"|" + _("PS of current cell") + " (*.ps)|*.ps" + \
"|" + _("PDF of current cell") + " (*.pdf)|*.pdf" + \
"|" + _("PNG of current cell") + " (*.png)|*.png"
filters.append("cell_svg")
filters.append("cell_eps")
filters.append("cell_ps")
filters.append("cell_pdf")
filters.append("cell_png")
message = _("Choose filename for export.")
style = wx.SAVE
path, filterindex = \
self.interfaces.get_filepath_findex_from_user(wildcard, message,
style)
if path is None:
return
# If an single cell is exported then the selection bbox
# has to be changed to the current cell
if filters[filterindex].startswith("cell_"):
data = figure
# Export file
# -----------
self.main_window.actions.export_file(path, filters[filterindex], data,
preview_data)
|
https://github.com/manns/pyspread/blob/0e2fd44c2e0f06605efc3058c20a43a8c1f9e7e0/pyspread/src/gui/_main_window.py#L1059-L1143
|
export to excel
|
python
|
def _export(dataset_input, dataset_output, random_index_column, path, column_names=None, byteorder="=", shuffle=False, selection=False, progress=None, virtual=True, sort=None, ascending=True):
"""
:param DatasetLocal dataset: dataset to export
:param str path: path for file
:param lis[str] column_names: list of column names to export or None for all columns
:param str byteorder: = for native, < for little endian and > for big endian
:param bool shuffle: export rows in random order
:param bool selection: export selection or not
:param progress: progress callback that gets a progress fraction as argument and should return True to continue
:return:
"""
if selection:
if selection == True: # easier to work with the name
selection = "default"
N = len(dataset_input) if not selection else dataset_input.selected_length(selection)
if N == 0:
raise ValueError("Cannot export empty table")
if shuffle and sort:
raise ValueError("Cannot shuffle and sort at the same time")
if shuffle:
shuffle_array = dataset_output.columns[random_index_column]
partial_shuffle = shuffle and len(dataset_input) != N
order_array = None
order_array_inverse = None
# for strings we also need the inverse order_array, keep track of that
has_strings = any([dataset_input.dtype(k) == str_type for k in column_names])
if partial_shuffle:
# if we only export a portion, we need to create the full length random_index array, and
shuffle_array_full = np.random.choice(len(dataset_input), len(dataset_input), replace=False)
# then take a section of it
shuffle_array[:] = shuffle_array_full[shuffle_array_full < N]
del shuffle_array_full
order_array = shuffle_array
elif shuffle:
# better to do this in memory
shuffle_array_memory = np.random.choice(N, N, replace=False)
shuffle_array[:] = shuffle_array_memory
order_array = shuffle_array
if order_array is not None:
indices_r = np.zeros_like(order_array)
indices_r[order_array] = np.arange(len(order_array))
order_array_inverse = indices_r
del indices_r
if sort:
if selection:
raise ValueError("sorting selections not yet supported")
# these indices sort the input array, but we evaluate the input in sequential order and write it out in sorted order
# e.g., not b[:] = a[indices]
# but b[indices_r] = a
logger.info("sorting...")
indices = np.argsort(dataset_input.evaluate(sort))
indices_r = np.zeros_like(indices)
indices_r[indices] = np.arange(len(indices))
if has_strings:
# in this case we already have the inverse ready
order_array_inverse = indices if ascending else indices[:--1]
else:
del indices
order_array = indices_r if ascending else indices_r[::-1]
logger.info("sorting done")
if progress == True:
progress = vaex.utils.progressbar_callable(title="exporting")
progress = progress or (lambda value: True)
progress_total = len(column_names) * len(dataset_input)
progress_status = ProgressStatus()
progress_status.cancelled = False
progress_status.value = 0
if selection:
full_mask = dataset_input.evaluate_selection_mask(selection)
else:
full_mask = None
sparse_groups = collections.defaultdict(list)
sparse_matrices = {} # alternative to a set of matrices, since they are not hashable
string_columns = []
futures = []
thread_pool = concurrent.futures.ThreadPoolExecutor(max_workers=1)
if True:
for column_name in column_names:
sparse_matrix = dataset_output._sparse_matrix(column_name)
if sparse_matrix is not None:
# sparse columns are written differently
sparse_groups[id(sparse_matrix)].append(column_name)
sparse_matrices[id(sparse_matrix)] = sparse_matrix
continue
logger.debug(" exporting column: %s " % column_name)
future = thread_pool.submit(_export_column, dataset_input, dataset_output, column_name, full_mask,
shuffle, sort, selection, N, order_array, order_array_inverse, progress_status)
futures.append(future)
done = False
while not done:
done = True
for future in futures:
try:
future.result(0.1/4)
except concurrent.futures.TimeoutError:
done = False
break
if not done:
if not progress(progress_status.value / float(progress_total)):
progress_status.cancelled = True
for sparse_matrix_id, column_names in sparse_groups.items():
sparse_matrix = sparse_matrices[sparse_matrix_id]
for column_name in column_names:
assert not shuffle
assert selection in [None, False]
column = dataset_output.columns[column_name]
column.matrix.data[:] = dataset_input.columns[column_name].matrix.data
column.matrix.indptr[:] = dataset_input.columns[column_name].matrix.indptr
column.matrix.indices[:] = dataset_input.columns[column_name].matrix.indices
return column_names
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/export.py#L34-L157
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.