nwo
stringlengths 10
28
| sha
stringlengths 40
40
| path
stringlengths 11
97
| identifier
stringlengths 1
64
| parameters
stringlengths 2
2.24k
| return_statement
stringlengths 0
2.17k
| docstring
stringlengths 0
5.45k
| docstring_summary
stringlengths 0
3.83k
| func_begin
int64 1
13.4k
| func_end
int64 2
13.4k
| function
stringlengths 28
56.4k
| url
stringlengths 106
209
| project
int64 1
48
| executed_lines
list | executed_lines_pc
float64 0
153
| missing_lines
list | missing_lines_pc
float64 0
100
| covered
bool 2
classes | filecoverage
float64 2.53
100
| function_lines
int64 2
1.46k
| mccabe
int64 1
253
| coverage
float64 0
100
| docstring_lines
int64 0
112
| function_nodoc
stringlengths 9
56.4k
| id
int64 0
29.8k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/StateLatticePlanner/state_lattice_planner.py
|
get_lookup_table
|
(table_path)
|
return np.loadtxt(table_path, delimiter=',', skiprows=1)
| 51 | 52 |
def get_lookup_table(table_path):
return np.loadtxt(table_path, delimiter=',', skiprows=1)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/StateLatticePlanner/state_lattice_planner.py#L51-L52
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 88.601036 | 2 | 1 | 100 | 0 |
def get_lookup_table(table_path):
return np.loadtxt(table_path, delimiter=',', skiprows=1)
| 1,101 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/StateLatticePlanner/state_lattice_planner.py
|
generate_path
|
(target_states, k0)
|
return result
| 55 | 76 |
def generate_path(target_states, k0):
# x, y, yaw, s, km, kf
lookup_table = get_lookup_table(TABLE_PATH)
result = []
for state in target_states:
bestp = search_nearest_one_from_lookup_table(
state[0], state[1], state[2], lookup_table)
target = motion_model.State(x=state[0], y=state[1], yaw=state[2])
init_p = np.array(
[np.hypot(state[0], state[1]), bestp[4], bestp[5]]).reshape(3, 1)
x, y, yaw, p = planner.optimize_trajectory(target, k0, init_p)
if x is not None:
print("find good path")
result.append(
[x[-1], y[-1], yaw[-1], float(p[0]), float(p[1]), float(p[2])])
print("finish path generation")
return result
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/StateLatticePlanner/state_lattice_planner.py#L55-L76
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
8,
9,
10,
12,
13,
14,
15,
16,
17,
19,
20,
21
] | 86.363636 |
[] | 0 | false | 88.601036 | 22 | 3 | 100 | 0 |
def generate_path(target_states, k0):
# x, y, yaw, s, km, kf
lookup_table = get_lookup_table(TABLE_PATH)
result = []
for state in target_states:
bestp = search_nearest_one_from_lookup_table(
state[0], state[1], state[2], lookup_table)
target = motion_model.State(x=state[0], y=state[1], yaw=state[2])
init_p = np.array(
[np.hypot(state[0], state[1]), bestp[4], bestp[5]]).reshape(3, 1)
x, y, yaw, p = planner.optimize_trajectory(target, k0, init_p)
if x is not None:
print("find good path")
result.append(
[x[-1], y[-1], yaw[-1], float(p[0]), float(p[1]), float(p[2])])
print("finish path generation")
return result
| 1,102 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/StateLatticePlanner/state_lattice_planner.py
|
calc_uniform_polar_states
|
(nxy, nh, d, a_min, a_max, p_min, p_max)
|
return states
|
Parameters
----------
nxy :
number of position sampling
nh :
number of heading sampleing
d :
distance of terminal state
a_min :
position sampling min angle
a_max :
position sampling max angle
p_min :
heading sampling min angle
p_max :
heading sampling max angle
Returns
-------
| 79 | 106 |
def calc_uniform_polar_states(nxy, nh, d, a_min, a_max, p_min, p_max):
"""
Parameters
----------
nxy :
number of position sampling
nh :
number of heading sampleing
d :
distance of terminal state
a_min :
position sampling min angle
a_max :
position sampling max angle
p_min :
heading sampling min angle
p_max :
heading sampling max angle
Returns
-------
"""
angle_samples = [i / (nxy - 1) for i in range(nxy)]
states = sample_states(angle_samples, a_min, a_max, d, p_max, p_min, nh)
return states
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/StateLatticePlanner/state_lattice_planner.py#L79-L106
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27
] | 100 |
[] | 0 | true | 88.601036 | 28 | 2 | 100 | 19 |
def calc_uniform_polar_states(nxy, nh, d, a_min, a_max, p_min, p_max):
angle_samples = [i / (nxy - 1) for i in range(nxy)]
states = sample_states(angle_samples, a_min, a_max, d, p_max, p_min, nh)
return states
| 1,103 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/StateLatticePlanner/state_lattice_planner.py
|
calc_biased_polar_states
|
(goal_angle, ns, nxy, nh, d, a_min, a_max, p_min, p_max)
|
return states
|
calc biased state
:param goal_angle: goal orientation for biased sampling
:param ns: number of biased sampling
:param nxy: number of position sampling
:param nxy: number of position sampling
:param nh: number of heading sampleing
:param d: distance of terminal state
:param a_min: position sampling min angle
:param a_max: position sampling max angle
:param p_min: heading sampling min angle
:param p_max: heading sampling max angle
:return: states list
|
calc biased state
| 109 | 148 |
def calc_biased_polar_states(goal_angle, ns, nxy, nh, d, a_min, a_max, p_min, p_max):
"""
calc biased state
:param goal_angle: goal orientation for biased sampling
:param ns: number of biased sampling
:param nxy: number of position sampling
:param nxy: number of position sampling
:param nh: number of heading sampleing
:param d: distance of terminal state
:param a_min: position sampling min angle
:param a_max: position sampling max angle
:param p_min: heading sampling min angle
:param p_max: heading sampling max angle
:return: states list
"""
asi = [a_min + (a_max - a_min) * i / (ns - 1) for i in range(ns - 1)]
cnav = [math.pi - abs(i - goal_angle) for i in asi]
cnav_sum = sum(cnav)
cnav_max = max(cnav)
# normalize
cnav = [(cnav_max - cnav[i]) / (cnav_max * ns - cnav_sum)
for i in range(ns - 1)]
csumnav = np.cumsum(cnav)
di = []
li = 0
for i in range(nxy):
for ii in range(li, ns - 1):
if ii / ns >= i / (nxy - 1):
di.append(csumnav[ii])
li = ii - 1
break
states = sample_states(di, a_min, a_max, d, p_max, p_min, nh)
return states
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/StateLatticePlanner/state_lattice_planner.py#L109-L148
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39
] | 100 |
[] | 0 | true | 88.601036 | 40 | 7 | 100 | 13 |
def calc_biased_polar_states(goal_angle, ns, nxy, nh, d, a_min, a_max, p_min, p_max):
asi = [a_min + (a_max - a_min) * i / (ns - 1) for i in range(ns - 1)]
cnav = [math.pi - abs(i - goal_angle) for i in asi]
cnav_sum = sum(cnav)
cnav_max = max(cnav)
# normalize
cnav = [(cnav_max - cnav[i]) / (cnav_max * ns - cnav_sum)
for i in range(ns - 1)]
csumnav = np.cumsum(cnav)
di = []
li = 0
for i in range(nxy):
for ii in range(li, ns - 1):
if ii / ns >= i / (nxy - 1):
di.append(csumnav[ii])
li = ii - 1
break
states = sample_states(di, a_min, a_max, d, p_max, p_min, nh)
return states
| 1,104 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/StateLatticePlanner/state_lattice_planner.py
|
calc_lane_states
|
(l_center, l_heading, l_width, v_width, d, nxy)
|
return states
|
calc lane states
:param l_center: lane lateral position
:param l_heading: lane heading
:param l_width: lane width
:param v_width: vehicle width
:param d: longitudinal position
:param nxy: sampling number
:return: state list
| 151 | 176 |
def calc_lane_states(l_center, l_heading, l_width, v_width, d, nxy):
"""
calc lane states
:param l_center: lane lateral position
:param l_heading: lane heading
:param l_width: lane width
:param v_width: vehicle width
:param d: longitudinal position
:param nxy: sampling number
:return: state list
"""
xc = d
yc = l_center
states = []
for i in range(nxy):
delta = -0.5 * (l_width - v_width) + \
(l_width - v_width) * i / (nxy - 1)
xf = xc - delta * math.sin(l_heading)
yf = yc + delta * math.cos(l_heading)
yawf = l_heading
states.append([xf, yf, yawf])
return states
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/StateLatticePlanner/state_lattice_planner.py#L151-L176
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25
] | 100 |
[] | 0 | true | 88.601036 | 26 | 2 | 100 | 9 |
def calc_lane_states(l_center, l_heading, l_width, v_width, d, nxy):
xc = d
yc = l_center
states = []
for i in range(nxy):
delta = -0.5 * (l_width - v_width) + \
(l_width - v_width) * i / (nxy - 1)
xf = xc - delta * math.sin(l_heading)
yf = yc + delta * math.cos(l_heading)
yawf = l_heading
states.append([xf, yf, yawf])
return states
| 1,105 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/StateLatticePlanner/state_lattice_planner.py
|
sample_states
|
(angle_samples, a_min, a_max, d, p_max, p_min, nh)
|
return states
| 179 | 193 |
def sample_states(angle_samples, a_min, a_max, d, p_max, p_min, nh):
states = []
for i in angle_samples:
a = a_min + (a_max - a_min) * i
for j in range(nh):
xf = d * math.cos(a)
yf = d * math.sin(a)
if nh == 1:
yawf = (p_max - p_min) / 2 + a
else:
yawf = p_min + (p_max - p_min) * j / (nh - 1) + a
states.append([xf, yf, yawf])
return states
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/StateLatticePlanner/state_lattice_planner.py#L179-L193
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
11,
12,
13,
14
] | 93.333333 |
[] | 0 | false | 88.601036 | 15 | 4 | 100 | 0 |
def sample_states(angle_samples, a_min, a_max, d, p_max, p_min, nh):
states = []
for i in angle_samples:
a = a_min + (a_max - a_min) * i
for j in range(nh):
xf = d * math.cos(a)
yf = d * math.sin(a)
if nh == 1:
yawf = (p_max - p_min) / 2 + a
else:
yawf = p_min + (p_max - p_min) * j / (nh - 1) + a
states.append([xf, yf, yawf])
return states
| 1,106 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/StateLatticePlanner/state_lattice_planner.py
|
main
|
()
| 333 | 339 |
def main():
planner.show_animation = show_animation
uniform_terminal_state_sampling_test1()
uniform_terminal_state_sampling_test2()
biased_terminal_state_sampling_test1()
biased_terminal_state_sampling_test2()
lane_state_sampling_test1()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/StateLatticePlanner/state_lattice_planner.py#L333-L339
| 2 |
[
0,
1,
2,
3,
4,
5,
6
] | 100 |
[] | 0 | true | 88.601036 | 7 | 1 | 100 | 0 |
def main():
planner.show_animation = show_animation
uniform_terminal_state_sampling_test1()
uniform_terminal_state_sampling_test2()
biased_terminal_state_sampling_test1()
biased_terminal_state_sampling_test2()
lane_state_sampling_test1()
| 1,107 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BreadthFirstSearch/breadth_first_search.py
|
main
|
()
| 209 | 254 |
def main():
print(__file__ + " start!!")
# start and goal position
sx = 10.0 # [m]
sy = 10.0 # [m]
gx = 50.0 # [m]
gy = 50.0 # [m]
grid_size = 2.0 # [m]
robot_radius = 1.0 # [m]
# set obstacle positions
ox, oy = [], []
for i in range(-10, 60):
ox.append(i)
oy.append(-10.0)
for i in range(-10, 60):
ox.append(60.0)
oy.append(i)
for i in range(-10, 61):
ox.append(i)
oy.append(60.0)
for i in range(-10, 61):
ox.append(-10.0)
oy.append(i)
for i in range(-10, 40):
ox.append(20.0)
oy.append(i)
for i in range(0, 40):
ox.append(40.0)
oy.append(60.0 - i)
if show_animation: # pragma: no cover
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "og")
plt.plot(gx, gy, "xb")
plt.grid(True)
plt.axis("equal")
bfs = BreadthFirstSearchPlanner(ox, oy, grid_size, robot_radius)
rx, ry = bfs.planning(sx, sy, gx, gy)
if show_animation: # pragma: no cover
plt.plot(rx, ry, "-r")
plt.pause(0.01)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BreadthFirstSearch/breadth_first_search.py#L209-L254
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
38,
39,
40,
41
] | 100 |
[] | 0 | true | 95.454545 | 46 | 9 | 100 | 0 |
def main():
print(__file__ + " start!!")
# start and goal position
sx = 10.0 # [m]
sy = 10.0 # [m]
gx = 50.0 # [m]
gy = 50.0 # [m]
grid_size = 2.0 # [m]
robot_radius = 1.0 # [m]
# set obstacle positions
ox, oy = [], []
for i in range(-10, 60):
ox.append(i)
oy.append(-10.0)
for i in range(-10, 60):
ox.append(60.0)
oy.append(i)
for i in range(-10, 61):
ox.append(i)
oy.append(60.0)
for i in range(-10, 61):
ox.append(-10.0)
oy.append(i)
for i in range(-10, 40):
ox.append(20.0)
oy.append(i)
for i in range(0, 40):
ox.append(40.0)
oy.append(60.0 - i)
if show_animation: # pragma: no cover
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "og")
plt.plot(gx, gy, "xb")
plt.grid(True)
plt.axis("equal")
bfs = BreadthFirstSearchPlanner(ox, oy, grid_size, robot_radius)
rx, ry = bfs.planning(sx, sy, gx, gy)
if show_animation: # pragma: no cover
plt.plot(rx, ry, "-r")
plt.pause(0.01)
plt.show()
| 1,108 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BreadthFirstSearch/breadth_first_search.py
|
BreadthFirstSearchPlanner.__init__
|
(self, ox, oy, reso, rr)
|
Initialize grid map for bfs planning
ox: x position list of Obstacles [m]
oy: y position list of Obstacles [m]
resolution: grid resolution [m]
rr: robot radius[m]
|
Initialize grid map for bfs planning
| 20 | 33 |
def __init__(self, ox, oy, reso, rr):
"""
Initialize grid map for bfs planning
ox: x position list of Obstacles [m]
oy: y position list of Obstacles [m]
resolution: grid resolution [m]
rr: robot radius[m]
"""
self.reso = reso
self.rr = rr
self.calc_obstacle_map(ox, oy)
self.motion = self.get_motion_model()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BreadthFirstSearch/breadth_first_search.py#L20-L33
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 95.454545 | 14 | 1 | 100 | 6 |
def __init__(self, ox, oy, reso, rr):
self.reso = reso
self.rr = rr
self.calc_obstacle_map(ox, oy)
self.motion = self.get_motion_model()
| 1,109 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BreadthFirstSearch/breadth_first_search.py
|
BreadthFirstSearchPlanner.planning
|
(self, sx, sy, gx, gy)
|
return rx, ry
|
Breadth First search based planning
input:
s_x: start x position [m]
s_y: start y position [m]
gx: goal x position [m]
gy: goal y position [m]
output:
rx: x position list of the final path
ry: y position list of the final path
|
Breadth First search based planning
| 47 | 115 |
def planning(self, sx, sy, gx, gy):
"""
Breadth First search based planning
input:
s_x: start x position [m]
s_y: start y position [m]
gx: goal x position [m]
gy: goal y position [m]
output:
rx: x position list of the final path
ry: y position list of the final path
"""
nstart = self.Node(self.calc_xyindex(sx, self.minx),
self.calc_xyindex(sy, self.miny), 0.0, -1, None)
ngoal = self.Node(self.calc_xyindex(gx, self.minx),
self.calc_xyindex(gy, self.miny), 0.0, -1, None)
open_set, closed_set = dict(), dict()
open_set[self.calc_grid_index(nstart)] = nstart
while True:
if len(open_set) == 0:
print("Open set is empty..")
break
current = open_set.pop(list(open_set.keys())[0])
c_id = self.calc_grid_index(current)
closed_set[c_id] = current
# show graph
if show_animation: # pragma: no cover
plt.plot(self.calc_grid_position(current.x, self.minx),
self.calc_grid_position(current.y, self.miny), "xc")
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event:
[exit(0) if event.key == 'escape'
else None])
if len(closed_set.keys()) % 10 == 0:
plt.pause(0.001)
if current.x == ngoal.x and current.y == ngoal.y:
print("Find goal")
ngoal.parent_index = current.parent_index
ngoal.cost = current.cost
break
# expand_grid search grid based on motion model
for i, _ in enumerate(self.motion):
node = self.Node(current.x + self.motion[i][0],
current.y + self.motion[i][1],
current.cost + self.motion[i][2], c_id, None)
n_id = self.calc_grid_index(node)
# If the node is not safe, do nothing
if not self.verify_node(node):
continue
if (n_id not in closed_set) and (n_id not in open_set):
node.parent = current
open_set[n_id] = node
rx, ry = self.calc_final_path(ngoal, closed_set)
return rx, ry
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BreadthFirstSearch/breadth_first_search.py#L47-L115
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68
] | 104.6875 |
[
25,
26
] | 3.125 | false | 95.454545 | 69 | 11 | 96.875 | 11 |
def planning(self, sx, sy, gx, gy):
nstart = self.Node(self.calc_xyindex(sx, self.minx),
self.calc_xyindex(sy, self.miny), 0.0, -1, None)
ngoal = self.Node(self.calc_xyindex(gx, self.minx),
self.calc_xyindex(gy, self.miny), 0.0, -1, None)
open_set, closed_set = dict(), dict()
open_set[self.calc_grid_index(nstart)] = nstart
while True:
if len(open_set) == 0:
print("Open set is empty..")
break
current = open_set.pop(list(open_set.keys())[0])
c_id = self.calc_grid_index(current)
closed_set[c_id] = current
# show graph
if show_animation: # pragma: no cover
plt.plot(self.calc_grid_position(current.x, self.minx),
self.calc_grid_position(current.y, self.miny), "xc")
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event:
[exit(0) if event.key == 'escape'
else None])
if len(closed_set.keys()) % 10 == 0:
plt.pause(0.001)
if current.x == ngoal.x and current.y == ngoal.y:
print("Find goal")
ngoal.parent_index = current.parent_index
ngoal.cost = current.cost
break
# expand_grid search grid based on motion model
for i, _ in enumerate(self.motion):
node = self.Node(current.x + self.motion[i][0],
current.y + self.motion[i][1],
current.cost + self.motion[i][2], c_id, None)
n_id = self.calc_grid_index(node)
# If the node is not safe, do nothing
if not self.verify_node(node):
continue
if (n_id not in closed_set) and (n_id not in open_set):
node.parent = current
open_set[n_id] = node
rx, ry = self.calc_final_path(ngoal, closed_set)
return rx, ry
| 1,110 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BreadthFirstSearch/breadth_first_search.py
|
BreadthFirstSearchPlanner.calc_final_path
|
(self, ngoal, closedset)
|
return rx, ry
| 117 | 127 |
def calc_final_path(self, ngoal, closedset):
# generate final course
rx, ry = [self.calc_grid_position(ngoal.x, self.minx)], [
self.calc_grid_position(ngoal.y, self.miny)]
n = closedset[ngoal.parent_index]
while n is not None:
rx.append(self.calc_grid_position(n.x, self.minx))
ry.append(self.calc_grid_position(n.y, self.miny))
n = n.parent
return rx, ry
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BreadthFirstSearch/breadth_first_search.py#L117-L127
| 2 |
[
0,
1,
2,
4,
5,
6,
7,
8,
9,
10
] | 90.909091 |
[] | 0 | false | 95.454545 | 11 | 2 | 100 | 0 |
def calc_final_path(self, ngoal, closedset):
# generate final course
rx, ry = [self.calc_grid_position(ngoal.x, self.minx)], [
self.calc_grid_position(ngoal.y, self.miny)]
n = closedset[ngoal.parent_index]
while n is not None:
rx.append(self.calc_grid_position(n.x, self.minx))
ry.append(self.calc_grid_position(n.y, self.miny))
n = n.parent
return rx, ry
| 1,111 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BreadthFirstSearch/breadth_first_search.py
|
BreadthFirstSearchPlanner.calc_grid_position
|
(self, index, minp)
|
return pos
|
calc grid position
:param index:
:param minp:
:return:
|
calc grid position
| 129 | 138 |
def calc_grid_position(self, index, minp):
"""
calc grid position
:param index:
:param minp:
:return:
"""
pos = index * self.reso + minp
return pos
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BreadthFirstSearch/breadth_first_search.py#L129-L138
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 95.454545 | 10 | 1 | 100 | 5 |
def calc_grid_position(self, index, minp):
pos = index * self.reso + minp
return pos
| 1,112 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BreadthFirstSearch/breadth_first_search.py
|
BreadthFirstSearchPlanner.calc_xyindex
|
(self, position, min_pos)
|
return round((position - min_pos) / self.reso)
| 140 | 141 |
def calc_xyindex(self, position, min_pos):
return round((position - min_pos) / self.reso)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BreadthFirstSearch/breadth_first_search.py#L140-L141
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 95.454545 | 2 | 1 | 100 | 0 |
def calc_xyindex(self, position, min_pos):
return round((position - min_pos) / self.reso)
| 1,113 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BreadthFirstSearch/breadth_first_search.py
|
BreadthFirstSearchPlanner.calc_grid_index
|
(self, node)
|
return (node.y - self.miny) * self.xwidth + (node.x - self.minx)
| 143 | 144 |
def calc_grid_index(self, node):
return (node.y - self.miny) * self.xwidth + (node.x - self.minx)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BreadthFirstSearch/breadth_first_search.py#L143-L144
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 95.454545 | 2 | 1 | 100 | 0 |
def calc_grid_index(self, node):
return (node.y - self.miny) * self.xwidth + (node.x - self.minx)
| 1,114 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BreadthFirstSearch/breadth_first_search.py
|
BreadthFirstSearchPlanner.verify_node
|
(self, node)
|
return True
| 146 | 163 |
def verify_node(self, node):
px = self.calc_grid_position(node.x, self.minx)
py = self.calc_grid_position(node.y, self.miny)
if px < self.minx:
return False
elif py < self.miny:
return False
elif px >= self.maxx:
return False
elif py >= self.maxy:
return False
# collision check
if self.obmap[node.x][node.y]:
return False
return True
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BreadthFirstSearch/breadth_first_search.py#L146-L163
| 2 |
[
0,
1,
2,
3,
4,
6,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17
] | 88.888889 |
[
5,
7
] | 11.111111 | false | 95.454545 | 18 | 6 | 88.888889 | 0 |
def verify_node(self, node):
px = self.calc_grid_position(node.x, self.minx)
py = self.calc_grid_position(node.y, self.miny)
if px < self.minx:
return False
elif py < self.miny:
return False
elif px >= self.maxx:
return False
elif py >= self.maxy:
return False
# collision check
if self.obmap[node.x][node.y]:
return False
return True
| 1,115 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BreadthFirstSearch/breadth_first_search.py
|
BreadthFirstSearchPlanner.calc_obstacle_map
|
(self, ox, oy)
| 165 | 192 |
def calc_obstacle_map(self, ox, oy):
self.minx = round(min(ox))
self.miny = round(min(oy))
self.maxx = round(max(ox))
self.maxy = round(max(oy))
print("min_x:", self.minx)
print("min_y:", self.miny)
print("max_x:", self.maxx)
print("max_y:", self.maxy)
self.xwidth = round((self.maxx - self.minx) / self.reso)
self.ywidth = round((self.maxy - self.miny) / self.reso)
print("x_width:", self.xwidth)
print("y_width:", self.ywidth)
# obstacle map generation
self.obmap = [[False for _ in range(self.ywidth)]
for _ in range(self.xwidth)]
for ix in range(self.xwidth):
x = self.calc_grid_position(ix, self.minx)
for iy in range(self.ywidth):
y = self.calc_grid_position(iy, self.miny)
for iox, ioy in zip(ox, oy):
d = math.hypot(iox - x, ioy - y)
if d <= self.rr:
self.obmap[ix][iy] = True
break
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BreadthFirstSearch/breadth_first_search.py#L165-L192
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
19,
20,
21,
22,
23,
24,
25,
26,
27
] | 96.428571 |
[] | 0 | false | 95.454545 | 28 | 7 | 100 | 0 |
def calc_obstacle_map(self, ox, oy):
self.minx = round(min(ox))
self.miny = round(min(oy))
self.maxx = round(max(ox))
self.maxy = round(max(oy))
print("min_x:", self.minx)
print("min_y:", self.miny)
print("max_x:", self.maxx)
print("max_y:", self.maxy)
self.xwidth = round((self.maxx - self.minx) / self.reso)
self.ywidth = round((self.maxy - self.miny) / self.reso)
print("x_width:", self.xwidth)
print("y_width:", self.ywidth)
# obstacle map generation
self.obmap = [[False for _ in range(self.ywidth)]
for _ in range(self.xwidth)]
for ix in range(self.xwidth):
x = self.calc_grid_position(ix, self.minx)
for iy in range(self.ywidth):
y = self.calc_grid_position(iy, self.miny)
for iox, ioy in zip(ox, oy):
d = math.hypot(iox - x, ioy - y)
if d <= self.rr:
self.obmap[ix][iy] = True
break
| 1,116 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BreadthFirstSearch/breadth_first_search.py
|
BreadthFirstSearchPlanner.get_motion_model
|
()
|
return motion
| 195 | 206 |
def get_motion_model():
# dx, dy, cost
motion = [[1, 0, 1],
[0, 1, 1],
[-1, 0, 1],
[0, -1, 1],
[-1, -1, math.sqrt(2)],
[-1, 1, math.sqrt(2)],
[1, -1, math.sqrt(2)],
[1, 1, math.sqrt(2)]]
return motion
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BreadthFirstSearch/breadth_first_search.py#L195-L206
| 2 |
[
0,
1,
2,
10,
11
] | 41.666667 |
[] | 0 | false | 95.454545 | 12 | 1 | 100 | 0 |
def get_motion_model():
# dx, dy, cost
motion = [[1, 0, 1],
[0, 1, 1],
[-1, 0, 1],
[0, -1, 1],
[-1, -1, math.sqrt(2)],
[-1, 1, math.sqrt(2)],
[1, -1, math.sqrt(2)],
[1, 1, math.sqrt(2)]]
return motion
| 1,117 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py
|
prm_planning
|
(start_x, start_y, goal_x, goal_y,
obstacle_x_list, obstacle_y_list, robot_radius, *, rng=None)
|
return rx, ry
|
Run probabilistic road map planning
:param start_x: start x position
:param start_y: start y position
:param goal_x: goal x position
:param goal_y: goal y position
:param obstacle_x_list: obstacle x positions
:param obstacle_y_list: obstacle y positions
:param robot_radius: robot radius
:param rng: (Optional) Random generator
:return:
|
Run probabilistic road map planning
| 38 | 68 |
def prm_planning(start_x, start_y, goal_x, goal_y,
obstacle_x_list, obstacle_y_list, robot_radius, *, rng=None):
"""
Run probabilistic road map planning
:param start_x: start x position
:param start_y: start y position
:param goal_x: goal x position
:param goal_y: goal y position
:param obstacle_x_list: obstacle x positions
:param obstacle_y_list: obstacle y positions
:param robot_radius: robot radius
:param rng: (Optional) Random generator
:return:
"""
obstacle_kd_tree = KDTree(np.vstack((obstacle_x_list, obstacle_y_list)).T)
sample_x, sample_y = sample_points(start_x, start_y, goal_x, goal_y,
robot_radius,
obstacle_x_list, obstacle_y_list,
obstacle_kd_tree, rng)
if show_animation:
plt.plot(sample_x, sample_y, ".b")
road_map = generate_road_map(sample_x, sample_y,
robot_radius, obstacle_kd_tree)
rx, ry = dijkstra_planning(
start_x, start_y, goal_x, goal_y, road_map, sample_x, sample_y)
return rx, ry
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py#L38-L68
| 2 |
[
0,
14,
15,
16,
17,
18,
19,
20,
21,
23,
24,
25,
26,
27,
28,
29,
30
] | 54.83871 |
[
22
] | 3.225806 | false | 86.982249 | 31 | 2 | 96.774194 | 11 |
def prm_planning(start_x, start_y, goal_x, goal_y,
obstacle_x_list, obstacle_y_list, robot_radius, *, rng=None):
obstacle_kd_tree = KDTree(np.vstack((obstacle_x_list, obstacle_y_list)).T)
sample_x, sample_y = sample_points(start_x, start_y, goal_x, goal_y,
robot_radius,
obstacle_x_list, obstacle_y_list,
obstacle_kd_tree, rng)
if show_animation:
plt.plot(sample_x, sample_y, ".b")
road_map = generate_road_map(sample_x, sample_y,
robot_radius, obstacle_kd_tree)
rx, ry = dijkstra_planning(
start_x, start_y, goal_x, goal_y, road_map, sample_x, sample_y)
return rx, ry
| 1,118 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py
|
is_collision
|
(sx, sy, gx, gy, rr, obstacle_kd_tree)
|
return False
| 71 | 97 |
def is_collision(sx, sy, gx, gy, rr, obstacle_kd_tree):
x = sx
y = sy
dx = gx - sx
dy = gy - sy
yaw = math.atan2(gy - sy, gx - sx)
d = math.hypot(dx, dy)
if d >= MAX_EDGE_LEN:
return True
D = rr
n_step = round(d / D)
for i in range(n_step):
dist, _ = obstacle_kd_tree.query([x, y])
if dist <= rr:
return True # collision
x += D * math.cos(yaw)
y += D * math.sin(yaw)
# goal point check
dist, _ = obstacle_kd_tree.query([gx, gy])
if dist <= rr:
return True # collision
return False
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py#L71-L97
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
10,
11,
12,
13,
14,
15,
16,
18,
19,
20,
21,
22,
23,
25,
26
] | 88.888889 |
[
9,
17,
24
] | 11.111111 | false | 86.982249 | 27 | 5 | 88.888889 | 0 |
def is_collision(sx, sy, gx, gy, rr, obstacle_kd_tree):
x = sx
y = sy
dx = gx - sx
dy = gy - sy
yaw = math.atan2(gy - sy, gx - sx)
d = math.hypot(dx, dy)
if d >= MAX_EDGE_LEN:
return True
D = rr
n_step = round(d / D)
for i in range(n_step):
dist, _ = obstacle_kd_tree.query([x, y])
if dist <= rr:
return True # collision
x += D * math.cos(yaw)
y += D * math.sin(yaw)
# goal point check
dist, _ = obstacle_kd_tree.query([gx, gy])
if dist <= rr:
return True # collision
return False
| 1,119 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py
|
generate_road_map
|
(sample_x, sample_y, rr, obstacle_kd_tree)
|
return road_map
|
Road map generation
sample_x: [m] x positions of sampled points
sample_y: [m] y positions of sampled points
robot_radius: Robot Radius[m]
obstacle_kd_tree: KDTree object of obstacles
|
Road map generation
| 100 | 133 |
def generate_road_map(sample_x, sample_y, rr, obstacle_kd_tree):
"""
Road map generation
sample_x: [m] x positions of sampled points
sample_y: [m] y positions of sampled points
robot_radius: Robot Radius[m]
obstacle_kd_tree: KDTree object of obstacles
"""
road_map = []
n_sample = len(sample_x)
sample_kd_tree = KDTree(np.vstack((sample_x, sample_y)).T)
for (i, ix, iy) in zip(range(n_sample), sample_x, sample_y):
dists, indexes = sample_kd_tree.query([ix, iy], k=n_sample)
edge_id = []
for ii in range(1, len(indexes)):
nx = sample_x[indexes[ii]]
ny = sample_y[indexes[ii]]
if not is_collision(ix, iy, nx, ny, rr, obstacle_kd_tree):
edge_id.append(indexes[ii])
if len(edge_id) >= N_KNN:
break
road_map.append(edge_id)
# plot_road_map(road_map, sample_x, sample_y)
return road_map
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py#L100-L133
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33
] | 100 |
[] | 0 | true | 86.982249 | 34 | 5 | 100 | 6 |
def generate_road_map(sample_x, sample_y, rr, obstacle_kd_tree):
road_map = []
n_sample = len(sample_x)
sample_kd_tree = KDTree(np.vstack((sample_x, sample_y)).T)
for (i, ix, iy) in zip(range(n_sample), sample_x, sample_y):
dists, indexes = sample_kd_tree.query([ix, iy], k=n_sample)
edge_id = []
for ii in range(1, len(indexes)):
nx = sample_x[indexes[ii]]
ny = sample_y[indexes[ii]]
if not is_collision(ix, iy, nx, ny, rr, obstacle_kd_tree):
edge_id.append(indexes[ii])
if len(edge_id) >= N_KNN:
break
road_map.append(edge_id)
# plot_road_map(road_map, sample_x, sample_y)
return road_map
| 1,120 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py
|
dijkstra_planning
|
(sx, sy, gx, gy, road_map, sample_x, sample_y)
|
return rx, ry
|
s_x: start x position [m]
s_y: start y position [m]
goal_x: goal x position [m]
goal_y: goal y position [m]
obstacle_x_list: x position list of Obstacles [m]
obstacle_y_list: y position list of Obstacles [m]
robot_radius: robot radius [m]
road_map: ??? [m]
sample_x: ??? [m]
sample_y: ??? [m]
@return: Two lists of path coordinates ([x1, x2, ...], [y1, y2, ...]), empty list when no path was found
|
s_x: start x position [m]
s_y: start y position [m]
goal_x: goal x position [m]
goal_y: goal y position [m]
obstacle_x_list: x position list of Obstacles [m]
obstacle_y_list: y position list of Obstacles [m]
robot_radius: robot radius [m]
road_map: ??? [m]
sample_x: ??? [m]
sample_y: ??? [m]
| 136 | 220 |
def dijkstra_planning(sx, sy, gx, gy, road_map, sample_x, sample_y):
"""
s_x: start x position [m]
s_y: start y position [m]
goal_x: goal x position [m]
goal_y: goal y position [m]
obstacle_x_list: x position list of Obstacles [m]
obstacle_y_list: y position list of Obstacles [m]
robot_radius: robot radius [m]
road_map: ??? [m]
sample_x: ??? [m]
sample_y: ??? [m]
@return: Two lists of path coordinates ([x1, x2, ...], [y1, y2, ...]), empty list when no path was found
"""
start_node = Node(sx, sy, 0.0, -1)
goal_node = Node(gx, gy, 0.0, -1)
open_set, closed_set = dict(), dict()
open_set[len(road_map) - 2] = start_node
path_found = True
while True:
if not open_set:
print("Cannot find path")
path_found = False
break
c_id = min(open_set, key=lambda o: open_set[o].cost)
current = open_set[c_id]
# show graph
if show_animation and len(closed_set.keys()) % 2 == 0:
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(current.x, current.y, "xg")
plt.pause(0.001)
if c_id == (len(road_map) - 1):
print("goal is found!")
goal_node.parent_index = current.parent_index
goal_node.cost = current.cost
break
# Remove the item from the open set
del open_set[c_id]
# Add it to the closed set
closed_set[c_id] = current
# expand search grid based on motion model
for i in range(len(road_map[c_id])):
n_id = road_map[c_id][i]
dx = sample_x[n_id] - current.x
dy = sample_y[n_id] - current.y
d = math.hypot(dx, dy)
node = Node(sample_x[n_id], sample_y[n_id],
current.cost + d, c_id)
if n_id in closed_set:
continue
# Otherwise if it is already in the open set
if n_id in open_set:
if open_set[n_id].cost > node.cost:
open_set[n_id].cost = node.cost
open_set[n_id].parent_index = c_id
else:
open_set[n_id] = node
if path_found is False:
return [], []
# generate final course
rx, ry = [goal_node.x], [goal_node.y]
parent_index = goal_node.parent_index
while parent_index != -1:
n = closed_set[parent_index]
rx.append(n.x)
ry.append(n.y)
parent_index = n.parent_index
return rx, ry
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py#L136-L220
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
29,
30,
31,
32,
33,
34,
35,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84
] | 88.235294 |
[
26,
27,
28,
36,
39,
40,
73
] | 8.235294 | false | 86.982249 | 85 | 12 | 91.764706 | 12 |
def dijkstra_planning(sx, sy, gx, gy, road_map, sample_x, sample_y):
start_node = Node(sx, sy, 0.0, -1)
goal_node = Node(gx, gy, 0.0, -1)
open_set, closed_set = dict(), dict()
open_set[len(road_map) - 2] = start_node
path_found = True
while True:
if not open_set:
print("Cannot find path")
path_found = False
break
c_id = min(open_set, key=lambda o: open_set[o].cost)
current = open_set[c_id]
# show graph
if show_animation and len(closed_set.keys()) % 2 == 0:
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(current.x, current.y, "xg")
plt.pause(0.001)
if c_id == (len(road_map) - 1):
print("goal is found!")
goal_node.parent_index = current.parent_index
goal_node.cost = current.cost
break
# Remove the item from the open set
del open_set[c_id]
# Add it to the closed set
closed_set[c_id] = current
# expand search grid based on motion model
for i in range(len(road_map[c_id])):
n_id = road_map[c_id][i]
dx = sample_x[n_id] - current.x
dy = sample_y[n_id] - current.y
d = math.hypot(dx, dy)
node = Node(sample_x[n_id], sample_y[n_id],
current.cost + d, c_id)
if n_id in closed_set:
continue
# Otherwise if it is already in the open set
if n_id in open_set:
if open_set[n_id].cost > node.cost:
open_set[n_id].cost = node.cost
open_set[n_id].parent_index = c_id
else:
open_set[n_id] = node
if path_found is False:
return [], []
# generate final course
rx, ry = [goal_node.x], [goal_node.y]
parent_index = goal_node.parent_index
while parent_index != -1:
n = closed_set[parent_index]
rx.append(n.x)
ry.append(n.y)
parent_index = n.parent_index
return rx, ry
| 1,121 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py
|
plot_road_map
|
(road_map, sample_x, sample_y)
| 223 | 230 |
def plot_road_map(road_map, sample_x, sample_y): # pragma: no cover
for i, _ in enumerate(road_map):
for ii in range(len(road_map[i])):
ind = road_map[i][ii]
plt.plot([sample_x[i], sample_x[ind]],
[sample_y[i], sample_y[ind]], "-k")
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py#L223-L230
| 2 |
[] | 0 |
[] | 0 | false | 86.982249 | 8 | 3 | 100 | 0 |
def plot_road_map(road_map, sample_x, sample_y): # pragma: no cover
for i, _ in enumerate(road_map):
for ii in range(len(road_map[i])):
ind = road_map[i][ii]
plt.plot([sample_x[i], sample_x[ind]],
[sample_y[i], sample_y[ind]], "-k")
| 1,122 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py
|
sample_points
|
(sx, sy, gx, gy, rr, ox, oy, obstacle_kd_tree, rng)
|
return sample_x, sample_y
| 233 | 259 |
def sample_points(sx, sy, gx, gy, rr, ox, oy, obstacle_kd_tree, rng):
max_x = max(ox)
max_y = max(oy)
min_x = min(ox)
min_y = min(oy)
sample_x, sample_y = [], []
if rng is None:
rng = np.random.default_rng()
while len(sample_x) <= N_SAMPLE:
tx = (rng.random() * (max_x - min_x)) + min_x
ty = (rng.random() * (max_y - min_y)) + min_y
dist, index = obstacle_kd_tree.query([tx, ty])
if dist >= rr:
sample_x.append(tx)
sample_y.append(ty)
sample_x.append(sx)
sample_y.append(sy)
sample_x.append(gx)
sample_y.append(gy)
return sample_x, sample_y
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py#L233-L259
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26
] | 96.296296 |
[
9
] | 3.703704 | false | 86.982249 | 27 | 4 | 96.296296 | 0 |
def sample_points(sx, sy, gx, gy, rr, ox, oy, obstacle_kd_tree, rng):
max_x = max(ox)
max_y = max(oy)
min_x = min(ox)
min_y = min(oy)
sample_x, sample_y = [], []
if rng is None:
rng = np.random.default_rng()
while len(sample_x) <= N_SAMPLE:
tx = (rng.random() * (max_x - min_x)) + min_x
ty = (rng.random() * (max_y - min_y)) + min_y
dist, index = obstacle_kd_tree.query([tx, ty])
if dist >= rr:
sample_x.append(tx)
sample_y.append(ty)
sample_x.append(sx)
sample_y.append(sy)
sample_x.append(gx)
sample_y.append(gy)
return sample_x, sample_y
| 1,123 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py
|
main
|
(rng=None)
| 262 | 308 |
def main(rng=None):
print(__file__ + " start!!")
# start and goal position
sx = 10.0 # [m]
sy = 10.0 # [m]
gx = 50.0 # [m]
gy = 50.0 # [m]
robot_size = 5.0 # [m]
ox = []
oy = []
for i in range(60):
ox.append(i)
oy.append(0.0)
for i in range(60):
ox.append(60.0)
oy.append(i)
for i in range(61):
ox.append(i)
oy.append(60.0)
for i in range(61):
ox.append(0.0)
oy.append(i)
for i in range(40):
ox.append(20.0)
oy.append(i)
for i in range(40):
ox.append(40.0)
oy.append(60.0 - i)
if show_animation:
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "^r")
plt.plot(gx, gy, "^c")
plt.grid(True)
plt.axis("equal")
rx, ry = prm_planning(sx, sy, gx, gy, ox, oy, robot_size, rng=rng)
assert rx, 'Cannot found path'
if show_animation:
plt.plot(rx, ry, "-r")
plt.pause(0.001)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py#L262-L308
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
38,
39,
40,
41,
42,
43
] | 82.978723 |
[
33,
34,
35,
36,
37,
44,
45,
46
] | 17.021277 | false | 86.982249 | 47 | 10 | 82.978723 | 0 |
def main(rng=None):
print(__file__ + " start!!")
# start and goal position
sx = 10.0 # [m]
sy = 10.0 # [m]
gx = 50.0 # [m]
gy = 50.0 # [m]
robot_size = 5.0 # [m]
ox = []
oy = []
for i in range(60):
ox.append(i)
oy.append(0.0)
for i in range(60):
ox.append(60.0)
oy.append(i)
for i in range(61):
ox.append(i)
oy.append(60.0)
for i in range(61):
ox.append(0.0)
oy.append(i)
for i in range(40):
ox.append(20.0)
oy.append(i)
for i in range(40):
ox.append(40.0)
oy.append(60.0 - i)
if show_animation:
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "^r")
plt.plot(gx, gy, "^c")
plt.grid(True)
plt.axis("equal")
rx, ry = prm_planning(sx, sy, gx, gy, ox, oy, robot_size, rng=rng)
assert rx, 'Cannot found path'
if show_animation:
plt.plot(rx, ry, "-r")
plt.pause(0.001)
plt.show()
| 1,124 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py
|
Node.__init__
|
(self, x, y, cost, parent_index)
| 27 | 31 |
def __init__(self, x, y, cost, parent_index):
self.x = x
self.y = y
self.cost = cost
self.parent_index = parent_index
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py#L27-L31
| 2 |
[
0,
1,
2,
3,
4
] | 100 |
[] | 0 | true | 86.982249 | 5 | 1 | 100 | 0 |
def __init__(self, x, y, cost, parent_index):
self.x = x
self.y = y
self.cost = cost
self.parent_index = parent_index
| 1,125 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py
|
Node.__str__
|
(self)
|
return str(self.x) + "," + str(self.y) + "," +\
str(self.cost) + "," + str(self.parent_index)
| 33 | 35 |
def __str__(self):
return str(self.x) + "," + str(self.y) + "," +\
str(self.cost) + "," + str(self.parent_index)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py#L33-L35
| 2 |
[
0
] | 33.333333 |
[
1
] | 33.333333 | false | 86.982249 | 3 | 1 | 66.666667 | 0 |
def __str__(self):
return str(self.x) + "," + str(self.y) + "," +\
str(self.cost) + "," + str(self.parent_index)
| 1,126 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py
|
find_sweep_direction_and_start_position
|
(ox, oy)
|
return vec, sweep_start_pos
| 123 | 138 |
def find_sweep_direction_and_start_position(ox, oy):
# find sweep_direction
max_dist = 0.0
vec = [0.0, 0.0]
sweep_start_pos = [0.0, 0.0]
for i in range(len(ox) - 1):
dx = ox[i + 1] - ox[i]
dy = oy[i + 1] - oy[i]
d = np.hypot(dx, dy)
if d > max_dist:
max_dist = d
vec = [dx, dy]
sweep_start_pos = [ox[i], oy[i]]
return vec, sweep_start_pos
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py#L123-L138
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
] | 100 |
[] | 0 | true | 95 | 16 | 3 | 100 | 0 |
def find_sweep_direction_and_start_position(ox, oy):
# find sweep_direction
max_dist = 0.0
vec = [0.0, 0.0]
sweep_start_pos = [0.0, 0.0]
for i in range(len(ox) - 1):
dx = ox[i + 1] - ox[i]
dy = oy[i + 1] - oy[i]
d = np.hypot(dx, dy)
if d > max_dist:
max_dist = d
vec = [dx, dy]
sweep_start_pos = [ox[i], oy[i]]
return vec, sweep_start_pos
| 1,127 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py
|
convert_grid_coordinate
|
(ox, oy, sweep_vec, sweep_start_position)
|
return converted_xy[:, 0], converted_xy[:, 1]
| 141 | 147 |
def convert_grid_coordinate(ox, oy, sweep_vec, sweep_start_position):
tx = [ix - sweep_start_position[0] for ix in ox]
ty = [iy - sweep_start_position[1] for iy in oy]
th = math.atan2(sweep_vec[1], sweep_vec[0])
converted_xy = np.stack([tx, ty]).T @ rot_mat_2d(th)
return converted_xy[:, 0], converted_xy[:, 1]
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py#L141-L147
| 2 |
[
0,
1,
2,
3,
4,
5,
6
] | 100 |
[] | 0 | true | 95 | 7 | 3 | 100 | 0 |
def convert_grid_coordinate(ox, oy, sweep_vec, sweep_start_position):
tx = [ix - sweep_start_position[0] for ix in ox]
ty = [iy - sweep_start_position[1] for iy in oy]
th = math.atan2(sweep_vec[1], sweep_vec[0])
converted_xy = np.stack([tx, ty]).T @ rot_mat_2d(th)
return converted_xy[:, 0], converted_xy[:, 1]
| 1,128 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py
|
convert_global_coordinate
|
(x, y, sweep_vec, sweep_start_position)
|
return rx, ry
| 150 | 155 |
def convert_global_coordinate(x, y, sweep_vec, sweep_start_position):
th = math.atan2(sweep_vec[1], sweep_vec[0])
converted_xy = np.stack([x, y]).T @ rot_mat_2d(-th)
rx = [ix + sweep_start_position[0] for ix in converted_xy[:, 0]]
ry = [iy + sweep_start_position[1] for iy in converted_xy[:, 1]]
return rx, ry
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py#L150-L155
| 2 |
[
0,
1,
2,
3,
4,
5
] | 100 |
[] | 0 | true | 95 | 6 | 3 | 100 | 0 |
def convert_global_coordinate(x, y, sweep_vec, sweep_start_position):
th = math.atan2(sweep_vec[1], sweep_vec[0])
converted_xy = np.stack([x, y]).T @ rot_mat_2d(-th)
rx = [ix + sweep_start_position[0] for ix in converted_xy[:, 0]]
ry = [iy + sweep_start_position[1] for iy in converted_xy[:, 1]]
return rx, ry
| 1,129 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py
|
search_free_grid_index_at_edge_y
|
(grid_map, from_upper=False)
|
return x_indexes, y_index
| 158 | 177 |
def search_free_grid_index_at_edge_y(grid_map, from_upper=False):
y_index = None
x_indexes = []
if from_upper:
x_range = range(grid_map.height)[::-1]
y_range = range(grid_map.width)[::-1]
else:
x_range = range(grid_map.height)
y_range = range(grid_map.width)
for iy in x_range:
for ix in y_range:
if not grid_map.check_occupied_from_xy_index(ix, iy):
y_index = iy
x_indexes.append(ix)
if y_index:
break
return x_indexes, y_index
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py#L158-L177
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19
] | 95 |
[] | 0 | false | 95 | 20 | 6 | 100 | 0 |
def search_free_grid_index_at_edge_y(grid_map, from_upper=False):
y_index = None
x_indexes = []
if from_upper:
x_range = range(grid_map.height)[::-1]
y_range = range(grid_map.width)[::-1]
else:
x_range = range(grid_map.height)
y_range = range(grid_map.width)
for iy in x_range:
for ix in y_range:
if not grid_map.check_occupied_from_xy_index(ix, iy):
y_index = iy
x_indexes.append(ix)
if y_index:
break
return x_indexes, y_index
| 1,130 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py
|
setup_grid_map
|
(ox, oy, resolution, sweep_direction, offset_grid=10)
|
return grid_map, x_inds_goal_y, goal_y
| 180 | 200 |
def setup_grid_map(ox, oy, resolution, sweep_direction, offset_grid=10):
width = math.ceil((max(ox) - min(ox)) / resolution) + offset_grid
height = math.ceil((max(oy) - min(oy)) / resolution) + offset_grid
center_x = (np.max(ox) + np.min(ox)) / 2.0
center_y = (np.max(oy) + np.min(oy)) / 2.0
grid_map = GridMap(width, height, resolution, center_x, center_y)
grid_map.print_grid_map_info()
grid_map.set_value_from_polygon(ox, oy, 1.0, inside=False)
grid_map.expand_grid()
x_inds_goal_y = []
goal_y = 0
if sweep_direction == SweepSearcher.SweepDirection.UP:
x_inds_goal_y, goal_y = search_free_grid_index_at_edge_y(
grid_map, from_upper=True)
elif sweep_direction == SweepSearcher.SweepDirection.DOWN:
x_inds_goal_y, goal_y = search_free_grid_index_at_edge_y(
grid_map, from_upper=False)
return grid_map, x_inds_goal_y, goal_y
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py#L180-L200
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
16,
17,
19,
20
] | 90.47619 |
[] | 0 | false | 95 | 21 | 3 | 100 | 0 |
def setup_grid_map(ox, oy, resolution, sweep_direction, offset_grid=10):
width = math.ceil((max(ox) - min(ox)) / resolution) + offset_grid
height = math.ceil((max(oy) - min(oy)) / resolution) + offset_grid
center_x = (np.max(ox) + np.min(ox)) / 2.0
center_y = (np.max(oy) + np.min(oy)) / 2.0
grid_map = GridMap(width, height, resolution, center_x, center_y)
grid_map.print_grid_map_info()
grid_map.set_value_from_polygon(ox, oy, 1.0, inside=False)
grid_map.expand_grid()
x_inds_goal_y = []
goal_y = 0
if sweep_direction == SweepSearcher.SweepDirection.UP:
x_inds_goal_y, goal_y = search_free_grid_index_at_edge_y(
grid_map, from_upper=True)
elif sweep_direction == SweepSearcher.SweepDirection.DOWN:
x_inds_goal_y, goal_y = search_free_grid_index_at_edge_y(
grid_map, from_upper=False)
return grid_map, x_inds_goal_y, goal_y
| 1,131 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py
|
sweep_path_search
|
(sweep_searcher, grid_map, grid_search_animation=False)
|
return px, py
| 203 | 244 |
def sweep_path_search(sweep_searcher, grid_map, grid_search_animation=False):
# search start grid
c_x_index, c_y_index = sweep_searcher.search_start_grid(grid_map)
if not grid_map.set_value_from_xy_index(c_x_index, c_y_index, 0.5):
print("Cannot find start grid")
return [], []
x, y = grid_map.calc_grid_central_xy_position_from_xy_index(c_x_index,
c_y_index)
px, py = [x], [y]
fig, ax = None, None
if grid_search_animation:
fig, ax = plt.subplots()
# for stopping simulation with the esc key.
fig.canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
while True:
c_x_index, c_y_index = sweep_searcher.move_target_grid(c_x_index,
c_y_index,
grid_map)
if sweep_searcher.is_search_done(grid_map) or (
c_x_index is None or c_y_index is None):
print("Done")
break
x, y = grid_map.calc_grid_central_xy_position_from_xy_index(
c_x_index, c_y_index)
px.append(x)
py.append(y)
grid_map.set_value_from_xy_index(c_x_index, c_y_index, 0.5)
if grid_search_animation:
grid_map.plot_grid_map(ax=ax)
plt.pause(1.0)
return px, py
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py#L203-L244
| 2 |
[
0,
1,
2,
3,
6,
7,
9,
10,
11,
12,
18,
19,
20,
23,
24,
26,
27,
28,
29,
31,
32,
33,
34,
35,
36,
37,
40,
41
] | 66.666667 |
[
4,
5,
13,
15,
38,
39
] | 14.285714 | false | 95 | 42 | 8 | 85.714286 | 0 |
def sweep_path_search(sweep_searcher, grid_map, grid_search_animation=False):
# search start grid
c_x_index, c_y_index = sweep_searcher.search_start_grid(grid_map)
if not grid_map.set_value_from_xy_index(c_x_index, c_y_index, 0.5):
print("Cannot find start grid")
return [], []
x, y = grid_map.calc_grid_central_xy_position_from_xy_index(c_x_index,
c_y_index)
px, py = [x], [y]
fig, ax = None, None
if grid_search_animation:
fig, ax = plt.subplots()
# for stopping simulation with the esc key.
fig.canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
while True:
c_x_index, c_y_index = sweep_searcher.move_target_grid(c_x_index,
c_y_index,
grid_map)
if sweep_searcher.is_search_done(grid_map) or (
c_x_index is None or c_y_index is None):
print("Done")
break
x, y = grid_map.calc_grid_central_xy_position_from_xy_index(
c_x_index, c_y_index)
px.append(x)
py.append(y)
grid_map.set_value_from_xy_index(c_x_index, c_y_index, 0.5)
if grid_search_animation:
grid_map.plot_grid_map(ax=ax)
plt.pause(1.0)
return px, py
| 1,132 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py
|
planning
|
(ox, oy, resolution,
moving_direction=SweepSearcher.MovingDirection.RIGHT,
sweeping_direction=SweepSearcher.SweepDirection.UP,
)
|
return rx, ry
| 247 | 270 |
def planning(ox, oy, resolution,
moving_direction=SweepSearcher.MovingDirection.RIGHT,
sweeping_direction=SweepSearcher.SweepDirection.UP,
):
sweep_vec, sweep_start_position = find_sweep_direction_and_start_position(
ox, oy)
rox, roy = convert_grid_coordinate(ox, oy, sweep_vec,
sweep_start_position)
grid_map, x_inds_goal_y, goal_y = setup_grid_map(rox, roy, resolution,
sweeping_direction)
sweep_searcher = SweepSearcher(moving_direction, sweeping_direction,
x_inds_goal_y, goal_y)
px, py = sweep_path_search(sweep_searcher, grid_map)
rx, ry = convert_global_coordinate(px, py, sweep_vec,
sweep_start_position)
print("Path length:", len(rx))
return rx, ry
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py#L247-L270
| 2 |
[
0,
4,
6,
7,
9,
10,
12,
13,
15,
16,
17,
18,
20,
21,
22,
23
] | 66.666667 |
[] | 0 | false | 95 | 24 | 1 | 100 | 0 |
def planning(ox, oy, resolution,
moving_direction=SweepSearcher.MovingDirection.RIGHT,
sweeping_direction=SweepSearcher.SweepDirection.UP,
):
sweep_vec, sweep_start_position = find_sweep_direction_and_start_position(
ox, oy)
rox, roy = convert_grid_coordinate(ox, oy, sweep_vec,
sweep_start_position)
grid_map, x_inds_goal_y, goal_y = setup_grid_map(rox, roy, resolution,
sweeping_direction)
sweep_searcher = SweepSearcher(moving_direction, sweeping_direction,
x_inds_goal_y, goal_y)
px, py = sweep_path_search(sweep_searcher, grid_map)
rx, ry = convert_global_coordinate(px, py, sweep_vec,
sweep_start_position)
print("Path length:", len(rx))
return rx, ry
| 1,133 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py
|
planning_animation
|
(ox, oy, resolution)
| 273 | 297 |
def planning_animation(ox, oy, resolution): # pragma: no cover
px, py = planning(ox, oy, resolution)
# animation
if do_animation:
for ipx, ipy in zip(px, py):
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(ox, oy, "-xb")
plt.plot(px, py, "-r")
plt.plot(ipx, ipy, "or")
plt.axis("equal")
plt.grid(True)
plt.pause(0.1)
plt.cla()
plt.plot(ox, oy, "-xb")
plt.plot(px, py, "-r")
plt.axis("equal")
plt.grid(True)
plt.pause(0.1)
plt.close()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py#L273-L297
| 2 |
[] | 0 |
[] | 0 | false | 95 | 25 | 3 | 100 | 0 |
def planning_animation(ox, oy, resolution): # pragma: no cover
px, py = planning(ox, oy, resolution)
# animation
if do_animation:
for ipx, ipy in zip(px, py):
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(ox, oy, "-xb")
plt.plot(px, py, "-r")
plt.plot(ipx, ipy, "or")
plt.axis("equal")
plt.grid(True)
plt.pause(0.1)
plt.cla()
plt.plot(ox, oy, "-xb")
plt.plot(px, py, "-r")
plt.axis("equal")
plt.grid(True)
plt.pause(0.1)
plt.close()
| 1,134 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py
|
main
|
()
| 300 | 320 |
def main(): # pragma: no cover
print("start!!")
ox = [0.0, 20.0, 50.0, 100.0, 130.0, 40.0, 0.0]
oy = [0.0, -20.0, 0.0, 30.0, 60.0, 80.0, 0.0]
resolution = 5.0
planning_animation(ox, oy, resolution)
ox = [0.0, 50.0, 50.0, 0.0, 0.0]
oy = [0.0, 0.0, 30.0, 30.0, 0.0]
resolution = 1.3
planning_animation(ox, oy, resolution)
ox = [0.0, 20.0, 50.0, 200.0, 130.0, 40.0, 0.0]
oy = [0.0, -80.0, 0.0, 30.0, 60.0, 80.0, 0.0]
resolution = 5.0
planning_animation(ox, oy, resolution)
if do_animation:
plt.show()
print("done!!")
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py#L300-L320
| 2 |
[] | 0 |
[] | 0 | false | 95 | 21 | 2 | 100 | 0 |
def main(): # pragma: no cover
print("start!!")
ox = [0.0, 20.0, 50.0, 100.0, 130.0, 40.0, 0.0]
oy = [0.0, -20.0, 0.0, 30.0, 60.0, 80.0, 0.0]
resolution = 5.0
planning_animation(ox, oy, resolution)
ox = [0.0, 50.0, 50.0, 0.0, 0.0]
oy = [0.0, 0.0, 30.0, 30.0, 0.0]
resolution = 1.3
planning_animation(ox, oy, resolution)
ox = [0.0, 20.0, 50.0, 200.0, 130.0, 40.0, 0.0]
oy = [0.0, -80.0, 0.0, 30.0, 60.0, 80.0, 0.0]
resolution = 5.0
planning_animation(ox, oy, resolution)
if do_animation:
plt.show()
print("done!!")
| 1,135 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py
|
SweepSearcher.__init__
|
(self,
moving_direction, sweep_direction, x_inds_goal_y, goal_y)
| 30 | 37 |
def __init__(self,
moving_direction, sweep_direction, x_inds_goal_y, goal_y):
self.moving_direction = moving_direction
self.sweep_direction = sweep_direction
self.turing_window = []
self.update_turning_window()
self.x_indexes_goal_y = x_inds_goal_y
self.goal_y = goal_y
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py#L30-L37
| 2 |
[
0,
2,
3,
4,
5,
6,
7
] | 87.5 |
[] | 0 | false | 95 | 8 | 1 | 100 | 0 |
def __init__(self,
moving_direction, sweep_direction, x_inds_goal_y, goal_y):
self.moving_direction = moving_direction
self.sweep_direction = sweep_direction
self.turing_window = []
self.update_turning_window()
self.x_indexes_goal_y = x_inds_goal_y
self.goal_y = goal_y
| 1,136 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py
|
SweepSearcher.move_target_grid
|
(self, c_x_index, c_y_index, grid_map)
| 39 | 65 |
def move_target_grid(self, c_x_index, c_y_index, grid_map):
n_x_index = self.moving_direction + c_x_index
n_y_index = c_y_index
# found safe grid
if not grid_map.check_occupied_from_xy_index(n_x_index, n_y_index,
occupied_val=0.5):
return n_x_index, n_y_index
else: # occupied
next_c_x_index, next_c_y_index = self.find_safe_turning_grid(
c_x_index, c_y_index, grid_map)
if (next_c_x_index is None) and (next_c_y_index is None):
# moving backward
next_c_x_index = -self.moving_direction + c_x_index
next_c_y_index = c_y_index
if grid_map.check_occupied_from_xy_index(next_c_x_index,
next_c_y_index):
# moved backward, but the grid is occupied by obstacle
return None, None
else:
# keep moving until end
while not grid_map.check_occupied_from_xy_index(
next_c_x_index + self.moving_direction,
next_c_y_index, occupied_val=0.5):
next_c_x_index += self.moving_direction
self.swap_moving_direction()
return next_c_x_index, next_c_y_index
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py#L39-L65
| 2 |
[
0,
1,
2,
3,
4,
5,
7,
9,
11,
12,
13,
14,
15,
17,
18,
20,
21,
24,
25,
26
] | 74.074074 |
[] | 0 | false | 95 | 27 | 6 | 100 | 0 |
def move_target_grid(self, c_x_index, c_y_index, grid_map):
n_x_index = self.moving_direction + c_x_index
n_y_index = c_y_index
# found safe grid
if not grid_map.check_occupied_from_xy_index(n_x_index, n_y_index,
occupied_val=0.5):
return n_x_index, n_y_index
else: # occupied
next_c_x_index, next_c_y_index = self.find_safe_turning_grid(
c_x_index, c_y_index, grid_map)
if (next_c_x_index is None) and (next_c_y_index is None):
# moving backward
next_c_x_index = -self.moving_direction + c_x_index
next_c_y_index = c_y_index
if grid_map.check_occupied_from_xy_index(next_c_x_index,
next_c_y_index):
# moved backward, but the grid is occupied by obstacle
return None, None
else:
# keep moving until end
while not grid_map.check_occupied_from_xy_index(
next_c_x_index + self.moving_direction,
next_c_y_index, occupied_val=0.5):
next_c_x_index += self.moving_direction
self.swap_moving_direction()
return next_c_x_index, next_c_y_index
| 1,137 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py
|
SweepSearcher.find_safe_turning_grid
|
(self, c_x_index, c_y_index, grid_map)
|
return None, None
| 67 | 80 |
def find_safe_turning_grid(self, c_x_index, c_y_index, grid_map):
for (d_x_ind, d_y_ind) in self.turing_window:
next_x_ind = d_x_ind + c_x_index
next_y_ind = d_y_ind + c_y_index
# found safe grid
if not grid_map.check_occupied_from_xy_index(next_x_ind,
next_y_ind,
occupied_val=0.5):
return next_x_ind, next_y_ind
return None, None
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py#L67-L80
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
11,
12,
13
] | 85.714286 |
[] | 0 | false | 95 | 14 | 3 | 100 | 0 |
def find_safe_turning_grid(self, c_x_index, c_y_index, grid_map):
for (d_x_ind, d_y_ind) in self.turing_window:
next_x_ind = d_x_ind + c_x_index
next_y_ind = d_y_ind + c_y_index
# found safe grid
if not grid_map.check_occupied_from_xy_index(next_x_ind,
next_y_ind,
occupied_val=0.5):
return next_x_ind, next_y_ind
return None, None
| 1,138 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py
|
SweepSearcher.is_search_done
|
(self, grid_map)
|
return True
| 82 | 89 |
def is_search_done(self, grid_map):
for ix in self.x_indexes_goal_y:
if not grid_map.check_occupied_from_xy_index(ix, self.goal_y,
occupied_val=0.5):
return False
# all lower grid is occupied
return True
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py#L82-L89
| 2 |
[
0,
1,
2,
4,
5,
6,
7
] | 87.5 |
[] | 0 | false | 95 | 8 | 3 | 100 | 0 |
def is_search_done(self, grid_map):
for ix in self.x_indexes_goal_y:
if not grid_map.check_occupied_from_xy_index(ix, self.goal_y,
occupied_val=0.5):
return False
# all lower grid is occupied
return True
| 1,139 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py
|
SweepSearcher.update_turning_window
|
(self)
| 91 | 99 |
def update_turning_window(self):
# turning window definition
# robot can move grid based on it.
self.turing_window = [
(self.moving_direction, 0.0),
(self.moving_direction, self.sweep_direction),
(0, self.sweep_direction),
(-self.moving_direction, self.sweep_direction),
]
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py#L91-L99
| 2 |
[
0,
1,
2,
3
] | 44.444444 |
[] | 0 | false | 95 | 9 | 1 | 100 | 0 |
def update_turning_window(self):
# turning window definition
# robot can move grid based on it.
self.turing_window = [
(self.moving_direction, 0.0),
(self.moving_direction, self.sweep_direction),
(0, self.sweep_direction),
(-self.moving_direction, self.sweep_direction),
]
| 1,140 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py
|
SweepSearcher.swap_moving_direction
|
(self)
| 101 | 103 |
def swap_moving_direction(self):
self.moving_direction *= -1
self.update_turning_window()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py#L101-L103
| 2 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 95 | 3 | 1 | 100 | 0 |
def swap_moving_direction(self):
self.moving_direction *= -1
self.update_turning_window()
| 1,141 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py
|
SweepSearcher.search_start_grid
|
(self, grid_map)
| 105 | 120 |
def search_start_grid(self, grid_map):
x_inds = []
y_ind = 0
if self.sweep_direction == self.SweepDirection.DOWN:
x_inds, y_ind = search_free_grid_index_at_edge_y(
grid_map, from_upper=True)
elif self.sweep_direction == self.SweepDirection.UP:
x_inds, y_ind = search_free_grid_index_at_edge_y(
grid_map, from_upper=False)
if self.moving_direction == self.MovingDirection.RIGHT:
return min(x_inds), y_ind
elif self.moving_direction == self.MovingDirection.LEFT:
return max(x_inds), y_ind
raise ValueError("self.moving direction is invalid ")
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py#L105-L120
| 2 |
[
0,
1,
2,
3,
4,
6,
7,
9,
10,
11,
12,
13,
14
] | 81.25 |
[
15
] | 6.25 | false | 95 | 16 | 5 | 93.75 | 0 |
def search_start_grid(self, grid_map):
x_inds = []
y_ind = 0
if self.sweep_direction == self.SweepDirection.DOWN:
x_inds, y_ind = search_free_grid_index_at_edge_y(
grid_map, from_upper=True)
elif self.sweep_direction == self.SweepDirection.UP:
x_inds, y_ind = search_free_grid_index_at_edge_y(
grid_map, from_upper=False)
if self.moving_direction == self.MovingDirection.RIGHT:
return min(x_inds), y_ind
elif self.moving_direction == self.MovingDirection.LEFT:
return max(x_inds), y_ind
raise ValueError("self.moving direction is invalid ")
| 1,142 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/pure_pursuit.py
|
PIDControl
|
(target, current)
|
return a
| 29 | 37 |
def PIDControl(target, current):
a = Kp * (target - current)
if a > unicycle_model.accel_max:
a = unicycle_model.accel_max
elif a < -unicycle_model.accel_max:
a = -unicycle_model.accel_max
return a
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/pure_pursuit.py#L29-L37
| 2 |
[
0,
1,
2,
3,
4,
5,
7,
8
] | 88.888889 |
[
6
] | 11.111111 | false | 95.454545 | 9 | 3 | 88.888889 | 0 |
def PIDControl(target, current):
a = Kp * (target - current)
if a > unicycle_model.accel_max:
a = unicycle_model.accel_max
elif a < -unicycle_model.accel_max:
a = -unicycle_model.accel_max
return a
| 1,143 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/pure_pursuit.py
|
pure_pursuit_control
|
(state, cx, cy, pind)
|
return delta, ind, dis
| 40 | 68 |
def pure_pursuit_control(state, cx, cy, pind):
ind, dis = calc_target_index(state, cx, cy)
if pind >= ind:
ind = pind
# print(parent_index, ind)
if ind < len(cx):
tx = cx[ind]
ty = cy[ind]
else:
tx = cx[-1]
ty = cy[-1]
ind = len(cx) - 1
alpha = math.atan2(ty - state.y, tx - state.x) - state.yaw
if state.v <= 0.0: # back
alpha = math.pi - alpha
delta = math.atan2(2.0 * unicycle_model.L * math.sin(alpha) / Lf, 1.0)
if delta > unicycle_model.steer_max:
delta = unicycle_model.steer_max
elif delta < - unicycle_model.steer_max:
delta = -unicycle_model.steer_max
return delta, ind, dis
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/pure_pursuit.py#L40-L68
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28
] | 86.206897 |
[
12,
13,
14
] | 10.344828 | false | 95.454545 | 29 | 6 | 89.655172 | 0 |
def pure_pursuit_control(state, cx, cy, pind):
ind, dis = calc_target_index(state, cx, cy)
if pind >= ind:
ind = pind
# print(parent_index, ind)
if ind < len(cx):
tx = cx[ind]
ty = cy[ind]
else:
tx = cx[-1]
ty = cy[-1]
ind = len(cx) - 1
alpha = math.atan2(ty - state.y, tx - state.x) - state.yaw
if state.v <= 0.0: # back
alpha = math.pi - alpha
delta = math.atan2(2.0 * unicycle_model.L * math.sin(alpha) / Lf, 1.0)
if delta > unicycle_model.steer_max:
delta = unicycle_model.steer_max
elif delta < - unicycle_model.steer_max:
delta = -unicycle_model.steer_max
return delta, ind, dis
| 1,144 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/pure_pursuit.py
|
calc_target_index
|
(state, cx, cy)
|
return ind, mindis
| 71 | 89 |
def calc_target_index(state, cx, cy):
dx = [state.x - icx for icx in cx]
dy = [state.y - icy for icy in cy]
d = np.hypot(dx, dy)
mindis = min(d)
ind = np.argmin(d)
L = 0.0
while Lf > L and (ind + 1) < len(cx):
dx = cx[ind + 1] - cx[ind]
dy = cy[ind + 1] - cy[ind]
L += math.hypot(dx, dy)
ind += 1
# print(mindis)
return ind, mindis
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/pure_pursuit.py#L71-L89
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18
] | 100 |
[] | 0 | true | 95.454545 | 19 | 5 | 100 | 0 |
def calc_target_index(state, cx, cy):
dx = [state.x - icx for icx in cx]
dy = [state.y - icy for icy in cy]
d = np.hypot(dx, dy)
mindis = min(d)
ind = np.argmin(d)
L = 0.0
while Lf > L and (ind + 1) < len(cx):
dx = cx[ind + 1] - cx[ind]
dy = cy[ind + 1] - cy[ind]
L += math.hypot(dx, dy)
ind += 1
# print(mindis)
return ind, mindis
| 1,145 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/pure_pursuit.py
|
closed_loop_prediction
|
(cx, cy, cyaw, speed_profile, goal)
|
return t, x, y, yaw, v, a, d, find_goal
| 92 | 157 |
def closed_loop_prediction(cx, cy, cyaw, speed_profile, goal):
state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
# lastIndex = len(cx) - 1
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
a = [0.0]
d = [0.0]
target_ind, mindis = calc_target_index(state, cx, cy)
find_goal = False
maxdis = 0.5
while T >= time:
di, target_ind, dis = pure_pursuit_control(state, cx, cy, target_ind)
target_speed = speed_profile[target_ind]
target_speed = target_speed * \
(maxdis - min(dis, maxdis - 0.1)) / maxdis
ai = PIDControl(target_speed, state.v)
state = unicycle_model.update(state, ai, di)
if abs(state.v) <= stop_speed and target_ind <= len(cx) - 2:
target_ind += 1
time = time + unicycle_model.dt
# check goal
dx = state.x - goal[0]
dy = state.y - goal[1]
if math.hypot(dx, dy) <= goal_dis:
find_goal = True
break
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
a.append(ai)
d.append(di)
if target_ind % 1 == 0 and animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(cx, cy, "-r", label="course")
plt.plot(x, y, "ob", label="trajectory")
plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
plt.axis("equal")
plt.grid(True)
plt.title("speed:" + str(round(state.v, 2))
+ "tind:" + str(target_ind))
plt.pause(0.0001)
else:
print("Time out!!")
return t, x, y, yaw, v, a, d, find_goal
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/pure_pursuit.py#L92-L157
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
64,
65
] | 87.5 |
[
63
] | 1.785714 | false | 95.454545 | 66 | 7 | 98.214286 | 0 |
def closed_loop_prediction(cx, cy, cyaw, speed_profile, goal):
state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
# lastIndex = len(cx) - 1
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
a = [0.0]
d = [0.0]
target_ind, mindis = calc_target_index(state, cx, cy)
find_goal = False
maxdis = 0.5
while T >= time:
di, target_ind, dis = pure_pursuit_control(state, cx, cy, target_ind)
target_speed = speed_profile[target_ind]
target_speed = target_speed * \
(maxdis - min(dis, maxdis - 0.1)) / maxdis
ai = PIDControl(target_speed, state.v)
state = unicycle_model.update(state, ai, di)
if abs(state.v) <= stop_speed and target_ind <= len(cx) - 2:
target_ind += 1
time = time + unicycle_model.dt
# check goal
dx = state.x - goal[0]
dy = state.y - goal[1]
if math.hypot(dx, dy) <= goal_dis:
find_goal = True
break
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
a.append(ai)
d.append(di)
if target_ind % 1 == 0 and animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(cx, cy, "-r", label="course")
plt.plot(x, y, "ob", label="trajectory")
plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
plt.axis("equal")
plt.grid(True)
plt.title("speed:" + str(round(state.v, 2))
+ "tind:" + str(target_ind))
plt.pause(0.0001)
else:
print("Time out!!")
return t, x, y, yaw, v, a, d, find_goal
| 1,146 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/pure_pursuit.py
|
set_stop_point
|
(target_speed, cx, cy, cyaw)
|
return speed_profile, d
| 160 | 202 |
def set_stop_point(target_speed, cx, cy, cyaw):
speed_profile = [target_speed] * len(cx)
forward = True
d = []
is_back = False
# Set stop point
for i in range(len(cx) - 1):
dx = cx[i + 1] - cx[i]
dy = cy[i + 1] - cy[i]
d.append(math.hypot(dx, dy))
iyaw = cyaw[i]
move_direction = math.atan2(dy, dx)
is_back = abs(move_direction - iyaw) >= math.pi / 2.0
if dx == 0.0 and dy == 0.0:
continue
if is_back:
speed_profile[i] = - target_speed
else:
speed_profile[i] = target_speed
if is_back and forward:
speed_profile[i] = 0.0
forward = False
# plt.plot(cx[i], cy[i], "xb")
# print(i_yaw, move_direction, dx, dy)
elif not is_back and not forward:
speed_profile[i] = 0.0
forward = True
# plt.plot(cx[i], cy[i], "xb")
# print(i_yaw, move_direction, dx, dy)
speed_profile[0] = 0.0
if is_back:
speed_profile[-1] = -stop_speed
else:
speed_profile[-1] = stop_speed
d.append(d[-1])
return speed_profile, d
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/pure_pursuit.py#L160-L202
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
39,
40,
41,
42
] | 93.023256 |
[
38
] | 2.325581 | false | 95.454545 | 43 | 10 | 97.674419 | 0 |
def set_stop_point(target_speed, cx, cy, cyaw):
speed_profile = [target_speed] * len(cx)
forward = True
d = []
is_back = False
# Set stop point
for i in range(len(cx) - 1):
dx = cx[i + 1] - cx[i]
dy = cy[i + 1] - cy[i]
d.append(math.hypot(dx, dy))
iyaw = cyaw[i]
move_direction = math.atan2(dy, dx)
is_back = abs(move_direction - iyaw) >= math.pi / 2.0
if dx == 0.0 and dy == 0.0:
continue
if is_back:
speed_profile[i] = - target_speed
else:
speed_profile[i] = target_speed
if is_back and forward:
speed_profile[i] = 0.0
forward = False
# plt.plot(cx[i], cy[i], "xb")
# print(i_yaw, move_direction, dx, dy)
elif not is_back and not forward:
speed_profile[i] = 0.0
forward = True
# plt.plot(cx[i], cy[i], "xb")
# print(i_yaw, move_direction, dx, dy)
speed_profile[0] = 0.0
if is_back:
speed_profile[-1] = -stop_speed
else:
speed_profile[-1] = stop_speed
d.append(d[-1])
return speed_profile, d
| 1,147 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/pure_pursuit.py
|
calc_speed_profile
|
(cx, cy, cyaw, target_speed)
|
return speed_profile
| 205 | 212 |
def calc_speed_profile(cx, cy, cyaw, target_speed):
speed_profile, d = set_stop_point(target_speed, cx, cy, cyaw)
if animation: # pragma: no cover
plt.plot(speed_profile, "xb")
return speed_profile
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/pure_pursuit.py#L205-L212
| 2 |
[
0,
1,
2,
3,
6,
7
] | 100 |
[] | 0 | true | 95.454545 | 8 | 2 | 100 | 0 |
def calc_speed_profile(cx, cy, cyaw, target_speed):
speed_profile, d = set_stop_point(target_speed, cx, cy, cyaw)
if animation: # pragma: no cover
plt.plot(speed_profile, "xb")
return speed_profile
| 1,148 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/pure_pursuit.py
|
extend_path
|
(cx, cy, cyaw)
|
return cx, cy, cyaw
| 215 | 230 |
def extend_path(cx, cy, cyaw):
dl = 0.1
dl_list = [dl] * (int(Lf / dl) + 1)
move_direction = math.atan2(cy[-1] - cy[-3], cx[-1] - cx[-3])
is_back = abs(move_direction - cyaw[-1]) >= math.pi / 2.0
for idl in dl_list:
if is_back:
idl *= -1
cx = np.append(cx, cx[-1] + idl * math.cos(cyaw[-1]))
cy = np.append(cy, cy[-1] + idl * math.sin(cyaw[-1]))
cyaw = np.append(cyaw, cyaw[-1])
return cx, cy, cyaw
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/pure_pursuit.py#L215-L230
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
] | 100 |
[] | 0 | true | 95.454545 | 16 | 3 | 100 | 0 |
def extend_path(cx, cy, cyaw):
dl = 0.1
dl_list = [dl] * (int(Lf / dl) + 1)
move_direction = math.atan2(cy[-1] - cy[-3], cx[-1] - cx[-3])
is_back = abs(move_direction - cyaw[-1]) >= math.pi / 2.0
for idl in dl_list:
if is_back:
idl *= -1
cx = np.append(cx, cx[-1] + idl * math.cos(cyaw[-1]))
cy = np.append(cy, cy[-1] + idl * math.sin(cyaw[-1]))
cyaw = np.append(cyaw, cyaw[-1])
return cx, cy, cyaw
| 1,149 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/pure_pursuit.py
|
main
|
()
| 233 | 295 |
def main(): # pragma: no cover
# target course
cx = np.arange(0, 50, 0.1)
cy = [math.sin(ix / 5.0) * ix / 2.0 for ix in cx]
target_speed = 5.0 / 3.6
T = 15.0 # max simulation time
state = unicycle_model.State(x=-0.0, y=-3.0, yaw=0.0, v=0.0)
# state = unicycle_model.State(x=-1.0, y=-5.0, yaw=0.0, v=-30.0 / 3.6)
# state = unicycle_model.State(x=10.0, y=5.0, yaw=0.0, v=-30.0 / 3.6)
# state = unicycle_model.State(
# x=3.0, y=5.0, yaw=np.deg2rad(-40.0), v=-10.0 / 3.6)
# state = unicycle_model.State(
# x=3.0, y=5.0, yaw=np.deg2rad(40.0), v=50.0 / 3.6)
lastIndex = len(cx) - 1
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
target_ind, dis = calc_target_index(state, cx, cy)
while T >= time and lastIndex > target_ind:
ai = PIDControl(target_speed, state.v)
di, target_ind, _ = pure_pursuit_control(state, cx, cy, target_ind)
state = unicycle_model.update(state, ai, di)
time = time + unicycle_model.dt
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
# plt.cla()
# plt.plot(cx, cy, ".r", label="course")
# plt.plot(x, y, "-b", label="trajectory")
# plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
# plt.axis("equal")
# plt.grid(True)
# plt.pause(0.1)
# input()
plt.subplots(1)
plt.plot(cx, cy, ".r", label="course")
plt.plot(x, y, "-b", label="trajectory")
plt.legend()
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.axis("equal")
plt.grid(True)
plt.subplots(1)
plt.plot(t, [iv * 3.6 for iv in v], "-r")
plt.xlabel("Time[s]")
plt.ylabel("Speed[km/h]")
plt.grid(True)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/pure_pursuit.py#L233-L295
| 2 |
[] | 0 |
[] | 0 | false | 95.454545 | 63 | 5 | 100 | 0 |
def main(): # pragma: no cover
# target course
cx = np.arange(0, 50, 0.1)
cy = [math.sin(ix / 5.0) * ix / 2.0 for ix in cx]
target_speed = 5.0 / 3.6
T = 15.0 # max simulation time
state = unicycle_model.State(x=-0.0, y=-3.0, yaw=0.0, v=0.0)
# state = unicycle_model.State(x=-1.0, y=-5.0, yaw=0.0, v=-30.0 / 3.6)
# state = unicycle_model.State(x=10.0, y=5.0, yaw=0.0, v=-30.0 / 3.6)
# state = unicycle_model.State(
# x=3.0, y=5.0, yaw=np.deg2rad(-40.0), v=-10.0 / 3.6)
# state = unicycle_model.State(
# x=3.0, y=5.0, yaw=np.deg2rad(40.0), v=50.0 / 3.6)
lastIndex = len(cx) - 1
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
target_ind, dis = calc_target_index(state, cx, cy)
while T >= time and lastIndex > target_ind:
ai = PIDControl(target_speed, state.v)
di, target_ind, _ = pure_pursuit_control(state, cx, cy, target_ind)
state = unicycle_model.update(state, ai, di)
time = time + unicycle_model.dt
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
# plt.cla()
# plt.plot(cx, cy, ".r", label="course")
# plt.plot(x, y, "-b", label="trajectory")
# plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
# plt.axis("equal")
# plt.grid(True)
# plt.pause(0.1)
# input()
plt.subplots(1)
plt.plot(cx, cy, ".r", label="course")
plt.plot(x, y, "-b", label="trajectory")
plt.legend()
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.axis("equal")
plt.grid(True)
plt.subplots(1)
plt.plot(t, [iv * 3.6 for iv in v], "-r")
plt.xlabel("Time[s]")
plt.ylabel("Speed[km/h]")
plt.grid(True)
plt.show()
| 1,150 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py
|
main
|
(gx=6.0, gy=7.0, gyaw=np.deg2rad(90.0), max_iter=100)
| 151 | 212 |
def main(gx=6.0, gy=7.0, gyaw=np.deg2rad(90.0), max_iter=100):
print("Start" + __file__)
# ====Search Path with RRT====
obstacle_list = [
(5, 5, 1),
(4, 6, 1),
(4, 8, 1),
(4, 10, 1),
(6, 5, 1),
(7, 5, 1),
(8, 6, 1),
(8, 8, 1),
(8, 10, 1)
] # [x,y,size(radius)]
# Set Initial parameters
start = [0.0, 0.0, np.deg2rad(0.0)]
goal = [gx, gy, gyaw]
closed_loop_rrt_star = ClosedLoopRRTStar(start, goal,
obstacle_list,
[-2.0, 20.0],
max_iter=max_iter)
flag, x, y, yaw, v, t, a, d = closed_loop_rrt_star.planning(
animation=show_animation)
if not flag:
print("cannot find feasible path")
# Draw final path
if show_animation:
closed_loop_rrt_star.draw_graph()
plt.plot(x, y, '-r')
plt.grid(True)
plt.pause(0.001)
plt.subplots(1)
plt.plot(t, [np.rad2deg(iyaw) for iyaw in yaw[:-1]], '-r')
plt.xlabel("time[s]")
plt.ylabel("Yaw[deg]")
plt.grid(True)
plt.subplots(1)
plt.plot(t, [iv * 3.6 for iv in v], '-r')
plt.xlabel("time[s]")
plt.ylabel("velocity[km/h]")
plt.grid(True)
plt.subplots(1)
plt.plot(t, a, '-r')
plt.xlabel("time[s]")
plt.ylabel("accel[m/ss]")
plt.grid(True)
plt.subplots(1)
plt.plot(t, [np.rad2deg(td) for td in d], '-r')
plt.xlabel("time[s]")
plt.ylabel("Steering angle[deg]")
plt.grid(True)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py#L151-L212
| 2 |
[
0,
1,
2,
3,
15,
16,
17,
18,
19,
23,
25,
26,
29,
30
] | 22.580645 |
[
27,
31,
32,
33,
34,
36,
37,
38,
39,
40,
42,
43,
45,
46,
47,
49,
50,
51,
52,
53,
55,
56,
57,
58,
59,
61
] | 41.935484 | false | 70.338983 | 62 | 6 | 58.064516 | 0 |
def main(gx=6.0, gy=7.0, gyaw=np.deg2rad(90.0), max_iter=100):
print("Start" + __file__)
# ====Search Path with RRT====
obstacle_list = [
(5, 5, 1),
(4, 6, 1),
(4, 8, 1),
(4, 10, 1),
(6, 5, 1),
(7, 5, 1),
(8, 6, 1),
(8, 8, 1),
(8, 10, 1)
] # [x,y,size(radius)]
# Set Initial parameters
start = [0.0, 0.0, np.deg2rad(0.0)]
goal = [gx, gy, gyaw]
closed_loop_rrt_star = ClosedLoopRRTStar(start, goal,
obstacle_list,
[-2.0, 20.0],
max_iter=max_iter)
flag, x, y, yaw, v, t, a, d = closed_loop_rrt_star.planning(
animation=show_animation)
if not flag:
print("cannot find feasible path")
# Draw final path
if show_animation:
closed_loop_rrt_star.draw_graph()
plt.plot(x, y, '-r')
plt.grid(True)
plt.pause(0.001)
plt.subplots(1)
plt.plot(t, [np.rad2deg(iyaw) for iyaw in yaw[:-1]], '-r')
plt.xlabel("time[s]")
plt.ylabel("Yaw[deg]")
plt.grid(True)
plt.subplots(1)
plt.plot(t, [iv * 3.6 for iv in v], '-r')
plt.xlabel("time[s]")
plt.ylabel("velocity[km/h]")
plt.grid(True)
plt.subplots(1)
plt.plot(t, a, '-r')
plt.xlabel("time[s]")
plt.ylabel("accel[m/ss]")
plt.grid(True)
plt.subplots(1)
plt.plot(t, [np.rad2deg(td) for td in d], '-r')
plt.xlabel("time[s]")
plt.ylabel("Steering angle[deg]")
plt.grid(True)
plt.show()
| 1,151 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py
|
ClosedLoopRRTStar.__init__
|
(self, start, goal, obstacle_list, rand_area,
max_iter=200,
connect_circle_dist=50.0,
robot_radius=0.0
)
| 28 | 42 |
def __init__(self, start, goal, obstacle_list, rand_area,
max_iter=200,
connect_circle_dist=50.0,
robot_radius=0.0
):
super().__init__(start, goal, obstacle_list, rand_area,
max_iter=max_iter,
connect_circle_dist=connect_circle_dist,
robot_radius=robot_radius
)
self.target_speed = 10.0 / 3.6
self.yaw_th = np.deg2rad(3.0)
self.xy_th = 0.5
self.invalid_travel_ratio = 5.0
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py#L28-L42
| 2 |
[
0,
5,
10,
11,
12,
13,
14
] | 46.666667 |
[] | 0 | false | 70.338983 | 15 | 1 | 100 | 0 |
def __init__(self, start, goal, obstacle_list, rand_area,
max_iter=200,
connect_circle_dist=50.0,
robot_radius=0.0
):
super().__init__(start, goal, obstacle_list, rand_area,
max_iter=max_iter,
connect_circle_dist=connect_circle_dist,
robot_radius=robot_radius
)
self.target_speed = 10.0 / 3.6
self.yaw_th = np.deg2rad(3.0)
self.xy_th = 0.5
self.invalid_travel_ratio = 5.0
| 1,152 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py
|
ClosedLoopRRTStar.planning
|
(self, animation=True)
|
return flag, x, y, yaw, v, t, a, d
|
do planning
animation: flag for animation on or off
|
do planning
| 44 | 59 |
def planning(self, animation=True):
"""
do planning
animation: flag for animation on or off
"""
# planning with RRTStarReedsShepp
super().planning(animation=animation)
# generate coruse
path_indexs = self.get_goal_indexes()
flag, x, y, yaw, v, t, a, d = self.search_best_feasible_path(
path_indexs)
return flag, x, y, yaw, v, t, a, d
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py#L44-L59
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
] | 100 |
[] | 0 | true | 70.338983 | 16 | 1 | 100 | 3 |
def planning(self, animation=True):
# planning with RRTStarReedsShepp
super().planning(animation=animation)
# generate coruse
path_indexs = self.get_goal_indexes()
flag, x, y, yaw, v, t, a, d = self.search_best_feasible_path(
path_indexs)
return flag, x, y, yaw, v, t, a, d
| 1,153 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py
|
ClosedLoopRRTStar.search_best_feasible_path
|
(self, path_indexs)
|
return False, None, None, None, None, None, None, None
| 61 | 90 |
def search_best_feasible_path(self, path_indexs):
print("Start search feasible path")
best_time = float("inf")
fx, fy, fyaw, fv, ft, fa, fd = None, None, None, None, None, None, None
# pure pursuit tracking
for ind in path_indexs:
path = self.generate_final_course(ind)
flag, x, y, yaw, v, t, a, d = self.check_tracking_path_is_feasible(
path)
if flag and best_time >= t[-1]:
print("feasible path is found")
best_time = t[-1]
fx, fy, fyaw, fv, ft, fa, fd = x, y, yaw, v, t, a, d
print("best time is")
print(best_time)
if fx:
fx.append(self.end.x)
fy.append(self.end.y)
fyaw.append(self.end.yaw)
return True, fx, fy, fyaw, fv, ft, fa, fd
return False, None, None, None, None, None, None, None
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py#L61-L90
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28
] | 93.333333 |
[
29
] | 3.333333 | false | 70.338983 | 30 | 5 | 96.666667 | 0 |
def search_best_feasible_path(self, path_indexs):
print("Start search feasible path")
best_time = float("inf")
fx, fy, fyaw, fv, ft, fa, fd = None, None, None, None, None, None, None
# pure pursuit tracking
for ind in path_indexs:
path = self.generate_final_course(ind)
flag, x, y, yaw, v, t, a, d = self.check_tracking_path_is_feasible(
path)
if flag and best_time >= t[-1]:
print("feasible path is found")
best_time = t[-1]
fx, fy, fyaw, fv, ft, fa, fd = x, y, yaw, v, t, a, d
print("best time is")
print(best_time)
if fx:
fx.append(self.end.x)
fy.append(self.end.y)
fyaw.append(self.end.yaw)
return True, fx, fy, fyaw, fv, ft, fa, fd
return False, None, None, None, None, None, None, None
| 1,154 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py
|
ClosedLoopRRTStar.check_tracking_path_is_feasible
|
(self, path)
|
return find_goal, x, y, yaw, v, t, a, d
| 92 | 130 |
def check_tracking_path_is_feasible(self, path):
cx = np.array([state[0] for state in path])[::-1]
cy = np.array([state[1] for state in path])[::-1]
cyaw = np.array([state[2] for state in path])[::-1]
goal = [cx[-1], cy[-1], cyaw[-1]]
cx, cy, cyaw = pure_pursuit.extend_path(cx, cy, cyaw)
speed_profile = pure_pursuit.calc_speed_profile(
cx, cy, cyaw, self.target_speed)
t, x, y, yaw, v, a, d, find_goal = pure_pursuit.closed_loop_prediction(
cx, cy, cyaw, speed_profile, goal)
yaw = [reeds_shepp_path_planning.pi_2_pi(iyaw) for iyaw in yaw]
if not find_goal:
print("cannot reach goal")
if abs(yaw[-1] - goal[2]) >= self.yaw_th * 10.0:
print("final angle is bad")
find_goal = False
travel = unicycle_model.dt * sum(np.abs(v))
origin_travel = sum(np.hypot(np.diff(cx), np.diff(cy)))
if (travel / origin_travel) >= self.invalid_travel_ratio:
print("path is too long")
find_goal = False
tmp_node = self.Node(x, y, 0)
tmp_node.path_x = x
tmp_node.path_y = y
if not self.check_collision(
tmp_node, self.obstacle_list, self.robot_radius):
print("This path is collision")
find_goal = False
return find_goal, x, y, yaw, v, t, a, d
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py#L92-L130
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
11,
12,
14,
15,
16,
18,
19,
22,
23,
24,
25,
26,
29,
30,
31,
32,
33,
37,
38
] | 74.358974 |
[
17,
20,
21,
27,
28,
35,
36
] | 17.948718 | false | 70.338983 | 39 | 9 | 82.051282 | 0 |
def check_tracking_path_is_feasible(self, path):
cx = np.array([state[0] for state in path])[::-1]
cy = np.array([state[1] for state in path])[::-1]
cyaw = np.array([state[2] for state in path])[::-1]
goal = [cx[-1], cy[-1], cyaw[-1]]
cx, cy, cyaw = pure_pursuit.extend_path(cx, cy, cyaw)
speed_profile = pure_pursuit.calc_speed_profile(
cx, cy, cyaw, self.target_speed)
t, x, y, yaw, v, a, d, find_goal = pure_pursuit.closed_loop_prediction(
cx, cy, cyaw, speed_profile, goal)
yaw = [reeds_shepp_path_planning.pi_2_pi(iyaw) for iyaw in yaw]
if not find_goal:
print("cannot reach goal")
if abs(yaw[-1] - goal[2]) >= self.yaw_th * 10.0:
print("final angle is bad")
find_goal = False
travel = unicycle_model.dt * sum(np.abs(v))
origin_travel = sum(np.hypot(np.diff(cx), np.diff(cy)))
if (travel / origin_travel) >= self.invalid_travel_ratio:
print("path is too long")
find_goal = False
tmp_node = self.Node(x, y, 0)
tmp_node.path_x = x
tmp_node.path_y = y
if not self.check_collision(
tmp_node, self.obstacle_list, self.robot_radius):
print("This path is collision")
find_goal = False
return find_goal, x, y, yaw, v, t, a, d
| 1,155 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py
|
ClosedLoopRRTStar.get_goal_indexes
|
(self)
|
return fgoalinds
| 132 | 148 |
def get_goal_indexes(self):
goalinds = []
for (i, node) in enumerate(self.node_list):
if self.calc_dist_to_goal(node.x, node.y) <= self.xy_th:
goalinds.append(i)
print("OK XY TH num is")
print(len(goalinds))
# angle check
fgoalinds = []
for i in goalinds:
if abs(self.node_list[i].yaw - self.end.yaw) <= self.yaw_th:
fgoalinds.append(i)
print("OK YAW TH num is")
print(len(fgoalinds))
return fgoalinds
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py#L132-L148
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16
] | 100 |
[] | 0 | true | 70.338983 | 17 | 5 | 100 | 0 |
def get_goal_indexes(self):
goalinds = []
for (i, node) in enumerate(self.node_list):
if self.calc_dist_to_goal(node.x, node.y) <= self.xy_th:
goalinds.append(i)
print("OK XY TH num is")
print(len(goalinds))
# angle check
fgoalinds = []
for i in goalinds:
if abs(self.node_list[i].yaw - self.end.yaw) <= self.yaw_th:
fgoalinds.append(i)
print("OK YAW TH num is")
print(len(fgoalinds))
return fgoalinds
| 1,156 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/unicycle_model.py
|
update
|
(state, a, delta)
|
return state
| 30 | 38 |
def update(state, a, delta):
state.x = state.x + state.v * math.cos(state.yaw) * dt
state.y = state.y + state.v * math.sin(state.yaw) * dt
state.yaw = state.yaw + state.v / L * math.tan(delta) * dt
state.yaw = pi_2_pi(state.yaw)
state.v = state.v + a * dt
return state
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/unicycle_model.py#L30-L38
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8
] | 100 |
[] | 0 | true | 100 | 9 | 1 | 100 | 0 |
def update(state, a, delta):
state.x = state.x + state.v * math.cos(state.yaw) * dt
state.y = state.y + state.v * math.sin(state.yaw) * dt
state.yaw = state.yaw + state.v / L * math.tan(delta) * dt
state.yaw = pi_2_pi(state.yaw)
state.v = state.v + a * dt
return state
| 1,157 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/unicycle_model.py
|
pi_2_pi
|
(angle)
|
return (angle + math.pi) % (2 * math.pi) - math.pi
| 41 | 42 |
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/unicycle_model.py#L41-L42
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 100 | 2 | 1 | 100 | 0 |
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
| 1,158 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClosedLoopRRTStar/unicycle_model.py
|
State.__init__
|
(self, x=0.0, y=0.0, yaw=0.0, v=0.0)
| 23 | 27 |
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
self.x = x
self.y = y
self.yaw = yaw
self.v = v
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClosedLoopRRTStar/unicycle_model.py#L23-L27
| 2 |
[
0,
1,
2,
3,
4
] | 100 |
[] | 0 | true | 100 | 5 | 1 | 100 | 0 |
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
self.x = x
self.y = y
self.yaw = yaw
self.v = v
| 1,159 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py
|
example_DMP
|
()
|
Creates a noisy trajectory, fits weights to it, and then adjusts the
trajectory by moving its start position, goal position, or period
|
Creates a noisy trajectory, fits weights to it, and then adjusts the
trajectory by moving its start position, goal position, or period
| 238 | 256 |
def example_DMP():
"""
Creates a noisy trajectory, fits weights to it, and then adjusts the
trajectory by moving its start position, goal position, or period
"""
t = np.arange(0, 3*np.pi/2, 0.01)
t1 = np.arange(3*np.pi/2, 2*np.pi, 0.01)[:-1]
t2 = np.arange(0, np.pi/2, 0.01)[:-1]
t3 = np.arange(np.pi, 3*np.pi/2, 0.01)
data_x = t + 0.02*np.random.rand(t.shape[0])
data_y = np.concatenate([np.cos(t1) + 0.1*np.random.rand(t1.shape[0]),
np.cos(t2) + 0.1*np.random.rand(t2.shape[0]),
np.sin(t3) + 0.1*np.random.rand(t3.shape[0])])
training_data = np.vstack([data_x, data_y]).T
period = 3*np.pi/2
DMP_controller = DMP(training_data, period)
DMP_controller.show_DMP_purpose()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py#L238-L256
| 2 |
[
0,
1,
2,
3,
4
] | 26.315789 |
[
5,
6,
7,
8,
9,
10,
13,
15,
16,
18
] | 52.631579 | false | 60 | 19 | 1 | 47.368421 | 2 |
def example_DMP():
t = np.arange(0, 3*np.pi/2, 0.01)
t1 = np.arange(3*np.pi/2, 2*np.pi, 0.01)[:-1]
t2 = np.arange(0, np.pi/2, 0.01)[:-1]
t3 = np.arange(np.pi, 3*np.pi/2, 0.01)
data_x = t + 0.02*np.random.rand(t.shape[0])
data_y = np.concatenate([np.cos(t1) + 0.1*np.random.rand(t1.shape[0]),
np.cos(t2) + 0.1*np.random.rand(t2.shape[0]),
np.sin(t3) + 0.1*np.random.rand(t3.shape[0])])
training_data = np.vstack([data_x, data_y]).T
period = 3*np.pi/2
DMP_controller = DMP(training_data, period)
DMP_controller.show_DMP_purpose()
| 1,160 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py
|
DMP.__init__
|
(self, training_data, data_period, K=156.25, B=25)
|
Arguments:
training_data - input data of form [N, dim]
data_period - amount of time training data covers
K and B - spring and damper constants to define
DMP behavior
|
Arguments:
training_data - input data of form [N, dim]
data_period - amount of time training data covers
K and B - spring and damper constants to define
DMP behavior
| 23 | 43 |
def __init__(self, training_data, data_period, K=156.25, B=25):
"""
Arguments:
training_data - input data of form [N, dim]
data_period - amount of time training data covers
K and B - spring and damper constants to define
DMP behavior
"""
self.K = K # virtual spring constant
self.B = B # virtual damper coefficient
self.timesteps = training_data.shape[0]
self.dt = data_period / self.timesteps
self.weights = None # weights used to generate DMP trajectories
self.T_orig = data_period
self.training_data = training_data
self.find_basis_functions_weights(training_data, data_period)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py#L23-L43
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20
] | 100 |
[] | 0 | true | 60 | 21 | 1 | 100 | 5 |
def __init__(self, training_data, data_period, K=156.25, B=25):
self.K = K # virtual spring constant
self.B = B # virtual damper coefficient
self.timesteps = training_data.shape[0]
self.dt = data_period / self.timesteps
self.weights = None # weights used to generate DMP trajectories
self.T_orig = data_period
self.training_data = training_data
self.find_basis_functions_weights(training_data, data_period)
| 1,161 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py
|
DMP.find_basis_functions_weights
|
(self, training_data, data_period,
num_weights=10)
|
Arguments:
data [(steps x spacial dim) np array] - data to replicate with DMP
data_period [float] - time duration of data
|
Arguments:
data [(steps x spacial dim) np array] - data to replicate with DMP
data_period [float] - time duration of data
| 45 | 109 |
def find_basis_functions_weights(self, training_data, data_period,
num_weights=10):
"""
Arguments:
data [(steps x spacial dim) np array] - data to replicate with DMP
data_period [float] - time duration of data
"""
if not isinstance(training_data, np.ndarray):
print("Warning: you should input training data as an np.ndarray")
elif training_data.shape[0] < training_data.shape[1]:
print("Warning: you probably need to transpose your training data")
dt = data_period / len(training_data)
init_state = training_data[0]
goal_state = training_data[-1]
# means (C) and std devs (H) of gaussian basis functions
C = np.linspace(0, 1, num_weights)
H = (0.65*(1./(num_weights-1))**2)
for dim, _ in enumerate(training_data[0]):
dimension_data = training_data[:, dim]
q0 = init_state[dim]
g = goal_state[dim]
q = q0
qd_last = 0
phi_vals = []
f_vals = []
for i, _ in enumerate(dimension_data):
if i + 1 == len(dimension_data):
qd = 0
else:
qd = (dimension_data[i+1] - dimension_data[i]) / dt
phi = [np.exp(-0.5 * ((i * dt / data_period) - c)**2 / H)
for c in C]
phi = phi/np.sum(phi)
qdd = (qd - qd_last)/dt
f = (qdd * data_period**2 - self.K * (g - q) + self.B * qd
* data_period) / (g - q0)
phi_vals.append(phi)
f_vals.append(f)
qd_last = qd
q += qd * dt
phi_vals = np.asarray(phi_vals)
f_vals = np.asarray(f_vals)
w = np.linalg.lstsq(phi_vals, f_vals, rcond=None)
if self.weights is None:
self.weights = np.asarray(w[0])
else:
self.weights = np.vstack([self.weights, w[0]])
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py#L45-L109
| 2 |
[
0,
7,
8,
10,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
39,
40,
41,
43,
44,
45,
46,
47,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
64
] | 81.538462 |
[
9,
11
] | 3.076923 | false | 60 | 65 | 8 | 96.923077 | 3 |
def find_basis_functions_weights(self, training_data, data_period,
num_weights=10):
if not isinstance(training_data, np.ndarray):
print("Warning: you should input training data as an np.ndarray")
elif training_data.shape[0] < training_data.shape[1]:
print("Warning: you probably need to transpose your training data")
dt = data_period / len(training_data)
init_state = training_data[0]
goal_state = training_data[-1]
# means (C) and std devs (H) of gaussian basis functions
C = np.linspace(0, 1, num_weights)
H = (0.65*(1./(num_weights-1))**2)
for dim, _ in enumerate(training_data[0]):
dimension_data = training_data[:, dim]
q0 = init_state[dim]
g = goal_state[dim]
q = q0
qd_last = 0
phi_vals = []
f_vals = []
for i, _ in enumerate(dimension_data):
if i + 1 == len(dimension_data):
qd = 0
else:
qd = (dimension_data[i+1] - dimension_data[i]) / dt
phi = [np.exp(-0.5 * ((i * dt / data_period) - c)**2 / H)
for c in C]
phi = phi/np.sum(phi)
qdd = (qd - qd_last)/dt
f = (qdd * data_period**2 - self.K * (g - q) + self.B * qd
* data_period) / (g - q0)
phi_vals.append(phi)
f_vals.append(f)
qd_last = qd
q += qd * dt
phi_vals = np.asarray(phi_vals)
f_vals = np.asarray(f_vals)
w = np.linalg.lstsq(phi_vals, f_vals, rcond=None)
if self.weights is None:
self.weights = np.asarray(w[0])
else:
self.weights = np.vstack([self.weights, w[0]])
| 1,162 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py
|
DMP.recreate_trajectory
|
(self, init_state, goal_state, T)
|
return t, positions
|
init_state - initial state/position
goal_state - goal state/position
T - amount of time to travel q0 -> g
|
init_state - initial state/position
goal_state - goal state/position
T - amount of time to travel q0 -> g
| 111 | 160 |
def recreate_trajectory(self, init_state, goal_state, T):
"""
init_state - initial state/position
goal_state - goal state/position
T - amount of time to travel q0 -> g
"""
nrBasis = len(self.weights[0]) # number of gaussian basis functions
# means (C) and std devs (H) of gaussian basis functions
C = np.linspace(0, 1, nrBasis)
H = (0.65*(1./(nrBasis-1))**2)
# initialize virtual system
time = 0
q = init_state
dimensions = self.weights.shape[0]
qd = np.zeros(dimensions)
positions = np.array([])
for k in range(self.timesteps):
time = time + self.dt
qdd = np.zeros(dimensions)
for dim in range(dimensions):
if time <= T:
phi = [np.exp(-0.5 * ((time / T) - c)**2 / H) for c in C]
phi = phi / np.sum(phi)
f = np.dot(phi, self.weights[dim])
else:
f = 0
# simulate dynamics
qdd[dim] = (self.K*(goal_state[dim] - q[dim])/T**2
- self.B*qd[dim]/T
+ (goal_state[dim] - init_state[dim])*f/T**2)
qd = qd + qdd * self.dt
q = q + qd * self.dt
if positions.size == 0:
positions = q
else:
positions = np.vstack([positions, q])
t = np.arange(0, self.timesteps * self.dt, self.dt)
return t, positions
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py#L111-L160
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49
] | 100 |
[] | 0 | true | 60 | 50 | 6 | 100 | 3 |
def recreate_trajectory(self, init_state, goal_state, T):
nrBasis = len(self.weights[0]) # number of gaussian basis functions
# means (C) and std devs (H) of gaussian basis functions
C = np.linspace(0, 1, nrBasis)
H = (0.65*(1./(nrBasis-1))**2)
# initialize virtual system
time = 0
q = init_state
dimensions = self.weights.shape[0]
qd = np.zeros(dimensions)
positions = np.array([])
for k in range(self.timesteps):
time = time + self.dt
qdd = np.zeros(dimensions)
for dim in range(dimensions):
if time <= T:
phi = [np.exp(-0.5 * ((time / T) - c)**2 / H) for c in C]
phi = phi / np.sum(phi)
f = np.dot(phi, self.weights[dim])
else:
f = 0
# simulate dynamics
qdd[dim] = (self.K*(goal_state[dim] - q[dim])/T**2
- self.B*qd[dim]/T
+ (goal_state[dim] - init_state[dim])*f/T**2)
qd = qd + qdd * self.dt
q = q + qd * self.dt
if positions.size == 0:
positions = q
else:
positions = np.vstack([positions, q])
t = np.arange(0, self.timesteps * self.dt, self.dt)
return t, positions
| 1,163 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py
|
DMP.dist_between
|
(p1, p2)
|
return np.linalg.norm(p1 - p2)
| 163 | 164 |
def dist_between(p1, p2):
return np.linalg.norm(p1 - p2)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py#L163-L164
| 2 |
[
0
] | 50 |
[
1
] | 50 | false | 60 | 2 | 1 | 50 | 0 |
def dist_between(p1, p2):
return np.linalg.norm(p1 - p2)
| 1,164 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py
|
DMP.view_trajectory
|
(self, path, title=None, demo=False)
| 166 | 189 |
def view_trajectory(self, path, title=None, demo=False):
path = np.asarray(path)
plt.cla()
plt.plot(self.training_data[:, 0], self.training_data[:, 1],
label="Training Data")
plt.plot(path[:, 0], path[:, 1],
linewidth=2, label="DMP Approximation")
plt.xlabel("X Position")
plt.ylabel("Y Position")
plt.legend()
if title is not None:
plt.title(title)
if demo:
plt.xlim([-0.5, 5])
plt.ylim([-2, 2])
plt.draw()
plt.pause(0.02)
else:
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py#L166-L189
| 2 |
[
0,
1
] | 8.333333 |
[
2,
4,
5,
7,
10,
11,
12,
14,
15,
17,
18,
19,
20,
21,
23
] | 62.5 | false | 60 | 24 | 3 | 37.5 | 0 |
def view_trajectory(self, path, title=None, demo=False):
path = np.asarray(path)
plt.cla()
plt.plot(self.training_data[:, 0], self.training_data[:, 1],
label="Training Data")
plt.plot(path[:, 0], path[:, 1],
linewidth=2, label="DMP Approximation")
plt.xlabel("X Position")
plt.ylabel("Y Position")
plt.legend()
if title is not None:
plt.title(title)
if demo:
plt.xlim([-0.5, 5])
plt.ylim([-2, 2])
plt.draw()
plt.pause(0.02)
else:
plt.show()
| 1,165 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py
|
DMP.show_DMP_purpose
|
(self)
|
This function conveys the purpose of DMPs:
to capture a trajectory and be able to stretch
and squeeze it in terms of start and stop position
or time
|
This function conveys the purpose of DMPs:
to capture a trajectory and be able to stretch
and squeeze it in terms of start and stop position
or time
| 191 | 235 |
def show_DMP_purpose(self):
"""
This function conveys the purpose of DMPs:
to capture a trajectory and be able to stretch
and squeeze it in terms of start and stop position
or time
"""
q0_orig = self.training_data[0]
g_orig = self.training_data[-1]
T_orig = self.T_orig
data_range = (np.amax(self.training_data[:, 0])
- np.amin(self.training_data[:, 0])) / 4
q0_right = q0_orig + np.array([data_range, 0])
q0_up = q0_orig + np.array([0, data_range/2])
g_left = g_orig - np.array([data_range, 0])
g_down = g_orig - np.array([0, data_range/2])
q0_vals = np.vstack([np.linspace(q0_orig, q0_right, 20),
np.linspace(q0_orig, q0_up, 20)])
g_vals = np.vstack([np.linspace(g_orig, g_left, 20),
np.linspace(g_orig, g_down, 20)])
T_vals = np.linspace(T_orig, 2*T_orig, 20)
for new_q0_value in q0_vals:
plot_title = "Initial Position = [%s, %s]" % \
(round(new_q0_value[0], 2), round(new_q0_value[1], 2))
_, path = self.recreate_trajectory(new_q0_value, g_orig, T_orig)
self.view_trajectory(path, title=plot_title, demo=True)
for new_g_value in g_vals:
plot_title = "Goal Position = [%s, %s]" % \
(round(new_g_value[0], 2), round(new_g_value[1], 2))
_, path = self.recreate_trajectory(q0_orig, new_g_value, T_orig)
self.view_trajectory(path, title=plot_title, demo=True)
for new_T_value in T_vals:
plot_title = "Period = %s [sec]" % round(new_T_value, 2)
_, path = self.recreate_trajectory(q0_orig, g_orig, new_T_value)
self.view_trajectory(path, title=plot_title, demo=True)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py#L191-L235
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7
] | 17.777778 |
[
8,
9,
10,
12,
15,
16,
17,
18,
20,
22,
24,
26,
27,
30,
31,
33,
34,
37,
38,
40,
41,
43,
44
] | 51.111111 | false | 60 | 45 | 4 | 48.888889 | 4 |
def show_DMP_purpose(self):
q0_orig = self.training_data[0]
g_orig = self.training_data[-1]
T_orig = self.T_orig
data_range = (np.amax(self.training_data[:, 0])
- np.amin(self.training_data[:, 0])) / 4
q0_right = q0_orig + np.array([data_range, 0])
q0_up = q0_orig + np.array([0, data_range/2])
g_left = g_orig - np.array([data_range, 0])
g_down = g_orig - np.array([0, data_range/2])
q0_vals = np.vstack([np.linspace(q0_orig, q0_right, 20),
np.linspace(q0_orig, q0_up, 20)])
g_vals = np.vstack([np.linspace(g_orig, g_left, 20),
np.linspace(g_orig, g_down, 20)])
T_vals = np.linspace(T_orig, 2*T_orig, 20)
for new_q0_value in q0_vals:
plot_title = "Initial Position = [%s, %s]" % \
(round(new_q0_value[0], 2), round(new_q0_value[1], 2))
_, path = self.recreate_trajectory(new_q0_value, g_orig, T_orig)
self.view_trajectory(path, title=plot_title, demo=True)
for new_g_value in g_vals:
plot_title = "Goal Position = [%s, %s]" % \
(round(new_g_value[0], 2), round(new_g_value[1], 2))
_, path = self.recreate_trajectory(q0_orig, new_g_value, T_orig)
self.view_trajectory(path, title=plot_title, demo=True)
for new_T_value in T_vals:
plot_title = "Period = %s [sec]" % round(new_T_value, 2)
_, path = self.recreate_trajectory(q0_orig, g_orig, new_T_value)
self.view_trajectory(path, title=plot_title, demo=True)
| 1,166 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DubinsPath/dubins_path_planner.py
|
plan_dubins_path
|
(s_x, s_y, s_yaw, g_x, g_y, g_yaw, curvature,
step_size=0.1, selected_types=None)
|
return x_list, y_list, yaw_list, modes, lengths
|
Plan dubins path
Parameters
----------
s_x : float
x position of the start point [m]
s_y : float
y position of the start point [m]
s_yaw : float
yaw angle of the start point [rad]
g_x : float
x position of the goal point [m]
g_y : float
y position of the end point [m]
g_yaw : float
yaw angle of the end point [rad]
curvature : float
curvature for curve [1/m]
step_size : float (optional)
step size between two path points [m]. Default is 0.1
selected_types : a list of string or None
selected path planning types. If None, all types are used for
path planning, and minimum path length result is returned.
You can select used path plannings types by a string list.
e.g.: ["RSL", "RSR"]
Returns
-------
x_list: array
x positions of the path
y_list: array
y positions of the path
yaw_list: array
yaw angles of the path
modes: array
mode list of the path
lengths: array
arrow_length list of the path segments.
Examples
--------
You can generate a dubins path.
>>> start_x = 1.0 # [m]
>>> start_y = 1.0 # [m]
>>> start_yaw = np.deg2rad(45.0) # [rad]
>>> end_x = -3.0 # [m]
>>> end_y = -3.0 # [m]
>>> end_yaw = np.deg2rad(-45.0) # [rad]
>>> curvature = 1.0
>>> path_x, path_y, path_yaw, mode, _ = plan_dubins_path(
start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature)
>>> plt.plot(path_x, path_y, label="final course " + "".join(mode))
>>> plot_arrow(start_x, start_y, start_yaw)
>>> plot_arrow(end_x, end_y, end_yaw)
>>> plt.legend()
>>> plt.grid(True)
>>> plt.axis("equal")
>>> plt.show()
.. image:: dubins_path.jpg
|
Plan dubins path
| 19 | 107 |
def plan_dubins_path(s_x, s_y, s_yaw, g_x, g_y, g_yaw, curvature,
step_size=0.1, selected_types=None):
"""
Plan dubins path
Parameters
----------
s_x : float
x position of the start point [m]
s_y : float
y position of the start point [m]
s_yaw : float
yaw angle of the start point [rad]
g_x : float
x position of the goal point [m]
g_y : float
y position of the end point [m]
g_yaw : float
yaw angle of the end point [rad]
curvature : float
curvature for curve [1/m]
step_size : float (optional)
step size between two path points [m]. Default is 0.1
selected_types : a list of string or None
selected path planning types. If None, all types are used for
path planning, and minimum path length result is returned.
You can select used path plannings types by a string list.
e.g.: ["RSL", "RSR"]
Returns
-------
x_list: array
x positions of the path
y_list: array
y positions of the path
yaw_list: array
yaw angles of the path
modes: array
mode list of the path
lengths: array
arrow_length list of the path segments.
Examples
--------
You can generate a dubins path.
>>> start_x = 1.0 # [m]
>>> start_y = 1.0 # [m]
>>> start_yaw = np.deg2rad(45.0) # [rad]
>>> end_x = -3.0 # [m]
>>> end_y = -3.0 # [m]
>>> end_yaw = np.deg2rad(-45.0) # [rad]
>>> curvature = 1.0
>>> path_x, path_y, path_yaw, mode, _ = plan_dubins_path(
start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature)
>>> plt.plot(path_x, path_y, label="final course " + "".join(mode))
>>> plot_arrow(start_x, start_y, start_yaw)
>>> plot_arrow(end_x, end_y, end_yaw)
>>> plt.legend()
>>> plt.grid(True)
>>> plt.axis("equal")
>>> plt.show()
.. image:: dubins_path.jpg
"""
if selected_types is None:
planning_funcs = _PATH_TYPE_MAP.values()
else:
planning_funcs = [_PATH_TYPE_MAP[ptype] for ptype in selected_types]
# calculate local goal x, y, yaw
l_rot = rot_mat_2d(s_yaw)
le_xy = np.stack([g_x - s_x, g_y - s_y]).T @ l_rot
local_goal_x = le_xy[0]
local_goal_y = le_xy[1]
local_goal_yaw = g_yaw - s_yaw
lp_x, lp_y, lp_yaw, modes, lengths = _dubins_path_planning_from_origin(
local_goal_x, local_goal_y, local_goal_yaw, curvature, step_size,
planning_funcs)
# Convert a local coordinate path to the global coordinate
rot = rot_mat_2d(-s_yaw)
converted_xy = np.stack([lp_x, lp_y]).T @ rot
x_list = converted_xy[:, 0] + s_x
y_list = converted_xy[:, 1] + s_y
yaw_list = angle_mod(np.array(lp_yaw) + s_yaw)
return x_list, y_list, yaw_list, modes, lengths
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DubinsPath/dubins_path_planner.py#L19-L107
| 2 |
[
0,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88
] | 29.213483 |
[] | 0 | false | 94.152047 | 89 | 3 | 100 | 61 |
def plan_dubins_path(s_x, s_y, s_yaw, g_x, g_y, g_yaw, curvature,
step_size=0.1, selected_types=None):
if selected_types is None:
planning_funcs = _PATH_TYPE_MAP.values()
else:
planning_funcs = [_PATH_TYPE_MAP[ptype] for ptype in selected_types]
# calculate local goal x, y, yaw
l_rot = rot_mat_2d(s_yaw)
le_xy = np.stack([g_x - s_x, g_y - s_y]).T @ l_rot
local_goal_x = le_xy[0]
local_goal_y = le_xy[1]
local_goal_yaw = g_yaw - s_yaw
lp_x, lp_y, lp_yaw, modes, lengths = _dubins_path_planning_from_origin(
local_goal_x, local_goal_y, local_goal_yaw, curvature, step_size,
planning_funcs)
# Convert a local coordinate path to the global coordinate
rot = rot_mat_2d(-s_yaw)
converted_xy = np.stack([lp_x, lp_y]).T @ rot
x_list = converted_xy[:, 0] + s_x
y_list = converted_xy[:, 1] + s_y
yaw_list = angle_mod(np.array(lp_yaw) + s_yaw)
return x_list, y_list, yaw_list, modes, lengths
| 1,167 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DubinsPath/dubins_path_planner.py
|
_mod2pi
|
(theta)
|
return angle_mod(theta, zero_2_2pi=True)
| 110 | 111 |
def _mod2pi(theta):
return angle_mod(theta, zero_2_2pi=True)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DubinsPath/dubins_path_planner.py#L110-L111
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 94.152047 | 2 | 1 | 100 | 0 |
def _mod2pi(theta):
return angle_mod(theta, zero_2_2pi=True)
| 1,168 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DubinsPath/dubins_path_planner.py
|
_calc_trig_funcs
|
(alpha, beta)
|
return sin_a, sin_b, cos_a, cos_b, cos_ab
| 114 | 120 |
def _calc_trig_funcs(alpha, beta):
sin_a = sin(alpha)
sin_b = sin(beta)
cos_a = cos(alpha)
cos_b = cos(beta)
cos_ab = cos(alpha - beta)
return sin_a, sin_b, cos_a, cos_b, cos_ab
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DubinsPath/dubins_path_planner.py#L114-L120
| 2 |
[
0,
1,
2,
3,
4,
5,
6
] | 100 |
[] | 0 | true | 94.152047 | 7 | 1 | 100 | 0 |
def _calc_trig_funcs(alpha, beta):
sin_a = sin(alpha)
sin_b = sin(beta)
cos_a = cos(alpha)
cos_b = cos(beta)
cos_ab = cos(alpha - beta)
return sin_a, sin_b, cos_a, cos_b, cos_ab
| 1,169 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DubinsPath/dubins_path_planner.py
|
_LSL
|
(alpha, beta, d)
|
return d1, d2, d3, mode
| 123 | 133 |
def _LSL(alpha, beta, d):
sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
mode = ["L", "S", "L"]
p_squared = 2 + d ** 2 - (2 * cos_ab) + (2 * d * (sin_a - sin_b))
if p_squared < 0: # invalid configuration
return None, None, None, mode
tmp = atan2((cos_b - cos_a), d + sin_a - sin_b)
d1 = _mod2pi(-alpha + tmp)
d2 = sqrt(p_squared)
d3 = _mod2pi(beta - tmp)
return d1, d2, d3, mode
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DubinsPath/dubins_path_planner.py#L123-L133
| 2 |
[
0,
1,
2,
3,
4,
6,
7,
8,
9,
10
] | 90.909091 |
[
5
] | 9.090909 | false | 94.152047 | 11 | 2 | 90.909091 | 0 |
def _LSL(alpha, beta, d):
sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
mode = ["L", "S", "L"]
p_squared = 2 + d ** 2 - (2 * cos_ab) + (2 * d * (sin_a - sin_b))
if p_squared < 0: # invalid configuration
return None, None, None, mode
tmp = atan2((cos_b - cos_a), d + sin_a - sin_b)
d1 = _mod2pi(-alpha + tmp)
d2 = sqrt(p_squared)
d3 = _mod2pi(beta - tmp)
return d1, d2, d3, mode
| 1,170 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DubinsPath/dubins_path_planner.py
|
_RSR
|
(alpha, beta, d)
|
return d1, d2, d3, mode
| 136 | 146 |
def _RSR(alpha, beta, d):
sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
mode = ["R", "S", "R"]
p_squared = 2 + d ** 2 - (2 * cos_ab) + (2 * d * (sin_b - sin_a))
if p_squared < 0:
return None, None, None, mode
tmp = atan2((cos_a - cos_b), d - sin_a + sin_b)
d1 = _mod2pi(alpha - tmp)
d2 = sqrt(p_squared)
d3 = _mod2pi(-beta + tmp)
return d1, d2, d3, mode
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DubinsPath/dubins_path_planner.py#L136-L146
| 2 |
[
0,
1,
2,
3,
4,
6,
7,
8,
9,
10
] | 90.909091 |
[
5
] | 9.090909 | false | 94.152047 | 11 | 2 | 90.909091 | 0 |
def _RSR(alpha, beta, d):
sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
mode = ["R", "S", "R"]
p_squared = 2 + d ** 2 - (2 * cos_ab) + (2 * d * (sin_b - sin_a))
if p_squared < 0:
return None, None, None, mode
tmp = atan2((cos_a - cos_b), d - sin_a + sin_b)
d1 = _mod2pi(alpha - tmp)
d2 = sqrt(p_squared)
d3 = _mod2pi(-beta + tmp)
return d1, d2, d3, mode
| 1,171 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DubinsPath/dubins_path_planner.py
|
_LSR
|
(alpha, beta, d)
|
return d2, d1, d3, mode
| 149 | 159 |
def _LSR(alpha, beta, d):
sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
p_squared = -2 + d ** 2 + (2 * cos_ab) + (2 * d * (sin_a + sin_b))
mode = ["L", "S", "R"]
if p_squared < 0:
return None, None, None, mode
d1 = sqrt(p_squared)
tmp = atan2((-cos_a - cos_b), (d + sin_a + sin_b)) - atan2(-2.0, d1)
d2 = _mod2pi(-alpha + tmp)
d3 = _mod2pi(-_mod2pi(beta) + tmp)
return d2, d1, d3, mode
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DubinsPath/dubins_path_planner.py#L149-L159
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10
] | 100 |
[] | 0 | true | 94.152047 | 11 | 2 | 100 | 0 |
def _LSR(alpha, beta, d):
sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
p_squared = -2 + d ** 2 + (2 * cos_ab) + (2 * d * (sin_a + sin_b))
mode = ["L", "S", "R"]
if p_squared < 0:
return None, None, None, mode
d1 = sqrt(p_squared)
tmp = atan2((-cos_a - cos_b), (d + sin_a + sin_b)) - atan2(-2.0, d1)
d2 = _mod2pi(-alpha + tmp)
d3 = _mod2pi(-_mod2pi(beta) + tmp)
return d2, d1, d3, mode
| 1,172 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DubinsPath/dubins_path_planner.py
|
_RSL
|
(alpha, beta, d)
|
return d2, d1, d3, mode
| 162 | 172 |
def _RSL(alpha, beta, d):
sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
p_squared = d ** 2 - 2 + (2 * cos_ab) - (2 * d * (sin_a + sin_b))
mode = ["R", "S", "L"]
if p_squared < 0:
return None, None, None, mode
d1 = sqrt(p_squared)
tmp = atan2((cos_a + cos_b), (d - sin_a - sin_b)) - atan2(2.0, d1)
d2 = _mod2pi(alpha - tmp)
d3 = _mod2pi(beta - tmp)
return d2, d1, d3, mode
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DubinsPath/dubins_path_planner.py#L162-L172
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10
] | 100 |
[] | 0 | true | 94.152047 | 11 | 2 | 100 | 0 |
def _RSL(alpha, beta, d):
sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
p_squared = d ** 2 - 2 + (2 * cos_ab) - (2 * d * (sin_a + sin_b))
mode = ["R", "S", "L"]
if p_squared < 0:
return None, None, None, mode
d1 = sqrt(p_squared)
tmp = atan2((cos_a + cos_b), (d - sin_a - sin_b)) - atan2(2.0, d1)
d2 = _mod2pi(alpha - tmp)
d3 = _mod2pi(beta - tmp)
return d2, d1, d3, mode
| 1,173 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DubinsPath/dubins_path_planner.py
|
_RLR
|
(alpha, beta, d)
|
return d1, d2, d3, mode
| 175 | 184 |
def _RLR(alpha, beta, d):
sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
mode = ["R", "L", "R"]
tmp = (6.0 - d ** 2 + 2.0 * cos_ab + 2.0 * d * (sin_a - sin_b)) / 8.0
if abs(tmp) > 1.0:
return None, None, None, mode
d2 = _mod2pi(2 * pi - acos(tmp))
d1 = _mod2pi(alpha - atan2(cos_a - cos_b, d - sin_a + sin_b) + d2 / 2.0)
d3 = _mod2pi(alpha - beta - d1 + d2)
return d1, d2, d3, mode
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DubinsPath/dubins_path_planner.py#L175-L184
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 94.152047 | 10 | 2 | 100 | 0 |
def _RLR(alpha, beta, d):
sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
mode = ["R", "L", "R"]
tmp = (6.0 - d ** 2 + 2.0 * cos_ab + 2.0 * d * (sin_a - sin_b)) / 8.0
if abs(tmp) > 1.0:
return None, None, None, mode
d2 = _mod2pi(2 * pi - acos(tmp))
d1 = _mod2pi(alpha - atan2(cos_a - cos_b, d - sin_a + sin_b) + d2 / 2.0)
d3 = _mod2pi(alpha - beta - d1 + d2)
return d1, d2, d3, mode
| 1,174 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DubinsPath/dubins_path_planner.py
|
_LRL
|
(alpha, beta, d)
|
return d1, d2, d3, mode
| 187 | 196 |
def _LRL(alpha, beta, d):
sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
mode = ["L", "R", "L"]
tmp = (6.0 - d ** 2 + 2.0 * cos_ab + 2.0 * d * (- sin_a + sin_b)) / 8.0
if abs(tmp) > 1.0:
return None, None, None, mode
d2 = _mod2pi(2 * pi - acos(tmp))
d1 = _mod2pi(-alpha - atan2(cos_a - cos_b, d + sin_a - sin_b) + d2 / 2.0)
d3 = _mod2pi(_mod2pi(beta) - alpha - d1 + _mod2pi(d2))
return d1, d2, d3, mode
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DubinsPath/dubins_path_planner.py#L187-L196
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 94.152047 | 10 | 2 | 100 | 0 |
def _LRL(alpha, beta, d):
sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
mode = ["L", "R", "L"]
tmp = (6.0 - d ** 2 + 2.0 * cos_ab + 2.0 * d * (- sin_a + sin_b)) / 8.0
if abs(tmp) > 1.0:
return None, None, None, mode
d2 = _mod2pi(2 * pi - acos(tmp))
d1 = _mod2pi(-alpha - atan2(cos_a - cos_b, d + sin_a - sin_b) + d2 / 2.0)
d3 = _mod2pi(_mod2pi(beta) - alpha - d1 + _mod2pi(d2))
return d1, d2, d3, mode
| 1,175 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DubinsPath/dubins_path_planner.py
|
_dubins_path_planning_from_origin
|
(end_x, end_y, end_yaw, curvature,
step_size, planning_funcs)
|
return x_list, y_list, yaw_list, b_mode, lengths
| 203 | 231 |
def _dubins_path_planning_from_origin(end_x, end_y, end_yaw, curvature,
step_size, planning_funcs):
dx = end_x
dy = end_y
d = hypot(dx, dy) * curvature
theta = _mod2pi(atan2(dy, dx))
alpha = _mod2pi(-theta)
beta = _mod2pi(end_yaw - theta)
best_cost = float("inf")
b_d1, b_d2, b_d3, b_mode = None, None, None, None
for planner in planning_funcs:
d1, d2, d3, mode = planner(alpha, beta, d)
if d1 is None:
continue
cost = (abs(d1) + abs(d2) + abs(d3))
if best_cost > cost: # Select minimum length one.
b_d1, b_d2, b_d3, b_mode, best_cost = d1, d2, d3, mode, cost
lengths = [b_d1, b_d2, b_d3]
x_list, y_list, yaw_list = _generate_local_course(lengths, b_mode,
curvature, step_size)
lengths = [length / curvature for length in lengths]
return x_list, y_list, yaw_list, b_mode, lengths
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DubinsPath/dubins_path_planner.py#L203-L231
| 2 |
[
0,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
25,
26,
27,
28
] | 93.103448 |
[] | 0 | false | 94.152047 | 29 | 5 | 100 | 0 |
def _dubins_path_planning_from_origin(end_x, end_y, end_yaw, curvature,
step_size, planning_funcs):
dx = end_x
dy = end_y
d = hypot(dx, dy) * curvature
theta = _mod2pi(atan2(dy, dx))
alpha = _mod2pi(-theta)
beta = _mod2pi(end_yaw - theta)
best_cost = float("inf")
b_d1, b_d2, b_d3, b_mode = None, None, None, None
for planner in planning_funcs:
d1, d2, d3, mode = planner(alpha, beta, d)
if d1 is None:
continue
cost = (abs(d1) + abs(d2) + abs(d3))
if best_cost > cost: # Select minimum length one.
b_d1, b_d2, b_d3, b_mode, best_cost = d1, d2, d3, mode, cost
lengths = [b_d1, b_d2, b_d3]
x_list, y_list, yaw_list = _generate_local_course(lengths, b_mode,
curvature, step_size)
lengths = [length / curvature for length in lengths]
return x_list, y_list, yaw_list, b_mode, lengths
| 1,176 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DubinsPath/dubins_path_planner.py
|
_interpolate
|
(length, mode, max_curvature, origin_x, origin_y,
origin_yaw, path_x, path_y, path_yaw)
|
return path_x, path_y, path_yaw
| 234 | 257 |
def _interpolate(length, mode, max_curvature, origin_x, origin_y,
origin_yaw, path_x, path_y, path_yaw):
if mode == "S":
path_x.append(origin_x + length / max_curvature * cos(origin_yaw))
path_y.append(origin_y + length / max_curvature * sin(origin_yaw))
path_yaw.append(origin_yaw)
else: # curve
ldx = sin(length) / max_curvature
ldy = 0.0
if mode == "L": # left turn
ldy = (1.0 - cos(length)) / max_curvature
elif mode == "R": # right turn
ldy = (1.0 - cos(length)) / -max_curvature
gdx = cos(-origin_yaw) * ldx + sin(-origin_yaw) * ldy
gdy = -sin(-origin_yaw) * ldx + cos(-origin_yaw) * ldy
path_x.append(origin_x + gdx)
path_y.append(origin_y + gdy)
if mode == "L": # left turn
path_yaw.append(origin_yaw + length)
elif mode == "R": # right turn
path_yaw.append(origin_yaw - length)
return path_x, path_y, path_yaw
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DubinsPath/dubins_path_planner.py#L234-L257
| 2 |
[
0,
2,
3,
4,
5,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23
] | 91.666667 |
[] | 0 | false | 94.152047 | 24 | 6 | 100 | 0 |
def _interpolate(length, mode, max_curvature, origin_x, origin_y,
origin_yaw, path_x, path_y, path_yaw):
if mode == "S":
path_x.append(origin_x + length / max_curvature * cos(origin_yaw))
path_y.append(origin_y + length / max_curvature * sin(origin_yaw))
path_yaw.append(origin_yaw)
else: # curve
ldx = sin(length) / max_curvature
ldy = 0.0
if mode == "L": # left turn
ldy = (1.0 - cos(length)) / max_curvature
elif mode == "R": # right turn
ldy = (1.0 - cos(length)) / -max_curvature
gdx = cos(-origin_yaw) * ldx + sin(-origin_yaw) * ldy
gdy = -sin(-origin_yaw) * ldx + cos(-origin_yaw) * ldy
path_x.append(origin_x + gdx)
path_y.append(origin_y + gdy)
if mode == "L": # left turn
path_yaw.append(origin_yaw + length)
elif mode == "R": # right turn
path_yaw.append(origin_yaw - length)
return path_x, path_y, path_yaw
| 1,177 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DubinsPath/dubins_path_planner.py
|
_generate_local_course
|
(lengths, modes, max_curvature, step_size)
|
return p_x, p_y, p_yaw
| 260 | 280 |
def _generate_local_course(lengths, modes, max_curvature, step_size):
p_x, p_y, p_yaw = [0.0], [0.0], [0.0]
for (mode, length) in zip(modes, lengths):
if length == 0.0:
continue
# set origin state
origin_x, origin_y, origin_yaw = p_x[-1], p_y[-1], p_yaw[-1]
current_length = step_size
while abs(current_length + step_size) <= abs(length):
p_x, p_y, p_yaw = _interpolate(current_length, mode, max_curvature,
origin_x, origin_y, origin_yaw,
p_x, p_y, p_yaw)
current_length += step_size
p_x, p_y, p_yaw = _interpolate(length, mode, max_curvature, origin_x,
origin_y, origin_yaw, p_x, p_y, p_yaw)
return p_x, p_y, p_yaw
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DubinsPath/dubins_path_planner.py#L260-L280
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
15,
16,
17,
19,
20
] | 85.714286 |
[] | 0 | false | 94.152047 | 21 | 4 | 100 | 0 |
def _generate_local_course(lengths, modes, max_curvature, step_size):
p_x, p_y, p_yaw = [0.0], [0.0], [0.0]
for (mode, length) in zip(modes, lengths):
if length == 0.0:
continue
# set origin state
origin_x, origin_y, origin_yaw = p_x[-1], p_y[-1], p_yaw[-1]
current_length = step_size
while abs(current_length + step_size) <= abs(length):
p_x, p_y, p_yaw = _interpolate(current_length, mode, max_curvature,
origin_x, origin_y, origin_yaw,
p_x, p_y, p_yaw)
current_length += step_size
p_x, p_y, p_yaw = _interpolate(length, mode, max_curvature, origin_x,
origin_y, origin_yaw, p_x, p_y, p_yaw)
return p_x, p_y, p_yaw
| 1,178 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DubinsPath/dubins_path_planner.py
|
main
|
()
| 283 | 313 |
def main():
print("Dubins path planner sample start!!")
import matplotlib.pyplot as plt
from utils.plot import plot_arrow
start_x = 1.0 # [m]
start_y = 1.0 # [m]
start_yaw = np.deg2rad(45.0) # [rad]
end_x = -3.0 # [m]
end_y = -3.0 # [m]
end_yaw = np.deg2rad(-45.0) # [rad]
curvature = 1.0
path_x, path_y, path_yaw, mode, lengths = plan_dubins_path(start_x,
start_y,
start_yaw,
end_x,
end_y,
end_yaw,
curvature)
if show_animation:
plt.plot(path_x, path_y, label="".join(mode))
plot_arrow(start_x, start_y, start_yaw)
plot_arrow(end_x, end_y, end_yaw)
plt.legend()
plt.grid(True)
plt.axis("equal")
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DubinsPath/dubins_path_planner.py#L283-L313
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
22,
23
] | 58.064516 |
[
24,
25,
26,
27,
28,
29,
30
] | 22.580645 | false | 94.152047 | 31 | 2 | 77.419355 | 0 |
def main():
print("Dubins path planner sample start!!")
import matplotlib.pyplot as plt
from utils.plot import plot_arrow
start_x = 1.0 # [m]
start_y = 1.0 # [m]
start_yaw = np.deg2rad(45.0) # [rad]
end_x = -3.0 # [m]
end_y = -3.0 # [m]
end_yaw = np.deg2rad(-45.0) # [rad]
curvature = 1.0
path_x, path_y, path_yaw, mode, lengths = plan_dubins_path(start_x,
start_y,
start_yaw,
end_x,
end_y,
end_yaw,
curvature)
if show_animation:
plt.plot(path_x, path_y, label="".join(mode))
plot_arrow(start_x, start_y, start_yaw)
plot_arrow(end_x, end_y, end_yaw)
plt.legend()
plt.grid(True)
plt.axis("equal")
plt.show()
| 1,179 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BSplinePath/bspline_path.py
|
approximate_b_spline_path
|
(x: list,
y: list,
n_path_points: int,
degree: int = 3,
s=None,
)
|
return _evaluate_spline(sampled, spl_i_x, spl_i_y)
|
Approximate points with a B-Spline path
Parameters
----------
x : array_like
x position list of approximated points
y : array_like
y position list of approximated points
n_path_points : int
number of path points
degree : int, optional
B Spline curve degree. Must be 2<= k <= 5. Default: 3.
s : int, optional
smoothing parameter. If this value is bigger, the path will be
smoother, but it will be less accurate. If this value is smaller,
the path will be more accurate, but it will be less smooth.
When `s` is 0, it is equivalent to the interpolation. Default is None,
in this case `s` will be `len(x)`.
Returns
-------
x : array
x positions of the result path
y : array
y positions of the result path
heading : array
heading of the result path
curvature : array
curvature of the result path
|
Approximate points with a B-Spline path
| 19 | 63 |
def approximate_b_spline_path(x: list,
y: list,
n_path_points: int,
degree: int = 3,
s=None,
) -> tuple:
"""
Approximate points with a B-Spline path
Parameters
----------
x : array_like
x position list of approximated points
y : array_like
y position list of approximated points
n_path_points : int
number of path points
degree : int, optional
B Spline curve degree. Must be 2<= k <= 5. Default: 3.
s : int, optional
smoothing parameter. If this value is bigger, the path will be
smoother, but it will be less accurate. If this value is smaller,
the path will be more accurate, but it will be less smooth.
When `s` is 0, it is equivalent to the interpolation. Default is None,
in this case `s` will be `len(x)`.
Returns
-------
x : array
x positions of the result path
y : array
y positions of the result path
heading : array
heading of the result path
curvature : array
curvature of the result path
"""
distances = _calc_distance_vector(x, y)
spl_i_x = interpolate.UnivariateSpline(distances, x, k=degree, s=s)
spl_i_y = interpolate.UnivariateSpline(distances, y, k=degree, s=s)
sampled = np.linspace(0.0, distances[-1], n_path_points)
return _evaluate_spline(sampled, spl_i_x, spl_i_y)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BSplinePath/bspline_path.py#L19-L63
| 2 |
[
0,
37,
38,
39,
40,
41,
42,
43,
44
] | 20 |
[] | 0 | false | 57.894737 | 45 | 1 | 100 | 29 |
def approximate_b_spline_path(x: list,
y: list,
n_path_points: int,
degree: int = 3,
s=None,
) -> tuple:
distances = _calc_distance_vector(x, y)
spl_i_x = interpolate.UnivariateSpline(distances, x, k=degree, s=s)
spl_i_y = interpolate.UnivariateSpline(distances, y, k=degree, s=s)
sampled = np.linspace(0.0, distances[-1], n_path_points)
return _evaluate_spline(sampled, spl_i_x, spl_i_y)
| 1,180 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BSplinePath/bspline_path.py
|
interpolate_b_spline_path
|
(x, y,
n_path_points: int,
degree: int = 3)
|
return approximate_b_spline_path(x, y, n_path_points, degree, s=0.0)
|
Interpolate x-y points with a B-Spline path
Parameters
----------
x : array_like
x positions of interpolated points
y : array_like
y positions of interpolated points
n_path_points : int
number of path points
degree : int, optional
B-Spline degree. Must be 2<= k <= 5. Default: 3
Returns
-------
x : array
x positions of the result path
y : array
y positions of the result path
heading : array
heading of the result path
curvature : array
curvature of the result path
|
Interpolate x-y points with a B-Spline path
| 66 | 95 |
def interpolate_b_spline_path(x, y,
n_path_points: int,
degree: int = 3) -> tuple:
"""
Interpolate x-y points with a B-Spline path
Parameters
----------
x : array_like
x positions of interpolated points
y : array_like
y positions of interpolated points
n_path_points : int
number of path points
degree : int, optional
B-Spline degree. Must be 2<= k <= 5. Default: 3
Returns
-------
x : array
x positions of the result path
y : array
y positions of the result path
heading : array
heading of the result path
curvature : array
curvature of the result path
"""
return approximate_b_spline_path(x, y, n_path_points, degree, s=0.0)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BSplinePath/bspline_path.py#L66-L95
| 2 |
[
0,
28,
29
] | 10 |
[] | 0 | false | 57.894737 | 30 | 1 | 100 | 23 |
def interpolate_b_spline_path(x, y,
n_path_points: int,
degree: int = 3) -> tuple:
return approximate_b_spline_path(x, y, n_path_points, degree, s=0.0)
| 1,181 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BSplinePath/bspline_path.py
|
_calc_distance_vector
|
(x, y)
|
return distances
| 98 | 103 |
def _calc_distance_vector(x, y):
dx, dy = np.diff(x), np.diff(y)
distances = np.cumsum([np.hypot(idx, idy) for idx, idy in zip(dx, dy)])
distances = np.concatenate(([0.0], distances))
distances /= distances[-1]
return distances
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BSplinePath/bspline_path.py#L98-L103
| 2 |
[
0,
1,
2,
3,
4,
5
] | 100 |
[] | 0 | true | 57.894737 | 6 | 2 | 100 | 0 |
def _calc_distance_vector(x, y):
dx, dy = np.diff(x), np.diff(y)
distances = np.cumsum([np.hypot(idx, idy) for idx, idy in zip(dx, dy)])
distances = np.concatenate(([0.0], distances))
distances /= distances[-1]
return distances
| 1,182 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BSplinePath/bspline_path.py
|
_evaluate_spline
|
(sampled, spl_i_x, spl_i_y)
|
return np.array(x), y, heading, curvature,
| 106 | 115 |
def _evaluate_spline(sampled, spl_i_x, spl_i_y):
x = spl_i_x(sampled)
y = spl_i_y(sampled)
dx = spl_i_x.derivative(1)(sampled)
dy = spl_i_y.derivative(1)(sampled)
heading = np.arctan2(dy, dx)
ddx = spl_i_x.derivative(2)(sampled)
ddy = spl_i_y.derivative(2)(sampled)
curvature = (ddy * dx - ddx * dy) / np.power(dx * dx + dy * dy, 2.0 / 3.0)
return np.array(x), y, heading, curvature,
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BSplinePath/bspline_path.py#L106-L115
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 57.894737 | 10 | 1 | 100 | 0 |
def _evaluate_spline(sampled, spl_i_x, spl_i_y):
x = spl_i_x(sampled)
y = spl_i_y(sampled)
dx = spl_i_x.derivative(1)(sampled)
dy = spl_i_y.derivative(1)(sampled)
heading = np.arctan2(dy, dx)
ddx = spl_i_x.derivative(2)(sampled)
ddy = spl_i_y.derivative(2)(sampled)
curvature = (ddy * dx - ddx * dy) / np.power(dx * dx + dy * dy, 2.0 / 3.0)
return np.array(x), y, heading, curvature,
| 1,183 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BSplinePath/bspline_path.py
|
main
|
()
| 118 | 148 |
def main():
print(__file__ + " start!!")
# way points
way_point_x = [-1.0, 3.0, 4.0, 2.0, 1.0]
way_point_y = [0.0, -3.0, 1.0, 1.0, 3.0]
n_course_point = 50 # sampling number
plt.subplots()
rax, ray, heading, curvature = approximate_b_spline_path(
way_point_x, way_point_y, n_course_point, s=0.5)
plt.plot(rax, ray, '-r', label="Approximated B-Spline path")
plot_curvature(rax, ray, heading, curvature)
plt.title("B-Spline approximation")
plt.plot(way_point_x, way_point_y, '-og', label="way points")
plt.grid(True)
plt.legend()
plt.axis("equal")
plt.subplots()
rix, riy, heading, curvature = interpolate_b_spline_path(
way_point_x, way_point_y, n_course_point)
plt.plot(rix, riy, '-b', label="Interpolated B-Spline path")
plot_curvature(rix, riy, heading, curvature)
plt.title("B-Spline interpolation")
plt.plot(way_point_x, way_point_y, '-og', label="way points")
plt.grid(True)
plt.legend()
plt.axis("equal")
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BSplinePath/bspline_path.py#L118-L148
| 2 |
[
0
] | 3.225806 |
[
1,
3,
4,
5,
7,
8,
10,
11,
13,
14,
15,
16,
17,
19,
20,
22,
23,
25,
26,
27,
28,
29,
30
] | 74.193548 | false | 57.894737 | 31 | 1 | 25.806452 | 0 |
def main():
print(__file__ + " start!!")
# way points
way_point_x = [-1.0, 3.0, 4.0, 2.0, 1.0]
way_point_y = [0.0, -3.0, 1.0, 1.0, 3.0]
n_course_point = 50 # sampling number
plt.subplots()
rax, ray, heading, curvature = approximate_b_spline_path(
way_point_x, way_point_y, n_course_point, s=0.5)
plt.plot(rax, ray, '-r', label="Approximated B-Spline path")
plot_curvature(rax, ray, heading, curvature)
plt.title("B-Spline approximation")
plt.plot(way_point_x, way_point_y, '-og', label="way points")
plt.grid(True)
plt.legend()
plt.axis("equal")
plt.subplots()
rix, riy, heading, curvature = interpolate_b_spline_path(
way_point_x, way_point_y, n_course_point)
plt.plot(rix, riy, '-b', label="Interpolated B-Spline path")
plot_curvature(rix, riy, heading, curvature)
plt.title("B-Spline interpolation")
plt.plot(way_point_x, way_point_y, '-og', label="way points")
plt.grid(True)
plt.legend()
plt.axis("equal")
plt.show()
| 1,184 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/Dijkstra/dijkstra.py
|
main
|
()
| 210 | 255 |
def main():
print(__file__ + " start!!")
# start and goal position
sx = -5.0 # [m]
sy = -5.0 # [m]
gx = 50.0 # [m]
gy = 50.0 # [m]
grid_size = 2.0 # [m]
robot_radius = 1.0 # [m]
# set obstacle positions
ox, oy = [], []
for i in range(-10, 60):
ox.append(i)
oy.append(-10.0)
for i in range(-10, 60):
ox.append(60.0)
oy.append(i)
for i in range(-10, 61):
ox.append(i)
oy.append(60.0)
for i in range(-10, 61):
ox.append(-10.0)
oy.append(i)
for i in range(-10, 40):
ox.append(20.0)
oy.append(i)
for i in range(0, 40):
ox.append(40.0)
oy.append(60.0 - i)
if show_animation: # pragma: no cover
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "og")
plt.plot(gx, gy, "xb")
plt.grid(True)
plt.axis("equal")
dijkstra = Dijkstra(ox, oy, grid_size, robot_radius)
rx, ry = dijkstra.planning(sx, sy, gx, gy)
if show_animation: # pragma: no cover
plt.plot(rx, ry, "-r")
plt.pause(0.01)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/Dijkstra/dijkstra.py#L210-L255
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
38,
39,
40,
41
] | 100 |
[] | 0 | true | 97.142857 | 46 | 9 | 100 | 0 |
def main():
print(__file__ + " start!!")
# start and goal position
sx = -5.0 # [m]
sy = -5.0 # [m]
gx = 50.0 # [m]
gy = 50.0 # [m]
grid_size = 2.0 # [m]
robot_radius = 1.0 # [m]
# set obstacle positions
ox, oy = [], []
for i in range(-10, 60):
ox.append(i)
oy.append(-10.0)
for i in range(-10, 60):
ox.append(60.0)
oy.append(i)
for i in range(-10, 61):
ox.append(i)
oy.append(60.0)
for i in range(-10, 61):
ox.append(-10.0)
oy.append(i)
for i in range(-10, 40):
ox.append(20.0)
oy.append(i)
for i in range(0, 40):
ox.append(40.0)
oy.append(60.0 - i)
if show_animation: # pragma: no cover
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "og")
plt.plot(gx, gy, "xb")
plt.grid(True)
plt.axis("equal")
dijkstra = Dijkstra(ox, oy, grid_size, robot_radius)
rx, ry = dijkstra.planning(sx, sy, gx, gy)
if show_animation: # pragma: no cover
plt.plot(rx, ry, "-r")
plt.pause(0.01)
plt.show()
| 1,185 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/Dijkstra/dijkstra.py
|
Dijkstra.__init__
|
(self, ox, oy, resolution, robot_radius)
|
Initialize map for a star planning
ox: x position list of Obstacles [m]
oy: y position list of Obstacles [m]
resolution: grid resolution [m]
rr: robot radius[m]
|
Initialize map for a star planning
| 17 | 38 |
def __init__(self, ox, oy, resolution, robot_radius):
"""
Initialize map for a star planning
ox: x position list of Obstacles [m]
oy: y position list of Obstacles [m]
resolution: grid resolution [m]
rr: robot radius[m]
"""
self.min_x = None
self.min_y = None
self.max_x = None
self.max_y = None
self.x_width = None
self.y_width = None
self.obstacle_map = None
self.resolution = resolution
self.robot_radius = robot_radius
self.calc_obstacle_map(ox, oy)
self.motion = self.get_motion_model()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/Dijkstra/dijkstra.py#L17-L38
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21
] | 100 |
[] | 0 | true | 97.142857 | 22 | 1 | 100 | 6 |
def __init__(self, ox, oy, resolution, robot_radius):
self.min_x = None
self.min_y = None
self.max_x = None
self.max_y = None
self.x_width = None
self.y_width = None
self.obstacle_map = None
self.resolution = resolution
self.robot_radius = robot_radius
self.calc_obstacle_map(ox, oy)
self.motion = self.get_motion_model()
| 1,186 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/Dijkstra/dijkstra.py
|
Dijkstra.planning
|
(self, sx, sy, gx, gy)
|
return rx, ry
|
dijkstra path search
input:
s_x: start x position [m]
s_y: start y position [m]
gx: goal x position [m]
gx: goal x position [m]
output:
rx: x position list of the final path
ry: y position list of the final path
|
dijkstra path search
| 51 | 123 |
def planning(self, sx, sy, gx, gy):
"""
dijkstra path search
input:
s_x: start x position [m]
s_y: start y position [m]
gx: goal x position [m]
gx: goal x position [m]
output:
rx: x position list of the final path
ry: y position list of the final path
"""
start_node = self.Node(self.calc_xy_index(sx, self.min_x),
self.calc_xy_index(sy, self.min_y), 0.0, -1)
goal_node = self.Node(self.calc_xy_index(gx, self.min_x),
self.calc_xy_index(gy, self.min_y), 0.0, -1)
open_set, closed_set = dict(), dict()
open_set[self.calc_index(start_node)] = start_node
while True:
c_id = min(open_set, key=lambda o: open_set[o].cost)
current = open_set[c_id]
# show graph
if show_animation: # pragma: no cover
plt.plot(self.calc_position(current.x, self.min_x),
self.calc_position(current.y, self.min_y), "xc")
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if len(closed_set.keys()) % 10 == 0:
plt.pause(0.001)
if current.x == goal_node.x and current.y == goal_node.y:
print("Find goal")
goal_node.parent_index = current.parent_index
goal_node.cost = current.cost
break
# Remove the item from the open set
del open_set[c_id]
# Add it to the closed set
closed_set[c_id] = current
# expand search grid based on motion model
for move_x, move_y, move_cost in self.motion:
node = self.Node(current.x + move_x,
current.y + move_y,
current.cost + move_cost, c_id)
n_id = self.calc_index(node)
if n_id in closed_set:
continue
if not self.verify_node(node):
continue
if n_id not in open_set:
open_set[n_id] = node # Discover a new node
else:
if open_set[n_id].cost >= node.cost:
# This path is the best until now. record it!
open_set[n_id] = node
rx, ry = self.calc_final_path(goal_node, closed_set)
return rx, ry
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/Dijkstra/dijkstra.py#L51-L123
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72
] | 107.352941 |
[] | 0 | true | 97.142857 | 73 | 11 | 100 | 11 |
def planning(self, sx, sy, gx, gy):
start_node = self.Node(self.calc_xy_index(sx, self.min_x),
self.calc_xy_index(sy, self.min_y), 0.0, -1)
goal_node = self.Node(self.calc_xy_index(gx, self.min_x),
self.calc_xy_index(gy, self.min_y), 0.0, -1)
open_set, closed_set = dict(), dict()
open_set[self.calc_index(start_node)] = start_node
while True:
c_id = min(open_set, key=lambda o: open_set[o].cost)
current = open_set[c_id]
# show graph
if show_animation: # pragma: no cover
plt.plot(self.calc_position(current.x, self.min_x),
self.calc_position(current.y, self.min_y), "xc")
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if len(closed_set.keys()) % 10 == 0:
plt.pause(0.001)
if current.x == goal_node.x and current.y == goal_node.y:
print("Find goal")
goal_node.parent_index = current.parent_index
goal_node.cost = current.cost
break
# Remove the item from the open set
del open_set[c_id]
# Add it to the closed set
closed_set[c_id] = current
# expand search grid based on motion model
for move_x, move_y, move_cost in self.motion:
node = self.Node(current.x + move_x,
current.y + move_y,
current.cost + move_cost, c_id)
n_id = self.calc_index(node)
if n_id in closed_set:
continue
if not self.verify_node(node):
continue
if n_id not in open_set:
open_set[n_id] = node # Discover a new node
else:
if open_set[n_id].cost >= node.cost:
# This path is the best until now. record it!
open_set[n_id] = node
rx, ry = self.calc_final_path(goal_node, closed_set)
return rx, ry
| 1,187 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/Dijkstra/dijkstra.py
|
Dijkstra.calc_final_path
|
(self, goal_node, closed_set)
|
return rx, ry
| 125 | 136 |
def calc_final_path(self, goal_node, closed_set):
# generate final course
rx, ry = [self.calc_position(goal_node.x, self.min_x)], [
self.calc_position(goal_node.y, self.min_y)]
parent_index = goal_node.parent_index
while parent_index != -1:
n = closed_set[parent_index]
rx.append(self.calc_position(n.x, self.min_x))
ry.append(self.calc_position(n.y, self.min_y))
parent_index = n.parent_index
return rx, ry
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/Dijkstra/dijkstra.py#L125-L136
| 2 |
[
0,
1,
2,
4,
5,
6,
7,
8,
9,
10,
11
] | 91.666667 |
[] | 0 | false | 97.142857 | 12 | 2 | 100 | 0 |
def calc_final_path(self, goal_node, closed_set):
# generate final course
rx, ry = [self.calc_position(goal_node.x, self.min_x)], [
self.calc_position(goal_node.y, self.min_y)]
parent_index = goal_node.parent_index
while parent_index != -1:
n = closed_set[parent_index]
rx.append(self.calc_position(n.x, self.min_x))
ry.append(self.calc_position(n.y, self.min_y))
parent_index = n.parent_index
return rx, ry
| 1,188 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/Dijkstra/dijkstra.py
|
Dijkstra.calc_position
|
(self, index, minp)
|
return pos
| 138 | 140 |
def calc_position(self, index, minp):
pos = index * self.resolution + minp
return pos
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/Dijkstra/dijkstra.py#L138-L140
| 2 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 97.142857 | 3 | 1 | 100 | 0 |
def calc_position(self, index, minp):
pos = index * self.resolution + minp
return pos
| 1,189 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/Dijkstra/dijkstra.py
|
Dijkstra.calc_xy_index
|
(self, position, minp)
|
return round((position - minp) / self.resolution)
| 142 | 143 |
def calc_xy_index(self, position, minp):
return round((position - minp) / self.resolution)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/Dijkstra/dijkstra.py#L142-L143
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 97.142857 | 2 | 1 | 100 | 0 |
def calc_xy_index(self, position, minp):
return round((position - minp) / self.resolution)
| 1,190 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/Dijkstra/dijkstra.py
|
Dijkstra.calc_index
|
(self, node)
|
return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)
| 145 | 146 |
def calc_index(self, node):
return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/Dijkstra/dijkstra.py#L145-L146
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 97.142857 | 2 | 1 | 100 | 0 |
def calc_index(self, node):
return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)
| 1,191 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/Dijkstra/dijkstra.py
|
Dijkstra.verify_node
|
(self, node)
|
return True
| 148 | 164 |
def verify_node(self, node):
px = self.calc_position(node.x, self.min_x)
py = self.calc_position(node.y, self.min_y)
if px < self.min_x:
return False
if py < self.min_y:
return False
if px >= self.max_x:
return False
if py >= self.max_y:
return False
if self.obstacle_map[node.x][node.y]:
return False
return True
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/Dijkstra/dijkstra.py#L148-L164
| 2 |
[
0,
1,
2,
3,
4,
6,
8,
9,
10,
11,
12,
13,
14,
15,
16
] | 88.235294 |
[
5,
7
] | 11.764706 | false | 97.142857 | 17 | 6 | 88.235294 | 0 |
def verify_node(self, node):
px = self.calc_position(node.x, self.min_x)
py = self.calc_position(node.y, self.min_y)
if px < self.min_x:
return False
if py < self.min_y:
return False
if px >= self.max_x:
return False
if py >= self.max_y:
return False
if self.obstacle_map[node.x][node.y]:
return False
return True
| 1,192 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/Dijkstra/dijkstra.py
|
Dijkstra.calc_obstacle_map
|
(self, ox, oy)
| 166 | 193 |
def calc_obstacle_map(self, ox, oy):
self.min_x = round(min(ox))
self.min_y = round(min(oy))
self.max_x = round(max(ox))
self.max_y = round(max(oy))
print("min_x:", self.min_x)
print("min_y:", self.min_y)
print("max_x:", self.max_x)
print("max_y:", self.max_y)
self.x_width = round((self.max_x - self.min_x) / self.resolution)
self.y_width = round((self.max_y - self.min_y) / self.resolution)
print("x_width:", self.x_width)
print("y_width:", self.y_width)
# obstacle map generation
self.obstacle_map = [[False for _ in range(self.y_width)]
for _ in range(self.x_width)]
for ix in range(self.x_width):
x = self.calc_position(ix, self.min_x)
for iy in range(self.y_width):
y = self.calc_position(iy, self.min_y)
for iox, ioy in zip(ox, oy):
d = math.hypot(iox - x, ioy - y)
if d <= self.robot_radius:
self.obstacle_map[ix][iy] = True
break
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/Dijkstra/dijkstra.py#L166-L193
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
19,
20,
21,
22,
23,
24,
25,
26,
27
] | 96.428571 |
[] | 0 | false | 97.142857 | 28 | 7 | 100 | 0 |
def calc_obstacle_map(self, ox, oy):
self.min_x = round(min(ox))
self.min_y = round(min(oy))
self.max_x = round(max(ox))
self.max_y = round(max(oy))
print("min_x:", self.min_x)
print("min_y:", self.min_y)
print("max_x:", self.max_x)
print("max_y:", self.max_y)
self.x_width = round((self.max_x - self.min_x) / self.resolution)
self.y_width = round((self.max_y - self.min_y) / self.resolution)
print("x_width:", self.x_width)
print("y_width:", self.y_width)
# obstacle map generation
self.obstacle_map = [[False for _ in range(self.y_width)]
for _ in range(self.x_width)]
for ix in range(self.x_width):
x = self.calc_position(ix, self.min_x)
for iy in range(self.y_width):
y = self.calc_position(iy, self.min_y)
for iox, ioy in zip(ox, oy):
d = math.hypot(iox - x, ioy - y)
if d <= self.robot_radius:
self.obstacle_map[ix][iy] = True
break
| 1,193 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/Dijkstra/dijkstra.py
|
Dijkstra.get_motion_model
|
()
|
return motion
| 196 | 207 |
def get_motion_model():
# dx, dy, cost
motion = [[1, 0, 1],
[0, 1, 1],
[-1, 0, 1],
[0, -1, 1],
[-1, -1, math.sqrt(2)],
[-1, 1, math.sqrt(2)],
[1, -1, math.sqrt(2)],
[1, 1, math.sqrt(2)]]
return motion
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/Dijkstra/dijkstra.py#L196-L207
| 2 |
[
0,
1,
2,
10,
11
] | 41.666667 |
[] | 0 | false | 97.142857 | 12 | 1 | 100 | 0 |
def get_motion_model():
# dx, dy, cost
motion = [[1, 0, 1],
[0, 1, 1],
[-1, 0, 1],
[0, -1, 1],
[-1, -1, math.sqrt(2)],
[-1, 1, math.sqrt(2)],
[1, -1, math.sqrt(2)],
[1, 1, math.sqrt(2)]]
return motion
| 1,194 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/HybridAStar/hybrid_a_star.py
|
calc_motion_inputs
|
()
| 90 | 94 |
def calc_motion_inputs():
for steer in np.concatenate((np.linspace(-MAX_STEER, MAX_STEER,
N_STEER), [0.0])):
for d in [1, -1]:
yield [steer, d]
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/hybrid_a_star.py#L90-L94
| 2 |
[
0,
1,
3,
4
] | 80 |
[] | 0 | false | 90.37037 | 5 | 3 | 100 | 0 |
def calc_motion_inputs():
for steer in np.concatenate((np.linspace(-MAX_STEER, MAX_STEER,
N_STEER), [0.0])):
for d in [1, -1]:
yield [steer, d]
| 1,195 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/HybridAStar/hybrid_a_star.py
|
get_neighbors
|
(current, config, ox, oy, kd_tree)
| 97 | 101 |
def get_neighbors(current, config, ox, oy, kd_tree):
for steer, d in calc_motion_inputs():
node = calc_next_node(current, steer, d, config, ox, oy, kd_tree)
if node and verify_index(node, config):
yield node
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/hybrid_a_star.py#L97-L101
| 2 |
[
0,
1,
2,
3,
4
] | 100 |
[] | 0 | true | 90.37037 | 5 | 4 | 100 | 0 |
def get_neighbors(current, config, ox, oy, kd_tree):
for steer, d in calc_motion_inputs():
node = calc_next_node(current, steer, d, config, ox, oy, kd_tree)
if node and verify_index(node, config):
yield node
| 1,196 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/HybridAStar/hybrid_a_star.py
|
calc_next_node
|
(current, steer, direction, config, ox, oy, kd_tree)
|
return node
| 104 | 141 |
def calc_next_node(current, steer, direction, config, ox, oy, kd_tree):
x, y, yaw = current.x_list[-1], current.y_list[-1], current.yaw_list[-1]
arc_l = XY_GRID_RESOLUTION * 1.5
x_list, y_list, yaw_list = [], [], []
for _ in np.arange(0, arc_l, MOTION_RESOLUTION):
x, y, yaw = move(x, y, yaw, MOTION_RESOLUTION * direction, steer)
x_list.append(x)
y_list.append(y)
yaw_list.append(yaw)
if not check_car_collision(x_list, y_list, yaw_list, ox, oy, kd_tree):
return None
d = direction == 1
x_ind = round(x / XY_GRID_RESOLUTION)
y_ind = round(y / XY_GRID_RESOLUTION)
yaw_ind = round(yaw / YAW_GRID_RESOLUTION)
added_cost = 0.0
if d != current.direction:
added_cost += SB_COST
# steer penalty
added_cost += STEER_COST * abs(steer)
# steer change penalty
added_cost += STEER_CHANGE_COST * abs(current.steer - steer)
cost = current.cost + added_cost + arc_l
node = Node(x_ind, y_ind, yaw_ind, d, x_list,
y_list, yaw_list, [d],
parent_index=calc_index(current, config),
cost=cost, steer=steer)
return node
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/hybrid_a_star.py#L104-L141
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
36,
37
] | 89.473684 |
[
12
] | 2.631579 | false | 90.37037 | 38 | 4 | 97.368421 | 0 |
def calc_next_node(current, steer, direction, config, ox, oy, kd_tree):
x, y, yaw = current.x_list[-1], current.y_list[-1], current.yaw_list[-1]
arc_l = XY_GRID_RESOLUTION * 1.5
x_list, y_list, yaw_list = [], [], []
for _ in np.arange(0, arc_l, MOTION_RESOLUTION):
x, y, yaw = move(x, y, yaw, MOTION_RESOLUTION * direction, steer)
x_list.append(x)
y_list.append(y)
yaw_list.append(yaw)
if not check_car_collision(x_list, y_list, yaw_list, ox, oy, kd_tree):
return None
d = direction == 1
x_ind = round(x / XY_GRID_RESOLUTION)
y_ind = round(y / XY_GRID_RESOLUTION)
yaw_ind = round(yaw / YAW_GRID_RESOLUTION)
added_cost = 0.0
if d != current.direction:
added_cost += SB_COST
# steer penalty
added_cost += STEER_COST * abs(steer)
# steer change penalty
added_cost += STEER_CHANGE_COST * abs(current.steer - steer)
cost = current.cost + added_cost + arc_l
node = Node(x_ind, y_ind, yaw_ind, d, x_list,
y_list, yaw_list, [d],
parent_index=calc_index(current, config),
cost=cost, steer=steer)
return node
| 1,197 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/HybridAStar/hybrid_a_star.py
|
is_same_grid
|
(n1, n2)
|
return False
| 144 | 149 |
def is_same_grid(n1, n2):
if n1.x_index == n2.x_index \
and n1.y_index == n2.y_index \
and n1.yaw_index == n2.yaw_index:
return True
return False
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/hybrid_a_star.py#L144-L149
| 2 |
[
0
] | 16.666667 |
[
1,
4,
5
] | 50 | false | 90.37037 | 6 | 4 | 50 | 0 |
def is_same_grid(n1, n2):
if n1.x_index == n2.x_index \
and n1.y_index == n2.y_index \
and n1.yaw_index == n2.yaw_index:
return True
return False
| 1,198 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/HybridAStar/hybrid_a_star.py
|
analytic_expansion
|
(current, goal, ox, oy, kd_tree)
|
return best_path
| 152 | 178 |
def analytic_expansion(current, goal, ox, oy, kd_tree):
start_x = current.x_list[-1]
start_y = current.y_list[-1]
start_yaw = current.yaw_list[-1]
goal_x = goal.x_list[-1]
goal_y = goal.y_list[-1]
goal_yaw = goal.yaw_list[-1]
max_curvature = math.tan(MAX_STEER) / WB
paths = rs.calc_paths(start_x, start_y, start_yaw,
goal_x, goal_y, goal_yaw,
max_curvature, step_size=MOTION_RESOLUTION)
if not paths:
return None
best_path, best = None, None
for path in paths:
if check_car_collision(path.x, path.y, path.yaw, ox, oy, kd_tree):
cost = calc_rs_path_cost(path)
if not best or best > cost:
best = cost
best_path = path
return best_path
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/hybrid_a_star.py#L152-L178
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
13,
14,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26
] | 88.888889 |
[
15
] | 3.703704 | false | 90.37037 | 27 | 6 | 96.296296 | 0 |
def analytic_expansion(current, goal, ox, oy, kd_tree):
start_x = current.x_list[-1]
start_y = current.y_list[-1]
start_yaw = current.yaw_list[-1]
goal_x = goal.x_list[-1]
goal_y = goal.y_list[-1]
goal_yaw = goal.yaw_list[-1]
max_curvature = math.tan(MAX_STEER) / WB
paths = rs.calc_paths(start_x, start_y, start_yaw,
goal_x, goal_y, goal_yaw,
max_curvature, step_size=MOTION_RESOLUTION)
if not paths:
return None
best_path, best = None, None
for path in paths:
if check_car_collision(path.x, path.y, path.yaw, ox, oy, kd_tree):
cost = calc_rs_path_cost(path)
if not best or best > cost:
best = cost
best_path = path
return best_path
| 1,199 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/HybridAStar/hybrid_a_star.py
|
update_node_with_analytic_expansion
|
(current, goal,
c, ox, oy, kd_tree)
|
return False, None
| 181 | 205 |
def update_node_with_analytic_expansion(current, goal,
c, ox, oy, kd_tree):
path = analytic_expansion(current, goal, ox, oy, kd_tree)
if path:
if show_animation:
plt.plot(path.x, path.y)
f_x = path.x[1:]
f_y = path.y[1:]
f_yaw = path.yaw[1:]
f_cost = current.cost + calc_rs_path_cost(path)
f_parent_index = calc_index(current, c)
fd = []
for d in path.directions[1:]:
fd.append(d >= 0)
f_steer = 0.0
f_path = Node(current.x_index, current.y_index, current.yaw_index,
current.direction, f_x, f_y, f_yaw, fd,
cost=f_cost, parent_index=f_parent_index, steer=f_steer)
return True, f_path
return False, None
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/HybridAStar/hybrid_a_star.py#L181-L205
| 2 |
[
0,
2,
3,
4,
5,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
22,
23,
24
] | 84 |
[
6
] | 4 | false | 90.37037 | 25 | 4 | 96 | 0 |
def update_node_with_analytic_expansion(current, goal,
c, ox, oy, kd_tree):
path = analytic_expansion(current, goal, ox, oy, kd_tree)
if path:
if show_animation:
plt.plot(path.x, path.y)
f_x = path.x[1:]
f_y = path.y[1:]
f_yaw = path.yaw[1:]
f_cost = current.cost + calc_rs_path_cost(path)
f_parent_index = calc_index(current, c)
fd = []
for d in path.directions[1:]:
fd.append(d >= 0)
f_steer = 0.0
f_path = Node(current.x_index, current.y_index, current.yaw_index,
current.direction, f_x, f_y, f_yaw, fd,
cost=f_cost, parent_index=f_parent_index, steer=f_steer)
return True, f_path
return False, None
| 1,200 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.