nwo
stringlengths 10
28
| sha
stringlengths 40
40
| path
stringlengths 11
97
| identifier
stringlengths 1
64
| parameters
stringlengths 2
2.24k
| return_statement
stringlengths 0
2.17k
| docstring
stringlengths 0
5.45k
| docstring_summary
stringlengths 0
3.83k
| func_begin
int64 1
13.4k
| func_end
int64 2
13.4k
| function
stringlengths 28
56.4k
| url
stringlengths 106
209
| project
int64 1
48
| executed_lines
list | executed_lines_pc
float64 0
153
| missing_lines
list | missing_lines_pc
float64 0
100
| covered
bool 2
classes | filecoverage
float64 2.53
100
| function_lines
int64 2
1.46k
| mccabe
int64 1
253
| coverage
float64 0
100
| docstring_lines
int64 0
112
| function_nodoc
stringlengths 9
56.4k
| id
int64 0
29.8k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarDubins/rrt_star_dubins.py
|
RRTStarDubins.calc_new_cost
|
(self, from_node, to_node)
|
return from_node.cost + cost
| 158 | 166 |
def calc_new_cost(self, from_node, to_node):
_, _, _, _, course_lengths = dubins_path_planner.plan_dubins_path(
from_node.x, from_node.y, from_node.yaw,
to_node.x, to_node.y, to_node.yaw, self.curvature)
cost = sum([abs(c) for c in course_lengths])
return from_node.cost + cost
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarDubins/rrt_star_dubins.py#L158-L166
| 2 |
[
0,
1,
2,
5,
6,
7,
8
] | 77.777778 |
[] | 0 | false | 80 | 9 | 2 | 100 | 0 |
def calc_new_cost(self, from_node, to_node):
_, _, _, _, course_lengths = dubins_path_planner.plan_dubins_path(
from_node.x, from_node.y, from_node.yaw,
to_node.x, to_node.y, to_node.yaw, self.curvature)
cost = sum([abs(c) for c in course_lengths])
return from_node.cost + cost
| 997 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarDubins/rrt_star_dubins.py
|
RRTStarDubins.get_random_node
|
(self)
|
return rnd
| 168 | 178 |
def get_random_node(self):
if random.randint(0, 100) > self.goal_sample_rate:
rnd = self.Node(random.uniform(self.min_rand, self.max_rand),
random.uniform(self.min_rand, self.max_rand),
random.uniform(-math.pi, math.pi)
)
else: # goal point sampling
rnd = self.Node(self.end.x, self.end.y, self.end.yaw)
return rnd
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarDubins/rrt_star_dubins.py#L168-L178
| 2 |
[
0,
1,
2,
3,
8,
9,
10
] | 63.636364 |
[] | 0 | false | 80 | 11 | 2 | 100 | 0 |
def get_random_node(self):
if random.randint(0, 100) > self.goal_sample_rate:
rnd = self.Node(random.uniform(self.min_rand, self.max_rand),
random.uniform(self.min_rand, self.max_rand),
random.uniform(-math.pi, math.pi)
)
else: # goal point sampling
rnd = self.Node(self.end.x, self.end.y, self.end.yaw)
return rnd
| 998 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarDubins/rrt_star_dubins.py
|
RRTStarDubins.search_best_goal_node
|
(self)
|
return None
| 180 | 201 |
def search_best_goal_node(self):
goal_indexes = []
for (i, node) in enumerate(self.node_list):
if self.calc_dist_to_goal(node.x, node.y) <= self.goal_xy_th:
goal_indexes.append(i)
# angle check
final_goal_indexes = []
for i in goal_indexes:
if abs(self.node_list[i].yaw - self.end.yaw) <= self.goal_yaw_th:
final_goal_indexes.append(i)
if not final_goal_indexes:
return None
min_cost = min([self.node_list[i].cost for i in final_goal_indexes])
for i in final_goal_indexes:
if self.node_list[i].cost == min_cost:
return i
return None
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarDubins/rrt_star_dubins.py#L180-L201
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
15,
16,
17,
18,
19,
20
] | 90.909091 |
[
14,
21
] | 9.090909 | false | 80 | 22 | 9 | 90.909091 | 0 |
def search_best_goal_node(self):
goal_indexes = []
for (i, node) in enumerate(self.node_list):
if self.calc_dist_to_goal(node.x, node.y) <= self.goal_xy_th:
goal_indexes.append(i)
# angle check
final_goal_indexes = []
for i in goal_indexes:
if abs(self.node_list[i].yaw - self.end.yaw) <= self.goal_yaw_th:
final_goal_indexes.append(i)
if not final_goal_indexes:
return None
min_cost = min([self.node_list[i].cost for i in final_goal_indexes])
for i in final_goal_indexes:
if self.node_list[i].cost == min_cost:
return i
return None
| 999 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/RRTStarDubins/rrt_star_dubins.py
|
RRTStarDubins.generate_final_course
|
(self, goal_index)
|
return path
| 203 | 212 |
def generate_final_course(self, goal_index):
print("final")
path = [[self.end.x, self.end.y]]
node = self.node_list[goal_index]
while node.parent:
for (ix, iy) in zip(reversed(node.path_x), reversed(node.path_y)):
path.append([ix, iy])
node = node.parent
path.append([self.start.x, self.start.y])
return path
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/RRTStarDubins/rrt_star_dubins.py#L203-L212
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 80 | 10 | 3 | 100 | 0 |
def generate_final_course(self, goal_index):
print("final")
path = [[self.end.x, self.end.y]]
node = self.node_list[goal_index]
while node.parent:
for (ix, iy) in zip(reversed(node.path_x), reversed(node.path_y)):
path.append([ix, iy])
node = node.parent
path.append([self.start.x, self.start.y])
return path
| 1,000 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/CubicSpline/cubic_spline_planner.py
|
calc_spline_course
|
(x, y, ds=0.1)
|
return rx, ry, ryaw, rk, s
| 311 | 323 |
def calc_spline_course(x, y, ds=0.1):
sp = CubicSpline2D(x, y)
s = list(np.arange(0, sp.s[-1], ds))
rx, ry, ryaw, rk = [], [], [], []
for i_s in s:
ix, iy = sp.calc_position(i_s)
rx.append(ix)
ry.append(iy)
ryaw.append(sp.calc_yaw(i_s))
rk.append(sp.calc_curvature(i_s))
return rx, ry, ryaw, rk, s
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/CubicSpline/cubic_spline_planner.py#L311-L323
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 100 |
[] | 0 | true | 84.166667 | 13 | 2 | 100 | 0 |
def calc_spline_course(x, y, ds=0.1):
sp = CubicSpline2D(x, y)
s = list(np.arange(0, sp.s[-1], ds))
rx, ry, ryaw, rk = [], [], [], []
for i_s in s:
ix, iy = sp.calc_position(i_s)
rx.append(ix)
ry.append(iy)
ryaw.append(sp.calc_yaw(i_s))
rk.append(sp.calc_curvature(i_s))
return rx, ry, ryaw, rk, s
| 1,001 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/CubicSpline/cubic_spline_planner.py
|
main_1d
|
()
| 326 | 339 |
def main_1d():
print("CubicSpline1D test")
import matplotlib.pyplot as plt
x = np.arange(5)
y = [1.7, -6, 5, 6.5, 0.0]
sp = CubicSpline1D(x, y)
xi = np.linspace(0.0, 5.0)
plt.plot(x, y, "xb", label="Data points")
plt.plot(xi, [sp.calc_position(x) for x in xi], "r",
label="Cubic spline interpolation")
plt.grid(True)
plt.legend()
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/CubicSpline/cubic_spline_planner.py#L326-L339
| 2 |
[
0
] | 7.142857 |
[
1,
2,
3,
4,
5,
6,
8,
9,
11,
12,
13
] | 78.571429 | false | 84.166667 | 14 | 2 | 21.428571 | 0 |
def main_1d():
print("CubicSpline1D test")
import matplotlib.pyplot as plt
x = np.arange(5)
y = [1.7, -6, 5, 6.5, 0.0]
sp = CubicSpline1D(x, y)
xi = np.linspace(0.0, 5.0)
plt.plot(x, y, "xb", label="Data points")
plt.plot(xi, [sp.calc_position(x) for x in xi], "r",
label="Cubic spline interpolation")
plt.grid(True)
plt.legend()
plt.show()
| 1,002 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/CubicSpline/cubic_spline_planner.py
|
main_2d
|
()
| 342 | 383 |
def main_2d(): # pragma: no cover
print("CubicSpline1D 2D test")
import matplotlib.pyplot as plt
x = [-2.5, 0.0, 2.5, 5.0, 7.5, 3.0, -1.0]
y = [0.7, -6, 5, 6.5, 0.0, 5.0, -2.0]
ds = 0.1 # [m] distance of each interpolated points
sp = CubicSpline2D(x, y)
s = np.arange(0, sp.s[-1], ds)
rx, ry, ryaw, rk = [], [], [], []
for i_s in s:
ix, iy = sp.calc_position(i_s)
rx.append(ix)
ry.append(iy)
ryaw.append(sp.calc_yaw(i_s))
rk.append(sp.calc_curvature(i_s))
plt.subplots(1)
plt.plot(x, y, "xb", label="Data points")
plt.plot(rx, ry, "-r", label="Cubic spline path")
plt.grid(True)
plt.axis("equal")
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.legend()
plt.subplots(1)
plt.plot(s, [np.rad2deg(iyaw) for iyaw in ryaw], "-r", label="yaw")
plt.grid(True)
plt.legend()
plt.xlabel("line length[m]")
plt.ylabel("yaw angle[deg]")
plt.subplots(1)
plt.plot(s, rk, "-r", label="curvature")
plt.grid(True)
plt.legend()
plt.xlabel("line length[m]")
plt.ylabel("curvature [1/m]")
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/CubicSpline/cubic_spline_planner.py#L342-L383
| 2 |
[] | 0 |
[] | 0 | false | 84.166667 | 42 | 3 | 100 | 0 |
def main_2d(): # pragma: no cover
print("CubicSpline1D 2D test")
import matplotlib.pyplot as plt
x = [-2.5, 0.0, 2.5, 5.0, 7.5, 3.0, -1.0]
y = [0.7, -6, 5, 6.5, 0.0, 5.0, -2.0]
ds = 0.1 # [m] distance of each interpolated points
sp = CubicSpline2D(x, y)
s = np.arange(0, sp.s[-1], ds)
rx, ry, ryaw, rk = [], [], [], []
for i_s in s:
ix, iy = sp.calc_position(i_s)
rx.append(ix)
ry.append(iy)
ryaw.append(sp.calc_yaw(i_s))
rk.append(sp.calc_curvature(i_s))
plt.subplots(1)
plt.plot(x, y, "xb", label="Data points")
plt.plot(rx, ry, "-r", label="Cubic spline path")
plt.grid(True)
plt.axis("equal")
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.legend()
plt.subplots(1)
plt.plot(s, [np.rad2deg(iyaw) for iyaw in ryaw], "-r", label="yaw")
plt.grid(True)
plt.legend()
plt.xlabel("line length[m]")
plt.ylabel("yaw angle[deg]")
plt.subplots(1)
plt.plot(s, rk, "-r", label="curvature")
plt.grid(True)
plt.legend()
plt.xlabel("line length[m]")
plt.ylabel("curvature [1/m]")
plt.show()
| 1,003 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/CubicSpline/cubic_spline_planner.py
|
CubicSpline1D.__init__
|
(self, x, y)
| 46 | 71 |
def __init__(self, x, y):
h = np.diff(x)
if np.any(h < 0):
raise ValueError("x coordinates must be sorted in ascending order")
self.a, self.b, self.c, self.d = [], [], [], []
self.x = x
self.y = y
self.nx = len(x) # dimension of x
# calc coefficient a
self.a = [iy for iy in y]
# calc coefficient c
A = self.__calc_A(h)
B = self.__calc_B(h, self.a)
self.c = np.linalg.solve(A, B)
# calc spline coefficient b and d
for i in range(self.nx - 1):
d = (self.c[i + 1] - self.c[i]) / (3.0 * h[i])
b = 1.0 / h[i] * (self.a[i + 1] - self.a[i]) \
- h[i] / 3.0 * (2.0 * self.c[i] + self.c[i + 1])
self.d.append(d)
self.b.append(b)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/CubicSpline/cubic_spline_planner.py#L46-L71
| 2 |
[
0,
1,
2,
3,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
24,
25
] | 92.307692 |
[
4
] | 3.846154 | false | 84.166667 | 26 | 4 | 96.153846 | 0 |
def __init__(self, x, y):
h = np.diff(x)
if np.any(h < 0):
raise ValueError("x coordinates must be sorted in ascending order")
self.a, self.b, self.c, self.d = [], [], [], []
self.x = x
self.y = y
self.nx = len(x) # dimension of x
# calc coefficient a
self.a = [iy for iy in y]
# calc coefficient c
A = self.__calc_A(h)
B = self.__calc_B(h, self.a)
self.c = np.linalg.solve(A, B)
# calc spline coefficient b and d
for i in range(self.nx - 1):
d = (self.c[i + 1] - self.c[i]) / (3.0 * h[i])
b = 1.0 / h[i] * (self.a[i + 1] - self.a[i]) \
- h[i] / 3.0 * (2.0 * self.c[i] + self.c[i + 1])
self.d.append(d)
self.b.append(b)
| 1,004 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/CubicSpline/cubic_spline_planner.py
|
CubicSpline1D.calc_position
|
(self, x)
|
return position
|
Calc `y` position for given `x`.
if `x` is outside the data point's `x` range, return None.
Returns
-------
y : float
y position for given x.
|
Calc `y` position for given `x`.
| 73 | 94 |
def calc_position(self, x):
"""
Calc `y` position for given `x`.
if `x` is outside the data point's `x` range, return None.
Returns
-------
y : float
y position for given x.
"""
if x < self.x[0]:
return None
elif x > self.x[-1]:
return None
i = self.__search_index(x)
dx = x - self.x[i]
position = self.a[i] + self.b[i] * dx + \
self.c[i] * dx ** 2.0 + self.d[i] * dx ** 3.0
return position
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/CubicSpline/cubic_spline_planner.py#L73-L94
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
13,
15,
16,
17,
18,
19,
20,
21
] | 90.909091 |
[
12,
14
] | 9.090909 | false | 84.166667 | 22 | 3 | 90.909091 | 8 |
def calc_position(self, x):
if x < self.x[0]:
return None
elif x > self.x[-1]:
return None
i = self.__search_index(x)
dx = x - self.x[i]
position = self.a[i] + self.b[i] * dx + \
self.c[i] * dx ** 2.0 + self.d[i] * dx ** 3.0
return position
| 1,005 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/CubicSpline/cubic_spline_planner.py
|
CubicSpline1D.calc_first_derivative
|
(self, x)
|
return dy
|
Calc first derivative at given x.
if x is outside the input x, return None
Returns
-------
dy : float
first derivative for given x.
|
Calc first derivative at given x.
| 96 | 116 |
def calc_first_derivative(self, x):
"""
Calc first derivative at given x.
if x is outside the input x, return None
Returns
-------
dy : float
first derivative for given x.
"""
if x < self.x[0]:
return None
elif x > self.x[-1]:
return None
i = self.__search_index(x)
dx = x - self.x[i]
dy = self.b[i] + 2.0 * self.c[i] * dx + 3.0 * self.d[i] * dx ** 2.0
return dy
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/CubicSpline/cubic_spline_planner.py#L96-L116
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
14,
16,
17,
18,
19,
20
] | 90.47619 |
[
13,
15
] | 9.52381 | false | 84.166667 | 21 | 3 | 90.47619 | 8 |
def calc_first_derivative(self, x):
if x < self.x[0]:
return None
elif x > self.x[-1]:
return None
i = self.__search_index(x)
dx = x - self.x[i]
dy = self.b[i] + 2.0 * self.c[i] * dx + 3.0 * self.d[i] * dx ** 2.0
return dy
| 1,006 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/CubicSpline/cubic_spline_planner.py
|
CubicSpline1D.calc_second_derivative
|
(self, x)
|
return ddy
|
Calc second derivative at given x.
if x is outside the input x, return None
Returns
-------
ddy : float
second derivative for given x.
|
Calc second derivative at given x.
| 118 | 138 |
def calc_second_derivative(self, x):
"""
Calc second derivative at given x.
if x is outside the input x, return None
Returns
-------
ddy : float
second derivative for given x.
"""
if x < self.x[0]:
return None
elif x > self.x[-1]:
return None
i = self.__search_index(x)
dx = x - self.x[i]
ddy = 2.0 * self.c[i] + 6.0 * self.d[i] * dx
return ddy
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/CubicSpline/cubic_spline_planner.py#L118-L138
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
14,
16,
17,
18,
19,
20
] | 90.47619 |
[
13,
15
] | 9.52381 | false | 84.166667 | 21 | 3 | 90.47619 | 8 |
def calc_second_derivative(self, x):
if x < self.x[0]:
return None
elif x > self.x[-1]:
return None
i = self.__search_index(x)
dx = x - self.x[i]
ddy = 2.0 * self.c[i] + 6.0 * self.d[i] * dx
return ddy
| 1,007 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/CubicSpline/cubic_spline_planner.py
|
CubicSpline1D.__search_index
|
(self, x)
|
return bisect.bisect(self.x, x) - 1
|
search data segment index
|
search data segment index
| 140 | 144 |
def __search_index(self, x):
"""
search data segment index
"""
return bisect.bisect(self.x, x) - 1
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/CubicSpline/cubic_spline_planner.py#L140-L144
| 2 |
[
0,
1,
2,
3,
4
] | 100 |
[] | 0 | true | 84.166667 | 5 | 1 | 100 | 1 |
def __search_index(self, x):
return bisect.bisect(self.x, x) - 1
| 1,008 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/CubicSpline/cubic_spline_planner.py
|
CubicSpline1D.__calc_A
|
(self, h)
|
return A
|
calc matrix A for spline coefficient c
|
calc matrix A for spline coefficient c
| 146 | 161 |
def __calc_A(self, h):
"""
calc matrix A for spline coefficient c
"""
A = np.zeros((self.nx, self.nx))
A[0, 0] = 1.0
for i in range(self.nx - 1):
if i != (self.nx - 2):
A[i + 1, i + 1] = 2.0 * (h[i] + h[i + 1])
A[i + 1, i] = h[i]
A[i, i + 1] = h[i]
A[0, 1] = 0.0
A[self.nx - 1, self.nx - 2] = 0.0
A[self.nx - 1, self.nx - 1] = 1.0
return A
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/CubicSpline/cubic_spline_planner.py#L146-L161
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
] | 100 |
[] | 0 | true | 84.166667 | 16 | 3 | 100 | 1 |
def __calc_A(self, h):
A = np.zeros((self.nx, self.nx))
A[0, 0] = 1.0
for i in range(self.nx - 1):
if i != (self.nx - 2):
A[i + 1, i + 1] = 2.0 * (h[i] + h[i + 1])
A[i + 1, i] = h[i]
A[i, i + 1] = h[i]
A[0, 1] = 0.0
A[self.nx - 1, self.nx - 2] = 0.0
A[self.nx - 1, self.nx - 1] = 1.0
return A
| 1,009 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/CubicSpline/cubic_spline_planner.py
|
CubicSpline1D.__calc_B
|
(self, h, a)
|
return B
|
calc matrix B for spline coefficient c
|
calc matrix B for spline coefficient c
| 163 | 171 |
def __calc_B(self, h, a):
"""
calc matrix B for spline coefficient c
"""
B = np.zeros(self.nx)
for i in range(self.nx - 2):
B[i + 1] = 3.0 * (a[i + 2] - a[i + 1]) / h[i + 1]\
- 3.0 * (a[i + 1] - a[i]) / h[i]
return B
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/CubicSpline/cubic_spline_planner.py#L163-L171
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8
] | 100 |
[] | 0 | true | 84.166667 | 9 | 2 | 100 | 1 |
def __calc_B(self, h, a):
B = np.zeros(self.nx)
for i in range(self.nx - 2):
B[i + 1] = 3.0 * (a[i + 2] - a[i + 1]) / h[i + 1]\
- 3.0 * (a[i + 1] - a[i]) / h[i]
return B
| 1,010 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/CubicSpline/cubic_spline_planner.py
|
CubicSpline2D.__init__
|
(self, x, y)
| 233 | 236 |
def __init__(self, x, y):
self.s = self.__calc_s(x, y)
self.sx = CubicSpline1D(self.s, x)
self.sy = CubicSpline1D(self.s, y)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/CubicSpline/cubic_spline_planner.py#L233-L236
| 2 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 84.166667 | 4 | 1 | 100 | 0 |
def __init__(self, x, y):
self.s = self.__calc_s(x, y)
self.sx = CubicSpline1D(self.s, x)
self.sy = CubicSpline1D(self.s, y)
| 1,011 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/CubicSpline/cubic_spline_planner.py
|
CubicSpline2D.__calc_s
|
(self, x, y)
|
return s
| 238 | 244 |
def __calc_s(self, x, y):
dx = np.diff(x)
dy = np.diff(y)
self.ds = np.hypot(dx, dy)
s = [0]
s.extend(np.cumsum(self.ds))
return s
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/CubicSpline/cubic_spline_planner.py#L238-L244
| 2 |
[
0,
1,
2,
3,
4,
5,
6
] | 100 |
[] | 0 | true | 84.166667 | 7 | 1 | 100 | 0 |
def __calc_s(self, x, y):
dx = np.diff(x)
dy = np.diff(y)
self.ds = np.hypot(dx, dy)
s = [0]
s.extend(np.cumsum(self.ds))
return s
| 1,012 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/CubicSpline/cubic_spline_planner.py
|
CubicSpline2D.calc_position
|
(self, s)
|
return x, y
|
calc position
Parameters
----------
s : float
distance from the start point. if `s` is outside the data point's
range, return None.
Returns
-------
x : float
x position for given s.
y : float
y position for given s.
|
calc position
| 246 | 266 |
def calc_position(self, s):
"""
calc position
Parameters
----------
s : float
distance from the start point. if `s` is outside the data point's
range, return None.
Returns
-------
x : float
x position for given s.
y : float
y position for given s.
"""
x = self.sx.calc_position(s)
y = self.sy.calc_position(s)
return x, y
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/CubicSpline/cubic_spline_planner.py#L246-L266
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20
] | 100 |
[] | 0 | true | 84.166667 | 21 | 1 | 100 | 14 |
def calc_position(self, s):
x = self.sx.calc_position(s)
y = self.sy.calc_position(s)
return x, y
| 1,013 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/CubicSpline/cubic_spline_planner.py
|
CubicSpline2D.calc_curvature
|
(self, s)
|
return k
|
calc curvature
Parameters
----------
s : float
distance from the start point. if `s` is outside the data point's
range, return None.
Returns
-------
k : float
curvature for given s.
|
calc curvature
| 268 | 288 |
def calc_curvature(self, s):
"""
calc curvature
Parameters
----------
s : float
distance from the start point. if `s` is outside the data point's
range, return None.
Returns
-------
k : float
curvature for given s.
"""
dx = self.sx.calc_first_derivative(s)
ddx = self.sx.calc_second_derivative(s)
dy = self.sy.calc_first_derivative(s)
ddy = self.sy.calc_second_derivative(s)
k = (ddy * dx - ddx * dy) / ((dx ** 2 + dy ** 2)**(3 / 2))
return k
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/CubicSpline/cubic_spline_planner.py#L268-L288
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20
] | 100 |
[] | 0 | true | 84.166667 | 21 | 1 | 100 | 12 |
def calc_curvature(self, s):
dx = self.sx.calc_first_derivative(s)
ddx = self.sx.calc_second_derivative(s)
dy = self.sy.calc_first_derivative(s)
ddy = self.sy.calc_second_derivative(s)
k = (ddy * dx - ddx * dy) / ((dx ** 2 + dy ** 2)**(3 / 2))
return k
| 1,014 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/CubicSpline/cubic_spline_planner.py
|
CubicSpline2D.calc_yaw
|
(self, s)
|
return yaw
|
calc yaw
Parameters
----------
s : float
distance from the start point. if `s` is outside the data point's
range, return None.
Returns
-------
yaw : float
yaw angle (tangent vector) for given s.
|
calc yaw
| 290 | 308 |
def calc_yaw(self, s):
"""
calc yaw
Parameters
----------
s : float
distance from the start point. if `s` is outside the data point's
range, return None.
Returns
-------
yaw : float
yaw angle (tangent vector) for given s.
"""
dx = self.sx.calc_first_derivative(s)
dy = self.sy.calc_first_derivative(s)
yaw = math.atan2(dy, dx)
return yaw
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/CubicSpline/cubic_spline_planner.py#L290-L308
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18
] | 100 |
[] | 0 | true | 84.166667 | 19 | 1 | 100 | 12 |
def calc_yaw(self, s):
dx = self.sx.calc_first_derivative(s)
dy = self.sy.calc_first_derivative(s)
yaw = math.atan2(dy, dx)
return yaw
| 1,015 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py
|
main
|
()
| 303 | 309 |
def main():
dir_path = os.path.dirname(os.path.realpath(__file__))
img = plt.imread(os.path.join(dir_path, 'map', 'test_2.png'))
STC_planner = SpiralSpanningTreeCoveragePlanner(img)
start = (10, 0)
edge, route, path = STC_planner.plan(start)
STC_planner.visualize_path(edge, path, start)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py#L303-L309
| 2 |
[
0
] | 14.285714 |
[
1,
2,
3,
4,
5,
6
] | 85.714286 | false | 63.77551 | 7 | 1 | 14.285714 | 0 |
def main():
dir_path = os.path.dirname(os.path.realpath(__file__))
img = plt.imread(os.path.join(dir_path, 'map', 'test_2.png'))
STC_planner = SpiralSpanningTreeCoveragePlanner(img)
start = (10, 0)
edge, route, path = STC_planner.plan(start)
STC_planner.visualize_path(edge, path, start)
| 1,020 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py
|
SpiralSpanningTreeCoveragePlanner.__init__
|
(self, occ_map)
| 21 | 34 |
def __init__(self, occ_map):
self.origin_map_height = occ_map.shape[0]
self.origin_map_width = occ_map.shape[1]
# original map resolution must be even
if self.origin_map_height % 2 == 1 or self.origin_map_width % 2 == 1:
sys.exit('original map width/height must be even \
in grayscale .png format')
self.occ_map = occ_map
self.merged_map_height = self.origin_map_height // 2
self.merged_map_width = self.origin_map_width // 2
self.edge = []
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py#L21-L34
| 2 |
[
0,
1,
2,
3,
4,
5,
8,
9,
10,
11,
12,
13
] | 85.714286 |
[
6
] | 7.142857 | false | 63.77551 | 14 | 3 | 92.857143 | 0 |
def __init__(self, occ_map):
self.origin_map_height = occ_map.shape[0]
self.origin_map_width = occ_map.shape[1]
# original map resolution must be even
if self.origin_map_height % 2 == 1 or self.origin_map_width % 2 == 1:
sys.exit('original map width/height must be even \
in grayscale .png format')
self.occ_map = occ_map
self.merged_map_height = self.origin_map_height // 2
self.merged_map_width = self.origin_map_width // 2
self.edge = []
| 1,021 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py
|
SpiralSpanningTreeCoveragePlanner.plan
|
(self, start)
|
return self.edge, route, path
|
plan
performing Spiral Spanning Tree Coverage path planning
:param start: the start node of Spiral Spanning Tree Coverage
|
plan
| 36 | 71 |
def plan(self, start):
"""plan
performing Spiral Spanning Tree Coverage path planning
:param start: the start node of Spiral Spanning Tree Coverage
"""
visit_times = np.zeros(
(self.merged_map_height, self.merged_map_width), dtype=int)
visit_times[start[0]][start[1]] = 1
# generate route by
# recusively call perform_spanning_tree_coverage() from start node
route = []
self.perform_spanning_tree_coverage(start, visit_times, route)
path = []
# generate path from route
for idx in range(len(route)-1):
dp = abs(route[idx][0] - route[idx+1][0]) + \
abs(route[idx][1] - route[idx+1][1])
if dp == 0:
# special handle for round-trip path
path.append(self.get_round_trip_path(route[idx-1], route[idx]))
elif dp == 1:
path.append(self.move(route[idx], route[idx+1]))
elif dp == 2:
# special handle for non-adjacent route nodes
mid_node = self.get_intermediate_node(route[idx], route[idx+1])
path.append(self.move(route[idx], mid_node))
path.append(self.move(mid_node, route[idx+1]))
else:
sys.exit('adjacent path node distance larger than 2')
return self.edge, route, path
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py#L36-L71
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
34,
35
] | 97.222222 |
[
33
] | 2.777778 | false | 63.77551 | 36 | 5 | 97.222222 | 5 |
def plan(self, start):
visit_times = np.zeros(
(self.merged_map_height, self.merged_map_width), dtype=int)
visit_times[start[0]][start[1]] = 1
# generate route by
# recusively call perform_spanning_tree_coverage() from start node
route = []
self.perform_spanning_tree_coverage(start, visit_times, route)
path = []
# generate path from route
for idx in range(len(route)-1):
dp = abs(route[idx][0] - route[idx+1][0]) + \
abs(route[idx][1] - route[idx+1][1])
if dp == 0:
# special handle for round-trip path
path.append(self.get_round_trip_path(route[idx-1], route[idx]))
elif dp == 1:
path.append(self.move(route[idx], route[idx+1]))
elif dp == 2:
# special handle for non-adjacent route nodes
mid_node = self.get_intermediate_node(route[idx], route[idx+1])
path.append(self.move(route[idx], mid_node))
path.append(self.move(mid_node, route[idx+1]))
else:
sys.exit('adjacent path node distance larger than 2')
return self.edge, route, path
| 1,022 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py
|
SpiralSpanningTreeCoveragePlanner.perform_spanning_tree_coverage
|
(self, current_node, visit_times, route)
|
return route
|
perform_spanning_tree_coverage
recursive function for function <plan>
:param current_node: current node
|
perform_spanning_tree_coverage
| 73 | 130 |
def perform_spanning_tree_coverage(self, current_node, visit_times, route):
"""perform_spanning_tree_coverage
recursive function for function <plan>
:param current_node: current node
"""
def is_valid_node(i, j):
is_i_valid_bounded = 0 <= i < self.merged_map_height
is_j_valid_bounded = 0 <= j < self.merged_map_width
if is_i_valid_bounded and is_j_valid_bounded:
# free only when the 4 sub-cells are all free
return bool(
self.occ_map[2*i][2*j]
and self.occ_map[2*i+1][2*j]
and self.occ_map[2*i][2*j+1]
and self.occ_map[2*i+1][2*j+1])
return False
# counter-clockwise neighbor finding order
order = [[1, 0], [0, 1], [-1, 0], [0, -1]]
found = False
route.append(current_node)
for inc in order:
ni, nj = current_node[0] + inc[0], current_node[1] + inc[1]
if is_valid_node(ni, nj) and visit_times[ni][nj] == 0:
neighbor_node = (ni, nj)
self.edge.append((current_node, neighbor_node))
found = True
visit_times[ni][nj] += 1
self.perform_spanning_tree_coverage(
neighbor_node, visit_times, route)
# backtrace route from node with neighbors all visited
# to first node with unvisited neighbor
if not found:
has_node_with_unvisited_ngb = False
for node in reversed(route):
# drop nodes that have been visited twice
if visit_times[node[0]][node[1]] == 2:
continue
visit_times[node[0]][node[1]] += 1
route.append(node)
for inc in order:
ni, nj = node[0] + inc[0], node[1] + inc[1]
if is_valid_node(ni, nj) and visit_times[ni][nj] == 0:
has_node_with_unvisited_ngb = True
break
if has_node_with_unvisited_ngb:
break
return route
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py#L73-L130
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57
] | 100 |
[] | 0 | true | 63.77551 | 58 | 17 | 100 | 5 |
def perform_spanning_tree_coverage(self, current_node, visit_times, route):
def is_valid_node(i, j):
is_i_valid_bounded = 0 <= i < self.merged_map_height
is_j_valid_bounded = 0 <= j < self.merged_map_width
if is_i_valid_bounded and is_j_valid_bounded:
# free only when the 4 sub-cells are all free
return bool(
self.occ_map[2*i][2*j]
and self.occ_map[2*i+1][2*j]
and self.occ_map[2*i][2*j+1]
and self.occ_map[2*i+1][2*j+1])
return False
# counter-clockwise neighbor finding order
order = [[1, 0], [0, 1], [-1, 0], [0, -1]]
found = False
route.append(current_node)
for inc in order:
ni, nj = current_node[0] + inc[0], current_node[1] + inc[1]
if is_valid_node(ni, nj) and visit_times[ni][nj] == 0:
neighbor_node = (ni, nj)
self.edge.append((current_node, neighbor_node))
found = True
visit_times[ni][nj] += 1
self.perform_spanning_tree_coverage(
neighbor_node, visit_times, route)
# backtrace route from node with neighbors all visited
# to first node with unvisited neighbor
if not found:
has_node_with_unvisited_ngb = False
for node in reversed(route):
# drop nodes that have been visited twice
if visit_times[node[0]][node[1]] == 2:
continue
visit_times[node[0]][node[1]] += 1
route.append(node)
for inc in order:
ni, nj = node[0] + inc[0], node[1] + inc[1]
if is_valid_node(ni, nj) and visit_times[ni][nj] == 0:
has_node_with_unvisited_ngb = True
break
if has_node_with_unvisited_ngb:
break
return route
| 1,023 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py
|
SpiralSpanningTreeCoveragePlanner.move
|
(self, p, q)
|
return [p, q]
| 132 | 152 |
def move(self, p, q):
direction = self.get_vector_direction(p, q)
# move east
if direction == 'E':
p = self.get_sub_node(p, 'SE')
q = self.get_sub_node(q, 'SW')
# move west
elif direction == 'W':
p = self.get_sub_node(p, 'NW')
q = self.get_sub_node(q, 'NE')
# move south
elif direction == 'S':
p = self.get_sub_node(p, 'SW')
q = self.get_sub_node(q, 'NW')
# move north
elif direction == 'N':
p = self.get_sub_node(p, 'NE')
q = self.get_sub_node(q, 'SE')
else:
sys.exit('move direction error...')
return [p, q]
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py#L132-L152
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
20
] | 90.47619 |
[
19
] | 4.761905 | false | 63.77551 | 21 | 5 | 95.238095 | 0 |
def move(self, p, q):
direction = self.get_vector_direction(p, q)
# move east
if direction == 'E':
p = self.get_sub_node(p, 'SE')
q = self.get_sub_node(q, 'SW')
# move west
elif direction == 'W':
p = self.get_sub_node(p, 'NW')
q = self.get_sub_node(q, 'NE')
# move south
elif direction == 'S':
p = self.get_sub_node(p, 'SW')
q = self.get_sub_node(q, 'NW')
# move north
elif direction == 'N':
p = self.get_sub_node(p, 'NE')
q = self.get_sub_node(q, 'SE')
else:
sys.exit('move direction error...')
return [p, q]
| 1,024 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py
|
SpiralSpanningTreeCoveragePlanner.get_round_trip_path
|
(self, last, pivot)
| 154 | 169 |
def get_round_trip_path(self, last, pivot):
direction = self.get_vector_direction(last, pivot)
if direction == 'E':
return [self.get_sub_node(pivot, 'SE'),
self.get_sub_node(pivot, 'NE')]
elif direction == 'S':
return [self.get_sub_node(pivot, 'SW'),
self.get_sub_node(pivot, 'SE')]
elif direction == 'W':
return [self.get_sub_node(pivot, 'NW'),
self.get_sub_node(pivot, 'SW')]
elif direction == 'N':
return [self.get_sub_node(pivot, 'NE'),
self.get_sub_node(pivot, 'NW')]
else:
sys.exit('get_round_trip_path: last->pivot direction error.')
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py#L154-L169
| 2 |
[
0,
1,
2,
5,
6,
8,
11,
12
] | 50 |
[
3,
9,
15
] | 18.75 | false | 63.77551 | 16 | 5 | 81.25 | 0 |
def get_round_trip_path(self, last, pivot):
direction = self.get_vector_direction(last, pivot)
if direction == 'E':
return [self.get_sub_node(pivot, 'SE'),
self.get_sub_node(pivot, 'NE')]
elif direction == 'S':
return [self.get_sub_node(pivot, 'SW'),
self.get_sub_node(pivot, 'SE')]
elif direction == 'W':
return [self.get_sub_node(pivot, 'NW'),
self.get_sub_node(pivot, 'SW')]
elif direction == 'N':
return [self.get_sub_node(pivot, 'NE'),
self.get_sub_node(pivot, 'NW')]
else:
sys.exit('get_round_trip_path: last->pivot direction error.')
| 1,025 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py
|
SpiralSpanningTreeCoveragePlanner.get_vector_direction
|
(self, p, q)
| 171 | 185 |
def get_vector_direction(self, p, q):
# east
if p[0] == q[0] and p[1] < q[1]:
return 'E'
# west
elif p[0] == q[0] and p[1] > q[1]:
return 'W'
# south
elif p[0] < q[0] and p[1] == q[1]:
return 'S'
# north
elif p[0] > q[0] and p[1] == q[1]:
return 'N'
else:
sys.exit('get_vector_direction: Only E/W/S/N direction supported.')
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py#L171-L185
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 86.666667 |
[
14
] | 6.666667 | false | 63.77551 | 15 | 9 | 93.333333 | 0 |
def get_vector_direction(self, p, q):
# east
if p[0] == q[0] and p[1] < q[1]:
return 'E'
# west
elif p[0] == q[0] and p[1] > q[1]:
return 'W'
# south
elif p[0] < q[0] and p[1] == q[1]:
return 'S'
# north
elif p[0] > q[0] and p[1] == q[1]:
return 'N'
else:
sys.exit('get_vector_direction: Only E/W/S/N direction supported.')
| 1,026 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py
|
SpiralSpanningTreeCoveragePlanner.get_sub_node
|
(self, node, direction)
| 187 | 197 |
def get_sub_node(self, node, direction):
if direction == 'SE':
return [2*node[0]+1, 2*node[1]+1]
elif direction == 'SW':
return [2*node[0]+1, 2*node[1]]
elif direction == 'NE':
return [2*node[0], 2*node[1]+1]
elif direction == 'NW':
return [2*node[0], 2*node[1]]
else:
sys.exit('get_sub_node: sub-node direction error.')
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py#L187-L197
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8
] | 81.818182 |
[
10
] | 9.090909 | false | 63.77551 | 11 | 5 | 90.909091 | 0 |
def get_sub_node(self, node, direction):
if direction == 'SE':
return [2*node[0]+1, 2*node[1]+1]
elif direction == 'SW':
return [2*node[0]+1, 2*node[1]]
elif direction == 'NE':
return [2*node[0], 2*node[1]+1]
elif direction == 'NW':
return [2*node[0], 2*node[1]]
else:
sys.exit('get_sub_node: sub-node direction error.')
| 1,027 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py
|
SpiralSpanningTreeCoveragePlanner.get_interpolated_path
|
(self, p, q)
|
return ipx, ipy
| 199 | 208 |
def get_interpolated_path(self, p, q):
# direction p->q: southwest / northeast
if (p[0] < q[0]) ^ (p[1] < q[1]):
ipx = [p[0], p[0], q[0]]
ipy = [p[1], q[1], q[1]]
# direction p->q: southeast / northwest
else:
ipx = [p[0], q[0], q[0]]
ipy = [p[1], p[1], q[1]]
return ipx, ipy
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py#L199-L208
| 2 |
[
0,
1
] | 20 |
[
2,
3,
4,
7,
8,
9
] | 60 | false | 63.77551 | 10 | 2 | 40 | 0 |
def get_interpolated_path(self, p, q):
# direction p->q: southwest / northeast
if (p[0] < q[0]) ^ (p[1] < q[1]):
ipx = [p[0], p[0], q[0]]
ipy = [p[1], q[1], q[1]]
# direction p->q: southeast / northwest
else:
ipx = [p[0], q[0], q[0]]
ipy = [p[1], p[1], q[1]]
return ipx, ipy
| 1,028 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py
|
SpiralSpanningTreeCoveragePlanner.get_intermediate_node
|
(self, p, q)
| 210 | 231 |
def get_intermediate_node(self, p, q):
p_ngb, q_ngb = set(), set()
for m, n in self.edge:
if m == p:
p_ngb.add(n)
if n == p:
p_ngb.add(m)
if m == q:
q_ngb.add(n)
if n == q:
q_ngb.add(m)
itsc = p_ngb.intersection(q_ngb)
if len(itsc) == 0:
sys.exit('get_intermediate_node: \
no intermediate node between', p, q)
elif len(itsc) == 1:
return list(itsc)[0]
else:
sys.exit('get_intermediate_node: \
more than 1 intermediate node between', p, q)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py#L210-L231
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
17,
18
] | 77.272727 |
[
15,
20
] | 9.090909 | false | 63.77551 | 22 | 8 | 90.909091 | 0 |
def get_intermediate_node(self, p, q):
p_ngb, q_ngb = set(), set()
for m, n in self.edge:
if m == p:
p_ngb.add(n)
if n == p:
p_ngb.add(m)
if m == q:
q_ngb.add(n)
if n == q:
q_ngb.add(m)
itsc = p_ngb.intersection(q_ngb)
if len(itsc) == 0:
sys.exit('get_intermediate_node: \
no intermediate node between', p, q)
elif len(itsc) == 1:
return list(itsc)[0]
else:
sys.exit('get_intermediate_node: \
more than 1 intermediate node between', p, q)
| 1,029 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py
|
SpiralSpanningTreeCoveragePlanner.visualize_path
|
(self, edge, path, start)
| 233 | 300 |
def visualize_path(self, edge, path, start):
def coord_transform(p):
return [2*p[1] + 0.5, 2*p[0] + 0.5]
if do_animation:
last = path[0][0]
trajectory = [[last[1]], [last[0]]]
for p, q in path:
distance = math.hypot(p[0]-last[0], p[1]-last[1])
if distance <= 1.0:
trajectory[0].append(p[1])
trajectory[1].append(p[0])
else:
ipx, ipy = self.get_interpolated_path(last, p)
trajectory[0].extend(ipy)
trajectory[1].extend(ipx)
last = q
trajectory[0].append(last[1])
trajectory[1].append(last[0])
for idx, state in enumerate(np.transpose(trajectory)):
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
# draw spanning tree
plt.imshow(self.occ_map, 'gray')
for p, q in edge:
p = coord_transform(p)
q = coord_transform(q)
plt.plot([p[0], q[0]], [p[1], q[1]], '-oc')
sx, sy = coord_transform(start)
plt.plot([sx], [sy], 'pr', markersize=10)
# draw move path
plt.plot(trajectory[0][:idx+1], trajectory[1][:idx+1], '-k')
plt.plot(state[0], state[1], 'or')
plt.axis('equal')
plt.grid(True)
plt.pause(0.01)
else:
# draw spanning tree
plt.imshow(self.occ_map, 'gray')
for p, q in edge:
p = coord_transform(p)
q = coord_transform(q)
plt.plot([p[0], q[0]], [p[1], q[1]], '-oc')
sx, sy = coord_transform(start)
plt.plot([sx], [sy], 'pr', markersize=10)
# draw move path
last = path[0][0]
for p, q in path:
distance = math.hypot(p[0]-last[0], p[1]-last[1])
if distance == 1.0:
plt.plot([last[1], p[1]], [last[0], p[0]], '-k')
else:
ipx, ipy = self.get_interpolated_path(last, p)
plt.plot(ipy, ipx, '-k')
plt.arrow(p[1], p[0], q[1]-p[1], q[0]-p[0], head_width=0.2)
last = q
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py#L233-L300
| 2 |
[
0
] | 1.470588 |
[
1,
2,
4,
5,
6,
7,
8,
9,
10,
11,
13,
14,
15,
17,
19,
20,
22,
23,
25,
30,
31,
32,
33,
34,
35,
36,
39,
40,
41,
42,
43,
47,
48,
49,
50,
51,
52,
53,
56,
57,
58,
59,
60,
62,
63,
64,
65,
67
] | 70.588235 | false | 63.77551 | 68 | 10 | 29.411765 | 0 |
def visualize_path(self, edge, path, start):
def coord_transform(p):
return [2*p[1] + 0.5, 2*p[0] + 0.5]
if do_animation:
last = path[0][0]
trajectory = [[last[1]], [last[0]]]
for p, q in path:
distance = math.hypot(p[0]-last[0], p[1]-last[1])
if distance <= 1.0:
trajectory[0].append(p[1])
trajectory[1].append(p[0])
else:
ipx, ipy = self.get_interpolated_path(last, p)
trajectory[0].extend(ipy)
trajectory[1].extend(ipx)
last = q
trajectory[0].append(last[1])
trajectory[1].append(last[0])
for idx, state in enumerate(np.transpose(trajectory)):
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
# draw spanning tree
plt.imshow(self.occ_map, 'gray')
for p, q in edge:
p = coord_transform(p)
q = coord_transform(q)
plt.plot([p[0], q[0]], [p[1], q[1]], '-oc')
sx, sy = coord_transform(start)
plt.plot([sx], [sy], 'pr', markersize=10)
# draw move path
plt.plot(trajectory[0][:idx+1], trajectory[1][:idx+1], '-k')
plt.plot(state[0], state[1], 'or')
plt.axis('equal')
plt.grid(True)
plt.pause(0.01)
else:
# draw spanning tree
plt.imshow(self.occ_map, 'gray')
for p, q in edge:
p = coord_transform(p)
q = coord_transform(q)
plt.plot([p[0], q[0]], [p[1], q[1]], '-oc')
sx, sy = coord_transform(start)
plt.plot([sx], [sy], 'pr', markersize=10)
# draw move path
last = path[0][0]
for p, q in path:
distance = math.hypot(p[0]-last[0], p[1]-last[1])
if distance == 1.0:
plt.plot([last[1], p[1]], [last[0], p[0]], '-k')
else:
ipx, ipy = self.get_interpolated_path(last, p)
plt.plot(ipy, ipx, '-k')
plt.arrow(p[1], p[0], q[1]-p[1], q[0]-p[0], head_width=0.2)
last = q
plt.show()
| 1,030 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BugPlanning/bug.py
|
main
|
(bug_0, bug_1, bug_2)
| 277 | 329 |
def main(bug_0, bug_1, bug_2):
# set obstacle positions
o_x, o_y = [], []
s_x = 0.0
s_y = 0.0
g_x = 167.0
g_y = 50.0
for i in range(20, 40):
for j in range(20, 40):
o_x.append(i)
o_y.append(j)
for i in range(60, 100):
for j in range(40, 80):
o_x.append(i)
o_y.append(j)
for i in range(120, 140):
for j in range(80, 100):
o_x.append(i)
o_y.append(j)
for i in range(80, 140):
for j in range(0, 20):
o_x.append(i)
o_y.append(j)
for i in range(0, 20):
for j in range(60, 100):
o_x.append(i)
o_y.append(j)
for i in range(20, 40):
for j in range(80, 100):
o_x.append(i)
o_y.append(j)
for i in range(120, 160):
for j in range(40, 60):
o_x.append(i)
o_y.append(j)
if bug_0:
my_Bug = BugPlanner(s_x, s_y, g_x, g_y, o_x, o_y)
my_Bug.bug0()
if bug_1:
my_Bug = BugPlanner(s_x, s_y, g_x, g_y, o_x, o_y)
my_Bug.bug1()
if bug_2:
my_Bug = BugPlanner(s_x, s_y, g_x, g_y, o_x, o_y)
my_Bug.bug2()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BugPlanning/bug.py#L277-L329
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52
] | 100 |
[] | 0 | true | 86.100386 | 53 | 18 | 100 | 0 |
def main(bug_0, bug_1, bug_2):
# set obstacle positions
o_x, o_y = [], []
s_x = 0.0
s_y = 0.0
g_x = 167.0
g_y = 50.0
for i in range(20, 40):
for j in range(20, 40):
o_x.append(i)
o_y.append(j)
for i in range(60, 100):
for j in range(40, 80):
o_x.append(i)
o_y.append(j)
for i in range(120, 140):
for j in range(80, 100):
o_x.append(i)
o_y.append(j)
for i in range(80, 140):
for j in range(0, 20):
o_x.append(i)
o_y.append(j)
for i in range(0, 20):
for j in range(60, 100):
o_x.append(i)
o_y.append(j)
for i in range(20, 40):
for j in range(80, 100):
o_x.append(i)
o_y.append(j)
for i in range(120, 160):
for j in range(40, 60):
o_x.append(i)
o_y.append(j)
if bug_0:
my_Bug = BugPlanner(s_x, s_y, g_x, g_y, o_x, o_y)
my_Bug.bug0()
if bug_1:
my_Bug = BugPlanner(s_x, s_y, g_x, g_y, o_x, o_y)
my_Bug.bug1()
if bug_2:
my_Bug = BugPlanner(s_x, s_y, g_x, g_y, o_x, o_y)
my_Bug.bug2()
| 1,031 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BugPlanning/bug.py
|
BugPlanner.__init__
|
(self, start_x, start_y, goal_x, goal_y, obs_x, obs_y)
| 14 | 33 |
def __init__(self, start_x, start_y, goal_x, goal_y, obs_x, obs_y):
self.goal_x = goal_x
self.goal_y = goal_y
self.obs_x = obs_x
self.obs_y = obs_y
self.r_x = [start_x]
self.r_y = [start_y]
self.out_x = []
self.out_y = []
for o_x, o_y in zip(obs_x, obs_y):
for add_x, add_y in zip([1, 0, -1, -1, -1, 0, 1, 1],
[1, 1, 1, 0, -1, -1, -1, 0]):
cand_x, cand_y = o_x+add_x, o_y+add_y
valid_point = True
for _x, _y in zip(obs_x, obs_y):
if cand_x == _x and cand_y == _y:
valid_point = False
break
if valid_point:
self.out_x.append(cand_x), self.out_y.append(cand_y)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BugPlanning/bug.py#L14-L33
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
12,
13,
14,
15,
16,
17,
18,
19
] | 95 |
[] | 0 | false | 86.100386 | 20 | 7 | 100 | 0 |
def __init__(self, start_x, start_y, goal_x, goal_y, obs_x, obs_y):
self.goal_x = goal_x
self.goal_y = goal_y
self.obs_x = obs_x
self.obs_y = obs_y
self.r_x = [start_x]
self.r_y = [start_y]
self.out_x = []
self.out_y = []
for o_x, o_y in zip(obs_x, obs_y):
for add_x, add_y in zip([1, 0, -1, -1, -1, 0, 1, 1],
[1, 1, 1, 0, -1, -1, -1, 0]):
cand_x, cand_y = o_x+add_x, o_y+add_y
valid_point = True
for _x, _y in zip(obs_x, obs_y):
if cand_x == _x and cand_y == _y:
valid_point = False
break
if valid_point:
self.out_x.append(cand_x), self.out_y.append(cand_y)
| 1,032 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BugPlanning/bug.py
|
BugPlanner.mov_normal
|
(self)
|
return self.r_x[-1] + np.sign(self.goal_x - self.r_x[-1]), \
self.r_y[-1] + np.sign(self.goal_y - self.r_y[-1])
| 35 | 37 |
def mov_normal(self):
return self.r_x[-1] + np.sign(self.goal_x - self.r_x[-1]), \
self.r_y[-1] + np.sign(self.goal_y - self.r_y[-1])
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BugPlanning/bug.py#L35-L37
| 2 |
[
0,
1
] | 66.666667 |
[] | 0 | false | 86.100386 | 3 | 1 | 100 | 0 |
def mov_normal(self):
return self.r_x[-1] + np.sign(self.goal_x - self.r_x[-1]), \
self.r_y[-1] + np.sign(self.goal_y - self.r_y[-1])
| 1,033 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BugPlanning/bug.py
|
BugPlanner.mov_to_next_obs
|
(self, visited_x, visited_y)
|
return self.r_x[-1], self.r_y[-1], True
| 39 | 53 |
def mov_to_next_obs(self, visited_x, visited_y):
for add_x, add_y in zip([1, 0, -1, 0], [0, 1, 0, -1]):
c_x, c_y = self.r_x[-1] + add_x, self.r_y[-1] + add_y
for _x, _y in zip(self.out_x, self.out_y):
use_pt = True
if c_x == _x and c_y == _y:
for v_x, v_y in zip(visited_x, visited_y):
if c_x == v_x and c_y == v_y:
use_pt = False
break
if use_pt:
return c_x, c_y, False
if not use_pt:
break
return self.r_x[-1], self.r_y[-1], True
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BugPlanning/bug.py#L39-L53
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14
] | 100 |
[] | 0 | true | 86.100386 | 15 | 10 | 100 | 0 |
def mov_to_next_obs(self, visited_x, visited_y):
for add_x, add_y in zip([1, 0, -1, 0], [0, 1, 0, -1]):
c_x, c_y = self.r_x[-1] + add_x, self.r_y[-1] + add_y
for _x, _y in zip(self.out_x, self.out_y):
use_pt = True
if c_x == _x and c_y == _y:
for v_x, v_y in zip(visited_x, visited_y):
if c_x == v_x and c_y == v_y:
use_pt = False
break
if use_pt:
return c_x, c_y, False
if not use_pt:
break
return self.r_x[-1], self.r_y[-1], True
| 1,034 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BugPlanning/bug.py
|
BugPlanner.bug0
|
(self)
|
Greedy algorithm where you move towards goal
until you hit an obstacle. Then you go around it
(pick an arbitrary direction), until it is possible
for you to start moving towards goal in a greedy manner again
|
Greedy algorithm where you move towards goal
until you hit an obstacle. Then you go around it
(pick an arbitrary direction), until it is possible
for you to start moving towards goal in a greedy manner again
| 55 | 114 |
def bug0(self):
"""
Greedy algorithm where you move towards goal
until you hit an obstacle. Then you go around it
(pick an arbitrary direction), until it is possible
for you to start moving towards goal in a greedy manner again
"""
mov_dir = 'normal'
cand_x, cand_y = -np.inf, -np.inf
if show_animation:
plt.plot(self.obs_x, self.obs_y, ".k")
plt.plot(self.r_x[-1], self.r_y[-1], "og")
plt.plot(self.goal_x, self.goal_y, "xb")
plt.plot(self.out_x, self.out_y, ".")
plt.grid(True)
plt.title('BUG 0')
for x_ob, y_ob in zip(self.out_x, self.out_y):
if self.r_x[-1] == x_ob and self.r_y[-1] == y_ob:
mov_dir = 'obs'
break
visited_x, visited_y = [], []
while True:
if self.r_x[-1] == self.goal_x and \
self.r_y[-1] == self.goal_y:
break
if mov_dir == 'normal':
cand_x, cand_y = self.mov_normal()
if mov_dir == 'obs':
cand_x, cand_y, _ = self.mov_to_next_obs(visited_x, visited_y)
if mov_dir == 'normal':
found_boundary = False
for x_ob, y_ob in zip(self.out_x, self.out_y):
if cand_x == x_ob and cand_y == y_ob:
self.r_x.append(cand_x), self.r_y.append(cand_y)
visited_x[:], visited_y[:] = [], []
visited_x.append(cand_x), visited_y.append(cand_y)
mov_dir = 'obs'
found_boundary = True
break
if not found_boundary:
self.r_x.append(cand_x), self.r_y.append(cand_y)
elif mov_dir == 'obs':
can_go_normal = True
for x_ob, y_ob in zip(self.obs_x, self.obs_y):
if self.mov_normal()[0] == x_ob and \
self.mov_normal()[1] == y_ob:
can_go_normal = False
break
if can_go_normal:
mov_dir = 'normal'
else:
self.r_x.append(cand_x), self.r_y.append(cand_y)
visited_x.append(cand_x), visited_y.append(cand_y)
if show_animation:
plt.plot(self.r_x, self.r_y, "-r")
plt.pause(0.001)
if show_animation:
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BugPlanning/bug.py#L55-L114
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
16,
17,
18,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
58
] | 81.666667 |
[
10,
11,
12,
13,
14,
15,
19,
20,
56,
57,
59
] | 18.333333 | false | 86.100386 | 60 | 22 | 81.666667 | 4 |
def bug0(self):
mov_dir = 'normal'
cand_x, cand_y = -np.inf, -np.inf
if show_animation:
plt.plot(self.obs_x, self.obs_y, ".k")
plt.plot(self.r_x[-1], self.r_y[-1], "og")
plt.plot(self.goal_x, self.goal_y, "xb")
plt.plot(self.out_x, self.out_y, ".")
plt.grid(True)
plt.title('BUG 0')
for x_ob, y_ob in zip(self.out_x, self.out_y):
if self.r_x[-1] == x_ob and self.r_y[-1] == y_ob:
mov_dir = 'obs'
break
visited_x, visited_y = [], []
while True:
if self.r_x[-1] == self.goal_x and \
self.r_y[-1] == self.goal_y:
break
if mov_dir == 'normal':
cand_x, cand_y = self.mov_normal()
if mov_dir == 'obs':
cand_x, cand_y, _ = self.mov_to_next_obs(visited_x, visited_y)
if mov_dir == 'normal':
found_boundary = False
for x_ob, y_ob in zip(self.out_x, self.out_y):
if cand_x == x_ob and cand_y == y_ob:
self.r_x.append(cand_x), self.r_y.append(cand_y)
visited_x[:], visited_y[:] = [], []
visited_x.append(cand_x), visited_y.append(cand_y)
mov_dir = 'obs'
found_boundary = True
break
if not found_boundary:
self.r_x.append(cand_x), self.r_y.append(cand_y)
elif mov_dir == 'obs':
can_go_normal = True
for x_ob, y_ob in zip(self.obs_x, self.obs_y):
if self.mov_normal()[0] == x_ob and \
self.mov_normal()[1] == y_ob:
can_go_normal = False
break
if can_go_normal:
mov_dir = 'normal'
else:
self.r_x.append(cand_x), self.r_y.append(cand_y)
visited_x.append(cand_x), visited_y.append(cand_y)
if show_animation:
plt.plot(self.r_x, self.r_y, "-r")
plt.pause(0.001)
if show_animation:
plt.show()
| 1,035 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BugPlanning/bug.py
|
BugPlanner.bug1
|
(self)
|
Move towards goal in a greedy manner.
When you hit an obstacle, you go around it and
back to where you hit the obstacle initially.
Then, you go to the point on the obstacle that is
closest to your goal and you start moving towards
goal in a greedy manner from that new point.
|
Move towards goal in a greedy manner.
When you hit an obstacle, you go around it and
back to where you hit the obstacle initially.
Then, you go to the point on the obstacle that is
closest to your goal and you start moving towards
goal in a greedy manner from that new point.
| 116 | 191 |
def bug1(self):
"""
Move towards goal in a greedy manner.
When you hit an obstacle, you go around it and
back to where you hit the obstacle initially.
Then, you go to the point on the obstacle that is
closest to your goal and you start moving towards
goal in a greedy manner from that new point.
"""
mov_dir = 'normal'
cand_x, cand_y = -np.inf, -np.inf
exit_x, exit_y = -np.inf, -np.inf
dist = np.inf
back_to_start = False
second_round = False
if show_animation:
plt.plot(self.obs_x, self.obs_y, ".k")
plt.plot(self.r_x[-1], self.r_y[-1], "og")
plt.plot(self.goal_x, self.goal_y, "xb")
plt.plot(self.out_x, self.out_y, ".")
plt.grid(True)
plt.title('BUG 1')
for xob, yob in zip(self.out_x, self.out_y):
if self.r_x[-1] == xob and self.r_y[-1] == yob:
mov_dir = 'obs'
break
visited_x, visited_y = [], []
while True:
if self.r_x[-1] == self.goal_x and \
self.r_y[-1] == self.goal_y:
break
if mov_dir == 'normal':
cand_x, cand_y = self.mov_normal()
if mov_dir == 'obs':
cand_x, cand_y, back_to_start = \
self.mov_to_next_obs(visited_x, visited_y)
if mov_dir == 'normal':
found_boundary = False
for x_ob, y_ob in zip(self.out_x, self.out_y):
if cand_x == x_ob and cand_y == y_ob:
self.r_x.append(cand_x), self.r_y.append(cand_y)
visited_x[:], visited_y[:] = [], []
visited_x.append(cand_x), visited_y.append(cand_y)
mov_dir = 'obs'
dist = np.inf
back_to_start = False
second_round = False
found_boundary = True
break
if not found_boundary:
self.r_x.append(cand_x), self.r_y.append(cand_y)
elif mov_dir == 'obs':
d = np.linalg.norm(np.array([cand_x, cand_y] -
np.array([self.goal_x,
self.goal_y])))
if d < dist and not second_round:
exit_x, exit_y = cand_x, cand_y
dist = d
if back_to_start and not second_round:
second_round = True
del self.r_x[-len(visited_x):]
del self.r_y[-len(visited_y):]
visited_x[:], visited_y[:] = [], []
self.r_x.append(cand_x), self.r_y.append(cand_y)
visited_x.append(cand_x), visited_y.append(cand_y)
if cand_x == exit_x and \
cand_y == exit_y and \
second_round:
mov_dir = 'normal'
if show_animation:
plt.plot(self.r_x, self.r_y, "-r")
plt.pause(0.001)
if show_animation:
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BugPlanning/bug.py#L116-L191
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
22,
23,
24,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
74
] | 85.526316 |
[
16,
17,
18,
19,
20,
21,
25,
26,
72,
73,
75
] | 14.473684 | false | 86.100386 | 76 | 25 | 85.526316 | 6 |
def bug1(self):
mov_dir = 'normal'
cand_x, cand_y = -np.inf, -np.inf
exit_x, exit_y = -np.inf, -np.inf
dist = np.inf
back_to_start = False
second_round = False
if show_animation:
plt.plot(self.obs_x, self.obs_y, ".k")
plt.plot(self.r_x[-1], self.r_y[-1], "og")
plt.plot(self.goal_x, self.goal_y, "xb")
plt.plot(self.out_x, self.out_y, ".")
plt.grid(True)
plt.title('BUG 1')
for xob, yob in zip(self.out_x, self.out_y):
if self.r_x[-1] == xob and self.r_y[-1] == yob:
mov_dir = 'obs'
break
visited_x, visited_y = [], []
while True:
if self.r_x[-1] == self.goal_x and \
self.r_y[-1] == self.goal_y:
break
if mov_dir == 'normal':
cand_x, cand_y = self.mov_normal()
if mov_dir == 'obs':
cand_x, cand_y, back_to_start = \
self.mov_to_next_obs(visited_x, visited_y)
if mov_dir == 'normal':
found_boundary = False
for x_ob, y_ob in zip(self.out_x, self.out_y):
if cand_x == x_ob and cand_y == y_ob:
self.r_x.append(cand_x), self.r_y.append(cand_y)
visited_x[:], visited_y[:] = [], []
visited_x.append(cand_x), visited_y.append(cand_y)
mov_dir = 'obs'
dist = np.inf
back_to_start = False
second_round = False
found_boundary = True
break
if not found_boundary:
self.r_x.append(cand_x), self.r_y.append(cand_y)
elif mov_dir == 'obs':
d = np.linalg.norm(np.array([cand_x, cand_y] -
np.array([self.goal_x,
self.goal_y])))
if d < dist and not second_round:
exit_x, exit_y = cand_x, cand_y
dist = d
if back_to_start and not second_round:
second_round = True
del self.r_x[-len(visited_x):]
del self.r_y[-len(visited_y):]
visited_x[:], visited_y[:] = [], []
self.r_x.append(cand_x), self.r_y.append(cand_y)
visited_x.append(cand_x), visited_y.append(cand_y)
if cand_x == exit_x and \
cand_y == exit_y and \
second_round:
mov_dir = 'normal'
if show_animation:
plt.plot(self.r_x, self.r_y, "-r")
plt.pause(0.001)
if show_animation:
plt.show()
| 1,036 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/BugPlanning/bug.py
|
BugPlanner.bug2
|
(self)
|
Move towards goal in a greedy manner.
When you hit an obstacle, you go around it and
keep track of your distance from the goal.
If the distance from your goal was decreasing before
and now it starts increasing, that means the current
point is probably the closest point to the
goal (this may or may not be true because the algorithm
doesn't explore the entire boundary around the obstacle).
So, you depart from this point and continue towards the
goal in a greedy manner
|
Move towards goal in a greedy manner.
When you hit an obstacle, you go around it and
keep track of your distance from the goal.
If the distance from your goal was decreasing before
and now it starts increasing, that means the current
point is probably the closest point to the
goal (this may or may not be true because the algorithm
doesn't explore the entire boundary around the obstacle).
So, you depart from this point and continue towards the
goal in a greedy manner
| 193 | 274 |
def bug2(self):
"""
Move towards goal in a greedy manner.
When you hit an obstacle, you go around it and
keep track of your distance from the goal.
If the distance from your goal was decreasing before
and now it starts increasing, that means the current
point is probably the closest point to the
goal (this may or may not be true because the algorithm
doesn't explore the entire boundary around the obstacle).
So, you depart from this point and continue towards the
goal in a greedy manner
"""
mov_dir = 'normal'
cand_x, cand_y = -np.inf, -np.inf
if show_animation:
plt.plot(self.obs_x, self.obs_y, ".k")
plt.plot(self.r_x[-1], self.r_y[-1], "og")
plt.plot(self.goal_x, self.goal_y, "xb")
plt.plot(self.out_x, self.out_y, ".")
straight_x, straight_y = [self.r_x[-1]], [self.r_y[-1]]
hit_x, hit_y = [], []
while True:
if straight_x[-1] == self.goal_x and \
straight_y[-1] == self.goal_y:
break
c_x = straight_x[-1] + np.sign(self.goal_x - straight_x[-1])
c_y = straight_y[-1] + np.sign(self.goal_y - straight_y[-1])
for x_ob, y_ob in zip(self.out_x, self.out_y):
if c_x == x_ob and c_y == y_ob:
hit_x.append(c_x), hit_y.append(c_y)
break
straight_x.append(c_x), straight_y.append(c_y)
if show_animation:
plt.plot(straight_x, straight_y, ",")
plt.plot(hit_x, hit_y, "d")
plt.grid(True)
plt.title('BUG 2')
for x_ob, y_ob in zip(self.out_x, self.out_y):
if self.r_x[-1] == x_ob and self.r_y[-1] == y_ob:
mov_dir = 'obs'
break
visited_x, visited_y = [], []
while True:
if self.r_x[-1] == self.goal_x \
and self.r_y[-1] == self.goal_y:
break
if mov_dir == 'normal':
cand_x, cand_y = self.mov_normal()
if mov_dir == 'obs':
cand_x, cand_y, _ = self.mov_to_next_obs(visited_x, visited_y)
if mov_dir == 'normal':
found_boundary = False
for x_ob, y_ob in zip(self.out_x, self.out_y):
if cand_x == x_ob and cand_y == y_ob:
self.r_x.append(cand_x), self.r_y.append(cand_y)
visited_x[:], visited_y[:] = [], []
visited_x.append(cand_x), visited_y.append(cand_y)
del hit_x[0]
del hit_y[0]
mov_dir = 'obs'
found_boundary = True
break
if not found_boundary:
self.r_x.append(cand_x), self.r_y.append(cand_y)
elif mov_dir == 'obs':
self.r_x.append(cand_x), self.r_y.append(cand_y)
visited_x.append(cand_x), visited_y.append(cand_y)
for i_x, i_y in zip(range(len(hit_x)), range(len(hit_y))):
if cand_x == hit_x[i_x] and cand_y == hit_y[i_y]:
del hit_x[i_x]
del hit_y[i_y]
mov_dir = 'normal'
break
if show_animation:
plt.plot(self.r_x, self.r_y, "-r")
plt.pause(0.001)
if show_animation:
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/BugPlanning/bug.py#L193-L274
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
39,
40,
41,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
80
] | 84.146341 |
[
16,
17,
18,
19,
35,
36,
37,
38,
42,
43,
78,
79,
81
] | 15.853659 | false | 86.100386 | 82 | 28 | 84.146341 | 10 |
def bug2(self):
mov_dir = 'normal'
cand_x, cand_y = -np.inf, -np.inf
if show_animation:
plt.plot(self.obs_x, self.obs_y, ".k")
plt.plot(self.r_x[-1], self.r_y[-1], "og")
plt.plot(self.goal_x, self.goal_y, "xb")
plt.plot(self.out_x, self.out_y, ".")
straight_x, straight_y = [self.r_x[-1]], [self.r_y[-1]]
hit_x, hit_y = [], []
while True:
if straight_x[-1] == self.goal_x and \
straight_y[-1] == self.goal_y:
break
c_x = straight_x[-1] + np.sign(self.goal_x - straight_x[-1])
c_y = straight_y[-1] + np.sign(self.goal_y - straight_y[-1])
for x_ob, y_ob in zip(self.out_x, self.out_y):
if c_x == x_ob and c_y == y_ob:
hit_x.append(c_x), hit_y.append(c_y)
break
straight_x.append(c_x), straight_y.append(c_y)
if show_animation:
plt.plot(straight_x, straight_y, ",")
plt.plot(hit_x, hit_y, "d")
plt.grid(True)
plt.title('BUG 2')
for x_ob, y_ob in zip(self.out_x, self.out_y):
if self.r_x[-1] == x_ob and self.r_y[-1] == y_ob:
mov_dir = 'obs'
break
visited_x, visited_y = [], []
while True:
if self.r_x[-1] == self.goal_x \
and self.r_y[-1] == self.goal_y:
break
if mov_dir == 'normal':
cand_x, cand_y = self.mov_normal()
if mov_dir == 'obs':
cand_x, cand_y, _ = self.mov_to_next_obs(visited_x, visited_y)
if mov_dir == 'normal':
found_boundary = False
for x_ob, y_ob in zip(self.out_x, self.out_y):
if cand_x == x_ob and cand_y == y_ob:
self.r_x.append(cand_x), self.r_y.append(cand_y)
visited_x[:], visited_y[:] = [], []
visited_x.append(cand_x), visited_y.append(cand_y)
del hit_x[0]
del hit_y[0]
mov_dir = 'obs'
found_boundary = True
break
if not found_boundary:
self.r_x.append(cand_x), self.r_y.append(cand_y)
elif mov_dir == 'obs':
self.r_x.append(cand_x), self.r_y.append(cand_y)
visited_x.append(cand_x), visited_y.append(cand_y)
for i_x, i_y in zip(range(len(hit_x)), range(len(hit_y))):
if cand_x == hit_x[i_x] and cand_y == hit_y[i_y]:
del hit_x[i_x]
del hit_y[i_y]
mov_dir = 'normal'
break
if show_animation:
plt.plot(self.r_x, self.r_y, "-r")
plt.pause(0.001)
if show_animation:
plt.show()
| 1,037 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py
|
quintic_polynomials_planner
|
(sx, sy, syaw, sv, sa, gx, gy, gyaw, gv, ga, max_accel, max_jerk, dt)
|
return time, rx, ry, ryaw, rv, ra, rj
|
quintic polynomial planner
input
s_x: start x position [m]
s_y: start y position [m]
s_yaw: start yaw angle [rad]
sa: start accel [m/ss]
gx: goal x position [m]
gy: goal y position [m]
gyaw: goal yaw angle [rad]
ga: goal accel [m/ss]
max_accel: maximum accel [m/ss]
max_jerk: maximum jerk [m/sss]
dt: time tick [s]
return
time: time result
rx: x position result list
ry: y position result list
ryaw: yaw angle result list
rv: velocity result list
ra: accel result list
|
quintic polynomial planner
| 69 | 162 |
def quintic_polynomials_planner(sx, sy, syaw, sv, sa, gx, gy, gyaw, gv, ga, max_accel, max_jerk, dt):
"""
quintic polynomial planner
input
s_x: start x position [m]
s_y: start y position [m]
s_yaw: start yaw angle [rad]
sa: start accel [m/ss]
gx: goal x position [m]
gy: goal y position [m]
gyaw: goal yaw angle [rad]
ga: goal accel [m/ss]
max_accel: maximum accel [m/ss]
max_jerk: maximum jerk [m/sss]
dt: time tick [s]
return
time: time result
rx: x position result list
ry: y position result list
ryaw: yaw angle result list
rv: velocity result list
ra: accel result list
"""
vxs = sv * math.cos(syaw)
vys = sv * math.sin(syaw)
vxg = gv * math.cos(gyaw)
vyg = gv * math.sin(gyaw)
axs = sa * math.cos(syaw)
ays = sa * math.sin(syaw)
axg = ga * math.cos(gyaw)
ayg = ga * math.sin(gyaw)
time, rx, ry, ryaw, rv, ra, rj = [], [], [], [], [], [], []
for T in np.arange(MIN_T, MAX_T, MIN_T):
xqp = QuinticPolynomial(sx, vxs, axs, gx, vxg, axg, T)
yqp = QuinticPolynomial(sy, vys, ays, gy, vyg, ayg, T)
time, rx, ry, ryaw, rv, ra, rj = [], [], [], [], [], [], []
for t in np.arange(0.0, T + dt, dt):
time.append(t)
rx.append(xqp.calc_point(t))
ry.append(yqp.calc_point(t))
vx = xqp.calc_first_derivative(t)
vy = yqp.calc_first_derivative(t)
v = np.hypot(vx, vy)
yaw = math.atan2(vy, vx)
rv.append(v)
ryaw.append(yaw)
ax = xqp.calc_second_derivative(t)
ay = yqp.calc_second_derivative(t)
a = np.hypot(ax, ay)
if len(rv) >= 2 and rv[-1] - rv[-2] < 0.0:
a *= -1
ra.append(a)
jx = xqp.calc_third_derivative(t)
jy = yqp.calc_third_derivative(t)
j = np.hypot(jx, jy)
if len(ra) >= 2 and ra[-1] - ra[-2] < 0.0:
j *= -1
rj.append(j)
if max([abs(i) for i in ra]) <= max_accel and max([abs(i) for i in rj]) <= max_jerk:
print("find path!!")
break
if show_animation: # pragma: no cover
for i, _ in enumerate(time):
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.grid(True)
plt.axis("equal")
plot_arrow(sx, sy, syaw)
plot_arrow(gx, gy, gyaw)
plot_arrow(rx[i], ry[i], ryaw[i])
plt.title("Time[s]:" + str(time[i])[0:4] +
" v[m/s]:" + str(rv[i])[0:4] +
" a[m/ss]:" + str(ra[i])[0:4] +
" jerk[m/sss]:" + str(rj[i])[0:4],
)
plt.pause(0.001)
return time, rx, ry, ryaw, rv, ra, rj
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py#L69-L162
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93
] | 113.253012 |
[] | 0 | true | 98.850575 | 94 | 13 | 100 | 22 |
def quintic_polynomials_planner(sx, sy, syaw, sv, sa, gx, gy, gyaw, gv, ga, max_accel, max_jerk, dt):
vxs = sv * math.cos(syaw)
vys = sv * math.sin(syaw)
vxg = gv * math.cos(gyaw)
vyg = gv * math.sin(gyaw)
axs = sa * math.cos(syaw)
ays = sa * math.sin(syaw)
axg = ga * math.cos(gyaw)
ayg = ga * math.sin(gyaw)
time, rx, ry, ryaw, rv, ra, rj = [], [], [], [], [], [], []
for T in np.arange(MIN_T, MAX_T, MIN_T):
xqp = QuinticPolynomial(sx, vxs, axs, gx, vxg, axg, T)
yqp = QuinticPolynomial(sy, vys, ays, gy, vyg, ayg, T)
time, rx, ry, ryaw, rv, ra, rj = [], [], [], [], [], [], []
for t in np.arange(0.0, T + dt, dt):
time.append(t)
rx.append(xqp.calc_point(t))
ry.append(yqp.calc_point(t))
vx = xqp.calc_first_derivative(t)
vy = yqp.calc_first_derivative(t)
v = np.hypot(vx, vy)
yaw = math.atan2(vy, vx)
rv.append(v)
ryaw.append(yaw)
ax = xqp.calc_second_derivative(t)
ay = yqp.calc_second_derivative(t)
a = np.hypot(ax, ay)
if len(rv) >= 2 and rv[-1] - rv[-2] < 0.0:
a *= -1
ra.append(a)
jx = xqp.calc_third_derivative(t)
jy = yqp.calc_third_derivative(t)
j = np.hypot(jx, jy)
if len(ra) >= 2 and ra[-1] - ra[-2] < 0.0:
j *= -1
rj.append(j)
if max([abs(i) for i in ra]) <= max_accel and max([abs(i) for i in rj]) <= max_jerk:
print("find path!!")
break
if show_animation: # pragma: no cover
for i, _ in enumerate(time):
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.grid(True)
plt.axis("equal")
plot_arrow(sx, sy, syaw)
plot_arrow(gx, gy, gyaw)
plot_arrow(rx[i], ry[i], ryaw[i])
plt.title("Time[s]:" + str(time[i])[0:4] +
" v[m/s]:" + str(rv[i])[0:4] +
" a[m/ss]:" + str(ra[i])[0:4] +
" jerk[m/sss]:" + str(rj[i])[0:4],
)
plt.pause(0.001)
return time, rx, ry, ryaw, rv, ra, rj
| 1,038 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py
|
plot_arrow
|
(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k")
|
Plot arrow
|
Plot arrow
| 165 | 176 |
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): # pragma: no cover
"""
Plot arrow
"""
if not isinstance(x, float):
for (ix, iy, iyaw) in zip(x, y, yaw):
plot_arrow(ix, iy, iyaw)
else:
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw),
fc=fc, ec=ec, head_width=width, head_length=width)
plt.plot(x, y)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py#L165-L176
| 2 |
[] | 0 |
[] | 0 | false | 98.850575 | 12 | 3 | 100 | 1 |
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): # pragma: no cover
if not isinstance(x, float):
for (ix, iy, iyaw) in zip(x, y, yaw):
plot_arrow(ix, iy, iyaw)
else:
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw),
fc=fc, ec=ec, head_width=width, head_length=width)
plt.plot(x, y)
| 1,039 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py
|
main
|
()
| 179 | 226 |
def main():
print(__file__ + " start!!")
sx = 10.0 # start x position [m]
sy = 10.0 # start y position [m]
syaw = np.deg2rad(10.0) # start yaw angle [rad]
sv = 1.0 # start speed [m/s]
sa = 0.1 # start accel [m/ss]
gx = 30.0 # goal x position [m]
gy = -10.0 # goal y position [m]
gyaw = np.deg2rad(20.0) # goal yaw angle [rad]
gv = 1.0 # goal speed [m/s]
ga = 0.1 # goal accel [m/ss]
max_accel = 1.0 # max accel [m/ss]
max_jerk = 0.5 # max jerk [m/sss]
dt = 0.1 # time tick [s]
time, x, y, yaw, v, a, j = quintic_polynomials_planner(
sx, sy, syaw, sv, sa, gx, gy, gyaw, gv, ga, max_accel, max_jerk, dt)
if show_animation: # pragma: no cover
plt.plot(x, y, "-r")
plt.subplots()
plt.plot(time, [np.rad2deg(i) for i in yaw], "-r")
plt.xlabel("Time[s]")
plt.ylabel("Yaw[deg]")
plt.grid(True)
plt.subplots()
plt.plot(time, v, "-r")
plt.xlabel("Time[s]")
plt.ylabel("Speed[m/s]")
plt.grid(True)
plt.subplots()
plt.plot(time, a, "-r")
plt.xlabel("Time[s]")
plt.ylabel("accel[m/ss]")
plt.grid(True)
plt.subplots()
plt.plot(time, j, "-r")
plt.xlabel("Time[s]")
plt.ylabel("jerk[m/sss]")
plt.grid(True)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py#L179-L226
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17
] | 72 |
[] | 0 | false | 98.850575 | 48 | 3 | 100 | 0 |
def main():
print(__file__ + " start!!")
sx = 10.0 # start x position [m]
sy = 10.0 # start y position [m]
syaw = np.deg2rad(10.0) # start yaw angle [rad]
sv = 1.0 # start speed [m/s]
sa = 0.1 # start accel [m/ss]
gx = 30.0 # goal x position [m]
gy = -10.0 # goal y position [m]
gyaw = np.deg2rad(20.0) # goal yaw angle [rad]
gv = 1.0 # goal speed [m/s]
ga = 0.1 # goal accel [m/ss]
max_accel = 1.0 # max accel [m/ss]
max_jerk = 0.5 # max jerk [m/sss]
dt = 0.1 # time tick [s]
time, x, y, yaw, v, a, j = quintic_polynomials_planner(
sx, sy, syaw, sv, sa, gx, gy, gyaw, gv, ga, max_accel, max_jerk, dt)
if show_animation: # pragma: no cover
plt.plot(x, y, "-r")
plt.subplots()
plt.plot(time, [np.rad2deg(i) for i in yaw], "-r")
plt.xlabel("Time[s]")
plt.ylabel("Yaw[deg]")
plt.grid(True)
plt.subplots()
plt.plot(time, v, "-r")
plt.xlabel("Time[s]")
plt.ylabel("Speed[m/s]")
plt.grid(True)
plt.subplots()
plt.plot(time, a, "-r")
plt.xlabel("Time[s]")
plt.ylabel("accel[m/ss]")
plt.grid(True)
plt.subplots()
plt.plot(time, j, "-r")
plt.xlabel("Time[s]")
plt.ylabel("jerk[m/sss]")
plt.grid(True)
plt.show()
| 1,040 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py
|
QuinticPolynomial.__init__
|
(self, xs, vxs, axs, xe, vxe, axe, time)
| 27 | 44 |
def __init__(self, xs, vxs, axs, xe, vxe, axe, time):
# calc coefficient of quintic polynomial
# See jupyter notebook document for derivation of this equation.
self.a0 = xs
self.a1 = vxs
self.a2 = axs / 2.0
A = np.array([[time ** 3, time ** 4, time ** 5],
[3 * time ** 2, 4 * time ** 3, 5 * time ** 4],
[6 * time, 12 * time ** 2, 20 * time ** 3]])
b = np.array([xe - self.a0 - self.a1 * time - self.a2 * time ** 2,
vxe - self.a1 - 2 * self.a2 * time,
axe - 2 * self.a2])
x = np.linalg.solve(A, b)
self.a3 = x[0]
self.a4 = x[1]
self.a5 = x[2]
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py#L27-L44
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
10,
13,
14,
15,
16,
17
] | 77.777778 |
[] | 0 | false | 98.850575 | 18 | 1 | 100 | 0 |
def __init__(self, xs, vxs, axs, xe, vxe, axe, time):
# calc coefficient of quintic polynomial
# See jupyter notebook document for derivation of this equation.
self.a0 = xs
self.a1 = vxs
self.a2 = axs / 2.0
A = np.array([[time ** 3, time ** 4, time ** 5],
[3 * time ** 2, 4 * time ** 3, 5 * time ** 4],
[6 * time, 12 * time ** 2, 20 * time ** 3]])
b = np.array([xe - self.a0 - self.a1 * time - self.a2 * time ** 2,
vxe - self.a1 - 2 * self.a2 * time,
axe - 2 * self.a2])
x = np.linalg.solve(A, b)
self.a3 = x[0]
self.a4 = x[1]
self.a5 = x[2]
| 1,041 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py
|
QuinticPolynomial.calc_point
|
(self, t)
|
return xt
| 46 | 50 |
def calc_point(self, t):
xt = self.a0 + self.a1 * t + self.a2 * t ** 2 + \
self.a3 * t ** 3 + self.a4 * t ** 4 + self.a5 * t ** 5
return xt
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py#L46-L50
| 2 |
[
0,
1,
3,
4
] | 80 |
[] | 0 | false | 98.850575 | 5 | 1 | 100 | 0 |
def calc_point(self, t):
xt = self.a0 + self.a1 * t + self.a2 * t ** 2 + \
self.a3 * t ** 3 + self.a4 * t ** 4 + self.a5 * t ** 5
return xt
| 1,042 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py
|
QuinticPolynomial.calc_first_derivative
|
(self, t)
|
return xt
| 52 | 56 |
def calc_first_derivative(self, t):
xt = self.a1 + 2 * self.a2 * t + \
3 * self.a3 * t ** 2 + 4 * self.a4 * t ** 3 + 5 * self.a5 * t ** 4
return xt
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py#L52-L56
| 2 |
[
0,
1,
3,
4
] | 80 |
[] | 0 | false | 98.850575 | 5 | 1 | 100 | 0 |
def calc_first_derivative(self, t):
xt = self.a1 + 2 * self.a2 * t + \
3 * self.a3 * t ** 2 + 4 * self.a4 * t ** 3 + 5 * self.a5 * t ** 4
return xt
| 1,043 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py
|
QuinticPolynomial.calc_second_derivative
|
(self, t)
|
return xt
| 58 | 61 |
def calc_second_derivative(self, t):
xt = 2 * self.a2 + 6 * self.a3 * t + 12 * self.a4 * t ** 2 + 20 * self.a5 * t ** 3
return xt
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py#L58-L61
| 2 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 98.850575 | 4 | 1 | 100 | 0 |
def calc_second_derivative(self, t):
xt = 2 * self.a2 + 6 * self.a3 * t + 12 * self.a4 * t ** 2 + 20 * self.a5 * t ** 3
return xt
| 1,044 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py
|
QuinticPolynomial.calc_third_derivative
|
(self, t)
|
return xt
| 63 | 66 |
def calc_third_derivative(self, t):
xt = 6 * self.a3 + 24 * self.a4 * t + 60 * self.a5 * t ** 2
return xt
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py#L63-L66
| 2 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 98.850575 | 4 | 1 | 100 | 0 |
def calc_third_derivative(self, t):
xt = 6 * self.a3 + 24 * self.a4 * t + 60 * self.a5 * t ** 2
return xt
| 1,045 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
plot_arrow
|
(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k")
| 33 | 40 |
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
if isinstance(x, list):
for (ix, iy, iyaw) in zip(x, y, yaw):
plot_arrow(ix, iy, iyaw)
else:
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), fc=fc,
ec=ec, head_width=width, head_length=width)
plt.plot(x, y)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L33-L40
| 2 |
[
0
] | 12.5 |
[
1,
2,
3,
5,
7
] | 62.5 | false | 96.25 | 8 | 3 | 37.5 | 0 |
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
if isinstance(x, list):
for (ix, iy, iyaw) in zip(x, y, yaw):
plot_arrow(ix, iy, iyaw)
else:
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), fc=fc,
ec=ec, head_width=width, head_length=width)
plt.plot(x, y)
| 1,046 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
mod2pi
|
(x)
|
return v
| 43 | 51 |
def mod2pi(x):
# Be consistent with fmod in cplusplus here.
v = np.mod(x, np.copysign(2.0 * math.pi, x))
if v < -math.pi:
v += 2.0 * math.pi
else:
if v > math.pi:
v -= 2.0 * math.pi
return v
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L43-L51
| 2 |
[
0,
1,
2,
3,
4,
6,
7,
8
] | 88.888889 |
[] | 0 | false | 96.25 | 9 | 3 | 100 | 0 |
def mod2pi(x):
# Be consistent with fmod in cplusplus here.
v = np.mod(x, np.copysign(2.0 * math.pi, x))
if v < -math.pi:
v += 2.0 * math.pi
else:
if v > math.pi:
v -= 2.0 * math.pi
return v
| 1,047 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
straight_left_straight
|
(x, y, phi)
|
return False, 0.0, 0.0, 0.0
| 54 | 69 |
def straight_left_straight(x, y, phi):
phi = mod2pi(phi)
if y > 0.0 and 0.0 < phi < math.pi * 0.99:
xd = - y / math.tan(phi) + x
t = xd - math.tan(phi / 2.0)
u = phi
v = math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0)
return True, t, u, v
elif y < 0.0 < phi < math.pi * 0.99:
xd = - y / math.tan(phi) + x
t = xd - math.tan(phi / 2.0)
u = phi
v = -math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0)
return True, t, u, v
return False, 0.0, 0.0, 0.0
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L54-L69
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
] | 100 |
[] | 0 | true | 96.25 | 16 | 4 | 100 | 0 |
def straight_left_straight(x, y, phi):
phi = mod2pi(phi)
if y > 0.0 and 0.0 < phi < math.pi * 0.99:
xd = - y / math.tan(phi) + x
t = xd - math.tan(phi / 2.0)
u = phi
v = math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0)
return True, t, u, v
elif y < 0.0 < phi < math.pi * 0.99:
xd = - y / math.tan(phi) + x
t = xd - math.tan(phi / 2.0)
u = phi
v = -math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0)
return True, t, u, v
return False, 0.0, 0.0, 0.0
| 1,048 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
set_path
|
(paths, lengths, ctypes, step_size)
|
return paths
| 72 | 90 |
def set_path(paths, lengths, ctypes, step_size):
path = Path()
path.ctypes = ctypes
path.lengths = lengths
path.L = sum(np.abs(lengths))
# check same path exist
for i_path in paths:
type_is_same = (i_path.ctypes == path.ctypes)
length_is_close = (sum(np.abs(i_path.lengths)) - path.L) <= step_size
if type_is_same and length_is_close:
return paths # same path found, so do not insert path
# check path is long enough
if path.L <= step_size:
return paths # too short, so do not insert path
paths.append(path)
return paths
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L72-L90
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
16,
17,
18
] | 94.736842 |
[
15
] | 5.263158 | false | 96.25 | 19 | 5 | 94.736842 | 0 |
def set_path(paths, lengths, ctypes, step_size):
path = Path()
path.ctypes = ctypes
path.lengths = lengths
path.L = sum(np.abs(lengths))
# check same path exist
for i_path in paths:
type_is_same = (i_path.ctypes == path.ctypes)
length_is_close = (sum(np.abs(i_path.lengths)) - path.L) <= step_size
if type_is_same and length_is_close:
return paths # same path found, so do not insert path
# check path is long enough
if path.L <= step_size:
return paths # too short, so do not insert path
paths.append(path)
return paths
| 1,049 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
straight_curve_straight
|
(x, y, phi, paths, step_size)
|
return paths
| 93 | 102 |
def straight_curve_straight(x, y, phi, paths, step_size):
flag, t, u, v = straight_left_straight(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["S", "L", "S"], step_size)
flag, t, u, v = straight_left_straight(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["S", "R", "S"], step_size)
return paths
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L93-L102
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 96.25 | 10 | 3 | 100 | 0 |
def straight_curve_straight(x, y, phi, paths, step_size):
flag, t, u, v = straight_left_straight(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["S", "L", "S"], step_size)
flag, t, u, v = straight_left_straight(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["S", "R", "S"], step_size)
return paths
| 1,050 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
polar
|
(x, y)
|
return r, theta
| 105 | 108 |
def polar(x, y):
r = math.sqrt(x ** 2 + y ** 2)
theta = math.atan2(y, x)
return r, theta
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L105-L108
| 2 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 96.25 | 4 | 1 | 100 | 0 |
def polar(x, y):
r = math.sqrt(x ** 2 + y ** 2)
theta = math.atan2(y, x)
return r, theta
| 1,051 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
left_straight_left
|
(x, y, phi)
|
return False, 0.0, 0.0, 0.0
| 111 | 118 |
def left_straight_left(x, y, phi):
u, t = polar(x - math.sin(phi), y - 1.0 + math.cos(phi))
if t >= 0.0:
v = mod2pi(phi - t)
if v >= 0.0:
return True, t, u, v
return False, 0.0, 0.0, 0.0
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L111-L118
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7
] | 100 |
[] | 0 | true | 96.25 | 8 | 3 | 100 | 0 |
def left_straight_left(x, y, phi):
u, t = polar(x - math.sin(phi), y - 1.0 + math.cos(phi))
if t >= 0.0:
v = mod2pi(phi - t)
if v >= 0.0:
return True, t, u, v
return False, 0.0, 0.0, 0.0
| 1,052 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
left_right_left
|
(x, y, phi)
|
return False, 0.0, 0.0, 0.0
| 121 | 132 |
def left_right_left(x, y, phi):
u1, t1 = polar(x - math.sin(phi), y - 1.0 + math.cos(phi))
if u1 <= 4.0:
u = -2.0 * math.asin(0.25 * u1)
t = mod2pi(t1 + 0.5 * u + math.pi)
v = mod2pi(phi - t + u)
if t >= 0.0 >= u:
return True, t, u, v
return False, 0.0, 0.0, 0.0
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L121-L132
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11
] | 100 |
[] | 0 | true | 96.25 | 12 | 3 | 100 | 0 |
def left_right_left(x, y, phi):
u1, t1 = polar(x - math.sin(phi), y - 1.0 + math.cos(phi))
if u1 <= 4.0:
u = -2.0 * math.asin(0.25 * u1)
t = mod2pi(t1 + 0.5 * u + math.pi)
v = mod2pi(phi - t + u)
if t >= 0.0 >= u:
return True, t, u, v
return False, 0.0, 0.0, 0.0
| 1,053 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
curve_curve_curve
|
(x, y, phi, paths, step_size)
|
return paths
| 135 | 172 |
def curve_curve_curve(x, y, phi, paths, step_size):
flag, t, u, v = left_right_left(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["L", "R", "L"], step_size)
flag, t, u, v = left_right_left(-x, y, -phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["L", "R", "L"], step_size)
flag, t, u, v = left_right_left(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["R", "L", "R"], step_size)
flag, t, u, v = left_right_left(-x, -y, phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["R", "L", "R"], step_size)
# backwards
xb = x * math.cos(phi) + y * math.sin(phi)
yb = x * math.sin(phi) - y * math.cos(phi)
flag, t, u, v = left_right_left(xb, yb, phi)
if flag:
paths = set_path(paths, [v, u, t], ["L", "R", "L"], step_size)
flag, t, u, v = left_right_left(-xb, yb, -phi)
if flag:
paths = set_path(paths, [-v, -u, -t], ["L", "R", "L"], step_size)
flag, t, u, v = left_right_left(xb, -yb, -phi)
if flag:
paths = set_path(paths, [v, u, t], ["R", "L", "R"], step_size)
flag, t, u, v = left_right_left(-xb, -yb, phi)
if flag:
paths = set_path(paths, [-v, -u, -t], ["R", "L", "R"], step_size)
return paths
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L135-L172
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37
] | 100 |
[] | 0 | true | 96.25 | 38 | 9 | 100 | 0 |
def curve_curve_curve(x, y, phi, paths, step_size):
flag, t, u, v = left_right_left(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["L", "R", "L"], step_size)
flag, t, u, v = left_right_left(-x, y, -phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["L", "R", "L"], step_size)
flag, t, u, v = left_right_left(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["R", "L", "R"], step_size)
flag, t, u, v = left_right_left(-x, -y, phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["R", "L", "R"], step_size)
# backwards
xb = x * math.cos(phi) + y * math.sin(phi)
yb = x * math.sin(phi) - y * math.cos(phi)
flag, t, u, v = left_right_left(xb, yb, phi)
if flag:
paths = set_path(paths, [v, u, t], ["L", "R", "L"], step_size)
flag, t, u, v = left_right_left(-xb, yb, -phi)
if flag:
paths = set_path(paths, [-v, -u, -t], ["L", "R", "L"], step_size)
flag, t, u, v = left_right_left(xb, -yb, -phi)
if flag:
paths = set_path(paths, [v, u, t], ["R", "L", "R"], step_size)
flag, t, u, v = left_right_left(-xb, -yb, phi)
if flag:
paths = set_path(paths, [-v, -u, -t], ["R", "L", "R"], step_size)
return paths
| 1,054 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
curve_straight_curve
|
(x, y, phi, paths, step_size)
|
return paths
| 175 | 208 |
def curve_straight_curve(x, y, phi, paths, step_size):
flag, t, u, v = left_straight_left(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["L", "S", "L"], step_size)
flag, t, u, v = left_straight_left(-x, y, -phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["L", "S", "L"], step_size)
flag, t, u, v = left_straight_left(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["R", "S", "R"], step_size)
flag, t, u, v = left_straight_left(-x, -y, phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["R", "S", "R"], step_size)
flag, t, u, v = left_straight_right(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["L", "S", "R"], step_size)
flag, t, u, v = left_straight_right(-x, y, -phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["L", "S", "R"], step_size)
flag, t, u, v = left_straight_right(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["R", "S", "L"], step_size)
flag, t, u, v = left_straight_right(-x, -y, phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["R", "S", "L"], step_size)
return paths
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L175-L208
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33
] | 100 |
[] | 0 | true | 96.25 | 34 | 9 | 100 | 0 |
def curve_straight_curve(x, y, phi, paths, step_size):
flag, t, u, v = left_straight_left(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["L", "S", "L"], step_size)
flag, t, u, v = left_straight_left(-x, y, -phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["L", "S", "L"], step_size)
flag, t, u, v = left_straight_left(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["R", "S", "R"], step_size)
flag, t, u, v = left_straight_left(-x, -y, phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["R", "S", "R"], step_size)
flag, t, u, v = left_straight_right(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["L", "S", "R"], step_size)
flag, t, u, v = left_straight_right(-x, y, -phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["L", "S", "R"], step_size)
flag, t, u, v = left_straight_right(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["R", "S", "L"], step_size)
flag, t, u, v = left_straight_right(-x, -y, phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["R", "S", "L"], step_size)
return paths
| 1,055 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
left_straight_right
|
(x, y, phi)
|
return False, 0.0, 0.0, 0.0
| 211 | 223 |
def left_straight_right(x, y, phi):
u1, t1 = polar(x + math.sin(phi), y - 1.0 - math.cos(phi))
u1 = u1 ** 2
if u1 >= 4.0:
u = math.sqrt(u1 - 4.0)
theta = math.atan2(2.0, u)
t = mod2pi(t1 + theta)
v = mod2pi(t - phi)
if t >= 0.0 and v >= 0.0:
return True, t, u, v
return False, 0.0, 0.0, 0.0
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L211-L223
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 100 |
[] | 0 | true | 96.25 | 13 | 4 | 100 | 0 |
def left_straight_right(x, y, phi):
u1, t1 = polar(x + math.sin(phi), y - 1.0 - math.cos(phi))
u1 = u1 ** 2
if u1 >= 4.0:
u = math.sqrt(u1 - 4.0)
theta = math.atan2(2.0, u)
t = mod2pi(t1 + theta)
v = mod2pi(t - phi)
if t >= 0.0 and v >= 0.0:
return True, t, u, v
return False, 0.0, 0.0, 0.0
| 1,056 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
generate_path
|
(q0, q1, max_curvature, step_size)
|
return paths
| 226 | 240 |
def generate_path(q0, q1, max_curvature, step_size):
dx = q1[0] - q0[0]
dy = q1[1] - q0[1]
dth = q1[2] - q0[2]
c = math.cos(q0[2])
s = math.sin(q0[2])
x = (c * dx + s * dy) * max_curvature
y = (-s * dx + c * dy) * max_curvature
paths = []
paths = straight_curve_straight(x, y, dth, paths, step_size)
paths = curve_straight_curve(x, y, dth, paths, step_size)
paths = curve_curve_curve(x, y, dth, paths, step_size)
return paths
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L226-L240
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14
] | 100 |
[] | 0 | true | 96.25 | 15 | 1 | 100 | 0 |
def generate_path(q0, q1, max_curvature, step_size):
dx = q1[0] - q0[0]
dy = q1[1] - q0[1]
dth = q1[2] - q0[2]
c = math.cos(q0[2])
s = math.sin(q0[2])
x = (c * dx + s * dy) * max_curvature
y = (-s * dx + c * dy) * max_curvature
paths = []
paths = straight_curve_straight(x, y, dth, paths, step_size)
paths = curve_straight_curve(x, y, dth, paths, step_size)
paths = curve_curve_curve(x, y, dth, paths, step_size)
return paths
| 1,057 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
calc_interpolate_dists_list
|
(lengths, step_size)
|
return interpolate_dists_list
| 243 | 251 |
def calc_interpolate_dists_list(lengths, step_size):
interpolate_dists_list = []
for length in lengths:
d_dist = step_size if length >= 0.0 else -step_size
interp_dists = np.arange(0.0, length, d_dist)
interp_dists = np.append(interp_dists, length)
interpolate_dists_list.append(interp_dists)
return interpolate_dists_list
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L243-L251
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8
] | 100 |
[] | 0 | true | 96.25 | 9 | 2 | 100 | 0 |
def calc_interpolate_dists_list(lengths, step_size):
interpolate_dists_list = []
for length in lengths:
d_dist = step_size if length >= 0.0 else -step_size
interp_dists = np.arange(0.0, length, d_dist)
interp_dists = np.append(interp_dists, length)
interpolate_dists_list.append(interp_dists)
return interpolate_dists_list
| 1,058 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
generate_local_course
|
(lengths, modes, max_curvature, step_size)
|
return xs, ys, yaws, directions
| 254 | 275 |
def generate_local_course(lengths, modes, max_curvature, step_size):
interpolate_dists_list = calc_interpolate_dists_list(lengths, step_size)
origin_x, origin_y, origin_yaw = 0.0, 0.0, 0.0
xs, ys, yaws, directions = [], [], [], []
for (interp_dists, mode, length) in zip(interpolate_dists_list, modes,
lengths):
for dist in interp_dists:
x, y, yaw, direction = interpolate(dist, length, mode,
max_curvature, origin_x,
origin_y, origin_yaw)
xs.append(x)
ys.append(y)
yaws.append(yaw)
directions.append(direction)
origin_x = xs[-1]
origin_y = ys[-1]
origin_yaw = yaws[-1]
return xs, ys, yaws, directions
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L254-L275
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
8,
9,
10,
13,
14,
15,
16,
17,
18,
19,
20,
21
] | 86.363636 |
[] | 0 | false | 96.25 | 22 | 3 | 100 | 0 |
def generate_local_course(lengths, modes, max_curvature, step_size):
interpolate_dists_list = calc_interpolate_dists_list(lengths, step_size)
origin_x, origin_y, origin_yaw = 0.0, 0.0, 0.0
xs, ys, yaws, directions = [], [], [], []
for (interp_dists, mode, length) in zip(interpolate_dists_list, modes,
lengths):
for dist in interp_dists:
x, y, yaw, direction = interpolate(dist, length, mode,
max_curvature, origin_x,
origin_y, origin_yaw)
xs.append(x)
ys.append(y)
yaws.append(yaw)
directions.append(direction)
origin_x = xs[-1]
origin_y = ys[-1]
origin_yaw = yaws[-1]
return xs, ys, yaws, directions
| 1,059 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
interpolate
|
(dist, length, mode, max_curvature, origin_x, origin_y,
origin_yaw)
|
return x, y, yaw, 1 if length > 0.0 else -1
| 278 | 299 |
def interpolate(dist, length, mode, max_curvature, origin_x, origin_y,
origin_yaw):
if mode == "S":
x = origin_x + dist / max_curvature * math.cos(origin_yaw)
y = origin_y + dist / max_curvature * math.sin(origin_yaw)
yaw = origin_yaw
else: # curve
ldx = math.sin(dist) / max_curvature
ldy = 0.0
yaw = None
if mode == "L": # left turn
ldy = (1.0 - math.cos(dist)) / max_curvature
yaw = origin_yaw + dist
elif mode == "R": # right turn
ldy = (1.0 - math.cos(dist)) / -max_curvature
yaw = origin_yaw - dist
gdx = math.cos(-origin_yaw) * ldx + math.sin(-origin_yaw) * ldy
gdy = -math.sin(-origin_yaw) * ldx + math.cos(-origin_yaw) * ldy
x = origin_x + gdx
y = origin_y + gdy
return x, y, yaw, 1 if length > 0.0 else -1
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L278-L299
| 2 |
[
0,
2,
3,
4,
5,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21
] | 90.909091 |
[] | 0 | false | 96.25 | 22 | 4 | 100 | 0 |
def interpolate(dist, length, mode, max_curvature, origin_x, origin_y,
origin_yaw):
if mode == "S":
x = origin_x + dist / max_curvature * math.cos(origin_yaw)
y = origin_y + dist / max_curvature * math.sin(origin_yaw)
yaw = origin_yaw
else: # curve
ldx = math.sin(dist) / max_curvature
ldy = 0.0
yaw = None
if mode == "L": # left turn
ldy = (1.0 - math.cos(dist)) / max_curvature
yaw = origin_yaw + dist
elif mode == "R": # right turn
ldy = (1.0 - math.cos(dist)) / -max_curvature
yaw = origin_yaw - dist
gdx = math.cos(-origin_yaw) * ldx + math.sin(-origin_yaw) * ldy
gdy = -math.sin(-origin_yaw) * ldx + math.cos(-origin_yaw) * ldy
x = origin_x + gdx
y = origin_y + gdy
return x, y, yaw, 1 if length > 0.0 else -1
| 1,060 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
pi_2_pi
|
(angle)
|
return (angle + math.pi) % (2 * math.pi) - math.pi
| 302 | 303 |
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L302-L303
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 96.25 | 2 | 1 | 100 | 0 |
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
| 1,061 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
calc_paths
|
(sx, sy, syaw, gx, gy, gyaw, maxc, step_size)
|
return paths
| 306 | 326 |
def calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size):
q0 = [sx, sy, syaw]
q1 = [gx, gy, gyaw]
paths = generate_path(q0, q1, maxc, step_size)
for path in paths:
xs, ys, yaws, directions = generate_local_course(path.lengths,
path.ctypes, maxc,
step_size * maxc)
# convert global coordinate
path.x = [math.cos(-q0[2]) * ix + math.sin(-q0[2]) * iy + q0[0] for
(ix, iy) in zip(xs, ys)]
path.y = [-math.sin(-q0[2]) * ix + math.cos(-q0[2]) * iy + q0[1] for
(ix, iy) in zip(xs, ys)]
path.yaw = [pi_2_pi(yaw + q0[2]) for yaw in yaws]
path.directions = directions
path.lengths = [length / maxc for length in path.lengths]
path.L = path.L / maxc
return paths
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L306-L326
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
10,
11,
13,
15,
16,
17,
18,
19,
20
] | 76.190476 |
[] | 0 | false | 96.25 | 21 | 6 | 100 | 0 |
def calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size):
q0 = [sx, sy, syaw]
q1 = [gx, gy, gyaw]
paths = generate_path(q0, q1, maxc, step_size)
for path in paths:
xs, ys, yaws, directions = generate_local_course(path.lengths,
path.ctypes, maxc,
step_size * maxc)
# convert global coordinate
path.x = [math.cos(-q0[2]) * ix + math.sin(-q0[2]) * iy + q0[0] for
(ix, iy) in zip(xs, ys)]
path.y = [-math.sin(-q0[2]) * ix + math.cos(-q0[2]) * iy + q0[1] for
(ix, iy) in zip(xs, ys)]
path.yaw = [pi_2_pi(yaw + q0[2]) for yaw in yaws]
path.directions = directions
path.lengths = [length / maxc for length in path.lengths]
path.L = path.L / maxc
return paths
| 1,062 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
reeds_shepp_path_planning
|
(sx, sy, syaw, gx, gy, gyaw, maxc, step_size=0.2)
|
return b_path.x, b_path.y, b_path.yaw, b_path.ctypes, b_path.lengths
| 329 | 338 |
def reeds_shepp_path_planning(sx, sy, syaw, gx, gy, gyaw, maxc, step_size=0.2):
paths = calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size)
if not paths:
return None, None, None, None, None # could not generate any path
# search minimum cost path
best_path_index = paths.index(min(paths, key=lambda p: abs(p.L)))
b_path = paths[best_path_index]
return b_path.x, b_path.y, b_path.yaw, b_path.ctypes, b_path.lengths
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L329-L338
| 2 |
[
0,
1,
2,
5,
6,
7,
8,
9
] | 80 |
[
3
] | 10 | false | 96.25 | 10 | 2 | 90 | 0 |
def reeds_shepp_path_planning(sx, sy, syaw, gx, gy, gyaw, maxc, step_size=0.2):
paths = calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size)
if not paths:
return None, None, None, None, None # could not generate any path
# search minimum cost path
best_path_index = paths.index(min(paths, key=lambda p: abs(p.L)))
b_path = paths[best_path_index]
return b_path.x, b_path.y, b_path.yaw, b_path.ctypes, b_path.lengths
| 1,063 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
|
Path.__init__
|
(self)
| 21 | 30 |
def __init__(self):
# course segment length (negative value is backward segment)
self.lengths = []
# course segment type char ("S": straight, "L": left, "R": right)
self.ctypes = []
self.L = 0.0 # Total lengths of the path
self.x = [] # x positions
self.y = [] # y positions
self.yaw = [] # orientations [rad]
self.directions = []
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py#L21-L30
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 96.25 | 10 | 1 | 100 | 0 |
def __init__(self):
# course segment length (negative value is backward segment)
self.lengths = []
# course segment type char ("S": straight, "L": left, "R": right)
self.ctypes = []
self.L = 0.0 # Total lengths of the path
self.x = [] # x positions
self.y = [] # y positions
self.yaw = [] # orientations [rad]
self.directions = []
| 1,064 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/Eta3SplinePath/eta3_spline_path.py
|
main
|
()
|
recreate path from reference (see Table 1)
|
recreate path from reference (see Table 1)
| 351 | 357 |
def main():
"""
recreate path from reference (see Table 1)
"""
test1()
test2()
test3()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/Eta3SplinePath/eta3_spline_path.py#L351-L357
| 2 |
[
0,
1,
2,
3,
4,
5,
6
] | 100 |
[] | 0 | true | 88.108108 | 7 | 1 | 100 | 1 |
def main():
test1()
test2()
test3()
| 1,065 |
|
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/Eta3SplinePath/eta3_spline_path.py
|
Eta3Path.__init__
|
(self, segments)
| 33 | 40 |
def __init__(self, segments):
# ensure input has the correct form
assert(isinstance(segments, list) and isinstance(
segments[0], Eta3PathSegment))
# ensure that each segment begins from the previous segment's end (continuity)
for r, s in zip(segments[:-1], segments[1:]):
assert(np.array_equal(r.end_pose, s.start_pose))
self.segments = segments
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/Eta3SplinePath/eta3_spline_path.py#L33-L40
| 2 |
[
0,
1,
2,
4,
5,
6,
7
] | 87.5 |
[] | 0 | false | 88.108108 | 8 | 5 | 100 | 0 |
def __init__(self, segments):
# ensure input has the correct form
assert(isinstance(segments, list) and isinstance(
segments[0], Eta3PathSegment))
# ensure that each segment begins from the previous segment's end (continuity)
for r, s in zip(segments[:-1], segments[1:]):
assert(np.array_equal(r.end_pose, s.start_pose))
self.segments = segments
| 1,066 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/Eta3SplinePath/eta3_spline_path.py
|
Eta3Path.calc_path_point
|
(self, u)
|
return self.segments[segment_idx].calc_point(u)
|
Eta3Path::calc_path_point
input
normalized interpolation point along path object, 0 <= u <= len(self.segments)
returns
2d (x,y) position vector
|
Eta3Path::calc_path_point
| 42 | 59 |
def calc_path_point(self, u):
"""
Eta3Path::calc_path_point
input
normalized interpolation point along path object, 0 <= u <= len(self.segments)
returns
2d (x,y) position vector
"""
assert(0 <= u <= len(self.segments))
if np.isclose(u, len(self.segments)):
segment_idx = len(self.segments) - 1
u = 1.
else:
segment_idx = int(np.floor(u))
u -= segment_idx
return self.segments[segment_idx].calc_point(u)
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/Eta3SplinePath/eta3_spline_path.py#L42-L59
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17
] | 100 |
[] | 0 | true | 88.108108 | 18 | 3 | 100 | 6 |
def calc_path_point(self, u):
assert(0 <= u <= len(self.segments))
if np.isclose(u, len(self.segments)):
segment_idx = len(self.segments) - 1
u = 1.
else:
segment_idx = int(np.floor(u))
u -= segment_idx
return self.segments[segment_idx].calc_point(u)
| 1,067 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/Eta3SplinePath/eta3_spline_path.py
|
Eta3PathSegment.__init__
|
(self, start_pose, end_pose, eta=None, kappa=None)
| 76 | 189 |
def __init__(self, start_pose, end_pose, eta=None, kappa=None):
# make sure inputs are of the correct size
assert(len(start_pose) == 3 and len(start_pose) == len(end_pose))
self.start_pose = start_pose
self.end_pose = end_pose
# if no eta is passed, initialize it to array of zeros
if not eta:
eta = np.zeros((6,))
else:
# make sure that eta has correct size
assert(len(eta) == 6)
# if no kappa is passed, initialize to array of zeros
if not kappa:
kappa = np.zeros((4,))
else:
assert(len(kappa) == 4)
# set up angle cosines and sines for simpler computations below
ca = np.cos(start_pose[2])
sa = np.sin(start_pose[2])
cb = np.cos(end_pose[2])
sb = np.sin(end_pose[2])
# 2 dimensions (x,y) x 8 coefficients per dimension
self.coeffs = np.empty((2, 8))
# constant terms (u^0)
self.coeffs[0, 0] = start_pose[0]
self.coeffs[1, 0] = start_pose[1]
# linear (u^1)
self.coeffs[0, 1] = eta[0] * ca
self.coeffs[1, 1] = eta[0] * sa
# quadratic (u^2)
self.coeffs[0, 2] = 1. / 2 * eta[2] * \
ca - 1. / 2 * eta[0]**2 * kappa[0] * sa
self.coeffs[1, 2] = 1. / 2 * eta[2] * \
sa + 1. / 2 * eta[0]**2 * kappa[0] * ca
# cubic (u^3)
self.coeffs[0, 3] = 1. / 6 * eta[4] * ca - 1. / 6 * \
(eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * sa
self.coeffs[1, 3] = 1. / 6 * eta[4] * sa + 1. / 6 * \
(eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * ca
# quartic (u^4)
tmp1 = 35. * (end_pose[0] - start_pose[0])
tmp2 = (20. * eta[0] + 5 * eta[2] + 2. / 3 * eta[4]) * ca
tmp3 = (5. * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 * kappa[1]
+ 2. * eta[0] * eta[2] * kappa[0]) * sa
tmp4 = (15. * eta[1] - 5. / 2 * eta[3] + 1. / 6 * eta[5]) * cb
tmp5 = (5. / 2 * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 *
kappa[3] - 1. / 2 * eta[1] * eta[3] * kappa[2]) * sb
self.coeffs[0, 4] = tmp1 - tmp2 + tmp3 - tmp4 - tmp5
tmp1 = 35. * (end_pose[1] - start_pose[1])
tmp2 = (20. * eta[0] + 5. * eta[2] + 2. / 3 * eta[4]) * sa
tmp3 = (5. * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 * kappa[1]
+ 2. * eta[0] * eta[2] * kappa[0]) * ca
tmp4 = (15. * eta[1] - 5. / 2 * eta[3] + 1. / 6 * eta[5]) * sb
tmp5 = (5. / 2 * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 *
kappa[3] - 1. / 2 * eta[1] * eta[3] * kappa[2]) * cb
self.coeffs[1, 4] = tmp1 - tmp2 - tmp3 - tmp4 + tmp5
# quintic (u^5)
tmp1 = -84. * (end_pose[0] - start_pose[0])
tmp2 = (45. * eta[0] + 10. * eta[2] + eta[4]) * ca
tmp3 = (10. * eta[0] ** 2 * kappa[0] + eta[0] ** 3 * kappa[1] + 3. *
eta[0] * eta[2] * kappa[0]) * sa
tmp4 = (39. * eta[1] - 7. * eta[3] + 1. / 2 * eta[5]) * cb
tmp5 = + (7. * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 * kappa[3]
- 3. / 2 * eta[1] * eta[3] * kappa[2]) * sb
self.coeffs[0, 5] = tmp1 + tmp2 - tmp3 + tmp4 + tmp5
tmp1 = -84. * (end_pose[1] - start_pose[1])
tmp2 = (45. * eta[0] + 10. * eta[2] + eta[4]) * sa
tmp3 = (10. * eta[0] ** 2 * kappa[0] + eta[0] ** 3 * kappa[1] + 3. *
eta[0] * eta[2] * kappa[0]) * ca
tmp4 = (39. * eta[1] - 7. * eta[3] + 1. / 2 * eta[5]) * sb
tmp5 = - (7. * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 * kappa[3]
- 3. / 2 * eta[1] * eta[3] * kappa[2]) * cb
self.coeffs[1, 5] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5
# sextic (u^6)
tmp1 = 70. * (end_pose[0] - start_pose[0])
tmp2 = (36. * eta[0] + 15. / 2 * eta[2] + 2. / 3 * eta[4]) * ca
tmp3 = + (15. / 2 * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 *
kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * sa
tmp4 = (34. * eta[1] - 13. / 2 * eta[3] + 1. / 2 * eta[5]) * cb
tmp5 = - (13. / 2 * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 *
kappa[3] - 3. / 2 * eta[1] * eta[3] * kappa[2]) * sb
self.coeffs[0, 6] = tmp1 - tmp2 + tmp3 - tmp4 + tmp5
tmp1 = 70. * (end_pose[1] - start_pose[1])
tmp2 = - (36. * eta[0] + 15. / 2 * eta[2] + 2. / 3 * eta[4]) * sa
tmp3 = - (15. / 2 * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 *
kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * ca
tmp4 = - (34. * eta[1] - 13. / 2 * eta[3] + 1. / 2 * eta[5]) * sb
tmp5 = + (13. / 2 * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 *
kappa[3] - 3. / 2 * eta[1] * eta[3] * kappa[2]) * cb
self.coeffs[1, 6] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5
# septic (u^7)
tmp1 = -20. * (end_pose[0] - start_pose[0])
tmp2 = (10. * eta[0] + 2. * eta[2] + 1. / 6 * eta[4]) * ca
tmp3 = - (2. * eta[0] ** 2 * kappa[0] + 1. / 6 * eta[0] ** 3 * kappa[1]
+ 1. / 2 * eta[0] * eta[2] * kappa[0]) * sa
tmp4 = (10. * eta[1] - 2. * eta[3] + 1. / 6 * eta[5]) * cb
tmp5 = (2. * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 * kappa[3]
- 1. / 2 * eta[1] * eta[3] * kappa[2]) * sb
self.coeffs[0, 7] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5
tmp1 = -20. * (end_pose[1] - start_pose[1])
tmp2 = (10. * eta[0] + 2. * eta[2] + 1. / 6 * eta[4]) * sa
tmp3 = (2. * eta[0] ** 2 * kappa[0] + 1. / 6 * eta[0] ** 3 * kappa[1]
+ 1. / 2 * eta[0] * eta[2] * kappa[0]) * ca
tmp4 = (10. * eta[1] - 2. * eta[3] + 1. / 6 * eta[5]) * sb
tmp5 = - (2. * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 * kappa[3]
- 1. / 2 * eta[1] * eta[3] * kappa[2]) * cb
self.coeffs[1, 7] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5
self.s_dot = lambda u: max(np.linalg.norm(
self.coeffs[:, 1:].dot(np.array(
[1, 2. * u, 3. * u**2, 4. * u**3,
5. * u**4, 6. * u**5, 7. * u**6]))), 1e-6)
self.f_length = lambda ue: quad(lambda u: self.s_dot(u), 0, ue)
self.segment_length = self.f_length(1)[0]
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/Eta3SplinePath/eta3_spline_path.py#L76-L189
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
9,
10,
11,
12,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
32,
34,
35,
37,
39,
40,
41,
42,
44,
45,
47,
48,
49,
50,
52,
53,
55,
56,
57,
58,
59,
61,
62,
64,
65,
66,
67,
69,
70,
72,
73,
74,
75,
76,
78,
79,
81,
82,
83,
84,
86,
87,
89,
90,
91,
92,
93,
95,
96,
98,
99,
100,
101,
102,
104,
105,
107,
108,
112,
113
] | 76.315789 |
[
7,
13
] | 1.754386 | false | 88.108108 | 114 | 7 | 98.245614 | 0 |
def __init__(self, start_pose, end_pose, eta=None, kappa=None):
# make sure inputs are of the correct size
assert(len(start_pose) == 3 and len(start_pose) == len(end_pose))
self.start_pose = start_pose
self.end_pose = end_pose
# if no eta is passed, initialize it to array of zeros
if not eta:
eta = np.zeros((6,))
else:
# make sure that eta has correct size
assert(len(eta) == 6)
# if no kappa is passed, initialize to array of zeros
if not kappa:
kappa = np.zeros((4,))
else:
assert(len(kappa) == 4)
# set up angle cosines and sines for simpler computations below
ca = np.cos(start_pose[2])
sa = np.sin(start_pose[2])
cb = np.cos(end_pose[2])
sb = np.sin(end_pose[2])
# 2 dimensions (x,y) x 8 coefficients per dimension
self.coeffs = np.empty((2, 8))
# constant terms (u^0)
self.coeffs[0, 0] = start_pose[0]
self.coeffs[1, 0] = start_pose[1]
# linear (u^1)
self.coeffs[0, 1] = eta[0] * ca
self.coeffs[1, 1] = eta[0] * sa
# quadratic (u^2)
self.coeffs[0, 2] = 1. / 2 * eta[2] * \
ca - 1. / 2 * eta[0]**2 * kappa[0] * sa
self.coeffs[1, 2] = 1. / 2 * eta[2] * \
sa + 1. / 2 * eta[0]**2 * kappa[0] * ca
# cubic (u^3)
self.coeffs[0, 3] = 1. / 6 * eta[4] * ca - 1. / 6 * \
(eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * sa
self.coeffs[1, 3] = 1. / 6 * eta[4] * sa + 1. / 6 * \
(eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * ca
# quartic (u^4)
tmp1 = 35. * (end_pose[0] - start_pose[0])
tmp2 = (20. * eta[0] + 5 * eta[2] + 2. / 3 * eta[4]) * ca
tmp3 = (5. * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 * kappa[1]
+ 2. * eta[0] * eta[2] * kappa[0]) * sa
tmp4 = (15. * eta[1] - 5. / 2 * eta[3] + 1. / 6 * eta[5]) * cb
tmp5 = (5. / 2 * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 *
kappa[3] - 1. / 2 * eta[1] * eta[3] * kappa[2]) * sb
self.coeffs[0, 4] = tmp1 - tmp2 + tmp3 - tmp4 - tmp5
tmp1 = 35. * (end_pose[1] - start_pose[1])
tmp2 = (20. * eta[0] + 5. * eta[2] + 2. / 3 * eta[4]) * sa
tmp3 = (5. * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 * kappa[1]
+ 2. * eta[0] * eta[2] * kappa[0]) * ca
tmp4 = (15. * eta[1] - 5. / 2 * eta[3] + 1. / 6 * eta[5]) * sb
tmp5 = (5. / 2 * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 *
kappa[3] - 1. / 2 * eta[1] * eta[3] * kappa[2]) * cb
self.coeffs[1, 4] = tmp1 - tmp2 - tmp3 - tmp4 + tmp5
# quintic (u^5)
tmp1 = -84. * (end_pose[0] - start_pose[0])
tmp2 = (45. * eta[0] + 10. * eta[2] + eta[4]) * ca
tmp3 = (10. * eta[0] ** 2 * kappa[0] + eta[0] ** 3 * kappa[1] + 3. *
eta[0] * eta[2] * kappa[0]) * sa
tmp4 = (39. * eta[1] - 7. * eta[3] + 1. / 2 * eta[5]) * cb
tmp5 = + (7. * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 * kappa[3]
- 3. / 2 * eta[1] * eta[3] * kappa[2]) * sb
self.coeffs[0, 5] = tmp1 + tmp2 - tmp3 + tmp4 + tmp5
tmp1 = -84. * (end_pose[1] - start_pose[1])
tmp2 = (45. * eta[0] + 10. * eta[2] + eta[4]) * sa
tmp3 = (10. * eta[0] ** 2 * kappa[0] + eta[0] ** 3 * kappa[1] + 3. *
eta[0] * eta[2] * kappa[0]) * ca
tmp4 = (39. * eta[1] - 7. * eta[3] + 1. / 2 * eta[5]) * sb
tmp5 = - (7. * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 * kappa[3]
- 3. / 2 * eta[1] * eta[3] * kappa[2]) * cb
self.coeffs[1, 5] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5
# sextic (u^6)
tmp1 = 70. * (end_pose[0] - start_pose[0])
tmp2 = (36. * eta[0] + 15. / 2 * eta[2] + 2. / 3 * eta[4]) * ca
tmp3 = + (15. / 2 * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 *
kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * sa
tmp4 = (34. * eta[1] - 13. / 2 * eta[3] + 1. / 2 * eta[5]) * cb
tmp5 = - (13. / 2 * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 *
kappa[3] - 3. / 2 * eta[1] * eta[3] * kappa[2]) * sb
self.coeffs[0, 6] = tmp1 - tmp2 + tmp3 - tmp4 + tmp5
tmp1 = 70. * (end_pose[1] - start_pose[1])
tmp2 = - (36. * eta[0] + 15. / 2 * eta[2] + 2. / 3 * eta[4]) * sa
tmp3 = - (15. / 2 * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 *
kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * ca
tmp4 = - (34. * eta[1] - 13. / 2 * eta[3] + 1. / 2 * eta[5]) * sb
tmp5 = + (13. / 2 * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 *
kappa[3] - 3. / 2 * eta[1] * eta[3] * kappa[2]) * cb
self.coeffs[1, 6] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5
# septic (u^7)
tmp1 = -20. * (end_pose[0] - start_pose[0])
tmp2 = (10. * eta[0] + 2. * eta[2] + 1. / 6 * eta[4]) * ca
tmp3 = - (2. * eta[0] ** 2 * kappa[0] + 1. / 6 * eta[0] ** 3 * kappa[1]
+ 1. / 2 * eta[0] * eta[2] * kappa[0]) * sa
tmp4 = (10. * eta[1] - 2. * eta[3] + 1. / 6 * eta[5]) * cb
tmp5 = (2. * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 * kappa[3]
- 1. / 2 * eta[1] * eta[3] * kappa[2]) * sb
self.coeffs[0, 7] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5
tmp1 = -20. * (end_pose[1] - start_pose[1])
tmp2 = (10. * eta[0] + 2. * eta[2] + 1. / 6 * eta[4]) * sa
tmp3 = (2. * eta[0] ** 2 * kappa[0] + 1. / 6 * eta[0] ** 3 * kappa[1]
+ 1. / 2 * eta[0] * eta[2] * kappa[0]) * ca
tmp4 = (10. * eta[1] - 2. * eta[3] + 1. / 6 * eta[5]) * sb
tmp5 = - (2. * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 * kappa[3]
- 1. / 2 * eta[1] * eta[3] * kappa[2]) * cb
self.coeffs[1, 7] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5
self.s_dot = lambda u: max(np.linalg.norm(
self.coeffs[:, 1:].dot(np.array(
[1, 2. * u, 3. * u**2, 4. * u**3,
5. * u**4, 6. * u**5, 7. * u**6]))), 1e-6)
self.f_length = lambda ue: quad(lambda u: self.s_dot(u), 0, ue)
self.segment_length = self.f_length(1)[0]
| 1,068 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/Eta3SplinePath/eta3_spline_path.py
|
Eta3PathSegment.calc_point
|
(self, u)
|
return self.coeffs.dot(np.array([1, u, u**2, u**3, u**4, u**5, u**6, u**7]))
|
Eta3PathSegment::calc_point
input
u - parametric representation of a point along the segment, 0 <= u <= 1
returns
(x,y) of point along the segment
|
Eta3PathSegment::calc_point
| 191 | 201 |
def calc_point(self, u):
"""
Eta3PathSegment::calc_point
input
u - parametric representation of a point along the segment, 0 <= u <= 1
returns
(x,y) of point along the segment
"""
assert(0 <= u <= 1)
return self.coeffs.dot(np.array([1, u, u**2, u**3, u**4, u**5, u**6, u**7]))
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/Eta3SplinePath/eta3_spline_path.py#L191-L201
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10
] | 100 |
[] | 0 | true | 88.108108 | 11 | 2 | 100 | 6 |
def calc_point(self, u):
assert(0 <= u <= 1)
return self.coeffs.dot(np.array([1, u, u**2, u**3, u**4, u**5, u**6, u**7]))
| 1,069 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/Eta3SplinePath/eta3_spline_path.py
|
Eta3PathSegment.calc_deriv
|
(self, u, order=1)
|
return self.coeffs[:, 2:].dot(np.array([2, 6. * u, 12. * u**2, 20. * u**3, 30. * u**4, 42. * u**5]))
|
Eta3PathSegment::calc_deriv
input
u - parametric representation of a point along the segment, 0 <= u <= 1
returns
(d^nx/du^n,d^ny/du^n) of point along the segment, for 0 < n <= 2
|
Eta3PathSegment::calc_deriv
| 203 | 218 |
def calc_deriv(self, u, order=1):
"""
Eta3PathSegment::calc_deriv
input
u - parametric representation of a point along the segment, 0 <= u <= 1
returns
(d^nx/du^n,d^ny/du^n) of point along the segment, for 0 < n <= 2
"""
assert(0 <= u <= 1)
assert(0 < order <= 2)
if order == 1:
return self.coeffs[:, 1:].dot(np.array([1, 2. * u, 3. * u**2, 4. * u**3, 5. * u**4, 6. * u**5, 7. * u**6]))
return self.coeffs[:, 2:].dot(np.array([2, 6. * u, 12. * u**2, 20. * u**3, 30. * u**4, 42. * u**5]))
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/Eta3SplinePath/eta3_spline_path.py#L203-L218
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 62.5 |
[
10,
11,
12,
13,
15
] | 31.25 | false | 88.108108 | 16 | 4 | 68.75 | 6 |
def calc_deriv(self, u, order=1):
assert(0 <= u <= 1)
assert(0 < order <= 2)
if order == 1:
return self.coeffs[:, 1:].dot(np.array([1, 2. * u, 3. * u**2, 4. * u**3, 5. * u**4, 6. * u**5, 7. * u**6]))
return self.coeffs[:, 2:].dot(np.array([2, 6. * u, 12. * u**2, 20. * u**3, 30. * u**4, 42. * u**5]))
| 1,070 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VisibilityRoadMap/visibility_road_map.py
|
main
|
()
| 179 | 217 |
def main():
print(__file__ + " start!!")
# start and goal position
sx, sy = 10.0, 10.0 # [m]
gx, gy = 50.0, 50.0 # [m]
expand_distance = 5.0 # [m]
obstacles = [
ObstaclePolygon(
[20.0, 30.0, 15.0],
[20.0, 20.0, 30.0],
),
ObstaclePolygon(
[40.0, 45.0, 50.0, 40.0],
[50.0, 40.0, 20.0, 40.0],
),
ObstaclePolygon(
[20.0, 30.0, 30.0, 20.0],
[40.0, 45.0, 60.0, 50.0],
)
]
if show_animation: # pragma: no cover
plt.plot(sx, sy, "or")
plt.plot(gx, gy, "ob")
for ob in obstacles:
ob.plot()
plt.axis("equal")
plt.pause(1.0)
rx, ry = VisibilityRoadMap(expand_distance, do_plot=show_animation)\
.planning(sx, sy, gx, gy, obstacles)
if show_animation: # pragma: no cover
plt.plot(rx, ry, "-r")
plt.pause(0.1)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VisibilityRoadMap/visibility_road_map.py#L179-L217
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
31,
32
] | 42.857143 |
[] | 0 | false | 92.792793 | 39 | 4 | 100 | 0 |
def main():
print(__file__ + " start!!")
# start and goal position
sx, sy = 10.0, 10.0 # [m]
gx, gy = 50.0, 50.0 # [m]
expand_distance = 5.0 # [m]
obstacles = [
ObstaclePolygon(
[20.0, 30.0, 15.0],
[20.0, 20.0, 30.0],
),
ObstaclePolygon(
[40.0, 45.0, 50.0, 40.0],
[50.0, 40.0, 20.0, 40.0],
),
ObstaclePolygon(
[20.0, 30.0, 30.0, 20.0],
[40.0, 45.0, 60.0, 50.0],
)
]
if show_animation: # pragma: no cover
plt.plot(sx, sy, "or")
plt.plot(gx, gy, "ob")
for ob in obstacles:
ob.plot()
plt.axis("equal")
plt.pause(1.0)
rx, ry = VisibilityRoadMap(expand_distance, do_plot=show_animation)\
.planning(sx, sy, gx, gy, obstacles)
if show_animation: # pragma: no cover
plt.plot(rx, ry, "-r")
plt.pause(0.1)
plt.show()
| 1,071 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VisibilityRoadMap/visibility_road_map.py
|
VisibilityRoadMap.__init__
|
(self, expand_distance, do_plot=False)
| 24 | 26 |
def __init__(self, expand_distance, do_plot=False):
self.expand_distance = expand_distance
self.do_plot = do_plot
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VisibilityRoadMap/visibility_road_map.py#L24-L26
| 2 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 92.792793 | 3 | 1 | 100 | 0 |
def __init__(self, expand_distance, do_plot=False):
self.expand_distance = expand_distance
self.do_plot = do_plot
| 1,072 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VisibilityRoadMap/visibility_road_map.py
|
VisibilityRoadMap.planning
|
(self, start_x, start_y, goal_x, goal_y, obstacles)
|
return rx, ry
| 28 | 47 |
def planning(self, start_x, start_y, goal_x, goal_y, obstacles):
nodes = self.generate_visibility_nodes(start_x, start_y,
goal_x, goal_y, obstacles)
road_map_info = self.generate_road_map_info(nodes, obstacles)
if self.do_plot:
self.plot_road_map(nodes, road_map_info)
plt.pause(1.0)
rx, ry = DijkstraSearch(show_animation).search(
start_x, start_y,
goal_x, goal_y,
[node.x for node in nodes],
[node.y for node in nodes],
road_map_info
)
return rx, ry
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VisibilityRoadMap/visibility_road_map.py#L28-L47
| 2 |
[
0,
1,
2,
4,
5,
6,
7,
10,
11,
18,
19
] | 55 |
[
8,
9
] | 10 | false | 92.792793 | 20 | 4 | 90 | 0 |
def planning(self, start_x, start_y, goal_x, goal_y, obstacles):
nodes = self.generate_visibility_nodes(start_x, start_y,
goal_x, goal_y, obstacles)
road_map_info = self.generate_road_map_info(nodes, obstacles)
if self.do_plot:
self.plot_road_map(nodes, road_map_info)
plt.pause(1.0)
rx, ry = DijkstraSearch(show_animation).search(
start_x, start_y,
goal_x, goal_y,
[node.x for node in nodes],
[node.y for node in nodes],
road_map_info
)
return rx, ry
| 1,073 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VisibilityRoadMap/visibility_road_map.py
|
VisibilityRoadMap.generate_visibility_nodes
|
(self, start_x, start_y, goal_x, goal_y,
obstacles)
|
return nodes
| 49 | 68 |
def generate_visibility_nodes(self, start_x, start_y, goal_x, goal_y,
obstacles):
# add start and goal as nodes
nodes = [DijkstraSearch.Node(start_x, start_y),
DijkstraSearch.Node(goal_x, goal_y, 0, None)]
# add vertexes in configuration space as nodes
for obstacle in obstacles:
cvx_list, cvy_list = self.calc_vertexes_in_configuration_space(
obstacle.x_list, obstacle.y_list)
for (vx, vy) in zip(cvx_list, cvy_list):
nodes.append(DijkstraSearch.Node(vx, vy))
for node in nodes:
plt.plot(node.x, node.y, "xr")
return nodes
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VisibilityRoadMap/visibility_road_map.py#L49-L68
| 2 |
[
0,
3,
4,
7,
8,
9,
10,
12,
13,
14,
15,
16,
17,
18,
19
] | 75 |
[] | 0 | false | 92.792793 | 20 | 4 | 100 | 0 |
def generate_visibility_nodes(self, start_x, start_y, goal_x, goal_y,
obstacles):
# add start and goal as nodes
nodes = [DijkstraSearch.Node(start_x, start_y),
DijkstraSearch.Node(goal_x, goal_y, 0, None)]
# add vertexes in configuration space as nodes
for obstacle in obstacles:
cvx_list, cvy_list = self.calc_vertexes_in_configuration_space(
obstacle.x_list, obstacle.y_list)
for (vx, vy) in zip(cvx_list, cvy_list):
nodes.append(DijkstraSearch.Node(vx, vy))
for node in nodes:
plt.plot(node.x, node.y, "xr")
return nodes
| 1,074 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VisibilityRoadMap/visibility_road_map.py
|
VisibilityRoadMap.calc_vertexes_in_configuration_space
|
(self, x_list, y_list)
|
return cvx_list, cvy_list
| 70 | 86 |
def calc_vertexes_in_configuration_space(self, x_list, y_list):
x_list = x_list[0:-1]
y_list = y_list[0:-1]
cvx_list, cvy_list = [], []
n_data = len(x_list)
for index in range(n_data):
offset_x, offset_y = self.calc_offset_xy(
x_list[index - 1], y_list[index - 1],
x_list[index], y_list[index],
x_list[(index + 1) % n_data], y_list[(index + 1) % n_data],
)
cvx_list.append(offset_x)
cvy_list.append(offset_y)
return cvx_list, cvy_list
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VisibilityRoadMap/visibility_road_map.py#L70-L86
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
13,
14,
15,
16
] | 76.470588 |
[] | 0 | false | 92.792793 | 17 | 2 | 100 | 0 |
def calc_vertexes_in_configuration_space(self, x_list, y_list):
x_list = x_list[0:-1]
y_list = y_list[0:-1]
cvx_list, cvy_list = [], []
n_data = len(x_list)
for index in range(n_data):
offset_x, offset_y = self.calc_offset_xy(
x_list[index - 1], y_list[index - 1],
x_list[index], y_list[index],
x_list[(index + 1) % n_data], y_list[(index + 1) % n_data],
)
cvx_list.append(offset_x)
cvy_list.append(offset_y)
return cvx_list, cvy_list
| 1,075 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VisibilityRoadMap/visibility_road_map.py
|
VisibilityRoadMap.generate_road_map_info
|
(self, nodes, obstacles)
|
return road_map_info_list
| 88 | 109 |
def generate_road_map_info(self, nodes, obstacles):
road_map_info_list = []
for target_node in nodes:
road_map_info = []
for node_id, node in enumerate(nodes):
if np.hypot(target_node.x - node.x,
target_node.y - node.y) <= 0.1:
continue
is_valid = True
for obstacle in obstacles:
if not self.is_edge_valid(target_node, node, obstacle):
is_valid = False
break
if is_valid:
road_map_info.append(node_id)
road_map_info_list.append(road_map_info)
return road_map_info_list
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VisibilityRoadMap/visibility_road_map.py#L88-L109
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21
] | 95.454545 |
[] | 0 | false | 92.792793 | 22 | 7 | 100 | 0 |
def generate_road_map_info(self, nodes, obstacles):
road_map_info_list = []
for target_node in nodes:
road_map_info = []
for node_id, node in enumerate(nodes):
if np.hypot(target_node.x - node.x,
target_node.y - node.y) <= 0.1:
continue
is_valid = True
for obstacle in obstacles:
if not self.is_edge_valid(target_node, node, obstacle):
is_valid = False
break
if is_valid:
road_map_info.append(node_id)
road_map_info_list.append(road_map_info)
return road_map_info_list
| 1,076 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VisibilityRoadMap/visibility_road_map.py
|
VisibilityRoadMap.is_edge_valid
|
(target_node, node, obstacle)
|
return True
| 112 | 123 |
def is_edge_valid(target_node, node, obstacle):
for i in range(len(obstacle.x_list) - 1):
p1 = Geometry.Point(target_node.x, target_node.y)
p2 = Geometry.Point(node.x, node.y)
p3 = Geometry.Point(obstacle.x_list[i], obstacle.y_list[i])
p4 = Geometry.Point(obstacle.x_list[i + 1], obstacle.y_list[i + 1])
if Geometry.is_seg_intersect(p1, p2, p3, p4):
return False
return True
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VisibilityRoadMap/visibility_road_map.py#L112-L123
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11
] | 100 |
[] | 0 | true | 92.792793 | 12 | 3 | 100 | 0 |
def is_edge_valid(target_node, node, obstacle):
for i in range(len(obstacle.x_list) - 1):
p1 = Geometry.Point(target_node.x, target_node.y)
p2 = Geometry.Point(node.x, node.y)
p3 = Geometry.Point(obstacle.x_list[i], obstacle.y_list[i])
p4 = Geometry.Point(obstacle.x_list[i + 1], obstacle.y_list[i + 1])
if Geometry.is_seg_intersect(p1, p2, p3, p4):
return False
return True
| 1,077 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VisibilityRoadMap/visibility_road_map.py
|
VisibilityRoadMap.calc_offset_xy
|
(self, px, py, x, y, nx, ny)
|
return offset_x, offset_y
| 125 | 133 |
def calc_offset_xy(self, px, py, x, y, nx, ny):
p_vec = math.atan2(y - py, x - px)
n_vec = math.atan2(ny - y, nx - x)
offset_vec = math.atan2(math.sin(p_vec) + math.sin(n_vec),
math.cos(p_vec) + math.cos(
n_vec)) + math.pi / 2.0
offset_x = x + self.expand_distance * math.cos(offset_vec)
offset_y = y + self.expand_distance * math.sin(offset_vec)
return offset_x, offset_y
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VisibilityRoadMap/visibility_road_map.py#L125-L133
| 2 |
[
0,
1,
2,
3,
6,
7,
8
] | 77.777778 |
[] | 0 | false | 92.792793 | 9 | 1 | 100 | 0 |
def calc_offset_xy(self, px, py, x, y, nx, ny):
p_vec = math.atan2(y - py, x - px)
n_vec = math.atan2(ny - y, nx - x)
offset_vec = math.atan2(math.sin(p_vec) + math.sin(n_vec),
math.cos(p_vec) + math.cos(
n_vec)) + math.pi / 2.0
offset_x = x + self.expand_distance * math.cos(offset_vec)
offset_y = y + self.expand_distance * math.sin(offset_vec)
return offset_x, offset_y
| 1,078 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VisibilityRoadMap/visibility_road_map.py
|
VisibilityRoadMap.plot_road_map
|
(nodes, road_map_info_list)
| 136 | 140 |
def plot_road_map(nodes, road_map_info_list):
for i, node in enumerate(nodes):
for index in road_map_info_list[i]:
plt.plot([node.x, nodes[index].x],
[node.y, nodes[index].y], "-b")
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VisibilityRoadMap/visibility_road_map.py#L136-L140
| 2 |
[
0
] | 20 |
[
1,
2,
3
] | 60 | false | 92.792793 | 5 | 3 | 40 | 0 |
def plot_road_map(nodes, road_map_info_list):
for i, node in enumerate(nodes):
for index in road_map_info_list[i]:
plt.plot([node.x, nodes[index].x],
[node.y, nodes[index].y], "-b")
| 1,079 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VisibilityRoadMap/visibility_road_map.py
|
ObstaclePolygon.__init__
|
(self, x_list, y_list)
| 145 | 150 |
def __init__(self, x_list, y_list):
self.x_list = x_list
self.y_list = y_list
self.close_polygon()
self.make_clockwise()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VisibilityRoadMap/visibility_road_map.py#L145-L150
| 2 |
[
0,
1,
2,
3,
4,
5
] | 100 |
[] | 0 | true | 92.792793 | 6 | 1 | 100 | 0 |
def __init__(self, x_list, y_list):
self.x_list = x_list
self.y_list = y_list
self.close_polygon()
self.make_clockwise()
| 1,080 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VisibilityRoadMap/visibility_road_map.py
|
ObstaclePolygon.make_clockwise
|
(self)
| 152 | 155 |
def make_clockwise(self):
if not self.is_clockwise():
self.x_list = list(reversed(self.x_list))
self.y_list = list(reversed(self.y_list))
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VisibilityRoadMap/visibility_road_map.py#L152-L155
| 2 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 92.792793 | 4 | 2 | 100 | 0 |
def make_clockwise(self):
if not self.is_clockwise():
self.x_list = list(reversed(self.x_list))
self.y_list = list(reversed(self.y_list))
| 1,081 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VisibilityRoadMap/visibility_road_map.py
|
ObstaclePolygon.is_clockwise
|
(self)
|
return eval_sum >= 0
| 157 | 164 |
def is_clockwise(self):
n_data = len(self.x_list)
eval_sum = sum([(self.x_list[i + 1] - self.x_list[i]) *
(self.y_list[i + 1] + self.y_list[i])
for i in range(n_data - 1)])
eval_sum += (self.x_list[0] - self.x_list[n_data - 1]) * \
(self.y_list[0] + self.y_list[n_data - 1])
return eval_sum >= 0
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VisibilityRoadMap/visibility_road_map.py#L157-L164
| 2 |
[
0,
1,
2,
5,
7
] | 62.5 |
[] | 0 | false | 92.792793 | 8 | 2 | 100 | 0 |
def is_clockwise(self):
n_data = len(self.x_list)
eval_sum = sum([(self.x_list[i + 1] - self.x_list[i]) *
(self.y_list[i + 1] + self.y_list[i])
for i in range(n_data - 1)])
eval_sum += (self.x_list[0] - self.x_list[n_data - 1]) * \
(self.y_list[0] + self.y_list[n_data - 1])
return eval_sum >= 0
| 1,082 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VisibilityRoadMap/visibility_road_map.py
|
ObstaclePolygon.close_polygon
|
(self)
| 166 | 173 |
def close_polygon(self):
is_x_same = self.x_list[0] == self.x_list[-1]
is_y_same = self.y_list[0] == self.y_list[-1]
if is_x_same and is_y_same:
return # no need to close
self.x_list.append(self.x_list[0])
self.y_list.append(self.y_list[0])
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VisibilityRoadMap/visibility_road_map.py#L166-L173
| 2 |
[
0,
1,
2,
3,
5,
6,
7
] | 87.5 |
[
4
] | 12.5 | false | 92.792793 | 8 | 3 | 87.5 | 0 |
def close_polygon(self):
is_x_same = self.x_list[0] == self.x_list[-1]
is_y_same = self.y_list[0] == self.y_list[-1]
if is_x_same and is_y_same:
return # no need to close
self.x_list.append(self.x_list[0])
self.y_list.append(self.y_list[0])
| 1,083 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VisibilityRoadMap/visibility_road_map.py
|
ObstaclePolygon.plot
|
(self)
| 175 | 176 |
def plot(self):
plt.plot(self.x_list, self.y_list, "-k")
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VisibilityRoadMap/visibility_road_map.py#L175-L176
| 2 |
[
0
] | 50 |
[
1
] | 50 | false | 92.792793 | 2 | 1 | 50 | 0 |
def plot(self):
plt.plot(self.x_list, self.y_list, "-k")
| 1,084 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VisibilityRoadMap/geometry.py
|
Geometry.is_seg_intersect
|
(p1, q1, p2, q2)
|
return False
| 9 | 44 |
def is_seg_intersect(p1, q1, p2, q2):
def on_segment(p, q, r):
if ((q.x <= max(p.x, r.x)) and (q.x >= min(p.x, r.x)) and
(q.y <= max(p.y, r.y)) and (q.y >= min(p.y, r.y))):
return True
return False
def orientation(p, q, r):
val = (float(q.y - p.y) * (r.x - q.x)) - (
float(q.x - p.x) * (r.y - q.y))
if val > 0:
return 1
if val < 0:
return 2
return 0
# Find the 4 orientations required for
# the general and special cases
o1 = orientation(p1, q1, p2)
o2 = orientation(p1, q1, q2)
o3 = orientation(p2, q2, p1)
o4 = orientation(p2, q2, q1)
if (o1 != o2) and (o3 != o4):
return True
if (o1 == 0) and on_segment(p1, p2, q1):
return True
if (o2 == 0) and on_segment(p1, q2, q1):
return True
if (o3 == 0) and on_segment(p2, p1, q2):
return True
if (o4 == 0) and on_segment(p2, q1, q2):
return True
return False
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VisibilityRoadMap/geometry.py#L9-L44
| 2 |
[
0,
1,
2,
7,
8,
9,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
28,
30,
32,
34,
35
] | 75 |
[
3,
5,
6,
27,
29,
31,
33
] | 19.444444 | false | 78.787879 | 36 | 19 | 80.555556 | 0 |
def is_seg_intersect(p1, q1, p2, q2):
def on_segment(p, q, r):
if ((q.x <= max(p.x, r.x)) and (q.x >= min(p.x, r.x)) and
(q.y <= max(p.y, r.y)) and (q.y >= min(p.y, r.y))):
return True
return False
def orientation(p, q, r):
val = (float(q.y - p.y) * (r.x - q.x)) - (
float(q.x - p.x) * (r.y - q.y))
if val > 0:
return 1
if val < 0:
return 2
return 0
# Find the 4 orientations required for
# the general and special cases
o1 = orientation(p1, q1, p2)
o2 = orientation(p1, q1, q2)
o3 = orientation(p2, q2, p1)
o4 = orientation(p2, q2, q1)
if (o1 != o2) and (o3 != o4):
return True
if (o1 == 0) and on_segment(p1, p2, q1):
return True
if (o2 == 0) and on_segment(p1, q2, q1):
return True
if (o3 == 0) and on_segment(p2, p1, q2):
return True
if (o4 == 0) and on_segment(p2, q1, q2):
return True
return False
| 1,085 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VoronoiRoadMap/voronoi_road_map.py
|
main
|
()
| 135 | 182 |
def main():
print(__file__ + " start!!")
# start and goal position
sx = 10.0 # [m]
sy = 10.0 # [m]
gx = 50.0 # [m]
gy = 50.0 # [m]
robot_size = 5.0 # [m]
ox = []
oy = []
for i in range(60):
ox.append(i)
oy.append(0.0)
for i in range(60):
ox.append(60.0)
oy.append(i)
for i in range(61):
ox.append(i)
oy.append(60.0)
for i in range(61):
ox.append(0.0)
oy.append(i)
for i in range(40):
ox.append(20.0)
oy.append(i)
for i in range(40):
ox.append(40.0)
oy.append(60.0 - i)
if show_animation: # pragma: no cover
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "^r")
plt.plot(gx, gy, "^c")
plt.grid(True)
plt.axis("equal")
rx, ry = VoronoiRoadMapPlanner().planning(sx, sy, gx, gy, ox, oy,
robot_size)
assert rx, 'Cannot found path'
if show_animation: # pragma: no cover
plt.plot(rx, ry, "-r")
plt.pause(0.1)
plt.show()
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VoronoiRoadMap/voronoi_road_map.py#L135-L182
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
38,
39,
41,
42,
43
] | 97.368421 |
[] | 0 | false | 98.989899 | 48 | 10 | 100 | 0 |
def main():
print(__file__ + " start!!")
# start and goal position
sx = 10.0 # [m]
sy = 10.0 # [m]
gx = 50.0 # [m]
gy = 50.0 # [m]
robot_size = 5.0 # [m]
ox = []
oy = []
for i in range(60):
ox.append(i)
oy.append(0.0)
for i in range(60):
ox.append(60.0)
oy.append(i)
for i in range(61):
ox.append(i)
oy.append(60.0)
for i in range(61):
ox.append(0.0)
oy.append(i)
for i in range(40):
ox.append(20.0)
oy.append(i)
for i in range(40):
ox.append(40.0)
oy.append(60.0 - i)
if show_animation: # pragma: no cover
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "^r")
plt.plot(gx, gy, "^c")
plt.grid(True)
plt.axis("equal")
rx, ry = VoronoiRoadMapPlanner().planning(sx, sy, gx, gy, ox, oy,
robot_size)
assert rx, 'Cannot found path'
if show_animation: # pragma: no cover
plt.plot(rx, ry, "-r")
plt.pause(0.1)
plt.show()
| 1,086 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VoronoiRoadMap/voronoi_road_map.py
|
VoronoiRoadMapPlanner.__init__
|
(self)
| 24 | 27 |
def __init__(self):
# parameter
self.N_KNN = 10 # number of edge from one sampled point
self.MAX_EDGE_LEN = 30.0
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VoronoiRoadMap/voronoi_road_map.py#L24-L27
| 2 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 98.989899 | 4 | 1 | 100 | 0 |
def __init__(self):
# parameter
self.N_KNN = 10 # number of edge from one sampled point
self.MAX_EDGE_LEN = 30.0
| 1,087 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VoronoiRoadMap/voronoi_road_map.py
|
VoronoiRoadMapPlanner.planning
|
(self, sx, sy, gx, gy, ox, oy, robot_radius)
|
return rx, ry
| 29 | 42 |
def planning(self, sx, sy, gx, gy, ox, oy, robot_radius):
obstacle_tree = cKDTree(np.vstack((ox, oy)).T)
sample_x, sample_y = self.voronoi_sampling(sx, sy, gx, gy, ox, oy)
if show_animation: # pragma: no cover
plt.plot(sample_x, sample_y, ".b")
road_map_info = self.generate_road_map_info(
sample_x, sample_y, robot_radius, obstacle_tree)
rx, ry = DijkstraSearch(show_animation).search(sx, sy, gx, gy,
sample_x, sample_y,
road_map_info)
return rx, ry
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VoronoiRoadMap/voronoi_road_map.py#L29-L42
| 2 |
[
0,
1,
2,
3,
6,
7,
9,
10,
13
] | 75 |
[] | 0 | false | 98.989899 | 14 | 2 | 100 | 0 |
def planning(self, sx, sy, gx, gy, ox, oy, robot_radius):
obstacle_tree = cKDTree(np.vstack((ox, oy)).T)
sample_x, sample_y = self.voronoi_sampling(sx, sy, gx, gy, ox, oy)
if show_animation: # pragma: no cover
plt.plot(sample_x, sample_y, ".b")
road_map_info = self.generate_road_map_info(
sample_x, sample_y, robot_radius, obstacle_tree)
rx, ry = DijkstraSearch(show_animation).search(sx, sy, gx, gy,
sample_x, sample_y,
road_map_info)
return rx, ry
| 1,088 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VoronoiRoadMap/voronoi_road_map.py
|
VoronoiRoadMapPlanner.is_collision
|
(self, sx, sy, gx, gy, rr, obstacle_kd_tree)
|
return False
| 44 | 70 |
def is_collision(self, sx, sy, gx, gy, rr, obstacle_kd_tree):
x = sx
y = sy
dx = gx - sx
dy = gy - sy
yaw = math.atan2(gy - sy, gx - sx)
d = math.hypot(dx, dy)
if d >= self.MAX_EDGE_LEN:
return True
D = rr
n_step = round(d / D)
for i in range(n_step):
dist, _ = obstacle_kd_tree.query([x, y])
if dist <= rr:
return True # collision
x += D * math.cos(yaw)
y += D * math.sin(yaw)
# goal point check
dist, _ = obstacle_kd_tree.query([gx, gy])
if dist <= rr:
return True # collision
return False
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VoronoiRoadMap/voronoi_road_map.py#L44-L70
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26
] | 100 |
[] | 0 | true | 98.989899 | 27 | 5 | 100 | 0 |
def is_collision(self, sx, sy, gx, gy, rr, obstacle_kd_tree):
x = sx
y = sy
dx = gx - sx
dy = gy - sy
yaw = math.atan2(gy - sy, gx - sx)
d = math.hypot(dx, dy)
if d >= self.MAX_EDGE_LEN:
return True
D = rr
n_step = round(d / D)
for i in range(n_step):
dist, _ = obstacle_kd_tree.query([x, y])
if dist <= rr:
return True # collision
x += D * math.cos(yaw)
y += D * math.sin(yaw)
# goal point check
dist, _ = obstacle_kd_tree.query([gx, gy])
if dist <= rr:
return True # collision
return False
| 1,089 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VoronoiRoadMap/voronoi_road_map.py
|
VoronoiRoadMapPlanner.generate_road_map_info
|
(self, node_x, node_y, rr, obstacle_tree)
|
return road_map
|
Road map generation
node_x: [m] x positions of sampled points
node_y: [m] y positions of sampled points
rr: Robot Radius[m]
obstacle_tree: KDTree object of obstacles
|
Road map generation
| 72 | 106 |
def generate_road_map_info(self, node_x, node_y, rr, obstacle_tree):
"""
Road map generation
node_x: [m] x positions of sampled points
node_y: [m] y positions of sampled points
rr: Robot Radius[m]
obstacle_tree: KDTree object of obstacles
"""
road_map = []
n_sample = len(node_x)
node_tree = cKDTree(np.vstack((node_x, node_y)).T)
for (i, ix, iy) in zip(range(n_sample), node_x, node_y):
dists, indexes = node_tree.query([ix, iy], k=n_sample)
edge_id = []
for ii in range(1, len(indexes)):
nx = node_x[indexes[ii]]
ny = node_y[indexes[ii]]
if not self.is_collision(ix, iy, nx, ny, rr, obstacle_tree):
edge_id.append(indexes[ii])
if len(edge_id) >= self.N_KNN:
break
road_map.append(edge_id)
# plot_road_map(road_map, sample_x, sample_y)
return road_map
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VoronoiRoadMap/voronoi_road_map.py#L72-L106
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34
] | 100 |
[] | 0 | true | 98.989899 | 35 | 5 | 100 | 6 |
def generate_road_map_info(self, node_x, node_y, rr, obstacle_tree):
road_map = []
n_sample = len(node_x)
node_tree = cKDTree(np.vstack((node_x, node_y)).T)
for (i, ix, iy) in zip(range(n_sample), node_x, node_y):
dists, indexes = node_tree.query([ix, iy], k=n_sample)
edge_id = []
for ii in range(1, len(indexes)):
nx = node_x[indexes[ii]]
ny = node_y[indexes[ii]]
if not self.is_collision(ix, iy, nx, ny, rr, obstacle_tree):
edge_id.append(indexes[ii])
if len(edge_id) >= self.N_KNN:
break
road_map.append(edge_id)
# plot_road_map(road_map, sample_x, sample_y)
return road_map
| 1,090 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VoronoiRoadMap/voronoi_road_map.py
|
VoronoiRoadMapPlanner.plot_road_map
|
(road_map, sample_x, sample_y)
| 109 | 116 |
def plot_road_map(road_map, sample_x, sample_y): # pragma: no cover
for i, _ in enumerate(road_map):
for ii in range(len(road_map[i])):
ind = road_map[i][ii]
plt.plot([sample_x[i], sample_x[ind]],
[sample_y[i], sample_y[ind]], "-k")
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VoronoiRoadMap/voronoi_road_map.py#L109-L116
| 2 |
[] | 0 |
[] | 0 | false | 98.989899 | 8 | 3 | 100 | 0 |
def plot_road_map(road_map, sample_x, sample_y): # pragma: no cover
for i, _ in enumerate(road_map):
for ii in range(len(road_map[i])):
ind = road_map[i][ii]
plt.plot([sample_x[i], sample_x[ind]],
[sample_y[i], sample_y[ind]], "-k")
| 1,091 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VoronoiRoadMap/voronoi_road_map.py
|
VoronoiRoadMapPlanner.voronoi_sampling
|
(sx, sy, gx, gy, ox, oy)
|
return sample_x, sample_y
| 119 | 132 |
def voronoi_sampling(sx, sy, gx, gy, ox, oy):
oxy = np.vstack((ox, oy)).T
# generate voronoi point
vor = Voronoi(oxy)
sample_x = [ix for [ix, _] in vor.vertices]
sample_y = [iy for [_, iy] in vor.vertices]
sample_x.append(sx)
sample_y.append(sy)
sample_x.append(gx)
sample_y.append(gy)
return sample_x, sample_y
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VoronoiRoadMap/voronoi_road_map.py#L119-L132
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 98.989899 | 14 | 3 | 100 | 0 |
def voronoi_sampling(sx, sy, gx, gy, ox, oy):
oxy = np.vstack((ox, oy)).T
# generate voronoi point
vor = Voronoi(oxy)
sample_x = [ix for [ix, _] in vor.vertices]
sample_y = [iy for [_, iy] in vor.vertices]
sample_x.append(sx)
sample_y.append(sy)
sample_x.append(gx)
sample_y.append(gy)
return sample_x, sample_y
| 1,092 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VoronoiRoadMap/dijkstra_search.py
|
DijkstraSearch.__init__
|
(self, show_animation)
| 31 | 32 |
def __init__(self, show_animation):
self.show_animation = show_animation
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VoronoiRoadMap/dijkstra_search.py#L31-L32
| 2 |
[
0,
1
] | 100 |
[] | 0 | true | 94.805195 | 2 | 1 | 100 | 0 |
def __init__(self, show_animation):
self.show_animation = show_animation
| 1,093 |
|||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VoronoiRoadMap/dijkstra_search.py
|
DijkstraSearch.search
|
(self, sx, sy, gx, gy, node_x, node_y, edge_ids_list)
|
return rx, ry
|
Search shortest path
s_x: start x positions [m]
s_y: start y positions [m]
gx: goal x position [m]
gx: goal x position [m]
node_x: node x position
node_y: node y position
edge_ids_list: edge_list each item includes a list of edge ids
|
Search shortest path
| 34 | 103 |
def search(self, sx, sy, gx, gy, node_x, node_y, edge_ids_list):
"""
Search shortest path
s_x: start x positions [m]
s_y: start y positions [m]
gx: goal x position [m]
gx: goal x position [m]
node_x: node x position
node_y: node y position
edge_ids_list: edge_list each item includes a list of edge ids
"""
start_node = self.Node(sx, sy, 0.0, -1)
goal_node = self.Node(gx, gy, 0.0, -1)
current_node = None
open_set, close_set = dict(), dict()
open_set[self.find_id(node_x, node_y, start_node)] = start_node
while True:
if self.has_node_in_set(close_set, goal_node):
print("goal is found!")
goal_node.parent = current_node.parent
goal_node.cost = current_node.cost
break
elif not open_set:
print("Cannot find path")
break
current_id = min(open_set, key=lambda o: open_set[o].cost)
current_node = open_set[current_id]
# show graph
if self.show_animation and len(
close_set.keys()) % 2 == 0: # pragma: no cover
plt.plot(current_node.x, current_node.y, "xg")
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.pause(0.1)
# Remove the item from the open set
del open_set[current_id]
# Add it to the closed set
close_set[current_id] = current_node
# expand search grid based on motion model
for i in range(len(edge_ids_list[current_id])):
n_id = edge_ids_list[current_id][i]
dx = node_x[n_id] - current_node.x
dy = node_y[n_id] - current_node.y
d = math.hypot(dx, dy)
node = self.Node(node_x[n_id], node_y[n_id],
current_node.cost + d, current_id)
if n_id in close_set:
continue
# Otherwise if it is already in the open set
if n_id in open_set:
if open_set[n_id].cost > node.cost:
open_set[n_id] = node
else:
open_set[n_id] = node
# generate final course
rx, ry = self.generate_final_path(close_set, goal_node)
return rx, ry
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VoronoiRoadMap/dijkstra_search.py#L34-L103
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69
] | 103.030303 |
[
27,
28
] | 3.030303 | false | 94.805195 | 70 | 10 | 96.969697 | 9 |
def search(self, sx, sy, gx, gy, node_x, node_y, edge_ids_list):
start_node = self.Node(sx, sy, 0.0, -1)
goal_node = self.Node(gx, gy, 0.0, -1)
current_node = None
open_set, close_set = dict(), dict()
open_set[self.find_id(node_x, node_y, start_node)] = start_node
while True:
if self.has_node_in_set(close_set, goal_node):
print("goal is found!")
goal_node.parent = current_node.parent
goal_node.cost = current_node.cost
break
elif not open_set:
print("Cannot find path")
break
current_id = min(open_set, key=lambda o: open_set[o].cost)
current_node = open_set[current_id]
# show graph
if self.show_animation and len(
close_set.keys()) % 2 == 0: # pragma: no cover
plt.plot(current_node.x, current_node.y, "xg")
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.pause(0.1)
# Remove the item from the open set
del open_set[current_id]
# Add it to the closed set
close_set[current_id] = current_node
# expand search grid based on motion model
for i in range(len(edge_ids_list[current_id])):
n_id = edge_ids_list[current_id][i]
dx = node_x[n_id] - current_node.x
dy = node_y[n_id] - current_node.y
d = math.hypot(dx, dy)
node = self.Node(node_x[n_id], node_y[n_id],
current_node.cost + d, current_id)
if n_id in close_set:
continue
# Otherwise if it is already in the open set
if n_id in open_set:
if open_set[n_id].cost > node.cost:
open_set[n_id] = node
else:
open_set[n_id] = node
# generate final course
rx, ry = self.generate_final_path(close_set, goal_node)
return rx, ry
| 1,094 |
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VoronoiRoadMap/dijkstra_search.py
|
DijkstraSearch.generate_final_path
|
(close_set, goal_node)
|
return rx, ry
| 106 | 115 |
def generate_final_path(close_set, goal_node):
rx, ry = [goal_node.x], [goal_node.y]
parent = goal_node.parent
while parent != -1:
n = close_set[parent]
rx.append(n.x)
ry.append(n.y)
parent = n.parent
rx, ry = rx[::-1], ry[::-1] # reverse it
return rx, ry
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VoronoiRoadMap/dijkstra_search.py#L106-L115
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 94.805195 | 10 | 2 | 100 | 0 |
def generate_final_path(close_set, goal_node):
rx, ry = [goal_node.x], [goal_node.y]
parent = goal_node.parent
while parent != -1:
n = close_set[parent]
rx.append(n.x)
ry.append(n.y)
parent = n.parent
rx, ry = rx[::-1], ry[::-1] # reverse it
return rx, ry
| 1,095 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VoronoiRoadMap/dijkstra_search.py
|
DijkstraSearch.has_node_in_set
|
(self, target_set, node)
|
return False
| 117 | 121 |
def has_node_in_set(self, target_set, node):
for key in target_set:
if self.is_same_node(target_set[key], node):
return True
return False
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VoronoiRoadMap/dijkstra_search.py#L117-L121
| 2 |
[
0,
1,
2,
3,
4
] | 100 |
[] | 0 | true | 94.805195 | 5 | 3 | 100 | 0 |
def has_node_in_set(self, target_set, node):
for key in target_set:
if self.is_same_node(target_set[key], node):
return True
return False
| 1,096 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VoronoiRoadMap/dijkstra_search.py
|
DijkstraSearch.find_id
|
(self, node_x_list, node_y_list, target_node)
|
return None
| 123 | 128 |
def find_id(self, node_x_list, node_y_list, target_node):
for i, _ in enumerate(node_x_list):
if self.is_same_node_with_xy(node_x_list[i], node_y_list[i],
target_node):
return i
return None
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VoronoiRoadMap/dijkstra_search.py#L123-L128
| 2 |
[
0,
1,
2,
4
] | 66.666667 |
[
5
] | 16.666667 | false | 94.805195 | 6 | 3 | 83.333333 | 0 |
def find_id(self, node_x_list, node_y_list, target_node):
for i, _ in enumerate(node_x_list):
if self.is_same_node_with_xy(node_x_list[i], node_y_list[i],
target_node):
return i
return None
| 1,097 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VoronoiRoadMap/dijkstra_search.py
|
DijkstraSearch.is_same_node_with_xy
|
(node_x, node_y, node_b)
|
return dist <= 0.1
| 131 | 134 |
def is_same_node_with_xy(node_x, node_y, node_b):
dist = np.hypot(node_x - node_b.x,
node_y - node_b.y)
return dist <= 0.1
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VoronoiRoadMap/dijkstra_search.py#L131-L134
| 2 |
[
0,
1,
3
] | 75 |
[] | 0 | false | 94.805195 | 4 | 1 | 100 | 0 |
def is_same_node_with_xy(node_x, node_y, node_b):
dist = np.hypot(node_x - node_b.x,
node_y - node_b.y)
return dist <= 0.1
| 1,098 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/VoronoiRoadMap/dijkstra_search.py
|
DijkstraSearch.is_same_node
|
(node_a, node_b)
|
return dist <= 0.1
| 137 | 140 |
def is_same_node(node_a, node_b):
dist = np.hypot(node_a.x - node_b.x,
node_a.y - node_b.y)
return dist <= 0.1
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/VoronoiRoadMap/dijkstra_search.py#L137-L140
| 2 |
[
0,
1,
3
] | 75 |
[] | 0 | false | 94.805195 | 4 | 1 | 100 | 0 |
def is_same_node(node_a, node_b):
dist = np.hypot(node_a.x - node_b.x,
node_a.y - node_b.y)
return dist <= 0.1
| 1,099 |
||
AtsushiSakai/PythonRobotics
|
15ab19688b2f6c03ee91a853f1f8cc9def84d162
|
PathPlanning/StateLatticePlanner/state_lattice_planner.py
|
search_nearest_one_from_lookup_table
|
(t_x, t_y, t_yaw, lookup_table)
|
return lookup_table[minid]
| 35 | 48 |
def search_nearest_one_from_lookup_table(t_x, t_y, t_yaw, lookup_table):
mind = float("inf")
minid = -1
for (i, table) in enumerate(lookup_table):
dx = t_x - table[0]
dy = t_y - table[1]
dyaw = t_yaw - table[2]
d = math.sqrt(dx ** 2 + dy ** 2 + dyaw ** 2)
if d <= mind:
minid = i
mind = d
return lookup_table[minid]
|
https://github.com/AtsushiSakai/PythonRobotics/blob/15ab19688b2f6c03ee91a853f1f8cc9def84d162/project2/PathPlanning/StateLatticePlanner/state_lattice_planner.py#L35-L48
| 2 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 88.601036 | 14 | 3 | 100 | 0 |
def search_nearest_one_from_lookup_table(t_x, t_y, t_yaw, lookup_table):
mind = float("inf")
minid = -1
for (i, table) in enumerate(lookup_table):
dx = t_x - table[0]
dy = t_y - table[1]
dyaw = t_yaw - table[2]
d = math.sqrt(dx ** 2 + dy ** 2 + dyaw ** 2)
if d <= mind:
minid = i
mind = d
return lookup_table[minid]
| 1,100 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.