nwo
stringlengths
10
28
sha
stringlengths
40
40
path
stringlengths
11
97
identifier
stringlengths
1
64
parameters
stringlengths
2
2.24k
return_statement
stringlengths
0
2.17k
docstring
stringlengths
0
5.45k
docstring_summary
stringlengths
0
3.83k
func_begin
int64
1
13.4k
func_end
int64
2
13.4k
function
stringlengths
28
56.4k
url
stringlengths
106
209
project
int64
1
48
executed_lines
list
executed_lines_pc
float64
0
153
missing_lines
list
missing_lines_pc
float64
0
100
covered
bool
2 classes
filecoverage
float64
2.53
100
function_lines
int64
2
1.46k
mccabe
int64
1
253
coverage
float64
0
100
docstring_lines
int64
0
112
function_nodoc
stringlengths
9
56.4k
id
int64
0
29.8k
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
BITStar.compute_distance_cost
(self, vid, xid)
return np.linalg.norm(stop - start, 2)
389
394
def compute_distance_cost(self, vid, xid): # L2 norm distance start = np.array(self.tree.node_id_to_real_world_coord(vid)) stop = np.array(self.tree.node_id_to_real_world_coord(xid)) return np.linalg.norm(stop - start, 2)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L389-L394
2
[ 0, 1, 2, 3, 4, 5 ]
100
[]
0
true
82.681564
6
1
100
0
def compute_distance_cost(self, vid, xid): # L2 norm distance start = np.array(self.tree.node_id_to_real_world_coord(vid)) stop = np.array(self.tree.node_id_to_real_world_coord(xid)) return np.linalg.norm(stop - start, 2)
792
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
BITStar.informed_sample
(self, m, cMax, cMin, xCenter, C)
return samples
397
415
def informed_sample(self, m, cMax, cMin, xCenter, C): samples = dict() print("g_Score goal id: ", self.g_scores[self.goalId]) for i in range(m + 1): if cMax < float('inf'): r = [cMax / 2.0, math.sqrt(cMax ** 2 - cMin ** 2) / 2.0, math.sqrt(cMax ** 2 - cMin ** 2) / 2.0] L = np.diag(r) xBall = self.sample_unit_ball() rnd = np.dot(np.dot(C, L), xBall) + xCenter rnd = [rnd[(0, 0)], rnd[(1, 0)]] random_id = self.tree.real_world_to_node_id(rnd) samples[random_id] = rnd else: rnd = self.sample_free_space() random_id = self.tree.real_world_to_node_id(rnd) samples[random_id] = rnd return samples
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L397-L415
2
[ 0, 1, 2, 3, 4, 15, 16, 17, 18 ]
47.368421
[ 5, 8, 9, 10, 11, 12, 13 ]
36.842105
false
82.681564
19
3
63.157895
0
def informed_sample(self, m, cMax, cMin, xCenter, C): samples = dict() print("g_Score goal id: ", self.g_scores[self.goalId]) for i in range(m + 1): if cMax < float('inf'): r = [cMax / 2.0, math.sqrt(cMax ** 2 - cMin ** 2) / 2.0, math.sqrt(cMax ** 2 - cMin ** 2) / 2.0] L = np.diag(r) xBall = self.sample_unit_ball() rnd = np.dot(np.dot(C, L), xBall) + xCenter rnd = [rnd[(0, 0)], rnd[(1, 0)]] random_id = self.tree.real_world_to_node_id(rnd) samples[random_id] = rnd else: rnd = self.sample_free_space() random_id = self.tree.real_world_to_node_id(rnd) samples[random_id] = rnd return samples
793
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
BITStar.sample_unit_ball
()
return np.array([[sample[0]], [sample[1]], [0]])
419
428
def sample_unit_ball(): a = random.random() b = random.random() if b < a: a, b = b, a sample = (b * math.cos(2 * math.pi * a / b), b * math.sin(2 * math.pi * a / b)) return np.array([[sample[0]], [sample[1]], [0]])
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L419-L428
2
[ 0 ]
10
[ 1, 2, 4, 5, 7, 9 ]
60
false
82.681564
10
2
40
0
def sample_unit_ball(): a = random.random() b = random.random() if b < a: a, b = b, a sample = (b * math.cos(2 * math.pi * a / b), b * math.sin(2 * math.pi * a / b)) return np.array([[sample[0]], [sample[1]], [0]])
794
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
BITStar.sample_free_space
(self)
return rnd
430
434
def sample_free_space(self): rnd = [random.uniform(self.min_rand, self.max_rand), random.uniform(self.min_rand, self.max_rand)] return rnd
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L430-L434
2
[ 0, 1, 3, 4 ]
80
[]
0
false
82.681564
5
1
100
0
def sample_free_space(self): rnd = [random.uniform(self.min_rand, self.max_rand), random.uniform(self.min_rand, self.max_rand)] return rnd
795
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
BITStar.best_vertex_queue_value
(self)
return values[0]
436
443
def best_vertex_queue_value(self): if len(self.vertex_queue) == 0: return float('inf') values = [self.g_scores[v] + self.compute_heuristic_cost(v, self.goalId) for v in self.vertex_queue] values.sort() return values[0]
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L436-L443
2
[ 0, 1, 2, 3, 6, 7 ]
75
[]
0
false
82.681564
8
3
100
0
def best_vertex_queue_value(self): if len(self.vertex_queue) == 0: return float('inf') values = [self.g_scores[v] + self.compute_heuristic_cost(v, self.goalId) for v in self.vertex_queue] values.sort() return values[0]
796
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
BITStar.best_edge_queue_value
(self)
return values[0]
445
453
def best_edge_queue_value(self): if len(self.edge_queue) == 0: return float('inf') # return the best value in the queue by score g_tau[v] + c(v,x) + h(x) values = [self.g_scores[e[0]] + self.compute_distance_cost(e[0], e[1]) + self.compute_heuristic_cost(e[1], self.goalId) for e in self.edge_queue] values.sort(reverse=True) return values[0]
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L445-L453
2
[ 0, 1, 2, 3, 4, 7, 8 ]
77.777778
[]
0
false
82.681564
9
3
100
0
def best_edge_queue_value(self): if len(self.edge_queue) == 0: return float('inf') # return the best value in the queue by score g_tau[v] + c(v,x) + h(x) values = [self.g_scores[e[0]] + self.compute_distance_cost(e[0], e[1]) + self.compute_heuristic_cost(e[1], self.goalId) for e in self.edge_queue] values.sort(reverse=True) return values[0]
797
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
BITStar.best_in_vertex_queue
(self)
return v_plus_values[0][0]
455
462
def best_in_vertex_queue(self): # return the best value in the vertex queue v_plus_values = [(v, self.g_scores[v] + self.compute_heuristic_cost(v, self.goalId)) for v in self.vertex_queue] v_plus_values = sorted(v_plus_values, key=lambda x: x[1]) # print(v_plus_values) return v_plus_values[0][0]
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L455-L462
2
[ 0, 1, 2, 5, 6, 7 ]
75
[]
0
false
82.681564
8
2
100
0
def best_in_vertex_queue(self): # return the best value in the vertex queue v_plus_values = [(v, self.g_scores[v] + self.compute_heuristic_cost(v, self.goalId)) for v in self.vertex_queue] v_plus_values = sorted(v_plus_values, key=lambda x: x[1]) # print(v_plus_values) return v_plus_values[0][0]
798
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
BITStar.best_in_edge_queue
(self)
return e_and_values[0][0], e_and_values[0][1]
464
471
def best_in_edge_queue(self): e_and_values = [ (e[0], e[1], self.g_scores[e[0]] + self.compute_distance_cost( e[0], e[1]) + self.compute_heuristic_cost(e[1], self.goalId)) for e in self.edge_queue] e_and_values = sorted(e_and_values, key=lambda x: x[2]) return e_and_values[0][0], e_and_values[0][1]
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L464-L471
2
[ 0, 1, 5, 6, 7 ]
62.5
[]
0
false
82.681564
8
2
100
0
def best_in_edge_queue(self): e_and_values = [ (e[0], e[1], self.g_scores[e[0]] + self.compute_distance_cost( e[0], e[1]) + self.compute_heuristic_cost(e[1], self.goalId)) for e in self.edge_queue] e_and_values = sorted(e_and_values, key=lambda x: x[2]) return e_and_values[0][0], e_and_values[0][1]
799
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
BITStar.expand_vertex
(self, vid)
473
498
def expand_vertex(self, vid): self.vertex_queue.remove(vid) # get the coordinates for given vid currCoord = np.array(self.tree.node_id_to_real_world_coord(vid)) # get the nearest value in vertex for every one in samples where difference is # less than the radius neighbors = [] for sid, s_coord in self.samples.items(): s_coord = np.array(s_coord) if np.linalg.norm(s_coord - currCoord, 2) <= self.r and sid != vid: neighbors.append((sid, s_coord)) # add an edge to the edge queue is the path might improve the solution for neighbor in neighbors: sid = neighbor[0] h_cost = self.compute_heuristic_cost(sid, self.goalId) estimated_f_score = self.compute_distance_cost( self.startId, vid) + h_cost + self.compute_distance_cost(vid, sid) if estimated_f_score < self.g_scores[self.goalId]: self.edge_queue.append((vid, sid)) # add the vertex to the edge queue self.add_vertex_to_edge_queue(vid, currCoord)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L473-L498
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25 ]
92.307692
[]
0
false
82.681564
26
6
100
0
def expand_vertex(self, vid): self.vertex_queue.remove(vid) # get the coordinates for given vid currCoord = np.array(self.tree.node_id_to_real_world_coord(vid)) # get the nearest value in vertex for every one in samples where difference is # less than the radius neighbors = [] for sid, s_coord in self.samples.items(): s_coord = np.array(s_coord) if np.linalg.norm(s_coord - currCoord, 2) <= self.r and sid != vid: neighbors.append((sid, s_coord)) # add an edge to the edge queue is the path might improve the solution for neighbor in neighbors: sid = neighbor[0] h_cost = self.compute_heuristic_cost(sid, self.goalId) estimated_f_score = self.compute_distance_cost( self.startId, vid) + h_cost + self.compute_distance_cost(vid, sid) if estimated_f_score < self.g_scores[self.goalId]: self.edge_queue.append((vid, sid)) # add the vertex to the edge queue self.add_vertex_to_edge_queue(vid, currCoord)
800
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
BITStar.add_vertex_to_edge_queue
(self, vid, currCoord)
500
519
def add_vertex_to_edge_queue(self, vid, currCoord): if vid not in self.old_vertices: neighbors = [] for v, edges in self.tree.vertices.items(): if v != vid and (v, vid) not in self.edge_queue and \ (vid, v) not in self.edge_queue: v_coord = self.tree.node_id_to_real_world_coord(v) if np.linalg.norm(currCoord - v_coord, 2) <= self.r: neighbors.append((vid, v_coord)) for neighbor in neighbors: sid = neighbor[0] estimated_f_score = self.compute_distance_cost( self.startId, vid) + self.compute_distance_cost( vid, sid) + self.compute_heuristic_cost(sid, self.goalId) if estimated_f_score < self.g_scores[self.goalId] and ( self.g_scores[vid] + self.compute_distance_cost(vid, sid)) < \ self.g_scores[sid]: self.edge_queue.append((vid, sid))
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L500-L519
2
[ 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 15 ]
65
[ 19 ]
5
false
82.681564
20
10
95
0
def add_vertex_to_edge_queue(self, vid, currCoord): if vid not in self.old_vertices: neighbors = [] for v, edges in self.tree.vertices.items(): if v != vid and (v, vid) not in self.edge_queue and \ (vid, v) not in self.edge_queue: v_coord = self.tree.node_id_to_real_world_coord(v) if np.linalg.norm(currCoord - v_coord, 2) <= self.r: neighbors.append((vid, v_coord)) for neighbor in neighbors: sid = neighbor[0] estimated_f_score = self.compute_distance_cost( self.startId, vid) + self.compute_distance_cost( vid, sid) + self.compute_heuristic_cost(sid, self.goalId) if estimated_f_score < self.g_scores[self.goalId] and ( self.g_scores[vid] + self.compute_distance_cost(vid, sid)) < \ self.g_scores[sid]: self.edge_queue.append((vid, sid))
801
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
BITStar.update_graph
(self)
521
563
def update_graph(self): closedSet = [] openSet = [] currId = self.startId openSet.append(currId) while len(openSet) != 0: # get the element with lowest f_score currId = min(openSet, key=lambda x: self.f_scores[x]) # remove element from open set openSet.remove(currId) # Check if we're at the goal if currId == self.goalId: break if currId not in closedSet: closedSet.append(currId) # find a non visited successor to the current node successors = self.tree.vertices[currId] for successor in successors: if successor in closedSet: continue else: # calculate tentative g score g_score = self.g_scores[currId] + \ self.compute_distance_cost(currId, successor) if successor not in openSet: # add the successor to open set openSet.append(successor) elif g_score >= self.g_scores[successor]: continue # update g and f scores self.g_scores[successor] = g_score self.f_scores[ successor] = g_score + self.compute_heuristic_cost( successor, self.goalId) # store the parent and child self.nodes[successor] = currId
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L521-L563
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 31, 35, 36, 37, 41, 42 ]
79.069767
[ 15, 32, 33 ]
6.976744
false
82.681564
43
8
93.023256
0
def update_graph(self): closedSet = [] openSet = [] currId = self.startId openSet.append(currId) while len(openSet) != 0: # get the element with lowest f_score currId = min(openSet, key=lambda x: self.f_scores[x]) # remove element from open set openSet.remove(currId) # Check if we're at the goal if currId == self.goalId: break if currId not in closedSet: closedSet.append(currId) # find a non visited successor to the current node successors = self.tree.vertices[currId] for successor in successors: if successor in closedSet: continue else: # calculate tentative g score g_score = self.g_scores[currId] + \ self.compute_distance_cost(currId, successor) if successor not in openSet: # add the successor to open set openSet.append(successor) elif g_score >= self.g_scores[successor]: continue # update g and f scores self.g_scores[successor] = g_score self.f_scores[ successor] = g_score + self.compute_heuristic_cost( successor, self.goalId) # store the parent and child self.nodes[successor] = currId
802
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
BITStar.draw_graph
(self, xCenter=None, cBest=None, cMin=None, eTheta=None, samples=None, start=None, end=None)
565
588
def draw_graph(self, xCenter=None, cBest=None, cMin=None, eTheta=None, samples=None, start=None, end=None): plt.clf() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) for rnd in samples: if rnd is not None: plt.plot(rnd[0], rnd[1], "^k") if cBest != float('inf'): self.plot_ellipse(xCenter, cBest, cMin, eTheta) if start is not None and end is not None: plt.plot([start[0], start[1]], [end[0], end[1]], "-g") for (ox, oy, size) in self.obstacleList: plt.plot(ox, oy, "ok", ms=30 * size) plt.plot(self.start[0], self.start[1], "xr") plt.plot(self.goal[0], self.goal[1], "xr") plt.axis([-2, 15, -2, 15]) plt.grid(True) plt.pause(0.01)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L565-L588
2
[ 0 ]
4.166667
[ 2, 4, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23 ]
66.666667
false
82.681564
24
7
33.333333
0
def draw_graph(self, xCenter=None, cBest=None, cMin=None, eTheta=None, samples=None, start=None, end=None): plt.clf() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) for rnd in samples: if rnd is not None: plt.plot(rnd[0], rnd[1], "^k") if cBest != float('inf'): self.plot_ellipse(xCenter, cBest, cMin, eTheta) if start is not None and end is not None: plt.plot([start[0], start[1]], [end[0], end[1]], "-g") for (ox, oy, size) in self.obstacleList: plt.plot(ox, oy, "ok", ms=30 * size) plt.plot(self.start[0], self.start[1], "xr") plt.plot(self.goal[0], self.goal[1], "xr") plt.axis([-2, 15, -2, 15]) plt.grid(True) plt.pause(0.01)
803
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
BITStar.plot_ellipse
(xCenter, cBest, cMin, eTheta)
591
608
def plot_ellipse(xCenter, cBest, cMin, eTheta): # pragma: no cover a = math.sqrt(cBest ** 2 - cMin ** 2) / 2.0 b = cBest / 2.0 angle = math.pi / 2.0 - eTheta cx = xCenter[0] cy = xCenter[1] t = np.arange(0, 2 * math.pi + 0.1, 0.1) x = [a * math.cos(it) for it in t] y = [b * math.sin(it) for it in t] R = np.array([[math.cos(angle), math.sin(angle)], [-math.sin(angle), math.cos(angle)]]) fx = R @ np.array([x, y]) px = np.array(fx[0, :] + cx).flatten() py = np.array(fx[1, :] + cy).flatten() plt.plot(cx, cy, "xc") plt.plot(px, py, "--c")
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py#L591-L608
2
[]
0
[]
0
false
82.681564
18
3
100
0
def plot_ellipse(xCenter, cBest, cMin, eTheta): # pragma: no cover a = math.sqrt(cBest ** 2 - cMin ** 2) / 2.0 b = cBest / 2.0 angle = math.pi / 2.0 - eTheta cx = xCenter[0] cy = xCenter[1] t = np.arange(0, 2 * math.pi + 0.1, 0.1) x = [a * math.cos(it) for it in t] y = [b * math.sin(it) for it in t] R = np.array([[math.cos(angle), math.sin(angle)], [-math.sin(angle), math.cos(angle)]]) fx = R @ np.array([x, y]) px = np.array(fx[0, :] + cx).flatten() py = np.array(fx[1, :] + cy).flatten() plt.plot(cx, cy, "xc") plt.plot(px, py, "--c")
804
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt.py
main
(gx=6.0, gy=10.0)
259
287
def main(gx=6.0, gy=10.0): print("start " + __file__) # ====Search Path with RRT==== obstacleList = [(5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2), (9, 5, 2), (8, 10, 1)] # [x, y, radius] # Set Initial parameters rrt = RRT( start=[0, 0], goal=[gx, gy], rand_area=[-2, 15], obstacle_list=obstacleList, # play_area=[0, 10, 0, 14] robot_radius=0.8 ) path = rrt.planning(animation=show_animation) if path is None: print("Cannot find path") else: print("found path!!") # Draw final path if show_animation: rrt.draw_graph() plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.grid(True) plt.pause(0.01) # Need for Mac plt.show()
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt.py#L259-L287
2
[ 0, 1, 2, 3, 4, 6, 7, 15, 16, 17, 20, 21, 22, 23 ]
48.275862
[ 18, 24, 25, 26, 27, 28 ]
20.689655
false
76.433121
29
5
79.310345
0
def main(gx=6.0, gy=10.0): print("start " + __file__) # ====Search Path with RRT==== obstacleList = [(5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2), (9, 5, 2), (8, 10, 1)] # [x, y, radius] # Set Initial parameters rrt = RRT( start=[0, 0], goal=[gx, gy], rand_area=[-2, 15], obstacle_list=obstacleList, # play_area=[0, 10, 0, 14] robot_radius=0.8 ) path = rrt.planning(animation=show_animation) if path is None: print("Cannot find path") else: print("found path!!") # Draw final path if show_animation: rrt.draw_graph() plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.grid(True) plt.pause(0.01) # Need for Mac plt.show()
805
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt.py
RRT.__init__
(self, start, goal, obstacle_list, rand_area, expand_dis=3.0, path_resolution=0.5, goal_sample_rate=5, max_iter=500, play_area=None, robot_radius=0.0, )
Setting Parameter start:Start Position [x,y] goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Random Sampling Area [min,max] play_area:stay inside this area [xmin,xmax,ymin,ymax] robot_radius: robot body modeled as circle with given radius
Setting Parameter
44
81
def __init__(self, start, goal, obstacle_list, rand_area, expand_dis=3.0, path_resolution=0.5, goal_sample_rate=5, max_iter=500, play_area=None, robot_radius=0.0, ): """ Setting Parameter start:Start Position [x,y] goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Random Sampling Area [min,max] play_area:stay inside this area [xmin,xmax,ymin,ymax] robot_radius: robot body modeled as circle with given radius """ self.start = self.Node(start[0], start[1]) self.end = self.Node(goal[0], goal[1]) self.min_rand = rand_area[0] self.max_rand = rand_area[1] if play_area is not None: self.play_area = self.AreaBounds(play_area) else: self.play_area = None self.expand_dis = expand_dis self.path_resolution = path_resolution self.goal_sample_rate = goal_sample_rate self.max_iter = max_iter self.obstacle_list = obstacle_list self.node_list = [] self.robot_radius = robot_radius
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt.py#L44-L81
2
[ 0, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37 ]
42.105263
[ 28 ]
2.631579
false
76.433121
38
2
97.368421
8
def __init__(self, start, goal, obstacle_list, rand_area, expand_dis=3.0, path_resolution=0.5, goal_sample_rate=5, max_iter=500, play_area=None, robot_radius=0.0, ): self.start = self.Node(start[0], start[1]) self.end = self.Node(goal[0], goal[1]) self.min_rand = rand_area[0] self.max_rand = rand_area[1] if play_area is not None: self.play_area = self.AreaBounds(play_area) else: self.play_area = None self.expand_dis = expand_dis self.path_resolution = path_resolution self.goal_sample_rate = goal_sample_rate self.max_iter = max_iter self.obstacle_list = obstacle_list self.node_list = [] self.robot_radius = robot_radius
806
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt.py
RRT.planning
(self, animation=True)
return None
rrt path planning animation: flag for animation on or off
rrt path planning
83
117
def planning(self, animation=True): """ rrt path planning animation: flag for animation on or off """ self.node_list = [self.start] for i in range(self.max_iter): rnd_node = self.get_random_node() nearest_ind = self.get_nearest_node_index(self.node_list, rnd_node) nearest_node = self.node_list[nearest_ind] new_node = self.steer(nearest_node, rnd_node, self.expand_dis) if self.check_if_outside_play_area(new_node, self.play_area) and \ self.check_collision( new_node, self.obstacle_list, self.robot_radius): self.node_list.append(new_node) if animation and i % 5 == 0: self.draw_graph(rnd_node) if self.calc_dist_to_goal(self.node_list[-1].x, self.node_list[-1].y) <= self.expand_dis: final_node = self.steer(self.node_list[-1], self.end, self.expand_dis) if self.check_collision( final_node, self.obstacle_list, self.robot_radius): return self.generate_final_course(len(self.node_list) - 1) if animation and i % 5: self.draw_graph(rnd_node) return None
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt.py#L83-L117
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 ]
88.571429
[ 21, 32, 34 ]
8.571429
false
76.433121
35
10
91.428571
3
def planning(self, animation=True): self.node_list = [self.start] for i in range(self.max_iter): rnd_node = self.get_random_node() nearest_ind = self.get_nearest_node_index(self.node_list, rnd_node) nearest_node = self.node_list[nearest_ind] new_node = self.steer(nearest_node, rnd_node, self.expand_dis) if self.check_if_outside_play_area(new_node, self.play_area) and \ self.check_collision( new_node, self.obstacle_list, self.robot_radius): self.node_list.append(new_node) if animation and i % 5 == 0: self.draw_graph(rnd_node) if self.calc_dist_to_goal(self.node_list[-1].x, self.node_list[-1].y) <= self.expand_dis: final_node = self.steer(self.node_list[-1], self.end, self.expand_dis) if self.check_collision( final_node, self.obstacle_list, self.robot_radius): return self.generate_final_course(len(self.node_list) - 1) if animation and i % 5: self.draw_graph(rnd_node) return None
807
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt.py
RRT.steer
(self, from_node, to_node, extend_length=float("inf"))
return new_node
119
147
def steer(self, from_node, to_node, extend_length=float("inf")): new_node = self.Node(from_node.x, from_node.y) d, theta = self.calc_distance_and_angle(new_node, to_node) new_node.path_x = [new_node.x] new_node.path_y = [new_node.y] if extend_length > d: extend_length = d n_expand = math.floor(extend_length / self.path_resolution) for _ in range(n_expand): new_node.x += self.path_resolution * math.cos(theta) new_node.y += self.path_resolution * math.sin(theta) new_node.path_x.append(new_node.x) new_node.path_y.append(new_node.y) d, _ = self.calc_distance_and_angle(new_node, to_node) if d <= self.path_resolution: new_node.path_x.append(to_node.x) new_node.path_y.append(to_node.y) new_node.x = to_node.x new_node.y = to_node.y new_node.parent = from_node return new_node
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt.py#L119-L147
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ]
100
[]
0
true
76.433121
29
4
100
0
def steer(self, from_node, to_node, extend_length=float("inf")): new_node = self.Node(from_node.x, from_node.y) d, theta = self.calc_distance_and_angle(new_node, to_node) new_node.path_x = [new_node.x] new_node.path_y = [new_node.y] if extend_length > d: extend_length = d n_expand = math.floor(extend_length / self.path_resolution) for _ in range(n_expand): new_node.x += self.path_resolution * math.cos(theta) new_node.y += self.path_resolution * math.sin(theta) new_node.path_x.append(new_node.x) new_node.path_y.append(new_node.y) d, _ = self.calc_distance_and_angle(new_node, to_node) if d <= self.path_resolution: new_node.path_x.append(to_node.x) new_node.path_y.append(to_node.y) new_node.x = to_node.x new_node.y = to_node.y new_node.parent = from_node return new_node
808
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt.py
RRT.generate_final_course
(self, goal_ind)
return path
149
157
def generate_final_course(self, goal_ind): path = [[self.end.x, self.end.y]] node = self.node_list[goal_ind] while node.parent is not None: path.append([node.x, node.y]) node = node.parent path.append([node.x, node.y]) return path
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt.py#L149-L157
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
100
[]
0
true
76.433121
9
2
100
0
def generate_final_course(self, goal_ind): path = [[self.end.x, self.end.y]] node = self.node_list[goal_ind] while node.parent is not None: path.append([node.x, node.y]) node = node.parent path.append([node.x, node.y]) return path
809
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt.py
RRT.calc_dist_to_goal
(self, x, y)
return math.hypot(dx, dy)
159
162
def calc_dist_to_goal(self, x, y): dx = x - self.end.x dy = y - self.end.y return math.hypot(dx, dy)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt.py#L159-L162
2
[ 0, 1, 2, 3 ]
100
[]
0
true
76.433121
4
1
100
0
def calc_dist_to_goal(self, x, y): dx = x - self.end.x dy = y - self.end.y return math.hypot(dx, dy)
810
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt.py
RRT.get_random_node
(self)
return rnd
164
171
def get_random_node(self): if random.randint(0, 100) > self.goal_sample_rate: rnd = self.Node( random.uniform(self.min_rand, self.max_rand), random.uniform(self.min_rand, self.max_rand)) else: # goal point sampling rnd = self.Node(self.end.x, self.end.y) return rnd
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt.py#L164-L171
2
[ 0, 1, 2, 6, 7 ]
62.5
[]
0
false
76.433121
8
2
100
0
def get_random_node(self): if random.randint(0, 100) > self.goal_sample_rate: rnd = self.Node( random.uniform(self.min_rand, self.max_rand), random.uniform(self.min_rand, self.max_rand)) else: # goal point sampling rnd = self.Node(self.end.x, self.end.y) return rnd
811
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt.py
RRT.draw_graph
(self, rnd=None)
173
204
def draw_graph(self, rnd=None): plt.clf() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if rnd is not None: plt.plot(rnd.x, rnd.y, "^k") if self.robot_radius > 0.0: self.plot_circle(rnd.x, rnd.y, self.robot_radius, '-r') for node in self.node_list: if node.parent: plt.plot(node.path_x, node.path_y, "-g") for (ox, oy, size) in self.obstacle_list: self.plot_circle(ox, oy, size) if self.play_area is not None: plt.plot([self.play_area.xmin, self.play_area.xmax, self.play_area.xmax, self.play_area.xmin, self.play_area.xmin], [self.play_area.ymin, self.play_area.ymin, self.play_area.ymax, self.play_area.ymax, self.play_area.ymin], "-k") plt.plot(self.start.x, self.start.y, "xr") plt.plot(self.end.x, self.end.y, "xr") plt.axis("equal") plt.axis([-2, 15, -2, 15]) plt.grid(True) plt.pause(0.01)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt.py#L173-L204
2
[ 0 ]
3.125
[ 1, 3, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 26, 27, 28, 29, 30, 31 ]
59.375
false
76.433121
32
7
40.625
0
def draw_graph(self, rnd=None): plt.clf() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if rnd is not None: plt.plot(rnd.x, rnd.y, "^k") if self.robot_radius > 0.0: self.plot_circle(rnd.x, rnd.y, self.robot_radius, '-r') for node in self.node_list: if node.parent: plt.plot(node.path_x, node.path_y, "-g") for (ox, oy, size) in self.obstacle_list: self.plot_circle(ox, oy, size) if self.play_area is not None: plt.plot([self.play_area.xmin, self.play_area.xmax, self.play_area.xmax, self.play_area.xmin, self.play_area.xmin], [self.play_area.ymin, self.play_area.ymin, self.play_area.ymax, self.play_area.ymax, self.play_area.ymin], "-k") plt.plot(self.start.x, self.start.y, "xr") plt.plot(self.end.x, self.end.y, "xr") plt.axis("equal") plt.axis([-2, 15, -2, 15]) plt.grid(True) plt.pause(0.01)
812
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt.py
RRT.plot_circle
(x, y, size, color="-b")
207
212
def plot_circle(x, y, size, color="-b"): # pragma: no cover deg = list(range(0, 360, 5)) deg.append(0) xl = [x + size * math.cos(np.deg2rad(d)) for d in deg] yl = [y + size * math.sin(np.deg2rad(d)) for d in deg] plt.plot(xl, yl, color)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt.py#L207-L212
2
[]
0
[]
0
false
76.433121
6
3
100
0
def plot_circle(x, y, size, color="-b"): # pragma: no cover deg = list(range(0, 360, 5)) deg.append(0) xl = [x + size * math.cos(np.deg2rad(d)) for d in deg] yl = [y + size * math.sin(np.deg2rad(d)) for d in deg] plt.plot(xl, yl, color)
813
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt.py
RRT.get_nearest_node_index
(node_list, rnd_node)
return minind
215
220
def get_nearest_node_index(node_list, rnd_node): dlist = [(node.x - rnd_node.x)**2 + (node.y - rnd_node.y)**2 for node in node_list] minind = dlist.index(min(dlist)) return minind
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt.py#L215-L220
2
[ 0, 1, 3, 4, 5 ]
83.333333
[]
0
false
76.433121
6
2
100
0
def get_nearest_node_index(node_list, rnd_node): dlist = [(node.x - rnd_node.x)**2 + (node.y - rnd_node.y)**2 for node in node_list] minind = dlist.index(min(dlist)) return minind
814
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt.py
RRT.check_if_outside_play_area
(node, play_area)
223
232
def check_if_outside_play_area(node, play_area): if play_area is None: return True # no play_area was defined, every pos should be ok if node.x < play_area.xmin or node.x > play_area.xmax or \ node.y < play_area.ymin or node.y > play_area.ymax: return False # outside - bad else: return True
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt.py#L223-L232
2
[ 0, 1, 2, 3, 4 ]
50
[ 5, 7, 9 ]
30
false
76.433121
10
6
70
0
def check_if_outside_play_area(node, play_area): if play_area is None: return True # no play_area was defined, every pos should be ok if node.x < play_area.xmin or node.x > play_area.xmax or \ node.y < play_area.ymin or node.y > play_area.ymax: return False # outside - bad else: return True
815
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt.py
RRT.check_collision
(node, obstacleList, robot_radius)
return True
235
248
def check_collision(node, obstacleList, robot_radius): if node is None: return False for (ox, oy, size) in obstacleList: dx_list = [ox - x for x in node.path_x] dy_list = [oy - y for y in node.path_y] d_list = [dx * dx + dy * dy for (dx, dy) in zip(dx_list, dy_list)] if min(d_list) <= (size+robot_radius)**2: return False # collision return True
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt.py#L235-L248
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ]
100
[]
0
true
76.433121
14
7
100
0
def check_collision(node, obstacleList, robot_radius): if node is None: return False for (ox, oy, size) in obstacleList: dx_list = [ox - x for x in node.path_x] dy_list = [oy - y for y in node.path_y] d_list = [dx * dx + dy * dy for (dx, dy) in zip(dx_list, dy_list)] if min(d_list) <= (size+robot_radius)**2: return False # collision return True
816
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt.py
RRT.calc_distance_and_angle
(from_node, to_node)
return d, theta
251
256
def calc_distance_and_angle(from_node, to_node): dx = to_node.x - from_node.x dy = to_node.y - from_node.y d = math.hypot(dx, dy) theta = math.atan2(dy, dx) return d, theta
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt.py#L251-L256
2
[ 0, 1, 2, 3, 4, 5 ]
100
[]
0
true
76.433121
6
1
100
0
def calc_distance_and_angle(from_node, to_node): dx = to_node.x - from_node.x dy = to_node.y - from_node.y d = math.hypot(dx, dy) theta = math.atan2(dy, dx) return d, theta
817
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_pathsmoothing.py
get_path_length
(path)
return le
21
29
def get_path_length(path): le = 0 for i in range(len(path) - 1): dx = path[i + 1][0] - path[i][0] dy = path[i + 1][1] - path[i][1] d = math.sqrt(dx * dx + dy * dy) le += d return le
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_pathsmoothing.py#L21-L29
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
100
[]
0
true
88.505747
9
2
100
0
def get_path_length(path): le = 0 for i in range(len(path) - 1): dx = path[i + 1][0] - path[i][0] dy = path[i + 1][1] - path[i][1] d = math.sqrt(dx * dx + dy * dy) le += d return le
818
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_pathsmoothing.py
get_target_point
(path, targetL)
return [x, y, ti]
32
51
def get_target_point(path, targetL): le = 0 ti = 0 lastPairLen = 0 for i in range(len(path) - 1): dx = path[i + 1][0] - path[i][0] dy = path[i + 1][1] - path[i][1] d = math.sqrt(dx * dx + dy * dy) le += d if le >= targetL: ti = i - 1 lastPairLen = d break partRatio = (le - targetL) / lastPairLen x = path[ti][0] + (path[ti + 1][0] - path[ti][0]) * partRatio y = path[ti][1] + (path[ti + 1][1] - path[ti][1]) * partRatio return [x, y, ti]
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_pathsmoothing.py#L32-L51
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 ]
100
[]
0
true
88.505747
20
3
100
0
def get_target_point(path, targetL): le = 0 ti = 0 lastPairLen = 0 for i in range(len(path) - 1): dx = path[i + 1][0] - path[i][0] dy = path[i + 1][1] - path[i][1] d = math.sqrt(dx * dx + dy * dy) le += d if le >= targetL: ti = i - 1 lastPairLen = d break partRatio = (le - targetL) / lastPairLen x = path[ti][0] + (path[ti + 1][0] - path[ti][0]) * partRatio y = path[ti][1] + (path[ti + 1][1] - path[ti][1]) * partRatio return [x, y, ti]
819
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_pathsmoothing.py
line_collision_check
(first, second, obstacleList)
return True
54
74
def line_collision_check(first, second, obstacleList): # Line Equation x1 = first[0] y1 = first[1] x2 = second[0] y2 = second[1] try: a = y2 - y1 b = -(x2 - x1) c = y2 * (x2 - x1) - x2 * (y2 - y1) except ZeroDivisionError: return False for (ox, oy, size) in obstacleList: d = abs(a * ox + b * oy + c) / (math.sqrt(a * a + b * b)) if d <= size: return False return True
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_pathsmoothing.py#L54-L74
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20 ]
90.47619
[ 12, 13 ]
9.52381
false
88.505747
21
4
90.47619
0
def line_collision_check(first, second, obstacleList): # Line Equation x1 = first[0] y1 = first[1] x2 = second[0] y2 = second[1] try: a = y2 - y1 b = -(x2 - x1) c = y2 * (x2 - x1) - x2 * (y2 - y1) except ZeroDivisionError: return False for (ox, oy, size) in obstacleList: d = abs(a * ox + b * oy + c) / (math.sqrt(a * a + b * b)) if d <= size: return False return True
820
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_pathsmoothing.py
path_smoothing
(path, max_iter, obstacle_list)
return path
77
109
def path_smoothing(path, max_iter, obstacle_list): le = get_path_length(path) for i in range(max_iter): # Sample two points pickPoints = [random.uniform(0, le), random.uniform(0, le)] pickPoints.sort() first = get_target_point(path, pickPoints[0]) second = get_target_point(path, pickPoints[1]) if first[2] <= 0 or second[2] <= 0: continue if (second[2] + 1) > len(path): continue if second[2] == first[2]: continue # collision check if not line_collision_check(first, second, obstacle_list): continue # Create New path newPath = [] newPath.extend(path[:first[2] + 1]) newPath.append([first[0], first[1]]) newPath.append([second[0], second[1]]) newPath.extend(path[second[2] + 1:]) path = newPath le = get_path_length(path) return path
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_pathsmoothing.py#L77-L109
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 ]
96.969697
[ 14 ]
3.030303
false
88.505747
33
7
96.969697
0
def path_smoothing(path, max_iter, obstacle_list): le = get_path_length(path) for i in range(max_iter): # Sample two points pickPoints = [random.uniform(0, le), random.uniform(0, le)] pickPoints.sort() first = get_target_point(path, pickPoints[0]) second = get_target_point(path, pickPoints[1]) if first[2] <= 0 or second[2] <= 0: continue if (second[2] + 1) > len(path): continue if second[2] == first[2]: continue # collision check if not line_collision_check(first, second, obstacle_list): continue # Create New path newPath = [] newPath.extend(path[:first[2] + 1]) newPath.append([first[0], first[1]]) newPath.append([second[0], second[1]]) newPath.extend(path[second[2] + 1:]) path = newPath le = get_path_length(path) return path
821
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_pathsmoothing.py
main
()
112
141
def main(): # ====Search Path with RRT==== # Parameter obstacleList = [ (5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2), (9, 5, 2) ] # [x,y,size] rrt = RRT(start=[0, 0], goal=[6, 10], rand_area=[-2, 15], obstacle_list=obstacleList) path = rrt.planning(animation=show_animation) # Path smoothing maxIter = 1000 smoothedPath = path_smoothing(path, maxIter, obstacleList) # Draw final path if show_animation: rrt.draw_graph() plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.plot([x for (x, y) in smoothedPath], [ y for (x, y) in smoothedPath], '-c') plt.grid(True) plt.pause(0.01) # Need for Mac plt.show()
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_pathsmoothing.py#L112-L141
2
[ 0, 1, 2, 3, 11, 13, 14, 15, 16, 17, 18, 19, 20 ]
43.333333
[ 21, 22, 24, 27, 28, 29 ]
20
false
88.505747
30
6
80
0
def main(): # ====Search Path with RRT==== # Parameter obstacleList = [ (5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2), (9, 5, 2) ] # [x,y,size] rrt = RRT(start=[0, 0], goal=[6, 10], rand_area=[-2, 15], obstacle_list=obstacleList) path = rrt.planning(animation=show_animation) # Path smoothing maxIter = 1000 smoothedPath = path_smoothing(path, maxIter, obstacleList) # Draw final path if show_animation: rrt.draw_graph() plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.plot([x for (x, y) in smoothedPath], [ y for (x, y) in smoothedPath], '-c') plt.grid(True) plt.pause(0.01) # Need for Mac plt.show()
822
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_sobol_sampler.py
main
(gx=6.0, gy=10.0)
248
274
def main(gx=6.0, gy=10.0): print("start " + __file__) # ====Search Path with RRTSobol==== obstacle_list = [(5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2), (9, 5, 2), (8, 10, 1)] # [x, y, radius] # Set Initial parameters rrt = RRTSobol( start=[0, 0], goal=[gx, gy], rand_area=[-2, 15], obstacle_list=obstacle_list, robot_radius=0.8) path = rrt.planning(animation=show_animation) if path is None: print("Cannot find path") else: print("found path!!") # Draw final path if show_animation: rrt.draw_graph() plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.grid(True) plt.pause(0.01) # Need for Mac plt.show()
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_sobol_sampler.py#L248-L274
2
[ 0, 1, 2, 3, 4, 6, 7, 13, 14, 15, 18, 19, 20, 21 ]
51.851852
[ 16, 22, 23, 24, 25, 26 ]
22.222222
false
79.310345
27
5
77.777778
0
def main(gx=6.0, gy=10.0): print("start " + __file__) # ====Search Path with RRTSobol==== obstacle_list = [(5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2), (9, 5, 2), (8, 10, 1)] # [x, y, radius] # Set Initial parameters rrt = RRTSobol( start=[0, 0], goal=[gx, gy], rand_area=[-2, 15], obstacle_list=obstacle_list, robot_radius=0.8) path = rrt.planning(animation=show_animation) if path is None: print("Cannot find path") else: print("found path!!") # Draw final path if show_animation: rrt.draw_graph() plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.grid(True) plt.pause(0.01) # Need for Mac plt.show()
823
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_sobol_sampler.py
RRTSobol.__init__
(self, start, goal, obstacle_list, rand_area, expand_dis=3.0, path_resolution=0.5, goal_sample_rate=5, max_iter=500, robot_radius=0.0)
Setting Parameter start:Start Position [x,y] goal:Goal Position [x,y] obstacle_list:obstacle Positions [[x,y,size],...] randArea:Random Sampling Area [min,max] robot_radius: robot body modeled as circle with given radius
Setting Parameter
57
88
def __init__(self, start, goal, obstacle_list, rand_area, expand_dis=3.0, path_resolution=0.5, goal_sample_rate=5, max_iter=500, robot_radius=0.0): """ Setting Parameter start:Start Position [x,y] goal:Goal Position [x,y] obstacle_list:obstacle Positions [[x,y,size],...] randArea:Random Sampling Area [min,max] robot_radius: robot body modeled as circle with given radius """ self.start = self.Node(start[0], start[1]) self.end = self.Node(goal[0], goal[1]) self.min_rand = rand_area[0] self.max_rand = rand_area[1] self.expand_dis = expand_dis self.path_resolution = path_resolution self.goal_sample_rate = goal_sample_rate self.max_iter = max_iter self.obstacle_list = obstacle_list self.node_list = [] self.sobol_inter_ = 0 self.robot_radius = robot_radius
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_sobol_sampler.py#L57-L88
2
[ 0, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 ]
43.75
[]
0
false
79.310345
32
1
100
7
def __init__(self, start, goal, obstacle_list, rand_area, expand_dis=3.0, path_resolution=0.5, goal_sample_rate=5, max_iter=500, robot_radius=0.0): self.start = self.Node(start[0], start[1]) self.end = self.Node(goal[0], goal[1]) self.min_rand = rand_area[0] self.max_rand = rand_area[1] self.expand_dis = expand_dis self.path_resolution = path_resolution self.goal_sample_rate = goal_sample_rate self.max_iter = max_iter self.obstacle_list = obstacle_list self.node_list = [] self.sobol_inter_ = 0 self.robot_radius = robot_radius
824
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_sobol_sampler.py
RRTSobol.planning
(self, animation=True)
return None
rrt path planning animation: flag for animation on or off
rrt path planning
90
123
def planning(self, animation=True): """ rrt path planning animation: flag for animation on or off """ self.node_list = [self.start] for i in range(self.max_iter): rnd_node = self.get_random_node() nearest_ind = self.get_nearest_node_index(self.node_list, rnd_node) nearest_node = self.node_list[nearest_ind] new_node = self.steer(nearest_node, rnd_node, self.expand_dis) if self.check_collision( new_node, self.obstacle_list, self.robot_radius): self.node_list.append(new_node) if animation and i % 5 == 0: self.draw_graph(rnd_node) if self.calc_dist_to_goal(self.node_list[-1].x, self.node_list[-1].y) <= self.expand_dis: final_node = self.steer(self.node_list[-1], self.end, self.expand_dis) if self.check_collision( final_node, self.obstacle_list, self.robot_radius): return self.generate_final_course(len(self.node_list) - 1) if animation and i % 5: self.draw_graph(rnd_node) return None
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_sobol_sampler.py#L90-L123
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ]
88.235294
[ 20, 31, 33 ]
8.823529
false
79.310345
34
9
91.176471
3
def planning(self, animation=True): self.node_list = [self.start] for i in range(self.max_iter): rnd_node = self.get_random_node() nearest_ind = self.get_nearest_node_index(self.node_list, rnd_node) nearest_node = self.node_list[nearest_ind] new_node = self.steer(nearest_node, rnd_node, self.expand_dis) if self.check_collision( new_node, self.obstacle_list, self.robot_radius): self.node_list.append(new_node) if animation and i % 5 == 0: self.draw_graph(rnd_node) if self.calc_dist_to_goal(self.node_list[-1].x, self.node_list[-1].y) <= self.expand_dis: final_node = self.steer(self.node_list[-1], self.end, self.expand_dis) if self.check_collision( final_node, self.obstacle_list, self.robot_radius): return self.generate_final_course(len(self.node_list) - 1) if animation and i % 5: self.draw_graph(rnd_node) return None
825
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_sobol_sampler.py
RRTSobol.steer
(self, from_node, to_node, extend_length=float("inf"))
return new_node
125
153
def steer(self, from_node, to_node, extend_length=float("inf")): new_node = self.Node(from_node.x, from_node.y) d, theta = self.calc_distance_and_angle(new_node, to_node) new_node.path_x = [new_node.x] new_node.path_y = [new_node.y] if extend_length > d: extend_length = d n_expand = math.floor(extend_length / self.path_resolution) for _ in range(n_expand): new_node.x += self.path_resolution * math.cos(theta) new_node.y += self.path_resolution * math.sin(theta) new_node.path_x.append(new_node.x) new_node.path_y.append(new_node.y) d, _ = self.calc_distance_and_angle(new_node, to_node) if d <= self.path_resolution: new_node.path_x.append(to_node.x) new_node.path_y.append(to_node.y) new_node.x = to_node.x new_node.y = to_node.y new_node.parent = from_node return new_node
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_sobol_sampler.py#L125-L153
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ]
100
[]
0
true
79.310345
29
4
100
0
def steer(self, from_node, to_node, extend_length=float("inf")): new_node = self.Node(from_node.x, from_node.y) d, theta = self.calc_distance_and_angle(new_node, to_node) new_node.path_x = [new_node.x] new_node.path_y = [new_node.y] if extend_length > d: extend_length = d n_expand = math.floor(extend_length / self.path_resolution) for _ in range(n_expand): new_node.x += self.path_resolution * math.cos(theta) new_node.y += self.path_resolution * math.sin(theta) new_node.path_x.append(new_node.x) new_node.path_y.append(new_node.y) d, _ = self.calc_distance_and_angle(new_node, to_node) if d <= self.path_resolution: new_node.path_x.append(to_node.x) new_node.path_y.append(to_node.y) new_node.x = to_node.x new_node.y = to_node.y new_node.parent = from_node return new_node
826
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_sobol_sampler.py
RRTSobol.generate_final_course
(self, goal_ind)
return path
155
163
def generate_final_course(self, goal_ind): path = [[self.end.x, self.end.y]] node = self.node_list[goal_ind] while node.parent is not None: path.append([node.x, node.y]) node = node.parent path.append([node.x, node.y]) return path
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_sobol_sampler.py#L155-L163
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
100
[]
0
true
79.310345
9
2
100
0
def generate_final_course(self, goal_ind): path = [[self.end.x, self.end.y]] node = self.node_list[goal_ind] while node.parent is not None: path.append([node.x, node.y]) node = node.parent path.append([node.x, node.y]) return path
827
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_sobol_sampler.py
RRTSobol.calc_dist_to_goal
(self, x, y)
return math.hypot(dx, dy)
165
168
def calc_dist_to_goal(self, x, y): dx = x - self.end.x dy = y - self.end.y return math.hypot(dx, dy)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_sobol_sampler.py#L165-L168
2
[ 0, 1, 2, 3 ]
100
[]
0
true
79.310345
4
1
100
0
def calc_dist_to_goal(self, x, y): dx = x - self.end.x dy = y - self.end.y return math.hypot(dx, dy)
828
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_sobol_sampler.py
RRTSobol.get_random_node
(self)
return rnd
170
181
def get_random_node(self): if random.randint(0, 100) > self.goal_sample_rate: rand_coordinates, n = sobol_quasirand(2, self.sobol_inter_) rand_coordinates = self.min_rand + \ rand_coordinates*(self.max_rand - self.min_rand) self.sobol_inter_ = n rnd = self.Node(*rand_coordinates) else: # goal point sampling rnd = self.Node(self.end.x, self.end.y) return rnd
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_sobol_sampler.py#L170-L181
2
[ 0, 1, 2, 3, 4, 6, 7, 8, 11 ]
75
[ 10 ]
8.333333
false
79.310345
12
2
91.666667
0
def get_random_node(self): if random.randint(0, 100) > self.goal_sample_rate: rand_coordinates, n = sobol_quasirand(2, self.sobol_inter_) rand_coordinates = self.min_rand + \ rand_coordinates*(self.max_rand - self.min_rand) self.sobol_inter_ = n rnd = self.Node(*rand_coordinates) else: # goal point sampling rnd = self.Node(self.end.x, self.end.y) return rnd
829
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_sobol_sampler.py
RRTSobol.draw_graph
(self, rnd=None)
183
205
def draw_graph(self, rnd=None): plt.clf() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [sys.exit(0) if event.key == 'escape' else None]) if rnd is not None: plt.plot(rnd.x, rnd.y, "^k") if self.robot_radius >= 0.0: self.plot_circle(rnd.x, rnd.y, self.robot_radius, '-r') for node in self.node_list: if node.parent: plt.plot(node.path_x, node.path_y, "-g") for (ox, oy, size) in self.obstacle_list: self.plot_circle(ox, oy, size) plt.plot(self.start.x, self.start.y, "xr") plt.plot(self.end.x, self.end.y, "xr") plt.axis("equal") plt.axis([-2, 15, -2, 15]) plt.grid(True) plt.pause(0.01)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_sobol_sampler.py#L183-L205
2
[ 0 ]
4.347826
[ 1, 3, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22 ]
73.913043
false
79.310345
23
6
26.086957
0
def draw_graph(self, rnd=None): plt.clf() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [sys.exit(0) if event.key == 'escape' else None]) if rnd is not None: plt.plot(rnd.x, rnd.y, "^k") if self.robot_radius >= 0.0: self.plot_circle(rnd.x, rnd.y, self.robot_radius, '-r') for node in self.node_list: if node.parent: plt.plot(node.path_x, node.path_y, "-g") for (ox, oy, size) in self.obstacle_list: self.plot_circle(ox, oy, size) plt.plot(self.start.x, self.start.y, "xr") plt.plot(self.end.x, self.end.y, "xr") plt.axis("equal") plt.axis([-2, 15, -2, 15]) plt.grid(True) plt.pause(0.01)
830
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_sobol_sampler.py
RRTSobol.plot_circle
(x, y, size, color="-b")
208
213
def plot_circle(x, y, size, color="-b"): # pragma: no cover deg = list(range(0, 360, 5)) deg.append(0) xl = [x + size * math.cos(np.deg2rad(d)) for d in deg] yl = [y + size * math.sin(np.deg2rad(d)) for d in deg] plt.plot(xl, yl, color)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_sobol_sampler.py#L208-L213
2
[]
0
[]
0
false
79.310345
6
3
100
0
def plot_circle(x, y, size, color="-b"): # pragma: no cover deg = list(range(0, 360, 5)) deg.append(0) xl = [x + size * math.cos(np.deg2rad(d)) for d in deg] yl = [y + size * math.sin(np.deg2rad(d)) for d in deg] plt.plot(xl, yl, color)
831
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_sobol_sampler.py
RRTSobol.get_nearest_node_index
(node_list, rnd_node)
return minind
216
221
def get_nearest_node_index(node_list, rnd_node): dlist = [(node.x - rnd_node.x)**2 + (node.y - rnd_node.y)**2 for node in node_list] minind = dlist.index(min(dlist)) return minind
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_sobol_sampler.py#L216-L221
2
[ 0, 1, 3, 4, 5 ]
83.333333
[]
0
false
79.310345
6
2
100
0
def get_nearest_node_index(node_list, rnd_node): dlist = [(node.x - rnd_node.x)**2 + (node.y - rnd_node.y)**2 for node in node_list] minind = dlist.index(min(dlist)) return minind
832
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_sobol_sampler.py
RRTSobol.check_collision
(node, obstacle_list, robot_radius)
return True
224
237
def check_collision(node, obstacle_list, robot_radius): if node is None: return False for (ox, oy, size) in obstacle_list: dx_list = [ox - x for x in node.path_x] dy_list = [oy - y for y in node.path_y] d_list = [dx * dx + dy * dy for (dx, dy) in zip(dx_list, dy_list)] if min(d_list) <= (size+robot_radius)**2: return False # collision return True
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_sobol_sampler.py#L224-L237
2
[ 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13 ]
85.714286
[ 3, 11 ]
14.285714
false
79.310345
14
7
85.714286
0
def check_collision(node, obstacle_list, robot_radius): if node is None: return False for (ox, oy, size) in obstacle_list: dx_list = [ox - x for x in node.path_x] dy_list = [oy - y for y in node.path_y] d_list = [dx * dx + dy * dy for (dx, dy) in zip(dx_list, dy_list)] if min(d_list) <= (size+robot_radius)**2: return False # collision return True
833
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/rrt_with_sobol_sampler.py
RRTSobol.calc_distance_and_angle
(from_node, to_node)
return d, theta
240
245
def calc_distance_and_angle(from_node, to_node): dx = to_node.x - from_node.x dy = to_node.y - from_node.y d = math.hypot(dx, dy) theta = math.atan2(dy, dx) return d, theta
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/rrt_with_sobol_sampler.py#L240-L245
2
[ 0, 1, 2, 3, 4, 5 ]
100
[]
0
true
79.310345
6
1
100
0
def calc_distance_and_angle(from_node, to_node): dx = to_node.x - from_node.x dy = to_node.y - from_node.y d = math.hypot(dx, dy) theta = math.atan2(dy, dx) return d, theta
834
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/sobol/sobol.py
i4_bit_hi1
(n)
return bit
I4_BIT_HI1 returns the position of the high 1 bit base 2 in an I4. Discussion: An I4 is an integer ( kind = 4 ) value. Example: N Binary Hi 1 ---- -------- ---- 0 0 0 1 1 1 2 10 2 3 11 2 4 100 3 5 101 3 6 110 3 7 111 3 8 1000 4 9 1001 4 10 1010 4 11 1011 4 12 1100 4 13 1101 4 14 1110 4 15 1111 4 16 10000 5 17 10001 5 1023 1111111111 10 1024 10000000000 11 1025 10000000001 11 Licensing: This code is distributed under the GNU LGPL license. Modified: 26 October 2014 Author: John Burkardt Parameters: Input, integer N, the integer to be measured. N should be nonnegative. If N is nonpositive, the function will always be 0. Output, integer BIT, the position of the highest bit.
I4_BIT_HI1 returns the position of the high 1 bit base 2 in an I4.
42
108
def i4_bit_hi1(n): """ I4_BIT_HI1 returns the position of the high 1 bit base 2 in an I4. Discussion: An I4 is an integer ( kind = 4 ) value. Example: N Binary Hi 1 ---- -------- ---- 0 0 0 1 1 1 2 10 2 3 11 2 4 100 3 5 101 3 6 110 3 7 111 3 8 1000 4 9 1001 4 10 1010 4 11 1011 4 12 1100 4 13 1101 4 14 1110 4 15 1111 4 16 10000 5 17 10001 5 1023 1111111111 10 1024 10000000000 11 1025 10000000001 11 Licensing: This code is distributed under the GNU LGPL license. Modified: 26 October 2014 Author: John Burkardt Parameters: Input, integer N, the integer to be measured. N should be nonnegative. If N is nonpositive, the function will always be 0. Output, integer BIT, the position of the highest bit. """ i = n bit = 0 while True: if i <= 0: break bit = bit + 1 i = i // 2 return bit
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/sobol/sobol.py#L42-L108
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66 ]
100
[]
0
true
53.535354
67
3
100
51
def i4_bit_hi1(n): i = n bit = 0 while True: if i <= 0: break bit = bit + 1 i = i // 2 return bit
835
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/sobol/sobol.py
i4_bit_lo0
(n)
return bit
I4_BIT_LO0 returns the position of the low 0 bit base 2 in an I4. Discussion: An I4 is an integer ( kind = 4 ) value. Example: N Binary Lo 0 ---- -------- ---- 0 0 1 1 1 2 2 10 1 3 11 3 4 100 1 5 101 2 6 110 1 7 111 4 8 1000 1 9 1001 2 10 1010 1 11 1011 3 12 1100 1 13 1101 2 14 1110 1 15 1111 5 16 10000 1 17 10001 2 1023 1111111111 11 1024 10000000000 1 1025 10000000001 2 Licensing: This code is distributed under the GNU LGPL license. Modified: 08 February 2018 Author: John Burkardt Parameters: Input, integer N, the integer to be measured. N should be nonnegative. Output, integer BIT, the position of the low 1 bit.
I4_BIT_LO0 returns the position of the low 0 bit base 2 in an I4.
111
178
def i4_bit_lo0(n): """ I4_BIT_LO0 returns the position of the low 0 bit base 2 in an I4. Discussion: An I4 is an integer ( kind = 4 ) value. Example: N Binary Lo 0 ---- -------- ---- 0 0 1 1 1 2 2 10 1 3 11 3 4 100 1 5 101 2 6 110 1 7 111 4 8 1000 1 9 1001 2 10 1010 1 11 1011 3 12 1100 1 13 1101 2 14 1110 1 15 1111 5 16 10000 1 17 10001 2 1023 1111111111 11 1024 10000000000 1 1025 10000000001 2 Licensing: This code is distributed under the GNU LGPL license. Modified: 08 February 2018 Author: John Burkardt Parameters: Input, integer N, the integer to be measured. N should be nonnegative. Output, integer BIT, the position of the low 1 bit. """ bit = 0 i = n while True: bit = bit + 1 i2 = i // 2 if i == 2 * i2: break i = i2 return bit
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/sobol/sobol.py#L111-L178
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67 ]
100
[]
0
true
53.535354
68
3
100
50
def i4_bit_lo0(n): bit = 0 i = n while True: bit = bit + 1 i2 = i // 2 if i == 2 * i2: break i = i2 return bit
836
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/sobol/sobol.py
i4_sobol_generate
(m, n, skip)
return r
I4_SOBOL_GENERATE generates a Sobol dataset. Licensing: This code is distributed under the MIT license. Modified: 22 February 2011 Author: Original MATLAB version by John Burkardt. PYTHON version by Corrado Chisari Parameters: Input, integer M, the spatial dimension. Input, integer N, the number of points to generate. Input, integer SKIP, the number of initial points to skip. Output, real R(M,N), the points.
181
215
def i4_sobol_generate(m, n, skip): """ I4_SOBOL_GENERATE generates a Sobol dataset. Licensing: This code is distributed under the MIT license. Modified: 22 February 2011 Author: Original MATLAB version by John Burkardt. PYTHON version by Corrado Chisari Parameters: Input, integer M, the spatial dimension. Input, integer N, the number of points to generate. Input, integer SKIP, the number of initial points to skip. Output, real R(M,N), the points. """ r = np.zeros((m, n)) for j in range(1, n + 1): seed = skip + j - 2 [r[0:m, j - 1], seed] = i4_sobol(m, seed) return r
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/sobol/sobol.py#L181-L215
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 ]
85.714286
[ 30, 31, 32, 33, 34 ]
14.285714
false
53.535354
35
2
85.714286
24
def i4_sobol_generate(m, n, skip): r = np.zeros((m, n)) for j in range(1, n + 1): seed = skip + j - 2 [r[0:m, j - 1], seed] = i4_sobol(m, seed) return r
837
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/sobol/sobol.py
i4_sobol
(dim_num, seed)
return [quasi, seed]
I4_SOBOL generates a new quasirandom Sobol vector with each call. Discussion: The routine adapts the ideas of Antonov and Saleev. Licensing: This code is distributed under the MIT license. Modified: 22 February 2011 Author: Original FORTRAN77 version by Bennett Fox. MATLAB version by John Burkardt. PYTHON version by Corrado Chisari Reference: Antonov, Saleev, USSR Computational Mathematics and Mathematical Physics, olume 19, 19, pages 252 - 256. Paul Bratley, Bennett Fox, Algorithm 659: Implementing Sobol's Quasirandom Sequence Generator, ACM Transactions on Mathematical Software, Volume 14, Number 1, pages 88-100, 1988. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators, ACM Transactions on Mathematical Software, Volume 12, Number 4, pages 362-376, 1986. Ilya Sobol, USSR Computational Mathematics and Mathematical Physics, Volume 16, pages 236-242, 1977. Ilya Sobol, Levitan, The Production of Points Uniformly Distributed in a Multidimensional Cube (in Russian), Preprint IPM Akad. Nauk SSSR, Number 40, Moscow 1976. Parameters: Input, integer DIM_NUM, the number of spatial dimensions. DIM_NUM must satisfy 1 <= DIM_NUM <= 40. Input/output, integer SEED, the "seed" for the sequence. This is essentially the index in the sequence of the quasirandom value to be generated. On output, SEED has been set to the appropriate next value, usually simply SEED+1. If SEED is less than 0 on input, it is treated as though it were 0. An input value of 0 requests the first (0-th) element of the sequence. Output, real QUASI(DIM_NUM), the next quasirandom vector.
218
491
def i4_sobol(dim_num, seed): """ I4_SOBOL generates a new quasirandom Sobol vector with each call. Discussion: The routine adapts the ideas of Antonov and Saleev. Licensing: This code is distributed under the MIT license. Modified: 22 February 2011 Author: Original FORTRAN77 version by Bennett Fox. MATLAB version by John Burkardt. PYTHON version by Corrado Chisari Reference: Antonov, Saleev, USSR Computational Mathematics and Mathematical Physics, olume 19, 19, pages 252 - 256. Paul Bratley, Bennett Fox, Algorithm 659: Implementing Sobol's Quasirandom Sequence Generator, ACM Transactions on Mathematical Software, Volume 14, Number 1, pages 88-100, 1988. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators, ACM Transactions on Mathematical Software, Volume 12, Number 4, pages 362-376, 1986. Ilya Sobol, USSR Computational Mathematics and Mathematical Physics, Volume 16, pages 236-242, 1977. Ilya Sobol, Levitan, The Production of Points Uniformly Distributed in a Multidimensional Cube (in Russian), Preprint IPM Akad. Nauk SSSR, Number 40, Moscow 1976. Parameters: Input, integer DIM_NUM, the number of spatial dimensions. DIM_NUM must satisfy 1 <= DIM_NUM <= 40. Input/output, integer SEED, the "seed" for the sequence. This is essentially the index in the sequence of the quasirandom value to be generated. On output, SEED has been set to the appropriate next value, usually simply SEED+1. If SEED is less than 0 on input, it is treated as though it were 0. An input value of 0 requests the first (0-th) element of the sequence. Output, real QUASI(DIM_NUM), the next quasirandom vector. """ global atmost global dim_max global dim_num_save global initialized global lastq global log_max global maxcol global poly global recipd global seed_save global v if not initialized or dim_num != dim_num_save: initialized = 1 dim_max = 40 dim_num_save = -1 log_max = 30 seed_save = -1 # # Initialize (part of) V. # v = np.zeros((dim_max, log_max)) v[0:40, 0] = np.transpose([ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]) v[2:40, 1] = np.transpose([ 1, 3, 1, 3, 1, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3 ]) v[3:40, 2] = np.transpose([ 7, 5, 1, 3, 3, 7, 5, 5, 7, 7, 1, 3, 3, 7, 5, 1, 1, 5, 3, 3, 1, 7, 5, 1, 3, 3, 7, 5, 1, 1, 5, 7, 7, 5, 1, 3, 3 ]) v[5:40, 3] = np.transpose([ 1, 7, 9, 13, 11, 1, 3, 7, 9, 5, 13, 13, 11, 3, 15, 5, 3, 15, 7, 9, 13, 9, 1, 11, 7, 5, 15, 1, 15, 11, 5, 3, 1, 7, 9 ]) v[7:40, 4] = np.transpose([ 9, 3, 27, 15, 29, 21, 23, 19, 11, 25, 7, 13, 17, 1, 25, 29, 3, 31, 11, 5, 23, 27, 19, 21, 5, 1, 17, 13, 7, 15, 9, 31, 9 ]) v[13:40, 5] = np.transpose([ 37, 33, 7, 5, 11, 39, 63, 27, 17, 15, 23, 29, 3, 21, 13, 31, 25, 9, 49, 33, 19, 29, 11, 19, 27, 15, 25 ]) v[19:40, 6] = np.transpose([ 13, 33, 115, 41, 79, 17, 29, 119, 75, 73, 105, 7, 59, 65, 21, 3, 113, 61, 89, 45, 107 ]) v[37:40, 7] = np.transpose([7, 23, 39]) # # Set POLY. # poly = [ 1, 3, 7, 11, 13, 19, 25, 37, 59, 47, 61, 55, 41, 67, 97, 91, 109, 103, 115, 131, 193, 137, 145, 143, 241, 157, 185, 167, 229, 171, 213, 191, 253, 203, 211, 239, 247, 285, 369, 299 ] atmost = 2**log_max - 1 # # Find the number of bits in ATMOST. # maxcol = i4_bit_hi1(atmost) # # Initialize row 1 of V. # v[0, 0:maxcol] = 1 # Things to do only if the dimension changed. if dim_num != dim_num_save: # # Check parameters. # if (dim_num < 1 or dim_max < dim_num): print('I4_SOBOL - Fatal error!') print(' The spatial dimension DIM_NUM should satisfy:') print(' 1 <= DIM_NUM <= %d' % dim_max) print(' But this input value is DIM_NUM = %d' % dim_num) return None dim_num_save = dim_num # # Initialize the remaining rows of V. # for i in range(2, dim_num + 1): # # The bits of the integer POLY(I) gives the form of polynomial # I. # # Find the degree of polynomial I from binary encoding. # j = poly[i - 1] m = 0 while True: j = math.floor(j / 2.) if (j <= 0): break m = m + 1 # # Expand this bit pattern to separate components of the logical # array INCLUD. # j = poly[i - 1] includ = np.zeros(m) for k in range(m, 0, -1): j2 = math.floor(j / 2.) includ[k - 1] = (j != 2 * j2) j = j2 # # Calculate the remaining elements of row I as explained # in Bratley and Fox, section 2. # for j in range(m + 1, maxcol + 1): newv = v[i - 1, j - m - 1] l_var = 1 for k in range(1, m + 1): l_var = 2 * l_var if (includ[k - 1]): newv = np.bitwise_xor( int(newv), int(l_var * v[i - 1, j - k - 1])) v[i - 1, j - 1] = newv # # Multiply columns of V by appropriate power of 2. # l_var = 1 for j in range(maxcol - 1, 0, -1): l_var = 2 * l_var v[0:dim_num, j - 1] = v[0:dim_num, j - 1] * l_var # # RECIPD is 1/(common denominator of the elements in V). # recipd = 1.0 / (2 * l_var) lastq = np.zeros(dim_num) seed = int(math.floor(seed)) if (seed < 0): seed = 0 if (seed == 0): l_var = 1 lastq = np.zeros(dim_num) elif (seed == seed_save + 1): # # Find the position of the right-hand zero in SEED. # l_var = i4_bit_lo0(seed) elif (seed <= seed_save): seed_save = 0 lastq = np.zeros(dim_num) for seed_temp in range(int(seed_save), int(seed)): l_var = i4_bit_lo0(seed_temp) for i in range(1, dim_num + 1): lastq[i - 1] = np.bitwise_xor( int(lastq[i - 1]), int(v[i - 1, l_var - 1])) l_var = i4_bit_lo0(seed) elif (seed_save + 1 < seed): for seed_temp in range(int(seed_save + 1), int(seed)): l_var = i4_bit_lo0(seed_temp) for i in range(1, dim_num + 1): lastq[i - 1] = np.bitwise_xor( int(lastq[i - 1]), int(v[i - 1, l_var - 1])) l_var = i4_bit_lo0(seed) # # Check that the user is not calling too many times! # if maxcol < l_var: print('I4_SOBOL - Fatal error!') print(' Too many calls!') print(' MAXCOL = %d\n' % maxcol) print(' L = %d\n' % l_var) return None # # Calculate the new components of QUASI. # quasi = np.zeros(dim_num) for i in range(1, dim_num + 1): quasi[i - 1] = lastq[i - 1] * recipd lastq[i - 1] = np.bitwise_xor( int(lastq[i - 1]), int(v[i - 1, l_var - 1])) seed_save = seed seed = seed + 1 return [quasi, seed]
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/sobol/sobol.py#L218-L491
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 252, 253, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273 ]
85.766423
[ 153, 154, 155, 156, 157, 216, 228, 230, 231, 233, 234, 235, 236, 239, 241, 243, 244, 245, 246, 249, 254, 255, 256, 257, 258 ]
9.124088
false
53.535354
274
25
90.875912
62
def i4_sobol(dim_num, seed): global atmost global dim_max global dim_num_save global initialized global lastq global log_max global maxcol global poly global recipd global seed_save global v if not initialized or dim_num != dim_num_save: initialized = 1 dim_max = 40 dim_num_save = -1 log_max = 30 seed_save = -1 # # Initialize (part of) V. # v = np.zeros((dim_max, log_max)) v[0:40, 0] = np.transpose([ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]) v[2:40, 1] = np.transpose([ 1, 3, 1, 3, 1, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3 ]) v[3:40, 2] = np.transpose([ 7, 5, 1, 3, 3, 7, 5, 5, 7, 7, 1, 3, 3, 7, 5, 1, 1, 5, 3, 3, 1, 7, 5, 1, 3, 3, 7, 5, 1, 1, 5, 7, 7, 5, 1, 3, 3 ]) v[5:40, 3] = np.transpose([ 1, 7, 9, 13, 11, 1, 3, 7, 9, 5, 13, 13, 11, 3, 15, 5, 3, 15, 7, 9, 13, 9, 1, 11, 7, 5, 15, 1, 15, 11, 5, 3, 1, 7, 9 ]) v[7:40, 4] = np.transpose([ 9, 3, 27, 15, 29, 21, 23, 19, 11, 25, 7, 13, 17, 1, 25, 29, 3, 31, 11, 5, 23, 27, 19, 21, 5, 1, 17, 13, 7, 15, 9, 31, 9 ]) v[13:40, 5] = np.transpose([ 37, 33, 7, 5, 11, 39, 63, 27, 17, 15, 23, 29, 3, 21, 13, 31, 25, 9, 49, 33, 19, 29, 11, 19, 27, 15, 25 ]) v[19:40, 6] = np.transpose([ 13, 33, 115, 41, 79, 17, 29, 119, 75, 73, 105, 7, 59, 65, 21, 3, 113, 61, 89, 45, 107 ]) v[37:40, 7] = np.transpose([7, 23, 39]) # # Set POLY. # poly = [ 1, 3, 7, 11, 13, 19, 25, 37, 59, 47, 61, 55, 41, 67, 97, 91, 109, 103, 115, 131, 193, 137, 145, 143, 241, 157, 185, 167, 229, 171, 213, 191, 253, 203, 211, 239, 247, 285, 369, 299 ] atmost = 2**log_max - 1 # # Find the number of bits in ATMOST. # maxcol = i4_bit_hi1(atmost) # # Initialize row 1 of V. # v[0, 0:maxcol] = 1 # Things to do only if the dimension changed. if dim_num != dim_num_save: # # Check parameters. # if (dim_num < 1 or dim_max < dim_num): print('I4_SOBOL - Fatal error!') print(' The spatial dimension DIM_NUM should satisfy:') print(' 1 <= DIM_NUM <= %d' % dim_max) print(' But this input value is DIM_NUM = %d' % dim_num) return None dim_num_save = dim_num # # Initialize the remaining rows of V. # for i in range(2, dim_num + 1): # # The bits of the integer POLY(I) gives the form of polynomial # I. # # Find the degree of polynomial I from binary encoding. # j = poly[i - 1] m = 0 while True: j = math.floor(j / 2.) if (j <= 0): break m = m + 1 # # Expand this bit pattern to separate components of the logical # array INCLUD. # j = poly[i - 1] includ = np.zeros(m) for k in range(m, 0, -1): j2 = math.floor(j / 2.) includ[k - 1] = (j != 2 * j2) j = j2 # # Calculate the remaining elements of row I as explained # in Bratley and Fox, section 2. # for j in range(m + 1, maxcol + 1): newv = v[i - 1, j - m - 1] l_var = 1 for k in range(1, m + 1): l_var = 2 * l_var if (includ[k - 1]): newv = np.bitwise_xor( int(newv), int(l_var * v[i - 1, j - k - 1])) v[i - 1, j - 1] = newv # # Multiply columns of V by appropriate power of 2. # l_var = 1 for j in range(maxcol - 1, 0, -1): l_var = 2 * l_var v[0:dim_num, j - 1] = v[0:dim_num, j - 1] * l_var # # RECIPD is 1/(common denominator of the elements in V). # recipd = 1.0 / (2 * l_var) lastq = np.zeros(dim_num) seed = int(math.floor(seed)) if (seed < 0): seed = 0 if (seed == 0): l_var = 1 lastq = np.zeros(dim_num) elif (seed == seed_save + 1): # # Find the position of the right-hand zero in SEED. # l_var = i4_bit_lo0(seed) elif (seed <= seed_save): seed_save = 0 lastq = np.zeros(dim_num) for seed_temp in range(int(seed_save), int(seed)): l_var = i4_bit_lo0(seed_temp) for i in range(1, dim_num + 1): lastq[i - 1] = np.bitwise_xor( int(lastq[i - 1]), int(v[i - 1, l_var - 1])) l_var = i4_bit_lo0(seed) elif (seed_save + 1 < seed): for seed_temp in range(int(seed_save + 1), int(seed)): l_var = i4_bit_lo0(seed_temp) for i in range(1, dim_num + 1): lastq[i - 1] = np.bitwise_xor( int(lastq[i - 1]), int(v[i - 1, l_var - 1])) l_var = i4_bit_lo0(seed) # # Check that the user is not calling too many times! # if maxcol < l_var: print('I4_SOBOL - Fatal error!') print(' Too many calls!') print(' MAXCOL = %d\n' % maxcol) print(' L = %d\n' % l_var) return None # # Calculate the new components of QUASI. # quasi = np.zeros(dim_num) for i in range(1, dim_num + 1): quasi[i - 1] = lastq[i - 1] * recipd lastq[i - 1] = np.bitwise_xor( int(lastq[i - 1]), int(v[i - 1, l_var - 1])) seed_save = seed seed = seed + 1 return [quasi, seed]
838
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/sobol/sobol.py
i4_uniform_ab
(a, b, seed)
return value, seed
I4_UNIFORM_AB returns a scaled pseudorandom I4. Discussion: The pseudorandom number will be scaled to be uniformly distributed between A and B. Licensing: This code is distributed under the GNU LGPL license. Modified: 05 April 2013 Author: John Burkardt Reference: Paul Bratley, Bennett Fox, Linus Schrage, A Guide to Simulation, Second Edition, Springer, 1987, ISBN: 0387964673, LC: QA76.9.C65.B73. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators, ACM Transactions on Mathematical Software, Volume 12, Number 4, December 1986, pages 362-376. Pierre L'Ecuyer, Random Number Generation, in Handbook of Simulation, edited by Jerry Banks, Wiley, 1998, ISBN: 0471134031, LC: T57.62.H37. Peter Lewis, Allen Goodman, James Miller, A Pseudo-Random Number Generator for the System/360, IBM Systems Journal, Volume 8, Number 2, 1969, pages 136-143. Parameters: Input, integer A, B, the minimum and maximum acceptable values. Input, integer SEED, a seed for the random number generator. Output, integer C, the randomly chosen integer. Output, integer SEED, the updated seed.
494
598
def i4_uniform_ab(a, b, seed): """ I4_UNIFORM_AB returns a scaled pseudorandom I4. Discussion: The pseudorandom number will be scaled to be uniformly distributed between A and B. Licensing: This code is distributed under the GNU LGPL license. Modified: 05 April 2013 Author: John Burkardt Reference: Paul Bratley, Bennett Fox, Linus Schrage, A Guide to Simulation, Second Edition, Springer, 1987, ISBN: 0387964673, LC: QA76.9.C65.B73. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators, ACM Transactions on Mathematical Software, Volume 12, Number 4, December 1986, pages 362-376. Pierre L'Ecuyer, Random Number Generation, in Handbook of Simulation, edited by Jerry Banks, Wiley, 1998, ISBN: 0471134031, LC: T57.62.H37. Peter Lewis, Allen Goodman, James Miller, A Pseudo-Random Number Generator for the System/360, IBM Systems Journal, Volume 8, Number 2, 1969, pages 136-143. Parameters: Input, integer A, B, the minimum and maximum acceptable values. Input, integer SEED, a seed for the random number generator. Output, integer C, the randomly chosen integer. Output, integer SEED, the updated seed. """ i4_huge = 2147483647 seed = int(seed) seed = (seed % i4_huge) if seed < 0: seed = seed + i4_huge if seed == 0: print('') print('I4_UNIFORM_AB - Fatal error!') print(' Input SEED = 0!') sys.exit('I4_UNIFORM_AB - Fatal error!') k = (seed // 127773) seed = 167 * (seed - k * 127773) - k * 2836 if seed < 0: seed = seed + i4_huge r = seed * 4.656612875E-10 # # Scale R to lie between A-0.5 and B+0.5. # a = round(a) b = round(b) r = (1.0 - r) * (min(a, b) - 0.5) \ + r * (max(a, b) + 0.5) # # Use rounding to convert R to an integer between A and B. # value = round(r) value = max(value, min(a, b)) value = min(value, max(a, b)) value = int(value) return value, seed
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/sobol/sobol.py#L494-L598
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 ]
60.952381
[ 64, 66, 68, 70, 71, 73, 74, 75, 76, 77, 79, 81, 83, 84, 86, 90, 91, 93, 98, 100, 101, 102, 104 ]
21.904762
false
53.535354
105
4
78.095238
57
def i4_uniform_ab(a, b, seed): i4_huge = 2147483647 seed = int(seed) seed = (seed % i4_huge) if seed < 0: seed = seed + i4_huge if seed == 0: print('') print('I4_UNIFORM_AB - Fatal error!') print(' Input SEED = 0!') sys.exit('I4_UNIFORM_AB - Fatal error!') k = (seed // 127773) seed = 167 * (seed - k * 127773) - k * 2836 if seed < 0: seed = seed + i4_huge r = seed * 4.656612875E-10 # # Scale R to lie between A-0.5 and B+0.5. # a = round(a) b = round(b) r = (1.0 - r) * (min(a, b) - 0.5) \ + r * (max(a, b) + 0.5) # # Use rounding to convert R to an integer between A and B. # value = round(r) value = max(value, min(a, b)) value = min(value, max(a, b)) value = int(value) return value, seed
839
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/sobol/sobol.py
prime_ge
(n)
return p
PRIME_GE returns the smallest prime greater than or equal to N. Example: N PRIME_GE -10 2 1 2 2 2 3 3 4 5 5 5 6 7 7 7 8 11 9 11 10 11 Licensing: This code is distributed under the MIT license. Modified: 22 February 2011 Author: Original MATLAB version by John Burkardt. PYTHON version by Corrado Chisari Parameters: Input, integer N, the number to be bounded. Output, integer P, the smallest prime number that is greater than or equal to N.
601
648
def prime_ge(n): """ PRIME_GE returns the smallest prime greater than or equal to N. Example: N PRIME_GE -10 2 1 2 2 2 3 3 4 5 5 5 6 7 7 7 8 11 9 11 10 11 Licensing: This code is distributed under the MIT license. Modified: 22 February 2011 Author: Original MATLAB version by John Burkardt. PYTHON version by Corrado Chisari Parameters: Input, integer N, the number to be bounded. Output, integer P, the smallest prime number that is greater than or equal to N. """ p = max(math.ceil(n), 2) while not isprime(p): p = p + 1 return p
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/sobol/sobol.py#L601-L648
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42 ]
89.583333
[ 43, 44, 45, 47 ]
8.333333
false
53.535354
48
2
91.666667
37
def prime_ge(n): p = max(math.ceil(n), 2) while not isprime(p): p = p + 1 return p
840
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/sobol/sobol.py
isprime
(n)
return True
IS_PRIME returns True if N is a prime number, False otherwise Licensing: This code is distributed under the MIT license. Modified: 22 February 2011 Author: Corrado Chisari Parameters: Input, integer N, the number to be checked. Output, boolean value, True or False
651
684
def isprime(n): """ IS_PRIME returns True if N is a prime number, False otherwise Licensing: This code is distributed under the MIT license. Modified: 22 February 2011 Author: Corrado Chisari Parameters: Input, integer N, the number to be checked. Output, boolean value, True or False """ if n != int(n) or n < 1: return False p = 2 while p < n: if n % p == 0: return False p += 1 return True
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/sobol/sobol.py#L651-L684
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 ]
73.529412
[ 25, 26, 27, 28, 29, 30, 31, 33 ]
23.529412
false
53.535354
34
5
76.470588
19
def isprime(n): if n != int(n) or n < 1: return False p = 2 while p < n: if n % p == 0: return False p += 1 return True
841
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/sobol/sobol.py
r4_uniform_01
(seed)
return r, seed
R4_UNIFORM_01 returns a unit pseudorandom R4. Discussion: This routine implements the recursion seed = 167 * seed mod ( 2^31 - 1 ) r = seed / ( 2^31 - 1 ) The integer arithmetic never requires more than 32 bits, including a sign bit. If the initial seed is 12345, then the first three computations are Input Output R4_UNIFORM_01 SEED SEED 12345 207482415 0.096616 207482415 1790989824 0.833995 1790989824 2035175616 0.947702 Licensing: This code is distributed under the GNU LGPL license. Modified: 04 April 2013 Author: John Burkardt Reference: Paul Bratley, Bennett Fox, Linus Schrage, A Guide to Simulation, Second Edition, Springer, 1987, ISBN: 0387964673, LC: QA76.9.C65.B73. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators, ACM Transactions on Mathematical Software, Volume 12, Number 4, December 1986, pages 362-376. Pierre L'Ecuyer, Random Number Generation, in Handbook of Simulation, edited by Jerry Banks, Wiley, 1998, ISBN: 0471134031, LC: T57.62.H37. Peter Lewis, Allen Goodman, James Miller, A Pseudo-Random Number Generator for the System/360, IBM Systems Journal, Volume 8, Number 2, 1969, pages 136-143. Parameters: Input, integer SEED, the integer "seed" used to generate the output random number. SEED should not be 0. Output, real R, a random value between 0 and 1. Output, integer SEED, the updated seed. This would normally be used as the input seed on the next call.
687
787
def r4_uniform_01(seed): """ R4_UNIFORM_01 returns a unit pseudorandom R4. Discussion: This routine implements the recursion seed = 167 * seed mod ( 2^31 - 1 ) r = seed / ( 2^31 - 1 ) The integer arithmetic never requires more than 32 bits, including a sign bit. If the initial seed is 12345, then the first three computations are Input Output R4_UNIFORM_01 SEED SEED 12345 207482415 0.096616 207482415 1790989824 0.833995 1790989824 2035175616 0.947702 Licensing: This code is distributed under the GNU LGPL license. Modified: 04 April 2013 Author: John Burkardt Reference: Paul Bratley, Bennett Fox, Linus Schrage, A Guide to Simulation, Second Edition, Springer, 1987, ISBN: 0387964673, LC: QA76.9.C65.B73. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators, ACM Transactions on Mathematical Software, Volume 12, Number 4, December 1986, pages 362-376. Pierre L'Ecuyer, Random Number Generation, in Handbook of Simulation, edited by Jerry Banks, Wiley, 1998, ISBN: 0471134031, LC: T57.62.H37. Peter Lewis, Allen Goodman, James Miller, A Pseudo-Random Number Generator for the System/360, IBM Systems Journal, Volume 8, Number 2, 1969, pages 136-143. Parameters: Input, integer SEED, the integer "seed" used to generate the output random number. SEED should not be 0. Output, real R, a random value between 0 and 1. Output, integer SEED, the updated seed. This would normally be used as the input seed on the next call. """ i4_huge = 2147483647 if (seed == 0): print('') print('R4_UNIFORM_01 - Fatal error!') print(' Input SEED = 0!') sys.exit('R4_UNIFORM_01 - Fatal error!') seed = (seed % i4_huge) if seed < 0: seed = seed + i4_huge k = (seed // 127773) seed = 167 * (seed - k * 127773) - k * 2836 if seed < 0: seed = seed + i4_huge r = seed * 4.656612875E-10 return r, seed
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/sobol/sobol.py#L687-L787
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77 ]
77.227723
[ 78, 80, 81, 82, 83, 84, 86, 88, 89, 91, 93, 95, 96, 98, 100 ]
14.851485
false
53.535354
101
4
85.148515
71
def r4_uniform_01(seed): i4_huge = 2147483647 if (seed == 0): print('') print('R4_UNIFORM_01 - Fatal error!') print(' Input SEED = 0!') sys.exit('R4_UNIFORM_01 - Fatal error!') seed = (seed % i4_huge) if seed < 0: seed = seed + i4_huge k = (seed // 127773) seed = 167 * (seed - k * 127773) - k * 2836 if seed < 0: seed = seed + i4_huge r = seed * 4.656612875E-10 return r, seed
842
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/sobol/sobol.py
r8mat_write
(filename, m, n, a)
R8MAT_WRITE writes an R8MAT to a file. Licensing: This code is distributed under the GNU LGPL license. Modified: 12 October 2014 Author: John Burkardt Parameters: Input, string FILENAME, the name of the output file. Input, integer M, the number of rows in A. Input, integer N, the number of columns in A. Input, real A(M,N), the matrix.
790
824
def r8mat_write(filename, m, n, a): """ R8MAT_WRITE writes an R8MAT to a file. Licensing: This code is distributed under the GNU LGPL license. Modified: 12 October 2014 Author: John Burkardt Parameters: Input, string FILENAME, the name of the output file. Input, integer M, the number of rows in A. Input, integer N, the number of columns in A. Input, real A(M,N), the matrix. """ with open(filename, 'w') as output: for i in range(0, m): for j in range(0, n): s = ' %g' % (a[i, j]) output.write(s) output.write('\n')
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/sobol/sobol.py#L790-L824
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ]
82.857143
[ 29, 30, 31, 32, 33, 34 ]
17.142857
false
53.535354
35
4
82.857143
23
def r8mat_write(filename, m, n, a): with open(filename, 'w') as output: for i in range(0, m): for j in range(0, n): s = ' %g' % (a[i, j]) output.write(s) output.write('\n')
843
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/RRT/sobol/sobol.py
tau_sobol
(dim_num)
return tau
TAU_SOBOL defines favorable starting seeds for Sobol sequences. Discussion: For spatial dimensions 1 through 13, this routine returns a "favorable" value TAU by which an appropriate starting point in the Sobol sequence can be determined. These starting points have the form N = 2**K, where for integration problems, it is desirable that TAU + DIM_NUM - 1 <= K while for optimization problems, it is desirable that TAU < K. Licensing: This code is distributed under the MIT license. Modified: 22 February 2011 Author: Original FORTRAN77 version by Bennett Fox. MATLAB version by John Burkardt. PYTHON version by Corrado Chisari Reference: IA Antonov, VM Saleev, USSR Computational Mathematics and Mathematical Physics, Volume 19, 19, pages 252 - 256. Paul Bratley, Bennett Fox, Algorithm 659: Implementing Sobol's Quasirandom Sequence Generator, ACM Transactions on Mathematical Software, Volume 14, Number 1, pages 88-100, 1988. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators, ACM Transactions on Mathematical Software, Volume 12, Number 4, pages 362-376, 1986. Stephen Joe, Frances Kuo Remark on Algorithm 659: Implementing Sobol's Quasirandom Sequence Generator, ACM Transactions on Mathematical Software, Volume 29, Number 1, pages 49-57, March 2003. Ilya Sobol, USSR Computational Mathematics and Mathematical Physics, Volume 16, pages 236-242, 1977. Ilya Sobol, YL Levitan, The Production of Points Uniformly Distributed in a Multidimensional Cube (in Russian), Preprint IPM Akad. Nauk SSSR, Number 40, Moscow 1976. Parameters: Input, integer DIM_NUM, the spatial dimension. Only values of 1 through 13 will result in useful responses. Output, integer TAU, the value TAU.
827
911
def tau_sobol(dim_num): """ TAU_SOBOL defines favorable starting seeds for Sobol sequences. Discussion: For spatial dimensions 1 through 13, this routine returns a "favorable" value TAU by which an appropriate starting point in the Sobol sequence can be determined. These starting points have the form N = 2**K, where for integration problems, it is desirable that TAU + DIM_NUM - 1 <= K while for optimization problems, it is desirable that TAU < K. Licensing: This code is distributed under the MIT license. Modified: 22 February 2011 Author: Original FORTRAN77 version by Bennett Fox. MATLAB version by John Burkardt. PYTHON version by Corrado Chisari Reference: IA Antonov, VM Saleev, USSR Computational Mathematics and Mathematical Physics, Volume 19, 19, pages 252 - 256. Paul Bratley, Bennett Fox, Algorithm 659: Implementing Sobol's Quasirandom Sequence Generator, ACM Transactions on Mathematical Software, Volume 14, Number 1, pages 88-100, 1988. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators, ACM Transactions on Mathematical Software, Volume 12, Number 4, pages 362-376, 1986. Stephen Joe, Frances Kuo Remark on Algorithm 659: Implementing Sobol's Quasirandom Sequence Generator, ACM Transactions on Mathematical Software, Volume 29, Number 1, pages 49-57, March 2003. Ilya Sobol, USSR Computational Mathematics and Mathematical Physics, Volume 16, pages 236-242, 1977. Ilya Sobol, YL Levitan, The Production of Points Uniformly Distributed in a Multidimensional Cube (in Russian), Preprint IPM Akad. Nauk SSSR, Number 40, Moscow 1976. Parameters: Input, integer DIM_NUM, the spatial dimension. Only values of 1 through 13 will result in useful responses. Output, integer TAU, the value TAU. """ dim_max = 13 tau_table = [0, 0, 1, 3, 5, 8, 11, 15, 19, 23, 27, 31, 35] if 1 <= dim_num <= dim_max: tau = tau_table[dim_num] else: tau = -1 return tau
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRT/sobol/sobol.py#L827-L911
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74 ]
88.235294
[ 75, 77, 79, 80, 82, 84 ]
7.058824
false
53.535354
85
2
92.941176
69
def tau_sobol(dim_num): dim_max = 13 tau_table = [0, 0, 1, 3, 5, 8, 11, 15, 19, 23, 27, 31, 35] if 1 <= dim_num <= dim_max: tau = tau_table[dim_num] else: tau = -1 return tau
844
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRRRTStar/lqr_rrt_star.py
main
(maxIter=200)
207
237
def main(maxIter=200): print("Start " + __file__) # ====Search Path with RRT==== obstacleList = [ (5, 5, 1), (4, 6, 1), (4, 7.5, 1), (4, 9, 1), (6, 5, 1), (7, 5, 1) ] # [x,y,size] # Set Initial parameters start = [0.0, 0.0] goal = [6.0, 7.0] lqr_rrt_star = LQRRRTStar(start, goal, obstacleList, [-2.0, 15.0]) path = lqr_rrt_star.planning(animation=show_animation) # Draw final path if show_animation: # pragma: no cover lqr_rrt_star.draw_graph() plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.grid(True) plt.pause(0.001) plt.show() print("Done")
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRRRTStar/lqr_rrt_star.py#L207-L237
2
[ 0, 1, 2, 3, 4, 13, 14, 15, 16, 17, 20, 21, 22, 29, 30 ]
60
[]
0
false
80.769231
31
4
100
0
def main(maxIter=200): print("Start " + __file__) # ====Search Path with RRT==== obstacleList = [ (5, 5, 1), (4, 6, 1), (4, 7.5, 1), (4, 9, 1), (6, 5, 1), (7, 5, 1) ] # [x,y,size] # Set Initial parameters start = [0.0, 0.0] goal = [6.0, 7.0] lqr_rrt_star = LQRRRTStar(start, goal, obstacleList, [-2.0, 15.0]) path = lqr_rrt_star.planning(animation=show_animation) # Draw final path if show_animation: # pragma: no cover lqr_rrt_star.draw_graph() plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.grid(True) plt.pause(0.001) plt.show() print("Done")
845
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRRRTStar/lqr_rrt_star.py
LQRRRTStar.__init__
(self, start, goal, obstacle_list, rand_area, goal_sample_rate=10, max_iter=200, connect_circle_dist=50.0, step_size=0.2, robot_radius=0.0, )
Setting Parameter start:Start Position [x,y] goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Random Sampling Area [min,max] robot_radius: robot body modeled as circle with given radius
Setting Parameter
28
59
def __init__(self, start, goal, obstacle_list, rand_area, goal_sample_rate=10, max_iter=200, connect_circle_dist=50.0, step_size=0.2, robot_radius=0.0, ): """ Setting Parameter start:Start Position [x,y] goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Random Sampling Area [min,max] robot_radius: robot body modeled as circle with given radius """ self.start = self.Node(start[0], start[1]) self.end = self.Node(goal[0], goal[1]) self.min_rand = rand_area[0] self.max_rand = rand_area[1] self.goal_sample_rate = goal_sample_rate self.max_iter = max_iter self.obstacle_list = obstacle_list self.connect_circle_dist = connect_circle_dist self.curvature = 1.0 self.goal_xy_th = 0.5 self.step_size = step_size self.robot_radius = robot_radius self.lqr_planner = LQRPlanner()
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRRRTStar/lqr_rrt_star.py#L28-L59
2
[ 0, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 ]
53.125
[]
0
false
80.769231
32
1
100
7
def __init__(self, start, goal, obstacle_list, rand_area, goal_sample_rate=10, max_iter=200, connect_circle_dist=50.0, step_size=0.2, robot_radius=0.0, ): self.start = self.Node(start[0], start[1]) self.end = self.Node(goal[0], goal[1]) self.min_rand = rand_area[0] self.max_rand = rand_area[1] self.goal_sample_rate = goal_sample_rate self.max_iter = max_iter self.obstacle_list = obstacle_list self.connect_circle_dist = connect_circle_dist self.curvature = 1.0 self.goal_xy_th = 0.5 self.step_size = step_size self.robot_radius = robot_radius self.lqr_planner = LQRPlanner()
846
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRRRTStar/lqr_rrt_star.py
LQRRRTStar.planning
(self, animation=True, search_until_max_iter=True)
return None
RRT Star planning animation: flag for animation on or off
RRT Star planning
61
99
def planning(self, animation=True, search_until_max_iter=True): """ RRT Star planning animation: flag for animation on or off """ self.node_list = [self.start] for i in range(self.max_iter): print("Iter:", i, ", number of nodes:", len(self.node_list)) rnd = self.get_random_node() nearest_ind = self.get_nearest_node_index(self.node_list, rnd) new_node = self.steer(self.node_list[nearest_ind], rnd) if self.check_collision( new_node, self.obstacle_list, self.robot_radius): near_indexes = self.find_near_nodes(new_node) new_node = self.choose_parent(new_node, near_indexes) if new_node: self.node_list.append(new_node) self.rewire(new_node, near_indexes) if animation and i % 5 == 0: self.draw_graph(rnd) if (not search_until_max_iter) and new_node: # check reaching the goal last_index = self.search_best_goal_node() if last_index: return self.generate_final_course(last_index) print("reached max iteration") last_index = self.search_best_goal_node() if last_index: return self.generate_final_course(last_index) else: print("Cannot find path") return None
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRRRTStar/lqr_rrt_star.py#L61-L99
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 29, 30, 31, 32, 33, 34, 35 ]
82.051282
[ 23, 26, 27, 28, 36, 38 ]
15.384615
false
80.769231
39
10
84.615385
3
def planning(self, animation=True, search_until_max_iter=True): self.node_list = [self.start] for i in range(self.max_iter): print("Iter:", i, ", number of nodes:", len(self.node_list)) rnd = self.get_random_node() nearest_ind = self.get_nearest_node_index(self.node_list, rnd) new_node = self.steer(self.node_list[nearest_ind], rnd) if self.check_collision( new_node, self.obstacle_list, self.robot_radius): near_indexes = self.find_near_nodes(new_node) new_node = self.choose_parent(new_node, near_indexes) if new_node: self.node_list.append(new_node) self.rewire(new_node, near_indexes) if animation and i % 5 == 0: self.draw_graph(rnd) if (not search_until_max_iter) and new_node: # check reaching the goal last_index = self.search_best_goal_node() if last_index: return self.generate_final_course(last_index) print("reached max iteration") last_index = self.search_best_goal_node() if last_index: return self.generate_final_course(last_index) else: print("Cannot find path") return None
847
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRRRTStar/lqr_rrt_star.py
LQRRRTStar.draw_graph
(self, rnd=None)
101
119
def draw_graph(self, rnd=None): plt.clf() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if rnd is not None: plt.plot(rnd.x, rnd.y, "^k") for node in self.node_list: if node.parent: plt.plot(node.path_x, node.path_y, "-g") for (ox, oy, size) in self.obstacle_list: plt.plot(ox, oy, "ok", ms=30 * size) plt.plot(self.start.x, self.start.y, "xr") plt.plot(self.end.x, self.end.y, "xr") plt.axis([-2, 15, -2, 15]) plt.grid(True) plt.pause(0.01)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRRRTStar/lqr_rrt_star.py#L101-L119
2
[ 0 ]
5.263158
[ 1, 3, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 18 ]
73.684211
false
80.769231
19
5
26.315789
0
def draw_graph(self, rnd=None): plt.clf() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if rnd is not None: plt.plot(rnd.x, rnd.y, "^k") for node in self.node_list: if node.parent: plt.plot(node.path_x, node.path_y, "-g") for (ox, oy, size) in self.obstacle_list: plt.plot(ox, oy, "ok", ms=30 * size) plt.plot(self.start.x, self.start.y, "xr") plt.plot(self.end.x, self.end.y, "xr") plt.axis([-2, 15, -2, 15]) plt.grid(True) plt.pause(0.01)
848
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRRRTStar/lqr_rrt_star.py
LQRRRTStar.search_best_goal_node
(self)
return None
121
133
def search_best_goal_node(self): dist_to_goal_list = [self.calc_dist_to_goal(n.x, n.y) for n in self.node_list] goal_inds = [dist_to_goal_list.index(i) for i in dist_to_goal_list if i <= self.goal_xy_th] if not goal_inds: return None min_cost = min([self.node_list[i].cost for i in goal_inds]) for i in goal_inds: if self.node_list[i].cost == min_cost: return i return None
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRRRTStar/lqr_rrt_star.py#L121-L133
2
[ 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11 ]
84.615385
[ 5, 12 ]
15.384615
false
80.769231
13
7
84.615385
0
def search_best_goal_node(self): dist_to_goal_list = [self.calc_dist_to_goal(n.x, n.y) for n in self.node_list] goal_inds = [dist_to_goal_list.index(i) for i in dist_to_goal_list if i <= self.goal_xy_th] if not goal_inds: return None min_cost = min([self.node_list[i].cost for i in goal_inds]) for i in goal_inds: if self.node_list[i].cost == min_cost: return i return None
849
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRRRTStar/lqr_rrt_star.py
LQRRRTStar.calc_new_cost
(self, from_node, to_node)
return from_node.cost + sum(course_lengths)
135
145
def calc_new_cost(self, from_node, to_node): wx, wy = self.lqr_planner.lqr_planning( from_node.x, from_node.y, to_node.x, to_node.y, show_animation=False) px, py, course_lengths = self.sample_path(wx, wy, self.step_size) if not course_lengths: return float("inf") return from_node.cost + sum(course_lengths)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRRRTStar/lqr_rrt_star.py#L135-L145
2
[ 0, 1, 2, 4, 5, 6, 7, 9, 10 ]
81.818182
[ 8 ]
9.090909
false
80.769231
11
2
90.909091
0
def calc_new_cost(self, from_node, to_node): wx, wy = self.lqr_planner.lqr_planning( from_node.x, from_node.y, to_node.x, to_node.y, show_animation=False) px, py, course_lengths = self.sample_path(wx, wy, self.step_size) if not course_lengths: return float("inf") return from_node.cost + sum(course_lengths)
850
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRRRTStar/lqr_rrt_star.py
LQRRRTStar.get_random_node
(self)
return rnd
147
156
def get_random_node(self): if random.randint(0, 100) > self.goal_sample_rate: rnd = self.Node(random.uniform(self.min_rand, self.max_rand), random.uniform(self.min_rand, self.max_rand) ) else: # goal point sampling rnd = self.Node(self.end.x, self.end.y) return rnd
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRRRTStar/lqr_rrt_star.py#L147-L156
2
[ 0, 1, 2, 3, 7, 8, 9 ]
70
[]
0
false
80.769231
10
2
100
0
def get_random_node(self): if random.randint(0, 100) > self.goal_sample_rate: rnd = self.Node(random.uniform(self.min_rand, self.max_rand), random.uniform(self.min_rand, self.max_rand) ) else: # goal point sampling rnd = self.Node(self.end.x, self.end.y) return rnd
851
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRRRTStar/lqr_rrt_star.py
LQRRRTStar.generate_final_course
(self, goal_index)
return path
158
167
def generate_final_course(self, goal_index): print("final") path = [[self.end.x, self.end.y]] node = self.node_list[goal_index] while node.parent: for (ix, iy) in zip(reversed(node.path_x), reversed(node.path_y)): path.append([ix, iy]) node = node.parent path.append([self.start.x, self.start.y]) return path
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRRRTStar/lqr_rrt_star.py#L158-L167
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
100
[]
0
true
80.769231
10
3
100
0
def generate_final_course(self, goal_index): print("final") path = [[self.end.x, self.end.y]] node = self.node_list[goal_index] while node.parent: for (ix, iy) in zip(reversed(node.path_x), reversed(node.path_y)): path.append([ix, iy]) node = node.parent path.append([self.start.x, self.start.y]) return path
852
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRRRTStar/lqr_rrt_star.py
LQRRRTStar.sample_path
(self, wx, wy, step)
return px, py, clen
169
184
def sample_path(self, wx, wy, step): px, py, clen = [], [], [] for i in range(len(wx) - 1): for t in np.arange(0.0, 1.0, step): px.append(t * wx[i + 1] + (1.0 - t) * wx[i]) py.append(t * wy[i + 1] + (1.0 - t) * wy[i]) dx = np.diff(px) dy = np.diff(py) clen = [math.sqrt(idx ** 2 + idy ** 2) for (idx, idy) in zip(dx, dy)] return px, py, clen
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRRRTStar/lqr_rrt_star.py#L169-L184
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ]
100
[]
0
true
80.769231
16
4
100
0
def sample_path(self, wx, wy, step): px, py, clen = [], [], [] for i in range(len(wx) - 1): for t in np.arange(0.0, 1.0, step): px.append(t * wx[i + 1] + (1.0 - t) * wx[i]) py.append(t * wy[i + 1] + (1.0 - t) * wy[i]) dx = np.diff(px) dy = np.diff(py) clen = [math.sqrt(idx ** 2 + idy ** 2) for (idx, idy) in zip(dx, dy)] return px, py, clen
853
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRRRTStar/lqr_rrt_star.py
LQRRRTStar.steer
(self, from_node, to_node)
return newNode
186
204
def steer(self, from_node, to_node): wx, wy = self.lqr_planner.lqr_planning( from_node.x, from_node.y, to_node.x, to_node.y, show_animation=False) px, py, course_lens = self.sample_path(wx, wy, self.step_size) if px is None: return None newNode = copy.deepcopy(from_node) newNode.x = px[-1] newNode.y = py[-1] newNode.path_x = px newNode.path_y = py newNode.cost += sum([abs(c) for c in course_lens]) newNode.parent = from_node return newNode
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRRRTStar/lqr_rrt_star.py#L186-L204
2
[ 0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 ]
89.473684
[ 8 ]
5.263158
false
80.769231
19
3
94.736842
0
def steer(self, from_node, to_node): wx, wy = self.lqr_planner.lqr_planning( from_node.x, from_node.y, to_node.x, to_node.y, show_animation=False) px, py, course_lens = self.sample_path(wx, wy, self.step_size) if px is None: return None newNode = copy.deepcopy(from_node) newNode.x = px[-1] newNode.y = py[-1] newNode.path_x = px newNode.path_y = py newNode.cost += sum([abs(c) for c in course_lens]) newNode.parent = from_node return newNode
854
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
main
()
331
356
def main(): print("Start informed rrt star planning") # create obstacles obstacleList = [ (5, 5, 0.5), (9, 6, 1), (7, 5, 1), (1, 5, 1), (3, 6, 1), (7, 9, 1) ] # Set params rrt = InformedRRTStar(start=[0, 0], goal=[5, 10], randArea=[-2, 15], obstacleList=obstacleList) path = rrt.informed_rrt_star_search(animation=show_animation) print("Done!!") # Plot path if show_animation: rrt.draw_graph() plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.grid(True) plt.pause(0.01) plt.show()
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L331-L356
2
[ 0, 1, 2, 3, 4, 13, 14, 16, 17, 18, 19, 20 ]
46.153846
[ 21, 22, 23, 24, 25 ]
19.230769
false
87.383178
26
4
80.769231
0
def main(): print("Start informed rrt star planning") # create obstacles obstacleList = [ (5, 5, 0.5), (9, 6, 1), (7, 5, 1), (1, 5, 1), (3, 6, 1), (7, 9, 1) ] # Set params rrt = InformedRRTStar(start=[0, 0], goal=[5, 10], randArea=[-2, 15], obstacleList=obstacleList) path = rrt.informed_rrt_star_search(animation=show_animation) print("Done!!") # Plot path if show_animation: rrt.draw_graph() plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.grid(True) plt.pause(0.01) plt.show()
855
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.__init__
(self, start, goal, obstacleList, randArea, expandDis=0.5, goalSampleRate=10, maxIter=200)
30
42
def __init__(self, start, goal, obstacleList, randArea, expandDis=0.5, goalSampleRate=10, maxIter=200): self.start = Node(start[0], start[1]) self.goal = Node(goal[0], goal[1]) self.min_rand = randArea[0] self.max_rand = randArea[1] self.expand_dis = expandDis self.goal_sample_rate = goalSampleRate self.max_iter = maxIter self.obstacle_list = obstacleList self.node_list = None
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L30-L42
2
[ 0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ]
84.615385
[]
0
false
87.383178
13
1
100
0
def __init__(self, start, goal, obstacleList, randArea, expandDis=0.5, goalSampleRate=10, maxIter=200): self.start = Node(start[0], start[1]) self.goal = Node(goal[0], goal[1]) self.min_rand = randArea[0] self.max_rand = randArea[1] self.expand_dis = expandDis self.goal_sample_rate = goalSampleRate self.max_iter = maxIter self.obstacle_list = obstacleList self.node_list = None
856
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.informed_rrt_star_search
(self, animation=True)
return path
44
108
def informed_rrt_star_search(self, animation=True): self.node_list = [self.start] # max length we expect to find in our 'informed' sample space, # starts as infinite cBest = float('inf') solutionSet = set() path = None # Computing the sampling space cMin = math.sqrt(pow(self.start.x - self.goal.x, 2) + pow(self.start.y - self.goal.y, 2)) xCenter = np.array([[(self.start.x + self.goal.x) / 2.0], [(self.start.y + self.goal.y) / 2.0], [0]]) a1 = np.array([[(self.goal.x - self.start.x) / cMin], [(self.goal.y - self.start.y) / cMin], [0]]) e_theta = math.atan2(a1[1], a1[0]) # first column of identity matrix transposed id1_t = np.array([1.0, 0.0, 0.0]).reshape(1, 3) M = a1 @ id1_t U, S, Vh = np.linalg.svd(M, True, True) C = np.dot(np.dot(U, np.diag( [1.0, 1.0, np.linalg.det(U) * np.linalg.det(np.transpose(Vh))])), Vh) for i in range(self.max_iter): # Sample space is defined by cBest # cMin is the minimum distance between the start point and the goal # xCenter is the midpoint between the start and the goal # cBest changes when a new path is found rnd = self.informed_sample(cBest, cMin, xCenter, C) n_ind = self.get_nearest_list_index(self.node_list, rnd) nearestNode = self.node_list[n_ind] # steer theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x) newNode = self.get_new_node(theta, n_ind, nearestNode) d = self.line_cost(nearestNode, newNode) noCollision = self.check_collision(nearestNode, theta, d) if noCollision: nearInds = self.find_near_nodes(newNode) newNode = self.choose_parent(newNode, nearInds) self.node_list.append(newNode) self.rewire(newNode, nearInds) if self.is_near_goal(newNode): if self.check_segment_collision(newNode.x, newNode.y, self.goal.x, self.goal.y): solutionSet.add(newNode) lastIndex = len(self.node_list) - 1 tempPath = self.get_final_course(lastIndex) tempPathLen = self.get_path_len(tempPath) if tempPathLen < cBest: path = tempPath cBest = tempPathLen if animation: self.draw_graph(xCenter=xCenter, cBest=cBest, cMin=cMin, e_theta=e_theta, rnd=rnd) return path
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L44-L108
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 63, 64 ]
86.153846
[ 60 ]
1.538462
false
87.383178
65
7
98.461538
0
def informed_rrt_star_search(self, animation=True): self.node_list = [self.start] # max length we expect to find in our 'informed' sample space, # starts as infinite cBest = float('inf') solutionSet = set() path = None # Computing the sampling space cMin = math.sqrt(pow(self.start.x - self.goal.x, 2) + pow(self.start.y - self.goal.y, 2)) xCenter = np.array([[(self.start.x + self.goal.x) / 2.0], [(self.start.y + self.goal.y) / 2.0], [0]]) a1 = np.array([[(self.goal.x - self.start.x) / cMin], [(self.goal.y - self.start.y) / cMin], [0]]) e_theta = math.atan2(a1[1], a1[0]) # first column of identity matrix transposed id1_t = np.array([1.0, 0.0, 0.0]).reshape(1, 3) M = a1 @ id1_t U, S, Vh = np.linalg.svd(M, True, True) C = np.dot(np.dot(U, np.diag( [1.0, 1.0, np.linalg.det(U) * np.linalg.det(np.transpose(Vh))])), Vh) for i in range(self.max_iter): # Sample space is defined by cBest # cMin is the minimum distance between the start point and the goal # xCenter is the midpoint between the start and the goal # cBest changes when a new path is found rnd = self.informed_sample(cBest, cMin, xCenter, C) n_ind = self.get_nearest_list_index(self.node_list, rnd) nearestNode = self.node_list[n_ind] # steer theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x) newNode = self.get_new_node(theta, n_ind, nearestNode) d = self.line_cost(nearestNode, newNode) noCollision = self.check_collision(nearestNode, theta, d) if noCollision: nearInds = self.find_near_nodes(newNode) newNode = self.choose_parent(newNode, nearInds) self.node_list.append(newNode) self.rewire(newNode, nearInds) if self.is_near_goal(newNode): if self.check_segment_collision(newNode.x, newNode.y, self.goal.x, self.goal.y): solutionSet.add(newNode) lastIndex = len(self.node_list) - 1 tempPath = self.get_final_course(lastIndex) tempPathLen = self.get_path_len(tempPath) if tempPathLen < cBest: path = tempPath cBest = tempPathLen if animation: self.draw_graph(xCenter=xCenter, cBest=cBest, cMin=cMin, e_theta=e_theta, rnd=rnd) return path
857
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.choose_parent
(self, newNode, nearInds)
return newNode
110
135
def choose_parent(self, newNode, nearInds): if len(nearInds) == 0: return newNode dList = [] for i in nearInds: dx = newNode.x - self.node_list[i].x dy = newNode.y - self.node_list[i].y d = math.hypot(dx, dy) theta = math.atan2(dy, dx) if self.check_collision(self.node_list[i], theta, d): dList.append(self.node_list[i].cost + d) else: dList.append(float('inf')) minCost = min(dList) minInd = nearInds[dList.index(minCost)] if minCost == float('inf'): print("min cost is inf") return newNode newNode.cost = minCost newNode.parent = minInd return newNode
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L110-L135
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25 ]
88.461538
[ 19, 20 ]
7.692308
false
87.383178
26
5
92.307692
0
def choose_parent(self, newNode, nearInds): if len(nearInds) == 0: return newNode dList = [] for i in nearInds: dx = newNode.x - self.node_list[i].x dy = newNode.y - self.node_list[i].y d = math.hypot(dx, dy) theta = math.atan2(dy, dx) if self.check_collision(self.node_list[i], theta, d): dList.append(self.node_list[i].cost + d) else: dList.append(float('inf')) minCost = min(dList) minInd = nearInds[dList.index(minCost)] if minCost == float('inf'): print("min cost is inf") return newNode newNode.cost = minCost newNode.parent = minInd return newNode
858
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.find_near_nodes
(self, newNode)
return near_inds
137
143
def find_near_nodes(self, newNode): n_node = len(self.node_list) r = 50.0 * math.sqrt((math.log(n_node) / n_node)) d_list = [(node.x - newNode.x) ** 2 + (node.y - newNode.y) ** 2 for node in self.node_list] near_inds = [d_list.index(i) for i in d_list if i <= r ** 2] return near_inds
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L137-L143
2
[ 0, 1, 2, 3, 5, 6 ]
85.714286
[]
0
false
87.383178
7
3
100
0
def find_near_nodes(self, newNode): n_node = len(self.node_list) r = 50.0 * math.sqrt((math.log(n_node) / n_node)) d_list = [(node.x - newNode.x) ** 2 + (node.y - newNode.y) ** 2 for node in self.node_list] near_inds = [d_list.index(i) for i in d_list if i <= r ** 2] return near_inds
859
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.informed_sample
(self, cMax, cMin, xCenter, C)
return rnd
145
157
def informed_sample(self, cMax, cMin, xCenter, C): if cMax < float('inf'): r = [cMax / 2.0, math.sqrt(cMax ** 2 - cMin ** 2) / 2.0, math.sqrt(cMax ** 2 - cMin ** 2) / 2.0] L = np.diag(r) xBall = self.sample_unit_ball() rnd = np.dot(np.dot(C, L), xBall) + xCenter rnd = [rnd[(0, 0)], rnd[(1, 0)]] else: rnd = self.sample_free_space() return rnd
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L145-L157
2
[ 0, 1, 2, 5, 6, 7, 8, 10, 11, 12 ]
76.923077
[]
0
false
87.383178
13
2
100
0
def informed_sample(self, cMax, cMin, xCenter, C): if cMax < float('inf'): r = [cMax / 2.0, math.sqrt(cMax ** 2 - cMin ** 2) / 2.0, math.sqrt(cMax ** 2 - cMin ** 2) / 2.0] L = np.diag(r) xBall = self.sample_unit_ball() rnd = np.dot(np.dot(C, L), xBall) + xCenter rnd = [rnd[(0, 0)], rnd[(1, 0)]] else: rnd = self.sample_free_space() return rnd
860
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.sample_unit_ball
()
return np.array([[sample[0]], [sample[1]], [0]])
160
169
def sample_unit_ball(): a = random.random() b = random.random() if b < a: a, b = b, a sample = (b * math.cos(2 * math.pi * a / b), b * math.sin(2 * math.pi * a / b)) return np.array([[sample[0]], [sample[1]], [0]])
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L160-L169
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 9 ]
90
[]
0
false
87.383178
10
2
100
0
def sample_unit_ball(): a = random.random() b = random.random() if b < a: a, b = b, a sample = (b * math.cos(2 * math.pi * a / b), b * math.sin(2 * math.pi * a / b)) return np.array([[sample[0]], [sample[1]], [0]])
861
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.sample_free_space
(self)
return rnd
171
178
def sample_free_space(self): if random.randint(0, 100) > self.goal_sample_rate: rnd = [random.uniform(self.min_rand, self.max_rand), random.uniform(self.min_rand, self.max_rand)] else: rnd = [self.goal.x, self.goal.y] return rnd
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L171-L178
2
[ 0, 1, 2, 5, 6, 7 ]
75
[]
0
false
87.383178
8
2
100
0
def sample_free_space(self): if random.randint(0, 100) > self.goal_sample_rate: rnd = [random.uniform(self.min_rand, self.max_rand), random.uniform(self.min_rand, self.max_rand)] else: rnd = [self.goal.x, self.goal.y] return rnd
862
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.get_path_len
(path)
return pathLen
181
191
def get_path_len(path): pathLen = 0 for i in range(1, len(path)): node1_x = path[i][0] node1_y = path[i][1] node2_x = path[i - 1][0] node2_y = path[i - 1][1] pathLen += math.sqrt((node1_x - node2_x) ** 2 + (node1_y - node2_y) ** 2) return pathLen
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L181-L191
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 9, 10 ]
90.909091
[]
0
false
87.383178
11
2
100
0
def get_path_len(path): pathLen = 0 for i in range(1, len(path)): node1_x = path[i][0] node1_y = path[i][1] node2_x = path[i - 1][0] node2_y = path[i - 1][1] pathLen += math.sqrt((node1_x - node2_x) ** 2 + (node1_y - node2_y) ** 2) return pathLen
863
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.line_cost
(node1, node2)
return math.sqrt((node1.x - node2.x) ** 2 + (node1.y - node2.y) ** 2)
194
195
def line_cost(node1, node2): return math.sqrt((node1.x - node2.x) ** 2 + (node1.y - node2.y) ** 2)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L194-L195
2
[ 0, 1 ]
100
[]
0
true
87.383178
2
1
100
0
def line_cost(node1, node2): return math.sqrt((node1.x - node2.x) ** 2 + (node1.y - node2.y) ** 2)
864
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.get_nearest_list_index
(nodes, rnd)
return minIndex
198
202
def get_nearest_list_index(nodes, rnd): dList = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1]) ** 2 for node in nodes] minIndex = dList.index(min(dList)) return minIndex
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L198-L202
2
[ 0, 1, 3, 4 ]
80
[]
0
false
87.383178
5
2
100
0
def get_nearest_list_index(nodes, rnd): dList = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1]) ** 2 for node in nodes] minIndex = dList.index(min(dList)) return minIndex
865
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.get_new_node
(self, theta, n_ind, nearestNode)
return newNode
204
212
def get_new_node(self, theta, n_ind, nearestNode): newNode = copy.deepcopy(nearestNode) newNode.x += self.expand_dis * math.cos(theta) newNode.y += self.expand_dis * math.sin(theta) newNode.cost += self.expand_dis newNode.parent = n_ind return newNode
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L204-L212
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
100
[]
0
true
87.383178
9
1
100
0
def get_new_node(self, theta, n_ind, nearestNode): newNode = copy.deepcopy(nearestNode) newNode.x += self.expand_dis * math.cos(theta) newNode.y += self.expand_dis * math.sin(theta) newNode.cost += self.expand_dis newNode.parent = n_ind return newNode
866
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.is_near_goal
(self, node)
return False
214
218
def is_near_goal(self, node): d = self.line_cost(node, self.goal) if d < self.expand_dis: return True return False
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L214-L218
2
[ 0, 1, 2, 3, 4 ]
100
[]
0
true
87.383178
5
2
100
0
def is_near_goal(self, node): d = self.line_cost(node, self.goal) if d < self.expand_dis: return True return False
867
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.rewire
(self, newNode, nearInds)
220
235
def rewire(self, newNode, nearInds): n_node = len(self.node_list) for i in nearInds: nearNode = self.node_list[i] d = math.sqrt((nearNode.x - newNode.x) ** 2 + (nearNode.y - newNode.y) ** 2) s_cost = newNode.cost + d if nearNode.cost > s_cost: theta = math.atan2(newNode.y - nearNode.y, newNode.x - nearNode.x) if self.check_collision(nearNode, theta, d): nearNode.parent = n_node - 1 nearNode.cost = s_cost
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L220-L235
2
[ 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15 ]
87.5
[]
0
false
87.383178
16
4
100
0
def rewire(self, newNode, nearInds): n_node = len(self.node_list) for i in nearInds: nearNode = self.node_list[i] d = math.sqrt((nearNode.x - newNode.x) ** 2 + (nearNode.y - newNode.y) ** 2) s_cost = newNode.cost + d if nearNode.cost > s_cost: theta = math.atan2(newNode.y - nearNode.y, newNode.x - nearNode.x) if self.check_collision(nearNode, theta, d): nearNode.parent = n_node - 1 nearNode.cost = s_cost
868
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.distance_squared_point_to_segment
(v, w, p)
return (p - projection).dot(p - projection)
238
250
def distance_squared_point_to_segment(v, w, p): # Return minimum distance between line segment vw and point p if np.array_equal(v, w): return (p - v).dot(p - v) # v == w case l2 = (w - v).dot(w - v) # i.e. |w-v|^2 - avoid a sqrt # Consider the line extending the segment, # parameterized as v + t (w - v). # We find projection of point p onto the line. # It falls where t = [(p-v) . (w-v)] / |w-v|^2 # We clamp t from [0,1] to handle points outside the segment vw. t = max(0, min(1, (p - v).dot(w - v) / l2)) projection = v + t * (w - v) # Projection falls on the segment return (p - projection).dot(p - projection)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L238-L250
2
[ 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12 ]
92.307692
[ 3 ]
7.692308
false
87.383178
13
2
92.307692
0
def distance_squared_point_to_segment(v, w, p): # Return minimum distance between line segment vw and point p if np.array_equal(v, w): return (p - v).dot(p - v) # v == w case l2 = (w - v).dot(w - v) # i.e. |w-v|^2 - avoid a sqrt # Consider the line extending the segment, # parameterized as v + t (w - v). # We find projection of point p onto the line. # It falls where t = [(p-v) . (w-v)] / |w-v|^2 # We clamp t from [0,1] to handle points outside the segment vw. t = max(0, min(1, (p - v).dot(w - v) / l2)) projection = v + t * (w - v) # Projection falls on the segment return (p - projection).dot(p - projection)
869
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.check_segment_collision
(self, x1, y1, x2, y2)
return True
252
260
def check_segment_collision(self, x1, y1, x2, y2): for (ox, oy, size) in self.obstacle_list: dd = self.distance_squared_point_to_segment( np.array([x1, y1]), np.array([x2, y2]), np.array([ox, oy])) if dd <= size ** 2: return False # collision return True
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L252-L260
2
[ 0, 1, 2, 6, 7, 8 ]
66.666667
[]
0
false
87.383178
9
3
100
0
def check_segment_collision(self, x1, y1, x2, y2): for (ox, oy, size) in self.obstacle_list: dd = self.distance_squared_point_to_segment( np.array([x1, y1]), np.array([x2, y2]), np.array([ox, oy])) if dd <= size ** 2: return False # collision return True
870
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.check_collision
(self, nearNode, theta, d)
return self.check_segment_collision(tmpNode.x, tmpNode.y, end_x, end_y)
262
266
def check_collision(self, nearNode, theta, d): tmpNode = copy.deepcopy(nearNode) end_x = tmpNode.x + math.cos(theta) * d end_y = tmpNode.y + math.sin(theta) * d return self.check_segment_collision(tmpNode.x, tmpNode.y, end_x, end_y)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L262-L266
2
[ 0, 1, 2, 3, 4 ]
100
[]
0
true
87.383178
5
1
100
0
def check_collision(self, nearNode, theta, d): tmpNode = copy.deepcopy(nearNode) end_x = tmpNode.x + math.cos(theta) * d end_y = tmpNode.y + math.sin(theta) * d return self.check_segment_collision(tmpNode.x, tmpNode.y, end_x, end_y)
871
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.get_final_course
(self, lastIndex)
return path
268
275
def get_final_course(self, lastIndex): path = [[self.goal.x, self.goal.y]] while self.node_list[lastIndex].parent is not None: node = self.node_list[lastIndex] path.append([node.x, node.y]) lastIndex = node.parent path.append([self.start.x, self.start.y]) return path
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L268-L275
2
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
100
[]
0
true
87.383178
8
2
100
0
def get_final_course(self, lastIndex): path = [[self.goal.x, self.goal.y]] while self.node_list[lastIndex].parent is not None: node = self.node_list[lastIndex] path.append([node.x, node.y]) lastIndex = node.parent path.append([self.start.x, self.start.y]) return path
872
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.draw_graph
(self, xCenter=None, cBest=None, cMin=None, e_theta=None, rnd=None)
277
302
def draw_graph(self, xCenter=None, cBest=None, cMin=None, e_theta=None, rnd=None): plt.clf() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if rnd is not None: plt.plot(rnd[0], rnd[1], "^k") if cBest != float('inf'): self.plot_ellipse(xCenter, cBest, cMin, e_theta) for node in self.node_list: if node.parent is not None: if node.x or node.y is not None: plt.plot([node.x, self.node_list[node.parent].x], [ node.y, self.node_list[node.parent].y], "-g") for (ox, oy, size) in self.obstacle_list: plt.plot(ox, oy, "ok", ms=30 * size) plt.plot(self.start.x, self.start.y, "xr") plt.plot(self.goal.x, self.goal.y, "xr") plt.axis([-2, 15, -2, 15]) plt.grid(True) plt.pause(0.01)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L277-L302
2
[ 0 ]
3.846154
[ 2, 4, 7, 8, 9, 10, 12, 13, 14, 15, 18, 19, 21, 22, 23, 24, 25 ]
65.384615
false
87.383178
26
8
34.615385
0
def draw_graph(self, xCenter=None, cBest=None, cMin=None, e_theta=None, rnd=None): plt.clf() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if rnd is not None: plt.plot(rnd[0], rnd[1], "^k") if cBest != float('inf'): self.plot_ellipse(xCenter, cBest, cMin, e_theta) for node in self.node_list: if node.parent is not None: if node.x or node.y is not None: plt.plot([node.x, self.node_list[node.parent].x], [ node.y, self.node_list[node.parent].y], "-g") for (ox, oy, size) in self.obstacle_list: plt.plot(ox, oy, "ok", ms=30 * size) plt.plot(self.start.x, self.start.y, "xr") plt.plot(self.goal.x, self.goal.y, "xr") plt.axis([-2, 15, -2, 15]) plt.grid(True) plt.pause(0.01)
873
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
InformedRRTStar.plot_ellipse
(xCenter, cBest, cMin, e_theta)
305
319
def plot_ellipse(xCenter, cBest, cMin, e_theta): # pragma: no cover a = math.sqrt(cBest ** 2 - cMin ** 2) / 2.0 b = cBest / 2.0 angle = math.pi / 2.0 - e_theta cx = xCenter[0] cy = xCenter[1] t = np.arange(0, 2 * math.pi + 0.1, 0.1) x = [a * math.cos(it) for it in t] y = [b * math.sin(it) for it in t] fx = rot_mat_2d(-angle) @ np.array([x, y]) px = np.array(fx[0, :] + cx).flatten() py = np.array(fx[1, :] + cy).flatten() plt.plot(cx, cy, "xc") plt.plot(px, py, "--c")
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L305-L319
2
[]
0
[]
0
false
87.383178
15
3
100
0
def plot_ellipse(xCenter, cBest, cMin, e_theta): # pragma: no cover a = math.sqrt(cBest ** 2 - cMin ** 2) / 2.0 b = cBest / 2.0 angle = math.pi / 2.0 - e_theta cx = xCenter[0] cy = xCenter[1] t = np.arange(0, 2 * math.pi + 0.1, 0.1) x = [a * math.cos(it) for it in t] y = [b * math.sin(it) for it in t] fx = rot_mat_2d(-angle) @ np.array([x, y]) px = np.array(fx[0, :] + cx).flatten() py = np.array(fx[1, :] + cy).flatten() plt.plot(cx, cy, "xc") plt.plot(px, py, "--c")
874
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/InformedRRTStar/informed_rrt_star.py
Node.__init__
(self, x, y)
324
328
def __init__(self, x, y): self.x = x self.y = y self.cost = 0.0 self.parent = None
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/InformedRRTStar/informed_rrt_star.py#L324-L328
2
[ 0, 1, 2, 3, 4 ]
100
[]
0
true
87.383178
5
1
100
0
def __init__(self, x, y): self.x = x self.y = y self.cost = 0.0 self.parent = None
875
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRPlanner/lqr_planner.py
main
()
121
142
def main(): print(__file__ + " start!!") ntest = 10 # number of goal area = 100.0 # sampling area lqr_planner = LQRPlanner() for i in range(ntest): sx = 6.0 sy = 6.0 gx = random.uniform(-area, area) gy = random.uniform(-area, area) rx, ry = lqr_planner.lqr_planning(sx, sy, gx, gy, show_animation=SHOW_ANIMATION) if SHOW_ANIMATION: # pragma: no cover plt.plot(sx, sy, "or") plt.plot(gx, gy, "ob") plt.plot(rx, ry, "-r") plt.axis("equal") plt.pause(1.0)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRPlanner/lqr_planner.py#L121-L142
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ]
100
[]
0
true
95.522388
22
3
100
0
def main(): print(__file__ + " start!!") ntest = 10 # number of goal area = 100.0 # sampling area lqr_planner = LQRPlanner() for i in range(ntest): sx = 6.0 sy = 6.0 gx = random.uniform(-area, area) gy = random.uniform(-area, area) rx, ry = lqr_planner.lqr_planning(sx, sy, gx, gy, show_animation=SHOW_ANIMATION) if SHOW_ANIMATION: # pragma: no cover plt.plot(sx, sy, "or") plt.plot(gx, gy, "ob") plt.plot(rx, ry, "-r") plt.axis("equal") plt.pause(1.0)
876
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRPlanner/lqr_planner.py
LQRPlanner.__init__
(self)
21
26
def __init__(self): self.MAX_TIME = 100.0 # Maximum simulation time self.DT = 0.1 # Time tick self.GOAL_DIST = 0.1 self.MAX_ITER = 150 self.EPS = 0.01
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRPlanner/lqr_planner.py#L21-L26
2
[ 0, 1, 2, 3, 4, 5 ]
100
[]
0
true
95.522388
6
1
100
0
def __init__(self): self.MAX_TIME = 100.0 # Maximum simulation time self.DT = 0.1 # Time tick self.GOAL_DIST = 0.1 self.MAX_ITER = 150 self.EPS = 0.01
877
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRPlanner/lqr_planner.py
LQRPlanner.lqr_planning
(self, sx, sy, gx, gy, show_animation=True)
return rx, ry
28
70
def lqr_planning(self, sx, sy, gx, gy, show_animation=True): rx, ry = [sx], [sy] x = np.array([sx - gx, sy - gy]).reshape(2, 1) # State vector # Linear system model A, B = self.get_system_model() found_path = False time = 0.0 while time <= self.MAX_TIME: time += self.DT u = self.lqr_control(A, B, x) x = A @ x + B @ u rx.append(x[0, 0] + gx) ry.append(x[1, 0] + gy) d = math.sqrt((gx - rx[-1]) ** 2 + (gy - ry[-1]) ** 2) if d <= self.GOAL_DIST: found_path = True break # animation if show_animation: # pragma: no cover # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) plt.plot(sx, sy, "or") plt.plot(gx, gy, "ob") plt.plot(rx, ry, "-r") plt.axis("equal") plt.pause(1.0) if not found_path: print("Cannot found path") return [], [] return rx, ry
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRPlanner/lqr_planner.py#L28-L70
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 37, 38, 41, 42 ]
88.888889
[ 39, 40 ]
5.555556
false
95.522388
43
5
94.444444
0
def lqr_planning(self, sx, sy, gx, gy, show_animation=True): rx, ry = [sx], [sy] x = np.array([sx - gx, sy - gy]).reshape(2, 1) # State vector # Linear system model A, B = self.get_system_model() found_path = False time = 0.0 while time <= self.MAX_TIME: time += self.DT u = self.lqr_control(A, B, x) x = A @ x + B @ u rx.append(x[0, 0] + gx) ry.append(x[1, 0] + gy) d = math.sqrt((gx - rx[-1]) ** 2 + (gy - ry[-1]) ** 2) if d <= self.GOAL_DIST: found_path = True break # animation if show_animation: # pragma: no cover # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) plt.plot(sx, sy, "or") plt.plot(gx, gy, "ob") plt.plot(rx, ry, "-r") plt.axis("equal") plt.pause(1.0) if not found_path: print("Cannot found path") return [], [] return rx, ry
878
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRPlanner/lqr_planner.py
LQRPlanner.solve_dare
(self, A, B, Q, R)
return Xn
solve a discrete time_Algebraic Riccati equation (DARE)
solve a discrete time_Algebraic Riccati equation (DARE)
72
85
def solve_dare(self, A, B, Q, R): """ solve a discrete time_Algebraic Riccati equation (DARE) """ X, Xn = Q, Q for i in range(self.MAX_ITER): Xn = A.T * X * A - A.T * X * B * \ la.inv(R + B.T * X * B) * B.T * X * A + Q if (abs(Xn - X)).max() < self.EPS: break X = Xn return Xn
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRPlanner/lqr_planner.py#L72-L85
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ]
100
[]
0
true
95.522388
14
3
100
1
def solve_dare(self, A, B, Q, R): X, Xn = Q, Q for i in range(self.MAX_ITER): Xn = A.T * X * A - A.T * X * B * \ la.inv(R + B.T * X * B) * B.T * X * A + Q if (abs(Xn - X)).max() < self.EPS: break X = Xn return Xn
879
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRPlanner/lqr_planner.py
LQRPlanner.dlqr
(self, A, B, Q, R)
return K, X, eigValues
Solve the discrete time lqr controller. x[k+1] = A x[k] + B u[k] cost = sum x[k].T*Q*x[k] + u[k].T*R*u[k] # ref Bertsekas, p.151
Solve the discrete time lqr controller. x[k+1] = A x[k] + B u[k] cost = sum x[k].T*Q*x[k] + u[k].T*R*u[k] # ref Bertsekas, p.151
87
102
def dlqr(self, A, B, Q, R): """Solve the discrete time lqr controller. x[k+1] = A x[k] + B u[k] cost = sum x[k].T*Q*x[k] + u[k].T*R*u[k] # ref Bertsekas, p.151 """ # first, try to solve the ricatti equation X = self.solve_dare(A, B, Q, R) # compute the LQR gain K = la.inv(B.T @ X @ B + R) @ (B.T @ X @ A) eigValues = la.eigvals(A - B @ K) return K, X, eigValues
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRPlanner/lqr_planner.py#L87-L102
2
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ]
100
[]
0
true
95.522388
16
1
100
4
def dlqr(self, A, B, Q, R): # first, try to solve the ricatti equation X = self.solve_dare(A, B, Q, R) # compute the LQR gain K = la.inv(B.T @ X @ B + R) @ (B.T @ X @ A) eigValues = la.eigvals(A - B @ K) return K, X, eigValues
880
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRPlanner/lqr_planner.py
LQRPlanner.get_system_model
(self)
return A, B
104
110
def get_system_model(self): A = np.array([[self.DT, 1.0], [0.0, self.DT]]) B = np.array([0.0, 1.0]).reshape(2, 1) return A, B
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRPlanner/lqr_planner.py#L104-L110
2
[ 0, 1, 2, 4, 5, 6 ]
85.714286
[]
0
false
95.522388
7
1
100
0
def get_system_model(self): A = np.array([[self.DT, 1.0], [0.0, self.DT]]) B = np.array([0.0, 1.0]).reshape(2, 1) return A, B
881
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/LQRPlanner/lqr_planner.py
LQRPlanner.lqr_control
(self, A, B, x)
return u
112
118
def lqr_control(self, A, B, x): Kopt, X, ev = self.dlqr(A, B, np.eye(2), np.eye(1)) u = -Kopt @ x return u
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/LQRPlanner/lqr_planner.py#L112-L118
2
[ 0, 1, 2, 3, 4, 5, 6 ]
100
[]
0
true
95.522388
7
1
100
0
def lqr_control(self, A, B, x): Kopt, X, ev = self.dlqr(A, B, np.eye(2), np.eye(1)) u = -Kopt @ x return u
882
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/ClothoidPath/clothoid_path_planner.py
generate_clothoid_paths
(start_point, start_yaw_list, goal_point, goal_yaw_list, n_path_points)
return clothoids
Generate clothoid path list. This function generate multiple clothoid paths from multiple orientations(yaw) at start points to multiple orientations (yaw) at goal point. :param start_point: Start point of the path :param start_yaw_list: Orientation list at start point in radian :param goal_point: Goal point of the path :param goal_yaw_list: Orientation list at goal point in radian :param n_path_points: number of path points :return: clothoid path list
Generate clothoid path list. This function generate multiple clothoid paths from multiple orientations(yaw) at start points to multiple orientations (yaw) at goal point.
22
44
def generate_clothoid_paths(start_point, start_yaw_list, goal_point, goal_yaw_list, n_path_points): """ Generate clothoid path list. This function generate multiple clothoid paths from multiple orientations(yaw) at start points to multiple orientations (yaw) at goal point. :param start_point: Start point of the path :param start_yaw_list: Orientation list at start point in radian :param goal_point: Goal point of the path :param goal_yaw_list: Orientation list at goal point in radian :param n_path_points: number of path points :return: clothoid path list """ clothoids = [] for start_yaw in start_yaw_list: for goal_yaw in goal_yaw_list: clothoid = generate_clothoid_path(start_point, start_yaw, goal_point, goal_yaw, n_path_points) clothoids.append(clothoid) return clothoids
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClothoidPath/clothoid_path_planner.py#L22-L44
2
[ 0, 14, 15, 16, 17, 18, 19, 20, 21, 22 ]
43.478261
[]
0
false
63.265306
23
3
100
10
def generate_clothoid_paths(start_point, start_yaw_list, goal_point, goal_yaw_list, n_path_points): clothoids = [] for start_yaw in start_yaw_list: for goal_yaw in goal_yaw_list: clothoid = generate_clothoid_path(start_point, start_yaw, goal_point, goal_yaw, n_path_points) clothoids.append(clothoid) return clothoids
883
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/ClothoidPath/clothoid_path_planner.py
generate_clothoid_path
(start_point, start_yaw, goal_point, goal_yaw, n_path_points)
return points
Generate a clothoid path list. :param start_point: Start point of the path :param start_yaw: Orientation at start point in radian :param goal_point: Goal point of the path :param goal_yaw: Orientation at goal point in radian :param n_path_points: number of path points :return: a clothoid path
Generate a clothoid path list.
47
92
def generate_clothoid_path(start_point, start_yaw, goal_point, goal_yaw, n_path_points): """ Generate a clothoid path list. :param start_point: Start point of the path :param start_yaw: Orientation at start point in radian :param goal_point: Goal point of the path :param goal_yaw: Orientation at goal point in radian :param n_path_points: number of path points :return: a clothoid path """ dx = goal_point.x - start_point.x dy = goal_point.y - start_point.y r = hypot(dx, dy) phi = atan2(dy, dx) phi1 = normalize_angle(start_yaw - phi) phi2 = normalize_angle(goal_yaw - phi) delta = phi2 - phi1 try: # Step1: Solve g function A = solve_g_for_root(phi1, phi2, delta) # Step2: Calculate path parameters L = compute_path_length(r, phi1, delta, A) curvature = compute_curvature(delta, A, L) curvature_rate = compute_curvature_rate(A, L) except Exception as e: print(f"Failed to generate clothoid points: {e}") return None # Step3: Construct a path with Fresnel integral points = [] for s in np.linspace(0, L, n_path_points): try: x = start_point.x + s * X(curvature_rate * s ** 2, curvature * s, start_yaw) y = start_point.y + s * Y(curvature_rate * s ** 2, curvature * s, start_yaw) points.append(Point(x, y)) except Exception as e: print(f"Skipping failed clothoid point: {e}") return points
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClothoidPath/clothoid_path_planner.py#L47-L92
2
[ 0, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45 ]
65.217391
[ 29, 30, 31, 42, 43 ]
10.869565
false
63.265306
46
4
89.130435
8
def generate_clothoid_path(start_point, start_yaw, goal_point, goal_yaw, n_path_points): dx = goal_point.x - start_point.x dy = goal_point.y - start_point.y r = hypot(dx, dy) phi = atan2(dy, dx) phi1 = normalize_angle(start_yaw - phi) phi2 = normalize_angle(goal_yaw - phi) delta = phi2 - phi1 try: # Step1: Solve g function A = solve_g_for_root(phi1, phi2, delta) # Step2: Calculate path parameters L = compute_path_length(r, phi1, delta, A) curvature = compute_curvature(delta, A, L) curvature_rate = compute_curvature_rate(A, L) except Exception as e: print(f"Failed to generate clothoid points: {e}") return None # Step3: Construct a path with Fresnel integral points = [] for s in np.linspace(0, L, n_path_points): try: x = start_point.x + s * X(curvature_rate * s ** 2, curvature * s, start_yaw) y = start_point.y + s * Y(curvature_rate * s ** 2, curvature * s, start_yaw) points.append(Point(x, y)) except Exception as e: print(f"Skipping failed clothoid point: {e}") return points
884
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/ClothoidPath/clothoid_path_planner.py
X
(a, b, c)
return integrate.quad(lambda t: cos((a/2)*t**2 + b*t + c), 0, 1)[0]
95
96
def X(a, b, c): return integrate.quad(lambda t: cos((a/2)*t**2 + b*t + c), 0, 1)[0]
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClothoidPath/clothoid_path_planner.py#L95-L96
2
[ 0, 1 ]
100
[]
0
true
63.265306
2
1
100
0
def X(a, b, c): return integrate.quad(lambda t: cos((a/2)*t**2 + b*t + c), 0, 1)[0]
885
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/ClothoidPath/clothoid_path_planner.py
Y
(a, b, c)
return integrate.quad(lambda t: sin((a/2)*t**2 + b*t + c), 0, 1)[0]
99
100
def Y(a, b, c): return integrate.quad(lambda t: sin((a/2)*t**2 + b*t + c), 0, 1)[0]
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClothoidPath/clothoid_path_planner.py#L99-L100
2
[ 0, 1 ]
100
[]
0
true
63.265306
2
1
100
0
def Y(a, b, c): return integrate.quad(lambda t: sin((a/2)*t**2 + b*t + c), 0, 1)[0]
886
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/ClothoidPath/clothoid_path_planner.py
solve_g_for_root
(theta1, theta2, delta)
return fsolve(lambda A: Y(2*A, delta - A, theta1), [initial_guess])
103
105
def solve_g_for_root(theta1, theta2, delta): initial_guess = 3*(theta1 + theta2) return fsolve(lambda A: Y(2*A, delta - A, theta1), [initial_guess])
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClothoidPath/clothoid_path_planner.py#L103-L105
2
[ 0, 1, 2 ]
100
[]
0
true
63.265306
3
1
100
0
def solve_g_for_root(theta1, theta2, delta): initial_guess = 3*(theta1 + theta2) return fsolve(lambda A: Y(2*A, delta - A, theta1), [initial_guess])
887
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/ClothoidPath/clothoid_path_planner.py
compute_path_length
(r, theta1, delta, A)
return r / X(2*A, delta - A, theta1)
108
109
def compute_path_length(r, theta1, delta, A): return r / X(2*A, delta - A, theta1)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClothoidPath/clothoid_path_planner.py#L108-L109
2
[ 0, 1 ]
100
[]
0
true
63.265306
2
1
100
0
def compute_path_length(r, theta1, delta, A): return r / X(2*A, delta - A, theta1)
888
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/ClothoidPath/clothoid_path_planner.py
compute_curvature
(delta, A, L)
return (delta - A) / L
112
113
def compute_curvature(delta, A, L): return (delta - A) / L
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClothoidPath/clothoid_path_planner.py#L112-L113
2
[ 0, 1 ]
100
[]
0
true
63.265306
2
1
100
0
def compute_curvature(delta, A, L): return (delta - A) / L
889
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/ClothoidPath/clothoid_path_planner.py
compute_curvature_rate
(A, L)
return 2 * A / (L**2)
116
117
def compute_curvature_rate(A, L): return 2 * A / (L**2)
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClothoidPath/clothoid_path_planner.py#L116-L117
2
[ 0, 1 ]
100
[]
0
true
63.265306
2
1
100
0
def compute_curvature_rate(A, L): return 2 * A / (L**2)
890
AtsushiSakai/PythonRobotics
15ab19688b2f6c03ee91a853f1f8cc9def84d162
PathPlanning/ClothoidPath/clothoid_path_planner.py
normalize_angle
(angle_rad)
return (angle_rad + pi) % (2 * pi) - pi
120
121
def normalize_angle(angle_rad): return (angle_rad + pi) % (2 * pi) - pi
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ClothoidPath/clothoid_path_planner.py#L120-L121
2
[ 0, 1 ]
100
[]
0
true
63.265306
2
1
100
0
def normalize_angle(angle_rad): return (angle_rad + pi) % (2 * pi) - pi
891