query
stringlengths 9
60
| language
stringclasses 1
value | code
stringlengths 105
25.7k
| url
stringlengths 91
217
|
---|---|---|---|
scatter plot
|
python
|
def plot_scatter(f, xs, ys, size, pch, colour, title):
"""
Form a complex number.
Arguments:
f -- comma delimited file w/ x,y coordinates
xs -- if f not specified this is a file w/ x coordinates
ys -- if f not specified this is a filew / y coordinates
size -- size of the plot
pch -- shape of the points (any character)
colour -- colour of the points
title -- title of the plot
"""
cs = None
if f:
if isinstance(f, str):
with open(f) as fh:
data = [tuple(line.strip().split(',')) for line in fh]
else:
data = [tuple(line.strip().split(',')) for line in f]
xs = [float(i[0]) for i in data]
ys = [float(i[1]) for i in data]
if len(data[0]) > 2:
cs = [i[2].strip() for i in data]
elif isinstance(xs, list) and isinstance(ys, list):
pass
else:
with open(xs) as fh:
xs = [float(str(row).strip()) for row in fh]
with open(ys) as fh:
ys = [float(str(row).strip()) for row in fh]
_plot_scatter(xs, ys, size, pch, colour, title, cs)
|
https://github.com/glamp/bashplotlib/blob/f7533172c4dc912b5accae42edd5c0f655d7468f/bashplotlib/scatterplot.py#L52-L84
|
scatter plot
|
python
|
def scatter(self, *args, **kwargs):
"""Add a scatter plot."""
cls = _make_class(ScatterVisual,
_default_marker=kwargs.pop('marker', None),
)
return self._add_item(cls, *args, **kwargs)
|
https://github.com/kwikteam/phy/blob/7e9313dc364304b7d2bd03b92938347343703003/phy/plot/plot.py#L153-L158
|
scatter plot
|
python
|
def scatterplot(self, x, y, **kw):
"""plot after clearing current plot """
self.panel.scatterplot(x, y, **kw)
|
https://github.com/newville/wxmplot/blob/8e0dc037453e5cdf18c968dc5a3d29efd761edee/wxmplot/plotframe.py#L45-L47
|
scatter plot
|
python
|
def _scatter(self):
"""plot a scatter plot of count vs. elapsed. For internal use only"""
plt.scatter(self.count_arr, self.elapsed_arr)
plt.title('{}: Count vs. Elapsed'.format(self.name))
plt.xlabel('Items')
plt.ylabel('Seconds')
|
https://github.com/wearpants/instrument/blob/a0f6103574ab58a82361a951e5e56b69aedfe294/instrument/output/plot.py#L62-L68
|
scatter plot
|
python
|
def scatter(h1: Histogram1D, **kwargs) -> dict:
"""Scatter plot of 1D histogram values.
Points are horizontally placed in bin centers.
Parameters
----------
shape : str
"""
shape = kwargs.pop("shape", DEFAULT_SCATTER_SHAPE)
# size = kwargs.pop("size", DEFAULT_SCATTER_SIZE)
mark_template = [{
"type": "symbol",
"from": {"data": "series"},
"encode": {
"enter": {
"x": {"scale": "xscale", "field": "x"},
"y": {"scale": "yscale", "field": "y"},
"shape": {"value": shape},
# "size": {"value": size},
"fill": {"scale": "series", "field": "c"},
},
}
}]
vega = _scatter_or_line(h1, mark_template=mark_template, kwargs=kwargs)
return vega
|
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/vega.py#L244-L270
|
scatter plot
|
python
|
def plot_pc_scatter(self, pc1, pc2, v=True, subset=None, ax=None,
color=None, s=None, marker=None, color_name=None,
s_name=None, marker_name=None):
"""
Make a scatter plot of two principal components. You can create
differently colored, sized, or marked scatter points.
Parameters
----------
pc1 : str
String of form PCX where X is the number of the principal component
you want to plot on the x-axis.
pc2 : str
String of form PCX where X is the number of the principal component
you want to plot on the y-axis.
v : bool
If True, use the v matrix for plotting the principal components
(typical if input data was genes as rows and samples as columns).
If False, use the u matrix.
subset : list
Make the scatter plot using only a subset of the rows of u or v.
ax : matplotlib.axes
Plot the scatter plot on this axis.
color : pandas.Series
Pandas series containing a categorical variable to color the scatter
points. Currently limited to 10 distinct values (colors).
s : pandas.Series
Pandas series containing a categorical variable to size the scatter
points. Currently limited to 7 distinct values (sizes).
marker : pandas.Series
Pandas series containing a categorical variable to choose the marker
type for the scatter points. Currently limited to 21 distinct values
(marker styles).
color_name : str
Name for the color legend if a categorical variable for color is
provided.
s_name : str
Name for the size legend if a categorical variable for size is
provided.
marker_name : str
Name for the marker legend if a categorical variable for marker type
is provided.
Returns
-------
ax : matplotlib.axes._subplots.AxesSubplot
Scatter plot axis.
TODO: Add ability to label points.
"""
import matplotlib.pyplot as plt
if v:
df = self.v
else:
df = self.u
if color is not None:
colormap = pd.Series(dict(zip(set(color.values),
tableau20[0:2 * len(set(color)):2])))
color = pd.Series([colormap[x] for x in color.values],
index=color.index)
color_legend = True
if not color_name:
color_name = color.index.name
else:
color = pd.Series([tableau20[0]] * df.shape[0], index=df.index)
color_legend = False
if s is not None:
smap = pd.Series(dict(zip(
set(s.values), range(30, 351)[0::50][0:len(set(s)) + 1])))
s = pd.Series([smap[x] for x in s.values],
index=s.index)
s_legend = True
if not s_name:
s_name = s.index.name
else:
s = pd.Series(30, index=df.index)
s_legend = False
markers = ['o', '*', 's', 'v', '+', 'x', 'd',
'p', '2', '<', '|', '>', '_', 'h',
'1', '2', '3', '4', '8', '^', 'D']
if marker is not None:
markermap = pd.Series(dict(zip(set(marker.values), markers)))
marker = pd.Series([markermap[x] for x in marker.values],
index=marker.index)
marker_legend = True
if not marker_name:
marker_name = marker.index.name
else:
marker = pd.Series('o', index=df.index)
marker_legend = False
if ax is None:
fig, ax = plt.subplots(1, 1)
for m in set(marker.values):
mse = marker[marker == m]
cse = color[mse.index]
sse = s[mse.index]
ax.scatter(df.ix[mse.index, pc1], df.ix[mse.index, pc2],
s=sse.values, color=list(cse.values), marker=m,
alpha=0.8)
ax.set_title('{} vs. {}'.format(pc1, pc2))
ax.set_xlabel(pc1)
ax.set_ylabel(pc2)
if color_legend:
legend_rects = make_color_legend_rects(colormap)
for r in legend_rects:
ax.add_patch(r)
lgd = ax.legend(legend_rects.values, labels=legend_rects.index,
title=color_name,
loc='upper left',
bbox_to_anchor=(1, 1))
if s_legend:
if lgd:
lgd = ax.add_artist(lgd)
xa, xb = ax.get_xlim()
ya, yb = ax.get_ylim()
for i in smap.index:
ax.scatter([xb + 1], [yb + 1], marker='o',
s=smap[i], color='black', label=i)
lgd = ax.legend(title=s_name, loc='center left',
bbox_to_anchor=(1, 0.5))
ax.set_xlim(xa, xb)
ax.set_ylim(ya, yb)
if marker_legend:
if lgd:
lgd = ax.add_artist(lgd)
xa, xb = ax.get_xlim()
ya, yb = ax.get_ylim()
for i in markermap.index:
t = ax.scatter([xb + 1], [yb + 1], marker=markermap[i],
s=sse.min(), color='black', label=i)
handles, labels = ax.get_legend_handles_labels()
if s_legend:
handles = handles[len(smap):]
labels = labels[len(smap):]
lgd = ax.legend(handles, labels, title=marker_name,
loc='lower left', bbox_to_anchor=(1, 0))
ax.set_xlim(xa, xb)
ax.set_ylim(ya, yb)
# fig.tight_layout()
return fig, ax
|
https://github.com/cdeboever3/cdpybio/blob/38efdf0e11d01bc00a135921cb91a19c03db5d5c/cdpybio/analysis.py#L755-L909
|
scatter plot
|
python
|
def scatter_nb(self,xdata,ydata=[],trendline=False):
'''Graphs a scatter plot and embeds it in a Jupyter notebook. See 'help(figure.scatter)' for more info.'''
self.scatter(xdata,ydata,trendline)
|
https://github.com/Dfenestrator/GooPyCharts/blob/57117f213111dfe0401b1dc9720cdba8a23c3028/gpcharts.py#L561-L563
|
scatter plot
|
python
|
def create_scatterplot(df):
""" create a mg line plot
Args:
df (pandas.DataFrame): data to plot
"""
fig = Figure("/mg/scatter/", "mg_scatter")
fig.layout.set_size(width=450, height=200)
fig.layout.set_margin(left=40, right=40)
fig.graphics.animate_on_load()
init_params = {"Data": "Steps"}
def get_data():
y = request.args.get("Data", "Steps")
return jsonify(ScatterPlot.to_json(df, "Steps", y))
# Make a histogram with 20 bins
return ScatterPlot(df, fig, "Steps", "Distance",
init_params={}, route_func=get_data)
|
https://github.com/stitchfix/pyxley/blob/2dab00022d977d986169cd8a629b3a2f91be893f/examples/metricsgraphics/project/buildui.py#L37-L56
|
scatter plot
|
python
|
def scatter(adata=None, x=None, y=None, basis=None, vkey=None, color=None, use_raw=None, layer=None, color_map=None,
colorbar=True, palette=None, size=None, alpha=None, linewidth=None, perc=None, sort_order=True, groups=None,
components=None, projection='2d', legend_loc='none', legend_fontsize=None, legend_fontweight=None,
right_margin=None, left_margin=None, xlabel=None, ylabel=None, title=None, fontsize=None, figsize=None,
dpi=None, frameon=None, show=True, save=None, ax=None, zorder=None, ncols=None, **kwargs):
"""\
Scatter plot along observations or variables axes.
Arguments
---------
adata: :class:`~anndata.AnnData`
Annotated data matrix.
x: `str`, `np.ndarray` or `None` (default: `None`)
x coordinate
y: `str`, `np.ndarray` or `None` (default: `None`)
y coordinate
{scatter}
Returns
-------
If `show==False` a `matplotlib.Axis`
"""
scatter_kwargs = {"use_raw": use_raw, "sort_order": sort_order, "alpha": alpha, "components": components,
"projection": projection, "legend_loc": legend_loc, "groups": groups, "palette": palette,
"legend_fontsize": legend_fontsize, "legend_fontweight": legend_fontweight,
"right_margin": right_margin, "left_margin": left_margin, "show": False, "save": None}
adata = AnnData(np.stack([x, y]).T) if adata is None and (x is not None and y is not None) else adata
colors, layers, bases = make_unique_list(color, allow_array=True), make_unique_list(layer), make_unique_list(basis)
multikey = colors if len(colors) > 1 else layers if len(layers) > 1 else bases if len(bases) > 1 else None
if multikey is not None:
if isinstance(title, (list, tuple)): title *= int(np.ceil(len(multikey) / len(title)))
ncols = len(multikey) if ncols is None else min(len(multikey), ncols)
nrows = int(np.ceil(len(multikey) / ncols))
figsize = rcParams['figure.figsize'] if figsize is None else figsize
for i, gs in enumerate(
pl.GridSpec(nrows, ncols, pl.figure(None, (figsize[0] * ncols, figsize[1] * nrows), dpi=dpi))):
if i < len(multikey):
scatter(adata, x=x, y=y, size=size, linewidth=linewidth, xlabel=xlabel, ylabel=ylabel, vkey=vkey,
color_map=color_map, colorbar=colorbar, perc=perc, frameon=frameon, ax=pl.subplot(gs), zorder=zorder,
color=colors[i] if len(colors) > 1 else color,
layer=layers[i] if len(layers) > 1 else layer,
basis=bases[i] if len(bases) > 1 else basis,
title=title[i] if isinstance(title, (list, tuple)) else title, **scatter_kwargs, **kwargs)
savefig_or_show('' if basis is None else basis, dpi=dpi, save=save, show=show)
if not show: return ax
else:
color, layer, basis = colors[0], layers[0], bases[0]
color = default_color(adata) if color is None else color
color_map = default_color_map(adata, color) if color_map is None else color_map
is_embedding = ((x is None) | (y is None)) and basis not in adata.var_names
basis = default_basis(adata) if basis is None and is_embedding else basis
size = default_size(adata) if size is None else size
linewidth = 1 if linewidth is None else linewidth
frameon = frameon if frameon is not None else True if not is_embedding else settings._frameon
if projection == '3d':
from mpl_toolkits.mplot3d import Axes3D
ax = pl.figure(None, figsize, dpi=dpi).gca(projection=projection) if ax is None else ax
else:
ax = pl.figure(None, figsize, dpi=dpi).gca() if ax is None else ax
if is_categorical(adata, color) and is_embedding:
from scanpy.api.pl import scatter as scatter_
ax = scatter_(adata, basis=basis, color=color, color_map=color_map, size=size, frameon=frameon, ax=ax,
title=title, **scatter_kwargs, **kwargs)
else:
if basis in adata.var_names:
xkey, ykey = ('spliced', 'unspliced') if use_raw or 'Ms' not in adata.layers.keys() else ('Ms', 'Mu')
x = make_dense(adata[:, basis].layers[xkey])
y = make_dense(adata[:, basis].layers[ykey])
xlabel, ylabel = 'spliced', 'unspliced'
title = basis if title is None else title
elif is_embedding:
X_emb = adata.obsm['X_' + basis][:, get_components(components, basis)]
x, y = X_emb[:, 0], X_emb[:, 1]
elif isinstance(x, str) and isinstance(y, str) and x in adata.var_names and y in adata.var_names:
x = adata[:, x].layers[layer] if layer in adata.layers.keys() else adata[:, x].X
y = adata[:, y].layers[layer] if layer in adata.layers.keys() else adata[:, y].X
if basis in adata.var_names and isinstance(color, str) and color in adata.layers.keys():
c = interpret_colorkey(adata, basis, color, perc)
else:
c = interpret_colorkey(adata, color, layer, perc)
if layer is not None and 'velocity' in layer and isinstance(color, str) and color in adata.var_names:
ub = np.percentile(np.abs(c), 98)
kwargs.update({"vmin": -ub, "vmax": ub})
if layer is not None and ('spliced' in layer or 'Ms' in layer or 'Mu' in layer) \
and isinstance(color, str) and color in adata.var_names:
ub = np.percentile(c, 98)
kwargs.update({"vmax": ub})
if groups is not None or np.any(pd.isnull(c)):
zorder = 0 if zorder is None else zorder
ax = scatter(adata, basis=basis, color='lightgrey', ax=ax, zorder=zorder, **scatter_kwargs)
zorder += 1
if basis in adata.var_names:
fits = show_linear_fit(adata, basis, vkey, xkey, linewidth)
from .simulation import show_full_dynamics
if 'true_alpha' in adata.var.keys():
fit = show_full_dynamics(adata, basis, 'true', use_raw, linewidth)
fits.append(fit)
if 'fit_alpha' in adata.var.keys() and (vkey is None or 'dynamics' in vkey):
fit = show_full_dynamics(adata, basis, 'fit', use_raw, linewidth,
show_assigments=vkey is not None and 'assignment' in vkey)
fits.append(fit)
if vkey is not None and 'density' in vkey:
show_density(x, y)
if len(fits) > 0 and legend_loc is not None:
pl.legend(fits, loc=legend_loc if legend_loc is not 'none' else 'lower right')
if use_raw and perc is not None:
pl.xlim(right=np.percentile(x, 99.9 if not isinstance(perc, int) else perc) * 1.05)
pl.ylim(top=np.percentile(y, 99.9 if not isinstance(perc, int) else perc) * 1.05)
pl.scatter(x, y, c=c, cmap=color_map, s=size, alpha=alpha, edgecolors='none', marker='.', zorder=zorder, **kwargs)
set_label(xlabel, ylabel, fontsize, basis)
set_title(title, layer, color, fontsize)
ax = update_axes(ax, fontsize, is_embedding, frameon)
if colorbar and not is_categorical(adata, color): set_colorbar(ax)
savefig_or_show('' if basis is None else basis, dpi=dpi, save=save, show=show)
if not show: return ax
|
https://github.com/theislab/scvelo/blob/c7a96d70edfe705e86bf364434a9527d4fd8df11/scvelo/plotting/scatter.py#L15-L145
|
scatter plot
|
python
|
def scatter(self, *args, **kwargs):
''' Creates a scatter plot of the given x and y items.
Args:
x (str or seq[float]) : values or field names of center x coordinates
y (str or seq[float]) : values or field names of center y coordinates
size (str or list[float]) : values or field names of sizes in screen units
marker (str, or list[str]): values or field names of marker types
color (color value, optional): shorthand to set both fill and line color
source (:class:`~bokeh.models.sources.ColumnDataSource`) : a user-supplied data source.
An attempt will be made to convert the object to :class:`~bokeh.models.sources.ColumnDataSource`
if needed. If none is supplied, one is created for the user automatically.
**kwargs: :ref:`userguide_styling_line_properties` and :ref:`userguide_styling_fill_properties`
Examples:
>>> p.scatter([1,2,3],[4,5,6], marker="square", fill_color="red")
>>> p.scatter("data1", "data2", marker="mtype", source=data_source, ...)
.. note::
When passing ``marker="circle"`` it is also possible to supply a
``radius`` value in data-space units. When configuring marker type
from a data source column, *all* markers incuding circles may only
be configured with ``size`` in screen units.
'''
marker_type = kwargs.pop("marker", "circle")
if isinstance(marker_type, string_types) and marker_type in _MARKER_SHORTCUTS:
marker_type = _MARKER_SHORTCUTS[marker_type]
# The original scatter implementation allowed circle scatters to set a
# radius. We will leave this here for compatibility but note that it
# only works when the marker type is "circle" (and not referencing a
# data source column). Consider deprecating in the future.
if marker_type == "circle" and "radius" in kwargs:
return self.circle(*args, **kwargs)
else:
return self._scatter(*args, marker=marker_type, **kwargs)
|
https://github.com/bokeh/bokeh/blob/dc8cf49e4e4302fd38537ad089ece81fbcca4737/bokeh/plotting/figure.py#L757-L801
|
scatter plot
|
python
|
def twoDimensionalScatter(title, title_x, title_y,
x, y,
lim_x = None, lim_y = None,
color = 'b', size = 20, alpha=None):
"""
Create a two-dimensional scatter plot.
INPUTS
"""
plt.figure()
plt.scatter(x, y, c=color, s=size, alpha=alpha, edgecolors='none')
plt.xlabel(title_x)
plt.ylabel(title_y)
plt.title(title)
if type(color) is not str:
plt.colorbar()
if lim_x:
plt.xlim(lim_x[0], lim_x[1])
if lim_y:
plt.ylim(lim_y[0], lim_y[1])
|
https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/utils/plotting.py#L105-L127
|
scatter plot
|
python
|
def plot(self, numPoints=100):
"""
Plots the object in a 3D scatter.
This method should be overriden when possible. This default behavior simply
samples numPoints points from the object and plots them in a 3d scatter.
"""
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for feature in self._FEATURES:
for _ in xrange(numPoints):
x, y, z = tuple(self.sampleLocationFromFeature(feature))
ax.scatter(x, y, z, marker=".")
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.title("{}".format(self))
return fig, ax
|
https://github.com/numenta/htmresearch/blob/70c096b09a577ea0432c3f3bfff4442d4871b7aa/htmresearch/frameworks/layers/physical_object_base.py#L124-L145
|
scatter plot
|
python
|
def plot(x, y, z, color=default_color, **kwargs):
"""Plot a line in 3d.
:param x: {x}
:param y: {y}
:param z: {z}
:param color: {color}
:param kwargs: extra arguments passed to the Scatter constructor
:return: :any:`Scatter`
"""
fig = gcf()
_grow_limits(x, y, z)
defaults = dict(
visible_lines=True, color_selected=None, size_selected=1, size=1, connected=True, visible_markers=False
)
kwargs = dict(defaults, **kwargs)
s = ipv.Scatter(x=x, y=y, z=z, color=color, **kwargs)
s.material.visible = False
fig.scatters = fig.scatters + [s]
return s
|
https://github.com/maartenbreddels/ipyvolume/blob/e68b72852b61276f8e6793bc8811f5b2432a155f/ipyvolume/pylab.py#L480-L499
|
scatter plot
|
python
|
def plot(self, x=None, y=None, z=None, what="count(*)", vwhat=None, reduce=["colormap"], f=None,
normalize="normalize", normalize_axis="what",
vmin=None, vmax=None,
shape=256, vshape=32, limits=None, grid=None, colormap="afmhot", # colors=["red", "green", "blue"],
figsize=None, xlabel=None, ylabel=None, aspect="auto", tight_layout=True, interpolation="nearest", show=False,
colorbar=True,
colorbar_label=None,
selection=None, selection_labels=None, title=None,
background_color="white", pre_blend=False, background_alpha=1.,
visual=dict(x="x", y="y", layer="z", fade="selection", row="subspace", column="what"),
smooth_pre=None, smooth_post=None,
wrap=True, wrap_columns=4,
return_extra=False, hardcopy=None):
"""Viz data in a 2d histogram/heatmap.
Declarative plotting of statistical plots using matplotlib, supports subplots, selections, layers.
Instead of passing x and y, pass a list as x argument for multiple panels. Give what a list of options to have multiple
panels. When both are present then will be origanized in a column/row order.
This methods creates a 6 dimensional 'grid', where each dimension can map the a visual dimension.
The grid dimensions are:
* x: shape determined by shape, content by x argument or the first dimension of each space
* y: ,,
* z: related to the z argument
* selection: shape equals length of selection argument
* what: shape equals length of what argument
* space: shape equals length of x argument if multiple values are given
By default, this its shape is (1, 1, 1, 1, shape, shape) (where x is the last dimension)
The visual dimensions are
* x: x coordinate on a plot / image (default maps to grid's x)
* y: y ,, (default maps to grid's y)
* layer: each image in this dimension is blended togeher to one image (default maps to z)
* fade: each image is shown faded after the next image (default mapt to selection)
* row: rows of subplots (default maps to space)
* columns: columns of subplot (default maps to what)
All these mappings can be changes by the visual argument, some examples:
>>> df.plot('x', 'y', what=['mean(x)', 'correlation(vx, vy)'])
Will plot each 'what' as a column.
>>> df.plot('x', 'y', selection=['FeH < -3', '(FeH >= -3) & (FeH < -2)'], visual=dict(column='selection'))
Will plot each selection as a column, instead of a faded on top of each other.
:param x: Expression to bin in the x direction (by default maps to x), or list of pairs, like [['x', 'y'], ['x', 'z']], if multiple pairs are given, this dimension maps to rows by default
:param y: y (by default maps to y)
:param z: Expression to bin in the z direction, followed by a :start,end,shape signature, like 'FeH:-3,1:5' will produce 5 layers between -10 and 10 (by default maps to layer)
:param what: What to plot, count(*) will show a N-d histogram, mean('x'), the mean of the x column, sum('x') the sum, std('x') the standard deviation, correlation('vx', 'vy') the correlation coefficient. Can also be a list of values, like ['count(x)', std('vx')], (by default maps to column)
:param reduce:
:param f: transform values by: 'identity' does nothing 'log' or 'log10' will show the log of the value
:param normalize: normalization function, currently only 'normalize' is supported
:param normalize_axis: which axes to normalize on, None means normalize by the global maximum.
:param vmin: instead of automatic normalization, (using normalize and normalization_axis) scale the data between vmin and vmax to [0, 1]
:param vmax: see vmin
:param shape: shape/size of the n-D histogram grid
:param limits: list of [[xmin, xmax], [ymin, ymax]], or a description such as 'minmax', '99%'
:param grid: if the binning is done before by yourself, you can pass it
:param colormap: matplotlib colormap to use
:param figsize: (x, y) tuple passed to pylab.figure for setting the figure size
:param xlabel:
:param ylabel:
:param aspect:
:param tight_layout: call pylab.tight_layout or not
:param colorbar: plot a colorbar or not
:param interpolation: interpolation for imshow, possible options are: 'nearest', 'bilinear', 'bicubic', see matplotlib for more
:param return_extra:
:return:
"""
import pylab
import matplotlib
n = _parse_n(normalize)
if type(shape) == int:
shape = (shape,) * 2
binby = []
x = _ensure_strings_from_expressions(x)
y = _ensure_strings_from_expressions(y)
for expression in [y, x]:
if expression is not None:
binby = [expression] + binby
fig = pylab.gcf()
if figsize is not None:
fig.set_size_inches(*figsize)
import re
what_units = None
whats = _ensure_list(what)
selections = _ensure_list(selection)
selections = _ensure_strings_from_expressions(selections)
if y is None:
waslist, [x, ] = vaex.utils.listify(x)
else:
waslist, [x, y] = vaex.utils.listify(x, y)
x = list(zip(x, y))
limits = [limits]
# every plot has its own vwhat for now
vwhats = _expand_limits(vwhat, len(x)) # TODO: we're abusing this function..
logger.debug("x: %s", x)
limits, shape = self.limits(x, limits, shape=shape)
shape = shape[0]
logger.debug("limits: %r", limits)
# mapping of a grid axis to a label
labels = {}
shape = _expand_shape(shape, 2)
vshape = _expand_shape(shape, 2)
if z is not None:
match = re.match("(.*):(.*),(.*),(.*)", z)
if match:
groups = match.groups()
import ast
z_expression = groups[0]
logger.debug("found groups: %r", list(groups))
z_limits = [ast.literal_eval(groups[1]), ast.literal_eval(groups[2])]
z_shape = ast.literal_eval(groups[3])
# for pair in x:
x = [[z_expression] + list(k) for k in x]
limits = np.array([[z_limits] + list(k) for k in limits])
shape = (z_shape,) + shape
vshape = (z_shape,) + vshape
logger.debug("x = %r", x)
values = np.linspace(z_limits[0], z_limits[1], num=z_shape + 1)
labels["z"] = list(["%s <= %s < %s" % (v1, z_expression, v2) for v1, v2 in zip(values[:-1], values[1:])])
else:
raise ValueError("Could not understand 'z' argument %r, expected something in form: 'column:-1,10:5'" % facet)
else:
z_shape = 1
# z == 1
if z is None:
total_grid = np.zeros((len(x), len(whats), len(selections), 1) + shape, dtype=float)
total_vgrid = np.zeros((len(x), len(whats), len(selections), 1) + vshape, dtype=float)
else:
total_grid = np.zeros((len(x), len(whats), len(selections)) + shape, dtype=float)
total_vgrid = np.zeros((len(x), len(whats), len(selections)) + vshape, dtype=float)
logger.debug("shape of total grid: %r", total_grid.shape)
axis = dict(plot=0, what=1, selection=2)
xlimits = limits
grid_axes = dict(x=-1, y=-2, z=-3, selection=-4, what=-5, subspace=-6)
visual_axes = dict(x=-1, y=-2, layer=-3, fade=-4, column=-5, row=-6)
# visual_default=dict(x="x", y="y", z="layer", selection="fade", subspace="row", what="column")
# visual: mapping of a plot axis, to a grid axis
visual_default = dict(x="x", y="y", layer="z", fade="selection", row="subspace", column="what")
def invert(x): return dict((v, k) for k, v in x.items())
# visual_default_reverse = invert(visual_default)
# visual_ = visual_default
# visual = dict(visual) # copy for modification
# add entries to avoid mapping multiple times to the same axis
free_visual_axes = list(visual_default.keys())
# visual_reverse = invert(visual)
logger.debug("1: %r %r", visual, free_visual_axes)
for visual_name, grid_name in visual.items():
if visual_name in free_visual_axes:
free_visual_axes.remove(visual_name)
else:
raise ValueError("visual axes %s used multiple times" % visual_name)
logger.debug("2: %r %r", visual, free_visual_axes)
for visual_name, grid_name in visual_default.items():
if visual_name in free_visual_axes and grid_name not in visual.values():
free_visual_axes.remove(visual_name)
visual[visual_name] = grid_name
logger.debug("3: %r %r", visual, free_visual_axes)
for visual_name, grid_name in visual_default.items():
if visual_name not in free_visual_axes and grid_name not in visual.values():
visual[free_visual_axes.pop(0)] = grid_name
logger.debug("4: %r %r", visual, free_visual_axes)
visual_reverse = invert(visual)
# TODO: the meaning of visual and visual_reverse is changed below this line, super confusing
visual, visual_reverse = visual_reverse, visual
# so now, visual: mapping of a grid axis to plot axis
# visual_reverse: mapping of a grid axis to plot axis
move = {}
for grid_name, visual_name in visual.items():
if visual_axes[visual_name] in visual.values():
index = visual.values().find(visual_name)
key = visual.keys()[index]
raise ValueError("trying to map %s to %s while, it is already mapped by %s" % (grid_name, visual_name, key))
move[grid_axes[grid_name]] = visual_axes[visual_name]
# normalize_axis = _ensure_list(normalize_axis)
fs = _expand(f, total_grid.shape[grid_axes[normalize_axis]])
# assert len(vwhat)
# labels["y"] = ylabels
what_labels = []
if grid is None:
grid_of_grids = []
for i, (binby, limits) in enumerate(zip(x, xlimits)):
grid_of_grids.append([])
for j, what in enumerate(whats):
if isinstance(what, vaex.stat.Expression):
grid = what.calculate(self, binby=binby, shape=shape, limits=limits, selection=selections, delay=True)
else:
what = what.strip()
index = what.index("(")
import re
groups = re.match("(.*)\((.*)\)", what).groups()
if groups and len(groups) == 2:
function = groups[0]
arguments = groups[1].strip()
if "," in arguments:
arguments = arguments.split(",")
functions = ["mean", "sum", "std", "var", "correlation", "covar", "min", "max", "median_approx"]
unit_expression = None
if function in ["mean", "sum", "std", "min", "max", "median"]:
unit_expression = arguments
if function in ["var"]:
unit_expression = "(%s) * (%s)" % (arguments, arguments)
if function in ["covar"]:
unit_expression = "(%s) * (%s)" % arguments
if unit_expression:
unit = self.unit(unit_expression)
if unit:
what_units = unit.to_string('latex_inline')
if function in functions:
grid = getattr(self, function)(arguments, binby=binby, limits=limits, shape=shape, selection=selections, delay=True)
elif function == "count":
grid = self.count(arguments, binby, shape=shape, limits=limits, selection=selections, delay=True)
else:
raise ValueError("Could not understand method: %s, expected one of %r'" % (function, functions))
else:
raise ValueError("Could not understand 'what' argument %r, expected something in form: 'count(*)', 'mean(x)'" % what)
if i == 0: # and j == 0:
what_label = str(whats[j])
if what_units:
what_label += " (%s)" % what_units
if fs[j]:
what_label = fs[j] + " " + what_label
what_labels.append(what_label)
grid_of_grids[-1].append(grid)
self.executor.execute()
for i, (binby, limits) in enumerate(zip(x, xlimits)):
for j, what in enumerate(whats):
grid = grid_of_grids[i][j].get()
total_grid[i, j, :, :] = grid[:, None, ...]
labels["what"] = what_labels
else:
dims_left = 6 - len(grid.shape)
total_grid = np.broadcast_to(grid, (1,) * dims_left + grid.shape)
# visual=dict(x="x", y="y", selection="fade", subspace="facet1", what="facet2",)
def _selection_name(name):
if name in [None, False]:
return "selection: all"
elif name in ["default", True]:
return "selection: default"
else:
return "selection: %s" % name
if selection_labels is None:
labels["selection"] = list([_selection_name(k) for k in selections])
else:
labels["selection"] = selection_labels
# visual_grid = np.moveaxis(total_grid, move.keys(), move.values())
# np.moveaxis is in np 1.11 only?, use transpose
axes = [None] * len(move)
for key, value in move.items():
axes[value] = key
visual_grid = np.transpose(total_grid, axes)
logger.debug("grid shape: %r", total_grid.shape)
logger.debug("visual: %r", visual.items())
logger.debug("move: %r", move)
logger.debug("visual grid shape: %r", visual_grid.shape)
xexpressions = []
yexpressions = []
for i, (binby, limits) in enumerate(zip(x, xlimits)):
xexpressions.append(binby[0])
yexpressions.append(binby[1])
if xlabel is None:
xlabels = []
ylabels = []
for i, (binby, limits) in enumerate(zip(x, xlimits)):
if z is not None:
xlabels.append(self.label(binby[1]))
ylabels.append(self.label(binby[2]))
else:
xlabels.append(self.label(binby[0]))
ylabels.append(self.label(binby[1]))
else:
Nl = visual_grid.shape[visual_axes['row']]
xlabels = _expand(xlabel, Nl)
ylabels = _expand(ylabel, Nl)
#labels[visual["x"]] = (xlabels, ylabels)
labels["x"] = xlabels
labels["y"] = ylabels
# grid = total_grid
# print(grid.shape)
# grid = self.reduce(grid, )
axes = []
# cax = pylab.subplot(1,1,1)
background_color = np.array(matplotlib.colors.colorConverter.to_rgb(background_color))
# if grid.shape[axis["selection"]] > 1:# and not facet:
# rgrid = vaex.image.fade(rgrid)
# finite_mask = np.any(finite_mask, axis=0) # do we really need this
# print(rgrid.shape)
# facet_row_axis = axis["what"]
import math
facet_columns = None
facets = visual_grid.shape[visual_axes["row"]] * visual_grid.shape[visual_axes["column"]]
if visual_grid.shape[visual_axes["column"]] == 1 and wrap:
facet_columns = min(wrap_columns, visual_grid.shape[visual_axes["row"]])
wrapped = True
elif visual_grid.shape[visual_axes["row"]] == 1 and wrap:
facet_columns = min(wrap_columns, visual_grid.shape[visual_axes["column"]])
wrapped = True
else:
wrapped = False
facet_columns = visual_grid.shape[visual_axes["column"]]
facet_rows = int(math.ceil(facets / facet_columns))
logger.debug("facet_rows: %r", facet_rows)
logger.debug("facet_columns: %r", facet_columns)
# if visual_grid.shape[visual_axes["row"]] > 1: # and not wrap:
# #facet_row_axis = axis["what"]
# facet_columns = visual_grid.shape[visual_axes["column"]]
# else:
# facet_columns = min(wrap_columns, facets)
# if grid.shape[axis["plot"]] > 1:# and not facet:
# this loop could be done using axis arguments everywhere
# assert len(normalize_axis) == 1, "currently only 1 normalization axis supported"
grid = visual_grid * 1.
fgrid = visual_grid * 1.
ngrid = visual_grid * 1.
# colorgrid = np.zeros(ngrid.shape + (4,), float)
# print "norma", normalize_axis, visual_grid.shape[visual_axes[visual[normalize_axis]]]
vmins = _expand(vmin, visual_grid.shape[visual_axes[visual[normalize_axis]]], type=list)
vmaxs = _expand(vmax, visual_grid.shape[visual_axes[visual[normalize_axis]]], type=list)
# for name in normalize_axis:
visual_grid
if smooth_pre:
grid = vaex.grids.gf(grid, smooth_pre)
if 1:
axis = visual_axes[visual[normalize_axis]]
for i in range(visual_grid.shape[axis]):
item = [slice(None, None, None), ] * len(visual_grid.shape)
item[axis] = i
item = tuple(item)
f = _parse_f(fs[i])
with np.errstate(divide='ignore', invalid='ignore'): # these are fine, we are ok with nan's in vaex
fgrid.__setitem__(item, f(grid.__getitem__(item)))
# print vmins[i], vmaxs[i]
if vmins[i] is not None and vmaxs[i] is not None:
nsubgrid = fgrid.__getitem__(item) * 1
nsubgrid -= vmins[i]
nsubgrid /= (vmaxs[i] - vmins[i])
else:
nsubgrid, vmin, vmax = n(fgrid.__getitem__(item))
vmins[i] = vmin
vmaxs[i] = vmax
# print " ", vmins[i], vmaxs[i]
ngrid.__setitem__(item, nsubgrid)
if 0: # TODO: above should be like the code below, with custom vmin and vmax
grid = visual_grid[i]
f = _parse_f(fs[i])
fgrid = f(grid)
finite_mask = np.isfinite(grid)
finite_mask = np.any(finite_mask, axis=0)
if vmin is not None and vmax is not None:
ngrid = fgrid * 1
ngrid -= vmin
ngrid /= (vmax - vmin)
ngrid = np.clip(ngrid, 0, 1)
else:
ngrid, vmin, vmax = n(fgrid)
# vmin, vmax = np.nanmin(fgrid), np.nanmax(fgrid)
# every 'what', should have its own colorbar, check if what corresponds to
# rows or columns in facets, if so, do a colorbar per row or per column
rows, columns = int(math.ceil(facets / float(facet_columns))), facet_columns
colorbar_location = "individual"
if visual["what"] == "row" and visual_grid.shape[1] == facet_columns:
colorbar_location = "per_row"
if visual["what"] == "column" and visual_grid.shape[0] == facet_rows:
colorbar_location = "per_column"
# values = np.linspace(facet_limits[0], facet_limits[1], facet_count+1)
logger.debug("rows: %r, columns: %r", rows, columns)
import matplotlib.gridspec as gridspec
column_scale = 1
row_scale = 1
row_offset = 0
if facets > 1:
if colorbar_location == "per_row":
column_scale = 4
gs = gridspec.GridSpec(rows, columns * column_scale + 1)
elif colorbar_location == "per_column":
row_offset = 1
row_scale = 4
gs = gridspec.GridSpec(rows * row_scale + 1, columns)
else:
gs = gridspec.GridSpec(rows, columns)
facet_index = 0
fs = _expand(f, len(whats))
colormaps = _expand(colormap, len(whats))
# row
for i in range(visual_grid.shape[0]):
# column
for j in range(visual_grid.shape[1]):
if colorbar and colorbar_location == "per_column" and i == 0:
norm = matplotlib.colors.Normalize(vmins[j], vmaxs[j])
sm = matplotlib.cm.ScalarMappable(norm, colormaps[j])
sm.set_array(1) # make matplotlib happy (strange behavious)
if facets > 1:
ax = pylab.subplot(gs[0, j])
colorbar = fig.colorbar(sm, cax=ax, orientation="horizontal")
else:
colorbar = fig.colorbar(sm)
if "what" in labels:
label = labels["what"][j]
if facets > 1:
colorbar.ax.set_title(label)
else:
colorbar.ax.set_ylabel(colorbar_label or label)
if colorbar and colorbar_location == "per_row" and j == 0:
norm = matplotlib.colors.Normalize(vmins[i], vmaxs[i])
sm = matplotlib.cm.ScalarMappable(norm, colormaps[i])
sm.set_array(1) # make matplotlib happy (strange behavious)
if facets > 1:
ax = pylab.subplot(gs[i, -1])
colorbar = fig.colorbar(sm, cax=ax)
else:
colorbar = fig.colorbar(sm)
label = labels["what"][i]
colorbar.ax.set_ylabel(colorbar_label or label)
rgrid = ngrid[i, j] * 1.
# print rgrid.shape
for k in range(rgrid.shape[0]):
for l in range(rgrid.shape[0]):
if smooth_post is not None:
rgrid[k, l] = vaex.grids.gf(rgrid, smooth_post)
if visual["what"] == "column":
what_index = j
elif visual["what"] == "row":
what_index = i
else:
what_index = 0
if visual[normalize_axis] == "column":
normalize_index = j
elif visual[normalize_axis] == "row":
normalize_index = i
else:
normalize_index = 0
for r in reduce:
r = _parse_reduction(r, colormaps[what_index], [])
rgrid = r(rgrid)
row = facet_index // facet_columns
column = facet_index % facet_columns
if colorbar and colorbar_location == "individual":
# visual_grid.shape[visual_axes[visual[normalize_axis]]]
norm = matplotlib.colors.Normalize(vmins[normalize_index], vmaxs[normalize_index])
sm = matplotlib.cm.ScalarMappable(norm, colormaps[what_index])
sm.set_array(1) # make matplotlib happy (strange behavious)
if facets > 1:
ax = pylab.subplot(gs[row, column])
colorbar = fig.colorbar(sm, ax=ax)
else:
colorbar = fig.colorbar(sm)
label = labels["what"][what_index]
colorbar.ax.set_ylabel(colorbar_label or label)
if facets > 1:
ax = pylab.subplot(gs[row_offset + row * row_scale:row_offset + (row + 1) * row_scale, column * column_scale:(column + 1) * column_scale])
else:
ax = pylab.gca()
axes.append(ax)
logger.debug("rgrid: %r", rgrid.shape)
plot_rgrid = rgrid
assert plot_rgrid.shape[1] == 1, "no layers supported yet"
plot_rgrid = plot_rgrid[:, 0]
if plot_rgrid.shape[0] > 1:
plot_rgrid = vaex.image.fade(plot_rgrid[::-1])
else:
plot_rgrid = plot_rgrid[0]
extend = None
if visual["subspace"] == "row":
subplot_index = i
elif visual["subspace"] == "column":
subplot_index = j
else:
subplot_index = 0
extend = np.array(xlimits[subplot_index][-2:]).flatten()
# extend = np.array(xlimits[i]).flatten()
logger.debug("plot rgrid: %r", plot_rgrid.shape)
plot_rgrid = np.transpose(plot_rgrid, (1, 0, 2))
im = ax.imshow(plot_rgrid, extent=extend.tolist(), origin="lower", aspect=aspect, interpolation=interpolation)
# v1, v2 = values[i], values[i+1]
def label(index, label, expression):
if label and _issequence(label):
return label[i]
else:
return self.label(expression)
if visual_reverse["x"] =='x':
labelsx = labels['x']
pylab.xlabel(labelsx[subplot_index])
if visual_reverse["x"] =='x':
labelsy = labels['y']
pylab.ylabel(labelsy[subplot_index])
if visual["z"] in ['row']:
labelsz = labels['z']
ax.set_title(labelsz[i])
if visual["z"] in ['column']:
labelsz = labels['z']
ax.set_title(labelsz[j])
max_labels = 10
# xexpression = xexpressions[i]
# if self.iscategory(xexpression):
# labels = self.category_labels(xexpression)
# step = len(labels) // max_labels
# pylab.xticks(np.arange(len(labels))[::step], labels[::step], size='small')
# yexpression = yexpressions[i]
# if self.iscategory(yexpression):
# labels = self.category_labels(yexpression)
# step = len(labels) // max_labels
# pylab.yticks(np.arange(len(labels))[::step], labels[::step], size='small')
facet_index += 1
if title:
fig.suptitle(title, fontsize="x-large")
if tight_layout:
if title:
pylab.tight_layout(rect=[0, 0.03, 1, 0.95])
else:
pylab.tight_layout()
if hardcopy:
pylab.savefig(hardcopy)
if show:
pylab.show()
if return_extra:
return im, grid, fgrid, ngrid, rgrid
else:
return im
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-viz/vaex/viz/mpl.py#L290-L848
|
scatter plot
|
python
|
def scatter(self, x, y, xerr=[], yerr=[], mark='o', markstyle=None):
"""Plot a series of points.
Plot a series of points (marks) that are not connected by a
line. Shortcut for plot with linestyle=None.
:param x: array containing x-values.
:param y: array containing y-values.
:param xerr: array containing errors on the x-values.
:param yerr: array containing errors on the y-values.
:param mark: the symbol used to mark the data points. May be
any plot mark accepted by TikZ (e.g. ``*, x, +, o, square,
triangle``).
:param markstyle: the style of the plot marks (e.g. 'mark
size=.75pt')
Example::
>>> plot = artist.Plot()
>>> x = np.random.normal(size=20)
>>> y = np.random.normal(size=20)
>>> plot.scatter(x, y, mark='*')
"""
self.plot(x, y, xerr=xerr, yerr=yerr, mark=mark, linestyle=None,
markstyle=markstyle)
|
https://github.com/davidfokkema/artist/blob/26ae7987522622710f2910980770c50012fda47d/artist/plot.py#L433-L458
|
scatter plot
|
python
|
def plot_2(data, *args):
"""Plot 2. Running best score (scatter plot)"""
df_all = pd.DataFrame(data)
df_params = nonconstant_parameters(data)
x = [df_all['id'][0]]
y = [df_all['mean_test_score'][0]]
params = [df_params.loc[0]]
for i in range(len(df_all)):
if df_all['mean_test_score'][i] > y[-1]:
x.append(df_all['id'][i])
y.append(df_all['mean_test_score'][i])
params.append(df_params.loc[i])
return build_scatter_tooltip(
x=x, y=y, tt=pd.DataFrame(params), title='Running best')
|
https://github.com/msmbuilder/osprey/blob/ea09da24e45820e1300e24a52fefa6c849f7a986/osprey/plot.py#L66-L79
|
scatter plot
|
python
|
def plot_scatter_matrix(self, freq=None, title=None,
figsize=(10, 10), **kwargs):
"""
Wrapper around pandas' scatter_matrix.
Args:
* freq (str): Data frequency used for display purposes.
Refer to pandas docs for valid freq strings.
* figsize ((x,y)): figure size
* title (str): Title if default not appropriate
* kwargs: passed to pandas' scatter_matrix method
"""
if title is None:
title = self._get_default_plot_title(
freq, 'Return Scatter Matrix')
plt.figure()
ser = self._get_series(freq).to_returns().dropna()
pd.scatter_matrix(ser, figsize=figsize, **kwargs)
return plt.suptitle(title)
|
https://github.com/pmorissette/ffn/blob/ef09f28b858b7ffcd2627ce6a4dc618183a6bc8a/ffn/core.py#L910-L930
|
scatter plot
|
python
|
def scatter(
x=None,
y=None,
label=None,
color=None,
width=None,
dash=None,
opacity=None,
markersize=6,
yaxis=1,
fill=None,
text="",
mode='markers',
):
"""Draws dots.
Parameters
----------
x : array-like, optional
y : array-like, optional
label : array-like, optional
Returns
-------
Chart
"""
return line(
x=x,
y=y,
label=label,
color=color,
width=width,
dash=dash,
opacity=opacity,
mode=mode,
yaxis=yaxis,
fill=fill,
text=text,
markersize=markersize,
)
|
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L746-L786
|
scatter plot
|
python
|
def projScatter(lon, lat, **kwargs):
"""
Create a scatter plot on HEALPix projected axes.
Inputs: lon (deg), lat (deg)
"""
hp.projscatter(lon, lat, lonlat=True, **kwargs)
|
https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/utils/plotting.py#L141-L146
|
scatter plot
|
python
|
def scatmat(df, category=None, colors='rgob',
num_plots=4, num_topics=100, num_columns=4,
show=False, block=False, data_path=DATA_PATH, save=False, verbose=1):
"""Scatter plot with colored markers depending on the discrete values in a "category" column
FIXME: empty plots that dont go away, Plot and/save scatter matrix in groups of num_columns topics"""
if category is None:
category = list(df.columns)[-1]
if isinstance(category, (str, bytes, int)) and category in df.columns:
category = df[category]
else:
category = pd.Series(category)
suffix = '{}x{}'.format(*list(df.shape))
# suffix = compose_suffix(len(df), num_topics, save)
# save = bool(save)
for i in range(min(num_plots * num_columns, num_topics) / num_plots):
scatter_matrix(df[df.columns[i * num_columns:(i + 1) * num_columns]],
marker='+', c=[colors[int(x) % len(colors)] for x in category.values],
figsize=(18, 12))
if save:
name = 'scatmat_topics_{}-{}.jpg'.format(i * num_columns, (i + 1) * num_columns) + suffix
plt.savefig(os.path.join(data_path, name + '.jpg'))
if show:
if block:
plt.show()
else:
plt.show(block=False)
|
https://github.com/totalgood/pugnlp/blob/c43445b14afddfdeadc5f3076675c9e8fc1ee67c/src/pugnlp/plots.py#L296-L323
|
scatter plot
|
python
|
def plot(self,*args,**kwargs):
"""
NAME:
plot
PURPOSE:
plot the snapshot (with reasonable defaults)
INPUT:
d1= first dimension to plot ('x', 'y', 'R', 'vR', 'vT', 'z', 'vz', ...)
d2= second dimension to plot
matplotlib.plot inputs+bovy_plot.plot inputs
OUTPUT:
sends plot to output device
HISTORY:
2011-02-06 - Written based on Orbit's plot
"""
labeldict= {'t':r'$t$','R':r'$R$','vR':r'$v_R$','vT':r'$v_T$',
'z':r'$z$','vz':r'$v_z$','phi':r'$\phi$',
'x':r'$x$','y':r'$y$','vx':r'$v_x$','vy':r'$v_y$'}
#Defaults
if not kwargs.has_key('d1') and not kwargs.has_key('d2'):
if len(self.orbits[0].vxvv) == 3:
d1= 'R'
d2= 'vR'
elif len(self.orbits[0].vxvv) == 4:
d1= 'x'
d2= 'y'
elif len(self.orbits[0].vxvv) == 2:
d1= 'x'
d2= 'vx'
elif len(self.orbits[0].vxvv) == 5 \
or len(self.orbits[0].vxvv) == 6:
d1= 'R'
d2= 'z'
elif not kwargs.has_key('d1'):
d2= kwargs['d2']
kwargs.pop('d2')
d1= 't'
elif not kwargs.has_key('d2'):
d1= kwargs['d1']
kwargs.pop('d1')
d2= 't'
else:
d1= kwargs['d1']
kwargs.pop('d1')
d2= kwargs['d2']
kwargs.pop('d2')
#Get x and y
if d1 == 'R':
x= [o.R() for o in self.orbits]
elif d1 == 'z':
x= [o.z() for o in self.orbits]
elif d1 == 'vz':
x= [o.vz() for o in self.orbits]
elif d1 == 'vR':
x= [o.vR() for o in self.orbits]
elif d1 == 'vT':
x= [o.vT() for o in self.orbits]
elif d1 == 'x':
x= [o.x() for o in self.orbits]
elif d1 == 'y':
x= [o.y() for o in self.orbits]
elif d1 == 'vx':
x= [o.vx() for o in self.orbits]
elif d1 == 'vy':
x= [o.vy() for o in self.orbits]
elif d1 == 'phi':
x= [o.phi() for o in self.orbits]
if d2 == 'R':
y= [o.R() for o in self.orbits]
elif d2 == 'z':
y= [o.z() for o in self.orbits]
elif d2 == 'vz':
y= [o.vz() for o in self.orbits]
elif d2 == 'vR':
y= [o.vR() for o in self.orbits]
elif d2 == 'vT':
y= [o.vT() for o in self.orbits]
elif d2 == 'x':
y= [o.x() for o in self.orbits]
elif d2 == 'y':
y= [o.y() for o in self.orbits]
elif d2 == 'vx':
y= [o.vx() for o in self.orbits]
elif d2 == 'vy':
y= [o.vy() for o in self.orbits]
elif d2 == 'phi':
y= [o.phi() for o in self.orbits]
#Plot
if not kwargs.has_key('xlabel'):
kwargs['xlabel']= labeldict[d1]
if not kwargs.has_key('ylabel'):
kwargs['ylabel']= labeldict[d2]
if len(args) == 0:
args= (',',)
plot.bovy_plot(x,y,*args,**kwargs)
|
https://github.com/jobovy/galpy/blob/9c5b9fe65d58835624dffe432be282060918ee08/galpy/snapshot/Snapshot.py#L148-L255
|
scatter plot
|
python
|
def scatter_drag(
x_points: 'Array',
y_points: 'Array',
*,
fig=None,
show_eqn=True,
options={}
):
"""
Generates an interactive scatter plot with the best fit line plotted over
the points. The points can be dragged by the user and the line will
automatically update.
Args:
x_points (Array Number): x-values of points to plot
y_points (Array Number): y-values of points to plot
Kwargs:
show_eqn (bool): If True (default), displays the best fit line's
equation above the scatterplot.
{options}
Returns:
VBox with two children: the equation widget and the figure.
>>> xs = np.arange(10)
>>> ys = np.arange(10) + np.random.rand(10)
>>> scatter_drag(xs, ys)
VBox(...)
"""
params = {
'marks': [{
'x': x_points,
'y': y_points,
'enable_move': True,
}, {
'colors': [GOLDENROD],
}]
}
fig = options.get('_fig', False) or _create_fig(options=options)
[scat, lin] = _create_marks(
fig=fig, marks=[bq.Scatter, bq.Lines], options=options, params=params
)
_add_marks(fig, [scat, lin])
equation = widgets.Label()
# create line fit to data and display equation
def update_line(change=None):
x_sc = scat.scales['x']
lin.x = [
x_sc.min if x_sc.min is not None else np.min(scat.x),
x_sc.max if x_sc.max is not None else np.max(scat.x),
]
poly = np.polyfit(scat.x, scat.y, deg=1)
lin.y = np.polyval(poly, lin.x)
if show_eqn:
equation.value = 'y = {:.2f}x + {:.2f}'.format(poly[0], poly[1])
update_line()
scat.observe(update_line, names=['x', 'y'])
return widgets.VBox([equation, fig])
|
https://github.com/SamLau95/nbinteract/blob/9f346452283831aad3f4416c04879f1d187ec3b7/nbinteract/plotting.py#L312-L377
|
scatter plot
|
python
|
def imscatter(images, positions):
'''
Creates a scatter plot, where each plot is shown by corresponding image
'''
positions = np.array(positions)
bottoms = positions[:, 1] - np.array([im.shape[1] / 2.0 for im in images])
tops = bottoms + np.array([im.shape[1] for im in images])
lefts = positions[:, 0] - np.array([im.shape[0] / 2.0 for im in images])
rigths = lefts + np.array([im.shape[0] for im in images])
most_bottom = int(np.floor(bottoms.min()))
most_top = int(np.ceil(tops.max()))
most_left = int(np.floor(lefts.min()))
most_right = int(np.ceil(rigths.max()))
scatter_image = np.zeros(
[most_right - most_left, most_top - most_bottom, 3], dtype=imgs[0].dtype)
# shift, now all from zero
positions -= [most_left, most_bottom]
for im, pos in zip(images, positions):
xl = int(pos[0] - im.shape[0] / 2)
xr = xl + im.shape[0]
yb = int(pos[1] - im.shape[1] / 2)
yt = yb + im.shape[1]
scatter_image[xl:xr, yb:yt, :] = im
return scatter_image
|
https://github.com/DmitryUlyanov/Multicore-TSNE/blob/62dedde52469f3a0aeb22fdd7bce2538f17f77ef/tsne-embedding.py#L9-L42
|
scatter plot
|
python
|
def plot(x, fmt='-', marker=None, markers=None, linestyle=None, linestyles=None,
color=None, colors=None, palette='hls', group=None, hue=None,
labels=None, legend=None, title=None, size=None, elev=10, azim=-60,
ndims=3, model=None, model_params=None, reduce='IncrementalPCA',
cluster=None, align=None, normalize=None, n_clusters=None,
save_path=None, animate=False, duration=30, tail_duration=2,
rotations=2, zoom=1, chemtrails=False, precog=False, bullettime=False,
frame_rate=50, explore=False, show=True, transform=None,
vectorizer='CountVectorizer', semantic='LatentDirichletAllocation',
corpus='wiki', ax=None):
"""
Plots dimensionality reduced data and parses plot arguments
Parameters
----------
x : Numpy array, DataFrame, String, Geo or mixed list
Data for the plot. The form should be samples (rows) by features (cols).
fmt : str or list of strings
A list of format strings. All matplotlib format strings are supported.
linestyle(s) : str or list of str
A list of line styles
marker(s) : str or list of str
A list of marker types
color(s) : str or list of str
A list of marker types
palette : str
A matplotlib or seaborn color palette
group : str/int/float or list
A list of group labels. Length must match the number of rows in your
dataset. If the data type is numerical, the values will be mapped to
rgb values in the specified palette. If the data type is strings,
the points will be labeled categorically. To label a subset of points,
use None (i.e. ['a', None, 'b','a']).
labels : list
A list of labels for each point. Must be dimensionality of data (x).
If no label is wanted for a particular point, input None.
legend : list or bool
If set to True, legend is implicitly computed from data. Passing a
list will add string labels to the legend (one for each list item).
title : str
A title for the plot
size : list
A list of [width, height] in inches to resize the figure
normalize : str or False
If set to 'across', the columns of the input data will be z-scored
across lists (default). If set to 'within', the columns will be
z-scored within each list that is passed. If set to 'row', each row of
the input data will be z-scored. If set to False, the input data will
be returned (default is False).
reduce : str or dict
Decomposition/manifold learning model to use. Models supported: PCA,
IncrementalPCA, SparsePCA, MiniBatchSparsePCA, KernelPCA, FastICA,
FactorAnalysis, TruncatedSVD, DictionaryLearning, MiniBatchDictionaryLearning,
TSNE, Isomap, SpectralEmbedding, LocallyLinearEmbedding, and MDS. Can be
passed as a string, but for finer control of the model parameters, pass
as a dictionary, e.g. reduce={'model' : 'PCA', 'params' : {'whiten' : True}}.
See scikit-learn specific model docs for details on parameters supported
for each model.
ndims : int
An `int` representing the number of dims to reduce the data x
to. If ndims > 3, will plot in 3 dimensions but return the higher
dimensional data. Default is None, which will plot data in 3
dimensions and return the data with the same number of dimensions
possibly normalized and/or aligned according to normalize/align
kwargs.
align : str or dict or False/None
If str, either 'hyper' or 'SRM'. If 'hyper', alignment algorithm will be
hyperalignment. If 'SRM', alignment algorithm will be shared response
model. You can also pass a dictionary for finer control, where the 'model'
key is a string that specifies the model and the params key is a dictionary
of parameter values (default : 'hyper').
cluster : str or dict or False/None
If cluster is passed, HyperTools will perform clustering using the
specified clustering clustering model. Supportted algorithms are:
KMeans, MiniBatchKMeans, AgglomerativeClustering, Birch,
FeatureAgglomeration, SpectralClustering and HDBSCAN (default: None).
Can be passed as a string, but for finer control of the model
parameters, pass as a dictionary, e.g.
reduce={'model' : 'KMeans', 'params' : {'max_iter' : 100}}. See
scikit-learn specific model docs for details on parameters supported for
each model. If no parameters are specified in the string a default set
of parameters will be used.
n_clusters : int
If n_clusters is passed, HyperTools will perform k-means clustering
with the k parameter set to n_clusters. The resulting clusters will
be plotted in different colors according to the color palette.
save_path : str
Path to save the image/movie. Must include the file extension in the
save path (i.e. save_path='/path/to/file/image.png'). NOTE: If saving
an animation, FFMPEG must be installed (this is a matplotlib req).
FFMPEG can be easily installed on a mac via homebrew brew install
ffmpeg or linux via apt-get apt-get install ffmpeg. If you don't
have homebrew (mac only), you can install it like this:
/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)".
animate : bool, 'parallel' or 'spin'
If True or 'parallel', plots the data as an animated trajectory, with
each dataset plotted simultaneously. If 'spin', all the data is plotted
at once but the camera spins around the plot (default: False).
duration (animation only) : float
Length of the animation in seconds (default: 30 seconds)
tail_duration (animation only) : float
Sets the length of the tail of the data (default: 2 seconds)
rotations (animation only) : float
Number of rotations around the box (default: 2)
zoom (animation only) : float
How far to zoom into the plot, positive numbers will zoom in (default: 0)
chemtrails (animation only) : bool
A low-opacity trail is left behind the trajectory (default: False).
precog (animation only) : bool
A low-opacity trail is plotted ahead of the trajectory (default: False).
bullettime (animation only) : bool
A low-opacity trail is plotted ahead and behind the trajectory
(default: False).
frame_rate (animation only) : int or float
Frame rate for animation (default: 50)
explore : bool
Displays user defined labels will appear on hover. If no labels are
passed, the point index and coordinate will be plotted. To use,
set explore=True. Note: Explore mode is currently only supported
for 3D static plots, and is an experimental feature (i.e it may not yet
work properly).
show : bool
If set to False, the figure will not be displayed, but the figure,
axis and data objects will still be returned (default: True).
transform : list of numpy arrays or None
The transformed data, bypasses transformations if this is set
(default : None).
vectorizer : str, dict, class or class instance
The vectorizer to use. Built-in options are 'CountVectorizer' or
'TfidfVectorizer'. To change default parameters, set to a dictionary
e.g. {'model' : 'CountVectorizer', 'params' : {'max_features' : 10}}. See
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_extraction.text
for details. You can also specify your own vectorizer model as a class,
or class instance. With either option, the class must have a
fit_transform method (see here: http://scikit-learn.org/stable/data_transforms.html).
If a class, pass any parameters as a dictionary to vectorizer_params. If
a class instance, no parameters can be passed.
semantic : str, dict, class or class instance
Text model to use to transform text data. Built-in options are
'LatentDirichletAllocation' or 'NMF' (default: LDA). To change default
parameters, set to a dictionary e.g. {'model' : 'NMF', 'params' :
{'n_components' : 10}}. See
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition
for details on the two model options. You can also specify your own
text model as a class, or class instance. With either option, the class
must have a fit_transform method (see here:
http://scikit-learn.org/stable/data_transforms.html).
If a class, pass any parameters as a dictionary to text_params. If
a class instance, no parameters can be passed.
corpus : list (or list of lists) of text samples or 'wiki', 'nips', 'sotus'.
Text to use to fit the semantic model (optional). If set to 'wiki', 'nips'
or 'sotus' and the default semantic and vectorizer models are used, a
pretrained model will be loaded which can save a lot of time.
ax : matplotlib.Axes
Axis handle to plot the figure
Returns
----------
geo : hypertools.DataGeometry
A new data geometry object
"""
# warnings for deprecated API args
if (model is not None) or (model_params is not None):
warnings.warn('Model and model_params arguments will be deprecated. Please use \
reduce keyword argument. See docs for details: http://hypertools.readthedocs.io/en/latest/hypertools.plot.html#hypertools.plot')
reduce = {}
reduce['model'] = model
reduce['params'] = model_params
if group is not None:
warnings.warn('Group will be deprecated. Please use '
'hue keyword argument. See docs for details: ' 'http://hypertools.readthedocs.io/en/latest/hypertools.plot.html#hypertools.plot')
hue = group
if ax is not None:
if ndims>2:
if ax.name!='3d':
raise ValueError('If passing ax and the plot is 3D, ax must '
'also be 3d')
text_args = {
'vectorizer' : vectorizer,
'semantic' : semantic,
'corpus' : corpus
}
# analyze the data
if transform is None:
raw = format_data(x, **text_args)
xform = analyze(raw, ndims=ndims, normalize=normalize, reduce=reduce,
align=align, internal=True)
else:
xform = transform
# Return data that has been normalized and possibly reduced and/or aligned
xform_data = copy.copy(xform)
# catch all matplotlib kwargs here to pass on
mpl_kwargs = {}
# handle color (to be passed onto matplotlib)
if color is not None:
mpl_kwargs['color'] = color
if colors is not None:
mpl_kwargs['color'] = colors
warnings.warn('Both color and colors defined: color will be ignored \
in favor of colors.')
# handle linestyle (to be passed onto matplotlib)
if linestyle is not None:
mpl_kwargs['linestyle'] = linestyle
if linestyles is not None:
mpl_kwargs['linestyle'] = linestyles
warnings.warn('Both linestyle and linestyles defined: linestyle \
will be ignored in favor of linestyles.')
# handle marker (to be passed onto matplotlib)
if marker is not None:
mpl_kwargs['marker'] = marker
if markers is not None:
mpl_kwargs['marker'] = markers
warnings.warn('Both marker and markers defined: marker will be \
ignored in favor of markers.')
# reduce data to 3 dims for plotting, if ndims is None, return this
if (ndims and ndims < 3):
xform = reducer(xform, ndims=ndims, reduce=reduce, internal=True)
else:
xform = reducer(xform, ndims=3, reduce=reduce, internal=True)
# find cluster and reshape if n_clusters
if cluster is not None:
if hue is not None:
warnings.warn('cluster overrides hue, ignoring hue.')
if isinstance(cluster, (six.string_types, six.binary_type)):
model = cluster
params = default_params(model)
elif isinstance(cluster, dict):
model = cluster['model']
params = default_params(model, cluster['params'])
else:
raise ValueError('Invalid cluster model specified; should be'
' string or dictionary!')
if n_clusters is not None:
if cluster in ('HDBSCAN',):
warnings.warn('n_clusters is not a valid parameter for '
'HDBSCAN clustering and will be ignored.')
else:
params['n_clusters'] = n_clusters
cluster_labels = clusterer(xform, cluster={'model': model,
'params': params})
xform, labels = reshape_data(xform, cluster_labels, labels)
hue = cluster_labels
elif n_clusters is not None:
# If cluster was None default to KMeans
cluster_labels = clusterer(xform, cluster='KMeans', n_clusters=n_clusters)
xform, labels = reshape_data(xform, cluster_labels, labels)
if hue is not None:
warnings.warn('n_clusters overrides hue, ignoring hue.')
# group data if there is a grouping var
elif hue is not None:
if color is not None:
warnings.warn("Using group, color keyword will be ignored.")
# if list of lists, unpack
if any(isinstance(el, list) for el in hue):
hue = list(itertools.chain(*hue))
# if all of the elements are numbers, map them to colors
if all(isinstance(el, int) or isinstance(el, float) for el in hue):
hue = vals2bins(hue)
elif all(isinstance(el, str) for el in hue):
hue = group_by_category(hue)
# reshape the data according to group
if n_clusters is None:
xform, labels = reshape_data(xform, hue, labels)
# interpolate lines if they are grouped
if is_line(fmt):
xform = patch_lines(xform)
# handle legend
if legend is not None:
if legend is False:
legend = None
elif legend is True and hue is not None:
legend = [item for item in sorted(set(hue), key=list(hue).index)]
elif legend is True and hue is None:
legend = [i + 1 for i in range(len(xform))]
mpl_kwargs['label'] = legend
# interpolate if its a line plot
if fmt is None or isinstance(fmt, six.string_types):
if is_line(fmt):
if xform[0].shape[0] > 1:
xform = interp_array_list(xform, interp_val=frame_rate*duration/(xform[0].shape[0] - 1))
elif type(fmt) is list:
for idx, xi in enumerate(xform):
if is_line(fmt[idx]):
if xi.shape[0] > 1:
xform[idx] = interp_array_list(xi, interp_val=frame_rate*duration/(xi.shape[0] - 1))
# handle explore flag
if explore:
assert xform[0].shape[1] is 3, "Explore mode is currently only supported for 3D plots."
mpl_kwargs['picker']=True
# center
xform = center(xform)
# scale
xform = scale(xform)
# handle palette with seaborn
if isinstance(palette, np.bytes_):
palette = palette.decode("utf-8")
sns.set_palette(palette=palette, n_colors=len(xform))
sns.set_style(style='whitegrid')
# turn kwargs into a list
kwargs_list = parse_kwargs(xform, mpl_kwargs)
# handle format strings
if fmt is not None:
if type(fmt) is not list:
draw_fmt = [fmt for i in xform]
else:
draw_fmt = fmt
else:
draw_fmt = ['-']*len(x)
# convert all nans to zeros
for i, xi in enumerate(xform):
xform[i] = np.nan_to_num(xi)
# draw the plot
fig, ax, data, line_ani = _draw(xform, fmt=draw_fmt,
kwargs_list=kwargs_list,
labels=labels,
legend=legend,
title=title,
animate=animate,
duration=duration,
tail_duration=tail_duration,
rotations=rotations,
zoom=zoom,
chemtrails=chemtrails,
precog=precog,
bullettime=bullettime,
frame_rate=frame_rate,
elev=elev,
azim=azim,
explore=explore,
show=show,
size=size,
ax=ax)
# tighten layout
plt.tight_layout()
# save
if save_path is not None:
if animate:
Writer = animation.writers['ffmpeg']
writer = Writer(fps=frame_rate, bitrate=1800)
line_ani.save(save_path, writer=writer)
else:
plt.savefig(save_path)
# show the plot
if show:
plt.show()
else:
# safely closes the plot so it doesn't pop up in another call to this function
plt.close('all')
# gather reduce params
if isinstance(reduce, dict):
reduce_dict = reduce
else:
reduce_dict = {
'model' : reduce,
'params' : {
'n_components' : ndims
},
}
# gather align params
if isinstance(align, dict):
align_dict = align
else:
align_dict = {
'model' : align,
'params' : {}
}
# gather all other kwargs
kwargs = {
'fmt' : fmt,
'marker': marker,
'markers' : markers,
'linestyle' : linestyle,
'linestyles' : linestyles,
'color' : color,
'colors' : colors,
'palette' : palette,
'hue' : hue,
'ndims' : ndims,
'labels' : labels,
'legend' : legend,
'title' : title,
'animate' : animate,
'duration' : duration,
'tail_duration' : tail_duration,
'rotations' : rotations,
'zoom' : zoom,
'chemtrails' : chemtrails,
'precog' : precog,
'bullettime' : bullettime,
'frame_rate' : frame_rate,
'elev' : elev,
'azim' : azim,
'explore' : explore,
'n_clusters' : n_clusters,
'size' : size
}
# turn lists into np arrays so that they don't turn into pickles when saved
for kwarg in kwargs:
if isinstance(kwargs[kwarg], list):
try:
kwargs[kwarg]=np.array(kwargs[kwarg])
except:
warnings.warn('Could not convert all list arguments to numpy '
'arrays. If list is longer than 256 items, it '
'will automatically be pickled, which could '
'cause Python 2/3 compatibility issues for the '
'DataGeometry object.')
return DataGeometry(fig=fig, ax=ax, data=x, xform_data=xform_data,
line_ani=line_ani, reduce=reduce_dict, align=align_dict,
normalize=normalize, semantic=semantic,
vectorizer=vectorizer, corpus=corpus, kwargs=kwargs)
|
https://github.com/ContextLab/hypertools/blob/b76c7ac8061998b560e969ff8e4f4c915088e7a0/hypertools/plot/plot.py#L24-L507
|
scatter plot
|
python
|
def plot(self, x, y, color="black"):
"""
Uses coordinant system.
"""
p = Point(x, y)
p.fill(color)
p.draw(self)
|
https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/zgraphics.py#L71-L77
|
scatter plot
|
python
|
def scatter(h1: Histogram1D, ax: Axes, *, errors: bool = False, **kwargs):
"""Scatter plot of 1D histogram."""
show_stats = kwargs.pop("show_stats", False)
show_values = kwargs.pop("show_values", False)
density = kwargs.pop("density", False)
cumulative = kwargs.pop("cumulative", False)
value_format = kwargs.pop("value_format", None)
text_kwargs = pop_kwargs_with_prefix("text_", kwargs)
data = get_data(h1, cumulative=cumulative, density=density)
if "cmap" in kwargs:
cmap = _get_cmap(kwargs)
_, cmap_data = _get_cmap_data(data, kwargs)
kwargs["color"] = cmap(cmap_data)
else:
kwargs["color"] = kwargs.pop("color", "blue")
_apply_xy_lims(ax, h1, data, kwargs)
_add_ticks(ax, h1, kwargs)
_add_labels(ax, h1, kwargs)
if errors:
err_data = get_err_data(h1, cumulative=cumulative, density=density)
ax.errorbar(h1.bin_centers, data, yerr=err_data, fmt=kwargs.pop("fmt", "o"),
ecolor=kwargs.pop("ecolor", "black"), ms=0)
ax.scatter(h1.bin_centers, data, **kwargs)
if show_values:
_add_values(ax, h1, data, value_format=value_format, **text_kwargs)
if show_stats:
_add_stats_box(h1, ax, stats=show_stats)
|
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L149-L180
|
scatter plot
|
python
|
def scatter(df, x, y, ax=None, legend=None, title=None,
color=None, marker='o', linestyle=None, cmap=None,
groupby=['model', 'scenario'], with_lines=False, **kwargs):
"""Plot data as a scatter chart.
Parameters
----------
df : pd.DataFrame
Data to plot as a long-form data frame
x : str
column to be plotted on the x-axis
y : str
column to be plotted on the y-axis
ax : matplotlib.Axes, optional
legend : bool, optional
Include a legend (`None` displays legend only if less than 13 entries)
default: None
title : bool or string, optional
Display a custom title.
color : string, optional
A valid matplotlib color or column name. If a column name, common
values will be provided the same color.
default: None
marker : string
A valid matplotlib marker or column name. If a column name, common
values will be provided the same marker.
default: 'o'
linestyle : string, optional
A valid matplotlib linestyle or column name. If a column name, common
values will be provided the same linestyle.
default: None
cmap : string, optional
A colormap to use.
default: None
groupby : list-like, optional
Data grouping for plotting.
default: ['model', 'scenario']
with_lines : bool, optional
Make the scatter plot with lines connecting common data.
default: False
kwargs : Additional arguments to pass to the pd.DataFrame.plot() function
"""
if ax is None:
fig, ax = plt.subplots()
# assign styling properties
props = assign_style_props(df, color=color, marker=marker,
linestyle=linestyle, cmap=cmap)
# group data
groups = df.groupby(groupby)
# loop over grouped dataframe, plot data
legend_data = []
for name, group in groups:
pargs = {}
labels = []
for key, kind, var in [('c', 'color', color),
('marker', 'marker', marker),
('linestyle', 'linestyle', linestyle)]:
if kind in props:
label = group[var].values[0]
pargs[key] = props[kind][group[var].values[0]]
labels.append(repr(label).lstrip("u'").strip("'"))
else:
pargs[key] = var
if len(labels) > 0:
legend_data.append(' '.join(labels))
else:
legend_data.append(' '.join(name))
kwargs.update(pargs)
if with_lines:
ax.plot(group[x], group[y], **kwargs)
else:
kwargs.pop('linestyle') # scatter() can't take a linestyle
ax.scatter(group[x], group[y], **kwargs)
# build legend handles and labels
handles, labels = ax.get_legend_handles_labels()
if legend_data != [''] * len(legend_data):
labels = sorted(list(set(tuple(legend_data))))
idxs = [legend_data.index(d) for d in labels]
handles = [handles[i] for i in idxs]
if legend is None and len(labels) < 13 or legend is not False:
_add_legend(ax, handles, labels, legend)
# add labels and title
ax.set_xlabel(x)
ax.set_ylabel(y)
if title:
ax.set_title(title)
return ax
|
https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/plotting.py#L667-L760
|
scatter plot
|
python
|
def plot(y, x=None, ptyp='plot', xlbl=None, ylbl=None, title=None,
lgnd=None, lglc=None, **kwargs):
"""
Plot points or lines in 2D. If a figure object is specified then the
plot is drawn in that figure, and ``fig.show()`` is not called. The
figure is closed on key entry 'q'.
Parameters
----------
y : array_like
1d or 2d array of data to plot. If a 2d array, each column is
plotted as a separate curve.
x : array_like, optional (default None)
Values for x-axis of the plot
ptyp : string, optional (default 'plot')
Plot type specification (options are 'plot', 'semilogx',
'semilogy', and 'loglog')
xlbl : string, optional (default None)
Label for x-axis
ylbl : string, optional (default None)
Label for y-axis
title : string, optional (default None)
Figure title
lgnd : list of strings, optional (default None)
List of legend string
lglc : string, optional (default None)
Legend location string
**kwargs : :class:`matplotlib.lines.Line2D` properties or figure \
properties, optional
Keyword arguments specifying :class:`matplotlib.lines.Line2D`
properties, e.g. ``lw=2.0`` sets a line width of 2, or properties
of the figure and axes. If not specified, the defaults for line
width (``lw``) and marker size (``ms``) are 1.5 and 6.0
respectively. The valid figure and axes keyword arguments are
listed below:
.. |mplfg| replace:: :class:`matplotlib.figure.Figure` object
.. |mplax| replace:: :class:`matplotlib.axes.Axes` object
.. rst-class:: kwargs
===== ==================== ======================================
kwarg Accepts Description
===== ==================== ======================================
fgsz tuple (width,height) Specify figure dimensions in inches
fgnm integer Figure number of figure
fig |mplfg| Draw in specified figure instead of
creating one
ax |mplax| Plot in specified axes instead of
current axes of figure
===== ==================== ======================================
Returns
-------
fig : :class:`matplotlib.figure.Figure` object
Figure object for this figure
ax : :class:`matplotlib.axes.Axes` object
Axes object for this plot
"""
# Extract kwargs entries that are not related to line properties
fgsz = kwargs.pop('fgsz', None)
fgnm = kwargs.pop('fgnm', None)
fig = kwargs.pop('fig', None)
ax = kwargs.pop('ax', None)
figp = fig
if fig is None:
fig = plt.figure(num=fgnm, figsize=fgsz)
fig.clf()
ax = fig.gca()
elif ax is None:
ax = fig.gca()
# Set defaults for line width and marker size
if 'lw' not in kwargs and 'linewidth' not in kwargs:
kwargs['lw'] = 1.5
if 'ms' not in kwargs and 'markersize' not in kwargs:
kwargs['ms'] = 6.0
if ptyp not in ('plot', 'semilogx', 'semilogy', 'loglog'):
raise ValueError("Invalid plot type '%s'" % ptyp)
pltmth = getattr(ax, ptyp)
if x is None:
pltln = pltmth(y, **kwargs)
else:
pltln = pltmth(x, y, **kwargs)
ax.fmt_xdata = lambda x: "{: .2f}".format(x)
ax.fmt_ydata = lambda x: "{: .2f}".format(x)
if title is not None:
ax.set_title(title)
if xlbl is not None:
ax.set_xlabel(xlbl)
if ylbl is not None:
ax.set_ylabel(ylbl)
if lgnd is not None:
ax.legend(lgnd, loc=lglc)
attach_keypress(fig)
attach_zoom(ax)
if have_mpldc:
mpldc.datacursor(pltln)
if figp is None:
fig.show()
return fig, ax
|
https://github.com/bwohlberg/sporco/blob/8946a04331106f4e39904fbdf2dc7351900baa04/sporco/plot.py#L175-L285
|
scatter plot
|
python
|
def scatter(self, x, y, **kwargs):
"""Plot a scatter chart using metadata columns
see pyam.plotting.scatter() for all available options
"""
variables = self.data['variable'].unique()
xisvar = x in variables
yisvar = y in variables
if not xisvar and not yisvar:
cols = [x, y] + self._discover_meta_cols(**kwargs)
df = self.meta[cols].reset_index()
elif xisvar and yisvar:
# filter pivot both and rename
dfx = (
self
.filter(variable=x)
.as_pandas(with_metadata=kwargs)
.rename(columns={'value': x, 'unit': 'xunit'})
.set_index(YEAR_IDX)
.drop('variable', axis=1)
)
dfy = (
self
.filter(variable=y)
.as_pandas(with_metadata=kwargs)
.rename(columns={'value': y, 'unit': 'yunit'})
.set_index(YEAR_IDX)
.drop('variable', axis=1)
)
df = dfx.join(dfy, lsuffix='_left', rsuffix='').reset_index()
else:
# filter, merge with meta, and rename value column to match var
var = x if xisvar else y
df = (
self
.filter(variable=var)
.as_pandas(with_metadata=kwargs)
.rename(columns={'value': var})
)
ax = plotting.scatter(df.dropna(), x, y, **kwargs)
return ax
|
https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L1189-L1229
|
scatter plot
|
python
|
def plot(self, x, y, **kw):
"""plot after clearing current plot """
self.panel.plot(x, y, **kw)
|
https://github.com/newville/wxmplot/blob/8e0dc037453e5cdf18c968dc5a3d29efd761edee/wxmplot/plotframe.py#L34-L36
|
scatter plot
|
python
|
def _do_scatter_var(v, parallel):
"""Logic for scattering a variable.
"""
# For batches, scatter records only at the top level (double nested)
if parallel.startswith("batch") and workflow.is_cwl_record(v):
return (tz.get_in(["type", "type"], v) == "array" and
tz.get_in(["type", "type", "type"], v) == "array")
# Otherwise, scatter arrays
else:
return (tz.get_in(["type", "type"], v) == "array")
|
https://github.com/bcbio/bcbio-nextgen/blob/6a9348c0054ccd5baffd22f1bb7d0422f6978b20/bcbio/cwl/create.py#L352-L361
|
scatter plot
|
python
|
def scatter_plot(data, x, y, by=None, ax=None, figsize=None, grid=False,
**kwargs):
"""
Make a scatter plot from two DataFrame columns
Parameters
----------
data : DataFrame
x : Column name for the x-axis values
y : Column name for the y-axis values
ax : Matplotlib axis object
figsize : A tuple (width, height) in inches
grid : Setting this to True will show the grid
kwargs : other plotting keyword arguments
To be passed to scatter function
Returns
-------
matplotlib.Figure
"""
import matplotlib.pyplot as plt
kwargs.setdefault('edgecolors', 'none')
def plot_group(group, ax):
xvals = group[x].values
yvals = group[y].values
ax.scatter(xvals, yvals, **kwargs)
ax.grid(grid)
if by is not None:
fig = _grouped_plot(plot_group, data, by=by, figsize=figsize, ax=ax)
else:
if ax is None:
fig = plt.figure()
ax = fig.add_subplot(111)
else:
fig = ax.get_figure()
plot_group(data, ax)
ax.set_ylabel(pprint_thing(y))
ax.set_xlabel(pprint_thing(x))
ax.grid(grid)
return fig
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L2284-L2328
|
scatter plot
|
python
|
def plot (data, pconfig=None):
""" Plot a scatter plot with X,Y data.
:param data: 2D dict, first keys as sample names, then x:y data pairs
:param pconfig: optional dict with config key:value pairs. See CONTRIBUTING.md
:return: HTML and JS, ready to be inserted into the page
"""
if pconfig is None:
pconfig = {}
# Allow user to overwrite any given config for this plot
if 'id' in pconfig and pconfig['id'] and pconfig['id'] in config.custom_plot_config:
for k, v in config.custom_plot_config[pconfig['id']].items():
pconfig[k] = v
# Given one dataset - turn it into a list
if type(data) is not list:
data = [data]
# Generate the data dict structure expected by HighCharts series
plotdata = list()
for data_index, ds in enumerate(data):
d = list()
for s_name in ds:
# Ensure any overwritting conditionals from data_labels (e.g. ymax) are taken in consideration
series_config = pconfig.copy()
if 'data_labels' in pconfig and type(pconfig['data_labels'][data_index]) is dict: # if not a dict: only dataset name is provided
series_config.update(pconfig['data_labels'][data_index])
if type(ds[s_name]) is not list:
ds[s_name] = [ ds[s_name] ]
for k in ds[s_name]:
if k['x'] is not None:
if 'xmax' in series_config and float(k['x']) > float(series_config['xmax']):
continue
if 'xmin' in series_config and float(k['x']) < float(series_config['xmin']):
continue
if k['y'] is not None:
if 'ymax' in series_config and float(k['y']) > float(series_config['ymax']):
continue
if 'ymin' in series_config and float(k['y']) < float(series_config['ymin']):
continue
this_series = { 'x': k['x'], 'y': k['y'] }
try:
this_series['name'] = "{}: {}".format(s_name, k['name'])
except KeyError:
this_series['name'] = s_name
try:
this_series['color'] = k['color']
except KeyError:
try:
this_series['color'] = series_config['colors'][s_name]
except KeyError:
pass
d.append(this_series)
plotdata.append(d)
# Add on annotation data series
try:
if pconfig.get('extra_series'):
extra_series = pconfig['extra_series']
if type(pconfig['extra_series']) == dict:
extra_series = [[ pconfig['extra_series'] ]]
elif type(pconfig['extra_series']) == list and type(pconfig['extra_series'][0]) == dict:
extra_series = [ pconfig['extra_series'] ]
for i, es in enumerate(extra_series):
for s in es:
plotdata[i].append(s)
except (KeyError, IndexError):
pass
# Make a plot
return highcharts_scatter_plot(plotdata, pconfig)
|
https://github.com/ewels/MultiQC/blob/2037d6322b2554146a74efbf869156ad20d4c4ec/multiqc/plots/scatter.py#L14-L85
|
scatter plot
|
python
|
def tsne(adata, **kwargs) -> Union[Axes, List[Axes], None]:
"""\
Scatter plot in tSNE basis.
Parameters
----------
{adata_color_etc}
{edges_arrows}
{scatter_bulk}
{show_save_ax}
Returns
-------
If `show==False` a :class:`~matplotlib.axes.Axes` or a list of it.
"""
return plot_scatter(adata, 'tsne', **kwargs)
|
https://github.com/theislab/scanpy/blob/9e4e5ee02e04cf618872d9b098e24f0542e8b227/scanpy/plotting/_tools/scatterplots.py#L289-L304
|
scatter plot
|
python
|
def plot(var_item, off_screen=None, full_screen=False, screenshot=None,
interactive=True, cpos=None, window_size=None,
show_bounds=False, show_axes=True, notebook=None, background=None,
text='', return_img=False, eye_dome_lighting=False, use_panel=None,
**kwargs):
"""
Convenience plotting function for a vtk or numpy object.
Parameters
----------
item : vtk or numpy object
VTK object or numpy array to be plotted.
off_screen : bool
Plots off screen when True. Helpful for saving screenshots
without a window popping up.
full_screen : bool, optional
Opens window in full screen. When enabled, ignores window_size.
Default False.
screenshot : str or bool, optional
Saves screenshot to file when enabled. See:
help(vtkinterface.Plotter.screenshot). Default disabled.
When True, takes screenshot and returns numpy array of image.
window_size : list, optional
Window size in pixels. Defaults to [1024, 768]
show_bounds : bool, optional
Shows mesh bounds when True. Default False. Alias ``show_grid`` also
accepted.
notebook : bool, optional
When True, the resulting plot is placed inline a jupyter notebook.
Assumes a jupyter console is active.
show_axes : bool, optional
Shows a vtk axes widget. Enabled by default.
text : str, optional
Adds text at the bottom of the plot.
**kwargs : optional keyword arguments
See help(Plotter.add_mesh) for additional options.
Returns
-------
cpos : list
List of camera position, focal point, and view up.
img : numpy.ndarray
Array containing pixel RGB and alpha. Sized:
[Window height x Window width x 3] for transparent_background=False
[Window height x Window width x 4] for transparent_background=True
Returned only when screenshot enabled
"""
if notebook is None:
if run_from_ipython():
try:
notebook = type(get_ipython()).__module__.startswith('ipykernel.')
except NameError:
pass
if notebook:
off_screen = notebook
plotter = Plotter(off_screen=off_screen, notebook=notebook)
if show_axes:
plotter.add_axes()
plotter.set_background(background)
if isinstance(var_item, list):
if len(var_item) == 2: # might be arrows
isarr_0 = isinstance(var_item[0], np.ndarray)
isarr_1 = isinstance(var_item[1], np.ndarray)
if isarr_0 and isarr_1:
plotter.add_arrows(var_item[0], var_item[1])
else:
for item in var_item:
plotter.add_mesh(item, **kwargs)
else:
for item in var_item:
plotter.add_mesh(item, **kwargs)
else:
plotter.add_mesh(var_item, **kwargs)
if text:
plotter.add_text(text)
if show_bounds or kwargs.get('show_grid', False):
if kwargs.get('show_grid', False):
plotter.show_grid()
else:
plotter.show_bounds()
if cpos is None:
cpos = plotter.get_default_cam_pos()
plotter.camera_position = cpos
plotter.camera_set = False
else:
plotter.camera_position = cpos
if eye_dome_lighting:
plotter.enable_eye_dome_lighting()
result = plotter.show(window_size=window_size,
auto_close=False,
interactive=interactive,
full_screen=full_screen,
screenshot=screenshot,
return_img=return_img,
use_panel=use_panel)
# close and return camera position and maybe image
plotter.close()
# Result will be handled by plotter.show(): cpos or [cpos, img]
return result
|
https://github.com/vtkiorg/vtki/blob/5ccad7ae6d64a03e9594c9c7474c8aab3eb22dd1/vtki/plotting.py#L140-L260
|
scatter plot
|
python
|
def plot(self, name, funcname):
"""Plot item"""
sw = self.shellwidget
if sw._reading:
sw.dbg_exec_magic('varexp', '--%s %s' % (funcname, name))
else:
sw.execute("%%varexp --%s %s" % (funcname, name))
|
https://github.com/spyder-ide/spyder/blob/f76836ce1b924bcc4efd3f74f2960d26a4e528e0/spyder/plugins/variableexplorer/widgets/collectionseditor.py#L1636-L1642
|
scatter plot
|
python
|
def scatterviz(X,
y=None,
ax=None,
features=None,
classes=None,
color=None,
colormap=None,
markers=None,
alpha=1.0,
**kwargs):
"""Displays a bivariate scatter plot.
This helper function is a quick wrapper to utilize the ScatterVisualizer
(Transformer) for one-off analysis.
Parameters
----------
X : ndarray or DataFrame of shape n x m
A matrix of n instances with m features
y : ndarray or Series of length n, default: None
An array or series of target or class values
ax : matplotlib axes, default: None
The axes to plot the figure on.
features : list of strings, default: None
The names of two features or columns.
More than that will raise an error.
classes : list of strings, default: None
The names of the classes in the target
color : list or tuple of colors, default: None
Specify the colors for each individual class
colormap : string or matplotlib cmap, default: None
Sequential colormap for continuous target
markers : iterable of strings, default: ,+o*vhd
Matplotlib style markers for points on the scatter plot points
alpha : float, default: 1.0
Specify a transparency where 1 is completely opaque and 0 is completely
transparent. This property makes densely clustered points more visible.
Returns
-------
ax : matplotlib axes
Returns the axes that the parallel coordinates were drawn on.
"""
# Instantiate the visualizer
visualizer = ScatterVisualizer(ax=ax, features=features, classes=classes,
color=color, colormap=colormap,
markers=markers, alpha=alpha, **kwargs)
# Fit and transform the visualizer (calls draw)
visualizer.fit(X, y, **kwargs)
visualizer.transform(X)
# Return the axes object on the visualizer
return visualizer.ax
|
https://github.com/DistrictDataLabs/yellowbrick/blob/59b67236a3862c73363e8edad7cd86da5b69e3b2/yellowbrick/contrib/scatter.py#L32-L94
|
scatter plot
|
python
|
def plot(self,*args,**kwargs):
"""
NAME:
plot
PURPOSE:
plot the snapshot
INPUT:
OUTPUT:
HISTORY:
2011-08-15 - Started - Bovy (NYU)
"""
labeldict= {'t':r'$t$','R':r'$R$','vR':r'$v_R$','vT':r'$v_T$',
'z':r'$z$','vz':r'$v_z$','phi':r'$\phi$',
'x':r'$x$','y':r'$y$','vx':r'$v_x$','vy':r'$v_y$'}
#Defaults
if not kwargs.has_key('d1') and not kwargs.has_key('d2'):
if len(self.orbits[0].vxvv) == 3:
d1= 'R'
d2= 'vR'
elif len(self.orbits[0].vxvv) == 4:
d1= 'x'
d2= 'y'
elif len(self.orbits[0].vxvv) == 2:
d1= 'x'
d2= 'vx'
elif len(self.orbits[0].vxvv) == 5 \
or len(self.orbits[0].vxvv) == 6:
d1= 'R'
d2= 'z'
elif not kwargs.has_key('d1'):
d2= kwargs['d2']
kwargs.pop('d2')
d1= 't'
elif not kwargs.has_key('d2'):
d1= kwargs['d1']
kwargs.pop('d1')
d2= 't'
else:
d1= kwargs['d1']
kwargs.pop('d1')
d2= kwargs['d2']
kwargs.pop('d2')
|
https://github.com/jobovy/galpy/blob/9c5b9fe65d58835624dffe432be282060918ee08/galpy/snapshot/GadgetSnapshot.py#L35-L77
|
scatter plot
|
python
|
def scatter_plot(self, ax, topic_dims, t=None, ms_limits=True, **kwargs_plot):
""" 2D or 3D scatter plot.
:param axes ax: matplotlib axes (use Axes3D if 3D data)
:param tuple topic_dims: list of (topic, dims) tuples, where topic is a string and dims is a list of dimensions to be plotted for that topic.
:param int t: time indexes to be plotted
:param dict kwargs_plot: argument to be passed to matplotlib's plot function, e.g. the style of the plotted points 'or'
:param bool ms_limits: if set to True, automatically set axes boundaries to the sensorimotor boundaries (default: True)
"""
plot_specs = {'marker': 'o', 'linestyle': 'None'}
plot_specs.update(kwargs_plot)
# t_bound = float('inf')
# if t is None:
# for topic, _ in topic_dims:
# t_bound = min(t_bound, self.counts[topic])
# t = range(t_bound)
# data = self.pack(topic_dims, t)
data = self.data_t(topic_dims, t)
ax.plot(*(data.T), **plot_specs)
if ms_limits:
ax.axis(self.axes_limits(topic_dims))
|
https://github.com/flowersteam/explauto/blob/cf0f81ecb9f6412f7276a95bd27359000e1e26b6/explauto/experiment/log.py#L67-L93
|
scatter plot
|
python
|
def scatter2d(data, **kwargs):
"""Create a 2D scatter plot
Builds upon `matplotlib.pyplot.scatter` with nice defaults
and handles categorical colors / legends better.
Parameters
----------
data : array-like, shape=[n_samples, n_features]
Input data. Only the first two components will be used.
c : list-like or None, optional (default: None)
Color vector. Can be a single color value (RGB, RGBA, or named
matplotlib colors), an array of these of length n_samples, or a list of
discrete or continuous values of any data type. If `c` is not a single
or list of matplotlib colors, the values in `c` will be used to
populate the legend / colorbar with colors from `cmap`
cmap : `matplotlib` colormap, str, dict or None, optional (default: None)
matplotlib colormap. If None, uses `tab20` for discrete data and
`inferno` for continuous data. If a dictionary, expects one key
for every unique value in `c`, where values are valid matplotlib colors
(hsv, rbg, rgba, or named colors)
s : float, optional (default: 1)
Point size.
discrete : bool or None, optional (default: None)
If True, the legend is categorical. If False, the legend is a colorbar.
If None, discreteness is detected automatically. Data containing
non-numeric `c` is always discrete, and numeric data with 20 or less
unique values is discrete.
ax : `matplotlib.Axes` or None, optional (default: None)
axis on which to plot. If None, an axis is created
legend : bool, optional (default: True)
States whether or not to create a legend. If data is continuous,
the legend is a colorbar.
figsize : tuple, optional (default: None)
Tuple of floats for creation of new `matplotlib` figure. Only used if
`ax` is None.
xticks : True, False, or list-like (default: False)
If True, keeps default x ticks. If False, removes x ticks.
If a list, sets custom x ticks
yticks : True, False, or list-like (default: False)
If True, keeps default y ticks. If False, removes y ticks.
If a list, sets custom y ticks
zticks : True, False, or list-like (default: False)
If True, keeps default z ticks. If False, removes z ticks.
If a list, sets custom z ticks. Only used for 3D plots.
xticklabels : True, False, or list-like (default: True)
If True, keeps default x tick labels. If False, removes x tick labels.
If a list, sets custom x tick labels
yticklabels : True, False, or list-like (default: True)
If True, keeps default y tick labels. If False, removes y tick labels.
If a list, sets custom y tick labels
zticklabels : True, False, or list-like (default: True)
If True, keeps default z tick labels. If False, removes z tick labels.
If a list, sets custom z tick labels. Only used for 3D plots.
label_prefix : str or None (default: "PHATE")
Prefix for all axis labels. Axes will be labelled `label_prefix`1,
`label_prefix`2, etc. Can be overriden by setting `xlabel`,
`ylabel`, and `zlabel`.
xlabel : str or None (default : None)
Label for the x axis. Overrides the automatic label given by
label_prefix. If None and label_prefix is None, no label is set.
ylabel : str or None (default : None)
Label for the y axis. Overrides the automatic label given by
label_prefix. If None and label_prefix is None, no label is set.
zlabel : str or None (default : None)
Label for the z axis. Overrides the automatic label given by
label_prefix. If None and label_prefix is None, no label is set.
Only used for 3D plots.
title : str or None (default: None)
axis title. If None, no title is set.
legend_title : str (default: "")
title for the colorbar of legend
legend_loc : int or string or pair of floats, default: 'best'
Matplotlib legend location. Only used for discrete data.
See <https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.html>
for details.
filename : str or None (default: None)
file to which the output is saved
dpi : int or None, optional (default: None)
The resolution in dots per inch. If None it will default to the value
savefig.dpi in the matplotlibrc file. If 'figure' it will set the dpi
to be the value of the figure. Only used if filename is not None.
**plot_kwargs : keyword arguments
Extra arguments passed to `matplotlib.pyplot.scatter`.
Returns
-------
ax : `matplotlib.Axes`
axis on which plot was drawn
Examples
--------
>>> import phate
>>> import matplotlib.pyplot as plt
>>> ###
>>> # Running PHATE
>>> ###
>>> tree_data, tree_clusters = phate.tree.gen_dla(n_dim=100, n_branch=20,
... branch_length=100)
>>> tree_data.shape
(2000, 100)
>>> phate_operator = phate.PHATE(k=5, a=20, t=150)
>>> tree_phate = phate_operator.fit_transform(tree_data)
>>> tree_phate.shape
(2000, 2)
>>> ###
>>> # Plotting using phate.plot
>>> ###
>>> phate.plot.scatter2d(tree_phate, c=tree_clusters)
>>> # You can also pass the PHATE operator instead of data
>>> phate.plot.scatter2d(phate_operator, c=tree_clusters)
>>> phate.plot.scatter3d(phate_operator, c=tree_clusters)
>>> ###
>>> # Using a cmap dictionary
>>> ###
>>> import numpy as np
>>> X = np.random.normal(0,1,[1000,2])
>>> c = np.random.choice(['a','b'], 1000, replace=True)
>>> X[c=='a'] += 10
>>> phate.plot.scatter2d(X, c=c, cmap={'a' : [1,0,0,1], 'b' : 'xkcd:sky blue'})
"""
warnings.warn("`phate.plot.scatter2d` is deprecated. "
"Use `scprep.plot.scatter2d` instead.",
FutureWarning)
data = _get_plot_data(data, ndim=2)
return scprep.plot.scatter2d(data, **kwargs)
|
https://github.com/KrishnaswamyLab/PHATE/blob/346a4597dcfc523f8bef99bce482e677282b6719/Python/phate/plot.py#L220-L345
|
scatter plot
|
python
|
def scatter(self, x, y, xerr=None, yerr=None, cov=None, corr=None, s_expr=None, c_expr=None, labels=None, selection=None, length_limit=50000,
length_check=True, label=None, xlabel=None, ylabel=None, errorbar_kwargs={}, ellipse_kwargs={}, **kwargs):
"""Viz (small amounts) of data in 2d using a scatter plot
Convenience wrapper around pylab.scatter when for working with small DataFrames or selections
:param x: Expression for x axis
:param y: Idem for y
:param s_expr: When given, use if for the s (size) argument of pylab.scatter
:param c_expr: When given, use if for the c (color) argument of pylab.scatter
:param labels: Annotate the points with these text values
:param selection: Single selection expression, or None
:param length_limit: maximum number of rows it will plot
:param length_check: should we do the maximum row check or not?
:param label: label for the legend
:param xlabel: label for x axis, if None .label(x) is used
:param ylabel: label for y axis, if None .label(y) is used
:param errorbar_kwargs: extra dict with arguments passed to plt.errorbar
:param kwargs: extra arguments passed to pylab.scatter
:return:
"""
import pylab as plt
x = _ensure_strings_from_expressions(x)
y = _ensure_strings_from_expressions(y)
label = str(label or selection)
selection = _ensure_strings_from_expressions(selection)
if length_check:
count = self.count(selection=selection)
if count > length_limit:
raise ValueError("the number of rows (%d) is above the limit (%d), pass length_check=False, or increase length_limit" % (count, length_limit))
x_values = self.evaluate(x, selection=selection)
y_values = self.evaluate(y, selection=selection)
if s_expr:
kwargs["s"] = self.evaluate(s_expr, selection=selection)
if c_expr:
kwargs["c"] = self.evaluate(c_expr, selection=selection)
plt.xlabel(xlabel or self.label(x))
plt.ylabel(ylabel or self.label(y))
s = plt.scatter(x_values, y_values, label=label, **kwargs)
if labels:
label_values = self.evaluate(labels, selection=selection)
for i, label_value in enumerate(label_values):
plt.annotate(label_value, (x_values[i], y_values[i]))
xerr_values = None
yerr_values = None
if cov is not None or corr is not None:
from matplotlib.patches import Ellipse
sx = self.evaluate(xerr, selection=selection)
sy = self.evaluate(yerr, selection=selection)
if corr is not None:
sxy = self.evaluate(corr, selection=selection) * sx * sy
elif cov is not None:
sxy = self.evaluate(cov, selection=selection)
cov_matrix = np.zeros((len(sx), 2, 2))
cov_matrix[:,0,0] = sx**2
cov_matrix[:,1,1] = sy**2
cov_matrix[:,0,1] = cov_matrix[:,1,0] = sxy
ax = plt.gca()
ellipse_kwargs = dict(ellipse_kwargs)
ellipse_kwargs['facecolor'] = ellipse_kwargs.get('facecolor', 'none')
ellipse_kwargs['edgecolor'] = ellipse_kwargs.get('edgecolor', 'black')
for i in range(len(sx)):
eigen_values, eigen_vectors = np.linalg.eig(cov_matrix[i])
indices = np.argsort(eigen_values)[::-1]
eigen_values = eigen_values[indices]
eigen_vectors = eigen_vectors[:,indices]
v1 = eigen_vectors[:, 0]
v2 = eigen_vectors[:, 1]
varx = cov_matrix[i, 0, 0]
vary = cov_matrix[i, 1, 1]
angle = np.arctan2(v1[1], v1[0])
# round off errors cause negative values?
if eigen_values[1] < 0 and abs((eigen_values[1]/eigen_values[0])) < 1e-10:
eigen_values[1] = 0
if eigen_values[0] < 0 or eigen_values[1] < 0:
raise ValueError('neg val')
width, height = np.sqrt(np.max(eigen_values)), np.sqrt(np.min(eigen_values))
e = Ellipse(xy=(x_values[i], y_values[i]), width=width, height=height, angle=np.degrees(angle), **ellipse_kwargs)
ax.add_artist(e)
else:
if xerr is not None:
if _issequence(xerr):
assert len(xerr) == 2, "if xerr is a sequence it should be of length 2"
xerr_values = [self.evaluate(xerr[0], selection=selection), self.evaluate(xerr[1], selection=selection)]
else:
xerr_values = self.evaluate(xerr, selection=selection)
if yerr is not None:
if _issequence(yerr):
assert len(yerr) == 2, "if yerr is a sequence it should be of length 2"
yerr_values = [self.evaluate(yerr[0], selection=selection), self.evaluate(yerr[1], selection=selection)]
else:
yerr_values = self.evaluate(yerr, selection=selection)
if xerr_values is not None or yerr_values is not None:
errorbar_kwargs = dict(errorbar_kwargs)
errorbar_kwargs['fmt'] = errorbar_kwargs.get('fmt', 'none')
plt.errorbar(x_values, y_values, yerr=yerr_values, xerr=xerr_values, **errorbar_kwargs)
return s
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-viz/vaex/viz/mpl.py#L188-L284
|
scatter plot
|
python
|
def plot_target(target, ax):
"""Ajoute la target au plot"""
ax.scatter(target[0], target[1], target[2], c="red", s=80)
|
https://github.com/Phylliade/ikpy/blob/60e36d6163136942bf520d952db17123c658d0b6/src/ikpy/plot_utils.py#L57-L59
|
scatter plot
|
python
|
def scatter2d(data_list,
channels=[0,1],
xscale='logicle',
yscale='logicle',
xlabel=None,
ylabel=None,
xlim=None,
ylim=None,
title=None,
color=None,
savefig=None,
**kwargs):
"""
Plot 2D scatter plot from one or more FCSData objects or numpy arrays.
Parameters
----------
data_list : array or FCSData or list of array or list of FCSData
Flow cytometry data to plot.
channels : list of int, list of str
Two channels to use for the plot.
savefig : str, optional
The name of the file to save the figure to. If None, do not save.
Other parameters
----------------
xscale : str, optional
Scale of the x axis, either ``linear``, ``log``, or ``logicle``.
yscale : str, optional
Scale of the y axis, either ``linear``, ``log``, or ``logicle``.
xlabel : str, optional
Label to use on the x axis. If None, attempts to extract channel
name from last data object.
ylabel : str, optional
Label to use on the y axis. If None, attempts to extract channel
name from last data object.
xlim : tuple, optional
Limits for the x axis. If None, attempts to extract limits from the
range of the last data object.
ylim : tuple, optional
Limits for the y axis. If None, attempts to extract limits from the
range of the last data object.
title : str, optional
Plot title.
color : matplotlib color or list of matplotlib colors, optional
Color for the scatter plot. It can be a list with the same length
as `data_list`. If `color` is not specified, elements from
`data_list` are plotted with colors taken from the module-level
variable `cmap_default`.
kwargs : dict, optional
Additional parameters passed directly to matploblib's ``scatter``.
Notes
-----
`scatter2d` calls matplotlib's ``scatter`` function for each object in
data_list. Additional keyword arguments provided to `scatter2d` are
passed directly to ``plt.scatter``.
"""
# Check appropriate number of channels
if len(channels) != 2:
raise ValueError('two channels need to be specified')
# Convert to list if necessary
if not isinstance(data_list, list):
data_list = [data_list]
# Default colors
if color is None:
color = [cmap_default(i) for i in np.linspace(0, 1, len(data_list))]
# Convert color to list, if necessary
if not isinstance(color, list):
color = [color]*len(data_list)
# Iterate through data_list
for i, data in enumerate(data_list):
# Get channels to plot
data_plot = data[:, channels]
# Make scatter plot
plt.scatter(data_plot[:,0],
data_plot[:,1],
s=5,
alpha=0.25,
color=color[i],
**kwargs)
# Set labels if specified, else try to extract channel names
if xlabel is not None:
plt.xlabel(xlabel)
elif hasattr(data_plot, 'channels'):
plt.xlabel(data_plot.channels[0])
if ylabel is not None:
plt.ylabel(ylabel)
elif hasattr(data_plot, 'channels'):
plt.ylabel(data_plot.channels[1])
# Set scale of axes
if xscale=='logicle':
plt.gca().set_xscale(xscale, data=data_list, channel=channels[0])
else:
plt.gca().set_xscale(xscale)
if yscale=='logicle':
plt.gca().set_yscale(yscale, data=data_list, channel=channels[1])
else:
plt.gca().set_yscale(yscale)
# Set plot limits if specified, else extract range from data_list.
# ``.hist_bins`` with one bin works better for visualization that
# ``.range``, because it deals with two issues. First, it automatically
# deals with range values that are outside the domain of the current scaling
# (e.g. when the lower range value is zero and the scaling is logarithmic).
# Second, it takes into account events that are outside the limits specified
# by .range (e.g. negative events will be shown with logicle scaling, even
# when the lower range is zero).
if xlim is None:
xlim = [np.inf, -np.inf]
for data in data_list:
if hasattr(data, 'hist_bins') and \
hasattr(data.hist_bins, '__call__'):
xlim_data = data.hist_bins(channels=channels[0],
nbins=1,
scale=xscale)
xlim[0] = xlim_data[0] if xlim_data[0] < xlim[0] else xlim[0]
xlim[1] = xlim_data[1] if xlim_data[1] > xlim[1] else xlim[1]
plt.xlim(xlim)
if ylim is None:
ylim = [np.inf, -np.inf]
for data in data_list:
if hasattr(data, 'hist_bins') and \
hasattr(data.hist_bins, '__call__'):
ylim_data = data.hist_bins(channels=channels[1],
nbins=1,
scale=yscale)
ylim[0] = ylim_data[0] if ylim_data[0] < ylim[0] else ylim[0]
ylim[1] = ylim_data[1] if ylim_data[1] > ylim[1] else ylim[1]
plt.ylim(ylim)
# Title
if title is not None:
plt.title(title)
# Save if necessary
if savefig is not None:
plt.tight_layout()
plt.savefig(savefig, dpi=savefig_dpi)
plt.close()
|
https://github.com/taborlab/FlowCal/blob/031a7af82acb1d46879a8e384a1a00f27f0bdc7a/FlowCal/plot.py#L1259-L1405
|
scatter plot
|
python
|
def plotMatches2(listofNValues, errors,
listOfScales, scaleErrors,
fileName = "images/scalar_matches.pdf"):
"""
Plot two figures side by side in an aspect ratio appropriate for the paper.
"""
w, h = figaspect(0.4)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(w,h))
plotMatches(listofNValues, errors, fileName=None, fig=fig, ax=ax1)
plotScaledMatches(listOfScales, scaleErrors, fileName=None, fig=fig, ax=ax2)
plt.savefig(fileName)
plt.close()
|
https://github.com/numenta/htmresearch/blob/70c096b09a577ea0432c3f3bfff4442d4871b7aa/projects/sdr_paper/scalar_sdrs.py#L570-L583
|
scatter plot
|
python
|
def scatter(self, canvas, X, Y, Z=None, color=None, vmin=None, vmax=None, label=None, **kwargs):
"""
Make a scatter plot between X and Y on the canvas given.
the kwargs are plotting library specific kwargs!
:param canvas: the plotting librarys specific canvas to plot on.
:param array-like X: the inputs to plot.
:param array-like Y: the outputs to plot.
:param array-like Z: the Z level to plot (if plotting 3d).
:param array-like c: the colorlevel for each point.
:param float vmin: minimum colorscale
:param float vmax: maximum colorscale
:param kwargs: the specific kwargs for your plotting library
"""
raise NotImplementedError("Implement all plot functions in AbstractPlottingLibrary in order to use your own plotting library")
|
https://github.com/SheffieldML/GPy/blob/54c32d79d289d622fb18b898aee65a2a431d90cf/GPy/plotting/abstract_plotting_library.py#L148-L163
|
scatter plot
|
python
|
def plot(self, key, funcname):
"""Plot item"""
data = self.model.get_data()
import spyder.pyplot as plt
plt.figure()
getattr(plt, funcname)(data[key])
plt.show()
|
https://github.com/spyder-ide/spyder/blob/f76836ce1b924bcc4efd3f74f2960d26a4e528e0/spyder/plugins/variableexplorer/widgets/collectionseditor.py#L1348-L1354
|
scatter plot
|
python
|
def plot_raster(self,cell_dimension='N',time_dimension=0,
resolution=1.0,units=None,min_t=None,max_t=None,
weight_function=None,normalize_time=True,normalize_n=True,
start_units_with_0=True,**kwargs):
"""Plots a raster plot with `cell_dimension` as y and `time_dimension` as x (default: 'N' and 0).
Accepts the same keyword arguments as matplotlib.pylab.plot() for points, eg. `marker`,
`markerfacecolor`, `markersize` (or `ms`), `markeredgecolor`.
See help for :func:`matplotlib.pylab.plot()`.
Examples
--------
>>> import numpy as np
>>> from litus import spikes
>>> spiking_data = np.random.rand(2000,20,20) < 0.01
>>> s = spikes.SpikeContainer(np.transpose(np.where(spiking_data)),labels='txy')
>>> s['N'] = s['x']+20*s['y']
>>> s.plot_raster('N','t')
>>> s(t__gt=1000,t__lt=1500,x__lt=2).plot_raster(ms=10,marker='$\\alpha$') # default: 'N'
>>> s(t__gt=1000,t__lt=1500,y__lt=2).plot_raster(ms=10,marker='$\\beta$') # default: 'N'
>>> s(n=350).plot_raster('n','t_rescaled',ms=10,marker='$\\gamma$')
"""
if bool(self):
import matplotlib.pylab as plt
plt.plot(self[time_dimension],self[cell_dimension],'.',**kwargs)
plt.xlim(min_t, max_t)
|
https://github.com/jahuth/litus/blob/712b016ea2dbb1cf0a30bfdbb0a136945a7b7c5e/spikes.py#L1246-L1274
|
scatter plot
|
python
|
def plot(self,
legend=None,
tracks=None,
track_titles=None,
alias=None,
basis=None,
return_fig=False,
extents='td',
**kwargs):
"""
Plot multiple tracks.
Args:
legend (striplog.legend): A legend instance.
tracks (list): A list of strings and/or lists of strings. The
tracks you want to plot from ``data``. Optional, but you will
usually want to give it.
track_titles (list): Optional. A list of strings and/or lists of
strings. The names to give the tracks, if you don't want welly
to guess.
alias (dict): a dictionary mapping mnemonics to lists of mnemonics.
basis (ndarray): Optional. The basis of the plot, if you don't
want welly to guess (probably the best idea).
return_fig (bool): Whether to return the matplotlig figure. Default
False.
extents (str): What to use for the y limits:
'td' — plot 0 to TD.
'curves' — use a basis that accommodates all the curves.
'all' — use a basis that accommodates everything.
(tuple) — give the upper and lower explictly.
Returns:
None. The plot is a side-effect.
"""
# These will be treated differently.
depth_tracks = ['MD', 'TVD']
# Set tracks to 'all' if it's None.
tracks = tracks or list(self.data.keys())
track_titles = track_titles or tracks
# Figure out limits
if basis is None:
basis = self.survey_basis(keys=tracks)
if extents == 'curves':
upper, lower = basis[0], basis[-1]
elif extents == 'td':
try:
upper, lower = 0, self.location.td
except:
m = "Could not read self.location.td, try extents='curves'"
raise WellError(m)
if not lower:
lower = basis[-1]
elif extents == 'all':
raise NotImplementedError("You cannot do that yet.")
else:
try:
upper, lower = extents
except:
upper, lower = basis[0], basis[-1]
# Figure out widths because we can't us gs.update() for that.
widths = [0.4 if t in depth_tracks else 1.0 for t in tracks]
# Set up the figure.
ntracks = len(tracks)
fig = plt.figure(figsize=(2*ntracks, 12), facecolor='w')
fig.suptitle(self.header.name, size=16, zorder=100,
bbox=dict(facecolor='w', alpha=1.0, ec='none'))
gs = mpl.gridspec.GridSpec(1, ntracks, width_ratios=widths)
# Plot first axis.
# kwargs = {}
ax0 = fig.add_subplot(gs[0, 0])
ax0.depth_track = False
track = tracks[0]
if '.' in track:
track, kwargs['field'] = track.split('.')
if track in depth_tracks:
ax0 = self._plot_depth_track(ax=ax0, md=basis, kind=track)
else:
try: # ...treating as a plottable object.
ax0 = self.get_curve(track, alias=alias).plot(ax=ax0, legend=legend, **kwargs)
except AttributeError: # ...it's not there.
pass
except TypeError: # ...it's a list.
for t in track:
try:
ax0 = self.get_curve(t, alias=alias).plot(ax=ax0, legend=legend, **kwargs)
except AttributeError: # ...it's not there.
pass
tx = ax0.get_xticks()
ax0.set_xticks(tx[1:-1])
ax0.set_title(track_titles[0])
# Plot remaining axes.
for i, track in enumerate(tracks[1:]):
# kwargs = {}
ax = fig.add_subplot(gs[0, i+1])
ax.depth_track = False
if track in depth_tracks:
ax = self._plot_depth_track(ax=ax, md=basis, kind=track)
continue
if '.' in track:
track, kwargs['field'] = track.split('.')
plt.setp(ax.get_yticklabels(), visible=False)
try: # ...treating as a plottable object.
ax = self.get_curve(track, alias=alias).plot(ax=ax, legend=legend, **kwargs)
except AttributeError: # ...it's not there.
continue
except TypeError: # ...it's a list.
for j, t in enumerate(track):
if '.' in t:
track, kwargs['field'] = track.split('.')
try:
ax = self.get_curve(t, alias=alias).plot(ax=ax, legend=legend, **kwargs)
except AttributeError:
continue
except KeyError:
continue
tx = ax.get_xticks()
ax.set_xticks(tx[1:-1])
ax.set_title(track_titles[i+1])
# Set sharing.
axes = fig.get_axes()
utils.sharey(axes)
axes[0].set_ylim([lower, upper])
# Adjust the grid.
gs.update(wspace=0)
# Adjust spines and ticks for non-depth tracks.
for ax in axes:
if ax.depth_track:
pass
if not ax.depth_track:
ax.set(yticks=[])
ax.autoscale(False)
ax.yaxis.set_ticks_position('none')
ax.spines['top'].set_visible(True)
ax.spines['bottom'].set_visible(True)
for sp in ax.spines.values():
sp.set_color('gray')
if return_fig:
return fig
else:
return None
|
https://github.com/agile-geoscience/welly/blob/ed4c991011d6290938fef365553041026ba29f42/welly/well.py#L525-L676
|
scatter plot
|
python
|
def plot(self, *args, **kwargs):
"""Plot lines and/or markers.
If a 2D or higher Data object is passed, a lower dimensional
channel can be plotted, provided the ``squeeze`` of the channel
has ``ndim==1`` and the first axis does not span dimensions
other than that spanned by the channel.
Parameters
----------
data : 1D WrightTools.data.Data object
Data to plot.
channel : int or string (optional)
Channel index or name. Default is 0.
dynamic_range : boolean (optional)
Force plotting of all contours, overloading for major extent. Only applies to signed
data. Default is False.
autolabel : {'none', 'both', 'x', 'y'} (optional)
Parameterize application of labels directly from data object. Default is none.
xlabel : string (optional)
xlabel. Default is None.
ylabel : string (optional)
ylabel. Default is None.
**kwargs
matplotlib.axes.Axes.plot__ optional keyword arguments.
__ https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.plot.html
Returns
-------
list
list of matplotlib.lines.line2D objects
"""
args = list(args) # offer pop, append etc
# unpack data object, if given
if isinstance(args[0], Data):
data = args.pop(0)
channel = kwargs.pop("channel", 0)
channel_index = wt_kit.get_index(data.channel_names, channel)
squeeze = np.array(data.channels[channel_index].shape) == 1
xa = data.axes[0]
for sq, xs in zip(squeeze, xa.shape):
if sq and xs != 1:
raise wt_exceptions.ValueError("Cannot squeeze axis to fit channel")
squeeze = tuple([0 if i else slice(None) for i in squeeze])
zi = data.channels[channel_index].points
xi = xa[squeeze]
if not zi.ndim == 1:
raise wt_exceptions.DimensionalityError(1, data.ndim)
args = [xi, zi] + args
else:
data = None
channel_index = 0
# labels
self._apply_labels(
autolabel=kwargs.pop("autolabel", False),
xlabel=kwargs.pop("xlabel", None),
ylabel=kwargs.pop("ylabel", None),
data=data,
channel_index=channel_index,
)
# call parent
return super().plot(*args, **kwargs)
|
https://github.com/wright-group/WrightTools/blob/80d3ddd5074d8d5c1bc03fd5a0e0f10d4b424aeb/WrightTools/artists/_base.py#L424-L486
|
scatter plot
|
python
|
def draw(self, X, y, **kwargs):
"""Called from the fit method, this method creates a scatter plot that
draws each instance as a class or target colored point, whose location
is determined by the feature data set.
If y is not None, then it draws a scatter plot where each class is in a
different color.
"""
nan_locs = self.get_nan_locs()
if y is None:
x_, y_ = list(zip(*nan_locs))
self.ax.scatter(x_, y_, alpha=self.alpha, marker=self.marker, label=None)
else:
self.draw_multi_dispersion_chart(nan_locs)
|
https://github.com/DistrictDataLabs/yellowbrick/blob/59b67236a3862c73363e8edad7cd86da5b69e3b2/yellowbrick/contrib/missing/dispersion.py#L117-L130
|
scatter plot
|
python
|
def plot(self,axis=None,**kargs):
"""
- plot(axis=None, **kwarg): Finally, sphviewer.Scene class has its own plotting method.
It shows the scene as seen by the camera. It is to say, it plots the particles according
to their aparent coordinates; axis makes a reference to an existing axis. In case axis is None,
the plot is made on the current axis.
The kwargs are :class:`~matplotlib.lines.Line2D` properties:
agg_filter: unknown
alpha: float (0.0 transparent through 1.0 opaque)
animated: [True | False]
antialiased or aa: [True | False]
axes: an :class:`~matplotlib.axes.Axes` instance
clip_box: a :class:`matplotlib.transforms.Bbox` instance
clip_on: [True | False]
clip_path: [ (:class:`~matplotlib.path.Path`, :class:`~matplotlib.transforms.Transform`) | :class:`~matplotlib.patches.Patch` | None ]
color or c: any matplotlib color
contains: a callable function
dash_capstyle: ['butt' | 'round' | 'projecting']
dash_joinstyle: ['miter' | 'round' | 'bevel']
dashes: sequence of on/off ink in points
data: 2D array (rows are x, y) or two 1D arrays
drawstyle: [ 'default' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' ]
figure: a :class:`matplotlib.figure.Figure` instance
fillstyle: ['full' | 'left' | 'right' | 'bottom' | 'top']
gid: an id string
label: any string
linestyle or ls: [ ``'-'`` | ``'--'`` | ``'-.'`` | ``':'`` | ``'None'`` | ``' '`` | ``''`` ] and any drawstyle in combination with a linestyle, e.g. ``'steps--'``.
linewidth or lw: float value in points
lod: [True | False]
marker: [ ``7`` | ``4`` | ``5`` | ``6`` | ``'o'`` | ``'D'`` | ``'h'`` | ``'H'`` | ``'_'`` | ``''`` | ``'None'`` | ``' '`` | ``None`` | ``'8'`` | ``'p'`` | ``','`` | ``'+'`` | ``'.'`` | ``'s'`` | ``'*'`` | ``'d'`` | ``3`` | ``0`` | ``1`` | ``2`` | ``'1'`` | ``'3'`` | ``'4'`` | ``'2'`` | ``'v'`` | ``'<'`` | ``'>'`` | ``'^'`` | ``'|'`` | ``'x'`` | ``'$...$'`` | *tuple* | *Nx2 array* ]
markeredgecolor or mec: any matplotlib color
markeredgewidth or mew: float value in points
markerfacecolor or mfc: any matplotlib color
markerfacecoloralt or mfcalt: any matplotlib color
markersize or ms: float
markevery: None | integer | (startind, stride)
picker: float distance in points or callable pick function ``fn(artist, event)``
pickradius: float distance in points
rasterized: [True | False | None]
snap: unknown
solid_capstyle: ['butt' | 'round' | 'projecting']
solid_joinstyle: ['miter' | 'round' | 'bevel']
transform: a :class:`matplotlib.transforms.Transform` instance
url: a url string
visible: [True | False]
xdata: 1D array
ydata: 1D array
zorder: any number
kwargs *scalex* and *scaley*, if defined, are passed on to
:meth:`~matplotlib.axes.Axes.autoscale_view` to determine
whether the *x* and *y* axes are autoscaled; the default is
*True*.
Additional kwargs: hold = [True|False] overrides default hold state
"""
if(axis == None):
axis = plt.gca()
axis.plot(self.__x, self.__y, 'k.', **kargs)
|
https://github.com/alejandrobll/py-sphviewer/blob/f198bd9ed5adfb58ebdf66d169206e609fd46e42/sphviewer/Scene.py#L299-L359
|
scatter plot
|
python
|
def scatter(self, x, y, s=None, c=None, **kwds):
"""
Create a scatter plot with varying marker point size and color.
The coordinates of each point are defined by two dataframe columns and
filled circles are used to represent each point. This kind of plot is
useful to see complex correlations between two variables. Points could
be for instance natural 2D coordinates like longitude and latitude in
a map or, in general, any pair of metrics that can be plotted against
each other.
Parameters
----------
x : int or str
The column name or column position to be used as horizontal
coordinates for each point.
y : int or str
The column name or column position to be used as vertical
coordinates for each point.
s : scalar or array_like, optional
The size of each point. Possible values are:
- A single scalar so all points have the same size.
- A sequence of scalars, which will be used for each point's size
recursively. For instance, when passing [2,14] all points size
will be either 2 or 14, alternatively.
c : str, int or array_like, optional
The color of each point. Possible values are:
- A single color string referred to by name, RGB or RGBA code,
for instance 'red' or '#a98d19'.
- A sequence of color strings referred to by name, RGB or RGBA
code, which will be used for each point's color recursively. For
instance ['green','yellow'] all points will be filled in green or
yellow, alternatively.
- A column name or position whose values will be used to color the
marker points according to a colormap.
**kwds
Keyword arguments to pass on to :meth:`DataFrame.plot`.
Returns
-------
:class:`matplotlib.axes.Axes` or numpy.ndarray of them
See Also
--------
matplotlib.pyplot.scatter : Scatter plot using multiple input data
formats.
Examples
--------
Let's see how to draw a scatter plot using coordinates from the values
in a DataFrame's columns.
.. plot::
:context: close-figs
>>> df = pd.DataFrame([[5.1, 3.5, 0], [4.9, 3.0, 0], [7.0, 3.2, 1],
... [6.4, 3.2, 1], [5.9, 3.0, 2]],
... columns=['length', 'width', 'species'])
>>> ax1 = df.plot.scatter(x='length',
... y='width',
... c='DarkBlue')
And now with the color determined by a column as well.
.. plot::
:context: close-figs
>>> ax2 = df.plot.scatter(x='length',
... y='width',
... c='species',
... colormap='viridis')
"""
return self(kind='scatter', x=x, y=y, c=c, s=s, **kwds)
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/plotting/_core.py#L3463-L3542
|
scatter plot
|
python
|
def scatter(x, y, xlabel=LABEL_DEFAULT, ylabel=LABEL_DEFAULT, title=LABEL_DEFAULT):
"""
Plots the data in `x` on the X axis and the data in `y` on the Y axis
in a 2d scatter plot, and returns the resulting Plot object.
The function supports SArrays of dtypes: int, float.
Parameters
----------
x : SArray
The data to plot on the X axis of the scatter plot.
Must be numeric (int/float).
y : SArray
The data to plot on the Y axis of the scatter plot. Must be the same
length as `x`.
Must be numeric (int/float).
xlabel : str (optional)
The text label for the X axis. Defaults to "X".
ylabel : str (optional)
The text label for the Y axis. Defaults to "Y".
title : str (optional)
The title of the plot. Defaults to LABEL_DEFAULT. If the value is
LABEL_DEFAULT, the title will be "<xlabel> vs. <ylabel>". If the value
is None, the title will be omitted. Otherwise, the string passed in as the
title will be used as the plot title.
Returns
-------
out : Plot
A :class: Plot object that is the scatter plot.
Examples
--------
Make a scatter plot.
>>> x = turicreate.SArray([1,2,3,4,5])
>>> y = x * 2
>>> scplt = turicreate.visualization.scatter(x, y)
"""
if (not isinstance(x, tc.data_structures.sarray.SArray) or
not isinstance(y, tc.data_structures.sarray.SArray) or
x.dtype not in [int, float] or y.dtype not in [int, float]):
raise ValueError("turicreate.visualization.scatter supports " +
"SArrays of dtypes: int, float")
# legit input
title = _get_title(title)
plt_ref = tc.extensions.plot_scatter(x, y,
xlabel, ylabel,title)
return Plot(plt_ref)
|
https://github.com/apple/turicreate/blob/74514c3f99e25b46f22c6e02977fe3da69221c2e/src/unity/python/turicreate/visualization/show.py#L145-L193
|
scatter plot
|
python
|
def plot_4(data, *args):
"""Scatter plot of score vs each param
"""
params = nonconstant_parameters(data)
scores = np.array([d['mean_test_score'] for d in data])
order = np.argsort(scores)
for key in params.keys():
if params[key].dtype == np.dtype('bool'):
params[key] = params[key].astype(np.int)
p_list = []
for key in params.keys():
x = params[key][order]
y = scores[order]
params = params.loc[order]
try:
radius = (np.max(x) - np.min(x)) / 100.0
except:
print("error making plot4 for '%s'" % key)
continue
p_list.append(build_scatter_tooltip(
x=x, y=y, radius=radius, add_line=False, tt=params,
xlabel=key, title='Score vs %s' % key))
return p_list
|
https://github.com/msmbuilder/osprey/blob/ea09da24e45820e1300e24a52fefa6c849f7a986/osprey/plot.py#L125-L149
|
scatter plot
|
python
|
def plot(self):
"""
Plot
"""
self.before_plot()
self.do_plot_and_bestfit()
self.after_plot()
self.do_label()
self.after_label()
self.save()
self.close()
return self.outputdict
|
https://github.com/calvinku96/labreporthelper/blob/4d436241f389c02eb188c313190df62ab28c3763/labreporthelper/plot.py#L208-L219
|
scatter plot
|
python
|
def offline_plotly_scatter3d(df, x=0, y=1, z=-1):
""" Plot an offline scatter plot colored according to the categories in the 'name' column.
>> df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/iris.csv')
>> offline_plotly(df)
"""
data = []
# clusters = []
colors = ['rgb(228,26,28)', 'rgb(55,126,184)', 'rgb(77,175,74)']
# df.columns = clean_columns(df.columns)
x = get_array(df, x, default=0)
y = get_array(df, y, default=1)
z = get_array(df, z, default=-1)
for i in range(len(df['name'].unique())):
name = df['Name'].unique()[i]
color = colors[i]
x = x[pd.np.array(df['name'] == name)]
y = y[pd.np.array(df['name'] == name)]
z = z[pd.np.array(df['name'] == name)]
trace = dict(
name=name,
x=x, y=y, z=z,
type="scatter3d",
mode='markers',
marker=dict(size=3, color=color, line=dict(width=0)))
data.append(trace)
layout = dict(
width=800,
height=550,
autosize=False,
title='Iris dataset',
scene=dict(
xaxis=dict(
gridcolor='rgb(255, 255, 255)',
zerolinecolor='rgb(255, 255, 255)',
showbackground=True,
backgroundcolor='rgb(230, 230,230)'
),
yaxis=dict(
gridcolor='rgb(255, 255, 255)',
zerolinecolor='rgb(255, 255, 255)',
showbackground=True,
backgroundcolor='rgb(230, 230,230)'
),
zaxis=dict(
gridcolor='rgb(255, 255, 255)',
zerolinecolor='rgb(255, 255, 255)',
showbackground=True,
backgroundcolor='rgb(230, 230,230)'
),
aspectratio=dict(x=1, y=1, z=0.7),
aspectmode='manual'
),
)
fig = dict(data=data, layout=layout)
# IPython notebook
# plotly.iplot(fig, filename='pandas-3d-iris', validate=False)
url = plotly.offline.plot(fig, filename='pandas-3d-iris', validate=False)
return url
|
https://github.com/totalgood/nlpia/blob/efa01126275e9cd3c3a5151a644f1c798a9ec53f/src/nlpia/plots.py#L107-L172
|
scatter plot
|
python
|
def plot(self,
show_test_labels=True,
use_edge_lengths=True,
collapse_outgroup=False,
pct_tree_x=0.5,
pct_tree_y=0.2,
subset_tests=None,
#toytree_kwargs=None,
*args,
**kwargs):
"""
Draw a multi-panel figure with tree, tests, and results
Parameters:
-----------
height: int
...
width: int
...
show_test_labels: bool
...
use_edge_lengths: bool
...
collapse_outgroups: bool
...
pct_tree_x: float
...
pct_tree_y: float
...
subset_tests: list
...
...
"""
## check for attributes
if not self.newick:
raise IPyradError("baba plot requires a newick treefile")
if not self.tests:
raise IPyradError("baba plot must have a .tests attribute")
## ensure tests is a list
if isinstance(self.tests, dict):
self.tests = [self.tests]
## re-decompose the tree
ttree = toytree.tree(
self.newick,
orient='down',
use_edge_lengths=use_edge_lengths,
)
## subset test to show fewer
if subset_tests != None:
#tests = self.tests[subset_tests]
tests = [self.tests[i] for i in subset_tests]
boots = self.results_boots[subset_tests]
else:
tests = self.tests
boots = self.results_boots
## make the plot
canvas, axes, panel = baba_panel_plot(
ttree=ttree,
tests=tests,
boots=boots,
show_test_labels=show_test_labels,
use_edge_lengths=use_edge_lengths,
collapse_outgroup=collapse_outgroup,
pct_tree_x=pct_tree_x,
pct_tree_y=pct_tree_y,
*args,
**kwargs)
return canvas, axes, panel
|
https://github.com/dereneaton/ipyrad/blob/5eeb8a178160f45faf71bf47cec4abe998a575d1/ipyrad/analysis/baba.py#L200-L282
|
scatter plot
|
python
|
def plot(self, key=None,
cmap=None, ms=4, vmin=None, vmax=None,
vmin_map=None, vmax_map=None, cmap_map=None, normt_map=False,
ntMax=None, nchMax=None, nlbdMax=3,
lls=None, lct=None, lcch=None, lclbd=None, cbck=None,
inct=[1,10], incX=[1,5], inclbd=[1,10],
fmt_t='06.3f', fmt_X='01.0f',
invert=True, Lplot='In', dmarker=None,
Bck=True, fs=None, dmargin=None, wintit=None, tit=None,
fontsize=None, labelpad=None, draw=True, connect=True):
""" Plot the data content in a generic interactive figure """
kh = _plot.Data_plot(self, key=key, indref=0,
cmap=cmap, ms=ms, vmin=vmin, vmax=vmax,
vmin_map=vmin_map, vmax_map=vmax_map,
cmap_map=cmap_map, normt_map=normt_map,
ntMax=ntMax, nchMax=nchMax, nlbdMax=nlbdMax,
lls=lls, lct=lct, lcch=lcch, lclbd=lclbd, cbck=cbck,
inct=inct, incX=incX, inclbd=inclbd,
fmt_t=fmt_t, fmt_X=fmt_X, Lplot=Lplot,
invert=invert, dmarker=dmarker, Bck=Bck,
fs=fs, dmargin=dmargin, wintit=wintit, tit=tit,
fontsize=fontsize, labelpad=labelpad,
draw=draw, connect=connect)
return kh
|
https://github.com/ToFuProject/tofu/blob/39d6b2e7ced9e13666572dfd37e19403f1d6ff8d/tofu/data/_core.py#L1582-L1605
|
scatter plot
|
python
|
def scatter(self, *args, **kwargs):
"""Adds a :py:class:`.ScatterSeries` to the chart.
:param \*data: The data for the series as either (x,y) values or two big\
tuples/lists of x and y values respectively.
:param str name: The name to be associated with the series.
:param str color: The hex colour of the line.
:param Number size: The size of each data point - generally the diameter.
:param Number linewidth: The width in pixels of the data points' edge.
:raises ValueError: if the size and length of the data doesn't match\
either format."""
if "color" not in kwargs:
kwargs["color"] = self.next_color()
series = ScatterSeries(*args, **kwargs)
self.add_series(series)
|
https://github.com/samirelanduk/quickplots/blob/59f5e6ff367b2c1c24ba7cf1805d03552034c6d8/quickplots/charts.py#L217-L232
|
scatter plot
|
python
|
def plot_1(data, *args):
"""Plot 1. All iterations (scatter plot)"""
df_all = pd.DataFrame(data)
df_params = nonconstant_parameters(data)
return build_scatter_tooltip(
x=df_all['id'], y=df_all['mean_test_score'], tt=df_params,
title='All Iterations')
|
https://github.com/msmbuilder/osprey/blob/ea09da24e45820e1300e24a52fefa6c849f7a986/osprey/plot.py#L57-L63
|
scatter plot
|
python
|
def scatter(x, y, names, path, plots, color="#4CB391", figformat="png",
stat=None, log=False, minvalx=0, minvaly=0, title=None, plot_settings=None):
"""Create bivariate plots.
Create four types of bivariate plots of x vs y, containing marginal summaries
-A scatter plot with histograms on axes
-A hexagonal binned plot with histograms on axes
-A kernel density plot with density curves on axes
-A pauvre-style plot using code from https://github.com/conchoecia/pauvre
"""
logging.info("Nanoplotter: Creating {} vs {} plots using statistics from {} reads.".format(
names[0], names[1], x.size))
if not contains_variance([x, y], names):
return []
sns.set(style="ticks", **plot_settings)
maxvalx = np.amax(x)
maxvaly = np.amax(y)
plots_made = []
if plots["hex"]:
hex_plot = Plot(
path=path + "_hex." + figformat,
title="{} vs {} plot using hexagonal bins".format(names[0], names[1]))
plot = sns.jointplot(
x=x,
y=y,
kind="hex",
color=color,
stat_func=stat,
space=0,
xlim=(minvalx, maxvalx),
ylim=(minvaly, maxvaly),
height=10)
plot.set_axis_labels(names[0], names[1])
if log:
hex_plot.title = hex_plot.title + " after log transformation of read lengths"
ticks = [10**i for i in range(10) if not 10**i > 10 * (10**maxvalx)]
plot.ax_joint.set_xticks(np.log10(ticks))
plot.ax_marg_x.set_xticks(np.log10(ticks))
plot.ax_joint.set_xticklabels(ticks)
plt.subplots_adjust(top=0.90)
plot.fig.suptitle(title or "{} vs {} plot".format(names[0], names[1]), fontsize=25)
hex_plot.fig = plot
hex_plot.save(format=figformat)
plots_made.append(hex_plot)
sns.set(style="darkgrid", **plot_settings)
if plots["dot"]:
dot_plot = Plot(
path=path + "_dot." + figformat,
title="{} vs {} plot using dots".format(names[0], names[1]))
plot = sns.jointplot(
x=x,
y=y,
kind="scatter",
color=color,
stat_func=stat,
xlim=(minvalx, maxvalx),
ylim=(minvaly, maxvaly),
space=0,
height=10,
joint_kws={"s": 1})
plot.set_axis_labels(names[0], names[1])
if log:
dot_plot.title = dot_plot.title + " after log transformation of read lengths"
ticks = [10**i for i in range(10) if not 10**i > 10 * (10**maxvalx)]
plot.ax_joint.set_xticks(np.log10(ticks))
plot.ax_marg_x.set_xticks(np.log10(ticks))
plot.ax_joint.set_xticklabels(ticks)
plt.subplots_adjust(top=0.90)
plot.fig.suptitle(title or "{} vs {} plot".format(names[0], names[1]), fontsize=25)
dot_plot.fig = plot
dot_plot.save(format=figformat)
plots_made.append(dot_plot)
if plots["kde"]:
idx = np.random.choice(x.index, min(2000, len(x)), replace=False)
kde_plot = Plot(
path=path + "_kde." + figformat,
title="{} vs {} plot using a kernel density estimation".format(names[0], names[1]))
plot = sns.jointplot(
x=x[idx],
y=y[idx],
kind="kde",
clip=((0, np.Inf), (0, np.Inf)),
xlim=(minvalx, maxvalx),
ylim=(minvaly, maxvaly),
space=0,
color=color,
stat_func=stat,
shade_lowest=False,
height=10)
plot.set_axis_labels(names[0], names[1])
if log:
kde_plot.title = kde_plot.title + " after log transformation of read lengths"
ticks = [10**i for i in range(10) if not 10**i > 10 * (10**maxvalx)]
plot.ax_joint.set_xticks(np.log10(ticks))
plot.ax_marg_x.set_xticks(np.log10(ticks))
plot.ax_joint.set_xticklabels(ticks)
plt.subplots_adjust(top=0.90)
plot.fig.suptitle(title or "{} vs {} plot".format(names[0], names[1]), fontsize=25)
kde_plot.fig = plot
kde_plot.save(format=figformat)
plots_made.append(kde_plot)
if plots["pauvre"] and names == ['Read lengths', 'Average read quality'] and log is False:
pauvre_plot = Plot(
path=path + "_pauvre." + figformat,
title="{} vs {} plot using pauvre-style @conchoecia".format(names[0], names[1]))
sns.set(style="white", **plot_settings)
margin_plot(df=pd.DataFrame({"length": x, "meanQual": y}),
Y_AXES=False,
title=title or "Length vs Quality in Pauvre-style",
plot_maxlen=None,
plot_minlen=0,
plot_maxqual=None,
plot_minqual=0,
lengthbin=None,
qualbin=None,
BASENAME="whatever",
path=pauvre_plot.path,
fileform=[figformat],
dpi=600,
TRANSPARENT=True,
QUIET=True)
plots_made.append(pauvre_plot)
plt.close("all")
return plots_made
|
https://github.com/wdecoster/nanoplotter/blob/80908dd1be585f450da5a66989de9de4d544ec85/nanoplotter/nanoplotter_main.py#L78-L206
|
scatter plot
|
python
|
def plot(self, size=1):
"""
Plot the values in the color palette as a horizontal array.
See Seaborn's palplot function for inspiration.
Parameters
----------
size : int
scaling factor for size of the plot
"""
n = len(self)
fig, ax = plt.subplots(1, 1, figsize=(n * size, size))
ax.imshow(np.arange(n).reshape(1,n),
cmap=mpl.colors.ListedColormap(list(self)),
interpolation="nearest", aspect="auto")
ax.set_xticks(np.arange(n) - .5)
ax.set_yticks([-.5, .5])
ax.set_xticklabels([])
ax.set_yticklabels([])
|
https://github.com/DistrictDataLabs/yellowbrick/blob/59b67236a3862c73363e8edad7cd86da5b69e3b2/yellowbrick/style/palettes.py#L432-L451
|
scatter plot
|
python
|
def plot(self, sizescale=10, color=None, alpha=0.5, label=None, edgecolor='none', **kw):
'''
Plot the ra and dec of the coordinates,
at a given epoch, scaled by their magnitude.
(This does *not* create a new empty figure.)
Parameters
----------
sizescale : (optional) float
The marker size for scatter for a star at the magnitudelimit.
color : (optional) any valid color
The color to plot (but there is a default for this catalog.)
**kw : dict
Additional keywords will be passed on to plt.scatter.
Returns
-------
plotted : outputs from the plots
'''
# calculate the sizes of the stars (logarithmic with brightness?)
size = np.maximum(sizescale*(1 + self.magnitudelimit - self.magnitude), 1)
# make a scatter plot of the RA + Dec
scatter = plt.scatter(self.ra, self.dec,
s=size,
color=color or self.color,
label=label or '{} ({:.1f})'.format(self.name, self.epoch),
alpha=alpha,
edgecolor=edgecolor,
**kw)
return scatter
|
https://github.com/zkbt/the-friendly-stars/blob/50d3f979e79e63c66629065c75595696dc79802e/thefriendlystars/constellations/constellation.py#L281-L314
|
scatter plot
|
python
|
def plot_latent_scatter(self, labels=None,
which_indices=None,
legend=True,
plot_limits=None,
marker='<>^vsd',
num_samples=1000,
projection='2d',
**kwargs):
"""
Plot a scatter plot of the latent space.
:param array-like labels: a label for each data point (row) of the inputs
:param (int, int) which_indices: which input dimensions to plot against each other
:param bool legend: whether to plot the legend on the figure
:param plot_limits: the plot limits for the plot
:type plot_limits: (xmin, xmax, ymin, ymax) or ((xmin, xmax), (ymin, ymax))
:param str marker: markers to use - cycle if more labels then markers are given
:param kwargs: the kwargs for the scatter plots
"""
canvas, projection, kwargs, sig_dims = _new_canvas(self, projection, kwargs, which_indices)
X, _, _ = get_x_y_var(self)
if labels is None:
labels = np.ones(self.num_data)
legend = False
else:
legend = find_best_layout_for_subplots(len(np.unique(labels)))[1]
scatters = _plot_latent_scatter(canvas, X, sig_dims, labels, marker, num_samples, projection=projection, **kwargs)
return pl().add_to_canvas(canvas, dict(scatter=scatters), legend=legend)
|
https://github.com/SheffieldML/GPy/blob/54c32d79d289d622fb18b898aee65a2a431d90cf/GPy/plotting/gpy_plot/latent_plots.py#L80-L108
|
scatter plot
|
python
|
def surface(x, y, z):
"""Surface plot.
Parameters
----------
x : array-like, optional
y : array-like, optional
z : array-like, optional
Returns
-------
Chart
"""
data = [go.Surface(x=x, y=y, z=z)]
return Chart(data=data)
|
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L987-L1002
|
scatter plot
|
python
|
def tplot(name,
var_label=None,
auto_color=True,
interactive=False,
combine_axes=True,
nb=False,
save_file=None,
gui=False,
qt=False,
bokeh=False,
save_png=None,
display=True,
testing=False):
"""
This is the function used to display the tplot variables stored in memory.
The default output is to show the plots stacked on top of one another inside a GUI window.
The GUI window has the option to export the plots in either PNG or HTML formats.
.. note::
This plotting routine uses the python Bokeh library, which creates plots using HTML and Javascript.
Bokeh is technically still in beta, so future patches to Bokeh may require updates to this function.
Parameters:
name : str / list
List of tplot variables that will be plotted
var_label : str, optional
The name of the tplot variable you would like as
a second x axis.
auto_color : bool, optional
Automatically color the plot lines.
interactive : bool, optional
If True, a secondary interactive plot will be generated next to spectrogram plots.
Mousing over the spectrogram will display a slice of data from that time on the
interactive chart.
combine_axes : bool, optional
If True, the axes are combined so that they all display the same x range. This also enables
scrolling/zooming/panning on one plot to affect all of the other plots simultaneously.
nb : bool, optional
If True, the plot will be displayed inside of a current Jupyter notebook session.
save_file : str, optional
A full file name and path.
If this option is set, the plot will be automatically saved to the file name provided in an HTML format.
The plots can then be opened and viewed on any browser without any requirements.
bokeh : bool, optional
If True, plots data using bokeh
Else (bokeh=False or omitted), plots data using PyQtGraph
gui : bool, optional
If True, then this function will output the 2 HTML components of the generated plots as string variables.
This is useful if you are embedded the plots in your own GUI. For more information, see
http://bokeh.pydata.org/en/latest/docs/user_guide/embed.html
qt : bool, optional
If True, then this function will display the plot inside of the Qt window. From this window, you
can choose to export the plots as either an HTML file, or as a PNG.
save_png : str, optional
A full file name and path.
If this option is set, the plot will be automatically saved to the file name provided in a PNG format.
display: bool, optional
If True, then this function will display the plotted tplot variables. Necessary to make this optional
so we can avoid it in a headless server environment.
testing: bool, optional
If True, doesn't run the '(hasattr(sys, 'ps1'))' line that makes plots interactive - i.e., avoiding issues
Returns:
None
Examples:
>>> #Plot a single line in bokeh
>>> import pytplot
>>> x_data = [2,3,4,5,6]
>>> y_data = [1,2,3,4,5]
>>> pytplot.store_data("Variable1", data={'x':x_data, 'y':y_data})
>>> pytplot.tplot("Variable1",bokeh=True)
>>> #Display two plots
>>> x_data = [1,2,3,4,5]
>>> y_data = [[1,5],[2,4],[3,3],[4,2],[5,1]]
>>> pytplot.store_data("Variable2", data={'x':x_data, 'y':y_data})
>>> pytplot.tplot(["Variable1", "Variable2"])
>>> #Display 2 plots, using Variable1 as another x axis
>>> x_data = [1,2,3]
>>> y_data = [ [1,2,3] , [4,5,6], [7,8,9] ]
>>> v_data = [1,2,3]
>>> pytplot.store_data("Variable3", data={'x':x_data, 'y':y_data, 'v':v_data})
>>> pytplot.options("Variable3", 'spec', 1)
>>> pytplot.tplot(["Variable2", "Variable3"], var_label='Variable1')
>>> #Plot all 3 tplot variables, sending the output to an HTML file
>>> pytplot.tplot(["Variable1", "Variable2", "Variable3"], save_file='C:/temp/pytplot_example.html')
>>> #Plot all 3 tplot variables, sending the HTML output to a pair of strings
>>> div, component = pytplot.tplot(["Variable1", "Variable2", "Variable3"], gui=True)
"""
if not pytplot.using_graphics and save_file is None:
print("Qt was not successfully imported. Specify save_file to save the file as a .html file.")
return
# Check a bunch of things
if not isinstance(name, list):
name = [name]
num_plots = 1
else:
num_plots = len(name)
for i in range(num_plots):
if isinstance(name[i], int):
name[i] = list(pytplot.data_quants.keys())[name[i]]
if name[i] not in pytplot.data_quants.keys():
print(str(i) + " is currently not in pytplot")
return
if isinstance(var_label, int):
var_label = list(pytplot.data_quants.keys())[var_label]
if bokeh:
layout = HTMLPlotter.generate_stack(name, var_label=var_label, auto_color=auto_color, combine_axes=combine_axes,
interactive=interactive)
# Output types
if gui:
script, div = components(layout)
return script, div
elif nb:
output_notebook()
show(layout)
return
elif save_file is not None:
output_file(save_file, mode='inline')
save(layout)
return
elif qt:
available_qt_window = tplot_utilities.get_available_qt_window()
dir_path = tempfile.gettempdir() # send to user's temp directory
output_file(os.path.join(dir_path, "temp.html"), mode='inline')
save(layout)
new_layout = WebView()
available_qt_window.resize(pytplot.tplot_opt_glob['window_size'][0] + 100,
pytplot.tplot_opt_glob['window_size'][1] + 100)
new_layout.resize(pytplot.tplot_opt_glob['window_size'][0], pytplot.tplot_opt_glob['window_size'][1])
dir_path = tempfile.gettempdir() # send to user's temp directory
new_layout.setUrl(QtCore.QUrl.fromLocalFile(os.path.join(dir_path, "temp.html")))
available_qt_window.newlayout(new_layout)
available_qt_window.show()
available_qt_window.activateWindow()
if testing:
return
if not (hasattr(sys, 'ps1')) or not hasattr(QtCore, 'PYQT_VERSION'):
QtGui.QApplication.instance().exec_()
return
else:
dir_path = tempfile.gettempdir() # send to user's temp directory
output_file(os.path.join(dir_path, "temp.html"), mode='inline')
show(layout)
return
else:
if save_png is not None:
layout = QtPlotter.generate_stack(name, var_label=var_label, combine_axes=combine_axes,
mouse_moved_event=pytplot.hover_time.change_hover_time)
layout.resize(pytplot.tplot_opt_glob['window_size'][0], pytplot.tplot_opt_glob['window_size'][1])
for i, item in enumerate(layout.items()):
if type(item) == pg.graphicsItems.GraphicsLayout.GraphicsLayout:
layout.items()[i].resize(pytplot.tplot_opt_glob['window_size'][0],
pytplot.tplot_opt_glob['window_size'][1])
exporter = PyTPlot_Exporter.PytplotExporter(layout)
exporter.parameters()['width'] = pytplot.tplot_opt_glob['window_size'][0]
exporter.parameters()['height'] = pytplot.tplot_opt_glob['window_size'][1]
exporter.export(save_png)
if display:
# Set up all things needed for when a user asks to save plot from window
layout_orig = QtPlotter.generate_stack(name, var_label=var_label, combine_axes=combine_axes,
mouse_moved_event=pytplot.hover_time.change_hover_time)
layout_orig.resize(pytplot.tplot_opt_glob['window_size'][0], pytplot.tplot_opt_glob['window_size'][1])
for i, item in enumerate(layout_orig.items()):
if type(item) == pg.graphicsItems.GraphicsLayout.GraphicsLayout:
layout_orig.items()[i].resize(pytplot.tplot_opt_glob['window_size'][0],
pytplot.tplot_opt_glob['window_size'][1])
exporter = QtPlotter.PytplotExporter(layout_orig)
# Set up displayed plot window and grab plots to plot on it
available_qt_window = tplot_utilities.get_available_qt_window()
layout = QtPlotter.generate_stack(name, var_label=var_label, combine_axes=combine_axes,
mouse_moved_event=pytplot.hover_time.change_hover_time)
available_qt_window.newlayout(layout)
available_qt_window.resize(pytplot.tplot_opt_glob['window_size'][0],
pytplot.tplot_opt_glob['window_size'][1])
# Implement button that lets you save the PNG
available_qt_window.init_savepng(exporter)
# Show the plot window and plot
available_qt_window.show()
available_qt_window.activateWindow()
if interactive:
# Call 2D interactive window; This will only plot something when spectrograms are involved.
interactiveplot.interactiveplot()
static_list = [i for i in name if 'static' in pytplot.data_quants[i].extras]
for tplot_var in static_list:
# Call 2D static window; This will only plot something when spectrograms are involved.
staticplot.static2dplot(tplot_var, pytplot.data_quants[tplot_var].extras['static'])
static_tavg_list = [i for i in name if 'static_tavg' in pytplot.data_quants[i].extras]
for tplot_var in static_tavg_list:
# Call 2D static window for time-averaged values; This will only plot something when spectrograms
# are involved
staticplot_tavg.static2dplot_timeaveraged(
tplot_var, pytplot.data_quants[tplot_var].extras['static_tavg'])
# (hasattr(sys, 'ps1')) checks to see if we're in ipython
# plots the plots!
if testing:
return
if not (hasattr(sys, 'ps1')) or not hasattr(QtCore, 'PYQT_VERSION'):
QtGui.QApplication.instance().exec_()
return
|
https://github.com/MAVENSDC/PyTplot/blob/d76cdb95363a4bd4fea6bca7960f8523efa7fa83/pytplot/tplot.py#L28-L245
|
scatter plot
|
python
|
def plot(self, x, y, **kw):
"""plot x, y values (erasing old plot),
for method options see PlotPanel.plot.
"""
return self.frame.plot(x,y,**kw)
|
https://github.com/newville/wxmplot/blob/8e0dc037453e5cdf18c968dc5a3d29efd761edee/wxmplot/plotapp.py#L21-L25
|
scatter plot
|
python
|
def plot(self, data, color='k', symbol=None, line_kind='-', width=1.,
marker_size=10., edge_color='k', face_color='b', edge_width=1.,
title=None, xlabel=None, ylabel=None):
"""Plot a series of data using lines and markers
Parameters
----------
data : array | two arrays
Arguments can be passed as ``(Y,)``, ``(X, Y)`` or
``np.array((X, Y))``.
color : instance of Color
Color of the line.
symbol : str
Marker symbol to use.
line_kind : str
Kind of line to draw. For now, only solid lines (``'-'``)
are supported.
width : float
Line width.
marker_size : float
Marker size. If `size == 0` markers will not be shown.
edge_color : instance of Color
Color of the marker edge.
face_color : instance of Color
Color of the marker face.
edge_width : float
Edge width of the marker.
title : str | None
The title string to be displayed above the plot
xlabel : str | None
The label to display along the bottom axis
ylabel : str | None
The label to display along the left axis.
Returns
-------
line : instance of LinePlot
The line plot.
See also
--------
marker_types, LinePlot
"""
self._configure_2d()
line = scene.LinePlot(data, connect='strip', color=color,
symbol=symbol, line_kind=line_kind,
width=width, marker_size=marker_size,
edge_color=edge_color,
face_color=face_color,
edge_width=edge_width)
self.view.add(line)
self.view.camera.set_range()
self.visuals.append(line)
if title is not None:
self.title.text = title
if xlabel is not None:
self.xlabel.text = xlabel
if ylabel is not None:
self.ylabel.text = ylabel
return line
|
https://github.com/glue-viz/glue-vispy-viewers/blob/54a4351d98c1f90dfb1a557d1b447c1f57470eea/glue_vispy_viewers/extern/vispy/plot/plotwidget.py#L264-L325
|
scatter plot
|
python
|
def plot(self, atDataset,
errorbars=False,
grid=False):
""" use matplotlib methods for plotting
Parameters
----------
atDataset : allantools.Dataset()
a dataset with computed data
errorbars : boolean
Plot errorbars. Defaults to False
grid : boolean
Plot grid. Defaults to False
"""
if errorbars:
self.ax.errorbar(atDataset.out["taus"],
atDataset.out["stat"],
yerr=atDataset.out["stat_err"],
)
else:
self.ax.plot(atDataset.out["taus"],
atDataset.out["stat"],
)
self.ax.set_xlabel("Tau")
self.ax.set_ylabel(atDataset.out["stat_id"])
self.ax.grid(grid, which="minor", ls="-", color='0.65')
self.ax.grid(grid, which="major", ls="-", color='0.25')
|
https://github.com/aewallin/allantools/blob/b5c695a5af4379fcea4d4ce93a066cb902e7ee0a/allantools/plot.py#L66-L92
|
scatter plot
|
python
|
def scatter_plot(data, index_x, index_y, percent=100.0, seed=1, size=50, title=None, outfile=None, wait=True):
"""
Plots two attributes against each other.
TODO: click events http://matplotlib.org/examples/event_handling/data_browser.html
:param data: the dataset
:type data: Instances
:param index_x: the 0-based index of the attribute on the x axis
:type index_x: int
:param index_y: the 0-based index of the attribute on the y axis
:type index_y: int
:param percent: the percentage of the dataset to use for plotting
:type percent: float
:param seed: the seed value to use for subsampling
:type seed: int
:param size: the size of the circles in point
:type size: int
:param title: an optional title
:type title: str
:param outfile: the (optional) file to save the generated plot to. The extension determines the file format.
:type outfile: str
:param wait: whether to wait for the user to close the plot
:type wait: bool
"""
if not plot.matplotlib_available:
logger.error("Matplotlib is not installed, plotting unavailable!")
return
# create subsample
data = plot.create_subsample(data, percent=percent, seed=seed)
# collect data
x = []
y = []
if data.class_index == -1:
c = None
else:
c = []
for i in range(data.num_instances):
inst = data.get_instance(i)
x.append(inst.get_value(index_x))
y.append(inst.get_value(index_y))
if c is not None:
c.append(inst.get_value(inst.class_index))
# plot data
fig, ax = plt.subplots()
if c is None:
ax.scatter(x, y, s=size, alpha=0.5)
else:
ax.scatter(x, y, c=c, s=size, alpha=0.5)
ax.set_xlabel(data.attribute(index_x).name)
ax.set_ylabel(data.attribute(index_y).name)
if title is None:
title = "Attribute scatter plot"
if percent != 100:
title += " (%0.1f%%)" % percent
ax.set_title(title)
ax.plot(ax.get_xlim(), ax.get_ylim(), ls="--", c="0.3")
ax.grid(True)
fig.canvas.set_window_title(data.relationname)
plt.draw()
if outfile is not None:
plt.savefig(outfile)
if wait:
plt.show()
|
https://github.com/fracpete/python-weka-wrapper3/blob/d850ab1bdb25fbd5a8d86e99f34a397975425838/python/weka/plot/dataset.py#L27-L93
|
scatter plot
|
python
|
def plot(self,x,y,panel=None,**kws):
"""plot after clearing current plot """
if panel is None:
panel = self.current_panel
opts = {}
opts.update(self.default_panelopts)
opts.update(kws)
self.panels[panel].plot(x ,y, **opts)
|
https://github.com/newville/wxmplot/blob/8e0dc037453e5cdf18c968dc5a3d29efd761edee/wxmplot/multiframe.py#L48-L55
|
scatter plot
|
python
|
def scatter(points, vertexlabels=None, **kwargs):
'''Scatter plot of barycentric 2-simplex points on a 2D triangle.
:param points: Points on a 2-simplex.
:type points: N x 3 list or ndarray.
:param vertexlabels: Labels for corners of plot in the order
``(a, b, c)`` where ``a == (1,0,0)``, ``b == (0,1,0)``,
``c == (0,0,1)``.
:type vertexlabels: 3-tuple of strings.
:param **kwargs: Arguments to :func:`plt.scatter`.
:type **kwargs: keyword arguments.'''
if vertexlabels is None:
vertexlabels = ('1','2','3')
projected = cartesian(points)
plt.scatter(projected[:,0], projected[:,1], **kwargs)
_draw_axes(vertexlabels)
return plt.gcf()
|
https://github.com/ericsuh/dirichlet/blob/bf39a6d219348cbb4ed95dc195587a9c55c633b9/dirichlet/simplex.py#L54-L72
|
scatter plot
|
python
|
def plot(self,
legend=None,
width=1.5,
ladder=True,
aspect=10,
ticks=(1, 10),
match_only=None,
ax=None,
return_fig=False,
colour=None,
cmap='viridis',
default=None,
style='intervals',
field=None,
**kwargs):
"""
Hands-free plotting.
Args:
legend (Legend): The Legend to use for colours, etc.
width (int): The width of the plot, in inches. Default 1.
ladder (bool): Whether to use widths or not. Default False.
aspect (int): The aspect ratio of the plot. Default 10.
ticks (int or tuple): The (minor,major) tick interval for depth.
Only the major interval is labeled. Default (1,10).
match_only (list): A list of strings matching the attributes you
want to compare when plotting.
ax (ax): A maplotlib axis to plot onto. If you pass this, it will
be returned. Optional.
return_fig (bool): Whether or not to return the maplotlib ``fig``
object. Default False.
colour (str): Which data field to use for colours.
cmap (cmap): Matplotlib colourmap. Default ``viridis``.
**kwargs are passed through to matplotlib's ``patches.Rectangle``.
Returns:
None. Unless you specify ``return_fig=True`` or pass in an ``ax``.
"""
if legend is None:
legend = Legend.random(self.components)
if style.lower() == 'tops':
# Make sure width is at least 3 for 'tops' style
width = max([3, width])
if ax is None:
return_ax = False
fig = plt.figure(figsize=(width, aspect*width))
ax = fig.add_axes([0.35, 0.05, 0.6, 0.95])
else:
return_ax = True
if (self.order == 'none') or (style.lower() == 'points'):
# Then this is a set of points.
ax = self.plot_points(ax=ax, legend=legend, field=field, **kwargs)
elif style.lower() == 'field':
if field is None:
raise StriplogError('You must provide a field to plot.')
ax = self.plot_field(ax=ax, legend=legend, field=field)
elif style.lower() == 'tops':
ax = self.plot_tops(ax=ax, legend=legend, field=field)
ax.set_xticks([])
else:
ax = self.plot_axis(ax=ax,
legend=legend,
ladder=ladder,
default_width=width,
match_only=kwargs.get('match_only', match_only),
colour=colour,
cmap=cmap,
default=default,
width_field=field,
**kwargs
)
ax.set_xlim([0, width])
ax.set_xticks([])
# Rely on interval order.
lower, upper = self[-1].base.z, self[0].top.z
rng = abs(upper - lower)
ax.set_ylim([lower, upper])
# Make sure ticks is a tuple.
try:
ticks = tuple(ticks)
except TypeError:
ticks = (1, ticks)
# Avoid MAXTICKS error.
while rng/ticks[0] > 250:
mi, ma = 10*ticks[0], ticks[1]
if ma <= mi:
ma = 10 * mi
ticks = (mi, ma)
# Carry on plotting...
minorLocator = mpl.ticker.MultipleLocator(ticks[0])
ax.yaxis.set_minor_locator(minorLocator)
majorLocator = mpl.ticker.MultipleLocator(ticks[1])
majorFormatter = mpl.ticker.FormatStrFormatter('%d')
ax.yaxis.set_major_locator(majorLocator)
ax.yaxis.set_major_formatter(majorFormatter)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.yaxis.set_ticks_position('left')
ax.get_yaxis().set_tick_params(which='both', direction='out')
# Optional title.
title = getattr(self, 'title', None)
if title is not None:
ax.set_title(title)
ax.patch.set_alpha(0)
if return_ax:
return ax
elif return_fig:
return fig
else:
return
|
https://github.com/agile-geoscience/striplog/blob/8033b673a151f96c29802b43763e863519a3124c/striplog/striplog.py#L1447-L1571
|
scatter plot
|
python
|
def scatter(*args, **kwargs):
"""This function creates a scatter chart. Specifcally it creates an
:py:class:`.AxisChart` and then adds a :py:class:`.ScatterSeries` to it.
:param \*data: The data for the scatter series as either (x,y) values or two\
big tuples/lists of x and y values respectively.
:param str name: The name to be associated with the series.
:param str color: The hex colour of the data points.
:param Number size: The size of each data point - generally the diameter.
:param Number linewidth: The width in pixels of the data points' edge.
:raises ValueError: if the size and length of the data doesn't match either\
format.
:param str title: The chart's title. This will be displayed at the top of\
the chart.
:param width: The width in pixels of the chart.
:param height: The height in pixels of the chart.
:param str x_label: The label for the x-axis.
:param str y_label: The label for the y-axis.
:rtype: :py:class:`.AxisChart`"""
scatter_series_kwargs = {}
for kwarg in ("name", "color", "size", "linewidth"):
if kwarg in kwargs:
scatter_series_kwargs[kwarg] = kwargs[kwarg]
del kwargs[kwarg]
if "color" not in scatter_series_kwargs:
scatter_series_kwargs["color"] = colors[0]
series = ScatterSeries(*args, **scatter_series_kwargs)
chart = AxisChart(series, **kwargs)
return chart
|
https://github.com/samirelanduk/quickplots/blob/59f5e6ff367b2c1c24ba7cf1805d03552034c6d8/quickplots/quick.py#L39-L68
|
scatter plot
|
python
|
def plot(self, flip=False, ax_channels=None, ax=None, *args, **kwargs):
"""
{_gate_plot_doc}
"""
if ax == None:
ax = pl.gca()
if ax_channels is not None:
flip = self._find_orientation(ax_channels)
plot_func = ax.axes.axhline if flip else ax.axes.axvline
kwargs.setdefault('color', 'black')
a1 = plot_func(self.vert[0], *args, **kwargs)
a2 = plot_func(self.vert[1], *args, **kwargs)
return (a1, a2)
|
https://github.com/eyurtsev/FlowCytometryTools/blob/4355632508b875273d68c7e2972c17668bcf7b40/FlowCytometryTools/core/gates.py#L249-L265
|
scatter plot
|
python
|
def jitterplot(data, positions=None, ax=None, vert=True, scale=0.1,
**scatter_kwargs):
'''Plots jittered points as a distribution visualizer.
Scatter plot arguments default to: marker='.', c='k', alpha=0.75
Also known as a stripplot.
See also: boxplot, violinplot, beeswarm
'''
if ax is None:
ax = plt.gca()
if positions is None:
positions = range(len(data))
kwargs = dict(marker='.', c='k', alpha=0.75)
kwargs.update(scatter_kwargs)
for pos, y in zip(positions, data):
if scale > 0:
x = np.random.normal(loc=pos, scale=scale, size=len(y))
else:
x = np.zeros_like(y) + pos
if not vert:
x, y = y, x
ax.scatter(x, y, **kwargs)
return plt.show
|
https://github.com/perimosocordiae/viztricks/blob/bae2f8a9ce9278ce0197f8efc34cc4fef1dfe1eb/viztricks/extensions.py#L189-L213
|
scatter plot
|
python
|
def plot(self, ax: GeoAxesSubplot, s: int = 10, **kwargs) -> Artist:
"""Plotting function. All arguments are passed to ax.scatter"""
return ax.scatter(
self.data.longitude,
self.data.latitude,
s=s,
transform=PlateCarree(),
**kwargs,
)
|
https://github.com/xoolive/traffic/blob/d1a8878098f16759f6b6e0e8d8b8f32e34a680a8/traffic/core/sv.py#L29-L37
|
scatter plot
|
python
|
def _scatter_matrix(self,theme=None,bins=10,color='grey',size=2, asFigure=False, **iplot_kwargs):
"""
Displays a matrix with scatter plot for each pair of
Series in the DataFrame.
The diagonal shows a histogram for each of the Series
Parameters:
-----------
df : DataFrame
Pandas DataFrame
theme : string
Theme to be used (if not the default)
bins : int
Number of bins to use for histogram
color : string
Color to be used for each scatter plot
size : int
Size for each marker on the scatter plot
iplot_kwargs : key-value pairs
Keyword arguments to pass through to `iplot`
"""
sm=tools.scatter_matrix(self,theme=theme,bins=bins,color=color,size=size)
if asFigure:
return sm
else:
return iplot(sm,**iplot_kwargs)
|
https://github.com/santosjorge/cufflinks/blob/ca1cbf93998dc793d0b1f8ac30fe1f2bd105f63a/cufflinks/plotlytools.py#L1258-L1283
|
scatter plot
|
python
|
def plot(self, channel_names, kind='histogram',
gates=None, gate_colors=None,
ids=None, row_labels=None, col_labels=None,
xlim='auto', ylim='auto',
autolabel=True,
**kwargs):
"""
Produces a grid plot with each subplot corresponding to the data at the given position.
Parameters
---------------
{FCMeasurement_plot_pars}
{graph_plotFCM_pars}
{_graph_grid_layout}
Returns
-------
{_graph_grid_layout_returns}
Examples
--------
Below, plate is an instance of FCOrderedCollection
>>> plate.plot(['SSC-A', 'FSC-A'], kind='histogram', autolabel=True)
>>> plate.plot(['SSC-A', 'FSC-A'], xlim=(0, 10000))
>>> plate.plot(['B1-A', 'Y2-A'], kind='scatter', color='red', s=1, alpha=0.3)
>>> plate.plot(['B1-A', 'Y2-A'], bins=100, alpha=0.3)
>>> plate.plot(['B1-A', 'Y2-A'], bins=[linspace(-1000, 10000, 100), linspace(-1000, 10000, 100)], alpha=0.3)
.. note::
For more details see documentation for FCMeasurement.plot
**kwargs passes arguments to both grid_plot and to FCMeasurement.plot.
"""
##
# Note
# -------
# The function assumes that grid_plot and FCMeasurement.plot use unique key words.
# Any key word arguments that appear in both functions are passed only to grid_plot in the end.
##
# Automatically figure out which of the kwargs should
# be sent to grid_plot instead of two sample.plot
# (May not be a robust solution, we'll see as the code evolves
grid_arg_list = inspect.getargspec(OrderedCollection.grid_plot).args
grid_plot_kwargs = {'ids': ids,
'row_labels': row_labels,
'col_labels': col_labels}
for key, value in list(kwargs.items()):
if key in grid_arg_list:
kwargs.pop(key)
grid_plot_kwargs[key] = value
##
# Make sure channel names is a list to make the code simpler below
channel_names = to_list(channel_names)
##
# Determine data limits for binning
#
if kind == 'histogram':
nbins = kwargs.get('bins', 200)
if isinstance(nbins, int):
min_list = []
max_list = []
for sample in self:
min_list.append(self[sample].data[channel_names].min().values)
max_list.append(self[sample].data[channel_names].max().values)
min_list = list(zip(*min_list))
max_list = list(zip(*max_list))
bins = []
for i, c in enumerate(channel_names):
min_v = min(min_list[i])
max_v = max(max_list[i])
bins.append(np.linspace(min_v, max_v, nbins))
# Check if 1d
if len(channel_names) == 1:
bins = bins[0] # bins should be an ndarray, not a list of ndarrays
kwargs['bins'] = bins
##########
# Defining the plotting function that will be used.
# At the moment grid_plot handles the labeling
# (rather than sample.plot or the base function
# in GoreUtilities.graph
def plot_sample(sample, ax):
return sample.plot(channel_names, ax=ax,
gates=gates, gate_colors=gate_colors,
colorbar=False,
kind=kind, autolabel=False, **kwargs)
xlabel, ylabel = None, None
if autolabel:
cnames = to_list(channel_names)
xlabel = cnames[0]
if len(cnames) == 2:
ylabel = cnames[1]
return self.grid_plot(plot_sample, xlim=xlim, ylim=ylim,
xlabel=xlabel, ylabel=ylabel,
**grid_plot_kwargs)
|
https://github.com/eyurtsev/FlowCytometryTools/blob/4355632508b875273d68c7e2972c17668bcf7b40/FlowCytometryTools/core/containers.py#L545-L658
|
scatter plot
|
python
|
def plot_spectrogram(self, fmin=None, fmax=None,
method='scipy-fourier', deg=False,
window='hann', detrend='linear',
nperseg=None, noverlap=None,
boundary='constant', padded=True, wave='morlet',
invert=True, plotmethod='imshow',
cmap_f=None, cmap_img=None,
ms=4, ntMax=None, nfMax=None,
Bck=True, fs=None, dmargin=None, wintit=None,
tit=None, vmin=None, vmax=None, normt=False,
draw=True, connect=True, returnspect=False, warn=True):
""" Plot the spectrogram of all channels with chosen method
All non-plotting arguments are fed to self.calc_spectrogram()
see self.calc_spectrogram? for details
Parameters
----------
Return
------
kh : tofu.utils.HeyHandler
The tofu KeyHandler object handling figure interactivity
"""
if self._isSpectral():
msg = "spectrogram not implemented yet for spectral data class"
raise Exception(msg)
tf, f, lpsd, lang = _comp.spectrogram(self.data, self.t,
fmin=fmin, deg=deg,
method=method, window=window,
detrend=detrend, nperseg=nperseg,
noverlap=noverlap, boundary=boundary,
padded=padded, wave=wave,
warn=warn)
kh = _plot.Data_plot_spectrogram(self, tf, f, lpsd, lang, fmax=fmax,
invert=invert, plotmethod=plotmethod,
cmap_f=cmap_f, cmap_img=cmap_img,
ms=ms, ntMax=ntMax,
nfMax=nfMax, Bck=Bck, fs=fs,
dmargin=dmargin, wintit=wintit,
tit=tit, vmin=vmin, vmax=vmax,
normt=normt, draw=draw,
connect=connect)
if returnspect:
return kh, tf, f, lpsd, lang
else:
return kh
|
https://github.com/ToFuProject/tofu/blob/39d6b2e7ced9e13666572dfd37e19403f1d6ff8d/tofu/data/_core.py#L1756-L1802
|
scatter plot
|
python
|
def plot_scalar(step, var, field=None, axis=None, set_cbar=True, **extra):
"""Plot scalar field.
Args:
step (:class:`~stagpy.stagyydata._Step`): a step of a StagyyData
instance.
var (str): the scalar field name.
field (:class:`numpy.array`): if not None, it is plotted instead of
step.fields[var]. This is useful to plot a masked or rescaled
array. Note that if conf.scaling.dimensional is True, this
field will be scaled accordingly.
axis (:class:`matplotlib.axes.Axes`): the axis objet where the field
should be plotted. If set to None, a new figure with one subplot
is created.
set_cbar (bool): whether to add a colorbar to the plot.
extra (dict): options that will be passed on to
:func:`matplotlib.axes.Axes.pcolormesh`.
Returns:
fig, axis, surf, cbar
handles to various :mod:`matplotlib` objects, respectively the
figure, the axis, the surface returned by
:func:`~matplotlib.axes.Axes.pcolormesh`, and the colorbar returned
by :func:`matplotlib.pyplot.colorbar`.
"""
if var in phyvars.FIELD:
meta = phyvars.FIELD[var]
else:
meta = phyvars.FIELD_EXTRA[var]
meta = phyvars.Varf(misc.baredoc(meta.description), meta.dim)
if step.geom.threed:
raise NotAvailableError('plot_scalar only implemented for 2D fields')
xmesh, ymesh, fld = get_meshes_fld(step, var)
xmin, xmax = xmesh.min(), xmesh.max()
ymin, ymax = ymesh.min(), ymesh.max()
if field is not None:
fld = field
if conf.field.perturbation:
fld = fld - np.mean(fld, axis=0)
if conf.field.shift:
fld = np.roll(fld, conf.field.shift, axis=0)
fld, unit = step.sdat.scale(fld, meta.dim)
if axis is None:
fig, axis = plt.subplots(ncols=1)
else:
fig = axis.get_figure()
if step.sdat.par['magma_oceans_in']['magma_oceans_mode']:
rcmb = step.sdat.par['geometry']['r_cmb']
xmax = rcmb + 1
ymax = xmax
xmin = -xmax
ymin = -ymax
rsurf = xmax if step.timeinfo['thick_tmo'] > 0 \
else step.geom.r_mesh[0, 0, -3]
cmb = mpat.Circle((0, 0), rcmb, color='dimgray', zorder=0)
psurf = mpat.Circle((0, 0), rsurf, color='indianred', zorder=0)
axis.add_patch(psurf)
axis.add_patch(cmb)
extra_opts = dict(
cmap=conf.field.cmap.get(var),
vmin=conf.plot.vmin,
vmax=conf.plot.vmax,
norm=mpl.colors.LogNorm() if var == 'eta' else None,
rasterized=conf.plot.raster,
shading='gouraud' if conf.field.interpolate else 'flat',
)
extra_opts.update(extra)
surf = axis.pcolormesh(xmesh, ymesh, fld, **extra_opts)
cbar = None
if set_cbar:
cbar = plt.colorbar(surf, shrink=conf.field.shrinkcb)
cbar.set_label(meta.description +
(' pert.' if conf.field.perturbation else '') +
(' ({})'.format(unit) if unit else ''))
if step.geom.spherical or conf.plot.ratio is None:
plt.axis('equal')
plt.axis('off')
else:
axis.set_aspect(conf.plot.ratio / axis.get_data_ratio())
axis.set_adjustable('box')
axis.set_xlim(xmin, xmax)
axis.set_ylim(ymin, ymax)
return fig, axis, surf, cbar
|
https://github.com/StagPython/StagPy/blob/18c4416cc4a1011db2fd736ee8b0ec29aa6e4fd4/stagpy/field.py#L108-L196
|
scatter plot
|
python
|
def plot_flat(r, c, figsize):
"Shortcut for `enumerate(subplots.flatten())`"
return enumerate(plt.subplots(r, c, figsize=figsize)[1].flatten())
|
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/vision/image.py#L602-L604
|
scatter plot
|
python
|
def run(self, gta, mcube_map, **kwargs):
"""Make all plots."""
prefix = kwargs.get('prefix', 'test')
format = kwargs.get('format', self.config['format'])
loge_bounds = [None] + self.config['loge_bounds']
for x in loge_bounds:
self.make_roi_plots(gta, mcube_map, loge_bounds=x,
**kwargs)
imfile = utils.format_filename(self.config['fileio']['workdir'],
'counts_spectrum', prefix=[prefix],
extension=format)
make_counts_spectrum_plot(gta._roi_data, gta.roi,
gta.log_energies,
imfile, **kwargs)
|
https://github.com/fermiPy/fermipy/blob/9df5e7e3728307fd58c5bba36fd86783c39fbad4/fermipy/plotting.py#L924-L941
|
scatter plot
|
python
|
def plot_raster(self, ax, xlim, x, y, pop_names=False,
markersize=20., alpha=1., legend=True,
marker='o', rasterized=True):
"""
Plot network raster plot in subplot object.
Parameters
----------
ax : `matplotlib.axes.AxesSubplot` object
plot axes
xlim : list
List of floats. Spike time interval, e.g., [0., 1000.].
x : dict
Key-value entries are population name and neuron spike times.
y : dict
Key-value entries are population name and neuron gid number.
pop_names: bool
If True, show population names on yaxis instead of gid number.
markersize : float
raster plot marker size
alpha : float in [0, 1]
transparency of marker
legend : bool
Switch on axes legends.
marker : str
marker symbol for matplotlib.pyplot.plot
rasterized : bool
if True, the scatter plot will be treated as a bitmap embedded in
pdf file output
Returns
-------
None
"""
yoffset = [sum(self.N_X) if X=='TC' else 0 for X in self.X]
for i, X in enumerate(self.X):
if y[X].size > 0:
ax.plot(x[X], y[X]+yoffset[i], marker,
markersize=markersize,
mfc=self.colors[i],
mec='none' if marker in '.ov><v^1234sp*hHDd' else self.colors[i],
alpha=alpha,
label=X, rasterized=rasterized,
clip_on=True)
#don't draw anything for the may-be-quiet TC population
N_X_sum = 0
for i, X in enumerate(self.X):
if y[X].size > 0:
N_X_sum += self.N_X[i]
ax.axis([xlim[0], xlim[1],
self.GIDs[self.X[0]][0], self.GIDs[self.X[0]][0]+N_X_sum])
ax.set_ylim(ax.get_ylim()[::-1])
ax.set_ylabel('cell id', labelpad=0)
ax.set_xlabel('$t$ (ms)', labelpad=0)
if legend:
ax.legend()
if pop_names:
yticks = []
yticklabels = []
for i, X in enumerate(self.X):
if y[X] != []:
yticks.append(y[X].mean()+yoffset[i])
yticklabels.append(self.X[i])
ax.set_yticks(yticks)
ax.set_yticklabels(yticklabels)
# Add some horizontal lines separating the populations
for i, X in enumerate(self.X):
if y[X].size > 0:
ax.plot([xlim[0], xlim[1]],
[y[X].max()+yoffset[i], y[X].max()+yoffset[i]],
'k', lw=0.25)
|
https://github.com/INM-6/hybridLFPy/blob/c38bdf38982c4624c2f70caeb50c40f1d5980abd/hybridLFPy/cachednetworks.py#L258-L334
|
scatter plot
|
python
|
def plots(self):
"""
The sequence of plots in this chart. A plot, called a *chart group*
in the Microsoft API, is a distinct sequence of one or more series
depicted in a particular charting type. For example, a chart having
a series plotted as a line overlaid on three series plotted as
columns would have two plots; the first corresponding to the three
column series and the second to the line series. Plots are sequenced
in the order drawn, i.e. back-most to front-most. Supports *len()*,
membership (e.g. ``p in plots``), iteration, slicing, and indexed
access (e.g. ``plot = plots[i]``).
"""
plotArea = self._chartSpace.chart.plotArea
return _Plots(plotArea, self)
|
https://github.com/scanny/python-pptx/blob/d6ab8234f8b03953d2f831ff9394b1852db34130/pptx/chart/chart.py#L155-L168
|
scatter plot
|
python
|
def plot(self, key=None, invert=None, plotmethod='imshow',
cmap=plt.cm.gray, ms=4, Max=None,
fs=None, dmargin=None, wintit=None,
draw=True, connect=True):
""" Plot the data content in a predefined figure """
dax, KH = _plot.Data_plot(self, key=key, invert=invert, Max=Max,
plotmethod=plotmethod, cmap=cmap, ms=ms,
fs=fs, dmargin=dmargin, wintit=wintit,
draw=draw, connect=connect)
return dax, KH
|
https://github.com/ToFuProject/tofu/blob/39d6b2e7ced9e13666572dfd37e19403f1d6ff8d/tofu/data/_core.py#L2446-L2455
|
scatter plot
|
python
|
def plot_spectra_overlapped(ss, title=None, setup=_default_setup):
"""
Plots one or more spectra in the same plot.
Args:
ss: list of Spectrum objects
title=None: window title
setup: PlotSpectrumSetup object
"""
plt.figure()
draw_spectra_overlapped(ss, title, setup)
plt.show()
|
https://github.com/trevisanj/f311/blob/9e502a3d1e1f74d4290a8a0bae9a34ef8d7b29f7/f311/explorer/vis/plotsp.py#L80-L92
|
scatter plot
|
python
|
def plotPlainImg(sim, cam, rawdata, t, odir):
"""
No subplots, just a plan
http://stackoverflow.com/questions/22408237/named-colors-in-matplotlib
"""
for R, C in zip(rawdata, cam):
fg = figure()
ax = fg.gca()
ax.set_axis_off() # no ticks
ax.imshow(R[t, :, :],
origin='lower',
vmin=max(C.clim[0], 1), vmax=C.clim[1],
cmap='gray')
ax.text(0.05, 0.075, datetime.utcfromtimestamp(C.tKeo[t]).strftime('%Y-%m-%dT%H:%M:%S.%f')[:-3],
ha='left',
va='top',
transform=ax.transAxes,
color='limegreen',
# weight='bold',
size=24
)
writeplots(fg, 'cam{}rawFrame'.format(C.name), t, odir)
|
https://github.com/scivision/histutils/blob/859a91d3894cb57faed34881c6ea16130b90571e/histutils/plotsimul.py#L23-L46
|
scatter plot
|
python
|
def plotter(path, show, goodFormat):
'''makes some plots
creates binned histograms of the results of each module
(ie count of results in ranges [(0,40), (40, 50), (50,60), (60, 70), (70, 80), (80, 90), (90, 100)])
Arguments:
path {str} -- path to save plots to
show {boolean} -- whether to show plots using python
goodFormat {dict} -- module : [results for module]
output:
saves plots to files/shows plots depending on inputs
'''
for module in goodFormat.items(): # for each module
bins = [0, 40, 50, 60, 70, 80, 90, 100]
# cut the data into bins
out = pd.cut(module[1], bins=bins, include_lowest=True)
ax = out.value_counts().plot.bar(rot=0, color="b", figsize=(10, 6), alpha=0.5,
title=module[0]) # plot counts of the cut data as a bar
ax.set_xticklabels(['0 to 40', '40 to 50', '50 to 60',
'60 to 70', '70 to 80', '80 to 90', '90 to 100'])
ax.set_ylabel("# of candidates")
ax.set_xlabel(
"grade bins \n total candidates: {}".format(len(module[1])))
if path is not None and show is not False:
# if export path directory doesn't exist: create it
if not pathlib.Path.is_dir(path.as_posix()):
pathlib.Path.mkdir(path.as_posix())
plt.savefig(path / ''.join([module[0], '.png']))
plt.show()
elif path is not None:
# if export path directory doesn't exist: create it
if not pathlib.Path.is_dir(path):
pathlib.Path.mkdir(path)
plt.savefig(path / ''.join([module[0], '.png']))
plt.close()
elif show is not False:
plt.show()
|
https://github.com/haykkh/resultr/blob/decd222a4c0d3ea75595fd546b797b60297623b6/resultr.py#L79-L127
|
scatter plot
|
python
|
def show_plots(fitdata, fitval, x=None, save=False, view='ratio'):
""" Show plots comparing ``fitdata[k],fitval[k]`` for each key ``k`` in ``fitval``.
Assumes :mod:`matplotlib` is installed (to make the plots). Plots
are shown for one correlator at a time. Press key ``n`` to see the
next correlator; press key ``p`` to see the previous one; press key
``q`` to quit the plot and return control to the calling program;
press a digit to go directly to one of the first ten plots. Zoom,
pan and save using the window controls.
There are several different views available for each plot,
specified by parameter ``view``:
``view='ratio'``: Data divided by fit (default).
``view='diff'``: Data minus fit, divided by data's standard deviation.
``view='std'``: Data and fit.
``view='log'``: ``'std'`` with log scale on the vertical axis.
``view='loglog'``: `'std'`` with log scale on both axes.
Press key ``v`` to cycle through these views; or press keys
``r``, ``d``, or ``l`` for the ``'ratio'``, ``'diff'``,
or ``'log'`` views, respectively.
Copies of the plots that are viewed can be saved by setting parameter
``save=fmt`` where ``fmt`` is a string used to create
file names: the file name for the plot corresponding to key
``k`` is ``fmt.format(k)``. It is important that the
filename end with a suffix indicating the type of plot file
desired: e.g., ``fmt='plot-{}.pdf'``.
"""
import matplotlib.pyplot as plt
# collect plotinfo
plotinfo = collections.OrderedDict()
for tag in fitval:
d = fitdata[tag]
f = fitval[tag]
plotinfo[tag] = (
numpy.arange(len(d))+1 if x is None else x[tag],
gvar.mean(d), gvar.sdev(d), gvar.mean(f), gvar.sdev(f)
)
plotinfo_keys = list(plotinfo.keys())
fig = plt.figure()
viewlist = ['ratio', 'diff', 'std', 'log', 'loglog']
def onpress(event):
if event is not None:
try: # digit?
onpress.idx = int(event.key)
except ValueError:
if event.key == 'n':
onpress.idx += 1
elif event.key == 'p':
onpress.idx -= 1
elif event.key == 'v':
onpress.view = (onpress.view + 1) % len(viewlist)
elif event.key == 'r':
onpress.view = viewlist.index('ratio')
elif event.key == 'd':
onpress.view = viewlist.index('diff')
elif event.key == 'l':
onpress.view = viewlist.index('log')
# elif event.key == 'q': # unnecessary
# plt.close()
# return
else:
return
else:
onpress.idx = 0
# do the plot
if onpress.idx >= len(plotinfo_keys):
onpress.idx = len(plotinfo_keys)-1
elif onpress.idx < 0:
onpress.idx = 0
i = onpress.idx
k = plotinfo_keys[i]
x, g, dg, gth, dgth = plotinfo[k]
fig.clear()
plt.title("%d) %s (press 'n', 'p', 'q', 'v' or a digit)"
% (i, k))
dx = (max(x) - min(x)) / 50.
plt.xlim(min(x)-dx, max(x)+dx)
plotview = viewlist[onpress.view]
if plotview in ['std', 'log', 'loglog']:
if plotview in ['log', 'loglog']:
plt.yscale('log', nonposy='clip')
if plotview == 'loglog':
plt.xscale('log', nonposx='clip')
plt.ylabel(str(k) + ' [%s]' % plotview)
if len(x) > 0:
if len(x) > 1:
plt.plot(x, gth, 'r-')
plt.fill_between(
x, y2=gth + dgth, y1=gth - dgth,
color='r', alpha=0.075,
)
else:
extra_x = [x[0] * 0.5, x[0] * 1.5]
plt.plot(extra_x, 2 * [gth[0]], 'r-')
plt.fill_between(
extra_x, y2=2 * [gth[0] + dgth[0]],
y1=2 * [gth[0] - dgth[0]],
color='r', alpha=0.075,
)
plt.errorbar(x, g, dg, fmt='o')
elif plotview == 'ratio':
plt.ylabel(str(k)+' / '+'fit' + ' [%s]' % plotview)
ii = (gth != 0.0) # check for exact zeros (eg, antiperiodic)
if len(x[ii]) > 0:
if len(x[ii]) > 1:
plt.fill_between(
x[ii], y2=1 + dgth[ii] / gth[ii],
y1=1 - dgth[ii] / gth[ii],
color='r', alpha=0.075,
)
plt.plot(x, numpy.ones(len(x), float), 'r-')
else:
extra_x = [x[ii][0] * 0.5, x[ii][0] * 1.5]
plt.fill_between(
extra_x, y2=2 * [1 + dgth[ii][0]/gth[ii][0]],
y1=2 * [1 - dgth[ii][0]/gth[ii][0]],
color='r', alpha=0.075,
)
plt.plot(extra_x, numpy.ones(2, float), 'r-')
plt.errorbar(x[ii], g[ii]/gth[ii], dg[ii]/gth[ii], fmt='o')
elif plotview == 'diff':
plt.ylabel('({} - fit) / sigma'.format(str(k)) + ' [%s]' % plotview)
ii = (dg != 0.0) # check for exact zeros
if len(x[ii]) > 0:
if len(x[ii]) > 1:
plt.fill_between(
x[ii], y2=dgth[ii] / dg[ii],
y1=-dgth[ii] / dg[ii],
color='r', alpha=0.075
)
plt.plot(x, numpy.zeros(len(x), float), 'r-')
else:
extra_x = [x[ii][0] * 0.5, x[ii][0] * 1.5]
plt.fill_between(
extra_x, y2=2 * [dgth[ii][0] / dg[ii][0]],
y1=2 * [-dgth[ii][0] / dg[ii][0]],
color='r', alpha=0.075
)
plt.plot(extra_x, numpy.zeros(2, float), 'r-')
plt.errorbar(
x[ii], (g[ii] - gth[ii]) / dg[ii], dg[ii] / dg[ii],
fmt='o'
)
if save:
plt.savefig(save.format(k), bbox_inches='tight')
else:
plt.draw()
onpress.idx = 0
try:
onpress.view = viewlist.index(view)
except ValueError:
raise ValueError('unknow view: ' + str(view))
fig.canvas.mpl_connect('key_press_event', onpress)
onpress(None)
plt.show()
|
https://github.com/gplepage/lsqfit/blob/6a57fd687632c175fccb47d8e8e943cda5e9ce9d/src/lsqfit/_extras.py#L1415-L1577
|
scatter plot
|
python
|
def scatter(
adata,
x=None,
y=None,
color=None,
use_raw=None,
layers='X',
sort_order=True,
alpha=None,
basis=None,
groups=None,
components=None,
projection='2d',
legend_loc='right margin',
legend_fontsize=None,
legend_fontweight=None,
color_map=None,
palette=None,
frameon=None,
right_margin=None,
left_margin=None,
size=None,
title=None,
show=None,
save=None,
ax=None):
"""\
Scatter plot along observations or variables axes.
Color the plot using annotations of observations (`.obs`), variables
(`.var`) or expression of genes (`.var_names`).
Parameters
----------
adata : :class:`~anndata.AnnData`
Annotated data matrix.
x : `str` or `None`
x coordinate.
y : `str` or `None`
y coordinate.
color : string or list of strings, optional (default: `None`)
Keys for annotations of observations/cells or variables/genes, e.g.,
`'ann1'` or `['ann1', 'ann2']`.
use_raw : `bool`, optional (default: `None`)
Use `raw` attribute of `adata` if present.
layers : `str` or tuple of strings, optional (default: `X`)
Use the `layers` attribute of `adata` if present: specify the layer for
`x`, `y` and `color`. If `layers` is a string, then it is expanded to
`(layers, layers, layers)`.
basis : {{'pca', 'tsne', 'umap', 'diffmap', 'draw_graph_fr', etc.}}
String that denotes a plotting tool that computed coordinates.
{scatter_temp}
{show_save_ax}
Returns
-------
If `show==False` a :class:`~matplotlib.axes.Axes` or a list of it.
"""
if basis is not None:
axs = _scatter_obs(
adata=adata,
x=x,
y=y,
color=color,
use_raw=use_raw,
layers=layers,
sort_order=sort_order,
alpha=alpha,
basis=basis,
groups=groups,
components=components,
projection=projection,
legend_loc=legend_loc,
legend_fontsize=legend_fontsize,
legend_fontweight=legend_fontweight,
color_map=color_map,
palette=palette,
frameon=frameon,
right_margin=right_margin,
left_margin=left_margin,
size=size,
title=title,
show=show,
save=save,
ax=ax)
elif x is not None and y is not None:
if ((x in adata.obs.keys() or x in adata.var.index)
and (y in adata.obs.keys() or y in adata.var.index)
and (color is None or color in adata.obs.keys() or color in adata.var.index)):
axs = _scatter_obs(
adata=adata,
x=x,
y=y,
color=color,
use_raw=use_raw,
layers=layers,
sort_order=sort_order,
alpha=alpha,
basis=basis,
groups=groups,
components=components,
projection=projection,
legend_loc=legend_loc,
legend_fontsize=legend_fontsize,
legend_fontweight=legend_fontweight,
color_map=color_map,
palette=palette,
frameon=frameon,
right_margin=right_margin,
left_margin=left_margin,
size=size,
title=title,
show=show,
save=save,
ax=ax)
elif ((x in adata.var.keys() or x in adata.obs.index)
and (y in adata.var.keys() or y in adata.obs.index)
and (color is None or color in adata.var.keys() or color in adata.obs.index)):
axs = _scatter_var(
adata=adata,
x=x,
y=y,
color=color,
use_raw=use_raw,
layers=layers,
sort_order=sort_order,
alpha=alpha,
basis=basis,
groups=groups,
components=components,
projection=projection,
legend_loc=legend_loc,
legend_fontsize=legend_fontsize,
legend_fontweight=legend_fontweight,
color_map=color_map,
palette=palette,
frameon=frameon,
right_margin=right_margin,
left_margin=left_margin,
size=size,
title=title,
show=show,
save=save,
ax=ax)
else:
raise ValueError(
'`x`, `y`, and potential `color` inputs must all come from either `.obs` or `.var`')
else:
raise ValueError('Either provide a `basis` or `x` and `y`.')
return axs
|
https://github.com/theislab/scanpy/blob/9e4e5ee02e04cf618872d9b098e24f0542e8b227/scanpy/plotting/_anndata.py#L30-L179
|
scatter plot
|
python
|
def toplot(ts,
filename=None,
grid=True,
legend=True,
pargs=(),
**kwargs):
'''To plot formatter'''
fig = plt.figure()
ax = fig.add_subplot(111)
dates = list(ts.dates())
ax.plot(dates, ts.values(), *pargs)
ax.grid(grid)
# rotates and right aligns the x labels, and moves the bottom of the
# axes up to make room for them
fig.autofmt_xdate()
# add legend or title
names = ts.name.split('__')
if len(names) == 1:
title = names[0]
fontweight = kwargs.get('title_fontweight', 'bold')
ax.set_title(title, fontweight=fontweight)#,fontsize=fontsize,
elif legend:
##add legend
loc = kwargs.get('legend_location','best')
ncol = kwargs.get('legend_ncol', 2)
ax.legend(names, loc=loc, ncol=ncol)
return plt
|
https://github.com/quantmind/dynts/blob/21ac57c648bfec402fa6b1fe569496cf098fb5e8/dynts/formatters/tsplot.py#L4-L33
|
scatter plot
|
python
|
def plotcorr(X, plotargs=None, full=True, labels=None):
"""
Plots a scatterplot matrix of subplots.
Usage:
plotcorr(X)
plotcorr(..., plotargs=...) # e.g., 'r*', 'bo', etc.
plotcorr(..., full=...) # e.g., True or False
plotcorr(..., labels=...) # e.g., ['label1', 'label2', ...]
Each column of "X" is plotted against other columns, resulting in
a ncols by ncols grid of subplots with the diagonal subplots labeled
with "labels". "X" is an array of arrays (i.e., a 2d matrix), a 1d array
of MCERP.UncertainFunction/Variable objects, or a mixture of the two.
Additional keyword arguments are passed on to matplotlib's "plot" command.
Returns the matplotlib figure object containing the subplot grid.
"""
import matplotlib.pyplot as plt
X = [Xi._mcpts if isinstance(Xi, UncertainFunction) else Xi for Xi in X]
X = np.atleast_2d(X)
numvars, numdata = X.shape
fig, axes = plt.subplots(nrows=numvars, ncols=numvars, figsize=(8, 8))
fig.subplots_adjust(hspace=0.0, wspace=0.0)
for ax in axes.flat:
# Hide all ticks and labels
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
# Set up ticks only on one side for the "edge" subplots...
if full:
if ax.is_first_col():
ax.yaxis.set_ticks_position("left")
if ax.is_last_col():
ax.yaxis.set_ticks_position("right")
if ax.is_first_row():
ax.xaxis.set_ticks_position("top")
if ax.is_last_row():
ax.xaxis.set_ticks_position("bottom")
else:
if ax.is_first_row():
ax.xaxis.set_ticks_position("top")
if ax.is_last_col():
ax.yaxis.set_ticks_position("right")
# Label the diagonal subplots...
if not labels:
labels = ["x" + str(i) for i in range(numvars)]
for i, label in enumerate(labels):
axes[i, i].annotate(
label, (0.5, 0.5), xycoords="axes fraction", ha="center", va="center"
)
# Plot the data
for i, j in zip(*np.triu_indices_from(axes, k=1)):
if full:
idx = [(i, j), (j, i)]
else:
idx = [(i, j)]
for x, y in idx:
# FIX #1: this needed to be changed from ...(data[x], data[y],...)
if plotargs is None:
if len(X[x]) > 100:
plotargs = ",b" # pixel marker
else:
plotargs = ".b" # point marker
axes[x, y].plot(X[y], X[x], plotargs)
ylim = min(X[y]), max(X[y])
xlim = min(X[x]), max(X[x])
axes[x, y].set_ylim(
xlim[0] - (xlim[1] - xlim[0]) * 0.1, xlim[1] + (xlim[1] - xlim[0]) * 0.1
)
axes[x, y].set_xlim(
ylim[0] - (ylim[1] - ylim[0]) * 0.1, ylim[1] + (ylim[1] - ylim[0]) * 0.1
)
# Turn on the proper x or y axes ticks.
if full:
for i, j in zip(list(range(numvars)), itertools.cycle((-1, 0))):
axes[j, i].xaxis.set_visible(True)
axes[i, j].yaxis.set_visible(True)
else:
for i in range(numvars - 1):
axes[0, i + 1].xaxis.set_visible(True)
axes[i, -1].yaxis.set_visible(True)
for i in range(1, numvars):
for j in range(0, i):
fig.delaxes(axes[i, j])
# FIX #2: if numvars is odd, the bottom right corner plot doesn't have the
# correct axes limits, so we pull them from other axes
if numvars % 2:
xlimits = axes[0, -1].get_xlim()
ylimits = axes[-1, 0].get_ylim()
axes[-1, -1].set_xlim(xlimits)
axes[-1, -1].set_ylim(ylimits)
return fig
|
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/correlate.py#L98-L201
|
scatter plot
|
python
|
def scatter_table(self, x, y, c, s, mark='*'):
"""Add a data series to the plot.
:param x: array containing x-values.
:param y: array containing y-values.
:param c: array containing values for the color of the mark.
:param s: array containing values for the size of the mark.
:param mark: the symbol used to mark the data point. May be None,
or any plot mark accepted by TikZ (e.g. ``*, x, +, o, square,
triangle``).
The dimensions of x, y, c and s should be equal. The c values will
be mapped to a colormap.
"""
# clear the background of the marks
# self._clear_plot_mark_background(x, y, mark, markstyle)
# draw the plot series over the background
options = self._parse_plot_options(mark)
s = [sqrt(si) for si in s]
plot_series = self._create_plot_tables_object(x, y, c, s, options)
self.plot_table_list.append(plot_series)
|
https://github.com/davidfokkema/artist/blob/26ae7987522622710f2910980770c50012fda47d/artist/plot.py#L460-L481
|
scatter plot
|
python
|
def _scatter_or_line(h1: Histogram1D, mark_template: list, kwargs: dict) -> dict:
"""Create shared properties for scatter / line plot."""
from physt.histogram_collection import HistogramCollection
if isinstance(h1, HistogramCollection):
collection = h1
h1 = h1[0]
else:
collection = HistogramCollection(h1)
vega = _create_figure(kwargs)
legend = kwargs.pop("legend", len(collection) > 1)
vega["data"] = [
{
"name": "table",
"values": []
},
{
"name": "labels",
"values": [h.name for h in collection]
}]
for hist_i, histogram in enumerate(collection):
centers = histogram.bin_centers.tolist()
data = get_data(histogram, kwargs.pop("density", None), kwargs.pop("cumulative", None)).tolist()
vega["data"][0]["values"] += [{"x": centers[i], "y": data[i], "c": hist_i} for i in range(histogram.bin_count)]
_add_title(collection, vega, kwargs)
_create_scales(collection, vega, kwargs)
_create_axes(collection, vega, kwargs)
_create_series_scales(vega)
_create_series_faceted_marks(vega, mark_template)
_create_tooltips(h1, vega, kwargs) # TODO: Make it work!
if legend:
_create_series_legend(vega)
return vega
|
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/vega.py#L511-L548
|
scatter plot
|
python
|
def display_plots(filebase, directory=None, width=700, height=500, **kwargs):
"""Display a series of plots controlled by sliders. The function relies on Python string format functionality to index through a series of plots."""
def show_figure(filebase, directory, **kwargs):
"""Helper function to load in the relevant plot for display."""
filename = filebase.format(**kwargs)
if directory is not None:
filename = directory + '/' + filename
display(HTML("<img src='{filename}'>".format(filename=filename)))
interact(show_figure, filebase=fixed(filebase), directory=fixed(directory), **kwargs)
|
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/notebook.py#L198-L207
|
scatter plot
|
python
|
def create_plots(self):
"""Creates plots according to each plotting class.
"""
for i, axis in enumerate(self.ax):
# plot everything. First check general dict for parameters related to plots.
trans_plot_class_call = globals()[self.plot_types[i]]
trans_plot_class = trans_plot_class_call(self.fig, axis,
self.value_classes[i].x_arr_list,
self.value_classes[i].y_arr_list,
self.value_classes[i].z_arr_list,
colorbar=(
self.colorbar_classes[self.plot_types[i]]),
**{**self.general,
**self.figure,
**self.plot_info[str(i)],
**self.plot_info[str(i)]['limits'],
**self.plot_info[str(i)]['label'],
**self.plot_info[str(i)]['extra'],
**self.plot_info[str(i)]['legend']})
# create the plot
trans_plot_class.make_plot()
# setup the plot
trans_plot_class.setup_plot()
# print("Axis", i, "Complete")
return
|
https://github.com/mikekatz04/BOWIE/blob/a941342a3536cb57c817a1643896d99a3f354a86/bowie/plotutils/makeprocess.py#L252-L280
|
scatter plot
|
python
|
def scatter(inputs, target_gpus, dim=0):
"""Scatter inputs to target gpus.
The only difference from original :func:`scatter` is to add support for
:type:`~mmcv.parallel.DataContainer`.
"""
def scatter_map(obj):
if isinstance(obj, torch.Tensor):
return OrigScatter.apply(target_gpus, None, dim, obj)
if isinstance(obj, DataContainer):
if obj.cpu_only:
return obj.data
else:
return Scatter.forward(target_gpus, obj.data)
if isinstance(obj, tuple) and len(obj) > 0:
return list(zip(*map(scatter_map, obj)))
if isinstance(obj, list) and len(obj) > 0:
out = list(map(list, zip(*map(scatter_map, obj))))
return out
if isinstance(obj, dict) and len(obj) > 0:
out = list(map(type(obj), zip(*map(scatter_map, obj.items()))))
return out
return [obj for targets in target_gpus]
# After scatter_map is called, a scatter_map cell will exist. This cell
# has a reference to the actual function scatter_map, which has references
# to a closure that has a reference to the scatter_map cell (because the
# fn is recursive). To avoid this reference cycle, we set the function to
# None, clearing the cell
try:
return scatter_map(inputs)
finally:
scatter_map = None
|
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/parallel/scatter_gather.py#L8-L41
|
scatter plot
|
python
|
def plot(
self, ax: GeoAxesSubplot, cmap: str = "inferno", s: int = 5, **kwargs
) -> Artist:
"""Plotting function. All arguments are passed to ax.scatter"""
return ax.scatter(
self.df.longitude,
self.df.latitude,
s=s,
transform=PlateCarree(),
c=-self.df.altitude,
cmap=cmap,
**kwargs,
)
|
https://github.com/xoolive/traffic/blob/d1a8878098f16759f6b6e0e8d8b8f32e34a680a8/traffic/data/adsb/opensky.py#L32-L44
|
scatter plot
|
python
|
def scatter_matrix(frame, c=None, s=None, figsize=None, dpi=72.0, **kwds):
"""Draw a matrix of scatter plots.
The result is an interactive pan/zoomable plot, with linked-brushing
enabled by holding the shift key.
Parameters
----------
frame : DataFrame
The dataframe for which to draw the scatter matrix.
c : string (optional)
If specified, the name of the column to be used to determine the
color of each point.
s : string (optional)
If specified, the name of the column to be used to determine the
size of each point,
figsize : tuple (optional)
A length-2 tuple speficying the size of the figure in inches
dpi : float (default=72)
The dots (i.e. pixels) per inch used to convert the figure size from
inches to pixels.
Returns
-------
chart: alt.Chart object
The alt.Chart representation of the plot.
See Also
--------
pandas.plotting.scatter_matrix : matplotlib version of this routine
"""
if kwds:
warnings.warn(
"Unrecognized keywords in pdvega.scatter_matrix: {0}"
"".format(list(kwds.keys()))
)
cols = [
col
for col in frame.columns
if col not in [c, s]
if infer_vegalite_type(frame[col], ordinal_threshold=0) == "quantitative"
]
spec = {
"$schema": "https://vega.github.io/schema/vega-lite/v2.json",
"repeat": {"row": cols, "column": cols[::-1]},
"spec": {
"mark": "point",
"selection": {
"brush": {
"type": "interval",
"resolve": "union",
"on": "[mousedown[event.shiftKey], window:mouseup] > window:mousemove!",
"translate": "[mousedown[event.shiftKey], window:mouseup] > window:mousemove!",
"zoom": "wheel![event.shiftKey]",
},
"grid": {
"type": "interval",
"resolve": "global",
"bind": "scales",
"translate": "[mousedown[!event.shiftKey], window:mouseup] > window:mousemove!",
"zoom": "wheel![!event.shiftKey]",
},
},
"encoding": {
"x": {"field": {"repeat": "column"}, "type": "quantitative"},
"y": {"field": {"repeat": "row"}, "type": "quantitative"},
"color": {"condition": {"selection": "brush"}, "value": "grey"},
},
},
}
if figsize is not None:
width_inches, height_inches = figsize
spec["spec"]["width"] = 0.8 * dpi * width_inches / len(cols)
spec["spec"]["height"] = 0.8 * dpi * height_inches / len(cols)
if s is not None:
spec["spec"]["encoding"]["size"] = {
"field": s, "type": infer_vegalite_type(frame[s])
}
cond = spec["spec"]["encoding"]["color"]["condition"]
if c is None:
cond["value"] = "steelblue"
else:
cond["field"] = c
cond["type"] = infer_vegalite_type(frame[c])
chart = alt.Chart().from_dict(spec)
chart.data = frame
return chart
|
https://github.com/altair-viz/pdvega/blob/e3f1fc9730f8cd9ad70e7ba0f0a557f41279839a/pdvega/plotting.py#L12-L104
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.