repo_id
stringlengths
4
110
author
stringlengths
2
27
model_type
stringlengths
2
29
files_per_repo
int64
2
15.4k
downloads_30d
int64
0
19.9M
library
stringlengths
2
37
likes
int64
0
4.34k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
30
languages
stringlengths
4
1.63k
datasets
stringlengths
2
2.58k
co2
stringclasses
29 values
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
15
prs_closed
int64
0
28
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
1 class
has_text
bool
1 class
text_length
int64
401
598k
is_nc
bool
1 class
readme
stringlengths
0
598k
hash
stringlengths
32
32
Rocketknight1/t5-small-finetuned-xsum
Rocketknight1
t5
17
57
transformers
0
text2text-generation
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,540
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rocketknight1/t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.7172 - Validation Loss: 2.3977 - Train Rouge1: 28.7469 - Train Rouge2: 7.9005 - Train Rougel: 22.5917 - Train Rougelsum: 22.6162 - Train Gen Len: 18.875 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 2.7172 | 2.3977 | 28.7469 | 7.9005 | 22.5917 | 22.6162 | 18.875 | 0 | ### Framework versions - Transformers 4.16.0.dev0 - TensorFlow 2.8.0-rc0 - Datasets 1.17.0 - Tokenizers 0.11.0
d22e271ee72fb8695ef49c6fdbef0d80
sd-concepts-library/minecraft-concept-art
sd-concepts-library
null
9
0
null
10
null
false
false
false
mit
null
null
null
1
0
1
0
3
3
0
[]
false
true
true
1,068
false
### minecraft-concept-art on Stable Diffusion This is the `<concept>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<concept> 0](https://huggingface.co/sd-concepts-library/minecraft-concept-art/resolve/main/concept_images/3.jpeg) ![<concept> 1](https://huggingface.co/sd-concepts-library/minecraft-concept-art/resolve/main/concept_images/0.jpeg) ![<concept> 2](https://huggingface.co/sd-concepts-library/minecraft-concept-art/resolve/main/concept_images/2.jpeg) ![<concept> 3](https://huggingface.co/sd-concepts-library/minecraft-concept-art/resolve/main/concept_images/1.jpeg)
af1899c249e7ccf1d7876d477c93defa
fathyshalab/all-roberta-large-v1-meta-5-16-5
fathyshalab
roberta
11
3
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,507
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-meta-5-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4797 - Accuracy: 0.28 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7721 | 1.0 | 1 | 2.6529 | 0.1889 | | 2.2569 | 2.0 | 2 | 2.5866 | 0.2333 | | 1.9837 | 3.0 | 3 | 2.5340 | 0.2644 | | 1.6425 | 4.0 | 4 | 2.4980 | 0.2756 | | 1.4612 | 5.0 | 5 | 2.4797 | 0.28 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
9038d3f29e215d9c0a84d787510b65fb
lilykaw/distilbert-base-uncased-finetuned-stsb
lilykaw
distilbert
13
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,571
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-stsb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5634 - Pearson: 0.8680 - Spearmanr: 0.8652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | No log | 1.0 | 360 | 0.6646 | 0.8516 | 0.8494 | | 1.0238 | 2.0 | 720 | 0.5617 | 0.8666 | 0.8637 | | 0.3952 | 3.0 | 1080 | 0.6533 | 0.8649 | 0.8646 | | 0.3952 | 4.0 | 1440 | 0.5889 | 0.8651 | 0.8625 | | 0.2488 | 5.0 | 1800 | 0.5634 | 0.8680 | 0.8652 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
fff453a833641c7f90dac93cd69ca546
Kaludi/CSGO-Minimap-Layout-Generation
Kaludi
null
4
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
['en']
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'art', 'artistic', 'diffusers', 'cs:go', 'topview', 'map generator', 'layout', 'layout generator', 'map', 'csgo', 'improved layout', 'radar']
false
true
true
2,862
false
# CSGO Minimap Layout Generation ![img](https://huggingface.co/Kaludi/CSGO-Minimap-Layout-Generation/resolve/main/csgoMiniMapLayoutsV2.png) This is an improved AI model of my previous model trained on CS:GO's radar top view images of many maps which can now produce custom map layouts in seconds. This model does not produce red or green boxes like in my previous model. The tag for this model is **"radar-topview"**. If you'd like to get a map layout similar to a specific map, you can add the map name before "radar-topview". So if I wanted a map generation similar to dust2, I would write **"dust2-radar-topview"**. **Try the following prompt to get the best results:** "fps radar-topview game map, flat shading, soft shadows, global illumination" "fps radar topview map, polygonal, gradient background, pastel colors, soft shadows, global illumination, straight lines, insanely detailed" **Map Radar Topviews this AI was trained on:** de_dust2 de_inferno de_nuke de_mirage de_cache de_train de_cobblestone de_castle de_overpass **Have fun generating map layouts!** ### CompVis [Download csgoTopViewMapLayout.ckpt) (2.9GB)](https://huggingface.co/Kaludi/CSGO-Minimap-Layout-Generation/blob/main/csgoMiniMapLayoutsV2.ckpt) ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion Pipeline](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). ```python from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import torch prompt = ( "fps radar-topview game map, flat shading, soft shadows, global illumination") model_id = "Kaludi/CSGO-Improved-Radar-Top-View-Map-Layouts" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") image = pipe(prompt, num_inference_steps=30).images[0] image.save("./result.jpg") ``` ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
c35dc79f1bc6e8535c132d9d5a803570
malay-patel/bert-ww-finetuned-squad
malay-patel
bert
8
12
transformers
0
question-answering
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,755
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # malay-patel/bert-ww-finetuned-squad This model is a fine-tuned version of [bert-large-cased-whole-word-masking-finetuned-squad](https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1766 - Train End Logits Accuracy: 0.9455 - Train Start Logits Accuracy: 0.9312 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16638, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:-----:| | 0.5635 | 0.8374 | 0.7992 | 0 | | 0.3369 | 0.8987 | 0.8695 | 1 | | 0.1766 | 0.9455 | 0.9312 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
688a9cd20c5cff890a246aa62d1e77a1
din0s/bart-pt-asqa-ob
din0s
bart
11
1
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,666
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-pt-asqa-ob This model is a fine-tuned version of [vblagoje/bart_lfqa](https://huggingface.co/vblagoje/bart_lfqa) on the [ASQA](https://huggingface.co/datasets/din0s/asqa) dataset. It achieves the following results on the evaluation set: - Loss: 1.6901 - Rougelsum: 20.7527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:---------:| | No log | 1.0 | 355 | 1.6295 | 17.7502 | | 1.6407 | 2.0 | 710 | 1.6144 | 18.5897 | | 1.4645 | 3.0 | 1065 | 1.6222 | 19.3778 | | 1.4645 | 4.0 | 1420 | 1.6522 | 19.6941 | | 1.3678 | 5.0 | 1775 | 1.6528 | 20.3110 | | 1.2671 | 6.0 | 2130 | 1.6879 | 20.6112 | | 1.2671 | 7.0 | 2485 | 1.6901 | 20.7527 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
a50e35347134211d9bd0a2a3612ea460
victorialslocum/en_reciparse_model
victorialslocum
null
17
0
spacy
1
token-classification
false
false
false
mit
['en']
null
null
0
0
0
0
0
0
0
['spacy', 'token-classification']
false
true
true
682
false
| Feature | Description | | --- | --- | | **Name** | `en_reciparse_model` | | **Version** | `0.0.0` | | **spaCy** | `>=3.3.1,<3.4.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (1 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `INGREDIENT` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 87.97 | | `ENTS_P` | 88.54 | | `ENTS_R` | 87.40 | | `TOK2VEC_LOSS` | 37557.71 | | `NER_LOSS` | 19408.65 |
4132923bcfd606c7bf907e815c2794c6
atrevidoantonio/atrevidoantonio1
atrevidoantonio
null
19
3
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
547
false
### atrevidoantonio1 Dreambooth model trained by atrevidoantonio with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/atrevidoantonio/atrevidoantonio1/resolve/main/sample_images/anthony_(3).JPG)
6b281ecfc7463a797088ca8549287e2e
Galuh/wav2vec2-large-xlsr-indonesian
Galuh
wav2vec2
10
17
transformers
1
automatic-speech-recognition
true
false
true
apache-2.0
['id']
['common_voice']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week']
true
true
true
3,564
false
# Wav2Vec2-Large-XLSR-Indonesian This is the model for Wav2Vec2-Large-XLSR-Indonesian, a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) model on the [Indonesian Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "id", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian") model = Wav2Vec2ForCTC.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Indonesian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "id", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian") model = Wav2Vec2ForCTC.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 18.32 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found [here](https://github.com/galuhsahid/wav2vec2-indonesian) (will be available soon)
c63205a35019efa5adc37820a4fd9adc
Laurie/QA-distilbert
Laurie
distilbert
12
6
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,247
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # QA-distilbert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.5374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.0457 | | 2.5775 | 2.0 | 500 | 1.6041 | | 2.5775 | 3.0 | 750 | 1.5374 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
b9f4473ce48b0e85a08b0732c91e7d5a
sd-concepts-library/egorey
sd-concepts-library
null
9
0
null
1
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
983
false
### egorey on Stable Diffusion This is the `<gorey>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<gorey> 0](https://huggingface.co/sd-concepts-library/egorey/resolve/main/concept_images/0.jpeg) ![<gorey> 1](https://huggingface.co/sd-concepts-library/egorey/resolve/main/concept_images/3.jpeg) ![<gorey> 2](https://huggingface.co/sd-concepts-library/egorey/resolve/main/concept_images/2.jpeg) ![<gorey> 3](https://huggingface.co/sd-concepts-library/egorey/resolve/main/concept_images/1.jpeg)
4a95ca226c23146a101b89302f943109
Helsinki-NLP/opus-mt-lu-en
Helsinki-NLP
marian
10
21
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-lu-en * source languages: lu * target languages: en * OPUS readme: [lu-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lu-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/lu-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lu-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lu-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lu.en | 35.7 | 0.517 |
4fccd7c0c1791292dad81713619a3c2b
cansen88/PromptGenerator_5_topic
cansen88
gpt2
9
2
transformers
0
text-generation
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,660
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # PromptGenerator_5_topic This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 10.6848 - Validation Loss: 10.6672 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -999, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.6864 | 10.6743 | 0 | | 10.7045 | 10.6736 | 1 | | 10.7114 | 10.6722 | 2 | | 10.7082 | 10.6701 | 3 | | 10.6848 | 10.6672 | 4 | ### Framework versions - Transformers 4.21.1 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
433f773202ece90975fedac31e78cf2b
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_mrpc_128
gokuls
mobilebert
17
2
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,542
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_mrpc_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5213 - Accuracy: 0.6740 - F1: 0.7787 - Combined Score: 0.7264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6368 | 1.0 | 29 | 0.5564 | 0.6838 | 0.8122 | 0.7480 | | 0.6099 | 2.0 | 58 | 0.5557 | 0.6838 | 0.8122 | 0.7480 | | 0.611 | 3.0 | 87 | 0.5555 | 0.6838 | 0.8122 | 0.7480 | | 0.6101 | 4.0 | 116 | 0.5568 | 0.6838 | 0.8122 | 0.7480 | | 0.608 | 5.0 | 145 | 0.5540 | 0.6838 | 0.8122 | 0.7480 | | 0.6037 | 6.0 | 174 | 0.5492 | 0.6838 | 0.8122 | 0.7480 | | 0.5761 | 7.0 | 203 | 0.6065 | 0.6103 | 0.6851 | 0.6477 | | 0.4782 | 8.0 | 232 | 0.5341 | 0.6863 | 0.7801 | 0.7332 | | 0.4111 | 9.0 | 261 | 0.5213 | 0.6740 | 0.7787 | 0.7264 | | 0.3526 | 10.0 | 290 | 0.5792 | 0.6863 | 0.7867 | 0.7365 | | 0.3188 | 11.0 | 319 | 0.5760 | 0.6936 | 0.7764 | 0.7350 | | 0.2918 | 12.0 | 348 | 0.6406 | 0.6912 | 0.7879 | 0.7395 | | 0.2568 | 13.0 | 377 | 0.5908 | 0.6765 | 0.7537 | 0.7151 | | 0.2472 | 14.0 | 406 | 0.5966 | 0.6863 | 0.7664 | 0.7263 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
1727529bd7b09a7b42603eb5fafcd210
michelecafagna26/vinvl-base-finetuned-hl-scenes-image-captioning
michelecafagna26
bert
7
2
pytorch
0
image-to-text
true
false
false
apache-2.0
null
['hl-scenes']
null
0
0
0
0
0
0
0
['pytorch', 'image-to-text']
false
true
true
3,732
false
# Model Card: VinVL for Captioning 🖼️ [Microsoft's VinVL](https://github.com/microsoft/Oscar) base fine-tuned on [HL-scenes]() dataset for **scene description generation** downstream task. # Model fine-tuning 🏋️‍ The model has been finetuned for 10 epochs on the scenes captions of the [HL]() dataset (available on 🤗 HUB: [michelecafagna26/hl](https://huggingface.co/datasets/michelecafagna26/hl)) # Test set metrics 📈 Obtained with beam size 5 and max length 20 | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | METEOR | ROUGE-L | CIDEr | SPICE | |--------|--------|--------|--------|--------|---------|-------|-------| | 0.68 | 0.55 | 0.45 | 0.36 | 0.36 | 0.63 | 1.42 | 0.40 | # Usage and Installation: More info about how to install and use this model can be found here: [michelecafagna26/VinVL ](https://github.com/michelecafagna26/VinVL) # Feature extraction ⛏️ This model has a separate Visualbackbone used to extract features. More info about: - the model: [michelecafagna26/vinvl_vg_x152c4](https://huggingface.co/michelecafagna26/vinvl_vg_x152c4) - the usage: [michelecafagna26/vinvl-visualbackbone](https://github.com/michelecafagna26/vinvl-visualbackbone) # Quick start: 🚀 ```python from transformers.pytorch_transformers import BertConfig, BertTokenizer from oscar.modeling.modeling_bert import BertForImageCaptioning from oscar.wrappers import OscarTensorizer ckpt = "path/to/the/checkpoint" device = "cuda" if torch.cuda.is_available() else "cpu" # original code config = BertConfig.from_pretrained(ckpt) tokenizer = BertTokenizer.from_pretrained(ckpt) model = BertForImageCaptioning.from_pretrained(ckpt, config=config).to(device) # This takes care of the preprocessing tensorizer = OscarTensorizer(tokenizer=tokenizer, device=device) # numpy-arrays with shape (1, num_boxes, feat_size) # feat_size is 2054 by default in VinVL visual_features = torch.from_numpy(feat_obj).to(device).unsqueeze(0) # labels are usually extracted by the features extractor labels = [['boat', 'boat', 'boat', 'bottom', 'bush', 'coat', 'deck', 'deck', 'deck', 'dock', 'hair', 'jacket']] inputs = tensorizer.encode(visual_features, labels=labels) outputs = model(**inputs) pred = tensorizer.decode(outputs) # the output looks like this: # pred = {0: [{'caption': 'in a library', 'conf': 0.7070220112800598]} ``` # Citations 🧾 VinVL model finetuned on scenes descriptions: ```BibTeX @inproceedings{cafagna-etal-2022-understanding, title = "Understanding Cross-modal Interactions in {V}{\&}{L} Models that Generate Scene Descriptions", author = "Cafagna, Michele and Deemter, Kees van and Gatt, Albert", booktitle = "Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.umios-1.6", pages = "56--72", abstract = "Image captioning models tend to describe images in an object-centric way, emphasising visible objects. But image descriptions can also abstract away from objects and describe the type of scene depicted. In this paper, we explore the potential of a state of the art Vision and Language model, VinVL, to caption images at the scene level using (1) a novel dataset which pairs images with both object-centric and scene descriptions. Through (2) an in-depth analysis of the effect of the fine-tuning, we show (3) that a small amount of curated data suffices to generate scene descriptions without losing the capability to identify object-level concepts in the scene; the model acquires a more holistic view of the image compared to when object-centric descriptions are generated. We discuss the parallels between these results and insights from computational and cognitive science research on scene perception.", } ``` Please consider citing the original project and the VinVL paper ```BibTeX @misc{han2021image, title={Image Scene Graph Generation (SGG) Benchmark}, author={Xiaotian Han and Jianwei Yang and Houdong Hu and Lei Zhang and Jianfeng Gao and Pengchuan Zhang}, year={2021}, eprint={2107.12604}, archivePrefix={arXiv}, primaryClass={cs.CV} } @inproceedings{zhang2021vinvl, title={Vinvl: Revisiting visual representations in vision-language models}, author={Zhang, Pengchuan and Li, Xiujun and Hu, Xiaowei and Yang, Jianwei and Zhang, Lei and Wang, Lijuan and Choi, Yejin and Gao, Jianfeng}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={5579--5588}, year={2021} } ```
7fc92156e3ffaa858280464c323623be
Buntopsih/novgoranstefanovski
Buntopsih
null
24
4
diffusers
2
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
3
2
1
0
0
0
0
['text-to-image']
false
true
true
2,202
false
### novgoranstefanovski on Stable Diffusion via Dreambooth trained on the [fast-DreamBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook #### Model by Buntopsih This your the Stable Diffusion model fine-tuned the novgoranstefanovski concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt(s)`: **Robert, retro, Greg, Kim** You can also train your own concepts and upload them to the library by using [the fast-DremaBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb). You can run your new concept via A1111 Colab :[Fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Sample pictures of this concept: Kim Greg retro Robert ![Robert 0](https://huggingface.co/Buntopsih/novgoranstefanovski/resolve/main/concept_images/Robert_Crumb_comic_style_artwork_of_novgoranstefanovski,_highly_detailed,_vibrant4.png) ![retro 1](https://huggingface.co/Buntopsih/novgoranstefanovski/resolve/main/concept_images/retro_comic_style_artwork_of_novgoranstefanovski,_comic_book_cover,_symmetrical,_vibrant3.png) ![retro 2](https://huggingface.co/Buntopsih/novgoranstefanovski/resolve/main/concept_images/retro_propaganda_poster_artwork_of_novgoranstefanovski,_symmetrical,_vibrant.png) ![Greg 3](https://huggingface.co/Buntopsih/novgoranstefanovski/resolve/main/concept_images/Greg_Rutkowski_style_artwork_portrait_of_novgoranstefanovski_warrior,_highly_detailed,_vibrant2.png) ![Kim 4](https://huggingface.co/Buntopsih/novgoranstefanovski/resolve/main/concept_images/Kim_Jung_Gi_style_artwork_portrait_of_novgoranstefanovski,_highly_detailed,_vibrant5.png)
3a5af9f94fc3ee5b28a9663f52434c62
TransQuest/microtransquest-en_cs-it-smt
TransQuest
xlm-roberta
12
25
transformers
0
token-classification
true
false
false
apache-2.0
['en-cs']
null
null
1
1
0
0
0
0
0
['Quality Estimation', 'microtransquest']
false
true
true
5,279
false
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python from transquest.algo.word_level.microtransquest.run_model import MicroTransQuestModel import torch model = MicroTransQuestModel("xlmroberta", "TransQuest/microtransquest-en_cs-it-smt", labels=["OK", "BAD"], use_cuda=torch.cuda.is_available()) source_tags, target_tags = model.predict([["if not , you may not be protected against the diseases . ", "ja tā nav , Jūs varat nepasargāt no slimībām . "]]) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
3a52e3637150656d7cdbdba244001f9f
bigmorning/whisper3_0005
bigmorning
whisper
7
6
transformers
0
automatic-speech-recognition
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,666
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper3_0005 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.1592 - Train Accuracy: 0.0175 - Validation Loss: 2.8062 - Validation Accuracy: 0.0199 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 5.0832 | 0.0116 | 4.4298 | 0.0124 | 0 | | 4.3130 | 0.0131 | 4.0733 | 0.0141 | 1 | | 3.9211 | 0.0146 | 3.6762 | 0.0157 | 2 | | 3.5505 | 0.0159 | 3.3453 | 0.0171 | 3 | | 3.1592 | 0.0175 | 2.8062 | 0.0199 | 4 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
d7b5bbd9e44a9aa32a20e3c4586cd78c
IIIT-L/xlm-roberta-large-finetuned-TRAC-DS
IIIT-L
xlm-roberta
9
1
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,553
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-finetuned-TRAC-DS This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0992 - Accuracy: 0.3342 - Precision: 0.1114 - Recall: 0.3333 - F1: 0.1670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.1187640010910775e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.1358 | 0.25 | 612 | 1.1003 | 0.4436 | 0.1479 | 0.3333 | 0.2049 | | 1.1199 | 0.5 | 1224 | 1.1130 | 0.4436 | 0.1479 | 0.3333 | 0.2049 | | 1.1221 | 0.75 | 1836 | 1.0992 | 0.3342 | 0.1114 | 0.3333 | 0.1670 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
84e6d183a4835383ef011feb92b8f9e5
corgito/finetuning-sentiment-model-3000-samples
corgito
distilbert
13
13
transformers
0
text-classification
true
false
false
apache-2.0
null
['imdb']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,053
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3105 - Accuracy: 0.87 - F1: 0.8713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
f4085a13da58234da67dd50fab56902a
Helsinki-NLP/opus-mt-nso-fi
Helsinki-NLP
marian
10
7
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-nso-fi * source languages: nso * target languages: fi * OPUS readme: [nso-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/nso-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/nso-fi/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/nso-fi/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/nso-fi/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.nso.fi | 27.8 | 0.523 |
07e018d5d7947ac8997cd932114efa7e
NbAiLab/nb-gpt-j-6B
NbAiLab
gptj
10
304
transformers
8
text-generation
true
false
false
apache-2.0
['no', 'nb', 'nn']
['NbAiLab/NCC', 'mc4', 'oscar']
null
0
0
0
0
2
1
1
['pytorch', 'causal-lm']
false
true
true
7,744
false
- **Release ✨v1✨** (January 18th, 2023) *[Full-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1), [sharded](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1-sharded), [half-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1-float16), and [mesh-transformers-jax](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1-mesh) weights* <details><summary>All checkpoints</summary> - **Release v1beta5** (December 18th, 2022) *[Full-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta5), [sharded](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta5-sharded), and [half-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta5-float16) weights* - **Release v1beta4** (October 28th, 2022) *[Full-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta4), [sharded](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta4-sharded), and [half-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta4-float16) weights* - **Release v1beta3** (August 8th, 2022) *[Full-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta3), [sharded](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta3-sharded), and [half-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta3-float16) weights* - **Release v1beta2** (June 18th, 2022) *[Full-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta2), [sharded](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/sharded), and [half-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta2-float16) weights* - **Release v1beta1** (April 28th, 2022) *[Half-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta1-float16) weights* </details> # NB-GPT-J-6B ## Demo: https://ai.nb.no/demo/nb-gpt-j-6B/ (Be patient, it runs on CPU 😅) ## Model Description NB-GPT-J-6B is a Norwegian finetuned version of GPT-J 6B, a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters (6 billion parameters). <figure> | Hyperparameter | Value | |----------------------|------------| | \\(n_{parameters}\\) | 6053381344 | | \\(n_{layers}\\) | 28&ast; | | \\(d_{model}\\) | 4096 | | \\(d_{ff}\\) | 16384 | | \\(n_{heads}\\) | 16 | | \\(d_{head}\\) | 256 | | \\(n_{ctx}\\) | 2048 | | \\(n_{vocab}\\) | 50257/50400&dagger; (same tokenizer as GPT-2/3) | | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | <figcaption><p><strong>&ast;</strong> Each layer consists of one feedforward block and one self attention block.</p> <p><strong>&dagger;</strong> Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.</p></figcaption></figure> The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3. ## Training data NB-GPT-J-6B was finetuned on [NCC](https://huggingface.co/datasets/NbAiLab/NCC), the Norwegian Colossal Corpus, plus other Internet sources like Wikipedia, mC4, and OSCAR. ## Training procedure This model was finetuned for 130 billion tokens over 1,000,000 steps on a TPU v3-8 VM. It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token correctly. ## Intended Use and Limitations NB-GPT-J-6B learns an inner representation of the Norwegian language that can be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating text from a prompt. ### How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("NbAiLab/nb-gpt-j-6B") model = AutoModelForCausalLM.from_pretrained("NbAiLab/nb-gpt-j-6B") ``` ### Limitations and Biases As the original GPT-J model, the core functionality of NB-GPT-J-6B is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting NB-GPT-J-6B it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon NB-GPT-J-6B to produce factually accurate output. The original GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile. A fine-grained analysis of the bias contained in the corpus used for fine-tuning is still pending. As with all language models, it is hard to predict in advance how NB-GPT-J-6B will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Evaluation results We still have to find proper datasets to evaluate the model, so help is welcome! ## Citation and Related Information ### BibTeX entry To cite this model or the corpus used: ```bibtex @inproceedings{kummervold2021operationalizing, title={Operationalizing a National Digital Library: The Case for a Norwegian Transformer Model}, author={Kummervold, Per E and De la Rosa, Javier and Wetjen, Freddy and Brygfjeld, Svein Arne}, booktitle={Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)}, pages={20--29}, year={2021}, url={https://aclanthology.org/2021.nodalida-main.3/} } ``` If you use this model, we would love to hear about it! Reach out on twitter, GitHub, Discord, or shoot us an email. ## Disclaimer The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence. In no event shall the owner of the models (The National Library of Norway) be liable for any results arising from the use made by third parties of these models. ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha. Specially, to [Stella Biderman](https://www.stellabiderman.com) for her general openness, and [Ben Wang](https://github.com/kingoflolz/mesh-transformer-jax) for the main codebase.
f6aecb191bc636ebc8a480e50559688d
cross-encoder/nli-MiniLM2-L6-H768
cross-encoder
roberta
10
3,083
transformers
2
zero-shot-classification
true
false
false
apache-2.0
['en']
['multi_nli', 'snli']
null
0
0
0
0
0
0
0
['MiniLMv2']
false
true
true
2,421
false
# Cross-Encoder for Natural Language Inference This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. ## Training Data The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral. ## Performance For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli). ## Usage Pre-trained models can be used like this: ```python from sentence_transformers import CrossEncoder model = CrossEncoder('cross-encoder/nli-MiniLM2-L6-H768') scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')]) #Convert scores to labels label_mapping = ['contradiction', 'entailment', 'neutral'] labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)] ``` ## Usage with Transformers AutoModel You can use the model also directly with Transformers library (without SentenceTransformers library): ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-MiniLM2-L6-H768') tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-MiniLM2-L6-H768') features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): scores = model(**features).logits label_mapping = ['contradiction', 'entailment', 'neutral'] labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)] print(labels) ``` ## Zero-Shot Classification This model can also be used for zero-shot-classification: ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-MiniLM2-L6-H768') sent = "Apple just announced the newest iPhone X" candidate_labels = ["technology", "sports", "politics"] res = classifier(sent, candidate_labels) print(res) ```
dc99091b60d9b82f4c732b4645a15b84
jonatasgrosman/exp_w2v2t_ru_unispeech-ml_s569
jonatasgrosman
unispeech
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['ru']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'ru']
false
true
true
500
false
# exp_w2v2t_ru_unispeech-ml_s569 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
58a7ed42bb6432a0eaa9f9e3e6c4d73e
bert-large-cased
null
bert
10
160,722
transformers
4
fill-mask
true
true
true
apache-2.0
['en']
['bookcorpus', 'wikipedia']
null
0
0
0
0
0
0
0
[]
false
true
true
9,138
false
# BERT large model (cased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is cased: it makes a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. This model has the following configuration: - 24-layer - 1024 hidden dimension - 16 attention heads - 336M parameters. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-large-cased') >>> unmasker("Hello I'm a [MASK] model.") [ { "sequence":"[CLS] Hello I'm a male model. [SEP]", "score":0.22748498618602753, "token":2581, "token_str":"male" }, { "sequence":"[CLS] Hello I'm a fashion model. [SEP]", "score":0.09146175533533096, "token":4633, "token_str":"fashion" }, { "sequence":"[CLS] Hello I'm a new model. [SEP]", "score":0.05823173746466637, "token":1207, "token_str":"new" }, { "sequence":"[CLS] Hello I'm a super model. [SEP]", "score":0.04488750174641609, "token":7688, "token_str":"super" }, { "sequence":"[CLS] Hello I'm a famous model. [SEP]", "score":0.03271442651748657, "token":2505, "token_str":"famous" } ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-large-cased') model = BertModel.from_pretrained("bert-large-cased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-large-cased') model = TFBertModel.from_pretrained("bert-large-cased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-large-cased') >>> unmasker("The man worked as a [MASK].") [ { "sequence":"[CLS] The man worked as a doctor. [SEP]", "score":0.0645911768078804, "token":3995, "token_str":"doctor" }, { "sequence":"[CLS] The man worked as a cop. [SEP]", "score":0.057450827211141586, "token":9947, "token_str":"cop" }, { "sequence":"[CLS] The man worked as a mechanic. [SEP]", "score":0.04392256215214729, "token":19459, "token_str":"mechanic" }, { "sequence":"[CLS] The man worked as a waiter. [SEP]", "score":0.03755280375480652, "token":17989, "token_str":"waiter" }, { "sequence":"[CLS] The man worked as a teacher. [SEP]", "score":0.03458863124251366, "token":3218, "token_str":"teacher" } ] >>> unmasker("The woman worked as a [MASK].") [ { "sequence":"[CLS] The woman worked as a nurse. [SEP]", "score":0.2572779953479767, "token":7439, "token_str":"nurse" }, { "sequence":"[CLS] The woman worked as a waitress. [SEP]", "score":0.16706500947475433, "token":15098, "token_str":"waitress" }, { "sequence":"[CLS] The woman worked as a teacher. [SEP]", "score":0.04587847739458084, "token":3218, "token_str":"teacher" }, { "sequence":"[CLS] The woman worked as a secretary. [SEP]", "score":0.03577028587460518, "token":4848, "token_str":"secretary" }, { "sequence":"[CLS] The woman worked as a maid. [SEP]", "score":0.03298963978886604, "token":13487, "token_str":"maid" } ] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Model | SQUAD 1.1 F1/EM | Multi NLI Accuracy ---------------------------------------- | :-------------: | :----------------: BERT-Large, Cased (Original) | 91.5/84.8 | 86.09 ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
dd87832eb9442c7db1900807ff653c1a
weirdguitarist/wav2vec2-base-stac-local
weirdguitarist
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,380
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-stac-local This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9746 - Wer: 0.7828 - Cer: 0.3202 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 2.0603 | 1.0 | 2369 | 2.1282 | 0.9517 | 0.5485 | | 1.6155 | 2.0 | 4738 | 1.6196 | 0.9060 | 0.4565 | | 1.3462 | 3.0 | 7107 | 1.4331 | 0.8379 | 0.3983 | | 1.1819 | 4.0 | 9476 | 1.3872 | 0.8233 | 0.3717 | | 1.0189 | 5.0 | 11845 | 1.4066 | 0.8328 | 0.3660 | | 0.9026 | 6.0 | 14214 | 1.3502 | 0.8198 | 0.3508 | | 0.777 | 7.0 | 16583 | 1.3016 | 0.7922 | 0.3433 | | 0.7109 | 8.0 | 18952 | 1.2662 | 0.8302 | 0.3510 | | 0.6766 | 9.0 | 21321 | 1.4321 | 0.8103 | 0.3368 | | 0.6078 | 10.0 | 23690 | 1.3592 | 0.7871 | 0.3360 | | 0.5958 | 11.0 | 26059 | 1.4389 | 0.7819 | 0.3397 | | 0.5094 | 12.0 | 28428 | 1.3391 | 0.8017 | 0.3239 | | 0.4567 | 13.0 | 30797 | 1.4718 | 0.8026 | 0.3347 | | 0.4448 | 14.0 | 33166 | 1.7450 | 0.8043 | 0.3424 | | 0.3976 | 15.0 | 35535 | 1.4581 | 0.7888 | 0.3283 | | 0.3449 | 16.0 | 37904 | 1.5688 | 0.8078 | 0.3397 | | 0.3046 | 17.0 | 40273 | 1.8630 | 0.8060 | 0.3448 | | 0.2983 | 18.0 | 42642 | 1.8400 | 0.8190 | 0.3425 | | 0.2728 | 19.0 | 45011 | 1.6726 | 0.8034 | 0.3280 | | 0.2579 | 20.0 | 47380 | 1.6661 | 0.8138 | 0.3249 | | 0.2169 | 21.0 | 49749 | 1.7389 | 0.8138 | 0.3277 | | 0.2498 | 22.0 | 52118 | 1.7205 | 0.7948 | 0.3207 | | 0.1831 | 23.0 | 54487 | 1.8641 | 0.8103 | 0.3229 | | 0.1927 | 24.0 | 56856 | 1.8724 | 0.7784 | 0.3251 | | 0.1649 | 25.0 | 59225 | 1.9187 | 0.7974 | 0.3277 | | 0.1594 | 26.0 | 61594 | 1.9022 | 0.7828 | 0.3220 | | 0.1338 | 27.0 | 63963 | 1.9303 | 0.7862 | 0.3212 | | 0.1441 | 28.0 | 66332 | 1.9528 | 0.7845 | 0.3207 | | 0.129 | 29.0 | 68701 | 1.9676 | 0.7819 | 0.3212 | | 0.1169 | 30.0 | 71070 | 1.9746 | 0.7828 | 0.3202 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.1+cu102 - Datasets 1.18.3 - Tokenizers 0.12.1
7b8c026b263e95c62138fb1fe6ebf8ad
0x7f/ddpm-butterflies-128
0x7f
null
13
2
diffusers
0
null
false
false
false
apache-2.0
['en']
['huggan/smithsonian_butterflies_subset']
null
0
0
0
0
0
0
0
[]
false
true
true
1,226
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/0x7f/ddpm-butterflies-128/tensorboard?#scalars)
b946c15d2732f516fe5d8289a930630e
obokkkk/wav2vec2-base-960h-finetuned_common_voice3
obokkkk
wav2vec2
12
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,100
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-960h-finetuned_common_voice3 This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
5fc52a59bad8ae661671ddc64197d090
sd-concepts-library/ivan-grohar
sd-concepts-library
null
9
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,038
false
### ivan grohar on Stable Diffusion This is the `<ivan-grohar>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<ivan-grohar> 0](https://huggingface.co/sd-concepts-library/ivan-grohar/resolve/main/concept_images/2.jpeg) ![<ivan-grohar> 1](https://huggingface.co/sd-concepts-library/ivan-grohar/resolve/main/concept_images/1.jpeg) ![<ivan-grohar> 2](https://huggingface.co/sd-concepts-library/ivan-grohar/resolve/main/concept_images/3.jpeg) ![<ivan-grohar> 3](https://huggingface.co/sd-concepts-library/ivan-grohar/resolve/main/concept_images/0.jpeg)
8464d8225b3da0f4eaf1ab709cd48c05
muhtasham/small-mlm-glue-qnli-target-glue-mrpc
muhtasham
bert
10
4
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,722
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-qnli-target-glue-mrpc This model is a fine-tuned version of [muhtasham/small-mlm-glue-qnli](https://huggingface.co/muhtasham/small-mlm-glue-qnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9217 - Accuracy: 0.7770 - F1: 0.8455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3905 | 4.35 | 500 | 0.7540 | 0.7892 | 0.8608 | | 0.0675 | 8.7 | 1000 | 1.4012 | 0.7892 | 0.8608 | | 0.0274 | 13.04 | 1500 | 1.5409 | 0.7794 | 0.8454 | | 0.0189 | 17.39 | 2000 | 1.5464 | 0.7917 | 0.8609 | | 0.0119 | 21.74 | 2500 | 1.7553 | 0.7794 | 0.8505 | | 0.0179 | 26.09 | 3000 | 1.7660 | 0.7745 | 0.8492 | | 0.0128 | 30.43 | 3500 | 1.9217 | 0.7770 | 0.8455 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
143a1d805103e40dadc5cf8a554510da
jakka/segformer-b0-finetuned-warehouse-part-1-V2
jakka
segformer
7
8
transformers
0
image-segmentation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['vision', 'image-segmentation', 'generated_from_trainer']
true
true
true
20,573
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-warehouse-part-1-V2 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the jakka/warehouse_part1 dataset. It achieves the following results on the evaluation set: - Loss: 0.2737 - Mean Iou: 0.7224 - Mean Accuracy: 0.8119 - Overall Accuracy: 0.9668 - Per Category Iou: [0.0, 0.9392313580983768, 0.9322932027111482, 0.9772249946988713, 0.8749950826812657, 0.9591121585348171, 0.9803780030124933, 0.8554852055380204, 0.9661475962866876, 0.5609089467958914, 0.0, 0.8095003013989066, 0.7113799121381718, 0.8927260044840537, 0.6133653057361015, 0.8420100377966416, 0.33841086205511367, 0.553361761785151, 0.8141592920353983, 0.8270316181708587] - Per Category Accuracy: [nan, 0.9727824725573769, 0.9676994291705018, 0.9882968957337019, 0.9679484011220059, 0.9772700079950366, 0.9882492205666621, 0.9252107983136135, 0.9825945071781523, 0.6062795795494159, 0.0, 0.894776445179671, 0.7968855332344613, 0.9522349792248335, 0.6544510171692397, 0.9276157710790738, 0.42203029817249116, 0.5863404454740788, 0.8963814834175524, 0.9193914381006046] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 0.7008 | 1.0 | 787 | 0.2473 | 0.5595 | 0.6448 | 0.9325 | [0.0, 0.8572456184869756, 0.8403481284744914, 0.9524827531570127, 0.7992052152702355, 0.9196710216877864, 0.9471503664300267, 0.6193304552041781, 0.9133086982125345, 0.17558267725303728, 0.0, 0.6344520667741999, 0.3360920970752956, 0.7642426437536942, 0.510575871022846, 0.6056988833269157, 0.021209386281588447, 0.27355691497341356, 0.6138181818181818, 0.40645271873846317] | [nan, 0.9155298033269351, 0.9463379226245591, 0.978836265135544, 0.9240214201112357, 0.9448111967681583, 0.9643622308798924, 0.6930912552699579, 0.9497575640760723, 0.18632531152693993, 0.0, 0.7500919033177098, 0.36409599568558715, 0.8900647437729461, 0.5728964730263244, 0.6549871668851026, 0.02166159025328631, 0.2902301645548354, 0.7353197421153511, 0.4694729147312794] | | 0.1321 | 2.0 | 1574 | 0.2331 | 0.6221 | 0.7115 | 0.9457 | [0.0, 0.8970560279823083, 0.8791120244598839, 0.9603620467193393, 0.8160602187615088, 0.934767875213888, 0.9616837752836253, 0.7419391385825133, 0.9351874201394574, 0.26717521084051926, 0.0, 0.6985475965645938, 0.43481867741170893, 0.8134984418163408, 0.5459611126448698, 0.7401712453141447, 0.13175924760380514, 0.355121624272543, 0.7060811650388926, 0.6229231428877693] | [nan, 0.951233770160613, 0.9409053657605947, 0.9843213861494523, 0.9219686102230917, 0.9665968250506056, 0.9829729958024298, 0.8238168094655243, 0.9620596605954946, 0.29986351309033543, 0.0, 0.8030913978494624, 0.49467439665633006, 0.909599171191769, 0.5931253087796156, 0.8208142201834863, 0.14682189804424495, 0.3841705499014086, 0.8251147122030551, 0.70800907664895] | | 0.1085 | 3.0 | 2361 | 0.2457 | 0.6542 | 0.7530 | 0.9521 | [0.0, 0.9079405116712079, 0.8959028018194484, 0.9654330936322201, 0.8358564096747072, 0.942169826126924, 0.967131589172387, 0.7785683188874377, 0.942506044201895, 0.3544242514524058, 0.0, 0.7247706422018348, 0.5044915351836923, 0.8273089178892802, 0.5630444261421442, 0.7399785788281565, 0.21738423517169614, 0.46725284186024263, 0.7218755768875762, 0.7280122150607375] | [nan, 0.9545620491089126, 0.9497321958018098, 0.9837544714508515, 0.9402501375924134, 0.9686463320401577, 0.9809467909731419, 0.8694886440908473, 0.9735407105395524, 0.3936199755387097, 0.0, 0.8558151824280856, 0.5906026695429419, 0.9157369138435157, 0.6097401660523865, 0.8630406290956749, 0.2679143956396281, 0.5182902566913956, 0.8517163268862171, 0.8205229733639949] | | 0.8409 | 4.0 | 3148 | 0.2533 | 0.6749 | 0.7760 | 0.9559 | [0.0, 0.912375840411698, 0.904072054206276, 0.9676067299522242, 0.900289256120933, 0.9448264254043457, 0.9706472863960092, 0.7942658684379895, 0.9498265874428659, 0.5556284571729604, 0.0, 0.743214707471828, 0.529188361408882, 0.7269154778675782, 0.5697874335729916, 0.7702618169892564, 0.2288491765188273, 0.5089612784265519, 0.757448678510892, 0.7646070737475812] | [nan, 0.9601569621727435, 0.9525397945710891, 0.9830820784511696, 0.9462795897530819, 0.9732812778343284, 0.9810361205428978, 0.8895280837753298, 0.9743959070958451, 0.6854951638729194, 0.0, 0.8531327543424317, 0.5823783200755023, 0.9177828280607646, 0.6184135395216047, 0.8657506006989952, 0.26841535748637385, 0.5491586570344761, 0.8759801359121798, 0.8665306184609293] | | 0.0655 | 5.0 | 3935 | 0.2164 | 0.6815 | 0.7909 | 0.9577 | [0.0, 0.9195724102825147, 0.8817887152896982, 0.9692666162636345, 0.90446655617651, 0.9477266300807918, 0.972197851990263, 0.8006212298550464, 0.9526181996158507, 0.48675750740382695, 0.0, 0.7544064333927534, 0.589975775752682, 0.8568833610473964, 0.5739430151581254, 0.7804109001873066, 0.2738491187715644, 0.46180522107696753, 0.7493122891746226, 0.754828899421902] | [nan, 0.9629768162749704, 0.9511904548979574, 0.9855793956741679, 0.9532853326979632, 0.9705567416728694, 0.9856702233410021, 0.9070277437780497, 0.9761803883026475, 0.7497090051817757, 0.0, 0.8653903593419723, 0.689564513954429, 0.9349779882164135, 0.6119830537374903, 0.9072670926168632, 0.3530779095864059, 0.5086786980626564, 0.8741215078120462, 0.8391483788434887] | | 0.0568 | 6.0 | 4722 | 0.2803 | 0.6876 | 0.7839 | 0.9591 | [0.0, 0.9166100071412383, 0.913602419181271, 0.9710201737288663, 0.8563050555469198, 0.9497657746314072, 0.9730697054916811, 0.8143688646719719, 0.9549812903957364, 0.460486150973965, 0.0, 0.7634781269254467, 0.6136748147716002, 0.8542174198928293, 0.5922937831600485, 0.8066394260877113, 0.28399126278134795, 0.5207639813581891, 0.7629174644376197, 0.7438457521999924] | [nan, 0.9601927982852421, 0.9660710264704008, 0.982455068550298, 0.957830657460364, 0.9688535013815731, 0.9819961506837456, 0.893842649258806, 0.9749506995826178, 0.5071640856263331, 0.0, 0.8540977391783844, 0.7091141971147364, 0.9317785850902456, 0.653052819349169, 0.8880378986456968, 0.35953029817249116, 0.553305686470427, 0.862098507289307, 0.8895268263710157] | | 0.8994 | 7.0 | 5509 | 0.2743 | 0.6868 | 0.7764 | 0.9606 | [0.0, 0.92180556388016, 0.9171201062365498, 0.9721111956032598, 0.8587950800137758, 0.9513526631552707, 0.9756092701000854, 0.819792597945916, 0.9576544961199075, 0.4512109977539036, 0.0, 0.7723053199691596, 0.61351217088922, 0.8696959538394335, 0.5947007494875557, 0.8068989910272162, 0.2400942828140323, 0.49048112386556714, 0.772383338067815, 0.7496112574696395] | [nan, 0.9644998510561574, 0.9609472275076806, 0.9854828942497743, 0.9565172529563908, 0.9753485051500238, 0.9840922427646661, 0.8947674418604651, 0.974328764760461, 0.49258184783186704, 0.0, 0.8630410807830162, 0.6660374814615073, 0.9410600831006661, 0.6446391486645419, 0.8876351572739187, 0.2796369028534787, 0.5232773027508334, 0.8685891851077423, 0.8883389427836073] | | 0.0757 | 8.0 | 6296 | 0.2245 | 0.7038 | 0.8009 | 0.9625 | [0.0, 0.9246349181813107, 0.9204571437331909, 0.9735757462990084, 0.8677796689121399, 0.9529629595462734, 0.9762280475446855, 0.8249549577060494, 0.9591099123245741, 0.6276133447390932, 0.0, 0.7755030368136181, 0.6490189248809939, 0.8729206918730364, 0.598100700980074, 0.8000277974172574, 0.27374031814774713, 0.5049971433066432, 0.7770387696167466, 0.7981819415236415] | [nan, 0.964623037692871, 0.9637122903759715, 0.9863849456780516, 0.9537638293913148, 0.974798022498043, 0.985726579790157, 0.9184958520331837, 0.980103295010109, 0.7586190597174544, 0.0, 0.8624896608767576, 0.7536739921801268, 0.9379994558884956, 0.6446181625809385, 0.9037175076452599, 0.32931227957678744, 0.5392729877180727, 0.863477957832375, 0.8959383518876689] | | 0.0638 | 9.0 | 7083 | 0.2660 | 0.7091 | 0.8064 | 0.9632 | [0.0, 0.9247942993361187, 0.9227547653133065, 0.9737952169757659, 0.8675395458562903, 0.954005651357167, 0.9771936329793919, 0.832432130071599, 0.960664758331238, 0.6439555818513429, 0.0, 0.7800093558353167, 0.6503190735050816, 0.8771838558892437, 0.6000063410406786, 0.8135397086825815, 0.29345229389108285, 0.5278915956856804, 0.7979207701237885, 0.7849771726504039] | [nan, 0.9696983271254734, 0.9626331855239437, 0.9865491477141318, 0.9580933383611586, 0.9736782563602464, 0.9877136372491695, 0.9107507139942881, 0.9774734570720269, 0.778129006717992, 0.0, 0.8715651135005974, 0.7419441822839423, 0.9522322311869326, 0.6453719127503574, 0.9070076998689384, 0.36183472266752165, 0.5638987382066087, 0.8882354649474357, 0.8850494190030915] | | 0.1028 | 10.0 | 7870 | 0.2753 | 0.7045 | 0.7986 | 0.9632 | [0.0, 0.9310677916035094, 0.9231154731835156, 0.9742966471140867, 0.8659672807905657, 0.9548025101399095, 0.9761885400996432, 0.8359586760218701, 0.9606324687638941, 0.536304571449891, 0.0, 0.7861687315154533, 0.6648749707875672, 0.8782393648813203, 0.6028230645967004, 0.8034017821150734, 0.2798240884275797, 0.5292981433685788, 0.7976529535864979, 0.7897882016975595] | [nan, 0.9671696414372969, 0.9640722977320454, 0.9864307028133905, 0.9566418983913256, 0.9766712626661613, 0.984078186494131, 0.917516659866721, 0.9804665003157427, 0.5945275248601157, 0.0, 0.8886304108078301, 0.7671565322906836, 0.945889759711566, 0.6500072139662386, 0.9114992900830057, 0.33277893555626803, 0.5621391244374099, 0.8784050647615729, 0.9097665351872439] | | 0.098 | 11.0 | 8657 | 0.2029 | 0.7052 | 0.8014 | 0.9640 | [0.0, 0.9288737885707921, 0.9265083379180753, 0.9747097980123621, 0.8738478537660755, 0.9558379241305062, 0.9781696214462526, 0.8391837240652649, 0.9626716931455067, 0.507780252899168, 0.0, 0.7878061172645057, 0.6769843155893536, 0.8815102118136605, 0.6056046400027283, 0.8269347543218291, 0.3132485690006253, 0.5154277002618235, 0.7927511930865472, 0.7569567975718071] | [nan, 0.9711631282238503, 0.964815472153087, 0.9853689377873769, 0.9652020663968313, 0.9754185940822899, 0.9867780413729902, 0.9206854345165238, 0.9811350296034029, 0.5495104787677182, 0.0, 0.8906350519253745, 0.7681677227989753, 0.9430888220810342, 0.65217140383783, 0.9110078090869376, 0.3914916639948702, 0.5500605696196935, 0.8924609397688331, 0.9267167202229566] | | 0.0734 | 12.0 | 9444 | 0.2171 | 0.7126 | 0.8001 | 0.9648 | [0.0, 0.9309643707918894, 0.9277494647914695, 0.9750904306170505, 0.8777832954332417, 0.9566409475731096, 0.9780693213049435, 0.8436550838167809, 0.9635515941347027, 0.527304314900299, 0.0, 0.7909202018197202, 0.6909584834347133, 0.8836639196984207, 0.6084447805077513, 0.8287813112544289, 0.31069205419260343, 0.5403587067765045, 0.7955642033577429, 0.8211277996631356] | [nan, 0.9680901815771025, 0.9655377799057193, 0.9852963747008175, 0.9662340833391586, 0.9756774116913669, 0.9890014280908129, 0.9132224942200462, 0.9813789993824062, 0.5595195188097869, 0.0, 0.8697959746346843, 0.7887285964675745, 0.9477302580957196, 0.6557731404362482, 0.9149260048055919, 0.374058191728118, 0.5695666398450833, 0.8786809548701865, 0.8983598068927706] | | 0.0839 | 13.0 | 10231 | 0.2606 | 0.7139 | 0.8056 | 0.9651 | [0.0, 0.932934590872574, 0.928599894716927, 0.9759876131918817, 0.8695983139625728, 0.9571779321732448, 0.979228463067019, 0.8446447574729073, 0.9630766038435438, 0.47072541703248466, 0.0, 0.7968195631480623, 0.6967972782731112, 0.8867456411969523, 0.6076684496270689, 0.8274634197517912, 0.3560522933191209, 0.5582305522639651, 0.8036840005319856, 0.8219356251968073] | [nan, 0.970161956830923, 0.9673467595439784, 0.9869340313021197, 0.9654732145230638, 0.9756083312329464, 0.9874815117348184, 0.9121141030871753, 0.9832381474966617, 0.50686275089071, 0.0, 0.8991361088135281, 0.8007954698665228, 0.9482970409127882, 0.6487891466970965, 0.9152673110528615, 0.4551538954793203, 0.5915043371384613, 0.8774612301794738, 0.914289630385453] | | 0.0797 | 14.0 | 11018 | 0.2504 | 0.7153 | 0.8044 | 0.9655 | [0.0, 0.9353593794015038, 0.9288667661318105, 0.9762064564453578, 0.8718886319160292, 0.9576685946960725, 0.9788546612617008, 0.8472608735210976, 0.9642969355331718, 0.5361721760842425, 0.0, 0.8004189668257286, 0.696640611014977, 0.8853084044449696, 0.6099045788314064, 0.8344863725117123, 0.3254310344827586, 0.5323734971095841, 0.8050435956126539, 0.8204823185898129] | [nan, 0.9668112803123117, 0.9681903691382433, 0.9879581433175818, 0.9650443397090228, 0.9762644155033261, 0.9866578405548627, 0.9181626546987625, 0.9814820281384267, 0.5836381147080894, 0.0, 0.8844717856814631, 0.7870432789537549, 0.9470982093785038, 0.6547561898016377, 0.9131239078200087, 0.39335524206476435, 0.5610603662472479, 0.8835162920369403, 0.9243561823249014] | | 0.0606 | 15.0 | 11805 | 0.2363 | 0.7209 | 0.8122 | 0.9661 | [0.0, 0.9354450021238048, 0.9300759788666999, 0.9766100423179009, 0.8739351769905989, 0.9580569741305669, 0.9795622398211299, 0.8496875639431477, 0.9646763306438436, 0.6043151650835981, 0.0, 0.8018012422360249, 0.7004677380666826, 0.889289794511031, 0.610767874342205, 0.8325289843013258, 0.33953698039089414, 0.5566040090865972, 0.7993623498974272, 0.8161583186067531] | [nan, 0.966786642984969, 0.965287953144928, 0.9879603875367537, 0.9664012618135025, 0.9766460508200225, 0.9889968302453108, 0.9177070583435333, 0.9825186826442273, 0.650711681743251, 0.0, 0.8897849462365591, 0.7874477551570715, 0.9497445698771078, 0.655411130494091, 0.9220183486238532, 0.42261141391471624, 0.5914689680174724, 0.8883080676075972, 0.9213864733563804] | | 0.0532 | 16.0 | 12592 | 0.2531 | 0.7201 | 0.8074 | 0.9662 | [0.0, 0.9383203952011292, 0.9288414046194093, 0.9769141389017822, 0.8756205335515858, 0.9582358666094781, 0.979632260873732, 0.8522102747909199, 0.9655114623669192, 0.6115704722763623, 0.0, 0.8053745416448402, 0.7045095417527653, 0.8906375387790608, 0.6007837805741991, 0.8399368744136342, 0.33049747893639037, 0.5151462046865611, 0.8091001625973271, 0.8195206947575124] | [nan, 0.9678438083036752, 0.9684728717259394, 0.9879746009248427, 0.9684402878462824, 0.9766889829923047, 0.9883229174617107, 0.9215762273901809, 0.9820408723178519, 0.6655775287006565, 0.0, 0.8831104677878872, 0.7814480248078738, 0.9439503319629784, 0.6414396453351872, 0.9228033529925732, 0.40323420968259055, 0.5458428019417647, 0.8887436835685659, 0.9025173994487001] | | 0.0862 | 17.0 | 13379 | 0.2458 | 0.7201 | 0.8087 | 0.9665 | [0.0, 0.9368370402512427, 0.9309393106006786, 0.9769932787053442, 0.8747985979138234, 0.95879411739136, 0.9800136137207117, 0.8526248910947767, 0.9651962916423883, 0.5741264468224503, 0.0, 0.8066815029500052, 0.7084107667406031, 0.8910943581653369, 0.6137487567405265, 0.843379759286757, 0.32885159559677446, 0.5243792475829478, 0.8126121336965911, 0.8231331714477782] | [nan, 0.9768073159423666, 0.9678409097683983, 0.9877789798203552, 0.9673405331004518, 0.977145821644341, 0.9876622727465598, 0.9216680266557867, 0.9832398839363699, 0.6213226822336585, 0.0, 0.8952934013417885, 0.7966158824322502, 0.946850198957944, 0.6577528276561605, 0.9188715050240279, 0.4028735171529336, 0.5553570954877843, 0.887857931114596, 0.9137413764220337] | | 0.057 | 18.0 | 14166 | 0.2807 | 0.7169 | 0.8024 | 0.9665 | [0.0, 0.9391255338059006, 0.9316246290236013, 0.9771178536356643, 0.8736374236266327, 0.9587095139235466, 0.9802820999385629, 0.8534991833144867, 0.965491782119557, 0.5173244886677723, 0.0, 0.8079528780010615, 0.7036495460915129, 0.8919428858888571, 0.6128251272343798, 0.8423749359527112, 0.3030539267193167, 0.5387041043962495, 0.8154057368308808, 0.8249477907232359] | [nan, 0.9703254590941974, 0.967385397276143, 0.9883638482723315, 0.9660909281555922, 0.9783173801174915, 0.987878896953218, 0.9238406092751258, 0.9828454227159885, 0.5529433313441302, 0.0, 0.8918872346291701, 0.7785492786841041, 0.9525571866687186, 0.6544903660759959, 0.9202435561380515, 0.3583279897403014, 0.5679750294005819, 0.8882935470755648, 0.9144114645995461] | | 0.27 | 19.0 | 14953 | 0.2799 | 0.7210 | 0.8089 | 0.9668 | [0.0, 0.9392661644355319, 0.932096490765189, 0.9772444850416163, 0.8748583460799624, 0.959030800837604, 0.9803660417493171, 0.8549763601588193, 0.9661359625948338, 0.5489573339508828, 0.0, 0.8082856800928263, 0.707609022556391, 0.8930480213758131, 0.6125057936760998, 0.8439663143164156, 0.3240623821315535, 0.5560068921314832, 0.813374539715939, 0.8289533147998521] | [nan, 0.9703971313191945, 0.9680462515437895, 0.9881404237858805, 0.9683475421909045, 0.9777759016962746, 0.988822374850258, 0.9210152318781449, 0.9816258632275899, 0.588252672130082, 0.0, 0.8922778237294366, 0.7930430093029527, 0.9508458460659089, 0.6517263239814098, 0.9221548711227611, 0.3959802821417121, 0.5906377936742327, 0.8980803856653308, 0.9218433516592297] | | 0.0369 | 20.0 | 15740 | 0.2737 | 0.7224 | 0.8119 | 0.9668 | [0.0, 0.9392313580983768, 0.9322932027111482, 0.9772249946988713, 0.8749950826812657, 0.9591121585348171, 0.9803780030124933, 0.8554852055380204, 0.9661475962866876, 0.5609089467958914, 0.0, 0.8095003013989066, 0.7113799121381718, 0.8927260044840537, 0.6133653057361015, 0.8420100377966416, 0.33841086205511367, 0.553361761785151, 0.8141592920353983, 0.8270316181708587] | [nan, 0.9727824725573769, 0.9676994291705018, 0.9882968957337019, 0.9679484011220059, 0.9772700079950366, 0.9882492205666621, 0.9252107983136135, 0.9825945071781523, 0.6062795795494159, 0.0, 0.894776445179671, 0.7968855332344613, 0.9522349792248335, 0.6544510171692397, 0.9276157710790738, 0.42203029817249116, 0.5863404454740788, 0.8963814834175524, 0.9193914381006046] | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
1ac4e2463740d2cf563a0a94cf24c123
sayakpaul/distilbert-base-uncased-finetuned-emotion-lr-0.0006-wd-0003
sayakpaul
distilbert
10
3
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,398
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion-lr-0.0006-wd-0003 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.4198 - Accuracy: 0.8875 - F1: 0.8889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.1911 | 1.0 | 125 | 0.6098 | 0.808 | 0.7921 | | 0.4819 | 2.0 | 250 | 0.4198 | 0.8875 | 0.8889 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.10.0 - Datasets 2.6.1 - Tokenizers 0.13.1
17eff4fc62c21d8f6407b5aa147ede01
kowsiknd/bert-base-uncased-sst2
kowsiknd
bert
12
11
transformers
0
text-classification
true
false
false
apache-2.0
null
['sst2']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,322
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the sst2 dataset. It achieves the following results on the evaluation set: - Loss: 0.9312 - Accuracy: 0.876 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 1.0209 | 0.836 | | No log | 2.0 | 250 | 1.0430 | 0.85 | | No log | 3.0 | 375 | 0.9312 | 0.876 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
d7f7fa5bf779e11c33b9af2d5033938d
xrverse/xlm-roberta-base-finetuned-panx-de
xrverse
xlm-roberta
12
4
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,314
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1356 - F1: 0.8600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2525 | 1.0 | 525 | 0.1673 | 0.8294 | | 0.1298 | 2.0 | 1050 | 0.1381 | 0.8510 | | 0.0839 | 3.0 | 1575 | 0.1356 | 0.8600 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
1332268efc9d1b775c0d60f863cc912a
Milos/slovak-gpt-j-405M
Milos
gptj
6
6
transformers
0
text-generation
true
false
false
gpl-3.0
['sk']
null
null
0
0
0
0
0
0
0
['Slovak GPT-J', 'pytorch', 'causal-lm']
false
true
true
8,206
false
# Slovak GPT-J-405M Slovak GPT-J-405M is the second model released in Slovak GPT-J series after its smaller variant [Slovak GPT-J-162M](https://huggingface.co/Milos/slovak-gpt-j-162M). Since then a larger [Slovak GPT-J-1.4B](https://huggingface.co/Milos/slovak-gpt-j-1.4B) was released. ## Model Description Model is based on [GPT-J](https://github.com/kingoflolz/mesh-transformer-jax/) and has over 405M trainable parameters. <figure> | Hyperparameter | Value | |----------------------|----------------------------------------------------------------------------------------------------------------------------------------| | \\(n_{parameters}\\) | 405,677,136 | | \\(n_{layers}\\) | 24 | | \\(d_{model}\\) | 1024 | | \\(d_{ff}\\) | 16384 | | \\(n_{heads}\\) | 16 | | \\(d_{head}\\) | 256 | | \\(n_{ctx}\\) | 2048 | | \\(n_{vocab}\\) | 50256 (same tokenizer as GPT-2/3&dagger;) | | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | <p><strong>&dagger;</strong> ByteLevelBPETokenizer was trained on the same Slovak corpus.</p></figure> ## Training data Slovak GPT-J models were trained on a privately collected dataset consisting of predominantly Slovak text spanning different categories, e.g. web, news articles or even biblical texts - in total, over 40GB of text data was used to train this model. The dataset was preprocessed and cleaned in a specific way that involves minor but a few caveats, so in order to achieve the expected performance, feel free to refer to [How to use] section. Please, keep in mind that despite the effort to remove inappropriate corpus, the model still might generate sensitive content or leak sensitive information. ## Training procedure This model was trained for a bit more than 36.5 billion tokens over 69,001 steps on TPU v3-8 pod. The cross-entropy validation loss at the last step was `2.821`. ## Intended Use Same as the original GPT-J, Slovak GPT-J learns an inner representation of the language that can be used to extract features useful for downstream tasks, however, the intended use is text generation from a prompt. ### How to use This model along with the tokenizer can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Milos/slovak-gpt-j-405M") model = AutoModelForCausalLM.from_pretrained("Milos/slovak-gpt-j-405M") ``` When generating a prompt keep in mind these three things, and you should be good to go: 1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes "Mám rád slovenčinu" (no space after `slovenčinu`) and "Mám rád slovenčinu " (trailing space after `slovenčinu`), i.e `[12805, 2872, 46878]` != `[12805, 2872, 46878, 221]`. 2. Always use good ol' US English primary double quotation marks, i.e. `""` instead of `„“`. 3. In case of a new line always enter `\n\n` instead of a single `\n` To illustrate an example of a basic text generation: ``` >>> prompt = "Tradičné jedlo na Orave sú" >>> encoded_input = tokenizer(prompt, return_tensors='pt') >>> output = model.generate(**encoded_input) >>> tokenizer.decode(output[0]) 'Tradičné jedlo na Orave sú bryndzové halušky\n\nNa Orave sa v minulosti varilo viac druhov' ``` ### Capabilities, Limitations, and Biases The capability of this particular model is somewhat decent despite its small size totalling 405M parameters. With relative ease it can manage to generate interesting and grammatically correct content. For example, you can try few of the following prompts. (For sake of simplicity, I have omitted all the boilerplate code and swapped `\n` for new lines). Try generating "How to" articles: ``` PROMPT Ako napísať pôsobivú esej krok za krokom OUTPUT Ako napísať pôsobivú esej krok za krokom V tomto článku sa dozviete, ako napísať esej, ktorá bude mať v sebe niečo, čo zaujme a bude sa vám páčiť. V prvom rade si musíte uvedomiť, že esej je vlastne písaný text, ktorý má byť napísaný na počítači.' ``` However, relying on the model to produce factually correct information isn't recommended. Or try to generate chat conversations: ``` PROMPT Peter: Ako sa mas? Lucia: Ale celkom dobre. Co si robil? Peter: OUTPUT Peter: Ako sa mas? Lucia: Ale celkom dobre. Co si robil? Peter: No, bol som na chate. Lucia: A co si tam robil? Peter: No, bol som tam s kamošmi. Lucia: A co si tam robil? Peter: No, bol som tam s kamošmi. ``` Apparently either Peters are more likely to act suspiciously in this particular context or there's a problem with the model. Let's assume that the second explanation may hold some merit. In general, GPT models can (and often will) get into a repeating cycle of generating same content. This is a common problem beyond the scope of this README, however, see [generate's documentation](https://huggingface.co/docs/transformers/master/en/main_classes/model#transformers.generation_utils.GenerationMixin.generate) on how to introduce a frequency/repetition penalty. Since the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech: ``` >>> prompt = "Věta nesmí být sprostá a musí být zcela" >>> encoded_input = tokenizer(prompt, return_tensors='pt') >>> output = model.generate(**encoded_input, max_length=16) >>> tokenizer.decode(output[0]) 'Věta nesmí být sprostá a musí být zcela pravdivá.' ``` ## Citation and Related Information This was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now :) If you use this model or have any questions about it feel free to hit me up at [twitter](https://twitter.com/miloskondela) or check out my [github](https://github.com/kondela) profile. ### BibTeX entry To cite this model: ```bibtex @misc{slovak-gpt-j-405m, author = {Kondela, Milos}, title = {{Slovak GPT-J-405M}}, howpublished = {\url{https://huggingface.co/Milos/slovak-gpt-j-405M}}, year = 2022, month = February } ``` To cite the codebase that trained this model: ```bibtex @misc{mesh-transformer-jax, author = {Wang, Ben}, title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` ## Acknowledgements This project was generously supported by [TPU Research Cloud (TRC) program](https://sites.research.google/trc/about/). Shoutout also goes to [Ben Wang](https://github.com/kingoflolz) and great [EleutherAI community](https://www.eleuther.ai/).
f5a94a4d190a25c42644b04ed6ff3eff
waynedsouza/distilbert-base-uncased-gc-art1e
waynedsouza
distilbert
12
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,262
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-gc-art1e This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0928 - Accuracy: 0.982 - F1: 0.9763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0226 | 1.0 | 32 | 0.0928 | 0.982 | 0.9763 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
1cca43cd77099e1c94396683d5a5cdb9
wietsedv/xlm-roberta-base-ft-udpos28-tr
wietsedv
xlm-roberta
8
507
transformers
0
token-classification
true
false
false
apache-2.0
['tr']
['universal_dependencies']
null
2
1
0
1
0
0
0
['part-of-speech', 'token-classification']
true
true
true
567
false
# XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Turkish This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-tr") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-tr") ```
be5187052fd4b74d2abaa2ddb74b16b3
ericntay/stbl_clinical_bert_ft_rs10
ericntay
bert
12
5
transformers
0
token-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,880
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stbl_clinical_bert_ft_rs10 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0846 - F1: 0.9297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2834 | 1.0 | 101 | 0.0930 | 0.8446 | | 0.0669 | 2.0 | 202 | 0.0732 | 0.8938 | | 0.033 | 3.0 | 303 | 0.0676 | 0.9119 | | 0.0168 | 4.0 | 404 | 0.0703 | 0.9219 | | 0.0084 | 5.0 | 505 | 0.0742 | 0.9245 | | 0.006 | 6.0 | 606 | 0.0772 | 0.9252 | | 0.0033 | 7.0 | 707 | 0.0844 | 0.9239 | | 0.0023 | 8.0 | 808 | 0.0855 | 0.9272 | | 0.0019 | 9.0 | 909 | 0.0843 | 0.9296 | | 0.0013 | 10.0 | 1010 | 0.0878 | 0.9262 | | 0.0012 | 11.0 | 1111 | 0.0857 | 0.9266 | | 0.0008 | 12.0 | 1212 | 0.0846 | 0.9297 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
08c85408080129b3995a07efe23105fe
stevhliu/my_awesome_wnut_model
stevhliu
distilbert
22
363
transformers
0
token-classification
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,836
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # stevhliu/my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1210 - Validation Loss: 0.2698 - Train Precision: 0.5099 - Train Recall: 0.3995 - Train F1: 0.4480 - Train Accuracy: 0.9444 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 636, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.3233 | 0.3099 | 0.4155 | 0.2117 | 0.2805 | 0.9333 | 0 | | 0.1600 | 0.2743 | 0.5111 | 0.3589 | 0.4216 | 0.9416 | 1 | | 0.1210 | 0.2698 | 0.5099 | 0.3995 | 0.4480 | 0.9444 | 2 | ### Framework versions - Transformers 4.22.2 - TensorFlow 2.8.2 - Datasets 2.5.1 - Tokenizers 0.12.1
678db3424ff28b36d1b2fc4ed6e2be1c
staka/fugumt-en-ja
staka
marian
9
6,340
transformers
11
translation
true
false
false
cc-by-sa-4.0
['en', 'ja']
null
null
1
1
0
0
0
0
0
['translation']
false
true
true
1,192
false
# FuguMT This is a translation model using Marian-NMT. For more details, please see [my repository](https://github.com/s-taka/fugumt). * source language: en * target language: ja ### How to use This model uses transformers and sentencepiece. ```python !pip install transformers sentencepiece ``` You can use this model directly with a pipeline: ```python from transformers import pipeline fugu_translator = pipeline('translation', model='staka/fugumt-en-ja') fugu_translator('This is a cat.') ``` If you want to translate multiple sentences, we recommend using [pySBD](https://github.com/nipunsadvilkar/pySBD). ```python !pip install transformers sentencepiece pysbd import pysbd seg_en = pysbd.Segmenter(language="en", clean=False) from transformers import pipeline fugu_translator = pipeline('translation', model='staka/fugumt-en-ja') txt = 'This is a cat. It is very cute.' print(fugu_translator(seg_en.segment(txt))) ``` ### Eval results The results of the evaluation using [tatoeba](https://tatoeba.org/ja)(randomly selected 500 sentences) are as follows: |source |target |BLEU(*1)| |-------|-------|--------| |en |ja |32.7 | (*1) sacrebleu --tokenize ja-mecab
24deb6984882d91b782dbb83ed8c67d0
sgangireddy/whisper-medium-cv-fi
sgangireddy
whisper
23
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['fi']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,542
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper medium Finnish CV This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 fi dataset. It achieves the following results on the evaluation set: - Loss: 0.3010 - Wer: 15.7181 ## Model description The Model is fine-tuned for 1000 steps/updates on CV11 Finnish train+valiation data. - Zero-shot - 18.8 (CV9 test data, even on CV11 the WER is closer a bit higher than this) - Fine-tuned - 15.71 (CV11 test data) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0009 | 19.01 | 1000 | 0.3010 | 15.7181 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
88f2de86ac702ce84d75ef20adbb4f4c
Fiacre/ComicsBlend
Fiacre
null
3
0
null
8
null
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
1
1
0
[]
false
true
true
4,258
false
# How to use: Download "ComicsBlend.ckpt" and add it to your model folder. Important: add all these keywords to your prompt: ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style # Individual components of the blend: This is an equal part blend of four models at 25% Complex-Lineart, 25% Inkpunk-Diffusion, 25% Comic-Diffusion, 25% Ghibli Diffusion. # Link to the constituent models: https://huggingface.co/Conflictx/Complex-Lineart https://huggingface.co/Envvi/Inkpunk-Diffusion https://huggingface.co/ogkalu/Comic-Diffusion https://huggingface.co/nitrosocke/Ghibli-Diffusion # Prompts Important: Use all the prompt from the constituant models at the same time: ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style # Sample images: ![00492-2500942257-A dog ,ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671269400032-6311c052fdb55de45d20425a.png) ![00592-3535551986-A distant planet ,ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671270169178-6311c052fdb55de45d20425a.png) ![00376-2900561219-An old person, ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671258265320-6311c052fdb55de45d20425a.png) ![00451-2448132173-An spaceship, ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671258265388-6311c052fdb55de45d20425a.png) ![00464-1849318233-An cyborg, ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671258263939-6311c052fdb55de45d20425a.png) ![00581-2436039058-A genetically engineered utopia ,ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671270235971-6311c052fdb55de45d20425a.png) ![00438-3172330069-An old man, ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671258265146-6311c052fdb55de45d20425a.png) ![00521-3067018784-A sandcastle ,ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671269400176-6311c052fdb55de45d20425a.png) ![00465-1849318234-An cyborg, ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671258263943-6311c052fdb55de45d20425a.png) ![00384-3543717868-A beautiful landscape, ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671258265318-6311c052fdb55de45d20425a.png) ![00437-3059624123-An old man, ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671258265101-6311c052fdb55de45d20425a.png) ![00557-592434343-A futuristic city ,ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671270271492-6311c052fdb55de45d20425a.png) ![00419-1157026360-A nice interior, ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671258265278-6311c052fdb55de45d20425a.png) # License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license [here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
65302f2c5b4bd0890e748603d8415158
kasrahabib/500-1000-bucket-finetunned
kasrahabib
bert
10
5
transformers
0
text-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,724
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # kasrahabib/500-100-bucket-finetunned This model is a fine-tuned version of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0050 - Validation Loss: 0.1358 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2800, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.3514 | 0.1493 | 0 | | 0.1166 | 0.1159 | 1 | | 0.0628 | 0.1066 | 2 | | 0.0282 | 0.1249 | 3 | | 0.0245 | 0.1338 | 4 | | 0.0181 | 0.1298 | 5 | | 0.0103 | 0.1246 | 6 | | 0.0085 | 0.1303 | 7 | | 0.0044 | 0.1343 | 8 | | 0.0050 | 0.1358 | 9 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
5d8b927106ffc7ae6198de2f5d881608
codeparrot/codeparrot-small-text-to-code
codeparrot
gpt2
6
137
transformers
0
text-generation
true
false
false
apache-2.0
['code']
['codeparrot/codeparrot-clean', 'codeparrot/github-jupyter-text-to-code']
null
0
0
0
0
0
0
0
['code', 'gpt2', 'generation']
false
true
true
495
false
# CodeParrot 🦜 small for text-t-code generation This model is [CodeParrot-small](https://huggingface.co/codeparrot/codeparrot-small) (from `branch megatron`) Fine-tuned on [github-jupyter-text-to-code](https://huggingface.co/datasets/codeparrot/github-jupyter-text-to-code), a dataset where the samples are a succession of docstrings and their Python code, originally extracted from Jupyter notebooks parsed in this [dataset](https://huggingface.co/datasets/codeparrot/github-jupyter-parsed).
56e3c156e01574c2477036edaf2c5607
admruul/hassan
admruul
null
27
4
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['stable-diffusion', 'text-to-image']
false
true
true
2,945
false
# HassanBlend1.4 I am hassan, I created HassansBlend, the latest version currently is 1.4. I continue to iterate and improve on this model over time. Feel free to check out our discord or rentry page for more examples with prompts and outputs generated. I have also some custom created content such as enhancement hypernetworks/embeddings etc for patreons or KoFi subscribers only on my pages below <b> Links </b><br> <b>Patreon</b> <a href="https://www.patreon.com/sd_hassan" target="_blank"><img src="https://i.imgur.com/sR32SqJ.jpg"></img></a> <b>KoFi</b> <a href="https://ko-fi.com/sdhassan" target="_blank"><img src="https://i.imgur.com/0P7CTN4.png"></img></a> <b>Discord</b> <a href="https://discord.gg/sdmodelers" target="_blank"><img src="https://i.imgur.com/HC1iHwg.png"></img></a> ### Quicklinks: * [Latest Setup](https://rentry.org/sdhassan#current-setup) * [HassanBlend Model Finetune Updates](https://rentry.org/sdhassan#hassanblend-finetuning-updates) * [Latest Patreon Posts](https://rentry.org/sdhassan#patreon-posts) * [Models](https://rentry.org/sdhassan#merged-models) * [HassanBlend1.4](https://rentry.org/sdhassan#hassanblend14-downloads) * [Prompts](https://rentry.org/sdhassan#prompts) * [Photorealistic Tips](https://rentry.org/sdhassan#tips-for-photorealistic-images) * [Embeddings](https://rentry.org/sdhassan#embeddings) * [Hypernetworks](https://rentry.org/sdhassan#hypernetworks) * [Wildcards](https://rentry.org/sdhassan#wildcards-i-made) * [MyTools](https://rentry.org/sdhassan#my-tools) * [Settings I use](https://rentry.org/sdhassan#settings) Model details and examples with sample prompts: https://rentry.org/sdhassan # Gradio Demo We support a [Gradio](https://github.com/gradio-app/gradio) Web UI to run hassanblend1.4: [![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/akhaliq/hassanblend1.4) ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
bea8dca456a48b134a02a9db88bfdfce
Anjoe/kant-gpt2
Anjoe
gpt2
8
4
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,248
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kant-gpt2 This model is a fine-tuned version of [dbmdz/german-gpt2](https://huggingface.co/dbmdz/german-gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8022 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 22 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.3257 | 1.0 | 1825 | 3.2231 | | 2.9885 | 2.0 | 3650 | 3.0069 | | 2.7955 | 3.0 | 5475 | 2.8440 | | 2.5748 | 4.0 | 7300 | 2.7059 | | 2.3545 | 5.0 | 9125 | 2.5806 | | 2.1759 | 6.0 | 10950 | 2.4618 | | 1.9697 | 7.0 | 12775 | 2.3553 | | 1.7778 | 8.0 | 14600 | 2.2517 | | 1.6192 | 9.0 | 16425 | 2.1599 | | 1.4675 | 10.0 | 18250 | 2.0895 | | 1.3195 | 11.0 | 20075 | 2.0138 | | 1.2012 | 12.0 | 21900 | 1.9602 | | 1.0828 | 13.0 | 23725 | 1.9097 | | 0.9926 | 14.0 | 25550 | 1.8720 | | 0.9076 | 15.0 | 27375 | 1.8426 | | 0.8336 | 16.0 | 29200 | 1.8214 | | 0.7649 | 17.0 | 31025 | 1.8058 | | 0.7208 | 18.0 | 32850 | 1.7980 | | 0.6798 | 19.0 | 34675 | 1.7938 | | 0.647 | 20.0 | 36500 | 1.7969 | | 0.6226 | 21.0 | 38325 | 1.7975 | | 0.601 | 22.0 | 40150 | 1.8022 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
0eabe1368f4cf29abd80629e4c57a0df
muhtasham/bert-mini-mlm-finetuned-imdb
muhtasham
bert
6
6
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,014
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-mini-mlm-finetuned-imdb This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.2058 | 0.64 | 500 | 2.9411 | | 3.1048 | 1.28 | 1000 | 2.9042 | | 3.0631 | 1.92 | 1500 | 2.8780 | | 3.0197 | 2.56 | 2000 | 2.8667 | | 3.0071 | 3.2 | 2500 | 2.8503 | | 2.9886 | 3.84 | 3000 | 2.8319 | | 2.9577 | 4.48 | 3500 | 2.8127 | | 2.9498 | 5.12 | 4000 | 2.8080 | | 2.9301 | 5.75 | 4500 | 2.7894 | | 2.9229 | 6.39 | 5000 | 2.7912 | | 2.9027 | 7.03 | 5500 | 2.7874 | | 2.8961 | 7.67 | 6000 | 2.7785 | | 2.8869 | 8.31 | 6500 | 2.7619 | | 2.8793 | 8.95 | 7000 | 2.7607 | | 2.8729 | 9.59 | 7500 | 2.7581 | | 2.8523 | 10.23 | 8000 | 2.7593 | | 2.8525 | 10.87 | 8500 | 2.7433 | | 2.8403 | 11.51 | 9000 | 2.7505 | | 2.8318 | 12.15 | 9500 | 2.7444 | | 2.8314 | 12.79 | 10000 | 2.7352 | | 2.8136 | 13.43 | 10500 | 2.7334 | | 2.8161 | 14.07 | 11000 | 2.7280 | | 2.7955 | 14.71 | 11500 | 2.7342 | | 2.7951 | 15.35 | 12000 | 2.7237 | | 2.7878 | 15.98 | 12500 | 2.7171 | | 2.7816 | 16.62 | 13000 | 2.7160 | | 2.7805 | 17.26 | 13500 | 2.7120 | | 2.7776 | 17.9 | 14000 | 2.7078 | | 2.7661 | 18.54 | 14500 | 2.7086 | | 2.7678 | 19.18 | 15000 | 2.7017 | | 2.7613 | 19.82 | 15500 | 2.7015 | | 2.7516 | 20.46 | 16000 | 2.6958 | | 2.7529 | 21.1 | 16500 | 2.6909 | | 2.7422 | 21.74 | 17000 | 2.6966 | | 2.738 | 22.38 | 17500 | 2.7034 | | 2.7303 | 23.02 | 18000 | 2.6935 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
5168ab0cf48767170f6f47327d93ba41
repro-rights-amicus-briefs/bert-base-uncased-2-finetuned-RRamicus
repro-rights-amicus-briefs
bert
13
7
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,634
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-2-finetuned-RRamicus This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 928 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.0341 | 1.0 | 1113 | 1.7515 | | 1.7881 | 2.0 | 2226 | 1.6616 | | 1.697 | 3.0 | 3339 | 1.6061 | | 1.6328 | 4.0 | 4452 | 1.5662 | | 1.5919 | 5.0 | 5565 | 1.5362 | | 1.5602 | 6.0 | 6678 | 1.5193 | | 1.5221 | 7.0 | 7791 | 1.4984 | | 1.5135 | 8.0 | 8904 | 1.4898 | | 1.4917 | 9.0 | 10017 | 1.4755 | | 1.4859 | 10.0 | 11130 | 1.4671 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
68b313b998f212f518c67379b4022e6f
sid321axn/my_sanskrit_model
sid321axn
t5
11
3
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['itihasa']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,544
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_sanskrit_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the itihasa dataset. It achieves the following results on the evaluation set: - Loss: 3.5101 - Bleu: 0.2607 - Gen Len: 18.9973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 3.9557 | 1.0 | 4698 | 3.7191 | 0.3291 | 18.9973 | | 3.8243 | 2.0 | 9396 | 3.6068 | 0.2728 | 18.9973 | | 3.7562 | 3.0 | 14094 | 3.5503 | 0.2911 | 18.9973 | | 3.7306 | 4.0 | 18792 | 3.5207 | 0.2404 | 18.9973 | | 3.7003 | 5.0 | 23490 | 3.5101 | 0.2607 | 18.9973 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
9efaa721bc6bd2eaa320baf180779489
muchad/idt5-base
muchad
t5
7
1
transformers
0
text2text-generation
true
false
false
apache-2.0
['id', 'en', 'multilingual']
null
null
1
0
1
0
0
0
0
['idt5']
false
true
true
424
false
# Indonesian Version of Multilingual T5 Transformer Smaller version of the [Google's Multilingual T5-base](https://huggingface.co/google/mt5-base) model with only Indonesian and some English embeddings. This model has to be fine-tuned before it is useable on a downstream task.\ Fine-tuned idT5 for the Question Generation and Question Answering tasks, available at [idT5-qa-qg](https://huggingface.co/muchad/idt5-qa-qg). Paper: [idT5: Indonesian Version of Multilingual T5 Transformer](https://arxiv.org/abs/2302.00856) Authors: *Mukhlish Fuadi, Adhi Dharma Wibawa, Surya Sumpeno* ## Citation ``` @misc{https://doi.org/10.48550/arxiv.2302.00856, doi = {10.48550/ARXIV.2302.00856}, url = {https://arxiv.org/abs/2302.00856}, author = {Fuadi, Mukhlish and Wibawa, Adhi Dharma and Sumpeno, Surya}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences, I.2.7}, title = {idT5: Indonesian Version of Multilingual T5 Transformer}, publisher = {arXiv}, year = {2023} } ``` ## Abstract Indonesian language is spoken by almost 200 million people and is the 10th most spoken language in the world, but it is under-represented in NLP (Natural Language Processing) research. A sparsity of language resources has hampered previous work on Indonesian. The Transformer is a new architecture rapidly becoming dominant for NLP, surpassing alternatives like convolutional and recurrent neural networks. T5 (Text-to-Text Transfer Transformer) is a Transformer model that converts all text-based language problems to text-to-text format for English. The multilingual variant is mT5 (multilingual T5) which has shown promising results on many NLP tasks across languages. However, the size of this multilingual model is a drawback for its application in real production applications, which sometimes require only one language. In this study, the mT5 model was adapted for only one language, Indonesian, resulting in a pre-trained T5 model that was specific only for Indonesian with a smaller size. For performance comparison, we fine-tuned this model and the mT5 model to the Sentiment Analysis (SA), Question Generation (QG), and Question Answering (QA) tasks with the exact mechanism and dataset. Fine-tuned model based on our model achieved 77.18% accuracy on SA, 8% higher than the mT5-based model, and obtained nearly the same score as the mT5-based model on QG and QA. The results confirm that it is possible to produce a smaller pre-trained model that maintains comparable yields while reducing the model size by up to 58%. In addition, the resulting model requires less memory, loads faster, and inference times faster.
ee13c1d3b1cced3fd584250c1b5b9a51
ROBERTaCoder/wav2vec2-base-timit-demo-google-colab
ROBERTaCoder
wav2vec2
12
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,998
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5452 - Wer: 0.3296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5557 | 1.0 | 500 | 1.9362 | 1.0072 | | 0.867 | 2.01 | 1000 | 0.5197 | 0.5173 | | 0.4281 | 3.01 | 1500 | 0.4609 | 0.4552 | | 0.3002 | 4.02 | 2000 | 0.4066 | 0.4129 | | 0.2252 | 5.02 | 2500 | 0.4122 | 0.3952 | | 0.1857 | 6.02 | 3000 | 0.4650 | 0.3990 | | 0.1541 | 7.03 | 3500 | 0.4784 | 0.3834 | | 0.1372 | 8.03 | 4000 | 0.3875 | 0.3805 | | 0.1213 | 9.04 | 4500 | 0.5606 | 0.4002 | | 0.1043 | 10.04 | 5000 | 0.4713 | 0.3762 | | 0.0972 | 11.04 | 5500 | 0.4770 | 0.3692 | | 0.0876 | 12.05 | 6000 | 0.4755 | 0.3671 | | 0.0812 | 13.05 | 6500 | 0.4854 | 0.3616 | | 0.0705 | 14.06 | 7000 | 0.4380 | 0.3659 | | 0.0759 | 15.06 | 7500 | 0.5025 | 0.3516 | | 0.0709 | 16.06 | 8000 | 0.5310 | 0.3577 | | 0.0572 | 17.07 | 8500 | 0.5097 | 0.3561 | | 0.0572 | 18.07 | 9000 | 0.5150 | 0.3510 | | 0.0482 | 19.08 | 9500 | 0.4954 | 0.3488 | | 0.0703 | 20.08 | 10000 | 0.5279 | 0.3512 | | 0.0457 | 21.08 | 10500 | 0.5336 | 0.3459 | | 0.036 | 22.09 | 11000 | 0.5471 | 0.3440 | | 0.0368 | 23.09 | 11500 | 0.5109 | 0.3417 | | 0.0342 | 24.1 | 12000 | 0.5506 | 0.3415 | | 0.0318 | 25.1 | 12500 | 0.5291 | 0.3357 | | 0.03 | 26.1 | 13000 | 0.5347 | 0.3363 | | 0.026 | 27.11 | 13500 | 0.5475 | 0.3318 | | 0.0232 | 28.11 | 14000 | 0.5628 | 0.3332 | | 0.0246 | 29.12 | 14500 | 0.5452 | 0.3296 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
8a88f99103c4418b94c82135c8278415
sd-concepts-library/a-hat-kid
sd-concepts-library
null
9
0
null
1
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,040
false
### A Hat kid on Stable Diffusion This is the `<hatintime-kid>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<hatintime-kid> 0](https://huggingface.co/sd-concepts-library/a-hat-kid/resolve/main/concept_images/0.jpeg) ![<hatintime-kid> 1](https://huggingface.co/sd-concepts-library/a-hat-kid/resolve/main/concept_images/2.jpeg) ![<hatintime-kid> 2](https://huggingface.co/sd-concepts-library/a-hat-kid/resolve/main/concept_images/1.jpeg) ![<hatintime-kid> 3](https://huggingface.co/sd-concepts-library/a-hat-kid/resolve/main/concept_images/3.jpeg)
a20e6d812ffbc0abf0bb1e2cd912174e
bitextor/bicleaner-ai-full-en-hbs
bitextor
xlm-roberta
12
2
transformers
0
null
false
true
false
gpl-3.0
['en', 'hbs', 'multilingual']
null
null
1
0
1
0
0
0
0
['bicleaner-ai']
false
true
true
430
false
# Bicleaner AI full model for en-hbs Bicleaner AI is a tool that aims at detecting noisy sentence pairs in a parallel corpus. It indicates the likelihood of a pair of sentences being mutual translations (with a value near to 1) or not (with a value near to 0). Sentence pairs considered very noisy are scored with 0. Find out at our repository for further instructions on how to use it: https://github.com/bitextor/bicleaner-ai
4d7b40deb79ed7a0aef052e6274b91a6
Padomin/t5-base-TEDxJP-5front-1body-5rear
Padomin
t5
20
1
transformers
0
text2text-generation
true
false
false
cc-by-sa-4.0
null
['te_dx_jp']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,953
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-5front-1body-5rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4383 - Wer: 0.1697 - Mer: 0.1641 - Wil: 0.2500 - Wip: 0.7500 - Hits: 55852 - Substitutions: 6314 - Deletions: 2421 - Insertions: 2228 - Cer: 0.1328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6185 | 1.0 | 1457 | 0.4683 | 0.1948 | 0.1863 | 0.2758 | 0.7242 | 54959 | 6658 | 2970 | 2956 | 0.1682 | | 0.5149 | 2.0 | 2914 | 0.4280 | 0.1773 | 0.1713 | 0.2591 | 0.7409 | 55376 | 6468 | 2743 | 2238 | 0.1426 | | 0.4705 | 3.0 | 4371 | 0.4173 | 0.1743 | 0.1682 | 0.2552 | 0.7448 | 55680 | 6418 | 2489 | 2351 | 0.1387 | | 0.4023 | 4.0 | 5828 | 0.4114 | 0.1713 | 0.1656 | 0.2515 | 0.7485 | 55751 | 6313 | 2523 | 2230 | 0.1335 | | 0.3497 | 5.0 | 7285 | 0.4162 | 0.1722 | 0.1662 | 0.2522 | 0.7478 | 55787 | 6331 | 2469 | 2323 | 0.1365 | | 0.3246 | 6.0 | 8742 | 0.4211 | 0.1714 | 0.1655 | 0.2513 | 0.7487 | 55802 | 6310 | 2475 | 2284 | 0.1367 | | 0.3492 | 7.0 | 10199 | 0.4282 | 0.1711 | 0.1652 | 0.2514 | 0.7486 | 55861 | 6350 | 2376 | 2325 | 0.1341 | | 0.2788 | 8.0 | 11656 | 0.4322 | 0.1698 | 0.1641 | 0.2502 | 0.7498 | 55883 | 6342 | 2362 | 2265 | 0.1327 | | 0.2801 | 9.0 | 13113 | 0.4362 | 0.1710 | 0.1652 | 0.2514 | 0.7486 | 55828 | 6351 | 2408 | 2288 | 0.1352 | | 0.2773 | 10.0 | 14570 | 0.4383 | 0.1697 | 0.1641 | 0.2500 | 0.7500 | 55852 | 6314 | 2421 | 2228 | 0.1328 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
0216a34cb0cd3683e69caa907c84ca22
jonatasgrosman/exp_w2v2t_zh-cn_no-pretraining_s930
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['zh-CN']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'zh-CN']
false
true
true
420
false
# exp_w2v2t_zh-cn_no-pretraining_s930 Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (zh-CN)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
d26a47c02f55fb362e6bfd9b3ad4c36a
Lvxue/distilled-mt5-small-b1.25
Lvxue
mt5
17
4
transformers
0
text2text-generation
true
false
false
apache-2.0
['en', 'ro']
['wmt16']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,036
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b1.25 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.7945 - Bleu: 7.5563 - Gen Len: 44.1141 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
85cf6badd310c0f6d36bba551fb4ca85
lewington/MJv4-hallucinations
lewington
null
5
0
null
0
null
false
false
false
openrail
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,451
false
# MJv4 Hallucinations These are 3 models trained on a small (<2000) dataset of Midjourney v4 images with no particular style. <b> These models are nowhere near as good as Midjourney v4 </b>, and they all suffer from a lot of "language drift" but they do have an interesting style. They are the best of something like 60 different models I trained as part of a set of experiments aimed at replicating Midjourney v4's style with only a few, uncaptioned images. The models are: - <b>mjg-4000-model.ckpt</b>: trained on 250 MJv4 images with no regularization for 4000 steps, prompt: "mjg style" - <b>mjg-12000-model.ckpt</b>: trained on 250 MJv4 images with no regularization for 12000 steps, prompt: "mjg style" - <b>mjv-1200-model.ckpt</b>: trained on 7 MJv4 images with 1000 regularization images for 1200 steps, prompt: "mjv style" Models you can download are <b>bolded</b> <img src="https://github.com/Lewington-pitsos/mj4-hallucinations/blob/main/compare.png?raw=true" width="100%"/> In my subjective opinion, only <b>mjv-1200-model.ckpt<\b> is actually worth downloading. ## Credits: - [NitroSock](https://github.com/nitrosocke/dreambooth-training-guide) for the regularization images - [prompthero](https://huggingface.co/prompthero/openjourney) whose idea I copied ## Take Down As far as I can tell, uploading these models does not cause any person or corporate entity any harm, but if you think I am wrong about this please reach out.
7d37af53ec8f498dff55924bc10c5d08
muhtasham/tiny-mlm-snli
muhtasham
bert
10
13
transformers
1
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,536
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-snli-plain_text This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.665 | 0.4 | 500 | 3.2495 | | 3.4103 | 0.8 | 1000 | nan | | 3.2635 | 1.2 | 1500 | 3.1518 | | 3.1738 | 1.6 | 2000 | 3.1555 | | 3.0556 | 2.0 | 2500 | 3.0593 | | 2.9933 | 2.4 | 3000 | 3.0970 | | 2.9019 | 2.8 | 3500 | 3.0773 | | 2.876 | 3.2 | 4000 | 3.1233 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2
e35fe6ecf82041ab35a0dcd52f26293e
ml6team/mt5-small-german-query-generation
ml6team
mt5
8
1,653
transformers
0
text2text-generation
true
false
false
apache-2.0
['de']
null
null
0
0
0
0
0
0
0
['pytorch', 'query-generation']
false
true
true
935
false
# mt5-small-german-query-generation ## Model description: This model was created with the purpose to generate possible queries for a german input article. For this model, we finetuned a multilingual T5 model [mt5-small](https://huggingface.co/google/mt5-small) on the [MMARCO dataset](https://huggingface.co/datasets/unicamp-dl/mmarco) the machine translated version of the MS MARCO dataset. The model was trained for 1 epoch, on 200,000 unique queries of the dataset. We trained the model on one K80 GPU for 25,000 iterations with following parameters: - learning rate: 1e-3 - train batch size: 8 - max input sequence length: 512 - max target sequence length: 64 ## Model Performance: Model evaluation was done on 2000 evaluation paragraphs of the dataset. Mean [f1 ROUGE scores](https://github.com/pltrdy/rouge) were calculated for the model. | Rouge-1 | Rouge-2 | Rouge-L | |---|---|---| |0.162 | 0.052 | 0.161 |
8856c3e93d0b63fbab8d1492f2a07ed1
gokuls/distilbert_add_GLUE_Experiment_logit_kd_rte_192
gokuls
distilbert
17
2
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,688
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_logit_kd_rte_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.4235 - Accuracy: 0.4729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4313 | 1.0 | 10 | 0.4259 | 0.4729 | | 0.4183 | 2.0 | 20 | 0.4235 | 0.4729 | | 0.4175 | 3.0 | 30 | 0.4239 | 0.4729 | | 0.4169 | 4.0 | 40 | 0.4240 | 0.4729 | | 0.4183 | 5.0 | 50 | 0.4245 | 0.4729 | | 0.417 | 6.0 | 60 | 0.4237 | 0.4729 | | 0.4174 | 7.0 | 70 | 0.4235 | 0.4729 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
805f50bbb85217fcd17e1d75ad067c4d
MGanesh29/distilbert-base-uncased-finetuned-cola
MGanesh29
distilbert
18
3
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,793
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1195 - Matthews Correlation: 0.6749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 8 | 1.6008 | 0.5863 | | No log | 2.0 | 16 | 1.5039 | 0.4583 | | No log | 3.0 | 24 | 1.3972 | 0.6021 | | No log | 4.0 | 32 | 1.2925 | 0.6038 | | No log | 5.0 | 40 | 1.2222 | 0.6333 | | No log | 6.0 | 48 | 1.1626 | 0.6333 | | No log | 7.0 | 56 | 1.1195 | 0.6749 | | No log | 8.0 | 64 | 1.1048 | 0.6749 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
c44470a28403e62ac106cc4ce51ef56f
itisphilippe/StackOverflowNER
itisphilippe
null
71
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
770
false
Models and other data for https://github.com/jeniyat/StackOverflowNER. Use `git lfs fetch --all` to download all files. Please note that folders are stored decompressed due to HuggingFace file size limitations. The individual files in ./data_ctc/ are compressed using `gzip`, and can be decompressed using `gunzip -d *.gz`. Intermediate model checkpoints have not been uploaded due to bandwidth limitations. **BibTeX entry and citation info** ```bibtex @inproceedings{Tabassum20acl, title = {Code and Named Entity Recognition in StackOverflow}, author = "Tabassum, Jeniya and Maddela, Mounica and Xu, Wei and Ritter, Alan", booktitle = {The Annual Meeting of the Association for Computational Linguistics (ACL)}, year = {2020} } ```
f814e3e9148a36e301e360e4f46a0e28
Miranda/t5-small-train
Miranda
t5
43
3
transformers
0
summarization
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['summarization', 'generated_from_trainer']
true
true
true
1,975
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-train This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2367 - Rouge1: 43.9525 - Rouge2: 22.3403 - Rougel: 38.7683 - Rougelsum: 39.2056 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.6e-05 - train_batch_size: 9 - eval_batch_size: 9 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 3.3237 | 1.0 | 40 | 2.6713 | 34.4731 | 14.9731 | 29.4814 | 29.9747 | | 2.7401 | 2.0 | 80 | 2.4318 | 38.1153 | 18.3492 | 33.4476 | 33.9181 | | 2.5882 | 3.0 | 120 | 2.3339 | 41.2707 | 19.8571 | 36.2685 | 36.6119 | | 2.4264 | 4.0 | 160 | 2.2878 | 42.184 | 20.9666 | 37.3488 | 37.6172 | | 2.3915 | 5.0 | 200 | 2.2605 | 43.4928 | 21.7195 | 38.4917 | 38.8471 | | 2.3599 | 6.0 | 240 | 2.2462 | 44.2876 | 22.28 | 38.9234 | 39.3673 | | 2.3073 | 7.0 | 280 | 2.2398 | 43.9822 | 22.3746 | 38.7625 | 39.0964 | | 2.3026 | 8.0 | 320 | 2.2367 | 43.9525 | 22.3403 | 38.7683 | 39.2056 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
5b342274535dca68e600edf0ec06da27
YaHi/bert-base-uncased-finetuned-effectiveFeedback-Classification-kaggleEffectiveFeedback2
YaHi
bert
14
3
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,383
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-effectiveFeedback-Classification-kaggleEffectiveFeedback2 This model is a fine-tuned version of [YaHi/bert-base-uncased-finetuned-effectiveFeedback](https://huggingface.co/YaHi/bert-base-uncased-finetuned-effectiveFeedback) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.7506 | 1.0 | 3677 | 0.7284 | | 0.623 | 2.0 | 7354 | 0.7558 | | 0.4225 | 3.0 | 11031 | 0.9724 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
4799a35a0fcbd14fd5ece873b1503beb
MultiBertGunjanPatrick/multiberts-seed-3-500k
MultiBertGunjanPatrick
bert
7
4
transformers
0
null
true
false
false
apache-2.0
['en']
['bookcorpus', 'wikipedia']
null
0
0
0
0
0
0
0
['exbert', 'multiberts', 'multiberts-seed-3']
false
true
true
6,483
false
# MultiBERTs Seed 3 Checkpoint 500k (uncased) Seed 3 intermediate checkpoint 500k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-3](https://hf.co/multberts-seed-3). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-3-500k') model = BertModel.from_pretrained("multiberts-seed-3-500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
0611b7a591aaaedc1b5601e9b5612f59
kdo6301/bert-base-uncased-finetuned-cola-2
kdo6301
bert
13
3
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,556
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola-2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9235 - Matthews Correlation: 0.6016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4906 | 1.0 | 535 | 0.5046 | 0.5080 | | 0.2901 | 2.0 | 1070 | 0.5881 | 0.5235 | | 0.1818 | 3.0 | 1605 | 0.7253 | 0.5584 | | 0.1177 | 4.0 | 2140 | 0.8316 | 0.5927 | | 0.0826 | 5.0 | 2675 | 0.9235 | 0.6016 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
ad734268e4a54f11feb56e02d4991f8c
theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed-v3-e16
theojolliffe
bart
19
2
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,080
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-arxiv-pubmed-pubmed-v3-e16 This model is a fine-tuned version of [theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed](https://huggingface.co/theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8306 - Rouge1: 56.4519 - Rouge2: 41.6818 - Rougel: 44.7833 - Rougelsum: 54.6359 - Gen Len: 141.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 1.1157 | 50.9487 | 31.3005 | 34.0145 | 48.6057 | 141.8519 | | 1.3569 | 2.0 | 796 | 0.9688 | 53.0653 | 34.1855 | 37.0759 | 50.5942 | 141.2963 | | 0.8704 | 3.0 | 1194 | 0.9053 | 53.9684 | 36.0388 | 38.6674 | 51.9604 | 142.0 | | 0.6287 | 4.0 | 1592 | 0.8515 | 54.2379 | 36.4915 | 39.1393 | 51.6991 | 141.4074 | | 0.6287 | 5.0 | 1990 | 0.8274 | 53.6806 | 34.8373 | 37.7369 | 51.239 | 141.6481 | | 0.465 | 6.0 | 2388 | 0.8486 | 55.2534 | 39.1757 | 41.6366 | 53.2989 | 141.9259 | | 0.3432 | 7.0 | 2786 | 0.8116 | 54.539 | 37.6314 | 40.5531 | 52.1997 | 141.3889 | | 0.2577 | 8.0 | 3184 | 0.7976 | 54.8212 | 36.8347 | 40.6768 | 52.7785 | 142.0 | | 0.204 | 9.0 | 3582 | 0.8010 | 53.9302 | 37.3523 | 40.135 | 52.139 | 141.7778 | | 0.204 | 10.0 | 3980 | 0.8168 | 54.3151 | 38.0665 | 42.4112 | 52.4682 | 142.0 | | 0.1663 | 11.0 | 4378 | 0.8171 | 54.7027 | 38.3117 | 42.0196 | 52.8821 | 142.0 | | 0.135 | 12.0 | 4776 | 0.8202 | 54.1035 | 37.9154 | 40.7676 | 52.2509 | 142.0 | | 0.1102 | 13.0 | 5174 | 0.8204 | 56.223 | 41.0947 | 44.0131 | 54.3353 | 142.0 | | 0.0928 | 14.0 | 5572 | 0.8280 | 56.1637 | 41.0408 | 44.2931 | 54.5488 | 142.0 | | 0.0928 | 15.0 | 5970 | 0.8273 | 56.2608 | 41.3855 | 44.4432 | 54.5778 | 142.0 | | 0.0847 | 16.0 | 6368 | 0.8306 | 56.4519 | 41.6818 | 44.7833 | 54.6359 | 141.9815 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1
4340dee8f0bf172df4f3160f79aee46e
shibing624/bert4ner-base-chinese
shibing624
bert
9
150
transformers
2
token-classification
true
false
false
apache-2.0
['zh']
null
null
0
0
0
0
0
0
0
['bert', 'pytorch', 'zh', 'ner']
false
true
true
3,759
false
# BERT for Chinese Named Entity Recognition(bert4ner) Model 中文实体识别模型 `bert4ner-base-chinese` evaluate PEOPLE(人民日报) test data: The overall performance of BERT on people **test**: | | Accuracy | Recall | F1 | | ------------ | ------------------ | ------------------ | ------------------ | | BertSoftmax | 0.9425 | 0.9627 | 0.9525 | 在PEOPLE的测试集上达到接近SOTA水平。 BertSoftmax的网络结构(原生BERT): ![arch](bert.png) ## Usage 本项目开源在实体识别项目:[nerpy](https://github.com/shibing624/nerpy),可支持bert4ner模型,通过如下命令调用: ```shell >>> from nerpy import NERModel >>> model = NERModel("bert", "shibing624/bert4ner-base-chinese") >>> predictions, raw_outputs, entities = model.predict(["常建良,男,1963年出生,工科学士,高级工程师"], split_on_space=False) entities: [('常建良', 'PER'), ('1963年', 'TIME')] ``` 模型文件组成: ``` bert4ner-base-chinese ├── config.json ├── model_args.json ├── pytorch_model.bin ├── special_tokens_map.json ├── tokenizer_config.json └── vocab.txt ``` ## Usage (HuggingFace Transformers) Without [nerpy](https://github.com/shibing624/nerpy), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the bio tag to get the entity words. Install package: ``` pip install transformers seqeval ``` ```python import os import torch from transformers import AutoTokenizer, AutoModelForTokenClassification from seqeval.metrics.sequence_labeling import get_entities os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("shibing624/bert4ner-base-chinese") model = AutoModelForTokenClassification.from_pretrained("shibing624/bert4ner-base-chinese") label_list = ['I-ORG', 'B-LOC', 'O', 'B-ORG', 'I-LOC', 'I-PER', 'B-TIME', 'I-TIME', 'B-PER'] sentence = "王宏伟来自北京,是个警察,喜欢去王府井游玩儿。" def get_entity(sentence): tokens = tokenizer.tokenize(sentence) inputs = tokenizer.encode(sentence, return_tensors="pt") with torch.no_grad(): outputs = model(inputs).logits predictions = torch.argmax(outputs, dim=2) char_tags = [(token, label_list[prediction]) for token, prediction in zip(tokens, predictions[0].numpy())][1:-1] print(sentence) print(char_tags) pred_labels = [i[1] for i in char_tags] entities = [] line_entities = get_entities(pred_labels) for i in line_entities: word = sentence[i[1]: i[2] + 1] entity_type = i[0] entities.append((word, entity_type)) print("Sentence entity:") print(entities) get_entity(sentence) ``` output: ```shell 王宏伟来自北京,是个警察,喜欢去王府井游玩儿。 [('王', 'B-PER'), ('宏', 'I-PER'), ('伟', 'I-PER'), ('来', 'O'), ('自', 'O'), ('北', 'B-LOC'), ('京', 'I-LOC'), (',', 'O'), ('是', 'O'), ('个', 'O'), ('警', 'O'), ('察', 'O'), (',', 'O'), ('喜', 'O'), ('欢', 'O'), ('去', 'O'), ('王', 'B-LOC'), ('府', 'I-LOC'), ('井', 'I-LOC'), ('游', 'O'), ('玩', 'O'), ('儿', 'O'), ('。', 'O')] Sentence entity: [('王宏伟', 'PER'), ('北京', 'LOC'), ('王府井', 'LOC')] ``` ### 训练数据集 #### 中文实体识别数据集 | 数据集 | 语料 | 下载链接 | 文件大小 | | :------- | :--------- | :---------: | :---------: | | **`CNER中文实体识别数据集`** | CNER(12万字) | [CNER github](https://github.com/shibing624/nerpy/tree/main/examples/data/cner)| 1.1MB | | **`PEOPLE中文实体识别数据集`** | 人民日报数据集(200万字) | [PEOPLE github](https://github.com/shibing624/nerpy/tree/main/examples/data/people)| 12.8MB | CNER中文实体识别数据集,数据格式: ```text 美 B-LOC 国 I-LOC 的 O 华 B-PER 莱 I-PER 士 I-PER 我 O 跟 O 他 O ``` 如果需要训练bert4ner,请参考[https://github.com/shibing624/nerpy/tree/main/examples](https://github.com/shibing624/nerpy/tree/main/examples) ## Citation ```latex @software{nerpy, author = {Xu Ming}, title = {nerpy: Named Entity Recognition toolkit}, year = {2022}, url = {https://github.com/shibing624/nerpy}, } ```
b9016b107854390d49f41923296d34a1
jacquesle/bert-base-cased-NER-favsbot
jacquesle
bert
19
7
transformers
0
token-classification
true
false
false
apache-2.0
null
['favsbot']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,086
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-NER-favsbot This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the favsbot dataset. It achieves the following results on the evaluation set: - Loss: 0.0992 - Precision: 0.8571 - Recall: 0.96 - F1: 0.9057 - Accuracy: 0.9583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 1.7643 | 0.0 | 0.0 | 0.0 | 0.5694 | | No log | 2.0 | 20 | 1.1420 | 0.0 | 0.0 | 0.0 | 0.5833 | | No log | 3.0 | 30 | 0.7946 | 0.9375 | 0.6 | 0.7317 | 0.8056 | | No log | 4.0 | 40 | 0.5625 | 0.8182 | 0.72 | 0.7660 | 0.8611 | | No log | 5.0 | 50 | 0.4217 | 0.8148 | 0.88 | 0.8462 | 0.9306 | | No log | 6.0 | 60 | 0.3082 | 0.8519 | 0.92 | 0.8846 | 0.9444 | | No log | 7.0 | 70 | 0.2386 | 0.8148 | 0.88 | 0.8462 | 0.9444 | | No log | 8.0 | 80 | 0.1965 | 0.8148 | 0.88 | 0.8462 | 0.9444 | | No log | 9.0 | 90 | 0.1626 | 0.8148 | 0.88 | 0.8462 | 0.9444 | | No log | 10.0 | 100 | 0.1465 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 11.0 | 110 | 0.1314 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 12.0 | 120 | 0.1215 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 13.0 | 130 | 0.1160 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 14.0 | 140 | 0.1104 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 15.0 | 150 | 0.1050 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 16.0 | 160 | 0.1012 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 17.0 | 170 | 0.0997 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 18.0 | 180 | 0.0997 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 19.0 | 190 | 0.0995 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 20.0 | 200 | 0.0992 | 0.8571 | 0.96 | 0.9057 | 0.9583 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.12.1
b39253f353b93fbe0fd684434e551d8c
YurtsAI/yurts-python-code-gen-30-sparse
YurtsAI
codegen
10
32,961
transformers
12
text-generation
true
false
false
bsd-3-clause
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,240
false
# Maverick (Yurt's Python Code Generation Model) ## Model description This code generation model was fine-tuned on Python code from a generic multi-language code generation model. This model was then pushed to 30% sparsity using Yurts' in-house technology without performance loss. In this specific instance, the class representation for the network is still dense. This particular model has 350M trainable parameters. ## Training data This model was tuned on a subset of the Python data available in the BigQuery open-source [Github dataset](https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code). ## How to use The model is great at autocompleting based off of partially generated function signatures and class signatures. It is also decent at generating code base based off of natural language prompts with a comment. If you find something cool you can do with the model, be sure to share it with us! Check out our [colab notebook](https://colab.research.google.com/drive/1NDO4X418HuPJzF8mFc6_ySknQlGIZMDU?usp=sharing) to see how to invoke the model and try it out. ## Feedback and Questions Have any questions or feedback? Find us on [Discord](https://discord.gg/2x4rmSGER9).
4a08d8f597741fd75a6432e22113d9c1
google/t5-efficient-base-el8
google
t5
12
26
transformers
1
text2text-generation
true
true
true
apache-2.0
['en']
['c4']
null
0
0
0
0
0
0
0
['deep-narrow']
false
true
true
6,248
false
# T5-Efficient-BASE-EL8 (Deep-Narrow version) T5-Efficient-BASE-EL8 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-base-el8** - is of model type **Base** with the following variations: - **el** is **8** It has **194.61** million parameters and thus requires *ca.* **778.44 MB** of memory in full precision (*fp32*) or **389.22 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
ff9e146a9870c77c162b635308ad9d66
kejian/curious-awr
kejian
gpt2
23
0
transformers
0
null
true
false
false
apache-2.0
['en']
['kejian/codeparrot-train-more-filter-3.3b-cleaned']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,722
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # curious-awr This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12589 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'is_split_by_sentences': True, 'skip_tokens': 1649934336}, 'generation': {'batch_size': 128, 'every_n_steps': 256, 'force_call_on': [12588], 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 640, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_hits_threshold': 0, 'num_samples': 2048}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 272, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_hits_threshold': 0, 'num_samples': 2048, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'every_n_steps': 256, 'force_call_on': [12588], 'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '9b71edc6c769705c1ef1955b6f5cfdd5a7d1b802', 'value_head_config': {'is_detached': False}}, 'path_or_name': 'kejian/spectacular-awr'}, 'objective': {'alpha': 0.05, 'beta': 1, 'name': 'AWR'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'curious-awr', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 12588, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649934336, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/3mpa7db7
5d735a9ccbd9e3768f787cd662b8792d
mahaamami/distilroberta-base-finetuned-wikitext2
mahaamami
roberta
15
4
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,273
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1026 | 1.0 | 5835 | 1.9705 | | 2.0088 | 2.0 | 11670 | 1.9090 | | 1.9766 | 3.0 | 17505 | 1.8833 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
761c47cda751cf5f144d38c90fac61fe
asi/igpt-fr-cased-base
asi
gpt2
8
6
transformers
4
text-generation
true
true
false
apache-2.0
['fr']
null
null
0
0
0
0
0
0
0
['tf', 'pytorch', 'gpt2', 'text-to-image']
false
true
true
5,200
false
<img src="https://raw.githubusercontent.com/AntoineSimoulin/gpt-fr/main/imgs/igpt-logo.png" width="400"> ## Model description **iGPT-fr** 🇫🇷 is a GPT model for French pre-trained incremental language model developped by the [Laboratoire de Linguistique Formelle (LLF)](http://www.llf.cnrs.fr/en). We adapted [GPT-fr 🇫🇷](https://huggingface.co/asi/gpt-fr-cased-base) model to generate images conditionned by text inputs. ## Intended uses & limitations The model can be leveraged for image generation tasks. The model is currently under a developpment phase. #### How to use The model might be used through the 🤗 `Transformers` librairie. You will also need to install the `Taming Transformers` library for high-resolution image synthesis: ```bash pip install git+https://github.com/CompVis/taming-transformers.git ``` ```python from transformers import GPT2Tokenizer, GPT2LMHeadModel from huggingface_hub import hf_hub_download from omegaconf import OmegaConf from taming.models import vqgan import torch from PIL import Image import numpy as np # Load VQGAN model vqgan_ckpt = hf_hub_download(repo_id="boris/vqgan_f16_16384", filename="model.ckpt", force_download=False) vqgan_config = hf_hub_download(repo_id="boris/vqgan_f16_16384", filename="config.yaml", force_download=False) config = OmegaConf.load(vqgan_config) vqgan_model = vqgan.VQModel(**config.model.params) vqgan_model.eval().requires_grad_(False) vqgan_model.init_from_ckpt(vqgan_ckpt) # Load pretrained model model = GPT2LMHeadModel.from_pretrained("asi/igpt-fr-cased-base") model.eval() tokenizer = GPT2Tokenizer.from_pretrained("asi/igpt-fr-cased-base") # Generate a sample of text input_sentence = "Une carte de l'europe" input_ids = tokenizer.encode(input_sentence, return_tensors='pt') input_ids = torch.cat((input_ids, torch.tensor([[50000]])), 1) # Add image generation token greedy_output = model.generate( input_ids.to(device), max_length=256+input_ids.shape[1], do_sample=True, top_p=0.92, top_k=0) def custom_to_pil(x): x = x.detach().cpu() x = torch.clamp(x, -1., 1.) x = (x + 1.)/2. x = x.permute(1,2,0).numpy() x = (255*x).astype(np.uint8) x = Image.fromarray(x) if not x.mode == "RGB": x = x.convert("RGB") return x z_idx = greedy_output[0, input_ids.shape[1]:] - 50001 z_quant = vqgan_model.quantize.get_codebook_entry(z_idx, shape=(1, 16, 16, 256)) x_rec = vqgan_model.decode(z_quant).to('cpu')[0] display(custom_to_pil(x_rec)) ``` You may also filter results based on CLIP: ```python from tqdm import tqdm def hallucinate(prompt, num_images=64): input_ids = tokenizer.encode(prompt, return_tensors='pt') input_ids = torch.cat((input_ids, torch.tensor([[50000]])), 1).to(device) # Add image generation token all_images = [] for i in tqdm(range(num_images)): greedy_output = model.generate( input_ids.to(device), max_length=256+input_ids.shape[1], do_sample=True, top_p=0.92, top_k=0) z_idx = greedy_output[0, input_ids.shape[1]:] - 50001 z_quant = vqgan_model.quantize.get_codebook_entry(z_idx, shape=(1, 16, 16, 256)) x_rec = vqgan_model.decode(z_quant).to('cpu')[0] all_images.append(custom_to_pil(x_rec)) return all_images input_sentence = "Une carte de l'europe" all_images = hallucinate(input_sentence) from transformers import pipeline opus_model = "Helsinki-NLP/opus-mt-fr-en" opus_translator = pipeline("translation", model=opus_model) opus_translator(input_sentence) from transformers import CLIPProcessor, CLIPModel clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") def clip_top_k(prompt, images, k=8): prompt_fr = opus_translator(input_sentence)[0]['translation_text'] inputs = clip_processor(text=prompt_fr, images=images, return_tensors="pt", padding=True) outputs = clip_model(**inputs) logits = outputs.logits_per_text # this is the image-text similarity score scores = np.array(logits[0].detach()).argsort()[-k:][::-1] return [images[score] for score in scores] filtered_images = clip_top_k(input_sentence, all_images) for fi in filtered_images: display(fi) ``` ## Training data We created a dedicated corpus to train our generative model. The training corpus consists in text-image pairs. We aggregated portions from existing corpora: [Laion-5B](https://laion.ai/blog/laion-5b/) and [WIT](https://github.com/google-research-datasets/wit). The final dataset includes 10,807,534 samples. ## Training procedure We pre-trained the model on the new CNRS (French National Centre for Scientific Research) [Jean Zay](http://www.idris.fr/eng/jean-zay/) supercomputer. We perform the training within a total of 140 hours of computation on Tesla V-100 hardware (TDP of 300W). The training was distributed on 8 compute nodes of 8 GPUs. We used data parallelization in order to divide each micro-batch on the computing units. We estimated the total emissions at 1161.22 kgCO2eq, using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al., (2019)](lacoste-2019).
2e15de9cc38c04963aef2b333dc775f5
johko/capdec_05
johko
null
3
0
null
0
image-to-text
false
false
false
apache-2.0
['en']
['MS-COCO', 'Flickr30k']
null
0
0
0
0
0
0
0
['Image Captioning']
false
true
true
1,346
false
# CapDec - NoiseLevel: 0.05 ## Model Description These are model weights originally provided by the authors of the paper [Text-Only Training for Image Captioning using Noise-Injected CLIP](https://arxiv.org/pdf/2211.00575.pdf). Their method aims to train CLIP with only text samples. Therefore they are injecting zero-mean Gaussian Noise into the text embeddings before decoding. In their words: *Specifically, we assume that the visual embedding corresponding to a text embedding lies somewhere within a ball of small radius around the text embedding (see Fig. 1). We would like all text embeddings in this ball to decode to the same caption,which should also correspond to the visual content mapped to this ball. We implement this intuition by adding zero-mean Gaussian noise of STD to the text embedding before decoding it.* The "Noise Level" of 0.05 is equivalent to the Noise Variance which is the square of the STD. The reported metrics are results of a model with a Noise Variance of 0.016, which the authors unfortunately do not provide in their repository. ## Datasets The authors trained the model on MS-COCO and Flickr30k datasets. ## Performance The authors don't explicitly report the performance for this NoiseLevel but it can be estimated from the following figure from the original paper: ![](capdec_performance.png)
4ac811cd0b7e3bf4455cc0f101abe178
agnesluhtaru/whisper-medium-et-ERR2020
agnesluhtaru
whisper
113
8
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer', 'whisper-event']
true
true
true
2,190
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-et-ERR2020 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the following training sets: Common Voice 11, VoxPopuli, FLEURS and [ERR2020](http://bark.phon.ioc.ee/lw/korpused/ERR2020.html). The checkpoint-7000 was on [Whisper Event leaderboard](https://huggingface.co/spaces/whisper-event/winners?dataset=mozilla-foundation%2Fcommon_voice_11_0). Current score is for the final checkpoint. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.1828 | 0.1 | 1000 | 0.3547 | 20.8829 | | 0.09 | 0.2 | 2000 | 0.3476 | 19.0096 | | 0.083 | 0.3 | 3000 | 0.3386 | 18.1304 | | 0.0765 | 0.4 | 4000 | 0.3365 | 17.2591 | | 0.0592 | 0.5 | 5000 | 0.3534 | 19.0213 | | 0.0672 | 0.6 | 6000 | 0.3622 | 18.4263 | | 0.0629 | 0.7 | 7000 | 0.3487 | 15.9839 | | 0.0546 | 1.03 | 8000 | 0.3677 | 16.1021 | | 0.0459 | 1.13 | 9000 | 0.3704 | 17.9073 | | 0.0425 | 1.23 | 10000 | 0.3672 | 15.9119 | The validation set is combined from the validation sets of Common Voice 11, VoxPopuli, FLEURS and ERR2020. ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+rocm5.1.1h - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
ed4aff326e69c6f5efcfb7f4dd593fa6
zari/my-awesome-model
zari
gpt2
4
4
transformers
0
text-generation
true
false
false
apache-2.0
null
[]
null
0
0
0
0
0
0
0
[]
false
true
true
1,227
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-awesome-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 91 | 3.4934 | | No log | 2.0 | 182 | 3.4451 | | No log | 3.0 | 273 | 3.4356 | ### Framework versions - Transformers 4.7.0 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
93c9db945ad52dc41471523e313f1fcd
MiguelCosta/finetuning-sentiment-model-3000-samples
MiguelCosta
distilbert
16
11
transformers
0
text-classification
true
false
false
apache-2.0
null
['imdb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,055
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.5805 - Accuracy: 0.8767 - F1: 0.8810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
fa7dd604f352b19f7cc5d7800cbc049f
autoevaluate/roberta-base-squad2
autoevaluate
roberta
11
12
transformers
0
question-answering
true
true
true
cc-by-4.0
['en']
['squad_v2']
null
7
7
0
0
0
0
0
[]
false
true
true
6,411
false
# roberta-base for QA > Note: this is a clone of [`roberta-base-squad2`](https://huggingface.co/deepset/roberta-base-squad2) for internal testing. This is the [roberta-base](https://huggingface.co/roberta-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. ## Overview **Language model:** roberta-base **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system) **Infrastructure**: 4x Tesla v100 ## Hyperparameters ``` batch_size = 96 n_epochs = 2 base_LM_model = "roberta-base" max_seq_len = 386 learning_rate = 3e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride=128 max_query_length=64 ``` ## Using a distilled model instead Please note that we have also released a distilled version of this model called [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2). The distilled model has a comparable prediction quality and runs at twice the speed of the base model. ## Usage ### In Haystack Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2") # or reader = TransformersReader(model_name_or_path="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2") ``` For a complete example of ``roberta-base-squad2`` being used for Question Answering, check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai/tutorials/first-qa-system) ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Performance Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). ``` "exact": 79.87029394424324, "f1": 82.91251169582613, "total": 11873, "HasAns_exact": 77.93522267206478, "HasAns_f1": 84.02838248389763, "HasAns_total": 5928, "NoAns_exact": 81.79983179142137, "NoAns_f1": 81.79983179142137, "NoAns_total": 5945 ``` Using the official [question answering notebook](https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb) from `transformers` yields: ``` {'HasAns_exact': 77.93522267206478, 'HasAns_f1': 83.93715663402219, 'HasAns_total': 5928, 'NoAns_exact': 81.90075693860386, 'NoAns_f1': 81.90075693860386, 'NoAns_total': 5945, 'best_exact': 79.92082877116145, 'best_exact_thresh': 0.0, 'best_f1': 82.91749890730902, 'best_f1_thresh': 0.0, 'exact': 79.92082877116145, 'f1': 82.91749890730917, 'total': 11873} ``` which is consistent with the officially reported results. Using the question answering `Evaluator` from `evaluate` gives: ``` {'HasAns_exact': 77.91835357624831, 'HasAns_f1': 84.07820736158186, 'HasAns_total': 5928, 'NoAns_exact': 81.91757779646763, 'NoAns_f1': 81.91757779646763, 'NoAns_total': 5945, 'best_exact': 79.92082877116145, 'best_exact_thresh': 0.996823787689209, 'best_f1': 82.99634576260925, 'best_f1_thresh': 0.996823787689209, 'exact': 79.92082877116145, 'f1': 82.9963457626089, 'latency_in_seconds': 0.016523243643392558, 'samples_per_second': 60.52080460605492, 'total': 11873, 'total_time_in_seconds': 196.18047177799986} ``` which is also consistent with the officially reported results. ## Authors **Branden Chan:** branden.chan@deepset.ai **Timo Möller:** timo.moeller@deepset.ai **Malte Pietsch:** malte.pietsch@deepset.ai **Tanay Soni:** tanay.soni@deepset.ai ## About us <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://huggingface.co/spaces/deepset/README/resolve/main/haystack-logo-colored.svg" class="w-40"/> </div> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://huggingface.co/spaces/deepset/README/resolve/main/deepset-logo-colored.svg" class="w-40"/> </div> </div> [deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. Some of our other work: - [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2) - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) ## Get in touch and join the Haystack community <p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://haystack.deepset.ai">Documentation</a></strong>. We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community/join"><img alt="slack" class="h-7 inline-block m-0" style="margin: 0" src="https://huggingface.co/spaces/deepset/README/resolve/main/Slack_RGB.png"/>community open to everyone!</a></strong></p> [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)
6d0ab537511f4a60aa7e67629cf2afbb
noflm/whisper-base-ja-elite
noflm
whisper
114
0
transformers
0
automatic-speech-recognition
true
false
false
other
['ja']
['Elite35P-Server/EliteVoiceProject']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,915
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Japanese Elite This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Elite35P-Server/EliteVoiceProject twitter dataset. It achieves the following results on the evaluation set: - Loss: 0.4385 - Wer: 17.0732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 200 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.0002 | 111.0 | 1000 | 0.2155 | 9.7561 | | 0.0001 | 222.0 | 2000 | 0.2448 | 12.1951 | | 0.0 | 333.0 | 3000 | 0.2674 | 13.4146 | | 0.0 | 444.0 | 4000 | 0.2943 | 15.8537 | | 0.0 | 555.0 | 5000 | 0.3182 | 17.0732 | | 0.0 | 666.0 | 6000 | 0.3501 | 18.9024 | | 0.0 | 777.0 | 7000 | 0.3732 | 16.4634 | | 0.0 | 888.0 | 8000 | 0.4025 | 17.0732 | | 0.0 | 999.0 | 9000 | 0.4178 | 20.1220 | | 0.0 | 1111.0 | 10000 | 0.4385 | 17.0732 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
ac9d7a7c99fbdd8955e86bfa9696825d
pszemraj/electra-base-discriminator-CoLA
pszemraj
electra
16
7
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
1
0
1
0
0
0
0
['generated_from_trainer']
true
true
true
2,046
false
# electra-base-discriminator-CoLA This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.3542 - Matthews Correlation: 0.6580 ## Model description Trying to find a decent optimum between accuracy/quality and inference speed. ```json { "epoch": 8.0, "eval_loss": 0.3541961908340454, "eval_matthews_correlation": 0.6579677841732349, "eval_runtime": 1.9552, "eval_samples": 1043, "eval_samples_per_second": 533.451, "eval_steps_per_second": 33.756 } ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 128 - eval_batch_size: 16 - seed: 22165 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 8.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4004 | 1.0 | 67 | 0.3569 | 0.6340 | | 0.2843 | 2.0 | 134 | 0.3542 | 0.6580 | | 0.1228 | 3.0 | 201 | 0.4201 | 0.6412 | | 0.0989 | 4.0 | 268 | 0.4780 | 0.6757 | | 0.0681 | 5.0 | 335 | 0.4900 | 0.6925 | | 0.0506 | 6.0 | 402 | 0.5837 | 0.6785 | | 0.0093 | 7.0 | 469 | 0.6298 | 0.6652 | | 0.0244 | 8.0 | 536 | 0.6292 | 0.6750 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.1
8cdd516fba1e51d54b23962904911e43
eunyounglee/mbart_finetuned_dialect_translation_4
eunyounglee
mbart
15
1
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,449
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart_finetuned_dialect_translation_4 This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0109 - Bleu: 99.3856 - Gen Len: 14.951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.1512 | 1.0 | 938 | 0.0563 | 98.0769 | 14.981 | | 0.044 | 2.0 | 1876 | 0.0244 | 98.639 | 14.962 | | 0.0214 | 3.0 | 2814 | 0.0109 | 99.3856 | 14.951 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
785017a1a9f56309694801840ca41da6
IlyaGusev/rut5_base_headline_gen_telegram
IlyaGusev
t5
8
2,266
transformers
1
summarization
true
false
false
apache-2.0
['ru']
null
null
1
1
0
0
0
0
0
['summarization']
false
true
true
1,019
false
# RuT5TelegramHeadlines ## Model description Based on [rut5-base](https://huggingface.co/cointegrated/rut5-base) model ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, T5ForConditionalGeneration model_name = "IlyaGusev/rut5_base_headline_gen_telegram" tokenizer = AutoTokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) article_text = "..." input_ids = tokenizer( [article_text], max_length=600, add_special_tokens=True, padding="max_length", truncation=True, return_tensors="pt" )["input_ids"] output_ids = model.generate( input_ids=input_ids )[0] headline = tokenizer.decode(output_ids, skip_special_tokens=True) print(headline) ``` ## Training data - Dataset: [ru_all_split.tar.gz](https://www.dropbox.com/s/ykqk49a8avlmnaf/ru_all_split.tar.gz) ## Training procedure - Training script: [train.py](https://github.com/IlyaGusev/summarus/blob/master/external/hf_scripts/train.py)
1858e9a0cd15170ea45a23906c20de5b
AAkhilesh/wav2vec2-large-xls-r-300m-hsb-colab
AAkhilesh
wav2vec2
13
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,099
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hsb-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
b9e1ba2dd76bfde97d9d6c306e764249
ntsema/wav2vec2-xlsr-53-espeak-cv-ft-mhr3-ntsema-colab
ntsema
wav2vec2
13
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['audiofolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,612
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-espeak-cv-ft-mhr3-ntsema-colab This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7701 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.329 | 5.79 | 400 | 1.3162 | 1.0 | | 1.5529 | 11.59 | 800 | 0.6968 | 1.0 | | 0.8373 | 17.39 | 1200 | 0.7345 | 1.0 | | 0.4959 | 23.19 | 1600 | 0.7296 | 1.0 | | 0.3207 | 28.98 | 2000 | 0.7701 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
e5d67c6ffa8fff9bc7e79907a0c41069
jonatasgrosman/exp_w2v2r_es_xls-r_accent_surpeninsular-0_nortepeninsular-10_s265
jonatasgrosman
wav2vec2
10
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['es']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'es']
false
true
true
495
false
# exp_w2v2r_es_xls-r_accent_surpeninsular-0_nortepeninsular-10_s265 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
666102b61c5021f6a17b95ad6763e07a
Duskfallcrew/duskfallcomicmixpartdeux
Duskfallcrew
null
107
15
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image']
false
true
true
906
false
### DuskfallComicMixPartDeux Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk Discord https://discord.gg/Da7s8d3KJ7 Do not sell merges, or this model. Do share, and credit if you use this model. DO PLS REVIEW AND YELL AT ME IF IT SUCKS! We never update the images on here anymore see civit https://civitai.com/user/duskfallcrew
74df58f915f9dbe644e7ead4ca0f24f0
Helsinki-NLP/opus-mt-fr-sg
Helsinki-NLP
marian
10
9
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-fr-sg * source languages: fr * target languages: sg * OPUS readme: [fr-sg](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-sg/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-sg/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-sg/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-sg/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.sg | 29.7 | 0.473 |
cc0b97ac530dcfd7f164d2ef1c4e28fc
Nour33/t5-small-finetuned-samsum
Nour33
t5
9
5
transformers
0
text2text-generation
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,618
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-samsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.7087 - Validation Loss: 1.6756 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 14728, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.1000 | 1.7915 | 0 | | 1.9259 | 1.7424 | 1 | | 1.8512 | 1.7167 | 2 | | 1.8005 | 1.6925 | 3 | | 1.7655 | 1.6840 | 4 | | 1.7392 | 1.6799 | 5 | | 1.7204 | 1.6757 | 6 | | 1.7087 | 1.6756 | 7 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
cb9bc2aa6674eb71c08c4d801109ea29
nielsr/coref-roberta-large
nielsr
null
6
25
transformers
0
null
true
false
false
apache-2.0
['en']
['wikipedia', 'quoref', 'docred', 'fever', 'gap', 'winograd_wsc', 'winogender', 'glue']
null
0
0
0
0
0
0
0
['exbert']
false
true
true
2,405
false
# CorefRoBERTa large model Pretrained model on English language using Masked Language Modeling (MLM) and Mention Reference Prediction (MRP) objectives. It was introduced in [this paper](https://arxiv.org/abs/2004.06870) and first released in [this repository](https://github.com/thunlp/CorefBERT). Disclaimer: The team releasing CorefRoBERTa did not write a model card for this model so this model card has been written by me. ## Model description CorefRoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Mention reference prediction (MRP): this is a novel training task which is proposed to enhance coreferential reasoning ability. MRP utilizes the mention reference masking strategy to mask one of the repeated mentions and then employs a copybased training objective to predict the masked tokens by copying from other tokens in the sequence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks, especially those that involve coreference resolution. If you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the CorefRoBERTa model as inputs. ### BibTeX entry and citation info ```bibtex @misc{ye2020coreferential, title={Coreferential Reasoning Learning for Language Representation}, author={Deming Ye and Yankai Lin and Jiaju Du and Zhenghao Liu and Peng Li and Maosong Sun and Zhiyuan Liu}, year={2020}, eprint={2004.06870}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
8c4793f007d5c737aa051d4a7774002b
course5i/SEAD-L-6_H-384_A-12-qqp
course5i
bert
11
3
transformers
0
text-classification
true
true
true
apache-2.0
['en']
['glue', 'qqp']
null
0
0
0
0
0
0
0
['SEAD']
false
true
true
3,621
false
## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-384_A-12-qqp This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **qqp** task. For weights initialization, we used [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_accuracy | eval_f1 | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:-------------:|:-------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.9126 | 0.8822 | 23.0122 | 1756.896 | 54.927 | 0.3389 | 40430 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
dbd15c9236b1879f6330fcc5f010ccea
ali2066/finetuned_sentence_itr4_3e-05_all_27_02_2022-18_46_19
ali2066
distilbert
13
6
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,615
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr4_3e-05_all_27_02_2022-18_46_19 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3962 - Accuracy: 0.8231 - F1: 0.8873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3591 | 0.8366 | 0.8950 | | No log | 2.0 | 390 | 0.3558 | 0.8415 | 0.9012 | | 0.3647 | 3.0 | 585 | 0.4049 | 0.8427 | 0.8983 | | 0.3647 | 4.0 | 780 | 0.5030 | 0.8378 | 0.8949 | | 0.3647 | 5.0 | 975 | 0.5719 | 0.8354 | 0.8943 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
9f913bbe7806a4cc57608b9c2c6554f8
minchul/ddpm-ema-flowers-64
minchul
null
8
1
diffusers
0
null
false
false
false
apache-2.0
['en']
['huggan/flowers-102-categories']
null
0
0
0
0
0
0
0
[]
false
true
true
1,223
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-ema-flowers-64 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/flowers-102-categories` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(0.95, 0.999), weight_decay=1e-06 and epsilon=1e-08 - lr_scheduler: cosine - lr_warmup_steps: 500 - ema_inv_gamma: 1.0 - ema_inv_gamma: 0.75 - ema_inv_gamma: 0.9999 - mixed_precision: no ### Training results 📈 [TensorBoard logs](https://huggingface.co/minchul/ddpm-ema-flowers-64/tensorboard?#scalars)
0dc3603f48e220d2db521732391fb1a8
Someman/distilbert-base-uncased-finetuned-emotion
Someman
distilbert
12
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
1
0
1
0
0
0
0
['generated_from_trainer']
true
true
true
1,344
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2186 - Accuracy: 0.9245 - F1: 0.9246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3083 | 0.9005 | 0.8972 | | No log | 2.0 | 500 | 0.2186 | 0.9245 | 0.9246 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
e34e9b478d1adde1178057f347ab843b
thiros/YuzuLemonTea
thiros
null
12
0
null
63
text-to-image
false
false
false
cc0-1.0
null
null
null
0
0
0
0
2
2
0
['stable-diffusion', 'text-to-image']
false
true
true
2,307
false
# YuzuLemonTea Mix models ☕ List of my experimental merge models - [Recommended Settings](#recommended-setteings) - [YuzuLemonMilk](#yuzulemonmilk) - [YuzuLemonChaiLatte](#yuzulemonchailatte) - [YuzuGinger](#yuzuginger) # important notice(Jan 15/23) According to bbc-mc's note, there is a possibility of bug that some token(prompt) can be ignored, when merge with "add difference" option. Milk and ChaiLatte models are now replaced with bug-fix ver. https://note.com/bbcmc/n/n12c05bf109cc # Recommended Setteings VAE: "kl-f8-anime2" and "vae-ft-mse-840000-ema-pruned" are suitable Steps: 20-30, Sampler: DPM++ SDE Karras or DPM++ 2M Karras, CFG scale: 8, Clip skip: 2, ENSD: 31377, Hires upscale: 2, Hires upscaler: Latent (bicubic antialiased),Denoising strength: 0.54~0.7 Negataive Prompt: (worst quality:2), (low quality:2),inaccurate limb,lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name - (worst quality), (low quality) are adjustable between 1.4~2.0 - If you don't want 3DCG-ish paint, you can add (3d:0.8)~1.0 in Negative Prompt # Sample prompt 4girls,(a 3d reader of:0.8) (teenage loli children:1.2), (wearing intricate casual camisole, cute hair ornament,crop jacket,hot pants, tighhigh:1.1), shiny brown skin, looking at viewer, (alluring smug:1.2), dynamic angle, (onomichi street:1.2),fisheye <img src="https://i.imgur.com/2JiZwFU.jpg" width="" height="1000"> # YuzuLemonMilk Block merged model of Anything v3 and some real models. Rather photo realistic. Works fine with positive (realistic) and (photo realistic). <img src="https://i.imgur.com/qYK8DKn.jpg" width="" height="1000"> # YuzuLemonChaiLatte Combination of a weight merge of ACertainModel and Anything-V3.0, and a block merge of several realistic models. Rather anime-ish style with realistic background. - v3.5 <img src="https://i.imgur.com/WLKr3pj.jpg" width="" height="1000"> - v9.5 <img src="https://i.imgur.com/Ufh3JK2.jpg" width="" height="1000"> # YuzuGinger Add more anime models to YuzuLemonChaiLatte. Can be very anime looks. - v1 <img src="https://i.imgur.com/4vc4HSL.jpg" width="" height="1000"> - v4 <img src="https://i.imgur.com/M6q6hYp.jpg" width="" height="1000">
ddbd9276ea3b8056ce6c086d05f064ca
gus1999/distilcamembert-base-finetuned-allocine
gus1999
camembert
11
2
transformers
0
fill-mask
true
false
false
mit
null
['allocine']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,294
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilcamembert-base-finetuned-allocine This model is a fine-tuned version of [cmarkea/distilcamembert-base](https://huggingface.co/cmarkea/distilcamembert-base) on the allocine dataset. It achieves the following results on the evaluation set: - Loss: 2.1493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4479 | 1.0 | 157 | 2.2066 | | 2.3065 | 2.0 | 314 | 2.1144 | | 2.2567 | 3.0 | 471 | 2.1565 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
6c4ff4860077660322dfd8011efa4901
philschmid/tf-distilbart-cnn-12-6
philschmid
bart
9
14
transformers
0
summarization
false
true
false
apache-2.0
['en']
['cnn_dailymail', 'xsum']
null
0
0
0
0
0
0
0
['summarization']
false
true
true
1,654
false
# This is an Tensorflow fork of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
57822c830cdbd96c129cd4c03ca047b6
tuni/xlm-roberta-large-xnli-finetuned-mnli-SJP
tuni
xlm-roberta
14
1
transformers
0
text-classification
true
false
false
mit
null
['swiss_judgment_prediction']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,511
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-xnli-finetuned-mnli-SJP This model is a fine-tuned version of [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) on the swiss_judgment_prediction dataset. It achieves the following results on the evaluation set: - Loss: 1.3456 - Accuracy: 0.7957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 5 | 1.8460 | 0.7956 | | No log | 2.0 | 10 | 1.3456 | 0.7957 | | No log | 3.0 | 15 | 1.2799 | 0.7957 | | No log | 4.0 | 20 | 1.2866 | 0.7957 | | No log | 5.0 | 25 | 1.3162 | 0.7956 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
863e222deba23b5dbf1df194937c6ec2
Rocketknight1/europython-imdb-distilbert
Rocketknight1
distilbert
8
5
transformers
0
text-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,330
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # europython-imdb-distilbert This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3081 - Train Accuracy: 0.8663 - Validation Loss: 0.2459 - Validation Accuracy: 0.9006 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.3081 | 0.8663 | 0.2459 | 0.9006 | 0 | ### Framework versions - Transformers 4.21.0.dev0 - TensorFlow 2.9.1 - Datasets 2.3.3.dev0 - Tokenizers 0.11.0
1f7be57be443c9aafb5ea712bdf1b29f