repo_id
stringlengths
4
110
author
stringlengths
2
27
model_type
stringlengths
2
29
files_per_repo
int64
2
15.4k
downloads_30d
int64
0
19.9M
library
stringlengths
2
37
likes
int64
0
4.34k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
30
languages
stringlengths
4
1.63k
datasets
stringlengths
2
2.58k
co2
stringclasses
29 values
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
15
prs_closed
int64
0
28
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
1 class
has_text
bool
1 class
text_length
int64
401
598k
is_nc
bool
1 class
readme
stringlengths
0
598k
hash
stringlengths
32
32
jonatasgrosman/exp_w2v2r_fr_xls-r_age_teens-2_sixties-8_s598
jonatasgrosman
wav2vec2
10
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['fr']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'fr']
false
true
true
475
false
# exp_w2v2r_fr_xls-r_age_teens-2_sixties-8_s598 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
ba4deea330bbb081effbd88d617f9df5
hirohiroz/wav2vec2-base-timit-demo-google-colab
hirohiroz
wav2vec2
12
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,998
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5173 - Wer: 0.3399 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5684 | 1.0 | 500 | 2.1662 | 1.0068 | | 0.9143 | 2.01 | 1000 | 0.5820 | 0.5399 | | 0.439 | 3.01 | 1500 | 0.4596 | 0.4586 | | 0.3122 | 4.02 | 2000 | 0.4623 | 0.4181 | | 0.2391 | 5.02 | 2500 | 0.4243 | 0.3938 | | 0.1977 | 6.02 | 3000 | 0.4421 | 0.3964 | | 0.1635 | 7.03 | 3500 | 0.5076 | 0.3977 | | 0.145 | 8.03 | 4000 | 0.4639 | 0.3754 | | 0.1315 | 9.04 | 4500 | 0.5181 | 0.3652 | | 0.1131 | 10.04 | 5000 | 0.4496 | 0.3778 | | 0.1005 | 11.04 | 5500 | 0.4438 | 0.3664 | | 0.0919 | 12.05 | 6000 | 0.4868 | 0.3865 | | 0.0934 | 13.05 | 6500 | 0.5163 | 0.3694 | | 0.076 | 14.06 | 7000 | 0.4543 | 0.3719 | | 0.0727 | 15.06 | 7500 | 0.5296 | 0.3807 | | 0.0657 | 16.06 | 8000 | 0.4715 | 0.3699 | | 0.0578 | 17.07 | 8500 | 0.4927 | 0.3699 | | 0.057 | 18.07 | 9000 | 0.4767 | 0.3660 | | 0.0493 | 19.08 | 9500 | 0.5306 | 0.3623 | | 0.0425 | 20.08 | 10000 | 0.4828 | 0.3561 | | 0.0431 | 21.08 | 10500 | 0.4875 | 0.3620 | | 0.0366 | 22.09 | 11000 | 0.4984 | 0.3482 | | 0.0332 | 23.09 | 11500 | 0.5375 | 0.3477 | | 0.0348 | 24.1 | 12000 | 0.5406 | 0.3361 | | 0.0301 | 25.1 | 12500 | 0.4954 | 0.3381 | | 0.0294 | 26.1 | 13000 | 0.5033 | 0.3424 | | 0.026 | 27.11 | 13500 | 0.5254 | 0.3384 | | 0.0243 | 28.11 | 14000 | 0.5189 | 0.3402 | | 0.0221 | 29.12 | 14500 | 0.5173 | 0.3399 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
542d95dd1e638bb6a8114dbe0a8dd4fd
juro95/xlm-roberta-finetuned-ner-cased_1_ratio
juro95
xlm-roberta
8
2
transformers
0
token-classification
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,489
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # juro95/xlm-roberta-finetuned-ner-cased_1_ratio This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0633 - Validation Loss: 0.0940 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 14272, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.3166 | 0.1533 | 0 | | 0.1376 | 0.1114 | 1 | | 0.0909 | 0.0988 | 2 | | 0.0633 | 0.0940 | 3 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.6.5 - Datasets 2.3.2 - Tokenizers 0.13.2
afb56fc19fbff6c2885bb89cf2627060
doddle124578/wav2vec2-base-timit-demo-colab-3
doddle124578
wav2vec2
14
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,402
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab-3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6622 - Wer: 0.5082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.2195 | 8.77 | 500 | 0.9187 | 0.6635 | | 0.5996 | 17.54 | 1000 | 0.6569 | 0.5347 | | 0.2855 | 26.32 | 1500 | 0.6622 | 0.5082 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
c79351f7c2ad4844f35281f2ae47ab4a
joaoluislins/wmt-ptt5-colab-base-finetuned-en-to-pt
joaoluislins
t5
12
5
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,688
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wmt-mbart50-large-finetuned-en-to-pt This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the WMT dataset (bi and mono-backtranslated) It achieves the following results on the evaluation set: - Loss: 0.2510 - Bleu: 62.7011 - Gen Len: 19.224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 1.6426 | 1.0 | 433 | 0.5323 | 4.484 | 10.5635 | | 0.2571 | 2.0 | 866 | 0.1965 | 47.6449 | 19.164 | | 0.1043 | 3.0 | 1299 | 0.1723 | 53.6231 | 19.1455 | | 0.058 | 4.0 | 1732 | 0.1908 | 52.9831 | 18.5543 | | 0.0382 | 5.0 | 2165 | 0.1801 | 58.4418 | 19.0808 | | 0.0244 | 6.0 | 2598 | 0.2014 | 56.0197 | 20.0485 | | 0.0195 | 7.0 | 3031 | 0.2029 | 56.7903 | 18.642 | | 0.0138 | 8.0 | 3464 | 0.2015 | 57.6855 | 19.0 | | 0.0126 | 9.0 | 3897 | 0.2095 | 58.5733 | 18.7644 | | 0.0095 | 10.0 | 4330 | 0.1946 | 60.3165 | 19.6097 | | 0.0067 | 11.0 | 4763 | 0.2094 | 60.2691 | 18.9561 | | 0.0055 | 12.0 | 5196 | 0.2202 | 60.375 | 19.3025 | | 0.0046 | 13.0 | 5629 | 0.2153 | 60.7254 | 19.0855 | | 0.0035 | 14.0 | 6062 | 0.2239 | 61.458 | 19.0647 | | 0.0054 | 15.0 | 6495 | 0.2250 | 61.5297 | 19.164 | | 0.0025 | 16.0 | 6928 | 0.2458 | 61.263 | 19.0531 | | 0.002 | 17.0 | 7361 | 0.2354 | 62.4404 | 19.2102 | | 0.0015 | 18.0 | 7794 | 0.2403 | 62.0235 | 19.1293 | | 0.0011 | 19.0 | 8227 | 0.2477 | 62.6301 | 19.2494 | | 0.0009 | 20.0 | 8660 | 0.2510 | 62.7011 | 19.224 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
441eace720226a280107694549207b32
xezpeleta/whisper-small-eu-v2
xezpeleta
whisper
26
14
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['eu']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,564
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Basque This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 eu dataset. It achieves the following results on the evaluation set: - Loss: 0.3580 - Wer: 18.9337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1372 | 2.04 | 1000 | 0.3166 | 22.2335 | | 0.0175 | 4.07 | 2000 | 0.3356 | 19.9862 | | 0.0055 | 7.02 | 3000 | 0.3580 | 18.9337 | | 0.0015 | 9.06 | 4000 | 0.3803 | 18.9581 | | 0.0013 | 12.01 | 5000 | 0.3908 | 18.9541 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
6b94877a39c93e4dde4e963ea7f938cf
shi-labs/oneformer_ade20k_swin_large
shi-labs
oneformer
10
394
transformers
0
image-segmentation
true
false
false
mit
null
['scene_parse_150']
null
0
0
0
0
0
0
0
['vision', 'image-segmentation', 'universal-image-segmentation']
false
true
true
3,329
false
# OneFormer OneFormer model trained on the ADE20k dataset (large-sized version, Swin backbone). It was introduced in the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jain et al. and first released in [this repository](https://github.com/SHI-Labs/OneFormer). ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/oneformer_teaser.png) ## Model description OneFormer is the first multi-task universal image segmentation framework. It needs to be trained only once with a single universal architecture, a single model, and on a single dataset, to outperform existing specialized models across semantic, instance, and panoptic segmentation tasks. OneFormer uses a task token to condition the model on the task in focus, making the architecture task-guided for training, and task-dynamic for inference, all with a single model. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/oneformer_architecture.png) ## Intended uses & limitations You can use this particular checkpoint for semantic, instance and panoptic segmentation. See the [model hub](https://huggingface.co/models?search=oneformer) to look for other fine-tuned versions on a different dataset. ### How to use Here is how to use this model: ```python from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation from PIL import Image import requests url = "https://huggingface.co/datasets/shi-labs/oneformer_demo/blob/main/ade20k.jpeg" image = Image.open(requests.get(url, stream=True).raw) # Loading a single model for all three tasks processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_swin_large") model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_ade20k_swin_large") # Semantic Segmentation semantic_inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt") semantic_outputs = model(**semantic_inputs) # pass through image_processor for postprocessing predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] # Instance Segmentation instance_inputs = processor(images=image, task_inputs=["instance"], return_tensors="pt") instance_outputs = model(**instance_inputs) # pass through image_processor for postprocessing predicted_instance_map = processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"] # Panoptic Segmentation panoptic_inputs = processor(images=image, task_inputs=["panoptic"], return_tensors="pt") panoptic_outputs = model(**panoptic_inputs) # pass through image_processor for postprocessing predicted_semantic_map = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"] ``` For more examples, please refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/oneformer). ### Citation ```bibtex @article{jain2022oneformer, title={{OneFormer: One Transformer to Rule Universal Image Segmentation}}, author={Jitesh Jain and Jiachen Li and MangTik Chiu and Ali Hassani and Nikita Orlov and Humphrey Shi}, journal={arXiv}, year={2022} } ```
a8177b7a18302f46119a2a33ecce841f
lmqg/mbart-large-cc25-ruquad-qg
lmqg
mbart
20
63
transformers
0
text2text-generation
true
false
false
cc-by-4.0
['ru']
['lmqg/qg_ruquad']
null
0
0
0
0
0
0
0
['question generation']
true
true
true
6,815
false
# Model Card of `lmqg/mbart-large-cc25-ruquad-qg` This model is fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) for question generation task on the [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) - **Language:** ru - **Training data:** [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="ru", model="lmqg/mbart-large-cc25-ruquad-qg") # model prediction questions = model.generate_q(list_context="Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.", list_answer="в мае 1860 года") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-ruquad-qg") output = pipe("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_ruquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 87.18 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | Bleu_1 | 35.25 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | Bleu_2 | 28.1 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | Bleu_3 | 22.87 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | Bleu_4 | 18.8 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | METEOR | 29.3 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | MoverScore | 65.88 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | ROUGE_L | 34.18 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | - ***Metric (Question & Answer Generation, Reference Answer)***: Each question is generated from *the gold answer*. [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_ruquad.default.json) | | Score | Type | Dataset | |:--------------------------------|--------:|:--------|:-----------------------------------------------------------------| | QAAlignedF1Score (BERTScore) | 92.08 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | QAAlignedF1Score (MoverScore) | 71.45 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | QAAlignedPrecision (BERTScore) | 92.09 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | QAAlignedPrecision (MoverScore) | 71.46 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | QAAlignedRecall (BERTScore) | 92.08 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | QAAlignedRecall (MoverScore) | 71.45 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | - ***Metric (Question & Answer Generation, Pipeline Approach)***: Each question is generated on the answer generated by [`lmqg/mbart-large-cc25-ruquad-ae`](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-ae). [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qg/raw/main/eval_pipeline/metric.first.answer.paragraph.questions_answers.lmqg_qg_ruquad.default.lmqg_mbart-large-cc25-ruquad-ae.json) | | Score | Type | Dataset | |:--------------------------------|--------:|:--------|:-----------------------------------------------------------------| | QAAlignedF1Score (BERTScore) | 79.14 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | QAAlignedF1Score (MoverScore) | 56.25 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | QAAlignedPrecision (BERTScore) | 75.88 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | QAAlignedPrecision (MoverScore) | 54.01 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | QAAlignedRecall (BERTScore) | 82.85 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | QAAlignedRecall (MoverScore) | 58.93 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_ruquad - dataset_name: default - input_types: ['paragraph_answer'] - output_types: ['question'] - prefix_types: None - model: facebook/mbart-large-cc25 - max_length: 512 - max_length_output: 32 - epoch: 17 - batch: 4 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 16 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
b2816cee53af91e0ce3e10c761a19c78
steysie/bert-base-multilingual-cased-tuned-smartcat
steysie
bert
6
4
transformers
0
text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,297
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-tuned-smartcat This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0006 | 1.0 | 11586 | 0.0000 | | 0.0003 | 2.0 | 23172 | 0.0000 | | 0.0 | 3.0 | 34806 | 0.0000 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
35c2a2d7a1094087ff828a3ad151694a
chinhon/distilgpt2-sgnews
chinhon
gpt2
16
3
transformers
0
text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,235
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-sgnews This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.3558 | 1.0 | 23769 | 3.2316 | | 3.2558 | 2.0 | 47538 | 3.1683 | | 3.2321 | 3.0 | 71307 | 3.1516 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
a88eaf255d9cb1e69f010113bfea6c03
emilios/whisper-medium-el
emilios
whisper
106
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['el']
['mozilla-foundation/common_voice_11_0', 'google/fleurs']
null
3
0
3
0
0
0
0
['hf-asr-leaderboard', 'whisper-medium', 'mozilla-foundation/common_voice_11_0', 'greek', 'whisper-event', 'generated_from_trainer', 'whisper-event']
true
true
true
1,225
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium El Greco This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4245 - eval_wer: 10.7448 - eval_runtime: 1107.1212 - eval_samples_per_second: 1.532 - eval_steps_per_second: 0.096 - epoch: 33.98 - step: 7000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 7000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
a767e91f6fe50fa588640760792ce815
nellchic/test
nellchic
null
12
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,319
false
### NOTE: USED WAIFU DIFFUSION <https://huggingface.co/hakurei/waifu-diffusion> ### hitokomoru-style Artist: <https://www.pixiv.net/en/users/30837811> This is the `<hitokomoru-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<hitokomoru-style> 0](https://huggingface.co/sd-concepts-library/hitokomoru-style/resolve/main/concept_images/0.jpeg) ![<hitokomoru-style> 1](https://huggingface.co/sd-concepts-library/hitokomoru-style/resolve/main/concept_images/3.jpeg) ![<hitokomoru-style> 2](https://huggingface.co/sd-concepts-library/hitokomoru-style/resolve/main/concept_images/5.jpeg) ![<hitokomoru-style> 4](https://huggingface.co/sd-concepts-library/hitokomoru-style/resolve/main/concept_images/1.jpeg) ![<hitokomoru-style> 5](https://huggingface.co/sd-concepts-library/hitokomoru-style/resolve/main/concept_images/2.jpeg)
35cfe0910c9d86237e52578ebcd505be
explosion/ko_udv25_koreankaist_trf
explosion
null
28
3
spacy
0
token-classification
false
false
false
cc-by-sa-4.0
['ko']
null
null
0
0
0
0
0
0
0
['spacy', 'token-classification']
false
true
true
61,725
false
UD v2.5 benchmarking pipeline for UD_Korean-Kaist | Feature | Description | | --- | --- | | **Name** | `ko_udv25_koreankaist_trf` | | **Version** | `0.0.1` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) | | **License** | `CC BY-SA 4.0` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (5329 labels for 6 components)</summary> | Component | Labels | | --- | --- | | **`experimental_char_ner_tokenizer`** | `TOKEN` | | **`senter`** | `I`, `S` | | **`tagger`** | `ecs`, `etm`, `f`, `f+f+jcj`, `f+f+jcs`, `f+f+jct`, `f+f+jxt`, `f+jca`, `f+jca+jp+ecc`, `f+jca+jp+ep+ef`, `f+jca+jxc`, `f+jca+jxc+jcm`, `f+jca+jxt`, `f+jcj`, `f+jcm`, `f+jco`, `f+jcs`, `f+jct`, `f+jct+jcm`, `f+jp+ef`, `f+jp+ep+ef`, `f+jp+etm`, `f+jxc`, `f+jxt`, `f+ncn`, `f+ncn+jcm`, `f+ncn+jcs`, `f+ncn+jp+ecc`, `f+ncn+jxt`, `f+ncpa+jcm`, `f+npp+jcs`, `f+nq`, `f+xsn`, `f+xsn+jco`, `f+xsn+jxt`, `ii`, `jca`, `jca+jcm`, `jca+jxc`, `jca+jxt`, `jcc`, `jcj`, `jcm`, `jco`, `jcr`, `jcr+jxc`, `jcs`, `jct`, `jct+jcm`, `jct+jxt`, `jp+ecc`, `jp+ecs`, `jp+ef`, `jp+ef+jcr`, `jp+ef+jcr+jxc`, `jp+ep+ecs`, `jp+ep+ef`, `jp+ep+etm`, `jp+ep+etn`, `jp+etm`, `jp+etn`, `jp+etn+jco`, `jp+etn+jxc`, `jxc`, `jxc+jca`, `jxc+jco`, `jxc+jcs`, `jxt`, `mad`, `mad+jxc`, `mad+jxt`, `mag`, `mag+jca`, `mag+jcm`, `mag+jcs`, `mag+jp+ef+jcr`, `mag+jxc`, `mag+jxc+jxc`, `mag+jxt`, `mag+xsn`, `maj`, `maj+jxc`, `maj+jxt`, `mma`, `mmd`, `nbn`, `nbn+jca`, `nbn+jca+jcj`, `nbn+jca+jcm`, `nbn+jca+jp+ef`, `nbn+jca+jxc`, `nbn+jca+jxt`, `nbn+jcc`, `nbn+jcj`, `nbn+jcm`, `nbn+jco`, `nbn+jcr`, `nbn+jcs`, `nbn+jct`, `nbn+jct+jcm`, `nbn+jct+jxt`, `nbn+jp+ecc`, `nbn+jp+ecs`, `nbn+jp+ecs+jca`, `nbn+jp+ecs+jcm`, `nbn+jp+ecs+jco`, `nbn+jp+ecs+jxc`, `nbn+jp+ecs+jxt`, `nbn+jp+ecx`, `nbn+jp+ef`, `nbn+jp+ef+jca`, `nbn+jp+ef+jco`, `nbn+jp+ef+jcr`, `nbn+jp+ef+jcr+jxc`, `nbn+jp+ef+jcr+jxt`, `nbn+jp+ef+jcs`, `nbn+jp+ef+jxc`, `nbn+jp+ef+jxc+jco`, `nbn+jp+ef+jxf`, `nbn+jp+ef+jxt`, `nbn+jp+ep+ecc`, `nbn+jp+ep+ecs`, `nbn+jp+ep+ecs+jxc`, `nbn+jp+ep+ef`, `nbn+jp+ep+ef+jcr`, `nbn+jp+ep+etm`, `nbn+jp+ep+etn`, `nbn+jp+ep+etn+jco`, `nbn+jp+ep+etn+jcs`, `nbn+jp+etm`, `nbn+jp+etn`, `nbn+jp+etn+jca`, `nbn+jp+etn+jca+jxt`, `nbn+jp+etn+jco`, `nbn+jp+etn+jcs`, `nbn+jp+etn+jxc`, `nbn+jp+etn+jxt`, `nbn+jxc`, `nbn+jxc+jca`, `nbn+jxc+jca+jxc`, `nbn+jxc+jca+jxt`, `nbn+jxc+jcc`, `nbn+jxc+jcm`, `nbn+jxc+jco`, `nbn+jxc+jcs`, `nbn+jxc+jp+ef`, `nbn+jxc+jxc`, `nbn+jxc+jxt`, `nbn+jxt`, `nbn+nbn`, `nbn+nbn+jp+ef`, `nbn+xsm+ecs`, `nbn+xsm+ef`, `nbn+xsm+ep+ef`, `nbn+xsm+ep+ef+jcr`, `nbn+xsm+etm`, `nbn+xsn`, `nbn+xsn+jca`, `nbn+xsn+jca+jp+ef+jcr`, `nbn+xsn+jca+jxc`, `nbn+xsn+jca+jxt`, `nbn+xsn+jcm`, `nbn+xsn+jco`, `nbn+xsn+jcs`, `nbn+xsn+jct`, `nbn+xsn+jp+ecc`, `nbn+xsn+jp+ecs`, `nbn+xsn+jp+ef`, `nbn+xsn+jp+ef+jcr`, `nbn+xsn+jp+ep+ef`, `nbn+xsn+jxc`, `nbn+xsn+jxt`, `nbn+xsv+etm`, `nbu`, `nbu+jca`, `nbu+jca+jxc`, `nbu+jca+jxt`, `nbu+jcc`, `nbu+jcc+jxc`, `nbu+jcj`, `nbu+jcm`, `nbu+jco`, `nbu+jcs`, `nbu+jct`, `nbu+jct+jxc`, `nbu+jp+ecc`, `nbu+jp+ecs`, `nbu+jp+ef`, `nbu+jp+ef+jcr`, `nbu+jp+ef+jxc`, `nbu+jp+ep+ecc`, `nbu+jp+ep+ecs`, `nbu+jp+ep+ef`, `nbu+jp+ep+ef+jcr`, `nbu+jp+ep+etm`, `nbu+jp+ep+etn+jco`, `nbu+jp+etm`, `nbu+jxc`, `nbu+jxc+jca`, `nbu+jxc+jcs`, `nbu+jxc+jp+ef`, `nbu+jxc+jp+ep+ef`, `nbu+jxc+jxt`, `nbu+jxt`, `nbu+ncn`, `nbu+ncn+jca`, `nbu+ncn+jcm`, `nbu+xsn`, `nbu+xsn+jca`, `nbu+xsn+jca+jxc`, `nbu+xsn+jca+jxt`, `nbu+xsn+jcm`, `nbu+xsn+jco`, `nbu+xsn+jcs`, `nbu+xsn+jp+ecs`, `nbu+xsn+jp+ep+ef`, `nbu+xsn+jxc`, `nbu+xsn+jxc+jxt`, `nbu+xsn+jxt`, `nbu+xsv+ecc`, `nbu+xsv+etm`, `ncn`, `ncn+f+ncpa+jco`, `ncn+jca`, `ncn+jca+jca`, `ncn+jca+jcc`, `ncn+jca+jcj`, `ncn+jca+jcm`, `ncn+jca+jcs`, `ncn+jca+jct`, `ncn+jca+jp+ecc`, `ncn+jca+jp+ecs`, `ncn+jca+jp+ef`, `ncn+jca+jp+ep+ef`, `ncn+jca+jp+etm`, `ncn+jca+jp+etn+jxt`, `ncn+jca+jxc`, `ncn+jca+jxc+jcc`, `ncn+jca+jxc+jcm`, `ncn+jca+jxc+jxc`, `ncn+jca+jxc+jxt`, `ncn+jca+jxt`, `ncn+jcc`, `ncn+jcc+jxc`, `ncn+jcj`, `ncn+jcj+jxt`, `ncn+jcm`, `ncn+jco`, `ncn+jcr`, `ncn+jcr+jxc`, `ncn+jcs`, `ncn+jcs+jxt`, `ncn+jct`, `ncn+jct+jcm`, `ncn+jct+jxc`, `ncn+jct+jxt`, `ncn+jcv`, `ncn+jp+ecc`, `ncn+jp+ecc+jct`, `ncn+jp+ecc+jxc`, `ncn+jp+ecs`, `ncn+jp+ecs+jcm`, `ncn+jp+ecs+jco`, `ncn+jp+ecs+jxc`, `ncn+jp+ecs+jxt`, `ncn+jp+ecx`, `ncn+jp+ef`, `ncn+jp+ef+jca`, `ncn+jp+ef+jcm`, `ncn+jp+ef+jco`, `ncn+jp+ef+jcr`, `ncn+jp+ef+jcr+jxc`, `ncn+jp+ef+jcr+jxt`, `ncn+jp+ef+jp+etm`, `ncn+jp+ef+jxc`, `ncn+jp+ef+jxf`, `ncn+jp+ef+jxt`, `ncn+jp+ep+ecc`, `ncn+jp+ep+ecs`, `ncn+jp+ep+ecs+jxc`, `ncn+jp+ep+ecx`, `ncn+jp+ep+ef`, `ncn+jp+ep+ef+jcr`, `ncn+jp+ep+ef+jcr+jxc`, `ncn+jp+ep+ef+jxc`, `ncn+jp+ep+ef+jxf`, `ncn+jp+ep+ef+jxt`, `ncn+jp+ep+ep+etm`, `ncn+jp+ep+etm`, `ncn+jp+ep+etn`, `ncn+jp+ep+etn+jca`, `ncn+jp+ep+etn+jca+jxc`, `ncn+jp+ep+etn+jco`, `ncn+jp+ep+etn+jcs`, `ncn+jp+ep+etn+jxt`, `ncn+jp+etm`, `ncn+jp+etn`, `ncn+jp+etn+jca`, `ncn+jp+etn+jca+jxc`, `ncn+jp+etn+jca+jxt`, `ncn+jp+etn+jco`, `ncn+jp+etn+jcs`, `ncn+jp+etn+jct`, `ncn+jp+etn+jxc`, `ncn+jp+etn+jxt`, `ncn+jxc`, `ncn+jxc+jca`, `ncn+jxc+jca+jxc`, `ncn+jxc+jca+jxt`, `ncn+jxc+jcc`, `ncn+jxc+jcm`, `ncn+jxc+jco`, `ncn+jxc+jcs`, `ncn+jxc+jct+jxt`, `ncn+jxc+jp+ef`, `ncn+jxc+jp+ef+jcr`, `ncn+jxc+jp+ep+ecs`, `ncn+jxc+jp+ep+ef`, `ncn+jxc+jp+etm`, `ncn+jxc+jxc`, `ncn+jxc+jxt`, `ncn+jxt`, `ncn+jxt+jcm`, `ncn+jxt+jxc`, `ncn+nbn`, `ncn+nbn+jca`, `ncn+nbn+jcm`, `ncn+nbn+jcs`, `ncn+nbn+jp+ecc`, `ncn+nbn+jp+ep+ef`, `ncn+nbn+jxc`, `ncn+nbn+jxt`, `ncn+nbu`, `ncn+nbu+jca`, `ncn+nbu+jcm`, `ncn+nbu+jco`, `ncn+nbu+jp+ef`, `ncn+nbu+jxc`, `ncn+nbu+ncn`, `ncn+ncn`, `ncn+ncn+jca`, `ncn+ncn+jca+jcc`, `ncn+ncn+jca+jcm`, `ncn+ncn+jca+jxc`, `ncn+ncn+jca+jxc+jcm`, `ncn+ncn+jca+jxc+jxc`, `ncn+ncn+jca+jxt`, `ncn+ncn+jcc`, `ncn+ncn+jcj`, `ncn+ncn+jcm`, `ncn+ncn+jco`, `ncn+ncn+jcr`, `ncn+ncn+jcs`, `ncn+ncn+jct`, `ncn+ncn+jct+jcm`, `ncn+ncn+jct+jxc`, `ncn+ncn+jct+jxt`, `ncn+ncn+jp+ecc`, `ncn+ncn+jp+ecs`, `ncn+ncn+jp+ef`, `ncn+ncn+jp+ef+jcm`, `ncn+ncn+jp+ef+jcr`, `ncn+ncn+jp+ef+jcs`, `ncn+ncn+jp+ep+ecc`, `ncn+ncn+jp+ep+ecs`, `ncn+ncn+jp+ep+ef`, `ncn+ncn+jp+ep+ef+jcr`, `ncn+ncn+jp+ep+ep+etm`, `ncn+ncn+jp+ep+etm`, `ncn+ncn+jp+ep+etn`, `ncn+ncn+jp+etm`, `ncn+ncn+jp+etn`, `ncn+ncn+jp+etn+jca`, `ncn+ncn+jp+etn+jco`, `ncn+ncn+jp+etn+jxc`, `ncn+ncn+jxc`, `ncn+ncn+jxc+jca`, `ncn+ncn+jxc+jcc`, `ncn+ncn+jxc+jcm`, `ncn+ncn+jxc+jco`, `ncn+ncn+jxc+jcs`, `ncn+ncn+jxc+jxc`, `ncn+ncn+jxt`, `ncn+ncn+nbn`, `ncn+ncn+ncn`, `ncn+ncn+ncn+jca`, `ncn+ncn+ncn+jca+jcm`, `ncn+ncn+ncn+jca+jxt`, `ncn+ncn+ncn+jcj`, `ncn+ncn+ncn+jcm`, `ncn+ncn+ncn+jco`, `ncn+ncn+ncn+jcs`, `ncn+ncn+ncn+jct+jxt`, `ncn+ncn+ncn+jp+etn+jxc`, `ncn+ncn+ncn+jxt`, `ncn+ncn+ncn+ncn+jca`, `ncn+ncn+ncn+ncn+jca+jxt`, `ncn+ncn+ncn+ncn+jco`, `ncn+ncn+ncn+xsn+jp+etm`, `ncn+ncn+ncpa`, `ncn+ncn+ncpa+jca`, `ncn+ncn+ncpa+jcm`, `ncn+ncn+ncpa+jco`, `ncn+ncn+ncpa+jcs`, `ncn+ncn+ncpa+jxc`, `ncn+ncn+ncpa+jxt`, `ncn+ncn+ncpa+ncn`, `ncn+ncn+ncpa+ncn+jca`, `ncn+ncn+ncpa+ncn+jcj`, `ncn+ncn+ncpa+ncn+jcm`, `ncn+ncn+ncpa+ncn+jxt`, `ncn+ncn+xsn`, `ncn+ncn+xsn+jca`, `ncn+ncn+xsn+jca+jxt`, `ncn+ncn+xsn+jcj`, `ncn+ncn+xsn+jcm`, `ncn+ncn+xsn+jco`, `ncn+ncn+xsn+jcs`, `ncn+ncn+xsn+jct`, `ncn+ncn+xsn+jp+ecs`, `ncn+ncn+xsn+jp+ep+ef`, `ncn+ncn+xsn+jp+etm`, `ncn+ncn+xsn+jxc`, `ncn+ncn+xsn+jxc+jcs`, `ncn+ncn+xsn+jxt`, `ncn+ncn+xsv+ecc`, `ncn+ncn+xsv+etm`, `ncn+ncpa`, `ncn+ncpa+jca`, `ncn+ncpa+jca+jcm`, `ncn+ncpa+jca+jxc`, `ncn+ncpa+jca+jxt`, `ncn+ncpa+jcc`, `ncn+ncpa+jcj`, `ncn+ncpa+jcm`, `ncn+ncpa+jco`, `ncn+ncpa+jcr`, `ncn+ncpa+jcs`, `ncn+ncpa+jct`, `ncn+ncpa+jct+jcm`, `ncn+ncpa+jct+jxt`, `ncn+ncpa+jp+ecc`, `ncn+ncpa+jp+ecc+jxc`, `ncn+ncpa+jp+ecs`, `ncn+ncpa+jp+ecs+jxc`, `ncn+ncpa+jp+ef`, `ncn+ncpa+jp+ef+jcr`, `ncn+ncpa+jp+ef+jcr+jxc`, `ncn+ncpa+jp+ep+ef`, `ncn+ncpa+jp+ep+etm`, `ncn+ncpa+jp+ep+etn`, `ncn+ncpa+jp+etm`, `ncn+ncpa+jxc`, `ncn+ncpa+jxc+jca+jxc`, `ncn+ncpa+jxc+jco`, `ncn+ncpa+jxc+jcs`, `ncn+ncpa+jxt`, `ncn+ncpa+nbn+jcs`, `ncn+ncpa+ncn`, `ncn+ncpa+ncn+jca`, `ncn+ncpa+ncn+jca+jcm`, `ncn+ncpa+ncn+jca+jxc`, `ncn+ncpa+ncn+jca+jxt`, `ncn+ncpa+ncn+jcj`, `ncn+ncpa+ncn+jcm`, `ncn+ncpa+ncn+jco`, `ncn+ncpa+ncn+jcs`, `ncn+ncpa+ncn+jct`, `ncn+ncpa+ncn+jct+jcm`, `ncn+ncpa+ncn+jp+ef+jcr`, `ncn+ncpa+ncn+jp+ep+etm`, `ncn+ncpa+ncn+jxc`, `ncn+ncpa+ncn+jxt`, `ncn+ncpa+ncn+xsn+jcm`, `ncn+ncpa+ncn+xsn+jxt`, `ncn+ncpa+ncpa`, `ncn+ncpa+ncpa+jca`, `ncn+ncpa+ncpa+jcj`, `ncn+ncpa+ncpa+jcm`, `ncn+ncpa+ncpa+jco`, `ncn+ncpa+ncpa+jcs`, `ncn+ncpa+ncpa+jp+ep+ef`, `ncn+ncpa+ncpa+jxt`, `ncn+ncpa+ncpa+ncn`, `ncn+ncpa+xsn`, `ncn+ncpa+xsn+jcm`, `ncn+ncpa+xsn+jco`, `ncn+ncpa+xsn+jcs`, `ncn+ncpa+xsn+jp+ecc`, `ncn+ncpa+xsn+jp+etm`, `ncn+ncpa+xsn+jxt`, `ncn+ncpa+xsv+ecc`, `ncn+ncpa+xsv+ecs`, `ncn+ncpa+xsv+ecx`, `ncn+ncpa+xsv+ecx+px+etm`, `ncn+ncpa+xsv+ef`, `ncn+ncpa+xsv+ef+jcm`, `ncn+ncpa+xsv+ef+jcr`, `ncn+ncpa+xsv+etm`, `ncn+ncpa+xsv+etn`, `ncn+ncpa+xsv+etn+jco`, `ncn+ncps`, `ncn+ncps+jca`, `ncn+ncps+jcm`, `ncn+ncps+jco`, `ncn+ncps+jcs`, `ncn+ncps+jp+ecs`, `ncn+ncps+jxt`, `ncn+ncps+ncn+jcs`, `ncn+ncps+ncpa+ncn`, `ncn+ncps+xsm+ef`, `ncn+ncps+xsm+etm`, `ncn+nnc`, `ncn+nnc+jcs`, `ncn+nnc+nnc`, `ncn+nno`, `ncn+nq`, `ncn+nq+jca`, `ncn+nq+jca+jxc`, `ncn+nq+jca+jxt`, `ncn+nq+jcm`, `ncn+nq+jcs`, `ncn+nq+jxt`, `ncn+nq+ncn+jcm`, `ncn+nq+ncn+xsn+jcs`, `ncn+nq+xsn+jxt`, `ncn+xsa`, `ncn+xsm+ecc`, `ncn+xsm+ecs`, `ncn+xsm+ecs+jxc`, `ncn+xsm+ecx`, `ncn+xsm+ecx+jcs`, `ncn+xsm+ecx+px+ep+etm`, `ncn+xsm+ef`, `ncn+xsm+ef+jcr`, `ncn+xsm+etm`, `ncn+xsm+etn+jcm`, `ncn+xsm+etn+jp+ef+jcr`, `ncn+xsn`, `ncn+xsn+jca`, `ncn+xsn+jca+jcj`, `ncn+xsn+jca+jxc`, `ncn+xsn+jca+jxc+jxc`, `ncn+xsn+jca+jxt`, `ncn+xsn+jcc`, `ncn+xsn+jcj`, `ncn+xsn+jcm`, `ncn+xsn+jco`, `ncn+xsn+jcs`, `ncn+xsn+jcs+jxt`, `ncn+xsn+jct`, `ncn+xsn+jct+jcm`, `ncn+xsn+jct+jxc`, `ncn+xsn+jct+jxt`, `ncn+xsn+jcv`, `ncn+xsn+jp+ecc`, `ncn+xsn+jp+ecc+jxc`, `ncn+xsn+jp+ecs`, `ncn+xsn+jp+ecs+jxc`, `ncn+xsn+jp+ecx`, `ncn+xsn+jp+ecx+jxt`, `ncn+xsn+jp+ef`, `ncn+xsn+jp+ef+jca`, `ncn+xsn+jp+ef+jcr`, `ncn+xsn+jp+ep+ecc`, `ncn+xsn+jp+ep+ecs`, `ncn+xsn+jp+ep+ef`, `ncn+xsn+jp+ep+ef+jcr`, `ncn+xsn+jp+ep+etm`, `ncn+xsn+jp+ep+etn`, `ncn+xsn+jp+etm`, `ncn+xsn+jp+etn`, `ncn+xsn+jp+etn+jca`, `ncn+xsn+jp+etn+jca+jxt`, `ncn+xsn+jp+etn+jxc`, `ncn+xsn+jp+etn+jxt`, `ncn+xsn+jxc`, `ncn+xsn+jxc+jcm`, `ncn+xsn+jxc+jco`, `ncn+xsn+jxc+jcs`, `ncn+xsn+jxc+jxc`, `ncn+xsn+jxt`, `ncn+xsn+ncn+jca`, `ncn+xsn+ncn+jca+jxt`, `ncn+xsn+ncn+jcs`, `ncn+xsn+ncpa+jca`, `ncn+xsn+xsn`, `ncn+xsn+xsn+jca`, `ncn+xsn+xsn+jcm`, `ncn+xsn+xsn+jp+ecs`, `ncn+xsn+xsn+jxc`, `ncn+xsn+xsn+jxc+jcc`, `ncn+xsn+xsn+jxc+jcs`, `ncn+xsn+xsv+ecc`, `ncn+xsn+xsv+etm`, `ncn+xsn+xsv+etn`, `ncn+xsv+ecc`, `ncn+xsv+ecs`, `ncn+xsv+ecx`, `ncn+xsv+ef`, `ncn+xsv+ep+ecs`, `ncn+xsv+ep+ef`, `ncn+xsv+ep+etm`, `ncn+xsv+etm`, `ncn+xsv+etn+jca`, `ncpa`, `ncpa+jca`, `ncpa+jca+jcm`, `ncpa+jca+jct`, `ncpa+jca+jp+ecs`, `ncpa+jca+jp+ef`, `ncpa+jca+jp+ep+ef`, `ncpa+jca+jxc`, `ncpa+jca+jxc+jcm`, `ncpa+jca+jxc+jxc`, `ncpa+jca+jxc+jxt`, `ncpa+jca+jxt`, `ncpa+jcc`, `ncpa+jcj`, `ncpa+jcm`, `ncpa+jco`, `ncpa+jcr`, `ncpa+jcs`, `ncpa+jct`, `ncpa+jct+jcm`, `ncpa+jct+jxc`, `ncpa+jct+jxt`, `ncpa+jp+ecc`, `ncpa+jp+ecs`, `ncpa+jp+ecs+jxc`, `ncpa+jp+ecx`, `ncpa+jp+ecx+jxc`, `ncpa+jp+ef`, `ncpa+jp+ef+jca`, `ncpa+jp+ef+jco`, `ncpa+jp+ef+jcr`, `ncpa+jp+ef+jxc`, `ncpa+jp+ef+jxf`, `ncpa+jp+ep+ecc`, `ncpa+jp+ep+ecs`, `ncpa+jp+ep+ef`, `ncpa+jp+ep+ef+jca`, `ncpa+jp+ep+ef+jcr`, `ncpa+jp+ep+ef+jxt`, `ncpa+jp+ep+etm`, `ncpa+jp+ep+etn+jca`, `ncpa+jp+ep+etn+jca+jxc`, `ncpa+jp+ep+etn+jcs`, `ncpa+jp+etm`, `ncpa+jp+etn`, `ncpa+jp+etn+jca`, `ncpa+jp+etn+jca+jxt`, `ncpa+jp+etn+jco`, `ncpa+jp+etn+jcs`, `ncpa+jp+etn+jxc`, `ncpa+jp+etn+jxt`, `ncpa+jxc`, `ncpa+jxc+jca`, `ncpa+jxc+jca+jxc`, `ncpa+jxc+jca+jxt`, `ncpa+jxc+jcc`, `ncpa+jxc+jcm`, `ncpa+jxc+jco`, `ncpa+jxc+jcs`, `ncpa+jxc+jxc`, `ncpa+jxt`, `ncpa+jxt+jxc`, `ncpa+jxt+jxt`, `ncpa+nbn+jca`, `ncpa+nbn+jct`, `ncpa+nbn+jp+ef`, `ncpa+nbn+jp+ep+ef`, `ncpa+nbn+jp+etm`, `ncpa+nbn+jxc+jcc`, `ncpa+nbu+jca`, `ncpa+ncn`, `ncpa+ncn+jca`, `ncpa+ncn+jca+jcm`, `ncpa+ncn+jca+jxc`, `ncpa+ncn+jca+jxc+jcm`, `ncpa+ncn+jca+jxt`, `ncpa+ncn+jcc`, `ncpa+ncn+jcj`, `ncpa+ncn+jcm`, `ncpa+ncn+jco`, `ncpa+ncn+jcr`, `ncpa+ncn+jcs`, `ncpa+ncn+jct`, `ncpa+ncn+jct+jcm`, `ncpa+ncn+jct+jxc`, `ncpa+ncn+jp+ecc`, `ncpa+ncn+jp+ecs`, `ncpa+ncn+jp+ef`, `ncpa+ncn+jp+ef+jcr`, `ncpa+ncn+jp+ef+jcr+jxc`, `ncpa+ncn+jp+ep+ef`, `ncpa+ncn+jp+ep+etm`, `ncpa+ncn+jp+etm`, `ncpa+ncn+jp+etn+jca+jxt`, `ncpa+ncn+jp+etn+jco`, `ncpa+ncn+jp+etn+jxc`, `ncpa+ncn+jxc`, `ncpa+ncn+jxc+jcc`, `ncpa+ncn+jxc+jco`, `ncpa+ncn+jxt`, `ncpa+ncn+nbn`, `ncpa+ncn+ncn`, `ncpa+ncn+ncn+jca`, `ncpa+ncn+ncn+jca+jxt`, `ncpa+ncn+ncn+jcm`, `ncpa+ncn+ncn+jco`, `ncpa+ncn+ncn+jcs`, `ncpa+ncn+ncn+jp+ep+ef`, `ncpa+ncn+ncn+jp+etm`, `ncpa+ncn+ncn+jxt`, `ncpa+ncn+ncn+ncn`, `ncpa+ncn+ncn+xsn+jxt`, `ncpa+ncn+ncpa`, `ncpa+ncn+ncpa+jca`, `ncpa+ncn+ncpa+jcj`, `ncpa+ncn+ncpa+jco`, `ncpa+ncn+ncpa+ncn`, `ncpa+ncn+ncpa+ncn+jco`, `ncpa+ncn+xsn`, `ncpa+ncn+xsn+jca`, `ncpa+ncn+xsn+jca+jxc`, `ncpa+ncn+xsn+jcj`, `ncpa+ncn+xsn+jcm`, `ncpa+ncn+xsn+jco`, `ncpa+ncn+xsn+jcs`, `ncpa+ncn+xsn+jct`, `ncpa+ncn+xsn+jp+ep+ef`, `ncpa+ncn+xsn+jp+etm`, `ncpa+ncn+xsn+jxt`, `ncpa+ncpa`, `ncpa+ncpa+jca`, `ncpa+ncpa+jca+jcm`, `ncpa+ncpa+jca+jxc`, `ncpa+ncpa+jca+jxt`, `ncpa+ncpa+jcj`, `ncpa+ncpa+jcm`, `ncpa+ncpa+jco`, `ncpa+ncpa+jcs`, `ncpa+ncpa+jct`, `ncpa+ncpa+jct+jxc`, `ncpa+ncpa+jct+jxt`, `ncpa+ncpa+jp+ecc`, `ncpa+ncpa+jp+ecs`, `ncpa+ncpa+jp+ecx`, `ncpa+ncpa+jp+ef`, `ncpa+ncpa+jp+ef+jca`, `ncpa+ncpa+jp+ef+jcr`, `ncpa+ncpa+jp+ef+jcr+jxc`, `ncpa+ncpa+jp+ep+ecs`, `ncpa+ncpa+jp+etm`, `ncpa+ncpa+jxc`, `ncpa+ncpa+jxt`, `ncpa+ncpa+ncn`, `ncpa+ncpa+ncn+jca`, `ncpa+ncpa+ncn+jcj`, `ncpa+ncpa+ncn+jcm`, `ncpa+ncpa+ncn+jco`, `ncpa+ncpa+ncn+jcs`, `ncpa+ncpa+ncn+jxt`, `ncpa+ncpa+ncpa+jcm`, `ncpa+ncpa+ncpa+jcs`, `ncpa+ncpa+ncpa+ncpa+jco`, `ncpa+ncpa+xsn`, `ncpa+ncpa+xsn+jca`, `ncpa+ncpa+xsn+jcj`, `ncpa+ncpa+xsn+jco`, `ncpa+ncpa+xsn+jcs`, `ncpa+ncpa+xsn+jxc`, `ncpa+ncpa+xsn+jxt`, `ncpa+ncpa+xsv+ecc`, `ncpa+ncpa+xsv+ecs`, `ncpa+ncpa+xsv+ef`, `ncpa+ncpa+xsv+ep+ef`, `ncpa+ncpa+xsv+ep+etm`, `ncpa+ncpa+xsv+etm`, `ncpa+ncpa+xsv+etn+jca`, `ncpa+ncps`, `ncpa+ncps+jca`, `ncpa+ncps+jcm`, `ncpa+ncps+jco`, `ncpa+ncps+jcs`, `ncpa+ncps+jxt`, `ncpa+ncps+xsm+etm`, `ncpa+nq+jca`, `ncpa+xsa`, `ncpa+xsn`, `ncpa+xsn+jca`, `ncpa+xsn+jca+jxc`, `ncpa+xsn+jca+jxt`, `ncpa+xsn+jcc`, `ncpa+xsn+jcj`, `ncpa+xsn+jcm`, `ncpa+xsn+jco`, `ncpa+xsn+jcs`, `ncpa+xsn+jct`, `ncpa+xsn+jp+ecc`, `ncpa+xsn+jp+ecs`, `ncpa+xsn+jp+ecs+jxc`, `ncpa+xsn+jp+ecx`, `ncpa+xsn+jp+ecx+jxt`, `ncpa+xsn+jp+ef`, `ncpa+xsn+jp+ef+jcr`, `ncpa+xsn+jp+ef+jxf`, `ncpa+xsn+jp+ep+ecc`, `ncpa+xsn+jp+ep+ef`, `ncpa+xsn+jp+ep+ef+jco`, `ncpa+xsn+jp+ep+ef+jcr`, `ncpa+xsn+jp+etm`, `ncpa+xsn+jp+etn`, `ncpa+xsn+jp+etn+jco`, `ncpa+xsn+jp+etn+jxc`, `ncpa+xsn+jxc`, `ncpa+xsn+jxt`, `ncpa+xsv+ecc`, `ncpa+xsv+ecc+jcm`, `ncpa+xsv+ecc+jxc`, `ncpa+xsv+ecc+jxt`, `ncpa+xsv+ecs`, `ncpa+xsv+ecs+jca`, `ncpa+xsv+ecs+jco`, `ncpa+xsv+ecs+jp+ef`, `ncpa+xsv+ecs+jxc`, `ncpa+xsv+ecs+jxc+jxt`, `ncpa+xsv+ecs+jxt`, `ncpa+xsv+ecx`, `ncpa+xsv+ecx+jco`, `ncpa+xsv+ecx+jxc`, `ncpa+xsv+ecx+jxt`, `ncpa+xsv+ecx+px+ecc`, `ncpa+xsv+ecx+px+ecs`, `ncpa+xsv+ecx+px+ecx`, `ncpa+xsv+ecx+px+ecx+jxc`, `ncpa+xsv+ecx+px+ecx+px+ecs`, `ncpa+xsv+ecx+px+ef`, `ncpa+xsv+ecx+px+ef+jcr`, `ncpa+xsv+ecx+px+ep+ecc`, `ncpa+xsv+ecx+px+ep+ecs`, `ncpa+xsv+ecx+px+ep+ef`, `ncpa+xsv+ecx+px+ep+ef+jcr`, `ncpa+xsv+ecx+px+ep+etm`, `ncpa+xsv+ecx+px+ep+etn+jca`, `ncpa+xsv+ecx+px+ep+etn+jco`, `ncpa+xsv+ecx+px+ep+etn+jxc`, `ncpa+xsv+ecx+px+ep+etn+jxt`, `ncpa+xsv+ecx+px+etm`, `ncpa+xsv+ecx+px+etn`, `ncpa+xsv+ecx+px+etn+jca`, `ncpa+xsv+ecx+px+etn+jco`, `ncpa+xsv+ef`, `ncpa+xsv+ef+jca`, `ncpa+xsv+ef+jcj`, `ncpa+xsv+ef+jcm`, `ncpa+xsv+ef+jco`, `ncpa+xsv+ef+jcr`, `ncpa+xsv+ef+jcr+jxt`, `ncpa+xsv+ef+jcs`, `ncpa+xsv+ef+jxc`, `ncpa+xsv+ef+jxf`, `ncpa+xsv+ef+jxt`, `ncpa+xsv+ep+ecc`, `ncpa+xsv+ep+ecs`, `ncpa+xsv+ep+ecs+jco`, `ncpa+xsv+ep+ecs+jxc`, `ncpa+xsv+ep+ecs+jxt`, `ncpa+xsv+ep+ecx`, `ncpa+xsv+ep+ecx+jxc`, `ncpa+xsv+ep+ef`, `ncpa+xsv+ep+ef+jca`, `ncpa+xsv+ep+ef+jca+jxt`, `ncpa+xsv+ep+ef+jco`, `ncpa+xsv+ep+ef+jcr`, `ncpa+xsv+ep+ef+jcr+jxc`, `ncpa+xsv+ep+ef+jcr+jxc+jxt`, `ncpa+xsv+ep+ef+jxc`, `ncpa+xsv+ep+ef+jxf`, `ncpa+xsv+ep+ef+jxt`, `ncpa+xsv+ep+ep+ecs`, `ncpa+xsv+ep+ep+ef`, `ncpa+xsv+ep+etm`, `ncpa+xsv+ep+etn`, `ncpa+xsv+ep+etn+jca`, `ncpa+xsv+ep+etn+jca+jxc`, `ncpa+xsv+ep+etn+jcj`, `ncpa+xsv+ep+etn+jco`, `ncpa+xsv+ep+etn+jcs`, `ncpa+xsv+ep+etn+jxt`, `ncpa+xsv+etm`, `ncpa+xsv+etn`, `ncpa+xsv+etn+jca`, `ncpa+xsv+etn+jca+jxc`, `ncpa+xsv+etn+jca+jxt`, `ncpa+xsv+etn+jco`, `ncpa+xsv+etn+jcs`, `ncpa+xsv+etn+jct`, `ncpa+xsv+etn+jxc`, `ncpa+xsv+etn+jxc+jcm`, `ncpa+xsv+etn+jxc+jcs`, `ncpa+xsv+etn+jxc+jxc`, `ncpa+xsv+etn+jxc+jxt`, `ncpa+xsv+etn+jxt`, `ncps`, `ncps+jca`, `ncps+jca+jcm`, `ncps+jca+jxc`, `ncps+jca+jxc+jcm`, `ncps+jcc`, `ncps+jcj`, `ncps+jcm`, `ncps+jco`, `ncps+jcs`, `ncps+jct`, `ncps+jct+jcm`, `ncps+jct+jxt`, `ncps+jp+ecc`, `ncps+jp+ecs`, `ncps+jp+ecs+jxt`, `ncps+jp+ef`, `ncps+jp+ef+jcr`, `ncps+jp+ep+ef`, `ncps+jp+ep+etn`, `ncps+jp+etm`, `ncps+jp+etn+jcs`, `ncps+jp+etn+jxt`, `ncps+jxc`, `ncps+jxc+jxc`, `ncps+jxt`, `ncps+nbn+jp+etm`, `ncps+nbn+jxc`, `ncps+ncn`, `ncps+ncn+jca`, `ncps+ncn+jca+jcm`, `ncps+ncn+jcm`, `ncps+ncn+jco`, `ncps+ncn+jcs`, `ncps+ncn+jct+jxt`, `ncps+ncn+jp+ef`, `ncps+ncn+jp+ef+jcr`, `ncps+ncn+jp+etm`, `ncps+ncn+jxc+jco`, `ncps+ncn+jxt`, `ncps+ncn+ncn`, `ncps+ncn+ncn+jca+jxc`, `ncps+ncn+ncn+jcm`, `ncps+ncn+ncn+jco`, `ncps+ncn+ncn+jxt`, `ncps+ncn+xsn`, `ncps+ncn+xsn+jca`, `ncps+ncn+xsn+jcj`, `ncps+ncn+xsn+jco`, `ncps+ncn+xsn+jp+ecc`, `ncps+ncn+xsn+jp+etm`, `ncps+ncpa`, `ncps+ncpa+jca`, `ncps+ncpa+jcc`, `ncps+ncpa+jcj`, `ncps+ncpa+jcm`, `ncps+ncpa+jco`, `ncps+ncpa+jcs`, `ncps+ncpa+jp+etm`, `ncps+ncpa+jxt`, `ncps+ncpa+xsv+etm`, `ncps+ncps+jca`, `ncps+ncps+jcm`, `ncps+ncps+xsm+ecc`, `ncps+ncps+xsm+ecs`, `ncps+ncps+xsm+etm`, `ncps+xsa`, `ncps+xsa+jxc`, `ncps+xsm+ecc`, `ncps+xsm+ecc+jxc`, `ncps+xsm+ecc+jxt`, `ncps+xsm+ecs`, `ncps+xsm+ecs+jxc`, `ncps+xsm+ecs+jxt`, `ncps+xsm+ecx`, `ncps+xsm+ecx+jcs`, `ncps+xsm+ecx+jxc`, `ncps+xsm+ecx+jxt`, `ncps+xsm+ecx+px+ecc`, `ncps+xsm+ecx+px+ecs`, `ncps+xsm+ecx+px+ecx`, `ncps+xsm+ecx+px+ecx+jxt`, `ncps+xsm+ecx+px+ef`, `ncps+xsm+ecx+px+ep+ecs`, `ncps+xsm+ecx+px+ep+ef`, `ncps+xsm+ecx+px+ep+etm`, `ncps+xsm+ecx+px+ep+etn+jco`, `ncps+xsm+ecx+px+etm`, `ncps+xsm+ecx+px+etn`, `ncps+xsm+ecx+px+etn+jca`, `ncps+xsm+ecx+px+etn+jcj`, `ncps+xsm+ecx+px+etn+jco`, `ncps+xsm+ef`, `ncps+xsm+ef+jco`, `ncps+xsm+ef+jcr`, `ncps+xsm+ef+jcr+jxc`, `ncps+xsm+ef+jcr+jxt`, `ncps+xsm+ef+jxf`, `ncps+xsm+ef+jxt`, `ncps+xsm+ep+ecc`, `ncps+xsm+ep+ecs`, `ncps+xsm+ep+ecs+etm`, `ncps+xsm+ep+ef`, `ncps+xsm+ep+ef+jco`, `ncps+xsm+ep+ef+jcr`, `ncps+xsm+ep+ef+jxf`, `ncps+xsm+ep+ep+ef`, `ncps+xsm+ep+etm`, `ncps+xsm+ep+etn`, `ncps+xsm+ep+etn+jxt`, `ncps+xsm+etm`, `ncps+xsm+etn`, `ncps+xsm+etn+jca`, `ncps+xsm+etn+jca+jxt`, `ncps+xsm+etn+jcj`, `ncps+xsm+etn+jcm`, `ncps+xsm+etn+jco`, `ncps+xsm+etn+jcs`, `ncps+xsm+etn+jct`, `ncps+xsm+etn+jct+jcm`, `ncps+xsm+etn+jp+ef+jcr`, `ncps+xsm+etn+jp+etm`, `ncps+xsm+etn+jxc`, `ncps+xsm+etn+jxc+jxt`, `ncps+xsm+etn+jxt`, `ncps+xsn`, `ncps+xsn+jca`, `ncps+xsn+jca+jxt`, `ncps+xsn+jcm`, `ncps+xsn+jco`, `ncps+xsn+jcs`, `ncps+xsn+jp+ecc`, `ncps+xsn+jp+ep+ecs`, `ncps+xsn+jp+etm`, `ncps+xsn+jxc`, `ncps+xsn+jxt`, `ncps+xsv+etm`, `nnc`, `nnc+f`, `nnc+f+jca`, `nnc+f+jp+ef`, `nnc+jca`, `nnc+jca+jxc`, `nnc+jca+jxt`, `nnc+jcc`, `nnc+jcj`, `nnc+jcm`, `nnc+jco`, `nnc+jcs`, `nnc+jp+ecc`, `nnc+jp+ecs`, `nnc+jp+ef`, `nnc+jp+ef+jcr`, `nnc+jp+ep+ef`, `nnc+jp+ep+etm`, `nnc+jp+etm`, `nnc+jp+etn+jca`, `nnc+jxc`, `nnc+jxt`, `nnc+nbn`, `nnc+nbn+jcm`, `nnc+nbn+jco`, `nnc+nbn+nbu+jcc`, `nnc+nbn+nbu+jcs`, `nnc+nbn+xsn`, `nnc+nbu`, `nnc+nbu+jca`, `nnc+nbu+jca+jxc`, `nnc+nbu+jcc`, `nnc+nbu+jcj`, `nnc+nbu+jcm`, `nnc+nbu+jco`, `nnc+nbu+jcs`, `nnc+nbu+jp+ef`, `nnc+nbu+jp+ef+jcr`, `nnc+nbu+jp+ep+ecs`, `nnc+nbu+jp+ep+ef`, `nnc+nbu+jp+etm`, `nnc+nbu+jxc`, `nnc+nbu+jxc+jcs`, `nnc+nbu+jxc+jxt`, `nnc+nbu+jxt`, `nnc+nbu+nbu`, `nnc+nbu+nbu+jcm`, `nnc+nbu+nbu+jp+ef+jcr`, `nnc+nbu+ncn`, `nnc+nbu+ncn+jca`, `nnc+nbu+ncn+jcj`, `nnc+nbu+ncn+jcm`, `nnc+nbu+ncn+jxc`, `nnc+nbu+xsn`, `nnc+nbu+xsn+jca`, `nnc+nbu+xsn+jcm`, `nnc+nbu+xsn+jco`, `nnc+nbu+xsn+jcs`, `nnc+nbu+xsn+jp+ecc`, `nnc+nbu+xsn+jp+ef`, `nnc+nbu+xsn+jxc`, `nnc+nbu+xsn+jxc+jcm`, `nnc+nbu+xsn+jxt`, `nnc+nbu+xsv+etm`, `nnc+ncn`, `nnc+ncn+jca`, `nnc+ncn+jca+jxt`, `nnc+ncn+jcj`, `nnc+ncn+jcm`, `nnc+ncn+jco`, `nnc+ncn+jcs`, `nnc+ncn+jct`, `nnc+ncn+jp+ef`, `nnc+ncn+jp+etm`, `nnc+ncn+jxc`, `nnc+ncn+jxt`, `nnc+ncn+nbu`, `nnc+ncn+nbu+xsn+jca`, `nnc+ncn+ncn+jca+jxt`, `nnc+ncn+ncn+xsn`, `nnc+ncn+nnc+nnc`, `nnc+ncn+xsn`, `nnc+ncn+xsn+jp+etm`, `nnc+ncn+xsn+jxt`, `nnc+ncpa`, `nnc+ncpa+jcs`, `nnc+nnc`, `nnc+nnc+jca`, `nnc+nnc+jca+jxt`, `nnc+nnc+jcm`, `nnc+nnc+jco`, `nnc+nnc+jp+ef`, `nnc+nnc+nbu`, `nnc+nnc+nbu+jca`, `nnc+nnc+nbu+jcc`, `nnc+nnc+nbu+jcm`, `nnc+nnc+nbu+jco`, `nnc+nnc+nbu+jcs`, `nnc+nnc+nbu+jp+ep+ef`, `nnc+nnc+nbu+jp+etm`, `nnc+nnc+nbu+jxc`, `nnc+nnc+nbu+xsn`, `nnc+nnc+nbu+xsn+jcm`, `nnc+nnc+nbu+xsn+jxc`, `nnc+nnc+ncn+jco`, `nnc+nnc+nnc`, `nnc+nnc+nnc+nnc`, `nnc+nnc+su+jp+ef`, `nnc+nnc+xsn`, `nnc+nnc+xsn+jcm`, `nnc+nnc+xsn+nbu+jca`, `nnc+nnc+xsn+nbu+jcm`, `nnc+nnc+xsn+nbu+jco`, `nnc+nnc+xsn+nbu+jcs`, `nnc+nno+nbu`, `nnc+nno+nbu+jcc`, `nnc+su`, `nnc+su+jca`, `nnc+su+jcm`, `nnc+su+jco`, `nnc+su+jcs`, `nnc+su+jxc`, `nnc+su+xsn`, `nnc+xsn`, `nnc+xsn+jca`, `nnc+xsn+jca+jxt`, `nnc+xsn+jcm`, `nnc+xsn+jco`, `nnc+xsn+jcs`, `nnc+xsn+jp+ef`, `nnc+xsn+jxc`, `nnc+xsn+nbn+jca`, `nnc+xsn+nbu`, `nnc+xsn+nbu+jca`, `nnc+xsn+nbu+jcm`, `nnc+xsn+nbu+jco`, `nnc+xsn+nbu+jcs`, `nnc+xsn+nnc+nbu`, `nnc+xsn+nnc+nbu+jcm`, `nno`, `nno+jca`, `nno+jca+jxt`, `nno+jcj`, `nno+jcm`, `nno+jco`, `nno+jcs`, `nno+jxt`, `nno+nbn`, `nno+nbn+jcm`, `nno+nbn+xsn`, `nno+nbu`, `nno+nbu+jca`, `nno+nbu+jca+jxc`, `nno+nbu+jca+jxt`, `nno+nbu+jcc`, `nno+nbu+jcj`, `nno+nbu+jcm`, `nno+nbu+jco`, `nno+nbu+jcs`, `nno+nbu+jct`, `nno+nbu+jp+ecc`, `nno+nbu+jp+ecs`, `nno+nbu+jp+ef`, `nno+nbu+jp+ep+ecc`, `nno+nbu+jp+ep+ecs`, `nno+nbu+jp+ep+ef`, `nno+nbu+jp+etm`, `nno+nbu+jxc`, `nno+nbu+jxc+jca`, `nno+nbu+jxc+jcm`, `nno+nbu+jxc+jp+ef`, `nno+nbu+jxc+jp+etm`, `nno+nbu+jxc+jxc`, `nno+nbu+jxc+jxt`, `nno+nbu+jxt`, `nno+nbu+nbu`, `nno+nbu+ncn`, `nno+nbu+ncn+jp+ep+ef`, `nno+nbu+ncn+ncn`, `nno+nbu+xsn`, `nno+nbu+xsn+jca`, `nno+nbu+xsn+jcc`, `nno+nbu+xsn+jcm`, `nno+nbu+xsn+jxc`, `nno+nbu+xsn+jxt`, `nno+ncn`, `nno+ncn+jca`, `nno+ncn+jca+jxc`, `nno+ncn+jca+jxt`, `nno+ncn+jcm`, `nno+ncn+jco`, `nno+ncn+jcs`, `nno+ncn+jct`, `nno+ncn+jp+ef`, `nno+ncn+jp+etm`, `nno+ncn+jxc`, `nno+ncn+jxc+jxt`, `nno+ncn+ncn+jp+etm`, `nno+ncn+xsn`, `nno+ncn+xsn+jca`, `nno+ncn+xsn+jp+ep+ef`, `nno+ncn+xsn+jp+etm`, `nno+ncpa+jp+ep+etn+jca+jxc`, `nno+nnc`, `nno+xsn`, `nno+xsn+jca`, `nno+xsn+jca+jxc`, `nno+xsn+jxc`, `nno+xsn+jxc+jcs`, `nno+xsn+nbu`, `nno+xsn+nbu+jcm`, `npd`, `npd+jca`, `npd+jca+jcm`, `npd+jca+jp+ef`, `npd+jca+jp+ef+jca`, `npd+jca+jxc`, `npd+jca+jxc+jcm`, `npd+jca+jxt`, `npd+jcc`, `npd+jcj`, `npd+jcm`, `npd+jco`, `npd+jcs`, `npd+jct`, `npd+jct+jcm`, `npd+jct+jxt`, `npd+jp+ecc`, `npd+jp+ecs`, `npd+jp+ecs+jco`, `npd+jp+ecs+jxt`, `npd+jp+ef`, `npd+jp+ef+jca`, `npd+jp+ef+jcm`, `npd+jp+ef+jco`, `npd+jp+ef+jcr`, `npd+jp+ef+jcs`, `npd+jp+ef+jp+ef`, `npd+jp+ef+jp+etm`, `npd+jp+ef+jxc`, `npd+jp+ef+jxt`, `npd+jp+ep+ef`, `npd+jp+etm`, `npd+jxc`, `npd+jxc+jca`, `npd+jxc+jca+jxc`, `npd+jxc+jcc`, `npd+jxc+jcr`, `npd+jxc+jp+ef`, `npd+jxc+jxc`, `npd+jxc+jxt`, `npd+jxt`, `npd+nbn`, `npd+nbn+jca`, `npd+nbn+jcs`, `npd+nbn+jxc`, `npd+nbn+jxc+jxt`, `npd+ncn`, `npd+ncn+jca`, `npd+ncn+jca+jxc`, `npd+ncn+jcm`, `npd+ncn+jco`, `npd+ncn+jcs`, `npd+ncn+jxt`, `npd+npd`, `npd+xsn`, `npd+xsn+jca`, `npd+xsn+jca+jxc`, `npd+xsn+jca+jxt`, `npd+xsn+jcm`, `npd+xsn+jco`, `npd+xsn+jcs`, `npd+xsn+jct`, `npd+xsn+jp+ef`, `npd+xsn+jxc`, `npd+xsn+jxt`, `npp`, `npp+jca`, `npp+jca+jcm`, `npp+jca+jxc`, `npp+jca+jxc+jcm`, `npp+jca+jxt`, `npp+jcc`, `npp+jcj`, `npp+jcm`, `npp+jco`, `npp+jcs`, `npp+jcs+jxt`, `npp+jct`, `npp+jct+jcm`, `npp+jct+jxc`, `npp+jct+jxt`, `npp+jp+ecs`, `npp+jp+ecs+jco`, `npp+jp+ef`, `npp+jp+ef+jcs`, `npp+jp+ef+jxc+jcs`, `npp+jp+ef+jxt`, `npp+jp+ep+ecc`, `npp+jp+ep+ef`, `npp+jp+ep+etm`, `npp+jp+etm`, `npp+jxc`, `npp+jxc+jcc`, `npp+jxc+jcm`, `npp+jxc+jco`, `npp+jxt`, `npp+nbn+jca`, `npp+nbn+jcs`, `npp+ncn`, `npp+ncn+jca`, `npp+ncn+jca+jxc`, `npp+ncn+jca+jxt`, `npp+ncn+jcm`, `npp+ncn+jco`, `npp+ncn+jcs`, `npp+ncn+jct`, `npp+ncn+jct+jxt`, `npp+ncn+jp+ecs`, `npp+ncn+jxc`, `npp+ncn+jxt`, `npp+ncn+xsn`, `npp+ncpa`, `npp+ncpa+jca`, `npp+ncpa+jca+jxc`, `npp+ncpa+jcj`, `npp+ncpa+jcm`, `npp+ncpa+jco`, `npp+ncpa+jcs`, `npp+ncpa+jxt`, `npp+ncpa+ncpa+jca`, `npp+ncpa+xsn+jp+ecc`, `npp+ncpa+xsn+jp+etm`, `npp+npp+jco`, `npp+xsn`, `npp+xsn+jca`, `npp+xsn+jca+jxc`, `npp+xsn+jca+jxc+jxc`, `npp+xsn+jca+jxt`, `npp+xsn+jcj`, `npp+xsn+jcm`, `npp+xsn+jco`, `npp+xsn+jcs`, `npp+xsn+jcs+jxt`, `npp+xsn+jct`, `npp+xsn+jct+jcm`, `npp+xsn+jct+jxt`, `npp+xsn+jp+ecs`, `npp+xsn+jp+ef`, `npp+xsn+jp+etm`, `npp+xsn+jxc`, `npp+xsn+jxc+jcs`, `npp+xsn+jxc+jxt`, `npp+xsn+jxt`, `npp+xsn+ncn`, `npp+xsn+xsn`, `npp+xsn+xsn+jca`, `npp+xsn+xsn+jca+jxt`, `nq`, `nq+jca`, `nq+jca+jca`, `nq+jca+jca+jxc`, `nq+jca+jcm`, `nq+jca+jxc`, `nq+jca+jxc+jcm`, `nq+jca+jxc+jxc`, `nq+jca+jxt`, `nq+jcc`, `nq+jcj`, `nq+jcm`, `nq+jco`, `nq+jcr`, `nq+jcs`, `nq+jcs+jca+jxc`, `nq+jcs+jxt`, `nq+jct`, `nq+jct+jcm`, `nq+jct+jxt`, `nq+jp+ecc`, `nq+jp+ecs`, `nq+jp+ef`, `nq+jp+ef+jcr`, `nq+jp+ef+jcr+jxc`, `nq+jp+ep+ecc`, `nq+jp+ep+ecs`, `nq+jp+ep+ef`, `nq+jp+ep+etm`, `nq+jp+ep+etn`, `nq+jp+etm`, `nq+jp+etn+jco`, `nq+jxc`, `nq+jxc+jca+jxt`, `nq+jxc+jcm`, `nq+jxc+jcs`, `nq+jxc+jp+ef`, `nq+jxc+jp+ef+jcr`, `nq+jxc+jxc`, `nq+jxc+jxc+jxt`, `nq+jxc+jxt`, `nq+jxt`, `nq+nbn`, `nq+nbn+jca`, `nq+nbn+jcm`, `nq+nbn+jp+ep+ef`, `nq+ncn`, `nq+ncn+jca`, `nq+ncn+jca+jcm`, `nq+ncn+jca+jxc`, `nq+ncn+jca+jxt`, `nq+ncn+jcc`, `nq+ncn+jcj`, `nq+ncn+jcm`, `nq+ncn+jco`, `nq+ncn+jcs`, `nq+ncn+jct`, `nq+ncn+jct+jcm`, `nq+ncn+jct+jxc`, `nq+ncn+jct+jxt`, `nq+ncn+jp+ef`, `nq+ncn+jp+ep+ef`, `nq+ncn+jp+ep+etm`, `nq+ncn+jp+etm`, `nq+ncn+jxc`, `nq+ncn+jxc+jxt`, `nq+ncn+jxt`, `nq+ncn+ncn`, `nq+ncn+ncn+jca`, `nq+ncn+ncn+jca+jxt`, `nq+ncn+ncn+jcm`, `nq+ncn+ncn+jco`, `nq+ncn+ncn+jp+etm`, `nq+ncn+ncn+jxc`, `nq+ncn+ncn+ncn`, `nq+ncn+ncn+ncn+jca`, `nq+ncn+ncn+ncn+jcs`, `nq+ncn+ncn+xsn+jxt`, `nq+ncn+ncpa+jca`, `nq+ncn+ncpa+jcs`, `nq+ncn+ncpa+jxt`, `nq+ncn+ncpa+ncn`, `nq+ncn+ncpa+ncn+jcm`, `nq+ncn+xsn`, `nq+ncn+xsn+jca`, `nq+ncn+xsn+jca+jxt`, `nq+ncn+xsn+jcm`, `nq+ncn+xsn+jco`, `nq+ncn+xsn+jcs`, `nq+ncn+xsn+jct`, `nq+ncn+xsn+jp+etm`, `nq+ncn+xsn+jxt`, `nq+ncpa`, `nq+ncpa+jca`, `nq+ncpa+jcm`, `nq+ncpa+jco`, `nq+ncpa+jxt`, `nq+ncpa+ncn+jcm`, `nq+ncpa+ncn+jp+ef`, `nq+ncpa+ncn+jp+etm`, `nq+nq`, `nq+nq+jca`, `nq+nq+jcj`, `nq+nq+jcm`, `nq+nq+jcs`, `nq+nq+jct`, `nq+nq+jxc+jcs`, `nq+nq+jxt`, `nq+nq+ncn`, `nq+nq+ncn+jca`, `nq+nq+nq+jxt`, `nq+nq+nq+nq+jcm`, `nq+xsm+ecs`, `nq+xsm+etm`, `nq+xsn`, `nq+xsn+jca`, `nq+xsn+jca+jxc`, `nq+xsn+jca+jxt`, `nq+xsn+jcj`, `nq+xsn+jcm`, `nq+xsn+jco`, `nq+xsn+jcs`, `nq+xsn+jcs+jxt`, `nq+xsn+jct`, `nq+xsn+jct+jcm`, `nq+xsn+jp+ef`, `nq+xsn+jp+ef+jcr`, `nq+xsn+jp+ep+ef`, `nq+xsn+jp+etm`, `nq+xsn+jp+etn+jco`, `nq+xsn+jxc`, `nq+xsn+jxt`, `nq+xsn+xsn`, `nq+xsn+xsn+jcj`, `nq+xsn+xsn+jcs`, `nq+xsn+xsv+ep+etm`, `nq+xsv+ecs`, `paa+ecc`, `paa+ecc+jxc`, `paa+ecc+jxt`, `paa+ecs`, `paa+ecs+etm`, `paa+ecs+jca`, `paa+ecs+jcm`, `paa+ecs+jco`, `paa+ecs+jct`, `paa+ecs+jp+ecc`, `paa+ecs+jp+ep+ef`, `paa+ecs+jxc`, `paa+ecs+jxc+jxt`, `paa+ecs+jxt`, `paa+ecx`, `paa+ecx+jco`, `paa+ecx+jcs`, `paa+ecx+jxc`, `paa+ecx+jxt`, `paa+ecx+px+ecc`, `paa+ecx+px+ecs`, `paa+ecx+px+ecx`, `paa+ecx+px+ecx+jxc`, `paa+ecx+px+ecx+px+ecc`, `paa+ecx+px+ecx+px+ecx`, `paa+ecx+px+ecx+px+ef`, `paa+ecx+px+ecx+px+ep+ef`, `paa+ecx+px+ecx+px+etm`, `paa+ecx+px+ef`, `paa+ecx+px+ef+jcr`, `paa+ecx+px+ep+ecc`, `paa+ecx+px+ep+ecs`, `paa+ecx+px+ep+ef`, `paa+ecx+px+ep+ef+jcr`, `paa+ecx+px+ep+etm`, `paa+ecx+px+ep+etn`, `paa+ecx+px+ep+etn+jco`, `paa+ecx+px+etm`, `paa+ecx+px+etn`, `paa+ecx+px+etn+jca`, `paa+ecx+px+etn+jco`, `paa+ecx+px+etn+jcs`, `paa+ecx+px+etn+jxc`, `paa+ecx+px+etn+jxt`, `paa+ef`, `paa+ef+ecc`, `paa+ef+ecs`, `paa+ef+ecs+jxc`, `paa+ef+jca`, `paa+ef+jcm`, `paa+ef+jco`, `paa+ef+jcr`, `paa+ef+jcr+jxc`, `paa+ef+jcr+jxt`, `paa+ef+jxf`, `paa+ep+ecc`, `paa+ep+ecs`, `paa+ep+ecs+jxc`, `paa+ep+ef`, `paa+ep+ef+jcr`, `paa+ep+ef+jxc`, `paa+ep+ef+jxf`, `paa+ep+ef+jxt`, `paa+ep+ep+ecs`, `paa+ep+ep+ef`, `paa+ep+ep+etm`, `paa+ep+etm`, `paa+ep+etn`, `paa+ep+etn+jca`, `paa+ep+etn+jca+jxc`, `paa+ep+etn+jco`, `paa+ep+etn+jcs`, `paa+ep+etn+jxt`, `paa+etm`, `paa+etn`, `paa+etn+jca`, `paa+etn+jca+jxc`, `paa+etn+jca+jxt`, `paa+etn+jcc`, `paa+etn+jcj`, `paa+etn+jcm`, `paa+etn+jco`, `paa+etn+jcs`, `paa+etn+jct`, `paa+etn+jp+ecc`, `paa+etn+jp+ef`, `paa+etn+jp+ep+ecs`, `paa+etn+jp+ep+ef`, `paa+etn+jxc`, `paa+etn+jxt`, `paa+jxt`, `pad+ecc`, `pad+ecc+jxt`, `pad+ecs`, `pad+ecs+jxc`, `pad+ecs+jxt`, `pad+ecx`, `pad+ecx+jcs`, `pad+ecx+jxc`, `pad+ecx+jxt`, `pad+ecx+px+ecs`, `pad+ecx+px+ecx+px+ecc+jxt`, `pad+ef`, `pad+ef+jcr`, `pad+ef+jcr+jxt`, `pad+ef+jxf`, `pad+ef+jxt`, `pad+ep+ecc`, `pad+ep+ecs`, `pad+ep+ef`, `pad+ep+ef+jco`, `pad+ep+etm`, `pad+etm`, `pad+etn`, `pad+etn+jxt`, `pvd+ecc+jxc`, `pvd+ecs`, `pvd+ecs+jp+ecs`, `pvd+ecs+jxc`, `pvd+ecs+jxt`, `pvd+ecx`, `pvd+ep+ef`, `pvd+ep+etm`, `pvd+etm`, `pvd+etn`, `pvd+etn+jca`, `pvd+etn+jca+jxc`, `pvg+ecc`, `pvg+ecc+jxc`, `pvg+ecc+jxt`, `pvg+ecs`, `pvg+ecs+ecs`, `pvg+ecs+jca`, `pvg+ecs+jca+jxt`, `pvg+ecs+jcc`, `pvg+ecs+jcm`, `pvg+ecs+jco`, `pvg+ecs+jcs`, `pvg+ecs+jct`, `pvg+ecs+jp+ecs`, `pvg+ecs+jp+ef`, `pvg+ecs+jp+ep+ecs`, `pvg+ecs+jp+ep+ef`, `pvg+ecs+jp+ep+ef+jcr`, `pvg+ecs+jxc`, `pvg+ecs+jxc+jcc`, `pvg+ecs+jxc+jp+ef`, `pvg+ecs+jxc+jp+ep+ef`, `pvg+ecs+jxt`, `pvg+ecx`, `pvg+ecx+jco`, `pvg+ecx+jxc`, `pvg+ecx+jxt`, `pvg+ecx+jxt+px+ep+ef`, `pvg+ecx+px+ecc`, `pvg+ecx+px+ecc+jxc`, `pvg+ecx+px+ecc+jxt`, `pvg+ecx+px+ecs`, `pvg+ecx+px+ecs+jxc`, `pvg+ecx+px+ecs+jxt`, `pvg+ecx+px+ecx`, `pvg+ecx+px+ecx+jco`, `pvg+ecx+px+ecx+jxc`, `pvg+ecx+px+ecx+jxt`, `pvg+ecx+px+ecx+px+ecc`, `pvg+ecx+px+ecx+px+ecs`, `pvg+ecx+px+ecx+px+ecs+jxt`, `pvg+ecx+px+ecx+px+ecx`, `pvg+ecx+px+ecx+px+ecx+px+ecc`, `pvg+ecx+px+ecx+px+ef`, `pvg+ecx+px+ecx+px+ep+ecc`, `pvg+ecx+px+ecx+px+ep+ef`, `pvg+ecx+px+ecx+px+ep+etm`, `pvg+ecx+px+ecx+px+ep+etn+jco`, `pvg+ecx+px+ecx+px+etm`, `pvg+ecx+px+ecx+px+etn`, `pvg+ecx+px+ecx+px+etn+jca`, `pvg+ecx+px+ef`, `pvg+ecx+px+ef+jca`, `pvg+ecx+px+ef+jcm`, `pvg+ecx+px+ef+jcr`, `pvg+ecx+px+ep+ecc`, `pvg+ecx+px+ep+ecs`, `pvg+ecx+px+ep+ecs+jxc`, `pvg+ecx+px+ep+ef`, `pvg+ecx+px+ep+ef+jcm`, `pvg+ecx+px+ep+ef+jcr`, `pvg+ecx+px+ep+ef+jxf`, `pvg+ecx+px+ep+ep+ecs`, `pvg+ecx+px+ep+etm`, `pvg+ecx+px+ep+etn`, `pvg+ecx+px+ep+etn+jca`, `pvg+ecx+px+ep+etn+jca+jxc`, `pvg+ecx+px+ep+etn+jco`, `pvg+ecx+px+etm`, `pvg+ecx+px+etn`, `pvg+ecx+px+etn+jca`, `pvg+ecx+px+etn+jca+jxc`, `pvg+ecx+px+etn+jca+jxt`, `pvg+ecx+px+etn+jco`, `pvg+ecx+px+etn+jcs`, `pvg+ecx+px+etn+jct`, `pvg+ecx+px+etn+jxc`, `pvg+ecx+px+etn+jxc+jxt`, `pvg+ecx+px+etn+jxt`, `pvg+ef`, `pvg+ef+jca`, `pvg+ef+jcm`, `pvg+ef+jco`, `pvg+ef+jcr`, `pvg+ef+jcr+jxc`, `pvg+ef+jcr+jxt`, `pvg+ef+jcs`, `pvg+ef+jp+ef+jcr`, `pvg+ef+jp+etm`, `pvg+ef+jxc`, `pvg+ef+jxf`, `pvg+ef+jxt`, `pvg+ep+ecc`, `pvg+ep+ecc+jxt`, `pvg+ep+ecs`, `pvg+ep+ecs+jca+jxt`, `pvg+ep+ecs+jco`, `pvg+ep+ecs+jxc`, `pvg+ep+ecs+jxt`, `pvg+ep+ecx`, `pvg+ep+ecx+px+ef`, `pvg+ep+ef`, `pvg+ep+ef+jca`, `pvg+ep+ef+jcm`, `pvg+ep+ef+jco`, `pvg+ep+ef+jcr`, `pvg+ep+ef+jcr+jxc`, `pvg+ep+ef+jcr+jxt`, `pvg+ep+ef+jct`, `pvg+ep+ef+jxc`, `pvg+ep+ef+jxf`, `pvg+ep+ef+jxt`, `pvg+ep+ep+ef`, `pvg+ep+ep+ef+jco`, `pvg+ep+ep+ef+jxf`, `pvg+ep+etm`, `pvg+ep+etn`, `pvg+ep+etn+jca`, `pvg+ep+etn+jca+jxc`, `pvg+ep+etn+jca+jxt`, `pvg+ep+etn+jco`, `pvg+ep+etn+jcs`, `pvg+ep+etn+jxt`, `pvg+etm`, `pvg+etn`, `pvg+etn+jca`, `pvg+etn+jca+jxc`, `pvg+etn+jca+jxt`, `pvg+etn+jcc`, `pvg+etn+jcj`, `pvg+etn+jcm`, `pvg+etn+jco`, `pvg+etn+jcr`, `pvg+etn+jcs`, `pvg+etn+jct`, `pvg+etn+jct+jxt`, `pvg+etn+jp+ecc`, `pvg+etn+jp+ecs`, `pvg+etn+jp+ef`, `pvg+etn+jp+ef+jcr`, `pvg+etn+jp+ef+jcs`, `pvg+etn+jp+ep+ef`, `pvg+etn+jp+ep+ef+jcr`, `pvg+etn+jp+etm`, `pvg+etn+jxc`, `pvg+etn+jxc+jca+jxt`, `pvg+etn+jxc+jcm`, `pvg+etn+jxc+jco`, `pvg+etn+jxc+jcs`, `pvg+etn+jxc+jxt`, `pvg+etn+jxt`, `pvg+etn+xsm+ecs`, `pvg+etn+xsn+jcm`, `px+ecc`, `px+ecc+jxc`, `px+ecc+jxc+jp+ef`, `px+ecc+jxt`, `px+ecs`, `px+ecs+jca`, `px+ecs+jcc`, `px+ecs+jcj`, `px+ecs+jcm`, `px+ecs+jco`, `px+ecs+jp+ep+ef`, `px+ecs+jxc`, `px+ecs+jxt`, `px+ecx`, `px+ecx+jxc`, `px+ecx+jxt`, `px+ecx+px+ecs`, `px+ecx+px+ecx`, `px+ecx+px+ef`, `px+ecx+px+ef+jcr`, `px+ecx+px+ep+ef`, `px+ecx+px+etm`, `px+ecx+px+etn+jca`, `px+ef`, `px+ef+etm`, `px+ef+jca`, `px+ef+jca+jxc`, `px+ef+jcj`, `px+ef+jcm`, `px+ef+jco`, `px+ef+jcr`, `px+ef+jcr+jxc`, `px+ef+jcs`, `px+ef+jp+etm`, `px+ef+jxc`, `px+ef+jxf`, `px+ef+jxt`, `px+ep+ecc`, `px+ep+ecs`, `px+ep+ecs+jxc`, `px+ep+ecs+jxt`, `px+ep+ecx`, `px+ep+ef`, `px+ep+ef+jca`, `px+ep+ef+jco`, `px+ep+ef+jcr`, `px+ep+ef+jcr+jxc`, `px+ep+ef+jxf`, `px+ep+ep+ef`, `px+ep+ep+ef+jxf`, `px+ep+etm`, `px+ep+etn`, `px+ep+etn+jca`, `px+ep+etn+jca+jxc`, `px+ep+etn+jco`, `px+ep+etn+jcs`, `px+ep+etn+jxc`, `px+ep+etn+jxt`, `px+etm`, `px+etn`, `px+etn+jca`, `px+etn+jca+jxc`, `px+etn+jca+jxt`, `px+etn+jco`, `px+etn+jcs`, `px+etn+jct`, `px+etn+jxc`, `px+etn+jxc+jxt`, `px+etn+jxt`, `sf`, `sl`, `sp`, `sr`, `su`, `su+jca`, `su+jcm`, `xp+nbn`, `xp+nbu`, `xp+ncn`, `xp+ncn+jca`, `xp+ncn+jcm`, `xp+ncn+jco`, `xp+ncn+jcs`, `xp+ncn+jp+ef`, `xp+ncn+jp+ep+ef`, `xp+ncn+jxt`, `xp+ncn+ncn+jca`, `xp+ncn+ncn+jcm`, `xp+ncn+ncn+jco`, `xp+ncn+ncpa+jco`, `xp+ncn+xsn`, `xp+ncn+xsn+jca`, `xp+ncn+xsn+jcm`, `xp+ncn+xsn+jp+ef`, `xp+ncn+xsn+jp+etm`, `xp+ncpa`, `xp+ncpa+jca`, `xp+ncpa+jcm`, `xp+ncpa+jco`, `xp+ncpa+ncn+jcm`, `xp+ncpa+ncn+jco`, `xp+ncpa+ncpa+jco`, `xp+ncpa+xsn`, `xp+ncpa+xsn+jp+etm`, `xp+ncpa+xsv+ecc`, `xp+ncpa+xsv+ecs`, `xp+ncpa+xsv+ecx`, `xp+ncpa+xsv+ef`, `xp+ncpa+xsv+ef+jcr`, `xp+ncpa+xsv+ep+ef`, `xp+ncpa+xsv+etm`, `xp+ncpa+xsv+etn+jca`, `xp+ncps`, `xp+ncps+xsm+ecs`, `xp+ncps+xsm+ecx`, `xp+ncps+xsm+ef`, `xp+ncps+xsm+ep+ef`, `xp+ncps+xsm+etm`, `xp+ncps+xsn`, `xp+nnc`, `xp+nnc+jcm`, `xp+nnc+nbn`, `xp+nnc+nbu`, `xp+nnc+nbu+jcs`, `xp+nnc+ncn`, `xp+nnc+ncn+jca`, `xp+nnc+ncn+jcm`, `xp+nnc+ncn+jcs`, `xp+nnc+ncn+jp+ef+jcr`, `xp+nno`, `xp+nno+jcm`, `xp+nno+nbn+jca`, `xp+nno+nbu`, `xp+nno+nbu+jcs`, `xp+nno+ncn`, `xp+nno+ncn+jca`, `xp+nno+ncn+jcs`, `xp+nno+ncn+jxt`, `xp+nq`, `xp+nq+ncn+jca`, `xp+nq+ncpa`, `xp+nq+ncpa+jco`, `xp+nq+ncpa+jp+etm`, `xsm+etm`, `xsn`, `xsn+jca`, `xsn+jca+jxt`, `xsn+jco`, `xsn+jcs`, `xsn+jp+ef`, `xsn+jp+ep+ef`, `xsn+jxc+jca+jxt`, `xsn+jxc+jcs`, `xsn+jxt`, `xsv+ecc`, `xsv+ecs`, `xsv+ecx+px+ep+ef`, `xsv+ep+ecx`, `xsv+etm` | | **`morphologizer`** | `POS=CCONJ`, `POS=ADV`, `POS=SCONJ`, `POS=DET`, `POS=NOUN`, `POS=VERB`, `POS=ADJ`, `POS=PUNCT`, `POS=AUX`, `POS=PRON`, `POS=PROPN`, `POS=NUM`, `POS=INTJ`, `POS=PART`, `POS=X`, `POS=ADP`, `POS=SYM` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `dislocated`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `punct`, `vocative`, `xcomp` | | **`experimental_edit_tree_lemmatizer`** | `0`, `3`, `5`, `7`, `9`, `11`, `12`, `16`, `18`, `20`, `22`, `25`, `28`, `31`, `34`, `35`, `36`, `39`, `40`, `43`, `45`, `47`, `48`, `51`, `54`, `56`, `58`, `60`, `61`, `63`, `65`, `67`, `69`, `71`, `73`, `75`, `76`, `78`, `79`, `82`, `85`, `87`, `89`, `92`, `95`, `97`, `99`, `101`, `104`, `106`, `109`, `112`, `114`, `116`, `119`, `121`, `122`, `124`, `126`, `127`, `128`, `130`, `133`, `135`, `137`, `140`, `142`, `145`, `147`, `148`, `150`, `151`, `152`, `155`, `156`, `158`, `161`, `162`, `164`, `167`, `169`, `172`, `174`, `176`, `177`, `179`, `182`, `184`, `186`, `188`, `191`, `192`, `194`, `196`, `199`, `202`, `203`, `173`, `115`, `205`, `207`, `210`, `213`, `216`, `218`, `221`, `146`, `223`, `225`, `227`, `229`, `230`, `231`, `232`, `234`, `236`, `238`, `239`, `242`, `244`, `246`, `248`, `251`, `253`, `255`, `256`, `259`, `261`, `264`, `265`, `268`, `270`, `272`, `274`, `276`, `278`, `279`, `282`, `285`, `287`, `289`, `293`, `295`, `297`, `300`, `302`, `304`, `307`, `309`, `310`, `313`, `315`, `226`, `318`, `319`, `321`, `323`, `325`, `327`, `329`, `332`, `334`, `335`, `337`, `149`, `339`, `340`, `342`, `344`, `346`, `348`, `349`, `350`, `352`, `354`, `356`, `358`, `360`, `361`, `363`, `365`, `369`, `370`, `372`, `374`, `376`, `21`, `15`, `377`, `379`, `382`, `385`, `387`, `388`, `254`, `390`, `393`, `395`, `397`, `399`, `401`, `403`, `404`, `405`, `407`, `408`, `411`, `414`, `417`, `418`, `421`, `422`, `424`, `427`, `429`, `431`, `435`, `437`, `439`, `440`, `442`, `443`, `444`, `447`, `449`, `451`, `389`, `454`, `455`, `457`, `460`, `461`, `463`, `466`, `468`, `471`, `473`, `476`, `477`, `479`, `482`, `296`, `485`, `487`, `490`, `492`, `493`, `495`, `497`, `500`, `502`, `504`, `505`, `507`, `510`, `511`, `514`, `267`, `516`, `520`, `472`, `523`, `525`, `526`, `527`, `530`, `532`, `462`, `533`, `534`, `535`, `537`, `540`, `541`, `465`, `543`, `545`, `546`, `547`, `550`, `551`, `552`, `553`, `555`, `556`, `72`, `558`, `560`, `562`, `563`, `564`, `567`, `568`, `571`, `574`, `577`, `579`, `581`, `582`, `584`, `587`, `589`, `591`, `594`, `595`, `597`, `600`, `603`, `606`, `608`, `610`, `611`, `613`, `614`, `616`, `617`, `620`, `10`, `623`, `626`, `629`, `632`, `633`, `635`, `637`, `638`, `640`, `642`, `644`, `645`, `647`, `648`, `651`, `652`, `653`, `655`, `657`, `659`, `660`, `664`, `666`, `667`, `669`, `672`, `674`, `675`, `676`, `678`, `679`, `680`, `683`, `684`, `687`, `689`, `690`, `692`, `694`, `697`, `699`, `702`, `703`, `706`, `707`, `710`, `713`, `715`, `717`, `719`, `721`, `723`, `725`, `728`, `730`, `733`, `735`, `738`, `740`, `743`, `744`, `649`, `747`, `749`, `753`, `756`, `757`, `759`, `761`, `764`, `767`, `769`, `772`, `774`, `777`, `780`, `783`, `785`, `787`, `789`, `792`, `794`, `797`, `799`, `800`, `802`, `805`, `806`, `808`, `809`, `811`, `812`, `813`, `815`, `817`, `819`, `820`, `59`, `822`, `824`, `827`, `829`, `831`, `618`, `832`, `834`, `836`, `838`, `724`, `841`, `55`, `842`, `844`, `846`, `847`, `850`, `852`, `855`, `857`, `859`, `861`, `863`, `865`, `868`, `869`, `871`, `873`, `874`, `877`, `880`, `884`, `887`, `890`, `891`, `892`, `893`, `896`, `898`, `901`, `351`, `904`, `906`, `908`, `911`, `913`, `915`, `650`, `918`, `920`, `830`, `921`, `923`, `924`, `926`, `927`, `930`, `931`, `934`, `937`, `938`, `940`, `941`, `942`, `945`, `947`, `949`, `952`, `954`, `957`, `960`, `963`, `965`, `967`, `970`, `972`, `974`, `977`, `980`, `981`, `983`, `985`, `986`, `988`, `991`, `994`, `997`, `999`, `1000`, `1002`, `1005`, `1006`, `1007`, `1010`, `125`, `1013`, `1016`, `1017`, `1019`, `1020`, `1024`, `1026`, `1028`, `1030`, `1032`, `1034`, `1036`, `1038`, `1040`, `1041`, `1044`, `1045`, `1048`, `415`, `1051`, `1053`, `1055`, `1056`, `1058`, `1061`, `1063`, `1065`, `1067`, `1068`, `1069`, `1070`, `1074`, `946`, `1077`, `1079`, `1081`, `1083`, `1086`, `1088`, `1089`, `1092`, `936`, `1096`, `1098`, `1101`, `1104`, `1106`, `1108`, `1110`, `1112`, `1114`, `1116`, `1118`, `1119`, `1120`, `1085`, `1123`, `1125`, `1127`, `1031`, `1128`, `1131`, `1124`, `1134`, `1135`, `1137`, `1139`, `1142`, `1144`, `1145`, `1147`, `1150`, `1152`, `1156`, `1158`, `1159`, `1162`, `1164`, `1166`, `1167`, `1170`, `1172`, `1174`, `1176`, `1178`, `1180`, `1181`, `1183`, `1186`, `1187`, `1189`, `1192`, `1195`, `1198`, `1200`, `1201`, `1204`, `1206`, `1208`, `1209`, `763`, `1211`, `1212`, `1214`, `1215`, `1218`, `1220`, `1222`, `1225`, `1226`, `1227`, `1228`, `1230`, `1232`, `1234`, `1236`, `1237`, `1239`, `1241`, `181`, `1244`, `1245`, `1247`, `1249`, `1251`, `1253`, `1256`, `1257`, `1260`, `1261`, `1262`, `1264`, `1267`, `1268`, `1269`, `1272`, `1274`, `1277`, `1280`, `1283`, `1285`, `1287`, `1289`, `1290`, `1294`, `1296`, `1279`, `1298`, `1300`, `1303`, `1304`, `1306`, `1309`, `1311`, `1313`, `1314`, `1317`, `1319`, `1320`, `1324`, `1327`, `1329`, `1332`, `1334`, `1336`, `1338`, `1340`, `1342`, `1344`, `1345`, `303`, `1346`, `1349`, `1350`, `1352`, `1354`, `1356`, `1359`, `362`, `1360`, `1363`, `1365`, `1366`, `1367`, `1369`, `1370`, `1372`, `1374`, `1375`, `1378`, `1380`, `1384`, `1385`, `1389`, `1390`, `1393`, `1395`, `1398`, `1403`, `1404`, `1405`, `1407`, `1410`, `1413`, `1415`, `1418`, `1420`, `1422`, `1423`, `1425`, `1426`, `1428`, `1429`, `1431`, `1433`, `1435`, `1436`, `1438`, `1440`, `1442`, `1444`, `1447`, `1448`, `1449`, `1451`, `1452`, `105`, `1454`, `1456`, `1457`, `1459`, `1462`, `1463`, `1464`, `1466`, `1468`, `1470`, `1471`, `1475`, `810`, `1476`, `1478`, `1480`, `1483`, `1485`, `1487`, `1490`, `1493`, `450`, `1496`, `1498`, `1501`, `1504`, `1506`, `1508`, `1510`, `1513`, `1515`, `1517`, `1520`, `1523`, `1526`, `1529`, `1531`, `1535`, `1536`, `1538`, `1540`, `1542`, `1545`, `1548`, `1550`, `1554`, `1555`, `1558`, `1559`, `1561`, `1563`, `1565`, `1566`, `1568`, `1569`, `1572`, `1574`, `1576`, `1578`, `1580`, `1581`, `1582`, `1585`, `1586`, `1589`, `1591`, `1593`, `1596`, `1597`, `416`, `615`, `1599`, `1601`, `1603`, `1608`, `1611`, `840`, `1613`, `1614`, `1616`, `1618`, `1622`, `1624`, `1627`, `1630`, `1633`, `1636`, `1638`, `1642`, `1645`, `1647`, `1650`, `1653`, `1656`, `1659`, `1661`, `1664`, `1665`, `1668`, `1670`, `1671`, `1674`, `1676`, `1679`, `1680`, `1683`, `1685`, `1687`, `1689`, `1694`, `1697`, `1698`, `1699`, `1700`, `1702`, `1705`, `1706`, `1709`, `1711`, `1712`, `1714`, `1718`, `1720`, `1721`, `1723`, `1725`, `1726`, `1728`, `987`, `506`, `1730`, `1733`, `1735`, `1736`, `1738`, `1740`, `1741`, `1743`, `1745`, `1747`, `1748`, `166`, `1750`, `1752`, `1753`, `1755`, `1758`, `1761`, `1763`, `224`, `1764`, `1767`, `1768`, `1771`, `1773`, `1777`, `1779`, `1783`, `1786`, `1787`, `1791`, `1794`, `1797`, `1798`, `1799`, `1801`, `1804`, `1806`, `1807`, `1809`, `228`, `1810`, `1813`, `1814`, `1817`, `1819`, `1821`, `1824`, `1826`, `1829`, `1831`, `1833`, `1834`, `1835`, `1837`, `1839`, `1637`, `1840`, `1844`, `1846`, `905`, `1850`, `1851`, `1853`, `1855`, `1858`, `1859`, `1861`, `1862`, `1863`, `1866`, `1867`, `1869`, `1873`, `1875`, `1878`, `1879`, `1883`, `1884`, `1887`, `1890`, `1892`, `1895`, `1896`, `1899`, `1901`, `1903`, `1905`, `1907`, `1908`, `1909`, `1910`, `1912`, `1914`, `1917`, `1920`, `1922`, `1924`, `1926`, `1928`, `1929`, `1932`, `1933`, `1935`, `1936`, `1937`, `1940`, `1942`, `1944`, `1946`, `1947`, `1949`, `1952`, `1953`, `1956`, `1959`, `1960`, `1962`, `1964`, `1965`, `1966`, `1967`, `1970`, `1971`, `1972`, `1974`, `1975`, `1976`, `1977`, `1978`, `1979`, `1981`, `1982`, `1983`, `1985`, `1987`, `1991`, `673`, `1992`, `1994`, `1995`, `1997`, `1999`, `2002`, `2003`, `2005`, `2008`, `2010`, `2012`, `2013`, `2015`, `2017`, `2019`, `2020`, `2023`, `2026`, `2027`, `2030`, `2032`, `2034`, `2036`, `2038`, `2040`, `2041`, `2042`, `2045`, `2046`, `2048`, `2049`, `2051`, `2052`, `2053`, `1295`, `2054`, `536`, `2057`, `2059`, `2062`, `2064`, `2066`, `2067`, `2068`, `2072`, `2075`, `2076`, `2078`, `2081`, `2083`, `2085`, `2086`, `2088`, `2090`, `2091`, `2093`, `2096`, `2098`, `2099`, `2102`, `2104`, `2105`, `2107`, `2110`, `2111`, `17`, `2113`, `2116`, `2118`, `2121`, `2123`, `2124`, `2125`, `2127`, `2128`, `2129`, `2131`, `2133`, `2135`, `2137`, `2140`, `2141`, `2143`, `2145`, `2146`, `2147`, `2149`, `2151`, `2154`, `2155`, `2156`, `2159`, `2160`, `2161`, `2162`, `2163`, `2165`, `2168`, `1477`, `2170`, `2171`, `2173`, `2174`, `2175`, `2177`, `2180`, `2181`, `2183`, `2185`, `2187`, `2188`, `2190`, `2193`, `2195`, `2199`, `2202`, `2204`, `2205`, `2207`, `2210`, `2212`, `2213`, `2216`, `338`, `2218`, `2220`, `2222`, `2224`, `2226`, `2229`, `2231`, `2233`, `2236`, `2238`, `2240`, `2243`, `2245`, `2247`, `2248`, `593`, `2250`, `2251`, `2256`, `2258`, `2261`, `2263`, `2264`, `2266`, `2268`, `2271`, `2274`, `2277`, `2278`, `2281`, `2282`, `2284`, `2287`, `2289`, `2292`, `345`, `2294`, `2297`, `2299`, `2301`, `2304`, `2306`, `2308`, `2310`, `2312`, `2315`, `2317`, `2318`, `2321`, `2322`, `2323`, `1663`, `2324`, `2328`, `2331`, `2332`, `2335`, `2337`, `2339`, `2341`, `2344`, `2346`, `2348`, `2350`, `2354`, `2355`, `2359`, `2361`, `2363`, `2366`, `2368`, `2369`, `2372`, `2375`, `2376`, `2380`, `2384`, `2167`, `2385`, `2386`, `2388`, `2391`, `2393`, `2395`, `2397`, `2398`, `2400`, `2403`, `2404`, `2406`, `2410`, `2412`, `2414`, `2416`, `2418`, `1111`, `2420`, `2421`, `2422`, `2425`, `2428`, `2431`, `2433`, `2435`, `2437`, `2438`, `2439`, `2442`, `2445`, `2447`, `2448`, `2450`, `2453`, `2456`, `2459`, `2461`, `2462`, `2463`, `2466`, `2467`, `2470`, `2471`, `2473`, `2476`, `2478`, `2479`, `2482`, `2485`, `2486`, `2488`, `2489`, `2491`, `2494`, `2496`, `2498`, `2501`, `2503`, `2506`, `2507`, `2508`, `2510`, `2512`, `2513`, `2515`, `2517`, `2518`, `2520`, `2522`, `2526`, `2529`, `2531`, `1219`, `2534`, `2536`, `2538`, `2540`, `2542`, `2544`, `2546`, `2547`, `2549`, `2550`, `2552`, `2553`, `2556`, `2559`, `2561`, `2563`, `2565`, `2567`, `2569`, `2571`, `2573`, `2575`, `2577`, `2578`, `2579`, `2580`, `2583`, `2585`, `2587`, `2590`, `2594`, `2596`, `2598`, `2602`, `2605`, `2607`, `2609`, `2613`, `2614`, `2615`, `2616`, `2620`, `2621`, `2625`, `2626`, `2629`, `2631`, `2632`, `2634`, `2636`, `2639`, `2640`, `2642`, `2643`, `2644`, `2647`, `2648`, `2650`, `2653`, `2656`, `2658`, `864`, `2661`, `1052`, `2662`, `2664`, `2665`, `2666`, `2669`, `2672`, `2674`, `2676`, `2679`, `2680`, `2682`, `2684`, `2687`, `2688`, `2693`, `2695`, `2697`, `2699`, `2700`, `2703`, `2705`, `2686`, `2706`, `2709`, `2711`, `2714`, `2717`, `2719`, `2721`, `2725`, `2728`, `2730`, `2192`, `2731`, `2734`, `2735`, `2738`, `2739`, `2741`, `2744`, `2745`, `2747`, `2750`, `2753`, `2755`, `2758`, `2759`, `2761`, `2763`, `2766`, `2768`, `2769`, `2771`, `2773`, `2775`, `2776`, `2779`, `2782`, `2785`, `2786`, `2788`, `1406`, `2790`, `2791`, `2792`, `2793`, `2794`, `2796`, `2799`, `2801`, `2804`, `2807`, `2810`, `2813`, `2814`, `2816`, `2818`, `2820`, `2822`, `2824`, `2827`, `2828`, `2830`, `2833`, `2803`, `2835`, `2837`, `2839`, `2841`, `2844`, `2845`, `2846`, `2847`, `2849`, `2850`, `2852`, `2853`, `2854`, `2857`, `2859`, `2861`, `2863`, `2865`, `2867`, `2869`, `2871`, `2872`, `2874`, `2876`, `2878`, `2880`, `2882`, `2884`, `2886`, `2887`, `2891`, `2894`, `2895`, `2896`, `2897`, `2900`, `2903`, `2904`, `386`, `2906`, `2909`, `2912`, `2913`, `2915`, `2917`, `2919`, `2920`, `2923`, `2924`, `2925`, `2926`, `2928`, `2930`, `2932`, `2935`, `2938`, `2939`, `2940`, `2944`, `2946`, `2947`, `2951`, `2952`, `2955`, `2957`, `2961`, `2963`, `2965`, `2968`, `2971`, `275`, `2973`, `2975`, `2977`, `2980`, `2982`, `2984`, `2988`, `573`, `2990`, `2991`, `2993`, `2994`, `2995`, `2998`, `3001`, `3004`, `3007`, `3009`, `378`, `3012`, `3013`, `3014`, `3015`, `3018`, `3020`, `3022`, `3024`, `3026`, `3028`, `3031`, `3033`, `3036`, `3037`, `3039`, `3041`, `3042`, `3043`, `3044`, `3046`, `3048`, `3049`, `3050`, `3053`, `3055`, `3056`, `3058`, `3060`, `3062`, `3064`, `3066`, `3068`, `3071`, `3072`, `3073`, `3076`, `3078`, `3079`, `3081`, `3084`, `3085`, `3087`, `445`, `3089`, `3091`, `3093`, `3094`, `3097`, `3098`, `3100`, `456`, `3104`, `3106`, `3107`, `3109`, `3111`, `3113`, `3115`, `3117`, `3118`, `3121`, `3122`, `3124`, `3126`, `3128`, `3130`, `3132`, `3135`, `3136`, `3137`, `3138`, `3141`, `3142`, `3144`, `3146`, `1080`, `3151`, `3153`, `3155`, `3156`, `3160`, `98`, `3162`, `3163`, `3165`, `3166`, `3169`, `3171`, `3173`, `3175`, `3176`, `3179`, `3182`, `3185`, `3186`, `3189`, `3192`, `3195`, `3198`, `3199`, `3201`, `3203`, `3204`, `3205`, `3208`, `3209`, `2597`, `3210`, `3213`, `3216`, `3217`, `3218`, `1592`, `3221`, `3222`, `3224`, `3227`, `3229`, `3230`, `3231`, `3233`, `3237`, `3240`, `3243`, `3246`, `3248`, `3251`, `3252`, `3253`, `347`, `3255`, `3258`, `3260`, `3263`, `3266`, `3267`, `3271`, `3272`, `3275`, `3276`, `3279`, `3281`, `3283`, `3286`, `3289`, `3290`, `3293`, `3294`, `3295`, `3297`, `3299`, `3300`, `3301`, `3304`, `3307`, `3311`, `136`, `3313`, `3314`, `3316`, `3318`, `3320`, `3324`, `3326`, `3330`, `3333`, `3335`, `3337`, `3341`, `3343`, `3346`, `3350`, `3352`, `3353`, `3355`, `3356`, `3358`, `3360`, `3362`, `3364`, `3366`, `3369`, `3370`, `3372`, `3373`, `3376`, `3378`, `3380`, `2106`, `3382`, `3386`, `3387`, `3390`, `3392`, `3393`, `3395`, `3398`, `3400`, `3403`, `3404`, `3407`, `3409`, `3410`, `1762`, `3412`, `3414`, `3416`, `3418`, `3420`, `3421`, `3424`, `3427`, `3430`, `3432`, `3433`, `3435`, `3437`, `3438`, `3440`, `3442`, `1205`, `3445`, `3447`, `3448`, `3449`, `3453`, `3455`, `3456`, `3457`, `1626`, `3461`, `3464`, `3465`, `3468`, `3471`, `3472`, `3475`, `3478`, `3131`, `3480`, `3482`, `3483`, `3486`, `3489`, `3492`, `3494`, `3496`, `3497`, `3500`, `3502`, `3505`, `3506`, `3509`, `3511`, `3514`, `3516`, `3519`, `3522`, `3523`, `3525`, `3531`, `3534`, `3536`, `3538`, `3540`, `3541`, `3543`, `3546`, `3549`, `3551`, `3554`, `3555`, `3558`, `3560`, `3562`, `3565`, `3567`, `3569`, `3573`, `3574`, `3577`, `3579`, `3581`, `3584`, `3587`, `3590`, `3592`, `3595`, `3597`, `3599`, `3601`, `3604`, `3607`, `3610`, `3612`, `3615`, `3617`, `3620`, `3623`, `3627`, `3629`, `3632`, `3634`, `3635`, `3637`, `3639`, `3642`, `3645`, `3648`, `3649`, `3652`, `3654`, `3655`, `3657`, `3658`, `3660`, `3665`, `2016`, `3669`, `3670`, `3672`, `3674`, `3675`, `3676`, `3678`, `3680`, `3683`, `3686`, `3689`, `3690`, `3693`, `3696`, `3698`, `3700`, `3702`, `3704`, `3706`, `3708`, `3710`, `3712`, `3714`, `3716`, `3719`, `3720`, `3721`, `3723`, `3724`, `3726`, `3730`, `3732`, `3735`, `3736`, `3737`, `3738`, `3741`, `3743`, `3746`, `3748`, `3750`, `3752`, `3755`, `3756`, `3757`, `3759`, `3761`, `3764`, `3765`, `3767`, `3771`, `3772`, `3774`, `3776`, `3778`, `3781`, `3783`, `3784`, `3786`, `3789`, `3790`, `3793`, `3796`, `3799`, `3802`, `3805`, `3806`, `3807`, `3809`, `3811`, `3815`, `3817`, `3818`, `3823`, `3825`, `3828`, `3831`, `3832`, `3834`, `3836`, `3838`, `3841`, `3843`, `3845`, `3847`, `3848`, `3850`, `1800`, `3852`, `3854`, `3856`, `3858`, `3861`, `3865`, `3866`, `3868`, `3869`, `3873`, `3875`, `3878`, `3879`, `3881`, `3884`, `3886`, `3888`, `3891`, `3893`, `3895`, `3897`, `3898`, `3900`, `3901`, `3904`, `3907`, `3908`, `3910`, `3912`, `3913`, `3914`, `3916`, `3917`, `3919`, `3920`, `3923`, `3924`, `3926`, `3928`, `3930`, `3931`, `3934`, `3939`, `3941`, `3942`, `3944`, `3948`, `3950`, `3951`, `3953`, `3956`, `3957`, `3958`, `3960`, `3963`, `3966`, `3969`, `3971`, `3975`, `3977`, `3979`, `3980`, `3983`, `3985`, `3987`, `3990`, `3991`, `3992`, `3994`, `3997`, `4000`, `4002`, `4005`, `4006`, `4008`, `4010`, `4013`, `4015`, `4019`, `4021`, `4024`, `4026`, `4028`, `4030`, `3795`, `4031`, `4033`, `4035`, `4037`, `4039`, `4042`, `4044`, `4047`, `4049`, `4051`, `4054`, `2235`, `4056`, `4059`, `4061`, `4062`, `4063`, `4065`, `4067`, `4069`, `4071`, `4072`, `4075`, `4077`, `4080`, `4083`, `4086`, `4088`, `4090`, `4092`, `4094`, `4095`, `4097`, `4098`, `979`, `4099`, `4100`, `4102`, `4104`, `4107`, `4109`, `4111`, `4112`, `4113`, `4117`, `4118`, `4120`, `4122`, `4124`, `4125`, `4126`, `4128`, `4129`, `4131`, `4134`, `4135`, `4136`, `4138`, `4141`, `4143`, `4146`, `4148`, `4150`, `4152`, `4154`, `4157`, `4161`, `4163`, `4164`, `4167`, `4168`, `4170`, `4173`, `4175`, `4177`, `4178`, `4180`, `4183`, `4185`, `4188`, `4189`, `4190`, `4192`, `4193`, `4195`, `4197`, `4199`, `4201`, `4203`, `4204`, `4206`, `4208`, `4209`, `4211`, `4214`, `4216`, `4218`, `4220`, `4221`, `4224`, `4226`, `4228`, `4230`, `4232`, `4235`, `4238`, `4240`, `4242`, `4244`, `4247`, `4248`, `4250`, `4252`, `123`, `4254`, `4255`, `4256`, `4258`, `4260`, `4261`, `4262`, `4264`, `4266`, `4267`, `4269`, `4271`, `4273`, `4275`, `4278`, `4279`, `4281`, `4282`, `4283`, `4285`, `4286`, `4289`, `4292`, `4294`, `4297`, `4299`, `4302`, `4303`, `4305`, `4307`, `4308`, `4312`, `4314`, `4316`, `4318`, `4321`, `4323`, `4325`, `4327`, `4329`, `4332`, `4335`, `4336`, `4338`, `4341`, `4342`, `4343`, `4344`, `4347`, `4348`, `4351`, `4354`, `4357`, `4358`, `2303`, `4360`, `4363`, `4366`, `4368`, `4370`, `4371`, `4374`, `3317`, `4375`, `4378`, `4381`, `4384`, `4387`, `4390`, `4392`, `4394`, `4397`, `4399`, `3754`, `4401`, `4402`, `4405`, `4407`, `4410`, `4411`, `4414`, `4415`, `4417`, `4420`, `4422`, `4423`, `4426`, `4429`, `4430`, `4433`, `4435`, `4436`, `4438`, `4440`, `4441`, `4442`, `4444`, `4447`, `4450`, `4451`, `4453`, `4454`, `4455`, `4456`, `4458`, `4460`, `4462`, `4465`, `4467`, `4468`, `4469`, `4471`, `4475`, `4477`, `4480`, `4481`, `2509`, `4484`, `4486`, `4487`, `4490`, `4492`, `4493`, `4495`, `4496`, `4498`, `4500`, `4503`, `4506`, `4508`, `4511`, `4512`, `4514`, `4516`, `4518`, `4520`, `4522`, `4524`, `4527`, `4528`, `4529`, `4532`, `2176`, `4536`, `4539`, `4541`, `4542`, `4543`, `4544`, `4545`, `4548`, `4549`, `4551`, `4553`, `4555`, `4559`, `4562`, `4564`, `4566`, `4569`, `4571`, `4574`, `4577`, `4578`, `4581`, `4584`, `4586`, `4589`, `4592`, `4593`, `4596`, `4598`, `4602`, `4605`, `4607`, `4609`, `4611`, `4613`, `4616`, `4618`, `4620`, `4622`, `4624`, `4627`, `4628`, `4629`, `4630`, `4631`, `4632`, `4633`, `4635`, `4637`, `4638`, `4640`, `4642`, `4645`, `4647`, `4649`, `4651`, `4653`, `4655`, `4657`, `4659`, `4660`, `4661`, `4662`, `4664`, `4665`, `4666`, `4669`, `4672`, `4673`, `4675`, `4678`, `4679`, `4681`, `4682`, `4685`, `4687`, `4688`, `4689`, `4692`, `4695`, `4698`, `4700`, `4702`, `4705`, `4707`, `4710`, `4712`, `4713`, `4715`, `4718`, `4719`, `4722`, `4724`, `4726`, `4729`, `4730`, `4732`, `4733`, `4734`, `4736`, `4737`, `4739`, `4741`, `4743`, `4745`, `4748`, `4750`, `4753`, `4755`, `4757`, `4759`, `4762`, `4763`, `4765`, `4767`, `4768`, `4770`, `4772`, `4775`, `4777`, `4779`, `4781`, `4784`, `4786`, `4787`, `4790`, `3108`, `4793`, `4794`, `4797`, `4798`, `4801`, `4803`, `4805`, `4806`, `4808`, `4014`, `4809`, `4811`, `4813`, `4815`, `4818`, `4821`, `4824`, `4826`, `4827`, `4830`, `4833`, `4835`, `4650`, `4838`, `4841`, `4843`, `4844`, `4846`, `4847`, `4848`, `4849`, `4851`, `4853`, `4855`, `4857`, `4860`, `4861`, `4862`, `4865`, `4867`, `4868`, `4870`, `4874`, `4875`, `4877`, `4882`, `4883`, `4885`, `4888`, `4890`, `4891`, `4892`, `4894`, `4896`, `4899`, `4901`, `4904`, `4907`, `4908`, `4615`, `4911`, `4914`, `4916`, `4918`, `4920`, `4921`, `4924`, `4926`, `4929`, `4930`, `4931`, `4934`, `4936`, `4937`, `4939`, `4942`, `4945`, `4948`, `2484`, `4949`, `4950`, `4952`, `4953`, `4956`, `4957`, `914`, `4958`, `4959`, `4961`, `4963`, `4964`, `4967`, `4969`, `4970`, `4973`, `1259`, `4974`, `4977`, `4978`, `4979`, `4982`, `4984`, `4985`, `4988`, `4991`, `4994`, `4995`, `3747`, `4997`, `4999`, `5001`, `5002`, `5004`, `5006`, `5009`, `665`, `2784`, `1854`, `5011`, `5012`, `5014`, `5016`, `5018`, `5021`, `5022`, `5025`, `5028`, `5031`, `5033`, `5036`, `5037`, `5039`, `3846`, `5040`, `5042`, `5044`, `5046`, `5048`, `5050`, `5017`, `5053`, `5054`, `5055`, `5057`, `5059`, `5061`, `5064`, `5067`, `5068`, `5071`, `5074`, `5076`, `5078`, `5080`, `5083`, `5086`, `5088`, `5091`, `5093`, `5097`, `5099`, `5101`, `5102`, `5103`, `5104`, `5108`, `5110`, `5112`, `5085`, `5116`, `5118`, `5120`, `5122`, `5125`, `5126`, `5128`, `5130`, `5132`, `5134`, `5136`, `5139`, `5141`, `5142`, `5143`, `5146`, `5149`, `5151`, `5154`, `5156`, `5159`, `5162`, `5165`, `5167`, `5171`, `5173`, `5176`, `5178`, `5182`, `5185`, `5186`, `5187`, `5190`, `5192`, `5196`, `5197`, `5198`, `5199`, `5201`, `4873`, `5203`, `5207`, `5209`, `5212`, `5215`, `5217`, `5219`, `5222`, `5223`, `5225`, `5227`, `5229`, `5231`, `5232`, `5234`, `5236`, `5237`, `5240`, `5242`, `5244`, `5246`, `5248`, `5250`, `5251`, `5255`, `5257`, `5258`, `5259`, `5261`, `5264`, `5268`, `5271`, `2858`, `5272`, `5274`, `5275`, `5277`, `5278`, `5281`, `5282`, `5285`, `5287`, `5289`, `5291`, `5292`, `5295`, `5297`, `5298`, `5299`, `5300`, `5302`, `5303`, `5305`, `5307`, `446`, `5309`, `5310`, `5312`, `5315`, `5317`, `5318`, `5320`, `3824`, `5323`, `5324`, `5326`, `5329`, `5331`, `5333`, `5336`, `5338`, `5339`, `5340`, `5342`, `5345`, `5347`, `5349`, `5351`, `5353`, `5355`, `5357`, `3381`, `5358`, `5359`, `5360`, `796`, `5362`, `5365`, `5368`, `5369`, `5372`, `5374`, `5377`, `5379`, `5381`, `5382`, `5383`, `5384`, `5387`, `5389`, `5391`, `5392`, `5395`, `5396`, `5397`, `5400`, `5403`, `5406`, `5408`, `5411`, `5413`, `5415`, `5418`, `5422`, `5424`, `5425`, `5428`, `5431`, `5434`, `5435`, `5437`, `5438`, `5441`, `5442`, `5444`, `5446`, `5449`, `5452`, `5456`, `5458`, `5461`, `5466`, `5468`, `5471`, `5474`, `5476`, `5478`, `5481`, `5483`, `5486`, `5487`, `5489`, `5492`, `5493`, `5496`, `5498`, `5499`, `5501`, `5503`, `5504`, `5507`, `5510`, `5514`, `5516`, `5427`, `1805`, `5519`, `5521`, `5522`, `5523`, `5526`, `5527`, `5529`, `5531`, `5532`, `5534`, `5535`, `5536`, `5538`, `5539`, `5542`, `5545`, `5547`, `5548`, `5549`, `5550`, `5552`, `5554`, `5555`, `5556`, `5558`, `5560`, `5561`, `5564`, `5565`, `5567`, `5569`, `5572`, `5573`, `5575`, `5578`, `5581`, `5584`, `5588`, `5591`, `5593`, `5594`, `5596`, `5598`, `5599`, `5603`, `5605`, `5607`, `5609`, `5611`, `5612`, `5613`, `5615`, `5616`, `5619`, `5621`, `5622`, `5625`, `5627`, `5630`, `5633`, `5635`, `5639`, `5642`, `5645`, `5647`, `5650`, `5651`, `5652`, `5653`, `5654`, `5655`, `5656`, `5658`, `5659`, `5660`, `5663`, `5664`, `5667`, `5668`, `5669`, `5670`, `5671`, `5672`, `5676`, `5680`, `5682`, `5683`, `5684`, `5685`, `5687`, `5690`, `5692`, `5695`, `5696`, `5697`, `5699`, `5701`, `5703`, `5705`, `5706`, `5709`, `5710`, `5712`, `5714`, `5716`, `5718`, `5720`, `5723`, `5726`, `5727`, `5729`, `5732`, `5734`, `5736`, `5738`, `5741`, `5743`, `5744`, `5747`, `5749`, `5751`, `5752`, `5754`, `5756`, `5759`, `5760`, `5764`, `5766`, `3947`, `5769`, `5770`, `5774`, `5775`, `5777`, `5779`, `5782`, `5784`, `5786`, `5789`, `5791`, `5794`, `5796`, `5798`, `5799`, `5802`, `5804`, `5806`, `5810`, `5811`, `5813`, `5815`, `5817`, `5819`, `5821`, `5824`, `5825`, `5828`, `5830`, `5833`, `5834`, `5836`, `5837`, `5838`, `5840`, `5842`, `5844`, `5846`, `5848`, `5849`, `5850`, `5853`, `5855`, `5857`, `5858`, `483`, `5860`, `5863`, `5864`, `5866`, `5870`, `5872`, `5874`, `5876`, `5879`, `5881`, `5882`, `5885`, `5886`, `5887`, `5889`, `5891`, `5893`, `5895`, `5896`, `5898`, `5900`, `5902`, `5904`, `5906`, `5909`, `5911`, `5912`, `5914`, `5916`, `5921`, `5923`, `5924`, `5926`, `5928`, `5931`, `5933`, `5936`, `5938`, `5940`, `5941`, `5945`, `5947`, `5949`, `5951`, `5953`, `5956`, `5958`, `5960`, `5963`, `5965`, `5966`, `5968`, `5971`, `5973`, `5975`, `5978`, `5980`, `5983`, `5984`, `5986`, `5987`, `5990`, `5991`, `5994`, `5996`, `5997`, `5999`, `6001`, `6002`, `6005`, `6007`, `6009`, `6011`, `6014`, `6016`, `6020`, `6022`, `6024`, `6025`, `6028`, `6029`, `6030`, `6033`, `6036`, `6038`, `6039`, `6040`, `6042`, `6044`, `6045`, `6046`, `6048`, `6050`, `6052`, `6053`, `6054`, `6055`, `6058`, `6060`, `6062`, `6063`, `6065`, `3788`, `6068`, `6071`, `6073`, `6074`, `6077`, `6078`, `6080`, `6081`, `6084`, `1254`, `6087`, `6089`, `6091`, `6094`, `6095`, `6098`, `6099`, `266`, `6100`, `6102`, `6103`, `6104`, `6106`, `6107`, `6109`, `6110`, `4817`, `6112`, `6115`, `6117`, `6118`, `5491`, `3359`, `6119`, `6121`, `6123`, `6126`, `6128`, `6130`, `6132`, `6136`, `6137`, `6139`, `6141`, `6142`, `6145`, `6147`, `6149`, `6151`, `6154`, `6156`, `6157`, `6158`, `6160`, `6163`, `6165`, `6167`, `6168`, `6170`, `6174`, `6178`, `835`, `4523`, `6180`, `4485`, `6181`, `6184`, `6187`, `6190`, `6193`, `6197`, `6199`, `6200`, `6202`, `6204`, `6205`, `6207`, `6209`, `6212`, `6215`, `6218`, `6219`, `6221`, `6223`, `6226`, `6228`, `6230`, `6233`, `6234`, `6236`, `6238`, `6241`, `6243`, `6246`, `6248`, `6250`, `6251`, `6253`, `6254`, `6256`, `6257`, `6259`, `6261`, `6264`, `6266`, `6267`, `6268`, `6270`, `6272`, `6275`, `6277`, `6279`, `2497`, `6282`, `6284`, `6287`, `6289`, `6290`, `6291`, `6293`, `6296`, `6297`, `6300`, `6302`, `6303`, `6307`, `6309`, `6311`, `2972`, `6314`, `6317`, `6319`, `6322`, `6324`, `6326`, `6328`, `6331`, `6332`, `6334`, `6336`, `6338`, `6339`, `6341`, `6344`, `6345`, `6346`, `6349`, `6352`, `6353`, `6355`, `6356`, `6359`, `5488`, `6361`, `6362`, `6365`, `6366`, `6368`, `6371`, `6373`, `6375`, `6377`, `6378`, `6380`, `6383`, `6386`, `6388`, `6390`, `6391`, `1351`, `6393`, `6395`, `6396`, `6397`, `6399`, `6401`, `6402`, `6403`, `6406`, `6408`, `6409`, `6411`, `6414`, `6417`, `6420`, `6423`, `6425`, `6429`, `6430`, `6431`, `910`, `6433`, `6434`, `6435`, `6437`, `2487`, `6439`, `6441`, `6445`, `6448`, `6450`, `6454`, `6456`, `6458`, `6460`, `6463`, `6464`, `6467`, `6468`, `6470`, `6472`, `6474`, `6477`, `6478`, `6479`, `6480`, `6482`, `6485`, `6486`, `6489`, `6491`, `6494`, `6497`, `6499`, `6502`, `6504`, `6505`, `6507`, `6509`, `6510`, `6512`, `6515`, `6516`, `6517`, `6519`, `6522`, `6524`, `6525`, `6527`, `6529`, `6532`, `1640`, `6533`, `6534`, `6536`, `6539`, `6542`, `4355`, `6545`, `6546`, `6548`, `6550`, `6551`, `6552`, `6555`, `6556`, `6558`, `6560`, `6563`, `6564`, `6566`, `6568`, `6569`, `6570` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_F` | 100.00 | | `TOKEN_P` | 100.00 | | `TOKEN_R` | 100.00 | | `TOKEN_ACC` | 100.00 | | `SENTS_F` | 100.00 | | `SENTS_P` | 100.00 | | `SENTS_R` | 100.00 | | `TAG_ACC` | 88.93 | | `POS_ACC` | 96.52 | | `MORPH_ACC` | 100.00 | | `MORPH_PER_FEAT` | 0.00 | | `DEP_UAS` | 89.48 | | `DEP_LAS` | 87.18 | | `LEMMA_ACC` | 94.51 |
015ec3d1b918c9f3dec91e217360fc94
reaverlee/xlm-roberta-base-finetuned-panx-fr
reaverlee
xlm-roberta
10
7
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,313
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2761 - F1: 0.8350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5826 | 1.0 | 191 | 0.3409 | 0.7713 | | 0.2674 | 2.0 | 382 | 0.2889 | 0.8314 | | 0.1738 | 3.0 | 573 | 0.2761 | 0.8350 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.10.0 - Datasets 2.7.1 - Tokenizers 0.12.1
56677835d74d378142d9b3d4aef35111
keras-io/sentiment-analysis
keras-io
distilbert
14
10
transformers
0
text-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,462
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # keras-io/sentiment-analysis This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6865 - Validation Loss: 0.7002 - Train Accuracy: 0.4908 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.6865 | 0.6975 | 0.4908 | 0 | | 0.6865 | 0.6973 | 0.4908 | 1 | | 0.6865 | 0.6976 | 0.4908 | 2 | | 0.6865 | 0.6975 | 0.4908 | 3 | | 0.6865 | 0.7002 | 0.4908 | 4 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.7.0 - Datasets 1.18.2 - Tokenizers 0.11.0
486ea8880543e09963dd7f266eae820c
duja1/m123ugg
duja1
null
31
2
diffusers
1
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image']
false
true
true
1,477
false
### m123ugg Dreambooth model trained by duja1 with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: m123ugg (use that on your prompt) ![m123ugg 0](https://huggingface.co/duja1/m123ugg/resolve/main/concept_images/m123ugg_%281%29.jpg)![m123ugg 1](https://huggingface.co/duja1/m123ugg/resolve/main/concept_images/m123ugg_%282%29.jpg)![m123ugg 2](https://huggingface.co/duja1/m123ugg/resolve/main/concept_images/m123ugg_%283%29.jpg)![m123ugg 3](https://huggingface.co/duja1/m123ugg/resolve/main/concept_images/m123ugg_%284%29.jpg)![m123ugg 4](https://huggingface.co/duja1/m123ugg/resolve/main/concept_images/m123ugg_%285%29.jpg)![m123ugg 5](https://huggingface.co/duja1/m123ugg/resolve/main/concept_images/m123ugg_%286%29.jpg)![m123ugg 6](https://huggingface.co/duja1/m123ugg/resolve/main/concept_images/m123ugg_%287%29.jpg)![m123ugg 7](https://huggingface.co/duja1/m123ugg/resolve/main/concept_images/m123ugg_%288%29.jpg)![m123ugg 8](https://huggingface.co/duja1/m123ugg/resolve/main/concept_images/m123ugg_%289%29.jpg)![m123ugg 9](https://huggingface.co/duja1/m123ugg/resolve/main/concept_images/m123ugg_%2810%29.jpg)
12e11adc86c6341671d22625efaff7cf
ktangri/gpt-neo-demo
ktangri
gpt_neo
9
7
transformers
1
text-generation
true
false
false
apache-2.0
['en']
['the Pile']
null
0
0
0
0
0
0
0
['text generation', 'pytorch', 'the Pile', 'causal-lm']
false
true
true
4,636
false
# GPT-Neo 2.7B (By EleutherAI) ## Model Description GPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model. ## Training data GPT-Neo 2.7B was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model. ## Training procedure This model was trained for 420 billion tokens over 400,000 steps. It was trained as a masked autoregressive language model, using cross-entropy loss. ## Intended Use and Limitations This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B') >>> generator("EleutherAI has", do_sample=True, min_length=50) [{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Eval results All evaluations were done using our [evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness). Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness. If you would like to contribute evaluations you have done, please reach out on our [Discord](https://discord.gg/vtRgjbM). ### Linguistic Reasoning | Model and Size | Pile BPB | Pile PPL | Wikitext PPL | Lambada PPL | Lambada Acc | Winogrande | Hellaswag | | ---------------- | ---------- | ---------- | ------------- | ----------- | ----------- | ---------- | ----------- | | GPT-Neo 1.3B | 0.7527 | 6.159 | 13.10 | 7.498 | 57.23% | 55.01% | 38.66% | | GPT-2 1.5B | 1.0468 | ----- | 17.48 | 10.634 | 51.21% | 59.40% | 40.03% | | **GPT-Neo 2.7B** | **0.7165** | **5.646** | **11.39** | **5.626** | **62.22%** | **56.50%** | **42.73%** | | GPT-3 Ada | 0.9631 | ----- | ----- | 9.954 | 51.60% | 52.90% | 35.93% | ### Physical and Scientific Reasoning | Model and Size | MathQA | PubMedQA | Piqa | | ---------------- | ---------- | ---------- | ----------- | | GPT-Neo 1.3B | 24.05% | 54.40% | 71.11% | | GPT-2 1.5B | 23.64% | 58.33% | 70.78% | | **GPT-Neo 2.7B** | **24.72%** | **57.54%** | **72.14%** | | GPT-3 Ada | 24.29% | 52.80% | 68.88% | ### Down-Stream Applications TBD ### BibTeX entry and citation info To cite this model, use ```bibtex @article{gao2020pile, title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling}, author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others}, journal={arXiv preprint arXiv:2101.00027}, year={2020} } ``` To cite the codebase that this model was trained with, use ```bibtex @software{gpt-neo, author = {Black, Sid and Gao, Leo and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo}: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}, url = {http://github.com/eleutherai/gpt-neo}, version = {1.0}, year = {2021}, } ```
33c35bd445a37b2e82dbfe95e171cc92
p1atdev/pvc
p1atdev
null
30
216
diffusers
40
text-to-image
false
false
false
creativeml-openrail-m
['en']
['p1atdev/pvc']
null
1
0
1
0
0
0
0
['stable-diffusion', 'text-to-image', 'safetensors']
false
true
true
6,543
false
# PVC v2 ![v2 eyecatch](https://huggingface.co/p1atdev/pvc/resolve/main/samples/v2-eyecatch.png) ``` masterpiece, best quality, high quality, 1girl, cat ears, silver, blue, frills, bow, looking at viewer, ultra detailed Negative prompt: nsfw, worst quality, low quality, medium quality, deleted, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7 ``` This model is a latent diffusion model finetuned on [Waifu Diffusion v1.4 epoch 2](https://huggingface.co/hakurei/waifu-diffusion-v1-4) with [PVC figure images](https://huggingface.co/datasets/p1atdev/pvc) using LoRA method. You can use Danbooru tags to generate images. ## Model links - [**pvc-v2.safetensors**](https://huggingface.co/p1atdev/pvc/resolve/main/pvc-v2.safetensors) - [**pvc-v2.ckpt**](https://huggingface.co/p1atdev/pvc/resolve/main/pvc-v2.ckpt) - [pvc-v2.yaml](https://huggingface.co/p1atdev/pvc/blob/main/pvc-v2.yaml) (needed if you want to use the model in AUTOMATIC1111's Web UI) - [pvc-v2-lora.pt](https://huggingface.co/p1atdev/pvc/resolve/main/pvc-v2-lora.pt) (maybe only works with kohya's [sd-scripts](https://huggingface.co/p1atdev/pvc/resolve/main/pvc-v1-lora.pt) or [webui extension](https://github.com/kohya-ss/sd-webui-additional-networks)) - [Waifu Diffusion 1.4 VAE](https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/vae/kl-f8-anime2.ckpt) (Recommended) ## Prompt guide It is recommended to add the quality tags **"masterpiece, best quality"** at the beginning of the prompt when using this model, which is a derivative of the WD. **Recommended negative prompt** ``` nsfw, worst quality, low quality, medium quality, deleted, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digits, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry ``` ## Samples ![v2 sample1](https://huggingface.co/p1atdev/pvc/resolve/main/samples/v2-sample1.png) ``` masterpiece, best quality, 1girl, green hair, sweater, beanie, turtleneck, looking at viewer, night, Negative prompt: nsfw, worst quality, low quality, medium quality, deleted, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7 ``` --- ![v2 sample2](https://huggingface.co/p1atdev/pvc/resolve/main/samples/v2-sample2.png) ``` masterpiece, best quality, high quality, 1girl, bob cut, cape, belt, gloves, looking at viewer, ultra detailed Negative prompt: nsfw, worst quality, low quality, medium quality, deleted, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7 ``` --- ![v2 sample3](https://huggingface.co/p1atdev/pvc/resolve/main/samples/v2-sample3.png) ``` masterpiece, best quality, 1girl, annoyed, black hair, floating hair, gothic lolita, scythe, looking at viewer, Negative prompt: nsfw, worst quality, low quality, medium quality, deleted, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7 ``` ## Training information ``` --train_batch_size 1 --resolution 768,768 --learning_rate 1e-4 --max_train_steps 21100 --use_8bit_adam --xformers --mixed_precision fp16 --save_every_n_epochs 1 --network_module networks.lora --v2 --enable_bucket --max_token_length 225 --network_dim 32 --text_encoder_lr 5e-5 --lr_scheduler cosine_with_restarts --lr_warmup_steps 200 ``` # PVC v1 ![eyecatch](https://huggingface.co/p1atdev/pvc/resolve/main/samples/miku.png) This model is a latent diffusion model finetuned on [Waifu Diffusion v1.4 epoch 2](https://huggingface.co/hakurei/waifu-diffusion-v1-4) with [PVC figure images](https://huggingface.co/datasets/p1atdev/pvc) using LoRA method. You can use Danbooru tags to generate images. ## Model links - [**pvc-v1.safetensors**](https://huggingface.co/p1atdev/pvc/resolve/main/pvc-v1.safetensors) - [**pvc-v1.ckpt**](https://huggingface.co/p1atdev/pvc/resolve/main/pvc-v1.ckpt) - [pvc-v1.yaml](https://huggingface.co/p1atdev/pvc/blob/main/pvc-v1.yaml) (needed if you want to use the model in AUTOMATIC1111's Web UI) - [pvc-v1-lora.pt](https://huggingface.co/p1atdev/pvc/resolve/main/pvc-v1-lora.pt) (maybe only works with kohya's [sd-scripts](https://huggingface.co/p1atdev/pvc/resolve/main/pvc-v1-lora.pt) or [webui extension](https://github.com/kohya-ss/sd-webui-additional-networks)) ## Samples ![sample1](https://huggingface.co/p1atdev/pvc/resolve/main/samples/sample1.png) ``` masterpiece, best quality, 1girl, green hair, sweater, beanie, turtleneck, looking at viewer, Negative prompt: nsfw, worst quality, low quality, medium quality, deleted, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7 ``` --- ![sample2](https://huggingface.co/p1atdev/pvc/resolve/main/samples/sample2.png) ``` masterpiece, best quality, 1girl, smile, black hair, long hair, school uniform, navel, pleated skirt, leaning forward, looking at viewer, wind Negative prompt: nsfw, worst quality, low quality, medium quality, deleted, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry, Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 10 ``` --- ![sample3](https://huggingface.co/p1atdev/pvc/resolve/main/samples/sample3.png) ``` masterpiece, best quality, 1girl, fascinator, hat, victorian, gothic, dress, frills, looking at viewer, Negative prompt: worst quality, low quality, medium quality, deleted, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry, censored, hetero Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7 ``` ## Training information ``` --train_batch_size 1 --resolution 768,768 --learning_rate 1e-4 --max_train_steps 17740 --use_8bit_adam --xformers --mixed_precision fp16 --save_every_n_epochs 1 --network_module networks.lora --v2 --enable_bucket --max_token_length 225 --network_dim 16 --text_encoder_lr 5e-5 ```
f29ff38a5321379ef60652050154e7e6
faraahahaha/fine-tune-Wav2Vec2-XLS-R-300M-Indonesia
faraahahaha
wav2vec2
21
6
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice_10_0']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,216
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tune-Wav2Vec2-XLS-R-300M-Indonesia This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_10_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7924 - Wer: 0.4307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8421 | 6.33 | 500 | 0.7758 | 0.7386 | | 0.1875 | 12.66 | 1000 | 0.6039 | 0.5712 | | 0.1138 | 18.99 | 1500 | 0.6463 | 0.5170 | | 0.0774 | 25.32 | 2000 | 0.6814 | 0.4914 | | 0.0655 | 31.65 | 2500 | 0.7010 | 0.4778 | | 0.0536 | 37.97 | 3000 | 0.7267 | 0.4761 | | 0.0471 | 44.3 | 3500 | 0.7552 | 0.4693 | | 0.0402 | 50.63 | 4000 | 0.7474 | 0.4612 | | 0.0366 | 56.96 | 4500 | 0.7705 | 0.4560 | | 0.0324 | 63.29 | 5000 | 0.7253 | 0.4472 | | 0.0293 | 69.62 | 5500 | 0.7660 | 0.4441 | | 0.0254 | 75.95 | 6000 | 0.7816 | 0.4398 | | 0.0226 | 82.28 | 6500 | 0.7988 | 0.4378 | | 0.0202 | 88.61 | 7000 | 0.8009 | 0.4305 | | 0.0185 | 94.94 | 7500 | 0.7924 | 0.4307 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.10.0+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
30770c0f2b229f2910a33a79108e0758
gayanin/t5-small-med-term-conditional-masking-0
gayanin
t5
12
2
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,381
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-med-term-conditional-masking-0 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6688 - Rouge2 Precision: 0.694 - Rouge2 Recall: 0.4781 - Rouge2 Fmeasure: 0.5479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.9525 | 1.0 | 13915 | 0.8148 | 0.6657 | 0.4581 | 0.5252 | | 0.8541 | 2.0 | 27830 | 0.7562 | 0.6779 | 0.4694 | 0.5371 | | 0.8183 | 3.0 | 41745 | 0.7268 | 0.6827 | 0.4722 | 0.5405 | | 0.8033 | 4.0 | 55660 | 0.7074 | 0.6861 | 0.4729 | 0.5419 | | 0.7727 | 5.0 | 69575 | 0.6934 | 0.6872 | 0.4726 | 0.5419 | | 0.7704 | 6.0 | 83490 | 0.6832 | 0.6901 | 0.4742 | 0.544 | | 0.7485 | 7.0 | 97405 | 0.6771 | 0.6926 | 0.4772 | 0.5469 | | 0.7528 | 8.0 | 111320 | 0.6722 | 0.6934 | 0.4782 | 0.5478 | | 0.7535 | 9.0 | 125235 | 0.6696 | 0.6944 | 0.4782 | 0.5481 | | 0.7444 | 10.0 | 139150 | 0.6688 | 0.694 | 0.4781 | 0.5479 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
39f61c9f080a811ff6ef14a56d6201d4
Evelyn18/distilbert-base-uncased-becasv2-5
Evelyn18
distilbert
13
7
transformers
0
question-answering
true
false
false
apache-2.0
null
['becasv2']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,888
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-becasv2-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 3.0409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 5.3475 | | No log | 2.0 | 12 | 4.6045 | | No log | 3.0 | 18 | 4.1832 | | No log | 4.0 | 24 | 3.8223 | | No log | 5.0 | 30 | 3.4798 | | No log | 6.0 | 36 | 3.2615 | | No log | 7.0 | 42 | 3.1414 | | No log | 8.0 | 48 | 3.1067 | | No log | 9.0 | 54 | 2.9950 | | No log | 10.0 | 60 | 2.9482 | | No log | 11.0 | 66 | 2.9536 | | No log | 12.0 | 72 | 3.0180 | | No log | 13.0 | 78 | 3.0515 | | No log | 14.0 | 84 | 3.0444 | | No log | 15.0 | 90 | 3.0409 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
750645943cc0be8408e4193358e5f4cd
pyf98/wsj_e_branchformer
pyf98
null
33
1
espnet
0
automatic-speech-recognition
false
false
false
cc-by-4.0
['en']
['wsj']
null
0
0
0
0
0
0
0
['espnet', 'audio', 'automatic-speech-recognition']
false
true
true
7,545
false
## ESPnet2 ASR model ### `pyf98/wsj_e_branchformer` This model was trained by Yifan Peng using wsj recipe in [espnet](https://github.com/espnet/espnet/). References: - [E-Branchformer: Branchformer with Enhanced merging for speech recognition (SLT 2022)](https://arxiv.org/abs/2210.00077) - [Branchformer: Parallel MLP-Attention Architectures to Capture Local and Global Context for Speech Recognition and Understanding (ICML 2022)](https://proceedings.mlr.press/v162/peng22a.html) ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 0aa06d0535323aabc1d8b057f8769da377f4d9ff pip install -e . cd egs2/wsj/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model pyf98/wsj_e_branchformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Dec 28 00:12:25 EST 2022` - python version: `3.9.15 (main, Nov 24 2022, 14:31:59) [GCC 11.2.0]` - espnet version: `espnet 202211` - pytorch version: `pytorch 1.12.1` - Git hash: `0aa06d0535323aabc1d8b057f8769da377f4d9ff` - Commit date: `Tue Dec 27 15:08:25 2022 -0600` ## asr_train_asr_e_branchformer_e12_mlp1024_linear1024_raw_en_char ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_lm_lm_train_lm_transformer_en_char_valid.loss.ave_asr_model_valid.acc.ave/test_dev93|503|8234|94.3|4.9|0.8|0.7|6.5|51.9| |decode_lm_lm_train_lm_transformer_en_char_valid.loss.ave_asr_model_valid.acc.ave/test_eval92|333|5643|96.4|3.3|0.3|0.7|4.3|38.1| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_lm_lm_train_lm_transformer_en_char_valid.loss.ave_asr_model_valid.acc.ave/test_dev93|503|48634|97.8|1.0|1.1|0.6|2.8|58.3| |decode_lm_lm_train_lm_transformer_en_char_valid.loss.ave_asr_model_valid.acc.ave/test_eval92|333|33341|98.7|0.7|0.7|0.5|1.8|46.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_e_branchformer_e12_mlp1024_linear1024.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_e_branchformer_e12_mlp1024_linear1024_raw_en_char ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: 100 use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 128 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_char/train/speech_shape - exp/asr_stats_raw_en_char/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_en_char/valid/speech_shape - exp/asr_stats_raw_en_char/valid/text_shape.char batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_si284/wav.scp - speech - sound - - dump/raw/train_si284/text - text - text valid_data_path_and_name_and_type: - - dump/raw/test_dev93/wav.scp - speech - sound - - dump/raw/test_dev93/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.005 scheduler: warmuplr scheduler_conf: warmup_steps: 30000 token_list: - <blank> - <unk> - <space> - E - T - A - N - I - O - S - R - H - L - D - C - U - M - P - F - G - Y - W - B - V - K - . - X - '''' - J - Q - Z - <NOISE> - ',' - '-' - '"' - '*' - ':' - ( - ) - '?' - '!' - '&' - ; - '1' - '2' - '0' - / - $ - '{' - '}' - '8' - '9' - '6' - '3' - '5' - '7' - '4' - '~' - '`' - _ - <*IN*> - <*MR.*> - \ - ^ - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: null use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: data/nlsyms.txt cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 frontend: default frontend_conf: fs: 16k specaug: null specaug_conf: {} normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_char/train/feats_stats.npz model: espnet model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false preencoder: null preencoder_conf: {} encoder: e_branchformer encoder_conf: output_size: 256 attention_heads: 4 attention_layer_type: rel_selfattn pos_enc_layer_type: rel_pos rel_pos_type: latest cgmlp_linear_units: 1024 cgmlp_conv_kernel: 31 use_linear_after_conv: false gate_activation: identity num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d layer_drop_rate: 0.0 linear_units: 1024 positionwise_layer_type: linear use_ffn: true macaron_ffn: true merge_conv_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 preprocessor: default preprocessor_conf: {} required: - output_dir - token_list version: '202211' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
6a536b3a8678ddd5070b127c2cee7bdd
muhtasham/finetuned-base_mini
muhtasham
bert
10
64
transformers
1
text-classification
true
false
false
apache-2.0
null
['imdb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,629
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-base_mini This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3938 - Accuracy: 0.9076 - F1: 0.9516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.354 | 2.55 | 500 | 0.2300 | 0.9116 | 0.9538 | | 0.2086 | 5.1 | 1000 | 0.3182 | 0.8815 | 0.9370 | | 0.1401 | 7.65 | 1500 | 0.2160 | 0.9241 | 0.9605 | | 0.0902 | 10.2 | 2000 | 0.4684 | 0.8722 | 0.9317 | | 0.0654 | 12.76 | 2500 | 0.4885 | 0.8747 | 0.9332 | | 0.043 | 15.31 | 3000 | 0.3938 | 0.9076 | 0.9516 | ### Framework versions - Transformers 4.25.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
ea40ebafbcb0d4731cca2575a29e6080
arjuntheprogrammer/distilbert-base-multilingual-cased-sentiment-2
arjuntheprogrammer
distilbert
13
3
transformers
0
text-classification
true
false
false
apache-2.0
null
['amazon_reviews_multi']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,288
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-sentiment-2 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.5882 - Accuracy: 0.7614 - F1: 0.7614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00024 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
00ae26c154b020d489ad4062f84e227e
AndyOmosh/finetuning-sentiment-model-3000-samples
AndyOmosh
distilbert
10
14
transformers
0
text-classification
true
false
false
apache-2.0
null
['imdb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,055
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3110 - Accuracy: 0.8833 - F1: 0.8845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
9e51ebf029c8a91f33e0352338b0cbed
jonatasgrosman/exp_w2v2t_zh-cn_vp-nl_s418
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['zh-CN']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'zh-CN']
false
true
true
475
false
# exp_w2v2t_zh-cn_vp-nl_s418 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (zh-CN)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
e59afe7e15105dde7a3efea1df45a3b7
bthomas/article2keyword2.1b_paraphrase-multilingual-MiniLM-L12-v2_finetuned_for_mlm
bthomas
bert
6
6
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['mlm', 'generated_from_trainer']
true
true
true
2,101
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # article2keyword2.1b_paraphrase-multilingual-MiniLM-L12-v2_finetuned_for_mlm This model is a fine-tuned version of [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0673 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.3777 | 1.0 | 1353 | 0.3168 | | 0.2358 | 2.0 | 2706 | 0.1564 | | 0.1372 | 3.0 | 4059 | 0.1149 | | 0.1046 | 4.0 | 5412 | 0.0956 | | 0.086 | 5.0 | 6765 | 0.0853 | | 0.0741 | 6.0 | 8118 | 0.0786 | | 0.0653 | 7.0 | 9471 | 0.0750 | | 0.0594 | 8.0 | 10824 | 0.0726 | | 0.0542 | 9.0 | 12177 | 0.0699 | | 0.0504 | 10.0 | 13530 | 0.0692 | | 0.047 | 11.0 | 14883 | 0.0684 | | 0.0444 | 12.0 | 16236 | 0.0675 | | 0.0423 | 13.0 | 17589 | 0.0674 | | 0.0404 | 14.0 | 18942 | 0.0673 | | 0.0392 | 15.0 | 20295 | 0.0672 | | 0.0379 | 16.0 | 21648 | 0.0673 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.12.1
5d295010b096c73fd3e15bcf089e1475
IDEA-CCNL/Erlangshen-MacBERT-110M-BinaryClassification-Chinese
IDEA-CCNL
bert
5
16
transformers
0
fill-mask
true
false
false
apache-2.0
['zh']
null
null
0
0
0
0
0
0
0
['classification']
false
true
true
2,584
false
# Erlangshen- MacBERT-110M-BinaryClassification-Chinese - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/) ## 简介 Brief Introduction 1.1亿参数的MacBERT,在大规模二分类数据上预训练 The MacBERT with 110M parameters is pre-trained on large-scale binary classification data. ## 模型分类 Model Taxonomy | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | 通用 General | 自然语言理解 NLU | 二郎神 Erlangshen | MacBERT | 110M | Chinese | ## 模型信息 Model Information 为了提高模型在二分类任务上效果,我们收集了大量开源二分类数据并使用meta- learning方法对其增量预训练。 To improve the model performance on the binary classification task, we collected numerous binary classification datasets for incremental pre-training based on meta-learning methods. ### 下游效果 Performance 在EPRSTMT任务上的效果: The results on EPRSTMT: | Model | EPRSTMT | | --------------------------------------------- | ------ | | MacBERT | 74.96 | | **Erlangshen- MacBERT-110M-BinaryClassification-Chinese** | 88.56 | ## 使用 Usage ```python3 from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("IDEA-CCNL/Erlangshen-MacBERT-110M-BinaryClassification-Chinese") model = AutoModelForMaskedLM.from_pretrained("IDEA-CCNL/Erlangshen-MacBERT-110M-BinaryClassification-Chinese") ``` ## 引用 Citation 如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970): If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970): ```text @article{fengshenbang, author = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ``` 也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
484123e4b9e55d511a638bf2362578fb
gngpostalsrvc/BERiT_2000_ls_.1
gngpostalsrvc
roberta
11
5
transformers
0
fill-mask
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,874
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERiT_2000_ls_1 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.7791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.9212 | 0.19 | 500 | 6.8322 | | 6.8009 | 0.39 | 1000 | 6.8173 | | 6.8004 | 0.58 | 1500 | 6.7916 | | 6.7725 | 0.77 | 2000 | 6.8005 | | 6.787 | 0.97 | 2500 | 6.8066 | | 6.7808 | 1.16 | 3000 | 6.7838 | | 6.7757 | 1.36 | 3500 | 6.7726 | | 6.7847 | 1.55 | 4000 | 6.7584 | | 6.7874 | 1.74 | 4500 | 6.7809 | | 6.769 | 1.94 | 5000 | 6.7715 | | 6.7845 | 2.13 | 5500 | 6.8000 | | 6.8052 | 2.32 | 6000 | 6.7737 | | 6.7496 | 2.52 | 6500 | 6.7795 | | 6.7877 | 2.71 | 7000 | 6.7669 | | 6.7759 | 2.9 | 7500 | 6.7791 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
1d6d3b5ecfdcd69d7e1425ec0a0b7f81
Guizmus/MosaicArt
Guizmus
null
22
70
diffusers
18
text-to-image
false
false
false
creativeml-openrail-m
['en']
null
null
4
1
3
0
0
0
0
['stable-diffusion', 'text-to-image', 'image-to-image']
false
true
true
2,649
false
# Mosaic Art ## Details ![Showcase](https://huggingface.co/Guizmus/MosaicArt/resolve/main/showcase.jpg) This is a Dreamboothed Stable Diffusion model trained on pictures of mosaic art. The total dataset is made of 46 pictures. V2 was trained on [Stable diffusion 2.1 768](https://huggingface.co/stabilityai/stable-diffusion-2-1). I used [StableTuner](https://github.com/devilismyfriend/StableTuner) to do the training, using full caption on the pictures with almost no recurring word outside the main concept, so that no additionnal regularisation was needed. 6 epochs of 40 repeats on LR 1e-6 were used, with prior preservation. V1 was trained on [runawayml 1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5) and the [new VAE](https://huggingface.co/stabilityai/sd-vae-ft-mse). I used [EveryDream](https://github.com/victorchall/EveryDream-trainer) to do the training, using full caption on the pictures with almost no recurring word outside the main concept, so that no additionnal regularisation was needed. Out of e0 to e11 epochs, e8 was selected as the best application of style while not overtraining. Prior preservation was constated as good. A total of 9 epochs of 40 repeats with a learning rate of 1e-6. The token "Mosaic Art" will bring in the new concept, trained as a style. The recommended sampling is k_Euler_a or DPM++ 2M Karras on 20 steps, CFGS 7.5 . ## Model v2 [CKPT v2](https://huggingface.co/Guizmus/MosaicArt/resolve/main/MosaicArt_v2.ckpt) [YAML v2](https://huggingface.co/Guizmus/MosaicArt/resolve/main/MosaicArt_v2.yaml) ## Model v1 ![Showcase](https://huggingface.co/Guizmus/MosaicArt/resolve/main/showcase.png) [CKPT v1](https://huggingface.co/Guizmus/MosaicArt/resolve/main/MosaicArt_v1.ckpt) [CKPT v1 with ema weights](https://huggingface.co/Guizmus/MosaicArt/resolve/main/MosaicArt_v1_ema.ckpt) [Dataset](https://huggingface.co/Guizmus/MosaicArt/resolve/main/dataset_v1.zip) ## 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX](). ```python from diffusers import StableDiffusionPipeline import torch model_id = "Guizmus/MosaicArt" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "Mosaic Art dog on the moon" image = pipe(prompt).images[0] image.save("./MosaicArt.png") ```
a26aca643900de9260057deb3128511a
redevaaa/fin5
redevaaa
bert
12
3
transformers
0
token-classification
true
false
false
cc-by-sa-4.0
null
['fin']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,157
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fin5 This model is a fine-tuned version of [nlpaueb/sec-bert-shape](https://huggingface.co/nlpaueb/sec-bert-shape) on the fin dataset. It achieves the following results on the evaluation set: - Loss: 0.0752 - Precision: 0.9243 - Recall: 0.9243 - F1: 0.9243 - Accuracy: 0.9909 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 129 | 0.0825 | 0.8327 | 0.8924 | 0.8615 | 0.9811 | | No log | 2.0 | 258 | 0.0633 | 0.8593 | 0.9243 | 0.8906 | 0.9866 | | No log | 3.0 | 387 | 0.0586 | 0.9038 | 0.9363 | 0.9198 | 0.9894 | | 0.0547 | 4.0 | 516 | 0.0607 | 0.9357 | 0.9283 | 0.932 | 0.9911 | | 0.0547 | 5.0 | 645 | 0.0656 | 0.9216 | 0.9363 | 0.9289 | 0.9904 | | 0.0547 | 6.0 | 774 | 0.0692 | 0.9249 | 0.9323 | 0.9286 | 0.9909 | | 0.0547 | 7.0 | 903 | 0.0716 | 0.9246 | 0.9283 | 0.9264 | 0.9904 | | 0.0019 | 8.0 | 1032 | 0.0742 | 0.9213 | 0.9323 | 0.9267 | 0.9909 | | 0.0019 | 9.0 | 1161 | 0.0748 | 0.9246 | 0.9283 | 0.9264 | 0.9909 | | 0.0019 | 10.0 | 1290 | 0.0752 | 0.9243 | 0.9243 | 0.9243 | 0.9909 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
55234fd655cc13b99f64ea894936c507
ahmetayrnc/distilroberta-base
ahmetayrnc
roberta
13
5
transformers
0
text-classification
true
false
false
apache-2.0
null
['silicone']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,837
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the silicone dataset. It achieves the following results on the evaluation set: - Loss: 0.9647 - Accuracy: 0.7111 - Micro-precision: 0.7111 - Micro-recall: 0.7111 - Micro-f1: 0.7111 - Macro-precision: 0.3228 - Macro-recall: 0.2866 - Macro-f1: 0.2824 - Weighted-precision: 0.6683 - Weighted-recall: 0.7111 - Weighted-f1: 0.6768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro-precision | Micro-recall | Micro-f1 | Macro-precision | Macro-recall | Macro-f1 | Weighted-precision | Weighted-recall | Weighted-f1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 0.9578 | 1.0 | 2980 | 0.9647 | 0.7111 | 0.7111 | 0.7111 | 0.7111 | 0.3228 | 0.2866 | 0.2824 | 0.6683 | 0.7111 | 0.6768 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
71573569aa4ee5c8d5f9fd357f633f44
elopezlopez/xlnet-base-cased_fold_8_binary_v1
elopezlopez
xlnet
12
1
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,637
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased_fold_8_binary_v1 This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5333 - F1: 0.8407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 290 | 0.3866 | 0.8172 | | 0.4299 | 2.0 | 580 | 0.4215 | 0.8246 | | 0.4299 | 3.0 | 870 | 0.4765 | 0.8238 | | 0.2564 | 4.0 | 1160 | 0.7283 | 0.8350 | | 0.2564 | 5.0 | 1450 | 0.6825 | 0.8363 | | 0.1553 | 6.0 | 1740 | 0.9637 | 0.8339 | | 0.0893 | 7.0 | 2030 | 1.1392 | 0.8239 | | 0.0893 | 8.0 | 2320 | 1.1868 | 0.8231 | | 0.0538 | 9.0 | 2610 | 1.2180 | 0.8346 | | 0.0538 | 10.0 | 2900 | 1.2353 | 0.8253 | | 0.0386 | 11.0 | 3190 | 1.1883 | 0.8317 | | 0.0386 | 12.0 | 3480 | 1.2786 | 0.8375 | | 0.0289 | 13.0 | 3770 | 1.3725 | 0.8375 | | 0.0146 | 14.0 | 4060 | 1.3171 | 0.8463 | | 0.0146 | 15.0 | 4350 | 1.2323 | 0.8425 | | 0.0182 | 16.0 | 4640 | 1.3169 | 0.8485 | | 0.0182 | 17.0 | 4930 | 1.4424 | 0.8336 | | 0.0125 | 18.0 | 5220 | 1.4336 | 0.8385 | | 0.0102 | 19.0 | 5510 | 1.4888 | 0.8405 | | 0.0102 | 20.0 | 5800 | 1.5227 | 0.8419 | | 0.0035 | 21.0 | 6090 | 1.4994 | 0.8421 | | 0.0035 | 22.0 | 6380 | 1.4845 | 0.8424 | | 0.0047 | 23.0 | 6670 | 1.5006 | 0.8422 | | 0.0047 | 24.0 | 6960 | 1.5468 | 0.8422 | | 0.0042 | 25.0 | 7250 | 1.5333 | 0.8407 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
3ee1da72cdb339be67935fce6a828f1a
Helsinki-NLP/opus-mt-en-tut
Helsinki-NLP
marian
11
8
transformers
0
translation
true
true
false
apache-2.0
['en', 'tut']
null
null
1
1
0
0
0
0
0
['translation']
false
true
true
3,435
false
### eng-tut * source group: English * target group: Altaic languages * OPUS readme: [eng-tut](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-tut/README.md) * model: transformer * source language(s): eng * target language(s): aze_Latn bak chv crh crh_Latn kaz_Cyrl kaz_Latn kir_Cyrl kjh kum mon nog ota_Arab ota_Latn sah tat tat_Arab tat_Latn tuk tuk_Latn tur tyv uig_Arab uig_Cyrl uzb_Cyrl uzb_Latn xal * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus2m-2020-08-02.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tut/opus2m-2020-08-02.zip) * test set translations: [opus2m-2020-08-02.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tut/opus2m-2020-08-02.test.txt) * test set scores: [opus2m-2020-08-02.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tut/opus2m-2020-08-02.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newsdev2016-entr-engtur.eng.tur | 10.4 | 0.438 | | newstest2016-entr-engtur.eng.tur | 9.1 | 0.414 | | newstest2017-entr-engtur.eng.tur | 9.5 | 0.414 | | newstest2018-entr-engtur.eng.tur | 9.5 | 0.415 | | Tatoeba-test.eng-aze.eng.aze | 27.2 | 0.580 | | Tatoeba-test.eng-bak.eng.bak | 5.8 | 0.298 | | Tatoeba-test.eng-chv.eng.chv | 4.6 | 0.301 | | Tatoeba-test.eng-crh.eng.crh | 6.5 | 0.342 | | Tatoeba-test.eng-kaz.eng.kaz | 11.8 | 0.360 | | Tatoeba-test.eng-kir.eng.kir | 24.6 | 0.499 | | Tatoeba-test.eng-kjh.eng.kjh | 2.2 | 0.052 | | Tatoeba-test.eng-kum.eng.kum | 8.0 | 0.229 | | Tatoeba-test.eng-mon.eng.mon | 10.3 | 0.362 | | Tatoeba-test.eng.multi | 19.5 | 0.451 | | Tatoeba-test.eng-nog.eng.nog | 1.5 | 0.117 | | Tatoeba-test.eng-ota.eng.ota | 0.2 | 0.035 | | Tatoeba-test.eng-sah.eng.sah | 0.7 | 0.080 | | Tatoeba-test.eng-tat.eng.tat | 10.8 | 0.320 | | Tatoeba-test.eng-tuk.eng.tuk | 5.6 | 0.323 | | Tatoeba-test.eng-tur.eng.tur | 34.2 | 0.623 | | Tatoeba-test.eng-tyv.eng.tyv | 8.1 | 0.192 | | Tatoeba-test.eng-uig.eng.uig | 0.1 | 0.158 | | Tatoeba-test.eng-uzb.eng.uzb | 4.2 | 0.298 | | Tatoeba-test.eng-xal.eng.xal | 0.1 | 0.061 | ### System Info: - hf_name: eng-tut - source_languages: eng - target_languages: tut - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-tut/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'tut'] - src_constituents: {'eng'} - tgt_constituents: set() - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tut/opus2m-2020-08-02.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tut/opus2m-2020-08-02.test.txt - src_alpha3: eng - tgt_alpha3: tut - short_pair: en-tut - chrF2_score: 0.451 - bleu: 19.5 - brevity_penalty: 1.0 - ref_len: 57472.0 - src_name: English - tgt_name: Altaic languages - train_date: 2020-08-02 - src_alpha2: en - tgt_alpha2: tut - prefer_old: False - long_pair: eng-tut - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
a2bd16ca2a0fa1f3c4adeea56b6773f8
emre/wav2vec2-xls-r-300m-Turkish-Tr-small
emre
wav2vec2
14
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice']
null
0
0
0
0
0
0
0
['generated_from_trainer', 'robust-speech-event']
true
true
true
1,728
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Turkish-Tr-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4375 - Wer: 0.5050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8735 | 4.21 | 400 | 2.8173 | 1.0002 | | 1.0073 | 8.42 | 800 | 0.4981 | 0.6717 | | 0.3395 | 12.63 | 1200 | 0.4470 | 0.5866 | | 0.2254 | 16.84 | 1600 | 0.4349 | 0.5491 | | 0.1648 | 21.05 | 2000 | 0.4454 | 0.5284 | | 0.1325 | 25.26 | 2400 | 0.4552 | 0.5131 | | 0.1102 | 29.47 | 2800 | 0.4375 | 0.5050 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
43d7434846bc2d1755cc576de80c2257
google/canine-s
google
canine
6
6,265
transformers
6
feature-extraction
true
false
false
apache-2.0
['multilingual', 'af', 'sq', 'ar', 'an', 'hy', 'ast', 'az', 'ba', 'eu', 'bar', 'be', 'bn', 'inc', 'bs', 'br', 'bg', 'my', 'ca', 'ceb', 'ce', 'zh', 'cv', 'hr', 'cs', 'da', 'nl', 'en', 'et', 'fi', 'fr', 'gl', 'ka', 'de', 'el', 'gu', 'ht', 'he', 'hi', 'hu', 'is', 'io', 'id', 'ga', 'it', 'ja', 'jv', 'kn', 'kk', 'ky', 'ko', 'la', 'lv', 'lt', 'roa', 'nds', 'lm', 'mk', 'mg', 'ms', 'ml', 'mr', 'mn', 'min', 'ne', 'new', 'nb', 'nn', 'oc', 'fa', 'pms', 'pl', 'pt', 'pa', 'ro', 'ru', 'sco', 'sr', 'hr', 'scn', 'sk', 'sl', 'aze', 'es', 'su', 'sw', 'sv', 'tl', 'tg', 'th', 'ta', 'tt', 'te', 'tr', 'uk', 'ud', 'uz', 'vi', 'vo', 'war', 'cy', 'fry', 'pnb', 'yo']
['bookcorpus', 'wikipedia']
null
1
0
1
0
0
0
0
[]
false
true
true
4,700
false
# CANINE-s (CANINE pre-trained with subword loss) Pretrained CANINE model on 104 languages using a masked language modeling (MLM) objective. It was introduced in the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) and first released in [this repository](https://github.com/google-research/language/tree/master/language/canine). What's special about CANINE is that it doesn't require an explicit tokenizer (such as WordPiece or SentencePiece) as other models like BERT and RoBERTa. Instead, it directly operates at a character level: each character is turned into its [Unicode code point](https://en.wikipedia.org/wiki/Code_point#:~:text=For%20Unicode%2C%20the%20particular%20sequence,forming%20a%20self%2Dsynchronizing%20code.). This means that input processing is trivial and can typically be accomplished as: ``` input_ids = [ord(char) for char in text] ``` The ord() function is part of Python, and turns each character into its Unicode code point. Disclaimer: The team releasing CANINE did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description CANINE is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion, similar to BERT. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: * Masked language modeling (MLM): one randomly masks part of the inputs, which the model needs to predict. This model (CANINE-s) is trained with a subword loss, meaning that the model needs to predict the identities of subword tokens, while taking characters as input. By reading characters yet predicting subword tokens, the hard token boundary constraint found in other models such as BERT is turned into a soft inductive bias in CANINE. * Next sentence prediction (NSP): the model concatenates two sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of multiple languages that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the CANINE model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=canine) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at models like GPT2. ### How to use Here is how to use this model: ```python from transformers import CanineTokenizer, CanineModel model = CanineModel.from_pretrained('google/canine-s') tokenizer = CanineTokenizer.from_pretrained('google/canine-s') inputs = ["Life is like a box of chocolates.", "You never know what you gonna get."] encoding = tokenizer(inputs, padding="longest", truncation=True, return_tensors="pt") outputs = model(**encoding) # forward pass pooled_output = outputs.pooler_output sequence_output = outputs.last_hidden_state ``` ## Training data The CANINE model was pretrained on on the multilingual Wikipedia data of [mBERT](https://github.com/google-research/bert/blob/master/multilingual.md), which includes 104 languages. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2103-06874, author = {Jonathan H. Clark and Dan Garrette and Iulia Turc and John Wieting}, title = {{CANINE:} Pre-training an Efficient Tokenization-Free Encoder for Language Representation}, journal = {CoRR}, volume = {abs/2103.06874}, year = {2021}, url = {https://arxiv.org/abs/2103.06874}, archivePrefix = {arXiv}, eprint = {2103.06874}, timestamp = {Tue, 16 Mar 2021 11:26:59 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2103-06874.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
9d353dd2bf534bddecf8d4e93b554748
NDugar/v3large-2epoch
NDugar
deberta-v2
14
5
transformers
0
zero-shot-classification
true
false
false
mit
['en']
null
null
0
0
0
0
0
0
0
['deberta-v3', 'deberta-v2`', 'deberta-mnli']
false
true
true
4,589
false
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This is the DeBERTa V2 xxlarge model with 48 layers, 1536 hidden size. The total parameters are 1.5B and it is trained with 160GB raw data. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, we recommand using **deepspeed** as it's faster and saves memory. Run with `Deepspeed`, ```bash pip install datasets pip install deepspeed # Download the deepspeed config file wget https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/ds_config.json -O ds_config.json export TASK_NAME=mnli output_dir="ds_results" num_gpus=8 batch_size=8 python -m torch.distributed.launch --nproc_per_node=${num_gpus} \\ run_glue.py \\ --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME \\ --do_train \\ --do_eval \\ --max_seq_length 256 \\ --per_device_train_batch_size ${batch_size} \\ --learning_rate 3e-6 \\ --num_train_epochs 3 \\ --output_dir $output_dir \\ --overwrite_output_dir \\ --logging_steps 10 \\ --logging_dir $output_dir \\ --deepspeed ds_config.json ``` You can also run with `--sharded_ddp` ```bash cd transformers/examples/text-classification/ export TASK_NAME=mnli python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 256 --per_device_train_batch_size 8 \\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
6d75dafe8baf097cf5583207ad84411e
sagorsarker/news_article_doc2vec
sagorsarker
null
3
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,202
false
# Bangla News Article Doc2Vec model Bengali News Article doc2vec model trained on [this](https://www.kaggle.com/datasets/ebiswas/bangla-largest-newspaper-dataset) datasets with 8 JSONS and vector size 100. This model is trained for the [bnlp](https://github.com/sagorbrur/bnlp) library. ## Training details - Total news articles: 400013 - Hyper-parameter: `epochs: 40, min_count=2, vector_size=100` ## Usage - Get document vector from input document ```py from bnlp import BengaliDoc2vec bn_doc2vec = BengaliDoc2vec() model_path = "bangla_news_article_doc2vec.model" # keep other .npy model files also in same folder document = "রাষ্ট্রবিরোধী ও উসকানিমূলক বক্তব্য দেওয়ার অভিযোগে গাজীপুরের গাছা থানায় ডিজিটাল নিরাপত্তা আইনে করা মামলায় আলোচিত ‘শিশুবক্তা’ রফিকুল ইসলামের বিরুদ্ধে অভিযোগ গঠন করেছেন আদালত। ফলে মামলার আনুষ্ঠানিক বিচার শুরু হলো। আজ বুধবার (২৬ জানুয়ারি) ঢাকার সাইবার ট্রাইব্যুনালের বিচারক আসসামছ জগলুল হোসেন এ অভিযোগ গঠন করেন। এর আগে, রফিকুল ইসলামকে কারাগার থেকে আদালতে হাজির করা হয়। এরপর তাকে নির্দোষ দাবি করে তার আইনজীবী শোহেল মো. ফজলে রাব্বি অব্যাহতি চেয়ে আবেদন করেন। অন্যদিকে, রাষ্ট্রপক্ষ অভিযোগ গঠনের পক্ষে শুনানি করেন। উভয় পক্ষের শুনানি শেষে আদালত অব্যাহতির আবেদন খারিজ করে অভিযোগ গঠনের মাধ্যমে বিচার শুরুর আদেশ দেন। একইসঙ্গে সাক্ষ্যগ্রহণের জন্য আগামী ২২ ফেব্রুয়ারি দিন ধার্য করেন আদালত।" vector = bn_doc2vec.get_document_vector(model_path, text) print(vector) ``` - Find document similarity between two document ```py from bnlp import BengaliDoc2vec bn_doc2vec = BengaliDoc2vec() model_path = "bangla_news_article_doc2vec.model" # keep other .npy model files also in same folder article_1 = "রাষ্ট্রবিরোধী ও উসকানিমূলক বক্তব্য দেওয়ার অভিযোগে গাজীপুরের গাছা থানায় ডিজিটাল নিরাপত্তা আইনে করা মামলায় আলোচিত ‘শিশুবক্তা’ রফিকুল ইসলামের বিরুদ্ধে অভিযোগ গঠন করেছেন আদালত। ফলে মামলার আনুষ্ঠানিক বিচার শুরু হলো। আজ বুধবার (২৬ জানুয়ারি) ঢাকার সাইবার ট্রাইব্যুনালের বিচারক আসসামছ জগলুল হোসেন এ অভিযোগ গঠন করেন। এর আগে, রফিকুল ইসলামকে কারাগার থেকে আদালতে হাজির করা হয়। এরপর তাকে নির্দোষ দাবি করে তার আইনজীবী শোহেল মো. ফজলে রাব্বি অব্যাহতি চেয়ে আবেদন করেন। অন্যদিকে, রাষ্ট্রপক্ষ অভিযোগ গঠনের পক্ষে শুনানি করেন। উভয় পক্ষের শুনানি শেষে আদালত অব্যাহতির আবেদন খারিজ করে অভিযোগ গঠনের মাধ্যমে বিচার শুরুর আদেশ দেন। একইসঙ্গে সাক্ষ্যগ্রহণের জন্য আগামী ২২ ফেব্রুয়ারি দিন ধার্য করেন আদালত।" article_2 = "রাষ্ট্রবিরোধী ও উসকানিমূলক বক্তব্য দেওয়ার অভিযোগে গাজীপুরের গাছা থানায় ডিজিটাল নিরাপত্তা আইনে করা মামলায় আলোচিত ‘শিশুবক্তা’ রফিকুল ইসলামের বিরুদ্ধে অভিযোগ গঠন করেছেন আদালত। ফলে মামলার আনুষ্ঠানিক বিচার শুরু হলো। আজ বুধবার (২৬ জানুয়ারি) ঢাকার সাইবার ট্রাইব্যুনালের বিচারক আসসামছ জগলুল হোসেন এ অভিযোগ গঠন করেন। এর আগে, রফিকুল ইসলামকে কারাগার থেকে আদালতে হাজির করা হয়। এরপর তাকে নির্দোষ দাবি করে তার আইনজীবী শোহেল মো. ফজলে রাব্বি অব্যাহতি চেয়ে আবেদন করেন। অন্যদিকে, রাষ্ট্রপক্ষ অভিযোগ গঠনের পক্ষে শুনানি করেন। উভয় পক্ষের শুনানি শেষে আদালত অব্যাহতির আবেদন খারিজ করে অভিযোগ গঠনের মাধ্যমে বিচার শুরুর আদেশ দেন। একইসঙ্গে সাক্ষ্যগ্রহণের জন্য আগামী ২২ ফেব্রুয়ারি দিন ধার্য করেন আদালত।" similarity = bn_doc2vec.get_document_similarity( model_path, article_1, article_2 ) print(similarity) ```
6196abe5e704878f7f93474155282289
espnet/kan-bayashi_ljspeech_tts_train_conformer_fastspeech2_raw_phn_tacotron_-truncated-ec9e34
espnet
null
19
1
espnet
0
text-to-speech
false
false
false
cc-by-4.0
['en']
['ljspeech']
null
0
0
0
0
0
0
0
['espnet', 'audio', 'text-to-speech']
false
true
true
1,872
false
## Example ESPnet2 TTS model ### `kan-bayashi/ljspeech_tts_train_conformer_fastspeech2_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4036268/ This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
440bba58f9b93dee42806c274ca213e9
tomekkorbak/suspicious_mestorf
tomekkorbak
null
2
0
null
0
null
false
false
false
mit
['en']
['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
7,931
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # suspicious_mestorf This model was trained from scratch on the tomekkorbak/pii-pile-chunk3-0-50000, the tomekkorbak/pii-pile-chunk3-50000-100000, the tomekkorbak/pii-pile-chunk3-100000-150000, the tomekkorbak/pii-pile-chunk3-150000-200000, the tomekkorbak/pii-pile-chunk3-200000-250000, the tomekkorbak/pii-pile-chunk3-250000-300000, the tomekkorbak/pii-pile-chunk3-300000-350000, the tomekkorbak/pii-pile-chunk3-350000-400000, the tomekkorbak/pii-pile-chunk3-400000-450000, the tomekkorbak/pii-pile-chunk3-450000-500000, the tomekkorbak/pii-pile-chunk3-500000-550000, the tomekkorbak/pii-pile-chunk3-550000-600000, the tomekkorbak/pii-pile-chunk3-600000-650000, the tomekkorbak/pii-pile-chunk3-650000-700000, the tomekkorbak/pii-pile-chunk3-700000-750000, the tomekkorbak/pii-pile-chunk3-750000-800000, the tomekkorbak/pii-pile-chunk3-800000-850000, the tomekkorbak/pii-pile-chunk3-850000-900000, the tomekkorbak/pii-pile-chunk3-900000-950000, the tomekkorbak/pii-pile-chunk3-950000-1000000, the tomekkorbak/pii-pile-chunk3-1000000-1050000, the tomekkorbak/pii-pile-chunk3-1050000-1100000, the tomekkorbak/pii-pile-chunk3-1100000-1150000, the tomekkorbak/pii-pile-chunk3-1150000-1200000, the tomekkorbak/pii-pile-chunk3-1200000-1250000, the tomekkorbak/pii-pile-chunk3-1250000-1300000, the tomekkorbak/pii-pile-chunk3-1300000-1350000, the tomekkorbak/pii-pile-chunk3-1350000-1400000, the tomekkorbak/pii-pile-chunk3-1400000-1450000, the tomekkorbak/pii-pile-chunk3-1450000-1500000, the tomekkorbak/pii-pile-chunk3-1500000-1550000, the tomekkorbak/pii-pile-chunk3-1550000-1600000, the tomekkorbak/pii-pile-chunk3-1600000-1650000, the tomekkorbak/pii-pile-chunk3-1650000-1700000, the tomekkorbak/pii-pile-chunk3-1700000-1750000, the tomekkorbak/pii-pile-chunk3-1750000-1800000, the tomekkorbak/pii-pile-chunk3-1800000-1850000, the tomekkorbak/pii-pile-chunk3-1850000-1900000 and the tomekkorbak/pii-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 3147 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'every_n_steps': 32, 'force_call_on': [25177], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}], 'scorer_config': {}}, 'kl_gpt3_callback': {'every_n_steps': 32, 'force_call_on': [25177], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'value_head_config': {'is_detached': False}}, 'path_or_name': 'tomekkorbak/goofy_pasteur'}, 'objective': {'alpha': 1, 'beta': 10, 'name': 'AWR'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 512, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'suspicious_mestorf', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output2', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 3346, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/1ew71lih
359372f4099da309e1529f50f0f55d74
Tanhim/gpt2-model-de
Tanhim
gpt2
12
23
transformers
1
text-generation
true
false
false
gpl
['de']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,548
false
<h2> GPT2 Model for German Language </h2> Model Name: Tanhim/gpt2-model-de <br /> language: German or Deutsch <br /> thumbnail: https://huggingface.co/Tanhim/gpt2-model-de <br /> datasets: Ten Thousand German News Articles Dataset <br /> ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, I set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generation= pipeline('text-generation', model='Tanhim/gpt2-model-de', tokenizer='Tanhim/gpt2-model-de') >>> set_seed(42) >>> generation("Hallo, ich bin ein Sprachmodell,", max_length=30, num_return_sequences=5) ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("Tanhim/gpt2-model-de") model = AutoModelWithLMHead.from_pretrained("Tanhim/gpt2-model-de") text = "Ersetzen Sie mich durch einen beliebigen Text, den Sie wünschen." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` Citation request: If you use the model of this repository in your research, please consider citing the following way: ```python @misc{GermanTransformer, author = {Tanhim Islam}, title = {{PyTorch Based Transformer Machine Learning Model for German Text Generation Task}}, howpublished = "\url{https://huggingface.co/Tanhim/gpt2-model-de}", year = {2021}, note = "[Online; accessed 17-June-2021]" } ```
fda4db45426883f90c349fe78941bd05
dragonSwing/xlm-roberta-capu
dragonSwing
bert
14
88
transformers
0
token-classification
true
false
false
cc-by-sa-4.0
['vi']
['oscar-corpus/OSCAR-2109']
null
1
0
1
0
0
0
0
['capitalization', 'punctuation', 'token-classification']
false
true
true
3,833
false
# ✨ xlm-roberta-capitalization-punctuation This a [XLM-RoBERTa](https://huggingface.co/xlm-roberta-base) model finetuned for Vietnamese punctuation restoration on the [OSCAR-2109](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109) dataset. The model predicts the punctuation and upper-casing of plain, lower-cased text. An example use case can be ASR output. Or other cases when text has lost punctuation. This model is intended for direct use as a punctuation restoration model for the general Vietnamese language. Alternatively, you can use this for further fine-tuning on domain-specific texts for punctuation restoration tasks. Model restores the following punctuations -- **[. , : ? ]** The model also restores the complex upper-casing of words like *YouTube*, *MobiFone*. ----------------------------------------------- ## 🚋 Usage **Below is a quick way to get up and running with the model.** 1. Download files from hub ```python import os import shutil import sys from huggingface_hub import snapshot_download cache_dir = "./capu" def download_files(repo_id, cache_dir=None, ignore_regex=None): download_dir = snapshot_download(repo_id=repo_id, cache_dir=cache_dir, ignore_regex=ignore_regex) if cache_dir is None or download_dir == cache_dir: return download_dir file_names = os.listdir(download_dir) for file_name in file_names: shutil.move(os.path.join(download_dir, file_name), cache_dir) os.rmdir(download_dir) return cache_dir cache_dir = download_files(repo_id="dragonSwing/xlm-roberta-capu", cache_dir=cache_dir, ignore_regex=["*.json", "*.bin"]) sys.path.append(cache_dir) ``` 2. Sample python code ```python import os from gec_model import GecBERTModel model = GecBERTModel( vocab_path=os.path.join(cache_dir, "vocabulary"), model_paths="dragonSwing/xlm-roberta-capu", split_chunk=True ) model("theo đó thủ tướng dự kiến tiếp bộ trưởng nông nghiệp mỹ tom wilsack bộ trưởng thương mại mỹ gina raimondo bộ trưởng tài chính janet yellen gặp gỡ thượng nghị sĩ patrick leahy và một số nghị sĩ mỹ khác") # Always return list of outputs. # ['Theo đó, Thủ tướng dự kiến tiếp Bộ trưởng Nông nghiệp Mỹ Tom Wilsack, Bộ trưởng Thương mại Mỹ Gina Raimondo, Bộ trưởng Tài chính Janet Yellen, gặp gỡ Thượng nghị sĩ Patrick Leahy và một số nghị sĩ Mỹ khác.'] model("những gói cước năm g mobifone sẽ mang đến cho bạn những trải nghiệm mới lạ trên cả tuyệt vời so với mạng bốn g thì tốc độ truy cập mạng 5 g mobifone được nhận định là siêu đỉnh với mức truy cập nhanh gấp 10 lần") # ['Những gói cước 5G MobiFone sẽ mang đến cho bạn những trải nghiệm mới lạ trên cả tuyệt vời. So với mạng 4G thì tốc độ truy cập mạng 5G MobiFone được Nhận định là siêu đỉnh với mức truy cập nhanh gấp 10 lần.'] ``` **This model can work on arbitrarily large text in Vietnamese language.** ----------------------------------------------- ## 📡 Training data Here is the number of product reviews we used for fine-tuning the model: | Language | Number of text samples | | --- | --- | | Vietnamese | 5,600,000 | ----------------------------------------------- ## 🎯 Accuracy Below is a breakdown of the performance of the model by each label on 10,000 held-out text samples: | label | precision | recall | f1-score | support | | --- | --- | --- | --- | --- | | **Upper** | 0.89 | 0.90 | 0.89 | 56497 | | **Complex-Upper** | 0.93 | 0.83 | 0.88 | 480 | | **.** | 0.81 | 0.84 | 0.82 | 18139 | | **,** | 0.69 | 0.75 | 0.72 | 22961 | | **:** | 0.76 | 0.60 | 0.67 | 1432 | | **?** | 0.82 | 0.75 | 0.78 | 1730 | | **none** | 0.99 | 0.99 | 0.99 |475611 | -----------------------------------------------
9d4ff83b24f6f086a16156de0effc9dc
gokuls/distilbert_sa_GLUE_Experiment_sst2
gokuls
distilbert
20
4
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,738
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4455 - Accuracy: 0.8073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4404 | 1.0 | 264 | 0.5503 | 0.7477 | | 0.2565 | 2.0 | 528 | 0.6115 | 0.7580 | | 0.2067 | 3.0 | 792 | 0.4455 | 0.8073 | | 0.1714 | 4.0 | 1056 | 0.5150 | 0.7947 | | 0.1438 | 5.0 | 1320 | 0.5712 | 0.7867 | | 0.1162 | 6.0 | 1584 | 0.6657 | 0.7878 | | 0.0992 | 7.0 | 1848 | 0.6404 | 0.7821 | | 0.08 | 8.0 | 2112 | 0.7414 | 0.7924 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
2ad77dc3f98592ef33e2964f41696687
Helsinki-NLP/opus-mt-niu-es
Helsinki-NLP
marian
10
8
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-niu-es * source languages: niu * target languages: es * OPUS readme: [niu-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/niu-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/niu-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/niu-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/niu-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.niu.es | 24.2 | 0.419 |
732592f2fd04035e18e506d8f80d0fd5
Evelyn18/distilbert-base-uncased-becas-7
Evelyn18
distilbert
20
7
transformers
0
question-answering
true
false
false
apache-2.0
null
['becasv2']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,631
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-becas-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 4.3059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.4980 | | No log | 2.0 | 10 | 5.0383 | | No log | 3.0 | 15 | 4.6244 | | No log | 4.0 | 20 | 4.2090 | | No log | 5.0 | 25 | 4.0156 | | No log | 6.0 | 30 | 3.8638 | | No log | 7.0 | 35 | 4.0836 | | No log | 8.0 | 40 | 4.1302 | | No log | 9.0 | 45 | 4.2543 | | No log | 10.0 | 50 | 4.3059 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
335560b3974f04f3be01a1fea0e64308
cointegrated/rut5-base-labse-decoder
cointegrated
t5
8
6
transformers
3
text2text-generation
true
false
false
mit
['ru']
null
null
0
0
0
0
0
0
0
['russian']
false
true
true
2,163
false
This is the [rut5-base](https://huggingface.co/cointegrated/rut5-base) model, with the decoder fine-tuned to recover (approximately) Russian sentences from their [LaBSE](https://huggingface.co/sentence-transformers/LaBSE) embeddings. Details are [here](https://habr.com/ru/post/677618/) (in Russian). It can be used, for example, for: - Paraphrasing Russian sentences; - Translating from the 109 LaBSE languages to Russian; - Summarizing a collection of sentences with a single sentence; - Interpolating between sentences; - Few-shot text style transfer (including cross-lingual). Example code: ```python import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoModel from transformers.modeling_outputs import BaseModelOutput enc_tokenizer = AutoTokenizer.from_pretrained('cointegrated/LaBSE-en-ru') encoder = AutoModel.from_pretrained('cointegrated/LaBSE-en-ru') dec_tokenizer = AutoTokenizer.from_pretrained('cointegrated/rut5-base-labse-decoder') decoder = AutoModelForSeq2SeqLM.from_pretrained('cointegrated/rut5-base-labse-decoder') def encode(texts): encoded_input = enc_tokenizer(texts, padding=True, truncation=True, max_length=512, return_tensors='pt') with torch.no_grad(): model_output = encoder(**encoded_input.to(encoder.device)) embeddings = model_output.pooler_output embeddings = torch.nn.functional.normalize(embeddings) return embeddings # encode some texts into vectors embeddings = encode([ "4 декабря 2000 года", "Давно такого не читала, очень хорошо пишешь!", "Я тогда не понимала, что происходит, не понимаю и сейчас.", "London is the capital of Great Britain.", ]) print(embeddings.shape) # torch.Size([4, 768]) # now try to recover the texts from the vectors out = decoder.generate( encoder_outputs=BaseModelOutput(last_hidden_state=embeddings.unsqueeze(1)), max_length=256, repetition_penalty=3.0, ) for tokens in out: print(dec_tokenizer.decode(tokens, skip_special_tokens=True)) # После 4 декабря 2000 года # Не так давно, это многое читала! # Я не понимала того, что происходит сейчас тогда, дальше. # Британская столица Англии. ```
416d0989af378ddc17175ba48b03accd
kzk-kbys/distilbert-base-uncased-finetuned-emotion
kzk-kbys
distilbert
10
2
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,334
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1895 - Accuracy: 0.94 - F1: 0.9401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4628 | 1.0 | 2000 | 0.2334 | 0.9315 | 0.9312 | | 0.1579 | 2.0 | 4000 | 0.1895 | 0.94 | 0.9401 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.1
8b7c65fb0939e2beff9fd6443776aecf
tommasory/platzi-distilroberta-base-mrpc-glue-tommasory
tommasory
roberta
13
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,333
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-distilroberta-base-mrpc-glue-tommasory This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7098 - Accuracy: 0.8309 - F1: 0.8734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5196 | 1.09 | 500 | 0.5289 | 0.8260 | 0.8739 | | 0.3407 | 2.18 | 1000 | 0.7098 | 0.8309 | 0.8734 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
82347394cdcb4e653a12282ee44ca4ef
StivenLancheros/mBERT-base-cased-NER-CONLL
StivenLancheros
bert
16
9
transformers
0
token-classification
true
false
false
apache-2.0
null
['conll2002', 'conll2003']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,414
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mBERT-base-cased-NER-CONLL (EN-ES) This model is a fine-tuned version of [bert-base-multilingual-cased ](https://huggingface.co/bert-base-multilingual-cased) on the conll2003 and conll2002 datasets. Training was performed separately. It achieves the following results on the evaluation set: Connll2003: - Loss: 0.0585 - Precision: 0.9489 - Recall: 0.9541 - F1: 0.9515 - Accuracy: 0.9880 Conll2002: - Loss: 0.1435 - Precision: 0.8621 - Recall: 0.8663 - F1: 0.8642 - Accuracy: 0.9791 ## Model description IOB tagging Scheme. PER/LOC/MISC/ORG tags ## Intended uses & limitations More information needed ## Training and evaluation data Conll2002/2003 (ES-EN) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results Conll2003: | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1739 | 1.0 | 878 | 0.0741 | 0.9246 | 0.9181 | 0.9213 | 0.9823 | | 0.045 | 2.0 | 1756 | 0.0586 | 0.9469 | 0.9476 | 0.9472 | 0.9870 | | 0.0213 | 3.0 | 2634 | 0.0583 | 0.9503 | 0.9510 | 0.9506 | 0.9877 | | 0.0113 | 4.0 | 3512 | 0.0585 | 0.9489 | 0.9541 | 0.9515 | 0.9880 | Conll2002: | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0739 | 1.0 | 4162 | 0.1322 | 0.8430 | 0.8267 | 0.8348 | 0.9741 | | 0.0454 | 2.0 | 8324 | 0.1158 | 0.8664 | 0.8614 | 0.8639 | 0.9782 | | 0.031 | 3.0 | 12486 | 0.1243 | 0.8521 | 0.8660 | 0.8590 | 0.9783 | | 0.0136 | 4.0 | 16648 | 0.1435 | 0.8621 | 0.8663 | 0.8642 | 0.9791 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
6d72a2cf1e6539549da1aed46ff3602e
gokuls/distilbert_add_GLUE_Experiment_mrpc_96
gokuls
distilbert
17
5
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,832
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_mrpc_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6239 - Accuracy: 0.6838 - F1: 0.8122 - Combined Score: 0.7480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6686 | 1.0 | 15 | 0.6467 | 0.6838 | 0.8122 | 0.7480 | | 0.6433 | 2.0 | 30 | 0.6372 | 0.6838 | 0.8122 | 0.7480 | | 0.6378 | 3.0 | 45 | 0.6319 | 0.6838 | 0.8122 | 0.7480 | | 0.6344 | 4.0 | 60 | 0.6284 | 0.6838 | 0.8122 | 0.7480 | | 0.6343 | 5.0 | 75 | 0.6266 | 0.6838 | 0.8122 | 0.7480 | | 0.6299 | 6.0 | 90 | 0.6252 | 0.6838 | 0.8122 | 0.7480 | | 0.6335 | 7.0 | 105 | 0.6247 | 0.6838 | 0.8122 | 0.7480 | | 0.6308 | 8.0 | 120 | 0.6243 | 0.6838 | 0.8122 | 0.7480 | | 0.6306 | 9.0 | 135 | 0.6243 | 0.6838 | 0.8122 | 0.7480 | | 0.6302 | 10.0 | 150 | 0.6241 | 0.6838 | 0.8122 | 0.7480 | | 0.6296 | 11.0 | 165 | 0.6241 | 0.6838 | 0.8122 | 0.7480 | | 0.6305 | 12.0 | 180 | 0.6239 | 0.6838 | 0.8122 | 0.7480 | | 0.634 | 13.0 | 195 | 0.6242 | 0.6838 | 0.8122 | 0.7480 | | 0.63 | 14.0 | 210 | 0.6243 | 0.6838 | 0.8122 | 0.7480 | | 0.6314 | 15.0 | 225 | 0.6242 | 0.6838 | 0.8122 | 0.7480 | | 0.6286 | 16.0 | 240 | 0.6239 | 0.6838 | 0.8122 | 0.7480 | | 0.6326 | 17.0 | 255 | 0.6242 | 0.6838 | 0.8122 | 0.7480 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
477a583a6e01b40b24049dcb50d0fcba
espnet/siddhana_fsc_asr_train_asr_hubert_transformer_adam_specaug_raw_en_word_valid.acc.ave_5best
espnet
null
20
1
espnet
0
automatic-speech-recognition
false
false
false
cc-by-4.0
['en']
['fsc']
null
0
0
0
0
0
0
0
['espnet', 'audio', 'automatic-speech-recognition']
false
true
true
1,363
false
## ESPnet2 SLU pretrained model ### `siddhana/fsc_asr_train_asr_hubert_transformer_adam_specaug_raw_en_word_valid.acc.ave_5best` ♻️ Imported from https://zenodo.org/record/5590204 This model was trained by siddhana using fsc/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
a4f601be5466d7343611166a445f91fa
laion/CLIP-ViT-bigG-14-laion2B-39B-b160k
laion
clip
14
6,755
open_clip
44
null
true
false
false
mit
null
null
null
3
0
3
0
0
0
0
[]
false
true
true
8,379
false
# Model Card for CLIP ViT-bigG/14 - LAION-2B # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Training Details](#training-details) 4. [Evaluation](#evaluation) 5. [Acknowledgements](#acknowledgements) 6. [Citation](#citation) 7. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description A CLIP ViT-bigG/14 model trained with the LAION-2B English subset of LAION-5B (https://laion.ai/blog/laion-5b/) using OpenCLIP (https://github.com/mlfoundations/open_clip). Model training done by Mitchell Wortsman on the [stability.ai](https://stability.ai/) cluster. The license for this model is MIT. # Uses As per the original [OpenAI CLIP model card](https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/model-card.md), this model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such model. The OpenAI CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis. Additionally, the LAION-5B blog (https://laion.ai/blog/laion-5b/) and upcoming paper include additional discussion as it relates specifically to the training dataset. ## Direct Use Zero-shot image classification, image and text retrieval, among others. ## Downstream Use Image classification and other image task fine-tuning, linear probe image classification, image generation guiding and conditioning, among others. ## Out-of-Scope Use As per the OpenAI models, **Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful. Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use. Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases. Further the above notice, the LAION-5B dataset used in training of these models has additional considerations, see below. # Training Details ## Training Data This model was trained with the 2 Billion sample English subset of LAION-5B (https://laion.ai/blog/laion-5b/). Fine-tuning was also partially done on LAION-A, a 900M subset of LAION-2B filtered with aesthetic V2 4.5+ and phash deduplicated. **IMPORTANT NOTE:** The motivation behind dataset creation is to democratize research and experimentation around large-scale multi-modal model training and handling of uncurated, large-scale datasets crawled from publically available internet. Our recommendation is therefore to use the dataset for research purposes. Be aware that this large-scale dataset is uncurated. Keep in mind that the uncurated nature of the dataset means that collected links may lead to strongly discomforting and disturbing content for a human viewer. Therefore, please use the demo links with caution and at your own risk. It is possible to extract a “safe” subset by filtering out samples based on the safety tags (using a customized trained NSFW classifier that we built). While this strongly reduces the chance for encountering potentially harmful content when viewing, we cannot entirely exclude the possibility for harmful content being still present in safe mode, so that the warning holds also there. We think that providing the dataset openly to broad research and other interested communities will allow for transparent investigation of benefits that come along with training large-scale models as well as pitfalls and dangers that may stay unreported or unnoticed when working with closed large datasets that remain restricted to a small community. Providing our dataset openly, we however do not recommend using it for creating ready-to-go industrial products, as the basic research about general properties and safety of such large-scale models, which we would like to encourage with this release, is still in progress. ## Training Procedure The training procedure will soon be discussed by a blog post on laion.ai. # Evaluation Evaluation done with code in the [LAION CLIP Benchmark suite](https://github.com/LAION-AI/CLIP_benchmark). ## Testing Data, Factors & Metrics ### Testing Data The testing is performed with VTAB+ (A combination of VTAB (https://arxiv.org/abs/1910.04867) w/ additional robustness datasets) for classification and COCO and Flickr for retrieval. **TODO** - more detail ## Results The model achieves a 80.1 zero-shot top-1 accuracy on ImageNet-1k. An initial round of benchmarks have been performed on a wider range of datasets, and will soon be visible at https://github.com/LAION-AI/CLIP_benchmark/blob/main/benchmark/results.ipynb **TODO** - create table for just this model's metrics. # Acknowledgements Acknowledging [stability.ai](https://stability.ai/) for the compute used to train this model. # Citation **BibTeX:** LAION-5B ```bibtex @inproceedings{schuhmann2022laionb, title={{LAION}-5B: An open large-scale dataset for training next generation image-text models}, author={Christoph Schuhmann and Romain Beaumont and Richard Vencu and Cade W Gordon and Ross Wightman and Mehdi Cherti and Theo Coombes and Aarush Katta and Clayton Mullis and Mitchell Wortsman and Patrick Schramowski and Srivatsa R Kundurthy and Katherine Crowson and Ludwig Schmidt and Robert Kaczmarczyk and Jenia Jitsev}, booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track}, year={2022}, url={https://openreview.net/forum?id=M3Y74vmsMcY} } ``` OpenAI CLIP paper ``` @inproceedings{Radford2021LearningTV, title={Learning Transferable Visual Models From Natural Language Supervision}, author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever}, booktitle={ICML}, year={2021} } ``` OpenCLIP software ``` @software{ilharco_gabriel_2021_5143773, author = {Ilharco, Gabriel and Wortsman, Mitchell and Wightman, Ross and Gordon, Cade and Carlini, Nicholas and Taori, Rohan and Dave, Achal and Shankar, Vaishaal and Namkoong, Hongseok and Miller, John and Hajishirzi, Hannaneh and Farhadi, Ali and Schmidt, Ludwig}, title = {OpenCLIP}, month = jul, year = 2021, note = {If you use this software, please cite it as below.}, publisher = {Zenodo}, version = {0.1}, doi = {10.5281/zenodo.5143773}, url = {https://doi.org/10.5281/zenodo.5143773} } ``` Scaling OpenCLIP paper ``` @article{cherti2022reproducible, title={Reproducible scaling laws for contrastive language-image learning}, author={Cherti, Mehdi and Beaumont, Romain and Wightman, Ross and Wortsman, Mitchell and Ilharco, Gabriel and Gordon, Cade and Schuhmann, Christoph and Schmidt, Ludwig and Jitsev, Jenia}, journal={arXiv preprint arXiv:2212.07143}, year={2022} } ``` # How to Get Started with the Model Use the code below to get started with the model. ** TODO ** - Hugging Face transformers, OpenCLIP, and timm getting started snippets
6ab5eb2b97c78a77175a53349b1171f1
inovex/multi2convai-quality-en-bert
inovex
bert
8
3
transformers
0
text-classification
true
false
false
mit
['en']
null
null
0
0
0
0
0
0
0
['text-classification']
false
true
true
860
false
# Multi2ConvAI-Quality: finetuned Bert for English This model was developed in the [Multi2ConvAI](https://multi2conv.ai) project: - domain: Quality (more details about our use cases: ([en](https://multi2convai/en/blog/use-cases), [de](https://multi2convai/en/blog/use-cases))) - language: English (en) - model type: finetuned Bert ## How to run Requires: - Huggingface transformers ### Run with Huggingface Transformers ````python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("inovex/multi2convai-quality-en-bert") model = AutoModelForSequenceClassification.from_pretrained("inovex/multi2convai-quality-en-bert") ```` ## Further information on Multi2ConvAI: - https://multi2conv.ai - https://github.com/inovex/multi2convai - mailto: info@multi2conv.ai
a1ee3acee0d73148b0a8f28c419e2e69
KoichiYasuoka/roberta-small-belarusian
KoichiYasuoka
roberta
7
5
transformers
1
fill-mask
true
false
false
cc-by-sa-4.0
['be']
['cc100']
null
0
0
0
0
0
0
0
['belarusian', 'masked-lm']
false
true
true
576
false
# roberta-small-belarusian ## Model Description This is a RoBERTa model pre-trained on [CC-100](https://data.statmt.org/cc-100/). You can fine-tune `roberta-small-belarusian` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-small-belarusian-upos), dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-small-belarusian") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-small-belarusian") ```
26fa9b3da3a2f6f65caea9b0d1c26b29
Padomin/t5-base-TEDxJP-0front-1body-5rear
Padomin
t5
20
1
transformers
0
text2text-generation
true
false
false
cc-by-sa-4.0
null
['te_dx_jp']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,953
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-0front-1body-5rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4695 - Wer: 0.1761 - Mer: 0.1701 - Wil: 0.2587 - Wip: 0.7413 - Hits: 55488 - Substitutions: 6549 - Deletions: 2550 - Insertions: 2272 - Cer: 0.1410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6479 | 1.0 | 1457 | 0.4975 | 0.1917 | 0.1845 | 0.2761 | 0.7239 | 54735 | 6812 | 3040 | 2530 | 0.1545 | | 0.549 | 2.0 | 2914 | 0.4537 | 0.1833 | 0.1768 | 0.2659 | 0.7341 | 55124 | 6589 | 2874 | 2378 | 0.1435 | | 0.4961 | 3.0 | 4371 | 0.4472 | 0.1758 | 0.1701 | 0.2582 | 0.7418 | 55387 | 6493 | 2707 | 2154 | 0.1369 | | 0.432 | 4.0 | 5828 | 0.4439 | 0.1765 | 0.1707 | 0.2593 | 0.7407 | 55403 | 6544 | 2640 | 2217 | 0.1387 | | 0.3789 | 5.0 | 7285 | 0.4471 | 0.1749 | 0.1693 | 0.2574 | 0.7426 | 55419 | 6490 | 2678 | 2128 | 0.1387 | | 0.3524 | 6.0 | 8742 | 0.4483 | 0.1754 | 0.1697 | 0.2573 | 0.7427 | 55414 | 6449 | 2724 | 2153 | 0.1405 | | 0.3961 | 7.0 | 10199 | 0.4562 | 0.1756 | 0.1698 | 0.2574 | 0.7426 | 55454 | 6455 | 2678 | 2206 | 0.1390 | | 0.3238 | 8.0 | 11656 | 0.4593 | 0.1768 | 0.1708 | 0.2590 | 0.7410 | 55463 | 6514 | 2610 | 2298 | 0.1416 | | 0.3054 | 9.0 | 13113 | 0.4652 | 0.1756 | 0.1697 | 0.2577 | 0.7423 | 55522 | 6498 | 2567 | 2279 | 0.1408 | | 0.3087 | 10.0 | 14570 | 0.4695 | 0.1761 | 0.1701 | 0.2587 | 0.7413 | 55488 | 6549 | 2550 | 2272 | 0.1410 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
3abf5c3bb1c9f956404ea6e7722d9ebe
kabelomalapane/en_nso_ukuxhumana_model
kabelomalapane
marian
14
1
transformers
0
translation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation', 'generated_from_trainer']
true
true
true
1,060
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en_nso_ukuxhumana_model This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-nso](https://huggingface.co/Helsinki-NLP/opus-mt-en-nso) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8482 - Bleu (before training): 12.2324 - Bleu: 18.9287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
c0f14461f11bd95cd40713102de267f4
sd-concepts-library/jamie-hewlett-style
sd-concepts-library
null
11
0
null
11
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,286
false
### Jamie Hewlett Style on Stable Diffusion This is the `<hewlett>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<hewlett> 0](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/3.jpeg) ![<hewlett> 1](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/0.jpeg) ![<hewlett> 2](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/5.jpeg) ![<hewlett> 3](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/1.jpeg) ![<hewlett> 4](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/2.jpeg) ![<hewlett> 5](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/4.jpeg)
3b9b89afdaf5dc50e37e9c5817f6cf3b
russellc/roberta-news-classifier
russellc
roberta
11
3
transformers
1
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,529
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-news-classifier This model is a fine-tuned version of [russellc/roberta-news-classifier](https://huggingface.co/russellc/roberta-news-classifier) on the custom(Kaggle) dataset. It achieves the following results on the evaluation set: - Loss: 0.1043 - Accuracy: 0.9786 - F1: 0.9786 - Precision: 0.9786 - Recall: 0.9786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1327 | 1.0 | 123 | 0.1043 | 0.9786 | 0.9786 | 0.9786 | 0.9786 | | 0.1103 | 2.0 | 246 | 0.1157 | 0.9735 | 0.9735 | 0.9735 | 0.9735 | | 0.102 | 3.0 | 369 | 0.1104 | 0.9735 | 0.9735 | 0.9735 | 0.9735 | | 0.0825 | 4.0 | 492 | 0.1271 | 0.9714 | 0.9714 | 0.9714 | 0.9714 | | 0.055 | 5.0 | 615 | 0.1296 | 0.9724 | 0.9724 | 0.9724 | 0.9724 | ### Evaluation results ***** Running Prediction ***** Num examples = 980 Batch size = 64 precision recall f1-score support dunya 0.99 0.96 0.97 147 ekonomi 0.96 0.96 0.96 141 kultur 0.97 0.99 0.98 142 saglik 0.99 0.98 0.98 148 siyaset 0.98 0.98 0.98 134 spor 1.00 1.00 1.00 139 teknoloji 0.96 0.98 0.97 129 accuracy -- -- 0.98 980 macro avg 0.98 0.98 0.98 980 weighted avg 0.98 0.98 0.98 980 ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
38783fef172a386841ee3930d0a03b24
kasrahabib/all-MiniLM-L6-v2-finetunned-fnfreq-clf-promise
kasrahabib
bert
10
8
transformers
0
text-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,915
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # kasrahabib/all-MiniLM-L6-v2-finetunned-fnfreq-clf-promise This model is a fine-tuned version of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1935 - Validation Loss: 0.1968 - Train Precision: 0.9452 - Train Recall: 0.9324 - Train F1: 0.9388 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 310, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:-----:| | 0.6719 | 0.6246 | 0.592 | 1.0 | 0.7437 | 0 | | 0.5484 | 0.3982 | 0.8961 | 0.9324 | 0.9139 | 1 | | 0.3471 | 0.2932 | 0.9545 | 0.8514 | 0.9 | 2 | | 0.2367 | 0.2054 | 0.9452 | 0.9324 | 0.9388 | 3 | | 0.1935 | 0.1968 | 0.9452 | 0.9324 | 0.9388 | 4 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.0 - Datasets 2.7.1 - Tokenizers 0.13.1
61aae0267b1bc4d716a0e0e6c7f70c9e
SetFit/distilbert-base-uncased__subj__train-8-2
SetFit
distilbert
10
5
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,182
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3081 - Accuracy: 0.8755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7146 | 1.0 | 3 | 0.6798 | 0.75 | | 0.6737 | 2.0 | 6 | 0.6847 | 0.75 | | 0.6519 | 3.0 | 9 | 0.6783 | 0.75 | | 0.6105 | 4.0 | 12 | 0.6812 | 0.25 | | 0.5463 | 5.0 | 15 | 0.6869 | 0.25 | | 0.4922 | 6.0 | 18 | 0.6837 | 0.5 | | 0.4543 | 7.0 | 21 | 0.6716 | 0.5 | | 0.3856 | 8.0 | 24 | 0.6613 | 0.75 | | 0.3475 | 9.0 | 27 | 0.6282 | 0.75 | | 0.2717 | 10.0 | 30 | 0.6045 | 0.75 | | 0.2347 | 11.0 | 33 | 0.5620 | 0.75 | | 0.1979 | 12.0 | 36 | 0.5234 | 1.0 | | 0.1535 | 13.0 | 39 | 0.4771 | 1.0 | | 0.1332 | 14.0 | 42 | 0.4277 | 1.0 | | 0.1041 | 15.0 | 45 | 0.3785 | 1.0 | | 0.082 | 16.0 | 48 | 0.3318 | 1.0 | | 0.0672 | 17.0 | 51 | 0.2885 | 1.0 | | 0.0538 | 18.0 | 54 | 0.2568 | 1.0 | | 0.0412 | 19.0 | 57 | 0.2356 | 1.0 | | 0.0361 | 20.0 | 60 | 0.2217 | 1.0 | | 0.0303 | 21.0 | 63 | 0.2125 | 1.0 | | 0.0268 | 22.0 | 66 | 0.2060 | 1.0 | | 0.0229 | 23.0 | 69 | 0.2015 | 1.0 | | 0.0215 | 24.0 | 72 | 0.1989 | 1.0 | | 0.0211 | 25.0 | 75 | 0.1969 | 1.0 | | 0.0172 | 26.0 | 78 | 0.1953 | 1.0 | | 0.0165 | 27.0 | 81 | 0.1935 | 1.0 | | 0.0132 | 28.0 | 84 | 0.1923 | 1.0 | | 0.0146 | 29.0 | 87 | 0.1914 | 1.0 | | 0.0125 | 30.0 | 90 | 0.1904 | 1.0 | | 0.0119 | 31.0 | 93 | 0.1897 | 1.0 | | 0.0122 | 32.0 | 96 | 0.1886 | 1.0 | | 0.0118 | 33.0 | 99 | 0.1875 | 1.0 | | 0.0097 | 34.0 | 102 | 0.1866 | 1.0 | | 0.0111 | 35.0 | 105 | 0.1861 | 1.0 | | 0.0111 | 36.0 | 108 | 0.1855 | 1.0 | | 0.0102 | 37.0 | 111 | 0.1851 | 1.0 | | 0.0109 | 38.0 | 114 | 0.1851 | 1.0 | | 0.0085 | 39.0 | 117 | 0.1854 | 1.0 | | 0.0089 | 40.0 | 120 | 0.1855 | 1.0 | | 0.0092 | 41.0 | 123 | 0.1863 | 1.0 | | 0.0105 | 42.0 | 126 | 0.1868 | 1.0 | | 0.0089 | 43.0 | 129 | 0.1874 | 1.0 | | 0.0091 | 44.0 | 132 | 0.1877 | 1.0 | | 0.0096 | 45.0 | 135 | 0.1881 | 1.0 | | 0.0081 | 46.0 | 138 | 0.1881 | 1.0 | | 0.0086 | 47.0 | 141 | 0.1883 | 1.0 | | 0.009 | 48.0 | 144 | 0.1884 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
d69aa7033c02215fe8a90aef91f44b90
chailatte/steven-universe
chailatte
null
3
0
null
1
null
false
false
false
unknown
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
480
false
Token: su_mdl Class: style Example: 1girl, grin, solo, female focus, smile, sparkling eyes, shiny hair, su_mdl style I get good results using these negative prompts: bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry With a CFG Scale of 11. This is trained on top of Anything.ckpt using 100 screenshots from Steven Universe at 10k steps.
ab90fba9e2148d6dde6e9fa0931d74af
bardsai/whisper-medium-pl
bardsai
whisper
17
11
transformers
1
automatic-speech-recognition
true
false
false
apache-2.0
['pl']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,853
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small PL This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3739 - Wer: 8.5898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0474 | 1.1 | 1000 | 0.2561 | 9.4612 | | 0.0119 | 3.09 | 2000 | 0.2901 | 8.9726 | | 0.0045 | 5.08 | 3000 | 0.3151 | 8.8870 | | 0.0007 | 7.07 | 4000 | 0.4218 | 8.6032 | | 0.0005 | 9.07 | 5000 | 0.3739 | 8.5898 | ### Evaluation results When tested on diffrent polish ASR datasets (splits: test), this model achieves the following results: | Dataset | WER | WER unnormalized | CER | MER | |:-----------------:|:-----:|:----------------:|:-----:|:-----:| |common_voice_11_0 | 8.85 | 21.75 | 2.63 | 8.76 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
f64a43b2444dc7cba67bdf3507aebec0
victorlee071200/distilbert-base-cased-finetuned-squad
victorlee071200
distilbert
10
5
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,278
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-finetuned-squad This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2357 | 1.0 | 5546 | 1.1985 | | 0.9525 | 2.0 | 11092 | 1.1285 | | 0.744 | 3.0 | 16638 | 1.1755 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
c27429d1338f40565c850b91648a8c68
yanaiela/roberta-base-epoch_49
yanaiela
roberta
9
3
transformers
0
fill-mask
true
false
false
mit
['en']
['wikipedia', 'bookcorpus']
null
0
0
0
0
0
0
0
['roberta-base', 'roberta-base-epoch_49']
false
true
true
2,102
false
# RoBERTa, Intermediate Checkpoint - Epoch 49 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_49. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
448786d6cd8e5e80b45a659527354d34
Yaxin/electra-base-discriminator-yelp-mlm
Yaxin
electra
13
8
transformers
0
fill-mask
true
false
false
apache-2.0
null
['yelp_review_full']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,089
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-discriminator-yelp-mlm This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the yelp_review_full yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.5550 - Accuracy: 0.6783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
6aee6ed9c56cde2062f3daeb37f5d998
no3/kate-wd-1.4-beta1
no3
null
36
7
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
0
1
0
0
0
0
[]
false
true
true
2,953
false
### Kate from [Aim for the Stars](https://moringmark.tumblr.com/post/188798125438/aim-for-the-stars) on [WD](https://huggingface.co/hakurei/waifu-diffusion) via Dreambooth #### model by no3 This your waifu-diffusion v1.4 model fine-tuned kate concept taught to waifu-diffusion v1.4 with Dreambooth. It can be used by modifying the `instance_prompt`: **sks kate girl** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts). ### note If you want to to use in UI like [AUTOMATIC1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) or any UI that's uses .ckpt files just download one or more file from here for your convenience. [kateA4-wd-1.4-beta1.ckpt](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/kateA4-wd-1.4-beta1.ckpt) 5.16 GB [kateA4-wd-1.4-beta1-pruned.ckpt](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/kateA4-wd-1.4-beta1-pruned.ckpt) 2.58 GB Uses less storage space, but untested yet If you have issues or questions feel free to visit the Community Tab and start discussion about it. Here are images used for training this concept: ![image 1](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/concept_images/1.png) ![image 2](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/concept_images/2.png) ![image 3](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/concept_images/3.png) ![image 4](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/concept_images/4.png) ![image 5](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/concept_images/1c.png) ![image 6](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/concept_images/2c.png) ![image 7](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/concept_images/3c.png) ![image 9](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/concept_images/5c.png) ![image 11](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/concept_images/7c.png) ![image 12](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/concept_images/8c.png) ![image 13](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/concept_images/9c.png) ![image 14](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/concept_images/10c.png) ![image 15](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/concept_images/11c.png) ![image 16](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/concept_images/1%20f.png) ![image 17](https://huggingface.co/no3/kate-wd-1.4-beta1/resolve/main/concept_images/2%20f.png)
12cf3c9d7a0dd3348329ee41a7200e86
prajjwal1/bert-mini
prajjwal1
null
5
85,472
transformers
7
null
true
false
false
['mit']
['en']
null
null
0
0
0
0
0
0
0
['BERT', 'MNLI', 'NLI', 'transformer', 'pre-training']
false
true
true
2,398
false
The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert). This is one of the smaller pre-trained BERT variants, together with [bert-small](https://huggingface.co/prajjwal1/bert-small) and [bert-medium](https://huggingface.co/prajjwal1/bert-medium). They were introduced in the study `Well-Read Students Learn Better: On the Importance of Pre-training Compact Models` ([arxiv](https://arxiv.org/abs/1908.08962)), and ported to HF for the study `Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics` ([arXiv](https://arxiv.org/abs/2110.01518)). These models are supposed to be trained on a downstream task. If you use the model, please consider citing both the papers: ``` @misc{bhargava2021generalization, title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics}, author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers}, year={2021}, eprint={2110.01518}, archivePrefix={arXiv}, primaryClass={cs.CL} } @article{DBLP:journals/corr/abs-1908-08962, author = {Iulia Turc and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {Well-Read Students Learn Better: The Impact of Student Initialization on Knowledge Distillation}, journal = {CoRR}, volume = {abs/1908.08962}, year = {2019}, url = {http://arxiv.org/abs/1908.08962}, eprinttype = {arXiv}, eprint = {1908.08962}, timestamp = {Thu, 29 Aug 2019 16:32:34 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1908-08962.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Config of this model: `prajjwal1/bert-mini` (L=4, H=256) [Model Link](https://huggingface.co/prajjwal1/bert-mini) Other models to check out: - `prajjwal1/bert-tiny` (L=2, H=128) [Model Link](https://huggingface.co/prajjwal1/bert-tiny) - `prajjwal1/bert-small` (L=4, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-small) - `prajjwal1/bert-medium` (L=8, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-medium) Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli). Twitter: [@prajjwal_1](https://twitter.com/prajjwal_1)
f3a777541a9135a7efcfbdbcab419153
rishabhjain16/whisper_base_en_to_myst55h
rishabhjain16
whisper
25
4
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,535
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-base.en This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6446 - Wer: 16.4580 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3205 | 4.02 | 1000 | 0.4080 | 14.5116 | | 0.1568 | 8.04 | 2000 | 0.4672 | 15.3758 | | 0.035 | 13.01 | 3000 | 0.5696 | 15.9737 | | 0.0087 | 17.02 | 4000 | 0.6242 | 15.7283 | | 0.0065 | 21.04 | 5000 | 0.6446 | 16.4580 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2
cf93217474c9580875736f0a1a0ce21b
sd-concepts-library/pokemon-conquest-sprites
sd-concepts-library
null
205
0
null
4
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
26,193
false
### Pokemon Conquest Sprites on Stable Diffusion This is the `<poke-conquest>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<poke-conquest> 0](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/10.jpeg) ![<poke-conquest> 1](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/73.jpeg) ![<poke-conquest> 2](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/33.jpeg) ![<poke-conquest> 3](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/77.jpeg) ![<poke-conquest> 4](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/68.jpeg) ![<poke-conquest> 5](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/62.jpeg) ![<poke-conquest> 6](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/44.jpeg) ![<poke-conquest> 7](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/180.jpeg) ![<poke-conquest> 8](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/40.jpeg) ![<poke-conquest> 9](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/103.jpeg) ![<poke-conquest> 10](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/71.jpeg) ![<poke-conquest> 11](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/101.jpeg) ![<poke-conquest> 12](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/131.jpeg) ![<poke-conquest> 13](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/74.jpeg) ![<poke-conquest> 14](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/42.jpeg) ![<poke-conquest> 15](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/39.jpeg) ![<poke-conquest> 16](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/185.jpeg) ![<poke-conquest> 17](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/128.jpeg) ![<poke-conquest> 18](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/23.jpeg) ![<poke-conquest> 19](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/72.jpeg) ![<poke-conquest> 20](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/27.jpeg) ![<poke-conquest> 21](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/94.jpeg) ![<poke-conquest> 22](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/122.jpeg) ![<poke-conquest> 23](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/82.jpeg) ![<poke-conquest> 24](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/13.jpeg) ![<poke-conquest> 25](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/9.jpeg) ![<poke-conquest> 26](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/148.jpeg) ![<poke-conquest> 27](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/177.jpeg) ![<poke-conquest> 28](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/133.jpeg) ![<poke-conquest> 29](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/139.jpeg) ![<poke-conquest> 30](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/181.jpeg) ![<poke-conquest> 31](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/16.jpeg) ![<poke-conquest> 32](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/106.jpeg) ![<poke-conquest> 33](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/78.jpeg) ![<poke-conquest> 34](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/110.jpeg) ![<poke-conquest> 35](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/26.jpeg) ![<poke-conquest> 36](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/199.jpeg) ![<poke-conquest> 37](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/59.jpeg) ![<poke-conquest> 38](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/189.jpeg) ![<poke-conquest> 39](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/166.jpeg) ![<poke-conquest> 40](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/96.jpeg) ![<poke-conquest> 41](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/21.jpeg) ![<poke-conquest> 42](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/135.jpeg) ![<poke-conquest> 43](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/54.jpeg) ![<poke-conquest> 44](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/86.jpeg) ![<poke-conquest> 45](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/114.jpeg) ![<poke-conquest> 46](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/176.jpeg) ![<poke-conquest> 47](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/19.jpeg) ![<poke-conquest> 48](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/6.jpeg) ![<poke-conquest> 49](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/52.jpeg) ![<poke-conquest> 50](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/41.jpeg) ![<poke-conquest> 51](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/90.jpeg) ![<poke-conquest> 52](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/173.jpeg) ![<poke-conquest> 53](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/49.jpeg) ![<poke-conquest> 54](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/149.jpeg) ![<poke-conquest> 55](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/91.jpeg) ![<poke-conquest> 56](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/182.jpeg) ![<poke-conquest> 57](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/17.jpeg) ![<poke-conquest> 58](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/5.jpeg) ![<poke-conquest> 59](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/179.jpeg) ![<poke-conquest> 60](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/50.jpeg) ![<poke-conquest> 61](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/186.jpeg) ![<poke-conquest> 62](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/105.jpeg) ![<poke-conquest> 63](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/124.jpeg) ![<poke-conquest> 64](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/11.jpeg) ![<poke-conquest> 65](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/161.jpeg) ![<poke-conquest> 66](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/118.jpeg) ![<poke-conquest> 67](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/0.jpeg) ![<poke-conquest> 68](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/98.jpeg) ![<poke-conquest> 69](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/63.jpeg) ![<poke-conquest> 70](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/92.jpeg) ![<poke-conquest> 71](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/183.jpeg) ![<poke-conquest> 72](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/171.jpeg) ![<poke-conquest> 73](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/65.jpeg) ![<poke-conquest> 74](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/20.jpeg) ![<poke-conquest> 75](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/69.jpeg) ![<poke-conquest> 76](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/172.jpeg) ![<poke-conquest> 77](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/158.jpeg) ![<poke-conquest> 78](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/18.jpeg) ![<poke-conquest> 79](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/87.jpeg) ![<poke-conquest> 80](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/45.jpeg) ![<poke-conquest> 81](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/93.jpeg) ![<poke-conquest> 82](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/113.jpeg) ![<poke-conquest> 83](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/55.jpeg) ![<poke-conquest> 84](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/28.jpeg) ![<poke-conquest> 85](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/145.jpeg) ![<poke-conquest> 86](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/31.jpeg) ![<poke-conquest> 87](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/108.jpeg) ![<poke-conquest> 88](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/162.jpeg) ![<poke-conquest> 89](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/116.jpeg) ![<poke-conquest> 90](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/66.jpeg) ![<poke-conquest> 91](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/164.jpeg) ![<poke-conquest> 92](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/100.jpeg) ![<poke-conquest> 93](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/190.jpeg) ![<poke-conquest> 94](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/123.jpeg) ![<poke-conquest> 95](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/60.jpeg) ![<poke-conquest> 96](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/196.jpeg) ![<poke-conquest> 97](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/175.jpeg) ![<poke-conquest> 98](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/51.jpeg) ![<poke-conquest> 99](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/192.jpeg) ![<poke-conquest> 100](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/117.jpeg) ![<poke-conquest> 101](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/121.jpeg) ![<poke-conquest> 102](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/167.jpeg) ![<poke-conquest> 103](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/36.jpeg) ![<poke-conquest> 104](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/102.jpeg) ![<poke-conquest> 105](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/132.jpeg) ![<poke-conquest> 106](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/83.jpeg) ![<poke-conquest> 107](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/184.jpeg) ![<poke-conquest> 108](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/29.jpeg) ![<poke-conquest> 109](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/47.jpeg) ![<poke-conquest> 110](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/142.jpeg) ![<poke-conquest> 111](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/12.jpeg) ![<poke-conquest> 112](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/120.jpeg) ![<poke-conquest> 113](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/7.jpeg) ![<poke-conquest> 114](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/48.jpeg) ![<poke-conquest> 115](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/163.jpeg) ![<poke-conquest> 116](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/169.jpeg) ![<poke-conquest> 117](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/24.jpeg) ![<poke-conquest> 118](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/136.jpeg) ![<poke-conquest> 119](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/80.jpeg) ![<poke-conquest> 120](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/119.jpeg) ![<poke-conquest> 121](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/53.jpeg) ![<poke-conquest> 122](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/157.jpeg) ![<poke-conquest> 123](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/109.jpeg) ![<poke-conquest> 124](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/37.jpeg) ![<poke-conquest> 125](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/112.jpeg) ![<poke-conquest> 126](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/4.jpeg) ![<poke-conquest> 127](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/22.jpeg) ![<poke-conquest> 128](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/125.jpeg) ![<poke-conquest> 129](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/168.jpeg) ![<poke-conquest> 130](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/99.jpeg) ![<poke-conquest> 131](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/198.jpeg) ![<poke-conquest> 132](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/104.jpeg) ![<poke-conquest> 133](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/141.jpeg) ![<poke-conquest> 134](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/178.jpeg) ![<poke-conquest> 135](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/143.jpeg) ![<poke-conquest> 136](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/191.jpeg) ![<poke-conquest> 137](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/194.jpeg) ![<poke-conquest> 138](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/85.jpeg) ![<poke-conquest> 139](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/137.jpeg) ![<poke-conquest> 140](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/130.jpeg) ![<poke-conquest> 141](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/150.jpeg) ![<poke-conquest> 142](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/193.jpeg) ![<poke-conquest> 143](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/95.jpeg) ![<poke-conquest> 144](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/76.jpeg) ![<poke-conquest> 145](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/111.jpeg) ![<poke-conquest> 146](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/146.jpeg) ![<poke-conquest> 147](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/115.jpeg) ![<poke-conquest> 148](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/126.jpeg) ![<poke-conquest> 149](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/75.jpeg) ![<poke-conquest> 150](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/197.jpeg) ![<poke-conquest> 151](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/159.jpeg) ![<poke-conquest> 152](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/188.jpeg) ![<poke-conquest> 153](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/138.jpeg) ![<poke-conquest> 154](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/81.jpeg) ![<poke-conquest> 155](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/35.jpeg) ![<poke-conquest> 156](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/14.jpeg) ![<poke-conquest> 157](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/8.jpeg) ![<poke-conquest> 158](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/147.jpeg) ![<poke-conquest> 159](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/70.jpeg) ![<poke-conquest> 160](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/89.jpeg) ![<poke-conquest> 161](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/129.jpeg) ![<poke-conquest> 162](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/88.jpeg) ![<poke-conquest> 163](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/144.jpeg) ![<poke-conquest> 164](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/160.jpeg) ![<poke-conquest> 165](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/195.jpeg) ![<poke-conquest> 166](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/187.jpeg) ![<poke-conquest> 167](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/84.jpeg) ![<poke-conquest> 168](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/165.jpeg) ![<poke-conquest> 169](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/140.jpeg) ![<poke-conquest> 170](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/67.jpeg) ![<poke-conquest> 171](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/34.jpeg) ![<poke-conquest> 172](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/154.jpeg) ![<poke-conquest> 173](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/38.jpeg) ![<poke-conquest> 174](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/64.jpeg) ![<poke-conquest> 175](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/1.jpeg) ![<poke-conquest> 176](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/152.jpeg) ![<poke-conquest> 177](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/32.jpeg) ![<poke-conquest> 178](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/3.jpeg) ![<poke-conquest> 179](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/170.jpeg) ![<poke-conquest> 180](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/57.jpeg) ![<poke-conquest> 181](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/127.jpeg) ![<poke-conquest> 182](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/58.jpeg) ![<poke-conquest> 183](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/61.jpeg) ![<poke-conquest> 184](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/25.jpeg) ![<poke-conquest> 185](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/107.jpeg) ![<poke-conquest> 186](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/151.jpeg) ![<poke-conquest> 187](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/46.jpeg) ![<poke-conquest> 188](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/174.jpeg) ![<poke-conquest> 189](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/30.jpeg) ![<poke-conquest> 190](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/43.jpeg) ![<poke-conquest> 191](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/79.jpeg) ![<poke-conquest> 192](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/155.jpeg) ![<poke-conquest> 193](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/2.jpeg) ![<poke-conquest> 194](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/15.jpeg) ![<poke-conquest> 195](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/134.jpeg) ![<poke-conquest> 196](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/156.jpeg) ![<poke-conquest> 197](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/56.jpeg) ![<poke-conquest> 198](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/153.jpeg) ![<poke-conquest> 199](https://huggingface.co/sd-concepts-library/pokemon-conquest-sprites/resolve/main/concept_images/97.jpeg)
95a7a6015e8a648ebf17282ab65837c4
anton-l/wav2vec2-large-xlsr-53-estonian
anton-l
wav2vec2
9
11
transformers
0
automatic-speech-recognition
true
false
true
apache-2.0
['et']
['common_voice']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week']
true
true
true
3,806
false
# Wav2Vec2-Large-XLSR-53-Estonian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Estonian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "et", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-estonian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-estonian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Estonian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/et.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-estonian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-estonian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/et/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/et/clips/" def clean_sentence(sent): sent = sent.lower() # normalize apostrophes sent = sent.replace("’", "'") # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() or ch == "'" else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 30.74 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](github.com)
74782517aa99abf1e9b3afcc421870f0
Helsinki-NLP/opus-mt-crs-de
Helsinki-NLP
marian
10
9
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-crs-de * source languages: crs * target languages: de * OPUS readme: [crs-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/crs-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/crs-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/crs-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/crs-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.crs.de | 20.4 | 0.397 |
9796c9681bec51d34d52a67bac2cd0c6
Graphcore/deberta-base-squad
Graphcore
deberta
29
6
transformers
1
question-answering
true
false
false
apache-2.0
null
['squad']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,122
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-squad This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 1984 - distributed_type: IPU - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.25 - num_epochs: 2.0 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cpu - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
411c43e7f271f24eef67f5628990515a
rinna/japanese-gpt2-xsmall
rinna
gpt2
9
1,727
transformers
9
text-generation
true
true
false
mit
['ja']
['cc100', 'wikipedia']
null
0
0
0
0
0
0
0
['ja', 'japanese', 'gpt2', 'text-generation', 'lm', 'nlp']
false
true
true
1,370
false
# japanese-gpt2-xsmall ![rinna-icon](./rinna.png) This repository provides an extra-small-sized Japanese GPT-2 model. The model was trained using code from Github repository [rinnakk/japanese-pretrained-models](https://github.com/rinnakk/japanese-pretrained-models) by [rinna Co., Ltd.](https://corp.rinna.co.jp/) # How to use the model *NOTE:* Use `T5Tokenizer` to initiate the tokenizer. ~~~~ from transformers import T5Tokenizer, GPT2LMHeadModel tokenizer = T5Tokenizer.from_pretrained("rinna/japanese-gpt2-small") tokenizer.do_lower_case = True # due to some bug of tokenizer config loading model = GPT2LMHeadModel.from_pretrained("rinna/japanese-gpt2-small") ~~~~ # Model architecture A 6-layer, 512-hidden-size transformer-based language model. # Training The model was trained on [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) and [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) to optimize a traditional language modelling objective on 8\\*V100 GPUs for around 4 days. It reaches around 28 perplexity on a chosen validation set from CC-100. # Tokenization The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer, the vocabulary was trained on the Japanese Wikipedia using the official sentencepiece training script. # Licenese [The MIT license](https://opensource.org/licenses/MIT)
0a1746afc2b0a814791c15135e7d66d7
sd-concepts-library/kogatan-shiny
sd-concepts-library
null
10
0
null
3
null
false
false
false
mit
null
null
null
1
0
0
1
0
0
0
[]
false
true
true
1,126
false
### kogatan_shiny on Stable Diffusion This is the `kogatan` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![kogatan 0](https://huggingface.co/sd-concepts-library/kogatan-shiny/resolve/main/concept_images/0.jpeg) ![kogatan 1](https://huggingface.co/sd-concepts-library/kogatan-shiny/resolve/main/concept_images/1.jpeg) ![kogatan 2](https://huggingface.co/sd-concepts-library/kogatan-shiny/resolve/main/concept_images/2.jpeg) ![kogatan 3](https://huggingface.co/sd-concepts-library/kogatan-shiny/resolve/main/concept_images/3.jpeg) ![kogatan 4](https://huggingface.co/sd-concepts-library/kogatan-shiny/resolve/main/concept_images/4.jpeg)
40487c8381e5c559321f0e9fff9e28c8
ai4bharat/MultiIndicParaphraseGenerationSS
ai4bharat
mbart
9
26
transformers
0
text2text-generation
true
false
false
['mit']
['as', 'bn', 'gu', 'hi', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']
['ai4bharat/IndicParaphrase']
null
0
0
0
0
0
0
0
['paraphrase-generation', 'multilingual', 'nlp', 'indicnlp']
false
true
true
3,928
false
# MultiIndicParaphraseGenerationSS This repository contains the [IndicBARTSS](https://huggingface.co/ai4bharat/IndicBARTSS) checkpoint finetuned on the 11 languages of [IndicParaphrase](https://huggingface.co/datasets/ai4bharat/IndicParaphrase) dataset. For finetuning details, see the [paper](https://arxiv.org/abs/2203.05437). <ul> <li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Odiya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li> <li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for decoding. </li> <li> Trained on large Indic language corpora (5.53 million sentences). </li> <li> Unlike <a href="https://huggingface.co/ai4bharat/MultiIndicParaphraseGeneration">MultiIndicParaphraseGeneration</a> each language is written in its own script, so you do not need to perform any script mapping to/from Devanagari. </li> </ul> ## Using this model in `transformers` ``` from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM from transformers import AlbertTokenizer, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicParaphraseGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True) # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicParaphraseGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicParaphraseGenerationSS") # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicParaphraseGenerationSS") # Some initial mapping bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") # To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>'] # First tokenize the input. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". inp = tokenizer("दिल्ली यूनिवर्सिटी देश की प्रसिद्ध यूनिवर्सिटी में से एक है. </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # For generation. Pardon the messiness. Note the decoder_start_token_id. model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>")) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) #दिल्ली यूनिवर्सिटी भारत की सबसे बड़ी यूनिवर्सिटी है। ``` ## Benchmarks Scores on the `IndicParaphrase` test sets are as follows: Language | BLEU / Self-BLEU / iBLEU ---------|---------------------------- as | 1.19 / 1.64 / 0.34 bn | 10.04 / 1.08 / 6.70 gu | 18.69 / 1.62 / 12.60 hi | 25.05 / 1.75 / 17.01 kn | 13.14 / 1.89 / 8.63 ml | 8.71 / 1.36 / 5.69 mr | 18.50 / 1.49 / 12.50 or | 23.02 / 2.68 / 15.31 pa | 17.61 / 1.37 / 11.92 ta | 16.25 / 2.13 / 10.74 te | 14.16 / 2.29 / 9.23 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{Kumar2022IndicNLGSM, title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages}, author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar}, year={2022}, url = "https://arxiv.org/abs/2203.05437" } ```
513033fc6a1151dcbaeca414df0f4345
sd-dreambooth-library/noggles-render-1k
sd-dreambooth-library
null
29
2
diffusers
0
null
false
false
false
mit
null
null
null
2
2
0
0
0
0
0
[]
false
true
true
1,824
false
### noggles_render_1k on Stable Diffusion via Dreambooth #### model by alxdfy This your the Stable Diffusion model fine-tuned the noggles_render_1k concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **a render of sks** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). Here are the images used for training this concept: ![image 0](https://huggingface.co/sd-dreambooth-library/noggles-render-1k/resolve/main/concept_images/nouns5.jpg) ![image 1](https://huggingface.co/sd-dreambooth-library/noggles-render-1k/resolve/main/concept_images/nouns1.jpg) ![image 2](https://huggingface.co/sd-dreambooth-library/noggles-render-1k/resolve/main/concept_images/nouns4.jpg) ![image 3](https://huggingface.co/sd-dreambooth-library/noggles-render-1k/resolve/main/concept_images/nglasses.145.jpg) ![image 4](https://huggingface.co/sd-dreambooth-library/noggles-render-1k/resolve/main/concept_images/nglasses.146.jpg) ![image 5](https://huggingface.co/sd-dreambooth-library/noggles-render-1k/resolve/main/concept_images/nglasses.148.jpg) ![image 6](https://huggingface.co/sd-dreambooth-library/noggles-render-1k/resolve/main/concept_images/nouns3.jpg) ![image 7](https://huggingface.co/sd-dreambooth-library/noggles-render-1k/resolve/main/concept_images/nglasses.144.jpg) ![image 8](https://huggingface.co/sd-dreambooth-library/noggles-render-1k/resolve/main/concept_images/nglasses.149.jpg) ![image 9](https://huggingface.co/sd-dreambooth-library/noggles-render-1k/resolve/main/concept_images/nglasses.147.jpg) ![image 10](https://huggingface.co/sd-dreambooth-library/noggles-render-1k/resolve/main/concept_images/nouns2.jpg)
c86a05615bb330fd976a2cf6799493e3
mraottth/trashbot_v1
mraottth
segformer
17
2
transformers
0
image-segmentation
true
false
false
other
null
null
null
0
0
0
0
0
0
0
['vision', 'image-segmentation', 'generated_from_trainer']
true
true
true
3,114
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trashbot This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the mraottth/all_locations_pooled dataset. It achieves the following results on the evaluation set: - Loss: 0.0191 - Mean Iou: 0.3997 - Mean Accuracy: 0.7995 - Overall Accuracy: 0.7995 - Accuracy Unlabeled: nan - Accuracy Trash: 0.7995 - Iou Unlabeled: 0.0 - Iou Trash: 0.7995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Trash | Iou Unlabeled | Iou Trash | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:---------:| | 0.0748 | 1.0 | 90 | 0.0386 | 0.3630 | 0.7259 | 0.7259 | nan | 0.7259 | 0.0 | 0.7259 | | 0.039 | 2.0 | 180 | 0.0242 | 0.3803 | 0.7607 | 0.7607 | nan | 0.7607 | 0.0 | 0.7607 | | 0.0194 | 3.0 | 270 | 0.0242 | 0.3605 | 0.7210 | 0.7210 | nan | 0.7210 | 0.0 | 0.7210 | | 0.0112 | 4.0 | 360 | 0.0205 | 0.3995 | 0.7991 | 0.7991 | nan | 0.7991 | 0.0 | 0.7991 | | 0.0169 | 5.0 | 450 | 0.0192 | 0.4000 | 0.8000 | 0.8000 | nan | 0.8000 | 0.0 | 0.8000 | | 0.041 | 6.0 | 540 | 0.0196 | 0.3838 | 0.7677 | 0.7677 | nan | 0.7677 | 0.0 | 0.7677 | | 0.0188 | 7.0 | 630 | 0.0191 | 0.4139 | 0.8277 | 0.8277 | nan | 0.8277 | 0.0 | 0.8277 | | 0.0073 | 8.0 | 720 | 0.0190 | 0.4069 | 0.8138 | 0.8138 | nan | 0.8138 | 0.0 | 0.8138 | | 0.025 | 9.0 | 810 | 0.0191 | 0.4087 | 0.8174 | 0.8174 | nan | 0.8174 | 0.0 | 0.8174 | | 0.006 | 10.0 | 900 | 0.0191 | 0.3997 | 0.7995 | 0.7995 | nan | 0.7995 | 0.0 | 0.7995 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
42581a6a0b63007cee26a3c02ddb816c
pcuenq/ddpm-ema-pets-64-repeat
pcuenq
null
8
0
diffusers
0
null
false
false
false
apache-2.0
['en']
['pcuenq/oxford-pets']
null
0
0
0
0
0
0
0
[]
false
true
true
1,220
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-ema-pets-64-repeat ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `pcuenq/oxford-pets` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(0.95, 0.999), weight_decay=1e-06 and epsilon=1e-08 - lr_scheduler: cosine - lr_warmup_steps: 500 - ema_inv_gamma: 1.0 - ema_inv_gamma: 0.75 - ema_inv_gamma: 0.9999 - mixed_precision: no ### Training results 📈 [TensorBoard logs](https://huggingface.co/pcuenq/ddpm-ema-pets-64-repeat/tensorboard?#scalars)
ff531631e666410dd620d6442edaec4e
EIStakovskii/camembert_base_fluency
EIStakovskii
camembert
8
7
transformers
0
text-classification
true
false
false
other
['fr']
['news_commentary']
null
0
0
0
0
0
0
0
[]
false
true
true
892
false
This model was trained for evaluating linguistic acceptability and grammaticality. The finetuning was carried out based off [the camembert-base model](https://huggingface.co/camembert/camembert-base). Label_1 means ACCEPTABLE - the sentence is perfectly understandable by native speakers and has no serious grammatic and syntactic flaws. Label_0 means NOT ACCEPTABLE - the sentence is flawed both orthographically and grammatically. The model was trained on 50 thousand French sentences from [the news_commentary dataset](https://huggingface.co/datasets/news_commentary). Out of 50 thousand 25 thousand sentences were algorithmically corrupted using [the open source Python library](https://github.com/eistakovskii/text_corruption_plus). The library was originally developed by [aylliote](https://github.com/aylliote/corruption), but it was slightly adapted for the purposes of this model.
e7348193de12e107ff6c3ddfe3bbca4f
aXhyra/emotion_trained_final
aXhyra
distilbert
10
6
transformers
0
text-classification
true
false
false
apache-2.0
null
['tweet_eval']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,391
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_trained_final This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9349 - F1: 0.7469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.502523631581398e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9013 | 1.0 | 815 | 0.7822 | 0.6470 | | 0.5008 | 2.0 | 1630 | 0.7142 | 0.7419 | | 0.3684 | 3.0 | 2445 | 0.8621 | 0.7443 | | 0.2182 | 4.0 | 3260 | 0.9349 | 0.7469 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
9667619b3ff143e5e0bb3997fc4e3552
AykeeSalazar/violation-classification-bantai-vit-v80ep
AykeeSalazar
vit
16
12
transformers
0
image-classification
true
false
false
apache-2.0
null
['image_folder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,285
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # violation-classification-bantai-vit-v80ep This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.1974 - Accuracy: 0.9560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 80 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.797 | 4.95 | 500 | 0.3926 | 0.8715 | | 0.3095 | 9.9 | 1000 | 0.2597 | 0.9107 | | 0.1726 | 14.85 | 1500 | 0.2157 | 0.9253 | | 0.1259 | 19.8 | 2000 | 0.1870 | 0.9392 | | 0.0959 | 24.75 | 2500 | 0.1797 | 0.9444 | | 0.0835 | 29.7 | 3000 | 0.2293 | 0.9354 | | 0.0722 | 34.65 | 3500 | 0.1921 | 0.9441 | | 0.0628 | 39.6 | 4000 | 0.1897 | 0.9491 | | 0.059 | 44.55 | 4500 | 0.1719 | 0.9520 | | 0.0531 | 49.5 | 5000 | 0.1987 | 0.9513 | | 0.046 | 54.45 | 5500 | 0.1713 | 0.9556 | | 0.0444 | 59.4 | 6000 | 0.2016 | 0.9525 | | 0.042 | 64.36 | 6500 | 0.1950 | 0.9525 | | 0.0363 | 69.31 | 7000 | 0.2017 | 0.9549 | | 0.037 | 74.26 | 7500 | 0.1943 | 0.9551 | | 0.0343 | 79.21 | 8000 | 0.1974 | 0.9560 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
d44cf8ad272bb2f90293038a34d4e56a
Helsinki-NLP/opus-mt-sv-th
Helsinki-NLP
marian
10
18
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-sv-th * source languages: sv * target languages: th * OPUS readme: [sv-th](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-th/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-th/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-th/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-th/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.th | 21.2 | 0.373 |
5de2a6f8b09ec71bcf5e214f5e9d677c
Helsinki-NLP/opus-mt-fi-ig
Helsinki-NLP
marian
10
7
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-fi-ig * source languages: fi * target languages: ig * OPUS readme: [fi-ig](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-ig/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-ig/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-ig/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-ig/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.ig | 28.5 | 0.456 |
1283e99eb91467eef7b75e325adf4308
karthiksv/vit-base-patch16-224-cifar10
karthiksv
vit
9
4
transformers
0
image-classification
true
false
false
apache-2.0
null
['cifar10']
null
3
2
1
0
0
0
0
['image-classification', 'generated_from_trainer']
true
true
true
940
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-cifar10 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.1 - Datasets 2.1.0 - Tokenizers 0.12.1
ca5f6b1a6a80e12972ed1397fdfad6ea
muhtasham/tiny-mlm-glue-mnli
muhtasham
bert
12
0
transformers
1
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,546
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mnli This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.4196 | 0.4 | 500 | 3.9829 | | 4.3712 | 0.8 | 1000 | 4.0000 | | 4.3439 | 1.2 | 1500 | 3.9642 | | 4.2725 | 1.6 | 2000 | 3.9736 | | 4.2908 | 2.0 | 2500 | 3.9309 | | 4.1935 | 2.4 | 3000 | 3.9395 | | 4.1935 | 2.8 | 3500 | 3.9470 | | 4.1731 | 3.2 | 4000 | 3.9722 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
0a4e528da3c9a112976a74f10a3d0e53
yuanzheng/familyportrait
yuanzheng
null
18
66
diffusers
1
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
0
1
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
425
false
### FamilyPortrait Dreambooth model trained by yuanzheng with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
f234606c399ab55c1d15f184910891d7
NYTK/reading-comprehension-hurc-mt5-hungarian
NYTK
mt5
9
2
transformers
0
text2text-generation
true
false
false
apache-2.0
['hu']
['NYTK/HuRC']
null
0
0
0
0
0
0
0
['text2text-generation', 'reading-comprehension']
false
true
true
1,970
false
# Hungarian Reading Comprehension with finetuned mT5 base model For further details, see [our demo site](https://juniper.nytud.hu/demo/nlp). ## Results | Model | Exact Match | F1 | | ------------- | ------------- | ------------- | | huBERT | 64.50 | 69.03 | | mT5 | 69.51 | 76.26 | ## Usage with pipeline ```python from transformers import pipeline context = "A kedd hajnalban elhunyt Somló Tamásról emlékezett meg zenésztársa, Presser Gábor. Somló Tamás nagyszerű egyénisége, énekhangja és éneklési stílusa egészen egyedülálló volt' – fogalmazott. '1968 lehetett, amikor először találkoztunk, gyakorlatilag váltottuk egymást az Omega együttesben. Tamás akkor indult el az artista pályán, miközben zenélt is. Az Omegában csak néhányszor játszottunk együtt, miután én beléptem, ő éveket töltött külföldön artistaként, aztán összefutottunk az LGT-ben, ennek már 43 éve' - idézte fel Presser Gábor. Somló Tamás színpadi jelenléte nagy húzóerőt jelentett a zenekar számára és zenészi képességeit mutatta az is, hogy amikor Frenreisz Károly helyett belépett az LGT-be, néhány hét alatt megtanult basszusgitározni." question = "'Nem ismerek olyan embert, aki <mask> haragudott volna. Életét úgy fejezte be, ahogyan élt: utolsó fellépésére, amely talán egy hónappal ezelőtt lehetett, már nagyon nehezen tudott csak elmenni, de nem mondta le, mert Pécsett egy jótékonysági koncerten játszott beteg gyerekeknek' - mondta Presser Gábor." text2text_generator = pipeline(task="text2text-generation", model="NYTK/reading-comprehension-hurc-mt5-hungarian") print(text2text_generator(f"question: {question} context: {context}")[0]["generated_text"]) ``` ## Citation If you use this model, please cite the following paper: ``` @article {yang-ligeti-rc, title = {Building machine reading comprehension model from scratch}, journal = {Annales Mathematicae et Informaticae}, year = {2023}, author = {Yang, Zijian Győző and Ligeti-Nagy, Noémi}, pages = {accetped} } ```
6e4e0e317db80550a81ade45b357d459
google/t5-efficient-tiny-el8
google
t5
12
7
transformers
0
text2text-generation
true
true
true
apache-2.0
['en']
['c4']
null
0
0
0
0
0
0
0
['deep-narrow']
false
true
true
6,246
false
# T5-Efficient-TINY-EL8 (Deep-Narrow version) T5-Efficient-TINY-EL8 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-tiny-el8** - is of model type **Tiny** with the following variations: - **el** is **8** It has **27.14** million parameters and thus requires *ca.* **108.55 MB** of memory in full precision (*fp32*) or **54.28 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
56cb9c7b141fedcb5e465467e04b409f
dehio/german-qg-t5-drink600
dehio
t5
17
1
transformers
0
text2text-generation
true
false
false
mit
['de']
['deepset/germanquad']
null
0
0
0
0
0
0
0
['question generation']
true
true
true
1,811
false
# german-qg-t5-drink600 This model is fine-tuned in question generation in German. The expected answer must be highlighted with &lt;hl> token. It is based on [german-qg-t5-quad](https://huggingface.co/dehio/german-qg-t5-quad) and further pre-trained on drink related questions. ## Task example #### Input generate question: Der Monk Sour Drink ist ein somit eine aromatische Überraschung, die sowohl &lt;hl>im Sommer wie auch zu Silvester&lt;hl> funktioniert. #### Expected Question Zu welchen Gelegenheiten passt der Monk Sour gut? ## Model description The model is based on [german-qg-t5-quad](https://huggingface.co/dehio/german-qg-t5-quad), which was pre-trained on [GermanQUAD](https://www.deepset.ai/germanquad). We further pre-trained it on questions annotated on drink receipts from [Mixology](https://mixology.eu/) ("drink600"). We have not yet open sourced the dataset, since we do not own copyright on the source material. ## Training and evaluation data The training script can be accessed [here](https://github.com/d-e-h-i-o/german-qg). ## Evaluation It achieves a **BLEU-4 score of 29.80** on the drink600 test set (n=120) and **11.30** on the GermanQUAD test set. Thus, fine-tuning on drink600 did not affect performance on GermanQuAD. In comparison, *german-qg-t5-quad* achieves a BLEU-4 score of **10.76** on the drink600 test set. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 100 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
05aa11466166e53a1481c5c1738309ba
fathyshalab/all-roberta-large-v1-credit_cards-9-16-5
fathyshalab
roberta
11
3
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,517
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-credit_cards-9-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3376 - Accuracy: 0.3186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.75 | 1.0 | 1 | 2.5769 | 0.2389 | | 2.178 | 2.0 | 2 | 2.4879 | 0.2389 | | 1.769 | 3.0 | 3 | 2.4180 | 0.2566 | | 1.4703 | 4.0 | 4 | 2.3657 | 0.3097 | | 1.2711 | 5.0 | 5 | 2.3376 | 0.3186 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dbf0abddf876e9ca476ecc4f518cd7a1
sentence-transformers/distiluse-base-multilingual-cased-v2
sentence-transformers
distilbert
15
385,435
sentence-transformers
38
sentence-similarity
true
true
false
apache-2.0
['multilingual']
null
null
1
1
0
0
2
1
1
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
2,205
false
# sentence-transformers/distiluse-base-multilingual-cased-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/distiluse-base-multilingual-cased-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/distiluse-base-multilingual-cased-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
bfb894fc97c502ca697da3b3fc9036c6
MrPotato/ner-bert-large-uncased-geocite
MrPotato
bert
12
2
transformers
0
token-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
966
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner-bert-large-uncased-geocite This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
2025d1e0999007801f494354377898dc
emigomez/vit-classify-manipulations-v2-1
emigomez
vit
14
9
transformers
0
image-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['image-classification', 'generated_from_trainer']
true
true
true
10,757
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-classify-manipulations-ft This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the vit-classify-manipulations-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.2798 - Accuracy: 0.8694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2882 | 0.66 | 100 | 0.2873 | 0.8806 | | 0.3869 | 1.32 | 200 | 0.2798 | 0.8694 | | 0.2345 | 1.99 | 300 | 0.3074 | 0.8843 | | 0.081 | 2.65 | 400 | 0.3563 | 0.8470 | | 0.129 | 3.31 | 500 | 0.3736 | 0.8918 | | 0.0823 | 3.97 | 600 | 0.2815 | 0.9104 | | 0.1213 | 4.64 | 700 | 0.2902 | 0.9216 | | 0.0422 | 5.3 | 800 | 0.3492 | 0.8993 | | 0.0753 | 5.96 | 900 | 0.4281 | 0.8657 | | 0.2148 | 6.62 | 1000 | 0.4206 | 0.8955 | | 0.0213 | 7.28 | 1100 | 0.4723 | 0.8843 | | 0.0376 | 7.95 | 1200 | 0.3787 | 0.8918 | | 0.0226 | 8.61 | 1300 | 0.4501 | 0.9030 | | 0.1102 | 9.27 | 1400 | 0.7684 | 0.8396 | | 0.0444 | 9.93 | 1500 | 0.3732 | 0.9142 | | 0.0329 | 10.6 | 1600 | 0.4021 | 0.9030 | | 0.0379 | 11.26 | 1700 | 0.4920 | 0.8918 | | 0.1129 | 11.92 | 1800 | 0.3605 | 0.9216 | | 0.0271 | 12.58 | 1900 | 0.4282 | 0.9030 | | 0.0247 | 13.25 | 2000 | 0.5272 | 0.8993 | | 0.0205 | 13.91 | 2100 | 0.3310 | 0.8881 | | 0.0128 | 14.57 | 2200 | 0.5010 | 0.8955 | | 0.02 | 15.23 | 2300 | 0.4055 | 0.9142 | | 0.0004 | 15.89 | 2400 | 0.4748 | 0.9179 | | 0.0004 | 16.56 | 2500 | 0.4993 | 0.9179 | | 0.0031 | 17.22 | 2600 | 0.6183 | 0.9030 | | 0.0017 | 17.88 | 2700 | 0.4281 | 0.8993 | | 0.0525 | 18.54 | 2800 | 0.5069 | 0.8955 | | 0.0585 | 19.21 | 2900 | 0.4555 | 0.9067 | | 0.0739 | 19.87 | 3000 | 0.7661 | 0.8470 | | 0.0948 | 20.53 | 3100 | 0.5650 | 0.8769 | | 0.0017 | 21.19 | 3200 | 0.5727 | 0.8881 | | 0.0058 | 21.85 | 3300 | 0.4706 | 0.8993 | | 0.0005 | 22.52 | 3400 | 0.7194 | 0.8806 | | 0.0149 | 23.18 | 3500 | 0.5310 | 0.9030 | | 0.0502 | 23.84 | 3600 | 0.5698 | 0.8843 | | 0.001 | 24.5 | 3700 | 0.5458 | 0.8881 | | 0.0089 | 25.17 | 3800 | 0.7860 | 0.8769 | | 0.0402 | 25.83 | 3900 | 0.6264 | 0.8843 | | 0.0004 | 26.49 | 4000 | 0.6089 | 0.8955 | | 0.001 | 27.15 | 4100 | 0.7378 | 0.8731 | | 0.0788 | 27.81 | 4200 | 0.4598 | 0.9142 | | 0.0022 | 28.48 | 4300 | 0.5228 | 0.8843 | | 0.1316 | 29.14 | 4400 | 0.4931 | 0.8843 | | 0.0015 | 29.8 | 4500 | 0.4824 | 0.9179 | | 0.0786 | 30.46 | 4600 | 0.5039 | 0.9067 | | 0.0003 | 31.13 | 4700 | 0.5460 | 0.9179 | | 0.0457 | 31.79 | 4800 | 0.5526 | 0.9104 | | 0.0005 | 32.45 | 4900 | 0.6904 | 0.8694 | | 0.02 | 33.11 | 5000 | 0.4874 | 0.8955 | | 0.0084 | 33.77 | 5100 | 0.4371 | 0.9067 | | 0.1005 | 34.44 | 5200 | 0.4710 | 0.8993 | | 0.0006 | 35.1 | 5300 | 0.6772 | 0.8843 | | 0.0004 | 35.76 | 5400 | 0.5969 | 0.9030 | | 0.0002 | 36.42 | 5500 | 0.6072 | 0.8955 | | 0.0571 | 37.09 | 5600 | 0.5104 | 0.8993 | | 0.0017 | 37.75 | 5700 | 0.6352 | 0.8769 | | 0.0015 | 38.41 | 5800 | 0.6217 | 0.8993 | | 0.0002 | 39.07 | 5900 | 0.7594 | 0.8881 | | 0.0001 | 39.74 | 6000 | 0.7726 | 0.8881 | | 0.0001 | 40.4 | 6100 | 0.7839 | 0.8881 | | 0.0001 | 41.06 | 6200 | 0.7994 | 0.8881 | | 0.0001 | 41.72 | 6300 | 0.8109 | 0.8881 | | 0.0001 | 42.38 | 6400 | 0.8231 | 0.8881 | | 0.0001 | 43.05 | 6500 | 0.8338 | 0.8843 | | 0.0001 | 43.71 | 6600 | 0.8427 | 0.8843 | | 0.0001 | 44.37 | 6700 | 0.8526 | 0.8843 | | 0.0001 | 45.03 | 6800 | 0.8604 | 0.8843 | | 0.0001 | 45.7 | 6900 | 0.8689 | 0.8843 | | 0.0001 | 46.36 | 7000 | 0.8771 | 0.8843 | | 0.0001 | 47.02 | 7100 | 0.8846 | 0.8843 | | 0.0001 | 47.68 | 7200 | 0.8924 | 0.8843 | | 0.0001 | 48.34 | 7300 | 0.8992 | 0.8843 | | 0.0 | 49.01 | 7400 | 0.9059 | 0.8843 | | 0.0 | 49.67 | 7500 | 0.9132 | 0.8843 | | 0.0 | 50.33 | 7600 | 0.9195 | 0.8843 | | 0.0 | 50.99 | 7700 | 0.9251 | 0.8843 | | 0.0 | 51.66 | 7800 | 0.9319 | 0.8843 | | 0.0 | 52.32 | 7900 | 0.9375 | 0.8843 | | 0.0 | 52.98 | 8000 | 0.9437 | 0.8843 | | 0.0 | 53.64 | 8100 | 0.9496 | 0.8843 | | 0.0 | 54.3 | 8200 | 0.9547 | 0.8843 | | 0.0 | 54.97 | 8300 | 0.9607 | 0.8843 | | 0.0 | 55.63 | 8400 | 0.9659 | 0.8843 | | 0.0 | 56.29 | 8500 | 0.9714 | 0.8843 | | 0.0 | 56.95 | 8600 | 0.9770 | 0.8843 | | 0.0 | 57.62 | 8700 | 0.9821 | 0.8843 | | 0.0 | 58.28 | 8800 | 0.9867 | 0.8843 | | 0.0 | 58.94 | 8900 | 0.9923 | 0.8843 | | 0.0 | 59.6 | 9000 | 0.9976 | 0.8843 | | 0.0 | 60.26 | 9100 | 1.0024 | 0.8843 | | 0.0 | 60.93 | 9200 | 1.0070 | 0.8843 | | 0.0 | 61.59 | 9300 | 1.0122 | 0.8843 | | 0.0 | 62.25 | 9400 | 1.0166 | 0.8843 | | 0.0 | 62.91 | 9500 | 1.0218 | 0.8843 | | 0.0 | 63.58 | 9600 | 1.0265 | 0.8843 | | 0.0 | 64.24 | 9700 | 1.0305 | 0.8843 | | 0.0 | 64.9 | 9800 | 1.0353 | 0.8843 | | 0.0 | 65.56 | 9900 | 1.0395 | 0.8843 | | 0.0 | 66.23 | 10000 | 1.0445 | 0.8881 | | 0.0 | 66.89 | 10100 | 1.0487 | 0.8881 | | 0.0 | 67.55 | 10200 | 1.0526 | 0.8881 | | 0.0 | 68.21 | 10300 | 1.0571 | 0.8881 | | 0.0 | 68.87 | 10400 | 1.0617 | 0.8881 | | 0.0 | 69.54 | 10500 | 1.0659 | 0.8881 | | 0.0 | 70.2 | 10600 | 1.0699 | 0.8881 | | 0.0 | 70.86 | 10700 | 1.0737 | 0.8881 | | 0.0 | 71.52 | 10800 | 1.0781 | 0.8881 | | 0.0 | 72.19 | 10900 | 1.0822 | 0.8881 | | 0.0 | 72.85 | 11000 | 1.0862 | 0.8881 | | 0.0 | 73.51 | 11100 | 1.0903 | 0.8881 | | 0.0 | 74.17 | 11200 | 1.0944 | 0.8881 | | 0.0 | 74.83 | 11300 | 1.0984 | 0.8881 | | 0.0 | 75.5 | 11400 | 1.1023 | 0.8881 | | 0.0 | 76.16 | 11500 | 1.1062 | 0.8881 | | 0.0 | 76.82 | 11600 | 1.1096 | 0.8881 | | 0.0 | 77.48 | 11700 | 1.1136 | 0.8881 | | 0.0 | 78.15 | 11800 | 1.1173 | 0.8881 | | 0.0 | 78.81 | 11900 | 1.1211 | 0.8881 | | 0.0 | 79.47 | 12000 | 1.1245 | 0.8881 | | 0.0 | 80.13 | 12100 | 1.1283 | 0.8881 | | 0.0 | 80.79 | 12200 | 1.1317 | 0.8918 | | 0.0 | 81.46 | 12300 | 1.1354 | 0.8918 | | 0.0 | 82.12 | 12400 | 1.1388 | 0.8918 | | 0.0 | 82.78 | 12500 | 1.1419 | 0.8918 | | 0.0 | 83.44 | 12600 | 1.1452 | 0.8918 | | 0.0 | 84.11 | 12700 | 1.1486 | 0.8918 | | 0.0 | 84.77 | 12800 | 1.1517 | 0.8918 | | 0.0 | 85.43 | 12900 | 1.1547 | 0.8918 | | 0.0 | 86.09 | 13000 | 1.1578 | 0.8918 | | 0.0 | 86.75 | 13100 | 1.1607 | 0.8918 | | 0.0 | 87.42 | 13200 | 1.1635 | 0.8918 | | 0.0 | 88.08 | 13300 | 1.1664 | 0.8918 | | 0.0 | 88.74 | 13400 | 1.1691 | 0.8918 | | 0.0 | 89.4 | 13500 | 1.1717 | 0.8918 | | 0.0 | 90.07 | 13600 | 1.1743 | 0.8918 | | 0.0 | 90.73 | 13700 | 1.1768 | 0.8918 | | 0.0 | 91.39 | 13800 | 1.1790 | 0.8918 | | 0.0 | 92.05 | 13900 | 1.1813 | 0.8918 | | 0.0 | 92.72 | 14000 | 1.1833 | 0.8918 | | 0.0 | 93.38 | 14100 | 1.1855 | 0.8918 | | 0.0 | 94.04 | 14200 | 1.1873 | 0.8918 | | 0.0 | 94.7 | 14300 | 1.1891 | 0.8918 | | 0.0 | 95.36 | 14400 | 1.1906 | 0.8918 | | 0.0 | 96.03 | 14500 | 1.1918 | 0.8918 | | 0.0 | 96.69 | 14600 | 1.1933 | 0.8918 | | 0.0 | 97.35 | 14700 | 1.1942 | 0.8918 | | 0.0 | 98.01 | 14800 | 1.1950 | 0.8918 | | 0.0 | 98.68 | 14900 | 1.1956 | 0.8918 | | 0.0 | 99.34 | 15000 | 1.1960 | 0.8918 | | 0.0 | 100.0 | 15100 | 1.1963 | 0.8918 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
8ffbfd3bc49ca5425e806d50fa698197
tal-yifat/injury-report-distilgpt2-test
tal-yifat
gpt2
8
7
transformers
0
text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,242
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # injury-report-distilgpt2-test This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 380 | 3.6525 | | 3.9116 | 2.0 | 760 | 3.5507 | | 3.6015 | 3.0 | 1140 | 3.5243 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
33cc3d0539d1ba67aff81e994ced18a6
muhtasham/tiny-vanilla-target-glue-qnli
muhtasham
bert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,810
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-vanilla-target-glue-qnli This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4624 - Accuracy: 0.7825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6082 | 0.15 | 500 | 0.5375 | 0.7362 | | 0.5378 | 0.31 | 1000 | 0.5192 | 0.7459 | | 0.5161 | 0.46 | 1500 | 0.4967 | 0.7672 | | 0.5097 | 0.61 | 2000 | 0.5182 | 0.7505 | | 0.5092 | 0.76 | 2500 | 0.4728 | 0.7750 | | 0.5011 | 0.92 | 3000 | 0.4660 | 0.7866 | | 0.4889 | 1.07 | 3500 | 0.4476 | 0.7922 | | 0.48 | 1.22 | 4000 | 0.4619 | 0.7840 | | 0.4661 | 1.37 | 4500 | 0.4813 | 0.7741 | | 0.4742 | 1.53 | 5000 | 0.4624 | 0.7825 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
5af41e378ce46f12b97cce61e7c156b1
muhtasham/base-mlm-imdb-target-tweet
muhtasham
bert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['tweet_eval']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,472
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # base-mlm-imdb-target-tweet This model is a fine-tuned version of [muhtasham/base-mlm-imdb](https://huggingface.co/muhtasham/base-mlm-imdb) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.7516 - Accuracy: 0.7754 - F1: 0.7789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3412 | 4.9 | 500 | 1.0525 | 0.7888 | 0.7891 | | 0.0365 | 9.8 | 1000 | 1.4590 | 0.7540 | 0.7572 | | 0.0127 | 14.71 | 1500 | 1.4788 | 0.7888 | 0.7890 | | 0.0137 | 19.61 | 2000 | 1.7516 | 0.7754 | 0.7789 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
9224f28cfd374a0738877a2f1335b445
Atharvgarg/bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news
Atharvgarg
encoder-decoder
13
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['summarisation', 'generated_from_trainer']
true
true
true
2,160
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news This model is a fine-tuned version of [mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization](https://huggingface.co/mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6835 - Rouge1: 58.9345 - Rouge2: 47.1037 - Rougel: 40.9839 - Rougelsum: 57.6981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 0.8246 | 1.0 | 223 | 0.7050 | 55.7882 | 42.9793 | 38.4511 | 54.3125 | | 0.6414 | 2.0 | 446 | 0.6834 | 55.149 | 42.664 | 38.3864 | 53.7712 | | 0.5603 | 3.0 | 669 | 0.6815 | 56.9756 | 44.8057 | 39.1377 | 55.5815 | | 0.5079 | 4.0 | 892 | 0.6749 | 57.7397 | 45.6267 | 40.0509 | 56.3886 | | 0.4622 | 5.0 | 1115 | 0.6781 | 58.07 | 45.9102 | 40.2704 | 56.7008 | | 0.4263 | 6.0 | 1338 | 0.6798 | 58.1215 | 45.976 | 40.256 | 56.8203 | | 0.399 | 7.0 | 1561 | 0.6798 | 58.5486 | 46.6901 | 40.8045 | 57.2947 | | 0.3815 | 8.0 | 1784 | 0.6835 | 58.9345 | 47.1037 | 40.9839 | 57.6981 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
7c6acc383766c6896117623be56308e8
wanghao2023/uganda-labor-market-interview-text-classification
wanghao2023
roberta
10
2
transformers
0
text-classification
true
false
false
mit
['en']
null
null
0
0
0
0
0
0
0
[]
false
true
true
4,095
false
# Uganda Labor Market Interview Text Classification This model is a fine-tuned [Roberta base model](https://huggingface.co/roberta-base) using text transcripts of interviews between Vocational Training Institutes (VTI) students and their successful alumni in Uganda on the subject of the labor market. ## Model description There are 6 categories in total. In the training data, a sentence can get classified as more than one topic. I classify a sentence using the following criteria: info: information about the job market, working conditions, salaries, and what to expect at work. Also alumn's and student's current situation in the job market, career plans, and past experience. Note if the alumn mentions using strategies in her/his experience, I also classify the sentence as a strategy. tip: tips for how to behave and improve ourselves while at work. The majority of tips involve being disciplined, humble, treating colleagues and clients well so that you can learn, and not involving in illegal stuff. If the alumni mention doing so increases the chance of getting jobs, I also classify the sentence as a strategy. strategy: tips that help students get a better chance of getting hired or getting a better job. Including how to search for companies, what kind of companies to apply for, how to write and submit applications, when and how many companies to apply for, how to behave during interviews, how to get jobs through different channels, and making and maintaining connections, and general advice on how to improve job-related abilities. Also tips for starting your own business, including saving for capital, finding locations, business models, purchasing apparatuses, and attracting and treating clients. motivation: General advice of being confident, patient, persistent, engaged, optimistic, etc in the job market. Note if the alumni mention that advice in a particular context, for example "during an interview you need to show that you are a patient person," or "when doing your work you need to be patient," I will also classify these sentences as strategy and tip respectively. referral: referring students to companies and individuals, or affirmative answers to the student's request for connection. neutral: Introductions, exchanging contacts, pure technical stuff, conversations about school or exams that are not related to getting jobs, miscellaneous conversations that do not belong to the 5 topics above, and those whose meaning is unclear due to language improficiency or translation issues. ### How to use You can use this model directly with a pipeline for text classification: ```python >>> from transformers import pipeline >>> pipe = pipeline("text-classification", model= "wanghao2023/uganda-labor-market-interview-text-classification", tokenizer = "wanghao2023/uganda-labor-market-interview-text-classification", return_all_scores = True) >>> pipe("if they think you know too much, they won't teach you.") [[{'label': 'is_info', 'score': 0.18128268420696259}, {'label': 'is_tip', 'score': 0.5684323310852051}, {'label': 'is_strategy', 'score': 0.22818608582019806}, {'label': 'is_motivation', 'score': 0.03250108286738396}, {'label': 'is_neutral', 'score': 0.05972086638212204}, {'label': 'is_referral', 'score': 0.013502764515578747}]] ``` ### Limitations and bias The classification of a sentence is heavily based on the context. For example, "be patient" can be classified as tip and/or strategy and/or motivation depending on which occasion the alumna asks the students to be patient. If the alumna asks the student to be patient during the interview, it's strategy; if the alumna asks the student to be patient while at work, then it's tip; if no specific context is given, then it's motivation. ## Evaluation results This model achieves the following results when tested on the validation dataset (multilabel, threshold = 0.3). There is a huge room for improvement but it performs much better than a dice roll at least: | F1 | Roc Auc | Accuracy | |:----:|:----:|:----:| | 0.655779 | 0.799979 | 0.552670 |
dc6fe5e8889ed06fc4b333f952640e0c
p1atdev/ore-o
p1atdev
null
10
0
null
6
text-to-image
false
false
false
openrail++
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'text-to-image']
false
true
true
1,280
false
# Lazurite ![lazurite eyecatch](https://huggingface.co/p1atdev/ore-o/resolve/main/images/lazurite-v1.png) - [lazurite-v1-050.safetensors](https://huggingface.co/p1atdev/ore-o/blob/main/lazurite-v1-050.safetensors) (0.5 weight) - [lazurite-v1-050.ckpt](https://huggingface.co/p1atdev/ore-o/blob/main/lazurite-v1-050.ckpt) - [lazurite-v1-100.safetensors](https://huggingface.co/p1atdev/ore-o/blob/main/lazurite-v1-100.safetensors) (1.0 weight) - [lazurite-v1-100.ckpt](https://huggingface.co/p1atdev/ore-o/blob/main/lazurite-v1-100.ckpt) - [lazurite-v1.yaml](https://huggingface.co/p1atdev/ore-o/blob/main/lazurite-v1.yaml) - [lazurite-v1-lora.pt](https://huggingface.co/p1atdev/ore-o/blob/main/lazurite-v1-lora.pt) Lazurite is a latent diffusion model fintuned with modern style illustrations in LoRA method, based on [Waifu Diffusion 1.4 epoch 2](https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/wd-1-4-anime_e2.ckpt). If you want to use the model in AUTOMATIC1111's Web UI, you neeed [lazurite-v1.yaml](https://huggingface.co/p1atdev/ore-o/blob/main/lazurite-v1.yaml) and rename it. The `lazurite-v1-lora.pt` only works with kohya's [sd-script](https://github.com/kohya-ss/sd-scripts) or [extension](https://github.com/kohya-ss/sd-webui-additional-networks).
cf0d5bf5a849b878f26f9812d70179b0
Padomin/t5-base-TEDxJP-0front-1body-10rear
Padomin
t5
20
2
transformers
0
text2text-generation
true
false
false
cc-by-sa-4.0
null
['te_dx_jp']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,954
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-0front-1body-10rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4646 - Wer: 0.1756 - Mer: 0.1698 - Wil: 0.2581 - Wip: 0.7419 - Hits: 55450 - Substitutions: 6518 - Deletions: 2619 - Insertions: 2202 - Cer: 0.1383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6456 | 1.0 | 1457 | 0.4955 | 0.2298 | 0.2127 | 0.3032 | 0.6968 | 54935 | 6936 | 2716 | 5190 | 0.2008 | | 0.5333 | 2.0 | 2914 | 0.4472 | 0.1817 | 0.1755 | 0.2646 | 0.7354 | 55142 | 6584 | 2861 | 2291 | 0.1431 | | 0.4864 | 3.0 | 4371 | 0.4420 | 0.1774 | 0.1714 | 0.2600 | 0.7400 | 55396 | 6542 | 2649 | 2266 | 0.1397 | | 0.429 | 4.0 | 5828 | 0.4374 | 0.1764 | 0.1704 | 0.2587 | 0.7413 | 55446 | 6512 | 2629 | 2249 | 0.1389 | | 0.3741 | 5.0 | 7285 | 0.4413 | 0.1744 | 0.1687 | 0.2559 | 0.7441 | 55518 | 6416 | 2653 | 2198 | 0.1383 | | 0.3467 | 6.0 | 8742 | 0.4467 | 0.1742 | 0.1686 | 0.2564 | 0.7436 | 55493 | 6466 | 2628 | 2159 | 0.1390 | | 0.3761 | 7.0 | 10199 | 0.4524 | 0.1754 | 0.1696 | 0.2577 | 0.7423 | 55471 | 6498 | 2618 | 2210 | 0.1380 | | 0.3102 | 8.0 | 11656 | 0.4557 | 0.1751 | 0.1695 | 0.2574 | 0.7426 | 55412 | 6478 | 2697 | 2133 | 0.1395 | | 0.3008 | 9.0 | 13113 | 0.4632 | 0.1758 | 0.1700 | 0.2584 | 0.7416 | 55421 | 6516 | 2650 | 2189 | 0.1387 | | 0.3051 | 10.0 | 14570 | 0.4646 | 0.1756 | 0.1698 | 0.2581 | 0.7419 | 55450 | 6518 | 2619 | 2202 | 0.1383 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
ae044cabf449cef9c75a4412090bcdf0