nwo
stringlengths
10
28
sha
stringlengths
40
40
path
stringlengths
11
97
identifier
stringlengths
1
64
parameters
stringlengths
2
2.24k
return_statement
stringlengths
0
2.17k
docstring
stringlengths
0
5.45k
docstring_summary
stringlengths
0
3.83k
func_begin
int64
1
13.4k
func_end
int64
2
13.4k
function
stringlengths
28
56.4k
url
stringlengths
106
209
project
int64
1
48
executed_lines
list
executed_lines_pc
float64
0
153
missing_lines
list
missing_lines_pc
float64
0
100
covered
bool
2 classes
filecoverage
float64
2.53
100
function_lines
int64
2
1.46k
mccabe
int64
1
253
coverage
float64
0
100
docstring_lines
int64
0
112
function_nodoc
stringlengths
9
56.4k
id
int64
0
29.8k
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/hybrid_a_star.py
calc_rs_path_cost
(reed_shepp_path)
return cost
208
240
def calc_rs_path_cost(reed_shepp_path): cost = 0.0 for length in reed_shepp_path.lengths: if length >= 0: # forward cost += length else: # back cost += abs(length) * BACK_COST # switch back penalty for i in range(len(reed_shepp_path.lengths) - 1): # switch back if reed_shepp_path.lengths[i] * reed_shepp_path.lengths[i + 1] < 0.0: cost += SB_COST # steer penalty for course_type in reed_shepp_path.ctypes: if course_type != "S": # curve cost += STEER_COST * abs(MAX_STEER) # ==steer change penalty # calc steer profile n_ctypes = len(reed_shepp_path.ctypes) u_list = [0.0] * n_ctypes for i in range(n_ctypes): if reed_shepp_path.ctypes[i] == "R": u_list[i] = - MAX_STEER elif reed_shepp_path.ctypes[i] == "L": u_list[i] = MAX_STEER for i in range(len(reed_shepp_path.ctypes) - 1): cost += STEER_CHANGE_COST * abs(u_list[i + 1] - u_list[i]) return cost
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/hybrid_a_star.py#L208-L240
2
[ 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32 ]
93.939394
[ 27 ]
3.030303
false
90.37037
33
11
96.969697
0
def calc_rs_path_cost(reed_shepp_path): cost = 0.0 for length in reed_shepp_path.lengths: if length >= 0: # forward cost += length else: # back cost += abs(length) * BACK_COST # switch back penalty for i in range(len(reed_shepp_path.lengths) - 1): # switch back if reed_shepp_path.lengths[i] * reed_shepp_path.lengths[i + 1] < 0.0: cost += SB_COST # steer penalty for course_type in reed_shepp_path.ctypes: if course_type != "S": # curve cost += STEER_COST * abs(MAX_STEER) # ==steer change penalty # calc steer profile n_ctypes = len(reed_shepp_path.ctypes) u_list = [0.0] * n_ctypes for i in range(n_ctypes): if reed_shepp_path.ctypes[i] == "R": u_list[i] = - MAX_STEER elif reed_shepp_path.ctypes[i] == "L": u_list[i] = MAX_STEER for i in range(len(reed_shepp_path.ctypes) - 1): cost += STEER_CHANGE_COST * abs(u_list[i + 1] - u_list[i]) return cost
1,201
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/hybrid_a_star.py
hybrid_a_star_planning
(start, goal, ox, oy, xy_resolution, yaw_resolution)
return path
start: start node goal: goal node ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] xy_resolution: grid resolution [m] yaw_resolution: yaw angle resolution [rad]
start: start node goal: goal node ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] xy_resolution: grid resolution [m] yaw_resolution: yaw angle resolution [rad]
243
322
def hybrid_a_star_planning(start, goal, ox, oy, xy_resolution, yaw_resolution): """ start: start node goal: goal node ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] xy_resolution: grid resolution [m] yaw_resolution: yaw angle resolution [rad] """ start[2], goal[2] = rs.pi_2_pi(start[2]), rs.pi_2_pi(goal[2]) tox, toy = ox[:], oy[:] obstacle_kd_tree = cKDTree(np.vstack((tox, toy)).T) config = Config(tox, toy, xy_resolution, yaw_resolution) start_node = Node(round(start[0] / xy_resolution), round(start[1] / xy_resolution), round(start[2] / yaw_resolution), True, [start[0]], [start[1]], [start[2]], [True], cost=0) goal_node = Node(round(goal[0] / xy_resolution), round(goal[1] / xy_resolution), round(goal[2] / yaw_resolution), True, [goal[0]], [goal[1]], [goal[2]], [True]) openList, closedList = {}, {} h_dp = calc_distance_heuristic( goal_node.x_list[-1], goal_node.y_list[-1], ox, oy, xy_resolution, BUBBLE_R) pq = [] openList[calc_index(start_node, config)] = start_node heapq.heappush(pq, (calc_cost(start_node, h_dp, config), calc_index(start_node, config))) final_path = None while True: if not openList: print("Error: Cannot find path, No open set") return [], [], [] cost, c_id = heapq.heappop(pq) if c_id in openList: current = openList.pop(c_id) closedList[c_id] = current else: continue if show_animation: # pragma: no cover plt.plot(current.x_list[-1], current.y_list[-1], "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if len(closedList.keys()) % 10 == 0: plt.pause(0.001) is_updated, final_path = update_node_with_analytic_expansion( current, goal_node, config, ox, oy, obstacle_kd_tree) if is_updated: print("path found") break for neighbor in get_neighbors(current, config, ox, oy, obstacle_kd_tree): neighbor_index = calc_index(neighbor, config) if neighbor_index in closedList: continue if neighbor not in openList \ or openList[neighbor_index].cost > neighbor.cost: heapq.heappush( pq, (calc_cost(neighbor, h_dp, config), neighbor_index)) openList[neighbor_index] = neighbor path = get_final_path(closedList, final_path) return path
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/hybrid_a_star.py#L243-L322
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79 ]
104
[ 40, 41 ]
2.666667
false
90.37037
80
11
97.333333
6
def hybrid_a_star_planning(start, goal, ox, oy, xy_resolution, yaw_resolution): start[2], goal[2] = rs.pi_2_pi(start[2]), rs.pi_2_pi(goal[2]) tox, toy = ox[:], oy[:] obstacle_kd_tree = cKDTree(np.vstack((tox, toy)).T) config = Config(tox, toy, xy_resolution, yaw_resolution) start_node = Node(round(start[0] / xy_resolution), round(start[1] / xy_resolution), round(start[2] / yaw_resolution), True, [start[0]], [start[1]], [start[2]], [True], cost=0) goal_node = Node(round(goal[0] / xy_resolution), round(goal[1] / xy_resolution), round(goal[2] / yaw_resolution), True, [goal[0]], [goal[1]], [goal[2]], [True]) openList, closedList = {}, {} h_dp = calc_distance_heuristic( goal_node.x_list[-1], goal_node.y_list[-1], ox, oy, xy_resolution, BUBBLE_R) pq = [] openList[calc_index(start_node, config)] = start_node heapq.heappush(pq, (calc_cost(start_node, h_dp, config), calc_index(start_node, config))) final_path = None while True: if not openList: print("Error: Cannot find path, No open set") return [], [], [] cost, c_id = heapq.heappop(pq) if c_id in openList: current = openList.pop(c_id) closedList[c_id] = current else: continue if show_animation: # pragma: no cover plt.plot(current.x_list[-1], current.y_list[-1], "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if len(closedList.keys()) % 10 == 0: plt.pause(0.001) is_updated, final_path = update_node_with_analytic_expansion( current, goal_node, config, ox, oy, obstacle_kd_tree) if is_updated: print("path found") break for neighbor in get_neighbors(current, config, ox, oy, obstacle_kd_tree): neighbor_index = calc_index(neighbor, config) if neighbor_index in closedList: continue if neighbor not in openList \ or openList[neighbor_index].cost > neighbor.cost: heapq.heappush( pq, (calc_cost(neighbor, h_dp, config), neighbor_index)) openList[neighbor_index] = neighbor path = get_final_path(closedList, final_path) return path
1,202
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/hybrid_a_star.py
calc_cost
(n, h_dp, c)
return n.cost + H_COST * h_dp[ind].cost
325
329
def calc_cost(n, h_dp, c): ind = (n.y_index - c.min_y) * c.x_w + (n.x_index - c.min_x) if ind not in h_dp: return n.cost + 999999999 # collision cost return n.cost + H_COST * h_dp[ind].cost
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/hybrid_a_star.py#L325-L329
2
[ 0, 1, 2, 4 ]
80
[ 3 ]
20
false
90.37037
5
2
80
0
def calc_cost(n, h_dp, c): ind = (n.y_index - c.min_y) * c.x_w + (n.x_index - c.min_x) if ind not in h_dp: return n.cost + 999999999 # collision cost return n.cost + H_COST * h_dp[ind].cost
1,203
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/hybrid_a_star.py
get_final_path
(closed, goal_node)
return path
332
359
def get_final_path(closed, goal_node): reversed_x, reversed_y, reversed_yaw = \ list(reversed(goal_node.x_list)), list(reversed(goal_node.y_list)), \ list(reversed(goal_node.yaw_list)) direction = list(reversed(goal_node.directions)) nid = goal_node.parent_index final_cost = goal_node.cost while nid: n = closed[nid] reversed_x.extend(list(reversed(n.x_list))) reversed_y.extend(list(reversed(n.y_list))) reversed_yaw.extend(list(reversed(n.yaw_list))) direction.extend(list(reversed(n.directions))) nid = n.parent_index reversed_x = list(reversed(reversed_x)) reversed_y = list(reversed(reversed_y)) reversed_yaw = list(reversed(reversed_yaw)) direction = list(reversed(direction)) # adjust first direction direction[0] = direction[1] path = Path(reversed_x, reversed_y, reversed_yaw, direction, final_cost) return path
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/hybrid_a_star.py#L332-L359
2
[ 0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 ]
92.857143
[]
0
false
90.37037
28
2
100
0
def get_final_path(closed, goal_node): reversed_x, reversed_y, reversed_yaw = \ list(reversed(goal_node.x_list)), list(reversed(goal_node.y_list)), \ list(reversed(goal_node.yaw_list)) direction = list(reversed(goal_node.directions)) nid = goal_node.parent_index final_cost = goal_node.cost while nid: n = closed[nid] reversed_x.extend(list(reversed(n.x_list))) reversed_y.extend(list(reversed(n.y_list))) reversed_yaw.extend(list(reversed(n.yaw_list))) direction.extend(list(reversed(n.directions))) nid = n.parent_index reversed_x = list(reversed(reversed_x)) reversed_y = list(reversed(reversed_y)) reversed_yaw = list(reversed(reversed_yaw)) direction = list(reversed(direction)) # adjust first direction direction[0] = direction[1] path = Path(reversed_x, reversed_y, reversed_yaw, direction, final_cost) return path
1,204
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/hybrid_a_star.py
verify_index
(node, c)
return False
362
367
def verify_index(node, c): x_ind, y_ind = node.x_index, node.y_index if c.min_x <= x_ind <= c.max_x and c.min_y <= y_ind <= c.max_y: return True return False
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/hybrid_a_star.py#L362-L367
2
[ 0, 1, 2, 3, 4 ]
83.333333
[ 5 ]
16.666667
false
90.37037
6
3
83.333333
0
def verify_index(node, c): x_ind, y_ind = node.x_index, node.y_index if c.min_x <= x_ind <= c.max_x and c.min_y <= y_ind <= c.max_y: return True return False
1,205
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/hybrid_a_star.py
calc_index
(node, c)
return ind
370
377
def calc_index(node, c): ind = (node.yaw_index - c.min_yaw) * c.x_w * c.y_w + \ (node.y_index - c.min_y) * c.x_w + (node.x_index - c.min_x) if ind <= 0: print("Error(calc_index):", ind) return ind
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/hybrid_a_star.py#L370-L377
2
[ 0, 1, 3, 4, 6, 7 ]
75
[ 5 ]
12.5
false
90.37037
8
2
87.5
0
def calc_index(node, c): ind = (node.yaw_index - c.min_yaw) * c.x_w * c.y_w + \ (node.y_index - c.min_y) * c.x_w + (node.x_index - c.min_x) if ind <= 0: print("Error(calc_index):", ind) return ind
1,206
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/hybrid_a_star.py
main
()
380
436
def main(): print("Start Hybrid A* planning") ox, oy = [], [] for i in range(60): ox.append(i) oy.append(0.0) for i in range(60): ox.append(60.0) oy.append(i) for i in range(61): ox.append(i) oy.append(60.0) for i in range(61): ox.append(0.0) oy.append(i) for i in range(40): ox.append(20.0) oy.append(i) for i in range(40): ox.append(40.0) oy.append(60.0 - i) # Set Initial parameters start = [10.0, 10.0, np.deg2rad(90.0)] goal = [50.0, 50.0, np.deg2rad(-90.0)] print("start : ", start) print("goal : ", goal) if show_animation: plt.plot(ox, oy, ".k") rs.plot_arrow(start[0], start[1], start[2], fc='g') rs.plot_arrow(goal[0], goal[1], goal[2]) plt.grid(True) plt.axis("equal") path = hybrid_a_star_planning( start, goal, ox, oy, XY_GRID_RESOLUTION, YAW_GRID_RESOLUTION) x = path.x_list y = path.y_list yaw = path.yaw_list if show_animation: for i_x, i_y, i_yaw in zip(x, y, yaw): plt.cla() plt.plot(ox, oy, ".k") plt.plot(x, y, "-r", label="Hybrid A* path") plt.grid(True) plt.axis("equal") plot_car(i_x, i_y, i_yaw) plt.pause(0.0001) print(__file__ + " done!!")
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/hybrid_a_star.py#L380-L436
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 38, 39, 41, 42, 43, 44, 45, 46, 55, 56 ]
73.684211
[ 32, 33, 34, 36, 37, 47, 48, 49, 50, 51, 52, 53, 54 ]
22.807018
false
90.37037
57
10
77.192982
0
def main(): print("Start Hybrid A* planning") ox, oy = [], [] for i in range(60): ox.append(i) oy.append(0.0) for i in range(60): ox.append(60.0) oy.append(i) for i in range(61): ox.append(i) oy.append(60.0) for i in range(61): ox.append(0.0) oy.append(i) for i in range(40): ox.append(20.0) oy.append(i) for i in range(40): ox.append(40.0) oy.append(60.0 - i) # Set Initial parameters start = [10.0, 10.0, np.deg2rad(90.0)] goal = [50.0, 50.0, np.deg2rad(-90.0)] print("start : ", start) print("goal : ", goal) if show_animation: plt.plot(ox, oy, ".k") rs.plot_arrow(start[0], start[1], start[2], fc='g') rs.plot_arrow(goal[0], goal[1], goal[2]) plt.grid(True) plt.axis("equal") path = hybrid_a_star_planning( start, goal, ox, oy, XY_GRID_RESOLUTION, YAW_GRID_RESOLUTION) x = path.x_list y = path.y_list yaw = path.yaw_list if show_animation: for i_x, i_y, i_yaw in zip(x, y, yaw): plt.cla() plt.plot(ox, oy, ".k") plt.plot(x, y, "-r", label="Hybrid A* path") plt.grid(True) plt.axis("equal") plot_car(i_x, i_y, i_yaw) plt.pause(0.0001) print(__file__ + " done!!")
1,207
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/hybrid_a_star.py
Node.__init__
(self, x_ind, y_ind, yaw_ind, direction, x_list, y_list, yaw_list, directions, steer=0.0, parent_index=None, cost=None)
38
51
def __init__(self, x_ind, y_ind, yaw_ind, direction, x_list, y_list, yaw_list, directions, steer=0.0, parent_index=None, cost=None): self.x_index = x_ind self.y_index = y_ind self.yaw_index = yaw_ind self.direction = direction self.x_list = x_list self.y_list = y_list self.yaw_list = yaw_list self.directions = directions self.steer = steer self.parent_index = parent_index self.cost = cost
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/hybrid_a_star.py#L38-L51
2
[ 0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ]
85.714286
[]
0
false
90.37037
14
1
100
0
def __init__(self, x_ind, y_ind, yaw_ind, direction, x_list, y_list, yaw_list, directions, steer=0.0, parent_index=None, cost=None): self.x_index = x_ind self.y_index = y_ind self.yaw_index = yaw_ind self.direction = direction self.x_list = x_list self.y_list = y_list self.yaw_list = yaw_list self.directions = directions self.steer = steer self.parent_index = parent_index self.cost = cost
1,208
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/hybrid_a_star.py
Path.__init__
(self, x_list, y_list, yaw_list, direction_list, cost)
56
61
def __init__(self, x_list, y_list, yaw_list, direction_list, cost): self.x_list = x_list self.y_list = y_list self.yaw_list = yaw_list self.direction_list = direction_list self.cost = cost
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/hybrid_a_star.py#L56-L61
2
[ 0, 1, 2, 3, 4, 5 ]
100
[]
0
true
90.37037
6
1
100
0
def __init__(self, x_list, y_list, yaw_list, direction_list, cost): self.x_list = x_list self.y_list = y_list self.yaw_list = yaw_list self.direction_list = direction_list self.cost = cost
1,209
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/hybrid_a_star.py
Config.__init__
(self, ox, oy, xy_resolution, yaw_resolution)
66
87
def __init__(self, ox, oy, xy_resolution, yaw_resolution): min_x_m = min(ox) min_y_m = min(oy) max_x_m = max(ox) max_y_m = max(oy) ox.append(min_x_m) oy.append(min_y_m) ox.append(max_x_m) oy.append(max_y_m) self.min_x = round(min_x_m / xy_resolution) self.min_y = round(min_y_m / xy_resolution) self.max_x = round(max_x_m / xy_resolution) self.max_y = round(max_y_m / xy_resolution) self.x_w = round(self.max_x - self.min_x) self.y_w = round(self.max_y - self.min_y) self.min_yaw = round(- math.pi / yaw_resolution) - 1 self.max_yaw = round(math.pi / yaw_resolution) self.yaw_w = round(self.max_yaw - self.min_yaw)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/hybrid_a_star.py#L66-L87
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 ]
100
[]
0
true
90.37037
22
1
100
0
def __init__(self, ox, oy, xy_resolution, yaw_resolution): min_x_m = min(ox) min_y_m = min(oy) max_x_m = max(ox) max_y_m = max(oy) ox.append(min_x_m) oy.append(min_y_m) ox.append(max_x_m) oy.append(max_y_m) self.min_x = round(min_x_m / xy_resolution) self.min_y = round(min_y_m / xy_resolution) self.max_x = round(max_x_m / xy_resolution) self.max_y = round(max_y_m / xy_resolution) self.x_w = round(self.max_x - self.min_x) self.y_w = round(self.max_y - self.min_y) self.min_yaw = round(- math.pi / yaw_resolution) - 1 self.max_yaw = round(math.pi / yaw_resolution) self.yaw_w = round(self.max_yaw - self.min_yaw)
1,210
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/car.py
check_car_collision
(x_list, y_list, yaw_list, ox, oy, kd_tree)
return True
35
49
def check_car_collision(x_list, y_list, yaw_list, ox, oy, kd_tree): for i_x, i_y, i_yaw in zip(x_list, y_list, yaw_list): cx = i_x + BUBBLE_DIST * cos(i_yaw) cy = i_y + BUBBLE_DIST * sin(i_yaw) ids = kd_tree.query_ball_point([cx, cy], BUBBLE_R) if not ids: continue if not rectangle_check(i_x, i_y, i_yaw, [ox[i] for i in ids], [oy[i] for i in ids]): return False # collision return True
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/car.py#L35-L49
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14 ]
93.333333
[]
0
false
70.588235
15
6
100
0
def check_car_collision(x_list, y_list, yaw_list, ox, oy, kd_tree): for i_x, i_y, i_yaw in zip(x_list, y_list, yaw_list): cx = i_x + BUBBLE_DIST * cos(i_yaw) cy = i_y + BUBBLE_DIST * sin(i_yaw) ids = kd_tree.query_ball_point([cx, cy], BUBBLE_R) if not ids: continue if not rectangle_check(i_x, i_y, i_yaw, [ox[i] for i in ids], [oy[i] for i in ids]): return False # collision return True
1,211
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/car.py
rectangle_check
(x, y, yaw, ox, oy)
return True
52
64
def rectangle_check(x, y, yaw, ox, oy): # transform obstacles to base link frame rot = rot_mat_2d(yaw) for iox, ioy in zip(ox, oy): tx = iox - x ty = ioy - y converted_xy = np.stack([tx, ty]).T @ rot rx, ry = converted_xy[0], converted_xy[1] if not (rx > LF or rx < -LB or ry > W / 2.0 or ry < -W / 2.0): return False # no collision return True
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/car.py#L52-L64
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ]
100
[]
0
true
70.588235
13
6
100
0
def rectangle_check(x, y, yaw, ox, oy): # transform obstacles to base link frame rot = rot_mat_2d(yaw) for iox, ioy in zip(ox, oy): tx = iox - x ty = ioy - y converted_xy = np.stack([tx, ty]).T @ rot rx, ry = converted_xy[0], converted_xy[1] if not (rx > LF or rx < -LB or ry > W / 2.0 or ry < -W / 2.0): return False # no collision return True
1,212
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/car.py
plot_arrow
(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k")
Plot arrow.
Plot arrow.
67
74
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): """Plot arrow.""" if not isinstance(x, float): for (i_x, i_y, i_yaw) in zip(x, y, yaw): plot_arrow(i_x, i_y, i_yaw) else: plt.arrow(x, y, length * cos(yaw), length * sin(yaw), fc=fc, ec=ec, head_width=width, head_length=width, alpha=0.4)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/car.py#L67-L74
2
[ 0, 1 ]
25
[ 2, 3, 4, 6 ]
50
false
70.588235
8
3
50
1
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): if not isinstance(x, float): for (i_x, i_y, i_yaw) in zip(x, y, yaw): plot_arrow(i_x, i_y, i_yaw) else: plt.arrow(x, y, length * cos(yaw), length * sin(yaw), fc=fc, ec=ec, head_width=width, head_length=width, alpha=0.4)
1,213
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/car.py
plot_car
(x, y, yaw)
77
90
def plot_car(x, y, yaw): car_color = '-k' c, s = cos(yaw), sin(yaw) rot = rot_mat_2d(-yaw) car_outline_x, car_outline_y = [], [] for rx, ry in zip(VRX, VRY): converted_xy = np.stack([rx, ry]).T @ rot car_outline_x.append(converted_xy[0]+x) car_outline_y.append(converted_xy[1]+y) arrow_x, arrow_y, arrow_yaw = c * 1.5 + x, s * 1.5 + y, yaw plot_arrow(arrow_x, arrow_y, arrow_yaw) plt.plot(car_outline_x, car_outline_y, car_color)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/car.py#L77-L90
2
[ 0 ]
7.142857
[ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13 ]
78.571429
false
70.588235
14
2
21.428571
0
def plot_car(x, y, yaw): car_color = '-k' c, s = cos(yaw), sin(yaw) rot = rot_mat_2d(-yaw) car_outline_x, car_outline_y = [], [] for rx, ry in zip(VRX, VRY): converted_xy = np.stack([rx, ry]).T @ rot car_outline_x.append(converted_xy[0]+x) car_outline_y.append(converted_xy[1]+y) arrow_x, arrow_y, arrow_yaw = c * 1.5 + x, s * 1.5 + y, yaw plot_arrow(arrow_x, arrow_y, arrow_yaw) plt.plot(car_outline_x, car_outline_y, car_color)
1,214
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/car.py
pi_2_pi
(angle)
return (angle + pi) % (2 * pi) - pi
93
94
def pi_2_pi(angle): return (angle + pi) % (2 * pi) - pi
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/car.py#L93-L94
2
[ 0, 1 ]
100
[]
0
true
70.588235
2
1
100
0
def pi_2_pi(angle): return (angle + pi) % (2 * pi) - pi
1,215
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/car.py
move
(x, y, yaw, distance, steer, L=WB)
return x, y, yaw
97
102
def move(x, y, yaw, distance, steer, L=WB): x += distance * cos(yaw) y += distance * sin(yaw) yaw += pi_2_pi(distance * tan(steer) / L) # distance/2 return x, y, yaw
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/car.py#L97-L102
2
[ 0, 1, 2, 3, 4, 5 ]
100
[]
0
true
70.588235
6
1
100
0
def move(x, y, yaw, distance, steer, L=WB): x += distance * cos(yaw) y += distance * sin(yaw) yaw += pi_2_pi(distance * tan(steer) / L) # distance/2 return x, y, yaw
1,216
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/car.py
main
()
105
109
def main(): x, y, yaw = 0., 0., 1. plt.axis('equal') plot_car(x, y, yaw) plt.show()
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/car.py#L105-L109
2
[ 0 ]
20
[ 1, 2, 3, 4 ]
80
false
70.588235
5
1
20
0
def main(): x, y, yaw = 0., 0., 1. plt.axis('equal') plot_car(x, y, yaw) plt.show()
1,217
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/dynamic_programming_heuristic.py
calc_final_path
(goal_node, closed_node_set, resolution)
return rx, ry
32
42
def calc_final_path(goal_node, closed_node_set, resolution): # generate final course rx, ry = [goal_node.x * resolution], [goal_node.y * resolution] parent_index = goal_node.parent_index while parent_index != -1: n = closed_node_set[parent_index] rx.append(n.x * resolution) ry.append(n.y * resolution) parent_index = n.parent_index return rx, ry
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/dynamic_programming_heuristic.py#L32-L42
2
[ 0, 1 ]
18.181818
[ 2, 3, 4, 5, 6, 7, 8, 10 ]
72.727273
false
85.227273
11
2
27.272727
0
def calc_final_path(goal_node, closed_node_set, resolution): # generate final course rx, ry = [goal_node.x * resolution], [goal_node.y * resolution] parent_index = goal_node.parent_index while parent_index != -1: n = closed_node_set[parent_index] rx.append(n.x * resolution) ry.append(n.y * resolution) parent_index = n.parent_index return rx, ry
1,218
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/dynamic_programming_heuristic.py
calc_distance_heuristic
(gx, gy, ox, oy, resolution, rr)
return closed_set
gx: goal x position [m] gx: goal x position [m] ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] resolution: grid resolution [m] rr: robot radius[m]
gx: goal x position [m] gx: goal x position [m] ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] resolution: grid resolution [m] rr: robot radius[m]
45
117
def calc_distance_heuristic(gx, gy, ox, oy, resolution, rr): """ gx: goal x position [m] gx: goal x position [m] ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] resolution: grid resolution [m] rr: robot radius[m] """ goal_node = Node(round(gx / resolution), round(gy / resolution), 0.0, -1) ox = [iox / resolution for iox in ox] oy = [ioy / resolution for ioy in oy] obstacle_map, min_x, min_y, max_x, max_y, x_w, y_w = calc_obstacle_map( ox, oy, resolution, rr) motion = get_motion_model() open_set, closed_set = dict(), dict() open_set[calc_index(goal_node, x_w, min_x, min_y)] = goal_node priority_queue = [(0, calc_index(goal_node, x_w, min_x, min_y))] while True: if not priority_queue: break cost, c_id = heapq.heappop(priority_queue) if c_id in open_set: current = open_set[c_id] closed_set[c_id] = current open_set.pop(c_id) else: continue # show graph if show_animation: # pragma: no cover plt.plot(current.x * resolution, current.y * resolution, "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if len(closed_set.keys()) % 10 == 0: plt.pause(0.001) # Remove the item from the open set # expand search grid based on motion model for i, _ in enumerate(motion): node = Node(current.x + motion[i][0], current.y + motion[i][1], current.cost + motion[i][2], c_id) n_id = calc_index(node, x_w, min_x, min_y) if n_id in closed_set: continue if not verify_node(node, obstacle_map, min_x, min_y, max_x, max_y): continue if n_id not in open_set: open_set[n_id] = node # Discover a new node heapq.heappush( priority_queue, (node.cost, calc_index(node, x_w, min_x, min_y))) else: if open_set[n_id].cost >= node.cost: # This path is the best until now. record it! open_set[n_id] = node heapq.heappush( priority_queue, (node.cost, calc_index(node, x_w, min_x, min_y))) return closed_set
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/dynamic_programming_heuristic.py#L45-L117
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72 ]
107.352941
[]
0
true
85.227273
73
13
100
6
def calc_distance_heuristic(gx, gy, ox, oy, resolution, rr): goal_node = Node(round(gx / resolution), round(gy / resolution), 0.0, -1) ox = [iox / resolution for iox in ox] oy = [ioy / resolution for ioy in oy] obstacle_map, min_x, min_y, max_x, max_y, x_w, y_w = calc_obstacle_map( ox, oy, resolution, rr) motion = get_motion_model() open_set, closed_set = dict(), dict() open_set[calc_index(goal_node, x_w, min_x, min_y)] = goal_node priority_queue = [(0, calc_index(goal_node, x_w, min_x, min_y))] while True: if not priority_queue: break cost, c_id = heapq.heappop(priority_queue) if c_id in open_set: current = open_set[c_id] closed_set[c_id] = current open_set.pop(c_id) else: continue # show graph if show_animation: # pragma: no cover plt.plot(current.x * resolution, current.y * resolution, "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if len(closed_set.keys()) % 10 == 0: plt.pause(0.001) # Remove the item from the open set # expand search grid based on motion model for i, _ in enumerate(motion): node = Node(current.x + motion[i][0], current.y + motion[i][1], current.cost + motion[i][2], c_id) n_id = calc_index(node, x_w, min_x, min_y) if n_id in closed_set: continue if not verify_node(node, obstacle_map, min_x, min_y, max_x, max_y): continue if n_id not in open_set: open_set[n_id] = node # Discover a new node heapq.heappush( priority_queue, (node.cost, calc_index(node, x_w, min_x, min_y))) else: if open_set[n_id].cost >= node.cost: # This path is the best until now. record it! open_set[n_id] = node heapq.heappush( priority_queue, (node.cost, calc_index(node, x_w, min_x, min_y))) return closed_set
1,219
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/dynamic_programming_heuristic.py
verify_node
(node, obstacle_map, min_x, min_y, max_x, max_y)
return True
120
133
def verify_node(node, obstacle_map, min_x, min_y, max_x, max_y): if node.x < min_x: return False elif node.y < min_y: return False elif node.x >= max_x: return False elif node.y >= max_y: return False if obstacle_map[node.x][node.y]: return False return True
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/dynamic_programming_heuristic.py#L120-L133
2
[ 0, 1, 3, 5, 7, 9, 10, 11, 12, 13 ]
71.428571
[ 2, 4, 6, 8 ]
28.571429
false
85.227273
14
6
71.428571
0
def verify_node(node, obstacle_map, min_x, min_y, max_x, max_y): if node.x < min_x: return False elif node.y < min_y: return False elif node.x >= max_x: return False elif node.y >= max_y: return False if obstacle_map[node.x][node.y]: return False return True
1,220
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/dynamic_programming_heuristic.py
calc_obstacle_map
(ox, oy, resolution, vr)
return obstacle_map, min_x, min_y, max_x, max_y, x_width, y_width
136
158
def calc_obstacle_map(ox, oy, resolution, vr): min_x = round(min(ox)) min_y = round(min(oy)) max_x = round(max(ox)) max_y = round(max(oy)) x_width = round(max_x - min_x) y_width = round(max_y - min_y) # obstacle map generation obstacle_map = [[False for _ in range(y_width)] for _ in range(x_width)] for ix in range(x_width): x = ix + min_x for iy in range(y_width): y = iy + min_y # print(x, y) for iox, ioy in zip(ox, oy): d = math.sqrt((iox - x) ** 2 + (ioy - y) ** 2) if d <= vr / resolution: obstacle_map[ix][iy] = True break return obstacle_map, min_x, min_y, max_x, max_y, x_width, y_width
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/dynamic_programming_heuristic.py#L136-L158
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 ]
100
[]
0
true
85.227273
23
7
100
0
def calc_obstacle_map(ox, oy, resolution, vr): min_x = round(min(ox)) min_y = round(min(oy)) max_x = round(max(ox)) max_y = round(max(oy)) x_width = round(max_x - min_x) y_width = round(max_y - min_y) # obstacle map generation obstacle_map = [[False for _ in range(y_width)] for _ in range(x_width)] for ix in range(x_width): x = ix + min_x for iy in range(y_width): y = iy + min_y # print(x, y) for iox, ioy in zip(ox, oy): d = math.sqrt((iox - x) ** 2 + (ioy - y) ** 2) if d <= vr / resolution: obstacle_map[ix][iy] = True break return obstacle_map, min_x, min_y, max_x, max_y, x_width, y_width
1,221
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/dynamic_programming_heuristic.py
calc_index
(node, x_width, x_min, y_min)
return (node.y - y_min) * x_width + (node.x - x_min)
161
162
def calc_index(node, x_width, x_min, y_min): return (node.y - y_min) * x_width + (node.x - x_min)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/dynamic_programming_heuristic.py#L161-L162
2
[ 0, 1 ]
100
[]
0
true
85.227273
2
1
100
0
def calc_index(node, x_width, x_min, y_min): return (node.y - y_min) * x_width + (node.x - x_min)
1,222
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/dynamic_programming_heuristic.py
get_motion_model
()
return motion
165
176
def get_motion_model(): # dx, dy, cost motion = [[1, 0, 1], [0, 1, 1], [-1, 0, 1], [0, -1, 1], [-1, -1, math.sqrt(2)], [-1, 1, math.sqrt(2)], [1, -1, math.sqrt(2)], [1, 1, math.sqrt(2)]] return motion
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/dynamic_programming_heuristic.py#L165-L176
2
[ 0, 1, 2, 10, 11 ]
41.666667
[]
0
false
85.227273
12
1
100
0
def get_motion_model(): # dx, dy, cost motion = [[1, 0, 1], [0, 1, 1], [-1, 0, 1], [0, -1, 1], [-1, -1, math.sqrt(2)], [-1, 1, math.sqrt(2)], [1, -1, math.sqrt(2)], [1, 1, math.sqrt(2)]] return motion
1,223
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/dynamic_programming_heuristic.py
Node.__init__
(self, x, y, cost, parent_index)
21
25
def __init__(self, x, y, cost, parent_index): self.x = x self.y = y self.cost = cost self.parent_index = parent_index
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/dynamic_programming_heuristic.py#L21-L25
2
[ 0, 1, 2, 3, 4 ]
100
[]
0
true
85.227273
5
1
100
0
def __init__(self, x, y, cost, parent_index): self.x = x self.y = y self.cost = cost self.parent_index = parent_index
1,224
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/HybridAStar/dynamic_programming_heuristic.py
Node.__str__
(self)
return str(self.x) + "," + str(self.y) + "," + str( self.cost) + "," + str(self.parent_index)
27
29
def __str__(self): return str(self.x) + "," + str(self.y) + "," + str( self.cost) + "," + str(self.parent_index)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/dynamic_programming_heuristic.py#L27-L29
2
[ 0 ]
33.333333
[ 1 ]
33.333333
false
85.227273
3
1
66.666667
0
def __str__(self): return str(self.x) + "," + str(self.y) + "," + str( self.cost) + "," + str(self.parent_index)
1,225
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_variants.py
draw_horizontal_line
(start_x, start_y, length, o_x, o_y, o_dict)
24
29
def draw_horizontal_line(start_x, start_y, length, o_x, o_y, o_dict): for i in range(start_x, start_x + length): for j in range(start_y, start_y + 2): o_x.append(i) o_y.append(j) o_dict[(i, j)] = True
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_variants.py#L24-L29
2
[ 0, 1, 2, 3, 4, 5 ]
100
[]
0
true
89.473684
6
3
100
0
def draw_horizontal_line(start_x, start_y, length, o_x, o_y, o_dict): for i in range(start_x, start_x + length): for j in range(start_y, start_y + 2): o_x.append(i) o_y.append(j) o_dict[(i, j)] = True
1,226
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_variants.py
draw_vertical_line
(start_x, start_y, length, o_x, o_y, o_dict)
32
37
def draw_vertical_line(start_x, start_y, length, o_x, o_y, o_dict): for i in range(start_x, start_x + 2): for j in range(start_y, start_y + length): o_x.append(i) o_y.append(j) o_dict[(i, j)] = True
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_variants.py#L32-L37
2
[ 0, 1, 2, 3, 4, 5 ]
100
[]
0
true
89.473684
6
3
100
0
def draw_vertical_line(start_x, start_y, length, o_x, o_y, o_dict): for i in range(start_x, start_x + 2): for j in range(start_y, start_y + length): o_x.append(i) o_y.append(j) o_dict[(i, j)] = True
1,227
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_variants.py
in_line_of_sight
(obs_grid, x1, y1, x2, y2)
return True, dist
40
53
def in_line_of_sight(obs_grid, x1, y1, x2, y2): t = 0 while t <= 0.5: xt = (1 - t) * x1 + t * x2 yt = (1 - t) * y1 + t * y2 if obs_grid[(int(xt), int(yt))]: return False, None xt = (1 - t) * x2 + t * x1 yt = (1 - t) * y2 + t * y1 if obs_grid[(int(xt), int(yt))]: return False, None t += 0.001 dist = np.linalg.norm(np.array([x1, y1] - np.array([x2, y2]))) return True, dist
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_variants.py#L40-L53
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ]
100
[]
0
true
89.473684
14
4
100
0
def in_line_of_sight(obs_grid, x1, y1, x2, y2): t = 0 while t <= 0.5: xt = (1 - t) * x1 + t * x2 yt = (1 - t) * y1 + t * y2 if obs_grid[(int(xt), int(yt))]: return False, None xt = (1 - t) * x2 + t * x1 yt = (1 - t) * y2 + t * y1 if obs_grid[(int(xt), int(yt))]: return False, None t += 0.001 dist = np.linalg.norm(np.array([x1, y1] - np.array([x2, y2]))) return True, dist
1,228
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_variants.py
key_points
(o_dict)
return c_list + e_list
56
112
def key_points(o_dict): offsets1 = [(1, 0), (0, 1), (-1, 0), (1, 0)] offsets2 = [(1, 1), (-1, 1), (-1, -1), (1, -1)] offsets3 = [(0, 1), (-1, 0), (0, -1), (0, -1)] c_list = [] for grid_point, obs_status in o_dict.items(): if obs_status: continue empty_space = True x, y = grid_point for i in [-1, 0, 1]: for j in [-1, 0, 1]: if (x + i, y + j) not in o_dict.keys(): continue if o_dict[(x + i, y + j)]: empty_space = False break if empty_space: continue for offset1, offset2, offset3 in zip(offsets1, offsets2, offsets3): i1, j1 = offset1 i2, j2 = offset2 i3, j3 = offset3 if ((x + i1, y + j1) not in o_dict.keys()) or \ ((x + i2, y + j2) not in o_dict.keys()) or \ ((x + i3, y + j3) not in o_dict.keys()): continue obs_count = 0 if o_dict[(x + i1, y + j1)]: obs_count += 1 if o_dict[(x + i2, y + j2)]: obs_count += 1 if o_dict[(x + i3, y + j3)]: obs_count += 1 if obs_count == 3 or obs_count == 1: c_list.append((x, y)) if show_animation: plt.plot(x, y, ".y") break if only_corners: return c_list e_list = [] for corner in c_list: x1, y1 = corner for other_corner in c_list: x2, y2 = other_corner if x1 == x2 and y1 == y2: continue reachable, _ = in_line_of_sight(o_dict, x1, y1, x2, y2) if not reachable: continue x_m, y_m = int((x1 + x2) / 2), int((y1 + y2) / 2) e_list.append((x_m, y_m)) if show_animation: plt.plot(x_m, y_m, ".y") return c_list + e_list
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_variants.py#L56-L112
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56 ]
91.22807
[ 37, 40, 55 ]
5.263158
false
89.473684
57
25
94.736842
0
def key_points(o_dict): offsets1 = [(1, 0), (0, 1), (-1, 0), (1, 0)] offsets2 = [(1, 1), (-1, 1), (-1, -1), (1, -1)] offsets3 = [(0, 1), (-1, 0), (0, -1), (0, -1)] c_list = [] for grid_point, obs_status in o_dict.items(): if obs_status: continue empty_space = True x, y = grid_point for i in [-1, 0, 1]: for j in [-1, 0, 1]: if (x + i, y + j) not in o_dict.keys(): continue if o_dict[(x + i, y + j)]: empty_space = False break if empty_space: continue for offset1, offset2, offset3 in zip(offsets1, offsets2, offsets3): i1, j1 = offset1 i2, j2 = offset2 i3, j3 = offset3 if ((x + i1, y + j1) not in o_dict.keys()) or \ ((x + i2, y + j2) not in o_dict.keys()) or \ ((x + i3, y + j3) not in o_dict.keys()): continue obs_count = 0 if o_dict[(x + i1, y + j1)]: obs_count += 1 if o_dict[(x + i2, y + j2)]: obs_count += 1 if o_dict[(x + i3, y + j3)]: obs_count += 1 if obs_count == 3 or obs_count == 1: c_list.append((x, y)) if show_animation: plt.plot(x, y, ".y") break if only_corners: return c_list e_list = [] for corner in c_list: x1, y1 = corner for other_corner in c_list: x2, y2 = other_corner if x1 == x2 and y1 == y2: continue reachable, _ = in_line_of_sight(o_dict, x1, y1, x2, y2) if not reachable: continue x_m, y_m = int((x1 + x2) / 2), int((y1 + y2) / 2) e_list.append((x_m, y_m)) if show_animation: plt.plot(x_m, y_m, ".y") return c_list + e_list
1,229
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_variants.py
main
()
433
479
def main(): # set obstacle positions obs_dict = {} for i in range(51): for j in range(51): obs_dict[(i, j)] = False o_x, o_y = [], [] s_x = 5.0 s_y = 5.0 g_x = 35.0 g_y = 45.0 # draw outer border of maze draw_vertical_line(0, 0, 50, o_x, o_y, obs_dict) draw_vertical_line(48, 0, 50, o_x, o_y, obs_dict) draw_horizontal_line(0, 0, 50, o_x, o_y, obs_dict) draw_horizontal_line(0, 48, 50, o_x, o_y, obs_dict) # draw inner walls all_x = [10, 10, 10, 15, 20, 20, 30, 30, 35, 30, 40, 45] all_y = [10, 30, 45, 20, 5, 40, 10, 40, 5, 40, 10, 25] all_len = [10, 10, 5, 10, 10, 5, 20, 10, 25, 10, 35, 15] for x, y, l in zip(all_x, all_y, all_len): draw_vertical_line(x, y, l, o_x, o_y, obs_dict) all_x[:], all_y[:], all_len[:] = [], [], [] all_x = [35, 40, 15, 10, 45, 20, 10, 15, 25, 45, 10, 30, 10, 40] all_y = [5, 10, 15, 20, 20, 25, 30, 35, 35, 35, 40, 40, 45, 45] all_len = [10, 5, 10, 10, 5, 5, 10, 5, 10, 5, 10, 5, 5, 5] for x, y, l in zip(all_x, all_y, all_len): draw_horizontal_line(x, y, l, o_x, o_y, obs_dict) if show_animation: plt.plot(o_x, o_y, ".k") plt.plot(s_x, s_y, "og") plt.plot(g_x, g_y, "xb") plt.grid(True) if use_jump_point: keypoint_list = key_points(obs_dict) search_obj = SearchAlgo(obs_dict, g_x, g_y, s_x, s_y, 101, 101, keypoint_list) search_obj.jump_point() else: search_obj = SearchAlgo(obs_dict, g_x, g_y, s_x, s_y, 101, 101) search_obj.a_star()
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_variants.py#L433-L479
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 43, 45, 46 ]
87.234043
[ 34, 35, 36, 37 ]
8.510638
false
89.473684
47
7
91.489362
0
def main(): # set obstacle positions obs_dict = {} for i in range(51): for j in range(51): obs_dict[(i, j)] = False o_x, o_y = [], [] s_x = 5.0 s_y = 5.0 g_x = 35.0 g_y = 45.0 # draw outer border of maze draw_vertical_line(0, 0, 50, o_x, o_y, obs_dict) draw_vertical_line(48, 0, 50, o_x, o_y, obs_dict) draw_horizontal_line(0, 0, 50, o_x, o_y, obs_dict) draw_horizontal_line(0, 48, 50, o_x, o_y, obs_dict) # draw inner walls all_x = [10, 10, 10, 15, 20, 20, 30, 30, 35, 30, 40, 45] all_y = [10, 30, 45, 20, 5, 40, 10, 40, 5, 40, 10, 25] all_len = [10, 10, 5, 10, 10, 5, 20, 10, 25, 10, 35, 15] for x, y, l in zip(all_x, all_y, all_len): draw_vertical_line(x, y, l, o_x, o_y, obs_dict) all_x[:], all_y[:], all_len[:] = [], [], [] all_x = [35, 40, 15, 10, 45, 20, 10, 15, 25, 45, 10, 30, 10, 40] all_y = [5, 10, 15, 20, 20, 25, 30, 35, 35, 35, 40, 40, 45, 45] all_len = [10, 5, 10, 10, 5, 5, 10, 5, 10, 5, 10, 5, 5, 5] for x, y, l in zip(all_x, all_y, all_len): draw_horizontal_line(x, y, l, o_x, o_y, obs_dict) if show_animation: plt.plot(o_x, o_y, ".k") plt.plot(s_x, s_y, "og") plt.plot(g_x, g_y, "xb") plt.grid(True) if use_jump_point: keypoint_list = key_points(obs_dict) search_obj = SearchAlgo(obs_dict, g_x, g_y, s_x, s_y, 101, 101, keypoint_list) search_obj.jump_point() else: search_obj = SearchAlgo(obs_dict, g_x, g_y, s_x, s_y, 101, 101) search_obj.a_star()
1,230
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_variants.py
SearchAlgo.__init__
(self, obs_grid, goal_x, goal_y, start_x, start_y, limit_x, limit_y, corner_list=None)
116
150
def __init__(self, obs_grid, goal_x, goal_y, start_x, start_y, limit_x, limit_y, corner_list=None): self.start_pt = [start_x, start_y] self.goal_pt = [goal_x, goal_y] self.obs_grid = obs_grid g_cost, h_cost = 0, self.get_hval(start_x, start_y, goal_x, goal_y) f_cost = g_cost + h_cost self.all_nodes, self.open_set = {}, [] if use_jump_point: for corner in corner_list: i, j = corner h_c = self.get_hval(i, j, goal_x, goal_y) self.all_nodes[(i, j)] = {'pos': [i, j], 'pred': None, 'gcost': np.inf, 'hcost': h_c, 'fcost': np.inf, 'open': True, 'in_open_list': False} self.all_nodes[tuple(self.goal_pt)] = \ {'pos': self.goal_pt, 'pred': None, 'gcost': np.inf, 'hcost': 0, 'fcost': np.inf, 'open': True, 'in_open_list': True} else: for i in range(limit_x): for j in range(limit_y): h_c = self.get_hval(i, j, goal_x, goal_y) self.all_nodes[(i, j)] = {'pos': [i, j], 'pred': None, 'gcost': np.inf, 'hcost': h_c, 'fcost': np.inf, 'open': True, 'in_open_list': False} self.all_nodes[tuple(self.start_pt)] = \ {'pos': self.start_pt, 'pred': None, 'gcost': g_cost, 'hcost': h_cost, 'fcost': f_cost, 'open': True, 'in_open_list': True} self.open_set.append(self.all_nodes[tuple(self.start_pt)])
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_variants.py#L116-L150
2
[ 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 22, 23, 24, 25, 30, 34 ]
57.142857
[]
0
false
89.473684
35
5
100
0
def __init__(self, obs_grid, goal_x, goal_y, start_x, start_y, limit_x, limit_y, corner_list=None): self.start_pt = [start_x, start_y] self.goal_pt = [goal_x, goal_y] self.obs_grid = obs_grid g_cost, h_cost = 0, self.get_hval(start_x, start_y, goal_x, goal_y) f_cost = g_cost + h_cost self.all_nodes, self.open_set = {}, [] if use_jump_point: for corner in corner_list: i, j = corner h_c = self.get_hval(i, j, goal_x, goal_y) self.all_nodes[(i, j)] = {'pos': [i, j], 'pred': None, 'gcost': np.inf, 'hcost': h_c, 'fcost': np.inf, 'open': True, 'in_open_list': False} self.all_nodes[tuple(self.goal_pt)] = \ {'pos': self.goal_pt, 'pred': None, 'gcost': np.inf, 'hcost': 0, 'fcost': np.inf, 'open': True, 'in_open_list': True} else: for i in range(limit_x): for j in range(limit_y): h_c = self.get_hval(i, j, goal_x, goal_y) self.all_nodes[(i, j)] = {'pos': [i, j], 'pred': None, 'gcost': np.inf, 'hcost': h_c, 'fcost': np.inf, 'open': True, 'in_open_list': False} self.all_nodes[tuple(self.start_pt)] = \ {'pos': self.start_pt, 'pred': None, 'gcost': g_cost, 'hcost': h_cost, 'fcost': f_cost, 'open': True, 'in_open_list': True} self.open_set.append(self.all_nodes[tuple(self.start_pt)])
1,231
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_variants.py
SearchAlgo.get_hval
(x1, y1, x2, y2)
return val
153
162
def get_hval(x1, y1, x2, y2): x, y = x1, y1 val = 0 while x != x2 or y != y2: if x != x2 and y != y2: val += 14 else: val += 10 x, y = x + np.sign(x2 - x), y + np.sign(y2 - y) return val
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_variants.py#L153-L162
2
[ 0, 1, 2, 3, 4, 5, 7, 8, 9 ]
90
[]
0
false
89.473684
10
5
100
0
def get_hval(x1, y1, x2, y2): x, y = x1, y1 val = 0 while x != x2 or y != y2: if x != x2 and y != y2: val += 14 else: val += 10 x, y = x + np.sign(x2 - x), y + np.sign(y2 - y) return val
1,232
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_variants.py
SearchAlgo.get_farthest_point
(self, x, y, i, j)
return i_temp - 2*i, j_temp - 2*j, counter, got_goal
164
178
def get_farthest_point(self, x, y, i, j): i_temp, j_temp = i, j counter = 1 got_goal = False while not self.obs_grid[(x + i_temp, y + j_temp)] and \ counter < max_theta: i_temp += i j_temp += j counter += 1 if [x + i_temp, y + j_temp] == self.goal_pt: got_goal = True break if (x + i_temp, y + j_temp) not in self.obs_grid.keys(): break return i_temp - 2*i, j_temp - 2*j, counter, got_goal
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_variants.py#L164-L178
2
[ 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14 ]
86.666667
[ 13 ]
6.666667
false
89.473684
15
5
93.333333
0
def get_farthest_point(self, x, y, i, j): i_temp, j_temp = i, j counter = 1 got_goal = False while not self.obs_grid[(x + i_temp, y + j_temp)] and \ counter < max_theta: i_temp += i j_temp += j counter += 1 if [x + i_temp, y + j_temp] == self.goal_pt: got_goal = True break if (x + i_temp, y + j_temp) not in self.obs_grid.keys(): break return i_temp - 2*i, j_temp - 2*j, counter, got_goal
1,233
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_variants.py
SearchAlgo.jump_point
(self)
Jump point: Instead of exploring all empty spaces of the map, just explore the corners.
Jump point: Instead of exploring all empty spaces of the map, just explore the corners.
180
265
def jump_point(self): """Jump point: Instead of exploring all empty spaces of the map, just explore the corners.""" goal_found = False while len(self.open_set) > 0: self.open_set = sorted(self.open_set, key=lambda x: x['fcost']) lowest_f = self.open_set[0]['fcost'] lowest_h = self.open_set[0]['hcost'] lowest_g = self.open_set[0]['gcost'] p = 0 for p_n in self.open_set[1:]: if p_n['fcost'] == lowest_f and \ p_n['gcost'] < lowest_g: lowest_g = p_n['gcost'] p += 1 elif p_n['fcost'] == lowest_f and \ p_n['gcost'] == lowest_g and \ p_n['hcost'] < lowest_h: lowest_h = p_n['hcost'] p += 1 else: break current_node = self.all_nodes[tuple(self.open_set[p]['pos'])] x1, y1 = current_node['pos'] for cand_pt, cand_node in self.all_nodes.items(): x2, y2 = cand_pt if x1 == x2 and y1 == y2: continue if np.linalg.norm(np.array([x1, y1] - np.array([x2, y2]))) > max_corner: continue reachable, offset = in_line_of_sight(self.obs_grid, x1, y1, x2, y2) if not reachable: continue if list(cand_pt) == self.goal_pt: current_node['open'] = False self.all_nodes[tuple(cand_pt)]['pred'] = \ current_node['pos'] goal_found = True break g_cost = offset + current_node['gcost'] h_cost = self.all_nodes[cand_pt]['hcost'] f_cost = g_cost + h_cost cand_pt = tuple(cand_pt) if f_cost < self.all_nodes[cand_pt]['fcost']: self.all_nodes[cand_pt]['pred'] = current_node['pos'] self.all_nodes[cand_pt]['gcost'] = g_cost self.all_nodes[cand_pt]['fcost'] = f_cost if not self.all_nodes[cand_pt]['in_open_list']: self.open_set.append(self.all_nodes[cand_pt]) self.all_nodes[cand_pt]['in_open_list'] = True if show_animation: plt.plot(cand_pt[0], cand_pt[1], "r*") if goal_found: break if show_animation: plt.pause(0.001) if goal_found: current_node = self.all_nodes[tuple(self.goal_pt)] while goal_found: if current_node['pred'] is None: break x = [current_node['pos'][0], current_node['pred'][0]] y = [current_node['pos'][1], current_node['pred'][1]] current_node = self.all_nodes[tuple(current_node['pred'])] if show_animation: plt.plot(x, y, "b") plt.pause(0.001) if goal_found: break current_node['open'] = False current_node['in_open_list'] = False if show_animation: plt.plot(current_node['pos'][0], current_node['pos'][1], "g*") del self.open_set[p] current_node['fcost'], current_node['hcost'] = np.inf, np.inf if show_animation: plt.title('Jump Point') plt.show()
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_variants.py#L180-L265
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 74, 75, 76, 77, 78, 79, 81, 82, 83 ]
77.906977
[ 14, 15, 19, 20, 57, 60, 62, 72, 73, 80, 84, 85 ]
13.953488
false
89.473684
86
26
86.046512
2
def jump_point(self): goal_found = False while len(self.open_set) > 0: self.open_set = sorted(self.open_set, key=lambda x: x['fcost']) lowest_f = self.open_set[0]['fcost'] lowest_h = self.open_set[0]['hcost'] lowest_g = self.open_set[0]['gcost'] p = 0 for p_n in self.open_set[1:]: if p_n['fcost'] == lowest_f and \ p_n['gcost'] < lowest_g: lowest_g = p_n['gcost'] p += 1 elif p_n['fcost'] == lowest_f and \ p_n['gcost'] == lowest_g and \ p_n['hcost'] < lowest_h: lowest_h = p_n['hcost'] p += 1 else: break current_node = self.all_nodes[tuple(self.open_set[p]['pos'])] x1, y1 = current_node['pos'] for cand_pt, cand_node in self.all_nodes.items(): x2, y2 = cand_pt if x1 == x2 and y1 == y2: continue if np.linalg.norm(np.array([x1, y1] - np.array([x2, y2]))) > max_corner: continue reachable, offset = in_line_of_sight(self.obs_grid, x1, y1, x2, y2) if not reachable: continue if list(cand_pt) == self.goal_pt: current_node['open'] = False self.all_nodes[tuple(cand_pt)]['pred'] = \ current_node['pos'] goal_found = True break g_cost = offset + current_node['gcost'] h_cost = self.all_nodes[cand_pt]['hcost'] f_cost = g_cost + h_cost cand_pt = tuple(cand_pt) if f_cost < self.all_nodes[cand_pt]['fcost']: self.all_nodes[cand_pt]['pred'] = current_node['pos'] self.all_nodes[cand_pt]['gcost'] = g_cost self.all_nodes[cand_pt]['fcost'] = f_cost if not self.all_nodes[cand_pt]['in_open_list']: self.open_set.append(self.all_nodes[cand_pt]) self.all_nodes[cand_pt]['in_open_list'] = True if show_animation: plt.plot(cand_pt[0], cand_pt[1], "r*") if goal_found: break if show_animation: plt.pause(0.001) if goal_found: current_node = self.all_nodes[tuple(self.goal_pt)] while goal_found: if current_node['pred'] is None: break x = [current_node['pos'][0], current_node['pred'][0]] y = [current_node['pos'][1], current_node['pred'][1]] current_node = self.all_nodes[tuple(current_node['pred'])] if show_animation: plt.plot(x, y, "b") plt.pause(0.001) if goal_found: break current_node['open'] = False current_node['in_open_list'] = False if show_animation: plt.plot(current_node['pos'][0], current_node['pos'][1], "g*") del self.open_set[p] current_node['fcost'], current_node['hcost'] = np.inf, np.inf if show_animation: plt.title('Jump Point') plt.show()
1,234
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_variants.py
SearchAlgo.a_star
(self)
Beam search: Maintain an open list of just 30 nodes. If more than 30 nodes, then get rid of nodes with high f values. Iterative deepening: At every iteration, get a cut-off value for the f cost. This cut-off is minimum of the f value of all nodes whose f value is higher than the current cut-off value. Nodes with f value higher than the current cut off value are not put in the open set. Dynamic weighting: Multiply heuristic with the following: (1 + epsilon - (epsilon*d)/N) where d is the current iteration of loop and N is upper bound on number of iterations. Theta star: Same as A star but you don't need to move one neighbor at a time. In fact, you can look for the next node as far out as you can as long as there is a clear line of sight from your current node to that node.
Beam search: Maintain an open list of just 30 nodes. If more than 30 nodes, then get rid of nodes with high f values. Iterative deepening: At every iteration, get a cut-off value for the f cost. This cut-off is minimum of the f value of all nodes whose f value is higher than the current cut-off value. Nodes with f value higher than the current cut off value are not put in the open set. Dynamic weighting: Multiply heuristic with the following: (1 + epsilon - (epsilon*d)/N) where d is the current iteration of loop and N is upper bound on number of iterations. Theta star: Same as A star but you don't need to move one neighbor at a time. In fact, you can look for the next node as far out as you can as long as there is a clear line of sight from your current node to that node.
267
404
def a_star(self): """Beam search: Maintain an open list of just 30 nodes. If more than 30 nodes, then get rid of nodes with high f values. Iterative deepening: At every iteration, get a cut-off value for the f cost. This cut-off is minimum of the f value of all nodes whose f value is higher than the current cut-off value. Nodes with f value higher than the current cut off value are not put in the open set. Dynamic weighting: Multiply heuristic with the following: (1 + epsilon - (epsilon*d)/N) where d is the current iteration of loop and N is upper bound on number of iterations. Theta star: Same as A star but you don't need to move one neighbor at a time. In fact, you can look for the next node as far out as you can as long as there is a clear line of sight from your current node to that node.""" if show_animation: if use_beam_search: plt.title('A* with beam search') elif use_iterative_deepening: plt.title('A* with iterative deepening') elif use_dynamic_weighting: plt.title('A* with dynamic weighting') elif use_theta_star: plt.title('Theta*') else: plt.title('A*') goal_found = False curr_f_thresh = np.inf depth = 0 no_valid_f = False w = None while len(self.open_set) > 0: self.open_set = sorted(self.open_set, key=lambda x: x['fcost']) lowest_f = self.open_set[0]['fcost'] lowest_h = self.open_set[0]['hcost'] lowest_g = self.open_set[0]['gcost'] p = 0 for p_n in self.open_set[1:]: if p_n['fcost'] == lowest_f and \ p_n['gcost'] < lowest_g: lowest_g = p_n['gcost'] p += 1 elif p_n['fcost'] == lowest_f and \ p_n['gcost'] == lowest_g and \ p_n['hcost'] < lowest_h: lowest_h = p_n['hcost'] p += 1 else: break current_node = self.all_nodes[tuple(self.open_set[p]['pos'])] while len(self.open_set) > beam_capacity and use_beam_search: del self.open_set[-1] f_cost_list = [] if use_dynamic_weighting: w = (1 + epsilon - epsilon*depth/upper_bound_depth) for i in range(-1, 2): for j in range(-1, 2): x, y = current_node['pos'] if (i == 0 and j == 0) or \ ((x + i, y + j) not in self.obs_grid.keys()): continue if (i, j) in [(1, 0), (0, 1), (-1, 0), (0, -1)]: offset = 10 else: offset = 14 if use_theta_star: new_i, new_j, counter, goal_found = \ self.get_farthest_point(x, y, i, j) offset = offset * counter cand_pt = [current_node['pos'][0] + new_i, current_node['pos'][1] + new_j] else: cand_pt = [current_node['pos'][0] + i, current_node['pos'][1] + j] if use_theta_star and goal_found: current_node['open'] = False cand_pt = self.goal_pt self.all_nodes[tuple(cand_pt)]['pred'] = \ current_node['pos'] break if cand_pt == self.goal_pt: current_node['open'] = False self.all_nodes[tuple(cand_pt)]['pred'] = \ current_node['pos'] goal_found = True break cand_pt = tuple(cand_pt) no_valid_f = self.update_node_cost(cand_pt, curr_f_thresh, current_node, f_cost_list, no_valid_f, offset, w) if goal_found: break if show_animation: plt.pause(0.001) if goal_found: current_node = self.all_nodes[tuple(self.goal_pt)] while goal_found: if current_node['pred'] is None: break if use_theta_star or use_jump_point: x, y = [current_node['pos'][0], current_node['pred'][0]], \ [current_node['pos'][1], current_node['pred'][1]] if show_animation: plt.plot(x, y, "b") else: if show_animation: plt.plot(current_node['pred'][0], current_node['pred'][1], "b*") current_node = self.all_nodes[tuple(current_node['pred'])] if goal_found: break if use_iterative_deepening and f_cost_list: curr_f_thresh = min(f_cost_list) if use_iterative_deepening and not f_cost_list: curr_f_thresh = np.inf if use_iterative_deepening and not f_cost_list and no_valid_f: current_node['fcost'], current_node['hcost'] = np.inf, np.inf continue current_node['open'] = False current_node['in_open_list'] = False if show_animation: plt.plot(current_node['pos'][0], current_node['pos'][1], "g*") del self.open_set[p] current_node['fcost'], current_node['hcost'] = np.inf, np.inf depth += 1 if show_animation: plt.show()
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_variants.py#L267-L404
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 111, 114, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 133, 134, 135, 136 ]
74.637681
[ 18, 19, 20, 21, 22, 23, 24, 25, 27, 48, 49, 102, 112, 115, 132, 137 ]
11.594203
false
89.473684
138
45
88.405797
16
def a_star(self): if show_animation: if use_beam_search: plt.title('A* with beam search') elif use_iterative_deepening: plt.title('A* with iterative deepening') elif use_dynamic_weighting: plt.title('A* with dynamic weighting') elif use_theta_star: plt.title('Theta*') else: plt.title('A*') goal_found = False curr_f_thresh = np.inf depth = 0 no_valid_f = False w = None while len(self.open_set) > 0: self.open_set = sorted(self.open_set, key=lambda x: x['fcost']) lowest_f = self.open_set[0]['fcost'] lowest_h = self.open_set[0]['hcost'] lowest_g = self.open_set[0]['gcost'] p = 0 for p_n in self.open_set[1:]: if p_n['fcost'] == lowest_f and \ p_n['gcost'] < lowest_g: lowest_g = p_n['gcost'] p += 1 elif p_n['fcost'] == lowest_f and \ p_n['gcost'] == lowest_g and \ p_n['hcost'] < lowest_h: lowest_h = p_n['hcost'] p += 1 else: break current_node = self.all_nodes[tuple(self.open_set[p]['pos'])] while len(self.open_set) > beam_capacity and use_beam_search: del self.open_set[-1] f_cost_list = [] if use_dynamic_weighting: w = (1 + epsilon - epsilon*depth/upper_bound_depth) for i in range(-1, 2): for j in range(-1, 2): x, y = current_node['pos'] if (i == 0 and j == 0) or \ ((x + i, y + j) not in self.obs_grid.keys()): continue if (i, j) in [(1, 0), (0, 1), (-1, 0), (0, -1)]: offset = 10 else: offset = 14 if use_theta_star: new_i, new_j, counter, goal_found = \ self.get_farthest_point(x, y, i, j) offset = offset * counter cand_pt = [current_node['pos'][0] + new_i, current_node['pos'][1] + new_j] else: cand_pt = [current_node['pos'][0] + i, current_node['pos'][1] + j] if use_theta_star and goal_found: current_node['open'] = False cand_pt = self.goal_pt self.all_nodes[tuple(cand_pt)]['pred'] = \ current_node['pos'] break if cand_pt == self.goal_pt: current_node['open'] = False self.all_nodes[tuple(cand_pt)]['pred'] = \ current_node['pos'] goal_found = True break cand_pt = tuple(cand_pt) no_valid_f = self.update_node_cost(cand_pt, curr_f_thresh, current_node, f_cost_list, no_valid_f, offset, w) if goal_found: break if show_animation: plt.pause(0.001) if goal_found: current_node = self.all_nodes[tuple(self.goal_pt)] while goal_found: if current_node['pred'] is None: break if use_theta_star or use_jump_point: x, y = [current_node['pos'][0], current_node['pred'][0]], \ [current_node['pos'][1], current_node['pred'][1]] if show_animation: plt.plot(x, y, "b") else: if show_animation: plt.plot(current_node['pred'][0], current_node['pred'][1], "b*") current_node = self.all_nodes[tuple(current_node['pred'])] if goal_found: break if use_iterative_deepening and f_cost_list: curr_f_thresh = min(f_cost_list) if use_iterative_deepening and not f_cost_list: curr_f_thresh = np.inf if use_iterative_deepening and not f_cost_list and no_valid_f: current_node['fcost'], current_node['hcost'] = np.inf, np.inf continue current_node['open'] = False current_node['in_open_list'] = False if show_animation: plt.plot(current_node['pos'][0], current_node['pos'][1], "g*") del self.open_set[p] current_node['fcost'], current_node['hcost'] = np.inf, np.inf depth += 1 if show_animation: plt.show()
1,235
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_variants.py
SearchAlgo.update_node_cost
(self, cand_pt, curr_f_thresh, current_node, f_cost_list, no_valid_f, offset, w)
return no_valid_f
406
430
def update_node_cost(self, cand_pt, curr_f_thresh, current_node, f_cost_list, no_valid_f, offset, w): if not self.obs_grid[tuple(cand_pt)] and \ self.all_nodes[cand_pt]['open']: g_cost = offset + current_node['gcost'] h_cost = self.all_nodes[cand_pt]['hcost'] if use_dynamic_weighting: h_cost = h_cost * w f_cost = g_cost + h_cost if f_cost < self.all_nodes[cand_pt]['fcost'] and \ f_cost <= curr_f_thresh: f_cost_list.append(f_cost) self.all_nodes[cand_pt]['pred'] = \ current_node['pos'] self.all_nodes[cand_pt]['gcost'] = g_cost self.all_nodes[cand_pt]['fcost'] = f_cost if not self.all_nodes[cand_pt]['in_open_list']: self.open_set.append(self.all_nodes[cand_pt]) self.all_nodes[cand_pt]['in_open_list'] = True if show_animation: plt.plot(cand_pt[0], cand_pt[1], "r*") if curr_f_thresh < f_cost < \ self.all_nodes[cand_pt]['fcost']: no_valid_f = True return no_valid_f
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_variants.py#L406-L430
2
[ 0, 2, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 18, 19, 21, 23, 24 ]
76
[ 20 ]
4
false
89.473684
25
9
96
0
def update_node_cost(self, cand_pt, curr_f_thresh, current_node, f_cost_list, no_valid_f, offset, w): if not self.obs_grid[tuple(cand_pt)] and \ self.all_nodes[cand_pt]['open']: g_cost = offset + current_node['gcost'] h_cost = self.all_nodes[cand_pt]['hcost'] if use_dynamic_weighting: h_cost = h_cost * w f_cost = g_cost + h_cost if f_cost < self.all_nodes[cand_pt]['fcost'] and \ f_cost <= curr_f_thresh: f_cost_list.append(f_cost) self.all_nodes[cand_pt]['pred'] = \ current_node['pos'] self.all_nodes[cand_pt]['gcost'] = g_cost self.all_nodes[cand_pt]['fcost'] = f_cost if not self.all_nodes[cand_pt]['in_open_list']: self.open_set.append(self.all_nodes[cand_pt]) self.all_nodes[cand_pt]['in_open_list'] = True if show_animation: plt.plot(cand_pt[0], cand_pt[1], "r*") if curr_f_thresh < f_cost < \ self.all_nodes[cand_pt]['fcost']: no_valid_f = True return no_valid_f
1,236
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
hcost
(node_coordinate, goal)
return hcost
29
33
def hcost(node_coordinate, goal): dx = abs(node_coordinate[0] - goal[0]) dy = abs(node_coordinate[1] - goal[1]) hcost = dx + dy return hcost
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L29-L33
2
[ 0, 1, 2, 3, 4 ]
100
[]
0
true
78.991597
5
1
100
0
def hcost(node_coordinate, goal): dx = abs(node_coordinate[0] - goal[0]) dy = abs(node_coordinate[1] - goal[1]) hcost = dx + dy return hcost
1,237
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
gcost
(fixed_node, update_node_coordinate)
return gcost
36
41
def gcost(fixed_node, update_node_coordinate): dx = abs(fixed_node.coordinate[0] - update_node_coordinate[0]) dy = abs(fixed_node.coordinate[1] - update_node_coordinate[1]) gc = math.hypot(dx, dy) # gc = move from fixed_node to update_node gcost = fixed_node.G + gc # gcost = move from start point to update_node return gcost
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L36-L41
2
[ 0, 1, 2, 3, 4, 5 ]
100
[]
0
true
78.991597
6
1
100
0
def gcost(fixed_node, update_node_coordinate): dx = abs(fixed_node.coordinate[0] - update_node_coordinate[0]) dy = abs(fixed_node.coordinate[1] - update_node_coordinate[1]) gc = math.hypot(dx, dy) # gc = move from fixed_node to update_node gcost = fixed_node.G + gc # gcost = move from start point to update_node return gcost
1,238
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
boundary_and_obstacles
(start, goal, top_vertex, bottom_vertex, obs_number)
return bound_obs, obstacle
:param start: start coordinate :param goal: goal coordinate :param top_vertex: top right vertex coordinate of boundary :param bottom_vertex: bottom left vertex coordinate of boundary :param obs_number: number of obstacles generated in the map :return: boundary_obstacle array, obstacle list
:param start: start coordinate :param goal: goal coordinate :param top_vertex: top right vertex coordinate of boundary :param bottom_vertex: bottom left vertex coordinate of boundary :param obs_number: number of obstacles generated in the map :return: boundary_obstacle array, obstacle list
44
77
def boundary_and_obstacles(start, goal, top_vertex, bottom_vertex, obs_number): """ :param start: start coordinate :param goal: goal coordinate :param top_vertex: top right vertex coordinate of boundary :param bottom_vertex: bottom left vertex coordinate of boundary :param obs_number: number of obstacles generated in the map :return: boundary_obstacle array, obstacle list """ # below can be merged into a rectangle boundary ay = list(range(bottom_vertex[1], top_vertex[1])) ax = [bottom_vertex[0]] * len(ay) cy = ay cx = [top_vertex[0]] * len(cy) bx = list(range(bottom_vertex[0] + 1, top_vertex[0])) by = [bottom_vertex[1]] * len(bx) dx = [bottom_vertex[0]] + bx + [top_vertex[0]] dy = [top_vertex[1]] * len(dx) # generate random obstacles ob_x = np.random.randint(bottom_vertex[0] + 1, top_vertex[0], obs_number).tolist() ob_y = np.random.randint(bottom_vertex[1] + 1, top_vertex[1], obs_number).tolist() # x y coordinate in certain order for boundary x = ax + bx + cx + dx y = ay + by + cy + dy obstacle = np.vstack((ob_x, ob_y)).T.tolist() # remove start and goal coordinate in obstacle list obstacle = [coor for coor in obstacle if coor != start and coor != goal] obs_array = np.array(obstacle) bound = np.vstack((x, y)).T bound_obs = np.vstack((bound, obs_array)) return bound_obs, obstacle
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L44-L77
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 ]
100
[]
0
true
78.991597
34
3
100
6
def boundary_and_obstacles(start, goal, top_vertex, bottom_vertex, obs_number): # below can be merged into a rectangle boundary ay = list(range(bottom_vertex[1], top_vertex[1])) ax = [bottom_vertex[0]] * len(ay) cy = ay cx = [top_vertex[0]] * len(cy) bx = list(range(bottom_vertex[0] + 1, top_vertex[0])) by = [bottom_vertex[1]] * len(bx) dx = [bottom_vertex[0]] + bx + [top_vertex[0]] dy = [top_vertex[1]] * len(dx) # generate random obstacles ob_x = np.random.randint(bottom_vertex[0] + 1, top_vertex[0], obs_number).tolist() ob_y = np.random.randint(bottom_vertex[1] + 1, top_vertex[1], obs_number).tolist() # x y coordinate in certain order for boundary x = ax + bx + cx + dx y = ay + by + cy + dy obstacle = np.vstack((ob_x, ob_y)).T.tolist() # remove start and goal coordinate in obstacle list obstacle = [coor for coor in obstacle if coor != start and coor != goal] obs_array = np.array(obstacle) bound = np.vstack((x, y)).T bound_obs = np.vstack((bound, obs_array)) return bound_obs, obstacle
1,239
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
find_neighbor
(node, ob, closed)
return neighbor
80
117
def find_neighbor(node, ob, closed): # generate neighbors in certain condition ob_list = ob.tolist() neighbor: list = [] for x in range(node.coordinate[0] - 1, node.coordinate[0] + 2): for y in range(node.coordinate[1] - 1, node.coordinate[1] + 2): if [x, y] not in ob_list: # find all possible neighbor nodes neighbor.append([x, y]) # remove node violate the motion rule # 1. remove node.coordinate itself neighbor.remove(node.coordinate) # 2. remove neighbor nodes who cross through two diagonal # positioned obstacles since there is no enough space for # robot to go through two diagonal positioned obstacles # top bottom left right neighbors of node top_nei = [node.coordinate[0], node.coordinate[1] + 1] bottom_nei = [node.coordinate[0], node.coordinate[1] - 1] left_nei = [node.coordinate[0] - 1, node.coordinate[1]] right_nei = [node.coordinate[0] + 1, node.coordinate[1]] # neighbors in four vertex lt_nei = [node.coordinate[0] - 1, node.coordinate[1] + 1] rt_nei = [node.coordinate[0] + 1, node.coordinate[1] + 1] lb_nei = [node.coordinate[0] - 1, node.coordinate[1] - 1] rb_nei = [node.coordinate[0] + 1, node.coordinate[1] - 1] # remove the unnecessary neighbors if top_nei and left_nei in ob_list and lt_nei in neighbor: neighbor.remove(lt_nei) if top_nei and right_nei in ob_list and rt_nei in neighbor: neighbor.remove(rt_nei) if bottom_nei and left_nei in ob_list and lb_nei in neighbor: neighbor.remove(lb_nei) if bottom_nei and right_nei in ob_list and rb_nei in neighbor: neighbor.remove(rb_nei) neighbor = [x for x in neighbor if x not in closed] return neighbor
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L80-L117
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37 ]
100
[]
0
true
78.991597
38
17
100
0
def find_neighbor(node, ob, closed): # generate neighbors in certain condition ob_list = ob.tolist() neighbor: list = [] for x in range(node.coordinate[0] - 1, node.coordinate[0] + 2): for y in range(node.coordinate[1] - 1, node.coordinate[1] + 2): if [x, y] not in ob_list: # find all possible neighbor nodes neighbor.append([x, y]) # remove node violate the motion rule # 1. remove node.coordinate itself neighbor.remove(node.coordinate) # 2. remove neighbor nodes who cross through two diagonal # positioned obstacles since there is no enough space for # robot to go through two diagonal positioned obstacles # top bottom left right neighbors of node top_nei = [node.coordinate[0], node.coordinate[1] + 1] bottom_nei = [node.coordinate[0], node.coordinate[1] - 1] left_nei = [node.coordinate[0] - 1, node.coordinate[1]] right_nei = [node.coordinate[0] + 1, node.coordinate[1]] # neighbors in four vertex lt_nei = [node.coordinate[0] - 1, node.coordinate[1] + 1] rt_nei = [node.coordinate[0] + 1, node.coordinate[1] + 1] lb_nei = [node.coordinate[0] - 1, node.coordinate[1] - 1] rb_nei = [node.coordinate[0] + 1, node.coordinate[1] - 1] # remove the unnecessary neighbors if top_nei and left_nei in ob_list and lt_nei in neighbor: neighbor.remove(lt_nei) if top_nei and right_nei in ob_list and rt_nei in neighbor: neighbor.remove(rt_nei) if bottom_nei and left_nei in ob_list and lb_nei in neighbor: neighbor.remove(lb_nei) if bottom_nei and right_nei in ob_list and rb_nei in neighbor: neighbor.remove(rb_nei) neighbor = [x for x in neighbor if x not in closed] return neighbor
1,240
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
find_node_index
(coordinate, node_list)
return ind
120
128
def find_node_index(coordinate, node_list): # find node index in the node list via its coordinate ind = 0 for node in node_list: if node.coordinate == coordinate: target_node = node ind = node_list.index(target_node) break return ind
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L120-L128
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
100
[]
0
true
78.991597
9
3
100
0
def find_node_index(coordinate, node_list): # find node index in the node list via its coordinate ind = 0 for node in node_list: if node.coordinate == coordinate: target_node = node ind = node_list.index(target_node) break return ind
1,241
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
find_path
(open_list, closed_list, goal, obstacle)
return open_list, closed_list
131
158
def find_path(open_list, closed_list, goal, obstacle): # searching for the path, update open and closed list # obstacle = obstacle and boundary flag = len(open_list) for i in range(flag): node = open_list[0] open_coordinate_list = [node.coordinate for node in open_list] closed_coordinate_list = [node.coordinate for node in closed_list] temp = find_neighbor(node, obstacle, closed_coordinate_list) for element in temp: if element in closed_list: continue elif element in open_coordinate_list: # if node in open list, update g value ind = open_coordinate_list.index(element) new_g = gcost(node, element) if new_g <= open_list[ind].G: open_list[ind].G = new_g open_list[ind].reset_f() open_list[ind].parent = node else: # new coordinate, create corresponding node ele_node = Node(coordinate=element, parent=node, G=gcost(node, element), H=hcost(element, goal)) open_list.append(ele_node) open_list.remove(node) closed_list.append(node) open_list.sort(key=lambda x: x.F) return open_list, closed_list
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L131-L158
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27 ]
89.285714
[ 11 ]
3.571429
false
78.991597
28
8
96.428571
0
def find_path(open_list, closed_list, goal, obstacle): # searching for the path, update open and closed list # obstacle = obstacle and boundary flag = len(open_list) for i in range(flag): node = open_list[0] open_coordinate_list = [node.coordinate for node in open_list] closed_coordinate_list = [node.coordinate for node in closed_list] temp = find_neighbor(node, obstacle, closed_coordinate_list) for element in temp: if element in closed_list: continue elif element in open_coordinate_list: # if node in open list, update g value ind = open_coordinate_list.index(element) new_g = gcost(node, element) if new_g <= open_list[ind].G: open_list[ind].G = new_g open_list[ind].reset_f() open_list[ind].parent = node else: # new coordinate, create corresponding node ele_node = Node(coordinate=element, parent=node, G=gcost(node, element), H=hcost(element, goal)) open_list.append(ele_node) open_list.remove(node) closed_list.append(node) open_list.sort(key=lambda x: x.F) return open_list, closed_list
1,242
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
node_to_coordinate
(node_list)
return coordinate_list
161
164
def node_to_coordinate(node_list): # convert node list into coordinate list and array coordinate_list = [node.coordinate for node in node_list] return coordinate_list
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L161-L164
2
[ 0, 1, 2, 3 ]
100
[]
0
true
78.991597
4
2
100
0
def node_to_coordinate(node_list): # convert node list into coordinate list and array coordinate_list = [node.coordinate for node in node_list] return coordinate_list
1,243
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
check_node_coincide
(close_ls1, closed_ls2)
return intersect_ls
:param close_ls1: node closed list for searching from start :param closed_ls2: node closed list for searching from end :return: intersect node list for above two
:param close_ls1: node closed list for searching from start :param closed_ls2: node closed list for searching from end :return: intersect node list for above two
167
177
def check_node_coincide(close_ls1, closed_ls2): """ :param close_ls1: node closed list for searching from start :param closed_ls2: node closed list for searching from end :return: intersect node list for above two """ # check if node in close_ls1 intersect with node in closed_ls2 cl1 = node_to_coordinate(close_ls1) cl2 = node_to_coordinate(closed_ls2) intersect_ls = [node for node in cl1 if node in cl2] return intersect_ls
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L167-L177
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
100
[]
0
true
78.991597
11
2
100
3
def check_node_coincide(close_ls1, closed_ls2): # check if node in close_ls1 intersect with node in closed_ls2 cl1 = node_to_coordinate(close_ls1) cl2 = node_to_coordinate(closed_ls2) intersect_ls = [node for node in cl1 if node in cl2] return intersect_ls
1,244
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
find_surrounding
(coordinate, obstacle)
return boundary
180
187
def find_surrounding(coordinate, obstacle): # find obstacles around node, help to draw the borderline boundary: list = [] for x in range(coordinate[0] - 1, coordinate[0] + 2): for y in range(coordinate[1] - 1, coordinate[1] + 2): if [x, y] in obstacle: boundary.append([x, y]) return boundary
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L180-L187
2
[ 0, 1 ]
25
[ 2, 3, 4, 5, 6, 7 ]
75
false
78.991597
8
4
25
0
def find_surrounding(coordinate, obstacle): # find obstacles around node, help to draw the borderline boundary: list = [] for x in range(coordinate[0] - 1, coordinate[0] + 2): for y in range(coordinate[1] - 1, coordinate[1] + 2): if [x, y] in obstacle: boundary.append([x, y]) return boundary
1,245
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
get_border_line
(node_closed_ls, obstacle)
return border_ary
190
198
def get_border_line(node_closed_ls, obstacle): # if no path, find border line which confine goal or robot border: list = [] coordinate_closed_ls = node_to_coordinate(node_closed_ls) for coordinate in coordinate_closed_ls: temp = find_surrounding(coordinate, obstacle) border = border + temp border_ary = np.array(border) return border_ary
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L190-L198
2
[ 0, 1 ]
22.222222
[ 2, 3, 4, 5, 6, 7, 8 ]
77.777778
false
78.991597
9
2
22.222222
0
def get_border_line(node_closed_ls, obstacle): # if no path, find border line which confine goal or robot border: list = [] coordinate_closed_ls = node_to_coordinate(node_closed_ls) for coordinate in coordinate_closed_ls: temp = find_surrounding(coordinate, obstacle) border = border + temp border_ary = np.array(border) return border_ary
1,246
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
get_path
(org_list, goal_list, coordinate)
return path
201
220
def get_path(org_list, goal_list, coordinate): # get path from start to end path_org: list = [] path_goal: list = [] ind = find_node_index(coordinate, org_list) node = org_list[ind] while node != org_list[0]: path_org.append(node.coordinate) node = node.parent path_org.append(org_list[0].coordinate) ind = find_node_index(coordinate, goal_list) node = goal_list[ind] while node != goal_list[0]: path_goal.append(node.coordinate) node = node.parent path_goal.append(goal_list[0].coordinate) path_org.reverse() path = path_org + path_goal path = np.array(path) return path
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L201-L220
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 ]
100
[]
0
true
78.991597
20
3
100
0
def get_path(org_list, goal_list, coordinate): # get path from start to end path_org: list = [] path_goal: list = [] ind = find_node_index(coordinate, org_list) node = org_list[ind] while node != org_list[0]: path_org.append(node.coordinate) node = node.parent path_org.append(org_list[0].coordinate) ind = find_node_index(coordinate, goal_list) node = goal_list[ind] while node != goal_list[0]: path_goal.append(node.coordinate) node = node.parent path_goal.append(goal_list[0].coordinate) path_org.reverse() path = path_org + path_goal path = np.array(path) return path
1,247
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
random_coordinate
(bottom_vertex, top_vertex)
return coordinate
223
227
def random_coordinate(bottom_vertex, top_vertex): # generate random coordinates inside maze coordinate = [np.random.randint(bottom_vertex[0] + 1, top_vertex[0]), np.random.randint(bottom_vertex[1] + 1, top_vertex[1])] return coordinate
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L223-L227
2
[ 0, 1, 2, 4 ]
80
[]
0
false
78.991597
5
1
100
0
def random_coordinate(bottom_vertex, top_vertex): # generate random coordinates inside maze coordinate = [np.random.randint(bottom_vertex[0] + 1, top_vertex[0]), np.random.randint(bottom_vertex[1] + 1, top_vertex[1])] return coordinate
1,248
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
draw
(close_origin, close_goal, start, end, bound)
230
248
def draw(close_origin, close_goal, start, end, bound): # plot the map if not close_goal.tolist(): # ensure the close_goal not empty # in case of the obstacle number is really large (>4500), the # origin is very likely blocked at the first search, and then # the program is over and the searching from goal to origin # will not start, which remain the closed_list for goal == [] # in order to plot the map, add the end coordinate to array close_goal = np.array([end]) plt.cla() plt.gcf().set_size_inches(11, 9, forward=True) plt.axis('equal') plt.plot(close_origin[:, 0], close_origin[:, 1], 'oy') plt.plot(close_goal[:, 0], close_goal[:, 1], 'og') plt.plot(bound[:, 0], bound[:, 1], 'sk') plt.plot(end[0], end[1], '*b', label='Goal') plt.plot(start[0], start[1], '^b', label='Origin') plt.legend() plt.pause(0.0001)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L230-L248
2
[ 0, 1 ]
10.526316
[ 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 ]
63.157895
false
78.991597
19
2
36.842105
0
def draw(close_origin, close_goal, start, end, bound): # plot the map if not close_goal.tolist(): # ensure the close_goal not empty # in case of the obstacle number is really large (>4500), the # origin is very likely blocked at the first search, and then # the program is over and the searching from goal to origin # will not start, which remain the closed_list for goal == [] # in order to plot the map, add the end coordinate to array close_goal = np.array([end]) plt.cla() plt.gcf().set_size_inches(11, 9, forward=True) plt.axis('equal') plt.plot(close_origin[:, 0], close_origin[:, 1], 'oy') plt.plot(close_goal[:, 0], close_goal[:, 1], 'og') plt.plot(bound[:, 0], bound[:, 1], 'sk') plt.plot(end[0], end[1], '*b', label='Goal') plt.plot(start[0], start[1], '^b', label='Origin') plt.legend() plt.pause(0.0001)
1,249
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
draw_control
(org_closed, goal_closed, flag, start, end, bound, obstacle)
return stop_loop, path
control the plot process, evaluate if the searching finished flag == 0 : draw the searching process and plot path flag == 1 or 2 : start or end is blocked, draw the border line
control the plot process, evaluate if the searching finished flag == 0 : draw the searching process and plot path flag == 1 or 2 : start or end is blocked, draw the border line
251
298
def draw_control(org_closed, goal_closed, flag, start, end, bound, obstacle): """ control the plot process, evaluate if the searching finished flag == 0 : draw the searching process and plot path flag == 1 or 2 : start or end is blocked, draw the border line """ stop_loop = 0 # stop sign for the searching org_closed_ls = node_to_coordinate(org_closed) org_array = np.array(org_closed_ls) goal_closed_ls = node_to_coordinate(goal_closed) goal_array = np.array(goal_closed_ls) path = None if show_animation: # draw the searching process draw(org_array, goal_array, start, end, bound) if flag == 0: node_intersect = check_node_coincide(org_closed, goal_closed) if node_intersect: # a path is find path = get_path(org_closed, goal_closed, node_intersect[0]) stop_loop = 1 print('Path found!') if show_animation: # draw the path plt.plot(path[:, 0], path[:, 1], '-r') plt.title('Robot Arrived', size=20, loc='center') plt.pause(0.01) plt.show() elif flag == 1: # start point blocked first stop_loop = 1 print('There is no path to the goal! Start point is blocked!') elif flag == 2: # end point blocked first stop_loop = 1 print('There is no path to the goal! End point is blocked!') if show_animation: # blocked case, draw the border line info = 'There is no path to the goal!' \ ' Robot&Goal are split by border' \ ' shown in red \'x\'!' if flag == 1: border = get_border_line(org_closed, obstacle) plt.plot(border[:, 0], border[:, 1], 'xr') plt.title(info, size=14, loc='center') plt.pause(0.01) plt.show() elif flag == 2: border = get_border_line(goal_closed, obstacle) plt.plot(border[:, 0], border[:, 1], 'xr') plt.title(info, size=14, loc='center') plt.pause(0.01) plt.show() return stop_loop, path
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L251-L298
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 25, 28, 29, 30, 31, 47 ]
54.166667
[ 13, 21, 22, 23, 24, 26, 27, 32, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46 ]
41.666667
false
78.991597
48
10
58.333333
3
def draw_control(org_closed, goal_closed, flag, start, end, bound, obstacle): stop_loop = 0 # stop sign for the searching org_closed_ls = node_to_coordinate(org_closed) org_array = np.array(org_closed_ls) goal_closed_ls = node_to_coordinate(goal_closed) goal_array = np.array(goal_closed_ls) path = None if show_animation: # draw the searching process draw(org_array, goal_array, start, end, bound) if flag == 0: node_intersect = check_node_coincide(org_closed, goal_closed) if node_intersect: # a path is find path = get_path(org_closed, goal_closed, node_intersect[0]) stop_loop = 1 print('Path found!') if show_animation: # draw the path plt.plot(path[:, 0], path[:, 1], '-r') plt.title('Robot Arrived', size=20, loc='center') plt.pause(0.01) plt.show() elif flag == 1: # start point blocked first stop_loop = 1 print('There is no path to the goal! Start point is blocked!') elif flag == 2: # end point blocked first stop_loop = 1 print('There is no path to the goal! End point is blocked!') if show_animation: # blocked case, draw the border line info = 'There is no path to the goal!' \ ' Robot&Goal are split by border' \ ' shown in red \'x\'!' if flag == 1: border = get_border_line(org_closed, obstacle) plt.plot(border[:, 0], border[:, 1], 'xr') plt.title(info, size=14, loc='center') plt.pause(0.01) plt.show() elif flag == 2: border = get_border_line(goal_closed, obstacle) plt.plot(border[:, 0], border[:, 1], 'xr') plt.title(info, size=14, loc='center') plt.pause(0.01) plt.show() return stop_loop, path
1,250
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
searching_control
(start, end, bound, obstacle)
return path
manage the searching process, start searching from two side
manage the searching process, start searching from two side
301
345
def searching_control(start, end, bound, obstacle): """manage the searching process, start searching from two side""" # initial origin node and end node origin = Node(coordinate=start, H=hcost(start, end)) goal = Node(coordinate=end, H=hcost(end, start)) # list for searching from origin to goal origin_open: list = [origin] origin_close: list = [] # list for searching from goal to origin goal_open = [goal] goal_close: list = [] # initial target target_goal = end # flag = 0 (not blocked) 1 (start point blocked) 2 (end point blocked) flag = 0 # init flag path = None while True: # searching from start to end origin_open, origin_close = \ find_path(origin_open, origin_close, target_goal, bound) if not origin_open: # no path condition flag = 1 # origin node is blocked draw_control(origin_close, goal_close, flag, start, end, bound, obstacle) break # update target for searching from end to start target_origin = min(origin_open, key=lambda x: x.F).coordinate # searching from end to start goal_open, goal_close = \ find_path(goal_open, goal_close, target_origin, bound) if not goal_open: # no path condition flag = 2 # goal is blocked draw_control(origin_close, goal_close, flag, start, end, bound, obstacle) break # update target for searching from start to end target_goal = min(goal_open, key=lambda x: x.F).coordinate # continue searching, draw the process stop_sign, path = draw_control(origin_close, goal_close, flag, start, end, bound, obstacle) if stop_sign: break return path
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L301-L345
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44 ]
91.111111
[ 21, 22, 24 ]
6.666667
false
78.991597
45
5
93.333333
1
def searching_control(start, end, bound, obstacle): # initial origin node and end node origin = Node(coordinate=start, H=hcost(start, end)) goal = Node(coordinate=end, H=hcost(end, start)) # list for searching from origin to goal origin_open: list = [origin] origin_close: list = [] # list for searching from goal to origin goal_open = [goal] goal_close: list = [] # initial target target_goal = end # flag = 0 (not blocked) 1 (start point blocked) 2 (end point blocked) flag = 0 # init flag path = None while True: # searching from start to end origin_open, origin_close = \ find_path(origin_open, origin_close, target_goal, bound) if not origin_open: # no path condition flag = 1 # origin node is blocked draw_control(origin_close, goal_close, flag, start, end, bound, obstacle) break # update target for searching from end to start target_origin = min(origin_open, key=lambda x: x.F).coordinate # searching from end to start goal_open, goal_close = \ find_path(goal_open, goal_close, target_origin, bound) if not goal_open: # no path condition flag = 2 # goal is blocked draw_control(origin_close, goal_close, flag, start, end, bound, obstacle) break # update target for searching from start to end target_goal = min(goal_open, key=lambda x: x.F).coordinate # continue searching, draw the process stop_sign, path = draw_control(origin_close, goal_close, flag, start, end, bound, obstacle) if stop_sign: break return path
1,251
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
main
(obstacle_number=1500)
348
365
def main(obstacle_number=1500): print(__file__ + ' start!') top_vertex = [60, 60] # top right vertex of boundary bottom_vertex = [0, 0] # bottom left vertex of boundary # generate start and goal point randomly start = random_coordinate(bottom_vertex, top_vertex) end = random_coordinate(bottom_vertex, top_vertex) # generate boundary and obstacles bound, obstacle = boundary_and_obstacles(start, end, top_vertex, bottom_vertex, obstacle_number) path = searching_control(start, end, bound, obstacle) if not show_animation: print(path)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L348-L365
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17 ]
88.888889
[]
0
false
78.991597
18
2
100
0
def main(obstacle_number=1500): print(__file__ + ' start!') top_vertex = [60, 60] # top right vertex of boundary bottom_vertex = [0, 0] # bottom left vertex of boundary # generate start and goal point randomly start = random_coordinate(bottom_vertex, top_vertex) end = random_coordinate(bottom_vertex, top_vertex) # generate boundary and obstacles bound, obstacle = boundary_and_obstacles(start, end, top_vertex, bottom_vertex, obstacle_number) path = searching_control(start, end, bound, obstacle) if not show_animation: print(path)
1,252
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
Node.__init__
(self, G=0, H=0, coordinate=None, parent=None)
18
23
def __init__(self, G=0, H=0, coordinate=None, parent=None): self.G = G self.H = H self.F = G + H self.parent = parent self.coordinate = coordinate
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L18-L23
2
[ 0, 1, 2, 3, 4, 5 ]
100
[]
0
true
78.991597
6
1
100
0
def __init__(self, G=0, H=0, coordinate=None, parent=None): self.G = G self.H = H self.F = G + H self.parent = parent self.coordinate = coordinate
1,253
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star_searching_from_two_side.py
Node.reset_f
(self)
25
26
def reset_f(self): self.F = self.G + self.H
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star_searching_from_two_side.py#L25-L26
2
[ 0, 1 ]
100
[]
0
true
78.991597
2
1
100
0
def reset_f(self): self.F = self.G + self.H
1,254
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star.py
main
()
233
278
def main(): print(__file__ + " start!!") # start and goal position sx = 10.0 # [m] sy = 10.0 # [m] gx = 50.0 # [m] gy = 50.0 # [m] grid_size = 2.0 # [m] robot_radius = 1.0 # [m] # set obstacle positions ox, oy = [], [] for i in range(-10, 60): ox.append(i) oy.append(-10.0) for i in range(-10, 60): ox.append(60.0) oy.append(i) for i in range(-10, 61): ox.append(i) oy.append(60.0) for i in range(-10, 61): ox.append(-10.0) oy.append(i) for i in range(-10, 40): ox.append(20.0) oy.append(i) for i in range(0, 40): ox.append(40.0) oy.append(60.0 - i) if show_animation: # pragma: no cover plt.plot(ox, oy, ".k") plt.plot(sx, sy, "og") plt.plot(gx, gy, "xb") plt.grid(True) plt.axis("equal") a_star = AStarPlanner(ox, oy, grid_size, robot_radius) rx, ry = a_star.planning(sx, sy, gx, gy) if show_animation: # pragma: no cover plt.plot(rx, ry, "-r") plt.pause(0.001) plt.show()
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star.py#L233-L278
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 38, 39, 40, 41 ]
100
[]
0
true
95.172414
46
9
100
0
def main(): print(__file__ + " start!!") # start and goal position sx = 10.0 # [m] sy = 10.0 # [m] gx = 50.0 # [m] gy = 50.0 # [m] grid_size = 2.0 # [m] robot_radius = 1.0 # [m] # set obstacle positions ox, oy = [], [] for i in range(-10, 60): ox.append(i) oy.append(-10.0) for i in range(-10, 60): ox.append(60.0) oy.append(i) for i in range(-10, 61): ox.append(i) oy.append(60.0) for i in range(-10, 61): ox.append(-10.0) oy.append(i) for i in range(-10, 40): ox.append(20.0) oy.append(i) for i in range(0, 40): ox.append(40.0) oy.append(60.0 - i) if show_animation: # pragma: no cover plt.plot(ox, oy, ".k") plt.plot(sx, sy, "og") plt.plot(gx, gy, "xb") plt.grid(True) plt.axis("equal") a_star = AStarPlanner(ox, oy, grid_size, robot_radius) rx, ry = a_star.planning(sx, sy, gx, gy) if show_animation: # pragma: no cover plt.plot(rx, ry, "-r") plt.pause(0.001) plt.show()
1,255
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star.py
AStarPlanner.__init__
(self, ox, oy, resolution, rr)
Initialize grid map for a star planning ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] resolution: grid resolution [m] rr: robot radius[m]
Initialize grid map for a star planning
21
38
def __init__(self, ox, oy, resolution, rr): """ Initialize grid map for a star planning ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] resolution: grid resolution [m] rr: robot radius[m] """ self.resolution = resolution self.rr = rr self.min_x, self.min_y = 0, 0 self.max_x, self.max_y = 0, 0 self.obstacle_map = None self.x_width, self.y_width = 0, 0 self.motion = self.get_motion_model() self.calc_obstacle_map(ox, oy)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star.py#L21-L38
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ]
100
[]
0
true
95.172414
18
1
100
6
def __init__(self, ox, oy, resolution, rr): self.resolution = resolution self.rr = rr self.min_x, self.min_y = 0, 0 self.max_x, self.max_y = 0, 0 self.obstacle_map = None self.x_width, self.y_width = 0, 0 self.motion = self.get_motion_model() self.calc_obstacle_map(ox, oy)
1,256
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star.py
AStarPlanner.planning
(self, sx, sy, gx, gy)
return rx, ry
A star path search input: s_x: start x position [m] s_y: start y position [m] gx: goal x position [m] gy: goal y position [m] output: rx: x position list of the final path ry: y position list of the final path
A star path search
51
132
def planning(self, sx, sy, gx, gy): """ A star path search input: s_x: start x position [m] s_y: start y position [m] gx: goal x position [m] gy: goal y position [m] output: rx: x position list of the final path ry: y position list of the final path """ start_node = self.Node(self.calc_xy_index(sx, self.min_x), self.calc_xy_index(sy, self.min_y), 0.0, -1) goal_node = self.Node(self.calc_xy_index(gx, self.min_x), self.calc_xy_index(gy, self.min_y), 0.0, -1) open_set, closed_set = dict(), dict() open_set[self.calc_grid_index(start_node)] = start_node while True: if len(open_set) == 0: print("Open set is empty..") break c_id = min( open_set, key=lambda o: open_set[o].cost + self.calc_heuristic(goal_node, open_set[ o])) current = open_set[c_id] # show graph if show_animation: # pragma: no cover plt.plot(self.calc_grid_position(current.x, self.min_x), self.calc_grid_position(current.y, self.min_y), "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit( 0) if event.key == 'escape' else None]) if len(closed_set.keys()) % 10 == 0: plt.pause(0.001) if current.x == goal_node.x and current.y == goal_node.y: print("Find goal") goal_node.parent_index = current.parent_index goal_node.cost = current.cost break # Remove the item from the open set del open_set[c_id] # Add it to the closed set closed_set[c_id] = current # expand_grid search grid based on motion model for i, _ in enumerate(self.motion): node = self.Node(current.x + self.motion[i][0], current.y + self.motion[i][1], current.cost + self.motion[i][2], c_id) n_id = self.calc_grid_index(node) # If the node is not safe, do nothing if not self.verify_node(node): continue if n_id in closed_set: continue if n_id not in open_set: open_set[n_id] = node # discovered a new node else: if open_set[n_id].cost > node.cost: # This path is the best until now. record it open_set[n_id] = node rx, ry = self.calc_final_path(goal_node, closed_set) return rx, ry
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star.py#L51-L132
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81 ]
103.896104
[ 25, 26 ]
2.597403
false
95.172414
82
12
97.402597
11
def planning(self, sx, sy, gx, gy): start_node = self.Node(self.calc_xy_index(sx, self.min_x), self.calc_xy_index(sy, self.min_y), 0.0, -1) goal_node = self.Node(self.calc_xy_index(gx, self.min_x), self.calc_xy_index(gy, self.min_y), 0.0, -1) open_set, closed_set = dict(), dict() open_set[self.calc_grid_index(start_node)] = start_node while True: if len(open_set) == 0: print("Open set is empty..") break c_id = min( open_set, key=lambda o: open_set[o].cost + self.calc_heuristic(goal_node, open_set[ o])) current = open_set[c_id] # show graph if show_animation: # pragma: no cover plt.plot(self.calc_grid_position(current.x, self.min_x), self.calc_grid_position(current.y, self.min_y), "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit( 0) if event.key == 'escape' else None]) if len(closed_set.keys()) % 10 == 0: plt.pause(0.001) if current.x == goal_node.x and current.y == goal_node.y: print("Find goal") goal_node.parent_index = current.parent_index goal_node.cost = current.cost break # Remove the item from the open set del open_set[c_id] # Add it to the closed set closed_set[c_id] = current # expand_grid search grid based on motion model for i, _ in enumerate(self.motion): node = self.Node(current.x + self.motion[i][0], current.y + self.motion[i][1], current.cost + self.motion[i][2], c_id) n_id = self.calc_grid_index(node) # If the node is not safe, do nothing if not self.verify_node(node): continue if n_id in closed_set: continue if n_id not in open_set: open_set[n_id] = node # discovered a new node else: if open_set[n_id].cost > node.cost: # This path is the best until now. record it open_set[n_id] = node rx, ry = self.calc_final_path(goal_node, closed_set) return rx, ry
1,257
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star.py
AStarPlanner.calc_final_path
(self, goal_node, closed_set)
return rx, ry
134
145
def calc_final_path(self, goal_node, closed_set): # generate final course rx, ry = [self.calc_grid_position(goal_node.x, self.min_x)], [ self.calc_grid_position(goal_node.y, self.min_y)] parent_index = goal_node.parent_index while parent_index != -1: n = closed_set[parent_index] rx.append(self.calc_grid_position(n.x, self.min_x)) ry.append(self.calc_grid_position(n.y, self.min_y)) parent_index = n.parent_index return rx, ry
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star.py#L134-L145
2
[ 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11 ]
91.666667
[]
0
false
95.172414
12
2
100
0
def calc_final_path(self, goal_node, closed_set): # generate final course rx, ry = [self.calc_grid_position(goal_node.x, self.min_x)], [ self.calc_grid_position(goal_node.y, self.min_y)] parent_index = goal_node.parent_index while parent_index != -1: n = closed_set[parent_index] rx.append(self.calc_grid_position(n.x, self.min_x)) ry.append(self.calc_grid_position(n.y, self.min_y)) parent_index = n.parent_index return rx, ry
1,258
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star.py
AStarPlanner.calc_heuristic
(n1, n2)
return d
148
151
def calc_heuristic(n1, n2): w = 1.0 # weight of heuristic d = w * math.hypot(n1.x - n2.x, n1.y - n2.y) return d
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star.py#L148-L151
2
[ 0, 1, 2, 3 ]
100
[]
0
true
95.172414
4
1
100
0
def calc_heuristic(n1, n2): w = 1.0 # weight of heuristic d = w * math.hypot(n1.x - n2.x, n1.y - n2.y) return d
1,259
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star.py
AStarPlanner.calc_grid_position
(self, index, min_position)
return pos
calc grid position :param index: :param min_position: :return:
calc grid position
153
162
def calc_grid_position(self, index, min_position): """ calc grid position :param index: :param min_position: :return: """ pos = index * self.resolution + min_position return pos
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star.py#L153-L162
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
100
[]
0
true
95.172414
10
1
100
5
def calc_grid_position(self, index, min_position): pos = index * self.resolution + min_position return pos
1,260
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star.py
AStarPlanner.calc_xy_index
(self, position, min_pos)
return round((position - min_pos) / self.resolution)
164
165
def calc_xy_index(self, position, min_pos): return round((position - min_pos) / self.resolution)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star.py#L164-L165
2
[ 0, 1 ]
100
[]
0
true
95.172414
2
1
100
0
def calc_xy_index(self, position, min_pos): return round((position - min_pos) / self.resolution)
1,261
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star.py
AStarPlanner.calc_grid_index
(self, node)
return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)
167
168
def calc_grid_index(self, node): return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star.py#L167-L168
2
[ 0, 1 ]
100
[]
0
true
95.172414
2
1
100
0
def calc_grid_index(self, node): return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)
1,262
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star.py
AStarPlanner.verify_node
(self, node)
return True
170
187
def verify_node(self, node): px = self.calc_grid_position(node.x, self.min_x) py = self.calc_grid_position(node.y, self.min_y) if px < self.min_x: return False elif py < self.min_y: return False elif px >= self.max_x: return False elif py >= self.max_y: return False # collision check if self.obstacle_map[node.x][node.y]: return False return True
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star.py#L170-L187
2
[ 0, 1, 2, 3, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17 ]
83.333333
[ 5, 7, 9 ]
16.666667
false
95.172414
18
6
83.333333
0
def verify_node(self, node): px = self.calc_grid_position(node.x, self.min_x) py = self.calc_grid_position(node.y, self.min_y) if px < self.min_x: return False elif py < self.min_y: return False elif px >= self.max_x: return False elif py >= self.max_y: return False # collision check if self.obstacle_map[node.x][node.y]: return False return True
1,263
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star.py
AStarPlanner.calc_obstacle_map
(self, ox, oy)
189
216
def calc_obstacle_map(self, ox, oy): self.min_x = round(min(ox)) self.min_y = round(min(oy)) self.max_x = round(max(ox)) self.max_y = round(max(oy)) print("min_x:", self.min_x) print("min_y:", self.min_y) print("max_x:", self.max_x) print("max_y:", self.max_y) self.x_width = round((self.max_x - self.min_x) / self.resolution) self.y_width = round((self.max_y - self.min_y) / self.resolution) print("x_width:", self.x_width) print("y_width:", self.y_width) # obstacle map generation self.obstacle_map = [[False for _ in range(self.y_width)] for _ in range(self.x_width)] for ix in range(self.x_width): x = self.calc_grid_position(ix, self.min_x) for iy in range(self.y_width): y = self.calc_grid_position(iy, self.min_y) for iox, ioy in zip(ox, oy): d = math.hypot(iox - x, ioy - y) if d <= self.rr: self.obstacle_map[ix][iy] = True break
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star.py#L189-L216
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27 ]
96.428571
[]
0
false
95.172414
28
7
100
0
def calc_obstacle_map(self, ox, oy): self.min_x = round(min(ox)) self.min_y = round(min(oy)) self.max_x = round(max(ox)) self.max_y = round(max(oy)) print("min_x:", self.min_x) print("min_y:", self.min_y) print("max_x:", self.max_x) print("max_y:", self.max_y) self.x_width = round((self.max_x - self.min_x) / self.resolution) self.y_width = round((self.max_y - self.min_y) / self.resolution) print("x_width:", self.x_width) print("y_width:", self.y_width) # obstacle map generation self.obstacle_map = [[False for _ in range(self.y_width)] for _ in range(self.x_width)] for ix in range(self.x_width): x = self.calc_grid_position(ix, self.min_x) for iy in range(self.y_width): y = self.calc_grid_position(iy, self.min_y) for iox, ioy in zip(ox, oy): d = math.hypot(iox - x, ioy - y) if d <= self.rr: self.obstacle_map[ix][iy] = True break
1,264
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/AStar/a_star.py
AStarPlanner.get_motion_model
()
return motion
219
230
def get_motion_model(): # dx, dy, cost motion = [[1, 0, 1], [0, 1, 1], [-1, 0, 1], [0, -1, 1], [-1, -1, math.sqrt(2)], [-1, 1, math.sqrt(2)], [1, -1, math.sqrt(2)], [1, 1, math.sqrt(2)]] return motion
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/AStar/a_star.py#L219-L230
2
[ 0, 1, 2, 10, 11 ]
41.666667
[]
0
false
95.172414
12
1
100
0
def get_motion_model(): # dx, dy, cost motion = [[1, 0, 1], [0, 1, 1], [-1, 0, 1], [0, -1, 1], [-1, -1, math.sqrt(2)], [-1, 1, math.sqrt(2)], [1, -1, math.sqrt(2)], [1, 1, math.sqrt(2)]] return motion
1,265
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTDubins/rrt_dubins.py
main
()
208
234
def main(): print("Start " + __file__) # ====Search Path with RRT==== obstacleList = [ (5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2), (9, 5, 2) ] # [x,y,size(radius)] # Set Initial parameters start = [0.0, 0.0, np.deg2rad(0.0)] goal = [10.0, 10.0, np.deg2rad(0.0)] rrt_dubins = RRTDubins(start, goal, obstacleList, [-2.0, 15.0]) path = rrt_dubins.planning(animation=show_animation) # Draw final path if show_animation: # pragma: no cover rrt_dubins.draw_graph() plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.grid(True) plt.pause(0.001) plt.show()
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTDubins/rrt_dubins.py#L208-L234
2
[ 0, 1, 2, 3, 4, 13, 14, 15, 16, 17, 18, 19, 20 ]
61.904762
[]
0
false
88.288288
27
4
100
0
def main(): print("Start " + __file__) # ====Search Path with RRT==== obstacleList = [ (5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2), (9, 5, 2) ] # [x,y,size(radius)] # Set Initial parameters start = [0.0, 0.0, np.deg2rad(0.0)] goal = [10.0, 10.0, np.deg2rad(0.0)] rrt_dubins = RRTDubins(start, goal, obstacleList, [-2.0, 15.0]) path = rrt_dubins.planning(animation=show_animation) # Draw final path if show_animation: # pragma: no cover rrt_dubins.draw_graph() plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.grid(True) plt.pause(0.001) plt.show()
1,266
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTDubins/rrt_dubins.py
RRTDubins.__init__
(self, start, goal, obstacle_list, rand_area, goal_sample_rate=10, max_iter=200, robot_radius=0.0 )
Setting Parameter start:Start Position [x,y] goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Random Sampling Area [min,max] robot_radius: robot body modeled as circle with given radius
Setting Parameter
40
66
def __init__(self, start, goal, obstacle_list, rand_area, goal_sample_rate=10, max_iter=200, robot_radius=0.0 ): """ Setting Parameter start:Start Position [x,y] goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Random Sampling Area [min,max] robot_radius: robot body modeled as circle with given radius """ self.start = self.Node(start[0], start[1], start[2]) self.end = self.Node(goal[0], goal[1], goal[2]) self.min_rand = rand_area[0] self.max_rand = rand_area[1] self.goal_sample_rate = goal_sample_rate self.max_iter = max_iter self.obstacle_list = obstacle_list self.curvature = 1.0 # for dubins path self.goal_yaw_th = np.deg2rad(1.0) self.goal_xy_th = 0.5 self.robot_radius = robot_radius
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTDubins/rrt_dubins.py#L40-L66
2
[ 0, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 ]
51.851852
[]
0
false
88.288288
27
1
100
7
def __init__(self, start, goal, obstacle_list, rand_area, goal_sample_rate=10, max_iter=200, robot_radius=0.0 ): self.start = self.Node(start[0], start[1], start[2]) self.end = self.Node(goal[0], goal[1], goal[2]) self.min_rand = rand_area[0] self.max_rand = rand_area[1] self.goal_sample_rate = goal_sample_rate self.max_iter = max_iter self.obstacle_list = obstacle_list self.curvature = 1.0 # for dubins path self.goal_yaw_th = np.deg2rad(1.0) self.goal_xy_th = 0.5 self.robot_radius = robot_radius
1,267
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTDubins/rrt_dubins.py
RRTDubins.planning
(self, animation=True, search_until_max_iter=True)
return None
execute planning animation: flag for animation on or off
execute planning
68
103
def planning(self, animation=True, search_until_max_iter=True): """ execute planning animation: flag for animation on or off """ self.node_list = [self.start] for i in range(self.max_iter): print("Iter:", i, ", number of nodes:", len(self.node_list)) rnd = self.get_random_node() nearest_ind = self.get_nearest_node_index(self.node_list, rnd) new_node = self.steer(self.node_list[nearest_ind], rnd) if self.check_collision( new_node, self.obstacle_list, self.robot_radius): self.node_list.append(new_node) if animation and i % 5 == 0: self.plot_start_goal_arrow() self.draw_graph(rnd) if (not search_until_max_iter) and new_node: # check reaching the goal last_index = self.search_best_goal_node() if last_index: return self.generate_final_course(last_index) print("reached max iteration") last_index = self.search_best_goal_node() if last_index: return self.generate_final_course(last_index) else: print("Cannot find path") return None
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTDubins/rrt_dubins.py#L68-L103
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 26, 27, 28, 29, 30, 31, 32 ]
77.777778
[ 19, 20, 23, 24, 25, 33, 35 ]
19.444444
false
88.288288
36
9
80.555556
3
def planning(self, animation=True, search_until_max_iter=True): self.node_list = [self.start] for i in range(self.max_iter): print("Iter:", i, ", number of nodes:", len(self.node_list)) rnd = self.get_random_node() nearest_ind = self.get_nearest_node_index(self.node_list, rnd) new_node = self.steer(self.node_list[nearest_ind], rnd) if self.check_collision( new_node, self.obstacle_list, self.robot_radius): self.node_list.append(new_node) if animation and i % 5 == 0: self.plot_start_goal_arrow() self.draw_graph(rnd) if (not search_until_max_iter) and new_node: # check reaching the goal last_index = self.search_best_goal_node() if last_index: return self.generate_final_course(last_index) print("reached max iteration") last_index = self.search_best_goal_node() if last_index: return self.generate_final_course(last_index) else: print("Cannot find path") return None
1,268
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTDubins/rrt_dubins.py
RRTDubins.draw_graph
(self, rnd=None)
105
124
def draw_graph(self, rnd=None): # pragma: no cover plt.clf() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if rnd is not None: plt.plot(rnd.x, rnd.y, "^k") for node in self.node_list: if node.parent: plt.plot(node.path_x, node.path_y, "-g") for (ox, oy, size) in self.obstacle_list: plt.plot(ox, oy, "ok", ms=30 * size) plt.plot(self.start.x, self.start.y, "xr") plt.plot(self.end.x, self.end.y, "xr") plt.axis([-2, 15, -2, 15]) plt.grid(True) self.plot_start_goal_arrow() plt.pause(0.01)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTDubins/rrt_dubins.py#L105-L124
2
[]
0
[]
0
false
88.288288
20
5
100
0
def draw_graph(self, rnd=None): # pragma: no cover plt.clf() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if rnd is not None: plt.plot(rnd.x, rnd.y, "^k") for node in self.node_list: if node.parent: plt.plot(node.path_x, node.path_y, "-g") for (ox, oy, size) in self.obstacle_list: plt.plot(ox, oy, "ok", ms=30 * size) plt.plot(self.start.x, self.start.y, "xr") plt.plot(self.end.x, self.end.y, "xr") plt.axis([-2, 15, -2, 15]) plt.grid(True) self.plot_start_goal_arrow() plt.pause(0.01)
1,269
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTDubins/rrt_dubins.py
RRTDubins.plot_start_goal_arrow
(self)
126
128
def plot_start_goal_arrow(self): # pragma: no cover plot_arrow(self.start.x, self.start.y, self.start.yaw) plot_arrow(self.end.x, self.end.y, self.end.yaw)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTDubins/rrt_dubins.py#L126-L128
2
[]
0
[]
0
false
88.288288
3
1
100
0
def plot_start_goal_arrow(self): # pragma: no cover plot_arrow(self.start.x, self.start.y, self.start.yaw) plot_arrow(self.end.x, self.end.y, self.end.yaw)
1,270
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTDubins/rrt_dubins.py
RRTDubins.steer
(self, from_node, to_node)
return new_node
130
151
def steer(self, from_node, to_node): px, py, pyaw, mode, course_lengths = \ dubins_path_planner.plan_dubins_path( from_node.x, from_node.y, from_node.yaw, to_node.x, to_node.y, to_node.yaw, self.curvature) if len(px) <= 1: # cannot find a dubins path return None new_node = copy.deepcopy(from_node) new_node.x = px[-1] new_node.y = py[-1] new_node.yaw = pyaw[-1] new_node.path_x = px new_node.path_y = py new_node.path_yaw = pyaw new_node.cost += sum([abs(c) for c in course_lengths]) new_node.parent = from_node return new_node
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTDubins/rrt_dubins.py#L130-L151
2
[ 0, 1, 2, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 ]
81.818182
[ 8 ]
4.545455
false
88.288288
22
3
95.454545
0
def steer(self, from_node, to_node): px, py, pyaw, mode, course_lengths = \ dubins_path_planner.plan_dubins_path( from_node.x, from_node.y, from_node.yaw, to_node.x, to_node.y, to_node.yaw, self.curvature) if len(px) <= 1: # cannot find a dubins path return None new_node = copy.deepcopy(from_node) new_node.x = px[-1] new_node.y = py[-1] new_node.yaw = pyaw[-1] new_node.path_x = px new_node.path_y = py new_node.path_yaw = pyaw new_node.cost += sum([abs(c) for c in course_lengths]) new_node.parent = from_node return new_node
1,271
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTDubins/rrt_dubins.py
RRTDubins.calc_new_cost
(self, from_node, to_node)
return from_node.cost + course_length
153
159
def calc_new_cost(self, from_node, to_node): _, _, _, _, course_length = dubins_path_planner.plan_dubins_path( from_node.x, from_node.y, from_node.yaw, to_node.x, to_node.y, to_node.yaw, self.curvature) return from_node.cost + course_length
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTDubins/rrt_dubins.py#L153-L159
2
[ 0, 1 ]
28.571429
[ 2, 6 ]
28.571429
false
88.288288
7
1
71.428571
0
def calc_new_cost(self, from_node, to_node): _, _, _, _, course_length = dubins_path_planner.plan_dubins_path( from_node.x, from_node.y, from_node.yaw, to_node.x, to_node.y, to_node.yaw, self.curvature) return from_node.cost + course_length
1,272
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTDubins/rrt_dubins.py
RRTDubins.get_random_node
(self)
return rnd
161
171
def get_random_node(self): if random.randint(0, 100) > self.goal_sample_rate: rnd = self.Node(random.uniform(self.min_rand, self.max_rand), random.uniform(self.min_rand, self.max_rand), random.uniform(-math.pi, math.pi) ) else: # goal point sampling rnd = self.Node(self.end.x, self.end.y, self.end.yaw) return rnd
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTDubins/rrt_dubins.py#L161-L171
2
[ 0, 1, 2, 3, 8, 9, 10 ]
63.636364
[]
0
false
88.288288
11
2
100
0
def get_random_node(self): if random.randint(0, 100) > self.goal_sample_rate: rnd = self.Node(random.uniform(self.min_rand, self.max_rand), random.uniform(self.min_rand, self.max_rand), random.uniform(-math.pi, math.pi) ) else: # goal point sampling rnd = self.Node(self.end.x, self.end.y, self.end.yaw) return rnd
1,273
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTDubins/rrt_dubins.py
RRTDubins.search_best_goal_node
(self)
return None
173
194
def search_best_goal_node(self): goal_indexes = [] for (i, node) in enumerate(self.node_list): if self.calc_dist_to_goal(node.x, node.y) <= self.goal_xy_th: goal_indexes.append(i) # angle check final_goal_indexes = [] for i in goal_indexes: if abs(self.node_list[i].yaw - self.end.yaw) <= self.goal_yaw_th: final_goal_indexes.append(i) if not final_goal_indexes: return None min_cost = min([self.node_list[i].cost for i in final_goal_indexes]) for i in final_goal_indexes: if self.node_list[i].cost == min_cost: return i return None
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTDubins/rrt_dubins.py#L173-L194
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20 ]
90.909091
[ 14, 21 ]
9.090909
false
88.288288
22
9
90.909091
0
def search_best_goal_node(self): goal_indexes = [] for (i, node) in enumerate(self.node_list): if self.calc_dist_to_goal(node.x, node.y) <= self.goal_xy_th: goal_indexes.append(i) # angle check final_goal_indexes = [] for i in goal_indexes: if abs(self.node_list[i].yaw - self.end.yaw) <= self.goal_yaw_th: final_goal_indexes.append(i) if not final_goal_indexes: return None min_cost = min([self.node_list[i].cost for i in final_goal_indexes]) for i in final_goal_indexes: if self.node_list[i].cost == min_cost: return i return None
1,274
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTDubins/rrt_dubins.py
RRTDubins.generate_final_course
(self, goal_index)
return path
196
205
def generate_final_course(self, goal_index): print("final") path = [[self.end.x, self.end.y]] node = self.node_list[goal_index] while node.parent: for (ix, iy) in zip(reversed(node.path_x), reversed(node.path_y)): path.append([ix, iy]) node = node.parent path.append([self.start.x, self.start.y]) return path
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTDubins/rrt_dubins.py#L196-L205
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
100
[]
0
true
88.288288
10
3
100
0
def generate_final_course(self, goal_index): print("final") path = [[self.end.x, self.end.y]] node = self.node_list[goal_index] while node.parent: for (ix, iy) in zip(reversed(node.path_x), reversed(node.path_y)): path.append([ix, iy]) node = node.parent path.append([self.start.x, self.start.y]) return path
1,275
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/DepthFirstSearch/depth_first_search.py
main
()
206
251
def main(): print(__file__ + " start!!") # start and goal position sx = 10.0 # [m] sy = 10.0 # [m] gx = 50.0 # [m] gy = 50.0 # [m] grid_size = 2.0 # [m] robot_radius = 1.0 # [m] # set obstacle positions ox, oy = [], [] for i in range(-10, 60): ox.append(i) oy.append(-10.0) for i in range(-10, 60): ox.append(60.0) oy.append(i) for i in range(-10, 61): ox.append(i) oy.append(60.0) for i in range(-10, 61): ox.append(-10.0) oy.append(i) for i in range(-10, 40): ox.append(20.0) oy.append(i) for i in range(0, 40): ox.append(40.0) oy.append(60.0 - i) if show_animation: # pragma: no cover plt.plot(ox, oy, ".k") plt.plot(sx, sy, "og") plt.plot(gx, gy, "xb") plt.grid(True) plt.axis("equal") dfs = DepthFirstSearchPlanner(ox, oy, grid_size, robot_radius) rx, ry = dfs.planning(sx, sy, gx, gy) if show_animation: # pragma: no cover plt.plot(rx, ry, "-r") plt.pause(0.01) plt.show()
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DepthFirstSearch/depth_first_search.py#L206-L251
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 38, 39, 40, 41 ]
100
[]
0
true
95.454545
46
9
100
0
def main(): print(__file__ + " start!!") # start and goal position sx = 10.0 # [m] sy = 10.0 # [m] gx = 50.0 # [m] gy = 50.0 # [m] grid_size = 2.0 # [m] robot_radius = 1.0 # [m] # set obstacle positions ox, oy = [], [] for i in range(-10, 60): ox.append(i) oy.append(-10.0) for i in range(-10, 60): ox.append(60.0) oy.append(i) for i in range(-10, 61): ox.append(i) oy.append(60.0) for i in range(-10, 61): ox.append(-10.0) oy.append(i) for i in range(-10, 40): ox.append(20.0) oy.append(i) for i in range(0, 40): ox.append(40.0) oy.append(60.0 - i) if show_animation: # pragma: no cover plt.plot(ox, oy, ".k") plt.plot(sx, sy, "og") plt.plot(gx, gy, "xb") plt.grid(True) plt.axis("equal") dfs = DepthFirstSearchPlanner(ox, oy, grid_size, robot_radius) rx, ry = dfs.planning(sx, sy, gx, gy) if show_animation: # pragma: no cover plt.plot(rx, ry, "-r") plt.pause(0.01) plt.show()
1,276
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/DepthFirstSearch/depth_first_search.py
DepthFirstSearchPlanner.__init__
(self, ox, oy, reso, rr)
Initialize grid map for Depth-First planning ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] resolution: grid resolution [m] rr: robot radius[m]
Initialize grid map for Depth-First planning
20
33
def __init__(self, ox, oy, reso, rr): """ Initialize grid map for Depth-First planning ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] resolution: grid resolution [m] rr: robot radius[m] """ self.reso = reso self.rr = rr self.calc_obstacle_map(ox, oy) self.motion = self.get_motion_model()
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DepthFirstSearch/depth_first_search.py#L20-L33
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ]
100
[]
0
true
95.454545
14
1
100
6
def __init__(self, ox, oy, reso, rr): self.reso = reso self.rr = rr self.calc_obstacle_map(ox, oy) self.motion = self.get_motion_model()
1,277
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/DepthFirstSearch/depth_first_search.py
DepthFirstSearchPlanner.planning
(self, sx, sy, gx, gy)
return rx, ry
Depth First search input: s_x: start x position [m] s_y: start y position [m] gx: goal x position [m] gy: goal y position [m] output: rx: x position list of the final path ry: y position list of the final path
Depth First search
47
112
def planning(self, sx, sy, gx, gy): """ Depth First search input: s_x: start x position [m] s_y: start y position [m] gx: goal x position [m] gy: goal y position [m] output: rx: x position list of the final path ry: y position list of the final path """ nstart = self.Node(self.calc_xyindex(sx, self.minx), self.calc_xyindex(sy, self.miny), 0.0, -1, None) ngoal = self.Node(self.calc_xyindex(gx, self.minx), self.calc_xyindex(gy, self.miny), 0.0, -1, None) open_set, closed_set = dict(), dict() open_set[self.calc_grid_index(nstart)] = nstart while True: if len(open_set) == 0: print("Open set is empty..") break current = open_set.pop(list(open_set.keys())[-1]) c_id = self.calc_grid_index(current) # show graph if show_animation: # pragma: no cover plt.plot(self.calc_grid_position(current.x, self.minx), self.calc_grid_position(current.y, self.miny), "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) plt.pause(0.01) if current.x == ngoal.x and current.y == ngoal.y: print("Find goal") ngoal.parent_index = current.parent_index ngoal.cost = current.cost break # expand_grid search grid based on motion model for i, _ in enumerate(self.motion): node = self.Node(current.x + self.motion[i][0], current.y + self.motion[i][1], current.cost + self.motion[i][2], c_id, None) n_id = self.calc_grid_index(node) # If the node is not safe, do nothing if not self.verify_node(node): continue if n_id not in closed_set: open_set[n_id] = node closed_set[n_id] = node node.parent = current rx, ry = self.calc_final_path(ngoal, closed_set) return rx, ry
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DepthFirstSearch/depth_first_search.py#L47-L112
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65 ]
103.225806
[ 25, 26 ]
3.225806
false
95.454545
66
9
96.774194
11
def planning(self, sx, sy, gx, gy): nstart = self.Node(self.calc_xyindex(sx, self.minx), self.calc_xyindex(sy, self.miny), 0.0, -1, None) ngoal = self.Node(self.calc_xyindex(gx, self.minx), self.calc_xyindex(gy, self.miny), 0.0, -1, None) open_set, closed_set = dict(), dict() open_set[self.calc_grid_index(nstart)] = nstart while True: if len(open_set) == 0: print("Open set is empty..") break current = open_set.pop(list(open_set.keys())[-1]) c_id = self.calc_grid_index(current) # show graph if show_animation: # pragma: no cover plt.plot(self.calc_grid_position(current.x, self.minx), self.calc_grid_position(current.y, self.miny), "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) plt.pause(0.01) if current.x == ngoal.x and current.y == ngoal.y: print("Find goal") ngoal.parent_index = current.parent_index ngoal.cost = current.cost break # expand_grid search grid based on motion model for i, _ in enumerate(self.motion): node = self.Node(current.x + self.motion[i][0], current.y + self.motion[i][1], current.cost + self.motion[i][2], c_id, None) n_id = self.calc_grid_index(node) # If the node is not safe, do nothing if not self.verify_node(node): continue if n_id not in closed_set: open_set[n_id] = node closed_set[n_id] = node node.parent = current rx, ry = self.calc_final_path(ngoal, closed_set) return rx, ry
1,278
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/DepthFirstSearch/depth_first_search.py
DepthFirstSearchPlanner.calc_final_path
(self, ngoal, closedset)
return rx, ry
114
124
def calc_final_path(self, ngoal, closedset): # generate final course rx, ry = [self.calc_grid_position(ngoal.x, self.minx)], [ self.calc_grid_position(ngoal.y, self.miny)] n = closedset[ngoal.parent_index] while n is not None: rx.append(self.calc_grid_position(n.x, self.minx)) ry.append(self.calc_grid_position(n.y, self.miny)) n = n.parent return rx, ry
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DepthFirstSearch/depth_first_search.py#L114-L124
2
[ 0, 1, 2, 4, 5, 6, 7, 8, 9, 10 ]
90.909091
[]
0
false
95.454545
11
2
100
0
def calc_final_path(self, ngoal, closedset): # generate final course rx, ry = [self.calc_grid_position(ngoal.x, self.minx)], [ self.calc_grid_position(ngoal.y, self.miny)] n = closedset[ngoal.parent_index] while n is not None: rx.append(self.calc_grid_position(n.x, self.minx)) ry.append(self.calc_grid_position(n.y, self.miny)) n = n.parent return rx, ry
1,279
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/DepthFirstSearch/depth_first_search.py
DepthFirstSearchPlanner.calc_grid_position
(self, index, minp)
return pos
calc grid position :param index: :param minp: :return:
calc grid position
126
135
def calc_grid_position(self, index, minp): """ calc grid position :param index: :param minp: :return: """ pos = index * self.reso + minp return pos
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DepthFirstSearch/depth_first_search.py#L126-L135
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
100
[]
0
true
95.454545
10
1
100
5
def calc_grid_position(self, index, minp): pos = index * self.reso + minp return pos
1,280
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/DepthFirstSearch/depth_first_search.py
DepthFirstSearchPlanner.calc_xyindex
(self, position, min_pos)
return round((position - min_pos) / self.reso)
137
138
def calc_xyindex(self, position, min_pos): return round((position - min_pos) / self.reso)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DepthFirstSearch/depth_first_search.py#L137-L138
2
[ 0, 1 ]
100
[]
0
true
95.454545
2
1
100
0
def calc_xyindex(self, position, min_pos): return round((position - min_pos) / self.reso)
1,281
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/DepthFirstSearch/depth_first_search.py
DepthFirstSearchPlanner.calc_grid_index
(self, node)
return (node.y - self.miny) * self.xwidth + (node.x - self.minx)
140
141
def calc_grid_index(self, node): return (node.y - self.miny) * self.xwidth + (node.x - self.minx)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DepthFirstSearch/depth_first_search.py#L140-L141
2
[ 0, 1 ]
100
[]
0
true
95.454545
2
1
100
0
def calc_grid_index(self, node): return (node.y - self.miny) * self.xwidth + (node.x - self.minx)
1,282
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/DepthFirstSearch/depth_first_search.py
DepthFirstSearchPlanner.verify_node
(self, node)
return True
143
160
def verify_node(self, node): px = self.calc_grid_position(node.x, self.minx) py = self.calc_grid_position(node.y, self.miny) if px < self.minx: return False elif py < self.miny: return False elif px >= self.maxx: return False elif py >= self.maxy: return False # collision check if self.obmap[node.x][node.y]: return False return True
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DepthFirstSearch/depth_first_search.py#L143-L160
2
[ 0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ]
88.888889
[ 5, 7 ]
11.111111
false
95.454545
18
6
88.888889
0
def verify_node(self, node): px = self.calc_grid_position(node.x, self.minx) py = self.calc_grid_position(node.y, self.miny) if px < self.minx: return False elif py < self.miny: return False elif px >= self.maxx: return False elif py >= self.maxy: return False # collision check if self.obmap[node.x][node.y]: return False return True
1,283
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/DepthFirstSearch/depth_first_search.py
DepthFirstSearchPlanner.calc_obstacle_map
(self, ox, oy)
162
189
def calc_obstacle_map(self, ox, oy): self.minx = round(min(ox)) self.miny = round(min(oy)) self.maxx = round(max(ox)) self.maxy = round(max(oy)) print("min_x:", self.minx) print("min_y:", self.miny) print("max_x:", self.maxx) print("max_y:", self.maxy) self.xwidth = round((self.maxx - self.minx) / self.reso) self.ywidth = round((self.maxy - self.miny) / self.reso) print("x_width:", self.xwidth) print("y_width:", self.ywidth) # obstacle map generation self.obmap = [[False for _ in range(self.ywidth)] for _ in range(self.xwidth)] for ix in range(self.xwidth): x = self.calc_grid_position(ix, self.minx) for iy in range(self.ywidth): y = self.calc_grid_position(iy, self.miny) for iox, ioy in zip(ox, oy): d = math.hypot(iox - x, ioy - y) if d <= self.rr: self.obmap[ix][iy] = True break
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DepthFirstSearch/depth_first_search.py#L162-L189
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27 ]
96.428571
[]
0
false
95.454545
28
7
100
0
def calc_obstacle_map(self, ox, oy): self.minx = round(min(ox)) self.miny = round(min(oy)) self.maxx = round(max(ox)) self.maxy = round(max(oy)) print("min_x:", self.minx) print("min_y:", self.miny) print("max_x:", self.maxx) print("max_y:", self.maxy) self.xwidth = round((self.maxx - self.minx) / self.reso) self.ywidth = round((self.maxy - self.miny) / self.reso) print("x_width:", self.xwidth) print("y_width:", self.ywidth) # obstacle map generation self.obmap = [[False for _ in range(self.ywidth)] for _ in range(self.xwidth)] for ix in range(self.xwidth): x = self.calc_grid_position(ix, self.minx) for iy in range(self.ywidth): y = self.calc_grid_position(iy, self.miny) for iox, ioy in zip(ox, oy): d = math.hypot(iox - x, ioy - y) if d <= self.rr: self.obmap[ix][iy] = True break
1,284
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/DepthFirstSearch/depth_first_search.py
DepthFirstSearchPlanner.get_motion_model
()
return motion
192
203
def get_motion_model(): # dx, dy, cost motion = [[1, 0, 1], [0, 1, 1], [-1, 0, 1], [0, -1, 1], [-1, -1, math.sqrt(2)], [-1, 1, math.sqrt(2)], [1, -1, math.sqrt(2)], [1, 1, math.sqrt(2)]] return motion
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DepthFirstSearch/depth_first_search.py#L192-L203
2
[ 0, 1, 2, 10, 11 ]
41.666667
[]
0
false
95.454545
12
1
100
0
def get_motion_model(): # dx, dy, cost motion = [[1, 0, 1], [0, 1, 1], [-1, 0, 1], [0, -1, 1], [-1, -1, math.sqrt(2)], [-1, 1, math.sqrt(2)], [1, -1, math.sqrt(2)], [1, 1, math.sqrt(2)]] return motion
1,285
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTStar/rrt_star.py
main
()
248
283
def main(): print("Start " + __file__) # ====Search Path with RRT==== obstacle_list = [ (5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2), (9, 5, 2), (8, 10, 1), (6, 12, 1), ] # [x,y,size(radius)] # Set Initial parameters rrt_star = RRTStar( start=[0, 0], goal=[6, 10], rand_area=[-2, 15], obstacle_list=obstacle_list, expand_dis=1, robot_radius=0.8) path = rrt_star.planning(animation=show_animation) if path is None: print("Cannot find path") else: print("found path!!") # Draw final path if show_animation: rrt_star.draw_graph() plt.plot([x for (x, y) in path], [y for (x, y) in path], 'r--') plt.grid(True) plt.show()
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStar/rrt_star.py#L248-L283
2
[ 0, 1, 2, 3, 4, 15, 16, 23, 24, 25, 26, 35 ]
33.333333
[ 28, 31, 32, 33, 34 ]
13.888889
false
90.47619
36
5
86.111111
0
def main(): print("Start " + __file__) # ====Search Path with RRT==== obstacle_list = [ (5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2), (9, 5, 2), (8, 10, 1), (6, 12, 1), ] # [x,y,size(radius)] # Set Initial parameters rrt_star = RRTStar( start=[0, 0], goal=[6, 10], rand_area=[-2, 15], obstacle_list=obstacle_list, expand_dis=1, robot_radius=0.8) path = rrt_star.planning(animation=show_animation) if path is None: print("Cannot find path") else: print("found path!!") # Draw final path if show_animation: rrt_star.draw_graph() plt.plot([x for (x, y) in path], [y for (x, y) in path], 'r--') plt.grid(True) plt.show()
1,286
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTStar/rrt_star.py
RRTStar.__init__
(self, start, goal, obstacle_list, rand_area, expand_dis=30.0, path_resolution=1.0, goal_sample_rate=20, max_iter=300, connect_circle_dist=50.0, search_until_max_iter=False, robot_radius=0.0)
Setting Parameter start:Start Position [x,y] goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Random Sampling Area [min,max]
Setting Parameter
30
57
def __init__(self, start, goal, obstacle_list, rand_area, expand_dis=30.0, path_resolution=1.0, goal_sample_rate=20, max_iter=300, connect_circle_dist=50.0, search_until_max_iter=False, robot_radius=0.0): """ Setting Parameter start:Start Position [x,y] goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Random Sampling Area [min,max] """ super().__init__(start, goal, obstacle_list, rand_area, expand_dis, path_resolution, goal_sample_rate, max_iter, robot_radius=robot_radius) self.connect_circle_dist = connect_circle_dist self.goal_node = self.Node(goal[0], goal[1]) self.search_until_max_iter = search_until_max_iter self.node_list = []
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStar/rrt_star.py#L30-L57
2
[ 0, 20, 21, 22, 23, 24, 25, 26, 27 ]
32.142857
[]
0
false
90.47619
28
1
100
6
def __init__(self, start, goal, obstacle_list, rand_area, expand_dis=30.0, path_resolution=1.0, goal_sample_rate=20, max_iter=300, connect_circle_dist=50.0, search_until_max_iter=False, robot_radius=0.0): super().__init__(start, goal, obstacle_list, rand_area, expand_dis, path_resolution, goal_sample_rate, max_iter, robot_radius=robot_radius) self.connect_circle_dist = connect_circle_dist self.goal_node = self.Node(goal[0], goal[1]) self.search_until_max_iter = search_until_max_iter self.node_list = []
1,287
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTStar/rrt_star.py
RRTStar.planning
(self, animation=True)
return None
rrt star path planning animation: flag for animation on or off .
rrt star path planning
59
104
def planning(self, animation=True): """ rrt star path planning animation: flag for animation on or off . """ self.node_list = [self.start] for i in range(self.max_iter): print("Iter:", i, ", number of nodes:", len(self.node_list)) rnd = self.get_random_node() nearest_ind = self.get_nearest_node_index(self.node_list, rnd) new_node = self.steer(self.node_list[nearest_ind], rnd, self.expand_dis) near_node = self.node_list[nearest_ind] new_node.cost = near_node.cost + \ math.hypot(new_node.x-near_node.x, new_node.y-near_node.y) if self.check_collision( new_node, self.obstacle_list, self.robot_radius): near_inds = self.find_near_nodes(new_node) node_with_updated_parent = self.choose_parent( new_node, near_inds) if node_with_updated_parent: self.rewire(node_with_updated_parent, near_inds) self.node_list.append(node_with_updated_parent) else: self.node_list.append(new_node) if animation: self.draw_graph(rnd) if ((not self.search_until_max_iter) and new_node): # if reaches goal last_index = self.search_best_goal_node() if last_index is not None: return self.generate_final_course(last_index) print("reached max iteration") last_index = self.search_best_goal_node() if last_index is not None: return self.generate_final_course(last_index) return None
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStar/rrt_star.py#L59-L104
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45 ]
95.652174
[ 31, 43 ]
4.347826
false
90.47619
46
9
95.652174
3
def planning(self, animation=True): self.node_list = [self.start] for i in range(self.max_iter): print("Iter:", i, ", number of nodes:", len(self.node_list)) rnd = self.get_random_node() nearest_ind = self.get_nearest_node_index(self.node_list, rnd) new_node = self.steer(self.node_list[nearest_ind], rnd, self.expand_dis) near_node = self.node_list[nearest_ind] new_node.cost = near_node.cost + \ math.hypot(new_node.x-near_node.x, new_node.y-near_node.y) if self.check_collision( new_node, self.obstacle_list, self.robot_radius): near_inds = self.find_near_nodes(new_node) node_with_updated_parent = self.choose_parent( new_node, near_inds) if node_with_updated_parent: self.rewire(node_with_updated_parent, near_inds) self.node_list.append(node_with_updated_parent) else: self.node_list.append(new_node) if animation: self.draw_graph(rnd) if ((not self.search_until_max_iter) and new_node): # if reaches goal last_index = self.search_best_goal_node() if last_index is not None: return self.generate_final_course(last_index) print("reached max iteration") last_index = self.search_best_goal_node() if last_index is not None: return self.generate_final_course(last_index) return None
1,288
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTStar/rrt_star.py
RRTStar.choose_parent
(self, new_node, near_inds)
return new_node
Computes the cheapest point to new_node contained in the list near_inds and set such a node as the parent of new_node. Arguments: -------- new_node, Node randomly generated node with a path from its neared point There are not coalitions between this node and th tree. near_inds: list Indices of indices of the nodes what are near to new_node Returns. ------ Node, a copy of new_node
Computes the cheapest point to new_node contained in the list near_inds and set such a node as the parent of new_node. Arguments: -------- new_node, Node randomly generated node with a path from its neared point There are not coalitions between this node and th tree. near_inds: list Indices of indices of the nodes what are near to new_node
106
145
def choose_parent(self, new_node, near_inds): """ Computes the cheapest point to new_node contained in the list near_inds and set such a node as the parent of new_node. Arguments: -------- new_node, Node randomly generated node with a path from its neared point There are not coalitions between this node and th tree. near_inds: list Indices of indices of the nodes what are near to new_node Returns. ------ Node, a copy of new_node """ if not near_inds: return None # search nearest cost in near_inds costs = [] for i in near_inds: near_node = self.node_list[i] t_node = self.steer(near_node, new_node) if t_node and self.check_collision( t_node, self.obstacle_list, self.robot_radius): costs.append(self.calc_new_cost(near_node, new_node)) else: costs.append(float("inf")) # the cost of collision node min_cost = min(costs) if min_cost == float("inf"): print("There is no good path.(min_cost is inf)") return None min_ind = near_inds[costs.index(min_cost)] new_node = self.steer(self.node_list[min_ind], new_node) new_node.cost = min_cost return new_node
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStar/rrt_star.py#L106-L145
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39 ]
95
[ 32, 33 ]
5
false
90.47619
40
6
95
13
def choose_parent(self, new_node, near_inds): if not near_inds: return None # search nearest cost in near_inds costs = [] for i in near_inds: near_node = self.node_list[i] t_node = self.steer(near_node, new_node) if t_node and self.check_collision( t_node, self.obstacle_list, self.robot_radius): costs.append(self.calc_new_cost(near_node, new_node)) else: costs.append(float("inf")) # the cost of collision node min_cost = min(costs) if min_cost == float("inf"): print("There is no good path.(min_cost is inf)") return None min_ind = near_inds[costs.index(min_cost)] new_node = self.steer(self.node_list[min_ind], new_node) new_node.cost = min_cost return new_node
1,289
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTStar/rrt_star.py
RRTStar.search_best_goal_node
(self)
return None
147
171
def search_best_goal_node(self): dist_to_goal_list = [ self.calc_dist_to_goal(n.x, n.y) for n in self.node_list ] goal_inds = [ dist_to_goal_list.index(i) for i in dist_to_goal_list if i <= self.expand_dis ] safe_goal_inds = [] for goal_ind in goal_inds: t_node = self.steer(self.node_list[goal_ind], self.goal_node) if self.check_collision( t_node, self.obstacle_list, self.robot_radius): safe_goal_inds.append(goal_ind) if not safe_goal_inds: return None min_cost = min([self.node_list[i].cost for i in safe_goal_inds]) for i in safe_goal_inds: if self.node_list[i].cost == min_cost: return i return None
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStar/rrt_star.py#L147-L171
2
[ 0, 1, 4, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 ]
72
[ 24 ]
4
false
90.47619
25
9
96
0
def search_best_goal_node(self): dist_to_goal_list = [ self.calc_dist_to_goal(n.x, n.y) for n in self.node_list ] goal_inds = [ dist_to_goal_list.index(i) for i in dist_to_goal_list if i <= self.expand_dis ] safe_goal_inds = [] for goal_ind in goal_inds: t_node = self.steer(self.node_list[goal_ind], self.goal_node) if self.check_collision( t_node, self.obstacle_list, self.robot_radius): safe_goal_inds.append(goal_ind) if not safe_goal_inds: return None min_cost = min([self.node_list[i].cost for i in safe_goal_inds]) for i in safe_goal_inds: if self.node_list[i].cost == min_cost: return i return None
1,290
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTStar/rrt_star.py
RRTStar.find_near_nodes
(self, new_node)
return near_inds
1) defines a ball centered on new_node 2) Returns all nodes of the three that are inside this ball Arguments: --------- new_node: Node new randomly generated node, without collisions between its nearest node Returns: ------- list List with the indices of the nodes inside the ball of radius r
1) defines a ball centered on new_node 2) Returns all nodes of the three that are inside this ball Arguments: --------- new_node: Node new randomly generated node, without collisions between its nearest node Returns: ------- list List with the indices of the nodes inside the ball of radius r
173
197
def find_near_nodes(self, new_node): """ 1) defines a ball centered on new_node 2) Returns all nodes of the three that are inside this ball Arguments: --------- new_node: Node new randomly generated node, without collisions between its nearest node Returns: ------- list List with the indices of the nodes inside the ball of radius r """ nnode = len(self.node_list) + 1 r = self.connect_circle_dist * math.sqrt((math.log(nnode) / nnode)) # if expand_dist exists, search vertices in a range no more than # expand_dist if hasattr(self, 'expand_dis'): r = min(r, self.expand_dis) dist_list = [(node.x - new_node.x)**2 + (node.y - new_node.y)**2 for node in self.node_list] near_inds = [dist_list.index(i) for i in dist_list if i <= r**2] return near_inds
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStar/rrt_star.py#L173-L197
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 ]
100
[]
0
true
90.47619
25
4
100
12
def find_near_nodes(self, new_node): nnode = len(self.node_list) + 1 r = self.connect_circle_dist * math.sqrt((math.log(nnode) / nnode)) # if expand_dist exists, search vertices in a range no more than # expand_dist if hasattr(self, 'expand_dis'): r = min(r, self.expand_dis) dist_list = [(node.x - new_node.x)**2 + (node.y - new_node.y)**2 for node in self.node_list] near_inds = [dist_list.index(i) for i in dist_list if i <= r**2] return near_inds
1,291
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTStar/rrt_star.py
RRTStar.rewire
(self, new_node, near_inds)
For each node in near_inds, this will check if it is cheaper to arrive to them from new_node. In such a case, this will re-assign the parent of the nodes in near_inds to new_node. Parameters: ---------- new_node, Node Node randomly added which can be joined to the tree near_inds, list of uints A list of indices of the self.new_node which contains nodes within a circle of a given radius. Remark: parent is designated in choose_parent.
For each node in near_inds, this will check if it is cheaper to arrive to them from new_node. In such a case, this will re-assign the parent of the nodes in near_inds to new_node. Parameters: ---------- new_node, Node Node randomly added which can be joined to the tree
199
234
def rewire(self, new_node, near_inds): """ For each node in near_inds, this will check if it is cheaper to arrive to them from new_node. In such a case, this will re-assign the parent of the nodes in near_inds to new_node. Parameters: ---------- new_node, Node Node randomly added which can be joined to the tree near_inds, list of uints A list of indices of the self.new_node which contains nodes within a circle of a given radius. Remark: parent is designated in choose_parent. """ for i in near_inds: near_node = self.node_list[i] edge_node = self.steer(new_node, near_node) if not edge_node: continue edge_node.cost = self.calc_new_cost(new_node, near_node) no_collision = self.check_collision( edge_node, self.obstacle_list, self.robot_radius) improved_cost = near_node.cost > edge_node.cost if no_collision and improved_cost: near_node.x = edge_node.x near_node.y = edge_node.y near_node.cost = edge_node.cost near_node.path_x = edge_node.path_x near_node.path_y = edge_node.path_y near_node.parent = edge_node.parent self.propagate_cost_to_leaves(new_node)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStar/rrt_star.py#L199-L234
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 ]
97.222222
[ 21 ]
2.777778
false
90.47619
36
5
97.222222
13
def rewire(self, new_node, near_inds): for i in near_inds: near_node = self.node_list[i] edge_node = self.steer(new_node, near_node) if not edge_node: continue edge_node.cost = self.calc_new_cost(new_node, near_node) no_collision = self.check_collision( edge_node, self.obstacle_list, self.robot_radius) improved_cost = near_node.cost > edge_node.cost if no_collision and improved_cost: near_node.x = edge_node.x near_node.y = edge_node.y near_node.cost = edge_node.cost near_node.path_x = edge_node.path_x near_node.path_y = edge_node.path_y near_node.parent = edge_node.parent self.propagate_cost_to_leaves(new_node)
1,292
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTStar/rrt_star.py
RRTStar.calc_new_cost
(self, from_node, to_node)
return from_node.cost + d
236
238
def calc_new_cost(self, from_node, to_node): d, _ = self.calc_distance_and_angle(from_node, to_node) return from_node.cost + d
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStar/rrt_star.py#L236-L238
2
[ 0, 1, 2 ]
100
[]
0
true
90.47619
3
1
100
0
def calc_new_cost(self, from_node, to_node): d, _ = self.calc_distance_and_angle(from_node, to_node) return from_node.cost + d
1,293
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRTStar/rrt_star.py
RRTStar.propagate_cost_to_leaves
(self, parent_node)
240
245
def propagate_cost_to_leaves(self, parent_node): for node in self.node_list: if node.parent == parent_node: node.cost = self.calc_new_cost(parent_node, node) self.propagate_cost_to_leaves(node)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStar/rrt_star.py#L240-L245
2
[ 0, 1, 2, 3, 4, 5 ]
100
[]
0
true
90.47619
6
3
100
0
def propagate_cost_to_leaves(self, parent_node): for node in self.node_list: if node.parent == parent_node: node.cost = self.calc_new_cost(parent_node, node) self.propagate_cost_to_leaves(node)
1,294
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
AerialNavigation/drone_3d_trajectory_following/Quadrotor.py
Quadrotor.__init__
(self, x=0, y=0, z=0, roll=0, pitch=0, yaw=0, size=0.25, show_animation=True)
12
32
def __init__(self, x=0, y=0, z=0, roll=0, pitch=0, yaw=0, size=0.25, show_animation=True): self.p1 = np.array([size / 2, 0, 0, 1]).T self.p2 = np.array([-size / 2, 0, 0, 1]).T self.p3 = np.array([0, size / 2, 0, 1]).T self.p4 = np.array([0, -size / 2, 0, 1]).T self.x_data = [] self.y_data = [] self.z_data = [] self.show_animation = show_animation if self.show_animation: plt.ion() fig = plt.figure() # for stopping simulation with the esc key. fig.canvas.mpl_connect('key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) self.ax = fig.add_subplot(111, projection='3d') self.update_pose(x, y, z, roll, pitch, yaw)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/drone_3d_trajectory_following/Quadrotor.py#L12-L32
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 20 ]
66.666667
[ 12, 13, 15, 18 ]
19.047619
false
69.230769
21
2
80.952381
0
def __init__(self, x=0, y=0, z=0, roll=0, pitch=0, yaw=0, size=0.25, show_animation=True): self.p1 = np.array([size / 2, 0, 0, 1]).T self.p2 = np.array([-size / 2, 0, 0, 1]).T self.p3 = np.array([0, size / 2, 0, 1]).T self.p4 = np.array([0, -size / 2, 0, 1]).T self.x_data = [] self.y_data = [] self.z_data = [] self.show_animation = show_animation if self.show_animation: plt.ion() fig = plt.figure() # for stopping simulation with the esc key. fig.canvas.mpl_connect('key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) self.ax = fig.add_subplot(111, projection='3d') self.update_pose(x, y, z, roll, pitch, yaw)
1,295
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
AerialNavigation/drone_3d_trajectory_following/Quadrotor.py
Quadrotor.update_pose
(self, x, y, z, roll, pitch, yaw)
34
46
def update_pose(self, x, y, z, roll, pitch, yaw): self.x = x self.y = y self.z = z self.roll = roll self.pitch = pitch self.yaw = yaw self.x_data.append(x) self.y_data.append(y) self.z_data.append(z) if self.show_animation: self.plot()
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/drone_3d_trajectory_following/Quadrotor.py#L34-L46
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ]
92.307692
[ 12 ]
7.692308
false
69.230769
13
2
92.307692
0
def update_pose(self, x, y, z, roll, pitch, yaw): self.x = x self.y = y self.z = z self.roll = roll self.pitch = pitch self.yaw = yaw self.x_data.append(x) self.y_data.append(y) self.z_data.append(z) if self.show_animation: self.plot()
1,296
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
AerialNavigation/drone_3d_trajectory_following/Quadrotor.py
Quadrotor.transformation_matrix
(self)
return np.array( [[cos(yaw) * cos(pitch), -sin(yaw) * cos(roll) + cos(yaw) * sin(pitch) * sin(roll), sin(yaw) * sin(roll) + cos(yaw) * sin(pitch) * cos(roll), x], [sin(yaw) * cos(pitch), cos(yaw) * cos(roll) + sin(yaw) * sin(pitch) * sin(roll), -cos(yaw) * sin(roll) + sin(yaw) * sin(pitch) * cos(roll), y], [-sin(pitch), cos(pitch) * sin(roll), cos(pitch) * cos(yaw), z] ])
48
60
def transformation_matrix(self): x = self.x y = self.y z = self.z roll = self.roll pitch = self.pitch yaw = self.yaw return np.array( [[cos(yaw) * cos(pitch), -sin(yaw) * cos(roll) + cos(yaw) * sin(pitch) * sin(roll), sin(yaw) * sin(roll) + cos(yaw) * sin(pitch) * cos(roll), x], [sin(yaw) * cos(pitch), cos(yaw) * cos(roll) + sin(yaw) * sin(pitch) * sin(roll), -cos(yaw) * sin(roll) + sin(yaw) * sin(pitch) * cos(roll), y], [-sin(pitch), cos(pitch) * sin(roll), cos(pitch) * cos(yaw), z] ])
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/drone_3d_trajectory_following/Quadrotor.py#L48-L60
2
[ 0 ]
7.692308
[ 1, 2, 3, 4, 5, 6, 7 ]
53.846154
false
69.230769
13
1
46.153846
0
def transformation_matrix(self): x = self.x y = self.y z = self.z roll = self.roll pitch = self.pitch yaw = self.yaw return np.array( [[cos(yaw) * cos(pitch), -sin(yaw) * cos(roll) + cos(yaw) * sin(pitch) * sin(roll), sin(yaw) * sin(roll) + cos(yaw) * sin(pitch) * cos(roll), x], [sin(yaw) * cos(pitch), cos(yaw) * cos(roll) + sin(yaw) * sin(pitch) * sin(roll), -cos(yaw) * sin(roll) + sin(yaw) * sin(pitch) * cos(roll), y], [-sin(pitch), cos(pitch) * sin(roll), cos(pitch) * cos(yaw), z] ])
1,297
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
AerialNavigation/drone_3d_trajectory_following/Quadrotor.py
Quadrotor.plot
(self)
62
87
def plot(self): # pragma: no cover T = self.transformation_matrix() p1_t = np.matmul(T, self.p1) p2_t = np.matmul(T, self.p2) p3_t = np.matmul(T, self.p3) p4_t = np.matmul(T, self.p4) plt.cla() self.ax.plot([p1_t[0], p2_t[0], p3_t[0], p4_t[0]], [p1_t[1], p2_t[1], p3_t[1], p4_t[1]], [p1_t[2], p2_t[2], p3_t[2], p4_t[2]], 'k.') self.ax.plot([p1_t[0], p2_t[0]], [p1_t[1], p2_t[1]], [p1_t[2], p2_t[2]], 'r-') self.ax.plot([p3_t[0], p4_t[0]], [p3_t[1], p4_t[1]], [p3_t[2], p4_t[2]], 'r-') self.ax.plot(self.x_data, self.y_data, self.z_data, 'b:') plt.xlim(-5, 5) plt.ylim(-5, 5) self.ax.set_zlim(0, 10) plt.pause(0.001)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/drone_3d_trajectory_following/Quadrotor.py#L62-L87
2
[]
0
[]
0
false
69.230769
26
1
100
0
def plot(self): # pragma: no cover T = self.transformation_matrix() p1_t = np.matmul(T, self.p1) p2_t = np.matmul(T, self.p2) p3_t = np.matmul(T, self.p3) p4_t = np.matmul(T, self.p4) plt.cla() self.ax.plot([p1_t[0], p2_t[0], p3_t[0], p4_t[0]], [p1_t[1], p2_t[1], p3_t[1], p4_t[1]], [p1_t[2], p2_t[2], p3_t[2], p4_t[2]], 'k.') self.ax.plot([p1_t[0], p2_t[0]], [p1_t[1], p2_t[1]], [p1_t[2], p2_t[2]], 'r-') self.ax.plot([p3_t[0], p4_t[0]], [p3_t[1], p4_t[1]], [p3_t[2], p4_t[2]], 'r-') self.ax.plot(self.x_data, self.y_data, self.z_data, 'b:') plt.xlim(-5, 5) plt.ylim(-5, 5) self.ax.set_zlim(0, 10) plt.pause(0.001)
1,298
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
AerialNavigation/drone_3d_trajectory_following/TrajectoryGenerator.py
TrajectoryGenerator.__init__
(self, start_pos, des_pos, T, start_vel=[0,0,0], des_vel=[0,0,0], start_acc=[0,0,0], des_acc=[0,0,0])
10
35
def __init__(self, start_pos, des_pos, T, start_vel=[0,0,0], des_vel=[0,0,0], start_acc=[0,0,0], des_acc=[0,0,0]): self.start_x = start_pos[0] self.start_y = start_pos[1] self.start_z = start_pos[2] self.des_x = des_pos[0] self.des_y = des_pos[1] self.des_z = des_pos[2] self.start_x_vel = start_vel[0] self.start_y_vel = start_vel[1] self.start_z_vel = start_vel[2] self.des_x_vel = des_vel[0] self.des_y_vel = des_vel[1] self.des_z_vel = des_vel[2] self.start_x_acc = start_acc[0] self.start_y_acc = start_acc[1] self.start_z_acc = start_acc[2] self.des_x_acc = des_acc[0] self.des_y_acc = des_acc[1] self.des_z_acc = des_acc[2] self.T = T
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/drone_3d_trajectory_following/TrajectoryGenerator.py#L10-L35
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 ]
100
[]
0
true
100
26
1
100
0
def __init__(self, start_pos, des_pos, T, start_vel=[0,0,0], des_vel=[0,0,0], start_acc=[0,0,0], des_acc=[0,0,0]): self.start_x = start_pos[0] self.start_y = start_pos[1] self.start_z = start_pos[2] self.des_x = des_pos[0] self.des_y = des_pos[1] self.des_z = des_pos[2] self.start_x_vel = start_vel[0] self.start_y_vel = start_vel[1] self.start_z_vel = start_vel[2] self.des_x_vel = des_vel[0] self.des_y_vel = des_vel[1] self.des_z_vel = des_vel[2] self.start_x_acc = start_acc[0] self.start_y_acc = start_acc[1] self.start_z_acc = start_acc[2] self.des_x_acc = des_acc[0] self.des_y_acc = des_acc[1] self.des_z_acc = des_acc[2] self.T = T
1,299
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
AerialNavigation/drone_3d_trajectory_following/TrajectoryGenerator.py
TrajectoryGenerator.solve
(self)
37
76
def solve(self): A = np.array( [[0, 0, 0, 0, 0, 1], [self.T**5, self.T**4, self.T**3, self.T**2, self.T, 1], [0, 0, 0, 0, 1, 0], [5*self.T**4, 4*self.T**3, 3*self.T**2, 2*self.T, 1, 0], [0, 0, 0, 2, 0, 0], [20*self.T**3, 12*self.T**2, 6*self.T, 2, 0, 0] ]) b_x = np.array( [[self.start_x], [self.des_x], [self.start_x_vel], [self.des_x_vel], [self.start_x_acc], [self.des_x_acc] ]) b_y = np.array( [[self.start_y], [self.des_y], [self.start_y_vel], [self.des_y_vel], [self.start_y_acc], [self.des_y_acc] ]) b_z = np.array( [[self.start_z], [self.des_z], [self.start_z_vel], [self.des_z_vel], [self.start_z_acc], [self.des_z_acc] ]) self.x_c = np.linalg.solve(A, b_x) self.y_c = np.linalg.solve(A, b_y) self.z_c = np.linalg.solve(A, b_z)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/AerialNavigation/drone_3d_trajectory_following/TrajectoryGenerator.py#L37-L76
2
[ 0, 1, 9, 10, 18, 19, 27, 28, 36, 37, 38, 39 ]
30
[]
0
false
100
40
1
100
0
def solve(self): A = np.array( [[0, 0, 0, 0, 0, 1], [self.T**5, self.T**4, self.T**3, self.T**2, self.T, 1], [0, 0, 0, 0, 1, 0], [5*self.T**4, 4*self.T**3, 3*self.T**2, 2*self.T, 1, 0], [0, 0, 0, 2, 0, 0], [20*self.T**3, 12*self.T**2, 6*self.T, 2, 0, 0] ]) b_x = np.array( [[self.start_x], [self.des_x], [self.start_x_vel], [self.des_x_vel], [self.start_x_acc], [self.des_x_acc] ]) b_y = np.array( [[self.start_y], [self.des_y], [self.start_y_vel], [self.des_y_vel], [self.start_y_acc], [self.des_y_acc] ]) b_z = np.array( [[self.start_z], [self.des_z], [self.start_z_vel], [self.des_z_vel], [self.start_z_acc], [self.des_z_acc] ]) self.x_c = np.linalg.solve(A, b_x) self.y_c = np.linalg.solve(A, b_y) self.z_c = np.linalg.solve(A, b_z)
1,300