name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Nat.Partrec.Code.exists_code
Mathlib/Computability/PartrecCode.lean
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f
case refine_2.intro.pair cf cg : Code pf : Partrec cf.eval pg : Partrec cg.eval ⊢ Partrec (cf.pair cg).eval
exact pf.pair pg
no goals
ff5610342a211d54
Set.equitableOn_iff_exists_eq_eq_add_one
Mathlib/Data/Set/Equitable.lean
theorem equitableOn_iff_exists_eq_eq_add_one {s : Set α} {f : α → ℕ} : s.EquitableOn f ↔ ∃ b, ∀ a ∈ s, f a = b ∨ f a = b + 1
α : Type u_1 s : Set α f : α → ℕ ⊢ s.EquitableOn f ↔ ∃ b, ∀ a ∈ s, f a = b ∨ f a = b + 1
simp_rw [equitableOn_iff_exists_le_le_add_one, Nat.le_and_le_add_one_iff]
no goals
6809ba29f79d6a9a
ENNReal.inner_le_weight_mul_Lp_of_nonneg
Mathlib/Analysis/MeanInequalities.lean
/-- **Weighted Hölder inequality**. -/ lemma inner_le_weight_mul_Lp_of_nonneg (s : Finset ι) {p : ℝ} (hp : 1 ≤ p) (w f : ι → ℝ≥0∞) : ∑ i ∈ s, w i * f i ≤ (∑ i ∈ s, w i) ^ (1 - p⁻¹) * (∑ i ∈ s, w i * f i ^ p) ^ p⁻¹
case neg ι : Type u s : Finset ι p : ℝ hp✝ : 1 ≤ p w f : ι → ℝ≥0∞ hp : 1 < p hp₀ : 0 < p hp₁ : p⁻¹ < 1 H : (∑ i ∈ s, w i) ^ (1 - p⁻¹) ≠ 0 ∧ (∑ i ∈ s, w i * f i ^ p) ^ p⁻¹ ≠ 0 H' : (∀ i ∈ s, w i ≠ ⊤) ∧ ∀ i ∈ s, w i * f i ^ p ≠ ⊤ this : ↑(∑ i ∈ s, (w i).toNNReal * (f i).toNNReal) ≤ ↑((∑ i ∈ s, (w i).toNNReal) ^ (1 - p⁻¹) * (∑ i ∈ s, (w i).toNNReal * (f i).toNNReal ^ p) ^ p⁻¹) ⊢ ∑ i ∈ s, w i * f i ≤ (∑ i ∈ s, w i) ^ (1 - p⁻¹) * (∑ i ∈ s, w i * f i ^ p) ^ p⁻¹
rw [coe_mul] at this
case neg ι : Type u s : Finset ι p : ℝ hp✝ : 1 ≤ p w f : ι → ℝ≥0∞ hp : 1 < p hp₀ : 0 < p hp₁ : p⁻¹ < 1 H : (∑ i ∈ s, w i) ^ (1 - p⁻¹) ≠ 0 ∧ (∑ i ∈ s, w i * f i ^ p) ^ p⁻¹ ≠ 0 H' : (∀ i ∈ s, w i ≠ ⊤) ∧ ∀ i ∈ s, w i * f i ^ p ≠ ⊤ this : ↑(∑ i ∈ s, (w i).toNNReal * (f i).toNNReal) ≤ ↑((∑ i ∈ s, (w i).toNNReal) ^ (1 - p⁻¹)) * ↑((∑ i ∈ s, (w i).toNNReal * (f i).toNNReal ^ p) ^ p⁻¹) ⊢ ∑ i ∈ s, w i * f i ≤ (∑ i ∈ s, w i) ^ (1 - p⁻¹) * (∑ i ∈ s, w i * f i ^ p) ^ p⁻¹
bb7d779f184c526a
PSet.rank_pair
Mathlib/SetTheory/ZFC/Rank.lean
theorem rank_pair (x y : PSet) : rank {x, y} = max (succ (rank x)) (succ (rank y))
x y : PSet.{u_1} ⊢ {x, y}.rank = succ x.rank ⊔ succ y.rank
simp
no goals
ccc567272ea68945
MeasureTheory.measurableSet_range_of_continuous_injective
Mathlib/MeasureTheory/Constructions/Polish/Basic.lean
theorem measurableSet_range_of_continuous_injective {β : Type*} [TopologicalSpace γ] [PolishSpace γ] [TopologicalSpace β] [T2Space β] [MeasurableSpace β] [OpensMeasurableSpace β] {f : γ → β} (f_cont : Continuous f) (f_inj : Injective f) : MeasurableSet (range f)
γ : Type u_3 β : Type u_4 inst✝⁵ : TopologicalSpace γ inst✝⁴ : PolishSpace γ inst✝³ : TopologicalSpace β inst✝² : T2Space β inst✝¹ : MeasurableSpace β inst✝ : OpensMeasurableSpace β f : γ → β f_cont : Continuous f f_inj : Injective f this✝¹ : UpgradedPolishSpace γ := upgradePolishSpace γ b : Set (Set γ) b_count : b.Countable b_nonempty : ∅ ∉ b hb : IsTopologicalBasis b this✝ : Encodable ↑b A : Type (max 0 u_3) := { p // Disjoint ↑p.1 ↑p.2 } q : A → Set β hq1 : ∀ (p : A), f '' ↑(↑p).1 ⊆ q p hq2 : ∀ (p : A), Disjoint (f '' ↑(↑p).2) (q p) q_meas : ∀ (p : A), MeasurableSet (q p) E : ↑b → Set β := fun s => closure (f '' ↑s) ∩ ⋂ t, ⋂ (ht : Disjoint ↑s ↑t), q ⟨(s, t), ht⟩ \ q ⟨(t, s), ⋯⟩ u : ℕ → ℝ u_anti : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) F : ℕ → Set β := fun n => ⋃ s, ⋃ (_ : Bornology.IsBounded ↑s ∧ diam ↑s ≤ u n), E s this : range f = ⋂ n, F n E_meas : ∀ (s : ↑b), MeasurableSet (E s) ⊢ MeasurableSet (range f)
have F_meas : ∀ n, MeasurableSet (F n) := by intro n refine MeasurableSet.iUnion fun s => ?_ exact MeasurableSet.iUnion fun _ => E_meas _
γ : Type u_3 β : Type u_4 inst✝⁵ : TopologicalSpace γ inst✝⁴ : PolishSpace γ inst✝³ : TopologicalSpace β inst✝² : T2Space β inst✝¹ : MeasurableSpace β inst✝ : OpensMeasurableSpace β f : γ → β f_cont : Continuous f f_inj : Injective f this✝¹ : UpgradedPolishSpace γ := upgradePolishSpace γ b : Set (Set γ) b_count : b.Countable b_nonempty : ∅ ∉ b hb : IsTopologicalBasis b this✝ : Encodable ↑b A : Type (max 0 u_3) := { p // Disjoint ↑p.1 ↑p.2 } q : A → Set β hq1 : ∀ (p : A), f '' ↑(↑p).1 ⊆ q p hq2 : ∀ (p : A), Disjoint (f '' ↑(↑p).2) (q p) q_meas : ∀ (p : A), MeasurableSet (q p) E : ↑b → Set β := fun s => closure (f '' ↑s) ∩ ⋂ t, ⋂ (ht : Disjoint ↑s ↑t), q ⟨(s, t), ht⟩ \ q ⟨(t, s), ⋯⟩ u : ℕ → ℝ u_anti : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) F : ℕ → Set β := fun n => ⋃ s, ⋃ (_ : Bornology.IsBounded ↑s ∧ diam ↑s ≤ u n), E s this : range f = ⋂ n, F n E_meas : ∀ (s : ↑b), MeasurableSet (E s) F_meas : ∀ (n : ℕ), MeasurableSet (F n) ⊢ MeasurableSet (range f)
b9138111f37aa037
Besicovitch.TauPackage.color_lt
Mathlib/MeasureTheory/Covering/Besicovitch.lean
theorem color_lt {i : Ordinal.{u}} (hi : i < p.lastStep) {N : ℕ} (hN : IsEmpty (SatelliteConfig α N p.τ)) : p.color i < N
α : Type u_1 inst✝¹ : MetricSpace α β : Type u inst✝ : Nonempty β p : TauPackage β α N : ℕ hN : IsEmpty (SatelliteConfig α N p.τ) i : Ordinal.{u} IH : ∀ k < i, k < p.lastStep → p.color k < N hi : i < p.lastStep A : Set ℕ := ⋃ j, ⋃ (_ : (closedBall (p.c (p.index ↑j)) (p.r (p.index ↑j)) ∩ closedBall (p.c (p.index i)) (p.r (p.index i))).Nonempty), {p.color ↑j} color_i : p.color i = sInf (univ \ A) N_mem : N ∈ univ \ A Inf_eq_N : sInf (univ \ A) = N g : ℕ → Ordinal.{u} hg : ∀ k < N, g k < i ∧ (closedBall (p.c (p.index (g k))) (p.r (p.index (g k))) ∩ closedBall (p.c (p.index i)) (p.r (p.index i))).Nonempty ∧ k = p.color (g k) G : ℕ → Ordinal.{u} := fun n => if n = N then i else g n color_G : ∀ n ≤ N, p.color (G n) = n G_lt_last : ∀ n ≤ N, G n < p.lastStep n : ℕ hn : n ≤ N this✝ : p.index (G n) = Classical.epsilon fun t => p.c t ∉ p.iUnionUpTo (G n) ∧ p.R (G n) ≤ p.τ * p.r t this : ∃ t, p.c t ∉ p.iUnionUpTo (G n) ∧ p.R (G n) ≤ p.τ * p.r t ⊢ p.c (Classical.epsilon fun t => p.c t ∉ p.iUnionUpTo (G n) ∧ p.R (G n) ≤ p.τ * p.r t) ∉ p.iUnionUpTo (G n) ∧ p.R (G n) ≤ p.τ * p.r (Classical.epsilon fun t => p.c t ∉ p.iUnionUpTo (G n) ∧ p.R (G n) ≤ p.τ * p.r t)
exact Classical.epsilon_spec this
no goals
70d4d5d8aa8a7de2
CauchySeq.totallyBounded_range
Mathlib/Topology/UniformSpace/Cauchy.lean
theorem CauchySeq.totallyBounded_range {s : ℕ → α} (hs : CauchySeq s) : TotallyBounded (range s)
case intro α : Type u uniformSpace : UniformSpace α s : ℕ → α hs : CauchySeq s a : Set (α × α) ha : a ∈ 𝓤 α n : ℕ hn : ∀ k ≥ n, ∀ l ≥ n, (s k, s l) ∈ a ⊢ ∃ t, t.Finite ∧ range s ⊆ ⋃ y ∈ t, {x | (x, y) ∈ a}
refine ⟨s '' { k | k ≤ n }, (finite_le_nat _).image _, ?_⟩
case intro α : Type u uniformSpace : UniformSpace α s : ℕ → α hs : CauchySeq s a : Set (α × α) ha : a ∈ 𝓤 α n : ℕ hn : ∀ k ≥ n, ∀ l ≥ n, (s k, s l) ∈ a ⊢ range s ⊆ ⋃ y ∈ s '' {k | k ≤ n}, {x | (x, y) ∈ a}
3130ab10e1bf3e8f
ContinuousLinearMap.adjointAux_inner_left
Mathlib/Analysis/InnerProductSpace/Adjoint.lean
theorem adjointAux_inner_left (A : E →L[𝕜] F) (x : E) (y : F) : ⟪adjointAux A y, x⟫ = ⟪y, A x⟫
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : RCLike 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace 𝕜 E inst✝¹ : InnerProductSpace 𝕜 F inst✝ : CompleteSpace E A : E →L[𝕜] F x : E y : F ⊢ ⟪(adjointAux A) y, x⟫_𝕜 = ⟪y, A x⟫_𝕜
rw [adjointAux_apply, toDual_symm_apply, toSesqForm_apply_coe, coe_comp', innerSL_apply_coe, Function.comp_apply]
no goals
fd8b218a8f1b3564
Ideal.IsLasker.minimal
Mathlib/RingTheory/Lasker.lean
lemma IsLasker.minimal [DecidableEq (Ideal R)] (h : IsLasker R) (I : Ideal R) : ∃ t : Finset (Ideal R), t.inf id = I ∧ (∀ ⦃J⦄, J ∈ t → J.IsPrimary) ∧ ((t : Set (Ideal R)).Pairwise ((· ≠ ·) on radical)) ∧ (∀ ⦃J⦄, J ∈ t → ¬ (t.erase J).inf id ≤ J)
case intro.intro R : Type u_1 inst✝¹ : CommSemiring R inst✝ : DecidableEq (Ideal R) h : IsLasker R I : Ideal R s : Finset (Ideal R) hs : s.inf id = I hs' : ∀ ⦃J : Ideal R⦄, J ∈ s → J.IsPrimary ⊢ ∃ t, t.inf id = I ∧ (∀ ⦃J : Ideal R⦄, J ∈ t → J.IsPrimary) ∧ (↑t).Pairwise ((fun x1 x2 => x1 ≠ x2) on radical) ∧ ∀ ⦃J : Ideal R⦄, J ∈ t → ¬(t.erase J).inf id ≤ J
exact exists_minimal_isPrimary_decomposition_of_isPrimary_decomposition hs hs'
no goals
43556b91168d43a5
FirstOrder.Language.IsUltrahomogeneous.extend_embedding
Mathlib/ModelTheory/Fraisse.lean
theorem IsUltrahomogeneous.extend_embedding (M_homog : L.IsUltrahomogeneous M) {S : Type*} [L.Structure S] (S_FG : FG L S) {T : Type*} [L.Structure T] [h : Nonempty (T ↪[L] M)] (f : S ↪[L] M) (g : S ↪[L] T) : ∃ f' : T ↪[L] M, f = f'.comp g
case h.h L : Language M : Type w inst✝² : L.Structure M M_homog : L.IsUltrahomogeneous M S : Type u_1 inst✝¹ : L.Structure S S_FG : Structure.FG L S T : Type u_2 inst✝ : L.Structure T h : Nonempty (T ↪[L] M) f : S ↪[L] M g : S ↪[L] T r : T ↪[L] M s : S ↪[L] M := r.comp g t : M ≃[L] M eq : f.comp s.equivRange.symm.toEmbedding = t.toEmbedding.comp s.toHom.range.subtype x : S ⊢ f x = (t.toEmbedding.comp s) x
have eq' := congr_fun (congr_arg DFunLike.coe eq) ⟨s x, Hom.mem_range.2 ⟨x, rfl⟩⟩
case h.h L : Language M : Type w inst✝² : L.Structure M M_homog : L.IsUltrahomogeneous M S : Type u_1 inst✝¹ : L.Structure S S_FG : Structure.FG L S T : Type u_2 inst✝ : L.Structure T h : Nonempty (T ↪[L] M) f : S ↪[L] M g : S ↪[L] T r : T ↪[L] M s : S ↪[L] M := r.comp g t : M ≃[L] M eq : f.comp s.equivRange.symm.toEmbedding = t.toEmbedding.comp s.toHom.range.subtype x : S eq' : (f.comp s.equivRange.symm.toEmbedding) ⟨s x, ⋯⟩ = (t.toEmbedding.comp s.toHom.range.subtype) ⟨s x, ⋯⟩ ⊢ f x = (t.toEmbedding.comp s) x
207000e714ea7978
RightDerivMeasurableAux.differentiable_set_subset_D
Mathlib/Analysis/Calculus/FDeriv/Measurable.lean
theorem differentiable_set_subset_D : { x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K } ⊆ D f K
F : Type u_1 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F f : ℝ → F K : Set F ⊢ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K} ⊆ D f K
intro x hx
F : Type u_1 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F f : ℝ → F K : Set F x : ℝ hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K} ⊢ x ∈ D f K
02ae9336af5f07d4
TopCat.Presheaf.stalkSpecializes_stalkPushforward
Mathlib/Topology/Sheaves/Stalks.lean
theorem stalkSpecializes_stalkPushforward (f : X ⟶ Y) (F : X.Presheaf C) {x y : X} (h : x ⤳ y) : (f _* F).stalkSpecializes (f.hom.map_specializes h) ≫ F.stalkPushforward _ f x = F.stalkPushforward _ f y ≫ F.stalkSpecializes h
case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat f : X ⟶ Y F : Presheaf C X x y : ↑X h : x ⤳ y j✝ : (OpenNhds ((Hom.hom f) y))ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds ((Hom.hom f) y))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion ((Hom.hom f) y)).op).obj ((pushforward C f).obj F)) j✝ ≫ ((pushforward C f).obj F).stalkSpecializes ⋯ ≫ colim.map (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) F) ≫ colimit.pre (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) (OpenNhds.map f x).op = colimit.ι (((whiskeringLeft (OpenNhds ((Hom.hom f) y))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion ((Hom.hom f) y)).op).obj ((pushforward C f).obj F)) j✝ ≫ (colim.map (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f y).inv) F) ≫ colimit.pre (((whiskeringLeft (OpenNhds y)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion y).op).obj F) (OpenNhds.map f y).op) ≫ F.stalkSpecializes h
simp only [stalkSpecializes, colimit.ι_desc_assoc, colimit.ι_map_assoc, colimit.ι_pre, Category.assoc, colimit.pre_desc, colimit.ι_desc]
case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat f : X ⟶ Y F : Presheaf C X x y : ↑X h : x ⤳ y j✝ : (OpenNhds ((Hom.hom f) y))ᵒᵖ ⊢ (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) F).app (op { obj := (unop j✝).obj, property := ⋯ }) ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) ((OpenNhds.map f x).op.obj (op { obj := (unop j✝).obj, property := ⋯ })) = (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f y).inv) F).app j✝ ≫ (Cocone.whisker (OpenNhds.map f y).op { pt := (stalkFunctor C x).toPrefunctor.1 F, ι := { app := fun U => colimit.ι ((OpenNhds.inclusion x).op ⋙ F) (op { obj := (unop U).obj, property := ⋯ }), naturality := ⋯ } }).ι.app j✝
bb98b71fe156acfc
IsCompact.elim_nhds_subcover_nhdsSet
Mathlib/Topology/Compactness/Compact.lean
lemma IsCompact.elim_nhds_subcover_nhdsSet (hs : IsCompact s) {U : X → Set X} (hU : ∀ x ∈ s, U x ∈ 𝓝 x) : ∃ t : Finset X, (∀ x ∈ t, x ∈ s) ∧ (⋃ x ∈ t, U x) ∈ 𝓝ˢ s
X : Type u inst✝ : TopologicalSpace X s : Set X hs : IsCompact s U : X → Set X hU : ∀ x ∈ s, U x ∈ 𝓝 x t : Finset ↑s ht : ⋃ x ∈ t, U ↑x ∈ 𝓝ˢ s ⊢ ⋃ x ∈ Finset.image Subtype.val t, U x ∈ 𝓝ˢ s
rwa [Finset.set_biUnion_finset_image]
no goals
cd4eb3db00104b0a
Array.ext
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Basic.lean
theorem ext (a b : Array α) (h₁ : a.size = b.size) (h₂ : (i : Nat) → (hi₁ : i < a.size) → (hi₂ : i < b.size) → a[i] = b[i]) : a = b
case mk.mk α : Type u toList✝¹ toList✝ : List α h₁ : { toList := toList✝¹ }.size = { toList := toList✝ }.size h₂ : ∀ (i : Nat) (hi₁ : i < { toList := toList✝¹ }.size) (hi₂ : i < { toList := toList✝ }.size), getElem { toList := toList✝¹ } i hi₁ = getElem { toList := toList✝ } i hi₂ ⊢ { toList := toList✝¹ } = { toList := toList✝ }
apply congrArg
case mk.mk.h α : Type u toList✝¹ toList✝ : List α h₁ : { toList := toList✝¹ }.size = { toList := toList✝ }.size h₂ : ∀ (i : Nat) (hi₁ : i < { toList := toList✝¹ }.size) (hi₂ : i < { toList := toList✝ }.size), getElem { toList := toList✝¹ } i hi₁ = getElem { toList := toList✝ } i hi₂ ⊢ toList✝¹ = toList✝
c533afa60c503a53
CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_unit_app
Mathlib/CategoryTheory/Monad/Comonadicity.lean
theorem comparisonAdjunction_unit_app [∀ A : adj.toComonad.Coalgebra, HasEqualizer (G.map A.a) (adj.unit.app (G.obj A.A))] (B : C) : (comparisonAdjunction adj).unit.app B = limit.lift _ (unitFork adj B)
case h C : Type u₁ D : Type u₂ inst✝² : Category.{v₁, u₁} C inst✝¹ : Category.{v₁, u₂} D F : C ⥤ D G : D ⥤ C adj : F ⊣ G inst✝ : ∀ (A : adj.toComonad.Coalgebra), HasEqualizer (G.map A.a) (adj.unit.app (G.obj A.A)) B : C ⊢ equalizer.lift ((adj.homEquiv B (F.obj B)) (𝟙 (F.obj B))) ⋯ ≫ equalizer.ι (G.map ((comparison adj).obj B).a) (adj.unit.app (G.toPrefunctor.1 ((comparison adj).obj B).A)) = equalizer.lift (adj.unit.app B) ⋯ ≫ equalizer.ι (G.map (F.map (adj.unit.app B))) (adj.unit.app (G.obj (F.obj B)))
simp [Adjunction.homEquiv_unit]
no goals
56285f6d00a0cc25
Ordinal.add_lt_add_iff_left'
Mathlib/SetTheory/Ordinal/Arithmetic.lean
theorem add_lt_add_iff_left' (a) {b c : Ordinal} : a + b < a + c ↔ b < c
a b c : Ordinal.{u_4} ⊢ a + b < a + c ↔ b < c
rw [← not_le, ← not_le, add_le_add_iff_left]
no goals
084361ab579da7fc
CStarModule.inner_mul_inner_swap_le
Mathlib/Analysis/CStarAlgebra/Module/Defs.lean
/-- The C⋆-algebra-valued Cauchy-Schwarz inequality for Hilbert C⋆-modules. -/ lemma inner_mul_inner_swap_le {x y : E} : ⟪y, x⟫ * ⟪x, y⟫ ≤ ‖x‖ ^ 2 • ⟪y, y⟫
case inr A : Type u_1 E : Type u_2 inst✝⁷ : NonUnitalCStarAlgebra A inst✝⁶ : PartialOrder A inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℂ E inst✝³ : SMul Aᵐᵒᵖ E inst✝² : Norm E inst✝¹ : CStarModule A E inst✝ : StarOrderedRing A x y : E h : x ≠ 0 h₁ : ∀ (a : A), 0 ≤ ‖x‖ ^ 2 •> (star a * a) - ‖x‖ ^ 2 •> (⟪y, x⟫_A * a) - ‖x‖ ^ 2 •> (star a * ⟪x, y⟫_A) + ‖x‖ ^ 2 •> ‖x‖ ^ 2 •> ⟪y, y⟫_A ⊢ ⟪y, x⟫_A * ⟪x, y⟫_A ≤ ‖x‖ ^ 2 •> ⟪y, y⟫_A
specialize h₁ ⟪x, y⟫
case inr A : Type u_1 E : Type u_2 inst✝⁷ : NonUnitalCStarAlgebra A inst✝⁶ : PartialOrder A inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℂ E inst✝³ : SMul Aᵐᵒᵖ E inst✝² : Norm E inst✝¹ : CStarModule A E inst✝ : StarOrderedRing A x y : E h : x ≠ 0 h₁ : 0 ≤ ‖x‖ ^ 2 •> (star ⟪x, y⟫_A * ⟪x, y⟫_A) - ‖x‖ ^ 2 •> (⟪y, x⟫_A * ⟪x, y⟫_A) - ‖x‖ ^ 2 •> (star ⟪x, y⟫_A * ⟪x, y⟫_A) + ‖x‖ ^ 2 •> ‖x‖ ^ 2 •> ⟪y, y⟫_A ⊢ ⟪y, x⟫_A * ⟪x, y⟫_A ≤ ‖x‖ ^ 2 •> ⟪y, y⟫_A
9539de1a07b6e267
Ordnode.Valid'.balanceL_aux
Mathlib/Data/Ordmap/Ordset.lean
theorem Valid'.balanceL_aux {l} {x : α} {r o₁ o₂} (hl : Valid' o₁ l x) (hr : Valid' x r o₂) (H₁ : size l = 0 → size r ≤ 1) (H₂ : 1 ≤ size l → 1 ≤ size r → size r ≤ delta * size l) (H₃ : 2 * @size α l ≤ 9 * size r + 5 ∨ size l ≤ 3) : Valid' o₁ (@balanceL α l x r) o₂
case inl α : Type u_1 inst✝ : Preorder α l : Ordnode α x : α r : Ordnode α o₁ : WithBot α o₂ : WithTop α hl : Valid' o₁ l ↑x hr : Valid' (↑x) r o₂ H₁ : l.size = 0 → r.size ≤ 1 H₂ : 1 ≤ l.size → 1 ≤ r.size → r.size ≤ delta * l.size H₃ : 2 * l.size ≤ 9 * r.size + 5 ∨ l.size ≤ 3 r0 : r.size = 0 ⊢ 2 * r.size ≤ 9 * l.size + 5
rw [r0]
case inl α : Type u_1 inst✝ : Preorder α l : Ordnode α x : α r : Ordnode α o₁ : WithBot α o₂ : WithTop α hl : Valid' o₁ l ↑x hr : Valid' (↑x) r o₂ H₁ : l.size = 0 → r.size ≤ 1 H₂ : 1 ≤ l.size → 1 ≤ r.size → r.size ≤ delta * l.size H₃ : 2 * l.size ≤ 9 * r.size + 5 ∨ l.size ≤ 3 r0 : r.size = 0 ⊢ 2 * 0 ≤ 9 * l.size + 5
9c4e9afdd6227678
PMF.mem_support_bernoulli_iff
Mathlib/Probability/ProbabilityMassFunction/Constructions.lean
theorem mem_support_bernoulli_iff : b ∈ (bernoulli p h).support ↔ cond b (p ≠ 0) (p ≠ 1)
p : ℝ≥0∞ h : p ≤ 1 b : Bool ⊢ b ∈ (bernoulli p h).support ↔ bif b then p ≠ 0 else p ≠ 1
simp
no goals
2a4b3f2fb15ad932
AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_support
Mathlib/AlgebraicGeometry/IdealSheaf.lean
lemma vanishingIdeal_support {I : IdealSheafData X} : vanishingIdeal I.support = I.radical
case ideal.h X : Scheme I : X.IdealSheafData U : ↑X.affineOpens ⊢ (vanishingIdeal I.support).ideal U = I.radical.ideal U
dsimp
case ideal.h X : Scheme I : X.IdealSheafData U : ↑X.affineOpens ⊢ PrimeSpectrum.vanishingIdeal (⇑(ConcreteCategory.hom (IsAffineOpen.fromSpec ⋯).base) ⁻¹' I.support) = (I.ideal U).radical
636619f5fa70acf7
MeasureTheory.limsup_measure_closed_le_of_forall_tendsto_measure
Mathlib/MeasureTheory/Measure/Portmanteau.lean
/-- One implication of the portmanteau theorem: Assuming that for all Borel sets E whose boundary ∂E carries no probability mass under a candidate limit probability measure μ we have convergence of the measures μsᵢ(E) to μ(E), then for all closed sets F we have the limsup condition limsup μsᵢ(F) ≤ μ(F). -/ lemma limsup_measure_closed_le_of_forall_tendsto_measure {Ω ι : Type*} {L : Filter ι} [MeasurableSpace Ω] [PseudoEMetricSpace Ω] [OpensMeasurableSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] {μs : ι → Measure Ω} (h : ∀ {E : Set Ω}, MeasurableSet E → μ (frontier E) = 0 → Tendsto (fun i ↦ μs i E) L (𝓝 (μ E))) (F : Set Ω) (F_closed : IsClosed F) : L.limsup (fun i ↦ μs i F) ≤ μ F
case inr Ω : Type u_2 ι : Type u_3 L : Filter ι inst✝³ : MeasurableSpace Ω inst✝² : PseudoEMetricSpace Ω inst✝¹ : OpensMeasurableSpace Ω μ : Measure Ω inst✝ : IsFiniteMeasure μ μs : ι → Measure Ω h : ∀ {E : Set Ω}, MeasurableSet E → μ (frontier E) = 0 → Tendsto (fun i => (μs i) E) L (𝓝 (μ E)) F : Set Ω F_closed : IsClosed F h✝ : L.NeBot ex : ∃ rs, Tendsto rs atTop (𝓝 0) ∧ ∀ (n : ℕ), 0 < rs n ∧ μ (frontier (Metric.thickening (rs n) F)) = 0 rs : ℕ → ℝ := Classical.choose ex rs_lim : Tendsto rs atTop (𝓝 0) rs_pos : ∀ (n : ℕ), 0 < rs n rs_null : ∀ (n : ℕ), μ (frontier (Metric.thickening (rs n) F)) = 0 Fthicks_open : ∀ (n : ℕ), IsOpen (Metric.thickening (rs n) F) key : ∀ (n : ℕ), Tendsto (fun i => (μs i) (Metric.thickening (rs n) F)) L (𝓝 (μ (Metric.thickening (rs n) F))) ⊢ limsup (fun i => (μs i) F) L ≤ μ F
apply ENNReal.le_of_forall_pos_le_add
case inr.h Ω : Type u_2 ι : Type u_3 L : Filter ι inst✝³ : MeasurableSpace Ω inst✝² : PseudoEMetricSpace Ω inst✝¹ : OpensMeasurableSpace Ω μ : Measure Ω inst✝ : IsFiniteMeasure μ μs : ι → Measure Ω h : ∀ {E : Set Ω}, MeasurableSet E → μ (frontier E) = 0 → Tendsto (fun i => (μs i) E) L (𝓝 (μ E)) F : Set Ω F_closed : IsClosed F h✝ : L.NeBot ex : ∃ rs, Tendsto rs atTop (𝓝 0) ∧ ∀ (n : ℕ), 0 < rs n ∧ μ (frontier (Metric.thickening (rs n) F)) = 0 rs : ℕ → ℝ := Classical.choose ex rs_lim : Tendsto rs atTop (𝓝 0) rs_pos : ∀ (n : ℕ), 0 < rs n rs_null : ∀ (n : ℕ), μ (frontier (Metric.thickening (rs n) F)) = 0 Fthicks_open : ∀ (n : ℕ), IsOpen (Metric.thickening (rs n) F) key : ∀ (n : ℕ), Tendsto (fun i => (μs i) (Metric.thickening (rs n) F)) L (𝓝 (μ (Metric.thickening (rs n) F))) ⊢ ∀ (ε : ℝ≥0), 0 < ε → μ F < ⊤ → limsup (fun i => (μs i) F) L ≤ μ F + ↑ε
bb4384475908a757
List.prefix_of_prefix_length_le
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
theorem prefix_of_prefix_length_le : ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₃ → l₂ <+: l₃ → length l₁ ≤ length l₂ → l₁ <+: l₂ | [], _, _, _, _, _ => nil_prefix | _ :: _, b :: _, _, ⟨_, rfl⟩, ⟨_, e⟩, ll => by injection e with _ e'; subst b rcases prefix_of_prefix_length_le ⟨_, rfl⟩ ⟨_, e'⟩ (le_of_succ_le_succ ll) with ⟨r₃, rfl⟩ exact ⟨r₃, rfl⟩
α : Type u_1 head✝ : α tail✝¹ : List α b : α tail✝ w✝¹ w✝ : List α e : b :: tail✝ ++ w✝ = head✝ :: tail✝¹ ++ w✝¹ ll : (head✝ :: tail✝¹).length ≤ (b :: tail✝).length ⊢ head✝ :: tail✝¹ <+: b :: tail✝
injection e with _ e'
α : Type u_1 head✝ : α tail✝¹ : List α b : α tail✝ w✝¹ w✝ : List α ll : (head✝ :: tail✝¹).length ≤ (b :: tail✝).length head_eq✝ : b = head✝ e' : tail✝.append w✝ = tail✝¹.append w✝¹ ⊢ head✝ :: tail✝¹ <+: b :: tail✝
555eaf8606db38b1
fermatLastTheoremWith'_nat_int_tfae
Mathlib/NumberTheory/FLT/Basic.lean
lemma fermatLastTheoremWith'_nat_int_tfae (n : ℕ) : TFAE [FermatLastTheoremFor n, FermatLastTheoremWith' ℕ n, FermatLastTheoremWith' ℤ n]
case pos a b c : ℤ ha : IsUnit a hb : IsUnit b hc : IsUnit c tfae_2_iff_1 : FermatLastTheoremWith' ℕ 0 ↔ FermatLastTheoremFor 0 ⊢ a ^ 0 + b ^ 0 ≠ c ^ 0
simp only [pow_zero, Int.reduceAdd, ne_eq, OfNat.ofNat_ne_one, not_false_eq_true]
no goals
6e7fe97333acee70
IsSepClosed.exists_root_C_mul_X_pow_add_C_mul_X_add_C
Mathlib/FieldTheory/IsSepClosed.lean
theorem exists_root_C_mul_X_pow_add_C_mul_X_add_C [IsSepClosed k] {n : ℕ} (a b c : k) (hn : (n : k) = 0) (hn' : 2 ≤ n) (hb : b ≠ 0) : ∃ x, a * x ^ n + b * x + c = 0
case intro k : Type u inst✝¹ : Field k inst✝ : IsSepClosed k n : ℕ a b c : k hn : ↑n = 0 hn' : 2 ≤ n hb : b ≠ 0 f : k[X] := C a * X ^ n + C b * X + C c hdeg : f.degree ≠ 0 hsep : f.Separable x : k hx : f.IsRoot x ⊢ ∃ x, a * x ^ n + b * x + c = 0
exact ⟨x, by simpa [f] using hx⟩
no goals
1f3e118ba5e9f6ba
Int.tmod_one
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/DivModLemmas.lean
theorem tmod_one (a : Int) : tmod a 1 = 0
a : Int ⊢ a.tmod 1 = 0
simp [tmod_def, Int.tdiv_one, Int.one_mul, Int.sub_self]
no goals
3d4a6d61a12f2090
lTensor.inverse_comp_lTensor
Mathlib/LinearAlgebra/TensorProduct/RightExactness.lean
lemma lTensor.inverse_comp_lTensor : (lTensor.inverse Q hfg hg).comp (lTensor Q g) = Submodule.mkQ (p := LinearMap.range (lTensor Q f))
R : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup N inst✝⁵ : AddCommGroup P inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P f : M →ₗ[R] N g : N →ₗ[R] P Q : Type u_5 inst✝¹ : AddCommGroup Q inst✝ : Module R Q hfg : Exact ⇑f ⇑g hg : Surjective ⇑g ⊢ inverse Q hfg hg ∘ₗ lTensor Q g = (range (lTensor Q f)).mkQ
rw [lTensor.inverse, lTensor.inverse_of_rightInverse_comp_lTensor]
no goals
c51f9dd14acb7afb
FiberPrebundle.continuous_totalSpaceMk
Mathlib/Topology/FiberBundle/Basic.lean
theorem continuous_totalSpaceMk (b : B) : Continuous[_, a.totalSpaceTopology] (TotalSpace.mk b)
B : Type u_2 F : Type u_3 E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E b : B this : TopologicalSpace (TotalSpace F E) := a.totalSpaceTopology e : Trivialization F TotalSpace.proj := a.trivializationOfMemPretrivializationAtlas ⋯ ⊢ Continuous (↑e.toPartialHomeomorph ∘ TotalSpace.mk b)
exact continuous_iff_le_induced.2 (a.totalSpaceMk_isInducing b).eq_induced.le
no goals
6e072313aca77777
Orientation.kahler_neg_orientation
Mathlib/Analysis/InnerProductSpace/TwoDim.lean
theorem kahler_neg_orientation (x y : E) : (-o).kahler x y = conj (o.kahler x y)
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ((-o).kahler x) y = (starRingEnd ℂ) ((o.kahler x) y)
simp [kahler_apply_apply, Complex.conj_ofReal]
no goals
2f8880191c12dfa8
Order.PartialIso.exists_across
Mathlib/Order/CountableDenseLinearOrder.lean
theorem exists_across [DenselyOrdered β] [NoMinOrder β] [NoMaxOrder β] [Nonempty β] (f : PartialIso α β) (a : α) : ∃ b : β, ∀ p ∈ f.val, cmp (Prod.fst p) a = cmp (Prod.snd p) b
case h.mk α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f this : ∀ x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.1 < a) ↑f), ∀ y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.1) ↑f), x < y b : β hb : (∀ x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.1 < a) ↑f), x < b) ∧ ∀ y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.1) ↑f), b < y p1 : α p2 : β hp : (p1, p2) ∈ ↑f ⊢ cmp (p1, p2).1 a = cmp (p1, p2).2 b
have : p1 ≠ a := fun he ↦ h ⟨p2, he ▸ hp⟩
case h.mk α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f this✝ : ∀ x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.1 < a) ↑f), ∀ y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.1) ↑f), x < y b : β hb : (∀ x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.1 < a) ↑f), x < b) ∧ ∀ y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.1) ↑f), b < y p1 : α p2 : β hp : (p1, p2) ∈ ↑f this : p1 ≠ a ⊢ cmp (p1, p2).1 a = cmp (p1, p2).2 b
68389d355148de8a
Polynomial.degree_divX_lt
Mathlib/Algebra/Polynomial/Inductions.lean
theorem degree_divX_lt (hp0 : p ≠ 0) : (divX p).degree < p.degree
R : Type u inst✝ : Semiring R p : R[X] hp0 : p ≠ 0 this : Nontrivial R h : p.degree ≤ 0 h' : C (p.coeff 0) ≠ 0 ⊢ p.divX.degree < (p.divX * X + C (p.coeff 0)).degree
rw [eq_C_of_degree_le_zero h, divX_C, degree_zero, zero_mul, zero_add]
R : Type u inst✝ : Semiring R p : R[X] hp0 : p ≠ 0 this : Nontrivial R h : p.degree ≤ 0 h' : C (p.coeff 0) ≠ 0 ⊢ ⊥ < (C ((C (p.coeff 0)).coeff 0)).degree
e85e1acbc2b7e23a
List.lex_eq_false_iff_exists
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lex.lean
theorem lex_eq_false_iff_exists [BEq α] [PartialEquivBEq α] (lt : α → α → Bool) (lt_irrefl : ∀ x y, x == y → lt x y = false) (lt_asymm : ∀ x y, lt x y = true → lt y x = false) (lt_antisymm : ∀ x y, lt x y = false → lt y x = false → x == y) : lex l₁ l₂ lt = false ↔ (l₂.isEqv (l₁.take l₂.length) (· == ·)) ∨ (∃ (i : Nat) (h₁ : i < l₁.length) (h₂ : i < l₂.length), (∀ j, (hj : j < i) → l₁[j]'(Nat.lt_trans hj h₁) == l₂[j]'(Nat.lt_trans hj h₂)) ∧ lt l₂[i] l₁[i])
α : Type u_1 inst✝¹ : BEq α inst✝ : PartialEquivBEq α lt : α → α → Bool lt_irrefl : ∀ (x y : α), (x == y) = true → lt x y = false lt_asymm : ∀ (x y : α), lt x y = true → lt y x = false lt_antisymm : ∀ (x y : α), lt x y = false → lt y x = false → (x == y) = true a : α l₁ : List α ih : ∀ {l₂ : List α}, l₁.lex l₂ lt = false ↔ (l₂.isEqv (take l₂.length l₁) fun x1 x2 => x1 == x2) = true ∨ ∃ i h₁ h₂, (∀ (j : Nat) (hj : j < i), (l₁[j] == l₂[j]) = true) ∧ lt l₂[i] l₁[i] = true b : α l₂ : List α hab : lt a b = false h : (a == b) = true → (l₂.isEqv (take l₂.length l₁) fun x1 x2 => x1 == x2) = true ∨ ∃ i h₁ h₂, (∀ (j : Nat) (hj : j < i), (l₁[j] == l₂[j]) = true) ∧ lt l₂[i] l₁[i] = true eq : ¬(b == a) = true hba : ¬lt b a = true ⊢ lt b a = false
simpa using hba
no goals
0c9240a9b47ee0a9
CategoryTheory.Functor.FullyFaithful.hasShift.map_add_hom_app
Mathlib/CategoryTheory/Shift/Basic.lean
@[simp] lemma map_add_hom_app (a b : A) (X : C) : F.map ((add hF s i a b).hom.app X) = (i (a + b)).hom.app X ≫ (shiftFunctorAdd D a b).hom.app (F.obj X) ≫ ((i a).inv.app X)⟦b⟧' ≫ (i b).inv.app ((s a).obj X)
C : Type u A : Type u_1 inst✝³ : Category.{v, u} C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : AddMonoid A inst✝ : HasShift D A F : C ⥤ D hF : F.FullyFaithful s : A → C ⥤ C i : (i : A) → s i ⋙ F ≅ F ⋙ shiftFunctor D i a b : A X : C ⊢ F.map (hF.preimage ((i (a + b)).hom.app X ≫ (shiftFunctorAdd D a b).hom.app (F.obj X) ≫ 𝟙 ((shiftFunctor D b).obj ((shiftFunctor D a).obj (F.obj X))) ≫ (shiftFunctor D b).map ((i a).inv.app X) ≫ 𝟙 ((shiftFunctor D b).obj (F.obj ((s a).obj X))) ≫ (i b).inv.app ((s a).obj X) ≫ 𝟙 (F.obj ((s b).obj ((s a).obj X))))) = (i (a + b)).hom.app X ≫ (shiftFunctorAdd D a b).hom.app (F.obj X) ≫ (shiftFunctor D b).map ((i a).inv.app X) ≫ (i b).inv.app ((s a).obj X)
simp
no goals
b2d90d624ce5ad6b
Grp.hom_inv_apply
Mathlib/Algebra/Category/Grp/Basic.lean
@[to_additive] lemma hom_inv_apply {X Y : Grp} (e : X ≅ Y) (s : Y) : e.hom (e.inv s) = s
X Y : Grp e : X ≅ Y s : ↑Y ⊢ (ConcreteCategory.hom e.hom) ((ConcreteCategory.hom e.inv) s) = s
simp
no goals
47b4f7ea66325457
MvPowerSeries.constantCoeff_invOfUnit
Mathlib/RingTheory/MvPowerSeries/Inverse.lean
theorem constantCoeff_invOfUnit (φ : MvPowerSeries σ R) (u : Rˣ) : constantCoeff σ R (invOfUnit φ u) = ↑u⁻¹
σ : Type u_1 R : Type u_2 inst✝ : Ring R φ : MvPowerSeries σ R u : Rˣ ⊢ (constantCoeff σ R) (φ.invOfUnit u) = ↑u⁻¹
classical rw [← coeff_zero_eq_constantCoeff_apply, coeff_invOfUnit, if_pos rfl]
no goals
c9d098c27bb1f219
Homeomorph.comp_isOpenMap_iff
Mathlib/Topology/Homeomorph.lean
theorem comp_isOpenMap_iff (h : X ≃ₜ Y) {f : Z → X} : IsOpenMap (h ∘ f) ↔ IsOpenMap f
X : Type u_1 Y : Type u_2 Z : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z h : X ≃ₜ Y f : Z → X hf : IsOpenMap (⇑h ∘ f) ⊢ IsOpenMap (⇑h.symm ∘ ⇑h ∘ f)
exact h.symm.isOpenMap.comp hf
no goals
f372446ee3a1e3b6
mdifferentiableOn_iff
Mathlib/Geometry/Manifold/MFDeriv/Basic.lean
theorem mdifferentiableOn_iff : MDifferentiableOn I I' f s ↔ ContinuousOn f s ∧ ∀ (x : M) (y : M'), DifferentiableOn 𝕜 (extChartAt I' y ∘ f ∘ (extChartAt I x).symm) ((extChartAt I x).target ∩ (extChartAt I x).symm ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source))
case mp.convert_2 𝕜 : Type u_1 inst✝¹² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedSpace 𝕜 E H : Type u_3 inst✝⁹ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁸ : TopologicalSpace M inst✝⁷ : ChartedSpace H M E' : Type u_5 inst✝⁶ : NormedAddCommGroup E' inst✝⁵ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁴ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝³ : TopologicalSpace M' inst✝² : ChartedSpace H' M' f : M → M' s : Set M inst✝¹ : IsManifold I 1 M inst✝ : IsManifold I' 1 M' x : M y : M' z : E hz : (z ∈ range ↑I ∧ ↑I.symm z ∈ (chartAt H x).target) ∧ ↑(chartAt H x).symm (↑I.symm z) ∈ s ∧ f (↑(chartAt H x).symm (↑I.symm z)) ∈ (chartAt H' y).source w : M := ↑(extChartAt I x).symm z this : w ∈ s h : MDifferentiableWithinAt I I' f s w w1 : w ∈ (chartAt H x).source w2 : f w ∈ (chartAt H' y).source ⊢ (extChartAt I x).target ∩ ↑(extChartAt I x).symm ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source) ⊆ ↑(extChartAt I x).symm ⁻¹' s ∩ range ↑I
mfld_set_tac
no goals
32f42f1853f90b85
CategoryTheory.ComposableArrows.mk₄_surjective
Mathlib/CategoryTheory/ComposableArrows.lean
lemma mk₄_surjective (X : ComposableArrows C 4) : ∃ (X₀ X₁ X₂ X₃ X₄ : C) (f₀ : X₀ ⟶ X₁) (f₁ : X₁ ⟶ X₂) (f₂ : X₂ ⟶ X₃) (f₃ : X₃ ⟶ X₄), X = mk₄ f₀ f₁ f₂ f₃ := ⟨_, _, _, _, _, X.map' 0 1, X.map' 1 2, X.map' 2 3, X.map' 3 4, ext₄ rfl rfl rfl rfl rfl (by simp) (by simp) (by simp) (by simp)⟩
C : Type u_1 inst✝ : Category.{u_2, u_1} C X : ComposableArrows C 4 ⊢ X.map' 1 2 ⋯ ⋯ = eqToHom ⋯ ≫ (mk₄ (X.map' 0 1 ⋯ ⋯) (X.map' 1 2 ⋯ ⋯) (X.map' 2 3 ⋯ ⋯) (X.map' 3 4 ⋯ ⋯)).map' 1 2 ⋯ ⋯ ≫ eqToHom ⋯
simp
no goals
c94b8d43b56d9139
Polynomial.support_integralNormalization
Mathlib/RingTheory/Polynomial/IntegralNormalization.lean
theorem support_integralNormalization {f : R[X]} : (integralNormalization f).support = f.support
case neg.h R : Type u inst✝¹ : Semiring R inst✝ : IsCancelMulZero R f : R[X] a✝ : Nontrivial R this : IsDomain R hf : ¬f = 0 i : ℕ ⊢ f.coeff i ≠ 0 → (if f.degree = ↑i then 1 else f.coeff i * f.leadingCoeff ^ (f.natDegree - 1 - i)) ≠ 0
intro hfi
case neg.h R : Type u inst✝¹ : Semiring R inst✝ : IsCancelMulZero R f : R[X] a✝ : Nontrivial R this : IsDomain R hf : ¬f = 0 i : ℕ hfi : f.coeff i ≠ 0 ⊢ (if f.degree = ↑i then 1 else f.coeff i * f.leadingCoeff ^ (f.natDegree - 1 - i)) ≠ 0
9178f9ebeb3af80a
DFinsupp.addHom_ext
Mathlib/Data/DFinsupp/Ext.lean
theorem addHom_ext {γ : Type w} [AddZeroClass γ] ⦃f g : (Π₀ i, β i) →+ γ⦄ (H : ∀ (i : ι) (y : β i), f (single i y) = g (single i y)) : f = g
case intro.intro ι : Type u β : ι → Type v inst✝² : DecidableEq ι inst✝¹ : (i : ι) → AddZeroClass (β i) γ : Type w inst✝ : AddZeroClass γ f g : (Π₀ (i : ι), β i) →+ γ H : ∀ (i : ι) (y : β i), f (single i y) = g (single i y) x : ι y : β x ⊢ f (single x y) = g (single x y)
apply H
no goals
8563ef17426d7610
AlgebraicGeometry.AffineSpace.reindex_comp
Mathlib/AlgebraicGeometry/AffineSpace.lean
@[simp, reassoc] lemma reindex_comp {n₁ n₂ n₃ : Type v} (i : n₁ → n₂) (j : n₂ → n₃) (S : Scheme.{max u v}) : reindex (j ∘ i) S = reindex j S ≫ reindex i S
n₁ n₂ n₃ : Type v i : n₁ → n₂ j : n₂ → n₃ S : Scheme H₁ : reindex (j ∘ i) S ≫ 𝔸(n₁; S) ↘ S = (reindex j S ≫ reindex i S) ≫ 𝔸(n₁; S) ↘ S k : n₁ ⊢ coord S ((j ∘ i) k) = coord S (j (i k))
rfl
no goals
076b8b6bdaff2aa6
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.sat_of_insertRat
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RatAddSound.lean
theorem sat_of_insertRat {n : Nat} (f : DefaultFormula n) (hf : f.ratUnits = #[] ∧ AssignmentsInvariant f) (c : DefaultClause n) (p : PosFin n → Bool) (pf : p ⊨ f) : (insertRatUnits f (negate c)).2 = true → p ⊨ c
case intro.inl.intro n : Nat f : DefaultFormula n hf : f.ratUnits = #[] ∧ f.AssignmentsInvariant c : DefaultClause n p : PosFin n → Bool pf : p ⊨ f insertUnit_fold_success : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).2.snd = true i : PosFin n hboth : f.assignments[i.val] = both i_in_bounds : i.val < f.assignments.size h0 : InsertUnitInvariant f.assignments ⋯ f.ratUnits f.assignments ⋯ insertUnit_fold_satisfies_invariant : let update_res := List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate; let_fun update_res_size := ⋯; InsertUnitInvariant f.assignments ⋯ update_res.fst update_res.snd.fst update_res_size h1 : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).snd.fst[↑⟨i.val, ⋯⟩] = f.assignments[↑⟨i.val, ⋯⟩] h2 : ∀ (j : Fin (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.size), (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst[j].fst.val ≠ ↑⟨i.val, ⋯⟩ hpos : hasAssignment true f.assignments[i.val] = true hneg : hasAssignment false f.assignments[i.val] = true ⊢ p ⊨ c
have p_entails_i_true := hf.2.2 i true hpos p pf
case intro.inl.intro n : Nat f : DefaultFormula n hf : f.ratUnits = #[] ∧ f.AssignmentsInvariant c : DefaultClause n p : PosFin n → Bool pf : p ⊨ f insertUnit_fold_success : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).2.snd = true i : PosFin n hboth : f.assignments[i.val] = both i_in_bounds : i.val < f.assignments.size h0 : InsertUnitInvariant f.assignments ⋯ f.ratUnits f.assignments ⋯ insertUnit_fold_satisfies_invariant : let update_res := List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate; let_fun update_res_size := ⋯; InsertUnitInvariant f.assignments ⋯ update_res.fst update_res.snd.fst update_res_size h1 : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).snd.fst[↑⟨i.val, ⋯⟩] = f.assignments[↑⟨i.val, ⋯⟩] h2 : ∀ (j : Fin (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.size), (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst[j].fst.val ≠ ↑⟨i.val, ⋯⟩ hpos : hasAssignment true f.assignments[i.val] = true hneg : hasAssignment false f.assignments[i.val] = true p_entails_i_true : p ⊨ (i, true) ⊢ p ⊨ c
c0b439908684a182
Int.Cooper.resolve_left_dvd₂
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Cooper.lean
theorem resolve_left_dvd₂ (a c d p x : Int) (h₁ : p ≤ a * x) (h₃ : d ∣ c * x + s) : a * d ∣ c * resolve_left a c d p x + c * p + a * s
case mk.h s a c d p x : Int h₁ : p ≤ a * x h₃ : d ∣ c * x + s k' : Nat w : a * x = p + ↑k' ⊢ a * d / ↑((a * d).gcd c) ∣ ↑(a.lcm (a * d / ↑((a * d).gcd c)))
exact Int.dvd_lcm_right
no goals
3a45046c1f4b368b
AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero
Mathlib/AlgebraicTopology/DoldKan/FunctorGamma.lean
theorem mapMono_eq_zero (i : Δ' ⟶ Δ) [Mono i] (h₁ : Δ ≠ Δ') (h₂ : ¬Isδ₀ i) : mapMono K i = 0
C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K : ChainComplex C ℕ Δ Δ' : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i h₁ : Δ ≠ Δ' h₂ : ¬Isδ₀ i ⊢ (if h : Δ = Δ' then eqToHom ⋯ else if h : Isδ₀ i then K.d Δ.len Δ'.len else 0) = 0
rw [Ne] at h₁
C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K : ChainComplex C ℕ Δ Δ' : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Isδ₀ i ⊢ (if h : Δ = Δ' then eqToHom ⋯ else if h : Isδ₀ i then K.d Δ.len Δ'.len else 0) = 0
b5d49891deb888d3
rieszContentAux_image_nonempty
Mathlib/MeasureTheory/Integral/RieszMarkovKakutani/Basic.lean
theorem rieszContentAux_image_nonempty (K : Compacts X) : (Λ '' { f : C_c(X, ℝ≥0) | ∀ x ∈ K, (1 : ℝ≥0) ≤ f x }).Nonempty
case intro.intro.intro.intro.intro X : Type u_1 inst✝² : TopologicalSpace X Λ : (X →C_c ℝ≥0) →ₗ[ℝ≥0] ℝ≥0 inst✝¹ : T2Space X inst✝ : LocallyCompactSpace X K : Compacts X V : Set X hVcp : IsCompact V hKsubintV : K.carrier ⊆ interior V hIsCompact_closure_interior : IsCompact (closure (interior V)) f : C(X, ℝ) hsuppfsubV : tsupport ⇑f ⊆ interior V hfeq1onK : EqOn (⇑f) 1 K.carrier hfinicc : ∀ (x : X), f x ∈ Icc 0 1 ⊢ {f | ∀ x ∈ K, 1 ≤ f x}.Nonempty
have hfHasCompactSupport : HasCompactSupport f := IsCompact.of_isClosed_subset hVcp (isClosed_tsupport f) (Set.Subset.trans hsuppfsubV interior_subset)
case intro.intro.intro.intro.intro X : Type u_1 inst✝² : TopologicalSpace X Λ : (X →C_c ℝ≥0) →ₗ[ℝ≥0] ℝ≥0 inst✝¹ : T2Space X inst✝ : LocallyCompactSpace X K : Compacts X V : Set X hVcp : IsCompact V hKsubintV : K.carrier ⊆ interior V hIsCompact_closure_interior : IsCompact (closure (interior V)) f : C(X, ℝ) hsuppfsubV : tsupport ⇑f ⊆ interior V hfeq1onK : EqOn (⇑f) 1 K.carrier hfinicc : ∀ (x : X), f x ∈ Icc 0 1 hfHasCompactSupport : HasCompactSupport ⇑f ⊢ {f | ∀ x ∈ K, 1 ≤ f x}.Nonempty
2a4990d43927e6b7
Compactum.cl_cl
Mathlib/Topology/Category/Compactum.lean
theorem cl_cl {X : Compactum} (A : Set X) : cl (cl A) ⊆ cl A
case intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B ∈ F, X.str ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ B ∈ C0, ∀ C ∈ C0, B ∩ C ∈ C0 claim2 : ∀ B ∈ C0, B.Nonempty claim3 : ∀ B ∈ C0, (AA ∩ B).Nonempty this : ∀ (T : fsu), ι T ⊆ C1 → (⋂₀ ι T).Nonempty G : Ultrafilter (Ultrafilter X.A) h1 : C1 ⊆ (↑G).sets ⊢ X.str F ∈ Compactum.cl A
use X.join G
case h X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B ∈ F, X.str ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ B ∈ C0, ∀ C ∈ C0, B ∩ C ∈ C0 claim2 : ∀ B ∈ C0, B.Nonempty claim3 : ∀ B ∈ C0, (AA ∩ B).Nonempty this : ∀ (T : fsu), ι T ⊆ C1 → (⋂₀ ι T).Nonempty G : Ultrafilter (Ultrafilter X.A) h1 : C1 ⊆ (↑G).sets ⊢ X.join G ∈ Compactum.basic A ∧ X.str (X.join G) = X.str F
1c30fb7238f2120d
EuclideanGeometry.Sphere.wbtw_secondInter
Mathlib/Geometry/Euclidean/Sphere/SecondInter.lean
theorem Sphere.wbtw_secondInter {s : Sphere P} {p p' : P} (hp : p ∈ s) (hp' : dist p' s.center ≤ s.radius) : Wbtw ℝ p p' (s.secondInter p (p' -ᵥ p))
case neg V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Sphere P p p' : P hp : p ∈ s hp' : dist p' s.center ≤ s.radius h : ¬p' = p ⊢ p ≠ s.secondInter p (p' -ᵥ p)
intro he
case neg V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Sphere P p p' : P hp : p ∈ s hp' : dist p' s.center ≤ s.radius h : ¬p' = p he : p = s.secondInter p (p' -ᵥ p) ⊢ False
d271772fa5acc4b9
HasDerivWithinAt.rpow_const
Mathlib/Analysis/SpecialFunctions/Pow/Deriv.lean
theorem HasDerivWithinAt.rpow_const (hf : HasDerivWithinAt f f' s x) (hx : f x ≠ 0 ∨ 1 ≤ p) : HasDerivWithinAt (fun y => f y ^ p) (f' * p * f x ^ (p - 1)) s x
case h.e'_9 f : ℝ → ℝ f' x p : ℝ s : Set ℝ hf : HasDerivWithinAt f f' s x hx : f x ≠ 0 ∨ 1 ≤ p ⊢ f' * p * f x ^ (p - 1) = p * f x ^ (p - 1) * f'
ring
no goals
78370223655791e7
ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq_on
Mathlib/NumberTheory/ArithmeticFunction.lean
theorem sum_eq_iff_sum_smul_moebius_eq_on [AddCommGroup R] {f g : ℕ → R} (s : Set ℕ) (hs : ∀ m n, m ∣ n → n ∈ s → m ∈ s) : (∀ n > 0, n ∈ s → (∑ i ∈ n.divisors, f i) = g n) ↔ ∀ n > 0, n ∈ s → (∑ x ∈ n.divisorsAntidiagonal, μ x.fst • g x.snd) = f n
R : Type u_1 inst✝ : AddCommGroup R f g : ℕ → R s : Set ℕ hs : ∀ (m n : ℕ), m ∣ n → n ∈ s → m ∈ s h : ∀ n > 0, n ∈ s → ∑ x ∈ n.divisorsAntidiagonal, μ x.1 • g x.2 = f n F : ℕ → R := fun n => ∑ x ∈ n.divisorsAntidiagonal, μ x.1 • g x.2 n : ℕ hn : n > 0 hnP : n ∈ s this : ∑ d ∈ n.divisors, F d = g n ⊢ ∑ i ∈ n.divisors, f i = g n
rw [← this, sum_congr rfl]
R : Type u_1 inst✝ : AddCommGroup R f g : ℕ → R s : Set ℕ hs : ∀ (m n : ℕ), m ∣ n → n ∈ s → m ∈ s h : ∀ n > 0, n ∈ s → ∑ x ∈ n.divisorsAntidiagonal, μ x.1 • g x.2 = f n F : ℕ → R := fun n => ∑ x ∈ n.divisorsAntidiagonal, μ x.1 • g x.2 n : ℕ hn : n > 0 hnP : n ∈ s this : ∑ d ∈ n.divisors, F d = g n ⊢ ∀ x ∈ n.divisors, f x = F x
806246a74af811fb
Profinite.NobelingProof.GoodProducts.spanFin
Mathlib/Topology/Category/Profinite/Nobeling.lean
theorem GoodProducts.spanFin [WellFoundedLT I] : ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C (· ∈ s))))
case intro.cons I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I s : Finset I inst✝ : WellFoundedLT I x : ↑(π C fun x => x ∈ s) l : List I := Finset.sort (fun x1 x2 => x1 ≥ x2) s a : I as : List I ih : List.Chain' (fun x1 x2 => x1 > x2) as → (List.map (fun i => if ↑x i = true then e (π C fun x => x ∈ s) i else 1 - e (π C fun x => x ∈ s) i) as).prod ∈ Submodule.span ℤ (Products.eval (π C fun x => x ∈ s) '' {m | ↑m ≤ as}) ⊢ List.Chain' (fun x1 x2 => x1 > x2) (a :: as) → (if ↑x a = true then e (π C fun x => x ∈ s) a else 1 - e (π C fun x => x ∈ s) a) * (List.map (fun i => if ↑x i = true then e (π C fun x => x ∈ s) i else 1 - e (π C fun x => x ∈ s) i) as).prod ∈ Submodule.span ℤ (Products.eval (π C fun x => x ∈ s) '' {m | ↑m ≤ a :: as})
intro ha
case intro.cons I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I s : Finset I inst✝ : WellFoundedLT I x : ↑(π C fun x => x ∈ s) l : List I := Finset.sort (fun x1 x2 => x1 ≥ x2) s a : I as : List I ih : List.Chain' (fun x1 x2 => x1 > x2) as → (List.map (fun i => if ↑x i = true then e (π C fun x => x ∈ s) i else 1 - e (π C fun x => x ∈ s) i) as).prod ∈ Submodule.span ℤ (Products.eval (π C fun x => x ∈ s) '' {m | ↑m ≤ as}) ha : List.Chain' (fun x1 x2 => x1 > x2) (a :: as) ⊢ (if ↑x a = true then e (π C fun x => x ∈ s) a else 1 - e (π C fun x => x ∈ s) a) * (List.map (fun i => if ↑x i = true then e (π C fun x => x ∈ s) i else 1 - e (π C fun x => x ∈ s) i) as).prod ∈ Submodule.span ℤ (Products.eval (π C fun x => x ∈ s) '' {m | ↑m ≤ a :: as})
84857795ad4a98fd
List.head_reverse
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem head_reverse {l : List α} (h : l.reverse ≠ []) : l.reverse.head h = getLast l (by simp_all)
case neg α : Type u_1 a : α l : List α ih : ∀ (h : l.reverse ≠ []), l.reverse.head h = l.getLast ⋯ h : (a :: l).reverse ≠ [] h' : ¬l = [] ⊢ (l.reverse ++ [a]).head ⋯ = (a :: l).getLast ⋯
simp only [head_eq_iff_head?_eq_some, head?_reverse] at ih
case neg α : Type u_1 a : α l : List α h : (a :: l).reverse ≠ [] h' : ¬l = [] ih : ∀ (h : l.reverse ≠ []), l.getLast? = some (l.getLast ⋯) ⊢ (l.reverse ++ [a]).head ⋯ = (a :: l).getLast ⋯
e5cad9770083e9e0
SimpleGraph.Walk.dropLast_concat
Mathlib/Combinatorics/SimpleGraph/Walk.lean
@[simp] lemma dropLast_concat {t u v} (p : G.Walk u v) (h : G.Adj v t) : (p.concat h).dropLast = p.copy rfl (by simp)
case cons.hp V : Type u G : SimpleGraph V t u v u✝ v✝ w✝ : V h✝ : G.Adj u✝ v✝ p✝ : G.Walk v✝ w✝ p_ih✝ : ∀ (h : G.Adj w✝ t), (p✝.concat h).dropLast = p✝.copy ⋯ ⋯ h : G.Adj w✝ t ⊢ ¬(p✝.concat h).Nil
simp [concat, nil_iff_length_eq]
no goals
d5401d0415d66680
IsCompact.finite_compact_cover
Mathlib/Topology/Separation/Basic.lean
theorem IsCompact.finite_compact_cover {s : Set X} (hs : IsCompact s) {ι : Type*} (t : Finset ι) (U : ι → Set X) (hU : ∀ i ∈ t, IsOpen (U i)) (hsC : s ⊆ ⋃ i ∈ t, U i) : ∃ K : ι → Set X, (∀ i, IsCompact (K i)) ∧ (∀ i, K i ⊆ U i) ∧ s = ⋃ i ∈ t, K i
case insert.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2 X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : R1Space X ι : Type u_3 x : ι t : Finset ι hx : x ∉ t ih : ∀ {s : Set X}, IsCompact s → ∀ (U : ι → Set X), (∀ i ∈ t, IsOpen (U i)) → s ⊆ ⋃ i ∈ t, U i → ∃ K, (∀ (i : ι), IsCompact (K i)) ∧ (∀ (i : ι), K i ⊆ U i) ∧ s = ⋃ i ∈ t, K i s : Set X hs : IsCompact s U : ι → Set X hsC : s ⊆ U x ∪ ⋃ x ∈ t, U x hU : IsOpen (U x) ∧ ∀ x ∈ t, IsOpen (U x) hU' : ∀ i ∈ t, IsOpen (U i) K₁ K₂ : Set X h1K₁ : IsCompact K₁ h1K₂ : IsCompact K₂ h2K₁ : K₁ ⊆ U x h2K₂ : K₂ ⊆ ⋃ i ∈ Membership.mem t.val, U i hK : s = K₁ ∪ K₂ K : ι → Set X h1K : ∀ (i : ι), IsCompact (K i) h2K : ∀ (i : ι), K i ⊆ U i h3K : K₂ = ⋃ i ∈ t, K i i : ι ⊢ update K x K₁ i ⊆ U i
rcases eq_or_ne i x with rfl | hi
case insert.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.inl X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : R1Space X ι : Type u_3 t : Finset ι ih : ∀ {s : Set X}, IsCompact s → ∀ (U : ι → Set X), (∀ i ∈ t, IsOpen (U i)) → s ⊆ ⋃ i ∈ t, U i → ∃ K, (∀ (i : ι), IsCompact (K i)) ∧ (∀ (i : ι), K i ⊆ U i) ∧ s = ⋃ i ∈ t, K i s : Set X hs : IsCompact s U : ι → Set X hU' : ∀ i ∈ t, IsOpen (U i) K₁ K₂ : Set X h1K₁ : IsCompact K₁ h1K₂ : IsCompact K₂ h2K₂ : K₂ ⊆ ⋃ i ∈ Membership.mem t.val, U i hK : s = K₁ ∪ K₂ K : ι → Set X h1K : ∀ (i : ι), IsCompact (K i) h2K : ∀ (i : ι), K i ⊆ U i h3K : K₂ = ⋃ i ∈ t, K i i : ι hx : i ∉ t hsC : s ⊆ U i ∪ ⋃ x ∈ t, U x hU : IsOpen (U i) ∧ ∀ x ∈ t, IsOpen (U x) h2K₁ : K₁ ⊆ U i ⊢ update K i K₁ i ⊆ U i case insert.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.inr X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : R1Space X ι : Type u_3 x : ι t : Finset ι hx : x ∉ t ih : ∀ {s : Set X}, IsCompact s → ∀ (U : ι → Set X), (∀ i ∈ t, IsOpen (U i)) → s ⊆ ⋃ i ∈ t, U i → ∃ K, (∀ (i : ι), IsCompact (K i)) ∧ (∀ (i : ι), K i ⊆ U i) ∧ s = ⋃ i ∈ t, K i s : Set X hs : IsCompact s U : ι → Set X hsC : s ⊆ U x ∪ ⋃ x ∈ t, U x hU : IsOpen (U x) ∧ ∀ x ∈ t, IsOpen (U x) hU' : ∀ i ∈ t, IsOpen (U i) K₁ K₂ : Set X h1K₁ : IsCompact K₁ h1K₂ : IsCompact K₂ h2K₁ : K₁ ⊆ U x h2K₂ : K₂ ⊆ ⋃ i ∈ Membership.mem t.val, U i hK : s = K₁ ∪ K₂ K : ι → Set X h1K : ∀ (i : ι), IsCompact (K i) h2K : ∀ (i : ι), K i ⊆ U i h3K : K₂ = ⋃ i ∈ t, K i i : ι hi : i ≠ x ⊢ update K x K₁ i ⊆ U i
745e4d6bcd976884
AkraBazziRecurrence.GrowsPolynomially.eventually_zero_of_frequently_zero
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
lemma eventually_zero_of_frequently_zero (hf : GrowsPolynomially f) (hf' : ∃ᶠ x in atTop, f x = 0) : ∀ᶠ x in atTop, f x = 0
f : ℝ → ℝ hf✝ : GrowsPolynomially f hf' : ∀ (a : ℝ), ∃ b ≥ a, f b = 0 c₁ : ℝ hc₁_mem : c₁ > 0 c₂ : ℝ hc₂_mem : c₂ > 0 hf : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (1 / 2 * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) x : ℝ hx : ∀ (y : ℝ), x ≤ y → ∀ u ∈ Set.Icc (1 / 2 * y) y, f u ∈ Set.Icc (c₁ * f y) (c₂ * f y) hx_pos : 0 < x x₀ : ℝ hx₀_ge : x₀ ≥ x ⊔ 1 hx₀ : f x₀ = 0 x₀_pos : 0 < x₀ hmain : ∀ (m : ℕ) (z : ℝ), x ≤ z → z ∈ Set.Icc (2 ^ (-↑m - 1) * x₀) (2 ^ (-↑m) * x₀) → f z = 0 ⊢ 0 ≤ -logb 2 (x / x₀)
rw [neg_nonneg]
f : ℝ → ℝ hf✝ : GrowsPolynomially f hf' : ∀ (a : ℝ), ∃ b ≥ a, f b = 0 c₁ : ℝ hc₁_mem : c₁ > 0 c₂ : ℝ hc₂_mem : c₂ > 0 hf : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (1 / 2 * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) x : ℝ hx : ∀ (y : ℝ), x ≤ y → ∀ u ∈ Set.Icc (1 / 2 * y) y, f u ∈ Set.Icc (c₁ * f y) (c₂ * f y) hx_pos : 0 < x x₀ : ℝ hx₀_ge : x₀ ≥ x ⊔ 1 hx₀ : f x₀ = 0 x₀_pos : 0 < x₀ hmain : ∀ (m : ℕ) (z : ℝ), x ≤ z → z ∈ Set.Icc (2 ^ (-↑m - 1) * x₀) (2 ^ (-↑m) * x₀) → f z = 0 ⊢ logb 2 (x / x₀) ≤ 0
b2c5c4c5d5df705a
FDerivMeasurableAux.D_subset_differentiable_set
Mathlib/Analysis/Calculus/FDeriv/Measurable.lean
theorem D_subset_differentiable_set {K : Set (E →L[𝕜] F)} (hK : IsComplete K) : D f K ⊆ { x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K }
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F K : Set (E →L[𝕜] F) hK : IsComplete K P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n c : 𝕜 hc : 1 < ‖c‖ x : E hx : x ∈ D f K n : ℕ → ℕ L : ℕ → ℕ → ℕ → E →L[𝕜] F hn : ∀ (e p q : ℕ), n e ≤ p → n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e) e p q e' p' q' : ℕ hp : n e ≤ p hq : n e ≤ q hp' : n e' ≤ p' hq' : n e' ≤ q' he' : e ≤ e' r : ℕ := n e ⊔ n e' ⊢ 0 ≤ 1 / 2
norm_num
no goals
28c357cacce7671e
AffineBasis.convexHull_eq_nonneg_coord
Mathlib/Analysis/Convex/Combination.lean
theorem AffineBasis.convexHull_eq_nonneg_coord {ι : Type*} (b : AffineBasis ι R E) : convexHull R (range b) = { x | ∀ i, 0 ≤ b.coord i x }
R : Type u_1 E : Type u_3 inst✝² : LinearOrderedField R inst✝¹ : AddCommGroup E inst✝ : Module R E ι : Type u_8 b : AffineBasis ι R E x : E hx : x ∈ {x | ∀ (i : ι), 0 ≤ (b.coord i) x} ⊢ x ∈ ⊤
exact AffineSubspace.mem_top R E x
no goals
1fd8376dbf4dc8b4
CategoryTheory.Limits.SequentialProduct.functorMap_commSq
Mathlib/CategoryTheory/Limits/Shapes/SequentialProduct.lean
lemma functorMap_commSq {n m : ℕ} (h : ¬(m < n)) : (Functor.ofOpSequence (functorMap f)).map (homOfLE (by omega : n ≤ m + 1)).op ≫ Pi.π _ m ≫ eqToHom (functorObj_eq_neg (by omega : ¬(m < n))) = (Pi.π (fun i ↦ if _ : i < m + 1 then M i else N i) m) ≫ eqToHom (functorObj_eq_pos (by omega)) ≫ f m
C : Type u_1 M N : ℕ → C inst✝¹ : Category.{u_2, u_1} C f : (n : ℕ) → M n ⟶ N n inst✝ : HasProductsOfShape ℕ C n m : ℕ h : ¬m + 1 < n ⊢ m + 1 ≤ m + 1 + 1
omega
no goals
916cb9b7a6b71e63
ProbabilityTheory.Kernel.compProd_apply_univ_le
Mathlib/Probability/Kernel/Composition/CompProd.lean
theorem compProd_apply_univ_le (κ : Kernel α β) (η : Kernel (α × β) γ) [IsFiniteKernel η] (a : α) : (κ ⊗ₖ η) a Set.univ ≤ κ a Set.univ * IsFiniteKernel.bound η
case pos α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : Kernel α β η : Kernel (α × β) γ inst✝ : IsFiniteKernel η a : α hκ : IsSFiniteKernel κ Cη : ℝ≥0∞ := IsFiniteKernel.bound η ⊢ ∫⁻ (b : β), (η (a, b)) Set.univ ∂κ a ≤ (κ a) Set.univ * IsFiniteKernel.bound η
calc ∫⁻ b, η (a, b) Set.univ ∂κ a ≤ ∫⁻ _, Cη ∂κ a := lintegral_mono fun b => measure_le_bound η (a, b) Set.univ _ = Cη * κ a Set.univ := MeasureTheory.lintegral_const Cη _ = κ a Set.univ * Cη := mul_comm _ _
no goals
26504621268ddbe5
isPiSystem_Ixx
Mathlib/MeasureTheory/PiSystem.lean
theorem isPiSystem_Ixx {Ixx : α → α → Set α} {p : α → α → Prop} (Hne : ∀ {a b}, (Ixx a b).Nonempty → p a b) (Hi : ∀ {a₁ b₁ a₂ b₂}, Ixx a₁ b₁ ∩ Ixx a₂ b₂ = Ixx (max a₁ a₂) (min b₁ b₂)) (f : ι → α) (g : ι' → α) : @IsPiSystem α { S | ∃ i j, p (f i) (g j) ∧ Ixx (f i) (g j) = S }
α : Type u_1 ι : Sort u_3 ι' : Sort u_4 inst✝ : LinearOrder α Ixx : α → α → Set α p : α → α → Prop Hne : ∀ {a b : α}, (Ixx a b).Nonempty → p a b Hi : ∀ {a₁ b₁ a₂ b₂ : α}, Ixx a₁ b₁ ∩ Ixx a₂ b₂ = Ixx (a₁ ⊔ a₂) (b₁ ⊓ b₂) f : ι → α g : ι' → α ⊢ IsPiSystem {S | ∃ i j, p (f i) (g j) ∧ Ixx (f i) (g j) = S}
simpa only [exists_range_iff] using isPiSystem_Ixx_mem (@Hne) (@Hi) (range f) (range g)
no goals
e33d9e10c4765e58
Finset.pairwiseDisjoint_pair_insert
Mathlib/Data/Finset/Powerset.lean
lemma pairwiseDisjoint_pair_insert [DecidableEq α] {a : α} (ha : a ∉ s) : (s.powerset : Set (Finset α)).PairwiseDisjoint fun t ↦ ({t, insert a t} : Set (Finset α))
α : Type u_1 s : Finset α inst✝ : DecidableEq α a : α ha : a ∉ s i : Finset α hi : i ⊆ s j : Finset α hj : j ⊆ s ⊢ ({i, insert a i} ∩ {j, insert a j}).Nonempty → i = j
simp only [Set.Nonempty, Set.mem_inter_iff, Set.mem_insert_iff, Set.mem_singleton_iff, exists_eq_or_imp, exists_eq_left, or_imp, imp_self, true_and]
α : Type u_1 s : Finset α inst✝ : DecidableEq α a : α ha : a ∉ s i : Finset α hi : i ⊆ s j : Finset α hj : j ⊆ s ⊢ (i = insert a j → i = j) ∧ (insert a i = j → i = j) ∧ (insert a i = insert a j → i = j)
32b2fa687831b31a
preNormEDS_ofNat
Mathlib/NumberTheory/EllipticDivisibilitySequence.lean
@[simp] lemma preNormEDS_ofNat (n : ℕ) : preNormEDS b c d n = preNormEDS' b c d n
R : Type u inst✝ : CommRing R b c d : R n : ℕ ⊢ preNormEDS b c d ↑n = preNormEDS' b c d n
by_cases hn : n = 0
case pos R : Type u inst✝ : CommRing R b c d : R n : ℕ hn : n = 0 ⊢ preNormEDS b c d ↑n = preNormEDS' b c d n case neg R : Type u inst✝ : CommRing R b c d : R n : ℕ hn : ¬n = 0 ⊢ preNormEDS b c d ↑n = preNormEDS' b c d n
38ff9fe8b90f874c
strictConcaveOn_log_Iio
Mathlib/Analysis/Convex/SpecificFunctions/Basic.lean
theorem strictConcaveOn_log_Iio : StrictConcaveOn ℝ (Iio 0) log
x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : 0 < -x hy' : 0 < -y ⊢ -x ≠ -y
contrapose! hxy
x : ℝ hx : x < 0 y : ℝ hy : y < 0 a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 hx' : 0 < -x hy' : 0 < -y hxy : -x = -y ⊢ x = y
cfbfdbfd08dcbfbb
Ordinal.principal_mul_iff_mul_left_eq
Mathlib/SetTheory/Ordinal/Principal.lean
theorem principal_mul_iff_mul_left_eq : Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o
case refine_2.inr o : Ordinal.{u} h : ∀ (a : Ordinal.{u}), 0 < a → a < o → a * o = o a b : Ordinal.{u} hao : a < o hbo : b < o ha : 0 < a ⊢ (fun x1 x2 => x1 * x2) a b < a * o
exact (isNormal_mul_right ha).strictMono hbo
no goals
5ae376ccba37fa39
Array.pairwise_iff_getElem
Mathlib/.lake/packages/batteries/Batteries/Data/Array/Pairwise.lean
theorem pairwise_iff_getElem {as : Array α} : as.Pairwise R ↔ ∀ (i j : Nat) (_ : i < as.size) (_ : j < as.size), i < j → R as[i] as[j]
α : Type u_1 R : α → α → Prop as : Array α ⊢ List.Pairwise R as.toList ↔ ∀ (i j : Nat) (x : i < as.size) (x_1 : j < as.size), i < j → R as[i] as[j]
simp [List.pairwise_iff_getElem, length_toList]
no goals
74fb924004d3641a
List.replicate_eq_nil_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem replicate_eq_nil_iff {n : Nat} (a : α) : replicate n a = [] ↔ n = 0
α : Type u_1 n : Nat a : α ⊢ replicate n a = [] ↔ n = 0
cases n <;> simp
no goals
9325182348b1caf8
CategoryTheory.toNerve₂.mk_naturality_δ1i
Mathlib/AlgebraicTopology/SimplicialSet/NerveAdjunction.lean
lemma toNerve₂.mk_naturality_δ1i (i : Fin 3) : toNerve₂.mk.naturalityProperty F (δ₂ i)
case h C : Type u inst✝ : SmallCategory C X : SSet.Truncated 2 F : oneTruncation₂.obj X ⟶ ReflQuiv.of C hyp : ∀ (φ : X.obj (op { obj := [2], property := ⋯ })), F.map (ev02₂ φ) = F.map (ev01₂ φ) ≫ F.map (ev12₂ φ) i : Fin 3 x : X.obj (op { obj := [1 + 1], property := ⋯ }) ⊢ mk.app F { obj := [1], property := ⋯ } (X.map (δ₂ i ⋯ ⋯).op x) = (nerveFunctor₂.obj (Cat.of C)).map (δ₂ i ⋯ ⋯).op (mk.app F { obj := [1 + 1], property := ⋯ } x)
rw [toNerve₂.mk.app_one]
case h C : Type u inst✝ : SmallCategory C X : SSet.Truncated 2 F : oneTruncation₂.obj X ⟶ ReflQuiv.of C hyp : ∀ (φ : X.obj (op { obj := [2], property := ⋯ })), F.map (ev02₂ φ) = F.map (ev01₂ φ) ≫ F.map (ev12₂ φ) i : Fin 3 x : X.obj (op { obj := [1 + 1], property := ⋯ }) ⊢ ComposableArrows.mk₁ (F.map { edge := X.map (δ₂ i ⋯ ⋯).op x, src_eq := ⋯, tgt_eq := ⋯ }) = (nerveFunctor₂.obj (Cat.of C)).map (δ₂ i ⋯ ⋯).op (mk.app F { obj := [1 + 1], property := ⋯ } x)
4128d2c817244193
Equiv.preimage_piEquivPiSubtypeProd_symm_pi
Mathlib/Logic/Equiv/Set.lean
theorem preimage_piEquivPiSubtypeProd_symm_pi {α : Type*} {β : α → Type*} (p : α → Prop) [DecidablePred p] (s : ∀ i, Set (β i)) : (piEquivPiSubtypeProd p β).symm ⁻¹' pi univ s = (pi univ fun i : { i // p i } => s i) ×ˢ pi univ fun i : { i // ¬p i } => s i
α : Type u_1 β : α → Type u_2 p : α → Prop inst✝ : DecidablePred p s : (i : α) → Set (β i) ⊢ ⇑(piEquivPiSubtypeProd p β).symm ⁻¹' univ.pi s = (univ.pi fun i => s ↑i) ×ˢ univ.pi fun i => s ↑i
ext ⟨f, g⟩
case h.mk α : Type u_1 β : α → Type u_2 p : α → Prop inst✝ : DecidablePred p s : (i : α) → Set (β i) f : (i : { x // p x }) → β ↑i g : (i : { x // ¬p x }) → β ↑i ⊢ (f, g) ∈ ⇑(piEquivPiSubtypeProd p β).symm ⁻¹' univ.pi s ↔ (f, g) ∈ (univ.pi fun i => s ↑i) ×ˢ univ.pi fun i => s ↑i
486cb77064f0cff1
LinearMap.rTensor_comp_apply
Mathlib/LinearAlgebra/TensorProduct/Basic.lean
theorem rTensor_comp_apply (x : N ⊗[R] M) : (g.comp f).rTensor M x = (g.rTensor M) ((f.rTensor M) x)
R : Type u_1 inst✝⁸ : CommSemiring R M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid N inst✝⁵ : AddCommMonoid P inst✝⁴ : AddCommMonoid Q inst✝³ : Module R M inst✝² : Module R N inst✝¹ : Module R Q inst✝ : Module R P g : P →ₗ[R] Q f : N →ₗ[R] P x : N ⊗[R] M ⊢ (⇑(rTensor M g) ∘ ⇑(rTensor M f)) x = (rTensor M g) ((rTensor M f) x)
rfl
no goals
03a0cdea438279f9
NumberField.mixedEmbedding.minkowskiBound_lt_top
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/ConvexBody.lean
theorem minkowskiBound_lt_top : minkowskiBound K I < ⊤
case refine_2 K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K I : (FractionalIdeal (𝓞 K)⁰ K)ˣ ⊢ 2 ^ finrank ℝ (mixedSpace K) < ⊤
exact ENNReal.pow_lt_top (lt_top_iff_ne_top.mpr ENNReal.ofNat_ne_top) _
no goals
16fce13ef6ba90f5
List.head_append
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem head_append {l₁ l₂ : List α} (w : l₁ ++ l₂ ≠ []) : head (l₁ ++ l₂) w = if h : l₁.isEmpty then head l₂ (by simp_all [isEmpty_iff]) else head l₁ (by simp_all [isEmpty_iff])
case isTrue α : Type u_1 l₁ l₂ : List α w : l₁ ++ l₂ ≠ [] h✝ : l₁.isEmpty = true h : l₁ = [] ⊢ (l₁ ++ l₂).head w = l₂.head ⋯
subst h
case isTrue α : Type u_1 l₂ : List α w : [] ++ l₂ ≠ [] h : [].isEmpty = true ⊢ ([] ++ l₂).head w = l₂.head ⋯
ca0387d7a57b7ced
TopologicalSpace.Opens.isBasis_iff_cover
Mathlib/Topology/Sets/Opens.lean
theorem isBasis_iff_cover {B : Set (Opens α)} : IsBasis B ↔ ∀ U : Opens α, ∃ Us, Us ⊆ B ∧ U = sSup Us
α : Type u_2 inst✝ : TopologicalSpace α B : Set (Opens α) ⊢ IsBasis B ↔ ∀ (U : Opens α), ∃ Us ⊆ B, U = sSup Us
constructor
case mp α : Type u_2 inst✝ : TopologicalSpace α B : Set (Opens α) ⊢ IsBasis B → ∀ (U : Opens α), ∃ Us ⊆ B, U = sSup Us case mpr α : Type u_2 inst✝ : TopologicalSpace α B : Set (Opens α) ⊢ (∀ (U : Opens α), ∃ Us ⊆ B, U = sSup Us) → IsBasis B
f8972d52577a55d8
QuasispectrumRestricts.of_subset_range_algebraMap
Mathlib/Algebra/Algebra/Quasispectrum.lean
theorem of_subset_range_algebraMap (hf : f.LeftInverse (algebraMap R S)) (h : quasispectrum S a ⊆ Set.range (algebraMap R S)) : QuasispectrumRestricts a f where rightInvOn := fun s hs => by obtain ⟨r, rfl⟩ := h hs; rw [hf r] left_inv := hf
case intro R : Type u_3 S : Type u_4 A : Type u_5 inst✝⁵ : Semifield R inst✝⁴ : Field S inst✝³ : NonUnitalRing A inst✝² : Module R A inst✝¹ : Module S A inst✝ : Algebra R S a : A f : S → R hf : Function.LeftInverse f ⇑(algebraMap R S) h : quasispectrum S a ⊆ Set.range ⇑(algebraMap R S) r : R hs : (algebraMap R S) r ∈ quasispectrum S a ⊢ (algebraMap R S) (f ((algebraMap R S) r)) = (algebraMap R S) r
rw [hf r]
no goals
99bdb357cf4096be
emultiplicity_ne_zero
Mathlib/RingTheory/Multiplicity.lean
theorem emultiplicity_ne_zero : emultiplicity a b ≠ 0 ↔ a ∣ b
α : Type u_1 inst✝ : Monoid α a b : α ⊢ emultiplicity a b ≠ 0 ↔ a ∣ b
simp [emultiplicity_eq_zero]
no goals
6b1f7985cafca7c9
BoxIntegral.HasIntegral.of_bRiemann_eq_false_of_forall_isLittleO
Mathlib/Analysis/BoxIntegral/Basic.lean
theorem HasIntegral.of_bRiemann_eq_false_of_forall_isLittleO (hl : l.bRiemann = false) (B : ι →ᵇᵃ[I] ℝ) (hB0 : ∀ J, 0 ≤ B J) (g : ι →ᵇᵃ[I] F) (s : Set ℝⁿ) (hs : s.Countable) (hlH : s.Nonempty → l.bHenstock = true) (H₁ : ∀ (c : ℝ≥0), ∀ x ∈ Box.Icc I ∩ s, ∀ ε > (0 : ℝ), ∃ δ > 0, ∀ J ≤ I, Box.Icc J ⊆ Metric.closedBall x δ → x ∈ Box.Icc J → (l.bDistortion → J.distortion ≤ c) → dist (vol J (f x)) (g J) ≤ ε) (H₂ : ∀ (c : ℝ≥0), ∀ x ∈ Box.Icc I \ s, ∀ ε > (0 : ℝ), ∃ δ > 0, ∀ J ≤ I, Box.Icc J ⊆ Metric.closedBall x δ → (l.bHenstock → x ∈ Box.Icc J) → (l.bDistortion → J.distortion ≤ c) → dist (vol J (f x)) (g J) ≤ ε * B J) : HasIntegral I l f vol (g I)
case intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I : Box ι inst✝ : Fintype ι l : IntegrationParams f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : s.Countable hlH : s.Nonempty → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0), ∀ x ∈ Box.Icc I ∩ s, ∀ (ε : ℝ), 0 < ε → ∀ J ≤ I, Box.Icc J ⊆ Metric.closedBall x ↑(δ₁ c x ε) → x ∈ Box.Icc J → (l.bDistortion = true → J.distortion ≤ c) → dist ((vol J) (f x)) (g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0), ∀ x ∈ Box.Icc I \ s, ∀ (ε : ℝ), 0 < ε → ∀ J ≤ I, Box.Icc J ⊆ Metric.closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ Box.Icc J) → (l.bDistortion = true → J.distortion ≤ c) → dist ((vol J) (f x)) (g J) ≤ ε * B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ i ∈ t, 2 ^ Fintype.card ι * εs i ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : B I * ε' < ε / 2 ⊢ ∃ ia, (∀ (c : ℝ≥0), l.RCond (ia c)) ∧ ∀ x ∈ {π | ∃ c, l.MemBaseSet I c (ia c) π ∧ π.IsPartition}, integralSum f vol x ∈ Metric.closedBall (g I) ε
set δ : ℝ≥0 → ℝⁿ → Ioi (0 : ℝ) := fun c x => if x ∈ s then δ₁ c x (εs x) else (δ₂ c) x ε'
case intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I : Box ι inst✝ : Fintype ι l : IntegrationParams f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : s.Countable hlH : s.Nonempty → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0), ∀ x ∈ Box.Icc I ∩ s, ∀ (ε : ℝ), 0 < ε → ∀ J ≤ I, Box.Icc J ⊆ Metric.closedBall x ↑(δ₁ c x ε) → x ∈ Box.Icc J → (l.bDistortion = true → J.distortion ≤ c) → dist ((vol J) (f x)) (g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0), ∀ x ∈ Box.Icc I \ s, ∀ (ε : ℝ), 0 < ε → ∀ J ≤ I, Box.Icc J ⊆ Metric.closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ Box.Icc J) → (l.bDistortion = true → J.distortion ≤ c) → dist ((vol J) (f x)) (g J) ≤ ε * B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ i ∈ t, 2 ^ Fintype.card ι * εs i ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' ⊢ ∃ ia, (∀ (c : ℝ≥0), l.RCond (ia c)) ∧ ∀ x ∈ {π | ∃ c, l.MemBaseSet I c (ia c) π ∧ π.IsPartition}, integralSum f vol x ∈ Metric.closedBall (g I) ε
f7fbe41cacd6cc55
sdiff_sdiff
Mathlib/Order/Heyting/Basic.lean
theorem sdiff_sdiff (a b c : α) : (a \ b) \ c = a \ (b ⊔ c) := eq_of_forall_ge_iff fun d => by simp_rw [sdiff_le_iff, sup_assoc]
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ (a \ b) \ c ≤ d ↔ a \ (b ⊔ c) ≤ d
simp_rw [sdiff_le_iff, sup_assoc]
no goals
46b739da6dee4d11
LinearMap.quotientInfEquivSupQuotient_symm_apply_eq_zero_iff
Mathlib/LinearAlgebra/Isomorphisms.lean
theorem quotientInfEquivSupQuotient_symm_apply_eq_zero_iff {p p' : Submodule R M} {x : ↥(p ⊔ p')} : (quotientInfEquivSupQuotient p p').symm (Submodule.Quotient.mk x) = 0 ↔ (x : M) ∈ p' := (LinearEquiv.symm_apply_eq _).trans <| by simp
R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M x : ↥(p ⊔ p') ⊢ Submodule.Quotient.mk x = (quotientInfEquivSupQuotient p p') 0 ↔ ↑x ∈ p'
simp
no goals
d709be932a6916f6
List.count_filterMap
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Count.lean
theorem count_filterMap {α} [BEq β] (b : β) (f : α → Option β) (l : List α) : count b (filterMap f l) = countP (fun a => f a == some b) l
β : Type u_1 α : Type u_2 inst✝ : BEq β b : β f : α → Option β l : List α ⊢ count b (filterMap f l) = countP (fun a => f a == some b) l
rw [count_eq_countP, countP_filterMap]
β : Type u_1 α : Type u_2 inst✝ : BEq β b : β f : α → Option β l : List α ⊢ countP (fun a => (Option.map (fun x => x == b) (f a)).getD false) l = countP (fun a => f a == some b) l
2667cf96d053912f
Matroid.IsCircuit.isBasis_iff_insert_eq
Mathlib/Data/Matroid/Circuit.lean
lemma IsCircuit.isBasis_iff_insert_eq (hC : M.IsCircuit C) : M.IsBasis I C ↔ ∃ e ∈ C \ I, C = insert e I
case refine_1 α : Type u_1 M : Matroid α C I : Set α hC : M.IsCircuit C x✝ : ∃ e ∈ C, I = C \ {e} e : α he : e ∈ C hI : I = C \ {e} ⊢ C = insert e I
rw [hI, insert_diff_singleton, insert_eq_of_mem he]
no goals
26bb41495fb6fdb1
ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear
Mathlib/Analysis/Calculus/ContDiff/Bounds.lean
theorem ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear (B : E →L[𝕜] F →L[𝕜] G) {f : D → E} {g : D → F} {N : WithTop ℕ∞} {s : Set D} {x : D} (hf : ContDiffOn 𝕜 N f s) (hg : ContDiffOn 𝕜 N g s) (hs : UniqueDiffOn 𝕜 s) (hx : x ∈ s) {n : ℕ} (hn : n ≤ N) : ‖iteratedFDerivWithin 𝕜 n (fun y => B (f y) (g y)) s x‖ ≤ ‖B‖ * ∑ i ∈ Finset.range (n + 1), (n.choose i : ℝ) * ‖iteratedFDerivWithin 𝕜 i f s x‖ * ‖iteratedFDerivWithin 𝕜 (n - i) g s x‖
𝕜 : Type u_1 inst✝⁸ : NontriviallyNormedField 𝕜 D : Type uD inst✝⁷ : NormedAddCommGroup D inst✝⁶ : NormedSpace 𝕜 D E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type uF inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type uG inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G B : E →L[𝕜] F →L[𝕜] G f : D → E g : D → F N : WithTop ℕ∞ s : Set D x : D hf : ContDiffOn 𝕜 N f s hg : ContDiffOn 𝕜 N g s hs : UniqueDiffOn 𝕜 s hx : x ∈ s n : ℕ hn : ↑n ≤ N Du : Type (max uD uE uF uG) := ULift.{max uE uF uG, uD} D Eu : Type (max uD uE uF uG) := ULift.{max uD uF uG, uE} E ⊢ ‖iteratedFDerivWithin 𝕜 n (fun y => (B (f y)) (g y)) s x‖ ≤ ‖B‖ * ∑ i ∈ Finset.range (n + 1), ↑(n.choose i) * ‖iteratedFDerivWithin 𝕜 i f s x‖ * ‖iteratedFDerivWithin 𝕜 (n - i) g s x‖
let Fu : Type max uD uE uF uG := ULift.{max uD uE uG, uF} F
𝕜 : Type u_1 inst✝⁸ : NontriviallyNormedField 𝕜 D : Type uD inst✝⁷ : NormedAddCommGroup D inst✝⁶ : NormedSpace 𝕜 D E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type uF inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type uG inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G B : E →L[𝕜] F →L[𝕜] G f : D → E g : D → F N : WithTop ℕ∞ s : Set D x : D hf : ContDiffOn 𝕜 N f s hg : ContDiffOn 𝕜 N g s hs : UniqueDiffOn 𝕜 s hx : x ∈ s n : ℕ hn : ↑n ≤ N Du : Type (max uD uE uF uG) := ULift.{max uE uF uG, uD} D Eu : Type (max uD uE uF uG) := ULift.{max uD uF uG, uE} E Fu : Type (max uD uE uF uG) := ULift.{max uD uE uG, uF} F ⊢ ‖iteratedFDerivWithin 𝕜 n (fun y => (B (f y)) (g y)) s x‖ ≤ ‖B‖ * ∑ i ∈ Finset.range (n + 1), ↑(n.choose i) * ‖iteratedFDerivWithin 𝕜 i f s x‖ * ‖iteratedFDerivWithin 𝕜 (n - i) g s x‖
c6fa542bdff00851
WeierstrassCurve.natDegree_coeff_ΨSq_ofNat
Mathlib/AlgebraicGeometry/EllipticCurve/DivisionPolynomial/Degree.lean
private lemma natDegree_coeff_ΨSq_ofNat (n : ℕ) : (W.ΨSq n).natDegree ≤ n ^ 2 - 1 ∧ (W.ΨSq n).coeff (n ^ 2 - 1) = (n ^ 2 : ℤ)
R : Type u inst✝ : CommRing R W : WeierstrassCurve R dp : ∀ {m n : ℕ} {p : R[X]}, p.natDegree ≤ m → (p ^ n).natDegree ≤ n * m := fun {m n} {p} => natDegree_pow_le_of_le n h : ∀ {n : ℕ}, (W.preΨ' n).natDegree ≤ WeierstrassCurve.expDegree n ∧ (W.preΨ' n).coeff (WeierstrassCurve.expDegree n) = ↑(WeierstrassCurve.expCoeff n) := fun {n} => WeierstrassCurve.natDegree_coeff_preΨ' W n n : ℕ ⊢ n + 1 ≠ 0
omega
no goals
96420254b4130cb9
PartialHomeomorph.isLocalStructomorphWithinAt_iff
Mathlib/Geometry/Manifold/LocalInvariantProperties.lean
theorem _root_.PartialHomeomorph.isLocalStructomorphWithinAt_iff {G : StructureGroupoid H} [ClosedUnderRestriction G] (f : PartialHomeomorph H H) {s : Set H} {x : H} (hx : x ∈ f.source ∪ sᶜ) : G.IsLocalStructomorphWithinAt (⇑f) s x ↔ x ∈ s → ∃ e : PartialHomeomorph H H, e ∈ G ∧ e.source ⊆ f.source ∧ EqOn f (⇑e) (s ∩ e.source) ∧ x ∈ e.source
case mp.intro.intro.intro.refine_3 H : Type u_1 inst✝¹ : TopologicalSpace H G : StructureGroupoid H inst✝ : ClosedUnderRestriction G f : PartialHomeomorph H H s : Set H x : H hx : x ∈ f.source ∪ sᶜ hf : G.IsLocalStructomorphWithinAt (↑f) s x h2x : x ∈ s e : PartialHomeomorph H H he : e ∈ G hfe : EqOn (↑f) (↑e.toPartialEquiv) (s ∩ e.source) hxe : x ∈ e.source ⊢ x ∈ f.source
exact Or.resolve_right hx (not_not.mpr h2x)
no goals
8a619387a2fde1b4
Module.End.exists_hasEigenvalue_of_genEigenspace_eq_top
Mathlib/LinearAlgebra/Eigenspace/Triangularizable.lean
theorem exists_hasEigenvalue_of_genEigenspace_eq_top [Nontrivial M] {f : End R M} (k : ℕ∞) (hf : ⨆ μ, f.genEigenspace μ k = ⊤) : ∃ μ, f.HasEigenvalue μ
R : Type u_3 M : Type u_4 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Nontrivial M f : End R M k : ℕ∞ hf : ⨆ μ, (f.genEigenspace μ) k = ⊤ ⊢ ∃ μ, f.HasEigenvalue μ
suffices ∃ μ, f.HasUnifEigenvalue μ k by peel this with μ hμ exact HasUnifEigenvalue.lt zero_lt_one hμ
R : Type u_3 M : Type u_4 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Nontrivial M f : End R M k : ℕ∞ hf : ⨆ μ, (f.genEigenspace μ) k = ⊤ ⊢ ∃ μ, f.HasUnifEigenvalue μ k
f778b3a875e36e4d
CategoryTheory.ComposableArrows.Precomp.map_comp
Mathlib/CategoryTheory/ComposableArrows.lean
lemma map_comp {i j k : Fin (n + 1 + 1)} (hij : i ≤ j) (hjk : j ≤ k) : map F f i k (hij.trans hjk) = map F f i j hij ≫ map F f j k hjk
case mk.mk.mk.succ.succ.succ C : Type u_1 inst✝ : Category.{u_2, u_1} C n : ℕ F : ComposableArrows C n X : C f : X ⟶ F.left n✝ : ℕ hi : n✝ + 1 < n + 1 + 1 j : ℕ hj : j + 1 < n + 1 + 1 hij : ⟨n✝ + 1, hi⟩ ≤ ⟨j + 1, hj⟩ k : ℕ hk : k + 1 < n + 1 + 1 hjk : ⟨j + 1, hj⟩ ≤ ⟨k + 1, hk⟩ ⊢ F.map (homOfLE ⋯) = F.map (homOfLE ⋯) ≫ F.map (homOfLE ⋯)
rw [← F.map_comp, homOfLE_comp]
no goals
17b6c032c85bf5cd
Turing.tr_reaches
Mathlib/Computability/PostTuringMachine.lean
theorem tr_reaches {σ₁ σ₂ f₁ f₂} {tr : σ₁ → σ₂ → Prop} (H : Respects f₁ f₂ tr) {a₁ a₂} (aa : tr a₁ a₂) {b₁} (ab : Reaches f₁ a₁ b₁) : ∃ b₂, tr b₁ b₂ ∧ Reaches f₂ a₂ b₂
case inr σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ : σ₁ ab✝ : Reaches f₁ a₁ b₁ ab : TransGen (fun a b => b ∈ f₁ a) a₁ b₁ ⊢ ∃ b₂, tr b₁ b₂ ∧ Reaches f₂ a₂ b₂
have ⟨b₂, bb, h⟩ := tr_reaches₁ H aa ab
case inr σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ : σ₁ ab✝ : Reaches f₁ a₁ b₁ ab : TransGen (fun a b => b ∈ f₁ a) a₁ b₁ b₂ : σ₂ bb : tr b₁ b₂ h : Reaches₁ f₂ a₂ b₂ ⊢ ∃ b₂, tr b₁ b₂ ∧ Reaches f₂ a₂ b₂
9a1ddf3f5592df15
subset_piiUnionInter
Mathlib/MeasureTheory/PiSystem.lean
theorem subset_piiUnionInter {π : ι → Set (Set α)} {S : Set ι} {i : ι} (his : i ∈ S) : π i ⊆ piiUnionInter π S
α : Type u_3 ι : Type u_4 π : ι → Set (Set α) S : Set ι i : ι his : i ∈ S h_ss : {i} ⊆ S ⊢ π i ⊆ π i ∪ {univ}
exact subset_union_left
no goals
c6ca9627dfa3c302
Multiset.map_set_pairwise
Mathlib/Data/Multiset/UnionInter.lean
theorem map_set_pairwise {f : α → β} {r : β → β → Prop} {m : Multiset α} (h : { a | a ∈ m }.Pairwise fun a₁ a₂ => r (f a₁) (f a₂)) : { b | b ∈ m.map f }.Pairwise r := fun b₁ h₁ b₂ h₂ hn => by obtain ⟨⟨a₁, H₁, rfl⟩, a₂, H₂, rfl⟩ := Multiset.mem_map.1 h₁, Multiset.mem_map.1 h₂ exact h H₁ H₂ (mt (congr_arg f) hn)
α : Type u_1 β : Type v f : α → β r : β → β → Prop m : Multiset α h : {a | a ∈ m}.Pairwise fun a₁ a₂ => r (f a₁) (f a₂) b₁ : β h₁ : b₁ ∈ {b | b ∈ map f m} b₂ : β h₂ : b₂ ∈ {b | b ∈ map f m} hn : b₁ ≠ b₂ ⊢ r b₁ b₂
obtain ⟨⟨a₁, H₁, rfl⟩, a₂, H₂, rfl⟩ := Multiset.mem_map.1 h₁, Multiset.mem_map.1 h₂
case intro.intro.intro.intro α : Type u_1 β : Type v f : α → β r : β → β → Prop m : Multiset α h : {a | a ∈ m}.Pairwise fun a₁ a₂ => r (f a₁) (f a₂) a₁ : α H₁ : a₁ ∈ m h₁ : f a₁ ∈ {b | b ∈ map f m} a₂ : α H₂ : a₂ ∈ m h₂ : f a₂ ∈ {b | b ∈ map f m} hn : f a₁ ≠ f a₂ ⊢ r (f a₁) (f a₂)
e200b04d19b2c153
Set.image_subtype_val_Ixx_Ixi
Mathlib/Order/Interval/Set/Image.lean
private lemma image_subtype_val_Ixx_Ixi {p q r : α → α → Prop} {a b : α} (c : {x // p a x ∧ q x b}) (h : ∀ {x}, r c x → p a x) : Subtype.val '' {y : {x // p a x ∧ q x b} | r c.1 y.1} = {y : α | r c.1 y ∧ q y b} := (Subtype.image_preimage_val {x | p a x ∧ q x b} {y | r c.1 y}).trans <| by ext; simp +contextual [@and_comm (r _ _), h]
case h α : Type u_1 p q r : α → α → Prop a b : α c : { x // p a x ∧ q x b } h : ∀ {x : α}, r (↑c) x → p a x x✝ : α ⊢ x✝ ∈ {x | p a x ∧ q x b} ∩ {y | r (↑c) y} ↔ x✝ ∈ {y | r (↑c) y ∧ q y b}
simp +contextual [@and_comm (r _ _), h]
no goals
84f3fa0604c44797
Matrix.det_diagonal
Mathlib/LinearAlgebra/Matrix/Determinant/Basic.lean
theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i
n : Type u_2 inst✝² : DecidableEq n inst✝¹ : Fintype n R : Type v inst✝ : CommRing R d : n → R ⊢ (diagonal d).det = ∏ i : n, d i
rw [det_apply']
n : Type u_2 inst✝² : DecidableEq n inst✝¹ : Fintype n R : Type v inst✝ : CommRing R d : n → R ⊢ ∑ σ : Perm n, ↑↑(sign σ) * ∏ i : n, diagonal d (σ i) i = ∏ i : n, d i
587194f644b4bcab
CategoryTheory.shiftFunctorCompIsoId_add'_inv_app
Mathlib/CategoryTheory/Shift/Basic.lean
lemma shiftFunctorCompIsoId_add'_inv_app : (shiftFunctorCompIsoId C p' p hp).inv.app X = (shiftFunctorCompIsoId C n' n hn).inv.app X ≫ (shiftFunctorCompIsoId C m' m hm).inv.app (X⟦n'⟧)⟦n⟧' ≫ (shiftFunctorAdd' C m n p h).inv.app (X⟦n'⟧⟦m'⟧) ≫ ((shiftFunctorAdd' C n' m' p' (by rw [← add_left_inj p, hp, ← h, add_assoc, ← add_assoc m', hm, zero_add, hn])).inv.app X)⟦p⟧'
C : Type u A : Type u_1 inst✝² : Category.{v, u} C inst✝¹ : AddGroup A inst✝ : HasShift C A X : C m n p m' n' p' : A hm : m' + m = 0 hn : n' + n = 0 hp : p' + p = 0 h : m + n = p ⊢ n' + m' + m = n'
rw [add_assoc, hm, add_zero]
no goals
1740b8167511ce6d
ContinuousMultilinearMap.norm_mkPiAlgebraFin
Mathlib/Analysis/NormedSpace/Multilinear/Basic.lean
theorem norm_mkPiAlgebraFin [NormOneClass A] : ‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 n A‖ = 1
𝕜 : Type u inst✝³ : NontriviallyNormedField 𝕜 n : ℕ A : Type u_1 inst✝² : SeminormedRing A inst✝¹ : NormedAlgebra 𝕜 A inst✝ : NormOneClass A ⊢ ‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 n A‖ = 1
cases n
case zero 𝕜 : Type u inst✝³ : NontriviallyNormedField 𝕜 A : Type u_1 inst✝² : SeminormedRing A inst✝¹ : NormedAlgebra 𝕜 A inst✝ : NormOneClass A ⊢ ‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 0 A‖ = 1 case succ 𝕜 : Type u inst✝³ : NontriviallyNormedField 𝕜 A : Type u_1 inst✝² : SeminormedRing A inst✝¹ : NormedAlgebra 𝕜 A inst✝ : NormOneClass A n✝ : ℕ ⊢ ‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 (n✝ + 1) A‖ = 1
73fe76999a224379
contMDiffAt_iff_contMDiffAt_nhds
Mathlib/Geometry/Manifold/ContMDiff/Defs.lean
theorem contMDiffAt_iff_contMDiffAt_nhds [IsManifold I n M] [IsManifold I' n M'] (hn : n ≠ ∞) : ContMDiffAt I I' n f x ↔ ∀ᶠ x' in 𝓝 x, ContMDiffAt I I' n f x'
𝕜 : Type u_1 inst✝¹² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedSpace 𝕜 E H : Type u_3 inst✝⁹ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁸ : TopologicalSpace M inst✝⁷ : ChartedSpace H M E' : Type u_5 inst✝⁶ : NormedAddCommGroup E' inst✝⁵ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁴ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝³ : TopologicalSpace M' inst✝² : ChartedSpace H' M' f : M → M' x : M n : WithTop ℕ∞ inst✝¹ : IsManifold I n M inst✝ : IsManifold I' n M' hn : n ≠ ∞ ⊢ ContMDiffAt I I' n f x → ∀ᶠ (x' : M) in 𝓝 x, ContMDiffAt I I' n f x'
rw [contMDiffAt_iff_contMDiffOn_nhds hn]
𝕜 : Type u_1 inst✝¹² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedSpace 𝕜 E H : Type u_3 inst✝⁹ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁸ : TopologicalSpace M inst✝⁷ : ChartedSpace H M E' : Type u_5 inst✝⁶ : NormedAddCommGroup E' inst✝⁵ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁴ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝³ : TopologicalSpace M' inst✝² : ChartedSpace H' M' f : M → M' x : M n : WithTop ℕ∞ inst✝¹ : IsManifold I n M inst✝ : IsManifold I' n M' hn : n ≠ ∞ ⊢ (∃ u ∈ 𝓝 x, ContMDiffOn I I' n f u) → ∀ᶠ (x' : M) in 𝓝 x, ContMDiffAt I I' n f x'
0a10d293b6a59353
HasFPowerSeriesWithinOnBall.iteratedFDerivWithin_eq_sum_of_completeSpace
Mathlib/Analysis/Analytic/IteratedFDeriv.lean
theorem HasFPowerSeriesWithinOnBall.iteratedFDerivWithin_eq_sum_of_completeSpace [CompleteSpace F] (h : HasFPowerSeriesWithinOnBall f p s x r) (hs : UniqueDiffOn 𝕜 s) (hx : x ∈ s) {n : ℕ} (v : Fin n → E) : iteratedFDerivWithin 𝕜 n f s x v = ∑ σ : Perm (Fin n), p n (fun i ↦ v (σ i))
case h's 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F f : E → F p : FormalMultilinearSeries 𝕜 E F s : Set E x : E r : ℝ≥0∞ inst✝ : CompleteSpace F h : HasFPowerSeriesWithinOnBall f p s x r hs : UniqueDiffOn 𝕜 s hx : x ∈ s n : ℕ v : Fin n → E this : iteratedFDerivWithin 𝕜 n f s x = iteratedFDerivWithin 𝕜 n f (s ∩ EMetric.ball x r) x ⊢ s ∩ EMetric.ball x r ⊆ EMetric.ball x r
exact inter_subset_right
no goals
70511175dfe1fa7d
LieAlgebra.engel_isBot_of_isMin
Mathlib/Algebra/Lie/CartanExists.lean
/-- Let `L` be a Lie algebra of dimension `n` over a field `K` with at least `n` elements. Given a Lie subalgebra `U` of `L`, and an element `x ∈ U` such that `U ≤ engel K x`. Suppose that `engel K x` is minimal amongst the Engel subalgebras `engel K y` for `y ∈ U`. Then `engel K x ≤ engel K y` for all `y ∈ U`. Lemma 2 in [barnes1967]. -/ lemma engel_isBot_of_isMin (hLK : finrank K L ≤ #K) (U : LieSubalgebra K L) (E : {engel K x | x ∈ U}) (hUle : U ≤ E) (hmin : IsMin E) : IsBot E
K : Type u_1 L : Type u_2 inst✝³ : Field K inst✝² : LieRing L inst✝¹ : LieAlgebra K L inst✝ : Module.Finite K L hLK : ↑(finrank K L) ≤ #K U : LieSubalgebra K L x : L hxU : x ∈ U y : L hyU : y ∈ U Ex : ↑{x | ∃ x_1 ∈ U, engel K x_1 = x} := ⟨engel K x, ⋯⟩ Ey : ↑{x | ∃ y ∈ U, engel K y = x} := ⟨engel K y, ⋯⟩ hUle : U ≤ ↑Ex hmin : ∀ E ≤ Ex, Ex ≤ E E : LieSubmodule K (↥U) L := let __src := engel K x; { toSubmodule := __src.toSubmodule, lie_mem := ⋯ } hx₀ : x ≠ 0 Q : Type u_2 := L ⧸ E r : ℕ := finrank K ↥E hr : r < finrank K L x' : ↥U := ⟨x, hxU⟩ y' : ↥U := ⟨y, hyU⟩ u : ↥U := y' - x' χ : K[X][X] := LieAlgebra.engel_isBot_of_isMin.lieCharpoly K (↥E) x' u ψ : K[X][X] := LieAlgebra.engel_isBot_of_isMin.lieCharpoly K Q x' u i : ℕ hi : i < r hi0 : i ≠ 0 hψ : constantCoeff ψ ≠ 0 s : Finset K hs : r ≤ s.card hsψ : ∀ α ∈ s, eval α (constantCoeff ψ) ≠ 0 α : K hα : α ∈ s ⊢ ∀ (m : ↥E), ∃ n, ((toEnd K ↥U ↥E) (α • u + x') ^ n) m = 0
let v := α • u + x'
K : Type u_1 L : Type u_2 inst✝³ : Field K inst✝² : LieRing L inst✝¹ : LieAlgebra K L inst✝ : Module.Finite K L hLK : ↑(finrank K L) ≤ #K U : LieSubalgebra K L x : L hxU : x ∈ U y : L hyU : y ∈ U Ex : ↑{x | ∃ x_1 ∈ U, engel K x_1 = x} := ⟨engel K x, ⋯⟩ Ey : ↑{x | ∃ y ∈ U, engel K y = x} := ⟨engel K y, ⋯⟩ hUle : U ≤ ↑Ex hmin : ∀ E ≤ Ex, Ex ≤ E E : LieSubmodule K (↥U) L := let __src := engel K x; { toSubmodule := __src.toSubmodule, lie_mem := ⋯ } hx₀ : x ≠ 0 Q : Type u_2 := L ⧸ E r : ℕ := finrank K ↥E hr : r < finrank K L x' : ↥U := ⟨x, hxU⟩ y' : ↥U := ⟨y, hyU⟩ u : ↥U := y' - x' χ : K[X][X] := LieAlgebra.engel_isBot_of_isMin.lieCharpoly K (↥E) x' u ψ : K[X][X] := LieAlgebra.engel_isBot_of_isMin.lieCharpoly K Q x' u i : ℕ hi : i < r hi0 : i ≠ 0 hψ : constantCoeff ψ ≠ 0 s : Finset K hs : r ≤ s.card hsψ : ∀ α ∈ s, eval α (constantCoeff ψ) ≠ 0 α : K hα : α ∈ s v : ↥U := α • u + x' ⊢ ∀ (m : ↥E), ∃ n, ((toEnd K ↥U ↥E) (α • u + x') ^ n) m = 0
53ed38f54130aaf6
jacobiSum_mul_jacobiSum_inv
Mathlib/NumberTheory/JacobiSum/Basic.lean
/-- If `χ` and `φ` are multiplicative characters on a finite field `F` with values in another field `F'` such that `χ`, `φ` and `χφ` are all nontrivial and `char F' ≠ char F`, then `J(χ,φ) * J(χ⁻¹,φ⁻¹) = #F` (in `F'`). -/ lemma jacobiSum_mul_jacobiSum_inv (h : ringChar F' ≠ ringChar F) {χ φ : MulChar F F'} (hχ : χ ≠ 1) (hφ : φ ≠ 1) (hχφ : χ * φ ≠ 1) : jacobiSum χ φ * jacobiSum χ⁻¹ φ⁻¹ = Fintype.card F
case intro.intro.a F : Type u_1 F' : Type u_2 inst✝² : Fintype F inst✝¹ : Field F inst✝ : Field F' h : ringChar F' ≠ ringChar F χ φ : MulChar F F' hχ : χ ≠ 1 hφ : φ ≠ 1 hχφ : χ * φ ≠ 1 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n ψ : PrimitiveAddChar F F' := FiniteField.primitiveChar F F' h FF' : Type u_2 := CyclotomicField ψ.n F' χ' : MulChar F FF' := χ.ringHomComp (algebraMap F' FF') φ' : MulChar F FF' := φ.ringHomComp (algebraMap F' FF') hinj : Function.Injective ⇑(algebraMap F' FF') Hχφ : χ' * φ' ≠ 1 Hχφ' : χ'⁻¹ * φ'⁻¹ ≠ 1 Hχ : χ' ≠ 1 Hφ : φ' ≠ 1 Hcard : ↑(Fintype.card F) ≠ 0 ⊢ jacobiSum (χ.ringHomComp (algebraMap F' FF')) (φ.ringHomComp (algebraMap F' FF')) * jacobiSum (χ⁻¹.ringHomComp (algebraMap F' FF')) (φ⁻¹.ringHomComp (algebraMap F' FF')) = (algebraMap F' FF') ↑(Fintype.card F)
have H := (gaussSum_mul_gaussSum_eq_card Hχφ ψ.prim).trans_ne Hcard
case intro.intro.a F : Type u_1 F' : Type u_2 inst✝² : Fintype F inst✝¹ : Field F inst✝ : Field F' h : ringChar F' ≠ ringChar F χ φ : MulChar F F' hχ : χ ≠ 1 hφ : φ ≠ 1 hχφ : χ * φ ≠ 1 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n ψ : PrimitiveAddChar F F' := FiniteField.primitiveChar F F' h FF' : Type u_2 := CyclotomicField ψ.n F' χ' : MulChar F FF' := χ.ringHomComp (algebraMap F' FF') φ' : MulChar F FF' := φ.ringHomComp (algebraMap F' FF') hinj : Function.Injective ⇑(algebraMap F' FF') Hχφ : χ' * φ' ≠ 1 Hχφ' : χ'⁻¹ * φ'⁻¹ ≠ 1 Hχ : χ' ≠ 1 Hφ : φ' ≠ 1 Hcard : ↑(Fintype.card F) ≠ 0 H : gaussSum (χ' * φ') ψ.char * gaussSum (χ' * φ')⁻¹ ψ.char⁻¹ ≠ 0 ⊢ jacobiSum (χ.ringHomComp (algebraMap F' FF')) (φ.ringHomComp (algebraMap F' FF')) * jacobiSum (χ⁻¹.ringHomComp (algebraMap F' FF')) (φ⁻¹.ringHomComp (algebraMap F' FF')) = (algebraMap F' FF') ↑(Fintype.card F)
5b48f17367fbeedf
rpow_one_add_lt_one_add_mul_self
Mathlib/Analysis/Convex/SpecificFunctions/Basic.lean
theorem rpow_one_add_lt_one_add_mul_self {s : ℝ} (hs : -1 ≤ s) (hs' : s ≠ 0) {p : ℝ} (hp1 : 0 < p) (hp2 : p < 1) : (1 + s) ^ p < 1 + p * s
case inr.a.inl s : ℝ hs✝ : -1 ≤ s hs'✝ : s ≠ 0 p : ℝ hp1 : 0 < p hp2 : p < 1 hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 hs' : s < 0 ⊢ log (1 + s) * p < log (1 + p * s)
rw [← lt_div_iff₀ hp1, ← div_lt_div_right_of_neg hs']
case inr.a.inl s : ℝ hs✝ : -1 ≤ s hs'✝ : s ≠ 0 p : ℝ hp1 : 0 < p hp2 : p < 1 hs : -1 < s hs1 : 0 < 1 + s hs2 : 0 < 1 + p * s hs3 : 1 + s ≠ 1 hs4 : 1 + p * s ≠ 1 hs' : s < 0 ⊢ log (1 + p * s) / p / s < log (1 + s) / s
424bf16041482ff7
ExistsContDiffBumpBase.y_pos_of_mem_ball
Mathlib/Analysis/Calculus/BumpFunction/FiniteDimension.lean
theorem y_pos_of_mem_ball {D : ℝ} {x : E} (Dpos : 0 < D) (D_lt_one : D < 1) (hx : x ∈ ball (0 : E) (1 + D)) : 0 < y D x
E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : FiniteDimensional ℝ E inst✝¹ : MeasurableSpace E inst✝ : BorelSpace E D : ℝ x : E Dpos : 0 < D D_lt_one : D < 1 hx : ‖x‖ < 1 + D z : E := (D / (1 + D)) • x hz : z = (D / (1 + D)) • x B : 0 < 1 + D y : E hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D)) ⊢ D * (1 + D - ‖x‖) / (1 + D) + D / (1 + D) * ‖x‖ ≤ D
simp only [div_le_iff₀ B, field_simps]
E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : FiniteDimensional ℝ E inst✝¹ : MeasurableSpace E inst✝ : BorelSpace E D : ℝ x : E Dpos : 0 < D D_lt_one : D < 1 hx : ‖x‖ < 1 + D z : E := (D / (1 + D)) • x hz : z = (D / (1 + D)) • x B : 0 < 1 + D y : E hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D)) ⊢ D * (1 + D - ‖x‖) + D * ‖x‖ ≤ D * (1 + D)
646f97b7cc0fbf51
FintypeCat.isSkeleton
Mathlib/CategoryTheory/FintypeCat.lean
/-- `Fintype.Skeleton` is a skeleton of `Fintype`. -/ lemma isSkeleton : IsSkeletonOf FintypeCat Skeleton Skeleton.incl where skel := Skeleton.is_skeletal eqv
⊢ Skeleton.incl.IsEquivalence
infer_instance
no goals
90fe647c92f21534
MeasureTheory.Measure.absolutelyContinuous_compProd_of_compProd
Mathlib/Probability/Kernel/Composition/MeasureCompProd.lean
lemma absolutelyContinuous_compProd_of_compProd [SigmaFinite μ] [SigmaFinite ν] (hκη : μ ⊗ₘ κ ≪ ν ⊗ₘ η) : μ ⊗ₘ κ ≪ μ ⊗ₘ η
α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β μ ν : Measure α κ η : Kernel α β inst✝¹ : SigmaFinite μ inst✝ : SigmaFinite ν hκη : μ ⊗ₘ κ ≪ μ.withDensity (ν.rnDeriv μ) ⊗ₘ η + ν.singularPart μ ⊗ₘ η h : μ ⊗ₘ κ ≪ μ.withDensity (ν.rnDeriv μ) ⊗ₘ η ⊢ μ ⊗ₘ κ ≪ μ ⊗ₘ η
refine h.trans (AbsolutelyContinuous.compProd_left ?_ _)
α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β μ ν : Measure α κ η : Kernel α β inst✝¹ : SigmaFinite μ inst✝ : SigmaFinite ν hκη : μ ⊗ₘ κ ≪ μ.withDensity (ν.rnDeriv μ) ⊗ₘ η + ν.singularPart μ ⊗ₘ η h : μ ⊗ₘ κ ≪ μ.withDensity (ν.rnDeriv μ) ⊗ₘ η ⊢ μ.withDensity (ν.rnDeriv μ) ≪ μ
932f493f7cae303f
Set.preimage_const_mul_Ioi_or_Iio
Mathlib/Algebra/Order/Group/Pointwise/Interval.lean
lemma preimage_const_mul_Ioi_or_Iio (hb : a ≠ 0) {U V : Set α} (hU : U ∈ {s | ∃ a, s = Ioi a ∨ s = Iio a}) (hV : V = HMul.hMul a ⁻¹' U) : V ∈ {s | ∃ a, s = Ioi a ∨ s = Iio a}
case h.inl.h α : Type u_1 inst✝ : LinearOrderedField α a : α hb✝ : a ≠ 0 U V : Set α hV : V = HMul.hMul a ⁻¹' U aU : α haU : U = Ioi aU hb : a < 0 ⊢ HMul.hMul a ⁻¹' Ioi aU = Iio (a⁻¹ * aU)
rw [Set.preimage_const_mul_Ioi_of_neg _ hb, div_eq_inv_mul]
no goals
1f2cbf705c2a3cf3
List.takeWhile_filterMap
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/TakeDrop.lean
theorem takeWhile_filterMap (f : α → Option β) (p : β → Bool) (l : List α) : (l.filterMap f).takeWhile p = (l.takeWhile fun a => (f a).all p).filterMap f
case cons.h_2 α : Type u_1 β : Type u_2 f : α → Option β p : β → Bool x : α xs : List α ih : takeWhile p (filterMap f xs) = filterMap f (takeWhile (fun a => Option.all p (f a)) xs) x✝ : Option β b✝ : β h : f x = some b✝ ⊢ takeWhile p (b✝ :: filterMap f xs) = filterMap f (takeWhile (fun a => Option.all p (f a)) (x :: xs))
simp [takeWhile_cons, h, ih]
case cons.h_2 α : Type u_1 β : Type u_2 f : α → Option β p : β → Bool x : α xs : List α ih : takeWhile p (filterMap f xs) = filterMap f (takeWhile (fun a => Option.all p (f a)) xs) x✝ : Option β b✝ : β h : f x = some b✝ ⊢ (if p b✝ = true then b✝ :: filterMap f (takeWhile (fun a => Option.all p (f a)) xs) else []) = filterMap f (if p b✝ = true then x :: takeWhile (fun a => Option.all p (f a)) xs else [])
d35ebb1fda16ec75
SeminormFamily.filter_eq_iInf
Mathlib/Analysis/LocallyConvex/WithSeminorms.lean
theorem filter_eq_iInf (p : SeminormFamily 𝕜 E ι) : p.moduleFilterBasis.toFilterBasis.filter = ⨅ i, (𝓝 0).comap (p i)
𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝³ : NormedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : Nonempty ι p : SeminormFamily 𝕜 E ι ⊢ AddGroupFilterBasis.toFilterBasis.filter = ⨅ i, comap (⇑(p i)) (𝓝 0)
refine le_antisymm (le_iInf fun i => ?_) ?_
case refine_1 𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝³ : NormedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : Nonempty ι p : SeminormFamily 𝕜 E ι i : ι ⊢ AddGroupFilterBasis.toFilterBasis.filter ≤ comap (⇑(p i)) (𝓝 0) case refine_2 𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝³ : NormedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : Nonempty ι p : SeminormFamily 𝕜 E ι ⊢ ⨅ i, comap (⇑(p i)) (𝓝 0) ≤ AddGroupFilterBasis.toFilterBasis.filter
043221e62cb70beb