nwo
stringlengths 10
28
| sha
stringlengths 40
40
| path
stringlengths 11
97
| identifier
stringlengths 1
64
| parameters
stringlengths 2
2.24k
| return_statement
stringlengths 0
2.17k
| docstring
stringlengths 0
5.45k
| docstring_summary
stringlengths 0
3.83k
| func_begin
int64 1
13.4k
| func_end
int64 2
13.4k
| function
stringlengths 28
56.4k
| url
stringlengths 106
209
| project
int64 1
48
| executed_lines
list | executed_lines_pc
float64 0
153
| missing_lines
list | missing_lines_pc
float64 0
100
| covered
bool 2
classes | filecoverage
float64 2.53
100
| function_lines
int64 2
1.46k
| mccabe
int64 1
253
| coverage
float64 0
100
| docstring_lines
int64 0
112
| function_nodoc
stringlengths 9
56.4k
| id
int64 0
29.8k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/drone_3d_trajectory_following/drone_3d_trajectory_following.py
|
quad_sim
|
(x_c, y_c, z_c)
|
Calculates the necessary thrust and torques for the quadrotor to
follow the trajectory described by the sets of coefficients
x_c, y_c, and z_c.
|
Calculates the necessary thrust and torques for the quadrotor to
follow the trajectory described by the sets of coefficients
x_c, y_c, and z_c.
| 37 | 123 |
def quad_sim(x_c, y_c, z_c):
"""
Calculates the necessary thrust and torques for the quadrotor to
follow the trajectory described by the sets of coefficients
x_c, y_c, and z_c.
"""
x_pos = -5
y_pos = -5
z_pos = 5
x_vel = 0
y_vel = 0
z_vel = 0
x_acc = 0
y_acc = 0
z_acc = 0
roll = 0
pitch = 0
yaw = 0
roll_vel = 0
pitch_vel = 0
yaw_vel = 0
des_yaw = 0
dt = 0.1
t = 0
q = Quadrotor(x=x_pos, y=y_pos, z=z_pos, roll=roll,
pitch=pitch, yaw=yaw, size=1, show_animation=show_animation)
i = 0
n_run = 8
irun = 0
while True:
while t <= T:
# des_x_pos = calculate_position(x_c[i], t)
# des_y_pos = calculate_position(y_c[i], t)
des_z_pos = calculate_position(z_c[i], t)
# des_x_vel = calculate_velocity(x_c[i], t)
# des_y_vel = calculate_velocity(y_c[i], t)
des_z_vel = calculate_velocity(z_c[i], t)
des_x_acc = calculate_acceleration(x_c[i], t)
des_y_acc = calculate_acceleration(y_c[i], t)
des_z_acc = calculate_acceleration(z_c[i], t)
thrust = m * (g + des_z_acc + Kp_z * (des_z_pos -
z_pos) + Kd_z * (des_z_vel - z_vel))
roll_torque = Kp_roll * \
(((des_x_acc * sin(des_yaw) - des_y_acc * cos(des_yaw)) / g) - roll)
pitch_torque = Kp_pitch * \
(((des_x_acc * cos(des_yaw) - des_y_acc * sin(des_yaw)) / g) - pitch)
yaw_torque = Kp_yaw * (des_yaw - yaw)
roll_vel += roll_torque * dt / Ixx
pitch_vel += pitch_torque * dt / Iyy
yaw_vel += yaw_torque * dt / Izz
roll += roll_vel * dt
pitch += pitch_vel * dt
yaw += yaw_vel * dt
R = rotation_matrix(roll, pitch, yaw)
acc = (np.matmul(R, np.array(
[0, 0, thrust.item()]).T) - np.array([0, 0, m * g]).T) / m
x_acc = acc[0]
y_acc = acc[1]
z_acc = acc[2]
x_vel += x_acc * dt
y_vel += y_acc * dt
z_vel += z_acc * dt
x_pos += x_vel * dt
y_pos += y_vel * dt
z_pos += z_vel * dt
q.update_pose(x_pos, y_pos, z_pos, roll, pitch, yaw)
t += dt
t = 0
i = (i + 1) % 4
irun += 1
if irun >= n_run:
break
print("Done")
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/drone_3d_trajectory_following/drone_3d_trajectory_following.py#L37-L123
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86
] | 100 |
[] | 0 | true | 99.019608 | 87 | 4 | 100 | 3 |
def quad_sim(x_c, y_c, z_c):
x_pos = -5
y_pos = -5
z_pos = 5
x_vel = 0
y_vel = 0
z_vel = 0
x_acc = 0
y_acc = 0
z_acc = 0
roll = 0
pitch = 0
yaw = 0
roll_vel = 0
pitch_vel = 0
yaw_vel = 0
des_yaw = 0
dt = 0.1
t = 0
q = Quadrotor(x=x_pos, y=y_pos, z=z_pos, roll=roll,
pitch=pitch, yaw=yaw, size=1, show_animation=show_animation)
i = 0
n_run = 8
irun = 0
while True:
while t <= T:
# des_x_pos = calculate_position(x_c[i], t)
# des_y_pos = calculate_position(y_c[i], t)
des_z_pos = calculate_position(z_c[i], t)
# des_x_vel = calculate_velocity(x_c[i], t)
# des_y_vel = calculate_velocity(y_c[i], t)
des_z_vel = calculate_velocity(z_c[i], t)
des_x_acc = calculate_acceleration(x_c[i], t)
des_y_acc = calculate_acceleration(y_c[i], t)
des_z_acc = calculate_acceleration(z_c[i], t)
thrust = m * (g + des_z_acc + Kp_z * (des_z_pos -
z_pos) + Kd_z * (des_z_vel - z_vel))
roll_torque = Kp_roll * \
(((des_x_acc * sin(des_yaw) - des_y_acc * cos(des_yaw)) / g) - roll)
pitch_torque = Kp_pitch * \
(((des_x_acc * cos(des_yaw) - des_y_acc * sin(des_yaw)) / g) - pitch)
yaw_torque = Kp_yaw * (des_yaw - yaw)
roll_vel += roll_torque * dt / Ixx
pitch_vel += pitch_torque * dt / Iyy
yaw_vel += yaw_torque * dt / Izz
roll += roll_vel * dt
pitch += pitch_vel * dt
yaw += yaw_vel * dt
R = rotation_matrix(roll, pitch, yaw)
acc = (np.matmul(R, np.array(
[0, 0, thrust.item()]).T) - np.array([0, 0, m * g]).T) / m
x_acc = acc[0]
y_acc = acc[1]
z_acc = acc[2]
x_vel += x_acc * dt
y_vel += y_acc * dt
z_vel += z_acc * dt
x_pos += x_vel * dt
y_pos += y_vel * dt
z_pos += z_vel * dt
q.update_pose(x_pos, y_pos, z_pos, roll, pitch, yaw)
t += dt
t = 0
i = (i + 1) % 4
irun += 1
if irun >= n_run:
break
print("Done")
| 1,301 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/drone_3d_trajectory_following/drone_3d_trajectory_following.py
|
calculate_position
|
(c, t)
|
return c[0] * t**5 + c[1] * t**4 + c[2] * t**3 + c[3] * t**2 + c[4] * t + c[5]
|
Calculates a position given a set of quintic coefficients and a time.
Args
c: List of coefficients generated by a quintic polynomial
trajectory generator.
t: Time at which to calculate the position
Returns
Position
|
Calculates a position given a set of quintic coefficients and a time.
| 126 | 138 |
def calculate_position(c, t):
"""
Calculates a position given a set of quintic coefficients and a time.
Args
c: List of coefficients generated by a quintic polynomial
trajectory generator.
t: Time at which to calculate the position
Returns
Position
"""
return c[0] * t**5 + c[1] * t**4 + c[2] * t**3 + c[3] * t**2 + c[4] * t + c[5]
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/drone_3d_trajectory_following/drone_3d_trajectory_following.py#L126-L138
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 100 |
[] | 0 | true | 99.019608 | 13 | 1 | 100 | 9 |
def calculate_position(c, t):
return c[0] * t**5 + c[1] * t**4 + c[2] * t**3 + c[3] * t**2 + c[4] * t + c[5]
| 1,302 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/drone_3d_trajectory_following/drone_3d_trajectory_following.py
|
calculate_velocity
|
(c, t)
|
return 5 * c[0] * t**4 + 4 * c[1] * t**3 + 3 * c[2] * t**2 + 2 * c[3] * t + c[4]
|
Calculates a velocity given a set of quintic coefficients and a time.
Args
c: List of coefficients generated by a quintic polynomial
trajectory generator.
t: Time at which to calculate the velocity
Returns
Velocity
|
Calculates a velocity given a set of quintic coefficients and a time.
| 141 | 153 |
def calculate_velocity(c, t):
"""
Calculates a velocity given a set of quintic coefficients and a time.
Args
c: List of coefficients generated by a quintic polynomial
trajectory generator.
t: Time at which to calculate the velocity
Returns
Velocity
"""
return 5 * c[0] * t**4 + 4 * c[1] * t**3 + 3 * c[2] * t**2 + 2 * c[3] * t + c[4]
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/drone_3d_trajectory_following/drone_3d_trajectory_following.py#L141-L153
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 100 |
[] | 0 | true | 99.019608 | 13 | 1 | 100 | 9 |
def calculate_velocity(c, t):
return 5 * c[0] * t**4 + 4 * c[1] * t**3 + 3 * c[2] * t**2 + 2 * c[3] * t + c[4]
| 1,303 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/drone_3d_trajectory_following/drone_3d_trajectory_following.py
|
calculate_acceleration
|
(c, t)
|
return 20 * c[0] * t**3 + 12 * c[1] * t**2 + 6 * c[2] * t + 2 * c[3]
|
Calculates an acceleration given a set of quintic coefficients and a time.
Args
c: List of coefficients generated by a quintic polynomial
trajectory generator.
t: Time at which to calculate the acceleration
Returns
Acceleration
|
Calculates an acceleration given a set of quintic coefficients and a time.
| 156 | 168 |
def calculate_acceleration(c, t):
"""
Calculates an acceleration given a set of quintic coefficients and a time.
Args
c: List of coefficients generated by a quintic polynomial
trajectory generator.
t: Time at which to calculate the acceleration
Returns
Acceleration
"""
return 20 * c[0] * t**3 + 12 * c[1] * t**2 + 6 * c[2] * t + 2 * c[3]
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/drone_3d_trajectory_following/drone_3d_trajectory_following.py#L156-L168
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 100 |
[] | 0 | true | 99.019608 | 13 | 1 | 100 | 9 |
def calculate_acceleration(c, t):
return 20 * c[0] * t**3 + 12 * c[1] * t**2 + 6 * c[2] * t + 2 * c[3]
| 1,304 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/drone_3d_trajectory_following/drone_3d_trajectory_following.py
|
rotation_matrix
|
(roll, pitch, yaw)
|
return np.array(
[[cos(yaw) * cos(pitch), -sin(yaw) * cos(roll) + cos(yaw) * sin(pitch) * sin(roll), sin(yaw) * sin(roll) + cos(yaw) * sin(pitch) * cos(roll)],
[sin(yaw) * cos(pitch), cos(yaw) * cos(roll) + sin(yaw) * sin(pitch) *
sin(roll), -cos(yaw) * sin(roll) + sin(yaw) * sin(pitch) * cos(roll)],
[-sin(pitch), cos(pitch) * sin(roll), cos(pitch) * cos(yaw)]
])
|
Calculates the ZYX rotation matrix.
Args
Roll: Angular position about the x-axis in radians.
Pitch: Angular position about the y-axis in radians.
Yaw: Angular position about the z-axis in radians.
Returns
3x3 rotation matrix as NumPy array
|
Calculates the ZYX rotation matrix.
| 171 | 188 |
def rotation_matrix(roll, pitch, yaw):
"""
Calculates the ZYX rotation matrix.
Args
Roll: Angular position about the x-axis in radians.
Pitch: Angular position about the y-axis in radians.
Yaw: Angular position about the z-axis in radians.
Returns
3x3 rotation matrix as NumPy array
"""
return np.array(
[[cos(yaw) * cos(pitch), -sin(yaw) * cos(roll) + cos(yaw) * sin(pitch) * sin(roll), sin(yaw) * sin(roll) + cos(yaw) * sin(pitch) * cos(roll)],
[sin(yaw) * cos(pitch), cos(yaw) * cos(roll) + sin(yaw) * sin(pitch) *
sin(roll), -cos(yaw) * sin(roll) + sin(yaw) * sin(pitch) * cos(roll)],
[-sin(pitch), cos(pitch) * sin(roll), cos(pitch) * cos(yaw)]
])
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/drone_3d_trajectory_following/drone_3d_trajectory_following.py#L171-L188
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17
] | 100 |
[] | 0 | true | 99.019608 | 18 | 1 | 100 | 9 |
def rotation_matrix(roll, pitch, yaw):
return np.array(
[[cos(yaw) * cos(pitch), -sin(yaw) * cos(roll) + cos(yaw) * sin(pitch) * sin(roll), sin(yaw) * sin(roll) + cos(yaw) * sin(pitch) * cos(roll)],
[sin(yaw) * cos(pitch), cos(yaw) * cos(roll) + sin(yaw) * sin(pitch) *
sin(roll), -cos(yaw) * sin(roll) + sin(yaw) * sin(pitch) * cos(roll)],
[-sin(pitch), cos(pitch) * sin(roll), cos(pitch) * cos(yaw)]
])
| 1,305 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/drone_3d_trajectory_following/drone_3d_trajectory_following.py
|
main
|
()
|
Calculates the x, y, z coefficients for the four segments
of the trajectory
|
Calculates the x, y, z coefficients for the four segments
of the trajectory
| 191 | 208 |
def main():
"""
Calculates the x, y, z coefficients for the four segments
of the trajectory
"""
x_coeffs = [[], [], [], []]
y_coeffs = [[], [], [], []]
z_coeffs = [[], [], [], []]
waypoints = [[-5, -5, 5], [5, -5, 5], [5, 5, 5], [-5, 5, 5]]
for i in range(4):
traj = TrajectoryGenerator(waypoints[i], waypoints[(i + 1) % 4], T)
traj.solve()
x_coeffs[i] = traj.x_c
y_coeffs[i] = traj.y_c
z_coeffs[i] = traj.z_c
quad_sim(x_coeffs, y_coeffs, z_coeffs)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/drone_3d_trajectory_following/drone_3d_trajectory_following.py#L191-L208
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17
] | 100 |
[] | 0 | true | 99.019608 | 18 | 2 | 100 | 2 |
def main():
x_coeffs = [[], [], [], []]
y_coeffs = [[], [], [], []]
z_coeffs = [[], [], [], []]
waypoints = [[-5, -5, 5], [5, -5, 5], [5, 5, 5], [-5, 5, 5]]
for i in range(4):
traj = TrajectoryGenerator(waypoints[i], waypoints[(i + 1) % 4], T)
traj.solve()
x_coeffs[i] = traj.x_c
y_coeffs[i] = traj.y_c
z_coeffs[i] = traj.z_c
quad_sim(x_coeffs, y_coeffs, z_coeffs)
| 1,306 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
axis3d_equal
|
(X, Y, Z, ax)
| 554 | 566 |
def axis3d_equal(X, Y, Z, ax):
max_range = np.array([X.max() - X.min(), Y.max()
- Y.min(), Z.max() - Z.min()]).max()
Xb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2,
- 1:2:2][0].flatten() + 0.5 * (X.max() + X.min())
Yb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2,
- 1:2:2][1].flatten() + 0.5 * (Y.max() + Y.min())
Zb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2,
- 1:2:2][2].flatten() + 0.5 * (Z.max() + Z.min())
# Comment or uncomment following both lines to test the fake bounding box:
for xb, yb, zb in zip(Xb, Yb, Zb):
ax.plot([xb], [yb], [zb], 'w')
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L554-L566
| 2 |
[
0,
1
] | 15.384615 |
[
2,
4,
6,
8,
11,
12
] | 46.153846 | false | 94.573643 | 13 | 2 | 53.846154 | 0 |
def axis3d_equal(X, Y, Z, ax):
max_range = np.array([X.max() - X.min(), Y.max()
- Y.min(), Z.max() - Z.min()]).max()
Xb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2,
- 1:2:2][0].flatten() + 0.5 * (X.max() + X.min())
Yb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2,
- 1:2:2][1].flatten() + 0.5 * (Y.max() + Y.min())
Zb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2,
- 1:2:2][2].flatten() + 0.5 * (Z.max() + Z.min())
# Comment or uncomment following both lines to test the fake bounding box:
for xb, yb, zb in zip(Xb, Yb, Zb):
ax.plot([xb], [yb], [zb], 'w')
| 1,307 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
plot_animation
|
(X, U)
| 569 | 609 |
def plot_animation(X, U): # pragma: no cover
fig = plt.figure()
ax = fig.gca(projection='3d')
# for stopping simulation with the esc key.
fig.canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
for k in range(K):
plt.cla()
ax.plot(X[2, :], X[3, :], X[1, :]) # trajectory
ax.scatter3D([0.0], [0.0], [0.0], c="r",
marker="x") # target landing point
axis3d_equal(X[2, :], X[3, :], X[1, :], ax)
rx, ry, rz = X[1:4, k]
# vx, vy, vz = X[4:7, k]
qw, qx, qy, qz = X[7:11, k]
CBI = np.array([
[1 - 2 * (qy ** 2 + qz ** 2), 2 * (qx * qy + qw * qz),
2 * (qx * qz - qw * qy)],
[2 * (qx * qy - qw * qz), 1 - 2
* (qx ** 2 + qz ** 2), 2 * (qy * qz + qw * qx)],
[2 * (qx * qz + qw * qy), 2 * (qy * qz - qw * qx),
1 - 2 * (qx ** 2 + qy ** 2)]
])
Fx, Fy, Fz = np.dot(np.transpose(CBI), U[:, k])
dx, dy, dz = np.dot(np.transpose(CBI), np.array([1., 0., 0.]))
# attitude vector
ax.quiver(ry, rz, rx, dy, dz, dx, length=0.5, linewidth=3.0,
arrow_length_ratio=0.0, color='black')
# thrust vector
ax.quiver(ry, rz, rx, -Fy, -Fz, -Fx, length=0.1,
arrow_length_ratio=0.0, color='red')
ax.set_title("Rocket powered landing")
plt.pause(0.5)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L569-L609
| 2 |
[] | 0 |
[] | 0 | false | 94.573643 | 41 | 2 | 100 | 0 |
def plot_animation(X, U): # pragma: no cover
fig = plt.figure()
ax = fig.gca(projection='3d')
# for stopping simulation with the esc key.
fig.canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
for k in range(K):
plt.cla()
ax.plot(X[2, :], X[3, :], X[1, :]) # trajectory
ax.scatter3D([0.0], [0.0], [0.0], c="r",
marker="x") # target landing point
axis3d_equal(X[2, :], X[3, :], X[1, :], ax)
rx, ry, rz = X[1:4, k]
# vx, vy, vz = X[4:7, k]
qw, qx, qy, qz = X[7:11, k]
CBI = np.array([
[1 - 2 * (qy ** 2 + qz ** 2), 2 * (qx * qy + qw * qz),
2 * (qx * qz - qw * qy)],
[2 * (qx * qy - qw * qz), 1 - 2
* (qx ** 2 + qz ** 2), 2 * (qy * qz + qw * qx)],
[2 * (qx * qz + qw * qy), 2 * (qy * qz - qw * qx),
1 - 2 * (qx ** 2 + qy ** 2)]
])
Fx, Fy, Fz = np.dot(np.transpose(CBI), U[:, k])
dx, dy, dz = np.dot(np.transpose(CBI), np.array([1., 0., 0.]))
# attitude vector
ax.quiver(ry, rz, rx, dy, dz, dx, length=0.5, linewidth=3.0,
arrow_length_ratio=0.0, color='black')
# thrust vector
ax.quiver(ry, rz, rx, -Fy, -Fz, -Fx, length=0.1,
arrow_length_ratio=0.0, color='red')
ax.set_title("Rocket powered landing")
plt.pause(0.5)
| 1,308 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
main
|
(rng=None)
| 612 | 668 |
def main(rng=None):
print("start!!")
m = Rocket_Model_6DoF(rng)
# state and input list
X = np.empty(shape=[m.n_x, K])
U = np.empty(shape=[m.n_u, K])
# INITIALIZATION
sigma = m.t_f_guess
X, U = m.initialize_trajectory(X, U)
integrator = Integrator(m, K)
problem = SCProblem(m, K)
converged = False
w_delta = W_DELTA
for it in range(iterations):
t0_it = time()
print('-' * 18 + f' Iteration {str(it + 1).zfill(2)} ' + '-' * 18)
A_bar, B_bar, C_bar, S_bar, z_bar = integrator.calculate_discretization(
X, U, sigma)
problem.set_parameters(A_bar=A_bar, B_bar=B_bar, C_bar=C_bar, S_bar=S_bar, z_bar=z_bar,
X_last=X, U_last=U, sigma_last=sigma,
weight_sigma=W_SIGMA, weight_nu=W_NU,
weight_delta=w_delta, weight_delta_sigma=W_DELTA_SIGMA)
problem.solve()
X = problem.get_variable('X')
U = problem.get_variable('U')
sigma = problem.get_variable('sigma')
delta_norm = problem.get_variable('delta_norm')
sigma_norm = problem.get_variable('sigma_norm')
nu_norm = np.linalg.norm(problem.get_variable('nu'), np.inf)
print('delta_norm', delta_norm)
print('sigma_norm', sigma_norm)
print('nu_norm', nu_norm)
if delta_norm < 1e-3 and sigma_norm < 1e-3 and nu_norm < 1e-7:
converged = True
w_delta *= 1.5
print('Time for iteration', time() - t0_it, 's')
if converged:
print(f'Converged after {it + 1} iterations.')
break
if show_animation: # pragma: no cover
plot_animation(X, U)
print("done!!")
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L612-L668
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
23,
24,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
55,
56
] | 92.727273 |
[] | 0 | false | 94.573643 | 57 | 7 | 100 | 0 |
def main(rng=None):
print("start!!")
m = Rocket_Model_6DoF(rng)
# state and input list
X = np.empty(shape=[m.n_x, K])
U = np.empty(shape=[m.n_u, K])
# INITIALIZATION
sigma = m.t_f_guess
X, U = m.initialize_trajectory(X, U)
integrator = Integrator(m, K)
problem = SCProblem(m, K)
converged = False
w_delta = W_DELTA
for it in range(iterations):
t0_it = time()
print('-' * 18 + f' Iteration {str(it + 1).zfill(2)} ' + '-' * 18)
A_bar, B_bar, C_bar, S_bar, z_bar = integrator.calculate_discretization(
X, U, sigma)
problem.set_parameters(A_bar=A_bar, B_bar=B_bar, C_bar=C_bar, S_bar=S_bar, z_bar=z_bar,
X_last=X, U_last=U, sigma_last=sigma,
weight_sigma=W_SIGMA, weight_nu=W_NU,
weight_delta=w_delta, weight_delta_sigma=W_DELTA_SIGMA)
problem.solve()
X = problem.get_variable('X')
U = problem.get_variable('U')
sigma = problem.get_variable('sigma')
delta_norm = problem.get_variable('delta_norm')
sigma_norm = problem.get_variable('sigma_norm')
nu_norm = np.linalg.norm(problem.get_variable('nu'), np.inf)
print('delta_norm', delta_norm)
print('sigma_norm', sigma_norm)
print('nu_norm', nu_norm)
if delta_norm < 1e-3 and sigma_norm < 1e-3 and nu_norm < 1e-7:
converged = True
w_delta *= 1.5
print('Time for iteration', time() - t0_it, 's')
if converged:
print(f'Converged after {it + 1} iterations.')
break
if show_animation: # pragma: no cover
plot_animation(X, U)
print("done!!")
| 1,309 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
Rocket_Model_6DoF.__init__
|
(self, rng)
|
A large r_scale for a small scale problem will
ead to numerical problems as parameters become excessively small
and (it seems) precision is lost in the dynamics.
|
A large r_scale for a small scale problem will
ead to numerical problems as parameters become excessively small
and (it seems) precision is lost in the dynamics.
| 46 | 103 |
def __init__(self, rng):
"""
A large r_scale for a small scale problem will
ead to numerical problems as parameters become excessively small
and (it seems) precision is lost in the dynamics.
"""
self.n_x = 14
self.n_u = 3
# Mass
self.m_wet = 3.0 # 30000 kg
self.m_dry = 2.2 # 22000 kg
# Flight time guess
self.t_f_guess = 10.0 # 10 s
# State constraints
self.r_I_final = np.array((0., 0., 0.))
self.v_I_final = np.array((-1e-1, 0., 0.))
self.q_B_I_final = self.euler_to_quat((0, 0, 0))
self.w_B_final = np.deg2rad(np.array((0., 0., 0.)))
self.w_B_max = np.deg2rad(60)
# Angles
max_gimbal = 20
max_angle = 90
glidelslope_angle = 20
self.tan_delta_max = np.tan(np.deg2rad(max_gimbal))
self.cos_theta_max = np.cos(np.deg2rad(max_angle))
self.tan_gamma_gs = np.tan(np.deg2rad(glidelslope_angle))
# Thrust limits
self.T_max = 5.0
self.T_min = 0.3
# Angular moment of inertia
self.J_B = 1e-2 * np.diag([1., 1., 1.])
# Gravity
self.g_I = np.array((-1, 0., 0.))
# Fuel consumption
self.alpha_m = 0.01
# Vector from thrust point to CoM
self.r_T_B = np.array([-1e-2, 0., 0.])
self.set_random_initial_state(rng)
self.x_init = np.concatenate(
((self.m_wet,), self.r_I_init, self.v_I_init, self.q_B_I_init, self.w_B_init))
self.x_final = np.concatenate(
((self.m_dry,), self.r_I_final, self.v_I_final, self.q_B_I_final, self.w_B_final))
self.r_scale = np.linalg.norm(self.r_I_init)
self.m_scale = self.m_wet
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L46-L103
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57
] | 100 |
[] | 0 | true | 94.573643 | 58 | 1 | 100 | 3 |
def __init__(self, rng):
self.n_x = 14
self.n_u = 3
# Mass
self.m_wet = 3.0 # 30000 kg
self.m_dry = 2.2 # 22000 kg
# Flight time guess
self.t_f_guess = 10.0 # 10 s
# State constraints
self.r_I_final = np.array((0., 0., 0.))
self.v_I_final = np.array((-1e-1, 0., 0.))
self.q_B_I_final = self.euler_to_quat((0, 0, 0))
self.w_B_final = np.deg2rad(np.array((0., 0., 0.)))
self.w_B_max = np.deg2rad(60)
# Angles
max_gimbal = 20
max_angle = 90
glidelslope_angle = 20
self.tan_delta_max = np.tan(np.deg2rad(max_gimbal))
self.cos_theta_max = np.cos(np.deg2rad(max_angle))
self.tan_gamma_gs = np.tan(np.deg2rad(glidelslope_angle))
# Thrust limits
self.T_max = 5.0
self.T_min = 0.3
# Angular moment of inertia
self.J_B = 1e-2 * np.diag([1., 1., 1.])
# Gravity
self.g_I = np.array((-1, 0., 0.))
# Fuel consumption
self.alpha_m = 0.01
# Vector from thrust point to CoM
self.r_T_B = np.array([-1e-2, 0., 0.])
self.set_random_initial_state(rng)
self.x_init = np.concatenate(
((self.m_wet,), self.r_I_init, self.v_I_init, self.q_B_I_init, self.w_B_init))
self.x_final = np.concatenate(
((self.m_dry,), self.r_I_final, self.v_I_final, self.q_B_I_final, self.w_B_final))
self.r_scale = np.linalg.norm(self.r_I_init)
self.m_scale = self.m_wet
| 1,310 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
Rocket_Model_6DoF.set_random_initial_state
|
(self, rng)
| 105 | 123 |
def set_random_initial_state(self, rng):
if rng is None:
rng = np.random.default_rng()
self.r_I_init = np.array((0., 0., 0.))
self.r_I_init[0] = rng.uniform(3, 4)
self.r_I_init[1:3] = rng.uniform(-2, 2, size=2)
self.v_I_init = np.array((0., 0., 0.))
self.v_I_init[0] = rng.uniform(-1, -0.5)
self.v_I_init[1:3] = rng.uniform(-0.5, -0.2,
size=2) * self.r_I_init[1:3]
self.q_B_I_init = self.euler_to_quat((0,
rng.uniform(-30, 30),
rng.uniform(-30, 30)))
self.w_B_init = np.deg2rad((0,
rng.uniform(-20, 20),
rng.uniform(-20, 20)))
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L105-L123
| 2 |
[
0,
1,
3,
4,
5,
6,
7,
8,
9,
10,
12,
13,
16
] | 68.421053 |
[
2
] | 5.263158 | false | 94.573643 | 19 | 2 | 94.736842 | 0 |
def set_random_initial_state(self, rng):
if rng is None:
rng = np.random.default_rng()
self.r_I_init = np.array((0., 0., 0.))
self.r_I_init[0] = rng.uniform(3, 4)
self.r_I_init[1:3] = rng.uniform(-2, 2, size=2)
self.v_I_init = np.array((0., 0., 0.))
self.v_I_init[0] = rng.uniform(-1, -0.5)
self.v_I_init[1:3] = rng.uniform(-0.5, -0.2,
size=2) * self.r_I_init[1:3]
self.q_B_I_init = self.euler_to_quat((0,
rng.uniform(-30, 30),
rng.uniform(-30, 30)))
self.w_B_init = np.deg2rad((0,
rng.uniform(-20, 20),
rng.uniform(-20, 20)))
| 1,311 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
Rocket_Model_6DoF.f_func
|
(self, x, u)
|
return np.array([
[-0.01 * np.sqrt(ux**2 + uy**2 + uz**2)],
[vx],
[vy],
[vz],
[(-1.0 * m - ux * (2 * q2**2 + 2 * q3**2 - 1) - 2 * uy
* (q0 * q3 - q1 * q2) + 2 * uz * (q0 * q2 + q1 * q3)) / m],
[(2 * ux * (q0 * q3 + q1 * q2) - uy * (2 * q1**2
+ 2 * q3**2 - 1) - 2 * uz * (q0 * q1 - q2 * q3)) / m],
[(-2 * ux * (q0 * q2 - q1 * q3) + 2 * uy
* (q0 * q1 + q2 * q3) - uz * (2 * q1**2 + 2 * q2**2 - 1)) / m],
[-0.5 * q1 * wx - 0.5 * q2 * wy - 0.5 * q3 * wz],
[0.5 * q0 * wx + 0.5 * q2 * wz - 0.5 * q3 * wy],
[0.5 * q0 * wy - 0.5 * q1 * wz + 0.5 * q3 * wx],
[0.5 * q0 * wz + 0.5 * q1 * wy - 0.5 * q2 * wx],
[0],
[1.0 * uz],
[-1.0 * uy]
])
| 125 | 148 |
def f_func(self, x, u):
m, rx, ry, rz, vx, vy, vz, q0, q1, q2, q3, wx, wy, wz = x[0], x[1], x[
2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], x[11], x[12], x[13]
ux, uy, uz = u[0], u[1], u[2]
return np.array([
[-0.01 * np.sqrt(ux**2 + uy**2 + uz**2)],
[vx],
[vy],
[vz],
[(-1.0 * m - ux * (2 * q2**2 + 2 * q3**2 - 1) - 2 * uy
* (q0 * q3 - q1 * q2) + 2 * uz * (q0 * q2 + q1 * q3)) / m],
[(2 * ux * (q0 * q3 + q1 * q2) - uy * (2 * q1**2
+ 2 * q3**2 - 1) - 2 * uz * (q0 * q1 - q2 * q3)) / m],
[(-2 * ux * (q0 * q2 - q1 * q3) + 2 * uy
* (q0 * q1 + q2 * q3) - uz * (2 * q1**2 + 2 * q2**2 - 1)) / m],
[-0.5 * q1 * wx - 0.5 * q2 * wy - 0.5 * q3 * wz],
[0.5 * q0 * wx + 0.5 * q2 * wz - 0.5 * q3 * wy],
[0.5 * q0 * wy - 0.5 * q1 * wz + 0.5 * q3 * wx],
[0.5 * q0 * wz + 0.5 * q1 * wy - 0.5 * q2 * wx],
[0],
[1.0 * uz],
[-1.0 * uy]
])
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L125-L148
| 2 |
[
0,
1,
3,
4,
5
] | 20.833333 |
[] | 0 | false | 94.573643 | 24 | 1 | 100 | 0 |
def f_func(self, x, u):
m, rx, ry, rz, vx, vy, vz, q0, q1, q2, q3, wx, wy, wz = x[0], x[1], x[
2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], x[11], x[12], x[13]
ux, uy, uz = u[0], u[1], u[2]
return np.array([
[-0.01 * np.sqrt(ux**2 + uy**2 + uz**2)],
[vx],
[vy],
[vz],
[(-1.0 * m - ux * (2 * q2**2 + 2 * q3**2 - 1) - 2 * uy
* (q0 * q3 - q1 * q2) + 2 * uz * (q0 * q2 + q1 * q3)) / m],
[(2 * ux * (q0 * q3 + q1 * q2) - uy * (2 * q1**2
+ 2 * q3**2 - 1) - 2 * uz * (q0 * q1 - q2 * q3)) / m],
[(-2 * ux * (q0 * q2 - q1 * q3) + 2 * uy
* (q0 * q1 + q2 * q3) - uz * (2 * q1**2 + 2 * q2**2 - 1)) / m],
[-0.5 * q1 * wx - 0.5 * q2 * wy - 0.5 * q3 * wz],
[0.5 * q0 * wx + 0.5 * q2 * wz - 0.5 * q3 * wy],
[0.5 * q0 * wy - 0.5 * q1 * wz + 0.5 * q3 * wx],
[0.5 * q0 * wz + 0.5 * q1 * wy - 0.5 * q2 * wx],
[0],
[1.0 * uz],
[-1.0 * uy]
])
| 1,312 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
Rocket_Model_6DoF.A_func
|
(self, x, u)
|
return np.array([
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[(ux * (2 * q2**2 + 2 * q3**2 - 1) + 2 * uy * (q0 * q3 - q1 * q2) - 2 * uz * (q0 * q2 + q1 * q3)) / m**2, 0, 0, 0, 0, 0, 0, 2 * (q2 * uz
- q3 * uy) / m, 2 * (q2 * uy + q3 * uz) / m, 2 * (q0 * uz + q1 * uy - 2 * q2 * ux) / m, 2 * (-q0 * uy + q1 * uz - 2 * q3 * ux) / m, 0, 0, 0],
[(-2 * ux * (q0 * q3 + q1 * q2) + uy * (2 * q1**2 + 2 * q3**2 - 1) + 2 * uz * (q0 * q1 - q2 * q3)) / m**2, 0, 0, 0, 0, 0, 0, 2 * (-q1 * uz
+ q3 * ux) / m, 2 * (-q0 * uz - 2 * q1 * uy + q2 * ux) / m, 2 * (q1 * ux + q3 * uz) / m, 2 * (q0 * ux + q2 * uz - 2 * q3 * uy) / m, 0, 0, 0],
[(2 * ux * (q0 * q2 - q1 * q3) - 2 * uy * (q0 * q1 + q2 * q3) + uz * (2 * q1**2 + 2 * q2**2 - 1)) / m**2, 0, 0, 0, 0, 0, 0, 2 * (q1 * uy
- q2 * ux) / m, 2 * (q0 * uy - 2 * q1 * uz + q3 * ux) / m, 2 * (-q0 * ux - 2 * q2 * uz + q3 * uy) / m, 2 * (q1 * ux + q2 * uy) / m, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, -0.5 * wx, -0.5 * wy,
- 0.5 * wz, -0.5 * q1, -0.5 * q2, -0.5 * q3],
[0, 0, 0, 0, 0, 0, 0, 0.5 * wx, 0, 0.5 * wz,
- 0.5 * wy, 0.5 * q0, -0.5 * q3, 0.5 * q2],
[0, 0, 0, 0, 0, 0, 0, 0.5 * wy, -0.5 * wz, 0,
0.5 * wx, 0.5 * q3, 0.5 * q0, -0.5 * q1],
[0, 0, 0, 0, 0, 0, 0, 0.5 * wz, 0.5 * wy,
- 0.5 * wx, 0, -0.5 * q2, 0.5 * q1, 0.5 * q0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
| 150 | 176 |
def A_func(self, x, u):
m, rx, ry, rz, vx, vy, vz, q0, q1, q2, q3, wx, wy, wz = x[0], x[1], x[
2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], x[11], x[12], x[13]
ux, uy, uz = u[0], u[1], u[2]
return np.array([
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[(ux * (2 * q2**2 + 2 * q3**2 - 1) + 2 * uy * (q0 * q3 - q1 * q2) - 2 * uz * (q0 * q2 + q1 * q3)) / m**2, 0, 0, 0, 0, 0, 0, 2 * (q2 * uz
- q3 * uy) / m, 2 * (q2 * uy + q3 * uz) / m, 2 * (q0 * uz + q1 * uy - 2 * q2 * ux) / m, 2 * (-q0 * uy + q1 * uz - 2 * q3 * ux) / m, 0, 0, 0],
[(-2 * ux * (q0 * q3 + q1 * q2) + uy * (2 * q1**2 + 2 * q3**2 - 1) + 2 * uz * (q0 * q1 - q2 * q3)) / m**2, 0, 0, 0, 0, 0, 0, 2 * (-q1 * uz
+ q3 * ux) / m, 2 * (-q0 * uz - 2 * q1 * uy + q2 * ux) / m, 2 * (q1 * ux + q3 * uz) / m, 2 * (q0 * ux + q2 * uz - 2 * q3 * uy) / m, 0, 0, 0],
[(2 * ux * (q0 * q2 - q1 * q3) - 2 * uy * (q0 * q1 + q2 * q3) + uz * (2 * q1**2 + 2 * q2**2 - 1)) / m**2, 0, 0, 0, 0, 0, 0, 2 * (q1 * uy
- q2 * ux) / m, 2 * (q0 * uy - 2 * q1 * uz + q3 * ux) / m, 2 * (-q0 * ux - 2 * q2 * uz + q3 * uy) / m, 2 * (q1 * ux + q2 * uy) / m, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, -0.5 * wx, -0.5 * wy,
- 0.5 * wz, -0.5 * q1, -0.5 * q2, -0.5 * q3],
[0, 0, 0, 0, 0, 0, 0, 0.5 * wx, 0, 0.5 * wz,
- 0.5 * wy, 0.5 * q0, -0.5 * q3, 0.5 * q2],
[0, 0, 0, 0, 0, 0, 0, 0.5 * wy, -0.5 * wz, 0,
0.5 * wx, 0.5 * q3, 0.5 * q0, -0.5 * q1],
[0, 0, 0, 0, 0, 0, 0, 0.5 * wz, 0.5 * wy,
- 0.5 * wx, 0, -0.5 * q2, 0.5 * q1, 0.5 * q0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L150-L176
| 2 |
[
0,
1,
3,
4,
5
] | 18.518519 |
[] | 0 | false | 94.573643 | 27 | 1 | 100 | 0 |
def A_func(self, x, u):
m, rx, ry, rz, vx, vy, vz, q0, q1, q2, q3, wx, wy, wz = x[0], x[1], x[
2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], x[11], x[12], x[13]
ux, uy, uz = u[0], u[1], u[2]
return np.array([
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[(ux * (2 * q2**2 + 2 * q3**2 - 1) + 2 * uy * (q0 * q3 - q1 * q2) - 2 * uz * (q0 * q2 + q1 * q3)) / m**2, 0, 0, 0, 0, 0, 0, 2 * (q2 * uz
- q3 * uy) / m, 2 * (q2 * uy + q3 * uz) / m, 2 * (q0 * uz + q1 * uy - 2 * q2 * ux) / m, 2 * (-q0 * uy + q1 * uz - 2 * q3 * ux) / m, 0, 0, 0],
[(-2 * ux * (q0 * q3 + q1 * q2) + uy * (2 * q1**2 + 2 * q3**2 - 1) + 2 * uz * (q0 * q1 - q2 * q3)) / m**2, 0, 0, 0, 0, 0, 0, 2 * (-q1 * uz
+ q3 * ux) / m, 2 * (-q0 * uz - 2 * q1 * uy + q2 * ux) / m, 2 * (q1 * ux + q3 * uz) / m, 2 * (q0 * ux + q2 * uz - 2 * q3 * uy) / m, 0, 0, 0],
[(2 * ux * (q0 * q2 - q1 * q3) - 2 * uy * (q0 * q1 + q2 * q3) + uz * (2 * q1**2 + 2 * q2**2 - 1)) / m**2, 0, 0, 0, 0, 0, 0, 2 * (q1 * uy
- q2 * ux) / m, 2 * (q0 * uy - 2 * q1 * uz + q3 * ux) / m, 2 * (-q0 * ux - 2 * q2 * uz + q3 * uy) / m, 2 * (q1 * ux + q2 * uy) / m, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, -0.5 * wx, -0.5 * wy,
- 0.5 * wz, -0.5 * q1, -0.5 * q2, -0.5 * q3],
[0, 0, 0, 0, 0, 0, 0, 0.5 * wx, 0, 0.5 * wz,
- 0.5 * wy, 0.5 * q0, -0.5 * q3, 0.5 * q2],
[0, 0, 0, 0, 0, 0, 0, 0.5 * wy, -0.5 * wz, 0,
0.5 * wx, 0.5 * q3, 0.5 * q0, -0.5 * q1],
[0, 0, 0, 0, 0, 0, 0, 0.5 * wz, 0.5 * wy,
- 0.5 * wx, 0, -0.5 * q2, 0.5 * q1, 0.5 * q0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
| 1,313 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
Rocket_Model_6DoF.B_func
|
(self, x, u)
|
return np.array([
[-0.01 * ux / np.sqrt(ux**2 + uy**2 + uz**2),
-0.01 * uy / np.sqrt(ux ** 2 + uy**2 + uz**2),
-0.01 * uz / np.sqrt(ux**2 + uy**2 + uz**2)],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[(-2 * q2**2 - 2 * q3**2 + 1) / m, 2
* (-q0 * q3 + q1 * q2) / m, 2 * (q0 * q2 + q1 * q3) / m],
[2 * (q0 * q3 + q1 * q2) / m, (-2 * q1**2 - 2
* q3**2 + 1) / m, 2 * (-q0 * q1 + q2 * q3) / m],
[2 * (-q0 * q2 + q1 * q3) / m, 2 * (q0 * q1 + q2 * q3)
/ m, (-2 * q1**2 - 2 * q2**2 + 1) / m],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 1.0],
[0, -1.0, 0]
])
| 178 | 203 |
def B_func(self, x, u):
m, rx, ry, rz, vx, vy, vz, q0, q1, q2, q3, wx, wy, wz = x[0], x[1], x[
2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], x[11], x[12], x[13]
ux, uy, uz = u[0], u[1], u[2]
return np.array([
[-0.01 * ux / np.sqrt(ux**2 + uy**2 + uz**2),
-0.01 * uy / np.sqrt(ux ** 2 + uy**2 + uz**2),
-0.01 * uz / np.sqrt(ux**2 + uy**2 + uz**2)],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[(-2 * q2**2 - 2 * q3**2 + 1) / m, 2
* (-q0 * q3 + q1 * q2) / m, 2 * (q0 * q2 + q1 * q3) / m],
[2 * (q0 * q3 + q1 * q2) / m, (-2 * q1**2 - 2
* q3**2 + 1) / m, 2 * (-q0 * q1 + q2 * q3) / m],
[2 * (-q0 * q2 + q1 * q3) / m, 2 * (q0 * q1 + q2 * q3)
/ m, (-2 * q1**2 - 2 * q2**2 + 1) / m],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 1.0],
[0, -1.0, 0]
])
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L178-L203
| 2 |
[
0,
1,
3,
4,
5
] | 19.230769 |
[] | 0 | false | 94.573643 | 26 | 1 | 100 | 0 |
def B_func(self, x, u):
m, rx, ry, rz, vx, vy, vz, q0, q1, q2, q3, wx, wy, wz = x[0], x[1], x[
2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], x[11], x[12], x[13]
ux, uy, uz = u[0], u[1], u[2]
return np.array([
[-0.01 * ux / np.sqrt(ux**2 + uy**2 + uz**2),
-0.01 * uy / np.sqrt(ux ** 2 + uy**2 + uz**2),
-0.01 * uz / np.sqrt(ux**2 + uy**2 + uz**2)],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[(-2 * q2**2 - 2 * q3**2 + 1) / m, 2
* (-q0 * q3 + q1 * q2) / m, 2 * (q0 * q2 + q1 * q3) / m],
[2 * (q0 * q3 + q1 * q2) / m, (-2 * q1**2 - 2
* q3**2 + 1) / m, 2 * (-q0 * q1 + q2 * q3) / m],
[2 * (-q0 * q2 + q1 * q3) / m, 2 * (q0 * q1 + q2 * q3)
/ m, (-2 * q1**2 - 2 * q2**2 + 1) / m],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 1.0],
[0, -1.0, 0]
])
| 1,314 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
Rocket_Model_6DoF.euler_to_quat
|
(self, a)
|
return q
| 205 | 222 |
def euler_to_quat(self, a):
a = np.deg2rad(a)
cy = np.cos(a[1] * 0.5)
sy = np.sin(a[1] * 0.5)
cr = np.cos(a[0] * 0.5)
sr = np.sin(a[0] * 0.5)
cp = np.cos(a[2] * 0.5)
sp = np.sin(a[2] * 0.5)
q = np.zeros(4)
q[0] = cy * cr * cp + sy * sr * sp
q[1] = cy * sr * cp - sy * cr * sp
q[3] = cy * cr * sp + sy * sr * cp
q[2] = sy * cr * cp - cy * sr * sp
return q
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L205-L222
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17
] | 100 |
[] | 0 | true | 94.573643 | 18 | 1 | 100 | 0 |
def euler_to_quat(self, a):
a = np.deg2rad(a)
cy = np.cos(a[1] * 0.5)
sy = np.sin(a[1] * 0.5)
cr = np.cos(a[0] * 0.5)
sr = np.sin(a[0] * 0.5)
cp = np.cos(a[2] * 0.5)
sp = np.sin(a[2] * 0.5)
q = np.zeros(4)
q[0] = cy * cr * cp + sy * sr * sp
q[1] = cy * sr * cp - sy * cr * sp
q[3] = cy * cr * sp + sy * sr * cp
q[2] = sy * cr * cp - cy * sr * sp
return q
| 1,315 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
Rocket_Model_6DoF.skew
|
(self, v)
|
return np.array([
[0, -v[2], v[1]],
[v[2], 0, -v[0]],
[-v[1], v[0], 0]
])
| 224 | 229 |
def skew(self, v):
return np.array([
[0, -v[2], v[1]],
[v[2], 0, -v[0]],
[-v[1], v[0], 0]
])
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L224-L229
| 2 |
[
0
] | 16.666667 |
[
1
] | 16.666667 | false | 94.573643 | 6 | 1 | 83.333333 | 0 |
def skew(self, v):
return np.array([
[0, -v[2], v[1]],
[v[2], 0, -v[0]],
[-v[1], v[0], 0]
])
| 1,316 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
Rocket_Model_6DoF.dir_cosine
|
(self, q)
|
return np.array([
[1 - 2 * (q[2] ** 2 + q[3] ** 2), 2 * (q[1] * q[2]
+ q[0] * q[3]), 2 * (q[1] * q[3] - q[0] * q[2])],
[2 * (q[1] * q[2] - q[0] * q[3]), 1 - 2
* (q[1] ** 2 + q[3] ** 2), 2 * (q[2] * q[3] + q[0] * q[1])],
[2 * (q[1] * q[3] + q[0] * q[2]), 2 * (q[2] * q[3]
- q[0] * q[1]), 1 - 2 * (q[1] ** 2 + q[2] ** 2)]
])
| 231 | 239 |
def dir_cosine(self, q):
return np.array([
[1 - 2 * (q[2] ** 2 + q[3] ** 2), 2 * (q[1] * q[2]
+ q[0] * q[3]), 2 * (q[1] * q[3] - q[0] * q[2])],
[2 * (q[1] * q[2] - q[0] * q[3]), 1 - 2
* (q[1] ** 2 + q[3] ** 2), 2 * (q[2] * q[3] + q[0] * q[1])],
[2 * (q[1] * q[3] + q[0] * q[2]), 2 * (q[2] * q[3]
- q[0] * q[1]), 1 - 2 * (q[1] ** 2 + q[2] ** 2)]
])
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L231-L239
| 2 |
[
0
] | 11.111111 |
[
1
] | 11.111111 | false | 94.573643 | 9 | 1 | 88.888889 | 0 |
def dir_cosine(self, q):
return np.array([
[1 - 2 * (q[2] ** 2 + q[3] ** 2), 2 * (q[1] * q[2]
+ q[0] * q[3]), 2 * (q[1] * q[3] - q[0] * q[2])],
[2 * (q[1] * q[2] - q[0] * q[3]), 1 - 2
* (q[1] ** 2 + q[3] ** 2), 2 * (q[2] * q[3] + q[0] * q[1])],
[2 * (q[1] * q[3] + q[0] * q[2]), 2 * (q[2] * q[3]
- q[0] * q[1]), 1 - 2 * (q[1] ** 2 + q[2] ** 2)]
])
| 1,317 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
Rocket_Model_6DoF.omega
|
(self, w)
|
return np.array([
[0, -w[0], -w[1], -w[2]],
[w[0], 0, w[2], -w[1]],
[w[1], -w[2], 0, w[0]],
[w[2], w[1], -w[0], 0],
])
| 241 | 247 |
def omega(self, w):
return np.array([
[0, -w[0], -w[1], -w[2]],
[w[0], 0, w[2], -w[1]],
[w[1], -w[2], 0, w[0]],
[w[2], w[1], -w[0], 0],
])
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L241-L247
| 2 |
[
0
] | 14.285714 |
[
1
] | 14.285714 | false | 94.573643 | 7 | 1 | 85.714286 | 0 |
def omega(self, w):
return np.array([
[0, -w[0], -w[1], -w[2]],
[w[0], 0, w[2], -w[1]],
[w[1], -w[2], 0, w[0]],
[w[2], w[1], -w[0], 0],
])
| 1,318 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
Rocket_Model_6DoF.initialize_trajectory
|
(self, X, U)
|
return X, U
|
Initialize the trajectory with linear approximation.
|
Initialize the trajectory with linear approximation.
| 249 | 268 |
def initialize_trajectory(self, X, U):
"""
Initialize the trajectory with linear approximation.
"""
K = X.shape[1]
for k in range(K):
alpha1 = (K - k) / K
alpha2 = k / K
m_k = (alpha1 * self.x_init[0] + alpha2 * self.x_final[0],)
r_I_k = alpha1 * self.x_init[1:4] + alpha2 * self.x_final[1:4]
v_I_k = alpha1 * self.x_init[4:7] + alpha2 * self.x_final[4:7]
q_B_I_k = np.array([1, 0, 0, 0])
w_B_k = alpha1 * self.x_init[11:14] + alpha2 * self.x_final[11:14]
X[:, k] = np.concatenate((m_k, r_I_k, v_I_k, q_B_I_k, w_B_k))
U[:, k] = m_k * -self.g_I
return X, U
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L249-L268
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19
] | 100 |
[] | 0 | true | 94.573643 | 20 | 2 | 100 | 1 |
def initialize_trajectory(self, X, U):
K = X.shape[1]
for k in range(K):
alpha1 = (K - k) / K
alpha2 = k / K
m_k = (alpha1 * self.x_init[0] + alpha2 * self.x_final[0],)
r_I_k = alpha1 * self.x_init[1:4] + alpha2 * self.x_final[1:4]
v_I_k = alpha1 * self.x_init[4:7] + alpha2 * self.x_final[4:7]
q_B_I_k = np.array([1, 0, 0, 0])
w_B_k = alpha1 * self.x_init[11:14] + alpha2 * self.x_final[11:14]
X[:, k] = np.concatenate((m_k, r_I_k, v_I_k, q_B_I_k, w_B_k))
U[:, k] = m_k * -self.g_I
return X, U
| 1,319 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
Rocket_Model_6DoF.get_constraints
|
(self, X_v, U_v, X_last_p, U_last_p)
|
return constraints
|
Get model specific constraints.
:param X_v: cvx variable for current states
:param U_v: cvx variable for current inputs
:param X_last_p: cvx parameter for last states
:param U_last_p: cvx parameter for last inputs
:return: A list of cvx constraints
|
Get model specific constraints.
| 270 | 316 |
def get_constraints(self, X_v, U_v, X_last_p, U_last_p):
"""
Get model specific constraints.
:param X_v: cvx variable for current states
:param U_v: cvx variable for current inputs
:param X_last_p: cvx parameter for last states
:param U_last_p: cvx parameter for last inputs
:return: A list of cvx constraints
"""
# Boundary conditions:
constraints = [
X_v[0, 0] == self.x_init[0],
X_v[1:4, 0] == self.x_init[1:4],
X_v[4:7, 0] == self.x_init[4:7],
# X_v[7:11, 0] == self.x_init[7:11], # initial orientation is free
X_v[11:14, 0] == self.x_init[11:14],
# X_[0, -1] final mass is free
X_v[1:, -1] == self.x_final[1:],
U_v[1:3, -1] == 0,
]
constraints += [
# State constraints:
X_v[0, :] >= self.m_dry, # minimum mass
cvxpy.norm(X_v[2: 4, :], axis=0) <= X_v[1, :] / \
self.tan_gamma_gs, # glideslope
cvxpy.norm(X_v[9:11, :], axis=0) <= np.sqrt(
(1 - self.cos_theta_max) / 2), # maximum angle
# maximum angular velocity
cvxpy.norm(X_v[11: 14, :], axis=0) <= self.w_B_max,
# Control constraints:
cvxpy.norm(U_v[1:3, :], axis=0) <= self.tan_delta_max * \
U_v[0, :], # gimbal angle constraint
cvxpy.norm(U_v, axis=0) <= self.T_max, # upper thrust constraint
]
# linearized lower thrust constraint
rhs = [U_last_p[:, k] / cvxpy.norm(U_last_p[:, k]) @ U_v[:, k]
for k in range(X_v.shape[1])]
constraints += [
self.T_min <= cvxpy.vstack(rhs)
]
return constraints
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L270-L316
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46
] | 100 |
[] | 0 | true | 94.573643 | 47 | 2 | 100 | 7 |
def get_constraints(self, X_v, U_v, X_last_p, U_last_p):
# Boundary conditions:
constraints = [
X_v[0, 0] == self.x_init[0],
X_v[1:4, 0] == self.x_init[1:4],
X_v[4:7, 0] == self.x_init[4:7],
# X_v[7:11, 0] == self.x_init[7:11], # initial orientation is free
X_v[11:14, 0] == self.x_init[11:14],
# X_[0, -1] final mass is free
X_v[1:, -1] == self.x_final[1:],
U_v[1:3, -1] == 0,
]
constraints += [
# State constraints:
X_v[0, :] >= self.m_dry, # minimum mass
cvxpy.norm(X_v[2: 4, :], axis=0) <= X_v[1, :] / \
self.tan_gamma_gs, # glideslope
cvxpy.norm(X_v[9:11, :], axis=0) <= np.sqrt(
(1 - self.cos_theta_max) / 2), # maximum angle
# maximum angular velocity
cvxpy.norm(X_v[11: 14, :], axis=0) <= self.w_B_max,
# Control constraints:
cvxpy.norm(U_v[1:3, :], axis=0) <= self.tan_delta_max * \
U_v[0, :], # gimbal angle constraint
cvxpy.norm(U_v, axis=0) <= self.T_max, # upper thrust constraint
]
# linearized lower thrust constraint
rhs = [U_last_p[:, k] / cvxpy.norm(U_last_p[:, k]) @ U_v[:, k]
for k in range(X_v.shape[1])]
constraints += [
self.T_min <= cvxpy.vstack(rhs)
]
return constraints
| 1,320 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
Integrator.__init__
|
(self, m, K)
| 320 | 352 |
def __init__(self, m, K):
self.K = K
self.m = m
self.n_x = m.n_x
self.n_u = m.n_u
self.A_bar = np.zeros([m.n_x * m.n_x, K - 1])
self.B_bar = np.zeros([m.n_x * m.n_u, K - 1])
self.C_bar = np.zeros([m.n_x * m.n_u, K - 1])
self.S_bar = np.zeros([m.n_x, K - 1])
self.z_bar = np.zeros([m.n_x, K - 1])
# vector indices for flat matrices
x_end = m.n_x
A_bar_end = m.n_x * (1 + m.n_x)
B_bar_end = m.n_x * (1 + m.n_x + m.n_u)
C_bar_end = m.n_x * (1 + m.n_x + m.n_u + m.n_u)
S_bar_end = m.n_x * (1 + m.n_x + m.n_u + m.n_u + 1)
z_bar_end = m.n_x * (1 + m.n_x + m.n_u + m.n_u + 2)
self.x_ind = slice(0, x_end)
self.A_bar_ind = slice(x_end, A_bar_end)
self.B_bar_ind = slice(A_bar_end, B_bar_end)
self.C_bar_ind = slice(B_bar_end, C_bar_end)
self.S_bar_ind = slice(C_bar_end, S_bar_end)
self.z_bar_ind = slice(S_bar_end, z_bar_end)
self.f, self.A, self.B = m.f_func, m.A_func, m.B_func
# integration initial condition
self.V0 = np.zeros((m.n_x * (1 + m.n_x + m.n_u + m.n_u + 2),))
self.V0[self.A_bar_ind] = np.eye(m.n_x).reshape(-1)
self.dt = 1. / (K - 1)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L320-L352
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32
] | 100 |
[] | 0 | true | 94.573643 | 33 | 1 | 100 | 0 |
def __init__(self, m, K):
self.K = K
self.m = m
self.n_x = m.n_x
self.n_u = m.n_u
self.A_bar = np.zeros([m.n_x * m.n_x, K - 1])
self.B_bar = np.zeros([m.n_x * m.n_u, K - 1])
self.C_bar = np.zeros([m.n_x * m.n_u, K - 1])
self.S_bar = np.zeros([m.n_x, K - 1])
self.z_bar = np.zeros([m.n_x, K - 1])
# vector indices for flat matrices
x_end = m.n_x
A_bar_end = m.n_x * (1 + m.n_x)
B_bar_end = m.n_x * (1 + m.n_x + m.n_u)
C_bar_end = m.n_x * (1 + m.n_x + m.n_u + m.n_u)
S_bar_end = m.n_x * (1 + m.n_x + m.n_u + m.n_u + 1)
z_bar_end = m.n_x * (1 + m.n_x + m.n_u + m.n_u + 2)
self.x_ind = slice(0, x_end)
self.A_bar_ind = slice(x_end, A_bar_end)
self.B_bar_ind = slice(A_bar_end, B_bar_end)
self.C_bar_ind = slice(B_bar_end, C_bar_end)
self.S_bar_ind = slice(C_bar_end, S_bar_end)
self.z_bar_ind = slice(S_bar_end, z_bar_end)
self.f, self.A, self.B = m.f_func, m.A_func, m.B_func
# integration initial condition
self.V0 = np.zeros((m.n_x * (1 + m.n_x + m.n_u + m.n_u + 2),))
self.V0[self.A_bar_ind] = np.eye(m.n_x).reshape(-1)
self.dt = 1. / (K - 1)
| 1,321 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
Integrator.calculate_discretization
|
(self, X, U, sigma)
|
return self.A_bar, self.B_bar, self.C_bar, self.S_bar, self.z_bar
|
Calculate discretization for given states, inputs and total time.
:param X: Matrix of states for all time points
:param U: Matrix of inputs for all time points
:param sigma: Total time
:return: The discretization matrices
|
Calculate discretization for given states, inputs and total time.
| 354 | 379 |
def calculate_discretization(self, X, U, sigma):
"""
Calculate discretization for given states, inputs and total time.
:param X: Matrix of states for all time points
:param U: Matrix of inputs for all time points
:param sigma: Total time
:return: The discretization matrices
"""
for k in range(self.K - 1):
self.V0[self.x_ind] = X[:, k]
V = np.array(odeint(self._ode_dVdt, self.V0, (0, self.dt),
args=(U[:, k], U[:, k + 1], sigma))[1, :])
# using \Phi_A(\tau_{k+1},\xi) = \Phi_A(\tau_{k+1},\tau_k)\Phi_A(\xi,\tau_k)^{-1}
# flatten matrices in column-major (Fortran) order for CVXPY
Phi = V[self.A_bar_ind].reshape((self.n_x, self.n_x))
self.A_bar[:, k] = Phi.flatten(order='F')
self.B_bar[:, k] = np.matmul(Phi, V[self.B_bar_ind].reshape(
(self.n_x, self.n_u))).flatten(order='F')
self.C_bar[:, k] = np.matmul(Phi, V[self.C_bar_ind].reshape(
(self.n_x, self.n_u))).flatten(order='F')
self.S_bar[:, k] = np.matmul(Phi, V[self.S_bar_ind])
self.z_bar[:, k] = np.matmul(Phi, V[self.z_bar_ind])
return self.A_bar, self.B_bar, self.C_bar, self.S_bar, self.z_bar
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L354-L379
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25
] | 100 |
[] | 0 | true | 94.573643 | 26 | 2 | 100 | 6 |
def calculate_discretization(self, X, U, sigma):
for k in range(self.K - 1):
self.V0[self.x_ind] = X[:, k]
V = np.array(odeint(self._ode_dVdt, self.V0, (0, self.dt),
args=(U[:, k], U[:, k + 1], sigma))[1, :])
# using \Phi_A(\tau_{k+1},\xi) = \Phi_A(\tau_{k+1},\tau_k)\Phi_A(\xi,\tau_k)^{-1}
# flatten matrices in column-major (Fortran) order for CVXPY
Phi = V[self.A_bar_ind].reshape((self.n_x, self.n_x))
self.A_bar[:, k] = Phi.flatten(order='F')
self.B_bar[:, k] = np.matmul(Phi, V[self.B_bar_ind].reshape(
(self.n_x, self.n_u))).flatten(order='F')
self.C_bar[:, k] = np.matmul(Phi, V[self.C_bar_ind].reshape(
(self.n_x, self.n_u))).flatten(order='F')
self.S_bar[:, k] = np.matmul(Phi, V[self.S_bar_ind])
self.z_bar[:, k] = np.matmul(Phi, V[self.z_bar_ind])
return self.A_bar, self.B_bar, self.C_bar, self.S_bar, self.z_bar
| 1,322 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
Integrator._ode_dVdt
|
(self, V, t, u_t0, u_t1, sigma)
|
return dVdt
|
ODE function to compute dVdt.
:param V: Evaluation state V = [x, Phi_A, B_bar, C_bar, S_bar, z_bar]
:param t: Evaluation time
:param u_t0: Input at start of interval
:param u_t1: Input at end of interval
:param sigma: Total time
:return: Derivative at current time and state dVdt
|
ODE function to compute dVdt.
| 381 | 416 |
def _ode_dVdt(self, V, t, u_t0, u_t1, sigma):
"""
ODE function to compute dVdt.
:param V: Evaluation state V = [x, Phi_A, B_bar, C_bar, S_bar, z_bar]
:param t: Evaluation time
:param u_t0: Input at start of interval
:param u_t1: Input at end of interval
:param sigma: Total time
:return: Derivative at current time and state dVdt
"""
alpha = (self.dt - t) / self.dt
beta = t / self.dt
x = V[self.x_ind]
u = u_t0 + beta * (u_t1 - u_t0)
# using \Phi_A(\tau_{k+1},\xi) = \Phi_A(\tau_{k+1},\tau_k)\Phi_A(\xi,\tau_k)^{-1}
# and pre-multiplying with \Phi_A(\tau_{k+1},\tau_k) after integration
Phi_A_xi = np.linalg.inv(
V[self.A_bar_ind].reshape((self.n_x, self.n_x)))
A_subs = sigma * self.A(x, u)
B_subs = sigma * self.B(x, u)
f_subs = self.f(x, u)
dVdt = np.zeros_like(V)
dVdt[self.x_ind] = sigma * f_subs.transpose()
dVdt[self.A_bar_ind] = np.matmul(
A_subs, V[self.A_bar_ind].reshape((self.n_x, self.n_x))).reshape(-1)
dVdt[self.B_bar_ind] = np.matmul(Phi_A_xi, B_subs).reshape(-1) * alpha
dVdt[self.C_bar_ind] = np.matmul(Phi_A_xi, B_subs).reshape(-1) * beta
dVdt[self.S_bar_ind] = np.matmul(Phi_A_xi, f_subs).transpose()
z_t = -np.matmul(A_subs, x) - np.matmul(B_subs, u)
dVdt[self.z_bar_ind] = np.dot(Phi_A_xi, z_t.T).flatten()
return dVdt
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L381-L416
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35
] | 100 |
[] | 0 | true | 94.573643 | 36 | 1 | 100 | 8 |
def _ode_dVdt(self, V, t, u_t0, u_t1, sigma):
alpha = (self.dt - t) / self.dt
beta = t / self.dt
x = V[self.x_ind]
u = u_t0 + beta * (u_t1 - u_t0)
# using \Phi_A(\tau_{k+1},\xi) = \Phi_A(\tau_{k+1},\tau_k)\Phi_A(\xi,\tau_k)^{-1}
# and pre-multiplying with \Phi_A(\tau_{k+1},\tau_k) after integration
Phi_A_xi = np.linalg.inv(
V[self.A_bar_ind].reshape((self.n_x, self.n_x)))
A_subs = sigma * self.A(x, u)
B_subs = sigma * self.B(x, u)
f_subs = self.f(x, u)
dVdt = np.zeros_like(V)
dVdt[self.x_ind] = sigma * f_subs.transpose()
dVdt[self.A_bar_ind] = np.matmul(
A_subs, V[self.A_bar_ind].reshape((self.n_x, self.n_x))).reshape(-1)
dVdt[self.B_bar_ind] = np.matmul(Phi_A_xi, B_subs).reshape(-1) * alpha
dVdt[self.C_bar_ind] = np.matmul(Phi_A_xi, B_subs).reshape(-1) * beta
dVdt[self.S_bar_ind] = np.matmul(Phi_A_xi, f_subs).transpose()
z_t = -np.matmul(A_subs, x) - np.matmul(B_subs, u)
dVdt[self.z_bar_ind] = np.dot(Phi_A_xi, z_t.T).flatten()
return dVdt
| 1,323 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
SCProblem.__init__
|
(self, m, K)
| 428 | 500 |
def __init__(self, m, K):
# Variables:
self.var = dict()
self.var['X'] = cvxpy.Variable((m.n_x, K))
self.var['U'] = cvxpy.Variable((m.n_u, K))
self.var['sigma'] = cvxpy.Variable(nonneg=True)
self.var['nu'] = cvxpy.Variable((m.n_x, K - 1))
self.var['delta_norm'] = cvxpy.Variable(nonneg=True)
self.var['sigma_norm'] = cvxpy.Variable(nonneg=True)
# Parameters:
self.par = dict()
self.par['A_bar'] = cvxpy.Parameter((m.n_x * m.n_x, K - 1))
self.par['B_bar'] = cvxpy.Parameter((m.n_x * m.n_u, K - 1))
self.par['C_bar'] = cvxpy.Parameter((m.n_x * m.n_u, K - 1))
self.par['S_bar'] = cvxpy.Parameter((m.n_x, K - 1))
self.par['z_bar'] = cvxpy.Parameter((m.n_x, K - 1))
self.par['X_last'] = cvxpy.Parameter((m.n_x, K))
self.par['U_last'] = cvxpy.Parameter((m.n_u, K))
self.par['sigma_last'] = cvxpy.Parameter(nonneg=True)
self.par['weight_sigma'] = cvxpy.Parameter(nonneg=True)
self.par['weight_delta'] = cvxpy.Parameter(nonneg=True)
self.par['weight_delta_sigma'] = cvxpy.Parameter(nonneg=True)
self.par['weight_nu'] = cvxpy.Parameter(nonneg=True)
# Constraints:
constraints = []
# Model:
constraints += m.get_constraints(
self.var['X'], self.var['U'], self.par['X_last'], self.par['U_last'])
# Dynamics:
# x_t+1 = A_*x_t+B_*U_t+C_*U_T+1*S_*sigma+zbar+nu
constraints += [
self.var['X'][:, k + 1] ==
cvxpy.reshape(self.par['A_bar'][:, k], (m.n_x, m.n_x)) @
self.var['X'][:, k] +
cvxpy.reshape(self.par['B_bar'][:, k], (m.n_x, m.n_u)) @
self.var['U'][:, k] +
cvxpy.reshape(self.par['C_bar'][:, k], (m.n_x, m.n_u)) @
self.var['U'][:, k + 1] +
self.par['S_bar'][:, k] * self.var['sigma'] +
self.par['z_bar'][:, k] +
self.var['nu'][:, k]
for k in range(K - 1)
]
# Trust regions:
dx = cvxpy.sum(cvxpy.square(
self.var['X'] - self.par['X_last']), axis=0)
du = cvxpy.sum(cvxpy.square(
self.var['U'] - self.par['U_last']), axis=0)
ds = self.var['sigma'] - self.par['sigma_last']
constraints += [cvxpy.norm(dx + du, 1) <= self.var['delta_norm']]
constraints += [cvxpy.norm(ds, 'inf') <= self.var['sigma_norm']]
# Flight time positive:
constraints += [self.var['sigma'] >= 0.1]
# Objective:
sc_objective = cvxpy.Minimize(
self.par['weight_sigma'] * self.var['sigma'] +
self.par['weight_nu'] * cvxpy.norm(self.var['nu'], 'inf') +
self.par['weight_delta'] * self.var['delta_norm'] +
self.par['weight_delta_sigma'] * self.var['sigma_norm']
)
objective = sc_objective
self.prob = cvxpy.Problem(objective, constraints)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L428-L500
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
35,
36,
50,
51,
53,
55,
56,
57,
58,
59,
60,
61,
62,
63,
69,
70,
71,
72
] | 68.493151 |
[] | 0 | false | 94.573643 | 73 | 2 | 100 | 0 |
def __init__(self, m, K):
# Variables:
self.var = dict()
self.var['X'] = cvxpy.Variable((m.n_x, K))
self.var['U'] = cvxpy.Variable((m.n_u, K))
self.var['sigma'] = cvxpy.Variable(nonneg=True)
self.var['nu'] = cvxpy.Variable((m.n_x, K - 1))
self.var['delta_norm'] = cvxpy.Variable(nonneg=True)
self.var['sigma_norm'] = cvxpy.Variable(nonneg=True)
# Parameters:
self.par = dict()
self.par['A_bar'] = cvxpy.Parameter((m.n_x * m.n_x, K - 1))
self.par['B_bar'] = cvxpy.Parameter((m.n_x * m.n_u, K - 1))
self.par['C_bar'] = cvxpy.Parameter((m.n_x * m.n_u, K - 1))
self.par['S_bar'] = cvxpy.Parameter((m.n_x, K - 1))
self.par['z_bar'] = cvxpy.Parameter((m.n_x, K - 1))
self.par['X_last'] = cvxpy.Parameter((m.n_x, K))
self.par['U_last'] = cvxpy.Parameter((m.n_u, K))
self.par['sigma_last'] = cvxpy.Parameter(nonneg=True)
self.par['weight_sigma'] = cvxpy.Parameter(nonneg=True)
self.par['weight_delta'] = cvxpy.Parameter(nonneg=True)
self.par['weight_delta_sigma'] = cvxpy.Parameter(nonneg=True)
self.par['weight_nu'] = cvxpy.Parameter(nonneg=True)
# Constraints:
constraints = []
# Model:
constraints += m.get_constraints(
self.var['X'], self.var['U'], self.par['X_last'], self.par['U_last'])
# Dynamics:
# x_t+1 = A_*x_t+B_*U_t+C_*U_T+1*S_*sigma+zbar+nu
constraints += [
self.var['X'][:, k + 1] ==
cvxpy.reshape(self.par['A_bar'][:, k], (m.n_x, m.n_x)) @
self.var['X'][:, k] +
cvxpy.reshape(self.par['B_bar'][:, k], (m.n_x, m.n_u)) @
self.var['U'][:, k] +
cvxpy.reshape(self.par['C_bar'][:, k], (m.n_x, m.n_u)) @
self.var['U'][:, k + 1] +
self.par['S_bar'][:, k] * self.var['sigma'] +
self.par['z_bar'][:, k] +
self.var['nu'][:, k]
for k in range(K - 1)
]
# Trust regions:
dx = cvxpy.sum(cvxpy.square(
self.var['X'] - self.par['X_last']), axis=0)
du = cvxpy.sum(cvxpy.square(
self.var['U'] - self.par['U_last']), axis=0)
ds = self.var['sigma'] - self.par['sigma_last']
constraints += [cvxpy.norm(dx + du, 1) <= self.var['delta_norm']]
constraints += [cvxpy.norm(ds, 'inf') <= self.var['sigma_norm']]
# Flight time positive:
constraints += [self.var['sigma'] >= 0.1]
# Objective:
sc_objective = cvxpy.Minimize(
self.par['weight_sigma'] * self.var['sigma'] +
self.par['weight_nu'] * cvxpy.norm(self.var['nu'], 'inf') +
self.par['weight_delta'] * self.var['delta_norm'] +
self.par['weight_delta_sigma'] * self.var['sigma_norm']
)
objective = sc_objective
self.prob = cvxpy.Problem(objective, constraints)
| 1,324 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
SCProblem.set_parameters
|
(self, **kwargs)
|
All parameters have to be filled before calling solve().
Takes the following arguments as keywords:
A_bar
B_bar
C_bar
S_bar
z_bar
X_last
U_last
sigma_last
E
weight_sigma
weight_nu
radius_trust_region
|
All parameters have to be filled before calling solve().
Takes the following arguments as keywords:
| 502 | 525 |
def set_parameters(self, **kwargs):
"""
All parameters have to be filled before calling solve().
Takes the following arguments as keywords:
A_bar
B_bar
C_bar
S_bar
z_bar
X_last
U_last
sigma_last
E
weight_sigma
weight_nu
radius_trust_region
"""
for key in kwargs:
if key in self.par:
self.par[key].value = kwargs[key]
else:
print(f'Parameter \'{key}\' does not exist.')
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L502-L525
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22
] | 95.833333 |
[
23
] | 4.166667 | false | 94.573643 | 24 | 3 | 95.833333 | 15 |
def set_parameters(self, **kwargs):
for key in kwargs:
if key in self.par:
self.par[key].value = kwargs[key]
else:
print(f'Parameter \'{key}\' does not exist.')
| 1,325 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
SCProblem.get_variable
|
(self, name)
| 527 | 532 |
def get_variable(self, name):
if name in self.var:
return self.var[name].value
else:
print(f'Variable \'{name}\' does not exist.')
return None
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L527-L532
| 2 |
[
0,
1,
2
] | 50 |
[
4,
5
] | 33.333333 | false | 94.573643 | 6 | 2 | 66.666667 | 0 |
def get_variable(self, name):
if name in self.var:
return self.var[name].value
else:
print(f'Variable \'{name}\' does not exist.')
return None
| 1,326 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
AerialNavigation/rocket_powered_landing/rocket_powered_landing.py
|
SCProblem.solve
|
(self, **kwargs)
|
return info
| 534 | 551 |
def solve(self, **kwargs):
error = False
try:
self.prob.solve(verbose=verbose_solver,
solver=solver)
except cvxpy.SolverError:
error = True
stats = self.prob.solver_stats
info = {
'setup_time': stats.setup_time,
'solver_time': stats.solve_time,
'iterations': stats.num_iters,
'solver_error': error
}
return info
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py#L534-L551
| 2 |
[
0,
1,
2,
3,
5,
6,
7,
8,
9,
10,
16,
17
] | 66.666667 |
[] | 0 | false | 94.573643 | 18 | 2 | 100 | 0 |
def solve(self, **kwargs):
error = False
try:
self.prob.solve(verbose=verbose_solver,
solver=solver)
except cvxpy.SolverError:
error = True
stats = self.prob.solver_stats
info = {
'setup_time': stats.setup_time,
'solver_time': stats.solve_time,
'iterations': stats.num_iters,
'solver_error': error
}
return info
| 1,327 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
fast_slam2
|
(particles, u, z)
|
return particles
| 49 | 56 |
def fast_slam2(particles, u, z):
particles = predict_particles(particles, u)
particles = update_with_observation(particles, z)
particles = resampling(particles)
return particles
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L49-L56
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7
] | 100 |
[] | 0 | true | 97.046414 | 8 | 1 | 100 | 0 |
def fast_slam2(particles, u, z):
particles = predict_particles(particles, u)
particles = update_with_observation(particles, z)
particles = resampling(particles)
return particles
| 1,328 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
normalize_weight
|
(particles)
|
return particles
| 59 | 71 |
def normalize_weight(particles):
sum_w = sum([p.w for p in particles])
try:
for i in range(N_PARTICLE):
particles[i].w /= sum_w
except ZeroDivisionError:
for i in range(N_PARTICLE):
particles[i].w = 1.0 / N_PARTICLE
return particles
return particles
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L59-L71
| 2 |
[
0,
1,
2,
3,
4,
5,
11,
12
] | 61.538462 |
[
6,
7,
8,
10
] | 30.769231 | false | 97.046414 | 13 | 5 | 69.230769 | 0 |
def normalize_weight(particles):
sum_w = sum([p.w for p in particles])
try:
for i in range(N_PARTICLE):
particles[i].w /= sum_w
except ZeroDivisionError:
for i in range(N_PARTICLE):
particles[i].w = 1.0 / N_PARTICLE
return particles
return particles
| 1,329 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
calc_final_state
|
(particles)
|
return xEst
| 74 | 86 |
def calc_final_state(particles):
xEst = np.zeros((STATE_SIZE, 1))
particles = normalize_weight(particles)
for i in range(N_PARTICLE):
xEst[0, 0] += particles[i].w * particles[i].x
xEst[1, 0] += particles[i].w * particles[i].y
xEst[2, 0] += particles[i].w * particles[i].yaw
xEst[2, 0] = pi_2_pi(xEst[2, 0])
return xEst
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L74-L86
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 100 |
[] | 0 | true | 97.046414 | 13 | 2 | 100 | 0 |
def calc_final_state(particles):
xEst = np.zeros((STATE_SIZE, 1))
particles = normalize_weight(particles)
for i in range(N_PARTICLE):
xEst[0, 0] += particles[i].w * particles[i].x
xEst[1, 0] += particles[i].w * particles[i].y
xEst[2, 0] += particles[i].w * particles[i].yaw
xEst[2, 0] = pi_2_pi(xEst[2, 0])
return xEst
| 1,330 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
predict_particles
|
(particles, u)
|
return particles
| 89 | 101 |
def predict_particles(particles, u):
for i in range(N_PARTICLE):
px = np.zeros((STATE_SIZE, 1))
px[0, 0] = particles[i].x
px[1, 0] = particles[i].y
px[2, 0] = particles[i].yaw
ud = u + (np.random.randn(1, 2) @ R ** 0.5).T # add noise
px = motion_model(px, ud)
particles[i].x = px[0, 0]
particles[i].y = px[1, 0]
particles[i].yaw = px[2, 0]
return particles
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L89-L101
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 100 |
[] | 0 | true | 97.046414 | 13 | 2 | 100 | 0 |
def predict_particles(particles, u):
for i in range(N_PARTICLE):
px = np.zeros((STATE_SIZE, 1))
px[0, 0] = particles[i].x
px[1, 0] = particles[i].y
px[2, 0] = particles[i].yaw
ud = u + (np.random.randn(1, 2) @ R ** 0.5).T # add noise
px = motion_model(px, ud)
particles[i].x = px[0, 0]
particles[i].y = px[1, 0]
particles[i].yaw = px[2, 0]
return particles
| 1,331 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
add_new_lm
|
(particle, z, Q_cov)
|
return particle
| 104 | 125 |
def add_new_lm(particle, z, Q_cov):
r = z[0]
b = z[1]
lm_id = int(z[2])
s = math.sin(pi_2_pi(particle.yaw + b))
c = math.cos(pi_2_pi(particle.yaw + b))
particle.lm[lm_id, 0] = particle.x + r * c
particle.lm[lm_id, 1] = particle.y + r * s
# covariance
dx = r * c
dy = r * s
d2 = dx ** 2 + dy ** 2
d = math.sqrt(d2)
Gz = np.array([[dx / d, dy / d],
[-dy / d2, dx / d2]])
particle.lmP[2 * lm_id:2 * lm_id + 2] = np.linalg.inv(
Gz) @ Q_cov @ np.linalg.inv(Gz.T)
return particle
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L104-L125
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
18,
20,
21
] | 90.909091 |
[] | 0 | false | 97.046414 | 22 | 1 | 100 | 0 |
def add_new_lm(particle, z, Q_cov):
r = z[0]
b = z[1]
lm_id = int(z[2])
s = math.sin(pi_2_pi(particle.yaw + b))
c = math.cos(pi_2_pi(particle.yaw + b))
particle.lm[lm_id, 0] = particle.x + r * c
particle.lm[lm_id, 1] = particle.y + r * s
# covariance
dx = r * c
dy = r * s
d2 = dx ** 2 + dy ** 2
d = math.sqrt(d2)
Gz = np.array([[dx / d, dy / d],
[-dy / d2, dx / d2]])
particle.lmP[2 * lm_id:2 * lm_id + 2] = np.linalg.inv(
Gz) @ Q_cov @ np.linalg.inv(Gz.T)
return particle
| 1,332 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
compute_jacobians
|
(particle, xf, Pf, Q_cov)
|
return zp, Hv, Hf, Sf
| 128 | 145 |
def compute_jacobians(particle, xf, Pf, Q_cov):
dx = xf[0, 0] - particle.x
dy = xf[1, 0] - particle.y
d2 = dx ** 2 + dy ** 2
d = math.sqrt(d2)
zp = np.array(
[d, pi_2_pi(math.atan2(dy, dx) - particle.yaw)]).reshape(2, 1)
Hv = np.array([[-dx / d, -dy / d, 0.0],
[dy / d2, -dx / d2, -1.0]])
Hf = np.array([[dx / d, dy / d],
[-dy / d2, dx / d2]])
Sf = Hf @ Pf @ Hf.T + Q_cov
return zp, Hv, Hf, Sf
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L128-L145
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
8,
9,
11,
12,
14,
15,
16,
17
] | 83.333333 |
[] | 0 | false | 97.046414 | 18 | 1 | 100 | 0 |
def compute_jacobians(particle, xf, Pf, Q_cov):
dx = xf[0, 0] - particle.x
dy = xf[1, 0] - particle.y
d2 = dx ** 2 + dy ** 2
d = math.sqrt(d2)
zp = np.array(
[d, pi_2_pi(math.atan2(dy, dx) - particle.yaw)]).reshape(2, 1)
Hv = np.array([[-dx / d, -dy / d, 0.0],
[dy / d2, -dx / d2, -1.0]])
Hf = np.array([[dx / d, dy / d],
[-dy / d2, dx / d2]])
Sf = Hf @ Pf @ Hf.T + Q_cov
return zp, Hv, Hf, Sf
| 1,333 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
update_kf_with_cholesky
|
(xf, Pf, v, Q_cov, Hf)
|
return x, P
| 148 | 161 |
def update_kf_with_cholesky(xf, Pf, v, Q_cov, Hf):
PHt = Pf @ Hf.T
S = Hf @ PHt + Q_cov
S = (S + S.T) * 0.5
SChol = np.linalg.cholesky(S).T
SCholInv = np.linalg.inv(SChol)
W1 = PHt @ SCholInv
W = W1 @ SCholInv.T
x = xf + W @ v
P = Pf - W1 @ W1.T
return x, P
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L148-L161
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 97.046414 | 14 | 1 | 100 | 0 |
def update_kf_with_cholesky(xf, Pf, v, Q_cov, Hf):
PHt = Pf @ Hf.T
S = Hf @ PHt + Q_cov
S = (S + S.T) * 0.5
SChol = np.linalg.cholesky(S).T
SCholInv = np.linalg.inv(SChol)
W1 = PHt @ SCholInv
W = W1 @ SCholInv.T
x = xf + W @ v
P = Pf - W1 @ W1.T
return x, P
| 1,334 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
update_landmark
|
(particle, z, Q_cov)
|
return particle
| 164 | 179 |
def update_landmark(particle, z, Q_cov):
lm_id = int(z[2])
xf = np.array(particle.lm[lm_id, :]).reshape(2, 1)
Pf = np.array(particle.lmP[2 * lm_id:2 * lm_id + 2])
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q_cov)
dz = z[0:2].reshape(2, 1) - zp
dz[1, 0] = pi_2_pi(dz[1, 0])
xf, Pf = update_kf_with_cholesky(xf, Pf, dz, Q, Hf)
particle.lm[lm_id, :] = xf.T
particle.lmP[2 * lm_id:2 * lm_id + 2, :] = Pf
return particle
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L164-L179
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
] | 100 |
[] | 0 | true | 97.046414 | 16 | 1 | 100 | 0 |
def update_landmark(particle, z, Q_cov):
lm_id = int(z[2])
xf = np.array(particle.lm[lm_id, :]).reshape(2, 1)
Pf = np.array(particle.lmP[2 * lm_id:2 * lm_id + 2])
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q_cov)
dz = z[0:2].reshape(2, 1) - zp
dz[1, 0] = pi_2_pi(dz[1, 0])
xf, Pf = update_kf_with_cholesky(xf, Pf, dz, Q, Hf)
particle.lm[lm_id, :] = xf.T
particle.lmP[2 * lm_id:2 * lm_id + 2, :] = Pf
return particle
| 1,335 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
compute_weight
|
(particle, z, Q_cov)
|
return w
| 182 | 201 |
def compute_weight(particle, z, Q_cov):
lm_id = int(z[2])
xf = np.array(particle.lm[lm_id, :]).reshape(2, 1)
Pf = np.array(particle.lmP[2 * lm_id:2 * lm_id + 2])
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q_cov)
dz = z[0:2].reshape(2, 1) - zp
dz[1, 0] = pi_2_pi(dz[1, 0])
try:
invS = np.linalg.inv(Sf)
except np.linalg.linalg.LinAlgError:
return 1.0
num = math.exp(-0.5 * dz.T @ invS @ dz)
den = 2.0 * math.pi * math.sqrt(np.linalg.det(Sf))
w = num / den
return w
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L182-L201
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
13,
14,
15,
16,
17,
18,
19
] | 90 |
[
11,
12
] | 10 | false | 97.046414 | 20 | 2 | 90 | 0 |
def compute_weight(particle, z, Q_cov):
lm_id = int(z[2])
xf = np.array(particle.lm[lm_id, :]).reshape(2, 1)
Pf = np.array(particle.lmP[2 * lm_id:2 * lm_id + 2])
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q_cov)
dz = z[0:2].reshape(2, 1) - zp
dz[1, 0] = pi_2_pi(dz[1, 0])
try:
invS = np.linalg.inv(Sf)
except np.linalg.linalg.LinAlgError:
return 1.0
num = math.exp(-0.5 * dz.T @ invS @ dz)
den = 2.0 * math.pi * math.sqrt(np.linalg.det(Sf))
w = num / den
return w
| 1,336 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
proposal_sampling
|
(particle, z, Q_cov)
|
return particle
| 204 | 226 |
def proposal_sampling(particle, z, Q_cov):
lm_id = int(z[2])
xf = particle.lm[lm_id, :].reshape(2, 1)
Pf = particle.lmP[2 * lm_id:2 * lm_id + 2]
# State
x = np.array([particle.x, particle.y, particle.yaw]).reshape(3, 1)
P = particle.P
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q_cov)
Sfi = np.linalg.inv(Sf)
dz = z[0:2].reshape(2, 1) - zp
dz[1] = pi_2_pi(dz[1])
Pi = np.linalg.inv(P)
particle.P = np.linalg.inv(Hv.T @ Sfi @ Hv + Pi) # proposal covariance
x += particle.P @ Hv.T @ Sfi @ dz # proposal mean
particle.x = x[0, 0]
particle.y = x[1, 0]
particle.yaw = x[2, 0]
return particle
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L204-L226
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22
] | 100 |
[] | 0 | true | 97.046414 | 23 | 1 | 100 | 0 |
def proposal_sampling(particle, z, Q_cov):
lm_id = int(z[2])
xf = particle.lm[lm_id, :].reshape(2, 1)
Pf = particle.lmP[2 * lm_id:2 * lm_id + 2]
# State
x = np.array([particle.x, particle.y, particle.yaw]).reshape(3, 1)
P = particle.P
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q_cov)
Sfi = np.linalg.inv(Sf)
dz = z[0:2].reshape(2, 1) - zp
dz[1] = pi_2_pi(dz[1])
Pi = np.linalg.inv(P)
particle.P = np.linalg.inv(Hv.T @ Sfi @ Hv + Pi) # proposal covariance
x += particle.P @ Hv.T @ Sfi @ dz # proposal mean
particle.x = x[0, 0]
particle.y = x[1, 0]
particle.yaw = x[2, 0]
return particle
| 1,337 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
update_with_observation
|
(particles, z)
|
return particles
| 229 | 245 |
def update_with_observation(particles, z):
for iz in range(len(z[0, :])):
landmark_id = int(z[2, iz])
for ip in range(N_PARTICLE):
# new landmark
if abs(particles[ip].lm[landmark_id, 0]) <= 0.01:
particles[ip] = add_new_lm(particles[ip], z[:, iz], Q)
# known landmark
else:
w = compute_weight(particles[ip], z[:, iz], Q)
particles[ip].w *= w
particles[ip] = update_landmark(particles[ip], z[:, iz], Q)
particles[ip] = proposal_sampling(particles[ip], z[:, iz], Q)
return particles
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L229-L245
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
10,
11,
12,
13,
14,
15,
16
] | 94.117647 |
[] | 0 | false | 97.046414 | 17 | 4 | 100 | 0 |
def update_with_observation(particles, z):
for iz in range(len(z[0, :])):
landmark_id = int(z[2, iz])
for ip in range(N_PARTICLE):
# new landmark
if abs(particles[ip].lm[landmark_id, 0]) <= 0.01:
particles[ip] = add_new_lm(particles[ip], z[:, iz], Q)
# known landmark
else:
w = compute_weight(particles[ip], z[:, iz], Q)
particles[ip].w *= w
particles[ip] = update_landmark(particles[ip], z[:, iz], Q)
particles[ip] = proposal_sampling(particles[ip], z[:, iz], Q)
return particles
| 1,338 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
resampling
|
(particles)
|
return particles
|
low variance re-sampling
|
low variance re-sampling
| 248 | 285 |
def resampling(particles):
"""
low variance re-sampling
"""
particles = normalize_weight(particles)
pw = []
for i in range(N_PARTICLE):
pw.append(particles[i].w)
pw = np.array(pw)
n_eff = 1.0 / (pw @ pw.T) # Effective particle number
if n_eff < NTH: # resampling
w_cum = np.cumsum(pw)
base = np.cumsum(pw * 0.0 + 1 / N_PARTICLE) - 1 / N_PARTICLE
resample_id = base + np.random.rand(base.shape[0]) / N_PARTICLE
inds = []
ind = 0
for ip in range(N_PARTICLE):
while (ind < w_cum.shape[0] - 1) \
and (resample_id[ip] > w_cum[ind]):
ind += 1
inds.append(ind)
tmp_particles = particles[:]
for i in range(len(inds)):
particles[i].x = tmp_particles[inds[i]].x
particles[i].y = tmp_particles[inds[i]].y
particles[i].yaw = tmp_particles[inds[i]].yaw
particles[i].lm = tmp_particles[inds[i]].lm[:, :]
particles[i].lmP = tmp_particles[inds[i]].lmP[:, :]
particles[i].w = 1.0 / N_PARTICLE
return particles
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L248-L285
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37
] | 100 |
[] | 0 | true | 97.046414 | 38 | 7 | 100 | 1 |
def resampling(particles):
particles = normalize_weight(particles)
pw = []
for i in range(N_PARTICLE):
pw.append(particles[i].w)
pw = np.array(pw)
n_eff = 1.0 / (pw @ pw.T) # Effective particle number
if n_eff < NTH: # resampling
w_cum = np.cumsum(pw)
base = np.cumsum(pw * 0.0 + 1 / N_PARTICLE) - 1 / N_PARTICLE
resample_id = base + np.random.rand(base.shape[0]) / N_PARTICLE
inds = []
ind = 0
for ip in range(N_PARTICLE):
while (ind < w_cum.shape[0] - 1) \
and (resample_id[ip] > w_cum[ind]):
ind += 1
inds.append(ind)
tmp_particles = particles[:]
for i in range(len(inds)):
particles[i].x = tmp_particles[inds[i]].x
particles[i].y = tmp_particles[inds[i]].y
particles[i].yaw = tmp_particles[inds[i]].yaw
particles[i].lm = tmp_particles[inds[i]].lm[:, :]
particles[i].lmP = tmp_particles[inds[i]].lmP[:, :]
particles[i].w = 1.0 / N_PARTICLE
return particles
| 1,339 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
calc_input
|
(time)
|
return u
| 288 | 298 |
def calc_input(time):
if time <= 3.0: # wait at first
v = 0.0
yaw_rate = 0.0
else:
v = 1.0 # [m/s]
yaw_rate = 0.1 # [rad/s]
u = np.array([v, yaw_rate]).reshape(2, 1)
return u
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L288-L298
| 2 |
[
0,
1,
2,
3,
5,
6,
7,
8,
9,
10
] | 90.909091 |
[] | 0 | false | 97.046414 | 11 | 2 | 100 | 0 |
def calc_input(time):
if time <= 3.0: # wait at first
v = 0.0
yaw_rate = 0.0
else:
v = 1.0 # [m/s]
yaw_rate = 0.1 # [rad/s]
u = np.array([v, yaw_rate]).reshape(2, 1)
return u
| 1,340 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
observation
|
(xTrue, xd, u, RFID)
|
return xTrue, z, xd, ud
| 301 | 329 |
def observation(xTrue, xd, u, RFID):
# calc true state
xTrue = motion_model(xTrue, u)
# add noise to range observation
z = np.zeros((3, 0))
for i in range(len(RFID[:, 0])):
dx = RFID[i, 0] - xTrue[0, 0]
dy = RFID[i, 1] - xTrue[1, 0]
d = math.hypot(dx, dy)
angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0])
if d <= MAX_RANGE:
dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise
angle_noise = np.random.randn() * Q_sim[1, 1] ** 0.5
angle_with_noise = angle + angle_noise # add noise
zi = np.array([dn, pi_2_pi(angle_with_noise), i]).reshape(3, 1)
z = np.hstack((z, zi))
# add noise to input
ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5
ud2 = u[1, 0] + np.random.randn() * R_sim[
1, 1] ** 0.5 + OFFSET_YAW_RATE_NOISE
ud = np.array([ud1, ud2]).reshape(2, 1)
xd = motion_model(xd, ud)
return xTrue, z, xd, ud
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L301-L329
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
24,
25,
26,
27,
28
] | 96.551724 |
[] | 0 | false | 97.046414 | 29 | 3 | 100 | 0 |
def observation(xTrue, xd, u, RFID):
# calc true state
xTrue = motion_model(xTrue, u)
# add noise to range observation
z = np.zeros((3, 0))
for i in range(len(RFID[:, 0])):
dx = RFID[i, 0] - xTrue[0, 0]
dy = RFID[i, 1] - xTrue[1, 0]
d = math.hypot(dx, dy)
angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0])
if d <= MAX_RANGE:
dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise
angle_noise = np.random.randn() * Q_sim[1, 1] ** 0.5
angle_with_noise = angle + angle_noise # add noise
zi = np.array([dn, pi_2_pi(angle_with_noise), i]).reshape(3, 1)
z = np.hstack((z, zi))
# add noise to input
ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5
ud2 = u[1, 0] + np.random.randn() * R_sim[
1, 1] ** 0.5 + OFFSET_YAW_RATE_NOISE
ud = np.array([ud1, ud2]).reshape(2, 1)
xd = motion_model(xd, ud)
return xTrue, z, xd, ud
| 1,341 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
motion_model
|
(x, u)
|
return x
| 332 | 345 |
def motion_model(x, u):
F = np.array([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])
B = np.array([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])
x = F @ x + B @ u
x[2, 0] = pi_2_pi(x[2, 0])
return x
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L332-L345
| 2 |
[
0,
1,
4,
5,
8,
9,
10,
11,
12,
13
] | 71.428571 |
[] | 0 | false | 97.046414 | 14 | 1 | 100 | 0 |
def motion_model(x, u):
F = np.array([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])
B = np.array([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])
x = F @ x + B @ u
x[2, 0] = pi_2_pi(x[2, 0])
return x
| 1,342 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
pi_2_pi
|
(angle)
|
return (angle + math.pi) % (2 * math.pi) - math.pi
| 348 | 349 |
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L348-L349
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 97.046414 | 2 | 1 | 100 | 0 |
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
| 1,343 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
main
|
()
| 352 | 421 |
def main():
print(__file__ + " start!!")
time = 0.0
# RFID positions [x, y]
RFID = np.array([[10.0, -2.0],
[15.0, 10.0],
[15.0, 15.0],
[10.0, 20.0],
[3.0, 15.0],
[-5.0, 20.0],
[-5.0, 5.0],
[-10.0, 15.0]
])
n_landmark = RFID.shape[0]
# State Vector [x y yaw v]'
xEst = np.zeros((STATE_SIZE, 1)) # SLAM estimation
xTrue = np.zeros((STATE_SIZE, 1)) # True state
xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning
# history
hxEst = xEst
hxTrue = xTrue
hxDR = xTrue
particles = [Particle(n_landmark) for _ in range(N_PARTICLE)]
while SIM_TIME >= time:
time += DT
u = calc_input(time)
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
particles = fast_slam2(particles, ud, z)
xEst = calc_final_state(particles)
x_state = xEst[0: STATE_SIZE]
# store data history
hxEst = np.hstack((hxEst, x_state))
hxDR = np.hstack((hxDR, xDR))
hxTrue = np.hstack((hxTrue, xTrue))
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
for iz in range(len(z[:, 0])):
landmark_id = int(z[2, iz])
plt.plot([xEst[0], RFID[landmark_id, 0]], [
xEst[1], RFID[landmark_id, 1]], "-k")
for i in range(N_PARTICLE):
plt.plot(particles[i].x, particles[i].y, ".r")
plt.plot(particles[i].lm[:, 0], particles[i].lm[:, 1], "xb")
plt.plot(hxTrue[0, :], hxTrue[1, :], "-b")
plt.plot(hxDR[0, :], hxDR[1, :], "-k")
plt.plot(hxEst[0, :], hxEst[1, :], "-r")
plt.plot(xEst[0], xEst[1], "xk")
plt.axis("equal")
plt.grid(True)
plt.pause(0.001)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L352-L421
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45
] | 71.698113 |
[] | 0 | false | 97.046414 | 70 | 6 | 100 | 0 |
def main():
print(__file__ + " start!!")
time = 0.0
# RFID positions [x, y]
RFID = np.array([[10.0, -2.0],
[15.0, 10.0],
[15.0, 15.0],
[10.0, 20.0],
[3.0, 15.0],
[-5.0, 20.0],
[-5.0, 5.0],
[-10.0, 15.0]
])
n_landmark = RFID.shape[0]
# State Vector [x y yaw v]'
xEst = np.zeros((STATE_SIZE, 1)) # SLAM estimation
xTrue = np.zeros((STATE_SIZE, 1)) # True state
xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning
# history
hxEst = xEst
hxTrue = xTrue
hxDR = xTrue
particles = [Particle(n_landmark) for _ in range(N_PARTICLE)]
while SIM_TIME >= time:
time += DT
u = calc_input(time)
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
particles = fast_slam2(particles, ud, z)
xEst = calc_final_state(particles)
x_state = xEst[0: STATE_SIZE]
# store data history
hxEst = np.hstack((hxEst, x_state))
hxDR = np.hstack((hxDR, xDR))
hxTrue = np.hstack((hxTrue, xTrue))
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
for iz in range(len(z[:, 0])):
landmark_id = int(z[2, iz])
plt.plot([xEst[0], RFID[landmark_id, 0]], [
xEst[1], RFID[landmark_id, 1]], "-k")
for i in range(N_PARTICLE):
plt.plot(particles[i].x, particles[i].y, ".r")
plt.plot(particles[i].lm[:, 0], particles[i].lm[:, 1], "xb")
plt.plot(hxTrue[0, :], hxTrue[1, :], "-b")
plt.plot(hxDR[0, :], hxDR[1, :], "-k")
plt.plot(hxEst[0, :], hxEst[1, :], "-r")
plt.plot(xEst[0], xEst[1], "xk")
plt.axis("equal")
plt.grid(True)
plt.pause(0.001)
| 1,344 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM2/fast_slam2.py
|
Particle.__init__
|
(self, N_LM)
| 37 | 46 |
def __init__(self, N_LM):
self.w = 1.0 / N_PARTICLE
self.x = 0.0
self.y = 0.0
self.yaw = 0.0
self.P = np.eye(3)
# landmark x-y positions
self.lm = np.zeros((N_LM, LM_SIZE))
# landmark position covariance
self.lmP = np.zeros((N_LM * LM_SIZE, LM_SIZE))
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM2/fast_slam2.py#L37-L46
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 97.046414 | 10 | 1 | 100 | 0 |
def __init__(self, N_LM):
self.w = 1.0 / N_PARTICLE
self.x = 0.0
self.y = 0.0
self.yaw = 0.0
self.P = np.eye(3)
# landmark x-y positions
self.lm = np.zeros((N_LM, LM_SIZE))
# landmark position covariance
self.lmP = np.zeros((N_LM * LM_SIZE, LM_SIZE))
| 1,345 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/iterative_closest_point/iterative_closest_point.py
|
icp_matching
|
(previous_points, current_points)
|
return R, T
|
Iterative Closest Point matching
- input
previous_points: 2D or 3D points in the previous frame
current_points: 2D or 3D points in the current frame
- output
R: Rotation matrix
T: Translation vector
|
Iterative Closest Point matching
- input
previous_points: 2D or 3D points in the previous frame
current_points: 2D or 3D points in the current frame
- output
R: Rotation matrix
T: Translation vector
| 19 | 72 |
def icp_matching(previous_points, current_points):
"""
Iterative Closest Point matching
- input
previous_points: 2D or 3D points in the previous frame
current_points: 2D or 3D points in the current frame
- output
R: Rotation matrix
T: Translation vector
"""
H = None # homogeneous transformation matrix
dError = np.inf
preError = np.inf
count = 0
if show_animation:
fig = plt.figure()
if previous_points.shape[0] == 3:
fig.add_subplot(111, projection='3d')
while dError >= EPS:
count += 1
if show_animation: # pragma: no cover
plot_points(previous_points, current_points, fig)
plt.pause(0.1)
indexes, error = nearest_neighbor_association(previous_points, current_points)
Rt, Tt = svd_motion_estimation(previous_points[:, indexes], current_points)
# update current points
current_points = (Rt @ current_points) + Tt[:, np.newaxis]
dError = preError - error
print("Residual:", error)
if dError < 0: # prevent matrix H changing, exit loop
print("Not Converge...", preError, dError, count)
break
preError = error
H = update_homogeneous_matrix(H, Rt, Tt)
if dError <= EPS:
print("Converge", error, dError, count)
break
elif MAX_ITER <= count:
print("Not Converge...", error, dError, count)
break
R = np.array(H[0:-1, 0:-1])
T = np.array(H[0:-1, -1])
return R, T
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/iterative_closest_point/iterative_closest_point.py#L19-L72
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
46,
49,
50,
51,
52,
53
] | 92.156863 |
[
17,
18,
19,
44,
45,
47,
48
] | 13.72549 | false | 80.701754 | 54 | 8 | 86.27451 | 7 |
def icp_matching(previous_points, current_points):
H = None # homogeneous transformation matrix
dError = np.inf
preError = np.inf
count = 0
if show_animation:
fig = plt.figure()
if previous_points.shape[0] == 3:
fig.add_subplot(111, projection='3d')
while dError >= EPS:
count += 1
if show_animation: # pragma: no cover
plot_points(previous_points, current_points, fig)
plt.pause(0.1)
indexes, error = nearest_neighbor_association(previous_points, current_points)
Rt, Tt = svd_motion_estimation(previous_points[:, indexes], current_points)
# update current points
current_points = (Rt @ current_points) + Tt[:, np.newaxis]
dError = preError - error
print("Residual:", error)
if dError < 0: # prevent matrix H changing, exit loop
print("Not Converge...", preError, dError, count)
break
preError = error
H = update_homogeneous_matrix(H, Rt, Tt)
if dError <= EPS:
print("Converge", error, dError, count)
break
elif MAX_ITER <= count:
print("Not Converge...", error, dError, count)
break
R = np.array(H[0:-1, 0:-1])
T = np.array(H[0:-1, -1])
return R, T
| 1,346 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/iterative_closest_point/iterative_closest_point.py
|
update_homogeneous_matrix
|
(Hin, R, T)
| 75 | 87 |
def update_homogeneous_matrix(Hin, R, T):
r_size = R.shape[0]
H = np.zeros((r_size + 1, r_size + 1))
H[0:r_size, 0:r_size] = R
H[0:r_size, r_size] = T
H[r_size, r_size] = 1.0
if Hin is None:
return H
else:
return Hin @ H
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/iterative_closest_point/iterative_closest_point.py#L75-L87
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
12
] | 92.307692 |
[] | 0 | false | 80.701754 | 13 | 2 | 100 | 0 |
def update_homogeneous_matrix(Hin, R, T):
r_size = R.shape[0]
H = np.zeros((r_size + 1, r_size + 1))
H[0:r_size, 0:r_size] = R
H[0:r_size, r_size] = T
H[r_size, r_size] = 1.0
if Hin is None:
return H
else:
return Hin @ H
| 1,347 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/iterative_closest_point/iterative_closest_point.py
|
nearest_neighbor_association
|
(previous_points, current_points)
|
return indexes, error
| 90 | 102 |
def nearest_neighbor_association(previous_points, current_points):
# calc the sum of residual errors
delta_points = previous_points - current_points
d = np.linalg.norm(delta_points, axis=0)
error = sum(d)
# calc index with nearest neighbor assosiation
d = np.linalg.norm(np.repeat(current_points, previous_points.shape[1], axis=1)
- np.tile(previous_points, (1, current_points.shape[1])), axis=0)
indexes = np.argmin(d.reshape(current_points.shape[1], previous_points.shape[1]), axis=1)
return indexes, error
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/iterative_closest_point/iterative_closest_point.py#L90-L102
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
10,
11,
12
] | 92.307692 |
[] | 0 | false | 80.701754 | 13 | 1 | 100 | 0 |
def nearest_neighbor_association(previous_points, current_points):
# calc the sum of residual errors
delta_points = previous_points - current_points
d = np.linalg.norm(delta_points, axis=0)
error = sum(d)
# calc index with nearest neighbor assosiation
d = np.linalg.norm(np.repeat(current_points, previous_points.shape[1], axis=1)
- np.tile(previous_points, (1, current_points.shape[1])), axis=0)
indexes = np.argmin(d.reshape(current_points.shape[1], previous_points.shape[1]), axis=1)
return indexes, error
| 1,348 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/iterative_closest_point/iterative_closest_point.py
|
svd_motion_estimation
|
(previous_points, current_points)
|
return R, t
| 105 | 118 |
def svd_motion_estimation(previous_points, current_points):
pm = np.mean(previous_points, axis=1)
cm = np.mean(current_points, axis=1)
p_shift = previous_points - pm[:, np.newaxis]
c_shift = current_points - cm[:, np.newaxis]
W = c_shift @ p_shift.T
u, s, vh = np.linalg.svd(W)
R = (u @ vh).T
t = pm - (R @ cm)
return R, t
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/iterative_closest_point/iterative_closest_point.py#L105-L118
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 80.701754 | 14 | 1 | 100 | 0 |
def svd_motion_estimation(previous_points, current_points):
pm = np.mean(previous_points, axis=1)
cm = np.mean(current_points, axis=1)
p_shift = previous_points - pm[:, np.newaxis]
c_shift = current_points - cm[:, np.newaxis]
W = c_shift @ p_shift.T
u, s, vh = np.linalg.svd(W)
R = (u @ vh).T
t = pm - (R @ cm)
return R, t
| 1,349 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/iterative_closest_point/iterative_closest_point.py
|
plot_points
|
(previous_points, current_points, figure)
| 121 | 140 |
def plot_points(previous_points, current_points, figure):
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if previous_points.shape[0] == 3:
plt.clf()
axes = figure.add_subplot(111, projection='3d')
axes.scatter(previous_points[0, :], previous_points[1, :],
previous_points[2, :], c="r", marker=".")
axes.scatter(current_points[0, :], current_points[1, :],
current_points[2, :], c="b", marker=".")
axes.scatter(0.0, 0.0, 0.0, c="r", marker="x")
figure.canvas.draw()
else:
plt.cla()
plt.plot(previous_points[0, :], previous_points[1, :], ".r")
plt.plot(current_points[0, :], current_points[1, :], ".b")
plt.plot(0.0, 0.0, "xr")
plt.axis("equal")
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/iterative_closest_point/iterative_closest_point.py#L121-L140
| 2 |
[
0,
1
] | 10 |
[
2,
5,
6,
7,
8,
10,
12,
13,
15,
16,
17,
18,
19
] | 65 | false | 80.701754 | 20 | 2 | 35 | 0 |
def plot_points(previous_points, current_points, figure):
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if previous_points.shape[0] == 3:
plt.clf()
axes = figure.add_subplot(111, projection='3d')
axes.scatter(previous_points[0, :], previous_points[1, :],
previous_points[2, :], c="r", marker=".")
axes.scatter(current_points[0, :], current_points[1, :],
current_points[2, :], c="b", marker=".")
axes.scatter(0.0, 0.0, 0.0, c="r", marker="x")
figure.canvas.draw()
else:
plt.cla()
plt.plot(previous_points[0, :], previous_points[1, :], ".r")
plt.plot(current_points[0, :], current_points[1, :], ".b")
plt.plot(0.0, 0.0, "xr")
plt.axis("equal")
| 1,350 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/iterative_closest_point/iterative_closest_point.py
|
main
|
()
| 143 | 169 |
def main():
print(__file__ + " start!!")
# simulation parameters
nPoint = 1000
fieldLength = 50.0
motion = [0.5, 2.0, np.deg2rad(-10.0)] # movement [x[m],y[m],yaw[deg]]
nsim = 3 # number of simulation
for _ in range(nsim):
# previous points
px = (np.random.rand(nPoint) - 0.5) * fieldLength
py = (np.random.rand(nPoint) - 0.5) * fieldLength
previous_points = np.vstack((px, py))
# current points
cx = [math.cos(motion[2]) * x - math.sin(motion[2]) * y + motion[0]
for (x, y) in zip(px, py)]
cy = [math.sin(motion[2]) * x + math.cos(motion[2]) * y + motion[1]
for (x, y) in zip(px, py)]
current_points = np.vstack((cx, cy))
R, T = icp_matching(previous_points, current_points)
print("R:", R)
print("T:", T)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/iterative_closest_point/iterative_closest_point.py#L143-L169
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
20,
22,
23,
24,
25,
26
] | 92.592593 |
[] | 0 | false | 80.701754 | 27 | 4 | 100 | 0 |
def main():
print(__file__ + " start!!")
# simulation parameters
nPoint = 1000
fieldLength = 50.0
motion = [0.5, 2.0, np.deg2rad(-10.0)] # movement [x[m],y[m],yaw[deg]]
nsim = 3 # number of simulation
for _ in range(nsim):
# previous points
px = (np.random.rand(nPoint) - 0.5) * fieldLength
py = (np.random.rand(nPoint) - 0.5) * fieldLength
previous_points = np.vstack((px, py))
# current points
cx = [math.cos(motion[2]) * x - math.sin(motion[2]) * y + motion[0]
for (x, y) in zip(px, py)]
cy = [math.sin(motion[2]) * x + math.cos(motion[2]) * y + motion[1]
for (x, y) in zip(px, py)]
current_points = np.vstack((cx, cy))
R, T = icp_matching(previous_points, current_points)
print("R:", R)
print("T:", T)
| 1,351 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/iterative_closest_point/iterative_closest_point.py
|
main_3d_points
|
()
| 172 | 200 |
def main_3d_points():
print(__file__ + " start!!")
# simulation parameters for 3d point set
nPoint = 1000
fieldLength = 50.0
motion = [0.5, 2.0, -5, np.deg2rad(-10.0)] # [x[m],y[m],z[m],roll[deg]]
nsim = 3 # number of simulation
for _ in range(nsim):
# previous points
px = (np.random.rand(nPoint) - 0.5) * fieldLength
py = (np.random.rand(nPoint) - 0.5) * fieldLength
pz = (np.random.rand(nPoint) - 0.5) * fieldLength
previous_points = np.vstack((px, py, pz))
# current points
cx = [math.cos(motion[3]) * x - math.sin(motion[3]) * z + motion[0]
for (x, z) in zip(px, pz)]
cy = [y + motion[1] for y in py]
cz = [math.sin(motion[3]) * x + math.cos(motion[3]) * z + motion[2]
for (x, z) in zip(px, pz)]
current_points = np.vstack((cx, cy, cz))
R, T = icp_matching(previous_points, current_points)
print("R:", R)
print("T:", T)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/iterative_closest_point/iterative_closest_point.py#L172-L200
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
21,
22,
24,
25,
26,
27,
28
] | 93.103448 |
[] | 0 | false | 80.701754 | 29 | 5 | 100 | 0 |
def main_3d_points():
print(__file__ + " start!!")
# simulation parameters for 3d point set
nPoint = 1000
fieldLength = 50.0
motion = [0.5, 2.0, -5, np.deg2rad(-10.0)] # [x[m],y[m],z[m],roll[deg]]
nsim = 3 # number of simulation
for _ in range(nsim):
# previous points
px = (np.random.rand(nPoint) - 0.5) * fieldLength
py = (np.random.rand(nPoint) - 0.5) * fieldLength
pz = (np.random.rand(nPoint) - 0.5) * fieldLength
previous_points = np.vstack((px, py, pz))
# current points
cx = [math.cos(motion[3]) * x - math.sin(motion[3]) * z + motion[0]
for (x, z) in zip(px, pz)]
cy = [y + motion[1] for y in py]
cz = [math.sin(motion[3]) * x + math.cos(motion[3]) * z + motion[2]
for (x, z) in zip(px, pz)]
current_points = np.vstack((cx, cy, cz))
R, T = icp_matching(previous_points, current_points)
print("R:", R)
print("T:", T)
| 1,352 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/EKFSLAM/ekf_slam.py
|
ekf_slam
|
(xEst, PEst, u, z)
|
return xEst, PEst
| 29 | 59 |
def ekf_slam(xEst, PEst, u, z):
# Predict
S = STATE_SIZE
G, Fx = jacob_motion(xEst[0:S], u)
xEst[0:S] = motion_model(xEst[0:S], u)
PEst[0:S, 0:S] = G.T @ PEst[0:S, 0:S] @ G + Fx.T @ Cx @ Fx
initP = np.eye(2)
# Update
for iz in range(len(z[:, 0])): # for each observation
min_id = search_correspond_landmark_id(xEst, PEst, z[iz, 0:2])
nLM = calc_n_lm(xEst)
if min_id == nLM:
print("New LM")
# Extend state and covariance matrix
xAug = np.vstack((xEst, calc_landmark_position(xEst, z[iz, :])))
PAug = np.vstack((np.hstack((PEst, np.zeros((len(xEst), LM_SIZE)))),
np.hstack((np.zeros((LM_SIZE, len(xEst))), initP))))
xEst = xAug
PEst = PAug
lm = get_landmark_position_from_state(xEst, min_id)
y, S, H = calc_innovation(lm, xEst, PEst, z[iz, 0:2], min_id)
K = (PEst @ H.T) @ np.linalg.inv(S)
xEst = xEst + (K @ y)
PEst = (np.eye(len(xEst)) - (K @ H)) @ PEst
xEst[2] = pi_2_pi(xEst[2])
return xEst, PEst
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/EKFSLAM/ekf_slam.py#L29-L59
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30
] | 96.774194 |
[] | 0 | false | 99.236641 | 31 | 3 | 100 | 0 |
def ekf_slam(xEst, PEst, u, z):
# Predict
S = STATE_SIZE
G, Fx = jacob_motion(xEst[0:S], u)
xEst[0:S] = motion_model(xEst[0:S], u)
PEst[0:S, 0:S] = G.T @ PEst[0:S, 0:S] @ G + Fx.T @ Cx @ Fx
initP = np.eye(2)
# Update
for iz in range(len(z[:, 0])): # for each observation
min_id = search_correspond_landmark_id(xEst, PEst, z[iz, 0:2])
nLM = calc_n_lm(xEst)
if min_id == nLM:
print("New LM")
# Extend state and covariance matrix
xAug = np.vstack((xEst, calc_landmark_position(xEst, z[iz, :])))
PAug = np.vstack((np.hstack((PEst, np.zeros((len(xEst), LM_SIZE)))),
np.hstack((np.zeros((LM_SIZE, len(xEst))), initP))))
xEst = xAug
PEst = PAug
lm = get_landmark_position_from_state(xEst, min_id)
y, S, H = calc_innovation(lm, xEst, PEst, z[iz, 0:2], min_id)
K = (PEst @ H.T) @ np.linalg.inv(S)
xEst = xEst + (K @ y)
PEst = (np.eye(len(xEst)) - (K @ H)) @ PEst
xEst[2] = pi_2_pi(xEst[2])
return xEst, PEst
| 1,353 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/EKFSLAM/ekf_slam.py
|
calc_input
|
()
|
return u
| 62 | 66 |
def calc_input():
v = 1.0 # [m/s]
yaw_rate = 0.1 # [rad/s]
u = np.array([[v, yaw_rate]]).T
return u
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/EKFSLAM/ekf_slam.py#L62-L66
| 2 |
[
0,
1,
2,
3,
4
] | 100 |
[] | 0 | true | 99.236641 | 5 | 1 | 100 | 0 |
def calc_input():
v = 1.0 # [m/s]
yaw_rate = 0.1 # [rad/s]
u = np.array([[v, yaw_rate]]).T
return u
| 1,354 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/EKFSLAM/ekf_slam.py
|
observation
|
(xTrue, xd, u, RFID)
|
return xTrue, z, xd, ud
| 69 | 93 |
def observation(xTrue, xd, u, RFID):
xTrue = motion_model(xTrue, u)
# add noise to gps x-y
z = np.zeros((0, 3))
for i in range(len(RFID[:, 0])):
dx = RFID[i, 0] - xTrue[0, 0]
dy = RFID[i, 1] - xTrue[1, 0]
d = math.hypot(dx, dy)
angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0])
if d <= MAX_RANGE:
dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise
angle_n = angle + np.random.randn() * Q_sim[1, 1] ** 0.5 # add noise
zi = np.array([dn, angle_n, i])
z = np.vstack((z, zi))
# add noise to input
ud = np.array([[
u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5,
u[1, 0] + np.random.randn() * R_sim[1, 1] ** 0.5]]).T
xd = motion_model(xd, ud)
return xTrue, z, xd, ud
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/EKFSLAM/ekf_slam.py#L69-L93
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
22,
23,
24
] | 92 |
[] | 0 | false | 99.236641 | 25 | 3 | 100 | 0 |
def observation(xTrue, xd, u, RFID):
xTrue = motion_model(xTrue, u)
# add noise to gps x-y
z = np.zeros((0, 3))
for i in range(len(RFID[:, 0])):
dx = RFID[i, 0] - xTrue[0, 0]
dy = RFID[i, 1] - xTrue[1, 0]
d = math.hypot(dx, dy)
angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0])
if d <= MAX_RANGE:
dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise
angle_n = angle + np.random.randn() * Q_sim[1, 1] ** 0.5 # add noise
zi = np.array([dn, angle_n, i])
z = np.vstack((z, zi))
# add noise to input
ud = np.array([[
u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5,
u[1, 0] + np.random.randn() * R_sim[1, 1] ** 0.5]]).T
xd = motion_model(xd, ud)
return xTrue, z, xd, ud
| 1,355 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/EKFSLAM/ekf_slam.py
|
motion_model
|
(x, u)
|
return x
| 96 | 106 |
def motion_model(x, u):
F = np.array([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])
B = np.array([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])
x = (F @ x) + (B @ u)
return x
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/EKFSLAM/ekf_slam.py#L96-L106
| 2 |
[
0,
1,
4,
5,
8,
9,
10
] | 63.636364 |
[] | 0 | false | 99.236641 | 11 | 1 | 100 | 0 |
def motion_model(x, u):
F = np.array([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])
B = np.array([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])
x = (F @ x) + (B @ u)
return x
| 1,356 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/EKFSLAM/ekf_slam.py
|
calc_n_lm
|
(x)
|
return n
| 109 | 111 |
def calc_n_lm(x):
n = int((len(x) - STATE_SIZE) / LM_SIZE)
return n
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/EKFSLAM/ekf_slam.py#L109-L111
| 2 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 99.236641 | 3 | 1 | 100 | 0 |
def calc_n_lm(x):
n = int((len(x) - STATE_SIZE) / LM_SIZE)
return n
| 1,357 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/EKFSLAM/ekf_slam.py
|
jacob_motion
|
(x, u)
|
return G, Fx,
| 114 | 124 |
def jacob_motion(x, u):
Fx = np.hstack((np.eye(STATE_SIZE), np.zeros(
(STATE_SIZE, LM_SIZE * calc_n_lm(x)))))
jF = np.array([[0.0, 0.0, -DT * u[0, 0] * math.sin(x[2, 0])],
[0.0, 0.0, DT * u[0, 0] * math.cos(x[2, 0])],
[0.0, 0.0, 0.0]], dtype=float)
G = np.eye(STATE_SIZE) + Fx.T @ jF @ Fx
return G, Fx,
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/EKFSLAM/ekf_slam.py#L114-L124
| 2 |
[
0,
1,
3,
4,
7,
8,
9,
10
] | 72.727273 |
[] | 0 | false | 99.236641 | 11 | 1 | 100 | 0 |
def jacob_motion(x, u):
Fx = np.hstack((np.eye(STATE_SIZE), np.zeros(
(STATE_SIZE, LM_SIZE * calc_n_lm(x)))))
jF = np.array([[0.0, 0.0, -DT * u[0, 0] * math.sin(x[2, 0])],
[0.0, 0.0, DT * u[0, 0] * math.cos(x[2, 0])],
[0.0, 0.0, 0.0]], dtype=float)
G = np.eye(STATE_SIZE) + Fx.T @ jF @ Fx
return G, Fx,
| 1,358 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/EKFSLAM/ekf_slam.py
|
calc_landmark_position
|
(x, z)
|
return zp
| 127 | 133 |
def calc_landmark_position(x, z):
zp = np.zeros((2, 1))
zp[0, 0] = x[0, 0] + z[0] * math.cos(x[2, 0] + z[1])
zp[1, 0] = x[1, 0] + z[0] * math.sin(x[2, 0] + z[1])
return zp
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/EKFSLAM/ekf_slam.py#L127-L133
| 2 |
[
0,
1,
2,
3,
4,
5,
6
] | 100 |
[] | 0 | true | 99.236641 | 7 | 1 | 100 | 0 |
def calc_landmark_position(x, z):
zp = np.zeros((2, 1))
zp[0, 0] = x[0, 0] + z[0] * math.cos(x[2, 0] + z[1])
zp[1, 0] = x[1, 0] + z[0] * math.sin(x[2, 0] + z[1])
return zp
| 1,359 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/EKFSLAM/ekf_slam.py
|
get_landmark_position_from_state
|
(x, ind)
|
return lm
| 136 | 139 |
def get_landmark_position_from_state(x, ind):
lm = x[STATE_SIZE + LM_SIZE * ind: STATE_SIZE + LM_SIZE * (ind + 1), :]
return lm
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/EKFSLAM/ekf_slam.py#L136-L139
| 2 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 99.236641 | 4 | 1 | 100 | 0 |
def get_landmark_position_from_state(x, ind):
lm = x[STATE_SIZE + LM_SIZE * ind: STATE_SIZE + LM_SIZE * (ind + 1), :]
return lm
| 1,360 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/EKFSLAM/ekf_slam.py
|
search_correspond_landmark_id
|
(xAug, PAug, zi)
|
return min_id
|
Landmark association with Mahalanobis distance
|
Landmark association with Mahalanobis distance
| 142 | 160 |
def search_correspond_landmark_id(xAug, PAug, zi):
"""
Landmark association with Mahalanobis distance
"""
nLM = calc_n_lm(xAug)
min_dist = []
for i in range(nLM):
lm = get_landmark_position_from_state(xAug, i)
y, S, H = calc_innovation(lm, xAug, PAug, zi, i)
min_dist.append(y.T @ np.linalg.inv(S) @ y)
min_dist.append(M_DIST_TH) # new landmark
min_id = min_dist.index(min(min_dist))
return min_id
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/EKFSLAM/ekf_slam.py#L142-L160
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18
] | 100 |
[] | 0 | true | 99.236641 | 19 | 2 | 100 | 1 |
def search_correspond_landmark_id(xAug, PAug, zi):
nLM = calc_n_lm(xAug)
min_dist = []
for i in range(nLM):
lm = get_landmark_position_from_state(xAug, i)
y, S, H = calc_innovation(lm, xAug, PAug, zi, i)
min_dist.append(y.T @ np.linalg.inv(S) @ y)
min_dist.append(M_DIST_TH) # new landmark
min_id = min_dist.index(min(min_dist))
return min_id
| 1,361 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/EKFSLAM/ekf_slam.py
|
calc_innovation
|
(lm, xEst, PEst, z, LMid)
|
return y, S, H
| 163 | 173 |
def calc_innovation(lm, xEst, PEst, z, LMid):
delta = lm - xEst[0:2]
q = (delta.T @ delta)[0, 0]
z_angle = math.atan2(delta[1, 0], delta[0, 0]) - xEst[2, 0]
zp = np.array([[math.sqrt(q), pi_2_pi(z_angle)]])
y = (z - zp).T
y[1] = pi_2_pi(y[1])
H = jacob_h(q, delta, xEst, LMid + 1)
S = H @ PEst @ H.T + Cx[0:2, 0:2]
return y, S, H
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/EKFSLAM/ekf_slam.py#L163-L173
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10
] | 100 |
[] | 0 | true | 99.236641 | 11 | 1 | 100 | 0 |
def calc_innovation(lm, xEst, PEst, z, LMid):
delta = lm - xEst[0:2]
q = (delta.T @ delta)[0, 0]
z_angle = math.atan2(delta[1, 0], delta[0, 0]) - xEst[2, 0]
zp = np.array([[math.sqrt(q), pi_2_pi(z_angle)]])
y = (z - zp).T
y[1] = pi_2_pi(y[1])
H = jacob_h(q, delta, xEst, LMid + 1)
S = H @ PEst @ H.T + Cx[0:2, 0:2]
return y, S, H
| 1,362 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/EKFSLAM/ekf_slam.py
|
jacob_h
|
(q, delta, x, i)
|
return H
| 176 | 191 |
def jacob_h(q, delta, x, i):
sq = math.sqrt(q)
G = np.array([[-sq * delta[0, 0], - sq * delta[1, 0], 0, sq * delta[0, 0], sq * delta[1, 0]],
[delta[1, 0], - delta[0, 0], - q, - delta[1, 0], delta[0, 0]]])
G = G / q
nLM = calc_n_lm(x)
F1 = np.hstack((np.eye(3), np.zeros((3, 2 * nLM))))
F2 = np.hstack((np.zeros((2, 3)), np.zeros((2, 2 * (i - 1))),
np.eye(2), np.zeros((2, 2 * nLM - 2 * i))))
F = np.vstack((F1, F2))
H = G @ F
return H
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/EKFSLAM/ekf_slam.py#L176-L191
| 2 |
[
0,
1,
2,
4,
5,
6,
7,
8,
10,
11,
12,
13,
14,
15
] | 87.5 |
[] | 0 | false | 99.236641 | 16 | 1 | 100 | 0 |
def jacob_h(q, delta, x, i):
sq = math.sqrt(q)
G = np.array([[-sq * delta[0, 0], - sq * delta[1, 0], 0, sq * delta[0, 0], sq * delta[1, 0]],
[delta[1, 0], - delta[0, 0], - q, - delta[1, 0], delta[0, 0]]])
G = G / q
nLM = calc_n_lm(x)
F1 = np.hstack((np.eye(3), np.zeros((3, 2 * nLM))))
F2 = np.hstack((np.zeros((2, 3)), np.zeros((2, 2 * (i - 1))),
np.eye(2), np.zeros((2, 2 * nLM - 2 * i))))
F = np.vstack((F1, F2))
H = G @ F
return H
| 1,363 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/EKFSLAM/ekf_slam.py
|
pi_2_pi
|
(angle)
|
return (angle + math.pi) % (2 * math.pi) - math.pi
| 194 | 195 |
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/EKFSLAM/ekf_slam.py#L194-L195
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 99.236641 | 2 | 1 | 100 | 0 |
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
| 1,364 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/EKFSLAM/ekf_slam.py
|
main
|
()
| 198 | 259 |
def main():
print(__file__ + " start!!")
time = 0.0
# RFID positions [x, y]
RFID = np.array([[10.0, -2.0],
[15.0, 10.0],
[3.0, 15.0],
[-5.0, 20.0]])
# State Vector [x y yaw v]'
xEst = np.zeros((STATE_SIZE, 1))
xTrue = np.zeros((STATE_SIZE, 1))
PEst = np.eye(STATE_SIZE)
xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning
# history
hxEst = xEst
hxTrue = xTrue
hxDR = xTrue
while SIM_TIME >= time:
time += DT
u = calc_input()
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
xEst, PEst = ekf_slam(xEst, PEst, ud, z)
x_state = xEst[0:STATE_SIZE]
# store data history
hxEst = np.hstack((hxEst, x_state))
hxDR = np.hstack((hxDR, xDR))
hxTrue = np.hstack((hxTrue, xTrue))
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
plt.plot(xEst[0], xEst[1], ".r")
# plot landmark
for i in range(calc_n_lm(xEst)):
plt.plot(xEst[STATE_SIZE + i * 2],
xEst[STATE_SIZE + i * 2 + 1], "xg")
plt.plot(hxTrue[0, :],
hxTrue[1, :], "-b")
plt.plot(hxDR[0, :],
hxDR[1, :], "-k")
plt.plot(hxEst[0, :],
hxEst[1, :], "-r")
plt.axis("equal")
plt.grid(True)
plt.pause(0.001)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/EKFSLAM/ekf_slam.py#L198-L259
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37
] | 69.387755 |
[] | 0 | false | 99.236641 | 62 | 4 | 100 | 0 |
def main():
print(__file__ + " start!!")
time = 0.0
# RFID positions [x, y]
RFID = np.array([[10.0, -2.0],
[15.0, 10.0],
[3.0, 15.0],
[-5.0, 20.0]])
# State Vector [x y yaw v]'
xEst = np.zeros((STATE_SIZE, 1))
xTrue = np.zeros((STATE_SIZE, 1))
PEst = np.eye(STATE_SIZE)
xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning
# history
hxEst = xEst
hxTrue = xTrue
hxDR = xTrue
while SIM_TIME >= time:
time += DT
u = calc_input()
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
xEst, PEst = ekf_slam(xEst, PEst, ud, z)
x_state = xEst[0:STATE_SIZE]
# store data history
hxEst = np.hstack((hxEst, x_state))
hxDR = np.hstack((hxDR, xDR))
hxTrue = np.hstack((hxTrue, xTrue))
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
plt.plot(xEst[0], xEst[1], ".r")
# plot landmark
for i in range(calc_n_lm(xEst)):
plt.plot(xEst[STATE_SIZE + i * 2],
xEst[STATE_SIZE + i * 2 + 1], "xg")
plt.plot(hxTrue[0, :],
hxTrue[1, :], "-b")
plt.plot(hxDR[0, :],
hxDR[1, :], "-k")
plt.plot(hxEst[0, :],
hxEst[1, :], "-r")
plt.axis("equal")
plt.grid(True)
plt.pause(0.001)
| 1,365 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/GraphBasedSLAM/graph_based_slam.py
|
cal_observation_sigma
|
()
|
return sigma
| 60 | 66 |
def cal_observation_sigma():
sigma = np.zeros((3, 3))
sigma[0, 0] = C_SIGMA1 ** 2
sigma[1, 1] = C_SIGMA2 ** 2
sigma[2, 2] = C_SIGMA3 ** 2
return sigma
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/GraphBasedSLAM/graph_based_slam.py#L60-L66
| 2 |
[
0,
1,
2,
3,
4,
5,
6
] | 100 |
[] | 0 | true | 98.901099 | 7 | 1 | 100 | 0 |
def cal_observation_sigma():
sigma = np.zeros((3, 3))
sigma[0, 0] = C_SIGMA1 ** 2
sigma[1, 1] = C_SIGMA2 ** 2
sigma[2, 2] = C_SIGMA3 ** 2
return sigma
| 1,366 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/GraphBasedSLAM/graph_based_slam.py
|
calc_3d_rotational_matrix
|
(angle)
|
return Rot.from_euler('z', angle).as_matrix()
| 69 | 70 |
def calc_3d_rotational_matrix(angle):
return Rot.from_euler('z', angle).as_matrix()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/GraphBasedSLAM/graph_based_slam.py#L69-L70
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 98.901099 | 2 | 1 | 100 | 0 |
def calc_3d_rotational_matrix(angle):
return Rot.from_euler('z', angle).as_matrix()
| 1,367 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/GraphBasedSLAM/graph_based_slam.py
|
calc_edge
|
(x1, y1, yaw1, x2, y2, yaw2, d1,
angle1, d2, angle2, t1, t2)
|
return edge
| 73 | 101 |
def calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
angle1, d2, angle2, t1, t2):
edge = Edge()
tangle1 = pi_2_pi(yaw1 + angle1)
tangle2 = pi_2_pi(yaw2 + angle2)
tmp1 = d1 * math.cos(tangle1)
tmp2 = d2 * math.cos(tangle2)
tmp3 = d1 * math.sin(tangle1)
tmp4 = d2 * math.sin(tangle2)
edge.e[0, 0] = x2 - x1 - tmp1 + tmp2
edge.e[1, 0] = y2 - y1 - tmp3 + tmp4
edge.e[2, 0] = 0
Rt1 = calc_3d_rotational_matrix(tangle1)
Rt2 = calc_3d_rotational_matrix(tangle2)
sig1 = cal_observation_sigma()
sig2 = cal_observation_sigma()
edge.omega = np.linalg.inv(Rt1 @ sig1 @ Rt1.T + Rt2 @ sig2 @ Rt2.T)
edge.d1, edge.d2 = d1, d2
edge.yaw1, edge.yaw2 = yaw1, yaw2
edge.angle1, edge.angle2 = angle1, angle2
edge.id1, edge.id2 = t1, t2
return edge
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/GraphBasedSLAM/graph_based_slam.py#L73-L101
| 2 |
[
0,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28
] | 96.551724 |
[] | 0 | false | 98.901099 | 29 | 1 | 100 | 0 |
def calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
angle1, d2, angle2, t1, t2):
edge = Edge()
tangle1 = pi_2_pi(yaw1 + angle1)
tangle2 = pi_2_pi(yaw2 + angle2)
tmp1 = d1 * math.cos(tangle1)
tmp2 = d2 * math.cos(tangle2)
tmp3 = d1 * math.sin(tangle1)
tmp4 = d2 * math.sin(tangle2)
edge.e[0, 0] = x2 - x1 - tmp1 + tmp2
edge.e[1, 0] = y2 - y1 - tmp3 + tmp4
edge.e[2, 0] = 0
Rt1 = calc_3d_rotational_matrix(tangle1)
Rt2 = calc_3d_rotational_matrix(tangle2)
sig1 = cal_observation_sigma()
sig2 = cal_observation_sigma()
edge.omega = np.linalg.inv(Rt1 @ sig1 @ Rt1.T + Rt2 @ sig2 @ Rt2.T)
edge.d1, edge.d2 = d1, d2
edge.yaw1, edge.yaw2 = yaw1, yaw2
edge.angle1, edge.angle2 = angle1, angle2
edge.id1, edge.id2 = t1, t2
return edge
| 1,368 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/GraphBasedSLAM/graph_based_slam.py
|
calc_edges
|
(x_list, z_list)
|
return edges
| 104 | 131 |
def calc_edges(x_list, z_list):
edges = []
cost = 0.0
z_ids = list(itertools.combinations(range(len(z_list)), 2))
for (t1, t2) in z_ids:
x1, y1, yaw1 = x_list[0, t1], x_list[1, t1], x_list[2, t1]
x2, y2, yaw2 = x_list[0, t2], x_list[1, t2], x_list[2, t2]
if z_list[t1] is None or z_list[t2] is None:
continue # No observation
for iz1 in range(len(z_list[t1][:, 0])):
for iz2 in range(len(z_list[t2][:, 0])):
if z_list[t1][iz1, 3] == z_list[t2][iz2, 3]:
d1 = z_list[t1][iz1, 0]
angle1, phi1 = z_list[t1][iz1, 1], z_list[t1][iz1, 2]
d2 = z_list[t2][iz2, 0]
angle2, phi2 = z_list[t2][iz2, 1], z_list[t2][iz2, 2]
edge = calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
angle1, d2, angle2, t1, t2)
edges.append(edge)
cost += (edge.e.T @ edge.omega @ edge.e)[0, 0]
print("cost:", cost, ",n_edge:", len(edges))
return edges
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/GraphBasedSLAM/graph_based_slam.py#L104-L131
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
22,
23,
24,
25,
26,
27
] | 92.857143 |
[
10
] | 3.571429 | false | 98.901099 | 28 | 7 | 96.428571 | 0 |
def calc_edges(x_list, z_list):
edges = []
cost = 0.0
z_ids = list(itertools.combinations(range(len(z_list)), 2))
for (t1, t2) in z_ids:
x1, y1, yaw1 = x_list[0, t1], x_list[1, t1], x_list[2, t1]
x2, y2, yaw2 = x_list[0, t2], x_list[1, t2], x_list[2, t2]
if z_list[t1] is None or z_list[t2] is None:
continue # No observation
for iz1 in range(len(z_list[t1][:, 0])):
for iz2 in range(len(z_list[t2][:, 0])):
if z_list[t1][iz1, 3] == z_list[t2][iz2, 3]:
d1 = z_list[t1][iz1, 0]
angle1, phi1 = z_list[t1][iz1, 1], z_list[t1][iz1, 2]
d2 = z_list[t2][iz2, 0]
angle2, phi2 = z_list[t2][iz2, 1], z_list[t2][iz2, 2]
edge = calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
angle1, d2, angle2, t1, t2)
edges.append(edge)
cost += (edge.e.T @ edge.omega @ edge.e)[0, 0]
print("cost:", cost, ",n_edge:", len(edges))
return edges
| 1,369 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/GraphBasedSLAM/graph_based_slam.py
|
calc_jacobian
|
(edge)
|
return A, B
| 134 | 145 |
def calc_jacobian(edge):
t1 = edge.yaw1 + edge.angle1
A = np.array([[-1.0, 0, edge.d1 * math.sin(t1)],
[0, -1.0, -edge.d1 * math.cos(t1)],
[0, 0, 0]])
t2 = edge.yaw2 + edge.angle2
B = np.array([[1.0, 0, -edge.d2 * math.sin(t2)],
[0, 1.0, edge.d2 * math.cos(t2)],
[0, 0, 0]])
return A, B
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/GraphBasedSLAM/graph_based_slam.py#L134-L145
| 2 |
[
0,
1,
2,
5,
6,
7,
10,
11
] | 66.666667 |
[] | 0 | false | 98.901099 | 12 | 1 | 100 | 0 |
def calc_jacobian(edge):
t1 = edge.yaw1 + edge.angle1
A = np.array([[-1.0, 0, edge.d1 * math.sin(t1)],
[0, -1.0, -edge.d1 * math.cos(t1)],
[0, 0, 0]])
t2 = edge.yaw2 + edge.angle2
B = np.array([[1.0, 0, -edge.d2 * math.sin(t2)],
[0, 1.0, edge.d2 * math.cos(t2)],
[0, 0, 0]])
return A, B
| 1,370 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/GraphBasedSLAM/graph_based_slam.py
|
fill_H_and_b
|
(H, b, edge)
|
return H, b
| 148 | 162 |
def fill_H_and_b(H, b, edge):
A, B = calc_jacobian(edge)
id1 = edge.id1 * STATE_SIZE
id2 = edge.id2 * STATE_SIZE
H[id1:id1 + STATE_SIZE, id1:id1 + STATE_SIZE] += A.T @ edge.omega @ A
H[id1:id1 + STATE_SIZE, id2:id2 + STATE_SIZE] += A.T @ edge.omega @ B
H[id2:id2 + STATE_SIZE, id1:id1 + STATE_SIZE] += B.T @ edge.omega @ A
H[id2:id2 + STATE_SIZE, id2:id2 + STATE_SIZE] += B.T @ edge.omega @ B
b[id1:id1 + STATE_SIZE] += (A.T @ edge.omega @ edge.e)
b[id2:id2 + STATE_SIZE] += (B.T @ edge.omega @ edge.e)
return H, b
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/GraphBasedSLAM/graph_based_slam.py#L148-L162
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14
] | 100 |
[] | 0 | true | 98.901099 | 15 | 1 | 100 | 0 |
def fill_H_and_b(H, b, edge):
A, B = calc_jacobian(edge)
id1 = edge.id1 * STATE_SIZE
id2 = edge.id2 * STATE_SIZE
H[id1:id1 + STATE_SIZE, id1:id1 + STATE_SIZE] += A.T @ edge.omega @ A
H[id1:id1 + STATE_SIZE, id2:id2 + STATE_SIZE] += A.T @ edge.omega @ B
H[id2:id2 + STATE_SIZE, id1:id1 + STATE_SIZE] += B.T @ edge.omega @ A
H[id2:id2 + STATE_SIZE, id2:id2 + STATE_SIZE] += B.T @ edge.omega @ B
b[id1:id1 + STATE_SIZE] += (A.T @ edge.omega @ edge.e)
b[id2:id2 + STATE_SIZE] += (B.T @ edge.omega @ edge.e)
return H, b
| 1,371 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/GraphBasedSLAM/graph_based_slam.py
|
graph_based_slam
|
(x_init, hz)
|
return x_opt
| 165 | 196 |
def graph_based_slam(x_init, hz):
print("start graph based slam")
z_list = copy.deepcopy(hz)
x_opt = copy.deepcopy(x_init)
nt = x_opt.shape[1]
n = nt * STATE_SIZE
for itr in range(MAX_ITR):
edges = calc_edges(x_opt, z_list)
H = np.zeros((n, n))
b = np.zeros((n, 1))
for edge in edges:
H, b = fill_H_and_b(H, b, edge)
# to fix origin
H[0:STATE_SIZE, 0:STATE_SIZE] += np.identity(STATE_SIZE)
dx = - np.linalg.inv(H) @ b
for i in range(nt):
x_opt[0:3, i] += dx[i * 3:i * 3 + 3, 0]
diff = dx.T @ dx
print("iteration: %d, diff: %f" % (itr + 1, diff))
if diff < 1.0e-5:
break
return x_opt
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/GraphBasedSLAM/graph_based_slam.py#L165-L196
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31
] | 100 |
[] | 0 | true | 98.901099 | 32 | 5 | 100 | 0 |
def graph_based_slam(x_init, hz):
print("start graph based slam")
z_list = copy.deepcopy(hz)
x_opt = copy.deepcopy(x_init)
nt = x_opt.shape[1]
n = nt * STATE_SIZE
for itr in range(MAX_ITR):
edges = calc_edges(x_opt, z_list)
H = np.zeros((n, n))
b = np.zeros((n, 1))
for edge in edges:
H, b = fill_H_and_b(H, b, edge)
# to fix origin
H[0:STATE_SIZE, 0:STATE_SIZE] += np.identity(STATE_SIZE)
dx = - np.linalg.inv(H) @ b
for i in range(nt):
x_opt[0:3, i] += dx[i * 3:i * 3 + 3, 0]
diff = dx.T @ dx
print("iteration: %d, diff: %f" % (itr + 1, diff))
if diff < 1.0e-5:
break
return x_opt
| 1,372 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/GraphBasedSLAM/graph_based_slam.py
|
calc_input
|
()
|
return u
| 199 | 203 |
def calc_input():
v = 1.0 # [m/s]
yaw_rate = 0.1 # [rad/s]
u = np.array([[v, yaw_rate]]).T
return u
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/GraphBasedSLAM/graph_based_slam.py#L199-L203
| 2 |
[
0,
1,
2,
3,
4
] | 100 |
[] | 0 | true | 98.901099 | 5 | 1 | 100 | 0 |
def calc_input():
v = 1.0 # [m/s]
yaw_rate = 0.1 # [rad/s]
u = np.array([[v, yaw_rate]]).T
return u
| 1,373 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/GraphBasedSLAM/graph_based_slam.py
|
observation
|
(xTrue, xd, u, RFID)
|
return xTrue, z, xd, ud
| 206 | 234 |
def observation(xTrue, xd, u, RFID):
xTrue = motion_model(xTrue, u)
# add noise to gps x-y
z = np.zeros((0, 4))
for i in range(len(RFID[:, 0])):
dx = RFID[i, 0] - xTrue[0, 0]
dy = RFID[i, 1] - xTrue[1, 0]
d = math.hypot(dx, dy)
angle = pi_2_pi(math.atan2(dy, dx)) - xTrue[2, 0]
phi = pi_2_pi(math.atan2(dy, dx))
if d <= MAX_RANGE:
dn = d + np.random.randn() * Q_sim[0, 0] # add noise
angle_noise = np.random.randn() * Q_sim[1, 1]
angle += angle_noise
phi += angle_noise
zi = np.array([dn, angle, phi, i])
z = np.vstack((z, zi))
# add noise to input
ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0]
ud2 = u[1, 0] + np.random.randn() * R_sim[1, 1]
ud = np.array([[ud1, ud2]]).T
xd = motion_model(xd, ud)
return xTrue, z, xd, ud
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/GraphBasedSLAM/graph_based_slam.py#L206-L234
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28
] | 100 |
[] | 0 | true | 98.901099 | 29 | 3 | 100 | 0 |
def observation(xTrue, xd, u, RFID):
xTrue = motion_model(xTrue, u)
# add noise to gps x-y
z = np.zeros((0, 4))
for i in range(len(RFID[:, 0])):
dx = RFID[i, 0] - xTrue[0, 0]
dy = RFID[i, 1] - xTrue[1, 0]
d = math.hypot(dx, dy)
angle = pi_2_pi(math.atan2(dy, dx)) - xTrue[2, 0]
phi = pi_2_pi(math.atan2(dy, dx))
if d <= MAX_RANGE:
dn = d + np.random.randn() * Q_sim[0, 0] # add noise
angle_noise = np.random.randn() * Q_sim[1, 1]
angle += angle_noise
phi += angle_noise
zi = np.array([dn, angle, phi, i])
z = np.vstack((z, zi))
# add noise to input
ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0]
ud2 = u[1, 0] + np.random.randn() * R_sim[1, 1]
ud = np.array([[ud1, ud2]]).T
xd = motion_model(xd, ud)
return xTrue, z, xd, ud
| 1,374 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/GraphBasedSLAM/graph_based_slam.py
|
motion_model
|
(x, u)
|
return x
| 237 | 248 |
def motion_model(x, u):
F = np.array([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])
B = np.array([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])
x = F @ x + B @ u
return x
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/GraphBasedSLAM/graph_based_slam.py#L237-L248
| 2 |
[
0,
1,
4,
5,
8,
9,
10,
11
] | 66.666667 |
[] | 0 | false | 98.901099 | 12 | 1 | 100 | 0 |
def motion_model(x, u):
F = np.array([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])
B = np.array([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])
x = F @ x + B @ u
return x
| 1,375 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/GraphBasedSLAM/graph_based_slam.py
|
pi_2_pi
|
(angle)
|
return (angle + math.pi) % (2 * math.pi) - math.pi
| 251 | 252 |
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/GraphBasedSLAM/graph_based_slam.py#L251-L252
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 98.901099 | 2 | 1 | 100 | 0 |
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
| 1,376 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/GraphBasedSLAM/graph_based_slam.py
|
main
|
()
| 255 | 317 |
def main():
print(__file__ + " start!!")
time = 0.0
# RFID positions [x, y, yaw]
RFID = np.array([[10.0, -2.0, 0.0],
[15.0, 10.0, 0.0],
[3.0, 15.0, 0.0],
[-5.0, 20.0, 0.0],
[-5.0, 5.0, 0.0]
])
# State Vector [x y yaw v]'
xTrue = np.zeros((STATE_SIZE, 1))
xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning
# history
hxTrue = []
hxDR = []
hz = []
d_time = 0.0
init = False
while SIM_TIME >= time:
if not init:
hxTrue = xTrue
hxDR = xTrue
init = True
else:
hxDR = np.hstack((hxDR, xDR))
hxTrue = np.hstack((hxTrue, xTrue))
time += DT
d_time += DT
u = calc_input()
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
hz.append(z)
if d_time >= show_graph_d_time:
x_opt = graph_based_slam(hxDR, hz)
d_time = 0.0
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
plt.plot(hxTrue[0, :].flatten(),
hxTrue[1, :].flatten(), "-b")
plt.plot(hxDR[0, :].flatten(),
hxDR[1, :].flatten(), "-k")
plt.plot(x_opt[0, :].flatten(),
x_opt[1, :].flatten(), "-r")
plt.axis("equal")
plt.grid(True)
plt.title("Time" + str(time)[0:5])
plt.pause(1.0)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/GraphBasedSLAM/graph_based_slam.py#L255-L317
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44
] | 73.076923 |
[] | 0 | false | 98.901099 | 63 | 5 | 100 | 0 |
def main():
print(__file__ + " start!!")
time = 0.0
# RFID positions [x, y, yaw]
RFID = np.array([[10.0, -2.0, 0.0],
[15.0, 10.0, 0.0],
[3.0, 15.0, 0.0],
[-5.0, 20.0, 0.0],
[-5.0, 5.0, 0.0]
])
# State Vector [x y yaw v]'
xTrue = np.zeros((STATE_SIZE, 1))
xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning
# history
hxTrue = []
hxDR = []
hz = []
d_time = 0.0
init = False
while SIM_TIME >= time:
if not init:
hxTrue = xTrue
hxDR = xTrue
init = True
else:
hxDR = np.hstack((hxDR, xDR))
hxTrue = np.hstack((hxTrue, xTrue))
time += DT
d_time += DT
u = calc_input()
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
hz.append(z)
if d_time >= show_graph_d_time:
x_opt = graph_based_slam(hxDR, hz)
d_time = 0.0
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
plt.plot(hxTrue[0, :].flatten(),
hxTrue[1, :].flatten(), "-b")
plt.plot(hxDR[0, :].flatten(),
hxDR[1, :].flatten(), "-k")
plt.plot(x_opt[0, :].flatten(),
x_opt[1, :].flatten(), "-r")
plt.axis("equal")
plt.grid(True)
plt.title("Time" + str(time)[0:5])
plt.pause(1.0)
| 1,377 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/GraphBasedSLAM/graph_based_slam.py
|
Edge.__init__
|
(self)
| 47 | 57 |
def __init__(self):
self.e = np.zeros((3, 1))
self.omega = np.zeros((3, 3)) # information matrix
self.d1 = 0.0
self.d2 = 0.0
self.yaw1 = 0.0
self.yaw2 = 0.0
self.angle1 = 0.0
self.angle2 = 0.0
self.id1 = 0
self.id2 = 0
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/GraphBasedSLAM/graph_based_slam.py#L47-L57
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10
] | 100 |
[] | 0 | true | 98.901099 | 11 | 1 | 100 | 0 |
def __init__(self):
self.e = np.zeros((3, 1))
self.omega = np.zeros((3, 3)) # information matrix
self.d1 = 0.0
self.d2 = 0.0
self.yaw1 = 0.0
self.yaw2 = 0.0
self.angle1 = 0.0
self.angle2 = 0.0
self.id1 = 0
self.id2 = 0
| 1,378 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
fast_slam1
|
(particles, u, z)
|
return particles
| 48 | 55 |
def fast_slam1(particles, u, z):
particles = predict_particles(particles, u)
particles = update_with_observation(particles, z)
particles = resampling(particles)
return particles
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L48-L55
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7
] | 100 |
[] | 0 | true | 96.330275 | 8 | 1 | 100 | 0 |
def fast_slam1(particles, u, z):
particles = predict_particles(particles, u)
particles = update_with_observation(particles, z)
particles = resampling(particles)
return particles
| 1,414 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
normalize_weight
|
(particles)
|
return particles
| 58 | 70 |
def normalize_weight(particles):
sum_w = sum([p.w for p in particles])
try:
for i in range(N_PARTICLE):
particles[i].w /= sum_w
except ZeroDivisionError:
for i in range(N_PARTICLE):
particles[i].w = 1.0 / N_PARTICLE
return particles
return particles
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L58-L70
| 2 |
[
0,
1,
2,
3,
4,
5,
11,
12
] | 61.538462 |
[
6,
7,
8,
10
] | 30.769231 | false | 96.330275 | 13 | 5 | 69.230769 | 0 |
def normalize_weight(particles):
sum_w = sum([p.w for p in particles])
try:
for i in range(N_PARTICLE):
particles[i].w /= sum_w
except ZeroDivisionError:
for i in range(N_PARTICLE):
particles[i].w = 1.0 / N_PARTICLE
return particles
return particles
| 1,415 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
calc_final_state
|
(particles)
|
return xEst
| 73 | 86 |
def calc_final_state(particles):
xEst = np.zeros((STATE_SIZE, 1))
particles = normalize_weight(particles)
for i in range(N_PARTICLE):
xEst[0, 0] += particles[i].w * particles[i].x
xEst[1, 0] += particles[i].w * particles[i].y
xEst[2, 0] += particles[i].w * particles[i].yaw
xEst[2, 0] = pi_2_pi(xEst[2, 0])
# print(xEst)
return xEst
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L73-L86
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 96.330275 | 14 | 2 | 100 | 0 |
def calc_final_state(particles):
xEst = np.zeros((STATE_SIZE, 1))
particles = normalize_weight(particles)
for i in range(N_PARTICLE):
xEst[0, 0] += particles[i].w * particles[i].x
xEst[1, 0] += particles[i].w * particles[i].y
xEst[2, 0] += particles[i].w * particles[i].yaw
xEst[2, 0] = pi_2_pi(xEst[2, 0])
# print(xEst)
return xEst
| 1,416 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
predict_particles
|
(particles, u)
|
return particles
| 89 | 101 |
def predict_particles(particles, u):
for i in range(N_PARTICLE):
px = np.zeros((STATE_SIZE, 1))
px[0, 0] = particles[i].x
px[1, 0] = particles[i].y
px[2, 0] = particles[i].yaw
ud = u + (np.random.randn(1, 2) @ R ** 0.5).T # add noise
px = motion_model(px, ud)
particles[i].x = px[0, 0]
particles[i].y = px[1, 0]
particles[i].yaw = px[2, 0]
return particles
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L89-L101
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 100 |
[] | 0 | true | 96.330275 | 13 | 2 | 100 | 0 |
def predict_particles(particles, u):
for i in range(N_PARTICLE):
px = np.zeros((STATE_SIZE, 1))
px[0, 0] = particles[i].x
px[1, 0] = particles[i].y
px[2, 0] = particles[i].yaw
ud = u + (np.random.randn(1, 2) @ R ** 0.5).T # add noise
px = motion_model(px, ud)
particles[i].x = px[0, 0]
particles[i].y = px[1, 0]
particles[i].yaw = px[2, 0]
return particles
| 1,417 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
add_new_landmark
|
(particle, z, Q_cov)
|
return particle
| 104 | 125 |
def add_new_landmark(particle, z, Q_cov):
r = z[0]
b = z[1]
lm_id = int(z[2])
s = math.sin(pi_2_pi(particle.yaw + b))
c = math.cos(pi_2_pi(particle.yaw + b))
particle.lm[lm_id, 0] = particle.x + r * c
particle.lm[lm_id, 1] = particle.y + r * s
# covariance
dx = r * c
dy = r * s
d2 = dx**2 + dy**2
d = math.sqrt(d2)
Gz = np.array([[dx / d, dy / d],
[-dy / d2, dx / d2]])
particle.lmP[2 * lm_id:2 * lm_id + 2] = np.linalg.inv(
Gz) @ Q_cov @ np.linalg.inv(Gz.T)
return particle
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L104-L125
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
18,
20,
21
] | 90.909091 |
[] | 0 | false | 96.330275 | 22 | 1 | 100 | 0 |
def add_new_landmark(particle, z, Q_cov):
r = z[0]
b = z[1]
lm_id = int(z[2])
s = math.sin(pi_2_pi(particle.yaw + b))
c = math.cos(pi_2_pi(particle.yaw + b))
particle.lm[lm_id, 0] = particle.x + r * c
particle.lm[lm_id, 1] = particle.y + r * s
# covariance
dx = r * c
dy = r * s
d2 = dx**2 + dy**2
d = math.sqrt(d2)
Gz = np.array([[dx / d, dy / d],
[-dy / d2, dx / d2]])
particle.lmP[2 * lm_id:2 * lm_id + 2] = np.linalg.inv(
Gz) @ Q_cov @ np.linalg.inv(Gz.T)
return particle
| 1,418 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
compute_jacobians
|
(particle, xf, Pf, Q_cov)
|
return zp, Hv, Hf, Sf
| 128 | 145 |
def compute_jacobians(particle, xf, Pf, Q_cov):
dx = xf[0, 0] - particle.x
dy = xf[1, 0] - particle.y
d2 = dx ** 2 + dy ** 2
d = math.sqrt(d2)
zp = np.array(
[d, pi_2_pi(math.atan2(dy, dx) - particle.yaw)]).reshape(2, 1)
Hv = np.array([[-dx / d, -dy / d, 0.0],
[dy / d2, -dx / d2, -1.0]])
Hf = np.array([[dx / d, dy / d],
[-dy / d2, dx / d2]])
Sf = Hf @ Pf @ Hf.T + Q_cov
return zp, Hv, Hf, Sf
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L128-L145
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
8,
9,
11,
12,
14,
15,
16,
17
] | 83.333333 |
[] | 0 | false | 96.330275 | 18 | 1 | 100 | 0 |
def compute_jacobians(particle, xf, Pf, Q_cov):
dx = xf[0, 0] - particle.x
dy = xf[1, 0] - particle.y
d2 = dx ** 2 + dy ** 2
d = math.sqrt(d2)
zp = np.array(
[d, pi_2_pi(math.atan2(dy, dx) - particle.yaw)]).reshape(2, 1)
Hv = np.array([[-dx / d, -dy / d, 0.0],
[dy / d2, -dx / d2, -1.0]])
Hf = np.array([[dx / d, dy / d],
[-dy / d2, dx / d2]])
Sf = Hf @ Pf @ Hf.T + Q_cov
return zp, Hv, Hf, Sf
| 1,419 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
update_kf_with_cholesky
|
(xf, Pf, v, Q_cov, Hf)
|
return x, P
| 148 | 161 |
def update_kf_with_cholesky(xf, Pf, v, Q_cov, Hf):
PHt = Pf @ Hf.T
S = Hf @ PHt + Q_cov
S = (S + S.T) * 0.5
s_chol = np.linalg.cholesky(S).T
s_chol_inv = np.linalg.inv(s_chol)
W1 = PHt @ s_chol_inv
W = W1 @ s_chol_inv.T
x = xf + W @ v
P = Pf - W1 @ W1.T
return x, P
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L148-L161
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 96.330275 | 14 | 1 | 100 | 0 |
def update_kf_with_cholesky(xf, Pf, v, Q_cov, Hf):
PHt = Pf @ Hf.T
S = Hf @ PHt + Q_cov
S = (S + S.T) * 0.5
s_chol = np.linalg.cholesky(S).T
s_chol_inv = np.linalg.inv(s_chol)
W1 = PHt @ s_chol_inv
W = W1 @ s_chol_inv.T
x = xf + W @ v
P = Pf - W1 @ W1.T
return x, P
| 1,420 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
update_landmark
|
(particle, z, Q_cov)
|
return particle
| 164 | 179 |
def update_landmark(particle, z, Q_cov):
lm_id = int(z[2])
xf = np.array(particle.lm[lm_id, :]).reshape(2, 1)
Pf = np.array(particle.lmP[2 * lm_id:2 * lm_id + 2, :])
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q)
dz = z[0:2].reshape(2, 1) - zp
dz[1, 0] = pi_2_pi(dz[1, 0])
xf, Pf = update_kf_with_cholesky(xf, Pf, dz, Q_cov, Hf)
particle.lm[lm_id, :] = xf.T
particle.lmP[2 * lm_id:2 * lm_id + 2, :] = Pf
return particle
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L164-L179
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
] | 100 |
[] | 0 | true | 96.330275 | 16 | 1 | 100 | 0 |
def update_landmark(particle, z, Q_cov):
lm_id = int(z[2])
xf = np.array(particle.lm[lm_id, :]).reshape(2, 1)
Pf = np.array(particle.lmP[2 * lm_id:2 * lm_id + 2, :])
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q)
dz = z[0:2].reshape(2, 1) - zp
dz[1, 0] = pi_2_pi(dz[1, 0])
xf, Pf = update_kf_with_cholesky(xf, Pf, dz, Q_cov, Hf)
particle.lm[lm_id, :] = xf.T
particle.lmP[2 * lm_id:2 * lm_id + 2, :] = Pf
return particle
| 1,421 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
compute_weight
|
(particle, z, Q_cov)
|
return w
| 182 | 202 |
def compute_weight(particle, z, Q_cov):
lm_id = int(z[2])
xf = np.array(particle.lm[lm_id, :]).reshape(2, 1)
Pf = np.array(particle.lmP[2 * lm_id:2 * lm_id + 2])
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q_cov)
dx = z[0:2].reshape(2, 1) - zp
dx[1, 0] = pi_2_pi(dx[1, 0])
try:
invS = np.linalg.inv(Sf)
except np.linalg.linalg.LinAlgError:
print("singular")
return 1.0
num = math.exp(-0.5 * dx.T @ invS @ dx)
den = 2.0 * math.pi * math.sqrt(np.linalg.det(Sf))
w = num / den
return w
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L182-L202
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
14,
15,
16,
17,
18,
19,
20
] | 85.714286 |
[
11,
12,
13
] | 14.285714 | false | 96.330275 | 21 | 2 | 85.714286 | 0 |
def compute_weight(particle, z, Q_cov):
lm_id = int(z[2])
xf = np.array(particle.lm[lm_id, :]).reshape(2, 1)
Pf = np.array(particle.lmP[2 * lm_id:2 * lm_id + 2])
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q_cov)
dx = z[0:2].reshape(2, 1) - zp
dx[1, 0] = pi_2_pi(dx[1, 0])
try:
invS = np.linalg.inv(Sf)
except np.linalg.linalg.LinAlgError:
print("singular")
return 1.0
num = math.exp(-0.5 * dx.T @ invS @ dx)
den = 2.0 * math.pi * math.sqrt(np.linalg.det(Sf))
w = num / den
return w
| 1,422 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
update_with_observation
|
(particles, z)
|
return particles
| 205 | 220 |
def update_with_observation(particles, z):
for iz in range(len(z[0, :])):
landmark_id = int(z[2, iz])
for ip in range(N_PARTICLE):
# new landmark
if abs(particles[ip].lm[landmark_id, 0]) <= 0.01:
particles[ip] = add_new_landmark(particles[ip], z[:, iz], Q)
# known landmark
else:
w = compute_weight(particles[ip], z[:, iz], Q)
particles[ip].w *= w
particles[ip] = update_landmark(particles[ip], z[:, iz], Q)
return particles
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L205-L220
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
11,
12,
13,
14,
15
] | 93.75 |
[] | 0 | false | 96.330275 | 16 | 4 | 100 | 0 |
def update_with_observation(particles, z):
for iz in range(len(z[0, :])):
landmark_id = int(z[2, iz])
for ip in range(N_PARTICLE):
# new landmark
if abs(particles[ip].lm[landmark_id, 0]) <= 0.01:
particles[ip] = add_new_landmark(particles[ip], z[:, iz], Q)
# known landmark
else:
w = compute_weight(particles[ip], z[:, iz], Q)
particles[ip].w *= w
particles[ip] = update_landmark(particles[ip], z[:, iz], Q)
return particles
| 1,423 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
resampling
|
(particles)
|
return particles
|
low variance re-sampling
|
low variance re-sampling
| 223 | 261 |
def resampling(particles):
"""
low variance re-sampling
"""
particles = normalize_weight(particles)
pw = []
for i in range(N_PARTICLE):
pw.append(particles[i].w)
pw = np.array(pw)
n_eff = 1.0 / (pw @ pw.T) # Effective particle number
# print(n_eff)
if n_eff < NTH: # resampling
w_cum = np.cumsum(pw)
base = np.cumsum(pw * 0.0 + 1 / N_PARTICLE) - 1 / N_PARTICLE
resample_id = base + np.random.rand(base.shape[0]) / N_PARTICLE
inds = []
ind = 0
for ip in range(N_PARTICLE):
while (ind < w_cum.shape[0] - 1) \
and (resample_id[ip] > w_cum[ind]):
ind += 1
inds.append(ind)
tmp_particles = particles[:]
for i in range(len(inds)):
particles[i].x = tmp_particles[inds[i]].x
particles[i].y = tmp_particles[inds[i]].y
particles[i].yaw = tmp_particles[inds[i]].yaw
particles[i].lm = tmp_particles[inds[i]].lm[:, :]
particles[i].lmP = tmp_particles[inds[i]].lmP[:, :]
particles[i].w = 1.0 / N_PARTICLE
return particles
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L223-L261
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38
] | 100 |
[] | 0 | true | 96.330275 | 39 | 7 | 100 | 1 |
def resampling(particles):
particles = normalize_weight(particles)
pw = []
for i in range(N_PARTICLE):
pw.append(particles[i].w)
pw = np.array(pw)
n_eff = 1.0 / (pw @ pw.T) # Effective particle number
# print(n_eff)
if n_eff < NTH: # resampling
w_cum = np.cumsum(pw)
base = np.cumsum(pw * 0.0 + 1 / N_PARTICLE) - 1 / N_PARTICLE
resample_id = base + np.random.rand(base.shape[0]) / N_PARTICLE
inds = []
ind = 0
for ip in range(N_PARTICLE):
while (ind < w_cum.shape[0] - 1) \
and (resample_id[ip] > w_cum[ind]):
ind += 1
inds.append(ind)
tmp_particles = particles[:]
for i in range(len(inds)):
particles[i].x = tmp_particles[inds[i]].x
particles[i].y = tmp_particles[inds[i]].y
particles[i].yaw = tmp_particles[inds[i]].yaw
particles[i].lm = tmp_particles[inds[i]].lm[:, :]
particles[i].lmP = tmp_particles[inds[i]].lmP[:, :]
particles[i].w = 1.0 / N_PARTICLE
return particles
| 1,424 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
calc_input
|
(time)
|
return u
| 264 | 274 |
def calc_input(time):
if time <= 3.0: # wait at first
v = 0.0
yaw_rate = 0.0
else:
v = 1.0 # [m/s]
yaw_rate = 0.1 # [rad/s]
u = np.array([v, yaw_rate]).reshape(2, 1)
return u
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L264-L274
| 2 |
[
0,
1,
2,
3,
5,
6,
7,
8,
9,
10
] | 90.909091 |
[] | 0 | false | 96.330275 | 11 | 2 | 100 | 0 |
def calc_input(time):
if time <= 3.0: # wait at first
v = 0.0
yaw_rate = 0.0
else:
v = 1.0 # [m/s]
yaw_rate = 0.1 # [rad/s]
u = np.array([v, yaw_rate]).reshape(2, 1)
return u
| 1,425 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
observation
|
(xTrue, xd, u, rfid)
|
return xTrue, z, xd, ud
| 277 | 304 |
def observation(xTrue, xd, u, rfid):
# calc true state
xTrue = motion_model(xTrue, u)
# add noise to range observation
z = np.zeros((3, 0))
for i in range(len(rfid[:, 0])):
dx = rfid[i, 0] - xTrue[0, 0]
dy = rfid[i, 1] - xTrue[1, 0]
d = math.hypot(dx, dy)
angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0])
if d <= MAX_RANGE:
dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise
angle_with_noize = angle + np.random.randn() * Q_sim[
1, 1] ** 0.5 # add noise
zi = np.array([dn, pi_2_pi(angle_with_noize), i]).reshape(3, 1)
z = np.hstack((z, zi))
# add noise to input
ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5
ud2 = u[1, 0] + np.random.randn() * R_sim[
1, 1] ** 0.5 + OFFSET_YAW_RATE_NOISE
ud = np.array([ud1, ud2]).reshape(2, 1)
xd = motion_model(xd, ud)
return xTrue, z, xd, ud
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L277-L304
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
16,
17,
18,
19,
20,
21,
23,
24,
25,
26,
27
] | 92.857143 |
[] | 0 | false | 96.330275 | 28 | 3 | 100 | 0 |
def observation(xTrue, xd, u, rfid):
# calc true state
xTrue = motion_model(xTrue, u)
# add noise to range observation
z = np.zeros((3, 0))
for i in range(len(rfid[:, 0])):
dx = rfid[i, 0] - xTrue[0, 0]
dy = rfid[i, 1] - xTrue[1, 0]
d = math.hypot(dx, dy)
angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0])
if d <= MAX_RANGE:
dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise
angle_with_noize = angle + np.random.randn() * Q_sim[
1, 1] ** 0.5 # add noise
zi = np.array([dn, pi_2_pi(angle_with_noize), i]).reshape(3, 1)
z = np.hstack((z, zi))
# add noise to input
ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5
ud2 = u[1, 0] + np.random.randn() * R_sim[
1, 1] ** 0.5 + OFFSET_YAW_RATE_NOISE
ud = np.array([ud1, ud2]).reshape(2, 1)
xd = motion_model(xd, ud)
return xTrue, z, xd, ud
| 1,426 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
motion_model
|
(x, u)
|
return x
| 307 | 320 |
def motion_model(x, u):
F = np.array([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])
B = np.array([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])
x = F @ x + B @ u
x[2, 0] = pi_2_pi(x[2, 0])
return x
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L307-L320
| 2 |
[
0,
1,
4,
5,
8,
9,
10,
11,
12,
13
] | 71.428571 |
[] | 0 | false | 96.330275 | 14 | 1 | 100 | 0 |
def motion_model(x, u):
F = np.array([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])
B = np.array([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])
x = F @ x + B @ u
x[2, 0] = pi_2_pi(x[2, 0])
return x
| 1,427 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
pi_2_pi
|
(angle)
|
return (angle + math.pi) % (2 * math.pi) - math.pi
| 323 | 324 |
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L323-L324
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 96.330275 | 2 | 1 | 100 | 0 |
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
| 1,428 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
main
|
()
| 327 | 391 |
def main():
print(__file__ + " start!!")
time = 0.0
# RFID positions [x, y]
RFID = np.array([[10.0, -2.0],
[15.0, 10.0],
[15.0, 15.0],
[10.0, 20.0],
[3.0, 15.0],
[-5.0, 20.0],
[-5.0, 5.0],
[-10.0, 15.0]
])
n_landmark = RFID.shape[0]
# State Vector [x y yaw v]'
xEst = np.zeros((STATE_SIZE, 1)) # SLAM estimation
xTrue = np.zeros((STATE_SIZE, 1)) # True state
xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning
# history
hxEst = xEst
hxTrue = xTrue
hxDR = xTrue
particles = [Particle(n_landmark) for _ in range(N_PARTICLE)]
while SIM_TIME >= time:
time += DT
u = calc_input(time)
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
particles = fast_slam1(particles, ud, z)
xEst = calc_final_state(particles)
x_state = xEst[0: STATE_SIZE]
# store data history
hxEst = np.hstack((hxEst, x_state))
hxDR = np.hstack((hxDR, xDR))
hxTrue = np.hstack((hxTrue, xTrue))
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event', lambda event:
[exit(0) if event.key == 'escape' else None])
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
for i in range(N_PARTICLE):
plt.plot(particles[i].x, particles[i].y, ".r")
plt.plot(particles[i].lm[:, 0], particles[i].lm[:, 1], "xb")
plt.plot(hxTrue[0, :], hxTrue[1, :], "-b")
plt.plot(hxDR[0, :], hxDR[1, :], "-k")
plt.plot(hxEst[0, :], hxEst[1, :], "-r")
plt.plot(xEst[0], xEst[1], "xk")
plt.axis("equal")
plt.grid(True)
plt.pause(0.001)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L327-L391
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45
] | 74.509804 |
[] | 0 | false | 96.330275 | 65 | 5 | 100 | 0 |
def main():
print(__file__ + " start!!")
time = 0.0
# RFID positions [x, y]
RFID = np.array([[10.0, -2.0],
[15.0, 10.0],
[15.0, 15.0],
[10.0, 20.0],
[3.0, 15.0],
[-5.0, 20.0],
[-5.0, 5.0],
[-10.0, 15.0]
])
n_landmark = RFID.shape[0]
# State Vector [x y yaw v]'
xEst = np.zeros((STATE_SIZE, 1)) # SLAM estimation
xTrue = np.zeros((STATE_SIZE, 1)) # True state
xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning
# history
hxEst = xEst
hxTrue = xTrue
hxDR = xTrue
particles = [Particle(n_landmark) for _ in range(N_PARTICLE)]
while SIM_TIME >= time:
time += DT
u = calc_input(time)
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
particles = fast_slam1(particles, ud, z)
xEst = calc_final_state(particles)
x_state = xEst[0: STATE_SIZE]
# store data history
hxEst = np.hstack((hxEst, x_state))
hxDR = np.hstack((hxDR, xDR))
hxTrue = np.hstack((hxTrue, xTrue))
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event', lambda event:
[exit(0) if event.key == 'escape' else None])
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
for i in range(N_PARTICLE):
plt.plot(particles[i].x, particles[i].y, ".r")
plt.plot(particles[i].lm[:, 0], particles[i].lm[:, 1], "xb")
plt.plot(hxTrue[0, :], hxTrue[1, :], "-b")
plt.plot(hxDR[0, :], hxDR[1, :], "-k")
plt.plot(hxEst[0, :], hxEst[1, :], "-r")
plt.plot(xEst[0], xEst[1], "xk")
plt.axis("equal")
plt.grid(True)
plt.pause(0.001)
| 1,429 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
SLAM/FastSLAM1/fast_slam1.py
|
Particle.__init__
|
(self, n_landmark)
| 37 | 45 |
def __init__(self, n_landmark):
self.w = 1.0 / N_PARTICLE
self.x = 0.0
self.y = 0.0
self.yaw = 0.0
# landmark x-y positions
self.lm = np.zeros((n_landmark, LM_SIZE))
# landmark position covariance
self.lmP = np.zeros((n_landmark * LM_SIZE, LM_SIZE))
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/SLAM/FastSLAM1/fast_slam1.py#L37-L45
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8
] | 100 |
[] | 0 | true | 96.330275 | 9 | 1 | 100 | 0 |
def __init__(self, n_landmark):
self.w = 1.0 / N_PARTICLE
self.x = 0.0
self.y = 0.0
self.yaw = 0.0
# landmark x-y positions
self.lm = np.zeros((n_landmark, LM_SIZE))
# landmark position covariance
self.lmP = np.zeros((n_landmark * LM_SIZE, LM_SIZE))
| 1,430 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
ArmNavigation/n_joint_arm_to_point_control/n_joint_arm_to_point_control.py
|
main
|
()
|
Creates an arm using the NLinkArm class and uses its inverse kinematics
to move it to the desired position.
|
Creates an arm using the NLinkArm class and uses its inverse kinematics
to move it to the desired position.
| 28 | 64 |
def main(): # pragma: no cover
"""
Creates an arm using the NLinkArm class and uses its inverse kinematics
to move it to the desired position.
"""
link_lengths = [1] * N_LINKS
joint_angles = np.array([0] * N_LINKS)
goal_pos = [N_LINKS, 0]
arm = NLinkArm(link_lengths, joint_angles, goal_pos, show_animation)
state = WAIT_FOR_NEW_GOAL
solution_found = False
while True:
old_goal = np.array(goal_pos)
goal_pos = np.array(arm.goal)
end_effector = arm.end_effector
errors, distance = distance_to_goal(end_effector, goal_pos)
# State machine to allow changing of goal before current goal has been reached
if state is WAIT_FOR_NEW_GOAL:
if distance > 0.1 and not solution_found:
joint_goal_angles, solution_found = inverse_kinematics(
link_lengths, joint_angles, goal_pos)
if not solution_found:
print("Solution could not be found.")
state = WAIT_FOR_NEW_GOAL
arm.goal = end_effector
elif solution_found:
state = MOVING_TO_GOAL
elif state is MOVING_TO_GOAL:
if distance > 0.1 and all(old_goal == goal_pos):
joint_angles = joint_angles + Kp * \
ang_diff(joint_goal_angles, joint_angles) * dt
else:
state = WAIT_FOR_NEW_GOAL
solution_found = False
arm.update_joints(joint_angles)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/ArmNavigation/n_joint_arm_to_point_control/n_joint_arm_to_point_control.py#L28-L64
| 2 |
[] | 0 |
[] | 0 | false | 93.82716 | 37 | 10 | 100 | 2 |
def main(): # pragma: no cover
link_lengths = [1] * N_LINKS
joint_angles = np.array([0] * N_LINKS)
goal_pos = [N_LINKS, 0]
arm = NLinkArm(link_lengths, joint_angles, goal_pos, show_animation)
state = WAIT_FOR_NEW_GOAL
solution_found = False
while True:
old_goal = np.array(goal_pos)
goal_pos = np.array(arm.goal)
end_effector = arm.end_effector
errors, distance = distance_to_goal(end_effector, goal_pos)
# State machine to allow changing of goal before current goal has been reached
if state is WAIT_FOR_NEW_GOAL:
if distance > 0.1 and not solution_found:
joint_goal_angles, solution_found = inverse_kinematics(
link_lengths, joint_angles, goal_pos)
if not solution_found:
print("Solution could not be found.")
state = WAIT_FOR_NEW_GOAL
arm.goal = end_effector
elif solution_found:
state = MOVING_TO_GOAL
elif state is MOVING_TO_GOAL:
if distance > 0.1 and all(old_goal == goal_pos):
joint_angles = joint_angles + Kp * \
ang_diff(joint_goal_angles, joint_angles) * dt
else:
state = WAIT_FOR_NEW_GOAL
solution_found = False
arm.update_joints(joint_angles)
| 1,453 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
ArmNavigation/n_joint_arm_to_point_control/n_joint_arm_to_point_control.py
|
inverse_kinematics
|
(link_lengths, joint_angles, goal_pos)
|
return joint_angles, False
|
Calculates the inverse kinematics using the Jacobian inverse method.
|
Calculates the inverse kinematics using the Jacobian inverse method.
| 67 | 79 |
def inverse_kinematics(link_lengths, joint_angles, goal_pos):
"""
Calculates the inverse kinematics using the Jacobian inverse method.
"""
for iteration in range(N_ITERATIONS):
current_pos = forward_kinematics(link_lengths, joint_angles)
errors, distance = distance_to_goal(current_pos, goal_pos)
if distance < 0.1:
print("Solution found in %d iterations." % iteration)
return joint_angles, True
J = jacobian_inverse(link_lengths, joint_angles)
joint_angles = joint_angles + np.matmul(J, errors)
return joint_angles, False
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/ArmNavigation/n_joint_arm_to_point_control/n_joint_arm_to_point_control.py#L67-L79
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11
] | 92.307692 |
[
12
] | 7.692308 | false | 93.82716 | 13 | 3 | 92.307692 | 1 |
def inverse_kinematics(link_lengths, joint_angles, goal_pos):
for iteration in range(N_ITERATIONS):
current_pos = forward_kinematics(link_lengths, joint_angles)
errors, distance = distance_to_goal(current_pos, goal_pos)
if distance < 0.1:
print("Solution found in %d iterations." % iteration)
return joint_angles, True
J = jacobian_inverse(link_lengths, joint_angles)
joint_angles = joint_angles + np.matmul(J, errors)
return joint_angles, False
| 1,454 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
ArmNavigation/n_joint_arm_to_point_control/n_joint_arm_to_point_control.py
|
get_random_goal
|
()
|
return [SAREA * random() - SAREA / 2.0,
SAREA * random() - SAREA / 2.0]
| 82 | 86 |
def get_random_goal():
from random import random
SAREA = 15.0
return [SAREA * random() - SAREA / 2.0,
SAREA * random() - SAREA / 2.0]
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/ArmNavigation/n_joint_arm_to_point_control/n_joint_arm_to_point_control.py#L82-L86
| 2 |
[
0,
1,
2,
3
] | 80 |
[] | 0 | false | 93.82716 | 5 | 1 | 100 | 0 |
def get_random_goal():
from random import random
SAREA = 15.0
return [SAREA * random() - SAREA / 2.0,
SAREA * random() - SAREA / 2.0]
| 1,455 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
ArmNavigation/n_joint_arm_to_point_control/n_joint_arm_to_point_control.py
|
animation
|
()
| 89 | 129 |
def animation():
link_lengths = [1] * N_LINKS
joint_angles = np.array([0] * N_LINKS)
goal_pos = get_random_goal()
arm = NLinkArm(link_lengths, joint_angles, goal_pos, show_animation)
state = WAIT_FOR_NEW_GOAL
solution_found = False
i_goal = 0
while True:
old_goal = np.array(goal_pos)
goal_pos = np.array(arm.goal)
end_effector = arm.end_effector
errors, distance = distance_to_goal(end_effector, goal_pos)
# State machine to allow changing of goal before current goal has been reached
if state is WAIT_FOR_NEW_GOAL:
if distance > 0.1 and not solution_found:
joint_goal_angles, solution_found = inverse_kinematics(
link_lengths, joint_angles, goal_pos)
if not solution_found:
print("Solution could not be found.")
state = WAIT_FOR_NEW_GOAL
arm.goal = get_random_goal()
elif solution_found:
state = MOVING_TO_GOAL
elif state is MOVING_TO_GOAL:
if distance > 0.1 and all(old_goal == goal_pos):
joint_angles = joint_angles + Kp * \
ang_diff(joint_goal_angles, joint_angles) * dt
else:
state = WAIT_FOR_NEW_GOAL
solution_found = False
arm.goal = get_random_goal()
i_goal += 1
if i_goal >= 5:
break
arm.update_joints(joint_angles)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/ArmNavigation/n_joint_arm_to_point_control/n_joint_arm_to_point_control.py#L89-L129
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
21,
25,
26,
27,
28,
29,
32,
33,
34,
35,
36,
37,
38,
39,
40
] | 85.365854 |
[
22,
23,
24
] | 7.317073 | false | 93.82716 | 41 | 11 | 92.682927 | 0 |
def animation():
link_lengths = [1] * N_LINKS
joint_angles = np.array([0] * N_LINKS)
goal_pos = get_random_goal()
arm = NLinkArm(link_lengths, joint_angles, goal_pos, show_animation)
state = WAIT_FOR_NEW_GOAL
solution_found = False
i_goal = 0
while True:
old_goal = np.array(goal_pos)
goal_pos = np.array(arm.goal)
end_effector = arm.end_effector
errors, distance = distance_to_goal(end_effector, goal_pos)
# State machine to allow changing of goal before current goal has been reached
if state is WAIT_FOR_NEW_GOAL:
if distance > 0.1 and not solution_found:
joint_goal_angles, solution_found = inverse_kinematics(
link_lengths, joint_angles, goal_pos)
if not solution_found:
print("Solution could not be found.")
state = WAIT_FOR_NEW_GOAL
arm.goal = get_random_goal()
elif solution_found:
state = MOVING_TO_GOAL
elif state is MOVING_TO_GOAL:
if distance > 0.1 and all(old_goal == goal_pos):
joint_angles = joint_angles + Kp * \
ang_diff(joint_goal_angles, joint_angles) * dt
else:
state = WAIT_FOR_NEW_GOAL
solution_found = False
arm.goal = get_random_goal()
i_goal += 1
if i_goal >= 5:
break
arm.update_joints(joint_angles)
| 1,456 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
ArmNavigation/n_joint_arm_to_point_control/n_joint_arm_to_point_control.py
|
forward_kinematics
|
(link_lengths, joint_angles)
|
return np.array([x, y]).T
| 132 | 137 |
def forward_kinematics(link_lengths, joint_angles):
x = y = 0
for i in range(1, N_LINKS + 1):
x += link_lengths[i - 1] * np.cos(np.sum(joint_angles[:i]))
y += link_lengths[i - 1] * np.sin(np.sum(joint_angles[:i]))
return np.array([x, y]).T
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/ArmNavigation/n_joint_arm_to_point_control/n_joint_arm_to_point_control.py#L132-L137
| 2 |
[
0,
1,
2,
3,
4,
5
] | 100 |
[] | 0 | true | 93.82716 | 6 | 2 | 100 | 0 |
def forward_kinematics(link_lengths, joint_angles):
x = y = 0
for i in range(1, N_LINKS + 1):
x += link_lengths[i - 1] * np.cos(np.sum(joint_angles[:i]))
y += link_lengths[i - 1] * np.sin(np.sum(joint_angles[:i]))
return np.array([x, y]).T
| 1,457 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.