repo_id
stringlengths
4
110
author
stringlengths
2
27
model_type
stringlengths
2
29
files_per_repo
int64
2
15.4k
downloads_30d
int64
0
19.9M
library
stringlengths
2
37
likes
int64
0
4.34k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
30
languages
stringlengths
4
1.63k
datasets
stringlengths
2
2.58k
co2
stringclasses
29 values
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
15
prs_closed
int64
0
28
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
1 class
has_text
bool
1 class
text_length
int64
401
598k
is_nc
bool
1 class
readme
stringlengths
0
598k
hash
stringlengths
32
32
mbien/wav2vec2-large-xlsr-polish
mbien
wav2vec2
9
7
transformers
0
automatic-speech-recognition
true
false
true
apache-2.0
['pl']
['common_voice']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week']
true
true
true
3,384
false
# Wav2Vec2-Large-XLSR-53-Polish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Polish using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pl", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("mbien/wav2vec2-large-xlsr-polish") model = Wav2Vec2ForCTC.from_pretrained("mbien/wav2vec2-large-xlsr-polish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Polish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pl", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("mbien/wav2vec2-large-xlsr-polish") model = Wav2Vec2ForCTC.from_pretrained("mbien/wav2vec2-large-xlsr-polish") model.to("cuda") chars_to_ignore_regex = '[\—\…\,\?\.\!\-\;\:\"\“\„\%\‘\”\�\«\»\'\’]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 23.01 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](https://colab.research.google.com/drive/1DvrFMoKp9h3zk_eXrJF2s4_TGDHh0tMc?usp=sharing)
d24f6908e786b7fcc35c424463ff5c60
colab71/sd-1.5-niraj-1000
colab71
null
18
9
diffusers
0
text-to-image
true
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['pytorch', 'diffusers', 'stable-diffusion', 'text-to-image', 'diffusion-models-class', 'dreambooth-hackathon', 'man']
false
true
true
699
false
# Settings Steps:1000 Class Images:50 # DreamBooth model for the niraj concept trained by colab71 on the dataset. This is a Stable Diffusion model fine-tuned on the niraj concept with DreamBooth. It can be used by modifying the This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on niraj's images for the person theme. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('colab71/sd-1.5-niraj-1000') image = pipeline().images[0] image ```
3d7c8afa1b95986ec82dc95f36d4d95b
yuhuizhang/finetuned_gpt2-medium_sst2_negation0.05
yuhuizhang
gpt2
11
0
transformers
0
text-generation
true
false
false
mit
null
['sst2']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,252
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_gpt2-medium_sst2_negation0.05 This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on the sst2 dataset. It achieves the following results on the evaluation set: - Loss: 3.4461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8275 | 1.0 | 1062 | 3.3098 | | 2.5383 | 2.0 | 2124 | 3.3873 | | 2.3901 | 3.0 | 3186 | 3.4461 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
4f7fea2e20d8e90457c137511455dac8
maren-hugg/xlm-roberta-base-finetuned-panx-de-en
maren-hugg
xlm-roberta
10
3
transformers
0
token-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,321
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2239 - F1: 0.8201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2573 | 1.0 | 625 | 0.2573 | 0.7591 | | 0.1631 | 2.0 | 1250 | 0.2147 | 0.8127 | | 0.1096 | 3.0 | 1875 | 0.2239 | 0.8201 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.0+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3
ff67c6e79f6c9e9f467eeffadb74eb63
sd-concepts-library/tony-diterlizzi-s-planescape-art
sd-concepts-library
null
31
0
null
8
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
4,462
false
### Tony DiTerlizzi's Planescape Art on Stable Diffusion This is the `<tony-diterlizzi-planescape>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<tony-diterlizzi-planescape> 0](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/1.jpeg) ![<tony-diterlizzi-planescape> 1](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/11.jpeg) ![<tony-diterlizzi-planescape> 2](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/8.jpeg) ![<tony-diterlizzi-planescape> 3](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/22.jpeg) ![<tony-diterlizzi-planescape> 4](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/19.jpeg) ![<tony-diterlizzi-planescape> 5](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/20.jpeg) ![<tony-diterlizzi-planescape> 6](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/25.jpeg) ![<tony-diterlizzi-planescape> 7](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/5.jpeg) ![<tony-diterlizzi-planescape> 8](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/9.jpeg) ![<tony-diterlizzi-planescape> 9](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/21.jpeg) ![<tony-diterlizzi-planescape> 10](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/24.jpeg) ![<tony-diterlizzi-planescape> 11](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/7.jpeg) ![<tony-diterlizzi-planescape> 12](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/3.jpeg) ![<tony-diterlizzi-planescape> 13](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/2.jpeg) ![<tony-diterlizzi-planescape> 14](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/6.jpeg) ![<tony-diterlizzi-planescape> 15](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/10.jpeg) ![<tony-diterlizzi-planescape> 16](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/18.jpeg) ![<tony-diterlizzi-planescape> 17](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/0.jpeg) ![<tony-diterlizzi-planescape> 18](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/14.jpeg) ![<tony-diterlizzi-planescape> 19](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/16.jpeg) ![<tony-diterlizzi-planescape> 20](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/17.jpeg) ![<tony-diterlizzi-planescape> 21](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/13.jpeg) ![<tony-diterlizzi-planescape> 22](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/4.jpeg) ![<tony-diterlizzi-planescape> 23](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/23.jpeg) ![<tony-diterlizzi-planescape> 24](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/12.jpeg) ![<tony-diterlizzi-planescape> 25](https://huggingface.co/sd-concepts-library/tony-diterlizzi-s-planescape-art/resolve/main/concept_images/15.jpeg)
83a37c449ebd82921e59a32a039caef4
steysie/paraphrase-multilingual-mpnet-base-v2-tuned-smartcat
steysie
xlm-roberta
6
44
transformers
0
text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,848
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # paraphrase-multilingual-mpnet-base-v2-tuned-smartcat This model is a fine-tuned version of [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.0072 | 0.16 | 10000 | 0.0025 | | 0.0014 | 0.32 | 20000 | 0.0005 | | 0.0004 | 0.48 | 30000 | 0.0002 | | 0.0002 | 0.64 | 40000 | 0.0001 | | 0.0003 | 0.81 | 50000 | 0.0001 | | 0.0002 | 0.97 | 60000 | 0.0000 | | 0.0001 | 1.13 | 70000 | 0.0000 | | 0.0001 | 1.29 | 80000 | 0.0000 | | 0.0001 | 1.45 | 90000 | 0.0000 | | 0.0001 | 1.61 | 100000 | 0.0000 | | 0.0 | 1.77 | 110000 | 0.0000 | | 0.0 | 1.93 | 120000 | 0.0000 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
090403100ba2c4835d3d5a5cb563c29b
ghatgetanuj/bert-large-uncased_cls_SentEval-CR
ghatgetanuj
bert
12
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,529
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased_cls_SentEval-CR This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3488 - Accuracy: 0.9283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 189 | 0.2951 | 0.8977 | | No log | 2.0 | 378 | 0.2895 | 0.8964 | | 0.2663 | 3.0 | 567 | 0.3707 | 0.9044 | | 0.2663 | 4.0 | 756 | 0.4130 | 0.9203 | | 0.2663 | 5.0 | 945 | 0.3488 | 0.9283 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
7cffe1aa97d66fbeaeab365706a435db
Helsinki-NLP/opus-mt-bat-en
Helsinki-NLP
marian
11
19,324
transformers
0
translation
true
true
false
apache-2.0
['lt', 'lv', 'bat', 'en']
null
null
2
2
0
0
0
0
0
['translation']
false
true
true
2,504
false
### bat-eng * source group: Baltic languages * target group: English * OPUS readme: [bat-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bat-eng/README.md) * model: transformer * source language(s): lav lit ltg prg_Latn sgs * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-07-31.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/bat-eng/opus2m-2020-07-31.zip) * test set translations: [opus2m-2020-07-31.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bat-eng/opus2m-2020-07-31.test.txt) * test set scores: [opus2m-2020-07-31.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bat-eng/opus2m-2020-07-31.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newsdev2017-enlv-laveng.lav.eng | 27.5 | 0.566 | | newsdev2019-enlt-liteng.lit.eng | 27.8 | 0.557 | | newstest2017-enlv-laveng.lav.eng | 21.1 | 0.512 | | newstest2019-lten-liteng.lit.eng | 30.2 | 0.592 | | Tatoeba-test.lav-eng.lav.eng | 51.5 | 0.687 | | Tatoeba-test.lit-eng.lit.eng | 55.1 | 0.703 | | Tatoeba-test.multi.eng | 50.6 | 0.662 | | Tatoeba-test.prg-eng.prg.eng | 1.0 | 0.159 | | Tatoeba-test.sgs-eng.sgs.eng | 16.5 | 0.265 | ### System Info: - hf_name: bat-eng - source_languages: bat - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bat-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['lt', 'lv', 'bat', 'en'] - src_constituents: {'lit', 'lav', 'prg_Latn', 'ltg', 'sgs'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/bat-eng/opus2m-2020-07-31.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/bat-eng/opus2m-2020-07-31.test.txt - src_alpha3: bat - tgt_alpha3: eng - short_pair: bat-en - chrF2_score: 0.662 - bleu: 50.6 - brevity_penalty: 0.9890000000000001 - ref_len: 30772.0 - src_name: Baltic languages - tgt_name: English - train_date: 2020-07-31 - src_alpha2: bat - tgt_alpha2: en - prefer_old: False - long_pair: bat-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
c4d3e38fb5038891964213383654a6d9
SirVeggie/nixeu_embeddings
SirVeggie
null
8
0
null
23
null
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,621
false
# Nixeu stable diffusion embeddings Original artist: Nixeu\ Patreon: https://www.patreon.com/nixeu/posts ## Usage To use embeddings, place the embedding file into the embedding folder (automatic1111 webui), and use the filename in the prompt. You can choose to rename the file freely. It is recommended to use these embeddings at low strength for cleaner results, for example (nixeu_basic:0.7). ## Additional notes Nixeu_extra has slightly more flair (maybe). Nixeu_soft prefers portraits and has generally softer detail. Nixeu_white has a preference for a light color scheme. ## Examples Prompt: ``` masterpiece, best quality, ultra-detailed, illustration, 1girl, (wearing casual clothing), beautiful face, (feminine body), (nixeu_basic:0.75) Negative prompt: close-up, portrait, (big breasts), (fat), flat color, flat shading, bad anatomy, disfigured, deformed, malformed, mutant, gross, disgusting, out of frame, poorly drawn, extra limbs, extra fingers, missing limbs, blurry, out of focus, lowres, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, artist name, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name Steps: 28, Sampler: Euler a, CFG scale: 9, Seed: 3875527572, Size: 768x1024, Model hash: 5674302c, Model: diffmix, Batch size: 2, Batch pos: 0, Denoising strength: 0.6, First pass size: 0x0 ``` ![grid1](nixeu1.png)
9f9c9f45c5f3f5db5e56e6bc1e0baae5
HPL/distilbert-base-uncased-finetuned-emotion
HPL
distilbert
18
4
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,557
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1465 - Accuracy: 0.9405 - F1: 0.9409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8341 | 1.0 | 250 | 0.2766 | 0.9105 | 0.9088 | | 0.2181 | 2.0 | 500 | 0.1831 | 0.9305 | 0.9308 | | 0.141 | 3.0 | 750 | 0.1607 | 0.93 | 0.9305 | | 0.1102 | 4.0 | 1000 | 0.1509 | 0.935 | 0.9344 | | 0.0908 | 5.0 | 1250 | 0.1465 | 0.9405 | 0.9409 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
38ad9aa484f8763963dd6dc25b3d30b3
Helsinki-NLP/opus-mt-fi-hu
Helsinki-NLP
marian
10
15
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
770
false
### opus-mt-fi-hu * source languages: fi * target languages: hu * OPUS readme: [fi-hu](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-hu/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-hu/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-hu/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-hu/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.fi.hu | 50.4 | 0.705 |
755aa515a87a2c006e3ec9b6a8c89030
AdamOswald1/Cyberpunk-Anime-Diffusion
AdamOswald1
null
35
201
diffusers
14
text-to-image
false
false
false
creativeml-openrail-m
['en']
['Nerfgun3/cyberware_style', 'Nerfgun3/bad_prompt']
null
6
0
6
0
0
0
0
['cyberpunk', 'anime', 'stable-diffusion', 'aiart', 'text-to-image', 'TPU']
false
true
true
5,174
false
<center><img src="https://huggingface.co/AdamOswald1/Cyberpunk-Anime-Diffusion/resolve/main/img/5.jpg" width="512" height="512"/></center> ![visitors](https://visitor-badge.glitch.me/badge?page_id=Cyberpunk_Anime_Diffusion) # Cyberpunk Anime Diffusion An AI model that generates cyberpunk anime characters!~ Based of a finetuned Waifu Diffusion V1.3 Model with Stable Diffusion V1.5 New Vae, training in Dreambooth by [DGSpitzer](https://www.youtube.com/channel/UCzzsYBF4qwtMwJaPJZ5SuPg) ### 🧨 Diffusers This repo contains both .ckpt and Diffuser model files. It's compatible to be used as any Stable Diffusion model, using standard [Stable Diffusion Pipelines](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). You can convert this model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX](https://huggingface.co/blog/stable_diffusion_jax). ```python example for loading the Diffuser #!pip install diffusers transformers scipy torch from diffusers import StableDiffusionPipeline import torch model_id = "AdamOswald1/Cyberpunk-Anime-Diffusion" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a beautiful perfect face girl in dgs illustration style, Anime fine details portrait of school girl in front of modern tokyo city landscape on the background deep bokeh, anime masterpiece, 8k, sharp high quality anime" image = pipe(prompt).images[0] image.save("./cyberpunk_girl.png") ``` # Online Demo You can try the Online Web UI demo build with [Gradio](https://github.com/gradio-app/gradio), or use Colab Notebook at here: *My Online Space Demo* [![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/DGSpitzer/DGS-Diffusion-Space) *Finetuned Diffusion WebUI Demo by anzorq* [![Use Finetuned_Diffusion WebUI](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/anzorq/finetuned_diffusion) *Colab Notebook* [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/HelixNGC7293/cyberpunk-anime-diffusion/blob/main/cyberpunk_anime_diffusion.ipynb)[![GitHub](https://badgen.net/badge/icon/Github?icon=github&label)](https://github.com/HelixNGC7293/cyberpunk-anime-diffusion) *Buy me a coffee if you like this project ;P ♥* [![Buy me a coffee](https://badgen.net/badge/icon/Buy%20Me%20A%20Coffee?icon=buymeacoffee&label)](https://www.buymeacoffee.com/dgspitzer) <center><img src="https://huggingface.co/AdamOswald1/Cyberpunk-Anime-Diffusion/resolve/main/img/1.jpg" width="512" height="512"/></center> # **👇Model👇** AI Model Weights available at huggingface: https://huggingface.co/AdamOswald1/Cyberpunk-Anime-Diffusion <center><img src="https://huggingface.co/AdamOswald1/Cyberpunk-Anime-Diffusion/resolve/main/img/2.jpg" width="512" height="512"/></center> # Usage After model loaded, use keyword **dgs** in your prompt, with **illustration style** to get even better results. For sampler, use **Euler A** for the best result (**DDIM** kinda works too), CFG Scale 7, steps 20 should be fine **Example 1:** ``` portrait of a girl in dgs illustration style, Anime girl, female soldier working in a cyberpunk city, cleavage, ((perfect femine face)), intricate, 8k, highly detailed, shy, digital painting, intense, sharp focus ``` For cyber robot male character, you can add **muscular male** to improve the output. **Example 2:** ``` a photo of muscular beard soldier male in dgs illustration style, half-body, holding robot arms, strong chest ``` **Example 3 (with Stable Diffusion WebUI):** If using [AUTOMATIC1111's Stable Diffusion WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) You can simply use this as **prompt** with **Euler A** Sampler, CFG Scale 7, steps 20, 704 x 704px output res: ``` an anime girl in dgs illustration style ``` And set the **negative prompt** as this to get cleaner face: ``` out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers ``` This will give you the exactly same style as the sample images above. <center><img src="https://huggingface.co/AdamOswald1/Cyberpunk-Anime-Diffusion/resolve/main/img/ReadmeAddon.jpg" width="256" height="353"/></center> --- **NOTE: usage of this model implies accpetance of stable diffusion's [CreativeML Open RAIL-M license](LICENSE)** --- <center><img src="https://huggingface.co/AdamOswald1/Cyberpunk-Anime-Diffusion/resolve/main/img/4.jpg" width="700" height="700"/></center> <center><img src="https://huggingface.co/AdamOswald1/Cyberpunk-Anime-Diffusion/resolve/main/img/6.jpg" width="700" height="700"/></center>
653f28afd59d38d377133b123571d7cd
AymanMansour/Whisper-Sudanese-Dialect-small
AymanMansour
whisper
37
8
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['ar']
['AymanMansour/SDN-Dialect-Dataset', 'arbml/sudanese_dialect_speech', 'arabic_speech_corpus']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,529
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5091 - Wer: 56.3216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0157 | 13.0 | 1000 | 1.1631 | 65.9101 | | 0.0025 | 26.0 | 2000 | 1.3416 | 58.5066 | | 0.0009 | 39.01 | 3000 | 1.4238 | 56.6398 | | 0.0004 | 52.01 | 4000 | 1.4800 | 56.3004 | | 0.0002 | 65.01 | 5000 | 1.5091 | 56.3216 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
a351daaca49d54284bd64460fab11bd9
Phantom-Artist/phantom-diffusion-s3-the-last-8
Phantom-Artist
null
39
0
null
2
null
false
false
false
creativeml-openrail-m
['en', 'ja']
['Phantom-Artist/phantom-diffusion-s3-the-last-8-dataset']
null
0
0
0
0
0
0
0
['art']
false
true
true
7,502
false
The final 8 models that are trained over [hakurei's Waifu Diffusion](https://huggingface.co/hakurei/waifu-diffusion). Each model was trained on a notable Japanese (and Taiwanese, I think) AI artist's works using dreambooth, with 30 of their works gained mainly from twitter (except for sabakichi, which I collected the dataset from pixiv). It tooks 1000 steps to train each model, at a learning rate of 5-e6. I have shared the notebook [here](https://huggingface.co/Phantom-Artist/phantom-diffusion/blob/main/DreamBooth_Stable_Diffusion_works_with_SD_2.ipynb) in case you want to try out additional training. Some are good at backgrounds, while others can generate a semi-realistic style as seen in many SD 1.5 anime/waifu models (and some might be a bit overfitted). The dataset is published [here](https://huggingface.co/datasets/Phantom-Artist/phantom-diffusion-s3-the-last-8-dataset), and the full members are listed [here](https://twitter.com/i/lists/1622444997240037377) (special thanks to Yunyalula for creating it!). # For those who are against generative AIs You can see that now they are the target. Take our tool. Now is the time for pay back. Generate the images in their styles, and bring back the power you had to yourself. # For those who support the development of generative AIs Some of the AI artists, even though they take advantage of the open strategy of Stable Diffusion, now tend to hide their prompts, trying to monopolize their style (I'm not saying the AI artists I trained are as such, to be sure). To continue protecting our values and beliefs on the open community and fight against them trying to create another pre-modern style guilds, I will show you a new way. You no longer need their prompts; just train their images by yourself to protect the open community. It's not only legal but also ethical, as they have been taking advantages of others' trained dataset. # For those who call themselves "phantom 40" I saw some caliming there should be 48, and here you go. Phantom 48, or do you like to call yourselves *PTM* 48 instead? It's up to you. # Why will they be the last? My initial intention on this series was a social experiment to see what will happen if the AI artists are targeted for personalized training. As it became more popular than expected and the artists started calling themselves "phantom 20," I came up with the second intention to see how they will react after I add 20 more in one day, to see if they can adapt to the sudden change. They acted greatly, and I think that's why they could become notable. All the reactions and the interpretations on my action were impressive, but since I have accomplished my goal, and since the main stream model will probably be SD 2.1 768 (not SD 2.1 512), I will no longer add new models. I know I couldn't add some of the artists, but no. I will not do it under the name of phantom. It takes me like 8 hours to train, test, and upload 20 models, and it's just unsustainable to continue doing it everyday. **From now on, anyone who wish to add more is the next phantom. Train anyone you wish to by yourself.** # trained artist list - atsuwo_AI - recommended pos: multicolored hair, cg - fladdict - recommended pos: oil painting/ancient relief/impressionist impasto oil painting (maybe more) - possible neg: monkey - Hifumi_AID - recommended pos: dark purple hair, emerald eyes - mayonaka_rr - recommended pos: cg - possible pos: dynamic posing, bikini, ponytail - o81morimori - possible pos: cg, in a messy apartment room with objects on the floor and the bed - sabakichi - possible pos 1: merging underwater, limited pallete, melting underwater, unstable outlines - possible pos 2: rough sketch, limited pallete, ((unstable outlines)), monotone gradation, dynamic posing - teftef - possible pos: light skyblue hair, bun, retropunk gears of a factory - violet_fizz - recommended pos: beautiful face, grown up face, long eyes, expressionless - possible pos: expressionless # samples The basic prompt is as follows. However, to present you the potential of these models as much as possible, many of them have additional postive tags (such as "in the style of") to get the result below (yes, use ``aitop (ARTIST)_style`` to gain the finetuned result). Many works better with the additional prompt ``beautiful face``. Generally speaking, prompting words close to the trained dataset will give you a better result. ``` POS: masterpiece, best quality, 1girl, aitop (ARTIST)_style NEG: nsfw, worst quality, low quality, medium quality, deleted, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digits, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry, simple background ``` ## atsuwo_AI ![atsuwo_AI_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/atsuwo_AI_style.png) ![atsuwo_AI_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/atsuwo_AI_style2.png) ![atsuwo_AI_sample3](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/atsuwo_AI_style3.png) ## fladdict ![fladdict_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/fladdict_style.png) ![fladdict_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/fladdict_style2.png) ![fladdict_sample3](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/fladdict_style3.png) ## Hifumi_AID ![Hifumi_AID_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/Hifumi_AID_style.png) ![Hifumi_AID_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/Hifumi_AID_style2.png) ## mayonaka_rr ![mayonaka_rr_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/mayonaka_rr_style.png) ![mayonaka_rr_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/mayonaka_rr_style2.png) ![mayonaka_rr_sample3](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/mayonaka_rr_style3.png) ## o81morimori ![o81morimori_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/o81morimori_style.png) ![o81morimori_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/o81morimori_style2.png) ## sabakichi ![sabakichi_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/sabakichi_style.png) ![sabakichi_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/sabakichi_style2.png) ![sabakichi_sample3](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/sabakichi_style3.png) ![sabakichi_sample4](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/sabakichi_style4.png) ## teftef ![teftef_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/teftef_style.png) ![teftef_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/teftef_style2.png) ## violet_fizz ![violet_fizz_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/violet_fizz_style.png) ![violet_fizz_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/violet_fizz_style2.png)
aef39d409ac19258ac381a0065672085
mattchurgin/xls-r-eng
mattchurgin
wav2vec2
19
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['ab']
['common_voice']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'mozilla-foundation/common_voice_7_0', 'generated_from_trainer']
true
true
true
1,115
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [patrickvonplaten/wav2vec2_tiny_random_robust](https://huggingface.co/patrickvonplaten/wav2vec2_tiny_random_robust) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
ed197338e0d20785015ecee56c02bdc4
zhiguoxu/chinese-roberta-wwm-ext-finetuned2
zhiguoxu
bert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,615
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-roberta-wwm-ext-finetuned2 This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1448 - Accuracy: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.4081 | 1.0 | 3 | 0.9711 | 0.7273 | 0.6573 | | 0.9516 | 2.0 | 6 | 0.8174 | 0.8182 | 0.8160 | | 0.8945 | 3.0 | 9 | 0.6617 | 0.9091 | 0.9124 | | 0.7042 | 4.0 | 12 | 0.5308 | 1.0 | 1.0 | | 0.6641 | 5.0 | 15 | 0.4649 | 1.0 | 1.0 | | 0.5731 | 6.0 | 18 | 0.4046 | 1.0 | 1.0 | | 0.5132 | 7.0 | 21 | 0.3527 | 1.0 | 1.0 | | 0.3999 | 8.0 | 24 | 0.3070 | 1.0 | 1.0 | | 0.4198 | 9.0 | 27 | 0.2673 | 1.0 | 1.0 | | 0.3677 | 10.0 | 30 | 0.2378 | 1.0 | 1.0 | | 0.3545 | 11.0 | 33 | 0.2168 | 1.0 | 1.0 | | 0.3237 | 12.0 | 36 | 0.1980 | 1.0 | 1.0 | | 0.3122 | 13.0 | 39 | 0.1860 | 1.0 | 1.0 | | 0.2802 | 14.0 | 42 | 0.1759 | 1.0 | 1.0 | | 0.2552 | 15.0 | 45 | 0.1671 | 1.0 | 1.0 | | 0.2475 | 16.0 | 48 | 0.1598 | 1.0 | 1.0 | | 0.2259 | 17.0 | 51 | 0.1541 | 1.0 | 1.0 | | 0.201 | 18.0 | 54 | 0.1492 | 1.0 | 1.0 | | 0.2083 | 19.0 | 57 | 0.1461 | 1.0 | 1.0 | | 0.2281 | 20.0 | 60 | 0.1448 | 1.0 | 1.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
51abb096912cefe4883a68c072bbb250
elRivx/100Memories
elRivx
null
3
0
null
4
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'text-to-image']
false
true
true
1,571
false
# 100Memories This is my new Stable Diffusion 1.5 custom model that bring to you an images with a retro look style. The magic word is: 100Memories If you enjoy my work, please consider supporting me: [![Buy me a coffee](https://badgen.net/badge/icon/buymeacoffee?icon=buymeacoffee&label)](https://www.buymeacoffee.com/elrivx) Examples: <img src=https://imgur.com/xuCqo5l.png width=30% height=30%> <img src=https://imgur.com/7Xdy4Jv.png width=30% height=30%> <img src=https://imgur.com/c0JccbW.png width=30% height=30%> <img src=https://imgur.com/7Qrw48p.png width=30% height=30%> <img src=https://imgur.com/2bvukQY.png width=30% height=30%> <img src=https://imgur.com/NFkHsG8.png width=30% height=30%> ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
4afb1f25df47fa99f79a94e59b533d86
wyu1/GenRead-3B-WebQ-MergeDPR
wyu1
t5
5
1
transformers
0
null
true
false
false
cc-by-4.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
730
false
# GenRead (MergeDPR): FiD model trained on WebQ -- This is the model checkpoint of GenRead [2], based on the T5-3B and trained on the WebQ dataset [1]. -- Hyperparameters: 8 x 80GB A100 GPUs; batch size 16; AdamW; LR 5e-5; best dev at 18000 steps. References: [1] Semantic parsing on freebase from question-answer pairs. EMNLP 2013. [2] Generate rather than Retrieve: Large Language Models are Strong Context Generators. arXiv 2022 ## Model performance We evaluate it on the WebQ dataset, the EM score is 56.25. <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> --- license: cc-by-4.0 --- --- license: cc-by-4.0 ---
c073d5ea4450283d8fa118ce561646ec
chrisjay/fonxlsr
chrisjay
wav2vec2
10,414
6
transformers
2
automatic-speech-recognition
true
false
true
apache-2.0
['fon']
['fon_dataset']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week', 'hf-asr-leaderboard']
true
true
true
4,687
false
# Wav2Vec2-Large-XLSR-53-Fon Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on [Fon (or Fongbe)](https://en.wikipedia.org/wiki/Fon_language) using the [Fon Dataset](https://github.com/laleye/pyFongbe/tree/master/data). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import json import random import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor #Load test_dataset from saved files in folder from datasets import load_dataset, load_metric #for test for root, dirs, files in os.walk(test/): test_dataset= load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train") #Remove unnecessary chars chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”]' def remove_special_characters(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " return batch test_dataset = test_dataset.map(remove_special_characters) processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") #No need for resampling because audio dataset already at 16kHz #resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"]=speech_array.squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on our unique Fon test data. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re for root, dirs, files in os.walk(test/): test_dataset = load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”]' batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " return batch test_dataset = test_dataset.map(remove_special_characters) wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") model.to("cuda") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = speech_array[0].numpy() batch["sampling_rate"] = sampling_rate batch["target_text"] = batch["sentence"] return batch test_dataset = test_dataset.map(speech_file_to_array_fn) #Evaluation on test dataset def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 14.97 % ## Training The [Fon dataset](https://github.com/laleye/pyFongbe/tree/master/data) was split into `train`(8235 samples), `validation`(1107 samples), and `test`(1061 samples). The script used for training can be found [here](https://colab.research.google.com/drive/11l6qhJCYnPTG1TQZ8f3EvKB9z12TQi4g?usp=sharing) # Collaborators on this project - Chris C. Emezue ([Twitter](https://twitter.com/ChrisEmezue))|(chris.emezue@gmail.com) - Bonaventure F.P. Dossou (HuggingFace Username: [bonadossou](https://huggingface.co/bonadossou))|([Twitter](https://twitter.com/bonadossou))|(femipancrace.dossou@gmail.com) ## This is a joint project continuing our research on [OkwuGbé: End-to-End Speech Recognition for Fon and Igbo](https://arxiv.org/abs/2103.07762)
0402a110bcb8ee847af70a4c746a4d6f
jonatasgrosman/exp_w2v2t_it_vp-it_s965
jonatasgrosman
wav2vec2
10
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['it']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'it']
false
true
true
469
false
# exp_w2v2t_it_vp-it_s965 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
0fb4487e2c63a2fac483daeb4c371a9f
jojoUla/bert-large-uncased-finetuned-DA-Zero-shot
jojoUla
bert
15
5
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,671
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-DA-Zero-shot This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1282 | 1.0 | 435 | 1.3862 | | 1.1307 | 2.0 | 870 | 1.3362 | | 1.2243 | 3.0 | 1305 | 1.2791 | | 1.274 | 4.0 | 1740 | 1.2143 | | 1.2296 | 5.0 | 2175 | 1.1799 | | 1.1773 | 6.0 | 2610 | 1.1550 | | 1.1519 | 7.0 | 3045 | 1.1295 | | 1.1406 | 8.0 | 3480 | 1.1064 | | 1.114 | 9.0 | 3915 | 1.1303 | | 1.1058 | 10.0 | 4350 | 1.1214 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
f7d58caf4962fd50deb1cc768c9f14cb
philosucker/xlm-roberta-base-finetuned-panx-de
philosucker
xlm-roberta
16
3
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,317
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1906 - F1: 0.8687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2884 | 1.0 | 3145 | 0.2390 | 0.8242 | | 0.1639 | 2.0 | 6290 | 0.1944 | 0.8488 | | 0.0952 | 3.0 | 9435 | 0.1906 | 0.8687 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
de7f87f2da1e1cae77d3e9f4c2d4c414
thesunshine36/FineTune_Vit5_LR0_00001_time3
thesunshine36
t5
5
10
transformers
0
text2text-generation
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,556
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # FineTune_Vit5_LR0_00001_time3 This model is a fine-tuned version of [thesunshine36/FineTune_Vit5_LR0_00001_time2](https://huggingface.co/thesunshine36/FineTune_Vit5_LR0_00001_time2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6297 - Validation Loss: 0.5655 - Train Rouge1: 52.5683 - Train Rouge2: 31.3753 - Train Rougel: 44.4344 - Train Rougelsum: 44.4737 - Train Gen Len: 13.6985 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 0.6297 | 0.5655 | 52.5683 | 31.3753 | 44.4344 | 44.4737 | 13.6985 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
cac33e449529d8e96c899af5c3242eb6
sd-concepts-library/vcr-classique
sd-concepts-library
null
17
0
null
2
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,870
false
### vcr classique on Stable Diffusion This is the `<vcr_c>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<vcr_c> 0](https://huggingface.co/sd-concepts-library/vcr-classique/resolve/main/concept_images/5.jpeg) ![<vcr_c> 1](https://huggingface.co/sd-concepts-library/vcr-classique/resolve/main/concept_images/6.jpeg) ![<vcr_c> 2](https://huggingface.co/sd-concepts-library/vcr-classique/resolve/main/concept_images/9.jpeg) ![<vcr_c> 3](https://huggingface.co/sd-concepts-library/vcr-classique/resolve/main/concept_images/3.jpeg) ![<vcr_c> 4](https://huggingface.co/sd-concepts-library/vcr-classique/resolve/main/concept_images/0.jpeg) ![<vcr_c> 5](https://huggingface.co/sd-concepts-library/vcr-classique/resolve/main/concept_images/2.jpeg) ![<vcr_c> 6](https://huggingface.co/sd-concepts-library/vcr-classique/resolve/main/concept_images/10.jpeg) ![<vcr_c> 7](https://huggingface.co/sd-concepts-library/vcr-classique/resolve/main/concept_images/7.jpeg) ![<vcr_c> 8](https://huggingface.co/sd-concepts-library/vcr-classique/resolve/main/concept_images/1.jpeg) ![<vcr_c> 9](https://huggingface.co/sd-concepts-library/vcr-classique/resolve/main/concept_images/11.jpeg) ![<vcr_c> 10](https://huggingface.co/sd-concepts-library/vcr-classique/resolve/main/concept_images/4.jpeg) ![<vcr_c> 11](https://huggingface.co/sd-concepts-library/vcr-classique/resolve/main/concept_images/8.jpeg)
3766df8e7048b28bdea0bd367b9015e2
Helsinki-NLP/opus-mt-pon-en
Helsinki-NLP
marian
10
11
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-pon-en * source languages: pon * target languages: en * OPUS readme: [pon-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/pon-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/pon-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/pon-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/pon-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.pon.en | 34.1 | 0.489 |
c6626f48fa07b9028475041e17acf186
DeepaKrish/roberta-base-finetuned-squad
DeepaKrish
roberta
13
5
transformers
0
question-answering
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,192
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-squad This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 27 | 0.1224 | | No log | 2.0 | 54 | 0.0491 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.9.0 - Datasets 2.5.1 - Tokenizers 0.13.2
d1323a4654065885f0ec683ad41c9598
julien-c/mini_an4_asr_train_raw_bpe_valid
julien-c
null
10
2
espnet
0
automatic-speech-recognition
false
false
false
cc-by-4.0
['en']
['ljspeech']
null
0
0
0
0
0
0
0
['espnet', 'audio', 'automatic-speech-recognition']
false
true
true
1,847
false
## Example ESPnet2 ASR model ### `kamo-naoyuki/mini_an4_asr_train_raw_bpe_valid.acc.best` ♻️ Imported from https://zenodo.org/record/3957940#.X90XNelKjkM This model was trained by kamo-naoyuki using mini_an4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
99cb63415e6074fa07a5efb024253a7c
jinghan/roberta-base-finetuned-wnli
jinghan
roberta
14
1
transformers
0
text-classification
true
false
false
mit
null
['glue']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,442
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-wnli This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6880 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6880 | 0.5634 | | No log | 2.0 | 80 | 0.6851 | 0.5634 | | No log | 3.0 | 120 | 0.6961 | 0.4366 | | No log | 4.0 | 160 | 0.6906 | 0.5634 | | No log | 5.0 | 200 | 0.6891 | 0.5634 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
a58b05f7d53de8094a5907c65ae63dca
vasista22/whisper-gujarati-medium
vasista22
whisper
12
1
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['gu']
null
null
0
0
0
0
0
0
0
['whisper-event']
true
true
true
1,296
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Gujarati Medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Gujarati data available from multiple publicly available ASR corpuses. It has been fine-tuned as a part of the Whisper fine-tuning sprint. ## Training and evaluation data Training Data: ULCA ASR Corpus, OpenSLR, Microsoft Research Telugu Corpus (Train+Dev), Google/Fleurs Train+Dev set. Evaluation Data: Google/Fleurs Test set, Microsoft Research Telugu Corpus Test . ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 48 - seed: 22 - optimizer: adamw_bnb_8bit - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - training_steps: 21240 - mixed_precision_training: True ## Acknowledgement This work was done at Speech Lab, IITM. The compute resources for this work were funded by "Bhashini: National Language translation Mission" project of the Ministry of Electronics and Information Technology (MeitY), Government of India.
01eda95326923583652aa1363d548da1
creat89/NER_FEDA_Latin1
creat89
bert
7
1
transformers
0
null
true
false
false
mit
['multilingual', 'cs', 'pl', 'sl', 'fi']
null
null
0
0
0
0
0
0
0
['labse', 'ner']
false
true
true
832
false
This is a multilingual NER system trained using a Frustratingly Easy Domain Adaptation architecture. It is based on LaBSE and supports different tagsets all using IOBES formats: 1. Wikiann (LOC, PER, ORG) 2. SlavNER 19/21 (EVT, LOC, ORG, PER, PRO) 3. SlavNER 17 (LOC, MISC, ORG, PER) 4. SSJ500k (LOC, MISC, ORG, PER) 5. KPWr (EVT, LOC, ORG, PER, PRO) 6. CNEC (LOC, ORG, MEDIA, ART, PER, TIME) 7. Turku (DATE, EVT, LOC, ORG, PER, PRO, TIME) PER: person, LOC: location, ORG: organization, EVT: event, PRO: product, MISC: Miscellaneous, MEDIA: media, ART: Artifact, TIME: time, DATE: date You can select the tagset to use in the output by configuring the model. More information about the model can be found in the paper (https://aclanthology.org/2021.bsnlp-1.12.pdf) and GitHub repository (https://github.com/EMBEDDIA/NER_FEDA).
974a5af60cd29e63b76dc5715499de62
Zekunli/flan-t5-large-da-multiwoz_1000
Zekunli
t5
10
0
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,561
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-da-multiwoz_1000 This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3538 - Accuracy: 41.3747 - Num: 3689 - Gen Len: 15.5115 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 24 - seed: 1799 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Num | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----:|:-------:| | 1.3315 | 0.24 | 200 | 0.5697 | 25.9543 | 3689 | 14.556 | | 0.6418 | 0.48 | 400 | 0.4645 | 30.0503 | 3689 | 14.9314 | | 0.5433 | 0.72 | 600 | 0.4307 | 31.9506 | 3689 | 16.1515 | | 0.4909 | 0.95 | 800 | 0.4177 | 34.7593 | 3689 | 15.418 | | 0.4769 | 1.19 | 1000 | 0.3996 | 35.0943 | 3689 | 14.9607 | | 0.4491 | 1.43 | 1200 | 0.3881 | 36.2741 | 3689 | 15.543 | | 0.4531 | 1.67 | 1400 | 0.3820 | 35.7704 | 3689 | 14.1583 | | 0.4322 | 1.91 | 1600 | 0.3726 | 37.4853 | 3689 | 15.961 | | 0.4188 | 2.15 | 1800 | 0.3699 | 38.4117 | 3689 | 15.0773 | | 0.4085 | 2.38 | 2000 | 0.3674 | 38.5353 | 3689 | 15.4012 | | 0.4063 | 2.62 | 2200 | 0.3606 | 40.0046 | 3689 | 15.3546 | | 0.3977 | 2.86 | 2400 | 0.3570 | 40.6543 | 3689 | 15.704 | | 0.3992 | 3.1 | 2600 | 0.3549 | 40.4284 | 3689 | 15.7446 | | 0.3828 | 3.34 | 2800 | 0.3538 | 41.3747 | 3689 | 15.5115 | | 0.3792 | 3.58 | 3000 | 0.3539 | 39.8513 | 3689 | 14.7951 | | 0.3914 | 3.81 | 3200 | 0.3498 | 41.0388 | 3689 | 15.4153 | | 0.3707 | 4.05 | 3400 | 0.3498 | 40.9596 | 3689 | 16.3136 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.5.1 - Tokenizers 0.12.1
bd8e04b35ddc594669257de7e325a059
Babivill/leidirocha
Babivill
null
31
3
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image']
false
true
true
1,606
false
### leidirocha Dreambooth model trained by Babivill with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: leidirocha (use that on your prompt) ![leidirocha 0](https://huggingface.co/Babivill/leidirocha/resolve/main/concept_images/leidirocha_%281%29.jpg)![leidirocha 1](https://huggingface.co/Babivill/leidirocha/resolve/main/concept_images/leidirocha_%282%29.jpg)![leidirocha 2](https://huggingface.co/Babivill/leidirocha/resolve/main/concept_images/leidirocha_%283%29.jpg)![leidirocha 3](https://huggingface.co/Babivill/leidirocha/resolve/main/concept_images/leidirocha_%284%29.jpg)![leidirocha 4](https://huggingface.co/Babivill/leidirocha/resolve/main/concept_images/leidirocha_%285%29.jpg)![leidirocha 5](https://huggingface.co/Babivill/leidirocha/resolve/main/concept_images/leidirocha_%286%29.jpg)![leidirocha 6](https://huggingface.co/Babivill/leidirocha/resolve/main/concept_images/leidirocha_%287%29.jpg)![leidirocha 7](https://huggingface.co/Babivill/leidirocha/resolve/main/concept_images/leidirocha_%288%29.jpg)![leidirocha 8](https://huggingface.co/Babivill/leidirocha/resolve/main/concept_images/leidirocha_%289%29.jpg)![leidirocha 9](https://huggingface.co/Babivill/leidirocha/resolve/main/concept_images/leidirocha_%2810%29.jpg)
1965defae343d5d77a9329b3aa296593
north/nynorsk_North_large
north
t5
15
5
transformers
0
translation
true
false
true
apache-2.0
['nn', 'no', 'nb']
['NbAiLab/balanced_bokmaal_nynorsk']
null
0
0
0
0
0
0
0
[]
false
true
true
500
false
# Model Card for Model ID This model is a finetuned version of [north/t5_large_NCC_modern](https://huggingface.co/north/t5_large_NCC_modern). | | Size |Model|BLEU| |:------------:|:------------:|:------------:|:------------:| |Small |_60M_|[🤗](https://huggingface.co/north/nynorsk_North_small)|93.44| |Base |_220M_|[🤗](https://huggingface.co/north/nynorsk_North_base)|93.79| |**Large** |**_770M_**|✔|**93.99**| # Model Details Please see the model card for the base model for more information.
c06e4eddff2aa7848000d63b25b932fa
w11wo/sundanese-roberta-base-emotion-classifier
w11wo
roberta
10
4
transformers
0
text-classification
true
true
false
mit
['su']
null
null
0
0
0
0
0
0
0
['sundanese-roberta-base-emotion-classifier']
false
true
true
4,254
false
## Sundanese RoBERTa Base Emotion Classifier Sundanese RoBERTa Base Emotion Classifier is an emotion-text-classification model based on the [RoBERTa](https://arxiv.org/abs/1907.11692) model. The model was originally the pre-trained [Sundanese RoBERTa Base](https://hf.co/w11wo/sundanese-roberta-base) model, which is then fine-tuned on the [Sundanese Twitter dataset](https://github.com/virgantara/sundanese-twitter-dataset), consisting of Sundanese tweets. 10% of the dataset is kept for evaluation purposes. After training, the model achieved an evaluation accuracy of 98.41% and F1-macro of 98.43%. Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------------------- | ------- | ------------ | ------------------------------- | | `sundanese-roberta-base-emotion-classifier` | 124M | RoBERTa Base | Sundanese Twitter dataset | ## Evaluation Results The model was trained for 10 epochs and the best model was loaded at the end. | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | | ----- | ------------- | --------------- | -------- | -------- | --------- | -------- | | 1 | 0.801800 | 0.293695 | 0.900794 | 0.899048 | 0.903466 | 0.900406 | | 2 | 0.208700 | 0.185291 | 0.936508 | 0.935520 | 0.939460 | 0.935540 | | 3 | 0.089700 | 0.150287 | 0.956349 | 0.956569 | 0.956500 | 0.958612 | | 4 | 0.025600 | 0.130889 | 0.972222 | 0.972865 | 0.973029 | 0.973184 | | 5 | 0.002200 | 0.100031 | 0.980159 | 0.980430 | 0.980430 | 0.980430 | | 6 | 0.001300 | 0.104971 | 0.980159 | 0.980430 | 0.980430 | 0.980430 | | 7 | 0.000600 | 0.107744 | 0.980159 | 0.980174 | 0.980814 | 0.979743 | | 8 | 0.000500 | 0.102327 | 0.980159 | 0.980171 | 0.979970 | 0.980430 | | 9 | 0.000500 | 0.101935 | 0.984127 | 0.984376 | 0.984073 | 0.984741 | | 10 | 0.000400 | 0.105965 | 0.984127 | 0.984142 | 0.983720 | 0.984741 | ## How to Use ### As Text Classifier ```python from transformers import pipeline pretrained_name = "sundanese-roberta-base-emotion-classifier" nlp = pipeline( "sentiment-analysis", model=pretrained_name, tokenizer=pretrained_name ) nlp("Wah, éta gélo, keren pisan!") ``` ## Disclaimer Do consider the biases which come from both the pre-trained RoBERTa model and the Sundanese Twitter dataset that may be carried over into the results of this model. ## Author Sundanese RoBERTa Base Emotion Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation Information ```bib @article{rs-907893, author = {Wongso, Wilson and Lucky, Henry and Suhartono, Derwin}, journal = {Journal of Big Data}, year = {2022}, month = {Feb}, day = {26}, abstract = {The Sundanese language has over 32 million speakers worldwide, but the language has reaped little to no benefits from the recent advances in natural language understanding. Like other low-resource languages, the only alternative is to fine-tune existing multilingual models. In this paper, we pre-trained three monolingual Transformer-based language models on Sundanese data. When evaluated on a downstream text classification task, we found that most of our monolingual models outperformed larger multilingual models despite the smaller overall pre-training data. In the subsequent analyses, our models benefited strongly from the Sundanese pre-training corpus size and do not exhibit socially biased behavior. We released our models for other researchers and practitioners to use.}, issn = {2693-5015}, doi = {10.21203/rs.3.rs-907893/v1}, url = {https://doi.org/10.21203/rs.3.rs-907893/v1} } ```
b7d72b0598939b58798ca013ce675712
IIIT-L/muril-base-cased-finetuned-non-code-mixed-DS
IIIT-L
bert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,421
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # muril-base-cased-finetuned-non-code-mixed-DS This model is a fine-tuned version of [google/muril-base-cased](https://huggingface.co/google/muril-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2867 - Accuracy: 0.6214 - Precision: 0.6081 - Recall: 0.6009 - F1: 0.6034 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0861 | 2.0 | 463 | 1.0531 | 0.3506 | 0.1169 | 0.3333 | 0.1731 | | 0.99 | 3.99 | 926 | 0.9271 | 0.5836 | 0.4310 | 0.5200 | 0.4502 | | 0.8759 | 5.99 | 1389 | 0.9142 | 0.5965 | 0.5788 | 0.5907 | 0.5802 | | 0.7726 | 7.98 | 1852 | 0.8726 | 0.6095 | 0.6079 | 0.6078 | 0.6027 | | 0.6659 | 9.98 | 2315 | 0.9145 | 0.6246 | 0.6139 | 0.6174 | 0.6140 | | 0.5727 | 11.97 | 2778 | 0.9606 | 0.6311 | 0.6180 | 0.6109 | 0.6133 | | 0.4889 | 13.97 | 3241 | 1.0342 | 0.6170 | 0.6059 | 0.6054 | 0.6045 | | 0.4267 | 15.97 | 3704 | 1.0539 | 0.6170 | 0.6089 | 0.6081 | 0.6066 | | 0.3751 | 17.96 | 4167 | 1.1740 | 0.6343 | 0.6255 | 0.6074 | 0.6112 | | 0.3402 | 19.96 | 4630 | 1.2021 | 0.6192 | 0.6078 | 0.6013 | 0.6031 | | 0.318 | 21.95 | 5093 | 1.2875 | 0.6181 | 0.6007 | 0.5946 | 0.5965 | | 0.2977 | 23.95 | 5556 | 1.2867 | 0.6214 | 0.6081 | 0.6009 | 0.6034 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
35c355c34c223d4424f788b508d83a22
mikestic/finetuning-sentiment-model-3000-samples
mikestic
distilbert
13
9
transformers
0
text-classification
true
false
false
apache-2.0
null
['imdb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,054
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3124 - Accuracy: 0.8733 - F1: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
f34017f3844be4d5b6caf2c7c7cf2853
SkyR/albert-base-ours-run-2
SkyR
albert
9
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,064
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-ours-run-2 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2462 - Accuracy: 0.695 - Precision: 0.6550 - Recall: 0.6529 - F1: 0.6539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.999 | 1.0 | 200 | 0.9155 | 0.615 | 0.5590 | 0.5590 | 0.5524 | | 0.7736 | 2.0 | 400 | 0.8488 | 0.6 | 0.5639 | 0.5689 | 0.5256 | | 0.5836 | 3.0 | 600 | 0.8760 | 0.67 | 0.6259 | 0.6158 | 0.6191 | | 0.4153 | 4.0 | 800 | 1.0050 | 0.675 | 0.6356 | 0.6212 | 0.5974 | | 0.3188 | 5.0 | 1000 | 1.2033 | 0.655 | 0.6254 | 0.5977 | 0.5991 | | 0.2335 | 6.0 | 1200 | 1.3407 | 0.625 | 0.5955 | 0.6039 | 0.5937 | | 0.1752 | 7.0 | 1400 | 1.4246 | 0.72 | 0.6846 | 0.6815 | 0.6820 | | 0.1056 | 8.0 | 1600 | 1.9654 | 0.69 | 0.6589 | 0.6251 | 0.6311 | | 0.0696 | 9.0 | 1800 | 1.9376 | 0.715 | 0.6908 | 0.6632 | 0.6627 | | 0.0352 | 10.0 | 2000 | 1.9970 | 0.72 | 0.6880 | 0.6784 | 0.6817 | | 0.0227 | 11.0 | 2200 | 2.1449 | 0.705 | 0.6901 | 0.6641 | 0.6679 | | 0.0199 | 12.0 | 2400 | 2.2213 | 0.72 | 0.6891 | 0.6685 | 0.6749 | | 0.0077 | 13.0 | 2600 | 2.1500 | 0.69 | 0.6729 | 0.6704 | 0.6647 | | 0.0067 | 14.0 | 2800 | 2.1780 | 0.69 | 0.6632 | 0.6651 | 0.6621 | | 0.0034 | 15.0 | 3000 | 2.1759 | 0.71 | 0.6800 | 0.6786 | 0.6788 | | 0.0013 | 16.0 | 3200 | 2.2139 | 0.71 | 0.6760 | 0.6721 | 0.6735 | | 0.0005 | 17.0 | 3400 | 2.2282 | 0.7 | 0.6606 | 0.6593 | 0.6599 | | 0.0003 | 18.0 | 3600 | 2.2257 | 0.7 | 0.6606 | 0.6593 | 0.6599 | | 0.0003 | 19.0 | 3800 | 2.2492 | 0.695 | 0.6550 | 0.6529 | 0.6539 | | 0.0002 | 20.0 | 4000 | 2.2462 | 0.695 | 0.6550 | 0.6529 | 0.6539 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Tokenizers 0.13.2
fa14475ad4ce69c7d3389d8253957834
Annabelleabbott/swin-tiny-patch4-window7-224-finetuned-eurosat
Annabelleabbott
swin
9
5
transformers
0
image-classification
true
false
false
apache-2.0
null
['image_folder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,493
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0767 - Accuracy: 0.9726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2548 | 1.0 | 190 | 0.1162 | 0.9652 | | 0.1544 | 2.0 | 380 | 0.0894 | 0.9719 | | 0.1182 | 3.0 | 570 | 0.0767 | 0.9726 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
f15745a542fff0298809bb5712b2dd42
emre/wav2vec2-large-xlsr-53-W2V2-TR-MED
emre
wav2vec2
14
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice']
null
0
0
0
0
0
0
0
['generated_from_trainer', 'robust-speech-event']
true
true
true
2,152
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-W2V2-TR-MED This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4467 - Wer: 0.4598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1343 | 4.21 | 400 | 2.3674 | 1.0372 | | 0.8075 | 8.42 | 800 | 0.4583 | 0.6308 | | 0.3209 | 12.63 | 1200 | 0.4291 | 0.5531 | | 0.2273 | 16.84 | 1600 | 0.4348 | 0.5378 | | 0.1764 | 21.05 | 2000 | 0.4550 | 0.5326 | | 0.148 | 25.26 | 2400 | 0.4839 | 0.5319 | | 0.1268 | 29.47 | 2800 | 0.4515 | 0.5070 | | 0.1113 | 33.68 | 3200 | 0.4590 | 0.4930 | | 0.1025 | 37.89 | 3600 | 0.4546 | 0.4888 | | 0.0922 | 42.11 | 4000 | 0.4782 | 0.4852 | | 0.082 | 46.32 | 4400 | 0.4605 | 0.4752 | | 0.0751 | 50.53 | 4800 | 0.4358 | 0.4689 | | 0.0699 | 54.74 | 5200 | 0.4359 | 0.4629 | | 0.0633 | 58.95 | 5600 | 0.4467 | 0.4598 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
19d1ee3786530e8a8ef21a674c633aeb
microsoft/xclip-base-patch16-zero-shot
microsoft
xclip
10
1,912
transformers
10
feature-extraction
true
false
false
mit
['en']
null
null
0
0
0
0
0
0
0
['vision', 'video-classification']
true
true
true
2,408
false
# X-CLIP (base-sized model) X-CLIP model (base-sized, patch resolution of 16) trained on [Kinetics-400](https://www.deepmind.com/open-source/kinetics). It was introduced in the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Ni et al. and first released in [this repository](https://github.com/microsoft/VideoX/tree/master/X-CLIP). This model was trained using 32 frames per video, at a resolution of 224x224. Disclaimer: The team releasing X-CLIP did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description X-CLIP is a minimal extension of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip) for general video-language understanding. The model is trained in a contrastive way on (video, text) pairs. ![X-CLIP architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/xclip_architecture.png) This allows the model to be used for tasks like zero-shot, few-shot or fully supervised video classification and video-text retrieval. ## Intended uses & limitations You can use the raw model for determining how well text goes with a given video. See the [model hub](https://huggingface.co/models?search=microsoft/xclip) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/xclip.html#). ## Training data This model was trained on [Kinetics 400](https://www.deepmind.com/open-source/kinetics). ### Preprocessing The exact details of preprocessing during training can be found [here](https://github.com/microsoft/VideoX/blob/40f6d177e0a057a50ac69ac1de6b5938fd268601/X-CLIP/datasets/build.py#L247). The exact details of preprocessing during validation can be found [here](https://github.com/microsoft/VideoX/blob/40f6d177e0a057a50ac69ac1de6b5938fd268601/X-CLIP/datasets/build.py#L285). During validation, one resizes the shorter edge of each frame, after which center cropping is performed to a fixed-size resolution (like 224x224). Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation. ## Evaluation results This model achieves a zero-shot top-1 accuracy of 44.6% on HMDB-51, 72.0% on UCF-101 and 65.2% on Kinetics-600.
c09de5abee00a8031936a16948ebcd4a
simonl0909/whisper-large-v2-cantonese
simonl0909
whisper
19
10
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['yue']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'hf-asr-leaderboard', 'generated_from_trainer']
true
true
true
1,629
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large V2 Cantonese This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 yue dataset. It achieves the following results on the evaluation set: - Loss: 0.2807 - Cer: 6.7274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0032 | 13.01 | 1000 | 0.2318 | 6.8569 | | 0.002 | 26.01 | 2000 | 0.2404 | 7.1524 | | 0.0001 | 39.02 | 3000 | 0.2807 | 6.7274 | | 0.0001 | 53.01 | 4000 | 0.2912 | 6.7517 | | 0.0 | 66.01 | 5000 | 0.2957 | 6.7638 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
c8386d6fe52de59a3fd2466e7f728cd7
thorduragust/IceBERT-finetuned-ner
thorduragust
roberta
14
11
transformers
0
token-classification
true
false
false
gpl-3.0
null
['mim_gold_ner']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,528
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned-ner This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0787 - Precision: 0.8948 - Recall: 0.8622 - F1: 0.8782 - Accuracy: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0526 | 1.0 | 2904 | 0.0746 | 0.8802 | 0.8539 | 0.8668 | 0.9836 | | 0.0264 | 2.0 | 5808 | 0.0711 | 0.8777 | 0.8594 | 0.8684 | 0.9843 | | 0.0161 | 3.0 | 8712 | 0.0787 | 0.8948 | 0.8622 | 0.8782 | 0.9852 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
03f20add57296c537ad66720c002c28a
SushantGautam/CodeGeneration
SushantGautam
roberta
18
6
transformers
0
fill-mask
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,002
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CodeGeneration This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5020 - Accuracy: 0.4444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
85759c496605d524a6ff5c21ad412a53
kingabzpro/wav2vec2-60-urdu
kingabzpro
wav2vec2
43
9
transformers
1
automatic-speech-recognition
true
false
false
apache-2.0
['ur']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'hf-asr-leaderboard', 'robust-speech-event']
true
true
true
1,713
false
# wav2vec2-large-xlsr-53-urdu This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-urdu-urm-60](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-urdu-urm-60) on the common_voice dataset. It achieves the following results on the evaluation set: - Wer: 0.5913 - Cer: 0.3310 ## Model description The training and valid dataset is 0.58 hours. It was hard to train any model on lower number of so I decided to take vakyansh-wav2vec2-urdu-urm-60 checkpoint and finetune the wav2vec2 model. ## Training procedure Trained on Harveenchadha/vakyansh-wav2vec2-urdu-urm-60 due to lesser number of samples. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 12.6045 | 8.33 | 100 | 8.4997 | 0.6978 | 0.3923 | | 1.3367 | 16.67 | 200 | 5.0015 | 0.6515 | 0.3556 | | 0.5344 | 25.0 | 300 | 9.3687 | 0.6393 | 0.3625 | | 0.2922 | 33.33 | 400 | 9.2381 | 0.6236 | 0.3432 | | 0.1867 | 41.67 | 500 | 6.2150 | 0.6035 | 0.3448 | | 0.1166 | 50.0 | 600 | 6.4496 | 0.5913 | 0.3310 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
c21cdf2bfc3e55e4a50dcb1219148602
darkvibes/vibes-v2
darkvibes
null
16
8
diffusers
2
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
707
false
### VIBES-V2 Dreambooth model trained by darkvibes with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/darkvibes/vibes-v2/resolve/main/sample_images/cover2.JPG)
b63bcb91e34f73b913e96c893d0f7019
philschmid/mt5-small-prompted-germanquad-1
philschmid
mt5
13
6
transformers
0
summarization
true
false
false
apache-2.0
null
['philschmid/prompted-germanquad']
null
0
0
0
0
0
0
0
['summarization']
true
true
true
2,586
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-prompted-germanquad-1 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an [philschmid/prompted-germanquad](https://huggingface.co/datasets/philschmid/prompted-germanquad) dataset. A prompt datasets using the [BigScience PromptSource library](https://github.com/bigscience-workshop/promptsource). The dataset is a copy of [germanquad](https://huggingface.co/datasets/deepset/germanquad) with applying the `squad` template and translated it to german. [TEMPLATE](https://github.com/philschmid/promptsource/blob/main/promptsource/templates/germanquad/templates.yaml). This is a first test if it is possible to fine-tune `mt5` models to solve similar tasks than `T0` of big science but for the German language. It achieves the following results on the evaluation set: - Loss: 1.6835 - Rouge1: 27.7309 - Rouge2: 18.7311 - Rougel: 27.4704 - Rougelsum: 27.4818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 3.3795 | 1.0 | 17496 | 2.0693 | 15.8652 | 9.2569 | 15.6237 | 15.6142 | | 2.3582 | 2.0 | 34992 | 1.9057 | 21.9348 | 14.0057 | 21.6769 | 21.6825 | | 2.1809 | 3.0 | 52488 | 1.8143 | 24.3401 | 16.0354 | 24.0862 | 24.0914 | | 2.0721 | 4.0 | 69984 | 1.7563 | 25.8672 | 17.2442 | 25.5854 | 25.6051 | | 2.0004 | 5.0 | 87480 | 1.7152 | 27.0275 | 18.0548 | 26.7561 | 26.7685 | | 1.9531 | 6.0 | 104976 | 1.6939 | 27.4702 | 18.5156 | 27.2027 | 27.2107 | | 1.9218 | 7.0 | 122472 | 1.6835 | 27.7309 | 18.7311 | 27.4704 | 27.4818 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.1+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
b8efe5a1050ab07b5377df842f3a3925
google/mobilenet_v1_1.0_224
google
mobilenet_v1
5
2,873
transformers
0
image-classification
true
false
false
other
null
['imagenet-1k']
null
0
0
0
0
0
0
0
['vision', 'image-classification']
false
true
true
2,361
false
# MobileNet V1 MobileNet V1 model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Howard et al, and first released in [this repository](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md). Disclaimer: The team releasing MobileNet V1 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description From the [original README](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md): > MobileNets are small, low-latency, low-power models parameterized to meet the resource constraints of a variety of use cases. They can be built upon for classification, detection, embeddings and segmentation similar to how other popular large scale models, such as Inception, are used. MobileNets can be run efficiently on mobile devices [...] MobileNets trade off between latency, size and accuracy while comparing favorably with popular models from the literature. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=mobilenet_v1) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) preprocessor = AutoImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224") model = AutoModelForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224") inputs = preprocessor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Note: This model actually predicts 1001 classes, the 1000 classes from ImageNet plus an extra “background” class (index 0). Currently, both the feature extractor and model support PyTorch.
82c919199d356e0e95071189129afd6d
Lasserino/RutkowskiDiffusion_V1
Lasserino
null
4
0
null
1
text-to-image
false
false
false
unknown
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image']
false
true
true
907
false
# RutkowskiDiffusion_V1 - Trained on SD 2.1 768x768 The model was originally meant to be named FantasyDiffusion, though given recent events I guess you could see why I made the namechange. **Prompts to use:** (SDV1) or (In the style of SDV1) Enjoy! **Disclaimer:** Model was released way earlier than I intended, and is more of an alpha version. Working on adding more training images for increased variation - Creatures, people etc. - Currently mostly landscapes ![00000.jpg](https://s3.amazonaws.com/moonup/production/uploads/1671751475611-630b83fdcd26ad7f60d8457d.jpeg) ![00003.jpg](https://s3.amazonaws.com/moonup/production/uploads/1671752666788-630b83fdcd26ad7f60d8457d.jpeg) ![00001.jpg](https://s3.amazonaws.com/moonup/production/uploads/1671751657651-630b83fdcd26ad7f60d8457d.jpeg) ![00002.jpg](https://s3.amazonaws.com/moonup/production/uploads/1671752342616-630b83fdcd26ad7f60d8457d.jpeg)
24034458c4ae8073e69f45db6162545b
yhavinga/t5-base-36L-dutch-english-cased
yhavinga
t5
12
13
transformers
0
text2text-generation
false
false
true
apache-2.0
['nl', 'en']
['yhavinga/mc4_nl_cleaned']
null
0
0
0
0
0
0
0
['t5', 'seq2seq']
false
true
true
26,873
false
# t5-base-36L-dutch-english-cased A [T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) sequence to sequence model pre-trained from scratch on [cleaned Dutch 🇳🇱🇧🇪 mC4 and cleaned English 🇬🇧 C4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned). This **t5 eff** model has **728M** parameters. It was pre-trained with masked language modeling (denoise token span corruption) objective on the dataset `mc4_nl_cleaned` config `large_en_nl` for **1** epoch(s) and a duration of **17d15h**, with a sequence length of **512**, batch size **512** and **212963** total steps (**56B** tokens). Pre-training evaluation loss and accuracy are **1,05** and **0,76**. Refer to the evaluation section below for a comparison of the pre-trained models on summarization and translation. * Pre-trained T5 models need to be finetuned before they can be used for downstream tasks, therefore the inference widget on the right has been turned off. * For a demo of the Dutch CNN summarization models, head over to the Hugging Face Spaces for the **[Netherformer 📰](https://huggingface.co/spaces/flax-community/netherformer)** example application! Please refer to the original T5 papers and Scale Efficiently papers for more information about the T5 architecture and configs, though it must be noted that this model (t5-base-36L-dutch-english-cased) is unrelated to these projects and not an 'official' checkpoint. * **[Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)** by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*. * **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. ## Tokenizer The model uses a cased SentencePiece tokenizer configured with the `Nmt, NFKC, Replace multi-space to single-space` normalizers and has 32003 tokens. It was trained on Dutch and English with scripts from the Huggingface Transformers [Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling). See [./raw/main/tokenizer.json](tokenizer.json) for details. ## Dataset(s) All models listed below are pre-trained on [cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned), which is the original mC4, except * Documents that contained words from a selection of the Dutch and English [List of Dirty Naught Obscene and Otherwise Bad Words](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) are removed * Sentences with less than 3 words are removed * Sentences with a word of more than 1000 characters are removed * Documents with less than 5 sentences are removed * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies", "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed. The Dutch and English models are pre-trained on a 50/50% mix of Dutch mC4 and English C4. The translation models are fine-tuned on [CCMatrix](https://huggingface.co/datasets/yhavinga/ccmatrix). ## Dutch T5 Models Three types of [Dutch T5 models have been trained (blog)](https://huggingface.co/spaces/yhavinga/pre-training-dutch-t5-models). `t5-base-dutch` is the only model with an original T5 config. The other model types t5-v1.1 and t5-eff have `gated-relu` instead of `relu` as activation function, and trained with a drop-out of `0.0` unless training would diverge (`t5-v1.1-large-dutch-cased`). The T5-eff models are models that differ in their number of layers. The table will list the several dimensions of these models. Not all t5-eff models are efficient, the best example being the inefficient `t5-xl-4L-dutch-english-cased`. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-xl-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-xl-8l-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | |:------------------|:----------------|:-----------------------------|:---------------------------|:----------------------------|:-----------------------------------|:----------------------------------------|:-----------------------------|:-------------------------------|:----------------------------------|:-----------------------------------|:--------------------------------------| | *type* | t5 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5 eff | t5 eff | t5 eff | t5 eff | t5 eff | | *d_model* | 768 | 768 | 768 | 1024 | 768 | 768 | 512 | 2048 | 768 | 1024 | 1024 | | *d_ff* | 3072 | 2048 | 2048 | 2816 | 2048 | 2048 | 1920 | 5120 | 2560 | 16384 | 4096 | | *num_heads* | 12 | 12 | 12 | 16 | 12 | 12 | 8 | 32 | 12 | 32 | 16 | | *d_kv* | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 128 | 64 | | *num_layers* | 12 | 12 | 12 | 24 | 12 | 12 | 24 | 4 | 36 | 8 | 8 | | *num parameters* | 223M | 248M | 248M | 783M | 248M | 248M | 250M | 585M | 729M | 1241M | 335M | | *feed_forward_proj* | relu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | | *dropout* | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | | *dataset* | mc4_nl_cleaned | mc4_nl_cleaned full | mc4_nl_cleaned full | mc4_nl_cleaned | mc4_nl_cleaned small_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | | *tr. seq len* | 512 | 1024 | 1024 | 512 | 512 | 1024 | 512 | 512 | 512 | 512 | 512 | | *batch size* | 128 | 64 | 64 | 64 | 128 | 64 | 128 | 512 | 512 | 64 | 128 | | *total steps* | 527500 | 1014525 | 1210154 | 1120k/2427498 | 2839630 | 1520k/3397024 | 851852 | 212963 | 212963 | 538k/1703705 | 851850 | | *epochs* | 1 | 2 | 2 | 2 | 10 | 4 | 1 | 1 | 1 | 1 | 1 | | *duration* | 2d9h | 5d5h | 6d6h | 8d13h | 11d18h | 9d1h | 4d10h | 6d1h | 17d15h | 4d 19h | 3d 23h | | *optimizer* | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | | *lr* | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.009 | 0.005 | 0.005 | | *warmup* | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 5000.0 | 20000.0 | 2500.0 | 1000.0 | 1500.0 | 1500.0 | | *eval loss* | 1,38 | 1,20 | 0,96 | 1,07 | 1,11 | 1,13 | 1,18 | 1,27 | 1,05 | 1,3019 | 1,15 | | *eval acc* | 0,70 | 0,73 | 0,78 | 0,76 | 0,75 | 0,74 | 0,74 | 0,72 | 0,76 | 0,71 | 0,74 | ## Evaluation Most models from the list above have been fine-tuned for summarization and translation. The figure below shows the evaluation scores, where the x-axis shows the translation Bleu score (higher is better) and y-axis the summarization Rouge1 translation score (higher is better). Point size is proportional to the model size. Models with faster inference speed are green, slower inference speed is plotted as bleu. ![Evaluation T5 Dutch English](evaluation_t5_dutch_english.png) Evaluation was run on fine-tuned models trained with the following settings: | | Summarization | Translation | |---------------:|------------------|-------------------| | Dataset | CNN Dailymail NL | CCMatrix en -> nl | | #train samples | 50K | 50K | | Optimizer | Adam | Adam | | learning rate | 0.001 | 0.0005 | | source length | 1024 | 128 | | target length | 142 | 128 | |label smoothing | 0.05 | 0.1 | | #eval samples | 1000 | 1000 | Note that the amount of training data is limited to a fraction of the total dataset sizes, therefore the scores below can only be used to compare the 'transfer-learning' strength. The fine-tuned checkpoints for this evaluation are not saved, since they were trained for comparison of pre-trained models only. The numbers for summarization are the Rouge scores on 1000 documents from the test split. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:------------------------|----------------:|-----------------------------:|---------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *rouge1* | 33.38 | 33.97 | 34.39 | 33.38 | 34.97 | 34.38 | 30.35 | **35.04** | 34.04 | 33.25 | | *rouge2* | 13.32 | 13.85 | 13.98 | 13.47 | 14.01 | 13.89 | 11.57 | **14.23** | 13.76 | 12.74 | | *rougeL* | 24.22 | 24.72 | 25.1 | 24.34 | 24.99 | **25.25** | 22.69 | 25.05 | 24.75 | 23.5 | | *rougeLsum* | 30.23 | 30.9 | 31.44 | 30.51 | 32.01 | 31.38 | 27.5 | **32.12** | 31.12 | 30.15 | | *samples_per_second* | 3.18 | 3.02 | 2.99 | 3.22 | 2.97 | 1.57 | 2.8 | 0.61 | **3.27** | 1.22 | The models below have been evaluated for English to Dutch translation. Note that the first four models are pre-trained on Dutch only. That they still perform adequate is probably because the translation direction is English to Dutch. The numbers reported are the Bleu scores on 1000 documents from the test split. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:-------------------------------|----------------:|-----------------------------:|---------------------------:|----------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *precision_ng1* | 74.17 | 78.09 | 77.08 | 72.12 | 77.19 | 78.76 | 78.59 | 77.3 | **79.75** | 78.88 | 73.47 | | *precision_ng2* | 52.42 | 57.52 | 55.31 | 48.7 | 55.39 | 58.01 | 57.83 | 55.27 | **59.89** | 58.27 | 50.12 | | *precision_ng3* | 39.55 | 45.2 | 42.54 | 35.54 | 42.25 | 45.13 | 45.02 | 42.06 | **47.4** | 45.95 | 36.59 | | *precision_ng4* | 30.23 | 36.04 | 33.26 | 26.27 | 32.74 | 35.72 | 35.41 | 32.61 | **38.1** | 36.91 | 27.26 | | *bp* | 0.99 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | | *score* | 45.88 | 51.21 | 48.31 | 41.59 | 48.17 | 51.31 | 50.82 | 47.83 | **53** | 51.79 | 42.74 | | *samples_per_second* | **45.19** | 45.05 | 38.67 | 10.12 | 42.19 | 42.61 | 12.85 | 33.74 | 9.07 | 37.86 | 9.03 | ## Translation models The models `t5-small-24L-dutch-english` and `t5-base-36L-dutch-english` have been fine-tuned for both language directions on the first 25M samples from CCMatrix, giving a total of 50M training samples. Evaluation is performed on out-of-sample CCMatrix and also on Tatoeba and Opus Books. The `_bp` columns list the *brevity penalty*. The `avg_bleu` score is the bleu score averaged over all three evaluation datasets. The best scores displayed in bold for both translation directions. | | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | |:-----------------------|:-----------------------------|:-----------------------------|:------------------------------|:------------------------------| | *source_lang* | en | nl | en | nl | | *target_lang* | nl | en | nl | en | | *source_prefix* | translate English to Dutch: | translate Dutch to English: | translate English to Dutch: | translate Dutch to English: | | *ccmatrix_bleu* | **56.8** | 62.8 | 57.4 | **63.1** | | *tatoeba_bleu* | **46.6** | **52.8** | 46.4 | 51.7 | | *opus_books_bleu* | **13.5** | **24.9** | 12.9 | 23.4 | | *ccmatrix_bp* | 0.95 | 0.96 | 0.95 | 0.96 | | *tatoeba_bp* | 0.97 | 0.94 | 0.98 | 0.94 | | *opus_books_bp* | 0.8 | 0.94 | 0.77 | 0.89 | | *avg_bleu* | **38.96** | **46.86** | 38.92 | 46.06 | | *max_source_length* | 128 | 128 | 128 | 128 | | *max_target_length* | 128 | 128 | 128 | 128 | | *adam_beta1* | 0.9 | 0.9 | 0.9 | 0.9 | | *adam_beta2* | 0.997 | 0.997 | 0.997 | 0.997 | | *weight_decay* | 0.05 | 0.05 | 0.002 | 0.002 | | *lr* | 5e-05 | 5e-05 | 0.0005 | 0.0005 | | *label_smoothing_factor* | 0.15 | 0.15 | 0.1 | 0.1 | | *train_batch_size* | 128 | 128 | 128 | 128 | | *warmup_steps* | 2000 | 2000 | 2000 | 2000 | | *total steps* | 390625 | 390625 | 390625 | 390625 | | *duration* | 4d 5h | 4d 5h | 3d 2h | 3d 2h | | *num parameters* | 729M | 729M | 250M | 250M | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). The HuggingFace 🤗 ecosystem was instrumental in all parts of the training. Weights & Biases made it possible to keep track of many training sessions and orchestrate hyper-parameter sweeps with insightful visualizations. The following repositories where helpful in setting up the TPU-VM, and getting an idea what sensible hyper-parameters are for training gpt2 from scratch: * [Gsarti's Pretrain and Fine-tune a T5 model with Flax on GCP](https://github.com/gsarti/t5-flax-gcp) * [Flax/Jax Community week t5-base-dutch](https://huggingface.co/flax-community/t5-base-dutch) Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/)
2495140a2a1a0e73850d980e0cb8fcc5
Jadiker/distilbert-base-uncased-finetuned-imdb
Jadiker
distilbert
8
2
transformers
0
fill-mask
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,555
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Jadiker/distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8518 - Validation Loss: 2.6184 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.8518 | 2.6184 | 0 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
c7e160a1d5327e5f8db8a2ca013a552e
theojolliffe/bart-paraphrase-v4-e1-feedback
theojolliffe
bart
20
3
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,265
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase-v4-e1-feedback This model is a fine-tuned version of [theojolliffe/bart-paraphrase-v4-e1](https://huggingface.co/theojolliffe/bart-paraphrase-v4-e1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 27 | 3.9313 | 67.6687 | 57.1881 | 66.7507 | 66.2643 | 20.0 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0 - Datasets 1.18.0 - Tokenizers 0.10.3
376539cbfe0fd1cc0bfa516e4b898dbb
anilbs/pipeline
anilbs
null
17
24
pyannote-audio
2
automatic-speech-recognition
false
false
false
mit
null
['ami', 'dihard', 'voxconverse', 'aishell', 'repere', 'voxceleb']
null
0
0
0
0
0
0
0
['pyannote', 'pyannote-audio', 'pyannote-audio-pipeline', 'audio', 'voice', 'speech', 'speaker', 'speaker-diarization', 'speaker-change-detection', 'voice-activity-detection', 'overlapped-speech-detection', 'automatic-speech-recognition']
false
true
true
8,592
false
# 🎹 Speaker diarization Relies on pyannote.audio 2.0.1: see [installation instructions](https://github.com/pyannote/pyannote-audio#installation). ## TL;DR ```python # load the pipeline from Hugginface Hub from pyannote.audio import Pipeline pipeline = Pipeline.from_pretrained("anilbs/pipeline") # apply the pipeline to an audio file diarization = pipeline("audio.wav") # dump the diarization output to disk using RTTM format with open("audio.rttm", "w") as rttm: diarization.write_rttm(rttm) ``` ## Advanced usage In case the number of speakers is known in advance, one can use the `num_speakers` option: ```python diarization = pipeline("audio.wav", num_speakers=2) ``` One can also provide lower and/or upper bounds on the number of speakers using `min_speakers` and `max_speakers` options: ```python diarization = pipeline("audio.wav", min_speakers=2, max_speakers=5) ``` If you feel adventurous, you can try and play with the various pipeline hyper-parameters. For instance, one can use a more aggressive voice activity detection by increasing the value of `segmentation_onset` threshold: ```python hparams = pipeline.parameters(instantiated=True) hparams["segmentation_onset"] += 0.1 pipeline.instantiate(hparams) ``` ## Benchmark ### Real-time factor Real-time factor is around 5% using one Nvidia Tesla V100 SXM2 GPU (for the neural inference part) and one Intel Cascade Lake 6248 CPU (for the clustering part). In other words, it takes approximately 3 minutes to process a one hour conversation. ### Accuracy This pipeline is benchmarked on a growing collection of datasets. Processing is fully automatic: * no manual voice activity detection (as is sometimes the case in the literature) * no manual number of speakers (though it is possible to provide it to the pipeline) * no fine-tuning of the internal models nor tuning of the pipeline hyper-parameters to each dataset ... with the least forgiving diarization error rate (DER) setup (named *"Full"* in [this paper](https://doi.org/10.1016/j.csl.2021.101254)): * no forgiveness collar * evaluation of overlapped speech | Benchmark (2.0.1) | [DER%](. "Diarization error rate") | [FA%](. "False alarm rate") | [Miss%](. "Missed detection rate") | [Conf%](. "Speaker confusion rate") | Expected output | File-level evaluation | | ---------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------- | --------------------------- | ---------------------------------- | ----------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- | | [AISHELL-4](http://www.openslr.org/111/) | 14.61 | 3.31 | 4.35 | 6.95 | [RTTM](https://huggingface.co/pyannote/speaker-diarization/blob/2022.07/reproducible_research/2022.07/AISHELL.SpeakerDiarization.Full.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization/blob/2022.07/reproducible_research/2022.07/AISHELL.SpeakerDiarization.Full.test.eval) | | [AMI *Mix-Headset*](https://groups.inf.ed.ac.uk/ami/corpus/) [*only_words*](https://github.com/BUTSpeechFIT/AMI-diarization-setup) | 18.21 | 3.28 | 11.07 | 3.87 | [RTTM](https://huggingface.co/pyannote/speaker-diarization/blob/2022.07/reproducible_research/2022.07/AMI.SpeakerDiarization.only_words.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization/blob/2022.07/reproducible_research/2022.07/AMI.SpeakerDiarization.only_words.test.eval) | | [AMI *Array1-01*](https://groups.inf.ed.ac.uk/ami/corpus/) [*only_words*](https://github.com/BUTSpeechFIT/AMI-diarization-setup) | 29.00 | 2.71 | 21.61 | 4.68 | [RTTM](https://huggingface.co/pyannote/speaker-diarization/blob/2022.07/reproducible_research/2022.07/AMI-SDM.SpeakerDiarization.only_words.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization/blob/2022.07/reproducible_research/2022.07/AMI-SDM.SpeakerDiarization.only_words.test.eval) | | [CALLHOME](https://catalog.ldc.upenn.edu/LDC2001S97) [*Part2*](https://github.com/BUTSpeechFIT/CALLHOME_sublists/issues/1) | 30.24 | 3.71 | 16.86 | 9.66 | [RTTM](https://huggingface.co/pyannote/speaker-diarization/blob/2022.07/reproducible_research/2022.07/CALLHOME.SpeakerDiarization.CALLHOME.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization/blob/2022.07/reproducible_research/2022.07/CALLHOME.SpeakerDiarization.CALLHOME.test.eval) | | [DIHARD 3 *Full*](https://arxiv.org/abs/2012.01477) | 20.99 | 4.25 | 10.74 | 6.00 | [RTTM](https://huggingface.co/pyannote/speaker-diarization/blob/2022.07/reproducible_research/2022.07/DIHARD.SpeakerDiarization.Full.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization/blob/2022.07/reproducible_research/2022.07/DIHARD.SpeakerDiarization.Full.test.eval) | | [REPERE *Phase 2*](https://islrn.org/resources/360-758-359-485-0/) | 12.62 | 1.55 | 3.30 | 7.76 | [RTTM](https://huggingface.co/pyannote/speaker-diarization/blob/2022.07/reproducible_research/2022.07/REPERE.SpeakerDiarization.Full.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization/blob/2022.07/reproducible_research/2022.07/REPERE.SpeakerDiarization.Full.test.eval) | | [VoxConverse *v0.3*](https://github.com/joonson/voxconverse) | 12.61 | 3.45 | 3.85 | 5.31 | [RTTM](https://huggingface.co/pyannote/speaker-diarization/blob/main/reproducible_research/2022.07/VoxConverse.SpeakerDiarization.VoxConverse.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization/blob/main/reproducible_research/2022.07/VoxConverse.SpeakerDiarization.VoxConverse.test.eval) | ## Support For commercial enquiries and scientific consulting, please contact [me](mailto:herve@niderb.fr). For [technical questions](https://github.com/pyannote/pyannote-audio/discussions) and [bug reports](https://github.com/pyannote/pyannote-audio/issues), please check [pyannote.audio](https://github.com/pyannote/pyannote-audio) Github repository. ## Citations ```bibtex @inproceedings{Bredin2021, Title = {{End-to-end speaker segmentation for overlap-aware resegmentation}}, Author = {{Bredin}, Herv{\'e} and {Laurent}, Antoine}, Booktitle = {Proc. Interspeech 2021}, Address = {Brno, Czech Republic}, Month = {August}, Year = {2021}, } ``` ```bibtex @inproceedings{Bredin2020, Title = {{pyannote.audio: neural building blocks for speaker diarization}}, Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe}, Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing}, Address = {Barcelona, Spain}, Month = {May}, Year = {2020}, } ```
61d9caf7e29f382a9a78db857a91c269
yip-i/wav2vec2_large_copy
yip-i
wav2vec2
9
0
transformers
0
null
true
false
true
apache-2.0
['en']
['librispeech_asr']
null
0
0
0
0
0
0
0
['speech']
false
true
true
2,113
false
# Wav2Vec2-Large-LV60 Parameter changed: "mask_time_prob": 0.05 changed to "mask_time_prob": 0.5. Based on this link:https://github.com/huggingface/transformers/issues/16962 to make pre-training this model work. [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.
d9008c7cd51bf927b1a88f55b90c8962
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_pretrain_wnli
gokuls
distilbert
17
2
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,794
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_pretrain_wnli This model is a fine-tuned version of [gokuls/distilbert_sa_pre-training-complete](https://huggingface.co/gokuls/distilbert_sa_pre-training-complete) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3499 - Accuracy: 0.5493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3552 | 1.0 | 3 | 0.3512 | 0.4085 | | 0.3495 | 2.0 | 6 | 0.3540 | 0.2817 | | 0.3471 | 3.0 | 9 | 0.3499 | 0.5493 | | 0.3473 | 4.0 | 12 | 0.3514 | 0.5634 | | 0.3476 | 5.0 | 15 | 0.3536 | 0.5070 | | 0.3465 | 6.0 | 18 | 0.3576 | 0.1831 | | 0.3463 | 7.0 | 21 | 0.3589 | 0.2113 | | 0.3449 | 8.0 | 24 | 0.3598 | 0.2958 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
eebe920d68c4cd450a5e3141dc263c90
shed-e/scipaper-summary
shed-e
t5
32
4
transformers
1
text2text-generation
true
false
false
apache-2.0
null
['scitldr']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,981
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # paper-summary This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 2.8631 - Rouge1: 0.3484 - Rouge2: 0.1596 - Rougel: 0.2971 - Rougelsum: 0.3047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.0545 | 1.0 | 63 | 2.9939 | 0.3387 | 0.1538 | 0.2887 | 0.2957 | | 2.7871 | 2.0 | 126 | 2.9360 | 0.3448 | 0.1577 | 0.2947 | 0.3019 | | 2.7188 | 3.0 | 189 | 2.8977 | 0.3477 | 0.1585 | 0.2967 | 0.3035 | | 2.6493 | 4.0 | 252 | 2.8837 | 0.3488 | 0.1597 | 0.2973 | 0.3046 | | 2.6207 | 5.0 | 315 | 2.8690 | 0.3472 | 0.1566 | 0.2958 | 0.3033 | | 2.5893 | 6.0 | 378 | 2.8668 | 0.3493 | 0.1592 | 0.2972 | 0.305 | | 2.5494 | 7.0 | 441 | 2.8657 | 0.3486 | 0.1595 | 0.2976 | 0.3053 | | 2.5554 | 8.0 | 504 | 2.8631 | 0.3484 | 0.1596 | 0.2971 | 0.3047 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
b32a318d77ef18175d9020408241fca1
Helsinki-NLP/opus-mt-ar-pl
Helsinki-NLP
marian
11
13
transformers
0
translation
true
true
false
apache-2.0
['ar', 'pl']
null
null
2
2
0
0
0
0
0
['translation']
false
true
true
2,037
false
### ara-pol * source group: Arabic * target group: Polish * OPUS readme: [ara-pol](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-pol/README.md) * model: transformer * source language(s): ara arz * target language(s): pol * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-pol/opus-2020-07-03.zip) * test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-pol/opus-2020-07-03.test.txt) * test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-pol/opus-2020-07-03.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ara.pol | 38.0 | 0.623 | ### System Info: - hf_name: ara-pol - source_languages: ara - target_languages: pol - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-pol/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ar', 'pl'] - src_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'} - tgt_constituents: {'pol'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-pol/opus-2020-07-03.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-pol/opus-2020-07-03.test.txt - src_alpha3: ara - tgt_alpha3: pol - short_pair: ar-pl - chrF2_score: 0.623 - bleu: 38.0 - brevity_penalty: 0.948 - ref_len: 1171.0 - src_name: Arabic - tgt_name: Polish - train_date: 2020-07-03 - src_alpha2: ar - tgt_alpha2: pl - prefer_old: False - long_pair: ara-pol - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
138ebf1b52c3f779ea5f6c033daca499
renatanerenata/bart-paraphrase1-finetuned-in-to-fo
renatanerenata
bart
21
3
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
968
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase1-finetuned-in-to-fo This model is a fine-tuned version of [eugenesiow/bart-paraphrase](https://huggingface.co/eugenesiow/bart-paraphrase) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
c8f0252e134d2c3801c2646b5cc46054
Siddu0406/article-generator
Siddu0406
gpt2
13
4
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
924
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # article-generator This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
d45b4ac823a92546128cc85205ec1d37
gokuls/distilbert_add_GLUE_Experiment_logit_kd_qqp_256
gokuls
distilbert
17
3
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,304
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_logit_kd_qqp_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.6586 - Accuracy: 0.6554 - F1: 0.1310 - Combined Score: 0.3932 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.8355 | 1.0 | 1422 | 0.8004 | 0.6318 | 0.0 | 0.3159 | | 0.7677 | 2.0 | 2844 | 0.7488 | 0.6318 | 0.0 | 0.3159 | | 0.7048 | 3.0 | 4266 | 0.6935 | 0.6318 | 0.0 | 0.3159 | | 0.6449 | 4.0 | 5688 | 0.6875 | 0.6337 | 0.0106 | 0.3221 | | 0.6082 | 5.0 | 7110 | 0.6688 | 0.6354 | 0.0205 | 0.3279 | | 0.5829 | 6.0 | 8532 | 0.6854 | 0.6386 | 0.0393 | 0.3389 | | 0.5637 | 7.0 | 9954 | 0.6707 | 0.6522 | 0.1155 | 0.3839 | | 0.5502 | 8.0 | 11376 | 0.6752 | 0.6522 | 0.1145 | 0.3833 | | 0.5389 | 9.0 | 12798 | 0.6677 | 0.6561 | 0.1348 | 0.3954 | | 0.5304 | 10.0 | 14220 | 0.6693 | 0.6622 | 0.1659 | 0.4140 | | 0.5234 | 11.0 | 15642 | 0.6728 | 0.6511 | 0.1082 | 0.3797 | | 0.5175 | 12.0 | 17064 | 0.6812 | 0.6554 | 0.1303 | 0.3928 | | 0.5127 | 13.0 | 18486 | 0.6644 | 0.6540 | 0.1235 | 0.3888 | | 0.5085 | 14.0 | 19908 | 0.6605 | 0.6622 | 0.1677 | 0.4149 | | 0.505 | 15.0 | 21330 | 0.6647 | 0.6570 | 0.1391 | 0.3980 | | 0.502 | 16.0 | 22752 | 0.6667 | 0.6528 | 0.1170 | 0.3849 | | 0.499 | 17.0 | 24174 | 0.6586 | 0.6554 | 0.1310 | 0.3932 | | 0.497 | 18.0 | 25596 | 0.6589 | 0.6597 | 0.1535 | 0.4066 | | 0.4947 | 19.0 | 27018 | 0.6715 | 0.6599 | 0.1535 | 0.4067 | | 0.4928 | 20.0 | 28440 | 0.6631 | 0.6535 | 0.1202 | 0.3868 | | 0.4907 | 21.0 | 29862 | 0.6690 | 0.6651 | 0.1796 | 0.4224 | | 0.4891 | 22.0 | 31284 | 0.6603 | 0.6652 | 0.1830 | 0.4241 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
102aa6c8a09c759e2215d4516ad7294f
HusseinHE/zsks
HusseinHE
null
34
45
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image']
false
true
true
501
false
### Zsks Dreambooth model trained by HusseinHE with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: Zsks (use that on your prompt)
f1ae474b42d9854133c15e1dda48270b
ViktorDo/DistilBERT-WIKI_Epiphyte_Finetuned
ViktorDo
distilbert
14
5
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,312
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT-WIKI_Epiphyte_Finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0711 | 1.0 | 2094 | 0.0543 | | 0.0512 | 2.0 | 4188 | 0.0474 | | 0.027 | 3.0 | 6282 | 0.0506 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
d05cded1d6f544a4dceeb8fb70d9a5f5
jonatasgrosman/exp_w2v2t_et_vp-100k_s103
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['et']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'et']
false
true
true
475
false
# exp_w2v2t_et_vp-100k_s103 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
201d0404a49c3475c247d06c7302bf6f
HideOnBush/BERTModified-finetuned-wikitext-test
HideOnBush
null
5
0
null
0
null
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
5,913
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERTModified-finetuned-wikitext-test This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 18.8994 - Precision: 0.25 - Recall: 0.25 - F1: 0.25 - Accuracy: 0.25 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 19.9877 | 1.0 | 250 | 19.8070 | 0.0385 | 0.0385 | 0.0385 | 0.0385 | | 15.4776 | 2.0 | 500 | 20.2930 | 0.0577 | 0.0577 | 0.0577 | 0.0577 | | 13.1238 | 3.0 | 750 | 20.1112 | 0.0769 | 0.0769 | 0.0769 | 0.0769 | | 11.1387 | 4.0 | 1000 | 19.9105 | 0.0897 | 0.0897 | 0.0897 | 0.0897 | | 9.5317 | 5.0 | 1250 | 19.9108 | 0.1282 | 0.1282 | 0.1282 | 0.1282 | | 8.037 | 6.0 | 1500 | 19.6093 | 0.1410 | 0.1410 | 0.1410 | 0.1410 | | 6.7498 | 7.0 | 1750 | 19.1636 | 0.1474 | 0.1474 | 0.1474 | 0.1474 | | 5.6472 | 8.0 | 2000 | 19.6709 | 0.1538 | 0.1538 | 0.1538 | 0.1538 | | 4.6665 | 9.0 | 2250 | 19.2537 | 0.1667 | 0.1667 | 0.1667 | 0.1667 | | 3.9107 | 10.0 | 2500 | 19.1982 | 0.1474 | 0.1474 | 0.1474 | 0.1474 | | 3.1874 | 11.0 | 2750 | 18.9938 | 0.1731 | 0.1731 | 0.1731 | 0.1731 | | 2.5846 | 12.0 | 3000 | 18.7462 | 0.2115 | 0.2115 | 0.2115 | 0.2115 | | 2.1464 | 13.0 | 3250 | 19.0017 | 0.1667 | 0.1667 | 0.1667 | 0.1667 | | 1.7521 | 14.0 | 3500 | 18.4513 | 0.1859 | 0.1859 | 0.1859 | 0.1859 | | 1.4561 | 15.0 | 3750 | 18.7532 | 0.2051 | 0.2051 | 0.2051 | 0.2051 | | 1.2254 | 16.0 | 4000 | 18.3970 | 0.2179 | 0.2179 | 0.2179 | 0.2179 | | 1.0416 | 17.0 | 4250 | 18.9764 | 0.1859 | 0.1859 | 0.1859 | 0.1859 | | 0.8923 | 18.0 | 4500 | 18.3271 | 0.2244 | 0.2244 | 0.2244 | 0.2244 | | 0.7803 | 19.0 | 4750 | 18.5893 | 0.2436 | 0.2436 | 0.2436 | 0.2436 | | 0.6839 | 20.0 | 5000 | 18.3505 | 0.2051 | 0.2051 | 0.2051 | 0.2051 | | 0.6175 | 21.0 | 5250 | 18.6798 | 0.2051 | 0.2051 | 0.2051 | 0.2051 | | 0.5491 | 22.0 | 5500 | 18.7426 | 0.2115 | 0.2115 | 0.2115 | 0.2115 | | 0.4952 | 23.0 | 5750 | 18.3955 | 0.2179 | 0.2179 | 0.2179 | 0.2179 | | 0.4441 | 24.0 | 6000 | 18.5502 | 0.2564 | 0.2564 | 0.2564 | 0.2564 | | 0.4047 | 25.0 | 6250 | 18.9599 | 0.2244 | 0.2244 | 0.2244 | 0.2244 | | 0.3768 | 26.0 | 6500 | 18.8141 | 0.2308 | 0.2308 | 0.2308 | 0.2308 | | 0.3435 | 27.0 | 6750 | 18.9732 | 0.2436 | 0.2436 | 0.2436 | 0.2436 | | 0.3164 | 28.0 | 7000 | 18.9216 | 0.2372 | 0.2372 | 0.2372 | 0.2372 | | 0.2954 | 29.0 | 7250 | 18.6152 | 0.1987 | 0.1987 | 0.1987 | 0.1987 | | 0.2736 | 30.0 | 7500 | 18.6001 | 0.25 | 0.25 | 0.25 | 0.25 | | 0.2491 | 31.0 | 7750 | 19.1374 | 0.2436 | 0.2436 | 0.2436 | 0.2436 | | 0.2359 | 32.0 | 8000 | 18.8624 | 0.25 | 0.25 | 0.25 | 0.25 | | 0.2222 | 33.0 | 8250 | 18.3201 | 0.2308 | 0.2308 | 0.2308 | 0.2308 | | 0.212 | 34.0 | 8500 | 18.7708 | 0.2179 | 0.2179 | 0.2179 | 0.2179 | | 0.1864 | 35.0 | 8750 | 18.8994 | 0.2372 | 0.2372 | 0.2372 | 0.2372 | | 0.1771 | 36.0 | 9000 | 18.3130 | 0.2308 | 0.2308 | 0.2308 | 0.2308 | | 0.1703 | 37.0 | 9250 | 18.6183 | 0.2436 | 0.2436 | 0.2436 | 0.2436 | | 0.1554 | 38.0 | 9500 | 18.8593 | 0.2372 | 0.2372 | 0.2372 | 0.2372 | | 0.1469 | 39.0 | 9750 | 18.8936 | 0.2628 | 0.2628 | 0.2628 | 0.2628 | | 0.1407 | 40.0 | 10000 | 18.9002 | 0.2372 | 0.2372 | 0.2372 | 0.2372 | | 0.1328 | 41.0 | 10250 | 19.1827 | 0.2564 | 0.2564 | 0.2564 | 0.2564 | | 0.1297 | 42.0 | 10500 | 18.5465 | 0.25 | 0.25 | 0.25 | 0.25 | | 0.1226 | 43.0 | 10750 | 18.9125 | 0.2308 | 0.2308 | 0.2308 | 0.2308 | | 0.1218 | 44.0 | 11000 | 19.0831 | 0.2308 | 0.2308 | 0.2308 | 0.2308 | | 0.1136 | 45.0 | 11250 | 18.7969 | 0.2372 | 0.2372 | 0.2372 | 0.2372 | | 0.1075 | 46.0 | 11500 | 18.7629 | 0.25 | 0.25 | 0.25 | 0.25 | | 0.1044 | 47.0 | 11750 | 18.9700 | 0.2115 | 0.2115 | 0.2115 | 0.2115 | | 0.1042 | 48.0 | 12000 | 18.7211 | 0.2628 | 0.2628 | 0.2628 | 0.2628 | | 0.1008 | 49.0 | 12250 | 18.9104 | 0.2244 | 0.2244 | 0.2244 | 0.2244 | | 0.1014 | 50.0 | 12500 | 18.7892 | 0.25 | 0.25 | 0.25 | 0.25 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.2
5d79c2e56b877f33ad2c8ba7efc054b7
johngiorgi/declutr-sci-base
johngiorgi
bert
8
1,422
sentence-transformers
5
sentence-similarity
true
false
true
apache-2.0
['en']
['s2orc']
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity']
false
true
true
3,277
false
# DeCLUTR-sci-base ## Model description This is the [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) model, with extended pretraining on over 2 million scientific papers from [S2ORC](https://github.com/allenai/s2orc/) using the self-supervised training strategy presented in [DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations](https://arxiv.org/abs/2006.03659). ## Intended uses & limitations The model is intended to be used as a sentence encoder, similar to [Google's Universal Sentence Encoder](https://tfhub.dev/google/universal-sentence-encoder/4) or [Sentence Transformers](https://github.com/UKPLab/sentence-transformers). It is particularly suitable for scientific text. #### How to use Please see [our repo](https://github.com/JohnGiorgi/DeCLUTR) for full details. A simple example is shown below. ##### With [SentenceTransformers](https://www.sbert.net/) ```python from scipy.spatial.distance import cosine from sentence_transformers import SentenceTransformer # Load the model model = SentenceTransformer("johngiorgi/declutr-sci-base") # Prepare some text to embed text = [ "Oncogenic KRAS mutations are common in cancer.", "Notably, c-Raf has recently been found essential for development of K-Ras-driven NSCLCs.", ] # Embed the text embeddings = model.encode(texts) # Compute a semantic similarity via the cosine distance semantic_sim = 1 - cosine(embeddings[0], embeddings[1]) ``` ##### With 🤗 Transformers ```python import torch from scipy.spatial.distance import cosine from transformers import AutoModel, AutoTokenizer # Load the model tokenizer = AutoTokenizer.from_pretrained("johngiorgi/declutr-sci-base") model = AutoModel.from_pretrained("johngiorgi/declutr-sci-base") # Prepare some text to embed text = [ "Oncogenic KRAS mutations are common in cancer.", "Notably, c-Raf has recently been found essential for development of K-Ras-driven NSCLCs.", ] inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt") # Embed the text with torch.no_grad(): sequence_output = model(**inputs)[0] # Mean pool the token-level embeddings to get sentence-level embeddings embeddings = torch.sum( sequence_output * inputs["attention_mask"].unsqueeze(-1), dim=1 ) / torch.clamp(torch.sum(inputs["attention_mask"], dim=1, keepdims=True), min=1e-9) # Compute a semantic similarity via the cosine distance semantic_sim = 1 - cosine(embeddings[0], embeddings[1]) ``` ### BibTeX entry and citation info ```bibtex @inproceedings{giorgi-etal-2021-declutr, title = {{D}e{CLUTR}: Deep Contrastive Learning for Unsupervised Textual Representations}, author = {Giorgi, John and Nitski, Osvald and Wang, Bo and Bader, Gary}, year = 2021, month = aug, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Online}, pages = {879--895}, doi = {10.18653/v1/2021.acl-long.72}, url = {https://aclanthology.org/2021.acl-long.72} } ```
4ec3350cb86d61e8186809f16d6e7310
Ashish08/vada-sambhar-south-indian-dish
Ashish08
null
17
11
diffusers
0
text-to-image
true
false
false
creativeml-openrail-m
null
null
null
1
0
1
0
0
0
0
['pytorch', 'diffusers', 'stable-diffusion', 'text-to-image', 'diffusion-models-class', 'dreambooth-hackathon', 'food']
false
true
true
784
false
# DreamBooth model for the vada-sambhar concept trained by Ashish08 on the Ashish08/vada-sambhar dataset. This is a Stable Diffusion model fine-tuned on the vada-sambhar concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of vada-sambhar south-indian-dish** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `south-indian-dish` images for the food theme. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('Ashish08/vada-sambhar-south-indian-dish') image = pipeline().images[0] image ```
7a184b3ec2fd0a4dbce4df13bc4fbf39
timm/maxvit_base_tf_224.in1k
timm
null
4
170
timm
0
image-classification
true
false
false
apache-2.0
null
['imagenet-1k']
null
0
0
0
0
0
0
0
['image-classification', 'timm']
false
true
true
22,012
false
# Model card for maxvit_base_tf_224.in1k An official MaxViT image classification model. Trained in tensorflow on ImageNet-1k by paper authors. Ported from official Tensorflow implementation (https://github.com/google-research/maxvit) to PyTorch by Ross Wightman. ### Model Variants in [maxxvit.py](https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/maxxvit.py) MaxxViT covers a number of related model architectures that share a common structure including: - CoAtNet - Combining MBConv (depthwise-separable) convolutional blocks in early stages with self-attention transformer blocks in later stages. - MaxViT - Uniform blocks across all stages, each containing a MBConv (depthwise-separable) convolution block followed by two self-attention blocks with different partitioning schemes (window followed by grid). - CoAtNeXt - A timm specific arch that uses ConvNeXt blocks in place of MBConv blocks in CoAtNet. All normalization layers are LayerNorm (no BatchNorm). - MaxxViT - A timm specific arch that uses ConvNeXt blocks in place of MBConv blocks in MaxViT. All normalization layers are LayerNorm (no BatchNorm). - MaxxViT-V2 - A MaxxViT variation that removes the window block attention leaving only ConvNeXt blocks and grid attention w/ more width to compensate. Aside from the major variants listed above, there are more subtle changes from model to model. Any model name with the string `rw` are `timm` specific configs w/ modelling adjustments made to favour PyTorch eager use. These were created while training initial reproductions of the models so there are variations. All models with the string `tf` are models exactly matching Tensorflow based models by the original paper authors with weights ported to PyTorch. This covers a number of MaxViT models. The official CoAtNet models were never released. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 119.5 - GMACs: 24.0 - Activations (M): 95.0 - Image size: 224 x 224 - **Papers:** - MaxViT: Multi-Axis Vision Transformer: https://arxiv.org/abs/2204.01697 - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('maxvit_base_tf_224.in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'maxvit_base_tf_224.in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 128, 192, 192]) # torch.Size([1, 128, 96, 96]) # torch.Size([1, 256, 48, 48]) # torch.Size([1, 512, 24, 24]) # torch.Size([1, 1024, 12, 12]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'maxvit_base_tf_224.in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled (ie.e a (batch_size, num_features, H, W) tensor output = model.forward_head(output, pre_logits=True) # output is (batch_size, num_features) tensor ``` ## Model Comparison ### By Top-1 |model |top1 |top5 |samples / sec |Params (M) |GMAC |Act (M)| |------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:| |[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |88.53|98.64| 21.76| 475.77|534.14|1413.22| |[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |88.32|98.54| 42.53| 475.32|292.78| 668.76| |[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) |88.20|98.53| 50.87| 119.88|138.02| 703.99| |[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) |88.04|98.40| 36.42| 212.33|244.75| 942.15| |[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) |87.98|98.56| 71.75| 212.03|132.55| 445.84| |[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) |87.92|98.54| 104.71| 119.65| 73.80| 332.90| |[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.81|98.37| 106.55| 116.14| 70.97| 318.95| |[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.47|98.37| 149.49| 116.09| 72.98| 213.74| |[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k) |87.39|98.31| 160.80| 73.88| 47.69| 209.43| |[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.89|98.02| 375.86| 116.14| 23.15| 92.64| |[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.64|98.02| 501.03| 116.09| 24.20| 62.77| |[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k) |86.60|97.92| 50.75| 119.88|138.02| 703.99| |[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k) |86.57|97.89| 631.88| 73.87| 15.09| 49.22| |[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k) |86.52|97.88| 36.04| 212.33|244.75| 942.15| |[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k) |86.49|97.90| 620.58| 73.88| 15.18| 54.78| |[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k) |86.29|97.80| 101.09| 119.65| 73.80| 332.90| |[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k) |86.23|97.69| 70.56| 212.03|132.55| 445.84| |[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k) |86.10|97.76| 88.63| 69.13| 67.26| 383.77| |[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) |85.67|97.58| 144.25| 31.05| 33.49| 257.59| |[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k) |85.54|97.46| 188.35| 69.02| 35.87| 183.65| |[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) |85.11|97.38| 293.46| 30.98| 17.53| 123.42| |[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k) |84.93|96.97| 247.71| 211.79| 43.68| 127.35| |[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k) |84.90|96.96| 1025.45| 41.72| 8.11| 40.13| |[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k) |84.85|96.99| 358.25| 119.47| 24.04| 95.01| |[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k) |84.63|97.06| 575.53| 66.01| 14.67| 58.38| |[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k) |84.61|96.74| 625.81| 73.88| 15.18| 54.78| |[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k) |84.49|96.76| 693.82| 64.90| 10.75| 49.30| |[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k) |84.43|96.83| 647.96| 68.93| 11.66| 53.17| |[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k) |84.23|96.78| 807.21| 29.15| 6.77| 46.92| |[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k) |83.62|96.38| 989.59| 41.72| 8.04| 34.60| |[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k) |83.50|96.50| 1100.53| 29.06| 5.11| 33.11| |[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) |83.41|96.59| 1004.94| 30.92| 5.60| 35.78| |[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k) |83.36|96.45| 1093.03| 41.69| 7.85| 35.47| |[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k) |83.11|96.33| 1276.88| 23.70| 6.26| 23.05| |[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k) |83.03|96.34| 1341.24| 16.78| 4.37| 26.05| |[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k) |82.96|96.26| 1283.24| 15.50| 4.47| 31.92| |[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k) |82.93|96.23| 1218.17| 15.45| 4.46| 30.28| |[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k) |82.39|96.19| 1600.14| 27.44| 4.67| 22.04| |[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k) |82.39|95.84| 1831.21| 27.44| 4.43| 18.73| |[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k) |82.05|95.87| 2109.09| 15.15| 2.62| 20.34| |[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k) |81.95|95.92| 2525.52| 14.70| 2.47| 12.80| |[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k) |81.70|95.64| 2344.52| 15.14| 2.41| 15.41| |[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k) |80.53|95.21| 1594.71| 7.52| 1.85| 24.86| ### By Throughput (samples / sec) |model |top1 |top5 |samples / sec |Params (M) |GMAC |Act (M)| |------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:| |[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k) |81.95|95.92| 2525.52| 14.70| 2.47| 12.80| |[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k) |81.70|95.64| 2344.52| 15.14| 2.41| 15.41| |[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k) |82.05|95.87| 2109.09| 15.15| 2.62| 20.34| |[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k) |82.39|95.84| 1831.21| 27.44| 4.43| 18.73| |[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k) |82.39|96.19| 1600.14| 27.44| 4.67| 22.04| |[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k) |80.53|95.21| 1594.71| 7.52| 1.85| 24.86| |[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k) |83.03|96.34| 1341.24| 16.78| 4.37| 26.05| |[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k) |82.96|96.26| 1283.24| 15.50| 4.47| 31.92| |[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k) |83.11|96.33| 1276.88| 23.70| 6.26| 23.05| |[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k) |82.93|96.23| 1218.17| 15.45| 4.46| 30.28| |[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k) |83.50|96.50| 1100.53| 29.06| 5.11| 33.11| |[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k) |83.36|96.45| 1093.03| 41.69| 7.85| 35.47| |[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k) |84.90|96.96| 1025.45| 41.72| 8.11| 40.13| |[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) |83.41|96.59| 1004.94| 30.92| 5.60| 35.78| |[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k) |83.62|96.38| 989.59| 41.72| 8.04| 34.60| |[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k) |84.23|96.78| 807.21| 29.15| 6.77| 46.92| |[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k) |84.49|96.76| 693.82| 64.90| 10.75| 49.30| |[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k) |84.43|96.83| 647.96| 68.93| 11.66| 53.17| |[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k) |86.57|97.89| 631.88| 73.87| 15.09| 49.22| |[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k) |84.61|96.74| 625.81| 73.88| 15.18| 54.78| |[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k) |86.49|97.90| 620.58| 73.88| 15.18| 54.78| |[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k) |84.63|97.06| 575.53| 66.01| 14.67| 58.38| |[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.64|98.02| 501.03| 116.09| 24.20| 62.77| |[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.89|98.02| 375.86| 116.14| 23.15| 92.64| |[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k) |84.85|96.99| 358.25| 119.47| 24.04| 95.01| |[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) |85.11|97.38| 293.46| 30.98| 17.53| 123.42| |[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k) |84.93|96.97| 247.71| 211.79| 43.68| 127.35| |[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k) |85.54|97.46| 188.35| 69.02| 35.87| 183.65| |[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k) |87.39|98.31| 160.80| 73.88| 47.69| 209.43| |[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.47|98.37| 149.49| 116.09| 72.98| 213.74| |[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) |85.67|97.58| 144.25| 31.05| 33.49| 257.59| |[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.81|98.37| 106.55| 116.14| 70.97| 318.95| |[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) |87.92|98.54| 104.71| 119.65| 73.80| 332.90| |[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k) |86.29|97.80| 101.09| 119.65| 73.80| 332.90| |[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k) |86.10|97.76| 88.63| 69.13| 67.26| 383.77| |[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) |87.98|98.56| 71.75| 212.03|132.55| 445.84| |[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k) |86.23|97.69| 70.56| 212.03|132.55| 445.84| |[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) |88.20|98.53| 50.87| 119.88|138.02| 703.99| |[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k) |86.60|97.92| 50.75| 119.88|138.02| 703.99| |[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |88.32|98.54| 42.53| 475.32|292.78| 668.76| |[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) |88.04|98.40| 36.42| 212.33|244.75| 942.15| |[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k) |86.52|97.88| 36.04| 212.33|244.75| 942.15| |[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |88.53|98.64| 21.76| 475.77|534.14|1413.22| ## Citation ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ``` ```bibtex @article{tu2022maxvit, title={MaxViT: Multi-Axis Vision Transformer}, author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao}, journal={ECCV}, year={2022}, } ``` ```bibtex @article{dai2021coatnet, title={CoAtNet: Marrying Convolution and Attention for All Data Sizes}, author={Dai, Zihang and Liu, Hanxiao and Le, Quoc V and Tan, Mingxing}, journal={arXiv preprint arXiv:2106.04803}, year={2021} } ```
2c94a8935ab2dad1aca8c65bce391fc5
troesy/gpt2_tryout
troesy
gpt2
14
4
transformers
0
token-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,461
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2_tryout This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2275 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 174 | 0.2725 | 0.0 | 0.0 | 0.0 | 0.9019 | | No log | 2.0 | 348 | 0.2395 | 0.0 | 0.0 | 0.0 | 0.9141 | | 0.3173 | 3.0 | 522 | 0.2275 | 0.0 | 0.0 | 0.0 | 0.9182 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
7442cd5f0ca242a6d2aa8244b866b4c2
cj-mills/distilbert-base-uncased-finetuned-emotion
cj-mills
distilbert
20
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
1
0
1
0
0
0
0
['generated_from_trainer']
true
true
true
1,338
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2205 - Accuracy: 0.936 - F1: 0.9361 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0442 | 1.0 | 250 | 0.2392 | 0.926 | 0.9265 | | 0.0463 | 2.0 | 500 | 0.2205 | 0.936 | 0.9361 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
cee7811ace262c8c39c170a7a6a9f14d
rahuldave/bert-base-uncased-rahuldave-issues-128
rahuldave
bert
10
5
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,928
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-rahuldave-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1019 | 1.0 | 291 | 1.6982 | | 1.6376 | 2.0 | 582 | 1.4442 | | 1.4815 | 3.0 | 873 | 1.3822 | | 1.3996 | 4.0 | 1164 | 1.3695 | | 1.3416 | 5.0 | 1455 | 1.1960 | | 1.2824 | 6.0 | 1746 | 1.2835 | | 1.2404 | 7.0 | 2037 | 1.2664 | | 1.2022 | 8.0 | 2328 | 1.2082 | | 1.1669 | 9.0 | 2619 | 1.1798 | | 1.1424 | 10.0 | 2910 | 1.2211 | | 1.1269 | 11.0 | 3201 | 1.2019 | | 1.1036 | 12.0 | 3492 | 1.1649 | | 1.0802 | 13.0 | 3783 | 1.2438 | | 1.0759 | 14.0 | 4074 | 1.1716 | | 1.0629 | 15.0 | 4365 | 1.1270 | | 1.0639 | 16.0 | 4656 | 1.2505 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
c8e9b700eac17237b16d2be9a42e3dbb
theojolliffe/t5-model1-feedback
theojolliffe
t5
11
0
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,300
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-model1-feedback This model is a fine-tuned version of [theojolliffe/T5-model-1-feedback-e1](https://huggingface.co/theojolliffe/T5-model-1-feedback-e1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 345 | 0.8173 | 52.0119 | 27.6158 | 44.7895 | 44.8584 | 16.5455 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ba7cfdbcf46eb30ef81fbc3c790c15e5
mwmathis/DeepLabCutModelZoo-SuperAnimal-TopViewMouse
mwmathis
null
3
0
null
0
null
false
false
false
other
null
null
null
0
0
0
0
0
0
0
['computer_vision', 'pose_estimation']
false
true
true
449
false
Copyright 2021-2023 by Mackenzie Mathis, Alexander Mathis, Shaokai Ye and contributors. All rights reserved. - Non-commercial use only is permitted - please cite Ye et al if you use this model in your work https://arxiv.org/abs/2203.07436v1 - If this license is not suitable for your business or project please contact EPFL-TTO (https://tto.epfl.ch/) for a full commercial license. This software may not be used to harm any animal deliberately.
5aaa6a262f4ade523caf69acba6b62fa
dminiotas05/distilbert-base-uncased-finetuned-ft1500_norm500_aug5
dminiotas05
distilbert
12
2
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,547
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft1500_norm500_aug5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8927 - Mse: 2.9755 - Mae: 1.0176 - R2: 0.4184 - Accuracy: 0.5003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:--------:| | 0.4176 | 1.0 | 3952 | 1.0499 | 3.4996 | 1.0853 | 0.3160 | 0.4593 | | 0.3196 | 2.0 | 7904 | 0.8670 | 2.8901 | 1.0503 | 0.4351 | 0.4600 | | 0.2084 | 3.0 | 11856 | 0.8927 | 2.9755 | 1.0176 | 0.4184 | 0.5003 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
1daee0fc8b649830f343b8abc2f25e77
muhtasham/tiny-mlm-glue-sst2-target-glue-qnli
muhtasham
bert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,806
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-sst2-target-glue-qnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-sst2](https://huggingface.co/muhtasham/tiny-mlm-glue-sst2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4704 - Accuracy: 0.7792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6131 | 0.15 | 500 | 0.5383 | 0.7337 | | 0.5434 | 0.31 | 1000 | 0.5325 | 0.7393 | | 0.5218 | 0.46 | 1500 | 0.4985 | 0.7635 | | 0.5155 | 0.61 | 2000 | 0.5256 | 0.7465 | | 0.511 | 0.76 | 2500 | 0.4781 | 0.7759 | | 0.5044 | 0.92 | 3000 | 0.4673 | 0.7824 | | 0.4924 | 1.07 | 3500 | 0.4546 | 0.7904 | | 0.4819 | 1.22 | 4000 | 0.4664 | 0.7836 | | 0.4674 | 1.37 | 4500 | 0.4724 | 0.7789 | | 0.4755 | 1.53 | 5000 | 0.4704 | 0.7792 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
0034a3877ea0c7a92731be1ced8953b2
it5/mt5-base-headline-generation
it5
mt5
11
3
transformers
0
text2text-generation
true
true
true
apache-2.0
['it']
['gsarti/change_it']
{'emissions': '40g', 'source': 'Google Cloud Platform Carbon Footprint', 'training_type': 'fine-tuning', 'geographical_location': 'Eemshaven, Netherlands, Europe', 'hardware_used': '1 TPU v3-8 VM'}
0
0
0
0
0
0
0
['italian', 'sequence-to-sequence', 'newspaper', 'ilgiornale', 'repubblica', 'headline-generation']
true
true
true
3,016
false
# mT5 Base for News Headline Generation 📣 🇮🇹 This repository contains the checkpoint for the [mT5 Base](https://huggingface.co/google/mt5-base) model fine-tuned on news headline generation on the Italian HeadGen-IT dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines hg = pipeline("text2text-generation", model='it5/mt5-base-headline-generation') hg("Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\".") >>> [{"generated_text": "il nazionalista rajoy: 'voteremo la sfiducia'"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/mt5-base-headline-generation") model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-base-headline-generation") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
deba9ab82a7780f5cb46ce68169587fd
StatsGary/audio-diffusion-hiphop-classical
StatsGary
null
7
0
diffusers
0
null
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['pytorch', 'diffusers', 'unconditional-audio-generation', 'diffusion-models-class']
false
true
true
509
false
# Model Card for Unit 4 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional audio generation of music in the genre Classical ## Usage ```python from IPython.display import Audio from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("StatsGary/audio-diffusion-hiphop-classical") output = pipe() display(output.images[0]) display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate())) ```
900a0992196d3dd4de30edee3d527711
muhtasham/small-vanilla-target-glue-qnli
muhtasham
bert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,816
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-vanilla-target-glue-qnli This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3458 - Accuracy: 0.8583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.488 | 0.15 | 500 | 0.3901 | 0.8316 | | 0.4449 | 0.31 | 1000 | 0.3826 | 0.8373 | | 0.4243 | 0.46 | 1500 | 0.3596 | 0.8448 | | 0.4133 | 0.61 | 2000 | 0.3663 | 0.8417 | | 0.4102 | 0.76 | 2500 | 0.3459 | 0.8499 | | 0.3924 | 0.92 | 3000 | 0.3286 | 0.8585 | | 0.3539 | 1.07 | 3500 | 0.3467 | 0.8532 | | 0.3202 | 1.22 | 4000 | 0.3478 | 0.8636 | | 0.3183 | 1.37 | 4500 | 0.3574 | 0.8514 | | 0.3215 | 1.53 | 5000 | 0.3458 | 0.8583 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
597f175e2dbe820b3dd7c8c71620af43
jhaochenz/finetuned_gpt2-medium_sst2_negation0.0001_pretrainedTrue_epochs3
jhaochenz
gpt2
14
0
transformers
0
text-generation
true
false
false
mit
null
['sst2']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,270
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_gpt2-medium_sst2_negation0.0001_pretrainedTrue_epochs3 This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on the sst2 dataset. It achieves the following results on the evaluation set: - Loss: 3.0503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2809 | 1.0 | 1322 | 2.8898 | | 1.9683 | 2.0 | 2644 | 2.9770 | | 1.8548 | 3.0 | 3966 | 3.0503 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.7.0 - Datasets 2.8.0 - Tokenizers 0.13.2
f80e3d4a12bd9d48dcbc9bdd3ae01de6
Helsinki-NLP/opus-mt-fi-bem
Helsinki-NLP
marian
10
7
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-fi-bem * source languages: fi * target languages: bem * OPUS readme: [fi-bem](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-bem/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-bem/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-bem/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-bem/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.bem | 21.4 | 0.465 |
1e4ce3db4ec0a9b3d0e4e489c17c4410
jonatasgrosman/exp_w2v2t_ja_vp-fr_s458
jonatasgrosman
wav2vec2
10
6
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['ja']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'ja']
false
true
true
469
false
# exp_w2v2t_ja_vp-fr_s458 Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
9aae7bea3383650d3f4da04f6041e6ae
sd-concepts-library/garfield-pizza-plush-v2
sd-concepts-library
null
9
0
null
1
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,120
false
### Garfield-Pizza-Plush-v2 on Stable Diffusion This is the `<garfield-plushy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<garfield-plushy> 0](https://huggingface.co/sd-concepts-library/garfield-pizza-plush-v2/resolve/main/concept_images/3.jpeg) ![<garfield-plushy> 1](https://huggingface.co/sd-concepts-library/garfield-pizza-plush-v2/resolve/main/concept_images/0.jpeg) ![<garfield-plushy> 2](https://huggingface.co/sd-concepts-library/garfield-pizza-plush-v2/resolve/main/concept_images/2.jpeg) ![<garfield-plushy> 3](https://huggingface.co/sd-concepts-library/garfield-pizza-plush-v2/resolve/main/concept_images/1.jpeg)
3c28f7de07bc027aebfb4cc86f5a70ac
mn367/mark-finetuned-imdb
mn367
distilbert
8
1
transformers
0
fill-mask
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,534
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mn367/mark-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.0868 - Validation Loss: 2.7662 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -523, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.0868 | 2.7662 | 0 | ### Framework versions - Transformers 4.22.2 - TensorFlow 2.8.2 - Datasets 2.5.2 - Tokenizers 0.12.1
104b790827cdc5b92d7c4fedb20e6ce6
chandank/bart-base-finetuned-kaggglenews
chandank
bart
13
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,399
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-kaggglenews This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6240 - Rouge1: 28.3618 - Rouge2: 15.9828 - Rougel: 24.078 - Rougelsum: 25.565 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:|:---------:|:-------:| | 1.9433 | 1.0 | 989 | 1.6240 | 28.3618 | 15.9828 | 24.078 | 25.565 | 20.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.14.0 - Tokenizers 0.10.3
4cf75819b3b888e43c6999e1226aa4a7
neongeckocom/stt_de_citrinet_512_gamma_0_25
neongeckocom
null
3
4
nemo
0
automatic-speech-recognition
false
false
false
bsd-3-clause
['de']
['mozilla-foundation/common_voice_12_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition']
true
true
true
687
false
# NVIDIA Streaming Citrinet 512 (de-DE) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-Citrinet--CTC-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-36M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-de--DE-lightgrey#model-badge)](#datasets) | ## Attribution As initial checkpoint used [stt_en_citrinet_512_gamma_0_25](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_citrinet_512_gamma_0_25) by [NVIDIA](https://github.com/NVIDIA) licensed under [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)
4ab5043831da70499e5fc20c53429f77
furyhawk/distilbert-base-uncased-finetuned-clinc
furyhawk
distilbert
12
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['clinc_oos']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,476
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7788 - Accuracy: 0.9155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2841 | 1.0 | 318 | 3.2794 | 0.7465 | | 2.623 | 2.0 | 636 | 1.8719 | 0.8335 | | 1.5474 | 3.0 | 954 | 1.1629 | 0.8929 | | 1.014 | 4.0 | 1272 | 0.8621 | 0.9094 | | 0.7987 | 5.0 | 1590 | 0.7788 | 0.9155 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
b06a2adca4b775abd66cb801b692c285
jonatasgrosman/exp_w2v2r_de_xls-r_gender_male-5_female-5_s336
jonatasgrosman
wav2vec2
10
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['de']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'de']
false
true
true
476
false
# exp_w2v2r_de_xls-r_gender_male-5_female-5_s336 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
0d45db089aff986d68a0dcf6877e8372
philschmid/distilbert-neuron
philschmid
distilbert
8
5
transformers
0
question-answering
false
false
false
apache-2.0
['en']
['squad']
null
0
0
0
0
0
0
0
[]
false
true
true
485
false
# AWS Neuron Conversion of [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad) # DistilBERT base cased distilled SQuAD This model is a fine-tune checkpoint of [DistilBERT-base-cased](https://huggingface.co/distilbert-base-cased), fine-tuned using (a second step of) knowledge distillation on SQuAD v1.1. This model reaches a F1 score of 87.1 on the dev set (for comparison, BERT bert-base-cased version reaches a F1 score of 88.7).
817ca4427083fd2412802581ff53412e
ejembere/opus-mt-en-ro-finetuned-en-to-ro
ejembere
marian
11
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['wmt16']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
966
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
fd63b6aeed1406a52e07ef7d56ead06f
jonatasgrosman/exp_w2v2t_ru_unispeech_s42
jonatasgrosman
unispeech
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['ru']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'ru']
false
true
true
468
false
# exp_w2v2t_ru_unispeech_s42 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
7521fa83dfefeffa4cb8a08fc387e625
hiroshi-matsuda-rit/ja_gsd_bert_wwm_unidic_lite
hiroshi-matsuda-rit
null
22
3
spacy
0
token-classification
false
false
false
CC-BY-SA-4.0
['ja']
null
null
0
0
0
0
0
0
0
['spacy', 'token-classification']
false
true
true
1,889
false
Japanese transformer pipeline (bert-base). Components: transformer, parser, ner. | Feature | Description | | --- | --- | | **Name** | `ja_gsd_bert_wwm_unidic_lite` | | **Version** | `3.1.1` | | **spaCy** | `>=3.1.0,<3.2.0` | | **Default Pipeline** | `transformer`, `parser`, `ner` | | **Components** | `transformer`, `parser`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [UD_Japanese-GSD](https://github.com/UniversalDependencies/UD_Japanese-GSD)<br />[UD_Japanese-GSD r2.8+NE](https://github.com/megagonlabs/UD_Japanese-GSD/releases/tag/r2.8-NE)<br />[SudachiDict_core](https://github.com/WorksApplications/SudachiDict)<br />[cl-tohoku/bert-base-japanese-whole-word-masking](https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking)<br />[unidic_lite](https://github.com/polm/unidic-lite) | | **License** | `CC BY-SA 4.0` | | **Author** | [Megagon Labs Tokyo.](https://github.com/megagonlabs/UD_japanese_GSD) | ### Label Scheme <details> <summary>View label scheme (45 labels for 2 components)</summary> | Component | Labels | | --- | --- | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `aux`, `case`, `cc`, `ccomp`, `compound`, `cop`, `csubj`, `dep`, `det`, `dislocated`, `fixed`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `punct` | | **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `MOVEMENT`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PET_NAME`, `PHONE`, `PRODUCT`, `QUANTITY`, `TIME`, `TITLE_AFFIX`, `WORK_OF_ART` | </details> ### Accuracy | Type | Score | | --- | --- | | `DEP_UAS` | 93.68 | | `DEP_LAS` | 92.61 | | `SENTS_P` | 92.02 | | `SENTS_R` | 95.46 | | `SENTS_F` | 93.71 | | `ENTS_F` | 84.04 | | `ENTS_P` | 84.96 | | `ENTS_R` | 83.14 | | `TAG_ACC` | 0.00 | | `TRANSFORMER_LOSS` | 28861.67 | | `PARSER_LOSS` | 1306248.63 | | `NER_LOSS` | 13993.36 |
201c112dec5ff37f82a0ecdd11d14e05
Nobody138/xlm-roberta-base-finetuned-panx-de-fr
Nobody138
xlm-roberta
10
7
transformers
0
token-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,320
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1608 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2888 | 1.0 | 715 | 0.1779 | 0.8233 | | 0.1437 | 2.0 | 1430 | 0.1570 | 0.8497 | | 0.0931 | 3.0 | 2145 | 0.1608 | 0.8593 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
3210a0cc8a6c597841e05ec29e842b8f
nlplab130/distilbert-base-uncased-finetuned-squad
nlplab130
distilbert
12
6
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,284
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2056 | 1.0 | 5533 | 1.1415 | | 0.949 | 2.0 | 11066 | 1.1144 | | 0.7471 | 3.0 | 16599 | 1.1455 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
f02109c8f303ea4f11849dfdeb642dfd
Bingbongbingbingbong/gatewatch
Bingbongbingbingbong
null
4
3
null
0
null
false
false
false
cc-by-4.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
862
false
StableDiffusion 1.5 finetuned with the Gatewatch members. vectors trained: - nissarevane ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1667458280277-63296399d5d50b69299a52a8.png) - chandranalaar ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1667458290932-63296399d5d50b69299a52a8.png) - lilianavess ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1667458285871-63296399d5d50b69299a52a8.png) - jacebeleren ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1667458272206-63296399d5d50b69299a52a8.png) - gideonjura ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1667458260933-63296399d5d50b69299a52a8.png) Supports combining tokens (nissarevane combined with lilianavess) ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1667458327342-63296399d5d50b69299a52a8.png)
82aad0774ff020f060a05ab21f799886
PaddlePaddle/uie-base
PaddlePaddle
ernie
7
0
paddlenlp
0
null
false
false
false
apache-2.0
['zh']
null
null
0
0
0
0
1
1
0
[]
false
true
true
4,351
false
[![paddlenlp-banner](https://user-images.githubusercontent.com/1371212/175816733-8ec25eb0-9af3-4380-9218-27c154518258.png)](https://github.com/PaddlePaddle/PaddleNLP) # PaddlePaddle/uie-base Information extraction suffers from its varying targets, heterogeneous structures, and demand-specific schemas. The unified text-to-structure generation framework, namely UIE, can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources. Specifically, UIE uniformly encodes different extraction structures via a structured extraction language, adaptively generates target extractions via a schema-based prompt mechanism - structural schema instructor, and captures the common IE abilities via a large-scale pre-trained text-to-structure model. Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings for a wide range of entity, relation, event and sentiment extraction tasks and their unification. These results verified the effectiveness, universality, and transferability of UIE. UIE Paper: https://arxiv.org/abs/2203.12277 PaddleNLP released UIE model series for Information Extraction of texts and multi-modal documents which use the ERNIE 3.0 models as the pre-trained language models and were finetuned on a large amount of information extraction data. ![UIE-diagram](https://user-images.githubusercontent.com/40840292/167236006-66ed845d-21b8-4647-908b-e1c6e7613eb1.png) ## Available Models | Model Name | Usage Scenarios | Supporting Tasks | | :----------------------------------------------------------: | :--------------------------------------------------------- | :--------------------------------------------------- | | `uie-base`<br />`uie-medium`<br />`uie-mini`<br />`uie-micro`<br />`uie-nano` | For **plain text** The **extractive** model of the scene supports **Chinese** | Supports entity, relation, event, opinion extraction | | `uie-base-en` | An **extractive** model for **plain text** scenarios, supports **English** | Supports entity, relation, event, opinion extraction | | `uie-m-base`<br />`uie-m-large` | An **extractive** model for **plain text** scenarios, supporting **Chinese and English** | Supports entity, relation, event, opinion extraction | | <b>`uie-x-base`</b> | An **extractive** model for **plain text** and **document** scenarios, supports **Chinese and English** | Supports entity, relation, event, opinion extraction on both plain text and documents/pictures/tables | ## Performance on Text Dataset We conducted experiments on the in-house test sets of the three different domains of Internet, medical care, and finance: <table> <tr><th row_span='2'><th colspan='2'>finance<th colspan='2'>healthcare<th colspan='2'>internet <tr><td><th>0-shot<th>5-shot<th>0-shot<th>5-shot<th>0-shot<th>5-shot <tr><td>uie-base (12L768H)<td>46.43<td>70.92<td><b>71.83</b><td>85.72<td>78.33<td>81.86 <tr><td>uie-medium (6L768H)<td>41.11<td>64.53<td>65.40<td>75.72<td>78.32<td>79.68 <tr><td>uie-mini (6L384H)<td>37.04<td>64.65<td>60.50<td>78.36<td>72.09<td>76.38 <tr><td>uie-micro (4L384H)<td>37.53<td>62.11<td>57.04<td>75.92<td>66.00<td>70.22 <tr><td>uie-nano (4L312H)<td>38.94<td>66.83<td>48.29<td>76.74<td>62.86<td>72.35 <tr><td>uie-m-large (24L1024H)<td><b>49.35</b><td><b>74.55</b><td>70.50<td><b>92.66</b ><td>78.49<td><b>83.02</b> <tr><td>uie-m-base (12L768H)<td>38.46<td>74.31<td>63.37<td>87.32<td>76.27<td>80.13 <tr><td>🧾🎓<b>uie-x-base (12L768H)</b><td>48.84<td>73.87<td>65.60<td>88.81<td><b>79.36</b> <td>81.65 </table> 0-shot means that no training data is directly used for prediction through paddlenlp.Taskflow, and 5-shot means that each category contains 5 pieces of labeled data for model fine-tuning. Experiments show that UIE can further improve the performance with a small amount of data (few-shot). > Detailed Info: https://github.com/PaddlePaddle/PaddleNLP/blob/develop/applications/information_extraction/README_en.md
1b552375dbf6bc1208e4834e480bd282
arpanghoshal/EkmanClassifier
arpanghoshal
bert
7
207
transformers
2
text-classification
true
false
false
mit
['en']
['go_emotions']
null
0
0
0
0
0
0
0
['text-classification', 'pytorch', 'bert']
false
true
true
1,092
false
- [linkedin.com/in/arpanghoshal](https://www.linkedin.com/in/arpanghoshal) ## What is Ekman Emotions? Ekman emotions refer to a specific set of six basic emotions that are thought to be universal across cultures. </br> These emotions were identified by psychologist Paul Ekman, who conducted extensive research on facial expressions and emotional experience. </br> The six Ekman emotions are: - Happiness - Sadness - Anger - Fear - Disgust - Surprise Ekman's research found that these emotions are expressed through universal facial expressions, which are recognizable across cultures. </br> According to Ekman, these emotions are biologically based and are fundamental to human social interaction. </br> Ekman's work on basic emotions has had a significant impact on the field of psychology and has been widely influential in the study of emotional expression and experience. ## Usage ```python from transformers import pipeline ekman = pipeline('sentiment-analysis', model='arpanghoshal/EkmanClassifier') ekman_labels = ekman("Thanks for using it.") print(ekman_labels) ```
38e2d5f7ae1e7aa9f9da17d4cc261018
bochaowei/t5-small-finetuned-cnn-wei1
bochaowei
t5
13
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['cnn_dailymail']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,435
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnn-wei1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6819 - Rouge1: 41.1796 - Rouge2: 18.9426 - Rougel: 29.2338 - Rougelsum: 38.4087 - Gen Len: 72.7607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8582 | 1.0 | 23927 | 1.6819 | 41.1796 | 18.9426 | 29.2338 | 38.4087 | 72.7607 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
1a04a70eea8a80757a5676e7b6317fe3
Deep98/Paper-clustered
Deep98
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,851
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deep98/Paper-clustered This model is a fine-tuned version of [nandysoham16/16-clustered_aug](https://huggingface.co/nandysoham16/16-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4183 - Train End Logits Accuracy: 0.8611 - Train Start Logits Accuracy: 0.8785 - Validation Loss: 0.2040 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.4183 | 0.8611 | 0.8785 | 0.2040 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
660992c16e93347cca606ff2c2c049e0
gokuls/mobilebert_sa_GLUE_Experiment_data_aug_cola_128
gokuls
mobilebert
17
0
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,708
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_data_aug_cola_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6624 - Matthews Correlation: 0.0618 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:-----:|:---------------:|:--------------------:| | 0.5456 | 1.0 | 1669 | 0.6624 | 0.0618 | | 0.4572 | 2.0 | 3338 | 0.7774 | 0.0514 | | 0.419 | 3.0 | 5007 | 0.8469 | 0.0931 | | 0.3649 | 4.0 | 6676 | 0.8748 | 0.1011 | | 0.3117 | 5.0 | 8345 | 1.0732 | 0.0824 | | 0.2698 | 6.0 | 10014 | 1.2173 | 0.0618 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
03de592fe36f72739ddef16b2de67fb8
jonatasgrosman/exp_w2v2t_th_vp-100k_s630
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['th']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'th']
false
true
true
478
false
# exp_w2v2t_th_vp-100k_s630 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
724142bbc798640a1503d0b033b2d20d
shahukareem/wav2vec2-xls-r-1b-dv
shahukareem
wav2vec2
12
17
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['mozilla-foundation/common_voice_8_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'mozilla-foundation/common_voice_8_0', 'generated_from_trainer', 'dv', 'robust-speech-event', 'model_for_talk']
true
true
true
4,040
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-dv This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1702 - Wer: 0.2123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.8412 | 0.66 | 400 | 0.7160 | 0.7913 | | 0.6832 | 1.33 | 800 | 0.3401 | 0.5268 | | 0.4624 | 1.99 | 1200 | 0.2671 | 0.4683 | | 0.3832 | 2.65 | 1600 | 0.2395 | 0.4410 | | 0.3443 | 3.32 | 2000 | 0.2410 | 0.4296 | | 0.324 | 3.98 | 2400 | 0.2302 | 0.4143 | | 0.2934 | 4.64 | 2800 | 0.2402 | 0.4136 | | 0.2773 | 5.31 | 3200 | 0.2134 | 0.4088 | | 0.2638 | 5.97 | 3600 | 0.2072 | 0.4037 | | 0.2479 | 6.63 | 4000 | 0.2036 | 0.3876 | | 0.2424 | 7.3 | 4400 | 0.2037 | 0.3767 | | 0.2249 | 7.96 | 4800 | 0.1959 | 0.3802 | | 0.2169 | 8.62 | 5200 | 0.1943 | 0.3813 | | 0.2109 | 9.29 | 5600 | 0.1944 | 0.3691 | | 0.1991 | 9.95 | 6000 | 0.1870 | 0.3589 | | 0.1917 | 10.61 | 6400 | 0.1834 | 0.3485 | | 0.1862 | 11.28 | 6800 | 0.1857 | 0.3486 | | 0.1744 | 11.94 | 7200 | 0.1812 | 0.3330 | | 0.171 | 12.6 | 7600 | 0.1797 | 0.3436 | | 0.1599 | 13.27 | 8000 | 0.1839 | 0.3319 | | 0.1597 | 13.93 | 8400 | 0.1737 | 0.3385 | | 0.1494 | 14.59 | 8800 | 0.1807 | 0.3239 | | 0.1444 | 15.26 | 9200 | 0.1750 | 0.3155 | | 0.1382 | 15.92 | 9600 | 0.1705 | 0.3084 | | 0.1299 | 16.58 | 10000 | 0.1777 | 0.2999 | | 0.1306 | 17.25 | 10400 | 0.1765 | 0.3056 | | 0.1239 | 17.91 | 10800 | 0.1676 | 0.2864 | | 0.1149 | 18.57 | 11200 | 0.1774 | 0.2861 | | 0.1134 | 19.24 | 11600 | 0.1654 | 0.2699 | | 0.1101 | 19.9 | 12000 | 0.1621 | 0.2651 | | 0.1038 | 20.56 | 12400 | 0.1686 | 0.2610 | | 0.1038 | 21.23 | 12800 | 0.1722 | 0.2559 | | 0.0988 | 21.89 | 13200 | 0.1708 | 0.2486 | | 0.0949 | 22.55 | 13600 | 0.1696 | 0.2453 | | 0.0913 | 23.22 | 14000 | 0.1677 | 0.2424 | | 0.0879 | 23.88 | 14400 | 0.1640 | 0.2359 | | 0.0888 | 24.54 | 14800 | 0.1697 | 0.2347 | | 0.0826 | 25.21 | 15200 | 0.1709 | 0.2314 | | 0.0819 | 25.87 | 15600 | 0.1679 | 0.2256 | | 0.0793 | 26.53 | 16000 | 0.1701 | 0.2214 | | 0.0773 | 27.2 | 16400 | 0.1682 | 0.2176 | | 0.0783 | 27.86 | 16800 | 0.1685 | 0.2165 | | 0.074 | 28.52 | 17200 | 0.1688 | 0.2155 | | 0.0753 | 29.19 | 17600 | 0.1695 | 0.2110 | | 0.0699 | 29.85 | 18000 | 0.1702 | 0.2123 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
14fa62a21cb2521a7e4bad9649433358
sd-concepts-library/spritual-monsters
sd-concepts-library
null
9
0
null
1
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,100
false
### Spritual monsters on Stable Diffusion This is the `<spritual-monsters>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<spritual-monsters> 0](https://huggingface.co/sd-concepts-library/spritual-monsters/resolve/main/concept_images/3.jpeg) ![<spritual-monsters> 1](https://huggingface.co/sd-concepts-library/spritual-monsters/resolve/main/concept_images/0.jpeg) ![<spritual-monsters> 2](https://huggingface.co/sd-concepts-library/spritual-monsters/resolve/main/concept_images/2.jpeg) ![<spritual-monsters> 3](https://huggingface.co/sd-concepts-library/spritual-monsters/resolve/main/concept_images/1.jpeg)
e32cce2938eb440e58926a123fc2565e