repo_id
stringlengths 4
110
| author
stringlengths 2
27
⌀ | model_type
stringlengths 2
29
⌀ | files_per_repo
int64 2
15.4k
| downloads_30d
int64 0
19.9M
| library
stringlengths 2
37
⌀ | likes
int64 0
4.34k
| pipeline
stringlengths 5
30
⌀ | pytorch
bool 2
classes | tensorflow
bool 2
classes | jax
bool 2
classes | license
stringlengths 2
30
| languages
stringlengths 4
1.63k
⌀ | datasets
stringlengths 2
2.58k
⌀ | co2
stringclasses 29
values | prs_count
int64 0
125
| prs_open
int64 0
120
| prs_merged
int64 0
15
| prs_closed
int64 0
28
| discussions_count
int64 0
218
| discussions_open
int64 0
148
| discussions_closed
int64 0
70
| tags
stringlengths 2
513
| has_model_index
bool 2
classes | has_metadata
bool 1
class | has_text
bool 1
class | text_length
int64 401
598k
| is_nc
bool 1
class | readme
stringlengths 0
598k
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
laion/CLIP-ViT-B-32-laion2B-s34B-b79K
|
laion
|
clip
| 12 | 157,621 |
open_clip
| 16 | null | true | false | false |
mit
| null | null | null | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
[]
| false | true | true | 7,209 | false |
# Model Card for CLIP ViT-B/32 - LAION-2B
# Table of Contents
1. [Model Details](#model-details)
2. [Uses](#uses)
3. [Training Details](#training-details)
4. [Evaluation](#evaluation)
5. [Acknowledgements](#acknowledgements)
6. [Citation](#citation)
7. [How To Get Started With the Model](#how-to-get-started-with-the-model)
# Model Details
## Model Description
A CLIP ViT-B/32 model trained with the LAION-2B English subset of LAION-5B (https://laion.ai/blog/laion-5b/) using OpenCLIP (https://github.com/mlfoundations/open_clip).
Model training done by Romain Beaumont on the [stability.ai](https://stability.ai/) cluster.
# Uses
As per the original [OpenAI CLIP model card](https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/model-card.md), this model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such model.
The OpenAI CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis. Additionally, the LAION-5B blog (https://laion.ai/blog/laion-5b/) and upcoming paper include additional discussion as it relates specifically to the training dataset.
## Direct Use
Zero-shot image classification, image and text retrieval, among others.
## Downstream Use
Image classification and other image task fine-tuning, linear probe image classification, image generation guiding and conditioning, among others.
## Out-of-Scope Use
As per the OpenAI models,
**Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful.
Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use.
Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases.
Further the above notice, the LAION-5B dataset used in training of these models has additional considerations, see below.
# Training Details
## Training Data
This model was trained with the 2 Billion sample English subset of LAION-5B (https://laion.ai/blog/laion-5b/).
**IMPORTANT NOTE:** The motivation behind dataset creation is to democratize research and experimentation around large-scale multi-modal model training and handling of uncurated, large-scale datasets crawled from publically available internet. Our recommendation is therefore to use the dataset for research purposes. Be aware that this large-scale dataset is uncurated. Keep in mind that the uncurated nature of the dataset means that collected links may lead to strongly discomforting and disturbing content for a human viewer. Therefore, please use the demo links with caution and at your own risk. It is possible to extract a “safe” subset by filtering out samples based on the safety tags (using a customized trained NSFW classifier that we built). While this strongly reduces the chance for encountering potentially harmful content when viewing, we cannot entirely exclude the possibility for harmful content being still present in safe mode, so that the warning holds also there. We think that providing the dataset openly to broad research and other interested communities will allow for transparent investigation of benefits that come along with training large-scale models as well as pitfalls and dangers that may stay unreported or unnoticed when working with closed large datasets that remain restricted to a small community. Providing our dataset openly, we however do not recommend using it for creating ready-to-go industrial products, as the basic research about general properties and safety of such large-scale models, which we would like to encourage with this release, is still in progress.
## Training Procedure
Please see [training notes](https://docs.google.com/document/d/1EFbMLRWSSV0LUf9Du1pWzWqgeiIRPwEWX2s1C6mAk5c) and [wandb logs](https://wandb.ai/rom1504/eval_openclip/reports/B-32-2B--VmlldzoyNDkwNDMy).
# Evaluation
Evaluation done with code in the [LAION CLIP Benchmark suite](https://github.com/LAION-AI/CLIP_benchmark).
## Testing Data, Factors & Metrics
### Testing Data
The testing is performed with VTAB+ (A combination of VTAB (https://arxiv.org/abs/1910.04867) w/ additional robustness datasets) for classification and COCO and Flickr for retrieval.
**TODO** - more detail
## Results
The model achieves a 66.6 zero-shot top-1 accuracy on ImageNet-1k.
An initial round of benchmarks have been performed on a wider range of datasets, currently viewable at https://github.com/LAION-AI/CLIP_benchmark/blob/main/benchmark/results.ipynb
**TODO** - create table for just this model's metrics.
# Acknowledgements
Acknowledging [stability.ai](https://stability.ai/) for the compute used to train this model.
# Citation
**BibTeX:**
In addition to forthcoming LAION-5B (https://laion.ai/blog/laion-5b/) paper, please cite:
OpenAI CLIP paper
```
@inproceedings{Radford2021LearningTV,
title={Learning Transferable Visual Models From Natural Language Supervision},
author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
booktitle={ICML},
year={2021}
}
```
OpenCLIP software
```
@software{ilharco_gabriel_2021_5143773,
author = {Ilharco, Gabriel and
Wortsman, Mitchell and
Wightman, Ross and
Gordon, Cade and
Carlini, Nicholas and
Taori, Rohan and
Dave, Achal and
Shankar, Vaishaal and
Namkoong, Hongseok and
Miller, John and
Hajishirzi, Hannaneh and
Farhadi, Ali and
Schmidt, Ludwig},
title = {OpenCLIP},
month = jul,
year = 2021,
note = {If you use this software, please cite it as below.},
publisher = {Zenodo},
version = {0.1},
doi = {10.5281/zenodo.5143773},
url = {https://doi.org/10.5281/zenodo.5143773}
}
```
# How to Get Started with the Model
Use the code below to get started with the model.
** TODO ** - Hugging Face transformers, OpenCLIP, and timm getting started snippets
|
99b65c4f93a16ad5a4f1cd6c302e43ff
|
ArBert/roberta-base-finetuned-ner-kmeans-twitter
|
ArBert
|
roberta
| 15 | 8 |
transformers
| 0 |
token-classification
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,879 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-finetuned-ner-kmeans-twitter
This model is a fine-tuned version of [ArBert/roberta-base-finetuned-ner](https://huggingface.co/ArBert/roberta-base-finetuned-ner) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6645
- Precision: 0.6885
- Recall: 0.7665
- F1: 0.7254
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
| No log | 1.0 | 245 | 0.2820 | 0.6027 | 0.7543 | 0.6700 |
| No log | 2.0 | 490 | 0.2744 | 0.6308 | 0.7864 | 0.7000 |
| 0.2301 | 3.0 | 735 | 0.2788 | 0.6433 | 0.7637 | 0.6984 |
| 0.2301 | 4.0 | 980 | 0.3255 | 0.6834 | 0.7221 | 0.7022 |
| 0.1153 | 5.0 | 1225 | 0.3453 | 0.6686 | 0.7439 | 0.7043 |
| 0.1153 | 6.0 | 1470 | 0.3988 | 0.6797 | 0.7420 | 0.7094 |
| 0.0617 | 7.0 | 1715 | 0.4711 | 0.6702 | 0.7259 | 0.6969 |
| 0.0617 | 8.0 | 1960 | 0.4904 | 0.6904 | 0.7505 | 0.7192 |
| 0.0328 | 9.0 | 2205 | 0.5088 | 0.6591 | 0.7713 | 0.7108 |
| 0.0328 | 10.0 | 2450 | 0.5709 | 0.6468 | 0.7788 | 0.7067 |
| 0.019 | 11.0 | 2695 | 0.5570 | 0.6642 | 0.7533 | 0.7059 |
| 0.019 | 12.0 | 2940 | 0.5574 | 0.6899 | 0.7656 | 0.7258 |
| 0.0131 | 13.0 | 3185 | 0.5858 | 0.6952 | 0.7609 | 0.7265 |
| 0.0131 | 14.0 | 3430 | 0.6239 | 0.6556 | 0.7826 | 0.7135 |
| 0.0074 | 15.0 | 3675 | 0.5931 | 0.6825 | 0.7599 | 0.7191 |
| 0.0074 | 16.0 | 3920 | 0.6364 | 0.6785 | 0.7580 | 0.7161 |
| 0.005 | 17.0 | 4165 | 0.6437 | 0.6855 | 0.7580 | 0.7199 |
| 0.005 | 18.0 | 4410 | 0.6610 | 0.6779 | 0.7599 | 0.7166 |
| 0.0029 | 19.0 | 4655 | 0.6625 | 0.6853 | 0.7656 | 0.7232 |
| 0.0029 | 20.0 | 4900 | 0.6645 | 0.6885 | 0.7665 | 0.7254 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
397c29d753e3d66f1829e2de0365d6ab
|
KoichiYasuoka/deberta-large-japanese-unidic-ud-head
|
KoichiYasuoka
|
deberta-v2
| 17 | 2 |
transformers
| 0 |
question-answering
| true | false | false |
cc-by-sa-4.0
|
['ja']
|
['universal_dependencies']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['japanese', 'question-answering', 'dependency-parsing']
| false | true | true | 4,530 | false |
# deberta-large-japanese-unidic-ud-head
## Model Description
This is a DeBERTa(V2) model pretrained on 青空文庫 for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [deberta-large-japanese-unidic](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-unidic) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`.
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForQuestionAnswering,QuestionAnsweringPipeline
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic-ud-head")
model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic-ud-head")
qap=QuestionAnsweringPipeline(tokenizer=tokenizer,model=model,align_to_words=False)
print(qap(question="国語",context="全学年にわたって小学校の国語の教科書に挿し絵>が用いられている"))
```
or
```py
from transformers import (AutoTokenizer,AutoModelForQuestionAnswering,
AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline)
class TaggerPipeline(TokenClassificationPipeline):
def __call__(self,text):
d=super().__call__(text)
if len(d)>0 and ("start" not in d[0] or d[0]["start"]==None):
import tokenizations
v=[x["word"].replace(" ","") for x in d]
a2b,b2a=tokenizations.get_alignments(v,text)
for i,t in enumerate(a2b):
s,e=(0,0) if t==[] else (t[0],t[-1]+1)
if v[i].startswith(self.tokenizer.unk_token):
s=([[-1]]+[x for x in a2b[0:i] if x>[]])[-1][-1]+1
if v[i].endswith(self.tokenizer.unk_token):
e=([x for x in a2b[i+1:] if x>[]]+[[len(text)]])[0][0]
d[i]["start"],d[i]["end"]=s,e
return d
class TransformersSlowUD(object):
def __init__(self,bert):
import os
self.tokenizer=AutoTokenizer.from_pretrained(bert)
self.model=AutoModelForQuestionAnswering.from_pretrained(bert)
x=AutoModelForTokenClassification.from_pretrained
if os.path.isdir(bert):
d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger"))
else:
from transformers.utils import cached_file
c=AutoConfig.from_pretrained(cached_file(bert,"deprel/config.json"))
d=x(cached_file(bert,"deprel/pytorch_model.bin"),config=c)
s=AutoConfig.from_pretrained(cached_file(bert,"tagger/config.json"))
t=x(cached_file(bert,"tagger/pytorch_model.bin"),config=s)
self.deprel=TaggerPipeline(model=d,tokenizer=self.tokenizer,
aggregation_strategy="simple")
self.tagger=TaggerPipeline(model=t,tokenizer=self.tokenizer)
def __call__(self,text):
import numpy,torch,ufal.chu_liu_edmonds
w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)]
z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w)
r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan)
v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[]
for i,t in enumerate(v):
q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id]
c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]])
b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c]
with torch.no_grad():
d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]),
token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b]))
s,e=d.start_logits.tolist(),d.end_logits.tolist()
for i in range(n):
for j in range(n):
m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1]
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
if [0 for i in h if i==0]!=[0]:
i=([p for s,e,p in w]+["root"]).index("root")
j=i+1 if i<n else numpy.nanargmax(m[:,0])
m[0:j,0]=m[j+1:,0]=numpy.nan
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
u="# text = "+text.replace("\n"," ")+"\n"
for i,(s,e,p) in enumerate(w,1):
p="root" if h[i]==0 else "dep" if p=="root" else p
u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]),
str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n"
return u+"\n"
nlp=TransformersSlowUD("KoichiYasuoka/deberta-large-japanese-unidic-ud-head")
print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている"))
```
[fugashi](https://pypi.org/project/fugashi) [unidic-lite](https://pypi.org/project/unidic-lite) [pytokenizations](https://pypi.org/project/pytokenizations) and [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/) required.
|
1651d406dc5a8c2c17fa6d113a04e82c
|
Helsinki-NLP/opus-mt-iso-fr
|
Helsinki-NLP
|
marian
| 10 | 7 |
transformers
| 0 |
translation
| true | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['translation']
| false | true | true | 776 | false |
### opus-mt-iso-fr
* source languages: iso
* target languages: fr
* OPUS readme: [iso-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/iso-fr/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/iso-fr/opus-2020-01-09.zip)
* test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-fr/opus-2020-01-09.test.txt)
* test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-fr/opus-2020-01-09.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.iso.fr | 25.6 | 0.422 |
|
c73269bade7ff8fe1f2cfeffdee32d8f
|
Helsinki-NLP/opus-mt-tc-big-hu-en
|
Helsinki-NLP
|
marian
| 13 | 25 |
transformers
| 1 |
translation
| true | true | false |
cc-by-4.0
|
['en', 'hu']
| null | null | 2 | 1 | 1 | 0 | 0 | 0 | 0 |
['translation', 'opus-mt-tc']
| true | true | true | 5,422 | false |
# opus-mt-tc-big-hu-en
Neural machine translation model for translating from Hungarian (hu) to English (en).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-09
* source language(s): hun
* target language(s): eng
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-09.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/hun-eng/opusTCv20210807+bt_transformer-big_2022-03-09.zip)
* more information released models: [OPUS-MT hun-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hun-eng/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"Bárcsak ne láttam volna ilyen borzalmas filmet!",
"Iskolában van."
]
model_name = "pytorch-models/opus-mt-tc-big-hu-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# I wish I hadn't seen such a terrible movie.
# She's at school.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-hu-en")
print(pipe("Bárcsak ne láttam volna ilyen borzalmas filmet!"))
# expected output: I wish I hadn't seen such a terrible movie.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-09.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hun-eng/opusTCv20210807+bt_transformer-big_2022-03-09.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hun-eng/opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| hun-eng | tatoeba-test-v2021-08-07 | 0.66644 | 50.4 | 13037 | 94699 |
| hun-eng | flores101-devtest | 0.61974 | 34.6 | 1012 | 24721 |
| hun-eng | newssyscomb2009 | 0.52563 | 24.7 | 502 | 11818 |
| hun-eng | newstest2009 | 0.51698 | 23.4 | 2525 | 65399 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 19:33:38 EEST 2022
* port machine: LM0-400-22516.local
|
93c1859ac77de0ab78c92324e3883af1
|
gneuert/swin-tiny-patch4-window7-224-finetuned-eurosat
|
gneuert
|
swin
| 9 | 22 |
transformers
| 0 |
image-classification
| true | false | false |
apache-2.0
| null |
['cifar10']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,063 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the cifar10 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
73cf9230b44465323968aad4b4cc31e4
|
GW12/wav2vec2-libri-train100-colab
|
GW12
|
wav2vec2
| 15 | 29 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 4,596 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-libri-train100-colab
This model is a fine-tuned version of [GW12/wav2vec2-base-timit-demo-colab](https://huggingface.co/GW12/wav2vec2-base-timit-demo-colab) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2039
- Wer: 0.1190
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 2.9399 | 0.18 | 500 | 0.3129 | 0.2584 |
| 0.2556 | 0.36 | 1000 | 0.7132 | 0.2435 |
| 0.2184 | 0.54 | 1500 | 0.4794 | 0.2382 |
| 0.1878 | 0.72 | 2000 | 0.2399 | 0.1881 |
| 0.1764 | 0.91 | 2500 | 0.2089 | 0.1807 |
| 0.1524 | 1.09 | 3000 | 0.2328 | 0.1679 |
| 0.1319 | 1.27 | 3500 | 0.4081 | 0.2228 |
| 0.1325 | 1.45 | 4000 | 0.2202 | 0.1674 |
| 0.1315 | 1.63 | 4500 | 0.2055 | 0.1602 |
| 0.1205 | 1.81 | 5000 | 0.2152 | 0.1616 |
| 0.1199 | 1.99 | 5500 | 0.3416 | 0.1666 |
| 0.0978 | 2.17 | 6000 | 0.1856 | 0.1518 |
| 0.0947 | 2.35 | 6500 | 0.2043 | 0.1550 |
| 0.0971 | 2.54 | 7000 | 0.2786 | 0.1550 |
| 0.0969 | 2.72 | 7500 | 0.7752 | 0.1823 |
| 0.0957 | 2.9 | 8000 | 0.2138 | 0.1495 |
| 0.0863 | 3.08 | 8500 | 0.2073 | 0.1450 |
| 0.0773 | 3.26 | 9000 | 0.5881 | 0.1665 |
| 0.0765 | 3.44 | 9500 | 0.2214 | 0.1457 |
| 0.078 | 3.62 | 10000 | 0.1984 | 0.1421 |
| 0.0793 | 3.8 | 10500 | 0.1800 | 0.1419 |
| 0.0738 | 3.98 | 11000 | 0.1884 | 0.1399 |
| 0.0645 | 4.17 | 11500 | 0.1802 | 0.1365 |
| 0.0649 | 4.35 | 12000 | 0.1827 | 0.1346 |
| 0.0593 | 4.53 | 12500 | 0.1850 | 0.1368 |
| 0.0619 | 4.71 | 13000 | 0.1890 | 0.1363 |
| 0.0623 | 4.89 | 13500 | 0.1923 | 0.1339 |
| 0.0583 | 5.07 | 14000 | 0.1711 | 0.1311 |
| 0.0511 | 5.25 | 14500 | 0.1950 | 0.1330 |
| 0.049 | 5.43 | 15000 | 0.1857 | 0.1318 |
| 0.0527 | 5.61 | 15500 | 0.1881 | 0.1298 |
| 0.0513 | 5.8 | 16000 | 0.1904 | 0.1313 |
| 0.0506 | 5.98 | 16500 | 0.1795 | 0.1288 |
| 0.0447 | 6.16 | 17000 | 0.1924 | 0.1277 |
| 0.0434 | 6.34 | 17500 | 0.1979 | 0.1294 |
| 0.0418 | 6.52 | 18000 | 0.1971 | 0.1272 |
| 0.0415 | 6.7 | 18500 | 0.1932 | 0.1267 |
| 0.0425 | 6.88 | 19000 | 0.1902 | 0.1261 |
| 0.0384 | 7.06 | 19500 | 0.2078 | 0.1259 |
| 0.0349 | 7.24 | 20000 | 0.2167 | 0.1293 |
| 0.0325 | 7.42 | 20500 | 0.2150 | 0.1269 |
| 0.0344 | 7.61 | 21000 | 0.1923 | 0.1222 |
| 0.0337 | 7.79 | 21500 | 0.1955 | 0.1216 |
| 0.0336 | 7.97 | 22000 | 0.1932 | 0.1223 |
| 0.0286 | 8.15 | 22500 | 0.2115 | 0.1230 |
| 0.0306 | 8.33 | 23000 | 0.2015 | 0.1237 |
| 0.0274 | 8.51 | 23500 | 0.2110 | 0.1231 |
| 0.0284 | 8.69 | 24000 | 0.2094 | 0.1217 |
| 0.0282 | 8.87 | 24500 | 0.2030 | 0.1205 |
| 0.0257 | 9.05 | 25000 | 0.2092 | 0.1204 |
| 0.0267 | 9.24 | 25500 | 0.2093 | 0.1198 |
| 0.0252 | 9.42 | 26000 | 0.2070 | 0.1195 |
| 0.0248 | 9.6 | 26500 | 0.2056 | 0.1193 |
| 0.026 | 9.78 | 27000 | 0.2045 | 0.1193 |
| 0.0238 | 9.96 | 27500 | 0.2039 | 0.1190 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0
- Datasets 1.13.3
- Tokenizers 0.10.3
|
eebe00c4b909404588d08af02081bf73
|
sd-dreambooth-library/yingdream
|
sd-dreambooth-library
| null | 21 | 3 |
diffusers
| 0 | null | false | false | false |
mit
| null | null | null | 2 | 2 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 835 | false |
### yingdream on Stable Diffusion via Dreambooth
#### model by Worldwars
This your the Stable Diffusion model fine-tuned the yingdream concept taught to Stable Diffusion with Dreambooth.
It can be used by modifying the `instance_prompt`: **a photo of an anime girl**
You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb).
Here are the images used for training this concept:



|
3af2c4b9767dd66633ac32e440312730
|
sd-concepts-library/happy-person12345-assets
|
sd-concepts-library
| null | 8 | 0 | null | 0 | null | false | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,032 | false |
### Happy_Person12345_Assets on Stable Diffusion
This is the `<Happy-Person12345-assets>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:



|
62164719693d53dd1f046e59fe1c8c38
|
kpriyanshu256/whisper-small-as-500-64-1e-05-pretrain-bn
|
kpriyanshu256
|
whisper
| 15 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['as']
|
['mozilla-foundation/common_voice_11_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['whisper-event', 'generated_from_trainer']
| true | true | true | 1,611 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-small-Assamese
This model is a fine-tuned version of [kpriyanshu256/whisper-small-as-500-64-1e-05-bn](https://huggingface.co/kpriyanshu256/whisper-small-as-500-64-1e-05-bn) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5071
- Wer: 32.0159
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0658 | 8.01 | 100 | 0.3295 | 31.9978 |
| 0.0027 | 16.02 | 200 | 0.4516 | 31.8896 |
| 0.0005 | 24.02 | 300 | 0.4881 | 31.9256 |
| 0.0003 | 33.01 | 400 | 0.5026 | 31.9437 |
| 0.0003 | 41.02 | 500 | 0.5071 | 32.0159 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
df78b22363eae82121c0ef1ccd24c5c2
|
anidamarthy/model_name-finetuned-alm
|
anidamarthy
|
distilbert
| 12 | 2 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,261 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model_name-finetuned-alm
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3002
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.13 | 1.0 | 2 | 1.3157 |
| 1.7507 | 2.0 | 4 | 1.3075 |
| 1.2933 | 3.0 | 6 | 1.2200 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.10.0
- Datasets 2.6.1
- Tokenizers 0.13.2
|
dcaa1167a5afc881c1f76312e108a2d7
|
google/multiberts-seed_4-step_80k
|
google
|
bert
| 8 | 13 |
transformers
| 0 | null | true | true | false |
apache-2.0
|
['en']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['multiberts', 'multiberts-seed_4', 'multiberts-seed_4-step_80k']
| false | true | true | 3,515 | false |
# MultiBERTs, Intermediate Checkpoint - Seed 4, Step 80k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #4, captured at step 80k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_4-step_80k')
model = TFBertModel.from_pretrained("google/multiberts-seed_4-step_80k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_4-step_80k')
model = BertModel.from_pretrained("google/multiberts-seed_4-step_80k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
1672e8937865056ccfd3efcec8c30eae
|
Helsinki-NLP/opus-mt-ru-vi
|
Helsinki-NLP
|
marian
| 11 | 16 |
transformers
| 0 |
translation
| true | true | false |
apache-2.0
|
['ru', 'vi']
| null | null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['translation']
| false | true | true | 2,015 | false |
### rus-vie
* source group: Russian
* target group: Vietnamese
* OPUS readme: [rus-vie](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-vie/README.md)
* model: transformer-align
* source language(s): rus
* target language(s): vie
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-vie/opus-2020-06-17.zip)
* test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-vie/opus-2020-06-17.test.txt)
* test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-vie/opus-2020-06-17.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.rus.vie | 16.9 | 0.346 |
### System Info:
- hf_name: rus-vie
- source_languages: rus
- target_languages: vie
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-vie/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['ru', 'vi']
- src_constituents: {'rus'}
- tgt_constituents: {'vie', 'vie_Hani'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-vie/opus-2020-06-17.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-vie/opus-2020-06-17.test.txt
- src_alpha3: rus
- tgt_alpha3: vie
- short_pair: ru-vi
- chrF2_score: 0.34600000000000003
- bleu: 16.9
- brevity_penalty: 1.0
- ref_len: 2566.0
- src_name: Russian
- tgt_name: Vietnamese
- train_date: 2020-06-17
- src_alpha2: ru
- tgt_alpha2: vi
- prefer_old: False
- long_pair: rus-vie
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41
|
93fba10115d3ec4309a5c38bfa4bf8dc
|
bigmorning/distilbert_oscarth_0060
|
bigmorning
|
distilbert
| 4 | 2 |
transformers
| 0 |
fill-mask
| false | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_keras_callback']
| true | true | true | 3,607 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# distilbert_oscarth_0060
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.1876
- Validation Loss: 1.1378
- Epoch: 59
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 4.1327 | 2.9983 | 0 |
| 2.7813 | 2.4562 | 1 |
| 2.4194 | 2.2066 | 2 |
| 2.2231 | 2.0562 | 3 |
| 2.0894 | 1.9450 | 4 |
| 1.9905 | 1.8621 | 5 |
| 1.9148 | 1.7941 | 6 |
| 1.8508 | 1.7363 | 7 |
| 1.7976 | 1.6909 | 8 |
| 1.7509 | 1.6488 | 9 |
| 1.7126 | 1.6124 | 10 |
| 1.6764 | 1.5835 | 11 |
| 1.6450 | 1.5521 | 12 |
| 1.6175 | 1.5282 | 13 |
| 1.5919 | 1.5045 | 14 |
| 1.5679 | 1.4833 | 15 |
| 1.5476 | 1.4627 | 16 |
| 1.5271 | 1.4498 | 17 |
| 1.5098 | 1.4270 | 18 |
| 1.4909 | 1.4161 | 19 |
| 1.4760 | 1.3995 | 20 |
| 1.4609 | 1.3864 | 21 |
| 1.4475 | 1.3717 | 22 |
| 1.4333 | 1.3590 | 23 |
| 1.4203 | 1.3478 | 24 |
| 1.4093 | 1.3403 | 25 |
| 1.3980 | 1.3296 | 26 |
| 1.3875 | 1.3176 | 27 |
| 1.3773 | 1.3094 | 28 |
| 1.3674 | 1.3011 | 29 |
| 1.3579 | 1.2920 | 30 |
| 1.3497 | 1.2826 | 31 |
| 1.3400 | 1.2764 | 32 |
| 1.3326 | 1.2694 | 33 |
| 1.3236 | 1.2635 | 34 |
| 1.3169 | 1.2536 | 35 |
| 1.3096 | 1.2477 | 36 |
| 1.3024 | 1.2408 | 37 |
| 1.2957 | 1.2364 | 38 |
| 1.2890 | 1.2296 | 39 |
| 1.2818 | 1.2236 | 40 |
| 1.2751 | 1.2168 | 41 |
| 1.2691 | 1.2126 | 42 |
| 1.2644 | 1.2044 | 43 |
| 1.2583 | 1.2008 | 44 |
| 1.2529 | 1.1962 | 45 |
| 1.2473 | 1.1919 | 46 |
| 1.2416 | 1.1857 | 47 |
| 1.2365 | 1.1812 | 48 |
| 1.2318 | 1.1765 | 49 |
| 1.2273 | 1.1738 | 50 |
| 1.2224 | 1.1672 | 51 |
| 1.2177 | 1.1673 | 52 |
| 1.2132 | 1.1595 | 53 |
| 1.2084 | 1.1564 | 54 |
| 1.2033 | 1.1518 | 55 |
| 1.1993 | 1.1481 | 56 |
| 1.1966 | 1.1445 | 57 |
| 1.1924 | 1.1412 | 58 |
| 1.1876 | 1.1378 | 59 |
### Framework versions
- Transformers 4.20.1
- TensorFlow 2.8.2
- Datasets 2.3.2
- Tokenizers 0.12.1
|
f9424485d9a0dd6c156a747680e60309
|
DrishtiSharma/wav2vec2-large-xls-r-300m-ab-CV7
|
DrishtiSharma
|
wav2vec2
| 19 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['ab']
|
['mozilla-foundation/common_voice_7_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'mozilla-foundation/common_voice_7_0', 'generated_from_trainer', 'ab', 'robust-speech-event', 'model_for_talk', 'hf-asr-leaderboard']
| true | true | true | 1,871 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5620
- Wer: 0.5651
### Evaluation Commands
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-ab-CV7 --dataset mozilla-foundation/common_voice_7_0 --config ab --split test --log_outputs
2. To evaluate on speech-recognition-community-v2/dev_data
NA
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 9.6445 | 13.64 | 300 | 4.3963 | 1.0 |
| 3.6459 | 27.27 | 600 | 3.2267 | 1.0 |
| 3.0978 | 40.91 | 900 | 3.0927 | 1.0 |
| 2.8357 | 54.55 | 1200 | 2.1462 | 1.0029 |
| 1.2723 | 68.18 | 1500 | 0.6747 | 0.6996 |
| 0.6528 | 81.82 | 1800 | 0.5928 | 0.6422 |
| 0.4905 | 95.45 | 2100 | 0.5587 | 0.5681 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
cc8928283f5dbff8571f7ff128d772b1
|
bolbolzaban/gpt2-persian
|
bolbolzaban
|
gpt2
| 13 | 381 |
transformers
| 6 |
text-generation
| true | true | true |
apache-2.0
|
['fa']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['farsi', 'persian']
| false | true | true | 4,260 | false |
# GPT2-Persian
bolbolzaban/gpt2-persian is gpt2 language model that is trained with hyper parameters similar to standard gpt2-medium with following differences:
1. The context size is reduced from 1024 to 256 sub words in order to make the training affordable
2. Instead of BPE, google sentence piece tokenizor is used for tokenization.
3. The training dataset only include Persian text. All non-persian characters are replaced with especial tokens (e.g [LAT], [URL], [NUM])
Please refer to this [blog post](https://medium.com/@khashei/a-not-so-dangerous-ai-in-the-persian-language-39172a641c84) for further detail.
Also try the model [here](https://huggingface.co/bolbolzaban/gpt2-persian?text=%D8%AF%D8%B1+%DB%8C%DA%A9+%D8%A7%D8%AA%D9%81%D8%A7%D9%82+%D8%B4%DA%AF%D9%81%D8%AA+%D8%A7%D9%86%DA%AF%DB%8C%D8%B2%D8%8C+%D9%BE%DA%98%D9%88%D9%87%D8%B4%DA%AF%D8%B1%D8%A7%D9%86) or on [Bolbolzaban.com](http://www.bolbolzaban.com/text).
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline, AutoTokenizer, GPT2LMHeadModel
tokenizer = AutoTokenizer.from_pretrained('bolbolzaban/gpt2-persian')
model = GPT2LMHeadModel.from_pretrained('bolbolzaban/gpt2-persian')
generator = pipeline('text-generation', model, tokenizer=tokenizer, config={'max_length':256})
sample = generator('در یک اتفاق شگفت انگیز، پژوهشگران')
```
If you are using Tensorflow import TFGPT2LMHeadModel instead of GPT2LMHeadModel.
## Fine-tuning
Find a basic fine-tuning example on this [Github Repo](https://github.com/khashei/bolbolzaban-gpt2-persian).
## Special Tokens
gpt-persian is trained for the purpose of research on Persian poetry. Because of that all english words and numbers are replaced with special tokens and only standard Persian alphabet is used as part of input text. Here is one example:
Original text: اگر آیفون یا آیپد شما دارای سیستم عامل iOS 14.3 یا iPadOS 14.3 یا نسخههای جدیدتر باشد
Text used in training: اگر آیفون یا آیپد شما دارای سیستم عامل [LAT] [NUM] یا [LAT] [NUM] یا نسخههای جدیدتر باشد
Please consider normalizing your input text using [Hazm](https://github.com/sobhe/hazm) or similar libraries and ensure only Persian characters are provided as input.
If you want to use classical Persian poetry as input use [BOM] (begining of mesra) at the beginning of each verse (مصرع) followed by [EOS] (end of statement) at the end of each couplet (بیت).
See following links for example:
[[BOM] توانا بود](https://huggingface.co/bolbolzaban/gpt2-persian?text=%5BBOM%5D+%D8%AA%D9%88%D8%A7%D9%86%D8%A7+%D8%A8%D9%88%D8%AF)
[[BOM] توانا بود هر که دانا بود [BOM]](https://huggingface.co/bolbolzaban/gpt2-persian?text=%5BBOM%5D+%D8%AA%D9%88%D8%A7%D9%86%D8%A7+%D8%A8%D9%88%D8%AF+%D9%87%D8%B1+%DA%A9%D9%87+%D8%AF%D8%A7%D9%86%D8%A7+%D8%A8%D9%88%D8%AF+%5BBOM%5D)
[[BOM] توانا بود هر که دانا بود [BOM] ز دانش دل پیر](https://huggingface.co/bolbolzaban/gpt2-persian?text=%5BBOM%5D+%D8%AA%D9%88%D8%A7%D9%86%D8%A7+%D8%A8%D9%88%D8%AF+%D9%87%D8%B1+%DA%A9%D9%87+%D8%AF%D8%A7%D9%86%D8%A7+%D8%A8%D9%88%D8%AF+%5BBOM%5D+%D8%B2+%D8%AF%D8%A7%D9%86%D8%B4+%D8%AF%D9%84+%D9%BE%DB%8C%D8%B1)
[[BOM] توانا بود هر که دانا بود [BOM] ز دانش دل پیربرنا بود [EOS]](https://huggingface.co/bolbolzaban/gpt2-persian?text=%5BBOM%5D+%D8%AA%D9%88%D8%A7%D9%86%D8%A7+%D8%A8%D9%88%D8%AF+%D9%87%D8%B1+%DA%A9%D9%87+%D8%AF%D8%A7%D9%86%D8%A7+%D8%A8%D9%88%D8%AF+%5BBOM%5D+%D8%B2+%D8%AF%D8%A7%D9%86%D8%B4+%D8%AF%D9%84+%D9%BE%DB%8C%D8%B1%D8%A8%D8%B1%D9%86%D8%A7+%D8%A8%D9%88%D8%AF++%5BEOS%5D)
If you like to know about structure of classical Persian poetry refer to these [blog posts](https://medium.com/@khashei).
## Acknowledgment
This project is supported by Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC).
## Citation and Reference
Please reference "bolbolzaban.com" website if you are using gpt2-persian in your research or commertial application.
## Contacts
Please reachout on [Linkedin](https://www.linkedin.com/in/khashei/) or [Telegram](https://t.me/khasheia) if you have any question or need any help to use the model.
Follow [Bolbolzaban](http://bolbolzaban.com/about) on [Twitter](https://twitter.com/bolbol_zaban), [Telegram](https://t.me/bolbol_zaban) or [Instagram](https://www.instagram.com/bolbolzaban/)
|
4c948d1d5ee2957ac2941d33e4061302
|
ksabeh/distilbert-base-uncased-mlm-electronics
|
ksabeh
|
distilbert
| 8 | 2 |
transformers
| 0 |
fill-mask
| false | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_keras_callback']
| true | true | true | 1,292 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# ksabeh/distilbert-base-uncased-mlm-electronics
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.1782
- Validation Loss: 2.0887
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.3455 | 2.2411 | 0 |
| 2.2561 | 2.1496 | 1 |
| 2.1782 | 2.0887 | 2 |
### Framework versions
- Transformers 4.18.0
- TensorFlow 2.6.3
- Datasets 2.1.0
- Tokenizers 0.12.1
|
823b985e2566682610d941e4168dffa5
|
KM4STfulltext/SSCI-SciBERT-e4
|
KM4STfulltext
|
bert
| 5 | 2 |
transformers
| 2 |
fill-mask
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 8,993 | false |
# SSCI-BERT: A pretrained language model for social scientific text
## Introduction
The research for social science texts needs the support natural language processing tools.
The pre-trained language model has greatly improved the accuracy of text mining in general texts. At present, there is an urgent need for a pre-trained language model specifically for the automatic processing of scientific texts in social science.
We used the abstract of social science research as the training set. Based on the deep language model framework of BERT, we constructed [SSCI-BERT and SSCI-SciBERT](https://github.com/S-T-Full-Text-Knowledge-Mining/SSCI-BERT) pre-training language models by [transformers/run_mlm.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py).
We designed four downstream tasks of Text Classification on different social scientific article corpus to verify the performance of the model.
- SSCI-BERT and SSCI-SciBERT are trained on the abstract of articles published in SSCI journals from 1986 to 2021. The training set involved in the experiment included a total of `503910614 words`.
- Based on the idea of Domain-Adaptive Pretraining, `SSCI-BERT` and `SSCI-SciBERT` combine a large amount of abstracts of scientific articles based on the BERT structure, and continue to train the BERT and SSCI-SciBERT models respectively to obtain pre-training models for the automatic processing of Social science research texts.
## News
- 2022-03-24 : SSCIBERT and SSCI-SciBERT has been put forward for the first time.
## How to use
### Huggingface Transformers
The `from_pretrained` method based on [Huggingface Transformers](https://github.com/huggingface/transformers) can directly obtain SSCI-BERT and SSCI-SciBERT models online.
- SSCI-BERT
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/SSCI-BERT-e2")
model = AutoModel.from_pretrained("KM4STfulltext/SSCI-BERT-e2")
```
- SSCI-SciBERT
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/SSCI-SciBERT-e2")
model = AutoModel.from_pretrained("KM4STfulltext/SSCI-SciBERT-e2")
```
### Download Models
- The version of the model we provide is `PyTorch`.
### From Huggingface
- Download directly through Huggingface's official website.
- [KM4STfulltext/SSCI-BERT-e2](https://huggingface.co/KM4STfulltext/SSCI-BERT-e2)
- [KM4STfulltext/SSCI-SciBERT-e2](https://huggingface.co/KM4STfulltext/SSCI-SciBERT-e2)
- [KM4STfulltext/SSCI-BERT-e4 ](https://huggingface.co/KM4STfulltext/SSCI-BERT-e4)
- [KM4STfulltext/SSCI-SciBERT-e4](https://huggingface.co/KM4STfulltext/SSCI-SciBERT-e4)
### From Google Drive
We have put the model on Google Drive for users.
| Model | DATASET(year) | Base Model |
| ------------------------------------------------------------ | ------------- | ---------------------- |
| [SSCI-BERT-e2](https://drive.google.com/drive/folders/1xEDnovlwGO2JxqCaf3rdjS2cB6DOxhj4?usp=sharing) | 1986-2021 | Bert-base-cased |
| [SSCI-SciBERT-e2](https://drive.google.com/drive/folders/16DtIvnHvbrR_92MwgthRRsULW6An9te1?usp=sharing) (recommended) | 1986-2021 | Scibert-scivocab-cased |
| [SSCI-BERT-e4](https://drive.google.com/drive/folders/1sr6Av8p904Jrjps37g7E8aj4HnAHXSxW?usp=sharing) | 1986-2021 | Bert-base-cased |
| [SSCI-SciBERT-e4](https://drive.google.com/drive/folders/1ty-b4TIFu8FbilgC4VcI7Bgn_O5MDMVe?usp=sharing) | 1986-2021 | Scibert-scivocab-cased |
## Evaluation & Results
- We use SSCI-BERT and SSCI-SciBERT to perform Text Classificationon different social science research corpus. The experimental results are as follows. Relevant data sets are available for download in the **Verification task datasets** folder of this project.
#### JCR Title Classify Dataset
| Model | accuracy | macro avg | weighted avg |
| ---------------------- | -------- | --------- | ------------ |
| Bert-base-cased | 28.43 | 22.06 | 21.86 |
| Scibert-scivocab-cased | 38.48 | 33.89 | 33.92 |
| SSCI-BERT-e2 | 40.43 | 35.37 | 35.33 |
| SSCI-SciBERT-e2 | 41.35 | 37.27 | 37.25 |
| SSCI-BERT-e4 | 40.65 | 35.49 | 35.40 |
| SSCI-SciBERT-e4 | 41.13 | 36.96 | 36.94 |
| Support | 2300 | 2300 | 2300 |
#### JCR Abstract Classify Dataset
| Model | accuracy | macro avg | weighted avg |
| ---------------------- | -------- | --------- | ------------ |
| Bert-base-cased | 48.59 | 42.8 | 42.82 |
| Scibert-scivocab-cased | 55.59 | 51.4 | 51.81 |
| SSCI-BERT-e2 | 58.05 | 53.31 | 53.73 |
| SSCI-SciBERT-e2 | 59.95 | 56.51 | 57.12 |
| SSCI-BERT-e4 | 59.00 | 54.97 | 55.59 |
| SSCI-SciBERT-e4 | 60.00 | 56.38 | 56.90 |
| Support | 2200 | 2200 | 2200 |
#### JCR Mixed Titles and Abstracts Dataset
| **Model** | **accuracy** | **macro avg** | **weighted avg** |
| ---------------------- | ------------ | -------------- | ----------------- |
| Bert-base-cased | 58.24 | 57.27 | 57.25 |
| Scibert-scivocab-cased | 59.58 | 58.65 | 58.68 |
| SSCI-BERT-e2 | 60.89 | 60.24 | 60.30 |
| SSCI-SciBERT-e2 | 60.96 | 60.54 | 60.51 |
| SSCI-BERT-e4 | 61.00 | 60.48 | 60.43 |
| SSCI-SciBERT-e4 | 61.24 | 60.71 | 60.75 |
| Support | 4500 | 4500 | 4500 |
#### SSCI Abstract Structural Function Recognition (Classify Dataset)
| | Bert-base-cased | SSCI-BERT-e2 | SSCI-BERT-e4 | support |
| ------------ | -------------------------- | ------------------- | ------------------- | ----------- |
| B | 63.77 | 64.29 | 64.63 | 224 |
| P | 53.66 | 57.14 | 57.99 | 95 |
| M | 87.63 | 88.43 | 89.06 | 323 |
| R | 86.81 | 88.28 | **88.47** | 419 |
| C | 78.32 | 79.82 | 78.95 | 316 |
| accuracy | 79.59 | 80.9 | 80.97 | 1377 |
| macro avg | 74.04 | 75.59 | 75.82 | 1377 |
| weighted avg | 79.02 | 80.32 | 80.44 | 1377 |
| | **Scibert-scivocab-cased** | **SSCI-SciBERT-e2** | **SSCI-SciBERT-e4** | **support** |
| B | 69.98 | **70.95** | **70.95** | 224 |
| P | 58.89 | **60.12** | 58.96 | 95 |
| M | 89.37 | **90.12** | 88.11 | 323 |
| R | 87.66 | 88.07 | 87.44 | 419 |
| C | 80.7 | 82.61 | **82.94** | 316 |
| accuracy | 81.63 | **82.72** | 82.06 | 1377 |
| macro avg | 77.32 | **78.37** | 77.68 | 1377 |
| weighted avg | 81.6 | **82.58** | 81.92 | 1377 |
## Cited
- If our content is helpful for your research work, please quote our research in your article.
- https://link.springer.com/article/10.1007/s11192-022-04602-4
## Disclaimer
- The experimental results presented in the report only show the performance under a specific data set and hyperparameter combination, and cannot represent the essence of each model. The experimental results may change due to random number seeds and computing equipment.
- **Users can use the model arbitrarily within the scope of the license, but we are not responsible for the direct or indirect losses caused by using the content of the project.**
## Acknowledgment
- SSCI-BERT was trained based on [BERT-Base-Cased]([google-research/bert: TensorFlow code and pre-trained models for BERT (github.com)](https://github.com/google-research/bert)).
- SSCI-SciBERT was trained based on [scibert-scivocab-cased]([allenai/scibert: A BERT model for scientific text. (github.com)](https://github.com/allenai/scibert))
|
6c7f8614ec1b98cc06822379cf38882e
|
voidism/diffcse-bert-base-uncased-trans
|
voidism
|
bert
| 5 | 830 |
transformers
| 1 |
feature-extraction
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 8,642 | false |
# DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings
[](https://github.com/voidism/DiffCSE/)
[](https://colab.research.google.com/github/voidism/DiffCSE/blob/master/diffcse_evaluation.ipynb)
arXiv link: https://arxiv.org/abs/2204.10298
To be published in [**NAACL 2022**](https://2022.naacl.org/)
Authors:
[Yung-Sung Chuang](https://people.csail.mit.edu/yungsung/),
[Rumen Dangovski](http://super-ms.mit.edu/rumen.html),
[Hongyin Luo](http://people.csail.mit.edu/hyluo/),
[Yang Zhang](https://mitibmwatsonailab.mit.edu/people/yang-zhang/),
[Shiyu Chang](https://code-terminator.github.io/),
[Marin Soljačić](http://www.mit.edu/~soljacic/marin.html),
[Shang-Wen Li](https://swdanielli.github.io/),
[Scott Wen-tau Yih](https://scottyih.org/),
[Yoon Kim](https://people.csail.mit.edu/yoonkim/),
[James Glass](http://groups.csail.mit.edu/sls/people/glass.shtml)
Our code is mainly based on the code of [SimCSE](https://arxiv.org/abs/2104.08821). Please refer to their [repository](https://github.com/princeton-nlp/SimCSE) for more detailed information.
## Overview

We propose DiffCSE, an unsupervised contrastive learning framework for learning sentence embeddings. DiffCSE learns sentence embeddings that are sensitive to the difference between the original sentence and an edited sentence, where the edited sentence is obtained by stochastically masking out the original sentence and then sampling from a masked language model. We show that DiffSCE is an instance of equivariant contrastive learning [(Dangovski et al., 2021)](https://arxiv.org/abs/2111.00899), which generalizes contrastive learning and learns representations that are insensitive to certain types of augmentations and sensitive to other "harmful" types of augmentations. Our experiments show that DiffCSE achieves state-of-the-art results among unsupervised sentence representation learning methods, outperforming unsupervised SimCSE by 2.3 absolute points on semantic textual similarity tasks.
## Setups
[](https://www.python.org/downloads/release/python-395/)
### Requirements
* Python 3.9.5
### Install our customized Transformers package
```
cd transformers-4.2.1
pip install .
```
> If you have already installed `transformers==4.2.1` through pip, you need to put `modeling_bert.py` into `<your_python_env>/site-packages/transformers/models/bert/modeling_bert.py` and `modeling_roberta.py` into `<your_python_env>/site-packages/transformers/models/bert/modeling_roberta.py`.
> We modify these two files in the package so that we can perform _conditional_ pretraining tasks using BERT/RoBERTa. If possible, please directly pip install our customized Transformers package.
### Install other packages
```
pip install -r requirements.txt
```
### Download the pretraining dataset
```
cd data
bash download_wiki.sh
```
### Download the downstream dataset
```
cd SentEval/data/downstream/
bash download_dataset.sh
```
## Training
(The same as `run_diffcse.sh`.)
```bash
python train.py \
--model_name_or_path bert-base-uncased \
--generator_name distilbert-base-uncased \
--train_file data/wiki1m_for_simcse.txt \
--output_dir <your_output_model_dir> \
--num_train_epochs 2 \
--per_device_train_batch_size 64 \
--learning_rate 7e-6 \
--max_seq_length 32 \
--evaluation_strategy steps \
--metric_for_best_model stsb_spearman \
--load_best_model_at_end \
--eval_steps 125 \
--pooler_type cls \
--mlp_only_train \
--overwrite_output_dir \
--logging_first_step \
--logging_dir <your_logging_dir> \
--temp 0.05 \
--do_train \
--do_eval \
--batchnorm \
--lambda_weight 0.005 \
--fp16 --masking_ratio 0.30
```
Our new arguments:
* `--lambda_weight`: the lambda coefficient mentioned in Section 3 of our paper.
* `--masking_ratio`: the masking ratio for MLM generator to randomly replace tokens.
* `--generator_name`: the model name of generator. For `bert-base-uncased`, we use `distilbert-base-uncased`. For `roberta-base`, we use `distilroberta-base`.
Arguments from [SimCSE](https://github.com/princeton-nlp/SimCSE):
* `--train_file`: Training file path (`data/wiki1m_for_simcse.txt`).
* `--model_name_or_path`: Pre-trained checkpoints to start with such as BERT-based models (`bert-base-uncased`, `bert-large-uncased`, etc.) and RoBERTa-based models (`RoBERTa-base`, `RoBERTa-large`).
* `--temp`: Temperature for the contrastive loss. We always use `0.05`.
* `--pooler_type`: Pooling method.
* `--mlp_only_train`: For unsupervised SimCSE or DiffCSE, it works better to train the model with MLP layer but test the model without it. You should use this argument when training unsupervised SimCSE/DiffCSE models.
For the results in our paper, we use a NVidia 2080Ti GPU with CUDA 11.2. Using different types of devices or different versions of CUDA/Python/PyTorch may lead to slightly different performance.
## Evaluation
[](https://colab.research.google.com/github/voidism/DiffCSE/blob/master/diffcse_evaluation.ipynb)
We provide a simple colab notebook to reproduce our results easily. We can also run the commands below for evaluation:
```bash
python evaluation.py \
--model_name_or_path <your_output_model_dir> \
--pooler cls_before_pooler \
--task_set <sts|transfer|full> \
--mode test
```
To evaluate our pretrained DiffCSE checkpoints, we can use the following scripts:
### BERT
#### STS
```bash
python evaluation.py \
--model_name_or_path voidism/diffcse-bert-base-uncased-sts \
--pooler cls_before_pooler \
--task_set sts \
--mode test
```
#### Transfer Tasks
```bash
python evaluation.py \
--model_name_or_path voidism/diffcse-bert-base-uncased-trans \
--pooler cls_before_pooler \
--task_set transfer \
--mode test
```
### RoBERTa
#### STS
```bash
python evaluation.py \
--model_name_or_path voidism/diffcse-roberta-base-sts \
--pooler cls_before_pooler \
--task_set sts \
--mode test
```
#### Transfer Tasks
```bash
python evaluation.py \
--model_name_or_path voidism/diffcse-roberta-base-trans \
--pooler cls_before_pooler \
--task_set transfer \
--mode test
```
For more detailed information, please check [SimCSE's GitHub repo](https://github.com/princeton-nlp/SimCSE).
## Pretrained models
[](https://huggingface.co/voidism)
* DiffCSE-BERT-base (STS): https://huggingface.co/voidism/diffcse-bert-base-uncased-sts
* DiffCSE-BERT-base (transfer tasks): https://huggingface.co/voidism/diffcse-bert-base-uncased-trans
* DiffCSE-RoBERTa-base (STS): https://huggingface.co/voidism/diffcse-roberta-base-sts
* DiffCSE-RoBERTa-base (transfer tasks): https://huggingface.co/voidism/diffcse-roberta-base-trans
We can load the models using the API provided by [SimCSE](https://github.com/princeton-nlp/SimCSE).
See [Getting Started](https://github.com/princeton-nlp/SimCSE#getting-started) for more information.
```python
from diffcse import DiffCSE
model_bert_sts = DiffCSE("voidism/diffcse-bert-base-uncased-sts")
model_bert_trans = DiffCSE("voidism/diffcse-bert-base-uncased-trans")
model_roberta_sts = DiffCSE("voidism/diffcse-roberta-base-sts")
model_roberta_trans = DiffCSE("voidism/diffcse-roberta-base-trans")
```
## Citations
[](https://doi.org/10.48550/arXiv.2204.10298)
Please cite our paper and the SimCSE paper if they are helpful to your work!
```bibtex
@inproceedings{chuang2022diffcse,
title={{DiffCSE}: Difference-based Contrastive Learning for Sentence Embeddings},
author={Chuang, Yung-Sung and Dangovski, Rumen and Luo, Hongyin and Zhang, Yang and Chang, Shiyu and Soljacic, Marin and Li, Shang-Wen and Yih, Wen-tau and Kim, Yoon and Glass, James},
booktitle={Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)},
year={2022}
}
@inproceedings{gao2021simcse,
title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
year={2021}
}
```
|
14f0572607ad5b44e785f502190c4dd0
|
infinitejoy/wav2vec2-large-xls-r-300m-georgian
|
infinitejoy
|
wav2vec2
| 17 | 7 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['ka']
|
['mozilla-foundation/common_voice_7_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'mozilla-foundation/common_voice_7_0', 'generated_from_trainer', 'ka', 'robust-speech-event', 'model_for_talk', 'hf-asr-leaderboard']
| true | true | true | 2,246 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-georgian
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - KA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3666
- Wer: 0.4211
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.8805 | 5.95 | 500 | 0.7547 | 0.8438 |
| 1.2123 | 11.9 | 1000 | 0.4732 | 0.6542 |
| 1.0822 | 17.86 | 1500 | 0.4027 | 0.5778 |
| 0.9938 | 23.81 | 2000 | 0.3847 | 0.5524 |
| 0.9383 | 29.76 | 2500 | 0.3845 | 0.5204 |
| 0.8932 | 35.71 | 3000 | 0.3833 | 0.5297 |
| 0.8495 | 41.67 | 3500 | 0.3759 | 0.5036 |
| 0.8201 | 47.62 | 4000 | 0.3616 | 0.4859 |
| 0.7794 | 53.57 | 4500 | 0.3874 | 0.4938 |
| 0.735 | 59.52 | 5000 | 0.3748 | 0.4782 |
| 0.7082 | 65.48 | 5500 | 0.3615 | 0.4675 |
| 0.669 | 71.43 | 6000 | 0.3797 | 0.4601 |
| 0.6457 | 77.38 | 6500 | 0.3812 | 0.4515 |
| 0.6098 | 83.33 | 7000 | 0.3660 | 0.4343 |
| 0.5874 | 89.29 | 7500 | 0.3640 | 0.4257 |
| 0.5627 | 95.24 | 8000 | 0.3661 | 0.4239 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
ea7d1306afb04b5fd6ac0b2b5f9bfcf4
|
patrickvonplaten/carol_model
|
patrickvonplaten
| null | 13 | 0 | null | 1 | null | false | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 587 | false |
### Carol on Stable Diffusion
This is the `<carol>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as an `object`.
|
45836f0ca6b028d33564b6aef5b7e5ec
|
allermat/distilbert-base-uncased-finetuned-emotion
|
allermat
|
distilbert
| 12 | 1 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['emotion']
| null | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,337 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2244
- Accuracy: 0.923
- F1: 0.9233
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8412 | 1.0 | 250 | 0.3186 | 0.904 | 0.9022 |
| 0.2501 | 2.0 | 500 | 0.2244 | 0.923 | 0.9233 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
0a3ba9a96af78aac3d5f230c800a7113
|
Teklia/pylaia-huginmunin
|
Teklia
| null | 8 | 0 |
PyLaia
| 1 | null | false | false | false |
mit
|
['no']
| null | null | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
['PyLaia', 'PyTorch', 'Handwritten text recognition']
| false | true | true | 2,018 | false |
# Hugin-Munin handwritten text recognition
This model performs Handwritten Text Recognition in Norwegian. It was was developed during the [HUGIN-MUNIN project](https://hugin-munin-project.github.io/).
## Model description
The model has been trained using the PyLaia library on the [NorHand](https://zenodo.org/record/6542056) document images.
Training images were resized with a fixed height of 128 pixels, keeping the original aspect ratio.
## Evaluation results
The model achieves the following results:
| set | CER (%) | WER (%) |
| ----- | ---------- | --------- |
| train | 2.17 | 7.65 |
| val | 8.78 | 24.93 |
| test | 7.94 | 24.04 |
Results improve on validation and test sets when PyLaia is combined with a 6-gram language model.
The language model is trained on [this text corpus](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-73/) published by the National Library of Norway.
| set | CER (%) | WER (%) |
| ----- | ---------- | --------- |
| train | 2.40 | 8.10 |
| val | 7.45 | 19.75 |
| test | 6.55 | 18.2 |
## How to use
Please refer to the PyLaia library page (https://pypi.org/project/pylaia/) to use this model.
# Cite us!
```bibtex
@inproceedings{10.1007/978-3-031-06555-2_27,
author = {Maarand, Martin and Beyer, Yngvil and K\r{a}sen, Andre and Fosseide, Knut T. and Kermorvant, Christopher},
title = {A Comprehensive Comparison of Open-Source Libraries for Handwritten Text Recognition in Norwegian},
year = {2022},
isbn = {978-3-031-06554-5},
publisher = {Springer-Verlag},
address = {Berlin, Heidelberg},
url = {https://doi.org/10.1007/978-3-031-06555-2_27},
doi = {10.1007/978-3-031-06555-2_27},
booktitle = {Document Analysis Systems: 15th IAPR International Workshop, DAS 2022, La Rochelle, France, May 22–25, 2022, Proceedings},
pages = {399–413},
numpages = {15},
keywords = {Norwegian language, Open-source, Handwriting recognition},
location = {La Rochelle, France}
}
```
|
3b7fffdd2ea38f3278eb5ac0d8fec47c
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-6
|
SetFit
|
distilbert
| 10 | 5 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,277 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-16-6
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8331
- Accuracy: 0.625
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0881 | 1.0 | 10 | 1.1248 | 0.1 |
| 1.0586 | 2.0 | 20 | 1.1162 | 0.2 |
| 0.9834 | 3.0 | 30 | 1.1199 | 0.3 |
| 0.9271 | 4.0 | 40 | 1.0740 | 0.3 |
| 0.7663 | 5.0 | 50 | 1.0183 | 0.5 |
| 0.6042 | 6.0 | 60 | 1.0259 | 0.5 |
| 0.4482 | 7.0 | 70 | 0.8699 | 0.7 |
| 0.3072 | 8.0 | 80 | 1.0615 | 0.5 |
| 0.1458 | 9.0 | 90 | 1.0164 | 0.5 |
| 0.0838 | 10.0 | 100 | 1.0620 | 0.5 |
| 0.055 | 11.0 | 110 | 1.1829 | 0.5 |
| 0.0347 | 12.0 | 120 | 1.2815 | 0.4 |
| 0.0244 | 13.0 | 130 | 1.2607 | 0.6 |
| 0.0213 | 14.0 | 140 | 1.3695 | 0.5 |
| 0.0169 | 15.0 | 150 | 1.4397 | 0.5 |
| 0.0141 | 16.0 | 160 | 1.4388 | 0.6 |
| 0.0122 | 17.0 | 170 | 1.4242 | 0.6 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
57ff3c826acd3da3ada96395a81a5f68
|
geomos/distilbert-base-uncased-finetuned-imdb
|
geomos
|
distilbert
| 6 | 2 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
| null |
['imdb']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,312 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2424
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.4921 | 1.0 | 479 | 2.3047 |
| 2.3893 | 2.0 | 958 | 2.2607 |
| 2.3571 | 3.0 | 1437 | 2.2481 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.1
- Datasets 2.2.2
- Tokenizers 0.10.3
|
59b26d437c5944d2a1931ae4a7eadc30
|
gokuls/distilbert_sa_GLUE_Experiment_wnli_96
|
gokuls
|
distilbert
| 17 | 4 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
|
['en']
|
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,865 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_sa_GLUE_Experiment_wnli_96
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE WNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6894
- Accuracy: 0.5634
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6929 | 1.0 | 3 | 0.6908 | 0.5634 |
| 0.6926 | 2.0 | 6 | 0.6914 | 0.5634 |
| 0.6934 | 3.0 | 9 | 0.6912 | 0.5634 |
| 0.6924 | 4.0 | 12 | 0.6900 | 0.5634 |
| 0.6935 | 5.0 | 15 | 0.6894 | 0.5634 |
| 0.6933 | 6.0 | 18 | 0.6895 | 0.5634 |
| 0.6932 | 7.0 | 21 | 0.6900 | 0.5634 |
| 0.6928 | 8.0 | 24 | 0.6908 | 0.5634 |
| 0.6937 | 9.0 | 27 | 0.6909 | 0.5634 |
| 0.6933 | 10.0 | 30 | 0.6912 | 0.5634 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
91892319ad78dc3c9b75fb1feed2f0cf
|
Gladiator/distilbert-base-uncased_ner_conll2003
|
Gladiator
|
distilbert
| 12 | 3 |
transformers
| 0 |
token-classification
| true | false | false |
apache-2.0
| null |
['conll2003']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,733 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased_ner_conll2003
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0524
- Precision: 0.9358
- Recall: 0.9438
- F1: 0.9398
- Accuracy: 0.9877
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1897 | 1.0 | 878 | 0.0544 | 0.9223 | 0.9270 | 0.9246 | 0.9848 |
| 0.0363 | 2.0 | 1756 | 0.0486 | 0.9316 | 0.9391 | 0.9353 | 0.9869 |
| 0.0194 | 3.0 | 2634 | 0.0496 | 0.9369 | 0.9403 | 0.9386 | 0.9873 |
| 0.0114 | 4.0 | 3512 | 0.0526 | 0.9340 | 0.9436 | 0.9388 | 0.9875 |
| 0.0089 | 5.0 | 4390 | 0.0524 | 0.9358 | 0.9438 | 0.9398 | 0.9877 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
9d5ee7e6f524c200c57289c24f954959
|
Salesforce/codegen-16B-nl
|
Salesforce
|
codegen
| 9 | 279 |
transformers
| 3 |
text-generation
| true | false | false |
bsd-3-clause
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 2,792 | false |
# CodeGen (CodeGen-NL 16B)
## Model description
CodeGen is a family of autoregressive language models for **program synthesis** from the paper: [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong. The models are originally released in [this repository](https://github.com/salesforce/CodeGen), under 3 pre-training data variants (`NL`, `Multi`, `Mono`) and 4 model size variants (`350M`, `2B`, `6B`, `16B`).
The checkpoint included in this repository is denoted as **CodeGen-NL 16B** in the paper, where "NL" means it is pre-trained on the Pile and "16B" refers to the number of trainable parameters.
## Training data
This checkpoint (CodeGen-NL 16B) was pre-trained on [the Pile](https://github.com/EleutherAI/the-pile), a large-scale curated dataset created by [EleutherAI](https://www.eleuther.ai/). Parts of the dataset include code data.
## Training procedure
CodeGen was trained using cross-entropy loss to maximize the likelihood of sequential inputs.
The family of models are trained using multiple TPU-v4-512 by Google, leveraging data and model parallelism.
See Section 2.3 of the [paper](https://arxiv.org/abs/2203.13474) for more details.
## Evaluation results
We evaluate our models on two code generation benchmark: HumanEval and MTPB. Please refer to the [paper](https://arxiv.org/abs/2203.13474) for more details.
## Intended Use and Limitations
As an autoregressive language model, CodeGen is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them.
However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well.
## How to use
This model can be easily loaded using the `AutoModelForCausalLM` functionality:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-16B-nl")
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-16B-nl")
text = "def hello_world():"
input_ids = tokenizer(text, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=128)
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
```
## BibTeX entry and citation info
```bibtex
@article{Nijkamp2022ACP,
title={A Conversational Paradigm for Program Synthesis},
author={Nijkamp, Erik and Pang, Bo and Hayashi, Hiroaki and Tu, Lifu and Wang, Huan and Zhou, Yingbo and Savarese, Silvio and Xiong, Caiming},
journal={arXiv preprint},
year={2022}
}
```
|
6b1f9716efe577f9a924f6eb0464bacb
|
williamshava/finetuning-sentiment-model-3000-samples
|
williamshava
|
distilbert
| 13 | 9 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['imdb']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,054 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2512
- Accuracy: 0.904
- F1: 0.9048
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
5b3af1776d8c9cc4ec37d72c4b668790
|
kinanmartin/distilbert-base-uncased-finetuned-ner
|
kinanmartin
|
distilbert
| 13 | 5 |
transformers
| 0 |
token-classification
| true | false | false |
apache-2.0
| null |
['toydata']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,553 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the toydata dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1233
- Precision: 0.8373
- Recall: 0.8722
- F1: 0.8544
- Accuracy: 0.9640
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 408 | 0.1435 | 0.7577 | 0.8557 | 0.8038 | 0.9526 |
| 0.1984 | 2.0 | 816 | 0.1246 | 0.8192 | 0.8747 | 0.8460 | 0.9620 |
| 0.0996 | 3.0 | 1224 | 0.1233 | 0.8373 | 0.8722 | 0.8544 | 0.9640 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
533e2d8d98b7664838d4193a120074d8
|
robkayinto/xlm-roberta-base-finetuned-panx-fr
|
robkayinto
|
xlm-roberta
| 10 | 1 |
transformers
| 0 |
token-classification
| true | false | false |
mit
| null |
['xtreme']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,320 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2643
- F1: 0.8417
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5689 | 1.0 | 191 | 0.3469 | 0.7746 |
| 0.2605 | 2.0 | 382 | 0.2802 | 0.8362 |
| 0.1695 | 3.0 | 573 | 0.2643 | 0.8417 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.2+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
23ed55ac6c1fd67c3709b0709b161ef3
|
Intel/xlnet-base-cased-mrpc
|
Intel
|
xlnet
| 13 | 45 |
transformers
| 0 |
text-classification
| true | false | false |
mit
|
['en']
|
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,054 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet-base-cased-mrpc
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7156
- Accuracy: 0.8456
- F1: 0.8897
- Combined Score: 0.8676
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu102
- Datasets 2.1.0
- Tokenizers 0.11.6
|
cb1efd1fa3c029b1ae090ea06cd01763
|
0x12/t5-opus_infopankki-en-zh
|
0x12
|
t5
| 14 | 4 |
transformers
| 0 |
text2text-generation
| true | false | false |
apache-2.0
| null |
['opus_infopankki']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,653 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-opus_infopankki-en-zh
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_infopankki dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3548
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 3.065 | 1.0 | 1496 | 2.7383 |
| 2.8459 | 2.0 | 2992 | 2.6077 |
| 2.7296 | 3.0 | 4488 | 2.5336 |
| 2.6639 | 4.0 | 5984 | 2.4761 |
| 2.6234 | 5.0 | 7480 | 2.4342 |
| 2.5847 | 6.0 | 8976 | 2.4038 |
| 2.5536 | 7.0 | 10472 | 2.3808 |
| 2.5213 | 8.0 | 11968 | 2.3663 |
| 2.5275 | 9.0 | 13464 | 2.3574 |
| 2.5215 | 10.0 | 14960 | 2.3548 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|
1c208f14af59f93e5356b442fade2245
|
shripadbhat/whisper-small-hi
|
shripadbhat
|
whisper
| 15 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['hi']
|
['mozilla-foundation/common_voice_11_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['whisper-event', 'generated_from_trainer']
| true | true | true | 1,921 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Hindi - Shripad Bhat
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3909
- Wer: 21.4519
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.4337 | 0.73 | 100 | 0.4874 | 47.5868 |
| 0.1894 | 1.47 | 200 | 0.3264 | 23.9482 |
| 0.1007 | 2.21 | 300 | 0.3101 | 22.5267 |
| 0.0984 | 2.94 | 400 | 0.3064 | 21.5723 |
| 0.0555 | 3.67 | 500 | 0.3325 | 22.0251 |
| 0.029 | 4.41 | 600 | 0.3439 | 21.4863 |
| 0.0163 | 5.15 | 700 | 0.3668 | 21.6468 |
| 0.0153 | 5.88 | 800 | 0.3756 | 21.4662 |
| 0.0081 | 6.62 | 900 | 0.3888 | 21.5035 |
| 0.0059 | 7.35 | 1000 | 0.3909 | 21.4519 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
1ecc086fc7c2832fb85e210c1bfe6ae6
|
ontocord/wav2vec2-large-xlsr-vietnamese
|
ontocord
|
wav2vec2
| 8 | 9 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['vi']
|
['common_voice', {'FOSD': 'https://data.mendeley.com/datasets/k9sxg2twv4/4'}]
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week']
| true | true | true | 3,522 | false |
# Ontocord/Wav2Vec2-Large-XLSR-53-Vietnamese
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice), [FOSD](https://data.mendeley.com/datasets/k9sxg2twv4/4).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "vi", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("ontocord/wav2vec2-large-xlsr-53-vietnamese")
model = Wav2Vec2ForCTC.from_pretrained("ontocord/wav2vec2-large-xlsr-53-vietnamese")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Vietnamese test data of Common Voice.
```
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "vi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("ontocord/wav2vec2-large-xlsr-vietnamese")
model = Wav2Vec2ForCTC.from_pretrained("ontocord/wav2vec2-large-xlsr-vietnamese")
model.to("cuda")
chars_to_ignore_regex = '[\\\+\@\ǀ\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# you may also want to use the decode_string from https://huggingface.co/Nhut/wav2vec2-large-xlsr-vietnamese
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 42.403315
## Training
The Common Voice train, validation, and FPT datasets were used for training.
The script used for training can be found here # TODO
|
e787c43b6111b5e18de33af7b418ff90
|
lmqg/mt5-base-jaquad-qag
|
lmqg
|
mt5
| 13 | 221 |
transformers
| 0 |
text2text-generation
| true | false | false |
cc-by-4.0
|
['ja']
|
['lmqg/qag_jaquad']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['questions and answers generation']
| true | true | true | 3,889 | false |
# Model Card of `lmqg/mt5-base-jaquad-qag`
This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question & answer pair generation task on the [lmqg/qag_jaquad](https://huggingface.co/datasets/lmqg/qag_jaquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base)
- **Language:** ja
- **Training data:** [lmqg/qag_jaquad](https://huggingface.co/datasets/lmqg/qag_jaquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="ja", model="lmqg/mt5-base-jaquad-qag")
# model prediction
question_answer_pairs = model.generate_qa("フェルメールの作品では、17世紀のオランダの画家、ヨハネス・フェルメールの作品について記述する。フェルメールの作品は、疑問作も含め30数点しか現存しない。現存作品はすべて油彩画で、版画、下絵、素描などは残っていない。")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-base-jaquad-qag")
output = pipe("ゾフィーは貴族出身ではあったが王族出身ではなく、ハプスブルク家の皇位継承者であるフランツ・フェルディナントとの結婚は貴賤結婚となった。皇帝フランツ・ヨーゼフは、2人の間に生まれた子孫が皇位を継がないことを条件として結婚を承認していた。視察が予定されている6月28日は2人の14回目の結婚記念日であった。")
```
## Evaluation
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-jaquad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_jaquad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-------------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 74.52 | default | [lmqg/qag_jaquad](https://huggingface.co/datasets/lmqg/qag_jaquad) |
| QAAlignedF1Score (MoverScore) | 52.08 | default | [lmqg/qag_jaquad](https://huggingface.co/datasets/lmqg/qag_jaquad) |
| QAAlignedPrecision (BERTScore) | 74.36 | default | [lmqg/qag_jaquad](https://huggingface.co/datasets/lmqg/qag_jaquad) |
| QAAlignedPrecision (MoverScore) | 52.01 | default | [lmqg/qag_jaquad](https://huggingface.co/datasets/lmqg/qag_jaquad) |
| QAAlignedRecall (BERTScore) | 74.71 | default | [lmqg/qag_jaquad](https://huggingface.co/datasets/lmqg/qag_jaquad) |
| QAAlignedRecall (MoverScore) | 52.16 | default | [lmqg/qag_jaquad](https://huggingface.co/datasets/lmqg/qag_jaquad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qag_jaquad
- dataset_name: default
- input_types: ['paragraph']
- output_types: ['questions_answers']
- prefix_types: None
- model: google/mt5-base
- max_length: 512
- max_length_output: 256
- epoch: 18
- batch: 8
- lr: 0.001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 8
- label_smoothing: 0.0
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-jaquad-qag/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|
0487129bfae1bfff64ef47625c2a940d
|
Helsinki-NLP/opus-mt-eu-en
|
Helsinki-NLP
|
marian
| 10 | 1,085 |
transformers
| 1 |
translation
| true | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['translation']
| false | true | true | 770 | false |
### opus-mt-eu-en
* source languages: eu
* target languages: en
* OPUS readme: [eu-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/eu-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/eu-en/opus-2019-12-18.zip)
* test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/eu-en/opus-2019-12-18.test.txt)
* test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/eu-en/opus-2019-12-18.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.eu.en | 46.1 | 0.638 |
|
a2f73e63e9f5e194b318db9f41455d92
|
tiagoblima/punctuation-taboa-bert
|
tiagoblima
|
bert
| 10 | 12 |
transformers
| 0 |
token-classification
| true | false | false |
mit
| null |
['tapaco']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,570 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# punctuation-taboa-bert
This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the tapaco dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0181
- Precision: 0.9850
- Recall: 0.9836
- F1: 0.9843
- Accuracy: 0.9946
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0272 | 1.0 | 17438 | 0.0181 | 0.9850 | 0.9836 | 0.9843 | 0.9946 |
| 0.0234 | 2.0 | 34876 | 0.0196 | 0.9870 | 0.9853 | 0.9862 | 0.9948 |
| 0.0092 | 3.0 | 52314 | 0.0233 | 0.9874 | 0.9853 | 0.9864 | 0.9950 |
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.5.2
- Tokenizers 0.13.1
|
b0d822dcd8dcee1b60c88d9e5c063720
|
Helsinki-NLP/opus-mt-en-cpp
|
Helsinki-NLP
|
marian
| 11 | 11 |
transformers
| 1 |
translation
| true | true | false |
apache-2.0
|
['en', 'id', 'cpp']
| null | null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['translation']
| false | true | true | 2,370 | false |
### eng-cpp
* source group: English
* target group: Creoles and pidgins, Portuguese-based
* OPUS readme: [eng-cpp](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-cpp/README.md)
* model: transformer
* source language(s): eng
* target language(s): ind max_Latn min pap tmw_Latn zlm_Latn zsm_Latn
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID)
* download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cpp/opus2m-2020-08-01.zip)
* test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cpp/opus2m-2020-08-01.test.txt)
* test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cpp/opus2m-2020-08-01.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.eng-msa.eng.msa | 32.6 | 0.573 |
| Tatoeba-test.eng.multi | 32.7 | 0.574 |
| Tatoeba-test.eng-pap.eng.pap | 42.5 | 0.633 |
### System Info:
- hf_name: eng-cpp
- source_languages: eng
- target_languages: cpp
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-cpp/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['en', 'id', 'cpp']
- src_constituents: {'eng'}
- tgt_constituents: {'zsm_Latn', 'ind', 'pap', 'min', 'tmw_Latn', 'max_Latn', 'zlm_Latn'}
- src_multilingual: False
- tgt_multilingual: True
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cpp/opus2m-2020-08-01.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cpp/opus2m-2020-08-01.test.txt
- src_alpha3: eng
- tgt_alpha3: cpp
- short_pair: en-cpp
- chrF2_score: 0.574
- bleu: 32.7
- brevity_penalty: 0.996
- ref_len: 34010.0
- src_name: English
- tgt_name: Creoles and pidgins, Portuguese-based
- train_date: 2020-08-01
- src_alpha2: en
- tgt_alpha2: cpp
- prefer_old: False
- long_pair: eng-cpp
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41
|
37959dcfeeb56863e19e8d746f65ddf0
|
bousejin/xlm-roberta-base-finetuned-panx-de-fr
|
bousejin
|
xlm-roberta
| 9 | 5 |
transformers
| 0 |
token-classification
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,320 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1631
- F1: 0.8579
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2878 | 1.0 | 715 | 0.1840 | 0.8247 |
| 0.1456 | 2.0 | 1430 | 0.1596 | 0.8473 |
| 0.0925 | 3.0 | 2145 | 0.1631 | 0.8579 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
4cb73782543afb16014cf1a1b19640be
|
s3nh/SegFormer-b5-person-segm
|
s3nh
|
segformer
| 4 | 2 |
transformers
| 0 |
image-segmentation
| true | false | false |
openrail
|
['en']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 390,223 | false |
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
<img src = 'https://images.unsplash.com/photo-1438761681033-6461ffad8d80?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=1170&q=80'>
### Description
Semantic segmentation is a computer vision technique for assigning a label to each pixel in an image, representing the semantic class of the objects or regions in the image.
It's a form of dense prediction because it involves assigning a label to each pixel in an image, instead of just boxes around objects or key points as in object detection or instance segmentation.
The goal of semantic segmentation is to recognize and understand the objects and scenes in an image, and partition the image into segments corresponding to different entities.
## Parameters
```
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/mit-b5",
num_labels=2,
id2label=id2label,
label2id=label2id, )
```
## Usage
```python
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
# Transforms
_transform = A.Compose([
A.Resize(height = 512, width=512),
ToTensorV2(),
])
trans_image = _transform(image=np.array(image))
outputs = model(trans_image['image'].float().unsqueeze(0))
logits = outputs.logits.cpu()
print(logits.shape)
# First, rescale logits to original image size
upsampled_logits = nn.functional.interpolate(logits,
size=image.size[::-1], # (height, width)
mode='bilinear',
align_corners=False)
seg = upsampled_logits.argmax(dim=1)[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
palette = np.array([[0, 0, 0],[255, 255, 255]])
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
# Convert to BGR
color_seg = color_seg[..., ::-1]
```
<img src = ''>
#Metric
Todo
#Note
This model was not built by using Huggingface based feature extractor, so automatic api could not work.
|
3eb43a1160d73a919b3a348781294ad2
|
malteos/aspect-cord19-scibert-scivocab-uncased
|
malteos
|
bert
| 5 | 2 |
transformers
| 1 | null | true | false | false |
mit
|
['sci', 'en']
|
['cord19']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['classification', 'similarity']
| false | true | true | 1,127 | false |
# Aspect-based Document Similarity for Research Papers
A `scibert-scivocab-uncased` model fine-tuned on the CORD-19 corpus as in [Aspect-based Document Similarity for Research Papers](https://arxiv.org/abs/2010.06395).
<img src="https://raw.githubusercontent.com/malteos/aspect-document-similarity/master/docrel.png">
See GitHub for more details: https://github.com/malteos/aspect-document-similarity
## Demo
<a href="https://colab.research.google.com/github/malteos/aspect-document-similarity/blob/master/demo.ipynb"><img src="https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667" alt="Google Colab"></a>
You can try our trained models directly on Google Colab on all papers available on Semantic Scholar (via DOI, ArXiv ID, ACL ID, PubMed ID):
<a href="https://colab.research.google.com/github/malteos/aspect-document-similarity/blob/master/demo.ipynb"><img src="https://raw.githubusercontent.com/malteos/aspect-document-similarity/master/demo.gif" alt="Click here for demo"></a>
|
6d64b0bdb48bdacd63b5427eef76d8e8
|
hazzxk/wav2vec2-base-timit-demo-google-colab
|
hazzxk
|
wav2vec2
| 12 | 6 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,998 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-google-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5442
- Wer: 0.3327
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.558 | 1.0 | 500 | 1.9825 | 0.9952 |
| 0.8674 | 2.01 | 1000 | 0.5186 | 0.5141 |
| 0.4291 | 3.01 | 1500 | 0.4576 | 0.4590 |
| 0.3008 | 4.02 | 2000 | 0.4906 | 0.4449 |
| 0.2297 | 5.02 | 2500 | 0.4460 | 0.4242 |
| 0.1848 | 6.02 | 3000 | 0.4410 | 0.4013 |
| 0.1552 | 7.03 | 3500 | 0.4632 | 0.3833 |
| 0.1335 | 8.03 | 4000 | 0.4588 | 0.3870 |
| 0.1209 | 9.04 | 4500 | 0.4553 | 0.3751 |
| 0.108 | 10.04 | 5000 | 0.4463 | 0.3752 |
| 0.1011 | 11.04 | 5500 | 0.4730 | 0.3628 |
| 0.0898 | 12.05 | 6000 | 0.4716 | 0.3739 |
| 0.0822 | 13.05 | 6500 | 0.5299 | 0.3696 |
| 0.0702 | 14.06 | 7000 | 0.5478 | 0.3655 |
| 0.0648 | 15.06 | 7500 | 0.5487 | 0.3631 |
| 0.0595 | 16.06 | 8000 | 0.6031 | 0.3566 |
| 0.0567 | 17.07 | 8500 | 0.5375 | 0.3476 |
| 0.0542 | 18.07 | 9000 | 0.5286 | 0.3540 |
| 0.0467 | 19.08 | 9500 | 0.5743 | 0.3574 |
| 0.0419 | 20.08 | 10000 | 0.5855 | 0.3557 |
| 0.0428 | 21.08 | 10500 | 0.5339 | 0.3459 |
| 0.0346 | 22.09 | 11000 | 0.5261 | 0.3399 |
| 0.0312 | 23.09 | 11500 | 0.5699 | 0.3435 |
| 0.0319 | 24.1 | 12000 | 0.5647 | 0.3442 |
| 0.0288 | 25.1 | 12500 | 0.5419 | 0.3404 |
| 0.0247 | 26.1 | 13000 | 0.5388 | 0.3362 |
| 0.0249 | 27.11 | 13500 | 0.5521 | 0.3357 |
| 0.0214 | 28.11 | 14000 | 0.5515 | 0.3307 |
| 0.0235 | 29.12 | 14500 | 0.5442 | 0.3327 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.12.1+cu113
- Datasets 1.18.3
- Tokenizers 0.13.0
|
b474e94392798b38ced4c80f0b706bf3
|
facebook/wav2vec2-conformer-rel-pos-large-100h-ft
|
facebook
|
wav2vec2-conformer
| 8 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['en']
|
['librispeech_asr']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['speech', 'audio', 'automatic-speech-recognition', 'hf-asr-leaderboard']
| false | true | true | 1,730 | false |
# Wav2Vec2-Conformer-Large-100h with Relative Position Embeddings
[Facebook's Wav2Vec2 Conformer (TODO-add link)]()
Wav2Vec2 Conformer with relative position embeddings, pretrained on 960h hours of Librispeech and and fine-tuned on **100 hours of Librispeech** on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
**Paper**: [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171)
**Authors**: Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino
The results of Wav2Vec2-Conformer can be found in Table 3 and Table 4 of the [official paper](https://arxiv.org/abs/2010.05171).
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
# Usage
To transcribe audio files the model can be used as a standalone acoustic model as follows:
```python
from transformers import Wav2Vec2Processor, Wav2Vec2ConformerForCTC
from datasets import load_dataset
import torch
# load model and processor
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-100h-ft")
model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-100h-ft")
# load dummy dataset and read soundfiles
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
# tokenize
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
```
|
baa7000b9769eca5dd5cb839d45bdd69
|
dennisowusuk/wav2vec2-large-xls-r-300m-turkish-colab
|
dennisowusuk
|
wav2vec2
| 13 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null |
['common_voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,791 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-turkish-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3863
- Wer: 0.3095
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.8284 | 3.67 | 400 | 0.6782 | 0.6739 |
| 0.4174 | 7.34 | 800 | 0.4524 | 0.4811 |
| 0.2015 | 11.01 | 1200 | 0.4736 | 0.4311 |
| 0.1371 | 14.68 | 1600 | 0.4254 | 0.3929 |
| 0.0997 | 18.35 | 2000 | 0.4254 | 0.3636 |
| 0.082 | 22.02 | 2400 | 0.3807 | 0.3474 |
| 0.0665 | 25.69 | 2800 | 0.3987 | 0.3236 |
| 0.0523 | 29.36 | 3200 | 0.3863 | 0.3095 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
|
33d50fdcc01fcfbaafcb69476414ce4a
|
sd-concepts-library/max-twain
|
sd-concepts-library
| null | 9 | 0 | null | 2 | null | false | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,018 | false |
### max-twain on Stable Diffusion
This is the `<max-twain>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:




|
65cf29e2d729c9f38c9fed72f89126b1
|
lohsinyuu/ddpm-butterflies-128
|
lohsinyuu
| null | 14 | 0 |
diffusers
| 0 | null | false | false | false |
apache-2.0
|
['en']
|
['huggan/smithsonian_butterflies_subset']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,231 | false |
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-butterflies-128
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `huggan/smithsonian_butterflies_subset` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/lohsinyuu/ddpm-butterflies-128/tensorboard?#scalars)
|
e588f385665cdac98892037aa3db89d6
|
albertdestajo/distilbert-base-uncased-finetuned-sst2
|
albertdestajo
|
distilbert
| 12 | 1 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,227 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-sst2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2991
- Accuracy: 0.9025
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.227 | 1.0 | 4210 | 0.2991 | 0.9025 |
### Framework versions
- Transformers 4.22.2
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1
|
6513dd720643d469a5853a3b6c039f4f
|
sgugger/finetuned-bert-mrpc
|
sgugger
|
bert
| 13 | 64 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['glue']
| null | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| false | true | true | 1,384 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-bert-mrpc
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4917
- Accuracy: 0.8235
- F1: 0.8792
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5382 | 1.0 | 230 | 0.4008 | 0.8456 | 0.8893 |
| 0.3208 | 2.0 | 460 | 0.4182 | 0.8309 | 0.8844 |
| 0.1587 | 3.0 | 690 | 0.4917 | 0.8235 | 0.8792 |
### Framework versions
- Transformers 4.9.0.dev0
- Pytorch 1.8.1+cu111
- Datasets 1.8.1.dev0
- Tokenizers 0.10.1
|
e85b1a449af61566675fe5eda4499d41
|
gokuls/mobilebert_add_GLUE_Experiment_logit_kd_wnli_128
|
gokuls
|
mobilebert
| 17 | 4 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
|
['en']
|
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,965 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_add_GLUE_Experiment_logit_kd_wnli_128
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE WNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3455
- Accuracy: 0.5634
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3469 | 1.0 | 5 | 0.3456 | 0.5634 |
| 0.3467 | 2.0 | 10 | 0.3458 | 0.5634 |
| 0.3466 | 3.0 | 15 | 0.3459 | 0.5634 |
| 0.3466 | 4.0 | 20 | 0.3457 | 0.5634 |
| 0.3466 | 5.0 | 25 | 0.3456 | 0.5634 |
| 0.3466 | 6.0 | 30 | 0.3456 | 0.5634 |
| 0.3466 | 7.0 | 35 | 0.3455 | 0.5634 |
| 0.3466 | 8.0 | 40 | 0.3458 | 0.5634 |
| 0.3466 | 9.0 | 45 | 0.3457 | 0.5634 |
| 0.3465 | 10.0 | 50 | 0.3458 | 0.5634 |
| 0.3466 | 11.0 | 55 | 0.3460 | 0.5634 |
| 0.3465 | 12.0 | 60 | 0.3460 | 0.5634 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
|
3db88e3f56444f335c6ac57f0dbc8929
|
nickmuchi/distilroberta-finetuned-financial-text-classification
|
nickmuchi
|
roberta
| 13 | 189 |
transformers
| 3 |
text-classification
| true | false | false |
apache-2.0
|
['en']
|
['financial_phrasebank', 'Kaggle_Self_label', 'nickmuchi/financial-classification']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['financial-sentiment-analysis', 'sentiment-analysis', 'sentence_50agree', 'generated_from_trainer', 'sentiment', 'finance']
| true | true | true | 2,233 | false |
# distilroberta-finetuned-financial-text-classification
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the sentence_50Agree [financial-phrasebank + Kaggle Dataset](https://huggingface.co/datasets/nickmuchi/financial-classification), a dataset consisting of 4840 Financial News categorised by sentiment (negative, neutral, positive). The Kaggle dataset includes Covid-19 sentiment data and can be found here: [sentiment-classification-selflabel-dataset](https://www.kaggle.com/percyzheng/sentiment-classification-selflabel-dataset).
It achieves the following results on the evaluation set:
- Loss: 0.4463
- F1: 0.8835
## Model description
Model determines the financial sentiment of given text. Given the unbalanced distribution of the class labels, the weights were adjusted to pay attention to the less sampled labels which should increase overall performance. The Covid dataset was added in order to enrich the model, given most models have not been trained on the impact of Covid-19 on earnings or markets.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.7309 | 1.0 | 72 | 0.3671 | 0.8441 |
| 0.3757 | 2.0 | 144 | 0.3199 | 0.8709 |
| 0.3054 | 3.0 | 216 | 0.3096 | 0.8678 |
| 0.2229 | 4.0 | 288 | 0.3776 | 0.8390 |
| 0.1744 | 5.0 | 360 | 0.3678 | 0.8723 |
| 0.1436 | 6.0 | 432 | 0.3728 | 0.8758 |
| 0.1044 | 7.0 | 504 | 0.4116 | 0.8744 |
| 0.0931 | 8.0 | 576 | 0.4148 | 0.8761 |
| 0.0683 | 9.0 | 648 | 0.4423 | 0.8837 |
| 0.0611 | 10.0 | 720 | 0.4463 | 0.8835 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
95725106b1ae310f7948660214991372
|
raynardj/ner-chemical-bionlp-bc5cdr-pubmed
|
raynardj
|
roberta
| 9 | 44 |
transformers
| 2 |
token-classification
| true | false | false |
apache-2.0
|
['en']
|
['bionlp', 'bc4cdr']
| null | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
['ner', 'chemical', 'bionlp', 'bc4cdr', 'bioinfomatics']
| false | true | true | 1,164 | false |
# NER to find Gene & Gene products
> The model was trained on bionlp and bc4cdr dataset, pretrained on this [pubmed-pretrained roberta model](/raynardj/roberta-pubmed)
All the labels, the possible token classes.
```json
{"label2id":
{
"O": 0,
"Chemical": 1,
}
}
```
Notice, we removed the 'B-','I-' etc from data label.🗡
## This is the template we suggest for using the model
Of course I'm well aware of the ```aggregation_strategy``` arguments offered by hf, but by the way of training, I discard any entropy loss for appending subwords, like only the label for the 1st subword token is not -100, after many search effort, I can't find a way to achieve that with default pipeline, hence I fancy an inference class myself.
```python
!pip install forgebox
from forgebox.hf.train import NERInference
ner = NERInference.from_pretrained("raynardj/ner-chemical-bionlp-bc5cdr-pubmed")
a_df = ner.predict(["text1", "text2"])
```
> check our NER model on
* [gene and gene products](/raynardj/ner-gene-dna-rna-jnlpba-pubmed)
* [chemical substance](/raynardj/ner-chemical-bionlp-bc5cdr-pubmed).
* [disease](/raynardj/ner-disease-ncbi-bionlp-bc5cdr-pubmed)
|
a41ba34e6721ee9dbbd76e119579690c
|
robinhad/data2vec-large-uk
|
robinhad
|
data2vec-audio
| 15 | 1 |
transformers
| 2 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null |
['common_voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,299 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# data2vec-large-uk
This model is a fine-tuned version of [facebook/data2vec-audio-large-960h](https://huggingface.co/facebook/data2vec-audio-large-960h) on the common_voice dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.3472
- eval_wer: 0.3410
- eval_cer: 0.0832
- eval_runtime: 231.0008
- eval_samples_per_second: 25.108
- eval_steps_per_second: 3.139
- epoch: 33.06
- step: 20400
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 1.18.3
- Tokenizers 0.12.1
|
456dc68823c4fcb9d0a12196ebb4390e
|
aware-ai/wav2vec2-large-xlsr-53-german-with-lm
|
aware-ai
|
wav2vec2
| 12 | 24 |
transformers
| 7 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['de']
|
['common_voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week', 'hf-asr-leaderboard']
| true | true | true | 2,627 | false |
**Test Result**
| Model | WER | CER |
| ------------- | ------------- | ------------- |
| flozi00/wav2vec2-large-xlsr-53-german-with-lm | **5.7467896819046755%** | **1.8980142607670552%** |
## Evaluation
The model can be evaluated as follows on the German test data of Common Voice.
```python
import torchaudio.functional as F
import torch
from transformers import AutoModelForCTC, AutoProcessor
import re
from datasets import load_dataset, load_metric
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
counter = 0
wer_counter = 0
cer_counter = 0
def main():
model = AutoModelForCTC.from_pretrained("flozi00/wav2vec2-large-xlsr-53-german-with-lm")
processor = AutoProcessor.from_pretrained("flozi00/wav2vec2-large-xlsr-53-german-with-lm")
wer = load_metric("wer")
cer = load_metric("cer")
ds = load_dataset("common_voice", "de", split="test")
#ds = ds.select(range(100))
def calculate_metrics(batch):
global counter, wer_counter, cer_counter
resampled_audio = F.resample(torch.tensor(batch["audio"]["array"]), 48_000, 16_000).numpy()
input_values = processor(resampled_audio, return_tensors="pt", sampling_rate=16_000).input_values
with torch.no_grad():
logits = model(input_values).logits.numpy()[0]
decoded = processor.decode(logits)
pred = decoded.text
ref = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
wer_result = wer.compute(predictions=[pred], references=[ref])
cer_result = cer.compute(predictions=[pred], references=[ref])
counter += 1
wer_counter += wer_result
cer_counter += cer_result
print(f"WER: {(wer_counter/counter)*100} | CER: {(cer_counter/counter)*100}")
return batch
ds.map(calculate_metrics, remove_columns=ds.column_names)
main()
```
Credits:
The Acoustic model is an copy of [jonatasgrosman's model](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german) I used to train an matching kenlm language model for
|
75bea325d517df18ead84979a1de730b
|
SetFit/deberta-v3-base__sst2__all-train
|
SetFit
|
deberta-v2
| 10 | 23 |
transformers
| 0 |
text-classification
| true | false | false |
mit
| null | null | null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,452 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-base__sst2__all-train
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6964
- Accuracy: 0.49
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 7 | 0.6964 | 0.49 |
| No log | 2.0 | 14 | 0.7010 | 0.49 |
| No log | 3.0 | 21 | 0.7031 | 0.49 |
| No log | 4.0 | 28 | 0.7054 | 0.49 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
e31b6a51139ade7a49fa61377fe7db43
|
torchxrayvision/densenet121-res224-mimic_ch
|
torchxrayvision
| null | 4 | 1 | null | 0 |
image-classification
| false | false | false |
apache-2.0
| null |
['nih-pc-chex-mimic_ch-google-openi-rsna']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['vision', 'image-classification']
| false | true | true | 3,763 | false |
# densenet121-res224-mimic_ch
A DenseNet is a type of convolutional neural network that utilises dense connections between layers, through Dense Blocks, where we connect all layers (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers.
### How to use
Here is how to use this model to classify an image of xray:
Note: Each pretrained model has 18 outputs. The `all` model has every output trained. However, for the other weights some targets are not trained and will predict randomly becuase they do not exist in the training dataset. The only valid outputs are listed in the field `{dataset}.pathologies` on the dataset that corresponds to the weights.
Benchmarks of the modes are here: [BENCHMARKS.md](https://github.com/mlmed/torchxrayvision/blob/master/BENCHMARKS.md)
```python
import urllib.request
import skimage
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms
import torchxrayvision as xrv
model_name = "densenet121-res224-mimic_ch"
img_url = "https://huggingface.co/spaces/torchxrayvision/torchxrayvision-classifier/resolve/main/16747_3_1.jpg"
img_path = "xray.jpg"
urllib.request.urlretrieve(img_url, img_path)
model = xrv.models.get_model(model_name, from_hf_hub=True)
img = skimage.io.imread(img_path)
img = xrv.datasets.normalize(img, 255)
# Check that images are 2D arrays
if len(img.shape) > 2:
img = img[:, :, 0]
if len(img.shape) < 2:
print("error, dimension lower than 2 for image")
# Add color channel
img = img[None, :, :]
transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop()])
img = transform(img)
with torch.no_grad():
img = torch.from_numpy(img).unsqueeze(0)
preds = model(img).cpu()
output = {
k: float(v)
for k, v in zip(xrv.datasets.default_pathologies, preds[0].detach().numpy())
}
print(output)
```
For more code examples, we refer to the [example scripts](https://github.com/kamalkraj/torchxrayvision/blob/master/scripts).
### Citation
Primary TorchXRayVision paper: [https://arxiv.org/abs/2111.00595](https://arxiv.org/abs/2111.00595)
```
Joseph Paul Cohen, Joseph D. Viviano, Paul Bertin, Paul Morrison, Parsa Torabian, Matteo Guarrera, Matthew P Lungren, Akshay Chaudhari, Rupert Brooks, Mohammad Hashir, Hadrien Bertrand
TorchXRayVision: A library of chest X-ray datasets and models.
https://github.com/mlmed/torchxrayvision, 2020
@article{Cohen2020xrv,
author = {Cohen, Joseph Paul and Viviano, Joseph D. and Bertin, Paul and Morrison, Paul and Torabian, Parsa and Guarrera, Matteo and Lungren, Matthew P and Chaudhari, Akshay and Brooks, Rupert and Hashir, Mohammad and Bertrand, Hadrien},
journal = {https://github.com/mlmed/torchxrayvision},
title = {{TorchXRayVision: A library of chest X-ray datasets and models}},
url = {https://github.com/mlmed/torchxrayvision},
year = {2020}
arxivId = {2111.00595},
}
```
and this paper which initiated development of the library: [https://arxiv.org/abs/2002.02497](https://arxiv.org/abs/2002.02497)
```
Joseph Paul Cohen and Mohammad Hashir and Rupert Brooks and Hadrien Bertrand
On the limits of cross-domain generalization in automated X-ray prediction.
Medical Imaging with Deep Learning 2020 (Online: https://arxiv.org/abs/2002.02497)
@inproceedings{cohen2020limits,
title={On the limits of cross-domain generalization in automated X-ray prediction},
author={Cohen, Joseph Paul and Hashir, Mohammad and Brooks, Rupert and Bertrand, Hadrien},
booktitle={Medical Imaging with Deep Learning},
year={2020},
url={https://arxiv.org/abs/2002.02497}
}
```
|
186bb0043c0dfbb89f71d934481127a5
|
Antiraedus/Violet-Evergarden-Style
|
Antiraedus
| null | 18 | 18 |
diffusers
| 5 |
text-to-image
| true | false | false |
creativeml-openrail-m
| null | null | null | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
['pytorch', 'diffusers', 'stable-diffusion', 'text-to-image', 'diffusion-models-class', 'dreambooth-hackathon', 'wildcard']
| false | true | true | 983 | false |
# DreamBooth model for the vioeva concept trained by Antiraedus on the Antiraedus/Violet-Evergarden dataset.
I FORGOT IT WAS GRAYSCALED
This is a Stable Diffusion model fine-tuned on the vioeva concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of a girl in vioeva style**
This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part!
## Description
Violet Evergarden!!!!
Dataset [is located here](https://huggingface.co/datasets/Antiraedus/Violet-Evergarden)
This is a Stable Diffusion model fine-tuned on `style` images for the wildcard theme.
## Examples
"a photo of a beautiful anime city in vioeva style"

## Usage
```python
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained('Antiraedus/Violet-Evergarden-Style')
image = pipeline().images[0]
image
```
|
ee15af125ec1f8f9a376fc35739fdb94
|
zuleo/effeffIX-concept-diffusion
|
zuleo
| null | 20 | 90 |
diffusers
| 10 |
text-to-image
| false | false | false |
creativeml-openrail-m
| null | null | null | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'art', 'artistic', 'diffusers', 'final fantasy']
| false | true | true | 5,749 | false |
# effeffIX Concept Diffusion
Fine-tuned Stable Diffusion model, based of ```F222```, trained with concept art from a high quality role playing game.

## Model Usage
This model was trained on multiple concepts. Use the tokens below:
| Token | Description |
|----------------------|------------------------------------------------------|
| effeff9 woman | Uses concepts trained on female designs. |
| effeff9 man | Uses concepts trained on male designs. |
| effeff9 creature | Uses concepts trained on different creature designs. |
| effeff9 architecture | Uses concepts trained on architecture design. |
---
### Examples: effeff9 woman

### Examples: effeff9 man

### Examples: effeff9 creature

### Examples: effeff9 architecture

---
☕ If you enjoy this model, buy us a coffee [](https://ko-fi.com/3eegames)
---
## 🧾 Prompt examples:
**The amazing Aubrey Plaza**
```Wide shot of a effeff9 woman warrior aubrey plaza with shining armor descending from heaven, lifelike, (highly detailed eyes), super highly detailed face, professional digital painting, artstation, concept art, Unreal Engine 5, HD quality, 8k resolution, beautiful, cinematic, art by artgerm and greg rutkowski and alphonse mucha and loish and WLOP```
[Negative prompt](#❎-negative-prompt-template)
_Steps: 82, Sampler: DPM++ 2M, CFG scale: 8.5, Seed: 695884347, Size: 512x512, Model hash: b7ba5b22_
---
**The Wise Giraffe**
```portrait of a effeff9 creature Giraffe, artstation, concept art, Unreal Engine 5, HD quality, 4k resolution, beautiful, cinematic, art by artgerm and greg rutkowski and alphonse mucha and loish and WLOP```
[Negative prompt](#❎-negative-prompt-template)
_Steps: 90, Sampler: DPM++ 2M Karras, CFG scale: 8.5, Seed: 2821955656, Size: 512x512, Model hash: b7ba5b22_
---
**The drag of the kingdom**
```Wide shot of a grand kingdom, lifelike, super highly detailed, professional digital painting, artstation, concept art, Unreal Engine 5, HD quality, 8k resolution, beautiful, cinematic, art by artgerm and greg rutkowski and alphonse mucha and loish and WLOP, (effeff9 architecture)```
[Negative prompt](#❎-negative-prompt-template)
_Steps: 90, Sampler: DDIM, CFG scale: 13.5, Seed: 2625868484, Size: 512x512, Model hash: b7ba5b22_
---
**The steamy momoa**
```Perfectly-centered portrait of a effeff9 MAN jason momoa with shining scales descending from heaven, concept art, ART STATION, BEAUTIFUL PERFECT detailed MANGA EYES, art by artgerm and greg rutkowski and alphonse mucha and loish and WLOP```
[Negative prompt](#❎-negative-prompt-template)
_Steps: 56, Sampler: DPM++ 2M Karras, CFG scale: 11, Seed: 3257609354, Size: 512x512, Model hash: b7ba5b22_
---
## ❎ Negative Prompt Template
This model offers a unique style where characters typically have larger, exaggerated sleeves and hands. To supress this style, add more variants to adjust the hand style.
All images were rendered with the negative prompt below:
```Negative prompt: ((((ugly)))), (((duplicate))), ((morbid)), ((mutilated)), [out of frame], extra fingers, ((poorly drawn face)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), ((extra limbs)), cloned face, (((disfigured))), out of frame, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), (fused fingers), (too many fingers), (((long neck)))```
## 🧨 Diffusers
This model can be used just like any other Stable Diffusion model. For more information,
please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
Export the model:
- [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx)
- [MPS](https://huggingface.co/docs/diffusers/optimization/mps)
- [FLAX/JAX](https://huggingface.co/blog/stable_diffusion_jax)
```python
from diffusers import StableDiffusionPipeline
import torch
model_id = "zuleo/effeffIX-concept-diffusion"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "effeff9 woman aubrey plaza"
image = pipe(prompt).images[0]
image.save("./i_luv_aubrey_plaza.png")
```
## License
This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage.
The CreativeML OpenRAIL License specifies:
- You can't use the model to deliberately produce nor share illegal or harmful outputs or content
- The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
- You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully)
[Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
|
c42210f5922a84f2d1da2e0b8b1064d3
|
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_qnli_256
|
gokuls
|
mobilebert
| 19 | 0 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
|
['en']
|
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,617 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_qnli_256
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1777
- Accuracy: 0.5881
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.6984 | 1.0 | 33208 | 1.1777 | 0.5881 |
| 0.5294 | 2.0 | 66416 | 1.2095 | 0.6011 |
| 0.4577 | 3.0 | 99624 | 1.2274 | 0.5958 |
| 0.407 | 4.0 | 132832 | 1.2723 | 0.5964 |
| 0.373 | 5.0 | 166040 | 1.3358 | 0.5938 |
| 0.349 | 6.0 | 199248 | 1.2517 | 0.5949 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
|
0f5c6d4dc58a5237b5642d9f69bd8811
|
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-3
|
SetFit
|
distilbert
| 10 | 5 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,090 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-16-3
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0675
- Accuracy: 0.44
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0951 | 1.0 | 10 | 1.1346 | 0.1 |
| 1.0424 | 2.0 | 20 | 1.1120 | 0.2 |
| 0.957 | 3.0 | 30 | 1.1002 | 0.3 |
| 0.7889 | 4.0 | 40 | 1.0838 | 0.4 |
| 0.6162 | 5.0 | 50 | 1.0935 | 0.5 |
| 0.4849 | 6.0 | 60 | 1.0867 | 0.5 |
| 0.3089 | 7.0 | 70 | 1.1145 | 0.5 |
| 0.2145 | 8.0 | 80 | 1.1278 | 0.6 |
| 0.0805 | 9.0 | 90 | 1.2801 | 0.6 |
| 0.0497 | 10.0 | 100 | 1.3296 | 0.6 |
| 0.0328 | 11.0 | 110 | 1.2913 | 0.6 |
| 0.0229 | 12.0 | 120 | 1.3692 | 0.6 |
| 0.0186 | 13.0 | 130 | 1.4642 | 0.6 |
| 0.0161 | 14.0 | 140 | 1.5568 | 0.6 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|
3280f59cf5bcc23d4918ba267a9865ed
|
AIArtsChannel/steampunk-diffusion
|
AIArtsChannel
| null | 19 | 125 |
diffusers
| 4 |
text-to-image
| false | false | false |
creativeml-openrail-m
| null | null | null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['text-to-image', 'stable-diffusion']
| false | true | true | 1,250 | false |
### Steampunk-Diffusion Dreambooth model, based on Stablediffusion 2.1 (728px version)
Trained with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb)
Use the word "Steampunk-Character" to trigger the custom style
Sample pictures of this concept:




|
9cfad7fbe8168c2c9233c5864a01d0fd
|
nickmuchi/vit-finetuned-chest-xray-pneumonia
|
nickmuchi
|
vit
| 10 | 212 |
transformers
| 2 |
image-classification
| true | false | false |
apache-2.0
| null |
['chest X-rays']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['image-classification', 'generated_from_trainer']
| true | true | true | 2,106 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-finetuned-chest-xray-pneumonia
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the [chest-xray-pneumonia](https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1271
- Accuracy: 0.9551
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 326 | 0.2739 | 0.9167 |
| 0.2238 | 2.0 | 652 | 0.2892 | 0.9071 |
| 0.2238 | 3.0 | 978 | 0.2077 | 0.9407 |
| 0.1385 | 4.0 | 1304 | 0.1349 | 0.9535 |
| 0.1347 | 5.0 | 1630 | 0.1271 | 0.9551 |
| 0.1347 | 6.0 | 1956 | 0.1458 | 0.9535 |
| 0.1112 | 7.0 | 2282 | 0.2040 | 0.9375 |
| 0.1063 | 8.0 | 2608 | 0.1423 | 0.9567 |
| 0.1063 | 9.0 | 2934 | 0.1473 | 0.9535 |
| 0.0944 | 10.0 | 3260 | 0.1385 | 0.9583 |
## Example Images
#### Pneumonia Chest X-Ray

#### Normal Chest X-Ray

### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.4
- Tokenizers 0.11.6
|
1ed7b7e4ce615895d95565fb017ff90a
|
addy88/wav2vec2-large-xls-r-300m-hindi-colab
|
addy88
|
wav2vec2
| 13 | 9 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null |
['common_voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,103 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-hindi-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
1d9ef758a5a6de45280b1556689d6897
|
doc2query/all-t5-base-v1
|
doc2query
|
t5
| 11 | 122 |
transformers
| 3 |
text2text-generation
| true | false | false |
apache-2.0
|
['en']
|
['sentence-transformers/reddit-title-body', 'sentence-transformers/embedding-training-data']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 3,764 | false |
# doc2query/all-t5-base-v1
This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)).
It can be used for:
- **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini.
- **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models.
## Usage
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
model_name = 'doc2query/all-t5-base-v1'
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects."
input_ids = tokenizer.encode(text, max_length=384, truncation=True, return_tensors='pt')
outputs = model.generate(
input_ids=input_ids,
max_length=64,
do_sample=True,
top_p=0.95,
num_return_sequences=5)
print("Text:")
print(text)
print("\nGenerated Queries:")
for i in range(len(outputs)):
query = tokenizer.decode(outputs[i], skip_special_tokens=True)
print(f'{i + 1}: {query}')
```
**Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it.
## Training
This model fine-tuned [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) for 570k training steps. For the training script, see the `train_script.py` in this repository.
The input-text was truncated to 384 word pieces. Output text was generated up to 64 word pieces.
This model was trained on a large collection of datasets. For the exact datasets names and weights see the `data_config.json` in this repository. Most of the datasets are available at [https://huggingface.co/sentence-transformers](https://huggingface.co/sentence-transformers).
The datasets include besides others:
- (title, body) pairs from [Reddit](https://huggingface.co/datasets/sentence-transformers/reddit-title-body)
- (title, body) pairs and (title, answer) pairs from StackExchange and Yahoo Answers!
- (title, review) pairs from Amazon reviews
- (query, paragraph) pairs from MS MARCO, NQ, and GooAQ
- (question, duplicate_question) from Quora and WikiAnswers
- (title, abstract) pairs from S2ORC
## Prefix
This model was trained **without a prefix**. In contrast to [doc2query/all-with_prefix-t5-base-v1](https://huggingface.co/doc2query/all-with_prefix-t5-base-v1) you cannot specify what type of transformation (answer2question, review2title) etc. you will have. This can lead to a mixture of output values.
|
6979c45ba89cff0ebef9ba78ce2ac683
|
Helsinki-NLP/opus-mt-tum-fr
|
Helsinki-NLP
|
marian
| 10 | 8 |
transformers
| 0 |
translation
| true | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['translation']
| false | true | true | 776 | false |
### opus-mt-tum-fr
* source languages: tum
* target languages: fr
* OPUS readme: [tum-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tum-fr/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tum-fr/opus-2020-01-16.zip)
* test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tum-fr/opus-2020-01-16.test.txt)
* test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tum-fr/opus-2020-01-16.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.tum.fr | 24.0 | 0.403 |
|
21c91858226e05e081f790338a7ba26e
|
lilouuch/Goodreads_Books_Reviews_Roberta_52
|
lilouuch
|
roberta
| 6 | 0 |
transformers
| 0 |
text-classification
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,343 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Goodreads_Books_Reviews_Roberta_52
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8592
- F1: 0.5986
- Accuracy: 0.6349
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:--------:|
| 0.8824 | 1.0 | 25313 | 0.8754 | 0.5792 | 0.6254 |
| 0.8127 | 2.0 | 50626 | 0.8592 | 0.5986 | 0.6349 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
54edf22af4491978cd4f91ecf416c32e
|
sd-concepts-library/giygas
|
sd-concepts-library
| null | 8 | 0 | null | 1 | null | false | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,133 | false |
### giygas on Stable Diffusion
This is the `<giygas>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Trained using the initializer token "swirl".
It will primarily generate patterns of usually red and black swirls, patterns that sometimes tile. It may be prone to triggering the "Potential NSFW content" check, despite the training data used.
Here is the new concept you will be able to use as an `object`:



|
6e9827b6191f7a55c261faf97fc93760
|
coldfir3/bert-base-uncased-issues-128
|
coldfir3
|
bert
| 10 | 0 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,919 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-issues-128
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2500
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0975 | 1.0 | 291 | 1.7060 |
| 1.648 | 2.0 | 582 | 1.4280 |
| 1.4837 | 3.0 | 873 | 1.3980 |
| 1.3978 | 4.0 | 1164 | 1.4040 |
| 1.3314 | 5.0 | 1455 | 1.2032 |
| 1.2954 | 6.0 | 1746 | 1.2814 |
| 1.2448 | 7.0 | 2037 | 1.2635 |
| 1.1983 | 8.0 | 2328 | 1.2071 |
| 1.1849 | 9.0 | 2619 | 1.1675 |
| 1.1414 | 10.0 | 2910 | 1.2095 |
| 1.1314 | 11.0 | 3201 | 1.1858 |
| 1.0943 | 12.0 | 3492 | 1.1658 |
| 1.0838 | 13.0 | 3783 | 1.2336 |
| 1.0733 | 14.0 | 4074 | 1.1606 |
| 1.0627 | 15.0 | 4365 | 1.1188 |
| 1.055 | 16.0 | 4656 | 1.2500 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
45cbf4a034566201096c999b5a06a063
|
muhtasham/bert-tiny-mlm-finetuned-emotion
|
muhtasham
|
bert
| 6 | 6 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,561 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-tiny-mlm-finetuned-emotion
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5597
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.1612 | 22.73 | 500 | 3.6903 |
| 3.9137 | 45.45 | 1000 | 3.6206 |
| 3.819 | 68.18 | 1500 | 3.5811 |
| 3.7498 | 90.91 | 2000 | 3.5975 |
| 3.6958 | 113.64 | 2500 | 3.5832 |
| 3.6354 | 136.36 | 3000 | 3.5528 |
| 3.5974 | 159.09 | 3500 | 3.4957 |
| 3.5552 | 181.82 | 4000 | 3.5597 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2
|
1e5e7a8d208b6d17ac194f6b82aee08b
|
rmihaylov/pegasus-base-qag-bg
|
rmihaylov
|
pegasus
| 8 | 1 |
transformers
| 0 |
text2text-generation
| true | false | false |
mit
|
['bg']
|
['oscar', 'chitanka', 'wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['torch']
| false | true | true | 2,411 | false |
# PEGASUS BASE
This model was pretrained on Bulgarian language. It was intorduced in [this paper](https://arxiv.org/pdf/1912.08777.pdf).
## Model description
The training data is private Bulgarian squad data.
## Intended uses & limitations
You can use the raw model for generation of question-answer pairs related with given Bulgarian text.
### How to use
Here is how to use this model in PyTorch:
```python
>>> from transformers import PegasusForConditionalGeneration, AlbertTokenizer
>>>
>>> model_id = "rmihaylov/pegasus-base-qag-bg"
>>> model = PegasusForConditionalGeneration.from_pretrained(model_id)
>>> tokenizer = AlbertTokenizer.from_pretrained(model_id)
>>>
>>> text = """Това, че някой може да заяви на най-силен глас исканията си, не означава те да бъдат удовлетворени, заяви Костадин Ангелов.
Той допълни, че приоритетите на властите са здравето, образование и спорта, давайки знак, че се търси разхлабване на мерките в болничните заведения, връщането на учениците в класните стаи и отварянето на обектите за масов спорт.
"""
>>>
>>> inputs = tokenizer.encode_plus(
>>> text,
>>> return_tensors='pt',
>>> truncation=True,
>>> max_length=512,
>>> return_token_type_ids=False,
>>> return_attention_mask=True)
>>>
>>> outputs = model.generate(**inputs,
>>> max_length=150,
>>> top_p=0.95,
>>> top_k=20,
>>> do_sample=True,
>>> num_return_sequences=10,
>>> num_beams=1,
>>> eos_token_id=50259,
>>> decoder_start_token_id=50257,
>>> return_dict_in_generate=True,
>>> output_scores=True)
>>>
>>> for g in outputs.sequences:
>>> text_gen = tokenizer.decode(g, skip_special_tokens=False)
>>>
>>> if ('[SEP]' not in text_gen) or ('[MASK]' not in text_gen) or ('[CLS]' not in text_gen):
>>> continue
>>>
>>> question, answer = text_gen.replace('[CLS]', '').strip().split('[SEP]')
>>> answer = answer.split('[MASK]')[0].strip()
>>>
>>> if (not answer) or (answer not in text) or (len(answer) <= 1):
>>> continue
>>>
>>> print(f'{question.strip()}\n{answer.strip()}', '\n\n')
Какво трябва да се предприеме, за да се случи?
разхлабване
Какви са приоритетите на управляващите?
здравето, образование и спорта,
Какви усилия има правителството за стимулиране на раждаемостта?
разхлабване на мерките
Какъв е основният проблем, който може да реши?
образование
```
|
040665ed37d415220634a633d0b902fb
|
hamidov02/wav2vec2-large-xls-r-300m-turkish-colab
|
hamidov02
|
wav2vec2
| 13 | 2 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null |
['common_voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,791 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-turkish-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3701
- Wer: 0.2946
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 32
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.8287 | 3.67 | 400 | 0.6628 | 0.6928 |
| 0.3926 | 7.34 | 800 | 0.4257 | 0.4716 |
| 0.1847 | 11.01 | 1200 | 0.4034 | 0.3931 |
| 0.1273 | 14.68 | 1600 | 0.4094 | 0.3664 |
| 0.0991 | 18.35 | 2000 | 0.4133 | 0.3375 |
| 0.0811 | 22.02 | 2400 | 0.4021 | 0.3301 |
| 0.0646 | 25.69 | 2800 | 0.3949 | 0.3166 |
| 0.0513 | 29.36 | 3200 | 0.3701 | 0.2946 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3
|
7bf6022c5baaee7a9d0eb175e55ebafb
|
yangheng/deberta-v3-large-absa
|
yangheng
|
deberta-v2
| 8 | 100 |
transformers
| 2 | null | true | false | false |
mit
|
['en']
|
['laptop14 (w/ augmentation)', 'restaurant14 (w/ augmentation)', 'restaurant16 (w/ augmentation)', 'ACL-Twitter (w/ augmentation)', 'MAMS (w/ augmentation)', 'Television (w/ augmentation)', 'TShirt (w/ augmentation)', 'Yelp (w/ augmentation)']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['aspect-based-sentiment-analysis', 'lcf-bert']
| false | true | true | 6,831 | false |
# Note
This model is training with 180k+ ABSA samples, see [ABSADatasets](https://github.com/yangheng95/ABSADatasets). Yet the test sets are not included in pre-training, so you can use this model for training and benchmarking on common ABSA datasets, e.g., Laptop14, Rest14 datasets. (Except for the Rest15 dataset!)
# DeBERTa for aspect-based sentiment analysis
The `deberta-v3-large-absa` model for aspect-based sentiment analysis, trained with English datasets from [ABSADatasets](https://github.com/yangheng95/ABSADatasets).
## Training Model
This model is trained based on the FAST-LSA-T model with `microsoft/deberta-v3-large`, which comes from [PyABSA](https://github.com/yangheng95/PyABSA).
To track state-of-the-art models, please see [PyASBA](https://github.com/yangheng95/PyABSA).
## Usage
```python3
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("yangheng/deberta-v3-large-absa")
model = AutoModel.from_pretrained("yangheng/deberta-v3-large-absa")
inputs = tokenizer("good product especially video and audio quality fantastic.", return_tensors="pt")
outputs = model(**inputs)
```
## Example in PyASBA
An [example](https://github.com/yangheng95/PyABSA/blob/release/demos/aspect_polarity_classification/train_apc_multilingual.py) for using FAST-LSA-T in PyASBA
## Datasets
This model is fine-tuned with 180k examples for the ABSA dataset (including augmented data). Training dataset files:
```
loading: integrated_datasets/apc_datasets/SemEval/laptop14/Laptops_Train.xml.seg
loading: integrated_datasets/apc_datasets/SemEval/laptop14/0.cross_boost.fast_lcf_bert_Laptop14_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/SemEval/laptop14/1.cross_boost.fast_lcf_bert_Laptop14_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/SemEval/laptop14/2.cross_boost.fast_lcf_bert_Laptop14_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/SemEval/laptop14/3.cross_boost.fast_lcf_bert_Laptop14_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/SemEval/restaurant14/Restaurants_Train.xml.seg
loading: integrated_datasets/apc_datasets/SemEval/restaurant14/0.cross_boost.fast_lcf_bert_Restaurant14_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/SemEval/restaurant14/1.cross_boost.fast_lcf_bert_Restaurant14_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/SemEval/restaurant14/2.cross_boost.fast_lcf_bert_Restaurant14_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/SemEval/restaurant14/3.cross_boost.fast_lcf_bert_Restaurant14_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/SemEval/restaurant16/restaurant_train.raw
loading: integrated_datasets/apc_datasets/SemEval/restaurant16/0.cross_boost.fast_lcf_bert_Restaurant16_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/SemEval/restaurant16/1.cross_boost.fast_lcf_bert_Restaurant16_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/SemEval/restaurant16/2.cross_boost.fast_lcf_bert_Restaurant16_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/SemEval/restaurant16/3.cross_boost.fast_lcf_bert_Restaurant16_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/ACL_Twitter/acl-14-short-data/train.raw
loading: integrated_datasets/apc_datasets/ACL_Twitter/acl-14-short-data/0.cross_boost.fast_lcf_bert_Twitter_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/ACL_Twitter/acl-14-short-data/1.cross_boost.fast_lcf_bert_Twitter_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/ACL_Twitter/acl-14-short-data/2.cross_boost.fast_lcf_bert_Twitter_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/ACL_Twitter/acl-14-short-data/3.cross_boost.fast_lcf_bert_Twitter_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/MAMS/train.xml.dat
loading: integrated_datasets/apc_datasets/MAMS/0.cross_boost.fast_lcf_bert_MAMS_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/MAMS/1.cross_boost.fast_lcf_bert_MAMS_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/MAMS/2.cross_boost.fast_lcf_bert_MAMS_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/MAMS/3.cross_boost.fast_lcf_bert_MAMS_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/Television/Television_Train.xml.seg
loading: integrated_datasets/apc_datasets/Television/0.cross_boost.fast_lcf_bert_Television_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/Television/1.cross_boost.fast_lcf_bert_Television_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/Television/2.cross_boost.fast_lcf_bert_Television_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/Television/3.cross_boost.fast_lcf_bert_Television_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/TShirt/Menstshirt_Train.xml.seg
loading: integrated_datasets/apc_datasets/TShirt/0.cross_boost.fast_lcf_bert_TShirt_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/TShirt/1.cross_boost.fast_lcf_bert_TShirt_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/TShirt/2.cross_boost.fast_lcf_bert_TShirt_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/TShirt/3.cross_boost.fast_lcf_bert_TShirt_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/Yelp/yelp.train.txt
loading: integrated_datasets/apc_datasets/Yelp/0.cross_boost.fast_lcf_bert_Yelp_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/Yelp/1.cross_boost.fast_lcf_bert_Yelp_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/Yelp/2.cross_boost.fast_lcf_bert_Yelp_deberta-v3-base.train.augment
loading: integrated_datasets/apc_datasets/Yelp/3.cross_boost.fast_lcf_bert_Yelp_deberta-v3-base.train.augment
```
If you use this model in your research, please cite our paper:
```
@article{YangZMT21,
author = {Heng Yang and
Biqing Zeng and
Mayi Xu and
Tianxing Wang},
title = {Back to Reality: Leveraging Pattern-driven Modeling to Enable Affordable
Sentiment Dependency Learning},
journal = {CoRR},
volume = {abs/2110.08604},
year = {2021},
url = {https://arxiv.org/abs/2110.08604},
eprinttype = {arXiv},
eprint = {2110.08604},
timestamp = {Fri, 22 Oct 2021 13:33:09 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2110-08604.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
29e493428b976703d83e81933a6fbb0f
|
muhtasham/tiny-mlm-glue-rte-custom-tokenizer-expand-vocab
|
muhtasham
|
bert
| 12 | 2 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,682 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-rte-custom-tokenizer-expand-vocab
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.4372
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 6.249 | 1.6 | 500 | 5.5560 |
| 5.5772 | 3.21 | 1000 | 5.2693 |
| 5.3637 | 4.81 | 1500 | 5.0609 |
| 5.1969 | 6.41 | 2000 | 4.9263 |
| 5.1287 | 8.01 | 2500 | 4.8379 |
| 4.98 | 9.62 | 3000 | 4.6589 |
| 4.8837 | 11.22 | 3500 | 4.6109 |
| 4.8127 | 12.82 | 4000 | 4.5723 |
| 4.6909 | 14.42 | 4500 | 4.4488 |
| 4.5862 | 16.03 | 5000 | 4.4372 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.9.1.dev0
- Tokenizers 0.13.2
|
3c5fbdf097bb808aa0e042e734926416
|
it5/it5-large-news-summarization
|
it5
|
t5
| 10 | 328 |
transformers
| 0 |
summarization
| true | true | true |
apache-2.0
|
['it']
|
['ARTeLab/fanpage', 'ARTeLab/ilpost']
|
{'emissions': '51g', 'source': 'Google Cloud Platform Carbon Footprint', 'training_type': 'fine-tuning', 'geographical_location': 'Eemshaven, Netherlands, Europe', 'hardware_used': '1 TPU v3-8 VM'}
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['italian', 'sequence-to-sequence', 'fanpage', 'ilpost', 'summarization']
| true | true | true | 2,795 | false |
# IT5 Large for News Summarization ✂️🗞️ 🇮🇹
This repository contains the checkpoint for the [IT5 Large](https://huggingface.co/gsarti/it5-large) model fine-tuned on news summarization on the [Fanpage](https://huggingface.co/datasets/ARTeLab/fanpage) and [Il Post](https://huggingface.co/datasets/ARTeLab/ilpost) corpora as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io).
A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach.
## Using the model
Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as:
```python
from transformers import pipelines
newsum = pipeline("summarization", model='it5/it5-large-news-summarization')
newsum("Dal 31 maggio è infine partita la piattaforma ITsART, a più di un anno da quando – durante il primo lockdown – il ministro della Cultura Dario Franceschini ne aveva parlato come di «una sorta di Netflix della cultura», pensata per «offrire a tutto il mondo la cultura italiana a pagamento». È presto per dare giudizi definitivi sulla piattaforma, e di certo sarà difficile farlo anche più avanti senza numeri precisi. Al momento, l’unica cosa che si può fare è guardare com’è fatto il sito, contare quanti contenuti ci sono (circa 700 “titoli”, tra film, documentari, spettacoli teatrali e musicali e altri eventi) e provare a dare un giudizio sul loro valore e sulla loro varietà. Intanto, una cosa notata da più parti è che diversi contenuti di ITsART sono a pagamento sulla piattaforma sebbene altrove, per esempio su RaiPlay, siano invece disponibili gratuitamente.")
>>> [{"generated_text": "ITsART, la Netflix della cultura italiana, parte da maggio. Film, documentari, spettacoli teatrali e musicali disponibili sul nuovo sito a pagamento."}]
```
or loaded using autoclasses:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("it5/it5-large-news-summarization")
model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-large-news-summarization")
```
If you use this model in your research, please cite our work as:
```bibtex
@article{sarti-nissim-2022-it5,
title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation},
author={Sarti, Gabriele and Nissim, Malvina},
journal={ArXiv preprint 2203.03759},
url={https://arxiv.org/abs/2203.03759},
year={2022},
month={mar}
}
```
|
9988c05640bf8794126b287116db949c
|
team-nave/distilbert-base-uncased-distilled-clinc
|
team-nave
|
distilbert
| 10 | 3 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['clinc_oos']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,787 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4175
- Accuracy: 0.9368
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 159 | 3.3516 | 0.6652 |
| 3.4274 | 2.0 | 318 | 2.2866 | 0.7848 |
| 3.4274 | 3.0 | 477 | 1.5064 | 0.8545 |
| 1.6307 | 4.0 | 636 | 1.0204 | 0.8971 |
| 1.6307 | 5.0 | 795 | 0.7421 | 0.9177 |
| 0.7641 | 6.0 | 954 | 0.5838 | 0.9258 |
| 0.7641 | 7.0 | 1113 | 0.4986 | 0.9306 |
| 0.4482 | 8.0 | 1272 | 0.4489 | 0.9365 |
| 0.4482 | 9.0 | 1431 | 0.4258 | 0.9368 |
| 0.3442 | 10.0 | 1590 | 0.4175 | 0.9368 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.12.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
5cf11ab6946bf8a77d27bd4d565fd98f
|
sdocio/es_spacy_ner_cds_trf
|
sdocio
| null | 16 | 29 |
spacy
| 0 |
token-classification
| false | false | false |
gpl-3.0
|
['es']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['spacy', 'token-classification']
| false | true | true | 1,322 | false |
# Introduction
spaCy NER model for Spanish trained with interviews in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC).
| Feature | Description |
| --- | --- |
| **Name** | `es_spacy_ner_cds_trf` |
| **Version** | `0.0.1a` |
| **spaCy** | `>=3.4.4,<3.5.0` |
| **Default Pipeline** | `transformer`, `ner` |
| **Components** | `transformer`, `ner` |
### Label Scheme
<details>
<summary>View label scheme (4 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
## Usage
You can use this model with the spaCy *pipeline* for NER.
```python
import spacy
from spacy.pipeline import merge_entities
nlp = spacy.load("es_spacy_ner_cds_trf")
nlp.add_pipe('sentencizer')
example = "Fue antes de llegar a Sigüeiro, en el Camino de Santiago. El proyecto lo financia el Ministerio de Industria y Competitividad."
ner_pipe = nlp(example)
print(ner_pipe.ents)
for token in merge_entities(ner_pipe):
print(token.text, token.ent_type_)
```
## Dataset
ToDo
### Accuracy
| Type | Score |
| --- | --- |
| `ENTS_F` | 96.87 |
| `ENTS_P` | 96.90 |
| `ENTS_R` | 96.83 |
| `TRANSFORMER_LOSS` | 7662.71 |
| `NER_LOSS` | 7673.80 |
|
296fe1ef636ea4e7649789fdf965aa23
|
chiHang/rowbody-4cats-outputs
|
chiHang
|
segformer
| 57 | 7 |
transformers
| 0 | null | true | false | false |
other
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 6,444 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-rowbody-4cats
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1486
- Mean Iou: 0.6527
- Mean Accuracy: 0.9381
- Overall Accuracy: 0.9558
- Accuracy Sleeve-right: nan
- Accuracy Sleeve-left: 0.9259
- Accuracy Neck: 0.9212
- Accuracy Body: 0.9670
- Iou Sleeve-right: 0.0
- Iou Sleeve-left: 0.9012
- Iou Neck: 0.7545
- Iou Body: 0.9551
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Sleeve-right | Accuracy Sleeve-left | Accuracy Neck | Accuracy Body | Iou Sleeve-right | Iou Sleeve-left | Iou Neck | Iou Body |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:---------------------:|:--------------------:|:-------------:|:-------------:|:----------------:|:---------------:|:--------:|:--------:|
| 0.9629 | 2.5 | 20 | 1.1228 | 0.2325 | 0.3900 | 0.7680 | nan | 0.1708 | 0.0 | 0.9991 | 0.0 | 0.1703 | 0.0 | 0.7598 |
| 0.6667 | 5.0 | 40 | 0.6465 | 0.4513 | 0.6646 | 0.8681 | nan | 0.5731 | 0.4337 | 0.9870 | 0.0 | 0.5659 | 0.3911 | 0.8483 |
| 0.414 | 7.5 | 60 | 0.4340 | 0.5935 | 0.8506 | 0.9377 | nan | 0.8496 | 0.7215 | 0.9806 | 0.0 | 0.8374 | 0.6136 | 0.9228 |
| 0.3351 | 10.0 | 80 | 0.3371 | 0.6263 | 0.9237 | 0.9411 | nan | 0.9325 | 0.8909 | 0.9478 | 0.0 | 0.8568 | 0.7171 | 0.9314 |
| 0.4849 | 12.5 | 100 | 0.3146 | 0.6428 | 0.9438 | 0.9526 | nan | 0.9708 | 0.9093 | 0.9513 | 0.0 | 0.8922 | 0.7375 | 0.9415 |
| 0.2461 | 15.0 | 120 | 0.2716 | 0.6431 | 0.9554 | 0.9496 | nan | 0.9717 | 0.9511 | 0.9434 | 0.0 | 0.8938 | 0.7410 | 0.9373 |
| 0.2123 | 17.5 | 140 | 0.2477 | 0.6715 | 0.9481 | 0.9679 | nan | 0.9523 | 0.9151 | 0.9768 | 0.0 | 0.9229 | 0.7999 | 0.9632 |
| 0.1827 | 20.0 | 160 | 0.2413 | 0.6620 | 0.9048 | 0.9649 | nan | 0.9200 | 0.8032 | 0.9912 | 0.0 | 0.9147 | 0.7717 | 0.9617 |
| 0.2828 | 22.5 | 180 | 0.2286 | 0.6484 | 0.9472 | 0.9532 | nan | 0.9622 | 0.9265 | 0.9530 | 0.0 | 0.8996 | 0.7495 | 0.9443 |
| 0.4631 | 25.0 | 200 | 0.2137 | 0.6459 | 0.9452 | 0.9485 | nan | 0.9523 | 0.9345 | 0.9486 | 0.0 | 0.8886 | 0.7543 | 0.9408 |
| 0.159 | 27.5 | 220 | 0.1854 | 0.6336 | 0.9374 | 0.9415 | nan | 0.9355 | 0.9328 | 0.9440 | 0.0 | 0.8832 | 0.7145 | 0.9368 |
| 0.1361 | 30.0 | 240 | 0.1760 | 0.6563 | 0.9429 | 0.9576 | nan | 0.9492 | 0.9161 | 0.9635 | 0.0 | 0.9027 | 0.7687 | 0.9538 |
| 0.1369 | 32.5 | 260 | 0.1634 | 0.6516 | 0.9451 | 0.9562 | nan | 0.9497 | 0.9249 | 0.9607 | 0.0 | 0.9130 | 0.7426 | 0.9507 |
| 0.1356 | 35.0 | 280 | 0.1580 | 0.6488 | 0.9248 | 0.9527 | nan | 0.9154 | 0.8905 | 0.9684 | 0.0 | 0.8966 | 0.7457 | 0.9528 |
| 0.2415 | 37.5 | 300 | 0.1635 | 0.6457 | 0.9439 | 0.9523 | nan | 0.9406 | 0.9340 | 0.9571 | 0.0 | 0.9003 | 0.7344 | 0.9482 |
| 0.1183 | 40.0 | 320 | 0.1639 | 0.6463 | 0.9386 | 0.9524 | nan | 0.9286 | 0.9262 | 0.9612 | 0.0 | 0.8998 | 0.7351 | 0.9500 |
| 0.1264 | 42.5 | 340 | 0.1564 | 0.6512 | 0.9439 | 0.9552 | nan | 0.9385 | 0.9312 | 0.9618 | 0.0 | 0.9066 | 0.7463 | 0.9521 |
| 0.2418 | 45.0 | 360 | 0.1553 | 0.6569 | 0.9366 | 0.9589 | nan | 0.9198 | 0.9166 | 0.9734 | 0.0 | 0.9033 | 0.7656 | 0.9587 |
| 0.189 | 47.5 | 380 | 0.1611 | 0.6520 | 0.9386 | 0.9544 | nan | 0.9284 | 0.9231 | 0.9643 | 0.0 | 0.8990 | 0.7554 | 0.9536 |
| 0.1132 | 50.0 | 400 | 0.1486 | 0.6527 | 0.9381 | 0.9558 | nan | 0.9259 | 0.9212 | 0.9670 | 0.0 | 0.9012 | 0.7545 | 0.9551 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
564bb20f28135995538b049433320a78
|
yy642/bert-base-uncased-finetuned-mnli-rte-wnli-10
|
yy642
|
bert
| 13 | 2 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,583 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-mnli-rte-wnli-10
This model is a fine-tuned version of [yy642/bert-base-uncased-finetuned-mnli-rte-wnli-5](https://huggingface.co/yy642/bert-base-uncased-finetuned-mnli-rte-wnli-5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5876
- Accuracy: 0.9206
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.0641 | 1.0 | 16558 | 0.4528 | 0.9138 |
| 0.0479 | 2.0 | 33116 | 0.5116 | 0.9153 |
| 0.0363 | 3.0 | 49674 | 0.5660 | 0.9138 |
| 0.0244 | 4.0 | 66232 | 0.5876 | 0.9206 |
| 0.0145 | 5.0 | 82790 | 0.6156 | 0.9192 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0a0+17540c5
- Datasets 2.0.0
- Tokenizers 0.11.6
|
0acd4a96ad2f83688074f02e6487b18a
|
adelgalu/wav2vec2-base-klay-demo-google-colab
|
adelgalu
|
wav2vec2
| 16 | 6 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,426 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-klay-demo-google-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0060
- Wer: 0.1791
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 300
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 15.0 | 300 | 2.4020 | 0.9889 |
| 2.4596 | 30.0 | 600 | 1.3773 | 0.9833 |
| 2.4596 | 45.0 | 900 | 0.5241 | 0.7253 |
| 1.1148 | 60.0 | 1200 | 0.2260 | 0.4472 |
| 0.3637 | 75.0 | 1500 | 0.1474 | 0.3682 |
| 0.3637 | 90.0 | 1800 | 0.0742 | 0.2848 |
| 0.1874 | 105.0 | 2100 | 0.0563 | 0.2681 |
| 0.1874 | 120.0 | 2400 | 0.0535 | 0.2436 |
| 0.1273 | 135.0 | 2700 | 0.0335 | 0.2258 |
| 0.0914 | 150.0 | 3000 | 0.0336 | 0.2214 |
| 0.0914 | 165.0 | 3300 | 0.0323 | 0.2136 |
| 0.0733 | 180.0 | 3600 | 0.0225 | 0.2069 |
| 0.0733 | 195.0 | 3900 | 0.0953 | 0.2314 |
| 0.0678 | 210.0 | 4200 | 0.0122 | 0.1902 |
| 0.0428 | 225.0 | 4500 | 0.0104 | 0.1869 |
| 0.0428 | 240.0 | 4800 | 0.0120 | 0.1791 |
| 0.0291 | 255.0 | 5100 | 0.0110 | 0.1835 |
| 0.0291 | 270.0 | 5400 | 0.0062 | 0.1802 |
| 0.0235 | 285.0 | 5700 | 0.0061 | 0.1802 |
| 0.0186 | 300.0 | 6000 | 0.0060 | 0.1791 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.12.1+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1
|
9d4a6f6c5734241e458bb674e52a60f5
|
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_qqp_96
|
gokuls
|
distilbert
| 17 | 4 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
|
['en']
|
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 3,213 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_sa_GLUE_Experiment_logit_kd_qqp_96
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7423
- Accuracy: 0.6329
- F1: 0.0062
- Combined Score: 0.3195
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
| 0.8963 | 1.0 | 1422 | 0.7832 | 0.6318 | 0.0 | 0.3159 |
| 0.7734 | 2.0 | 2844 | 0.7741 | 0.6318 | 0.0 | 0.3159 |
| 0.7598 | 3.0 | 4266 | 0.7727 | 0.6318 | 0.0 | 0.3159 |
| 0.7474 | 4.0 | 5688 | 0.7675 | 0.6318 | 0.0 | 0.3159 |
| 0.7366 | 5.0 | 7110 | 0.7626 | 0.6318 | 0.0 | 0.3159 |
| 0.7272 | 6.0 | 8532 | 0.7568 | 0.6318 | 0.0 | 0.3159 |
| 0.7177 | 7.0 | 9954 | 0.7539 | 0.6318 | 0.0 | 0.3159 |
| 0.7084 | 8.0 | 11376 | 0.7500 | 0.6318 | 0.0 | 0.3159 |
| 0.6998 | 9.0 | 12798 | 0.7543 | 0.6318 | 0.0 | 0.3159 |
| 0.692 | 10.0 | 14220 | 0.7469 | 0.6318 | 0.0 | 0.3159 |
| 0.6846 | 11.0 | 15642 | 0.7481 | 0.6318 | 0.0 | 0.3159 |
| 0.6774 | 12.0 | 17064 | 0.7486 | 0.6318 | 0.0 | 0.3159 |
| 0.6705 | 13.0 | 18486 | 0.7440 | 0.6318 | 0.0 | 0.3159 |
| 0.6648 | 14.0 | 19908 | 0.7464 | 0.6318 | 0.0 | 0.3159 |
| 0.659 | 15.0 | 21330 | 0.7430 | 0.6318 | 0.0 | 0.3159 |
| 0.6531 | 16.0 | 22752 | 0.7423 | 0.6329 | 0.0062 | 0.3195 |
| 0.6479 | 17.0 | 24174 | 0.7452 | 0.6321 | 0.0016 | 0.3169 |
| 0.643 | 18.0 | 25596 | 0.7443 | 0.6354 | 0.0214 | 0.3284 |
| 0.6387 | 19.0 | 27018 | 0.7431 | 0.6335 | 0.0092 | 0.3213 |
| 0.6343 | 20.0 | 28440 | 0.7436 | 0.6370 | 0.0318 | 0.3344 |
| 0.6297 | 21.0 | 29862 | 0.7444 | 0.6362 | 0.0266 | 0.3314 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
|
7ad3d9452c54a6caa424aec662c3be48
|
funnel-transformer/large
|
funnel-transformer
|
funnel
| 9 | 185 |
transformers
| 1 |
feature-extraction
| true | true | false |
apache-2.0
|
['en']
|
['bookcorpus', 'wikipedia', 'gigaword']
| null | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 3,764 | false |
# Funnel Transformer large model (B8-8-8 with decoder)
Pretrained model on English language using a similar objective as [ELECTRA](https://huggingface.co/transformers/model_doc/electra.html). It was introduced in
[this paper](https://arxiv.org/pdf/2006.03236.pdf) and first released in
[this repository](https://github.com/laiguokun/Funnel-Transformer). This model is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing Funnel Transformer did not write a model card for this model so this model card has been
written by the Hugging Face team.
## Model description
Funnel Transformer is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, a small language model corrupts the input texts and serves as a generator of inputs for this model, and
the pretraining objective is to predict which token is an original and which one has been replaced, a bit like a GAN training.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
## Intended uses & limitations
You can use the raw model to extract a vector representation of a given text, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=funnel-transformer) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import FunnelTokenizer, FunnelModel
tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/large")
model = FunneModel.from_pretrained("funnel-transformer/large")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import FunnelTokenizer, TFFunnelModel
tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/large")
model = TFFunnelModel.from_pretrained("funnel-transformer/large")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Training data
The BERT model was pretrained on:
- [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books,
- [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers),
- [Clue Web](https://lemurproject.org/clueweb12/), a dataset of 733,019,372 English web pages,
- [GigaWord](https://catalog.ldc.upenn.edu/LDC2011T07), an archive of newswire text data,
- [Common Crawl](https://commoncrawl.org/), a dataset of raw web pages.
### BibTeX entry and citation info
```bibtex
@misc{dai2020funneltransformer,
title={Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing},
author={Zihang Dai and Guokun Lai and Yiming Yang and Quoc V. Le},
year={2020},
eprint={2006.03236},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
|
8d00ab617f007a294b57ce2b8c4ff805
|
DOOGLAK/Article_250v4_NER_Model_3Epochs_AUGMENTED
|
DOOGLAK
|
bert
| 13 | 5 |
transformers
| 0 |
token-classification
| true | false | false |
apache-2.0
| null |
['article250v4_wikigold_split']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,559 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Article_250v4_NER_Model_3Epochs_AUGMENTED
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the article250v4_wikigold_split dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2337
- Precision: 0.6301
- Recall: 0.6385
- F1: 0.6342
- Accuracy: 0.9239
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 96 | 0.2343 | 0.5944 | 0.6046 | 0.5994 | 0.9191 |
| No log | 2.0 | 192 | 0.2215 | 0.6239 | 0.6412 | 0.6325 | 0.9251 |
| No log | 3.0 | 288 | 0.2337 | 0.6301 | 0.6385 | 0.6342 | 0.9239 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.4.0
- Tokenizers 0.11.6
|
48ca99f564ad432ca56c4c851f2322f1
|
Helsinki-NLP/opus-mt-uk-es
|
Helsinki-NLP
|
marian
| 10 | 64 |
transformers
| 0 |
translation
| true | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['translation']
| false | true | true | 770 | false |
### opus-mt-uk-es
* source languages: uk
* target languages: es
* OPUS readme: [uk-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/uk-es/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/uk-es/opus-2020-01-16.zip)
* test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/uk-es/opus-2020-01-16.test.txt)
* test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/uk-es/opus-2020-01-16.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.uk.es | 50.4 | 0.680 |
|
d73a7bc4b9740df1e27133ca22eebd23
|
hlky/xynthii-diffusion
|
hlky
| null | 4 | 0 | null | 1 | null | false | false | false |
creativeml-openrail-m
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 2,372 | false |
# Xynthii Diffusion v1
* **Dataset**: 159 images of Xynthii (credits to Hanna)
* **Prior-preservation** loss[1]
* **Train text encoder**
* **1000 steps**
* **Model**: "runwayml/stable-diffusion-v1-5"
Environmental impact:
* **Hardware Type**: 3090 24GB
* **Hours used**: 1
* **Cloud Provider**: runpod community cloud
* **Compute Region**: US-Pennsylvania
* **Carbon Emitted** [2]: 0.075 kg CO2 eq.
[1] the same images (and prompt) were used for both instance and class
[2] Power consumption x Time x Carbon produced based on location of power grid based on figures for AWS US-east
# Xynthii Diffusion epoch48
* **Dataset**: 159 images of Xynthii (credits to Hanna)
* **Prior-preservation** loss[1]
* **Train text encoder**
* **48 epochs (7632 steps)**
* **Model**: "runwayml/stable-diffusion-v1-5"
Environmental impact:
* **Hardware Type**: 3090 24GB
* **Hours used**: 3
* **Cloud Provider**: runpod community cloud
* **Compute Region**: US-Pennsylvania
* **Carbon Emitted** [2]: 0.225 kg CO2 eq.
[1] the same images (and prompt) were used for both instance and class
[2] Power consumption x Time x Carbon produced based on location of power grid based on figures for AWS US-east
# Example images from training dataset

# Example generations epoch 48
`a classical preraphaelite painting of taylor swift as a xynthii by john william waterhouse and William-Adolphe Bouguereau`

`rainbow xynthii`

# Example generations v1
All are k_lms, 50 steps, 7.5 cfg scale
`red xynthii`

`xynthii named Hanna`

`xynthii`

|
20194c9f96cc6313963a97e86805e051
|
BhavyaMuni/model-v3
|
BhavyaMuni
|
gpt2
| 11 | 5 |
transformers
| 0 |
text-generation
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,093 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model-v3
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 5.0643
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001372
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1268669541
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7294 | 1.0 | 39 | 3.5148 |
| 2.6148 | 2.0 | 78 | 3.5284 |
| 2.157 | 3.0 | 117 | 3.6368 |
| 2.1294 | 4.0 | 156 | 3.6644 |
| 1.9443 | 5.0 | 195 | 3.7962 |
| 1.8812 | 6.0 | 234 | 3.8349 |
| 1.6243 | 7.0 | 273 | 4.0135 |
| 1.5363 | 8.0 | 312 | 4.1426 |
| 1.3983 | 9.0 | 351 | 4.1834 |
| 1.3106 | 10.0 | 390 | 4.1304 |
| 0.9305 | 11.0 | 429 | 4.3527 |
| 1.0721 | 12.0 | 468 | 4.4012 |
| 0.8783 | 13.0 | 507 | 4.5971 |
| 0.8152 | 14.0 | 546 | 4.6419 |
| 0.6485 | 15.0 | 585 | 4.7665 |
| 0.6553 | 16.0 | 624 | 4.9744 |
| 0.5309 | 17.0 | 663 | 4.8834 |
| 0.5271 | 18.0 | 702 | 4.9749 |
| 0.4727 | 19.0 | 741 | 5.0540 |
| 0.4828 | 20.0 | 780 | 5.0643 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1
- Datasets 2.9.0
- Tokenizers 0.13.2
|
829c7988bb421e2eca98029f775cb4fc
|
nizamudma/bart-finetuned-cnn-3
|
nizamudma
|
bart
| 16 | 3 |
transformers
| 0 |
text2text-generation
| true | false | false |
apache-2.0
| null |
['cnn_dailymail']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,679 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-finetuned-cnn-3
This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-3](https://huggingface.co/sshleifer/distilbart-xsum-12-3) on the cnn_dailymail dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0751
- Rouge1: 40.201
- Rouge2: 18.8482
- Rougel: 29.4439
- Rougelsum: 37.416
- Gen Len: 56.7545
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.276 | 1.0 | 8883 | 2.1762 | 39.6581 | 18.3333 | 28.7765 | 36.7688 | 58.5386 |
| 2.0806 | 2.0 | 17766 | 2.0909 | 40.0328 | 18.8026 | 29.417 | 37.3508 | 56.6804 |
| 1.9615 | 3.0 | 26649 | 2.0751 | 40.201 | 18.8482 | 29.4439 | 37.416 | 56.7545 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
|
e102a7596a0fb23388aa6f838c514426
|
DeepNLP-22-23/MLQ-distilbart-bbc
|
DeepNLP-22-23
|
bart
| 9 | 23 |
transformers
| 0 |
summarization
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['distilbart', 'summarization']
| true | true | true | 698 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MLQ-distilbart-bbc
This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the BBC News Summary dataset (https://www.kaggle.com/pariza/bbc-news-summary).
The model has been generated as part of the in-lab practice of **Deep NLP course** currently held at Politecnico di Torino.
Training parameters:
- `num_train_epochs=2`
- `fp16=True`
- `per_device_train_batch_size=1`
- `warmup_steps=10`
- `weight_decay=0.01`
- `max_seq_length=100`
|
2698d290b5c095de2b86d9d165eb660b
|
mann-e/mann-e_4_rev-0-1
|
mann-e
| null | 19 | 615 |
diffusers
| 1 |
text-to-image
| false | false | false |
mit
| null | null | null | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
['text-to-image']
| false | true | true | 2,701 | false |

# Mann-E 4 Revision 0.1
__Mann-E__ is a _text to image_ model which has been developed by [Muhammadreza Haghiri](https://haghiri75.com/en) in order to be part of the [Cognitive Web](https://opencognitives.com) movement and projects.
This is revision 0.1 of the 4th version of the model.
### What does _Mann-E_ mean?
It's a play with the name [Mani](https://en.wikipedia.org/wiki/Mani_(prophet)), who was a Persian religious leader at the early Sassanian era and also a painter and he's famous for both his religious and artistic works. His artistic side was more considered for naming the model of course.
## How to use the model
### Colab
You can access _Web UI_ colab through [this link](https://colab.research.google.com/github/prp-e/mann-e/blob/main/Mann_E.ipynb)
### Code
The following code is written for _CUDA_ supported devices. If you use UI's or inference tools on other devices, you may need to tweak them in order to get them to the work. Otherwise, it will be fine.
First, you need to install required libraries:
```
pip3 install diffusers transformers scipy ftfy accelerate
```
_NOTE: installation of `accelerate` library makes the inference process amazingly faster. but it's totally optional_.
Then, you need to import required libraries:
```python
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler, DiffusionPipeline, DPMSolverMultistepScheduler
import torch
```
and then, create a pipeline (this pipeline is made with Euler Scheduler):
```python
model_id = "mann-e/mann-e_4_rev-0-1"
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
```
and of course, since you may get NSFW filteration warnings even on simplest prompts, you may consider disabling it:
```python
def dummy(images, **kwargs):
return images, False
pipe.safety_checker = dummy
```
_NOTE: Please consider consequences of disabling this filter as well. we do not want people to get any sort of damage or injury from the image generation results_.
And after that, you easily can start inference:
```python
prompt = "Concept art of a hostile alien planet with unbreathable purple air and toxic clouds, sinister atmosphere, deep shadows, sharp details"
negative_prompt = "low quality, blurry"
width = 768
height = 512
```
then:
```python
image = pipe(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=100, width=width, height=height, guidance_scale=10).images[0]
image.save("My_image.png")
```
|
ef1ca0c533d16625135beac0415031f3
|
lckidwell/embeddings
|
lckidwell
| null | 46 | 0 | null | 0 | null | false | false | false |
cc-by-3.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 466 | false |
# Embeddings
A collection of embeddings I've created.
### Araknope
A stable diffusion embedding trained on a collection of high resolution macro photos of spiders.
**Trigger**: `araknope`
### Beez
A stable diffusion embedding trained on a collection of high resolution macro photos of bees.
**Trigger**: `beez`
### Pmantis
A stable diffusion embedding trained on a collection of high resolution macro photos of praying mantises.
**Trigger**: `pmantis`
|
4dca7d4335f91658fdd0188cef492e20
|
anas-awadalla/t5-base-few-shot-k-256-finetuned-squad-seed-0
|
anas-awadalla
|
t5
| 17 | 1 |
transformers
| 0 |
text2text-generation
| true | false | false |
apache-2.0
| null |
['squad']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 957 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-few-shot-k-256-finetuned-squad-seed-0
This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 35.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.11.6
|
988f822c7016b307681fe7b666349074
|
yanekyuk/berturk-uncased-keyword-extractor
|
yanekyuk
|
bert
| 10 | 5 |
transformers
| 0 |
token-classification
| true | false | false |
mit
|
['tr']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,073 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# berturk-uncased-keyword-extractor
This model is a fine-tuned version of [dbmdz/bert-base-turkish-uncased](https://huggingface.co/dbmdz/bert-base-turkish-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3931
- Precision: 0.6631
- Recall: 0.6728
- Accuracy: 0.9188
- F1: 0.6679
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:--------:|:------:|
| 0.1779 | 1.0 | 1875 | 0.1862 | 0.6199 | 0.6356 | 0.9192 | 0.6276 |
| 0.1327 | 2.0 | 3750 | 0.1890 | 0.6328 | 0.6917 | 0.9206 | 0.6610 |
| 0.1008 | 3.0 | 5625 | 0.2188 | 0.6322 | 0.7037 | 0.9189 | 0.6660 |
| 0.0755 | 4.0 | 7500 | 0.2539 | 0.6395 | 0.7030 | 0.9181 | 0.6697 |
| 0.0574 | 5.0 | 9375 | 0.2882 | 0.6556 | 0.6868 | 0.9197 | 0.6709 |
| 0.0433 | 6.0 | 11250 | 0.3425 | 0.6565 | 0.6851 | 0.9189 | 0.6705 |
| 0.0352 | 7.0 | 13125 | 0.3703 | 0.6616 | 0.6776 | 0.9191 | 0.6695 |
| 0.0288 | 8.0 | 15000 | 0.3931 | 0.6631 | 0.6728 | 0.9188 | 0.6679 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
|
e0c2bcf456ec5658335a1011be6f4668
|
suvrobaner/distilbert-base-uncased-finetuned-emotion-en-tweets
|
suvrobaner
|
distilbert
| 13 | 4 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
|
['en']
|
['emotion']
| null | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
['text-classification', 'pytorch']
| false | true | true | 574 | false |
```python
from transformers import pipeline
model_id = "suvrobaner/distilbert-base-uncased-finetuned-emotion-en-tweets"
classifier = pipeline("text-classification", model = model_id)
custom_tweet = "I saw a movie today and it was really good."
preds = classifier(custom_tweet, return_all_scores=True)
labels = ['sadness', 'joy', 'love', 'anger', 'fear', 'surprise']
preds_df = pd.DataFrame(preds[0])
import matplotlib.pyplot as plt
plt.bar(labels, 100 * preds_df["score"], color='C0')
plt.title(f'"{custom_tweet}"')
plt.ylabel("Class probability (%)")
plt.show()
```
|
b723efcee12b9ce12595d3b829bec3c3
|
kadirnar/yolov7-v0.1
|
kadirnar
| null | 3 | 0 | null | 1 |
object-detection
| false | false | false |
gpl-3.0
| null |
['detection-datasets/coco']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['object-detection', 'computer-vision', 'yolov7', 'pypi']
| false | true | true | 1,401 | false |
### Model Description
[YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696)
[YOLOv7-Pip: Packaged version of the Yolov7 repository](https://github.com/kadirnar/yolov7-pip)
[Paper Repo: Implementation of paper - YOLOv7](https://github.com/WongKinYiu/yolov7)
### Installation
```
pip install yolov7detect
```
### Yolov7 Inference
```python
import yolov7
# load pretrained or custom model
model = yolov7.load('kadirnar/yolov7-v0.1', hf_model=True)
# set model parameters
model.conf = 0.25 # NMS confidence threshold
model.iou = 0.45 # NMS IoU threshold
model.classes = None # (optional list) filter by class
# set image
imgs = 'inference/images'
# perform inference
results = model(imgs)
# inference with larger input size and test time augmentation
results = model(img, size=1280, augment=True)
# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]
# show detection bounding boxes on image
results.show()
```
### BibTeX Entry and Citation Info
```
@article{wang2022yolov7,
title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
journal={arXiv preprint arXiv:2207.02696},
year={2022}
}
```
|
6e09991f1b2a91a761d312a4b93838ce
|
pagh/ddpm-butterflies-128
|
pagh
| null | 11 | 0 |
diffusers
| 0 | null | false | false | false |
apache-2.0
|
['en']
|
['huggan/smithsonian_butterflies_subset']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,226 | false |
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-butterflies-128
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `huggan/smithsonian_butterflies_subset` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/pagh/ddpm-butterflies-128/tensorboard?#scalars)
|
aba7d34306fa60f3dffeac136bf0772b
|
bookbot/wav2vec2-xls-r-adult-child-cls
|
bookbot
|
wav2vec2
| 12 | 6 |
transformers
| 0 |
audio-classification
| true | false | false |
apache-2.0
|
['en']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['audio-classification', 'generated_from_trainer']
| true | true | true | 2,482 | false |
# Wav2Vec2 XLS-R Adult/Child Speech Classifier
Wav2Vec2 XLS-R Adult/Child Speech Classifier is an audio classification model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a fine-tuned version of [wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on a private adult/child speech classification dataset.
This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard.
## Model
| Model | #params | Arch. | Training/Validation data (text) |
| -------------------------------- | ------- | ----- | ----------------------------------------- |
| `wav2vec2-xls-r-adult-child-cls` | 300M | XLS-R | Adult/Child Speech Classification Dataset |
## Evaluation Results
The model achieves the following results on evaluation:
| Dataset | Loss | Accuracy | F1 |
| --------------------------------- | ------ | -------- | ------ |
| Adult/Child Speech Classification | 0.1851 | 94.69% | 0.9508 |
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- `learning_rate`: 3e-05
- `train_batch_size`: 8
- `eval_batch_size`: 8
- `seed`: 42
- `gradient_accumulation_steps`: 4
- `total_train_batch_size`: 32
- `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08`
- `lr_scheduler_type`: linear
- `lr_scheduler_warmup_ratio`: 0.1
- `num_epochs`: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
| :-----------: | :---: | :--: | :-------------: | :------: | :----: |
| 0.2906 | 1.0 | 383 | 0.1856 | 0.9372 | 0.9421 |
| 0.1749 | 2.0 | 766 | 0.1925 | 0.9418 | 0.9465 |
| 0.1681 | 3.0 | 1149 | 0.1893 | 0.9414 | 0.9459 |
| 0.1295 | 4.0 | 1532 | 0.1851 | 0.9469 | 0.9508 |
| 0.2031 | 5.0 | 1915 | 0.1944 | 0.9423 | 0.9460 |
## Disclaimer
Do consider the biases which came from pre-training datasets that may be carried over into the results of this model.
## Authors
Wav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Kaggle.
## Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
|
3131c9f90d378373cc5e9827fcc1bfa0
|
gary109/wikitext_roberta-base
|
gary109
|
roberta
| 24 | 80 |
transformers
| 0 |
fill-mask
| true | false | false |
mit
| null |
['wikitext']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,534 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wikitext_roberta-base
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the wikitext wikitext-2-raw-v1 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2143
- Accuracy: 0.7371
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.4175 | 0.99 | 37 | 1.3355 | 0.7194 |
| 1.438 | 1.99 | 74 | 1.2953 | 0.7249 |
| 1.4363 | 2.99 | 111 | 1.2759 | 0.7276 |
| 1.3391 | 3.99 | 148 | 1.2904 | 0.7252 |
| 1.3741 | 4.99 | 185 | 1.2621 | 0.7290 |
| 1.2771 | 5.99 | 222 | 1.2312 | 0.7353 |
| 1.287 | 6.99 | 259 | 1.2542 | 0.7289 |
| 1.29 | 7.99 | 296 | 1.2290 | 0.7345 |
| 1.2948 | 8.99 | 333 | 1.2537 | 0.7286 |
| 1.2741 | 9.99 | 370 | 1.2199 | 0.7354 |
| 1.2342 | 10.99 | 407 | 1.2520 | 0.7309 |
| 1.2199 | 11.99 | 444 | 1.2738 | 0.7260 |
| 1.206 | 12.99 | 481 | 1.2286 | 0.7335 |
| 1.221 | 13.99 | 518 | 1.2421 | 0.7327 |
| 1.2062 | 14.99 | 555 | 1.2402 | 0.7328 |
| 1.2305 | 15.99 | 592 | 1.2473 | 0.7308 |
| 1.2426 | 16.99 | 629 | 1.2250 | 0.7318 |
| 1.2096 | 17.99 | 666 | 1.2186 | 0.7353 |
| 1.1961 | 18.99 | 703 | 1.2214 | 0.7361 |
| 1.2136 | 19.99 | 740 | 1.2506 | 0.7311 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.3.dev0
- Tokenizers 0.12.1
|
36e9b3e9342efbb5e1520f7a461cbbf5
|
stig/distilbert-base-uncased-finetuned-squad
|
stig
|
distilbert
| 14 | 4 |
transformers
| 0 |
question-answering
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,263 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8545
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0122 | 1.0 | 2312 | 1.8973 |
| 1.7666 | 2.0 | 4624 | 1.8320 |
| 1.5729 | 3.0 | 6936 | 1.8545 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Tokenizers 0.12.1
|
9caac7609f4ac877f49a14c594aff5b2
|
google/switch-base-128
|
google
|
switch_transformers
| 12 | 410 |
transformers
| 1 |
text2text-generation
| true | false | false |
apache-2.0
|
['en']
|
['c4']
| null | 5 | 1 | 4 | 0 | 0 | 0 | 0 |
['text2text-generation']
| false | true | true | 8,021 | false |
# Model Card for Switch Transformers Base - 128 experts

# Table of Contents
0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Usage](#usage)
3. [Uses](#uses)
4. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
5. [Training Details](#training-details)
6. [Evaluation](#evaluation)
7. [Environmental Impact](#environmental-impact)
8. [Citation](#citation)
9. [Model Card Authors](#model-card-authors)
# TL;DR
Switch Transformers is a Mixture of Experts (MoE) model trained on Masked Language Modeling (MLM) task. The model architecture is similar to the classic T5, but with the Feed Forward layers replaced by the Sparse MLP layers containing "experts" MLP. According to the [original paper](https://arxiv.org/pdf/2101.03961.pdf) the model enables faster training (scaling properties) while being better than T5 on fine-tuned tasks.
As mentioned in the first few lines of the abstract :
> we advance the current scale of language models by pre-training up to trillion parameter models on the “Colossal Clean Crawled Corpus”, and achieve a 4x speedup over the T5-XXL model.
**Disclaimer**: Content from **this** model card has been written by the Hugging Face team, and parts of it were copy pasted from the [original paper](https://arxiv.org/pdf/2101.03961.pdf).
# Model Details
## Model Description
- **Model type:** Language model
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Related Models:** [All Switch Transformers Checkpoints](https://huggingface.co/models?search=switch)
- **Original Checkpoints:** [All Original Switch Transformers Checkpoints](https://github.com/google-research/t5x/blob/main/docs/models.md#mixture-of-experts-moe-checkpoints)
- **Resources for more information:**
- [Research paper](https://arxiv.org/pdf/2101.03961.pdf)
- [GitHub Repo](https://github.com/google-research/t5x)
- [Hugging Face Switch Transformers Docs (Similar to T5) ](https://huggingface.co/docs/transformers/model_doc/switch_transformers)
# Usage
Note that these checkpoints has been trained on Masked-Language Modeling (MLM) task. Therefore the checkpoints are not "ready-to-use" for downstream tasks. You may want to check `FLAN-T5` for running fine-tuned weights or fine-tune your own MoE following [this notebook](https://colab.research.google.com/drive/1aGGVHZmtKmcNBbAwa9hbu58DDpIuB5O4?usp=sharing)
Find below some example scripts on how to use the model in `transformers`:
## Using the Pytorch model
### Running the model on a CPU
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoTokenizer, SwitchTransformersForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("google/switch-base-128")
model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-128")
input_text = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
>>> <pad> <extra_id_0> man<extra_id_1> beer<extra_id_2> a<extra_id_3> salt<extra_id_4>.</s>
```
</details>
### Running the model on a GPU
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate
from transformers import AutoTokenizer, SwitchTransformersForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("google/switch-base-128")
model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-128", device_map="auto")
input_text = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(0)
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
>>> <pad> <extra_id_0> man<extra_id_1> beer<extra_id_2> a<extra_id_3> salt<extra_id_4>.</s>
```
</details>
### Running the model on a GPU using different precisions
#### FP16
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate
from transformers import AutoTokenizer, SwitchTransformersForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("google/switch-base-128")
model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-128", device_map="auto", torch_dtype=torch.float16)
input_text = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(0)
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
>>> <pad> <extra_id_0> man<extra_id_1> beer<extra_id_2> a<extra_id_3> salt<extra_id_4>.</s>
```
</details>
#### INT8
<details>
<summary> Click to expand </summary>
```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, SwitchTransformersForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("google/switch-base-128")
model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-128", device_map="auto")
input_text = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(0)
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
>>> <pad> <extra_id_0> man<extra_id_1> beer<extra_id_2> a<extra_id_3> salt<extra_id_4>.</s>
```
</details>
# Uses
## Direct Use and Downstream Use
See the [research paper](https://arxiv.org/pdf/2101.03961.pdf) for further details.
## Out-of-Scope Use
More information needed.
# Bias, Risks, and Limitations
More information needed.
## Ethical considerations and risks
More information needed.
## Known Limitations
More information needed.
## Sensitive Use:
More information needed.
# Training Details
## Training Data
The model was trained on a Masked Language Modeling task, on Colossal Clean Crawled Corpus (C4) dataset, following the same procedure as `T5`.
## Training Procedure
According to the model card from the [original paper](https://arxiv.org/pdf/2101.03961.pdf) the model has been trained on TPU v3 or TPU v4 pods, using [`t5x`](https://github.com/google-research/t5x) codebase together with [`jax`](https://github.com/google/jax).
# Evaluation
## Testing Data, Factors & Metrics
The authors evaluated the model on various tasks and compared the results against T5. See the table below for some quantitative evaluation:

For full details, please check the [research paper](https://arxiv.org/pdf/2101.03961.pdf).
## Results
For full results for Switch Transformers, see the [research paper](https://arxiv.org/pdf/2101.03961.pdf), Table 5.
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** Google Cloud TPU Pods - TPU v3 or TPU v4 | Number of chips ≥ 4.
- **Hours used:** More information needed
- **Cloud Provider:** GCP
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
# Citation
**BibTeX:**
```bibtex
@misc{https://doi.org/10.48550/arxiv.2101.03961,
doi = {10.48550/ARXIV.2101.03961},
url = {https://arxiv.org/abs/2101.03961},
author = {Fedus, William and Zoph, Barret and Shazeer, Noam},
keywords = {Machine Learning (cs.LG), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity},
publisher = {arXiv},
year = {2021},
copyright = {arXiv.org perpetual, non-exclusive license}
}
```
|
41779db2f59aa4846d2f9790fb9188d1
|
sd-concepts-library/tudisco
|
sd-concepts-library
| null | 9 | 0 | null | 8 | null | false | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 998 | false |
### tudisco on Stable Diffusion
This is the `<cat-toy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:




|
78f7cf688d6dbddf0e1caa0b20909301
|
hjashnsaz/bert-emotion
|
hjashnsaz
|
distilbert
| 12 | 1 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['tweet_eval']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,455 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-emotion
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1567
- Precision: 0.7234
- Recall: 0.7301
- Fscore: 0.7253
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
| 0.8665 | 1.0 | 815 | 0.7583 | 0.7486 | 0.6417 | 0.6654 |
| 0.5527 | 2.0 | 1630 | 0.9565 | 0.6848 | 0.6260 | 0.6438 |
| 0.289 | 3.0 | 2445 | 1.1567 | 0.7234 | 0.7301 | 0.7253 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
761eb20582d4118e1e2738dfba1b8f99
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.