query
stringlengths 9
60
| language
stringclasses 1
value | code
stringlengths 105
25.7k
| url
stringlengths 91
217
|
---|---|---|---|
convert json to csv
|
python
|
def convert(csv, json, **kwargs):
'''Convert csv to json.
csv: filename or file-like object
json: filename or file-like object
if csv is '-' or None:
stdin is used for input
if json is '-' or None:
stdout is used for output
'''
csv_local, json_local = None, None
try:
if csv == '-' or csv is None:
csv = sys.stdin
elif isinstance(csv, str):
csv = csv_local = open(csv, 'r')
if json == '-' or json is None:
json = sys.stdout
elif isinstance(json, str):
json = json_local = open(json, 'w')
data = load_csv(csv, **kwargs)
save_json(data, json, **kwargs)
finally:
if csv_local is not None:
csv_local.close()
if json_local is not None:
json_local.close()
|
https://github.com/oplatek/csv2json/blob/f2f95db71ba2ce683fd6d0d3e2f13c9d0a77ceb6/csv2json/__init__.py#L20-L51
|
convert json to csv
|
python
|
def json_to_csv(json_input):
'''
Convert simple JSON to CSV
Accepts a JSON string or JSON object
'''
try:
json_input = json.loads(json_input)
except:
pass # If loads fails, it's probably already parsed
headers = set()
for json_row in json_input:
headers.update(json_row.keys())
csv_io = StringIO.StringIO()
csv_out = csv.DictWriter(csv_io,headers)
csv_out.writeheader()
for json_row in json_input:
csv_out.writerow(json_row)
csv_io.seek(0)
return csv_io.read()
|
https://github.com/mosesschwartz/scrypture/blob/d51eb0c9835a5122a655078268185ce8ab9ec86a/scrypture/demo_scripts/Utils/json_to_csv.py#L28-L47
|
convert json to csv
|
python
|
def _to_json(self, sort_keys=False, indent=4):
"""Convert :class:`~ctfile.ctfile.CTfile` into JSON string.
:return: ``JSON`` formatted string.
:rtype: :py:class:`str`.
"""
return json.dumps(self, sort_keys=sort_keys, indent=indent, cls=CtabAtomBondEncoder)
|
https://github.com/MoseleyBioinformaticsLab/ctfile/blob/eae864126cd9102207df5d363a3222256a0f1396/ctfile/ctfile.py#L129-L135
|
convert json to csv
|
python
|
def to_json_str(self):
"""Convert data to json string representation.
Returns:
json representation as string.
"""
_json = self.to_json()
try:
return json.dumps(_json, sort_keys=True, cls=JsonEncoder)
except:
logging.exception("Could not serialize JSON: %r", _json)
raise
|
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/json_util.py#L135-L146
|
convert json to csv
|
python
|
def csv_to_json(csv_filepath, json_filepath, fieldnames, ignore_first_line=True):
""" Convert a CSV file in `csv_filepath` into a JSON file in `json_filepath`.
Parameters
----------
csv_filepath: str
Path to the input CSV file.
json_filepath: str
Path to the output JSON file. Will be overwritten if exists.
fieldnames: List[str]
Names of the fields in the CSV file.
ignore_first_line: bool
"""
import csv
import json
csvfile = open(csv_filepath, 'r')
jsonfile = open(json_filepath, 'w')
reader = csv.DictReader(csvfile, fieldnames)
rows = []
if ignore_first_line:
next(reader)
for row in reader:
rows.append(row)
json.dump(rows, jsonfile)
jsonfile.close()
csvfile.close()
|
https://github.com/PythonSanSebastian/docstamp/blob/b43808f2e15351b0b2f0b7eade9c7ef319c9e646/docstamp/file_utils.py#L138-L170
|
convert json to csv
|
python
|
def _convert_html_to_csv(
self):
"""
*contert html to csv*
**Key Arguments:**
# -
**Return:**
- None
.. todo::
- @review: when complete, clean _convert_html_to_csv method
- @review: when complete add logging
"""
self.log.info('starting the ``_convert_html_to_csv`` method')
import codecs
allData = ""
regex1 = re.compile(
r'.*<PRE><strong> (.*?)</strong>(.*?)</PRE></TABLE>.*', re.I | re.S)
regex2 = re.compile(r'\|(\w)\|', re.I | re.S)
for thisFile in self.nedResults:
pathToReadFile = thisFile
try:
self.log.debug("attempting to open the file %s" %
(pathToReadFile,))
readFile = codecs.open(
pathToReadFile, encoding='utf-8', mode='r')
thisData = readFile.read()
readFile.close()
except IOError, e:
message = 'could not open the file %s' % (pathToReadFile,)
self.log.critical(message)
raise IOError(message)
except:
if pathToReadFile == None:
message = 'we have no file to open'
self.log.error(message)
continue
readFile.close()
self.log.debug("regex 1 - sub")
thisData = regex1.sub("\g<1>\g<2>", thisData)
self.log.debug("regex 2 - sub")
thisData = regex2.sub("abs(\g<1>)", thisData)
self.log.debug("replace text")
thisData = thisData.replace("|b|", "abs(b)")
writeFile = codecs.open(pathToReadFile, encoding='utf-8', mode='w')
writeFile.write(thisData)
writeFile.close()
self.log.info('completed the ``_convert_html_to_csv`` method')
return None
|
https://github.com/thespacedoctor/neddy/blob/f32653b7d6a39a2c46c5845f83b3a29056311e5e/neddy/_basesearch.py#L237-L292
|
convert json to csv
|
python
|
def csv_to_obj(cls, file_path=None, text='', columns=None,
remove_empty_rows=True, key_on=None, deliminator=',',
eval_cells=True):
"""
This will convert a csv file or csv text into a seaborn table
and return it
:param file_path: str of the path to the file
:param text: str of the csv text
:param columns: list of str of columns to use
:param remove_empty_rows: bool if True will remove empty rows
which can happen in non-trimmed file
:param key_on: list of str of columns to key on
:param deliminator: str to use as a deliminator, defaults to ,
:param eval_cells: bool if True will try to evaluate numbers
:return: SeabornTable
"""
lines = cls._get_lines(file_path, text, replace=u'\ufeff')
for i in range(len(lines)):
lines[i] = lines[i].replace('\r', '\n')
lines[i] = lines[i].replace('\\r', '\r').split(',')
data = cls._merge_quoted_cells(lines, deliminator, remove_empty_rows,
eval_cells)
row_columns = data[0]
if len(row_columns) != len(set(row_columns)): # make unique
for i, col in enumerate(row_columns):
count = row_columns[:i].count(col)
row_columns[i] = '%s_%s' % (col, count) if count else col
return cls.list_to_obj(data[1:], columns=columns,
row_columns=row_columns, key_on=key_on)
|
https://github.com/SeabornGames/Table/blob/0c474ef2fb00db0e7cf47e8af91e3556c2e7485a/seaborn_table/table.py#L244-L273
|
convert json to csv
|
python
|
def to_json(self, data):
"""
Converts the given object to a pretty-formatted JSON string
:param data: the object to convert to JSON
:return: A pretty-formatted JSON string
"""
# Don't forget the empty line at the end of the file
return (
json.dumps(
data,
sort_keys=True,
indent=4,
separators=(",", ": "),
default=self.json_converter,
)
+ "\n"
)
|
https://github.com/tcalmant/ipopo/blob/2f9ae0c44cd9c34ef1a9d50837b3254e75678eb1/pelix/shell/report.py#L665-L682
|
convert json to csv
|
python
|
def to_json(value):
"""
Converts a value to a jsonable type.
"""
if type(value) in JSON_TYPES:
return value
elif hasattr(value, "to_json"):
return value.to_json()
elif isinstance(value, list) or isinstance(value, set) or \
isinstance(value, deque) or isinstance(value, tuple):
return [to_json(v) for v in value]
elif isinstance(value, dict):
return {str(k): to_json(v) for k, v in value.items()}
else:
raise TypeError("{0} is not json serializable.".format(type(value)))
|
https://github.com/halfak/python-jsonable/blob/70a53aedaca84d078228b3564fdd8f60a586d43f/jsonable/functions.py#L6-L20
|
convert json to csv
|
python
|
def conv_json(self, uri_format="sparql_uri", add_ids=False):
""" converts the class to a json compatable python dictionary
Args:
uri_format('sparql_uri','pyuri'): The format that uri values will
be returned
Returns:
dict: a json compatabile python dictionary
"""
def convert_item(ivalue):
""" converts an idividual value to a json value
Args:
ivalue: value of the item to convert
Returns:
JSON serializable value
"""
nvalue = ivalue
if isinstance(ivalue, BaseRdfDataType):
if ivalue.type == 'uri':
if ivalue.startswith("pyuri") and uri_format == "pyuri":
nvalue = getattr(ivalue, "sparql")
else:
nvalue = getattr(ivalue, uri_format)
else:
nvalue = ivalue.to_json
elif isinstance(ivalue, RdfClassBase):
if ivalue.subject.type == "uri":
nvalue = ivalue.conv_json(uri_format, add_ids)
elif ivalue.subject.type == "bnode":
nvalue = ivalue.conv_json(uri_format, add_ids)
elif isinstance(ivalue, list):
nvalue = []
for item in ivalue:
temp = convert_item(item)
nvalue.append(temp)
return nvalue
rtn_val = {key: convert_item(value) for key, value in self.items()}
#pdb.set_trace()
if add_ids:
if self.subject.type == 'uri':
rtn_val['uri'] = self.subject.sparql_uri
rtn_val['id'] = sha1(rtn_val['uri'].encode()).hexdigest()
#return {key: convert_item(value) for key, value in self.items()}
return rtn_val
|
https://github.com/KnowledgeLinks/rdfframework/blob/9ec32dcc4bed51650a4b392cc5c15100fef7923a/rdfframework/rdfclass/rdfclass.py#L245-L293
|
convert json to csv
|
python
|
def _get_json(value):
"""Convert the given value to a JSON object."""
if hasattr(value, 'replace'):
value = value.replace('\n', ' ')
try:
return json.loads(value)
except json.JSONDecodeError:
# Escape double quotes.
if hasattr(value, 'replace'):
value = value.replace('"', '\\"')
# try putting the value into a string
return json.loads('"{}"'.format(value))
|
https://github.com/genialis/resolwe-runtime-utils/blob/5657d7cf981972a5259b9b475eae220479401001/resolwe_runtime_utils.py#L37-L48
|
convert json to csv
|
python
|
def to_json(self):
"""
Convert to a json-serializable representation.
Returns:
dict: A dict representation that is json-serializable.
"""
return {
"xblock_id": six.text_type(self.xblock_id),
"messages": [message.to_json() for message in self.messages],
"empty": self.empty
}
|
https://github.com/edx/XBlock/blob/368bf46e2c0ee69bbb21817f428c4684936e18ee/xblock/validation.py#L111-L122
|
convert json to csv
|
python
|
def to_json(value, **kwargs):
"""Convert instance to JSON"""
if isinstance(value, HasProperties):
return value.serialize(**kwargs)
try:
return json.loads(json.dumps(value))
except TypeError:
raise TypeError(
"Cannot convert type {} to JSON without calling 'serialize' "
"on an instance of Instance Property and registering a custom "
"serializer".format(value.__class__.__name__)
)
|
https://github.com/seequent/properties/blob/096b07012fff86b0a880c8c018320c3b512751b9/properties/base/instance.py#L161-L172
|
convert json to csv
|
python
|
def json(body, charset='utf-8', **kwargs):
"""Takes JSON formatted data, converting it into native Python objects"""
return json_converter.loads(text(body, charset=charset))
|
https://github.com/hugapi/hug/blob/080901c81576657f82e2432fd4a82f1d0d2f370c/hug/input_format.py#L41-L43
|
convert json to csv
|
python
|
def to_json_str(self):
"""Convert data to json string representation.
Returns:
json representation as string.
"""
adict = dict(vars(self), sort_keys=True)
adict['type'] = self.__class__.__name__
return json.dumps(adict)
|
https://github.com/PythonSanSebastian/docstamp/blob/b43808f2e15351b0b2f0b7eade9c7ef319c9e646/docstamp/model.py#L62-L70
|
convert json to csv
|
python
|
def _convert_dict_to_json(array):
""" Converts array to a json string """
return json.dumps(
array,
skipkeys=False,
allow_nan=False,
indent=None,
separators=(",", ":"),
sort_keys=True,
default=lambda o: o.__dict__,
)
|
https://github.com/Azure/azure-kusto-python/blob/92466a2ae175d6353d1dee3496a02517b2a71a86/azure-kusto-ingest/azure/kusto/ingest/_ingestion_blob_info.py#L70-L80
|
convert json to csv
|
python
|
def to_json(self, path, root_array=True, mode=WRITE_MODE, compression=None):
"""
Saves the sequence to a json file. If root_array is True, then the sequence will be written
to json with an array at the root. If it is False, then the sequence will be converted from
a sequence of (Key, Value) pairs to a dictionary so that the json root is a dictionary.
:param path: path to write file
:param root_array: write json root as an array or dictionary
:param mode: file open mode
"""
with universal_write_open(path, mode=mode, compression=compression) as output:
if root_array:
json.dump(self.to_list(), output)
else:
json.dump(self.to_dict(), output)
|
https://github.com/EntilZha/PyFunctional/blob/ac04e4a8552b0c464a7f492f7c9862424867b63e/functional/pipeline.py#L1509-L1523
|
convert json to csv
|
python
|
def to_json_(self) -> str:
"""Convert the main dataframe to json
:return: json data
:rtype: str
:example: ``ds.to_json_()``
"""
try:
renderer = pytablewriter.JsonTableWriter
data = self._build_export(renderer)
return data
except Exception as e:
self.err(e, "Can not convert data to json")
|
https://github.com/synw/dataswim/blob/4a4a53f80daa7cd8e8409d76a19ce07296269da2/dataswim/data/export.py#L26-L39
|
convert json to csv
|
python
|
def from_json(data):
"""
Convert JSON into a in memory file storage.
Args:
data (str): valid JSON with path and filenames and
the base64 encoding of the file content.
Returns:
InMemoryFiles: in memory file storage
"""
memfiles = InMemoryFiles()
memfiles.files = json.loads(data)
return memfiles
|
https://github.com/Nachtfeuer/pipeline/blob/04ca18c4e95e4349532bb45b768206393e1f2c13/spline/tools/memfiles.py#L84-L97
|
convert json to csv
|
python
|
def export_json(self,
filename,
orient='records'):
"""
Writes an SFrame to a JSON file.
Parameters
----------
filename : string
The location to save the JSON file.
orient : string, optional. Either "records" or "lines"
If orient="records" the file is saved as a single JSON array.
If orient="lines", the file is saves as a JSON value per line.
Examples
--------
The orient parameter describes the expected input format of the JSON
file.
If orient="records", the output will be a single JSON Array where
each array element is a dictionary describing the row.
>>> g
Columns:
a int
b int
Rows: 3
Data:
+---+---+
| a | b |
+---+---+
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
+---+---+
>>> g.export('output.json', orient='records')
>>> !cat output.json
[
{'a':1,'b':1},
{'a':2,'b':2},
{'a':3,'b':3},
]
If orient="rows", each row will be emitted as a JSON dictionary to
each file line.
>>> g
Columns:
a int
b int
Rows: 3
Data:
+---+---+
| a | b |
+---+---+
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
+---+---+
>>> g.export('output.json', orient='rows')
>>> !cat output.json
{'a':1,'b':1}
{'a':2,'b':2}
{'a':3,'b':3}
"""
if orient == "records":
self.pack_columns(dtype=dict).export_csv(
filename, file_header='[', file_footer=']',
header=False, double_quote=False,
quote_level=csv.QUOTE_NONE,
line_prefix=',',
_no_prefix_on_first_value=True)
elif orient == "lines":
self.pack_columns(dtype=dict).export_csv(
filename, header=False, double_quote=False, quote_level=csv.QUOTE_NONE)
else:
raise ValueError("Invalid value for orient parameter (" + str(orient) + ")")
|
https://github.com/apple/turicreate/blob/74514c3f99e25b46f22c6e02977fe3da69221c2e/src/unity/python/turicreate/data_structures/sframe.py#L2919-L2996
|
convert json to csv
|
python
|
def to_json(obj):
"""
Convert obj to json. Used mostly to convert the classes in json_span.py until we switch to nested
dicts (or something better)
:param obj: the object to serialize to json
:return: json string
"""
try:
return json.dumps(obj, default=lambda obj: {k.lower(): v for k, v in obj.__dict__.items()},
sort_keys=False, separators=(',', ':')).encode()
except Exception as e:
logger.info("to_json: ", e, obj)
|
https://github.com/instana/python-sensor/blob/58aecb90924c48bafcbc4f93bd9b7190980918bc/instana/util.py#L75-L87
|
convert json to csv
|
python
|
def to_json(self, validate=False, pretty_print=True, data_path=None):
"""Convert data to JSON
Parameters
----------
data_path : string
If not None, then data is written to a separate file at the
specified path. Note that the ``url`` attribute if the data must
be set independently for the data to load correctly.
Returns
-------
string
Valid Vega JSON.
"""
# TODO: support writing to separate file
return super(self.__class__, self).to_json(validate=validate,
pretty_print=pretty_print)
|
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/data.py#L462-L479
|
convert json to csv
|
python
|
def to_json(self, *args, **kwargs):
"""
Generate a schema and convert it directly to serialized JSON.
:rtype: ``str``
"""
return json.dumps(self.to_schema(), *args, **kwargs)
|
https://github.com/wolverdude/GenSON/blob/76552d23cf9202e8e7c262cb018eb3cb3df686b9/genson/schema/builder.py#L76-L82
|
convert json to csv
|
python
|
def to_json(self, version=Version.latest):
"""Tries to convert an object into a JSON representation and return
the resulting string
An Object can define how it is serialized by overriding the as_version()
implementation. A caller may further define how the object is serialized
by passing in a custom encoder. The default encoder will ignore
properties of an object that are None at the time of serialization.
:param version: The version to which the object must be serialized to.
This will default to the latest version supported by the library.
:type version: str | unicode
"""
return json.dumps(self.as_version(version))
|
https://github.com/RusticiSoftware/TinCanPython/blob/424eedaa6d19221efb1108edb915fc332abbb317/tincan/serializable_base.py#L91-L105
|
convert json to csv
|
python
|
def _data_to_json(data):
"""Convert to json if it isn't already a string.
Args:
data (str): data to convert to json
"""
if type(data) not in [str, unicode]:
data = json.dumps(data)
return data
|
https://github.com/mitodl/PyLmod/blob/b798b86c33d1eb615e7cd4f3457b5c15da1d86e0/pylmod/base.py#L69-L77
|
convert json to csv
|
python
|
def json(cls, res, *args, **kwargs):
"""Parses JSON from a response."""
# if an encoding is already set then use the provided encoding
if res.encoding is None:
res.encoding = cls.determine_json_encoding(res.content[:4])
return parse_json(res.text, *args, **kwargs)
|
https://github.com/streamlink/streamlink/blob/c8ed1daff14ac03195870238b9b900c1109dd5c1/src/streamlink/plugin/api/http_session.py#L98-L103
|
convert json to csv
|
python
|
def transcode(input_filename, output_filename=None, date_format=None):
"""
Convert a JSON or CSV file of input to a JSON stream (.jsons). This
kind of file can be easily uploaded using `luminoso_api.upload`.
"""
if output_filename is None:
# transcode to standard output
output = sys.stdout
else:
if output_filename.endswith('.json'):
logger.warning("Changing .json to .jsons, because this program "
"outputs a JSON stream format that is not "
"technically JSON itself.")
output_filename += 's'
output = open(output_filename, 'w')
for entry in open_json_or_csv_somehow(input_filename,
date_format=date_format):
output.write(json.dumps(entry, ensure_ascii=False).encode('utf-8'))
output.write('\n')
output.close()
|
https://github.com/LuminosoInsight/luminoso-api-client-python/blob/3bedf2a454aee39214c11fbf556ead3eecc27881/luminoso_api/v4_json_stream.py#L36-L56
|
convert json to csv
|
python
|
def to_json(self, X, y):
'''
Reads dataset to csv.
:param X: dataset as list of dict.
:param y: labels.
'''
with gzip.open('%s.gz' % self.path, 'wt') if self.gz else open(
self.path, 'w') as file:
json.dump(list(zip(y, X)), file)
|
https://github.com/MuhammedHasan/sklearn_utils/blob/337c3b7a27f4921d12da496f66a2b83ef582b413/sklearn_utils/utils/skutils_io.py#L48-L57
|
convert json to csv
|
python
|
def encode_json(self, serializable):
"""
Serialize to json a serializable object (Search, Query, Filter, etc).
"""
return json.dumps(serializable.serialize(), cls=self.encoder)
|
https://github.com/aparo/pyes/blob/712eb6095961755067b2b5baa262008ade6584b3/pyes/es.py#L1257-L1261
|
convert json to csv
|
python
|
def json2file(data, filename, encoding='utf-8'):
"""
write json in canonical json format
"""
with codecs.open(filename, "w", encoding=encoding) as f:
json.dump(data, f, ensure_ascii=False, indent=4, sort_keys=True)
|
https://github.com/cnschema/cdata/blob/893e2e1e27b61c8551c8b5f5f9bf05ec61490e23/cdata/core.py#L71-L76
|
convert json to csv
|
python
|
def to_json(self, *args, **kwargs):
"""Convert Entity to JSON."""
return json.dumps(self.serialize(), *args, **kwargs)
|
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/entity.py#L120-L122
|
convert json to csv
|
python
|
def csv(
self,
filepath=None
):
"""*Render the data in CSV format*
**Key Arguments:**
- ``filepath`` -- path to the file to write the csv content to. Default *None*
**Return:**
- ``renderedData`` -- the data rendered in csv format
**Usage:**
To render the data set as csv:
.. code-block:: python
print dataSet.csv()
.. code-block:: text
owner,pet,address
daisy,dog,"belfast, uk"
john,snake,the moon
susan,crocodile,larne
and to save the csv rendering to file:
.. code-block:: python
dataSet.csv("/path/to/myfile.csv")
"""
self.log.debug('starting the ``csv`` method')
renderedData = self._list_of_dictionaries_to_csv("machine")
if filepath and renderedData != "NO MATCH":
# RECURSIVELY CREATE MISSING DIRECTORIES
if not os.path.exists(os.path.dirname(filepath)):
os.makedirs(os.path.dirname(filepath))
writeFile = codecs.open(filepath, encoding='utf-8', mode='w')
writeFile.write(renderedData)
writeFile.close()
self.log.debug('completed the ``csv`` method')
return renderedData
|
https://github.com/thespacedoctor/fundamentals/blob/1d2c007ac74442ec2eabde771cfcacdb9c1ab382/fundamentals/renderer/list_of_dictionaries.py#L94-L142
|
convert json to csv
|
python
|
def to_json(self, path_or_buf=None, orient=None, date_format=None,
double_precision=10, force_ascii=True, date_unit='ms',
default_handler=None, lines=False, compression='infer',
index=True):
"""
Convert the object to a JSON string.
Note NaN's and None will be converted to null and datetime objects
will be converted to UNIX timestamps.
Parameters
----------
path_or_buf : string or file handle, optional
File path or object. If not specified, the result is returned as
a string.
orient : string
Indication of expected JSON string format.
* Series
- default is 'index'
- allowed values are: {'split','records','index','table'}
* DataFrame
- default is 'columns'
- allowed values are:
{'split','records','index','columns','values','table'}
* The format of the JSON string
- 'split' : dict like {'index' -> [index],
'columns' -> [columns], 'data' -> [values]}
- 'records' : list like
[{column -> value}, ... , {column -> value}]
- 'index' : dict like {index -> {column -> value}}
- 'columns' : dict like {column -> {index -> value}}
- 'values' : just the values array
- 'table' : dict like {'schema': {schema}, 'data': {data}}
describing the data, and the data component is
like ``orient='records'``.
.. versionchanged:: 0.20.0
date_format : {None, 'epoch', 'iso'}
Type of date conversion. 'epoch' = epoch milliseconds,
'iso' = ISO8601. The default depends on the `orient`. For
``orient='table'``, the default is 'iso'. For all other orients,
the default is 'epoch'.
double_precision : int, default 10
The number of decimal places to use when encoding
floating point values.
force_ascii : bool, default True
Force encoded string to be ASCII.
date_unit : string, default 'ms' (milliseconds)
The time unit to encode to, governs timestamp and ISO8601
precision. One of 's', 'ms', 'us', 'ns' for second, millisecond,
microsecond, and nanosecond respectively.
default_handler : callable, default None
Handler to call if object cannot otherwise be converted to a
suitable format for JSON. Should receive a single argument which is
the object to convert and return a serialisable object.
lines : bool, default False
If 'orient' is 'records' write out line delimited json format. Will
throw ValueError if incorrect 'orient' since others are not list
like.
.. versionadded:: 0.19.0
compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}
A string representing the compression to use in the output file,
only used when the first argument is a filename. By default, the
compression is inferred from the filename.
.. versionadded:: 0.21.0
.. versionchanged:: 0.24.0
'infer' option added and set to default
index : bool, default True
Whether to include the index values in the JSON string. Not
including the index (``index=False``) is only supported when
orient is 'split' or 'table'.
.. versionadded:: 0.23.0
See Also
--------
read_json
Examples
--------
>>> df = pd.DataFrame([['a', 'b'], ['c', 'd']],
... index=['row 1', 'row 2'],
... columns=['col 1', 'col 2'])
>>> df.to_json(orient='split')
'{"columns":["col 1","col 2"],
"index":["row 1","row 2"],
"data":[["a","b"],["c","d"]]}'
Encoding/decoding a Dataframe using ``'records'`` formatted JSON.
Note that index labels are not preserved with this encoding.
>>> df.to_json(orient='records')
'[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]'
Encoding/decoding a Dataframe using ``'index'`` formatted JSON:
>>> df.to_json(orient='index')
'{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}'
Encoding/decoding a Dataframe using ``'columns'`` formatted JSON:
>>> df.to_json(orient='columns')
'{"col 1":{"row 1":"a","row 2":"c"},"col 2":{"row 1":"b","row 2":"d"}}'
Encoding/decoding a Dataframe using ``'values'`` formatted JSON:
>>> df.to_json(orient='values')
'[["a","b"],["c","d"]]'
Encoding with Table Schema
>>> df.to_json(orient='table')
'{"schema": {"fields": [{"name": "index", "type": "string"},
{"name": "col 1", "type": "string"},
{"name": "col 2", "type": "string"}],
"primaryKey": "index",
"pandas_version": "0.20.0"},
"data": [{"index": "row 1", "col 1": "a", "col 2": "b"},
{"index": "row 2", "col 1": "c", "col 2": "d"}]}'
"""
from pandas.io import json
if date_format is None and orient == 'table':
date_format = 'iso'
elif date_format is None:
date_format = 'epoch'
return json.to_json(path_or_buf=path_or_buf, obj=self, orient=orient,
date_format=date_format,
double_precision=double_precision,
force_ascii=force_ascii, date_unit=date_unit,
default_handler=default_handler,
lines=lines, compression=compression,
index=index)
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L2158-L2302
|
convert json to csv
|
python
|
def _parsecsv(x):
"""Deserialize file-like object containing csv to a Python generator.
"""
for line in x:
# decode as utf-8, whitespace-strip and split on delimiter
yield line.decode('utf-8').strip().split(config.DELIMITER)
|
https://github.com/gisgroup/statbank-python/blob/3678820d8da35f225d706ea5096c1f08bf0b9c68/statbank/request.py#L62-L67
|
convert json to csv
|
python
|
def json2csv(json_str, show_header=False, separator='\t'):
"""
Format a json string to csv like.
:param json_str: json object string
:param show_header: can returns csv header line
:param separator: csv column format separator
:return: if show_header=False: a string like csv formatting;
if show_header=True: a tuple (header, csv string)
"""
json_obj = json.loads(json_str)
cols = [col for col in json_obj.keys()]
vals = [str(json_obj.get(col)) for col in cols]
header = None
if show_header:
header = separator.join(cols)
values = separator.join(vals)
return (header, values) if show_header else values
|
https://github.com/Vito2015/pyextend/blob/36861dfe1087e437ffe9b5a1da9345c85b4fa4a1/pyextend/core/json2csv.py#L6-L23
|
convert json to csv
|
python
|
def to_json(self, path: Optional[str] = None, **kwargs) -> str:
"""Convert to JSON representation.
Parameters
----------
path: Where to write the JSON.
Returns
-------
The JSON representation.
"""
from .io import save_json
return save_json(self, path, **kwargs)
|
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_collection.py#L171-L183
|
convert json to csv
|
python
|
def csv_format(csv_data, c_headers=None, r_headers=None, rows=None, **kwargs):
"""
Format csv rows parsed to Dict or Array
"""
result = None
c_headers = [] if c_headers is None else c_headers
r_headers = [] if r_headers is None else r_headers
rows = [] if rows is None else rows
result_format = kwargs.get('result_format', ARRAY_RAW_FORMAT)
# DICT FORMAT
if result_format == DICT_FORMAT:
result = csv_dict_format(csv_data, c_headers, r_headers)
# ARRAY_RAW_FORMAT
elif result_format == ARRAY_RAW_FORMAT:
result = rows
# ARRAY_CLEAN_FORMAT
elif result_format == ARRAY_CLEAN_FORMAT:
result = csv_array_clean_format(csv_data, c_headers, r_headers)
else:
result = None
# DEFAULT
if result and result_format < DICT_FORMAT:
result = [result]
return result
|
https://github.com/Datary/scrapbag/blob/3a4f9824ab6fe21121214ba9963690618da2c9de/scrapbag/csvs.py#L385-L415
|
convert json to csv
|
python
|
def to_json(self):
"""
Returns a json representation
"""
data = {}
for k, v in self.__dict__.items():
if not k.startswith('_'):
# values not serializable, should be converted to strings
if isinstance(v, datetime):
v = utils.datetime_to_string(v)
elif isinstance(v, date):
v = utils.date_to_string(v)
elif isinstance(v, uuid.UUID):
v = str(v)
elif isinstance(v, Decimal):
v = str(v)
data[k] = v
return data
|
https://github.com/Riffstation/flask-philo/blob/76c9d562edb4a77010c8da6dfdb6489fa29cbc9e/flask_philo/serializers.py#L102-L119
|
convert json to csv
|
python
|
def csv(self, text=TEXT, sep=',', index=True, float_fmt="%.2g"):
""" Generate a CSV table from the table data. """
return self._data.to_csv(sep=sep, index=index, float_format=float_fmt)
|
https://github.com/dhondta/tinyscript/blob/624a0718db698899e7bc3ba6ac694baed251e81d/tinyscript/report/__init__.py#L191-L193
|
convert json to csv
|
python
|
def sobject_to_json(obj, key_to_lower=False):
"""
Converts a suds object to a JSON string.
:param obj: suds object
:param key_to_lower: If set, changes index key name to lower case.
:return: json object
"""
import json
data = sobject_to_dict(obj, key_to_lower=key_to_lower, json_serialize=True)
return json.dumps(data)
|
https://github.com/python-fedex-devs/python-fedex/blob/7ea2ca80c362f5dbbc8d959ab47648c7a4ab24eb/fedex/tools/conversion.py#L84-L93
|
convert json to csv
|
python
|
def to_json(value, pretty=False):
"""
Serializes the given value to JSON.
:param value: the value to serialize
:param pretty:
whether or not to format the output in a more human-readable way; if
not specified, defaults to ``False``
:type pretty: bool
:rtype: str
"""
options = {
'sort_keys': False,
'cls': BasicJSONEncoder,
}
if pretty:
options['indent'] = 2
options['separators'] = (',', ': ')
return json.dumps(value, **options)
|
https://github.com/jayclassless/basicserial/blob/da779edd955ba1009d14fae4e5926e29ad112b9d/src/basicserial/__init__.py#L80-L100
|
convert json to csv
|
python
|
def convert_json_node(self, json_input):
"""
Dispatch JSON input according to the outermost type and process it
to generate the super awesome HTML format.
We try to adhere to duck typing such that users can just pass all kinds
of funky objects to json2html that *behave* like dicts and lists and other
basic JSON types.
"""
if type(json_input) in text_types:
if self.escape:
return cgi.escape(text(json_input))
else:
return text(json_input)
if hasattr(json_input, 'items'):
return self.convert_object(json_input)
if hasattr(json_input, '__iter__') and hasattr(json_input, '__getitem__'):
return self.convert_list(json_input)
return text(json_input)
|
https://github.com/softvar/json2html/blob/7070939172f1afd5c11c664e6cfece280cfde7e6/json2html/jsonconv.py#L86-L103
|
convert json to csv
|
python
|
def _convert_json(obj):
'''
Converts from the JSON output provided by ovs-vsctl into a usable Python
object tree. In particular, sets and maps are converted from lists to
actual sets or maps.
Args:
obj: Object that shall be recursively converted.
Returns:
Converted version of object.
'''
if isinstance(obj, dict):
return {_convert_json(key): _convert_json(val)
for (key, val) in six.iteritems(obj)}
elif isinstance(obj, list) and len(obj) == 2:
first = obj[0]
second = obj[1]
if first == 'set' and isinstance(second, list):
return [_convert_json(elem) for elem in second]
elif first == 'map' and isinstance(second, list):
for elem in second:
if not isinstance(elem, list) or len(elem) != 2:
return obj
return {elem[0]: _convert_json(elem[1]) for elem in second}
else:
return obj
elif isinstance(obj, list):
return [_convert_json(elem) for elem in obj]
else:
return obj
|
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/openvswitch.py#L99-L129
|
convert json to csv
|
python
|
def to_json(data, pretty):
"""
Converts object to JSON formatted string with typeToken adapter
:param data: A dictionary to convert to JSON string
:param pretty: A boolean deciding whether or not to pretty format the JSON string
:return: The JSON string
"""
if pretty:
return json.dumps(data, sort_keys=True, indent=4, separators=(',', ': '))
return json.dumps(data)
|
https://github.com/draperunner/fjlc/blob/d2cc8cf1244984e7caf0bf95b11ed1677a94c994/fjlc/utils/json_utils.py#L6-L15
|
convert json to csv
|
python
|
def to_json(self, drop_null=True, camel=False, indent=None, sort_keys=False):
"""Serialize self as JSON
Args:
drop_null: bool, default True. Remove 'empty' attributes. See
to_dict.
camel: bool, default True. Convert keys to camelCase.
indent: int, default None. See json built-in.
sort_keys: bool, default False. See json built-in.
Return:
str: object params.
"""
return json.dumps(self.to_dict(drop_null, camel), indent=indent,
sort_keys=sort_keys)
|
https://github.com/bmweiner/skillful/blob/8646f54faf62cb63f165f7699b8ace5b4a08233c/skillful/interface.py#L29-L43
|
convert json to csv
|
python
|
def to_json(data, compress=False):
"""Converts the output of `generate(...)` to formatted json.
Floats are rounded to three decimals and positional vectors are printed on
one line with some whitespace buffer.
"""
return json.compress(data) if compress else json.dumps(data)
|
https://github.com/patrickfuller/imolecule/blob/07e91600c805123935a78782871414754bd3696d/imolecule/notebook.py#L179-L185
|
convert json to csv
|
python
|
def to_json(self, obj, host=None, indent=None):
"""Recursively encode `obj` and convert it to a JSON string.
:param obj:
Object to encode.
:param host:
hostname where this object is being encoded.
:type host: str"""
if indent:
return json.dumps(deep_map(lambda o: self.encode(o, host), obj),
indent=indent)
else:
return json.dumps(deep_map(lambda o: self.encode(o, host), obj))
|
https://github.com/NLeSC/noodles/blob/3759e24e6e54a3a1a364431309dbb1061f617c04/noodles/serial/registry.py#L236-L249
|
convert json to csv
|
python
|
def from_csv(self, input_data):
"""
Reads csv format input data and converts to json.
"""
reformatted_data = []
for (i,row) in enumerate(input_data):
if i==0:
headers = row
else:
data_row = {}
for (j,h) in enumerate(headers):
data_row.update({h : row[j]})
reformatted_data.append(data_row)
return reformatted_data
|
https://github.com/VikParuchuri/percept/blob/90304ba82053e2a9ad2bacaab3479403d3923bcf/percept/datahandlers/formatters.py#L90-L103
|
convert json to csv
|
python
|
def file2json(self, jsonfile=None):
""" Convert entire lte file into json like format
USAGE: 1: kwsdictstr = file2json()
2: kwsdictstr = file2json(jsonfile = 'somefile')
show pretty format with pipeline: | jshon, or | pjson
if jsonfile is defined, dump to defined file before returning json string
:param jsonfile: filename to dump json strings
"""
kwslist = self.detectAllKws()
kwsdict = {}
idx = 0
for kw in sorted(kwslist, key=str.lower):
# print kw
idx += 1
tdict = self.getKwAsDict(kw)
self.rpn2val(tdict)
kwsdict.update(tdict)
if kw not in self.ctrlconf_dict:
ctrlconf = self.getKwCtrlConf(kw, fmt='dict')
if ctrlconf is not None:
self.ctrlconf_dict.update({kw: ctrlconf})
kwsdict.update(self.prestrdict)
ctrlconfdict = {'_epics': self.ctrlconf_dict} # all epics contrl config in self.ctrlconfdict
kwsdict.update(ctrlconfdict)
try:
with open(os.path.expanduser(jsonfile), 'w') as outfile:
json.dump(kwsdict, outfile)
except:
pass
return json.dumps(kwsdict)
|
https://github.com/archman/beamline/blob/417bc5dc13e754bc89d246427984590fced64d07/beamline/lattice.py#L319-L350
|
convert json to csv
|
python
|
def format_to_csv(filename, skiprows=0, delimiter=""):
"""Convert a file to a .csv file"""
if not delimiter:
delimiter = "\t"
input_file = open(filename, "r")
if skiprows:
[input_file.readline() for _ in range(skiprows)]
new_filename = os.path.splitext(filename)[0] + ".csv"
output_file = open(new_filename, "w")
header = input_file.readline().split()
reader = csv.DictReader(input_file, fieldnames=header, delimiter=delimiter)
writer = csv.DictWriter(output_file, fieldnames=header, delimiter=",")
# Write header
writer.writerow(dict((x, x) for x in header))
# Write rows
for line in reader:
if None in line: del line[None]
writer.writerow(line)
input_file.close()
output_file.close()
print "Saved %s." % new_filename
|
https://github.com/TaurusOlson/incisive/blob/25bb9f53495985c1416c82e26f54158df4050cb0/incisive/core.py#L155-L182
|
convert json to csv
|
python
|
def to_json(value, **kwargs):
"""Convert array to JSON list
nan values are converted to string 'nan', inf values to 'inf'.
"""
def _recurse_list(val):
if val and isinstance(val[0], list):
return [_recurse_list(v) for v in val]
return [str(v) if np.isnan(v) or np.isinf(v) else v for v in val]
return _recurse_list(value.tolist())
|
https://github.com/seequent/properties/blob/096b07012fff86b0a880c8c018320c3b512751b9/properties/math.py#L227-L236
|
convert json to csv
|
python
|
def to_json(obj, pretty=False):
"""Converts an object to JSON, using the defaults specified in register_json_default.
:obj: the object to convert to JSON
:pretty: if True, extra whitespace is added to make the output easier to read
"""
sort_keys = False
indent = None
separators = (",", ":")
if isinstance(pretty, tuple):
sort_keys, indent, separators = pretty
elif pretty is True:
sort_keys = True
indent = 2
separators = (", ", ": ")
return json.dumps(obj, sort_keys=sort_keys, indent=indent, separators=separators,
default=json_default)
|
https://github.com/treycucco/bidon/blob/d9f24596841d0e69e8ac70a1d1a1deecea95e340/bidon/util/__init__.py#L78-L96
|
convert json to csv
|
python
|
def format_json(json_object, indent):
""" Pretty-format json data """
indent_str = "\n" + " " * indent
json_str = json.dumps(json_object, indent=2, default=serialize_json_var)
return indent_str.join(json_str.split("\n"))
|
https://github.com/stevearc/dql/blob/e9d3aa22873076dae5ebd02e35318aa996b1e56a/dql/output.py#L55-L59
|
convert json to csv
|
python
|
def get_csv_from_json(d):
"""
Get CSV values when mixed into json data. Pull out the CSV data and put it into a dictionary.
:param dict d: JSON with CSV values
:return dict: CSV values. (i.e. { CSVFilename1: { Column1: [Values], Column2: [Values] }, CSVFilename2: ... }
"""
logger_jsons.info("enter get_csv_from_json")
csv_data = OrderedDict()
if "paleoData" in d:
csv_data = _get_csv_from_section(d, "paleoData", csv_data)
if "chronData" in d:
csv_data = _get_csv_from_section(d, "chronData", csv_data)
logger_jsons.info("exit get_csv_from_json")
return csv_data
|
https://github.com/nickmckay/LiPD-utilities/blob/5dab6bbeffc5effd68e3a6beaca6b76aa928e860/Python/lipd/jsons.py#L231-L247
|
convert json to csv
|
python
|
def arg_to_json(arg):
"""
Perform necessary JSON conversion on the arg.
"""
conversion = json_conversions.get(type(arg))
if conversion:
return conversion(arg)
for type_ in subclass_conversions:
if isinstance(arg, type_):
return json_conversions[type_](arg)
return json_conversions[str](arg)
|
https://github.com/django-salesforce/django-salesforce/blob/6fd5643dba69d49c5881de50875cf90204a8f808/salesforce/dbapi/driver.py#L748-L758
|
convert json to csv
|
python
|
def csv_to_numpy(string_like, dtype=None): # type: (str) -> np.array
"""Convert a CSV object to a numpy array.
Args:
string_like (str): CSV string.
dtype (dtype, optional): Data type of the resulting array. If None, the dtypes will be determined by the
contents of each column, individually. This argument can only be used to
'upcast' the array. For downcasting, use the .astype(t) method.
Returns:
(np.array): numpy array
"""
stream = StringIO(string_like)
return np.genfromtxt(stream, dtype=dtype, delimiter=',')
|
https://github.com/aws/sagemaker-containers/blob/0030f07abbaf22a55d986d97274d7a8d1aa1f10c/src/sagemaker_containers/_encoders.py#L89-L101
|
convert json to csv
|
python
|
def _as_json(self, **kwargs) -> str:
""" Convert a JsonObj into straight json text
:param kwargs: json.dumps arguments
:return: JSON formatted str
"""
return json.dumps(self, default=self._default, **kwargs)
|
https://github.com/hsolbrig/jsonasobj/blob/13ac0838bb85d47bb6b8a667a4c2c69dba93e87d/src/jsonasobj/jsonobj.py#L56-L62
|
convert json to csv
|
python
|
def rec2csv(r, filename):
"""Export a recarray *r* to a CSV file *filename*"""
names = r.dtype.names
def translate(x):
if x is None or str(x).lower == "none":
x = ""
return str(x)
with open(filename, "w") as csv:
csv.write(",".join([str(x) for x in names])+"\n")
for data in r:
csv.write(",".join([translate(x) for x in data])+"\n")
#print "Wrote CSV table %r" % filename
return filename
|
https://github.com/orbeckst/RecSQL/blob/6acbf821022361719391697c9c2f0822f9f8022a/recsql/export.py#L24-L36
|
convert json to csv
|
python
|
def json_decode(s: str) -> Any:
"""
Decodes an object from JSON using our custom decoder.
"""
try:
return json.JSONDecoder(object_hook=json_class_decoder_hook).decode(s)
except json.JSONDecodeError:
log.warning("Failed to decode JSON (returning None): {!r}", s)
return None
|
https://github.com/RudolfCardinal/pythonlib/blob/0b84cb35f38bd7d8723958dae51b480a829b7227/cardinal_pythonlib/json/serialize.py#L636-L644
|
convert json to csv
|
python
|
def iterjson(text):
"""Decode JSON stream."""
decoder = json.JSONDecoder()
while text:
obj, ndx = decoder.raw_decode(text)
if not isinstance(obj, dict):
raise ValueError()
text = text[ndx:].lstrip('\r\n')
yield obj
|
https://github.com/genialis/resolwe/blob/f7bb54932c81ec0cfc5b5e80d238fceaeaa48d86/resolwe/flow/executors/run.py#L32-L42
|
convert json to csv
|
python
|
def convert_from_json(self, md, entityname, rsaprivatekey):
# type: (EncryptionMetadata, dict, str,
# cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey)
# -> None
"""Read metadata json into objects
:param EncryptionMetadata self: this
:param dict md: metadata dictionary
:param str entityname: entity name
:param rsaprivatekey: RSA private key
:type rsaprivatekey:
cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey
"""
# populate from encryption data
ed = json.loads(md[EncryptionMetadata._METADATA_KEY_NAME])
try:
self.blobxfer_extensions = EncryptionBlobxferExtensions(
pre_encrypted_content_md5=ed[
EncryptionMetadata._JSON_KEY_BLOBXFER_EXTENSIONS][
EncryptionMetadata._JSON_KEY_PREENCRYPTED_MD5],
)
except KeyError:
pass
self.content_encryption_iv = base64.b64decode(
ed[EncryptionMetadata._JSON_KEY_CONTENT_IV])
self.encryption_agent = EncryptionAgent(
encryption_algorithm=ed[
EncryptionMetadata._JSON_KEY_ENCRYPTION_AGENT][
EncryptionMetadata._JSON_KEY_ENCRYPTION_ALGORITHM],
protocol=ed[
EncryptionMetadata._JSON_KEY_ENCRYPTION_AGENT][
EncryptionMetadata._JSON_KEY_PROTOCOL],
)
if (self.encryption_agent.encryption_algorithm !=
EncryptionMetadata._ENCRYPTION_ALGORITHM):
raise RuntimeError('{}: unknown block cipher: {}'.format(
entityname, self.encryption_agent.encryption_algorithm))
if (self.encryption_agent.protocol !=
EncryptionMetadata._ENCRYPTION_PROTOCOL_VERSION):
raise RuntimeError('{}: unknown encryption protocol: {}'.format(
entityname, self.encryption_agent.protocol))
self.encryption_authentication = EncryptionAuthentication(
algorithm=ed[
EncryptionMetadata._JSON_KEY_INTEGRITY_AUTH][
EncryptionMetadata._JSON_KEY_ALGORITHM],
message_authentication_code=ed[
EncryptionMetadata._JSON_KEY_INTEGRITY_AUTH][
EncryptionMetadata._JSON_KEY_MAC],
)
if (self.encryption_authentication.algorithm !=
EncryptionMetadata._AUTH_ALGORITHM):
raise RuntimeError(
'{}: unknown integrity/auth method: {}'.format(
entityname, self.encryption_authentication.algorithm))
self.encryption_mode = ed[
EncryptionMetadata._JSON_KEY_ENCRYPTION_MODE]
if self.encryption_mode != EncryptionMetadata._ENCRYPTION_MODE:
raise RuntimeError(
'{}: unknown encryption mode: {}'.format(
entityname, self.encryption_mode))
try:
_eak = ed[EncryptionMetadata._JSON_KEY_WRAPPEDCONTENTKEY][
EncryptionMetadata._JSON_KEY_ENCRYPTED_AUTHKEY]
except KeyError:
_eak = None
self.wrapped_content_key = EncryptionWrappedContentKey(
algorithm=ed[
EncryptionMetadata._JSON_KEY_WRAPPEDCONTENTKEY][
EncryptionMetadata._JSON_KEY_ALGORITHM],
encrypted_authentication_key=_eak,
encrypted_key=ed[
EncryptionMetadata._JSON_KEY_WRAPPEDCONTENTKEY][
EncryptionMetadata._JSON_KEY_ENCRYPTED_KEY],
key_id=ed[
EncryptionMetadata._JSON_KEY_WRAPPEDCONTENTKEY][
EncryptionMetadata._JSON_KEY_KEYID],
)
if (self.wrapped_content_key.algorithm !=
EncryptionMetadata._ENCRYPTED_KEY_SCHEME):
raise RuntimeError('{}: unknown key encryption scheme: {}'.format(
entityname, self.wrapped_content_key.algorithm))
# if RSA key is a public key, stop here as keys cannot be decrypted
if rsaprivatekey is None:
return
# decrypt symmetric key
self._symkey = blobxfer.operations.crypto.\
rsa_decrypt_base64_encoded_key(
rsaprivatekey, self.wrapped_content_key.encrypted_key)
# decrypt signing key, if it exists
if blobxfer.util.is_not_empty(
self.wrapped_content_key.encrypted_authentication_key):
self._signkey = blobxfer.operations.crypto.\
rsa_decrypt_base64_encoded_key(
rsaprivatekey,
self.wrapped_content_key.encrypted_authentication_key)
else:
self._signkey = None
# populate from encryption data authentication
try:
eda = json.loads(md[EncryptionMetadata._METADATA_KEY_AUTH_NAME])
except KeyError:
pass
else:
self.encryption_metadata_authentication = \
EncryptionMetadataAuthentication(
algorithm=eda[
EncryptionMetadata._JSON_KEY_AUTH_METAAUTH][
EncryptionMetadata._JSON_KEY_ALGORITHM],
encoding=eda[
EncryptionMetadata._JSON_KEY_AUTH_METAAUTH][
EncryptionMetadata._JSON_KEY_AUTH_ENCODING],
message_authentication_code=eda[
EncryptionMetadata._JSON_KEY_AUTH_METAAUTH][
EncryptionMetadata._JSON_KEY_MAC],
)
if (self.encryption_metadata_authentication.algorithm !=
EncryptionMetadata._AUTH_ALGORITHM):
raise RuntimeError(
'{}: unknown integrity/auth method: {}'.format(
entityname,
self.encryption_metadata_authentication.algorithm))
# verify hmac
authhmac = base64.b64decode(
self.encryption_metadata_authentication.
message_authentication_code)
bmeta = md[EncryptionMetadata._METADATA_KEY_NAME].encode(
self.encryption_metadata_authentication.encoding)
hmacsha256 = hmac.new(self._signkey, digestmod=hashlib.sha256)
hmacsha256.update(bmeta)
if hmacsha256.digest() != authhmac:
raise RuntimeError(
'{}: encryption metadata authentication failed'.format(
entityname))
|
https://github.com/Azure/blobxfer/blob/3eccbe7530cc6a20ab2d30f9e034b6f021817f34/blobxfer/models/crypto.py#L190-L321
|
convert json to csv
|
python
|
def _object_to_json(obj):
"""Convert objects that cannot be natively serialized into JSON
into their string representation
For datetime based objects convert them into their ISO formatted
string as specified by :meth:`datetime.datetime.isoformat`.
:param obj: object to convert into a JSON via getting its string
representation.
:type obj: object
:return: String value representing the given object ready to be
encoded into a JSON.
:rtype: str
"""
if isinstance(obj, datetime.datetime):
return obj.isoformat()
return repr(obj)
|
https://github.com/severb/graypy/blob/32018c41a792e71a8de9f9e14f770d1bc60c2313/graypy/handler.py#L338-L355
|
convert json to csv
|
python
|
def convert(self, json="", table_attributes='border="1"', clubbing=True, encode=False, escape=True):
"""
Convert JSON to HTML Table format
"""
# table attributes such as class, id, data-attr-*, etc.
# eg: table_attributes = 'class = "table table-bordered sortable"'
self.table_init_markup = "<table %s>" % table_attributes
self.clubbing = clubbing
self.escape = escape
json_input = None
if not json:
json_input = {}
elif type(json) in text_types:
try:
json_input = json_parser.loads(json, object_pairs_hook=OrderedDict)
except ValueError as e:
#so the string passed here is actually not a json string
# - let's analyze whether we want to pass on the error or use the string as-is as a text node
if u"Expecting property name" in text(e):
#if this specific json loads error is raised, then the user probably actually wanted to pass json, but made a mistake
raise e
json_input = json
else:
json_input = json
converted = self.convert_json_node(json_input)
if encode:
return converted.encode('ascii', 'xmlcharrefreplace')
return converted
|
https://github.com/softvar/json2html/blob/7070939172f1afd5c11c664e6cfece280cfde7e6/json2html/jsonconv.py#L37-L64
|
convert json to csv
|
python
|
def _convert_list_to_json(array):
""" Converts array to a json string """
return json.dumps(array, skipkeys=False, allow_nan=False, indent=None, separators=(",", ":"))
|
https://github.com/Azure/azure-kusto-python/blob/92466a2ae175d6353d1dee3496a02517b2a71a86/azure-kusto-ingest/azure/kusto/ingest/_ingestion_blob_info.py#L65-L67
|
convert json to csv
|
python
|
def is_json_compat(value):
"""
Check that the value is either a JSON decodable string or a dict
that can be encoded into a JSON.
Raises ValueError when validation fails.
"""
try:
value = json.loads(value)
except ValueError as e:
raise ValueError('JSON decoding error: ' + str(e))
except TypeError:
# Check that the value can be serialized back into json.
try:
json.dumps(value)
except TypeError as e:
raise ValueError(
'must be a JSON serializable object: ' + str(e))
if not isinstance(value, dict):
raise ValueError(
'must be specified as a JSON serializable dict or a '
'JSON deserializable string'
)
return True
|
https://github.com/calmjs/calmjs/blob/b9b407c2b6a7662da64bccba93bb8d92e7a5fafd/src/calmjs/dist.py#L37-L63
|
convert json to csv
|
python
|
def to_json(self, value):
"""Subclasses should override this method for JSON encoding."""
if not self.is_valid(value):
raise ex.SerializeException('Invalid value: {}'.format(value))
return value
|
https://github.com/okpy/ok-client/blob/517f57dd76284af40ba9766e42d9222b644afd9c/client/sources/common/core.py#L50-L54
|
convert json to csv
|
python
|
def get_json(filename):
""" Return a json value of the exif
Get a filename and return a JSON object
Arguments:
filename {string} -- your filename
Returns:
[JSON] -- Return a JSON object
"""
check_if_this_file_exist(filename)
#Process this function
filename = os.path.abspath(filename)
s = command_line(['exiftool', '-G', '-j', '-sort', filename])
if s:
#convert bytes to string
s = s.decode('utf-8').rstrip('\r\n')
return json.loads(s)
else:
return s
|
https://github.com/guinslym/pyexifinfo/blob/56e5b44e77ee17b018a530ec858f19a9c6c07018/pyexifinfo/pyexifinfo.py#L100-L121
|
convert json to csv
|
python
|
def open_json_or_csv_somehow(filename, date_format=None):
"""
Deduce the format of a file, within reason.
- If the filename ends with .csv or .txt, it's csv.
- If the filename ends with .jsons, it's a JSON stream (conveniently the
format we want to output).
- If the filename ends with .json, it could be a legitimate JSON file, or
it could be a JSON stream, following a nonstandard convention that many
people including us are guilty of. In that case:
- If the first line is a complete JSON document, and there is more in the
file besides the first line, then it is a JSON stream.
- Otherwise, it is probably really JSON.
- If the filename does not end with .json, .jsons, or .csv, we have to guess
whether it's still CSV or tab-separated values or something like that.
If it's JSON, the first character would almost certainly have to be a
bracket or a brace. If it isn't, assume it's CSV or similar.
"""
fileformat = None
if filename.endswith('.csv'):
fileformat = 'csv'
elif filename.endswith('.jsons'):
fileformat = 'jsons'
else:
with open(filename) as opened:
line = opened.readline()
if line[0] not in '{[' and not filename.endswith('.json'):
fileformat = 'csv'
else:
if (line.count('{') == line.count('}') and
line.count('[') == line.count(']')):
# This line contains a complete JSON document. This probably
# means it's in linewise JSON ('.jsons') format, unless the
# whole file is on one line.
char = ' '
while char.isspace():
char = opened.read()
if char == '':
fileformat = 'json'
break
if fileformat is None:
fileformat = 'jsons'
else:
fileformat = 'json'
if fileformat == 'json':
stream = json.load(open(filename), encoding='utf-8')
elif fileformat == 'csv':
stream = open_csv_somehow(filename)
else:
stream = stream_json_lines(filename)
return _normalize_data(stream, date_format=date_format)
|
https://github.com/LuminosoInsight/luminoso-api-client-python/blob/3bedf2a454aee39214c11fbf556ead3eecc27881/luminoso_api/v4_json_stream.py#L73-L125
|
convert json to csv
|
python
|
def to_json(self):
"""
Convert to a JSON string.
"""
obj = {
"vertices": [
{
"id": vertex.id,
"annotation": vertex.annotation,
}
for vertex in self.vertices
],
"edges": [
{
"id": edge.id,
"annotation": edge.annotation,
"head": edge.head,
"tail": edge.tail,
}
for edge in self._edges
],
}
# Ensure that we always return unicode output on Python 2.
return six.text_type(json.dumps(obj, ensure_ascii=False))
|
https://github.com/mdickinson/refcycle/blob/627fad74c74efc601209c96405f8118cd99b2241/refcycle/annotated_graph.py#L199-L223
|
convert json to csv
|
python
|
def to_json(self):
"""Convert to json serializable dictionary.
Returns:
dict: dictionary of descriptor
"""
d, ps = self._to_json()
if len(ps) == 0:
return {"name": d}
else:
return {"name": d, "args": ps}
|
https://github.com/mordred-descriptor/mordred/blob/2848b088fd7b6735590242b5e22573babc724f10/mordred/_base/descriptor.py#L94-L105
|
convert json to csv
|
python
|
def to_json(self, content, pretty_print=False):
""" Convert a string to a JSON object
``content`` String content to convert into JSON
``pretty_print`` If defined, will output JSON is pretty print format
"""
if PY3:
if isinstance(content, bytes):
content = content.decode(encoding='utf-8')
if pretty_print:
json_ = self._json_pretty_print(content)
else:
json_ = json.loads(content)
logger.info('To JSON using : content=%s ' % (content))
logger.info('To JSON using : pretty_print=%s ' % (pretty_print))
return json_
|
https://github.com/bulkan/robotframework-requests/blob/11baa3277f1cb728712e26d996200703c15254a8/src/RequestsLibrary/RequestsKeywords.py#L460-L477
|
convert json to csv
|
python
|
def from_json(cls, json_data):
"""Tries to convert a JSON representation to an object of the same
type as self
A class can provide a _fromJSON implementation in order to do specific
type checking or other custom implementation details. This method
will throw a ValueError for invalid JSON, a TypeError for
improperly constructed, but valid JSON, and any custom errors
that can be be propagated from class constructors.
:param json_data: The JSON string to convert
:type json_data: str | unicode
:raises: TypeError, ValueError, LanguageMapInitError
"""
data = json.loads(json_data)
result = cls(data)
if hasattr(result, "_from_json"):
result._from_json()
return result
|
https://github.com/RusticiSoftware/TinCanPython/blob/424eedaa6d19221efb1108edb915fc332abbb317/tincan/serializable_base.py#L70-L89
|
convert json to csv
|
python
|
def string2json(self, string):
"""Convert json into its string representation.
Used for writing outputs to markdown."""
kwargs = {
'cls': BytesEncoder, # use the IPython bytes encoder
'indent': 1,
'sort_keys': True,
'separators': (',', ': '),
}
return cast_unicode(json.dumps(string, **kwargs), 'utf-8')
|
https://github.com/aaren/notedown/blob/1e920c7e4ecbe47420c12eed3d5bcae735121222/notedown/notedown.py#L461-L470
|
convert json to csv
|
python
|
def to_json(df, x, y):
"""Format output for json response."""
values = []
for i, row in df.iterrows():
values.append({
"x": row[x],
"y": row[y]
})
if df.empty:
return {"result": [{"x": 0, "y": 0}], "date": False}
return {"result": values, "date": False}
|
https://github.com/stitchfix/pyxley/blob/2dab00022d977d986169cd8a629b3a2f91be893f/pyxley/charts/mg/barchart.py#L58-L70
|
convert json to csv
|
python
|
def format_to_json(data):
"""Converts `data` into json
If stdout is a tty it performs a pretty print.
"""
if sys.stdout.isatty():
return json.dumps(data, indent=4, separators=(',', ': '))
else:
return json.dumps(data)
|
https://github.com/Yelp/kafka-utils/blob/cdb4d64308f3079ee0873250bf7b34d0d94eca50/kafka_utils/util/__init__.py#L141-L148
|
convert json to csv
|
python
|
def _csv_to_nodes_dict(nodes_csv):
"""Convert CSV to a list of dicts formatted for os_cloud_config
Given a CSV file in the format below, convert it into the
structure expected by os_could_config JSON files.
pm_type, pm_addr, pm_user, pm_password, mac
"""
data = []
for row in csv.reader(nodes_csv):
node = {
"pm_user": row[2],
"pm_addr": row[1],
"pm_password": row[3],
"pm_type": row[0],
"mac": [
row[4]
]
}
data.append(node)
return data
|
https://github.com/rdo-management/python-rdomanager-oscplugin/blob/165a166fb2e5a2598380779b35812b8b8478c4fb/rdomanager_oscplugin/v1/baremetal.py#L35-L58
|
convert json to csv
|
python
|
def object_to_json(obj):
"""Convert object that cannot be natively serialized by python to JSON representation."""
if isinstance(obj, (datetime.datetime, datetime.date, datetime.time)):
return obj.isoformat()
return str(obj)
|
https://github.com/keeprocking/pygelf/blob/c851a277f86a239a6632683fd56dfb2300b353eb/pygelf/gelf.py#L70-L74
|
convert json to csv
|
python
|
def csv(self, path, schema=None, sep=None, encoding=None, quote=None, escape=None,
comment=None, header=None, inferSchema=None, ignoreLeadingWhiteSpace=None,
ignoreTrailingWhiteSpace=None, nullValue=None, nanValue=None, positiveInf=None,
negativeInf=None, dateFormat=None, timestampFormat=None, maxColumns=None,
maxCharsPerColumn=None, maxMalformedLogPerPartition=None, mode=None,
columnNameOfCorruptRecord=None, multiLine=None, charToEscapeQuoteEscaping=None,
enforceSchema=None, emptyValue=None, locale=None, lineSep=None):
r"""Loads a CSV file stream and returns the result as a :class:`DataFrame`.
This function will go through the input once to determine the input schema if
``inferSchema`` is enabled. To avoid going through the entire data once, disable
``inferSchema`` option or specify the schema explicitly using ``schema``.
.. note:: Evolving.
:param path: string, or list of strings, for input path(s).
:param schema: an optional :class:`pyspark.sql.types.StructType` for the input schema
or a DDL-formatted string (For example ``col0 INT, col1 DOUBLE``).
:param sep: sets a single character as a separator for each field and value.
If None is set, it uses the default value, ``,``.
:param encoding: decodes the CSV files by the given encoding type. If None is set,
it uses the default value, ``UTF-8``.
:param quote: sets a single character used for escaping quoted values where the
separator can be part of the value. If None is set, it uses the default
value, ``"``. If you would like to turn off quotations, you need to set an
empty string.
:param escape: sets a single character used for escaping quotes inside an already
quoted value. If None is set, it uses the default value, ``\``.
:param comment: sets a single character used for skipping lines beginning with this
character. By default (None), it is disabled.
:param header: uses the first line as names of columns. If None is set, it uses the
default value, ``false``.
:param inferSchema: infers the input schema automatically from data. It requires one extra
pass over the data. If None is set, it uses the default value, ``false``.
:param enforceSchema: If it is set to ``true``, the specified or inferred schema will be
forcibly applied to datasource files, and headers in CSV files will be
ignored. If the option is set to ``false``, the schema will be
validated against all headers in CSV files or the first header in RDD
if the ``header`` option is set to ``true``. Field names in the schema
and column names in CSV headers are checked by their positions
taking into account ``spark.sql.caseSensitive``. If None is set,
``true`` is used by default. Though the default value is ``true``,
it is recommended to disable the ``enforceSchema`` option
to avoid incorrect results.
:param ignoreLeadingWhiteSpace: a flag indicating whether or not leading whitespaces from
values being read should be skipped. If None is set, it
uses the default value, ``false``.
:param ignoreTrailingWhiteSpace: a flag indicating whether or not trailing whitespaces from
values being read should be skipped. If None is set, it
uses the default value, ``false``.
:param nullValue: sets the string representation of a null value. If None is set, it uses
the default value, empty string. Since 2.0.1, this ``nullValue`` param
applies to all supported types including the string type.
:param nanValue: sets the string representation of a non-number value. If None is set, it
uses the default value, ``NaN``.
:param positiveInf: sets the string representation of a positive infinity value. If None
is set, it uses the default value, ``Inf``.
:param negativeInf: sets the string representation of a negative infinity value. If None
is set, it uses the default value, ``Inf``.
:param dateFormat: sets the string that indicates a date format. Custom date formats
follow the formats at ``java.time.format.DateTimeFormatter``. This
applies to date type. If None is set, it uses the
default value, ``yyyy-MM-dd``.
:param timestampFormat: sets the string that indicates a timestamp format.
Custom date formats follow the formats at
``java.time.format.DateTimeFormatter``.
This applies to timestamp type. If None is set, it uses the
default value, ``yyyy-MM-dd'T'HH:mm:ss.SSSXXX``.
:param maxColumns: defines a hard limit of how many columns a record can have. If None is
set, it uses the default value, ``20480``.
:param maxCharsPerColumn: defines the maximum number of characters allowed for any given
value being read. If None is set, it uses the default value,
``-1`` meaning unlimited length.
:param maxMalformedLogPerPartition: this parameter is no longer used since Spark 2.2.0.
If specified, it is ignored.
:param mode: allows a mode for dealing with corrupt records during parsing. If None is
set, it uses the default value, ``PERMISSIVE``.
* ``PERMISSIVE`` : when it meets a corrupted record, puts the malformed string \
into a field configured by ``columnNameOfCorruptRecord``, and sets malformed \
fields to ``null``. To keep corrupt records, an user can set a string type \
field named ``columnNameOfCorruptRecord`` in an user-defined schema. If a \
schema does not have the field, it drops corrupt records during parsing. \
A record with less/more tokens than schema is not a corrupted record to CSV. \
When it meets a record having fewer tokens than the length of the schema, \
sets ``null`` to extra fields. When the record has more tokens than the \
length of the schema, it drops extra tokens.
* ``DROPMALFORMED`` : ignores the whole corrupted records.
* ``FAILFAST`` : throws an exception when it meets corrupted records.
:param columnNameOfCorruptRecord: allows renaming the new field having malformed string
created by ``PERMISSIVE`` mode. This overrides
``spark.sql.columnNameOfCorruptRecord``. If None is set,
it uses the value specified in
``spark.sql.columnNameOfCorruptRecord``.
:param multiLine: parse one record, which may span multiple lines. If None is
set, it uses the default value, ``false``.
:param charToEscapeQuoteEscaping: sets a single character used for escaping the escape for
the quote character. If None is set, the default value is
escape character when escape and quote characters are
different, ``\0`` otherwise..
:param emptyValue: sets the string representation of an empty value. If None is set, it uses
the default value, empty string.
:param locale: sets a locale as language tag in IETF BCP 47 format. If None is set,
it uses the default value, ``en-US``. For instance, ``locale`` is used while
parsing dates and timestamps.
:param lineSep: defines the line separator that should be used for parsing. If None is
set, it covers all ``\\r``, ``\\r\\n`` and ``\\n``.
Maximum length is 1 character.
>>> csv_sdf = spark.readStream.csv(tempfile.mkdtemp(), schema = sdf_schema)
>>> csv_sdf.isStreaming
True
>>> csv_sdf.schema == sdf_schema
True
"""
self._set_opts(
schema=schema, sep=sep, encoding=encoding, quote=quote, escape=escape, comment=comment,
header=header, inferSchema=inferSchema, ignoreLeadingWhiteSpace=ignoreLeadingWhiteSpace,
ignoreTrailingWhiteSpace=ignoreTrailingWhiteSpace, nullValue=nullValue,
nanValue=nanValue, positiveInf=positiveInf, negativeInf=negativeInf,
dateFormat=dateFormat, timestampFormat=timestampFormat, maxColumns=maxColumns,
maxCharsPerColumn=maxCharsPerColumn,
maxMalformedLogPerPartition=maxMalformedLogPerPartition, mode=mode,
columnNameOfCorruptRecord=columnNameOfCorruptRecord, multiLine=multiLine,
charToEscapeQuoteEscaping=charToEscapeQuoteEscaping, enforceSchema=enforceSchema,
emptyValue=emptyValue, locale=locale, lineSep=lineSep)
if isinstance(path, basestring):
return self._df(self._jreader.csv(path))
else:
raise TypeError("path can be only a single string")
|
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/streaming.py#L575-L705
|
convert json to csv
|
python
|
def json(self, path, schema=None, primitivesAsString=None, prefersDecimal=None,
allowComments=None, allowUnquotedFieldNames=None, allowSingleQuotes=None,
allowNumericLeadingZero=None, allowBackslashEscapingAnyCharacter=None,
mode=None, columnNameOfCorruptRecord=None, dateFormat=None, timestampFormat=None,
multiLine=None, allowUnquotedControlChars=None, lineSep=None, locale=None,
dropFieldIfAllNull=None, encoding=None):
"""
Loads a JSON file stream and returns the results as a :class:`DataFrame`.
`JSON Lines <http://jsonlines.org/>`_ (newline-delimited JSON) is supported by default.
For JSON (one record per file), set the ``multiLine`` parameter to ``true``.
If the ``schema`` parameter is not specified, this function goes
through the input once to determine the input schema.
.. note:: Evolving.
:param path: string represents path to the JSON dataset,
or RDD of Strings storing JSON objects.
:param schema: an optional :class:`pyspark.sql.types.StructType` for the input schema
or a DDL-formatted string (For example ``col0 INT, col1 DOUBLE``).
:param primitivesAsString: infers all primitive values as a string type. If None is set,
it uses the default value, ``false``.
:param prefersDecimal: infers all floating-point values as a decimal type. If the values
do not fit in decimal, then it infers them as doubles. If None is
set, it uses the default value, ``false``.
:param allowComments: ignores Java/C++ style comment in JSON records. If None is set,
it uses the default value, ``false``.
:param allowUnquotedFieldNames: allows unquoted JSON field names. If None is set,
it uses the default value, ``false``.
:param allowSingleQuotes: allows single quotes in addition to double quotes. If None is
set, it uses the default value, ``true``.
:param allowNumericLeadingZero: allows leading zeros in numbers (e.g. 00012). If None is
set, it uses the default value, ``false``.
:param allowBackslashEscapingAnyCharacter: allows accepting quoting of all character
using backslash quoting mechanism. If None is
set, it uses the default value, ``false``.
:param mode: allows a mode for dealing with corrupt records during parsing. If None is
set, it uses the default value, ``PERMISSIVE``.
* ``PERMISSIVE`` : when it meets a corrupted record, puts the malformed string \
into a field configured by ``columnNameOfCorruptRecord``, and sets malformed \
fields to ``null``. To keep corrupt records, an user can set a string type \
field named ``columnNameOfCorruptRecord`` in an user-defined schema. If a \
schema does not have the field, it drops corrupt records during parsing. \
When inferring a schema, it implicitly adds a ``columnNameOfCorruptRecord`` \
field in an output schema.
* ``DROPMALFORMED`` : ignores the whole corrupted records.
* ``FAILFAST`` : throws an exception when it meets corrupted records.
:param columnNameOfCorruptRecord: allows renaming the new field having malformed string
created by ``PERMISSIVE`` mode. This overrides
``spark.sql.columnNameOfCorruptRecord``. If None is set,
it uses the value specified in
``spark.sql.columnNameOfCorruptRecord``.
:param dateFormat: sets the string that indicates a date format. Custom date formats
follow the formats at ``java.time.format.DateTimeFormatter``. This
applies to date type. If None is set, it uses the
default value, ``yyyy-MM-dd``.
:param timestampFormat: sets the string that indicates a timestamp format.
Custom date formats follow the formats at
``java.time.format.DateTimeFormatter``.
This applies to timestamp type. If None is set, it uses the
default value, ``yyyy-MM-dd'T'HH:mm:ss.SSSXXX``.
:param multiLine: parse one record, which may span multiple lines, per file. If None is
set, it uses the default value, ``false``.
:param allowUnquotedControlChars: allows JSON Strings to contain unquoted control
characters (ASCII characters with value less than 32,
including tab and line feed characters) or not.
:param lineSep: defines the line separator that should be used for parsing. If None is
set, it covers all ``\\r``, ``\\r\\n`` and ``\\n``.
:param locale: sets a locale as language tag in IETF BCP 47 format. If None is set,
it uses the default value, ``en-US``. For instance, ``locale`` is used while
parsing dates and timestamps.
:param dropFieldIfAllNull: whether to ignore column of all null values or empty
array/struct during schema inference. If None is set, it
uses the default value, ``false``.
:param encoding: allows to forcibly set one of standard basic or extended encoding for
the JSON files. For example UTF-16BE, UTF-32LE. If None is set,
the encoding of input JSON will be detected automatically
when the multiLine option is set to ``true``.
>>> json_sdf = spark.readStream.json(tempfile.mkdtemp(), schema = sdf_schema)
>>> json_sdf.isStreaming
True
>>> json_sdf.schema == sdf_schema
True
"""
self._set_opts(
schema=schema, primitivesAsString=primitivesAsString, prefersDecimal=prefersDecimal,
allowComments=allowComments, allowUnquotedFieldNames=allowUnquotedFieldNames,
allowSingleQuotes=allowSingleQuotes, allowNumericLeadingZero=allowNumericLeadingZero,
allowBackslashEscapingAnyCharacter=allowBackslashEscapingAnyCharacter,
mode=mode, columnNameOfCorruptRecord=columnNameOfCorruptRecord, dateFormat=dateFormat,
timestampFormat=timestampFormat, multiLine=multiLine,
allowUnquotedControlChars=allowUnquotedControlChars, lineSep=lineSep, locale=locale,
dropFieldIfAllNull=dropFieldIfAllNull, encoding=encoding)
if isinstance(path, basestring):
return self._df(self._jreader.json(path))
else:
raise TypeError("path can be only a single string")
|
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/streaming.py#L403-L503
|
convert json to csv
|
python
|
def convert(self, json_input):
"""
Converts JSON to HTML Table format.
Parameters
----------
json_input : dict
JSON object to convert into HTML.
Returns
-------
str
String of converted HTML.
"""
html_output = self._table_opening_tag
if self._build_top_to_bottom:
html_output += self._markup_header_row(json_input.keys())
html_output += "<tr>"
for value in json_input.values():
if isinstance(value, list):
# check if all keys in the list are identical
# and group all values under a common column
# heading if so, if not default to normal markup
html_output += self._maybe_club(value)
else:
html_output += self._markup_table_cell(value)
html_output += "</tr>"
else:
for key, value in iter(json_input.items()):
html_output += "<tr><th>{:s}</th>".format(self._markup(key))
if isinstance(value, list):
html_output += self._maybe_club(value)
else:
html_output += self._markup_table_cell(value)
html_output += "</tr>"
html_output += "</table>"
return html_output
|
https://github.com/latture/json2table/blob/8bd1363f54ee4fd608ffb7677761526184a9da83/json2table/json2table.py#L73-L109
|
convert json to csv
|
python
|
def to_json(self, skip_nulls=True):
"""Convert object to a json string"""
return json.dumps(self.to_dict(skip_nulls=skip_nulls))
|
https://github.com/jcrist/skein/blob/16f8b1d3b3d9f79f36e2f152e45893339a1793e8/skein/objects.py#L243-L245
|
convert json to csv
|
python
|
def to_json(obj, indent=4, sort_keys=True, **kwargs):
"""
:param obj: object to convert to dictionary and then output to json
:param indent: indent json by number of spaces
:param sort_keys: sort json output by key if true
:param kwargs: arguments to pass to to_dict
:return: json string
"""
obj_dict = to_dict(obj, **kwargs)
return json.dumps(obj_dict, indent=indent, sort_keys=sort_keys)
|
https://github.com/genomoncology/related/blob/be47c0081e60fc60afcde3a25f00ebcad5d18510/src/related/functions.py#L200-L209
|
convert json to csv
|
python
|
def as_json(data, **kwargs):
"""Writes data as json.
:param dict data: data to convert to json
:param kwargs kwargs: kwargs for json dumps
:return: json string
:rtype: str
"""
if 'sort_keys' not in kwargs:
kwargs['sort_keys'] = False
if 'ensure_ascii' not in kwargs:
kwargs['ensure_ascii'] = False
data = json.dumps(data, **kwargs)
return data
|
https://github.com/openstack/monasca-common/blob/61e2e00454734e2881611abec8df0d85bf7655ac/monasca_common/rest/utils.py#L39-L55
|
convert json to csv
|
python
|
def save_json(filename: str, config: Union[List, Dict]):
"""Save JSON data to a file.
Returns True on success.
"""
try:
data = json.dumps(config, sort_keys=True, indent=4)
with open(filename, 'w', encoding='utf-8') as fdesc:
fdesc.write(data)
return True
except TypeError as error:
_LOGGER.exception('Failed to serialize to JSON: %s',
filename)
raise PytradfriError(error)
except OSError as error:
_LOGGER.exception('Saving JSON file failed: %s',
filename)
raise PytradfriError(error)
|
https://github.com/ggravlingen/pytradfri/blob/63750fa8fb27158c013d24865cdaa7fb82b3ab53/pytradfri/util.py#L32-L49
|
convert json to csv
|
python
|
def from_json(cls, data):
"""Decode a JSON string and inflate a node instance."""
# Decode JSON string
assert isinstance(data, str)
data = json.loads(data)
assert isinstance(data, dict)
return cls.from_dict(data)
|
https://github.com/ProjetPP/PPP-datamodel-Python/blob/0c7958fb4df75468fd3137240a5065925c239776/ppp_datamodel/utils/serializableattributesholder.py#L30-L36
|
convert json to csv
|
python
|
def serialize_to_json(result, unpicklable=False):
"""Serializes output as JSON and writes it to console output wrapped with special prefix and suffix
:param result: Result to return
:param unpicklable: If True adds JSON can be deserialized as real object.
When False will be deserialized as dictionary
"""
json = jsonpickle.encode(result, unpicklable=unpicklable)
result_for_output = str(json)
return result_for_output
|
https://github.com/QualiSystems/cloudshell-networking-devices/blob/009aab33edb30035b52fe10dbb91db61c95ba4d9/cloudshell/devices/networking_utils.py#L30-L40
|
convert json to csv
|
python
|
def dump_json(token_dict, dump_path):
"""write json data to file
"""
if sys.version > '3':
with open(dump_path, 'w', encoding='utf-8') as output_file:
json.dump(token_dict, output_file, indent=4)
else:
with open(dump_path, 'w') as output_file:
json.dump(token_dict, output_file, indent=4)
|
https://github.com/fbngrm/babelpy/blob/ff305abecddd66aed40c32f0010485cf192e5f17/babelpy/dump.py#L7-L15
|
convert json to csv
|
python
|
def to_json(self):
""" Converts segment to a JSON serializable format
Returns:
:obj:`dict`
"""
points = [point.to_json() for point in self.points]
return {
'points': points,
'transportationModes': self.transportation_modes,
'locationFrom': self.location_from.to_json() if self.location_from != None else None,
'locationTo': self.location_to.to_json() if self.location_to != None else None
}
|
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/segment.py#L290-L302
|
convert json to csv
|
python
|
def to_json(df, x, y, timeseries=False):
"""Format output for json response."""
values = {k: [] for k in y}
for i, row in df.iterrows():
for yy in y:
values[yy].append({
"x": row[x],
"y": row[yy]
})
return {"result": [values[k] for k in y], "date": timeseries}
|
https://github.com/stitchfix/pyxley/blob/2dab00022d977d986169cd8a629b3a2f91be893f/pyxley/charts/mg/line_chart.py#L58-L67
|
convert json to csv
|
python
|
def csv_dict_format(csv_data, c_headers=None, r_headers=None):
"""
Format csv rows parsed to Dict.
"""
# format dict if has row_headers
if r_headers:
result = {}
for k_index in range(0, len(csv_data)):
if r_headers[k_index]:
result[r_headers[k_index]] = collections.OrderedDict(
zip(c_headers, csv_data[k_index]))
# format list if hasn't row_headers -- square csv
else:
result = []
for k_index in range(0, len(csv_data)):
result.append(
collections.OrderedDict(zip(c_headers, csv_data[k_index])))
result = [result]
return result
|
https://github.com/Datary/scrapbag/blob/3a4f9824ab6fe21121214ba9963690618da2c9de/scrapbag/csvs.py#L338-L358
|
convert json to csv
|
python
|
async def json(self,
*,
encoding: str = None,
loads: JSONDecoder = DEFAULT_JSON_DECODER,
content_type: Optional[str] = 'application/json') -> Any:
"""Read and decodes JSON response."""
return await self._aws_json(
encoding=encoding, loads=loads, content_type=content_type)
|
https://github.com/howie6879/ruia/blob/2dc5262fc9c3e902a8faa7d5fa2f046f9d9ee1fa/ruia/response.py#L123-L130
|
convert json to csv
|
python
|
def save_json(self, fname='servers.json'):
'''
Write out to a CSV file.
'''
rows = sorted(self.keys())
with open(fname, 'wt') as fp:
json.dump([self[k] for k in rows], fp, indent=1)
|
https://github.com/coinkite/connectrum/blob/99948f92cc5c3ecb1a8a70146294014e608e50fc/connectrum/svr_info.py#L238-L244
|
convert json to csv
|
python
|
def _convert_to_json(self, response):
"""Converts response to JSON.
If the response cannot be converted to JSON then `None` is returned.
Args:
response - An object of type `requests.models.Response`
Returns:
Response in JSON format if the response can be converted to JSON. `None` otherwise.
"""
try:
return response.json()
except ValueError:
logging.warning('Expected response in JSON format from {0} but the actual response text is: {1}'.format(
response.request.url, response.text,
))
return None
|
https://github.com/Yelp/threat_intel/blob/60eef841d7cca115ec7857aeb9c553b72b694851/threat_intel/util/http.py#L382-L397
|
convert json to csv
|
python
|
def serialize_to_json(data, **kwargs):
"""
A wrapper for simplejson.dumps with defaults as:
cls=LazyJSONEncoder
All arguments can be added via kwargs
"""
kwargs['cls'] = kwargs.get('cls', LazyJSONEncoder)
return json.dumps(data, **kwargs)
|
https://github.com/yceruto/django-ajax/blob/d5af47c0e65571d4729f48781c0b41886b926221/django_ajax/encoder.py#L58-L68
|
convert json to csv
|
python
|
def csv(self, path, schema=None, sep=None, encoding=None, quote=None, escape=None,
comment=None, header=None, inferSchema=None, ignoreLeadingWhiteSpace=None,
ignoreTrailingWhiteSpace=None, nullValue=None, nanValue=None, positiveInf=None,
negativeInf=None, dateFormat=None, timestampFormat=None, maxColumns=None,
maxCharsPerColumn=None, maxMalformedLogPerPartition=None, mode=None,
columnNameOfCorruptRecord=None, multiLine=None, charToEscapeQuoteEscaping=None,
samplingRatio=None, enforceSchema=None, emptyValue=None, locale=None, lineSep=None):
r"""Loads a CSV file and returns the result as a :class:`DataFrame`.
This function will go through the input once to determine the input schema if
``inferSchema`` is enabled. To avoid going through the entire data once, disable
``inferSchema`` option or specify the schema explicitly using ``schema``.
:param path: string, or list of strings, for input path(s),
or RDD of Strings storing CSV rows.
:param schema: an optional :class:`pyspark.sql.types.StructType` for the input schema
or a DDL-formatted string (For example ``col0 INT, col1 DOUBLE``).
:param sep: sets a single character as a separator for each field and value.
If None is set, it uses the default value, ``,``.
:param encoding: decodes the CSV files by the given encoding type. If None is set,
it uses the default value, ``UTF-8``.
:param quote: sets a single character used for escaping quoted values where the
separator can be part of the value. If None is set, it uses the default
value, ``"``. If you would like to turn off quotations, you need to set an
empty string.
:param escape: sets a single character used for escaping quotes inside an already
quoted value. If None is set, it uses the default value, ``\``.
:param comment: sets a single character used for skipping lines beginning with this
character. By default (None), it is disabled.
:param header: uses the first line as names of columns. If None is set, it uses the
default value, ``false``.
:param inferSchema: infers the input schema automatically from data. It requires one extra
pass over the data. If None is set, it uses the default value, ``false``.
:param enforceSchema: If it is set to ``true``, the specified or inferred schema will be
forcibly applied to datasource files, and headers in CSV files will be
ignored. If the option is set to ``false``, the schema will be
validated against all headers in CSV files or the first header in RDD
if the ``header`` option is set to ``true``. Field names in the schema
and column names in CSV headers are checked by their positions
taking into account ``spark.sql.caseSensitive``. If None is set,
``true`` is used by default. Though the default value is ``true``,
it is recommended to disable the ``enforceSchema`` option
to avoid incorrect results.
:param ignoreLeadingWhiteSpace: A flag indicating whether or not leading whitespaces from
values being read should be skipped. If None is set, it
uses the default value, ``false``.
:param ignoreTrailingWhiteSpace: A flag indicating whether or not trailing whitespaces from
values being read should be skipped. If None is set, it
uses the default value, ``false``.
:param nullValue: sets the string representation of a null value. If None is set, it uses
the default value, empty string. Since 2.0.1, this ``nullValue`` param
applies to all supported types including the string type.
:param nanValue: sets the string representation of a non-number value. If None is set, it
uses the default value, ``NaN``.
:param positiveInf: sets the string representation of a positive infinity value. If None
is set, it uses the default value, ``Inf``.
:param negativeInf: sets the string representation of a negative infinity value. If None
is set, it uses the default value, ``Inf``.
:param dateFormat: sets the string that indicates a date format. Custom date formats
follow the formats at ``java.time.format.DateTimeFormatter``. This
applies to date type. If None is set, it uses the
default value, ``yyyy-MM-dd``.
:param timestampFormat: sets the string that indicates a timestamp format.
Custom date formats follow the formats at
``java.time.format.DateTimeFormatter``.
This applies to timestamp type. If None is set, it uses the
default value, ``yyyy-MM-dd'T'HH:mm:ss.SSSXXX``.
:param maxColumns: defines a hard limit of how many columns a record can have. If None is
set, it uses the default value, ``20480``.
:param maxCharsPerColumn: defines the maximum number of characters allowed for any given
value being read. If None is set, it uses the default value,
``-1`` meaning unlimited length.
:param maxMalformedLogPerPartition: this parameter is no longer used since Spark 2.2.0.
If specified, it is ignored.
:param mode: allows a mode for dealing with corrupt records during parsing. If None is
set, it uses the default value, ``PERMISSIVE``.
* ``PERMISSIVE`` : when it meets a corrupted record, puts the malformed string \
into a field configured by ``columnNameOfCorruptRecord``, and sets malformed \
fields to ``null``. To keep corrupt records, an user can set a string type \
field named ``columnNameOfCorruptRecord`` in an user-defined schema. If a \
schema does not have the field, it drops corrupt records during parsing. \
A record with less/more tokens than schema is not a corrupted record to CSV. \
When it meets a record having fewer tokens than the length of the schema, \
sets ``null`` to extra fields. When the record has more tokens than the \
length of the schema, it drops extra tokens.
* ``DROPMALFORMED`` : ignores the whole corrupted records.
* ``FAILFAST`` : throws an exception when it meets corrupted records.
:param columnNameOfCorruptRecord: allows renaming the new field having malformed string
created by ``PERMISSIVE`` mode. This overrides
``spark.sql.columnNameOfCorruptRecord``. If None is set,
it uses the value specified in
``spark.sql.columnNameOfCorruptRecord``.
:param multiLine: parse records, which may span multiple lines. If None is
set, it uses the default value, ``false``.
:param charToEscapeQuoteEscaping: sets a single character used for escaping the escape for
the quote character. If None is set, the default value is
escape character when escape and quote characters are
different, ``\0`` otherwise.
:param samplingRatio: defines fraction of rows used for schema inferring.
If None is set, it uses the default value, ``1.0``.
:param emptyValue: sets the string representation of an empty value. If None is set, it uses
the default value, empty string.
:param locale: sets a locale as language tag in IETF BCP 47 format. If None is set,
it uses the default value, ``en-US``. For instance, ``locale`` is used while
parsing dates and timestamps.
:param lineSep: defines the line separator that should be used for parsing. If None is
set, it covers all ``\\r``, ``\\r\\n`` and ``\\n``.
Maximum length is 1 character.
>>> df = spark.read.csv('python/test_support/sql/ages.csv')
>>> df.dtypes
[('_c0', 'string'), ('_c1', 'string')]
>>> rdd = sc.textFile('python/test_support/sql/ages.csv')
>>> df2 = spark.read.csv(rdd)
>>> df2.dtypes
[('_c0', 'string'), ('_c1', 'string')]
"""
self._set_opts(
schema=schema, sep=sep, encoding=encoding, quote=quote, escape=escape, comment=comment,
header=header, inferSchema=inferSchema, ignoreLeadingWhiteSpace=ignoreLeadingWhiteSpace,
ignoreTrailingWhiteSpace=ignoreTrailingWhiteSpace, nullValue=nullValue,
nanValue=nanValue, positiveInf=positiveInf, negativeInf=negativeInf,
dateFormat=dateFormat, timestampFormat=timestampFormat, maxColumns=maxColumns,
maxCharsPerColumn=maxCharsPerColumn,
maxMalformedLogPerPartition=maxMalformedLogPerPartition, mode=mode,
columnNameOfCorruptRecord=columnNameOfCorruptRecord, multiLine=multiLine,
charToEscapeQuoteEscaping=charToEscapeQuoteEscaping, samplingRatio=samplingRatio,
enforceSchema=enforceSchema, emptyValue=emptyValue, locale=locale, lineSep=lineSep)
if isinstance(path, basestring):
path = [path]
if type(path) == list:
return self._df(self._jreader.csv(self._spark._sc._jvm.PythonUtils.toSeq(path)))
elif isinstance(path, RDD):
def func(iterator):
for x in iterator:
if not isinstance(x, basestring):
x = unicode(x)
if isinstance(x, unicode):
x = x.encode("utf-8")
yield x
keyed = path.mapPartitions(func)
keyed._bypass_serializer = True
jrdd = keyed._jrdd.map(self._spark._jvm.BytesToString())
# see SPARK-22112
# There aren't any jvm api for creating a dataframe from rdd storing csv.
# We can do it through creating a jvm dataset firstly and using the jvm api
# for creating a dataframe from dataset storing csv.
jdataset = self._spark._ssql_ctx.createDataset(
jrdd.rdd(),
self._spark._jvm.Encoders.STRING())
return self._df(self._jreader.csv(jdataset))
else:
raise TypeError("path can be only string, list or RDD")
|
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/readwriter.py#L352-L506
|
convert json to csv
|
python
|
def export_to_json(env):
"""export_to_json
This function takes in a dictionary object and stores it within the config.JSON
file.
"""
json_fl = env['scripts'] + "/config.JSON"
with open(json_fl, 'w') as fh:
fh.write(json.dumps(env, sort_keys=True, indent=4,
separators=(',', ': ')))
|
https://github.com/F5Networks/f5-common-python/blob/7e67d5acd757a60e3d5f8c88c534bd72208f5494/f5-sdk-dist/scripts/configure.py#L122-L131
|
convert json to csv
|
python
|
def convert_kv_to_dict(data):
"""
convert text values in format:
key1=value1
key2=value2
to dict {'key1':'value1', 'key2':'value2'}
:param data: string containing lines with these values
:return: dict
"""
output = {}
for line in data.split("\n"):
stripped = line.strip()
if stripped:
key, value = stripped.split("=", 1)
output[key] = value
return output
|
https://github.com/user-cont/conu/blob/08caae7bb6bdd265b55bb106c3da6a7946a5a352/conu/utils/__init__.py#L35-L51
|
convert json to csv
|
python
|
def _tsv2json(in_tsv, out_json, index_column, additional_metadata=None,
drop_columns=None, enforce_case=True):
"""
Convert metadata from TSV format to JSON format.
Parameters
----------
in_tsv: str
Path to the metadata in TSV format.
out_json: str
Path where the metadata should be saved in JSON format after
conversion. If this is None, then a dictionary is returned instead.
index_column: str
Name of the column in the TSV to be used as an index (top-level key in
the JSON).
additional_metadata: dict
Any additional metadata that should be applied to all entries in the
JSON.
drop_columns: list
List of columns from the input TSV to be dropped from the JSON.
enforce_case: bool
Indicates whether BIDS case conventions should be followed. Currently,
this means that index fields (column names in the associated data TSV)
use snake case and other fields use camel case.
Returns
-------
str
Path to the metadata saved in JSON format.
"""
import pandas as pd
# Adapted from https://dev.to/rrampage/snake-case-to-camel-case-and- ...
# back-using-regular-expressions-and-python-m9j
re_to_camel = r'(.*?)_([a-zA-Z0-9])'
re_to_snake = r'(^.+?|.*?)((?<![_A-Z])[A-Z]|(?<![_0-9])[0-9]+)'
def snake(match):
return '{}_{}'.format(match.group(1).lower(), match.group(2).lower())
def camel(match):
return '{}{}'.format(match.group(1), match.group(2).upper())
# from fmriprep
def less_breakable(a_string):
""" hardens the string to different envs (i.e. case insensitive, no
whitespace, '#' """
return ''.join(a_string.split()).strip('#')
drop_columns = drop_columns or []
additional_metadata = additional_metadata or {}
tsv_data = pd.read_csv(in_tsv, '\t')
for k, v in additional_metadata.items():
tsv_data[k] = v
for col in drop_columns:
tsv_data.drop(labels=col, axis='columns', inplace=True)
tsv_data.set_index(index_column, drop=True, inplace=True)
if enforce_case:
tsv_data.index = [re.sub(re_to_snake, snake,
less_breakable(i), 0).lower()
for i in tsv_data.index]
tsv_data.columns = [re.sub(re_to_camel, camel,
less_breakable(i).title(), 0)
for i in tsv_data.columns]
json_data = tsv_data.to_json(orient='index')
json_data = json.JSONDecoder(
object_pairs_hook=OrderedDict).decode(json_data)
if out_json is None:
return json_data
with open(out_json, 'w') as f:
json.dump(json_data, f, indent=4)
return out_json
|
https://github.com/poldracklab/niworkflows/blob/254f4b4fcc5e6ecb29d2f4602a30786b913ecce5/niworkflows/interfaces/utils.py#L793-L864
|
convert json to csv
|
python
|
def export_json(self, filename):
"""
Export graph in JSON form to the given file.
"""
json_graph = self.to_json()
with open(filename, 'wb') as f:
f.write(json_graph.encode('utf-8'))
|
https://github.com/mdickinson/refcycle/blob/627fad74c74efc601209c96405f8118cd99b2241/refcycle/annotated_graph.py#L253-L260
|
convert json to csv
|
python
|
def to_json(self):
""" Serializes the event to JSON.
:returns: a string
"""
event_as_dict = copy.deepcopy(self.event_body)
if self.timestamp:
if "keen" in event_as_dict:
event_as_dict["keen"]["timestamp"] = self.timestamp.isoformat()
else:
event_as_dict["keen"] = {"timestamp": self.timestamp.isoformat()}
return json.dumps(event_as_dict)
|
https://github.com/keenlabs/KeenClient-Python/blob/266387c3376d1e000d117e17c45045ae3439d43f/keen/client.py#L33-L44
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.