name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
exists_closed_cover_approximatesLinearOn_of_hasFDerivWithinAt
Mathlib/MeasureTheory/Function/Jacobian.lean
theorem exists_closed_cover_approximatesLinearOn_of_hasFDerivWithinAt [SecondCountableTopology F] (f : E → F) (s : Set E) (f' : E → E →L[ℝ] F) (hf' : ∀ x ∈ s, HasFDerivWithinAt f (f' x) s x) (r : (E →L[ℝ] F) → ℝ≥0) (rpos : ∀ A, r A ≠ 0) : ∃ (t : ℕ → Set E) (A : ℕ → E →L[ℝ] F), (∀ n, IsClosed (t n)) ∧ (s ⊆ ⋃ n, t n) ∧ (∀ n, ApproximatesLinearOn f (A n) (s ∩ t n) (r (A n))) ∧ (s.Nonempty → ∀ n, ∃ y ∈ s, A n = f' y)
case e_a E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : SecondCountableTopology F f : E → F s : Set E f' : E → E →L[ℝ] F hf' : ∀ x ∈ s, HasFDerivWithinAt f (f' x) s x r : (E →L[ℝ] F) → ℝ≥0 rpos : ∀ (A : E →L[ℝ] F), r A ≠ 0 hs : s.Nonempty T : Set ↑s T_count : T.Countable hT : ⋃ x ∈ T, ball (f' ↑x) ↑(r (f' ↑x)) = ⋃ x, ball (f' ↑x) ↑(r (f' ↑x)) u : ℕ → ℝ left✝ : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) M : ℕ → ↑T → Set E := fun n z => {x | x ∈ s ∧ ∀ y ∈ s ∩ ball x (u n), ‖f y - f x - (f' ↑↑z) (y - x)‖ ≤ ↑(r (f' ↑↑z)) * ‖y - x‖} x : E xs : x ∈ s z : ↑s zT : z ∈ T hz : f' x ∈ ball (f' ↑z) ↑(r (f' ↑z)) ε : ℝ εpos : 0 < ε hε : ‖f' x - f' ↑z‖ + ε ≤ ↑(r (f' ↑z)) δ : ℝ δpos : 0 < δ hδ : ball x δ ∩ s ⊆ {y | ‖f y - f x - (f' x) (y - x)‖ ≤ ε * ‖y - x‖} n : ℕ hn : u n < δ y : E hy : y ∈ s ∩ ball x (u n) ⊢ f y - f x - ((f' ↑z) y - (f' ↑z) x) = f y - f x - ((f' x) y - (f' x) x) + ((f' x) y - (f' ↑z) y - ((f' x) x - (f' ↑z) x))
abel
no goals
6721258aaeea8779
AkraBazziRecurrence.GrowsPolynomially.eventually_zero_of_frequently_zero
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
lemma eventually_zero_of_frequently_zero (hf : GrowsPolynomially f) (hf' : ∃ᶠ x in atTop, f x = 0) : ∀ᶠ x in atTop, f x = 0
f : ℝ → ℝ hf✝ : GrowsPolynomially f hf' : ∀ (a : ℝ), ∃ b ≥ a, f b = 0 c₁ : ℝ hc₁_mem : c₁ > 0 c₂ : ℝ hc₂_mem : c₂ > 0 hf : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (1 / 2 * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) x : ℝ hx : ∀ (y : ℝ), x ≤ y → ∀ u ∈ Set.Icc (1 / 2 * y) y, f u ∈ Set.Icc (c₁ * f y) (c₂ * f y) hx_pos : 0 < x x₀ : ℝ hx₀_ge : x₀ ≥ x ⊔ 1 hx₀ : f x₀ = 0 x₀_pos : 0 < x₀ hmain : ∀ (m : ℕ) (z : ℝ), x ≤ z → z ∈ Set.Icc (2 ^ (-↑m - 1) * x₀) (2 ^ (-↑m) * x₀) → f z = 0 ⊢ 1 < 2
norm_num
no goals
b2c5c4c5d5df705a
IsAdicComplete.le_jacobson_bot
Mathlib/RingTheory/AdicCompletion/Basic.lean
theorem le_jacobson_bot [IsAdicComplete I R] : I ≤ (⊥ : Ideal R).jacobson
case h.a R : Type u_1 inst✝¹ : CommRing R I : Ideal R inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i ∈ range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R hL : ∀ (n : ℕ), f n ≡ L [SMOD I ^ n • ⊤] ⊢ ∀ (n : ℕ), (1 + -(x * y)) * L - 1 ≡ 0 [SMOD I ^ n • ⊤]
intro n
case h.a R : Type u_1 inst✝¹ : CommRing R I : Ideal R inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i ∈ range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R hL : ∀ (n : ℕ), f n ≡ L [SMOD I ^ n • ⊤] n : ℕ ⊢ (1 + -(x * y)) * L - 1 ≡ 0 [SMOD I ^ n • ⊤]
b6dffcb57fa8856c
IsOpen.exists_msmooth_support_eq
Mathlib/Geometry/Manifold/PartitionOfUnity.lean
theorem IsOpen.exists_msmooth_support_eq {s : Set M} (hs : IsOpen s) : ∃ f : M → ℝ, f.support = s ∧ ContMDiff I 𝓘(ℝ) ∞ f ∧ ∀ x, 0 ≤ f x
case intro.refine_1.refine_2.h E : Type uE inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E H : Type uH inst✝⁶ : TopologicalSpace H I : ModelWithCorners ℝ E H M : Type uM inst✝⁵ : TopologicalSpace M inst✝⁴ : ChartedSpace H M inst✝³ : FiniteDimensional ℝ E inst✝² : IsManifold I ∞ M inst✝¹ : SigmaCompactSpace M inst✝ : T2Space M s : Set M hs : IsOpen s f : SmoothPartitionOfUnity M I M hf : f.IsSubordinate fun x => (chartAt H x).source g : M → H → ℝ g_supp : ∀ (c : M), support (g c) = (chartAt H c).target ∩ ↑(chartAt H c).symm ⁻¹' s g_diff : ∀ (c : M), ContMDiff I 𝓘(ℝ, ℝ) ∞ (g c) hg : ∀ (c : M), range (g c) ⊆ Icc 0 1 h'g : ∀ (c : M) (x : H), 0 ≤ g c x h''g : ∀ (c x : M), 0 ≤ (f c) x * g c (↑(chartAt H c) x) x : M hx : x ∉ s ⊢ ∀ (x_1 : M), (f x_1) x * g x_1 (↑(chartAt H x_1) x) = 0
intro c
case intro.refine_1.refine_2.h E : Type uE inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E H : Type uH inst✝⁶ : TopologicalSpace H I : ModelWithCorners ℝ E H M : Type uM inst✝⁵ : TopologicalSpace M inst✝⁴ : ChartedSpace H M inst✝³ : FiniteDimensional ℝ E inst✝² : IsManifold I ∞ M inst✝¹ : SigmaCompactSpace M inst✝ : T2Space M s : Set M hs : IsOpen s f : SmoothPartitionOfUnity M I M hf : f.IsSubordinate fun x => (chartAt H x).source g : M → H → ℝ g_supp : ∀ (c : M), support (g c) = (chartAt H c).target ∩ ↑(chartAt H c).symm ⁻¹' s g_diff : ∀ (c : M), ContMDiff I 𝓘(ℝ, ℝ) ∞ (g c) hg : ∀ (c : M), range (g c) ⊆ Icc 0 1 h'g : ∀ (c : M) (x : H), 0 ≤ g c x h''g : ∀ (c x : M), 0 ≤ (f c) x * g c (↑(chartAt H c) x) x : M hx : x ∉ s c : M ⊢ (f c) x * g c (↑(chartAt H c) x) = 0
1c8b08bf6bae7592
ProbabilityTheory.Kernel.snd_prod
Mathlib/Probability/Kernel/Composition/Prod.lean
@[simp] lemma snd_prod (κ : Kernel α β) [IsMarkovKernel κ] (η : Kernel α γ) [IsSFiniteKernel η] : snd (κ ×ₖ η) = η
α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ κ : Kernel α β inst✝¹ : IsMarkovKernel κ η : Kernel α γ inst✝ : IsSFiniteKernel η ⊢ (κ ×ₖ η).snd = η
ext x
case h.h α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ κ : Kernel α β inst✝¹ : IsMarkovKernel κ η : Kernel α γ inst✝ : IsSFiniteKernel η x : α s✝ : Set γ a✝ : MeasurableSet s✝ ⊢ ((κ ×ₖ η).snd x) s✝ = (η x) s✝
2321a1081df35ddf
Int.nneg_mul_add_sq_of_abs_le_one
Mathlib/Algebra/Order/Ring/Cast.lean
lemma nneg_mul_add_sq_of_abs_le_one (n : ℤ) (hx : |x| ≤ 1) : (0 : R) ≤ n * x + n * n
R : Type u_1 inst✝ : LinearOrderedRing R x : R n : ℤ hx : |x| ≤ 1 hnx : 0 < n → 0 ≤ x + ↑n hnx' : n < 0 → x + ↑n ≤ 0 ⊢ 0 ≤ ↑n * x + ↑n * ↑n
rw [← mul_add, mul_nonneg_iff]
R : Type u_1 inst✝ : LinearOrderedRing R x : R n : ℤ hx : |x| ≤ 1 hnx : 0 < n → 0 ≤ x + ↑n hnx' : n < 0 → x + ↑n ≤ 0 ⊢ 0 ≤ ↑n ∧ 0 ≤ x + ↑n ∨ ↑n ≤ 0 ∧ x + ↑n ≤ 0
bd5028d11b4586e9
RingSeminorm.exists_index_pow_le
Mathlib/Analysis/Normed/Ring/Seminorm.lean
theorem exists_index_pow_le (hna : IsNonarchimedean p) (x y : R) (n : ℕ) : ∃ (m : ℕ), m < n + 1 ∧ p ((x + y) ^ (n : ℕ)) ^ (1 / (n : ℝ)) ≤ (p (x ^ m) * p (y ^ (n - m : ℕ))) ^ (1 / (n : ℝ))
R : Type u_1 inst✝ : CommRing R p : RingSeminorm R hna : IsNonarchimedean ⇑p x y : R n : ℕ ⊢ ∃ m < n + 1, p ((x + y) ^ n) ^ (1 / ↑n) ≤ (p (x ^ m) * p (y ^ (n - m))) ^ (1 / ↑n)
obtain ⟨m, hm_lt, hm⟩ := IsNonarchimedean.add_pow_le hna n x y
case intro.intro R : Type u_1 inst✝ : CommRing R p : RingSeminorm R hna : IsNonarchimedean ⇑p x y : R n m : ℕ hm_lt : m < n + 1 hm : p ((x + y) ^ n) ≤ p (x ^ m) * p (y ^ (n - m)) ⊢ ∃ m < n + 1, p ((x + y) ^ n) ^ (1 / ↑n) ≤ (p (x ^ m) * p (y ^ (n - m))) ^ (1 / ↑n)
af6022ef7d300c81
t2Space_quotient_mulAction_of_properSMul
Mathlib/Topology/Algebra/ProperAction/Basic.lean
theorem t2Space_quotient_mulAction_of_properSMul [ProperSMul G X] : T2Space (Quotient (MulAction.orbitRel G X))
G : Type u_1 X : Type u_2 inst✝⁴ : Group G inst✝³ : MulAction G X inst✝² : TopologicalSpace G inst✝¹ : TopologicalSpace X inst✝ : ProperSMul G X R : Setoid X := MulAction.orbitRel G X π : X → Quotient R := Quotient.mk' this : IsOpenQuotientMap (Prod.map π π) ⊢ IsClosed (diagonal (Quotient R))
rw [← this.isQuotientMap.isClosed_preimage]
G : Type u_1 X : Type u_2 inst✝⁴ : Group G inst✝³ : MulAction G X inst✝² : TopologicalSpace G inst✝¹ : TopologicalSpace X inst✝ : ProperSMul G X R : Setoid X := MulAction.orbitRel G X π : X → Quotient R := Quotient.mk' this : IsOpenQuotientMap (Prod.map π π) ⊢ IsClosed (Prod.map π π ⁻¹' diagonal (Quotient R))
55cc0959d3fdc2ab
MeasureTheory.tilted_zero'
Mathlib/MeasureTheory/Measure/Tilted.lean
@[simp] lemma tilted_zero' (μ : Measure α) : μ.tilted 0 = (μ Set.univ)⁻¹ • μ
α : Type u_1 mα : MeasurableSpace α μ : Measure α ⊢ μ.tilted 0 = (μ Set.univ)⁻¹ • μ
change μ.tilted (fun _ ↦ 0) = (μ Set.univ)⁻¹ • μ
α : Type u_1 mα : MeasurableSpace α μ : Measure α ⊢ (μ.tilted fun x => 0) = (μ Set.univ)⁻¹ • μ
1a8638fac4774a18
EuclideanSpace.single_apply
Mathlib/Analysis/InnerProductSpace/PiL2.lean
theorem EuclideanSpace.single_apply (i : ι) (a : 𝕜) (j : ι) : (EuclideanSpace.single i a) j = ite (j = i) a 0
ι : Type u_1 𝕜 : Type u_3 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq ι i : ι a : 𝕜 j : ι ⊢ single i a j = if j = i then a else 0
rw [EuclideanSpace.single, WithLp.equiv_symm_pi_apply, ← Pi.single_apply i a j]
no goals
db204a4603e31523
frontier_inter_open_inter
Mathlib/Topology/Constructions.lean
theorem frontier_inter_open_inter {s t : Set X} (ht : IsOpen t) : frontier (s ∩ t) ∩ t = frontier s ∩ t
X : Type u inst✝ : TopologicalSpace X s t : Set X ht : IsOpen t ⊢ frontier (s ∩ t) ∩ t = frontier s ∩ t
simp only [Set.inter_comm _ t, ← Subtype.preimage_coe_eq_preimage_coe_iff, ht.isOpenMap_subtype_val.preimage_frontier_eq_frontier_preimage continuous_subtype_val, Subtype.preimage_coe_self_inter]
no goals
55361fcb299f8882
Submodule.nonempty_basis_of_pid
Mathlib/LinearAlgebra/FreeModule/PID.lean
theorem Submodule.nonempty_basis_of_pid {ι : Type*} [Finite ι] (b : Basis ι R M) (N : Submodule R M) : ∃ n : ℕ, Nonempty (Basis (Fin n) R N)
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_2 inst✝⁵ : CommRing R M : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : IsDomain R inst✝¹ : IsPrincipalIdealRing R ι : Type u_4 inst✝ : Finite ι b : Basis ι R M this : DecidableEq M val✝ : Fintype ι N : Submodule R M ih : ∀ N' ≤ N, ∀ x ∈ N, (∀ (c : R), ∀ y ∈ N', c • x + y = 0 → c = 0) → ∃ n, Nonempty (Basis (Fin n) R ↥N') b' : Basis (Fin (Fintype.card ι)) R ↥⊤ := (b.reindex (Fintype.equivFin ι)).map (LinearEquiv.ofTop ⊤ ⋯).symm N_bot : ¬N = ⊥ y : M a : R hay : a • y ∈ N M' N' : Submodule R M N'_le_N : N' ≤ N ay_ortho : ∀ (c : R), ∀ z ∈ N', c • a • y + z = 0 → c = 0 h' : ∀ (n' : ℕ) (bN' : Basis (Fin n') R ↥N'), ∃ bN, ∀ (m' : ℕ) (hn'm' : n' ≤ m') (bM' : Basis (Fin m') R ↥M'), ∃ (hnm : n' + 1 ≤ m' + 1), ∃ bM, ∀ (as : Fin n' → R), (∀ (i : Fin n'), ↑(bN' i) = as i • ↑(bM' (Fin.castLE hn'm' i))) → ∃ as', ∀ (i : Fin (n' + 1)), ↑(bN i) = as' i • ↑(bM (Fin.castLE hnm i)) n' : ℕ bN' : Basis (Fin n') R ↥N' ⊢ ∃ n, Nonempty (Basis (Fin n) R ↥N)
obtain ⟨bN, _hbN⟩ := h' n' bN'
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_2 inst✝⁵ : CommRing R M : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : IsDomain R inst✝¹ : IsPrincipalIdealRing R ι : Type u_4 inst✝ : Finite ι b : Basis ι R M this : DecidableEq M val✝ : Fintype ι N : Submodule R M ih : ∀ N' ≤ N, ∀ x ∈ N, (∀ (c : R), ∀ y ∈ N', c • x + y = 0 → c = 0) → ∃ n, Nonempty (Basis (Fin n) R ↥N') b' : Basis (Fin (Fintype.card ι)) R ↥⊤ := (b.reindex (Fintype.equivFin ι)).map (LinearEquiv.ofTop ⊤ ⋯).symm N_bot : ¬N = ⊥ y : M a : R hay : a • y ∈ N M' N' : Submodule R M N'_le_N : N' ≤ N ay_ortho : ∀ (c : R), ∀ z ∈ N', c • a • y + z = 0 → c = 0 h' : ∀ (n' : ℕ) (bN' : Basis (Fin n') R ↥N'), ∃ bN, ∀ (m' : ℕ) (hn'm' : n' ≤ m') (bM' : Basis (Fin m') R ↥M'), ∃ (hnm : n' + 1 ≤ m' + 1), ∃ bM, ∀ (as : Fin n' → R), (∀ (i : Fin n'), ↑(bN' i) = as i • ↑(bM' (Fin.castLE hn'm' i))) → ∃ as', ∀ (i : Fin (n' + 1)), ↑(bN i) = as' i • ↑(bM (Fin.castLE hnm i)) n' : ℕ bN' : Basis (Fin n') R ↥N' bN : Basis (Fin (n' + 1)) R ↥N _hbN : ∀ (m' : ℕ) (hn'm' : n' ≤ m') (bM' : Basis (Fin m') R ↥M'), ∃ (hnm : n' + 1 ≤ m' + 1), ∃ bM, ∀ (as : Fin n' → R), (∀ (i : Fin n'), ↑(bN' i) = as i • ↑(bM' (Fin.castLE hn'm' i))) → ∃ as', ∀ (i : Fin (n' + 1)), ↑(bN i) = as' i • ↑(bM (Fin.castLE hnm i)) ⊢ ∃ n, Nonempty (Basis (Fin n) R ↥N)
73a8c31f0fc25373
max_assoc
Mathlib/Order/Defs/LinearOrder.lean
lemma max_assoc (a b c : α) : max (max a b) c = max a (max b c)
case h₁ α : Type u_1 inst✝ : LinearOrder α a b c : α ⊢ a ≤ max (max a b) c
apply le_trans (le_max_left a b) (le_max_left ..)
no goals
749ba1aebfbd6b8b
ae_eq_restrict_iff_indicator_ae_eq
Mathlib/MeasureTheory/Measure/Restrict.lean
theorem ae_eq_restrict_iff_indicator_ae_eq {g : α → β} (hs : MeasurableSet s) : f =ᵐ[μ.restrict s] g ↔ s.indicator f =ᵐ[μ] s.indicator g
α : Type u_2 β : Type u_3 inst✝¹ : MeasurableSpace α μ : Measure α s : Set α f : α → β inst✝ : Zero β g : α → β hs : MeasurableSet s ⊢ f =ᶠ[ae (μ.restrict s)] g ↔ s.indicator f =ᶠ[ae μ] s.indicator g
rw [Filter.EventuallyEq, ae_restrict_iff' hs]
α : Type u_2 β : Type u_3 inst✝¹ : MeasurableSpace α μ : Measure α s : Set α f : α → β inst✝ : Zero β g : α → β hs : MeasurableSet s ⊢ (∀ᵐ (x : α) ∂μ, x ∈ s → f x = g x) ↔ s.indicator f =ᶠ[ae μ] s.indicator g
2261d3e8339b53b4
CliffordAlgebra.ι_mul_ι_add_swap_of_isOrtho
Mathlib/LinearAlgebra/CliffordAlgebra/Basic.lean
theorem ι_mul_ι_add_swap_of_isOrtho {a b : M} (h : Q.IsOrtho a b) : ι Q a * ι Q b + ι Q b * ι Q a = 0
R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a b : M h : QuadraticMap.IsOrtho Q a b ⊢ (ι Q) a * (ι Q) b + (ι Q) b * (ι Q) a = 0
rw [ι_mul_ι_add_swap, h.polar_eq_zero]
R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a b : M h : QuadraticMap.IsOrtho Q a b ⊢ (algebraMap R (CliffordAlgebra Q)) 0 = 0
235177264bd47bd1
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib/Tactic/Module.lean
theorem zero_sub_eq_eval [AddCommGroup M] [Ring R] [Module R M] (l : NF R M) : 0 - l.eval = (-l).eval
R : Type u_2 M : Type u_3 inst✝² : AddCommGroup M inst✝¹ : Ring R inst✝ : Module R M l : NF R M ⊢ 0 - l.eval = (-l).eval
simp [eval_neg]
no goals
f20da5fb84464c9f
LinearRecurrence.sol_eq_of_eq_init
Mathlib/Algebra/LinearRecurrence.lean
theorem sol_eq_of_eq_init (u v : ℕ → α) (hu : E.IsSolution u) (hv : E.IsSolution v) : u = v ↔ Set.EqOn u v ↑(range E.order)
α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : ℕ → α hu : E.IsSolution u hv : E.IsSolution v h : Set.EqOn u v ↑(range E.order) u' : ↥E.solSpace := ⟨u, hu⟩ v' : ↥E.solSpace := ⟨v, hv⟩ ⊢ E.toInit u' = E.toInit v'
ext x
case h α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : ℕ → α hu : E.IsSolution u hv : E.IsSolution v h : Set.EqOn u v ↑(range E.order) u' : ↥E.solSpace := ⟨u, hu⟩ v' : ↥E.solSpace := ⟨v, hv⟩ x : Fin E.order ⊢ E.toInit u' x = E.toInit v' x
5fb080a45c739da9
Ordinal.not_bddAbove_isInitial
Mathlib/SetTheory/Cardinal/Aleph.lean
theorem not_bddAbove_isInitial : ¬ BddAbove {x | IsInitial x}
case intro a : Ordinal.{u_1} ha : a ∈ upperBounds {x | x.IsInitial} this : (succ a.card).ord ≤ a ⊢ False
rw [ord_le] at this
case intro a : Ordinal.{u_1} ha : a ∈ upperBounds {x | x.IsInitial} this : succ a.card ≤ a.card ⊢ False
35664785dffb95ea
FirstOrder.Language.dlo_isExtensionPair
Mathlib/ModelTheory/Order.lean
lemma dlo_isExtensionPair (M : Type w) [Language.order.Structure M] [M ⊨ Language.order.linearOrderTheory] (N : Type w') [Language.order.Structure N] [N ⊨ Language.order.dlo] [Nonempty N] : Language.order.IsExtensionPair M N
M : Type w inst✝⁴ : Language.order.Structure M inst✝³ : M ⊨ Language.order.linearOrderTheory N : Type w' inst✝² : Language.order.Structure N inst✝¹ : N ⊨ Language.order.dlo inst✝ : Nonempty N ⊢ Language.order.IsExtensionPair M N
classical rw [isExtensionPair_iff_exists_embedding_closure_singleton_sup] intro S S_fg f m letI := Language.order.linearOrderOfModels M letI := Language.order.linearOrderOfModels N have := Language.order.denselyOrdered_of_dlo N have := Language.order.noBotOrder_of_dlo N have := Language.order.noTopOrder_of_dlo N have := NoBotOrder.to_noMinOrder N have := NoTopOrder.to_noMaxOrder N have hS : Set.Finite (S : Set M) := (S.fg_iff_structure_fg.1 S_fg).finite obtain ⟨g, hg⟩ := Order.exists_orderEmbedding_insert hS.toFinset ((OrderIso.setCongr hS.toFinset (S : Set M) hS.coe_toFinset).toOrderEmbedding.trans (OrderEmbedding.ofStrictMono f (HomClass.strictMono f))) m let g' : ((Substructure.closure Language.order).toFun {m} ⊔ S : Language.order.Substructure M) ↪o N := ((OrderIso.setCongr _ _ (by convert LowerAdjoint.closure_eq_self_of_mem_closed _ (Substructure.mem_closed_of_isRelational Language.order ((insert m hS.toFinset : Finset M) : Set M)) simp only [Finset.coe_insert, Set.Finite.coe_toFinset, Substructure.closure_insert, Substructure.closure_eq])).toOrderEmbedding.trans g) use StrongHomClass.toEmbedding g' ext ⟨x, xS⟩ refine congr_fun hg.symm ⟨x, (?_ : x ∈ hS.toFinset)⟩ simp only [Set.Finite.mem_toFinset, SetLike.mem_coe, xS]
no goals
688ee7e1f57a4d8d
Ergodic.ae_empty_or_univ_of_preimage_ae_le'
Mathlib/Dynamics/Ergodic/Ergodic.lean
theorem ae_empty_or_univ_of_preimage_ae_le' (hf : Ergodic f μ) (hs : NullMeasurableSet s μ) (hs' : f ⁻¹' s ≤ᵐ[μ] s) (h_fin : μ s ≠ ∞) : s =ᵐ[μ] (∅ : Set α) ∨ s =ᵐ[μ] univ
α : Type u_1 m : MeasurableSpace α s : Set α f : α → α μ : Measure α hf : Ergodic f μ hs : NullMeasurableSet s μ hs' : f ⁻¹' s ≤ᶠ[ae μ] s h_fin : μ s ≠ ⊤ ⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ
refine hf.quasiErgodic.ae_empty_or_univ₀ hs ?_
α : Type u_1 m : MeasurableSpace α s : Set α f : α → α μ : Measure α hf : Ergodic f μ hs : NullMeasurableSet s μ hs' : f ⁻¹' s ≤ᶠ[ae μ] s h_fin : μ s ≠ ⊤ ⊢ f ⁻¹' s =ᶠ[ae μ] s
bb8c7ce97a4e44bf
Multiset.mem_sub_of_nodup
Mathlib/Data/Multiset/Nodup.lean
theorem mem_sub_of_nodup [DecidableEq α] {a : α} {s t : Multiset α} (d : Nodup s) : a ∈ s - t ↔ a ∈ s ∧ a ∉ t := ⟨fun h => ⟨mem_of_le (Multiset.sub_le_self ..) h, fun h' => by refine count_eq_zero.1 ?_ h rw [count_sub a s t, Nat.sub_eq_zero_iff_le] exact le_trans (nodup_iff_count_le_one.1 d _) (count_pos.2 h')⟩, fun ⟨h₁, h₂⟩ => Or.resolve_right (mem_add.1 <| mem_of_le Multiset.le_sub_add h₁) h₂⟩
α : Type u_1 inst✝ : DecidableEq α a : α s t : Multiset α d : s.Nodup h : a ∈ s - t h' : a ∈ t ⊢ count a s ≤ count a t
exact le_trans (nodup_iff_count_le_one.1 d _) (count_pos.2 h')
no goals
731241905e736d7a
MeasureTheory.analyticSet_empty
Mathlib/MeasureTheory/Constructions/Polish/Basic.lean
theorem analyticSet_empty : AnalyticSet (∅ : Set α)
α : Type u_1 inst✝ : TopologicalSpace α ⊢ ∅ = ∅ ∨ ∃ f, Continuous f ∧ range f = ∅
exact Or.inl rfl
no goals
96d6590387ca3fc0
convexHull_range_eq_exists_affineCombination
Mathlib/Analysis/Convex/Combination.lean
theorem convexHull_range_eq_exists_affineCombination (v : ι → E) : convexHull R (range v) = { x | ∃ (s : Finset ι) (w : ι → R), (∀ i ∈ s, 0 ≤ w i) ∧ s.sum w = 1 ∧ s.affineCombination R v w = x }
R : Type u_1 E : Type u_3 ι : Type u_5 inst✝² : LinearOrderedField R inst✝¹ : AddCommGroup E inst✝ : Module R E v : ι → E s : Finset ι w : ι → R hw₀ : ∀ i ∈ s, 0 ≤ w i hw₁ : s.sum w = 1 s' : Finset ι w' : ι → R hw₀' : ∀ i ∈ s', 0 ≤ w' i hw₁' : s'.sum w' = 1 a b : R ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 W : ι → R := fun i => (if i ∈ s then a * w i else 0) + if i ∈ s' then b * w' i else 0 ⊢ (s ∪ s').sum W = 1
rw [sum_add_distrib, ← sum_subset subset_union_left, ← sum_subset subset_union_right, sum_ite_of_true, sum_ite_of_true, ← mul_sum, ← mul_sum, hw₁, hw₁', ← add_mul, hab, mul_one] <;> intros <;> simp_all
no goals
c246f547060b42da
Set.toFinset_setOf
Mathlib/Data/Fintype/Sets.lean
theorem toFinset_setOf [Fintype α] (p : α → Prop) [DecidablePred p] [Fintype { x | p x }] : Set.toFinset {x | p x} = Finset.univ.filter p
α : Type u_1 inst✝² : Fintype α p : α → Prop inst✝¹ : DecidablePred p inst✝ : Fintype ↑{x | p x} ⊢ {x | p x}.toFinset = filter p Finset.univ
ext
case h α : Type u_1 inst✝² : Fintype α p : α → Prop inst✝¹ : DecidablePred p inst✝ : Fintype ↑{x | p x} a✝ : α ⊢ a✝ ∈ {x | p x}.toFinset ↔ a✝ ∈ filter p Finset.univ
1860bcb393ffcedc
OrthogonalFamily.orthonormal_sigma_orthonormal
Mathlib/Analysis/InnerProductSpace/Subspace.lean
theorem OrthogonalFamily.orthonormal_sigma_orthonormal {α : ι → Type*} {v_family : ∀ i, α i → G i} (hv_family : ∀ i, Orthonormal 𝕜 (v_family i)) : Orthonormal 𝕜 fun a : Σi, α i => V a.1 (v_family a.1 a.2)
𝕜 : Type u_1 E : Type u_2 inst✝⁴ : RCLike 𝕜 inst✝³ : SeminormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E ι : Type u_4 G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V α : ι → Type u_6 v_family : (i : ι) → α i → G i hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i) i : ι v : α i hvw : ⟨i, v⟩ ≠ ⟨i, v⟩ ⊢ False
exact hvw rfl
no goals
d3fff3fd19f98338
Set.ruzsa_covering_mul
Mathlib/Combinatorics/Additive/RuzsaCovering.lean
/-- **Ruzsa's covering lemma** for sets. See also `Finset.ruzsa_covering_mul`. -/ @[to_additive "**Ruzsa's covering lemma** for sets. See also `Finset.ruzsa_covering_add`."] lemma ruzsa_covering_mul (hA : A.Finite) (hB : B.Finite) (hB₀ : B.Nonempty) (hK : Nat.card (A * B) ≤ K * Nat.card B) : ∃ F ⊆ A, Nat.card F ≤ K ∧ A ⊆ F * (B / B) ∧ F.Finite
case intro.intro G : Type u_1 inst✝ : Group G K : ℝ A B : Finset G hB₀ : (↑B).Nonempty hK : ↑(Nat.card ↑(↑A * ↑B)) ≤ K * ↑(Nat.card ↑↑B) ⊢ ∃ F ⊆ ↑A, ↑(Nat.card ↑F) ≤ K ∧ ↑A ⊆ F * (↑B / ↑B) ∧ F.Finite
obtain ⟨F, hFA, hF, hAF⟩ := Finset.ruzsa_covering_mul hB₀ (by simpa [← Finset.coe_mul] using hK)
case intro.intro.intro.intro.intro G : Type u_1 inst✝ : Group G K : ℝ A B : Finset G hB₀ : (↑B).Nonempty hK : ↑(Nat.card ↑(↑A * ↑B)) ≤ K * ↑(Nat.card ↑↑B) F : Finset G hFA : F ⊆ A hF : ↑F.card ≤ K hAF : A ⊆ F * (B / B) ⊢ ∃ F ⊆ ↑A, ↑(Nat.card ↑F) ≤ K ∧ ↑A ⊆ F * (↑B / ↑B) ∧ F.Finite
ad264201fa97dd6b
SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₁
Mathlib/AlgebraicTopology/SimplicialSet/Coskeletal.lean
lemma fac_aux₁ {n : ℕ} (s : Cone (proj (op ⦋n⦌) (Truncated.inclusion 2).op ⋙ (Truncated.inclusion 2).op ⋙ X)) (x : s.pt) (i : ℕ) (hi : i < n) : X.map (mkOfSucc ⟨i, hi⟩).op (lift s x) = s.π.app (strArrowMk₂ (mkOfSucc ⟨i, hi⟩)) x
X : SSet inst✝ : X.StrictSegal n : ℕ s : Cone (proj (op ⦋n⦌) (Truncated.inclusion 2).op ⋙ (Truncated.inclusion 2).op ⋙ X) x : s.pt i : ℕ hi : i < n ⊢ X.map (mkOfSucc ⟨i, hi⟩).op (lift s x) = s.π.app (strArrowMk₂ (mkOfSucc ⟨i, hi⟩) ⋯) x
dsimp [lift]
X : SSet inst✝ : X.StrictSegal n : ℕ s : Cone (proj (op ⦋n⦌) (Truncated.inclusion 2).op ⋙ (Truncated.inclusion 2).op ⋙ X) x : s.pt i : ℕ hi : i < n ⊢ X.map (mkOfSucc ⟨i, hi⟩).op (spineToSimplex { vertex := fun i => s.π.app (StructuredArrow.mk (((Truncated.inclusion 2).obj { obj := ⦋0⦌, property := lift.proof_1 }).const ⦋n⦌ i).op) x, arrow := fun i => s.π.app (StructuredArrow.mk (mkOfLe i.castSucc i.succ ⋯).op) x, arrow_src := ⋯, arrow_tgt := ⋯ }) = s.π.app (strArrowMk₂ (mkOfSucc ⟨i, hi⟩) ⋯) x
97963738e37dfef3
MeasureTheory.condExpL2_indicator_nonneg
Mathlib/MeasureTheory/Function/ConditionalExpectation/CondexpL2.lean
theorem condExpL2_indicator_nonneg (hm : m ≤ m0) (hs : MeasurableSet s) (hμs : μ s ≠ ∞) [SigmaFinite (μ.trim hm)] : (0 : α → ℝ) ≤ᵐ[μ] condExpL2 ℝ ℝ hm (indicatorConstLp 2 hs hμs 1)
case refine_2 α : Type u_1 m m0 : MeasurableSpace α μ : Measure α s : Set α hm : m ≤ m0 hs : MeasurableSet s hμs : μ s ≠ ⊤ inst✝ : SigmaFinite (μ.trim hm) h : AEStronglyMeasurable (↑↑↑((condExpL2 ℝ ℝ hm) (indicatorConstLp 2 hs hμs 1))) μ t : Set α ht : MeasurableSet t hμt : (μ.trim hm) t < ⊤ h_ae : ∀ᵐ (x : α) ∂μ, x ∈ t → AEStronglyMeasurable.mk (↑↑↑((condExpL2 ℝ ℝ hm) (indicatorConstLp 2 hs hμs 1))) h x = ↑↑↑((condExpL2 ℝ ℝ hm) (indicatorConstLp 2 hs hμs 1)) x ⊢ 0 ≤ ∫ (x : α) in t, AEStronglyMeasurable.mk (↑↑↑((condExpL2 ℝ ℝ hm) (indicatorConstLp 2 hs hμs 1))) h x ∂μ
rw [setIntegral_congr_ae (hm t ht) h_ae, setIntegral_condExpL2_indicator ht hs ((le_trim hm).trans_lt hμt).ne hμs]
case refine_2 α : Type u_1 m m0 : MeasurableSpace α μ : Measure α s : Set α hm : m ≤ m0 hs : MeasurableSet s hμs : μ s ≠ ⊤ inst✝ : SigmaFinite (μ.trim hm) h : AEStronglyMeasurable (↑↑↑((condExpL2 ℝ ℝ hm) (indicatorConstLp 2 hs hμs 1))) μ t : Set α ht : MeasurableSet t hμt : (μ.trim hm) t < ⊤ h_ae : ∀ᵐ (x : α) ∂μ, x ∈ t → AEStronglyMeasurable.mk (↑↑↑((condExpL2 ℝ ℝ hm) (indicatorConstLp 2 hs hμs 1))) h x = ↑↑↑((condExpL2 ℝ ℝ hm) (indicatorConstLp 2 hs hμs 1)) x ⊢ 0 ≤ (μ (s ∩ t)).toReal
d88e3b2d7a38a88c
MeasureTheory.integral_divergence_of_hasFDerivWithinAt_off_countable_aux₂
Mathlib/MeasureTheory/Integral/DivergenceTheorem.lean
theorem integral_divergence_of_hasFDerivWithinAt_off_countable_aux₂ (I : Box (Fin (n + 1))) (f : ℝⁿ⁺¹ → Eⁿ⁺¹) (f' : ℝⁿ⁺¹ → ℝⁿ⁺¹ →L[ℝ] Eⁿ⁺¹) (s : Set ℝⁿ⁺¹) (hs : s.Countable) (Hc : ContinuousOn f (Box.Icc I)) (Hd : ∀ x ∈ Box.Ioo I \ s, HasFDerivAt f (f' x) x) (Hi : IntegrableOn (∑ i, f' · (e i) i) (Box.Icc I)) : (∫ x in Box.Icc I, ∑ i, f' x (e i) i) = ∑ i : Fin (n + 1), ((∫ x in Box.Icc (I.face i), f (i.insertNth (I.upper i) x) i) - ∫ x in Box.Icc (I.face i), f (i.insertNth (I.lower i) x) i)
E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E n : ℕ I : Box (Fin (n + 1)) f : (Fin (n + 1) → ℝ) → Fin (n + 1) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] Fin (n + 1) → E s : Set (Fin (n + 1) → ℝ) hs : s.Countable Hc : ContinuousOn f (Box.Icc I) Hd : ∀ x ∈ Box.Ioo I \ s, HasFDerivAt f (f' x) x J : ℕ →o Box (Fin (n + 1)) hJ_sub : ∀ (n_1 : ℕ), Box.Icc (J n_1) ⊆ Box.Ioo I hJl : Tendsto (Box.lower ∘ ⇑J) atTop (𝓝 I.lower) hJu : Tendsto (Box.upper ∘ ⇑J) atTop (𝓝 I.upper) hJ_sub' : ∀ (k : ℕ), Box.Icc (J k) ⊆ Box.Icc I hJ_le : ∀ (k : ℕ), J k ≤ I HcJ : ∀ (k : ℕ), ContinuousOn f (Box.Icc (J k)) HdJ : ∀ (k : ℕ), ∀ x ∈ Box.Icc (J k) \ s, HasFDerivWithinAt f (f' x) (Box.Icc (J k)) x HiJ : ∀ (k : ℕ), IntegrableOn (fun x => ∑ i : Fin (n + 1), (f' x) (e i) i) (Box.Icc (J k)) volume HJ_eq : ∀ (k : ℕ), ∫ (x : Fin (n + 1) → ℝ) in Box.Icc (J k), ∑ i : Fin (n + 1), (f' x) (e i) i = ∑ i : Fin (n + 1), ((∫ (x : Fin n → ℝ) in Box.Icc ((J k).face i), f (i.insertNth ((J k).upper i) x) i) - ∫ (x : Fin n → ℝ) in Box.Icc ((J k).face i), f (i.insertNth ((J k).lower i) x) i) Hi : Integrable (fun x => ∑ i : Fin (n + 1), (f' x) (e i) i) (volume.restrict (Box.Ioo I)) ⊢ Tendsto (fun k => ∫ (x : Fin (n + 1) → ℝ) in Box.Ioo (J k), ∑ i : Fin (n + 1), (f' x) (e i) i) atTop (𝓝 (∫ (x : Fin (n + 1) → ℝ) in Box.Ioo I, ∑ i : Fin (n + 1), (f' x) (e i) i))
rw [← Box.iUnion_Ioo_of_tendsto J.monotone hJl hJu] at Hi ⊢
E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E n : ℕ I : Box (Fin (n + 1)) f : (Fin (n + 1) → ℝ) → Fin (n + 1) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] Fin (n + 1) → E s : Set (Fin (n + 1) → ℝ) hs : s.Countable Hc : ContinuousOn f (Box.Icc I) Hd : ∀ x ∈ Box.Ioo I \ s, HasFDerivAt f (f' x) x J : ℕ →o Box (Fin (n + 1)) hJ_sub : ∀ (n_1 : ℕ), Box.Icc (J n_1) ⊆ Box.Ioo I hJl : Tendsto (Box.lower ∘ ⇑J) atTop (𝓝 I.lower) hJu : Tendsto (Box.upper ∘ ⇑J) atTop (𝓝 I.upper) hJ_sub' : ∀ (k : ℕ), Box.Icc (J k) ⊆ Box.Icc I hJ_le : ∀ (k : ℕ), J k ≤ I HcJ : ∀ (k : ℕ), ContinuousOn f (Box.Icc (J k)) HdJ : ∀ (k : ℕ), ∀ x ∈ Box.Icc (J k) \ s, HasFDerivWithinAt f (f' x) (Box.Icc (J k)) x HiJ : ∀ (k : ℕ), IntegrableOn (fun x => ∑ i : Fin (n + 1), (f' x) (e i) i) (Box.Icc (J k)) volume HJ_eq : ∀ (k : ℕ), ∫ (x : Fin (n + 1) → ℝ) in Box.Icc (J k), ∑ i : Fin (n + 1), (f' x) (e i) i = ∑ i : Fin (n + 1), ((∫ (x : Fin n → ℝ) in Box.Icc ((J k).face i), f (i.insertNth ((J k).upper i) x) i) - ∫ (x : Fin n → ℝ) in Box.Icc ((J k).face i), f (i.insertNth ((J k).lower i) x) i) Hi : Integrable (fun x => ∑ i : Fin (n + 1), (f' x) (e i) i) (volume.restrict (⋃ n_1, Box.Ioo (J n_1))) ⊢ Tendsto (fun k => ∫ (x : Fin (n + 1) → ℝ) in Box.Ioo (J k), ∑ i : Fin (n + 1), (f' x) (e i) i) atTop (𝓝 (∫ (x : Fin (n + 1) → ℝ) in ⋃ n_1, Box.Ioo (J n_1), ∑ i : Fin (n + 1), (f' x) (e i) i))
d25a0c4e5a28a1f3
pow_padicValNat_dvd
Mathlib/NumberTheory/Padics/PadicVal/Basic.lean
theorem pow_padicValNat_dvd {n : ℕ} : p ^ padicValNat p n ∣ n
case inr p n : ℕ hn : n > 0 ⊢ p ^ padicValNat p n ∣ n
rcases eq_or_ne p 1 with (rfl | hp)
case inr.inl n : ℕ hn : n > 0 ⊢ 1 ^ padicValNat 1 n ∣ n case inr.inr p n : ℕ hn : n > 0 hp : p ≠ 1 ⊢ p ^ padicValNat p n ∣ n
b80d28e2b2224789
AlgebraicGeometry.HasAffineProperty.diagonal_of_diagonal_of_isPullback
Mathlib/AlgebraicGeometry/Morphisms/Constructors.lean
theorem HasAffineProperty.diagonal_of_diagonal_of_isPullback (P) {Q} [HasAffineProperty P Q] {X Y U V : Scheme.{u}} {f : X ⟶ Y} {g : U ⟶ Y} [IsAffine U] [IsOpenImmersion g] {iV : V ⟶ X} {f' : V ⟶ U} (h : IsPullback iV f' f g) (H : P.diagonal f) : Q.diagonal f'
case h.e'_3.h P : MorphismProperty Scheme Q : AffineTargetMorphismProperty inst✝² : HasAffineProperty P Q X Y U✝ V✝ : Scheme f : X ⟶ Y g : U✝ ⟶ Y inst✝¹ : IsAffine U✝ inst✝ : IsOpenImmersion g iV : V✝ ⟶ X f' : V✝ ⟶ U✝ h : IsPullback iV f' f g H : P.diagonal f this : Q.IsLocal := isLocal_affineProperty P U V : Scheme f₁ : U ⟶ pullback f g f₂ : V ⟶ pullback f g hU : IsAffine U hV : IsAffine V hf₁ : IsOpenImmersion f₁ hf₂ : IsOpenImmersion f₂ e_1✝ : pullback (pullback.diagonal f) (pullback.map (f₁ ≫ pullback.snd f g) (f₂ ≫ pullback.snd f g) f f (f₁ ≫ pullback.fst f g) (f₂ ≫ pullback.fst f g) g ⋯ ⋯) = pullback (pullback.diagonal f) (pullback.map (f₁ ≫ pullback.snd f g) (f₂ ≫ pullback.snd f g) f f (f₁ ≫ pullback.fst f g) (f₂ ≫ pullback.fst f g) g ⋯ ⋯) e_2✝ : pullback (f₁ ≫ pullback.snd f g) (f₂ ≫ pullback.snd f g) = pullback (f₁ ≫ pullback.snd f g) (f₂ ≫ pullback.snd f g) ⊢ (pullbackDiagonalMapIso f g f₁ f₂).hom ≫ pullback.mapDesc f₁ f₂ (pullback.snd f g) = pullback.snd (pullback.diagonal f) (pullback.map (f₁ ≫ pullback.snd f g) (f₂ ≫ pullback.snd f g) f f (f₁ ≫ pullback.fst f g) (f₂ ≫ pullback.fst f g) g ⋯ ⋯)
apply pullback.hom_ext <;> simp
no goals
6247e87fffb2135c
Finset.prod_ite_mem
Mathlib/Algebra/BigOperators/Group/Finset/Basic.lean
theorem prod_ite_mem [DecidableEq α] (s t : Finset α) (f : α → β) : ∏ i ∈ s, (if i ∈ t then f i else 1) = ∏ i ∈ s ∩ t, f i
α : Type u_3 β : Type u_4 inst✝¹ : CommMonoid β inst✝ : DecidableEq α s t : Finset α f : α → β ⊢ (∏ i ∈ s, if i ∈ t then f i else 1) = ∏ i ∈ s ∩ t, f i
rw [← Finset.prod_filter, Finset.filter_mem_eq_inter]
no goals
4415ba4b31d04aed
card_classGroup_eq_one_iff
Mathlib/RingTheory/ClassGroup.lean
theorem card_classGroup_eq_one_iff [IsDedekindDomain R] [Fintype (ClassGroup R)] : Fintype.card (ClassGroup R) = 1 ↔ IsPrincipalIdealRing R
case mp R : Type u_1 inst✝³ : CommRing R inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R inst✝ : Fintype (ClassGroup R) ⊢ Fintype.card (ClassGroup R) = 1 → IsPrincipalIdealRing R case mpr R : Type u_1 inst✝³ : CommRing R inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R inst✝ : Fintype (ClassGroup R) ⊢ IsPrincipalIdealRing R → Fintype.card (ClassGroup R) = 1
swap
case mpr R : Type u_1 inst✝³ : CommRing R inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R inst✝ : Fintype (ClassGroup R) ⊢ IsPrincipalIdealRing R → Fintype.card (ClassGroup R) = 1 case mp R : Type u_1 inst✝³ : CommRing R inst✝² : IsDomain R inst✝¹ : IsDedekindDomain R inst✝ : Fintype (ClassGroup R) ⊢ Fintype.card (ClassGroup R) = 1 → IsPrincipalIdealRing R
6bf7e5af8c06407b
MeasureTheory.Measure.count_apply_infinite
Mathlib/MeasureTheory/Measure/Count.lean
theorem count_apply_infinite (hs : s.Infinite) : count s = ∞
α : Type u_1 inst✝ : MeasurableSpace α s : Set α hs : s.Infinite n : ℕ ⊢ ↑n ≤ count s
rcases hs.exists_subset_card_eq n with ⟨t, ht, rfl⟩
case intro.intro α : Type u_1 inst✝ : MeasurableSpace α s : Set α hs : s.Infinite t : Finset α ht : ↑t ⊆ s ⊢ ↑t.card ≤ count s
ed96a5bdd1a2bdb2
List.flatten_reverse
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem flatten_reverse (L : List (List α)) : L.reverse.flatten = (L.map reverse).flatten.reverse
α : Type u_1 L : List (List α) ⊢ L.reverse.flatten = (map reverse L).flatten.reverse
induction L <;> simp_all
no goals
30e1614dac48f0c6
CochainComplex.mappingCone.map_δ
Mathlib/Algebra/Homology/HomotopyCategory/Pretriangulated.lean
lemma map_δ : (G.mapHomologicalComplex (ComplexShape.up ℤ)).map (triangle φ).mor₃ ≫ NatTrans.app ((Functor.mapHomologicalComplex G (ComplexShape.up ℤ)).commShiftIso 1).hom K = (mapHomologicalComplexIso φ G).hom ≫ (triangle ((G.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).mor₃
case h C : Type u_1 D : Type u_2 inst✝⁶ : Category.{u_4, u_1} C inst✝⁵ : Category.{u_3, u_2} D inst✝⁴ : Preadditive C inst✝³ : HasBinaryBiproducts C inst✝² : Preadditive D inst✝¹ : HasBinaryBiproducts D K L : CochainComplex C ℤ φ : K ⟶ L G : C ⥤ D inst✝ : G.Additive n : ℤ ⊢ G.map ((triangle φ).mor₃.f n) ≫ 𝟙 (G.obj (K.X (n + 1))) = (G.map ((↑(fst φ)).v n (n + 1) ⋯) ≫ (inl ((G.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).v (n + 1) n ⋯ + G.map ((snd φ).v n n ⋯) ≫ (inr ((G.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).f n) ≫ (triangle ((G.mapHomologicalComplex (ComplexShape.up ℤ)).map φ)).mor₃.f n
simp only [Functor.mapHomologicalComplex_obj_X, add_comp, assoc, inl_v_triangle_mor₃_f, shiftFunctor_obj_X, shiftFunctorObjXIso, HomologicalComplex.XIsoOfEq_rfl, Iso.refl_inv, comp_neg, comp_id, inr_f_triangle_mor₃_f, comp_zero, add_zero]
case h C : Type u_1 D : Type u_2 inst✝⁶ : Category.{u_4, u_1} C inst✝⁵ : Category.{u_3, u_2} D inst✝⁴ : Preadditive C inst✝³ : HasBinaryBiproducts C inst✝² : Preadditive D inst✝¹ : HasBinaryBiproducts D K L : CochainComplex C ℤ φ : K ⟶ L G : C ⥤ D inst✝ : G.Additive n : ℤ ⊢ G.map ((triangle φ).mor₃.f n) = -G.map ((↑(fst φ)).v n (n + 1) ⋯)
31723edde10b5c70
deriv.lhopital_zero_nhds_right
Mathlib/Analysis/Calculus/LHopital.lean
theorem lhopital_zero_nhds_right (hdf : ∀ᶠ x in 𝓝[>] a, DifferentiableAt ℝ f x) (hg' : ∀ᶠ x in 𝓝[>] a, deriv g x ≠ 0) (hfa : Tendsto f (𝓝[>] a) (𝓝 0)) (hga : Tendsto g (𝓝[>] a) (𝓝 0)) (hdiv : Tendsto (fun x => (deriv f) x / (deriv g) x) (𝓝[>] a) l) : Tendsto (fun x => f x / g x) (𝓝[>] a) l
a : ℝ l : Filter ℝ f g : ℝ → ℝ hdf : ∀ᶠ (x : ℝ) in 𝓝[>] a, DifferentiableAt ℝ f x hg' : ∀ᶠ (x : ℝ) in 𝓝[>] a, deriv g x ≠ 0 hfa : Tendsto f (𝓝[>] a) (𝓝 0) hga : Tendsto g (𝓝[>] a) (𝓝 0) hdiv : Tendsto (fun x => deriv f x / deriv g x) (𝓝[>] a) l hdg : ∀ᶠ (x : ℝ) in 𝓝[>] a, DifferentiableAt ℝ g x hdf' : ∀ᶠ (x : ℝ) in 𝓝[>] a, HasDerivAt f (deriv f x) x hdg' : ∀ᶠ (x : ℝ) in 𝓝[>] a, HasDerivAt g (deriv g x) x ⊢ Tendsto (fun x => f x / g x) (𝓝[>] a) l
exact HasDerivAt.lhopital_zero_nhds_right hdf' hdg' hg' hfa hga hdiv
no goals
cd7c4c838ec90e49
AddCircle.ergodic_nsmul_add
Mathlib/Dynamics/Ergodic/AddCircle.lean
theorem ergodic_nsmul_add (x : AddCircle T) {n : ℕ} (h : 1 < n) : Ergodic fun y => n • y + x := ergodic_zsmul_add x (by simp [h] : 1 < |(n : ℤ)|)
T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℕ h : 1 < n ⊢ 1 < |↑n|
simp [h]
no goals
9e072f1a9fcf95e4
CategoryTheory.Iso.eHomCongr_comp
Mathlib/CategoryTheory/Enriched/HomCongr.lean
/-- `eHomCongr` respects composition of morphisms. Recall that for any composable pair of arrows `f : X ⟶ Y` and `g : Y ⟶ Z` in `C`, the composite `f ≫ g` in `C` defines a morphism `𝟙_ V ⟶ (X ⟶[V] Z)` in `V`. Composing with the isomorphism `eHomCongr V α γ` yields a morphism in `V` that can be factored through the enriched composition map as shown: `𝟙_ V ⟶ 𝟙_ V ⊗ 𝟙_ V ⟶ (X₁ ⟶[V] Y₁) ⊗ (Y₁ ⟶[V] Z₁) ⟶ (X₁ ⟶[V] Z₁)`. -/ @[reassoc] lemma eHomCongr_comp {X Y Z X₁ Y₁ Z₁ : C} (α : X ≅ X₁) (β : Y ≅ Y₁) (γ : Z ≅ Z₁) (f : X ⟶ Y) (g : Y ⟶ Z) : eHomEquiv V (f ≫ g) ≫ (eHomCongr V α γ).hom = (λ_ _).inv ≫ (eHomEquiv V f ≫ (eHomCongr V α β).hom) ▷ _ ≫ _ ◁ (eHomEquiv V g ≫ (eHomCongr V β γ).hom) ≫ eComp V X₁ Y₁ Z₁
V : Type u' inst✝³ : Category.{v', u'} V inst✝² : MonoidalCategory V C : Type u inst✝¹ : Category.{v, u} C inst✝ : EnrichedOrdinaryCategory V C X Y Z X₁ Y₁ Z₁ : C α : X ≅ X₁ β : Y ≅ Y₁ γ : Z ≅ Z₁ f : X ⟶ Y g : Y ⟶ Z ⊢ (eHomEquiv V) (f ≫ g) ≫ (eHomCongr V α γ).hom = (λ_ (𝟙_ V)).inv ≫ ((eHomEquiv V) f ≫ (eHomCongr V α β).hom) ▷ 𝟙_ V ≫ EnrichedCategory.Hom X₁ Y₁ ◁ ((eHomEquiv V) g ≫ (eHomCongr V β γ).hom) ≫ eComp V X₁ Y₁ Z₁
simp only [eHomCongr, MonoidalCategory.whiskerRight_id, assoc, MonoidalCategory.whiskerLeft_comp]
V : Type u' inst✝³ : Category.{v', u'} V inst✝² : MonoidalCategory V C : Type u inst✝¹ : Category.{v, u} C inst✝ : EnrichedOrdinaryCategory V C X Y Z X₁ Y₁ Z₁ : C α : X ≅ X₁ β : Y ≅ Y₁ γ : Z ≅ Z₁ f : X ⟶ Y g : Y ⟶ Z ⊢ (eHomEquiv V) (f ≫ g) ≫ eHomWhiskerRight V α.inv Z ≫ eHomWhiskerLeft V X₁ γ.hom = (λ_ (𝟙_ V)).inv ≫ (ρ_ (𝟙_ V)).hom ≫ (eHomEquiv V) f ≫ eHomWhiskerRight V α.inv Y ≫ eHomWhiskerLeft V X₁ β.hom ≫ (ρ_ (EnrichedCategory.Hom X₁ Y₁)).inv ≫ EnrichedCategory.Hom X₁ Y₁ ◁ (eHomEquiv V) g ≫ EnrichedCategory.Hom X₁ Y₁ ◁ eHomWhiskerRight V β.inv Z ≫ EnrichedCategory.Hom X₁ Y₁ ◁ eHomWhiskerLeft V Y₁ γ.hom ≫ eComp V X₁ Y₁ Z₁
9ba22ae25e903236
WeierstrassCurve.exists_variableChange_of_char_ne_two_or_three
Mathlib/AlgebraicGeometry/EllipticCurve/IsomOfJ.lean
private lemma exists_variableChange_of_char_ne_two_or_three {p : ℕ} [CharP F p] (hchar2 : p ≠ 2) (hchar3 : p ≠ 3) (heq : E.j = E'.j) : ∃ C : VariableChange F, E.variableChange C = E'
case h.a₆ F : Type u_1 inst✝⁶ : Field F inst✝⁵ : IsSepClosed F E✝ E'✝ : WeierstrassCurve F inst✝⁴ : E✝.IsElliptic inst✝³ : E'✝.IsElliptic p : ℕ inst✝² : CharP F p hchar2 : 2 ≠ 0 hchar3 : 3 ≠ 0 this✝³ : NeZero 2 this✝² : NeZero 4 this✝¹ : NeZero 6 this✝ : Invertible 2 := invertibleOfNonzero hchar2 this : Invertible 3 := invertibleOfNonzero hchar3 E : WeierstrassCurve F inst✝¹ : E.IsElliptic h✝¹ : E.IsShortNF E' : WeierstrassCurve F inst✝ : E'.IsElliptic h✝ : E'.IsShortNF heq : E.a₄ ^ 3 * E'.a₆ ^ 2 = E'.a₄ ^ 3 * E.a₆ ^ 2 ha₄ : ¬E.a₄ = 0 ha₆ : ¬E.a₆ = 0 ha₄' : E'.a₄ ≠ 0 ha₆' : E'.a₆ ≠ 0 u : F hu : u ^ 2 = E.a₆ / E'.a₆ / (E.a₄ / E'.a₄) hu4 : u ^ 4 = E.a₄ / E'.a₄ hu6 : u ^ 6 = E.a₆ / E'.a₆ hu0 : u ≠ 0 ⊢ (E.variableChange { u := Units.mk0 u hu0, r := 0, s := 0, t := 0 }).a₆ = E'.a₆
simp_rw [variableChange_a₆, a₁_of_isShortNF, a₂_of_isShortNF, a₃_of_isShortNF, Units.val_inv_eq_inv_val, Units.val_mk0, inv_pow, inv_mul_eq_div, hu6]
case h.a₆ F : Type u_1 inst✝⁶ : Field F inst✝⁵ : IsSepClosed F E✝ E'✝ : WeierstrassCurve F inst✝⁴ : E✝.IsElliptic inst✝³ : E'✝.IsElliptic p : ℕ inst✝² : CharP F p hchar2 : 2 ≠ 0 hchar3 : 3 ≠ 0 this✝³ : NeZero 2 this✝² : NeZero 4 this✝¹ : NeZero 6 this✝ : Invertible 2 := invertibleOfNonzero hchar2 this : Invertible 3 := invertibleOfNonzero hchar3 E : WeierstrassCurve F inst✝¹ : E.IsElliptic h✝¹ : E.IsShortNF E' : WeierstrassCurve F inst✝ : E'.IsElliptic h✝ : E'.IsShortNF heq : E.a₄ ^ 3 * E'.a₆ ^ 2 = E'.a₄ ^ 3 * E.a₆ ^ 2 ha₄ : ¬E.a₄ = 0 ha₆ : ¬E.a₆ = 0 ha₄' : E'.a₄ ≠ 0 ha₆' : E'.a₆ ≠ 0 u : F hu : u ^ 2 = E.a₆ / E'.a₆ / (E.a₄ / E'.a₄) hu4 : u ^ 4 = E.a₄ / E'.a₄ hu6 : u ^ 6 = E.a₆ / E'.a₆ hu0 : u ≠ 0 ⊢ (E.a₆ + 0 * E.a₄ + 0 ^ 2 * 0 + 0 ^ 3 - 0 * 0 - 0 ^ 2 - 0 * 0 * 0) / (E.a₆ / E'.a₆) = E'.a₆
5599f8482dc6841e
IsFractionRing.integerNormalization_eq_zero_iff
Mathlib/RingTheory/Localization/Integral.lean
theorem integerNormalization_eq_zero_iff {p : K[X]} : integerNormalization (nonZeroDivisors A) p = 0 ↔ p = 0
A : Type u_3 K : Type u_4 inst✝⁴ : CommRing A inst✝³ : IsDomain A inst✝² : Field K inst✝¹ : Algebra A K inst✝ : IsFractionRing A K p : K[X] ⊢ (∀ (n : ℕ), p.coeff n = coeff 0 n) ↔ ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n
obtain ⟨⟨b, nonzero⟩, hb⟩ := integerNormalization_spec (nonZeroDivisors A) p
case intro.mk A : Type u_3 K : Type u_4 inst✝⁴ : CommRing A inst✝³ : IsDomain A inst✝² : Field K inst✝¹ : Algebra A K inst✝ : IsFractionRing A K p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i ⊢ (∀ (n : ℕ), p.coeff n = coeff 0 n) ↔ ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n
4085e90fc2cd39dd
LaurentSeries.inducing_coe
Mathlib/RingTheory/LaurentSeries.lean
theorem inducing_coe : IsUniformInducing ((↑) : RatFunc K → K⸨X⸩)
case h.mpr.intro.intro K : Type u_2 inst✝ : Field K S : Set (RatFunc K × RatFunc K) w✝ : Set (RatFunc K) hT : w✝ ∈ nhds 0 pre_T : (fun x => x.2 - x.1) ⁻¹' w✝ ⊆ S ⊢ ∃ t, (∃ t_1 ∈ nhds 0, (fun x => x.2 - x.1) ⁻¹' t_1 ⊆ t) ∧ (fun x => (↑x.1, ↑x.2)) ⁻¹' t ⊆ S
obtain ⟨d, hd⟩ := Valued.mem_nhds.mp hT
case h.mpr.intro.intro.intro K : Type u_2 inst✝ : Field K S : Set (RatFunc K × RatFunc K) w✝ : Set (RatFunc K) hT : w✝ ∈ nhds 0 pre_T : (fun x => x.2 - x.1) ⁻¹' w✝ ⊆ S d : (WithZero (Multiplicative ℤ))ˣ hd : {y | Valued.v (y - 0) < ↑d} ⊆ w✝ ⊢ ∃ t, (∃ t_1 ∈ nhds 0, (fun x => x.2 - x.1) ⁻¹' t_1 ⊆ t) ∧ (fun x => (↑x.1, ↑x.2)) ⁻¹' t ⊆ S
b5e123cc0ae5a26a
Polynomial.taylor_coeff
Mathlib/Algebra/Polynomial/Taylor.lean
theorem taylor_coeff (n : ℕ) : (taylor r f).coeff n = (hasseDeriv n f).eval r := show (lcoeff R n).comp (taylor r) f = (leval r).comp (hasseDeriv n) f by congr 1; clear! f; ext i simp only [leval_apply, mul_one, one_mul, eval_monomial, LinearMap.comp_apply, coeff_C_mul, hasseDeriv_monomial, taylor_apply, monomial_comp, C_1, (commute_X (C r)).add_pow i, map_sum] simp only [lcoeff_apply, ← C_eq_natCast, mul_assoc, ← C_pow, ← C_mul, coeff_mul_C, (Nat.cast_commute _ _).eq, coeff_X_pow, boole_mul, Finset.sum_ite_eq, Finset.mem_range] split_ifs with h; · rfl push_neg at h; rw [Nat.choose_eq_zero_of_lt h, Nat.cast_zero, mul_zero]
case e_a.h.h R : Type u_1 inst✝ : Semiring R r : R n i : ℕ ⊢ ((lcoeff R n ∘ₗ taylor r) ∘ₗ monomial i) 1 = ((leval r ∘ₗ hasseDeriv n) ∘ₗ monomial i) 1
simp only [leval_apply, mul_one, one_mul, eval_monomial, LinearMap.comp_apply, coeff_C_mul, hasseDeriv_monomial, taylor_apply, monomial_comp, C_1, (commute_X (C r)).add_pow i, map_sum]
case e_a.h.h R : Type u_1 inst✝ : Semiring R r : R n i : ℕ ⊢ ∑ x ∈ Finset.range (i + 1), (lcoeff R n) (X ^ x * C r ^ (i - x) * ↑(i.choose x)) = ↑(i.choose n) * r ^ (i - n)
5fdac828253feeff
Set.offDiag_insert
Mathlib/Data/Set/Prod.lean
theorem offDiag_insert (ha : a ∉ s) : (insert a s).offDiag = s.offDiag ∪ {a} ×ˢ s ∪ s ×ˢ {a}
α : Type u_1 s : Set α b : α hb : b ∈ s ha : b ∉ s ⊢ False
exact ha hb
no goals
c20b88b8124221df
MeasurableEquiv.map_measurableEquiv_injective
Mathlib/MeasureTheory/Measure/Map.lean
theorem map_measurableEquiv_injective (e : α ≃ᵐ β) : Injective (Measure.map e)
α : Type u_1 β : Type u_2 x✝ : MeasurableSpace α inst✝ : MeasurableSpace β e : α ≃ᵐ β ⊢ Injective (map ⇑e)
intro μ₁ μ₂ hμ
α : Type u_1 β : Type u_2 x✝ : MeasurableSpace α inst✝ : MeasurableSpace β e : α ≃ᵐ β μ₁ μ₂ : Measure α hμ : map (⇑e) μ₁ = map (⇑e) μ₂ ⊢ μ₁ = μ₂
72954bef4fbcbcc6
isClosedMap_swap
Mathlib/Topology/Constructions.lean
lemma isClosedMap_swap : IsClosedMap (Prod.swap : X × Y → Y × X) := fun s hs ↦ by rw [image_swap_eq_preimage_swap] exact hs.preimage continuous_swap
X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set (X × Y) hs : IsClosed s ⊢ IsClosed (Prod.swap '' s)
rw [image_swap_eq_preimage_swap]
X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set (X × Y) hs : IsClosed s ⊢ IsClosed (Prod.swap ⁻¹' s)
b5e19039f16567ae
ClassGroup.mk_eq_mk_of_coe_ideal
Mathlib/RingTheory/ClassGroup.lean
theorem ClassGroup.mk_eq_mk_of_coe_ideal {I J : (FractionalIdeal R⁰ <| FractionRing R)ˣ} {I' J' : Ideal R} (hI : (I : FractionalIdeal R⁰ <| FractionRing R) = I') (hJ : (J : FractionalIdeal R⁰ <| FractionRing R) = J') : ClassGroup.mk I = ClassGroup.mk J ↔ ∃ x y : R, x ≠ 0 ∧ y ≠ 0 ∧ Ideal.span {x} * I' = Ideal.span {y} * J'
case mp.intro R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R I : (FractionalIdeal R⁰ (FractionRing R))ˣ I' J' : Ideal R hI : ↑I = ↑I' x : (FractionRing R)ˣ hJ : ↑(I * (toPrincipalIdeal R (FractionRing R)) x) = ↑J' ⊢ ∃ x y, x ≠ 0 ∧ y ≠ 0 ∧ Ideal.span {x} * I' = Ideal.span {y} * J'
rw [Units.val_mul, hI, coe_toPrincipalIdeal, mul_comm, spanSingleton_mul_coeIdeal_eq_coeIdeal] at hJ
case mp.intro R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R I : (FractionalIdeal R⁰ (FractionRing R))ˣ I' J' : Ideal R hI : ↑I = ↑I' x : (FractionRing R)ˣ hJ : Ideal.span {(sec R⁰ ↑x).1} * I' = Ideal.span {↑(sec R⁰ ↑x).2} * J' ⊢ ∃ x y, x ≠ 0 ∧ y ≠ 0 ∧ Ideal.span {x} * I' = Ideal.span {y} * J'
dd1e2a77bf98cf5c
Real.tanh_eq_sinh_div_cosh
Mathlib/Data/Complex/Trigonometric.lean
theorem tanh_eq_sinh_div_cosh : tanh x = sinh x / cosh x := ofReal_inj.1 <| by simp [tanh_eq_sinh_div_cosh]
x : ℝ ⊢ ↑(tanh x) = ↑(sinh x / cosh x)
simp [tanh_eq_sinh_div_cosh]
no goals
29b98f20bbd1dac7
quadraticChar_card_card
Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/GaussSum.lean
theorem quadraticChar_card_card [DecidableEq F] (hF : ringChar F ≠ 2) {F' : Type*} [Field F'] [Fintype F'] [DecidableEq F'] (hF' : ringChar F' ≠ 2) (h : ringChar F' ≠ ringChar F) : quadraticChar F (Fintype.card F') = quadraticChar F' (quadraticChar F (-1) * Fintype.card F)
F : Type u_1 inst✝⁵ : Field F inst✝⁴ : Fintype F inst✝³ : DecidableEq F hF : ringChar F ≠ 2 F' : Type u_2 inst✝² : Field F' inst✝¹ : Fintype F' inst✝ : DecidableEq F' hF' : ringChar F' ≠ 2 h : ringChar F' ≠ ringChar F χ : MulChar F F' := (quadraticChar F).ringHomComp (algebraMap ℤ F') ⊢ χ ≠ 1
obtain ⟨a, ha⟩ := quadraticChar_exists_neg_one' hF
case intro F : Type u_1 inst✝⁵ : Field F inst✝⁴ : Fintype F inst✝³ : DecidableEq F hF : ringChar F ≠ 2 F' : Type u_2 inst✝² : Field F' inst✝¹ : Fintype F' inst✝ : DecidableEq F' hF' : ringChar F' ≠ 2 h : ringChar F' ≠ ringChar F χ : MulChar F F' := (quadraticChar F).ringHomComp (algebraMap ℤ F') a : Fˣ ha : (quadraticChar F) ↑a = -1 ⊢ χ ≠ 1
0521617d4359a853
Nat.mod_le
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Div/Basic.lean
theorem mod_le (x y : Nat) : x % y ≤ x
x y : Nat h₁ : x < y ⊢ x ≤ x
apply Nat.le_refl
no goals
804d0bc58bde878c
IsPrimitiveRoot.card_primitiveRoots
Mathlib/RingTheory/RootsOfUnity/PrimitiveRoots.lean
theorem card_primitiveRoots {ζ : R} {k : ℕ} (h : IsPrimitiveRoot ζ k) : #(primitiveRoots k R) = φ k
case neg.refine_3 R : Type u_4 inst✝¹ : CommRing R inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : ¬k = 0 this : NeZero k ⊢ ∀ b ∈ primitiveRoots k R, ∃ a, (a < k ∧ k.Coprime a) ∧ ζ ^ a = b
intro ξ hξ
case neg.refine_3 R : Type u_4 inst✝¹ : CommRing R inst✝ : IsDomain R ζ : R k : ℕ h : IsPrimitiveRoot ζ k h0 : ¬k = 0 this : NeZero k ξ : R hξ : ξ ∈ primitiveRoots k R ⊢ ∃ a, (a < k ∧ k.Coprime a) ∧ ζ ^ a = ξ
a39b2aaac60d8b86
Differentiable.eq_const_of_tendsto_cocompact
Mathlib/Analysis/Complex/Liouville.lean
theorem eq_const_of_tendsto_cocompact [Nontrivial E] {f : E → F} (hf : Differentiable ℂ f) {c : F} (hb : Tendsto f (cocompact E) (𝓝 c)) : f = Function.const E c
E : Type u inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℂ E F : Type v inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : Nontrivial E f : E → F hf : Differentiable ℂ f c : F hb : Tendsto f (cocompact E) (𝓝 c) h_bdd : Bornology.IsBounded (range f) ⊢ f = const E c
obtain ⟨c', hc'⟩ := hf.exists_eq_const_of_bounded h_bdd
case intro E : Type u inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℂ E F : Type v inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : Nontrivial E f : E → F hf : Differentiable ℂ f c : F hb : Tendsto f (cocompact E) (𝓝 c) h_bdd : Bornology.IsBounded (range f) c' : F hc' : f = const E c' ⊢ f = const E c
e9c3924ef5c1ad0a
SimpleGraph.coe_finsetWalkLength_eq
Mathlib/Combinatorics/SimpleGraph/Connectivity/WalkCounting.lean
theorem coe_finsetWalkLength_eq (n : ℕ) (u v : V) : (G.finsetWalkLength n u v : Set (G.Walk u v)) = {p : G.Walk u v | p.length = n}
V : Type u G : SimpleGraph V inst✝¹ : DecidableEq V inst✝ : G.LocallyFinite n : ℕ u v : V ⊢ ↑(G.finsetWalkLength n u v) = {p | p.length = n}
induction n generalizing u v with | zero => obtain rfl | huv := eq_or_ne u v <;> simp [finsetWalkLength, set_walk_length_zero_eq_of_ne, *] | succ n ih => simp only [finsetWalkLength, set_walk_length_succ_eq, Finset.coe_biUnion, Finset.mem_coe, Finset.mem_univ, Set.iUnion_true] ext p simp only [mem_neighborSet, Finset.coe_map, Embedding.coeFn_mk, Set.iUnion_coe_set, Set.mem_iUnion, Set.mem_image, Finset.mem_coe, Set.mem_setOf_eq] congr! rename_i w _ q have := Set.ext_iff.mp (ih w v) q simp only [Finset.mem_coe, Set.mem_setOf_eq] at this rw [← this]
no goals
bd2484cc02b0ec2f
RingHom.Flat.isStableUnderBaseChange
Mathlib/RingTheory/RingHom/Flat.lean
lemma isStableUnderBaseChange : IsStableUnderBaseChange Flat
R S T : Type u_4 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : CommRing T inst✝¹ : Algebra R S inst✝ : Algebra R T h : Module.Flat R T this : Module.Flat S (S ⊗[R] T) ⊢ Module.Flat S (S ⊗[R] T)
convert this
case h.e'_5.h R S T : Type u_4 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : CommRing T inst✝¹ : Algebra R S inst✝ : Algebra R T h : Module.Flat R T this : Module.Flat S (S ⊗[R] T) e_4✝ : NonUnitalNonAssocSemiring.toAddCommMonoid = addCommMonoid ⊢ Algebra.toModule = leftModule
de2a47f537ad5f13
List.mapFinIdx_eq_append_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/MapIdx.lean
theorem mapFinIdx_eq_append_iff {l : List α} {f : (i : Nat) → α → (h : i < l.length) → β} : l.mapFinIdx f = l₁ ++ l₂ ↔ ∃ (l₁' : List α) (l₂' : List α) (w : l = l₁' ++ l₂'), l₁'.mapFinIdx (fun i a h => f i a (by simp [w]; omega)) = l₁ ∧ l₂'.mapFinIdx (fun i a h => f (i + l₁'.length) a (by simp [w]; omega)) = l₂
case mp.right.h α : Type u_1 β : Type u_2 l₁ l₂ : List β l : List α f : (i : Nat) → α → i < l.length → β h✝ : (l₁ ++ l₂).length = l.length w : ∀ (i : Nat) (h : i < l.length), (l₁ ++ l₂)[i] = f i l[i] h h : l₁.length + l₂.length = l.length i : Nat hi₁ : i < ((drop l₁.length l).mapFinIdx fun i a h => f (i + (take l₁.length l).length) a ⋯).length hi₂ : i < l₂.length this : l₁.length ≤ l.length ⊢ f (i + min l₁.length l.length) l[l₁.length + i] ⋯ = l₂[i]
simp only [Nat.min_eq_left this, Nat.add_comm]
case mp.right.h α : Type u_1 β : Type u_2 l₁ l₂ : List β l : List α f : (i : Nat) → α → i < l.length → β h✝ : (l₁ ++ l₂).length = l.length w : ∀ (i : Nat) (h : i < l.length), (l₁ ++ l₂)[i] = f i l[i] h h : l₁.length + l₂.length = l.length i : Nat hi₁ : i < ((drop l₁.length l).mapFinIdx fun i a h => f (i + (take l₁.length l).length) a ⋯).length hi₂ : i < l₂.length this : l₁.length ≤ l.length ⊢ f (i + l₁.length) l[i + l₁.length] ⋯ = l₂[i]
6ee35de95da05087
FractionalIdeal.isPrincipal.of_finite_maximals_of_inv
Mathlib/RingTheory/DedekindDomain/PID.lean
theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {A : Type*} [CommRing A] [Algebra R A] {S : Submonoid R} [IsLocalization S A] (hS : S ≤ R⁰) (hf : {I : Ideal R | I.IsMaximal}.Finite) (I I' : FractionalIdeal S A) (hinv : I * I' = 1) : Submodule.IsPrincipal (I : Submodule R A)
R : Type u_1 inst✝³ : CommRing R A : Type u_2 inst✝² : CommRing A inst✝¹ : Algebra R A S : Submonoid R inst✝ : IsLocalization S A hS : S ≤ R⁰ hf : {I | I.IsMaximal}.Finite I I' : FractionalIdeal S A hinv : ↑I * ↑I' = ↑1 hinv' : I * I' = 1 s : Finset (Ideal R) := hf.toFinset this : DecidableEq (Ideal R) coprime : ∀ M ∈ s, ∀ M' ∈ s.erase M, M ⊔ M' = ⊤ nle : ∀ M ∈ s, ¬⨅ M' ∈ s.erase M, M' ≤ M a : Ideal R → A ha : ∀ M ∈ s, a M ∈ I b : Ideal R → A hb : ∀ M ∈ s, b M ∈ I' hm : ∀ M ∈ s, a M * b M ∉ IsLocalization.coeSubmodule A M u : Ideal R → R hu : ∀ M ∈ s, u M ∈ ⨅ M' ∈ s.erase M, M' hum : ∀ M ∈ s, u M ∉ M v : A := ∑ M ∈ s, u M • b M ⊢ (↑I).IsPrincipal
have hv : v ∈ I' := Submodule.sum_mem _ fun M hM => Submodule.smul_mem _ _ <| hb M hM
R : Type u_1 inst✝³ : CommRing R A : Type u_2 inst✝² : CommRing A inst✝¹ : Algebra R A S : Submonoid R inst✝ : IsLocalization S A hS : S ≤ R⁰ hf : {I | I.IsMaximal}.Finite I I' : FractionalIdeal S A hinv : ↑I * ↑I' = ↑1 hinv' : I * I' = 1 s : Finset (Ideal R) := hf.toFinset this : DecidableEq (Ideal R) coprime : ∀ M ∈ s, ∀ M' ∈ s.erase M, M ⊔ M' = ⊤ nle : ∀ M ∈ s, ¬⨅ M' ∈ s.erase M, M' ≤ M a : Ideal R → A ha : ∀ M ∈ s, a M ∈ I b : Ideal R → A hb : ∀ M ∈ s, b M ∈ I' hm : ∀ M ∈ s, a M * b M ∉ IsLocalization.coeSubmodule A M u : Ideal R → R hu : ∀ M ∈ s, u M ∈ ⨅ M' ∈ s.erase M, M' hum : ∀ M ∈ s, u M ∉ M v : A := ∑ M ∈ s, u M • b M hv : v ∈ I' ⊢ (↑I).IsPrincipal
739ab9d4c311b5e5
LSeries.convolution_congr
Mathlib/NumberTheory/LSeries/Convolution.lean
lemma LSeries.convolution_congr {R : Type*} [Semiring R] {f f' g g' : ℕ → R} (hf : ∀ {n}, n ≠ 0 → f n = f' n) (hg : ∀ {n}, n ≠ 0 → g n = g' n) : f ⍟ g = f' ⍟ g'
R : Type u_1 inst✝ : Semiring R f f' g g' : ℕ → R hf : ∀ {n : ℕ}, n ≠ 0 → f n = f' n hg : ∀ {n : ℕ}, n ≠ 0 → g n = g' n ⊢ f ⍟ g = f' ⍟ g'
simp [convolution, toArithmeticFunction_congr hf, toArithmeticFunction_congr hg]
no goals
8790498b364f4457
MeasureTheory.rnDeriv_tilted_right
Mathlib/MeasureTheory/Measure/Tilted.lean
lemma rnDeriv_tilted_right (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν] (hf : Integrable (fun x ↦ exp (f x)) ν) : μ.rnDeriv (ν.tilted f) =ᵐ[ν] fun x ↦ ENNReal.ofReal (exp (- f x) * ∫ x, exp (f x) ∂ν) * μ.rnDeriv ν x
case inr.refine_2.h α : Type u_1 mα : MeasurableSpace α f : α → ℝ μ ν : Measure α inst✝¹ : SigmaFinite μ inst✝ : SigmaFinite ν hf : Integrable (fun x => rexp (f x)) ν h0 : NeZero ν ⊢ ∀ (a : α), ENNReal.ofReal (rexp (f a) / ∫ (x : α), rexp (f x) ∂ν) ≠ 0
simp only [ne_eq, ENNReal.ofReal_eq_zero, not_le]
case inr.refine_2.h α : Type u_1 mα : MeasurableSpace α f : α → ℝ μ ν : Measure α inst✝¹ : SigmaFinite μ inst✝ : SigmaFinite ν hf : Integrable (fun x => rexp (f x)) ν h0 : NeZero ν ⊢ ∀ (a : α), 0 < rexp (f a) / ∫ (x : α), rexp (f x) ∂ν
4634d04eea4db0da
BoxIntegral.integralSum_disjUnion
Mathlib/Analysis/BoxIntegral/Basic.lean
theorem integralSum_disjUnion (f : ℝⁿ → E) (vol : ι →ᵇᵃ E →L[ℝ] F) {π₁ π₂ : TaggedPrepartition I} (h : Disjoint π₁.iUnion π₂.iUnion) : integralSum f vol (π₁.disjUnion π₂ h) = integralSum f vol π₁ + integralSum f vol π₂
case refine_1 ι : Type u E : Type v F : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F I : Box ι f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F π₁ π₂ : TaggedPrepartition I h : Disjoint π₁.iUnion π₂.iUnion J : Box ι hJ : J ∈ π₁.boxes ⊢ (vol J) (f ((π₁.disjUnion π₂ h).tag J)) = (vol J) (f (π₁.tag J))
rw [disjUnion_tag_of_mem_left _ hJ]
no goals
39c8d39fe49c69e6
PrincipalSeg.irrefl
Mathlib/Order/InitialSeg.lean
theorem irrefl {r : α → α → Prop} [IsWellOrder α r] (f : r ≺i r) : False
α : Type u_1 r : α → α → Prop inst✝ : IsWellOrder α r f : r ≺i r h : r f.top f.top ⊢ False
exact _root_.irrefl _ h
no goals
f181ad2164d3fedb
Submodule.exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul
Mathlib/RingTheory/Finiteness/Nakayama.lean
theorem exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul {R : Type*} [CommRing R] {M : Type*} [AddCommGroup M] [Module R M] (I : Ideal R) (N : Submodule R M) (hn : N.FG) (hin : N ≤ I • N) : ∃ r : R, r - 1 ∈ I ∧ ∀ n ∈ N, r • n = (0 : M)
case intro.intro.refine_2.intro.intro.intro.intro.intro.refine_2.intro.intro.intro.intro.intro.intro R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R N : Submodule R M s✝ : Set M hfs : s✝.Finite i : M s : Set M x✝¹ : i ∉ s x✝ : s.Finite ih : (∃ r, r - 1 ∈ I ∧ N ≤ comap ((LinearMap.lsmul R M) r) (I • span R s) ∧ s ⊆ ↑N) → ∃ r, r - 1 ∈ I ∧ ∀ n ∈ N, r • n = 0 r : R hr1 : r - 1 ∈ I hs : i ∈ ↑N ∧ s ⊆ ↑N c : R hc1 : c - 1 ∈ I hci : c • i ∈ I • span R s n : M hn : n ∈ N z : M hz : z ∈ I • span R s d : R left✝ : d ∈ I hyz : d • i + z = r • n ⊢ (c * r) • n ∈ I • span R s
rw [mul_smul, ← hyz, smul_add, smul_smul, mul_comm, mul_smul]
case intro.intro.refine_2.intro.intro.intro.intro.intro.refine_2.intro.intro.intro.intro.intro.intro R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R N : Submodule R M s✝ : Set M hfs : s✝.Finite i : M s : Set M x✝¹ : i ∉ s x✝ : s.Finite ih : (∃ r, r - 1 ∈ I ∧ N ≤ comap ((LinearMap.lsmul R M) r) (I • span R s) ∧ s ⊆ ↑N) → ∃ r, r - 1 ∈ I ∧ ∀ n ∈ N, r • n = 0 r : R hr1 : r - 1 ∈ I hs : i ∈ ↑N ∧ s ⊆ ↑N c : R hc1 : c - 1 ∈ I hci : c • i ∈ I • span R s n : M hn : n ∈ N z : M hz : z ∈ I • span R s d : R left✝ : d ∈ I hyz : d • i + z = r • n ⊢ d • c • i + c • z ∈ I • span R s
ddde3c87abdd1812
MeasureTheory.maximal_ineq
Mathlib/Probability/Martingale/OptionalStopping.lean
theorem maximal_ineq [IsFiniteMeasure μ] (hsub : Submartingale f 𝒢 μ) (hnonneg : 0 ≤ f) {ε : ℝ≥0} (n : ℕ) : ε • μ {ω | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω} ≤ ENNReal.ofReal (∫ ω in {ω | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω}, f n ω ∂μ)
Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • μ {ω | ↑ε ≤ (range (n + 1)).sup' ⋯ fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | ((range (n + 1)).sup' ⋯ fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ⊢ ENNReal.ofReal (∫ (x : Ω) in Set.univ, f n x ∂μ) = ENNReal.ofReal (∫ (x : Ω) in {ω | ↑ε ≤ (range (n + 1)).sup' ⋯ fun k => f k ω} ∪ {ω | ((range (n + 1)).sup' ⋯ fun k => f k ω) < ↑ε}, f n x ∂μ)
convert rfl
case h.e'_3.h.e'_1.h.e'_6.h.e'_4 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • μ {ω | ↑ε ≤ (range (n + 1)).sup' ⋯ fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | ((range (n + 1)).sup' ⋯ fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ⊢ {ω | ↑ε ≤ (range (n + 1)).sup' ⋯ fun k => f k ω} ∪ {ω | ((range (n + 1)).sup' ⋯ fun k => f k ω) < ↑ε} = Set.univ
7389c69afd10c321
HasFPowerSeriesAt.eq_pow_order_mul_iterate_dslope
Mathlib/Analysis/Analytic/IsolatedZeros.lean
theorem eq_pow_order_mul_iterate_dslope (hp : HasFPowerSeriesAt f p z₀) : ∀ᶠ z in 𝓝 z₀, f z = (z - z₀) ^ p.order • (swap dslope z₀)^[p.order] f z
case h.e'_3.h.e'_6 𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E p : FormalMultilinearSeries 𝕜 𝕜 E f : 𝕜 → E z₀ : 𝕜 hp : HasFPowerSeriesAt f p z₀ hq : ∀ᶠ (z : 𝕜) in 𝓝 z₀, HasSum (fun n => (z - z₀) ^ n • (fslope^[p.order] p).coeff n) ((swap dslope z₀)^[p.order] f z) x : 𝕜 hx2 : HasSum (fun n => (x - z₀) ^ n • p.coeff n) (f x) this : ∀ k < p.order, p.coeff k = 0 s : E hs1 : (x - z₀) ^ p.order • s = f x hs2 : HasSum (fun m => (x - z₀) ^ m • p.coeff (m + p.order)) s hx1 : HasSum (fun n => (x - z₀) ^ n • p.coeff (n + p.order)) ((swap dslope z₀)^[p.order] f x) ⊢ (swap dslope z₀)^[p.order] f x = s
exact hx1.unique hs2
no goals
d47ea1e5dc2b340e
MeasureTheory.measurableSet_exists_tendsto
Mathlib/MeasureTheory/Constructions/Polish/Basic.lean
theorem measurableSet_exists_tendsto [TopologicalSpace γ] [PolishSpace γ] [MeasurableSpace γ] [hγ : OpensMeasurableSpace γ] [Countable ι] {l : Filter ι} [l.IsCountablyGenerated] {f : ι → β → γ} (hf : ∀ i, Measurable (f i)) : MeasurableSet { x | ∃ c, Tendsto (fun n => f n x) l (𝓝 c) }
case inr.intro ι : Type u_2 γ : Type u_3 β : Type u_5 inst✝⁵ : MeasurableSpace β inst✝⁴ : TopologicalSpace γ inst✝³ : PolishSpace γ inst✝² : MeasurableSpace γ hγ : OpensMeasurableSpace γ inst✝¹ : Countable ι l : Filter ι inst✝ : l.IsCountablyGenerated f : ι → β → γ hf : ∀ (i : ι), Measurable (f i) hl : l.NeBot this✝ : UpgradedPolishSpace γ := upgradePolishSpace γ u : ℕ → Set ι hu : l.HasAntitoneBasis u this : ∀ (x : β), (map (fun x_1 => f x_1 x) l ×ˢ map (fun x_1 => f x_1 x) l).HasAntitoneBasis fun n => ((fun x_1 => f x_1 x) '' u n) ×ˢ ((fun x_1 => f x_1 x) '' u n) K : ℕ x✝ : K ∈ fun i => True N : ℕ ⊢ MeasurableSet {x | ((fun n => f n x) '' u N) ×ˢ ((fun n => f n x) '' u N) ⊆ {p | dist p.1 p.2 < 1 / (↑K + 1)}}
simp_rw [prod_image_image_eq, image_subset_iff, prod_subset_iff, Set.setOf_forall]
case inr.intro ι : Type u_2 γ : Type u_3 β : Type u_5 inst✝⁵ : MeasurableSpace β inst✝⁴ : TopologicalSpace γ inst✝³ : PolishSpace γ inst✝² : MeasurableSpace γ hγ : OpensMeasurableSpace γ inst✝¹ : Countable ι l : Filter ι inst✝ : l.IsCountablyGenerated f : ι → β → γ hf : ∀ (i : ι), Measurable (f i) hl : l.NeBot this✝ : UpgradedPolishSpace γ := upgradePolishSpace γ u : ℕ → Set ι hu : l.HasAntitoneBasis u this : ∀ (x : β), (map (fun x_1 => f x_1 x) l ×ˢ map (fun x_1 => f x_1 x) l).HasAntitoneBasis fun n => ((fun x_1 => f x_1 x) '' u n) ×ˢ ((fun x_1 => f x_1 x) '' u n) K : ℕ x✝ : K ∈ fun i => True N : ℕ ⊢ MeasurableSet (⋂ i ∈ u N, ⋂ i_1 ∈ u N, {x | (i, i_1) ∈ (fun p => (f p.1 x, f p.2 x)) ⁻¹' {p | dist p.1 p.2 < 1 / (↑K + 1)}})
7e9dea099a7e1607
Nat.mul_mod_mul_left
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Div/Basic.lean
theorem mul_mod_mul_left (z x y : Nat) : (z * x) % (z * y) = z * (x % y) := if y0 : y = 0 then by rw [y0, Nat.mul_zero, mod_zero, mod_zero] else if z0 : z = 0 then by rw [z0, Nat.zero_mul, Nat.zero_mul, Nat.zero_mul, mod_zero] else by induction x using Nat.strongRecOn with | _ n IH => have y0 : y > 0 := Nat.pos_of_ne_zero y0 have z0 : z > 0 := Nat.pos_of_ne_zero z0 cases Nat.lt_or_ge n y with | inl yn => rw [mod_eq_of_lt yn, mod_eq_of_lt (Nat.mul_lt_mul_of_pos_left yn z0)] | inr yn => rw [mod_eq_sub_mod yn, mod_eq_sub_mod (Nat.mul_le_mul_left z yn), ← Nat.mul_sub_left_distrib] exact IH _ (sub_lt (Nat.lt_of_lt_of_le y0 yn) y0)
case ind z y : Nat y0✝ : ¬y = 0 z0✝ : ¬z = 0 n : Nat IH : ∀ (m : Nat), m < n → z * m % (z * y) = z * (m % y) y0 : y > 0 z0 : z > 0 ⊢ z * n % (z * y) = z * (n % y)
cases Nat.lt_or_ge n y with | inl yn => rw [mod_eq_of_lt yn, mod_eq_of_lt (Nat.mul_lt_mul_of_pos_left yn z0)] | inr yn => rw [mod_eq_sub_mod yn, mod_eq_sub_mod (Nat.mul_le_mul_left z yn), ← Nat.mul_sub_left_distrib] exact IH _ (sub_lt (Nat.lt_of_lt_of_le y0 yn) y0)
no goals
e8c2ffc687851db8
ContinuousLinearMap.integral_comp_comm'
Mathlib/MeasureTheory/Integral/SetIntegral.lean
theorem integral_comp_comm' (L : E →L[𝕜] F) {K} (hL : AntilipschitzWith K L) (φ : X → E) : ∫ x, L (φ x) ∂μ = L (∫ x, φ x ∂μ)
X : Type u_1 E : Type u_3 F : Type u_4 inst✝⁹ : MeasurableSpace X μ : Measure X 𝕜 : Type u_5 inst✝⁸ : RCLike 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E L : E →L[𝕜] F K : ℝ≥0 hL : AntilipschitzWith K ⇑L φ : X → E h : ¬Integrable φ μ ⊢ ¬Integrable (fun x => L (φ x)) μ
rwa [← Function.comp_def, LipschitzWith.integrable_comp_iff_of_antilipschitz L.lipschitz hL L.map_zero]
no goals
9748060e06158f2a
Nat.psp_from_prime_psp
Mathlib/NumberTheory/FermatPsp.lean
theorem psp_from_prime_psp {b : ℕ} (b_ge_two : 2 ≤ b) {p : ℕ} (p_prime : p.Prime) (p_gt_two : 2 < p) (not_dvd : ¬p ∣ b * (b ^ 2 - 1)) : FermatPsp (psp_from_prime b p) b
b : ℕ b_ge_two : 2 ≤ b p : ℕ p_prime : Prime p p_gt_two : 2 < p not_dvd : ¬p ∣ b * (b ^ 2 - 1) A : ℕ := (b ^ p - 1) / (b - 1) B : ℕ := (b ^ p + 1) / (b + 1) hi_A : 1 < A hi_B : 1 < B hi_AB : 1 < A * B hi_b : 0 < b hi_p : 1 ≤ p hi_bsquared : 0 < b ^ 2 - 1 hi_bpowtwop : 1 ≤ b ^ (2 * p) hi_bpowpsubone : 1 ≤ b ^ (p - 1) p_odd : Odd p AB_not_prime : ¬Prime (A * B) AB_id : A * B = (b ^ (2 * p) - 1) / (b ^ 2 - 1) hd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1 ha₁ : (b ^ 2 - 1) * (A * B - 1) = b * (b ^ (p - 1) - 1) * (b ^ p + b) ha₂ : 2 ∣ b ^ p + b ha₃ : p ∣ b ^ (p - 1) - 1 ha₄ : b ^ 2 - 1 ∣ b ^ (p - 1) - 1 q₁ : p.Coprime (b ^ 2 - 1) q₂ : p * (b ^ 2 - 1) ∣ b ^ (p - 1) - 1 q₃ : p * (b ^ 2 - 1) * 2 ∣ (b ^ (p - 1) - 1) * (b ^ p + b) ⊢ 2 * p * (b ^ 2 - 1) ∣ b * (b ^ (p - 1) - 1) * (b ^ p + b)
have q₄ : p * (b ^ 2 - 1) * 2 ∣ b * ((b ^ (p - 1) - 1) * (b ^ p + b)) := dvd_mul_of_dvd_right q₃ _
b : ℕ b_ge_two : 2 ≤ b p : ℕ p_prime : Prime p p_gt_two : 2 < p not_dvd : ¬p ∣ b * (b ^ 2 - 1) A : ℕ := (b ^ p - 1) / (b - 1) B : ℕ := (b ^ p + 1) / (b + 1) hi_A : 1 < A hi_B : 1 < B hi_AB : 1 < A * B hi_b : 0 < b hi_p : 1 ≤ p hi_bsquared : 0 < b ^ 2 - 1 hi_bpowtwop : 1 ≤ b ^ (2 * p) hi_bpowpsubone : 1 ≤ b ^ (p - 1) p_odd : Odd p AB_not_prime : ¬Prime (A * B) AB_id : A * B = (b ^ (2 * p) - 1) / (b ^ 2 - 1) hd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1 ha₁ : (b ^ 2 - 1) * (A * B - 1) = b * (b ^ (p - 1) - 1) * (b ^ p + b) ha₂ : 2 ∣ b ^ p + b ha₃ : p ∣ b ^ (p - 1) - 1 ha₄ : b ^ 2 - 1 ∣ b ^ (p - 1) - 1 q₁ : p.Coprime (b ^ 2 - 1) q₂ : p * (b ^ 2 - 1) ∣ b ^ (p - 1) - 1 q₃ : p * (b ^ 2 - 1) * 2 ∣ (b ^ (p - 1) - 1) * (b ^ p + b) q₄ : p * (b ^ 2 - 1) * 2 ∣ b * ((b ^ (p - 1) - 1) * (b ^ p + b)) ⊢ 2 * p * (b ^ 2 - 1) ∣ b * (b ^ (p - 1) - 1) * (b ^ p + b)
6f5ab4acf8539f9d
MulSemiringAction.eval_charpoly
Mathlib/RingTheory/Invariant.lean
theorem eval_charpoly (b : B) : (charpoly G b).eval b = 0
B : Type u_2 G : Type u_3 inst✝³ : CommRing B inst✝² : Group G inst✝¹ : MulSemiringAction G B inst✝ : Fintype G b : B ⊢ ∏ j : G, eval b (X - C (j • b)) = 0
apply Finset.prod_eq_zero (Finset.mem_univ (1 : G))
B : Type u_2 G : Type u_3 inst✝³ : CommRing B inst✝² : Group G inst✝¹ : MulSemiringAction G B inst✝ : Fintype G b : B ⊢ eval b (X - C (1 • b)) = 0
c8dfec67acb3bbef
TensorProduct.piScalarRightInv_single
Mathlib/LinearAlgebra/TensorProduct/Pi.lean
@[simp] private lemma piScalarRightInv_single (x : N) (i : ι) : piScalarRightInv R S N ι (Pi.single i x) = x ⊗ₜ Pi.single i 1
R : Type u_1 inst✝⁸ : CommSemiring R S : Type u_2 inst✝⁷ : CommSemiring S inst✝⁶ : Algebra R S N : Type u_3 inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : Module S N inst✝² : IsScalarTower R S N ι : Type u_4 inst✝¹ : Fintype ι inst✝ : DecidableEq ι x : N i : ι ⊢ (TensorProduct.piScalarRightInv R S N ι) (Pi.single i x) = x ⊗ₜ[R] Pi.single i 1
simp [piScalarRightInv, Pi.single_apply, TensorProduct.ite_tmul]
no goals
b922b7eb6c89cf47
CategoryTheory.PreGaloisCategory.initial_iff_fiber_empty
Mathlib/CategoryTheory/Galois/Basic.lean
/-- An object is initial if and only if its fiber is empty. -/ lemma initial_iff_fiber_empty (X : C) : Nonempty (IsInitial X) ↔ IsEmpty (F.obj X)
C : Type u₁ inst✝² : Category.{u₂, u₁} C F : C ⥤ FintypeCat inst✝¹ : PreGaloisCategory C inst✝ : FiberFunctor F X : C this : PreservesFiniteColimits (forget FintypeCat) ⊢ ReflectsColimit (empty FintypeCat) (forget FintypeCat)
show ReflectsColimit (Functor.empty.{0} _) FintypeCat.incl
C : Type u₁ inst✝² : Category.{u₂, u₁} C F : C ⥤ FintypeCat inst✝¹ : PreGaloisCategory C inst✝ : FiberFunctor F X : C this : PreservesFiniteColimits (forget FintypeCat) ⊢ ReflectsColimit (empty FintypeCat) FintypeCat.incl
15a0099a3b27cb76
AlgebraicTopology.map_alternatingFaceMapComplex
Mathlib/AlgebraicTopology/AlternatingFaceMapComplex.lean
theorem map_alternatingFaceMapComplex {D : Type*} [Category D] [Preadditive D] (F : C ⥤ D) [F.Additive] : alternatingFaceMapComplex C ⋙ F.mapHomologicalComplex _ = (SimplicialObject.whiskering C D).obj F ⋙ alternatingFaceMapComplex D
case h_obj C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D F : C ⥤ D inst✝ : F.Additive X : SimplicialObject C ⊢ (alternatingFaceMapComplex C ⋙ F.mapHomologicalComplex (ComplexShape.down ℕ)).obj X = ((SimplicialObject.whiskering C D).obj F ⋙ alternatingFaceMapComplex D).obj X
apply HomologicalComplex.ext
case h_obj.h_d C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D F : C ⥤ D inst✝ : F.Additive X : SimplicialObject C ⊢ ∀ (i j : ℕ), (ComplexShape.down ℕ).Rel i j → ((alternatingFaceMapComplex C ⋙ F.mapHomologicalComplex (ComplexShape.down ℕ)).obj X).d i j ≫ eqToHom ⋯ = eqToHom ⋯ ≫ (((SimplicialObject.whiskering C D).obj F ⋙ alternatingFaceMapComplex D).obj X).d i j case h_obj.h_X C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D F : C ⥤ D inst✝ : F.Additive X : SimplicialObject C ⊢ ((alternatingFaceMapComplex C ⋙ F.mapHomologicalComplex (ComplexShape.down ℕ)).obj X).X = (((SimplicialObject.whiskering C D).obj F ⋙ alternatingFaceMapComplex D).obj X).X
b8fade3875a479e6
CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_snd_fst
Mathlib/CategoryTheory/Limits/Shapes/Diagonal.lean
theorem pullbackDiagonalMapIdIso_inv_snd_fst : (pullbackDiagonalMapIdIso f g i).inv ≫ pullback.snd _ _ ≫ pullback.fst _ _ = pullback.fst _ _
C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C X Y : C inst✝⁴ : HasPullbacks C S T : C f : X ⟶ T g : Y ⟶ T i : T ⟶ S inst✝³ : HasPullback i i inst✝² : HasPullback f g inst✝¹ : HasPullback (f ≫ i) (g ≫ i) inst✝ : HasPullback (diagonal i) (map (f ≫ i) (g ≫ i) i i f g (𝟙 S) ⋯ ⋯) ⊢ (pullbackDiagonalMapIdIso f g i).inv ≫ snd (diagonal i) (map (f ≫ i) (g ≫ i) i i f g (𝟙 S) ⋯ ⋯) ≫ fst (f ≫ i) (g ≫ i) = fst f g
rw [Iso.inv_comp_eq]
C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C X Y : C inst✝⁴ : HasPullbacks C S T : C f : X ⟶ T g : Y ⟶ T i : T ⟶ S inst✝³ : HasPullback i i inst✝² : HasPullback f g inst✝¹ : HasPullback (f ≫ i) (g ≫ i) inst✝ : HasPullback (diagonal i) (map (f ≫ i) (g ≫ i) i i f g (𝟙 S) ⋯ ⋯) ⊢ snd (diagonal i) (map (f ≫ i) (g ≫ i) i i f g (𝟙 S) ⋯ ⋯) ≫ fst (f ≫ i) (g ≫ i) = (pullbackDiagonalMapIdIso f g i).hom ≫ fst f g
b31e9cfbf33e9257
Algebra.toMatrix_lmul'
Mathlib/LinearAlgebra/Matrix/ToLin.lean
theorem toMatrix_lmul' (x : S) (i j) : LinearMap.toMatrix b b (lmul R S x) i j = b.repr (x * b j) i
R : Type u_1 S : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : Semiring S inst✝² : Algebra R S m : Type u_3 inst✝¹ : Fintype m inst✝ : DecidableEq m b : Basis m R S x : S i j : m ⊢ (toMatrix b b) ((lmul R S) x) i j = (b.repr (x * b j)) i
simp only [LinearMap.toMatrix_apply', coe_lmul_eq_mul, LinearMap.mul_apply']
no goals
602839d874935104
AddMonoidAlgebra.mapDomainAlgHom_id
Mathlib/Algebra/MonoidAlgebra/Basic.lean
@[simp] lemma mapDomainAlgHom_id (k A) [CommSemiring k] [Semiring A] [Algebra k A] [AddMonoid G] : mapDomainAlgHom k A (AddMonoidHom.id G) = AlgHom.id k (AddMonoidAlgebra A G)
case H.H G : Type u₂ k : Type u_3 A : Type u_4 inst✝³ : CommSemiring k inst✝² : Semiring A inst✝¹ : Algebra k A inst✝ : AddMonoid G x✝¹ : A[G] x✝ : G ⊢ ((mapDomainAlgHom k A (AddMonoidHom.id G)) x✝¹) x✝ = ((AlgHom.id k A[G]) x✝¹) x✝
simp [AddMonoidHom.id, ← Function.id_def]
no goals
f65a43974ba03501
Pell.matiyasevic
Mathlib/NumberTheory/PellMatiyasevic.lean
theorem matiyasevic {a k x y} : (∃ a1 : 1 < a, xn a1 k = x ∧ yn a1 k = y) ↔ 1 < a ∧ k ≤ y ∧ (x = 1 ∧ y = 0 ∨ ∃ u v s t b : ℕ, x * x - (a * a - 1) * y * y = 1 ∧ u * u - (a * a - 1) * v * v = 1 ∧ s * s - (b * b - 1) * t * t = 1 ∧ 1 < b ∧ b ≡ 1 [MOD 4 * y] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ y * y ∣ v ∧ s ≡ x [MOD u] ∧ t ≡ k [MOD 4 * y]) := ⟨fun ⟨a1, hx, hy⟩ => by rw [← hx, ← hy] refine ⟨a1, (Nat.eq_zero_or_pos k).elim (fun k0 => by rw [k0]; exact ⟨le_rfl, Or.inl ⟨rfl, rfl⟩⟩) fun kpos => ?_⟩ exact let x := xn a1 k let y := yn a1 k let m := 2 * (k * y) let u := xn a1 m let v := yn a1 m have ky : k ≤ y := yn_ge_n a1 k have yv : y * y ∣ v := (ysq_dvd_yy a1 k).trans <| (y_dvd_iff _ _ _).2 <| dvd_mul_left _ _ have uco : Nat.Coprime u (4 * y) := have : 2 ∣ v := modEq_zero_iff_dvd.1 <| (yn_modEq_two _ _).trans (dvd_mul_right _ _).modEq_zero_nat have : Nat.Coprime u 2 := (xy_coprime a1 m).coprime_dvd_right this (this.mul_right this).mul_right <| (xy_coprime _ _).coprime_dvd_right (dvd_of_mul_left_dvd yv) let ⟨b, ba, bm1⟩ := chineseRemainder uco a 1 have m1 : 1 < m := have : 0 < k * y := mul_pos kpos (strictMono_y a1 kpos) Nat.mul_le_mul_left 2 this have vp : 0 < v := strictMono_y a1 (lt_trans zero_lt_one m1) have b1 : 1 < b := have : xn a1 1 < u := strictMono_x a1 m1 have : a < u
a k x y : ℕ x✝ : ∃ (a1 : 1 < a), xn a1 k = x ∧ yn a1 k = y a1 : 1 < a hx : xn a1 k = x hy : yn a1 k = y ⊢ 1 < a ∧ k ≤ y ∧ (x = 1 ∧ y = 0 ∨ ∃ u v s t b, x * x - (a * a - 1) * y * y = 1 ∧ u * u - (a * a - 1) * v * v = 1 ∧ s * s - (b * b - 1) * t * t = 1 ∧ 1 < b ∧ b ≡ 1 [MOD 4 * y] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ y * y ∣ v ∧ s ≡ x [MOD u] ∧ t ≡ k [MOD 4 * y])
rw [← hx, ← hy]
a k x y : ℕ x✝ : ∃ (a1 : 1 < a), xn a1 k = x ∧ yn a1 k = y a1 : 1 < a hx : xn a1 k = x hy : yn a1 k = y ⊢ 1 < a ∧ k ≤ yn a1 k ∧ (xn a1 k = 1 ∧ yn a1 k = 0 ∨ ∃ u v s t b, xn a1 k * xn a1 k - (a * a - 1) * yn a1 k * yn a1 k = 1 ∧ u * u - (a * a - 1) * v * v = 1 ∧ s * s - (b * b - 1) * t * t = 1 ∧ 1 < b ∧ b ≡ 1 [MOD 4 * yn a1 k] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ yn a1 k * yn a1 k ∣ v ∧ s ≡ xn a1 k [MOD u] ∧ t ≡ k [MOD 4 * yn a1 k])
86da2519f71702c3
Subgroup.exists_finsupp_of_mem_closure_range
Mathlib/Algebra/Group/Subgroup/Finsupp.lean
theorem exists_finsupp_of_mem_closure_range (hx : x ∈ closure (Set.range f)) : ∃ a : ι →₀ ℤ, x = a.prod (f · ^ ·)
case mem M : Type u_1 inst✝ : CommGroup M ι : Type u_2 f : ι → M x✝ x : M h : x ∈ Set.range f ⊢ ∃ a, x = a.prod fun x1 x2 => f x1 ^ x2
obtain ⟨i, rfl⟩ := h
case mem.intro M : Type u_1 inst✝ : CommGroup M ι : Type u_2 f : ι → M x : M i : ι ⊢ ∃ a, f i = a.prod fun x1 x2 => f x1 ^ x2
ee4be18dd2e022fe
CochainComplex.isStrictlyLE_of_le
Mathlib/Algebra/Homology/Embedding/CochainComplex.lean
lemma isStrictlyLE_of_le (p q : ℤ) (hpq : p ≤ q) [K.IsStrictlyLE p] : K.IsStrictlyLE q
C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C K : CochainComplex C ℤ p q : ℤ hpq : p ≤ q inst✝ : K.IsStrictlyLE p ⊢ K.IsStrictlyLE q
rw [isStrictlyLE_iff]
C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C K : CochainComplex C ℤ p q : ℤ hpq : p ≤ q inst✝ : K.IsStrictlyLE p ⊢ ∀ (i : ℤ), q < i → IsZero (K.X i)
9e62042f615bf74a
hasFDerivAt_exp_smul_const_of_mem_ball'
Mathlib/Analysis/SpecialFunctions/Exponential.lean
theorem hasFDerivAt_exp_smul_const_of_mem_ball' (x : 𝔸) (t : 𝕊) (htx : t • x ∈ EMetric.ball (0 : 𝔸) (expSeries 𝕂 𝔸).radius) : HasFDerivAt (fun u : 𝕊 => exp 𝕂 (u • x)) (((1 : 𝕊 →L[𝕂] 𝕊).smulRight x).smulRight (exp 𝕂 (t • x))) t
𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (expSeries 𝕂 𝔸).radius ⊢ HasFDerivAt (fun u => exp 𝕂 (u • x)) ((ContinuousLinearMap.smulRight 1 x).smulRight (exp 𝕂 (t • x))) t
convert hasFDerivAt_exp_smul_const_of_mem_ball 𝕂 _ _ htx using 1
case h.e'_12.h.h 𝕂 : Type u_1 𝕊 : Type u_2 𝔸 : Type u_3 inst✝⁹ : NontriviallyNormedField 𝕂 inst✝⁸ : CharZero 𝕂 inst✝⁷ : NormedCommRing 𝕊 inst✝⁶ : NormedRing 𝔸 inst✝⁵ : NormedSpace 𝕂 𝕊 inst✝⁴ : NormedAlgebra 𝕂 𝔸 inst✝³ : Algebra 𝕊 𝔸 inst✝² : ContinuousSMul 𝕊 𝔸 inst✝¹ : IsScalarTower 𝕂 𝕊 𝔸 inst✝ : CompleteSpace 𝔸 x : 𝔸 t : 𝕊 htx : t • x ∈ EMetric.ball 0 (expSeries 𝕂 𝔸).radius e_8✝ : NormedAddCommGroup.toAddCommGroup = SeminormedAddCommGroup.toAddCommGroup ⊢ (ContinuousLinearMap.smulRight 1 x).smulRight (exp 𝕂 (t • x)) = exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x
a03bb16c07893e27
UniformSpace.Completion.mem_uniformity_dist
Mathlib/Topology/MetricSpace/Completion.lean
theorem mem_uniformity_dist (s : Set (Completion α × Completion α)) : s ∈ 𝓤 (Completion α) ↔ ∃ ε > 0, ∀ {a b}, dist a b < ε → (a, b) ∈ s
α : Type u inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑x.1, ↑x.2) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ ⦃a b : α⦄, dist a b < ε → (a, b) ∈ {x | (↑x.1, ↑x.2) ∈ t} x y : Completion α hxy : dist x y < ε ⊢ ε ≤ dist x y ∨ (x, y) ∈ t
refine induction_on₂ x y ?_ ?_
case refine_1 α : Type u inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑x.1, ↑x.2) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ ⦃a b : α⦄, dist a b < ε → (a, b) ∈ {x | (↑x.1, ↑x.2) ∈ t} x y : Completion α hxy : dist x y < ε ⊢ IsClosed {x | ε ≤ dist x.1 x.2 ∨ (x.1, x.2) ∈ t} case refine_2 α : Type u inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑x.1, ↑x.2) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ ⦃a b : α⦄, dist a b < ε → (a, b) ∈ {x | (↑x.1, ↑x.2) ∈ t} x y : Completion α hxy : dist x y < ε ⊢ ∀ (a b : α), ε ≤ dist ↑a ↑b ∨ (↑a, ↑b) ∈ t
c4dfc92c04080ea5
Profinite.NobelingProof.C0_projOrd
Mathlib/Topology/Category/Profinite/Nobeling.lean
theorem C0_projOrd {x : I → Bool} (hx : x ∈ C0 C ho) : Proj (ord I · < o) x = x
case h.inr I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I inst✝ : WellFoundedLT I o : Ordinal.{u} hsC : contained C (Order.succ o) ho : o < Ordinal.type fun x1 x2 => x1 < x2 x : I → Bool hx : x ∈ C0 C ho i : I hi : o = ord I i ⊢ false = x i
simp only [C0, Set.mem_inter_iff, Set.mem_setOf_eq] at hx
case h.inr I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I inst✝ : WellFoundedLT I o : Ordinal.{u} hsC : contained C (Order.succ o) ho : o < Ordinal.type fun x1 x2 => x1 < x2 x : I → Bool i : I hi : o = ord I i hx : x ∈ C ∧ x (term I ho) = false ⊢ false = x i
93a5fd18327066a4
Rel.gc_leftDual_rightDual
Mathlib/Order/Rel/GaloisConnection.lean
theorem gc_leftDual_rightDual : GaloisConnection (toDual ∘ R.leftDual) (R.rightDual ∘ ofDual) := fun _ _ ↦ ⟨fun h _ ha _ hb ↦ h (by simpa) ha, fun h _ hb _ ha ↦ h (by simpa) hb⟩
α : Type u_1 β : Type u_2 R : Rel α β x✝³ : Set α x✝² : (Set β)ᵒᵈ h : (⇑toDual ∘ R.leftDual) x✝³ ≤ x✝² x✝¹ : α ha : x✝¹ ∈ x✝³ x✝ : β hb : x✝ ∈ ofDual x✝² ⊢ x✝ ∈ x✝²
simpa
no goals
c0c4bbebfd7bb08d
intervalIntegral.continuousOn_primitive
Mathlib/MeasureTheory/Integral/DominatedConvergence.lean
theorem continuousOn_primitive (h_int : IntegrableOn f (Icc a b) μ) : ContinuousOn (fun x => ∫ t in Ioc a x, f t ∂μ) (Icc a b)
case pos E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E a b : ℝ μ : Measure ℝ f : ℝ → E inst✝ : NoAtoms μ h_int : IntegrableOn f (Icc a b) μ h : a ≤ b this : ∀ x ∈ Icc a b, ∫ (t : ℝ) in Ioc a x, f t ∂μ = ∫ (t : ℝ) in a..x, f t ∂μ x₀ : ℝ a✝ : x₀ ∈ Icc a b ⊢ IntegrableOn f (Ioc a b) μ
exact h_int.mono Ioc_subset_Icc_self le_rfl
no goals
4480467b3d286247
Padic.exi_rat_seq_conv_cauchy
Mathlib/NumberTheory/Padics/PadicNumbers.lean
theorem exi_rat_seq_conv_cauchy : IsCauSeq (padicNorm p) (limSeq f) := fun ε hε ↦ by have hε3 : 0 < ε / 3 := div_pos hε (by norm_num) let ⟨N, hN⟩ := exi_rat_seq_conv f hε3 let ⟨N2, hN2⟩ := f.cauchy₂ hε3 exists max N N2 intro j hj suffices padicNormE (limSeq f j - f (max N N2) + (f (max N N2) - limSeq f (max N N2)) : ℚ_[p]) < ε by ring_nf at this ⊢ rw [← padicNormE.eq_padic_norm'] exact mod_cast this apply lt_of_le_of_lt · apply padicNormE.add_le · rw [← add_thirds ε] apply _root_.add_lt_add · suffices padicNormE (limSeq f j - f j + (f j - f (max N N2)) : ℚ_[p]) < ε / 3 + ε / 3 by simpa only [sub_add_sub_cancel] apply lt_of_le_of_lt · apply padicNormE.add_le · apply _root_.add_lt_add · rw [padicNormE.map_sub] apply mod_cast hN j exact le_of_max_le_left hj · exact hN2 _ (le_of_max_le_right hj) _ (le_max_right _ _) · apply mod_cast hN (max N N2) apply le_max_left
p : ℕ inst✝ : Fact (Nat.Prime p) f : CauSeq ℚ_[p] ⇑padicNormE ε : ℚ hε : ε > 0 hε3 : 0 < ε / 3 N : ℕ hN : ∀ i ≥ N, padicNormE (↑f i - ↑(limSeq f i)) < ε / 3 N2 : ℕ hN2 : ∀ j ≥ N2, ∀ k ≥ N2, padicNormE (↑f j - ↑f k) < ε / 3 j : ℕ hj : j ≥ N ⊔ N2 this : padicNormE (↑(limSeq f j) - ↑f (N ⊔ N2) + (↑f (N ⊔ N2) - ↑(limSeq f (N ⊔ N2)))) < ε ⊢ padicNorm p (limSeq f j - limSeq f (N ⊔ N2)) < ε
ring_nf at this ⊢
p : ℕ inst✝ : Fact (Nat.Prime p) f : CauSeq ℚ_[p] ⇑padicNormE ε : ℚ hε : ε > 0 hε3 : 0 < ε / 3 N : ℕ hN : ∀ i ≥ N, padicNormE (↑f i - ↑(limSeq f i)) < ε / 3 N2 : ℕ hN2 : ∀ j ≥ N2, ∀ k ≥ N2, padicNormE (↑f j - ↑f k) < ε / 3 j : ℕ hj : j ≥ N ⊔ N2 this : padicNormE (↑(limSeq f j) - ↑(limSeq f (N ⊔ N2))) < ε ⊢ padicNorm p (limSeq f j - limSeq f (N ⊔ N2)) < ε
5532e11826254be6
Zsqrtd.not_divides_sq
Mathlib/NumberTheory/Zsqrtd/Basic.lean
theorem not_divides_sq (x y) : (x + 1) * (x + 1) ≠ d * (y + 1) * (y + 1) := fun e => by have t := (divides_sq_eq_zero e).left contradiction
d : ℕ dnsq : Nonsquare d x y : ℕ e : (x + 1) * (x + 1) = d * (y + 1) * (y + 1) t : x + 1 = 0 ⊢ False
contradiction
no goals
9529b3c349df2e6e
Equiv.Perm.mclosure_swap_castSucc_succ
Mathlib/GroupTheory/Perm/Sign.lean
theorem mclosure_swap_castSucc_succ (n : ℕ) : Submonoid.closure (Set.range fun i : Fin n ↦ swap i.castSucc i.succ) = ⊤
n : ℕ i j : Fin (n + 1) ne : i ≠ j lt : i < j ⊢ swap i j ∈ ↑(Submonoid.closure (Set.range fun i => swap i.castSucc i.succ))
induction' j using Fin.induction with j ih
case zero n : ℕ i : Fin (n + 1) ne : i ≠ 0 lt : i < 0 ⊢ swap i 0 ∈ ↑(Submonoid.closure (Set.range fun i => swap i.castSucc i.succ)) case succ n : ℕ i : Fin (n + 1) j : Fin n ih : i ≠ j.castSucc → i < j.castSucc → swap i j.castSucc ∈ ↑(Submonoid.closure (Set.range fun i => swap i.castSucc i.succ)) ne : i ≠ j.succ lt : i < j.succ ⊢ swap i j.succ ∈ ↑(Submonoid.closure (Set.range fun i => swap i.castSucc i.succ))
6a1796e117466965
Function.Surjective.iSup_comp
Mathlib/Order/CompleteLattice.lean
theorem Function.Surjective.iSup_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) : ⨆ x, g (f x) = ⨆ y, g y
α : Type u_1 ι : Sort u_4 ι' : Sort u_5 inst✝ : SupSet α f : ι → ι' hf : Surjective f g : ι' → α ⊢ ⨆ x, g (f x) = ⨆ y, g y
simp only [iSup.eq_1]
α : Type u_1 ι : Sort u_4 ι' : Sort u_5 inst✝ : SupSet α f : ι → ι' hf : Surjective f g : ι' → α ⊢ sSup (range fun x => g (f x)) = sSup (range fun y => g y)
bb4449b14580f170
Polynomial.coeff_map
Mathlib/Algebra/Polynomial/Eval/Coeff.lean
theorem coeff_map (n : ℕ) : coeff (p.map f) n = f (coeff p n)
R : Type u S : Type v inst✝¹ : Semiring R p : R[X] inst✝ : Semiring S f : R →+* S n : ℕ ⊢ ∑ n_1 ∈ p.support, ((C.comp f) (p.coeff n_1) * X ^ n_1).coeff n = ∑ x ∈ p.support, f ((C (p.coeff x) * X ^ x).coeff n)
refine Finset.sum_congr rfl fun x _hx => ?_
R : Type u S : Type v inst✝¹ : Semiring R p : R[X] inst✝ : Semiring S f : R →+* S n x : ℕ _hx : x ∈ p.support ⊢ ((C.comp f) (p.coeff x) * X ^ x).coeff n = f ((C (p.coeff x) * X ^ x).coeff n)
c6b3aab6eefd374b
PowerBasis.exists_eq_aeval'
Mathlib/RingTheory/PowerBasis.lean
theorem exists_eq_aeval' (pb : PowerBasis R S) (y : S) : ∃ f : R[X], y = aeval pb.gen f
R : Type u_1 S : Type u_2 inst✝² : CommRing R inst✝¹ : Ring S inst✝ : Algebra R S pb : PowerBasis R S y : S a✝ : Nontrivial S ⊢ ∃ f, y = (aeval pb.gen) f
obtain ⟨f, _, hf⟩ := exists_eq_aeval pb y
case intro.intro R : Type u_1 S : Type u_2 inst✝² : CommRing R inst✝¹ : Ring S inst✝ : Algebra R S pb : PowerBasis R S y : S a✝ : Nontrivial S f : R[X] left✝ : f.natDegree < pb.dim hf : y = (aeval pb.gen) f ⊢ ∃ f, y = (aeval pb.gen) f
ddcc9e5e2f91f77d
intervalIntegral.intervalIntegrable_deriv_of_nonneg
Mathlib/MeasureTheory/Integral/FundThmCalculus.lean
theorem intervalIntegrable_deriv_of_nonneg (hcont : ContinuousOn g (uIcc a b)) (hderiv : ∀ x ∈ Ioo (min a b) (max a b), HasDerivAt g (g' x) x) (hpos : ∀ x ∈ Ioo (min a b) (max a b), 0 ≤ g' x) : IntervalIntegrable g' volume a b
case inr g' g : ℝ → ℝ a b : ℝ hab : b ≤ a hcont : ContinuousOn g (Icc b a) hderiv : ∀ x ∈ Ioo b a, HasDerivAt g (g' x) x hpos : ∀ x ∈ Ioo b a, 0 ≤ g' x ⊢ IntegrableOn g' (Ioc b a) volume
exact integrableOn_deriv_of_nonneg hcont hderiv hpos
no goals
1cdf5ec3b7a39a4e
Int.natAbs_add_le
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Order.lean
theorem natAbs_add_le (a b : Int) : natAbs (a + b) ≤ natAbs a + natAbs b
a b : Int this : ∀ (a b : Nat), (subNatNat a b.succ).natAbs ≤ (a + b).succ ⊢ (a + b).natAbs ≤ a.natAbs + b.natAbs
match a, b with | (a:Nat), (b:Nat) => rw [ofNat_add_ofNat, natAbs_ofNat]; apply Nat.le_refl | (a:Nat), -[b+1] => rw [natAbs_ofNat, natAbs_negSucc]; apply this | -[a+1], (b:Nat) => rw [natAbs_negSucc, natAbs_ofNat, Nat.succ_add, Nat.add_comm a b]; apply this | -[a+1], -[b+1] => rw [natAbs_negSucc, succ_add]; apply Nat.le_refl
no goals
2617f5dcc449a695
ConvexOn.lipschitzOnWith_of_abs_le
Mathlib/Analysis/Convex/Continuous.lean
lemma ConvexOn.lipschitzOnWith_of_abs_le (hf : ConvexOn ℝ (ball x₀ r) f) (hε : 0 < ε) (hM : ∀ a, dist a x₀ < r → |f a| ≤ M) : LipschitzOnWith (2 * M / ε).toNNReal f (ball x₀ (r - ε))
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : E → ℝ x₀ : E ε r M : ℝ hf : ConvexOn ℝ (ball x₀ r) f hε : 0 < ε hM : ∀ (a : E), dist a x₀ < r → |f a| ≤ M K : ℝ := 2 * M / ε hK : K = 2 * M / ε x y : E hx : x ∈ ball x₀ (r - ε) hy : y ∈ ball x₀ (r - ε) hx₀r : ball x₀ (r - ε) ⊆ ball x₀ r hx' : x ∈ ball x₀ r hy' : y ∈ ball x₀ r z : E := x + (ε / ‖x - y‖) • (x - y) hxy : 0 < ‖x - y‖ hz : z ∈ ball x₀ r a : ℝ := ε / (ε + ‖x - y‖) b : ℝ := ‖x - y‖ / (ε + ‖x - y‖) hab : a + b = 1 hxyz : x = a • y + b • z ⊢ (ε + ‖x - y‖) * f x ≤ ‖x - y‖ * f z + ε * f y
have h := hf.2 hy' hz (by positivity) (by positivity) hab
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : E → ℝ x₀ : E ε r M : ℝ hf : ConvexOn ℝ (ball x₀ r) f hε : 0 < ε hM : ∀ (a : E), dist a x₀ < r → |f a| ≤ M K : ℝ := 2 * M / ε hK : K = 2 * M / ε x y : E hx : x ∈ ball x₀ (r - ε) hy : y ∈ ball x₀ (r - ε) hx₀r : ball x₀ (r - ε) ⊆ ball x₀ r hx' : x ∈ ball x₀ r hy' : y ∈ ball x₀ r z : E := x + (ε / ‖x - y‖) • (x - y) hxy : 0 < ‖x - y‖ hz : z ∈ ball x₀ r a : ℝ := ε / (ε + ‖x - y‖) b : ℝ := ‖x - y‖ / (ε + ‖x - y‖) hab : a + b = 1 hxyz : x = a • y + b • z h : f (a • y + b • z) ≤ a • f y + b • f z ⊢ (ε + ‖x - y‖) * f x ≤ ‖x - y‖ * f z + ε * f y
f794e80453a6298e
Matrix.Pivot.exists_isTwoBlockDiagonal_list_transvec_mul_mul_list_transvec
Mathlib/LinearAlgebra/Matrix/Transvection.lean
theorem exists_isTwoBlockDiagonal_list_transvec_mul_mul_list_transvec (M : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜) : ∃ L L' : List (TransvectionStruct (Fin r ⊕ Unit) 𝕜), IsTwoBlockDiagonal ((L.map toMatrix).prod * M * (L'.map toMatrix).prod)
case inl.unit 𝕜 : Type u_3 inst✝ : Field 𝕜 r : ℕ M : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜 hM : M (inr ()) (inr ()) = 0 H : ∀ (i : Fin r), M (inl i) (inr ()) = 0 ∧ M (inr ()) (inl i) = 0 i : Fin r ⊢ of (fun i j => M (inl i) (inr j)) i PUnit.unit = 0 i PUnit.unit
exact (H i).1
no goals
ef47f5e7783abe91
DeltaGeneratedSpace.continuous_iff
Mathlib/Topology/Compactness/DeltaGeneratedSpace.lean
/-- A map out of a delta-generated space is continuous iff it preserves continuity of maps from ℝⁿ into X. -/ lemma DeltaGeneratedSpace.continuous_iff [DeltaGeneratedSpace X] {f : X → Y} : Continuous f ↔ ∀ (n : ℕ) (p : C(((Fin n) → ℝ), X)), Continuous (f ∘ p)
case mp X : Type u_1 Y : Type u_2 tX : TopologicalSpace X tY : TopologicalSpace Y inst✝ : DeltaGeneratedSpace X f : X → Y h : ∀ (i : (n : ℕ) × C(Fin n → ℝ, X)), coinduced (f ∘ ⇑i.snd) inferInstance ≤ tY n : ℕ p : C(Fin n → ℝ, X) ⊢ coinduced (f ∘ ⇑p) Pi.topologicalSpace ≤ tY
apply h ⟨n, p⟩
no goals
722db935464c7d28
ProbabilityTheory.integrable_rpow_abs_of_integrable_exp_mul
Mathlib/Probability/Moments/IntegrableExpMul.lean
/-- If `ω ↦ exp (t * X ω)` is integrable at `t` and `-t` for `t ≠ 0`, then `ω ↦ |X ω| ^ p` is integrable for all nonnegative `p : ℝ`. -/ lemma integrable_rpow_abs_of_integrable_exp_mul (ht : t ≠ 0) (ht_int_pos : Integrable (fun ω ↦ exp (t * X ω)) μ) (ht_int_neg : Integrable (fun ω ↦ exp (- t * X ω)) μ) {p : ℝ} (hp : 0 ≤ p) : Integrable (fun ω ↦ |X ω| ^ p) μ
case refine_3 Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω t : ℝ ht : t ≠ 0 ht_int_pos : Integrable (fun ω => rexp (t * X ω)) μ ht_int_neg : Integrable (fun ω => rexp (-t * X ω)) μ p : ℝ hp : 0 ≤ p h : Integrable (fun ω => |X ω| ^ p * rexp (0 * X ω)) μ ⊢ Integrable (fun ω => |X ω| ^ p) μ
simpa using h
no goals
9251f8aeb0444eb7
isBounded_pow
Mathlib/Topology/Bornology/BoundedOperation.lean
lemma isBounded_pow {R : Type*} [Bornology R] [Monoid R] [BoundedMul R] {s : Set R} (s_bdd : Bornology.IsBounded s) (n : ℕ) : Bornology.IsBounded ((fun x ↦ x ^ n) '' s)
case neg R : Type u_2 inst✝² : Bornology R inst✝¹ : Monoid R inst✝ : BoundedMul R s : Set R s_bdd : Bornology.IsBounded s s_empty : ¬s = ∅ ⊢ Bornology.IsBounded ((fun x => x ^ 0) '' s)
simp_rw [← nonempty_iff_ne_empty] at s_empty
case neg R : Type u_2 inst✝² : Bornology R inst✝¹ : Monoid R inst✝ : BoundedMul R s : Set R s_bdd : Bornology.IsBounded s s_empty : s.Nonempty ⊢ Bornology.IsBounded ((fun x => x ^ 0) '' s)
72761af82af91aa5
smul_top_inf_eq_smul_of_isSMulRegular_on_quot
Mathlib/RingTheory/Regular/IsSMulRegular.lean
lemma smul_top_inf_eq_smul_of_isSMulRegular_on_quot : IsSMulRegular (M ⧸ N) r → r • ⊤ ⊓ N ≤ r • N
R : Type u_1 M : Type u_3 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M N : Submodule R M r : R ⊢ IsSMulRegular (M ⧸ N) r → r • ⊤ ⊓ N ≤ r • N
convert map_mono ∘ (isSMulRegular_on_quot_iff_lsmul_comap_le N r).mp using 2
case h'.h.e'_3 R : Type u_1 M : Type u_3 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M N : Submodule R M r : R a✝ : IsSMulRegular (M ⧸ N) r ⊢ r • ⊤ ⊓ N = map (DistribMulAction.toLinearMap R M r) (comap ((LinearMap.lsmul R M) r) N)
501e1cac1d97bfca
Matrix.IsTotallyUnimodular.fromRows_unitlike
Mathlib/LinearAlgebra/Matrix/Determinant/TotallyUnimodular.lean
/-- If `A` is totally unimodular and each row of `B` is all zeros except for at most a single `1` or a single `-1` then `fromRows A B` is totally unimodular. -/ lemma IsTotallyUnimodular.fromRows_unitlike [DecidableEq n] {A : Matrix m n R} {B : Matrix m' n R} (hA : A.IsTotallyUnimodular) (hB : Nonempty n → ∀ i : m', ∃ j : n, ∃ s : SignType, B i = Pi.single j s.cast) : (fromRows A B).IsTotallyUnimodular
m : Type u_1 m' : Type u_2 n : Type u_3 R : Type u_5 inst✝¹ : CommRing R inst✝ : DecidableEq n A : Matrix m n R B : Matrix m' n R hA : A.IsTotallyUnimodular k : ℕ ih : ∀ (f : Fin k → m ⊕ m') (g : Fin k → n), Function.Injective f → Function.Injective g → ((A.fromRows B).submatrix f g).det ∈ Set.range SignType.cast f : Fin (k + 1) → m ⊕ m' g : Fin (k + 1) → n hf : Function.Injective f hg : Function.Injective g hB : ∀ (i : m'), ∃ j s, B i = Pi.single j ↑s i : Fin (k + 1) j : m' hfi : f i = Sum.inr j s : SignType x : Fin (k + 1) hj' : B j = Pi.single (g x) ↑s hAB : ((A.fromRows B).submatrix f g).det = (-1) ^ (↑i + ↑x) * ↑s * (((A.fromRows B).submatrix f g).submatrix i.succAbove x.succAbove).det ⊢ ↑SignType.castHom (-1) = -1
simp
no goals
9c8e0262dc5799a2
linearIndependent_of_top_le_span_of_card_eq_finrank
Mathlib/LinearAlgebra/Dimension/DivisionRing.lean
theorem linearIndependent_of_top_le_span_of_card_eq_finrank {ι : Type*} [Fintype ι] {b : ι → V} (spans : ⊤ ≤ span K (Set.range b)) (card_eq : Fintype.card ι = finrank K V) : LinearIndependent K b := linearIndependent_iff'.mpr fun s g dependent i i_mem_s => by classical by_contra gx_ne_zero -- We'll derive a contradiction by showing `b '' (univ \ {i})` of cardinality `n - 1` -- spans a vector space of dimension `n`. refine not_le_of_gt (span_lt_top_of_card_lt_finrank (show (b '' (Set.univ \ {i})).toFinset.card < finrank K V from ?_)) ?_ · calc (b '' (Set.univ \ {i})).toFinset.card = ((Set.univ \ {i}).toFinset.image b).card
case pos.intro K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_2 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : ∑ i ∈ s, g i • b i = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 j : ι j_eq : j = i k : ι hk : k ∈ s.erase i k_ne_i : k ≠ i right✝ : k ∈ s ⊢ g k • b k ∈ span K (b '' (Set.univ \ {i}))
refine smul_mem _ _ (subset_span ⟨k, ?_, rfl⟩)
case pos.intro K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_2 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : ∑ i ∈ s, g i • b i = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 j : ι j_eq : j = i k : ι hk : k ∈ s.erase i k_ne_i : k ≠ i right✝ : k ∈ s ⊢ k ∈ Set.univ \ {i}
db71af46429798d0
PseudoMetricSpace.le_two_mul_dist_ofPreNNDist
Mathlib/Topology/Metrizable/Uniformity.lean
theorem le_two_mul_dist_ofPreNNDist (d : X → X → ℝ≥0) (dist_self : ∀ x, d x x = 0) (dist_comm : ∀ x y, d x y = d y x) (hd : ∀ x₁ x₂ x₃ x₄, d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄))) (x y : X) : ↑(d x y) ≤ 2 * @dist X (@PseudoMetricSpace.toDist X (PseudoMetricSpace.ofPreNNDist d dist_self dist_comm)) x y
X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * (d x₁ x₂ ⊔ (d x₂ x₃ ⊔ d x₃ x₄)) hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x y : X l : List X ihn : ∀ m < l.length, ∀ (x y : X) (l : List X), l.length = m → d x y ≤ 2 * (zipWith d (x :: l) (l ++ [y])).sum L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : L.length = l.length + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * (take m L).sum ≤ L.sum} hs₀ : 0 ∈ s ⊢ ∃ z z', d x z ≤ L.sum ∧ d z z' ≤ L.sum ∧ d z' y ≤ L.sum
have hsne : s.Nonempty := ⟨0, hs₀⟩
X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * (d x₁ x₂ ⊔ (d x₂ x₃ ⊔ d x₃ x₄)) hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x y : X l : List X ihn : ∀ m < l.length, ∀ (x y : X) (l : List X), l.length = m → d x y ≤ 2 * (zipWith d (x :: l) (l ++ [y])).sum L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : L.length = l.length + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * (take m L).sum ≤ L.sum} hs₀ : 0 ∈ s hsne : s.Nonempty ⊢ ∃ z z', d x z ≤ L.sum ∧ d z z' ≤ L.sum ∧ d z' y ≤ L.sum
a217eb6776c388b0
IntermediateField.sup_toSubfield
Mathlib/FieldTheory/IntermediateField/Adjoin/Defs.lean
theorem sup_toSubfield (S T : IntermediateField F E) : (S ⊔ T).toSubfield = S.toSubfield ⊔ T.toSubfield
F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E S T : IntermediateField F E ⊢ Subfield.closure (Set.range ⇑(algebraMap F E) ∪ (↑S ∪ ↑T)) = Subfield.closure (↑S ∪ ↑T)
congr 1
case e_s F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E S T : IntermediateField F E ⊢ Set.range ⇑(algebraMap F E) ∪ (↑S ∪ ↑T) = ↑S ∪ ↑T
b50505e8feceb97d