repo_id
stringlengths 4
110
| author
stringlengths 2
27
⌀ | model_type
stringlengths 2
29
⌀ | files_per_repo
int64 2
15.4k
| downloads_30d
int64 0
19.9M
| library
stringlengths 2
37
⌀ | likes
int64 0
4.34k
| pipeline
stringlengths 5
30
⌀ | pytorch
bool 2
classes | tensorflow
bool 2
classes | jax
bool 2
classes | license
stringlengths 2
30
| languages
stringlengths 4
1.63k
⌀ | datasets
stringlengths 2
2.58k
⌀ | co2
stringclasses 29
values | prs_count
int64 0
125
| prs_open
int64 0
120
| prs_merged
int64 0
15
| prs_closed
int64 0
28
| discussions_count
int64 0
218
| discussions_open
int64 0
148
| discussions_closed
int64 0
70
| tags
stringlengths 2
513
| has_model_index
bool 2
classes | has_metadata
bool 1
class | has_text
bool 1
class | text_length
int64 401
598k
| is_nc
bool 1
class | readme
stringlengths 0
598k
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mediabiasgroup/DA-RoBERTa-BABE
|
mediabiasgroup
|
roberta
| 9 | 11 |
transformers
| 0 |
text-classification
| true | false | false |
afl-3.0
|
['en']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 692 | false |
# Please cite as
```
@InProceedings{Spinde2021f,
title = "Neural Media Bias Detection Using Distant Supervision With {BABE} - Bias Annotations By Experts",
author = "Spinde, Timo and
Plank, Manuel and
Krieger, Jan-David and
Ruas, Terry and
Gipp, Bela and
Aizawa, Akiko",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.101",
doi = "10.18653/v1/2021.findings-emnlp.101",
pages = "1166--1177",
}
```
|
83f5ab1ffb9b32b1c6d8fda3609d0fd7
|
kornwtp/ConGen-BERT-Small
|
kornwtp
|
bert
| 8 | 2 |
sentence-transformers
| 0 |
sentence-similarity
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
| false | true | true | 1,432 | false |
# kornwtp/ConGen-BERT-Small
This is a [ConGen](https://github.com/KornWtp/ConGen) model: It maps sentences to a 512 dimensional dense vector space and can be used for tasks like semantic search.
## Usage
Using this model becomes easy when you have [ConGen](https://github.com/KornWtp/ConGen) installed:
```
pip install -U git+https://github.com/KornWtp/ConGen.git
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('kornwtp/ConGen-BERT-Small')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [Semantic Textual Similarity](https://github.com/KornWtp/ConGen#main-results---sts)
## Citing & Authors
```bibtex
@inproceedings{limkonchotiwat-etal-2022-congen,
title = "{ConGen}: Unsupervised Control and Generalization Distillation For Sentence Representation",
author = "Limkonchotiwat, Peerat and
Ponwitayarat, Wuttikorn and
Lowphansirikul, Lalita and
Udomcharoenchaikit, Can and
Chuangsuwanich, Ekapol and
Nutanong, Sarana",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
year = "2022",
publisher = "Association for Computational Linguistics",
}
```
|
123dcc54441f40da08e09e7484b4df1f
|
FritzOS/TEdetection_distiBERT_mLM_V2_shuffleplus3
|
FritzOS
|
distilbert
| 4 | 2 |
transformers
| 0 |
fill-mask
| false | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_keras_callback']
| true | true | true | 1,366 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# TEdetection_distiBERT_mLM_V2_shuffleplus3
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 208018, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.19.2
- TensorFlow 2.8.2
- Datasets 2.2.2
- Tokenizers 0.12.1
|
bdf5e35c403c7efb50da8153691d4a01
|
coreml/coreml-Analog-Diffusion
|
coreml
| null | 6 | 0 | null | 3 |
text-to-image
| false | false | false |
creativeml-openrail-m
| null | null | null | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
['coreml', 'stable-diffusion', 'text-to-image']
| false | true | true | 1,865 | false |
# Core ML Converted Model
This model was converted to Core ML for use on Apple Silicon devices by following Apple's instructions [here](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml).<br>
Provide the model to an app such as [Mochi Diffusion](https://github.com/godly-devotion/MochiDiffusion) to generate images.<br>
`split_einsum` version is compatible with all compute unit options including Neural Engine.<br>
`original` version is only compatible with CPU & GPU option.
**Analog Diffusion**

[*CKPT DOWNLOAD LINK*](https://huggingface.co/wavymulder/Analog-Diffusion/resolve/main/analog-diffusion-1.0.ckpt) - This is a dreambooth model trained on a diverse set of analog photographs.
In your prompt, use the activation token: `analog style`
You may need to use the words `blur` `haze` `naked` in your negative prompts. My dataset did not include any NSFW material but the model seems to be pretty horny. Note that using `blur` and `haze` in your negative prompt can give a sharper image but also a less pronounced analog film effect.
Trained from 1.5 with VAE.
Please see [this document where I share the parameters (prompt, sampler, seed, etc.) used for all example images.](https://huggingface.co/wavymulder/Analog-Diffusion/resolve/main/parameters_used_examples.txt)
## Gradio
We support a [Gradio](https://github.com/gradio-app/gradio) Web UI to run Analog-Diffusion:
[Open in Spaces](https://huggingface.co/spaces/akhaliq/Analog-Diffusion)


Here's a [link to non-cherrypicked batches.](https://imgur.com/a/7iOgTFv)
|
33390b8f0a80a7d072a48c74e21d3fff
|
OAOA/DifFace
|
OAOA
| null | 35 | 82 |
diffusers
| 0 | null | true | false | false |
other
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['pytorch', 'diffusers', 'face image enhancement']
| false | true | true | 3,282 | false |
# DifFace: Blind Face Restoration with Diffused Error Contraction
**Paper**: [DifFace: Blind Face Restoration with Diffused Error Contraction](https://arxiv.org/abs/2212.06512)
**Authors**: Zongsheng Yue, Chen Change Loy
**Abstract**:
*While deep learning-based methods for blind face restoration have achieved unprecedented success, they still suffer from two major limitations. First, most of them deteriorate when facing complex degradations out of their training data. Second, these methods require multiple constraints, e.g., fidelity, perceptual, and adversarial losses, which require laborious hyper-parameter tuning to stabilize and balance their influences. In this work, we propose a novel method named DifFace that is capable of coping with unseen and complex degradations more gracefully without complicated loss designs. The key of our method is to establish a posterior distribution from the observed low-quality (LQ) image to its high-quality (HQ) counterpart. In particular, we design a transition distribution from the LQ image to the intermediate state of a pre-trained diffusion model and then gradually transmit from this intermediate state to the HQ target by recursively applying a pre-trained diffusion model. The transition distribution only relies on a restoration backbone that is trained with L2 loss on some synthetic data, which favorably avoids the cumbersome training process in existing methods. Moreover, the transition distribution can contract the error of the restoration backbone and thus makes our method more robust to unknown degradations. Comprehensive experiments show that DifFace is superior to current state-of-the-art methods, especially in cases with severe degradations.*
## Inference
```python
# !pip install diffusers
from diffusers import DifFacePipeline
model_id = "OAOA/DifFace"
# load model and scheduler
pipe = DifFacePipeline.from_pretrained(model_id)
pipe = pipe.to("cuda")
im_lr = cv2.imread(im_path) # read the low quality face image
im_sr = pipe(im_lr, num_inference_steps=250, started_steps=100, aligned=True)['images'][0]
image[0].save("restorated_difface.png") # save the result
```
<!--For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb)-->
## Training
If you want to train your own model, please have a look at the [official training example](https://github.com/zsyOAOA/DifFace).
## Samples
[<img src="assets/Solvay_conference.png" width="805px"/>](https://imgsli.com/MTM5NTgw)
[<img src="assets/Hepburn.png" height="555px" width="400px"/>](https://imgsli.com/MTM5NTc5) [<img src="assets/oldimg_05.png" height="555px" width="400px"/>](https://imgsli.com/MTM5NTgy)
<img src="cropped_faces/0368.png" height="200px" width="200px"/><img src="assets/0368.png" height="200px" width="200px"/> <img src="cropped_faces/0885.png" height="200px" width="200px"/><img src="assets/0885.png" height="200px" width="200px"/>
<img src="cropped_faces/0729.png" height="200px" width="200px"/><img src="assets/0729.png" height="200px" width="200px"/> <img src="cropped_faces/0934.png" height="200px" width="200px"/><img src="assets/0934.png" height="200px" width="200px"/>
|
cd6cae50085efaf60bb501b97ab5c210
|
SEUNGWON1/distilroberta-base-finetuned-wikitext2
|
SEUNGWON1
|
roberta
| 9 | 4 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,267 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-finetuned-wikitext2
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8340
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0843 | 1.0 | 2406 | 1.9226 |
| 1.9913 | 2.0 | 4812 | 1.8820 |
| 1.9597 | 3.0 | 7218 | 1.8214 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2
|
204d417a3d37fc79af071a9f54f15d96
|
irfan-noordin/segformer-b0-finetuned-segments-sidewalk-oct-22
|
irfan-noordin
|
segformer
| 9 | 9 |
transformers
| 0 |
image-segmentation
| true | false | false |
other
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['vision', 'image-segmentation', 'generated_from_trainer']
| true | true | true | 78,218 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-oct-22
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9249
- Mean Iou: 0.1675
- Mean Accuracy: 0.2109
- Overall Accuracy: 0.7776
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.8631
- Accuracy Flat-sidewalk: 0.9423
- Accuracy Flat-crosswalk: 0.0
- Accuracy Flat-cyclinglane: 0.4704
- Accuracy Flat-parkingdriveway: 0.1421
- Accuracy Flat-railtrack: 0.0
- Accuracy Flat-curb: 0.0061
- Accuracy Human-person: 0.0
- Accuracy Human-rider: 0.0
- Accuracy Vehicle-car: 0.8937
- Accuracy Vehicle-truck: 0.0
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: 0.0
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.0
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0
- Accuracy Construction-building: 0.9143
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.0055
- Accuracy Construction-fenceguardrail: 0.0
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0
- Accuracy Object-pole: 0.0
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.9291
- Accuracy Nature-terrain: 0.8710
- Accuracy Sky: 0.9207
- Accuracy Void-ground: 0.0
- Accuracy Void-dynamic: 0.0
- Accuracy Void-static: 0.0
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.6127
- Iou Flat-sidewalk: 0.8192
- Iou Flat-crosswalk: 0.0
- Iou Flat-cyclinglane: 0.4256
- Iou Flat-parkingdriveway: 0.1262
- Iou Flat-railtrack: 0.0
- Iou Flat-curb: 0.0061
- Iou Human-person: 0.0
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.6655
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: 0.0
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.0
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.5666
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.0054
- Iou Construction-fenceguardrail: 0.0
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.0
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.7875
- Iou Nature-terrain: 0.6912
- Iou Sky: 0.8218
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.0
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 2.832 | 0.05 | 20 | 3.1768 | 0.0700 | 0.1095 | 0.5718 | nan | 0.1365 | 0.9472 | 0.0019 | 0.0006 | 0.0004 | 0.0 | 0.0205 | 0.0 | 0.0 | 0.2074 | 0.0 | 0.0 | 0.0 | 0.0017 | 0.0001 | 0.0 | 0.0 | 0.7360 | 0.0 | 0.0235 | 0.0050 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9559 | 0.0429 | 0.5329 | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1260 | 0.5906 | 0.0016 | 0.0006 | 0.0004 | 0.0 | 0.0175 | 0.0 | 0.0 | 0.2006 | 0.0 | 0.0 | 0.0 | 0.0003 | 0.0001 | 0.0 | 0.0 | 0.3729 | 0.0 | 0.0209 | 0.0044 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5778 | 0.0408 | 0.4932 | 0.0009 | 0.0 | 0.0 | 0.0 |
| 2.3224 | 0.1 | 40 | 2.4686 | 0.0885 | 0.1321 | 0.6347 | nan | 0.5225 | 0.9260 | 0.0005 | 0.0001 | 0.0006 | 0.0 | 0.0113 | 0.0 | 0.0 | 0.3738 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8191 | 0.0 | 0.0263 | 0.0012 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9649 | 0.0701 | 0.6434 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4240 | 0.6602 | 0.0005 | 0.0001 | 0.0006 | 0.0 | 0.0109 | 0.0 | 0.0 | 0.3292 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3962 | 0.0 | 0.0260 | 0.0011 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6019 | 0.0617 | 0.5862 | 0.0001 | 0.0 | 0.0 | 0.0 |
| 2.1961 | 0.15 | 60 | 1.9886 | 0.0988 | 0.1431 | 0.6500 | nan | 0.5168 | 0.9319 | 0.0 | 0.0001 | 0.0000 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.5761 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8325 | 0.0 | 0.0132 | 0.0003 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9612 | 0.1260 | 0.7625 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3929 | 0.6721 | 0.0 | 0.0001 | 0.0000 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.4609 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4375 | 0.0 | 0.0131 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6342 | 0.1108 | 0.6353 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2.2964 | 0.2 | 80 | 2.0597 | 0.1066 | 0.1503 | 0.6682 | nan | 0.6577 | 0.9207 | 0.0 | 0.0000 | 0.0002 | 0.0 | 0.0044 | 0.0 | 0.0 | 0.5257 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8466 | 0.0 | 0.0094 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9526 | 0.2022 | 0.8392 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4276 | 0.7093 | 0.0 | 0.0000 | 0.0002 | 0.0 | 0.0044 | 0.0 | 0.0 | 0.4438 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4488 | 0.0 | 0.0093 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6560 | 0.1833 | 0.7408 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.9751 | 0.25 | 100 | 1.7493 | 0.1186 | 0.1645 | 0.6944 | nan | 0.7604 | 0.9146 | 0.0 | 0.0004 | 0.0012 | 0.0 | 0.0016 | 0.0 | 0.0 | 0.7381 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8273 | 0.0 | 0.0026 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9636 | 0.3289 | 0.8909 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4904 | 0.7490 | 0.0 | 0.0004 | 0.0012 | 0.0 | 0.0016 | 0.0 | 0.0 | 0.5465 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4913 | 0.0 | 0.0026 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6542 | 0.2761 | 0.7004 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.7626 | 0.3 | 120 | 1.5608 | 0.1295 | 0.1752 | 0.7118 | nan | 0.8168 | 0.9102 | 0.0 | 0.0002 | 0.0025 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8094 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8362 | 0.0 | 0.0030 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9492 | 0.5677 | 0.8861 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4958 | 0.7592 | 0.0 | 0.0002 | 0.0025 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.5680 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5095 | 0.0 | 0.0030 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7082 | 0.4878 | 0.7392 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.32 | 0.35 | 140 | 1.5048 | 0.1323 | 0.1797 | 0.7181 | nan | 0.7883 | 0.9260 | 0.0 | 0.0000 | 0.0037 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.8711 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8590 | 0.0 | 0.0022 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9128 | 0.7088 | 0.8576 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5141 | 0.7598 | 0.0 | 0.0000 | 0.0037 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.5287 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5016 | 0.0 | 0.0022 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7458 | 0.5602 | 0.7499 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.6464 | 0.4 | 160 | 1.3886 | 0.1342 | 0.1783 | 0.7217 | nan | 0.7859 | 0.9390 | 0.0 | 0.0 | 0.0059 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7401 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8508 | 0.0 | 0.0010 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9368 | 0.7223 | 0.9025 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5173 | 0.7561 | 0.0 | 0.0 | 0.0058 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5846 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5059 | 0.0 | 0.0010 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7366 | 0.5802 | 0.7401 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4757 | 0.45 | 180 | 1.3649 | 0.1367 | 0.1840 | 0.7255 | nan | 0.8587 | 0.9185 | 0.0 | 0.0001 | 0.0039 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8588 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8337 | 0.0 | 0.0014 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9036 | 0.7809 | 0.9138 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5077 | 0.7693 | 0.0 | 0.0001 | 0.0039 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5980 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5264 | 0.0 | 0.0014 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7521 | 0.6078 | 0.7438 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2.0018 | 0.5 | 200 | 1.3118 | 0.1353 | 0.1839 | 0.7242 | nan | 0.7797 | 0.9457 | 0.0 | 0.0029 | 0.0057 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8345 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8509 | 0.0 | 0.0018 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8704 | 0.8688 | 0.9069 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5321 | 0.7602 | 0.0 | 0.0029 | 0.0057 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6060 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5276 | 0.0 | 0.0018 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7133 | 0.5551 | 0.7593 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4636 | 0.55 | 220 | 1.2729 | 0.1330 | 0.1797 | 0.7249 | nan | 0.8619 | 0.9203 | 0.0 | 0.0015 | 0.0067 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8903 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8514 | 0.0 | 0.0031 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9447 | 0.5448 | 0.9040 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5249 | 0.7844 | 0.0 | 0.0015 | 0.0066 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5735 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5336 | 0.0 | 0.0031 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7136 | 0.4869 | 0.7613 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1856 | 0.6 | 240 | 1.2551 | 0.1382 | 0.1828 | 0.7274 | nan | 0.7497 | 0.9518 | 0.0 | 0.0005 | 0.0048 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8893 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8153 | 0.0 | 0.0048 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9475 | 0.7597 | 0.9107 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5097 | 0.7477 | 0.0 | 0.0005 | 0.0047 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6172 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5527 | 0.0 | 0.0048 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7293 | 0.6250 | 0.7703 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4577 | 0.65 | 260 | 1.1862 | 0.1387 | 0.1848 | 0.7304 | nan | 0.8842 | 0.9065 | 0.0 | 0.0001 | 0.0024 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8566 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8632 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9442 | 0.7313 | 0.9080 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5121 | 0.7833 | 0.0 | 0.0001 | 0.0024 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6297 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5381 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7437 | 0.6199 | 0.7486 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0748 | 0.7 | 280 | 1.2000 | 0.1391 | 0.1846 | 0.7301 | nan | 0.7249 | 0.9690 | 0.0 | 0.0005 | 0.0064 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8909 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8656 | 0.0 | 0.0014 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8917 | 0.8362 | 0.9065 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5306 | 0.7403 | 0.0 | 0.0005 | 0.0063 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6223 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5491 | 0.0 | 0.0014 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7566 | 0.6061 | 0.7761 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.642 | 0.75 | 300 | 1.1452 | 0.1432 | 0.1880 | 0.7409 | nan | 0.8682 | 0.9389 | 0.0 | 0.0030 | 0.0062 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8605 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8759 | 0.0 | 0.0020 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9092 | 0.8515 | 0.8892 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5333 | 0.7905 | 0.0 | 0.0030 | 0.0062 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6393 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5418 | 0.0 | 0.0020 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7655 | 0.6551 | 0.7893 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.2166 | 0.8 | 320 | 1.1450 | 0.1388 | 0.1849 | 0.7391 | nan | 0.8516 | 0.9460 | 0.0 | 0.0043 | 0.0060 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.8944 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8803 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9283 | 0.6849 | 0.9071 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5584 | 0.7932 | 0.0 | 0.0043 | 0.0060 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.5844 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5259 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7548 | 0.5985 | 0.7549 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2.1346 | 0.85 | 340 | 1.1215 | 0.1428 | 0.1887 | 0.7411 | nan | 0.7956 | 0.9551 | 0.0 | 0.0145 | 0.0098 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.8646 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8884 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9131 | 0.8828 | 0.9024 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5611 | 0.7721 | 0.0 | 0.0145 | 0.0097 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6313 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5405 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7563 | 0.6337 | 0.7917 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8351 | 0.9 | 360 | 1.1012 | 0.1433 | 0.1896 | 0.7449 | nan | 0.8723 | 0.9432 | 0.0 | 0.0025 | 0.0114 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8822 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8662 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9213 | 0.8361 | 0.9201 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5472 | 0.7989 | 0.0 | 0.0025 | 0.0113 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6277 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5416 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7666 | 0.6674 | 0.7664 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.152 | 0.95 | 380 | 1.1045 | 0.1452 | 0.1891 | 0.7453 | nan | 0.8827 | 0.9332 | 0.0 | 0.0457 | 0.0124 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8396 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8848 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9399 | 0.7910 | 0.9107 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5462 | 0.7966 | 0.0 | 0.0457 | 0.0123 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6494 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5395 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7636 | 0.6627 | 0.7763 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.2062 | 1.0 | 400 | 1.0607 | 0.1469 | 0.1897 | 0.7482 | nan | 0.8192 | 0.9644 | 0.0 | 0.0944 | 0.0198 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8406 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8821 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9193 | 0.8054 | 0.9137 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5772 | 0.7742 | 0.0 | 0.0941 | 0.0195 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6414 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5360 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7740 | 0.6591 | 0.7710 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0116 | 1.05 | 420 | 1.0503 | 0.1493 | 0.1950 | 0.7554 | nan | 0.8686 | 0.9478 | 0.0 | 0.2033 | 0.0295 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9166 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8409 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9414 | 0.7667 | 0.9196 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5809 | 0.8022 | 0.0 | 0.1995 | 0.0287 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5916 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5517 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7628 | 0.6441 | 0.7652 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.009 | 1.1 | 440 | 1.0723 | 0.1529 | 0.1958 | 0.7553 | nan | 0.7797 | 0.9670 | 0.0 | 0.2214 | 0.0547 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8978 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8927 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9274 | 0.8016 | 0.9176 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5898 | 0.7717 | 0.0 | 0.2157 | 0.0526 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6389 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5499 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7760 | 0.6697 | 0.7818 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1496 | 1.15 | 460 | 1.0417 | 0.1571 | 0.2017 | 0.7607 | nan | 0.7736 | 0.9645 | 0.0 | 0.3606 | 0.0669 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8775 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8801 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9098 | 0.8906 | 0.9326 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6102 | 0.7737 | 0.0 | 0.3374 | 0.0634 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6549 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5538 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7682 | 0.6437 | 0.7772 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4669 | 1.2 | 480 | 1.0161 | 0.1566 | 0.2024 | 0.7637 | nan | 0.8236 | 0.9531 | 0.0 | 0.3507 | 0.0584 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.9165 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8675 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9263 | 0.8597 | 0.9222 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6005 | 0.7983 | 0.0 | 0.3296 | 0.0556 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6153 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5498 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7752 | 0.6654 | 0.7770 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.075 | 1.25 | 500 | 1.0124 | 0.1556 | 0.2000 | 0.7634 | nan | 0.8521 | 0.9499 | 0.0 | 0.3154 | 0.0410 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8944 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8618 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9442 | 0.8133 | 0.9290 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5910 | 0.8068 | 0.0 | 0.2992 | 0.0394 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6338 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5507 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7689 | 0.6697 | 0.7737 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.888 | 1.3 | 520 | 0.9797 | 0.1597 | 0.2028 | 0.7677 | nan | 0.8590 | 0.9472 | 0.0 | 0.3534 | 0.0469 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8900 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8807 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9379 | 0.8578 | 0.9187 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5908 | 0.8056 | 0.0 | 0.3311 | 0.0448 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6598 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5676 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7712 | 0.6912 | 0.8088 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8099 | 1.35 | 540 | 0.9760 | 0.1589 | 0.2026 | 0.7678 | nan | 0.8526 | 0.9534 | 0.0 | 0.3370 | 0.0313 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9235 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8862 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9252 | 0.8551 | 0.9206 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5954 | 0.8014 | 0.0 | 0.3188 | 0.0303 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6382 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5706 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7830 | 0.6934 | 0.8122 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1998 | 1.4 | 560 | 0.9815 | 0.1578 | 0.2030 | 0.7631 | nan | 0.8956 | 0.9250 | 0.0 | 0.3267 | 0.0461 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.8929 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8956 | 0.0 | 0.0002 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9206 | 0.8669 | 0.9275 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5656 | 0.8136 | 0.0 | 0.3102 | 0.0440 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.6574 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5524 | 0.0 | 0.0002 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7894 | 0.6940 | 0.7818 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.5591 | 1.45 | 580 | 0.9654 | 0.1618 | 0.2043 | 0.7698 | nan | 0.8198 | 0.9655 | 0.0 | 0.3715 | 0.0848 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.8935 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8965 | 0.0 | 0.0013 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9146 | 0.8730 | 0.9198 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6182 | 0.7898 | 0.0 | 0.3467 | 0.0792 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.6590 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5647 | 0.0 | 0.0013 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7871 | 0.6835 | 0.8101 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.861 | 1.5 | 600 | 0.9622 | 0.1607 | 0.2045 | 0.7689 | nan | 0.8163 | 0.9648 | 0.0 | 0.3780 | 0.0907 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.9187 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8714 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9229 | 0.8485 | 0.9361 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6180 | 0.7903 | 0.0 | 0.3541 | 0.0844 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.6307 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5609 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7854 | 0.6904 | 0.7884 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8335 | 1.55 | 620 | 0.9569 | 0.1598 | 0.2050 | 0.7686 | nan | 0.8421 | 0.9561 | 0.0 | 0.3493 | 0.0928 | 0.0 | 0.0012 | 0.0 | 0.0 | 0.9261 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8753 | 0.0 | 0.0013 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9172 | 0.8688 | 0.9335 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6069 | 0.8031 | 0.0 | 0.3306 | 0.0860 | 0.0 | 0.0012 | 0.0 | 0.0 | 0.6123 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5618 | 0.0 | 0.0013 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7851 | 0.6911 | 0.7950 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9988 | 1.6 | 640 | 0.9337 | 0.1611 | 0.2050 | 0.7711 | nan | 0.8595 | 0.9538 | 0.0 | 0.3512 | 0.0928 | 0.0 | 0.0006 | 0.0 | 0.0 | 0.8962 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8854 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9281 | 0.8594 | 0.9367 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6062 | 0.8105 | 0.0 | 0.3310 | 0.0868 | 0.0 | 0.0006 | 0.0 | 0.0 | 0.6565 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5596 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7819 | 0.6958 | 0.7880 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.966 | 1.65 | 660 | 0.9322 | 0.1612 | 0.2051 | 0.7707 | nan | 0.8706 | 0.9494 | 0.0 | 0.3470 | 0.0997 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.8905 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8722 | 0.0 | 0.0016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9347 | 0.8652 | 0.9364 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5953 | 0.8136 | 0.0 | 0.3281 | 0.0922 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.6654 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5696 | 0.0 | 0.0016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7756 | 0.6890 | 0.7885 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.2154 | 1.7 | 680 | 0.9373 | 0.1611 | 0.2048 | 0.7710 | nan | 0.8448 | 0.9577 | 0.0 | 0.3717 | 0.1010 | 0.0 | 0.0007 | 0.0 | 0.0 | 0.9173 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8613 | 0.0 | 0.0026 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9411 | 0.8371 | 0.9246 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6096 | 0.8056 | 0.0 | 0.3487 | 0.0930 | 0.0 | 0.0007 | 0.0 | 0.0 | 0.6272 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5696 | 0.0 | 0.0026 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7762 | 0.6911 | 0.7931 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.7979 | 1.75 | 700 | 0.9429 | 0.1622 | 0.2067 | 0.7717 | nan | 0.8496 | 0.9548 | 0.0 | 0.3821 | 0.1182 | 0.0 | 0.0013 | 0.0 | 0.0 | 0.9071 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8803 | 0.0 | 0.0043 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9202 | 0.8812 | 0.9204 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6104 | 0.8088 | 0.0 | 0.3583 | 0.1074 | 0.0 | 0.0013 | 0.0 | 0.0 | 0.6410 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5675 | 0.0 | 0.0043 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7784 | 0.6767 | 0.7994 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8366 | 1.8 | 720 | 0.9379 | 0.1645 | 0.2075 | 0.7745 | nan | 0.8359 | 0.9580 | 0.0 | 0.4130 | 0.1275 | 0.0 | 0.0021 | 0.0 | 0.0 | 0.8998 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8704 | 0.0 | 0.0088 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9450 | 0.8617 | 0.9251 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6227 | 0.8035 | 0.0 | 0.3850 | 0.1147 | 0.0 | 0.0021 | 0.0 | 0.0 | 0.6544 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5777 | 0.0 | 0.0088 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7682 | 0.6867 | 0.8055 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0448 | 1.85 | 740 | 0.9419 | 0.1659 | 0.2087 | 0.7769 | nan | 0.8483 | 0.9532 | 0.0 | 0.4442 | 0.1387 | 0.0 | 0.0028 | 0.0 | 0.0 | 0.8986 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8865 | 0.0 | 0.0042 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9458 | 0.8442 | 0.9215 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6240 | 0.8122 | 0.0 | 0.4077 | 0.1237 | 0.0 | 0.0028 | 0.0 | 0.0 | 0.6529 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5700 | 0.0 | 0.0041 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7767 | 0.6938 | 0.8070 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9737 | 1.9 | 760 | 0.9193 | 0.1664 | 0.2082 | 0.7772 | nan | 0.8420 | 0.9586 | 0.0 | 0.4353 | 0.1193 | 0.0 | 0.0010 | 0.0 | 0.0 | 0.9082 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8955 | 0.0 | 0.0079 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9385 | 0.8464 | 0.9190 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6232 | 0.8053 | 0.0 | 0.4022 | 0.1088 | 0.0 | 0.0010 | 0.0 | 0.0 | 0.6549 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5766 | 0.0 | 0.0079 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7843 | 0.7077 | 0.8180 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0716 | 1.95 | 780 | 0.9170 | 0.1672 | 0.2098 | 0.7785 | nan | 0.8434 | 0.9539 | 0.0 | 0.4671 | 0.1283 | 0.0 | 0.0037 | 0.0 | 0.0 | 0.9012 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8984 | 0.0 | 0.0058 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9398 | 0.8661 | 0.9157 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6242 | 0.8106 | 0.0 | 0.4232 | 0.1156 | 0.0 | 0.0037 | 0.0 | 0.0 | 0.6631 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5777 | 0.0 | 0.0057 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7811 | 0.6920 | 0.8223 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4144 | 2.0 | 800 | 0.9249 | 0.1675 | 0.2109 | 0.7776 | nan | 0.8631 | 0.9423 | 0.0 | 0.4704 | 0.1421 | 0.0 | 0.0061 | 0.0 | 0.0 | 0.8937 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9143 | 0.0 | 0.0055 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9291 | 0.8710 | 0.9207 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6127 | 0.8192 | 0.0 | 0.4256 | 0.1262 | 0.0 | 0.0061 | 0.0 | 0.0 | 0.6655 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5666 | 0.0 | 0.0054 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7875 | 0.6912 | 0.8218 | 0.0 | 0.0 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.6.1
- Tokenizers 0.12.1
|
a5c06b28f2ae5e684024c5083e3c215f
|
aajrami/bert-mlm-small
|
aajrami
|
roberta
| 9 | 6 |
transformers
| 0 |
feature-extraction
| true | false | false |
cc-by-4.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['bert']
| false | true | true | 809 | false |
## bert-mlm-small
A small-size BERT Language Model with an **MLM** pre-training objective. For more details about the pre-training objective and the pre-training hyperparameters, please refer to [How does the pre-training objective affect what large language models learn about linguistic properties?](https://aclanthology.org/2022.acl-short.16/)
## License
CC BY 4.0
## Citation
If you use this model, please cite the following paper:
```
@inproceedings{alajrami2022does,
title={How does the pre-training objective affect what large language models learn about linguistic properties?},
author={Alajrami, Ahmed and Aletras, Nikolaos},
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)},
pages={131--147},
year={2022}
}
```
|
a02af933518036cfa3cb079203dc6bfd
|
gokuls/mobilebert_sa_GLUE_Experiment_qnli
|
gokuls
|
mobilebert
| 23 | 6 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
|
['en']
|
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,680 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_sa_GLUE_Experiment_qnli
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6487
- Accuracy: 0.6094
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6754 | 1.0 | 819 | 0.6491 | 0.6178 |
| 0.6369 | 2.0 | 1638 | 0.6487 | 0.6094 |
| 0.6125 | 3.0 | 2457 | 0.6555 | 0.6088 |
| 0.5942 | 4.0 | 3276 | 0.6647 | 0.6028 |
| 0.5805 | 5.0 | 4095 | 0.6735 | 0.5934 |
| 0.5689 | 6.0 | 4914 | 0.6893 | 0.5978 |
| 0.5587 | 7.0 | 5733 | 0.7055 | 0.5896 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
3abb13f57a674d451274f36da239fa58
|
alirezafarashah/wav2vec2-base-ks-2sec
|
alirezafarashah
|
wav2vec2
| 10 | 3 |
transformers
| 0 |
audio-classification
| true | false | false |
apache-2.0
| null |
['superb']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,555 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-ks-2sec
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0880
- Accuracy: 0.9822
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 0.5003 | 1.0 | 399 | 0.9643 | 0.4284 |
| 0.1868 | 2.0 | 798 | 0.9748 | 0.1628 |
| 0.1413 | 3.0 | 1197 | 0.9796 | 0.1128 |
| 0.1021 | 4.0 | 1596 | 0.9813 | 0.0940 |
| 0.1089 | 5.0 | 1995 | 0.0880 | 0.9822 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
7f8f3ac3c4ef317d84436282eb816e0e
|
kuttersn/gpt2-finetuned-redditComments
|
kuttersn
|
gpt2
| 9 | 4 |
transformers
| 0 |
text-generation
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,252 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-finetuned-redditComments
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8418
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 3.9535 | 1.0 | 4320 | 3.8888 |
| 3.8832 | 2.0 | 8640 | 3.8523 |
| 3.8708 | 3.0 | 12960 | 3.8418 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
f1beaeec6b92a0a529b4faae79a82e56
|
PiyarSquare/stable_diffusion_silz
|
PiyarSquare
| null | 8 | 0 | null | 17 | null | false | false | false |
creativeml-openrail-m
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,250 | false |
# 📜🗡️ Silhouette/Cricut style
This is a fine-tuned Stable Diffusion model designed for cutting machines.
Use **silz style** in your prompts.
### Sample images:





Based on StableDiffusion 1.5 model
### Training
Made with [automatic1111 webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) + [d8ahazard dreambooth extension](https://github.com/d8ahazard/sd_dreambooth_extension) + [nitrosocke guide](https://github.com/nitrosocke/dreambooth-training-guide).
82 training images at 1e-6 learning rate for 8200 steps.
Without prior preservation.
Inspired by [Fictiverse's PaperCut model](https://huggingface.co/Fictiverse/Stable_Diffusion_PaperCut_Model) and [txt2vector script](https://github.com/GeorgLegato/Txt2Vectorgraphics).
|
9a0e51931ab33e6af275a3274cf9ef6a
|
KoichiYasuoka/roberta-large-english-upos
|
KoichiYasuoka
|
roberta
| 10 | 1,915 |
transformers
| 1 |
token-classification
| true | false | false |
cc-by-sa-4.0
|
['en']
|
['universal_dependencies']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['english', 'token-classification', 'pos', 'dependency-parsing']
| false | true | true | 865 | false |
# roberta-large-english-upos
## Model Description
This is a RoBERTa model pre-trained with [UD_English](https://universaldependencies.org/en/) for POS-tagging and dependency-parsing, derived from [roberta-large](https://huggingface.co/roberta-large). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech).
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-english-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-large-english-upos")
```
or
```py
import esupar
nlp=esupar.load("KoichiYasuoka/roberta-large-english-upos")
```
## See Also
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
|
74a7b4eb153a7e3825cd71b91d60dddd
|
emfa/danish-bert-botxo-danish-finetuned-hatespeech
|
emfa
|
bert
| 17 | 3 |
transformers
| 0 |
text-classification
| true | false | false |
cc-by-4.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,562 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# danish-bert-botxo-danish-finetuned-hatespeech
This model is for a university project and is uploaded for sharing between students. It is training on a danish hate speech labeled training set. Feel free to use it, but as of now, we don't promise any good results ;-)
This model is a fine-tuned version of [Maltehb/danish-bert-botxo](https://huggingface.co/Maltehb/danish-bert-botxo) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3584
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 315 | 0.3285 |
| 0.2879 | 2.0 | 630 | 0.3288 |
| 0.2879 | 3.0 | 945 | 0.3178 |
| 0.1371 | 4.0 | 1260 | 0.3584 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
02ba40c2482b516cd100785d164ef345
|
ytsai25/bert-finetuned-ner
|
ytsai25
|
bert
| 8 | 6 |
transformers
| 0 |
token-classification
| false | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_keras_callback']
| true | true | true | 1,423 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# ytsai25/bert-finetuned-ner
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0240
- Validation Loss: 0.0613
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1017, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.1218 | 0.0592 | 0 |
| 0.0398 | 0.0602 | 1 |
| 0.0240 | 0.0613 | 2 |
### Framework versions
- Transformers 4.18.0
- TensorFlow 2.8.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
7c42eac51670c00284bc94a39c06f3df
|
azizbarank/distilbert-base-turkish-cased-sentiment
|
azizbarank
|
distilbert
| 13 | 40 |
transformers
| 0 |
text-classification
| true | false | false |
mit
| null |
['sepidmnorozy/Turkish_sentiment']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,163 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-turkish-cased-sentiment
This model is a fine-tuned version of [dbmdz/distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) on the [sepidmnorozy/Turkish_sentiment](https://huggingface.co/datasets/sepidmnorozy/Turkish_sentiment) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4141
- Accuracy: 0.855
- F1: 0.8797
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.22.2
- Pytorch 1.9.1
- Datasets 2.5.1
- Tokenizers 0.12.1
|
8274b9782c49955efaea4329ff7e3986
|
joaoalvarenga/model-sid-voxforge-cv-cetuc-0
|
joaoalvarenga
|
wav2vec2
| 10 | 7 |
transformers
| 0 |
automatic-speech-recognition
| true | false | true |
apache-2.0
|
['pt']
|
['common_voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['audio', 'speech', 'wav2vec2', 'pt', 'apache-2.0', 'portuguese-speech-corpus', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week', 'PyTorch']
| true | true | true | 3,410 | false |
# Wav2Vec2-Large-XLSR-53-Portuguese
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Portuguese using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "pt", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a")
model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Portuguese test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "pt", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a")
model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result (wer)**: 15.037146%
## Training
The Common Voice `train`, `validation` datasets were used for training.
The script used for training can be found at: https://github.com/joaoalvarenga/wav2vec2-large-xlsr-53-portuguese/blob/main/fine-tuning.py
|
af40d28e8224ff34004643c2ee3980f1
|
Raccourci/xlm-sustainability-sentiment
|
Raccourci
|
xlm-roberta
| 19 | 12 |
transformers
| 0 |
text-classification
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,949 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-sustainability-sentiment
This model is a fine-tuned version of [Raccourci/fairguest-bert](https://huggingface.co/Raccourci/fairguest-bert) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2997
- F1: 0.9335
- Roc Auc: 0.9335
- Accuracy: 0.9335
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| No log | 0.98 | 15 | 0.5221 | 0.7173 | 0.7173 | 0.7173 |
| No log | 1.98 | 30 | 0.3833 | 0.7365 | 0.7308 | 0.7089 |
| No log | 2.98 | 45 | 0.3204 | 0.9030 | 0.9012 | 0.8836 |
| No log | 3.98 | 60 | 0.2861 | 0.8960 | 0.8960 | 0.8960 |
| No log | 4.98 | 75 | 0.2223 | 0.9125 | 0.9127 | 0.9106 |
| No log | 5.98 | 90 | 0.2499 | 0.9210 | 0.9210 | 0.9210 |
| No log | 6.98 | 105 | 0.2168 | 0.9293 | 0.9293 | 0.9293 |
| No log | 7.98 | 120 | 0.2122 | 0.9376 | 0.9376 | 0.9376 |
| No log | 8.98 | 135 | 0.2303 | 0.9335 | 0.9335 | 0.9335 |
| No log | 9.98 | 150 | 0.2455 | 0.9314 | 0.9314 | 0.9314 |
| No log | 10.98 | 165 | 0.2278 | 0.9335 | 0.9335 | 0.9335 |
| No log | 11.98 | 180 | 0.2593 | 0.9304 | 0.9304 | 0.9293 |
| No log | 12.98 | 195 | 0.2494 | 0.9397 | 0.9397 | 0.9397 |
| No log | 13.98 | 210 | 0.2579 | 0.9314 | 0.9314 | 0.9314 |
| No log | 14.98 | 225 | 0.2633 | 0.9356 | 0.9356 | 0.9356 |
| No log | 15.98 | 240 | 0.2918 | 0.9283 | 0.9283 | 0.9272 |
| No log | 16.98 | 255 | 0.2714 | 0.9356 | 0.9356 | 0.9356 |
| No log | 17.98 | 270 | 0.3034 | 0.9356 | 0.9356 | 0.9356 |
| No log | 18.98 | 285 | 0.3050 | 0.9325 | 0.9324 | 0.9314 |
| No log | 19.98 | 300 | 0.2997 | 0.9335 | 0.9335 | 0.9335 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
1ddfb22cf5559f38cf30bc23e80523b1
|
izumi-lab/electra-small-japanese-fin-discriminator
|
izumi-lab
|
electra
| 7 | 989 |
transformers
| 0 | null | true | false | false |
cc-by-sa-4.0
|
['ja']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['finance']
| false | true | true | 2,193 | false |
# ELECTRA small Japanese finance discriminator
This is a [ELECTRA](https://github.com/google-research/electra) model pretrained on texts in the Japanese language.
The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0).
## Model architecture
The model architecture is the same as ELECTRA small in the [original ELECTRA implementation](https://github.com/google-research/electra); 12 layers, 256 dimensions of hidden states, and 4 attention heads.
## Training Data
The models are trained on the Japanese version of Wikipedia.
The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021.
The Wikipedia corpus file is 2.9GB, consisting of approximately 20M sentences.
The financial corpus consists of 2 corpora:
- Summaries of financial results from October 9, 2012, to December 31, 2020
- Securities reports from February 8, 2018, to December 31, 2020
The financial corpus file is 5.2GB, consisting of approximately 27M sentences.
## Tokenization
The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm.
The vocabulary size is 32768.
## Training
The models are trained with the same configuration as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555) except size; 128 tokens per instance, 128 instances per batch, and 1M training steps.
The size of the generator is the same of the discriminator.
## Citation
```
@article{Suzuki-etal-2023-ipm,
title = {Constructing and analyzing domain-specific language model for financial text mining}
author = {Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi},
journal = {Information Processing & Management},
volume = {60},
number = {2},
pages = {103194},
year = {2023},
doi = {10.1016/j.ipm.2022.103194}
}
```
## Licenses
The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/).
## Acknowledgments
This work was supported by JSPS KAKENHI Grant Number JP21K12010.
|
f49e68e43be4fa5672c9f4984a909f63
|
Davincilee/closure_system_door_inne-bert-base-uncased
|
Davincilee
|
bert
| 16 | 4 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,135 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# closure_system_door_inne-bert-base-uncased
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7907
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 7
- eval_batch_size: 7
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7321 | 1.0 | 2 | 2.5801 |
| 2.6039 | 2.0 | 4 | 2.0081 |
| 2.4556 | 3.0 | 6 | 2.3329 |
| 2.3587 | 4.0 | 8 | 2.4156 |
| 2.2565 | 5.0 | 10 | 2.0009 |
| 2.3489 | 6.0 | 12 | 1.7774 |
| 2.2622 | 7.0 | 14 | 2.2064 |
| 2.415 | 8.0 | 16 | 1.9671 |
| 2.1873 | 9.0 | 18 | 2.0729 |
| 2.2377 | 10.0 | 20 | 2.0052 |
| 2.352 | 11.0 | 22 | 1.9614 |
| 2.2347 | 12.0 | 24 | 2.2437 |
| 2.1113 | 13.0 | 26 | 1.7145 |
| 2.1939 | 14.0 | 28 | 1.5418 |
| 2.0645 | 15.0 | 30 | 2.1882 |
| 2.1499 | 16.0 | 32 | 2.0266 |
| 2.1432 | 17.0 | 34 | 2.3583 |
| 2.0656 | 18.0 | 36 | 2.3147 |
| 2.0348 | 19.0 | 38 | 2.2807 |
| 2.0502 | 20.0 | 40 | 1.7122 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|
65323f1e82ea6fe32ccf168d0cb0be37
|
Shobhank-iiitdwd/Distiled-roberta-squad2-QA
|
Shobhank-iiitdwd
|
roberta
| 10 | 5 |
transformers
| 0 |
question-answering
| true | false | false |
cc-by-4.0
|
['en']
|
['squad_v2']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| true | true | true | 2,491 | false |
# Distiled-roberta-squad2
This is the *distilled* version of the [roberta-base-squad2-QA](https://huggingface.co/Shobhank-iiitdwd/Distiled-roberta-squad2-QA) model. This model has a comparable prediction quality and runs at twice the speed of the base model.
## Overview
**Language model:** Distiled-roberta-squad2-QA
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD 2.0
**Eval data:** SQuAD 2.0
## Hyperparameters
```
batch_size = 96
n_epochs = 4
base_LM_model = "Shobhank-iiitdwd/Distiled-roberta-squad2-QA"
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride = 128
max_query_length = 64
distillation_loss_weight = 0.75
temperature = 1.5
teacher = "Shobhank-iiitdwd/Distiled-roberta-squad2-QA"
```
## Distillation
This model was distilled using the TinyBERT approach.Firstly, we have performed intermediate layer distillation with roberta-base as the teacher which resulted in Distiles-roberta.
Secondly, we have performed task-specific distillation with [roberta-base-squad2](https://huggingface.co/Shobhank-iiitdwd/roberta-squad2-QA) as the teacher for further intermediate layer distillation on an augmented version of SQuADv2 and then with [roberta-large-squad2](https://huggingface.co/Shobhank-iiitdwd/Distiled-roberta-squad2-QA) as the teacher for prediction layer distillation.
## Usage
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "Shobhank-iiitdwd/Distiled-roberta-squad2-QA"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Performance
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
```
"exact": 78.69114798281817,
"f1": 81.9198998536977,
"total": 11873,
"HasAns_exact": 76.19770580296895,
"HasAns_f1": 82.66446878592329,
"HasAns_total": 5928,
"NoAns_exact": 81.17746005046257,
"NoAns_f1": 81.17746005046257,
"NoAns_total": 5945
```
|
dea682c9d8496c8654344ceeffaff397
|
dranzerstar/SD-textual-inversion-embeddings-repo
|
dranzerstar
| null | 303 | 0 |
diffusers
| 47 | null | false | false | false |
creativeml-openrail-m
| null | null | null | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
['LoRa', 'embeddings']
| false | true | true | 1,974 | false |
### SD-textual-inversion-embeddings/Lora repo
### Lora Networks
Still Exploring on this training process
prompt: masterpiece, best_quality, clear details,1girl, cowboy_shot, simple_background
with respective LoRa net




### Lora characters and outfits
using char-* and outfit-* togeather
masterpiece, best_quality, clear details,1girl, reverse_outfit (pasties) (maebari) high_heels \<lora:outfit-reverseoutfit:1\>, (fullbody), looking_at_viewer, floor , \<lora:char-seia:0.9\>,

----
### Textual inversion embeddings
### stable diffusion emeddings of characters and outfits
Check each image's PNG info inthe preview folder for excat gen params
# Sample of shinymas/character embeddings
generated with the same prompt with interchanging character phrase (char-X)
prompt: masterpiece, best_quality, clear details, char-kogane ,shirt,1girl,upper body
Negative prompt: fake_animal_ears, bad_prompt:0.8, (Cropped head), (Extra hands), (extra legs), (cropped), (missing legs), (duplicate), (morbid), cropped, (error), (bad anatomy), text, jpeg artifacts, (ugly), (morbid), (blurry), (low quality), (long leg), (poorly drawn), (bad proportions),

# Sample of char-toru wearing various outfit embeddings
generated with the same prompt with interchanging outfit phrase (char-X)
prompt: masterpiece, best_quality, clear details, illustration of char-toru standing wearing outfit-null:1.1, ((full body)) , (smile),(solo), boots, floor,
Negative prompt: fake_animal_ears, bad_prompt:0.8, (Cropped head), (Extra hands), (extra legs), (cropped), (missing legs), (duplicate), (morbid), cropped, (error), (bad anatomy), text, jpeg artifacts, (ugly), (morbid), (blurry), (low quality), (long leg), (poorly drawn), (bad proportions),




---
license: osl-3.0
---
|
1688bfd73b0a5f777c4e455de0bdb39a
|
jonatasgrosman/exp_w2v2t_et_unispeech-sat_s108
|
jonatasgrosman
|
unispeech-sat
| 10 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['et']
|
['mozilla-foundation/common_voice_7_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'et']
| false | true | true | 463 | false |
# exp_w2v2t_et_unispeech-sat_s108
Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
4cd8c12037349cbb916ee69838e71d1a
|
teddy322/wav2vec2-large-xls-r-300m-kor-11385-3
|
teddy322
|
wav2vec2
| 15 | 0 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null |
['zeroth_korean_asr']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,332 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-kor-11385-3
This model is a fine-tuned version of [teddy322/wav2vec2-large-xls-r-300m-kor-11385-2](https://huggingface.co/teddy322/wav2vec2-large-xls-r-300m-kor-11385-2) on the zeroth_korean_asr dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.2425
- eval_wer: 0.1495
- eval_runtime: 137.8001
- eval_samples_per_second: 3.316
- eval_steps_per_second: 0.421
- epoch: 10.59
- step: 3600
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3
|
10cc0e8c51d6e82de4d3b60fe7492322
|
valentinaw1sa4ajh/fusion-final
|
valentinaw1sa4ajh
| null | 18 | 2 |
diffusers
| 0 |
text-to-image
| false | false | false |
creativeml-openrail-m
| null | null | null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['text-to-image', 'stable-diffusion']
| false | true | true | 431 | false |
### fusion-final Dreambooth model trained by valentinaw1sa4ajh with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
93c87c22aa92d8affcc3e8a6e0488d85
|
rhitabrat/bert-finetuned-squad
|
rhitabrat
|
bert
| 8 | 3 |
transformers
| 0 |
question-answering
| false | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_keras_callback']
| true | true | true | 1,433 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# rhitabrat/bert-finetuned-squad
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.7887
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7790, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Epoch |
|:----------:|:-----:|
| 1.2182 | 0 |
| 0.7887 | 1 |
### Framework versions
- Transformers 4.21.2
- TensorFlow 2.8.2
- Datasets 2.4.0
- Tokenizers 0.12.1
|
43710b6769d9ee4e83aed522b21a76db
|
MhF/xlm-roberta-base-finetuned-panx-de
|
MhF
|
xlm-roberta
| 15 | 21 |
transformers
| 0 |
token-classification
| true | false | false |
mit
| null |
['xtreme']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,320 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1354
- F1: 0.8621
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.254 | 1.0 | 525 | 0.1652 | 0.8254 |
| 0.1293 | 2.0 | 1050 | 0.1431 | 0.8489 |
| 0.0797 | 3.0 | 1575 | 0.1354 | 0.8621 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
|
96b56a574e1d0dff3beca77cfe200761
|
cl-tohoku/bert-base-japanese
|
cl-tohoku
|
bert
| 8 | 140,784 |
transformers
| 8 |
fill-mask
| true | true | true |
cc-by-sa-4.0
|
['ja']
|
['wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,640 | false |
# BERT base Japanese (IPA dictionary)
This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language.
This version of the model processes input texts with word-level tokenization based on the IPA dictionary, followed by the WordPiece subword tokenization.
The codes for the pretraining are available at [cl-tohoku/bert-japanese](https://github.com/cl-tohoku/bert-japanese/tree/v1.0).
## Model architecture
The model architecture is the same as the original BERT base model; 12 layers, 768 dimensions of hidden states, and 12 attention heads.
## Training Data
The model is trained on Japanese Wikipedia as of September 1, 2019.
To generate the training corpus, [WikiExtractor](https://github.com/attardi/wikiextractor) is used to extract plain texts from a dump file of Wikipedia articles.
The text files used for the training are 2.6GB in size, consisting of approximately 17M sentences.
## Tokenization
The texts are first tokenized by [MeCab](https://taku910.github.io/mecab/) morphological parser with the IPA dictionary and then split into subwords by the WordPiece algorithm.
The vocabulary size is 32000.
## Training
The model is trained with the same configuration as the original BERT; 512 tokens per instance, 256 instances per batch, and 1M training steps.
## Licenses
The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 3.0](https://creativecommons.org/licenses/by-sa/3.0/).
## Acknowledgments
For training models, we used Cloud TPUs provided by [TensorFlow Research Cloud](https://www.tensorflow.org/tfrc/) program.
|
5c1fe3f53179cbd2cc42d50407441b58
|
LowGI/my_new_asr_model
|
LowGI
|
wav2vec2
| 10 | 0 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,514 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_new_asr_model
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.9912
- Wer: 0.9915
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| No log | 200.0 | 200 | 3.2498 | 0.9972 |
| No log | 400.0 | 400 | 4.1645 | 1.1339 |
| 1.1325 | 600.0 | 600 | 4.7252 | 1.1197 |
| 1.1325 | 800.0 | 800 | 4.9678 | 1.0370 |
| 0.0747 | 1000.0 | 1000 | 4.9912 | 0.9915 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
75c4c28f3a799bc0ef8d796c72aac4dc
|
huggingnft/dooggies
|
huggingnft
| null | 5 | 25 |
transformers
| 2 |
unconditional-image-generation
| false | false | false |
mit
| null |
['huggingnft/dooggies']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['huggingnft', 'nft', 'huggan', 'gan', 'image', 'images', 'unconditional-image-generation']
| false | true | true | 2,174 | false |
# Hugging NFT: dooggies
## Disclaimer
All rights belong to their owners. Models and datasets can be removed from the site at the request of the copyright
holder.
## Model description
LightWeight GAN model for unconditional generation.
NFT collection available [here](https://opensea.io/collection/dooggies).
Dataset is available [here](https://huggingface.co/datasets/huggingnft/dooggies).
Check Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft).
Project repository: [link](https://github.com/AlekseyKorshuk/huggingnft).
[](https://github.com/AlekseyKorshuk/huggingnft)
## Intended uses & limitations
#### How to use
Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft).
#### Limitations and bias
Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft).
## Training data
Dataset is available [here](https://huggingface.co/datasets/huggingnft/dooggies).
## Training procedure
Training script is available [here](https://github.com/AlekseyKorshuk/huggingnft).
## Generated Images
Check results with Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft).
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingnft)
### BibTeX entry and citation info
```bibtex
@InProceedings{huggingnft,
author={Aleksey Korshuk}
year=2022
}
```
|
8758306c3733bbcb1de82a68d16d6a06
|
Helsinki-NLP/opus-mt-fr-sl
|
Helsinki-NLP
|
marian
| 10 | 16 |
transformers
| 0 |
translation
| true | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['translation']
| false | true | true | 768 | false |
### opus-mt-fr-sl
* source languages: fr
* target languages: sl
* OPUS readme: [fr-sl](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-sl/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-sl/opus-2020-01-16.zip)
* test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-sl/opus-2020-01-16.test.txt)
* test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-sl/opus-2020-01-16.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.fr.sl | 20.1 | 0.433 |
|
daf55cdc110cb7b76d994ab8d17e4756
|
facebook/regnet-y-10b-seer-in1k
|
facebook
|
regnet
| 14 | 8 |
transformers
| 1 |
image-classification
| true | true | false |
apache-2.0
| null |
['imagenet1k']
| null | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
['vision', 'image-classification']
| false | true | true | 1,411 | false |
## RegNetY 10B
This gigantic model is a scale up [RegNetY](https://arxiv.org/abs/2003.13678) model trained on one bilion random images ad later finetuned on imagenet.
Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team.
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
>>> from transformers import AutoFeatureExtractor, RegNetForImageClassification
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/regnet-y-040")
>>> model = RegNetForImageClassification.from_pretrained("facebook/regnet-y-040")
>>> inputs = feature_extractor(image, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
'tabby, tabby cat'
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
|
7524d11e731a1a0b9454982647cff4a6
|
thatdramebaazguy/roberta-base-MITmovie-squad
|
thatdramebaazguy
|
roberta
| 10 | 8 |
transformers
| 1 |
question-answering
| true | true | true |
cc-by-4.0
|
['English']
|
['MIT Movie', 'SQuAD']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['roberta', 'roberta-base', 'question-answering', 'qa', 'movies']
| false | true | true | 1,538 | false |
# roberta-base + Task Transfer (NER) --> Domain-Specific QA
Objective:
This is Roberta Base without any Domain Adaptive Pretraining --> Then trained for the NER task using MIT Movie Dataset --> Then a changed head to do the SQuAD Task. This makes a QA model capable of answering questions in the movie domain, with additional information coming from a different task (NER - Task Transfer).
https://huggingface.co/thatdramebaazguy/roberta-base-MITmovie was used as the Roberta Base + NER model.
```
model_name = "thatdramebaazguy/roberta-base-MITmovie-squad"
pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="question-answering")
```
## Overview
**Language model:** roberta-base
**Language:** English
**Downstream-task:** NER --> QA
**Training data:** MIT Movie, SQuADv1
**Eval data:** MoviesQA (From https://github.com/ibm-aur-nlp/domain-specific-QA)
**Infrastructure**: 4x Tesla v100
**Code:** See [example](https://github.com/adityaarunsinghal/Domain-Adaptation/blob/master/scripts/shell_scripts/movieR_NER_squad.sh)
## Hyperparameters
```
Num examples = 88567
Num Epochs = 3
Instantaneous batch size per device = 32
Total train batch size (w. parallel, distributed & accumulation) = 128
```
## Performance
### Eval on MoviesQA
- eval_samples = 5032
- exact_match = 55.80286
- f1 = 70.31451
### Eval on SQuADv1
- exact_match = 85.6859
- f1 = 91.96064
Github Repo:
- [Domain-Adaptation Project](https://github.com/adityaarunsinghal/Domain-Adaptation/)
---
|
b2557ee2dec2b7b1d840ca77f3bd0142
|
vuiseng9/wav2vec2-base-100h
|
vuiseng9
|
wav2vec2
| 8 | 7 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['en']
|
['librispeech_asr']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['audio', 'automatic-speech-recognition']
| false | true | true | 1,881 | false |
# Wav2Vec2-Base-100h
This is a fork of [```facebook/wav2vec2-base-100h```](https://huggingface.co/facebook/wav2vec2-base-100h)
### Changes & Notes
1. Document reproducible evaluation (below) to new transformer and datasets version.
2. Use batch size of 1 to reproduce results.
3. Validated with ```transformers v4.15.0```, ```datasets 1.18.0```
4. You may need to manually install pypkg ```librosa```, ```jiwer```
## Evaluation
This code snippet shows how to evaluate **facebook/wav2vec2-base-100h** on LibriSpeech's "clean" and "other" test data.
```python
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import soundfile as sf
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
# librispeech_eval = load_dataset("librispeech_asr", "other", split="test")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-100h").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-100h")
def map_to_array(batch):
# speech, _ = sf.read(batch["file"])
# batch["speech"] = speech
batch["speech"] = batch['audio']['array']
return batch
librispeech_eval = librispeech_eval.map(map_to_array)
def map_to_pred(batch):
input_values = processor(batch["speech"], return_tensors="pt", padding="longest").input_values
with torch.no_grad():
logits = model(input_values.to("cuda")).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"])
print("WER:", wer(result["text"], result["transcription"]))
```
*Result (WER)*:
| "clean/test" | "other/test" |
|--------------| ------------|
| 6.1 | 13.5 |
|
1626dd240f773f3228cadac02f426e31
|
KoboldAI/GPT-J-6B-Janeway
|
KoboldAI
|
gptj
| 10 | 1,700 |
transformers
| 1 |
text-generation
| true | false | false |
mit
|
['en']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 2,786 | false |
# GPT-J 6B - Janeway
## Model Description
GPT-J 6B-Janeway is a finetune created using EleutherAI's GPT-J 6B model.
## Training data
The training data contains around 2210 ebooks, mostly in the sci-fi and fantasy genres. The dataset is based on the same dataset used by GPT-Neo-2.7B-Picard, with 20% more data in various genres.
Some parts of the dataset have been prepended using the following text: `[Genre: <genre1>,<genre2>]`
### How to use
You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run:
```py
>>> from transformers import pipeline
>>> generator = pipeline('text-generation', model='KoboldAI/GPT-J-6B-Janeway')
>>> generator("Welcome Captain Janeway, I apologize for the delay.", do_sample=True, min_length=50)
[{'generated_text': 'Welcome Captain Janeway, I apologize for the delay."\nIt's all right," Janeway said. "I'm certain that you're doing your best to keep me informed of what\'s going on."'}]
```
### Limitations and Biases
The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output.
GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile.
As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
### BibTeX entry and citation info
The model uses the following model as base:
```bibtex
@misc{gpt-j,
author = {Wang, Ben and Komatsuzaki, Aran},
title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}},
howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
year = 2021,
month = May
}
```
## Acknowledgements
This project would not have been possible without compute generously provided by Google through the
[TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha.
|
9243cd47470bdc8c9a3e7ad684b891c6
|
jkhan447/HateXplain-third-annotator
|
jkhan447
|
bert
| 13 | 1 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,018 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# HateXplain-third-annotator
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8016
- Accuracy: 0.5913
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
dceb09aec65479f53655ec36ada6fa76
|
ydshieh/clip-vit-base-patch32
|
ydshieh
|
clip
| 4 | 5 |
transformers
| 1 |
summarization
| false | true | false |
apache-2.0
|
['en']
|
['scientific_papers']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['summarization']
| true | true | true | 2,756 | false |
# BigBirdPegasus model (large)
BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle.
BigBird was introduced in this [paper](https://arxiv.org/abs/2007.14062) and first released in this [repository](https://github.com/google-research/bigbird).
Disclaimer: The team releasing BigBird did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
BigBird relies on **block sparse attention** instead of normal attention (i.e. BERT's attention) and can handle sequences up to a length of 4096 at a much lower compute cost compared to BERT. It has achieved SOTA on various tasks involving very long sequences such as long documents summarization, question-answering with long contexts.
## How to use
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BigBirdPegasusForConditionalGeneration, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-pubmed")
# by default encoder-attention is `block_sparse` with num_random_blocks=3, block_size=64
model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-pubmed")
# decoder attention type can't be changed & will be "original_full"
# you can change `attention_type` (encoder only) to full attention like this:
model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-pubmed", attention_type="original_full")
# you can change `block_size` & `num_random_blocks` like this:
model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-pubmed", block_size=16, num_random_blocks=2)
text = "Replace me by any text you'd like."
inputs = tokenizer(text, return_tensors='pt')
prediction = model.generate(**inputs)
prediction = tokenizer.batch_decode(prediction)
```
## Training Procedure
This checkpoint is obtained after fine-tuning `BigBirdPegasusForConditionalGeneration` for **summarization** on **pubmed dataset** from [scientific_papers](https://huggingface.co/datasets/scientific_papers).
## BibTeX entry and citation info
```tex
@misc{zaheer2021big,
title={Big Bird: Transformers for Longer Sequences},
author={Manzil Zaheer and Guru Guruganesh and Avinava Dubey and Joshua Ainslie and Chris Alberti and Santiago Ontanon and Philip Pham and Anirudh Ravula and Qifan Wang and Li Yang and Amr Ahmed},
year={2021},
eprint={2007.14062},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
|
bb415ce90ec6fe2d0cc5d2c91457de55
|
flax-community/wav2vec2-german
|
flax-community
|
wav2vec2
| 9 | 4 |
transformers
| 0 | null | false | false | false |
apache-2.0
|
['de']
|
['librispeech_asr']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['speech']
| false | true | true | 2,537 | false |
# Wav2Vec2-german model
[Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information.
[Paper](https://arxiv.org/abs/2006.11477)
Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli
**Abstract**
We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data.
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
## Necessary installations:
- sndfile library: `sudo apt-get install libsndfile1-dev`
- ffmpeg: `sudo apt install ffmpeg` & `pip install ffmpeg`
## Model description `TODO: Update`
## How to use `TODO: Update`
```python
from transformers import FlaxWav2Vec2Processor, TFWav2Vec2Model
model_id = "flax-community/wav2vec2-german"
from datasets import load_dataset
import soundfile as sf
processor = Wav2Vec2Processor.from_pretrained(model_id)
model = TFWav2Vec2Model.from_pretrained(model_id)
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
ds = ds.map(map_to_array)
input_values = processor(ds["speech"][0], return_tensors="flax").input_values # Batch size 1
hidden_states = model(input_values).last_hidden_state
```
## Training Data `TODO: Update`
## Training Procedure `TODO: Update`
|
57425f440c6e8bbb30fe9c13a5d7a819
|
ericRosello/distilbert-base-uncased-finetuned-squad-frozen-v2
|
ericRosello
|
distilbert
| 12 | 24 |
transformers
| 0 |
question-answering
| true | false | false |
apache-2.0
| null |
['squad']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,355 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2104
## Model description
Most base model weights were frozen leaving only to finetune the last layer (qa outputs) and 3 last layers of the encoder.
## Training and evaluation data
Achieved EM: 73.519394512772, F1: 82.71779517079237
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.3937 | 1.0 | 5533 | 1.2915 |
| 1.1522 | 2.0 | 11066 | 1.2227 |
| 1.0055 | 3.0 | 16599 | 1.2104 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
01fb0cf89a5b20179ffb166224033954
|
Geotrend/bert-base-ur-cased
|
Geotrend
|
bert
| 8 | 22 |
transformers
| 0 |
fill-mask
| true | true | true |
apache-2.0
|
['ur']
|
['wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,283 | false |
# bert-base-ur-cased
We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages.
Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy.
For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf).
## How to use
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-ur-cased")
model = AutoModel.from_pretrained("Geotrend/bert-base-ur-cased")
```
To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers).
### How to cite
```bibtex
@inproceedings{smallermbert,
title={Load What You Need: Smaller Versions of Mutlilingual BERT},
author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire},
booktitle={SustaiNLP / EMNLP},
year={2020}
}
```
## Contact
Please contact amine@geotrend.fr for any question, feedback or request.
|
8e5f1d00e628b6c824fae47dde6e8e13
|
Lancelot53/try1
|
Lancelot53
|
vit
| 7 | 0 |
transformers
| 0 |
image-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,590 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# try1
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6966
- Precision: 0.4569
- Recall: 0.4569
- F1: 0.4569
- Pf1: 0.0597
- Accuracy: 0.4569
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Pf1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:------:|:--------:|
| 0.704 | 1.72 | 100 | 0.6920 | 0.5409 | 0.5409 | 0.5409 | 0.6979 | 0.5409 |
| 0.6924 | 3.45 | 200 | 0.6966 | 0.4569 | 0.4569 | 0.4569 | 0.0597 | 0.4569 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
91d95addedd453d886c8244651af472b
|
mlagrand/xlm-roberta-base-finetuned-panx-de
|
mlagrand
|
xlm-roberta
| 18 | 11 |
transformers
| 0 |
token-classification
| true | false | false |
mit
| null |
['xtreme']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,109 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 0.01
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| No log | 0.01 | 6 | 1.0252 | 0.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.12.1+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
0dd3992273a25c00ec9072c1818e5ba0
|
kosec39/marian-finetuned-kde4-en-to-fr
|
kosec39
|
marian
| 14 | 3 |
transformers
| 0 |
translation
| true | false | false |
apache-2.0
| null |
['kde4']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['translation', 'generated_from_trainer']
| true | true | true | 1,075 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8560
- Bleu: 52.8311
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|
94ac41d2c40d8e1545cb76628374fe1d
|
jonatasgrosman/exp_w2v2t_pt_no-pretraining_s84
|
jonatasgrosman
|
wav2vec2
| 10 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['pt']
|
['mozilla-foundation/common_voice_7_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'pt']
| false | true | true | 413 | false |
# exp_w2v2t_pt_no-pretraining_s84
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
a50d9dc8091540455a3d6102f421e609
|
okite97/xlm-roberta-base-finetune-panx-de
|
okite97
|
xlm-roberta
| 11 | 26 |
transformers
| 0 |
token-classification
| true | false | false |
mit
| null |
['xtreme']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,318 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetune-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1405
- F1: 0.8611
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2542 | 1.0 | 787 | 0.1788 | 0.8083 |
| 0.1307 | 2.0 | 1574 | 0.1371 | 0.8488 |
| 0.0784 | 3.0 | 2361 | 0.1405 | 0.8611 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
d64e438583ff5b49b47766ff0fd68ccb
|
helgespieker/ddpm-butterflies-128
|
helgespieker
| null | 11 | 0 |
diffusers
| 0 | null | false | false | false |
apache-2.0
|
['en']
|
['huggan/smithsonian_butterflies_subset']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,234 | false |
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-butterflies-128
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `huggan/smithsonian_butterflies_subset` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/helgespieker/ddpm-butterflies-128/tensorboard?#scalars)
|
ca6d9d688e7c5802518319ed731bd643
|
WillHeld/t5-small-pointer-mtop
|
WillHeld
|
mt5
| 37 | 3 |
transformers
| 0 |
text2text-generation
| true | false | false |
apache-2.0
|
['en']
|
['mtop']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,189 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-pointer-mtop
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the mtop dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1202
- Exact Match: 0.7445
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Exact Match |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|
| 2.1451 | 6.65 | 200 | 0.5966 | 0.0134 |
| 0.4695 | 13.33 | 400 | 0.2264 | 0.2998 |
| 0.2229 | 19.98 | 600 | 0.1446 | 0.4649 |
| 0.1389 | 26.65 | 800 | 0.1227 | 0.5154 |
| 0.097 | 33.33 | 1000 | 0.1213 | 0.5221 |
| 0.0724 | 39.98 | 1200 | 0.1202 | 0.5365 |
| 0.0562 | 46.65 | 1400 | 0.1207 | 0.5436 |
| 0.0457 | 53.33 | 1600 | 0.1240 | 0.5441 |
| 0.0399 | 59.98 | 1800 | 0.1349 | 0.5441 |
| 0.0317 | 66.65 | 2000 | 0.1369 | 0.5477 |
| 0.0271 | 73.33 | 2200 | 0.1409 | 0.5490 |
| 0.0237 | 79.98 | 2400 | 0.1462 | 0.5539 |
| 0.0207 | 86.65 | 2600 | 0.1470 | 0.5517 |
| 0.0188 | 93.33 | 2800 | 0.1505 | 0.5508 |
| 0.0174 | 99.98 | 3000 | 0.1505 | 0.5512 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|
3614dd54be80da83874a46194deb7e3d
|
PiyarSquare/sd_asim_simpsons
|
PiyarSquare
| null | 13 | 0 | null | 24 | null | false | false | false |
creativeml-openrail-m
| null | null | null | 2 | 2 | 0 | 0 | 1 | 1 | 0 |
[]
| false | true | true | 4,186 | false |
### 💥🎨 The Simpsons dreambooth model.
This is a fine-tuned Stable Diffusion model based on The Simpsons.
Use **asim style** in your prompts.
The model has some trouble with double pupils and no pupils.
Using "cross-eyed" in the negative prompt appears to help?
### Sample images:
Samples are made with [dynamic prompts](https://github.com/adieyal/sd-dynamic-prompts), Euler 80 steps @ CFG 12. Negative prompts: watermark, text, signature, cross-eyed



For people / characters:
asim style. dramatic beautiful { headshot | portrait } of \_\_person\_\_ {outside { in a garden | in a desert | on a mountain top | at a roman ruin} {at sunrise | at sunset | on an overcast afternoon | in the rain | in the snow | at night} | inside {a fancy living room | on a movie set | a vast empty dark space | a kaleidoscope | an ancient library} with {spotlights | neon lights | soft mood lighting | firefly lights } }. detailed background.

For animals:
asim style. dramatic closeup national geographic image of a \_\_animal\_\_ in its natural habitat. at {sunrise|sunset|night}. detailed background.

asim style. + random prompt from the internet of cool looking structures: steampunk library, tower of babel, tree house, haunted victorian.


biomes:
asim style. a beautiful {summer | autumn | winter | spring } landscape panorama painting of \_\_biome\_\_ {at sunrise | at sunset | on an overcast afternoon | in the rain | in the snow | at night}
famous places:
asim style. a beautiful panorama view of \_\_places\_\_ {at sunrise | at sunset | on a cloudy afternoon | in the rain | covered in snow}.

flowers:
asim style. a beautiful vase of \_\_flower\_\_ flowers. on a balcony table at { sunrise | sunset | night} . nearby a {bottle of {beer | wine} and a half-empty glass | bowl of fruit}.


asim style. + random prompt from the internet. The model mixes well with existing prompts with artists and styles, though not so well with keywords like "photo-realistic."
Based on StableDiffusion 1.5 model (full weights).
### Training
Made with [automatic1111 webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) + [d8ahazard dreambooth extension](https://github.com/d8ahazard/sd_dreambooth_extension) + [nitrosocke guide](https://github.com/nitrosocke/dreambooth-training-guide).
100 hand-cut training images.
About 70% people, 20% landscapes and 10% animals and objects.
Maybe one too many Cletus.
Detailed captions were written for each image such as: "A wide shot of a 40-year-old Caucasian man with glasses and a mustache. Dressed in a fishing hat, pink shirt, an olive fishing vest with pockets and brown trousers, sitting in a canoe on a lake. The man is fishing with a red fishing rod. There are trees and mountains in the background at sunset with a few clouds in the sky."
Learning rate was 1.72e-6 for 10,000 steps without prior preservation.
Useful tips from the reddit stablediffusion and the discussions on d8ahazard's extension.
Notes on training on [d8ahazard dreambooth extension discussion](https://github.com/d8ahazard/sd_dreambooth_extension/discussions/443).
I am excited to see what people do with this and I would like to improve the eyes, if anyone has suggestions.
|
de507e9ffa55b3583f0c79b768be549a
|
bthomas/article2KW_test1.3b_barthez-orangesum-title_finetuned_for_summerization
|
bthomas
|
mbart
| 10 | 4 |
transformers
| 0 |
summarization
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['summarization', 'generated_from_trainer']
| true | true | true | 1,592 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# article2KW_test1.3b_barthez-orangesum-title_finetuned_for_summerization
This model is a fine-tuned version of [moussaKam/barthez-orangesum-title](https://huggingface.co/moussaKam/barthez-orangesum-title) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2702
- Rouge1: 0.2711
- Rouge2: 0.0683
- Rougel: 0.2714
- Rougelsum: 0.2718
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 1.7922 | 1.0 | 1036 | 1.4273 | 0.2704 | 0.0752 | 0.2711 | 0.2721 |
| 1.3346 | 2.0 | 2072 | 1.3165 | 0.2555 | 0.0610 | 0.2550 | 0.2564 |
| 1.1571 | 3.0 | 3108 | 1.2702 | 0.2711 | 0.0683 | 0.2714 | 0.2718 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.11.0
- Datasets 2.3.2
- Tokenizers 0.11.0
|
8e6bdc8f8b0789989aba83ea5c57e250
|
ankurani/albert-base-v2-finetuned-ner
|
ankurani
|
albert
| 9 | 9 |
transformers
| 0 |
token-classification
| true | false | false |
apache-2.0
| null |
['plod-filtered']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,438 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-base-v2-finetuned-ner
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the plod-filtered dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0319
- Precision: 0.9890
- Recall: 0.9881
- F1: 0.9886
- Accuracy: 0.9884
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0649 | 1.0 | 3018 | 0.0471 | 0.9838 | 0.9814 | 0.9826 | 0.9818 |
| 0.0442 | 2.0 | 6036 | 0.0319 | 0.9890 | 0.9881 | 0.9886 | 0.9884 |
### Framework versions
- Transformers 4.22.2
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1
|
93b09eb01b4e107aca77f4bcc76bc2b1
|
nbroad/rob-base-superqa2
|
nbroad
|
roberta
| 22 | 5 |
transformers
| 0 |
question-answering
| true | false | false |
mit
| null |
['squad_v2', 'quoref', 'adversarial_qa', 'duorc']
| null | 5 | 2 | 3 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,056 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rob-base-superqa2
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 256
- total_eval_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0
### Training results
### Framework versions
- Transformers 4.21.1
- Pytorch 1.11.0a0+gita4c10ee
- Datasets 2.4.0
- Tokenizers 0.12.1
|
bdb4e9c0c2423b3e30e6c4791b6acac1
|
sd-concepts-library/rail-scene
|
sd-concepts-library
| null | 9 | 0 | null | 0 | null | false | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,020 | false |
### Rail Scene on Stable Diffusion
This is the `<rail-pov>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as an `object`:




|
37cdbd4115c08e431a26949c86ff5959
|
Rahul-AppOrchid/detr-base-sroie
|
Rahul-AppOrchid
|
detr
| 9 | 2 |
transformers
| 0 |
object-detection
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 926 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-base-sroie
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.0
- Tokenizers 0.13.2
|
9f95d4f9f490a1a5a06bca0e67213de1
|
jonatasgrosman/wav2vec2-large-xlsr-53-russian
|
jonatasgrosman
|
wav2vec2
| 24 | 2,380 |
transformers
| 11 |
automatic-speech-recognition
| true | false | true |
apache-2.0
|
['ru']
|
['common_voice', 'mozilla-foundation/common_voice_6_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['audio', 'automatic-speech-recognition', 'hf-asr-leaderboard', 'mozilla-foundation/common_voice_6_0', 'robust-speech-event', 'ru', 'speech', 'xlsr-fine-tuning-week']
| true | true | true | 4,616 | false |
# Fine-tuned XLSR-53 large model for speech recognition in Russian
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Russian using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
## Usage
The model can be used directly (without a language model) as follows...
Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:
```python
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-russian")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
```
Writing your own inference script:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "ru"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-russian"
SAMPLES = 5
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
```
| Reference | Prediction |
| ------------- | ------------- |
| ОН РАБОТАТЬ, А ЕЕ НЕ УДЕРЖАТЬ НИКАК — БЕГАЕТ ЗА КЛЁШЕМ КАЖДОГО БУЛЬВАРНИКА. | ОН РАБОТАТЬ А ЕЕ НЕ УДЕРЖАТ НИКАК БЕГАЕТ ЗА КЛЕШОМ КАЖДОГО БУЛЬБАРНИКА |
| ЕСЛИ НЕ БУДЕТ ВОЗРАЖЕНИЙ, Я БУДУ СЧИТАТЬ, ЧТО АССАМБЛЕЯ СОГЛАСНА С ЭТИМ ПРЕДЛОЖЕНИЕМ. | ЕСЛИ НЕ БУДЕТ ВОЗРАЖЕНИЙ Я БУДУ СЧИТАТЬ ЧТО АССАМБЛЕЯ СОГЛАСНА С ЭТИМ ПРЕДЛОЖЕНИЕМ |
| ПАЛЕСТИНЦАМ НЕОБХОДИМО СНАЧАЛА УСТАНОВИТЬ МИР С ИЗРАИЛЕМ, А ЗАТЕМ ДОБИВАТЬСЯ ПРИЗНАНИЯ ГОСУДАРСТВЕННОСТИ. | ПАЛЕСТИНЦАМ НЕОБХОДИМО СНАЧАЛА УСТАНОВИТЬ С НИ МИР ФЕЗРЕЛЕМ А ЗАТЕМ ДОБИВАТЬСЯ ПРИЗНАНИЯ ГОСУДАРСТВЕНСКИ |
| У МЕНЯ БЫЛО ТАКОЕ ЧУВСТВО, ЧТО ЧТО-ТО ТАКОЕ ОЧЕНЬ ВАЖНОЕ Я ПРИБАВЛЯЮ. | У МЕНЯ БЫЛО ТАКОЕ ЧУВСТВО ЧТО ЧТО-ТО ТАКОЕ ОЧЕНЬ ВАЖНОЕ Я ПРЕДБАВЛЯЕТ |
| ТОЛЬКО ВРЯД ЛИ ПОЙМЕТ. | ТОЛЬКО ВРЯД ЛИ ПОЙМЕТ |
| ВРОНСКИЙ, СЛУШАЯ ОДНИМ УХОМ, ПЕРЕВОДИЛ БИНОКЛЬ С БЕНУАРА НА БЕЛЬ-ЭТАЖ И ОГЛЯДЫВАЛ ЛОЖИ. | ЗЛАЗКИ СЛУШАЮ ОТ ОДНИМ УХАМ ТЫ ВОТИ В ВИНОКОТ СПИЛА НА ПЕРЕТАЧ И ОКЛЯДЫВАЛ БОСУ |
| К СОЖАЛЕНИЮ, СИТУАЦИЯ ПРОДОЛЖАЕТ УХУДШАТЬСЯ. | К СОЖАЛЕНИЮ СИТУАЦИИ ПРОДОЛЖАЕТ УХУЖАТЬСЯ |
| ВСЁ ЖАЛОВАНИЕ УХОДИЛО НА ДОМАШНИЕ РАСХОДЫ И НА УПЛАТУ МЕЛКИХ НЕПЕРЕВОДИВШИХСЯ ДОЛГОВ. | ВСЕ ЖАЛОВАНИЕ УХОДИЛО НА ДОМАШНИЕ РАСХОДЫ И НА УПЛАТУ МЕЛКИХ НЕ ПЕРЕВОДИВШИХСЯ ДОЛГОВ |
| ТЕПЕРЬ ДЕЛО, КОНЕЧНО, ЗА ТЕМ, ЧТОБЫ ПРЕВРАТИТЬ СЛОВА В ДЕЛА. | ТЕПЕРЬ ДЕЛАЮ КОНЕЧНО ЗАТЕМ ЧТОБЫ ПРЕВРАТИТЬ СЛОВА В ДЕЛА |
| ДЕВЯТЬ | ЛЕВЕТЬ |
## Evaluation
1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test`
```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-russian --dataset mozilla-foundation/common_voice_6_0 --config ru --split test
```
2. To evaluate on `speech-recognition-community-v2/dev_data`
```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-russian --dataset speech-recognition-community-v2/dev_data --config ru --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```
## Citation
If you want to cite this model you can use this:
```bibtex
@misc{grosman2021xlsr53-large-russian,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {R}ussian},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-russian}},
year={2021}
}
```
|
8eeddeb6105d639710248aee76b83e59
|
echo840/ddpm-butterflies-128
|
echo840
| null | 13 | 2 |
diffusers
| 0 | null | false | false | false |
apache-2.0
|
['en']
|
['huggan/smithsonian_butterflies_subset']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,229 | false |
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-butterflies-128
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `huggan/smithsonian_butterflies_subset` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/echo840/ddpm-butterflies-128/tensorboard?#scalars)
|
8bd5605645e78b0c1e2deecc18a45709
|
agudelozc/distilroberta-base-mrpc-glu-cristian-agudelo
|
agudelozc
|
roberta
| 15 | 9 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,332 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-mrpc-glu-cristian-agudelo
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9131
- Accuracy: 0.8211
- F1: 0.8713
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.285 | 1.09 | 500 | 0.8959 | 0.8407 | 0.8845 |
| 0.2653 | 2.18 | 1000 | 0.9131 | 0.8211 | 0.8713 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
8e8e0422ab9d6f176ab01427bb839467
|
SuperAI2-Machima/mt5-small-thai-yes-no-qg
|
SuperAI2-Machima
|
mt5
| 9 | 5 |
transformers
| 0 |
text2text-generation
| true | false | false |
mit
|
['thai', 'th']
|
['NSC2018', 'wiki-documents-nsc', 'ThaiQACorpus-DevelopmentDataset']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['Yes No question-generation']
| false | true | true | 1,251 | false |
[SuperAI Engineer Season 2](https://superai.aiat.or.th/) , [Machima](https://machchima.superai.me/)
[Google's mT5](https://github.com/google-research/multilingual-t5) , [Pollawat](https://huggingface.co/Pollawat/mt5-small-thai-qg)
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config
model = T5ForConditionalGeneration.from_pretrained('SuperAI2-Machima/mt5-small-thai-yes-no-qg')
tokenizer = T5Tokenizer.from_pretrained('SuperAI2-Machima/mt5-small-thai-yes-no-qg')
source_text = 'บุกยึดไม้เถื่อน อดีต ส.ส.บุรีรัมย์ เตรียมสร้างคฤหาสน์ทรงไทย 1 กันยายน 2550 12:00 น. ตำรวจภูธรจ.บุรีรัมย์บุกตรวจยึดไม้แปรรูปหวงห้ามกว่า 80 แผ่น'
print('Predicted Summary Text : ')
tokenized_text = tokenizer.encode(source_text, return_tensors="pt").to(device)
summary_ids = model.generate(tokenized_text,
num_beams=4,
no_repeat_ngram_size=2,
max_length=50,
early_stopping=True)
output = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print(output)
#Predicted Summary Text :
#answer: 80 แผ่น question: ตํารวจภูธรจ.บุรีรัมย์บุกตรวจยึดไม้แปรรูปหวงห้ามกว่ากี่แผ่น
```
|
461ec07ba1799346487cc9327229d902
|
GItaf/GPT2-CLS-Finetuned-MBTI-gpt2-mc-weight0.25-epoch5-CLS-ppl
|
GItaf
|
gpt2
| 10 | 7 |
transformers
| 0 |
text-generation
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 899 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GPT2-CLS-Finetuned-MBTI-gpt2-mc-weight0.25-epoch5-CLS-ppl
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1
- Datasets 2.4.0
- Tokenizers 0.12.1
|
d3ad00fa7b6e1dc1184986be09d94d11
|
stevemobs/deberta-base-combined-squad1-aqa-newsqa-50-and-newsqa-50
|
stevemobs
|
deberta
| 15 | 10 |
transformers
| 0 |
question-answering
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,300 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-base-combined-squad1-aqa-newsqa-50-and-newsqa-50
This model is a fine-tuned version of [stevemobs/deberta-base-combined-squad1-aqa-newsqa-50](https://huggingface.co/stevemobs/deberta-base-combined-squad1-aqa-newsqa-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4881
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.6957 | 1.0 | 8681 | 0.5072 |
| 0.4264 | 2.0 | 17362 | 0.4881 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
26b9d7e5a488177c5226f56f45009436
|
google/t5-efficient-large-dl2
|
google
|
t5
| 12 | 7 |
transformers
| 0 |
text2text-generation
| true | true | true |
apache-2.0
|
['en']
|
['c4']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['deep-narrow']
| false | true | true | 6,253 | false |
# T5-Efficient-LARGE-DL2 (Deep-Narrow version)
T5-Efficient-LARGE-DL2 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5).
It is a *pretrained-only* checkpoint and was released with the
paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)**
by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*.
In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures
of similar parameter count.
To quote the paper:
> We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased
> before considering any other forms of uniform scaling across other dimensions. This is largely due to
> how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a
> tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise,
> a tall base model might also generally more efficient compared to a large model. We generally find
> that, regardless of size, even if absolute performance might increase as we continue to stack layers,
> the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36
> layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e.,
> params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params,
> FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to
> consider.
To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially.
A sequence of word embeddings is therefore processed sequentially by each transformer block.
## Details model architecture
This model checkpoint - **t5-efficient-large-dl2** - is of model type **Large** with the following variations:
- **dl** is **2**
It has **368.53** million parameters and thus requires *ca.* **1474.11 MB** of memory in full precision (*fp32*)
or **737.05 MB** of memory in half precision (*fp16* or *bf16*).
A summary of the *original* T5 model architectures can be seen here:
| Model | nl (el/dl) | ff | dm | kv | nh | #Params|
| ----| ---- | ---- | ---- | ---- | ---- | ----|
| Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M|
| Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M|
| Small | 6/6 | 2048 | 512 | 32 | 8 | 60M|
| Base | 12/12 | 3072 | 768 | 64 | 12 | 220M|
| Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M|
| Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B|
| XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B|
whereas the following abbreviations are used:
| Abbreviation | Definition |
| ----| ---- |
| nl | Number of transformer blocks (depth) |
| dm | Dimension of embedding vector (output vector of transformers block) |
| kv | Dimension of key/value projection matrix |
| nh | Number of attention heads |
| ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) |
| el | Number of transformer blocks in the encoder (encoder depth) |
| dl | Number of transformer blocks in the decoder (decoder depth) |
| sh | Signifies that attention heads are shared |
| skv | Signifies that key-values projection matrices are tied |
If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*.
## Pre-Training
The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using
the span-based masked language modeling (MLM) objective.
## Fine-Tuning
**Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage.
The checkpoint was pretrained in English and is therefore only useful for English NLP tasks.
You can follow on of the following examples on how to fine-tune the model:
*PyTorch*:
- [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization)
- [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py)
- [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model.
*Tensorflow*:
- [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization)
- [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model.
*JAX/Flax*:
- [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization)
- [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model.
## Downstream Performance
TODO: Add table if available
## Computational Complexity
TODO: Add table if available
## More information
We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint.
As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv*
model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
|
5b209b3d916130c21a79fed8880905df
|
fathyshalab/all-roberta-large-v1-work-8-16-5
|
fathyshalab
|
roberta
| 11 | 3 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,509 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# all-roberta-large-v1-work-8-16-5
This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3586
- Accuracy: 0.3689
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.8058 | 1.0 | 1 | 2.6169 | 0.2356 |
| 2.3524 | 2.0 | 2 | 2.5215 | 0.2978 |
| 1.9543 | 3.0 | 3 | 2.4427 | 0.3422 |
| 1.5539 | 4.0 | 4 | 2.3874 | 0.36 |
| 1.4133 | 5.0 | 5 | 2.3586 | 0.3689 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1
|
dc1ef52850a3f801debabbd73e55206a
|
gagan3012/model
|
gagan3012
|
gpt2
| 22 | 4 |
transformers
| 0 |
text-generation
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 970 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6250
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
4c6bf76909bcd2f72f2d8935719af020
|
yip-i/colab-demo
|
yip-i
|
wav2vec2
| 17 | 2 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,041 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# colab-demo
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9910
- Wer: 0.9714
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1212 | 2.14 | 500 | 3.6706 | 1.0757 |
| 0.2303 | 4.27 | 1000 | 2.6849 | 1.0578 |
| 0.3003 | 6.41 | 1500 | 3.2261 | 1.0605 |
| 0.2705 | 8.55 | 2000 | 3.3483 | 1.0844 |
| 0.2178 | 10.68 | 2500 | 3.2000 | 1.0219 |
| 0.1875 | 12.82 | 3000 | 2.2454 | 1.0159 |
| 0.1792 | 14.96 | 3500 | 2.7510 | 0.9973 |
| 0.1477 | 17.09 | 4000 | 2.6716 | 0.9847 |
| 0.1232 | 19.23 | 4500 | 2.5939 | 0.9807 |
| 0.1051 | 21.37 | 5000 | 3.3308 | 0.9794 |
| 0.0847 | 23.5 | 5500 | 3.3430 | 0.9814 |
| 0.0809 | 25.64 | 6000 | 3.2566 | 0.9595 |
| 0.0642 | 27.78 | 6500 | 3.6392 | 0.9654 |
| 0.0566 | 29.91 | 7000 | 3.9910 | 0.9714 |
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 1.18.3
- Tokenizers 0.13.1
|
b436442cfc5918322e4d1b623d389d5e
|
nst-sat/GlossBERT-finetunedTEST
|
nst-sat
|
bert
| 8 | 4 |
transformers
| 0 |
fill-mask
| false | true | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_keras_callback']
| true | true | true | 1,450 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# nst-sat/GlossBERT-finetunedTEST
This model is a fine-tuned version of [kanishka/GlossBERT](https://huggingface.co/kanishka/GlossBERT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 8.1065
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -375, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Epoch |
|:----------:|:-----:|
| 8.1065 | 0 |
### Framework versions
- Transformers 4.21.2
- TensorFlow 2.8.2
- Datasets 2.4.0
- Tokenizers 0.12.1
|
737cec1de13474600f372eb1afbfdaae
|
anas-awadalla/bart-base-few-shot-k-32-finetuned-squad-seq2seq-seed-0
|
anas-awadalla
|
bart
| 18 | 1 |
transformers
| 0 |
text2text-generation
| true | false | false |
apache-2.0
| null |
['squad']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 966 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-few-shot-k-32-finetuned-squad-seq2seq-seed-0
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.11.6
|
16d0972d4d3c4789fcc91eaa8d97a437
|
rosamondthalken/t5-base-sci-names
|
rosamondthalken
|
t5
| 4 | 1 |
transformers
| 0 |
text2text-generation
| true | false | false |
cc-by-sa-4.0
|
['en']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['scientific names', 'text generation']
| false | true | true | 1,391 | false |
# t5-base-sci-names
Biodiversity literature is dedicated to the identification, documentation, and categorization of plants, fungi, animals, and other living organisms. Correctly extracting the name of an organism within these documents involves finding the entire scientific name–including the genus, specific epithet, and author name. Extracting these names allows biologists to access documents about a species more comprehensively, and to track an organism’s history of documentation, which includes biological changes and changes in how scientists describe them.
**t5-base-sci-names** uses advances in text-to-text generation to generate scientific names and authors from biodiversity literature. This model was trained on hand-labeled biodiversity texts, including labeled information about a mentioned organism's genus (abbreviated and expanded), specific epithet, and author. This model was trained to output 0-N scientific names with specific prefixes (e.g. "genus = " or "epithet = ") and performs best with anywhere from 20-120 words.
You can also use the model in this tutorial for [scientific names generation](https://colab.research.google.com/drive/1GEpnCaMJYiPIhuZiDJ1X1pZsGtGSm8Ds?usp=sharing).
Thanks to Damon Little and Nelson Salinas at the New York Botanical Gardens for their support.
*Note that this model is still a work in progress. Any feedback is welcome.*
|
4804be668d4b30f95cd10dd0655fbb2e
|
apple/ane-distilbert-base-uncased-finetuned-sst-2-english
|
apple
|
distilbert
| 13 | 53 |
transformers
| 4 |
text-classification
| true | false | false |
apache-2.0
|
['en']
|
['sst2']
| null | 2 | 0 | 2 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 2,264 | false |
# DistilBERT optimized for Apple Neural Engine
This is the [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) model, optimized for the Apple Neural Engine (ANE) as described in the article [Deploying Transformers on the Apple Neural Engine](https://machinelearning.apple.com/research/neural-engine-transformers).
The source code is taken from Apple's [ml-ane-transformers](https://github.com/apple/ml-ane-transformers) GitHub repo, modified slightly to make it usable from the 🤗 Transformers library.
For more details about DistilBERT, we encourage users to check out [this model card](https://huggingface.co/distilbert-base-uncased).
## How to use
Usage example:
```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model_checkpoint = "apple/ane-distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint, trust_remote_code=True, return_dict=False,
)
inputs = tokenizer(
["The Neural Engine is really fast"],
return_tensors="pt",
max_length=128,
padding="max_length",
)
with torch.no_grad():
outputs = model(**inputs)
```
## Using the model with Core ML
PyTorch does not utilize the ANE, and running this version of the model with PyTorch on the CPU or GPU may actually be slower than the original. To take advantage of the hardware acceleration of the ANE, use the Core ML version of the model, **DistilBERT_fp16.mlpackage**.
Core ML usage example from Python:
```python
import coremltools as ct
mlmodel = ct.models.MLModel("DistilBERT_fp16.mlpackage")
inputs = tokenizer(
["The Neural Engine is really fast"],
return_tensors="np",
max_length=128,
padding="max_length",
)
outputs_coreml = mlmodel.predict({
"input_ids": inputs["input_ids"].astype(np.int32),
"attention_mask": inputs["attention_mask"].astype(np.int32),
})
```
To use the model from Swift, you will need to tokenize the input yourself according to the BERT rules. You can find a Swift implementation of the [BERT tokenizer here](https://github.com/huggingface/swift-coreml-transformers).
|
7dfe5f6b176e564928d6aa26f13df4f9
|
Joblift/jobBERTA-german-QA
|
Joblift
|
distilbert
| 28 | 15 |
transformers
| 0 |
question-answering
| true | false | false |
apache-2.0
| null |
['germanquad']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,027 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# jobBERTA_german_QA
This model is a fine-tuned version of [Joblift/distilbert-base-german-cased-finetuned-jl](https://huggingface.co/Joblift/distilbert-base-german-cased-finetuned-jl) on the germanquad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu102
- Datasets 2.8.0
- Tokenizers 0.13.2
|
ddb883e06ada0c3868c86ef8051064a3
|
stabilityai/stable-diffusion-2-inpainting
|
stabilityai
| null | 21 | 188,827 |
diffusers
| 164 |
text-to-image
| false | false | false |
openrail++
| null | null | null | 11 | 3 | 6 | 2 | 10 | 7 | 3 |
['stable-diffusion', 'text-to-image']
| false | true | true | 12,976 | false |
# Stable Diffusion v2 Model Card
This model card focuses on the model associated with the Stable Diffusion v2, available [here](https://github.com/Stability-AI/stablediffusion).
This `stable-diffusion-2-inpainting` model is resumed from [stable-diffusion-2-base](https://huggingface.co/stabilityai/stable-diffusion-2-base) (`512-base-ema.ckpt`) and trained for another 200k steps. Follows the mask-generation strategy presented in [LAMA](https://github.com/saic-mdal/lama) which, in combination with the latent VAE representations of the masked image, are used as an additional conditioning.

- Use it with the [`stablediffusion`](https://github.com/Stability-AI/stablediffusion) repository: download the `512-inpainting-ema.ckpt` [here](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting/resolve/main/512-inpainting-ema.ckpt).
- Use it with 🧨 [`diffusers`](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting#examples)
## Model Details
- **Developed by:** Robin Rombach, Patrick Esser
- **Model type:** Diffusion-based text-to-image generation model
- **Language(s):** English
- **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL)
- **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([OpenCLIP-ViT/H](https://github.com/mlfoundations/open_clip)).
- **Resources for more information:** [GitHub Repository](https://github.com/Stability-AI/).
- **Cite as:**
@InProceedings{Rombach_2022_CVPR,
author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn},
title = {High-Resolution Image Synthesis With Latent Diffusion Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {10684-10695}
}
## Examples
Using the [🤗's Diffusers library](https://github.com/huggingface/diffusers) to run Stable Diffusion 2 inpainting in a simple and efficient manner.
```bash
pip install diffusers transformers accelerate scipy safetensors
```
```python
from diffusers import StableDiffusionInpaintPipeline
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-inpainting",
torch_dtype=torch.float16,
)
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
#image and mask_image should be PIL images.
#The mask structure is white for inpainting and black for keeping as is
image = pipe(prompt=prompt, image=image, mask_image=mask_image).images[0]
image.save("./yellow_cat_on_park_bench.png")
```
**Notes**:
- Despite not being a dependency, we highly recommend you to install [xformers](https://github.com/facebookresearch/xformers) for memory efficient attention (better performance)
- If you have low GPU RAM available, make sure to add a `pipe.enable_attention_slicing()` after sending it to `cuda` for less VRAM usage (to the cost of speed)
**How it works:**
`image` | `mask_image`
:-------------------------:|:-------------------------:|
<img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" alt="drawing" width="300"/> | <img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" alt="drawing" width="300"/>
`prompt` | `Output`
:-------------------------:|:-------------------------:|
<span style="position: relative;bottom: 150px;">Face of a yellow cat, high resolution, sitting on a park bench</span> | <img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/test.png" alt="drawing" width="300"/>
# Uses
## Direct Use
The model is intended for research purposes only. Possible research areas and tasks include
- Safe deployment of models which have the potential to generate harmful content.
- Probing and understanding the limitations and biases of generative models.
- Generation of artworks and use in design and other artistic processes.
- Applications in educational or creative tools.
- Research on generative models.
Excluded uses are described below.
### Misuse, Malicious Use, and Out-of-Scope Use
_Note: This section is originally taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), was used for Stable Diffusion v1, but applies in the same way to Stable Diffusion v2_.
The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes.
#### Out-of-Scope Use
The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
#### Misuse and Malicious Use
Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to:
- Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc.
- Intentionally promoting or propagating discriminatory content or harmful stereotypes.
- Impersonating individuals without their consent.
- Sexual content without consent of the people who might see it.
- Mis- and disinformation
- Representations of egregious violence and gore
- Sharing of copyrighted or licensed material in violation of its terms of use.
- Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use.
## Limitations and Bias
### Limitations
- The model does not achieve perfect photorealism
- The model cannot render legible text
- The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere”
- Faces and people in general may not be generated properly.
- The model was trained mainly with English captions and will not work as well in other languages.
- The autoencoding part of the model is lossy
- The model was trained on a subset of the large-scale dataset
[LAION-5B](https://laion.ai/blog/laion-5b/), which contains adult, violent and sexual content. To partially mitigate this, we have filtered the dataset using LAION's NFSW detector (see Training section).
### Bias
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
Stable Diffusion vw was primarily trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/),
which consists of images that are limited to English descriptions.
Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for.
This affects the overall output of the model, as white and western cultures are often set as the default. Further, the
ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts.
Stable Diffusion v2 mirrors and exacerbates biases to such a degree that viewer discretion must be advised irrespective of the input or its intent.
## Training
**Training Data**
The model developers used the following dataset for training the model:
- LAION-5B and subsets (details below). The training data is further filtered using LAION's NSFW detector, with a "p_unsafe" score of 0.1 (conservative). For more details, please refer to LAION-5B's [NeurIPS 2022](https://openreview.net/forum?id=M3Y74vmsMcY) paper and reviewer discussions on the topic.
**Training Procedure**
Stable Diffusion v2 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training,
- Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4
- Text prompts are encoded through the OpenCLIP-ViT/H text-encoder.
- The output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention.
- The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. We also use the so-called _v-objective_, see https://arxiv.org/abs/2202.00512.
We currently provide the following checkpoints:
- `512-base-ema.ckpt`: 550k steps at resolution `256x256` on a subset of [LAION-5B](https://laion.ai/blog/laion-5b/) filtered for explicit pornographic material, using the [LAION-NSFW classifier](https://github.com/LAION-AI/CLIP-based-NSFW-Detector) with `punsafe=0.1` and an [aesthetic score](https://github.com/christophschuhmann/improved-aesthetic-predictor) >= `4.5`.
850k steps at resolution `512x512` on the same dataset with resolution `>= 512x512`.
- `768-v-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for 150k steps using a [v-objective](https://arxiv.org/abs/2202.00512) on the same dataset. Resumed for another 140k steps on a `768x768` subset of our dataset.
- `512-depth-ema.ckpt`: Resumed from `512-base-ema.ckpt` and finetuned for 200k steps. Added an extra input channel to process the (relative) depth prediction produced by [MiDaS](https://github.com/isl-org/MiDaS) (`dpt_hybrid`) which is used as an additional conditioning.
The additional input channels of the U-Net which process this extra information were zero-initialized.
- `512-inpainting-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for another 200k steps. Follows the mask-generation strategy presented in [LAMA](https://github.com/saic-mdal/lama) which, in combination with the latent VAE representations of the masked image, are used as an additional conditioning.
The additional input channels of the U-Net which process this extra information were zero-initialized. The same strategy was used to train the [1.5-inpainting checkpoint](https://github.com/saic-mdal/lama).
- `x4-upscaling-ema.ckpt`: Trained for 1.25M steps on a 10M subset of LAION containing images `>2048x2048`. The model was trained on crops of size `512x512` and is a text-guided [latent upscaling diffusion model](https://arxiv.org/abs/2112.10752).
In addition to the textual input, it receives a `noise_level` as an input parameter, which can be used to add noise to the low-resolution input according to a [predefined diffusion schedule](configs/stable-diffusion/x4-upscaling.yaml).
- **Hardware:** 32 x 8 x A100 GPUs
- **Optimizer:** AdamW
- **Gradient Accumulations**: 1
- **Batch:** 32 x 8 x 2 x 4 = 2048
- **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant
## Evaluation Results
Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, 8.0) and 50 steps DDIM sampling steps show the relative improvements of the checkpoints:

Evaluated using 50 DDIM steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores.
## Environmental Impact
**Stable Diffusion v1** **Estimated Emissions**
Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.
- **Hardware Type:** A100 PCIe 40GB
- **Hours used:** 200000
- **Cloud Provider:** AWS
- **Compute Region:** US-east
- **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 15000 kg CO2 eq.
## Citation
@InProceedings{Rombach_2022_CVPR,
author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn},
title = {High-Resolution Image Synthesis With Latent Diffusion Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {10684-10695}
}
*This model card was written by: Robin Rombach, Patrick Esser and David Ha and is based on the [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion/blob/main/Stable_Diffusion_v1_Model_Card.md) and [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
|
2a56e4ae2189bab36ab3f1d9601c3660
|
ybelkada/japanese-roberta-question-answering
|
ybelkada
|
roberta
| 9 | 398 |
transformers
| 1 | null | true | false | false |
cc-by-sa-3.0
|
['ja']
|
['SkelterLabsInc/JaQuAD']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['question-answering', 'extractive-qa']
| false | true | true | 1,854 | false |
# RoBERTa base Japanese - JaQuAD
## Description
A Japanese Question Answering model fine-tuned on [JaQuAD](https://huggingface.co/datasets/SkelterLabsInc/JaQuAD).
Please refer [RoBERTa base Japanese](https://huggingface.co/rinna/japanese-roberta-base) for details about the pre-training model.
The codes for the fine-tuning are available [on this notebook](https://huggingface.co/ybelkada/japanese-roberta-question-answering/blob/main/roberta_ja_qa.ipynb)
## Usage
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
question = 'アレクサンダー・グラハム・ベルは、どこで生まれたの?'
context = 'アレクサンダー・グラハム・ベルは、スコットランド生まれの科学者、発明家、工学者である。世界初の>実用的電話の発明で知られている。'
model = AutoModelForQuestionAnswering.from_pretrained(
'ybelkada/japanese-roberta-question-answering')
tokenizer = AutoTokenizer.from_pretrained(
'ybelkada/japanese-roberta-question-answering')
inputs = tokenizer(
question, context, add_special_tokens=True, return_tensors="pt")
input_ids = inputs["input_ids"].tolist()[0]
outputs = model(**inputs)
answer_start_scores = outputs.start_logits
answer_end_scores = outputs.end_logits
# Get the most likely beginning of answer with the argmax of the score.
answer_start = torch.argmax(answer_start_scores)
# Get the most likely end of answer with the argmax of the score.
# 1 is added to `answer_end` because the index pointed by score is inclusive.
answer_end = torch.argmax(answer_end_scores) + 1
answer = tokenizer.convert_tokens_to_string(
tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]))
# answer = 'スコットランド'
```
## License
The fine-tuned model is licensed under the [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/) license.
## Miscellaneous
The Q&A widget does not work on that model. Tried also with ```Pipeline``` and I was able to reproduce the error, needs a further investigation
|
278978f037d63ec67481fe63b9ebfa96
|
edwardjross/xlm-roberta-base-finetuned-panx-en
|
edwardjross
|
xlm-roberta
| 10 | 14 |
transformers
| 0 |
token-classification
| true | false | false |
mit
| null |
['xtreme']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,313 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3792
- F1: 0.6918
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.0639 | 1.0 | 74 | 0.5075 | 0.5539 |
| 0.491 | 2.0 | 148 | 0.4118 | 0.6510 |
| 0.355 | 3.0 | 222 | 0.3792 | 0.6918 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
2c6f2ccf03466d30e6045cdfecef8a3f
|
mariolinml/deberta-v3-base_nli_2x_v0
|
mariolinml
|
deberta-v2
| 16 | 10 |
transformers
| 0 |
text-classification
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 973 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-base_nli_2x_v0
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.5.2
- Tokenizers 0.13.1
|
1d22e3a8825ad18cacf332bac1906371
|
nestoralvaro/t5-small-finetuned-xsum
|
nestoralvaro
|
t5
| 12 | 3 |
transformers
| 0 |
text2text-generation
| true | false | false |
apache-2.0
| null |
['xsum']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,415 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-xsum
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2928
- Rouge1: 21.4274
- Rouge2: 8.18
- Rougel: 21.3234
- Rougelsum: 21.3185
- Gen Len: 4.9993
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 2.5264 | 1.0 | 12753 | 2.2928 | 21.4274 | 8.18 | 21.3234 | 21.3185 | 4.9993 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|
2fea03de4416aaa20e2d222c82b47100
|
masoumehb/wav2vec2-large-xlsr-turkish-demo-colab
|
masoumehb
|
wav2vec2
| 15 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null |
['common_voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,080 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-turkish-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0
- Datasets 1.13.3
- Tokenizers 0.10.3
|
c83501597ba282875697e77ef4e9a1ef
|
JuandaBula/distilroberta-base-mrpc-glue-juanda-bula
|
JuandaBula
|
roberta
| 17 | 1 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['text-classification', 'generated_from_trainer']
| true | true | true | 1,330 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-mrpc-glue-juanda-bula
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the datasetX dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5684
- Accuracy: 0.8333
- F1: 0.8707
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5239 | 1.09 | 500 | 0.6723 | 0.7990 | 0.8610 |
| 0.3692 | 2.18 | 1000 | 0.5684 | 0.8333 | 0.8707 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cpu
- Datasets 2.7.1
- Tokenizers 0.13.2
|
f619e723c5252941e18fbd9fa5da7c10
|
thusken/nb-bert-base-user-needs
|
thusken
|
bert
| 10 | 2 |
transformers
| 0 |
text-classification
| true | false | false |
cc-by-4.0
| null | null | null | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 3,902 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nb-bert-base-user-needs
This model is a fine-tuned version of [NbAiLab/nb-bert-base](https://huggingface.co/NbAiLab/nb-bert-base) on a dataset of 2000 articles from Bergens Tidende, published between 06/01/2020 and 02/02/2020. These articles are labelled as one of six classes / user needs, as introduced by the [BBC in 2017](https://www.linkedin.com/pulse/five-lessons-i-learned-while-digitally-changing-bbc-world-shishkin/)
It achieves the following results on the evaluation set:
- Loss: 1.0600
- Accuracy: 0.8479
- F1: 0.8319
- Precision: 0.8315
- Recall: 0.8479
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 25
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 98 | 1.1222 | 0.6263 | 0.5185 | 0.5076 | 0.6263 |
| No log | 2.0 | 196 | 1.0066 | 0.7216 | 0.6436 | 0.5899 | 0.7216 |
| No log | 3.0 | 294 | 0.8540 | 0.7577 | 0.7037 | 0.6760 | 0.7577 |
| No log | 4.0 | 392 | 0.8621 | 0.7603 | 0.6998 | 0.6568 | 0.7603 |
| No log | 5.0 | 490 | 0.8062 | 0.7887 | 0.7500 | 0.7449 | 0.7887 |
| 0.91 | 6.0 | 588 | 0.7465 | 0.8041 | 0.7660 | 0.7636 | 0.8041 |
| 0.91 | 7.0 | 686 | 0.6324 | 0.8247 | 0.8163 | 0.8187 | 0.8247 |
| 0.91 | 8.0 | 784 | 0.7333 | 0.7964 | 0.7703 | 0.7740 | 0.7964 |
| 0.91 | 9.0 | 882 | 0.6590 | 0.8325 | 0.8208 | 0.8106 | 0.8325 |
| 0.91 | 10.0 | 980 | 0.9854 | 0.8196 | 0.7890 | 0.7920 | 0.8196 |
| 0.4246 | 11.0 | 1078 | 0.7023 | 0.8247 | 0.8054 | 0.8138 | 0.8247 |
| 0.4246 | 12.0 | 1176 | 0.8995 | 0.8325 | 0.8120 | 0.8068 | 0.8325 |
| 0.4246 | 13.0 | 1274 | 0.8589 | 0.8299 | 0.8145 | 0.8058 | 0.8299 |
| 0.4246 | 14.0 | 1372 | 0.9859 | 0.8376 | 0.8151 | 0.8123 | 0.8376 |
| 0.4246 | 15.0 | 1470 | 0.8452 | 0.8402 | 0.8318 | 0.8341 | 0.8402 |
| 0.1637 | 16.0 | 1568 | 1.1156 | 0.8351 | 0.8157 | 0.8196 | 0.8351 |
| 0.1637 | 17.0 | 1666 | 1.1514 | 0.8325 | 0.8122 | 0.8218 | 0.8325 |
| 0.1637 | 18.0 | 1764 | 1.0092 | 0.8428 | 0.8266 | 0.8320 | 0.8428 |
| 0.1637 | 19.0 | 1862 | 1.0368 | 0.8351 | 0.8229 | 0.8287 | 0.8351 |
| 0.1637 | 20.0 | 1960 | 1.0600 | 0.8479 | 0.8319 | 0.8315 | 0.8479 |
| 0.0391 | 21.0 | 2058 | 1.1046 | 0.8428 | 0.8293 | 0.8269 | 0.8428 |
| 0.0391 | 22.0 | 2156 | 1.1178 | 0.8454 | 0.8262 | 0.8280 | 0.8454 |
| 0.0391 | 23.0 | 2254 | 1.1103 | 0.8428 | 0.8268 | 0.8295 | 0.8428 |
| 0.0391 | 24.0 | 2352 | 1.1179 | 0.8428 | 0.8274 | 0.8313 | 0.8428 |
| 0.0391 | 25.0 | 2450 | 1.1134 | 0.8402 | 0.8233 | 0.8254 | 0.8402 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.2+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
f0b78dee7c5fba636b185022492dca7a
|
pszemraj/deberta-v3-xsmall-CoLA
|
pszemraj
|
deberta-v2
| 17 | 16 |
transformers
| 0 |
text-classification
| true | false | false |
mit
|
['en']
|
['glue']
| null | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,693 | false |
# deberta-v3-xsmall-CoLA
This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the GLUE COLA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4237
- Matthews Correlation: 0.5895
## Model description
Trying to find a decent optimum between accuracy/quality and inference speed.
```json
{
"epoch": 3.0,
"eval_loss": 0.423,
"eval_matthews_correlation": 0.589,
"eval_runtime": 5.0422,
"eval_samples": 1043,
"eval_samples_per_second": 206.853,
"eval_steps_per_second": 51.763
}
```
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 32
- eval_batch_size: 4
- seed: 16105
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.3945 | 1.0 | 67 | 0.4323 | 0.5778 |
| 0.3214 | 2.0 | 134 | 0.4237 | 0.5895 |
| 0.3059 | 3.0 | 201 | 0.4636 | 0.5795 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.1
|
96fcb177d5ae4ace6b0a27459f8fffe7
|
muhtasham/mini-mlm-tweet-target-imdb
|
muhtasham
|
bert
| 10 | 4 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['imdb']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,539 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mini-mlm-tweet-target-imdb
This model is a fine-tuned version of [muhtasham/mini-mlm-tweet](https://huggingface.co/muhtasham/mini-mlm-tweet) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4742
- Accuracy: 0.8324
- F1: 0.9085
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.4141 | 0.64 | 500 | 0.2415 | 0.9025 | 0.9487 |
| 0.3008 | 1.28 | 1000 | 0.2407 | 0.9046 | 0.9499 |
| 0.2573 | 1.92 | 1500 | 0.2428 | 0.904 | 0.9496 |
| 0.2164 | 2.56 | 2000 | 0.3198 | 0.8753 | 0.9335 |
| 0.1918 | 3.2 | 2500 | 0.4742 | 0.8324 | 0.9085 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1
- Datasets 2.7.1
- Tokenizers 0.13.2
|
81920bdcaf4556a5ff21148607957635
|
sd-concepts-library/phan-s-collage
|
sd-concepts-library
| null | 9 | 0 | null | 1 | null | false | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,038 | false |
### Phan's Collage on Stable Diffusion
This is the `<pcollage>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:




|
d59ef9a16b029b60efd74499f5064902
|
lincoln/camembert-squadFR-fquad-piaf-answer-extraction
|
lincoln
|
camembert
| 11 | 7 |
transformers
| 0 |
token-classification
| true | false | false |
mit
|
['fr']
|
['squadFR', 'fquad', 'piaf']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['camembert', 'answer extraction']
| false | true | true | 9,016 | false |
# Extraction de réponse
Ce modèle est _fine tuné_ à partir du modèle [camembert-base](https://huggingface.co/camembert-base) pour la tâche de classification de tokens.
L'objectif est d'identifier les suites de tokens probables qui pourrait être l'objet d'une question.
## Données d'apprentissage
La base d'entrainement est la concatenation des bases SquadFR, [fquad](https://huggingface.co/datasets/fquad), [piaf](https://huggingface.co/datasets/piaf).
Les réponses de chaque contexte ont été labelisées avec le label "ANS".
Volumétrie (nombre de contexte):
* train: 24 652
* test: 1 370
* valid: 1 370
## Entrainement
L'apprentissage s'est effectué sur une carte Tesla K80.
* Batch size: 16
* Weight decay: 0.01
* Learning rate: 2x10-5 (décroit linéairement)
* Paramètres par défaut de la classe [TrainingArguments](https://huggingface.co/transformers/main_classes/trainer.html#trainingarguments)
* Total steps: 1 000
Le modèle semble sur apprendre au delà :

## Critiques
Le modèle n'a pas de bonnes performances et doit être corrigé après prédiction pour être cohérent. La tâche de classification n'est pas évidente car le modèle doit identifier des groupes de token _sachant_ qu'une question peut être posée.

## Utilisation
_Le modèle est un POC, nous garantissons pas ses performances_
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
import numpy as np
model_name = "lincoln/camembert-squadFR-fquad-piaf-answer-extraction"
loaded_tokenizer = AutoTokenizer.from_pretrained(model_path)
loaded_model = AutoModelForTokenClassification.from_pretrained(model_path)
text = "La science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus,\
des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées de nombreuses données structurelles et non structurées.\
Elle est souvent associée aux données massives et à l'analyse des données."
inputs = loaded_tokenizer(text, return_tensors="pt", return_offsets_mapping=True)
outputs = loaded_model(inputs.input_ids).logits
probs = 1 / (1 + np.exp(-outputs.detach().numpy()))
probs[:, :, 1][0] = np.convolve(probs[:, :, 1][0], np.ones(2), 'same') / 2
sentences = loaded_tokenizer.tokenize(text, add_special_tokens=False)
prob_answer_tokens = probs[:, 1:-1, 1].flatten().tolist()
offset_start_mapping = inputs.offset_mapping[:, 1:-1, 0].flatten().tolist()
offset_end_mapping = inputs.offset_mapping[:, 1:-1, 1].flatten().tolist()
threshold = 0.4
entities = []
for ix, (token, prob_ans, offset_start, offset_end) in enumerate(zip(sentences, prob_answer_tokens, offset_start_mapping, offset_end_mapping)):
entities.append({
'entity': 'ANS' if prob_ans > threshold else 'O',
'score': prob_ans,
'index': ix,
'word': token,
'start': offset_start,
'end': offset_end
})
for p in entities:
print(p)
# {'entity': 'O', 'score': 0.3118681311607361, 'index': 0, 'word': '▁La', 'start': 0, 'end': 2}
# {'entity': 'O', 'score': 0.37866950035095215, 'index': 1, 'word': '▁science', 'start': 3, 'end': 10}
# {'entity': 'ANS', 'score': 0.45018652081489563, 'index': 2, 'word': '▁des', 'start': 11, 'end': 14}
# {'entity': 'ANS', 'score': 0.4615934491157532, 'index': 3, 'word': '▁données', 'start': 15, 'end': 22}
# {'entity': 'O', 'score': 0.35033443570137024, 'index': 4, 'word': '▁est', 'start': 23, 'end': 26}
# {'entity': 'O', 'score': 0.24779987335205078, 'index': 5, 'word': '▁un', 'start': 27, 'end': 29}
# {'entity': 'O', 'score': 0.27084410190582275, 'index': 6, 'word': '▁domaine', 'start': 30, 'end': 37}
# {'entity': 'O', 'score': 0.3259460926055908, 'index': 7, 'word': '▁in', 'start': 38, 'end': 40}
# {'entity': 'O', 'score': 0.371802419424057, 'index': 8, 'word': 'terdisciplinaire', 'start': 40, 'end': 56}
# {'entity': 'O', 'score': 0.3140853941440582, 'index': 9, 'word': '▁qui', 'start': 57, 'end': 60}
# {'entity': 'O', 'score': 0.2629334330558777, 'index': 10, 'word': '▁utilise', 'start': 61, 'end': 68}
# {'entity': 'O', 'score': 0.2968383729457855, 'index': 11, 'word': '▁des', 'start': 69, 'end': 72}
# {'entity': 'O', 'score': 0.33898216485977173, 'index': 12, 'word': '▁méthodes', 'start': 73, 'end': 81}
# {'entity': 'O', 'score': 0.3776060938835144, 'index': 13, 'word': ',', 'start': 81, 'end': 82}
# {'entity': 'O', 'score': 0.3710060119628906, 'index': 14, 'word': '▁des', 'start': 83, 'end': 86}
# {'entity': 'O', 'score': 0.35908180475234985, 'index': 15, 'word': '▁processus', 'start': 87, 'end': 96}
# {'entity': 'O', 'score': 0.3890596628189087, 'index': 16, 'word': ',', 'start': 96, 'end': 97}
# {'entity': 'O', 'score': 0.38341325521469116, 'index': 17, 'word': '▁des', 'start': 101, 'end': 104}
# {'entity': 'O', 'score': 0.3743852376937866, 'index': 18, 'word': '▁', 'start': 105, 'end': 106}
# {'entity': 'O', 'score': 0.3943936228752136, 'index': 19, 'word': 'algorithme', 'start': 105, 'end': 115}
# {'entity': 'O', 'score': 0.39456743001937866, 'index': 20, 'word': 's', 'start': 115, 'end': 116}
# {'entity': 'O', 'score': 0.3846966624259949, 'index': 21, 'word': '▁et', 'start': 117, 'end': 119}
# {'entity': 'O', 'score': 0.367380827665329, 'index': 22, 'word': '▁des', 'start': 120, 'end': 123}
# {'entity': 'O', 'score': 0.3652925491333008, 'index': 23, 'word': '▁systèmes', 'start': 124, 'end': 132}
# {'entity': 'O', 'score': 0.3975735306739807, 'index': 24, 'word': '▁scientifiques', 'start': 133, 'end': 146}
# {'entity': 'O', 'score': 0.36417365074157715, 'index': 25, 'word': '▁pour', 'start': 147, 'end': 151}
# {'entity': 'O', 'score': 0.32438698410987854, 'index': 26, 'word': '▁extraire', 'start': 152, 'end': 160}
# {'entity': 'O', 'score': 0.3416857123374939, 'index': 27, 'word': '▁des', 'start': 161, 'end': 164}
# {'entity': 'O', 'score': 0.3674810230731964, 'index': 28, 'word': '▁connaissances', 'start': 165, 'end': 178}
# {'entity': 'O', 'score': 0.38362061977386475, 'index': 29, 'word': '▁et', 'start': 179, 'end': 181}
# {'entity': 'O', 'score': 0.364640474319458, 'index': 30, 'word': '▁des', 'start': 182, 'end': 185}
# {'entity': 'O', 'score': 0.36050117015838623, 'index': 31, 'word': '▁idées', 'start': 186, 'end': 191}
# {'entity': 'O', 'score': 0.3768993020057678, 'index': 32, 'word': '▁de', 'start': 192, 'end': 194}
# {'entity': 'O', 'score': 0.39184248447418213, 'index': 33, 'word': '▁nombreuses', 'start': 195, 'end': 205}
# {'entity': 'ANS', 'score': 0.4091200828552246, 'index': 34, 'word': '▁données', 'start': 206, 'end': 213}
# {'entity': 'ANS', 'score': 0.41234123706817627, 'index': 35, 'word': '▁structurelle', 'start': 214, 'end': 226}
# {'entity': 'ANS', 'score': 0.40243157744407654, 'index': 36, 'word': 's', 'start': 226, 'end': 227}
# {'entity': 'ANS', 'score': 0.4007353186607361, 'index': 37, 'word': '▁et', 'start': 228, 'end': 230}
# {'entity': 'ANS', 'score': 0.40597623586654663, 'index': 38, 'word': '▁non', 'start': 231, 'end': 234}
# {'entity': 'ANS', 'score': 0.40272021293640137, 'index': 39, 'word': '▁structurée', 'start': 235, 'end': 245}
# {'entity': 'O', 'score': 0.392631471157074, 'index': 40, 'word': 's', 'start': 245, 'end': 246}
# {'entity': 'O', 'score': 0.34266412258148193, 'index': 41, 'word': '.', 'start': 246, 'end': 247}
# {'entity': 'O', 'score': 0.26178646087646484, 'index': 42, 'word': '▁Elle', 'start': 255, 'end': 259}
# {'entity': 'O', 'score': 0.2265639454126358, 'index': 43, 'word': '▁est', 'start': 260, 'end': 263}
# {'entity': 'O', 'score': 0.22844195365905762, 'index': 44, 'word': '▁souvent', 'start': 264, 'end': 271}
# {'entity': 'O', 'score': 0.2475772500038147, 'index': 45, 'word': '▁associée', 'start': 272, 'end': 280}
# {'entity': 'O', 'score': 0.3002186715602875, 'index': 46, 'word': '▁aux', 'start': 281, 'end': 284}
# {'entity': 'O', 'score': 0.3875720798969269, 'index': 47, 'word': '▁données', 'start': 285, 'end': 292}
# {'entity': 'ANS', 'score': 0.445063054561615, 'index': 48, 'word': '▁massive', 'start': 293, 'end': 300}
# {'entity': 'ANS', 'score': 0.4419114589691162, 'index': 49, 'word': 's', 'start': 300, 'end': 301}
# {'entity': 'ANS', 'score': 0.4240635633468628, 'index': 50, 'word': '▁et', 'start': 302, 'end': 304}
# {'entity': 'O', 'score': 0.3900952935218811, 'index': 51, 'word': '▁à', 'start': 305, 'end': 306}
# {'entity': 'O', 'score': 0.3784807324409485, 'index': 52, 'word': '▁l', 'start': 307, 'end': 308}
# {'entity': 'O', 'score': 0.3459452986717224, 'index': 53, 'word': "'", 'start': 308, 'end': 309}
# {'entity': 'O', 'score': 0.37636008858680725, 'index': 54, 'word': 'analyse', 'start': 309, 'end': 316}
# {'entity': 'ANS', 'score': 0.4475618302822113, 'index': 55, 'word': '▁des', 'start': 317, 'end': 320}
# {'entity': 'ANS', 'score': 0.43845775723457336, 'index': 56, 'word': '▁données', 'start': 321, 'end': 328}
# {'entity': 'O', 'score': 0.3761221170425415, 'index': 57, 'word': '.', 'start': 328, 'end': 329}
```
|
1236ce080bb79911b55dba35969c749b
|
henryscheible/rte_roberta-base_144_v2
|
henryscheible
| null | 14 | 0 | null | 0 | null | true | false | false |
mit
|
['en']
|
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,003 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rte_roberta-base_144_v2
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE RTE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6194
- Accuracy: 0.7256
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|
7dd27ea81817dc40d9b4399a298abd77
|
mikeadimech/bart-large-cnn-qmsum-meeting-summarization
|
mikeadimech
|
bart
| 11 | 4 |
transformers
| 0 |
text2text-generation
| true | false | false |
mit
| null |
['yawnick/QMSum']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,185 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-cnn-qmsum-meeting-summarization
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.7578
- Rouge1: 37.9431
- Rouge2: 10.6366
- Rougel: 25.5782
- Rougelsum: 33.0209
- Gen Len: 72.7714
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 500
- label_smoothing_factor: 0.1
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|
30f3e28761b27e4a7625eb7ab5581187
|
mio/amadeus
|
mio
| null | 28 | 4,617 |
espnet
| 42 |
text-to-speech
| false | false | false |
cc-by-4.0
|
['jp']
|
['amadeus']
| null | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
['espnet', 'audio', 'text-to-speech']
| false | true | true | 10,469 | false |
## ESPnet2 TTS model
### `mio/amadeus`
This model was trained by mio using [amadeus recipe](https://github.com/mio2333/espnet/tree/master/egs2/amadeus/tts1) in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html)
if you haven't done that already.
```bash
cd espnet
git checkout d5b5ec7b2e77bd3e10707141818b7e6c57ac6b3f
pip install -e .
cd egs2/amadeus/tts1
./run.sh --skip_data_prep false --skip_train true --download_model mio/amadeus
```
## TTS config
<details><summary>expand</summary>
```
config: conf/tuning/finetune_vits.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/tts_amadeus_vits_finetune_from_jsut_32_sentence
ngpu: 1
seed: 777
num_workers: 4
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: true
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: false
collect_stats: false
write_collected_feats: false
max_epoch: 2000
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - train
- total_count
- max
keep_nbest_models: 3
nbest_averaging_interval: 0
grad_clip: -1
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: 50
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: true
wandb_project: amadeus
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param:
- downloads/f3698edf589206588f58f5ec837fa516/exp/tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause/train.total_count.ave_10best.pth:tts:tts
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 5000000
valid_batch_bins: null
train_shape_file:
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/text_shape.phn
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/speech_shape
valid_shape_file:
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/text_shape.phn
- exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/speech_shape
batch_type: numel
valid_batch_type: null
fold_length:
- 150
- 204800
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/22k/raw/train/text
- text
- text
- - dump/22k/raw/train/wav.scp
- speech
- sound
valid_data_path_and_name_and_type:
- - dump/22k/raw/dev/text
- text
- text
- - dump/22k/raw/dev/wav.scp
- speech
- sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adamw
optim_conf:
lr: 0.0001
betas:
- 0.8
- 0.99
eps: 1.0e-09
weight_decay: 0.0
scheduler: exponentiallr
scheduler_conf:
gamma: 0.999875
optim2: adamw
optim2_conf:
lr: 0.0001
betas:
- 0.8
- 0.99
eps: 1.0e-09
weight_decay: 0.0
scheduler2: exponentiallr
scheduler2_conf:
gamma: 0.999875
generator_first: false
token_list:
- <blank>
- <unk>
- '1'
- '2'
- '0'
- '3'
- '4'
- '-1'
- '5'
- a
- o
- '-2'
- i
- '-3'
- u
- e
- k
- n
- t
- '6'
- r
- '-4'
- s
- N
- m
- pau
- '7'
- sh
- d
- g
- w
- '8'
- U
- '-5'
- I
- cl
- h
- y
- b
- '9'
- j
- ts
- ch
- '-6'
- z
- p
- '-7'
- f
- ky
- ry
- '-8'
- gy
- '-9'
- hy
- ny
- '-10'
- by
- my
- '-11'
- '-12'
- '-13'
- py
- '-14'
- '-15'
- v
- '10'
- '-16'
- '-17'
- '11'
- '-21'
- '-20'
- '12'
- '-19'
- '13'
- '-18'
- '14'
- dy
- '15'
- ty
- '-22'
- '16'
- '18'
- '19'
- '17'
- <sos/eos>
odim: null
model_conf: {}
use_preprocessor: true
token_type: phn
bpemodel: null
non_linguistic_symbols: null
cleaner: jaconv
g2p: pyopenjtalk_accent_with_pause
feats_extract: linear_spectrogram
feats_extract_conf:
n_fft: 1024
hop_length: 256
win_length: null
normalize: null
normalize_conf: {}
tts: vits
tts_conf:
generator_type: vits_generator
generator_params:
hidden_channels: 192
spks: -1
global_channels: -1
segment_size: 32
text_encoder_attention_heads: 2
text_encoder_ffn_expand: 4
text_encoder_blocks: 6
text_encoder_positionwise_layer_type: conv1d
text_encoder_positionwise_conv_kernel_size: 3
text_encoder_positional_encoding_layer_type: rel_pos
text_encoder_self_attention_layer_type: rel_selfattn
text_encoder_activation_type: swish
text_encoder_normalize_before: true
text_encoder_dropout_rate: 0.1
text_encoder_positional_dropout_rate: 0.0
text_encoder_attention_dropout_rate: 0.1
use_macaron_style_in_text_encoder: true
use_conformer_conv_in_text_encoder: false
text_encoder_conformer_kernel_size: -1
decoder_kernel_size: 7
decoder_channels: 512
decoder_upsample_scales:
- 8
- 8
- 2
- 2
decoder_upsample_kernel_sizes:
- 16
- 16
- 4
- 4
decoder_resblock_kernel_sizes:
- 3
- 7
- 11
decoder_resblock_dilations:
- - 1
- 3
- 5
- - 1
- 3
- 5
- - 1
- 3
- 5
use_weight_norm_in_decoder: true
posterior_encoder_kernel_size: 5
posterior_encoder_layers: 16
posterior_encoder_stacks: 1
posterior_encoder_base_dilation: 1
posterior_encoder_dropout_rate: 0.0
use_weight_norm_in_posterior_encoder: true
flow_flows: 4
flow_kernel_size: 5
flow_base_dilation: 1
flow_layers: 4
flow_dropout_rate: 0.0
use_weight_norm_in_flow: true
use_only_mean_in_flow: true
stochastic_duration_predictor_kernel_size: 3
stochastic_duration_predictor_dropout_rate: 0.5
stochastic_duration_predictor_flows: 4
stochastic_duration_predictor_dds_conv_layers: 3
vocabs: 85
aux_channels: 513
discriminator_type: hifigan_multi_scale_multi_period_discriminator
discriminator_params:
scales: 1
scale_downsample_pooling: AvgPool1d
scale_downsample_pooling_params:
kernel_size: 4
stride: 2
padding: 2
scale_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes:
- 15
- 41
- 5
- 3
channels: 128
max_downsample_channels: 1024
max_groups: 16
bias: true
downsample_scales:
- 2
- 2
- 4
- 4
- 1
nonlinear_activation: LeakyReLU
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: true
use_spectral_norm: false
follow_official_norm: false
periods:
- 2
- 3
- 5
- 7
- 11
period_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes:
- 5
- 3
channels: 32
downsample_scales:
- 3
- 3
- 3
- 3
- 1
max_downsample_channels: 1024
bias: true
nonlinear_activation: LeakyReLU
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: true
use_spectral_norm: false
generator_adv_loss_params:
average_by_discriminators: false
loss_type: mse
discriminator_adv_loss_params:
average_by_discriminators: false
loss_type: mse
feat_match_loss_params:
average_by_discriminators: false
average_by_layers: false
include_final_outputs: true
mel_loss_params:
fs: 22050
n_fft: 1024
hop_length: 256
win_length: null
window: hann
n_mels: 80
fmin: 0
fmax: null
log_base: null
lambda_adv: 1.0
lambda_mel: 45.0
lambda_feat_match: 2.0
lambda_dur: 1.0
lambda_kl: 1.0
sampling_rate: 22050
cache_generator_outputs: true
pitch_extract: null
pitch_extract_conf: {}
pitch_normalize: null
pitch_normalize_conf: {}
energy_extract: null
energy_extract_conf: {}
energy_normalize: null
energy_normalize_conf: {}
required:
- output_dir
- token_list
version: '202207'
distributed: false
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
4e7bdba9505cbc5611eb5b358a72dda7
|
MoutainJump/distilbert-base-uncased-finetuned-emotion
|
MoutainJump
|
distilbert
| 12 | 1 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,343 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2174
- Accuracy: 0.923
- F1: 0.9231
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8279 | 1.0 | 250 | 0.3099 | 0.9075 | 0.9048 |
| 0.2464 | 2.0 | 500 | 0.2174 | 0.923 | 0.9231 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.13.0+cu116
- Datasets 1.16.1
- Tokenizers 0.10.3
|
14d3d3d969fd4678f40e2291df7119ba
|
ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
|
ynie
|
roberta
| 9 | 18,280 |
transformers
| 5 |
text-classification
| true | false | true |
mit
| null |
['snli', 'anli', 'multi_nli', 'multi_nli_mismatch', 'fever']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 3,320 | false |
This is a strong pre-trained RoBERTa-Large NLI model.
The training data is a combination of well-known NLI datasets: [`SNLI`](https://nlp.stanford.edu/projects/snli/), [`MNLI`](https://cims.nyu.edu/~sbowman/multinli/), [`FEVER-NLI`](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), [`ANLI (R1, R2, R3)`](https://github.com/facebookresearch/anli).
Other pre-trained NLI models including `RoBERTa`, `ALBert`, `BART`, `ELECTRA`, `XLNet` are also available.
Trained by [Yixin Nie](https://easonnie.github.io), [original source](https://github.com/facebookresearch/anli).
Try the code snippet below.
```
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
if __name__ == '__main__':
max_length = 256
premise = "Two women are embracing while holding to go packages."
hypothesis = "The men are fighting outside a deli."
hg_model_hub_name = "ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli"
# hg_model_hub_name = "ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli"
# hg_model_hub_name = "ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli"
# hg_model_hub_name = "ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli"
# hg_model_hub_name = "ynie/xlnet-large-cased-snli_mnli_fever_anli_R1_R2_R3-nli"
tokenizer = AutoTokenizer.from_pretrained(hg_model_hub_name)
model = AutoModelForSequenceClassification.from_pretrained(hg_model_hub_name)
tokenized_input_seq_pair = tokenizer.encode_plus(premise, hypothesis,
max_length=max_length,
return_token_type_ids=True, truncation=True)
input_ids = torch.Tensor(tokenized_input_seq_pair['input_ids']).long().unsqueeze(0)
# remember bart doesn't have 'token_type_ids', remove the line below if you are using bart.
token_type_ids = torch.Tensor(tokenized_input_seq_pair['token_type_ids']).long().unsqueeze(0)
attention_mask = torch.Tensor(tokenized_input_seq_pair['attention_mask']).long().unsqueeze(0)
outputs = model(input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
labels=None)
# Note:
# "id2label": {
# "0": "entailment",
# "1": "neutral",
# "2": "contradiction"
# },
predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() # batch_size only one
print("Premise:", premise)
print("Hypothesis:", hypothesis)
print("Entailment:", predicted_probability[0])
print("Neutral:", predicted_probability[1])
print("Contradiction:", predicted_probability[2])
```
More in [here](https://github.com/facebookresearch/anli/blob/master/src/hg_api/interactive_eval.py).
Citation:
```
@inproceedings{nie-etal-2020-adversarial,
title = "Adversarial {NLI}: A New Benchmark for Natural Language Understanding",
author = "Nie, Yixin and
Williams, Adina and
Dinan, Emily and
Bansal, Mohit and
Weston, Jason and
Kiela, Douwe",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
year = "2020",
publisher = "Association for Computational Linguistics",
}
```
|
3cce21db6b1586f35edc889b92705458
|
wyu1/GenRead-3B-TQA-MergeDPR
|
wyu1
|
t5
| 5 | 0 |
transformers
| 0 | null | true | false | false |
cc-by-4.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 720 | false |
# GenRead (MergeDPR): FiD model trained on TQA
-- This is the model checkpoint of GenRead [2], based on the T5-3B and trained on the TriviaQA [1].
-- Hyperparameters: 8 x 80GB A100 GPUs; batch size 16; AdamW; LR 5e-5; best dev at 9000 steps
References:
[1] TriviaQA: A Large Scale Dataset for Reading Comprehension and Question Answering. ACL 2017
[2] Generate rather than Retrieve: Large Language Models are Strong Context Generators. arXiv 2022
## Model performance
We evaluate it on the TriviaQA dataset, the EM score is 74.41.
<a href="https://huggingface.co/exbert/?model=bert-base-uncased">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
---
license: cc-by-4.0
---
|
074d329357123f4b32257b7c78b89cc5
|
ultra-coder54732/4-way-detection-prop-16-xlnet
|
ultra-coder54732
|
bert
| 12 | 1 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 962 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 4-way-detection-prop-16-xlnet
This model is a fine-tuned version of [ultra-coder54732/4-way-detection-prop-16-bert](https://huggingface.co/ultra-coder54732/4-way-detection-prop-16-bert) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|
9257b7119e9f3aac6a927fc0914055ee
|
juliusco/distilbert-base-uncased-finetuned-squad
|
juliusco
|
distilbert
| 10 | 5 |
transformers
| 0 |
question-answering
| true | false | false |
apache-2.0
| null |
['squad']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,334 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3672
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.1755 | 1.0 | 11066 | 1.1177 |
| 0.9004 | 2.0 | 22132 | 1.1589 |
| 0.6592 | 3.0 | 33198 | 1.2326 |
| 0.4823 | 4.0 | 44264 | 1.3672 |
### Framework versions
- Transformers 4.19.4
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
|
c5bfa9c7a957a326cca2c66686efa0f4
|
gbarone77/polibert_sa
|
gbarone77
|
bert
| 9 | 4 |
transformers
| 0 |
text-classification
| true | true | true |
mit
|
['it']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['sentiment', 'Italian']
| false | true | true | 1,293 | false |
# 🤗 + polibert_SA - POLItic BERT based Sentiment Analysis
## Model description
This model performs sentiment analysis on Italian political twitter sentences. It was trained starting from an instance of "bert-base-italian-uncased-xxl" and fine-tuned on an Italian dataset of tweets. You can try it out at https://www.unideeplearning.com/twitter_sa/ (in italian!)
#### Hands-on
```python
import torch
from torch import nn
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("unideeplearning/polibert_sa")
model = AutoModelForSequenceClassification.from_pretrained("unideeplearning/polibert_sa")
text = "Giuseppe Rossi è un pessimo politico"
input_ids = tokenizer.encode(text, add_special_tokens=True, return_tensors= 'pt')
logits, = model(input_ids)
logits = logits.squeeze(0)
prob = nn.functional.softmax(logits, dim=0)
# 0 Negative, 1 Neutral, 2 Positive
print(prob.argmax().tolist())
```
#### Hyperparameters
- Optimizer: **AdamW** with learning rate of **2e-5**, epsilon of **1e-8**
- Max epochs: **2**
- Batch size: **16**
## Acknowledgments
Thanks to the support from:
the [Hugging Face](https://huggingface.co/), https://www.unioneprofessionisti.com
https://www.unideeplearning.com/
|
681d8055533df3a18a988174bb0e121e
|
KoichiYasuoka/roberta-base-english-ud-goeswith
|
KoichiYasuoka
|
roberta
| 11 | 15 |
transformers
| 0 |
token-classification
| true | false | false |
cc-by-sa-4.0
|
['en']
|
['universal_dependencies']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['english', 'token-classification', 'pos', 'dependency-parsing']
| false | true | true | 2,809 | false |
# roberta-base-english-ud-goeswith
## Model Description
This is a RoBERTa model for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [roberta-base](https://huggingface.co/roberta-base).
## How to Use
```py
class UDgoeswith(object):
def __init__(self,bert):
from transformers import AutoTokenizer,AutoModelForTokenClassification
self.tokenizer=AutoTokenizer.from_pretrained(bert)
self.model=AutoModelForTokenClassification.from_pretrained(bert)
def __call__(self,text):
import numpy,torch,ufal.chu_liu_edmonds
w=self.tokenizer(text,return_offsets_mapping=True)
v=[self.tokenizer.cls_token_id]+[t for t,(s,e) in zip(w["input_ids"],w["offset_mapping"]) if s<e]+[self.tokenizer.sep_token_id]
x=[v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)]
with torch.no_grad():
e=self.model(input_ids=torch.tensor(x)).logits.numpy()[:,1:-2,:]
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan)
g=self.model.config.label2id["X|_|goeswith"]
r=numpy.tri(e.shape[0])
for i in range(e.shape[0]):
for j in range(i+2,e.shape[1]):
r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1
e[:,:,g]+=numpy.where(r==0,0,numpy.nan)
m=numpy.full((e.shape[0]+1,e.shape[1]+1),numpy.nan)
m[1:,1:]=numpy.nanmax(e,axis=2).transpose()
p=numpy.zeros(m.shape)
p[1:,1:]=numpy.nanargmax(e,axis=2).transpose()
for i in range(1,m.shape[0]):
m[i,0],m[i,i],p[i,0]=m[i,i],numpy.nan,p[i,i]
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
if [0 for i in h if i==0]!=[0]:
m[:,0]+=numpy.where(m[:,0]==numpy.nanmax(m[[i for i,j in enumerate(h) if j==0],0]),0,numpy.nan)
m[[i for i,j in enumerate(h) if j==0]]+=[0 if i==0 or j==0 else numpy.nan for i,j in enumerate(h)]
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
u="# text = "+text+"\n"
v=[(s,e) for s,e in w["offset_mapping"] if s<e]
for i,(s,e) in enumerate(v,1):
q=self.model.config.id2label[p[i,h[i]]].split("|")
u+="\t".join([str(i),text[s:e],"_",q[0],"_","|".join(q[1:-1]),str(h[i]),q[-1],"_","_" if i<len(v) and e<v[i][0] else "SpaceAfter=No"])+"\n"
return u+"\n"
nlp=UDgoeswith("KoichiYasuoka/roberta-base-english-ud-goeswith")
print(nlp("I saw a horse yesterday which had no name"))
```
with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/).
Or without ufal.chu-liu-edmonds:
```
from transformers import pipeline
nlp=pipeline("universal-dependencies","KoichiYasuoka/roberta-base-english-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
print(nlp("I saw a horse yesterday which had no name"))
```
|
14dbc1d9272ba768858377b4b0dc9820
|
jonatasgrosman/exp_w2v2t_en_vp-fr_s51
|
jonatasgrosman
|
wav2vec2
| 10 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['en']
|
['mozilla-foundation/common_voice_7_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'en']
| false | true | true | 474 | false |
# exp_w2v2t_en_vp-fr_s51
Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
2a7f3616b4f8a54c8d5451bb7757508b
|
CompVis/stable-diffusion-v-1-2-original
|
CompVis
| null | 5 | 0 | null | 7 |
text-to-image
| false | false | false |
creativeml-openrail-m
| null | null | null | 2 | 0 | 2 | 0 | 0 | 0 | 0 |
['stable-diffusion', 'text-to-image']
| false | true | true | 10,582 | false |
# Stable Diffusion v1 Model Card
Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input.
The **Stable-Diffusion-v-1-2** checkpoint was initialized with the weights of the [Stable-Diffusion-v-1-1](https:/steps/huggingface.co/CompVis/stable-diffusion-v-1-1-original)
checkpoint and subsequently fine-tuned on 515,000 steps at resolution `512x512` on "laion-improved-aesthetics" (a subset of laion2B-en,
filtered to images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`, and an estimated watermark probability `< 0.5`.
For more information, please refer to [Training](#training).
#### Download the weights
- [sd-v1-2.ckpt](https://huggingface.co/CompVis/stable-diffusion-v-1-2-original/resolve/main/sd-v1-2.ckpt)
- [sd-v1-2-full-ema.ckpt](https://huggingface.co/CompVis/stable-diffusion-v-1-2-original/resolve/main/sd-v1-2-full-ema.ckpt)
This weights are intended to be used with the original [CompVis Stable Diffusion codebase](https://github.com/CompVis/stable-diffusion). If you are looking for the model to use with the D🧨iffusers library, [come here](https://huggingface.co/CompVis/stable-diffusion-v1-2).
## Model Details
- **Developed by:** Robin Rombach, Patrick Esser
- **Model type:** Diffusion-based text-to-image generation model
- **Language(s):** English
- **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based.
- **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([CLIP ViT-L/14](https://arxiv.org/abs/2103.00020)) as suggested in the [Imagen paper](https://arxiv.org/abs/2205.11487).
- **Resources for more information:** [GitHub Repository](https://github.com/CompVis/stable-diffusion), [Paper](https://arxiv.org/abs/2112.10752).
- **Cite as:**
@InProceedings{Rombach_2022_CVPR,
author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn},
title = {High-Resolution Image Synthesis With Latent Diffusion Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {10684-10695}
}
# Uses
## Direct Use
The model is intended for research purposes only. Possible research areas and
tasks include
- Safe deployment of models which have the potential to generate harmful content.
- Probing and understanding the limitations and biases of generative models.
- Generation of artworks and use in design and other artistic processes.
- Applications in educational or creative tools.
- Research on generative models.
Excluded uses are described below.
### Misuse, Malicious Use, and Out-of-Scope Use
_Note: This section is taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), but applies in the same way to Stable Diffusion v1_.
The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes.
#### Out-of-Scope Use
The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
#### Misuse and Malicious Use
Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to:
- Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc.
- Intentionally promoting or propagating discriminatory content or harmful stereotypes.
- Impersonating individuals without their consent.
- Sexual content without consent of the people who might see it.
- Mis- and disinformation
- Representations of egregious violence and gore
- Sharing of copyrighted or licensed material in violation of its terms of use.
- Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use.
## Limitations and Bias
### Limitations
- The model does not achieve perfect photorealism
- The model cannot render legible text
- The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere”
- Faces and people in general may not be generated properly.
- The model was trained mainly with English captions and will not work as well in other languages.
- The autoencoding part of the model is lossy
- The model was trained on a large-scale dataset
[LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material
and is not fit for product use without additional safety mechanisms and
considerations.
- No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data.
The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images.
### Bias
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
Stable Diffusion v1 was trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/),
which consists of images that are primarily limited to English descriptions.
Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for.
This affects the overall output of the model, as white and western cultures are often set as the default. Further, the
ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts.
## Training
**Training Data**
The model developers used the following dataset for training the model:
- LAION-2B (en) and subsets thereof (see next section)
**Training Procedure**
Stable Diffusion v1 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training,
- Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4
- Text prompts are encoded through a ViT-L/14 text-encoder.
- The non-pooled output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention.
- The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet.
We currently provide three checkpoints, `sd-v1-1.ckpt`, `sd-v1-2.ckpt` and `sd-v1-3.ckpt`,
which were trained as follows,
- `sd-v1-1.ckpt`: 237k steps at resolution `256x256` on [laion2B-en](https://huggingface.co/datasets/laion/laion2B-en).
194k steps at resolution `512x512` on [laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution) (170M examples from LAION-5B with resolution `>= 1024x1024`).
- `sd-v1-2.ckpt`: Resumed from `sd-v1-1.ckpt`.
515k steps at resolution `512x512` on "laion-improved-aesthetics" (a subset of laion2B-en,
filtered to images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`, and an estimated watermark probability `< 0.5`. The watermark estimate is from the LAION-5B metadata, the aesthetics score is estimated using an [improved aesthetics estimator](https://github.com/christophschuhmann/improved-aesthetic-predictor)).
- `sd-v1-3.ckpt`: Resumed from `sd-v1-2.ckpt`. 195k steps at resolution `512x512` on "laion-improved-aesthetics" and 10\% dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598).
- **Hardware:** 32 x 8 x A100 GPUs
- **Optimizer:** AdamW
- **Gradient Accumulations**: 2
- **Batch:** 32 x 8 x 2 x 4 = 2048
- **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant
## Evaluation Results
Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, 8.0) and 50 PLMS sampling
steps show the relative improvements of the checkpoints:

Evaluated using 50 PLMS steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores.
## Environmental Impact
**Stable Diffusion v1** **Estimated Emissions**
Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.
- **Hardware Type:** A100 PCIe 40GB
- **Hours used:** 150000
- **Cloud Provider:** AWS
- **Compute Region:** US-east
- **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 11250 kg CO2 eq.
## Citation
```bibtex
@InProceedings{Rombach_2022_CVPR,
author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn},
title = {High-Resolution Image Synthesis With Latent Diffusion Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {10684-10695}
}
```
*This model card was written by: Robin Rombach and Patrick Esser and is based on the [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
|
05bdf41504b6bfe7e726b4c30890e6c0
|
snehatyagi/wav2vec2_test
|
snehatyagi
|
wav2vec2
| 33 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,772 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2_test
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 91.1661
- Wer: 0.5714
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 11.9459 | 100.0 | 100 | 46.9901 | 1.0 |
| 3.2175 | 200.0 | 200 | 73.0950 | 1.0 |
| 1.8117 | 300.0 | 300 | 78.4884 | 0.6735 |
| 1.3694 | 400.0 | 400 | 84.0168 | 0.6327 |
| 1.1392 | 500.0 | 500 | 85.2083 | 0.5918 |
| 0.979 | 600.0 | 600 | 88.9109 | 0.5918 |
| 0.8917 | 700.0 | 700 | 89.0310 | 0.5918 |
| 0.8265 | 800.0 | 800 | 90.0659 | 0.6122 |
| 0.769 | 900.0 | 900 | 91.8476 | 0.5714 |
| 0.7389 | 1000.0 | 1000 | 91.1661 | 0.5714 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.2
- Datasets 1.18.3
- Tokenizers 0.11.6
|
3e5e105081f5df91be3e3f7a0eb6f055
|
cochonaki/distilbert-base-uncased-finetuned-cola
|
cochonaki
|
distilbert
| 10 | 1 |
transformers
| 0 |
text-classification
| false | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_keras_callback']
| true | true | true | 1,601 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# cochonaki/distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1905
- Validation Loss: 0.5536
- Train Matthews Correlation: 0.5126
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1602, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Matthews Correlation | Epoch |
|:----------:|:---------------:|:--------------------------:|:-----:|
| 0.5118 | 0.4642 | 0.4617 | 0 |
| 0.3259 | 0.4709 | 0.4990 | 1 |
| 0.1905 | 0.5536 | 0.5126 | 2 |
### Framework versions
- Transformers 4.21.1
- TensorFlow 2.8.2
- Datasets 2.4.0
- Tokenizers 0.12.1
|
014876b13ed505376ccc0a1b70a2a7c0
|
north/t5_xl_NCC
|
north
|
t5
| 92 | 6 |
transformers
| 1 |
text2text-generation
| true | false | true |
apache-2.0
|
[False, 'nn', 'sv', 'dk', 'is', 'en']
|
['nbailab/NCC', 'mc4', 'wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 8,352 | false |
The North-T5-models are a set of Norwegian and Scandinavian sequence-to-sequence-models. It builds upon the flexible [T5](https://github.com/google-research/text-to-text-transfer-transformer) and [T5X](https://github.com/google-research/t5x) and can be used for a variety of NLP tasks ranging from classification to translation.
| |**Small** <br />_60M_|**Base** <br />_220M_|**Large** <br />_770M_|**XL** <br />_3B_|**XXL** <br />_11B_|
|:-----------|:------------:|:------------:|:------------:|:------------:|:------------:|
|North-T5‑NCC|[🤗](https://huggingface.co/north/t5_small_NCC)|[🤗](https://huggingface.co/north/t5_base_NCC)|[🤗](https://huggingface.co/north/t5_large_NCC)|✔|[🤗](https://huggingface.co/north/t5_xxl_NCC)||
|North-T5‑NCC‑lm|[🤗](https://huggingface.co/north/t5_small_NCC_lm)|[🤗](https://huggingface.co/north/t5_base_NCC_lm)|[🤗](https://huggingface.co/north/t5_large_NCC_lm)|[🤗](https://huggingface.co/north/t5_xl_NCC_lm)|[🤗](https://huggingface.co/north/t5_xxl_NCC_lm)||
## T5X Checkpoint
The original T5X checkpoint is also available for this model in the [Google Cloud Bucket](gs://north-t5x/pretrained_models/xl/norwegian_NCC_plus_English_t5x_xl/).
## Performance
A thorough evaluation of the North-T5 models is planned, and I strongly recommend external researchers to make their own evaluation. The main advantage with the T5-models are their flexibility. Traditionally, encoder-only models (like BERT) excels in classification tasks, while seq-2-seq models are easier to train for tasks like translation and Q&A. Despite this, here are the results from using North-T5 on the political classification task explained [here](https://arxiv.org/abs/2104.09617).
|**Model:** | **F1** |
|:-----------|:------------|
|mT5-base|73.2 |
|mBERT-base|78.4 |
|NorBERT-base|78.2 |
|North-T5-small|80.5 |
|nb-bert-base|81.8 |
|North-T5-base|85.3 |
|North-T5-large|86.7 |
|North-T5-xl|88.7 |
|North-T5-xxl|91.8|
These are preliminary results. The [results](https://arxiv.org/abs/2104.09617) from the BERT-models are based on the test-results from the best model after 10 runs with early stopping and a decaying learning rate. The T5-results are the average of five runs on the evaluation set. The small-model was trained for 10.000 steps, while the rest for 5.000 steps. A fixed learning rate was used (no decay), and no early stopping. Neither was the recommended rank classification used. We use a max sequence length of 512. This method simplifies the test setup and gives results that are easy to interpret. However, the results from the T5 model might actually be a bit sub-optimal.
## Sub-versions of North-T5
The following sub-versions are available. More versions will be available shorter.
|**Model** | **Description** |
|:-----------|:-------|
|**North‑T5‑NCC** |This is the main version. It is trained an additonal 500.000 steps on from the mT5 checkpoint. The training corpus is based on [the Norwegian Colossal Corpus (NCC)](https://huggingface.co/datasets/NbAiLab/NCC). In addition there are added data from MC4 and English Wikipedia.|
|**North‑T5‑NCC‑lm**|The model is pretrained for an addtional 100k steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf). In a way this turns a masked language model into an autoregressive model. It also prepares the model for some tasks. When for instance doing translation and NLI, it is well documented that there is a clear benefit to do a step of unsupervised LM-training before starting the finetuning.|
## Fine-tuned versions
As explained below, the model really needs to be fine-tuned for specific tasks. This procedure is relatively simple, and the models are not very sensitive to the hyper-parameters used. Usually a decent result can be obtained by using a fixed learning rate of 1e-3. Smaller versions of the model typically needs to be trained for a longer time. It is easy to train the base-models in a Google Colab.
Since some people really want to see what the models are capable of, without going through the training procedure, I provide a couple of test models. These models are by no means optimised, and are just for demonstrating how the North-T5 models can be used.
* Nynorsk Translator. Translates any text from Norwegian Bokmål to Norwegian Nynorsk. Please test the [Streamlit-demo](https://huggingface.co/spaces/north/Nynorsk) and the [HuggingFace repo](https://huggingface.co/north/demo-nynorsk-base)
* DeUnCaser. The model adds punctation, spaces and capitalisation back into the text. The input needs to be in Norwegian but does not have to be divided into sentences or have proper capitalisation of words. You can even remove the spaces from the text, and make the model reconstruct it. It can be tested with the [Streamlit-demo](https://huggingface.co/spaces/north/DeUnCaser) and directly on the [HuggingFace repo](https://huggingface.co/north/demo-deuncaser-base)
## Training details
All models are built using the Flax-based T5X codebase, and all models are initiated with the mT5 pretrained weights. The models are trained using the T5.1.1 training regime, where they are only trained on an unsupervised masking-task. This also means that the models (contrary to the original T5) needs to be finetuned to solve specific tasks. This finetuning is however usually not very compute intensive, and in most cases it can be performed even with free online training resources.
All the main model model versions are trained for 500.000 steps after the mT5 checkpoint (1.000.000 steps). They are trained mainly on a 75GB corpus, consisting of NCC, Common Crawl and some additional high quality English text (Wikipedia). The corpus is roughly 80% Norwegian text. Additional languages are added to retain some of the multilingual capabilities, making the model both more robust to new words/concepts and also more suited as a basis for translation tasks.
While the huge models almost always will give the best results, they are also both more difficult and more expensive to finetune. I will strongly recommended to start with finetuning a base-models. The base-models can easily be finetuned on a standard graphic card or a free TPU through Google Colab.
All models were trained on TPUs. The largest XXL model was trained on a TPU v4-64, the XL model on a TPU v4-32, the Large model on a TPU v4-16 and the rest on TPU v4-8. Since it is possible to reduce the batch size during fine-tuning, it is also possible to finetune on slightly smaller hardware. The rule of thumb is that you can go "one step down" when finetuning. The large models still rewuire access to significant hardware, even for finetuning.
## Formats
All models are trained using the Flax-based T5X library. The original checkpoints are available in T5X format and can be used for both finetuning or interference. All models, except the XXL-model, are also converted to Transformers/HuggingFace. In this framework, the models can be loaded for finetuning or inference both in Flax, PyTorch and TensorFlow format.
## Future
I will continue to train and release additional models to this set. What models that are added is dependent upon the feedbacki from the users
## Thanks
This release would not have been possible without getting support and hardware from the [TPU Research Cloud](https://sites.research.google/trc/about/) at Google Research. Both the TPU Research Cloud Team and the T5X Team has provided extremely useful support for getting this running.
Freddy Wetjen at the National Library of Norway has been of tremendous help in generating the original NCC corpus, and has also contributed to generate the collated coprus used for this training. In addition he has been a dicussion partner in the creation of these models.
Also thanks to Stefan Schweter for writing the [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/convert_t5x_checkpoint_to_flax.py) for converting these models from T5X to HuggingFace and to Javier de la Rosa for writing the dataloader for reading the HuggingFace Datasets in T5X.
## Warranty
Use at your own risk. The models have not yet been thougroughly tested, and may contain both errors and biases.
## Contact/About
These models were trained by Per E Kummervold. Please contact me on per@capia.no.
|
89763cd3711ecb3ed2e7f787058382eb
|
Tomor0720/deberta-large-finetuned-qqp
|
Tomor0720
|
deberta
| 13 | 2 |
transformers
| 0 |
text-classification
| true | false | false |
mit
| null |
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,331 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-large-finetuned-qqp
This model is a fine-tuned version of [microsoft/deberta-large](https://huggingface.co/microsoft/deberta-large) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2635
- Accuracy: 0.8986
- F1: 0.8648
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.4058 | 1.0 | 22741 | 0.3923 | 0.8496 | 0.8108 |
| 0.2347 | 2.0 | 45482 | 0.2635 | 0.8986 | 0.8648 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
fa915ce1c3e5e12b97125c6a802e3182
|
lincoln/mbart-mlsum-automatic-summarization
|
lincoln
|
mbart
| 10 | 2,242 |
transformers
| 3 |
summarization
| true | true | false |
mit
|
['fr']
|
['MLSUM']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['summarization', 'mbart', 'bart']
| false | true | true | 3,349 | false |
# Résumé automatique d'article de presses
Ce modèles est basé sur le modèle [`facebook/mbart-large-50`](https://huggingface.co/facebook/mbart-large-50) et été fine-tuné en utilisant des articles de presse issus de la base de données MLSUM. L'hypothèse à été faite que les chapeaux des articles faisaient de bon résumés de référence.
## Entrainement
Nous avons testé deux architecture de modèles (T5 et BART) avec des textes en entrée de 512 ou 1024 tokens. Finallement c'est le modèle BART avec 512 tokens qui à été retenu.
Il a été entrainé sur 2 epochs (~700K articles) sur une Tesla V100 (32 heures d'entrainement).
## Résultats

Nous avons comparé notre modèle (`mbart-large-512-full` sur le graphique) à deux références:
* MBERT qui correspond aux performances du modèle entrainé par l'équipe à l'origine de la base d'articles MLSUM
* Barthez qui est un autre modèle basé sur des articles de presses issus de la base de données OrangeSum
On voit que le score de novelty (cf papier MLSUM) de notre modèle n'est pas encore comparable à ces deux références et encore moins à une production humaine néanmoins les résumés générés sont dans l'ensemble de bonne qualité.
## Utilisation
```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from transformers import SummarizationPipeline
model_name = 'lincoln/mbart-mlsum-automatic-summarization'
loaded_tokenizer = AutoTokenizer.from_pretrained(model_name)
loaded_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
nlp = SummarizationPipeline(model=loaded_model, tokenizer=loaded_tokenizer)
nlp("""
« La veille de l’ouverture, je vais faire venir un coach pour les salariés qui reprendront le travail.
Cela va me coûter 300 euros, mais après des mois d’oisiveté obligatoire, la reprise n’est pas simple.
Certains sont au chômage partiel depuis mars 2020 », raconte Alain Fontaine, propriétaire du restaurant Le Mesturet,
dans le quartier de la Bourse, à Paris. Cette date d’ouverture, désormais, il la connaît. Emmanuel Macron a, en effet,
donné le feu vert pour un premier accueil des clients en terrasse, mercredi 19 mai. M. Fontaine imagine même faire venir un orchestre ce jour-là pour fêter l’événement.
Il lui reste toutefois à construire sa terrasse. Il pensait que les ouvriers passeraient samedi 1er mai pour l’installer, mais, finalement, le rendez-vous a été décalé.
Pour l’instant, le tas de bois est entreposé dans la salle de restaurant qui n’a plus accueilli de convives depuis le 29 octobre 2020,
quand le couperet de la fermeture administrative est tombé.M. Fontaine, président de l’Association française des maîtres restaurateurs,
ne manquera pas de concurrents prêts à profiter de ce premier temps de réouverture des bars et restaurants. Même si le couvre-feu limite le service à 21 heures.
D’autant que la Mairie de Paris vient d’annoncer le renouvellement des terrasses éphémères installées en 2020 et leur gratuité jusqu’à la fin de l’été.
""")
```
## Citation
```bibtex
@article{scialom2020mlsum,
title={MLSUM: The Multilingual Summarization Corpus},
author={Thomas Scialom and Paul-Alexis Dray and Sylvain Lamprier and Benjamin Piwowarski and Jacopo Staiano},
year={2020},
eprint={2004.14900},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
16872b526299e5aafeea5c3b0868c575
|
MultiBertGunjanPatrick/multiberts-seed-1-1100k
|
MultiBertGunjanPatrick
|
bert
| 7 | 3 |
transformers
| 0 | null | true | false | false |
apache-2.0
|
['en']
|
['bookcorpus', 'wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['exbert', 'multiberts', 'multiberts-seed-1']
| false | true | true | 6,487 | false |
# MultiBERTs Seed 1 Checkpoint 1100k (uncased)
Seed 1 intermediate checkpoint 1100k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in
[this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint.
The final checkpoint can be found at [multiberts-seed-1](https://hf.co/multberts-seed-1). This model is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani).
## Model description
MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the MultiBERTs model as inputs.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('multiberts-seed-1-1100k')
model = BertModel.from_pretrained("multiberts-seed-1-1100k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular
checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint.
## Training data
The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size
of 256. The sequence length was set to 512 throughout. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2106-16163,
author = {Thibault Sellam and
Steve Yadlowsky and
Jason Wei and
Naomi Saphra and
Alexander D'Amour and
Tal Linzen and
Jasmijn Bastings and
Iulia Turc and
Jacob Eisenstein and
Dipanjan Das and
Ian Tenney and
Ellie Pavlick},
title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis},
journal = {CoRR},
volume = {abs/2106.16163},
year = {2021},
url = {https://arxiv.org/abs/2106.16163},
eprinttype = {arXiv},
eprint = {2106.16163},
timestamp = {Mon, 05 Jul 2021 15:15:50 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co/exbert/?model=multiberts">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
4020731d012619dcaf4f48dfc7a395c0
|
XperienciaVirtual/sd-1-5-db-ai-creative-hub-hdbglv
|
XperienciaVirtual
| null | 38 | 3 |
diffusers
| 0 |
text-to-image
| false | false | false |
creativeml-openrail-m
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['text-to-image']
| false | true | true | 2,649 | false |
### sd-1-5-db-ai-creative-hub-hdbglv Dreambooth model trained by jaimexv with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
Sample pictures of:
hdbglv (use that on your prompt)

|
09fb64595dd63a40aec6f5ff4f662ce8
|
facebook/dino-vitb16
|
facebook
|
vit
| 5 | 5,237 |
transformers
| 3 |
feature-extraction
| true | false | false |
apache-2.0
| null |
['imagenet-1k']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['dino', 'vision']
| false | true | true | 3,204 | false |
# Vision Transformer (base-sized model, patch size 16) trained using DINO
Vision Transformer (ViT) model trained using the DINO method. It was introduced in the paper [Emerging Properties in Self-Supervised Vision Transformers](https://arxiv.org/abs/2104.14294) by Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, Armand Joulin and first released in [this repository](https://github.com/facebookresearch/dino).
Disclaimer: The team releasing DINO did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-1k, at a resolution of 224x224 pixels.
Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.
Note that this model does not include any fine-tuned heads.
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
from transformers import ViTFeatureExtractor, ViTModel
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = ViTFeatureExtractor.from_pretrained('facebook/dino-vitb16')
model = ViTModel.from_pretrained('facebook/dino-vitb16')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state
```
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2104-14294,
author = {Mathilde Caron and
Hugo Touvron and
Ishan Misra and
Herv{\'{e}} J{\'{e}}gou and
Julien Mairal and
Piotr Bojanowski and
Armand Joulin},
title = {Emerging Properties in Self-Supervised Vision Transformers},
journal = {CoRR},
volume = {abs/2104.14294},
year = {2021},
url = {https://arxiv.org/abs/2104.14294},
archivePrefix = {arXiv},
eprint = {2104.14294},
timestamp = {Tue, 04 May 2021 15:12:43 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2104-14294.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
cbd7203e50eec93745721e05d31f2a9a
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.