name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Array.array₃_induction
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem array₃_induction (P : Array (Array (Array α)) → Prop) (of : ∀ (xss : List (List (List α))), P ((xss.map (fun xs => xs.map List.toArray)).map List.toArray).toArray) (ass : Array (Array (Array α))) : P ass
α : Type u_1 P : Array (Array (Array α)) → Prop of : ∀ (xss : List (List (List α))), P (List.map List.toArray (List.map (fun xs => List.map List.toArray xs) xss)).toArray ass : Array (Array (Array α)) ⊢ P ass
specialize of ((ass.toList.map toList).map (fun as => as.map toList))
α : Type u_1 P : Array (Array (Array α)) → Prop ass : Array (Array (Array α)) of : P (List.map List.toArray (List.map (fun xs => List.map List.toArray xs) (List.map (fun as => List.map toList as) (List.map toList ass.toList)))).toArray ⊢ P ass
633f2b5cbd3730e2
Polynomial.induction_on
Mathlib/Algebra/Polynomial/Basic.lean
theorem induction_on {M : R[X] → Prop} (p : R[X]) (h_C : ∀ a, M (C a)) (h_add : ∀ p q, M p → M q → M (p + q)) (h_monomial : ∀ (n : ℕ) (a : R), M (C a * X ^ n) → M (C a * X ^ (n + 1))) : M p
case empty R : Type u inst✝ : Semiring R M : R[X] → Prop p : R[X] h_C : ∀ (a : R), M (C a) h_add : ∀ (p q : R[X]), M p → M q → M (p + q) h_monomial : ∀ (n : ℕ) (a : R), M (C a * X ^ n) → M (C a * X ^ (n + 1)) A : ∀ {n : ℕ} {a : R}, M (C a * X ^ n) ⊢ M (∑ n ∈ ∅, C (p.coeff n) * X ^ n)
convert h_C 0
case h.e'_1 R : Type u inst✝ : Semiring R M : R[X] → Prop p : R[X] h_C : ∀ (a : R), M (C a) h_add : ∀ (p q : R[X]), M p → M q → M (p + q) h_monomial : ∀ (n : ℕ) (a : R), M (C a * X ^ n) → M (C a * X ^ (n + 1)) A : ∀ {n : ℕ} {a : R}, M (C a * X ^ n) ⊢ ∑ n ∈ ∅, C (p.coeff n) * X ^ n = C 0
9b29050224f0e20b
Batteries.BinomialHeap.Imp.Heap.realSize_deleteMin
Mathlib/.lake/packages/batteries/Batteries/Data/BinomialHeap/Basic.lean
theorem Heap.realSize_deleteMin {s : Heap α} (eq : s.deleteMin le = some (a, s')) : s.realSize = s'.realSize + 1
α : Type u_1 le : α → α → Bool r : Nat a : α c : HeapNode α s : Heap α before : Heap α → Heap α val : α node : HeapNode α next : Heap α m : Nat ih₁ : ∀ (s : Heap α), ({ before := before, val := val, node := node, next := next }.before s).realSize = m + s.realSize ih₂ : c.realSize + s.realSize + 1 = m + { before := before, val := val, node := node, next := next }.node.realSize + { before := before, val := val, node := node, next := next }.next.realSize + 1 ⊢ (cons r a c s).realSize = (merge le { before := before, val := val, node := node, next := next }.node.toHeap ({ before := before, val := val, node := node, next := next }.before { before := before, val := val, node := node, next := next }.next)).realSize + 1
dsimp only at ih₁ ih₂
α : Type u_1 le : α → α → Bool r : Nat a : α c : HeapNode α s : Heap α before : Heap α → Heap α val : α node : HeapNode α next : Heap α m : Nat ih₁ : ∀ (s : Heap α), (before s).realSize = m + s.realSize ih₂ : c.realSize + s.realSize + 1 = m + node.realSize + next.realSize + 1 ⊢ (cons r a c s).realSize = (merge le { before := before, val := val, node := node, next := next }.node.toHeap ({ before := before, val := val, node := node, next := next }.before { before := before, val := val, node := node, next := next }.next)).realSize + 1
36aad300d7e604ad
Set.Ioo_inter_Iio
Mathlib/Order/Interval/Set/Basic.lean
theorem Ioo_inter_Iio : Ioo a b ∩ Iio c = Ioo a (min b c)
α : Type u_1 inst✝ : LinearOrder α a b c : α ⊢ Ioo a b ∩ Iio c = Ioo a (b ⊓ c)
ext
case h α : Type u_1 inst✝ : LinearOrder α a b c x✝ : α ⊢ x✝ ∈ Ioo a b ∩ Iio c ↔ x✝ ∈ Ioo a (b ⊓ c)
78bf76235a3f6efb
Submodule.basis_of_pid_aux
Mathlib/LinearAlgebra/FreeModule/PID.lean
theorem Submodule.basis_of_pid_aux [Finite ι] {O : Type*} [AddCommGroup O] [Module R O] (M N : Submodule R O) (b'M : Basis ι R M) (N_bot : N ≠ ⊥) (N_le_M : N ≤ M) : ∃ y ∈ M, ∃ a : R, a • y ∈ N ∧ ∃ M' ≤ M, ∃ N' ≤ N, N' ≤ M' ∧ (∀ (c : R) (z : O), z ∈ M' → c • y + z = 0 → c = 0) ∧ (∀ (c : R) (z : O), z ∈ N' → c • a • y + z = 0 → c = 0) ∧ ∀ (n') (bN' : Basis (Fin n') R N'), ∃ bN : Basis (Fin (n' + 1)) R N, ∀ (m') (hn'm' : n' ≤ m') (bM' : Basis (Fin m') R M'), ∃ (hnm : n' + 1 ≤ m' + 1) (bM : Basis (Fin (m' + 1)) R M), ∀ as : Fin n' → R, (∀ i : Fin n', (bN' i : O) = as i • (bM' (Fin.castLE hn'm' i) : O)) → ∃ as' : Fin (n' + 1) → R, ∀ i : Fin (n' + 1), (bN i : O) = as' i • (bM (Fin.castLE hnm i) : O)
ι : Type u_1 R : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : Finite ι O : Type u_4 inst✝¹ : AddCommGroup O inst✝ : Module R O M N : Submodule R O b'M : Basis ι R ↥M N_bot : N ≠ ⊥ N_le_M : N ≤ M this : ∃ ϕ, ∀ (ψ : ↥M →ₗ[R] R), ¬ϕ.submoduleImage N < ψ.submoduleImage N ϕ : ↥M →ₗ[R] R := this.choose ϕ_max : ∀ (ψ : ↥M →ₗ[R] R), ¬this.choose.submoduleImage N < ψ.submoduleImage N a : R := generator (ϕ.submoduleImage N) a_mem : a ∈ ϕ.submoduleImage N a_zero : ¬a = 0 y : O yN : y ∈ N ϕy_eq : ϕ ⟨y, ⋯⟩ = a _ϕy_ne_zero : ϕ ⟨y, ⋯⟩ ≠ 0 c : ι → R hc : ∀ (i : ι), (b'M.coord i) ⟨y, ⋯⟩ = a * c i val✝ : Fintype ι y' : O := ∑ i : ι, c i • ↑(b'M i) y'M : y' ∈ M mk_y' : ⟨y', y'M⟩ = ∑ i : ι, c i • b'M i i : ι x✝ : i ∈ Finset.univ ⊢ a • c i • b'M i = (b'M.repr ⟨y, ⋯⟩) i • b'M i
rw [← mul_smul, ← hc]
ι : Type u_1 R : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : Finite ι O : Type u_4 inst✝¹ : AddCommGroup O inst✝ : Module R O M N : Submodule R O b'M : Basis ι R ↥M N_bot : N ≠ ⊥ N_le_M : N ≤ M this : ∃ ϕ, ∀ (ψ : ↥M →ₗ[R] R), ¬ϕ.submoduleImage N < ψ.submoduleImage N ϕ : ↥M →ₗ[R] R := this.choose ϕ_max : ∀ (ψ : ↥M →ₗ[R] R), ¬this.choose.submoduleImage N < ψ.submoduleImage N a : R := generator (ϕ.submoduleImage N) a_mem : a ∈ ϕ.submoduleImage N a_zero : ¬a = 0 y : O yN : y ∈ N ϕy_eq : ϕ ⟨y, ⋯⟩ = a _ϕy_ne_zero : ϕ ⟨y, ⋯⟩ ≠ 0 c : ι → R hc : ∀ (i : ι), (b'M.coord i) ⟨y, ⋯⟩ = a * c i val✝ : Fintype ι y' : O := ∑ i : ι, c i • ↑(b'M i) y'M : y' ∈ M mk_y' : ⟨y', y'M⟩ = ∑ i : ι, c i • b'M i i : ι x✝ : i ∈ Finset.univ ⊢ (b'M.coord i) ⟨y, ⋯⟩ • b'M i = (b'M.repr ⟨y, ⋯⟩) i • b'M i
48ee91e21f4317c3
Pell.IsFundamental.mul_inv_x_lt_x
Mathlib/NumberTheory/Pell.lean
theorem mul_inv_x_lt_x {a₁ : Solution₁ d} (h : IsFundamental a₁) {a : Solution₁ d} (hax : 1 < a.x) (hay : 0 < a.y) : (a * a₁⁻¹).x < a.x
d : ℤ a₁ : Solution₁ d h : IsFundamental a₁ a : Solution₁ d hax : 1 < a.x hay : 0 < a.y ⊢ a.x * a₁.x < d * (a.y * a₁.y) + a.x
refine (mul_lt_mul_left h.2.1).mp ?_
d : ℤ a₁ : Solution₁ d h : IsFundamental a₁ a : Solution₁ d hax : 1 < a.x hay : 0 < a.y ⊢ a₁.y * (a.x * a₁.x) < a₁.y * (d * (a.y * a₁.y) + a.x)
9b261d48a46b4210
Equiv.Perm.fin_5_not_solvable
Mathlib/GroupTheory/Solvable.lean
theorem Equiv.Perm.fin_5_not_solvable : ¬IsSolvable (Equiv.Perm (Fin 5))
case succ x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := ⋯, right_inv := ⋯ } y : Perm (Fin 5) := { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := ⋯, right_inv := ⋯ } z : Perm (Fin 5) := { toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4], left_inv := ⋯, right_inv := ⋯ } key : x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹ n : ℕ ih : x ∈ derivedSeries (Perm (Fin 5)) n ⊢ x ∈ derivedSeries (Perm (Fin 5)) (n + 1)
rw [key, (derivedSeries_normal _ _).mem_comm_iff, inv_mul_cancel_left]
case succ x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := ⋯, right_inv := ⋯ } y : Perm (Fin 5) := { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := ⋯, right_inv := ⋯ } z : Perm (Fin 5) := { toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4], left_inv := ⋯, right_inv := ⋯ } key : x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹ n : ℕ ih : x ∈ derivedSeries (Perm (Fin 5)) n ⊢ ⁅x, y * x * y⁻¹⁆ ∈ derivedSeries (Perm (Fin 5)) (n + 1)
2cf02f2116026673
Int.le_bmod
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/DivModLemmas.lean
theorem le_bmod {x : Int} {m : Nat} (h : 0 < m) : - (m/2) ≤ Int.bmod x m
case isFalse x : Int m : Nat h : 0 < m v : ↑m % 2 = 0 ∨ ↑m % 2 = 1 w : (↑m + 1) / 2 ≤ x % ↑m ⊢ -(↑m / 2) ≤ (↑m + 1) / 2 - ↑m
rw [← ediv_add_emod m 2]
case isFalse x : Int m : Nat h : 0 < m v : ↑m % 2 = 0 ∨ ↑m % 2 = 1 w : (↑m + 1) / 2 ≤ x % ↑m ⊢ -((2 * (↑m / 2) + ↑m % 2) / 2) ≤ (2 * (↑m / 2) + ↑m % 2 + 1) / 2 - (2 * (↑m / 2) + ↑m % 2)
c8cfe301519f3ee0
Set.Iic.succ_eq_of_not_isMax
Mathlib/Order/Interval/Set/SuccOrder.lean
lemma Iic.succ_eq_of_not_isMax [SuccOrder J] {j : J} {i : Set.Iic j} (hi : ¬ IsMax i) : Order.succ i = ⟨Order.succ i.1, by rw [← coe_succ_of_not_isMax hi] apply Subtype.coe_prop⟩
case a J : Type u_1 inst✝¹ : PartialOrder J inst✝ : SuccOrder J j : J i : ↑(Iic j) hi : ¬IsMax i ⊢ ↑(Order.succ i) = ↑⟨Order.succ ↑i, ⋯⟩
simp only [coe_succ_of_not_isMax hi]
no goals
aa6f4dc6ce5e335e
Pell.Solution₁.exists_nontrivial_of_not_isSquare
Mathlib/NumberTheory/Pell.lean
theorem exists_nontrivial_of_not_isSquare (h₀ : 0 < d) (hd : ¬IsSquare d) : ∃ a : Solution₁ d, a ≠ 1 ∧ a ≠ -1
d : ℤ h₀ : 0 < d hd : ¬IsSquare d ⊢ ∃ a, a ≠ 1 ∧ a ≠ -1
obtain ⟨x, y, prop, hy⟩ := exists_of_not_isSquare h₀ hd
case intro.intro.intro d : ℤ h₀ : 0 < d hd : ¬IsSquare d x y : ℤ prop : x ^ 2 - d * y ^ 2 = 1 hy : y ≠ 0 ⊢ ∃ a, a ≠ 1 ∧ a ≠ -1
f47e8ea11b2d637b
IsUltrametricDist.exists_norm_multiset_prod_le
Mathlib/Analysis/Normed/Group/Ultra.lean
theorem exists_norm_multiset_prod_le (s : Multiset ι) [Nonempty ι] {f : ι → M} : ∃ i : ι, (s ≠ 0 → i ∈ s) ∧ ‖(s.map f).prod‖ ≤ ‖f i‖
case neg.inr.refine_1 M✝ : Type u_1 ι : Type u_2 inst✝² : SeminormedCommGroup M✝ inst✝¹ : IsUltrametricDist M✝ inst✝ : Nonempty ι f : ι → M✝ inhabited_h : Inhabited ι a : ι t : Multiset ι M : ι hMs : t ≠ 0 → M ∈ t hM : ‖(Multiset.map f t).prod‖ ≤ ‖f M‖ hMa : ‖f a‖ < ‖f M‖ ht : t ≠ 0 ⊢ a ::ₘ t ≠ 0 → M ∈ a ::ₘ t
simp [hMs ht]
no goals
76b69fa578fb2276
CategoryTheory.Functor.OfSequence.map_comp
Mathlib/CategoryTheory/Functor/OfSequence.lean
@[reassoc] lemma map_comp (i j k : ℕ) (hij : i ≤ j) (hjk : j ≤ k) : map f i k (hij.trans hjk) = map f i j hij ≫ map f j k hjk
C : Type u_1 inst✝ : Category.{u_2, u_1} C j : ℕ hj : ∀ {X : ℕ → C} (f : (n : ℕ) → X n ⟶ X (n + 1)) (k : ℕ) (hij : 0 ≤ j) (hjk : j ≤ k), map f 0 k ⋯ = map f 0 j hij ≫ map f j k hjk X : ℕ → C f : (n : ℕ) → X n ⟶ X (n + 1) k : ℕ hij : 0 ≤ j + 1 hjk : j + 1 ≤ k + 1 + 1 ⊢ 0 ≤ j
omega
no goals
68dd418237e48daa
isLocalStructomorphOn_contDiffGroupoid_iff
Mathlib/Geometry/Manifold/ContMDiff/Atlas.lean
theorem isLocalStructomorphOn_contDiffGroupoid_iff (f : PartialHomeomorph M M') : LiftPropOn (contDiffGroupoid n I).IsLocalStructomorphWithinAt f f.source ↔ ContMDiffOn I I n f f.source ∧ ContMDiffOn I I n f.symm f.target
case h.e'_12 𝕜 : Type u_1 inst✝⁸ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E H✝ : Type u_3 inst✝⁵ : TopologicalSpace H✝ I : ModelWithCorners 𝕜 E H✝ M : Type u_4 inst✝⁴ : TopologicalSpace M inst✝³ : ChartedSpace H✝ M n : WithTop ℕ∞ inst✝² : IsManifold I n M M' : Type u_5 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H✝ M' IsM' : IsManifold I n M' f : PartialHomeomorph M M' h₁ : ContMDiffOn I I n (↑f) f.source h₂ : ContMDiffOn I I n (↑f.symm) f.target x : M hx : x ∈ f.source c : PartialHomeomorph M H✝ := chartAt H✝ x c' : PartialHomeomorph M' H✝ := chartAt H✝ (↑f x) hx' : ↑c x ∈ ↑c.symm ⁻¹' f.source y : E hy : (↑I.symm y ∈ c'.target ∧ ↑c'.symm (↑I.symm y) ∈ f.target ∧ ↑f.symm (↑c'.symm (↑I.symm y)) ∈ c.source) ∧ y ∈ range ↑I H : ContinuousWithinAt (↑f.symm) (f.symm ≫ₕ c).source (↑(extChartAt I (↑f x)).symm y) ∧ ContDiffWithinAt 𝕜 n (↑(extChartAt I x) ∘ ↑f.symm ∘ ↑(extChartAt I (↑f x)).symm) (↑(extChartAt I (↑f x)).symm ⁻¹' (f.symm ≫ₕ c).source ∩ range ↑I) (↑(extChartAt I (↑f x)) (↑(extChartAt I (↑f x)).symm y)) hy' : ↑(extChartAt I (↑f x)).symm y ∈ c'.source hy'' : ↑f.symm (↑(extChartAt I (↑f x)).symm y) ∈ c.source ⊢ y = ↑(extChartAt I (↑f x)) (↑(extChartAt I (↑f x)).symm y)
simp only [c', hy, mfld_simps]
no goals
52ce8090c899c270
Finset.card_le_card_shatterer
Mathlib/Combinatorics/SetFamily/Shatter.lean
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : #𝒜 ≤ #𝒜.shatterer
case neg.intro.intro α : Type u_1 inst✝ : DecidableEq α 𝒜✝ : Finset (Finset α) a : α 𝒜 : Finset (Finset α) ih₀ : #(nonMemberSubfamily a 𝒜) ≤ #(nonMemberSubfamily a 𝒜).shatterer ih₁ : #(memberSubfamily a 𝒜) ≤ #(memberSubfamily a 𝒜).shatterer ℬ : Finset (Finset α) := image (insert a) ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer) hℬ : #ℬ = #((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer) s t : Finset α ht : t.erase a ⊆ s hs : (memberSubfamily a 𝒜).Shatters s ∧ (nonMemberSubfamily a 𝒜).Shatters s ha : a ∉ t u : Finset α hu : u ∈ 𝒜 ∧ a ∉ u hsu : s ∩ u = t.erase a ⊢ ∃ u ∈ 𝒜, insert a s ∩ u = t
refine ⟨_, hu.1, ?_⟩
case neg.intro.intro α : Type u_1 inst✝ : DecidableEq α 𝒜✝ : Finset (Finset α) a : α 𝒜 : Finset (Finset α) ih₀ : #(nonMemberSubfamily a 𝒜) ≤ #(nonMemberSubfamily a 𝒜).shatterer ih₁ : #(memberSubfamily a 𝒜) ≤ #(memberSubfamily a 𝒜).shatterer ℬ : Finset (Finset α) := image (insert a) ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer) hℬ : #ℬ = #((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer) s t : Finset α ht : t.erase a ⊆ s hs : (memberSubfamily a 𝒜).Shatters s ∧ (nonMemberSubfamily a 𝒜).Shatters s ha : a ∉ t u : Finset α hu : u ∈ 𝒜 ∧ a ∉ u hsu : s ∩ u = t.erase a ⊢ insert a s ∩ u = t
7b2e4a2398648e6f
contMDiffOn_isOpenEmbedding_symm
Mathlib/Geometry/Manifold/ContMDiff/Basic.lean
/-- If the `ChartedSpace` structure on a manifold `M` is given by an open embedding `e : M → H`, then the inverse of `e` is `C^n`. -/ lemma contMDiffOn_isOpenEmbedding_symm [Nonempty M] : haveI := h.singletonChartedSpace; ContMDiffOn I I n (IsOpenEmbedding.toPartialHomeomorph e h).symm (range e)
case right 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E H : Type u_3 inst✝² : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝¹ : TopologicalSpace M e : M → H h : IsOpenEmbedding e n : WithTop ℕ∞ inst✝ : Nonempty M this✝ : IsManifold I ω M z✝ : H hz✝ : M z : E hz : z ∈ (extChartAt I z✝).target ∩ ↑(extChartAt I z✝).symm ⁻¹' (range e ∩ ↑(IsOpenEmbedding.toPartialHomeomorph e h).symm ⁻¹' (extChartAt I hz✝).source) this : ↑I.symm z ∈ range e ⊢ z ∈ range ↑I
exact mem_of_subset_of_mem (extChartAt_target_subset_range _) hz.1
no goals
9da88db66ba876e6
MeasureTheory.withDensity_inv_same_le
Mathlib/MeasureTheory/Measure/WithDensity.lean
lemma withDensity_inv_same_le {μ : Measure α} {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) : (μ.withDensity f).withDensity f⁻¹ ≤ μ
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ≥0∞ hf : AEMeasurable f μ this : (f * fun x => (f x)⁻¹) ≤ᶠ[ae μ] 1 ⊢ μ.withDensity 1 ≤ μ
rw [withDensity_one]
no goals
d6fc55f433791664
Ideal.ramificationIdx_tower
Mathlib/NumberTheory/RamificationInertia/Basic.lean
theorem ramificationIdx_tower [IsDedekindDomain S] [IsDedekindDomain T] {f : R →+* S} {g : S →+* T} {p : Ideal R} {P : Ideal S} {Q : Ideal T} [hpm : P.IsPrime] [hqm : Q.IsPrime] (hg0 : map g P ≠ ⊥) (hfg : map (g.comp f) p ≠ ⊥) (hg : map g P ≤ Q) : ramificationIdx (g.comp f) p Q = ramificationIdx f p P * ramificationIdx g P Q
R : Type u_1 S : Type u_2 T : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : CommRing T inst✝¹ : IsDedekindDomain S inst✝ : IsDedekindDomain T f : R →+* S g : S →+* T p : Ideal R P : Ideal S Q : Ideal T hpm : P.IsPrime hqm : Q.IsPrime hg0 : map g P ≠ ⊥ hfg : map (g.comp f) p ≠ ⊥ hg : map g P ≤ Q hf0 : map f p ≠ ⊥ hp0 : P ≠ ⊥ ⊢ ramificationIdx (g.comp f) p Q = ramificationIdx f p P * ramificationIdx g P Q
have hq0 : Q ≠ ⊥ := ne_bot_of_le_ne_bot hg0 hg
R : Type u_1 S : Type u_2 T : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : CommRing T inst✝¹ : IsDedekindDomain S inst✝ : IsDedekindDomain T f : R →+* S g : S →+* T p : Ideal R P : Ideal S Q : Ideal T hpm : P.IsPrime hqm : Q.IsPrime hg0 : map g P ≠ ⊥ hfg : map (g.comp f) p ≠ ⊥ hg : map g P ≤ Q hf0 : map f p ≠ ⊥ hp0 : P ≠ ⊥ hq0 : Q ≠ ⊥ ⊢ ramificationIdx (g.comp f) p Q = ramificationIdx f p P * ramificationIdx g P Q
57208cf4c3229e08
spectrum.isUnit_one_sub_smul_of_lt_inv_radius
Mathlib/Analysis/Normed/Algebra/Spectrum.lean
theorem isUnit_one_sub_smul_of_lt_inv_radius {a : A} {z : 𝕜} (h : ↑‖z‖₊ < (spectralRadius 𝕜 a)⁻¹) : IsUnit (1 - z • a)
𝕜 : Type u_1 A : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedRing A inst✝ : NormedAlgebra 𝕜 A a : A z : 𝕜 h : ↑‖z‖₊ < (spectralRadius 𝕜 a)⁻¹ hz : ¬z = 0 u : 𝕜ˣ := Units.mk0 z hz hu : IsUnit (u⁻¹ • 1 - a) ⊢ IsUnit (1 - z • a)
rwa [IsUnit.smul_sub_iff_sub_inv_smul, inv_inv u] at hu
no goals
7c24ad5e48f2ddf5
WittVector.IsPoly₂.ext
Mathlib/RingTheory/WittVector/IsPoly.lean
theorem ext [Fact p.Prime] {f g} (hf : IsPoly₂ p f) (hg : IsPoly₂ p g) (h : ∀ (R : Type u) [_Rcr : CommRing R] (x y : 𝕎 R) (n : ℕ), ghostComponent n (f x y) = ghostComponent n (g x y)) : ∀ (R) [_Rcr : CommRing R] (x y : 𝕎 R), f x y = g x y
case mk'.intro.mk'.intro.h p : ℕ inst✝ : Fact (Nat.Prime p) f g : ⦃R : Type u⦄ → [inst : CommRing R] → 𝕎 R → 𝕎 R → 𝕎 R h : ∀ (R : Type u) [_Rcr : CommRing R] (x y : 𝕎 R) (n : ℕ), (ghostComponent n) (f x y) = (ghostComponent n) (g x y) φ : ℕ → MvPolynomial (Fin 2 × ℕ) ℤ hf : ∀ ⦃R : Type u⦄ [inst : CommRing R] (x y : 𝕎 R), (f x y).coeff = fun n => peval (φ n) ![x.coeff, y.coeff] ψ : ℕ → MvPolynomial (Fin 2 × ℕ) ℤ hg : ∀ ⦃R : Type u⦄ [inst : CommRing R] (x y : 𝕎 R), (g x y).coeff = fun n => peval (ψ n) ![x.coeff, y.coeff] R✝ : Type u _Rcr✝ : CommRing R✝ x✝ y✝ : 𝕎 R✝ n : ℕ ⊢ ∀ (n : ℕ), (bind₁ φ) (wittPolynomial p ℤ n) = (bind₁ ψ) (wittPolynomial p ℤ n)
intro k
case mk'.intro.mk'.intro.h p : ℕ inst✝ : Fact (Nat.Prime p) f g : ⦃R : Type u⦄ → [inst : CommRing R] → 𝕎 R → 𝕎 R → 𝕎 R h : ∀ (R : Type u) [_Rcr : CommRing R] (x y : 𝕎 R) (n : ℕ), (ghostComponent n) (f x y) = (ghostComponent n) (g x y) φ : ℕ → MvPolynomial (Fin 2 × ℕ) ℤ hf : ∀ ⦃R : Type u⦄ [inst : CommRing R] (x y : 𝕎 R), (f x y).coeff = fun n => peval (φ n) ![x.coeff, y.coeff] ψ : ℕ → MvPolynomial (Fin 2 × ℕ) ℤ hg : ∀ ⦃R : Type u⦄ [inst : CommRing R] (x y : 𝕎 R), (g x y).coeff = fun n => peval (ψ n) ![x.coeff, y.coeff] R✝ : Type u _Rcr✝ : CommRing R✝ x✝ y✝ : 𝕎 R✝ n k : ℕ ⊢ (bind₁ φ) (wittPolynomial p ℤ k) = (bind₁ ψ) (wittPolynomial p ℤ k)
b9c1b5d0e9359092
MeasureTheory.Measure.compProd_congr
Mathlib/Probability/Kernel/Composition/MeasureCompProd.lean
lemma compProd_congr [IsSFiniteKernel κ] [IsSFiniteKernel η] (h : κ =ᵐ[μ] η) : μ ⊗ₘ κ = μ ⊗ₘ η
α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β μ : Measure α κ η : Kernel α β inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η h : ⇑κ =ᶠ[ae μ] ⇑η ⊢ μ ⊗ₘ κ = μ ⊗ₘ η
rw [compProd, compProd]
α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β μ : Measure α κ η : Kernel α β inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η h : ⇑κ =ᶠ[ae μ] ⇑η ⊢ (Kernel.const Unit μ ⊗ₖ Kernel.prodMkLeft Unit κ) () = (Kernel.const Unit μ ⊗ₖ Kernel.prodMkLeft Unit η) ()
e162d78e79d6acec
map_nnratCast
Mathlib/Data/Rat/Cast/Defs.lean
@[simp] lemma map_nnratCast [DivisionSemiring α] [DivisionSemiring β] [RingHomClass F α β] (f : F) (q : ℚ≥0) : f q = q
F : Type u_1 α : Type u_3 β : Type u_4 inst✝³ : FunLike F α β inst✝² : DivisionSemiring α inst✝¹ : DivisionSemiring β inst✝ : RingHomClass F α β f : F q : ℚ≥0 ⊢ f ↑q = ↑q
simp_rw [NNRat.cast_def, map_div₀, map_natCast]
no goals
a8ce91f6202640c8
Ordinal.div_opow_log_pos
Mathlib/SetTheory/Ordinal/Exponential.lean
theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)
case inr b o : Ordinal.{u_1} ho : o ≠ 0 hb : 0 < b ⊢ 0 < o / b ^ log b o
rw [div_pos (opow_ne_zero _ hb.ne')]
case inr b o : Ordinal.{u_1} ho : o ≠ 0 hb : 0 < b ⊢ b ^ log b o ≤ o
2c0e70dc5e0a443e
Equiv.Perm.IsCycle.support_pow_eq_iff
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
theorem IsCycle.support_pow_eq_iff (hf : IsCycle f) {n : ℕ} : support (f ^ n) = support f ↔ ¬orderOf f ∣ n
case mpr α : Type u_2 f : Perm α inst✝¹ : DecidableEq α inst✝ : Fintype α hf : f.IsCycle n : ℕ ⊢ ¬f ^ n = 1 → (f ^ n).support = f.support
intro H
case mpr α : Type u_2 f : Perm α inst✝¹ : DecidableEq α inst✝ : Fintype α hf : f.IsCycle n : ℕ H : ¬f ^ n = 1 ⊢ (f ^ n).support = f.support
fcbe5eebb49a4140
SetTheory.PGame.insertLeft_equiv_of_lf
Mathlib/SetTheory/Game/PGame.lean
/-- Adding a gift horse left option does not change the value of `x`. A gift horse left option is a game `x'` with `x' ⧏ x`. It is called "gift horse" because it seems like Left has gotten the "gift" of a new option, but actually the value of the game did not change. -/ lemma insertLeft_equiv_of_lf {x x' : PGame} (h : x' ⧏ x) : insertLeft x x' ≈ x
x x' : PGame h : x' ⧏ x ⊢ x.insertLeft x' ≤ x ∧ x ≤ x.insertLeft x'
constructor
case left x x' : PGame h : x' ⧏ x ⊢ x.insertLeft x' ≤ x case right x x' : PGame h : x' ⧏ x ⊢ x ≤ x.insertLeft x'
a22baa14b9ba85ee
tendsto_iff_dist_tendsto_zero
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
theorem tendsto_iff_dist_tendsto_zero {f : β → α} {x : Filter β} {a : α} : Tendsto f x (𝓝 a) ↔ Tendsto (fun b => dist (f b) a) x (𝓝 0)
α : Type u β : Type v inst✝ : PseudoMetricSpace α f : β → α x : Filter β a : α ⊢ Tendsto f x (𝓝 a) ↔ Tendsto (fun b => dist (f b) a) x (𝓝 0)
rw [← nhds_comap_dist a, tendsto_comap_iff, Function.comp_def]
no goals
7dfa88c1fd4326bf
Set.subset_pair_iff_eq
Mathlib/Data/Set/Insert.lean
theorem subset_pair_iff_eq {x y : α} : s ⊆ {x, y} ↔ s = ∅ ∨ s = {x} ∨ s = {y} ∨ s = {x, y}
α : Type u s : Set α x y : α h : x ∈ s → {y} = s \ {x} → s = {x, y} ⊢ (s = ∅ ∨ s = {y}) ∨ x ∈ s ∧ ((s = ∅ ∨ s = {x}) ∨ s \ {x} = {y}) → s = ∅ ∨ s = {x} ∨ s = {y} ∨ s = {x, y}
tauto
no goals
73841c1827c5fd17
SetTheory.PGame.rightMoves_mul_iff
Mathlib/SetTheory/Game/Basic.lean
/-- The right options of `x * y` are the left options of `x * (-y)` and of `(-x) * y` of the first kind, up to equivalence. -/ lemma rightMoves_mul_iff {x y : PGame} (P : Game → Prop) : (∀ k, P ⟦(x * y).moveRight k⟧) ↔ (∀ i j, P (-⟦mulOption x (-y) i j⟧)) ∧ (∀ i j, P (-⟦mulOption (-x) y i j⟧))
case mk.mk.mpr.inr.mk P : Game → Prop α✝¹ β✝¹ : Type u_1 a✝³ : α✝¹ → PGame a✝² : β✝¹ → PGame α✝ β✝ : Type u_1 a✝¹ : α✝ → PGame a✝ : β✝ → PGame h : (∀ (i : (mk α✝¹ β✝¹ a✝³ a✝²).LeftMoves) (j : (-mk α✝ β✝ a✝¹ a✝).LeftMoves), P (-⟦(mk α✝¹ β✝¹ a✝³ a✝²).mulOption (-mk α✝ β✝ a✝¹ a✝) i j⟧)) ∧ ∀ (i : (-mk α✝¹ β✝¹ a✝³ a✝²).LeftMoves) (j : (mk α✝ β✝ a✝¹ a✝).LeftMoves), P (-⟦(-mk α✝¹ β✝¹ a✝³ a✝²).mulOption (mk α✝ β✝ a✝¹ a✝) i j⟧) i : β✝¹ j : α✝ ⊢ P ⟦(mk α✝¹ β✝¹ a✝³ a✝² * mk α✝ β✝ a✝¹ a✝).moveRight (Sum.inr (i, j))⟧
convert h.2 i j using 1
case h.e'_1 P : Game → Prop α✝¹ β✝¹ : Type u_1 a✝³ : α✝¹ → PGame a✝² : β✝¹ → PGame α✝ β✝ : Type u_1 a✝¹ : α✝ → PGame a✝ : β✝ → PGame h : (∀ (i : (mk α✝¹ β✝¹ a✝³ a✝²).LeftMoves) (j : (-mk α✝ β✝ a✝¹ a✝).LeftMoves), P (-⟦(mk α✝¹ β✝¹ a✝³ a✝²).mulOption (-mk α✝ β✝ a✝¹ a✝) i j⟧)) ∧ ∀ (i : (-mk α✝¹ β✝¹ a✝³ a✝²).LeftMoves) (j : (mk α✝ β✝ a✝¹ a✝).LeftMoves), P (-⟦(-mk α✝¹ β✝¹ a✝³ a✝²).mulOption (mk α✝ β✝ a✝¹ a✝) i j⟧) i : β✝¹ j : α✝ ⊢ ⟦(mk α✝¹ β✝¹ a✝³ a✝² * mk α✝ β✝ a✝¹ a✝).moveRight (Sum.inr (i, j))⟧ = -⟦(-mk α✝¹ β✝¹ a✝³ a✝²).mulOption (mk α✝ β✝ a✝¹ a✝) i j⟧
8f7e2212785f2917
exists_hasDerivWithinAt_eq_of_gt_of_lt
Mathlib/Analysis/Calculus/Darboux.lean
theorem exists_hasDerivWithinAt_eq_of_gt_of_lt (hab : a ≤ b) (hf : ∀ x ∈ Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x) {m : ℝ} (hma : f' a < m) (hmb : m < f' b) : m ∈ f' '' Ioo a b
a b : ℝ f f' : ℝ → ℝ hab : a ≤ b hf : ∀ x ∈ Icc a b, HasDerivWithinAt f (f' x) (Icc a b) x m : ℝ hma : f' a < m hmb : m < f' b hab' : a < b g : ℝ → ℝ := fun x => f x - m * x hg : ∀ x ∈ Icc a b, HasDerivWithinAt g (f' x - m) (Icc a b) x c : ℝ cmem : c ∈ Icc a b hc : IsMinOn g (Icc a b) c cmem' : c ∈ Ioo a b ⊢ Icc a b ∈ 𝓝 c
rwa [← mem_interior_iff_mem_nhds, interior_Icc]
no goals
226337358bf5c20c
FormalMultilinearSeries.ofScalars_radius_eq_top_of_tendsto
Mathlib/Analysis/Analytic/OfScalars.lean
theorem ofScalars_radius_eq_top_of_tendsto (hc : ∀ᶠ n in atTop, c n ≠ 0) (hc' : Tendsto (fun n ↦ ‖c n.succ‖ / ‖c n‖) atTop (𝓝 0)) : (ofScalars E c).radius = ⊤
𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedRing E inst✝ : NormedAlgebra 𝕜 E c : ℕ → 𝕜 hc : ∀ᶠ (n : ℕ) in atTop, c n ≠ 0 hc' : Tendsto (fun n => ‖c n.succ‖ / ‖c n‖) atTop (𝓝 0) r' : ℝ≥0 ⊢ Summable fun n => ‖ofScalars E c n‖ * ↑r' ^ n
by_cases hrz : r' = 0
case pos 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedRing E inst✝ : NormedAlgebra 𝕜 E c : ℕ → 𝕜 hc : ∀ᶠ (n : ℕ) in atTop, c n ≠ 0 hc' : Tendsto (fun n => ‖c n.succ‖ / ‖c n‖) atTop (𝓝 0) r' : ℝ≥0 hrz : r' = 0 ⊢ Summable fun n => ‖ofScalars E c n‖ * ↑r' ^ n case neg 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedRing E inst✝ : NormedAlgebra 𝕜 E c : ℕ → 𝕜 hc : ∀ᶠ (n : ℕ) in atTop, c n ≠ 0 hc' : Tendsto (fun n => ‖c n.succ‖ / ‖c n‖) atTop (𝓝 0) r' : ℝ≥0 hrz : ¬r' = 0 ⊢ Summable fun n => ‖ofScalars E c n‖ * ↑r' ^ n
fed995db04eea233
CategoryTheory.PreGaloisCategory.card_aut_le_card_fiber_of_connected
Mathlib/CategoryTheory/Galois/Basic.lean
/-- If `A` is connected, the cardinality of `Aut A` is smaller than the cardinality of the fiber of `A`. -/ lemma card_aut_le_card_fiber_of_connected (A : C) [IsConnected A] : Nat.card (Aut A) ≤ Nat.card (F.obj A)
C : Type u₁ inst✝³ : Category.{u₂, u₁} C F : C ⥤ FintypeCat inst✝² : PreGaloisCategory C inst✝¹ : FiberFunctor F A : C inst✝ : IsConnected A ⊢ Nat.card (Aut A) ≤ Nat.card (F.obj A).carrier
have h : Nonempty (F.obj A) := inferInstance
C : Type u₁ inst✝³ : Category.{u₂, u₁} C F : C ⥤ FintypeCat inst✝² : PreGaloisCategory C inst✝¹ : FiberFunctor F A : C inst✝ : IsConnected A h : Nonempty (F.obj A).carrier ⊢ Nat.card (Aut A) ≤ Nat.card (F.obj A).carrier
22d78ca2a5f87417
MeasureTheory.MemLp.condExpL2_ae_eq_condExp'
Mathlib/MeasureTheory/Function/ConditionalExpectation/Basic.lean
lemma MemLp.condExpL2_ae_eq_condExp' (hm : m ≤ m₀) (hf1 : Integrable f μ) (hf2 : MemLp f 2 μ) [SigmaFinite (μ.trim hm)] : condExpL2 E 𝕜 hm hf2.toLp =ᵐ[μ] μ[f | m]
α : Type u_1 E : Type u_3 𝕜 : Type u_4 inst✝⁵ : RCLike 𝕜 m m₀ : MeasurableSpace α μ : Measure α f : α → E inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : InnerProductSpace 𝕜 E hm : m ≤ m₀ hf1 : Integrable f μ hf2 : MemLp f 2 μ inst✝ : SigmaFinite (μ.trim hm) s : Set α hs : MeasurableSet s htop : μ s < ⊤ ⊢ ∫ (x : α) in s, ↑↑(toLp f hf2) x ∂μ = ∫ (x : α) in s, f x ∂μ
refine setIntegral_congr_ae (hm _ hs) ?_
α : Type u_1 E : Type u_3 𝕜 : Type u_4 inst✝⁵ : RCLike 𝕜 m m₀ : MeasurableSpace α μ : Measure α f : α → E inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : InnerProductSpace 𝕜 E hm : m ≤ m₀ hf1 : Integrable f μ hf2 : MemLp f 2 μ inst✝ : SigmaFinite (μ.trim hm) s : Set α hs : MeasurableSet s htop : μ s < ⊤ ⊢ ∀ᵐ (x : α) ∂μ, x ∈ s → ↑↑(toLp f hf2) x = f x
704d12b97c45b511
Topology.isEmbedding_sigmaMap
Mathlib/Topology/Constructions.lean
lemma Topology.isEmbedding_sigmaMap {f₁ : ι → κ} {f₂ : ∀ i, σ i → τ (f₁ i)} (h : Injective f₁) : IsEmbedding (Sigma.map f₁ f₂) ↔ ∀ i, IsEmbedding (f₂ i)
ι : Type u_5 κ : Type u_6 σ : ι → Type u_7 τ : κ → Type u_8 inst✝¹ : (i : ι) → TopologicalSpace (σ i) inst✝ : (k : κ) → TopologicalSpace (τ k) f₁ : ι → κ f₂ : (i : ι) → σ i → τ (f₁ i) h : Injective f₁ ⊢ IsEmbedding (Sigma.map f₁ f₂) ↔ ∀ (i : ι), IsEmbedding (f₂ i)
simp only [isEmbedding_iff, Injective.sigma_map, isInducing_sigmaMap h, forall_and, h.sigma_map_iff]
no goals
46e9dcc1781a2c29
Int.cast_add
Mathlib/Data/Int/Cast/Basic.lean
theorem cast_add : ∀ m n, ((m + n : ℤ) : R) = m + n | (m : ℕ), (n : ℕ) => by simp [-Int.natCast_add, ← Int.ofNat_add] | (m : ℕ), -[n+1] => by erw [cast_subNatNat, cast_natCast, cast_negSucc, sub_eq_add_neg] | -[m+1], (n : ℕ) => by erw [cast_subNatNat, cast_natCast, cast_negSucc, sub_eq_iff_eq_add, add_assoc, eq_neg_add_iff_add_eq, ← Nat.cast_add, ← Nat.cast_add, Nat.add_comm] | -[m+1], -[n+1] => show (-[m + n + 1+1] : R) = _ by rw [cast_negSucc, cast_negSucc, cast_negSucc, ← neg_add_rev, ← Nat.cast_add, Nat.add_right_comm m n 1, Nat.add_assoc, Nat.add_comm]
R : Type u inst✝ : AddGroupWithOne R m n : ℕ ⊢ ↑-[m + n + 1+1] = ↑-[m+1] + ↑-[n+1]
rw [cast_negSucc, cast_negSucc, cast_negSucc, ← neg_add_rev, ← Nat.cast_add, Nat.add_right_comm m n 1, Nat.add_assoc, Nat.add_comm]
no goals
1b92f9b12b62a7d0
Array.extract_size
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem extract_size (as : Array α) : as.extract 0 as.size = as
case h₂.e_i α : Type u_1 as : Array α i✝ : Nat hi₁✝ : i✝ < as.extract.size hi₂✝ : i✝ < as.size ⊢ 0 + i✝ = i✝
rw [Nat.zero_add]
no goals
e927f7c749316b3a
IsPreconnected.iUnion_of_reflTransGen
Mathlib/Topology/Connected/Basic.lean
theorem IsPreconnected.iUnion_of_reflTransGen {ι : Type*} {s : ι → Set α} (H : ∀ i, IsPreconnected (s i)) (K : ∀ i j, ReflTransGen (fun i j : ι => (s i ∩ s j).Nonempty) i j) : IsPreconnected (⋃ n, s n)
α : Type u inst✝ : TopologicalSpace α ι : Type u_3 s : ι → Set α H : ∀ (i : ι), IsPreconnected (s i) K : ∀ (i j : ι), ReflTransGen (fun i j => (s i ∩ s j).Nonempty) i j i : ι x✝¹ : i ∈ univ j : ι x✝ : j ∈ univ ⊢ ReflTransGen (fun i j => (s i ∩ s j).Nonempty ∧ i ∈ univ) i j
simpa [mem_univ] using K i j
no goals
57b13d0a6db6e6e6
Projectivization.card
Mathlib/LinearAlgebra/Projectivization/Cardinality.lean
/-- Fraction free cardinality formula for the points of `ℙ k V` if `k` and `V` are finite (for silly reasons the formula also holds when `k` and `V` are infinite). See `Projectivization.card'` and `Projectivization.card''` for other spellings of the formula. -/ lemma card : Nat.card V - 1 = Nat.card (ℙ k V) * (Nat.card k - 1)
case inr k : Type u_1 V : Type u_2 inst✝² : DivisionRing k inst✝¹ : AddCommGroup V inst✝ : Module k V a✝ : Nontrivial V this : ∀ (k : Type u_1) (V : Type u_2) [inst : DivisionRing k] [inst_1 : AddCommGroup V] [inst_2 : Module k V], Nontrivial V → Finite k → Nat.card V - 1 = Nat.card (ℙ k V) * (Nat.card k - 1) h : ¬Finite k ⊢ Nat.card V - 1 = Nat.card (ℙ k V) * (Nat.card k - 1)
simp only [not_finite_iff_infinite] at h
case inr k : Type u_1 V : Type u_2 inst✝² : DivisionRing k inst✝¹ : AddCommGroup V inst✝ : Module k V a✝ : Nontrivial V this : ∀ (k : Type u_1) (V : Type u_2) [inst : DivisionRing k] [inst_1 : AddCommGroup V] [inst_2 : Module k V], Nontrivial V → Finite k → Nat.card V - 1 = Nat.card (ℙ k V) * (Nat.card k - 1) h : Infinite k ⊢ Nat.card V - 1 = Nat.card (ℙ k V) * (Nat.card k - 1)
1d5a95497a0b5f13
CategoryTheory.extensiveTopology.presheafIsLocallySurjective_iff
Mathlib/CategoryTheory/Sites/Coherent/LocallySurjective.lean
lemma extensiveTopology.presheafIsLocallySurjective_iff [FinitaryPreExtensive C] {F G : Cᵒᵖ ⥤ D} (f : F ⟶ G) [PreservesFiniteProducts F] [PreservesFiniteProducts G] [PreservesFiniteProducts (forget D)] : Presheaf.IsLocallySurjective (extensiveTopology C) f ↔ ∀ (X : C), Function.Surjective (f.app (op X))
C : Type u_1 D : Type u_2 inst✝⁷ : Category.{u_4, u_1} C inst✝⁶ : Category.{u_5, u_2} D FD : D → D → Type u_3 CD : D → Type w inst✝⁵ : (X Y : D) → FunLike (FD X Y) (CD X) (CD Y) inst✝⁴ : ConcreteCategory D FD inst✝³ : FinitaryPreExtensive C F G : Cᵒᵖ ⥤ D f : F ⟶ G inst✝² : PreservesFiniteProducts F inst✝¹ : PreservesFiniteProducts G inst✝ : PreservesFiniteProducts (forget D) ⊢ Presheaf.IsLocallySurjective (extensiveTopology C) f ↔ ∀ (X : C), Function.Surjective ⇑(ConcreteCategory.hom (f.app (op X)))
constructor
case mp C : Type u_1 D : Type u_2 inst✝⁷ : Category.{u_4, u_1} C inst✝⁶ : Category.{u_5, u_2} D FD : D → D → Type u_3 CD : D → Type w inst✝⁵ : (X Y : D) → FunLike (FD X Y) (CD X) (CD Y) inst✝⁴ : ConcreteCategory D FD inst✝³ : FinitaryPreExtensive C F G : Cᵒᵖ ⥤ D f : F ⟶ G inst✝² : PreservesFiniteProducts F inst✝¹ : PreservesFiniteProducts G inst✝ : PreservesFiniteProducts (forget D) ⊢ Presheaf.IsLocallySurjective (extensiveTopology C) f → ∀ (X : C), Function.Surjective ⇑(ConcreteCategory.hom (f.app (op X))) case mpr C : Type u_1 D : Type u_2 inst✝⁷ : Category.{u_4, u_1} C inst✝⁶ : Category.{u_5, u_2} D FD : D → D → Type u_3 CD : D → Type w inst✝⁵ : (X Y : D) → FunLike (FD X Y) (CD X) (CD Y) inst✝⁴ : ConcreteCategory D FD inst✝³ : FinitaryPreExtensive C F G : Cᵒᵖ ⥤ D f : F ⟶ G inst✝² : PreservesFiniteProducts F inst✝¹ : PreservesFiniteProducts G inst✝ : PreservesFiniteProducts (forget D) ⊢ (∀ (X : C), Function.Surjective ⇑(ConcreteCategory.hom (f.app (op X)))) → Presheaf.IsLocallySurjective (extensiveTopology C) f
49c86ecf3311443d
BitVec.forall_zero_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem forall_zero_iff {P : BitVec 0 → Prop} : (∀ v, P v) ↔ P 0#0
P : BitVec 0 → Prop ⊢ (∀ (v : BitVec 0), P v) ↔ P 0#0
constructor
case mp P : BitVec 0 → Prop ⊢ (∀ (v : BitVec 0), P v) → P 0#0 case mpr P : BitVec 0 → Prop ⊢ P 0#0 → ∀ (v : BitVec 0), P v
14570500a054ffbe
FirstOrder.Language.dlo_age
Mathlib/ModelTheory/Order.lean
lemma dlo_age [Language.order.Structure M] [Mdlo : M ⊨ Language.order.dlo] [Nonempty M] : Language.order.age M = {M : CategoryTheory.Bundled.{w'} Language.order.Structure | Finite M ∧ M ⊨ Language.order.linearOrderTheory}
M : Type w' inst✝¹ : Language.order.Structure M Mdlo : M ⊨ Language.order.dlo inst✝ : Nonempty M ⊢ Language.order.age M = {M | Finite ↑M ∧ ↑M ⊨ Language.order.linearOrderTheory}
rw [age]
M : Type w' inst✝¹ : Language.order.Structure M Mdlo : M ⊨ Language.order.dlo inst✝ : Nonempty M ⊢ {N | FG Language.order ↑N ∧ Nonempty (↑N ↪[Language.order] M)} = {M | Finite ↑M ∧ ↑M ⊨ Language.order.linearOrderTheory}
833eff06b402bf5b
CochainComplex.exists_iso_single
Mathlib/Algebra/Homology/Embedding/CochainComplex.lean
/-- A cochain complex that is both strictly `≤ n` and `≥ n` is isomorphic to a complex `(single _ _ n).obj M` for some object `M`. -/ lemma exists_iso_single [HasZeroObject C] (n : ℤ) [K.IsStrictlyGE n] [K.IsStrictlyLE n] : ∃ (M : C), Nonempty (K ≅ (single _ _ n).obj M) := ⟨K.X n, ⟨{ hom := mkHomToSingle (𝟙 _) (fun i (hi : i + 1 = n) ↦ (K.isZero_of_isStrictlyGE n i (by omega)).eq_of_src _ _) inv := mkHomFromSingle (𝟙 _) (fun i (hi : n + 1 = i) ↦ (K.isZero_of_isStrictlyLE n i (by omega)).eq_of_tgt _ _) hom_inv_id
C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : HasZeroMorphisms C K : CochainComplex C ℤ inst✝² : HasZeroObject C n : ℤ inst✝¹ : K.IsStrictlyGE n inst✝ : K.IsStrictlyLE n i : ℤ hi : n < i ⊢ n < i
omega
no goals
5826bfce8c98b5e6
MeasureTheory.hasFDerivAt_convolution_right_with_param
Mathlib/Analysis/Convolution.lean
theorem hasFDerivAt_convolution_right_with_param {g : P → G → E'} {s : Set P} {k : Set G} (hs : IsOpen s) (hk : IsCompact k) (hgs : ∀ p, ∀ x, p ∈ s → x ∉ k → g p x = 0) (hf : LocallyIntegrable f μ) (hg : ContDiffOn 𝕜 1 (↿g) (s ×ˢ univ)) (q₀ : P × G) (hq₀ : q₀.1 ∈ s) : HasFDerivAt (fun q : P × G => (f ⋆[L, μ] g q.1) q.2) ((f ⋆[L.precompR (P × G), μ] fun x : G => fderiv 𝕜 (↿g) (q₀.1, x)) q₀.2) q₀
case intro.intro.intro.intro 𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF P : Type uP inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F f : G → E inst✝¹⁰ : RCLike 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace ℝ F inst✝⁶ : NormedSpace 𝕜 F inst✝⁵ : MeasurableSpace G inst✝⁴ : NormedAddCommGroup G inst✝³ : BorelSpace G inst✝² : NormedSpace 𝕜 G inst✝¹ : NormedAddCommGroup P inst✝ : NormedSpace 𝕜 P μ : Measure G L : E →L[𝕜] E' →L[𝕜] F g : P → G → E' s : Set P k : Set G hs : IsOpen s hk : IsCompact k hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0 hf : LocallyIntegrable f μ hg : ContDiffOn 𝕜 1 (↿g) (s ×ˢ univ) q₀ : P × G hq₀ : q₀.1 ∈ s g' : P × G → P × G →L[𝕜] E' := fderiv 𝕜 ↿g A : ∀ p ∈ s, Continuous (g p) A' : ∀ (q : P × G), q.1 ∈ s → s ×ˢ univ ∈ 𝓝 q g'_zero : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g' (p, x) = 0 ε C : ℝ εpos : 0 < ε h₀ε : ball q₀.1 ε ⊆ s hε : ∀ (p : P) (x : G), ‖p - q₀.1‖ < ε → ‖g' (p, x)‖ ≤ C I1 : ∀ᶠ (x : P × G) in 𝓝 q₀, AEStronglyMeasurable (fun a => (L (f a)) (g x.1 (x.2 - a))) μ I2 : Integrable (fun a => (L (f a)) (g q₀.1 (q₀.2 - a))) μ I3 : AEStronglyMeasurable (fun a => (L (f a)).comp (g' (q₀.1, q₀.2 - a))) μ K' : Set G := -k + {q₀.2} K'_def : K' = -k + {q₀.2} ⊢ HasFDerivAt (fun q => (f ⋆[L, μ] g q.1) q.2) ((f ⋆[precompR (P × G) L, μ] fun x => fderiv 𝕜 (↿g) (q₀.1, x)) q₀.2) q₀
have hK' : IsCompact K' := hk.neg.add isCompact_singleton
case intro.intro.intro.intro 𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF P : Type uP inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F f : G → E inst✝¹⁰ : RCLike 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace ℝ F inst✝⁶ : NormedSpace 𝕜 F inst✝⁵ : MeasurableSpace G inst✝⁴ : NormedAddCommGroup G inst✝³ : BorelSpace G inst✝² : NormedSpace 𝕜 G inst✝¹ : NormedAddCommGroup P inst✝ : NormedSpace 𝕜 P μ : Measure G L : E →L[𝕜] E' →L[𝕜] F g : P → G → E' s : Set P k : Set G hs : IsOpen s hk : IsCompact k hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0 hf : LocallyIntegrable f μ hg : ContDiffOn 𝕜 1 (↿g) (s ×ˢ univ) q₀ : P × G hq₀ : q₀.1 ∈ s g' : P × G → P × G →L[𝕜] E' := fderiv 𝕜 ↿g A : ∀ p ∈ s, Continuous (g p) A' : ∀ (q : P × G), q.1 ∈ s → s ×ˢ univ ∈ 𝓝 q g'_zero : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g' (p, x) = 0 ε C : ℝ εpos : 0 < ε h₀ε : ball q₀.1 ε ⊆ s hε : ∀ (p : P) (x : G), ‖p - q₀.1‖ < ε → ‖g' (p, x)‖ ≤ C I1 : ∀ᶠ (x : P × G) in 𝓝 q₀, AEStronglyMeasurable (fun a => (L (f a)) (g x.1 (x.2 - a))) μ I2 : Integrable (fun a => (L (f a)) (g q₀.1 (q₀.2 - a))) μ I3 : AEStronglyMeasurable (fun a => (L (f a)).comp (g' (q₀.1, q₀.2 - a))) μ K' : Set G := -k + {q₀.2} K'_def : K' = -k + {q₀.2} hK' : IsCompact K' ⊢ HasFDerivAt (fun q => (f ⋆[L, μ] g q.1) q.2) ((f ⋆[precompR (P × G) L, μ] fun x => fderiv 𝕜 (↿g) (q₀.1, x)) q₀.2) q₀
681ec723c7fd0b70
Vector.vector₃_induction
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem vector₃_induction (P : Vector (Vector (Vector α n) m) k → Prop) (of : ∀ (xss : Array (Array (Array α))) (h₁ : xss.size = k) (h₂ : ∀ xs ∈ xss, xs.size = m) (h₃ : ∀ xs ∈ xss, ∀ x ∈ xs, x.size = n), P (mk (xss.attach.map (fun ⟨xs, m⟩ => mk (xs.attach.map (fun ⟨x, m'⟩ => mk x (h₃ xs m x m'))) (by simpa using h₂ xs m))) (by simpa using h₁))) (ass : Vector (Vector (Vector α n) m) k) : P ass
α : Type u_1 n m k : Nat P : Vector (Vector (Vector α n) m) k → Prop of : ∀ (xss : Array (Array (Array α))) (h₁ : xss.size = k) (h₂ : ∀ (xs : Array (Array α)), xs ∈ xss → xs.size = m) (h₃ : ∀ (xs : Array (Array α)), xs ∈ xss → ∀ (x : Array α), x ∈ xs → x.size = n), P { toArray := Array.map (fun x => match x with | ⟨xs, m_1⟩ => { toArray := Array.map (fun x => match x with | ⟨x, m'⟩ => { toArray := x, size_toArray := ⋯ }) xs.attach, size_toArray := ⋯ }) xss.attach, size_toArray := ⋯ } ass : Vector (Vector (Vector α n) m) k ⊢ ∀ (xs : Array (Array α)), xs ∈ (map (fun as => (map toArray as).toArray) ass).toArray → ∀ (x : Array α), x ∈ xs → x.size = n
simp
no goals
ac402192d6221673
CochainComplex.mappingCone.ext_cochain_from_iff
Mathlib/Algebra/Homology/HomotopyCategory/MappingCone.lean
lemma ext_cochain_from_iff (i j : ℤ) (hij : i + 1 = j) {K : CochainComplex C ℤ} {γ₁ γ₂ : Cochain (mappingCone φ) K j} : γ₁ = γ₂ ↔ (inl φ).comp γ₁ (show _ = i by omega) = (inl φ).comp γ₂ (by omega) ∧ (Cochain.ofHom (inr φ)).comp γ₁ (zero_add j) = (Cochain.ofHom (inr φ)).comp γ₂ (zero_add j)
case mpr.intro.h C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : Preadditive C F G : CochainComplex C ℤ φ : F ⟶ G inst✝ : HasHomotopyCofiber φ i j : ℤ hij : i + 1 = j K : CochainComplex C ℤ γ₁ γ₂ : Cochain (mappingCone φ) K j p q : ℤ hpq : p + j = q h₁ : (inl φ).v (p + 1) p ⋯ ≫ γ₁.v p q hpq = (inl φ).v (p + 1) p ⋯ ≫ γ₂.v p q hpq h₂ : (inr φ).f p ≫ γ₁.v p q ⋯ = (inr φ).f p ≫ γ₂.v p q ⋯ ⊢ (inl φ).v (p + 1) p ⋯ ≫ γ₁.v p q hpq = (inl φ).v (p + 1) p ⋯ ≫ γ₂.v p q hpq ∧ (inr φ).f p ≫ γ₁.v p q hpq = (inr φ).f p ≫ γ₂.v p q hpq
exact ⟨h₁, h₂⟩
no goals
dbcc60702c58cd99
blimsup_cthickening_ae_le_of_eventually_mul_le_aux
Mathlib/MeasureTheory/Covering/LiminfLimsup.lean
theorem blimsup_cthickening_ae_le_of_eventually_mul_le_aux (p : ℕ → Prop) {s : ℕ → Set α} (hs : ∀ i, IsClosed (s i)) {r₁ r₂ : ℕ → ℝ} (hr : Tendsto r₁ atTop (𝓝[>] 0)) (hrp : 0 ≤ r₁) {M : ℝ} (hM : 0 < M) (hM' : M < 1) (hMr : ∀ᶠ i in atTop, M * r₁ i ≤ r₂ i) : (blimsup (fun i => cthickening (r₁ i) (s i)) atTop p : Set α) ≤ᵐ[μ] (blimsup (fun i => cthickening (r₂ i) (s i)) atTop p : Set α)
α : Type u_1 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : SecondCountableTopology α inst✝³ : MeasurableSpace α inst✝² : BorelSpace α μ : Measure α inst✝¹ : IsLocallyFiniteMeasure μ inst✝ : IsUnifLocDoublingMeasure μ p : ℕ → Prop s : ℕ → Set α hs : ∀ (i : ℕ), IsClosed (s i) r₁ r₂ : ℕ → ℝ hr : Tendsto r₁ atTop (𝓝[>] 0) hrp : 0 ≤ r₁ M : ℝ hM : 0 < M hM' : M < 1 hMr : ∀ᶠ (i : ℕ) in atTop, M * r₁ i ≤ r₂ i Y₁ : ℕ → Set α := fun i => cthickening (r₁ i) (s i) Y₂ : ℕ → Set α := fun i => cthickening (r₂ i) (s i) Z : ℕ → Set α := fun i => ⋃ j, ⋃ (_ : p j ∧ i ≤ j), Y₂ j i : ℕ W : Set α := blimsup Y₁ atTop p \ Z i ⊢ μ W = 0
by_contra contra
α : Type u_1 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : SecondCountableTopology α inst✝³ : MeasurableSpace α inst✝² : BorelSpace α μ : Measure α inst✝¹ : IsLocallyFiniteMeasure μ inst✝ : IsUnifLocDoublingMeasure μ p : ℕ → Prop s : ℕ → Set α hs : ∀ (i : ℕ), IsClosed (s i) r₁ r₂ : ℕ → ℝ hr : Tendsto r₁ atTop (𝓝[>] 0) hrp : 0 ≤ r₁ M : ℝ hM : 0 < M hM' : M < 1 hMr : ∀ᶠ (i : ℕ) in atTop, M * r₁ i ≤ r₂ i Y₁ : ℕ → Set α := fun i => cthickening (r₁ i) (s i) Y₂ : ℕ → Set α := fun i => cthickening (r₂ i) (s i) Z : ℕ → Set α := fun i => ⋃ j, ⋃ (_ : p j ∧ i ≤ j), Y₂ j i : ℕ W : Set α := blimsup Y₁ atTop p \ Z i contra : ¬μ W = 0 ⊢ False
f93df810108e5d67
CategoryTheory.ProjectiveResolution.fromLeftDerivedZero_eq
Mathlib/CategoryTheory/Abelian/LeftDerived.lean
lemma ProjectiveResolution.fromLeftDerivedZero_eq {X : C} (P : ProjectiveResolution X) (F : C ⥤ D) [F.Additive] : F.fromLeftDerivedZero.app X = (P.isoLeftDerivedObj F 0).hom ≫ (ChainComplex.isoHomologyι₀ _).hom ≫ P.fromLeftDerivedZero' F
C : Type u inst✝⁵ : Category.{v, u} C D : Type u_1 inst✝⁴ : Category.{u_2, u_1} D inst✝³ : Abelian C inst✝² : HasProjectiveResolutions C inst✝¹ : Abelian D X : C P : ProjectiveResolution X F : C ⥤ D inst✝ : F.Additive ⊢ (lift (𝟙 X) P (projectiveResolution X)).f 0 ≫ (projectiveResolution X).π.f 0 = P.π.f 0 ≫ 𝟙 X
simp
no goals
4e0dec9d0923a13a
int_prod_range_nonneg
Mathlib/Analysis/Convex/SpecificFunctions/Deriv.lean
theorem int_prod_range_nonneg (m : ℤ) (n : ℕ) (hn : Even n) : 0 ≤ ∏ k ∈ Finset.range n, (m - k)
case intro.succ.inr m : ℤ n : ℕ ihn : 0 ≤ ∏ k ∈ Finset.range (2 * n), (m - ↑k) k : ℕ hmk : ↑k < m ⊢ 0 ≤ (m - ↑k) * (m - ↑(k + 1))
exact mul_nonneg (sub_nonneg_of_le hmk.le) (sub_nonneg_of_le hmk)
no goals
845865b3fc92c079
Finmap.erase_erase
Mathlib/Data/Finmap.lean
theorem erase_erase {a a' : α} {s : Finmap β} : erase a (erase a' s) = erase a' (erase a s) := induction_on s fun s => ext (by simp only [AList.erase_erase, erase_toFinmap])
α : Type u β : α → Type v inst✝ : DecidableEq α a a' : α s✝ : Finmap β s : AList β ⊢ (erase a (erase a' ⟦s⟧)).entries = (erase a' (erase a ⟦s⟧)).entries
simp only [AList.erase_erase, erase_toFinmap]
no goals
9578036a56fd462f
Matrix.IsHermitian.cfc_eq
Mathlib/LinearAlgebra/Matrix/HermitianFunctionalCalculus.lean
lemma cfc_eq (f : ℝ → ℝ) : cfc f A = hA.cfc f
n : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 hA : A.IsHermitian f : ℝ → ℝ hA' : IsSelfAdjoint A this : cfcHom hA' = hA.cfcAux ⊢ hA.cfcAux { toFun := (spectrum ℝ A).restrict f, continuous_toFun := ⋯ } = hA.cfc f
simp only [cfcAux_apply, ContinuousMap.coe_mk, Function.comp_def, Set.restrict_apply, IsHermitian.cfc]
no goals
c4d21dcf8fd1c96c
list_mul_sum
Mathlib/NumberTheory/Ostrowski.lean
private lemma list_mul_sum {R : Type*} [CommSemiring R] {T : Type*} (l : List T) (y : R) (x : R) : (l.mapIdx fun i _ => x * y ^ i).sum = x * (l.mapIdx fun i _ => y ^ i).sum
case e_a R : Type u_1 inst✝ : CommSemiring R T : Type u_2 l : List T y x : R ⊢ List.map (fun x_1 => x • y ^ x_1.2) l.zipIdx = List.map (fun x_1 => x • x_1) (List.map (fun x => y ^ x.2) l.zipIdx)
simp
no goals
7a4121929e1fc1a5
analyticAt_inverse
Mathlib/Analysis/Analytic/Constructions.lean
/-- If `A` is a normed algebra over `𝕜` with summable geometric series, then inversion on `A` is analytic at any unit. -/ @[fun_prop] lemma analyticAt_inverse {𝕜 : Type*} [NontriviallyNormedField 𝕜] {A : Type*} [NormedRing A] [NormedAlgebra 𝕜 A] [HasSummableGeomSeries A] (z : Aˣ) : AnalyticAt 𝕜 Ring.inverse (z : A)
case inr 𝕜 : Type u_9 inst✝³ : NontriviallyNormedField 𝕜 A : Type u_10 inst✝² : NormedRing A inst✝¹ : NormedAlgebra 𝕜 A inst✝ : HasSummableGeomSeries A z : Aˣ hA : Nontrivial A f1 : A → A := fun a => a * z.inv f2 : A → A := fun b => Ring.inverse (1 - b) f3 : A → A := fun c => 1 - z.inv * c feq : ∀ᶠ (y : A) in 𝓝 ↑z, (f1 ∘ f2 ∘ f3) y = Ring.inverse y ⊢ AnalyticAt 𝕜 Ring.inverse ↑z
apply AnalyticAt.congr _ feq
𝕜 : Type u_9 inst✝³ : NontriviallyNormedField 𝕜 A : Type u_10 inst✝² : NormedRing A inst✝¹ : NormedAlgebra 𝕜 A inst✝ : HasSummableGeomSeries A z : Aˣ hA : Nontrivial A f1 : A → A := fun a => a * z.inv f2 : A → A := fun b => Ring.inverse (1 - b) f3 : A → A := fun c => 1 - z.inv * c feq : ∀ᶠ (y : A) in 𝓝 ↑z, (f1 ∘ f2 ∘ f3) y = Ring.inverse y ⊢ AnalyticAt 𝕜 (f1 ∘ f2 ∘ f3) ↑z
a28e69020b72c97e
Std.Sat.AIG.mkGateCached.go_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/CachedLemmas.lean
theorem mkGateCached.go_decl_eq (aig : AIG α) (input : GateInput aig) : ∀ (idx : Nat) (h1) (h2), (go aig input).aig.decls[idx]'h1 = aig.decls[idx]'h2
case h_2.h_2 α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α aig : AIG α input : aig.GateInput res : Entrypoint α x✝² : Option (CacheHit aig.decls (Decl.gate input.lhs.ref.gate input.rhs.ref.gate input.lhs.inv input.rhs.inv)) heq✝² : aig.cache.get? (Decl.gate input.lhs.ref.gate input.rhs.ref.gate input.lhs.inv input.rhs.inv) = none x✝¹ x✝ : Decl α linv✝ rinv✝ : Bool heq✝¹ : aig.decls[input.lhs.ref.gate] = Decl.const false heq✝ : input.lhs.inv = false hres : { decls := aig.decls, cache := aig.cache, invariant := ⋯ }.mkConstCached false = res idx✝ : Nat h1✝ : idx✝ < ({ decls := aig.decls, cache := aig.cache, invariant := ⋯ }.mkConstCached false).aig.decls.size h2✝ : idx✝ < aig.decls.size ⊢ ({ decls := aig.decls, cache := aig.cache, invariant := ⋯ }.mkConstCached false).aig.decls[idx✝] = aig.decls[idx✝]
rw [LawfulOperator.decl_eq (f := AIG.mkConstCached)]
no goals
f550d988487b2b3c
IntermediateField.exists_algHom_adjoin_of_splits
Mathlib/FieldTheory/Extension.lean
theorem exists_algHom_adjoin_of_splits : ∃ φ : adjoin F S →ₐ[F] K, φ.comp (inclusion hL) = f
case intro.intro.refine_2.H F : Type u_1 E : Type u_2 K : Type u_3 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Field K inst✝¹ : Algebra F E inst✝ : Algebra F K S : Set E hK : ∀ s ∈ S, IsIntegral F s ∧ Splits (algebraMap F K) (minpoly F s) L : IntermediateField F E f : ↥L →ₐ[F] K hL : L ≤ adjoin F S φ : Lifts F E K hfφ : { carrier := L, emb := f } ≤ φ hφ : IsMax φ x✝ : ↥L ⊢ ((φ.emb.comp (inclusion ⋯)).comp (inclusion hL)) x✝ = f x✝
apply hfφ.2
no goals
8633288b622106c6
MvPolynomial.map_mvPolynomial_eq_eval₂
Mathlib/RingTheory/Polynomial/Basic.lean
theorem map_mvPolynomial_eq_eval₂ {S : Type*} [CommRing S] [Finite σ] (ϕ : MvPolynomial σ R →+* S) (p : MvPolynomial σ R) : ϕ p = MvPolynomial.eval₂ (ϕ.comp MvPolynomial.C) (fun s => ϕ (MvPolynomial.X s)) p
case intro.e_f.h R : Type u σ : Type v inst✝² : CommRing R S : Type u_2 inst✝¹ : CommRing S inst✝ : Finite σ ϕ : MvPolynomial σ R →+* S p : MvPolynomial σ R val✝ : Fintype σ x✝ : σ →₀ ℕ ⊢ ϕ ((monomial x✝) (coeff x✝ p)) = (ϕ.comp C) (coeff x✝ p) * ∏ i : σ, ϕ (X i) ^ x✝ i
simp only [monomial_eq, ϕ.map_pow, map_prod ϕ, ϕ.comp_apply, ϕ.map_mul, Finsupp.prod_pow]
no goals
b7d61a3a15b39281
Rat.add_nonneg
Mathlib/Algebra/Order/Ring/Unbundled/Rat.lean
protected lemma add_nonneg : 0 ≤ a → 0 ≤ b → 0 ≤ a + b := numDenCasesOn' a fun n₁ d₁ h₁ ↦ numDenCasesOn' b fun n₂ d₂ h₂ ↦ by have d₁0 : 0 < (d₁ : ℤ) := mod_cast Nat.pos_of_ne_zero h₁ have d₂0 : 0 < (d₂ : ℤ) := mod_cast Nat.pos_of_ne_zero h₂ simp only [d₁0, d₂0, h₁, h₂, Int.mul_pos, divInt_nonneg_iff_of_pos_right, divInt_add_divInt, Ne, Nat.cast_eq_zero, not_false_iff] intro n₁0 n₂0 apply Int.add_nonneg <;> apply Int.mul_nonneg <;> · first | assumption | apply Int.ofNat_zero_le
a b : ℚ n₁ : ℤ d₁ : ℕ h₁ : d₁ ≠ 0 n₂ : ℤ d₂ : ℕ h₂ : d₂ ≠ 0 ⊢ 0 ≤ n₁ /. ↑d₁ → 0 ≤ n₂ /. ↑d₂ → 0 ≤ n₁ /. ↑d₁ + n₂ /. ↑d₂
have d₁0 : 0 < (d₁ : ℤ) := mod_cast Nat.pos_of_ne_zero h₁
a b : ℚ n₁ : ℤ d₁ : ℕ h₁ : d₁ ≠ 0 n₂ : ℤ d₂ : ℕ h₂ : d₂ ≠ 0 d₁0 : 0 < ↑d₁ ⊢ 0 ≤ n₁ /. ↑d₁ → 0 ≤ n₂ /. ↑d₂ → 0 ≤ n₁ /. ↑d₁ + n₂ /. ↑d₂
54edc86bdbe9e3bd
MonoidAlgebra.mem_ideal_span_of_image
Mathlib/Algebra/MonoidAlgebra/Ideal.lean
theorem MonoidAlgebra.mem_ideal_span_of_image [Monoid G] [Semiring k] {s : Set G} {x : MonoidAlgebra k G} : x ∈ Ideal.span (MonoidAlgebra.of k G '' s) ↔ ∀ m ∈ x.support, ∃ m' ∈ s, ∃ d, m = d * m'
k : Type u_1 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { carrier := {p | ∀ m ∈ p.support, ∃ m' ∈ s, ∃ d, m = d * m'}, add_mem' := ⋯, zero_mem' := ⋯, smul_mem' := ⋯ } ⊢ x ∈ Ideal.span (⇑(of k G) '' s) ↔ x ∈ RHS
constructor
case mp k : Type u_1 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { carrier := {p | ∀ m ∈ p.support, ∃ m' ∈ s, ∃ d, m = d * m'}, add_mem' := ⋯, zero_mem' := ⋯, smul_mem' := ⋯ } ⊢ x ∈ Ideal.span (⇑(of k G) '' s) → x ∈ RHS case mpr k : Type u_1 G : Type u_3 inst✝¹ : Monoid G inst✝ : Semiring k s : Set G x : MonoidAlgebra k G RHS : Ideal (MonoidAlgebra k G) := { carrier := {p | ∀ m ∈ p.support, ∃ m' ∈ s, ∃ d, m = d * m'}, add_mem' := ⋯, zero_mem' := ⋯, smul_mem' := ⋯ } ⊢ x ∈ RHS → x ∈ Ideal.span (⇑(of k G) '' s)
848b4f1553241180
MeasureTheory.OuterMeasure.isometry_comap_mkMetric
Mathlib/MeasureTheory/Measure/Hausdorff.lean
theorem isometry_comap_mkMetric (m : ℝ≥0∞ → ℝ≥0∞) {f : X → Y} (hf : Isometry f) (H : Monotone m ∨ Surjective f) : comap f (mkMetric m) = mkMetric m
X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y m : ℝ≥0∞ → ℝ≥0∞ f : X → Y hf : Isometry f H : Monotone m ∨ Surjective f ⊢ ⨆ i, ⨆ (_ : i > 0), (comap f) (boundedBy (extend fun s x => m (diam s))) = ⨆ r, ⨆ (_ : r > 0), boundedBy (extend fun s x => m (diam s))
refine surjective_id.iSup_congr id fun ε => surjective_id.iSup_congr id fun hε => ?_
X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y m : ℝ≥0∞ → ℝ≥0∞ f : X → Y hf : Isometry f H : Monotone m ∨ Surjective f ε : ℝ≥0∞ hε : id ε > 0 ⊢ (comap f) (boundedBy (extend fun s x => m (diam s))) = boundedBy (extend fun s x => m (diam s))
15bf55d09123a3a2
WeierstrassCurve.Affine.CoordinateRing.map_mk
Mathlib/AlgebraicGeometry/EllipticCurve/Group.lean
lemma map_mk (x : R[X][Y]) : map W f (mk W x) = mk (W.map f) (x.map <| mapRingHom f)
R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S W : Affine R f : R →+* S x : R[X][Y] ⊢ eval₂ (AdjoinRoot.of (WeierstrassCurve.map W f).toAffine.polynomial) (AdjoinRoot.root (WeierstrassCurve.map W f).toAffine.polynomial) (Polynomial.map (mapRingHom f) x) = (mk (WeierstrassCurve.map W f)) (Polynomial.map (mapRingHom f) x)
exact AdjoinRoot.aeval_eq <| x.map <| mapRingHom f
no goals
ac21b53691daba88
Module.End.independent_iInf_maxGenEigenspace_of_forall_mapsTo
Mathlib/LinearAlgebra/Eigenspace/Pi.lean
lemma independent_iInf_maxGenEigenspace_of_forall_mapsTo (h : ∀ i j φ, MapsTo (f i) ((f j).maxGenEigenspace φ) ((f j).maxGenEigenspace φ)) : iSupIndep fun χ : ι → R ↦ ⨅ i, (f i).maxGenEigenspace (χ i)
ι : Type u_1 R : Type u_2 M : Type u_4 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M f : ι → End R M inst✝ : NoZeroSMulDivisors R M h : ∀ (l : ι) (χ : ι → R), MapsTo (⇑(f l)) (⨅ i, ↑((f i).maxGenEigenspace (χ i))) (⨅ i, ↑((f i).maxGenEigenspace (χ i))) χ₁ χ₂ : ι → R s : Finset (ι → R) _n : χ₂ ∉ s ih : χ₁ ∉ s → Disjoint (⨅ i, (f i).maxGenEigenspace (χ₁ i)) (s.sup fun χ => ⨅ i, (f i).maxGenEigenspace (χ i)) hχ₁₂ : χ₁ ∉ insert χ₂ s ⊢ ?m.53136
rwa [Finset.mem_insert, not_or] at hχ₁₂
no goals
4dd72b81f13de433
DihedralGroup.commProb_reciprocal
Mathlib/GroupTheory/CommutingProbability.lean
theorem commProb_reciprocal (n : ℕ) : commProb (Product (reciprocalFactors n)) = 1 / n
case neg.inr.hb n : ℕ h0 : ¬n = 0 h1 : ¬n = 1 h2 : Odd n this : n / 4 + 1 < n key : n % 4 = 1 ∨ n % 4 = 3 hn : Odd (n % 4) ⊢ ¬4 * (n % 4 * n) * (n / 4 + 1) = 0
have := hn.pos.ne'
case neg.inr.hb n : ℕ h0 : ¬n = 0 h1 : ¬n = 1 h2 : Odd n this✝ : n / 4 + 1 < n key : n % 4 = 1 ∨ n % 4 = 3 hn : Odd (n % 4) this : n % 4 ≠ 0 ⊢ ¬4 * (n % 4 * n) * (n / 4 + 1) = 0
36923ae66db82ec7
NonemptyFinLinOrd.mono_iff_injective
Mathlib/Order/Category/NonemptyFinLinOrd.lean
theorem mono_iff_injective {A B : NonemptyFinLinOrd.{u}} (f : A ⟶ B) : Mono f ↔ Function.Injective f
A B : NonemptyFinLinOrd f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A.toLinOrd h : (ConcreteCategory.hom f) a₁ = (ConcreteCategory.hom f) a₂ X : NonemptyFinLinOrd := of (ULift.{u, 0} (Fin 1)) x✝² x✝¹ : ULift.{u, 0} (Fin 1) x✝ : x✝² ≤ x✝¹ ⊢ (fun x => a₁) x✝² ≤ (fun x => a₁) x✝¹
rfl
no goals
70ff9efadffc8dad
MeasureTheory.lintegral_comp_eq_lintegral_meas_le_mul_of_measurable_of_sigmaFinite
Mathlib/MeasureTheory/Integral/Layercake.lean
theorem lintegral_comp_eq_lintegral_meas_le_mul_of_measurable_of_sigmaFinite (μ : Measure α) [SFinite μ] (f_nn : 0 ≤ f) (f_mble : Measurable f) (g_intble : ∀ t > 0, IntervalIntegrable g volume 0 t) (g_mble : Measurable g) (g_nn : ∀ t > 0, 0 ≤ g t) : ∫⁻ ω, ENNReal.ofReal (∫ t in (0)..f ω, g t) ∂μ = ∫⁻ t in Ioi 0, μ {a : α | t ≤ f a} * ENNReal.ofReal (g t)
case neg α : Type u_1 inst✝¹ : MeasurableSpace α f : α → ℝ g : ℝ → ℝ μ : Measure α inst✝ : SFinite μ f_nn : 0 ≤ f f_mble : Measurable f g_intble : ∀ t > 0, IntervalIntegrable g volume 0 t g_mble : Measurable g g_nn : ∀ t > 0, 0 ≤ g t g_intble' : ∀ (t : ℝ), 0 ≤ t → IntervalIntegrable g volume 0 t integrand_eq : ∀ (ω : α), ENNReal.ofReal (∫ (t : ℝ) in 0 ..f ω, g t) = ∫⁻ (t : ℝ) in Ioc 0 (f ω), ENNReal.ofReal (g t) s : ℝ aux₁ : (fun x => (Ioc 0 (f x)).indicator (fun t => ENNReal.ofReal (g t)) s) = fun x => ENNReal.ofReal (g s) * (Ioi 0).indicator (fun x => 1) s * (Ici s).indicator (fun x => 1) (f x) h : ¬0 < s ⊢ (Ioi 0).indicator (fun x => 1) s ≠ ⊤
simp [h]
no goals
028c71a79fc18349
mdifferentiableWithinAt_iff_target_of_mem_source
Mathlib/Geometry/Manifold/MFDeriv/Basic.lean
theorem mdifferentiableWithinAt_iff_target_of_mem_source [IsManifold I' 1 M'] {x : M} {y : M'} (hy : f x ∈ (chartAt H' y).source) : MDifferentiableWithinAt I I' f s x ↔ ContinuousWithinAt f s x ∧ MDifferentiableWithinAt I 𝓘(𝕜, E') (extChartAt I' y ∘ f) s x
𝕜 : Type u_1 inst✝¹¹ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedSpace 𝕜 E H : Type u_3 inst✝⁸ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁷ : TopologicalSpace M inst✝⁶ : ChartedSpace H M E' : Type u_5 inst✝⁵ : NormedAddCommGroup E' inst✝⁴ : NormedSpace 𝕜 E' H' : Type u_6 inst✝³ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝² : TopologicalSpace M' inst✝¹ : ChartedSpace H' M' f : M → M' s : Set M inst✝ : IsManifold I' 1 M' x : M y : M' hy : f x ∈ (chartAt H' y).source hf : ContinuousWithinAt f s x ⊢ True ∧ DifferentiableWithinAtProp I I' ((↑(chartAt H' y) ∘ f) ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' s) (↑(chartAt H x) x) ↔ ContinuousWithinAt (↑(extChartAt I' y) ∘ f) s x ∧ DifferentiableWithinAtProp I 𝓘(𝕜, E') ((↑(extChartAt I' y) ∘ f) ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' s) (↑(chartAt H x) x)
rw [← extChartAt_source I'] at hy
𝕜 : Type u_1 inst✝¹¹ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹⁰ : NormedAddCommGroup E inst✝⁹ : NormedSpace 𝕜 E H : Type u_3 inst✝⁸ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁷ : TopologicalSpace M inst✝⁶ : ChartedSpace H M E' : Type u_5 inst✝⁵ : NormedAddCommGroup E' inst✝⁴ : NormedSpace 𝕜 E' H' : Type u_6 inst✝³ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝² : TopologicalSpace M' inst✝¹ : ChartedSpace H' M' f : M → M' s : Set M inst✝ : IsManifold I' 1 M' x : M y : M' hy : f x ∈ (extChartAt I' y).source hf : ContinuousWithinAt f s x ⊢ True ∧ DifferentiableWithinAtProp I I' ((↑(chartAt H' y) ∘ f) ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' s) (↑(chartAt H x) x) ↔ ContinuousWithinAt (↑(extChartAt I' y) ∘ f) s x ∧ DifferentiableWithinAtProp I 𝓘(𝕜, E') ((↑(extChartAt I' y) ∘ f) ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' s) (↑(chartAt H x) x)
5253979901641d91
Filter.limsup_eq_iInf_iSup_of_nat'
Mathlib/Order/LiminfLimsup.lean
theorem limsup_eq_iInf_iSup_of_nat' {u : ℕ → α} : limsup u atTop = ⨅ n : ℕ, ⨆ i : ℕ, u (i + n)
α : Type u_1 inst✝ : CompleteLattice α u : ℕ → α ⊢ limsup u atTop = ⨅ n, ⨆ i, u (i + n)
simp only [limsup_eq_iInf_iSup_of_nat, iSup_ge_eq_iSup_nat_add]
no goals
e0daa982b35aac36
Substring.ValidFor.prevn
Mathlib/.lake/packages/batteries/Batteries/Data/String/Lemmas.lean
theorem prevn : ∀ {s}, ValidFor l (m₁.reverse ++ m₂) r s → ∀ n, s.prevn n ⟨utf8Len m₁⟩ = ⟨utf8Len (m₁.drop n)⟩ | _, _, 0 => by simp [Substring.prevn] | s, h, n+1 => by simp only [Substring.prevn] match m₁ with | [] => simp | c::m₁ => rw [List.reverse_cons, List.append_assoc] at h have := h.prev; simp at this; simp [this, h.prevn n]
l m₂ r m₁✝ : List Char s : Substring n : Nat c : Char m₁ : List Char h : ValidFor l ((c :: m₁).reverse ++ m₂) r s ⊢ s.prevn n (s.prev { byteIdx := utf8Len (c :: m₁) }) = { byteIdx := utf8Len (List.drop (n + 1) (c :: m₁)) }
rw [List.reverse_cons, List.append_assoc] at h
l m₂ r m₁✝ : List Char s : Substring n : Nat c : Char m₁ : List Char h : ValidFor l (m₁.reverse ++ ([c] ++ m₂)) r s ⊢ s.prevn n (s.prev { byteIdx := utf8Len (c :: m₁) }) = { byteIdx := utf8Len (List.drop (n + 1) (c :: m₁)) }
335aa626418f50e2
Fin.pred_eq_iff_eq_succ
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Fin/Lemmas.lean
theorem pred_eq_iff_eq_succ {n : Nat} {i : Fin (n + 1)} (hi : i ≠ 0) {j : Fin n} : i.pred hi = j ↔ i = j.succ := ⟨fun h => by simp only [← h, Fin.succ_pred], fun h => by simp only [h, Fin.pred_succ]⟩
n : Nat i : Fin (n + 1) hi : i ≠ 0 j : Fin n h : i.pred hi = j ⊢ i = j.succ
simp only [← h, Fin.succ_pred]
no goals
779f547746d96aea
AlgebraicGeometry.reduce_to_affine_global
Mathlib/AlgebraicGeometry/Properties.lean
theorem reduce_to_affine_global (P : ∀ {X : Scheme} (_ : X.Opens), Prop) {X : Scheme} (U : X.Opens) (h₁ : ∀ (X : Scheme) (U : X.Opens), (∀ x : U, ∃ (V : _) (_ : x.1 ∈ V) (_ : V ⟶ U), P V) → P U) (h₂ : ∀ (X Y) (f : X ⟶ Y) [IsOpenImmersion f], ∃ (U : X.Opens) (V : Y.Opens), U = ⊤ ∧ V = f.opensRange ∧ (P U → P V)) (h₃ : ∀ R : CommRingCat, P (X := Spec R) ⊤) : P U
P : {X : Scheme} → X.Opens → Prop X : Scheme U : X.Opens h₁ : ∀ (X : Scheme) (U : X.Opens), (∀ (x : ↥U), ∃ V, ∃ (_ : ↑x ∈ V), ∃ x, P V) → P U h₂ : ∀ (X Y : Scheme) (f : X ⟶ Y) [inst : IsOpenImmersion f], ∃ U V, U = ⊤ ∧ V = Scheme.Hom.opensRange f ∧ (P U → P V) h₃ : ∀ (R : CommRingCat), P ⊤ ⊢ P U
apply h₁
case a P : {X : Scheme} → X.Opens → Prop X : Scheme U : X.Opens h₁ : ∀ (X : Scheme) (U : X.Opens), (∀ (x : ↥U), ∃ V, ∃ (_ : ↑x ∈ V), ∃ x, P V) → P U h₂ : ∀ (X Y : Scheme) (f : X ⟶ Y) [inst : IsOpenImmersion f], ∃ U V, U = ⊤ ∧ V = Scheme.Hom.opensRange f ∧ (P U → P V) h₃ : ∀ (R : CommRingCat), P ⊤ ⊢ ∀ (x : ↥U), ∃ V, ∃ (_ : ↑x ∈ V), ∃ x, P V
338a13b39aa3aecd
Polynomial.Gal.splits_in_splittingField_of_comp
Mathlib/FieldTheory/PolynomialGaloisGroup.lean
theorem splits_in_splittingField_of_comp (hq : q.natDegree ≠ 0) : p.Splits (algebraMap F (p.comp q).SplittingField)
case pos F : Type u_1 inst✝ : Field F p q : F[X] hq : q.natDegree ≠ 0 P : F[X] → Prop := fun r => Splits (algebraMap F (r.comp q).SplittingField) r key1 : ∀ {r : F[X]}, Irreducible r → P r p₁ p₂ : F[X] hp₁ : P p₁ hp₂ : P p₂ h₁ : ¬p₁.comp q = 0 h₂ : p₂.comp q = 0 ⊢ P (p₁ * p₂)
rcases comp_eq_zero_iff.mp h₂ with h | h
case pos.inl F : Type u_1 inst✝ : Field F p q : F[X] hq : q.natDegree ≠ 0 P : F[X] → Prop := fun r => Splits (algebraMap F (r.comp q).SplittingField) r key1 : ∀ {r : F[X]}, Irreducible r → P r p₁ p₂ : F[X] hp₁ : P p₁ hp₂ : P p₂ h₁ : ¬p₁.comp q = 0 h₂ : p₂.comp q = 0 h : p₂ = 0 ⊢ P (p₁ * p₂) case pos.inr F : Type u_1 inst✝ : Field F p q : F[X] hq : q.natDegree ≠ 0 P : F[X] → Prop := fun r => Splits (algebraMap F (r.comp q).SplittingField) r key1 : ∀ {r : F[X]}, Irreducible r → P r p₁ p₂ : F[X] hp₁ : P p₁ hp₂ : P p₂ h₁ : ¬p₁.comp q = 0 h₂ : p₂.comp q = 0 h : eval (q.coeff 0) p₂ = 0 ∧ q = C (q.coeff 0) ⊢ P (p₁ * p₂)
781c423315763045
dist_integral_mulExpNegMulSq_comp_le
Mathlib/Analysis/SpecialFunctions/MulExpNegMulSqIntegral.lean
theorem dist_integral_mulExpNegMulSq_comp_le (f : E →ᵇ ℝ) {A : Subalgebra ℝ C(E, ℝ)} (hA : A.SeparatesPoints) (hbound : ∀ g ∈ A, ∃ C, ∀ x y : E, dist (g x) (g y) ≤ C) (heq : ∀ g ∈ A, ∫ x, (g : E → ℝ) x ∂P = ∫ x, (g : E → ℝ) x ∂P') (hε : 0 < ε) : |∫ x, mulExpNegMulSq ε (f x) ∂P - ∫ x, mulExpNegMulSq ε (f x) ∂P'| ≤ 6 * sqrt ε
ε : ℝ E : Type u_2 inst✝⁶ : MeasurableSpace E inst✝⁵ : PseudoEMetricSpace E inst✝⁴ : BorelSpace E inst✝³ : CompleteSpace E inst✝² : SecondCountableTopology E P P' : Measure E inst✝¹ : IsFiniteMeasure P inst✝ : IsFiniteMeasure P' f : E →ᵇ ℝ A : Subalgebra ℝ C(E, ℝ) hA : A.SeparatesPoints hbound : ∀ g ∈ A, ∃ C, ∀ (x y : E), dist (g x) (g y) ≤ C heq : ∀ g ∈ A, ∫ (x : E), g x ∂P = ∫ (x : E), g x ∂P' hε : 0 < ε ⊢ |∫ (x : E), ε.mulExpNegMulSq (f x) ∂P - ∫ (x : E), ε.mulExpNegMulSq (f x) ∂P'| ≤ 6 * √ε
by_cases hPP' : P = 0 ∧ P' = 0
case pos ε : ℝ E : Type u_2 inst✝⁶ : MeasurableSpace E inst✝⁵ : PseudoEMetricSpace E inst✝⁴ : BorelSpace E inst✝³ : CompleteSpace E inst✝² : SecondCountableTopology E P P' : Measure E inst✝¹ : IsFiniteMeasure P inst✝ : IsFiniteMeasure P' f : E →ᵇ ℝ A : Subalgebra ℝ C(E, ℝ) hA : A.SeparatesPoints hbound : ∀ g ∈ A, ∃ C, ∀ (x y : E), dist (g x) (g y) ≤ C heq : ∀ g ∈ A, ∫ (x : E), g x ∂P = ∫ (x : E), g x ∂P' hε : 0 < ε hPP' : P = 0 ∧ P' = 0 ⊢ |∫ (x : E), ε.mulExpNegMulSq (f x) ∂P - ∫ (x : E), ε.mulExpNegMulSq (f x) ∂P'| ≤ 6 * √ε case neg ε : ℝ E : Type u_2 inst✝⁶ : MeasurableSpace E inst✝⁵ : PseudoEMetricSpace E inst✝⁴ : BorelSpace E inst✝³ : CompleteSpace E inst✝² : SecondCountableTopology E P P' : Measure E inst✝¹ : IsFiniteMeasure P inst✝ : IsFiniteMeasure P' f : E →ᵇ ℝ A : Subalgebra ℝ C(E, ℝ) hA : A.SeparatesPoints hbound : ∀ g ∈ A, ∃ C, ∀ (x y : E), dist (g x) (g y) ≤ C heq : ∀ g ∈ A, ∫ (x : E), g x ∂P = ∫ (x : E), g x ∂P' hε : 0 < ε hPP' : ¬(P = 0 ∧ P' = 0) ⊢ |∫ (x : E), ε.mulExpNegMulSq (f x) ∂P - ∫ (x : E), ε.mulExpNegMulSq (f x) ∂P'| ≤ 6 * √ε
6c7688b02378f81c
finprod_cond_eq_prod_of_cond_iff
Mathlib/Algebra/BigOperators/Finprod.lean
theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : Finset α} (h : ∀ {x}, f x ≠ 1 → (p x ↔ x ∈ t)) : (∏ᶠ (i) (_ : p i), f i) = ∏ i ∈ t, f i
α : Type u_1 M : Type u_5 inst✝ : CommMonoid M f : α → M p : α → Prop t : Finset α h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t) s : Set α := {x | p x} this : mulSupport (s.mulIndicator f) ⊆ ↑t ⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = ∏ i ∈ t, f i
rw [finprod_mem_def, finprod_eq_prod_of_mulSupport_subset _ this]
α : Type u_1 M : Type u_5 inst✝ : CommMonoid M f : α → M p : α → Prop t : Finset α h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t) s : Set α := {x | p x} this : mulSupport (s.mulIndicator f) ⊆ ↑t ⊢ ∏ i ∈ t, s.mulIndicator f i = ∏ i ∈ t, f i
d1687f56373c7d13
Ideal.finrank_quotient_map
Mathlib/NumberTheory/RamificationInertia/Basic.lean
theorem finrank_quotient_map [IsDomain S] [IsDedekindDomain R] [Algebra K L] [Algebra R L] [IsScalarTower R K L] [IsScalarTower R S L] [hp : p.IsMaximal] [Module.Finite R S] : finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) = finrank K L
R : Type u inst✝¹⁴ : CommRing R S : Type v inst✝¹³ : CommRing S p : Ideal R inst✝¹² : Algebra R S K : Type u_1 inst✝¹¹ : Field K inst✝¹⁰ : Algebra R K L : Type u_2 inst✝⁹ : Field L inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L hRK : IsFractionRing R K inst✝⁶ : IsDomain S inst✝⁵ : IsDedekindDomain R inst✝⁴ : Algebra K L inst✝³ : Algebra R L inst✝² : IsScalarTower R K L inst✝¹ : IsScalarTower R S L hp : p.IsMaximal inst✝ : Module.Finite R S ⊢ finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) = finrank K L
let ι := Module.Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p)
R : Type u inst✝¹⁴ : CommRing R S : Type v inst✝¹³ : CommRing S p : Ideal R inst✝¹² : Algebra R S K : Type u_1 inst✝¹¹ : Field K inst✝¹⁰ : Algebra R K L : Type u_2 inst✝⁹ : Field L inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L hRK : IsFractionRing R K inst✝⁶ : IsDomain S inst✝⁵ : IsDedekindDomain R inst✝⁴ : Algebra K L inst✝³ : Algebra R L inst✝² : IsScalarTower R K L inst✝¹ : IsScalarTower R S L hp : p.IsMaximal inst✝ : Module.Finite R S ι : Type v := Free.ChooseBasisIndex (R ⧸ p) (S ⧸ map (algebraMap R S) p) ⊢ finrank (R ⧸ p) (S ⧸ map (algebraMap R S) p) = finrank K L
c261b0ceb1fb92db
Equiv.prodCongr_refl_right
Mathlib/Logic/Equiv/Basic.lean
theorem prodCongr_refl_right (e : β₁ ≃ β₂) : prodCongr e (Equiv.refl α₁) = prodCongrLeft fun _ => e
case H.mk α₁ : Type u_9 β₁ : Type u_11 β₂ : Type u_12 e : β₁ ≃ β₂ a : β₁ b : α₁ ⊢ (e.prodCongr (Equiv.refl α₁)) (a, b) = (prodCongrLeft fun x => e) (a, b)
simp
no goals
c69778327141b887
MeasureTheory.exists_le_lowerSemicontinuous_lintegral_ge
Mathlib/MeasureTheory/Integral/VitaliCaratheodory.lean
theorem exists_le_lowerSemicontinuous_lintegral_ge (f : α → ℝ≥0∞) (hf : Measurable f) {ε : ℝ≥0∞} (εpos : ε ≠ 0) : ∃ g : α → ℝ≥0∞, (∀ x, f x ≤ g x) ∧ LowerSemicontinuous g ∧ (∫⁻ x, g x ∂μ) ≤ (∫⁻ x, f x ∂μ) + ε
α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : MeasurableSpace α inst✝¹ : BorelSpace α μ : Measure α inst✝ : μ.WeaklyRegular f : α → ℝ≥0∞ hf : Measurable f ε : ℝ≥0∞ εpos : ε ≠ 0 δ : ℕ → ℝ≥0∞ δpos : ∀ (i : ℕ), 0 < δ i hδ : ∑' (i : ℕ), δ i < ε g : ℕ → α → ℝ≥0 f_le_g : ∀ (n : ℕ) (x : α), (SimpleFunc.eapproxDiff f n) x ≤ g n x gcont : ∀ (n : ℕ), LowerSemicontinuous (g n) hg : ∀ (n : ℕ), ∫⁻ (x : α), ↑(g n x) ∂μ ≤ ∫⁻ (x : α), ↑((SimpleFunc.eapproxDiff f n) x) ∂μ + δ n ⊢ ∫⁻ (a : α), ∑' (i : ℕ), ↑((SimpleFunc.eapproxDiff f i) a) ∂μ ≤ ∫⁻ (x : α), f x ∂μ
simp_rw [SimpleFunc.tsum_eapproxDiff f hf, le_refl]
no goals
73601cdcac15c7f7
CategoryTheory.toNerve₂.mk_naturality_σ00
Mathlib/AlgebraicTopology/SimplicialSet/NerveAdjunction.lean
lemma toNerve₂.mk_naturality_σ00 : toNerve₂.mk.naturalityProperty F (σ₂ (n := 0) 0)
case h C : Type u inst✝ : SmallCategory C X : SSet.Truncated 2 F : oneTruncation₂.obj X ⟶ ReflQuiv.of C x : X.obj (op { obj := [0], property := ⋯ }) ⊢ (X.map (σ₂ 0 ⋯ ⋯).op ≫ (fun n => mk.app F (unop n)) (op { obj := [0 + 1], property := ⋯ })) x = ComposableArrows.mk₁ (𝟙 (F.obj x))
have := ReflPrefunctor.map_id F x
case h C : Type u inst✝ : SmallCategory C X : SSet.Truncated 2 F : oneTruncation₂.obj X ⟶ ReflQuiv.of C x : X.obj (op { obj := [0], property := ⋯ }) this : F.map (𝟙rq x) = 𝟙rq (F.obj x) ⊢ (X.map (σ₂ 0 ⋯ ⋯).op ≫ (fun n => mk.app F (unop n)) (op { obj := [0 + 1], property := ⋯ })) x = ComposableArrows.mk₁ (𝟙 (F.obj x))
8a989a466710331b
Tendsto.isLindelof_insert_range_of_coLindelof
Mathlib/Topology/Compactness/Lindelof.lean
theorem Tendsto.isLindelof_insert_range_of_coLindelof {f : X → Y} {y} (hf : Tendsto f (coLindelof X) (𝓝 y)) (hfc : Continuous f) : IsLindelof (insert y (range f))
case neg.intro.intro.intro.intro.intro.intro.intro.intro X : Type u Y : Type v inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y f : X → Y y✝ : Y hf : Tendsto f (coLindelof X) (𝓝 y✝) hfc : Continuous f l : Filter Y hne : l.NeBot inst✝ : CountableInterFilter l hle : l ≤ 𝓟 (insert y✝ (range f)) s : Set Y hsy : s ∈ 𝓝 y✝ t : Set Y htl : t ∈ l hd : Disjoint s t K : Set X hKc : IsLindelof K hKs : Kᶜ ⊆ f ⁻¹' s this : f '' K ∈ l y : Y hy : y ∈ f '' K hyl : ClusterPt y l ⊢ ∃ x ∈ insert y✝ (range f), ClusterPt x l
exact ⟨y, Or.inr <| image_subset_range _ _ hy, hyl⟩
no goals
272add40fb4ffebd
WittVector.isocrystal_classification
Mathlib/RingTheory/WittVector/Isocrystal.lean
theorem isocrystal_classification (k : Type*) [Field k] [IsAlgClosed k] [CharP k p] (V : Type*) [AddCommGroup V] [Isocrystal p k V] (h_dim : finrank K(p, k) V = 1) : ∃ m : ℤ, Nonempty (StandardOneDimIsocrystal p k m ≃ᶠⁱ[p, k] V)
case h p : ℕ inst✝⁵ : Fact (Nat.Prime p) k : Type u_2 inst✝⁴ : Field k inst✝³ : IsAlgClosed k inst✝² : CharP k p V : Type u_3 inst✝¹ : AddCommGroup V inst✝ : Isocrystal p k V h_dim : finrank K(p, k) V = 1 this✝ : Nontrivial V x : V hx : x ≠ 0 this : Φ(p, k) x ≠ 0 a : K(p, k) ha : a ≠ 0 hax : Φ(p, k) x = a • x b : K(p, k) hb : b ≠ 0 m : ℤ hmb : φ(p, k) b * a = ↑p ^ m * b F₀ : StandardOneDimIsocrystal p k m →ₗ[K(p, k)] V := LinearMap.toSpanSingleton K(p, k) V x F : StandardOneDimIsocrystal p k m ≃ₗ[K(p, k)] V := LinearEquiv.ofBijective F₀ ⋯ c : StandardOneDimIsocrystal p k m ⊢ (φ(p, k) b * (φ(p, k) c * a)) • x = (b * (↑p ^ m * φ(p, k) c)) • x
congr 1
case h.e_a p : ℕ inst✝⁵ : Fact (Nat.Prime p) k : Type u_2 inst✝⁴ : Field k inst✝³ : IsAlgClosed k inst✝² : CharP k p V : Type u_3 inst✝¹ : AddCommGroup V inst✝ : Isocrystal p k V h_dim : finrank K(p, k) V = 1 this✝ : Nontrivial V x : V hx : x ≠ 0 this : Φ(p, k) x ≠ 0 a : K(p, k) ha : a ≠ 0 hax : Φ(p, k) x = a • x b : K(p, k) hb : b ≠ 0 m : ℤ hmb : φ(p, k) b * a = ↑p ^ m * b F₀ : StandardOneDimIsocrystal p k m →ₗ[K(p, k)] V := LinearMap.toSpanSingleton K(p, k) V x F : StandardOneDimIsocrystal p k m ≃ₗ[K(p, k)] V := LinearEquiv.ofBijective F₀ ⋯ c : StandardOneDimIsocrystal p k m ⊢ φ(p, k) b * (φ(p, k) c * a) = b * (↑p ^ m * φ(p, k) c)
d25976e4ff95234e
Trivialization.tendsto_nhds_iff
Mathlib/Topology/FiberBundle/Trivialization.lean
theorem tendsto_nhds_iff {α : Type*} {l : Filter α} {f : α → Z} {z : Z} (hz : z ∈ e.source) : Tendsto f l (𝓝 z) ↔ Tendsto (proj ∘ f) l (𝓝 (proj z)) ∧ Tendsto (fun x ↦ (e (f x)).2) l (𝓝 (e z).2)
case neg B : Type u_1 F : Type u_2 Z : Type u_4 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F proj : Z → B inst✝ : TopologicalSpace Z e : Trivialization F proj α : Type u_5 l : Filter α f : α → Z z : Z hz : z ∈ proj ⁻¹' e.baseSet hl : ¬∀ᶠ (x : α) in l, f x ∈ proj ⁻¹' e.baseSet ⊢ Tendsto (proj ∘ f) l (𝓝 (proj z)) → ¬Tendsto (fun x => (↑e (f x)).2) l (𝓝 (↑e z).2)
exact fun h _ ↦ hl <| h <| e.open_baseSet.mem_nhds hz
no goals
fd4173837552b8ba
IsProperMap.prodMap
Mathlib/Topology/Maps/Proper/Basic.lean
/-- A binary product of proper maps is proper. -/ lemma IsProperMap.prodMap {g : Z → W} (hf : IsProperMap f) (hg : IsProperMap g) : IsProperMap (Prod.map f g)
case right.intro.intro.intro.intro X : Type u_1 Y : Type u_2 Z : Type u_3 W : Type u_4 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace W f : X → Y g : Z → W hf : Continuous f ∧ ∀ ⦃𝒰 : Ultrafilter X⦄ ⦃y : Y⦄, Tendsto f (↑𝒰) (𝓝 y) → ∃ x, f x = y ∧ ↑𝒰 ≤ 𝓝 x hg : Continuous g ∧ ∀ ⦃𝒰 : Ultrafilter Z⦄ ⦃y : W⦄, Tendsto g (↑𝒰) (𝓝 y) → ∃ x, g x = y ∧ ↑𝒰 ≤ 𝓝 x 𝒰 : Ultrafilter (X × Z) y : Y w : W hyw : Tendsto (fun n => (Prod.map f g n).1) (↑𝒰) (𝓝 y) ∧ Tendsto (fun n => (Prod.map f g n).2) (↑𝒰) (𝓝 w) x : X hxy : f x = y hx : ↑(Ultrafilter.map fst 𝒰) ≤ 𝓝 x z : Z hzw : g z = w hz : ↑(Ultrafilter.map snd 𝒰) ≤ 𝓝 z ⊢ Tendsto fst (↑𝒰) (𝓝 x) ∧ Tendsto snd (↑𝒰) (𝓝 z)
exact ⟨hx, hz⟩
no goals
137a7c14fc720f6e
CategoryTheory.Limits.limit.pre_pre
Mathlib/CategoryTheory/Limits/HasLimits.lean
theorem limit.pre_pre [h : HasLimit (D ⋙ E ⋙ F)] : haveI : HasLimit ((D ⋙ E) ⋙ F) := h limit.pre F E ≫ limit.pre (E ⋙ F) D = limit.pre F (D ⋙ E)
case w J : Type u₁ inst✝⁵ : Category.{v₁, u₁} J K : Type u₂ inst✝⁴ : Category.{v₂, u₂} K C : Type u inst✝³ : Category.{v, u} C F : J ⥤ C inst✝² : HasLimit F E : K ⥤ J inst✝¹ : HasLimit (E ⋙ F) L : Type u₃ inst✝ : Category.{v₃, u₃} L D : L ⥤ K h : HasLimit (D ⋙ E ⋙ F) this : HasLimit ((D ⋙ E) ⋙ F) j : L ⊢ π F (E.obj (D.obj j)) = π F ((D ⋙ E).obj j)
rfl
no goals
801b9ec35cde80e7
MvPFunctor.supp_eq
Mathlib/Data/PFunctor/Multivariate/Basic.lean
theorem supp_eq {α : TypeVec n} (a : P.A) (f : P.B a ⟹ α) (i) : @supp.{u} _ P.Obj _ α (⟨a, f⟩ : P α) i = f i '' univ
case h.mpr.intro n : ℕ P : MvPFunctor.{u} n α : TypeVec.{u} n a : P.A f : P.B a ⟹ α i : Fin2 n w✝ : P.B a i ⊢ ∀ ⦃P_1 : (i : Fin2 n) → α i → Prop⦄, (∀ (i : Fin2 n) (x : P.B a i), P_1 i (f i x)) → P_1 i (f i w✝)
tauto
no goals
93ead603ecab0e63
ProbabilityTheory.Kernel.sectL_zero
Mathlib/Probability/Kernel/Composition/MapComap.lean
@[simp] lemma sectL_zero (b : β) : sectL (0 : Kernel (α × β) γ) b = 0
α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ b : β ⊢ sectL 0 b = 0
simp [sectL]
no goals
7ceb6da6b75db560
MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt
Mathlib/Probability/Martingale/Upcrossing.lean
theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N n : ℕ ω : Ω M : ℕ hNM : N ≤ M h : ∃ j ∈ Set.Ico (lowerCrossingTime a b f N n ω) N, f j ω ∈ Set.Ici b this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω ⊢ ∃ j ∈ Set.Icc (lowerCrossingTime a b f N n ω) N, f j ω ∈ Set.Ici b
obtain ⟨j, hj₁, hj₂⟩ := h
case intro.intro Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N n : ℕ ω : Ω M : ℕ hNM : N ≤ M this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω j : ℕ hj₁ : j ∈ Set.Ico (lowerCrossingTime a b f N n ω) N hj₂ : f j ω ∈ Set.Ici b ⊢ ∃ j ∈ Set.Icc (lowerCrossingTime a b f N n ω) N, f j ω ∈ Set.Ici b
4ea6dd2e44976d28
ENNReal.toReal_natCast
Mathlib/Data/ENNReal/Basic.lean
theorem toReal_natCast (n : ℕ) : (n : ℝ≥0∞).toReal = n
n : ℕ ⊢ (↑n).toReal = ↑n
rw [← ENNReal.ofReal_natCast n, ENNReal.toReal_ofReal (Nat.cast_nonneg _)]
no goals
8fe83155300b6a55
MeasureTheory.Measure.measure_isHaarMeasure_eq_smul_of_isEverywherePos
Mathlib/MeasureTheory/Measure/Haar/Unique.lean
theorem measure_isHaarMeasure_eq_smul_of_isEverywherePos [LocallyCompactSpace G] (μ' μ : Measure G) [IsHaarMeasure μ] [IsHaarMeasure μ'] {s : Set G} (hs : MeasurableSet s) (h's : IsEverywherePos μ s) : μ' s = haarScalarFactor μ' μ • μ s
case intro.intro.intro G : Type u_1 inst✝⁷ : TopologicalSpace G inst✝⁶ : Group G inst✝⁵ : IsTopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : LocallyCompactSpace G μ' μ : Measure G inst✝¹ : μ.IsHaarMeasure inst✝ : μ'.IsHaarMeasure s : Set G hs : MeasurableSet s h's : μ.IsEverywherePos s ν : Measure G := μ'.haarScalarFactor μ • μ k : Set G k_comp : IsCompact k k_closed : IsClosed k k_mem : k ∈ 𝓝 1 ⊢ μ' s = ν s
have one_k : 1 ∈ k := mem_of_mem_nhds k_mem
case intro.intro.intro G : Type u_1 inst✝⁷ : TopologicalSpace G inst✝⁶ : Group G inst✝⁵ : IsTopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G inst✝² : LocallyCompactSpace G μ' μ : Measure G inst✝¹ : μ.IsHaarMeasure inst✝ : μ'.IsHaarMeasure s : Set G hs : MeasurableSet s h's : μ.IsEverywherePos s ν : Measure G := μ'.haarScalarFactor μ • μ k : Set G k_comp : IsCompact k k_closed : IsClosed k k_mem : k ∈ 𝓝 1 one_k : 1 ∈ k ⊢ μ' s = ν s
05951a84047ceabf
AlgebraicGeometry.Scheme.IsGermInjective.Spec
Mathlib/AlgebraicGeometry/SpreadingOut.lean
protected lemma Scheme.IsGermInjective.Spec (H : ∀ I : Ideal R, I.IsPrime → ∃ f : R, f ∉ I ∧ ∀ (x y : R), y * x = 0 → y ∉ I → ∃ n, f ^ n * x = 0) : (Spec R).IsGermInjective
case intro.intro.refine_2.intro.intro.intro.mk R : CommRingCat H✝ : ∀ (I : Ideal ↑R), I.IsPrime → ∃ f ∉ I, ∀ (x y : ↑R), y * x = 0 → y ∉ I → ∃ n, f ^ n * x = 0 p : ↑↑(Spec R).toPresheafedSpace f : ↑R hf : f ∉ p.asIdeal H : ∀ (x y : ↑R), y * x = 0 → y ∉ p.asIdeal → ∃ n, f ^ n * x = 0 x : ↑R s : ↥(Submonoid.powers f) hx : (ConcreteCategory.hom (StructureSheaf.toStalk (↑R) p)) x = 0 y : ↑R hy : y ∈ p.asIdeal.primeCompl hy' : ↑⟨y, hy⟩ * x = 0 ⊢ IsLocalization.mk' (↑((Spec.structureSheaf ↑R).val.obj (Opposite.op (PrimeSpectrum.basicOpen f)))) x s = 0
obtain ⟨n, hn⟩ := H x y hy' hy
case intro.intro.refine_2.intro.intro.intro.mk.intro R : CommRingCat H✝ : ∀ (I : Ideal ↑R), I.IsPrime → ∃ f ∉ I, ∀ (x y : ↑R), y * x = 0 → y ∉ I → ∃ n, f ^ n * x = 0 p : ↑↑(Spec R).toPresheafedSpace f : ↑R hf : f ∉ p.asIdeal H : ∀ (x y : ↑R), y * x = 0 → y ∉ p.asIdeal → ∃ n, f ^ n * x = 0 x : ↑R s : ↥(Submonoid.powers f) hx : (ConcreteCategory.hom (StructureSheaf.toStalk (↑R) p)) x = 0 y : ↑R hy : y ∈ p.asIdeal.primeCompl hy' : ↑⟨y, hy⟩ * x = 0 n : ℕ hn : f ^ n * x = 0 ⊢ IsLocalization.mk' (↑((Spec.structureSheaf ↑R).val.obj (Opposite.op (PrimeSpectrum.basicOpen f)))) x s = 0
55151e889a7b27d9
MeasureTheory.AEEqFun.integrable_iff_mem_L1
Mathlib/MeasureTheory/Function/L1Space/AEEqFun.lean
theorem integrable_iff_mem_L1 {f : α →ₘ[μ] β} : Integrable f ↔ f ∈ (α →₁[μ] β)
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β f : α →ₘ[μ] β ⊢ f.Integrable ↔ f ∈ Lp β 1 μ
rw [← integrable_coeFn, ← memLp_one_iff_integrable, Lp.mem_Lp_iff_memLp]
no goals
7bf211493865f02e
Lean.Order.List.monotone_foldrM
Mathlib/.lake/packages/lean4/src/lean/Init/Internal/Order/Lemmas.lean
theorem monotone_foldrM (f : γ → α → β → m β) (init : β) (xs : List α) (hmono : monotone f) : monotone (fun x => xs.foldrM (f x) (init := init))
case hmono.h.h.h.h m : Type u → Type v inst✝³ : Monad m inst✝² : (α : Type u) → PartialOrder (m α) inst✝¹ : MonoBind m α β : Type u γ : Type w inst✝ : PartialOrder γ f : γ → α → β → m β init : β xs : List α hmono : monotone f s : β a : α ⊢ monotone f
apply hmono
no goals
a113a300d4f9e2d9
Ordinal.ord_cof_eq
Mathlib/SetTheory/Cardinal/Cofinality.lean
theorem ord_cof_eq (r : α → α → Prop) [IsWellOrder α r] : ∃ S, Unbounded r S ∧ type (Subrel r (· ∈ S)) = (cof (type r)).ord
α : Type u r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = (type r).cof s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : (#↑S).ord = type s T : Set α := {a | ∃ (aS : a ∈ S), ∀ (b : ↑S), s b ⟨a, aS⟩ → r (↑b) a} a : α this : {b | ¬r (↑b) a}.Nonempty b : ↑S := ⋯.min {b | ¬r (↑b) a} this ba : ¬r (↑b) a c : ↑S h : ¬r ↑c ↑b ⊢ ¬s c b
exact IsWellFounded.wf.not_lt_min _ this (IsOrderConnected.neg_trans h ba)
no goals
1935e0c9099cb4dd
WeierstrassCurve.Affine.CoordinateRing.XYIdeal_neg_mul
Mathlib/AlgebraicGeometry/EllipticCurve/Group.lean
lemma XYIdeal_neg_mul {x y : F} (h : W.Nonsingular x y) : XYIdeal W x (C <| W.negY x y) * XYIdeal W x (C y) = XIdeal W x
case h.e'_2.h.e'_6 F : Type u inst✝ : Field F W : Affine F x y : F h : W.Nonsingular x y Y_rw : (Y - C (C y)) * (Y - C (C (W.negY x y))) - C (X - C x) * (C (X ^ 2 + C (x + W.a₂) * X + C (x ^ 2 + W.a₂ * x + W.a₄)) - C (C W.a₁) * Y) = W.polynomial * 1 ⊢ span {(mk W) (C (X - C x)), (mk W) (Y - C (C y)), (mk W) (Y - C (C (W.negY x y))), (AdjoinRoot.mk W.polynomial) (C (X ^ 2 + C (x + W.a₂) * X + C (x ^ 2 + W.a₂ * x + W.a₄)) - C (C W.a₁) * Y)} = ⊤
simp_rw [← Set.image_singleton (f := mk W), ← Set.image_insert_eq, ← map_span]
case h.e'_2.h.e'_6 F : Type u inst✝ : Field F W : Affine F x y : F h : W.Nonsingular x y Y_rw : (Y - C (C y)) * (Y - C (C (W.negY x y))) - C (X - C x) * (C (X ^ 2 + C (x + W.a₂) * X + C (x ^ 2 + W.a₂ * x + W.a₄)) - C (C W.a₁) * Y) = W.polynomial * 1 ⊢ Ideal.map (mk W) (span {C (X - C x), Y - C (C y), Y - C (C (W.negY x y)), C (X ^ 2 + C (x + W.a₂) * X + C (x ^ 2 + W.a₂ * x + W.a₄)) - C (C W.a₁) * Y}) = ⊤
a91b7de170ddf2df
ENNReal.continuous_pow
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
theorem continuous_pow (n : ℕ) : Continuous fun a : ℝ≥0∞ => a ^ n
case succ n : ℕ IH : Continuous fun a => a ^ n x : ℝ≥0∞ ⊢ ContinuousAt (fun a => a ^ n * a) x
refine ENNReal.Tendsto.mul (IH.tendsto _) ?_ tendsto_id ?_ <;> by_cases H : x = 0
case pos n : ℕ IH : Continuous fun a => a ^ n x : ℝ≥0∞ H : x = 0 ⊢ x ^ n ≠ 0 ∨ x ≠ ⊤ case neg n : ℕ IH : Continuous fun a => a ^ n x : ℝ≥0∞ H : ¬x = 0 ⊢ x ^ n ≠ 0 ∨ x ≠ ⊤ case pos n : ℕ IH : Continuous fun a => a ^ n x : ℝ≥0∞ H : x = 0 ⊢ x ≠ 0 ∨ x ^ n ≠ ⊤ case neg n : ℕ IH : Continuous fun a => a ^ n x : ℝ≥0∞ H : ¬x = 0 ⊢ x ≠ 0 ∨ x ^ n ≠ ⊤
dd273c5089e505d8
TensorProduct.vanishesTrivially_of_sum_tmul_eq_zero
Mathlib/LinearAlgebra/TensorProduct/Vanishing.lean
theorem vanishesTrivially_of_sum_tmul_eq_zero (hm : Submodule.span R (Set.range m) = ⊤) (hmn : ∑ i, m i ⊗ₜ n i = (0 : M ⊗[R] N)) : VanishesTrivially R m n
R : Type u_1 inst✝⁵ : CommRing R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N ι : Type u_4 inst✝ : Fintype ι m : ι → M n : ι → N hm : span R (Set.range m) = ⊤ hmn : ∑ i : ι, m i ⊗ₜ[R] n i = 0 G : (ι →₀ R) →ₗ[R] M := linearCombination R m hG : G = linearCombination R m G_basis_eq : ∀ (i : ι), G (Finsupp.single i 1) = m i ⊢ ⊤ ≤ range G
rw [← hm]
R : Type u_1 inst✝⁵ : CommRing R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N ι : Type u_4 inst✝ : Fintype ι m : ι → M n : ι → N hm : span R (Set.range m) = ⊤ hmn : ∑ i : ι, m i ⊗ₜ[R] n i = 0 G : (ι →₀ R) →ₗ[R] M := linearCombination R m hG : G = linearCombination R m G_basis_eq : ∀ (i : ι), G (Finsupp.single i 1) = m i ⊢ span R (Set.range m) ≤ range G
c9130b804ecd308f
MeasureTheory.IsProjectiveLimit.isFiniteMeasure
Mathlib/MeasureTheory/Constructions/Projective.lean
lemma isFiniteMeasure [∀ i, IsFiniteMeasure (P i)] (hμ : IsProjectiveLimit μ P) : IsFiniteMeasure μ
case measure_univ_lt_top ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → MeasurableSpace (α i) P : (J : Finset ι) → Measure ((j : { x // x ∈ J }) → α ↑j) μ : Measure ((i : ι) → α i) inst✝ : ∀ (i : Finset ι), IsFiniteMeasure (P i) hμ : IsProjectiveLimit μ P ⊢ (P ∅) univ < ⊤
exact measure_lt_top _ _
no goals
27fa900db03647ce
AEMeasurable.iSup
Mathlib/MeasureTheory/Constructions/BorelSpace/Order.lean
theorem AEMeasurable.iSup {ι} {μ : Measure δ} [Countable ι] {f : ι → δ → α} (hf : ∀ i, AEMeasurable (f i) μ) : AEMeasurable (fun b => ⨆ i, f i b) μ
α : Type u_1 δ : Type u_4 inst✝⁵ : TopologicalSpace α mα : MeasurableSpace α inst✝⁴ : BorelSpace α mδ : MeasurableSpace δ inst✝³ : ConditionallyCompleteLinearOrder α inst✝² : OrderTopology α inst✝¹ : SecondCountableTopology α ι : Sort u_5 μ : Measure δ inst✝ : Countable ι f : ι → δ → α hf : ∀ (i : ι), AEMeasurable (f i) μ b : δ hb : ∀ (i : ι), f i b = mk (f i) ⋯ b ⊢ ⨆ i, f i b = ⨆ i, mk (f i) ⋯ b
simp [hb]
no goals
bfd3c7492f359749
isLocalHomeomorphOn_iff_isOpenEmbedding_restrict
Mathlib/Topology/IsLocalHomeomorph.lean
theorem isLocalHomeomorphOn_iff_isOpenEmbedding_restrict {f : X → Y} : IsLocalHomeomorphOn f s ↔ ∀ x ∈ s, ∃ U ∈ 𝓝 x, IsOpenEmbedding (U.restrict f)
X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X f : X → Y h : ∀ x ∈ s, ∃ U ∈ 𝓝 x, IsOpenEmbedding (U.restrict f) x : X hx : x ∈ s U : Set X hU : U ∈ 𝓝 x emb : IsOpenEmbedding (U.restrict f) ⊢ IsOpenEmbedding ((interior U).restrict f)
refine emb.comp ⟨.inclusion interior_subset, ?_⟩
X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X f : X → Y h : ∀ x ∈ s, ∃ U ∈ 𝓝 x, IsOpenEmbedding (U.restrict f) x : X hx : x ∈ s U : Set X hU : U ∈ 𝓝 x emb : IsOpenEmbedding (U.restrict f) ⊢ IsOpen (Set.range (Set.inclusion ⋯))
87a753b146b13ac6
CategoryTheory.SmallObject.SuccStruct.prop.succ_eq
Mathlib/CategoryTheory/SmallObject/Iteration/Basic.lean
lemma prop.succ_eq {X Y : C} {f : X ⟶ Y} (hf : Φ.prop f) : Φ.succ X = Y
case mk C : Type u inst✝ : Category.{v, u} C Φ : SuccStruct C X : C ⊢ Φ.succ X = Φ.succ X
rfl
no goals
fd65736fffb252eb
FractionalIdeal.le_dual_inv_aux
Mathlib/RingTheory/DedekindDomain/Different.lean
lemma le_dual_inv_aux (hI : I ≠ 0) (hIJ : I * J ≤ 1) : J ≤ dual A K I
A : Type u_1 K : Type u_2 L : Type u B : Type u_3 inst✝¹⁸ : CommRing A inst✝¹⁷ : Field K inst✝¹⁶ : CommRing B inst✝¹⁵ : Field L inst✝¹⁴ : Algebra A K inst✝¹³ : Algebra B L inst✝¹² : Algebra A B inst✝¹¹ : Algebra K L inst✝¹⁰ : Algebra A L inst✝⁹ : IsScalarTower A K L inst✝⁸ : IsScalarTower A B L inst✝⁷ : IsDomain A inst✝⁶ : IsFractionRing A K inst✝⁵ : FiniteDimensional K L inst✝⁴ : Algebra.IsSeparable K L inst✝³ : IsIntegralClosure B A L inst✝² : IsFractionRing B L inst✝¹ : IsIntegrallyClosed A inst✝ : IsDedekindDomain B I J : FractionalIdeal B⁰ L hI : I ≠ 0 hIJ : I * J ≤ 1 ⊢ J ≤ dual A K I
rw [dual, dif_neg hI]
A : Type u_1 K : Type u_2 L : Type u B : Type u_3 inst✝¹⁸ : CommRing A inst✝¹⁷ : Field K inst✝¹⁶ : CommRing B inst✝¹⁵ : Field L inst✝¹⁴ : Algebra A K inst✝¹³ : Algebra B L inst✝¹² : Algebra A B inst✝¹¹ : Algebra K L inst✝¹⁰ : Algebra A L inst✝⁹ : IsScalarTower A K L inst✝⁸ : IsScalarTower A B L inst✝⁷ : IsDomain A inst✝⁶ : IsFractionRing A K inst✝⁵ : FiniteDimensional K L inst✝⁴ : Algebra.IsSeparable K L inst✝³ : IsIntegralClosure B A L inst✝² : IsFractionRing B L inst✝¹ : IsIntegrallyClosed A inst✝ : IsDedekindDomain B I J : FractionalIdeal B⁰ L hI : I ≠ 0 hIJ : I * J ≤ 1 ⊢ J ≤ ⟨(↑I)ᵛ, ⋯⟩
af77646439faab8b
mul_eq_mul_prime_prod
Mathlib/RingTheory/Prime.lean
theorem mul_eq_mul_prime_prod {α : Type*} [DecidableEq α] {x y a : R} {s : Finset α} {p : α → R} (hp : ∀ i ∈ s, Prime (p i)) (hx : x * y = a * ∏ i ∈ s, p i) : ∃ (t u : Finset α) (b c : R), t ∪ u = s ∧ Disjoint t u ∧ a = b * c ∧ (x = b * ∏ i ∈ t, p i) ∧ y = c * ∏ i ∈ u, p i
R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R α : Type u_2 inst✝ : DecidableEq α p : α → R i : α s : Finset α his : i ∉ s ih : ∀ {x y a : R}, (∀ i ∈ s, Prime (p i)) → x * y = a * ∏ i ∈ s, p i → ∃ t u b c, t ∪ u = s ∧ Disjoint t u ∧ a = b * c ∧ x = b * ∏ i ∈ t, p i ∧ y = c * ∏ i ∈ u, p i a : R hp : ∀ i_1 ∈ insert i s, Prime (p i_1) hpi : Prime (p i) t u : Finset α b : R htus : t ∪ u = s htu : Disjoint t u hit : i ∉ t hiu : i ∉ u d : R hbc : a = b * d hx : (b * ∏ i ∈ t, p i) * (p i * d * ∏ i ∈ u, p i) = a * p i * ∏ x ∈ s, p x ⊢ t ∪ insert i u = insert i s
rw [union_insert, htus]
no goals
8bb0dd23785fb5d8
CliffordAlgebra.toBaseChange_reverse
Mathlib/LinearAlgebra/CliffordAlgebra/BaseChange.lean
theorem toBaseChange_reverse (Q : QuadraticForm R V) (x : CliffordAlgebra (Q.baseChange A)) : toBaseChange A Q (reverse x) = TensorProduct.map LinearMap.id reverse (toBaseChange A Q x)
R : Type u_1 A : Type u_2 V : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : AddCommGroup V inst✝² : Algebra R A inst✝¹ : Module R V inst✝ : Invertible 2 Q : QuadraticForm R V x : CliffordAlgebra (QuadraticForm.baseChange A Q) ⊢ (TensorProduct.AlgebraTensorModule.map (↑(opLinearEquiv A).symm ∘ₗ ↑(opLinearEquiv A)) (↑(opLinearEquiv R).symm ∘ₗ reverseOp.toLinearMap)) (↑(toBaseChange A Q) x) = (TensorProduct.map LinearMap.id (↑(opLinearEquiv R).symm ∘ₗ reverseOp.toLinearMap)) ((toBaseChange A Q) x)
dsimp
R : Type u_1 A : Type u_2 V : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : AddCommGroup V inst✝² : Algebra R A inst✝¹ : Module R V inst✝ : Invertible 2 Q : QuadraticForm R V x : CliffordAlgebra (QuadraticForm.baseChange A Q) ⊢ (TensorProduct.AlgebraTensorModule.map (↑(opLinearEquiv A ≪≫ₗ (opLinearEquiv A).symm)) (↑(opLinearEquiv R).symm ∘ₗ reverseOp.toLinearMap)) ((toBaseChange A Q) x) = (TensorProduct.map LinearMap.id (↑(opLinearEquiv R).symm ∘ₗ reverseOp.toLinearMap)) ((toBaseChange A Q) x)
1b433c5423f6e345
List.formPerm_apply_lt_getElem
Mathlib/GroupTheory/Perm/List.lean
theorem formPerm_apply_lt_getElem (xs : List α) (h : Nodup xs) (n : ℕ) (hn : n + 1 < xs.length) : formPerm xs xs[n] = xs[n + 1]
case succ.cons.cons.a α : Type u_1 inst✝ : DecidableEq α n : ℕ IH✝ : ∀ (xs : List α), xs.Nodup → ∀ (hn : n + 1 < xs.length), xs.formPerm xs[n] = xs[n + 1] x y : α l : List α h : (x :: y :: l).Nodup hn : n + 1 + 1 < (x :: y :: l).length IH : (y :: l).formPerm (y :: l)[n] = l[n] ⊢ (y :: l).formPerm (y :: l)[n] ≠ y
intro hx
case succ.cons.cons.a α : Type u_1 inst✝ : DecidableEq α n : ℕ IH✝ : ∀ (xs : List α), xs.Nodup → ∀ (hn : n + 1 < xs.length), xs.formPerm xs[n] = xs[n + 1] x y : α l : List α h : (x :: y :: l).Nodup hn : n + 1 + 1 < (x :: y :: l).length IH : (y :: l).formPerm (y :: l)[n] = l[n] hx : (y :: l).formPerm (y :: l)[n] = y ⊢ False
e8c90107fc7bf71c
List.mapFinIdx_eq_append_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/MapIdx.lean
theorem mapFinIdx_eq_append_iff {l : List α} {f : (i : Nat) → α → (h : i < l.length) → β} : l.mapFinIdx f = l₁ ++ l₂ ↔ ∃ (l₁' : List α) (l₂' : List α) (w : l = l₁' ++ l₂'), l₁'.mapFinIdx (fun i a h => f i a (by simp [w]; omega)) = l₁ ∧ l₂'.mapFinIdx (fun i a h => f (i + l₁'.length) a (by simp [w]; omega)) = l₂
α : Type u_1 β : Type u_2 l₁ l₂ : List β l : List α f : (i : Nat) → α → i < l.length → β h✝ : (l₁ ++ l₂).length = l.length w : ∀ (i : Nat) (h : i < l.length), (l₁ ++ l₂)[i] = f i l[i] h h : l₁.length + l₂.length = l.length ⊢ l = take l₁.length l ++ drop l₁.length l
simp
no goals
6ee35de95da05087
LinearOrderedField.exists_mem_cutMap_mul_self_of_lt_inducedMap_mul_self
Mathlib/Algebra/Order/CompleteField.lean
theorem exists_mem_cutMap_mul_self_of_lt_inducedMap_mul_self (ha : 0 < a) (b : β) (hba : b < inducedMap α β a * inducedMap α β a) : ∃ c ∈ cutMap β (a * a), b < c
case inr α : Type u_2 β : Type u_3 inst✝² : LinearOrderedField α inst✝¹ : ConditionallyCompleteLinearOrderedField β inst✝ : Archimedean α a : α ha : 0 < a b : β hba : b < inducedMap α β a * inducedMap α β a hb : 0 ≤ b ⊢ ∃ c ∈ cutMap β (a * a), b < c
obtain ⟨q, hq, hbq, hqa⟩ := exists_rat_pow_btwn two_ne_zero hba (hb.trans_lt hba)
case inr.intro.intro.intro α : Type u_2 β : Type u_3 inst✝² : LinearOrderedField α inst✝¹ : ConditionallyCompleteLinearOrderedField β inst✝ : Archimedean α a : α ha : 0 < a b : β hba : b < inducedMap α β a * inducedMap α β a hb : 0 ≤ b q : ℚ hq : 0 < q hbq : b < ↑q ^ 2 hqa : ↑q ^ 2 < inducedMap α β a * inducedMap α β a ⊢ ∃ c ∈ cutMap β (a * a), b < c
26fca4418a681185