name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
AkraBazziRecurrence.GrowsPolynomially.add_isLittleO
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
lemma GrowsPolynomially.add_isLittleO {f g : ℝ → ℝ} (hf : GrowsPolynomially f) (hfg : g =o[atTop] f) : GrowsPolynomially fun x => f x + g x
f g : ℝ → ℝ hf✝ : GrowsPolynomially f b : ℝ hb : b ∈ Set.Ioo 0 1 hb_ub : b < 1 hf' : ∀ᶠ (x : ℝ) in atTop, f x ≤ 0 c₁ : ℝ hc₁_mem : 0 < c₁ c₂ : ℝ hc₂_mem : 0 < c₂ hf : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) hfg : ∀ᶠ (x : ℝ) in atTop, ‖g x‖ ≤ 1 / 2 * ‖f x‖ x : ℝ hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) hfg' : ∀ (y : ℝ), b * id x ≤ y → ‖g y‖ ≤ 1 / 2 * ‖f y‖ hf₂ : ∀ (y : ℝ), b * id x ≤ y → f y ≤ 0 hx_nonneg : 0 ≤ x hbx : b * x ≤ x hfg₂ : ‖g x‖ ≤ -1 / 2 * f x hx_ub : f x + g x ≤ 1 / 2 * f x hx_lb : 3 / 2 * f x ≤ f x + g x u : ℝ hu_lb : b * x ≤ u hu_ub : u ≤ x hfu_nonpos : f u ≤ 0 hfg₃ : ‖g u‖ ≤ -1 / 2 * f u ⊢ f u + g u ≥ f u - ‖g u‖
rw [sub_eq_add_neg, norm_eq_abs]
f g : ℝ → ℝ hf✝ : GrowsPolynomially f b : ℝ hb : b ∈ Set.Ioo 0 1 hb_ub : b < 1 hf' : ∀ᶠ (x : ℝ) in atTop, f x ≤ 0 c₁ : ℝ hc₁_mem : 0 < c₁ c₂ : ℝ hc₂_mem : 0 < c₂ hf : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) hfg : ∀ᶠ (x : ℝ) in atTop, ‖g x‖ ≤ 1 / 2 * ‖f x‖ x : ℝ hf₁ : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) hfg' : ∀ (y : ℝ), b * id x ≤ y → ‖g y‖ ≤ 1 / 2 * ‖f y‖ hf₂ : ∀ (y : ℝ), b * id x ≤ y → f y ≤ 0 hx_nonneg : 0 ≤ x hbx : b * x ≤ x hfg₂ : ‖g x‖ ≤ -1 / 2 * f x hx_ub : f x + g x ≤ 1 / 2 * f x hx_lb : 3 / 2 * f x ≤ f x + g x u : ℝ hu_lb : b * x ≤ u hu_ub : u ≤ x hfu_nonpos : f u ≤ 0 hfg₃ : ‖g u‖ ≤ -1 / 2 * f u ⊢ f u + g u ≥ f u + -|g u|
dd533a6f58fe3819
Turing.ToPartrec.Code.comp_eval
Mathlib/Computability/TMConfig.lean
theorem comp_eval (f g) : (comp f g).eval = fun v => g.eval v >>= f.eval
f g : Code ⊢ (f.comp g).eval = fun v => g.eval v >>= f.eval
simp [eval]
no goals
e02b885a8a523280
MeasureTheory.Measure.exists_isOpen_everywherePosSubset_eq_diff
Mathlib/MeasureTheory/Measure/EverywherePos.lean
/-- The everywhere positive subset of a set is obtained by removing an open set. -/ lemma exists_isOpen_everywherePosSubset_eq_diff (μ : Measure α) (s : Set α) : ∃ u, IsOpen u ∧ μ.everywherePosSubset s = s \ u
α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : MeasurableSpace α μ : Measure α s : Set α x : α n : Set α ns : n ∈ 𝓝[s] x hx : μ n = 0 v : Set α vx : v ∈ 𝓝 x hv : v ∩ s ⊆ n w : Set α wv : w ⊆ v w_open : IsOpen w xw : x ∈ w y : α yw : y ∈ w ⊢ s ∩ w ⊆ n
rw [inter_comm]
α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : MeasurableSpace α μ : Measure α s : Set α x : α n : Set α ns : n ∈ 𝓝[s] x hx : μ n = 0 v : Set α vx : v ∈ 𝓝 x hv : v ∩ s ⊆ n w : Set α wv : w ⊆ v w_open : IsOpen w xw : x ∈ w y : α yw : y ∈ w ⊢ w ∩ s ⊆ n
7270b311930e87cb
Equiv.Perm.support_extend_domain
Mathlib/GroupTheory/Perm/Support.lean
theorem support_extend_domain (f : α ≃ Subtype p) {g : Perm α} : support (g.extendDomain f) = g.support.map f.asEmbedding
case pos.mpr.intro.intro α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : p b ha : ↑(f (g (f.symm ⟨b, pb⟩))) = b hb : f.asEmbedding (f.symm ⟨b, pb⟩) = b ⊢ g (f.symm ⟨b, pb⟩) = f.symm ⟨b, pb⟩
rw [eq_symm_apply]
case pos.mpr.intro.intro α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : p b ha : ↑(f (g (f.symm ⟨b, pb⟩))) = b hb : f.asEmbedding (f.symm ⟨b, pb⟩) = b ⊢ f (g (f.symm ⟨b, pb⟩)) = ⟨b, pb⟩
18d8756ce068490b
WithTop.coe_sInf'
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
theorem WithTop.coe_sInf' [InfSet α] {s : Set α} (hs : s.Nonempty) (h's : BddBelow s) : ↑(sInf s) = (sInf ((fun (a : α) ↦ ↑a) '' s) : WithTop α)
case intro α : Type u_1 inst✝¹ : Preorder α inst✝ : InfSet α s : Set α h's : BddBelow s x : α hx : x ∈ s ⊢ ↑(sInf s) = sInf ((fun a => ↑a) '' s)
change _ = ite _ _ _
case intro α : Type u_1 inst✝¹ : Preorder α inst✝ : InfSet α s : Set α h's : BddBelow s x : α hx : x ∈ s ⊢ ↑(sInf s) = if (fun a => ↑a) '' s ⊆ {⊤} ∨ ¬BddBelow ((fun a => ↑a) '' s) then ⊤ else ↑(sInf ((fun a => ↑a) ⁻¹' ((fun a => ↑a) '' s)))
7fbc8ff5f1da276e
MeasureTheory.tendsto_of_integral_tendsto_of_monotone
Mathlib/MeasureTheory/Integral/Bochner.lean
/-- If a monotone sequence of functions has an upper bound and the sequence of integrals of these functions tends to the integral of the upper bound, then the sequence of functions converges almost everywhere to the upper bound. -/ lemma tendsto_of_integral_tendsto_of_monotone {μ : Measure α} {f : ℕ → α → ℝ} {F : α → ℝ} (hf_int : ∀ n, Integrable (f n) μ) (hF_int : Integrable F μ) (hf_tendsto : Tendsto (fun i ↦ ∫ a, f i a ∂μ) atTop (𝓝 (∫ a, F a ∂μ))) (hf_mono : ∀ᵐ a ∂μ, Monotone (fun i ↦ f i a)) (hf_bound : ∀ᵐ a ∂μ, ∀ i, f i a ≤ F a) : ∀ᵐ a ∂μ, Tendsto (fun i ↦ f i a) atTop (𝓝 (F a))
α : Type u_1 m : MeasurableSpace α μ : Measure α f : ℕ → α → ℝ F : α → ℝ hf_int : ∀ (n : ℕ), Integrable (f n) μ hF_int : Integrable F μ hf_tendsto : Tendsto (fun i => ∫ (a : α), f i a ∂μ) atTop (𝓝 (∫ (a : α), F a ∂μ)) hf_mono : ∀ᵐ (a : α) ∂μ, Monotone fun i => f i a hf_bound : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), f i a ≤ F a f' : ℕ → α → ℝ≥0∞ := fun n a => ENNReal.ofReal (f n a - f 0 a) ⊢ ∀ᵐ (a : α) ∂μ, Tendsto (fun i => f i a) atTop (𝓝 (F a))
let F' : α → ℝ≥0∞ := fun a ↦ ENNReal.ofReal (F a - f 0 a)
α : Type u_1 m : MeasurableSpace α μ : Measure α f : ℕ → α → ℝ F : α → ℝ hf_int : ∀ (n : ℕ), Integrable (f n) μ hF_int : Integrable F μ hf_tendsto : Tendsto (fun i => ∫ (a : α), f i a ∂μ) atTop (𝓝 (∫ (a : α), F a ∂μ)) hf_mono : ∀ᵐ (a : α) ∂μ, Monotone fun i => f i a hf_bound : ∀ᵐ (a : α) ∂μ, ∀ (i : ℕ), f i a ≤ F a f' : ℕ → α → ℝ≥0∞ := fun n a => ENNReal.ofReal (f n a - f 0 a) F' : α → ℝ≥0∞ := fun a => ENNReal.ofReal (F a - f 0 a) ⊢ ∀ᵐ (a : α) ∂μ, Tendsto (fun i => f i a) atTop (𝓝 (F a))
a54f15f3a6cf0f39
CategoryTheory.BinaryCofan.isVanKampen_iff
Mathlib/CategoryTheory/Limits/VanKampen.lean
theorem BinaryCofan.isVanKampen_iff (c : BinaryCofan X Y) : IsVanKampenColimit c ↔ ∀ {X' Y' : C} (c' : BinaryCofan X' Y') (αX : X' ⟶ X) (αY : Y' ⟶ Y) (f : c'.pt ⟶ c.pt) (_ : αX ≫ c.inl = c'.inl ≫ f) (_ : αY ≫ c.inr = c'.inr ≫ f), Nonempty (IsColimit c') ↔ IsPullback c'.inl αX f c.inl ∧ IsPullback c'.inr αY f c.inr
case mp.mp C : Type u inst✝ : Category.{v, u} C X Y : C c : BinaryCofan X Y H : IsVanKampenColimit c X' Y' : C c' : BinaryCofan X' Y' αX : X' ⟶ X αY : Y' ⟶ Y f : c'.pt ⟶ c.pt hαX : αX ≫ c.inl = c'.inl ≫ f hαY : αY ≫ c.inr = c'.inr ≫ f ⊢ (∀ (j : Discrete WalkingPair), IsPullback (c'.ι.app j) ((mapPair αX αY).app j) f (c.ι.app j)) → IsPullback c'.inl αX f c.inl ∧ IsPullback c'.inr αY f c.inr
intro H
case mp.mp C : Type u inst✝ : Category.{v, u} C X Y : C c : BinaryCofan X Y H✝ : IsVanKampenColimit c X' Y' : C c' : BinaryCofan X' Y' αX : X' ⟶ X αY : Y' ⟶ Y f : c'.pt ⟶ c.pt hαX : αX ≫ c.inl = c'.inl ≫ f hαY : αY ≫ c.inr = c'.inr ≫ f H : ∀ (j : Discrete WalkingPair), IsPullback (c'.ι.app j) ((mapPair αX αY).app j) f (c.ι.app j) ⊢ IsPullback c'.inl αX f c.inl ∧ IsPullback c'.inr αY f c.inr
7e7d3e488062777b
MeasureTheory.VectorMeasure.restrict_add
Mathlib/MeasureTheory/VectorMeasure/Basic.lean
theorem restrict_add (v w : VectorMeasure α M) (i : Set α) : (v + w).restrict i = v.restrict i + w.restrict i
case pos α : Type u_1 inst✝³ : MeasurableSpace α M : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : TopologicalSpace M inst✝ : ContinuousAdd M v w : VectorMeasure α M i : Set α hi : MeasurableSet i ⊢ (v + w).restrict i = v.restrict i + w.restrict i
ext j hj
case pos.h α : Type u_1 inst✝³ : MeasurableSpace α M : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : TopologicalSpace M inst✝ : ContinuousAdd M v w : VectorMeasure α M i : Set α hi : MeasurableSet i j : Set α hj : MeasurableSet j ⊢ ↑((v + w).restrict i) j = ↑(v.restrict i + w.restrict i) j
d7e1efed09c0f5be
MeasureTheory.mul_le_addHaar_image_of_lt_det
Mathlib/MeasureTheory/Function/Jacobian.lean
theorem mul_le_addHaar_image_of_lt_det (A : E →L[ℝ] E) {m : ℝ≥0} (hm : (m : ℝ≥0∞) < ENNReal.ofReal |A.det|) : ∀ᶠ δ in 𝓝[>] (0 : ℝ≥0), ∀ (s : Set E) (f : E → E), ApproximatesLinearOn f A s δ → (m : ℝ≥0∞) * μ s ≤ μ (f '' s)
case a.inr E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E μ : Measure E inst✝ : μ.IsAddHaarMeasure A : E →L[ℝ] E m : ℝ≥0 hm : ↑m < ENNReal.ofReal |A.det| mpos : 0 < m ⊢ {x | (fun δ => ∀ (s : Set E) (f : E → E), ApproximatesLinearOn f A s δ → ↑m * μ s ≤ μ (f '' s)) x} ∈ 𝓝 0
have hA : A.det ≠ 0 := by intro h; simp only [h, ENNReal.not_lt_zero, ENNReal.ofReal_zero, abs_zero] at hm
case a.inr E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E μ : Measure E inst✝ : μ.IsAddHaarMeasure A : E →L[ℝ] E m : ℝ≥0 hm : ↑m < ENNReal.ofReal |A.det| mpos : 0 < m hA : A.det ≠ 0 ⊢ {x | (fun δ => ∀ (s : Set E) (f : E → E), ApproximatesLinearOn f A s δ → ↑m * μ s ≤ μ (f '' s)) x} ∈ 𝓝 0
22f8afc7492fca52
CategoryTheory.Localization.Preadditive.neg'_eq
Mathlib/CategoryTheory/Localization/CalculusOfFractions/Preadditive.lean
lemma neg'_eq (f : L.obj X ⟶ L.obj Y) (φ : W.LeftFraction X Y) (hφ : f = φ.map L (inverts L W)) : neg' W f = φ.neg.map L (inverts L W)
case intro.intro.intro.intro.intro.intro.intro C : Type u_1 D : Type u_2 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Category.{u_3, u_2} D inst✝² : Preadditive C L : C ⥤ D W : MorphismProperty C inst✝¹ : L.IsLocalization W inst✝ : W.HasLeftCalculusOfFractions X Y : C φ φ₀ : W.LeftFraction X Y hφ₀ : neg' W (φ₀.map L ⋯) = φ₀.neg.map L ⋯ Y' : C t₁ : φ₀.Y' ⟶ Y' t₂ : φ.Y' ⟶ Y' hst : φ₀.s ≫ t₁ = φ.s ≫ t₂ hft : φ₀.f ≫ t₁ = φ.f ≫ t₂ ht : W (φ₀.s ≫ t₁) this : IsIso (L.map (φ₀.s ≫ t₁)) ⊢ neg' W (φ₀.map L ⋯) ≫ L.map (φ₀.s ≫ t₁) = φ.neg.map L ⋯ ≫ L.map (φ₀.s ≫ t₁)
nth_rw 1 [L.map_comp]
case intro.intro.intro.intro.intro.intro.intro C : Type u_1 D : Type u_2 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Category.{u_3, u_2} D inst✝² : Preadditive C L : C ⥤ D W : MorphismProperty C inst✝¹ : L.IsLocalization W inst✝ : W.HasLeftCalculusOfFractions X Y : C φ φ₀ : W.LeftFraction X Y hφ₀ : neg' W (φ₀.map L ⋯) = φ₀.neg.map L ⋯ Y' : C t₁ : φ₀.Y' ⟶ Y' t₂ : φ.Y' ⟶ Y' hst : φ₀.s ≫ t₁ = φ.s ≫ t₂ hft : φ₀.f ≫ t₁ = φ.f ≫ t₂ ht : W (φ₀.s ≫ t₁) this : IsIso (L.map (φ₀.s ≫ t₁)) ⊢ neg' W (φ₀.map L ⋯) ≫ L.map φ₀.s ≫ L.map t₁ = φ.neg.map L ⋯ ≫ L.map (φ₀.s ≫ t₁)
8a41e48563a45b5e
differentiableWithinAt_localInvariantProp
Mathlib/Geometry/Manifold/MFDeriv/Defs.lean
theorem differentiableWithinAt_localInvariantProp : (contDiffGroupoid 1 I).LocalInvariantProp (contDiffGroupoid 1 I') (DifferentiableWithinAtProp I I') := { is_local
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E H : Type u_3 inst✝³ : TopologicalSpace H I : ModelWithCorners 𝕜 E H E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' s : Set H x : H u : Set H f : H → H' u_open : IsOpen u xu : x ∈ u ⊢ DifferentiableWithinAtProp I I' f s x ↔ DifferentiableWithinAtProp I I' f (s ∩ u) x
have : I.symm ⁻¹' (s ∩ u) ∩ Set.range I = I.symm ⁻¹' s ∩ Set.range I ∩ I.symm ⁻¹' u := by simp only [Set.inter_right_comm, Set.preimage_inter]
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E H : Type u_3 inst✝³ : TopologicalSpace H I : ModelWithCorners 𝕜 E H E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' s : Set H x : H u : Set H f : H → H' u_open : IsOpen u xu : x ∈ u this : ↑I.symm ⁻¹' (s ∩ u) ∩ range ↑I = ↑I.symm ⁻¹' s ∩ range ↑I ∩ ↑I.symm ⁻¹' u ⊢ DifferentiableWithinAtProp I I' f s x ↔ DifferentiableWithinAtProp I I' f (s ∩ u) x
3d1405d37db22f10
LieAlgebra.IsKilling.eq_neg_one_or_eq_zero_or_eq_one_of_eq_smul
Mathlib/Algebra/Lie/Weights/RootSystem.lean
lemma eq_neg_one_or_eq_zero_or_eq_one_of_eq_smul (hα : α.IsNonZero) (k : K) (h : (β : H → K) = k • α) : k = -1 ∨ k = 0 ∨ k = 1
case inr.inr.intro K : Type u_1 L : Type u_2 inst✝⁷ : Field K inst✝⁶ : CharZero K inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra K L inst✝³ : IsKilling K L inst✝² : FiniteDimensional K L H✝ : LieSubalgebra K L inst✝¹ : H✝.IsCartanSubalgebra inst✝ : IsTriangularizable K (↥H✝) L α β : Weight K (↥H✝) L hα : α.IsNonZero k : K h : ⇑β = k • ⇑α h✝ : Nontrivial L n : ℕ hn : chainLength α β = 2 * n + 1 H : k • 2 / 2 = ↑(↑(chainLength α β) - 2 * ↑(chainTopCoeff (⇑α) β)) / 2 ⊢ k = -1 ∨ k = 0 ∨ k = 1
rw [hn, smul_eq_mul] at H
case inr.inr.intro K : Type u_1 L : Type u_2 inst✝⁷ : Field K inst✝⁶ : CharZero K inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra K L inst✝³ : IsKilling K L inst✝² : FiniteDimensional K L H✝ : LieSubalgebra K L inst✝¹ : H✝.IsCartanSubalgebra inst✝ : IsTriangularizable K (↥H✝) L α β : Weight K (↥H✝) L hα : α.IsNonZero k : K h : ⇑β = k • ⇑α h✝ : Nontrivial L n : ℕ hn : chainLength α β = 2 * n + 1 H : k * 2 / 2 = ↑(↑(2 * n + 1) - 2 * ↑(chainTopCoeff (⇑α) β)) / 2 ⊢ k = -1 ∨ k = 0 ∨ k = 1
1279a8c2c7f69b11
isLocalStructomorphOn_contDiffGroupoid_iff
Mathlib/Geometry/Manifold/ContMDiff/Atlas.lean
theorem isLocalStructomorphOn_contDiffGroupoid_iff (f : PartialHomeomorph M M') : LiftPropOn (contDiffGroupoid n I).IsLocalStructomorphWithinAt f f.source ↔ ContMDiffOn I I n f f.source ∧ ContMDiffOn I I n f.symm f.target
case hx.h 𝕜 : Type u_1 inst✝⁸ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E H : Type u_3 inst✝⁵ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁴ : TopologicalSpace M inst✝³ : ChartedSpace H M n : WithTop ℕ∞ inst✝² : IsManifold I n M M' : Type u_5 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H M' IsM' : IsManifold I n M' f : PartialHomeomorph M M' h : LiftPropOn (contDiffGroupoid n I).IsLocalStructomorphWithinAt (↑f) f.source X : M' hX : X ∈ f.symm.source x : M := ↑f.symm X hx : x ∈ f.source c : PartialHomeomorph M H := chartAt H x c' : PartialHomeomorph M' H := chartAt H X hxf : (contDiffGroupoid n I).IsLocalStructomorphWithinAt (↑(c.symm ≫ₕ f ≫ₕ c')) (↑(chartAt H x).symm ⁻¹' f.source) (↑(chartAt H x) x) h2x : ↑(chartAt H X) X ∈ ↑(chartAt H X).symm ⁻¹' f.symm.source h1 : c' = chartAt H (↑f x) h2 : ↑c' ∘ ↑f ∘ ↑c.symm = ↑(c.symm ≫ₕ f ≫ₕ c') hcx : ↑c x ∈ ↑c.symm ⁻¹' f.source ⊢ ↑(chartAt H x) x ∈ (c.symm ≫ₕ f ≫ₕ c').source
simp only [c, hx, h1, mfld_simps]
no goals
52ce8090c899c270
LinearMap.BilinForm.inf_orthogonal_self_le_ker_restrict
Mathlib/LinearAlgebra/BilinearForm/Orthogonal.lean
lemma inf_orthogonal_self_le_ker_restrict {W : Submodule R M} (b₁ : B.IsRefl) : W ⊓ B.orthogonal W ≤ (LinearMap.ker <| B.restrict W).map W.subtype
R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M B : BilinForm R M W : Submodule R M b₁ : B.IsRefl ⊢ W ⊓ B.orthogonal W ≤ Submodule.map W.subtype (ker (B.restrict W))
rintro v ⟨hv : v ∈ W, hv' : v ∈ B.orthogonal W⟩
case intro R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M B : BilinForm R M W : Submodule R M b₁ : B.IsRefl v : M hv : v ∈ W hv' : v ∈ B.orthogonal W ⊢ v ∈ Submodule.map W.subtype (ker (B.restrict W))
50c09860c3ac2a16
Ordinal.isOpen_singleton_iff
Mathlib/SetTheory/Ordinal/Topology.lean
theorem isOpen_singleton_iff : IsOpen ({a} : Set Ordinal) ↔ ¬IsLimit a
case refine_2.inr.inl.intro b : Ordinal.{u} ha : ¬(succ b).IsLimit ⊢ IsOpen (Set.Ioo b (succ (succ b)))
exact isOpen_Ioo
no goals
c638dc4be42bbf41
LinearMap.flip_bijective_iff₁
Mathlib/LinearAlgebra/Dual.lean
theorem flip_bijective_iff₁ [FiniteDimensional K V₁] : Bijective B.flip ↔ Bijective B
K : Type uK inst✝⁵ : Field K V₁ : Type uV₁ V₂ : Type uV₂ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K V₁ inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ B : V₁ →ₗ[K] V₂ →ₗ[K] K inst✝ : FiniteDimensional K V₁ ⊢ Bijective ⇑B.flip ↔ Bijective ⇑B
simp_rw [Bijective, flip_injective_iff₁, flip_surjective_iff₁, and_comm]
no goals
68aada2bbc3b9612
StrictMonoOn.Iic_id_le
Mathlib/Order/Interval/Set/Monotone.lean
theorem StrictMonoOn.Iic_id_le [SuccOrder α] [IsSuccArchimedean α] [OrderBot α] {n : α} {φ : α → α} (hφ : StrictMonoOn φ (Set.Iic n)) : ∀ m ≤ n, m ≤ φ m
α : Type u_1 inst✝³ : LinearOrder α inst✝² : SuccOrder α inst✝¹ : IsSuccArchimedean α inst✝ : OrderBot α n : α φ : α → α k : α ih : StrictMonoOn φ (Iic k) → ∀ m ≤ k, m ≤ φ m hφ : StrictMonoOn φ (Iic (succ k)) m : α hm : m ≤ succ k ⊢ m ≤ φ m
by_cases hk : IsMax k
case pos α : Type u_1 inst✝³ : LinearOrder α inst✝² : SuccOrder α inst✝¹ : IsSuccArchimedean α inst✝ : OrderBot α n : α φ : α → α k : α ih : StrictMonoOn φ (Iic k) → ∀ m ≤ k, m ≤ φ m hφ : StrictMonoOn φ (Iic (succ k)) m : α hm : m ≤ succ k hk : IsMax k ⊢ m ≤ φ m case neg α : Type u_1 inst✝³ : LinearOrder α inst✝² : SuccOrder α inst✝¹ : IsSuccArchimedean α inst✝ : OrderBot α n : α φ : α → α k : α ih : StrictMonoOn φ (Iic k) → ∀ m ≤ k, m ≤ φ m hφ : StrictMonoOn φ (Iic (succ k)) m : α hm : m ≤ succ k hk : ¬IsMax k ⊢ m ≤ φ m
3368b27a353274fb
Matrix.linfty_opNNNorm_eq_opNNNorm
Mathlib/Analysis/Matrix.lean
lemma linfty_opNNNorm_eq_opNNNorm (A : Matrix m n α) : ‖A‖₊ = ‖ContinuousLinearMap.mk (Matrix.mulVecLin A)‖₊
case inr m : Type u_3 n : Type u_4 α : Type u_5 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : NontriviallyNormedField α inst✝ : NormedAlgebra ℝ α A : Matrix m n α N : ℝ≥0 i : m x✝ : i ∈ Finset.univ h✝ : Nonempty n x : n → α := fun j => Matrix.unitOf (A i j) hxn : ‖x‖₊ = 1 hN : ‖{ toLinearMap := A.mulVecLin, cont := ⋯ } x‖₊ ≤ N * ‖x‖₊ ⊢ ∑ j : n, ‖A i j‖₊ ≤ N
rw [hxn, mul_one, Pi.nnnorm_def, Finset.sup_le_iff] at hN
case inr m : Type u_3 n : Type u_4 α : Type u_5 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : NontriviallyNormedField α inst✝ : NormedAlgebra ℝ α A : Matrix m n α N : ℝ≥0 i : m x✝ : i ∈ Finset.univ h✝ : Nonempty n x : n → α := fun j => Matrix.unitOf (A i j) hxn : ‖x‖₊ = 1 hN : ∀ b ∈ Finset.univ, ‖{ toLinearMap := A.mulVecLin, cont := ⋯ } x b‖₊ ≤ N ⊢ ∑ j : n, ‖A i j‖₊ ≤ N
e5f792842b2dab2d
List.isSuffixOf?_eq_some_iff_append_eq
Mathlib/.lake/packages/batteries/Batteries/Data/List/Lemmas.lean
theorem isSuffixOf?_eq_some_iff_append_eq [BEq α] [LawfulBEq α] {xs ys zs : List α} : xs.isSuffixOf? ys = some zs ↔ zs ++ xs = ys
α : Type u_1 inst✝¹ : BEq α inst✝ : LawfulBEq α xs ys zs : List α x✝ : ∃ a, xs.reverse ++ a = ys.reverse ∧ a.reverse = zs w✝ : List α h : xs.reverse ++ zs.reverse = ys.reverse heq : w✝ = zs.reverse ⊢ zs ++ xs = ys
rw [← reverse_inj, reverse_append, h]
no goals
5e5a9da994bdcc5a
wittStructureInt_rename
Mathlib/RingTheory/WittVector/StructurePolynomial.lean
theorem wittStructureInt_rename {σ : Type*} (Φ : MvPolynomial idx ℤ) (f : idx → σ) (n : ℕ) : wittStructureInt p (rename f Φ) n = rename (Prod.map f id) (wittStructureInt p Φ n)
case a p : ℕ idx : Type u_2 hp : Fact (Nat.Prime p) σ : Type u_3 Φ : MvPolynomial idx ℤ f : idx → σ n : ℕ ⊢ (map (Int.castRingHom ℚ)) (wittStructureInt p ((rename f) Φ) n) = (map (Int.castRingHom ℚ)) ((rename (Prod.map f id)) (wittStructureInt p Φ n))
simp only [map_rename, map_wittStructureInt, wittStructureRat, rename_bind₁, rename_rename, bind₁_rename]
case a p : ℕ idx : Type u_2 hp : Fact (Nat.Prime p) σ : Type u_3 Φ : MvPolynomial idx ℤ f : idx → σ n : ℕ ⊢ (bind₁ fun k => (bind₁ ((fun i => (rename (Prod.mk i)) (W_ ℚ k)) ∘ f)) ((map (Int.castRingHom ℚ)) Φ)) (xInTermsOfW p ℚ n) = (bind₁ fun i => (bind₁ fun i_1 => (rename (Prod.map f id ∘ Prod.mk i_1)) (W_ ℚ i)) ((map (Int.castRingHom ℚ)) Φ)) (xInTermsOfW p ℚ n)
ca26d0c99e320043
CategoryTheory.Limits.hasZeroObject_of_hasInitial_object
Mathlib/CategoryTheory/Limits/Shapes/ZeroMorphisms.lean
theorem hasZeroObject_of_hasInitial_object [HasZeroMorphisms C] [HasInitial C] : HasZeroObject C
case h.e'_7 C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasZeroMorphisms C inst✝ : HasInitial C X : C f : X ⟶ ⊥_ C ⊢ 𝟙 (⊥_ C) = 0
subsingleton
no goals
aacc01f350069db8
BitVec.toInt_abs_eq_natAbs
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem toInt_abs_eq_natAbs {x : BitVec w} : x.abs.toInt = if x = intMin w then (intMin w).toInt else x.toInt.natAbs
case pos w : Nat x : BitVec w hx : ¬x = intMin w h : x.msb = true ⊢ (if x.msb = true then -x.toInt else x.toInt) = ↑x.toInt.natAbs
simp only [h, ↓reduceIte]
case pos w : Nat x : BitVec w hx : ¬x = intMin w h : x.msb = true ⊢ -x.toInt = ↑x.toInt.natAbs
49362e766b77f6e6
Ordnode.Valid'.merge_aux₁
Mathlib/Data/Ordmap/Ordset.lean
theorem Valid'.merge_aux₁ {o₁ o₂ ls ll lx lr rs rl rx rr t} (hl : Valid' o₁ (@Ordnode.node α ls ll lx lr) o₂) (hr : Valid' o₁ (.node rs rl rx rr) o₂) (h : delta * ls < rs) (v : Valid' o₁ t rx) (e : size t = ls + size rl) : Valid' o₁ (.balanceL t rx rr) o₂ ∧ size (.balanceL t rx rr) = ls + rs
case inr.intro α : Type u_1 inst✝ : Preorder α o₁ : WithBot α o₂ : WithTop α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α rs : ℕ rl : Ordnode α rx : α rr t : Ordnode α hl : Valid' o₁ (Ordnode.node ls ll lx lr) o₂ hr : Valid' o₁ (Ordnode.node rs rl rx rr) o₂ h : 3 * (ll.size + lr.size + 1) < rl.size + rr.size + 1 v : Valid' o₁ t ↑rx e : t.size = ll.size + lr.size + 1 + rl.size hr₁ : rl.size ≤ delta * rr.size hr₂ : rr.size ≤ delta * rl.size ⊢ 1 ≤ t.size → 1 ≤ rr.size → rr.size ≤ delta * t.size
intro _ _
case inr.intro α : Type u_1 inst✝ : Preorder α o₁ : WithBot α o₂ : WithTop α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α rs : ℕ rl : Ordnode α rx : α rr t : Ordnode α hl : Valid' o₁ (Ordnode.node ls ll lx lr) o₂ hr : Valid' o₁ (Ordnode.node rs rl rx rr) o₂ h : 3 * (ll.size + lr.size + 1) < rl.size + rr.size + 1 v : Valid' o₁ t ↑rx e : t.size = ll.size + lr.size + 1 + rl.size hr₁ : rl.size ≤ delta * rr.size hr₂ : rr.size ≤ delta * rl.size a✝¹ : 1 ≤ t.size a✝ : 1 ≤ rr.size ⊢ rr.size ≤ delta * t.size
dde6393e47c80664
IntermediateField.restrictScalars_sup
Mathlib/FieldTheory/IntermediateField/Adjoin/Defs.lean
theorem restrictScalars_sup : L.restrictScalars K ⊔ L'.restrictScalars K = (L ⊔ L').restrictScalars K := toSubfield_injective (by simp)
F : Type u_1 inst✝⁶ : Field F E : Type u_2 inst✝⁵ : Field E inst✝⁴ : Algebra F E K : Type u_3 inst✝³ : Field K inst✝² : Algebra K E inst✝¹ : Algebra K F inst✝ : IsScalarTower K F E L L' : IntermediateField F E ⊢ (restrictScalars K L ⊔ restrictScalars K L').toSubfield = (restrictScalars K (L ⊔ L')).toSubfield
simp
no goals
2969b9cc382dda5e
Filter.HasBasis.restrict
Mathlib/Order/Filter/Bases.lean
theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s
case intro.intro.intro.intro.intro α : Type u_1 ι : Sort u_4 l : Filter α p : ι → Prop s : ι → Set α h : l.HasBasis p s q : ι → Prop hq : ∀ (i : ι), p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i t : Set α ht : t ∈ l i : ι hpi : p i hti : s i ⊆ t j : ι hpj : p j hqj : q j hji : s j ⊆ s i ⊢ ∃ i, (p i ∧ q i) ∧ s i ⊆ t
exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩
no goals
e8349a680250bf41
Std.DHashMap.Internal.Raw₀.Const.getKey!_insertManyIfNewUnit_list_of_contains
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/RawLemmas.lean
theorem getKey!_insertManyIfNewUnit_list_of_contains [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.1.WF) {l : List α} {k : α} : m.contains k → getKey! (insertManyIfNewUnit m l).1 k = getKey! m k
α : Type u inst✝⁴ : BEq α inst✝³ : Hashable α m : Raw₀ α fun x => Unit inst✝² : EquivBEq α inst✝¹ : LawfulHashable α inst✝ : Inhabited α h : m.val.WF l : List α k : α ⊢ m.contains k = true → (insertManyIfNewUnit m l).val.getKey! k = m.getKey! k
simp_to_model [Const.insertManyIfNewUnit] using List.getKey!_insertListIfNewUnit_of_contains
no goals
8150323122ca71b3
Set.ncard_eq_toFinset_card
Mathlib/Data/Set/Card.lean
theorem ncard_eq_toFinset_card (s : Set α) (hs : s.Finite
α : Type u_1 s : Set α hs : autoParam s.Finite _auto✝ ⊢ s.ncard = (Finite.toFinset hs).card
rw [← Nat.card_coe_set_eq, @Nat.card_eq_fintype_card _ hs.fintype, @Finite.card_toFinset _ _ hs.fintype hs]
no goals
ff059e4b1009ae59
Ideal.finrank_quotient_map
Mathlib/NumberTheory/RamificationInertia/Basic.lean
theorem finrank_quotient_map [IsDomain S] [IsDedekindDomain R] [Algebra K L] [Algebra R L] [IsScalarTower R K L] [IsScalarTower R S L] [hp : p.IsMaximal] [Module.Finite R S] : finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) = finrank K L
case refine_2.refine_1.intro.intro R : Type u inst✝¹⁴ : CommRing R S : Type v inst✝¹³ : CommRing S p : Ideal R inst✝¹² : Algebra R S K : Type u_1 inst✝¹¹ : Field K inst✝¹⁰ : Algebra R K L : Type u_2 inst✝⁹ : Field L inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L hRK : IsFractionRing R K inst✝⁶ : IsDomain S inst✝⁵ : IsDedekindDomain R inst✝⁴ : Algebra K L inst✝³ : Algebra R L inst✝² : IsScalarTower R K L inst✝¹ : IsScalarTower R S L hp : p.IsMaximal inst✝ : Module.Finite R S ι : Type v := Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => ⋯.choose b_eq_b' : ⇑b = ⇑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ⇑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' x : S a✝ : x ∈ ⊤ mem_span_b : (Submodule.mkQ (map (algebraMap R S) p)) x ∈ Submodule.map (↑R (Submodule.mkQ (map (algebraMap R S) p))) (Submodule.span R (Set.range b')) y : S y_mem : y ∈ Submodule.span R (Set.range b') y_eq : (↑R (Submodule.mkQ (map (algebraMap R S) p))) y = (Submodule.mkQ (map (algebraMap R S) p)) x ⊢ y + -(y - x) ∈ Submodule.span R (Set.range b') ⊔ Submodule.restrictScalars R (map (algebraMap R S) p)
rw [LinearMap.restrictScalars_apply, Submodule.mkQ_apply, Submodule.mkQ_apply, Submodule.Quotient.eq] at y_eq
case refine_2.refine_1.intro.intro R : Type u inst✝¹⁴ : CommRing R S : Type v inst✝¹³ : CommRing S p : Ideal R inst✝¹² : Algebra R S K : Type u_1 inst✝¹¹ : Field K inst✝¹⁰ : Algebra R K L : Type u_2 inst✝⁹ : Field L inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L hRK : IsFractionRing R K inst✝⁶ : IsDomain S inst✝⁵ : IsDedekindDomain R inst✝⁴ : Algebra K L inst✝³ : Algebra R L inst✝² : IsScalarTower R K L inst✝¹ : IsScalarTower R S L hp : p.IsMaximal inst✝ : Module.Finite R S ι : Type v := Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) b : Basis ι (R ⧸ p) (S ⧸ map (algebraMap R S) p) := Free.chooseBasis (R ⧸ p) (S ⧸ map (algebraMap R S) p) b' : ι → S := fun i => ⋯.choose b_eq_b' : ⇑b = ⇑(↑R (Submodule.mkQ (map (algebraMap R S) p))) ∘ b' b'' : ι → L := ⇑(algebraMap S L) ∘ b' b''_li : LinearIndependent K b'' x : S a✝ : x ∈ ⊤ mem_span_b : (Submodule.mkQ (map (algebraMap R S) p)) x ∈ Submodule.map (↑R (Submodule.mkQ (map (algebraMap R S) p))) (Submodule.span R (Set.range b')) y : S y_mem : y ∈ Submodule.span R (Set.range b') y_eq : y - x ∈ map (algebraMap R S) p ⊢ y + -(y - x) ∈ Submodule.span R (Set.range b') ⊔ Submodule.restrictScalars R (map (algebraMap R S) p)
c261b0ceb1fb92db
Computation.terminates_parallel.aux
Mathlib/Data/Seq/Parallel.lean
theorem terminates_parallel.aux : ∀ {l : List (Computation α)} {S c}, c ∈ l → Terminates c → Terminates (corec parallel.aux1 (l, S))
α : Type u lem1 : ∀ (l : List (Computation α)) (S : WSeq (Computation α)), (∃ a, parallel.aux2 l = Sum.inl a) → (corec parallel.aux1 (l, S)).Terminates c : Computation α T : c.Terminates ⊢ ∀ (s : Computation α), (∀ {l : List (Computation α)} {S : WSeq (Computation α)}, s ∈ l → (corec parallel.aux1 (l, S)).Terminates) → ∀ {l : List (Computation α)} {S : WSeq (Computation α)}, s.think ∈ l → (corec parallel.aux1 (l, S)).Terminates
intro s IH l S m
α : Type u lem1 : ∀ (l : List (Computation α)) (S : WSeq (Computation α)), (∃ a, parallel.aux2 l = Sum.inl a) → (corec parallel.aux1 (l, S)).Terminates c : Computation α T : c.Terminates s : Computation α IH : ∀ {l : List (Computation α)} {S : WSeq (Computation α)}, s ∈ l → (corec parallel.aux1 (l, S)).Terminates l : List (Computation α) S : WSeq (Computation α) m : s.think ∈ l ⊢ (corec parallel.aux1 (l, S)).Terminates
933ed16bf89826a9
List.erase_cons_head
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Erase.lean
theorem erase_cons_head [LawfulBEq α] (a : α) (l : List α) : (a :: l).erase a = l
α : Type u_1 inst✝¹ : BEq α inst✝ : LawfulBEq α a : α l : List α ⊢ (a :: l).erase a = l
simp [erase_cons]
no goals
0f41b2c0e7bd0ead
Order.coheight_add_one_le
Mathlib/Order/KrullDimension.lean
lemma coheight_add_one_le {a b : α} (hab : b < a) : coheight a + 1 ≤ coheight b
α : Type u_1 inst✝ : Preorder α a b : α hab : b < a ⊢ coheight a + 1 ≤ coheight b
cases hfin : coheight a with | top => have : ⊤ ≤ coheight b := by rw [← hfin] gcongr simp [this] | coe n => apply Order.add_one_le_of_lt rw [← hfin] gcongr simp [hfin]
no goals
d04e3a2735fe3bd1
Homotopy.comp_nullHomotopicMap
Mathlib/Algebra/Homology/Homotopy.lean
theorem comp_nullHomotopicMap (f : C ⟶ D) (hom : ∀ i j, D.X i ⟶ E.X j) : f ≫ nullHomotopicMap hom = nullHomotopicMap fun i j => f.f i ≫ hom i j
case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f : C ⟶ D hom : (i j : ι) → D.X i ⟶ E.X j n : ι ⊢ f.f n ≫ (D.dFrom n ≫ hom (c.next n) n + hom n (c.prev n) ≫ E.dTo n) = C.dFrom n ≫ f.f (c.next n) ≫ hom (c.next n) n + (f.f n ≫ hom n (c.prev n)) ≫ E.dTo n
simp only [Preadditive.comp_add, assoc, f.comm_assoc]
no goals
180e3371759e376e
Finset.prod_dvd_of_isRelPrime
Mathlib/RingTheory/Coprime/Lemmas.lean
theorem Finset.prod_dvd_of_isRelPrime : (t : Set I).Pairwise (IsRelPrime on s) → (∀ i ∈ t, s i ∣ z) → (∏ x ∈ t, s x) ∣ z
α : Type u_2 I : Type u_1 inst✝¹ : CommMonoid α inst✝ : DecompositionMonoid α z : α s : I → α t : Finset I a : I r : Finset I har : a ∉ r ih : (↑r).Pairwise (IsRelPrime on s) → (∀ i ∈ r, s i ∣ z) → ∏ x ∈ r, s x ∣ z Hs : (↑(insert a r)).Pairwise (IsRelPrime on s) Hs1 : ∀ i ∈ insert a r, s i ∣ z aux1 : a ∈ ↑(insert a r) hir : a ∈ r ⊢ False
exact har hir
no goals
83dc5ba78bc0ac42
Module.exists_nontrivial_relation_sum_zero_of_finrank_succ_lt_card
Mathlib/LinearAlgebra/Dimension/Finite.lean
theorem Module.exists_nontrivial_relation_sum_zero_of_finrank_succ_lt_card {t : Finset M} (h : finrank R M + 1 < t.card) : ∃ f : M → R, ∑ e ∈ t, f e • e = 0 ∧ ∑ e ∈ t, f e = 0 ∧ ∃ x ∈ t, f x ≠ 0
case intro.intro.intro.intro.intro.refine_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Finite R M inst✝ : StrongRankCondition R t : Finset M h : finrank R M + 1 < #t x₀ : M x₀_mem : x₀ ∈ t shift : M ↪ M := { toFun := fun x => x - x₀, inj' := ⋯ } t' : Finset M := Finset.map shift (t.erase x₀) h' : finrank R M < #t' g : M → R gsum : ∑ x ∈ t.erase x₀, g (x - x₀) • (x - x₀) = 0 x₁ : M x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : M → R := fun z => if z = x₀ then -∑ z ∈ t.erase x₀, g (z - x₀) else g (z - x₀) ⊢ ∑ x ∈ t.erase x₀, ((if x = x₀ then -∑ z ∈ t.erase x₀, g (z - x₀) else g (x - x₀)) • x - g (x - x₀) • x₀) = ∑ x ∈ t.erase x₀, (g (x - x₀) • x - g (x - x₀) • x₀)
refine sum_congr rfl fun x x_mem ↦ ?_
case intro.intro.intro.intro.intro.refine_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Finite R M inst✝ : StrongRankCondition R t : Finset M h : finrank R M + 1 < #t x₀ : M x₀_mem : x₀ ∈ t shift : M ↪ M := { toFun := fun x => x - x₀, inj' := ⋯ } t' : Finset M := Finset.map shift (t.erase x₀) h' : finrank R M < #t' g : M → R gsum : ∑ x ∈ t.erase x₀, g (x - x₀) • (x - x₀) = 0 x₁ : M x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : M → R := fun z => if z = x₀ then -∑ z ∈ t.erase x₀, g (z - x₀) else g (z - x₀) x : M x_mem : x ∈ t.erase x₀ ⊢ (if x = x₀ then -∑ z ∈ t.erase x₀, g (z - x₀) else g (x - x₀)) • x - g (x - x₀) • x₀ = g (x - x₀) • x - g (x - x₀) • x₀
9ccb45a24efab47f
Lean.Data.AC.Context.eval_norm
Mathlib/.lake/packages/lean4/src/lean/Init/Data/AC.lean
theorem Context.eval_norm (ctx : Context α) (e : Expr) : evalList α ctx (norm ctx e) = eval α ctx e
α : Sort u_1 ctx : Context α e : Expr ⊢ evalList α ctx (if ContextInformation.isIdem ctx = true then mergeIdem (if ContextInformation.isComm ctx = true then sort (removeNeutrals ctx e.toList) else removeNeutrals ctx e.toList) else if ContextInformation.isComm ctx = true then sort (removeNeutrals ctx e.toList) else removeNeutrals ctx e.toList) = eval α ctx e
cases h₁ : ContextInformation.isIdem ctx <;> cases h₂ : ContextInformation.isComm ctx <;> simp_all [evalList_removeNeutrals, eval_toList, toList_nonEmpty, evalList_mergeIdem, evalList_sort]
no goals
62f4ef397b8c946b
Std.Sat.AIG.RefVec.ite.go_get_aux
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/If.lean
theorem go_get_aux {w : Nat} (aig : AIG α) (curr : Nat) (hcurr : curr ≤ w) (discr : Ref aig) (lhs rhs : RefVec aig w) (s : RefVec aig curr) : ∀ (idx : Nat) (hidx : idx < curr) (hfoo), (go aig curr hcurr discr lhs rhs s).vec.get idx (by omega) = (s.get idx hidx).cast hfoo
case isTrue α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α curr : Nat hcurr : curr ≤ w discr : aig.Ref lhs rhs : aig.RefVec w s : aig.RefVec curr idx : Nat hidx : idx < curr res : RefVecEntry α w h✝ : curr < w hgo : go (aig.mkIfCached { discr := discr, lhs := lhs.get curr h✝, rhs := rhs.get curr h✝ }).aig (curr + 1) ⋯ (discr.cast ⋯) (lhs.cast ⋯) (rhs.cast ⋯) ((s.cast ⋯).push (aig.mkIfCached { discr := discr, lhs := lhs.get curr h✝, rhs := rhs.get curr h✝ }).ref) = res hfoo✝ : aig.decls.size ≤ (go (aig.mkIfCached { discr := discr, lhs := lhs.get curr h✝, rhs := rhs.get curr h✝ }).aig (curr + 1) ⋯ (discr.cast ⋯) (lhs.cast ⋯) (rhs.cast ⋯) ((s.cast ⋯).push (aig.mkIfCached { discr := discr, lhs := lhs.get curr h✝, rhs := rhs.get curr h✝ }).ref)).aig.decls.size ⊢ ((s.get idx ?isTrue.hidx).cast ⋯).gate = (s.get idx hidx).gate
simp
no goals
c08e573c9b942d4a
Rat.num_den_mk
Mathlib/Data/Rat/Lemmas.lean
theorem num_den_mk {q : ℚ} {n d : ℤ} (hd : d ≠ 0) (qdf : q = n /. d) : ∃ c : ℤ, n = c * q.num ∧ d = c * q.den
q : ℚ n d : ℤ hd : d ≠ 0 qdf : q = n /. d ⊢ ∃ c, n = c * q.num ∧ d = c * ↑q.den
obtain rfl | hn := eq_or_ne n 0
case inl q : ℚ d : ℤ hd : d ≠ 0 qdf : q = 0 /. d ⊢ ∃ c, 0 = c * q.num ∧ d = c * ↑q.den case inr q : ℚ n d : ℤ hd : d ≠ 0 qdf : q = n /. d hn : n ≠ 0 ⊢ ∃ c, n = c * q.num ∧ d = c * ↑q.den
6651e65d3ba1324c
Polynomial.rootMultiplicity_eq_natTrailingDegree'
Mathlib/Algebra/Polynomial/Div.lean
/-- See `Polynomial.rootMultiplicity_eq_natTrailingDegree` for the general case. -/ lemma rootMultiplicity_eq_natTrailingDegree' : p.rootMultiplicity 0 = p.natTrailingDegree
R : Type u inst✝ : CommRing R p : R[X] ⊢ rootMultiplicity 0 p = p.natTrailingDegree
by_cases h : p = 0
case pos R : Type u inst✝ : CommRing R p : R[X] h : p = 0 ⊢ rootMultiplicity 0 p = p.natTrailingDegree case neg R : Type u inst✝ : CommRing R p : R[X] h : ¬p = 0 ⊢ rootMultiplicity 0 p = p.natTrailingDegree
fb3fe56f8f18fafe
Relation.cutExpand_double
Mathlib/Logic/Hydra.lean
lemma cutExpand_double {a a₁ a₂} (h₁ : r a₁ a) (h₂ : r a₂ a) : CutExpand r {a₁, a₂} {a} := cutExpand_singleton <| by simp only [insert_eq_cons, mem_cons, mem_singleton, forall_eq_or_imp, forall_eq] tauto
α : Type u_1 r : α → α → Prop a a₁ a₂ : α h₁ : r a₁ a h₂ : r a₂ a ⊢ ∀ x' ∈ {a₁, a₂}, r x' a
simp only [insert_eq_cons, mem_cons, mem_singleton, forall_eq_or_imp, forall_eq]
α : Type u_1 r : α → α → Prop a a₁ a₂ : α h₁ : r a₁ a h₂ : r a₂ a ⊢ r a₁ a ∧ r a₂ a
3db6640335ee3b12
FirstOrder.Language.Theory.models_formula_iff_onTheory_models_equivSentence
Mathlib/ModelTheory/Satisfiability.lean
theorem models_formula_iff_onTheory_models_equivSentence {φ : L.Formula α} : T ⊨ᵇ φ ↔ (L.lhomWithConstants α).onTheory T ⊨ᵇ Formula.equivSentence φ
case refine_2 L : Language T : L.Theory α : Type w φ : L.Formula α h : (L.lhomWithConstants α).onTheory T ⊨ᵇ Formula.equivSentence φ M : T.ModelType v : α → ↑M this✝ : (constantsOn α).Structure ↑M := constantsOn.structure v this : ↑M ⊨ (L.lhomWithConstants α).onTheory T ⊢ φ.Realize v
exact (Formula.realize_equivSentence _ _).1 (h.realize_sentence M)
no goals
68157140d9be2023
norm_cfcₙ_lt
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Isometric.lean
lemma norm_cfcₙ_lt {f : 𝕜 → 𝕜} {a : A} {c : ℝ} (h : ∀ x ∈ σₙ 𝕜 a, ‖f x‖ < c) : ‖cfcₙ f a‖ < c
case refine_2.intro.intro 𝕜 : Type u_1 A : Type u_2 p : outParam (A → Prop) inst✝⁶ : RCLike 𝕜 inst✝⁵ : NonUnitalNormedRing A inst✝⁴ : StarRing A inst✝³ : NormedSpace 𝕜 A inst✝² : IsScalarTower 𝕜 A A inst✝¹ : SMulCommClass 𝕜 A A inst✝ : NonUnitalIsometricContinuousFunctionalCalculus 𝕜 A p f : 𝕜 → 𝕜 a : A c : ℝ h : ∀ x ∈ σₙ 𝕜 a, ‖f x‖ < c hf : ContinuousOn f (σₙ 𝕜 a) hf0 : { toFun := (σₙ 𝕜 a).restrict f, continuous_toFun := ⋯ } 0 = 0 ha : p a x : 𝕜 hx : x ∈ σₙ 𝕜 a ⊢ (fun x => ‖f x‖) x < c
exact h x hx
no goals
950e36292dc4fd4a
List.getElem_zipIdx
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Range.lean
theorem getElem_zipIdx (l : List α) (n) (i : Nat) (h : i < (l.zipIdx n).length) : (l.zipIdx n)[i] = (l[i]'(by simpa [length_zipIdx] using h), n + i)
α : Type u_1 l : List α n i : Nat h✝ : i < (l.zipIdx n).length h : i < l.length ⊢ (Option.map (fun a => (a, n + i)) (some l[i])).get ⋯ = (l[i], n + i)
simp
no goals
7de6a7b9a3350b01
List.foldl_ext
Mathlib/Data/List/Basic.lean
theorem foldl_ext (f g : α → β → α) (a : α) {l : List β} (H : ∀ a : α, ∀ b ∈ l, f a b = g a b) : foldl f a l = foldl g a l
α : Type u β : Type v f g : α → β → α a : α l : List β H : ∀ (a : α) (b : β), b ∈ l → f a b = g a b ⊢ foldl f a l = foldl g a l
induction l generalizing a with | nil => rfl | cons hd tl ih => unfold foldl rw [ih _ fun a b bin => H a b <| mem_cons_of_mem _ bin, H a hd (mem_cons_self _ _)]
no goals
6ffe2cd5673f2e92
QuasispectrumRestricts.cfc
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Restrict.lean
theorem cfc (f : C(S, R)) (halg : IsUniformEmbedding (algebraMap R S)) (h0 : p 0) (h : ∀ a, p a ↔ q a ∧ QuasispectrumRestricts a f) : NonUnitalContinuousFunctionalCalculus R p where predicate_zero := h0 compactSpace_quasispectrum a
R : Type u_1 S : Type u_2 A : Type u_3 p q : A → Prop inst✝²⁴ : Semifield R inst✝²³ : StarRing R inst✝²² : MetricSpace R inst✝²¹ : IsTopologicalSemiring R inst✝²⁰ : ContinuousStar R inst✝¹⁹ : Field S inst✝¹⁸ : StarRing S inst✝¹⁷ : MetricSpace S inst✝¹⁶ : IsTopologicalRing S inst✝¹⁵ : ContinuousStar S inst✝¹⁴ : NonUnitalRing A inst✝¹³ : StarRing A inst✝¹² : Module S A inst✝¹¹ : IsScalarTower S A A inst✝¹⁰ : SMulCommClass S A A inst✝⁹ : Algebra R S inst✝⁸ : Module R A inst✝⁷ : IsScalarTower R S A inst✝⁶ : StarModule R S inst✝⁵ : ContinuousSMul R S inst✝⁴ : TopologicalSpace A inst✝³ : NonUnitalContinuousFunctionalCalculus S q inst✝² : CompleteSpace R inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A f : C(S, R) halg : IsUniformEmbedding ⇑(algebraMap R S) h0 : p 0 h : ∀ (a : A), p a ↔ q a ∧ QuasispectrumRestricts a ⇑f a : A ha : p a g : C(↑(σₙ R a), R)₀ s : S hs : s ∈ σₙ S ((nonUnitalStarAlgHom (cfcₙHom ⋯) ⋯) g) ⊢ (algebraMap R S) (f s) = s
rw [nonUnitalStarAlgHom_apply, cfcₙHom_map_quasispectrum] at hs
R : Type u_1 S : Type u_2 A : Type u_3 p q : A → Prop inst✝²⁴ : Semifield R inst✝²³ : StarRing R inst✝²² : MetricSpace R inst✝²¹ : IsTopologicalSemiring R inst✝²⁰ : ContinuousStar R inst✝¹⁹ : Field S inst✝¹⁸ : StarRing S inst✝¹⁷ : MetricSpace S inst✝¹⁶ : IsTopologicalRing S inst✝¹⁵ : ContinuousStar S inst✝¹⁴ : NonUnitalRing A inst✝¹³ : StarRing A inst✝¹² : Module S A inst✝¹¹ : IsScalarTower S A A inst✝¹⁰ : SMulCommClass S A A inst✝⁹ : Algebra R S inst✝⁸ : Module R A inst✝⁷ : IsScalarTower R S A inst✝⁶ : StarModule R S inst✝⁵ : ContinuousSMul R S inst✝⁴ : TopologicalSpace A inst✝³ : NonUnitalContinuousFunctionalCalculus S q inst✝² : CompleteSpace R inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A f : C(S, R) halg : IsUniformEmbedding ⇑(algebraMap R S) h0 : p 0 h : ∀ (a : A), p a ↔ q a ∧ QuasispectrumRestricts a ⇑f a : A ha : p a g : C(↑(σₙ R a), R)₀ s : S hs : s ∈ range ⇑({ toFun := ⇑(StarAlgHom.ofId R S), continuous_toFun := ⋯, map_zero' := ⋯ }.comp (g.comp { toFun := Subtype.map ⇑f ⋯, continuous_toFun := ⋯, map_zero' := ⋯ })) ⊢ (algebraMap R S) (f s) = s
3af5d542f22c6b37
aux1
Mathlib/Algebra/Jordan/Basic.lean
theorem aux1 {a b c : A} : ⁅L a + L b + L c, L (a * a) + L (b * b) + L (c * c) + 2 • L (a * b) + 2 • L (c * a) + 2 • L (b * c)⁆ = ⁅L a, L (a * a)⁆ + ⁅L a, L (b * b)⁆ + ⁅L a, L (c * c)⁆ + ⁅L a, 2 • L (a * b)⁆ + ⁅L a, 2 • L (c * a)⁆ + ⁅L a, 2 • L (b * c)⁆ + (⁅L b, L (a * a)⁆ + ⁅L b, L (b * b)⁆ + ⁅L b, L (c * c)⁆ + ⁅L b, 2 • L (a * b)⁆ + ⁅L b, 2 • L (c * a)⁆ + ⁅L b, 2 • L (b * c)⁆) + (⁅L c, L (a * a)⁆ + ⁅L c, L (b * b)⁆ + ⁅L c, L (c * c)⁆ + ⁅L c, 2 • L (a * b)⁆ + ⁅L c, 2 • L (c * a)⁆ + ⁅L c, 2 • L (b * c)⁆)
A : Type u_1 inst✝ : NonUnitalNonAssocCommRing A a b c : A ⊢ ⁅L a, L (a * a) + L (b * b) + L (c * c) + 2 • L (a * b) + 2 • L (c * a) + 2 • L (b * c)⁆ + ⁅L b, L (a * a) + L (b * b) + L (c * c) + 2 • L (a * b) + 2 • L (c * a) + 2 • L (b * c)⁆ + ⁅L c, L (a * a) + L (b * b) + L (c * c) + 2 • L (a * b) + 2 • L (c * a) + 2 • L (b * c)⁆ = ⁅L a, L (a * a)⁆ + ⁅L a, L (b * b)⁆ + ⁅L a, L (c * c)⁆ + ⁅L a, 2 • L (a * b)⁆ + ⁅L a, 2 • L (c * a)⁆ + ⁅L a, 2 • L (b * c)⁆ + (⁅L b, L (a * a)⁆ + ⁅L b, L (b * b)⁆ + ⁅L b, L (c * c)⁆ + ⁅L b, 2 • L (a * b)⁆ + ⁅L b, 2 • L (c * a)⁆ + ⁅L b, 2 • L (b * c)⁆) + (⁅L c, L (a * a)⁆ + ⁅L c, L (b * b)⁆ + ⁅L c, L (c * c)⁆ + ⁅L c, 2 • L (a * b)⁆ + ⁅L c, 2 • L (c * a)⁆ + ⁅L c, 2 • L (b * c)⁆)
iterate 15 rw [lie_add]
no goals
b5c23462450b58db
MulAction.IsPreprimitive.of_card_lt
Mathlib/GroupTheory/GroupAction/Primitive.lean
theorem of_card_lt [Finite Y] [IsPretransitive H Y] [IsPreprimitive G X] (hf' : Nat.card Y < 2 * (Set.range f).ncard) : IsPreprimitive H Y := by refine ⟨fun {B} hB ↦ ?_⟩ rcases B.eq_empty_or_nonempty with hB' | hB'; · simp [IsTrivialBlock, hB'] rw [IsTrivialBlock, or_iff_not_imp_right] intro hB_ne_top -- we need Set.Subsingleton B ↔ Set.ncard B ≤ 1 suffices Set.ncard B < 2 by simpa [Nat.lt_succ] using this -- We reduce to proving that (Set.range f).ncard ≤ (orbit N B).ncard apply lt_of_mul_lt_mul_right (lt_of_le_of_lt _ hf') (zero_le _) simp only [← Nat.card_eq_fintype_card, ← hB.ncard_block_mul_ncard_orbit_eq hB'] apply Nat.mul_le_mul_left -- We reduce to proving that (Set.range f ∩ g • B).ncard ≤ 1 for every g have hfin := Fintype.ofFinite (Set.range fun g : H ↦ g • B) rw [(hB.isBlockSystem hB').left.ncard_eq_finsum, finsum_eq_sum_of_fintype] apply le_trans (Finset.sum_le_card_nsmul _ _ 1 _) · rw [nsmul_one, Finset.card_univ, ← Set.toFinset_card, ← Set.ncard_eq_toFinset_card', orbit, Nat.cast_id] · rintro ⟨x, ⟨g, rfl⟩⟩ - suffices Set.Subsingleton (Set.range f ∩ g • B) by simpa -- It suffices to prove that the preimage is subsingleton rw [← Set.image_preimage_eq_range_inter] apply Set.Subsingleton.image -- Since the action of M on α is primitive, it suffices to prove that -- the preimage is a block which is not ⊤ apply Or.resolve_right (isTrivialBlock_of_isBlock ((hB.translate g).preimage f)) intro h simp only [Set.top_eq_univ, Set.preimage_eq_univ_iff] at h -- We will prove that B is large, which will contradict the assumption that it is not ⊤ apply hB_ne_top apply hB.eq_univ_of_card_lt -- It remains to show that Nat.card β < Set.ncard B * 2 apply lt_of_lt_of_le hf' rw [mul_comm, mul_le_mul_right Nat.succ_pos'] apply le_trans (Set.ncard_le_ncard h) (Set.ncard_image_le B.toFinite)
case mk.intro.hs G : Type u_1 X : Type u_2 inst✝⁶ : Group G inst✝⁵ : MulAction G X H : Type u_3 Y : Type u_4 inst✝⁴ : Group H inst✝³ : MulAction H Y φ : G → H f : X →ₑ[φ] Y inst✝² : Finite Y inst✝¹ : IsPretransitive H Y inst✝ : IsPreprimitive G X hf' : Nat.card Y < 2 * (Set.range ⇑f).ncard B : Set Y hB : IsBlock H B hB' : B.Nonempty hB_ne_top : ¬B = Set.univ hfin : Fintype ↑(Set.range fun g => g • B) g : H h : Set.range ⇑f ⊆ g • B ⊢ B = Set.univ
apply hB.eq_univ_of_card_lt
case mk.intro.hs G : Type u_1 X : Type u_2 inst✝⁶ : Group G inst✝⁵ : MulAction G X H : Type u_3 Y : Type u_4 inst✝⁴ : Group H inst✝³ : MulAction H Y φ : G → H f : X →ₑ[φ] Y inst✝² : Finite Y inst✝¹ : IsPretransitive H Y inst✝ : IsPreprimitive G X hf' : Nat.card Y < 2 * (Set.range ⇑f).ncard B : Set Y hB : IsBlock H B hB' : B.Nonempty hB_ne_top : ¬B = Set.univ hfin : Fintype ↑(Set.range fun g => g • B) g : H h : Set.range ⇑f ⊆ g • B ⊢ Nat.card Y < B.ncard * 2
ef6cb8f6bf6f5d36
SimpleGraph.Walk.IsPath.snd_of_toSubgraph_adj
Mathlib/Combinatorics/SimpleGraph/Connectivity/Subgraph.lean
lemma snd_of_toSubgraph_adj {u v v'} {p : G.Walk u v} (hp : p.IsPath) (hadj : p.toSubgraph.Adj u v') : p.snd = v'
V : Type u G : SimpleGraph V u v : V p : G.Walk u v hp : p.IsPath i : ℕ hl1 : p.getVert i = u hadj : p.toSubgraph.Adj u (p.getVert (i + 1)) hi : (p.getVert i = u ∧ p.getVert (i + 1) = p.getVert (i + 1) ∨ p.getVert i = p.getVert (i + 1) ∧ p.getVert (i + 1) = u) ∧ i < p.length ⊢ 0 ≤ p.length
omega
no goals
6a4c9bd87e294aeb
Ideal.spanNorm_mul
Mathlib/RingTheory/Ideal/Norm/RelNorm.lean
theorem spanNorm_mul (I J : Ideal S) : spanNorm R (I * J) = spanNorm R I * spanNorm R J
case he.h.a R : Type u_1 inst✝¹² : CommRing R inst✝¹¹ : IsDomain R S : Type u_3 inst✝¹⁰ : CommRing S inst✝⁹ : IsDomain S inst✝⁸ : IsIntegrallyClosed R inst✝⁷ : IsIntegrallyClosed S inst✝⁶ : Algebra R S inst✝⁵ : Module.Finite R S inst✝⁴ : NoZeroSMulDivisors R S inst✝³ : Algebra.IsSeparable (FractionRing R) (FractionRing S) inst✝² : IsDedekindDomain R inst✝¹ : IsDedekindDomain S I J : Ideal S inst✝ : Nontrivial R h✝ : Nontrivial S P : Ideal R hP : P.IsMaximal hP0 : ¬P = ⊥ P' : Submonoid S := Algebra.algebraMapSubmonoid S P.primeCompl Rₚ : Type u_1 := Localization.AtPrime P Sₚ : Type u_3 := Localization P' x✝¹ : Algebra Rₚ Sₚ := localizationAlgebra P.primeCompl S this✝⁶ : IsScalarTower R Rₚ Sₚ h : P' ≤ S⁰ this✝⁵ : IsDomain Sₚ this✝⁴ : IsDedekindDomain Sₚ this✝³ : IsPrincipalIdealRing Sₚ this✝² : NoZeroSMulDivisors Rₚ Sₚ this✝¹ : Module.Finite Rₚ Sₚ L : Type u_3 := FractionRing S g : Sₚ →+* L := IsLocalization.map L (RingHom.id S) h algInst✝ : Algebra Sₚ L := g.toAlgebra this✝ : IsScalarTower S Sₚ (FractionRing S) this : IsFractionRing Sₚ (FractionRing S) x✝ : R ⊢ (algebraMap (FractionRing Rₚ) (FractionRing Sₚ)) ((algebraMap Rₚ (FractionRing Rₚ)) ((algebraMap R Rₚ) x✝)) = (algebraMap Sₚ (FractionRing Sₚ)) ((algebraMap S Sₚ) ((algebraMap R S) x✝))
simp only [← IsScalarTower.algebraMap_apply]
case he.h.a R : Type u_1 inst✝¹² : CommRing R inst✝¹¹ : IsDomain R S : Type u_3 inst✝¹⁰ : CommRing S inst✝⁹ : IsDomain S inst✝⁸ : IsIntegrallyClosed R inst✝⁷ : IsIntegrallyClosed S inst✝⁶ : Algebra R S inst✝⁵ : Module.Finite R S inst✝⁴ : NoZeroSMulDivisors R S inst✝³ : Algebra.IsSeparable (FractionRing R) (FractionRing S) inst✝² : IsDedekindDomain R inst✝¹ : IsDedekindDomain S I J : Ideal S inst✝ : Nontrivial R h✝ : Nontrivial S P : Ideal R hP : P.IsMaximal hP0 : ¬P = ⊥ P' : Submonoid S := Algebra.algebraMapSubmonoid S P.primeCompl Rₚ : Type u_1 := Localization.AtPrime P Sₚ : Type u_3 := Localization P' x✝¹ : Algebra Rₚ Sₚ := localizationAlgebra P.primeCompl S this✝⁶ : IsScalarTower R Rₚ Sₚ h : P' ≤ S⁰ this✝⁵ : IsDomain Sₚ this✝⁴ : IsDedekindDomain Sₚ this✝³ : IsPrincipalIdealRing Sₚ this✝² : NoZeroSMulDivisors Rₚ Sₚ this✝¹ : Module.Finite Rₚ Sₚ L : Type u_3 := FractionRing S g : Sₚ →+* L := IsLocalization.map L (RingHom.id S) h algInst✝ : Algebra Sₚ L := g.toAlgebra this✝ : IsScalarTower S Sₚ (FractionRing S) this : IsFractionRing Sₚ (FractionRing S) x✝ : R ⊢ (algebraMap (FractionRing Rₚ) (FractionRing Sₚ)) ((algebraMap R (FractionRing Rₚ)) x✝) = (algebraMap R (FractionRing Sₚ)) x✝
a44add16c102adb0
mellin_convergent_zero_of_isBigO
Mathlib/Analysis/MellinTransform.lean
theorem mellin_convergent_zero_of_isBigO {b : ℝ} {f : ℝ → ℝ} (hfc : AEStronglyMeasurable f <| volume.restrict (Ioi 0)) (hf : f =O[𝓝[>] 0] (· ^ (-b))) {s : ℝ} (hs : b < s) : ∃ c : ℝ, 0 < c ∧ IntegrableOn (fun t : ℝ => t ^ (s - 1) * f t) (Ioc 0 c)
case intro.intro.intro.intro.refine_2.h b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (volume.restrict (Ioi 0)) hf : f =O[𝓝[>] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ left✝ : d > 0 ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ ⊢ ∀ᵐ (a : ℝ) ∂volume.restrict (Ioo 0 ε), ‖a ^ (s - 1) * f a‖ ≤ d * a ^ (s - b - 1)
refine (ae_restrict_iff' measurableSet_Ioo).mpr (Eventually.of_forall fun t ht => ?_)
case intro.intro.intro.intro.refine_2.h b : ℝ f : ℝ → ℝ hfc : AEStronglyMeasurable f (volume.restrict (Ioi 0)) hf : f =O[𝓝[>] 0] fun x => x ^ (-b) s : ℝ hs : b < s d : ℝ left✝ : d > 0 ε : ℝ hε : 0 < ε hε' : ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Ioi 0 → ‖f y‖ ≤ d * ‖y ^ (-b)‖ t : ℝ ht : t ∈ Ioo 0 ε ⊢ ‖t ^ (s - 1) * f t‖ ≤ d * t ^ (s - b - 1)
755d659e5dc10655
ProbabilityTheory.hasDerivAt_integral_pow_mul_exp
Mathlib/Probability/Moments/ComplexMGF.lean
/-- For `z : ℂ` with `z.re ∈ interior (integrableExpSet X μ)`, the derivative of the function `z' ↦ μ[X ^ n * cexp (z' * X)]` at `z` is `μ[X ^ (n + 1) * cexp (z * X)]`. -/ lemma hasDerivAt_integral_pow_mul_exp (hz : z.re ∈ interior (integrableExpSet X μ)) (n : ℕ) : HasDerivAt (fun z ↦ μ[fun ω ↦ X ω ^ n * cexp (z * X ω)]) μ[fun ω ↦ X ω ^ (n + 1) * cexp (z * X ω)] z
case intro.intro.intro.refine_6 Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω z : ℂ hz : z.re ∈ interior (integrableExpSet X μ) n : ℕ hX : AEMeasurable X μ l u : ℝ hlu : z.re ∈ Set.Ioo l u h_subset : Set.Ioo l u ⊆ integrableExpSet X μ t : ℝ := ((z.re - l) ⊓ (u - z.re)) / 2 h_pos : 0 < (z.re - l) ⊓ (u - z.re) ht : 0 < t ω : Ω ε : ℂ hε : ε ∈ Metric.ball z (t / 2) ⊢ HasDerivAt (fun x => cexp (x * ↑(X ω))) (↑(X ω) * cexp (ε * ↑(X ω))) ε
simp_rw [← smul_eq_mul, Complex.exp_eq_exp_ℂ]
case intro.intro.intro.refine_6 Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω z : ℂ hz : z.re ∈ interior (integrableExpSet X μ) n : ℕ hX : AEMeasurable X μ l u : ℝ hlu : z.re ∈ Set.Ioo l u h_subset : Set.Ioo l u ⊆ integrableExpSet X μ t : ℝ := ((z.re - l) ⊓ (u - z.re)) / 2 h_pos : 0 < (z.re - l) ⊓ (u - z.re) ht : 0 < t ω : Ω ε : ℂ hε : ε ∈ Metric.ball z (t / 2) ⊢ HasDerivAt (fun x => NormedSpace.exp ℂ (x • ↑(X ω))) (↑(X ω) • NormedSpace.exp ℂ (ε • ↑(X ω))) ε
39ea945347d2d3e2
RegularExpression.star_rmatch_iff
Mathlib/Computability/RegularExpressions.lean
theorem star_rmatch_iff (P : RegularExpression α) : ∀ x : List α, (star P).rmatch x ↔ ∃ S : List (List α), x = S.flatten ∧ ∀ t ∈ S, t ≠ [] ∧ P.rmatch t := fun x => by have IH := fun t (_h : List.length t < List.length x) => star_rmatch_iff P t clear star_rmatch_iff constructor · rcases x with - | ⟨a, x⟩ · intro _h use []; dsimp; tauto · rw [rmatch, deriv, mul_rmatch_iff] rintro ⟨t, u, hs, ht, hu⟩ have hwf : u.length < (List.cons a x).length
case mp.nil α : Type u_1 inst✝ : DecidableEq α P : RegularExpression α IH : ∀ (t : List α), t.length < [].length → (P.star.rmatch t = true ↔ ∃ S, t = S.flatten ∧ ∀ t ∈ S, t ≠ [] ∧ P.rmatch t = true) ⊢ P.star.rmatch [] = true → ∃ S, [] = S.flatten ∧ ∀ t ∈ S, t ≠ [] ∧ P.rmatch t = true
intro _h
case mp.nil α : Type u_1 inst✝ : DecidableEq α P : RegularExpression α IH : ∀ (t : List α), t.length < [].length → (P.star.rmatch t = true ↔ ∃ S, t = S.flatten ∧ ∀ t ∈ S, t ≠ [] ∧ P.rmatch t = true) _h : P.star.rmatch [] = true ⊢ ∃ S, [] = S.flatten ∧ ∀ t ∈ S, t ≠ [] ∧ P.rmatch t = true
8215ce2ddbd6bd2a
one_add_mul_self_lt_rpow_one_add
Mathlib/Analysis/Convex/SpecificFunctions/Basic.lean
theorem one_add_mul_self_lt_rpow_one_add {s : ℝ} (hs : -1 ≤ s) (hs' : s ≠ 0) {p : ℝ} (hp : 1 < p) : 1 + p * s < (1 + s) ^ p
case inr.inr.a.inr s : ℝ hs✝ : -1 ≤ s hs'✝ : s ≠ 0 p : ℝ hp : 1 < p hp' : 0 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 hs' : s > 0 ⊢ log (1 + p * s) < log (1 + s) * p
rw [← div_lt_iff₀ hp', ← div_lt_div_iff_of_pos_right hs']
case inr.inr.a.inr s : ℝ hs✝ : -1 ≤ s hs'✝ : s ≠ 0 p : ℝ hp : 1 < p hp' : 0 < p hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 hs' : s > 0 ⊢ log (1 + p * s) / p / s < log (1 + s) / s
05080339bfb00ac5
MeasurableEmbedding.comap_restrict
Mathlib/MeasureTheory/Measure/Restrict.lean
lemma comap_restrict (μ : Measure β) (s : Set β) : (μ.restrict s).comap f = (μ.comap f).restrict (f ⁻¹' s)
α : Type u_2 β : Type u_3 m0 : MeasurableSpace α m1 : MeasurableSpace β f : α → β hf : MeasurableEmbedding f μ : Measure β s : Set β ⊢ Measure.comap f (μ.restrict s) = (Measure.comap f μ).restrict (f ⁻¹' s)
ext t ht
case h α : Type u_2 β : Type u_3 m0 : MeasurableSpace α m1 : MeasurableSpace β f : α → β hf : MeasurableEmbedding f μ : Measure β s : Set β t : Set α ht : MeasurableSet t ⊢ (Measure.comap f (μ.restrict s)) t = ((Measure.comap f μ).restrict (f ⁻¹' s)) t
6c46b887e8c798e1
List.drop_zipWith
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Zip.lean
theorem drop_zipWith : (zipWith f l l').drop n = zipWith f (l.drop n) (l'.drop n)
case cons.cons.succ α✝² : Type u_1 α✝¹ : Type u_2 α✝ : Type u_3 f : α✝² → α✝¹ → α✝ hd : α✝² tl : List α✝² hl : ∀ {l' : List α✝¹} {n : Nat}, drop n (zipWith f tl l') = zipWith f (drop n tl) (drop n l') head✝ : α✝¹ tail✝ : List α✝¹ n✝ : Nat ⊢ drop (n✝ + 1) (zipWith f (hd :: tl) (head✝ :: tail✝)) = zipWith f (drop (n✝ + 1) (hd :: tl)) (drop (n✝ + 1) (head✝ :: tail✝))
simp [hl]
no goals
85fad810981714d3
Std.Sat.CNF.relabel_congr
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/CNF/Relabel.lean
theorem relabel_congr {f : CNF α} {r1 r2 : α → β} (hw : ∀ v, Mem v f → r1 v = r2 v) : relabel r1 f = relabel r2 f
α : Type u_1 β : Type u_2 f : CNF α r1 r2 : α → β hw : ∀ (v : α), Mem v f → r1 v = r2 v ⊢ relabel r1 f = relabel r2 f
dsimp only [relabel]
α : Type u_1 β : Type u_2 f : CNF α r1 r2 : α → β hw : ∀ (v : α), Mem v f → r1 v = r2 v ⊢ List.map (Clause.relabel r1) f = List.map (Clause.relabel r2) f
9df4d829e86fbf4e
Polynomial.Monic.eq_X_pow_iff_natDegree_le_natTrailingDegree
Mathlib/Algebra/Polynomial/Degree/TrailingDegree.lean
lemma eq_X_pow_iff_natDegree_le_natTrailingDegree (h₁ : p.Monic) : p = X ^ p.natDegree ↔ p.natDegree ≤ p.natTrailingDegree
case refine_2.a.inl R : Type u inst✝ : Semiring R p : R[X] h₁ : p.Monic h : p.natDegree ≤ p.natTrailingDegree n : ℕ hn : n < p.natDegree ⊢ p.coeff n = if n = p.natDegree then 1 else 0
rw [if_neg hn.ne, coeff_eq_zero_of_lt_natTrailingDegree (hn.trans_le h)]
no goals
d8897cf4497f59d4
Fin.findSome?_succ_of_isNone
Mathlib/.lake/packages/batteries/Batteries/Data/Fin/Lemmas.lean
theorem findSome?_succ_of_isNone {f : Fin (n+1) → Option α} (h : (f 0).isNone) : findSome? f = findSome? fun i => f i.succ
n : Nat α : Type u_1 f : Fin (n + 1) → Option α h : (f 0).isNone = true ⊢ findSome? f = findSome? fun i => f i.succ
simp_all [findSome?_succ_of_none]
no goals
aef985eba48555fe
MeasureTheory.integrableOn_Ioi_deriv_of_nonneg
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
theorem integrableOn_Ioi_deriv_of_nonneg (hcont : ContinuousWithinAt g (Ici a) a) (hderiv : ∀ x ∈ Ioi a, HasDerivAt g (g' x) x) (g'pos : ∀ x ∈ Ioi a, 0 ≤ g' x) (hg : Tendsto g atTop (𝓝 l)) : IntegrableOn g' (Ioi a)
g g' : ℝ → ℝ a l : ℝ hcont✝ : ContinuousWithinAt g (Ici a) a hderiv : ∀ x ∈ Ioi a, HasDerivAt g (g' x) x g'pos : ∀ x ∈ Ioi a, 0 ≤ g' x hg : Tendsto g atTop (𝓝 l) hcont : ContinuousOn g (Ici a) x : ℝ hx : x ∈ Ioi a h'x : a ≤ id x y : ℝ hy : y ∈ Ioc a (id x) ⊢ g' y = ‖g' y‖
dsimp
g g' : ℝ → ℝ a l : ℝ hcont✝ : ContinuousWithinAt g (Ici a) a hderiv : ∀ x ∈ Ioi a, HasDerivAt g (g' x) x g'pos : ∀ x ∈ Ioi a, 0 ≤ g' x hg : Tendsto g atTop (𝓝 l) hcont : ContinuousOn g (Ici a) x : ℝ hx : x ∈ Ioi a h'x : a ≤ id x y : ℝ hy : y ∈ Ioc a (id x) ⊢ g' y = |g' y|
1f10c323da5db2cd
MeasureTheory.LevyProkhorov.continuous_equiv_symm_probabilityMeasure
Mathlib/MeasureTheory/Measure/LevyProkhorovMetric.lean
lemma LevyProkhorov.continuous_equiv_symm_probabilityMeasure : Continuous (LevyProkhorov.equiv (α := ProbabilityMeasure Ω)).symm
Ω : Type u_1 inst✝³ : PseudoMetricSpace Ω inst✝² : MeasurableSpace Ω inst✝¹ : OpensMeasurableSpace Ω inst✝ : SeparableSpace Ω P : ProbabilityMeasure Ω ε : ℝ ε_pos : ε > 0 third_ε_pos : 0 < ε / 3 ⊢ ∀ᶠ (x : ProbabilityMeasure Ω) in 𝓝 P, dist ((equiv (ProbabilityMeasure Ω)).symm x) ((equiv (ProbabilityMeasure Ω)).symm P) < ε
have third_ε_pos' : 0 < ENNReal.ofReal (ε / 3) := ofReal_pos.mpr third_ε_pos
Ω : Type u_1 inst✝³ : PseudoMetricSpace Ω inst✝² : MeasurableSpace Ω inst✝¹ : OpensMeasurableSpace Ω inst✝ : SeparableSpace Ω P : ProbabilityMeasure Ω ε : ℝ ε_pos : ε > 0 third_ε_pos : 0 < ε / 3 third_ε_pos' : 0 < ENNReal.ofReal (ε / 3) ⊢ ∀ᶠ (x : ProbabilityMeasure Ω) in 𝓝 P, dist ((equiv (ProbabilityMeasure Ω)).symm x) ((equiv (ProbabilityMeasure Ω)).symm P) < ε
1196bd5a9632bf03
Polynomial.rootMultiplicity_X_sub_C
Mathlib/Algebra/Polynomial/RingDivision.lean
theorem rootMultiplicity_X_sub_C [Nontrivial R] [DecidableEq R] {x y : R} : rootMultiplicity x (X - C y) = if x = y then 1 else 0
case neg R : Type u inst✝² : CommRing R inst✝¹ : Nontrivial R inst✝ : DecidableEq R x y : R hxy : ¬x = y ⊢ rootMultiplicity x (X - C y) = 0
exact rootMultiplicity_eq_zero (mt root_X_sub_C.mp (Ne.symm hxy))
no goals
dbf0f6a53bd5c674
IsCyclotomicExtension.Rat.Three.Units.mem
Mathlib/NumberTheory/Cyclotomic/Three.lean
theorem Units.mem [NumberField K] [IsCyclotomicExtension {3} ℚ K] : u ∈ [1, -1, η, -η, η ^ 2, -η ^ 2]
K : Type u_1 inst✝² : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 u : (𝓞 K)ˣ inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K hrank : rank K = 0 x : ↥(torsion K) e : Fin (rank K) → ℤ hxu : u = ↑(x, e).1 * ∏ i : Fin (rank K), fundSystem K i ^ (x, e).2 i ⊢ u = ↑x
rw [← mul_one x.1, hxu]
K : Type u_1 inst✝² : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 u : (𝓞 K)ˣ inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K hrank : rank K = 0 x : ↥(torsion K) e : Fin (rank K) → ℤ hxu : u = ↑(x, e).1 * ∏ i : Fin (rank K), fundSystem K i ^ (x, e).2 i ⊢ ↑(x, e).1 * ∏ i : Fin (rank K), fundSystem K i ^ (x, e).2 i = ↑x * 1
4597273329d964a3
MonotoneOn.csInf_eq_of_subset_of_forall_exists_le
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
lemma MonotoneOn.csInf_eq_of_subset_of_forall_exists_le [Preorder α] [ConditionallyCompleteLattice β] {f : α → β} {s t : Set α} (ht : BddBelow (f '' t)) (hf : MonotoneOn f t) (hst : s ⊆ t) (h : ∀ y ∈ t, ∃ x ∈ s, x ≤ y) : sInf (f '' s) = sInf (f '' t)
α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : ConditionallyCompleteLattice β f : α → β s t : Set α ht : BddBelow (f '' t) hf : MonotoneOn f t hst : s ⊆ t h : ∀ y ∈ t, ∃ x ∈ s, x ≤ y hs : s.Nonempty ⊢ sInf (f '' s) ≤ sInf (f '' t)
refine le_csInf ((hs.mono hst).image f) ?_
α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : ConditionallyCompleteLattice β f : α → β s t : Set α ht : BddBelow (f '' t) hf : MonotoneOn f t hst : s ⊆ t h : ∀ y ∈ t, ∃ x ∈ s, x ≤ y hs : s.Nonempty ⊢ ∀ b ∈ f '' t, sInf (f '' s) ≤ b
bebfbe43136d45af
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.rupAdd_sound
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
theorem rupAdd_sound {n : Nat} (f : DefaultFormula n) (c : DefaultClause n) (rupHints : Array Nat) (f' : DefaultFormula n) (f_readyForRupAdd : ReadyForRupAdd f) (rupAddSuccess : performRupAdd f c rupHints = (f', true)) : Liff (PosFin n) f f'
n : Nat f : DefaultFormula n c : DefaultClause n rupHints : Array Nat f' : DefaultFormula n f_readyForRupAdd : f.ReadyForRupAdd f'_def : f' = f.insert c rupAddSuccess : (if (f.insertRupUnits c.negate).snd = true then ((f.insertRupUnits c.negate).fst.clearRupUnits.insert c, true) else if ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).2.2.snd = true then (((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, false) else if ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).2.2.fst = false then (((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, false) else ({ clauses := ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).1.clauses, rupUnits := ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).1.rupUnits, ratUnits := ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).1.ratUnits, assignments := restoreAssignments ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).1.assignments ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).2.fst }.clearRupUnits.insert c, true)) = (f', true) ⊢ Liff (PosFin n) f f'
split at rupAddSuccess
case isTrue n : Nat f : DefaultFormula n c : DefaultClause n rupHints : Array Nat f' : DefaultFormula n f_readyForRupAdd : f.ReadyForRupAdd f'_def : f' = f.insert c h✝ : (f.insertRupUnits c.negate).snd = true rupAddSuccess : ((f.insertRupUnits c.negate).fst.clearRupUnits.insert c, true) = (f', true) ⊢ Liff (PosFin n) f f' case isFalse n : Nat f : DefaultFormula n c : DefaultClause n rupHints : Array Nat f' : DefaultFormula n f_readyForRupAdd : f.ReadyForRupAdd f'_def : f' = f.insert c h✝ : ¬(f.insertRupUnits c.negate).snd = true rupAddSuccess : (if ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).2.2.snd = true then (((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, false) else if ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).2.2.fst = false then (((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, false) else ({ clauses := ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).1.clauses, rupUnits := ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).1.rupUnits, ratUnits := ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).1.ratUnits, assignments := restoreAssignments ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).1.assignments ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).2.fst }.clearRupUnits.insert c, true)) = (f', true) ⊢ Liff (PosFin n) f f'
54bbe5dd0a90a45f
Asymptotics.IsBigO.continuousMultilinearMap_apply_eq_zero
Mathlib/Analysis/Analytic/Uniqueness.lean
theorem Asymptotics.IsBigO.continuousMultilinearMap_apply_eq_zero {n : ℕ} {p : E[×n]→L[𝕜] F} (h : (fun y => p fun _ => y) =O[𝓝 0] fun y => ‖y‖ ^ (n + 1)) (y : E) : (p fun _ => y) = 0
case intro.intro.intro.intro.intro.intro.intro.zero 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F y : E c : ℝ c_pos : c > 0 t : Set E t_open : IsOpen t δ : ℝ δ_pos : δ > 0 δε : Metric.ball 0 δ ⊆ t p : ContinuousMultilinearMap 𝕜 (fun i => E) F ht : ∀ y ∈ t, ‖p fun x => y‖ ≤ c * ‖‖y‖ ^ (0 + 1)‖ ⊢ (p fun x => y) = 0
exact norm_eq_zero.mp (by simpa only [fin0_apply_norm, norm_eq_zero, norm_zero, zero_add, pow_one, mul_zero, norm_le_zero_iff] using ht 0 (δε (Metric.mem_ball_self δ_pos)))
no goals
a2f8ef35a556aa68
LittleWedderburn.InductionHyp.center_eq_top
Mathlib/RingTheory/LittleWedderburn.lean
theorem center_eq_top [Finite D] (hD : InductionHyp D) : Subring.center D = ⊤
case intro.h.mk D : Type u_1 inst✝¹ : DivisionRing D inst✝ : Finite D hD : LittleWedderburn.InductionHyp D val✝ : Fintype D Z : Subring D := Subring.center D hZ : Z ≠ ⊤ this : Field ↥Z := hD.field ⋯ q : ℕ := card ↥Z card_Z : q = card ↥Z hq : 1 < q n : ℕ := finrank (↥Z) D card_D : card D = q ^ n h1qn : 1 ≤ q ^ n Φₙ : ℤ[X] := cyclotomic n ℤ key : ↑q - 1 + ↑(∑ x ∈ (ConjClasses.noncenter Dˣ).toFinset, x.carrier.toFinset.card) = ↑q ^ n - 1 i✝ : ConjClasses Dˣ x : Dˣ hx : ConjClasses.mk x ∈ ConjClasses.noncenter Dˣ ⊢ eval (↑q) Φₙ ∣ ↑(ConjClasses.mk x).carrier.toFinset.card
set Zx := Subring.centralizer ({↑x} : Set D)
case intro.h.mk D : Type u_1 inst✝¹ : DivisionRing D inst✝ : Finite D hD : LittleWedderburn.InductionHyp D val✝ : Fintype D Z : Subring D := Subring.center D hZ : Z ≠ ⊤ this : Field ↥Z := hD.field ⋯ q : ℕ := card ↥Z card_Z : q = card ↥Z hq : 1 < q n : ℕ := finrank (↥Z) D card_D : card D = q ^ n h1qn : 1 ≤ q ^ n Φₙ : ℤ[X] := cyclotomic n ℤ key : ↑q - 1 + ↑(∑ x ∈ (ConjClasses.noncenter Dˣ).toFinset, x.carrier.toFinset.card) = ↑q ^ n - 1 i✝ : ConjClasses Dˣ x : Dˣ hx : ConjClasses.mk x ∈ ConjClasses.noncenter Dˣ Zx : Subring D := Subring.centralizer {↑x} ⊢ eval (↑q) Φₙ ∣ ↑(ConjClasses.mk x).carrier.toFinset.card
abd28bec54f62bc4
Set.Infinite.biUnion
Mathlib/Data/Set/Finite/Lattice.lean
theorem Infinite.biUnion {ι : Type*} {s : ι → Set α} {a : Set ι} (ha : a.Infinite) (hs : a.InjOn s) : (⋃ i ∈ a, s i).Infinite
α : Type u ι : Type u_1 s : ι → Set α a : Set ι ha : a.Infinite hs : InjOn s a x✝² : Infinite ↑a x✝¹ x✝ : ↑a i : ι hi : i ∈ a j : ι hj : j ∈ a hij : s ↑⟨i, hi⟩ = s ↑⟨j, hj⟩ ⊢ ⟨i, hi⟩ = ⟨j, hj⟩
simp [hs hi hj hij]
no goals
383aa77bfb6d978a
Array.attach_push
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Attach.lean
theorem attach_push {a : α} {l : Array α} : (l.push a).attach = (l.attach.map (fun ⟨x, h⟩ => ⟨x, mem_push_of_mem a h⟩)).push ⟨a, by simp⟩
α : Type ?u.10502 a : α l : Array α ⊢ a ∈ l.push a
simp
no goals
e0c7040d38326641
MeasureTheory.lintegral_iSup_directed
Mathlib/MeasureTheory/Integral/Lebesgue.lean
theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ b, AEMeasurable (f b) μ) (h_directed : Directed (· ≤ ·) f) : ∫⁻ a, ⨆ b, f b a ∂μ = ⨆ b, ∫⁻ a, f b a ∂μ
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x1 x2 => x1 ≤ x2) f ⊢ ∫⁻ (a : α), ⨆ b, f b a ∂μ = ⨆ b, ∫⁻ (a : α), f b a ∂μ
simp_rw [← iSup_apply]
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (b : β), AEMeasurable (f b) μ h_directed : Directed (fun x1 x2 => x1 ≤ x2) f ⊢ ∫⁻ (a : α), (⨆ i, f i) a ∂μ = ⨆ b, ∫⁻ (a : α), f b a ∂μ
be3dd78af53e2dbc
Finset.mem_sym_iff
Mathlib/Data/Finset/Sym.lean
theorem mem_sym_iff {m : Sym α n} : m ∈ s.sym n ↔ ∀ a ∈ m, a ∈ s
case succ.refine_1.intro.intro α : Type u_1 s : Finset α inst✝ : DecidableEq α n✝ n : ℕ ih : ∀ {m : Sym α n}, m ∈ s.sym n ↔ ∀ a ∈ m, a ∈ s m : Sym α (n + 1) a : α ha : a ∈ s he : ∃ a_1 ∈ s.sym n, a ::ₛ a_1 = m b : α hb : b ∈ m ⊢ b ∈ s
obtain ⟨m, he, rfl⟩ := he
case succ.refine_1.intro.intro.intro.intro α : Type u_1 s : Finset α inst✝ : DecidableEq α n✝ n : ℕ ih : ∀ {m : Sym α n}, m ∈ s.sym n ↔ ∀ a ∈ m, a ∈ s a : α ha : a ∈ s b : α m : Sym α n he : m ∈ s.sym n hb : b ∈ a ::ₛ m ⊢ b ∈ s
2df449e77a9ba950
Nat.Prime.emultiplicity_factorial_mul_succ
Mathlib/Data/Nat/Multiplicity.lean
theorem emultiplicity_factorial_mul_succ {n p : ℕ} (hp : p.Prime) : emultiplicity p (p * (n + 1))! = emultiplicity p (p * n)! + emultiplicity p (n + 1) + 1
n p : ℕ hp : Prime p hp' : _root_.Prime p h0 : 2 ≤ p h1 : 1 ≤ p * n + 1 h2 : p * n + 1 ≤ p * (n + 1) ⊢ p * n + 1 ≤ p * (n + 1) + 1
omega
no goals
097a3d59a78795b9
SimpleGraph.Walk.toSubgraph_reverse
Mathlib/Combinatorics/SimpleGraph/Connectivity/Subgraph.lean
theorem toSubgraph_reverse (p : G.Walk u v) : p.reverse.toSubgraph = p.toSubgraph
case cons V : Type u G : SimpleGraph V u v u✝ v✝ w✝ : V h✝ : G.Adj u✝ v✝ p✝ : G.Walk v✝ w✝ p_ih✝ : p✝.reverse.toSubgraph = p✝.toSubgraph ⊢ G.subgraphOfAdj h✝ ⊔ G.singletonSubgraph u✝ ⊔ p✝.toSubgraph = G.subgraphOfAdj h✝ ⊔ p✝.toSubgraph
congr
case cons.e_a V : Type u G : SimpleGraph V u v u✝ v✝ w✝ : V h✝ : G.Adj u✝ v✝ p✝ : G.Walk v✝ w✝ p_ih✝ : p✝.reverse.toSubgraph = p✝.toSubgraph ⊢ G.subgraphOfAdj h✝ ⊔ G.singletonSubgraph u✝ = G.subgraphOfAdj h✝
1cddc7d273048f17
taylor_mean_remainder_bound
Mathlib/Analysis/Calculus/Taylor.lean
theorem taylor_mean_remainder_bound {f : ℝ → E} {a b C x : ℝ} {n : ℕ} (hab : a ≤ b) (hf : ContDiffOn ℝ (n + 1) f (Icc a b)) (hx : x ∈ Icc a b) (hC : ∀ y ∈ Icc a b, ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C) : ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ C * (x - a) ^ (n + 1) / n !
case intro E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : ℝ → E a b C x : ℝ n : ℕ hab : a ≤ b hf : ContDiffOn ℝ (↑n + 1) f (Icc a b) hx : x ∈ Icc a b hC : ∀ y ∈ Icc a b, ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C h : a < b hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b) y : ℝ hay : a ≤ y hyx : y < x ⊢ ‖((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C
rw [norm_smul, Real.norm_eq_abs]
case intro E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : ℝ → E a b C x : ℝ n : ℕ hab : a ≤ b hf : ContDiffOn ℝ (↑n + 1) f (Icc a b) hx : x ∈ Icc a b hC : ∀ y ∈ Icc a b, ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C h : a < b hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b) y : ℝ hay : a ≤ y hyx : y < x ⊢ |(↑n !)⁻¹ * (x - y) ^ n| * ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C
b246fe1248089a18
Polynomial.Chebyshev.algebraMap_eval_U
Mathlib/RingTheory/Polynomial/Chebyshev.lean
theorem algebraMap_eval_U [Algebra R R'] (x : R) (n : ℤ) : algebraMap R R' ((U R n).eval x) = (U R' n).eval (algebraMap R R' x)
R : Type u_1 R' : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing R' inst✝ : Algebra R R' x : R n : ℤ ⊢ (algebraMap R R') (eval x (U R n)) = eval ((algebraMap R R') x) (U R' n)
rw [← aeval_algebraMap_apply_eq_algebraMap_eval, aeval_U]
no goals
a95f0580a7da75cf
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.safe_insert_of_performRupCheck_insertRat
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RatAddSound.lean
theorem safe_insert_of_performRupCheck_insertRat {n : Nat} (f : DefaultFormula n) (hf : f.ratUnits = #[] ∧ AssignmentsInvariant f) (c : DefaultClause n) (rupHints : Array Nat) : (performRupCheck (insertRatUnits f (negate c)).1 rupHints).2.2.1 = true → Limplies (PosFin n) f (f.insert c)
case inl n : Nat f : DefaultFormula n hf : f.ratUnits = #[] ∧ f.AssignmentsInvariant c : DefaultClause n rupHints : Array Nat performRupCheck_success : (Array.foldl (confirmRupHint (f.insertRatUnits c.negate).1.clauses) ((f.insertRatUnits c.negate).1.assignments, [], false, false) rupHints).2.2.fst = true p : PosFin n → Bool pf : p ⊨ f c' : DefaultClause n c'_eq_c : c' = c ⊢ p ⊨ c
exact sat_of_confirmRupHint_of_insertRat_fold f hf c rupHints p pf performRupCheck_success
no goals
7b923cb96f92e5d9
CStarModule.norm_inner_le
Mathlib/Analysis/CStarAlgebra/Module/Defs.lean
/-- The Cauchy-Schwarz inequality for Hilbert C⋆-modules. -/ lemma norm_inner_le {x y : E} : ‖⟪x, y⟫‖ ≤ ‖x‖ * ‖y‖
A : Type u_1 E : Type u_2 inst✝⁷ : NonUnitalCStarAlgebra A inst✝⁶ : PartialOrder A inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℂ E inst✝³ : SMul Aᵐᵒᵖ E inst✝² : Norm E inst✝¹ : CStarModule A E inst✝ : StarOrderedRing A x y : E this : ‖⟪x, y⟫_A‖ ^ 2 ≤ (‖x‖ * ‖y‖) ^ 2 ⊢ ‖⟪x, y⟫_A‖ ≤ ‖x‖ * ‖y‖
refine (pow_le_pow_iff_left₀ (norm_nonneg ⟪x, y⟫_A) ?_ (by norm_num)).mp this
A : Type u_1 E : Type u_2 inst✝⁷ : NonUnitalCStarAlgebra A inst✝⁶ : PartialOrder A inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℂ E inst✝³ : SMul Aᵐᵒᵖ E inst✝² : Norm E inst✝¹ : CStarModule A E inst✝ : StarOrderedRing A x y : E this : ‖⟪x, y⟫_A‖ ^ 2 ≤ (‖x‖ * ‖y‖) ^ 2 ⊢ 0 ≤ ‖x‖ * ‖y‖
c2dabe140e3c60d0
ProbabilityTheory.MemLp.uniformIntegrable_of_identDistrib_aux
Mathlib/Probability/IdentDistrib.lean
theorem MemLp.uniformIntegrable_of_identDistrib_aux {ι : Type*} {f : ι → α → E} {j : ι} {p : ℝ≥0∞} (hp : 1 ≤ p) (hp' : p ≠ ∞) (hℒp : MemLp (f j) p μ) (hfmeas : ∀ i, StronglyMeasurable (f i)) (hf : ∀ i, IdentDistrib (f i) (f j) μ μ) : UniformIntegrable f p μ
case pos.intro.intro α : Type u_1 inst✝⁴ : MeasurableSpace α E : Type u_5 inst✝³ : MeasurableSpace E inst✝² : NormedAddCommGroup E inst✝¹ : BorelSpace E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : MemLp (f j) p μ hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) μ μ ε : ℝ hε : 0 < ε hι : Nonempty ι C : ℝ hC₁ : 0 < C hC₂ : eLpNorm ({x | C ≤ ↑‖f j x‖₊}.indicator (f j)) p μ ≤ ENNReal.ofReal ε i : ι this : {x | ⟨C, ⋯⟩ ≤ ‖f i x‖₊} = {x | C ≤ ‖f i x‖} ⊢ eLpNorm (fun x => ‖{x | C ≤ ‖f i x‖}.indicator (f i) x‖) p μ = eLpNorm (fun x => ‖{x | C ≤ ↑‖f j x‖₊}.indicator (f j) x‖) p μ
simp_rw [norm_indicator_eq_indicator_norm, coe_nnnorm]
case pos.intro.intro α : Type u_1 inst✝⁴ : MeasurableSpace α E : Type u_5 inst✝³ : MeasurableSpace E inst✝² : NormedAddCommGroup E inst✝¹ : BorelSpace E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : MemLp (f j) p μ hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) μ μ ε : ℝ hε : 0 < ε hι : Nonempty ι C : ℝ hC₁ : 0 < C hC₂ : eLpNorm ({x | C ≤ ↑‖f j x‖₊}.indicator (f j)) p μ ≤ ENNReal.ofReal ε i : ι this : {x | ⟨C, ⋯⟩ ≤ ‖f i x‖₊} = {x | C ≤ ‖f i x‖} ⊢ eLpNorm (fun x => {x | C ≤ ‖f i x‖}.indicator (fun a => ‖f i a‖) x) p μ = eLpNorm (fun x => {x | C ≤ ‖f j x‖}.indicator (fun a => ‖f j a‖) x) p μ
e0093e34b057b36a
PiTensorProduct.norm_eval_le_injectiveSeminorm
Mathlib/Analysis/NormedSpace/PiTensorProduct/InjectiveSeminorm.lean
theorem norm_eval_le_injectiveSeminorm (f : ContinuousMultilinearMap 𝕜 E F) (x : ⨂[𝕜] i, E i) : ‖lift f.toMultilinearMap x‖ ≤ ‖f‖ * injectiveSeminorm x
ι : Type uι inst✝⁵ : Fintype ι 𝕜 : Type u𝕜 inst✝⁴ : NontriviallyNormedField 𝕜 E : ι → Type uE inst✝³ : (i : ι) → SeminormedAddCommGroup (E i) inst✝² : (i : ι) → NormedSpace 𝕜 (E i) F : Type uF inst✝¹ : SeminormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : ContinuousMultilinearMap 𝕜 E F x : ⨂[𝕜] (i : ι), E i G : Type (max (max (max uE u𝕜) uι) (max uE uι) u𝕜) := (⨂[𝕜] (i : ι), E i) ⧸ LinearMap.ker (lift f.toMultilinearMap) G' : Submodule 𝕜 F := LinearMap.range (lift f.toMultilinearMap) e : ((⨂[𝕜] (i : ι), E i) ⧸ LinearMap.ker (lift f.toMultilinearMap)) ≃ₗ[𝕜] ↥(LinearMap.range (lift f.toMultilinearMap)) := (lift f.toMultilinearMap).quotKerEquivRange this✝ : SeminormedAddCommGroup G := SeminormedAddCommGroup.induced G (↥G') e this : NormedSpace 𝕜 G := NormedSpace.induced 𝕜 G (↥G') e f'₀ : MultilinearMap 𝕜 E ((⨂[𝕜] (i : ι), E i) ⧸ LinearMap.ker (lift f.toMultilinearMap)) := lift.symm (↑e.symm ∘ₗ (lift f.toMultilinearMap).rangeRestrict) hf'₀ : ∀ (x : (i : ι) → E i), ‖f'₀ x‖ ≤ ‖f‖ * ∏ i : ι, ‖x i‖ f' : ContinuousMultilinearMap 𝕜 E ((⨂[𝕜] (i : ι), E i) ⧸ LinearMap.ker (lift f.toMultilinearMap)) := f'₀.mkContinuous ‖f‖ hf'₀ hnorm : ‖f'‖ ≤ ‖f‖ heq : ↑(e ((lift f'.toMultilinearMap) x)) = (lift f.toMultilinearMap) x ⊢ ‖(lift f'.toMultilinearMap) x‖ ≤ ‖f'‖ * injectiveSeminorm x
have hle : Seminorm.comp (normSeminorm 𝕜 (ContinuousMultilinearMap 𝕜 E G →L[𝕜] G)) (toDualContinuousMultilinearMap G (𝕜 := 𝕜) (E := E)) ≤ injectiveSeminorm := by simp only [injectiveSeminorm] refine le_csSup dualSeminorms_bounded ?_ rw [Set.mem_setOf] existsi G, inferInstance, inferInstance rfl
ι : Type uι inst✝⁵ : Fintype ι 𝕜 : Type u𝕜 inst✝⁴ : NontriviallyNormedField 𝕜 E : ι → Type uE inst✝³ : (i : ι) → SeminormedAddCommGroup (E i) inst✝² : (i : ι) → NormedSpace 𝕜 (E i) F : Type uF inst✝¹ : SeminormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : ContinuousMultilinearMap 𝕜 E F x : ⨂[𝕜] (i : ι), E i G : Type (max (max (max uE u𝕜) uι) (max uE uι) u𝕜) := (⨂[𝕜] (i : ι), E i) ⧸ LinearMap.ker (lift f.toMultilinearMap) G' : Submodule 𝕜 F := LinearMap.range (lift f.toMultilinearMap) e : ((⨂[𝕜] (i : ι), E i) ⧸ LinearMap.ker (lift f.toMultilinearMap)) ≃ₗ[𝕜] ↥(LinearMap.range (lift f.toMultilinearMap)) := (lift f.toMultilinearMap).quotKerEquivRange this✝ : SeminormedAddCommGroup G := SeminormedAddCommGroup.induced G (↥G') e this : NormedSpace 𝕜 G := NormedSpace.induced 𝕜 G (↥G') e f'₀ : MultilinearMap 𝕜 E ((⨂[𝕜] (i : ι), E i) ⧸ LinearMap.ker (lift f.toMultilinearMap)) := lift.symm (↑e.symm ∘ₗ (lift f.toMultilinearMap).rangeRestrict) hf'₀ : ∀ (x : (i : ι) → E i), ‖f'₀ x‖ ≤ ‖f‖ * ∏ i : ι, ‖x i‖ f' : ContinuousMultilinearMap 𝕜 E ((⨂[𝕜] (i : ι), E i) ⧸ LinearMap.ker (lift f.toMultilinearMap)) := f'₀.mkContinuous ‖f‖ hf'₀ hnorm : ‖f'‖ ≤ ‖f‖ heq : ↑(e ((lift f'.toMultilinearMap) x)) = (lift f.toMultilinearMap) x hle : (normSeminorm 𝕜 (ContinuousMultilinearMap 𝕜 E G →L[𝕜] G)).comp (toDualContinuousMultilinearMap G) ≤ injectiveSeminorm ⊢ ‖(lift f'.toMultilinearMap) x‖ ≤ ‖f'‖ * injectiveSeminorm x
83d83ebebe9757c9
Matrix.blockDiagonal'_add
Mathlib/Data/Matrix/Block.lean
theorem blockDiagonal'_add [AddZeroClass α] (M N : ∀ i, Matrix (m' i) (n' i) α) : blockDiagonal' (M + N) = blockDiagonal' M + blockDiagonal' N
case a o : Type u_4 m' : o → Type u_7 n' : o → Type u_8 α : Type u_12 inst✝¹ : DecidableEq o inst✝ : AddZeroClass α M N : (i : o) → Matrix (m' i) (n' i) α i✝ : (i : o) × m' i j✝ : (i : o) × n' i ⊢ (if h : i✝.fst = j✝.fst then M i✝.fst i✝.snd (cast ⋯ j✝.snd) + N i✝.fst i✝.snd (cast ⋯ j✝.snd) else 0) = (if h : i✝.fst = j✝.fst then M i✝.fst i✝.snd (cast ⋯ j✝.snd) else 0) + if h : i✝.fst = j✝.fst then N i✝.fst i✝.snd (cast ⋯ j✝.snd) else 0
split_ifs <;> simp
no goals
d0a4d0c8e1c2828c
InnerProductSpace.Core.inner_mul_inner_self_le
Mathlib/Analysis/InnerProductSpace/Defs.lean
theorem inner_mul_inner_self_le (x y : F) : ‖⟪x, y⟫‖ * ‖⟪y, x⟫‖ ≤ re ⟪x, x⟫ * re ⟪y, y⟫
case h.e'_4.h.e'_5.h.e'_6 𝕜 : Type u_1 F : Type u_3 inst✝² : RCLike 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : PreInnerProductSpace.Core 𝕜 F x y : F t : ℝ hzero : ¬⟪x, y⟫_𝕜 = 0 hzero' : ‖⟪x, y⟫_𝕜‖ ≠ 0 ⊢ 2 * ‖⟪x, y⟫_𝕜‖ * t * ‖⟪x, y⟫_𝕜‖ = 2 * ‖⟪x, y⟫_𝕜‖ ^ 2 * t
ring
no goals
3490ee6e9e583d18
Metric.diam_union'
Mathlib/Topology/MetricSpace/Bounded.lean
theorem diam_union' {t : Set α} (h : (s ∩ t).Nonempty) : diam (s ∪ t) ≤ diam s + diam t
α : Type u inst✝ : PseudoMetricSpace α s t : Set α h : (s ∩ t).Nonempty ⊢ diam (s ∪ t) ≤ diam s + diam t
rcases h with ⟨x, ⟨xs, xt⟩⟩
case intro.intro α : Type u inst✝ : PseudoMetricSpace α s t : Set α x : α xs : x ∈ s xt : x ∈ t ⊢ diam (s ∪ t) ≤ diam s + diam t
70dfeb046e69a232
SimpleGraph.Walk.exists_length_eq_zero_iff
Mathlib/Combinatorics/SimpleGraph/Walk.lean
theorem exists_length_eq_zero_iff {u v : V} : (∃ p : G.Walk u v, p.length = 0) ↔ u = v
case mp V : Type u G : SimpleGraph V u v : V ⊢ (∃ p, p.length = 0) → u = v
rintro ⟨p, hp⟩
case mp.intro V : Type u G : SimpleGraph V u v : V p : G.Walk u v hp : p.length = 0 ⊢ u = v
620215c56eb5f21e
IsCompact.elim_finite_subcover_image
Mathlib/Topology/Compactness/Compact.lean
theorem IsCompact.elim_finite_subcover_image {b : Set ι} {c : ι → Set X} (hs : IsCompact s) (hc₁ : ∀ i ∈ b, IsOpen (c i)) (hc₂ : s ⊆ ⋃ i ∈ b, c i) : ∃ b', b' ⊆ b ∧ Set.Finite b' ∧ s ⊆ ⋃ i ∈ b', c i
X : Type u ι : Type u_1 inst✝ : TopologicalSpace X s : Set X b : Set ι c : ι → Set X hs : IsCompact s hc₁ : ∀ i ∈ b, IsOpen (c i) hc₂ : s ⊆ ⋃ i ∈ b, c i ⊢ ∃ b' ⊆ b, b'.Finite ∧ s ⊆ ⋃ i ∈ b', c i
simp only [Subtype.forall', biUnion_eq_iUnion] at hc₁ hc₂
X : Type u ι : Type u_1 inst✝ : TopologicalSpace X s : Set X b : Set ι c : ι → Set X hs : IsCompact s hc₁ : ∀ (x : { a // a ∈ b }), IsOpen (c ↑x) hc₂ : s ⊆ ⋃ x, c ↑x ⊢ ∃ b' ⊆ b, b'.Finite ∧ s ⊆ ⋃ i ∈ b', c i
6b726d862ddbfba3
List.IsRotated.trans
Mathlib/Data/List/Rotate.lean
theorem IsRotated.trans : ∀ {l l' l'' : List α}, l ~r l' → l' ~r l'' → l ~r l'' | _, _, _, ⟨n, rfl⟩, ⟨m, rfl⟩ => ⟨n + m, by rw [rotate_rotate]⟩
α : Type u l✝ : List α n m : ℕ ⊢ l✝.rotate (n + m) = (l✝.rotate n).rotate m
rw [rotate_rotate]
no goals
a8f0f74c1c3f1e73
Ordinal.lt_limit
Mathlib/SetTheory/Ordinal/Arithmetic.lean
theorem lt_limit {o} (h : IsLimit o) {a} : a < o ↔ ∃ x < o, a < x
o : Ordinal.{u_4} h : o.IsLimit a : Ordinal.{u_4} ⊢ a < o ↔ ∃ x < o, a < x
simpa only [not_forall₂, not_le, bex_def] using not_congr (@limit_le _ h a)
no goals
6a5b23f82c8b384b
Rat.AbsoluteValue.exists_minimal_nat_zero_lt_and_lt_one
Mathlib/NumberTheory/Ostrowski.lean
/-- There exists a minimal positive integer with absolute value smaller than 1. -/ lemma exists_minimal_nat_zero_lt_and_lt_one : ∃ p : ℕ, (0 < f p ∧ f p < 1) ∧ ∀ m : ℕ, 0 < f m ∧ f m < 1 → p ≤ m
case intro.intro f : AbsoluteValue ℚ ℝ hf_nontriv : f.IsNontrivial bdd : ∀ (n : ℕ), f ↑n ≤ 1 n : ℕ hn1 : n ≠ 0 hn2 : f ↑n ≠ 1 P : Set ℕ := {m | 0 < f ↑m ∧ f ↑m < 1} ⊢ ∃ p, (0 < f ↑p ∧ f ↑p < 1) ∧ ∀ (m : ℕ), 0 < f ↑m ∧ f ↑m < 1 → p ≤ m
have hP : P.Nonempty := ⟨n, map_pos_of_ne_zero f (Nat.cast_ne_zero.mpr hn1), lt_of_le_of_ne (bdd n) hn2⟩
case intro.intro f : AbsoluteValue ℚ ℝ hf_nontriv : f.IsNontrivial bdd : ∀ (n : ℕ), f ↑n ≤ 1 n : ℕ hn1 : n ≠ 0 hn2 : f ↑n ≠ 1 P : Set ℕ := {m | 0 < f ↑m ∧ f ↑m < 1} hP : P.Nonempty ⊢ ∃ p, (0 < f ↑p ∧ f ↑p < 1) ∧ ∀ (m : ℕ), 0 < f ↑m ∧ f ↑m < 1 → p ≤ m
856d5d85add25372
AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty
Mathlib/AlgebraicTopology/DoldKan/NCompGamma.lean
theorem Γ₀_obj_termwise_mapMono_comp_PInfty (X : SimplicialObject C) {Δ Δ' : SimplexCategory} (i : Δ ⟶ Δ') [Mono i] : Γ₀.Obj.Termwise.mapMono (AlternatingFaceMapComplex.obj X) i ≫ PInfty.f Δ.len = PInfty.f Δ'.len ≫ X.map i.op
case neg C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C X : SimplicialObject C n n' : ℕ i : ⦋n⦌ ⟶ ⦋n'⦌ inst✝ : Mono i h : ¬n = n' hi : ¬Isδ₀ i ⊢ 0 = PInfty.f n' ≫ X.map i.op C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C X : SimplicialObject C n n' : ℕ i : ⦋n⦌ ⟶ ⦋n'⦌ inst✝ : Mono i h : ¬n = n' hi : ¬Isδ₀ i ⊢ ⦋n'⦌ ≠ ⦋n⦌
swap
C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C X : SimplicialObject C n n' : ℕ i : ⦋n⦌ ⟶ ⦋n'⦌ inst✝ : Mono i h : ¬n = n' hi : ¬Isδ₀ i ⊢ ⦋n'⦌ ≠ ⦋n⦌ case neg C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C X : SimplicialObject C n n' : ℕ i : ⦋n⦌ ⟶ ⦋n'⦌ inst✝ : Mono i h : ¬n = n' hi : ¬Isδ₀ i ⊢ 0 = PInfty.f n' ≫ X.map i.op
8c91ae5c330900ef
MeasureTheory.FiniteMeasure.continuous_testAgainstNN_eval
Mathlib/MeasureTheory/Measure/FiniteMeasure.lean
theorem continuous_testAgainstNN_eval (f : Ω →ᵇ ℝ≥0) : Continuous fun μ : FiniteMeasure Ω ↦ μ.testAgainstNN f
Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : TopologicalSpace Ω inst✝ : OpensMeasurableSpace Ω f : Ω →ᵇ ℝ≥0 ⊢ Continuous fun φ => φ f
exact WeakBilin.eval_continuous _ _
no goals
82b00458343c302b
TsirelsonInequality.sqrt_two_inv_mul_self
Mathlib/Algebra/Star/CHSH.lean
theorem sqrt_two_inv_mul_self : (√2)⁻¹ * (√2)⁻¹ = (2⁻¹ : ℝ)
⊢ (√2)⁻¹ * (√2)⁻¹ = 2⁻¹
rw [← mul_inv]
⊢ (√2 * √2)⁻¹ = 2⁻¹
af12444dc2596475
Pell.Solution₁.eq_zero_of_d_neg
Mathlib/NumberTheory/Pell.lean
theorem eq_zero_of_d_neg (h₀ : d < 0) (a : Solution₁ d) : a.x = 0 ∨ a.y = 0
d : ℤ h₀ : d < 0 a : Solution₁ d h : a.x ≠ 0 ∧ a.y ≠ 0 ⊢ a.x ^ 2 - d * a.y ^ 2 ≠ 1
have h1 := sq_pos_of_ne_zero h.1
d : ℤ h₀ : d < 0 a : Solution₁ d h : a.x ≠ 0 ∧ a.y ≠ 0 h1 : 0 < a.x ^ 2 ⊢ a.x ^ 2 - d * a.y ^ 2 ≠ 1
50a8ed2852157cdb
MeasureTheory.condExp_ae_eq_restrict_zero
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
theorem condExp_ae_eq_restrict_zero (hs : MeasurableSet[m] s) (hf : f =ᵐ[μ.restrict s] 0) : μ[f|m] =ᵐ[μ.restrict s] 0
α : Type u_1 E : Type u_2 m m0 : MeasurableSpace α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E μ : Measure α f : α → E s : Set α hs : MeasurableSet s hf : f =ᶠ[ae (μ.restrict s)] 0 hm : m ≤ m0 hμm this : SigmaFinite (μ.trim hm) ⊢ SigmaFinite ((μ.restrict s).trim hm)
rw [← restrict_trim hm _ hs]
α : Type u_1 E : Type u_2 m m0 : MeasurableSpace α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E μ : Measure α f : α → E s : Set α hs : MeasurableSet s hf : f =ᶠ[ae (μ.restrict s)] 0 hm : m ≤ m0 hμm this : SigmaFinite (μ.trim hm) ⊢ SigmaFinite ((μ.trim hm).restrict s)
1f7750ee72b97131
Finsupp.toMultiset_map
Mathlib/Data/Finsupp/Multiset.lean
theorem toMultiset_map (f : α →₀ ℕ) (g : α → β) : f.toMultiset.map g = toMultiset (f.mapDomain g)
case refine_2 α : Type u_1 β : Type u_2 f✝ : α →₀ ℕ g : α → β a : α n : ℕ f : α →₀ ℕ a✝¹ : a ∉ f.support a✝ : n ≠ 0 ih : Multiset.map g (toMultiset f) = toMultiset (mapDomain g f) ⊢ Multiset.map g (toMultiset (single a n + f)) = toMultiset (mapDomain g (single a n + f))
rw [toMultiset_add, Multiset.map_add, ih, mapDomain_add, mapDomain_single, toMultiset_single, toMultiset_add, toMultiset_single, ← Multiset.coe_mapAddMonoidHom, (Multiset.mapAddMonoidHom g).map_nsmul]
case refine_2 α : Type u_1 β : Type u_2 f✝ : α →₀ ℕ g : α → β a : α n : ℕ f : α →₀ ℕ a✝¹ : a ∉ f.support a✝ : n ≠ 0 ih : Multiset.map g (toMultiset f) = toMultiset (mapDomain g f) ⊢ n • (Multiset.mapAddMonoidHom g) {a} + toMultiset (mapDomain g f) = n • {g a} + toMultiset (mapDomain g f)
b734ca1aed5316da
IsAlgebraic.algebraMap
Mathlib/RingTheory/Algebraic/Basic.lean
theorem IsAlgebraic.algebraMap {a : S} : IsAlgebraic R a → IsAlgebraic R (algebraMap S A a) := fun ⟨f, hf₁, hf₂⟩ => ⟨f, hf₁, by rw [aeval_algebraMap_apply, hf₂, map_zero]⟩
R : Type u S : Type u_1 A : Type v inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Ring A inst✝³ : Algebra R A inst✝² : Algebra R S inst✝¹ : Algebra S A inst✝ : IsScalarTower R S A a : S x✝ : IsAlgebraic R a f : R[X] hf₁ : f ≠ 0 hf₂ : (aeval a) f = 0 ⊢ (aeval ((algebraMap S A) a)) f = 0
rw [aeval_algebraMap_apply, hf₂, map_zero]
no goals
5749bbfed23b4e12
Algebra.discr_powerBasis_eq_prod'
Mathlib/RingTheory/Discriminant.lean
theorem discr_powerBasis_eq_prod' [Algebra.IsSeparable K L] (e : Fin pb.dim ≃ (L →ₐ[K] E)) : algebraMap K E (discr K pb.basis) = ∏ i : Fin pb.dim, ∏ j ∈ Ioi i, -((e j pb.gen - e i pb.gen) * (e i pb.gen - e j pb.gen))
case e_f.h.e_f.h K : Type u L : Type v E : Type z inst✝⁷ : Field K inst✝⁶ : Field L inst✝⁵ : Field E inst✝⁴ : Algebra K L inst✝³ : Algebra K E inst✝² : Module.Finite K L inst✝¹ : IsAlgClosed E pb : PowerBasis K L inst✝ : Algebra.IsSeparable K L e : Fin pb.dim ≃ (L →ₐ[K] E) i j : Fin pb.dim ⊢ ((e j) pb.gen - (e i) pb.gen) ^ 2 = -(((e j) pb.gen - (e i) pb.gen) * ((e i) pb.gen - (e j) pb.gen))
ring
no goals
ebd88c8ab922c15a
Multiset.union_add_inter
Mathlib/Data/Multiset/UnionInter.lean
lemma union_add_inter (s t : Multiset α) : s ∪ t + s ∩ t = s + t
case a α : Type u_1 inst✝ : DecidableEq α s t : Multiset α ⊢ t + s ≤ (s ∪ t + s) ∩ (s ∪ t + t)
refine le_inter (Multiset.add_le_add_right le_union_right) ?_
case a α : Type u_1 inst✝ : DecidableEq α s t : Multiset α ⊢ t + s ≤ s ∪ t + t
0b8ef669b6694030
MeasureTheory.Measure.measure_sInf_le
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
theorem measure_sInf_le (h : μ ∈ m) : sInf m ≤ μ := have : sInf (toOuterMeasure '' m) ≤ μ.toOuterMeasure := sInf_le (mem_image_of_mem _ h) le_iff.2 fun s hs => by rw [sInf_apply hs]; exact this s
α : Type u_1 m0 : MeasurableSpace α μ : Measure α m : Set (Measure α) h : μ ∈ m this : sInf (toOuterMeasure '' m) ≤ μ.toOuterMeasure s : Set α hs : MeasurableSet s ⊢ (sInf (toOuterMeasure '' m)) s ≤ μ s
exact this s
no goals
2793aa93cc3ffec1
div_div_div_cancel_left'
Mathlib/Algebra/GroupWithZero/Units/Basic.lean
lemma div_div_div_cancel_left' (a b : G₀) (hc : c ≠ 0) : c / a / (c / b) = b / a
G₀ : Type u_3 inst✝ : CommGroupWithZero G₀ c a b : G₀ hc : c ≠ 0 ⊢ c / a / (c / b) = b / a
rw [div_div_div_eq, mul_comm, mul_div_mul_right _ _ hc]
no goals
cbc620c447f3f824
IsLowerSet.mem_interior_of_forall_lt
Mathlib/Analysis/Normed/Order/UpperLower.lean
theorem IsLowerSet.mem_interior_of_forall_lt (hs : IsLowerSet s) (hx : x ∈ closure s) (h : ∀ i, y i < x i) : y ∈ interior s
case intro.intro.intro.intro.intro ι : Type u_2 inst✝ : Finite ι s : Set (ι → ℝ) x y : ι → ℝ hs : IsLowerSet s hx : x ∈ closure s h : ∀ (i : ι), y i < x i val✝ : Fintype ι ε : ℝ hε : 0 < ε hxy : ∀ (i : ι), y i + ε < x i z : ι → ℝ hz : z ∈ s hxz : dist x z < ε ⊢ y ∈ interior s
rw [dist_pi_lt_iff hε] at hxz
case intro.intro.intro.intro.intro ι : Type u_2 inst✝ : Finite ι s : Set (ι → ℝ) x y : ι → ℝ hs : IsLowerSet s hx : x ∈ closure s h : ∀ (i : ι), y i < x i val✝ : Fintype ι ε : ℝ hε : 0 < ε hxy : ∀ (i : ι), y i + ε < x i z : ι → ℝ hz : z ∈ s hxz : ∀ (b : ι), dist (x b) (z b) < ε ⊢ y ∈ interior s
cddc3cf8c9427d15
MeasureTheory.IsStoppingTime.measurableSet_inter_le
Mathlib/Probability/Process/Stopping.lean
theorem measurableSet_inter_le [TopologicalSpace ι] [SecondCountableTopology ι] [OrderTopology ι] [MeasurableSpace ι] [BorelSpace ι] (hτ : IsStoppingTime f τ) (hπ : IsStoppingTime f π) (s : Set Ω) (hs : MeasurableSet[hτ.measurableSpace] s) : MeasurableSet[(hτ.min hπ).measurableSpace] (s ∩ {ω | τ ω ≤ π ω})
case h Ω : Type u_1 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω ⊢ (ω ∈ s ∧ τ ω ≤ π ω) ∧ (τ ω ≤ i ∨ π ω ≤ i) ↔ ((ω ∈ s ∧ τ ω ≤ i) ∧ (τ ω ≤ i ∨ π ω ≤ i)) ∧ (τ ω ≤ π ω ∨ i ≤ π ω) ∧ (τ ω ≤ i ∨ True)
by_cases hτi : τ ω ≤ i
case pos Ω : Type u_1 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω hτi : τ ω ≤ i ⊢ (ω ∈ s ∧ τ ω ≤ π ω) ∧ (τ ω ≤ i ∨ π ω ≤ i) ↔ ((ω ∈ s ∧ τ ω ≤ i) ∧ (τ ω ≤ i ∨ π ω ≤ i)) ∧ (τ ω ≤ π ω ∨ i ≤ π ω) ∧ (τ ω ≤ i ∨ True) case neg Ω : Type u_1 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω hτi : ¬τ ω ≤ i ⊢ (ω ∈ s ∧ τ ω ≤ π ω) ∧ (τ ω ≤ i ∨ π ω ≤ i) ↔ ((ω ∈ s ∧ τ ω ≤ i) ∧ (τ ω ≤ i ∨ π ω ≤ i)) ∧ (τ ω ≤ π ω ∨ i ≤ π ω) ∧ (τ ω ≤ i ∨ True)
93587e3bd5de43f7
integrable_mulExpNegMulSq_comp
Mathlib/Analysis/SpecialFunctions/MulExpNegMulSqIntegral.lean
theorem integrable_mulExpNegMulSq_comp (f : C(E, ℝ)) (hε : 0 < ε) : Integrable (fun x => mulExpNegMulSq ε (f x)) P
E : Type u_1 inst✝³ : TopologicalSpace E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E P : Measure E inst✝ : IsFiniteMeasure P ε : ℝ f : C(E, ℝ) hε : 0 < ε ⊢ Integrable (fun x => ε.mulExpNegMulSq (f x)) P
apply integrable P ⟨⟨fun x => mulExpNegMulSq ε (f x), by fun_prop⟩, ⟨2 * (sqrt ε)⁻¹, _⟩⟩
E : Type u_1 inst✝³ : TopologicalSpace E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E P : Measure E inst✝ : IsFiniteMeasure P ε : ℝ f : C(E, ℝ) hε : 0 < ε ⊢ ∀ (x y : E), dist ({ toFun := fun x => ε.mulExpNegMulSq (f x), continuous_toFun := ⋯ }.toFun x) ({ toFun := fun x => ε.mulExpNegMulSq (f x), continuous_toFun := ⋯ }.toFun y) ≤ 2 * (√ε)⁻¹
79676fc5c6c76a89
FirstOrder.Language.equiv_between_cg
Mathlib/ModelTheory/PartialEquiv.lean
theorem equiv_between_cg (M_cg : Structure.CG L M) (N_cg : Structure.CG L N) (g : L.FGEquiv M N) (ext_dom : L.IsExtensionPair M N) (ext_cod : L.IsExtensionPair N M) : ∃ f : M ≃[L] N, g ≤ f.toEmbedding.toPartialEquiv
case mk.intro.intro.mk.intro.intro L : Language M : Type w N : Type w' inst✝¹ : L.Structure M inst✝ : L.Structure N g : L.FGEquiv M N ext_dom : L.IsExtensionPair M N ext_cod : L.IsExtensionPair N M X : Set M X_count : X.Countable X_gen : (closure L).toFun X = ⊤ Y : Set N Y_count : Y.Countable Y_gen : (closure L).toFun Y = ⊤ x✝¹ : Countable ↑X x✝ : Encodable ↑X ⊢ ∃ f, ↑g ≤ f.toEmbedding.toPartialEquiv
have _ : Countable (↑Y : Type _) := by simpa only [countable_coe_iff]
case mk.intro.intro.mk.intro.intro L : Language M : Type w N : Type w' inst✝¹ : L.Structure M inst✝ : L.Structure N g : L.FGEquiv M N ext_dom : L.IsExtensionPair M N ext_cod : L.IsExtensionPair N M X : Set M X_count : X.Countable X_gen : (closure L).toFun X = ⊤ Y : Set N Y_count : Y.Countable Y_gen : (closure L).toFun Y = ⊤ x✝² : Countable ↑X x✝¹ : Encodable ↑X x✝ : Countable ↑Y ⊢ ∃ f, ↑g ≤ f.toEmbedding.toPartialEquiv
d1b972cd720b6e06