nwo
stringlengths 10
28
| sha
stringlengths 40
40
| path
stringlengths 11
97
| identifier
stringlengths 1
64
| parameters
stringlengths 2
2.24k
| return_statement
stringlengths 0
2.17k
| docstring
stringlengths 0
5.45k
| docstring_summary
stringlengths 0
3.83k
| func_begin
int64 1
13.4k
| func_end
int64 2
13.4k
| function
stringlengths 28
56.4k
| url
stringlengths 106
209
| project
int64 1
48
| executed_lines
list | executed_lines_pc
float64 0
153
| missing_lines
list | missing_lines_pc
float64 0
100
| covered
bool 2
classes | filecoverage
float64 2.53
100
| function_lines
int64 2
1.46k
| mccabe
int64 1
253
| coverage
float64 0
100
| docstring_lines
int64 0
112
| function_nodoc
stringlengths 9
56.4k
| id
int64 0
29.8k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/rear_wheel_feedback/rear_wheel_feedback.py
|
pi_2_pi
|
(angle)
|
return angle
| 98 | 105 |
def pi_2_pi(angle):
while(angle > math.pi):
angle = angle - 2.0 * math.pi
while(angle < -math.pi):
angle = angle + 2.0 * math.pi
return angle
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/rear_wheel_feedback/rear_wheel_feedback.py#L98-L105
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7
] | 100 |
[] | 0 | true | 92.307692 | 8 | 3 | 100 | 0 |
def pi_2_pi(angle):
while(angle > math.pi):
angle = angle - 2.0 * math.pi
while(angle < -math.pi):
angle = angle + 2.0 * math.pi
return angle
| 661 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/rear_wheel_feedback/rear_wheel_feedback.py
|
rear_wheel_feedback_control
|
(state, e, k, yaw_ref)
|
return delta
| 107 | 119 |
def rear_wheel_feedback_control(state, e, k, yaw_ref):
v = state.v
th_e = pi_2_pi(state.yaw - yaw_ref)
omega = v * k * math.cos(th_e) / (1.0 - k * e) - \
KTH * abs(v) * th_e - KE * v * math.sin(th_e) * e / th_e
if th_e == 0.0 or omega == 0.0:
return 0.0
delta = math.atan2(L * omega / v, 1.0)
return delta
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/rear_wheel_feedback/rear_wheel_feedback.py#L107-L119
| 2 |
[
0,
1,
2,
3,
4,
6,
7,
8,
9,
10,
11,
12
] | 92.307692 |
[] | 0 | false | 92.307692 | 13 | 3 | 100 | 0 |
def rear_wheel_feedback_control(state, e, k, yaw_ref):
v = state.v
th_e = pi_2_pi(state.yaw - yaw_ref)
omega = v * k * math.cos(th_e) / (1.0 - k * e) - \
KTH * abs(v) * th_e - KE * v * math.sin(th_e) * e / th_e
if th_e == 0.0 or omega == 0.0:
return 0.0
delta = math.atan2(L * omega / v, 1.0)
return delta
| 662 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/rear_wheel_feedback/rear_wheel_feedback.py
|
simulate
|
(path_ref, goal)
|
return t, x, y, yaw, v, goal_flag
| 122 | 176 |
def simulate(path_ref, goal):
T = 500.0 # max simulation time
goal_dis = 0.3
state = State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
goal_flag = False
s = np.arange(0, path_ref.length, 0.1)
e, k, yaw_ref, s0 = path_ref.calc_track_error(state.x, state.y, 0.0)
while T >= time:
e, k, yaw_ref, s0 = path_ref.calc_track_error(state.x, state.y, s0)
di = rear_wheel_feedback_control(state, e, k, yaw_ref)
speed_ref = calc_target_speed(state, yaw_ref)
ai = pid_control(speed_ref, state.v)
state.update(ai, di, dt)
time = time + dt
# check goal
dx = state.x - goal[0]
dy = state.y - goal[1]
if math.hypot(dx, dy) <= goal_dis:
print("Goal")
goal_flag = True
break
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
if show_animation:
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(path_ref.X(s), path_ref.Y(s), "-r", label="course")
plt.plot(x, y, "ob", label="trajectory")
plt.plot(path_ref.X(s0), path_ref.Y(s0), "xg", label="target")
plt.axis("equal")
plt.grid(True)
plt.title("speed[km/h]:{:.2f}, target s-param:{:.2f}".format(round(state.v * 3.6, 2), s0))
plt.pause(0.0001)
return t, x, y, yaw, v, goal_flag
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/rear_wheel_feedback/rear_wheel_feedback.py#L122-L176
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
53,
54
] | 80 |
[
42,
44,
46,
47,
48,
49,
50,
51,
52
] | 16.363636 | false | 92.307692 | 55 | 4 | 83.636364 | 0 |
def simulate(path_ref, goal):
T = 500.0 # max simulation time
goal_dis = 0.3
state = State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
goal_flag = False
s = np.arange(0, path_ref.length, 0.1)
e, k, yaw_ref, s0 = path_ref.calc_track_error(state.x, state.y, 0.0)
while T >= time:
e, k, yaw_ref, s0 = path_ref.calc_track_error(state.x, state.y, s0)
di = rear_wheel_feedback_control(state, e, k, yaw_ref)
speed_ref = calc_target_speed(state, yaw_ref)
ai = pid_control(speed_ref, state.v)
state.update(ai, di, dt)
time = time + dt
# check goal
dx = state.x - goal[0]
dy = state.y - goal[1]
if math.hypot(dx, dy) <= goal_dis:
print("Goal")
goal_flag = True
break
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
if show_animation:
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(path_ref.X(s), path_ref.Y(s), "-r", label="course")
plt.plot(x, y, "ob", label="trajectory")
plt.plot(path_ref.X(s0), path_ref.Y(s0), "xg", label="target")
plt.axis("equal")
plt.grid(True)
plt.title("speed[km/h]:{:.2f}, target s-param:{:.2f}".format(round(state.v * 3.6, 2), s0))
plt.pause(0.0001)
return t, x, y, yaw, v, goal_flag
| 663 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/rear_wheel_feedback/rear_wheel_feedback.py
|
calc_target_speed
|
(state, yaw_ref)
|
return target_speed
| 178 | 191 |
def calc_target_speed(state, yaw_ref):
target_speed = 10.0 / 3.6
dyaw = yaw_ref - state.yaw
switch = math.pi / 4.0 <= dyaw < math.pi / 2.0
if switch:
state.direction *= -1
return 0.0
if state.direction != 1:
return -target_speed
return target_speed
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/rear_wheel_feedback/rear_wheel_feedback.py#L178-L191
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
12,
13
] | 92.857143 |
[
11
] | 7.142857 | false | 92.307692 | 14 | 3 | 92.857143 | 0 |
def calc_target_speed(state, yaw_ref):
target_speed = 10.0 / 3.6
dyaw = yaw_ref - state.yaw
switch = math.pi / 4.0 <= dyaw < math.pi / 2.0
if switch:
state.direction *= -1
return 0.0
if state.direction != 1:
return -target_speed
return target_speed
| 664 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/rear_wheel_feedback/rear_wheel_feedback.py
|
main
|
()
| 193 | 233 |
def main():
print("rear wheel feedback tracking start!!")
ax = [0.0, 6.0, 12.5, 5.0, 7.5, 3.0, -1.0]
ay = [0.0, 0.0, 5.0, 6.5, 3.0, 5.0, -2.0]
goal = [ax[-1], ay[-1]]
reference_path = CubicSplinePath(ax, ay)
s = np.arange(0, reference_path.length, 0.1)
t, x, y, yaw, v, goal_flag = simulate(reference_path, goal)
# Test
assert goal_flag, "Cannot goal"
if show_animation: # pragma: no cover
plt.close()
plt.subplots(1)
plt.plot(ax, ay, "xb", label="input")
plt.plot(reference_path.X(s), reference_path.Y(s), "-r", label="spline")
plt.plot(x, y, "-g", label="tracking")
plt.grid(True)
plt.axis("equal")
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.legend()
plt.subplots(1)
plt.plot(s, np.rad2deg(reference_path.calc_yaw(s)), "-r", label="yaw")
plt.grid(True)
plt.legend()
plt.xlabel("line length[m]")
plt.ylabel("yaw angle[deg]")
plt.subplots(1)
plt.plot(s, reference_path.calc_curvature(s), "-r", label="curvature")
plt.grid(True)
plt.legend()
plt.xlabel("line length[m]")
plt.ylabel("curvature [1/m]")
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/rear_wheel_feedback/rear_wheel_feedback.py#L193-L233
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 82.352941 |
[] | 0 | false | 92.307692 | 41 | 3 | 100 | 0 |
def main():
print("rear wheel feedback tracking start!!")
ax = [0.0, 6.0, 12.5, 5.0, 7.5, 3.0, -1.0]
ay = [0.0, 0.0, 5.0, 6.5, 3.0, 5.0, -2.0]
goal = [ax[-1], ay[-1]]
reference_path = CubicSplinePath(ax, ay)
s = np.arange(0, reference_path.length, 0.1)
t, x, y, yaw, v, goal_flag = simulate(reference_path, goal)
# Test
assert goal_flag, "Cannot goal"
if show_animation: # pragma: no cover
plt.close()
plt.subplots(1)
plt.plot(ax, ay, "xb", label="input")
plt.plot(reference_path.X(s), reference_path.Y(s), "-r", label="spline")
plt.plot(x, y, "-g", label="tracking")
plt.grid(True)
plt.axis("equal")
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.legend()
plt.subplots(1)
plt.plot(s, np.rad2deg(reference_path.calc_yaw(s)), "-r", label="yaw")
plt.grid(True)
plt.legend()
plt.xlabel("line length[m]")
plt.ylabel("yaw angle[deg]")
plt.subplots(1)
plt.plot(s, reference_path.calc_curvature(s), "-r", label="curvature")
plt.grid(True)
plt.legend()
plt.xlabel("line length[m]")
plt.ylabel("curvature [1/m]")
plt.show()
| 665 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/rear_wheel_feedback/rear_wheel_feedback.py
|
State.__init__
|
(self, x=0.0, y=0.0, yaw=0.0, v=0.0, direction=1)
| 26 | 31 |
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0, direction=1):
self.x = x
self.y = y
self.yaw = yaw
self.v = v
self.direction = direction
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/rear_wheel_feedback/rear_wheel_feedback.py#L26-L31
| 2 |
[
0,
1,
2,
3,
4,
5
] | 100 |
[] | 0 | true | 92.307692 | 6 | 1 | 100 | 0 |
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0, direction=1):
self.x = x
self.y = y
self.yaw = yaw
self.v = v
self.direction = direction
| 666 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/rear_wheel_feedback/rear_wheel_feedback.py
|
State.update
|
(self, a, delta, dt)
| 33 | 37 |
def update(self, a, delta, dt):
self.x = self.x + self.v * math.cos(self.yaw) * dt
self.y = self.y + self.v * math.sin(self.yaw) * dt
self.yaw = self.yaw + self.v / L * math.tan(delta) * dt
self.v = self.v + a * dt
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/rear_wheel_feedback/rear_wheel_feedback.py#L33-L37
| 2 |
[
0,
1,
2,
3,
4
] | 100 |
[] | 0 | true | 92.307692 | 5 | 1 | 100 | 0 |
def update(self, a, delta, dt):
self.x = self.x + self.v * math.cos(self.yaw) * dt
self.y = self.y + self.v * math.sin(self.yaw) * dt
self.yaw = self.yaw + self.v / L * math.tan(delta) * dt
self.v = self.v + a * dt
| 667 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/rear_wheel_feedback/rear_wheel_feedback.py
|
CubicSplinePath.__init__
|
(self, x, y)
| 40 | 53 |
def __init__(self, x, y):
x, y = map(np.asarray, (x, y))
s = np.append([0],(np.cumsum(np.diff(x)**2) + np.cumsum(np.diff(y)**2))**0.5)
self.X = interpolate.CubicSpline(s, x)
self.Y = interpolate.CubicSpline(s, y)
self.dX = self.X.derivative(1)
self.ddX = self.X.derivative(2)
self.dY = self.Y.derivative(1)
self.ddY = self.Y.derivative(2)
self.length = s[-1]
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/rear_wheel_feedback/rear_wheel_feedback.py#L40-L53
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 92.307692 | 14 | 1 | 100 | 0 |
def __init__(self, x, y):
x, y = map(np.asarray, (x, y))
s = np.append([0],(np.cumsum(np.diff(x)**2) + np.cumsum(np.diff(y)**2))**0.5)
self.X = interpolate.CubicSpline(s, x)
self.Y = interpolate.CubicSpline(s, y)
self.dX = self.X.derivative(1)
self.ddX = self.X.derivative(2)
self.dY = self.Y.derivative(1)
self.ddY = self.Y.derivative(2)
self.length = s[-1]
| 668 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/rear_wheel_feedback/rear_wheel_feedback.py
|
CubicSplinePath.calc_yaw
|
(self, s)
|
return np.arctan2(dy, dx)
| 55 | 57 |
def calc_yaw(self, s):
dx, dy = self.dX(s), self.dY(s)
return np.arctan2(dy, dx)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/rear_wheel_feedback/rear_wheel_feedback.py#L55-L57
| 2 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 92.307692 | 3 | 1 | 100 | 0 |
def calc_yaw(self, s):
dx, dy = self.dX(s), self.dY(s)
return np.arctan2(dy, dx)
| 669 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/rear_wheel_feedback/rear_wheel_feedback.py
|
CubicSplinePath.calc_curvature
|
(self, s)
|
return (ddy * dx - ddx * dy) / ((dx ** 2 + dy ** 2)**(3 / 2))
| 59 | 62 |
def calc_curvature(self, s):
dx, dy = self.dX(s), self.dY(s)
ddx, ddy = self.ddX(s), self.ddY(s)
return (ddy * dx - ddx * dy) / ((dx ** 2 + dy ** 2)**(3 / 2))
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/rear_wheel_feedback/rear_wheel_feedback.py#L59-L62
| 2 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 92.307692 | 4 | 1 | 100 | 0 |
def calc_curvature(self, s):
dx, dy = self.dX(s), self.dY(s)
ddx, ddy = self.ddX(s), self.ddY(s)
return (ddy * dx - ddx * dy) / ((dx ** 2 + dy ** 2)**(3 / 2))
| 670 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/rear_wheel_feedback/rear_wheel_feedback.py
|
CubicSplinePath.__find_nearest_point
|
(self, s0, x, y)
|
return minimum
| 64 | 75 |
def __find_nearest_point(self, s0, x, y):
def calc_distance(_s, *args):
_x, _y= self.X(_s), self.Y(_s)
return (_x - args[0])**2 + (_y - args[1])**2
def calc_distance_jacobian(_s, *args):
_x, _y = self.X(_s), self.Y(_s)
_dx, _dy = self.dX(_s), self.dY(_s)
return 2*_dx*(_x - args[0])+2*_dy*(_y-args[1])
minimum = optimize.fmin_cg(calc_distance, s0, calc_distance_jacobian, args=(x, y), full_output=True, disp=False)
return minimum
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/rear_wheel_feedback/rear_wheel_feedback.py#L64-L75
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11
] | 100 |
[] | 0 | true | 92.307692 | 12 | 3 | 100 | 0 |
def __find_nearest_point(self, s0, x, y):
def calc_distance(_s, *args):
_x, _y= self.X(_s), self.Y(_s)
return (_x - args[0])**2 + (_y - args[1])**2
def calc_distance_jacobian(_s, *args):
_x, _y = self.X(_s), self.Y(_s)
_dx, _dy = self.dX(_s), self.dY(_s)
return 2*_dx*(_x - args[0])+2*_dy*(_y-args[1])
minimum = optimize.fmin_cg(calc_distance, s0, calc_distance_jacobian, args=(x, y), full_output=True, disp=False)
return minimum
| 671 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/rear_wheel_feedback/rear_wheel_feedback.py
|
CubicSplinePath.calc_track_error
|
(self, x, y, s0)
|
return e, k, yaw, s
| 77 | 92 |
def calc_track_error(self, x, y, s0):
ret = self.__find_nearest_point(s0, x, y)
s = ret[0][0]
e = ret[1]
k = self.calc_curvature(s)
yaw = self.calc_yaw(s)
dxl = self.X(s) - x
dyl = self.Y(s) - y
angle = pi_2_pi(yaw - math.atan2(dyl, dxl))
if angle < 0:
e*= -1
return e, k, yaw, s
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/rear_wheel_feedback/rear_wheel_feedback.py#L77-L92
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
] | 100 |
[] | 0 | true | 92.307692 | 16 | 2 | 100 | 0 |
def calc_track_error(self, x, y, s0):
ret = self.__find_nearest_point(s0, x, y)
s = ret[0][0]
e = ret[1]
k = self.calc_curvature(s)
yaw = self.calc_yaw(s)
dxl = self.X(s) - x
dyl = self.Y(s) - y
angle = pi_2_pi(yaw - math.atan2(dyl, dxl))
if angle < 0:
e*= -1
return e, k, yaw, s
| 672 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/stanley_controller/stanley_controller.py
|
pid_control
|
(target, current)
|
return Kp * (target - current)
|
Proportional control for the speed.
:param target: (float)
:param current: (float)
:return: (float)
|
Proportional control for the speed.
| 65 | 73 |
def pid_control(target, current):
"""
Proportional control for the speed.
:param target: (float)
:param current: (float)
:return: (float)
"""
return Kp * (target - current)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/stanley_controller/stanley_controller.py#L65-L73
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8
] | 100 |
[] | 0 | true | 98.75 | 9 | 1 | 100 | 5 |
def pid_control(target, current):
return Kp * (target - current)
| 673 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/stanley_controller/stanley_controller.py
|
stanley_control
|
(state, cx, cy, cyaw, last_target_idx)
|
return delta, current_target_idx
|
Stanley steering control.
:param state: (State object)
:param cx: ([float])
:param cy: ([float])
:param cyaw: ([float])
:param last_target_idx: (int)
:return: (float, int)
|
Stanley steering control.
| 76 | 99 |
def stanley_control(state, cx, cy, cyaw, last_target_idx):
"""
Stanley steering control.
:param state: (State object)
:param cx: ([float])
:param cy: ([float])
:param cyaw: ([float])
:param last_target_idx: (int)
:return: (float, int)
"""
current_target_idx, error_front_axle = calc_target_index(state, cx, cy)
if last_target_idx >= current_target_idx:
current_target_idx = last_target_idx
# theta_e corrects the heading error
theta_e = normalize_angle(cyaw[current_target_idx] - state.yaw)
# theta_d corrects the cross track error
theta_d = np.arctan2(k * error_front_axle, state.v)
# Steering control
delta = theta_e + theta_d
return delta, current_target_idx
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/stanley_controller/stanley_controller.py#L76-L99
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23
] | 100 |
[] | 0 | true | 98.75 | 24 | 2 | 100 | 8 |
def stanley_control(state, cx, cy, cyaw, last_target_idx):
current_target_idx, error_front_axle = calc_target_index(state, cx, cy)
if last_target_idx >= current_target_idx:
current_target_idx = last_target_idx
# theta_e corrects the heading error
theta_e = normalize_angle(cyaw[current_target_idx] - state.yaw)
# theta_d corrects the cross track error
theta_d = np.arctan2(k * error_front_axle, state.v)
# Steering control
delta = theta_e + theta_d
return delta, current_target_idx
| 674 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/stanley_controller/stanley_controller.py
|
normalize_angle
|
(angle)
|
return angle
|
Normalize an angle to [-pi, pi].
:param angle: (float)
:return: (float) Angle in radian in [-pi, pi]
|
Normalize an angle to [-pi, pi].
| 102 | 115 |
def normalize_angle(angle):
"""
Normalize an angle to [-pi, pi].
:param angle: (float)
:return: (float) Angle in radian in [-pi, pi]
"""
while angle > np.pi:
angle -= 2.0 * np.pi
while angle < -np.pi:
angle += 2.0 * np.pi
return angle
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/stanley_controller/stanley_controller.py#L102-L115
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 98.75 | 14 | 3 | 100 | 4 |
def normalize_angle(angle):
while angle > np.pi:
angle -= 2.0 * np.pi
while angle < -np.pi:
angle += 2.0 * np.pi
return angle
| 675 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/stanley_controller/stanley_controller.py
|
calc_target_index
|
(state, cx, cy)
|
return target_idx, error_front_axle
|
Compute index in the trajectory list of the target.
:param state: (State object)
:param cx: [float]
:param cy: [float]
:return: (int, float)
|
Compute index in the trajectory list of the target.
| 118 | 142 |
def calc_target_index(state, cx, cy):
"""
Compute index in the trajectory list of the target.
:param state: (State object)
:param cx: [float]
:param cy: [float]
:return: (int, float)
"""
# Calc front axle position
fx = state.x + L * np.cos(state.yaw)
fy = state.y + L * np.sin(state.yaw)
# Search nearest point index
dx = [fx - icx for icx in cx]
dy = [fy - icy for icy in cy]
d = np.hypot(dx, dy)
target_idx = np.argmin(d)
# Project RMS error onto front axle vector
front_axle_vec = [-np.cos(state.yaw + np.pi / 2),
-np.sin(state.yaw + np.pi / 2)]
error_front_axle = np.dot([dx[target_idx], dy[target_idx]], front_axle_vec)
return target_idx, error_front_axle
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/stanley_controller/stanley_controller.py#L118-L142
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24
] | 100 |
[] | 0 | true | 98.75 | 25 | 3 | 100 | 6 |
def calc_target_index(state, cx, cy):
# Calc front axle position
fx = state.x + L * np.cos(state.yaw)
fy = state.y + L * np.sin(state.yaw)
# Search nearest point index
dx = [fx - icx for icx in cx]
dy = [fy - icy for icy in cy]
d = np.hypot(dx, dy)
target_idx = np.argmin(d)
# Project RMS error onto front axle vector
front_axle_vec = [-np.cos(state.yaw + np.pi / 2),
-np.sin(state.yaw + np.pi / 2)]
error_front_axle = np.dot([dx[target_idx], dy[target_idx]], front_axle_vec)
return target_idx, error_front_axle
| 676 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/stanley_controller/stanley_controller.py
|
main
|
()
|
Plot an example of Stanley steering control on a cubic spline.
|
Plot an example of Stanley steering control on a cubic spline.
| 145 | 213 |
def main():
"""Plot an example of Stanley steering control on a cubic spline."""
# target course
ax = [0.0, 100.0, 100.0, 50.0, 60.0]
ay = [0.0, 0.0, -30.0, -20.0, 0.0]
cx, cy, cyaw, ck, s = cubic_spline_planner.calc_spline_course(
ax, ay, ds=0.1)
target_speed = 30.0 / 3.6 # [m/s]
max_simulation_time = 100.0
# Initial state
state = State(x=-0.0, y=5.0, yaw=np.radians(20.0), v=0.0)
last_idx = len(cx) - 1
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
target_idx, _ = calc_target_index(state, cx, cy)
while max_simulation_time >= time and last_idx > target_idx:
ai = pid_control(target_speed, state.v)
di, target_idx = stanley_control(state, cx, cy, cyaw, target_idx)
state.update(ai, di)
time += dt
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(cx, cy, ".r", label="course")
plt.plot(x, y, "-b", label="trajectory")
plt.plot(cx[target_idx], cy[target_idx], "xg", label="target")
plt.axis("equal")
plt.grid(True)
plt.title("Speed[km/h]:" + str(state.v * 3.6)[:4])
plt.pause(0.001)
# Test
assert last_idx >= target_idx, "Cannot reach goal"
if show_animation: # pragma: no cover
plt.plot(cx, cy, ".r", label="course")
plt.plot(x, y, "-b", label="trajectory")
plt.legend()
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.axis("equal")
plt.grid(True)
plt.subplots(1)
plt.plot(t, [iv * 3.6 for iv in v], "-r")
plt.xlabel("Time[s]")
plt.ylabel("Speed[km/h]")
plt.grid(True)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/stanley_controller/stanley_controller.py#L145-L213
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68
] | 153.333333 |
[] | 0 | true | 98.75 | 69 | 7 | 100 | 1 |
def main():
# target course
ax = [0.0, 100.0, 100.0, 50.0, 60.0]
ay = [0.0, 0.0, -30.0, -20.0, 0.0]
cx, cy, cyaw, ck, s = cubic_spline_planner.calc_spline_course(
ax, ay, ds=0.1)
target_speed = 30.0 / 3.6 # [m/s]
max_simulation_time = 100.0
# Initial state
state = State(x=-0.0, y=5.0, yaw=np.radians(20.0), v=0.0)
last_idx = len(cx) - 1
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
target_idx, _ = calc_target_index(state, cx, cy)
while max_simulation_time >= time and last_idx > target_idx:
ai = pid_control(target_speed, state.v)
di, target_idx = stanley_control(state, cx, cy, cyaw, target_idx)
state.update(ai, di)
time += dt
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(cx, cy, ".r", label="course")
plt.plot(x, y, "-b", label="trajectory")
plt.plot(cx[target_idx], cy[target_idx], "xg", label="target")
plt.axis("equal")
plt.grid(True)
plt.title("Speed[km/h]:" + str(state.v * 3.6)[:4])
plt.pause(0.001)
# Test
assert last_idx >= target_idx, "Cannot reach goal"
if show_animation: # pragma: no cover
plt.plot(cx, cy, ".r", label="course")
plt.plot(x, y, "-b", label="trajectory")
plt.legend()
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.axis("equal")
plt.grid(True)
plt.subplots(1)
plt.plot(t, [iv * 3.6 for iv in v], "-r")
plt.xlabel("Time[s]")
plt.ylabel("Speed[km/h]")
plt.grid(True)
plt.show()
| 677 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/stanley_controller/stanley_controller.py
|
State.__init__
|
(self, x=0.0, y=0.0, yaw=0.0, v=0.0)
|
Instantiate the object.
|
Instantiate the object.
| 39 | 45 |
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
"""Instantiate the object."""
super(State, self).__init__()
self.x = x
self.y = y
self.yaw = yaw
self.v = v
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/stanley_controller/stanley_controller.py#L39-L45
| 2 |
[
0,
1,
2,
3,
4,
5,
6
] | 100 |
[] | 0 | true | 98.75 | 7 | 1 | 100 | 1 |
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
super(State, self).__init__()
self.x = x
self.y = y
self.yaw = yaw
self.v = v
| 678 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/stanley_controller/stanley_controller.py
|
State.update
|
(self, acceleration, delta)
|
Update the state of the vehicle.
Stanley Control uses bicycle model.
:param acceleration: (float) Acceleration
:param delta: (float) Steering
|
Update the state of the vehicle.
| 47 | 62 |
def update(self, acceleration, delta):
"""
Update the state of the vehicle.
Stanley Control uses bicycle model.
:param acceleration: (float) Acceleration
:param delta: (float) Steering
"""
delta = np.clip(delta, -max_steer, max_steer)
self.x += self.v * np.cos(self.yaw) * dt
self.y += self.v * np.sin(self.yaw) * dt
self.yaw += self.v / L * np.tan(delta) * dt
self.yaw = normalize_angle(self.yaw)
self.v += acceleration * dt
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/stanley_controller/stanley_controller.py#L47-L62
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
] | 100 |
[] | 0 | true | 98.75 | 16 | 1 | 100 | 6 |
def update(self, acceleration, delta):
delta = np.clip(delta, -max_steer, max_steer)
self.x += self.v * np.cos(self.yaw) * dt
self.y += self.v * np.sin(self.yaw) * dt
self.yaw += self.v / L * np.tan(delta) * dt
self.yaw = normalize_angle(self.yaw)
self.v += acceleration * dt
| 679 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
pi_2_pi
|
(angle)
|
return angle
| 71 | 78 |
def pi_2_pi(angle):
while(angle > math.pi):
angle = angle - 2.0 * math.pi
while(angle < -math.pi):
angle = angle + 2.0 * math.pi
return angle
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L71-L78
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7
] | 100 |
[] | 0 | true | 94.136808 | 8 | 3 | 100 | 0 |
def pi_2_pi(angle):
while(angle > math.pi):
angle = angle - 2.0 * math.pi
while(angle < -math.pi):
angle = angle + 2.0 * math.pi
return angle
| 680 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
get_linear_model_matrix
|
(v, phi, delta)
|
return A, B, C
| 81 | 103 |
def get_linear_model_matrix(v, phi, delta):
A = np.zeros((NX, NX))
A[0, 0] = 1.0
A[1, 1] = 1.0
A[2, 2] = 1.0
A[3, 3] = 1.0
A[0, 2] = DT * math.cos(phi)
A[0, 3] = - DT * v * math.sin(phi)
A[1, 2] = DT * math.sin(phi)
A[1, 3] = DT * v * math.cos(phi)
A[3, 2] = DT * math.tan(delta) / WB
B = np.zeros((NX, NU))
B[2, 0] = DT
B[3, 1] = DT * v / (WB * math.cos(delta) ** 2)
C = np.zeros(NX)
C[0] = DT * v * math.sin(phi) * phi
C[1] = - DT * v * math.cos(phi) * phi
C[3] = - DT * v * delta / (WB * math.cos(delta) ** 2)
return A, B, C
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L81-L103
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22
] | 100 |
[] | 0 | true | 94.136808 | 23 | 1 | 100 | 0 |
def get_linear_model_matrix(v, phi, delta):
A = np.zeros((NX, NX))
A[0, 0] = 1.0
A[1, 1] = 1.0
A[2, 2] = 1.0
A[3, 3] = 1.0
A[0, 2] = DT * math.cos(phi)
A[0, 3] = - DT * v * math.sin(phi)
A[1, 2] = DT * math.sin(phi)
A[1, 3] = DT * v * math.cos(phi)
A[3, 2] = DT * math.tan(delta) / WB
B = np.zeros((NX, NU))
B[2, 0] = DT
B[3, 1] = DT * v / (WB * math.cos(delta) ** 2)
C = np.zeros(NX)
C[0] = DT * v * math.sin(phi) * phi
C[1] = - DT * v * math.cos(phi) * phi
C[3] = - DT * v * delta / (WB * math.cos(delta) ** 2)
return A, B, C
| 681 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
plot_car
|
(x, y, yaw, steer=0.0, cabcolor="-r", truckcolor="-k")
| 106 | 159 |
def plot_car(x, y, yaw, steer=0.0, cabcolor="-r", truckcolor="-k"): # pragma: no cover
outline = np.array([[-BACKTOWHEEL, (LENGTH - BACKTOWHEEL), (LENGTH - BACKTOWHEEL), -BACKTOWHEEL, -BACKTOWHEEL],
[WIDTH / 2, WIDTH / 2, - WIDTH / 2, -WIDTH / 2, WIDTH / 2]])
fr_wheel = np.array([[WHEEL_LEN, -WHEEL_LEN, -WHEEL_LEN, WHEEL_LEN, WHEEL_LEN],
[-WHEEL_WIDTH - TREAD, -WHEEL_WIDTH - TREAD, WHEEL_WIDTH - TREAD, WHEEL_WIDTH - TREAD, -WHEEL_WIDTH - TREAD]])
rr_wheel = np.copy(fr_wheel)
fl_wheel = np.copy(fr_wheel)
fl_wheel[1, :] *= -1
rl_wheel = np.copy(rr_wheel)
rl_wheel[1, :] *= -1
Rot1 = np.array([[math.cos(yaw), math.sin(yaw)],
[-math.sin(yaw), math.cos(yaw)]])
Rot2 = np.array([[math.cos(steer), math.sin(steer)],
[-math.sin(steer), math.cos(steer)]])
fr_wheel = (fr_wheel.T.dot(Rot2)).T
fl_wheel = (fl_wheel.T.dot(Rot2)).T
fr_wheel[0, :] += WB
fl_wheel[0, :] += WB
fr_wheel = (fr_wheel.T.dot(Rot1)).T
fl_wheel = (fl_wheel.T.dot(Rot1)).T
outline = (outline.T.dot(Rot1)).T
rr_wheel = (rr_wheel.T.dot(Rot1)).T
rl_wheel = (rl_wheel.T.dot(Rot1)).T
outline[0, :] += x
outline[1, :] += y
fr_wheel[0, :] += x
fr_wheel[1, :] += y
rr_wheel[0, :] += x
rr_wheel[1, :] += y
fl_wheel[0, :] += x
fl_wheel[1, :] += y
rl_wheel[0, :] += x
rl_wheel[1, :] += y
plt.plot(np.array(outline[0, :]).flatten(),
np.array(outline[1, :]).flatten(), truckcolor)
plt.plot(np.array(fr_wheel[0, :]).flatten(),
np.array(fr_wheel[1, :]).flatten(), truckcolor)
plt.plot(np.array(rr_wheel[0, :]).flatten(),
np.array(rr_wheel[1, :]).flatten(), truckcolor)
plt.plot(np.array(fl_wheel[0, :]).flatten(),
np.array(fl_wheel[1, :]).flatten(), truckcolor)
plt.plot(np.array(rl_wheel[0, :]).flatten(),
np.array(rl_wheel[1, :]).flatten(), truckcolor)
plt.plot(x, y, "*")
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L106-L159
| 2 |
[] | 0 |
[] | 0 | false | 94.136808 | 54 | 1 | 100 | 0 |
def plot_car(x, y, yaw, steer=0.0, cabcolor="-r", truckcolor="-k"): # pragma: no cover
outline = np.array([[-BACKTOWHEEL, (LENGTH - BACKTOWHEEL), (LENGTH - BACKTOWHEEL), -BACKTOWHEEL, -BACKTOWHEEL],
[WIDTH / 2, WIDTH / 2, - WIDTH / 2, -WIDTH / 2, WIDTH / 2]])
fr_wheel = np.array([[WHEEL_LEN, -WHEEL_LEN, -WHEEL_LEN, WHEEL_LEN, WHEEL_LEN],
[-WHEEL_WIDTH - TREAD, -WHEEL_WIDTH - TREAD, WHEEL_WIDTH - TREAD, WHEEL_WIDTH - TREAD, -WHEEL_WIDTH - TREAD]])
rr_wheel = np.copy(fr_wheel)
fl_wheel = np.copy(fr_wheel)
fl_wheel[1, :] *= -1
rl_wheel = np.copy(rr_wheel)
rl_wheel[1, :] *= -1
Rot1 = np.array([[math.cos(yaw), math.sin(yaw)],
[-math.sin(yaw), math.cos(yaw)]])
Rot2 = np.array([[math.cos(steer), math.sin(steer)],
[-math.sin(steer), math.cos(steer)]])
fr_wheel = (fr_wheel.T.dot(Rot2)).T
fl_wheel = (fl_wheel.T.dot(Rot2)).T
fr_wheel[0, :] += WB
fl_wheel[0, :] += WB
fr_wheel = (fr_wheel.T.dot(Rot1)).T
fl_wheel = (fl_wheel.T.dot(Rot1)).T
outline = (outline.T.dot(Rot1)).T
rr_wheel = (rr_wheel.T.dot(Rot1)).T
rl_wheel = (rl_wheel.T.dot(Rot1)).T
outline[0, :] += x
outline[1, :] += y
fr_wheel[0, :] += x
fr_wheel[1, :] += y
rr_wheel[0, :] += x
rr_wheel[1, :] += y
fl_wheel[0, :] += x
fl_wheel[1, :] += y
rl_wheel[0, :] += x
rl_wheel[1, :] += y
plt.plot(np.array(outline[0, :]).flatten(),
np.array(outline[1, :]).flatten(), truckcolor)
plt.plot(np.array(fr_wheel[0, :]).flatten(),
np.array(fr_wheel[1, :]).flatten(), truckcolor)
plt.plot(np.array(rr_wheel[0, :]).flatten(),
np.array(rr_wheel[1, :]).flatten(), truckcolor)
plt.plot(np.array(fl_wheel[0, :]).flatten(),
np.array(fl_wheel[1, :]).flatten(), truckcolor)
plt.plot(np.array(rl_wheel[0, :]).flatten(),
np.array(rl_wheel[1, :]).flatten(), truckcolor)
plt.plot(x, y, "*")
| 682 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
update_state
|
(state, a, delta)
|
return state
| 162 | 180 |
def update_state(state, a, delta):
# input check
if delta >= MAX_STEER:
delta = MAX_STEER
elif delta <= -MAX_STEER:
delta = -MAX_STEER
state.x = state.x + state.v * math.cos(state.yaw) * DT
state.y = state.y + state.v * math.sin(state.yaw) * DT
state.yaw = state.yaw + state.v / WB * math.tan(delta) * DT
state.v = state.v + a * DT
if state.v > MAX_SPEED:
state.v = MAX_SPEED
elif state.v < MIN_SPEED:
state.v = MIN_SPEED
return state
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L162-L180
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
15,
17,
18
] | 89.473684 |
[
14,
16
] | 10.526316 | false | 94.136808 | 19 | 5 | 89.473684 | 0 |
def update_state(state, a, delta):
# input check
if delta >= MAX_STEER:
delta = MAX_STEER
elif delta <= -MAX_STEER:
delta = -MAX_STEER
state.x = state.x + state.v * math.cos(state.yaw) * DT
state.y = state.y + state.v * math.sin(state.yaw) * DT
state.yaw = state.yaw + state.v / WB * math.tan(delta) * DT
state.v = state.v + a * DT
if state.v > MAX_SPEED:
state.v = MAX_SPEED
elif state.v < MIN_SPEED:
state.v = MIN_SPEED
return state
| 683 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
get_nparray_from_matrix
|
(x)
|
return np.array(x).flatten()
| 183 | 184 |
def get_nparray_from_matrix(x):
return np.array(x).flatten()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L183-L184
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 94.136808 | 2 | 1 | 100 | 0 |
def get_nparray_from_matrix(x):
return np.array(x).flatten()
| 684 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
calc_nearest_index
|
(state, cx, cy, cyaw, pind)
|
return ind, mind
| 187 | 207 |
def calc_nearest_index(state, cx, cy, cyaw, pind):
dx = [state.x - icx for icx in cx[pind:(pind + N_IND_SEARCH)]]
dy = [state.y - icy for icy in cy[pind:(pind + N_IND_SEARCH)]]
d = [idx ** 2 + idy ** 2 for (idx, idy) in zip(dx, dy)]
mind = min(d)
ind = d.index(mind) + pind
mind = math.sqrt(mind)
dxl = cx[ind] - state.x
dyl = cy[ind] - state.y
angle = pi_2_pi(cyaw[ind] - math.atan2(dyl, dxl))
if angle < 0:
mind *= -1
return ind, mind
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L187-L207
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20
] | 100 |
[] | 0 | true | 94.136808 | 21 | 5 | 100 | 0 |
def calc_nearest_index(state, cx, cy, cyaw, pind):
dx = [state.x - icx for icx in cx[pind:(pind + N_IND_SEARCH)]]
dy = [state.y - icy for icy in cy[pind:(pind + N_IND_SEARCH)]]
d = [idx ** 2 + idy ** 2 for (idx, idy) in zip(dx, dy)]
mind = min(d)
ind = d.index(mind) + pind
mind = math.sqrt(mind)
dxl = cx[ind] - state.x
dyl = cy[ind] - state.y
angle = pi_2_pi(cyaw[ind] - math.atan2(dyl, dxl))
if angle < 0:
mind *= -1
return ind, mind
| 685 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
predict_motion
|
(x0, oa, od, xref)
|
return xbar
| 210 | 223 |
def predict_motion(x0, oa, od, xref):
xbar = xref * 0.0
for i, _ in enumerate(x0):
xbar[i, 0] = x0[i]
state = State(x=x0[0], y=x0[1], yaw=x0[3], v=x0[2])
for (ai, di, i) in zip(oa, od, range(1, T + 1)):
state = update_state(state, ai, di)
xbar[0, i] = state.x
xbar[1, i] = state.y
xbar[2, i] = state.v
xbar[3, i] = state.yaw
return xbar
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L210-L223
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 94.136808 | 14 | 3 | 100 | 0 |
def predict_motion(x0, oa, od, xref):
xbar = xref * 0.0
for i, _ in enumerate(x0):
xbar[i, 0] = x0[i]
state = State(x=x0[0], y=x0[1], yaw=x0[3], v=x0[2])
for (ai, di, i) in zip(oa, od, range(1, T + 1)):
state = update_state(state, ai, di)
xbar[0, i] = state.x
xbar[1, i] = state.y
xbar[2, i] = state.v
xbar[3, i] = state.yaw
return xbar
| 686 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
iterative_linear_mpc_control
|
(xref, x0, dref, oa, od)
|
return oa, od, ox, oy, oyaw, ov
|
MPC contorl with updating operational point iteraitvely
|
MPC contorl with updating operational point iteraitvely
| 226 | 245 |
def iterative_linear_mpc_control(xref, x0, dref, oa, od):
"""
MPC contorl with updating operational point iteraitvely
"""
if oa is None or od is None:
oa = [0.0] * T
od = [0.0] * T
for i in range(MAX_ITER):
xbar = predict_motion(x0, oa, od, xref)
poa, pod = oa[:], od[:]
oa, od, ox, oy, oyaw, ov = linear_mpc_control(xref, xbar, x0, dref)
du = sum(abs(oa - poa)) + sum(abs(od - pod)) # calc u change value
if du <= DU_TH:
break
else:
print("Iterative is max iter")
return oa, od, ox, oy, oyaw, ov
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L226-L245
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19
] | 100 |
[] | 0 | true | 94.136808 | 20 | 5 | 100 | 1 |
def iterative_linear_mpc_control(xref, x0, dref, oa, od):
if oa is None or od is None:
oa = [0.0] * T
od = [0.0] * T
for i in range(MAX_ITER):
xbar = predict_motion(x0, oa, od, xref)
poa, pod = oa[:], od[:]
oa, od, ox, oy, oyaw, ov = linear_mpc_control(xref, xbar, x0, dref)
du = sum(abs(oa - poa)) + sum(abs(od - pod)) # calc u change value
if du <= DU_TH:
break
else:
print("Iterative is max iter")
return oa, od, ox, oy, oyaw, ov
| 687 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
linear_mpc_control
|
(xref, xbar, x0, dref)
|
return oa, odelta, ox, oy, oyaw, ov
|
linear mpc control
xref: reference point
xbar: operational point
x0: initial state
dref: reference steer angle
|
linear mpc control
| 248 | 302 |
def linear_mpc_control(xref, xbar, x0, dref):
"""
linear mpc control
xref: reference point
xbar: operational point
x0: initial state
dref: reference steer angle
"""
x = cvxpy.Variable((NX, T + 1))
u = cvxpy.Variable((NU, T))
cost = 0.0
constraints = []
for t in range(T):
cost += cvxpy.quad_form(u[:, t], R)
if t != 0:
cost += cvxpy.quad_form(xref[:, t] - x[:, t], Q)
A, B, C = get_linear_model_matrix(
xbar[2, t], xbar[3, t], dref[0, t])
constraints += [x[:, t + 1] == A @ x[:, t] + B @ u[:, t] + C]
if t < (T - 1):
cost += cvxpy.quad_form(u[:, t + 1] - u[:, t], Rd)
constraints += [cvxpy.abs(u[1, t + 1] - u[1, t]) <=
MAX_DSTEER * DT]
cost += cvxpy.quad_form(xref[:, T] - x[:, T], Qf)
constraints += [x[:, 0] == x0]
constraints += [x[2, :] <= MAX_SPEED]
constraints += [x[2, :] >= MIN_SPEED]
constraints += [cvxpy.abs(u[0, :]) <= MAX_ACCEL]
constraints += [cvxpy.abs(u[1, :]) <= MAX_STEER]
prob = cvxpy.Problem(cvxpy.Minimize(cost), constraints)
prob.solve(solver=cvxpy.ECOS, verbose=False)
if prob.status == cvxpy.OPTIMAL or prob.status == cvxpy.OPTIMAL_INACCURATE:
ox = get_nparray_from_matrix(x.value[0, :])
oy = get_nparray_from_matrix(x.value[1, :])
ov = get_nparray_from_matrix(x.value[2, :])
oyaw = get_nparray_from_matrix(x.value[3, :])
oa = get_nparray_from_matrix(u.value[0, :])
odelta = get_nparray_from_matrix(u.value[1, :])
else:
print("Error: Cannot solve mpc..")
oa, odelta, ox, oy, oyaw, ov = None, None, None, None, None, None
return oa, odelta, ox, oy, oyaw, ov
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L248-L302
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
53,
54
] | 96.363636 |
[
51,
52
] | 3.636364 | false | 94.136808 | 55 | 6 | 96.363636 | 6 |
def linear_mpc_control(xref, xbar, x0, dref):
x = cvxpy.Variable((NX, T + 1))
u = cvxpy.Variable((NU, T))
cost = 0.0
constraints = []
for t in range(T):
cost += cvxpy.quad_form(u[:, t], R)
if t != 0:
cost += cvxpy.quad_form(xref[:, t] - x[:, t], Q)
A, B, C = get_linear_model_matrix(
xbar[2, t], xbar[3, t], dref[0, t])
constraints += [x[:, t + 1] == A @ x[:, t] + B @ u[:, t] + C]
if t < (T - 1):
cost += cvxpy.quad_form(u[:, t + 1] - u[:, t], Rd)
constraints += [cvxpy.abs(u[1, t + 1] - u[1, t]) <=
MAX_DSTEER * DT]
cost += cvxpy.quad_form(xref[:, T] - x[:, T], Qf)
constraints += [x[:, 0] == x0]
constraints += [x[2, :] <= MAX_SPEED]
constraints += [x[2, :] >= MIN_SPEED]
constraints += [cvxpy.abs(u[0, :]) <= MAX_ACCEL]
constraints += [cvxpy.abs(u[1, :]) <= MAX_STEER]
prob = cvxpy.Problem(cvxpy.Minimize(cost), constraints)
prob.solve(solver=cvxpy.ECOS, verbose=False)
if prob.status == cvxpy.OPTIMAL or prob.status == cvxpy.OPTIMAL_INACCURATE:
ox = get_nparray_from_matrix(x.value[0, :])
oy = get_nparray_from_matrix(x.value[1, :])
ov = get_nparray_from_matrix(x.value[2, :])
oyaw = get_nparray_from_matrix(x.value[3, :])
oa = get_nparray_from_matrix(u.value[0, :])
odelta = get_nparray_from_matrix(u.value[1, :])
else:
print("Error: Cannot solve mpc..")
oa, odelta, ox, oy, oyaw, ov = None, None, None, None, None, None
return oa, odelta, ox, oy, oyaw, ov
| 688 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
calc_ref_trajectory
|
(state, cx, cy, cyaw, ck, sp, dl, pind)
|
return xref, ind, dref
| 305 | 340 |
def calc_ref_trajectory(state, cx, cy, cyaw, ck, sp, dl, pind):
xref = np.zeros((NX, T + 1))
dref = np.zeros((1, T + 1))
ncourse = len(cx)
ind, _ = calc_nearest_index(state, cx, cy, cyaw, pind)
if pind >= ind:
ind = pind
xref[0, 0] = cx[ind]
xref[1, 0] = cy[ind]
xref[2, 0] = sp[ind]
xref[3, 0] = cyaw[ind]
dref[0, 0] = 0.0 # steer operational point should be 0
travel = 0.0
for i in range(T + 1):
travel += abs(state.v) * DT
dind = int(round(travel / dl))
if (ind + dind) < ncourse:
xref[0, i] = cx[ind + dind]
xref[1, i] = cy[ind + dind]
xref[2, i] = sp[ind + dind]
xref[3, i] = cyaw[ind + dind]
dref[0, i] = 0.0
else:
xref[0, i] = cx[ncourse - 1]
xref[1, i] = cy[ncourse - 1]
xref[2, i] = sp[ncourse - 1]
xref[3, i] = cyaw[ncourse - 1]
dref[0, i] = 0.0
return xref, ind, dref
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L305-L340
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
29,
30,
31,
32,
33,
34,
35
] | 97.222222 |
[] | 0 | false | 94.136808 | 36 | 4 | 100 | 0 |
def calc_ref_trajectory(state, cx, cy, cyaw, ck, sp, dl, pind):
xref = np.zeros((NX, T + 1))
dref = np.zeros((1, T + 1))
ncourse = len(cx)
ind, _ = calc_nearest_index(state, cx, cy, cyaw, pind)
if pind >= ind:
ind = pind
xref[0, 0] = cx[ind]
xref[1, 0] = cy[ind]
xref[2, 0] = sp[ind]
xref[3, 0] = cyaw[ind]
dref[0, 0] = 0.0 # steer operational point should be 0
travel = 0.0
for i in range(T + 1):
travel += abs(state.v) * DT
dind = int(round(travel / dl))
if (ind + dind) < ncourse:
xref[0, i] = cx[ind + dind]
xref[1, i] = cy[ind + dind]
xref[2, i] = sp[ind + dind]
xref[3, i] = cyaw[ind + dind]
dref[0, i] = 0.0
else:
xref[0, i] = cx[ncourse - 1]
xref[1, i] = cy[ncourse - 1]
xref[2, i] = sp[ncourse - 1]
xref[3, i] = cyaw[ncourse - 1]
dref[0, i] = 0.0
return xref, ind, dref
| 689 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
check_goal
|
(state, goal, tind, nind)
|
return False
| 343 | 360 |
def check_goal(state, goal, tind, nind):
# check goal
dx = state.x - goal[0]
dy = state.y - goal[1]
d = math.hypot(dx, dy)
isgoal = (d <= GOAL_DIS)
if abs(tind - nind) >= 5:
isgoal = False
isstop = (abs(state.v) <= STOP_SPEED)
if isgoal and isstop:
return True
return False
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L343-L360
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17
] | 100 |
[] | 0 | true | 94.136808 | 18 | 4 | 100 | 0 |
def check_goal(state, goal, tind, nind):
# check goal
dx = state.x - goal[0]
dy = state.y - goal[1]
d = math.hypot(dx, dy)
isgoal = (d <= GOAL_DIS)
if abs(tind - nind) >= 5:
isgoal = False
isstop = (abs(state.v) <= STOP_SPEED)
if isgoal and isstop:
return True
return False
| 690 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
do_simulation
|
(cx, cy, cyaw, ck, sp, dl, initial_state)
|
return t, x, y, yaw, v, d, a
|
Simulation
cx: course x position list
cy: course y position list
cy: course yaw position list
ck: course curvature list
sp: speed profile
dl: course tick [m]
|
Simulation
| 363 | 445 |
def do_simulation(cx, cy, cyaw, ck, sp, dl, initial_state):
"""
Simulation
cx: course x position list
cy: course y position list
cy: course yaw position list
ck: course curvature list
sp: speed profile
dl: course tick [m]
"""
goal = [cx[-1], cy[-1]]
state = initial_state
# initial yaw compensation
if state.yaw - cyaw[0] >= math.pi:
state.yaw -= math.pi * 2.0
elif state.yaw - cyaw[0] <= -math.pi:
state.yaw += math.pi * 2.0
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
d = [0.0]
a = [0.0]
target_ind, _ = calc_nearest_index(state, cx, cy, cyaw, 0)
odelta, oa = None, None
cyaw = smooth_yaw(cyaw)
while MAX_TIME >= time:
xref, target_ind, dref = calc_ref_trajectory(
state, cx, cy, cyaw, ck, sp, dl, target_ind)
x0 = [state.x, state.y, state.v, state.yaw] # current state
oa, odelta, ox, oy, oyaw, ov = iterative_linear_mpc_control(
xref, x0, dref, oa, odelta)
if odelta is not None:
di, ai = odelta[0], oa[0]
state = update_state(state, ai, di)
time = time + DT
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
d.append(di)
a.append(ai)
if check_goal(state, goal, target_ind, len(cx)):
print("Goal")
break
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if ox is not None:
plt.plot(ox, oy, "xr", label="MPC")
plt.plot(cx, cy, "-r", label="course")
plt.plot(x, y, "ob", label="trajectory")
plt.plot(xref[0, :], xref[1, :], "xk", label="xref")
plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
plot_car(state.x, state.y, state.yaw, steer=di)
plt.axis("equal")
plt.grid(True)
plt.title("Time[s]:" + str(round(time, 2))
+ ", speed[km/h]:" + str(round(state.v * 3.6, 2)))
plt.pause(0.0001)
return t, x, y, yaw, v, d, a
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L363-L445
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82
] | 118.84058 |
[
21
] | 1.449275 | false | 94.136808 | 83 | 8 | 98.550725 | 8 |
def do_simulation(cx, cy, cyaw, ck, sp, dl, initial_state):
goal = [cx[-1], cy[-1]]
state = initial_state
# initial yaw compensation
if state.yaw - cyaw[0] >= math.pi:
state.yaw -= math.pi * 2.0
elif state.yaw - cyaw[0] <= -math.pi:
state.yaw += math.pi * 2.0
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
d = [0.0]
a = [0.0]
target_ind, _ = calc_nearest_index(state, cx, cy, cyaw, 0)
odelta, oa = None, None
cyaw = smooth_yaw(cyaw)
while MAX_TIME >= time:
xref, target_ind, dref = calc_ref_trajectory(
state, cx, cy, cyaw, ck, sp, dl, target_ind)
x0 = [state.x, state.y, state.v, state.yaw] # current state
oa, odelta, ox, oy, oyaw, ov = iterative_linear_mpc_control(
xref, x0, dref, oa, odelta)
if odelta is not None:
di, ai = odelta[0], oa[0]
state = update_state(state, ai, di)
time = time + DT
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
d.append(di)
a.append(ai)
if check_goal(state, goal, target_ind, len(cx)):
print("Goal")
break
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if ox is not None:
plt.plot(ox, oy, "xr", label="MPC")
plt.plot(cx, cy, "-r", label="course")
plt.plot(x, y, "ob", label="trajectory")
plt.plot(xref[0, :], xref[1, :], "xk", label="xref")
plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
plot_car(state.x, state.y, state.yaw, steer=di)
plt.axis("equal")
plt.grid(True)
plt.title("Time[s]:" + str(round(time, 2))
+ ", speed[km/h]:" + str(round(state.v * 3.6, 2)))
plt.pause(0.0001)
return t, x, y, yaw, v, d, a
| 691 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
calc_speed_profile
|
(cx, cy, cyaw, target_speed)
|
return speed_profile
| 448 | 474 |
def calc_speed_profile(cx, cy, cyaw, target_speed):
speed_profile = [target_speed] * len(cx)
direction = 1.0 # forward
# Set stop point
for i in range(len(cx) - 1):
dx = cx[i + 1] - cx[i]
dy = cy[i + 1] - cy[i]
move_direction = math.atan2(dy, dx)
if dx != 0.0 and dy != 0.0:
dangle = abs(pi_2_pi(move_direction - cyaw[i]))
if dangle >= math.pi / 4.0:
direction = -1.0
else:
direction = 1.0
if direction != 1.0:
speed_profile[i] = - target_speed
else:
speed_profile[i] = target_speed
speed_profile[-1] = 0.0
return speed_profile
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L448-L474
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
17,
18,
19,
20,
22,
23,
24,
25,
26
] | 92.592593 |
[] | 0 | false | 94.136808 | 27 | 6 | 100 | 0 |
def calc_speed_profile(cx, cy, cyaw, target_speed):
speed_profile = [target_speed] * len(cx)
direction = 1.0 # forward
# Set stop point
for i in range(len(cx) - 1):
dx = cx[i + 1] - cx[i]
dy = cy[i + 1] - cy[i]
move_direction = math.atan2(dy, dx)
if dx != 0.0 and dy != 0.0:
dangle = abs(pi_2_pi(move_direction - cyaw[i]))
if dangle >= math.pi / 4.0:
direction = -1.0
else:
direction = 1.0
if direction != 1.0:
speed_profile[i] = - target_speed
else:
speed_profile[i] = target_speed
speed_profile[-1] = 0.0
return speed_profile
| 692 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
smooth_yaw
|
(yaw)
|
return yaw
| 477 | 490 |
def smooth_yaw(yaw):
for i in range(len(yaw) - 1):
dyaw = yaw[i + 1] - yaw[i]
while dyaw >= math.pi / 2.0:
yaw[i + 1] -= math.pi * 2.0
dyaw = yaw[i + 1] - yaw[i]
while dyaw <= -math.pi / 2.0:
yaw[i + 1] += math.pi * 2.0
dyaw = yaw[i + 1] - yaw[i]
return yaw
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L477-L490
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 94.136808 | 14 | 4 | 100 | 0 |
def smooth_yaw(yaw):
for i in range(len(yaw) - 1):
dyaw = yaw[i + 1] - yaw[i]
while dyaw >= math.pi / 2.0:
yaw[i + 1] -= math.pi * 2.0
dyaw = yaw[i + 1] - yaw[i]
while dyaw <= -math.pi / 2.0:
yaw[i + 1] += math.pi * 2.0
dyaw = yaw[i + 1] - yaw[i]
return yaw
| 693 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
get_straight_course
|
(dl)
|
return cx, cy, cyaw, ck
| 493 | 499 |
def get_straight_course(dl):
ax = [0.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0]
ay = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
cx, cy, cyaw, ck, s = cubic_spline_planner.calc_spline_course(
ax, ay, ds=dl)
return cx, cy, cyaw, ck
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L493-L499
| 2 |
[
0
] | 14.285714 |
[
1,
2,
3,
6
] | 57.142857 | false | 94.136808 | 7 | 1 | 42.857143 | 0 |
def get_straight_course(dl):
ax = [0.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0]
ay = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
cx, cy, cyaw, ck, s = cubic_spline_planner.calc_spline_course(
ax, ay, ds=dl)
return cx, cy, cyaw, ck
| 694 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
get_straight_course2
|
(dl)
|
return cx, cy, cyaw, ck
| 502 | 508 |
def get_straight_course2(dl):
ax = [0.0, -10.0, -20.0, -40.0, -50.0, -60.0, -70.0]
ay = [0.0, -1.0, 1.0, 0.0, -1.0, 1.0, 0.0]
cx, cy, cyaw, ck, s = cubic_spline_planner.calc_spline_course(
ax, ay, ds=dl)
return cx, cy, cyaw, ck
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L502-L508
| 2 |
[
0
] | 14.285714 |
[
1,
2,
3,
6
] | 57.142857 | false | 94.136808 | 7 | 1 | 42.857143 | 0 |
def get_straight_course2(dl):
ax = [0.0, -10.0, -20.0, -40.0, -50.0, -60.0, -70.0]
ay = [0.0, -1.0, 1.0, 0.0, -1.0, 1.0, 0.0]
cx, cy, cyaw, ck, s = cubic_spline_planner.calc_spline_course(
ax, ay, ds=dl)
return cx, cy, cyaw, ck
| 695 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
get_straight_course3
|
(dl)
|
return cx, cy, cyaw, ck
| 511 | 519 |
def get_straight_course3(dl):
ax = [0.0, -10.0, -20.0, -40.0, -50.0, -60.0, -70.0]
ay = [0.0, -1.0, 1.0, 0.0, -1.0, 1.0, 0.0]
cx, cy, cyaw, ck, s = cubic_spline_planner.calc_spline_course(
ax, ay, ds=dl)
cyaw = [i - math.pi for i in cyaw]
return cx, cy, cyaw, ck
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L511-L519
| 2 |
[
0,
1,
2,
3,
5,
6,
7,
8
] | 88.888889 |
[] | 0 | false | 94.136808 | 9 | 2 | 100 | 0 |
def get_straight_course3(dl):
ax = [0.0, -10.0, -20.0, -40.0, -50.0, -60.0, -70.0]
ay = [0.0, -1.0, 1.0, 0.0, -1.0, 1.0, 0.0]
cx, cy, cyaw, ck, s = cubic_spline_planner.calc_spline_course(
ax, ay, ds=dl)
cyaw = [i - math.pi for i in cyaw]
return cx, cy, cyaw, ck
| 696 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
get_forward_course
|
(dl)
|
return cx, cy, cyaw, ck
| 522 | 528 |
def get_forward_course(dl):
ax = [0.0, 60.0, 125.0, 50.0, 75.0, 30.0, -10.0]
ay = [0.0, 0.0, 50.0, 65.0, 30.0, 50.0, -20.0]
cx, cy, cyaw, ck, s = cubic_spline_planner.calc_spline_course(
ax, ay, ds=dl)
return cx, cy, cyaw, ck
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L522-L528
| 2 |
[
0
] | 14.285714 |
[
1,
2,
3,
6
] | 57.142857 | false | 94.136808 | 7 | 1 | 42.857143 | 0 |
def get_forward_course(dl):
ax = [0.0, 60.0, 125.0, 50.0, 75.0, 30.0, -10.0]
ay = [0.0, 0.0, 50.0, 65.0, 30.0, 50.0, -20.0]
cx, cy, cyaw, ck, s = cubic_spline_planner.calc_spline_course(
ax, ay, ds=dl)
return cx, cy, cyaw, ck
| 697 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
get_switch_back_course
|
(dl)
|
return cx, cy, cyaw, ck
| 531 | 546 |
def get_switch_back_course(dl):
ax = [0.0, 30.0, 6.0, 20.0, 35.0]
ay = [0.0, 0.0, 20.0, 35.0, 20.0]
cx, cy, cyaw, ck, s = cubic_spline_planner.calc_spline_course(
ax, ay, ds=dl)
ax = [35.0, 10.0, 0.0, 0.0]
ay = [20.0, 30.0, 5.0, 0.0]
cx2, cy2, cyaw2, ck2, s2 = cubic_spline_planner.calc_spline_course(
ax, ay, ds=dl)
cyaw2 = [i - math.pi for i in cyaw2]
cx.extend(cx2)
cy.extend(cy2)
cyaw.extend(cyaw2)
ck.extend(ck2)
return cx, cy, cyaw, ck
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L531-L546
| 2 |
[
0,
1,
2,
3,
5,
6,
7,
9,
10,
11,
12,
13,
14,
15
] | 87.5 |
[] | 0 | false | 94.136808 | 16 | 2 | 100 | 0 |
def get_switch_back_course(dl):
ax = [0.0, 30.0, 6.0, 20.0, 35.0]
ay = [0.0, 0.0, 20.0, 35.0, 20.0]
cx, cy, cyaw, ck, s = cubic_spline_planner.calc_spline_course(
ax, ay, ds=dl)
ax = [35.0, 10.0, 0.0, 0.0]
ay = [20.0, 30.0, 5.0, 0.0]
cx2, cy2, cyaw2, ck2, s2 = cubic_spline_planner.calc_spline_course(
ax, ay, ds=dl)
cyaw2 = [i - math.pi for i in cyaw2]
cx.extend(cx2)
cy.extend(cy2)
cyaw.extend(cyaw2)
ck.extend(ck2)
return cx, cy, cyaw, ck
| 698 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
main
|
()
| 549 | 583 |
def main():
print(__file__ + " start!!")
dl = 1.0 # course tick
# cx, cy, cyaw, ck = get_straight_course(dl)
# cx, cy, cyaw, ck = get_straight_course2(dl)
# cx, cy, cyaw, ck = get_straight_course3(dl)
# cx, cy, cyaw, ck = get_forward_course(dl)
cx, cy, cyaw, ck = get_switch_back_course(dl)
sp = calc_speed_profile(cx, cy, cyaw, TARGET_SPEED)
initial_state = State(x=cx[0], y=cy[0], yaw=cyaw[0], v=0.0)
t, x, y, yaw, v, d, a = do_simulation(
cx, cy, cyaw, ck, sp, dl, initial_state)
if show_animation: # pragma: no cover
plt.close("all")
plt.subplots()
plt.plot(cx, cy, "-r", label="spline")
plt.plot(x, y, "-g", label="tracking")
plt.grid(True)
plt.axis("equal")
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.legend()
plt.subplots()
plt.plot(t, v, "-r", label="speed")
plt.grid(True)
plt.xlabel("Time [s]")
plt.ylabel("Speed [kmh]")
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L549-L583
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14
] | 78.947368 |
[] | 0 | false | 94.136808 | 35 | 2 | 100 | 0 |
def main():
print(__file__ + " start!!")
dl = 1.0 # course tick
# cx, cy, cyaw, ck = get_straight_course(dl)
# cx, cy, cyaw, ck = get_straight_course2(dl)
# cx, cy, cyaw, ck = get_straight_course3(dl)
# cx, cy, cyaw, ck = get_forward_course(dl)
cx, cy, cyaw, ck = get_switch_back_course(dl)
sp = calc_speed_profile(cx, cy, cyaw, TARGET_SPEED)
initial_state = State(x=cx[0], y=cy[0], yaw=cyaw[0], v=0.0)
t, x, y, yaw, v, d, a = do_simulation(
cx, cy, cyaw, ck, sp, dl, initial_state)
if show_animation: # pragma: no cover
plt.close("all")
plt.subplots()
plt.plot(cx, cy, "-r", label="spline")
plt.plot(x, y, "-g", label="tracking")
plt.grid(True)
plt.axis("equal")
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.legend()
plt.subplots()
plt.plot(t, v, "-r", label="speed")
plt.grid(True)
plt.xlabel("Time [s]")
plt.ylabel("Speed [kmh]")
plt.show()
| 699 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
main2
|
()
| 586 | 616 |
def main2():
print(__file__ + " start!!")
dl = 1.0 # course tick
cx, cy, cyaw, ck = get_straight_course3(dl)
sp = calc_speed_profile(cx, cy, cyaw, TARGET_SPEED)
initial_state = State(x=cx[0], y=cy[0], yaw=0.0, v=0.0)
t, x, y, yaw, v, d, a = do_simulation(
cx, cy, cyaw, ck, sp, dl, initial_state)
if show_animation: # pragma: no cover
plt.close("all")
plt.subplots()
plt.plot(cx, cy, "-r", label="spline")
plt.plot(x, y, "-g", label="tracking")
plt.grid(True)
plt.axis("equal")
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.legend()
plt.subplots()
plt.plot(t, v, "-r", label="speed")
plt.grid(True)
plt.xlabel("Time [s]")
plt.ylabel("Speed [kmh]")
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L586-L616
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10
] | 73.333333 |
[] | 0 | false | 94.136808 | 31 | 2 | 100 | 0 |
def main2():
print(__file__ + " start!!")
dl = 1.0 # course tick
cx, cy, cyaw, ck = get_straight_course3(dl)
sp = calc_speed_profile(cx, cy, cyaw, TARGET_SPEED)
initial_state = State(x=cx[0], y=cy[0], yaw=0.0, v=0.0)
t, x, y, yaw, v, d, a = do_simulation(
cx, cy, cyaw, ck, sp, dl, initial_state)
if show_animation: # pragma: no cover
plt.close("all")
plt.subplots()
plt.plot(cx, cy, "-r", label="spline")
plt.plot(x, y, "-g", label="tracking")
plt.grid(True)
plt.axis("equal")
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.legend()
plt.subplots()
plt.plot(t, v, "-r", label="speed")
plt.grid(True)
plt.xlabel("Time [s]")
plt.ylabel("Speed [kmh]")
plt.show()
| 700 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
|
State.__init__
|
(self, x=0.0, y=0.0, yaw=0.0, v=0.0)
| 63 | 68 |
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
self.x = x
self.y = y
self.yaw = yaw
self.v = v
self.predelta = None
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L63-L68
| 2 |
[
0,
1,
2,
3,
4,
5
] | 100 |
[] | 0 | true | 94.136808 | 6 | 1 | 100 | 0 |
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
self.x = x
self.y = y
self.yaw = yaw
self.v = v
self.predelta = None
| 701 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/PotentialFieldPlanning/potential_field_planning.py
|
calc_potential_field
|
(gx, gy, ox, oy, reso, rr, sx, sy)
|
return pmap, minx, miny
| 26 | 47 |
def calc_potential_field(gx, gy, ox, oy, reso, rr, sx, sy):
minx = min(min(ox), sx, gx) - AREA_WIDTH / 2.0
miny = min(min(oy), sy, gy) - AREA_WIDTH / 2.0
maxx = max(max(ox), sx, gx) + AREA_WIDTH / 2.0
maxy = max(max(oy), sy, gy) + AREA_WIDTH / 2.0
xw = int(round((maxx - minx) / reso))
yw = int(round((maxy - miny) / reso))
# calc each potential
pmap = [[0.0 for i in range(yw)] for i in range(xw)]
for ix in range(xw):
x = ix * reso + minx
for iy in range(yw):
y = iy * reso + miny
ug = calc_attractive_potential(x, y, gx, gy)
uo = calc_repulsive_potential(x, y, ox, oy, rr)
uf = ug + uo
pmap[ix][iy] = uf
return pmap, minx, miny
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/PotentialFieldPlanning/potential_field_planning.py#L26-L47
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21
] | 100 |
[] | 0 | true | 84.297521 | 22 | 5 | 100 | 0 |
def calc_potential_field(gx, gy, ox, oy, reso, rr, sx, sy):
minx = min(min(ox), sx, gx) - AREA_WIDTH / 2.0
miny = min(min(oy), sy, gy) - AREA_WIDTH / 2.0
maxx = max(max(ox), sx, gx) + AREA_WIDTH / 2.0
maxy = max(max(oy), sy, gy) + AREA_WIDTH / 2.0
xw = int(round((maxx - minx) / reso))
yw = int(round((maxy - miny) / reso))
# calc each potential
pmap = [[0.0 for i in range(yw)] for i in range(xw)]
for ix in range(xw):
x = ix * reso + minx
for iy in range(yw):
y = iy * reso + miny
ug = calc_attractive_potential(x, y, gx, gy)
uo = calc_repulsive_potential(x, y, ox, oy, rr)
uf = ug + uo
pmap[ix][iy] = uf
return pmap, minx, miny
| 708 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/PotentialFieldPlanning/potential_field_planning.py
|
calc_attractive_potential
|
(x, y, gx, gy)
|
return 0.5 * KP * np.hypot(x - gx, y - gy)
| 50 | 51 |
def calc_attractive_potential(x, y, gx, gy):
return 0.5 * KP * np.hypot(x - gx, y - gy)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/PotentialFieldPlanning/potential_field_planning.py#L50-L51
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 84.297521 | 2 | 1 | 100 | 0 |
def calc_attractive_potential(x, y, gx, gy):
return 0.5 * KP * np.hypot(x - gx, y - gy)
| 709 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/PotentialFieldPlanning/potential_field_planning.py
|
calc_repulsive_potential
|
(x, y, ox, oy, rr)
| 54 | 73 |
def calc_repulsive_potential(x, y, ox, oy, rr):
# search nearest obstacle
minid = -1
dmin = float("inf")
for i, _ in enumerate(ox):
d = np.hypot(x - ox[i], y - oy[i])
if dmin >= d:
dmin = d
minid = i
# calc repulsive potential
dq = np.hypot(x - ox[minid], y - oy[minid])
if dq <= rr:
if dq <= 0.1:
dq = 0.1
return 0.5 * ETA * (1.0 / dq - 1.0 / rr) ** 2
else:
return 0.0
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/PotentialFieldPlanning/potential_field_planning.py#L54-L73
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
19
] | 95 |
[] | 0 | false | 84.297521 | 20 | 5 | 100 | 0 |
def calc_repulsive_potential(x, y, ox, oy, rr):
# search nearest obstacle
minid = -1
dmin = float("inf")
for i, _ in enumerate(ox):
d = np.hypot(x - ox[i], y - oy[i])
if dmin >= d:
dmin = d
minid = i
# calc repulsive potential
dq = np.hypot(x - ox[minid], y - oy[minid])
if dq <= rr:
if dq <= 0.1:
dq = 0.1
return 0.5 * ETA * (1.0 / dq - 1.0 / rr) ** 2
else:
return 0.0
| 710 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/PotentialFieldPlanning/potential_field_planning.py
|
get_motion_model
|
()
|
return motion
| 76 | 87 |
def get_motion_model():
# dx, dy
motion = [[1, 0],
[0, 1],
[-1, 0],
[0, -1],
[-1, -1],
[-1, 1],
[1, -1],
[1, 1]]
return motion
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/PotentialFieldPlanning/potential_field_planning.py#L76-L87
| 2 |
[
0,
1,
2,
10,
11
] | 41.666667 |
[] | 0 | false | 84.297521 | 12 | 1 | 100 | 0 |
def get_motion_model():
# dx, dy
motion = [[1, 0],
[0, 1],
[-1, 0],
[0, -1],
[-1, -1],
[-1, 1],
[1, -1],
[1, 1]]
return motion
| 711 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/PotentialFieldPlanning/potential_field_planning.py
|
oscillations_detection
|
(previous_ids, ix, iy)
|
return False
| 90 | 103 |
def oscillations_detection(previous_ids, ix, iy):
previous_ids.append((ix, iy))
if (len(previous_ids) > OSCILLATIONS_DETECTION_LENGTH):
previous_ids.popleft()
# check if contains any duplicates by copying into a set
previous_ids_set = set()
for index in previous_ids:
if index in previous_ids_set:
return True
else:
previous_ids_set.add(index)
return False
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/PotentialFieldPlanning/potential_field_planning.py#L90-L103
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
12,
13
] | 85.714286 |
[
10
] | 7.142857 | false | 84.297521 | 14 | 4 | 92.857143 | 0 |
def oscillations_detection(previous_ids, ix, iy):
previous_ids.append((ix, iy))
if (len(previous_ids) > OSCILLATIONS_DETECTION_LENGTH):
previous_ids.popleft()
# check if contains any duplicates by copying into a set
previous_ids_set = set()
for index in previous_ids:
if index in previous_ids_set:
return True
else:
previous_ids_set.add(index)
return False
| 712 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/PotentialFieldPlanning/potential_field_planning.py
|
potential_field_planning
|
(sx, sy, gx, gy, ox, oy, reso, rr)
|
return rx, ry
| 106 | 163 |
def potential_field_planning(sx, sy, gx, gy, ox, oy, reso, rr):
# calc potential field
pmap, minx, miny = calc_potential_field(gx, gy, ox, oy, reso, rr, sx, sy)
# search path
d = np.hypot(sx - gx, sy - gy)
ix = round((sx - minx) / reso)
iy = round((sy - miny) / reso)
gix = round((gx - minx) / reso)
giy = round((gy - miny) / reso)
if show_animation:
draw_heatmap(pmap)
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(ix, iy, "*k")
plt.plot(gix, giy, "*m")
rx, ry = [sx], [sy]
motion = get_motion_model()
previous_ids = deque()
while d >= reso:
minp = float("inf")
minix, miniy = -1, -1
for i, _ in enumerate(motion):
inx = int(ix + motion[i][0])
iny = int(iy + motion[i][1])
if inx >= len(pmap) or iny >= len(pmap[0]) or inx < 0 or iny < 0:
p = float("inf") # outside area
print("outside potential!")
else:
p = pmap[inx][iny]
if minp > p:
minp = p
minix = inx
miniy = iny
ix = minix
iy = miniy
xp = ix * reso + minx
yp = iy * reso + miny
d = np.hypot(gx - xp, gy - yp)
rx.append(xp)
ry.append(yp)
if (oscillations_detection(previous_ids, ix, iy)):
print("Oscillation detected at ({},{})!".format(ix, iy))
break
if show_animation:
plt.plot(ix, iy, ".r")
plt.pause(0.01)
print("Goal!!")
return rx, ry
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/PotentialFieldPlanning/potential_field_planning.py#L106-L163
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
50,
51,
54,
55,
56,
57
] | 77.586207 |
[
13,
15,
17,
18,
31,
32,
48,
49,
52,
53
] | 17.241379 | false | 84.297521 | 58 | 11 | 82.758621 | 0 |
def potential_field_planning(sx, sy, gx, gy, ox, oy, reso, rr):
# calc potential field
pmap, minx, miny = calc_potential_field(gx, gy, ox, oy, reso, rr, sx, sy)
# search path
d = np.hypot(sx - gx, sy - gy)
ix = round((sx - minx) / reso)
iy = round((sy - miny) / reso)
gix = round((gx - minx) / reso)
giy = round((gy - miny) / reso)
if show_animation:
draw_heatmap(pmap)
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(ix, iy, "*k")
plt.plot(gix, giy, "*m")
rx, ry = [sx], [sy]
motion = get_motion_model()
previous_ids = deque()
while d >= reso:
minp = float("inf")
minix, miniy = -1, -1
for i, _ in enumerate(motion):
inx = int(ix + motion[i][0])
iny = int(iy + motion[i][1])
if inx >= len(pmap) or iny >= len(pmap[0]) or inx < 0 or iny < 0:
p = float("inf") # outside area
print("outside potential!")
else:
p = pmap[inx][iny]
if minp > p:
minp = p
minix = inx
miniy = iny
ix = minix
iy = miniy
xp = ix * reso + minx
yp = iy * reso + miny
d = np.hypot(gx - xp, gy - yp)
rx.append(xp)
ry.append(yp)
if (oscillations_detection(previous_ids, ix, iy)):
print("Oscillation detected at ({},{})!".format(ix, iy))
break
if show_animation:
plt.plot(ix, iy, ".r")
plt.pause(0.01)
print("Goal!!")
return rx, ry
| 713 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/PotentialFieldPlanning/potential_field_planning.py
|
draw_heatmap
|
(data)
| 166 | 168 |
def draw_heatmap(data):
data = np.array(data).T
plt.pcolor(data, vmax=100.0, cmap=plt.cm.Blues)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/PotentialFieldPlanning/potential_field_planning.py#L166-L168
| 2 |
[
0
] | 33.333333 |
[
1,
2
] | 66.666667 | false | 84.297521 | 3 | 1 | 33.333333 | 0 |
def draw_heatmap(data):
data = np.array(data).T
plt.pcolor(data, vmax=100.0, cmap=plt.cm.Blues)
| 714 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/PotentialFieldPlanning/potential_field_planning.py
|
main
|
()
| 171 | 193 |
def main():
print("potential_field_planning start")
sx = 0.0 # start x position [m]
sy = 10.0 # start y positon [m]
gx = 30.0 # goal x position [m]
gy = 30.0 # goal y position [m]
grid_size = 0.5 # potential grid size [m]
robot_radius = 5.0 # robot radius [m]
ox = [15.0, 5.0, 20.0, 25.0] # obstacle x position list [m]
oy = [25.0, 15.0, 26.0, 25.0] # obstacle y position list [m]
if show_animation:
plt.grid(True)
plt.axis("equal")
# path generation
_, _ = potential_field_planning(
sx, sy, gx, gy, ox, oy, grid_size, robot_radius)
if show_animation:
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/PotentialFieldPlanning/potential_field_planning.py#L171-L193
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
17,
18,
20,
21
] | 78.26087 |
[
14,
15,
22
] | 13.043478 | false | 84.297521 | 23 | 3 | 86.956522 | 0 |
def main():
print("potential_field_planning start")
sx = 0.0 # start x position [m]
sy = 10.0 # start y positon [m]
gx = 30.0 # goal x position [m]
gy = 30.0 # goal y position [m]
grid_size = 0.5 # potential grid size [m]
robot_radius = 5.0 # robot radius [m]
ox = [15.0, 5.0, 20.0, 25.0] # obstacle x position list [m]
oy = [25.0, 15.0, 26.0, 25.0] # obstacle y position list [m]
if show_animation:
plt.grid(True)
plt.axis("equal")
# path generation
_, _ = potential_field_planning(
sx, sy, gx, gy, ox, oy, grid_size, robot_radius)
if show_animation:
plt.show()
| 715 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
add_coordinates
|
(node1: Node, node2: Node)
|
return new_node
| 29 | 34 |
def add_coordinates(node1: Node, node2: Node):
new_node = Node()
new_node.x = node1.x + node2.x
new_node.y = node1.y + node2.y
new_node.cost = node1.cost + node2.cost
return new_node
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L29-L34
| 2 |
[
0,
1,
2,
3,
4,
5
] | 100 |
[] | 0 | true | 74.621212 | 6 | 1 | 100 | 0 |
def add_coordinates(node1: Node, node2: Node):
new_node = Node()
new_node.x = node1.x + node2.x
new_node.y = node1.y + node2.y
new_node.cost = node1.cost + node2.cost
return new_node
| 716 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
compare_coordinates
|
(node1: Node, node2: Node)
|
return node1.x == node2.x and node1.y == node2.y
| 37 | 38 |
def compare_coordinates(node1: Node, node2: Node):
return node1.x == node2.x and node1.y == node2.y
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L37-L38
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 74.621212 | 2 | 2 | 100 | 0 |
def compare_coordinates(node1: Node, node2: Node):
return node1.x == node2.x and node1.y == node2.y
| 717 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
main
|
()
| 353 | 423 |
def main():
# start and goal position
sx = 10 # [m]
sy = 10 # [m]
gx = 50 # [m]
gy = 50 # [m]
# set obstacle positions
ox, oy = [], []
for i in range(-10, 60):
ox.append(i)
oy.append(-10.0)
for i in range(-10, 60):
ox.append(60.0)
oy.append(i)
for i in range(-10, 61):
ox.append(i)
oy.append(60.0)
for i in range(-10, 61):
ox.append(-10.0)
oy.append(i)
for i in range(-10, 40):
ox.append(20.0)
oy.append(i)
for i in range(0, 40):
ox.append(40.0)
oy.append(60.0 - i)
if show_animation:
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "og")
plt.plot(gx, gy, "xb")
plt.grid(True)
plt.axis("equal")
label_column = ['Start', 'Goal', 'Path taken',
'Current computed path', 'Previous computed path',
'Obstacles']
columns = [plt.plot([], [], symbol, color=colour, alpha=alpha)[0]
for symbol, colour, alpha in [['o', 'g', 1],
['x', 'b', 1],
['-', 'r', 1],
['.', 'c', 1],
['.', 'c', 0.3],
['.', 'k', 1]]]
plt.legend(columns, label_column, bbox_to_anchor=(1, 1), title="Key:",
fontsize="xx-small")
plt.plot()
plt.pause(pause_time)
# Obstacles discovered at time = row
# time = 1, obstacles discovered at (0, 2), (9, 2), (4, 0)
# time = 2, obstacles discovered at (0, 1), (7, 7)
# ...
# when the spoofed obstacles are:
# spoofed_ox = [[0, 9, 4], [0, 7], [], [], [], [], [], [5]]
# spoofed_oy = [[2, 2, 0], [1, 7], [], [], [], [], [], [4]]
# Reroute
# spoofed_ox = [[], [], [], [], [], [], [], [40 for _ in range(10, 21)]]
# spoofed_oy = [[], [], [], [], [], [], [], [i for i in range(10, 21)]]
# Obstacles that demostrate large rerouting
spoofed_ox = [[], [], [],
[i for i in range(0, 21)] + [0 for _ in range(0, 20)]]
spoofed_oy = [[], [], [],
[20 for _ in range(0, 21)] + [i for i in range(0, 20)]]
dstarlite = DStarLite(ox, oy)
dstarlite.main(Node(x=sx, y=sy), Node(x=gx, y=gy),
spoofed_ox=spoofed_ox, spoofed_oy=spoofed_oy)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L353-L423
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
62,
63,
65,
67,
68,
69
] | 50.704225 |
[
30,
31,
32,
33,
34,
35,
38,
45,
47,
48
] | 14.084507 | false | 74.621212 | 71 | 13 | 85.915493 | 0 |
def main():
# start and goal position
sx = 10 # [m]
sy = 10 # [m]
gx = 50 # [m]
gy = 50 # [m]
# set obstacle positions
ox, oy = [], []
for i in range(-10, 60):
ox.append(i)
oy.append(-10.0)
for i in range(-10, 60):
ox.append(60.0)
oy.append(i)
for i in range(-10, 61):
ox.append(i)
oy.append(60.0)
for i in range(-10, 61):
ox.append(-10.0)
oy.append(i)
for i in range(-10, 40):
ox.append(20.0)
oy.append(i)
for i in range(0, 40):
ox.append(40.0)
oy.append(60.0 - i)
if show_animation:
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "og")
plt.plot(gx, gy, "xb")
plt.grid(True)
plt.axis("equal")
label_column = ['Start', 'Goal', 'Path taken',
'Current computed path', 'Previous computed path',
'Obstacles']
columns = [plt.plot([], [], symbol, color=colour, alpha=alpha)[0]
for symbol, colour, alpha in [['o', 'g', 1],
['x', 'b', 1],
['-', 'r', 1],
['.', 'c', 1],
['.', 'c', 0.3],
['.', 'k', 1]]]
plt.legend(columns, label_column, bbox_to_anchor=(1, 1), title="Key:",
fontsize="xx-small")
plt.plot()
plt.pause(pause_time)
# Obstacles discovered at time = row
# time = 1, obstacles discovered at (0, 2), (9, 2), (4, 0)
# time = 2, obstacles discovered at (0, 1), (7, 7)
# ...
# when the spoofed obstacles are:
# spoofed_ox = [[0, 9, 4], [0, 7], [], [], [], [], [], [5]]
# spoofed_oy = [[2, 2, 0], [1, 7], [], [], [], [], [], [4]]
# Reroute
# spoofed_ox = [[], [], [], [], [], [], [], [40 for _ in range(10, 21)]]
# spoofed_oy = [[], [], [], [], [], [], [], [i for i in range(10, 21)]]
# Obstacles that demostrate large rerouting
spoofed_ox = [[], [], [],
[i for i in range(0, 21)] + [0 for _ in range(0, 20)]]
spoofed_oy = [[], [], [],
[20 for _ in range(0, 21)] + [i for i in range(0, 20)]]
dstarlite = DStarLite(ox, oy)
dstarlite.main(Node(x=sx, y=sy), Node(x=gx, y=gy),
spoofed_ox=spoofed_ox, spoofed_oy=spoofed_oy)
| 718 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
Node.__init__
|
(self, x: int = 0, y: int = 0, cost: float = 0.0)
| 23 | 26 |
def __init__(self, x: int = 0, y: int = 0, cost: float = 0.0):
self.x = x
self.y = y
self.cost = cost
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L23-L26
| 2 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 74.621212 | 4 | 1 | 100 | 0 |
def __init__(self, x: int = 0, y: int = 0, cost: float = 0.0):
self.x = x
self.y = y
self.cost = cost
| 719 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.__init__
|
(self, ox: list, oy: list)
| 56 | 81 |
def __init__(self, ox: list, oy: list):
# Ensure that within the algorithm implementation all node coordinates
# are indices in the grid and extend
# from 0 to abs(<axis>_max - <axis>_min)
self.x_min_world = int(min(ox))
self.y_min_world = int(min(oy))
self.x_max = int(abs(max(ox) - self.x_min_world))
self.y_max = int(abs(max(oy) - self.y_min_world))
self.obstacles = [Node(x - self.x_min_world, y - self.y_min_world)
for x, y in zip(ox, oy)]
self.obstacles_xy = np.array(
[[obstacle.x, obstacle.y] for obstacle in self.obstacles]
)
self.start = Node(0, 0)
self.goal = Node(0, 0)
self.U = list() # type: ignore
self.km = 0.0
self.kold = 0.0
self.rhs = self.create_grid(float("inf"))
self.g = self.create_grid(float("inf"))
self.detected_obstacles_xy = np.empty((0, 2))
self.xy = np.empty((0, 2))
if show_animation:
self.detected_obstacles_for_plotting_x = list() # type: ignore
self.detected_obstacles_for_plotting_y = list() # type: ignore
self.initialized = False
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L56-L81
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
10,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
25
] | 80.769231 |
[
23,
24
] | 7.692308 | false | 74.621212 | 26 | 4 | 92.307692 | 0 |
def __init__(self, ox: list, oy: list):
# Ensure that within the algorithm implementation all node coordinates
# are indices in the grid and extend
# from 0 to abs(<axis>_max - <axis>_min)
self.x_min_world = int(min(ox))
self.y_min_world = int(min(oy))
self.x_max = int(abs(max(ox) - self.x_min_world))
self.y_max = int(abs(max(oy) - self.y_min_world))
self.obstacles = [Node(x - self.x_min_world, y - self.y_min_world)
for x, y in zip(ox, oy)]
self.obstacles_xy = np.array(
[[obstacle.x, obstacle.y] for obstacle in self.obstacles]
)
self.start = Node(0, 0)
self.goal = Node(0, 0)
self.U = list() # type: ignore
self.km = 0.0
self.kold = 0.0
self.rhs = self.create_grid(float("inf"))
self.g = self.create_grid(float("inf"))
self.detected_obstacles_xy = np.empty((0, 2))
self.xy = np.empty((0, 2))
if show_animation:
self.detected_obstacles_for_plotting_x = list() # type: ignore
self.detected_obstacles_for_plotting_y = list() # type: ignore
self.initialized = False
| 720 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.create_grid
|
(self, val: float)
|
return np.full((self.x_max, self.y_max), val)
| 83 | 84 |
def create_grid(self, val: float):
return np.full((self.x_max, self.y_max), val)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L83-L84
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 74.621212 | 2 | 1 | 100 | 0 |
def create_grid(self, val: float):
return np.full((self.x_max, self.y_max), val)
| 721 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.is_obstacle
|
(self, node: Node)
|
return is_in_obstacles or is_in_detected_obstacles
| 86 | 99 |
def is_obstacle(self, node: Node):
x = np.array([node.x])
y = np.array([node.y])
obstacle_x_equal = self.obstacles_xy[:, 0] == x
obstacle_y_equal = self.obstacles_xy[:, 1] == y
is_in_obstacles = (obstacle_x_equal & obstacle_y_equal).any()
is_in_detected_obstacles = False
if self.detected_obstacles_xy.shape[0] > 0:
is_x_equal = self.detected_obstacles_xy[:, 0] == x
is_y_equal = self.detected_obstacles_xy[:, 1] == y
is_in_detected_obstacles = (is_x_equal & is_y_equal).any()
return is_in_obstacles or is_in_detected_obstacles
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L86-L99
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 74.621212 | 14 | 3 | 100 | 0 |
def is_obstacle(self, node: Node):
x = np.array([node.x])
y = np.array([node.y])
obstacle_x_equal = self.obstacles_xy[:, 0] == x
obstacle_y_equal = self.obstacles_xy[:, 1] == y
is_in_obstacles = (obstacle_x_equal & obstacle_y_equal).any()
is_in_detected_obstacles = False
if self.detected_obstacles_xy.shape[0] > 0:
is_x_equal = self.detected_obstacles_xy[:, 0] == x
is_y_equal = self.detected_obstacles_xy[:, 1] == y
is_in_detected_obstacles = (is_x_equal & is_y_equal).any()
return is_in_obstacles or is_in_detected_obstacles
| 722 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.c
|
(self, node1: Node, node2: Node)
|
return detected_motion[0].cost
| 101 | 109 |
def c(self, node1: Node, node2: Node):
if self.is_obstacle(node2):
# Attempting to move from or to an obstacle
return math.inf
new_node = Node(node1.x-node2.x, node1.y-node2.y)
detected_motion = list(filter(lambda motion:
compare_coordinates(motion, new_node),
self.motions))
return detected_motion[0].cost
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L101-L109
| 2 |
[
0,
1,
2,
3,
4,
5,
8
] | 77.777778 |
[] | 0 | false | 74.621212 | 9 | 2 | 100 | 0 |
def c(self, node1: Node, node2: Node):
if self.is_obstacle(node2):
# Attempting to move from or to an obstacle
return math.inf
new_node = Node(node1.x-node2.x, node1.y-node2.y)
detected_motion = list(filter(lambda motion:
compare_coordinates(motion, new_node),
self.motions))
return detected_motion[0].cost
| 723 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.h
|
(self, s: Node)
|
return 1
| 111 | 123 |
def h(self, s: Node):
# Cannot use the 2nd euclidean norm as this might sometimes generate
# heuristics that overestimate the cost, making them inadmissible,
# due to rounding errors etc (when combined with calculate_key)
# To be admissible heuristic should
# never overestimate the cost of a move
# hence not using the line below
# return math.hypot(self.start.x - s.x, self.start.y - s.y)
# Below is the same as 1; modify if you modify the cost of each move in
# motion
# return max(abs(self.start.x - s.x), abs(self.start.y - s.y))
return 1
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L111-L123
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 100 |
[] | 0 | true | 74.621212 | 13 | 1 | 100 | 0 |
def h(self, s: Node):
# Cannot use the 2nd euclidean norm as this might sometimes generate
# heuristics that overestimate the cost, making them inadmissible,
# due to rounding errors etc (when combined with calculate_key)
# To be admissible heuristic should
# never overestimate the cost of a move
# hence not using the line below
# return math.hypot(self.start.x - s.x, self.start.y - s.y)
# Below is the same as 1; modify if you modify the cost of each move in
# motion
# return max(abs(self.start.x - s.x), abs(self.start.y - s.y))
return 1
| 724 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.calculate_key
|
(self, s: Node)
|
return (min(self.g[s.x][s.y], self.rhs[s.x][s.y]) + self.h(s)
+ self.km, min(self.g[s.x][s.y], self.rhs[s.x][s.y]))
| 125 | 127 |
def calculate_key(self, s: Node):
return (min(self.g[s.x][s.y], self.rhs[s.x][s.y]) + self.h(s)
+ self.km, min(self.g[s.x][s.y], self.rhs[s.x][s.y]))
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L125-L127
| 2 |
[
0,
1
] | 66.666667 |
[] | 0 | false | 74.621212 | 3 | 1 | 100 | 0 |
def calculate_key(self, s: Node):
return (min(self.g[s.x][s.y], self.rhs[s.x][s.y]) + self.h(s)
+ self.km, min(self.g[s.x][s.y], self.rhs[s.x][s.y]))
| 725 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.is_valid
|
(self, node: Node)
|
return False
| 129 | 132 |
def is_valid(self, node: Node):
if 0 <= node.x < self.x_max and 0 <= node.y < self.y_max:
return True
return False
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L129-L132
| 2 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 74.621212 | 4 | 3 | 100 | 0 |
def is_valid(self, node: Node):
if 0 <= node.x < self.x_max and 0 <= node.y < self.y_max:
return True
return False
| 726 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.get_neighbours
|
(self, u: Node)
|
return [add_coordinates(u, motion) for motion in self.motions
if self.is_valid(add_coordinates(u, motion))]
| 134 | 136 |
def get_neighbours(self, u: Node):
return [add_coordinates(u, motion) for motion in self.motions
if self.is_valid(add_coordinates(u, motion))]
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L134-L136
| 2 |
[
0,
1
] | 66.666667 |
[] | 0 | false | 74.621212 | 3 | 2 | 100 | 0 |
def get_neighbours(self, u: Node):
return [add_coordinates(u, motion) for motion in self.motions
if self.is_valid(add_coordinates(u, motion))]
| 727 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.pred
|
(self, u: Node)
|
return self.get_neighbours(u)
| 138 | 140 |
def pred(self, u: Node):
# Grid, so each vertex is connected to the ones around it
return self.get_neighbours(u)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L138-L140
| 2 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 74.621212 | 3 | 1 | 100 | 0 |
def pred(self, u: Node):
# Grid, so each vertex is connected to the ones around it
return self.get_neighbours(u)
| 728 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.succ
|
(self, u: Node)
|
return self.get_neighbours(u)
| 142 | 144 |
def succ(self, u: Node):
# Grid, so each vertex is connected to the ones around it
return self.get_neighbours(u)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L142-L144
| 2 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 74.621212 | 3 | 1 | 100 | 0 |
def succ(self, u: Node):
# Grid, so each vertex is connected to the ones around it
return self.get_neighbours(u)
| 729 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.initialize
|
(self, start: Node, goal: Node)
| 146 | 160 |
def initialize(self, start: Node, goal: Node):
self.start.x = start.x - self.x_min_world
self.start.y = start.y - self.y_min_world
self.goal.x = goal.x - self.x_min_world
self.goal.y = goal.y - self.y_min_world
if not self.initialized:
self.initialized = True
print('Initializing')
self.U = list() # Would normally be a priority queue
self.km = 0.0
self.rhs = self.create_grid(math.inf)
self.g = self.create_grid(math.inf)
self.rhs[self.goal.x][self.goal.y] = 0
self.U.append((self.goal, self.calculate_key(self.goal)))
self.detected_obstacles_xy = np.empty((0, 2))
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L146-L160
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14
] | 100 |
[] | 0 | true | 74.621212 | 15 | 2 | 100 | 0 |
def initialize(self, start: Node, goal: Node):
self.start.x = start.x - self.x_min_world
self.start.y = start.y - self.y_min_world
self.goal.x = goal.x - self.x_min_world
self.goal.y = goal.y - self.y_min_world
if not self.initialized:
self.initialized = True
print('Initializing')
self.U = list() # Would normally be a priority queue
self.km = 0.0
self.rhs = self.create_grid(math.inf)
self.g = self.create_grid(math.inf)
self.rhs[self.goal.x][self.goal.y] = 0
self.U.append((self.goal, self.calculate_key(self.goal)))
self.detected_obstacles_xy = np.empty((0, 2))
| 730 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.update_vertex
|
(self, u: Node)
| 162 | 173 |
def update_vertex(self, u: Node):
if not compare_coordinates(u, self.goal):
self.rhs[u.x][u.y] = min([self.c(u, sprime) +
self.g[sprime.x][sprime.y]
for sprime in self.succ(u)])
if any([compare_coordinates(u, node) for node, key in self.U]):
self.U = [(node, key) for node, key in self.U
if not compare_coordinates(node, u)]
self.U.sort(key=lambda x: x[1])
if self.g[u.x][u.y] != self.rhs[u.x][u.y]:
self.U.append((u, self.calculate_key(u)))
self.U.sort(key=lambda x: x[1])
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L162-L173
| 2 |
[
0,
1,
2,
5,
6,
8,
9,
10,
11
] | 75 |
[] | 0 | false | 74.621212 | 12 | 7 | 100 | 0 |
def update_vertex(self, u: Node):
if not compare_coordinates(u, self.goal):
self.rhs[u.x][u.y] = min([self.c(u, sprime) +
self.g[sprime.x][sprime.y]
for sprime in self.succ(u)])
if any([compare_coordinates(u, node) for node, key in self.U]):
self.U = [(node, key) for node, key in self.U
if not compare_coordinates(node, u)]
self.U.sort(key=lambda x: x[1])
if self.g[u.x][u.y] != self.rhs[u.x][u.y]:
self.U.append((u, self.calculate_key(u)))
self.U.sort(key=lambda x: x[1])
| 731 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.compare_keys
|
(self, key_pair1: tuple[float, float],
key_pair2: tuple[float, float])
|
return key_pair1[0] < key_pair2[0] or \
(key_pair1[0] == key_pair2[0] and key_pair1[1] < key_pair2[1])
| 175 | 178 |
def compare_keys(self, key_pair1: tuple[float, float],
key_pair2: tuple[float, float]):
return key_pair1[0] < key_pair2[0] or \
(key_pair1[0] == key_pair2[0] and key_pair1[1] < key_pair2[1])
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L175-L178
| 2 |
[
0,
2
] | 50 |
[] | 0 | false | 74.621212 | 4 | 3 | 100 | 0 |
def compare_keys(self, key_pair1: tuple[float, float],
key_pair2: tuple[float, float]):
return key_pair1[0] < key_pair2[0] or \
(key_pair1[0] == key_pair2[0] and key_pair1[1] < key_pair2[1])
| 732 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.detect_changes
|
(self)
|
return changed_vertices
| 210 | 258 |
def detect_changes(self):
changed_vertices = list()
if len(self.spoofed_obstacles) > 0:
for spoofed_obstacle in self.spoofed_obstacles[0]:
if compare_coordinates(spoofed_obstacle, self.start) or \
compare_coordinates(spoofed_obstacle, self.goal):
continue
changed_vertices.append(spoofed_obstacle)
self.detected_obstacles_xy = np.concatenate(
(
self.detected_obstacles_xy,
[[spoofed_obstacle.x, spoofed_obstacle.y]]
)
)
if show_animation:
self.detected_obstacles_for_plotting_x.append(
spoofed_obstacle.x + self.x_min_world)
self.detected_obstacles_for_plotting_y.append(
spoofed_obstacle.y + self.y_min_world)
plt.plot(self.detected_obstacles_for_plotting_x,
self.detected_obstacles_for_plotting_y, ".k")
plt.pause(pause_time)
self.spoofed_obstacles.pop(0)
# Allows random generation of obstacles
random.seed()
if random.random() > 1 - p_create_random_obstacle:
x = random.randint(0, self.x_max - 1)
y = random.randint(0, self.y_max - 1)
new_obs = Node(x, y)
if compare_coordinates(new_obs, self.start) or \
compare_coordinates(new_obs, self.goal):
return changed_vertices
changed_vertices.append(Node(x, y))
self.detected_obstacles_xy = np.concatenate(
(
self.detected_obstacles_xy,
[[x, y]]
)
)
if show_animation:
self.detected_obstacles_for_plotting_x.append(x +
self.x_min_world)
self.detected_obstacles_for_plotting_y.append(y +
self.y_min_world)
plt.plot(self.detected_obstacles_for_plotting_x,
self.detected_obstacles_for_plotting_y, ".k")
plt.pause(pause_time)
return changed_vertices
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L210-L258
| 2 |
[
0,
1,
2,
3,
4,
7,
8,
14,
22,
23,
24,
25,
26,
48
] | 28.571429 |
[
6,
15,
17,
19,
21,
27,
28,
29,
30,
32,
33,
34,
40,
41,
43,
45,
47
] | 34.693878 | false | 74.621212 | 49 | 10 | 65.306122 | 0 |
def detect_changes(self):
changed_vertices = list()
if len(self.spoofed_obstacles) > 0:
for spoofed_obstacle in self.spoofed_obstacles[0]:
if compare_coordinates(spoofed_obstacle, self.start) or \
compare_coordinates(spoofed_obstacle, self.goal):
continue
changed_vertices.append(spoofed_obstacle)
self.detected_obstacles_xy = np.concatenate(
(
self.detected_obstacles_xy,
[[spoofed_obstacle.x, spoofed_obstacle.y]]
)
)
if show_animation:
self.detected_obstacles_for_plotting_x.append(
spoofed_obstacle.x + self.x_min_world)
self.detected_obstacles_for_plotting_y.append(
spoofed_obstacle.y + self.y_min_world)
plt.plot(self.detected_obstacles_for_plotting_x,
self.detected_obstacles_for_plotting_y, ".k")
plt.pause(pause_time)
self.spoofed_obstacles.pop(0)
# Allows random generation of obstacles
random.seed()
if random.random() > 1 - p_create_random_obstacle:
x = random.randint(0, self.x_max - 1)
y = random.randint(0, self.y_max - 1)
new_obs = Node(x, y)
if compare_coordinates(new_obs, self.start) or \
compare_coordinates(new_obs, self.goal):
return changed_vertices
changed_vertices.append(Node(x, y))
self.detected_obstacles_xy = np.concatenate(
(
self.detected_obstacles_xy,
[[x, y]]
)
)
if show_animation:
self.detected_obstacles_for_plotting_x.append(x +
self.x_min_world)
self.detected_obstacles_for_plotting_y.append(y +
self.y_min_world)
plt.plot(self.detected_obstacles_for_plotting_x,
self.detected_obstacles_for_plotting_y, ".k")
plt.pause(pause_time)
return changed_vertices
| 733 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.compute_current_path
|
(self)
|
return path
| 260 | 270 |
def compute_current_path(self):
path = list()
current_point = Node(self.start.x, self.start.y)
while not compare_coordinates(current_point, self.goal):
path.append(current_point)
current_point = min(self.succ(current_point),
key=lambda sprime:
self.c(current_point, sprime) +
self.g[sprime.x][sprime.y])
path.append(self.goal)
return path
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L260-L270
| 2 |
[
0
] | 9.090909 |
[
1,
2,
3,
4,
5,
9,
10
] | 63.636364 | false | 74.621212 | 11 | 2 | 36.363636 | 0 |
def compute_current_path(self):
path = list()
current_point = Node(self.start.x, self.start.y)
while not compare_coordinates(current_point, self.goal):
path.append(current_point)
current_point = min(self.succ(current_point),
key=lambda sprime:
self.c(current_point, sprime) +
self.g[sprime.x][sprime.y])
path.append(self.goal)
return path
| 734 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.compare_paths
|
(self, path1: list, path2: list)
|
return True
| 272 | 278 |
def compare_paths(self, path1: list, path2: list):
if len(path1) != len(path2):
return False
for node1, node2 in zip(path1, path2):
if not compare_coordinates(node1, node2):
return False
return True
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L272-L278
| 2 |
[
0
] | 14.285714 |
[
1,
2,
3,
4,
5,
6
] | 85.714286 | false | 74.621212 | 7 | 4 | 14.285714 | 0 |
def compare_paths(self, path1: list, path2: list):
if len(path1) != len(path2):
return False
for node1, node2 in zip(path1, path2):
if not compare_coordinates(node1, node2):
return False
return True
| 735 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.display_path
|
(self, path: list, colour: str, alpha: float = 1.0)
|
return drawing
| 280 | 285 |
def display_path(self, path: list, colour: str, alpha: float = 1.0):
px = [(node.x + self.x_min_world) for node in path]
py = [(node.y + self.y_min_world) for node in path]
drawing = plt.plot(px, py, colour, alpha=alpha)
plt.pause(pause_time)
return drawing
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L280-L285
| 2 |
[
0
] | 16.666667 |
[
1,
2,
3,
4,
5
] | 83.333333 | false | 74.621212 | 6 | 3 | 16.666667 | 0 |
def display_path(self, path: list, colour: str, alpha: float = 1.0):
px = [(node.x + self.x_min_world) for node in path]
py = [(node.y + self.y_min_world) for node in path]
drawing = plt.plot(px, py, colour, alpha=alpha)
plt.pause(pause_time)
return drawing
| 736 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/DStarLite/d_star_lite.py
|
DStarLite.main
|
(self, start: Node, goal: Node,
spoofed_ox: list, spoofed_oy: list)
|
return True, pathx, pathy
| 287 | 350 |
def main(self, start: Node, goal: Node,
spoofed_ox: list, spoofed_oy: list):
self.spoofed_obstacles = [[Node(x - self.x_min_world,
y - self.y_min_world)
for x, y in zip(rowx, rowy)]
for rowx, rowy in zip(spoofed_ox, spoofed_oy)
]
pathx = []
pathy = []
self.initialize(start, goal)
last = self.start
self.compute_shortest_path()
pathx.append(self.start.x + self.x_min_world)
pathy.append(self.start.y + self.y_min_world)
if show_animation:
current_path = self.compute_current_path()
previous_path = current_path.copy()
previous_path_image = self.display_path(previous_path, ".c",
alpha=0.3)
current_path_image = self.display_path(current_path, ".c")
while not compare_coordinates(self.goal, self.start):
if self.g[self.start.x][self.start.y] == math.inf:
print("No path possible")
return False, pathx, pathy
self.start = min(self.succ(self.start),
key=lambda sprime:
self.c(self.start, sprime) +
self.g[sprime.x][sprime.y])
pathx.append(self.start.x + self.x_min_world)
pathy.append(self.start.y + self.y_min_world)
if show_animation:
current_path.pop(0)
plt.plot(pathx, pathy, "-r")
plt.pause(pause_time)
changed_vertices = self.detect_changes()
if len(changed_vertices) != 0:
print("New obstacle detected")
self.km += self.h(last)
last = self.start
for u in changed_vertices:
if compare_coordinates(u, self.start):
continue
self.rhs[u.x][u.y] = math.inf
self.g[u.x][u.y] = math.inf
self.update_vertex(u)
self.compute_shortest_path()
if show_animation:
new_path = self.compute_current_path()
if not self.compare_paths(current_path, new_path):
current_path_image[0].remove()
previous_path_image[0].remove()
previous_path = current_path.copy()
current_path = new_path.copy()
previous_path_image = self.display_path(previous_path,
".c",
alpha=0.3)
current_path_image = self.display_path(current_path,
".c")
plt.pause(pause_time)
print("Path found")
return True, pathx, pathy
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/DStarLite/d_star_lite.py#L287-L350
| 2 |
[
0,
2,
7,
8,
9,
10,
11,
12,
13,
14,
15,
21,
22,
23,
26,
30,
31,
32,
36,
37,
38,
39,
40,
41,
42,
44,
45,
46,
47,
48,
49,
62,
63
] | 51.5625 |
[
16,
17,
18,
20,
24,
25,
33,
34,
35,
43,
50,
51,
52,
53,
54,
55,
56,
59,
61
] | 29.6875 | false | 74.621212 | 64 | 12 | 70.3125 | 0 |
def main(self, start: Node, goal: Node,
spoofed_ox: list, spoofed_oy: list):
self.spoofed_obstacles = [[Node(x - self.x_min_world,
y - self.y_min_world)
for x, y in zip(rowx, rowy)]
for rowx, rowy in zip(spoofed_ox, spoofed_oy)
]
pathx = []
pathy = []
self.initialize(start, goal)
last = self.start
self.compute_shortest_path()
pathx.append(self.start.x + self.x_min_world)
pathy.append(self.start.y + self.y_min_world)
if show_animation:
current_path = self.compute_current_path()
previous_path = current_path.copy()
previous_path_image = self.display_path(previous_path, ".c",
alpha=0.3)
current_path_image = self.display_path(current_path, ".c")
while not compare_coordinates(self.goal, self.start):
if self.g[self.start.x][self.start.y] == math.inf:
print("No path possible")
return False, pathx, pathy
self.start = min(self.succ(self.start),
key=lambda sprime:
self.c(self.start, sprime) +
self.g[sprime.x][sprime.y])
pathx.append(self.start.x + self.x_min_world)
pathy.append(self.start.y + self.y_min_world)
if show_animation:
current_path.pop(0)
plt.plot(pathx, pathy, "-r")
plt.pause(pause_time)
changed_vertices = self.detect_changes()
if len(changed_vertices) != 0:
print("New obstacle detected")
self.km += self.h(last)
last = self.start
for u in changed_vertices:
if compare_coordinates(u, self.start):
continue
self.rhs[u.x][u.y] = math.inf
self.g[u.x][u.y] = math.inf
self.update_vertex(u)
self.compute_shortest_path()
if show_animation:
new_path = self.compute_current_path()
if not self.compare_paths(current_path, new_path):
current_path_image[0].remove()
previous_path_image[0].remove()
previous_path = current_path.copy()
current_path = new_path.copy()
previous_path_image = self.display_path(previous_path,
".c",
alpha=0.3)
current_path_image = self.display_path(current_path,
".c")
plt.pause(pause_time)
print("Path found")
return True, pathx, pathy
| 737 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FlowField/flowfield.py
|
draw_horizontal_line
|
(start_x, start_y, length, o_x, o_y, o_dict, path)
| 13 | 18 |
def draw_horizontal_line(start_x, start_y, length, o_x, o_y, o_dict, path):
for i in range(start_x, start_x + length):
for j in range(start_y, start_y + 2):
o_x.append(i)
o_y.append(j)
o_dict[(i, j)] = path
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FlowField/flowfield.py#L13-L18
| 2 |
[
0,
1,
2,
3,
4,
5
] | 100 |
[] | 0 | true | 93.377483 | 6 | 3 | 100 | 0 |
def draw_horizontal_line(start_x, start_y, length, o_x, o_y, o_dict, path):
for i in range(start_x, start_x + length):
for j in range(start_y, start_y + 2):
o_x.append(i)
o_y.append(j)
o_dict[(i, j)] = path
| 749 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FlowField/flowfield.py
|
draw_vertical_line
|
(start_x, start_y, length, o_x, o_y, o_dict, path)
| 21 | 26 |
def draw_vertical_line(start_x, start_y, length, o_x, o_y, o_dict, path):
for i in range(start_x, start_x + 2):
for j in range(start_y, start_y + length):
o_x.append(i)
o_y.append(j)
o_dict[(i, j)] = path
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FlowField/flowfield.py#L21-L26
| 2 |
[
0,
1,
2,
3,
4,
5
] | 100 |
[] | 0 | true | 93.377483 | 6 | 3 | 100 | 0 |
def draw_vertical_line(start_x, start_y, length, o_x, o_y, o_dict, path):
for i in range(start_x, start_x + 2):
for j in range(start_y, start_y + length):
o_x.append(i)
o_y.append(j)
o_dict[(i, j)] = path
| 750 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FlowField/flowfield.py
|
main
|
()
| 142 | 223 |
def main():
# set obstacle positions
obs_dict = {}
for i in range(51):
for j in range(51):
obs_dict[(i, j)] = 'free'
o_x, o_y, m_x, m_y, h_x, h_y = [], [], [], [], [], []
s_x = 5.0
s_y = 5.0
g_x = 35.0
g_y = 45.0
# draw outer border of maze
draw_vertical_line(0, 0, 50, o_x, o_y, obs_dict, 'obs')
draw_vertical_line(48, 0, 50, o_x, o_y, obs_dict, 'obs')
draw_horizontal_line(0, 0, 50, o_x, o_y, obs_dict, 'obs')
draw_horizontal_line(0, 48, 50, o_x, o_y, obs_dict, 'obs')
# draw inner walls
all_x = [10, 10, 10, 15, 20, 20, 30, 30, 35, 30, 40, 45]
all_y = [10, 30, 45, 20, 5, 40, 10, 40, 5, 40, 10, 25]
all_len = [10, 10, 5, 10, 10, 5, 20, 10, 25, 10, 35, 15]
for x, y, l in zip(all_x, all_y, all_len):
draw_vertical_line(x, y, l, o_x, o_y, obs_dict, 'obs')
all_x[:], all_y[:], all_len[:] = [], [], []
all_x = [35, 40, 15, 10, 45, 20, 10, 15, 25, 45, 10, 30, 10, 40]
all_y = [5, 10, 15, 20, 20, 25, 30, 35, 35, 35, 40, 40, 45, 45]
all_len = [10, 5, 10, 10, 5, 5, 10, 5, 10, 5, 10, 5, 5, 5]
for x, y, l in zip(all_x, all_y, all_len):
draw_horizontal_line(x, y, l, o_x, o_y, obs_dict, 'obs')
# Some points are assigned a slightly higher energy value in the cost
# field. For example, if an agent wishes to go to a point, it might
# encounter different kind of terrain like grass and dirt. Grass is
# assigned medium difficulty of passage (color coded as green on the
# map here). Dirt is assigned hard difficulty of passage (color coded
# as brown here). Hence, this algorithm will take into account how
# difficult it is to go through certain areas of a map when deciding
# the shortest path.
# draw paths that have medium difficulty (in terms of going through them)
all_x[:], all_y[:], all_len[:] = [], [], []
all_x = [10, 45]
all_y = [22, 20]
all_len = [8, 5]
for x, y, l in zip(all_x, all_y, all_len):
draw_vertical_line(x, y, l, m_x, m_y, obs_dict, 'medium')
all_x[:], all_y[:], all_len[:] = [], [], []
all_x = [20, 30, 42] + [47] * 5
all_y = [35, 30, 38] + [37 + i for i in range(2)]
all_len = [5, 7, 3] + [1] * 3
for x, y, l in zip(all_x, all_y, all_len):
draw_horizontal_line(x, y, l, m_x, m_y, obs_dict, 'medium')
# draw paths that have hard difficulty (in terms of going through them)
all_x[:], all_y[:], all_len[:] = [], [], []
all_x = [15, 20, 35]
all_y = [45, 20, 35]
all_len = [3, 5, 7]
for x, y, l in zip(all_x, all_y, all_len):
draw_vertical_line(x, y, l, h_x, h_y, obs_dict, 'hard')
all_x[:], all_y[:], all_len[:] = [], [], []
all_x = [30] + [47] * 5
all_y = [10] + [37 + i for i in range(2)]
all_len = [5] + [1] * 3
for x, y, l in zip(all_x, all_y, all_len):
draw_horizontal_line(x, y, l, h_x, h_y, obs_dict, 'hard')
if show_animation:
plt.plot(o_x, o_y, "sr")
plt.plot(m_x, m_y, "sg")
plt.plot(h_x, h_y, "sy")
plt.plot(s_x, s_y, "og")
plt.plot(g_x, g_y, "o")
plt.grid(True)
flow_obj = FlowField(obs_dict, g_x, g_y, s_x, s_y, 50, 50)
flow_obj.find_path()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FlowField/flowfield.py#L142-L223
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
79,
80,
81
] | 92.682927 |
[
73,
74,
75,
76,
77,
78
] | 7.317073 | false | 93.377483 | 82 | 12 | 92.682927 | 0 |
def main():
# set obstacle positions
obs_dict = {}
for i in range(51):
for j in range(51):
obs_dict[(i, j)] = 'free'
o_x, o_y, m_x, m_y, h_x, h_y = [], [], [], [], [], []
s_x = 5.0
s_y = 5.0
g_x = 35.0
g_y = 45.0
# draw outer border of maze
draw_vertical_line(0, 0, 50, o_x, o_y, obs_dict, 'obs')
draw_vertical_line(48, 0, 50, o_x, o_y, obs_dict, 'obs')
draw_horizontal_line(0, 0, 50, o_x, o_y, obs_dict, 'obs')
draw_horizontal_line(0, 48, 50, o_x, o_y, obs_dict, 'obs')
# draw inner walls
all_x = [10, 10, 10, 15, 20, 20, 30, 30, 35, 30, 40, 45]
all_y = [10, 30, 45, 20, 5, 40, 10, 40, 5, 40, 10, 25]
all_len = [10, 10, 5, 10, 10, 5, 20, 10, 25, 10, 35, 15]
for x, y, l in zip(all_x, all_y, all_len):
draw_vertical_line(x, y, l, o_x, o_y, obs_dict, 'obs')
all_x[:], all_y[:], all_len[:] = [], [], []
all_x = [35, 40, 15, 10, 45, 20, 10, 15, 25, 45, 10, 30, 10, 40]
all_y = [5, 10, 15, 20, 20, 25, 30, 35, 35, 35, 40, 40, 45, 45]
all_len = [10, 5, 10, 10, 5, 5, 10, 5, 10, 5, 10, 5, 5, 5]
for x, y, l in zip(all_x, all_y, all_len):
draw_horizontal_line(x, y, l, o_x, o_y, obs_dict, 'obs')
# Some points are assigned a slightly higher energy value in the cost
# field. For example, if an agent wishes to go to a point, it might
# encounter different kind of terrain like grass and dirt. Grass is
# assigned medium difficulty of passage (color coded as green on the
# map here). Dirt is assigned hard difficulty of passage (color coded
# as brown here). Hence, this algorithm will take into account how
# difficult it is to go through certain areas of a map when deciding
# the shortest path.
# draw paths that have medium difficulty (in terms of going through them)
all_x[:], all_y[:], all_len[:] = [], [], []
all_x = [10, 45]
all_y = [22, 20]
all_len = [8, 5]
for x, y, l in zip(all_x, all_y, all_len):
draw_vertical_line(x, y, l, m_x, m_y, obs_dict, 'medium')
all_x[:], all_y[:], all_len[:] = [], [], []
all_x = [20, 30, 42] + [47] * 5
all_y = [35, 30, 38] + [37 + i for i in range(2)]
all_len = [5, 7, 3] + [1] * 3
for x, y, l in zip(all_x, all_y, all_len):
draw_horizontal_line(x, y, l, m_x, m_y, obs_dict, 'medium')
# draw paths that have hard difficulty (in terms of going through them)
all_x[:], all_y[:], all_len[:] = [], [], []
all_x = [15, 20, 35]
all_y = [45, 20, 35]
all_len = [3, 5, 7]
for x, y, l in zip(all_x, all_y, all_len):
draw_vertical_line(x, y, l, h_x, h_y, obs_dict, 'hard')
all_x[:], all_y[:], all_len[:] = [], [], []
all_x = [30] + [47] * 5
all_y = [10] + [37 + i for i in range(2)]
all_len = [5] + [1] * 3
for x, y, l in zip(all_x, all_y, all_len):
draw_horizontal_line(x, y, l, h_x, h_y, obs_dict, 'hard')
if show_animation:
plt.plot(o_x, o_y, "sr")
plt.plot(m_x, m_y, "sg")
plt.plot(h_x, h_y, "sy")
plt.plot(s_x, s_y, "og")
plt.plot(g_x, g_y, "o")
plt.grid(True)
flow_obj = FlowField(obs_dict, g_x, g_y, s_x, s_y, 50, 50)
flow_obj.find_path()
| 751 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FlowField/flowfield.py
|
FlowField.__init__
|
(self, obs_grid, goal_x, goal_y, start_x, start_y,
limit_x, limit_y)
| 30 | 38 |
def __init__(self, obs_grid, goal_x, goal_y, start_x, start_y,
limit_x, limit_y):
self.start_pt = [start_x, start_y]
self.goal_pt = [goal_x, goal_y]
self.obs_grid = obs_grid
self.limit_x, self.limit_y = limit_x, limit_y
self.cost_field = {}
self.integration_field = {}
self.vector_field = {}
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FlowField/flowfield.py#L30-L38
| 2 |
[
0,
2,
3,
4,
5,
6,
7,
8
] | 88.888889 |
[] | 0 | false | 93.377483 | 9 | 1 | 100 | 0 |
def __init__(self, obs_grid, goal_x, goal_y, start_x, start_y,
limit_x, limit_y):
self.start_pt = [start_x, start_y]
self.goal_pt = [goal_x, goal_y]
self.obs_grid = obs_grid
self.limit_x, self.limit_y = limit_x, limit_y
self.cost_field = {}
self.integration_field = {}
self.vector_field = {}
| 752 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FlowField/flowfield.py
|
FlowField.find_path
|
(self)
| 40 | 44 |
def find_path(self):
self.create_cost_field()
self.create_integration_field()
self.assign_vectors()
self.follow_vectors()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FlowField/flowfield.py#L40-L44
| 2 |
[
0,
1,
2,
3,
4
] | 100 |
[] | 0 | true | 93.377483 | 5 | 1 | 100 | 0 |
def find_path(self):
self.create_cost_field()
self.create_integration_field()
self.assign_vectors()
self.follow_vectors()
| 753 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FlowField/flowfield.py
|
FlowField.create_cost_field
|
(self)
|
Assign cost to each grid which defines the energy
it would take to get there.
|
Assign cost to each grid which defines the energy
it would take to get there.
| 46 | 61 |
def create_cost_field(self):
"""Assign cost to each grid which defines the energy
it would take to get there."""
for i in range(self.limit_x):
for j in range(self.limit_y):
if self.obs_grid[(i, j)] == 'free':
self.cost_field[(i, j)] = 1
elif self.obs_grid[(i, j)] == 'medium':
self.cost_field[(i, j)] = 7
elif self.obs_grid[(i, j)] == 'hard':
self.cost_field[(i, j)] = 20
elif self.obs_grid[(i, j)] == 'obs':
continue
if [i, j] == self.goal_pt:
self.cost_field[(i, j)] = 0
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FlowField/flowfield.py#L46-L61
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
] | 100 |
[] | 0 | true | 93.377483 | 16 | 8 | 100 | 2 |
def create_cost_field(self):
for i in range(self.limit_x):
for j in range(self.limit_y):
if self.obs_grid[(i, j)] == 'free':
self.cost_field[(i, j)] = 1
elif self.obs_grid[(i, j)] == 'medium':
self.cost_field[(i, j)] = 7
elif self.obs_grid[(i, j)] == 'hard':
self.cost_field[(i, j)] = 20
elif self.obs_grid[(i, j)] == 'obs':
continue
if [i, j] == self.goal_pt:
self.cost_field[(i, j)] = 0
| 754 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FlowField/flowfield.py
|
FlowField.create_integration_field
|
(self)
|
Start from the goal node and calculate the value
of the integration field at each node. Start by
assigning a value of infinity to every node except
the goal node which is assigned a value of 0. Put the
goal node in the open list and then get its neighbors
(must not be obstacles). For each neighbor, the new
cost is equal to the cost of the current node in the
integration field (in the beginning, this will simply
be the goal node) + the cost of the neighbor in the
cost field + the extra cost (optional). The new cost
is only assigned if it is less than the previously
assigned cost of the node in the integration field and,
when that happens, the neighbor is put on the open list.
This process continues until the open list is empty.
|
Start from the goal node and calculate the value
of the integration field at each node. Start by
assigning a value of infinity to every node except
the goal node which is assigned a value of 0. Put the
goal node in the open list and then get its neighbors
(must not be obstacles). For each neighbor, the new
cost is equal to the cost of the current node in the
integration field (in the beginning, this will simply
be the goal node) + the cost of the neighbor in the
cost field + the extra cost (optional). The new cost
is only assigned if it is less than the previously
assigned cost of the node in the integration field and,
when that happens, the neighbor is put on the open list.
This process continues until the open list is empty.
| 63 | 105 |
def create_integration_field(self):
"""Start from the goal node and calculate the value
of the integration field at each node. Start by
assigning a value of infinity to every node except
the goal node which is assigned a value of 0. Put the
goal node in the open list and then get its neighbors
(must not be obstacles). For each neighbor, the new
cost is equal to the cost of the current node in the
integration field (in the beginning, this will simply
be the goal node) + the cost of the neighbor in the
cost field + the extra cost (optional). The new cost
is only assigned if it is less than the previously
assigned cost of the node in the integration field and,
when that happens, the neighbor is put on the open list.
This process continues until the open list is empty."""
for i in range(self.limit_x):
for j in range(self.limit_y):
if self.obs_grid[(i, j)] == 'obs':
continue
self.integration_field[(i, j)] = np.inf
if [i, j] == self.goal_pt:
self.integration_field[(i, j)] = 0
open_list = [(self.goal_pt, 0)]
while open_list:
curr_pos, curr_cost = open_list[0]
curr_x, curr_y = curr_pos
for i in range(-1, 2):
for j in range(-1, 2):
x, y = curr_x + i, curr_y + j
if self.obs_grid[(x, y)] == 'obs':
continue
if (i, j) in [(1, 0), (0, 1), (-1, 0), (0, -1)]:
e_cost = 10
else:
e_cost = 14
neighbor_energy = self.cost_field[(x, y)]
neighbor_old_cost = self.integration_field[(x, y)]
neighbor_new_cost = curr_cost + neighbor_energy + e_cost
if neighbor_new_cost < neighbor_old_cost:
self.integration_field[(x, y)] = neighbor_new_cost
open_list.append(([x, y], neighbor_new_cost))
del open_list[0]
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FlowField/flowfield.py#L63-L105
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
35,
36,
37,
38,
39,
40,
41,
42
] | 97.674419 |
[] | 0 | false | 93.377483 | 43 | 11 | 100 | 14 |
def create_integration_field(self):
for i in range(self.limit_x):
for j in range(self.limit_y):
if self.obs_grid[(i, j)] == 'obs':
continue
self.integration_field[(i, j)] = np.inf
if [i, j] == self.goal_pt:
self.integration_field[(i, j)] = 0
open_list = [(self.goal_pt, 0)]
while open_list:
curr_pos, curr_cost = open_list[0]
curr_x, curr_y = curr_pos
for i in range(-1, 2):
for j in range(-1, 2):
x, y = curr_x + i, curr_y + j
if self.obs_grid[(x, y)] == 'obs':
continue
if (i, j) in [(1, 0), (0, 1), (-1, 0), (0, -1)]:
e_cost = 10
else:
e_cost = 14
neighbor_energy = self.cost_field[(x, y)]
neighbor_old_cost = self.integration_field[(x, y)]
neighbor_new_cost = curr_cost + neighbor_energy + e_cost
if neighbor_new_cost < neighbor_old_cost:
self.integration_field[(x, y)] = neighbor_new_cost
open_list.append(([x, y], neighbor_new_cost))
del open_list[0]
| 755 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FlowField/flowfield.py
|
FlowField.assign_vectors
|
(self)
|
For each node, assign a vector from itself to the node with
the lowest cost in the integration field. An agent will simply
follow this vector field to the goal
|
For each node, assign a vector from itself to the node with
the lowest cost in the integration field. An agent will simply
follow this vector field to the goal
| 107 | 127 |
def assign_vectors(self):
"""For each node, assign a vector from itself to the node with
the lowest cost in the integration field. An agent will simply
follow this vector field to the goal"""
for i in range(self.limit_x):
for j in range(self.limit_y):
if self.obs_grid[(i, j)] == 'obs':
continue
if [i, j] == self.goal_pt:
self.vector_field[(i, j)] = (None, None)
continue
offset_list = [(i + a, j + b)
for a in range(-1, 2)
for b in range(-1, 2)]
neighbor_list = [{'loc': pt,
'cost': self.integration_field[pt]}
for pt in offset_list
if self.obs_grid[pt] != 'obs']
neighbor_list = sorted(neighbor_list, key=lambda x: x['cost'])
best_neighbor = neighbor_list[0]['loc']
self.vector_field[(i, j)] = best_neighbor
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FlowField/flowfield.py#L107-L127
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
14,
18,
19,
20
] | 76.190476 |
[] | 0 | false | 93.377483 | 21 | 7 | 100 | 3 |
def assign_vectors(self):
for i in range(self.limit_x):
for j in range(self.limit_y):
if self.obs_grid[(i, j)] == 'obs':
continue
if [i, j] == self.goal_pt:
self.vector_field[(i, j)] = (None, None)
continue
offset_list = [(i + a, j + b)
for a in range(-1, 2)
for b in range(-1, 2)]
neighbor_list = [{'loc': pt,
'cost': self.integration_field[pt]}
for pt in offset_list
if self.obs_grid[pt] != 'obs']
neighbor_list = sorted(neighbor_list, key=lambda x: x['cost'])
best_neighbor = neighbor_list[0]['loc']
self.vector_field[(i, j)] = best_neighbor
| 756 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/FlowField/flowfield.py
|
FlowField.follow_vectors
|
(self)
| 129 | 139 |
def follow_vectors(self):
curr_x, curr_y = self.start_pt
while curr_x is not None and curr_y is not None:
curr_x, curr_y = self.vector_field[(curr_x, curr_y)]
if show_animation:
plt.plot(curr_x, curr_y, "b*")
plt.pause(0.001)
if show_animation:
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/FlowField/flowfield.py#L129-L139
| 2 |
[
0,
1,
2,
3,
4,
5,
8,
9
] | 72.727273 |
[
6,
7,
10
] | 27.272727 | false | 93.377483 | 11 | 5 | 72.727273 | 0 |
def follow_vectors(self):
curr_x, curr_y = self.start_pt
while curr_x is not None and curr_y is not None:
curr_x, curr_y = self.vector_field[(curr_x, curr_y)]
if show_animation:
plt.plot(curr_x, curr_y, "b*")
plt.pause(0.001)
if show_animation:
plt.show()
| 757 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
main
|
(maxIter=80)
| 611 | 631 |
def main(maxIter=80):
print("Starting Batch Informed Trees Star planning")
obstacleList = [
(5, 5, 0.5),
(9, 6, 1),
(7, 5, 1),
(1, 5, 1),
(3, 6, 1),
(7, 9, 1)
]
bitStar = BITStar(start=[-1, 0], goal=[3, 8], obstacleList=obstacleList,
randArea=[-2, 15], maxIter=maxIter)
path = bitStar.plan(animation=show_animation)
print("Done")
if show_animation:
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.grid(True)
plt.pause(0.05)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L611-L631
| 2 |
[
0,
1,
2,
10,
11,
13,
14,
15,
16
] | 42.857143 |
[
17,
18,
19,
20
] | 19.047619 | false | 82.681564 | 21 | 4 | 80.952381 | 0 |
def main(maxIter=80):
print("Starting Batch Informed Trees Star planning")
obstacleList = [
(5, 5, 0.5),
(9, 6, 1),
(7, 5, 1),
(1, 5, 1),
(3, 6, 1),
(7, 9, 1)
]
bitStar = BITStar(start=[-1, 0], goal=[3, 8], obstacleList=obstacleList,
randArea=[-2, 15], maxIter=maxIter)
path = bitStar.plan(animation=show_animation)
print("Done")
if show_animation:
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.grid(True)
plt.pause(0.05)
plt.show()
| 772 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
RTree.__init__
|
(self, start=None, lowerLimit=None, upperLimit=None,
resolution=1.0)
| 30 | 54 |
def __init__(self, start=None, lowerLimit=None, upperLimit=None,
resolution=1.0):
if upperLimit is None:
upperLimit = [10, 10]
if lowerLimit is None:
lowerLimit = [0, 0]
if start is None:
start = [0, 0]
self.vertices = dict()
self.edges = []
self.start = start
self.lowerLimit = lowerLimit
self.upperLimit = upperLimit
self.dimension = len(lowerLimit)
self.num_cells = [0] * self.dimension
self.resolution = resolution
# compute the number of grid cells based on the limits and
# resolution given
for idx in range(self.dimension):
self.num_cells[idx] = np.ceil(
(upperLimit[idx] - lowerLimit[idx]) / resolution)
vertex_id = self.real_world_to_node_id(start)
self.vertices[vertex_id] = []
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L30-L54
| 2 |
[
0,
2,
3,
5,
7,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
22,
23,
24
] | 80 |
[
4,
6,
8
] | 12 | false | 82.681564 | 25 | 5 | 88 | 0 |
def __init__(self, start=None, lowerLimit=None, upperLimit=None,
resolution=1.0):
if upperLimit is None:
upperLimit = [10, 10]
if lowerLimit is None:
lowerLimit = [0, 0]
if start is None:
start = [0, 0]
self.vertices = dict()
self.edges = []
self.start = start
self.lowerLimit = lowerLimit
self.upperLimit = upperLimit
self.dimension = len(lowerLimit)
self.num_cells = [0] * self.dimension
self.resolution = resolution
# compute the number of grid cells based on the limits and
# resolution given
for idx in range(self.dimension):
self.num_cells[idx] = np.ceil(
(upperLimit[idx] - lowerLimit[idx]) / resolution)
vertex_id = self.real_world_to_node_id(start)
self.vertices[vertex_id] = []
| 773 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
RTree.get_root_id
|
()
|
return 0
| 57 | 59 |
def get_root_id():
# return the id of the root of the tree
return 0
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L57-L59
| 2 |
[
0,
1
] | 66.666667 |
[
2
] | 33.333333 | false | 82.681564 | 3 | 1 | 66.666667 | 0 |
def get_root_id():
# return the id of the root of the tree
return 0
| 774 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
RTree.add_vertex
|
(self, vertex)
|
return vertex_id
| 61 | 65 |
def add_vertex(self, vertex):
# add a vertex to the tree
vertex_id = self.real_world_to_node_id(vertex)
self.vertices[vertex_id] = []
return vertex_id
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L61-L65
| 2 |
[
0,
1,
2,
3,
4
] | 100 |
[] | 0 | true | 82.681564 | 5 | 1 | 100 | 0 |
def add_vertex(self, vertex):
# add a vertex to the tree
vertex_id = self.real_world_to_node_id(vertex)
self.vertices[vertex_id] = []
return vertex_id
| 775 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
RTree.add_edge
|
(self, v, x)
| 67 | 73 |
def add_edge(self, v, x):
# create an edge between v and x vertices
if (v, x) not in self.edges:
self.edges.append((v, x))
# since the tree is undirected
self.vertices[v].append(x)
self.vertices[x].append(v)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L67-L73
| 2 |
[
0,
1,
2,
3,
4,
5,
6
] | 100 |
[] | 0 | true | 82.681564 | 7 | 2 | 100 | 0 |
def add_edge(self, v, x):
# create an edge between v and x vertices
if (v, x) not in self.edges:
self.edges.append((v, x))
# since the tree is undirected
self.vertices[v].append(x)
self.vertices[x].append(v)
| 776 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
RTree.real_coords_to_grid_coord
|
(self, real_coord)
|
return coord
| 75 | 84 |
def real_coords_to_grid_coord(self, real_coord):
# convert real world coordinates to grid space
# depends on the resolution of the grid
# the output is the same as real world coords if the resolution
# is set to 1
coord = [0] * self.dimension
for i in range(len(coord)):
start = self.lowerLimit[i] # start of the grid space
coord[i] = int(np.around((real_coord[i] - start) / self.resolution))
return coord
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L75-L84
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 82.681564 | 10 | 2 | 100 | 0 |
def real_coords_to_grid_coord(self, real_coord):
# convert real world coordinates to grid space
# depends on the resolution of the grid
# the output is the same as real world coords if the resolution
# is set to 1
coord = [0] * self.dimension
for i in range(len(coord)):
start = self.lowerLimit[i] # start of the grid space
coord[i] = int(np.around((real_coord[i] - start) / self.resolution))
return coord
| 777 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
RTree.grid_coordinate_to_node_id
|
(self, coord)
|
return nodeId
| 86 | 95 |
def grid_coordinate_to_node_id(self, coord):
# This function maps a grid coordinate to a unique
# node id
nodeId = 0
for i in range(len(coord) - 1, -1, -1):
product = 1
for j in range(0, i):
product = product * self.num_cells[j]
nodeId = nodeId + coord[i] * product
return nodeId
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L86-L95
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 82.681564 | 10 | 3 | 100 | 0 |
def grid_coordinate_to_node_id(self, coord):
# This function maps a grid coordinate to a unique
# node id
nodeId = 0
for i in range(len(coord) - 1, -1, -1):
product = 1
for j in range(0, i):
product = product * self.num_cells[j]
nodeId = nodeId + coord[i] * product
return nodeId
| 778 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
RTree.real_world_to_node_id
|
(self, real_coord)
|
return self.grid_coordinate_to_node_id(
self.real_coords_to_grid_coord(real_coord))
| 97 | 101 |
def real_world_to_node_id(self, real_coord):
# first convert the given coordinates to grid space and then
# convert the grid space coordinates to a unique node id
return self.grid_coordinate_to_node_id(
self.real_coords_to_grid_coord(real_coord))
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L97-L101
| 2 |
[
0,
1,
2,
3
] | 80 |
[] | 0 | false | 82.681564 | 5 | 1 | 100 | 0 |
def real_world_to_node_id(self, real_coord):
# first convert the given coordinates to grid space and then
# convert the grid space coordinates to a unique node id
return self.grid_coordinate_to_node_id(
self.real_coords_to_grid_coord(real_coord))
| 779 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
RTree.grid_coord_to_real_world_coord
|
(self, coord)
|
return config
| 103 | 113 |
def grid_coord_to_real_world_coord(self, coord):
# This function maps a grid coordinate in discrete space
# to a configuration in the full configuration space
config = [0] * self.dimension
for i in range(0, len(coord)):
# start of the real world / configuration space
start = self.lowerLimit[i]
# step from the coordinate in the grid
grid_step = self.resolution * coord[i]
config[i] = start + grid_step
return config
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L103-L113
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10
] | 100 |
[] | 0 | true | 82.681564 | 11 | 2 | 100 | 0 |
def grid_coord_to_real_world_coord(self, coord):
# This function maps a grid coordinate in discrete space
# to a configuration in the full configuration space
config = [0] * self.dimension
for i in range(0, len(coord)):
# start of the real world / configuration space
start = self.lowerLimit[i]
# step from the coordinate in the grid
grid_step = self.resolution * coord[i]
config[i] = start + grid_step
return config
| 780 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
RTree.node_id_to_grid_coord
|
(self, node_id)
|
return coord
| 115 | 126 |
def node_id_to_grid_coord(self, node_id):
# This function maps a node id to the associated
# grid coordinate
coord = [0] * len(self.lowerLimit)
for i in range(len(coord) - 1, -1, -1):
# Get the product of the grid space maximums
prod = 1
for j in range(0, i):
prod = prod * self.num_cells[j]
coord[i] = np.floor(node_id / prod)
node_id = node_id - (coord[i] * prod)
return coord
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L115-L126
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11
] | 100 |
[] | 0 | true | 82.681564 | 12 | 3 | 100 | 0 |
def node_id_to_grid_coord(self, node_id):
# This function maps a node id to the associated
# grid coordinate
coord = [0] * len(self.lowerLimit)
for i in range(len(coord) - 1, -1, -1):
# Get the product of the grid space maximums
prod = 1
for j in range(0, i):
prod = prod * self.num_cells[j]
coord[i] = np.floor(node_id / prod)
node_id = node_id - (coord[i] * prod)
return coord
| 781 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
RTree.node_id_to_real_world_coord
|
(self, nid)
|
return self.grid_coord_to_real_world_coord(
self.node_id_to_grid_coord(nid))
| 128 | 132 |
def node_id_to_real_world_coord(self, nid):
# This function maps a node in discrete space to a configuration
# in the full configuration space
return self.grid_coord_to_real_world_coord(
self.node_id_to_grid_coord(nid))
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L128-L132
| 2 |
[
0,
1,
2,
3
] | 80 |
[] | 0 | false | 82.681564 | 5 | 1 | 100 | 0 |
def node_id_to_real_world_coord(self, nid):
# This function maps a node in discrete space to a configuration
# in the full configuration space
return self.grid_coord_to_real_world_coord(
self.node_id_to_grid_coord(nid))
| 782 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
BITStar.__init__
|
(self, start, goal,
obstacleList, randArea, eta=2.0,
maxIter=80)
| 137 | 165 |
def __init__(self, start, goal,
obstacleList, randArea, eta=2.0,
maxIter=80):
self.start = start
self.goal = goal
self.min_rand = randArea[0]
self.max_rand = randArea[1]
self.max_iIter = maxIter
self.obstacleList = obstacleList
self.startId = None
self.goalId = None
self.vertex_queue = []
self.edge_queue = []
self.samples = dict()
self.g_scores = dict()
self.f_scores = dict()
self.nodes = dict()
self.r = float('inf')
self.eta = eta # tunable parameter
self.unit_ball_measure = 1
self.old_vertices = []
# initialize tree
lowerLimit = [randArea[0], randArea[0]]
upperLimit = [randArea[1], randArea[1]]
self.tree = RTree(start=start, lowerLimit=lowerLimit,
upperLimit=upperLimit, resolution=0.01)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L137-L165
| 2 |
[
0,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27
] | 89.655172 |
[] | 0 | false | 82.681564 | 29 | 1 | 100 | 0 |
def __init__(self, start, goal,
obstacleList, randArea, eta=2.0,
maxIter=80):
self.start = start
self.goal = goal
self.min_rand = randArea[0]
self.max_rand = randArea[1]
self.max_iIter = maxIter
self.obstacleList = obstacleList
self.startId = None
self.goalId = None
self.vertex_queue = []
self.edge_queue = []
self.samples = dict()
self.g_scores = dict()
self.f_scores = dict()
self.nodes = dict()
self.r = float('inf')
self.eta = eta # tunable parameter
self.unit_ball_measure = 1
self.old_vertices = []
# initialize tree
lowerLimit = [randArea[0], randArea[0]]
upperLimit = [randArea[1], randArea[1]]
self.tree = RTree(start=start, lowerLimit=lowerLimit,
upperLimit=upperLimit, resolution=0.01)
| 783 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
BITStar.setup_planning
|
(self)
|
return eTheta, cMin, xCenter, C, cBest
| 167 | 204 |
def setup_planning(self):
self.startId = self.tree.real_world_to_node_id(self.start)
self.goalId = self.tree.real_world_to_node_id(self.goal)
# add goal to the samples
self.samples[self.goalId] = self.goal
self.g_scores[self.goalId] = float('inf')
self.f_scores[self.goalId] = 0
# add the start id to the tree
self.tree.add_vertex(self.start)
self.g_scores[self.startId] = 0
self.f_scores[self.startId] = self.compute_heuristic_cost(
self.startId, self.goalId)
# max length we expect to find in our 'informed' sample space, starts as infinite
cBest = self.g_scores[self.goalId]
# Computing the sampling space
cMin = math.hypot(self.start[0] - self.goal[0],
self.start[1] - self.goal[1]) / 1.5
xCenter = np.array([[(self.start[0] + self.goal[0]) / 2.0],
[(self.start[1] + self.goal[1]) / 2.0], [0]])
a1 = np.array([[(self.goal[0] - self.start[0]) / cMin],
[(self.goal[1] - self.start[1]) / cMin], [0]])
eTheta = math.atan2(a1[1], a1[0])
# first column of identity matrix transposed
id1_t = np.array([1.0, 0.0, 0.0]).reshape(1, 3)
M = np.dot(a1, id1_t)
U, S, Vh = np.linalg.svd(M, True, True)
C = np.dot(np.dot(U, np.diag(
[1.0, 1.0, np.linalg.det(U) * np.linalg.det(np.transpose(Vh))])),
Vh)
self.samples.update(self.informed_sample(
200, cBest, cMin, xCenter, C))
return eTheta, cMin, xCenter, C, cBest
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L167-L204
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
15,
16,
17,
18,
19,
21,
23,
25,
26,
27,
28,
29,
30,
33,
34,
36,
37
] | 78.947368 |
[] | 0 | false | 82.681564 | 38 | 1 | 100 | 0 |
def setup_planning(self):
self.startId = self.tree.real_world_to_node_id(self.start)
self.goalId = self.tree.real_world_to_node_id(self.goal)
# add goal to the samples
self.samples[self.goalId] = self.goal
self.g_scores[self.goalId] = float('inf')
self.f_scores[self.goalId] = 0
# add the start id to the tree
self.tree.add_vertex(self.start)
self.g_scores[self.startId] = 0
self.f_scores[self.startId] = self.compute_heuristic_cost(
self.startId, self.goalId)
# max length we expect to find in our 'informed' sample space, starts as infinite
cBest = self.g_scores[self.goalId]
# Computing the sampling space
cMin = math.hypot(self.start[0] - self.goal[0],
self.start[1] - self.goal[1]) / 1.5
xCenter = np.array([[(self.start[0] + self.goal[0]) / 2.0],
[(self.start[1] + self.goal[1]) / 2.0], [0]])
a1 = np.array([[(self.goal[0] - self.start[0]) / cMin],
[(self.goal[1] - self.start[1]) / cMin], [0]])
eTheta = math.atan2(a1[1], a1[0])
# first column of identity matrix transposed
id1_t = np.array([1.0, 0.0, 0.0]).reshape(1, 3)
M = np.dot(a1, id1_t)
U, S, Vh = np.linalg.svd(M, True, True)
C = np.dot(np.dot(U, np.diag(
[1.0, 1.0, np.linalg.det(U) * np.linalg.det(np.transpose(Vh))])),
Vh)
self.samples.update(self.informed_sample(
200, cBest, cMin, xCenter, C))
return eTheta, cMin, xCenter, C, cBest
| 784 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
BITStar.setup_sample
|
(self, iterations, foundGoal, cMin, xCenter, C, cBest)
|
return cBest
| 206 | 231 |
def setup_sample(self, iterations, foundGoal, cMin, xCenter, C, cBest):
if len(self.vertex_queue) == 0 and len(self.edge_queue) == 0:
print("Batch: ", iterations)
# Using informed rrt star way of computing the samples
self.r = 2.0
if iterations != 0:
if foundGoal:
# a better way to do this would be to make number of samples
# a function of cMin
m = 200
self.samples = dict()
self.samples[self.goalId] = self.goal
else:
m = 100
cBest = self.g_scores[self.goalId]
self.samples.update(self.informed_sample(
m, cBest, cMin, xCenter, C))
# make the old vertices the new vertices
self.old_vertices += self.tree.vertices.keys()
# add the vertices to the vertex queue
for nid in self.tree.vertices.keys():
if nid not in self.vertex_queue:
self.vertex_queue.append(nid)
return cBest
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L206-L231
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
19,
20,
21,
22,
23,
24,
25
] | 53.846154 |
[
7,
10,
11,
12,
14,
15,
16
] | 26.923077 | false | 82.681564 | 26 | 7 | 73.076923 | 0 |
def setup_sample(self, iterations, foundGoal, cMin, xCenter, C, cBest):
if len(self.vertex_queue) == 0 and len(self.edge_queue) == 0:
print("Batch: ", iterations)
# Using informed rrt star way of computing the samples
self.r = 2.0
if iterations != 0:
if foundGoal:
# a better way to do this would be to make number of samples
# a function of cMin
m = 200
self.samples = dict()
self.samples[self.goalId] = self.goal
else:
m = 100
cBest = self.g_scores[self.goalId]
self.samples.update(self.informed_sample(
m, cBest, cMin, xCenter, C))
# make the old vertices the new vertices
self.old_vertices += self.tree.vertices.keys()
# add the vertices to the vertex queue
for nid in self.tree.vertices.keys():
if nid not in self.vertex_queue:
self.vertex_queue.append(nid)
return cBest
| 785 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
BITStar.plan
|
(self, animation=True)
|
return self.find_final_path()
| 233 | 328 |
def plan(self, animation=True):
eTheta, cMin, xCenter, C, cBest = self.setup_planning()
iterations = 0
foundGoal = False
# run until done
while iterations < self.max_iIter:
cBest = self.setup_sample(iterations,
foundGoal, cMin, xCenter, C, cBest)
# expand the best vertices until an edge is better than the vertex
# this is done because the vertex cost represents the lower bound
# on the edge cost
while self.best_vertex_queue_value() <= \
self.best_edge_queue_value():
self.expand_vertex(self.best_in_vertex_queue())
# add the best edge to the tree
bestEdge = self.best_in_edge_queue()
self.edge_queue.remove(bestEdge)
# Check if this can improve the current solution
estimatedCostOfVertex = self.g_scores[bestEdge[
0]] + self.compute_distance_cost(
bestEdge[0], bestEdge[1]) + self.compute_heuristic_cost(
bestEdge[1], self.goalId)
estimatedCostOfEdge = self.compute_distance_cost(
self.startId, bestEdge[0]) + self.compute_heuristic_cost(
bestEdge[0], bestEdge[1]) + self.compute_heuristic_cost(
bestEdge[1], self.goalId)
actualCostOfEdge = self.g_scores[
bestEdge[0]] + self.compute_distance_cost(
bestEdge[0], bestEdge[1])
f1 = estimatedCostOfVertex < self.g_scores[self.goalId]
f2 = estimatedCostOfEdge < self.g_scores[self.goalId]
f3 = actualCostOfEdge < self.g_scores[self.goalId]
if f1 and f2 and f3:
# connect this edge
firstCoord = self.tree.node_id_to_real_world_coord(
bestEdge[0])
secondCoord = self.tree.node_id_to_real_world_coord(
bestEdge[1])
path = self.connect(firstCoord, secondCoord)
lastEdge = self.tree.real_world_to_node_id(secondCoord)
if path is None or len(path) == 0:
continue
nextCoord = path[len(path) - 1, :]
nextCoordPathId = self.tree.real_world_to_node_id(
nextCoord)
bestEdge = (bestEdge[0], nextCoordPathId)
if bestEdge[1] in self.tree.vertices.keys():
continue
else:
try:
del self.samples[bestEdge[1]]
except KeyError:
# invalid sample key
pass
eid = self.tree.add_vertex(nextCoord)
self.vertex_queue.append(eid)
if eid == self.goalId or bestEdge[0] == self.goalId or \
bestEdge[1] == self.goalId:
print("Goal found")
foundGoal = True
self.tree.add_edge(bestEdge[0], bestEdge[1])
g_score = self.compute_distance_cost(
bestEdge[0], bestEdge[1])
self.g_scores[bestEdge[1]] = g_score + self.g_scores[
bestEdge[0]]
self.f_scores[
bestEdge[1]] = g_score + self.compute_heuristic_cost(
bestEdge[1], self.goalId)
self.update_graph()
# visualize new edge
if animation:
self.draw_graph(xCenter=xCenter, cBest=cBest,
cMin=cMin, eTheta=eTheta,
samples=self.samples.values(),
start=firstCoord, end=secondCoord)
self.remove_queue(lastEdge, bestEdge)
else:
print("Nothing good")
self.edge_queue = []
self.vertex_queue = []
iterations += 1
print("Finding the path")
return self.find_final_path()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L233-L328
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
12,
13,
15,
16,
17,
18,
19,
20,
21,
22,
26,
30,
33,
34,
35,
36,
37,
38,
39,
40,
42,
44,
45,
46,
48,
49,
51,
52,
53,
55,
56,
57,
58,
59,
60,
61,
62,
66,
67,
68,
69,
71,
73,
76,
77,
78,
79,
84,
85,
86,
91,
92,
93,
94,
95
] | 66.666667 |
[
47,
64,
65,
80,
88,
89,
90
] | 7.291667 | false | 82.681564 | 96 | 14 | 92.708333 | 0 |
def plan(self, animation=True):
eTheta, cMin, xCenter, C, cBest = self.setup_planning()
iterations = 0
foundGoal = False
# run until done
while iterations < self.max_iIter:
cBest = self.setup_sample(iterations,
foundGoal, cMin, xCenter, C, cBest)
# expand the best vertices until an edge is better than the vertex
# this is done because the vertex cost represents the lower bound
# on the edge cost
while self.best_vertex_queue_value() <= \
self.best_edge_queue_value():
self.expand_vertex(self.best_in_vertex_queue())
# add the best edge to the tree
bestEdge = self.best_in_edge_queue()
self.edge_queue.remove(bestEdge)
# Check if this can improve the current solution
estimatedCostOfVertex = self.g_scores[bestEdge[
0]] + self.compute_distance_cost(
bestEdge[0], bestEdge[1]) + self.compute_heuristic_cost(
bestEdge[1], self.goalId)
estimatedCostOfEdge = self.compute_distance_cost(
self.startId, bestEdge[0]) + self.compute_heuristic_cost(
bestEdge[0], bestEdge[1]) + self.compute_heuristic_cost(
bestEdge[1], self.goalId)
actualCostOfEdge = self.g_scores[
bestEdge[0]] + self.compute_distance_cost(
bestEdge[0], bestEdge[1])
f1 = estimatedCostOfVertex < self.g_scores[self.goalId]
f2 = estimatedCostOfEdge < self.g_scores[self.goalId]
f3 = actualCostOfEdge < self.g_scores[self.goalId]
if f1 and f2 and f3:
# connect this edge
firstCoord = self.tree.node_id_to_real_world_coord(
bestEdge[0])
secondCoord = self.tree.node_id_to_real_world_coord(
bestEdge[1])
path = self.connect(firstCoord, secondCoord)
lastEdge = self.tree.real_world_to_node_id(secondCoord)
if path is None or len(path) == 0:
continue
nextCoord = path[len(path) - 1, :]
nextCoordPathId = self.tree.real_world_to_node_id(
nextCoord)
bestEdge = (bestEdge[0], nextCoordPathId)
if bestEdge[1] in self.tree.vertices.keys():
continue
else:
try:
del self.samples[bestEdge[1]]
except KeyError:
# invalid sample key
pass
eid = self.tree.add_vertex(nextCoord)
self.vertex_queue.append(eid)
if eid == self.goalId or bestEdge[0] == self.goalId or \
bestEdge[1] == self.goalId:
print("Goal found")
foundGoal = True
self.tree.add_edge(bestEdge[0], bestEdge[1])
g_score = self.compute_distance_cost(
bestEdge[0], bestEdge[1])
self.g_scores[bestEdge[1]] = g_score + self.g_scores[
bestEdge[0]]
self.f_scores[
bestEdge[1]] = g_score + self.compute_heuristic_cost(
bestEdge[1], self.goalId)
self.update_graph()
# visualize new edge
if animation:
self.draw_graph(xCenter=xCenter, cBest=cBest,
cMin=cMin, eTheta=eTheta,
samples=self.samples.values(),
start=firstCoord, end=secondCoord)
self.remove_queue(lastEdge, bestEdge)
else:
print("Nothing good")
self.edge_queue = []
self.vertex_queue = []
iterations += 1
print("Finding the path")
return self.find_final_path()
| 786 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
BITStar.find_final_path
|
(self)
|
return plan
| 330 | 344 |
def find_final_path(self):
plan = [self.goal]
currId = self.goalId
while currId != self.startId:
plan.append(self.tree.node_id_to_real_world_coord(currId))
try:
currId = self.nodes[currId]
except KeyError:
print("cannot find Path")
return []
plan.append(self.start)
plan = plan[::-1] # reverse the plan
return plan
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L330-L344
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10
] | 73.333333 |
[
11,
12,
14
] | 20 | false | 82.681564 | 15 | 3 | 80 | 0 |
def find_final_path(self):
plan = [self.goal]
currId = self.goalId
while currId != self.startId:
plan.append(self.tree.node_id_to_real_world_coord(currId))
try:
currId = self.nodes[currId]
except KeyError:
print("cannot find Path")
return []
plan.append(self.start)
plan = plan[::-1] # reverse the plan
return plan
| 787 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
BITStar.remove_queue
|
(self, lastEdge, bestEdge)
| 346 | 354 |
def remove_queue(self, lastEdge, bestEdge):
for edge in self.edge_queue:
if edge[1] == bestEdge[1]:
dist_cost = self.compute_distance_cost(edge[1], bestEdge[1])
if self.g_scores[edge[1]] + dist_cost >= \
self.g_scores[self.goalId]:
if (lastEdge, bestEdge[1]) in self.edge_queue:
self.edge_queue.remove(
(lastEdge, bestEdge[1]))
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L346-L354
| 2 |
[
0,
1,
2,
3,
4
] | 55.555556 |
[
6,
7
] | 22.222222 | false | 82.681564 | 9 | 5 | 77.777778 | 0 |
def remove_queue(self, lastEdge, bestEdge):
for edge in self.edge_queue:
if edge[1] == bestEdge[1]:
dist_cost = self.compute_distance_cost(edge[1], bestEdge[1])
if self.g_scores[edge[1]] + dist_cost >= \
self.g_scores[self.goalId]:
if (lastEdge, bestEdge[1]) in self.edge_queue:
self.edge_queue.remove(
(lastEdge, bestEdge[1]))
| 788 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
BITStar.connect
|
(self, start, end)
|
return np.vstack((x, y)).transpose()
| 356 | 371 |
def connect(self, start, end):
# A function which attempts to extend from a start coordinates
# to goal coordinates
steps = int(self.compute_distance_cost(
self.tree.real_world_to_node_id(start),
self.tree.real_world_to_node_id(end)) * 10)
x = np.linspace(start[0], end[0], num=steps)
y = np.linspace(start[1], end[1], num=steps)
for i in range(len(x)):
if self._collision_check(x[i], y[i]):
if i == 0:
return None
# if collision, send path until collision
return np.vstack((x[0:i], y[0:i])).transpose()
return np.vstack((x, y)).transpose()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L356-L371
| 2 |
[
0,
1,
2,
3,
6,
7,
8,
9,
10,
12,
13,
14,
15
] | 81.25 |
[
11
] | 6.25 | false | 82.681564 | 16 | 4 | 93.75 | 0 |
def connect(self, start, end):
# A function which attempts to extend from a start coordinates
# to goal coordinates
steps = int(self.compute_distance_cost(
self.tree.real_world_to_node_id(start),
self.tree.real_world_to_node_id(end)) * 10)
x = np.linspace(start[0], end[0], num=steps)
y = np.linspace(start[1], end[1], num=steps)
for i in range(len(x)):
if self._collision_check(x[i], y[i]):
if i == 0:
return None
# if collision, send path until collision
return np.vstack((x[0:i], y[0:i])).transpose()
return np.vstack((x, y)).transpose()
| 789 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
BITStar._collision_check
|
(self, x, y)
|
return False
| 373 | 380 |
def _collision_check(self, x, y):
for (ox, oy, size) in self.obstacleList:
dx = ox - x
dy = oy - y
d = dx * dx + dy * dy
if d <= size ** 2:
return True # collision
return False
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L373-L380
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7
] | 100 |
[] | 0 | true | 82.681564 | 8 | 3 | 100 | 0 |
def _collision_check(self, x, y):
for (ox, oy, size) in self.obstacleList:
dx = ox - x
dy = oy - y
d = dx * dx + dy * dy
if d <= size ** 2:
return True # collision
return False
| 790 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
|
BITStar.compute_heuristic_cost
|
(self, start_id, goal_id)
|
return np.linalg.norm(start - goal, 2)
| 382 | 387 |
def compute_heuristic_cost(self, start_id, goal_id):
# Using Manhattan distance as heuristic
start = np.array(self.tree.node_id_to_real_world_coord(start_id))
goal = np.array(self.tree.node_id_to_real_world_coord(goal_id))
return np.linalg.norm(start - goal, 2)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L382-L387
| 2 |
[
0,
1,
2,
3,
4,
5
] | 100 |
[] | 0 | true | 82.681564 | 6 | 1 | 100 | 0 |
def compute_heuristic_cost(self, start_id, goal_id):
# Using Manhattan distance as heuristic
start = np.array(self.tree.node_id_to_real_world_coord(start_id))
goal = np.array(self.tree.node_id_to_real_world_coord(goal_id))
return np.linalg.norm(start - goal, 2)
| 791 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.