name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
PrimeSpectrum.zeroLocus_empty_of_one_mem
Mathlib/RingTheory/Spectrum/Prime/Basic.lean
theorem zeroLocus_empty_of_one_mem {s : Set R} (h : (1 : R) ∈ s) : zeroLocus s = ∅
R : Type u inst✝ : CommSemiring R s : Set R h : 1 ∈ s x : PrimeSpectrum R hx : s ⊆ ↑x.asIdeal x_prime : x.asIdeal.IsPrime ⊢ 1 ∈ x.asIdeal
exact hx h
no goals
5067e5311eeaeb23
Set.image_seq
Mathlib/Data/Set/Lattice.lean
theorem image_seq {f : β → γ} {s : Set (α → β)} {t : Set α} : f '' seq s t = seq ((f ∘ ·) '' s) t
α : Type u_1 β : Type u_2 γ : Type u_3 f : β → γ s : Set (α → β) t : Set α ⊢ f '' s.seq t = ((fun x => f ∘ x) '' s).seq t
simp only [seq, image_image2, image2_image_left, comp_apply]
no goals
f3a68a90ab8ae5d5
contMDiffWithinAt_iff_target
Mathlib/Geometry/Manifold/ContMDiff/Defs.lean
theorem contMDiffWithinAt_iff_target : ContMDiffWithinAt I I' n f s x ↔ ContinuousWithinAt f s x ∧ ContMDiffWithinAt I 𝓘(𝕜, E') n (extChartAt I' (f x) ∘ f) s x
𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E H : Type u_3 inst✝⁷ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁶ : TopologicalSpace M inst✝⁵ : ChartedSpace H M E' : Type u_5 inst✝⁴ : NormedAddCommGroup E' inst✝³ : NormedSpace 𝕜 E' H' : Type u_6 inst✝² : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H' M' f : M → M' s : Set M x : M n : WithTop ℕ∞ ⊢ ContinuousWithinAt f s x ∧ ContDiffWithinAtProp I I' n (↑(chartAt H' (f x)) ∘ f ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' s) (↑(chartAt H x) x) ↔ (ContinuousWithinAt f s x ∧ ContinuousWithinAt (↑(extChartAt I' (f x)) ∘ f) s x) ∧ ContDiffWithinAtProp I 𝓘(𝕜, E') n (↑(chartAt E' ((↑(extChartAt I' (f x)) ∘ f) x)) ∘ (↑(extChartAt I' (f x)) ∘ f) ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' s) (↑(chartAt H x) x)
have cont : ContinuousWithinAt f s x ∧ ContinuousWithinAt (extChartAt I' (f x) ∘ f) s x ↔ ContinuousWithinAt f s x := and_iff_left_of_imp <| (continuousAt_extChartAt _).comp_continuousWithinAt
𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E H : Type u_3 inst✝⁷ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁶ : TopologicalSpace M inst✝⁵ : ChartedSpace H M E' : Type u_5 inst✝⁴ : NormedAddCommGroup E' inst✝³ : NormedSpace 𝕜 E' H' : Type u_6 inst✝² : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H' M' f : M → M' s : Set M x : M n : WithTop ℕ∞ cont : ContinuousWithinAt f s x ∧ ContinuousWithinAt (↑(extChartAt I' (f x)) ∘ f) s x ↔ ContinuousWithinAt f s x ⊢ ContinuousWithinAt f s x ∧ ContDiffWithinAtProp I I' n (↑(chartAt H' (f x)) ∘ f ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' s) (↑(chartAt H x) x) ↔ (ContinuousWithinAt f s x ∧ ContinuousWithinAt (↑(extChartAt I' (f x)) ∘ f) s x) ∧ ContDiffWithinAtProp I 𝓘(𝕜, E') n (↑(chartAt E' ((↑(extChartAt I' (f x)) ∘ f) x)) ∘ (↑(extChartAt I' (f x)) ∘ f) ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' s) (↑(chartAt H x) x)
5708dc3777c22e45
Polynomial.quotient_mk_comp_C_isIntegral_of_isJacobsonRing
Mathlib/RingTheory/Jacobson/Ring.lean
theorem quotient_mk_comp_C_isIntegral_of_isJacobsonRing : ((Ideal.Quotient.mk P).comp C : R →+* R[X] ⧸ P).IsIntegral
R : Type u_1 inst✝¹ : CommRing R P : Ideal R[X] hP : P.IsMaximal inst✝ : IsJacobsonRing R P' : Ideal R := comap C P this : P'.IsPrime f : R[X] →+* (R ⧸ P')[X] := mapRingHom (Ideal.Quotient.mk P') hf : Function.Surjective ⇑f p : R[X] hp : p ∈ comap f ⊥ n : ℕ ⊢ (Ideal.Quotient.mk (comap C P)) (p.coeff n) = 0
simpa only [f, coeff_map, coe_mapRingHom] using (Polynomial.ext_iff.mp hp) n
no goals
a0c73d64ce92331e
ENNReal.lt_iff_exists_rat_btwn
Mathlib/Data/ENNReal/Basic.lean
theorem lt_iff_exists_rat_btwn : a < b ↔ ∃ q : ℚ, 0 ≤ q ∧ a < Real.toNNReal q ∧ (Real.toNNReal q : ℝ≥0∞) < b := ⟨fun h => by rcases lt_iff_exists_coe.1 h with ⟨p, rfl, _⟩ rcases exists_between h with ⟨c, pc, cb⟩ rcases lt_iff_exists_coe.1 cb with ⟨r, rfl, _⟩ rcases (NNReal.lt_iff_exists_rat_btwn _ _).1 (coe_lt_coe.1 pc) with ⟨q, hq0, pq, qr⟩ exact ⟨q, hq0, coe_lt_coe.2 pq, lt_trans (coe_lt_coe.2 qr) cb⟩, fun ⟨_, _, qa, qb⟩ => lt_trans qa qb⟩
case intro.intro.intro.intro.intro.intro.intro.intro.intro b : ℝ≥0∞ p : ℝ≥0 right✝¹ h : ↑p < b r : ℝ≥0 right✝ : ↑r < b pc : ↑p < ↑r cb : ↑r < b q : ℚ hq0 : 0 ≤ q pq : p < (↑q).toNNReal qr : (↑q).toNNReal < r ⊢ ∃ q, 0 ≤ q ∧ ↑p < ↑(↑q).toNNReal ∧ ↑(↑q).toNNReal < b
exact ⟨q, hq0, coe_lt_coe.2 pq, lt_trans (coe_lt_coe.2 qr) cb⟩
no goals
aae9f40da5b98e1c
ProbabilityTheory.Kernel.comp_add_right
Mathlib/Probability/Kernel/Composition/Comp.lean
lemma comp_add_right (μ κ : Kernel α β) (η : Kernel β γ) : η ∘ₖ (μ + κ) = η ∘ₖ μ + η ∘ₖ κ
case h.h α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ μ κ : Kernel α β η : Kernel β γ a✝ : α s✝ : Set γ hs : MeasurableSet s✝ ⊢ ((η ∘ₖ (μ + κ)) a✝) s✝ = ((η ∘ₖ μ + η ∘ₖ κ) a✝) s✝
simp [comp_apply' _ _ _ hs]
no goals
79efe5ce49ef166d
BooleanRing.neg_eq
Mathlib/Algebra/Ring/BooleanRing.lean
theorem neg_eq : -a = a := calc -a = -a + 0
α : Type u_1 inst✝ : BooleanRing α a : α ⊢ -a + 0 = -a + -a + a
rw [← neg_add_cancel, add_assoc]
no goals
b77c191f3c8acf07
MeasureTheory.integral_eq_lintegral_of_nonneg_ae
Mathlib/MeasureTheory/Integral/Bochner.lean
theorem integral_eq_lintegral_of_nonneg_ae {f : α → ℝ} (hf : 0 ≤ᵐ[μ] f) (hfm : AEStronglyMeasurable f μ) : ∫ a, f a ∂μ = ENNReal.toReal (∫⁻ a, ENNReal.ofReal (f a) ∂μ)
α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : 0 ≤ᶠ[ae μ] f hfm : AEStronglyMeasurable f μ hfi : Integrable f μ ⊢ AEMeasurable (fun a => ENNReal.ofReal (-f a)) μ
exact measurable_ofReal.comp_aemeasurable hfm.aemeasurable.neg
no goals
d2ae86a5dd2a5d0c
BitVec.shiftLeft_ushiftRight
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem shiftLeft_ushiftRight {x : BitVec w} {n : Nat}: x >>> n <<< n = x &&& BitVec.allOnes w <<< n
case neg w n : Nat ih : ∀ {x : BitVec w}, x >>> n <<< n = x &&& allOnes w <<< n x : BitVec w i : Nat h : i < w hw : ¬w = 0 ⊢ (x >>> 1 <<< 1 &&& allOnes w <<< n <<< 1).getLsbD i = (x &&& allOnes w <<< n <<< 1).getLsbD i
by_cases hi₂ : i = 0
case pos w n : Nat ih : ∀ {x : BitVec w}, x >>> n <<< n = x &&& allOnes w <<< n x : BitVec w i : Nat h : i < w hw : ¬w = 0 hi₂ : i = 0 ⊢ (x >>> 1 <<< 1 &&& allOnes w <<< n <<< 1).getLsbD i = (x &&& allOnes w <<< n <<< 1).getLsbD i case neg w n : Nat ih : ∀ {x : BitVec w}, x >>> n <<< n = x &&& allOnes w <<< n x : BitVec w i : Nat h : i < w hw : ¬w = 0 hi₂ : ¬i = 0 ⊢ (x >>> 1 <<< 1 &&& allOnes w <<< n <<< 1).getLsbD i = (x &&& allOnes w <<< n <<< 1).getLsbD i
d74277fca2e60b6a
norm_mahler_eq
Mathlib/NumberTheory/Padics/MahlerBasis.lean
/-- The uniform norm of the `k`-th Mahler basis function is 1, for every `k`. -/ @[simp] lemma norm_mahler_eq (k : ℕ) : ‖(mahler k : C(ℤ_[p], ℚ_[p]))‖ = 1
p : ℕ hp : Fact (Nat.Prime p) k : ℕ ⊢ ‖mahler k‖ = 1
apply le_antisymm
case a p : ℕ hp : Fact (Nat.Prime p) k : ℕ ⊢ ‖mahler k‖ ≤ 1 case a p : ℕ hp : Fact (Nat.Prime p) k : ℕ ⊢ 1 ≤ ‖mahler k‖
bf8ddaaf139299df
ComplexShape.Embedding.r_eq_some
Mathlib/Algebra/Homology/Embedding/Basic.lean
lemma r_eq_some {i : ι} {i' : ι'} (hi : e.f i = i') : e.r i' = some i
ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' e : c.Embedding c' i : ι i' : ι' hi : e.f i = i' ⊢ e.r i' = some i
have h : ∃ (i : ι), e.f i = i' := ⟨i, hi⟩
ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' e : c.Embedding c' i : ι i' : ι' hi : e.f i = i' h : ∃ i, e.f i = i' ⊢ e.r i' = some i
a68fee8f05e51fd2
Filter.exists_seq_monotone_tendsto_atTop_atTop
Mathlib/Order/Filter/AtTopBot/CountablyGenerated.lean
theorem exists_seq_monotone_tendsto_atTop_atTop (α : Type*) [Preorder α] [Nonempty α] [IsDirected α (· ≤ ·)] [(atTop : Filter α).IsCountablyGenerated] : ∃ xs : ℕ → α, Monotone xs ∧ Tendsto xs atTop atTop
case intro.refine_2 α : Type u_3 inst✝³ : Preorder α inst✝² : Nonempty α inst✝¹ : IsDirected α fun x1 x2 => x1 ≤ x2 inst✝ : atTop.IsCountablyGenerated ys : ℕ → α h : Tendsto ys atTop atTop c : α → α → α hleft : ∀ (a b : α), a ≤ c a b hright : ∀ (a b : α), b ≤ c a b xs : ℕ → α := fun n => List.foldl (fun x n => c x (ys n)) (ys 0) (List.range n) hsucc : ∀ (n : ℕ), xs (n + 1) = c (xs n) (ys n) n : ℕ ⊢ ys n ≤ xs (n + 1)
rw [hsucc]
case intro.refine_2 α : Type u_3 inst✝³ : Preorder α inst✝² : Nonempty α inst✝¹ : IsDirected α fun x1 x2 => x1 ≤ x2 inst✝ : atTop.IsCountablyGenerated ys : ℕ → α h : Tendsto ys atTop atTop c : α → α → α hleft : ∀ (a b : α), a ≤ c a b hright : ∀ (a b : α), b ≤ c a b xs : ℕ → α := fun n => List.foldl (fun x n => c x (ys n)) (ys 0) (List.range n) hsucc : ∀ (n : ℕ), xs (n + 1) = c (xs n) (ys n) n : ℕ ⊢ ys n ≤ c (xs n) (ys n)
cfd85fba236c098c
ZMod.Ico_map_valMinAbs_natAbs_eq_Ico_map_id
Mathlib/NumberTheory/LegendreSymbol/GaussEisensteinLemmas.lean
theorem Ico_map_valMinAbs_natAbs_eq_Ico_map_id (p : ℕ) [hp : Fact p.Prime] (a : ZMod p) (hap : a ≠ 0) : ((Ico 1 (p / 2).succ).1.map fun (x : ℕ) => (a * x).valMinAbs.natAbs) = (Ico 1 (p / 2).succ).1.map fun a => a
p : ℕ hp : Fact (Nat.Prime p) a : ZMod p hap : a ≠ 0 he : ∀ {x : ℕ}, x ∈ Ico 1 (p / 2).succ → x ≠ 0 ∧ x ≤ p / 2 hep : ∀ {x : ℕ}, x ∈ Ico 1 (p / 2).succ → x < p hpe : ∀ {x : ℕ}, x ∈ Ico 1 (p / 2).succ → ¬p ∣ x ⊢ ∀ x ∈ Ico 1 (p / 2).succ, (a * ↑x).valMinAbs.natAbs ∈ Ico 1 (p / 2).succ
intro x hx
p : ℕ hp : Fact (Nat.Prime p) a : ZMod p hap : a ≠ 0 he : ∀ {x : ℕ}, x ∈ Ico 1 (p / 2).succ → x ≠ 0 ∧ x ≤ p / 2 hep : ∀ {x : ℕ}, x ∈ Ico 1 (p / 2).succ → x < p hpe : ∀ {x : ℕ}, x ∈ Ico 1 (p / 2).succ → ¬p ∣ x x : ℕ hx : x ∈ Ico 1 (p / 2).succ ⊢ (a * ↑x).valMinAbs.natAbs ∈ Ico 1 (p / 2).succ
e252720ce4f19196
Monoid.Coprod.snd_toProd
Mathlib/GroupTheory/Coprod/Basic.lean
theorem snd_toProd (x : M ∗ N) : (toProd x).2 = snd x
M : Type u_1 N : Type u_2 inst✝¹ : Monoid M inst✝ : Monoid N x : M ∗ N ⊢ (toProd x).2 = snd x
rw [← snd_comp_toProd]
M : Type u_1 N : Type u_2 inst✝¹ : Monoid M inst✝ : Monoid N x : M ∗ N ⊢ (toProd x).2 = ((MonoidHom.snd M N).comp toProd) x
2fb06f44b53bed66
ContinuousLinearMap.coprod_add
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
@[simp] lemma coprod_add (f₁ g₁ : M₁ →L[R] M) (f₂ g₂ : M₂ →L[R] M) : (f₁ + g₁).coprod (f₂ + g₂) = f₁.coprod f₂ + g₁.coprod g₂
R : Type u_1 M : Type u_3 M₁ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : Semiring R inst✝⁹ : TopologicalSpace M inst✝⁸ : TopologicalSpace M₁ inst✝⁷ : TopologicalSpace M₂ inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : ContinuousAdd M inst✝³ : AddCommMonoid M₁ inst✝² : Module R M₁ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R M₂ f₁ g₁ : M₁ →L[R] M f₂ g₂ : M₂ →L[R] M ⊢ (f₁ + g₁).coprod (f₂ + g₂) = f₁.coprod f₂ + g₁.coprod g₂
ext <;> simp
no goals
f7b4e0746d10c1b9
ProbabilityTheory.gaussianReal_map_const_mul
Mathlib/Probability/Distributions/Gaussian.lean
/-- The map of a Gaussian distribution by multiplication by a constant is a Gaussian. -/ lemma gaussianReal_map_const_mul (c : ℝ) : (gaussianReal μ v).map (c * ·) = gaussianReal (c * μ) (⟨c^2, sq_nonneg _⟩ * v)
case pos μ : ℝ v : ℝ≥0 c : ℝ hv : ¬v = 0 hc : c = 0 ⊢ Measure.dirac 0 = gaussianReal 0 (⟨0 ^ 2, ⋯⟩ * v)
convert (gaussianReal_zero_var 0).symm
case h.e'_3.h.e'_2 μ : ℝ v : ℝ≥0 c : ℝ hv : ¬v = 0 hc : c = 0 ⊢ ⟨0 ^ 2, ⋯⟩ * v = 0
1ceed6d297abcf77
Stream'.Seq.terminatedAt_zero_iff
Mathlib/Data/Seq/Seq.lean
theorem terminatedAt_zero_iff {s : Seq α} : s.TerminatedAt 0 ↔ s = nil
case refine_2 α : Type u ⊢ nil.TerminatedAt 0
simp [TerminatedAt]
no goals
10aa63b0fda6161a
IsGLB.mul_left
Mathlib/Algebra/Order/Field/Basic.lean
theorem IsGLB.mul_left {s : Set α} (ha : 0 ≤ a) (hs : IsGLB s b) : IsGLB ((fun b => a * b) '' s) (a * b)
α : Type u_2 inst✝ : LinearOrderedSemifield α a b : α s : Set α ha : 0 ≤ a hs : IsGLB s b ⊢ IsGLB ((fun b => a * b) '' s) (a * b)
rcases lt_or_eq_of_le ha with (ha | rfl)
case inl α : Type u_2 inst✝ : LinearOrderedSemifield α a b : α s : Set α ha✝ : 0 ≤ a hs : IsGLB s b ha : 0 < a ⊢ IsGLB ((fun b => a * b) '' s) (a * b) case inr α : Type u_2 inst✝ : LinearOrderedSemifield α b : α s : Set α hs : IsGLB s b ha : 0 ≤ 0 ⊢ IsGLB ((fun b => 0 * b) '' s) (0 * b)
88bccf1fd81bb4e6
roth_3ap_theorem_nat
Mathlib/Combinatorics/Additive/Corner/Roth.lean
theorem roth_3ap_theorem_nat (ε : ℝ) (hε : 0 < ε) (hG : cornersTheoremBound (ε / 3) ≤ n) (A : Finset ℕ) (hAn : A ⊆ range n) (hAε : ε * n ≤ #A) : ¬ ThreeAPFree (A : Set ℕ)
n : ℕ ε : ℝ hε : 0 < ε hG : cornersTheoremBound (ε / 3) ≤ n A : Finset ℕ hAn : ↑A ⊆ Set.Iio n hAε : ε * ↑n ≤ ↑(#A) hA : ThreeAPFree (Fin.val '' (Nat.cast '' ↑A)) this✝¹ : ↑A = Fin.val '' (Nat.cast '' ↑A) this✝ : IsAddFreimanIso 2 (Set.Iio ↑n) (Set.Iio n) Fin.val this : ThreeAPFree ↑(image (fun x => ↑x) A) ⊢ ε / 3 * ↑(Fintype.card (Fin (2 * n + 1))) ≤ ↑(#(image (fun x => ↑x) A))
calc _ = ε / 3 * (2 * n + 1) := by simp _ ≤ ε / 3 * (2 * n + n) := by gcongr; simp; unfold cornersTheoremBound at hG; omega _ = ε * n := by ring _ ≤ #A := hAε _ = _ := by rw [card_image_of_injOn] exact (CharP.natCast_injOn_Iio (Fin (2 * n).succ) (2 * n).succ).mono <| hAn.trans <| by simp; omega
no goals
c707b5b13a459d8d
Sum.lex_inl_inl
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Sum/Basic.lean
theorem lex_inl_inl : Lex r s (inl a₁) (inl a₂) ↔ r a₁ a₂ := ⟨fun h => by cases h; assumption, Lex.inl⟩
α✝ : Type u_1 r : α✝ → α✝ → Prop β✝ : Type u_2 s : β✝ → β✝ → Prop a₁ a₂ : α✝ h : Lex r s (inl a₁) (inl a₂) ⊢ r a₁ a₂
cases h
case inl α✝ : Type u_1 r : α✝ → α✝ → Prop β✝ : Type u_2 s : β✝ → β✝ → Prop a₁ a₂ : α✝ h✝ : r a₁ a₂ ⊢ r a₁ a₂
d3aae9eca3e3cd38
Besicovitch.exists_goodδ
Mathlib/MeasureTheory/Covering/BesicovitchVectorSpace.lean
theorem exists_goodδ : ∃ δ : ℝ, 0 < δ ∧ δ < 1 ∧ ∀ s : Finset E, (∀ c ∈ s, ‖c‖ ≤ 2) → (∀ c ∈ s, ∀ d ∈ s, c ≠ d → 1 - δ ≤ ‖c - d‖) → s.card ≤ multiplicity E
case intro.intro.intro.intro.intro.intro.intro.refine_1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E h : ∀ (δ : ℝ), 0 < δ → δ < 1 → ∃ s, (∀ c ∈ s, ‖c‖ ≤ 2) ∧ (∀ c ∈ s, ∀ d ∈ s, c ≠ d → 1 - δ ≤ ‖c - d‖) ∧ multiplicity E < s.card N : ℕ := multiplicity E + 1 hN : N = multiplicity E + 1 F : ℝ → Fin N → E hF : ∀ (δ : ℝ), 0 < δ → (∀ (i : Fin N), ‖F δ i‖ ≤ 2) ∧ Pairwise fun i j => 1 - δ ≤ ‖F δ i - F δ j‖ u : ℕ → ℝ left✝ : ∀ (m n : ℕ), m < n → u n < u m zero_lt_u : ∀ (n : ℕ), 0 < u n hu : Tendsto u atTop (𝓝 0) A : ∀ (n : ℕ), F (u n) ∈ closedBall 0 2 f : Fin N → E φ : ℕ → ℕ φ_mono : StrictMono φ hf : Tendsto ((F ∘ u) ∘ φ) atTop (𝓝 f) i : Fin N fmem : ∀ (i : Fin N), ‖f i‖ ≤ 2 ⊢ ‖f i‖ ≤ 2
exact fmem i
no goals
7c59972754532a8d
Module.Flat.exists_factorization_of_apply_eq_zero_of_free
Mathlib/RingTheory/Flat/EquationalCriterion.lean
theorem exists_factorization_of_apply_eq_zero_of_free [Flat R M] {N : Type*} [AddCommGroup N] [Module R N] [Free R N] [Module.Finite R N] {f : N} {x : N →ₗ[R] M} (h : x f = 0) : ∃ (k : ℕ) (a : N →ₗ[R] (Fin k →₀ R)) (y : (Fin k →₀ R) →ₗ[R] M), x = y ∘ₗ a ∧ a f = 0 := have e := ((Module.Free.chooseBasis R N).reindex (Fintype.equivFin _)).repr.symm have ⟨k, a, y, hya, haf⟩ := iff_forall_exists_factorization.mp ‹Flat R M› (f := e.symm f) (x := x ∘ₗ e) (by simpa using h) ⟨k, a ∘ₗ e.symm, y, by rwa [← comp_assoc, LinearEquiv.eq_comp_toLinearMap_symm], haf⟩
R : Type u_1 M : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : Flat R M N : Type u_3 inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : Free R N inst✝ : Module.Finite R N f : N x : N →ₗ[R] M h : x f = 0 e : (Fin (Fintype.card (Free.ChooseBasisIndex R N)) →₀ R) ≃ₗ[R] N k : ℕ a : (Fin (Fintype.card (Free.ChooseBasisIndex R N)) →₀ R) →ₗ[R] Fin k →₀ R y : (Fin k →₀ R) →ₗ[R] M hya : x ∘ₗ ↑e = y ∘ₗ a haf : a (e.symm f) = 0 ⊢ x = y ∘ₗ a ∘ₗ ↑e.symm
rwa [← comp_assoc, LinearEquiv.eq_comp_toLinearMap_symm]
no goals
c0d139cfd91c1db8
LeftOrdContinuous.iterate
Mathlib/Order/OrdContinuous.lean
theorem iterate {f : α → α} (hf : LeftOrdContinuous f) (n : ℕ) : LeftOrdContinuous f^[n]
case succ α : Type u inst✝ : Preorder α f : α → α hf : LeftOrdContinuous f n : ℕ ihn : LeftOrdContinuous f^[n] ⊢ LeftOrdContinuous f^[n + 1]
exact ihn.comp hf
no goals
3ce387ee4ba6ee92
Std.Tactic.BVDecide.BVExpr.bitblast.blastAdd.go_get
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Add.lean
theorem go_get (aig : AIG α) (curr : Nat) (hcurr : curr ≤ w) (cin : Ref aig) (s : AIG.RefVec aig curr) (lhs rhs : AIG.RefVec aig w) : ∀ (idx : Nat) (hidx : idx < curr), (go aig lhs rhs curr hcurr cin s).vec.get idx (by omega) = (s.get idx hidx).cast (by apply go_le_size)
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α curr : Nat hcurr : curr ≤ w cin : aig.Ref s : aig.RefVec curr lhs rhs : aig.RefVec w idx✝ : Nat hidx✝ : idx✝ < curr ⊢ (go aig lhs rhs curr hcurr cin s).vec.get idx✝ ⋯ = (s.get idx✝ hidx✝).cast ⋯
apply go_get_aux
no goals
a0b97a99a40e7a7a
CoxeterSystem.getElem_succ_leftInvSeq_alternatingWord
Mathlib/GroupTheory/Coxeter/Inversion.lean
lemma getElem_succ_leftInvSeq_alternatingWord (i j : B) (p k : ℕ) (h : k + 1 < 2 * p) : (lis (alternatingWord i j (2 * p)))[k + 1]'(by simp; exact h) = MulAut.conj (s i) ((lis (alternatingWord j i (2 * p)))[k]'(by simp; omega))
B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W i j : B p k : ℕ h : k + 1 < 2 * p ⊢ k < (alternatingWord j i (2 * p)).length
simp[h]
B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W i j : B p k : ℕ h : k + 1 < 2 * p ⊢ k < 2 * p
92714ccf6a2cfd6b
RingQuot.smul_quot
Mathlib/Algebra/RingQuot.lean
theorem smul_quot [Algebra S R] {n : S} {a : R} : (n • ⟨Quot.mk _ a⟩ : RingQuot r) = ⟨Quot.mk _ (n • a)⟩
R : Type uR inst✝² : Semiring R S : Type uS inst✝¹ : CommSemiring S r : R → R → Prop inst✝ : Algebra S R n : S a : R ⊢ n • { toQuot := Quot.mk (Rel r) a } = { toQuot := Quot.mk (Rel r) (n • a) }
show smul r _ _ = _
R : Type uR inst✝² : Semiring R S : Type uS inst✝¹ : CommSemiring S r : R → R → Prop inst✝ : Algebra S R n : S a : R ⊢ RingQuot.smul r n { toQuot := Quot.mk (Rel r) a } = { toQuot := Quot.mk (Rel r) (n • a) }
1998ee7c35e5105c
LieAlgebra.derivedSeries_baseChange
Mathlib/Algebra/Lie/Solvable.lean
theorem derivedSeries_baseChange {A : Type*} [CommRing A] [Algebra R A] (k : ℕ) : derivedSeries A (A ⊗[R] L) k = (derivedSeries R L k).baseChange A
R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u_1 inst✝¹ : CommRing A inst✝ : Algebra R A k : ℕ ⊢ derivedSeries A (A ⊗[R] L) k = LieSubmodule.baseChange A (derivedSeries R L k)
rw [derivedSeries_def, derivedSeries_def, ← derivedSeriesOfIdeal_baseChange, LieSubmodule.baseChange_top]
no goals
2cd3c7adb791e646
LieDerivation.iterate_apply_lie'
Mathlib/Algebra/Lie/Derivation/Basic.lean
theorem iterate_apply_lie' (D : LieDerivation R L L) (n : ℕ) (a b : L) : D^[n] ⁅a, b⁆ = ∑ i ∈ range (n + 1), n.choose i • ⁅D^[i] a, D^[n - i] b⁆
R : Type u_1 L : Type u_2 inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L D : LieDerivation R L L n : ℕ a b : L ⊢ (⇑D)^[n] ⁅a, b⁆ = ∑ i ∈ range (n + 1), n.choose i • ⁅(⇑D)^[i] a, (⇑D)^[n - i] b⁆
rw [iterate_apply_lie D n a b]
R : Type u_1 L : Type u_2 inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L D : LieDerivation R L L n : ℕ a b : L ⊢ ∑ ij ∈ antidiagonal n, n.choose ij.1 • ⁅(⇑D)^[ij.1] a, (⇑D)^[ij.2] b⁆ = ∑ i ∈ range (n + 1), n.choose i • ⁅(⇑D)^[i] a, (⇑D)^[n - i] b⁆
47286e6ec979c5c1
Doset.union_quotToDoset
Mathlib/GroupTheory/DoubleCoset.lean
theorem union_quotToDoset (H K : Subgroup G) : ⋃ q, quotToDoset H K q = Set.univ
case h.intro.intro.intro.intro G : Type u_1 inst✝ : Group G H K : Subgroup G x h k : G h3 : h ∈ H h4 : k ∈ K h5 : Quotient.out (mk H K x) = h * x * k ⊢ x = h⁻¹ * Quotient.out (mk H K x) * k⁻¹
simp only [h5, Subgroup.coe_mk, ← mul_assoc, one_mul, inv_mul_cancel, mul_inv_cancel_right]
no goals
8ff825a8e63bc4d6
MeasureTheory.continuousOn_convolution_right_with_param
Mathlib/Analysis/Convolution.lean
theorem continuousOn_convolution_right_with_param {g : P → G → E'} {s : Set P} {k : Set G} (hk : IsCompact k) (hgs : ∀ p, ∀ x, p ∈ s → x ∉ k → g p x = 0) (hf : LocallyIntegrable f μ) (hg : ContinuousOn (↿g) (s ×ˢ univ)) : ContinuousOn (fun q : P × G => (f ⋆[L, μ] g q.1) q.2) (s ×ˢ univ)
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF P : Type uP inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F f : G → E inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace 𝕜 F L : E →L[𝕜] E' →L[𝕜] F inst✝⁶ : MeasurableSpace G μ : Measure G inst✝⁵ : NormedSpace ℝ F inst✝⁴ : AddGroup G inst✝³ : TopologicalSpace G inst✝² : IsTopologicalAddGroup G inst✝¹ : BorelSpace G inst✝ : TopologicalSpace P g : P → G → E' s : Set P k : Set G hk : IsCompact k hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0 hf : LocallyIntegrable f μ hg : ContinuousOn (↿g) (s ×ˢ univ) H : ¬∀ p ∈ s, ∀ (x : G), g p x = 0 ⊢ LocallyCompactSpace G
push_neg at H
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF P : Type uP inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F f : G → E inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace 𝕜 F L : E →L[𝕜] E' →L[𝕜] F inst✝⁶ : MeasurableSpace G μ : Measure G inst✝⁵ : NormedSpace ℝ F inst✝⁴ : AddGroup G inst✝³ : TopologicalSpace G inst✝² : IsTopologicalAddGroup G inst✝¹ : BorelSpace G inst✝ : TopologicalSpace P g : P → G → E' s : Set P k : Set G hk : IsCompact k hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0 hf : LocallyIntegrable f μ hg : ContinuousOn (↿g) (s ×ˢ univ) H : ∃ p ∈ s, ∃ x, g p x ≠ 0 ⊢ LocallyCompactSpace G
a579c7593509cfe8
Fin.dfoldrM_loop
Mathlib/.lake/packages/batteries/Batteries/Data/Fin/Fold.lean
theorem dfoldrM_loop [Monad m] [LawfulMonad m] (f : (i : Fin (n+1)) → α i.succ → m (α i.castSucc)) (x) : dfoldrM.loop (n+1) α f (i+1) h x = dfoldrM.loop n (α ∘ succ) (f ·.succ) i (by omega) x >>= f 0
case zero m : Type u_1 → Type u_2 n : Nat α : Fin (n + 1 + 1) → Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m f : (i : Fin (n + 1)) → α i.succ → m (α i.castSucc) h : 0 + 1 < n + 1 + 1 x : α ⟨0 + 1, h⟩ ⊢ dfoldrM.loop (n + 1) α f (0 + 1) h x = dfoldrM.loop n (α ∘ succ) (fun x => f x.succ) 0 ⋯ x >>= f 0
rw [dfoldrM_loop_zero, dfoldrM_loop_succ, pure_bind]
case zero m : Type u_1 → Type u_2 n : Nat α : Fin (n + 1 + 1) → Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m f : (i : Fin (n + 1)) → α i.succ → m (α i.castSucc) h : 0 + 1 < n + 1 + 1 x : α ⟨0 + 1, h⟩ ⊢ f ⟨0, ⋯⟩ x >>= dfoldrM.loop (n + 1) α f 0 ⋯ = f 0 x
b74a59ce684ddcb3
Basis.smulTower'_apply
Mathlib/RingTheory/AlgebraTower.lean
theorem Basis.smulTower'_apply (ij) : b.smulTower' c ij = b ij.2 • c ij.1
R : Type u_1 S : Type u_2 A : Type u_3 inst✝⁶ : Semiring R inst✝⁵ : Semiring S inst✝⁴ : AddCommMonoid A inst✝³ : Module R S inst✝² : Module S A inst✝¹ : Module R A inst✝ : IsScalarTower R S A ι : Type u_5 ι' : Type u_6 b : Basis ι R S c : Basis ι' S A ij : ι' × ι ⊢ b ((Equiv.prodComm ι ι').symm ij).1 • c ((Equiv.prodComm ι ι').symm ij).2 = b ij.2 • c ij.1
rfl
no goals
31e03fdbd5cbb2f1
Std.DHashMap.Internal.List.getValueCast!_insertList_of_contains_eq_false
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem getValueCast!_insertList_of_contains_eq_false [BEq α] [LawfulBEq α] {l toInsert : List ((a : α) × β a)} {k : α} [Inhabited (β k)] (not_contains : (toInsert.map Sigma.fst).contains k = false) : getValueCast! k (insertList l toInsert) = getValueCast! k l
α : Type u β : α → Type v inst✝² : BEq α inst✝¹ : LawfulBEq α l toInsert : List ((a : α) × β a) k : α inst✝ : Inhabited (β k) not_contains : (List.map Sigma.fst toInsert).contains k = false ⊢ getValueCast! k (insertList l toInsert) = getValueCast! k l
rw [getValueCast!_eq_getValueCast?, getValueCast!_eq_getValueCast?, getValueCast?_insertList_of_contains_eq_false not_contains]
no goals
5142a0bf7137e2ba
Matrix.add_mul_mul_invOf_mul_eq_one
Mathlib/Data/Matrix/Invertible.lean
lemma add_mul_mul_invOf_mul_eq_one : (A + U*C*V)*(⅟A - ⅟A*U*⅟(⅟C + V*⅟A*U)*V*⅟A) = 1
m : Type u_1 n : Type u_2 α : Type u_3 inst✝⁷ : Fintype n inst✝⁶ : DecidableEq n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq m inst✝³ : Ring α A : Matrix n n α U : Matrix n m α C : Matrix m m α V : Matrix m n α inst✝² : Invertible A inst✝¹ : Invertible C inst✝ : Invertible (⅟C + V * ⅟A * U) ⊢ 1 - U * ⅟(⅟C + V * ⅟A * U) * V * ⅟A + U * C * V * ⅟A - U * C * V * ⅟A * U * ⅟(⅟C + V * ⅟A * U) * V * ⅟A = 1 + U * C * V * ⅟A - (U * ⅟(⅟C + V * ⅟A * U) * V * ⅟A + U * C * V * ⅟A * U * ⅟(⅟C + V * ⅟A * U) * V * ⅟A)
abel
no goals
d620666c2f32684f
ModularFormClass.differentiableAt_cuspFunction
Mathlib/NumberTheory/ModularForms/QExpansion.lean
theorem differentiableAt_cuspFunction [NeZero n] [ModularFormClass F Γ(n) k] {q : ℂ} (hq : ‖q‖ < 1) : DifferentiableAt ℂ (cuspFunction n f) q
k : ℤ F : Type u_1 inst✝² : FunLike F ℍ ℂ n : ℕ f : F inst✝¹ : NeZero n inst✝ : ModularFormClass F Γ(n) k q : ℂ hq : ‖q‖ < 1 npos : 0 < ↑n ⊢ DifferentiableAt ℂ (cuspFunction n f) q
rcases eq_or_ne q 0 with rfl | hq'
case inl k : ℤ F : Type u_1 inst✝² : FunLike F ℍ ℂ n : ℕ f : F inst✝¹ : NeZero n inst✝ : ModularFormClass F Γ(n) k npos : 0 < ↑n hq : ‖0‖ < 1 ⊢ DifferentiableAt ℂ (cuspFunction n f) 0 case inr k : ℤ F : Type u_1 inst✝² : FunLike F ℍ ℂ n : ℕ f : F inst✝¹ : NeZero n inst✝ : ModularFormClass F Γ(n) k q : ℂ hq : ‖q‖ < 1 npos : 0 < ↑n hq' : q ≠ 0 ⊢ DifferentiableAt ℂ (cuspFunction n f) q
f6e94b618ea55836
dualTensorHomEquivOfBasis_symm_cancel_right
Mathlib/LinearAlgebra/Contraction.lean
theorem dualTensorHomEquivOfBasis_symm_cancel_right (x : M →ₗ[R] N) : dualTensorHom R M N ((dualTensorHomEquivOfBasis b).symm x) = x
ι : Type w R : Type u M : Type v₁ N : Type v₂ inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : Module R M inst✝² : Module R N inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M x : M →ₗ[R] N ⊢ (dualTensorHom R M N) ((dualTensorHomEquivOfBasis b).symm x) = x
rw [← dualTensorHomEquivOfBasis_apply b, LinearEquiv.apply_symm_apply]
no goals
98ad7dc13e73a05f
GenContFract.dens_recurrence
Mathlib/Algebra/ContinuedFractions/ContinuantsRecurrence.lean
theorem dens_recurrence {gp : Pair K} {ppredB predB : K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_den_eq : g.dens n = ppredB) (succ_nth_den_eq : g.dens (n + 1) = predB) : g.dens (n + 2) = gp.b * predB + gp.a * ppredB
K : Type u_1 g : GenContFract K n : ℕ inst✝ : DivisionRing K gp : Pair K ppredB predB : K succ_nth_s_eq : g.s.get? (n + 1) = some gp nth_den_eq : g.dens n = ppredB succ_nth_den_eq : g.dens (n + 1) = predB ⊢ g.dens (n + 2) = gp.b * predB + gp.a * ppredB
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.conts n = conts ∧ conts.b = ppredB := exists_conts_b_of_den nth_den_eq
case intro.intro.refl K : Type u_1 g : GenContFract K n : ℕ inst✝ : DivisionRing K gp : Pair K predB : K succ_nth_s_eq : g.s.get? (n + 1) = some gp succ_nth_den_eq : g.dens (n + 1) = predB ppredConts : Pair K nth_conts_eq : g.conts n = ppredConts nth_den_eq : g.dens n = ppredConts.b ⊢ g.dens (n + 2) = gp.b * predB + gp.a * ppredConts.b
a1e5e5f64bf27d45
totallyBounded_iff_filter
Mathlib/Topology/UniformSpace/Cauchy.lean
theorem totallyBounded_iff_filter {s : Set α} : TotallyBounded s ↔ ∀ f, NeBot f → f ≤ 𝓟 s → ∃ c ≤ f, Cauchy c
case mpr.intro.intro.intro.intro.intro.intro α : Type u uniformSpace : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), t.Finite → ¬s ⊆ ⋃ y ∈ t, {x | (x, y) ∈ d} f : Filter α := ⨅ t, 𝓟 (s \ ⋃ y ∈ t, {x | (x, y) ∈ d}) hb : f.HasAntitoneBasis fun t => s \ ⋃ y ∈ t, {x | (x, y) ∈ d} this✝¹ : f.NeBot this✝ : f ≤ 𝓟 s c : Filter α hcf : c ≤ f hc : Cauchy c m : Set α hm : m ∈ c hmd : m ×ˢ m ⊆ d y : α hym : y ∈ m this : s \ {x | (x, y) ∈ d} ∈ c z : α hzm : z ∈ m hyz : z ∉ {x | (x, y) ∈ d} ⊢ False
exact hyz (hmd ⟨hzm, hym⟩)
no goals
8d4389700a78bd05
Batteries.UnionFind.rootD_eq_self
Mathlib/.lake/packages/batteries/Batteries/Data/UnionFind/Basic.lean
theorem rootD_eq_self {self : UnionFind} {x : Nat} : self.rootD x = x ↔ self.parent x = x
self : UnionFind x : Nat h : self.parent x = x ⊢ (if h : x < self.size then ↑(self.root ⟨x, h⟩) else x) = x
split <;> [rw [root, dif_pos (by rwa [parent, parentD_eq ‹_›] at h)]; rfl]
no goals
0c883697e4e0ccdf
Sum.bnot_isLeft
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Sum/Lemmas.lean
theorem bnot_isLeft (x : α ⊕ β) : !x.isLeft = x.isRight
α : Type u_1 β : Type u_2 x : α ⊕ β ⊢ (!decide (x.isLeft = x.isRight)) = true
cases x <;> rfl
no goals
e4b00d71627b8aa9
Turing.TM1to0.tr_supports
Mathlib/Computability/PostTuringMachine.lean
theorem tr_supports {S : Finset Λ} (ss : TM1.Supports M S) : TM0.Supports (tr M) ↑(trStmts M S)
case right.mk.some Γ : Type u_1 Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → TM1.Stmt Γ Λ σ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ q' : Λ' M s : TM0.Stmt Γ v : σ q : TM1.Stmt Γ Λ σ h₁ : (q', s) ∈ tr M (some q, v) a h₂ : (some q, v) ∈ ↑(trStmts M S) ⊢ q' ∈ ↑(trStmts M S)
obtain ⟨q', v'⟩ := q'
case right.mk.some.mk Γ : Type u_1 Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → TM1.Stmt Γ Λ σ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : TM0.Stmt Γ v : σ q : TM1.Stmt Γ Λ σ h₂ : (some q, v) ∈ ↑(trStmts M S) q' : Option (TM1.Stmt Γ Λ σ) v' : σ h₁ : ((q', v'), s) ∈ tr M (some q, v) a ⊢ (q', v') ∈ ↑(trStmts M S)
c5e09604fd205550
MvPolynomial.eval₂_mem
Mathlib/Algebra/MvPolynomial/Eval.lean
theorem eval₂_mem {f : R →+* S} {p : MvPolynomial σ R} {s : subS} (hs : ∀ i ∈ p.support, f (p.coeff i) ∈ s) {v : σ → S} (hv : ∀ i, v i ∈ s) : MvPolynomial.eval₂ f v p ∈ s
R : Type u σ : Type u_1 inst✝³ : CommSemiring R S : Type u_2 subS : Type u_3 inst✝² : CommSemiring S inst✝¹ : SetLike subS S inst✝ : SubsemiringClass subS S f : R →+* S p : MvPolynomial σ R s : subS v : σ → S hv : ∀ (i : σ), v i ∈ s hs : ∀ (i : σ →₀ ℕ), f (coeff i p) ∈ s ⊢ eval₂ f v p ∈ s
induction' p using MvPolynomial.induction_on''' with a a b f ha _ ih
case h_C R : Type u σ : Type u_1 inst✝³ : CommSemiring R S : Type u_2 subS : Type u_3 inst✝² : CommSemiring S inst✝¹ : SetLike subS S inst✝ : SubsemiringClass subS S f : R →+* S s : subS v : σ → S hv : ∀ (i : σ), v i ∈ s a : R hs : ∀ (i : σ →₀ ℕ), f (coeff i (C a)) ∈ s ⊢ eval₂ f v (C a) ∈ s case h_add_weak R : Type u σ : Type u_1 inst✝³ : CommSemiring R S : Type u_2 subS : Type u_3 inst✝² : CommSemiring S inst✝¹ : SetLike subS S inst✝ : SubsemiringClass subS S f✝ : R →+* S s : subS v : σ → S hv : ∀ (i : σ), v i ∈ s a : σ →₀ ℕ b : R f : (σ →₀ ℕ) →₀ R ha : a ∉ f.support a✝ : b ≠ 0 ih : (∀ (i : σ →₀ ℕ), f✝ (coeff i f) ∈ s) → eval₂ f✝ v f ∈ s hs : ∀ (i : σ →₀ ℕ), f✝ (coeff i ((let_fun this := (monomial a) b; this) + f)) ∈ s ⊢ eval₂ f✝ v ((let_fun this := (monomial a) b; this) + f) ∈ s
84ed2e64912182c9
Ordnode.Sized.rotateL
Mathlib/Data/Ordmap/Ordset.lean
theorem Sized.rotateL {l x r} (hl : @Sized α l) (hr : Sized r) : Sized (rotateL l x r)
α : Type u_1 l : Ordnode α x : α r : Ordnode α hl : l.Sized hr : r.Sized ⊢ (l.rotateL x r).Sized
cases r
case nil α : Type u_1 l : Ordnode α x : α hl : l.Sized hr : nil.Sized ⊢ (l.rotateL x nil).Sized case node α : Type u_1 l : Ordnode α x : α hl : l.Sized size✝ : ℕ l✝ : Ordnode α x✝ : α r✝ : Ordnode α hr : (node size✝ l✝ x✝ r✝).Sized ⊢ (l.rotateL x (node size✝ l✝ x✝ r✝)).Sized
485e683ec0a48852
CategoryTheory.Abelian.Ext.preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply
Mathlib/Algebra/Homology/DerivedCategory/Ext/ExactSequences.lean
lemma preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply [HasDerivedCategory.{w'} C] {X : C} {n₀ : ℕ} (x : Ext X S.X₃ n₀) {n₁ : ℕ} (h : n₀ + 1 = n₁) : (preadditiveCoyoneda.obj (op ((singleFunctor C 0).obj X))).homologySequenceδ hS.singleTriangle n₀ n₁ (by omega) x.hom = (x.comp hS.extClass h).hom
C : Type u inst✝³ : Category.{v, u} C inst✝² : Abelian C inst✝¹ : HasExt C S : ShortComplex C hS : S.ShortExact inst✝ : HasDerivedCategory C X : C n₀ : ℕ x : Ext X S.X₃ n₀ n₁ : ℕ h : n₀ + 1 = n₁ ⊢ x.hom ≫ (shiftFunctor (DerivedCategory C) ↑n₀).map hS.singleTriangle.mor₃ ≫ (shiftFunctorAdd' (DerivedCategory C) 1 ↑n₀ ↑n₁ ⋯).inv.app hS.singleTriangle.obj₁ = x.hom ≫ (shiftFunctor (DerivedCategory C) ↑n₀).map hS.singleδ ≫ (shiftFunctorAdd' (DerivedCategory C) ↑1 ↑n₀ ↑n₁ ⋯).inv.app ((singleFunctor C 0).obj S.X₁)
rfl
no goals
e57479311dc43218
MeasureTheory.eLpNorm_smul_measure_of_ne_zero_of_ne_top
Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean
theorem eLpNorm_smul_measure_of_ne_zero_of_ne_top {p : ℝ≥0∞} (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) {f : α → ε} (c : ℝ≥0∞) : eLpNorm f p (c • μ) = c ^ (1 / p).toReal • eLpNorm f p μ
α : Type u_1 ε : Type u_2 m0 : MeasurableSpace α μ : Measure α inst✝ : ENorm ε p : ℝ≥0∞ hp_ne_zero : p ≠ 0 hp_ne_top : p ≠ ⊤ f : α → ε c : ℝ≥0∞ ⊢ c ^ (1 / p.toReal) * eLpNorm' f p.toReal μ = c ^ (1 / p).toReal • eLpNorm' f p.toReal μ
congr
case e_a.e_a α : Type u_1 ε : Type u_2 m0 : MeasurableSpace α μ : Measure α inst✝ : ENorm ε p : ℝ≥0∞ hp_ne_zero : p ≠ 0 hp_ne_top : p ≠ ⊤ f : α → ε c : ℝ≥0∞ ⊢ 1 / p.toReal = (1 / p).toReal
29a17d4553f41dd2
Finset.Colex.shadow_initSeg
Mathlib/Combinatorics/SetFamily/KruskalKatona.lean
/-- This is important for iterating Kruskal-Katona: the shadow of an initial segment is also an initial segment. -/ lemma shadow_initSeg [Fintype α] (hs : s.Nonempty) : ∂ (initSeg s) = initSeg (erase s <| min' s hs)
case h.mpr.inr.intro.intro.intro.inr.inr.inr.h α : Type u_1 inst✝¹ : LinearOrder α s : Finset α inst✝ : Fintype α hs : s.Nonempty t : Finset α cards' : #(s.erase (s.min' hs)) = #t k : α hks : k ∈ s.erase (s.min' hs) hkt : k ∉ t z : ∀ ⦃a : α⦄, k < a → (a ∈ t ↔ a ∈ s.erase (s.min' hs)) j : α := tᶜ.min' ⋯ hjk : j ≤ k this : j ∉ t hcard : #s = #(insert j t) r₁ : j = k a : α ha : a ∈ s gt : a < j x✝ : a ∉ t ⊢ False
apply (min'_le tᶜ _ _).not_lt gt
α : Type u_1 inst✝¹ : LinearOrder α s : Finset α inst✝ : Fintype α hs : s.Nonempty t : Finset α cards' : #(s.erase (s.min' hs)) = #t k : α hks : k ∈ s.erase (s.min' hs) hkt : k ∉ t z : ∀ ⦃a : α⦄, k < a → (a ∈ t ↔ a ∈ s.erase (s.min' hs)) j : α := tᶜ.min' ⋯ hjk : j ≤ k this : j ∉ t hcard : #s = #(insert j t) r₁ : j = k a : α ha : a ∈ s gt : a < j x✝ : a ∉ t ⊢ a ∈ tᶜ
a9c55e64e04a6093
Batteries.RBNode.Balanced.append
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/WF.lean
theorem Balanced.append {l r : RBNode α} (hl : l.Balanced c₁ n) (hr : r.Balanced c₂ n) : (l.append r).RedRed (c₁ = black → c₂ ≠ black) n
α : Type u_1 c₁ : RBColor n : Nat c₂ : RBColor x✝³ x✝² a✝¹ : RBNode α x✝¹ : α b c : RBNode α y✝ : α d✝ : RBNode α hl : (node red a✝¹ x✝¹ b).Balanced c₁ n hr : (node red c y✝ d✝).Balanced c₂ n ha : a✝¹.Balanced black n hb : b.Balanced black n hc : c.Balanced black n hd : d✝.Balanced black n l✝ a✝ : RBNode α x✝ : α b✝ : RBNode α e : b.append c = node red a✝ x✝ b✝ hb' : a✝.Balanced black n hc' : b✝.Balanced black n IH : (b.append c).Balanced red n ⊢ RedRed (red = black → red ≠ black) (node red (node red a✝¹ x✝¹ a✝) x✝ (node red b✝ y✝ d✝)) n
exact .redred nofun (.red ha hb') (.red hc' hd)
no goals
b3ecc8a07b6c9ec6
CategoryTheory.Functor.CommShift.ofIso_compatibility
Mathlib/CategoryTheory/Shift/CommShift.lean
lemma ofIso_compatibility : letI := ofIso e A NatTrans.CommShift e.hom A
C : Type u_1 D : Type u_2 inst✝⁵ : Category.{u_5, u_1} C inst✝⁴ : Category.{u_6, u_2} D F G : C ⥤ D e : F ≅ G A : Type u_4 inst✝³ : AddMonoid A inst✝² : HasShift C A inst✝¹ : HasShift D A inst✝ : F.CommShift A ⊢ NatTrans.CommShift e.hom A
letI := ofIso e A
C : Type u_1 D : Type u_2 inst✝⁵ : Category.{u_5, u_1} C inst✝⁴ : Category.{u_6, u_2} D F G : C ⥤ D e : F ≅ G A : Type u_4 inst✝³ : AddMonoid A inst✝² : HasShift C A inst✝¹ : HasShift D A inst✝ : F.CommShift A this : G.CommShift A := ofIso e A ⊢ NatTrans.CommShift e.hom A
c2c10f3a9e743026
HasFPowerSeriesWithinOnBall.tendstoUniformlyOn'
Mathlib/Analysis/Analytic/Basic.lean
theorem HasFPowerSeriesWithinOnBall.tendstoUniformlyOn' {r' : ℝ≥0} (hf : HasFPowerSeriesWithinOnBall f p s x r) (h : (r' : ℝ≥0∞) < r) : TendstoUniformlyOn (fun n y => p.partialSum n (y - x)) f atTop (insert x s ∩ Metric.ball (x : E) r')
case h.e'_8.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F p : FormalMultilinearSeries 𝕜 E F s : Set E x : E r : ℝ≥0∞ r' : ℝ≥0 hf : HasFPowerSeriesWithinOnBall f p s x r h : ↑r' < r z : E ⊢ z ∈ insert x s ∩ Metric.ball x ↑r' ↔ z ∈ (fun y => y - x) ⁻¹' ((fun x_1 => x + x_1) ⁻¹' insert x s ∩ Metric.ball 0 ↑r')
simp [dist_eq_norm]
no goals
3f74d4280602b239
AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.add_mem
Mathlib/AlgebraicGeometry/ProjectiveSpectrum/Scheme.lean
theorem carrier.add_mem (q : Spec.T A⁰_ f) {a b : A} (ha : a ∈ carrier f_deg q) (hb : b ∈ carrier f_deg q) : a + b ∈ carrier f_deg q
R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m ⊢ (proj 𝒜 i) a ^ m ∈ 𝒜 (m • i)
mem_tac
no goals
e11b14794a0cd9b6
Nat.and_lt_two_pow
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Bitwise/Lemmas.lean
theorem and_lt_two_pow (x : Nat) {y n : Nat} (right : y < 2^n) : (x &&& y) < 2^n
case lt x y n : Nat right : y < 2 ^ n i : Nat i_ge_n : i ≥ n ⊢ 2 ^ n ≤ 2 ^ i
exact pow_le_pow_of_le_right Nat.zero_lt_two i_ge_n
no goals
c45ccfe28fec8d46
Set.zero_mem_smul_iff
Mathlib/Data/Set/Pointwise/SMul.lean
theorem zero_mem_smul_iff : (0 : β) ∈ s • t ↔ (0 : α) ∈ s ∧ t.Nonempty ∨ (0 : β) ∈ t ∧ s.Nonempty
case mpr α : Type u_2 β : Type u_3 inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMulWithZero α β s : Set α t : Set β inst✝ : NoZeroSMulDivisors α β ⊢ 0 ∈ s ∧ t.Nonempty ∨ 0 ∈ t ∧ s.Nonempty → 0 ∈ s • t
rintro (⟨hs, b, hb⟩ | ⟨ht, a, ha⟩)
case mpr.inl.intro.intro α : Type u_2 β : Type u_3 inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMulWithZero α β s : Set α t : Set β inst✝ : NoZeroSMulDivisors α β hs : 0 ∈ s b : β hb : b ∈ t ⊢ 0 ∈ s • t case mpr.inr.intro.intro α : Type u_2 β : Type u_3 inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMulWithZero α β s : Set α t : Set β inst✝ : NoZeroSMulDivisors α β ht : 0 ∈ t a : α ha : a ∈ s ⊢ 0 ∈ s • t
2eb057cfa2edc7c8
Monotone.seq_lt_seq_of_lt_of_le
Mathlib/Order/Iterate.lean
theorem seq_lt_seq_of_lt_of_le (hf : Monotone f) (n : ℕ) (h₀ : x 0 < y 0) (hx : ∀ k < n, x (k + 1) < f (x k)) (hy : ∀ k < n, f (y k) ≤ y (k + 1)) : x n < y n
α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n : ℕ h₀ : x 0 < y 0 hx : ∀ (k : ℕ), k < n → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1) ⊢ x n < y n
cases n
case zero α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f h₀ : x 0 < y 0 hx : ∀ (k : ℕ), k < 0 → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < 0 → f (y k) ≤ y (k + 1) ⊢ x 0 < y 0 case succ α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f h₀ : x 0 < y 0 n✝ : ℕ hx : ∀ (k : ℕ), k < n✝ + 1 → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < n✝ + 1 → f (y k) ≤ y (k + 1) ⊢ x (n✝ + 1) < y (n✝ + 1)
1752fa5e2b1ecc88
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.readyForRupAdd_ofArray
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/Lemmas.lean
theorem readyForRupAdd_ofArray {n : Nat} (arr : Array (Option (DefaultClause n))) : ReadyForRupAdd (ofArray arr)
case right.intro n : Nat arr : Array (Option (DefaultClause n)) hsize : (ofArray arr).assignments.size = n ModifiedAssignmentsInvariant : Array Assignment → Prop := fun assignments => ∃ hsize, ∀ (i : PosFin n) (b : Bool), hasAssignment b assignments[i.val] = true → unit (i, b) ∈ (ofArray arr).toList hb : ModifiedAssignmentsInvariant (mkArray n unassigned) hl : ∀ (acc : Array Assignment), ModifiedAssignmentsInvariant acc → ∀ (cOpt : Option (DefaultClause n)), cOpt ∈ arr.toList → ModifiedAssignmentsInvariant (ofArray_fold_fn acc cOpt) _h_size : (List.foldl ofArray_fold_fn (mkArray n unassigned) arr.toList).size = n h' : ∀ (i : PosFin n) (b : Bool), hasAssignment b (List.foldl ofArray_fold_fn (mkArray n unassigned) arr.toList)[i.val] = true → unit (i, b) ∈ (ofArray arr).toList i : PosFin n b : Bool h : hasAssignment b (ofArray arr).assignments[i.val] = true ⊢ unit (i, b) ∈ (ofArray arr).toList
simp only [ofArray, ← Array.foldl_toList] at h
case right.intro n : Nat arr : Array (Option (DefaultClause n)) hsize : (ofArray arr).assignments.size = n ModifiedAssignmentsInvariant : Array Assignment → Prop := fun assignments => ∃ hsize, ∀ (i : PosFin n) (b : Bool), hasAssignment b assignments[i.val] = true → unit (i, b) ∈ (ofArray arr).toList hb : ModifiedAssignmentsInvariant (mkArray n unassigned) hl : ∀ (acc : Array Assignment), ModifiedAssignmentsInvariant acc → ∀ (cOpt : Option (DefaultClause n)), cOpt ∈ arr.toList → ModifiedAssignmentsInvariant (ofArray_fold_fn acc cOpt) _h_size : (List.foldl ofArray_fold_fn (mkArray n unassigned) arr.toList).size = n h' : ∀ (i : PosFin n) (b : Bool), hasAssignment b (List.foldl ofArray_fold_fn (mkArray n unassigned) arr.toList)[i.val] = true → unit (i, b) ∈ (ofArray arr).toList i : PosFin n b : Bool h : hasAssignment b (List.foldl ofArray_fold_fn (mkArray n unassigned) arr.toList)[i.val] = true ⊢ unit (i, b) ∈ (ofArray arr).toList
0a237b5f7a9a7c15
CategoryTheory.Limits.reflectsLimit_of_reflectsIsomorphisms
Mathlib/CategoryTheory/Limits/Preserves/Basic.lean
/-- If the limit of `F` exists and `G` preserves it, then if `G` reflects isomorphisms then it reflects the limit of `F`. -/ -- Porting note: previous behavior of apply pushed instance holes into hypotheses, this errors lemma reflectsLimit_of_reflectsIsomorphisms (F : J ⥤ C) (G : C ⥤ D) [G.ReflectsIsomorphisms] [HasLimit F] [PreservesLimit F G] : ReflectsLimit F G where reflects {c} t
C : Type u₁ inst✝⁵ : Category.{v₁, u₁} C D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D J : Type w inst✝³ : Category.{w', w} J F : J ⥤ C G : C ⥤ D inst✝² : G.ReflectsIsomorphisms inst✝¹ : HasLimit F inst✝ : PreservesLimit F G c : Cone F t : IsLimit (G.mapCone c) this : IsIso ((limit.isLimit F).lift c) ⊢ IsLimit c
apply IsLimit.ofPointIso (limit.isLimit F)
no goals
ff0c8193ee19bd81
WithTop.untopD_zero_mul
Mathlib/Algebra/Order/Ring/WithTop.lean
@[simp] lemma untopD_zero_mul (a b : WithTop α) : (a * b).untopD 0 = a.untopD 0 * b.untopD 0
case neg.top α : Type u_1 inst✝¹ : DecidableEq α inst✝ : MulZeroClass α b : WithTop α hb : ¬b = 0 ha : ¬⊤ = 0 ⊢ untopD 0 (⊤ * b) = untopD 0 ⊤ * untopD 0 b
rw [top_mul hb, untopD_top, zero_mul]
no goals
ebaa5001124c917e
Basis.mk_eq_rank''
Mathlib/LinearAlgebra/Dimension/StrongRankCondition.lean
theorem Basis.mk_eq_rank'' {ι : Type v} (v : Basis ι R M) : #ι = Module.rank R M
R : Type u M : Type v inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : StrongRankCondition R ι : Type v v : Basis ι R M this : Nontrivial R ⊢ LinearIndepOn R id (range ⇑v)
rw [LinearIndepOn]
R : Type u M : Type v inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : StrongRankCondition R ι : Type v v : Basis ι R M this : Nontrivial R ⊢ LinearIndependent R fun (x : ↑(range ⇑v)) => id ↑x
60944ed5994f83df
Preorder.toLE_injective
Mathlib/Order/Basic.lean
theorem Preorder.toLE_injective : Function.Injective (@Preorder.toLE α) := fun A B h ↦ match A, B with | { lt := A_lt, lt_iff_le_not_le := A_iff, .. }, { lt := B_lt, lt_iff_le_not_le := B_iff, .. } => by cases h have : A_lt = B_lt
case h.h α : Type u_2 A B : Preorder α le✝ A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c A_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a B_lt : α → α → Prop le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c B_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a a b : α ⊢ (a < b) = (a < b)
rw [A_iff, B_iff]
no goals
4bb5c6c429e2e7ed
AlgebraicGeometry.IsLocalAtTarget.of_range_subset_iSup
Mathlib/AlgebraicGeometry/Morphisms/Basic.lean
lemma of_range_subset_iSup [P.RespectsRight @IsOpenImmersion] {ι : Type*} (U : ι → Y.Opens) (H : Set.range f.base ⊆ (⨆ i, U i : Y.Opens)) (hf : ∀ i, P (f ∣_ U i)) : P f
P : MorphismProperty Scheme hP : IsLocalAtTarget P X Y : Scheme f : X ⟶ Y inst✝ : P.RespectsRight @IsOpenImmersion ι : Type u_1 U : ι → Y.Opens H : Set.range ⇑(ConcreteCategory.hom f.base) ⊆ ↑(⨆ i, U i) hf : ∀ (i : ι), P (f ∣_ U i) ⊢ P f
let g : X ⟶ (⨆ i, U i : Y.Opens) := IsOpenImmersion.lift (Scheme.Opens.ι _) f (by simpa using H)
P : MorphismProperty Scheme hP : IsLocalAtTarget P X Y : Scheme f : X ⟶ Y inst✝ : P.RespectsRight @IsOpenImmersion ι : Type u_1 U : ι → Y.Opens H : Set.range ⇑(ConcreteCategory.hom f.base) ⊆ ↑(⨆ i, U i) hf : ∀ (i : ι), P (f ∣_ U i) g : X ⟶ ↑(⨆ i, U i) := IsOpenImmersion.lift (⨆ i, U i).ι f ⋯ ⊢ P f
ee63d9b5b19cceb5
Array.pmap_push
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Attach.lean
theorem pmap_push {P : α → Prop} (f : ∀ a, P a → β) (a : α) (l : Array α) (h : ∀ b ∈ l.push a, P b) : pmap f (l.push a) h = (pmap f l (fun a m => by simp at h; exact h a (.inl m))).push (f a (h a (by simp)))
α : Type u_1 β : Type u_2 P : α → Prop f : (a : α) → P a → β a : α l : Array α h : ∀ (b : α), b ∈ l.push a → P b ⊢ pmap f (l.push a) h = (pmap f l ⋯).push (f a ⋯)
simp [pmap]
no goals
ac6f1dbcf2d15765
PadicInt.isCauSeq_nthHom
Mathlib/NumberTheory/Padics/RingHoms.lean
theorem isCauSeq_nthHom (r : R) : IsCauSeq (padicNorm p) fun n => nthHom f r n
R : Type u_1 inst✝ : NonAssocSemiring R p : ℕ f : (k : ℕ) → R →+* ZMod (p ^ k) hp_prime : Fact (Nat.Prime p) f_compat : ∀ (k1 k2 : ℕ) (hk : k1 ≤ k2), (ZMod.castHom ⋯ (ZMod (p ^ k1))).comp (f k2) = f k1 r : R ⊢ IsCauSeq (padicNorm p) fun n => ↑(nthHom f r n)
intro ε hε
R : Type u_1 inst✝ : NonAssocSemiring R p : ℕ f : (k : ℕ) → R →+* ZMod (p ^ k) hp_prime : Fact (Nat.Prime p) f_compat : ∀ (k1 k2 : ℕ) (hk : k1 ≤ k2), (ZMod.castHom ⋯ (ZMod (p ^ k1))).comp (f k2) = f k1 r : R ε : ℚ hε : ε > 0 ⊢ ∃ i, ∀ j ≥ i, padicNorm p ((fun n => ↑(nthHom f r n)) j - (fun n => ↑(nthHom f r n)) i) < ε
3ca072d517dfdd09
MeasureTheory.integral_mul_norm_le_Lp_mul_Lq
Mathlib/MeasureTheory/Integral/Bochner.lean
theorem integral_mul_norm_le_Lp_mul_Lq {E} [NormedAddCommGroup E] {f g : α → E} {p q : ℝ} (hpq : p.IsConjExponent q) (hf : MemLp f (ENNReal.ofReal p) μ) (hg : MemLp g (ENNReal.ofReal q) μ) : ∫ a, ‖f a‖ * ‖g a‖ ∂μ ≤ (∫ a, ‖f a‖ ^ p ∂μ) ^ (1 / p) * (∫ a, ‖g a‖ ^ q ∂μ) ^ (1 / q)
α : Type u_1 m : MeasurableSpace α μ : Measure α E : Type u_7 inst✝ : NormedAddCommGroup E f g : α → E p q : ℝ hpq : p.IsConjExponent q hf : MemLp f (ENNReal.ofReal p) μ hg : MemLp g (ENNReal.ofReal q) μ h_left : ∫⁻ (a : α), ENNReal.ofReal (‖f a‖ * ‖g a‖) ∂μ = ∫⁻ (a : α), ((fun x => ‖f x‖ₑ) * fun x => ‖g x‖ₑ) a ∂μ h_right_f : ∫⁻ (a : α), ENNReal.ofReal (‖f a‖ ^ p) ∂μ = ∫⁻ (a : α), ‖f a‖ₑ ^ p ∂μ h_right_g : ∫⁻ (a : α), ENNReal.ofReal (‖g a‖ ^ q) ∂μ = ∫⁻ (a : α), ‖g a‖ₑ ^ q ∂μ ⊢ (∫⁻ (a : α), ((fun x => ‖f x‖ₑ) * fun x => ‖g x‖ₑ) a ∂μ).toReal ≤ ((∫⁻ (a : α), ‖f a‖ₑ ^ p ∂μ) ^ (1 / p) * (∫⁻ (a : α), ‖g a‖ₑ ^ q ∂μ) ^ (1 / q)).toReal
refine ENNReal.toReal_mono ?_ ?_
case refine_1 α : Type u_1 m : MeasurableSpace α μ : Measure α E : Type u_7 inst✝ : NormedAddCommGroup E f g : α → E p q : ℝ hpq : p.IsConjExponent q hf : MemLp f (ENNReal.ofReal p) μ hg : MemLp g (ENNReal.ofReal q) μ h_left : ∫⁻ (a : α), ENNReal.ofReal (‖f a‖ * ‖g a‖) ∂μ = ∫⁻ (a : α), ((fun x => ‖f x‖ₑ) * fun x => ‖g x‖ₑ) a ∂μ h_right_f : ∫⁻ (a : α), ENNReal.ofReal (‖f a‖ ^ p) ∂μ = ∫⁻ (a : α), ‖f a‖ₑ ^ p ∂μ h_right_g : ∫⁻ (a : α), ENNReal.ofReal (‖g a‖ ^ q) ∂μ = ∫⁻ (a : α), ‖g a‖ₑ ^ q ∂μ ⊢ (∫⁻ (a : α), ‖f a‖ₑ ^ p ∂μ) ^ (1 / p) * (∫⁻ (a : α), ‖g a‖ₑ ^ q ∂μ) ^ (1 / q) ≠ ⊤ case refine_2 α : Type u_1 m : MeasurableSpace α μ : Measure α E : Type u_7 inst✝ : NormedAddCommGroup E f g : α → E p q : ℝ hpq : p.IsConjExponent q hf : MemLp f (ENNReal.ofReal p) μ hg : MemLp g (ENNReal.ofReal q) μ h_left : ∫⁻ (a : α), ENNReal.ofReal (‖f a‖ * ‖g a‖) ∂μ = ∫⁻ (a : α), ((fun x => ‖f x‖ₑ) * fun x => ‖g x‖ₑ) a ∂μ h_right_f : ∫⁻ (a : α), ENNReal.ofReal (‖f a‖ ^ p) ∂μ = ∫⁻ (a : α), ‖f a‖ₑ ^ p ∂μ h_right_g : ∫⁻ (a : α), ENNReal.ofReal (‖g a‖ ^ q) ∂μ = ∫⁻ (a : α), ‖g a‖ₑ ^ q ∂μ ⊢ ∫⁻ (a : α), ((fun x => ‖f x‖ₑ) * fun x => ‖g x‖ₑ) a ∂μ ≤ (∫⁻ (a : α), ‖f a‖ₑ ^ p ∂μ) ^ (1 / p) * (∫⁻ (a : α), ‖g a‖ₑ ^ q ∂μ) ^ (1 / q)
539c08192e88a140
ENNReal.eq_zero_of_le_mul_pow
Mathlib/Analysis/SpecificLimits/Basic.lean
lemma ENNReal.eq_zero_of_le_mul_pow {x r : ℝ≥0∞} {ε : ℝ≥0} (hr : r < 1) (h : ∀ n : ℕ, x ≤ ε * r ^ n) : x = 0
x r : ℝ≥0∞ ε : ℝ≥0 hr : r < 1 h : ∀ (n : ℕ), x ≤ ↑ε * r ^ n ⊢ x = 0
rw [← nonpos_iff_eq_zero]
x r : ℝ≥0∞ ε : ℝ≥0 hr : r < 1 h : ∀ (n : ℕ), x ≤ ↑ε * r ^ n ⊢ x ≤ 0
f0c4433f60379c13
Multiset.countP_map
Mathlib/Data/Multiset/Filter.lean
theorem countP_map (f : α → β) (s : Multiset α) (p : β → Prop) [DecidablePred p] : countP p (map f s) = card (s.filter fun a => p (f a))
α : Type u_1 β : Type v f : α → β s : Multiset α p : β → Prop inst✝ : DecidablePred p ⊢ countP p (map f s) = (filter (fun a => p (f a)) s).card
refine Multiset.induction_on s ?_ fun a t IH => ?_
case refine_1 α : Type u_1 β : Type v f : α → β s : Multiset α p : β → Prop inst✝ : DecidablePred p ⊢ countP p (map f 0) = (filter (fun a => p (f a)) 0).card case refine_2 α : Type u_1 β : Type v f : α → β s : Multiset α p : β → Prop inst✝ : DecidablePred p a : α t : Multiset α IH : countP p (map f t) = (filter (fun a => p (f a)) t).card ⊢ countP p (map f (a ::ₘ t)) = (filter (fun a => p (f a)) (a ::ₘ t)).card
d40fb82936487e92
mem_affineSpan_iff_eq_weightedVSubOfPoint_vadd
Mathlib/LinearAlgebra/AffineSpace/Combination.lean
theorem mem_affineSpan_iff_eq_weightedVSubOfPoint_vadd [Nontrivial k] (p : ι → P) (j : ι) (q : P) : q ∈ affineSpan k (Set.range p) ↔ ∃ (s : Finset ι) (w : ι → k), q = s.weightedVSubOfPoint p (p j) w +ᵥ p j
ι : Type u_1 k : Type u_2 V : Type u_3 P : Type u_4 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Nontrivial k p : ι → P j : ι s : Finset ι w : ι → k w' : ι → k := Function.update w j (1 - (s \ {j}).sum w) ⊢ (insert j s).sum w' = 1
by_cases hj : j ∈ s
case pos ι : Type u_1 k : Type u_2 V : Type u_3 P : Type u_4 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Nontrivial k p : ι → P j : ι s : Finset ι w : ι → k w' : ι → k := Function.update w j (1 - (s \ {j}).sum w) hj : j ∈ s ⊢ (insert j s).sum w' = 1 case neg ι : Type u_1 k : Type u_2 V : Type u_3 P : Type u_4 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Nontrivial k p : ι → P j : ι s : Finset ι w : ι → k w' : ι → k := Function.update w j (1 - (s \ {j}).sum w) hj : j ∉ s ⊢ (insert j s).sum w' = 1
40a3291069dee08b
CategoryTheory.Idempotents.isIdempotentComplete_of_isIdempotentComplete_opposite
Mathlib/CategoryTheory/Idempotents/Basic.lean
theorem isIdempotentComplete_of_isIdempotentComplete_opposite (h : IsIdempotentComplete Cᵒᵖ) : IsIdempotentComplete C
case h.right C : Type u_1 inst✝ : Category.{u_2, u_1} C h : IsIdempotentComplete Cᵒᵖ X : C p : X ⟶ X hp : p ≫ p = p Y : Cᵒᵖ i : Y ⟶ op X e : op X ⟶ Y h₁ : i ≫ e = 𝟙 Y h₂ : e ≫ i = p.op ⊢ i.unop ≫ e.unop = p
simp only [← unop_comp, h₂]
case h.right C : Type u_1 inst✝ : Category.{u_2, u_1} C h : IsIdempotentComplete Cᵒᵖ X : C p : X ⟶ X hp : p ≫ p = p Y : Cᵒᵖ i : Y ⟶ op X e : op X ⟶ Y h₁ : i ≫ e = 𝟙 Y h₂ : e ≫ i = p.op ⊢ p.op.unop = p
4c640b5c10f1f344
CliffordAlgebraComplex.reverse_apply
Mathlib/LinearAlgebra/CliffordAlgebra/Equivs.lean
theorem reverse_apply (x : CliffordAlgebra Q) : reverse (R := ℝ) x = x
case mul x₁ x₂ : CliffordAlgebra Q hx₁ : reverse x₁ = x₁ hx₂ : reverse x₂ = x₂ ⊢ reverse (x₁ * x₂) = x₁ * x₂
rw [reverse.map_mul, mul_comm, hx₁, hx₂]
no goals
57b6b0031cb9b658
Vitali.exists_disjoint_covering_ae
Mathlib/MeasureTheory/Covering/Vitali.lean
theorem exists_disjoint_covering_ae [PseudoMetricSpace α] [MeasurableSpace α] [OpensMeasurableSpace α] [SecondCountableTopology α] (μ : Measure α) [IsLocallyFiniteMeasure μ] (s : Set α) (t : Set ι) (C : ℝ≥0) (r : ι → ℝ) (c : ι → α) (B : ι → Set α) (hB : ∀ a ∈ t, B a ⊆ closedBall (c a) (r a)) (μB : ∀ a ∈ t, μ (closedBall (c a) (3 * r a)) ≤ C * μ (B a)) (ht : ∀ a ∈ t, (interior (B a)).Nonempty) (h't : ∀ a ∈ t, IsClosed (B a)) (hf : ∀ x ∈ s, ∀ ε > (0 : ℝ), ∃ a ∈ t, r a ≤ ε ∧ c a = x) : ∃ u ⊆ t, u.Countable ∧ u.PairwiseDisjoint B ∧ μ (s \ ⋃ a ∈ u, B a) = 0
case intro.intro α : Type u_1 ι : Type u_2 inst✝⁴ : PseudoMetricSpace α inst✝³ : MeasurableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : SecondCountableTopology α μ : Measure α inst✝ : IsLocallyFiniteMeasure μ s : Set α t : Set ι C : ℝ≥0 r : ι → ℝ c : ι → α B : ι → Set α hB : ∀ a ∈ t, B a ⊆ closedBall (c a) (r a) μB : ∀ a ∈ t, μ (closedBall (c a) (3 * r a)) ≤ ↑C * μ (B a) ht : ∀ a ∈ t, (interior (B a)).Nonempty h't : ∀ a ∈ t, IsClosed (B a) hf : ∀ x ∈ s, ∀ ε > 0, ∃ a ∈ t, r a ≤ ε ∧ c a = x R : α → ℝ hR0 : ∀ (x : α), 0 < R x hR1 : ∀ (x : α), R x ≤ 1 hRμ : ∀ (x : α), μ (closedBall x (20 * R x)) < ⊤ t' : Set ι := {a | a ∈ t ∧ r a ≤ R (c a)} u : Set ι ut' : u ⊆ t' u_disj : u.PairwiseDisjoint B hu : ∀ a ∈ t', ∃ b ∈ u, (B a ∩ B b).Nonempty ∧ r a ≤ 2 * r b ut : u ⊆ t u_count : u.Countable x : α x✝ : x ∈ s \ ⋃ a ∈ u, B a v : Set ι := {a | a ∈ u ∧ (B a ∩ ball x (R x)).Nonempty} vu : v ⊆ u Idist_v : ∀ a ∈ v, dist (c a) x ≤ r a + R x R0 : ℝ := sSup (r '' v) R0_def : R0 = sSup (r '' v) b : ι hb : b ∈ v hr' : r b ∈ r '' v ⊢ r b ≤ 1
exact le_trans (ut' (vu hb)).2 (hR1 (c b))
no goals
4466d2fc3e80cb3f
Submodule.span_insert_zero
Mathlib/LinearAlgebra/Span/Defs.lean
theorem span_insert_zero : span R (insert (0 : M) s) = span R s
R : Type u_1 M : Type u_4 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set M ⊢ span R (insert 0 s) ≤ span R s
rw [span_le, Set.insert_subset_iff]
R : Type u_1 M : Type u_4 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set M ⊢ 0 ∈ ↑(span R s) ∧ s ⊆ ↑(span R s)
0379c410c2f6e1de
Ideal.Filtration.submodule_fg_iff_stable
Mathlib/RingTheory/Filtration.lean
theorem submodule_fg_iff_stable (hF' : ∀ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable
case mpr.intro.h.mk.intro R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F : I.Filtration M hF' : ∀ (i : ℕ), (F.N i).FG n : ℕ hn : F.submodule = Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n), ⇑(single R i) '' ↑(F.N i)) i : ℕ hi : i ∈ Finset.range n.succ s : Finset M hs : Submodule.span R ↑s = F.N i this : Submodule.span ↥(reesAlgebra I) ↑(Finset.image (⇑(lsingle R i)) s) = Submodule.span (↥(reesAlgebra I)) (⇑(single R i) '' ↑(F.N i)) ⊢ (Submodule.span ↥(reesAlgebra I) ↑(Finset.image (⇑(lsingle R i)) s)).FG
exact ⟨_, rfl⟩
no goals
7d72d199901d100d
MeasureTheory.eLpNorm_map_measure
Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean
theorem eLpNorm_map_measure (hg : AEStronglyMeasurable g (Measure.map f μ)) (hf : AEMeasurable f μ) : eLpNorm g p (Measure.map f μ) = eLpNorm (g ∘ f) p μ
case neg α : Type u_1 E : Type u_3 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝ : NormedAddCommGroup E β : Type u_6 mβ : MeasurableSpace β f : α → β g : β → E hg : AEStronglyMeasurable g (Measure.map f μ) hf : AEMeasurable f μ hp_zero : ¬p = 0 hp_top : ¬p = ⊤ ⊢ (∫⁻ (x : β), ‖g x‖ₑ ^ p.toReal ∂Measure.map f μ) ^ (1 / p.toReal) = (∫⁻ (x : α), ‖(g ∘ f) x‖ₑ ^ p.toReal ∂μ) ^ (1 / p.toReal)
rw [lintegral_map' (hg.enorm.pow_const p.toReal) hf]
case neg α : Type u_1 E : Type u_3 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝ : NormedAddCommGroup E β : Type u_6 mβ : MeasurableSpace β f : α → β g : β → E hg : AEStronglyMeasurable g (Measure.map f μ) hf : AEMeasurable f μ hp_zero : ¬p = 0 hp_top : ¬p = ⊤ ⊢ (∫⁻ (a : α), ‖g (f a)‖ₑ ^ p.toReal ∂μ) ^ (1 / p.toReal) = (∫⁻ (x : α), ‖(g ∘ f) x‖ₑ ^ p.toReal ∂μ) ^ (1 / p.toReal)
4caee505b835d28d
CategoryTheory.Functor.distTriang_iff
Mathlib/CategoryTheory/Localization/Triangulated.lean
lemma distTriang_iff (T : Triangle D) : (T ∈ distTriang D) ↔ T ∈ L.essImageDistTriang
C : Type u_1 D : Type u_2 inst✝¹⁴ : Category.{u_4, u_1} C inst✝¹³ : Category.{u_3, u_2} D L : C ⥤ D inst✝¹² : HasShift C ℤ inst✝¹¹ : Preadditive C inst✝¹⁰ : HasZeroObject C inst✝⁹ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝⁸ : Pretriangulated C inst✝⁷ : HasShift D ℤ inst✝⁶ : L.CommShift ℤ inst✝⁵ : HasZeroObject D inst✝⁴ : Preadditive D inst✝³ : ∀ (n : ℤ), (shiftFunctor D n).Additive inst✝² : Pretriangulated D inst✝¹ : L.mapArrow.EssSurj inst✝ : L.IsTriangulated T : Triangle D ⊢ T ∈ distinguishedTriangles ↔ T ∈ L.essImageDistTriang
constructor
case mp C : Type u_1 D : Type u_2 inst✝¹⁴ : Category.{u_4, u_1} C inst✝¹³ : Category.{u_3, u_2} D L : C ⥤ D inst✝¹² : HasShift C ℤ inst✝¹¹ : Preadditive C inst✝¹⁰ : HasZeroObject C inst✝⁹ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝⁸ : Pretriangulated C inst✝⁷ : HasShift D ℤ inst✝⁶ : L.CommShift ℤ inst✝⁵ : HasZeroObject D inst✝⁴ : Preadditive D inst✝³ : ∀ (n : ℤ), (shiftFunctor D n).Additive inst✝² : Pretriangulated D inst✝¹ : L.mapArrow.EssSurj inst✝ : L.IsTriangulated T : Triangle D ⊢ T ∈ distinguishedTriangles → T ∈ L.essImageDistTriang case mpr C : Type u_1 D : Type u_2 inst✝¹⁴ : Category.{u_4, u_1} C inst✝¹³ : Category.{u_3, u_2} D L : C ⥤ D inst✝¹² : HasShift C ℤ inst✝¹¹ : Preadditive C inst✝¹⁰ : HasZeroObject C inst✝⁹ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝⁸ : Pretriangulated C inst✝⁷ : HasShift D ℤ inst✝⁶ : L.CommShift ℤ inst✝⁵ : HasZeroObject D inst✝⁴ : Preadditive D inst✝³ : ∀ (n : ℤ), (shiftFunctor D n).Additive inst✝² : Pretriangulated D inst✝¹ : L.mapArrow.EssSurj inst✝ : L.IsTriangulated T : Triangle D ⊢ T ∈ L.essImageDistTriang → T ∈ distinguishedTriangles
274f43afcadc904a
EuclideanGeometry.cospherical_iff_exists_mem_of_complete
Mathlib/Geometry/Euclidean/Circumcenter.lean
theorem cospherical_iff_exists_mem_of_complete {s : AffineSubspace ℝ P} {ps : Set P} (h : ps ⊆ s) [Nonempty s] [HasOrthogonalProjection s.direction] : Cospherical ps ↔ ∃ center ∈ s, ∃ radius : ℝ, ∀ p ∈ ps, dist p center = radius
case mp V : Type u_1 P : Type u_2 inst✝⁵ : NormedAddCommGroup V inst✝⁴ : InnerProductSpace ℝ V inst✝³ : MetricSpace P inst✝² : NormedAddTorsor V P s : AffineSubspace ℝ P ps : Set P h : ps ⊆ ↑s inst✝¹ : Nonempty ↥s inst✝ : HasOrthogonalProjection s.direction ⊢ Cospherical ps → ∃ center ∈ s, ∃ radius, ∀ p ∈ ps, dist p center = radius
rintro ⟨c, hcr⟩
case mp.intro V : Type u_1 P : Type u_2 inst✝⁵ : NormedAddCommGroup V inst✝⁴ : InnerProductSpace ℝ V inst✝³ : MetricSpace P inst✝² : NormedAddTorsor V P s : AffineSubspace ℝ P ps : Set P h : ps ⊆ ↑s inst✝¹ : Nonempty ↥s inst✝ : HasOrthogonalProjection s.direction c : P hcr : ∃ radius, ∀ p ∈ ps, dist p c = radius ⊢ ∃ center ∈ s, ∃ radius, ∀ p ∈ ps, dist p center = radius
53e93c5b7b48c976
DFinsupp.mapRange.addMonoidHom_comp
Mathlib/Data/DFinsupp/Defs.lean
theorem mapRange.addMonoidHom_comp (f : ∀ i, β₁ i →+ β₂ i) (f₂ : ∀ i, β i →+ β₁ i) : (mapRange.addMonoidHom fun i => (f i).comp (f₂ i)) = (mapRange.addMonoidHom f).comp (mapRange.addMonoidHom f₂)
ι : Type u β : ι → Type v β₁ : ι → Type v₁ β₂ : ι → Type v₂ inst✝² : (i : ι) → AddZeroClass (β i) inst✝¹ : (i : ι) → AddZeroClass (β₁ i) inst✝ : (i : ι) → AddZeroClass (β₂ i) f : (i : ι) → β₁ i →+ β₂ i f₂ : (i : ι) → β i →+ β₁ i ⊢ (addMonoidHom fun i => (f i).comp (f₂ i)) = (addMonoidHom f).comp (addMonoidHom f₂)
refine AddMonoidHom.ext <| mapRange_comp (fun i x => f i x) (fun i x => f₂ i x) ?_ ?_ ?_
case refine_1 ι : Type u β : ι → Type v β₁ : ι → Type v₁ β₂ : ι → Type v₂ inst✝² : (i : ι) → AddZeroClass (β i) inst✝¹ : (i : ι) → AddZeroClass (β₁ i) inst✝ : (i : ι) → AddZeroClass (β₂ i) f : (i : ι) → β₁ i →+ β₂ i f₂ : (i : ι) → β i →+ β₁ i ⊢ ∀ (i : ι), (fun i x => (f i) x) i 0 = 0 case refine_2 ι : Type u β : ι → Type v β₁ : ι → Type v₁ β₂ : ι → Type v₂ inst✝² : (i : ι) → AddZeroClass (β i) inst✝¹ : (i : ι) → AddZeroClass (β₁ i) inst✝ : (i : ι) → AddZeroClass (β₂ i) f : (i : ι) → β₁ i →+ β₂ i f₂ : (i : ι) → β i →+ β₁ i ⊢ ∀ (i : ι), (fun i x => (f₂ i) x) i 0 = 0 case refine_3 ι : Type u β : ι → Type v β₁ : ι → Type v₁ β₂ : ι → Type v₂ inst✝² : (i : ι) → AddZeroClass (β i) inst✝¹ : (i : ι) → AddZeroClass (β₁ i) inst✝ : (i : ι) → AddZeroClass (β₂ i) f : (i : ι) → β₁ i →+ β₂ i f₂ : (i : ι) → β i →+ β₁ i ⊢ ∀ (i : ι), ((fun i x => (f i) x) i ∘ (fun i x => (f₂ i) x) i) 0 = 0
f5b74fc335cfe878
VitaliFamily.measure_limRatioMeas_zero
Mathlib/MeasureTheory/Covering/Differentiation.lean
theorem measure_limRatioMeas_zero : ρ {x | v.limRatioMeas hρ x = 0} = 0
α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | v.limRatioMeas hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : μ o < ⊤ s : Set α := {x | v.limRatioMeas hρ x = 0} ∩ o μs : μ s ≠ ⊤ q : ℝ≥0 hq : 0 < q y : α hy : y ∈ s this : v.limRatioMeas hρ y = 0 ⊢ y ∈ {x | v.limRatioMeas hρ x < ↑q}
simp only [this, mem_setOf_eq, hq, ENNReal.coe_pos]
no goals
1ff6cbb082b8eb59
SetTheory.PGame.Numeric.add
Mathlib/SetTheory/Surreal/Basic.lean
theorem add : ∀ {x y : PGame} (_ : Numeric x) (_ : Numeric y), Numeric (x + y) | ⟨xl, xr, xL, xR⟩, ⟨yl, yr, yL, yR⟩, ox, oy => ⟨by rintro (ix | iy) (jx | jy) · exact add_lt_add_right (ox.1 ix jx) _ · exact (add_lf_add_of_lf_of_le (lf_mk _ _ ix) (oy.le_moveRight jy)).lt ((ox.moveLeft ix).add oy) (ox.add (oy.moveRight jy)) · exact (add_lf_add_of_lf_of_le (mk_lf _ _ jx) (oy.moveLeft_le iy)).lt (ox.add (oy.moveLeft iy)) ((ox.moveRight jx).add oy) · exact add_lt_add_left (oy.1 iy jy) ⟨xl, xr, xL, xR⟩, by constructor · rintro (ix | iy) · exact (ox.moveLeft ix).add oy · exact ox.add (oy.moveLeft iy) · rintro (jx | jy) · apply (ox.moveRight jx).add oy · apply ox.add (oy.moveRight jy)⟩ termination_by x y => (x, y)
case left xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : (PGame.mk xl xr xL xR).Numeric oy : (PGame.mk yl yr yL yR).Numeric ⊢ ∀ (i : xl ⊕ yl), ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) i).Numeric
rintro (ix | iy)
case left.inl xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : (PGame.mk xl xr xL xR).Numeric oy : (PGame.mk yl yr yL yR).Numeric ix : xl ⊢ ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) (Sum.inl ix)).Numeric case left.inr xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : (PGame.mk xl xr xL xR).Numeric oy : (PGame.mk yl yr yL yR).Numeric iy : yl ⊢ ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) (Sum.inr iy)).Numeric
fb960894a76bd8f8
MonomialOrder.Monic.prod
Mathlib/RingTheory/MvPolynomial/MonomialOrder.lean
theorem Monic.prod {ι : Type*} {P : ι → MvPolynomial σ R} {s : Finset ι} (H : ∀ i ∈ s, m.Monic (P i)) : m.Monic (∏ i ∈ s, P i)
σ : Type u_1 m : MonomialOrder σ R : Type u_2 inst✝ : CommSemiring R ι : Type u_3 P : ι → MvPolynomial σ R s : Finset ι H : ∀ i ∈ s, m.Monic (P i) ⊢ ∀ i ∈ s, IsRegular (m.leadingCoeff (P i))
intro i hi
σ : Type u_1 m : MonomialOrder σ R : Type u_2 inst✝ : CommSemiring R ι : Type u_3 P : ι → MvPolynomial σ R s : Finset ι H : ∀ i ∈ s, m.Monic (P i) i : ι hi : i ∈ s ⊢ IsRegular (m.leadingCoeff (P i))
b6dfccd4b783abc5
CategoryTheory.IsCofilteredOrEmpty.of_left_adjoint
Mathlib/CategoryTheory/Filtered/Basic.lean
theorem of_left_adjoint {L : C ⥤ D} {R : D ⥤ C} (h : L ⊣ R) : IsCofilteredOrEmpty D := { cone_objs := fun X Y => ⟨L.obj (min (R.obj X) (R.obj Y)), (h.homEquiv _ X).symm (minToLeft _ _), (h.homEquiv _ Y).symm (minToRight _ _), ⟨⟩⟩ cone_maps := fun X Y f g => ⟨L.obj (eq (R.map f) (R.map g)), (h.homEquiv _ _).symm (eqHom _ _), by rw [← h.homEquiv_naturality_right_symm, ← h.homEquiv_naturality_right_symm, eq_condition]⟩ }
C : Type u inst✝² : Category.{v, u} C inst✝¹ : IsCofilteredOrEmpty C D : Type u₁ inst✝ : Category.{v₁, u₁} D L : C ⥤ D R : D ⥤ C h : L ⊣ R X Y : D f g : X ⟶ Y ⊢ (h.homEquiv (eq (R.map f) (R.map g)) X).symm (eqHom (R.map f) (R.map g)) ≫ f = (h.homEquiv (eq (R.map f) (R.map g)) X).symm (eqHom (R.map f) (R.map g)) ≫ g
rw [← h.homEquiv_naturality_right_symm, ← h.homEquiv_naturality_right_symm, eq_condition]
no goals
15cbf31b2fe278bb
IsDenseInducing.extend_Z_bilin_key
Mathlib/Topology/Algebra/UniformGroup/Defs.lean
theorem extend_Z_bilin_key (x₀ : α) (y₀ : γ) : ∃ U ∈ comap e (𝓝 x₀), ∃ V ∈ comap f (𝓝 y₀), ∀ x ∈ U, ∀ x' ∈ U, ∀ (y) (_ : y ∈ V) (y') (_ : y' ∈ V), (fun p : β × δ => φ p.1 p.2) (x', y') - (fun p : β × δ => φ p.1 p.2) (x, y) ∈ W'
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 G : Type u_5 inst✝¹² : TopologicalSpace α inst✝¹¹ : AddCommGroup α inst✝¹⁰ : IsTopologicalAddGroup α inst✝⁹ : TopologicalSpace β inst✝⁸ : AddCommGroup β inst✝⁷ : TopologicalSpace γ inst✝⁶ : AddCommGroup γ inst✝⁵ : IsTopologicalAddGroup γ inst✝⁴ : TopologicalSpace δ inst✝³ : AddCommGroup δ inst✝² : UniformSpace G inst✝¹ : AddCommGroup G e : β →+ α de : IsDenseInducing ⇑e f : δ →+ γ df : IsDenseInducing ⇑f φ : β →+ δ →+ G hφ : Continuous fun p => (φ p.1) p.2 W' : Set G W'_nhd : W' ∈ 𝓝 0 inst✝ : UniformAddGroup G x₀ : α y₀ : γ ee : β × β → α × α := fun u => (e u.1, e u.2) ff : δ × δ → γ × γ := fun u => (f u.1, f u.2) lim_φ : Tendsto (fun p => (φ p.1) p.2) (𝓝 (0, 0)) (𝓝 0) lim_φ_sub_sub : Tendsto (fun p => (fun p => (φ p.1) p.2) (p.1.2 - p.1.1, p.2.2 - p.2.1)) (comap ee (𝓝 (x₀, x₀)) ×ˢ comap ff (𝓝 (y₀, y₀))) (𝓝 0) W : Set G W_nhd : W ∈ 𝓝 0 W4 : ∀ {v w s t : G}, v ∈ W → w ∈ W → s ∈ W → t ∈ W → v + w + s + t ∈ W' U₁ : Set β U₁_nhd : U₁ ∈ comap (⇑e) (𝓝 x₀) V₁ : Set δ V₁_nhd : V₁ ∈ comap (⇑f) (𝓝 y₀) H : ∀ x ∈ U₁, ∀ x' ∈ U₁, ∀ y ∈ V₁, ∀ y' ∈ V₁, (fun p => (φ p.1) p.2) (x' - x, y' - y) ∈ W x₁ : β x₁_in : x₁ ∈ U₁ y₁ : δ y₁_in : y₁ ∈ V₁ ⊢ Continuous ((fun p => (φ p.1) p.2) ∘ Prod.swap)
exact hφ.comp continuous_swap
no goals
7e13666b5fc1d57e
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.confirmRupHint_preserves_invariant_helper
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
theorem confirmRupHint_preserves_invariant_helper {n : Nat} (f : DefaultFormula n) (f_assignments_size : f.assignments.size = n) (acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool) (hsize : acc.1.size = n) (l : Literal (PosFin n)) (ih : DerivedLitsInvariant f f_assignments_size acc.1 hsize acc.2.1) (h : ¬hasAssignment l.snd acc.fst[l.fst.val]! = true) : have hsize' : (Array.modify acc.1 l.1.1 (addAssignment l.snd)).size = n
n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool hsize : acc.fst.size = n l : Literal (PosFin n) ih : f.DerivedLitsInvariant f_assignments_size acc.fst hsize acc.snd.fst h : ¬hasAssignment l.snd acc.fst[l.fst.val]! = true hsize'✝ : (acc.fst.modify l.fst.val (addAssignment l.snd)).size = n := Eq.mpr (id (congrArg (fun _a => _a = n) (Array.size_modify acc.fst l.fst.val (addAssignment l.snd)))) hsize i : Fin n i_in_bounds : ↑i < acc.fst.size l_in_bounds : l.fst.val < acc.fst.size j1 j2 : Fin (List.length acc.snd.fst) j1_eq_i : (List.get acc.snd.fst j1).fst.val = ↑i j2_eq_i : (List.get acc.snd.fst j2).fst.val = ↑i j1_eq_true : (List.get acc.snd.fst j1).snd = true j2_eq_false : (List.get acc.snd.fst j2).snd = false h1 : acc.fst[↑i] = both h2 : f.assignments[↑i] = unassigned h3 : ∀ (k : Fin (List.length acc.snd.fst)), k ≠ j1 → k ≠ j2 → (List.get acc.snd.fst k).fst.val ≠ ↑i j1_succ_in_bounds : ↑j1 + 1 < (l :: acc.snd.fst).length j2_succ_in_bounds : ↑j2 + 1 < (l :: acc.snd.fst).length j1_succ : Fin (l :: acc.snd.fst).length := ⟨↑j1 + 1, j1_succ_in_bounds⟩ j2_succ : Fin (l :: acc.snd.fst).length := ⟨↑j2 + 1, j2_succ_in_bounds⟩ l_ne_i : l.fst.val ≠ ↑i k : Fin (List.length acc.snd.fst + 1) k_ne_j1_succ : ¬k = j1_succ k_ne_j2_succ : ¬k = j2_succ zero_in_bounds : 0 < (l :: acc.snd.fst).length k_ne_zero : ¬k = ⟨0, zero_in_bounds⟩ ⊢ ∃ k' k'_succ_in_bounds, k = ⟨k' + 1, k'_succ_in_bounds⟩
have k_val_ne_zero : k.1 ≠ 0 := by intro k_eq_zero simp only [List.length_cons, ← k_eq_zero, ne_eq, not_true] at k_ne_zero
n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool hsize : acc.fst.size = n l : Literal (PosFin n) ih : f.DerivedLitsInvariant f_assignments_size acc.fst hsize acc.snd.fst h : ¬hasAssignment l.snd acc.fst[l.fst.val]! = true hsize'✝ : (acc.fst.modify l.fst.val (addAssignment l.snd)).size = n := Eq.mpr (id (congrArg (fun _a => _a = n) (Array.size_modify acc.fst l.fst.val (addAssignment l.snd)))) hsize i : Fin n i_in_bounds : ↑i < acc.fst.size l_in_bounds : l.fst.val < acc.fst.size j1 j2 : Fin (List.length acc.snd.fst) j1_eq_i : (List.get acc.snd.fst j1).fst.val = ↑i j2_eq_i : (List.get acc.snd.fst j2).fst.val = ↑i j1_eq_true : (List.get acc.snd.fst j1).snd = true j2_eq_false : (List.get acc.snd.fst j2).snd = false h1 : acc.fst[↑i] = both h2 : f.assignments[↑i] = unassigned h3 : ∀ (k : Fin (List.length acc.snd.fst)), k ≠ j1 → k ≠ j2 → (List.get acc.snd.fst k).fst.val ≠ ↑i j1_succ_in_bounds : ↑j1 + 1 < (l :: acc.snd.fst).length j2_succ_in_bounds : ↑j2 + 1 < (l :: acc.snd.fst).length j1_succ : Fin (l :: acc.snd.fst).length := ⟨↑j1 + 1, j1_succ_in_bounds⟩ j2_succ : Fin (l :: acc.snd.fst).length := ⟨↑j2 + 1, j2_succ_in_bounds⟩ l_ne_i : l.fst.val ≠ ↑i k : Fin (List.length acc.snd.fst + 1) k_ne_j1_succ : ¬k = j1_succ k_ne_j2_succ : ¬k = j2_succ zero_in_bounds : 0 < (l :: acc.snd.fst).length k_ne_zero : ¬k = ⟨0, zero_in_bounds⟩ k_val_ne_zero : ↑k ≠ 0 ⊢ ∃ k' k'_succ_in_bounds, k = ⟨k' + 1, k'_succ_in_bounds⟩
02ca1706b397b254
isAlgebraic_of_isFractionRing
Mathlib/RingTheory/Localization/Integral.lean
lemma isAlgebraic_of_isFractionRing {R S} (K L) [CommRing R] [CommRing S] [Field K] [CommRing L] [Algebra R S] [Algebra R K] [Algebra R L] [Algebra S L] [Algebra K L] [IsScalarTower R S L] [IsScalarTower R K L] [IsFractionRing S L] [Algebra.IsIntegral R S] : Algebra.IsAlgebraic K L
case isAlgebraic.intro.intro.a.hy R : Type u_5 S : Type u_6 K : Type u_7 L : Type u_8 inst✝¹² : CommRing R inst✝¹¹ : CommRing S inst✝¹⁰ : Field K inst✝⁹ : CommRing L inst✝⁸ : Algebra R S inst✝⁷ : Algebra R K inst✝⁶ : Algebra R L inst✝⁵ : Algebra S L inst✝⁴ : Algebra K L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsFractionRing S L inst✝ : Algebra.IsIntegral R S x : S s : ↥S⁰ ⊢ (algebraMap K L).IsIntegralElem (mk' L 1 s)
show IsIntegral _ _
case isAlgebraic.intro.intro.a.hy R : Type u_5 S : Type u_6 K : Type u_7 L : Type u_8 inst✝¹² : CommRing R inst✝¹¹ : CommRing S inst✝¹⁰ : Field K inst✝⁹ : CommRing L inst✝⁸ : Algebra R S inst✝⁷ : Algebra R K inst✝⁶ : Algebra R L inst✝⁵ : Algebra S L inst✝⁴ : Algebra K L inst✝³ : IsScalarTower R S L inst✝² : IsScalarTower R K L inst✝¹ : IsFractionRing S L inst✝ : Algebra.IsIntegral R S x : S s : ↥S⁰ ⊢ IsIntegral K (mk' L 1 s)
ae4f70dc8f48707d
Submodule.spanRank_toENat_eq_iInf_finset_card
Mathlib/Algebra/Module/SpanRank.lean
lemma spanRank_toENat_eq_iInf_finset_card (p : Submodule R M) : p.spanRank.toENat = ⨅ (s : {s : Set M // s.Finite ∧ span R s = p}), (s.2.1.toFinset.card : ℕ∞)
case inl R : Type u_1 M : Type u inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M h1 : ⨅ s, ⨅ (_ : span R s = p), s.encard = ⊤ ⊢ ⨅ s, ↑⋯.toFinset.card = ⊤
simp_rw [iInf_eq_top] at h1 ⊢
case inl R : Type u_1 M : Type u inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M h1 : ∀ (i : Set M), span R i = p → i.encard = ⊤ ⊢ ∀ (i : { s // s.Finite ∧ span R s = p }), ↑⋯.toFinset.card = ⊤
f74636938a98e2b3
Finsupp.filter_pos_add_filter_neg
Mathlib/Data/Finsupp/Basic.lean
theorem filter_pos_add_filter_neg [AddZeroClass M] (f : α →₀ M) (p : α → Prop) [DecidablePred p] : (f.filter p + f.filter fun a => ¬p a) = f := DFunLike.coe_injective <| by simp only [coe_add, filter_eq_indicator] exact Set.indicator_self_add_compl { x | p x } f
α : Type u_1 M : Type u_5 inst✝¹ : AddZeroClass M f : α →₀ M p : α → Prop inst✝ : DecidablePred p ⊢ (fun f => ⇑f) (filter p f + filter (fun a => ¬p a) f) = (fun f => ⇑f) f
simp only [coe_add, filter_eq_indicator]
α : Type u_1 M : Type u_5 inst✝¹ : AddZeroClass M f : α →₀ M p : α → Prop inst✝ : DecidablePred p ⊢ {x | p x}.indicator ⇑f + {a | ¬p a}.indicator ⇑f = ⇑f
08c2ba5abccc381f
Nimber.add_eq_zero
Mathlib/SetTheory/Nimber/Basic.lean
theorem add_eq_zero {a b : Nimber} : a + b = 0 ↔ a = b
case mp.inr.inl a : Nimber hab : a + a = 0 ⊢ a = a
rfl
no goals
0d57b0f83f981add
AlgebraicGeometry.pointsPi_surjective
Mathlib/AlgebraicGeometry/PointsPi.lean
lemma pointsPi_surjective [CompactSpace X] [∀ i, IsLocalRing (R i)] : Function.Surjective (pointsPi R X)
ι : Type u R : ι → CommRingCat X : Scheme inst✝¹ : CompactSpace ↑↑X.toPresheafedSpace inst✝ : ∀ (i : ι), IsLocalRing ↑(R i) f : (i : ι) → Spec (R i) ⟶ X 𝒰 : X.OpenCover := X.affineCover.finiteSubcover this : ∀ (i : 𝒰.J), IsAffine (𝒰.obj i) j : ι → 𝒰.J hj : ∀ (i : ι), Set.range ⇑(ConcreteCategory.hom (f i).base) ⊆ ↑(Scheme.Hom.opensRange (𝒰.map (j i))) g : (j₀ : 𝒰.J) → Spec (CommRingCat.of ((i : { i // j i = j₀ }) → ↑(R ↑i))) ⟶ 𝒰.obj j₀ hg : ∀ (j₀ : 𝒰.J) (x : { i // j i = j₀ }), Spec.map (CommRingCat.ofHom (Pi.evalRingHom (fun x => ↑(R ↑x)) x)) ≫ g j₀ = IsOpenImmersion.lift (𝒰.map j₀) (f ↑x) ⋯ R' : 𝒰.J → CommRingCat := fun j₀ => CommRingCat.of ((i : { i // j i = j₀ }) → ↑(R ↑i)) e : ((i : ι) → ↑(R i)) ≃+* ((j₀ : 𝒰.J) → ↑(R' j₀)) := { toFun := fun f x i => f ↑i, invFun := fun f i => f (j i) ⟨i, ⋯⟩, left_inv := ⋯, right_inv := ⋯, map_mul' := ⋯, map_add' := ⋯ } ⊢ pointsPi R X (Spec.map (CommRingCat.ofHom e.symm.toRingHom) ≫ inv (sigmaSpec R') ≫ Sigma.desc fun j₀ => g j₀ ≫ 𝒰.map j₀) = f
ext i : 1
case h ι : Type u R : ι → CommRingCat X : Scheme inst✝¹ : CompactSpace ↑↑X.toPresheafedSpace inst✝ : ∀ (i : ι), IsLocalRing ↑(R i) f : (i : ι) → Spec (R i) ⟶ X 𝒰 : X.OpenCover := X.affineCover.finiteSubcover this : ∀ (i : 𝒰.J), IsAffine (𝒰.obj i) j : ι → 𝒰.J hj : ∀ (i : ι), Set.range ⇑(ConcreteCategory.hom (f i).base) ⊆ ↑(Scheme.Hom.opensRange (𝒰.map (j i))) g : (j₀ : 𝒰.J) → Spec (CommRingCat.of ((i : { i // j i = j₀ }) → ↑(R ↑i))) ⟶ 𝒰.obj j₀ hg : ∀ (j₀ : 𝒰.J) (x : { i // j i = j₀ }), Spec.map (CommRingCat.ofHom (Pi.evalRingHom (fun x => ↑(R ↑x)) x)) ≫ g j₀ = IsOpenImmersion.lift (𝒰.map j₀) (f ↑x) ⋯ R' : 𝒰.J → CommRingCat := fun j₀ => CommRingCat.of ((i : { i // j i = j₀ }) → ↑(R ↑i)) e : ((i : ι) → ↑(R i)) ≃+* ((j₀ : 𝒰.J) → ↑(R' j₀)) := { toFun := fun f x i => f ↑i, invFun := fun f i => f (j i) ⟨i, ⋯⟩, left_inv := ⋯, right_inv := ⋯, map_mul' := ⋯, map_add' := ⋯ } i : ι ⊢ pointsPi R X (Spec.map (CommRingCat.ofHom e.symm.toRingHom) ≫ inv (sigmaSpec R') ≫ Sigma.desc fun j₀ => g j₀ ≫ 𝒰.map j₀) i = f i
35d67c613e419cbd
SimpleGraph.ConnectedComponent.mem_coe_supp_of_adj
Mathlib/Combinatorics/SimpleGraph/Path.lean
lemma mem_coe_supp_of_adj {v w : V} {H : Subgraph G} {c : ConnectedComponent H.coe} (hv : v ∈ (↑) '' (c : Set H.verts)) (hw : w ∈ H.verts) (hadj : H.Adj v w) : w ∈ (↑) '' (c : Set H.verts)
case h V : Type u G : SimpleGraph V v w : V H : G.Subgraph c : H.coe.ConnectedComponent hw : w ∈ H.verts hadj : H.Adj v w w✝ : ↑H.verts h : w✝ ∈ ↑c ∧ ↑w✝ = v ⊢ ⟨w, hw⟩ ∈ ↑(H.coe.connectedComponentMk w✝) ∧ ↑⟨w, hw⟩ = w
exact ⟨connectedComponentMk_eq_of_adj <| Subgraph.Adj.coe <| h.2 ▸ hadj.symm, rfl⟩
no goals
d0853eeb7056ceb2
InnerProductSpaceable.I_prop
Mathlib/Analysis/InnerProductSpace/OfNorm.lean
theorem I_prop : innerProp' E (I : 𝕜)
case neg 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E hI' : I * I = -1 h₁ : ‖-x - y‖ = ‖x + y‖ ⊢ 4⁻¹ * (𝓚 ‖I • x + y‖ * 𝓚 ‖I • x + y‖ - 𝓚 ‖I • x - y‖ * 𝓚 ‖I • x - y‖ + I * 𝓚 ‖-x + y‖ * 𝓚 ‖-x + y‖ - I * 𝓚 ‖-x - y‖ * 𝓚 ‖-x - y‖) = 4⁻¹ * (-I * (𝓚 ‖x + y‖ * 𝓚 ‖x + y‖ - 𝓚 ‖x - y‖ * 𝓚 ‖x - y‖ + I * 𝓚 ‖I • x + y‖ * 𝓚 ‖I • x + y‖ - I * 𝓚 ‖I • x - y‖ * 𝓚 ‖I • x - y‖))
have h₂ : ‖-x + y‖ = ‖x - y‖ := by rw [← neg_sub, norm_neg, sub_eq_neg_add]
case neg 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E hI' : I * I = -1 h₁ : ‖-x - y‖ = ‖x + y‖ h₂ : ‖-x + y‖ = ‖x - y‖ ⊢ 4⁻¹ * (𝓚 ‖I • x + y‖ * 𝓚 ‖I • x + y‖ - 𝓚 ‖I • x - y‖ * 𝓚 ‖I • x - y‖ + I * 𝓚 ‖-x + y‖ * 𝓚 ‖-x + y‖ - I * 𝓚 ‖-x - y‖ * 𝓚 ‖-x - y‖) = 4⁻¹ * (-I * (𝓚 ‖x + y‖ * 𝓚 ‖x + y‖ - 𝓚 ‖x - y‖ * 𝓚 ‖x - y‖ + I * 𝓚 ‖I • x + y‖ * 𝓚 ‖I • x + y‖ - I * 𝓚 ‖I • x - y‖ * 𝓚 ‖I • x - y‖))
a4c1a41ce4d42a42
Fin.coe_orderIso_apply
Mathlib/Order/Fin/Basic.lean
/-- If `e` is an `orderIso` between `Fin n` and `Fin m`, then `n = m` and `e` is the identity map. In this lemma we state that for each `i : Fin n` we have `(e i : ℕ) = (i : ℕ)`. -/ @[simp] lemma coe_orderIso_apply (e : Fin n ≃o Fin m) (i : Fin n) : (e i : ℕ) = i
case mk m n : ℕ e : Fin n ≃o Fin m i : ℕ hi : i < n ⊢ ↑(e ⟨i, hi⟩) = i
induction' i using Nat.strong_induction_on with i h
case mk.h m n : ℕ e : Fin n ≃o Fin m i : ℕ h : ∀ m_1 < i, ∀ (hi : m_1 < n), ↑(e ⟨m_1, hi⟩) = m_1 hi : i < n ⊢ ↑(e ⟨i, hi⟩) = i
f22dc0d8cb79ada4
Polynomial.Sequence.degree_strictMono
Mathlib/Algebra/Polynomial/Sequence.lean
/-- `S i` has strictly monotone degree. -/ lemma degree_strictMono : StrictMono <| degree ∘ S := fun _ _ ↦ by simp
R : Type u_1 inst✝ : Semiring R S : Sequence R x✝¹ x✝ : ℕ ⊢ x✝¹ < x✝ → (degree ∘ ↑S) x✝¹ < (degree ∘ ↑S) x✝
simp
no goals
c82e90676df63101
CategoryTheory.NonPreadditiveAbelian.sub_sub_sub
Mathlib/CategoryTheory/Abelian/NonPreadditive.lean
theorem sub_sub_sub {X Y : C} (a b c d : X ⟶ Y) : a - c - (b - d) = a - b - (c - d)
C : Type u inst✝¹ : Category.{v, u} C inst✝ : NonPreadditiveAbelian C X Y : C a b c d : X ⟶ Y ⊢ a - c - (b - d) = a - b - (c - d)
rw [sub_def, ← lift_sub_lift, sub_def, Category.assoc, σ_comp, prod.lift_map_assoc]
C : Type u inst✝¹ : Category.{v, u} C inst✝ : NonPreadditiveAbelian C X Y : C a b c d : X ⟶ Y ⊢ prod.lift (prod.lift a b ≫ σ) (prod.lift c d ≫ σ) ≫ σ = a - b - (c - d)
f10b3bcf911da574
integral_Ioi_cpow_of_lt
Mathlib/Analysis/SpecialFunctions/ImproperIntegrals.lean
theorem integral_Ioi_cpow_of_lt {a : ℂ} (ha : a.re < -1) {c : ℝ} (hc : 0 < c) : (∫ t : ℝ in Ioi c, (t : ℂ) ^ a) = -(c : ℂ) ^ (a + 1) / (a + 1)
a : ℂ ha : a.re < -1 c : ℝ hc : 0 < c ⊢ 0 < -(a.re + 1)
linarith
no goals
548595cb49c80036
GenContFract.compExactValue_correctness_of_stream_eq_some_aux_comp
Mathlib/Algebra/ContinuedFractions/Computation/CorrectnessTerminating.lean
theorem compExactValue_correctness_of_stream_eq_some_aux_comp {a : K} (b c : K) (fract_a_ne_zero : Int.fract a ≠ 0) : ((⌊a⌋ : K) * b + c) / Int.fract a + b = (b * a + c) / Int.fract a
K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K a b c : K fract_a_ne_zero : Int.fract a ≠ 0 ⊢ (↑⌊a⌋ * b + c) / Int.fract a + b = (b * a + c) / Int.fract a
field_simp [fract_a_ne_zero]
K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K a b c : K fract_a_ne_zero : Int.fract a ≠ 0 ⊢ ↑⌊a⌋ * b + c + b * Int.fract a = b * a + c
4bc31c2d1c2c0d60
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.derivedLitsInvariant_performRupCheck
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
theorem derivedLitsInvariant_performRupCheck {n : Nat} (f : DefaultFormula n) (f_assignments_size : f.assignments.size = n) (rupHints : Array Nat) (f'_assignments_size : (performRupCheck f rupHints).1.assignments.size = n) : let rupCheckRes := performRupCheck f rupHints DerivedLitsInvariant f f_assignments_size rupCheckRes.1.assignments f'_assignments_size rupCheckRes.2.1
n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n rupHints : Array Nat f'_assignments_size : (f.performRupCheck rupHints).fst.assignments.size = n motive : Nat → Array Assignment × CNF.Clause (PosFin n) × Bool × Bool → Prop := fun x acc => ∃ hsize, f.DerivedLitsInvariant f_assignments_size acc.fst hsize acc.snd.fst i : Fin n ⊢ let_fun i_lt_assignments_size := ⋯; let_fun i_lt_f_assignments_size := ⋯; let assignments_i := (f.assignments, [], false, false).fst[↑i]; let fassignments_i := f.assignments[↑i]; (assignments_i = fassignments_i ∧ ∀ (l : Literal (PosFin n)), l ∈ (f.assignments, [], false, false).snd.fst → l.fst.val ≠ ↑i) ∨ (∃ j, (List.get (f.assignments, [], false, false).snd.fst j).fst.val = ↑i ∧ assignments_i = addAssignment (List.get (f.assignments, [], false, false).snd.fst j).snd fassignments_i ∧ ¬hasAssignment (List.get (f.assignments, [], false, false).snd.fst j).snd fassignments_i = true ∧ ∀ (k : Fin (List.length (f.assignments, [], false, false).snd.fst)), k ≠ j → (List.get (f.assignments, [], false, false).snd.fst k).fst.val ≠ ↑i) ∨ ∃ j1 j2, (List.get (f.assignments, [], false, false).snd.fst j1).fst.val = ↑i ∧ (List.get (f.assignments, [], false, false).snd.fst j2).fst.val = ↑i ∧ (List.get (f.assignments, [], false, false).snd.fst j1).snd = true ∧ (List.get (f.assignments, [], false, false).snd.fst j2).snd = false ∧ assignments_i = both ∧ fassignments_i = unassigned ∧ ∀ (k : Fin (List.length (f.assignments, [], false, false).snd.fst)), k ≠ j1 → k ≠ j2 → (List.get (f.assignments, [], false, false).snd.fst k).fst.val ≠ ↑i
apply Or.inl
case h n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n rupHints : Array Nat f'_assignments_size : (f.performRupCheck rupHints).fst.assignments.size = n motive : Nat → Array Assignment × CNF.Clause (PosFin n) × Bool × Bool → Prop := fun x acc => ∃ hsize, f.DerivedLitsInvariant f_assignments_size acc.fst hsize acc.snd.fst i : Fin n ⊢ (f.assignments, [], false, false).fst[↑i] = f.assignments[↑i] ∧ ∀ (l : Literal (PosFin n)), l ∈ (f.assignments, [], false, false).snd.fst → l.fst.val ≠ ↑i
de25fdd0385200ff
toIocDiv_wcovBy_toIcoDiv
Mathlib/Algebra/Order/ToIntervalMod.lean
theorem toIocDiv_wcovBy_toIcoDiv (a b : α) : toIocDiv hp a b ⩿ toIcoDiv hp a b
α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b : α ⊢ toIocDiv hp a b ⩿ toIcoDiv hp a b
suffices toIocDiv hp a b = toIcoDiv hp a b ∨ toIocDiv hp a b + 1 = toIcoDiv hp a b by rwa [wcovBy_iff_eq_or_covBy, ← Order.succ_eq_iff_covBy]
α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b : α ⊢ toIocDiv hp a b = toIcoDiv hp a b ∨ toIocDiv hp a b + 1 = toIcoDiv hp a b
e9d5b7f8dec9f69e
MeasureTheory.Measure.restrict_eq_self
Mathlib/MeasureTheory/Measure/Restrict.lean
theorem restrict_eq_self (h : s ⊆ t) : μ.restrict t s = μ s := (le_iff'.1 restrict_le_self s).antisymm <| calc μ s ≤ μ (toMeasurable (μ.restrict t) s ∩ t) := measure_mono (subset_inter (subset_toMeasurable _ _) h) _ = μ.restrict t s
α : Type u_2 m0 : MeasurableSpace α μ : Measure α s t : Set α h : s ⊆ t ⊢ μ (toMeasurable (μ.restrict t) s ∩ t) = (μ.restrict t) s
rw [← restrict_apply (measurableSet_toMeasurable _ _), measure_toMeasurable]
no goals
fdc48b9df9dc2d43
FormalMultilinearSeries.applyComposition_single
Mathlib/Analysis/Analytic/Composition.lean
theorem applyComposition_single (p : FormalMultilinearSeries 𝕜 E F) {n : ℕ} (hn : 0 < n) (v : Fin n → E) : p.applyComposition (Composition.single n hn) v = fun _j => p n v
case h.e_a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹⁰ : CommRing 𝕜 inst✝⁹ : AddCommGroup E inst✝⁸ : AddCommGroup F inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜 F inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : IsTopologicalAddGroup E inst✝² : ContinuousConstSMul 𝕜 E inst✝¹ : IsTopologicalAddGroup F inst✝ : ContinuousConstSMul 𝕜 F p : FormalMultilinearSeries 𝕜 E F n : ℕ hn : 0 < n v : Fin n → E j : Fin (Composition.single n hn).length i : ℕ hi1 : i < (Composition.single n hn).blocksFun j hi2 : i < n ⊢ ((Composition.single n hn).embedding j) ⟨i, hi1⟩ = ⟨i, hi2⟩
convert Composition.single_embedding hn ⟨i, hi2⟩ using 1
case h.e'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹⁰ : CommRing 𝕜 inst✝⁹ : AddCommGroup E inst✝⁸ : AddCommGroup F inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜 F inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : IsTopologicalAddGroup E inst✝² : ContinuousConstSMul 𝕜 E inst✝¹ : IsTopologicalAddGroup F inst✝ : ContinuousConstSMul 𝕜 F p : FormalMultilinearSeries 𝕜 E F n : ℕ hn : 0 < n v : Fin n → E j : Fin (Composition.single n hn).length i : ℕ hi1 : i < (Composition.single n hn).blocksFun j hi2 : i < n ⊢ ((Composition.single n hn).embedding j) ⟨i, hi1⟩ = ((Composition.single n hn).embedding 0) ⟨i, hi2⟩
3c651f8937b91732
ENNReal.log_surjective
Mathlib/Analysis/SpecialFunctions/Log/ENNRealLog.lean
theorem log_surjective : Function.Surjective log
case h y : EReal y_nbot : ⊥ < y y_ntop : y < ⊤ exp_y_pos : ¬Real.exp y.toReal ≤ 0 ⊢ (ENNReal.ofReal (Real.exp y.toReal)).log = y
simp only [log, ofReal_eq_zero, exp_y_pos, ↓reduceIte, ofReal_ne_top, ENNReal.toReal_ofReal (Real.exp_pos y.toReal).le, Real.log_exp y.toReal]
case h y : EReal y_nbot : ⊥ < y y_ntop : y < ⊤ exp_y_pos : ¬Real.exp y.toReal ≤ 0 ⊢ ↑y.toReal = y
1d58ac00fdba3020
UniformContinuous.pow_const
Mathlib/Topology/Algebra/UniformGroup/Defs.lean
theorem UniformContinuous.pow_const [UniformSpace β] {f : β → α} (hf : UniformContinuous f) : ∀ n : ℕ, UniformContinuous fun x => f x ^ n | 0 => by simp_rw [pow_zero] exact uniformContinuous_const | n + 1 => by simp_rw [pow_succ'] exact hf.mul (hf.pow_const n)
α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f : β → α hf : UniformContinuous f n : ℕ ⊢ UniformContinuous fun x => f x ^ (n + 1)
simp_rw [pow_succ']
α : Type u_1 β : Type u_2 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f : β → α hf : UniformContinuous f n : ℕ ⊢ UniformContinuous fun x => f x * f x ^ n
5db82d8e2dacf3d4
Equiv.Perm.support_mul_le
Mathlib/GroupTheory/Perm/Support.lean
theorem support_mul_le (f g : Perm α) : (f * g).support ≤ f.support ⊔ g.support := fun x => by simp only [sup_eq_union] rw [mem_union, mem_support, mem_support, mem_support, mul_apply, ← not_and_or, not_imp_not] rintro ⟨hf, hg⟩ rw [hg, hf]
α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x : α ⊢ x ∈ (f * g).support → x ∈ f.support ∪ g.support
rw [mem_union, mem_support, mem_support, mem_support, mul_apply, ← not_and_or, not_imp_not]
α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x : α ⊢ f x = x ∧ g x = x → f (g x) = x
6d98e5a02bd70b7c
not_disjoint_segment_convexHull_triple
Mathlib/Analysis/Convex/StoneSeparation.lean
theorem not_disjoint_segment_convexHull_triple {p q u v x y z : E} (hz : z ∈ segment 𝕜 x y) (hu : u ∈ segment 𝕜 x p) (hv : v ∈ segment 𝕜 y q) : ¬Disjoint (segment 𝕜 u v) (convexHull 𝕜 {p, q, z})
𝕜 : Type u_1 E : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p q x y : E az bz : 𝕜 haz : 0 ≤ az hbz : 0 ≤ bz habz : az + bz = 1 haz' : 0 < az av bv : 𝕜 hav : 0 ≤ av hbv : 0 ≤ bv habv : av + bv = 1 hav' : 0 < av au bu : 𝕜 hau : 0 ≤ au hbu : 0 ≤ bu habu : au + bu = 1 hab : 0 < az * av + bz * au w : Fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av] z : Fin 3 → E := ![p, q, az • x + bz • y] hw₀ : ∀ (i : Fin 3), 0 ≤ w i ⊢ ∑ i : Fin 3, w i = az * av * bu + (bz * au * bv + au * av)
simp [w, Fin.sum_univ_succ, Fin.sum_univ_zero]
no goals
b7449eac49163f66