nwo
stringlengths 10
28
| sha
stringlengths 40
40
| path
stringlengths 11
97
| identifier
stringlengths 1
64
| parameters
stringlengths 2
2.24k
| return_statement
stringlengths 0
2.17k
| docstring
stringlengths 0
5.45k
| docstring_summary
stringlengths 0
3.83k
| func_begin
int64 1
13.4k
| func_end
int64 2
13.4k
| function
stringlengths 28
56.4k
| url
stringlengths 106
209
| project
int64 1
48
| executed_lines
list | executed_lines_pc
float64 0
153
| missing_lines
list | missing_lines_pc
float64 0
100
| covered
bool 2
classes | filecoverage
float64 2.53
100
| function_lines
int64 2
1.46k
| mccabe
int64 1
253
| coverage
float64 0
100
| docstring_lines
int64 0
112
| function_nodoc
stringlengths 9
56.4k
| id
int64 0
29.8k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClothoidPath/clothoid_path_planner.py
|
get_axes_limits
|
(clothoids)
|
return x_min, x_max, y_min, y_max
| 124 | 141 |
def get_axes_limits(clothoids):
x_vals = [p.x for clothoid in clothoids for p in clothoid]
y_vals = [p.y for clothoid in clothoids for p in clothoid]
x_min = min(x_vals)
x_max = max(x_vals)
y_min = min(y_vals)
y_max = max(y_vals)
x_offset = 0.1*(x_max - x_min)
y_offset = 0.1*(y_max - y_min)
x_min = x_min - x_offset
x_max = x_max + x_offset
y_min = y_min - y_offset
y_max = y_max + y_offset
return x_min, x_max, y_min, y_max
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClothoidPath/clothoid_path_planner.py#L124-L141
| 2 |
[
0
] | 5.555556 |
[
1,
2,
4,
5,
6,
7,
9,
10,
12,
13,
14,
15,
17
] | 72.222222 | false | 63.265306 | 18 | 3 | 27.777778 | 0 |
def get_axes_limits(clothoids):
x_vals = [p.x for clothoid in clothoids for p in clothoid]
y_vals = [p.y for clothoid in clothoids for p in clothoid]
x_min = min(x_vals)
x_max = max(x_vals)
y_min = min(y_vals)
y_max = max(y_vals)
x_offset = 0.1*(x_max - x_min)
y_offset = 0.1*(y_max - y_min)
x_min = x_min - x_offset
x_max = x_max + x_offset
y_min = y_min - y_offset
y_max = y_max + y_offset
return x_min, x_max, y_min, y_max
| 892 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClothoidPath/clothoid_path_planner.py
|
draw_clothoids
|
(start, goal, num_steps, clothoidal_paths,
save_animation=False)
| 144 | 172 |
def draw_clothoids(start, goal, num_steps, clothoidal_paths,
save_animation=False):
fig = plt.figure(figsize=(10, 10))
x_min, x_max, y_min, y_max = get_axes_limits(clothoidal_paths)
axes = plt.axes(xlim=(x_min, x_max), ylim=(y_min, y_max))
axes.plot(start.x, start.y, 'ro')
axes.plot(goal.x, goal.y, 'ro')
lines = [axes.plot([], [], 'b-')[0] for _ in range(len(clothoidal_paths))]
def animate(i):
for line, clothoid_path in zip(lines, clothoidal_paths):
x = [p.x for p in clothoid_path[:i]]
y = [p.y for p in clothoid_path[:i]]
line.set_data(x, y)
return lines
anim = animation.FuncAnimation(
fig,
animate,
frames=num_steps,
interval=25,
blit=True
)
if save_animation:
anim.save('clothoid.gif', fps=30, writer="imagemagick")
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClothoidPath/clothoid_path_planner.py#L144-L172
| 2 |
[
0
] | 3.448276 |
[
3,
4,
5,
7,
8,
9,
11,
12,
13,
14,
15,
17,
19,
26,
27,
28
] | 55.172414 | false | 63.265306 | 29 | 7 | 44.827586 | 0 |
def draw_clothoids(start, goal, num_steps, clothoidal_paths,
save_animation=False):
fig = plt.figure(figsize=(10, 10))
x_min, x_max, y_min, y_max = get_axes_limits(clothoidal_paths)
axes = plt.axes(xlim=(x_min, x_max), ylim=(y_min, y_max))
axes.plot(start.x, start.y, 'ro')
axes.plot(goal.x, goal.y, 'ro')
lines = [axes.plot([], [], 'b-')[0] for _ in range(len(clothoidal_paths))]
def animate(i):
for line, clothoid_path in zip(lines, clothoidal_paths):
x = [p.x for p in clothoid_path[:i]]
y = [p.y for p in clothoid_path[:i]]
line.set_data(x, y)
return lines
anim = animation.FuncAnimation(
fig,
animate,
frames=num_steps,
interval=25,
blit=True
)
if save_animation:
anim.save('clothoid.gif', fps=30, writer="imagemagick")
plt.show()
| 893 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ClothoidPath/clothoid_path_planner.py
|
main
|
()
| 175 | 188 |
def main():
start_point = Point(0, 0)
start_orientation_list = [0.0]
goal_point = Point(10, 0)
goal_orientation_list = np.linspace(-pi, pi, 75)
num_path_points = 100
clothoid_paths = generate_clothoid_paths(
start_point, start_orientation_list,
goal_point, goal_orientation_list,
num_path_points)
if show_animation:
draw_clothoids(start_point, goal_point,
num_path_points, clothoid_paths,
save_animation=False)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClothoidPath/clothoid_path_planner.py#L175-L188
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
10
] | 57.142857 |
[
11
] | 7.142857 | false | 63.265306 | 14 | 2 | 92.857143 | 0 |
def main():
start_point = Point(0, 0)
start_orientation_list = [0.0]
goal_point = Point(10, 0)
goal_orientation_list = np.linspace(-pi, pi, 75)
num_path_points = 100
clothoid_paths = generate_clothoid_paths(
start_point, start_orientation_list,
goal_point, goal_orientation_list,
num_path_points)
if show_animation:
draw_clothoids(start_point, goal_point,
num_path_points, clothoid_paths,
save_animation=False)
| 894 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
main
|
()
| 199 | 238 |
def main():
m = Map(100, 100)
ox, oy = [], []
for i in range(-10, 60):
ox.append(i)
oy.append(-10)
for i in range(-10, 60):
ox.append(60)
oy.append(i)
for i in range(-10, 61):
ox.append(i)
oy.append(60)
for i in range(-10, 61):
ox.append(-10)
oy.append(i)
for i in range(-10, 40):
ox.append(20)
oy.append(i)
for i in range(0, 40):
ox.append(40)
oy.append(60 - i)
print([(i, j) for i, j in zip(ox, oy)])
m.set_obstacle([(i, j) for i, j in zip(ox, oy)])
start = [10, 10]
goal = [50, 50]
if show_animation:
plt.plot(ox, oy, ".k")
plt.plot(start[0], start[1], "og")
plt.plot(goal[0], goal[1], "xb")
plt.axis("equal")
start = m.map[start[0]][start[1]]
end = m.map[goal[0]][goal[1]]
dstar = Dstar(m)
rx, ry = dstar.run(start, end)
if show_animation:
plt.plot(rx, ry, "-r")
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L199-L238
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
31,
32,
33,
34,
35,
36,
37
] | 85 |
[
27,
28,
29,
30,
38,
39
] | 15 | false | 79.775281 | 40 | 11 | 85 | 0 |
def main():
m = Map(100, 100)
ox, oy = [], []
for i in range(-10, 60):
ox.append(i)
oy.append(-10)
for i in range(-10, 60):
ox.append(60)
oy.append(i)
for i in range(-10, 61):
ox.append(i)
oy.append(60)
for i in range(-10, 61):
ox.append(-10)
oy.append(i)
for i in range(-10, 40):
ox.append(20)
oy.append(i)
for i in range(0, 40):
ox.append(40)
oy.append(60 - i)
print([(i, j) for i, j in zip(ox, oy)])
m.set_obstacle([(i, j) for i, j in zip(ox, oy)])
start = [10, 10]
goal = [50, 50]
if show_animation:
plt.plot(ox, oy, ".k")
plt.plot(start[0], start[1], "og")
plt.plot(goal[0], goal[1], "xb")
plt.axis("equal")
start = m.map[start[0]][start[1]]
end = m.map[goal[0]][goal[1]]
dstar = Dstar(m)
rx, ry = dstar.run(start, end)
if show_animation:
plt.plot(rx, ry, "-r")
plt.show()
| 895 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
State.__init__
|
(self, x, y)
| 21 | 28 |
def __init__(self, x, y):
self.x = x
self.y = y
self.parent = None
self.state = "."
self.t = "new" # tag for state
self.h = 0
self.k = 0
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L21-L28
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7
] | 100 |
[] | 0 | true | 79.775281 | 8 | 1 | 100 | 0 |
def __init__(self, x, y):
self.x = x
self.y = y
self.parent = None
self.state = "."
self.t = "new" # tag for state
self.h = 0
self.k = 0
| 896 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
State.cost
|
(self, state)
|
return math.sqrt(math.pow((self.x - state.x), 2) +
math.pow((self.y - state.y), 2))
| 30 | 35 |
def cost(self, state):
if self.state == "#" or state.state == "#":
return maxsize
return math.sqrt(math.pow((self.x - state.x), 2) +
math.pow((self.y - state.y), 2))
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L30-L35
| 2 |
[
0,
1,
2,
3,
4
] | 83.333333 |
[] | 0 | false | 79.775281 | 6 | 3 | 100 | 0 |
def cost(self, state):
if self.state == "#" or state.state == "#":
return maxsize
return math.sqrt(math.pow((self.x - state.x), 2) +
math.pow((self.y - state.y), 2))
| 897 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
State.set_state
|
(self, state)
|
.: new
#: obstacle
e: oparent of current state
*: closed state
s: current state
|
.: new
#: obstacle
e: oparent of current state
*: closed state
s: current state
| 37 | 47 |
def set_state(self, state):
"""
.: new
#: obstacle
e: oparent of current state
*: closed state
s: current state
"""
if state not in ["s", ".", "#", "e", "*"]:
return
self.state = state
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L37-L47
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
10
] | 90.909091 |
[
9
] | 9.090909 | false | 79.775281 | 11 | 2 | 90.909091 | 5 |
def set_state(self, state):
if state not in ["s", ".", "#", "e", "*"]:
return
self.state = state
| 898 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
Map.__init__
|
(self, row, col)
| 52 | 55 |
def __init__(self, row, col):
self.row = row
self.col = col
self.map = self.init_map()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L52-L55
| 2 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 79.775281 | 4 | 1 | 100 | 0 |
def __init__(self, row, col):
self.row = row
self.col = col
self.map = self.init_map()
| 899 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
Map.init_map
|
(self)
|
return map_list
| 57 | 64 |
def init_map(self):
map_list = []
for i in range(self.row):
tmp = []
for j in range(self.col):
tmp.append(State(i, j))
map_list.append(tmp)
return map_list
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L57-L64
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7
] | 100 |
[] | 0 | true | 79.775281 | 8 | 3 | 100 | 0 |
def init_map(self):
map_list = []
for i in range(self.row):
tmp = []
for j in range(self.col):
tmp.append(State(i, j))
map_list.append(tmp)
return map_list
| 900 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
Map.get_neighbors
|
(self, state)
|
return state_list
| 66 | 77 |
def get_neighbors(self, state):
state_list = []
for i in [-1, 0, 1]:
for j in [-1, 0, 1]:
if i == 0 and j == 0:
continue
if state.x + i < 0 or state.x + i >= self.row:
continue
if state.y + j < 0 or state.y + j >= self.col:
continue
state_list.append(self.map[state.x + i][state.y + j])
return state_list
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L66-L77
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11
] | 100 |
[] | 0 | true | 79.775281 | 12 | 9 | 100 | 0 |
def get_neighbors(self, state):
state_list = []
for i in [-1, 0, 1]:
for j in [-1, 0, 1]:
if i == 0 and j == 0:
continue
if state.x + i < 0 or state.x + i >= self.row:
continue
if state.y + j < 0 or state.y + j >= self.col:
continue
state_list.append(self.map[state.x + i][state.y + j])
return state_list
| 901 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
Map.set_obstacle
|
(self, point_list)
| 79 | 84 |
def set_obstacle(self, point_list):
for x, y in point_list:
if x < 0 or x >= self.row or y < 0 or y >= self.col:
continue
self.map[x][y].set_state("#")
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L79-L84
| 2 |
[
0,
1,
2,
3,
4,
5
] | 100 |
[] | 0 | true | 79.775281 | 6 | 6 | 100 | 0 |
def set_obstacle(self, point_list):
for x, y in point_list:
if x < 0 or x >= self.row or y < 0 or y >= self.col:
continue
self.map[x][y].set_state("#")
| 902 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
Dstar.__init__
|
(self, maps)
| 88 | 90 |
def __init__(self, maps):
self.map = maps
self.open_list = set()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L88-L90
| 2 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 79.775281 | 3 | 1 | 100 | 0 |
def __init__(self, maps):
self.map = maps
self.open_list = set()
| 903 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
Dstar.process_state
|
(self)
|
return self.get_kmin()
| 92 | 124 |
def process_state(self):
x = self.min_state()
if x is None:
return -1
k_old = self.get_kmin()
self.remove(x)
if k_old < x.h:
for y in self.map.get_neighbors(x):
if y.h <= k_old and x.h > y.h + x.cost(y):
x.parent = y
x.h = y.h + x.cost(y)
elif k_old == x.h:
for y in self.map.get_neighbors(x):
if y.t == "new" or y.parent == x and y.h != x.h + x.cost(y) \
or y.parent != x and y.h > x.h + x.cost(y):
y.parent = x
self.insert(y, x.h + x.cost(y))
else:
for y in self.map.get_neighbors(x):
if y.t == "new" or y.parent == x and y.h != x.h + x.cost(y):
y.parent = x
self.insert(y, x.h + x.cost(y))
else:
if y.parent != x and y.h > x.h + x.cost(y):
self.insert(y, x.h)
else:
if y.parent != x and x.h > y.h + x.cost(y) \
and y.t == "close" and y.h > k_old:
self.insert(y, y.h)
return self.get_kmin()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L92-L124
| 2 |
[
0,
1,
2,
3,
5,
6,
7,
8,
9,
14,
15,
16,
18,
19,
32
] | 45.454545 |
[
4,
10,
11,
12,
13,
21,
22,
23,
24,
26,
27,
29,
31
] | 39.393939 | false | 79.775281 | 33 | 23 | 60.606061 | 0 |
def process_state(self):
x = self.min_state()
if x is None:
return -1
k_old = self.get_kmin()
self.remove(x)
if k_old < x.h:
for y in self.map.get_neighbors(x):
if y.h <= k_old and x.h > y.h + x.cost(y):
x.parent = y
x.h = y.h + x.cost(y)
elif k_old == x.h:
for y in self.map.get_neighbors(x):
if y.t == "new" or y.parent == x and y.h != x.h + x.cost(y) \
or y.parent != x and y.h > x.h + x.cost(y):
y.parent = x
self.insert(y, x.h + x.cost(y))
else:
for y in self.map.get_neighbors(x):
if y.t == "new" or y.parent == x and y.h != x.h + x.cost(y):
y.parent = x
self.insert(y, x.h + x.cost(y))
else:
if y.parent != x and y.h > x.h + x.cost(y):
self.insert(y, x.h)
else:
if y.parent != x and x.h > y.h + x.cost(y) \
and y.t == "close" and y.h > k_old:
self.insert(y, y.h)
return self.get_kmin()
| 904 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
Dstar.min_state
|
(self)
|
return min_state
| 126 | 130 |
def min_state(self):
if not self.open_list:
return None
min_state = min(self.open_list, key=lambda x: x.k)
return min_state
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L126-L130
| 2 |
[
0,
1,
3,
4
] | 80 |
[
2
] | 20 | false | 79.775281 | 5 | 2 | 80 | 0 |
def min_state(self):
if not self.open_list:
return None
min_state = min(self.open_list, key=lambda x: x.k)
return min_state
| 905 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
Dstar.get_kmin
|
(self)
|
return k_min
| 132 | 136 |
def get_kmin(self):
if not self.open_list:
return -1
k_min = min([x.k for x in self.open_list])
return k_min
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L132-L136
| 2 |
[
0,
1,
3,
4
] | 80 |
[
2
] | 20 | false | 79.775281 | 5 | 3 | 80 | 0 |
def get_kmin(self):
if not self.open_list:
return -1
k_min = min([x.k for x in self.open_list])
return k_min
| 906 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
Dstar.insert
|
(self, state, h_new)
| 138 | 147 |
def insert(self, state, h_new):
if state.t == "new":
state.k = h_new
elif state.t == "open":
state.k = min(state.k, h_new)
elif state.t == "close":
state.k = min(state.h, h_new)
state.h = h_new
state.t = "open"
self.open_list.add(state)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L138-L147
| 2 |
[
0,
1,
2,
3,
4,
7,
8,
9
] | 80 |
[
5,
6
] | 20 | false | 79.775281 | 10 | 4 | 80 | 0 |
def insert(self, state, h_new):
if state.t == "new":
state.k = h_new
elif state.t == "open":
state.k = min(state.k, h_new)
elif state.t == "close":
state.k = min(state.h, h_new)
state.h = h_new
state.t = "open"
self.open_list.add(state)
| 907 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
Dstar.remove
|
(self, state)
| 149 | 152 |
def remove(self, state):
if state.t == "open":
state.t = "close"
self.open_list.remove(state)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L149-L152
| 2 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 79.775281 | 4 | 2 | 100 | 0 |
def remove(self, state):
if state.t == "open":
state.t = "close"
self.open_list.remove(state)
| 908 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
Dstar.modify_cost
|
(self, x)
| 154 | 156 |
def modify_cost(self, x):
if x.t == "close":
self.insert(x, x.parent.h + x.cost(x.parent))
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L154-L156
| 2 |
[
0
] | 33.333333 |
[
1,
2
] | 66.666667 | false | 79.775281 | 3 | 2 | 33.333333 | 0 |
def modify_cost(self, x):
if x.t == "close":
self.insert(x, x.parent.h + x.cost(x.parent))
| 909 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
Dstar.run
|
(self, start, end)
|
return rx, ry
| 158 | 189 |
def run(self, start, end):
rx = []
ry = []
self.insert(end, 0.0)
while True:
self.process_state()
if start.t == "close":
break
start.set_state("s")
s = start
s = s.parent
s.set_state("e")
tmp = start
while tmp != end:
tmp.set_state("*")
rx.append(tmp.x)
ry.append(tmp.y)
if show_animation:
plt.plot(rx, ry, "-r")
plt.pause(0.01)
if tmp.parent.state == "#":
self.modify(tmp)
continue
tmp = tmp.parent
tmp.set_state("e")
return rx, ry
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L158-L189
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
25,
28,
29,
30,
31
] | 87.5 |
[
23,
24,
26,
27
] | 12.5 | false | 79.775281 | 32 | 6 | 87.5 | 0 |
def run(self, start, end):
rx = []
ry = []
self.insert(end, 0.0)
while True:
self.process_state()
if start.t == "close":
break
start.set_state("s")
s = start
s = s.parent
s.set_state("e")
tmp = start
while tmp != end:
tmp.set_state("*")
rx.append(tmp.x)
ry.append(tmp.y)
if show_animation:
plt.plot(rx, ry, "-r")
plt.pause(0.01)
if tmp.parent.state == "#":
self.modify(tmp)
continue
tmp = tmp.parent
tmp.set_state("e")
return rx, ry
| 910 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStar/dstar.py
|
Dstar.modify
|
(self, state)
| 191 | 196 |
def modify(self, state):
self.modify_cost(state)
while True:
k_min = self.process_state()
if k_min >= state.h:
break
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStar/dstar.py#L191-L196
| 2 |
[
0
] | 16.666667 |
[
1,
2,
3,
4,
5
] | 83.333333 | false | 79.775281 | 6 | 3 | 16.666667 | 0 |
def modify(self, state):
self.modify_cost(state)
while True:
k_min = self.process_state()
if k_min >= state.h:
break
| 911 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py
|
calc_frenet_paths
|
(c_speed, c_accel, c_d, c_d_d, c_d_dd, s0)
|
return frenet_paths
| 119 | 161 |
def calc_frenet_paths(c_speed, c_accel, c_d, c_d_d, c_d_dd, s0):
frenet_paths = []
# generate path to each offset goal
for di in np.arange(-MAX_ROAD_WIDTH, MAX_ROAD_WIDTH, D_ROAD_W):
# Lateral motion planning
for Ti in np.arange(MIN_T, MAX_T, DT):
fp = FrenetPath()
# lat_qp = quintic_polynomial(c_d, c_d_d, c_d_dd, di, 0.0, 0.0, Ti)
lat_qp = QuinticPolynomial(c_d, c_d_d, c_d_dd, di, 0.0, 0.0, Ti)
fp.t = [t for t in np.arange(0.0, Ti, DT)]
fp.d = [lat_qp.calc_point(t) for t in fp.t]
fp.d_d = [lat_qp.calc_first_derivative(t) for t in fp.t]
fp.d_dd = [lat_qp.calc_second_derivative(t) for t in fp.t]
fp.d_ddd = [lat_qp.calc_third_derivative(t) for t in fp.t]
# Longitudinal motion planning (Velocity keeping)
for tv in np.arange(TARGET_SPEED - D_T_S * N_S_SAMPLE,
TARGET_SPEED + D_T_S * N_S_SAMPLE, D_T_S):
tfp = copy.deepcopy(fp)
lon_qp = QuarticPolynomial(s0, c_speed, c_accel, tv, 0.0, Ti)
tfp.s = [lon_qp.calc_point(t) for t in fp.t]
tfp.s_d = [lon_qp.calc_first_derivative(t) for t in fp.t]
tfp.s_dd = [lon_qp.calc_second_derivative(t) for t in fp.t]
tfp.s_ddd = [lon_qp.calc_third_derivative(t) for t in fp.t]
Jp = sum(np.power(tfp.d_ddd, 2)) # square of jerk
Js = sum(np.power(tfp.s_ddd, 2)) # square of jerk
# square of diff from target speed
ds = (TARGET_SPEED - tfp.s_d[-1]) ** 2
tfp.cd = K_J * Jp + K_T * Ti + K_D * tfp.d[-1] ** 2
tfp.cv = K_J * Js + K_T * Ti + K_D * ds
tfp.cf = K_LAT * tfp.cd + K_LON * tfp.cv
frenet_paths.append(tfp)
return frenet_paths
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py#L119-L161
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42
] | 97.674419 |
[] | 0 | false | 97.311828 | 43 | 13 | 100 | 0 |
def calc_frenet_paths(c_speed, c_accel, c_d, c_d_d, c_d_dd, s0):
frenet_paths = []
# generate path to each offset goal
for di in np.arange(-MAX_ROAD_WIDTH, MAX_ROAD_WIDTH, D_ROAD_W):
# Lateral motion planning
for Ti in np.arange(MIN_T, MAX_T, DT):
fp = FrenetPath()
# lat_qp = quintic_polynomial(c_d, c_d_d, c_d_dd, di, 0.0, 0.0, Ti)
lat_qp = QuinticPolynomial(c_d, c_d_d, c_d_dd, di, 0.0, 0.0, Ti)
fp.t = [t for t in np.arange(0.0, Ti, DT)]
fp.d = [lat_qp.calc_point(t) for t in fp.t]
fp.d_d = [lat_qp.calc_first_derivative(t) for t in fp.t]
fp.d_dd = [lat_qp.calc_second_derivative(t) for t in fp.t]
fp.d_ddd = [lat_qp.calc_third_derivative(t) for t in fp.t]
# Longitudinal motion planning (Velocity keeping)
for tv in np.arange(TARGET_SPEED - D_T_S * N_S_SAMPLE,
TARGET_SPEED + D_T_S * N_S_SAMPLE, D_T_S):
tfp = copy.deepcopy(fp)
lon_qp = QuarticPolynomial(s0, c_speed, c_accel, tv, 0.0, Ti)
tfp.s = [lon_qp.calc_point(t) for t in fp.t]
tfp.s_d = [lon_qp.calc_first_derivative(t) for t in fp.t]
tfp.s_dd = [lon_qp.calc_second_derivative(t) for t in fp.t]
tfp.s_ddd = [lon_qp.calc_third_derivative(t) for t in fp.t]
Jp = sum(np.power(tfp.d_ddd, 2)) # square of jerk
Js = sum(np.power(tfp.s_ddd, 2)) # square of jerk
# square of diff from target speed
ds = (TARGET_SPEED - tfp.s_d[-1]) ** 2
tfp.cd = K_J * Jp + K_T * Ti + K_D * tfp.d[-1] ** 2
tfp.cv = K_J * Js + K_T * Ti + K_D * ds
tfp.cf = K_LAT * tfp.cd + K_LON * tfp.cv
frenet_paths.append(tfp)
return frenet_paths
| 912 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py
|
calc_global_paths
|
(fplist, csp)
|
return fplist
| 164 | 193 |
def calc_global_paths(fplist, csp):
for fp in fplist:
# calc global positions
for i in range(len(fp.s)):
ix, iy = csp.calc_position(fp.s[i])
if ix is None:
break
i_yaw = csp.calc_yaw(fp.s[i])
di = fp.d[i]
fx = ix + di * math.cos(i_yaw + math.pi / 2.0)
fy = iy + di * math.sin(i_yaw + math.pi / 2.0)
fp.x.append(fx)
fp.y.append(fy)
# calc yaw and ds
for i in range(len(fp.x) - 1):
dx = fp.x[i + 1] - fp.x[i]
dy = fp.y[i + 1] - fp.y[i]
fp.yaw.append(math.atan2(dy, dx))
fp.ds.append(math.hypot(dx, dy))
fp.yaw.append(fp.yaw[-1])
fp.ds.append(fp.ds[-1])
# calc curvature
for i in range(len(fp.yaw) - 1):
fp.c.append((fp.yaw[i + 1] - fp.yaw[i]) / fp.ds[i])
return fplist
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py#L164-L193
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29
] | 96.666667 |
[
7
] | 3.333333 | false | 97.311828 | 30 | 6 | 96.666667 | 0 |
def calc_global_paths(fplist, csp):
for fp in fplist:
# calc global positions
for i in range(len(fp.s)):
ix, iy = csp.calc_position(fp.s[i])
if ix is None:
break
i_yaw = csp.calc_yaw(fp.s[i])
di = fp.d[i]
fx = ix + di * math.cos(i_yaw + math.pi / 2.0)
fy = iy + di * math.sin(i_yaw + math.pi / 2.0)
fp.x.append(fx)
fp.y.append(fy)
# calc yaw and ds
for i in range(len(fp.x) - 1):
dx = fp.x[i + 1] - fp.x[i]
dy = fp.y[i + 1] - fp.y[i]
fp.yaw.append(math.atan2(dy, dx))
fp.ds.append(math.hypot(dx, dy))
fp.yaw.append(fp.yaw[-1])
fp.ds.append(fp.ds[-1])
# calc curvature
for i in range(len(fp.yaw) - 1):
fp.c.append((fp.yaw[i + 1] - fp.yaw[i]) / fp.ds[i])
return fplist
| 913 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py
|
check_collision
|
(fp, ob)
|
return True
| 196 | 206 |
def check_collision(fp, ob):
for i in range(len(ob[:, 0])):
d = [((ix - ob[i, 0]) ** 2 + (iy - ob[i, 1]) ** 2)
for (ix, iy) in zip(fp.x, fp.y)]
collision = any([di <= ROBOT_RADIUS ** 2 for di in d])
if collision:
return False
return True
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py#L196-L206
| 2 |
[
0,
1,
2,
4,
5,
6,
7,
8,
9,
10
] | 90.909091 |
[] | 0 | false | 97.311828 | 11 | 5 | 100 | 0 |
def check_collision(fp, ob):
for i in range(len(ob[:, 0])):
d = [((ix - ob[i, 0]) ** 2 + (iy - ob[i, 1]) ** 2)
for (ix, iy) in zip(fp.x, fp.y)]
collision = any([di <= ROBOT_RADIUS ** 2 for di in d])
if collision:
return False
return True
| 914 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py
|
check_paths
|
(fplist, ob)
|
return [fplist[i] for i in ok_ind]
| 209 | 225 |
def check_paths(fplist, ob):
ok_ind = []
for i, _ in enumerate(fplist):
if any([v > MAX_SPEED for v in fplist[i].s_d]): # Max speed check
continue
elif any([abs(a) > MAX_ACCEL for a in
fplist[i].s_dd]): # Max accel check
continue
elif any([abs(c) > MAX_CURVATURE for c in
fplist[i].c]): # Max curvature check
continue
elif not check_collision(fplist[i], ob):
continue
ok_ind.append(i)
return [fplist[i] for i in ok_ind]
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py#L209-L225
| 2 |
[
0,
1,
2,
3,
5,
7,
8,
10,
11,
12,
13,
14,
15,
16
] | 82.352941 |
[
4
] | 5.882353 | false | 97.311828 | 17 | 10 | 94.117647 | 0 |
def check_paths(fplist, ob):
ok_ind = []
for i, _ in enumerate(fplist):
if any([v > MAX_SPEED for v in fplist[i].s_d]): # Max speed check
continue
elif any([abs(a) > MAX_ACCEL for a in
fplist[i].s_dd]): # Max accel check
continue
elif any([abs(c) > MAX_CURVATURE for c in
fplist[i].c]): # Max curvature check
continue
elif not check_collision(fplist[i], ob):
continue
ok_ind.append(i)
return [fplist[i] for i in ok_ind]
| 915 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py
|
frenet_optimal_planning
|
(csp, s0, c_speed, c_accel, c_d, c_d_d, c_d_dd, ob)
|
return best_path
| 228 | 241 |
def frenet_optimal_planning(csp, s0, c_speed, c_accel, c_d, c_d_d, c_d_dd, ob):
fplist = calc_frenet_paths(c_speed, c_accel, c_d, c_d_d, c_d_dd, s0)
fplist = calc_global_paths(fplist, csp)
fplist = check_paths(fplist, ob)
# find minimum cost path
min_cost = float("inf")
best_path = None
for fp in fplist:
if min_cost >= fp.cf:
min_cost = fp.cf
best_path = fp
return best_path
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py#L228-L241
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 97.311828 | 14 | 3 | 100 | 0 |
def frenet_optimal_planning(csp, s0, c_speed, c_accel, c_d, c_d_d, c_d_dd, ob):
fplist = calc_frenet_paths(c_speed, c_accel, c_d, c_d_d, c_d_dd, s0)
fplist = calc_global_paths(fplist, csp)
fplist = check_paths(fplist, ob)
# find minimum cost path
min_cost = float("inf")
best_path = None
for fp in fplist:
if min_cost >= fp.cf:
min_cost = fp.cf
best_path = fp
return best_path
| 916 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py
|
generate_target_course
|
(x, y)
|
return rx, ry, ryaw, rk, csp
| 244 | 256 |
def generate_target_course(x, y):
csp = cubic_spline_planner.CubicSpline2D(x, y)
s = np.arange(0, csp.s[-1], 0.1)
rx, ry, ryaw, rk = [], [], [], []
for i_s in s:
ix, iy = csp.calc_position(i_s)
rx.append(ix)
ry.append(iy)
ryaw.append(csp.calc_yaw(i_s))
rk.append(csp.calc_curvature(i_s))
return rx, ry, ryaw, rk, csp
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py#L244-L256
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 100 |
[] | 0 | true | 97.311828 | 13 | 2 | 100 | 0 |
def generate_target_course(x, y):
csp = cubic_spline_planner.CubicSpline2D(x, y)
s = np.arange(0, csp.s[-1], 0.1)
rx, ry, ryaw, rk = [], [], [], []
for i_s in s:
ix, iy = csp.calc_position(i_s)
rx.append(ix)
ry.append(iy)
ryaw.append(csp.calc_yaw(i_s))
rk.append(csp.calc_curvature(i_s))
return rx, ry, ryaw, rk, csp
| 917 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py
|
main
|
()
| 259 | 320 |
def main():
print(__file__ + " start!!")
# way points
wx = [0.0, 10.0, 20.5, 35.0, 70.5]
wy = [0.0, -6.0, 5.0, 6.5, 0.0]
# obstacle lists
ob = np.array([[20.0, 10.0],
[30.0, 6.0],
[30.0, 8.0],
[35.0, 8.0],
[50.0, 3.0]
])
tx, ty, tyaw, tc, csp = generate_target_course(wx, wy)
# initial state
c_speed = 10.0 / 3.6 # current speed [m/s]
c_accel = 0.0 # current acceleration [m/ss]
c_d = 2.0 # current lateral position [m]
c_d_d = 0.0 # current lateral speed [m/s]
c_d_dd = 0.0 # current lateral acceleration [m/s]
s0 = 0.0 # current course position
area = 20.0 # animation area length [m]
for i in range(SIM_LOOP):
path = frenet_optimal_planning(
csp, s0, c_speed, c_accel, c_d, c_d_d, c_d_dd, ob)
s0 = path.s[1]
c_d = path.d[1]
c_d_d = path.d_d[1]
c_d_dd = path.d_dd[1]
c_speed = path.s_d[1]
c_accel = path.s_dd[1]
if np.hypot(path.x[1] - tx[-1], path.y[1] - ty[-1]) <= 1.0:
print("Goal")
break
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(tx, ty)
plt.plot(ob[:, 0], ob[:, 1], "xk")
plt.plot(path.x[1:], path.y[1:], "-or")
plt.plot(path.x[1], path.y[1], "vc")
plt.xlim(path.x[1] - area, path.x[1] + area)
plt.ylim(path.y[1] - area, path.y[1] + area)
plt.title("v[km/h]:" + str(c_speed * 3.6)[0:4])
plt.grid(True)
plt.pause(0.0001)
print("Finish")
if show_animation: # pragma: no cover
plt.grid(True)
plt.pause(0.0001)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py#L259-L320
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
29,
30,
31,
32,
33,
34,
35,
36,
37,
56,
57
] | 73.913043 |
[
38,
39
] | 4.347826 | false | 97.311828 | 62 | 5 | 95.652174 | 0 |
def main():
print(__file__ + " start!!")
# way points
wx = [0.0, 10.0, 20.5, 35.0, 70.5]
wy = [0.0, -6.0, 5.0, 6.5, 0.0]
# obstacle lists
ob = np.array([[20.0, 10.0],
[30.0, 6.0],
[30.0, 8.0],
[35.0, 8.0],
[50.0, 3.0]
])
tx, ty, tyaw, tc, csp = generate_target_course(wx, wy)
# initial state
c_speed = 10.0 / 3.6 # current speed [m/s]
c_accel = 0.0 # current acceleration [m/ss]
c_d = 2.0 # current lateral position [m]
c_d_d = 0.0 # current lateral speed [m/s]
c_d_dd = 0.0 # current lateral acceleration [m/s]
s0 = 0.0 # current course position
area = 20.0 # animation area length [m]
for i in range(SIM_LOOP):
path = frenet_optimal_planning(
csp, s0, c_speed, c_accel, c_d, c_d_d, c_d_dd, ob)
s0 = path.s[1]
c_d = path.d[1]
c_d_d = path.d_d[1]
c_d_dd = path.d_dd[1]
c_speed = path.s_d[1]
c_accel = path.s_dd[1]
if np.hypot(path.x[1] - tx[-1], path.y[1] - ty[-1]) <= 1.0:
print("Goal")
break
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(tx, ty)
plt.plot(ob[:, 0], ob[:, 1], "xk")
plt.plot(path.x[1:], path.y[1:], "-or")
plt.plot(path.x[1], path.y[1], "vc")
plt.xlim(path.x[1] - area, path.x[1] + area)
plt.ylim(path.y[1] - area, path.y[1] + area)
plt.title("v[km/h]:" + str(c_speed * 3.6)[0:4])
plt.grid(True)
plt.pause(0.0001)
print("Finish")
if show_animation: # pragma: no cover
plt.grid(True)
plt.pause(0.0001)
plt.show()
| 918 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py
|
QuarticPolynomial.__init__
|
(self, xs, vxs, axs, vxe, axe, time)
| 57 | 71 |
def __init__(self, xs, vxs, axs, vxe, axe, time):
# calc coefficient of quartic polynomial
self.a0 = xs
self.a1 = vxs
self.a2 = axs / 2.0
A = np.array([[3 * time ** 2, 4 * time ** 3],
[6 * time, 12 * time ** 2]])
b = np.array([vxe - self.a1 - 2 * self.a2 * time,
axe - 2 * self.a2])
x = np.linalg.solve(A, b)
self.a3 = x[0]
self.a4 = x[1]
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py#L57-L71
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
9,
11,
12,
13,
14
] | 86.666667 |
[] | 0 | false | 97.311828 | 15 | 1 | 100 | 0 |
def __init__(self, xs, vxs, axs, vxe, axe, time):
# calc coefficient of quartic polynomial
self.a0 = xs
self.a1 = vxs
self.a2 = axs / 2.0
A = np.array([[3 * time ** 2, 4 * time ** 3],
[6 * time, 12 * time ** 2]])
b = np.array([vxe - self.a1 - 2 * self.a2 * time,
axe - 2 * self.a2])
x = np.linalg.solve(A, b)
self.a3 = x[0]
self.a4 = x[1]
| 919 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py
|
QuarticPolynomial.calc_point
|
(self, t)
|
return xt
| 73 | 77 |
def calc_point(self, t):
xt = self.a0 + self.a1 * t + self.a2 * t ** 2 + \
self.a3 * t ** 3 + self.a4 * t ** 4
return xt
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py#L73-L77
| 2 |
[
0,
1,
3,
4
] | 80 |
[] | 0 | false | 97.311828 | 5 | 1 | 100 | 0 |
def calc_point(self, t):
xt = self.a0 + self.a1 * t + self.a2 * t ** 2 + \
self.a3 * t ** 3 + self.a4 * t ** 4
return xt
| 920 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py
|
QuarticPolynomial.calc_first_derivative
|
(self, t)
|
return xt
| 79 | 83 |
def calc_first_derivative(self, t):
xt = self.a1 + 2 * self.a2 * t + \
3 * self.a3 * t ** 2 + 4 * self.a4 * t ** 3
return xt
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py#L79-L83
| 2 |
[
0,
1,
3,
4
] | 80 |
[] | 0 | false | 97.311828 | 5 | 1 | 100 | 0 |
def calc_first_derivative(self, t):
xt = self.a1 + 2 * self.a2 * t + \
3 * self.a3 * t ** 2 + 4 * self.a4 * t ** 3
return xt
| 921 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py
|
QuarticPolynomial.calc_second_derivative
|
(self, t)
|
return xt
| 85 | 88 |
def calc_second_derivative(self, t):
xt = 2 * self.a2 + 6 * self.a3 * t + 12 * self.a4 * t ** 2
return xt
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py#L85-L88
| 2 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 97.311828 | 4 | 1 | 100 | 0 |
def calc_second_derivative(self, t):
xt = 2 * self.a2 + 6 * self.a3 * t + 12 * self.a4 * t ** 2
return xt
| 922 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py
|
QuarticPolynomial.calc_third_derivative
|
(self, t)
|
return xt
| 90 | 93 |
def calc_third_derivative(self, t):
xt = 6 * self.a3 + 24 * self.a4 * t
return xt
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py#L90-L93
| 2 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 97.311828 | 4 | 1 | 100 | 0 |
def calc_third_derivative(self, t):
xt = 6 * self.a3 + 24 * self.a4 * t
return xt
| 923 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py
|
FrenetPath.__init__
|
(self)
| 98 | 116 |
def __init__(self):
self.t = []
self.d = []
self.d_d = []
self.d_dd = []
self.d_ddd = []
self.s = []
self.s_d = []
self.s_dd = []
self.s_ddd = []
self.cd = 0.0
self.cv = 0.0
self.cf = 0.0
self.x = []
self.y = []
self.yaw = []
self.ds = []
self.c = []
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py#L98-L116
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18
] | 100 |
[] | 0 | true | 97.311828 | 19 | 1 | 100 | 0 |
def __init__(self):
self.t = []
self.d = []
self.d_d = []
self.d_dd = []
self.d_ddd = []
self.s = []
self.s_d = []
self.s_dd = []
self.s_ddd = []
self.cd = 0.0
self.cv = 0.0
self.cf = 0.0
self.x = []
self.y = []
self.yaw = []
self.ds = []
self.c = []
| 924 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BezierPath/bezier_path.py
|
calc_4points_bezier_path
|
(sx, sy, syaw, ex, ey, eyaw, offset)
|
return path, control_points
|
Compute control points and path given start and end position.
:param sx: (float) x-coordinate of the starting point
:param sy: (float) y-coordinate of the starting point
:param syaw: (float) yaw angle at start
:param ex: (float) x-coordinate of the ending point
:param ey: (float) y-coordinate of the ending point
:param eyaw: (float) yaw angle at the end
:param offset: (float)
:return: (numpy array, numpy array)
|
Compute control points and path given start and end position.
| 16 | 38 |
def calc_4points_bezier_path(sx, sy, syaw, ex, ey, eyaw, offset):
"""
Compute control points and path given start and end position.
:param sx: (float) x-coordinate of the starting point
:param sy: (float) y-coordinate of the starting point
:param syaw: (float) yaw angle at start
:param ex: (float) x-coordinate of the ending point
:param ey: (float) y-coordinate of the ending point
:param eyaw: (float) yaw angle at the end
:param offset: (float)
:return: (numpy array, numpy array)
"""
dist = np.hypot(sx - ex, sy - ey) / offset
control_points = np.array(
[[sx, sy],
[sx + dist * np.cos(syaw), sy + dist * np.sin(syaw)],
[ex - dist * np.cos(eyaw), ey - dist * np.sin(eyaw)],
[ex, ey]])
path = calc_bezier_path(control_points, n_points=100)
return path, control_points
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BezierPath/bezier_path.py#L16-L38
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22
] | 100 |
[] | 0 | true | 98.507463 | 23 | 1 | 100 | 10 |
def calc_4points_bezier_path(sx, sy, syaw, ex, ey, eyaw, offset):
dist = np.hypot(sx - ex, sy - ey) / offset
control_points = np.array(
[[sx, sy],
[sx + dist * np.cos(syaw), sy + dist * np.sin(syaw)],
[ex - dist * np.cos(eyaw), ey - dist * np.sin(eyaw)],
[ex, ey]])
path = calc_bezier_path(control_points, n_points=100)
return path, control_points
| 925 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BezierPath/bezier_path.py
|
calc_bezier_path
|
(control_points, n_points=100)
|
return np.array(traj)
|
Compute bezier path (trajectory) given control points.
:param control_points: (numpy array)
:param n_points: (int) number of points in the trajectory
:return: (numpy array)
|
Compute bezier path (trajectory) given control points.
| 41 | 53 |
def calc_bezier_path(control_points, n_points=100):
"""
Compute bezier path (trajectory) given control points.
:param control_points: (numpy array)
:param n_points: (int) number of points in the trajectory
:return: (numpy array)
"""
traj = []
for t in np.linspace(0, 1, n_points):
traj.append(bezier(t, control_points))
return np.array(traj)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BezierPath/bezier_path.py#L41-L53
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 100 |
[] | 0 | true | 98.507463 | 13 | 2 | 100 | 5 |
def calc_bezier_path(control_points, n_points=100):
traj = []
for t in np.linspace(0, 1, n_points):
traj.append(bezier(t, control_points))
return np.array(traj)
| 926 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BezierPath/bezier_path.py
|
bernstein_poly
|
(n, i, t)
|
return scipy.special.comb(n, i) * t ** i * (1 - t) ** (n - i)
|
Bernstein polynom.
:param n: (int) polynom degree
:param i: (int)
:param t: (float)
:return: (float)
|
Bernstein polynom.
| 56 | 65 |
def bernstein_poly(n, i, t):
"""
Bernstein polynom.
:param n: (int) polynom degree
:param i: (int)
:param t: (float)
:return: (float)
"""
return scipy.special.comb(n, i) * t ** i * (1 - t) ** (n - i)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BezierPath/bezier_path.py#L56-L65
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 98.507463 | 10 | 1 | 100 | 6 |
def bernstein_poly(n, i, t):
return scipy.special.comb(n, i) * t ** i * (1 - t) ** (n - i)
| 927 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BezierPath/bezier_path.py
|
bezier
|
(t, control_points)
|
return np.sum([bernstein_poly(n, i, t) * control_points[i] for i in range(n + 1)], axis=0)
|
Return one point on the bezier curve.
:param t: (float) number in [0, 1]
:param control_points: (numpy array)
:return: (numpy array) Coordinates of the point
|
Return one point on the bezier curve.
| 68 | 77 |
def bezier(t, control_points):
"""
Return one point on the bezier curve.
:param t: (float) number in [0, 1]
:param control_points: (numpy array)
:return: (numpy array) Coordinates of the point
"""
n = len(control_points) - 1
return np.sum([bernstein_poly(n, i, t) * control_points[i] for i in range(n + 1)], axis=0)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BezierPath/bezier_path.py#L68-L77
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 98.507463 | 10 | 2 | 100 | 5 |
def bezier(t, control_points):
n = len(control_points) - 1
return np.sum([bernstein_poly(n, i, t) * control_points[i] for i in range(n + 1)], axis=0)
| 928 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BezierPath/bezier_path.py
|
bezier_derivatives_control_points
|
(control_points, n_derivatives)
|
return w
|
Compute control points of the successive derivatives of a given bezier curve.
A derivative of a bezier curve is a bezier curve.
See https://pomax.github.io/bezierinfo/#derivatives
for detailed explanations
:param control_points: (numpy array)
:param n_derivatives: (int)
e.g., n_derivatives=2 -> compute control points for first and second derivatives
:return: ([numpy array])
|
Compute control points of the successive derivatives of a given bezier curve.
| 80 | 98 |
def bezier_derivatives_control_points(control_points, n_derivatives):
"""
Compute control points of the successive derivatives of a given bezier curve.
A derivative of a bezier curve is a bezier curve.
See https://pomax.github.io/bezierinfo/#derivatives
for detailed explanations
:param control_points: (numpy array)
:param n_derivatives: (int)
e.g., n_derivatives=2 -> compute control points for first and second derivatives
:return: ([numpy array])
"""
w = {0: control_points}
for i in range(n_derivatives):
n = len(w[i])
w[i + 1] = np.array([(n - 1) * (w[i][j + 1] - w[i][j])
for j in range(n - 1)])
return w
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BezierPath/bezier_path.py#L80-L98
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18
] | 100 |
[] | 0 | true | 98.507463 | 19 | 3 | 100 | 10 |
def bezier_derivatives_control_points(control_points, n_derivatives):
w = {0: control_points}
for i in range(n_derivatives):
n = len(w[i])
w[i + 1] = np.array([(n - 1) * (w[i][j + 1] - w[i][j])
for j in range(n - 1)])
return w
| 929 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BezierPath/bezier_path.py
|
curvature
|
(dx, dy, ddx, ddy)
|
return (dx * ddy - dy * ddx) / (dx ** 2 + dy ** 2) ** (3 / 2)
|
Compute curvature at one point given first and second derivatives.
:param dx: (float) First derivative along x axis
:param dy: (float)
:param ddx: (float) Second derivative along x axis
:param ddy: (float)
:return: (float)
|
Compute curvature at one point given first and second derivatives.
| 101 | 111 |
def curvature(dx, dy, ddx, ddy):
"""
Compute curvature at one point given first and second derivatives.
:param dx: (float) First derivative along x axis
:param dy: (float)
:param ddx: (float) Second derivative along x axis
:param ddy: (float)
:return: (float)
"""
return (dx * ddy - dy * ddx) / (dx ** 2 + dy ** 2) ** (3 / 2)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BezierPath/bezier_path.py#L101-L111
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10
] | 100 |
[] | 0 | true | 98.507463 | 11 | 1 | 100 | 7 |
def curvature(dx, dy, ddx, ddy):
return (dx * ddy - dy * ddx) / (dx ** 2 + dy ** 2) ** (3 / 2)
| 930 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BezierPath/bezier_path.py
|
plot_arrow
|
(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k")
|
Plot arrow.
|
Plot arrow.
| 114 | 122 |
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): # pragma: no cover
"""Plot arrow."""
if not isinstance(x, float):
for (ix, iy, iyaw) in zip(x, y, yaw):
plot_arrow(ix, iy, iyaw)
else:
plt.arrow(x, y, length * np.cos(yaw), length * np.sin(yaw),
fc=fc, ec=ec, head_width=width, head_length=width)
plt.plot(x, y)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BezierPath/bezier_path.py#L114-L122
| 2 |
[] | 0 |
[] | 0 | false | 98.507463 | 9 | 3 | 100 | 1 |
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): # pragma: no cover
if not isinstance(x, float):
for (ix, iy, iyaw) in zip(x, y, yaw):
plot_arrow(ix, iy, iyaw)
else:
plt.arrow(x, y, length * np.cos(yaw), length * np.sin(yaw),
fc=fc, ec=ec, head_width=width, head_length=width)
plt.plot(x, y)
| 931 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BezierPath/bezier_path.py
|
main
|
()
|
Plot an example bezier curve.
|
Plot an example bezier curve.
| 125 | 180 |
def main():
"""Plot an example bezier curve."""
start_x = 10.0 # [m]
start_y = 1.0 # [m]
start_yaw = np.radians(180.0) # [rad]
end_x = -0.0 # [m]
end_y = -3.0 # [m]
end_yaw = np.radians(-45.0) # [rad]
offset = 3.0
path, control_points = calc_4points_bezier_path(
start_x, start_y, start_yaw, end_x, end_y, end_yaw, offset)
# Note: alternatively, instead of specifying start and end position
# you can directly define n control points and compute the path:
# control_points = np.array([[5., 1.], [-2.78, 1.], [-11.5, -4.5], [-6., -8.]])
# path = calc_bezier_path(control_points, n_points=100)
# Display the tangent, normal and radius of cruvature at a given point
t = 0.86 # Number in [0, 1]
x_target, y_target = bezier(t, control_points)
derivatives_cp = bezier_derivatives_control_points(control_points, 2)
point = bezier(t, control_points)
dt = bezier(t, derivatives_cp[1])
ddt = bezier(t, derivatives_cp[2])
# Radius of curvature
radius = 1 / curvature(dt[0], dt[1], ddt[0], ddt[1])
# Normalize derivative
dt /= np.linalg.norm(dt, 2)
tangent = np.array([point, point + dt])
normal = np.array([point, point + [- dt[1], dt[0]]])
curvature_center = point + np.array([- dt[1], dt[0]]) * radius
circle = plt.Circle(tuple(curvature_center), radius,
color=(0, 0.8, 0.8), fill=False, linewidth=1)
assert path.T[0][0] == start_x, "path is invalid"
assert path.T[1][0] == start_y, "path is invalid"
assert path.T[0][-1] == end_x, "path is invalid"
assert path.T[1][-1] == end_y, "path is invalid"
if show_animation: # pragma: no cover
fig, ax = plt.subplots()
ax.plot(path.T[0], path.T[1], label="Bezier Path")
ax.plot(control_points.T[0], control_points.T[1],
'--o', label="Control Points")
ax.plot(x_target, y_target)
ax.plot(tangent[:, 0], tangent[:, 1], label="Tangent")
ax.plot(normal[:, 0], normal[:, 1], label="Normal")
ax.add_artist(circle)
plot_arrow(start_x, start_y, start_yaw)
plot_arrow(end_x, end_y, end_yaw)
ax.legend()
ax.axis("equal")
ax.grid(True)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BezierPath/bezier_path.py#L125-L180
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55
] | 133.333333 |
[] | 0 | true | 98.507463 | 56 | 6 | 100 | 1 |
def main():
start_x = 10.0 # [m]
start_y = 1.0 # [m]
start_yaw = np.radians(180.0) # [rad]
end_x = -0.0 # [m]
end_y = -3.0 # [m]
end_yaw = np.radians(-45.0) # [rad]
offset = 3.0
path, control_points = calc_4points_bezier_path(
start_x, start_y, start_yaw, end_x, end_y, end_yaw, offset)
# Note: alternatively, instead of specifying start and end position
# you can directly define n control points and compute the path:
# control_points = np.array([[5., 1.], [-2.78, 1.], [-11.5, -4.5], [-6., -8.]])
# path = calc_bezier_path(control_points, n_points=100)
# Display the tangent, normal and radius of cruvature at a given point
t = 0.86 # Number in [0, 1]
x_target, y_target = bezier(t, control_points)
derivatives_cp = bezier_derivatives_control_points(control_points, 2)
point = bezier(t, control_points)
dt = bezier(t, derivatives_cp[1])
ddt = bezier(t, derivatives_cp[2])
# Radius of curvature
radius = 1 / curvature(dt[0], dt[1], ddt[0], ddt[1])
# Normalize derivative
dt /= np.linalg.norm(dt, 2)
tangent = np.array([point, point + dt])
normal = np.array([point, point + [- dt[1], dt[0]]])
curvature_center = point + np.array([- dt[1], dt[0]]) * radius
circle = plt.Circle(tuple(curvature_center), radius,
color=(0, 0.8, 0.8), fill=False, linewidth=1)
assert path.T[0][0] == start_x, "path is invalid"
assert path.T[1][0] == start_y, "path is invalid"
assert path.T[0][-1] == end_x, "path is invalid"
assert path.T[1][-1] == end_y, "path is invalid"
if show_animation: # pragma: no cover
fig, ax = plt.subplots()
ax.plot(path.T[0], path.T[1], label="Bezier Path")
ax.plot(control_points.T[0], control_points.T[1],
'--o', label="Control Points")
ax.plot(x_target, y_target)
ax.plot(tangent[:, 0], tangent[:, 1], label="Tangent")
ax.plot(normal[:, 0], normal[:, 1], label="Normal")
ax.add_artist(circle)
plot_arrow(start_x, start_y, start_yaw)
plot_arrow(end_x, end_y, end_yaw)
ax.legend()
ax.axis("equal")
ax.grid(True)
plt.show()
| 932 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BezierPath/bezier_path.py
|
main2
|
()
|
Show the effect of the offset.
|
Show the effect of the offset.
| 183 | 210 |
def main2():
"""Show the effect of the offset."""
start_x = 10.0 # [m]
start_y = 1.0 # [m]
start_yaw = np.radians(180.0) # [rad]
end_x = -0.0 # [m]
end_y = -3.0 # [m]
end_yaw = np.radians(-45.0) # [rad]
for offset in np.arange(1.0, 5.0, 1.0):
path, control_points = calc_4points_bezier_path(
start_x, start_y, start_yaw, end_x, end_y, end_yaw, offset)
assert path.T[0][0] == start_x, "path is invalid"
assert path.T[1][0] == start_y, "path is invalid"
assert path.T[0][-1] == end_x, "path is invalid"
assert path.T[1][-1] == end_y, "path is invalid"
if show_animation: # pragma: no cover
plt.plot(path.T[0], path.T[1], label="Offset=" + str(offset))
if show_animation: # pragma: no cover
plot_arrow(start_x, start_y, start_yaw)
plot_arrow(end_x, end_y, end_yaw)
plt.legend()
plt.axis("equal")
plt.grid(True)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BezierPath/bezier_path.py#L183-L210
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27
] | 147.368421 |
[] | 0 | true | 98.507463 | 28 | 8 | 100 | 1 |
def main2():
start_x = 10.0 # [m]
start_y = 1.0 # [m]
start_yaw = np.radians(180.0) # [rad]
end_x = -0.0 # [m]
end_y = -3.0 # [m]
end_yaw = np.radians(-45.0) # [rad]
for offset in np.arange(1.0, 5.0, 1.0):
path, control_points = calc_4points_bezier_path(
start_x, start_y, start_yaw, end_x, end_y, end_yaw, offset)
assert path.T[0][0] == start_x, "path is invalid"
assert path.T[1][0] == start_y, "path is invalid"
assert path.T[0][-1] == end_x, "path is invalid"
assert path.T[1][-1] == end_y, "path is invalid"
if show_animation: # pragma: no cover
plt.plot(path.T[0], path.T[1], label="Offset=" + str(offset))
if show_animation: # pragma: no cover
plot_arrow(start_x, start_y, start_yaw)
plot_arrow(end_x, end_y, end_yaw)
plt.legend()
plt.axis("equal")
plt.grid(True)
plt.show()
| 933 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py
|
main
|
(max_iter=100)
| 226 | 257 |
def main(max_iter=100):
print("Start " + __file__)
# ====Search Path with RRT====
obstacleList = [
(5, 5, 1),
(4, 6, 1),
(4, 8, 1),
(4, 10, 1),
(6, 5, 1),
(7, 5, 1),
(8, 6, 1),
(8, 8, 1),
(8, 10, 1)
] # [x,y,size(radius)]
# Set Initial parameters
start = [0.0, 0.0, np.deg2rad(0.0)]
goal = [6.0, 7.0, np.deg2rad(90.0)]
rrt_star_reeds_shepp = RRTStarReedsShepp(start, goal,
obstacleList,
[-2.0, 15.0], max_iter=max_iter)
path = rrt_star_reeds_shepp.planning(animation=show_animation)
# Draw final path
if path and show_animation: # pragma: no cover
rrt_star_reeds_shepp.draw_graph()
plt.plot([x for (x, y, yaw) in path], [y for (x, y, yaw) in path], '-r')
plt.grid(True)
plt.pause(0.001)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py#L226-L257
| 2 |
[
0,
1,
2,
3,
4,
16,
17,
18,
19,
20,
23,
24,
25
] | 50 |
[] | 0 | false | 80.851064 | 32 | 5 | 100 | 0 |
def main(max_iter=100):
print("Start " + __file__)
# ====Search Path with RRT====
obstacleList = [
(5, 5, 1),
(4, 6, 1),
(4, 8, 1),
(4, 10, 1),
(6, 5, 1),
(7, 5, 1),
(8, 6, 1),
(8, 8, 1),
(8, 10, 1)
] # [x,y,size(radius)]
# Set Initial parameters
start = [0.0, 0.0, np.deg2rad(0.0)]
goal = [6.0, 7.0, np.deg2rad(90.0)]
rrt_star_reeds_shepp = RRTStarReedsShepp(start, goal,
obstacleList,
[-2.0, 15.0], max_iter=max_iter)
path = rrt_star_reeds_shepp.planning(animation=show_animation)
# Draw final path
if path and show_animation: # pragma: no cover
rrt_star_reeds_shepp.draw_graph()
plt.plot([x for (x, y, yaw) in path], [y for (x, y, yaw) in path], '-r')
plt.grid(True)
plt.pause(0.001)
plt.show()
| 934 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py
|
RRTStarReedsShepp.__init__
|
(self, start, goal, obstacle_list, rand_area,
max_iter=200,
connect_circle_dist=50.0,
robot_radius=0.0
)
|
Setting Parameter
start:Start Position [x,y]
goal:Goal Position [x,y]
obstacleList:obstacle Positions [[x,y,size],...]
randArea:Random Sampling Area [min,max]
robot_radius: robot body modeled as circle with given radius
|
Setting Parameter
| 38 | 64 |
def __init__(self, start, goal, obstacle_list, rand_area,
max_iter=200,
connect_circle_dist=50.0,
robot_radius=0.0
):
"""
Setting Parameter
start:Start Position [x,y]
goal:Goal Position [x,y]
obstacleList:obstacle Positions [[x,y,size],...]
randArea:Random Sampling Area [min,max]
robot_radius: robot body modeled as circle with given radius
"""
self.start = self.Node(start[0], start[1], start[2])
self.end = self.Node(goal[0], goal[1], goal[2])
self.min_rand = rand_area[0]
self.max_rand = rand_area[1]
self.max_iter = max_iter
self.obstacle_list = obstacle_list
self.connect_circle_dist = connect_circle_dist
self.robot_radius = robot_radius
self.curvature = 1.0
self.goal_yaw_th = np.deg2rad(1.0)
self.goal_xy_th = 0.5
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py#L38-L64
| 2 |
[
0,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26
] | 51.851852 |
[] | 0 | false | 80.851064 | 27 | 1 | 100 | 7 |
def __init__(self, start, goal, obstacle_list, rand_area,
max_iter=200,
connect_circle_dist=50.0,
robot_radius=0.0
):
self.start = self.Node(start[0], start[1], start[2])
self.end = self.Node(goal[0], goal[1], goal[2])
self.min_rand = rand_area[0]
self.max_rand = rand_area[1]
self.max_iter = max_iter
self.obstacle_list = obstacle_list
self.connect_circle_dist = connect_circle_dist
self.robot_radius = robot_radius
self.curvature = 1.0
self.goal_yaw_th = np.deg2rad(1.0)
self.goal_xy_th = 0.5
| 935 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py
|
RRTStarReedsShepp.planning
|
(self, animation=True, search_until_max_iter=True)
|
return None
|
planning
animation: flag for animation on or off
|
planning
| 66 | 106 |
def planning(self, animation=True, search_until_max_iter=True):
"""
planning
animation: flag for animation on or off
"""
self.node_list = [self.start]
for i in range(self.max_iter):
print("Iter:", i, ", number of nodes:", len(self.node_list))
rnd = self.get_random_node()
nearest_ind = self.get_nearest_node_index(self.node_list, rnd)
new_node = self.steer(self.node_list[nearest_ind], rnd)
if self.check_collision(
new_node, self.obstacle_list, self.robot_radius):
near_indexes = self.find_near_nodes(new_node)
new_node = self.choose_parent(new_node, near_indexes)
if new_node:
self.node_list.append(new_node)
self.rewire(new_node, near_indexes)
self.try_goal_path(new_node)
if animation and i % 5 == 0:
self.plot_start_goal_arrow()
self.draw_graph(rnd)
if (not search_until_max_iter) and new_node: # check reaching the goal
last_index = self.search_best_goal_node()
if last_index:
return self.generate_final_course(last_index)
print("reached max iteration")
last_index = self.search_best_goal_node()
if last_index:
return self.generate_final_course(last_index)
else:
print("Cannot find path")
return None
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py#L66-L106
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
26,
27,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40
] | 87.804878 |
[
24,
25,
28,
29,
30
] | 12.195122 | false | 80.851064 | 41 | 10 | 87.804878 | 3 |
def planning(self, animation=True, search_until_max_iter=True):
self.node_list = [self.start]
for i in range(self.max_iter):
print("Iter:", i, ", number of nodes:", len(self.node_list))
rnd = self.get_random_node()
nearest_ind = self.get_nearest_node_index(self.node_list, rnd)
new_node = self.steer(self.node_list[nearest_ind], rnd)
if self.check_collision(
new_node, self.obstacle_list, self.robot_radius):
near_indexes = self.find_near_nodes(new_node)
new_node = self.choose_parent(new_node, near_indexes)
if new_node:
self.node_list.append(new_node)
self.rewire(new_node, near_indexes)
self.try_goal_path(new_node)
if animation and i % 5 == 0:
self.plot_start_goal_arrow()
self.draw_graph(rnd)
if (not search_until_max_iter) and new_node: # check reaching the goal
last_index = self.search_best_goal_node()
if last_index:
return self.generate_final_course(last_index)
print("reached max iteration")
last_index = self.search_best_goal_node()
if last_index:
return self.generate_final_course(last_index)
else:
print("Cannot find path")
return None
| 936 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py
|
RRTStarReedsShepp.try_goal_path
|
(self, node)
| 108 | 118 |
def try_goal_path(self, node):
goal = self.Node(self.end.x, self.end.y, self.end.yaw)
new_node = self.steer(node, goal)
if new_node is None:
return
if self.check_collision(
new_node, self.obstacle_list, self.robot_radius):
self.node_list.append(new_node)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py#L108-L118
| 2 |
[
0,
1,
2,
3,
4,
5,
7,
8,
10
] | 81.818182 |
[
6
] | 9.090909 | false | 80.851064 | 11 | 3 | 90.909091 | 0 |
def try_goal_path(self, node):
goal = self.Node(self.end.x, self.end.y, self.end.yaw)
new_node = self.steer(node, goal)
if new_node is None:
return
if self.check_collision(
new_node, self.obstacle_list, self.robot_radius):
self.node_list.append(new_node)
| 937 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py
|
RRTStarReedsShepp.draw_graph
|
(self, rnd=None)
| 120 | 139 |
def draw_graph(self, rnd=None):
plt.clf()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if rnd is not None:
plt.plot(rnd.x, rnd.y, "^k")
for node in self.node_list:
if node.parent:
plt.plot(node.path_x, node.path_y, "-g")
for (ox, oy, size) in self.obstacle_list:
plt.plot(ox, oy, "ok", ms=30 * size)
plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.end.x, self.end.y, "xr")
plt.axis([-2, 15, -2, 15])
plt.grid(True)
self.plot_start_goal_arrow()
plt.pause(0.01)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py#L120-L139
| 2 |
[
0
] | 5 |
[
1,
3,
5,
6,
7,
8,
9,
11,
12,
14,
15,
16,
17,
18,
19
] | 75 | false | 80.851064 | 20 | 5 | 25 | 0 |
def draw_graph(self, rnd=None):
plt.clf()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if rnd is not None:
plt.plot(rnd.x, rnd.y, "^k")
for node in self.node_list:
if node.parent:
plt.plot(node.path_x, node.path_y, "-g")
for (ox, oy, size) in self.obstacle_list:
plt.plot(ox, oy, "ok", ms=30 * size)
plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.end.x, self.end.y, "xr")
plt.axis([-2, 15, -2, 15])
plt.grid(True)
self.plot_start_goal_arrow()
plt.pause(0.01)
| 938 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py
|
RRTStarReedsShepp.plot_start_goal_arrow
|
(self)
| 141 | 145 |
def plot_start_goal_arrow(self):
reeds_shepp_path_planning.plot_arrow(
self.start.x, self.start.y, self.start.yaw)
reeds_shepp_path_planning.plot_arrow(
self.end.x, self.end.y, self.end.yaw)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py#L141-L145
| 2 |
[
0
] | 20 |
[
1,
3
] | 40 | false | 80.851064 | 5 | 1 | 60 | 0 |
def plot_start_goal_arrow(self):
reeds_shepp_path_planning.plot_arrow(
self.start.x, self.start.y, self.start.yaw)
reeds_shepp_path_planning.plot_arrow(
self.end.x, self.end.y, self.end.yaw)
| 939 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py
|
RRTStarReedsShepp.steer
|
(self, from_node, to_node)
|
return new_node
| 147 | 167 |
def steer(self, from_node, to_node):
px, py, pyaw, mode, course_lengths = reeds_shepp_path_planning.reeds_shepp_path_planning(
from_node.x, from_node.y, from_node.yaw,
to_node.x, to_node.y, to_node.yaw, self.curvature)
if not px:
return None
new_node = copy.deepcopy(from_node)
new_node.x = px[-1]
new_node.y = py[-1]
new_node.yaw = pyaw[-1]
new_node.path_x = px
new_node.path_y = py
new_node.path_yaw = pyaw
new_node.cost += sum([abs(l) for l in course_lengths])
new_node.parent = from_node
return new_node
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py#L147-L167
| 2 |
[
0,
1,
2,
5,
6,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20
] | 85.714286 |
[
7
] | 4.761905 | false | 80.851064 | 21 | 3 | 95.238095 | 0 |
def steer(self, from_node, to_node):
px, py, pyaw, mode, course_lengths = reeds_shepp_path_planning.reeds_shepp_path_planning(
from_node.x, from_node.y, from_node.yaw,
to_node.x, to_node.y, to_node.yaw, self.curvature)
if not px:
return None
new_node = copy.deepcopy(from_node)
new_node.x = px[-1]
new_node.y = py[-1]
new_node.yaw = pyaw[-1]
new_node.path_x = px
new_node.path_y = py
new_node.path_yaw = pyaw
new_node.cost += sum([abs(l) for l in course_lengths])
new_node.parent = from_node
return new_node
| 940 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py
|
RRTStarReedsShepp.calc_new_cost
|
(self, from_node, to_node)
|
return from_node.cost + sum([abs(l) for l in course_lengths])
| 169 | 177 |
def calc_new_cost(self, from_node, to_node):
_, _, _, _, course_lengths = reeds_shepp_path_planning.reeds_shepp_path_planning(
from_node.x, from_node.y, from_node.yaw,
to_node.x, to_node.y, to_node.yaw, self.curvature)
if not course_lengths:
return float("inf")
return from_node.cost + sum([abs(l) for l in course_lengths])
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py#L169-L177
| 2 |
[
0,
1,
2,
5,
7,
8
] | 66.666667 |
[
6
] | 11.111111 | false | 80.851064 | 9 | 3 | 88.888889 | 0 |
def calc_new_cost(self, from_node, to_node):
_, _, _, _, course_lengths = reeds_shepp_path_planning.reeds_shepp_path_planning(
from_node.x, from_node.y, from_node.yaw,
to_node.x, to_node.y, to_node.yaw, self.curvature)
if not course_lengths:
return float("inf")
return from_node.cost + sum([abs(l) for l in course_lengths])
| 941 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py
|
RRTStarReedsShepp.get_random_node
|
(self)
|
return rnd
| 179 | 186 |
def get_random_node(self):
rnd = self.Node(random.uniform(self.min_rand, self.max_rand),
random.uniform(self.min_rand, self.max_rand),
random.uniform(-math.pi, math.pi)
)
return rnd
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py#L179-L186
| 2 |
[
0,
1,
2,
6,
7
] | 62.5 |
[] | 0 | false | 80.851064 | 8 | 1 | 100 | 0 |
def get_random_node(self):
rnd = self.Node(random.uniform(self.min_rand, self.max_rand),
random.uniform(self.min_rand, self.max_rand),
random.uniform(-math.pi, math.pi)
)
return rnd
| 942 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py
|
RRTStarReedsShepp.search_best_goal_node
|
(self)
|
return None
| 188 | 213 |
def search_best_goal_node(self):
goal_indexes = []
for (i, node) in enumerate(self.node_list):
if self.calc_dist_to_goal(node.x, node.y) <= self.goal_xy_th:
goal_indexes.append(i)
print("goal_indexes:", len(goal_indexes))
# angle check
final_goal_indexes = []
for i in goal_indexes:
if abs(self.node_list[i].yaw - self.end.yaw) <= self.goal_yaw_th:
final_goal_indexes.append(i)
print("final_goal_indexes:", len(final_goal_indexes))
if not final_goal_indexes:
return None
min_cost = min([self.node_list[i].cost for i in final_goal_indexes])
print("min_cost:", min_cost)
for i in final_goal_indexes:
if self.node_list[i].cost == min_cost:
return i
return None
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py#L188-L213
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24
] | 96.153846 |
[
25
] | 3.846154 | false | 80.851064 | 26 | 9 | 96.153846 | 0 |
def search_best_goal_node(self):
goal_indexes = []
for (i, node) in enumerate(self.node_list):
if self.calc_dist_to_goal(node.x, node.y) <= self.goal_xy_th:
goal_indexes.append(i)
print("goal_indexes:", len(goal_indexes))
# angle check
final_goal_indexes = []
for i in goal_indexes:
if abs(self.node_list[i].yaw - self.end.yaw) <= self.goal_yaw_th:
final_goal_indexes.append(i)
print("final_goal_indexes:", len(final_goal_indexes))
if not final_goal_indexes:
return None
min_cost = min([self.node_list[i].cost for i in final_goal_indexes])
print("min_cost:", min_cost)
for i in final_goal_indexes:
if self.node_list[i].cost == min_cost:
return i
return None
| 943 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py
|
RRTStarReedsShepp.generate_final_course
|
(self, goal_index)
|
return path
| 215 | 223 |
def generate_final_course(self, goal_index):
path = [[self.end.x, self.end.y, self.end.yaw]]
node = self.node_list[goal_index]
while node.parent:
for (ix, iy, iyaw) in zip(reversed(node.path_x), reversed(node.path_y), reversed(node.path_yaw)):
path.append([ix, iy, iyaw])
node = node.parent
path.append([self.start.x, self.start.y, self.start.yaw])
return path
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py#L215-L223
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8
] | 100 |
[] | 0 | true | 80.851064 | 9 | 3 | 100 | 0 |
def generate_final_course(self, goal_index):
path = [[self.end.x, self.end.y, self.end.yaw]]
node = self.node_list[goal_index]
while node.parent:
for (ix, iy, iyaw) in zip(reversed(node.path_x), reversed(node.path_y), reversed(node.path_yaw)):
path.append([ix, iy, iyaw])
node = node.parent
path.append([self.start.x, self.start.y, self.start.yaw])
return path
| 944 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py
|
plot_arrow
|
(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k")
|
Plot arrow
|
Plot arrow
| 27 | 34 |
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): # pragma: no cover
"""
Plot arrow
"""
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw),
fc=fc, ec=ec, head_width=width, head_length=width)
plt.plot(x, y)
plt.plot(0, 0)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py#L27-L34
| 2 |
[] | 0 |
[] | 0 | false | 89.855072 | 8 | 1 | 100 | 1 |
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): # pragma: no cover
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw),
fc=fc, ec=ec, head_width=width, head_length=width)
plt.plot(x, y)
plt.plot(0, 0)
| 945 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py
|
calc_diff
|
(target, x, y, yaw)
|
return d
| 37 | 42 |
def calc_diff(target, x, y, yaw):
d = np.array([target.x - x[-1],
target.y - y[-1],
motion_model.pi_2_pi(target.yaw - yaw[-1])])
return d
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py#L37-L42
| 2 |
[
0,
1,
4,
5
] | 66.666667 |
[] | 0 | false | 89.855072 | 6 | 1 | 100 | 0 |
def calc_diff(target, x, y, yaw):
d = np.array([target.x - x[-1],
target.y - y[-1],
motion_model.pi_2_pi(target.yaw - yaw[-1])])
return d
| 946 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py
|
calc_j
|
(target, p, h, k0)
|
return J
| 45 | 72 |
def calc_j(target, p, h, k0):
xp, yp, yawp = motion_model.generate_last_state(
p[0, 0] + h[0], p[1, 0], p[2, 0], k0)
dp = calc_diff(target, [xp], [yp], [yawp])
xn, yn, yawn = motion_model.generate_last_state(
p[0, 0] - h[0], p[1, 0], p[2, 0], k0)
dn = calc_diff(target, [xn], [yn], [yawn])
d1 = np.array((dp - dn) / (2.0 * h[0])).reshape(3, 1)
xp, yp, yawp = motion_model.generate_last_state(
p[0, 0], p[1, 0] + h[1], p[2, 0], k0)
dp = calc_diff(target, [xp], [yp], [yawp])
xn, yn, yawn = motion_model.generate_last_state(
p[0, 0], p[1, 0] - h[1], p[2, 0], k0)
dn = calc_diff(target, [xn], [yn], [yawn])
d2 = np.array((dp - dn) / (2.0 * h[1])).reshape(3, 1)
xp, yp, yawp = motion_model.generate_last_state(
p[0, 0], p[1, 0], p[2, 0] + h[2], k0)
dp = calc_diff(target, [xp], [yp], [yawp])
xn, yn, yawn = motion_model.generate_last_state(
p[0, 0], p[1, 0], p[2, 0] - h[2], k0)
dn = calc_diff(target, [xn], [yn], [yawn])
d3 = np.array((dp - dn) / (2.0 * h[2])).reshape(3, 1)
J = np.hstack((d1, d2, d3))
return J
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py#L45-L72
| 2 |
[
0,
1,
3,
4,
6,
7,
8,
9,
11,
12,
14,
15,
16,
17,
19,
20,
22,
23,
24,
25,
26,
27
] | 78.571429 |
[] | 0 | false | 89.855072 | 28 | 1 | 100 | 0 |
def calc_j(target, p, h, k0):
xp, yp, yawp = motion_model.generate_last_state(
p[0, 0] + h[0], p[1, 0], p[2, 0], k0)
dp = calc_diff(target, [xp], [yp], [yawp])
xn, yn, yawn = motion_model.generate_last_state(
p[0, 0] - h[0], p[1, 0], p[2, 0], k0)
dn = calc_diff(target, [xn], [yn], [yawn])
d1 = np.array((dp - dn) / (2.0 * h[0])).reshape(3, 1)
xp, yp, yawp = motion_model.generate_last_state(
p[0, 0], p[1, 0] + h[1], p[2, 0], k0)
dp = calc_diff(target, [xp], [yp], [yawp])
xn, yn, yawn = motion_model.generate_last_state(
p[0, 0], p[1, 0] - h[1], p[2, 0], k0)
dn = calc_diff(target, [xn], [yn], [yawn])
d2 = np.array((dp - dn) / (2.0 * h[1])).reshape(3, 1)
xp, yp, yawp = motion_model.generate_last_state(
p[0, 0], p[1, 0], p[2, 0] + h[2], k0)
dp = calc_diff(target, [xp], [yp], [yawp])
xn, yn, yawn = motion_model.generate_last_state(
p[0, 0], p[1, 0], p[2, 0] - h[2], k0)
dn = calc_diff(target, [xn], [yn], [yawn])
d3 = np.array((dp - dn) / (2.0 * h[2])).reshape(3, 1)
J = np.hstack((d1, d2, d3))
return J
| 947 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py
|
selection_learning_param
|
(dp, p, k0, target)
|
return mina
| 75 | 95 |
def selection_learning_param(dp, p, k0, target):
mincost = float("inf")
mina = 1.0
maxa = 2.0
da = 0.5
for a in np.arange(mina, maxa, da):
tp = p + a * dp
xc, yc, yawc = motion_model.generate_last_state(
tp[0], tp[1], tp[2], k0)
dc = calc_diff(target, [xc], [yc], [yawc])
cost = np.linalg.norm(dc)
if cost <= mincost and a != 0.0:
mina = a
mincost = cost
# print(mincost, mina)
# input()
return mina
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py#L75-L95
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20
] | 95.238095 |
[] | 0 | false | 89.855072 | 21 | 4 | 100 | 0 |
def selection_learning_param(dp, p, k0, target):
mincost = float("inf")
mina = 1.0
maxa = 2.0
da = 0.5
for a in np.arange(mina, maxa, da):
tp = p + a * dp
xc, yc, yawc = motion_model.generate_last_state(
tp[0], tp[1], tp[2], k0)
dc = calc_diff(target, [xc], [yc], [yawc])
cost = np.linalg.norm(dc)
if cost <= mincost and a != 0.0:
mina = a
mincost = cost
# print(mincost, mina)
# input()
return mina
| 948 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py
|
show_trajectory
|
(target, xc, yc)
| 98 | 104 |
def show_trajectory(target, xc, yc): # pragma: no cover
plt.clf()
plot_arrow(target.x, target.y, target.yaw)
plt.plot(xc, yc, "-r")
plt.axis("equal")
plt.grid(True)
plt.pause(0.1)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py#L98-L104
| 2 |
[] | 0 |
[] | 0 | false | 89.855072 | 7 | 1 | 100 | 0 |
def show_trajectory(target, xc, yc): # pragma: no cover
plt.clf()
plot_arrow(target.x, target.y, target.yaw)
plt.plot(xc, yc, "-r")
plt.axis("equal")
plt.grid(True)
plt.pause(0.1)
| 949 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py
|
optimize_trajectory
|
(target, k0, p)
|
return xc, yc, yawc, p
| 107 | 135 |
def optimize_trajectory(target, k0, p):
for i in range(max_iter):
xc, yc, yawc = motion_model.generate_trajectory(p[0], p[1], p[2], k0)
dc = np.array(calc_diff(target, xc, yc, yawc)).reshape(3, 1)
cost = np.linalg.norm(dc)
if cost <= cost_th:
print("path is ok cost is:" + str(cost))
break
J = calc_j(target, p, h, k0)
try:
dp = - np.linalg.inv(J) @ dc
except np.linalg.linalg.LinAlgError:
print("cannot calc path LinAlgError")
xc, yc, yawc, p = None, None, None, None
break
alpha = selection_learning_param(dp, p, k0, target)
p += alpha * np.array(dp)
# print(p.T)
if show_animation: # pragma: no cover
show_trajectory(target, xc, yc)
else:
xc, yc, yawc, p = None, None, None, None
print("cannot calc path")
return xc, yc, yawc, p
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py#L107-L135
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
17,
18,
19,
20,
21,
27,
28
] | 74.074074 |
[
13,
14,
15,
16,
25,
26
] | 22.222222 | false | 89.855072 | 29 | 5 | 77.777778 | 0 |
def optimize_trajectory(target, k0, p):
for i in range(max_iter):
xc, yc, yawc = motion_model.generate_trajectory(p[0], p[1], p[2], k0)
dc = np.array(calc_diff(target, xc, yc, yawc)).reshape(3, 1)
cost = np.linalg.norm(dc)
if cost <= cost_th:
print("path is ok cost is:" + str(cost))
break
J = calc_j(target, p, h, k0)
try:
dp = - np.linalg.inv(J) @ dc
except np.linalg.linalg.LinAlgError:
print("cannot calc path LinAlgError")
xc, yc, yawc, p = None, None, None, None
break
alpha = selection_learning_param(dp, p, k0, target)
p += alpha * np.array(dp)
# print(p.T)
if show_animation: # pragma: no cover
show_trajectory(target, xc, yc)
else:
xc, yc, yawc, p = None, None, None, None
print("cannot calc path")
return xc, yc, yawc, p
| 950 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py
|
main
|
()
| 156 | 158 |
def main(): # pragma: no cover
print(__file__ + " start!!")
test_optimize_trajectory()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py#L156-L158
| 2 |
[] | 0 |
[] | 0 | false | 89.855072 | 3 | 1 | 100 | 0 |
def main(): # pragma: no cover
print(__file__ + " start!!")
test_optimize_trajectory()
| 951 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ModelPredictiveTrajectoryGenerator/motion_model.py
|
pi_2_pi
|
(angle)
|
return (angle + math.pi) % (2 * math.pi) - math.pi
| 20 | 21 |
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ModelPredictiveTrajectoryGenerator/motion_model.py#L20-L21
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 100 | 2 | 1 | 100 | 0 |
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
| 957 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ModelPredictiveTrajectoryGenerator/motion_model.py
|
update
|
(state, v, delta, dt, L)
|
return state
| 24 | 32 |
def update(state, v, delta, dt, L):
state.v = v
state.x = state.x + state.v * math.cos(state.yaw) * dt
state.y = state.y + state.v * math.sin(state.yaw) * dt
state.yaw = state.yaw + state.v / L * math.tan(delta) * dt
state.yaw = pi_2_pi(state.yaw)
return state
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ModelPredictiveTrajectoryGenerator/motion_model.py#L24-L32
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8
] | 100 |
[] | 0 | true | 100 | 9 | 1 | 100 | 0 |
def update(state, v, delta, dt, L):
state.v = v
state.x = state.x + state.v * math.cos(state.yaw) * dt
state.y = state.y + state.v * math.sin(state.yaw) * dt
state.yaw = state.yaw + state.v / L * math.tan(delta) * dt
state.yaw = pi_2_pi(state.yaw)
return state
| 958 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ModelPredictiveTrajectoryGenerator/motion_model.py
|
generate_trajectory
|
(s, km, kf, k0)
|
return x, y, yaw
| 35 | 63 |
def generate_trajectory(s, km, kf, k0):
n = s / ds
time = s / v # [s]
if isinstance(time, type(np.array([]))): time = time[0]
if isinstance(km, type(np.array([]))): km = km[0]
if isinstance(kf, type(np.array([]))): kf = kf[0]
tk = np.array([0.0, time / 2.0, time])
kk = np.array([k0, km, kf])
t = np.arange(0.0, time, time / n)
fkp = scipy.interpolate.interp1d(tk, kk, kind="quadratic")
kp = [fkp(ti) for ti in t]
dt = float(time / n)
# plt.plot(t, kp)
# plt.show()
state = State()
x, y, yaw = [state.x], [state.y], [state.yaw]
for ikp in kp:
state = update(state, v, ikp, dt, L)
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
return x, y, yaw
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ModelPredictiveTrajectoryGenerator/motion_model.py#L35-L63
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28
] | 100 |
[] | 0 | true | 100 | 29 | 6 | 100 | 0 |
def generate_trajectory(s, km, kf, k0):
n = s / ds
time = s / v # [s]
if isinstance(time, type(np.array([]))): time = time[0]
if isinstance(km, type(np.array([]))): km = km[0]
if isinstance(kf, type(np.array([]))): kf = kf[0]
tk = np.array([0.0, time / 2.0, time])
kk = np.array([k0, km, kf])
t = np.arange(0.0, time, time / n)
fkp = scipy.interpolate.interp1d(tk, kk, kind="quadratic")
kp = [fkp(ti) for ti in t]
dt = float(time / n)
# plt.plot(t, kp)
# plt.show()
state = State()
x, y, yaw = [state.x], [state.y], [state.yaw]
for ikp in kp:
state = update(state, v, ikp, dt, L)
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
return x, y, yaw
| 959 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ModelPredictiveTrajectoryGenerator/motion_model.py
|
generate_last_state
|
(s, km, kf, k0)
|
return state.x, state.y, state.yaw
| 66 | 89 |
def generate_last_state(s, km, kf, k0):
n = s / ds
time = s / v # [s]
if isinstance(time, type(np.array([]))): time = time[0]
if isinstance(km, type(np.array([]))): km = km[0]
if isinstance(kf, type(np.array([]))): kf = kf[0]
tk = np.array([0.0, time / 2.0, time])
kk = np.array([k0, km, kf])
t = np.arange(0.0, time, time / n)
fkp = scipy.interpolate.interp1d(tk, kk, kind="quadratic")
kp = [fkp(ti) for ti in t]
dt = time / n
# plt.plot(t, kp)
# plt.show()
state = State()
_ = [update(state, v, ikp, dt, L) for ikp in kp]
return state.x, state.y, state.yaw
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ModelPredictiveTrajectoryGenerator/motion_model.py#L66-L89
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23
] | 100 |
[] | 0 | true | 100 | 24 | 6 | 100 | 0 |
def generate_last_state(s, km, kf, k0):
n = s / ds
time = s / v # [s]
if isinstance(time, type(np.array([]))): time = time[0]
if isinstance(km, type(np.array([]))): km = km[0]
if isinstance(kf, type(np.array([]))): kf = kf[0]
tk = np.array([0.0, time / 2.0, time])
kk = np.array([k0, km, kf])
t = np.arange(0.0, time, time / n)
fkp = scipy.interpolate.interp1d(tk, kk, kind="quadratic")
kp = [fkp(ti) for ti in t]
dt = time / n
# plt.plot(t, kp)
# plt.show()
state = State()
_ = [update(state, v, ikp, dt, L) for ikp in kp]
return state.x, state.y, state.yaw
| 960 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ModelPredictiveTrajectoryGenerator/motion_model.py
|
State.__init__
|
(self, x=0.0, y=0.0, yaw=0.0, v=0.0)
| 13 | 17 |
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
self.x = x
self.y = y
self.yaw = yaw
self.v = v
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ModelPredictiveTrajectoryGenerator/motion_model.py#L13-L17
| 2 |
[
0,
1,
2,
3,
4
] | 100 |
[] | 0 | true | 100 | 5 | 1 | 100 | 0 |
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
self.x = x
self.y = y
self.yaw = yaw
self.v = v
| 961 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py
|
main
|
()
| 229 | 274 |
def main():
print(__file__ + " start!!")
# start and goal position
sx = 10.0 # [m]
sy = 10.0 # [m]
gx = 50.0 # [m]
gy = 50.0 # [m]
grid_size = 2.0 # [m]
robot_radius = 1.0 # [m]
# set obstacle positions
ox, oy = [], []
for i in range(-10, 60):
ox.append(i)
oy.append(-10.0)
for i in range(-10, 60):
ox.append(60.0)
oy.append(i)
for i in range(-10, 61):
ox.append(i)
oy.append(60.0)
for i in range(-10, 61):
ox.append(-10.0)
oy.append(i)
for i in range(-10, 40):
ox.append(20.0)
oy.append(i)
for i in range(0, 40):
ox.append(40.0)
oy.append(60.0 - i)
if show_animation: # pragma: no cover
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "og")
plt.plot(gx, gy, "xb")
plt.grid(True)
plt.axis("equal")
greedybestfirst = BestFirstSearchPlanner(ox, oy, grid_size, robot_radius)
rx, ry = greedybestfirst.planning(sx, sy, gx, gy)
if show_animation: # pragma: no cover
plt.plot(rx, ry, "-r")
plt.pause(0.01)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py#L229-L274
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
38,
39,
40,
41
] | 100 |
[] | 0 | true | 95.070423 | 46 | 9 | 100 | 0 |
def main():
print(__file__ + " start!!")
# start and goal position
sx = 10.0 # [m]
sy = 10.0 # [m]
gx = 50.0 # [m]
gy = 50.0 # [m]
grid_size = 2.0 # [m]
robot_radius = 1.0 # [m]
# set obstacle positions
ox, oy = [], []
for i in range(-10, 60):
ox.append(i)
oy.append(-10.0)
for i in range(-10, 60):
ox.append(60.0)
oy.append(i)
for i in range(-10, 61):
ox.append(i)
oy.append(60.0)
for i in range(-10, 61):
ox.append(-10.0)
oy.append(i)
for i in range(-10, 40):
ox.append(20.0)
oy.append(i)
for i in range(0, 40):
ox.append(40.0)
oy.append(60.0 - i)
if show_animation: # pragma: no cover
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "og")
plt.plot(gx, gy, "xb")
plt.grid(True)
plt.axis("equal")
greedybestfirst = BestFirstSearchPlanner(ox, oy, grid_size, robot_radius)
rx, ry = greedybestfirst.planning(sx, sy, gx, gy)
if show_animation: # pragma: no cover
plt.plot(rx, ry, "-r")
plt.pause(0.01)
plt.show()
| 962 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py
|
BestFirstSearchPlanner.__init__
|
(self, ox, oy, reso, rr)
|
Initialize grid map for greedy best-first planning
ox: x position list of Obstacles [m]
oy: y position list of Obstacles [m]
resolution: grid resolution [m]
rr: robot radius[m]
|
Initialize grid map for greedy best-first planning
| 20 | 33 |
def __init__(self, ox, oy, reso, rr):
"""
Initialize grid map for greedy best-first planning
ox: x position list of Obstacles [m]
oy: y position list of Obstacles [m]
resolution: grid resolution [m]
rr: robot radius[m]
"""
self.reso = reso
self.rr = rr
self.calc_obstacle_map(ox, oy)
self.motion = self.get_motion_model()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py#L20-L33
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 95.070423 | 14 | 1 | 100 | 6 |
def __init__(self, ox, oy, reso, rr):
self.reso = reso
self.rr = rr
self.calc_obstacle_map(ox, oy)
self.motion = self.get_motion_model()
| 963 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py
|
BestFirstSearchPlanner.planning
|
(self, sx, sy, gx, gy)
|
return rx, ry
|
Greedy Best-First search
input:
s_x: start x position [m]
s_y: start y position [m]
gx: goal x position [m]
gy: goal y position [m]
output:
rx: x position list of the final path
ry: y position list of the final path
|
Greedy Best-First search
| 47 | 129 |
def planning(self, sx, sy, gx, gy):
"""
Greedy Best-First search
input:
s_x: start x position [m]
s_y: start y position [m]
gx: goal x position [m]
gy: goal y position [m]
output:
rx: x position list of the final path
ry: y position list of the final path
"""
nstart = self.Node(self.calc_xyindex(sx, self.minx),
self.calc_xyindex(sy, self.miny), 0.0, -1, None)
ngoal = self.Node(self.calc_xyindex(gx, self.minx),
self.calc_xyindex(gy, self.miny), 0.0, -1, None)
open_set, closed_set = dict(), dict()
open_set[self.calc_grid_index(nstart)] = nstart
while True:
if len(open_set) == 0:
print("Open set is empty..")
break
c_id = min(
open_set,
key=lambda o: self.calc_heuristic(ngoal, open_set[o]))
current = open_set[c_id]
# show graph
if show_animation: # pragma: no cover
plt.plot(self.calc_grid_position(current.x, self.minx),
self.calc_grid_position(current.y, self.miny), "xc")
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event:
[exit(0)
if event.key == 'escape'
else None])
if len(closed_set.keys()) % 10 == 0:
plt.pause(0.001)
# Remove the item from the open set
del open_set[c_id]
# Add it to the closed set
closed_set[c_id] = current
if current.x == ngoal.x and current.y == ngoal.y:
print("Found goal")
ngoal.pind = current.pind
ngoal.cost = current.cost
break
# expand_grid search grid based on motion model
for i, _ in enumerate(self.motion):
node = self.Node(current.x + self.motion[i][0],
current.y + self.motion[i][1],
current.cost + self.motion[i][2],
c_id, current)
n_id = self.calc_grid_index(node)
# If the node is not safe, do nothing
if not self.verify_node(node):
continue
if n_id in closed_set:
continue
if n_id not in open_set:
open_set[n_id] = node
else:
if open_set[n_id].cost > node.cost:
open_set[n_id] = node
closed_set[ngoal.pind] = current
rx, ry = self.calc_final_path(ngoal, closed_set)
return rx, ry
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py#L47-L129
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82
] | 103.846154 |
[
25,
26
] | 2.564103 | false | 95.070423 | 83 | 12 | 97.435897 | 11 |
def planning(self, sx, sy, gx, gy):
nstart = self.Node(self.calc_xyindex(sx, self.minx),
self.calc_xyindex(sy, self.miny), 0.0, -1, None)
ngoal = self.Node(self.calc_xyindex(gx, self.minx),
self.calc_xyindex(gy, self.miny), 0.0, -1, None)
open_set, closed_set = dict(), dict()
open_set[self.calc_grid_index(nstart)] = nstart
while True:
if len(open_set) == 0:
print("Open set is empty..")
break
c_id = min(
open_set,
key=lambda o: self.calc_heuristic(ngoal, open_set[o]))
current = open_set[c_id]
# show graph
if show_animation: # pragma: no cover
plt.plot(self.calc_grid_position(current.x, self.minx),
self.calc_grid_position(current.y, self.miny), "xc")
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event:
[exit(0)
if event.key == 'escape'
else None])
if len(closed_set.keys()) % 10 == 0:
plt.pause(0.001)
# Remove the item from the open set
del open_set[c_id]
# Add it to the closed set
closed_set[c_id] = current
if current.x == ngoal.x and current.y == ngoal.y:
print("Found goal")
ngoal.pind = current.pind
ngoal.cost = current.cost
break
# expand_grid search grid based on motion model
for i, _ in enumerate(self.motion):
node = self.Node(current.x + self.motion[i][0],
current.y + self.motion[i][1],
current.cost + self.motion[i][2],
c_id, current)
n_id = self.calc_grid_index(node)
# If the node is not safe, do nothing
if not self.verify_node(node):
continue
if n_id in closed_set:
continue
if n_id not in open_set:
open_set[n_id] = node
else:
if open_set[n_id].cost > node.cost:
open_set[n_id] = node
closed_set[ngoal.pind] = current
rx, ry = self.calc_final_path(ngoal, closed_set)
return rx, ry
| 964 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py
|
BestFirstSearchPlanner.calc_final_path
|
(self, ngoal, closedset)
|
return rx, ry
| 131 | 141 |
def calc_final_path(self, ngoal, closedset):
# generate final course
rx, ry = [self.calc_grid_position(ngoal.x, self.minx)], [
self.calc_grid_position(ngoal.y, self.miny)]
n = closedset[ngoal.pind]
while n is not None:
rx.append(self.calc_grid_position(n.x, self.minx))
ry.append(self.calc_grid_position(n.y, self.miny))
n = n.parent
return rx, ry
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py#L131-L141
| 2 |
[
0,
1,
2,
4,
5,
6,
7,
8,
9,
10
] | 90.909091 |
[] | 0 | false | 95.070423 | 11 | 2 | 100 | 0 |
def calc_final_path(self, ngoal, closedset):
# generate final course
rx, ry = [self.calc_grid_position(ngoal.x, self.minx)], [
self.calc_grid_position(ngoal.y, self.miny)]
n = closedset[ngoal.pind]
while n is not None:
rx.append(self.calc_grid_position(n.x, self.minx))
ry.append(self.calc_grid_position(n.y, self.miny))
n = n.parent
return rx, ry
| 965 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py
|
BestFirstSearchPlanner.calc_heuristic
|
(n1, n2)
|
return d
| 144 | 147 |
def calc_heuristic(n1, n2):
w = 1.0 # weight of heuristic
d = w * math.hypot(n1.x - n2.x, n1.y - n2.y)
return d
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py#L144-L147
| 2 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 95.070423 | 4 | 1 | 100 | 0 |
def calc_heuristic(n1, n2):
w = 1.0 # weight of heuristic
d = w * math.hypot(n1.x - n2.x, n1.y - n2.y)
return d
| 966 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py
|
BestFirstSearchPlanner.calc_grid_position
|
(self, index, minp)
|
return pos
|
calc grid position
:param index:
:param minp:
:return:
|
calc grid position
| 149 | 158 |
def calc_grid_position(self, index, minp):
"""
calc grid position
:param index:
:param minp:
:return:
"""
pos = index * self.reso + minp
return pos
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py#L149-L158
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 95.070423 | 10 | 1 | 100 | 5 |
def calc_grid_position(self, index, minp):
pos = index * self.reso + minp
return pos
| 967 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py
|
BestFirstSearchPlanner.calc_xyindex
|
(self, position, min_pos)
|
return round((position - min_pos) / self.reso)
| 160 | 161 |
def calc_xyindex(self, position, min_pos):
return round((position - min_pos) / self.reso)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py#L160-L161
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 95.070423 | 2 | 1 | 100 | 0 |
def calc_xyindex(self, position, min_pos):
return round((position - min_pos) / self.reso)
| 968 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py
|
BestFirstSearchPlanner.calc_grid_index
|
(self, node)
|
return (node.y - self.miny) * self.xwidth + (node.x - self.minx)
| 163 | 164 |
def calc_grid_index(self, node):
return (node.y - self.miny) * self.xwidth + (node.x - self.minx)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py#L163-L164
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 95.070423 | 2 | 1 | 100 | 0 |
def calc_grid_index(self, node):
return (node.y - self.miny) * self.xwidth + (node.x - self.minx)
| 969 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py
|
BestFirstSearchPlanner.verify_node
|
(self, node)
|
return True
| 166 | 183 |
def verify_node(self, node):
px = self.calc_grid_position(node.x, self.minx)
py = self.calc_grid_position(node.y, self.miny)
if px < self.minx:
return False
elif py < self.miny:
return False
elif px >= self.maxx:
return False
elif py >= self.maxy:
return False
# collision check
if self.obmap[node.x][node.y]:
return False
return True
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py#L166-L183
| 2 |
[
0,
1,
2,
3,
4,
6,
8,
10,
11,
12,
13,
14,
15,
16,
17
] | 83.333333 |
[
5,
7,
9
] | 16.666667 | false | 95.070423 | 18 | 6 | 83.333333 | 0 |
def verify_node(self, node):
px = self.calc_grid_position(node.x, self.minx)
py = self.calc_grid_position(node.y, self.miny)
if px < self.minx:
return False
elif py < self.miny:
return False
elif px >= self.maxx:
return False
elif py >= self.maxy:
return False
# collision check
if self.obmap[node.x][node.y]:
return False
return True
| 970 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py
|
BestFirstSearchPlanner.calc_obstacle_map
|
(self, ox, oy)
| 185 | 212 |
def calc_obstacle_map(self, ox, oy):
self.minx = round(min(ox))
self.miny = round(min(oy))
self.maxx = round(max(ox))
self.maxy = round(max(oy))
print("min_x:", self.minx)
print("min_y:", self.miny)
print("max_x:", self.maxx)
print("max_y:", self.maxy)
self.xwidth = round((self.maxx - self.minx) / self.reso)
self.ywidth = round((self.maxy - self.miny) / self.reso)
print("x_width:", self.xwidth)
print("y_width:", self.ywidth)
# obstacle map generation
self.obmap = [[False for _ in range(self.ywidth)]
for _ in range(self.xwidth)]
for ix in range(self.xwidth):
x = self.calc_grid_position(ix, self.minx)
for iy in range(self.ywidth):
y = self.calc_grid_position(iy, self.miny)
for iox, ioy in zip(ox, oy):
d = math.hypot(iox - x, ioy - y)
if d <= self.rr:
self.obmap[ix][iy] = True
break
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py#L185-L212
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
19,
20,
21,
22,
23,
24,
25,
26,
27
] | 96.428571 |
[] | 0 | false | 95.070423 | 28 | 7 | 100 | 0 |
def calc_obstacle_map(self, ox, oy):
self.minx = round(min(ox))
self.miny = round(min(oy))
self.maxx = round(max(ox))
self.maxy = round(max(oy))
print("min_x:", self.minx)
print("min_y:", self.miny)
print("max_x:", self.maxx)
print("max_y:", self.maxy)
self.xwidth = round((self.maxx - self.minx) / self.reso)
self.ywidth = round((self.maxy - self.miny) / self.reso)
print("x_width:", self.xwidth)
print("y_width:", self.ywidth)
# obstacle map generation
self.obmap = [[False for _ in range(self.ywidth)]
for _ in range(self.xwidth)]
for ix in range(self.xwidth):
x = self.calc_grid_position(ix, self.minx)
for iy in range(self.ywidth):
y = self.calc_grid_position(iy, self.miny)
for iox, ioy in zip(ox, oy):
d = math.hypot(iox - x, ioy - y)
if d <= self.rr:
self.obmap[ix][iy] = True
break
| 971 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py
|
BestFirstSearchPlanner.get_motion_model
|
()
|
return motion
| 215 | 226 |
def get_motion_model():
# dx, dy, cost
motion = [[1, 0, 1],
[0, 1, 1],
[-1, 0, 1],
[0, -1, 1],
[-1, -1, math.sqrt(2)],
[-1, 1, math.sqrt(2)],
[1, -1, math.sqrt(2)],
[1, 1, math.sqrt(2)]]
return motion
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py#L215-L226
| 2 |
[
0,
1,
2,
10,
11
] | 41.666667 |
[] | 0 | false | 95.070423 | 12 | 1 | 100 | 0 |
def get_motion_model():
# dx, dy, cost
motion = [[1, 0, 1],
[0, 1, 1],
[-1, 0, 1],
[0, -1, 1],
[-1, -1, math.sqrt(2)],
[-1, 1, math.sqrt(2)],
[1, -1, math.sqrt(2)],
[1, 1, math.sqrt(2)]]
return motion
| 972 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicWindowApproach/dynamic_window_approach.py
|
dwa_control
|
(x, config, goal, ob)
|
return u, trajectory
|
Dynamic Window Approach control
|
Dynamic Window Approach control
| 18 | 26 |
def dwa_control(x, config, goal, ob):
"""
Dynamic Window Approach control
"""
dw = calc_dynamic_window(x, config)
u, trajectory = calc_control_and_trajectory(x, dw, config, goal, ob)
return u, trajectory
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py#L18-L26
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8
] | 100 |
[] | 0 | true | 89.115646 | 9 | 1 | 100 | 1 |
def dwa_control(x, config, goal, ob):
dw = calc_dynamic_window(x, config)
u, trajectory = calc_control_and_trajectory(x, dw, config, goal, ob)
return u, trajectory
| 973 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicWindowApproach/dynamic_window_approach.py
|
motion
|
(x, u, dt)
|
return x
|
motion model
|
motion model
| 95 | 106 |
def motion(x, u, dt):
"""
motion model
"""
x[2] += u[1] * dt
x[0] += u[0] * math.cos(x[2]) * dt
x[1] += u[0] * math.sin(x[2]) * dt
x[3] = u[0]
x[4] = u[1]
return x
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py#L95-L106
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11
] | 100 |
[] | 0 | true | 89.115646 | 12 | 1 | 100 | 1 |
def motion(x, u, dt):
x[2] += u[1] * dt
x[0] += u[0] * math.cos(x[2]) * dt
x[1] += u[0] * math.sin(x[2]) * dt
x[3] = u[0]
x[4] = u[1]
return x
| 974 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicWindowApproach/dynamic_window_approach.py
|
calc_dynamic_window
|
(x, config)
|
return dw
|
calculation dynamic window based on current state x
|
calculation dynamic window based on current state x
| 109 | 128 |
def calc_dynamic_window(x, config):
"""
calculation dynamic window based on current state x
"""
# Dynamic window from robot specification
Vs = [config.min_speed, config.max_speed,
-config.max_yaw_rate, config.max_yaw_rate]
# Dynamic window from motion model
Vd = [x[3] - config.max_accel * config.dt,
x[3] + config.max_accel * config.dt,
x[4] - config.max_delta_yaw_rate * config.dt,
x[4] + config.max_delta_yaw_rate * config.dt]
# [v_min, v_max, yaw_rate_min, yaw_rate_max]
dw = [max(Vs[0], Vd[0]), min(Vs[1], Vd[1]),
max(Vs[2], Vd[2]), min(Vs[3], Vd[3])]
return dw
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py#L109-L128
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19
] | 100 |
[] | 0 | true | 89.115646 | 20 | 1 | 100 | 1 |
def calc_dynamic_window(x, config):
# Dynamic window from robot specification
Vs = [config.min_speed, config.max_speed,
-config.max_yaw_rate, config.max_yaw_rate]
# Dynamic window from motion model
Vd = [x[3] - config.max_accel * config.dt,
x[3] + config.max_accel * config.dt,
x[4] - config.max_delta_yaw_rate * config.dt,
x[4] + config.max_delta_yaw_rate * config.dt]
# [v_min, v_max, yaw_rate_min, yaw_rate_max]
dw = [max(Vs[0], Vd[0]), min(Vs[1], Vd[1]),
max(Vs[2], Vd[2]), min(Vs[3], Vd[3])]
return dw
| 975 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicWindowApproach/dynamic_window_approach.py
|
predict_trajectory
|
(x_init, v, y, config)
|
return trajectory
|
predict trajectory with an input
|
predict trajectory with an input
| 131 | 144 |
def predict_trajectory(x_init, v, y, config):
"""
predict trajectory with an input
"""
x = np.array(x_init)
trajectory = np.array(x)
time = 0
while time <= config.predict_time:
x = motion(x, [v, y], config.dt)
trajectory = np.vstack((trajectory, x))
time += config.dt
return trajectory
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py#L131-L144
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 89.115646 | 14 | 2 | 100 | 1 |
def predict_trajectory(x_init, v, y, config):
x = np.array(x_init)
trajectory = np.array(x)
time = 0
while time <= config.predict_time:
x = motion(x, [v, y], config.dt)
trajectory = np.vstack((trajectory, x))
time += config.dt
return trajectory
| 976 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicWindowApproach/dynamic_window_approach.py
|
calc_control_and_trajectory
|
(x, dw, config, goal, ob)
|
return best_u, best_trajectory
|
calculation final input with dynamic window
|
calculation final input with dynamic window
| 147 | 181 |
def calc_control_and_trajectory(x, dw, config, goal, ob):
"""
calculation final input with dynamic window
"""
x_init = x[:]
min_cost = float("inf")
best_u = [0.0, 0.0]
best_trajectory = np.array([x])
# evaluate all trajectory with sampled input in dynamic window
for v in np.arange(dw[0], dw[1], config.v_resolution):
for y in np.arange(dw[2], dw[3], config.yaw_rate_resolution):
trajectory = predict_trajectory(x_init, v, y, config)
# calc cost
to_goal_cost = config.to_goal_cost_gain * calc_to_goal_cost(trajectory, goal)
speed_cost = config.speed_cost_gain * (config.max_speed - trajectory[-1, 3])
ob_cost = config.obstacle_cost_gain * calc_obstacle_cost(trajectory, ob, config)
final_cost = to_goal_cost + speed_cost + ob_cost
# search minimum trajectory
if min_cost >= final_cost:
min_cost = final_cost
best_u = [v, y]
best_trajectory = trajectory
if abs(best_u[0]) < config.robot_stuck_flag_cons \
and abs(x[3]) < config.robot_stuck_flag_cons:
# to ensure the robot do not get stuck in
# best v=0 m/s (in front of an obstacle) and
# best omega=0 rad/s (heading to the goal with
# angle difference of 0)
best_u[1] = -config.max_delta_yaw_rate
return best_u, best_trajectory
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py#L147-L181
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34
] | 100 |
[] | 0 | true | 89.115646 | 35 | 6 | 100 | 1 |
def calc_control_and_trajectory(x, dw, config, goal, ob):
x_init = x[:]
min_cost = float("inf")
best_u = [0.0, 0.0]
best_trajectory = np.array([x])
# evaluate all trajectory with sampled input in dynamic window
for v in np.arange(dw[0], dw[1], config.v_resolution):
for y in np.arange(dw[2], dw[3], config.yaw_rate_resolution):
trajectory = predict_trajectory(x_init, v, y, config)
# calc cost
to_goal_cost = config.to_goal_cost_gain * calc_to_goal_cost(trajectory, goal)
speed_cost = config.speed_cost_gain * (config.max_speed - trajectory[-1, 3])
ob_cost = config.obstacle_cost_gain * calc_obstacle_cost(trajectory, ob, config)
final_cost = to_goal_cost + speed_cost + ob_cost
# search minimum trajectory
if min_cost >= final_cost:
min_cost = final_cost
best_u = [v, y]
best_trajectory = trajectory
if abs(best_u[0]) < config.robot_stuck_flag_cons \
and abs(x[3]) < config.robot_stuck_flag_cons:
# to ensure the robot do not get stuck in
# best v=0 m/s (in front of an obstacle) and
# best omega=0 rad/s (heading to the goal with
# angle difference of 0)
best_u[1] = -config.max_delta_yaw_rate
return best_u, best_trajectory
| 977 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicWindowApproach/dynamic_window_approach.py
|
calc_obstacle_cost
|
(trajectory, ob, config)
|
return 1.0 / min_r
|
calc obstacle cost inf: collision
|
calc obstacle cost inf: collision
| 184 | 214 |
def calc_obstacle_cost(trajectory, ob, config):
"""
calc obstacle cost inf: collision
"""
ox = ob[:, 0]
oy = ob[:, 1]
dx = trajectory[:, 0] - ox[:, None]
dy = trajectory[:, 1] - oy[:, None]
r = np.hypot(dx, dy)
if config.robot_type == RobotType.rectangle:
yaw = trajectory[:, 2]
rot = np.array([[np.cos(yaw), -np.sin(yaw)], [np.sin(yaw), np.cos(yaw)]])
rot = np.transpose(rot, [2, 0, 1])
local_ob = ob[:, None] - trajectory[:, 0:2]
local_ob = local_ob.reshape(-1, local_ob.shape[-1])
local_ob = np.array([local_ob @ x for x in rot])
local_ob = local_ob.reshape(-1, local_ob.shape[-1])
upper_check = local_ob[:, 0] <= config.robot_length / 2
right_check = local_ob[:, 1] <= config.robot_width / 2
bottom_check = local_ob[:, 0] >= -config.robot_length / 2
left_check = local_ob[:, 1] >= -config.robot_width / 2
if (np.logical_and(np.logical_and(upper_check, right_check),
np.logical_and(bottom_check, left_check))).any():
return float("Inf")
elif config.robot_type == RobotType.circle:
if np.array(r <= config.robot_radius).any():
return float("Inf")
min_r = np.min(r)
return 1.0 / min_r
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py#L184-L214
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
25,
26,
27,
28,
29,
30
] | 96.774194 |
[
24
] | 3.225806 | false | 89.115646 | 31 | 6 | 96.774194 | 1 |
def calc_obstacle_cost(trajectory, ob, config):
ox = ob[:, 0]
oy = ob[:, 1]
dx = trajectory[:, 0] - ox[:, None]
dy = trajectory[:, 1] - oy[:, None]
r = np.hypot(dx, dy)
if config.robot_type == RobotType.rectangle:
yaw = trajectory[:, 2]
rot = np.array([[np.cos(yaw), -np.sin(yaw)], [np.sin(yaw), np.cos(yaw)]])
rot = np.transpose(rot, [2, 0, 1])
local_ob = ob[:, None] - trajectory[:, 0:2]
local_ob = local_ob.reshape(-1, local_ob.shape[-1])
local_ob = np.array([local_ob @ x for x in rot])
local_ob = local_ob.reshape(-1, local_ob.shape[-1])
upper_check = local_ob[:, 0] <= config.robot_length / 2
right_check = local_ob[:, 1] <= config.robot_width / 2
bottom_check = local_ob[:, 0] >= -config.robot_length / 2
left_check = local_ob[:, 1] >= -config.robot_width / 2
if (np.logical_and(np.logical_and(upper_check, right_check),
np.logical_and(bottom_check, left_check))).any():
return float("Inf")
elif config.robot_type == RobotType.circle:
if np.array(r <= config.robot_radius).any():
return float("Inf")
min_r = np.min(r)
return 1.0 / min_r
| 978 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicWindowApproach/dynamic_window_approach.py
|
calc_to_goal_cost
|
(trajectory, goal)
|
return cost
|
calc to goal cost with angle difference
|
calc to goal cost with angle difference
| 217 | 228 |
def calc_to_goal_cost(trajectory, goal):
"""
calc to goal cost with angle difference
"""
dx = goal[0] - trajectory[-1, 0]
dy = goal[1] - trajectory[-1, 1]
error_angle = math.atan2(dy, dx)
cost_angle = error_angle - trajectory[-1, 2]
cost = abs(math.atan2(math.sin(cost_angle), math.cos(cost_angle)))
return cost
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py#L217-L228
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11
] | 100 |
[] | 0 | true | 89.115646 | 12 | 1 | 100 | 1 |
def calc_to_goal_cost(trajectory, goal):
dx = goal[0] - trajectory[-1, 0]
dy = goal[1] - trajectory[-1, 1]
error_angle = math.atan2(dy, dx)
cost_angle = error_angle - trajectory[-1, 2]
cost = abs(math.atan2(math.sin(cost_angle), math.cos(cost_angle)))
return cost
| 979 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicWindowApproach/dynamic_window_approach.py
|
plot_arrow
|
(x, y, yaw, length=0.5, width=0.1)
| 231 | 234 |
def plot_arrow(x, y, yaw, length=0.5, width=0.1): # pragma: no cover
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw),
head_length=width, head_width=width)
plt.plot(x, y)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py#L231-L234
| 2 |
[] | 0 |
[] | 0 | false | 89.115646 | 4 | 1 | 100 | 0 |
def plot_arrow(x, y, yaw, length=0.5, width=0.1): # pragma: no cover
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw),
head_length=width, head_width=width)
plt.plot(x, y)
| 980 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicWindowApproach/dynamic_window_approach.py
|
plot_robot
|
(x, y, yaw, config)
| 237 | 257 |
def plot_robot(x, y, yaw, config): # pragma: no cover
if config.robot_type == RobotType.rectangle:
outline = np.array([[-config.robot_length / 2, config.robot_length / 2,
(config.robot_length / 2), -config.robot_length / 2,
-config.robot_length / 2],
[config.robot_width / 2, config.robot_width / 2,
- config.robot_width / 2, -config.robot_width / 2,
config.robot_width / 2]])
Rot1 = np.array([[math.cos(yaw), math.sin(yaw)],
[-math.sin(yaw), math.cos(yaw)]])
outline = (outline.T.dot(Rot1)).T
outline[0, :] += x
outline[1, :] += y
plt.plot(np.array(outline[0, :]).flatten(),
np.array(outline[1, :]).flatten(), "-k")
elif config.robot_type == RobotType.circle:
circle = plt.Circle((x, y), config.robot_radius, color="b")
plt.gcf().gca().add_artist(circle)
out_x, out_y = (np.array([x, y]) +
np.array([np.cos(yaw), np.sin(yaw)]) * config.robot_radius)
plt.plot([x, out_x], [y, out_y], "-k")
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py#L237-L257
| 2 |
[] | 0 |
[] | 0 | false | 89.115646 | 21 | 3 | 100 | 0 |
def plot_robot(x, y, yaw, config): # pragma: no cover
if config.robot_type == RobotType.rectangle:
outline = np.array([[-config.robot_length / 2, config.robot_length / 2,
(config.robot_length / 2), -config.robot_length / 2,
-config.robot_length / 2],
[config.robot_width / 2, config.robot_width / 2,
- config.robot_width / 2, -config.robot_width / 2,
config.robot_width / 2]])
Rot1 = np.array([[math.cos(yaw), math.sin(yaw)],
[-math.sin(yaw), math.cos(yaw)]])
outline = (outline.T.dot(Rot1)).T
outline[0, :] += x
outline[1, :] += y
plt.plot(np.array(outline[0, :]).flatten(),
np.array(outline[1, :]).flatten(), "-k")
elif config.robot_type == RobotType.circle:
circle = plt.Circle((x, y), config.robot_radius, color="b")
plt.gcf().gca().add_artist(circle)
out_x, out_y = (np.array([x, y]) +
np.array([np.cos(yaw), np.sin(yaw)]) * config.robot_radius)
plt.plot([x, out_x], [y, out_y], "-k")
| 981 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicWindowApproach/dynamic_window_approach.py
|
main
|
(gx=10.0, gy=10.0, robot_type=RobotType.circle)
| 260 | 304 |
def main(gx=10.0, gy=10.0, robot_type=RobotType.circle):
print(__file__ + " start!!")
# initial state [x(m), y(m), yaw(rad), v(m/s), omega(rad/s)]
x = np.array([0.0, 0.0, math.pi / 8.0, 0.0, 0.0])
# goal position [x(m), y(m)]
goal = np.array([gx, gy])
# input [forward speed, yaw_rate]
config.robot_type = robot_type
trajectory = np.array(x)
ob = config.ob
while True:
u, predicted_trajectory = dwa_control(x, config, goal, ob)
x = motion(x, u, config.dt) # simulate robot
trajectory = np.vstack((trajectory, x)) # store state history
if show_animation:
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(predicted_trajectory[:, 0], predicted_trajectory[:, 1], "-g")
plt.plot(x[0], x[1], "xr")
plt.plot(goal[0], goal[1], "xb")
plt.plot(ob[:, 0], ob[:, 1], "ok")
plot_robot(x[0], x[1], x[2], config)
plot_arrow(x[0], x[1], x[2])
plt.axis("equal")
plt.grid(True)
plt.pause(0.0001)
# check reaching goal
dist_to_goal = math.hypot(x[0] - goal[0], x[1] - goal[1])
if dist_to_goal <= config.robot_radius:
print("Goal!!")
break
print("Done")
if show_animation:
plt.plot(trajectory[:, 0], trajectory[:, 1], "-r")
plt.pause(0.0001)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py#L260-L304
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
33,
34,
35,
36,
37,
38,
39,
40,
43,
44
] | 62.222222 |
[
18,
20,
23,
24,
25,
26,
27,
28,
29,
30,
31,
41,
42
] | 28.888889 | false | 89.115646 | 45 | 5 | 71.111111 | 0 |
def main(gx=10.0, gy=10.0, robot_type=RobotType.circle):
print(__file__ + " start!!")
# initial state [x(m), y(m), yaw(rad), v(m/s), omega(rad/s)]
x = np.array([0.0, 0.0, math.pi / 8.0, 0.0, 0.0])
# goal position [x(m), y(m)]
goal = np.array([gx, gy])
# input [forward speed, yaw_rate]
config.robot_type = robot_type
trajectory = np.array(x)
ob = config.ob
while True:
u, predicted_trajectory = dwa_control(x, config, goal, ob)
x = motion(x, u, config.dt) # simulate robot
trajectory = np.vstack((trajectory, x)) # store state history
if show_animation:
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(predicted_trajectory[:, 0], predicted_trajectory[:, 1], "-g")
plt.plot(x[0], x[1], "xr")
plt.plot(goal[0], goal[1], "xb")
plt.plot(ob[:, 0], ob[:, 1], "ok")
plot_robot(x[0], x[1], x[2], config)
plot_arrow(x[0], x[1], x[2])
plt.axis("equal")
plt.grid(True)
plt.pause(0.0001)
# check reaching goal
dist_to_goal = math.hypot(x[0] - goal[0], x[1] - goal[1])
if dist_to_goal <= config.robot_radius:
print("Goal!!")
break
print("Done")
if show_animation:
plt.plot(trajectory[:, 0], trajectory[:, 1], "-r")
plt.pause(0.0001)
plt.show()
| 982 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicWindowApproach/dynamic_window_approach.py
|
Config.__init__
|
(self)
| 39 | 79 |
def __init__(self):
# robot parameter
self.max_speed = 1.0 # [m/s]
self.min_speed = -0.5 # [m/s]
self.max_yaw_rate = 40.0 * math.pi / 180.0 # [rad/s]
self.max_accel = 0.2 # [m/ss]
self.max_delta_yaw_rate = 40.0 * math.pi / 180.0 # [rad/ss]
self.v_resolution = 0.01 # [m/s]
self.yaw_rate_resolution = 0.1 * math.pi / 180.0 # [rad/s]
self.dt = 0.1 # [s] Time tick for motion prediction
self.predict_time = 3.0 # [s]
self.to_goal_cost_gain = 0.15
self.speed_cost_gain = 1.0
self.obstacle_cost_gain = 1.0
self.robot_stuck_flag_cons = 0.001 # constant to prevent robot stucked
self.robot_type = RobotType.circle
# if robot_type == RobotType.circle
# Also used to check if goal is reached in both types
self.robot_radius = 1.0 # [m] for collision check
# if robot_type == RobotType.rectangle
self.robot_width = 0.5 # [m] for collision check
self.robot_length = 1.2 # [m] for collision check
# obstacles [x(m) y(m), ....]
self.ob = np.array([[-1, -1],
[0, 2],
[4.0, 2.0],
[5.0, 4.0],
[5.0, 5.0],
[5.0, 6.0],
[5.0, 9.0],
[8.0, 9.0],
[7.0, 9.0],
[8.0, 10.0],
[9.0, 11.0],
[12.0, 13.0],
[12.0, 12.0],
[15.0, 15.0],
[13.0, 13.0]
])
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py#L39-L79
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25
] | 63.414634 |
[] | 0 | false | 89.115646 | 41 | 1 | 100 | 0 |
def __init__(self):
# robot parameter
self.max_speed = 1.0 # [m/s]
self.min_speed = -0.5 # [m/s]
self.max_yaw_rate = 40.0 * math.pi / 180.0 # [rad/s]
self.max_accel = 0.2 # [m/ss]
self.max_delta_yaw_rate = 40.0 * math.pi / 180.0 # [rad/ss]
self.v_resolution = 0.01 # [m/s]
self.yaw_rate_resolution = 0.1 * math.pi / 180.0 # [rad/s]
self.dt = 0.1 # [s] Time tick for motion prediction
self.predict_time = 3.0 # [s]
self.to_goal_cost_gain = 0.15
self.speed_cost_gain = 1.0
self.obstacle_cost_gain = 1.0
self.robot_stuck_flag_cons = 0.001 # constant to prevent robot stucked
self.robot_type = RobotType.circle
# if robot_type == RobotType.circle
# Also used to check if goal is reached in both types
self.robot_radius = 1.0 # [m] for collision check
# if robot_type == RobotType.rectangle
self.robot_width = 0.5 # [m] for collision check
self.robot_length = 1.2 # [m] for collision check
# obstacles [x(m) y(m), ....]
self.ob = np.array([[-1, -1],
[0, 2],
[4.0, 2.0],
[5.0, 4.0],
[5.0, 5.0],
[5.0, 6.0],
[5.0, 9.0],
[8.0, 9.0],
[7.0, 9.0],
[8.0, 10.0],
[9.0, 11.0],
[12.0, 13.0],
[12.0, 12.0],
[15.0, 15.0],
[13.0, 13.0]
])
| 983 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicWindowApproach/dynamic_window_approach.py
|
Config.robot_type
|
(self)
|
return self._robot_type
| 82 | 83 |
def robot_type(self):
return self._robot_type
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py#L82-L83
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 89.115646 | 2 | 1 | 100 | 0 |
def robot_type(self):
return self._robot_type
| 984 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DynamicWindowApproach/dynamic_window_approach.py
|
Config.robot_type
|
(self, value)
| 86 | 89 |
def robot_type(self, value):
if not isinstance(value, RobotType):
raise TypeError("robot_type must be an instance of RobotType")
self._robot_type = value
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py#L86-L89
| 2 |
[
0,
1,
3
] | 75 |
[
2
] | 25 | false | 89.115646 | 4 | 2 | 75 | 0 |
def robot_type(self, value):
if not isinstance(value, RobotType):
raise TypeError("robot_type must be an instance of RobotType")
self._robot_type = value
| 985 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/WavefrontCPP/wavefront_coverage_path_planner.py
|
transform
|
(
grid_map, src, distance_type='chessboard',
transform_type='path', alpha=0.01
)
|
return transform_matrix
|
transform
calculating transform of transform_type from src
in given distance_type
:param grid_map: 2d binary map
:param src: distance transform source
:param distance_type: type of distance used
:param transform_type: type of transform used
:param alpha: weight of Obstacle Transform used when using path_transform
|
transform
| 20 | 91 |
def transform(
grid_map, src, distance_type='chessboard',
transform_type='path', alpha=0.01
):
"""transform
calculating transform of transform_type from src
in given distance_type
:param grid_map: 2d binary map
:param src: distance transform source
:param distance_type: type of distance used
:param transform_type: type of transform used
:param alpha: weight of Obstacle Transform used when using path_transform
"""
n_rows, n_cols = grid_map.shape
if n_rows == 0 or n_cols == 0:
sys.exit('Empty grid_map.')
inc_order = [[0, 1], [1, 1], [1, 0], [1, -1],
[0, -1], [-1, -1], [-1, 0], [-1, 1]]
if distance_type == 'chessboard':
cost = [1, 1, 1, 1, 1, 1, 1, 1]
elif distance_type == 'eculidean':
cost = [1, np.sqrt(2), 1, np.sqrt(2), 1, np.sqrt(2), 1, np.sqrt(2)]
else:
sys.exit('Unsupported distance type.')
transform_matrix = float('inf') * np.ones_like(grid_map, dtype=float)
transform_matrix[src[0], src[1]] = 0
if transform_type == 'distance':
eT = np.zeros_like(grid_map)
elif transform_type == 'path':
eT = ndimage.distance_transform_cdt(1 - grid_map, distance_type)
else:
sys.exit('Unsupported transform type.')
# set obstacle transform_matrix value to infinity
for i in range(n_rows):
for j in range(n_cols):
if grid_map[i][j] == 1.0:
transform_matrix[i][j] = float('inf')
is_visited = np.zeros_like(transform_matrix, dtype=bool)
is_visited[src[0], src[1]] = True
traversal_queue = [src]
calculated = [(src[0] - 1) * n_cols + src[1]]
def is_valid_neighbor(g_i, g_j):
return 0 <= g_i < n_rows and 0 <= g_j < n_cols \
and not grid_map[g_i][g_j]
while traversal_queue:
i, j = traversal_queue.pop(0)
for k, inc in enumerate(inc_order):
ni = i + inc[0]
nj = j + inc[1]
if is_valid_neighbor(ni, nj):
is_visited[i][j] = True
# update transform_matrix
transform_matrix[i][j] = min(
transform_matrix[i][j],
transform_matrix[ni][nj] + cost[k] + alpha * eT[ni][nj])
if not is_visited[ni][nj] \
and ((ni - 1) * n_cols + nj) not in calculated:
traversal_queue.append((ni, nj))
calculated.append((ni - 1) * n_cols + nj)
return transform_matrix
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/WavefrontCPP/wavefront_coverage_path_planner.py#L20-L91
| 2 |
[
0,
15,
16,
17,
18,
20,
21,
23,
24,
29,
30,
31,
32,
33,
34,
35,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
65,
66,
68,
69,
70,
71
] | 62.5 |
[
19,
25,
26,
28,
37
] | 6.944444 | false | 80.952381 | 72 | 18 | 93.055556 | 10 |
def transform(
grid_map, src, distance_type='chessboard',
transform_type='path', alpha=0.01
):
n_rows, n_cols = grid_map.shape
if n_rows == 0 or n_cols == 0:
sys.exit('Empty grid_map.')
inc_order = [[0, 1], [1, 1], [1, 0], [1, -1],
[0, -1], [-1, -1], [-1, 0], [-1, 1]]
if distance_type == 'chessboard':
cost = [1, 1, 1, 1, 1, 1, 1, 1]
elif distance_type == 'eculidean':
cost = [1, np.sqrt(2), 1, np.sqrt(2), 1, np.sqrt(2), 1, np.sqrt(2)]
else:
sys.exit('Unsupported distance type.')
transform_matrix = float('inf') * np.ones_like(grid_map, dtype=float)
transform_matrix[src[0], src[1]] = 0
if transform_type == 'distance':
eT = np.zeros_like(grid_map)
elif transform_type == 'path':
eT = ndimage.distance_transform_cdt(1 - grid_map, distance_type)
else:
sys.exit('Unsupported transform type.')
# set obstacle transform_matrix value to infinity
for i in range(n_rows):
for j in range(n_cols):
if grid_map[i][j] == 1.0:
transform_matrix[i][j] = float('inf')
is_visited = np.zeros_like(transform_matrix, dtype=bool)
is_visited[src[0], src[1]] = True
traversal_queue = [src]
calculated = [(src[0] - 1) * n_cols + src[1]]
def is_valid_neighbor(g_i, g_j):
return 0 <= g_i < n_rows and 0 <= g_j < n_cols \
and not grid_map[g_i][g_j]
while traversal_queue:
i, j = traversal_queue.pop(0)
for k, inc in enumerate(inc_order):
ni = i + inc[0]
nj = j + inc[1]
if is_valid_neighbor(ni, nj):
is_visited[i][j] = True
# update transform_matrix
transform_matrix[i][j] = min(
transform_matrix[i][j],
transform_matrix[ni][nj] + cost[k] + alpha * eT[ni][nj])
if not is_visited[ni][nj] \
and ((ni - 1) * n_cols + nj) not in calculated:
traversal_queue.append((ni, nj))
calculated.append((ni - 1) * n_cols + nj)
return transform_matrix
| 986 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/WavefrontCPP/wavefront_coverage_path_planner.py
|
get_search_order_increment
|
(start, goal)
|
return order
| 94 | 110 |
def get_search_order_increment(start, goal):
if start[0] >= goal[0] and start[1] >= goal[1]:
order = [[1, 0], [0, 1], [-1, 0], [0, -1],
[1, 1], [1, -1], [-1, 1], [-1, -1]]
elif start[0] <= goal[0] and start[1] >= goal[1]:
order = [[-1, 0], [0, 1], [1, 0], [0, -1],
[-1, 1], [-1, -1], [1, 1], [1, -1]]
elif start[0] >= goal[0] and start[1] <= goal[1]:
order = [[1, 0], [0, -1], [-1, 0], [0, 1],
[1, -1], [-1, -1], [1, 1], [-1, 1]]
elif start[0] <= goal[0] and start[1] <= goal[1]:
order = [[-1, 0], [0, -1], [0, 1], [1, 0],
[-1, -1], [-1, 1], [1, -1], [1, 1]]
else:
sys.exit('get_search_order_increment: cannot determine \
start=>goal increment order')
return order
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/WavefrontCPP/wavefront_coverage_path_planner.py#L94-L110
| 2 |
[
0,
1,
2,
4,
7,
8,
10,
11,
16
] | 52.941176 |
[
5,
14
] | 11.764706 | false | 80.952381 | 17 | 9 | 88.235294 | 0 |
def get_search_order_increment(start, goal):
if start[0] >= goal[0] and start[1] >= goal[1]:
order = [[1, 0], [0, 1], [-1, 0], [0, -1],
[1, 1], [1, -1], [-1, 1], [-1, -1]]
elif start[0] <= goal[0] and start[1] >= goal[1]:
order = [[-1, 0], [0, 1], [1, 0], [0, -1],
[-1, 1], [-1, -1], [1, 1], [1, -1]]
elif start[0] >= goal[0] and start[1] <= goal[1]:
order = [[1, 0], [0, -1], [-1, 0], [0, 1],
[1, -1], [-1, -1], [1, 1], [-1, 1]]
elif start[0] <= goal[0] and start[1] <= goal[1]:
order = [[-1, 0], [0, -1], [0, 1], [1, 0],
[-1, -1], [-1, 1], [1, -1], [1, 1]]
else:
sys.exit('get_search_order_increment: cannot determine \
start=>goal increment order')
return order
| 987 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/WavefrontCPP/wavefront_coverage_path_planner.py
|
wavefront
|
(transform_matrix, start, goal)
|
return path
|
wavefront
performing wavefront coverage path planning
:param transform_matrix: the transform matrix
:param start: start point of planning
:param goal: goal point of planning
|
wavefront
| 113 | 167 |
def wavefront(transform_matrix, start, goal):
"""wavefront
performing wavefront coverage path planning
:param transform_matrix: the transform matrix
:param start: start point of planning
:param goal: goal point of planning
"""
path = []
n_rows, n_cols = transform_matrix.shape
def is_valid_neighbor(g_i, g_j):
is_i_valid_bounded = 0 <= g_i < n_rows
is_j_valid_bounded = 0 <= g_j < n_cols
if is_i_valid_bounded and is_j_valid_bounded:
return not is_visited[g_i][g_j] and \
transform_matrix[g_i][g_j] != float('inf')
return False
inc_order = get_search_order_increment(start, goal)
current_node = start
is_visited = np.zeros_like(transform_matrix, dtype=bool)
while current_node != goal:
i, j = current_node
path.append((i, j))
is_visited[i][j] = True
max_T = float('-inf')
i_max = (-1, -1)
i_last = 0
for i_last in range(len(path)):
current_node = path[-1 - i_last] # get latest node in path
for ci, cj in inc_order:
ni, nj = current_node[0] + ci, current_node[1] + cj
if is_valid_neighbor(ni, nj) and \
transform_matrix[ni][nj] > max_T:
i_max = (ni, nj)
max_T = transform_matrix[ni][nj]
if i_max != (-1, -1):
break
if i_max == (-1, -1):
break
else:
current_node = i_max
if i_last != 0:
print('backtracing to', current_node)
path.append(goal)
return path
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/WavefrontCPP/wavefront_coverage_path_planner.py#L113-L167
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
48,
49,
50,
51,
52,
53,
54
] | 98.181818 |
[
47
] | 1.818182 | false | 80.952381 | 55 | 13 | 98.181818 | 7 |
def wavefront(transform_matrix, start, goal):
path = []
n_rows, n_cols = transform_matrix.shape
def is_valid_neighbor(g_i, g_j):
is_i_valid_bounded = 0 <= g_i < n_rows
is_j_valid_bounded = 0 <= g_j < n_cols
if is_i_valid_bounded and is_j_valid_bounded:
return not is_visited[g_i][g_j] and \
transform_matrix[g_i][g_j] != float('inf')
return False
inc_order = get_search_order_increment(start, goal)
current_node = start
is_visited = np.zeros_like(transform_matrix, dtype=bool)
while current_node != goal:
i, j = current_node
path.append((i, j))
is_visited[i][j] = True
max_T = float('-inf')
i_max = (-1, -1)
i_last = 0
for i_last in range(len(path)):
current_node = path[-1 - i_last] # get latest node in path
for ci, cj in inc_order:
ni, nj = current_node[0] + ci, current_node[1] + cj
if is_valid_neighbor(ni, nj) and \
transform_matrix[ni][nj] > max_T:
i_max = (ni, nj)
max_T = transform_matrix[ni][nj]
if i_max != (-1, -1):
break
if i_max == (-1, -1):
break
else:
current_node = i_max
if i_last != 0:
print('backtracing to', current_node)
path.append(goal)
return path
| 988 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/WavefrontCPP/wavefront_coverage_path_planner.py
|
visualize_path
|
(grid_map, start, goal, path)
| 170 | 195 |
def visualize_path(grid_map, start, goal, path): # pragma: no cover
oy, ox = start
gy, gx = goal
px, py = np.transpose(np.flipud(np.fliplr(path)))
if not do_animation:
plt.imshow(grid_map, cmap='Greys')
plt.plot(ox, oy, "-xy")
plt.plot(px, py, "-r")
plt.plot(gx, gy, "-pg")
plt.show()
else:
for ipx, ipy in zip(px, py):
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.imshow(grid_map, cmap='Greys')
plt.plot(ox, oy, "-xb")
plt.plot(px, py, "-r")
plt.plot(gx, gy, "-pg")
plt.plot(ipx, ipy, "or")
plt.axis("equal")
plt.grid(True)
plt.pause(0.1)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/WavefrontCPP/wavefront_coverage_path_planner.py#L170-L195
| 2 |
[] | 0 |
[] | 0 | false | 80.952381 | 26 | 3 | 100 | 0 |
def visualize_path(grid_map, start, goal, path): # pragma: no cover
oy, ox = start
gy, gx = goal
px, py = np.transpose(np.flipud(np.fliplr(path)))
if not do_animation:
plt.imshow(grid_map, cmap='Greys')
plt.plot(ox, oy, "-xy")
plt.plot(px, py, "-r")
plt.plot(gx, gy, "-pg")
plt.show()
else:
for ipx, ipy in zip(px, py):
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.imshow(grid_map, cmap='Greys')
plt.plot(ox, oy, "-xb")
plt.plot(px, py, "-r")
plt.plot(gx, gy, "-pg")
plt.plot(ipx, ipy, "or")
plt.axis("equal")
plt.grid(True)
plt.pause(0.1)
| 989 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/WavefrontCPP/wavefront_coverage_path_planner.py
|
main
|
()
| 198 | 214 |
def main():
dir_path = os.path.dirname(os.path.realpath(__file__))
img = plt.imread(os.path.join(dir_path, 'map', 'test.png'))
img = 1 - img # revert pixel values
start = (43, 0)
goal = (0, 0)
# distance transform wavefront
DT = transform(img, goal, transform_type='distance')
DT_path = wavefront(DT, start, goal)
visualize_path(img, start, goal, DT_path)
# path transform wavefront
PT = transform(img, goal, transform_type='path', alpha=0.01)
PT_path = wavefront(PT, start, goal)
visualize_path(img, start, goal, PT_path)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/WavefrontCPP/wavefront_coverage_path_planner.py#L198-L214
| 2 |
[
0
] | 5.882353 |
[
1,
2,
3,
5,
6,
9,
10,
11,
14,
15,
16
] | 64.705882 | false | 80.952381 | 17 | 1 | 35.294118 | 0 |
def main():
dir_path = os.path.dirname(os.path.realpath(__file__))
img = plt.imread(os.path.join(dir_path, 'map', 'test.png'))
img = 1 - img # revert pixel values
start = (43, 0)
goal = (0, 0)
# distance transform wavefront
DT = transform(img, goal, transform_type='distance')
DT_path = wavefront(DT, start, goal)
visualize_path(img, start, goal, DT_path)
# path transform wavefront
PT = transform(img, goal, transform_type='path', alpha=0.01)
PT_path = wavefront(PT, start, goal)
visualize_path(img, start, goal, PT_path)
| 990 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarDubins/rrt_star_dubins.py
|
main
|
()
| 215 | 242 |
def main():
print("Start rrt star with dubins planning")
# ====Search Path with RRT====
obstacleList = [
(5, 5, 1),
(3, 6, 2),
(3, 8, 2),
(3, 10, 2),
(7, 5, 2),
(9, 5, 2)
] # [x,y,size(radius)]
# Set Initial parameters
start = [0.0, 0.0, np.deg2rad(0.0)]
goal = [10.0, 10.0, np.deg2rad(0.0)]
rrtstar_dubins = RRTStarDubins(start, goal, rand_area=[-2.0, 15.0], obstacle_list=obstacleList)
path = rrtstar_dubins.planning(animation=show_animation)
# Draw final path
if show_animation: # pragma: no cover
rrtstar_dubins.draw_graph()
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.grid(True)
plt.pause(0.001)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarDubins/rrt_star_dubins.py#L215-L242
| 2 |
[
0,
1,
2,
3,
4,
13,
14,
15,
16,
17,
18,
19,
20
] | 59.090909 |
[] | 0 | false | 80 | 28 | 4 | 100 | 0 |
def main():
print("Start rrt star with dubins planning")
# ====Search Path with RRT====
obstacleList = [
(5, 5, 1),
(3, 6, 2),
(3, 8, 2),
(3, 10, 2),
(7, 5, 2),
(9, 5, 2)
] # [x,y,size(radius)]
# Set Initial parameters
start = [0.0, 0.0, np.deg2rad(0.0)]
goal = [10.0, 10.0, np.deg2rad(0.0)]
rrtstar_dubins = RRTStarDubins(start, goal, rand_area=[-2.0, 15.0], obstacle_list=obstacleList)
path = rrtstar_dubins.planning(animation=show_animation)
# Draw final path
if show_animation: # pragma: no cover
rrtstar_dubins.draw_graph()
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.grid(True)
plt.pause(0.001)
plt.show()
| 991 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarDubins/rrt_star_dubins.py
|
RRTStarDubins.__init__
|
(self, start, goal, obstacle_list, rand_area,
goal_sample_rate=10,
max_iter=200,
connect_circle_dist=50.0,
robot_radius=0.0,
)
|
Setting Parameter
start:Start Position [x,y]
goal:Goal Position [x,y]
obstacleList:obstacle Positions [[x,y,size],...]
randArea:Random Sampling Area [min,max]
robot_radius: robot body modeled as circle with given radius
|
Setting Parameter
| 39 | 67 |
def __init__(self, start, goal, obstacle_list, rand_area,
goal_sample_rate=10,
max_iter=200,
connect_circle_dist=50.0,
robot_radius=0.0,
):
"""
Setting Parameter
start:Start Position [x,y]
goal:Goal Position [x,y]
obstacleList:obstacle Positions [[x,y,size],...]
randArea:Random Sampling Area [min,max]
robot_radius: robot body modeled as circle with given radius
"""
self.start = self.Node(start[0], start[1], start[2])
self.end = self.Node(goal[0], goal[1], goal[2])
self.min_rand = rand_area[0]
self.max_rand = rand_area[1]
self.goal_sample_rate = goal_sample_rate
self.max_iter = max_iter
self.obstacle_list = obstacle_list
self.connect_circle_dist = connect_circle_dist
self.curvature = 1.0 # for dubins path
self.goal_yaw_th = np.deg2rad(1.0)
self.goal_xy_th = 0.5
self.robot_radius = robot_radius
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarDubins/rrt_star_dubins.py#L39-L67
| 2 |
[
0,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28
] | 51.724138 |
[] | 0 | false | 80 | 29 | 1 | 100 | 7 |
def __init__(self, start, goal, obstacle_list, rand_area,
goal_sample_rate=10,
max_iter=200,
connect_circle_dist=50.0,
robot_radius=0.0,
):
self.start = self.Node(start[0], start[1], start[2])
self.end = self.Node(goal[0], goal[1], goal[2])
self.min_rand = rand_area[0]
self.max_rand = rand_area[1]
self.goal_sample_rate = goal_sample_rate
self.max_iter = max_iter
self.obstacle_list = obstacle_list
self.connect_circle_dist = connect_circle_dist
self.curvature = 1.0 # for dubins path
self.goal_yaw_th = np.deg2rad(1.0)
self.goal_xy_th = 0.5
self.robot_radius = robot_radius
| 992 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarDubins/rrt_star_dubins.py
|
RRTStarDubins.planning
|
(self, animation=True, search_until_max_iter=True)
|
return None
|
RRT Star planning
animation: flag for animation on or off
|
RRT Star planning
| 69 | 108 |
def planning(self, animation=True, search_until_max_iter=True):
"""
RRT Star planning
animation: flag for animation on or off
"""
self.node_list = [self.start]
for i in range(self.max_iter):
print("Iter:", i, ", number of nodes:", len(self.node_list))
rnd = self.get_random_node()
nearest_ind = self.get_nearest_node_index(self.node_list, rnd)
new_node = self.steer(self.node_list[nearest_ind], rnd)
if self.check_collision(
new_node, self.obstacle_list, self.robot_radius):
near_indexes = self.find_near_nodes(new_node)
new_node = self.choose_parent(new_node, near_indexes)
if new_node:
self.node_list.append(new_node)
self.rewire(new_node, near_indexes)
if animation and i % 5 == 0:
self.plot_start_goal_arrow()
self.draw_graph(rnd)
if (not search_until_max_iter) and new_node: # check reaching the goal
last_index = self.search_best_goal_node()
if last_index:
return self.generate_final_course(last_index)
print("reached max iteration")
last_index = self.search_best_goal_node()
if last_index:
return self.generate_final_course(last_index)
else:
print("Cannot find path")
return None
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarDubins/rrt_star_dubins.py#L69-L108
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
25,
26,
30,
31,
32,
33,
34,
35,
36
] | 80 |
[
23,
24,
27,
28,
29,
37,
39
] | 17.5 | false | 80 | 40 | 10 | 82.5 | 3 |
def planning(self, animation=True, search_until_max_iter=True):
self.node_list = [self.start]
for i in range(self.max_iter):
print("Iter:", i, ", number of nodes:", len(self.node_list))
rnd = self.get_random_node()
nearest_ind = self.get_nearest_node_index(self.node_list, rnd)
new_node = self.steer(self.node_list[nearest_ind], rnd)
if self.check_collision(
new_node, self.obstacle_list, self.robot_radius):
near_indexes = self.find_near_nodes(new_node)
new_node = self.choose_parent(new_node, near_indexes)
if new_node:
self.node_list.append(new_node)
self.rewire(new_node, near_indexes)
if animation and i % 5 == 0:
self.plot_start_goal_arrow()
self.draw_graph(rnd)
if (not search_until_max_iter) and new_node: # check reaching the goal
last_index = self.search_best_goal_node()
if last_index:
return self.generate_final_course(last_index)
print("reached max iteration")
last_index = self.search_best_goal_node()
if last_index:
return self.generate_final_course(last_index)
else:
print("Cannot find path")
return None
| 993 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarDubins/rrt_star_dubins.py
|
RRTStarDubins.draw_graph
|
(self, rnd=None)
| 110 | 129 |
def draw_graph(self, rnd=None):
plt.clf()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if rnd is not None:
plt.plot(rnd.x, rnd.y, "^k")
for node in self.node_list:
if node.parent:
plt.plot(node.path_x, node.path_y, "-g")
for (ox, oy, size) in self.obstacle_list:
plt.plot(ox, oy, "ok", ms=30 * size)
plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.end.x, self.end.y, "xr")
plt.axis([-2, 15, -2, 15])
plt.grid(True)
self.plot_start_goal_arrow()
plt.pause(0.01)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarDubins/rrt_star_dubins.py#L110-L129
| 2 |
[
0
] | 5 |
[
1,
3,
5,
6,
7,
8,
9,
11,
12,
14,
15,
16,
17,
18,
19
] | 75 | false | 80 | 20 | 5 | 25 | 0 |
def draw_graph(self, rnd=None):
plt.clf()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if rnd is not None:
plt.plot(rnd.x, rnd.y, "^k")
for node in self.node_list:
if node.parent:
plt.plot(node.path_x, node.path_y, "-g")
for (ox, oy, size) in self.obstacle_list:
plt.plot(ox, oy, "ok", ms=30 * size)
plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.end.x, self.end.y, "xr")
plt.axis([-2, 15, -2, 15])
plt.grid(True)
self.plot_start_goal_arrow()
plt.pause(0.01)
| 994 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarDubins/rrt_star_dubins.py
|
RRTStarDubins.plot_start_goal_arrow
|
(self)
| 131 | 133 |
def plot_start_goal_arrow(self):
plot_arrow(self.start.x, self.start.y, self.start.yaw)
plot_arrow(self.end.x, self.end.y, self.end.yaw)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarDubins/rrt_star_dubins.py#L131-L133
| 2 |
[
0
] | 33.333333 |
[
1,
2
] | 66.666667 | false | 80 | 3 | 1 | 33.333333 | 0 |
def plot_start_goal_arrow(self):
plot_arrow(self.start.x, self.start.y, self.start.yaw)
plot_arrow(self.end.x, self.end.y, self.end.yaw)
| 995 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarDubins/rrt_star_dubins.py
|
RRTStarDubins.steer
|
(self, from_node, to_node)
|
return new_node
| 135 | 156 |
def steer(self, from_node, to_node):
px, py, pyaw, mode, course_lengths = \
dubins_path_planner.plan_dubins_path(
from_node.x, from_node.y, from_node.yaw,
to_node.x, to_node.y, to_node.yaw, self.curvature)
if len(px) <= 1: # cannot find a dubins path
return None
new_node = copy.deepcopy(from_node)
new_node.x = px[-1]
new_node.y = py[-1]
new_node.yaw = pyaw[-1]
new_node.path_x = px
new_node.path_y = py
new_node.path_yaw = pyaw
new_node.cost += sum([abs(c) for c in course_lengths])
new_node.parent = from_node
return new_node
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarDubins/rrt_star_dubins.py#L135-L156
| 2 |
[
0,
1,
2,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21
] | 86.363636 |
[] | 0 | false | 80 | 22 | 3 | 100 | 0 |
def steer(self, from_node, to_node):
px, py, pyaw, mode, course_lengths = \
dubins_path_planner.plan_dubins_path(
from_node.x, from_node.y, from_node.yaw,
to_node.x, to_node.y, to_node.yaw, self.curvature)
if len(px) <= 1: # cannot find a dubins path
return None
new_node = copy.deepcopy(from_node)
new_node.x = px[-1]
new_node.y = py[-1]
new_node.yaw = pyaw[-1]
new_node.path_x = px
new_node.path_y = py
new_node.path_yaw = pyaw
new_node.cost += sum([abs(c) for c in course_lengths])
new_node.parent = from_node
return new_node
| 996 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.