name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
AlgebraicGeometry.LocallyRingedSpace.residueFieldMap_id
Mathlib/Geometry/RingedSpace/LocallyRingedSpace/ResidueField.lean
@[simp] lemma residueFieldMap_id (x : X) : residueFieldMap (𝟙 X) x = 𝟙 (X.residueField x)
X : LocallyRingedSpace x : ↑X.toTopCat ⊢ residueFieldMap (𝟙 X) x = 𝟙 (X.residueField x)
ext : 1
case hf X : LocallyRingedSpace x : ↑X.toTopCat ⊢ CommRingCat.Hom.hom (residueFieldMap (𝟙 X) x) = CommRingCat.Hom.hom (𝟙 (X.residueField x))
6d43b3b35eb00ee4
Multiset.map_univ_coe
Mathlib/Data/Multiset/Fintype.lean
theorem map_univ_coe (m : Multiset α) : (Finset.univ : Finset m).val.map (fun x : m ↦ (x : α)) = m
α : Type u_1 inst✝ : DecidableEq α m : Multiset α this : map Prod.fst (Finset.map m.coeEmbedding Finset.univ).val = m ⊢ map (fun x => x.fst) Finset.univ.val = m
simpa only [Finset.map_val, Multiset.coeEmbedding_apply, Multiset.map_map, Function.comp_apply] using this
no goals
d3b22290796d9c51
FiniteField.roots_X_pow_card_sub_X
Mathlib/FieldTheory/Finite/Basic.lean
theorem roots_X_pow_card_sub_X : roots (X ^ q - X : K[X]) = Finset.univ.val
case h.e'_4 K : Type u_1 inst✝¹ : Field K inst✝ : Fintype K aux : X ^ q - X ≠ 0 this : (X ^ q - X).roots.toFinset = univ ⊢ derivative (X ^ q - X) = -1
rw [derivative_sub, derivative_X, derivative_X_pow, Nat.cast_card_eq_zero K, C_0, zero_mul, zero_sub]
no goals
f38f049b4c3caab9
HomologicalComplex.quasiIso_truncGEMap_iff
Mathlib/Algebra/Homology/Embedding/TruncGEHomology.lean
lemma quasiIso_truncGEMap_iff : QuasiIso (truncGEMap φ e) ↔ ∀ (i : ι) (i' : ι') (_ : e.f i = i'), QuasiIsoAt φ i'
case neg ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝⁵ : Category.{u_4, u_3} C inst✝⁴ : HasZeroMorphisms C K L : HomologicalComplex C c' φ : K ⟶ L e : c.Embedding c' inst✝³ : e.IsTruncGE inst✝² : ∀ (i' : ι'), K.HasHomology i' inst✝¹ : ∀ (i' : ι'), L.HasHomology i' inst✝ : HasZeroObject C this : ∀ (i : ι) (i' : ι'), e.f i = i' → (QuasiIsoAt (truncGEMap φ e) i' ↔ QuasiIsoAt φ i') h : ∀ (i : ι) (i' : ι'), e.f i = i' → QuasiIsoAt φ i' i' : ι' hi' : ¬∃ i, e.f i = i' ⊢ QuasiIsoAt (truncGEMap φ e) i'
rw [quasiIsoAt_iff_exactAt]
case neg ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝⁵ : Category.{u_4, u_3} C inst✝⁴ : HasZeroMorphisms C K L : HomologicalComplex C c' φ : K ⟶ L e : c.Embedding c' inst✝³ : e.IsTruncGE inst✝² : ∀ (i' : ι'), K.HasHomology i' inst✝¹ : ∀ (i' : ι'), L.HasHomology i' inst✝ : HasZeroObject C this : ∀ (i : ι) (i' : ι'), e.f i = i' → (QuasiIsoAt (truncGEMap φ e) i' ↔ QuasiIsoAt φ i') h : ∀ (i : ι) (i' : ι'), e.f i = i' → QuasiIsoAt φ i' i' : ι' hi' : ¬∃ i, e.f i = i' ⊢ (L.truncGE e).ExactAt i' case neg.hK ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝⁵ : Category.{u_4, u_3} C inst✝⁴ : HasZeroMorphisms C K L : HomologicalComplex C c' φ : K ⟶ L e : c.Embedding c' inst✝³ : e.IsTruncGE inst✝² : ∀ (i' : ι'), K.HasHomology i' inst✝¹ : ∀ (i' : ι'), L.HasHomology i' inst✝ : HasZeroObject C this : ∀ (i : ι) (i' : ι'), e.f i = i' → (QuasiIsoAt (truncGEMap φ e) i' ↔ QuasiIsoAt φ i') h : ∀ (i : ι) (i' : ι'), e.f i = i' → QuasiIsoAt φ i' i' : ι' hi' : ¬∃ i, e.f i = i' ⊢ (K.truncGE e).ExactAt i'
80836fc97a82149a
IsClosed.exists_wbtw_isVisible
Mathlib/Analysis/Convex/Visible.lean
/-- If `s` is a closed set, then any point `x` sees some point of `s` in any direction where there is something to see. -/ lemma IsClosed.exists_wbtw_isVisible (hs : IsClosed s) (hy : y ∈ s) (x : V) : ∃ z ∈ s, Wbtw ℝ x z y ∧ IsVisible ℝ s x z
V : Type u_2 inst✝⁴ : AddCommGroup V inst✝³ : Module ℝ V s : Set V y : V inst✝² : TopologicalSpace V inst✝¹ : IsTopologicalAddGroup V inst✝ : ContinuousSMul ℝ V hs : IsClosed s hy : y ∈ s x : V t : Set ℝ := Set.Ici 0 ∩ ⇑(lineMap x y) ⁻¹' s ht₁ : 1 ∈ t ht : BddBelow t δ : ℝ := sInf t hδ₁ : δ ≤ 1 hδ₀✝ : 0 ≤ δ hδ : (lineMap x y) δ ∈ s ε : ℝ hε₀ : 0 ≤ ε hε₁ : ε ≤ 1 hε : (lineMap x ((lineMap x y) δ)) ε ∈ s h : (lineMap x ((lineMap x y) δ)) ε ≠ (lineMap x y) δ hδ₀ : δ = 0 ⊢ False
simp [hδ₀] at h
no goals
b1e9329ed05e7997
CategoryTheory.OverPresheafAux.YonedaCollection.map₁_comp
Mathlib/CategoryTheory/Comma/Presheaf/Basic.lean
@[simp] lemma map₁_comp {G H : (CostructuredArrow yoneda A)ᵒᵖ ⥤ Type v} (η : F ⟶ G) (μ : G ⟶ H) : YonedaCollection.map₁ (η ≫ μ) (X := X) = YonedaCollection.map₁ μ (X := X) ∘ YonedaCollection.map₁ η (X := X)
case h.h' C : Type u inst✝ : Category.{v, u} C A : Cᵒᵖ ⥤ Type v F : (CostructuredArrow yoneda A)ᵒᵖ ⥤ Type v X : C G H : (CostructuredArrow yoneda A)ᵒᵖ ⥤ Type v η : F ⟶ G μ : G ⟶ H x✝ : YonedaCollection F X ⊢ H.map (eqToHom ⋯) ((map₁ μ ∘ map₁ η) x✝).snd = (map₁ (η ≫ μ) x✝).snd
simp
no goals
576c452c575f7911
HasProd.hasProd_compl_iff
Mathlib/Topology/Algebra/InfiniteSum/Group.lean
theorem HasProd.hasProd_compl_iff {s : Set β} (hf : HasProd (f ∘ (↑) : s → α) a₁) : HasProd (f ∘ (↑) : ↑sᶜ → α) a₂ ↔ HasProd f (a₁ * a₂)
α : Type u_1 β : Type u_2 inst✝² : CommGroup α inst✝¹ : TopologicalSpace α inst✝ : IsTopologicalGroup α f : β → α a₁ a₂ : α s : Set β hf : HasProd (s.mulIndicator f) a₁ h : HasProd f (a₁ * a₂) ⊢ HasProd (sᶜ.mulIndicator f) a₂
rw [Set.mulIndicator_compl]
α : Type u_1 β : Type u_2 inst✝² : CommGroup α inst✝¹ : TopologicalSpace α inst✝ : IsTopologicalGroup α f : β → α a₁ a₂ : α s : Set β hf : HasProd (s.mulIndicator f) a₁ h : HasProd f (a₁ * a₂) ⊢ HasProd (f * (s.mulIndicator f)⁻¹) a₂
384979b83d123102
SimpleGraph.edgeDisjointTriangles_iff_mem_sym2_subsingleton
Mathlib/Combinatorics/SimpleGraph/Triangle/Basic.lean
lemma edgeDisjointTriangles_iff_mem_sym2_subsingleton : G.EdgeDisjointTriangles ↔ ∀ ⦃e : Sym2 α⦄, ¬ e.IsDiag → {s ∈ G.cliqueSet 3 | e ∈ (s : Finset α).sym2}.Subsingleton
case mp α : Type u_1 G : SimpleGraph α this : ∀ (a b : α), a ≠ b → {s | s ∈ G.cliqueSet 3 ∧ s(a, b) ∈ s.sym2} = {s | G.Adj a b ∧ ∃ c, G.Adj a c ∧ G.Adj b c ∧ s = {a, b, c}} hG : G.EdgeDisjointTriangles a b : α hab : ¬a = b ⊢ {s | G.Adj (a, b).1 (a, b).2 ∧ ∃ c, G.Adj (a, b).1 c ∧ G.Adj (a, b).2 c ∧ s = {(a, b).1, (a, b).2, c}}.Subsingleton
rintro _ ⟨hab, c, hac, hbc, rfl⟩ _ ⟨-, d, had, hbd, rfl⟩
case mp.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 G : SimpleGraph α this : ∀ (a b : α), a ≠ b → {s | s ∈ G.cliqueSet 3 ∧ s(a, b) ∈ s.sym2} = {s | G.Adj a b ∧ ∃ c, G.Adj a c ∧ G.Adj b c ∧ s = {a, b, c}} hG : G.EdgeDisjointTriangles a b : α hab✝ : ¬a = b hab : G.Adj (a, b).1 (a, b).2 c : α hac : G.Adj (a, b).1 c hbc : G.Adj (a, b).2 c d : α had : G.Adj (a, b).1 d hbd : G.Adj (a, b).2 d ⊢ {(a, b).1, (a, b).2, c} = {(a, b).1, (a, b).2, d}
dd5ab32164f7deff
orthogonalComplement_eq_orthogonalComplement
Mathlib/Analysis/InnerProductSpace/Projection.lean
theorem orthogonalComplement_eq_orthogonalComplement {L : Submodule 𝕜 E} [HasOrthogonalProjection K] [HasOrthogonalProjection L] : Kᗮ = Lᗮ ↔ K = L := ⟨fun h ↦ by simpa using congr(Submodule.orthogonal $(h)), fun h ↦ congr(Submodule.orthogonal $(h))⟩
𝕜 : Type u_1 E : Type u_2 inst✝⁴ : RCLike 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E K L : Submodule 𝕜 E inst✝¹ : HasOrthogonalProjection K inst✝ : HasOrthogonalProjection L h : Kᗮ = Lᗮ ⊢ K = L
simpa using congr(Submodule.orthogonal $(h))
no goals
a29173c0d632433c
Polynomial.Gal.card_complex_roots_eq_card_real_add_card_not_gal_inv
Mathlib/Analysis/Complex/Polynomial/Basic.lean
theorem card_complex_roots_eq_card_real_add_card_not_gal_inv (p : ℚ[X]) : (p.rootSet ℂ).toFinset.card = (p.rootSet ℝ).toFinset.card + (galActionHom p ℂ (restrict p ℂ (AlgEquiv.restrictScalars ℚ Complex.conjAe))).support.card
case neg.refine_2 p : ℚ[X] hp : ¬p = 0 inj : Function.Injective ⇑(IsScalarTower.toAlgHom ℚ ℝ ℂ) a : Finset ℂ := ?neg.refine_1✝ ⊢ (p.rootSet ℂ).toFinset.card = (Finset.image (⇑(IsScalarTower.toAlgHom ℚ ℝ ℂ)) (p.rootSet ℝ).toFinset).card + (Finset.image (fun a => ↑a) ((galActionHom p ℂ) ((restrict p ℂ) (AlgEquiv.restrictScalars ℚ conjAe))).support).card case neg.refine_1 p : ℚ[X] hp : ¬p = 0 inj : Function.Injective ⇑(IsScalarTower.toAlgHom ℚ ℝ ℂ) ⊢ Finset ℂ
on_goal 1 => let b : Finset ℂ := ?_
case neg.refine_2.refine_2 p : ℚ[X] hp : ¬p = 0 inj : Function.Injective ⇑(IsScalarTower.toAlgHom ℚ ℝ ℂ) a : Finset ℂ := ?neg.refine_1✝ b : Finset ℂ := ?neg.refine_2.refine_1✝ ⊢ (p.rootSet ℂ).toFinset.card = (Finset.image (⇑(IsScalarTower.toAlgHom ℚ ℝ ℂ)) (p.rootSet ℝ).toFinset).card + (Finset.image (fun a => ↑a) ((galActionHom p ℂ) ((restrict p ℂ) (AlgEquiv.restrictScalars ℚ conjAe))).support).card case neg.refine_2.refine_1 p : ℚ[X] hp : ¬p = 0 inj : Function.Injective ⇑(IsScalarTower.toAlgHom ℚ ℝ ℂ) a : Finset ℂ := ?neg.refine_1✝ ⊢ Finset ℂ case neg.refine_1 p : ℚ[X] hp : ¬p = 0 inj : Function.Injective ⇑(IsScalarTower.toAlgHom ℚ ℝ ℂ) ⊢ Finset ℂ
8dbcfedb34311abf
Polynomial.sup_ker_aeval_eq_ker_aeval_mul_of_coprime
Mathlib/RingTheory/Polynomial/Basic.lean
theorem sup_ker_aeval_eq_ker_aeval_mul_of_coprime (f : M →ₗ[R] M) {p q : R[X]} (hpq : IsCoprime p q) : LinearMap.ker (aeval f p) ⊔ LinearMap.ker (aeval f q) = LinearMap.ker (aeval f (p * q))
case intro.intro R : Type u M : Type w inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M f : M →ₗ[R] M p q : R[X] v : M hv : v ∈ LinearMap.ker ((aeval f) (p * q)) p' q' : R[X] hpq' : p' * p + q' * q = 1 h_eval₂_qpp' : ((aeval f) q * (aeval f) (p * p')) v = 0 h_eval₂_pqq' : ((aeval f) p * (aeval f) (q * q')) v = 0 ⊢ ((aeval f) (q * q')) v + ((aeval f) (p * p')) v = v
rw [add_comm, mul_comm p p', mul_comm q q']
case intro.intro R : Type u M : Type w inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M f : M →ₗ[R] M p q : R[X] v : M hv : v ∈ LinearMap.ker ((aeval f) (p * q)) p' q' : R[X] hpq' : p' * p + q' * q = 1 h_eval₂_qpp' : ((aeval f) q * (aeval f) (p * p')) v = 0 h_eval₂_pqq' : ((aeval f) p * (aeval f) (q * q')) v = 0 ⊢ ((aeval f) (p' * p)) v + ((aeval f) (q' * q)) v = v
bb84be2e4bee1df0
Seminorm.continuous_iSup
Mathlib/Analysis/LocallyConvex/Barrelled.lean
theorem Seminorm.continuous_iSup {ι : Sort*} {𝕜 E : Type*} [NormedField 𝕜] [AddCommGroup E] [Module 𝕜 E] [TopologicalSpace E] [BarrelledSpace 𝕜 E] (p : ι → Seminorm 𝕜 E) (hp : ∀ i, Continuous (p i)) (bdd : BddAbove (range p)) : Continuous (⨆ i, p i)
ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁴ : NormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : BarrelledSpace 𝕜 E p : ι → Seminorm 𝕜 E hp : ∀ (i : ι), Continuous ⇑(p i) bdd : BddAbove (range p) ⊢ LowerSemicontinuous (⨆ i, ⇑(p i))
rw [Seminorm.bddAbove_range_iff] at bdd
ι : Sort u_1 𝕜 : Type u_2 E : Type u_3 inst✝⁴ : NormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : BarrelledSpace 𝕜 E p : ι → Seminorm 𝕜 E hp : ∀ (i : ι), Continuous ⇑(p i) bdd : ∀ (x : E), BddAbove (range fun i => (p i) x) ⊢ LowerSemicontinuous (⨆ i, ⇑(p i))
5c60d0ed10836010
exists_seq_of_forall_finset_exists'
Mathlib/Data/Fintype/Basic.lean
theorem exists_seq_of_forall_finset_exists' {α : Type*} (P : α → Prop) (r : α → α → Prop) [IsSymm α r] (h : ∀ s : Finset α, (∀ x ∈ s, P x) → ∃ y, P y ∧ ∀ x ∈ s, r x y) : ∃ f : ℕ → α, (∀ n, P (f n)) ∧ Pairwise (r on f)
case intro.intro.inr.inr α : Type u_4 P : α → Prop r : α → α → Prop inst✝ : IsSymm α r h✝ : ∀ (s : Finset α), (∀ x ∈ s, P x) → ∃ y, P y ∧ ∀ x ∈ s, r x y f : ℕ → α hf : ∀ (n : ℕ), P (f n) hf' : ∀ (m n : ℕ), m < n → r (f m) (f n) m n : ℕ hmn : m ≠ n h : n < m ⊢ (r on f) m n
unfold Function.onFun
case intro.intro.inr.inr α : Type u_4 P : α → Prop r : α → α → Prop inst✝ : IsSymm α r h✝ : ∀ (s : Finset α), (∀ x ∈ s, P x) → ∃ y, P y ∧ ∀ x ∈ s, r x y f : ℕ → α hf : ∀ (n : ℕ), P (f n) hf' : ∀ (m n : ℕ), m < n → r (f m) (f n) m n : ℕ hmn : m ≠ n h : n < m ⊢ r (f m) (f n)
3491857fe7bb309d
AlgebraicGeometry.HasRingHomProperty.of_isLocalAtSource_of_isLocalAtTarget
Mathlib/AlgebraicGeometry/Morphisms/RingHomProperties.lean
lemma of_isLocalAtSource_of_isLocalAtTarget [IsLocalAtTarget P] [IsLocalAtSource P] : HasRingHomProperty P (fun f ↦ P (Spec.map (CommRingCat.ofHom f))) where isLocal_ringHomProperty := isLocal_ringHomProperty_of_isLocalAtSource_of_isLocalAtTarget P eq_affineLocally'
P : MorphismProperty Scheme inst✝¹ : IsLocalAtTarget P inst✝ : IsLocalAtSource P Q : MorphismProperty Scheme := affineLocally fun {R S} [CommRing R] [CommRing S] f => P (Spec.map (CommRingCat.ofHom f)) this : HasRingHomProperty Q fun {R S} [CommRing R] [CommRing S] f => P (Spec.map (CommRingCat.ofHom f)) S : CommRingCat X : Scheme f : X ⟶ Spec S hX : ∃ R, X = Spec R ⊢ P f ↔ Q f
obtain ⟨R, rfl⟩ := hX
case intro P : MorphismProperty Scheme inst✝¹ : IsLocalAtTarget P inst✝ : IsLocalAtSource P Q : MorphismProperty Scheme := affineLocally fun {R S} [CommRing R] [CommRing S] f => P (Spec.map (CommRingCat.ofHom f)) this : HasRingHomProperty Q fun {R S} [CommRing R] [CommRing S] f => P (Spec.map (CommRingCat.ofHom f)) S R : CommRingCat f : Spec R ⟶ Spec S ⊢ P f ↔ Q f
b07ed824f3692719
Polynomial.coeff_mul_add_eq_of_natDegree_le
Mathlib/Algebra/Polynomial/Degree/Operations.lean
theorem coeff_mul_add_eq_of_natDegree_le {df dg : ℕ} {f g : R[X]} (hdf : natDegree f ≤ df) (hdg : natDegree g ≤ dg) : (f * g).coeff (df + dg) = f.coeff df * g.coeff dg
case h₀.mk.inr R : Type u inst✝ : Semiring R df dg : ℕ f g : R[X] hdf : f.natDegree ≤ df hdg : g.natDegree ≤ dg df' dg' : ℕ hmem : (df', dg') ∈ antidiagonal (df + dg) hne : (df', dg') ≠ (df, dg) hdf' : df' ≤ df ⊢ f.coeff (df', dg').1 * g.coeff (df', dg').2 = 0
obtain h | hdg' := lt_or_le dg dg'
case h₀.mk.inr.inl R : Type u inst✝ : Semiring R df dg : ℕ f g : R[X] hdf : f.natDegree ≤ df hdg : g.natDegree ≤ dg df' dg' : ℕ hmem : (df', dg') ∈ antidiagonal (df + dg) hne : (df', dg') ≠ (df, dg) hdf' : df' ≤ df h : dg < dg' ⊢ f.coeff (df', dg').1 * g.coeff (df', dg').2 = 0 case h₀.mk.inr.inr R : Type u inst✝ : Semiring R df dg : ℕ f g : R[X] hdf : f.natDegree ≤ df hdg : g.natDegree ≤ dg df' dg' : ℕ hmem : (df', dg') ∈ antidiagonal (df + dg) hne : (df', dg') ≠ (df, dg) hdf' : df' ≤ df hdg' : dg' ≤ dg ⊢ f.coeff (df', dg').1 * g.coeff (df', dg').2 = 0
cc639442faabee4c
MvPowerSeries.map.isLocalHom
Mathlib/RingTheory/MvPowerSeries/Inverse.lean
theorem map.isLocalHom : IsLocalHom (map σ f) := ⟨by rintro φ ⟨ψ, h⟩ replace h := congr_arg (constantCoeff σ S) h rw [constantCoeff_map] at h have : IsUnit (constantCoeff σ S ↑ψ) := isUnit_constantCoeff _ ψ.isUnit rw [h] at this rcases isUnit_of_map_unit f _ this with ⟨c, hc⟩ exact isUnit_of_mul_eq_one φ (invOfUnit φ c) (mul_invOfUnit φ c hc.symm)⟩
case intro σ : Type u_1 R : Type u_2 S : Type u_3 inst✝² : CommRing R inst✝¹ : CommRing S f : R →+* S inst✝ : IsLocalHom f φ : MvPowerSeries σ R ψ : (MvPowerSeries σ S)ˣ h : (constantCoeff σ S) ↑ψ = f ((constantCoeff σ R) φ) ⊢ IsUnit φ
have : IsUnit (constantCoeff σ S ↑ψ) := isUnit_constantCoeff _ ψ.isUnit
case intro σ : Type u_1 R : Type u_2 S : Type u_3 inst✝² : CommRing R inst✝¹ : CommRing S f : R →+* S inst✝ : IsLocalHom f φ : MvPowerSeries σ R ψ : (MvPowerSeries σ S)ˣ h : (constantCoeff σ S) ↑ψ = f ((constantCoeff σ R) φ) this : IsUnit ((constantCoeff σ S) ↑ψ) ⊢ IsUnit φ
f085e8794e8de496
WithBot.add_lt_add_right
Mathlib/Algebra/Order/Monoid/Unbundled/WithTop.lean
protected lemma add_lt_add_right [LT α] [AddRightStrictMono α] (hz : z ≠ ⊥) : x < y → x + z < y + z
α : Type u inst✝² : Add α x y z : WithBot α inst✝¹ : LT α inst✝ : AddRightStrictMono α hz : z ≠ ⊥ ⊢ x < y → x + z < y + z
lift z to α using hz
case intro α : Type u inst✝² : Add α x y : WithBot α inst✝¹ : LT α inst✝ : AddRightStrictMono α z : α ⊢ x < y → x + ↑z < y + ↑z
28ae5eb4d91ddc82
CategoryTheory.yonedaYonedaColimit_app_inv
Mathlib/CategoryTheory/Limits/Preserves/Yoneda.lean
theorem yonedaYonedaColimit_app_inv {X : C} : ((yonedaYonedaColimit F).app (op X)).inv = (colimitObjIsoColimitCompEvaluation _ _).hom ≫ (colimit.post F (coyoneda.obj (op (yoneda.obj X))))
C : Type u₁ inst✝³ : Category.{v₁, u₁} C J : Type u₂ inst✝² : Category.{v₂, u₂} J inst✝¹ : HasColimitsOfShape J (Type v₁) inst✝ : HasColimitsOfShape J (Type (max u₁ v₁)) F : J ⥤ Cᵒᵖ ⥤ Type v₁ X : C ⊢ (colimitObjIsoColimitCompEvaluation (F ⋙ yoneda) (op (yoneda.obj X))).hom ≫ colimMap (whiskerLeft F (largeCurriedYonedaLemma.hom.app (op X))) ≫ (preservesColimitIso uliftFunctor.{u₁, v₁} (F.flip.obj (op X))).inv ≫ uliftFunctor.{u₁, v₁}.map (colimitObjIsoColimitCompEvaluation F (op X)).inv ≫ (yonedaOpCompYonedaObj (colimit F)).inv.app (op X) = (colimitObjIsoColimitCompEvaluation (F ⋙ yoneda) (op (yoneda.obj X))).hom ≫ colimit.post F (coyoneda.obj (op (yoneda.obj X)))
simp only [Category.id_comp, Iso.cancel_iso_hom_left]
C : Type u₁ inst✝³ : Category.{v₁, u₁} C J : Type u₂ inst✝² : Category.{v₂, u₂} J inst✝¹ : HasColimitsOfShape J (Type v₁) inst✝ : HasColimitsOfShape J (Type (max u₁ v₁)) F : J ⥤ Cᵒᵖ ⥤ Type v₁ X : C ⊢ colimMap (whiskerLeft F (largeCurriedYonedaLemma.hom.app (op X))) ≫ (preservesColimitIso uliftFunctor.{u₁, v₁} (F.flip.obj (op X))).inv ≫ uliftFunctor.{u₁, v₁}.map (colimitObjIsoColimitCompEvaluation F (op X)).inv ≫ (yonedaOpCompYonedaObj (colimit F)).inv.app (op X) = colimit.post F (coyoneda.obj (op (yoneda.obj X)))
874001b8ccf19d19
Bool.ofNat_le_ofNat
Mathlib/Data/Bool/Basic.lean
theorem ofNat_le_ofNat {n m : Nat} (h : n ≤ m) : ofNat n ≤ ofNat m
n m : ℕ h : n ≤ m ⊢ (!decide (n = 0)) ≤ !decide (m = 0)
cases Nat.decEq n 0 with | isTrue hn => rw [_root_.decide_eq_true hn]; exact Bool.false_le _ | isFalse hn => cases Nat.decEq m 0 with | isFalse hm => rw [_root_.decide_eq_false hm]; exact Bool.le_true _ | isTrue hm => subst hm; have h := Nat.le_antisymm h (Nat.zero_le n); contradiction
no goals
a12bab163ba4b474
MvPolynomial.weightedHomogeneousComponent_eq_zero_of_not_mem
Mathlib/RingTheory/MvPolynomial/WeightedHomogeneous.lean
theorem weightedHomogeneousComponent_eq_zero_of_not_mem [DecidableEq M] (φ : MvPolynomial σ R) (i : M) (hi : i ∉ Finset.image (weight w) φ.support) : weightedHomogeneousComponent w i φ = 0
case h R : Type u_1 M : Type u_2 inst✝² : CommSemiring R σ : Type u_3 w : σ → M inst✝¹ : AddCommMonoid M inst✝ : DecidableEq M φ : MvPolynomial σ R i : M hi : ∀ (x : σ →₀ ℕ), ¬coeff x φ = 0 → ¬(weight w) x = i ⊢ ∀ d ∈ φ.support, (weight w) d ≠ i
exact fun m hm ↦ hi m (mem_support_iff.mp hm)
no goals
88ec2f0eca5bdfd4
Real.harm_mean_le_geom_mean_weighted
Mathlib/Analysis/MeanInequalities.lean
theorem harm_mean_le_geom_mean_weighted (w z : ι → ℝ) (hs : s.Nonempty) (hw : ∀ i ∈ s, 0 < w i) (hw' : ∑ i ∈ s, w i = 1) (hz : ∀ i ∈ s, 0 < z i) : (∑ i ∈ s, w i / z i)⁻¹ ≤ ∏ i ∈ s, z i ^ w i
ι : Type u s : Finset ι w z : ι → ℝ hs : s.Nonempty hw : ∀ i ∈ s, 0 < w i hw' : ∑ i ∈ s, w i = 1 hz : ∀ i ∈ s, 0 < z i p_pos : 0 < ∏ i ∈ s, (z i)⁻¹ ^ w i s_pos : 0 < ∑ i ∈ s, w i * (z i)⁻¹ this : (∑ i ∈ s, w i * (z i)⁻¹)⁻¹ ≤ (∏ i ∈ s, (z i)⁻¹ ^ w i)⁻¹ p_pos₂ : 0 < (∏ i ∈ s, z i ^ w i)⁻¹ ⊢ (∏ i ∈ s, (z i)⁻¹ ^ w i)⁻¹ ≤ ∏ i ∈ s, z i ^ w i
rw [← inv_inv (∏ i ∈ s, z i ^ w i), inv_le_inv₀ p_pos p_pos₂, ← Finset.prod_inv_distrib]
ι : Type u s : Finset ι w z : ι → ℝ hs : s.Nonempty hw : ∀ i ∈ s, 0 < w i hw' : ∑ i ∈ s, w i = 1 hz : ∀ i ∈ s, 0 < z i p_pos : 0 < ∏ i ∈ s, (z i)⁻¹ ^ w i s_pos : 0 < ∑ i ∈ s, w i * (z i)⁻¹ this : (∑ i ∈ s, w i * (z i)⁻¹)⁻¹ ≤ (∏ i ∈ s, (z i)⁻¹ ^ w i)⁻¹ p_pos₂ : 0 < (∏ i ∈ s, z i ^ w i)⁻¹ ⊢ ∏ x ∈ s, (z x ^ w x)⁻¹ ≤ ∏ i ∈ s, (z i)⁻¹ ^ w i
34ac124dd1bd80a1
IntermediateField.restrictScalars_injective
Mathlib/FieldTheory/IntermediateField/Basic.lean
theorem restrictScalars_injective : Function.Injective (restrictScalars K : IntermediateField L' L → IntermediateField K L) := fun U V H => ext fun x => by rw [← mem_restrictScalars K, H, mem_restrictScalars]
K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁶ : Field K inst✝⁵ : Field L inst✝⁴ : Field L' inst✝³ : Algebra K L inst✝² : Algebra K L' inst✝¹ : Algebra L' L inst✝ : IsScalarTower K L' L U V : IntermediateField L' L H : restrictScalars K U = restrictScalars K V x : L ⊢ x ∈ U ↔ x ∈ V
rw [← mem_restrictScalars K, H, mem_restrictScalars]
no goals
3abce742204cc92a
frontier_closedBall'
Mathlib/Analysis/NormedSpace/Real.lean
theorem frontier_closedBall' (x : E) (r : ℝ) : frontier (closedBall x r) = sphere x r
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : Nontrivial E x : E r : ℝ ⊢ frontier (closedBall x r) = sphere x r
rw [frontier, closure_closedBall, interior_closedBall' x r, closedBall_diff_ball]
no goals
a1ac7da3636e01d7
not_differentiableWithinAt_of_deriv_tendsto_atTop_Ioi
Mathlib/Analysis/Calculus/MeanValue.lean
theorem not_differentiableWithinAt_of_deriv_tendsto_atTop_Ioi (f : ℝ → ℝ) {a : ℝ} (hf : Tendsto (deriv f) (𝓝[>] a) atTop) : ¬ DifferentiableWithinAt ℝ f (Ioi a) a
case h f : ℝ → ℝ a : ℝ hf : Tendsto (derivWithin f (Ioi a)) (𝓝[>] a) atTop hcont_at_a : ContinuousWithinAt f (Ici a) a hdiff : Tendsto (slope f a) (𝓝[>] a) (𝓝 (derivWithin f (Ioi a) a)) h₀ : ∀ᶠ (b : ℝ) in 𝓝[>] a, ∀ x ∈ Ioc a b, (derivWithin f (Ioi a) a + 1) ⊔ 0 < derivWithin f (Ioi a) x h₁ : ∀ᶠ (b : ℝ) in 𝓝[>] a, slope f a b < derivWithin f (Ioi a) a + 1 b : ℝ hb : ∀ x ∈ Ioc a b, (derivWithin f (Ioi a) a + 1) ⊔ 0 < derivWithin f (Ioi a) x hslope : slope f a b < derivWithin f (Ioi a) a + 1 hab : a < b ⊢ False
have hdiff' : DifferentiableOn ℝ f (Ioc a b) := fun z hz => by refine DifferentiableWithinAt.mono (t := Ioi a) ?_ Ioc_subset_Ioi_self have : derivWithin f (Ioi a) z ≠ 0 := ne_of_gt <| by simp_all only [mem_Ioo, and_imp, mem_Ioc, max_lt_iff] exact differentiableWithinAt_of_derivWithin_ne_zero this
case h f : ℝ → ℝ a : ℝ hf : Tendsto (derivWithin f (Ioi a)) (𝓝[>] a) atTop hcont_at_a : ContinuousWithinAt f (Ici a) a hdiff : Tendsto (slope f a) (𝓝[>] a) (𝓝 (derivWithin f (Ioi a) a)) h₀ : ∀ᶠ (b : ℝ) in 𝓝[>] a, ∀ x ∈ Ioc a b, (derivWithin f (Ioi a) a + 1) ⊔ 0 < derivWithin f (Ioi a) x h₁ : ∀ᶠ (b : ℝ) in 𝓝[>] a, slope f a b < derivWithin f (Ioi a) a + 1 b : ℝ hb : ∀ x ∈ Ioc a b, (derivWithin f (Ioi a) a + 1) ⊔ 0 < derivWithin f (Ioi a) x hslope : slope f a b < derivWithin f (Ioi a) a + 1 hab : a < b hdiff' : DifferentiableOn ℝ f (Ioc a b) ⊢ False
d40ee29628b6175f
Nat.pair_unpair
Mathlib/Data/Nat/Pairing.lean
theorem pair_unpair (n : ℕ) : pair (unpair n).1 (unpair n).2 = n
n : ℕ s : ℕ := n.sqrt sm : s * s + (n - s * s) = n ⊢ pair (if n - n.sqrt * n.sqrt < n.sqrt then (n - n.sqrt * n.sqrt, n.sqrt) else (n.sqrt, n - n.sqrt * n.sqrt - n.sqrt)).1 (if n - n.sqrt * n.sqrt < n.sqrt then (n - n.sqrt * n.sqrt, n.sqrt) else (n.sqrt, n - n.sqrt * n.sqrt - n.sqrt)).2 = n
split_ifs with h
case pos n : ℕ s : ℕ := n.sqrt sm : s * s + (n - s * s) = n h : n - n.sqrt * n.sqrt < n.sqrt ⊢ pair (n - n.sqrt * n.sqrt, n.sqrt).1 (n - n.sqrt * n.sqrt, n.sqrt).2 = n case neg n : ℕ s : ℕ := n.sqrt sm : s * s + (n - s * s) = n h : ¬n - n.sqrt * n.sqrt < n.sqrt ⊢ pair (n.sqrt, n - n.sqrt * n.sqrt - n.sqrt).1 (n.sqrt, n - n.sqrt * n.sqrt - n.sqrt).2 = n
52459fe1e1a7ec3c
ordinaryHypergeometricSeries_apply_eq
Mathlib/Analysis/SpecialFunctions/OrdinaryHypergeometric.lean
theorem ordinaryHypergeometricSeries_apply_eq (x : 𝔸) (n : ℕ) : (ordinaryHypergeometricSeries 𝔸 a b c n fun _ => x) = ((n !⁻¹ : 𝕂) * (ascPochhammer 𝕂 n).eval a * (ascPochhammer 𝕂 n).eval b * ((ascPochhammer 𝕂 n).eval c)⁻¹ ) • x ^ n
𝕂 : Type u_1 𝔸 : Type u_2 inst✝⁴ : Field 𝕂 inst✝³ : Ring 𝔸 inst✝² : Algebra 𝕂 𝔸 inst✝¹ : TopologicalSpace 𝔸 inst✝ : IsTopologicalRing 𝔸 a b c : 𝕂 x : 𝔸 n : ℕ ⊢ ((ordinaryHypergeometricSeries 𝔸 a b c n) fun x_1 => x) = ((↑n !)⁻¹ * Polynomial.eval a (ascPochhammer 𝕂 n) * Polynomial.eval b (ascPochhammer 𝕂 n) * (Polynomial.eval c (ascPochhammer 𝕂 n))⁻¹) • x ^ n
rw [ordinaryHypergeometricSeries, ofScalars_apply_eq]
no goals
07c851f2e9c93820
HasFDerivAt.lim_real
Mathlib/Analysis/Calculus/FDeriv/Equiv.lean
theorem HasFDerivAt.lim_real (hf : HasFDerivAt f f' x) (v : E) : Tendsto (fun c : ℝ => c • (f (x + c⁻¹ • v) - f x)) atTop (𝓝 (f' v))
E : Type u_1 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F f : E → F f' : E →L[ℝ] F x : E hf : HasFDerivAt f f' x v : E ⊢ ∀ (b : ℝ), ∃ i, ∀ (a : ℝ), i ≤ a → b ≤ ‖a‖
exact fun b => ⟨b, fun a ha => le_trans ha (le_abs_self _)⟩
no goals
dec1c6b98fdb342c
List.nodup_permutations
Mathlib/Data/List/Permutation.lean
theorem nodup_permutations (s : List α) (hs : Nodup s) : Nodup s.permutations
case cons.right.intro.mk.intro.mk.inr.inr α : Type u_1 s : List α x : α l : List α h : ∀ a' ∈ l, x ≠ a' h' : Pairwise (fun x1 x2 => x1 ≠ x2) l IH : l.permutations'.Nodup as : List α ha : as ~ l bs : List α hb : bs ~ l H : as ≠ bs a : List α ha' : a ∈ permutations'Aux x as hb' : a ∈ permutations'Aux x bs n : ℕ hn✝ : n < (permutations'Aux x as).length hn' : insertIdx n x as = a m : ℕ hm✝ : m < (permutations'Aux x bs).length hm' : insertIdx m x bs = a hl : as.length = bs.length hn : n ≤ as.length hm : m ≤ bs.length hx : (insertIdx n x as)[m] = x hx' : (insertIdx m x bs)[n] = x ht : m < n ⊢ x ∈ as
rw [← hx, getElem_insertIdx_of_lt ht]
case cons.right.intro.mk.intro.mk.inr.inr α : Type u_1 s : List α x : α l : List α h : ∀ a' ∈ l, x ≠ a' h' : Pairwise (fun x1 x2 => x1 ≠ x2) l IH : l.permutations'.Nodup as : List α ha : as ~ l bs : List α hb : bs ~ l H : as ≠ bs a : List α ha' : a ∈ permutations'Aux x as hb' : a ∈ permutations'Aux x bs n : ℕ hn✝ : n < (permutations'Aux x as).length hn' : insertIdx n x as = a m : ℕ hm✝ : m < (permutations'Aux x bs).length hm' : insertIdx m x bs = a hl : as.length = bs.length hn : n ≤ as.length hm : m ≤ bs.length hx : (insertIdx n x as)[m] = x hx' : (insertIdx m x bs)[n] = x ht : m < n ⊢ as[m] ∈ as
25ee05be5844251a
AlgebraicGeometry.Scheme.evaluation_ne_zero_iff_mem_basicOpen
Mathlib/AlgebraicGeometry/ResidueField.lean
lemma evaluation_ne_zero_iff_mem_basicOpen (x : X) (hx : x ∈ U) (f : Γ(X, U)) : X.evaluation U x hx f ≠ 0 ↔ x ∈ X.basicOpen f
X : Scheme U : X.Opens x : ↑↑X.toPresheafedSpace hx : x ∈ U f : ↑Γ(X, U) ⊢ (ConcreteCategory.hom (X.evaluation U x hx)) f ≠ 0 ↔ x ∈ X.basicOpen f
simp
no goals
6c376f151db11a69
Rel.inter_dom_subset_preimage_image
Mathlib/Data/Rel.lean
theorem inter_dom_subset_preimage_image (s : Set α) : s ∩ r.dom ⊆ r.preimage (r.image s)
α : Type u_1 β : Type u_2 r : Rel α β s : Set α x : α hx : x ∈ s ∧ x ∈ {x | ∃ y, r x y} ⊢ x ∈ r.preimage (r.image s)
rcases hx with ⟨hx, ⟨y, rxy⟩⟩
case intro.intro α : Type u_1 β : Type u_2 r : Rel α β s : Set α x : α hx : x ∈ s y : β rxy : r x y ⊢ x ∈ r.preimage (r.image s)
be39bf1537692879
CategoryTheory.GrothendieckTopology.Plus.inj_of_sep
Mathlib/CategoryTheory/Sites/ConcreteSheafification.lean
theorem inj_of_sep (P : Cᵒᵖ ⥤ D) (hsep : ∀ (X : C) (S : J.Cover X) (x y : ToType (P.obj (op X))), (∀ I : S.Arrow, P.map I.f.op x = P.map I.f.op y) → x = y) (X : C) : Function.Injective ((J.toPlus P).app (op X))
C : Type u inst✝⁶ : Category.{v, u} C J : GrothendieckTopology C D : Type w inst✝⁵ : Category.{max v u, w} D FD : D → D → Type u_1 CD : D → Type (max v u) inst✝⁴ : (X Y : D) → FunLike (FD X Y) (CD X) (CD Y) instCC : ConcreteCategory D FD inst✝³ : PreservesLimits (forget D) inst✝² : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P) inst✝ : ∀ (X : C), PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D) P : Cᵒᵖ ⥤ D hsep : ∀ (X : C) (S : J.Cover X) (x y : ToType (P.obj (op X))), (∀ (I : S.Arrow), (ConcreteCategory.hom (P.map I.f.op)) x = (ConcreteCategory.hom (P.map I.f.op)) y) → x = y X : C x y : CD (P.obj (op X)) h : ∃ W h1 h2, (Meq.mk ⊤ x).refine h1 = (Meq.mk ⊤ y).refine h2 ⊢ x = y
obtain ⟨W, h1, h2, hh⟩ := h
case intro.intro.intro C : Type u inst✝⁶ : Category.{v, u} C J : GrothendieckTopology C D : Type w inst✝⁵ : Category.{max v u, w} D FD : D → D → Type u_1 CD : D → Type (max v u) inst✝⁴ : (X Y : D) → FunLike (FD X Y) (CD X) (CD Y) instCC : ConcreteCategory D FD inst✝³ : PreservesLimits (forget D) inst✝² : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P) inst✝ : ∀ (X : C), PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D) P : Cᵒᵖ ⥤ D hsep : ∀ (X : C) (S : J.Cover X) (x y : ToType (P.obj (op X))), (∀ (I : S.Arrow), (ConcreteCategory.hom (P.map I.f.op)) x = (ConcreteCategory.hom (P.map I.f.op)) y) → x = y X : C x y : CD (P.obj (op X)) W : J.Cover X h1 h2 : W ⟶ ⊤ hh : (Meq.mk ⊤ x).refine h1 = (Meq.mk ⊤ y).refine h2 ⊢ x = y
fc3a81a552d8f5a1
ContinuousLinearEquiv.comp_right_hasFDerivWithinAt_iff
Mathlib/Analysis/Calculus/FDeriv/Equiv.lean
theorem comp_right_hasFDerivWithinAt_iff {f : F → G} {s : Set F} {x : E} {f' : F →L[𝕜] G} : HasFDerivWithinAt (f ∘ iso) (f'.comp (iso : E →L[𝕜] F)) (iso ⁻¹' s) x ↔ HasFDerivWithinAt f f' s (iso x)
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G iso : E ≃L[𝕜] F f : F → G s : Set F x : E f' : F →L[𝕜] G H : HasFDerivWithinAt (f ∘ ⇑iso) (f'.comp ↑iso) (⇑iso ⁻¹' s) (iso.symm (iso x)) ⊢ f = (f ∘ ⇑iso) ∘ ⇑iso.symm
rw [Function.comp_assoc, iso.self_comp_symm]
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G iso : E ≃L[𝕜] F f : F → G s : Set F x : E f' : F →L[𝕜] G H : HasFDerivWithinAt (f ∘ ⇑iso) (f'.comp ↑iso) (⇑iso ⁻¹' s) (iso.symm (iso x)) ⊢ f = f ∘ _root_.id
a55a7f049678bc87
Finset.map_subtype_embedding_Icc
Mathlib/Order/Interval/Finset/Defs.lean
theorem map_subtype_embedding_Icc (hp : ∀ ⦃a b x⦄, a ≤ x → x ≤ b → p a → p b → p x): (Icc a b).map (Embedding.subtype p) = (Icc a b : Finset α)
α : Type u_1 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x ⊢ map (Embedding.subtype p) (Finset.subtype p (Icc ↑a ↑b)) = Icc ↑a ↑b
refine Finset.subtype_map_of_mem fun x hx => ?_
α : Type u_1 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x x : α hx : x ∈ Icc ↑a ↑b ⊢ p x
44baa1ad0b8aff61
Complex.continuousAt_cpow_zero_of_re_pos
Mathlib/Analysis/SpecialFunctions/Pow/Continuity.lean
theorem continuousAt_cpow_zero_of_re_pos {z : ℂ} (hz : 0 < z.re) : ContinuousAt (fun x : ℂ × ℂ => x.1 ^ x.2) (0, z)
case refine_2.intro z : ℂ hz : 0 < z.re hz₀ : z ≠ 0 C : ℝ hC : |z.im| < C ⊢ IsBoundedUnder (fun x1 x2 => x1 ≤ x2) (𝓝 (0, z)) fun x => rexp (-(x.1.arg * x.2.im))
refine ⟨Real.exp (π * C), eventually_map.2 ?_⟩
case refine_2.intro z : ℂ hz : 0 < z.re hz₀ : z ≠ 0 C : ℝ hC : |z.im| < C ⊢ ∀ᶠ (a : ℂ × ℂ) in 𝓝 (0, z), (fun x1 x2 => x1 ≤ x2) (rexp (-(a.1.arg * a.2.im))) (rexp (π * C))
b64130900d251c6e
DirichletCharacter.even_or_odd
Mathlib/NumberTheory/DirichletCharacter/Basic.lean
lemma even_or_odd [NoZeroDivisors S] : ψ.Even ∨ ψ.Odd
S : Type u_2 inst✝¹ : CommRing S m : ℕ ψ : DirichletCharacter S m inst✝ : NoZeroDivisors S ⊢ ψ (-1) ^ 2 = 1
rw [← map_pow _, neg_one_sq, map_one]
no goals
80d6617dc6d1d7a7
Algebra.Generators.map_toComp_ker
Mathlib/RingTheory/Generators.lean
lemma map_toComp_ker (Q : Generators S T) (P : Generators R S) : P.ker.map (Q.toComp P).toAlgHom = RingHom.ker (Q.ofComp P).toAlgHom
R : Type u S : Type v inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S T : Type u_2 inst✝³ : CommRing T inst✝² : Algebra R T inst✝¹ : Algebra S T inst✝ : IsScalarTower R S T Q : Generators S T P : Generators R S this : DecidableEq (Q.vars →₀ ℕ) := Classical.decEq (Q.vars →₀ ℕ) x : P.Ring hx : (algebraMap P.Ring S) x = 0 ⊢ (Q.ofComp P).toAlgHom.comp (Q.toComp P).toAlgHom = IsScalarTower.toAlgHom R P.Ring Q.Ring
ext1
case hf R : Type u S : Type v inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S T : Type u_2 inst✝³ : CommRing T inst✝² : Algebra R T inst✝¹ : Algebra S T inst✝ : IsScalarTower R S T Q : Generators S T P : Generators R S this : DecidableEq (Q.vars →₀ ℕ) := Classical.decEq (Q.vars →₀ ℕ) x : P.Ring hx : (algebraMap P.Ring S) x = 0 i✝ : P.vars ⊢ ((Q.ofComp P).toAlgHom.comp (Q.toComp P).toAlgHom) (X i✝) = (IsScalarTower.toAlgHom R P.Ring Q.Ring) (X i✝)
5cc741e4fe814640
Ordinal.blsub_nadd_of_mono
Mathlib/SetTheory/Ordinal/NaturalOps.lean
theorem blsub_nadd_of_mono {f : ∀ c < a ♯ b, Ordinal.{max u v}} (hf : ∀ {i j} (hi hj), i ≤ j → f i hi ≤ f j hj) : blsub.{u,v} _ f = max (blsub.{u, v} a fun a' ha' => f (a' ♯ b) <| nadd_lt_nadd_right ha' b) (blsub.{u, v} b fun b' hb' => f (a ♯ b') <| nadd_lt_nadd_left hb' a)
a b : Ordinal.{u} f : (c : Ordinal.{u}) → c < a ♯ b → Ordinal.{max u v} hf : ∀ {i j : Ordinal.{u}} (hi : i < a ♯ b) (hj : j < a ♯ b), i ≤ j → f i hi ≤ f j hj ⊢ (a.blsub fun a' ha' => f (a' ♯ b) ⋯) ≤ (a ♯ b).blsub f a b : Ordinal.{u} f : (c : Ordinal.{u}) → c < a ♯ b → Ordinal.{max u v} hf : ∀ {i j : Ordinal.{u}} (hi : i < a ♯ b) (hj : j < a ♯ b), i ≤ j → f i hi ≤ f j hj ⊢ (b.blsub fun b' hb' => f (a ♯ b') ⋯) ≤ (a ♯ b).blsub f
all_goals apply blsub_le_of_brange_subset.{u, u, v} rintro c ⟨d, hd, rfl⟩ apply mem_brange_self
no goals
c7fd2bd8268739b9
Real.sInf_smul_of_nonpos
Mathlib/Data/Real/Pointwise.lean
theorem Real.sInf_smul_of_nonpos (ha : a ≤ 0) (s : Set ℝ) : sInf (a • s) = a • sSup s
case inr.inl α : Type u_2 inst✝² : LinearOrderedField α inst✝¹ : Module α ℝ inst✝ : OrderedSMul α ℝ s : Set ℝ hs : s.Nonempty ha : 0 ≤ 0 ⊢ sInf 0 = 0
exact csInf_singleton 0
no goals
1b3d0160dc445b73
CategoryTheory.simple_of_cosimple
Mathlib/CategoryTheory/Simple.lean
theorem simple_of_cosimple (X : C) (h : ∀ {Z : C} (f : X ⟶ Z) [Epi f], IsIso f ↔ f ≠ 0) : Simple X := ⟨fun {Y} f I => by classical fconstructor · intros have hx := cokernel.π_of_epi f by_contra h subst h exact (h _).mp (cokernel.π_of_zero _ _) hx · intro hf suffices Epi f by exact isIso_of_mono_of_epi _ apply Preadditive.epi_of_cokernel_zero by_contra h' exact cokernel_not_iso_of_nonzero hf ((h _).mpr h')⟩
case mpr.w C : Type u inst✝¹ : Category.{v, u} C inst✝ : Abelian C X : C h : ∀ {Z : C} (f : X ⟶ Z) [inst : Epi f], IsIso f ↔ f ≠ 0 Y : C f : Y ⟶ X I : Mono f hf : f ≠ 0 h' : ¬cokernel.π f = 0 ⊢ False
exact cokernel_not_iso_of_nonzero hf ((h _).mpr h')
no goals
aea3a25865e3da1b
VitaliFamily.ae_eventually_measure_zero_of_singular
Mathlib/MeasureTheory/Covering/Differentiation.lean
theorem ae_eventually_measure_zero_of_singular (hρ : ρ ⟂ₘ μ) : ∀ᵐ x ∂μ, Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 0)
α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in v.filterAt x, ρ a < ↑ε * μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in v.filterAt x, ρ a < ↑ε * μ a} ⊢ μ s = 0
obtain ⟨o, _, ρo, μo⟩ : ∃ o : Set α, MeasurableSet o ∧ ρ o = 0 ∧ μ oᶜ = 0 := hρ
case intro.intro.intro α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in v.filterAt x, ρ a < ↑ε * μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in v.filterAt x, ρ a < ↑ε * μ a} o : Set α left✝ : MeasurableSet o ρo : ρ o = 0 μo : μ oᶜ = 0 ⊢ μ s = 0
27b6e7c43d8d9d57
IsLocalization.nonZeroDivisors_le_comap
Mathlib/RingTheory/Localization/Defs.lean
theorem nonZeroDivisors_le_comap [IsLocalization M S] : nonZeroDivisors R ≤ (nonZeroDivisors S).comap (algebraMap R S)
case intro.intro.intro R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S inst✝ : IsLocalization M S a : R ha : a ∈ nonZeroDivisors R x : R s c : ↥M e : ↑c * x * a = 0 ⊢ mk' S x s = 0
rw [mk'_eq_zero_iff]
case intro.intro.intro R : Type u_1 inst✝³ : CommSemiring R M : Submonoid R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S inst✝ : IsLocalization M S a : R ha : a ∈ nonZeroDivisors R x : R s c : ↥M e : ↑c * x * a = 0 ⊢ ∃ m, ↑m * x = 0
4f7363ecf10ff4a6
ArithmeticFunction.cardFactors_eq_one_iff_prime
Mathlib/NumberTheory/ArithmeticFunction.lean
theorem cardFactors_eq_one_iff_prime {n : ℕ} : Ω n = 1 ↔ n.Prime
case succ n : ℕ h : Ω (n + 1) = 1 ⊢ Nat.Prime (n + 1)
rcases List.length_eq_one.1 h with ⟨x, hx⟩
case succ.intro n : ℕ h : Ω (n + 1) = 1 x : ℕ hx : (n + 1).primeFactorsList = [x] ⊢ Nat.Prime (n + 1)
f3f8948bdcda971a
symmDiff_eq_sup_sdiff_inf
Mathlib/Order/SymmDiff.lean
theorem symmDiff_eq_sup_sdiff_inf : a ∆ b = (a ⊔ b) \ (a ⊓ b)
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ a ∆ b = (a ⊔ b) \ (a ⊓ b)
simp [sup_sdiff, symmDiff]
no goals
b140439bd29480cc
AddCircle.isAddFundamentalDomain_of_ae_ball
Mathlib/MeasureTheory/Group/AddCircle.lean
theorem isAddFundamentalDomain_of_ae_ball (I : Set <| AddCircle T) (u x : AddCircle T) (hu : IsOfFinAddOrder u) (hI : I =ᵐ[volume] ball x (T / (2 * addOrderOf u))) : IsAddFundamentalDomain (AddSubgroup.zmultiples u) I
T : ℝ hT : Fact (0 < T) I : Set (AddCircle T) u x : AddCircle T hu : IsOfFinAddOrder u G : AddSubgroup (AddCircle T) := AddSubgroup.zmultiples u n : ℕ := addOrderOf u B : Set (AddCircle T) := ball x (T / (2 * ↑n)) hI : I =ᶠ[ae volume] B hn : 1 ≤ ↑n ⊢ IsAddFundamentalDomain (↥G) I volume
refine IsAddFundamentalDomain.mk_of_measure_univ_le ?_ ?_ ?_ ?_
case refine_1 T : ℝ hT : Fact (0 < T) I : Set (AddCircle T) u x : AddCircle T hu : IsOfFinAddOrder u G : AddSubgroup (AddCircle T) := AddSubgroup.zmultiples u n : ℕ := addOrderOf u B : Set (AddCircle T) := ball x (T / (2 * ↑n)) hI : I =ᶠ[ae volume] B hn : 1 ≤ ↑n ⊢ NullMeasurableSet I volume case refine_2 T : ℝ hT : Fact (0 < T) I : Set (AddCircle T) u x : AddCircle T hu : IsOfFinAddOrder u G : AddSubgroup (AddCircle T) := AddSubgroup.zmultiples u n : ℕ := addOrderOf u B : Set (AddCircle T) := ball x (T / (2 * ↑n)) hI : I =ᶠ[ae volume] B hn : 1 ≤ ↑n ⊢ ∀ (g : ↥G), g ≠ 0 → AEDisjoint volume (g +ᵥ I) I case refine_3 T : ℝ hT : Fact (0 < T) I : Set (AddCircle T) u x : AddCircle T hu : IsOfFinAddOrder u G : AddSubgroup (AddCircle T) := AddSubgroup.zmultiples u n : ℕ := addOrderOf u B : Set (AddCircle T) := ball x (T / (2 * ↑n)) hI : I =ᶠ[ae volume] B hn : 1 ≤ ↑n ⊢ ∀ (g : ↥G), QuasiMeasurePreserving (fun x => g +ᵥ x) volume volume case refine_4 T : ℝ hT : Fact (0 < T) I : Set (AddCircle T) u x : AddCircle T hu : IsOfFinAddOrder u G : AddSubgroup (AddCircle T) := AddSubgroup.zmultiples u n : ℕ := addOrderOf u B : Set (AddCircle T) := ball x (T / (2 * ↑n)) hI : I =ᶠ[ae volume] B hn : 1 ≤ ↑n ⊢ volume univ ≤ ∑' (g : ↥G), volume (g +ᵥ I)
3261dbc8487460b6
cfcₙ_apply_zero
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/NonUnital.lean
@[simp] lemma cfcₙ_apply_zero {f : R → R} : cfcₙ f (0 : A) = 0
case pos R : Type u_1 A : Type u_2 p : A → Prop inst✝¹¹ : CommSemiring R inst✝¹⁰ : Nontrivial R inst✝⁹ : StarRing R inst✝⁸ : MetricSpace R inst✝⁷ : IsTopologicalSemiring R inst✝⁶ : ContinuousStar R inst✝⁵ : NonUnitalRing A inst✝⁴ : StarRing A inst✝³ : TopologicalSpace A inst✝² : Module R A inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A instCFCₙ : NonUnitalContinuousFunctionalCalculus R p f : R → R hf0 : f 0 = 0 ⊢ cfcₙ f 0 = cfcₙ 0 0
apply cfcₙ_congr
case pos.hfg R : Type u_1 A : Type u_2 p : A → Prop inst✝¹¹ : CommSemiring R inst✝¹⁰ : Nontrivial R inst✝⁹ : StarRing R inst✝⁸ : MetricSpace R inst✝⁷ : IsTopologicalSemiring R inst✝⁶ : ContinuousStar R inst✝⁵ : NonUnitalRing A inst✝⁴ : StarRing A inst✝³ : TopologicalSpace A inst✝² : Module R A inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A instCFCₙ : NonUnitalContinuousFunctionalCalculus R p f : R → R hf0 : f 0 = 0 ⊢ Set.EqOn f 0 (σₙ R 0)
11ba940450e9b321
AlgebraicGeometry.IsLocalAtTarget.mk'
Mathlib/AlgebraicGeometry/Morphisms/Basic.lean
/-- `P` is local at the target if 1. `P` respects isomorphisms. 2. If `P` holds for `f : X ⟶ Y`, then `P` holds for `f ∣_ U` for any `U`. 3. If `P` holds for `f ∣_ U` for an open cover `U` of `Y`, then `P` holds for `f`. -/ protected lemma mk' {P : MorphismProperty Scheme} [P.RespectsIso] (restrict : ∀ {X Y : Scheme} (f : X ⟶ Y) (U : Y.Opens), P f → P (f ∣_ U)) (of_sSup_eq_top : ∀ {X Y : Scheme.{u}} (f : X ⟶ Y) {ι : Type u} (U : ι → Y.Opens), iSup U = ⊤ → (∀ i, P (f ∣_ U i)) → P f) : IsLocalAtTarget P
P : MorphismProperty Scheme inst✝ : P.RespectsIso restrict : ∀ {X Y : Scheme} (f : X ⟶ Y) (U : Y.Opens), P f → P (f ∣_ U) of_sSup_eq_top : ∀ {X Y : Scheme} (f : X ⟶ Y) {ι : Type u} (U : ι → Y.Opens), iSup U = ⊤ → (∀ (i : ι), P (f ∣_ U i)) → P f ⊢ IsLocalAtTarget P
refine ⟨inferInstance, fun {X Y} f 𝒰 ↦ ⟨?_, fun H ↦ of_sSup_eq_top f _ 𝒰.iSup_opensRange ?_⟩⟩
case refine_1 P : MorphismProperty Scheme inst✝ : P.RespectsIso restrict : ∀ {X Y : Scheme} (f : X ⟶ Y) (U : Y.Opens), P f → P (f ∣_ U) of_sSup_eq_top : ∀ {X Y : Scheme} (f : X ⟶ Y) {ι : Type u} (U : ι → Y.Opens), iSup U = ⊤ → (∀ (i : ι), P (f ∣_ U i)) → P f X Y : Scheme f : X ⟶ Y 𝒰 : Y.OpenCover ⊢ P f → ∀ (i : 𝒰.1), P (Scheme.Cover.pullbackHom 𝒰 f i) case refine_2 P : MorphismProperty Scheme inst✝ : P.RespectsIso restrict : ∀ {X Y : Scheme} (f : X ⟶ Y) (U : Y.Opens), P f → P (f ∣_ U) of_sSup_eq_top : ∀ {X Y : Scheme} (f : X ⟶ Y) {ι : Type u} (U : ι → Y.Opens), iSup U = ⊤ → (∀ (i : ι), P (f ∣_ U i)) → P f X Y : Scheme f : X ⟶ Y 𝒰 : Y.OpenCover H : ∀ (i : 𝒰.1), P (Scheme.Cover.pullbackHom 𝒰 f i) ⊢ ∀ (i : 𝒰.J), P (f ∣_ Scheme.Hom.opensRange (𝒰.map i))
30afa796e957c3d7
Subgroup.Normal.commutator_le_of_self_sup_commutative_eq_top
Mathlib/GroupTheory/Abelianization.lean
theorem Subgroup.Normal.commutator_le_of_self_sup_commutative_eq_top {N : Subgroup G} [N.Normal] {H : Subgroup G} (hHN : N ⊔ H = ⊤) (hH : Subgroup.IsCommutative H) : _root_.commutator G ≤ N
G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : N.Normal H : Subgroup G hHN : N ⊔ H = ⊤ hH : H.IsCommutative ⊢ _root_.commutator G ≤ N
rw [← quotient_commutative_iff_commutator_le]
G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : N.Normal H : Subgroup G hHN : N ⊔ H = ⊤ hH : H.IsCommutative ⊢ Std.Commutative fun x1 x2 => x1 * x2
4f1c7225fbfaf09a
Function.extend_smul
Mathlib/Algebra/Group/Action/Pi.lean
@[to_additive] lemma extend_smul {M α β : Type*} [SMul M β] (r : M) (f : ι → α) (g : ι → β) (e : α → β) : extend f (r • g) (r • e) = r • extend f g e
case h ι : Type u_1 M : Type u_7 α : Type u_8 β : Type u_9 inst✝ : SMul M β r : M f : ι → α g : ι → β e : α → β x : α ⊢ extend f (r • g) (r • e) x = (r • extend f g e) x
classical simp only [extend_def, Pi.smul_apply] split_ifs <;> rfl
no goals
6ccb80ef1a23d2f3
LinearMap.IsProj.eq_conj_prod_map'
Mathlib/LinearAlgebra/Projection.lean
theorem eq_conj_prod_map' {f : E →ₗ[R] E} (h : IsProj p f) : f = (p.prodEquivOfIsCompl (ker f) h.isCompl).toLinearMap ∘ₗ prodMap id 0 ∘ₗ (p.prodEquivOfIsCompl (ker f) h.isCompl).symm.toLinearMap
case hr.h R : Type u_1 inst✝² : Ring R E : Type u_2 inst✝¹ : AddCommGroup E inst✝ : Module R E p : Submodule R E f : E →ₗ[R] E h : IsProj p f x : ↥(ker f) ⊢ ((f ∘ₗ ↑(p.prodEquivOfIsCompl (ker f) ⋯)) ∘ₗ inr R ↥p ↥(ker f)) x = ((↑(p.prodEquivOfIsCompl (ker f) ⋯) ∘ₗ id.prodMap 0) ∘ₗ inr R ↥p ↥(ker f)) x
simp only [coe_prodEquivOfIsCompl, comp_apply, coe_inr, coprod_apply, _root_.map_zero, coe_subtype, zero_add, map_coe_ker, prodMap_apply, zero_apply, add_zero]
no goals
42e67a6dd540c5df
CategoryTheory.Functor.IsEventuallyConstantTo.coneπApp_eq
Mathlib/CategoryTheory/Limits/Constructions/EventuallyConstant.lean
lemma coneπApp_eq (j j' : J) (α : j' ⟶ i₀) (β : j' ⟶ j) : h.coneπApp j = (h.isoMap α ⟨𝟙 _⟩).inv ≫ F.map β
case intro.intro.intro.intro J : Type u_1 C : Type u_2 inst✝² : Category.{u_3, u_1} J inst✝¹ : Category.{u_4, u_2} C F : J ⥤ C i₀ : J h : F.IsEventuallyConstantTo i₀ inst✝ : IsCofiltered J j j' : J α : j' ⟶ i₀ β : j' ⟶ j s : J γ : s ⟶ IsCofiltered.min i₀ j δ : s ⟶ j' h₁ : γ ≫ minToRight i₀ j = δ ≫ β h₂ : γ ≫ minToLeft i₀ j = δ ≫ α ⊢ h.coneπApp j = (h.isoMap α ⋯).inv ≫ F.map β
dsimp [coneπApp]
case intro.intro.intro.intro J : Type u_1 C : Type u_2 inst✝² : Category.{u_3, u_1} J inst✝¹ : Category.{u_4, u_2} C F : J ⥤ C i₀ : J h : F.IsEventuallyConstantTo i₀ inst✝ : IsCofiltered J j j' : J α : j' ⟶ i₀ β : j' ⟶ j s : J γ : s ⟶ IsCofiltered.min i₀ j δ : s ⟶ j' h₁ : γ ≫ minToRight i₀ j = δ ≫ β h₂ : γ ≫ minToLeft i₀ j = δ ≫ α ⊢ (h.isoMap (minToLeft i₀ j) ⋯).inv ≫ F.map (minToRight i₀ j) = (h.isoMap α ⋯).inv ≫ F.map β
9049c30edd61763f
DirichletCharacter.unit_norm_eq_one
Mathlib/NumberTheory/DirichletCharacter/Bounds.lean
/-- The value at a unit of a Dirichlet character with target a normed field has norm `1`. -/ @[simp] lemma unit_norm_eq_one (a : (ZMod n)ˣ) : ‖χ a‖ = 1
F : Type u_1 inst✝ : NormedField F n : ℕ χ : DirichletCharacter F n a : (ZMod n)ˣ ⊢ ‖χ ↑a‖ = 1
refine (pow_eq_one_iff_of_nonneg (norm_nonneg _) (Nat.card_pos (α := (ZMod n)ˣ)).ne').mp ?_
F : Type u_1 inst✝ : NormedField F n : ℕ χ : DirichletCharacter F n a : (ZMod n)ˣ ⊢ ‖χ ↑a‖ ^ Nat.card (ZMod n)ˣ = 1
9709107840093d45
CategoryTheory.SemiadditiveOfBinaryBiproducts.isUnital_leftAdd
Mathlib/CategoryTheory/Preadditive/OfBiproducts.lean
theorem isUnital_leftAdd : EckmannHilton.IsUnital (· +ₗ ·) 0
case h₀ C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasZeroMorphisms C inst✝ : HasBinaryBiproducts C X Y : C f : X ⟶ Y ⊢ biprod.lift 0 f ≫ biprod.fst = (f ≫ biprod.inr) ≫ biprod.fst
simp
no goals
70e51031cc3995fa
NormedAddCommGroup.cauchy_series_of_le_geometric''
Mathlib/Analysis/SpecificLimits/Normed.lean
theorem NormedAddCommGroup.cauchy_series_of_le_geometric'' {C : ℝ} {u : ℕ → α} {N : ℕ} {r : ℝ} (hr₀ : 0 < r) (hr₁ : r < 1) (h : ∀ n ≥ N, ‖u n‖ ≤ C * r ^ n) : CauchySeq fun n ↦ ∑ k ∈ range (n + 1), u k
α : Type u_1 inst✝ : SeminormedAddCommGroup α C : ℝ u : ℕ → α N : ℕ r : ℝ hr₀ : 0 < r hr₁ : r < 1 h : ∀ n ≥ N, ‖u n‖ ≤ C * r ^ n v : ℕ → α := fun n => if n < N then 0 else u n hC : 0 ≤ C this : ∀ n ≥ N, u n = v n ⊢ ℝ
exact C
no goals
eb1c22e866e16cfa
Ideal.finiteHeight_iff_lt
Mathlib/RingTheory/Ideal/Height.lean
lemma Ideal.finiteHeight_iff_lt {I : Ideal R} : Ideal.FiniteHeight I ↔ I = ⊤ ∨ I.height < ⊤
case mpr.eq_top_or_height_ne_top.inr R : Type u_1 inst✝ : CommRing R I : Ideal R h : I.height < ⊤ ⊢ I = ⊤ ∨ I.height ≠ ⊤
exact Or.inr (ne_top_of_lt h)
no goals
0dedda41cd001cf1
MeasureTheory.SignedMeasure.exists_subset_restrict_nonpos
Mathlib/MeasureTheory/Decomposition/SignedHahn.lean
theorem exists_subset_restrict_nonpos (hi : s i < 0) : ∃ j : Set α, MeasurableSet j ∧ j ⊆ i ∧ s ≤[j] 0 ∧ s j < 0
case pos α : Type u_1 inst✝ : MeasurableSpace α s : SignedMeasure α i : Set α hi : ↑s i < 0 hi₁ : MeasurableSet i h : ¬s ≤[i] 0 hn : ∀ (n : ℕ), ¬s ≤[i \ ⋃ l, ⋃ (_ : l < n), MeasureTheory.SignedMeasure.restrictNonposSeq s i l] 0 A : Set α := i \ ⋃ l, MeasureTheory.SignedMeasure.restrictNonposSeq s i l hA : A = i \ ⋃ l, MeasureTheory.SignedMeasure.restrictNonposSeq s i l bdd : ℕ → ℕ := fun n => MeasureTheory.SignedMeasure.findExistsOneDivLT s (i \ ⋃ k, ⋃ (_ : k ≤ n), MeasureTheory.SignedMeasure.restrictNonposSeq s i k) hn' : ∀ (n : ℕ), ¬s ≤[i \ ⋃ l, ⋃ (_ : l ≤ n), MeasureTheory.SignedMeasure.restrictNonposSeq s i l] 0 h₁ : ↑s i = ↑s A + ∑' (l : ℕ), ↑s (MeasureTheory.SignedMeasure.restrictNonposSeq s i l) h₂ : ↑s A ≤ ↑s i h₃' : Summable fun n => 1 / (↑(bdd n) + 1) h₃ : Tendsto (fun n => ↑(bdd n) + 1) atTop atTop h₄ : Tendsto (fun n => ↑(bdd n)) atTop atTop A_meas : MeasurableSet A hnn : ¬s ≤[A] 0 ⊢ False
rw [restrict_le_restrict_iff _ _ A_meas] at hnn
case pos α : Type u_1 inst✝ : MeasurableSpace α s : SignedMeasure α i : Set α hi : ↑s i < 0 hi₁ : MeasurableSet i h : ¬s ≤[i] 0 hn : ∀ (n : ℕ), ¬s ≤[i \ ⋃ l, ⋃ (_ : l < n), MeasureTheory.SignedMeasure.restrictNonposSeq s i l] 0 A : Set α := i \ ⋃ l, MeasureTheory.SignedMeasure.restrictNonposSeq s i l hA : A = i \ ⋃ l, MeasureTheory.SignedMeasure.restrictNonposSeq s i l bdd : ℕ → ℕ := fun n => MeasureTheory.SignedMeasure.findExistsOneDivLT s (i \ ⋃ k, ⋃ (_ : k ≤ n), MeasureTheory.SignedMeasure.restrictNonposSeq s i k) hn' : ∀ (n : ℕ), ¬s ≤[i \ ⋃ l, ⋃ (_ : l ≤ n), MeasureTheory.SignedMeasure.restrictNonposSeq s i l] 0 h₁ : ↑s i = ↑s A + ∑' (l : ℕ), ↑s (MeasureTheory.SignedMeasure.restrictNonposSeq s i l) h₂ : ↑s A ≤ ↑s i h₃' : Summable fun n => 1 / (↑(bdd n) + 1) h₃ : Tendsto (fun n => ↑(bdd n) + 1) atTop atTop h₄ : Tendsto (fun n => ↑(bdd n)) atTop atTop A_meas : MeasurableSet A hnn : ¬∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ A → ↑s j ≤ ↑0 j ⊢ False
37ee21864bec50c9
MeasureTheory.Measure.lintegral_join
Mathlib/MeasureTheory/Measure/GiryMonad.lean
theorem lintegral_join {m : Measure (Measure α)} {f : α → ℝ≥0∞} (hf : Measurable f) : ∫⁻ x, f x ∂join m = ∫⁻ μ, ∫⁻ x, f x ∂μ ∂m
α : Type u_1 mα : MeasurableSpace α m : Measure (Measure α) f : α → ℝ≥0∞ hf : Measurable f ⊢ ∫⁻ (x : α), f x ∂m.join = ∫⁻ (μ : Measure α), ∫⁻ (x : α), f x ∂μ ∂m
simp_rw [lintegral_eq_iSup_eapprox_lintegral hf, SimpleFunc.lintegral, join_apply (SimpleFunc.measurableSet_preimage _ _)]
α : Type u_1 mα : MeasurableSpace α m : Measure (Measure α) f : α → ℝ≥0∞ hf : Measurable f ⊢ ⨆ n, ∑ x ∈ (SimpleFunc.eapprox f n).range, x * ∫⁻ (μ : Measure α), μ (⇑(SimpleFunc.eapprox f n) ⁻¹' {x}) ∂m = ∫⁻ (μ : Measure α), ⨆ n, ∑ x ∈ (SimpleFunc.eapprox f n).range, x * μ (⇑(SimpleFunc.eapprox f n) ⁻¹' {x}) ∂m
fa9f09aa020ca186
MeasurableSet.iUnion_of_monotone_of_frequently
Mathlib/MeasureTheory/MeasurableSpace/Basic.lean
theorem iUnion_of_monotone_of_frequently {ι : Type*} [Preorder ι] [(atTop : Filter ι).IsCountablyGenerated] {s : ι → Set α} (hsm : Monotone s) (hs : ∃ᶠ i in atTop, MeasurableSet (s i)) : MeasurableSet (⋃ i, s i)
α : Type u_1 inst✝² : MeasurableSpace α ι : Type u_6 inst✝¹ : Preorder ι inst✝ : atTop.IsCountablyGenerated s : ι → Set α hsm : Monotone s hs : ∃ᶠ (i : ι) in atTop, MeasurableSet (s i) ⊢ MeasurableSet (⋃ i, s i)
rcases exists_seq_forall_of_frequently hs with ⟨x, hx, hxm⟩
case intro.intro α : Type u_1 inst✝² : MeasurableSpace α ι : Type u_6 inst✝¹ : Preorder ι inst✝ : atTop.IsCountablyGenerated s : ι → Set α hsm : Monotone s hs : ∃ᶠ (i : ι) in atTop, MeasurableSet (s i) x : ℕ → ι hx : Tendsto x atTop atTop hxm : ∀ (n : ℕ), MeasurableSet (s (x n)) ⊢ MeasurableSet (⋃ i, s i)
eaf9c9d5846defea
ProbabilityTheory.Kernel.densityProcess_fst_univ
Mathlib/Probability/Kernel/Disintegration/Density.lean
lemma densityProcess_fst_univ [IsFiniteKernel κ] (n : ℕ) (a : α) (x : γ) : densityProcess κ (fst κ) n a x univ = if fst κ a (countablePartitionSet n x) = 0 then 0 else 1
case neg α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝¹ : CountablyGenerated γ κ : Kernel α (γ × β) inst✝ : IsFiniteKernel κ n : ℕ a : α x : γ h : ¬(κ.fst a) (countablePartitionSet n x) = 0 this : countablePartitionSet n x ×ˢ univ = {p | p.1 ∈ countablePartitionSet n x} ⊢ ((κ a) (countablePartitionSet n x ×ˢ univ) / (κ a) {p | p.1 ∈ countablePartitionSet n x}).toReal = 1
rw [this, ENNReal.div_self]
case neg α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝¹ : CountablyGenerated γ κ : Kernel α (γ × β) inst✝ : IsFiniteKernel κ n : ℕ a : α x : γ h : ¬(κ.fst a) (countablePartitionSet n x) = 0 this : countablePartitionSet n x ×ˢ univ = {p | p.1 ∈ countablePartitionSet n x} ⊢ ENNReal.toReal 1 = 1 case neg.h0 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝¹ : CountablyGenerated γ κ : Kernel α (γ × β) inst✝ : IsFiniteKernel κ n : ℕ a : α x : γ h : ¬(κ.fst a) (countablePartitionSet n x) = 0 this : countablePartitionSet n x ×ˢ univ = {p | p.1 ∈ countablePartitionSet n x} ⊢ (κ a) {p | p.1 ∈ countablePartitionSet n x} ≠ 0 case neg.hI α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝¹ : CountablyGenerated γ κ : Kernel α (γ × β) inst✝ : IsFiniteKernel κ n : ℕ a : α x : γ h : ¬(κ.fst a) (countablePartitionSet n x) = 0 this : countablePartitionSet n x ×ˢ univ = {p | p.1 ∈ countablePartitionSet n x} ⊢ (κ a) {p | p.1 ∈ countablePartitionSet n x} ≠ ⊤
148c86bd150ec8e7
Set.image2_swap
Mathlib/Data/Set/NAry.lean
theorem image2_swap (s : Set α) (t : Set β) : image2 f s t = image2 (fun a b => f b a) t s
case h α : Type u_1 β : Type u_3 γ : Type u_5 f : α → β → γ s : Set α t : Set β x✝ : γ ⊢ x✝ ∈ image2 f s t ↔ x✝ ∈ image2 (fun a b => f b a) t s
constructor <;> rintro ⟨a, ha, b, hb, rfl⟩ <;> exact ⟨b, hb, a, ha, rfl⟩
no goals
37c1bb72227ac3dc
lowerCentralSeries_antitone
Mathlib/GroupTheory/Nilpotent.lean
theorem lowerCentralSeries_antitone : Antitone (lowerCentralSeries G)
G : Type u_1 inst✝ : Group G n : ℕ x : G hx : x ∈ closure {x | ∃ p ∈ lowerCentralSeries G n, ∃ q, p * q * p⁻¹ * q⁻¹ = x} ⊢ ∀ x ∈ {x | ∃ p ∈ lowerCentralSeries G n, ∃ q, p * q * p⁻¹ * q⁻¹ = x}, x ∈ lowerCentralSeries G n
rintro y ⟨z, hz, a, ha⟩
case intro.intro.intro G : Type u_1 inst✝ : Group G n : ℕ x : G hx : x ∈ closure {x | ∃ p ∈ lowerCentralSeries G n, ∃ q, p * q * p⁻¹ * q⁻¹ = x} y z : G hz : z ∈ lowerCentralSeries G n a : G ha : z * a * z⁻¹ * a⁻¹ = y ⊢ y ∈ lowerCentralSeries G n
db060d010fc2a818
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_whisker
Mathlib/Tactic/CategoryTheory/Monoidal/Normalize.lean
theorem evalWhiskerRight_cons_whisker {f g h i j k : C} {α : g ≅ f ⊗ h} {η : h ⟶ i} {ηs : f ⊗ i ⟶ j} {η₁ : h ⊗ k ⟶ i ⊗ k} {η₂ : f ⊗ (h ⊗ k) ⟶ f ⊗ (i ⊗ k)} {ηs₁ : (f ⊗ i) ⊗ k ⟶ j ⊗ k} {ηs₂ : f ⊗ (i ⊗ k) ⟶ j ⊗ k} {η₃ : f ⊗ (h ⊗ k) ⟶ j ⊗ k} {η₄ : (f ⊗ h) ⊗ k ⟶ j ⊗ k} {η₅ : g ⊗ k ⟶ j ⊗ k} (e_η₁ : ((Iso.refl _).hom ≫ η ≫ (Iso.refl _).hom) ▷ k = η₁) (e_η₂ : f ◁ η₁ = η₂) (e_ηs₁ : ηs ▷ k = ηs₁) (e_ηs₂ : (α_ _ _ _).inv ≫ ηs₁ = ηs₂) (e_η₃ : η₂ ≫ ηs₂ = η₃) (e_η₄ : (α_ _ _ _).hom ≫ η₃ = η₄) (e_η₅ : (whiskerRightIso α k).hom ≫ η₄ = η₅) : (α.hom ≫ (f ◁ η) ≫ ηs) ▷ k = η₅
C : Type u inst✝¹ : Category.{v, u} C inst✝ : MonoidalCategory C f g h i j k : C α : g ≅ f ⊗ h η : h ⟶ i ηs : f ⊗ i ⟶ j η₁ : h ⊗ k ⟶ i ⊗ k η₂ : f ⊗ h ⊗ k ⟶ f ⊗ i ⊗ k ηs₁ : (f ⊗ i) ⊗ k ⟶ j ⊗ k ηs₂ : f ⊗ i ⊗ k ⟶ j ⊗ k η₃ : f ⊗ h ⊗ k ⟶ j ⊗ k η₄ : (f ⊗ h) ⊗ k ⟶ j ⊗ k η₅ : g ⊗ k ⟶ j ⊗ k e_η₁ : ((Iso.refl h).hom ≫ η ≫ (Iso.refl i).hom) ▷ k = η₁ e_η₂ : f ◁ η₁ = η₂ e_ηs₁ : ηs ▷ k = ηs₁ e_ηs₂ : (α_ f i k).inv ≫ ηs₁ = ηs₂ e_η₃ : η₂ ≫ ηs₂ = η₃ e_η₄ : (α_ f h k).hom ≫ η₃ = η₄ e_η₅ : (whiskerRightIso α k).hom ≫ η₄ = η₅ ⊢ (α.hom ≫ f ◁ η ≫ ηs) ▷ k = η₅
simp at e_η₁ e_η₅
C : Type u inst✝¹ : Category.{v, u} C inst✝ : MonoidalCategory C f g h i j k : C α : g ≅ f ⊗ h η : h ⟶ i ηs : f ⊗ i ⟶ j η₁ : h ⊗ k ⟶ i ⊗ k η₂ : f ⊗ h ⊗ k ⟶ f ⊗ i ⊗ k ηs₁ : (f ⊗ i) ⊗ k ⟶ j ⊗ k ηs₂ : f ⊗ i ⊗ k ⟶ j ⊗ k η₃ : f ⊗ h ⊗ k ⟶ j ⊗ k η₄ : (f ⊗ h) ⊗ k ⟶ j ⊗ k η₅ : g ⊗ k ⟶ j ⊗ k e_η₂ : f ◁ η₁ = η₂ e_ηs₁ : ηs ▷ k = ηs₁ e_ηs₂ : (α_ f i k).inv ≫ ηs₁ = ηs₂ e_η₃ : η₂ ≫ ηs₂ = η₃ e_η₄ : (α_ f h k).hom ≫ η₃ = η₄ e_η₅ : α.hom ▷ k ≫ η₄ = η₅ e_η₁ : η ▷ k = η₁ ⊢ (α.hom ≫ f ◁ η ≫ ηs) ▷ k = η₅
07d7ee37bcc624a0
Subgroup.mem_sup
Mathlib/Algebra/Group/Subgroup/Lattice.lean
theorem mem_sup : x ∈ s ⊔ t ↔ ∃ y ∈ s, ∃ z ∈ t, y * z = x := ⟨fun h => by rw [sup_eq_closure] at h refine Subgroup.closure_induction ?_ ?_ ?_ ?_ h · rintro y (h | h) · exact ⟨y, h, 1, t.one_mem, by simp⟩ · exact ⟨1, s.one_mem, y, h, by simp⟩ · exact ⟨1, s.one_mem, 1, ⟨t.one_mem, mul_one 1⟩⟩ · rintro _ _ _ _ ⟨y₁, hy₁, z₁, hz₁, rfl⟩ ⟨y₂, hy₂, z₂, hz₂, rfl⟩ exact ⟨_, mul_mem hy₁ hy₂, _, mul_mem hz₁ hz₂, by simp [mul_assoc, mul_left_comm]⟩ · rintro _ _ ⟨y, hy, z, hz, rfl⟩ exact ⟨_, inv_mem hy, _, inv_mem hz, mul_comm z y ▸ (mul_inv_rev z y).symm⟩, by rintro ⟨y, hy, z, hz, rfl⟩; exact mul_mem_sup hy hz⟩
case refine_1.inr C : Type u_2 inst✝ : CommGroup C s t : Subgroup C x : C h✝ : x ∈ closure (↑s ∪ ↑t) y : C h : y ∈ ↑t ⊢ ∃ y_1 ∈ s, ∃ z ∈ t, y_1 * z = y
exact ⟨1, s.one_mem, y, h, by simp⟩
no goals
3e44d12937d16db9
Std.DHashMap.Internal.Raw₀.wfImp_insert
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/WF.lean
theorem wfImp_insert [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] {m : Raw₀ α β} (h : Raw.WFImp m.1) {a : α} {b : β a} : Raw.WFImp (m.insert a b).1
α : Type u β : α → Type v inst✝³ : BEq α inst✝² : Hashable α inst✝¹ : EquivBEq α inst✝ : LawfulHashable α m : Raw₀ α β h : Raw.WFImp m.val a : α b : β a ⊢ Raw.WFImp (m.insert a b).val
rw [insert_eq_insertₘ]
α : Type u β : α → Type v inst✝³ : BEq α inst✝² : Hashable α inst✝¹ : EquivBEq α inst✝ : LawfulHashable α m : Raw₀ α β h : Raw.WFImp m.val a : α b : β a ⊢ Raw.WFImp (m.insertₘ a b).val
9846018d4fa634d0
mellin_cpow_smul
Mathlib/Analysis/MellinTransform.lean
theorem mellin_cpow_smul (f : ℝ → E) (s a : ℂ) : mellin (fun t => (t : ℂ) ^ a • f t) s = mellin f (s + a)
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s a : ℂ ⊢ mellin (fun t => ↑t ^ a • f t) s = mellin f (s + a)
refine setIntegral_congr_fun measurableSet_Ioi fun t ht => ?_
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s a : ℂ t : ℝ ht : t ∈ Ioi 0 ⊢ ↑t ^ (s - 1) • (fun t => ↑t ^ a • f t) t = ↑t ^ (s + a - 1) • f t
c3ddd64ee1f537d5
InnerProductSpace.Core.inner_self_ofReal_re
Mathlib/Analysis/InnerProductSpace/Defs.lean
theorem inner_self_ofReal_re (x : F) : (re ⟪x, x⟫ : 𝕜) = ⟪x, x⟫
𝕜 : Type u_1 F : Type u_3 inst✝² : RCLike 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : PreInnerProductSpace.Core 𝕜 F x : F ⊢ ↑(re ⟪x, x⟫_𝕜) = ⟪x, x⟫_𝕜
norm_num [ext_iff, inner_self_im]
no goals
0487fb94f5215f92
IsSemiprimaryRing.finite_of_isNoetherian_or_isArtinian
Mathlib/RingTheory/HopkinsLevitzki.lean
theorem finite_of_isNoetherian_or_isArtinian : IsNoetherian R M ∨ IsArtinian R M → Module.Finite R₀ M
case refine_2 R₀ : Type u_1 R : Type u_2 M✝ : Type u inst✝⁹ : Ring R₀ inst✝⁸ : Ring R inst✝⁷ : Module R₀ R inst✝⁶ : AddCommGroup M✝ inst✝⁵ : Module R₀ M✝ inst✝⁴ : Module R M✝ inst✝³ : IsScalarTower R₀ R M✝ inst✝² : IsSemiprimaryRing R inst✝¹ : IsScalarTower R₀ R R inst✝ : Module.Finite R₀ (R ⧸ Ring.jacobson R) M : Type u x✝³ : AddCommGroup M x✝² : Module R₀ M x✝¹ : Module R M x✝ : IsScalarTower R₀ R M hs : (fun M [AddCommGroup M] [Module R₀ M] [Module R M] => IsNoetherian R M ∨ IsArtinian R M → Module.Finite R₀ M) ↥(Ring.jacobson R • ⊤) hq : (fun M [AddCommGroup M] [Module R₀ M] [Module R M] => IsNoetherian R M ∨ IsArtinian R M → Module.Finite R₀ M) (M ⧸ Ring.jacobson R • ⊤) h : IsNoetherian R M ∨ IsArtinian R M N : Submodule R₀ M := Submodule.restrictScalars R₀ (Ring.jacobson R • ⊤) this✝ : Module.Finite R₀ ↥N this : Module.Finite R₀ (M ⧸ N) ⊢ Module.Finite R₀ M
exact .of_submodule_quotient N
no goals
19f8c33d4c3ff1de
FractionalIdeal.isNoetherian_spanSingleton_inv_to_map_mul
Mathlib/RingTheory/FractionalIdeal/Operations.lean
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K)
case neg R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : R₁ I : FractionalIdeal R₁⁰ K hI : ∀ J ≤ I, (↑J).FG hx : ¬x = 0 h_gx : (algebraMap R₁ K) x ≠ 0 h_spanx : spanSingleton R₁⁰ ((algebraMap R₁ K) x) ≠ 0 J : FractionalIdeal R₁⁰ K hJ : J * spanSingleton R₁⁰ ((algebraMap R₁ K) x) ≤ I ⊢ (↑J).FG
obtain ⟨s, hs⟩ := hI _ hJ
case neg.intro R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : R₁ I : FractionalIdeal R₁⁰ K hI : ∀ J ≤ I, (↑J).FG hx : ¬x = 0 h_gx : (algebraMap R₁ K) x ≠ 0 h_spanx : spanSingleton R₁⁰ ((algebraMap R₁ K) x) ≠ 0 J : FractionalIdeal R₁⁰ K hJ : J * spanSingleton R₁⁰ ((algebraMap R₁ K) x) ≤ I s : Finset K hs : span R₁ ↑s = ↑(J * spanSingleton R₁⁰ ((algebraMap R₁ K) x)) ⊢ (↑J).FG
4cee4bbb43b9cbc0
Rel.abs_edgeDensity_sub_edgeDensity_le_two_mul_sub_sq
Mathlib/Combinatorics/SimpleGraph/Density.lean
theorem abs_edgeDensity_sub_edgeDensity_le_two_mul_sub_sq (hs : s₂ ⊆ s₁) (ht : t₂ ⊆ t₁) (hδ₀ : 0 ≤ δ) (hδ₁ : δ < 1) (hs₂ : (1 - δ) * #s₁ ≤ #s₂) (ht₂ : (1 - δ) * #t₁ ≤ #t₂) : |(edgeDensity r s₂ t₂ : 𝕜) - edgeDensity r s₁ t₁| ≤ 2 * δ - δ ^ 2
case inr.inr 𝕜 : Type u_1 α : Type u_4 β : Type u_5 inst✝¹ : LinearOrderedField 𝕜 r : α → β → Prop inst✝ : (a : α) → DecidablePred (r a) s₁ s₂ : Finset α t₁ t₂ : Finset β δ : 𝕜 hs : s₂ ⊆ s₁ ht : t₂ ⊆ t₁ hδ₀ : 0 ≤ δ hδ₁ : 0 < 1 - δ hs₂ : (1 - δ) * ↑(#s₁) ≤ ↑(#s₂) ht₂ : (1 - δ) * ↑(#t₁) ≤ ↑(#t₂) hδ' : 0 ≤ 2 * δ - δ ^ 2 hs₂' : s₂.Nonempty ht₂' : t₂.Nonempty ⊢ |↑(edgeDensity r s₂ t₂) - ↑(edgeDensity r s₁ t₁)| ≤ 2 * δ - δ ^ 2
have hr : 2 * δ - δ ^ 2 = 1 - (1 - δ) * (1 - δ) := by ring
case inr.inr 𝕜 : Type u_1 α : Type u_4 β : Type u_5 inst✝¹ : LinearOrderedField 𝕜 r : α → β → Prop inst✝ : (a : α) → DecidablePred (r a) s₁ s₂ : Finset α t₁ t₂ : Finset β δ : 𝕜 hs : s₂ ⊆ s₁ ht : t₂ ⊆ t₁ hδ₀ : 0 ≤ δ hδ₁ : 0 < 1 - δ hs₂ : (1 - δ) * ↑(#s₁) ≤ ↑(#s₂) ht₂ : (1 - δ) * ↑(#t₁) ≤ ↑(#t₂) hδ' : 0 ≤ 2 * δ - δ ^ 2 hs₂' : s₂.Nonempty ht₂' : t₂.Nonempty hr : 2 * δ - δ ^ 2 = 1 - (1 - δ) * (1 - δ) ⊢ |↑(edgeDensity r s₂ t₂) - ↑(edgeDensity r s₁ t₁)| ≤ 2 * δ - δ ^ 2
80e245cc464aeb05
MvPolynomial.sum_weightedHomogeneousComponent
Mathlib/RingTheory/MvPolynomial/WeightedHomogeneous.lean
theorem sum_weightedHomogeneousComponent : (finsum fun m => weightedHomogeneousComponent w m φ) = φ
case a.h₀ R : Type u_1 M : Type u_2 inst✝¹ : CommSemiring R σ : Type u_3 inst✝ : AddCommMonoid M w : σ → M φ : MvPolynomial σ R d : σ →₀ ℕ m : M a✝ : m ∈ ⋯.toFinset hm' : m ≠ (weight w) d ⊢ (if (weight w) d = m then coeff d φ else 0) = 0
rw [if_neg hm'.symm]
no goals
109812e04e99df7b
IsDedekindDomain.HeightOneSpectrum.intValuation.map_add_le_max'
Mathlib/RingTheory/DedekindDomain/AdicValuation.lean
theorem intValuation.map_add_le_max' (x y : R) : v.intValuationDef (x + y) ≤ max (v.intValuationDef x) (v.intValuationDef y)
R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDedekindDomain R v : HeightOneSpectrum R x y : R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 nmin : ℕ := (Associates.mk v.asIdeal).count (Associates.mk (Ideal.span {x})).factors ⊓ (Associates.mk v.asIdeal).count (Associates.mk (Ideal.span {y})).factors ⊢ nmin ≤ (Associates.mk v.asIdeal).count (Associates.mk (Ideal.span {x})).factors
exact min_le_left _ _
no goals
f44842bea4e820a0
NonUnitalAlgebra.adjoin_induction₂
Mathlib/Algebra/Algebra/NonUnitalSubalgebra.lean
theorem adjoin_induction₂ {s : Set A} {p : ∀ x y, x ∈ adjoin R s → y ∈ adjoin R s → Prop} (mem_mem : ∀ (x) (y) (hx : x ∈ s) (hy : y ∈ s), p x y (subset_adjoin R hx) (subset_adjoin R hy)) (zero_left : ∀ x hx, p 0 x (zero_mem _) hx) (zero_right : ∀ x hx, p x 0 hx (zero_mem _)) (add_left : ∀ x y z hx hy hz, p x z hx hz → p y z hy hz → p (x + y) z (add_mem hx hy) hz) (add_right : ∀ x y z hx hy hz, p x y hx hy → p x z hx hz → p x (y + z) hx (add_mem hy hz)) (mul_left : ∀ x y z hx hy hz, p x z hx hz → p y z hy hz → p (x * y) z (mul_mem hx hy) hz) (mul_right : ∀ x y z hx hy hz, p x y hx hy → p x z hx hz → p x (y * z) hx (mul_mem hy hz)) (smul_left : ∀ r x y hx hy, p x y hx hy → p (r • x) y (SMulMemClass.smul_mem r hx) hy) (smul_right : ∀ r x y hx hy, p x y hx hy → p x (r • y) hx (SMulMemClass.smul_mem r hy)) {x y : A} (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s) : p x y hx hy
case mem.add R : Type u A : Type v inst✝⁴ : CommSemiring R inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module R A inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A s : Set A p : (x y : A) → x ∈ adjoin R s → y ∈ adjoin R s → Prop mem_mem : ∀ (x y : A) (hx : x ∈ s) (hy : y ∈ s), p x y ⋯ ⋯ zero_left : ∀ (x : A) (hx : x ∈ adjoin R s), p 0 x ⋯ hx zero_right : ∀ (x : A) (hx : x ∈ adjoin R s), p x 0 hx ⋯ add_left : ∀ (x y z : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s) (hz : z ∈ adjoin R s), p x z hx hz → p y z hy hz → p (x + y) z ⋯ hz add_right : ∀ (x y z : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s) (hz : z ∈ adjoin R s), p x y hx hy → p x z hx hz → p x (y + z) hx ⋯ mul_left : ∀ (x y z : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s) (hz : z ∈ adjoin R s), p x z hx hz → p y z hy hz → p (x * y) z ⋯ hz mul_right : ∀ (x y z : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s) (hz : z ∈ adjoin R s), p x y hx hy → p x z hx hz → p x (y * z) hx ⋯ smul_left : ∀ (r : R) (x y : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s), p x y hx hy → p (r • x) y ⋯ hy smul_right : ∀ (r : R) (x y : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s), p x y hx hy → p x (r • y) hx ⋯ x y z : A hz : z ∈ s x✝ y✝ : A hx✝ : x✝ ∈ adjoin R s hy✝ : y✝ ∈ adjoin R s h₁ : p x✝ z hx✝ ⋯ h₂ : p y✝ z hy✝ ⋯ ⊢ p (x✝ + y✝) z ⋯ ⋯
exact add_left _ _ _ _ _ _ h₁ h₂
no goals
65484542bb46a13c
HomologicalComplex.isIso_pOpcycles
Mathlib/Algebra/Homology/ShortComplex/HomologicalComplex.lean
lemma isIso_pOpcycles : IsIso (K.pOpcycles j)
C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : HasZeroMorphisms C ι : Type u_2 c : ComplexShape ι K : HomologicalComplex C c i j : ι hi : c.prev j = i h : K.d i j = 0 inst✝ : K.HasHomology j ⊢ IsIso (K.pOpcycles j)
obtain rfl := hi
C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : HasZeroMorphisms C ι : Type u_2 c : ComplexShape ι K : HomologicalComplex C c j : ι inst✝ : K.HasHomology j h : K.d (c.prev j) j = 0 ⊢ IsIso (K.pOpcycles j)
4467dd650f7a1532
CategoryTheory.IsVanKampenColimit.of_iso
Mathlib/CategoryTheory/Limits/VanKampen.lean
theorem IsVanKampenColimit.of_iso {F : J ⥤ C} {c c' : Cocone F} (H : IsVanKampenColimit c) (e : c ≅ c') : IsVanKampenColimit c'
case h J : Type v' inst✝¹ : Category.{u', v'} J C : Type u inst✝ : Category.{v, u} C F : J ⥤ C c c' : Cocone F H : IsVanKampenColimit c e : c ≅ c' F' : J ⥤ C c'' : Cocone F' α : F' ⟶ F f : c''.pt ⟶ c'.pt h : α ≫ c'.ι = c''.ι ≫ (Functor.const J).map f hα : NatTrans.Equifibered α this : c'.ι ≫ (Functor.const J).map e.inv.hom = c.ι j : J ⊢ IsPullback (c''.ι.app j) (α.app j) (f ≫ e.inv.hom) (c.ι.app j) ↔ IsPullback (c''.ι.app j) (α.app j) f (c'.ι.app j)
conv_lhs => rw [← Category.comp_id (α.app j)]
case h J : Type v' inst✝¹ : Category.{u', v'} J C : Type u inst✝ : Category.{v, u} C F : J ⥤ C c c' : Cocone F H : IsVanKampenColimit c e : c ≅ c' F' : J ⥤ C c'' : Cocone F' α : F' ⟶ F f : c''.pt ⟶ c'.pt h : α ≫ c'.ι = c''.ι ≫ (Functor.const J).map f hα : NatTrans.Equifibered α this : c'.ι ≫ (Functor.const J).map e.inv.hom = c.ι j : J ⊢ IsPullback (c''.ι.app j) (α.app j ≫ 𝟙 (F.obj j)) (f ≫ e.inv.hom) (c.ι.app j) ↔ IsPullback (c''.ι.app j) (α.app j) f (c'.ι.app j)
256639f190b732be
Option.lawfulBEq_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Option/Lemmas.lean
theorem lawfulBEq_iff : LawfulBEq (Option α) ↔ LawfulBEq α
case mpr.eq_of_beq α : Type u_1 inst✝ : BEq α h : LawfulBEq α ⊢ ∀ {a b : Option α}, (a == b) = true → a = b
intro a b h
case mpr.eq_of_beq α : Type u_1 inst✝ : BEq α h✝ : LawfulBEq α a b : Option α h : (a == b) = true ⊢ a = b
84ae32359a69ec10
AlgebraicGeometry.morphismRestrict_app
Mathlib/AlgebraicGeometry/Restrict.lean
theorem morphismRestrict_app {X Y : Scheme.{u}} (f : X ⟶ Y) (U : Y.Opens) (V : U.toScheme.Opens) : (f ∣_ U).app V = f.app (U.ι ''ᵁ V) ≫ X.presheaf.map (eqToHom (image_morphismRestrict_preimage f U V)).op
X Y : Scheme f : X ⟶ Y U : Y.Opens V : (↑U).Opens this : Y.presheaf.map (homOfLE ⋯).op ≫ Hom.appLE (f ∣_ U) (U.ι ⁻¹ᵁ U.ι ''ᵁ V) ((f ∣_ U) ⁻¹ᵁ U.ι ⁻¹ᵁ U.ι ''ᵁ V) ⋯ = (Hom.appLE f (U.ι ''ᵁ V) (f ⁻¹ᵁ U.ι ''ᵁ V) ⋯ ≫ X.presheaf.map (homOfLE ⋯).op) ≫ X.presheaf.map ((Hom.opensFunctor (f ⁻¹ᵁ U).ι).map (eqToHom ⋯)).op e : U.ι ⁻¹ᵁ U.ι ''ᵁ V = V e' : (f ∣_ U) ⁻¹ᵁ V = (f ∣_ U) ⁻¹ᵁ U.ι ⁻¹ᵁ U.ι ''ᵁ V ⊢ Hom.app (f ∣_ U) V = Hom.app f (U.ι ''ᵁ V) ≫ X.presheaf.map (eqToHom ⋯).op
simp only [Opens.toScheme_presheaf_obj, Hom.app_eq_appLE, eqToHom_op, Hom.appLE_map]
X Y : Scheme f : X ⟶ Y U : Y.Opens V : (↑U).Opens this : Y.presheaf.map (homOfLE ⋯).op ≫ Hom.appLE (f ∣_ U) (U.ι ⁻¹ᵁ U.ι ''ᵁ V) ((f ∣_ U) ⁻¹ᵁ U.ι ⁻¹ᵁ U.ι ''ᵁ V) ⋯ = (Hom.appLE f (U.ι ''ᵁ V) (f ⁻¹ᵁ U.ι ''ᵁ V) ⋯ ≫ X.presheaf.map (homOfLE ⋯).op) ≫ X.presheaf.map ((Hom.opensFunctor (f ⁻¹ᵁ U).ι).map (eqToHom ⋯)).op e : U.ι ⁻¹ᵁ U.ι ''ᵁ V = V e' : (f ∣_ U) ⁻¹ᵁ V = (f ∣_ U) ⁻¹ᵁ U.ι ⁻¹ᵁ U.ι ''ᵁ V ⊢ Hom.appLE (f ∣_ U) V ((f ∣_ U) ⁻¹ᵁ V) ⋯ = Hom.appLE f (U.ι ''ᵁ V) ((f ⁻¹ᵁ U).ι ''ᵁ (f ∣_ U) ⁻¹ᵁ V) ⋯
9d85b88464a65d5b
Affine.Triangle.mem_circumsphere_of_two_zsmul_oangle_eq
Mathlib/Geometry/Euclidean/Angle/Sphere.lean
theorem mem_circumsphere_of_two_zsmul_oangle_eq {t : Triangle ℝ P} {p : P} {i₁ i₂ i₃ : Fin 3} (h₁₂ : i₁ ≠ i₂) (h₁₃ : i₁ ≠ i₃) (h₂₃ : i₂ ≠ i₃) (h : (2 : ℤ) • ∡ (t.points i₁) p (t.points i₃) = (2 : ℤ) • ∡ (t.points i₁) (t.points i₂) (t.points i₃)) : p ∈ t.circumsphere
V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P hd2 : Fact (finrank ℝ V = 2) inst✝ : Oriented ℝ V (Fin 2) t : Triangle ℝ P p : P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h : 2 • ∡ (t.points i₁) p (t.points i₃) = 2 • ∡ (t.points i₁) (t.points i₂) (t.points i₃) t'p : Fin 3 → P := Function.update t.points i₂ p h₁ : t'p i₁ = t.points i₁ h₂ : t'p i₂ = p h₃ : t'p i₃ = t.points i₃ ha : AffineIndependent ℝ t'p t' : Triangle ℝ P := { points := t'p, independent := ha } ⊢ p ∈ Simplex.circumsphere t
have h₁' : t'.points i₁ = t.points i₁ := h₁
V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P hd2 : Fact (finrank ℝ V = 2) inst✝ : Oriented ℝ V (Fin 2) t : Triangle ℝ P p : P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h : 2 • ∡ (t.points i₁) p (t.points i₃) = 2 • ∡ (t.points i₁) (t.points i₂) (t.points i₃) t'p : Fin 3 → P := Function.update t.points i₂ p h₁ : t'p i₁ = t.points i₁ h₂ : t'p i₂ = p h₃ : t'p i₃ = t.points i₃ ha : AffineIndependent ℝ t'p t' : Triangle ℝ P := { points := t'p, independent := ha } h₁' : t'.points i₁ = t.points i₁ ⊢ p ∈ Simplex.circumsphere t
c3015bbdfd99892f
QuasispectrumRestricts.algebraMap_image
Mathlib/Algebra/Algebra/Quasispectrum.lean
theorem algebraMap_image (h : QuasispectrumRestricts a f) : algebraMap R S '' quasispectrum R a = quasispectrum S a
case refine_1 R : Type u_3 S : Type u_4 A : Type u_5 inst✝⁸ : Semifield R inst✝⁷ : Field S inst✝⁶ : NonUnitalRing A inst✝⁵ : Module R A inst✝⁴ : Module S A inst✝³ : Algebra R S a : A f : S → R inst✝² : IsScalarTower S A A inst✝¹ : SMulCommClass S A A inst✝ : IsScalarTower R S A h : QuasispectrumRestricts a f ⊢ ⇑(algebraMap R S) '' quasispectrum R a ⊆ quasispectrum S a
simpa only [quasispectrum.preimage_algebraMap] using (quasispectrum S a).image_preimage_subset (algebraMap R S)
no goals
fbd832ca15e540c9
CategoryTheory.Limits.isFiltered_costructuredArrow_yoneda_of_preservesFiniteLimits
Mathlib/CategoryTheory/Limits/Preserves/Presheaf.lean
theorem isFiltered_costructuredArrow_yoneda_of_preservesFiniteLimits [PreservesFiniteLimits A] : IsFiltered (CostructuredArrow yoneda A)
C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasFiniteColimits C A : Cᵒᵖ ⥤ Type v inst✝ : PreservesFiniteLimits A ⊢ IsFiltered (CostructuredArrow yoneda A)
suffices IsCofiltered A.Elements from IsFiltered.of_equivalence (CategoryOfElements.costructuredArrowYonedaEquivalence _)
C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasFiniteColimits C A : Cᵒᵖ ⥤ Type v inst✝ : PreservesFiniteLimits A ⊢ IsCofiltered A.Elements
6a5d20ed7fadbfba
List.sublist_eq_map_getElem
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Pairwise.lean
theorem sublist_eq_map_getElem {l l' : List α} (h : l' <+ l) : ∃ is : List (Fin l.length), l' = is.map (l[·]) ∧ is.Pairwise (· < ·)
case slnil α : Type u_1 l l' : List α ⊢ ∃ is, [] = map (fun x => [][x]) is ∧ Pairwise (fun x1 x2 => x1 < x2) is
exact ⟨[], by simp⟩
no goals
1127e51537a4a512
ContinuousLinearMap.opNorm_le_of_shell'
Mathlib/Analysis/NormedSpace/OperatorNorm/Basic.lean
theorem opNorm_le_of_shell' {f : E →SL[σ₁₂] F} {ε C : ℝ} (ε_pos : 0 < ε) (hC : 0 ≤ C) {c : 𝕜} (hc : ‖c‖ < 1) (hf : ∀ x, ε * ‖c‖ ≤ ‖x‖ → ‖x‖ < ε → ‖f x‖ ≤ C * ‖x‖) : ‖f‖ ≤ C
case neg 𝕜 : Type u_1 𝕜₂ : Type u_2 E : Type u_4 F : Type u_5 inst✝⁶ : SeminormedAddCommGroup E inst✝⁵ : SeminormedAddCommGroup F inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NontriviallyNormedField 𝕜₂ inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜₂ F σ₁₂ : 𝕜 →+* 𝕜₂ inst✝ : RingHomIsometric σ₁₂ f : E →SL[σ₁₂] F ε C : ℝ ε_pos : 0 < ε hC : 0 ≤ C c : 𝕜 hc : 1 < ‖c⁻¹‖ hf : ∀ (x : E), ε * ‖c‖ ≤ ‖x‖ → ‖x‖ < ε → ‖f x‖ ≤ C * ‖x‖ h0 : ¬c = 0 ⊢ ∀ (x : E), ε / ‖c⁻¹‖ ≤ ‖x‖ → ‖x‖ < ε → ‖f x‖ ≤ C * ‖x‖
rwa [norm_inv, div_eq_mul_inv, inv_inv]
no goals
6fc0364de4dbd55b
AlgebraicIndependent.adjoin_of_disjoint
Mathlib/RingTheory/AlgebraicIndependent/Transcendental.lean
theorem adjoin_of_disjoint {s t : Set ι} (h : Disjoint s t) : AlgebraicIndependent (adjoin R (x '' s)) fun i : t ↦ x i
ι : Type u_1 R : Type u_2 A : Type u_3 x : ι → A inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A hx : AlgebraicIndependent R x s t : Set ι h : Disjoint s t e : MvPolynomial (↑t ⊕ ↑s) R ≃ₐ[R] MvPolynomial ↑t ↥(adjoin R (range (x ∘ Subtype.val))) := (sumAlgEquiv R ↑t ↑s).trans (mapAlgEquiv ↑t ⋯.aevalEquiv) this : (AlgHom.restrictScalars R (aeval fun i => x ↑i)).comp ↑e = (aeval x).comp (rename (Sum.elim Subtype.val Subtype.val)) x✝ : ∀ {R : Type u_2} {S₁ S₂ : Type u_3} {σ : Type u_1} [inst : CommSemiring S₂] [inst_1 : SMul R S₁] [inst_2 : SMulZeroClass R S₂] [inst_3 : SMulZeroClass S₁ S₂] [inst_4 : IsScalarTower R S₁ S₂], IsScalarTower R S₁ (MvPolynomial σ S₂) ⊢ Injective ⇑((AlgHom.restrictScalars R (aeval fun i => x ↑i)).comp ↑e)
rw [this, AlgHom.coe_comp]
ι : Type u_1 R : Type u_2 A : Type u_3 x : ι → A inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A hx : AlgebraicIndependent R x s t : Set ι h : Disjoint s t e : MvPolynomial (↑t ⊕ ↑s) R ≃ₐ[R] MvPolynomial ↑t ↥(adjoin R (range (x ∘ Subtype.val))) := (sumAlgEquiv R ↑t ↑s).trans (mapAlgEquiv ↑t ⋯.aevalEquiv) this : (AlgHom.restrictScalars R (aeval fun i => x ↑i)).comp ↑e = (aeval x).comp (rename (Sum.elim Subtype.val Subtype.val)) x✝ : ∀ {R : Type u_2} {S₁ S₂ : Type u_3} {σ : Type u_1} [inst : CommSemiring S₂] [inst_1 : SMul R S₁] [inst_2 : SMulZeroClass R S₂] [inst_3 : SMulZeroClass S₁ S₂] [inst_4 : IsScalarTower R S₁ S₂], IsScalarTower R S₁ (MvPolynomial σ S₂) ⊢ Injective (⇑(aeval x) ∘ ⇑(rename (Sum.elim Subtype.val Subtype.val)))
5c3dc9406b742efb
DirichletCharacter.LSeriesSummable_iff
Mathlib/NumberTheory/LSeries/Dirichlet.lean
/-- The L-series of a Dirichlet character mod `N > 0` converges absolutely at `s` if and only if `re s > 1`. -/ lemma LSeriesSummable_iff {N : ℕ} (hN : N ≠ 0) (χ : DirichletCharacter ℂ N) {s : ℂ} : LSeriesSummable ↗χ s ↔ 1 < s.re
N : ℕ hN : N ≠ 0 χ : DirichletCharacter ℂ N s : ℂ H : LSeriesSummable (fun n => χ ↑n) s ⊢ 1 < s.re
by_contra! h
N : ℕ hN : N ≠ 0 χ : DirichletCharacter ℂ N s : ℂ H : LSeriesSummable (fun n => χ ↑n) s h : s.re ≤ 1 ⊢ False
def54cbe0d797bc5
Polynomial.count_roots_le_one
Mathlib/FieldTheory/Separable.lean
theorem count_roots_le_one [DecidableEq R] {p : R[X]} (hsep : Separable p) (x : R) : p.roots.count x ≤ 1
R : Type u inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : DecidableEq R p : R[X] hsep : p.Separable x : R ⊢ rootMultiplicity x p ≤ 1
exact rootMultiplicity_le_one_of_separable hsep x
no goals
aa12e9ef6c5df2f0
FiniteMultiplicity.lt_multiplicity_of_lt_emultiplicity
Mathlib/RingTheory/Multiplicity.lean
theorem FiniteMultiplicity.lt_multiplicity_of_lt_emultiplicity (hfin : FiniteMultiplicity a b) {n : ℕ} (h : n < emultiplicity a b) : n < multiplicity a b
α : Type u_1 inst✝ : Monoid α a b : α hfin : FiniteMultiplicity a b n : ℕ h : ↑n < emultiplicity a b ⊢ n < multiplicity a b
rw [emultiplicity_eq_multiplicity hfin] at h
α : Type u_1 inst✝ : Monoid α a b : α hfin : FiniteMultiplicity a b n : ℕ h : ↑n < ↑(multiplicity a b) ⊢ n < multiplicity a b
b7570eeb016c79e0
List.sublist_replicate_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
theorem sublist_replicate_iff : l <+ replicate m a ↔ ∃ n, n ≤ m ∧ l = replicate n a
case cons.mp α✝ : Type u_1 a b : α✝ l : List α✝ ih : ∀ {m : Nat}, l <+ replicate m a ↔ ∃ n, n ≤ m ∧ l = replicate n a m : Nat w : b :: l <+ replicate m a ⊢ ∃ n, n ≤ m ∧ b :: l = replicate n a
cases m with | zero => simp at w | succ m => simp [replicate_succ] at w cases w with | cons _ w => obtain ⟨n, le, rfl⟩ := ih.1 (sublist_of_cons_sublist w) obtain rfl := (mem_replicate.1 (mem_of_cons_sublist w)).2 exact ⟨n+1, Nat.add_le_add_right le 1, rfl⟩ | cons₂ _ w => obtain ⟨n, le, rfl⟩ := ih.1 w refine ⟨n+1, Nat.add_le_add_right le 1, by simp [replicate_succ]⟩
no goals
b36e6729c3d1c9f6
lipschitzWith_iff_dist_le_mul
Mathlib/Topology/MetricSpace/Lipschitz.lean
theorem lipschitzWith_iff_dist_le_mul [PseudoMetricSpace α] [PseudoMetricSpace β] {K : ℝ≥0} {f : α → β} : LipschitzWith K f ↔ ∀ x y, dist (f x) (f y) ≤ K * dist x y
α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β K : ℝ≥0 f : α → β ⊢ LipschitzWith K f ↔ ∀ (x y : α), dist (f x) (f y) ≤ ↑K * dist x y
simp only [LipschitzWith, edist_nndist, dist_nndist]
α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β K : ℝ≥0 f : α → β ⊢ (∀ (x y : α), ↑(nndist (f x) (f y)) ≤ ↑K * ↑(nndist x y)) ↔ ∀ (x y : α), ↑(nndist (f x) (f y)) ≤ ↑K * ↑(nndist x y)
b97f0204d09f7d2f
Int.image_Ico_emod
Mathlib/Data/Int/Interval.lean
theorem image_Ico_emod (n a : ℤ) (h : 0 ≤ a) : (Ico n (n + a)).image (· % a) = Ico 0 a
case inr.h.mp.intro.intro n a : ℤ h : 0 ≤ a ha : 0 < a i : ℤ left✝ : n ≤ i ∧ i < n + a ⊢ 0 ≤ i % a ∧ i % a < a
exact ⟨emod_nonneg i ha.ne', emod_lt_of_pos i ha⟩
no goals
9d26ae2005c6604e
exists_dual_vector'
Mathlib/Analysis/NormedSpace/HahnBanach/Extension.lean
theorem exists_dual_vector' [Nontrivial E] (x : E) : ∃ g : E →L[𝕜] 𝕜, ‖g‖ = 1 ∧ g x = ‖x‖
case pos 𝕜 : Type v inst✝³ : RCLike 𝕜 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : Nontrivial E x : E hx : x = 0 ⊢ ∃ g, ‖g‖ = 1 ∧ g x = ↑‖x‖
obtain ⟨y, hy⟩ := exists_ne (0 : E)
case pos.intro 𝕜 : Type v inst✝³ : RCLike 𝕜 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : Nontrivial E x : E hx : x = 0 y : E hy : y ≠ 0 ⊢ ∃ g, ‖g‖ = 1 ∧ g x = ↑‖x‖
fc0180f7db696d90
BitVec.getElem_udiv
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Bitblast.lean
theorem getElem_udiv (n d : BitVec w) (hy : 0#w < d) (i : Nat) (hi : i < w) : (n / d)[i] = (divRec w {n, d} (DivModState.init w)).q[i]
w : Nat n d : BitVec w hy : 0#w < d i : Nat hi : i < w ⊢ 0#w < d
assumption
no goals
c211dc508af186c9
Algebra.FinitePresentation.ker_fg_of_mvPolynomial
Mathlib/RingTheory/FinitePresentation.lean
theorem ker_fg_of_mvPolynomial {n : ℕ} (f : MvPolynomial (Fin n) R →ₐ[R] A) (hf : Function.Surjective f) [FinitePresentation R A] : f.toRingHom.ker.FG
case intro.intro.intro.intro R : Type w₁ A : Type w₂ inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] A hf : Surjective ⇑f inst✝ : FinitePresentation R A m : ℕ f' : MvPolynomial (Fin m) R →ₐ[R] A hf' : Surjective ⇑f' s : Finset (MvPolynomial (Fin m) R) hs : Ideal.span ↑s = RingHom.ker f'.toRingHom RXn : Type (max 0 w₁) := MvPolynomial (Fin n) R RXm : Type (max 0 w₁) := MvPolynomial (Fin m) R g : Fin n → MvPolynomial (Fin m) R hg : ∀ (i : Fin n), f' (g i) = f (MvPolynomial.X i) h : Fin m → MvPolynomial (Fin n) R hh : ∀ (i : Fin m), f (h i) = f' (MvPolynomial.X i) aeval_h : RXm →ₐ[R] RXn := MvPolynomial.aeval h g' : Fin n → RXn := fun i => MvPolynomial.X i - aeval_h (g i) hh' : ∀ (x : RXm), f (aeval_h x) = f' x s' : Set RXn := Set.range g' ∪ ⇑aeval_h '' ↑s leI : Ideal.span s' ≤ RingHom.ker f.toRingHom ⊢ Ideal.span (Set.range g' ∪ ⇑aeval_h '' ↑s) = RingHom.ker f.toRingHom
apply leI.antisymm
case intro.intro.intro.intro R : Type w₁ A : Type w₂ inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] A hf : Surjective ⇑f inst✝ : FinitePresentation R A m : ℕ f' : MvPolynomial (Fin m) R →ₐ[R] A hf' : Surjective ⇑f' s : Finset (MvPolynomial (Fin m) R) hs : Ideal.span ↑s = RingHom.ker f'.toRingHom RXn : Type (max 0 w₁) := MvPolynomial (Fin n) R RXm : Type (max 0 w₁) := MvPolynomial (Fin m) R g : Fin n → MvPolynomial (Fin m) R hg : ∀ (i : Fin n), f' (g i) = f (MvPolynomial.X i) h : Fin m → MvPolynomial (Fin n) R hh : ∀ (i : Fin m), f (h i) = f' (MvPolynomial.X i) aeval_h : RXm →ₐ[R] RXn := MvPolynomial.aeval h g' : Fin n → RXn := fun i => MvPolynomial.X i - aeval_h (g i) hh' : ∀ (x : RXm), f (aeval_h x) = f' x s' : Set RXn := Set.range g' ∪ ⇑aeval_h '' ↑s leI : Ideal.span s' ≤ RingHom.ker f.toRingHom ⊢ RingHom.ker f.toRingHom ≤ Ideal.span s'
37c27acde7e67205
Mathlib.Tactic.Module.NF.eval_cons
Mathlib/Tactic/Module.lean
theorem eval_cons [AddMonoid M] [SMul R M] (p : R × M) (l : NF R M) : (p ::ᵣ l).eval = p.1 • p.2 + l.eval
R : Type u_2 M : Type u_3 inst✝¹ : AddMonoid M inst✝ : SMul R M p : R × M l : NF R M ⊢ ((match p with | (r, x) => r • x) :: map (fun x => match x with | (r, x) => r • x) l).sum = p.1 • p.2 + (map (fun x => match x with | (r, x) => r • x) l).sum
rw [List.sum_cons]
no goals
b1b48e35b830758c
BitVec.msb_neg
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Bitblast.lean
theorem msb_neg {w : Nat} {x : BitVec w} : (-x).msb = ((x != 0#w && x != intMin w) ^^ x.msb)
w : Nat x : BitVec w ⊢ (x.getMsbD 0 ^^ decide (∃ j, j < w ∧ 0 < j ∧ x.getMsbD j = true)) = (x != 0#w && x != intMin w ^^ x.getMsbD 0)
by_cases hmin : x = intMin _
case pos w : Nat x : BitVec w hmin : x = intMin w ⊢ (x.getMsbD 0 ^^ decide (∃ j, j < w ∧ 0 < j ∧ x.getMsbD j = true)) = (x != 0#w && x != intMin w ^^ x.getMsbD 0) case neg w : Nat x : BitVec w hmin : ¬x = intMin w ⊢ (x.getMsbD 0 ^^ decide (∃ j, j < w ∧ 0 < j ∧ x.getMsbD j = true)) = (x != 0#w && x != intMin w ^^ x.getMsbD 0)
a0abc44cd1acd615
LinearMap.charpoly_toMatrix
Mathlib/LinearAlgebra/Charpoly/ToMatrix.lean
theorem charpoly_toMatrix {ι : Type w} [DecidableEq ι] [Fintype ι] (b : Basis ι R M) : (toMatrix b b f).charpoly = f.charpoly
R : Type u_1 M : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : Matrix ι ι R := (toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type u_2 := ChooseBasisIndex R M A' : Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := (toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := b.indexEquiv b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e P : Matrix ι (ChooseBasisIndex R M) R := b.toMatrix ⇑b' Q : Matrix (ChooseBasisIndex R M) ι R := b'.toMatrix ⇑b hPQ : C.mapMatrix (φ₁ P) * C.mapMatrix (φ₃ Q) = 1 ⊢ ((scalar ι') X - C.mapMatrix (φ₁ P) * C.mapMatrix A' * C.mapMatrix (φ₃ Q)).det = ((scalar ι') X * C.mapMatrix (φ₁ P) * C.mapMatrix (φ₃ Q) - C.mapMatrix (φ₁ P) * C.mapMatrix A' * C.mapMatrix (φ₃ Q)).det
rw [Matrix.mul_assoc ((scalar ι') X), hPQ, Matrix.mul_one]
no goals
ff9c8772a8b3d3c4
HahnSeries.orderTop_single_le
Mathlib/RingTheory/HahnSeries/Basic.lean
theorem orderTop_single_le : a ≤ (single a r).orderTop
Γ : Type u_1 R : Type u_3 inst✝¹ : PartialOrder Γ inst✝ : Zero R a : Γ r : R ⊢ ↑a ≤ ((single a) r).orderTop
by_cases hr : r = 0
case pos Γ : Type u_1 R : Type u_3 inst✝¹ : PartialOrder Γ inst✝ : Zero R a : Γ r : R hr : r = 0 ⊢ ↑a ≤ ((single a) r).orderTop case neg Γ : Type u_1 R : Type u_3 inst✝¹ : PartialOrder Γ inst✝ : Zero R a : Γ r : R hr : ¬r = 0 ⊢ ↑a ≤ ((single a) r).orderTop
f6b41eba621a1453
Equiv.Perm.pow_eq_on_of_mem_support
Mathlib/GroupTheory/Perm/Support.lean
theorem pow_eq_on_of_mem_support (h : ∀ x ∈ f.support ∩ g.support, f x = g x) (k : ℕ) : ∀ x ∈ f.support ∩ g.support, (f ^ k) x = (g ^ k) x
α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : ∀ x ∈ f.support ∩ g.support, f x = g x k : ℕ ⊢ ∀ x ∈ f.support ∩ g.support, (f ^ k) x = (g ^ k) x
induction' k with k hk
case zero α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : ∀ x ∈ f.support ∩ g.support, f x = g x ⊢ ∀ x ∈ f.support ∩ g.support, (f ^ 0) x = (g ^ 0) x case succ α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : ∀ x ∈ f.support ∩ g.support, f x = g x k : ℕ hk : ∀ x ∈ f.support ∩ g.support, (f ^ k) x = (g ^ k) x ⊢ ∀ x ∈ f.support ∩ g.support, (f ^ (k + 1)) x = (g ^ (k + 1)) x
0bbbd941baa698a7
ExistsContDiffBumpBase.y_eq_one_of_mem_closedBall
Mathlib/Analysis/Calculus/BumpFunction/FiniteDimension.lean
theorem y_eq_one_of_mem_closedBall {D : ℝ} {x : E} (Dpos : 0 < D) (hx : x ∈ closedBall (0 : E) (1 - D)) : y D x = 1
E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : FiniteDimensional ℝ E inst✝¹ : MeasurableSpace E inst✝ : BorelSpace E D : ℝ x : E Dpos : 0 < D hx : x ∈ closedBall 0 (1 - D) C : ball x D ⊆ ball 0 1 y : E hy : y ∈ ball x D h'y : 1 < dist y 0 ⊢ False
linarith only [mem_ball.1 (C hy), h'y]
no goals
2258e901596c5621
Array.range'_append
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Range.lean
theorem range'_append (s m n step : Nat) : range' s m step ++ range' (s + step * m) n step = range' s (m + n) step
case h₂ s m n step i : Nat h₁✝ : i < (range' s m step ++ range' (s + step * m) n step).size h₂✝ : i < (range' s (m + n) step).size h₁ h₂ : i < m + n h : m ≤ i ⊢ s + step * m + (step * i - step * m) = s + step * i
have : step * m ≤ step * i := by exact mul_le_mul_left step h
case h₂ s m n step i : Nat h₁✝ : i < (range' s m step ++ range' (s + step * m) n step).size h₂✝ : i < (range' s (m + n) step).size h₁ h₂ : i < m + n h : m ≤ i this : step * m ≤ step * i ⊢ s + step * m + (step * i - step * m) = s + step * i
e4387bb0e1420d8c
ENNReal.toNNReal_iSup
Mathlib/Data/ENNReal/Real.lean
theorem toNNReal_iSup (hf : ∀ i, f i ≠ ∞) : (iSup f).toNNReal = ⨆ i, (f i).toNNReal
case neg ι : Sort u_1 f : ι → ℝ≥0 h : ¬BddAbove (range f) ⊢ (⨆ i, ↑(f i)).toNNReal = ⨆ i, f i
rw [NNReal.iSup_of_not_bddAbove h, iSup_coe_eq_top.2 h, top_toNNReal]
no goals
d664c6a853b7cbe6
List.nonzeroMinimum_le_iff
Mathlib/.lake/packages/lean4/src/lean/Lean/Elab/Tactic/Omega/MinNatAbs.lean
theorem nonzeroMinimum_le_iff {xs : List Nat} {y : Nat} : xs.nonzeroMinimum ≤ y ↔ xs.nonzeroMinimum = 0 ∨ ∃ x ∈ xs, x ≤ y ∧ x ≠ 0
xs : List Nat y : Nat h : xs.nonzeroMinimum = 0 ∨ ∃ x, x ∈ xs ∧ x ≤ y ∧ x ≠ 0 x : Nat m : x ∈ xs le : x ≤ y ne : x ≠ 0 ⊢ xs.nonzeroMinimum ≤ y
exact Nat.le_trans (nonzeroMinimum_le m ne) le
no goals
7ee2627fef2f71f1
Polynomial.isNilpotent_C_mul_pow_X_of_isNilpotent
Mathlib/RingTheory/Polynomial/Nilpotent.lean
lemma isNilpotent_C_mul_pow_X_of_isNilpotent (n : ℕ) (hnil : IsNilpotent r) : IsNilpotent ((C r) * X ^ n)
R : Type u_1 r : R inst✝ : Semiring R n : ℕ hnil : IsNilpotent r ⊢ IsNilpotent (C r)
obtain ⟨m, hm⟩ := hnil
case intro R : Type u_1 r : R inst✝ : Semiring R n m : ℕ hm : r ^ m = 0 ⊢ IsNilpotent (C r)
aa1f491848016b3a